This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2799.90 799.96 199.92 1999.90 1499.97 1499.87 4099.81 899.95 5299.54 4499.99 1399.80 32
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator99.15 299.43 8799.36 9599.65 10799.39 25399.42 15199.70 3499.56 19499.23 14999.35 22999.80 7199.17 6599.95 5298.21 17999.84 14799.59 142
3Dnovator+98.92 399.35 11099.24 12399.67 9599.35 26399.47 13399.62 6199.50 22899.44 11899.12 27299.78 8898.77 11599.94 6597.87 21099.72 21499.62 121
DeepC-MVS98.90 499.62 5299.61 4699.67 9599.72 12599.44 14499.24 15199.71 10999.27 14199.93 2599.90 2799.70 1699.93 8298.99 12099.99 1399.64 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast98.47 599.23 13599.12 14099.56 15099.28 28899.22 19598.99 21899.40 25799.08 17499.58 16699.64 16598.90 10199.83 25197.44 24999.75 19699.63 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.42 699.18 15799.02 17299.67 9599.22 29799.75 6297.25 35599.47 23698.72 21799.66 13699.70 13299.29 5099.63 34898.07 19299.81 17399.62 121
ACMH98.42 699.59 5699.54 6499.72 8099.86 4699.62 10599.56 7999.79 7098.77 21299.80 7799.85 4999.64 1899.85 22298.70 15099.89 11099.70 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+98.40 899.50 6999.43 8399.71 8599.86 4699.76 5899.32 12399.77 7899.53 10499.77 9199.76 9999.26 5699.78 28797.77 21899.88 11999.60 135
HY-MVS98.23 998.21 27797.95 28098.99 26599.03 32898.24 27599.61 6698.72 32896.81 33298.73 31299.51 23394.06 30199.86 20596.91 27998.20 35298.86 321
OpenMVScopyleft98.12 1098.23 27597.89 28999.26 23299.19 30499.26 18599.65 5899.69 12191.33 36798.14 34399.77 9598.28 18499.96 4295.41 33999.55 26598.58 337
ACMM98.09 1199.46 8199.38 8999.72 8099.80 7399.69 8699.13 18599.65 14198.99 18299.64 13999.72 11899.39 3699.86 20598.23 17799.81 17399.60 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.06 1299.45 8399.37 9299.70 8999.83 5499.70 8399.38 10999.78 7599.53 10499.67 13299.78 8899.19 6399.86 20597.32 25599.87 13099.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS97.92 1398.03 28397.55 29999.46 17399.47 23499.44 14498.50 27499.62 15286.79 37099.07 27999.26 29598.26 18699.62 34997.28 25999.73 20899.31 246
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP97.51 1499.05 18298.84 20599.67 9599.78 9099.55 12598.88 22999.66 13297.11 32699.47 20199.60 19999.07 8099.89 15996.18 31799.85 14299.58 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet97.47 1598.42 26098.44 24198.35 31099.46 23896.26 33996.70 36699.34 27197.68 29799.00 28399.13 31297.40 24299.72 30897.59 24199.68 22899.08 295
PLCcopyleft97.35 1698.36 26597.99 27699.48 16999.32 27899.24 19298.50 27499.51 22495.19 35498.58 32398.96 34096.95 26199.83 25195.63 33499.25 30999.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft97.31 1797.36 30796.84 31798.89 28399.29 28599.45 14298.87 23099.48 23386.54 37299.44 20799.74 10797.34 24699.86 20591.61 36399.28 30597.37 367
PCF-MVS96.03 1896.73 31995.86 33099.33 21499.44 24299.16 20396.87 36499.44 24486.58 37198.95 28699.40 26194.38 29999.88 17387.93 37099.80 17898.95 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_095.53 1995.85 33695.31 33897.47 33498.78 35393.48 36395.72 36999.40 25796.18 34197.37 36097.73 37495.73 28799.58 35695.49 33781.40 37699.36 233
IB-MVS95.41 2095.30 34094.46 34497.84 32698.76 35595.33 35197.33 35296.07 36696.02 34295.37 37497.41 37776.17 38299.96 4297.54 24395.44 37498.22 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft92.94 2198.82 21998.81 20998.85 28499.84 5097.99 29499.20 16199.47 23699.71 6499.42 21399.82 6298.09 20099.47 36593.88 35999.85 14299.07 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive92.54 2296.66 32196.11 32598.31 31499.68 14897.55 31397.94 32295.60 36999.37 13090.68 37798.70 35596.56 26798.61 37586.94 37599.55 26598.77 329
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary77.52 2398.50 25198.19 26699.41 19198.33 36699.56 12299.01 21199.59 17795.44 34999.57 16999.80 7195.64 28899.46 36796.47 30599.92 9199.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192099.72 2299.88 699.27 22999.93 2397.84 30399.34 118100.00 199.99 199.99 799.82 6299.87 399.99 699.97 499.99 1399.97 3
test_vis1_n99.68 3299.79 1899.36 20899.94 1698.18 28299.52 83100.00 199.86 29100.00 199.88 3698.99 8899.96 4299.97 499.96 5799.95 6
test_fmvs1_n99.68 3299.81 1599.28 22699.95 1397.93 30199.49 91100.00 199.82 4299.99 799.89 3199.21 6199.98 1199.97 499.98 3199.93 10
mvsany_test199.44 8599.45 7899.40 19399.37 25898.64 25497.90 32799.59 17799.27 14199.92 2999.82 6299.74 1299.93 8299.55 4399.87 13099.63 110
APD_test199.36 10899.28 11599.61 13399.89 3499.89 1099.32 12399.74 9399.18 15699.69 12499.75 10498.41 16899.84 23697.85 21399.70 21999.10 288
test_vis1_rt99.45 8399.46 7699.41 19199.71 12898.63 25598.99 21899.96 1599.03 18099.95 2099.12 31698.75 11899.84 23699.82 2099.82 16499.77 45
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 58100.00 199.89 3199.79 999.88 17399.98 1100.00 199.98 1
test_fmvs299.72 2299.85 1299.34 21199.91 2798.08 29299.48 92100.00 199.90 1499.99 799.91 2499.50 3299.98 1199.98 199.99 1399.96 5
test_fmvs199.48 7399.65 3698.97 26799.54 19997.16 32399.11 19199.98 999.78 5299.96 1699.81 6798.72 12399.97 2399.95 899.97 4399.79 38
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 5100.00 199.95 1399.85 499.99 699.98 199.99 1399.98 1
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 999.77 5699.99 799.95 1399.85 499.94 6599.95 899.98 3199.94 8
testf199.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
APD_test299.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 9100.00 199.93 1799.58 2599.94 6599.97 499.99 1399.97 3
FE-MVS97.85 28897.42 30199.15 24799.44 24298.75 24299.77 1498.20 34995.85 34499.33 23499.80 7188.86 35499.88 17396.40 30799.12 31598.81 325
FA-MVS(test-final)98.52 24898.32 25499.10 25599.48 22898.67 24799.77 1498.60 33697.35 31499.63 14399.80 7193.07 31499.84 23697.92 20399.30 30298.78 328
iter_conf_final98.75 22598.54 23499.40 19399.33 27698.75 24299.26 14499.59 17799.80 4799.76 9399.58 20690.17 34799.92 10299.37 6799.97 4399.54 165
bld_raw_dy_0_6499.70 2699.65 3699.85 2099.95 1399.77 5099.66 5299.71 10999.95 599.91 3299.77 9598.35 176100.00 199.54 4499.99 1399.79 38
patch_mono-299.51 6899.46 7699.64 11499.70 13699.11 20899.04 20599.87 3399.71 6499.47 20199.79 8198.24 18799.98 1199.38 6499.96 5799.83 26
EGC-MVSNET89.05 34385.52 34699.64 11499.89 3499.78 4799.56 7999.52 22024.19 37749.96 37899.83 5599.15 6799.92 10297.71 22699.85 14299.21 262
test250694.73 34194.59 34395.15 35799.59 17185.90 38299.75 2174.01 38399.89 2099.71 11899.86 4779.00 38199.90 14299.52 4899.99 1399.65 97
test111197.74 29298.16 26896.49 35199.60 16789.86 38099.71 3391.21 37799.89 2099.88 4899.87 4093.73 30799.90 14299.56 4199.99 1399.70 64
ECVR-MVScopyleft97.73 29398.04 27396.78 34599.59 17190.81 37699.72 2990.43 37999.89 2099.86 5799.86 4793.60 30999.89 15999.46 5499.99 1399.65 97
test_blank8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
tt080599.63 4699.57 5899.81 3099.87 4399.88 1299.58 7498.70 32999.72 6299.91 3299.60 19999.43 3499.81 27599.81 2199.53 27299.73 56
DVP-MVS++99.38 10299.25 12199.77 4499.03 32899.77 5099.74 2399.61 15999.18 15699.76 9399.61 19199.00 8699.92 10297.72 22499.60 25499.62 121
FOURS199.83 5499.89 1099.74 2399.71 10999.69 7299.63 143
MSC_two_6792asdad99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
PC_three_145297.56 30099.68 12799.41 25799.09 7597.09 37696.66 29499.60 25499.62 121
No_MVS99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
test_one_060199.63 16099.76 5899.55 20099.23 14999.31 24199.61 19198.59 140
eth-test20.00 385
eth-test0.00 385
GeoE99.69 2999.66 3499.78 4199.76 10299.76 5899.60 7199.82 5399.46 11599.75 10099.56 21899.63 1999.95 5299.43 5799.88 11999.62 121
test_method91.72 34292.32 34589.91 35993.49 38170.18 38390.28 37299.56 19461.71 37695.39 37399.52 23193.90 30299.94 6598.76 14598.27 35199.62 121
Anonymous2024052199.44 8599.42 8599.49 16599.89 3498.96 22599.62 6199.76 8399.85 3499.82 6799.88 3696.39 27699.97 2399.59 3599.98 3199.55 157
h-mvs3398.61 23698.34 25299.44 17899.60 16798.67 24799.27 14299.44 24499.68 7499.32 23799.49 24092.50 321100.00 199.24 8896.51 37099.65 97
hse-mvs298.52 24898.30 25699.16 24599.29 28598.60 25798.77 24999.02 31699.68 7499.32 23799.04 32692.50 32199.85 22299.24 8897.87 36199.03 304
CL-MVSNet_self_test98.71 23198.56 23399.15 24799.22 29798.66 25097.14 35899.51 22498.09 27599.54 18399.27 29296.87 26399.74 30398.43 16398.96 32499.03 304
KD-MVS_2432*160095.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
KD-MVS_self_test99.63 4699.59 5199.76 5199.84 5099.90 799.37 11399.79 7099.83 4099.88 4899.85 4998.42 16799.90 14299.60 3499.73 20899.49 194
AUN-MVS97.82 28997.38 30299.14 25099.27 29098.53 25998.72 25399.02 31698.10 27397.18 36599.03 33089.26 35399.85 22297.94 20297.91 35999.03 304
ZD-MVS99.43 24599.61 11199.43 24796.38 33799.11 27399.07 32297.86 21799.92 10294.04 35699.49 280
SR-MVS-dyc-post99.27 12899.11 14399.73 7499.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.41 16899.91 12497.27 26099.61 25199.54 165
RE-MVS-def99.13 13699.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.57 14397.27 26099.61 25199.54 165
SED-MVS99.40 9699.28 11599.77 4499.69 14099.82 3599.20 16199.54 20699.13 16999.82 6799.63 17598.91 9899.92 10297.85 21399.70 21999.58 147
IU-MVS99.69 14099.77 5099.22 30097.50 30699.69 12497.75 22299.70 21999.77 45
OPU-MVS99.29 22499.12 31499.44 14499.20 16199.40 26199.00 8698.84 37396.54 30099.60 25499.58 147
test_241102_TWO99.54 20699.13 16999.76 9399.63 17598.32 18299.92 10297.85 21399.69 22399.75 54
test_241102_ONE99.69 14099.82 3599.54 20699.12 17299.82 6799.49 24098.91 9899.52 362
SF-MVS99.10 17698.93 19199.62 13099.58 17699.51 12999.13 18599.65 14197.97 28299.42 21399.61 19198.86 10399.87 18796.45 30699.68 22899.49 194
cl2297.56 30197.28 30498.40 30898.37 36596.75 33397.24 35699.37 26597.31 31699.41 21999.22 30487.30 35899.37 36997.70 22999.62 24499.08 295
miper_ehance_all_eth98.59 24198.59 22698.59 30198.98 33497.07 32697.49 34699.52 22098.50 23799.52 19099.37 26996.41 27599.71 31297.86 21199.62 24499.00 310
miper_enhance_ethall98.03 28397.94 28498.32 31298.27 36796.43 33896.95 36299.41 25096.37 33899.43 21198.96 34094.74 29599.69 32097.71 22699.62 24498.83 324
ZNCC-MVS99.22 14399.04 16999.77 4499.76 10299.73 7099.28 13999.56 19498.19 27099.14 26999.29 28998.84 10599.92 10297.53 24599.80 17899.64 105
dcpmvs_299.61 5499.64 4099.53 15899.79 8398.82 23799.58 7499.97 1199.95 599.96 1699.76 9998.44 16499.99 699.34 7299.96 5799.78 41
cl____98.54 24698.41 24498.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.85 30499.78 28797.97 20099.89 11099.17 273
DIV-MVS_self_test98.54 24698.42 24398.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.87 30399.78 28797.97 20099.89 11099.18 271
eth_miper_zixun_eth98.68 23398.71 21698.60 30099.10 32096.84 33297.52 34599.54 20698.94 18899.58 16699.48 24396.25 28099.76 29798.01 19699.93 8799.21 262
9.1498.64 22199.45 24198.81 24199.60 17197.52 30599.28 24799.56 21898.53 15299.83 25195.36 34199.64 241
uanet_test8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
save fliter99.53 20599.25 18898.29 28899.38 26499.07 176
ET-MVSNet_ETH3D96.78 31796.07 32698.91 27699.26 29297.92 30297.70 33596.05 36797.96 28592.37 37698.43 36587.06 36099.90 14298.27 17497.56 36498.91 317
UniMVSNet_ETH3D99.85 899.83 1399.90 599.89 3499.91 499.89 499.71 10999.93 1099.95 2099.89 3199.71 1499.96 4299.51 4999.97 4399.84 22
EIA-MVS99.12 17099.01 17599.45 17699.36 26199.62 10599.34 11899.79 7098.41 24598.84 30198.89 34698.75 11899.84 23698.15 18899.51 27698.89 318
miper_refine_blended95.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
miper_lstm_enhance98.65 23598.60 22498.82 29199.20 30297.33 31997.78 33199.66 13299.01 18199.59 16499.50 23694.62 29799.85 22298.12 18999.90 10199.26 252
ETV-MVS99.18 15799.18 12899.16 24599.34 27199.28 18199.12 18999.79 7099.48 10898.93 28898.55 36199.40 3599.93 8298.51 16099.52 27598.28 350
CS-MVS99.67 3899.70 2599.58 14199.53 20599.84 2499.79 1099.96 1599.90 1499.61 15899.41 25799.51 3199.95 5299.66 2999.89 11098.96 311
D2MVS99.22 14399.19 12799.29 22499.69 14098.74 24498.81 24199.41 25098.55 23199.68 12799.69 13898.13 19899.87 18798.82 13799.98 3199.24 255
DVP-MVScopyleft99.32 12099.17 12999.77 4499.69 14099.80 4299.14 17999.31 27899.16 16399.62 15299.61 19198.35 17699.91 12497.88 20799.72 21499.61 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 15699.62 15299.61 19198.58 14299.91 12497.72 22499.80 17899.77 45
test_0728_SECOND99.83 2599.70 13699.79 4499.14 17999.61 15999.92 10297.88 20799.72 21499.77 45
test072699.69 14099.80 4299.24 15199.57 18999.16 16399.73 11299.65 16398.35 176
SR-MVS99.19 15399.00 17899.74 6599.51 21299.72 7499.18 16699.60 17198.85 20199.47 20199.58 20698.38 17399.92 10296.92 27899.54 27099.57 152
DPM-MVS98.28 27097.94 28499.32 21899.36 26199.11 20897.31 35398.78 32696.88 32998.84 30199.11 31997.77 22499.61 35394.03 35799.36 29699.23 258
GST-MVS99.16 16298.96 18999.75 6099.73 12299.73 7099.20 16199.55 20098.22 26799.32 23799.35 27898.65 13399.91 12496.86 28299.74 20399.62 121
test_yl98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
thisisatest053097.45 30396.95 31398.94 27099.68 14897.73 30899.09 19794.19 37498.61 22699.56 17699.30 28684.30 37299.93 8298.27 17499.54 27099.16 275
Anonymous2024052999.42 9099.34 9799.65 10799.53 20599.60 11399.63 6099.39 26099.47 11299.76 9399.78 8898.13 19899.86 20598.70 15099.68 22899.49 194
Anonymous20240521198.75 22598.46 23999.63 12199.34 27199.66 9399.47 9597.65 35699.28 14099.56 17699.50 23693.15 31299.84 23698.62 15599.58 25999.40 223
DCV-MVSNet98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
tttt051797.62 29897.20 30798.90 28299.76 10297.40 31799.48 9294.36 37299.06 17899.70 12199.49 24084.55 37199.94 6598.73 14899.65 23999.36 233
our_test_398.85 21799.09 15298.13 31999.66 15494.90 35597.72 33399.58 18799.07 17699.64 13999.62 18298.19 19499.93 8298.41 16499.95 6899.55 157
thisisatest051596.98 31396.42 32098.66 29999.42 25097.47 31497.27 35494.30 37397.24 31899.15 26798.86 34885.01 36999.87 18797.10 27199.39 29298.63 332
ppachtmachnet_test98.89 21299.12 14098.20 31799.66 15495.24 35297.63 33799.68 12499.08 17499.78 8699.62 18298.65 13399.88 17398.02 19399.96 5799.48 198
SMA-MVScopyleft99.19 15399.00 17899.73 7499.46 23899.73 7099.13 18599.52 22097.40 31199.57 16999.64 16598.93 9599.83 25197.61 23999.79 18399.63 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.14 282
DPE-MVScopyleft99.14 16698.92 19599.82 2799.57 18699.77 5098.74 25199.60 17198.55 23199.76 9399.69 13898.23 19199.92 10296.39 30899.75 19699.76 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.62 16499.67 9199.55 181
thres100view90096.39 32596.03 32797.47 33499.63 16095.93 34499.18 16697.57 35798.75 21698.70 31597.31 37987.04 36199.67 33587.62 37198.51 34696.81 369
tfpnnormal99.43 8799.38 8999.60 13699.87 4399.75 6299.59 7299.78 7599.71 6499.90 3899.69 13898.85 10499.90 14297.25 26599.78 18899.15 277
tfpn200view996.30 32895.89 32897.53 33299.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34696.81 369
c3_l98.72 23098.71 21698.72 29699.12 31497.22 32297.68 33699.56 19498.90 19599.54 18399.48 24396.37 27799.73 30697.88 20799.88 11999.21 262
CHOSEN 280x42098.41 26198.41 24498.40 30899.34 27195.89 34696.94 36399.44 24498.80 20899.25 25099.52 23193.51 31099.98 1198.94 13199.98 3199.32 242
CANet99.11 17399.05 16499.28 22698.83 34698.56 25898.71 25599.41 25099.25 14599.23 25499.22 30497.66 23499.94 6599.19 9599.97 4399.33 239
Fast-Effi-MVS+-dtu99.20 15099.12 14099.43 18299.25 29399.69 8699.05 20399.82 5399.50 10698.97 28499.05 32498.98 9099.98 1198.20 18099.24 31198.62 333
Effi-MVS+-dtu99.07 17898.92 19599.52 16098.89 34199.78 4799.15 17799.66 13299.34 13398.92 29199.24 30297.69 22899.98 1198.11 19099.28 30598.81 325
CANet_DTU98.91 20798.85 20399.09 25698.79 35198.13 28498.18 29499.31 27899.48 10898.86 29999.51 23396.56 26799.95 5299.05 11699.95 6899.19 269
MVS_030498.88 21398.71 21699.39 19798.85 34498.91 23299.45 9899.30 28198.56 22997.26 36399.68 14996.18 28299.96 4299.17 10099.94 7999.29 250
MP-MVS-pluss99.14 16698.92 19599.80 3499.83 5499.83 2998.61 25799.63 14996.84 33199.44 20799.58 20698.81 10699.91 12497.70 22999.82 16499.67 80
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.04 18598.79 21299.81 3099.78 9099.73 7099.35 11799.57 18998.54 23499.54 18398.99 33396.81 26499.93 8296.97 27699.53 27299.77 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs190.81 34099.14 282
sam_mvs90.52 344
IterMVS-SCA-FT99.00 19499.16 13098.51 30399.75 11395.90 34598.07 30899.84 4699.84 3799.89 4299.73 11196.01 28599.99 699.33 75100.00 199.63 110
TSAR-MVS + MP.99.34 11599.24 12399.63 12199.82 6199.37 16399.26 14499.35 26998.77 21299.57 16999.70 13299.27 5599.88 17397.71 22699.75 19699.65 97
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
OPM-MVS99.26 13099.13 13699.63 12199.70 13699.61 11198.58 26199.48 23398.50 23799.52 19099.63 17599.14 7099.76 29797.89 20699.77 19299.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.28 12499.11 14399.79 3899.75 11399.81 3898.95 22499.53 21598.27 26599.53 18899.73 11198.75 11899.87 18797.70 22999.83 15599.68 74
ambc99.20 24199.35 26398.53 25999.17 17199.46 23999.67 13299.80 7198.46 16299.70 31497.92 20399.70 21999.38 227
MTGPAbinary99.53 215
CS-MVS-test99.68 3299.70 2599.64 11499.57 18699.83 2999.78 1199.97 1199.92 1299.50 19799.38 26799.57 2699.95 5299.69 2799.90 10199.15 277
Effi-MVS+99.06 17998.97 18799.34 21199.31 27998.98 22198.31 28799.91 2298.81 20698.79 30798.94 34299.14 7099.84 23698.79 14198.74 33899.20 266
xiu_mvs_v2_base99.02 18899.11 14398.77 29399.37 25898.09 28998.13 30099.51 22499.47 11299.42 21398.54 36299.38 4099.97 2398.83 13599.33 29998.24 352
xiu_mvs_v1_base99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
new-patchmatchnet99.35 11099.57 5898.71 29899.82 6196.62 33598.55 26799.75 8899.50 10699.88 4899.87 4099.31 4899.88 17399.43 57100.00 199.62 121
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2299.85 3499.94 2299.95 1399.73 1399.90 14299.65 3099.97 4399.69 68
pmmvs599.19 15399.11 14399.42 18499.76 10298.88 23498.55 26799.73 9798.82 20599.72 11399.62 18296.56 26799.82 26099.32 7799.95 6899.56 154
test_post199.14 17951.63 38689.54 35299.82 26096.86 282
test_post52.41 38590.25 34699.86 205
Fast-Effi-MVS+99.02 18898.87 20199.46 17399.38 25699.50 13099.04 20599.79 7097.17 32298.62 31998.74 35499.34 4699.95 5298.32 17199.41 29098.92 316
patchmatchnet-post99.62 18290.58 34299.94 65
Anonymous2023121199.62 5299.57 5899.76 5199.61 16599.60 11399.81 999.73 9799.82 4299.90 3899.90 2797.97 21199.86 20599.42 6299.96 5799.80 32
pmmvs-eth3d99.48 7399.47 7299.51 16299.77 9899.41 15598.81 24199.66 13299.42 12799.75 10099.66 15899.20 6299.76 29798.98 12299.99 1399.36 233
GG-mvs-BLEND97.36 33797.59 37496.87 33199.70 3488.49 38294.64 37597.26 38080.66 37599.12 37091.50 36496.50 37196.08 373
xiu_mvs_v1_base_debi99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
Anonymous2023120699.35 11099.31 10399.47 17199.74 11999.06 21899.28 13999.74 9399.23 14999.72 11399.53 22997.63 23699.88 17399.11 11299.84 14799.48 198
MTAPA99.35 11099.20 12699.80 3499.81 6899.81 3899.33 12199.53 21599.27 14199.42 21399.63 17598.21 19299.95 5297.83 21799.79 18399.65 97
MTMP99.09 19798.59 337
gm-plane-assit97.59 37489.02 38193.47 36298.30 36799.84 23696.38 309
test9_res95.10 34499.44 28599.50 189
MVP-Stereo99.16 16299.08 15499.43 18299.48 22899.07 21699.08 20099.55 20098.63 22399.31 24199.68 14998.19 19499.78 28798.18 18499.58 25999.45 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.35 26399.35 17098.11 30399.41 25094.83 35997.92 34998.99 33398.02 20699.85 222
train_agg98.35 26897.95 28099.57 14799.35 26399.35 17098.11 30399.41 25094.90 35697.92 34998.99 33398.02 20699.85 22295.38 34099.44 28599.50 189
gg-mvs-nofinetune95.87 33595.17 33997.97 32298.19 36996.95 32899.69 4189.23 38199.89 2096.24 36999.94 1681.19 37499.51 36393.99 35898.20 35297.44 365
SCA98.11 27998.36 24997.36 33799.20 30292.99 36498.17 29698.49 34198.24 26699.10 27599.57 21596.01 28599.94 6596.86 28299.62 24499.14 282
Patchmatch-test98.10 28097.98 27898.48 30599.27 29096.48 33699.40 10599.07 31298.81 20699.23 25499.57 21590.11 34899.87 18796.69 29199.64 24199.09 292
test_899.34 27199.31 17698.08 30799.40 25794.90 35697.87 35398.97 33898.02 20699.84 236
MS-PatchMatch99.00 19498.97 18799.09 25699.11 31998.19 28098.76 25099.33 27298.49 23999.44 20799.58 20698.21 19299.69 32098.20 18099.62 24499.39 225
Patchmatch-RL test98.60 23898.36 24999.33 21499.77 9899.07 21698.27 28999.87 3398.91 19499.74 10899.72 11890.57 34399.79 28498.55 15899.85 14299.11 286
cdsmvs_eth3d_5k24.88 34633.17 3480.00 3620.00 3850.00 3860.00 37399.62 1520.00 3800.00 38199.13 31299.82 70.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas16.61 34722.14 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 199.28 520.00 3810.00 3790.00 3790.00 377
agg_prior294.58 35099.46 28499.50 189
agg_prior99.35 26399.36 16799.39 26097.76 35899.85 222
tmp_tt95.75 33795.42 33596.76 34689.90 38294.42 35798.86 23197.87 35578.01 37399.30 24699.69 13897.70 22695.89 37799.29 8498.14 35699.95 6
canonicalmvs99.02 18899.00 17899.09 25699.10 32098.70 24699.61 6699.66 13299.63 8898.64 31897.65 37599.04 8499.54 35898.79 14198.92 32799.04 303
anonymousdsp99.80 1499.77 2099.90 599.96 599.88 1299.73 2699.85 4099.70 6999.92 2999.93 1799.45 3399.97 2399.36 69100.00 199.85 21
alignmvs98.28 27097.96 27999.25 23599.12 31498.93 22999.03 20898.42 34399.64 8698.72 31397.85 37390.86 33999.62 34998.88 13399.13 31499.19 269
nrg03099.70 2699.66 3499.82 2799.76 10299.84 2499.61 6699.70 11599.93 1099.78 8699.68 14999.10 7399.78 28799.45 5599.96 5799.83 26
v14419299.55 6399.54 6499.58 14199.78 9099.20 20099.11 19199.62 15299.18 15699.89 4299.72 11898.66 13199.87 18799.88 1599.97 4399.66 89
FIs99.65 4599.58 5599.84 2399.84 5099.85 1999.66 5299.75 8899.86 2999.74 10899.79 8198.27 18599.85 22299.37 6799.93 8799.83 26
v192192099.56 6099.57 5899.55 15399.75 11399.11 20899.05 20399.61 15999.15 16799.88 4899.71 12599.08 7899.87 18799.90 1199.97 4399.66 89
UA-Net99.78 1699.76 2299.86 1899.72 12599.71 7699.91 399.95 1899.96 399.71 11899.91 2499.15 6799.97 2399.50 51100.00 199.90 12
v119299.57 5799.57 5899.57 14799.77 9899.22 19599.04 20599.60 17199.18 15699.87 5699.72 11899.08 7899.85 22299.89 1499.98 3199.66 89
FC-MVSNet-test99.70 2699.65 3699.86 1899.88 3999.86 1899.72 2999.78 7599.90 1499.82 6799.83 5598.45 16399.87 18799.51 4999.97 4399.86 19
v114499.54 6599.53 6899.59 13899.79 8399.28 18199.10 19399.61 15999.20 15499.84 6299.73 11198.67 12999.84 23699.86 1799.98 3199.64 105
sosnet-low-res8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
HFP-MVS99.25 13199.08 15499.76 5199.73 12299.70 8399.31 12899.59 17798.36 25199.36 22899.37 26998.80 11099.91 12497.43 25099.75 19699.68 74
v14899.40 9699.41 8699.39 19799.76 10298.94 22699.09 19799.59 17799.17 16199.81 7499.61 19198.41 16899.69 32099.32 7799.94 7999.53 171
sosnet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
AllTest99.21 14899.07 15899.63 12199.78 9099.64 9999.12 18999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
TestCases99.63 12199.78 9099.64 9999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
v7n99.82 1399.80 1799.88 1299.96 599.84 2499.82 899.82 5399.84 3799.94 2299.91 2499.13 7299.96 4299.83 1899.99 1399.83 26
region2R99.23 13599.05 16499.77 4499.76 10299.70 8399.31 12899.59 17798.41 24599.32 23799.36 27398.73 12299.93 8297.29 25799.74 20399.67 80
iter_conf0598.46 25698.23 25999.15 24799.04 32797.99 29499.10 19399.61 15999.79 5099.76 9399.58 20687.88 35799.92 10299.31 8099.97 4399.53 171
RRT_MVS99.67 3899.59 5199.91 299.94 1699.88 1299.78 1199.27 28799.87 2699.91 3299.87 4098.04 20499.96 4299.68 2899.99 1399.90 12
PS-MVSNAJss99.84 1099.82 1499.89 899.96 599.77 5099.68 4499.85 4099.95 599.98 1199.92 2199.28 5299.98 1199.75 24100.00 199.94 8
PS-MVSNAJ99.00 19499.08 15498.76 29499.37 25898.10 28898.00 31599.51 22499.47 11299.41 21998.50 36499.28 5299.97 2398.83 13599.34 29898.20 356
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3699.89 2099.98 1199.90 2799.94 199.98 1199.75 24100.00 199.90 12
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3199.92 1299.98 1199.93 1799.94 199.98 1199.77 23100.00 199.92 11
EI-MVSNet-UG-set99.48 7399.50 7099.42 18499.57 18698.65 25399.24 15199.46 23999.68 7499.80 7799.66 15898.99 8899.89 15999.19 9599.90 10199.72 58
EI-MVSNet-Vis-set99.47 8099.49 7199.42 18499.57 18698.66 25099.24 15199.46 23999.67 7899.79 8299.65 16398.97 9299.89 15999.15 10499.89 11099.71 61
HPM-MVS++copyleft98.96 20198.70 21999.74 6599.52 21099.71 7698.86 23199.19 30498.47 24198.59 32299.06 32398.08 20299.91 12496.94 27799.60 25499.60 135
test_prior499.19 20198.00 315
XVS99.27 12899.11 14399.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31099.47 24798.47 15999.88 17397.62 23799.73 20899.67 80
v124099.56 6099.58 5599.51 16299.80 7399.00 21999.00 21399.65 14199.15 16799.90 3899.75 10499.09 7599.88 17399.90 1199.96 5799.67 80
pm-mvs199.79 1599.79 1899.78 4199.91 2799.83 2999.76 1899.87 3399.73 5899.89 4299.87 4099.63 1999.87 18799.54 4499.92 9199.63 110
test_prior297.95 32197.87 28998.05 34599.05 32497.90 21495.99 32499.49 280
X-MVStestdata96.09 33194.87 34099.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31061.30 38498.47 15999.88 17397.62 23799.73 20899.67 80
test_prior99.46 17399.35 26399.22 19599.39 26099.69 32099.48 198
旧先验297.94 32295.33 35198.94 28799.88 17396.75 288
新几何298.04 311
新几何199.52 16099.50 21899.22 19599.26 29095.66 34898.60 32199.28 29097.67 23099.89 15995.95 32799.32 30099.45 207
旧先验199.49 22399.29 17999.26 29099.39 26597.67 23099.36 29699.46 206
无先验98.01 31399.23 29795.83 34599.85 22295.79 33299.44 212
原ACMM297.92 324
原ACMM199.37 20499.47 23498.87 23699.27 28796.74 33498.26 33499.32 28297.93 21399.82 26095.96 32699.38 29399.43 218
test22299.51 21299.08 21597.83 33099.29 28395.21 35398.68 31699.31 28497.28 24899.38 29399.43 218
testdata299.89 15995.99 324
segment_acmp98.37 174
testdata99.42 18499.51 21298.93 22999.30 28196.20 34098.87 29899.40 26198.33 18199.89 15996.29 31299.28 30599.44 212
testdata197.72 33397.86 291
v899.68 3299.69 2999.65 10799.80 7399.40 15699.66 5299.76 8399.64 8699.93 2599.85 4998.66 13199.84 23699.88 1599.99 1399.71 61
131498.00 28597.90 28898.27 31698.90 33897.45 31699.30 13199.06 31494.98 35597.21 36499.12 31698.43 16599.67 33595.58 33698.56 34597.71 363
LFMVS98.46 25698.19 26699.26 23299.24 29598.52 26199.62 6196.94 36399.87 2699.31 24199.58 20691.04 33499.81 27598.68 15399.42 28999.45 207
VDD-MVS99.20 15099.11 14399.44 17899.43 24598.98 22199.50 8798.32 34799.80 4799.56 17699.69 13896.99 26099.85 22298.99 12099.73 20899.50 189
VDDNet98.97 19898.82 20899.42 18499.71 12898.81 23899.62 6198.68 33099.81 4499.38 22699.80 7194.25 30099.85 22298.79 14199.32 30099.59 142
v1099.69 2999.69 2999.66 10299.81 6899.39 15899.66 5299.75 8899.60 9899.92 2999.87 4098.75 11899.86 20599.90 1199.99 1399.73 56
VPNet99.46 8199.37 9299.71 8599.82 6199.59 11599.48 9299.70 11599.81 4499.69 12499.58 20697.66 23499.86 20599.17 10099.44 28599.67 80
MVS95.72 33894.63 34298.99 26598.56 36197.98 30099.30 13198.86 32172.71 37597.30 36199.08 32198.34 17999.74 30389.21 36798.33 34999.26 252
v2v48299.50 6999.47 7299.58 14199.78 9099.25 18899.14 17999.58 18799.25 14599.81 7499.62 18298.24 18799.84 23699.83 1899.97 4399.64 105
V4299.56 6099.54 6499.63 12199.79 8399.46 13799.39 10799.59 17799.24 14799.86 5799.70 13298.55 14699.82 26099.79 2299.95 6899.60 135
SD-MVS99.01 19299.30 10898.15 31899.50 21899.40 15698.94 22699.61 15999.22 15399.75 10099.82 6299.54 2995.51 37897.48 24799.87 13099.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.99 28697.68 29698.93 27399.52 21098.04 29397.19 35799.05 31598.32 26298.81 30498.97 33889.89 35199.41 36898.33 17099.05 31999.34 238
MSLP-MVS++99.05 18299.09 15298.91 27699.21 29998.36 27298.82 24099.47 23698.85 20198.90 29499.56 21898.78 11399.09 37198.57 15799.68 22899.26 252
APDe-MVS99.48 7399.36 9599.85 2099.55 19899.81 3899.50 8799.69 12198.99 18299.75 10099.71 12598.79 11199.93 8298.46 16299.85 14299.80 32
APD-MVS_3200maxsize99.31 12199.16 13099.74 6599.53 20599.75 6299.27 14299.61 15999.19 15599.57 16999.64 16598.76 11699.90 14297.29 25799.62 24499.56 154
ADS-MVSNet297.78 29197.66 29898.12 32099.14 31095.36 35099.22 15898.75 32796.97 32798.25 33599.64 16590.90 33799.94 6596.51 30299.56 26199.08 295
EI-MVSNet99.38 10299.44 8199.21 23999.58 17698.09 28999.26 14499.46 23999.62 8999.75 10099.67 15498.54 14899.85 22299.15 10499.92 9199.68 74
Regformer8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
CVMVSNet98.61 23698.88 20097.80 32799.58 17693.60 36299.26 14499.64 14799.66 8299.72 11399.67 15493.26 31199.93 8299.30 8199.81 17399.87 17
pmmvs499.13 16899.06 16099.36 20899.57 18699.10 21398.01 31399.25 29398.78 21199.58 16699.44 25498.24 18799.76 29798.74 14799.93 8799.22 260
EU-MVSNet99.39 10099.62 4298.72 29699.88 3996.44 33799.56 7999.85 4099.90 1499.90 3899.85 4998.09 20099.83 25199.58 3899.95 6899.90 12
VNet99.18 15799.06 16099.56 15099.24 29599.36 16799.33 12199.31 27899.67 7899.47 20199.57 21596.48 27099.84 23699.15 10499.30 30299.47 202
test-LLR97.15 30996.95 31397.74 33098.18 37095.02 35397.38 34996.10 36498.00 27897.81 35598.58 35790.04 34999.91 12497.69 23598.78 33298.31 348
TESTMET0.1,196.24 32995.84 33197.41 33698.24 36893.84 36197.38 34995.84 36898.43 24297.81 35598.56 36079.77 37799.89 15997.77 21898.77 33498.52 339
test-mter96.23 33095.73 33297.74 33098.18 37095.02 35397.38 34996.10 36497.90 28797.81 35598.58 35779.12 38099.91 12497.69 23598.78 33298.31 348
VPA-MVSNet99.66 4099.62 4299.79 3899.68 14899.75 6299.62 6199.69 12199.85 3499.80 7799.81 6798.81 10699.91 12499.47 5399.88 11999.70 64
ACMMPR99.23 13599.06 16099.76 5199.74 11999.69 8699.31 12899.59 17798.36 25199.35 22999.38 26798.61 13799.93 8297.43 25099.75 19699.67 80
testgi99.29 12399.26 11999.37 20499.75 11398.81 23898.84 23499.89 2798.38 24999.75 10099.04 32699.36 4599.86 20599.08 11499.25 30999.45 207
test20.0399.55 6399.54 6499.58 14199.79 8399.37 16399.02 20999.89 2799.60 9899.82 6799.62 18298.81 10699.89 15999.43 5799.86 13899.47 202
thres600view796.60 32296.16 32497.93 32399.63 16096.09 34399.18 16697.57 35798.77 21298.72 31397.32 37887.04 36199.72 30888.57 36898.62 34397.98 360
ADS-MVSNet97.72 29697.67 29797.86 32599.14 31094.65 35699.22 15898.86 32196.97 32798.25 33599.64 16590.90 33799.84 23696.51 30299.56 26199.08 295
MP-MVScopyleft99.06 17998.83 20799.76 5199.76 10299.71 7699.32 12399.50 22898.35 25698.97 28499.48 24398.37 17499.92 10295.95 32799.75 19699.63 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs28.94 34533.33 34715.79 36126.03 3839.81 38596.77 36515.67 38411.55 37923.87 38050.74 38719.03 3848.53 38023.21 37833.07 37729.03 376
thres40096.40 32495.89 32897.92 32499.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34697.98 360
test12329.31 34433.05 34918.08 36025.93 38412.24 38497.53 34310.93 38511.78 37824.21 37950.08 38821.04 3838.60 37923.51 37732.43 37833.39 375
thres20096.09 33195.68 33397.33 33999.48 22896.22 34098.53 27197.57 35798.06 27798.37 33296.73 38386.84 36599.61 35386.99 37498.57 34496.16 372
test0.0.03 197.37 30696.91 31698.74 29597.72 37397.57 31297.60 33997.36 36298.00 27899.21 25998.02 37190.04 34999.79 28498.37 16695.89 37398.86 321
pmmvs398.08 28197.80 29098.91 27699.41 25197.69 31097.87 32899.66 13295.87 34399.50 19799.51 23390.35 34599.97 2398.55 15899.47 28299.08 295
EMVS96.96 31497.28 30495.99 35698.76 35591.03 37495.26 37198.61 33499.34 13398.92 29198.88 34793.79 30599.66 33992.87 36099.05 31997.30 368
E-PMN97.14 31197.43 30096.27 35398.79 35191.62 37195.54 37099.01 31899.44 11898.88 29599.12 31692.78 31799.68 33094.30 35299.03 32197.50 364
PGM-MVS99.20 15099.01 17599.77 4499.75 11399.71 7699.16 17599.72 10697.99 28099.42 21399.60 19998.81 10699.93 8296.91 27999.74 20399.66 89
LCM-MVSNet-Re99.28 12499.15 13399.67 9599.33 27699.76 5899.34 11899.97 1198.93 19199.91 3299.79 8198.68 12699.93 8296.80 28699.56 26199.30 247
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1199.99 1100.00 199.98 1099.78 10100.00 199.92 10100.00 199.87 17
MCST-MVS99.02 18898.81 20999.65 10799.58 17699.49 13198.58 26199.07 31298.40 24799.04 28199.25 29798.51 15799.80 28197.31 25699.51 27699.65 97
mvs_anonymous99.28 12499.39 8798.94 27099.19 30497.81 30599.02 20999.55 20099.78 5299.85 5999.80 7198.24 18799.86 20599.57 4099.50 27899.15 277
MVS_Test99.28 12499.31 10399.19 24299.35 26398.79 24099.36 11699.49 23299.17 16199.21 25999.67 15498.78 11399.66 33999.09 11399.66 23799.10 288
MDA-MVSNet-bldmvs99.06 17999.05 16499.07 26099.80 7397.83 30498.89 22899.72 10699.29 13799.63 14399.70 13296.47 27199.89 15998.17 18699.82 16499.50 189
CDPH-MVS98.56 24498.20 26399.61 13399.50 21899.46 13798.32 28699.41 25095.22 35299.21 25999.10 32098.34 17999.82 26095.09 34599.66 23799.56 154
test1299.54 15799.29 28599.33 17399.16 30798.43 33097.54 23799.82 26099.47 28299.48 198
casdiffmvspermissive99.63 4699.61 4699.67 9599.79 8399.59 11599.13 18599.85 4099.79 5099.76 9399.72 11899.33 4799.82 26099.21 9199.94 7999.59 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive99.34 11599.32 10299.39 19799.67 15398.77 24198.57 26599.81 6299.61 9299.48 20099.41 25798.47 15999.86 20598.97 12499.90 10199.53 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.83 31696.28 32298.46 30699.09 32296.91 33098.83 23693.87 37597.23 31996.23 37098.36 36688.12 35699.90 14296.68 29298.14 35698.57 338
baseline197.73 29397.33 30398.96 26899.30 28397.73 30899.40 10598.42 34399.33 13599.46 20599.21 30691.18 33299.82 26098.35 16891.26 37599.32 242
YYNet198.95 20498.99 18398.84 28699.64 15897.14 32598.22 29399.32 27498.92 19399.59 16499.66 15897.40 24299.83 25198.27 17499.90 10199.55 157
PMMVS299.48 7399.45 7899.57 14799.76 10298.99 22098.09 30599.90 2598.95 18799.78 8699.58 20699.57 2699.93 8299.48 5299.95 6899.79 38
MDA-MVSNet_test_wron98.95 20498.99 18398.85 28499.64 15897.16 32398.23 29299.33 27298.93 19199.56 17699.66 15897.39 24499.83 25198.29 17299.88 11999.55 157
tpmvs97.39 30597.69 29596.52 35098.41 36391.76 36999.30 13198.94 32097.74 29497.85 35499.55 22592.40 32399.73 30696.25 31498.73 34098.06 359
PM-MVS99.36 10899.29 11399.58 14199.83 5499.66 9398.95 22499.86 3698.85 20199.81 7499.73 11198.40 17299.92 10298.36 16799.83 15599.17 273
HQP_MVS98.90 20998.68 22099.55 15399.58 17699.24 19298.80 24499.54 20698.94 18899.14 26999.25 29797.24 24999.82 26095.84 33099.78 18899.60 135
plane_prior799.58 17699.38 160
plane_prior699.47 23499.26 18597.24 249
plane_prior599.54 20699.82 26095.84 33099.78 18899.60 135
plane_prior499.25 297
plane_prior399.31 17698.36 25199.14 269
plane_prior298.80 24498.94 188
plane_prior199.51 212
plane_prior99.24 19298.42 28197.87 28999.71 217
PS-CasMVS99.66 4099.58 5599.89 899.80 7399.85 1999.66 5299.73 9799.62 8999.84 6299.71 12598.62 13599.96 4299.30 8199.96 5799.86 19
UniMVSNet_NR-MVSNet99.37 10599.25 12199.72 8099.47 23499.56 12298.97 22299.61 15999.43 12399.67 13299.28 29097.85 21999.95 5299.17 10099.81 17399.65 97
PEN-MVS99.66 4099.59 5199.89 899.83 5499.87 1599.66 5299.73 9799.70 6999.84 6299.73 11198.56 14599.96 4299.29 8499.94 7999.83 26
TransMVSNet (Re)99.78 1699.77 2099.81 3099.91 2799.85 1999.75 2199.86 3699.70 6999.91 3299.89 3199.60 2499.87 18799.59 3599.74 20399.71 61
DTE-MVSNet99.68 3299.61 4699.88 1299.80 7399.87 1599.67 4899.71 10999.72 6299.84 6299.78 8898.67 12999.97 2399.30 8199.95 6899.80 32
DU-MVS99.33 11899.21 12599.71 8599.43 24599.56 12298.83 23699.53 21599.38 12999.67 13299.36 27397.67 23099.95 5299.17 10099.81 17399.63 110
UniMVSNet (Re)99.37 10599.26 11999.68 9299.51 21299.58 11998.98 22199.60 17199.43 12399.70 12199.36 27397.70 22699.88 17399.20 9499.87 13099.59 142
CP-MVSNet99.54 6599.43 8399.87 1599.76 10299.82 3599.57 7799.61 15999.54 10299.80 7799.64 16597.79 22399.95 5299.21 9199.94 7999.84 22
WR-MVS_H99.61 5499.53 6899.87 1599.80 7399.83 2999.67 4899.75 8899.58 10199.85 5999.69 13898.18 19699.94 6599.28 8699.95 6899.83 26
WR-MVS99.11 17398.93 19199.66 10299.30 28399.42 15198.42 28199.37 26599.04 17999.57 16999.20 30896.89 26299.86 20598.66 15499.87 13099.70 64
NR-MVSNet99.40 9699.31 10399.68 9299.43 24599.55 12599.73 2699.50 22899.46 11599.88 4899.36 27397.54 23799.87 18798.97 12499.87 13099.63 110
Baseline_NR-MVSNet99.49 7199.37 9299.82 2799.91 2799.84 2498.83 23699.86 3699.68 7499.65 13899.88 3697.67 23099.87 18799.03 11799.86 13899.76 51
TranMVSNet+NR-MVSNet99.54 6599.47 7299.76 5199.58 17699.64 9999.30 13199.63 14999.61 9299.71 11899.56 21898.76 11699.96 4299.14 11099.92 9199.68 74
TSAR-MVS + GP.99.12 17099.04 16999.38 20199.34 27199.16 20398.15 29799.29 28398.18 27199.63 14399.62 18299.18 6499.68 33098.20 18099.74 20399.30 247
n20.00 386
nn0.00 386
mPP-MVS99.19 15399.00 17899.76 5199.76 10299.68 8999.38 10999.54 20698.34 26099.01 28299.50 23698.53 15299.93 8297.18 26999.78 18899.66 89
door-mid99.83 48
XVG-OURS-SEG-HR99.16 16298.99 18399.66 10299.84 5099.64 9998.25 29199.73 9798.39 24899.63 14399.43 25599.70 1699.90 14297.34 25498.64 34299.44 212
mvsmamba99.74 2199.70 2599.85 2099.93 2399.83 2999.76 1899.81 6299.96 399.91 3299.81 6798.60 13999.94 6599.58 3899.98 3199.77 45
MVSFormer99.41 9499.44 8199.31 22199.57 18698.40 26899.77 1499.80 6499.73 5899.63 14399.30 28698.02 20699.98 1199.43 5799.69 22399.55 157
jason99.16 16299.11 14399.32 21899.75 11398.44 26598.26 29099.39 26098.70 21899.74 10899.30 28698.54 14899.97 2398.48 16199.82 16499.55 157
jason: jason.
lupinMVS98.96 20198.87 20199.24 23799.57 18698.40 26898.12 30199.18 30598.28 26499.63 14399.13 31298.02 20699.97 2398.22 17899.69 22399.35 236
test_djsdf99.84 1099.81 1599.91 299.94 1699.84 2499.77 1499.80 6499.73 5899.97 1499.92 2199.77 1199.98 1199.43 57100.00 199.90 12
HPM-MVS_fast99.43 8799.30 10899.80 3499.83 5499.81 3899.52 8399.70 11598.35 25699.51 19599.50 23699.31 4899.88 17398.18 18499.84 14799.69 68
K. test v398.87 21598.60 22499.69 9099.93 2399.46 13799.74 2394.97 37099.78 5299.88 4899.88 3693.66 30899.97 2399.61 3399.95 6899.64 105
lessismore_v099.64 11499.86 4699.38 16090.66 37899.89 4299.83 5594.56 29899.97 2399.56 4199.92 9199.57 152
SixPastTwentyTwo99.42 9099.30 10899.76 5199.92 2699.67 9199.70 3499.14 30999.65 8499.89 4299.90 2796.20 28199.94 6599.42 6299.92 9199.67 80
OurMVSNet-221017-099.75 1899.71 2499.84 2399.96 599.83 2999.83 699.85 4099.80 4799.93 2599.93 1798.54 14899.93 8299.59 3599.98 3199.76 51
HPM-MVScopyleft99.25 13199.07 15899.78 4199.81 6899.75 6299.61 6699.67 12897.72 29599.35 22999.25 29799.23 5999.92 10297.21 26899.82 16499.67 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS99.21 14899.06 16099.65 10799.82 6199.62 10597.87 32899.74 9398.36 25199.66 13699.68 14999.71 1499.90 14296.84 28599.88 11999.43 218
XVG-ACMP-BASELINE99.23 13599.10 15199.63 12199.82 6199.58 11998.83 23699.72 10698.36 25199.60 16199.71 12598.92 9699.91 12497.08 27299.84 14799.40 223
casdiffmvs_mvgpermissive99.68 3299.68 3299.69 9099.81 6899.59 11599.29 13799.90 2599.71 6499.79 8299.73 11199.54 2999.84 23699.36 6999.96 5799.65 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test99.22 14399.05 16499.74 6599.82 6199.63 10399.16 17599.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
LGP-MVS_train99.74 6599.82 6199.63 10399.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
baseline99.63 4699.62 4299.66 10299.80 7399.62 10599.44 10199.80 6499.71 6499.72 11399.69 13899.15 6799.83 25199.32 7799.94 7999.53 171
test1199.29 283
door99.77 78
EPNet_dtu97.62 29897.79 29297.11 34496.67 37792.31 36798.51 27398.04 35099.24 14795.77 37199.47 24793.78 30699.66 33998.98 12299.62 24499.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.39 10099.30 10899.65 10799.88 3999.25 18898.78 24899.88 3198.66 22099.96 1699.79 8197.45 24099.93 8299.34 7299.99 1399.78 41
EPNet98.13 27897.77 29399.18 24494.57 38097.99 29499.24 15197.96 35299.74 5797.29 36299.62 18293.13 31399.97 2398.59 15699.83 15599.58 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS98.94 226
HQP-NCC99.31 27997.98 31797.45 30898.15 339
ACMP_Plane99.31 27997.98 31797.45 30898.15 339
APD-MVScopyleft98.87 21598.59 22699.71 8599.50 21899.62 10599.01 21199.57 18996.80 33399.54 18399.63 17598.29 18399.91 12495.24 34299.71 21799.61 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS94.73 347
HQP4-MVS98.15 33999.70 31499.53 171
HQP3-MVS99.37 26599.67 234
HQP2-MVS96.67 265
CNVR-MVS98.99 19798.80 21199.56 15099.25 29399.43 14898.54 27099.27 28798.58 22898.80 30699.43 25598.53 15299.70 31497.22 26799.59 25899.54 165
NCCC98.82 21998.57 23099.58 14199.21 29999.31 17698.61 25799.25 29398.65 22198.43 33099.26 29597.86 21799.81 27596.55 29999.27 30899.61 131
114514_t98.49 25398.11 27099.64 11499.73 12299.58 11999.24 15199.76 8389.94 36999.42 21399.56 21897.76 22599.86 20597.74 22399.82 16499.47 202
CP-MVS99.23 13599.05 16499.75 6099.66 15499.66 9399.38 10999.62 15298.38 24999.06 28099.27 29298.79 11199.94 6597.51 24699.82 16499.66 89
DSMNet-mixed99.48 7399.65 3698.95 26999.71 12897.27 32099.50 8799.82 5399.59 10099.41 21999.85 4999.62 21100.00 199.53 4799.89 11099.59 142
tpm296.35 32696.22 32396.73 34898.88 34391.75 37099.21 16098.51 33993.27 36397.89 35199.21 30684.83 37099.70 31496.04 32198.18 35598.75 330
NP-MVS99.40 25299.13 20698.83 349
EG-PatchMatch MVS99.57 5799.56 6399.62 13099.77 9899.33 17399.26 14499.76 8399.32 13699.80 7799.78 8899.29 5099.87 18799.15 10499.91 10099.66 89
tpm cat196.78 31796.98 31296.16 35598.85 34490.59 37899.08 20099.32 27492.37 36497.73 35999.46 25091.15 33399.69 32096.07 32098.80 33198.21 354
SteuartSystems-ACMMP99.30 12299.14 13499.76 5199.87 4399.66 9399.18 16699.60 17198.55 23199.57 16999.67 15499.03 8599.94 6597.01 27499.80 17899.69 68
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.71 32096.79 31996.46 35298.90 33890.71 37799.41 10498.68 33094.69 36098.14 34399.34 28186.32 36899.80 28197.60 24098.07 35898.88 319
CR-MVSNet98.35 26898.20 26398.83 28899.05 32598.12 28599.30 13199.67 12897.39 31299.16 26599.79 8191.87 32699.91 12498.78 14498.77 33498.44 345
JIA-IIPM98.06 28297.92 28698.50 30498.59 36097.02 32798.80 24498.51 33999.88 2597.89 35199.87 4091.89 32599.90 14298.16 18797.68 36398.59 335
Patchmtry98.78 22298.54 23499.49 16598.89 34199.19 20199.32 12399.67 12899.65 8499.72 11399.79 8191.87 32699.95 5298.00 19799.97 4399.33 239
PatchT98.45 25898.32 25498.83 28898.94 33698.29 27499.24 15198.82 32499.84 3799.08 27699.76 9991.37 32999.94 6598.82 13799.00 32398.26 351
tpmrst97.73 29398.07 27296.73 34898.71 35792.00 36899.10 19398.86 32198.52 23598.92 29199.54 22791.90 32499.82 26098.02 19399.03 32198.37 347
BH-w/o97.20 30897.01 31197.76 32899.08 32395.69 34798.03 31298.52 33895.76 34697.96 34898.02 37195.62 28999.47 36592.82 36197.25 36698.12 358
tpm97.15 30996.95 31397.75 32998.91 33794.24 35899.32 12397.96 35297.71 29698.29 33399.32 28286.72 36699.92 10298.10 19196.24 37299.09 292
DELS-MVS99.34 11599.30 10899.48 16999.51 21299.36 16798.12 30199.53 21599.36 13299.41 21999.61 19199.22 6099.87 18799.21 9199.68 22899.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.22 27698.09 27198.58 30299.38 25697.24 32198.55 26798.98 31997.81 29399.20 26498.76 35397.01 25999.65 34594.83 34698.33 34998.86 321
RPMNet98.60 23898.53 23698.83 28899.05 32598.12 28599.30 13199.62 15299.86 2999.16 26599.74 10792.53 32099.92 10298.75 14698.77 33498.44 345
MVSTER98.47 25598.22 26199.24 23799.06 32498.35 27399.08 20099.46 23999.27 14199.75 10099.66 15888.61 35599.85 22299.14 11099.92 9199.52 182
CPTT-MVS98.74 22798.44 24199.64 11499.61 16599.38 16099.18 16699.55 20096.49 33599.27 24899.37 26997.11 25799.92 10295.74 33399.67 23499.62 121
GBi-Net99.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
PVSNet_Blended_VisFu99.40 9699.38 8999.44 17899.90 3298.66 25098.94 22699.91 2297.97 28299.79 8299.73 11199.05 8399.97 2399.15 10499.99 1399.68 74
PVSNet_BlendedMVS99.03 18699.01 17599.09 25699.54 19997.99 29498.58 26199.82 5397.62 29999.34 23299.71 12598.52 15599.77 29597.98 19899.97 4399.52 182
UnsupCasMVSNet_eth98.83 21898.57 23099.59 13899.68 14899.45 14298.99 21899.67 12899.48 10899.55 18199.36 27394.92 29299.86 20598.95 13096.57 36999.45 207
UnsupCasMVSNet_bld98.55 24598.27 25899.40 19399.56 19799.37 16397.97 32099.68 12497.49 30799.08 27699.35 27895.41 29199.82 26097.70 22998.19 35499.01 309
PVSNet_Blended98.70 23298.59 22699.02 26499.54 19997.99 29497.58 34099.82 5395.70 34799.34 23298.98 33698.52 15599.77 29597.98 19899.83 15599.30 247
FMVSNet597.80 29097.25 30699.42 18498.83 34698.97 22399.38 10999.80 6498.87 19999.25 25099.69 13880.60 37699.91 12498.96 12699.90 10199.38 227
test199.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
new_pmnet98.88 21398.89 19998.84 28699.70 13697.62 31198.15 29799.50 22897.98 28199.62 15299.54 22798.15 19799.94 6597.55 24299.84 14798.95 313
FMVSNet398.80 22198.63 22399.32 21899.13 31298.72 24599.10 19399.48 23399.23 14999.62 15299.64 16592.57 31899.86 20598.96 12699.90 10199.39 225
dp96.86 31597.07 30996.24 35498.68 35990.30 37999.19 16598.38 34697.35 31498.23 33799.59 20487.23 35999.82 26096.27 31398.73 34098.59 335
FMVSNet299.35 11099.28 11599.55 15399.49 22399.35 17099.45 9899.57 18999.44 11899.70 12199.74 10797.21 25199.87 18799.03 11799.94 7999.44 212
FMVSNet199.66 4099.63 4199.73 7499.78 9099.77 5099.68 4499.70 11599.67 7899.82 6799.83 5598.98 9099.90 14299.24 8899.97 4399.53 171
N_pmnet98.73 22998.53 23699.35 21099.72 12598.67 24798.34 28494.65 37198.35 25699.79 8299.68 14998.03 20599.93 8298.28 17399.92 9199.44 212
cascas96.99 31296.82 31897.48 33397.57 37695.64 34896.43 36899.56 19491.75 36597.13 36697.61 37695.58 29098.63 37496.68 29299.11 31698.18 357
BH-RMVSNet98.41 26198.14 26999.21 23999.21 29998.47 26298.60 25998.26 34898.35 25698.93 28899.31 28497.20 25499.66 33994.32 35199.10 31799.51 184
UGNet99.38 10299.34 9799.49 16598.90 33898.90 23399.70 3499.35 26999.86 2998.57 32499.81 6798.50 15899.93 8299.38 6499.98 3199.66 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.59 24198.37 24899.26 23299.43 24598.40 26898.74 25199.13 31198.10 27399.21 25999.24 30294.82 29499.90 14297.86 21198.77 33499.49 194
XXY-MVS99.71 2599.67 3399.81 3099.89 3499.72 7499.59 7299.82 5399.39 12899.82 6799.84 5499.38 4099.91 12499.38 6499.93 8799.80 32
DROMVSNet99.69 2999.69 2999.68 9299.71 12899.91 499.76 1899.96 1599.86 2999.51 19599.39 26599.57 2699.93 8299.64 3299.86 13899.20 266
sss98.90 20998.77 21399.27 22999.48 22898.44 26598.72 25399.32 27497.94 28699.37 22799.35 27896.31 27899.91 12498.85 13499.63 24399.47 202
Test_1112_low_res98.95 20498.73 21499.63 12199.68 14899.15 20598.09 30599.80 6497.14 32499.46 20599.40 26196.11 28399.89 15999.01 11999.84 14799.84 22
1112_ss99.05 18298.84 20599.67 9599.66 15499.29 17998.52 27299.82 5397.65 29899.43 21199.16 31096.42 27399.91 12499.07 11599.84 14799.80 32
ab-mvs-re8.26 35611.02 3590.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.16 3100.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs99.33 11899.28 11599.47 17199.57 18699.39 15899.78 1199.43 24798.87 19999.57 16999.82 6298.06 20399.87 18798.69 15299.73 20899.15 277
TR-MVS97.44 30497.15 30898.32 31298.53 36297.46 31598.47 27697.91 35496.85 33098.21 33898.51 36396.42 27399.51 36392.16 36297.29 36597.98 360
MDTV_nov1_ep13_2view91.44 37399.14 17997.37 31399.21 25991.78 32896.75 28899.03 304
MDTV_nov1_ep1397.73 29498.70 35890.83 37599.15 17798.02 35198.51 23698.82 30399.61 19190.98 33599.66 33996.89 28198.92 327
MIMVSNet199.66 4099.62 4299.80 3499.94 1699.87 1599.69 4199.77 7899.78 5299.93 2599.89 3197.94 21299.92 10299.65 3099.98 3199.62 121
MIMVSNet98.43 25998.20 26399.11 25399.53 20598.38 27199.58 7498.61 33498.96 18699.33 23499.76 9990.92 33699.81 27597.38 25399.76 19499.15 277
IterMVS-LS99.41 9499.47 7299.25 23599.81 6898.09 28998.85 23399.76 8399.62 8999.83 6699.64 16598.54 14899.97 2399.15 10499.99 1399.68 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.22 14399.13 13699.50 16499.35 26399.11 20898.96 22399.54 20699.46 11599.61 15899.70 13296.31 27899.83 25199.34 7299.88 11999.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.94 79
IterMVS98.97 19899.16 13098.42 30799.74 11995.64 34898.06 31099.83 4899.83 4099.85 5999.74 10796.10 28499.99 699.27 87100.00 199.63 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.50 25198.23 25999.31 22199.49 22399.46 13798.56 26699.63 14994.86 35898.85 30099.37 26997.81 22199.59 35596.08 31999.44 28598.88 319
MVS_111021_LR99.13 16899.03 17199.42 18499.58 17699.32 17597.91 32699.73 9798.68 21999.31 24199.48 24399.09 7599.66 33997.70 22999.77 19299.29 250
DP-MVS99.48 7399.39 8799.74 6599.57 18699.62 10599.29 13799.61 15999.87 2699.74 10899.76 9998.69 12599.87 18798.20 18099.80 17899.75 54
ACMMP++99.79 183
HQP-MVS98.36 26598.02 27599.39 19799.31 27998.94 22697.98 31799.37 26597.45 30898.15 33998.83 34996.67 26599.70 31494.73 34799.67 23499.53 171
QAPM98.40 26397.99 27699.65 10799.39 25399.47 13399.67 4899.52 22091.70 36698.78 30999.80 7198.55 14699.95 5294.71 34999.75 19699.53 171
Vis-MVSNetpermissive99.75 1899.74 2399.79 3899.88 3999.66 9399.69 4199.92 1999.67 7899.77 9199.75 10499.61 2299.98 1199.35 7199.98 3199.72 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet97.86 28798.22 26196.76 34699.28 28891.53 37298.38 28392.60 37699.13 16999.31 24199.96 1297.18 25599.68 33098.34 16999.83 15599.07 300
IS-MVSNet99.03 18698.85 20399.55 15399.80 7399.25 18899.73 2699.15 30899.37 13099.61 15899.71 12594.73 29699.81 27597.70 22999.88 11999.58 147
HyFIR lowres test98.91 20798.64 22199.73 7499.85 4999.47 13398.07 30899.83 4898.64 22299.89 4299.60 19992.57 318100.00 199.33 7599.97 4399.72 58
EPMVS96.53 32396.32 32197.17 34398.18 37092.97 36599.39 10789.95 38098.21 26898.61 32099.59 20486.69 36799.72 30896.99 27599.23 31398.81 325
PAPM_NR98.36 26598.04 27399.33 21499.48 22898.93 22998.79 24799.28 28697.54 30398.56 32598.57 35997.12 25699.69 32094.09 35598.90 32999.38 227
TAMVS99.49 7199.45 7899.63 12199.48 22899.42 15199.45 9899.57 18999.66 8299.78 8699.83 5597.85 21999.86 20599.44 5699.96 5799.61 131
PAPR97.56 30197.07 30999.04 26398.80 35098.11 28797.63 33799.25 29394.56 36198.02 34798.25 36997.43 24199.68 33090.90 36698.74 33899.33 239
RPSCF99.18 15799.02 17299.64 11499.83 5499.85 1999.44 10199.82 5398.33 26199.50 19799.78 8897.90 21499.65 34596.78 28799.83 15599.44 212
Vis-MVSNet (Re-imp)98.77 22398.58 22999.34 21199.78 9098.88 23499.61 6699.56 19499.11 17399.24 25399.56 21893.00 31699.78 28797.43 25099.89 11099.35 236
test_040299.22 14399.14 13499.45 17699.79 8399.43 14899.28 13999.68 12499.54 10299.40 22499.56 21899.07 8099.82 26096.01 32299.96 5799.11 286
MVS_111021_HR99.12 17099.02 17299.40 19399.50 21899.11 20897.92 32499.71 10998.76 21599.08 27699.47 24799.17 6599.54 35897.85 21399.76 19499.54 165
CSCG99.37 10599.29 11399.60 13699.71 12899.46 13799.43 10399.85 4098.79 20999.41 21999.60 19998.92 9699.92 10298.02 19399.92 9199.43 218
PatchMatch-RL98.68 23398.47 23899.30 22399.44 24299.28 18198.14 29999.54 20697.12 32599.11 27399.25 29797.80 22299.70 31496.51 30299.30 30298.93 315
API-MVS98.38 26498.39 24698.35 31098.83 34699.26 18599.14 17999.18 30598.59 22798.66 31798.78 35298.61 13799.57 35794.14 35499.56 26196.21 371
Test By Simon98.41 168
TDRefinement99.72 2299.70 2599.77 4499.90 3299.85 1999.86 599.92 1999.69 7299.78 8699.92 2199.37 4299.88 17398.93 13299.95 6899.60 135
USDC98.96 20198.93 19199.05 26299.54 19997.99 29497.07 36199.80 6498.21 26899.75 10099.77 9598.43 16599.64 34797.90 20599.88 11999.51 184
EPP-MVSNet99.17 16199.00 17899.66 10299.80 7399.43 14899.70 3499.24 29699.48 10899.56 17699.77 9594.89 29399.93 8298.72 14999.89 11099.63 110
PMMVS98.49 25398.29 25799.11 25398.96 33598.42 26797.54 34199.32 27497.53 30498.47 32998.15 37097.88 21699.82 26097.46 24899.24 31199.09 292
PAPM95.61 33994.71 34198.31 31499.12 31496.63 33496.66 36798.46 34290.77 36896.25 36898.68 35693.01 31599.69 32081.60 37697.86 36298.62 333
ACMMPcopyleft99.25 13199.08 15499.74 6599.79 8399.68 8999.50 8799.65 14198.07 27699.52 19099.69 13898.57 14399.92 10297.18 26999.79 18399.63 110
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA98.57 24398.34 25299.28 22699.18 30699.10 21398.34 28499.41 25098.48 24098.52 32698.98 33697.05 25899.78 28795.59 33599.50 27898.96 311
PatchmatchNetpermissive97.65 29797.80 29097.18 34298.82 34992.49 36699.17 17198.39 34598.12 27298.79 30799.58 20690.71 34199.89 15997.23 26699.41 29099.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 17398.95 19099.59 13899.13 31299.59 11599.17 17199.65 14197.88 28899.25 25099.46 25098.97 9299.80 28197.26 26299.82 16499.37 230
F-COLMAP98.74 22798.45 24099.62 13099.57 18699.47 13398.84 23499.65 14196.31 33998.93 28899.19 30997.68 22999.87 18796.52 30199.37 29599.53 171
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 58100.00 199.90 14100.00 199.97 1199.61 2299.97 2399.75 24100.00 199.84 22
wuyk23d97.58 30099.13 13692.93 35899.69 14099.49 13199.52 8399.77 7897.97 28299.96 1699.79 8199.84 699.94 6595.85 32999.82 16479.36 374
OMC-MVS98.90 20998.72 21599.44 17899.39 25399.42 15198.58 26199.64 14797.31 31699.44 20799.62 18298.59 14099.69 32096.17 31899.79 18399.22 260
MG-MVS98.52 24898.39 24698.94 27099.15 30997.39 31898.18 29499.21 30398.89 19899.23 25499.63 17597.37 24599.74 30394.22 35399.61 25199.69 68
AdaColmapbinary98.60 23898.35 25199.38 20199.12 31499.22 19598.67 25699.42 24997.84 29298.81 30499.27 29297.32 24799.81 27595.14 34399.53 27299.10 288
uanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
ITE_SJBPF99.38 20199.63 16099.44 14499.73 9798.56 22999.33 23499.53 22998.88 10299.68 33096.01 32299.65 23999.02 308
DeepMVS_CXcopyleft97.98 32199.69 14096.95 32899.26 29075.51 37495.74 37298.28 36896.47 27199.62 34991.23 36597.89 36097.38 366
TinyColmap98.97 19898.93 19199.07 26099.46 23898.19 28097.75 33299.75 8898.79 20999.54 18399.70 13298.97 9299.62 34996.63 29799.83 15599.41 222
MAR-MVS98.24 27497.92 28699.19 24298.78 35399.65 9899.17 17199.14 30995.36 35098.04 34698.81 35197.47 23999.72 30895.47 33899.06 31898.21 354
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS99.01 19298.92 19599.27 22999.71 12899.28 18198.59 26099.77 7898.32 26299.39 22599.41 25798.62 13599.84 23696.62 29899.84 14798.69 331
MSDG99.08 17798.98 18699.37 20499.60 16799.13 20697.54 34199.74 9398.84 20499.53 18899.55 22599.10 7399.79 28497.07 27399.86 13899.18 271
LS3D99.24 13499.11 14399.61 13398.38 36499.79 4499.57 7799.68 12499.61 9299.15 26799.71 12598.70 12499.91 12497.54 24399.68 22899.13 285
CLD-MVS98.76 22498.57 23099.33 21499.57 18698.97 22397.53 34399.55 20096.41 33699.27 24899.13 31299.07 8099.78 28796.73 29099.89 11099.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS96.32 32795.50 33498.79 29299.60 16798.17 28398.46 28098.80 32597.16 32396.28 36799.63 17582.19 37399.09 37188.45 36998.89 33099.10 288
Gipumacopyleft99.57 5799.59 5199.49 16599.98 399.71 7699.72 2999.84 4699.81 4499.94 2299.78 8898.91 9899.71 31298.41 16499.95 6899.05 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015