This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
MSP-MVS88.09 590.84 584.88 790.00 2291.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4494.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2588.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
DPM-MVS83.30 3184.33 3482.11 2689.56 2788.49 3390.33 1273.24 2783.85 3276.46 2672.43 4982.65 3273.02 4886.37 3586.91 1990.03 3689.62 51
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 2987.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 3990.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5389.81 1673.55 2583.95 3173.30 3789.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3177.74 1987.42 1987.20 1590.77 1392.63 25
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2879.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
PGM-MVS84.42 2786.29 2782.23 2590.04 2188.82 2689.23 2271.74 3582.82 3674.61 3284.41 2382.09 3477.03 2787.13 2486.73 2490.73 1592.06 31
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG85.28 2187.68 1982.49 2489.95 2391.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
CP-MVS84.74 2686.43 2682.77 2389.48 2988.13 3888.64 2573.93 2184.92 2476.77 2581.94 2683.50 2977.29 2586.92 3086.49 2790.49 2293.14 23
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3190.38 1188.61 2676.50 186.25 2277.22 2375.12 3980.28 4477.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2888.53 3288.59 2772.55 3087.39 1571.90 4190.95 987.55 1374.57 3687.08 2686.54 2687.47 9093.67 17
OPM-MVS79.68 4779.28 6080.15 3787.99 3886.77 4588.52 2872.72 2964.55 9867.65 6267.87 7374.33 6474.31 3986.37 3585.25 4089.73 4389.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDPH-MVS82.64 3385.03 3379.86 3889.41 3088.31 3588.32 2971.84 3480.11 4367.47 6382.09 2581.44 4071.85 5685.89 4186.15 3290.24 3291.25 37
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3688.49 3388.31 3072.09 3283.42 3472.77 3982.65 2478.22 4975.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS83.23 3285.20 3280.92 3389.71 2688.68 2788.21 3173.60 2382.57 3771.81 4477.07 3281.92 3671.72 5886.98 2886.86 2090.47 2392.36 28
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3274.24 1784.88 2576.23 2775.26 3881.05 4277.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CPTT-MVS81.77 3783.10 3880.21 3685.93 4986.45 4887.72 3370.98 3882.54 3871.53 4774.23 4481.49 3976.31 3182.85 6981.87 6588.79 6292.26 29
HQP-MVS81.19 4083.27 3778.76 4487.40 4085.45 5486.95 3470.47 4081.31 4066.91 6679.24 3076.63 5371.67 5984.43 5483.78 5189.19 5492.05 33
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4785.36 5686.76 3569.59 4677.34 4865.14 7275.68 3670.79 7871.37 6284.60 5084.01 4690.18 3390.74 42
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3789.67 1786.60 3671.48 3681.28 4178.18 2064.78 8477.96 5177.13 2687.32 2286.83 2190.41 2891.48 35
MVS_030481.73 3883.86 3579.26 4186.22 4889.18 2486.41 3767.15 6475.28 5370.75 5174.59 4183.49 3074.42 3887.05 2786.34 2990.58 2091.08 39
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 5988.17 3686.08 3869.85 4375.23 5568.43 5768.03 7278.38 4771.76 5781.26 8780.65 8788.56 6591.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMM72.26 878.86 5678.13 6479.71 3986.89 4383.40 7486.02 3970.50 3975.28 5371.49 4863.01 9169.26 8873.57 4384.11 5683.98 4789.76 4287.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS79.35 5081.23 4677.16 5385.01 5686.92 4485.87 4060.89 13080.07 4575.35 3172.96 4773.21 6868.43 7785.41 4484.63 4487.41 9185.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4287.22 4285.82 4170.04 4280.30 4278.66 1968.67 6981.04 4377.81 1885.19 4684.88 4389.19 5491.31 36
ACMP73.23 779.79 4480.53 5278.94 4285.61 5185.68 5185.61 4269.59 4677.33 4971.00 5074.45 4269.16 8971.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS82.36 3585.89 2978.24 4786.40 4689.52 1885.52 4369.52 4882.38 3965.67 6981.35 2782.36 3373.07 4787.31 2386.76 2389.24 5191.56 34
CANet81.62 3983.41 3679.53 4087.06 4188.59 3185.47 4467.96 5776.59 5174.05 3374.69 4081.98 3572.98 4986.14 3985.47 3789.68 4590.42 45
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3590.48 1085.46 4573.08 2890.97 673.77 3684.81 2285.95 2077.43 2288.22 1187.73 1187.85 8394.34 9
XVS86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
X-MVStestdata86.63 4488.68 2785.00 4671.81 4481.92 3690.47 23
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3286.06 5084.95 4871.96 3379.39 4675.51 3063.16 9068.84 9476.51 2983.55 6182.85 5888.13 7386.46 75
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5386.96 4384.91 4970.25 4184.71 2873.91 3585.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
DELS-MVS79.15 5481.07 4976.91 5583.54 6087.31 4184.45 5064.92 8069.98 6969.34 5571.62 5376.26 5469.84 6786.57 3285.90 3489.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5887.35 4084.43 5165.54 7578.29 4773.97 3463.00 9275.62 5974.07 4085.00 4785.34 3990.11 3589.04 53
MAR-MVS79.21 5280.32 5577.92 4987.46 3988.15 3783.95 5267.48 6374.28 5768.25 5864.70 8577.04 5272.17 5285.42 4385.00 4288.22 6987.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet79.08 5580.62 5177.28 5188.90 3483.17 7983.65 5372.41 3174.41 5667.15 6576.78 3374.37 6364.43 9783.70 6083.69 5287.15 9488.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5085.17 5783.45 5469.28 4974.08 6070.31 5374.31 4375.26 6073.13 4686.46 3485.15 4189.53 4689.81 49
OMC-MVS80.26 4182.59 4177.54 5083.04 6185.54 5283.25 5565.05 7987.32 1872.42 4072.04 5178.97 4673.30 4583.86 5781.60 6988.15 7288.83 55
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7184.70 6082.12 5664.26 8774.27 5867.93 6070.83 5874.66 6269.19 7283.33 6581.94 6489.29 5087.14 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9185.01 5881.73 5765.93 7484.75 2761.68 8385.79 1966.27 10471.39 6182.91 6880.78 7886.01 13185.98 77
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8384.52 6281.36 5863.14 9884.77 2664.82 7468.72 6775.91 5871.86 5581.62 7679.55 10487.80 8585.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DROMVSNet79.44 4881.35 4577.22 5282.95 6284.67 6181.31 5963.65 9172.47 6768.75 5673.15 4678.33 4875.99 3286.06 4083.96 4890.67 1790.79 41
Effi-MVS+75.28 7376.20 7974.20 7381.15 7783.24 7781.11 6063.13 9966.37 8460.27 8764.30 8868.88 9370.93 6581.56 7881.69 6788.61 6387.35 65
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10381.55 8780.97 6162.54 11368.59 7565.13 7361.43 9574.81 6169.32 7181.01 9279.59 10287.64 8885.89 78
canonicalmvs79.16 5382.37 4275.41 6382.33 6886.38 4980.80 6263.18 9782.90 3567.34 6472.79 4876.07 5669.62 6883.46 6484.41 4589.20 5390.60 43
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8883.73 7180.65 6363.24 9673.58 6366.11 6869.39 6474.09 6569.49 7082.52 7279.35 10988.84 6186.52 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
QAPM78.47 5880.22 5676.43 5885.03 5586.75 4680.62 6466.00 7273.77 6265.35 7165.54 8078.02 5072.69 5083.71 5983.36 5588.87 6090.41 46
CS-MVS79.22 5181.11 4877.01 5481.36 7484.03 6480.35 6563.25 9573.43 6470.37 5274.10 4576.03 5776.40 3086.32 3783.95 4990.34 3189.93 47
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7881.50 8980.28 6665.25 7776.09 5271.32 4976.49 3572.87 7072.21 5182.79 7081.29 7186.59 11687.91 61
ETV-MVS77.32 6378.81 6175.58 6282.24 6983.64 7279.98 6764.02 8869.64 7463.90 7770.89 5769.94 8473.41 4485.39 4583.91 5089.92 3788.31 58
MVS_Test75.37 7277.13 7573.31 7779.07 9781.32 9279.98 6760.12 14169.72 7264.11 7670.53 5973.22 6768.90 7380.14 10779.48 10687.67 8785.50 84
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6381.26 9379.94 6966.10 7077.15 5066.86 6759.13 11168.53 9673.73 4280.38 10079.04 11087.13 9881.68 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 19881.17 9479.90 7062.46 11664.52 9957.52 10071.49 5559.15 12972.08 5378.61 12581.11 7388.16 7183.29 112
GeoE74.23 7774.84 8573.52 7580.42 8781.46 9079.77 7161.06 12867.23 8163.67 7859.56 10868.74 9567.90 7880.25 10579.37 10888.31 6687.26 68
CNLPA77.20 6477.54 6876.80 5682.63 6484.31 6379.77 7164.64 8185.17 2373.18 3856.37 12869.81 8574.53 3781.12 9078.69 11586.04 13087.29 67
LS3D74.08 7873.39 9374.88 6785.05 5482.62 8379.71 7368.66 5272.82 6558.80 9157.61 12261.31 11971.07 6480.32 10178.87 11486.00 13280.18 141
CS-MVS-test78.79 5780.72 5076.53 5781.11 7983.88 6779.69 7463.72 9073.80 6169.95 5475.40 3776.17 5574.85 3584.50 5382.78 5989.87 3988.54 57
MSDG71.52 9669.87 11973.44 7682.21 7079.35 11379.52 7564.59 8266.15 8661.87 8253.21 15456.09 14465.85 9578.94 12178.50 11786.60 11576.85 163
CANet_DTU73.29 8376.96 7669.00 11177.04 11582.06 8579.49 7656.30 16667.85 7953.29 12471.12 5670.37 8261.81 11981.59 7780.96 7686.09 12584.73 98
diffmvspermissive74.86 7577.37 7271.93 8175.62 12580.35 10579.42 7760.15 14072.81 6664.63 7571.51 5473.11 6966.53 9179.02 12077.98 12385.25 14586.83 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8486.58 4779.24 7866.18 6964.81 9568.18 5965.61 7871.45 7367.05 8184.16 5581.80 6688.90 5890.92 40
v1070.22 10969.76 12270.74 8674.79 13380.30 10779.22 7959.81 14457.71 14556.58 10654.22 14555.31 14766.95 8478.28 12877.47 13287.12 10085.07 92
v114469.93 11369.36 12770.61 9074.89 13280.93 9679.11 8060.64 13255.97 15855.31 11153.85 14754.14 15466.54 9078.10 13077.44 13387.14 9785.09 91
v2v48270.05 11269.46 12670.74 8674.62 13580.32 10679.00 8160.62 13357.41 14756.89 10355.43 13555.14 14966.39 9277.25 13877.14 13886.90 10383.57 111
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5684.79 5978.99 8262.07 11971.27 6867.88 6157.91 12172.36 7170.15 6682.23 7481.41 7088.12 7487.78 63
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10180.46 10378.92 8354.79 16969.71 7365.37 7062.04 9366.89 10267.10 8080.72 9479.87 9788.10 7684.97 94
v870.23 10869.86 12070.67 8974.69 13479.82 10978.79 8459.18 14958.80 13858.20 9755.00 13757.33 13766.31 9377.51 13576.71 14486.82 10683.88 107
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6581.13 9578.56 8568.04 5561.55 12252.52 13051.50 16954.14 15468.56 7678.85 12279.50 10586.82 10683.94 106
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9880.47 10278.55 8661.67 12660.68 12855.49 10958.48 11565.48 10668.85 7476.92 14275.55 15487.35 9285.46 85
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 10980.88 9978.55 8658.83 15665.19 9260.36 8659.98 10562.42 11671.22 6381.66 7580.61 8988.20 7084.88 97
v119269.50 11768.83 13370.29 9474.49 13680.92 9878.55 8660.54 13455.04 16454.21 11452.79 16152.33 17466.92 8577.88 13277.35 13687.04 10185.51 83
EIA-MVS75.64 7176.60 7874.53 7182.43 6783.84 6878.32 8962.28 11865.96 8863.28 8168.95 6567.54 9971.61 6082.55 7181.63 6889.24 5185.72 80
V4268.76 12669.63 12367.74 12164.93 19478.01 12678.30 9056.48 16558.65 13956.30 10754.26 14357.03 14064.85 9677.47 13677.01 14085.60 13984.96 95
CostFormer68.92 12369.58 12468.15 11775.98 12276.17 14978.22 9151.86 18365.80 8961.56 8463.57 8962.83 11461.85 11770.40 18868.67 18579.42 17379.62 146
v14419269.34 11968.68 13770.12 9774.06 14080.54 10178.08 9260.54 13454.99 16654.13 11652.92 15952.80 17266.73 8877.13 14076.72 14387.15 9485.63 81
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6682.47 8477.78 9368.13 5456.19 15646.06 16654.30 14051.20 18168.68 7580.66 9680.72 8086.07 12684.45 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192069.03 12268.32 14169.86 10074.03 14180.37 10477.55 9460.25 13854.62 16853.59 12252.36 16551.50 18066.75 8777.17 13976.69 14586.96 10285.56 82
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8177.97 13277.51 9558.95 15362.33 11655.22 11253.14 15565.90 10562.03 11379.08 11977.11 13984.08 15577.91 155
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9483.79 6977.50 9664.34 8569.88 7071.88 4268.54 7070.42 8067.05 8183.48 6279.63 10087.89 8186.87 71
DCV-MVSNet73.65 8175.78 8171.16 8580.19 8979.27 11477.45 9861.68 12566.73 8358.72 9265.31 8169.96 8362.19 11081.29 8680.97 7586.74 10986.91 70
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11678.93 11677.27 9960.12 14161.86 12054.42 11342.54 19461.61 11866.91 8678.55 12678.14 12279.23 17583.23 113
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 12877.97 13277.12 10055.40 16857.87 14046.68 16156.17 12960.39 12162.36 10876.32 14976.25 15085.35 14481.34 128
Anonymous2023121171.90 9172.48 10271.21 8480.14 9081.53 8876.92 10162.89 10264.46 10058.94 8943.80 19070.98 7762.22 10980.70 9580.19 9486.18 12385.73 79
MVSTER72.06 9074.24 8669.51 10570.39 17475.97 15076.91 10257.36 16364.64 9761.39 8568.86 6663.76 11163.46 10281.44 8079.70 9987.56 8985.31 88
Anonymous20240521172.16 10580.85 8281.85 8676.88 10365.40 7662.89 11346.35 18667.99 9862.05 11281.15 8980.38 9185.97 13384.50 101
v124068.64 12767.89 14669.51 10573.89 14380.26 10876.73 10459.97 14353.43 17653.08 12551.82 16850.84 18366.62 8976.79 14476.77 14286.78 10885.34 87
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11782.93 8176.63 10560.17 13959.00 13754.03 11740.54 19965.23 10767.89 7976.54 14878.30 12085.03 14880.07 142
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 13984.01 6576.61 10661.69 12460.62 13050.61 13970.25 6171.31 7655.57 16283.85 5882.28 6186.90 10388.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250671.72 9372.95 9770.29 9481.49 7283.27 7575.74 10767.59 6168.19 7749.81 14361.15 9649.73 18958.82 13384.76 4882.94 5688.27 6780.63 135
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7283.27 7575.74 10767.59 6168.19 7749.31 14755.77 13062.00 11758.82 13384.76 4882.94 5688.27 6780.41 139
TDRefinement66.09 15165.03 16867.31 13069.73 17876.75 14375.33 10964.55 8360.28 13249.72 14545.63 18842.83 20560.46 12975.75 15075.95 15184.08 15578.04 154
tpm cat165.41 15363.81 17667.28 13275.61 12672.88 16775.32 11052.85 17762.97 11163.66 7953.24 15353.29 16961.83 11865.54 19964.14 20174.43 19574.60 176
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15568.70 11380.49 8677.98 13075.29 11162.95 10163.62 10749.96 14147.32 18550.72 18458.57 13576.87 14375.50 15584.94 15075.33 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UGNet72.78 8577.67 6767.07 13671.65 16383.24 7775.20 11263.62 9264.93 9456.72 10471.82 5273.30 6649.02 17981.02 9180.70 8586.22 12288.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GBi-Net70.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
test170.78 10173.37 9467.76 11972.95 15178.00 12775.15 11362.72 10664.13 10151.44 13258.37 11669.02 9057.59 14381.33 8380.72 8086.70 11082.02 118
FMVSNet270.39 10772.67 10167.72 12272.95 15178.00 12775.15 11362.69 11063.29 10951.25 13655.64 13168.49 9757.59 14380.91 9380.35 9286.70 11082.02 118
IterMVS-LS71.69 9472.82 10070.37 9377.54 11176.34 14775.13 11660.46 13661.53 12357.57 9964.89 8367.33 10066.04 9477.09 14177.37 13585.48 14185.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu68.08 13171.00 11064.67 15279.64 9368.62 18375.05 11763.30 9466.36 8545.27 17067.40 7566.84 10343.64 18875.37 15274.98 15881.15 16777.44 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111171.56 9573.44 9269.38 10781.16 7682.95 8074.99 11867.68 5966.89 8246.33 16355.19 13660.91 12057.99 14184.59 5182.70 6088.12 7480.85 132
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8583.91 6674.99 11862.68 11165.06 9349.77 14468.68 6872.09 7263.06 10582.49 7380.73 7989.12 5688.91 54
FMVSNet370.49 10572.90 9967.67 12472.88 15477.98 13074.96 12062.72 10664.13 10151.44 13258.37 11669.02 9057.43 14679.43 11579.57 10386.59 11681.81 125
FMVSNet168.84 12470.47 11566.94 13871.35 16877.68 13574.71 12162.35 11756.93 14949.94 14250.01 17564.59 10857.07 14881.33 8380.72 8086.25 12182.00 121
thisisatest053071.48 9773.01 9669.70 10373.83 14478.62 12274.53 12259.12 15064.13 10158.63 9364.60 8658.63 13164.27 9880.28 10380.17 9587.82 8484.64 100
GA-MVS68.14 12969.17 13066.93 13973.77 14578.50 12474.45 12358.28 15855.11 16348.44 15060.08 10353.99 15761.50 12178.43 12777.57 13085.13 14680.54 136
pmmvs467.89 13467.39 15168.48 11571.60 16573.57 16574.45 12360.98 12964.65 9657.97 9854.95 13851.73 17961.88 11673.78 16275.11 15683.99 15777.91 155
IS_MVSNet73.33 8277.34 7368.65 11481.29 7583.47 7374.45 12363.58 9365.75 9048.49 14967.11 7770.61 7954.63 16684.51 5283.58 5389.48 4786.34 76
tttt051771.41 9872.95 9769.60 10473.70 14678.70 12174.42 12659.12 15063.89 10558.35 9664.56 8758.39 13364.27 9880.29 10280.17 9587.74 8684.69 99
CDS-MVSNet67.65 14069.83 12165.09 14875.39 12776.55 14574.42 12663.75 8953.55 17449.37 14659.41 10962.45 11544.44 18679.71 11079.82 9883.17 16177.36 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view968.11 13068.72 13667.40 12877.83 10778.93 11674.28 12862.81 10356.64 15146.82 15952.65 16253.47 16456.59 15280.41 9778.43 11886.11 12480.52 137
thres40067.95 13368.62 13867.17 13377.90 10478.59 12374.27 12962.72 10656.34 15545.77 16853.00 15753.35 16756.46 15380.21 10678.43 11885.91 13580.43 138
v14867.85 13567.53 14768.23 11673.25 14977.57 13874.26 13057.36 16355.70 15957.45 10153.53 14855.42 14661.96 11575.23 15373.92 16285.08 14781.32 129
baseline70.45 10674.09 8866.20 14470.95 17175.67 15174.26 13053.57 17168.33 7658.42 9469.87 6271.45 7361.55 12074.84 15674.76 15978.42 17783.72 109
thres20067.98 13268.55 13967.30 13177.89 10678.86 11874.18 13262.75 10456.35 15446.48 16252.98 15853.54 16056.46 15380.41 9777.97 12486.05 12879.78 145
UniMVSNet_ETH3D67.18 14767.03 15267.36 12974.44 13778.12 12574.07 13366.38 6752.22 18146.87 15848.64 18051.84 17856.96 14977.29 13778.53 11685.42 14282.59 115
baseline170.10 11172.17 10467.69 12379.74 9276.80 14273.91 13464.38 8462.74 11448.30 15164.94 8264.08 11054.17 16881.46 7978.92 11285.66 13876.22 165
thres100view90067.60 14268.02 14367.12 13577.83 10777.75 13473.90 13562.52 11456.64 15146.82 15952.65 16253.47 16455.92 15778.77 12377.62 12985.72 13679.23 148
thres600view767.68 13868.43 14066.80 14077.90 10478.86 11873.84 13662.75 10456.07 15744.70 17352.85 16052.81 17155.58 16180.41 9777.77 12686.05 12880.28 140
baseline269.69 11470.27 11669.01 11075.72 12477.13 14073.82 13758.94 15461.35 12457.09 10261.68 9457.17 13961.99 11478.10 13076.58 14686.48 11979.85 143
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 10980.72 10073.81 13869.65 4561.99 11843.23 17560.54 10157.50 13658.57 13579.56 11381.07 7489.34 4983.97 104
DU-MVS69.63 11570.91 11168.13 11875.99 12079.54 11073.81 13869.20 5061.20 12643.23 17558.52 11353.50 16158.57 13579.22 11780.45 9087.97 7883.97 104
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8078.79 12073.74 14065.23 7866.10 8753.34 12370.36 6063.40 11356.92 15181.44 8080.96 7687.93 7984.46 102
UA-Net74.47 7677.80 6670.59 9185.33 5285.40 5573.54 14165.98 7360.65 12956.00 10872.11 5079.15 4554.63 16683.13 6782.25 6288.04 7781.92 124
NR-MVSNet68.79 12570.56 11366.71 14377.48 11279.54 11073.52 14269.20 5061.20 12639.76 18258.52 11350.11 18751.37 17580.26 10480.71 8488.97 5783.59 110
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11479.46 11273.48 14369.66 4460.43 13139.56 18358.82 11253.48 16355.74 16079.59 11181.21 7288.89 5982.70 114
IterMVS66.36 15068.30 14264.10 15569.48 18174.61 16273.41 14450.79 18957.30 14848.28 15260.64 10059.92 12660.85 12874.14 16072.66 16981.80 16478.82 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS67.24 14666.94 15367.60 12578.73 9981.35 9173.28 14559.49 14646.89 19851.42 13543.65 19153.49 16255.50 16381.38 8280.66 8687.15 9481.17 130
v7n67.05 14866.94 15367.17 13372.35 15678.97 11573.26 14658.88 15551.16 18750.90 13748.21 18250.11 18760.96 12477.70 13377.38 13486.68 11385.05 93
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9682.83 8272.61 14761.77 12359.66 13463.44 8053.26 15259.65 12759.16 13276.78 14582.11 6387.90 8087.33 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11880.93 9672.59 14868.03 5661.75 12141.68 18058.34 11957.23 13853.27 17179.53 11480.62 8888.57 6484.90 96
Baseline_NR-MVSNet67.53 14368.77 13566.09 14575.99 12074.75 16172.43 14968.41 5361.33 12538.33 18751.31 17054.13 15656.03 15679.22 11778.19 12185.37 14382.45 116
MDTV_nov1_ep1364.37 16065.24 16463.37 16268.94 18370.81 17472.40 15050.29 19260.10 13353.91 11960.07 10459.15 12957.21 14769.43 19267.30 19277.47 18069.78 190
USDC67.36 14567.90 14566.74 14271.72 16175.23 15871.58 15160.28 13767.45 8050.54 14060.93 9745.20 20262.08 11176.56 14774.50 16084.25 15475.38 173
IterMVS-SCA-FT66.89 14969.22 12964.17 15471.30 16975.64 15271.33 15253.17 17557.63 14649.08 14860.72 9960.05 12563.09 10474.99 15573.92 16277.07 18381.57 127
tpm62.41 17263.15 17861.55 16772.24 15763.79 19871.31 15346.12 20657.82 14155.33 11059.90 10654.74 15153.63 16967.24 19864.29 20070.65 20574.25 180
tfpnnormal64.27 16163.64 17765.02 14975.84 12375.61 15371.24 15462.52 11447.79 19542.97 17742.65 19344.49 20352.66 17378.77 12376.86 14184.88 15179.29 147
gg-mvs-nofinetune62.55 16965.05 16759.62 17778.72 10077.61 13670.83 15553.63 17039.71 21022.04 21136.36 20364.32 10947.53 18181.16 8879.03 11185.00 14977.17 160
TransMVSNet (Re)64.74 15865.66 16163.66 15977.40 11375.33 15669.86 15662.67 11247.63 19641.21 18150.01 17552.33 17445.31 18579.57 11277.69 12885.49 14077.07 162
pm-mvs165.62 15267.42 14963.53 16073.66 14776.39 14669.66 15760.87 13149.73 19143.97 17451.24 17157.00 14148.16 18079.89 10877.84 12584.85 15279.82 144
PatchmatchNetpermissive64.21 16264.65 17063.69 15871.29 17068.66 18269.63 15851.70 18563.04 11053.77 12059.83 10758.34 13460.23 13068.54 19566.06 19775.56 19068.08 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs-eth3d63.52 16462.44 18664.77 15166.82 18970.12 17769.41 15959.48 14754.34 17252.71 12646.24 18744.35 20456.93 15072.37 16673.77 16483.30 15975.91 167
thisisatest051567.40 14468.78 13465.80 14670.02 17675.24 15769.36 16057.37 16254.94 16753.67 12155.53 13454.85 15058.00 14078.19 12978.91 11386.39 12083.78 108
tpmrst62.00 17662.35 18761.58 16671.62 16464.14 19569.07 16148.22 20262.21 11753.93 11858.26 12055.30 14855.81 15963.22 20462.62 20370.85 20470.70 187
dps64.00 16362.99 17965.18 14773.29 14872.07 17068.98 16253.07 17657.74 14458.41 9555.55 13347.74 19560.89 12769.53 19167.14 19476.44 18771.19 186
PatchMatch-RL67.78 13766.65 15669.10 10973.01 15072.69 16868.49 16361.85 12262.93 11260.20 8856.83 12750.42 18569.52 6975.62 15174.46 16181.51 16573.62 182
TinyColmap62.84 16761.03 19264.96 15069.61 17971.69 17168.48 16459.76 14555.41 16047.69 15647.33 18434.20 21462.76 10774.52 15772.59 17081.44 16671.47 185
MDTV_nov1_ep13_2view60.16 18660.51 19459.75 17565.39 19169.05 18168.00 16548.29 20051.99 18245.95 16748.01 18349.64 19053.39 17068.83 19466.52 19677.47 18069.55 191
pmmvs662.41 17262.88 18061.87 16571.38 16775.18 16067.76 16659.45 14841.64 20642.52 17937.33 20152.91 17046.87 18277.67 13476.26 14983.23 16079.18 149
SCA65.40 15466.58 15764.02 15670.65 17273.37 16667.35 16753.46 17363.66 10654.14 11560.84 9860.20 12461.50 12169.96 18968.14 19077.01 18469.91 188
RPSCF67.64 14171.25 10963.43 16161.86 20070.73 17567.26 16850.86 18874.20 5958.91 9067.49 7469.33 8764.10 10071.41 17568.45 18977.61 17977.17 160
pmmvs562.37 17564.04 17460.42 17165.03 19271.67 17267.17 16952.70 18050.30 18844.80 17154.23 14451.19 18249.37 17872.88 16573.48 16683.45 15874.55 177
anonymousdsp65.28 15567.98 14462.13 16458.73 20673.98 16467.10 17050.69 19048.41 19447.66 15754.27 14152.75 17361.45 12376.71 14680.20 9387.13 9889.53 52
our_test_367.93 18570.99 17366.89 171
MIMVSNet58.52 19161.34 19155.22 19260.76 20167.01 18866.81 17249.02 19656.43 15338.90 18540.59 19854.54 15340.57 19573.16 16471.65 17275.30 19366.00 197
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16878.37 10276.72 14466.80 17362.96 10065.50 9134.17 19467.19 7669.68 8639.20 19779.39 11679.44 10785.68 13776.73 164
PMMVS65.06 15669.17 13060.26 17355.25 21263.43 19966.71 17443.01 20862.41 11550.64 13869.44 6367.04 10163.29 10374.36 15973.54 16582.68 16273.99 181
test-LLR64.42 15964.36 17264.49 15375.02 13063.93 19666.61 17561.96 12054.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
TESTMET0.1,161.10 18364.36 17257.29 18557.53 20763.93 19666.61 17536.22 21254.41 16947.77 15457.46 12360.25 12255.20 16470.80 18269.33 18080.40 17174.38 178
CVMVSNet62.55 16965.89 15858.64 18166.95 18769.15 18066.49 17756.29 16752.46 18032.70 19559.27 11058.21 13550.09 17771.77 17471.39 17479.31 17478.99 150
CR-MVSNet64.83 15765.54 16264.01 15770.64 17369.41 17865.97 17852.74 17857.81 14252.65 12754.27 14156.31 14360.92 12572.20 17173.09 16781.12 16875.69 170
Patchmtry65.80 19265.97 17852.74 17852.65 127
test-mter60.84 18464.62 17156.42 18855.99 21064.18 19465.39 18034.23 21354.39 17146.21 16557.40 12559.49 12855.86 15871.02 18169.65 17980.87 17076.20 166
FMVSNet557.24 19260.02 19553.99 19656.45 20962.74 20365.27 18147.03 20355.14 16239.55 18440.88 19653.42 16641.83 18972.35 16771.10 17673.79 19764.50 200
CHOSEN 280x42058.70 19061.88 18954.98 19355.45 21150.55 21464.92 18240.36 20955.21 16138.13 18848.31 18163.76 11163.03 10673.73 16368.58 18768.00 21073.04 183
GG-mvs-BLEND46.86 20867.51 14822.75 2130.05 22476.21 14864.69 1830.04 22161.90 1190.09 22555.57 13271.32 750.08 22070.54 18467.19 19371.58 20269.86 189
EPMVS60.00 18761.97 18857.71 18468.46 18463.17 20264.54 18448.23 20163.30 10844.72 17260.19 10256.05 14550.85 17665.27 20262.02 20469.44 20763.81 201
LTVRE_ROB59.44 1661.82 18162.64 18360.87 17072.83 15577.19 13964.37 18558.97 15233.56 21528.00 20152.59 16442.21 20663.93 10174.52 15776.28 14877.15 18282.13 117
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PM-MVS60.48 18560.94 19359.94 17458.85 20566.83 18964.27 18651.39 18655.03 16548.03 15350.00 17740.79 20958.26 13869.20 19367.13 19578.84 17677.60 157
TAMVS59.58 18862.81 18255.81 19066.03 19065.64 19363.86 18748.74 19749.95 19037.07 19154.77 13958.54 13244.44 18672.29 16871.79 17174.70 19466.66 196
RPMNet61.71 18262.88 18060.34 17269.51 18069.41 17863.48 18849.23 19457.81 14245.64 16950.51 17350.12 18653.13 17268.17 19768.49 18881.07 16975.62 172
PEN-MVS62.96 16665.77 16059.70 17673.98 14275.45 15463.39 18967.61 6052.49 17925.49 20453.39 14949.12 19140.85 19471.94 17377.26 13786.86 10580.72 134
CMPMVSbinary47.78 1762.49 17162.52 18462.46 16370.01 17770.66 17662.97 19051.84 18451.98 18356.71 10542.87 19253.62 15857.80 14272.23 16970.37 17775.45 19275.91 167
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CP-MVSNet62.68 16865.49 16359.40 17971.84 15975.34 15562.87 19167.04 6552.64 17827.19 20253.38 15048.15 19341.40 19271.26 17675.68 15286.07 12682.00 121
PS-CasMVS62.38 17465.06 16659.25 18071.73 16075.21 15962.77 19266.99 6651.94 18526.96 20352.00 16747.52 19641.06 19371.16 17975.60 15385.97 13381.97 123
SixPastTwentyTwo61.84 17962.45 18561.12 16969.20 18272.20 16962.03 19357.40 16146.54 19938.03 18957.14 12641.72 20758.12 13969.67 19071.58 17381.94 16378.30 153
WR-MVS_H61.83 18065.87 15957.12 18671.72 16176.87 14161.45 19466.19 6851.97 18422.92 20953.13 15652.30 17633.80 20271.03 18075.00 15786.65 11480.78 133
DTE-MVSNet61.85 17864.96 16958.22 18274.32 13874.39 16361.01 19567.85 5851.76 18621.91 21253.28 15148.17 19237.74 19872.22 17076.44 14786.52 11878.49 152
WR-MVS63.03 16567.40 15057.92 18375.14 12977.60 13760.56 19666.10 7054.11 17323.88 20553.94 14653.58 15934.50 20173.93 16177.71 12787.35 9280.94 131
Anonymous2023120656.36 19557.80 19954.67 19470.08 17566.39 19060.46 19757.54 16049.50 19329.30 19933.86 20646.64 19735.18 20070.44 18668.88 18475.47 19168.88 193
FPMVS51.87 20350.00 20854.07 19566.83 18857.25 20960.25 19850.91 18750.25 18934.36 19336.04 20432.02 21641.49 19158.98 21056.07 20970.56 20659.36 209
MDA-MVSNet-bldmvs53.37 20253.01 20553.79 19743.67 21667.95 18559.69 19957.92 15943.69 20232.41 19641.47 19527.89 21952.38 17456.97 21265.99 19876.68 18567.13 195
test0.0.03 158.80 18961.58 19055.56 19175.02 13068.45 18459.58 20061.96 12052.74 17729.57 19849.75 17854.56 15231.46 20471.19 17769.77 17875.75 18864.57 199
ADS-MVSNet55.94 19658.01 19753.54 19862.48 19958.48 20859.12 20146.20 20559.65 13542.88 17852.34 16653.31 16846.31 18362.00 20660.02 20764.23 21260.24 208
pmnet_mix0255.30 19757.01 20153.30 19964.14 19559.09 20758.39 20250.24 19353.47 17538.68 18649.75 17845.86 20040.14 19665.38 20160.22 20668.19 20965.33 198
PatchT61.97 17764.04 17459.55 17860.49 20267.40 18656.54 20348.65 19856.69 15052.65 12751.10 17252.14 17760.92 12572.20 17173.09 16778.03 17875.69 170
EU-MVSNet54.63 19858.69 19649.90 20256.99 20862.70 20456.41 20450.64 19145.95 20123.14 20850.42 17446.51 19836.63 19965.51 20064.85 19975.57 18974.91 175
testgi54.39 20057.86 19850.35 20171.59 16667.24 18754.95 20553.25 17443.36 20323.78 20644.64 18947.87 19424.96 20970.45 18568.66 18673.60 19862.78 204
MIMVSNet149.27 20453.25 20444.62 20644.61 21461.52 20653.61 20652.18 18141.62 20718.68 21528.14 21241.58 20825.50 20768.46 19669.04 18273.15 19962.37 205
test20.0353.93 20156.28 20251.19 20072.19 15865.83 19153.20 20761.08 12742.74 20422.08 21037.07 20245.76 20124.29 21270.44 18669.04 18274.31 19663.05 203
N_pmnet47.35 20650.13 20744.11 20759.98 20351.64 21351.86 20844.80 20749.58 19220.76 21340.65 19740.05 21129.64 20559.84 20855.15 21057.63 21354.00 211
pmmvs347.65 20549.08 21045.99 20544.61 21454.79 21250.04 20931.95 21633.91 21329.90 19730.37 20833.53 21546.31 18363.50 20363.67 20273.14 20063.77 202
ambc53.42 20364.99 19363.36 20049.96 21047.07 19737.12 19028.97 21016.36 22241.82 19075.10 15467.34 19171.55 20375.72 169
MVS-HIRNet54.41 19952.10 20657.11 18758.99 20456.10 21149.68 21149.10 19546.18 20052.15 13133.18 20746.11 19956.10 15563.19 20559.70 20876.64 18660.25 207
FC-MVSNet-test56.90 19465.20 16547.21 20466.98 18663.20 20149.11 21258.60 15759.38 13611.50 21965.60 7956.68 14224.66 21171.17 17871.36 17572.38 20169.02 192
gm-plane-assit57.00 19357.62 20056.28 18976.10 11962.43 20547.62 21346.57 20433.84 21423.24 20737.52 20040.19 21059.61 13179.81 10977.55 13184.55 15372.03 184
new-patchmatchnet46.97 20749.47 20944.05 20862.82 19756.55 21045.35 21452.01 18242.47 20517.04 21735.73 20535.21 21321.84 21561.27 20754.83 21165.26 21160.26 206
PMVScopyleft39.38 1846.06 20943.30 21149.28 20362.93 19638.75 21641.88 21553.50 17233.33 21635.46 19228.90 21131.01 21733.04 20358.61 21154.63 21268.86 20857.88 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21042.64 21233.44 21037.54 21945.00 21536.60 21632.72 21540.27 20812.72 21829.89 20928.90 21824.78 21053.17 21352.90 21356.31 21448.34 212
Gipumacopyleft36.38 21135.80 21337.07 20945.76 21333.90 21729.81 21748.47 19939.91 20918.02 2168.00 2208.14 22425.14 20859.29 20961.02 20555.19 21540.31 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method22.26 21325.94 21517.95 2153.24 2237.17 22323.83 2187.27 21937.35 21220.44 21421.87 21539.16 21218.67 21634.56 21520.84 21934.28 21720.64 219
PMMVS225.60 21229.75 21420.76 21428.00 22030.93 21823.10 21929.18 21723.14 2181.46 22418.23 21616.54 2215.08 21840.22 21441.40 21537.76 21637.79 215
DeepMVS_CXcopyleft18.74 22218.55 2208.02 21826.96 2177.33 22023.81 21413.05 22325.99 20625.17 21822.45 22236.25 216
EMVS20.98 21517.15 21825.44 21239.51 21819.37 22112.66 22139.59 21119.10 2196.62 2229.27 2184.40 22622.43 21317.99 22024.40 21831.81 21925.53 218
E-PMN21.77 21418.24 21725.89 21140.22 21719.58 22012.46 22239.87 21018.68 2206.71 2219.57 2174.31 22722.36 21419.89 21927.28 21733.73 21828.34 217
MVEpermissive19.12 1920.47 21623.27 21617.20 21612.66 22225.41 21910.52 22334.14 21414.79 2216.53 2238.79 2194.68 22516.64 21729.49 21741.63 21422.73 22138.11 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt14.50 21714.68 2217.17 22310.46 2242.21 22037.73 21128.71 20025.26 21316.98 2204.37 21931.49 21629.77 21626.56 220
Patchmatch-RL test2.85 225
testmvs0.09 2170.15 2190.02 2180.01 2250.02 2250.05 2260.01 2220.11 2220.01 2260.26 2220.01 2280.06 2220.10 2210.10 2200.01 2230.43 221
test1230.09 2170.14 2200.02 2180.00 2260.02 2250.02 2270.01 2220.09 2230.00 2270.30 2210.00 2290.08 2200.03 2220.09 2210.01 2230.45 220
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2270.00 2280.00 2240.00 2240.00 2270.00 2230.00 2290.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def46.24 164
9.1486.88 16
SR-MVS88.99 3373.57 2487.54 14
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
mPP-MVS89.90 2481.29 41
NP-MVS80.10 44