This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18998.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27293.65 18098.49 2898.88 11896.86 10197.11 20598.55 10795.82 13099.73 8995.94 12799.42 17299.13 163
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22695.60 9598.04 5998.70 16898.13 5096.93 22298.45 11895.30 15299.62 15895.64 14498.96 24499.24 144
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18299.02 8293.92 23298.62 7898.99 6197.69 2999.62 15896.18 11499.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29897.23 4492.56 35198.60 18492.84 27298.54 8597.40 23396.64 9398.78 33494.40 21599.41 17698.93 201
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4398.34 4098.78 6698.52 11097.32 4599.45 21294.08 22799.67 8399.13 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27694.15 15996.02 19798.43 20193.17 26097.30 19197.38 23995.48 14499.28 26893.74 24099.34 19198.88 213
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22397.16 32091.96 23097.74 8498.84 13187.26 35394.36 32598.01 18393.95 19099.67 13790.70 30898.75 26897.35 352
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7297.40 8499.37 2499.08 5598.79 699.47 20497.74 5599.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3898.21 4899.25 3298.51 11298.21 1499.40 23094.79 19899.72 7099.32 122
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15698.83 13795.21 18398.36 10698.13 16498.13 1899.62 15896.04 11999.54 12699.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS93.32 1294.93 24594.23 27297.04 17598.18 21394.51 14395.22 25698.73 15981.22 39896.25 26695.95 32593.80 19498.98 31789.89 32498.87 25597.62 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 18198.89 11193.71 23697.97 15497.75 20897.44 4099.63 15393.22 25599.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft91.80 1493.64 29793.05 29795.42 26797.31 31591.21 24795.08 26396.68 31481.56 39596.88 22696.41 30290.44 26599.25 27485.39 37797.67 33395.80 389
HY-MVS91.43 1592.58 31791.81 32394.90 29096.49 33988.87 28697.31 11294.62 35085.92 36890.50 39196.84 27685.05 32199.40 23083.77 38995.78 38396.43 380
PLCcopyleft91.02 1694.05 28592.90 30197.51 13098.00 23595.12 12594.25 29498.25 22386.17 36591.48 38595.25 34191.01 25599.19 28485.02 38196.69 36598.22 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft89.60 1796.71 16596.97 14495.95 24099.51 2897.81 2097.42 11097.49 28397.93 5695.95 27998.58 10396.88 8096.91 40189.59 32899.36 18393.12 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PCF-MVS89.43 1892.12 32690.64 34696.57 20897.80 25793.48 18489.88 40198.45 19874.46 41596.04 27795.68 33190.71 26099.31 25973.73 41399.01 24296.91 363
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet86.72 1991.10 34390.97 33991.49 37897.56 29378.04 40387.17 40894.60 35184.65 38492.34 37792.20 38887.37 30498.47 36785.17 38097.69 33197.96 314
IB-MVS85.98 2088.63 36886.95 37993.68 33395.12 38684.82 36090.85 38890.17 40187.55 35288.48 40791.34 39758.01 40999.59 16887.24 36393.80 40096.63 376
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_081.89 2184.49 38483.21 38788.34 39595.76 37174.97 41883.49 41492.70 37378.47 40887.94 40986.90 41683.38 33696.63 40773.44 41466.86 42093.40 407
MVEpermissive73.61 2286.48 38385.92 38288.18 39796.23 34685.28 35081.78 41775.79 42186.01 36682.53 41791.88 39192.74 21787.47 42071.42 41794.86 39391.78 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary73.10 2392.74 31591.39 32996.77 19693.57 40994.67 13694.21 29897.67 27280.36 40293.61 34896.60 29182.85 33997.35 39584.86 38298.78 26598.29 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GDP-MVS95.39 22494.89 23796.90 18598.26 20291.91 23196.48 16499.28 3195.06 19296.54 25097.12 25774.83 37899.82 3697.19 7599.27 20798.96 193
BP-MVS195.36 22594.86 24096.89 18698.35 19291.72 23696.76 14795.21 34296.48 11896.23 26797.19 25275.97 37499.80 4897.91 4499.60 10499.15 157
reproduce_monomvs92.05 32992.26 31691.43 37995.42 38075.72 41595.68 22297.05 29994.47 21397.95 15798.35 13055.58 41799.05 30796.36 10599.44 16099.51 64
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8998.53 2999.86 2899.95 2
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6198.42 3799.03 4398.71 8996.93 7399.83 3497.09 7999.63 9099.56 50
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
mvs5depth98.06 5298.58 2696.51 21198.97 11489.65 27099.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
MVStest191.89 33291.45 32793.21 34489.01 42184.87 35795.82 21595.05 34591.50 29898.75 7299.19 3857.56 41095.11 41097.78 5298.37 29999.64 35
ttmdpeth94.05 28594.15 27793.75 33095.81 36785.32 34796.00 19994.93 34792.07 28494.19 32899.09 5385.73 31696.41 40890.98 29398.52 28899.53 57
WBMVS91.11 34290.72 34492.26 37095.99 35777.98 40591.47 37495.90 32591.63 29395.90 28496.45 30059.60 40799.46 20789.97 32399.59 10799.33 121
dongtai63.43 38763.37 39063.60 40383.91 42553.17 42785.14 41143.40 42977.91 41180.96 41979.17 41936.36 42777.10 42137.88 42245.63 42160.54 418
kuosan54.81 38954.94 39254.42 40474.43 42650.03 42884.98 41244.27 42861.80 41962.49 42370.43 42035.16 42858.04 42319.30 42341.61 42255.19 419
MVSMamba_PlusPlus97.43 11897.98 6095.78 24898.88 12689.70 26898.03 6198.85 12799.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12297.73 332
MGCFI-Net97.20 13297.23 12897.08 17197.68 27793.71 17597.79 7799.09 6197.40 8496.59 24493.96 36397.67 3199.35 24996.43 10298.50 29298.17 294
testing9189.67 35988.55 36493.04 34895.90 36081.80 38592.71 34893.71 35793.71 23690.18 39590.15 40657.11 41199.22 28287.17 36496.32 37398.12 296
testing1188.93 36587.63 37392.80 35895.87 36281.49 38792.48 35391.54 38491.62 29488.27 40890.24 40455.12 42199.11 29987.30 36296.28 37597.81 326
testing9989.21 36388.04 36992.70 36195.78 36981.00 39292.65 34992.03 37893.20 25589.90 39990.08 40855.25 41899.14 29287.54 35795.95 37997.97 313
UBG88.29 37187.17 37591.63 37796.08 35578.21 40191.61 37191.50 38589.67 32689.71 40088.97 41059.01 40898.91 32381.28 39796.72 36497.77 329
UWE-MVS87.57 37886.72 38090.13 38995.21 38373.56 41991.94 36783.78 41888.73 33993.00 36392.87 37755.22 41999.25 27481.74 39497.96 31597.59 342
ETVMVS87.62 37785.75 38493.22 34396.15 35383.26 37392.94 34090.37 39891.39 30190.37 39288.45 41151.93 42398.64 35173.76 41296.38 37197.75 330
sasdasda97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
testing22287.35 37985.50 38692.93 35595.79 36882.83 37592.40 35990.10 40292.80 27388.87 40589.02 40948.34 42498.70 34375.40 41196.74 36297.27 354
WB-MVSnew91.50 33891.29 33192.14 37294.85 38980.32 39493.29 33488.77 40688.57 34194.03 33592.21 38792.56 22498.28 38080.21 40197.08 35197.81 326
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21399.32 2793.22 25398.91 5698.49 11396.31 11299.64 14999.07 1299.76 5799.40 105
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 21099.41 2693.36 24799.00 4798.44 12096.46 10599.65 14599.09 1199.76 5799.45 90
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15999.15 4793.68 23998.89 5799.30 2996.42 10799.37 24299.03 1399.83 4299.66 30
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18999.09 9591.43 24396.37 17099.11 5394.19 22299.01 4599.25 3296.30 11399.38 23799.00 1499.88 2499.73 22
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 18099.06 6893.67 24098.64 7699.00 5996.23 11799.36 24598.99 1599.80 5099.53 57
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19398.79 13691.44 24296.14 18999.06 6894.19 22298.82 6398.98 6296.22 11899.38 23798.98 1699.86 2899.58 39
MM96.87 15196.62 16397.62 12297.72 27493.30 19096.39 16692.61 37597.90 5896.76 23398.64 9890.46 26399.81 4199.16 999.94 899.76 18
WAC-MVS79.32 39785.41 376
Syy-MVS92.09 32791.80 32492.93 35595.19 38482.65 37792.46 35491.35 38690.67 31291.76 38387.61 41385.64 31898.50 36494.73 20396.84 35797.65 337
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18499.73 595.05 19399.60 1599.34 2698.68 899.72 9599.21 799.85 3699.76 18
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15599.82 195.44 17599.64 1199.52 998.96 499.74 8399.38 399.86 2899.81 9
myMVS_eth3d87.16 38285.61 38591.82 37595.19 38479.32 39792.46 35491.35 38690.67 31291.76 38387.61 41341.96 42598.50 36482.66 39296.84 35797.65 337
testing389.72 35888.26 36794.10 32597.66 28284.30 36794.80 27588.25 40894.66 20595.07 30792.51 38441.15 42699.43 21791.81 27898.44 29698.55 252
SSC-MVS95.92 19897.03 14192.58 36399.28 5578.39 40096.68 15695.12 34498.90 2399.11 3998.66 9491.36 25199.68 12995.00 18999.16 22199.67 28
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19999.64 1594.99 19699.43 2099.18 4298.51 1099.71 10999.13 1099.84 3899.67 28
WB-MVS95.50 21696.62 16392.11 37399.21 7377.26 41096.12 19095.40 33998.62 3098.84 6198.26 14991.08 25499.50 19493.37 24898.70 27499.58 39
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17499.65 1295.59 16699.71 599.01 5897.66 3399.60 16799.44 299.83 4297.90 318
dmvs_re92.08 32891.27 33394.51 31097.16 32092.79 20595.65 22692.64 37494.11 22692.74 36990.98 40183.41 33594.44 41580.72 39994.07 39896.29 382
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18498.58 3298.78 6699.39 1897.80 2599.62 15894.98 19299.86 2899.52 60
dmvs_testset87.30 38086.99 37788.24 39696.71 33377.48 40794.68 28186.81 41392.64 27689.61 40187.01 41585.91 31493.12 41661.04 42088.49 41294.13 403
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22398.58 3298.78 6699.39 1898.21 1499.56 17792.65 26299.86 2899.52 60
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18899.57 1795.66 16199.52 1698.71 8997.04 6499.64 14999.21 799.87 2698.69 238
test_cas_vis1_n_192095.34 22795.67 21194.35 31698.21 20786.83 33195.61 23099.26 3390.45 31598.17 13098.96 6584.43 32798.31 37896.74 9299.17 22097.90 318
test_vis1_n_192095.77 20596.41 17993.85 32798.55 16984.86 35895.91 20999.71 692.72 27597.67 17498.90 7387.44 30398.73 33997.96 4298.85 25897.96 314
test_vis1_n95.67 21095.89 20495.03 28298.18 21389.89 26696.94 13499.28 3188.25 34698.20 12598.92 6986.69 30997.19 39697.70 5898.82 26298.00 312
test_fmvs1_n95.21 23395.28 21994.99 28598.15 22089.13 28396.81 14199.43 2386.97 35997.21 19798.92 6983.00 33897.13 39798.09 3898.94 24798.72 234
mvsany_test193.47 30193.03 29894.79 29794.05 40492.12 22390.82 38990.01 40385.02 38097.26 19498.28 14493.57 19897.03 39892.51 26695.75 38595.23 397
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6496.57 11398.07 14398.38 12796.22 11899.14 29294.71 20599.31 20198.52 255
test_vis1_rt94.03 28793.65 28895.17 27695.76 37193.42 18793.97 31298.33 21684.68 38393.17 36095.89 32792.53 22994.79 41293.50 24794.97 39197.31 353
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31799.27 3099.33 2894.04 18696.03 40997.14 7797.83 32299.78 12
test_fmvs296.38 18196.45 17796.16 23197.85 24491.30 24496.81 14199.45 2189.24 33098.49 9099.38 2088.68 28797.62 39398.83 1899.32 19899.57 46
test_fmvs194.51 26994.60 25694.26 32195.91 35987.92 30795.35 24799.02 8286.56 36396.79 22898.52 11082.64 34097.00 40097.87 4698.71 27397.88 320
test_fmvs397.38 12197.56 10696.84 19198.63 15892.81 20297.60 9499.61 1690.87 30898.76 7199.66 494.03 18797.90 38899.24 699.68 8199.81 9
mvsany_test396.21 18695.93 20297.05 17397.40 30694.33 15295.76 21794.20 35589.10 33199.36 2599.60 893.97 18997.85 38995.40 16698.63 28198.99 190
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
test_f95.82 20395.88 20595.66 25497.61 28993.21 19595.61 23098.17 23686.98 35898.42 9899.47 1390.46 26394.74 41397.71 5698.45 29599.03 183
FE-MVS92.95 31292.22 31795.11 27797.21 31888.33 29798.54 2393.66 36189.91 32396.21 26998.14 16270.33 39799.50 19487.79 35198.24 30597.51 345
FA-MVS(test-final)94.91 24694.89 23794.99 28597.51 29688.11 30598.27 4495.20 34392.40 28296.68 23698.60 10283.44 33499.28 26893.34 25098.53 28797.59 342
balanced_conf0396.88 15097.29 12395.63 25597.66 28289.47 27597.95 6698.89 11195.94 14697.77 17398.55 10792.23 23499.68 12997.05 8399.61 9897.73 332
MonoMVSNet93.30 30693.96 28491.33 38194.14 40281.33 38997.68 8996.69 31395.38 17896.32 25998.42 12184.12 33096.76 40590.78 30192.12 40595.89 386
patch_mono-296.59 17096.93 14795.55 26198.88 12687.12 32594.47 28799.30 2994.12 22596.65 24198.41 12394.98 16299.87 2495.81 13699.78 5599.66 30
EGC-MVSNET83.08 38577.93 38898.53 5499.57 1997.55 3098.33 3898.57 1894.71 42310.38 42498.90 7395.60 14299.50 19495.69 13999.61 9898.55 252
test250689.86 35689.16 36191.97 37498.95 11576.83 41198.54 2361.07 42696.20 12997.07 21299.16 4655.19 42099.69 12496.43 10299.83 4299.38 112
test111194.53 26894.81 24593.72 33199.06 10081.94 38498.31 3983.87 41796.37 12198.49 9099.17 4581.49 34399.73 8996.64 9399.86 2899.49 75
ECVR-MVScopyleft94.37 27494.48 26394.05 32698.95 11583.10 37498.31 3982.48 41996.20 12998.23 12399.16 4681.18 34699.66 14395.95 12699.83 4299.38 112
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32998.31 4197.09 21195.45 33997.17 5698.50 36498.67 2597.45 34596.48 379
DVP-MVS++97.96 5997.90 6598.12 8697.75 26995.40 10599.03 898.89 11196.62 10698.62 7898.30 13996.97 6999.75 7495.70 13799.25 21099.21 147
FOURS199.59 1798.20 899.03 899.25 3498.96 2298.87 59
MSC_two_6792asdad98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
PC_three_145287.24 35498.37 10397.44 23097.00 6796.78 40492.01 27199.25 21099.21 147
No_MVS98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
test_one_060199.05 10595.50 10298.87 12097.21 9398.03 14898.30 13996.93 73
eth-test20.00 431
eth-test0.00 431
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9995.75 15997.62 17597.59 22097.61 3799.77 6396.34 10799.44 16099.36 118
test_method66.88 38666.13 38969.11 40262.68 42725.73 43049.76 41896.04 32014.32 42264.27 42291.69 39473.45 38788.05 41976.06 41066.94 41993.54 405
Anonymous2024052197.07 13697.51 11195.76 24999.35 4988.18 30097.78 7898.40 20797.11 9498.34 11099.04 5789.58 27699.79 4998.09 3899.93 1199.30 127
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29696.58 11097.21 19798.19 15884.14 32899.78 5395.89 13096.17 37798.89 209
hse-mvs295.77 20595.09 22797.79 10997.84 24995.51 9995.66 22495.43 33896.58 11097.21 19796.16 31384.14 32899.54 18495.89 13096.92 35398.32 275
CL-MVSNet_self_test95.04 24194.79 24795.82 24697.51 29689.79 26791.14 38496.82 30793.05 26396.72 23496.40 30490.82 25899.16 29091.95 27398.66 27898.50 258
KD-MVS_2432*160088.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10697.10 9598.85 6098.88 7595.03 15999.67 13797.39 6899.65 8699.26 139
AUN-MVS93.95 29092.69 30997.74 11297.80 25795.38 10795.57 23395.46 33791.26 30492.64 37396.10 31974.67 37999.55 18193.72 24296.97 35298.30 279
ZD-MVS98.43 18695.94 8398.56 19090.72 31096.66 23997.07 26095.02 16099.74 8391.08 29098.93 249
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.60 9699.76 6895.49 15199.20 21599.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.94 7195.49 15199.20 21599.26 139
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13796.11 13499.08 4098.24 15197.87 2399.72 9595.44 15999.51 14099.14 161
IU-MVS99.22 6695.40 10598.14 24385.77 37198.36 10695.23 17299.51 14099.49 75
OPU-MVS97.64 12198.01 23195.27 11596.79 14597.35 24296.97 6998.51 36391.21 28999.25 21099.14 161
test_241102_TWO98.83 13796.11 13498.62 7898.24 15196.92 7699.72 9595.44 15999.49 14799.49 75
test_241102_ONE99.22 6695.35 11098.83 13796.04 13999.08 4098.13 16497.87 2399.33 254
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5695.32 18097.83 16997.88 19596.44 10699.72 9594.59 21099.39 17899.25 143
cl2293.25 30892.84 30494.46 31294.30 39786.00 34091.09 38696.64 31590.74 30995.79 28796.31 30878.24 35898.77 33594.15 22598.34 30098.62 245
miper_ehance_all_eth94.69 25894.70 24994.64 30195.77 37086.22 33891.32 38098.24 22591.67 29297.05 21396.65 28988.39 29199.22 28294.88 19398.34 30098.49 259
miper_enhance_ethall93.14 31092.78 30794.20 32293.65 40785.29 34989.97 39797.85 26185.05 37896.15 27494.56 35485.74 31599.14 29293.74 24098.34 30098.17 294
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13195.76 15796.93 22297.43 23197.26 5299.79 4996.06 11699.53 13099.45 90
dcpmvs_297.12 13497.99 5994.51 31099.11 9284.00 36997.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 15099.78 5599.58 39
cl____94.73 25394.64 25295.01 28395.85 36487.00 32791.33 37898.08 24893.34 24897.10 20697.33 24484.01 33299.30 26295.14 18099.56 11698.71 237
DIV-MVS_self_test94.73 25394.64 25295.01 28395.86 36387.00 32791.33 37898.08 24893.34 24897.10 20697.34 24384.02 33199.31 25995.15 17999.55 12298.72 234
eth_miper_zixun_eth94.89 24894.93 23494.75 29995.99 35786.12 33991.35 37798.49 19593.40 24597.12 20497.25 24986.87 30899.35 24995.08 18598.82 26298.78 225
9.1496.69 16098.53 17296.02 19798.98 9993.23 25297.18 20097.46 22896.47 10399.62 15892.99 25999.32 198
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
save fliter98.48 18194.71 13394.53 28698.41 20595.02 195
ET-MVSNet_ETH3D91.12 34189.67 35495.47 26596.41 34189.15 28291.54 37390.23 40089.07 33286.78 41492.84 37869.39 39999.44 21594.16 22496.61 36797.82 324
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3899.67 299.73 499.65 699.15 399.86 2697.22 7199.92 1499.77 13
EIA-MVS96.04 19395.77 20996.85 18997.80 25792.98 19896.12 19099.16 4394.65 20693.77 34291.69 39495.68 13899.67 13794.18 22398.85 25897.91 317
miper_refine_blended88.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
miper_lstm_enhance94.81 25294.80 24694.85 29396.16 35086.45 33591.14 38498.20 23093.49 24397.03 21497.37 24184.97 32399.26 27295.28 16899.56 11698.83 218
ETV-MVS96.13 19095.90 20396.82 19297.76 26793.89 16795.40 24198.95 10595.87 15295.58 29791.00 40096.36 11199.72 9593.36 24998.83 26196.85 366
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27597.19 25296.88 8099.86 2697.50 6499.73 6698.41 263
D2MVS95.18 23595.17 22495.21 27397.76 26787.76 31494.15 30197.94 25689.77 32596.99 21797.68 21587.45 30299.14 29295.03 18899.81 4798.74 231
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14998.23 22695.92 14898.40 10098.28 14497.06 6299.71 10995.48 15599.52 13599.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10995.70 13799.62 9299.58 39
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14998.89 11199.75 7495.48 15599.52 13599.53 57
test072699.24 6195.51 9996.89 13798.89 11195.92 14898.64 7698.31 13597.06 62
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13797.32 8898.06 14497.85 19796.65 9199.77 6395.00 18999.11 22999.32 122
DPM-MVS93.68 29592.77 30896.42 21797.91 24192.54 20891.17 38397.47 28584.99 38193.08 36294.74 35189.90 27399.00 31387.54 35798.09 31197.72 334
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14795.96 14497.53 17897.40 23396.93 7399.77 6395.04 18699.35 18899.42 102
test_yl94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
thisisatest053092.71 31691.76 32595.56 26098.42 18788.23 29896.03 19687.35 41094.04 22996.56 24795.47 33864.03 40599.77 6394.78 20099.11 22998.68 241
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 22098.79 2699.23 3398.86 7795.76 13699.61 16595.49 15199.36 18399.23 145
Anonymous20240521196.34 18295.98 19897.43 14398.25 20393.85 16996.74 14994.41 35397.72 6598.37 10398.03 18087.15 30599.53 18694.06 22899.07 23598.92 204
DCV-MVSNet94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
tttt051793.31 30592.56 31395.57 25898.71 14787.86 30997.44 10787.17 41195.79 15697.47 18696.84 27664.12 40499.81 4196.20 11399.32 19899.02 186
our_test_394.20 28094.58 25993.07 34796.16 35081.20 39090.42 39396.84 30590.72 31097.14 20297.13 25590.47 26299.11 29994.04 23198.25 30498.91 205
thisisatest051590.43 34889.18 36094.17 32497.07 32485.44 34589.75 40287.58 40988.28 34593.69 34691.72 39365.27 40399.58 17090.59 31098.67 27697.50 347
ppachtmachnet_test94.49 27094.84 24293.46 33796.16 35082.10 38190.59 39197.48 28490.53 31497.01 21697.59 22091.01 25599.36 24593.97 23499.18 21998.94 197
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14998.73 15991.61 29598.48 9298.36 12996.53 9899.68 12995.17 17599.54 12699.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.06 304
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25798.99 9695.84 15498.78 6698.08 17096.84 8499.81 4193.98 23399.57 11399.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.03 10796.07 7898.08 141
thres100view90091.76 33591.26 33593.26 34098.21 20784.50 36296.39 16690.39 39696.87 10096.33 25893.08 37373.44 38899.42 21978.85 40597.74 32695.85 387
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19898.25 4699.13 3898.66 9496.65 9199.69 12493.92 23599.62 9298.91 205
tfpn200view991.55 33791.00 33793.21 34498.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32695.85 387
c3_l95.20 23495.32 21894.83 29596.19 34886.43 33691.83 36998.35 21593.47 24497.36 19097.26 24888.69 28699.28 26895.41 16599.36 18398.78 225
CHOSEN 280x42089.98 35389.19 35992.37 36895.60 37581.13 39186.22 41097.09 29681.44 39787.44 41193.15 36873.99 38099.47 20488.69 34199.07 23596.52 378
CANet95.86 20195.65 21396.49 21396.41 34190.82 25394.36 28998.41 20594.94 19792.62 37596.73 28592.68 21999.71 10995.12 18399.60 10498.94 197
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31994.39 14795.46 23598.73 15996.03 14194.72 31694.92 34996.28 11699.69 12493.81 23897.98 31498.09 297
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 33198.69 596.42 16598.09 24795.86 15395.15 30695.54 33694.26 18299.81 4194.06 22898.51 29198.47 260
CANet_DTU94.65 26294.21 27495.96 23895.90 36089.68 26993.92 31497.83 26593.19 25690.12 39695.64 33388.52 28899.57 17693.27 25499.47 15398.62 245
MVS_030495.71 20795.18 22397.33 15194.85 38992.82 20095.36 24490.89 39295.51 17095.61 29597.82 20188.39 29199.78 5398.23 3599.91 1799.40 105
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24398.99 9692.45 28098.11 13698.31 13597.25 5399.77 6396.60 9599.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11195.65 16298.51 8796.46 29992.15 23699.81 4195.14 18098.58 28699.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.80 36098.06 304
sam_mvs77.38 364
IterMVS-SCA-FT95.86 20196.19 18894.85 29397.68 27785.53 34492.42 35797.63 28096.99 9698.36 10698.54 10987.94 29599.75 7497.07 8299.08 23399.27 138
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 23093.00 26598.16 13198.06 17795.89 12599.72 9595.67 14199.10 23199.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25598.46 19794.58 21198.10 13898.07 17297.09 6099.39 23495.16 17799.44 16099.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 17198.79 14795.07 19197.88 16398.35 13097.24 5499.72 9596.05 11899.58 11099.45 90
ambc96.56 20998.23 20691.68 23897.88 7298.13 24498.42 9898.56 10694.22 18399.04 30994.05 23099.35 18898.95 195
MTGPAbinary98.73 159
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29996.92 27296.81 8699.87 2496.87 8999.76 5798.51 256
Effi-MVS+96.19 18796.01 19596.71 19997.43 30492.19 22296.12 19099.10 5695.45 17393.33 35894.71 35297.23 5599.56 17793.21 25697.54 33998.37 268
xiu_mvs_v2_base94.22 27694.63 25492.99 35297.32 31484.84 35992.12 36397.84 26391.96 28894.17 32993.43 36796.07 12199.71 10991.27 28697.48 34294.42 401
xiu_mvs_v1_base95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
new-patchmatchnet95.67 21096.58 16792.94 35497.48 29880.21 39592.96 33998.19 23594.83 20098.82 6398.79 7993.31 20399.51 19395.83 13499.04 23999.12 168
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12997.75 5499.89 2399.62 36
pmmvs594.63 26394.34 27095.50 26397.63 28888.34 29694.02 30797.13 29487.15 35595.22 30597.15 25487.50 30199.27 27193.99 23299.26 20998.88 213
test_post194.98 27010.37 42576.21 37299.04 30989.47 330
test_post10.87 42476.83 36899.07 305
Fast-Effi-MVS+95.49 21795.07 22896.75 19797.67 28192.82 20094.22 29798.60 18491.61 29593.42 35692.90 37696.73 8999.70 11792.60 26397.89 32097.74 331
patchmatchnet-post96.84 27677.36 36599.42 219
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4799.37 499.67 899.43 1795.61 14199.72 9598.12 3699.86 2899.73 22
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20394.29 15394.77 27898.07 25289.81 32497.97 15498.33 13393.11 20799.08 30495.46 15899.84 3898.89 209
GG-mvs-BLEND90.60 38591.00 41884.21 36898.23 4672.63 42582.76 41684.11 41756.14 41596.79 40372.20 41592.09 40690.78 414
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
Anonymous2023120695.27 23195.06 23095.88 24498.72 14489.37 27795.70 21997.85 26188.00 34996.98 21997.62 21891.95 24399.34 25289.21 33399.53 13098.94 197
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15997.69 6897.90 16197.96 18795.81 13499.82 3696.13 11599.61 9899.45 90
MTMP96.55 16074.60 422
gm-plane-assit91.79 41771.40 42381.67 39490.11 40798.99 31584.86 382
test9_res91.29 28598.89 25499.00 187
MVP-Stereo95.69 20895.28 21996.92 18298.15 22093.03 19795.64 22998.20 23090.39 31696.63 24297.73 21191.63 24899.10 30291.84 27797.31 34998.63 244
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.84 24995.23 11793.62 32398.39 20886.81 36093.78 34095.99 32194.68 16999.52 189
train_agg95.46 22194.66 25097.88 10497.84 24995.23 11793.62 32398.39 20887.04 35693.78 34095.99 32194.58 17399.52 18991.76 28098.90 25198.89 209
gg-mvs-nofinetune88.28 37286.96 37892.23 37192.84 41484.44 36498.19 5274.60 42299.08 1487.01 41399.47 1356.93 41298.23 38278.91 40495.61 38694.01 404
SCA93.38 30493.52 29192.96 35396.24 34481.40 38893.24 33594.00 35691.58 29794.57 31996.97 26787.94 29599.42 21989.47 33097.66 33598.06 304
Patchmatch-test93.60 29893.25 29594.63 30296.14 35487.47 31896.04 19594.50 35293.57 24196.47 25296.97 26776.50 36998.61 35490.67 30998.41 29897.81 326
test_897.81 25395.07 12693.54 32698.38 21087.04 35693.71 34495.96 32494.58 17399.52 189
MS-PatchMatch94.83 25094.91 23694.57 30796.81 33287.10 32694.23 29697.34 28788.74 33897.14 20297.11 25891.94 24498.23 38292.99 25997.92 31798.37 268
Patchmatch-RL test94.66 26194.49 26295.19 27498.54 17188.91 28592.57 35098.74 15891.46 30098.32 11497.75 20877.31 36698.81 33296.06 11699.61 9897.85 322
cdsmvs_eth3d_5k24.22 39032.30 3930.00 4080.00 4310.00 4330.00 41998.10 2460.00 4260.00 42795.06 34597.54 390.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.98 39310.65 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42695.82 1300.00 4270.00 4260.00 4250.00 423
agg_prior290.34 31898.90 25199.10 175
agg_prior97.80 25794.96 12898.36 21293.49 35299.53 186
tmp_tt57.23 38862.50 39141.44 40534.77 42849.21 42983.93 41360.22 42715.31 42171.11 42179.37 41870.09 39844.86 42464.76 41882.93 41830.25 420
canonicalmvs97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 4095.62 16499.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
alignmvs96.01 19595.52 21797.50 13497.77 26694.71 13396.07 19396.84 30597.48 7796.78 23294.28 36185.50 31999.40 23096.22 11298.73 27298.40 264
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6498.31 4199.02 4498.74 8597.68 3099.61 16597.77 5399.85 3699.70 26
v14419296.69 16696.90 15196.03 23598.25 20388.92 28495.49 23498.77 15293.05 26398.09 13998.29 14392.51 23099.70 11798.11 3799.56 11699.47 84
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5398.04 5598.62 7898.66 9493.75 19599.78 5397.23 7099.84 3899.73 22
v192192096.72 16396.96 14695.99 23698.21 20788.79 28995.42 23898.79 14793.22 25398.19 12998.26 14992.68 21999.70 11798.34 3499.55 12299.49 75
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4599.98 299.85 5
v119296.83 15597.06 13996.15 23298.28 19889.29 27895.36 24498.77 15293.73 23598.11 13698.34 13293.02 21399.67 13798.35 3399.58 11099.50 67
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3698.43 3698.89 5798.83 7894.30 18199.81 4197.87 4699.91 1799.77 13
v114496.84 15297.08 13796.13 23398.42 18789.28 27995.41 24098.67 17494.21 22097.97 15498.31 13593.06 20899.65 14598.06 4099.62 9299.45 90
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13196.05 13797.49 18297.54 22397.07 6199.70 11795.61 14699.46 15699.30 127
v14896.58 17296.97 14495.42 26798.63 15887.57 31695.09 26197.90 25895.91 15098.24 12297.96 18793.42 20199.39 23496.04 11999.52 13599.29 133
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
TestCases98.06 9099.08 9696.16 7499.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 5099.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13196.00 14297.22 19597.62 21896.87 8299.76 6895.48 15599.43 16999.46 86
RRT-MVS95.78 20496.25 18594.35 31696.68 33484.47 36397.72 8699.11 5397.23 9197.27 19398.72 8686.39 31099.79 4995.49 15197.67 33398.80 222
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 218
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3696.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
PS-MVSNAJ94.10 28294.47 26493.00 35197.35 30984.88 35691.86 36897.84 26391.96 28894.17 32992.50 38595.82 13099.71 10991.27 28697.48 34294.40 402
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5295.83 15599.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3596.23 12899.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 31192.01 22995.33 24997.65 27697.74 6398.30 11898.14 16295.04 15899.69 12497.55 6299.52 13599.58 39
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30892.08 22795.34 24897.65 27697.74 6398.29 11998.11 16895.05 15799.68 12997.50 6499.50 14499.56 50
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20398.20 23095.51 17095.06 30896.53 29594.10 18599.70 11794.29 21999.15 22299.13 163
test_prior495.38 10793.61 325
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25997.64 21696.49 10199.72 9595.66 14299.37 18099.45 90
v124096.74 16097.02 14295.91 24398.18 21388.52 29295.39 24298.88 11893.15 26198.46 9598.40 12692.80 21699.71 10998.45 3199.49 14799.49 75
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9397.57 7299.27 3099.22 3598.32 1299.50 19497.09 7999.75 6499.50 67
test_prior293.33 33394.21 22094.02 33696.25 31093.64 19791.90 27498.96 244
X-MVStestdata92.86 31390.83 34298.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25936.50 42196.49 10199.72 9595.66 14299.37 18099.45 90
test_prior97.46 14097.79 26294.26 15798.42 20499.34 25298.79 224
旧先验293.35 33277.95 41095.77 29198.67 34990.74 306
新几何293.43 328
新几何197.25 15898.29 19694.70 13597.73 26977.98 40994.83 31596.67 28892.08 24099.45 21288.17 34998.65 28097.61 340
旧先验197.80 25793.87 16897.75 26897.04 26393.57 19898.68 27598.72 234
无先验93.20 33697.91 25780.78 39999.40 23087.71 35297.94 316
原ACMM292.82 342
原ACMM196.58 20698.16 21892.12 22398.15 24285.90 36993.49 35296.43 30192.47 23199.38 23787.66 35498.62 28298.23 286
test22298.17 21693.24 19492.74 34697.61 28175.17 41494.65 31896.69 28790.96 25798.66 27897.66 336
testdata299.46 20787.84 350
segment_acmp95.34 150
testdata95.70 25398.16 21890.58 25897.72 27080.38 40195.62 29497.02 26492.06 24198.98 31789.06 33798.52 28897.54 344
testdata192.77 34393.78 234
v897.60 10498.06 5396.23 22698.71 14789.44 27697.43 10998.82 14597.29 9098.74 7399.10 5293.86 19199.68 12998.61 2699.94 899.56 50
131492.38 32092.30 31592.64 36295.42 38085.15 35295.86 21196.97 30285.40 37590.62 38893.06 37491.12 25397.80 39186.74 36695.49 38894.97 399
LFMVS95.32 22994.88 23996.62 20398.03 22891.47 24197.65 9190.72 39599.11 1297.89 16298.31 13579.20 35499.48 20293.91 23699.12 22898.93 201
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33398.59 3198.51 8798.72 8692.54 22799.58 17096.02 12199.49 14799.12 168
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34199.26 998.39 10299.18 4287.85 30099.62 15895.13 18299.09 23299.35 120
v1097.55 10897.97 6196.31 22498.60 16289.64 27197.44 10799.02 8296.60 10898.72 7599.16 4693.48 20099.72 9598.76 2199.92 1499.58 39
VPNet97.26 12997.49 11496.59 20599.47 3390.58 25896.27 17698.53 19197.77 6098.46 9598.41 12394.59 17299.68 12994.61 20699.29 20499.52 60
MVS90.02 35189.20 35892.47 36694.71 39286.90 32995.86 21196.74 31164.72 41890.62 38892.77 37992.54 22798.39 37279.30 40395.56 38792.12 410
v2v48296.78 15997.06 13995.95 24098.57 16688.77 29095.36 24498.26 22295.18 18697.85 16898.23 15392.58 22399.63 15397.80 5099.69 7799.45 90
V4297.04 13797.16 13396.68 20298.59 16491.05 24896.33 17398.36 21294.60 20897.99 15098.30 13993.32 20299.62 15897.40 6799.53 13099.38 112
SD-MVS97.37 12397.70 8696.35 22198.14 22295.13 12496.54 16198.92 10895.94 14699.19 3598.08 17097.74 2895.06 41195.24 17199.54 12698.87 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS92.83 31492.15 31994.87 29296.97 32687.27 32390.03 39696.12 31891.83 29194.05 33494.57 35376.01 37398.97 32192.46 26797.34 34898.36 273
MSLP-MVS++96.42 18096.71 15995.57 25897.82 25290.56 26095.71 21898.84 13194.72 20396.71 23597.39 23794.91 16498.10 38695.28 16899.02 24098.05 307
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5695.96 14498.59 8298.69 9296.94 7199.81 4196.64 9399.58 11099.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10897.72 6598.25 12198.13 16497.10 5899.75 7495.44 15999.24 21399.32 122
ADS-MVSNet291.47 33990.51 34894.36 31595.51 37685.63 34295.05 26695.70 32883.46 38992.69 37096.84 27679.15 35599.41 22885.66 37390.52 40798.04 308
EI-MVSNet96.63 16996.93 14795.74 25097.26 31688.13 30395.29 25397.65 27696.99 9697.94 15898.19 15892.55 22599.58 17096.91 8799.56 11699.50 67
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
CVMVSNet92.33 32292.79 30590.95 38397.26 31675.84 41495.29 25392.33 37781.86 39396.27 26498.19 15881.44 34498.46 36894.23 22298.29 30398.55 252
pmmvs494.82 25194.19 27596.70 20097.42 30592.75 20692.09 36596.76 30986.80 36195.73 29297.22 25089.28 28398.89 32593.28 25399.14 22398.46 262
EU-MVSNet94.25 27594.47 26493.60 33498.14 22282.60 37997.24 11792.72 37285.08 37798.48 9298.94 6782.59 34198.76 33797.47 6699.53 13099.44 100
VNet96.84 15296.83 15396.88 18798.06 22792.02 22896.35 17297.57 28297.70 6797.88 16397.80 20492.40 23299.54 18494.73 20398.96 24499.08 176
test-LLR89.97 35489.90 35290.16 38794.24 39974.98 41689.89 39889.06 40492.02 28689.97 39790.77 40273.92 38298.57 35791.88 27597.36 34696.92 361
TESTMET0.1,187.20 38186.57 38189.07 39293.62 40872.84 42189.89 39887.01 41285.46 37489.12 40490.20 40556.00 41697.72 39290.91 29696.92 35396.64 374
test-mter87.92 37587.17 37590.16 38794.24 39974.98 41689.89 39889.06 40486.44 36489.97 39790.77 40254.96 42298.57 35791.88 27597.36 34696.92 361
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9398.40 3899.07 4298.98 6296.89 7899.75 7497.19 7599.79 5299.55 53
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13796.05 13797.46 18797.63 21796.77 8799.76 6895.61 14699.46 15699.49 75
testgi96.07 19196.50 17694.80 29699.26 5787.69 31595.96 20598.58 18895.08 19098.02 14996.25 31097.92 2097.60 39488.68 34298.74 26999.11 171
test20.0396.58 17296.61 16596.48 21498.49 17991.72 23695.68 22297.69 27196.81 10298.27 12097.92 19394.18 18498.71 34290.78 30199.66 8599.00 187
thres600view792.03 33091.43 32893.82 32898.19 21084.61 36196.27 17690.39 39696.81 10296.37 25793.11 36973.44 38899.49 19980.32 40097.95 31697.36 350
ADS-MVSNet90.95 34690.26 35093.04 34895.51 37682.37 38095.05 26693.41 36483.46 38992.69 37096.84 27679.15 35598.70 34385.66 37390.52 40798.04 308
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15996.27 12595.59 29697.75 20896.30 11399.78 5393.70 24399.48 15199.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs12.33 39215.23 3953.64 4075.77 4302.23 43288.99 4053.62 4302.30 4255.29 42513.09 4224.52 4301.95 4255.16 4258.32 4246.75 422
thres40091.68 33691.00 33793.71 33298.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32697.36 350
test12312.59 39115.49 3943.87 4066.07 4292.55 43190.75 3902.59 4312.52 4245.20 42613.02 4234.96 4291.85 4265.20 4249.09 4237.23 421
thres20091.00 34590.42 34992.77 35997.47 30283.98 37094.01 30891.18 39095.12 18995.44 30091.21 39873.93 38199.31 25977.76 40897.63 33795.01 398
test0.0.03 190.11 35089.21 35792.83 35793.89 40586.87 33091.74 37088.74 40792.02 28694.71 31791.14 39973.92 38294.48 41483.75 39092.94 40197.16 355
pmmvs390.00 35288.90 36293.32 33894.20 40185.34 34691.25 38192.56 37678.59 40793.82 33995.17 34267.36 40298.69 34589.08 33698.03 31395.92 385
EMVS89.06 36489.22 35688.61 39493.00 41277.34 40882.91 41690.92 39194.64 20792.63 37491.81 39276.30 37197.02 39983.83 38896.90 35591.48 413
E-PMN89.52 36189.78 35388.73 39393.14 41077.61 40683.26 41592.02 37994.82 20193.71 34493.11 36975.31 37696.81 40285.81 37096.81 36091.77 412
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6895.45 17397.55 17797.94 19097.11 5799.78 5394.77 20199.46 15699.48 81
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22593.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31999.06 23898.32 275
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28298.17 23690.17 32096.21 26996.10 31995.14 15699.43 21794.13 22698.85 25899.13 163
mvs_anonymous95.36 22596.07 19493.21 34496.29 34381.56 38694.60 28497.66 27493.30 25096.95 22198.91 7293.03 21299.38 23796.60 9597.30 35098.69 238
MVS_Test96.27 18496.79 15794.73 30096.94 32986.63 33396.18 18498.33 21694.94 19796.07 27598.28 14495.25 15399.26 27297.21 7297.90 31998.30 279
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 25098.48 18188.76 29192.84 34197.25 28896.00 14297.59 17697.95 18991.38 25099.46 20793.16 25796.35 37298.99 190
CDPH-MVS95.45 22294.65 25197.84 10798.28 19894.96 12893.73 32198.33 21685.03 37995.44 30096.60 29195.31 15199.44 21590.01 32199.13 22599.11 171
test1297.46 14097.61 28994.07 16197.78 26793.57 35093.31 20399.42 21998.78 26598.89 209
casdiffmvspermissive97.50 11197.81 7796.56 20998.51 17591.04 24995.83 21399.09 6197.23 9198.33 11398.30 13997.03 6599.37 24296.58 9799.38 17999.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive96.04 19396.23 18695.46 26697.35 30988.03 30693.42 32999.08 6494.09 22896.66 23996.93 27093.85 19299.29 26696.01 12398.67 27699.06 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline289.65 36088.44 36693.25 34195.62 37482.71 37693.82 31785.94 41488.89 33687.35 41292.54 38371.23 39399.33 25486.01 36894.60 39697.72 334
baseline193.14 31092.64 31194.62 30397.34 31187.20 32496.67 15893.02 36794.71 20496.51 25195.83 32881.64 34298.60 35690.00 32288.06 41398.07 300
YYNet194.73 25394.84 24294.41 31497.47 30285.09 35490.29 39495.85 32792.52 27797.53 17897.76 20591.97 24299.18 28593.31 25296.86 35698.95 195
PMMVS293.66 29694.07 27992.45 36797.57 29180.67 39386.46 40996.00 32193.99 23097.10 20697.38 23989.90 27397.82 39088.76 33999.47 15398.86 216
MDA-MVSNet_test_wron94.73 25394.83 24494.42 31397.48 29885.15 35290.28 39595.87 32692.52 27797.48 18497.76 20591.92 24599.17 28993.32 25196.80 36198.94 197
tpmvs90.79 34790.87 34090.57 38692.75 41576.30 41295.79 21693.64 36291.04 30791.91 38196.26 30977.19 36798.86 32989.38 33289.85 41096.56 377
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18398.63 18293.82 23398.54 8598.33 13393.98 18899.05 30795.99 12499.45 15998.61 247
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16298.75 15696.36 12296.16 27296.77 28291.91 24699.46 20792.59 26499.20 21599.28 134
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15699.46 20792.59 26499.20 21599.28 134
plane_prior496.77 282
plane_prior394.51 14395.29 18296.16 272
plane_prior296.50 16296.36 122
plane_prior198.49 179
plane_prior94.29 15395.42 23894.31 21998.93 249
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5199.22 1099.22 3498.96 6597.35 4499.92 697.79 5199.93 1199.79 11
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22499.02 8298.11 5198.31 11697.69 21494.65 17199.85 2997.02 8499.71 7399.48 81
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4799.33 699.30 2899.00 5997.27 4899.92 697.64 6099.92 1499.75 20
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 12098.23 4799.48 1799.27 3198.47 1199.55 18196.52 9899.53 13099.60 37
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5699.36 599.29 2999.06 5697.27 4899.93 497.71 5699.91 1799.70 26
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22698.87 12097.57 7298.31 11697.83 19894.69 16799.85 2997.02 8499.71 7399.46 86
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20899.04 7997.51 7698.22 12497.81 20394.68 16999.78 5397.14 7799.75 6499.41 104
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13199.05 1799.01 4598.65 9795.37 14999.90 1697.57 6199.91 1799.77 13
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4299.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 29098.12 24597.34 8798.20 12597.33 24492.81 21599.75 7494.79 19899.81 4799.54 54
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15997.79 5999.42 2197.83 19894.40 17999.78 5395.91 12999.76 5799.46 86
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23698.86 12398.20 4998.37 10399.24 3394.69 16799.55 18195.98 12599.79 5299.65 33
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15399.05 7298.67 2898.84 6198.45 11897.58 3899.88 2196.45 10199.86 2899.54 54
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27295.23 11794.15 30196.90 30493.26 25198.04 14796.70 28694.41 17898.89 32594.77 20199.14 22398.37 268
n20.00 432
nn0.00 432
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15196.04 13997.10 20697.73 21196.53 9899.78 5395.16 17799.50 14499.46 86
door-mid98.17 236
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28299.02 8295.20 18498.15 13397.52 22598.83 598.43 36994.87 19496.41 37099.07 178
mvsmamba94.91 24694.41 26896.40 22097.65 28491.30 24497.92 6995.32 34091.50 29895.54 29898.38 12783.06 33799.68 12992.46 26797.84 32198.23 286
MVSFormer96.14 18996.36 18195.49 26497.68 27787.81 31298.67 1599.02 8296.50 11594.48 32396.15 31486.90 30699.92 698.73 2299.13 22598.74 231
jason94.39 27394.04 28095.41 26998.29 19687.85 31192.74 34696.75 31085.38 37695.29 30396.15 31488.21 29499.65 14594.24 22199.34 19198.74 231
jason: jason.
lupinMVS93.77 29193.28 29495.24 27297.68 27787.81 31292.12 36396.05 31984.52 38594.48 32395.06 34586.90 30699.63 15393.62 24599.13 22598.27 283
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8296.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 8095.88 15197.88 16398.22 15698.15 1699.74 8396.50 9999.62 9299.42 102
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23997.65 9190.31 39998.89 2498.93 5399.36 2384.57 32699.92 697.81 4999.56 11699.39 110
lessismore_v097.05 17399.36 4892.12 22384.07 41698.77 7098.98 6285.36 32099.74 8397.34 6999.37 18099.30 127
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30298.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7298.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7295.43 17697.41 18997.50 22797.98 1999.79 4995.58 14999.57 11399.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31799.05 7295.19 18598.32 11497.70 21395.22 15498.41 37094.27 22098.13 30998.93 201
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16698.98 9995.05 19398.06 14498.02 18195.86 12699.56 17794.37 21699.64 8899.00 187
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20399.18 4197.67 7199.00 4798.48 11797.64 3499.50 19496.96 8699.54 12699.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
baseline97.44 11697.78 8296.43 21698.52 17390.75 25696.84 13899.03 8096.51 11497.86 16798.02 18196.67 9099.36 24597.09 7999.47 15399.19 151
test1198.08 248
door97.81 266
EPNet_dtu91.39 34090.75 34393.31 33990.48 42082.61 37894.80 27592.88 36993.39 24681.74 41894.90 35081.36 34599.11 29988.28 34798.87 25598.21 289
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.10 28293.41 29396.18 23099.16 8090.04 26392.15 36298.68 17179.90 40396.22 26897.83 19887.92 29999.42 21989.18 33499.65 8699.08 176
EPNet93.72 29392.62 31297.03 17687.61 42492.25 21696.27 17691.28 38896.74 10487.65 41097.39 23785.00 32299.64 14992.14 27099.48 15199.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS92.47 212
HQP-NCC97.85 24494.26 29193.18 25792.86 366
ACMP_Plane97.85 24494.26 29193.18 25792.86 366
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17498.77 15292.96 27097.44 18897.58 22295.84 12799.74 8391.96 27299.35 18899.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS90.51 313
HQP4-MVS92.87 36599.23 28099.06 180
HQP3-MVS98.43 20198.74 269
HQP2-MVS90.33 266
CNVR-MVS96.92 14696.55 17098.03 9598.00 23595.54 9794.87 27398.17 23694.60 20896.38 25697.05 26295.67 13999.36 24595.12 18399.08 23399.19 151
NCCC96.52 17495.99 19798.10 8797.81 25395.68 9295.00 26998.20 23095.39 17795.40 30296.36 30693.81 19399.45 21293.55 24698.42 29799.17 154
114514_t93.96 28893.22 29696.19 22999.06 10090.97 25195.99 20198.94 10673.88 41693.43 35596.93 27092.38 23399.37 24289.09 33599.28 20598.25 285
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10396.11 13496.89 22597.45 22996.85 8399.78 5395.19 17399.63 9099.38 112
DSMNet-mixed92.19 32491.83 32293.25 34196.18 34983.68 37296.27 17693.68 36076.97 41392.54 37699.18 4289.20 28598.55 36083.88 38798.60 28597.51 345
tpm288.47 36987.69 37290.79 38494.98 38877.34 40895.09 26191.83 38177.51 41289.40 40296.41 30267.83 40198.73 33983.58 39192.60 40496.29 382
NP-MVS98.14 22293.72 17495.08 343
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20598.97 10294.55 21298.82 6398.76 8497.31 4699.29 26697.20 7499.44 16099.38 112
tpm cat188.01 37487.33 37490.05 39094.48 39576.28 41394.47 28794.35 35473.84 41789.26 40395.61 33573.64 38498.30 37984.13 38586.20 41595.57 394
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 11096.58 11098.08 14197.87 19697.02 6699.76 6895.25 17099.59 10799.40 105
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.75 35789.25 35591.26 38294.69 39378.00 40495.32 25091.98 38081.50 39690.55 39096.96 26971.06 39498.89 32588.59 34392.63 40396.87 364
CR-MVSNet93.29 30792.79 30594.78 29895.44 37888.15 30196.18 18497.20 29084.94 38294.10 33198.57 10477.67 36199.39 23495.17 17595.81 38096.81 370
JIA-IIPM91.79 33490.69 34595.11 27793.80 40690.98 25094.16 30091.78 38296.38 12090.30 39499.30 2972.02 39198.90 32488.28 34790.17 40995.45 395
Patchmtry95.03 24394.59 25896.33 22294.83 39190.82 25396.38 16997.20 29096.59 10997.49 18298.57 10477.67 36199.38 23792.95 26199.62 9298.80 222
PatchT93.75 29293.57 29094.29 32095.05 38787.32 32296.05 19492.98 36897.54 7594.25 32698.72 8675.79 37599.24 27895.92 12895.81 38096.32 381
tpmrst90.31 34990.61 34789.41 39194.06 40372.37 42295.06 26593.69 35888.01 34892.32 37896.86 27477.45 36398.82 33091.04 29187.01 41497.04 358
BH-w/o92.14 32591.94 32092.73 36097.13 32285.30 34892.46 35495.64 33089.33 32994.21 32792.74 38089.60 27598.24 38181.68 39594.66 39494.66 400
tpm91.08 34490.85 34191.75 37695.33 38278.09 40295.03 26891.27 38988.75 33793.53 35197.40 23371.24 39299.30 26291.25 28893.87 39997.87 321
DELS-MVS96.17 18896.23 18695.99 23697.55 29490.04 26392.38 36098.52 19294.13 22496.55 24997.06 26194.99 16199.58 17095.62 14599.28 20598.37 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned94.69 25894.75 24894.52 30997.95 24087.53 31794.07 30697.01 30093.99 23097.10 20695.65 33292.65 22198.95 32287.60 35596.74 36297.09 356
RPMNet94.68 26094.60 25694.90 29095.44 37888.15 30196.18 18498.86 12397.43 7894.10 33198.49 11379.40 35399.76 6895.69 13995.81 38096.81 370
MVSTER94.21 27893.93 28595.05 28195.83 36586.46 33495.18 25897.65 27692.41 28197.94 15898.00 18572.39 39099.58 17096.36 10599.56 11699.12 168
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15292.89 27196.01 27897.13 25592.23 23499.67 13792.24 26999.34 19199.17 154
GBi-Net96.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21799.28 5590.62 25795.31 25199.08 6488.40 34396.97 22098.17 16192.11 23899.78 5393.64 24499.21 21498.86 216
PVSNet_BlendedMVS95.02 24494.93 23495.27 27197.79 26287.40 32094.14 30398.68 17188.94 33594.51 32198.01 18393.04 20999.30 26289.77 32699.49 14799.11 171
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21598.48 18191.52 24095.31 25198.45 19895.76 15797.48 18497.54 22389.53 27998.69 34594.43 21294.61 39599.13 163
UnsupCasMVSNet_bld94.72 25794.26 27196.08 23498.62 16090.54 26193.38 33198.05 25490.30 31797.02 21596.80 28189.54 27799.16 29088.44 34496.18 37698.56 250
PVSNet_Blended93.96 28893.65 28894.91 28897.79 26287.40 32091.43 37598.68 17184.50 38694.51 32194.48 35893.04 20999.30 26289.77 32698.61 28398.02 310
FMVSNet593.39 30392.35 31496.50 21295.83 36590.81 25597.31 11298.27 22192.74 27496.27 26498.28 14462.23 40699.67 13790.86 29799.36 18399.03 183
test196.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
new_pmnet92.34 32191.69 32694.32 31896.23 34689.16 28192.27 36192.88 36984.39 38895.29 30396.35 30785.66 31796.74 40684.53 38497.56 33897.05 357
FMVSNet395.26 23294.94 23296.22 22896.53 33890.06 26295.99 20197.66 27494.11 22697.99 15097.91 19480.22 35299.63 15394.60 20799.44 16098.96 193
dp88.08 37388.05 36888.16 39892.85 41368.81 42494.17 29992.88 36985.47 37391.38 38696.14 31668.87 40098.81 33286.88 36583.80 41796.87 364
FMVSNet296.72 16396.67 16296.87 18897.96 23791.88 23297.15 12198.06 25395.59 16698.50 8998.62 9989.51 28099.65 14594.99 19199.60 10499.07 178
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17697.41 8399.00 4799.19 3895.47 14599.73 8995.83 13499.76 5799.30 127
N_pmnet95.18 23594.23 27298.06 9097.85 24496.55 6292.49 35291.63 38389.34 32898.09 13997.41 23290.33 26699.06 30691.58 28299.31 20198.56 250
cascas91.89 33291.35 33093.51 33694.27 39885.60 34388.86 40698.61 18379.32 40592.16 37991.44 39689.22 28498.12 38590.80 30097.47 34496.82 369
BH-RMVSNet94.56 26694.44 26794.91 28897.57 29187.44 31993.78 32096.26 31793.69 23896.41 25596.50 29892.10 23999.00 31385.96 36997.71 32998.31 277
UGNet96.81 15796.56 16997.58 12496.64 33593.84 17097.75 8297.12 29596.47 11993.62 34798.88 7593.22 20599.53 18695.61 14699.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS93.55 29993.00 30095.19 27497.81 25387.86 30993.89 31596.00 32189.02 33394.07 33395.44 34086.27 31199.33 25487.69 35396.82 35998.39 266
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9394.93 19998.58 8398.92 6997.31 4699.41 22894.44 21199.43 16999.59 38
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27997.01 26696.99 6899.82 3697.66 5999.64 8898.39 266
sss94.22 27693.72 28795.74 25097.71 27589.95 26593.84 31696.98 30188.38 34493.75 34395.74 32987.94 29598.89 32591.02 29298.10 31098.37 268
Test_1112_low_res93.53 30092.86 30295.54 26298.60 16288.86 28792.75 34498.69 16982.66 39292.65 37296.92 27284.75 32499.56 17790.94 29597.76 32598.19 291
1112_ss94.12 28193.42 29296.23 22698.59 16490.85 25294.24 29598.85 12785.49 37292.97 36494.94 34786.01 31399.64 14991.78 27997.92 31798.20 290
ab-mvs-re7.91 39410.55 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.94 3470.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs96.59 17096.59 16696.60 20498.64 15492.21 21898.35 3597.67 27294.45 21496.99 21798.79 7994.96 16399.49 19990.39 31699.07 23598.08 298
TR-MVS92.54 31892.20 31893.57 33596.49 33986.66 33293.51 32794.73 34989.96 32294.95 31293.87 36490.24 27198.61 35481.18 39894.88 39295.45 395
MDTV_nov1_ep13_2view57.28 42694.89 27280.59 40094.02 33678.66 35785.50 37597.82 324
MDTV_nov1_ep1391.28 33294.31 39673.51 42094.80 27593.16 36686.75 36293.45 35497.40 23376.37 37098.55 36088.85 33896.43 369
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11198.49 3599.38 2399.14 4995.44 14799.84 3296.47 10099.80 5099.47 84
MIMVSNet93.42 30292.86 30295.10 27998.17 21688.19 29998.13 5593.69 35892.07 28495.04 31198.21 15780.95 34999.03 31281.42 39698.06 31298.07 300
IterMVS-LS96.92 14697.29 12395.79 24798.51 17588.13 30395.10 26098.66 17696.99 9698.46 9598.68 9392.55 22599.74 8396.91 8799.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.88 24994.12 27897.14 16497.64 28793.57 18193.96 31397.06 29890.05 32196.30 26396.55 29386.10 31299.47 20490.10 32099.31 20198.40 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.52 135
IterMVS95.42 22395.83 20694.20 32297.52 29583.78 37192.41 35897.47 28595.49 17298.06 14498.49 11387.94 29599.58 17096.02 12199.02 24099.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 21595.13 22596.80 19398.51 17593.99 16594.60 28498.69 16990.20 31995.78 28996.21 31292.73 21898.98 31790.58 31198.86 25797.42 349
MVS_111021_LR96.82 15696.55 17097.62 12298.27 20095.34 11293.81 31998.33 21694.59 21096.56 24796.63 29096.61 9498.73 33994.80 19799.34 19198.78 225
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14798.98 2198.74 7398.49 11395.80 13599.49 19995.04 18699.44 16099.11 171
ACMMP++99.55 122
HQP-MVS95.17 23794.58 25996.92 18297.85 24492.47 21294.26 29198.43 20193.18 25792.86 36695.08 34390.33 26699.23 28090.51 31398.74 26999.05 182
QAPM95.88 20095.57 21696.80 19397.90 24291.84 23498.18 5398.73 15988.41 34296.42 25498.13 16494.73 16599.75 7488.72 34098.94 24798.81 221
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4899.36 18399.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet88.40 37090.20 35182.99 40097.01 32560.04 42593.11 33885.61 41584.45 38788.72 40699.09 5384.72 32598.23 38282.52 39396.59 36890.69 415
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31198.36 3998.14 13497.98 18688.23 29399.71 10993.10 25899.72 7099.38 112
HyFIR lowres test93.72 29392.65 31096.91 18498.93 12091.81 23591.23 38298.52 19282.69 39196.46 25396.52 29780.38 35199.90 1690.36 31798.79 26499.03 183
EPMVS89.26 36288.55 36491.39 38092.36 41679.11 39995.65 22679.86 42088.60 34093.12 36196.53 29570.73 39698.10 38690.75 30389.32 41196.98 359
PAPM_NR94.61 26494.17 27695.96 23898.36 19191.23 24695.93 20797.95 25592.98 26693.42 35694.43 35990.53 26198.38 37387.60 35596.29 37498.27 283
TAMVS95.49 21794.94 23297.16 16298.31 19493.41 18895.07 26496.82 30791.09 30697.51 18097.82 20189.96 27299.42 21988.42 34599.44 16098.64 242
PAPR92.22 32391.27 33395.07 28095.73 37388.81 28891.97 36697.87 26085.80 37090.91 38792.73 38191.16 25298.33 37779.48 40295.76 38498.08 298
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6896.19 13198.48 9298.70 9194.72 16699.24 27894.37 21699.33 19699.17 154
Vis-MVSNet (Re-imp)95.11 23894.85 24195.87 24599.12 9189.17 28097.54 10494.92 34896.50 11596.58 24597.27 24783.64 33399.48 20288.42 34599.67 8398.97 192
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15498.73 15998.66 2998.56 8498.41 12396.84 8499.69 12494.82 19699.81 4798.64 242
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32998.36 21294.74 20296.58 24596.76 28496.54 9798.99 31594.87 19499.27 20799.15 157
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9696.35 12498.13 13595.95 32595.99 12299.66 14394.36 21899.73 6698.59 248
PatchMatch-RL94.61 26493.81 28697.02 17798.19 21095.72 8993.66 32297.23 28988.17 34794.94 31395.62 33491.43 24998.57 35787.36 36197.68 33296.76 372
API-MVS95.09 24095.01 23195.31 27096.61 33694.02 16396.83 13997.18 29295.60 16595.79 28794.33 36094.54 17598.37 37585.70 37198.52 28893.52 406
Test By Simon94.51 176
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16897.21 7299.76 5799.40 105
USDC94.56 26694.57 26194.55 30897.78 26586.43 33692.75 34498.65 18185.96 36796.91 22497.93 19290.82 25898.74 33890.71 30799.59 10798.47 260
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31697.91 5797.30 19198.06 17788.46 28999.85 2993.85 23799.40 17799.32 122
PMMVS92.39 31991.08 33696.30 22593.12 41192.81 20290.58 39295.96 32379.17 40691.85 38292.27 38690.29 27098.66 35089.85 32596.68 36697.43 348
PAPM87.64 37685.84 38393.04 34896.54 33784.99 35588.42 40795.57 33479.52 40483.82 41593.05 37580.57 35098.41 37062.29 41992.79 40295.71 390
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10395.75 15997.91 16098.06 17796.89 7899.76 6895.32 16799.57 11399.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA95.04 24194.47 26496.75 19797.81 25395.25 11694.12 30597.89 25994.41 21594.57 31995.69 33090.30 26998.35 37686.72 36798.76 26796.64 374
PatchmatchNetpermissive91.98 33191.87 32192.30 36994.60 39479.71 39695.12 25993.59 36389.52 32793.61 34897.02 26477.94 35999.18 28590.84 29894.57 39798.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.96 14496.53 17398.25 7597.48 29896.50 6396.76 14798.85 12793.52 24296.19 27196.85 27595.94 12399.42 21993.79 23999.43 16998.83 218
F-COLMAP95.30 23094.38 26998.05 9498.64 15496.04 7995.61 23098.66 17689.00 33493.22 35996.40 30492.90 21499.35 24987.45 36097.53 34098.77 228
ANet_high98.31 3698.94 696.41 21999.33 5189.64 27197.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6299.98 299.77 13
wuyk23d93.25 30895.20 22187.40 39996.07 35695.38 10797.04 12994.97 34695.33 17999.70 798.11 16898.14 1791.94 41777.76 40899.68 8174.89 417
OMC-MVS96.48 17696.00 19697.91 10298.30 19596.01 8294.86 27498.60 18491.88 29097.18 20097.21 25196.11 12099.04 30990.49 31599.34 19198.69 238
MG-MVS94.08 28494.00 28194.32 31897.09 32385.89 34193.19 33795.96 32392.52 27794.93 31497.51 22689.54 27798.77 33587.52 35997.71 32998.31 277
AdaColmapbinary95.11 23894.62 25596.58 20697.33 31394.45 14694.92 27198.08 24893.15 26193.98 33895.53 33794.34 18099.10 30285.69 37298.61 28396.20 384
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19495.63 16397.22 19597.30 24695.52 14398.55 36090.97 29498.90 25198.34 274
DeepMVS_CXcopyleft77.17 40190.94 41985.28 35074.08 42452.51 42080.87 42088.03 41275.25 37770.63 42259.23 42184.94 41675.62 416
TinyColmap96.00 19696.34 18294.96 28797.90 24287.91 30894.13 30498.49 19594.41 21598.16 13197.76 20596.29 11598.68 34890.52 31299.42 17298.30 279
MAR-MVS94.21 27893.03 29897.76 11196.94 32997.44 3796.97 13397.15 29387.89 35192.00 38092.73 38192.14 23799.12 29683.92 38697.51 34196.73 373
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS96.07 19195.63 21497.36 14998.19 21095.55 9695.44 23698.82 14592.29 28395.70 29396.55 29392.63 22298.69 34591.75 28199.33 19697.85 322
MSDG95.33 22895.13 22595.94 24297.40 30691.85 23391.02 38798.37 21195.30 18196.31 26295.99 32194.51 17698.38 37389.59 32897.65 33697.60 341
LS3D97.77 9097.50 11398.57 5196.24 34497.58 2898.45 3198.85 12798.58 3297.51 18097.94 19095.74 13799.63 15395.19 17398.97 24398.51 256
CLD-MVS95.47 22095.07 22896.69 20198.27 20092.53 20991.36 37698.67 17491.22 30595.78 28994.12 36295.65 14098.98 31790.81 29999.72 7098.57 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS89.92 35588.63 36393.82 32898.37 19096.94 4991.58 37293.34 36588.00 34990.32 39397.10 25970.87 39591.13 41871.91 41696.16 37893.39 408
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5698.76 2796.79 22899.34 2696.61 9498.82 33096.38 10499.50 14496.98 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015