This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 7081.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18387.58 573.06 5991.34 9389.01 34
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6188.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9287.03 1067.39 9991.26 9483.50 138
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15374.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 305
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18885.32 17365.54 12587.79 265.61 11691.14 9983.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
3Dnovator65.95 1171.50 15271.22 16272.34 15673.16 24363.09 12078.37 9478.32 17157.67 15072.22 23084.61 18054.77 22378.47 17060.82 15781.07 26175.45 272
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10880.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS63.80 1372.70 13771.69 15375.72 9678.10 16560.01 15473.04 16081.50 10445.34 28679.66 11984.35 18565.15 13082.65 9848.70 26089.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23967.58 9494.44 3979.44 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 21470.56 27453.91 19578.29 9577.35 18548.85 25870.22 25483.52 19552.65 23576.93 19855.31 20781.99 24775.49 271
PLCcopyleft62.01 1671.79 14970.28 17076.33 8980.31 13568.63 7578.18 9881.24 11154.57 18767.09 29480.63 23859.44 18481.74 11446.91 27884.17 22778.63 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft54.93 1763.23 25463.28 25363.07 27069.81 28745.34 27368.52 22967.14 27143.74 30070.61 25079.22 26247.90 26972.66 24548.75 25973.84 33071.21 316
IB-MVS49.67 1859.69 28556.96 30167.90 22468.19 30650.30 21661.42 30565.18 28647.57 26955.83 36467.15 37123.77 39279.60 15243.56 30079.97 27373.79 289
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS49.31 1957.96 29657.59 29759.10 30466.85 32236.17 34465.13 27665.39 28539.24 33754.69 37178.14 27844.28 28567.18 30033.75 36470.79 35073.95 287
CMPMVSbinary48.73 2061.54 27160.89 27263.52 26561.08 35751.55 20668.07 23568.00 26933.88 36565.87 29881.25 22937.91 32467.71 29149.32 25582.60 24371.31 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet43.83 2151.56 33651.17 33952.73 33568.34 30338.27 32948.22 37353.56 35036.41 35354.29 37264.94 37534.60 33754.20 35430.34 37469.87 35765.71 354
PVSNet_036.71 2241.12 36840.78 37142.14 37759.97 36440.13 31540.97 38842.24 39430.81 38144.86 39749.41 40140.70 30745.12 37823.15 39934.96 40441.16 400
MVEpermissive27.91 2336.69 37235.64 37539.84 38243.37 40835.85 34819.49 40124.61 40924.68 39539.05 40362.63 38238.67 32027.10 40621.04 40347.25 40256.56 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net71.70 15073.10 13267.49 22973.23 24243.08 29272.06 17082.43 9154.58 18675.97 17582.00 21872.42 6075.22 21657.84 18387.34 17784.18 123
testing9155.74 30555.29 31557.08 31470.63 27130.85 37654.94 35156.31 33750.34 24157.08 35470.10 34624.50 39065.86 31136.98 34476.75 30274.53 281
testing1153.13 32352.26 33355.75 32270.44 27831.73 37054.75 35252.40 35744.81 29252.36 37868.40 36321.83 39565.74 31332.64 36872.73 33669.78 327
testing9955.16 31054.56 31956.98 31670.13 28430.58 37854.55 35454.11 34549.53 25256.76 35870.14 34522.76 39465.79 31236.99 34376.04 30774.57 280
UWE-MVS52.94 32552.70 32853.65 33073.56 23327.49 38957.30 33449.57 36738.56 34262.79 32471.42 33519.49 40260.41 33424.33 39877.33 29973.06 294
ETVMVS50.32 34349.87 35151.68 34070.30 28126.66 39252.33 36443.93 38443.54 30354.91 36867.95 36520.01 40160.17 33622.47 40073.40 33168.22 338
sasdasda72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
testing22253.37 32152.50 33155.98 32170.51 27729.68 38156.20 34151.85 35946.19 27756.76 35868.94 35619.18 40365.39 31425.87 39276.98 30072.87 297
WB-MVSnew53.94 32054.76 31751.49 34271.53 26228.05 38658.22 32850.36 36437.94 34659.16 34670.17 34449.21 25751.94 35524.49 39671.80 34574.47 283
fmvsm_l_conf0.5_n_a66.66 21665.97 22468.72 21567.09 31861.38 13470.03 20569.15 26238.59 34168.41 27980.36 24256.56 21868.32 28766.10 11077.45 29876.46 265
fmvsm_l_conf0.5_n67.48 20566.88 21669.28 20067.41 31562.04 12670.69 19869.85 25739.46 33469.59 26281.09 23158.15 19768.73 28267.51 9678.16 29477.07 264
fmvsm_s_conf0.1_n_a67.37 20966.36 21870.37 17970.86 26761.17 13874.00 15457.18 32740.77 32568.83 27780.88 23463.11 14367.61 29466.94 10674.72 31882.33 180
fmvsm_s_conf0.1_n66.60 21865.54 22769.77 19268.99 29759.15 16172.12 16856.74 33240.72 32768.25 28380.14 24861.18 16866.92 30167.34 10374.40 32383.23 152
fmvsm_s_conf0.5_n_a67.00 21565.95 22570.17 18469.72 29161.16 13973.34 15856.83 33040.96 32268.36 28080.08 24962.84 14467.57 29566.90 10874.50 32281.78 188
fmvsm_s_conf0.5_n66.34 22365.27 23069.57 19568.20 30559.14 16371.66 18156.48 33340.92 32367.78 28579.46 25761.23 16566.90 30267.39 9974.32 32682.66 169
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16371.22 4072.40 22788.70 10460.51 17487.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 40136.10 352
Syy-MVS54.13 31555.45 31350.18 34768.77 29823.59 39955.02 34844.55 38243.80 29758.05 35164.07 37646.22 27358.83 34146.16 28472.36 33968.12 339
test_fmvsmconf0.1_n73.26 12172.82 13874.56 10669.10 29666.18 9574.65 14779.34 15145.58 28175.54 18083.91 19067.19 10573.88 23773.26 5786.86 18883.63 137
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 29066.25 9375.90 12879.90 14146.03 27976.48 16885.02 17767.96 10173.97 23474.47 4987.22 18383.90 129
myMVS_eth3d50.36 34250.52 34749.88 34868.77 29822.69 40155.02 34844.55 38243.80 29758.05 35164.07 37614.16 41258.83 34133.90 36372.36 33968.12 339
testing358.28 29458.38 29258.00 31177.45 17726.12 39560.78 31143.00 38856.02 16770.18 25575.76 29413.27 41367.24 29948.02 26980.89 26280.65 212
SSC-MVS61.79 26866.08 22148.89 35776.91 18410.00 41153.56 35847.37 37668.20 5876.56 16489.21 8954.13 22857.59 34754.75 21174.07 32779.08 236
test_fmvsmconf_n72.91 13372.40 14574.46 10768.62 30066.12 9674.21 15278.80 16145.64 28074.62 19483.25 20566.80 11373.86 23872.97 6086.66 19483.39 145
WB-MVS60.04 28264.19 24447.59 35976.09 19610.22 41052.44 36346.74 37765.17 8474.07 20487.48 12453.48 23155.28 35049.36 25472.84 33577.28 257
test_fmvsmvis_n_192072.36 14272.49 14271.96 16071.29 26564.06 11372.79 16281.82 9940.23 33181.25 10381.04 23270.62 7768.69 28369.74 7983.60 23683.14 154
dmvs_re49.91 34650.77 34547.34 36059.98 36338.86 32453.18 35953.58 34939.75 33355.06 36761.58 38536.42 33244.40 38329.15 38468.23 36458.75 381
SDMVSNet66.36 22267.85 20261.88 28273.04 25046.14 26858.54 32571.36 24051.42 22868.93 27282.72 21165.62 12462.22 33054.41 21784.67 21877.28 257
dmvs_testset45.26 35747.51 35538.49 38459.96 36514.71 40858.50 32643.39 38641.30 31751.79 38056.48 39339.44 31649.91 36221.42 40255.35 39850.85 389
sd_testset63.55 24965.38 22958.07 31073.04 25038.83 32557.41 33365.44 28451.42 22868.93 27282.72 21163.76 14058.11 34541.05 31484.67 21877.28 257
test_fmvsm_n_192069.63 17368.45 19173.16 13070.56 27465.86 9870.26 20378.35 17037.69 34774.29 19978.89 26961.10 16968.10 28965.87 11479.07 28285.53 83
test_cas_vis1_n_192050.90 33950.92 34350.83 34554.12 39447.80 24551.44 36754.61 34226.95 38963.95 31360.85 38637.86 32644.97 37945.53 28962.97 37959.72 379
test_vis1_n_192052.96 32453.50 32351.32 34359.15 37044.90 27656.13 34264.29 29530.56 38259.87 34360.68 38740.16 31047.47 36948.25 26762.46 38061.58 375
test_vis1_n51.27 33850.41 34853.83 32856.99 37950.01 22056.75 33660.53 31225.68 39259.74 34457.86 39229.40 37347.41 37043.10 30263.66 37764.08 365
test_fmvs1_n52.70 32752.01 33454.76 32553.83 39650.36 21455.80 34465.90 27824.96 39465.39 30160.64 38827.69 37748.46 36545.88 28767.99 36665.46 355
mvsany_test137.88 36935.74 37444.28 37347.28 40549.90 22236.54 39724.37 41019.56 40345.76 39353.46 39632.99 34437.97 39926.17 38835.52 40344.99 398
APD_test175.04 9875.38 9974.02 11769.89 28570.15 6276.46 11679.71 14365.50 7582.99 7988.60 10866.94 10772.35 25259.77 16988.54 15879.56 227
test_vis1_rt46.70 35445.24 36251.06 34444.58 40751.04 20939.91 39167.56 27021.84 40251.94 37950.79 40033.83 33939.77 39535.25 35761.50 38362.38 372
test_vis3_rt51.94 33551.04 34154.65 32646.32 40650.13 21844.34 38578.17 17423.62 39868.95 27162.81 38021.41 39638.52 39841.49 31172.22 34175.30 276
test_fmvs254.80 31254.11 32156.88 31751.76 39949.95 22156.70 33765.80 27926.22 39169.42 26365.25 37431.82 35449.98 36049.63 25270.36 35370.71 320
test_fmvs151.51 33750.86 34453.48 33149.72 40249.35 23054.11 35564.96 28824.64 39663.66 31859.61 39128.33 37648.45 36645.38 29267.30 37062.66 370
test_fmvs356.78 30055.99 30959.12 30353.96 39548.09 24058.76 32466.22 27627.54 38676.66 16068.69 36125.32 38851.31 35653.42 22973.38 33277.97 253
mvsany_test343.76 36541.01 36952.01 33948.09 40457.74 17242.47 38723.85 41123.30 39964.80 30562.17 38327.12 37840.59 39429.17 38348.11 40157.69 383
testf175.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD_test275.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
test_f43.79 36445.63 35938.24 38542.29 41038.58 32634.76 39847.68 37422.22 40167.34 29163.15 37931.82 35430.60 40339.19 32462.28 38145.53 397
FE-MVS68.29 19566.96 21472.26 15874.16 22754.24 19277.55 10373.42 21857.65 15272.66 22284.91 17832.02 35381.49 11648.43 26481.85 25081.04 197
FA-MVS(test-final)71.27 15371.06 16371.92 16173.96 22952.32 20476.45 11776.12 19759.07 13774.04 20686.18 15852.18 23779.43 15559.75 17081.76 25284.03 126
iter_conf05_1166.64 21765.20 23270.94 17073.28 23946.89 25866.09 26177.03 19043.44 30463.43 32274.09 31747.19 27283.26 8756.25 19686.01 20082.66 169
bld_raw_dy_0_6469.94 16969.64 17470.84 17173.28 23946.85 25975.82 13186.52 1640.43 33081.41 10074.77 30348.70 26483.01 9356.25 19689.59 13882.66 169
patch_mono-262.73 26164.08 24558.68 30670.36 28055.87 18160.84 31064.11 29641.23 31864.04 31178.22 27660.00 17848.80 36354.17 22183.71 23471.37 312
EGC-MVSNET64.77 23661.17 26975.60 9886.90 4274.47 3084.04 3568.62 2660.60 4071.13 40991.61 2865.32 12974.15 23364.01 12688.28 16078.17 247
test250661.23 27260.85 27362.38 27878.80 15827.88 38867.33 24637.42 40254.23 19367.55 28988.68 10617.87 40674.39 22946.33 28389.41 14384.86 96
test111164.62 23765.19 23362.93 27379.01 15629.91 38065.45 27254.41 34454.09 19871.47 24388.48 11037.02 32974.29 23146.83 28089.94 13084.58 109
ECVR-MVScopyleft64.82 23465.22 23163.60 26378.80 15831.14 37466.97 25156.47 33454.23 19369.94 25888.68 10637.23 32874.81 22445.28 29389.41 14384.86 96
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080576.12 8478.43 6869.20 20181.32 12541.37 30476.72 11477.64 18263.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 11085.90 3877.43 3090.78 11383.49 139
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
PC_three_145246.98 27381.83 9286.28 15466.55 11784.47 7163.31 13890.78 11383.49 139
No_MVS79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 416
eth-test0.00 416
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14856.32 16576.35 17283.36 20170.76 7677.96 18663.32 13781.84 25183.18 153
test_method19.26 37319.12 37719.71 3889.09 4121.91 4157.79 40353.44 3511.42 40610.27 40835.80 40317.42 40725.11 40712.44 40624.38 40632.10 403
Anonymous2024052163.55 24966.07 22255.99 32066.18 32844.04 28268.77 22568.80 26346.99 27272.57 22385.84 16939.87 31250.22 35953.40 23092.23 8173.71 290
h-mvs3373.08 12471.61 15677.48 7483.89 8872.89 4470.47 20071.12 24854.28 19177.89 13783.41 19649.04 25880.98 12863.62 13390.77 11578.58 241
hse-mvs272.32 14370.66 16877.31 7983.10 10071.77 4769.19 21771.45 23854.28 19177.89 13778.26 27549.04 25879.23 15663.62 13389.13 15180.92 202
CL-MVSNet_self_test62.44 26363.40 25259.55 30172.34 25632.38 36656.39 33864.84 28951.21 23367.46 29081.01 23350.75 24663.51 32538.47 33188.12 16382.75 166
KD-MVS_2432*160052.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
KD-MVS_self_test66.38 22167.51 20562.97 27261.76 35334.39 35858.11 33075.30 20550.84 23777.12 14885.42 17256.84 21569.44 27751.07 24091.16 9785.08 91
AUN-MVS70.22 16467.88 20177.22 8082.96 10471.61 4869.08 21871.39 23949.17 25571.70 23478.07 28037.62 32779.21 15761.81 14489.15 14980.82 205
ZD-MVS83.91 8669.36 6981.09 11658.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14480.38 13245.49 28481.31 10175.64 4194.39 4184.65 102
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 11086.01 3161.72 14789.79 13483.08 156
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 150
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
cl2267.14 21166.51 21769.03 20663.20 34743.46 28866.88 25476.25 19649.22 25474.48 19677.88 28145.49 27777.40 19460.64 15884.59 22286.24 69
miper_ehance_all_eth68.36 19268.16 19868.98 20765.14 33743.34 28967.07 24978.92 15849.11 25676.21 17377.72 28253.48 23177.92 18761.16 15284.59 22285.68 82
miper_enhance_ethall65.86 22565.05 24168.28 22261.62 35542.62 29764.74 27977.97 17842.52 31073.42 21372.79 32549.66 25277.68 19158.12 18084.59 22284.54 110
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
dcpmvs_271.02 15772.65 14066.16 24476.06 19950.49 21371.97 17379.36 15050.34 24182.81 8383.63 19464.38 13667.27 29861.54 14883.71 23480.71 211
cl____68.26 19768.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.42 21548.74 26275.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19668.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.43 21448.74 26275.38 21260.94 15589.81 13285.81 76
eth_miper_zixun_eth69.42 17868.73 18971.50 16667.99 30846.42 26467.58 23978.81 15950.72 23878.13 13580.34 24350.15 25180.34 14060.18 16284.65 22087.74 50
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter87.00 3967.23 8679.24 8577.94 17956.65 163
ET-MVSNet_ETH3D63.32 25260.69 27571.20 16970.15 28355.66 18365.02 27764.32 29443.28 30968.99 26972.05 33025.46 38678.19 18354.16 22282.80 24179.74 226
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23272.33 3585.50 5093.65 377.98 2176.88 20054.60 21491.64 8689.08 32
EIA-MVS68.59 19067.16 21072.90 14175.18 20755.64 18469.39 21381.29 10952.44 21564.53 30670.69 33860.33 17682.30 10454.27 22076.31 30580.75 208
miper_refine_blended52.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
miper_lstm_enhance61.97 26561.63 26562.98 27160.04 36245.74 27147.53 37670.95 24944.04 29573.06 21778.84 27039.72 31360.33 33555.82 20284.64 22182.88 161
ETV-MVS72.72 13672.16 14974.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23170.81 33765.90 12285.24 5658.64 17684.96 21681.95 185
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20183.30 20369.65 8682.07 10869.27 8186.75 19287.36 55
D2MVS62.58 26261.05 27167.20 23363.85 34347.92 24356.29 33969.58 25939.32 33570.07 25778.19 27734.93 33672.68 24453.44 22883.74 23281.00 200
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12872.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 233
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 150
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 155
DPM-MVS69.98 16869.22 18072.26 15882.69 10858.82 16570.53 19981.23 11247.79 26764.16 31080.21 24451.32 24483.12 9060.14 16484.95 21774.83 278
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
test_yl65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
thisisatest053067.05 21465.16 23472.73 14773.10 24750.55 21271.26 19063.91 29750.22 24474.46 19780.75 23626.81 37980.25 14259.43 17286.50 19587.37 54
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22477.25 18867.16 6176.89 15390.44 5665.95 12174.19 23250.75 24290.00 12787.18 59
Anonymous20240521166.02 22466.89 21563.43 26774.22 22538.14 33159.00 32166.13 27763.33 10769.76 26185.95 16851.88 23870.50 27144.23 29687.52 17181.64 190
DCV-MVSNet65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
tttt051769.46 17767.79 20374.46 10775.34 20452.72 20175.05 13563.27 30154.69 18378.87 12784.37 18426.63 38081.15 12163.95 12887.93 16889.51 25
our_test_356.46 30156.51 30456.30 31867.70 31239.66 31855.36 34752.34 35840.57 32963.85 31469.91 34940.04 31158.22 34443.49 30175.29 31671.03 319
thisisatest051560.48 27957.86 29568.34 21967.25 31646.42 26460.58 31362.14 30440.82 32463.58 31969.12 35326.28 38278.34 17748.83 25882.13 24680.26 219
ppachtmachnet_test60.26 28159.61 28262.20 27967.70 31244.33 28058.18 32960.96 31140.75 32665.80 29972.57 32641.23 30163.92 32246.87 27982.42 24478.33 243
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6487.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS70.05 324
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part285.90 5766.44 9184.61 62
thres100view90061.17 27361.09 27061.39 28772.14 25835.01 35365.42 27356.99 32855.23 17570.71 24979.90 25132.07 35172.09 25435.61 35481.73 25377.08 262
tfpnnormal66.48 22067.93 19962.16 28073.40 23736.65 34063.45 29264.99 28755.97 16872.82 22187.80 12357.06 21369.10 28148.31 26687.54 17080.72 210
tfpn200view960.35 28059.97 27961.51 28570.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25377.08 262
c3_l69.82 17269.89 17269.61 19466.24 32643.48 28768.12 23479.61 14651.43 22777.72 14180.18 24754.61 22678.15 18463.62 13387.50 17287.20 58
CHOSEN 280x42041.62 36739.89 37246.80 36361.81 35251.59 20533.56 39935.74 40427.48 38737.64 40553.53 39523.24 39342.09 39027.39 38758.64 39046.72 394
CANet73.00 12971.84 15176.48 8775.82 20161.28 13674.81 13980.37 13363.17 10862.43 32680.50 24061.10 16985.16 6064.00 12784.34 22683.01 159
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12073.47 23564.53 11071.36 18678.14 17655.81 17168.84 27674.71 30665.36 12875.75 20952.00 23379.00 28381.03 198
Effi-MVS+-dtu75.43 9172.28 14784.91 277.05 17883.58 178.47 9377.70 18157.68 14974.89 18778.13 27964.80 13384.26 7456.46 19485.32 20986.88 62
CANet_DTU64.04 24763.83 24764.66 25368.39 30142.97 29473.45 15774.50 21352.05 22054.78 36975.44 30043.99 28670.42 27353.49 22778.41 29080.59 214
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20966.93 6269.11 26688.95 10057.84 20686.12 2976.63 3789.77 13585.28 86
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21287.10 879.75 783.87 23084.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs131.41 35770.05 324
sam_mvs31.21 361
IterMVS-SCA-FT67.68 20366.07 22272.49 15373.34 23858.20 17163.80 28965.55 28348.10 26276.91 15282.64 21345.20 27878.84 16361.20 15177.89 29680.44 217
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10851.71 22377.15 14791.42 3265.49 12687.20 679.44 1387.17 18684.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
ambc70.10 18777.74 17250.21 21774.28 15177.93 18079.26 12388.29 11554.11 22979.77 14964.43 12291.10 10280.30 218
MTGPAbinary80.63 126
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25680.80 23566.74 11481.96 10961.74 14689.40 14585.69 81
Effi-MVS+72.10 14672.28 14771.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24876.83 28969.96 8380.97 12960.20 16178.43 28983.45 144
xiu_mvs_v2_base64.43 24263.96 24665.85 24877.72 17351.32 20863.63 29172.31 23045.06 29161.70 32769.66 35062.56 14773.93 23649.06 25773.91 32872.31 304
xiu_mvs_v1_base67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
new-patchmatchnet52.89 32655.76 31144.26 37459.94 3666.31 41237.36 39650.76 36341.10 31964.28 30979.82 25244.77 28148.43 36736.24 35087.61 16978.03 250
pmmvs671.82 14873.66 11866.31 24375.94 20042.01 30066.99 25072.53 22763.45 10476.43 17092.78 1072.95 5969.69 27651.41 23790.46 11987.22 56
pmmvs552.49 33052.58 33052.21 33854.99 38932.38 36655.45 34653.84 34732.15 37455.49 36674.81 30238.08 32257.37 34834.02 36174.40 32366.88 347
test_post166.63 2562.08 40730.66 36659.33 33940.34 319
test_post1.99 40830.91 36454.76 352
Fast-Effi-MVS+68.81 18668.30 19370.35 18074.66 21848.61 23466.06 26278.32 17150.62 23971.48 24275.54 29768.75 9179.59 15350.55 24578.73 28682.86 163
patchmatchnet-post68.99 35431.32 35869.38 278
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13668.80 5382.95 8092.91 866.26 11876.76 20258.41 17992.77 7289.30 27
pmmvs-eth3d64.41 24363.27 25467.82 22775.81 20260.18 15369.49 21162.05 30738.81 34074.13 20282.23 21743.76 28868.65 28442.53 30480.63 26874.63 279
GG-mvs-BLEND52.24 33760.64 36029.21 38469.73 21042.41 39045.47 39452.33 39820.43 39968.16 28825.52 39465.42 37359.36 380
xiu_mvs_v1_base_debi67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
Anonymous2023120654.13 31555.82 31049.04 35670.89 26635.96 34651.73 36550.87 36234.86 35962.49 32579.22 26242.52 29744.29 38427.95 38681.88 24966.88 347
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12672.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 205
MTMP84.83 3119.26 412
gm-plane-assit62.51 34933.91 36137.25 35062.71 38172.74 24338.70 327
test9_res72.12 6991.37 9277.40 256
MVP-Stereo61.56 27059.22 28368.58 21779.28 14660.44 15169.20 21671.57 23443.58 30256.42 36178.37 27439.57 31576.46 20534.86 35860.16 38668.86 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST985.47 6369.32 7076.42 11878.69 16453.73 20576.97 14986.74 13866.84 10981.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16454.00 20076.97 14986.74 13866.60 11581.10 12372.50 6691.56 8977.15 260
gg-mvs-nofinetune55.75 30456.75 30352.72 33662.87 34828.04 38768.92 21941.36 39771.09 4150.80 38392.63 1220.74 39766.86 30429.97 37772.41 33863.25 366
SCA58.57 29358.04 29460.17 29770.17 28241.07 30765.19 27553.38 35243.34 30861.00 33573.48 31945.20 27869.38 27840.34 31970.31 35470.05 324
Patchmatch-test47.93 35049.96 35041.84 37857.42 37824.26 39848.75 37141.49 39639.30 33656.79 35773.48 31930.48 36733.87 40129.29 38172.61 33767.39 343
test_885.09 6967.89 7976.26 12378.66 16654.00 20076.89 15386.72 14066.60 11580.89 133
MS-PatchMatch55.59 30754.89 31657.68 31269.18 29349.05 23161.00 30962.93 30235.98 35558.36 34968.93 35736.71 33166.59 30837.62 33863.30 37857.39 384
Patchmatch-RL test59.95 28359.12 28462.44 27772.46 25554.61 19059.63 31847.51 37541.05 32174.58 19574.30 31131.06 36265.31 31551.61 23579.85 27467.39 343
cdsmvs_eth3d_5k17.71 37423.62 3760.00 3930.00 4160.00 4180.00 40470.17 2560.00 4110.00 41274.25 31268.16 970.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.20 3776.93 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41162.39 1510.00 4120.00 4110.00 4100.00 408
agg_prior270.70 7490.93 10778.55 242
agg_prior84.44 8166.02 9778.62 16776.95 15180.34 140
tmp_tt11.98 37514.73 3783.72 3902.28 4134.62 41419.44 40214.50 4130.47 40821.55 4069.58 40625.78 3854.57 40911.61 40727.37 4051.96 405
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19750.51 24089.19 1090.88 4271.45 6977.78 19073.38 5690.60 11890.90 18
alignmvs70.54 16271.00 16469.15 20373.50 23448.04 24269.85 20979.62 14453.94 20376.54 16682.00 21859.00 18974.68 22557.32 18587.21 18484.72 101
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18883.50 7589.21 8971.51 6775.74 21061.24 15092.34 7988.94 37
v14419272.99 13073.06 13372.77 14474.58 22047.48 25071.90 17880.44 13151.57 22581.46 9984.11 18858.04 20382.12 10767.98 9187.47 17388.70 43
FIs72.56 13973.80 11568.84 21378.74 16037.74 33571.02 19279.83 14256.12 16680.88 11089.45 8458.18 19578.28 17956.63 19093.36 6490.51 21
v192192072.96 13272.98 13572.89 14274.67 21647.58 24971.92 17780.69 12351.70 22481.69 9783.89 19156.58 21782.25 10568.34 8587.36 17588.82 40
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 14075.34 1579.80 11894.91 269.79 8580.25 14272.63 6394.46 3688.78 42
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10152.76 21381.85 9184.56 18157.12 21182.24 10668.58 8387.33 17889.06 33
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34171.82 18079.54 14957.63 15382.57 8690.38 6459.38 18678.99 16157.91 18294.56 3491.23 14
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17281.08 11753.83 20481.77 9384.68 17958.07 20281.91 11068.10 8786.86 18888.99 36
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
v14869.38 18069.39 17669.36 19769.14 29544.56 27868.83 22172.70 22554.79 18178.59 12884.12 18754.69 22476.74 20359.40 17382.20 24586.79 63
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 10081.34 11772.84 6191.72 8491.69 10
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
iter_conf0567.34 21065.62 22672.50 15269.82 28647.06 25772.19 16776.86 19145.32 28772.86 21982.85 20920.53 39883.73 7861.13 15389.02 15486.70 65
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13557.43 15486.65 3191.79 2350.52 24786.01 3171.36 7094.65 3291.62 11
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14753.48 20886.29 3692.43 1562.39 15180.25 14267.90 9390.61 11787.77 49
PS-MVSNAJ64.27 24563.73 24965.90 24777.82 17151.42 20763.33 29472.33 22945.09 29061.60 32868.04 36462.39 15173.95 23549.07 25673.87 32972.34 303
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19751.33 23187.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19551.98 22187.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
EI-MVSNet-UG-set72.63 13871.68 15475.47 10074.67 21658.64 16972.02 17171.50 23663.53 10278.58 13071.39 33665.98 12078.53 16867.30 10480.18 27189.23 29
EI-MVSNet-Vis-set72.78 13571.87 15075.54 9974.77 21459.02 16472.24 16571.56 23563.92 9678.59 12871.59 33266.22 11978.60 16767.58 9480.32 26989.00 35
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13764.71 9178.11 13688.39 11265.46 12783.14 8977.64 2991.20 9678.94 237
test_prior470.14 6377.57 101
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17981.11 11451.80 22282.28 8884.21 18656.22 22082.34 10368.82 8287.17 18688.91 38
pm-mvs168.40 19169.85 17364.04 26073.10 24739.94 31664.61 28270.50 25355.52 17373.97 20789.33 8563.91 13968.38 28649.68 25188.02 16583.81 131
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10269.81 7792.76 73
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40573.86 5286.31 1978.84 1994.03 5384.64 103
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 173
旧先验271.17 19145.11 28978.54 13161.28 33359.19 174
新几何271.33 187
新几何169.99 18988.37 3471.34 5162.08 30643.85 29674.99 18686.11 16352.85 23470.57 27050.99 24183.23 23968.05 341
旧先验184.55 7860.36 15263.69 29887.05 13054.65 22583.34 23869.66 329
无先验74.82 13870.94 25047.75 26876.85 20154.47 21572.09 307
原ACMM274.78 142
原ACMM173.90 11885.90 5765.15 10681.67 10250.97 23574.25 20086.16 16061.60 15983.54 8156.75 18991.08 10373.00 295
test22287.30 3769.15 7367.85 23659.59 31641.06 32073.05 21885.72 17148.03 26880.65 26666.92 346
testdata267.30 29748.34 265
segment_acmp68.30 96
testdata64.13 25785.87 5963.34 11861.80 30947.83 26676.42 17186.60 14748.83 26162.31 32954.46 21681.26 26066.74 350
testdata168.34 23257.24 156
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10660.05 12885.64 4589.26 8758.08 20181.80 11269.71 8087.97 16790.79 19
131459.83 28458.86 28762.74 27565.71 33144.78 27768.59 22772.63 22633.54 37061.05 33467.29 37043.62 28971.26 26549.49 25367.84 36872.19 306
LFMVS67.06 21367.89 20064.56 25478.02 16738.25 33070.81 19759.60 31565.18 8371.06 24686.56 14843.85 28775.22 21646.35 28289.63 13680.21 220
VDD-MVS70.81 15971.44 16068.91 21179.07 15546.51 26367.82 23770.83 25261.23 11974.07 20488.69 10559.86 18175.62 21151.11 23990.28 12184.61 106
VDDNet71.60 15173.13 13067.02 23686.29 4741.11 30669.97 20666.50 27568.72 5574.74 18991.70 2559.90 18075.81 20848.58 26291.72 8484.15 125
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19382.74 9770.73 7389.14 15091.05 15
VPNet65.58 22767.56 20459.65 30079.72 13930.17 37960.27 31562.14 30454.19 19671.24 24486.63 14558.80 19167.62 29344.17 29790.87 11281.18 194
MVS60.62 27859.97 27962.58 27668.13 30747.28 25468.59 22773.96 21532.19 37259.94 34168.86 35950.48 24877.64 19241.85 30975.74 30862.83 367
v2v48272.55 14172.58 14172.43 15472.92 25246.72 26171.41 18579.13 15455.27 17481.17 10485.25 17555.41 22281.13 12267.25 10585.46 20489.43 26
V4271.06 15570.83 16671.72 16267.25 31647.14 25665.94 26380.35 13451.35 23083.40 7683.23 20659.25 18778.80 16465.91 11380.81 26589.23 29
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS62.91 25761.66 26366.66 24167.09 31844.49 27961.18 30869.36 26151.33 23169.33 26574.47 30836.83 33074.94 22150.60 24474.72 31880.57 215
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 22063.12 14277.64 19262.95 14088.14 16271.73 310
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
ADS-MVSNet248.76 34847.25 35753.29 33455.90 38540.54 31347.34 37754.99 34131.41 37950.48 38472.06 32831.23 35954.26 35325.93 39055.93 39465.07 358
EI-MVSNet69.61 17569.01 18371.41 16773.94 23049.90 22271.31 18871.32 24158.22 14375.40 18370.44 33958.16 19675.85 20662.51 14179.81 27588.48 44
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet59.21 28858.44 29161.51 28573.94 23047.76 24771.31 18864.56 29226.91 39060.34 33870.44 33936.24 33367.65 29253.57 22668.66 36369.12 335
pmmvs460.78 27659.04 28566.00 24673.06 24957.67 17364.53 28360.22 31336.91 35265.96 29777.27 28639.66 31468.54 28538.87 32674.89 31771.80 309
EU-MVSNet60.82 27560.80 27460.86 29368.37 30241.16 30572.27 16468.27 26826.96 38869.08 26775.71 29532.09 35067.44 29655.59 20578.90 28473.97 286
VNet64.01 24865.15 23660.57 29473.28 23935.61 35057.60 33267.08 27254.61 18566.76 29583.37 19956.28 21966.87 30342.19 30685.20 21179.23 234
test-LLR50.43 34150.69 34649.64 35160.76 35841.87 30153.18 35945.48 38043.41 30649.41 38860.47 38929.22 37444.73 38142.09 30772.14 34262.33 373
TESTMET0.1,145.17 35844.93 36445.89 36756.02 38438.31 32853.18 35941.94 39527.85 38544.86 39756.47 39417.93 40541.50 39338.08 33468.06 36557.85 382
test-mter48.56 34948.20 35449.64 35160.76 35841.87 30153.18 35945.48 38031.91 37749.41 38860.47 38918.34 40444.73 38142.09 30772.14 34262.33 373
VPA-MVSNet68.71 18870.37 16963.72 26276.13 19538.06 33364.10 28671.48 23756.60 16474.10 20388.31 11464.78 13469.72 27547.69 27390.15 12483.37 147
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
testgi54.00 31956.86 30245.45 36858.20 37525.81 39649.05 37049.50 36845.43 28567.84 28481.17 23051.81 24143.20 38829.30 38079.41 28067.34 345
test20.0355.74 30557.51 29850.42 34659.89 36732.09 36850.63 36849.01 36950.11 24565.07 30483.23 20645.61 27648.11 36830.22 37583.82 23171.07 318
thres600view761.82 26761.38 26863.12 26971.81 26034.93 35464.64 28056.99 32854.78 18270.33 25379.74 25332.07 35172.42 25138.61 32983.46 23782.02 183
ADS-MVSNet44.62 36145.58 36041.73 37955.90 38520.83 40447.34 37739.94 40031.41 37950.48 38472.06 32831.23 35939.31 39625.93 39055.93 39465.07 358
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs4.06 3795.28 3820.41 3910.64 4150.16 41742.54 3860.31 4160.26 4100.50 4111.40 4100.77 4140.17 4100.56 4090.55 4090.90 406
thres40060.77 27759.97 27963.15 26870.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25382.02 183
test1234.43 3785.78 3810.39 3920.97 4140.28 41646.33 3810.45 4150.31 4090.62 4101.50 4090.61 4150.11 4110.56 4090.63 4080.77 407
thres20057.55 29857.02 30059.17 30267.89 31134.93 35458.91 32357.25 32550.24 24364.01 31271.46 33432.49 34771.39 26431.31 37179.57 27971.19 317
test0.0.03 147.72 35148.31 35345.93 36655.53 38729.39 38246.40 38041.21 39843.41 30655.81 36567.65 36629.22 37443.77 38725.73 39369.87 35764.62 362
pmmvs346.71 35345.09 36351.55 34156.76 38148.25 23655.78 34539.53 40124.13 39750.35 38663.40 37815.90 40951.08 35729.29 38170.69 35255.33 387
EMVS44.61 36244.45 36745.10 37148.91 40343.00 29337.92 39441.10 39946.75 27438.00 40448.43 40226.42 38146.27 37237.11 34275.38 31446.03 395
E-PMN45.17 35845.36 36144.60 37250.07 40042.75 29538.66 39342.29 39346.39 27639.55 40251.15 39926.00 38345.37 37737.68 33676.41 30345.69 396
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
LCM-MVSNet-Re69.10 18371.57 15861.70 28370.37 27934.30 35961.45 30479.62 14456.81 15989.59 888.16 11968.44 9472.94 24242.30 30587.33 17877.85 254
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28272.84 22083.78 19365.15 13080.99 12764.54 12189.09 15380.73 209
mvs_anonymous65.08 23265.49 22863.83 26163.79 34437.60 33766.52 25869.82 25843.44 30473.46 21286.08 16458.79 19271.75 26151.90 23475.63 31082.15 182
MVS_Test69.84 17170.71 16767.24 23267.49 31443.25 29169.87 20881.22 11352.69 21471.57 23986.68 14162.09 15574.51 22766.05 11178.74 28583.96 127
MDA-MVSNet-bldmvs62.34 26461.73 26264.16 25661.64 35449.90 22248.11 37457.24 32653.31 20980.95 10679.39 25949.00 26061.55 33245.92 28680.05 27281.03 198
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19577.68 14387.18 12569.98 8285.37 5168.01 9092.72 7485.08 91
test1276.51 8682.28 11360.94 14381.64 10373.60 20964.88 13285.19 5990.42 12083.38 146
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26446.71 26270.93 19484.26 6255.62 17277.46 14587.10 12667.09 10677.81 18863.95 12886.83 19087.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive67.42 20867.50 20667.20 23362.26 35145.21 27464.87 27877.04 18948.21 26171.74 23379.70 25458.40 19471.17 26664.99 11880.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline255.57 30852.74 32764.05 25965.26 33344.11 28162.38 30054.43 34339.03 33851.21 38167.35 36933.66 34072.45 25037.14 34164.22 37675.60 270
baseline157.82 29758.36 29356.19 31969.17 29430.76 37762.94 29955.21 33946.04 27863.83 31578.47 27241.20 30263.68 32339.44 32168.99 36174.13 285
YYNet152.58 32853.50 32349.85 34954.15 39236.45 34340.53 38946.55 37938.09 34475.52 18173.31 32241.08 30543.88 38541.10 31371.14 34969.21 334
PMMVS237.74 37040.87 37028.36 38742.41 4095.35 41324.61 40027.75 40732.15 37447.85 39070.27 34235.85 33429.51 40419.08 40567.85 36750.22 391
MDA-MVSNet_test_wron52.57 32953.49 32549.81 35054.24 39136.47 34240.48 39046.58 37838.13 34375.47 18273.32 32141.05 30643.85 38640.98 31571.20 34869.10 336
tpmvs55.84 30355.45 31357.01 31560.33 36133.20 36465.89 26459.29 31747.52 27056.04 36273.60 31831.05 36368.06 29040.64 31764.64 37469.77 328
PM-MVS64.49 24063.61 25067.14 23576.68 18975.15 2768.49 23042.85 38951.17 23477.85 13980.51 23945.76 27466.31 31052.83 23176.35 30459.96 378
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17286.15 2771.09 7190.94 10584.82 98
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 172
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31977.15 11081.28 11079.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21578.81 15966.66 6781.74 9586.88 13363.26 14181.07 12556.21 19894.98 2091.05 15
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32277.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
TransMVSNet (Re)69.62 17471.63 15563.57 26476.51 19035.93 34765.75 26871.29 24361.05 12175.02 18589.90 7865.88 12370.41 27449.79 24989.48 14184.38 118
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33977.16 10981.81 10080.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21280.14 13865.22 8281.74 9587.08 12761.82 15781.07 12556.21 19894.98 2091.93 8
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20281.04 11863.67 10079.54 12086.37 15362.83 14581.82 11157.10 18895.25 1490.94 17
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32176.76 11380.46 13078.91 790.32 791.70 2568.49 9384.89 6363.40 13695.12 1895.01 4
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29678.24 9682.24 9278.21 989.57 992.10 1868.05 9885.59 4866.04 11295.62 994.88 5
WR-MVS71.20 15472.48 14367.36 23184.98 7035.70 34964.43 28468.66 26565.05 8681.49 9886.43 15257.57 20876.48 20450.36 24693.32 6589.90 23
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26977.32 18664.32 9375.59 17887.08 12762.45 15081.34 11754.90 20995.63 891.93 8
Baseline_NR-MVSNet70.62 16173.19 12862.92 27476.97 18234.44 35768.84 22070.88 25160.25 12779.50 12190.53 5361.82 15769.11 28054.67 21395.27 1385.22 87
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29870.98 19378.29 17368.67 5683.04 7789.26 8772.99 5880.75 13455.58 20695.47 1091.35 13
TSAR-MVS + GP.73.08 12471.60 15777.54 7378.99 15770.73 5774.96 13669.38 26060.73 12474.39 19878.44 27357.72 20782.78 9660.16 16389.60 13779.11 235
n20.00 417
nn0.00 417
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 177
door-mid55.02 340
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20282.35 177
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9453.54 20783.93 7091.03 3749.49 25385.97 3373.26 5793.08 6791.59 12
MVSFormer69.93 17069.03 18272.63 15074.93 20959.19 15883.98 3675.72 20252.27 21663.53 32076.74 29043.19 29180.56 13572.28 6778.67 28778.14 248
jason64.47 24162.84 25869.34 19976.91 18459.20 15767.15 24865.67 28035.29 35865.16 30376.74 29044.67 28270.68 26854.74 21279.28 28178.14 248
jason: jason.
lupinMVS63.36 25161.49 26768.97 20874.93 20959.19 15865.80 26764.52 29334.68 36363.53 32074.25 31243.19 29170.62 26953.88 22478.67 28777.10 261
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20252.27 21687.37 2692.25 1668.04 9980.56 13572.28 6791.15 9890.32 22
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30866.16 7184.76 6093.23 549.47 25480.97 12965.66 11586.67 19385.02 93
lessismore_v072.75 14579.60 14156.83 17757.37 32383.80 7289.01 9747.45 27078.74 16664.39 12386.49 19682.69 168
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20464.10 9587.73 1792.24 1750.45 24981.30 11967.41 9791.46 9186.04 73
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9561.89 11688.77 1293.32 457.15 21082.60 9970.08 7692.80 7189.25 28
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 11078.37 17674.80 4490.76 11682.40 176
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8980.55 13772.51 6593.37 6383.48 141
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25349.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8179.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
baseline73.10 12373.96 11370.51 17771.46 26346.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10478.03 18564.22 12587.27 18287.11 61
test1182.71 86
door52.91 355
EPNet_dtu58.93 29058.52 28960.16 29867.91 31047.70 24869.97 20658.02 31949.73 24947.28 39173.02 32438.14 32162.34 32836.57 34785.99 20170.43 322
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268858.09 29556.30 30663.45 26679.95 13750.93 21054.07 35665.59 28228.56 38461.53 32974.33 31041.09 30466.52 30933.91 36267.69 36972.92 296
EPNet69.10 18367.32 20874.46 10768.33 30461.27 13777.56 10263.57 29960.95 12256.62 36082.75 21051.53 24281.24 12054.36 21990.20 12280.88 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 236
ACMP_Plane82.37 11077.32 10659.08 13471.58 236
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 195
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS67.38 101
HQP4-MVS71.59 23585.31 5283.74 134
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 199
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10463.92 9677.51 14486.56 14868.43 9584.82 6573.83 5391.61 8882.26 181
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11965.77 7275.55 17986.25 15767.42 10385.42 5070.10 7590.88 11181.81 187
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13943.76 29972.55 22486.07 16564.00 13883.35 8660.14 16491.03 10480.45 216
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 175
DSMNet-mixed43.18 36644.66 36638.75 38354.75 39028.88 38557.06 33527.42 40813.47 40447.27 39277.67 28338.83 31839.29 39725.32 39560.12 38748.08 392
tpm256.12 30254.64 31860.55 29566.24 32636.01 34568.14 23356.77 33133.60 36958.25 35075.52 29930.25 36874.33 23033.27 36569.76 35971.32 313
NP-MVS83.34 9463.07 12185.97 166
EG-PatchMatch MVS70.70 16070.88 16570.16 18582.64 10958.80 16671.48 18373.64 21654.98 17776.55 16581.77 22361.10 16978.94 16254.87 21080.84 26472.74 300
tpm cat154.02 31852.63 32958.19 30964.85 34039.86 31766.26 26057.28 32432.16 37356.90 35670.39 34132.75 34665.30 31634.29 36058.79 38969.41 332
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
CostFormer57.35 29956.14 30760.97 29163.76 34538.43 32767.50 24060.22 31337.14 35159.12 34776.34 29232.78 34571.99 25739.12 32569.27 36072.47 302
CR-MVSNet58.96 28958.49 29060.36 29666.37 32348.24 23770.93 19456.40 33532.87 37161.35 33086.66 14233.19 34263.22 32648.50 26370.17 35569.62 330
JIA-IIPM54.03 31751.62 33561.25 28959.14 37155.21 18659.10 32047.72 37350.85 23650.31 38785.81 17020.10 40063.97 32136.16 35155.41 39764.55 363
Patchmtry60.91 27463.01 25754.62 32766.10 32926.27 39467.47 24156.40 33554.05 19972.04 23286.66 14233.19 34260.17 33643.69 29887.45 17477.42 255
PatchT53.35 32256.47 30543.99 37564.19 34217.46 40659.15 31943.10 38752.11 21954.74 37086.95 13129.97 37149.98 36043.62 29974.40 32364.53 364
tpmrst50.15 34451.38 33846.45 36556.05 38324.77 39764.40 28549.98 36536.14 35453.32 37569.59 35135.16 33548.69 36439.24 32358.51 39165.89 352
BH-w/o64.81 23564.29 24366.36 24276.08 19854.71 18865.61 27075.23 20750.10 24671.05 24771.86 33154.33 22779.02 16038.20 33376.14 30665.36 356
tpm50.60 34052.42 33245.14 37065.18 33526.29 39360.30 31443.50 38537.41 34957.01 35579.09 26630.20 37042.32 38932.77 36766.36 37166.81 349
DELS-MVS68.83 18568.31 19270.38 17870.55 27648.31 23563.78 29082.13 9354.00 20068.96 27075.17 30158.95 19080.06 14758.55 17782.74 24282.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned69.39 17969.46 17569.18 20277.96 16956.88 17568.47 23177.53 18356.77 16077.79 14079.63 25560.30 17780.20 14546.04 28580.65 26670.47 321
RPMNet65.77 22665.08 24067.84 22666.37 32348.24 23770.93 19486.27 2054.66 18461.35 33086.77 13733.29 34185.67 4755.93 20070.17 35569.62 330
MVSTER63.29 25361.60 26668.36 21859.77 36846.21 26760.62 31271.32 24141.83 31375.40 18379.12 26530.25 36875.85 20656.30 19579.81 27583.03 158
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9668.80 5380.92 10788.52 10972.00 6582.39 10174.80 4493.04 6881.14 195
GBi-Net68.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
PVSNet_Blended_VisFu70.04 16668.88 18473.53 12582.71 10763.62 11674.81 13981.95 9848.53 26067.16 29379.18 26451.42 24378.38 17554.39 21879.72 27878.60 240
PVSNet_BlendedMVS65.38 22864.30 24268.61 21669.81 28749.36 22865.60 27178.96 15645.50 28259.98 33978.61 27151.82 23978.20 18144.30 29484.11 22878.27 245
UnsupCasMVSNet_eth52.26 33153.29 32649.16 35455.08 38833.67 36250.03 36958.79 31837.67 34863.43 32274.75 30541.82 29945.83 37338.59 33059.42 38867.98 342
UnsupCasMVSNet_bld50.01 34551.03 34246.95 36158.61 37332.64 36548.31 37253.27 35334.27 36460.47 33771.53 33341.40 30047.07 37130.68 37360.78 38561.13 376
PVSNet_Blended62.90 25861.64 26466.69 24069.81 28749.36 22861.23 30778.96 15642.04 31259.98 33968.86 35951.82 23978.20 18144.30 29477.77 29772.52 301
FMVSNet555.08 31155.54 31253.71 32965.80 33033.50 36356.22 34052.50 35643.72 30161.06 33383.38 19825.46 38654.87 35130.11 37681.64 25872.75 299
test168.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
new_pmnet37.55 37139.80 37330.79 38656.83 38016.46 40739.35 39230.65 40625.59 39345.26 39561.60 38424.54 38928.02 40521.60 40152.80 39947.90 393
FMVSNet365.00 23365.16 23464.52 25569.47 29237.56 33866.63 25670.38 25451.55 22674.72 19083.27 20437.89 32574.44 22847.12 27585.37 20581.57 191
dp44.09 36344.88 36541.72 38058.53 37423.18 40054.70 35342.38 39234.80 36044.25 39965.61 37324.48 39144.80 38029.77 37849.42 40057.18 385
FMVSNet267.48 20568.21 19665.29 24973.14 24438.94 32368.81 22271.21 24754.81 17876.73 15986.48 15048.63 26574.60 22647.98 27086.11 19982.35 177
FMVSNet171.06 15572.48 14366.81 23777.65 17540.68 31071.96 17473.03 21961.14 12079.45 12290.36 6760.44 17575.20 21850.20 24788.05 16484.54 110
N_pmnet52.06 33251.11 34054.92 32459.64 36971.03 5337.42 39561.62 31033.68 36757.12 35372.10 32737.94 32331.03 40229.13 38571.35 34662.70 368
cascas64.59 23862.77 25970.05 18875.27 20550.02 21961.79 30371.61 23342.46 31163.68 31768.89 35849.33 25680.35 13947.82 27284.05 22979.78 225
BH-RMVSNet68.69 18968.20 19770.14 18676.40 19153.90 19664.62 28173.48 21758.01 14573.91 20881.78 22259.09 18878.22 18048.59 26177.96 29578.31 244
UGNet70.20 16569.05 18173.65 12176.24 19363.64 11575.87 12972.53 22761.48 11860.93 33686.14 16152.37 23677.12 19650.67 24385.21 21080.17 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS49.39 34750.31 34946.62 36461.22 35632.00 36946.61 37949.77 36633.87 36654.12 37369.55 35241.96 29845.40 37631.28 37264.42 37562.47 371
XXY-MVS55.19 30957.40 29948.56 35864.45 34134.84 35651.54 36653.59 34838.99 33963.79 31679.43 25856.59 21645.57 37436.92 34571.29 34765.25 357
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19384.52 18269.87 8484.94 6169.76 7889.59 13886.60 67
sss47.59 35248.32 35245.40 36956.73 38233.96 36045.17 38248.51 37132.11 37652.37 37765.79 37240.39 30941.91 39231.85 36961.97 38260.35 377
Test_1112_low_res58.78 29158.69 28859.04 30579.41 14338.13 33257.62 33166.98 27334.74 36159.62 34577.56 28442.92 29363.65 32438.66 32870.73 35175.35 275
1112_ss59.48 28658.99 28660.96 29277.84 17042.39 29961.42 30568.45 26737.96 34559.93 34267.46 36745.11 28065.07 31740.89 31671.81 34475.41 273
ab-mvs-re5.62 3767.50 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41267.46 3670.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs64.11 24665.13 23761.05 29071.99 25938.03 33467.59 23868.79 26449.08 25765.32 30286.26 15658.02 20466.85 30539.33 32279.79 27778.27 245
TR-MVS64.59 23863.54 25167.73 22875.75 20350.83 21163.39 29370.29 25549.33 25371.55 24074.55 30750.94 24578.46 17140.43 31875.69 30973.89 288
MDTV_nov1_ep13_2view18.41 40553.74 35731.57 37844.89 39629.90 37232.93 36671.48 311
MDTV_nov1_ep1354.05 32265.54 33229.30 38359.00 32155.22 33835.96 35652.44 37675.98 29330.77 36559.62 33838.21 33273.33 333
MIMVSNet166.57 21969.23 17958.59 30781.26 12737.73 33664.06 28757.62 32057.02 15778.40 13290.75 4662.65 14658.10 34641.77 31089.58 14079.95 222
MIMVSNet54.39 31456.12 30849.20 35372.57 25430.91 37559.98 31648.43 37241.66 31455.94 36383.86 19241.19 30350.42 35826.05 38975.38 31466.27 351
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18278.44 16958.22 14380.51 11286.63 14558.15 19779.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet64.33 24462.66 26069.35 19880.44 13358.28 17065.26 27465.66 28144.36 29467.30 29275.54 29743.27 29071.77 25937.68 33684.44 22578.01 251
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref89.47 142
IterMVS63.12 25562.48 26165.02 25266.34 32552.86 20063.81 28862.25 30346.57 27571.51 24180.40 24144.60 28366.82 30651.38 23875.47 31275.38 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon73.57 11472.69 13976.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25281.98 22064.34 13784.41 7349.69 25089.95 12980.89 203
MVS_111021_LR72.10 14671.82 15272.95 13779.53 14273.90 3670.45 20166.64 27456.87 15876.81 15781.76 22468.78 9071.76 26061.81 14483.74 23273.18 293
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6683.45 8462.45 14392.40 7778.92 238
ACMMP++91.96 83
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23685.96 16758.09 19985.30 5367.38 10189.16 14783.73 135
QAPM69.18 18269.26 17868.94 20971.61 26152.58 20380.37 7178.79 16249.63 25073.51 21085.14 17653.66 23079.12 15855.11 20875.54 31175.11 277
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15562.85 11073.33 21488.41 11162.54 14979.59 15363.94 13082.92 24082.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet45.53 35647.29 35640.24 38162.29 35026.82 39156.02 34337.41 40329.74 38343.69 40181.27 22833.96 33855.48 34924.46 39756.79 39338.43 402
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17770.09 4979.17 12488.02 12153.04 23383.60 8058.05 18193.76 5990.79 19
HyFIR lowres test63.01 25660.47 27670.61 17483.04 10154.10 19359.93 31772.24 23133.67 36869.00 26875.63 29638.69 31976.93 19836.60 34675.45 31380.81 207
EPMVS45.74 35546.53 35843.39 37654.14 39322.33 40355.02 34835.00 40534.69 36251.09 38270.20 34325.92 38442.04 39137.19 34055.50 39665.78 353
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10766.17 7073.30 21583.31 20259.96 17983.10 9158.45 17881.66 25782.87 162
TAMVS65.31 22963.75 24869.97 19082.23 11459.76 15666.78 25563.37 30045.20 28869.79 26079.37 26047.42 27172.17 25334.48 35985.15 21277.99 252
PAPR69.20 18168.66 19070.82 17275.15 20847.77 24675.31 13381.11 11449.62 25166.33 29679.27 26161.53 16082.96 9448.12 26881.50 25981.74 189
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15259.44 13378.88 12689.80 7971.26 7173.09 24157.45 18480.89 26289.17 31
Vis-MVSNet (Re-imp)62.74 26063.21 25561.34 28872.19 25731.56 37167.31 24753.87 34653.60 20669.88 25983.37 19940.52 30870.98 26741.40 31286.78 19181.48 192
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21275.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 193
MVS_111021_HR72.98 13172.97 13672.99 13580.82 12965.47 10068.81 22272.77 22457.67 15075.76 17682.38 21671.01 7477.17 19561.38 14986.15 19776.32 266
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9762.47 11479.06 12580.19 24661.83 15678.79 16559.83 16887.35 17679.54 230
PatchMatch-RL58.68 29257.72 29661.57 28476.21 19473.59 3961.83 30249.00 37047.30 27161.08 33268.97 35550.16 25059.01 34036.06 35368.84 36252.10 388
API-MVS70.97 15871.51 15969.37 19675.20 20655.94 18080.99 6176.84 19262.48 11371.24 24477.51 28561.51 16180.96 13252.04 23285.76 20371.22 315
Test By Simon62.56 147
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
USDC62.80 25963.10 25661.89 28165.19 33443.30 29067.42 24274.20 21435.80 35772.25 22984.48 18345.67 27571.95 25837.95 33584.97 21370.42 323
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18665.11 8576.47 16986.80 13449.47 25483.77 7753.89 22392.72 7488.81 41
PMMVS44.69 36043.95 36846.92 36250.05 40153.47 19848.08 37542.40 39122.36 40044.01 40053.05 39742.60 29645.49 37531.69 37061.36 38441.79 399
PAPM61.79 26860.37 27766.05 24576.09 19641.87 30169.30 21476.79 19440.64 32853.80 37479.62 25644.38 28482.92 9529.64 37973.11 33473.36 292
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA73.44 11573.03 13474.66 10578.27 16375.29 2675.99 12778.49 16865.39 7875.67 17783.22 20861.23 16566.77 30753.70 22585.33 20881.92 186
PatchmatchNetpermissive54.60 31354.27 32055.59 32365.17 33639.08 32066.92 25251.80 36039.89 33258.39 34873.12 32331.69 35658.33 34343.01 30358.38 39269.38 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19773.23 21680.75 23662.19 15483.86 7668.02 8990.92 10883.65 136
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22884.00 18964.56 13583.07 9251.48 23687.19 18582.56 174
ANet_high67.08 21269.94 17158.51 30857.55 37727.09 39058.43 32776.80 19363.56 10182.40 8791.93 2059.82 18264.98 31850.10 24888.86 15683.46 143
wuyk23d61.97 26566.25 21949.12 35558.19 37660.77 14966.32 25952.97 35455.93 17090.62 586.91 13273.07 5735.98 40020.63 40491.63 8750.62 390
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6883.53 8267.95 9292.44 7689.60 24
MG-MVS70.47 16371.34 16167.85 22579.26 14740.42 31474.67 14675.15 20858.41 14268.74 27888.14 12056.08 22183.69 7959.90 16781.71 25679.43 232
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 12065.57 7472.54 22581.76 22470.98 7585.26 5447.88 27190.00 12773.37 291
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12966.87 6483.64 7486.18 15870.25 8079.90 14861.12 15488.95 15587.56 53
DeepMVS_CXcopyleft11.83 38915.51 41113.86 40911.25 4145.76 40520.85 40726.46 40417.06 4089.22 4089.69 40813.82 40712.42 404
TinyColmap67.98 19869.28 17764.08 25867.98 30946.82 26070.04 20475.26 20653.05 21077.36 14686.79 13559.39 18572.59 24945.64 28888.01 16672.83 298
MAR-MVS67.72 20266.16 22072.40 15574.45 22164.99 10774.87 13777.50 18448.67 25965.78 30068.58 36257.01 21477.79 18946.68 28181.92 24874.42 284
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS67.50 20467.31 20968.08 22358.86 37261.93 12771.43 18475.90 20144.67 29372.42 22680.20 24557.16 20970.44 27258.99 17586.12 19871.88 308
MSDG67.47 20767.48 20767.46 23070.70 27054.69 18966.90 25378.17 17460.88 12370.41 25174.76 30461.22 16773.18 24047.38 27476.87 30174.49 282
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8885.26 5466.15 10991.24 9587.61 52
CLD-MVS72.88 13472.36 14674.43 11077.03 17954.30 19168.77 22583.43 7652.12 21876.79 15874.44 30969.54 8783.91 7555.88 20193.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS59.43 28760.07 27857.51 31377.62 17671.52 4962.33 30150.92 36157.40 15569.40 26480.00 25039.14 31761.92 33137.47 33966.36 37139.09 401
Gipumacopyleft69.55 17672.83 13759.70 29963.63 34653.97 19480.08 7875.93 20064.24 9473.49 21188.93 10157.89 20562.46 32759.75 17091.55 9062.67 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015