This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17898.49 2898.88 11196.86 9697.11 19998.55 10095.82 12699.73 8295.94 11899.42 16699.13 156
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 16098.13 4396.93 21798.45 11095.30 14799.62 14995.64 13598.96 23799.24 137
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17399.02 7793.92 22198.62 7698.99 5797.69 2999.62 14996.18 10599.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS94.58 596.90 14396.43 17298.31 6797.48 29097.23 4092.56 33998.60 17692.84 26198.54 8397.40 22296.64 9098.78 32494.40 20599.41 17098.93 193
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4599.45 20394.08 21799.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS_fast94.34 796.74 15496.51 16997.44 13997.69 27094.15 15796.02 18898.43 19393.17 24997.30 18697.38 22895.48 14099.28 26093.74 23099.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft94.22 895.48 21295.20 21596.32 21697.16 31291.96 22797.74 8098.84 12387.26 34094.36 31398.01 17293.95 18599.67 12890.70 29798.75 26197.35 338
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 18098.23 4699.05 6797.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9399.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18899.72 7199.32 115
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14698.83 12995.21 17498.36 10498.13 15398.13 1899.62 14996.04 11099.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS93.32 1294.93 23794.23 26397.04 17298.18 20694.51 14195.22 24498.73 15181.22 38596.25 25795.95 31193.80 18998.98 30889.89 31298.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.54 1397.47 11097.10 12998.55 4999.04 10696.70 5196.24 17298.89 10593.71 22597.97 15197.75 19797.44 4099.63 14493.22 24599.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft91.80 1493.64 28993.05 28795.42 25997.31 30791.21 24195.08 25196.68 30681.56 38296.88 22196.41 28890.44 25999.25 26685.39 36597.67 32395.80 376
HY-MVS91.43 1592.58 30891.81 31394.90 28496.49 33288.87 27997.31 10694.62 33885.92 35590.50 37996.84 26385.05 31599.40 22183.77 37795.78 37196.43 368
PLCcopyleft91.02 1694.05 27692.90 29297.51 12798.00 22895.12 12394.25 28298.25 21586.17 35291.48 37395.25 32791.01 24999.19 27685.02 36996.69 35398.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft89.60 1796.71 15996.97 13895.95 23399.51 3097.81 1697.42 10497.49 27697.93 5095.95 26998.58 9696.88 7796.91 39189.59 31699.36 17793.12 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PCF-MVS89.43 1892.12 31790.64 33496.57 20397.80 25193.48 18289.88 38898.45 19074.46 40196.04 26795.68 31790.71 25499.31 25173.73 40099.01 23596.91 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet86.72 1991.10 33190.97 32891.49 36797.56 28578.04 39287.17 39594.60 33984.65 37192.34 36592.20 37687.37 29998.47 35785.17 36897.69 32197.96 303
IB-MVS85.98 2088.63 35686.95 36693.68 32595.12 37684.82 35290.85 37590.17 38787.55 33988.48 39491.34 38558.01 39899.59 15987.24 35193.80 38896.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_081.89 2184.49 37183.21 37488.34 38295.76 36274.97 40583.49 39992.70 36178.47 39587.94 39686.90 40383.38 32996.63 39673.44 40166.86 40793.40 394
MVEpermissive73.61 2286.48 37085.92 36988.18 38496.23 33985.28 34381.78 40275.79 40886.01 35382.53 40491.88 37992.74 21187.47 40771.42 40494.86 38191.78 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary73.10 2392.74 30691.39 31896.77 19193.57 39794.67 13494.21 28697.67 26580.36 38993.61 33596.60 27882.85 33197.35 38584.86 37098.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MGCFI-Net97.20 12797.23 12297.08 16897.68 27193.71 17397.79 7399.09 5797.40 8096.59 23793.96 35097.67 3199.35 24196.43 9398.50 28498.17 283
testing9189.67 34788.55 35293.04 33995.90 35281.80 37692.71 33693.71 34593.71 22590.18 38390.15 39457.11 39999.22 27487.17 35296.32 36198.12 285
testing1188.93 35387.63 36192.80 34995.87 35481.49 37892.48 34191.54 37291.62 28288.27 39590.24 39255.12 40899.11 29187.30 35096.28 36397.81 315
testing9989.21 35188.04 35792.70 35295.78 36081.00 38292.65 33792.03 36693.20 24489.90 38790.08 39655.25 40599.14 28487.54 34595.95 36797.97 302
UWE-MVS87.57 36586.72 36790.13 37695.21 37373.56 40691.94 35583.78 40588.73 32693.00 35192.87 36555.22 40699.25 26681.74 38297.96 30697.59 328
ETVMVS87.62 36485.75 37193.22 33596.15 34683.26 36492.94 32890.37 38491.39 28790.37 38088.45 39851.93 41098.64 34173.76 39996.38 35997.75 318
sasdasda97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
testing22287.35 36685.50 37392.93 34695.79 35982.83 36692.40 34790.10 38892.80 26288.87 39289.02 39748.34 41198.70 33375.40 39896.74 35197.27 340
WB-MVSnew91.50 32791.29 32092.14 36294.85 37980.32 38493.29 32288.77 39388.57 32894.03 32292.21 37592.56 21898.28 37080.21 38897.08 34097.81 315
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21295.83 20499.32 2593.22 24298.91 5398.49 10596.31 10999.64 14099.07 1299.76 5899.40 100
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20395.89 20199.41 2493.36 23699.00 4698.44 11296.46 10299.65 13699.09 1199.76 5899.45 85
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20696.57 15099.15 4493.68 22898.89 5499.30 2896.42 10499.37 23499.03 1399.83 4399.66 30
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18499.09 9791.43 23896.37 16199.11 5094.19 21199.01 4499.25 3196.30 11099.38 22899.00 1499.88 2799.73 22
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20696.25 17199.06 6393.67 22998.64 7499.00 5596.23 11499.36 23798.99 1599.80 5199.53 56
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18898.79 13191.44 23796.14 18099.06 6394.19 21198.82 6198.98 5896.22 11599.38 22898.98 1699.86 3199.58 39
MM96.87 14596.62 15797.62 11997.72 26893.30 18796.39 15792.61 36397.90 5296.76 22798.64 9290.46 25799.81 3699.16 999.94 899.76 17
WAC-MVS79.32 38785.41 364
Syy-MVS92.09 31891.80 31492.93 34695.19 37482.65 36892.46 34291.35 37390.67 29891.76 37187.61 40085.64 31298.50 35494.73 19396.84 34697.65 323
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17599.73 395.05 18399.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14599.82 195.44 16799.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
myMVS_eth3d87.16 36985.61 37291.82 36595.19 37479.32 38792.46 34291.35 37390.67 29891.76 37187.61 40041.96 41298.50 35482.66 38096.84 34697.65 323
testing389.72 34688.26 35594.10 31897.66 27684.30 35894.80 26388.25 39594.66 19595.07 29592.51 37241.15 41399.43 20891.81 26998.44 28898.55 242
SSC-MVS95.92 19397.03 13592.58 35499.28 5778.39 39096.68 14695.12 33398.90 1999.11 3998.66 8891.36 24499.68 12295.00 17999.16 21499.67 28
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 19099.64 1294.99 18699.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
WB-MVS95.50 20996.62 15792.11 36399.21 7577.26 39896.12 18195.40 33098.62 2698.84 5998.26 13891.08 24899.50 18693.37 23898.70 26799.58 39
test_fmvsmvis_n_192098.08 4598.47 2696.93 17899.03 10793.29 18896.32 16599.65 995.59 15999.71 499.01 5497.66 3399.60 15899.44 299.83 4397.90 307
dmvs_re92.08 31991.27 32294.51 30497.16 31292.79 20195.65 21592.64 36294.11 21592.74 35790.98 38983.41 32894.44 40280.72 38694.07 38696.29 370
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21596.92 12898.60 17698.58 2898.78 6499.39 1697.80 2599.62 14994.98 18299.86 3199.52 58
dmvs_testset87.30 36786.99 36488.24 38396.71 32577.48 39594.68 26986.81 40092.64 26689.61 38887.01 40285.91 30993.12 40361.04 40788.49 39994.13 390
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18397.96 6298.25 21598.58 2898.78 6499.39 1698.21 1499.56 16892.65 25299.86 3199.52 58
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17999.57 1495.66 15499.52 1598.71 8497.04 6299.64 14099.21 799.87 2998.69 228
test_cas_vis1_n_192095.34 21895.67 20594.35 31098.21 20086.83 32595.61 21999.26 3090.45 30198.17 12798.96 6184.43 32198.31 36896.74 8399.17 21397.90 307
test_vis1_n_192095.77 19996.41 17393.85 32098.55 16484.86 35095.91 20099.71 492.72 26497.67 16998.90 6987.44 29898.73 32997.96 4098.85 25197.96 303
test_vis1_n95.67 20395.89 19895.03 27698.18 20689.89 26096.94 12799.28 2988.25 33398.20 12298.92 6586.69 30597.19 38697.70 5498.82 25598.00 301
test_fmvs1_n95.21 22495.28 21394.99 27998.15 21389.13 27596.81 13499.43 2186.97 34697.21 19198.92 6583.00 33097.13 38798.09 3698.94 24098.72 224
mvsany_test193.47 29393.03 28994.79 29194.05 39292.12 22090.82 37690.01 38985.02 36797.26 18898.28 13393.57 19397.03 38892.51 25695.75 37395.23 384
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11399.08 5996.57 10898.07 14098.38 11896.22 11599.14 28494.71 19599.31 19598.52 245
test_vis1_rt94.03 27793.65 27795.17 26995.76 36293.42 18493.97 30098.33 20884.68 37093.17 34895.89 31392.53 22394.79 39993.50 23794.97 37997.31 339
test_vis3_rt97.04 13296.98 13797.23 15798.44 18095.88 8096.82 13399.67 690.30 30399.27 2999.33 2794.04 18196.03 39797.14 7297.83 31299.78 11
test_fmvs296.38 17696.45 17196.16 22497.85 23891.30 23996.81 13499.45 1989.24 31798.49 8899.38 1888.68 28297.62 38398.83 1899.32 19299.57 46
test_fmvs194.51 26094.60 24894.26 31495.91 35187.92 30095.35 23599.02 7786.56 35096.79 22298.52 10282.64 33297.00 39097.87 4398.71 26697.88 309
test_fmvs397.38 11697.56 10196.84 18698.63 15392.81 19897.60 8899.61 1390.87 29498.76 6999.66 394.03 18297.90 37899.24 699.68 8299.81 8
mvsany_test396.21 18195.93 19697.05 17097.40 29894.33 15095.76 20794.20 34389.10 31899.36 2499.60 693.97 18497.85 37995.40 15698.63 27498.99 183
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
test_f95.82 19895.88 19995.66 24697.61 28193.21 19295.61 21998.17 22986.98 34598.42 9699.47 1190.46 25794.74 40097.71 5298.45 28799.03 176
FE-MVS92.95 30392.22 30795.11 27197.21 31088.33 29098.54 2393.66 34989.91 31096.21 25998.14 15170.33 38799.50 18687.79 33998.24 29697.51 331
FA-MVS(test-final)94.91 23894.89 23194.99 27997.51 28888.11 29898.27 4495.20 33292.40 27296.68 23098.60 9583.44 32799.28 26093.34 24098.53 28097.59 328
iter_conf05_1193.77 28193.29 28395.24 26496.54 32889.14 27491.55 36095.02 33490.16 30793.21 34793.94 35187.37 29999.56 16892.24 25899.56 11197.03 345
bld_raw_dy_0_6495.16 22995.16 21895.15 27096.54 32889.06 27696.63 14999.54 1789.68 31398.72 7294.50 34488.64 28399.38 22892.24 25899.93 1197.03 345
patch_mono-296.59 16596.93 14195.55 25298.88 12287.12 31994.47 27599.30 2794.12 21496.65 23598.41 11494.98 15799.87 2295.81 12799.78 5699.66 30
EGC-MVSNET83.08 37277.93 37598.53 5099.57 2097.55 2698.33 3898.57 1814.71 40810.38 40998.90 6995.60 13899.50 18695.69 13099.61 9898.55 242
test250689.86 34489.16 34991.97 36498.95 11276.83 39998.54 2361.07 41396.20 12397.07 20699.16 4355.19 40799.69 11796.43 9399.83 4399.38 106
test111194.53 25994.81 23793.72 32399.06 10181.94 37598.31 3983.87 40496.37 11598.49 8899.17 4281.49 33599.73 8296.64 8499.86 3199.49 70
ECVR-MVScopyleft94.37 26594.48 25594.05 31998.95 11283.10 36598.31 3982.48 40696.20 12398.23 12099.16 4381.18 33899.66 13495.95 11799.83 4399.38 106
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 32098.31 3697.09 20595.45 32597.17 5498.50 35498.67 2597.45 33496.48 367
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10596.62 10198.62 7698.30 12896.97 6799.75 6795.70 12899.25 20399.21 140
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
PC_three_145287.24 34198.37 10197.44 21997.00 6596.78 39492.01 26299.25 20399.21 140
No_MVS98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
test_one_060199.05 10595.50 10098.87 11397.21 8898.03 14598.30 12896.93 71
eth-test20.00 416
eth-test0.00 416
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11998.98 9295.75 15297.62 17097.59 20997.61 3799.77 5696.34 9799.44 15599.36 112
test_method66.88 37366.13 37669.11 38962.68 41225.73 41549.76 40396.04 31214.32 40764.27 40891.69 38273.45 37788.05 40676.06 39766.94 40693.54 392
Anonymous2024052197.07 13197.51 10695.76 24199.35 5188.18 29397.78 7498.40 19997.11 8998.34 10799.04 5389.58 27199.79 4498.09 3699.93 1199.30 120
h-mvs3396.29 17895.63 20898.26 7098.50 17396.11 7396.90 12997.09 28996.58 10597.21 19198.19 14784.14 32299.78 4795.89 12196.17 36598.89 201
hse-mvs295.77 19995.09 22197.79 10797.84 24395.51 9795.66 21395.43 32996.58 10597.21 19196.16 29984.14 32299.54 17695.89 12196.92 34298.32 265
CL-MVSNet_self_test95.04 23394.79 23995.82 23997.51 28889.79 26191.14 37196.82 29993.05 25296.72 22896.40 29090.82 25299.16 28291.95 26498.66 27198.50 248
KD-MVS_2432*160088.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19897.55 9398.94 9997.10 9098.85 5798.88 7195.03 15499.67 12897.39 6499.65 8799.26 132
AUN-MVS93.95 28092.69 30097.74 11097.80 25195.38 10595.57 22295.46 32891.26 29092.64 36196.10 30574.67 36999.55 17393.72 23296.97 34198.30 269
ZD-MVS98.43 18195.94 7998.56 18290.72 29696.66 23397.07 24795.02 15599.74 7691.08 28198.93 242
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.60 9399.76 6195.49 14299.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.94 6995.49 14299.20 20899.26 132
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13698.83 12996.11 12899.08 4098.24 14097.87 2399.72 8795.44 14999.51 13599.14 154
IU-MVS99.22 6895.40 10398.14 23685.77 35898.36 10495.23 16299.51 13599.49 70
OPU-MVS97.64 11898.01 22495.27 11396.79 13697.35 23196.97 6798.51 35391.21 28099.25 20399.14 154
test_241102_TWO98.83 12996.11 12898.62 7698.24 14096.92 7399.72 8795.44 14999.49 14299.49 70
test_241102_ONE99.22 6895.35 10898.83 12996.04 13399.08 4098.13 15397.87 2399.33 246
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12299.10 5295.32 17197.83 16597.88 18596.44 10399.72 8794.59 20099.39 17299.25 136
cl2293.25 29992.84 29594.46 30694.30 38686.00 33491.09 37396.64 30790.74 29595.79 27696.31 29478.24 35098.77 32594.15 21598.34 29198.62 235
miper_ehance_all_eth94.69 24994.70 24194.64 29595.77 36186.22 33291.32 36798.24 21791.67 28197.05 20796.65 27688.39 28799.22 27494.88 18398.34 29198.49 249
miper_enhance_ethall93.14 30192.78 29894.20 31593.65 39585.29 34289.97 38497.85 25485.05 36596.15 26494.56 34085.74 31099.14 28493.74 23098.34 29198.17 283
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 10098.84 12395.76 15096.93 21797.43 22097.26 5099.79 4496.06 10799.53 12599.45 85
dcpmvs_297.12 12997.99 5494.51 30499.11 9484.00 36097.75 7899.65 997.38 8299.14 3798.42 11395.16 15099.96 295.52 14199.78 5699.58 39
cl____94.73 24494.64 24495.01 27795.85 35687.00 32191.33 36598.08 24193.34 23797.10 20097.33 23384.01 32599.30 25495.14 17099.56 11198.71 227
DIV-MVS_self_test94.73 24494.64 24495.01 27795.86 35587.00 32191.33 36598.08 24193.34 23797.10 20097.34 23284.02 32499.31 25195.15 16999.55 11898.72 224
eth_miper_zixun_eth94.89 23994.93 22894.75 29395.99 35086.12 33391.35 36498.49 18793.40 23497.12 19897.25 23886.87 30499.35 24195.08 17598.82 25598.78 215
9.1496.69 15498.53 16796.02 18898.98 9293.23 24197.18 19497.46 21796.47 10099.62 14992.99 24999.32 192
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter98.48 17694.71 13194.53 27498.41 19795.02 185
ET-MVSNet_ETH3D91.12 33089.67 34295.47 25696.41 33489.15 27391.54 36190.23 38689.07 31986.78 40192.84 36669.39 38999.44 20694.16 21496.61 35597.82 313
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
EIA-MVS96.04 18895.77 20396.85 18497.80 25192.98 19596.12 18199.16 4094.65 19693.77 32991.69 38295.68 13499.67 12894.18 21398.85 25197.91 306
miper_refine_blended88.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
miper_lstm_enhance94.81 24394.80 23894.85 28796.16 34386.45 32991.14 37198.20 22393.49 23297.03 20997.37 23084.97 31799.26 26495.28 15899.56 11198.83 210
ETV-MVS96.13 18595.90 19796.82 18797.76 26193.89 16595.40 23098.95 9895.87 14595.58 28591.00 38896.36 10899.72 8793.36 23998.83 25496.85 354
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26597.19 24196.88 7799.86 2497.50 6099.73 6798.41 253
D2MVS95.18 22695.17 21795.21 26697.76 26187.76 30794.15 28997.94 24989.77 31296.99 21297.68 20487.45 29799.14 28495.03 17899.81 4898.74 221
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13998.23 21895.92 14198.40 9898.28 13397.06 6099.71 10295.48 14599.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10198.40 9898.28 13397.10 5699.71 10295.70 12899.62 9299.58 39
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13998.89 10599.75 6795.48 14599.52 13099.53 56
test072699.24 6395.51 9796.89 13098.89 10595.92 14198.64 7498.31 12497.06 60
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10598.83 12997.32 8498.06 14197.85 18796.65 8899.77 5695.00 17999.11 22299.32 115
DPM-MVS93.68 28692.77 29996.42 21197.91 23492.54 20491.17 37097.47 27884.99 36893.08 35094.74 33789.90 26799.00 30487.54 34598.09 30297.72 320
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11498.79 13995.96 13897.53 17397.40 22296.93 7199.77 5695.04 17699.35 18299.42 97
test_yl94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
thisisatest053092.71 30791.76 31595.56 25198.42 18288.23 29196.03 18787.35 39794.04 21896.56 24095.47 32464.03 39599.77 5694.78 19099.11 22298.68 231
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21298.79 2299.23 3298.86 7395.76 13299.61 15695.49 14299.36 17799.23 138
Anonymous20240521196.34 17795.98 19297.43 14098.25 19693.85 16796.74 13994.41 34197.72 5998.37 10198.03 16987.15 30199.53 17894.06 21899.07 22898.92 196
DCV-MVSNet94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
tttt051793.31 29792.56 30495.57 24998.71 14287.86 30297.44 10187.17 39895.79 14997.47 18196.84 26364.12 39499.81 3696.20 10399.32 19299.02 179
our_test_394.20 27194.58 25193.07 33896.16 34381.20 38090.42 38096.84 29790.72 29697.14 19697.13 24390.47 25699.11 29194.04 22198.25 29598.91 197
thisisatest051590.43 33689.18 34894.17 31797.07 31685.44 33989.75 38987.58 39688.28 33293.69 33391.72 38165.27 39399.58 16190.59 29998.67 26997.50 333
ppachtmachnet_test94.49 26194.84 23493.46 32996.16 34382.10 37290.59 37897.48 27790.53 30097.01 21197.59 20991.01 24999.36 23793.97 22499.18 21298.94 189
SMA-MVScopyleft97.48 10997.11 12898.60 4598.83 12696.67 5396.74 13998.73 15191.61 28398.48 9098.36 11996.53 9599.68 12295.17 16599.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.06 293
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24598.99 8995.84 14798.78 6498.08 15996.84 8199.81 3693.98 22399.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.03 10796.07 7498.08 138
thres100view90091.76 32491.26 32493.26 33298.21 20084.50 35496.39 15790.39 38296.87 9596.33 25093.08 36173.44 37899.42 21078.85 39297.74 31695.85 374
tfpnnormal97.72 9097.97 5596.94 17799.26 5992.23 21497.83 7298.45 19098.25 3999.13 3898.66 8896.65 8899.69 11793.92 22599.62 9298.91 197
tfpn200view991.55 32691.00 32693.21 33698.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31695.85 374
c3_l95.20 22595.32 21294.83 28996.19 34186.43 33091.83 35798.35 20793.47 23397.36 18597.26 23788.69 28199.28 26095.41 15599.36 17798.78 215
CHOSEN 280x42089.98 34189.19 34792.37 35995.60 36681.13 38186.22 39797.09 28981.44 38487.44 39893.15 35673.99 37099.47 19688.69 32999.07 22896.52 366
CANet95.86 19695.65 20796.49 20796.41 33490.82 24794.36 27798.41 19794.94 18792.62 36396.73 27292.68 21399.71 10295.12 17399.60 10198.94 189
Fast-Effi-MVS+-dtu96.44 17396.12 18497.39 14597.18 31194.39 14595.46 22498.73 15196.03 13594.72 30494.92 33596.28 11399.69 11793.81 22897.98 30598.09 286
Effi-MVS+-dtu96.81 15196.09 18698.99 1096.90 32398.69 496.42 15698.09 24095.86 14695.15 29495.54 32294.26 17799.81 3694.06 21898.51 28398.47 250
CANet_DTU94.65 25394.21 26595.96 23195.90 35289.68 26293.92 30297.83 25893.19 24590.12 38495.64 31988.52 28499.57 16793.27 24499.47 14898.62 235
MVS_030496.62 16496.40 17497.28 15197.91 23492.30 21196.47 15589.74 39097.52 7195.38 29098.63 9392.76 21099.81 3699.28 499.93 1199.75 19
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23298.99 8992.45 27098.11 13398.31 12497.25 5199.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.45 11196.92 14399.03 599.26 5997.70 1897.66 8498.89 10595.65 15598.51 8596.46 28692.15 22999.81 3695.14 17098.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.80 35298.06 293
sam_mvs77.38 356
IterMVS-SCA-FT95.86 19696.19 18294.85 28797.68 27185.53 33892.42 34597.63 27396.99 9198.36 10498.54 10187.94 29099.75 6797.07 7699.08 22699.27 131
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8798.20 22393.00 25498.16 12898.06 16695.89 12199.72 8795.67 13299.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24398.46 18994.58 20198.10 13598.07 16197.09 5899.39 22595.16 16799.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16298.79 13995.07 18297.88 15998.35 12097.24 5299.72 8796.05 10999.58 10599.45 85
ambc96.56 20498.23 19991.68 23397.88 6898.13 23798.42 9698.56 9994.22 17899.04 30094.05 22099.35 18298.95 187
MTGPAbinary98.73 151
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28696.92 25996.81 8399.87 2296.87 8299.76 5898.51 246
Effi-MVS+96.19 18296.01 18996.71 19497.43 29692.19 21996.12 18199.10 5295.45 16593.33 34594.71 33897.23 5399.56 16893.21 24697.54 32898.37 258
xiu_mvs_v2_base94.22 26794.63 24692.99 34397.32 30684.84 35192.12 35197.84 25691.96 27794.17 31693.43 35596.07 11899.71 10291.27 27797.48 33194.42 388
xiu_mvs_v1_base95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
new-patchmatchnet95.67 20396.58 16192.94 34597.48 29080.21 38592.96 32798.19 22894.83 19098.82 6198.79 7593.31 19899.51 18595.83 12599.04 23299.12 161
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
pmmvs594.63 25494.34 26195.50 25497.63 28088.34 28994.02 29597.13 28787.15 34295.22 29397.15 24287.50 29699.27 26393.99 22299.26 20298.88 205
test_post194.98 25810.37 41076.21 36499.04 30089.47 318
test_post10.87 40976.83 36099.07 297
Fast-Effi-MVS+95.49 21095.07 22296.75 19297.67 27592.82 19794.22 28598.60 17691.61 28393.42 34392.90 36496.73 8699.70 11092.60 25397.89 31197.74 319
patchmatchnet-post96.84 26377.36 35799.42 210
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13799.72 8798.12 3499.86 3199.73 22
pmmvs-eth3d96.49 17096.18 18397.42 14298.25 19694.29 15194.77 26698.07 24589.81 31197.97 15198.33 12293.11 20199.08 29695.46 14899.84 4098.89 201
GG-mvs-BLEND90.60 37291.00 40684.21 35998.23 4672.63 41282.76 40384.11 40456.14 40396.79 39372.20 40292.09 39390.78 401
xiu_mvs_v1_base_debi95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
Anonymous2023120695.27 22295.06 22495.88 23798.72 13989.37 26895.70 20997.85 25488.00 33696.98 21497.62 20791.95 23699.34 24489.21 32199.53 12598.94 189
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10998.73 15197.69 6397.90 15797.96 17695.81 13099.82 3496.13 10699.61 9899.45 85
MTMP96.55 15174.60 409
gm-plane-assit91.79 40571.40 41081.67 38190.11 39598.99 30684.86 370
test9_res91.29 27698.89 24799.00 180
MVP-Stereo95.69 20195.28 21396.92 17998.15 21393.03 19495.64 21898.20 22390.39 30296.63 23697.73 20091.63 24199.10 29491.84 26897.31 33898.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.84 24395.23 11593.62 31198.39 20086.81 34793.78 32795.99 30794.68 16499.52 181
train_agg95.46 21494.66 24297.88 10297.84 24395.23 11593.62 31198.39 20087.04 34393.78 32795.99 30794.58 16899.52 18191.76 27198.90 24498.89 201
gg-mvs-nofinetune88.28 35986.96 36592.23 36192.84 40284.44 35598.19 5274.60 40999.08 1087.01 40099.47 1156.93 40098.23 37278.91 39195.61 37494.01 391
SCA93.38 29693.52 28092.96 34496.24 33781.40 37993.24 32394.00 34491.58 28594.57 30796.97 25487.94 29099.42 21089.47 31897.66 32498.06 293
Patchmatch-test93.60 29093.25 28594.63 29696.14 34787.47 31196.04 18694.50 34093.57 23096.47 24496.97 25476.50 36198.61 34490.67 29898.41 29097.81 315
test_897.81 24795.07 12493.54 31498.38 20287.04 34393.71 33195.96 31094.58 16899.52 181
MS-PatchMatch94.83 24194.91 23094.57 30196.81 32487.10 32094.23 28497.34 28088.74 32597.14 19697.11 24591.94 23798.23 37292.99 24997.92 30898.37 258
Patchmatch-RL test94.66 25294.49 25495.19 26798.54 16688.91 27892.57 33898.74 15091.46 28698.32 11197.75 19777.31 35898.81 32296.06 10799.61 9897.85 311
cdsmvs_eth3d_5k24.22 37532.30 3780.00 3930.00 4160.00 4180.00 40498.10 2390.00 4110.00 41295.06 33197.54 390.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.98 37810.65 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41195.82 1260.00 4120.00 4110.00 4100.00 408
agg_prior290.34 30798.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20493.49 33999.53 178
tmp_tt57.23 37462.50 37741.44 39034.77 41349.21 41483.93 39860.22 41415.31 40671.11 40779.37 40570.09 38844.86 40964.76 40582.93 40530.25 405
canonicalmvs97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15799.35 2599.37 1997.38 4399.90 1498.59 2899.91 1999.77 12
alignmvs96.01 19095.52 21197.50 13197.77 26094.71 13196.07 18496.84 29797.48 7396.78 22694.28 34885.50 31399.40 22196.22 10298.73 26598.40 254
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5998.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
v14419296.69 16096.90 14596.03 22898.25 19688.92 27795.49 22398.77 14493.05 25298.09 13698.29 13292.51 22499.70 11098.11 3599.56 11199.47 79
FIs97.93 6598.07 4597.48 13599.38 4892.95 19698.03 6199.11 5098.04 4898.62 7698.66 8893.75 19099.78 4797.23 6699.84 4099.73 22
v192192096.72 15796.96 14095.99 22998.21 20088.79 28295.42 22798.79 13993.22 24298.19 12698.26 13892.68 21399.70 11098.34 3399.55 11899.49 70
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 10099.92 597.88 4299.98 299.85 3
v119296.83 14997.06 13396.15 22598.28 19289.29 26995.36 23398.77 14493.73 22498.11 13398.34 12193.02 20699.67 12898.35 3299.58 10599.50 62
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19398.35 3599.21 3398.43 3298.89 5498.83 7494.30 17699.81 3697.87 4399.91 1999.77 12
v114496.84 14697.08 13196.13 22698.42 18289.28 27095.41 22998.67 16694.21 20997.97 15198.31 12493.06 20299.65 13698.06 3899.62 9299.45 85
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 9098.84 12396.05 13197.49 17797.54 21297.07 5999.70 11095.61 13799.46 15199.30 120
v14896.58 16796.97 13895.42 25998.63 15387.57 30995.09 24997.90 25195.91 14398.24 11997.96 17693.42 19699.39 22596.04 11099.52 13099.29 126
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest97.20 12796.92 14398.06 8899.08 9896.16 7097.14 11799.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9599.91 1399.27 599.93 1199.73 22
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8898.84 12396.00 13697.22 18997.62 20796.87 7999.76 6195.48 14599.43 16399.46 81
iter_conf0593.65 28893.05 28795.46 25796.13 34887.45 31295.95 19798.22 21992.66 26597.04 20897.89 18463.52 39699.72 8796.19 10499.82 4799.21 140
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30597.99 4999.15 3699.35 2389.84 26999.90 1498.64 2699.90 2499.82 6
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9499.75 299.45 1395.82 12699.92 598.80 1999.96 499.89 1
PS-MVSNAJ94.10 27394.47 25693.00 34297.35 30184.88 34991.86 35697.84 25691.96 27794.17 31692.50 37395.82 12699.71 10291.27 27797.48 33194.40 389
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14899.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12299.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30392.01 22695.33 23797.65 26997.74 5798.30 11598.14 15195.04 15399.69 11797.55 5899.52 13099.58 39
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 30092.08 22495.34 23697.65 26997.74 5798.29 11698.11 15795.05 15299.68 12297.50 6099.50 13999.56 50
HPM-MVS++copyleft96.99 13596.38 17598.81 2798.64 14997.59 2395.97 19398.20 22395.51 16395.06 29696.53 28294.10 18099.70 11094.29 20999.15 21599.13 156
test_prior495.38 10593.61 313
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25197.64 20596.49 9899.72 8795.66 13399.37 17499.45 85
v124096.74 15497.02 13695.91 23698.18 20688.52 28595.39 23198.88 11193.15 25098.46 9398.40 11792.80 20999.71 10298.45 3199.49 14299.49 70
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8697.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
test_prior293.33 32194.21 20994.02 32396.25 29693.64 19291.90 26598.96 237
X-MVStestdata92.86 30490.83 33198.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25136.50 40696.49 9899.72 8795.66 13399.37 17499.45 85
test_prior97.46 13797.79 25694.26 15598.42 19699.34 24498.79 214
旧先验293.35 32077.95 39795.77 28098.67 33990.74 295
新几何293.43 316
新几何197.25 15598.29 19094.70 13397.73 26277.98 39694.83 30396.67 27592.08 23399.45 20388.17 33798.65 27397.61 326
旧先验197.80 25193.87 16697.75 26197.04 25093.57 19398.68 26898.72 224
无先验93.20 32497.91 25080.78 38699.40 22187.71 34097.94 305
原ACMM292.82 330
原ACMM196.58 20198.16 21192.12 22098.15 23585.90 35693.49 33996.43 28792.47 22599.38 22887.66 34298.62 27598.23 276
test22298.17 20993.24 19192.74 33497.61 27475.17 40094.65 30696.69 27490.96 25198.66 27197.66 322
testdata299.46 19987.84 338
segment_acmp95.34 145
testdata95.70 24598.16 21190.58 25297.72 26380.38 38895.62 28397.02 25192.06 23498.98 30889.06 32598.52 28197.54 330
testdata192.77 33193.78 223
v897.60 10098.06 4796.23 21998.71 14289.44 26797.43 10398.82 13797.29 8698.74 7099.10 4893.86 18699.68 12298.61 2799.94 899.56 50
131492.38 31192.30 30692.64 35395.42 37185.15 34595.86 20296.97 29485.40 36290.62 37693.06 36291.12 24797.80 38186.74 35495.49 37694.97 386
LFMVS95.32 22094.88 23296.62 19898.03 22191.47 23697.65 8590.72 38199.11 997.89 15898.31 12479.20 34699.48 19493.91 22699.12 22198.93 193
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12395.61 32498.59 2798.51 8598.72 8292.54 22199.58 16196.02 11299.49 14299.12 161
VDDNet96.98 13896.84 14697.41 14399.40 4593.26 19097.94 6495.31 33199.26 798.39 10099.18 3987.85 29599.62 14995.13 17299.09 22599.35 114
v1097.55 10497.97 5596.31 21798.60 15789.64 26397.44 10199.02 7796.60 10398.72 7299.16 4393.48 19599.72 8798.76 2199.92 1699.58 39
VPNet97.26 12497.49 10996.59 20099.47 3590.58 25296.27 16798.53 18397.77 5498.46 9398.41 11494.59 16799.68 12294.61 19699.29 19899.52 58
MVS90.02 33989.20 34692.47 35794.71 38186.90 32395.86 20296.74 30364.72 40490.62 37692.77 36792.54 22198.39 36279.30 39095.56 37592.12 397
v2v48296.78 15397.06 13395.95 23398.57 16188.77 28395.36 23398.26 21495.18 17797.85 16498.23 14292.58 21799.63 14497.80 4799.69 7899.45 85
V4297.04 13297.16 12796.68 19798.59 15991.05 24296.33 16498.36 20494.60 19897.99 14798.30 12893.32 19799.62 14997.40 6399.53 12599.38 106
SD-MVS97.37 11897.70 8196.35 21498.14 21595.13 12296.54 15298.92 10295.94 14099.19 3498.08 15997.74 2895.06 39895.24 16199.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS92.83 30592.15 30994.87 28696.97 31887.27 31790.03 38396.12 31091.83 28094.05 32194.57 33976.01 36598.97 31292.46 25797.34 33798.36 263
MSLP-MVS++96.42 17596.71 15395.57 24997.82 24690.56 25495.71 20898.84 12394.72 19396.71 22997.39 22694.91 15998.10 37695.28 15899.02 23398.05 296
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13898.59 8098.69 8696.94 6999.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9398.92 10297.72 5998.25 11898.13 15397.10 5699.75 6795.44 14999.24 20699.32 115
ADS-MVSNet291.47 32890.51 33694.36 30995.51 36785.63 33695.05 25495.70 31983.46 37692.69 35896.84 26379.15 34799.41 21985.66 36190.52 39498.04 297
EI-MVSNet96.63 16396.93 14195.74 24297.26 30888.13 29695.29 24197.65 26996.99 9197.94 15498.19 14792.55 21999.58 16196.91 8099.56 11199.50 62
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet92.33 31392.79 29690.95 37097.26 30875.84 40295.29 24192.33 36581.86 38096.27 25598.19 14781.44 33698.46 35894.23 21298.29 29498.55 242
pmmvs494.82 24294.19 26696.70 19597.42 29792.75 20292.09 35396.76 30186.80 34895.73 28197.22 23989.28 27898.89 31593.28 24399.14 21698.46 252
EU-MVSNet94.25 26694.47 25693.60 32698.14 21582.60 37097.24 11192.72 36085.08 36498.48 9098.94 6382.59 33398.76 32797.47 6299.53 12599.44 95
VNet96.84 14696.83 14796.88 18298.06 22092.02 22596.35 16397.57 27597.70 6297.88 15997.80 19392.40 22699.54 17694.73 19398.96 23799.08 169
test-LLR89.97 34289.90 34090.16 37494.24 38874.98 40389.89 38589.06 39192.02 27589.97 38590.77 39073.92 37298.57 34791.88 26697.36 33596.92 349
TESTMET0.1,187.20 36886.57 36889.07 37993.62 39672.84 40889.89 38587.01 39985.46 36189.12 39190.20 39356.00 40497.72 38290.91 28696.92 34296.64 362
test-mter87.92 36287.17 36390.16 37494.24 38874.98 40389.89 38589.06 39186.44 35189.97 38590.77 39054.96 40998.57 34791.88 26697.36 33596.92 349
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7799.00 8698.40 3399.07 4298.98 5896.89 7599.75 6797.19 7199.79 5399.55 52
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 9098.83 12996.05 13197.46 18297.63 20696.77 8499.76 6195.61 13799.46 15199.49 70
testgi96.07 18696.50 17094.80 29099.26 5987.69 30895.96 19598.58 18095.08 18198.02 14696.25 29697.92 2097.60 38488.68 33098.74 26299.11 164
test20.0396.58 16796.61 15996.48 20898.49 17491.72 23295.68 21297.69 26496.81 9798.27 11797.92 18294.18 17998.71 33290.78 29199.66 8699.00 180
thres600view792.03 32091.43 31793.82 32198.19 20384.61 35396.27 16790.39 38296.81 9796.37 24993.11 35773.44 37899.49 19180.32 38797.95 30797.36 336
ADS-MVSNet90.95 33490.26 33893.04 33995.51 36782.37 37195.05 25493.41 35283.46 37692.69 35896.84 26379.15 34798.70 33385.66 36190.52 39498.04 297
MP-MVScopyleft97.64 9697.18 12699.00 999.32 5597.77 1797.49 9998.73 15196.27 11995.59 28497.75 19796.30 11099.78 4793.70 23399.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs12.33 37715.23 3803.64 3925.77 4152.23 41788.99 3923.62 4152.30 4105.29 41013.09 4074.52 4151.95 4105.16 4108.32 4096.75 407
thres40091.68 32591.00 32693.71 32498.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31697.36 336
test12312.59 37615.49 3793.87 3916.07 4142.55 41690.75 3772.59 4162.52 4095.20 41113.02 4084.96 4141.85 4115.20 4099.09 4087.23 406
thres20091.00 33390.42 33792.77 35097.47 29483.98 36194.01 29691.18 37795.12 18095.44 28791.21 38673.93 37199.31 25177.76 39597.63 32695.01 385
test0.0.03 190.11 33889.21 34592.83 34893.89 39386.87 32491.74 35888.74 39492.02 27594.71 30591.14 38773.92 37294.48 40183.75 37892.94 38997.16 341
pmmvs390.00 34088.90 35093.32 33094.20 39085.34 34091.25 36892.56 36478.59 39493.82 32695.17 32867.36 39298.69 33589.08 32498.03 30495.92 373
EMVS89.06 35289.22 34488.61 38193.00 40077.34 39682.91 40190.92 37894.64 19792.63 36291.81 38076.30 36397.02 38983.83 37696.90 34491.48 400
E-PMN89.52 34989.78 34188.73 38093.14 39877.61 39483.26 40092.02 36794.82 19193.71 33193.11 35775.31 36796.81 39285.81 35896.81 34991.77 399
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 12099.06 6395.45 16597.55 17297.94 17997.11 5599.78 4794.77 19199.46 15199.48 76
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12599.65 996.74 9999.47 1798.93 6496.91 7499.84 3090.11 30899.06 23198.32 265
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
MCST-MVS96.24 18095.80 20197.56 12298.75 13694.13 15894.66 27098.17 22990.17 30696.21 25996.10 30595.14 15199.43 20894.13 21698.85 25199.13 156
mvs_anonymous95.36 21796.07 18893.21 33696.29 33681.56 37794.60 27297.66 26793.30 23996.95 21698.91 6893.03 20599.38 22896.60 8697.30 33998.69 228
MVS_Test96.27 17996.79 15194.73 29496.94 32186.63 32796.18 17598.33 20894.94 18796.07 26598.28 13395.25 14899.26 26497.21 6897.90 31098.30 269
MDA-MVSNet-bldmvs95.69 20195.67 20595.74 24298.48 17688.76 28492.84 32997.25 28196.00 13697.59 17197.95 17891.38 24399.46 19993.16 24796.35 36098.99 183
CDPH-MVS95.45 21594.65 24397.84 10598.28 19294.96 12693.73 30998.33 20885.03 36695.44 28796.60 27895.31 14699.44 20690.01 31099.13 21899.11 164
test1297.46 13797.61 28194.07 15997.78 26093.57 33793.31 19899.42 21098.78 25898.89 201
casdiffmvspermissive97.50 10797.81 7196.56 20498.51 17091.04 24395.83 20499.09 5797.23 8798.33 11098.30 12897.03 6399.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive96.04 18896.23 18095.46 25797.35 30188.03 29993.42 31799.08 5994.09 21796.66 23396.93 25793.85 18799.29 25896.01 11498.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline289.65 34888.44 35493.25 33395.62 36582.71 36793.82 30585.94 40188.89 32387.35 39992.54 37171.23 38399.33 24686.01 35694.60 38497.72 320
baseline193.14 30192.64 30294.62 29797.34 30387.20 31896.67 14893.02 35594.71 19496.51 24395.83 31481.64 33498.60 34690.00 31188.06 40098.07 289
YYNet194.73 24494.84 23494.41 30897.47 29485.09 34790.29 38195.85 31892.52 26797.53 17397.76 19491.97 23599.18 27793.31 24296.86 34598.95 187
PMMVS293.66 28794.07 26992.45 35897.57 28380.67 38386.46 39696.00 31393.99 21997.10 20097.38 22889.90 26797.82 38088.76 32799.47 14898.86 208
MDA-MVSNet_test_wron94.73 24494.83 23694.42 30797.48 29085.15 34590.28 38295.87 31792.52 26797.48 17997.76 19491.92 23899.17 28193.32 24196.80 35098.94 189
tpmvs90.79 33590.87 32990.57 37392.75 40376.30 40095.79 20693.64 35091.04 29391.91 36996.26 29577.19 35998.86 31989.38 32089.85 39796.56 365
PM-MVS97.36 12097.10 12998.14 8298.91 12096.77 4996.20 17498.63 17493.82 22298.54 8398.33 12293.98 18399.05 29995.99 11599.45 15498.61 237
HQP_MVS96.66 16296.33 17897.68 11698.70 14494.29 15196.50 15398.75 14896.36 11696.16 26296.77 26991.91 23999.46 19992.59 25499.20 20899.28 127
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 239
plane_prior598.75 14899.46 19992.59 25499.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17396.16 262
plane_prior296.50 15396.36 116
plane_prior198.49 174
plane_prior94.29 15195.42 22794.31 20898.93 242
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4499.92 597.79 4899.93 1199.79 10
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21399.02 7798.11 4498.31 11397.69 20394.65 16699.85 2797.02 7799.71 7499.48 76
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4899.92 597.64 5699.92 1699.75 19
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18698.20 5198.87 11398.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4899.93 397.71 5299.91 1999.70 26
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21598.87 11397.57 6798.31 11397.83 18894.69 16299.85 2797.02 7799.71 7499.46 81
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19999.04 7497.51 7298.22 12197.81 19294.68 16499.78 4797.14 7299.75 6599.41 99
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12399.05 1399.01 4498.65 9195.37 14499.90 1497.57 5799.91 1999.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14199.89 1897.95 4199.91 1999.75 19
WR-MVS96.90 14396.81 14897.16 15998.56 16392.20 21894.33 27898.12 23897.34 8398.20 12297.33 23392.81 20899.75 6794.79 18899.81 4899.54 53
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15197.79 5399.42 2097.83 18894.40 17499.78 4795.91 12099.76 5899.46 81
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18895.44 22598.86 11698.20 4298.37 10199.24 3294.69 16299.55 17395.98 11699.79 5399.65 33
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14399.05 6798.67 2498.84 5998.45 11097.58 3899.88 2096.45 9299.86 3199.54 53
TSAR-MVS + GP.96.47 17296.12 18497.49 13497.74 26695.23 11594.15 28996.90 29693.26 24098.04 14496.70 27394.41 17398.89 31594.77 19199.14 21698.37 258
n20.00 417
nn0.00 417
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 8098.78 14396.04 13397.10 20097.73 20096.53 9599.78 4795.16 16799.50 13999.46 81
door-mid98.17 229
XVG-OURS-SEG-HR97.38 11697.07 13298.30 6899.01 10997.41 3494.66 27099.02 7795.20 17598.15 13097.52 21498.83 598.43 35994.87 18496.41 35899.07 171
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9997.71 6198.85 5799.10 4891.35 24599.83 3298.47 3099.90 2499.64 35
MVSFormer96.14 18496.36 17695.49 25597.68 27187.81 30598.67 1599.02 7796.50 11094.48 31196.15 30086.90 30299.92 598.73 2299.13 21898.74 221
jason94.39 26494.04 27095.41 26198.29 19087.85 30492.74 33496.75 30285.38 36395.29 29196.15 30088.21 28999.65 13694.24 21199.34 18598.74 221
jason: jason.
lupinMVS93.77 28193.28 28495.24 26497.68 27187.81 30592.12 35196.05 31184.52 37294.48 31195.06 33186.90 30299.63 14493.62 23599.13 21898.27 273
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7796.50 11099.32 2699.44 1497.43 4199.92 598.73 2299.95 599.86 2
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7595.88 14497.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
K. test v396.44 17396.28 17996.95 17699.41 4291.53 23497.65 8590.31 38598.89 2098.93 5099.36 2184.57 32099.92 597.81 4699.56 11199.39 104
lessismore_v097.05 17099.36 5092.12 22084.07 40398.77 6898.98 5885.36 31499.74 7697.34 6599.37 17499.30 120
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 21098.28 4296.97 29498.30 3899.45 1899.35 2388.43 28699.89 1898.01 3999.76 5899.54 53
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6798.05 4799.61 1399.52 793.72 19199.88 2098.72 2499.88 2799.65 33
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6795.43 16897.41 18497.50 21697.98 1999.79 4495.58 14099.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 12996.74 15298.26 7098.99 11097.45 3293.82 30599.05 6795.19 17698.32 11197.70 20295.22 14998.41 36094.27 21098.13 30098.93 193
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15798.98 9295.05 18398.06 14198.02 17095.86 12299.56 16894.37 20699.64 8999.00 180
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17598.57 16192.10 22395.97 19399.18 3897.67 6699.00 4698.48 10997.64 3499.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 12099.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
baseline97.44 11297.78 7796.43 21098.52 16890.75 25096.84 13199.03 7596.51 10997.86 16398.02 17096.67 8799.36 23797.09 7499.47 14899.19 145
test1198.08 241
door97.81 259
EPNet_dtu91.39 32990.75 33293.31 33190.48 40882.61 36994.80 26392.88 35793.39 23581.74 40594.90 33681.36 33799.11 29188.28 33598.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.10 27393.41 28296.18 22399.16 8290.04 25792.15 35098.68 16379.90 39096.22 25897.83 18887.92 29499.42 21089.18 32299.65 8799.08 169
EPNet93.72 28492.62 30397.03 17387.61 41192.25 21396.27 16791.28 37596.74 9987.65 39797.39 22685.00 31699.64 14092.14 26199.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS92.47 208
HQP-NCC97.85 23894.26 27993.18 24692.86 354
ACMP_Plane97.85 23894.26 27993.18 24692.86 354
APD-MVScopyleft97.00 13496.53 16798.41 5998.55 16496.31 6696.32 16598.77 14492.96 25997.44 18397.58 21195.84 12399.74 7691.96 26399.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS90.51 302
HQP4-MVS92.87 35399.23 27299.06 173
HQP3-MVS98.43 19398.74 262
HQP2-MVS90.33 260
CNVR-MVS96.92 14196.55 16498.03 9398.00 22895.54 9594.87 26198.17 22994.60 19896.38 24897.05 24995.67 13599.36 23795.12 17399.08 22699.19 145
NCCC96.52 16995.99 19198.10 8597.81 24795.68 8995.00 25798.20 22395.39 16995.40 28996.36 29293.81 18899.45 20393.55 23698.42 28999.17 148
114514_t93.96 27893.22 28696.19 22299.06 10190.97 24595.99 19198.94 9973.88 40293.43 34296.93 25792.38 22799.37 23489.09 32399.28 19998.25 275
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9696.11 12896.89 22097.45 21896.85 8099.78 4795.19 16399.63 9199.38 106
DSMNet-mixed92.19 31591.83 31293.25 33396.18 34283.68 36396.27 16793.68 34876.97 39992.54 36499.18 3989.20 28098.55 35083.88 37598.60 27897.51 331
tpm288.47 35787.69 36090.79 37194.98 37877.34 39695.09 24991.83 36977.51 39889.40 38996.41 28867.83 39198.73 32983.58 37992.60 39296.29 370
NP-MVS98.14 21593.72 17295.08 329
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18195.96 19598.97 9594.55 20298.82 6198.76 8097.31 4699.29 25897.20 7099.44 15599.38 106
tpm cat188.01 36187.33 36290.05 37794.48 38476.28 40194.47 27594.35 34273.84 40389.26 39095.61 32173.64 37498.30 36984.13 37386.20 40295.57 381
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11598.90 10496.58 10598.08 13897.87 18697.02 6499.76 6195.25 16099.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.75 34589.25 34391.26 36994.69 38278.00 39395.32 23891.98 36881.50 38390.55 37896.96 25671.06 38498.89 31588.59 33192.63 39196.87 352
CR-MVSNet93.29 29892.79 29694.78 29295.44 36988.15 29496.18 17597.20 28384.94 36994.10 31898.57 9777.67 35399.39 22595.17 16595.81 36896.81 358
JIA-IIPM91.79 32390.69 33395.11 27193.80 39490.98 24494.16 28891.78 37096.38 11490.30 38299.30 2872.02 38198.90 31488.28 33590.17 39695.45 382
Patchmtry95.03 23594.59 25096.33 21594.83 38090.82 24796.38 16097.20 28396.59 10497.49 17798.57 9777.67 35399.38 22892.95 25199.62 9298.80 213
PatchT93.75 28393.57 27994.29 31395.05 37787.32 31696.05 18592.98 35697.54 7094.25 31498.72 8275.79 36699.24 27095.92 11995.81 36896.32 369
tpmrst90.31 33790.61 33589.41 37894.06 39172.37 40995.06 25393.69 34688.01 33592.32 36696.86 26177.45 35598.82 32091.04 28287.01 40197.04 344
BH-w/o92.14 31691.94 31092.73 35197.13 31485.30 34192.46 34295.64 32189.33 31694.21 31592.74 36889.60 27098.24 37181.68 38394.66 38294.66 387
tpm91.08 33290.85 33091.75 36695.33 37278.09 39195.03 25691.27 37688.75 32493.53 33897.40 22271.24 38299.30 25491.25 27993.87 38797.87 310
DELS-MVS96.17 18396.23 18095.99 22997.55 28690.04 25792.38 34898.52 18494.13 21396.55 24297.06 24894.99 15699.58 16195.62 13699.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned94.69 24994.75 24094.52 30397.95 23387.53 31094.07 29497.01 29293.99 21997.10 20095.65 31892.65 21598.95 31387.60 34396.74 35197.09 342
RPMNet94.68 25194.60 24894.90 28495.44 36988.15 29496.18 17598.86 11697.43 7494.10 31898.49 10579.40 34599.76 6195.69 13095.81 36896.81 358
MVSTER94.21 26993.93 27495.05 27595.83 35786.46 32895.18 24697.65 26992.41 27197.94 15498.00 17472.39 38099.58 16196.36 9699.56 11199.12 161
CPTT-MVS96.69 16096.08 18798.49 5298.89 12196.64 5597.25 10998.77 14492.89 26096.01 26897.13 24392.23 22899.67 12892.24 25899.34 18599.17 148
GBi-Net96.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
PVSNet_Blended_VisFu95.95 19295.80 20196.42 21199.28 5790.62 25195.31 23999.08 5988.40 33096.97 21598.17 15092.11 23199.78 4793.64 23499.21 20798.86 208
PVSNet_BlendedMVS95.02 23694.93 22895.27 26397.79 25687.40 31494.14 29198.68 16388.94 32294.51 30998.01 17293.04 20399.30 25489.77 31499.49 14299.11 164
UnsupCasMVSNet_eth95.91 19495.73 20496.44 20998.48 17691.52 23595.31 23998.45 19095.76 15097.48 17997.54 21289.53 27498.69 33594.43 20294.61 38399.13 156
UnsupCasMVSNet_bld94.72 24894.26 26296.08 22798.62 15590.54 25593.38 31998.05 24790.30 30397.02 21096.80 26889.54 27299.16 28288.44 33296.18 36498.56 240
PVSNet_Blended93.96 27893.65 27794.91 28297.79 25687.40 31491.43 36298.68 16384.50 37394.51 30994.48 34593.04 20399.30 25489.77 31498.61 27698.02 299
FMVSNet593.39 29592.35 30596.50 20695.83 35790.81 24997.31 10698.27 21392.74 26396.27 25598.28 13362.23 39799.67 12890.86 28799.36 17799.03 176
test196.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
new_pmnet92.34 31291.69 31694.32 31196.23 33989.16 27292.27 34992.88 35784.39 37595.29 29196.35 29385.66 31196.74 39584.53 37297.56 32797.05 343
FMVSNet395.26 22394.94 22696.22 22196.53 33190.06 25695.99 19197.66 26794.11 21597.99 14797.91 18380.22 34499.63 14494.60 19799.44 15598.96 186
dp88.08 36088.05 35688.16 38592.85 40168.81 41194.17 28792.88 35785.47 36091.38 37496.14 30268.87 39098.81 32286.88 35383.80 40496.87 352
FMVSNet296.72 15796.67 15696.87 18397.96 23091.88 22897.15 11598.06 24695.59 15998.50 8798.62 9489.51 27599.65 13694.99 18199.60 10199.07 171
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17498.23 4698.66 16897.41 7999.00 4699.19 3695.47 14199.73 8295.83 12599.76 5899.30 120
N_pmnet95.18 22694.23 26398.06 8897.85 23896.55 5892.49 34091.63 37189.34 31598.09 13697.41 22190.33 26099.06 29891.58 27399.31 19598.56 240
cascas91.89 32291.35 31993.51 32894.27 38785.60 33788.86 39398.61 17579.32 39292.16 36791.44 38489.22 27998.12 37590.80 29097.47 33396.82 357
BH-RMVSNet94.56 25794.44 25994.91 28297.57 28387.44 31393.78 30896.26 30993.69 22796.41 24796.50 28592.10 23299.00 30485.96 35797.71 31998.31 267
UGNet96.81 15196.56 16397.58 12196.64 32693.84 16897.75 7897.12 28896.47 11393.62 33498.88 7193.22 20099.53 17895.61 13799.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS93.55 29193.00 29195.19 26797.81 24787.86 30293.89 30396.00 31389.02 32094.07 32095.44 32686.27 30699.33 24687.69 34196.82 34898.39 256
XXY-MVS97.54 10597.70 8197.07 16999.46 3692.21 21597.22 11299.00 8694.93 18998.58 8198.92 6597.31 4699.41 21994.44 20199.43 16399.59 38
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26997.01 25396.99 6699.82 3497.66 5599.64 8998.39 256
sss94.22 26793.72 27695.74 24297.71 26989.95 25993.84 30496.98 29388.38 33193.75 33095.74 31587.94 29098.89 31591.02 28398.10 30198.37 258
Test_1112_low_res93.53 29292.86 29395.54 25398.60 15788.86 28092.75 33298.69 16182.66 37992.65 36096.92 25984.75 31899.56 16890.94 28597.76 31598.19 280
1112_ss94.12 27293.42 28196.23 21998.59 15990.85 24694.24 28398.85 12085.49 35992.97 35294.94 33386.01 30899.64 14091.78 27097.92 30898.20 279
ab-mvs-re7.91 37910.55 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.94 3330.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs96.59 16596.59 16096.60 19998.64 14992.21 21598.35 3597.67 26594.45 20396.99 21298.79 7594.96 15899.49 19190.39 30599.07 22898.08 287
TR-MVS92.54 30992.20 30893.57 32796.49 33286.66 32693.51 31594.73 33789.96 30994.95 30093.87 35290.24 26598.61 34481.18 38594.88 38095.45 382
MDTV_nov1_ep13_2view57.28 41394.89 26080.59 38794.02 32378.66 34985.50 36397.82 313
MDTV_nov1_ep1391.28 32194.31 38573.51 40794.80 26393.16 35486.75 34993.45 34197.40 22276.37 36298.55 35088.85 32696.43 357
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10598.49 3199.38 2299.14 4695.44 14399.84 3096.47 9199.80 5199.47 79
MIMVSNet93.42 29492.86 29395.10 27398.17 20988.19 29298.13 5593.69 34692.07 27495.04 29998.21 14680.95 34199.03 30381.42 38498.06 30398.07 289
IterMVS-LS96.92 14197.29 11895.79 24098.51 17088.13 29695.10 24898.66 16896.99 9198.46 9398.68 8792.55 21999.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.88 24094.12 26897.14 16197.64 27993.57 17993.96 30197.06 29190.05 30896.30 25496.55 28086.10 30799.47 19690.10 30999.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.52 130
IterMVS95.42 21695.83 20094.20 31597.52 28783.78 36292.41 34697.47 27895.49 16498.06 14198.49 10587.94 29099.58 16196.02 11299.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 20895.13 21996.80 18898.51 17093.99 16394.60 27298.69 16190.20 30595.78 27896.21 29892.73 21298.98 30890.58 30098.86 25097.42 335
MVS_111021_LR96.82 15096.55 16497.62 11998.27 19495.34 11093.81 30798.33 20894.59 20096.56 24096.63 27796.61 9198.73 32994.80 18799.34 18598.78 215
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11898.79 13998.98 1798.74 7098.49 10595.80 13199.49 19195.04 17699.44 15599.11 164
ACMMP++99.55 118
HQP-MVS95.17 22894.58 25196.92 17997.85 23892.47 20894.26 27998.43 19393.18 24692.86 35495.08 32990.33 26099.23 27290.51 30298.74 26299.05 175
QAPM95.88 19595.57 21096.80 18897.90 23691.84 23098.18 5398.73 15188.41 32996.42 24698.13 15394.73 16099.75 6788.72 32898.94 24098.81 212
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8497.82 16699.11 4796.75 8599.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet88.40 35890.20 33982.99 38797.01 31760.04 41293.11 32685.61 40284.45 37488.72 39399.09 5084.72 31998.23 37282.52 38196.59 35690.69 402
IS-MVSNet96.93 14096.68 15597.70 11399.25 6294.00 16298.57 2096.74 30398.36 3498.14 13197.98 17588.23 28899.71 10293.10 24899.72 7199.38 106
HyFIR lowres test93.72 28492.65 30196.91 18198.93 11691.81 23191.23 36998.52 18482.69 37896.46 24596.52 28480.38 34399.90 1490.36 30698.79 25799.03 176
EPMVS89.26 35088.55 35291.39 36892.36 40479.11 38995.65 21579.86 40788.60 32793.12 34996.53 28270.73 38698.10 37690.75 29289.32 39896.98 347
PAPM_NR94.61 25594.17 26795.96 23198.36 18691.23 24095.93 19897.95 24892.98 25593.42 34394.43 34690.53 25598.38 36387.60 34396.29 36298.27 273
TAMVS95.49 21094.94 22697.16 15998.31 18893.41 18595.07 25296.82 29991.09 29297.51 17597.82 19189.96 26699.42 21088.42 33399.44 15598.64 232
PAPR92.22 31491.27 32295.07 27495.73 36488.81 28191.97 35497.87 25385.80 35790.91 37592.73 36991.16 24698.33 36779.48 38995.76 37298.08 287
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9299.06 6396.19 12598.48 9098.70 8594.72 16199.24 27094.37 20699.33 19099.17 148
Vis-MVSNet (Re-imp)95.11 23094.85 23395.87 23899.12 9389.17 27197.54 9894.92 33696.50 11096.58 23897.27 23683.64 32699.48 19488.42 33399.67 8498.97 185
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14498.73 15198.66 2598.56 8298.41 11496.84 8199.69 11794.82 18699.81 4898.64 232
MVS_111021_HR96.73 15696.54 16697.27 15298.35 18793.66 17793.42 31798.36 20494.74 19296.58 23896.76 27196.54 9498.99 30694.87 18499.27 20199.15 151
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10898.99 8996.35 11898.13 13295.95 31195.99 11999.66 13494.36 20899.73 6798.59 238
PatchMatch-RL94.61 25593.81 27597.02 17498.19 20395.72 8693.66 31097.23 28288.17 33494.94 30195.62 32091.43 24298.57 34787.36 34997.68 32296.76 360
API-MVS95.09 23295.01 22595.31 26296.61 32794.02 16196.83 13297.18 28595.60 15895.79 27694.33 34794.54 17098.37 36585.70 35998.52 28193.52 393
Test By Simon94.51 171
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4299.59 15997.21 6899.76 5899.40 100
USDC94.56 25794.57 25394.55 30297.78 25986.43 33092.75 33298.65 17385.96 35496.91 21997.93 18190.82 25298.74 32890.71 29699.59 10398.47 250
EPP-MVSNet96.84 14696.58 16197.65 11799.18 8093.78 17198.68 1496.34 30897.91 5197.30 18698.06 16688.46 28599.85 2793.85 22799.40 17199.32 115
PMMVS92.39 31091.08 32596.30 21893.12 39992.81 19890.58 37995.96 31579.17 39391.85 37092.27 37490.29 26498.66 34089.85 31396.68 35497.43 334
PAPM87.64 36385.84 37093.04 33996.54 32884.99 34888.42 39495.57 32579.52 39183.82 40293.05 36380.57 34298.41 36062.29 40692.79 39095.71 377
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9695.75 15297.91 15698.06 16696.89 7599.76 6195.32 15799.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA95.04 23394.47 25696.75 19297.81 24795.25 11494.12 29397.89 25294.41 20494.57 30795.69 31690.30 26398.35 36686.72 35598.76 26096.64 362
PatchmatchNetpermissive91.98 32191.87 31192.30 36094.60 38379.71 38695.12 24793.59 35189.52 31493.61 33597.02 25177.94 35199.18 27790.84 28894.57 38598.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.96 13996.53 16798.25 7397.48 29096.50 5996.76 13898.85 12093.52 23196.19 26196.85 26295.94 12099.42 21093.79 22999.43 16398.83 210
F-COLMAP95.30 22194.38 26098.05 9298.64 14996.04 7595.61 21998.66 16889.00 32193.22 34696.40 29092.90 20799.35 24187.45 34897.53 32998.77 218
ANet_high98.31 3198.94 696.41 21399.33 5389.64 26397.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
wuyk23d93.25 29995.20 21587.40 38696.07 34995.38 10597.04 12394.97 33595.33 17099.70 698.11 15798.14 1791.94 40477.76 39599.68 8274.89 404
OMC-MVS96.48 17196.00 19097.91 10098.30 18996.01 7894.86 26298.60 17691.88 27997.18 19497.21 24096.11 11799.04 30090.49 30499.34 18598.69 228
MG-MVS94.08 27594.00 27194.32 31197.09 31585.89 33593.19 32595.96 31592.52 26794.93 30297.51 21589.54 27298.77 32587.52 34797.71 31998.31 267
AdaColmapbinary95.11 23094.62 24796.58 20197.33 30594.45 14494.92 25998.08 24193.15 25093.98 32595.53 32394.34 17599.10 29485.69 36098.61 27696.20 372
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18695.63 15697.22 18997.30 23595.52 13998.55 35090.97 28498.90 24498.34 264
DeepMVS_CXcopyleft77.17 38890.94 40785.28 34374.08 41152.51 40580.87 40688.03 39975.25 36870.63 40859.23 40884.94 40375.62 403
TinyColmap96.00 19196.34 17794.96 28197.90 23687.91 30194.13 29298.49 18794.41 20498.16 12897.76 19496.29 11298.68 33890.52 30199.42 16698.30 269
MAR-MVS94.21 26993.03 28997.76 10996.94 32197.44 3396.97 12697.15 28687.89 33892.00 36892.73 36992.14 23099.12 28883.92 37497.51 33096.73 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS96.07 18695.63 20897.36 14698.19 20395.55 9495.44 22598.82 13792.29 27395.70 28296.55 28092.63 21698.69 33591.75 27299.33 19097.85 311
MSDG95.33 21995.13 21995.94 23597.40 29891.85 22991.02 37498.37 20395.30 17296.31 25395.99 30794.51 17198.38 36389.59 31697.65 32597.60 327
LS3D97.77 8697.50 10898.57 4796.24 33797.58 2498.45 3198.85 12098.58 2897.51 17597.94 17995.74 13399.63 14495.19 16398.97 23698.51 246
CLD-MVS95.47 21395.07 22296.69 19698.27 19492.53 20591.36 36398.67 16691.22 29195.78 27894.12 34995.65 13698.98 30890.81 28999.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS89.92 34388.63 35193.82 32198.37 18596.94 4591.58 35993.34 35388.00 33690.32 38197.10 24670.87 38591.13 40571.91 40396.16 36693.39 395
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9198.82 32096.38 9599.50 13996.98 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015