This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6699.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27999.42 16899.70 3599.56 22099.23 18299.35 25799.80 9099.17 8199.95 6698.21 20899.84 16599.59 166
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 29099.47 15099.62 6499.50 25599.44 14899.12 30299.78 11098.77 13899.94 8197.87 24199.72 23699.62 145
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16699.71 13299.27 17499.93 3899.90 3399.70 2499.93 9998.99 14499.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31599.22 21598.99 24899.40 28499.08 20799.58 18899.64 19298.90 12499.83 27997.44 28199.75 21799.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32699.75 6997.25 39999.47 26398.72 25599.66 15899.70 15899.29 6699.63 38498.07 22399.81 19299.62 145
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9198.77 25099.80 9399.85 6399.64 2899.85 24998.70 17699.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13699.77 10099.53 12999.77 11199.76 12299.26 7299.78 31797.77 24999.88 13599.60 159
HY-MVS98.23 998.21 30897.95 31198.99 29599.03 36198.24 30499.61 7098.72 35896.81 37698.73 34399.51 26194.06 33399.86 23196.91 31598.20 39298.86 363
OpenMVScopyleft98.12 1098.23 30497.89 32099.26 25999.19 33399.26 20599.65 5999.69 14491.33 41298.14 37899.77 11998.28 20599.96 5695.41 38199.55 29098.58 382
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20499.65 16798.99 21599.64 16199.72 14299.39 5299.86 23198.23 20699.81 19299.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9799.53 12999.67 15399.78 11099.19 7999.86 23197.32 28899.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS97.92 1398.03 31597.55 33199.46 19799.47 25899.44 16198.50 31399.62 18086.79 41599.07 30999.26 32698.26 20899.62 38597.28 29299.73 23099.31 272
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 26199.66 15797.11 37099.47 22699.60 22799.07 9799.89 18496.18 35799.85 16099.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet97.47 1598.42 28898.44 26998.35 34699.46 26296.26 37796.70 41099.34 29897.68 34199.00 31399.13 34397.40 26599.72 34097.59 27399.68 25099.08 329
PLCcopyleft97.35 1698.36 29397.99 30799.48 19299.32 30599.24 21298.50 31399.51 25195.19 39898.58 35698.96 37196.95 28599.83 27995.63 37699.25 33799.37 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft97.31 1797.36 34196.84 35198.89 31499.29 31299.45 15998.87 26299.48 26086.54 41799.44 23299.74 13197.34 26999.86 23191.61 40799.28 33397.37 413
PCF-MVS96.03 1896.73 35495.86 36699.33 23899.44 26799.16 22496.87 40899.44 27186.58 41698.95 31699.40 29094.38 33199.88 19887.93 41499.80 19998.95 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_095.53 1995.85 37895.31 37897.47 37798.78 38993.48 40795.72 41499.40 28496.18 38597.37 39697.73 41095.73 31599.58 39395.49 37981.40 42299.36 258
IB-MVS95.41 2095.30 38494.46 38897.84 36898.76 39295.33 39297.33 39696.07 40896.02 38695.37 41897.41 41676.17 41999.96 5697.54 27595.44 42098.22 399
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft92.94 2198.82 24598.81 23698.85 31699.84 6197.99 32599.20 17699.47 26399.71 8499.42 23999.82 8098.09 22399.47 40693.88 40399.85 16099.07 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive92.54 2296.66 35696.11 36098.31 35199.68 16497.55 34597.94 36695.60 41199.37 16190.68 42298.70 38896.56 29498.61 41886.94 41999.55 29098.77 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary77.52 2398.50 28098.19 29599.41 21798.33 40999.56 13799.01 24099.59 20495.44 39399.57 19199.80 9095.64 31699.46 40896.47 34499.92 10599.21 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GDP-MVS98.81 24798.57 25699.50 18499.53 22799.12 22999.28 15399.86 5499.53 12999.57 19199.32 31290.88 37199.98 2199.46 7499.74 22499.42 245
BP-MVS198.72 25698.46 26699.50 18499.53 22799.00 24299.34 12998.53 36999.65 10599.73 13199.38 29690.62 37599.96 5699.50 7099.86 15599.55 181
reproduce_monomvs97.40 33897.46 33297.20 38599.05 35791.91 41399.20 17699.18 33299.84 5599.86 7199.75 12780.67 40899.83 27999.69 4599.95 8199.85 37
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24199.79 1299.97 19100.00 199.43 23699.94 1999.64 2899.94 8199.83 3399.99 1699.98 4
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20899.68 14799.49 13599.80 9399.79 10099.01 10699.93 9998.24 20599.82 18299.73 73
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
mmdepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3599.87 3199.99 16100.00 1
MVStest198.22 30698.09 30198.62 33299.04 36096.23 37899.20 17699.92 3499.44 14899.98 1399.87 5285.87 40199.67 37099.91 2499.57 28599.95 13
ttmdpeth99.48 9199.55 7999.29 25099.76 11798.16 31399.33 13399.95 3099.79 7099.36 25599.89 3899.13 8899.77 32599.09 13699.64 26399.93 18
WBMVS97.50 33597.18 34198.48 34098.85 37995.89 38598.44 32199.52 24699.53 12999.52 21399.42 28580.10 41199.86 23199.24 11099.95 8199.68 94
dongtai89.37 38788.91 39090.76 40399.19 33377.46 42895.47 41687.82 42792.28 40994.17 42098.82 38271.22 42695.54 42263.85 42297.34 40899.27 278
kuosan85.65 38984.57 39288.90 40597.91 41777.11 42996.37 41387.62 42885.24 41885.45 42396.83 42369.94 42890.98 42445.90 42395.83 41998.62 377
MVSMamba_PlusPlus99.55 7799.58 6999.47 19499.68 16499.40 17599.52 8999.70 13799.92 2899.77 11199.86 5998.28 20599.96 5699.54 6399.90 11699.05 336
MGCFI-Net99.02 21399.01 19899.06 29099.11 34998.60 28499.63 6199.67 15299.63 11098.58 35697.65 41299.07 9799.57 39498.85 15898.92 35999.03 340
testing9196.00 37395.32 37798.02 35998.76 39295.39 39098.38 32498.65 36498.82 24196.84 40596.71 42575.06 42199.71 34496.46 34598.23 39198.98 348
testing1196.05 37295.41 37497.97 36298.78 38995.27 39398.59 29798.23 38598.86 23596.56 40996.91 42275.20 42099.69 35397.26 29598.29 38998.93 354
testing9995.86 37795.19 38097.87 36698.76 39295.03 39598.62 29198.44 37598.68 25996.67 40896.66 42674.31 42299.69 35396.51 34098.03 40198.90 358
UBG96.53 35895.95 36398.29 35398.87 37896.31 37698.48 31598.07 38798.83 24097.32 39796.54 42779.81 41399.62 38596.84 32198.74 37298.95 351
UWE-MVS96.21 36895.78 36897.49 37598.53 40293.83 40598.04 35493.94 41898.96 21998.46 36498.17 40379.86 41299.87 21296.99 31099.06 34898.78 370
ETVMVS96.14 36995.22 37998.89 31498.80 38598.01 32498.66 29098.35 38298.71 25797.18 40296.31 43174.23 42399.75 33296.64 33498.13 39998.90 358
sasdasda99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
testing22295.60 38394.59 38698.61 33398.66 39997.45 34998.54 30897.90 39398.53 27696.54 41096.47 42870.62 42799.81 30495.91 37098.15 39698.56 384
WB-MVSnew98.34 29898.14 29898.96 29898.14 41697.90 33398.27 33197.26 40398.63 26498.80 33698.00 40797.77 24699.90 16597.37 28698.98 35599.09 323
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20899.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21399.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1399.91 2899.68 2699.93 9999.93 1999.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1399.90 3399.88 899.92 12599.93 1999.99 1699.98 4
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23599.96 2599.99 399.97 2099.84 6999.58 3899.93 9999.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23599.96 2599.99 399.97 2099.84 6999.78 1799.92 12599.92 2199.99 1699.92 22
MM99.18 17999.05 18699.55 17199.35 29098.81 26299.05 22797.79 39599.99 399.48 22499.59 23296.29 30899.95 6699.94 1699.98 4199.88 28
WAC-MVS96.36 37495.20 385
Syy-MVS98.17 30997.85 32199.15 27498.50 40498.79 26598.60 29499.21 32897.89 33096.76 40696.37 42995.47 32199.57 39499.10 13598.73 37599.09 323
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 24099.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
myMVS_eth3d95.63 38194.73 38398.34 34898.50 40496.36 37498.60 29499.21 32897.89 33096.76 40696.37 42972.10 42599.57 39494.38 39498.73 37599.09 323
testing396.48 36095.63 37199.01 29499.23 32597.81 33698.90 25999.10 34098.72 25597.84 39097.92 40872.44 42499.85 24997.21 30299.33 32699.35 261
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8299.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 30199.86 34
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25299.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8299.82 6299.71 13899.72 14296.60 29399.98 2199.75 4199.23 34199.82 49
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18899.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
dmvs_re98.69 26098.48 26499.31 24699.55 21999.42 16899.54 8798.38 38099.32 16898.72 34498.71 38796.76 29099.21 41196.01 36299.35 32499.31 272
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8399.96 6899.65 119
dmvs_testset97.27 34296.83 35298.59 33599.46 26297.55 34599.25 16596.84 40598.78 24897.24 40097.67 41197.11 28098.97 41586.59 42098.54 38399.27 278
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9199.97 1699.89 5399.89 3899.53 4599.99 899.36 9199.96 6899.65 119
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18899.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_cas_vis1_n_192099.76 3399.86 1399.45 20099.93 2498.40 29699.30 14499.98 1299.94 2399.99 799.89 3899.80 1599.97 3599.96 999.97 5599.97 9
test_vis1_n_192099.72 3899.88 799.27 25699.93 2497.84 33499.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
test_vis1_n99.68 4799.79 2999.36 23299.94 1898.18 31199.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5699.97 499.96 6899.95 13
test_fmvs1_n99.68 4799.81 2599.28 25399.95 1597.93 33199.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
mvsany_test199.44 10699.45 9599.40 21999.37 28498.64 28197.90 37199.59 20499.27 17499.92 4399.82 8099.74 2099.93 9999.55 6299.87 14799.63 134
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13699.74 11699.18 18999.69 14599.75 12798.41 19099.84 26497.85 24499.70 24199.10 318
test_vis1_rt99.45 10499.46 9399.41 21799.71 14498.63 28298.99 24899.96 2599.03 21399.95 3299.12 34798.75 14199.84 26499.82 3799.82 18299.77 63
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19899.98 1100.00 199.98 4
test_fmvs299.72 3899.85 1799.34 23599.91 3098.08 32299.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
test_fmvs199.48 9199.65 5298.97 29799.54 22197.16 35799.11 21399.98 1299.78 7299.96 2499.81 8798.72 14699.97 3599.95 1299.97 5599.79 57
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28399.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 8199.95 1299.98 4199.94 16
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
test_f99.75 3499.88 799.37 22899.96 798.21 30899.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 9
FE-MVS97.85 32097.42 33499.15 27499.44 26798.75 26899.77 1698.20 38695.85 38899.33 26399.80 9088.86 38799.88 19896.40 34799.12 34498.81 367
FA-MVS(test-final)98.52 27798.32 28299.10 28299.48 25298.67 27399.77 1698.60 36797.35 35899.63 16599.80 9093.07 34699.84 26497.92 23499.30 33098.78 370
balanced_conf0399.50 8599.50 8699.50 18499.42 27599.49 14799.52 8999.75 11099.86 4699.78 10399.71 15098.20 21699.90 16599.39 8699.88 13599.10 318
MonoMVSNet98.23 30498.32 28297.99 36098.97 36896.62 36999.49 10098.42 37699.62 11399.40 25099.79 10095.51 32098.58 41997.68 26895.98 41798.76 373
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 23099.04 23299.87 5199.71 8499.47 22699.79 10098.24 20999.98 2199.38 8799.96 6899.83 43
EGC-MVSNET89.05 38885.52 39199.64 13299.89 3899.78 5199.56 8499.52 24624.19 42349.96 42499.83 7399.15 8399.92 12597.71 25799.85 16099.21 292
test250694.73 38594.59 38695.15 40199.59 19085.90 42799.75 2274.01 42999.89 3799.71 13899.86 5979.00 41899.90 16599.52 6799.99 1699.65 119
test111197.74 32498.16 29796.49 39599.60 18589.86 42599.71 3491.21 42199.89 3799.88 6299.87 5293.73 33999.90 16599.56 6099.99 1699.70 82
ECVR-MVScopyleft97.73 32598.04 30496.78 38999.59 19090.81 42199.72 3090.43 42399.89 3799.86 7199.86 5993.60 34199.89 18499.46 7499.99 1699.65 119
test_blank8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35999.72 8299.91 4699.60 22799.43 5099.81 30499.81 3899.53 29799.73 73
DVP-MVS++99.38 12499.25 14399.77 5999.03 36199.77 5699.74 2499.61 18799.18 18999.76 11499.61 21999.00 10799.92 12597.72 25599.60 27799.62 145
FOURS199.83 6599.89 1099.74 2499.71 13299.69 9299.63 165
MSC_two_6792asdad99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
PC_three_145297.56 34499.68 14899.41 28699.09 9297.09 42096.66 33199.60 27799.62 145
No_MVS99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
test_one_060199.63 17899.76 6399.55 22699.23 18299.31 27199.61 21998.59 162
eth-test20.00 431
eth-test0.00 431
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7399.46 14399.75 11999.56 24699.63 3099.95 6699.43 7899.88 13599.62 145
test_method91.72 38692.32 38989.91 40493.49 42770.18 43090.28 41899.56 22061.71 42295.39 41799.52 25993.90 33499.94 8198.76 17198.27 39099.62 145
Anonymous2024052199.44 10699.42 10299.49 18899.89 3898.96 24999.62 6499.76 10599.85 5299.82 8299.88 4796.39 30399.97 3599.59 5599.98 4199.55 181
h-mvs3398.61 26498.34 28099.44 20499.60 18598.67 27399.27 15799.44 27199.68 9499.32 26699.49 26892.50 353100.00 199.24 11096.51 41499.65 119
hse-mvs298.52 27798.30 28599.16 27299.29 31298.60 28498.77 28199.02 34599.68 9499.32 26699.04 35792.50 35399.85 24999.24 11097.87 40499.03 340
CL-MVSNet_self_test98.71 25898.56 26099.15 27499.22 32698.66 27697.14 40299.51 25198.09 31799.54 20699.27 32396.87 28799.74 33598.43 19198.96 35699.03 340
KD-MVS_2432*160095.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9199.83 6099.88 6299.85 6398.42 18999.90 16599.60 5499.73 23099.49 217
AUN-MVS97.82 32197.38 33599.14 27799.27 31798.53 28798.72 28699.02 34598.10 31597.18 40299.03 36189.26 38699.85 24997.94 23397.91 40299.03 340
ZD-MVS99.43 27099.61 12599.43 27496.38 38199.11 30399.07 35397.86 23999.92 12594.04 40099.49 306
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.41 19099.91 14797.27 29399.61 27499.54 190
RE-MVS-def99.13 15899.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.57 16597.27 29399.61 27499.54 190
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17699.54 23299.13 20299.82 8299.63 20398.91 12199.92 12597.85 24499.70 24199.58 171
IU-MVS99.69 15699.77 5699.22 32597.50 35099.69 14597.75 25399.70 24199.77 63
OPU-MVS99.29 25099.12 34499.44 16199.20 17699.40 29099.00 10798.84 41696.54 33899.60 27799.58 171
test_241102_TWO99.54 23299.13 20299.76 11499.63 20398.32 20399.92 12597.85 24499.69 24599.75 71
test_241102_ONE99.69 15699.82 3799.54 23299.12 20599.82 8299.49 26898.91 12199.52 403
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20499.65 16797.97 32499.42 23999.61 21998.86 12699.87 21296.45 34699.68 25099.49 217
cl2297.56 33397.28 33798.40 34498.37 40896.75 36797.24 40099.37 29297.31 36099.41 24599.22 33587.30 39099.37 41097.70 26099.62 26799.08 329
miper_ehance_all_eth98.59 27098.59 25298.59 33598.98 36797.07 36097.49 39099.52 24698.50 27999.52 21399.37 29996.41 30299.71 34497.86 24299.62 26799.00 347
miper_enhance_ethall98.03 31597.94 31598.32 34998.27 41096.43 37396.95 40699.41 27796.37 38299.43 23698.96 37194.74 32799.69 35397.71 25799.62 26798.83 366
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15399.56 22098.19 31299.14 29999.29 32098.84 12899.92 12597.53 27799.80 19999.64 129
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 26199.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9599.96 6899.78 59
cl____98.54 27598.41 27298.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.85 33699.78 31797.97 23199.89 12699.17 303
DIV-MVS_self_test98.54 27598.42 27198.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.87 33599.78 31797.97 23199.89 12699.18 301
eth_miper_zixun_eth98.68 26198.71 24398.60 33499.10 35196.84 36697.52 38999.54 23298.94 22299.58 18899.48 27196.25 30999.76 32898.01 22799.93 10199.21 292
9.1498.64 24799.45 26698.81 27399.60 19897.52 34999.28 27799.56 24698.53 17499.83 27995.36 38399.64 263
uanet_test8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
save fliter99.53 22799.25 20898.29 33099.38 29199.07 209
ET-MVSNet_ETH3D96.78 35296.07 36198.91 30799.26 32097.92 33297.70 37996.05 40997.96 32792.37 42198.43 39887.06 39299.90 16598.27 20297.56 40798.91 357
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13299.93 2599.95 3299.89 3899.71 2299.96 5699.51 6899.97 5599.84 39
EIA-MVS99.12 19399.01 19899.45 20099.36 28799.62 11999.34 12999.79 9198.41 28798.84 33198.89 37798.75 14199.84 26498.15 21799.51 30198.89 360
miper_refine_blended95.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
miper_lstm_enhance98.65 26398.60 25098.82 32399.20 33197.33 35397.78 37599.66 15799.01 21499.59 18699.50 26494.62 32999.85 24998.12 21899.90 11699.26 280
ETV-MVS99.18 17999.18 15099.16 27299.34 29999.28 20199.12 20899.79 9199.48 13698.93 31898.55 39499.40 5199.93 9998.51 18899.52 30098.28 396
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 18099.41 28699.51 4799.95 6699.66 4899.89 12698.96 349
D2MVS99.22 16599.19 14999.29 25099.69 15698.74 26998.81 27399.41 27798.55 27299.68 14899.69 16598.13 22199.87 21298.82 16299.98 4199.24 283
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19899.31 30599.16 19699.62 17499.61 21998.35 19899.91 14797.88 23899.72 23699.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 18999.62 17499.61 21998.58 16499.91 14797.72 25599.80 19999.77 63
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19899.61 18799.92 12597.88 23899.72 23699.77 63
test072699.69 15699.80 4699.24 16699.57 21599.16 19699.73 13199.65 19098.35 198
SR-MVS99.19 17599.00 20299.74 8199.51 23699.72 8399.18 18399.60 19898.85 23699.47 22699.58 23598.38 19599.92 12596.92 31499.54 29599.57 176
DPM-MVS98.28 29997.94 31599.32 24399.36 28799.11 23097.31 39798.78 35696.88 37398.84 33199.11 35097.77 24699.61 39094.03 40199.36 32299.23 287
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17699.55 22698.22 30999.32 26699.35 30898.65 15699.91 14796.86 31899.74 22499.62 145
test_yl98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
thisisatest053097.45 33696.95 34798.94 30199.68 16497.73 34099.09 22094.19 41698.61 26899.56 19999.30 31784.30 40599.93 9998.27 20299.54 29599.16 305
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28799.47 14099.76 11499.78 11098.13 22199.86 23198.70 17699.68 25099.49 217
Anonymous20240521198.75 25298.46 26699.63 13999.34 29999.66 10399.47 10597.65 39699.28 17399.56 19999.50 26493.15 34499.84 26498.62 18399.58 28399.40 248
DCV-MVSNet98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
tttt051797.62 33097.20 34098.90 31399.76 11797.40 35199.48 10294.36 41499.06 21199.70 14299.49 26884.55 40499.94 8198.73 17499.65 26199.36 258
our_test_398.85 24399.09 17498.13 35799.66 17194.90 39897.72 37799.58 21399.07 20999.64 16199.62 21098.19 21799.93 9998.41 19299.95 8199.55 181
thisisatest051596.98 34896.42 35598.66 33199.42 27597.47 34797.27 39894.30 41597.24 36299.15 29798.86 37985.01 40299.87 21297.10 30699.39 31898.63 376
ppachtmachnet_test98.89 23999.12 16298.20 35599.66 17195.24 39497.63 38199.68 14799.08 20799.78 10399.62 21098.65 15699.88 19898.02 22499.96 6899.48 221
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26299.73 7899.13 20499.52 24697.40 35599.57 19199.64 19298.93 11699.83 27997.61 27199.79 20499.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.14 312
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28499.60 19898.55 27299.76 11499.69 16598.23 21399.92 12596.39 34899.75 21799.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.62 18299.67 10199.55 204
thres100view90096.39 36296.03 36297.47 37799.63 17895.93 38399.18 18397.57 39798.75 25498.70 34797.31 41887.04 39399.67 37087.62 41598.51 38496.81 415
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9799.71 8499.90 4999.69 16598.85 12799.90 16597.25 29999.78 20999.15 307
tfpn200view996.30 36595.89 36497.53 37499.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38496.81 415
c3_l98.72 25698.71 24398.72 32899.12 34497.22 35697.68 38099.56 22098.90 22999.54 20699.48 27196.37 30499.73 33897.88 23899.88 13599.21 292
CHOSEN 280x42098.41 28998.41 27298.40 34499.34 29995.89 38596.94 40799.44 27198.80 24599.25 28099.52 25993.51 34299.98 2198.94 15599.98 4199.32 268
CANet99.11 19699.05 18699.28 25398.83 38198.56 28698.71 28899.41 27799.25 17899.23 28499.22 33597.66 25799.94 8199.19 11899.97 5599.33 265
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20899.25 32199.69 9699.05 22799.82 7399.50 13398.97 31499.05 35598.98 11199.98 2198.20 20999.24 33998.62 377
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37599.78 5199.15 19699.66 15799.34 16598.92 32199.24 33397.69 25199.98 2198.11 21999.28 33398.81 367
CANet_DTU98.91 23498.85 23099.09 28398.79 38798.13 31498.18 33799.31 30599.48 13698.86 32999.51 26196.56 29499.95 6699.05 14099.95 8199.19 299
MVS_030498.61 26498.30 28599.52 17997.88 41898.95 25098.76 28294.11 41799.84 5599.32 26699.57 24295.57 31999.95 6699.68 4799.98 4199.68 94
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29299.63 17796.84 37599.44 23299.58 23598.81 12999.91 14797.70 26099.82 18299.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21598.54 27599.54 20698.99 36496.81 28899.93 9996.97 31299.53 29799.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs190.81 37399.14 312
sam_mvs90.52 378
IterMVS-SCA-FT99.00 22199.16 15298.51 33899.75 12995.90 38498.07 35199.84 6699.84 5599.89 5399.73 13596.01 31399.99 899.33 98100.00 199.63 134
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15999.35 29698.77 25099.57 19199.70 15899.27 7199.88 19897.71 25799.75 21799.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29999.48 26098.50 27999.52 21399.63 20399.14 8699.76 32897.89 23799.77 21399.51 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25599.53 24198.27 30799.53 21199.73 13598.75 14199.87 21297.70 26099.83 17399.68 94
ambc99.20 26899.35 29098.53 28799.17 18899.46 26699.67 15399.80 9098.46 18499.70 34797.92 23499.70 24199.38 252
MTGPAbinary99.53 241
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 22199.38 29699.57 4099.95 6699.69 4599.90 11699.15 307
Effi-MVS+99.06 20498.97 21399.34 23599.31 30698.98 24598.31 32999.91 3898.81 24398.79 33898.94 37399.14 8699.84 26498.79 16698.74 37299.20 296
xiu_mvs_v2_base99.02 21399.11 16598.77 32599.37 28498.09 31998.13 34399.51 25199.47 14099.42 23998.54 39599.38 5699.97 3598.83 16099.33 32698.24 398
xiu_mvs_v1_base99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
new-patchmatchnet99.35 13299.57 7398.71 33099.82 7296.62 36998.55 30599.75 11099.50 13399.88 6299.87 5299.31 6499.88 19899.43 78100.00 199.62 145
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16599.65 5099.97 5599.69 88
pmmvs599.19 17599.11 16599.42 21099.76 11798.88 25898.55 30599.73 12098.82 24199.72 13399.62 21096.56 29499.82 28999.32 10099.95 8199.56 178
test_post199.14 19851.63 43489.54 38599.82 28996.86 318
test_post52.41 43390.25 38099.86 231
Fast-Effi-MVS+99.02 21398.87 22899.46 19799.38 28299.50 14699.04 23299.79 9197.17 36698.62 35298.74 38699.34 6299.95 6698.32 19999.41 31698.92 356
patchmatchnet-post99.62 21090.58 37699.94 81
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 12099.82 6299.90 4999.90 3397.97 23399.86 23199.42 8399.96 6899.80 50
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27399.66 15799.42 15899.75 11999.66 18599.20 7899.76 32898.98 14699.99 1699.36 258
GG-mvs-BLEND97.36 38097.59 42096.87 36599.70 3588.49 42694.64 41997.26 41980.66 40999.12 41291.50 40896.50 41596.08 419
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
Anonymous2023120699.35 13299.31 12599.47 19499.74 13599.06 24099.28 15399.74 11699.23 18299.72 13399.53 25797.63 25999.88 19899.11 13499.84 16599.48 221
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13399.53 24199.27 17499.42 23999.63 20398.21 21499.95 6697.83 24899.79 20499.65 119
MTMP99.09 22098.59 368
gm-plane-assit97.59 42089.02 42693.47 40698.30 40099.84 26496.38 349
test9_res95.10 38799.44 31199.50 212
MVP-Stereo99.16 18599.08 17699.43 20899.48 25299.07 23899.08 22399.55 22698.63 26499.31 27199.68 17698.19 21799.78 31798.18 21399.58 28399.45 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.35 29099.35 19098.11 34699.41 27794.83 40397.92 38498.99 36498.02 22899.85 249
train_agg98.35 29697.95 31199.57 16599.35 29099.35 19098.11 34699.41 27794.90 40097.92 38498.99 36498.02 22899.85 24995.38 38299.44 31199.50 212
gg-mvs-nofinetune95.87 37695.17 38197.97 36298.19 41296.95 36299.69 4289.23 42599.89 3796.24 41399.94 1981.19 40799.51 40493.99 40298.20 39297.44 411
SCA98.11 31198.36 27797.36 38099.20 33192.99 40898.17 33998.49 37398.24 30899.10 30599.57 24296.01 31399.94 8196.86 31899.62 26799.14 312
Patchmatch-test98.10 31297.98 30998.48 34099.27 31796.48 37199.40 11599.07 34198.81 24399.23 28499.57 24290.11 38199.87 21296.69 32899.64 26399.09 323
test_899.34 29999.31 19698.08 35099.40 28494.90 40097.87 38898.97 36998.02 22899.84 264
MS-PatchMatch99.00 22198.97 21399.09 28399.11 34998.19 30998.76 28299.33 29998.49 28199.44 23299.58 23598.21 21499.69 35398.20 20999.62 26799.39 250
Patchmatch-RL test98.60 26798.36 27799.33 23899.77 11399.07 23898.27 33199.87 5198.91 22899.74 12799.72 14290.57 37799.79 31498.55 18699.85 16099.11 316
cdsmvs_eth3d_5k24.88 39233.17 3940.00 4080.00 4310.00 4330.00 41999.62 1800.00 4260.00 42799.13 34399.82 130.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas16.61 39322.14 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 199.28 680.00 4270.00 4260.00 4250.00 423
agg_prior294.58 39399.46 31099.50 212
agg_prior99.35 29099.36 18799.39 28797.76 39499.85 249
tmp_tt95.75 37995.42 37396.76 39089.90 42894.42 40098.86 26397.87 39478.01 41999.30 27699.69 16597.70 24995.89 42199.29 10698.14 39799.95 13
canonicalmvs99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 6099.70 8999.92 4399.93 2199.45 4999.97 3599.36 91100.00 199.85 37
alignmvs98.28 29997.96 31099.25 26299.12 34498.93 25499.03 23598.42 37699.64 10898.72 34497.85 40990.86 37299.62 38598.88 15799.13 34399.19 299
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13799.93 2599.78 10399.68 17699.10 9099.78 31799.45 7699.96 6899.83 43
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21399.62 18099.18 18999.89 5399.72 14298.66 15499.87 21299.88 2999.97 5599.66 111
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 11099.86 4699.74 12799.79 10098.27 20799.85 24999.37 9099.93 10199.83 43
v192192099.56 7499.57 7399.55 17199.75 12999.11 23099.05 22799.61 18799.15 20099.88 6299.71 15099.08 9599.87 21299.90 2599.97 5599.66 111
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13899.91 2899.15 8399.97 3599.50 70100.00 199.90 24
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23299.60 19899.18 18999.87 7099.72 14299.08 9599.85 24999.89 2899.98 4199.66 111
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9799.90 3199.82 8299.83 7398.45 18599.87 21299.51 6899.97 5599.86 34
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21699.61 18799.20 18799.84 7799.73 13598.67 15299.84 26499.86 3299.98 4199.64 129
sosnet-low-res8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14199.59 20498.36 29399.36 25599.37 29998.80 13399.91 14797.43 28299.75 21799.68 94
v14899.40 11899.41 10499.39 22299.76 11798.94 25199.09 22099.59 20499.17 19499.81 8999.61 21998.41 19099.69 35399.32 10099.94 9499.53 195
sosnet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20899.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
TestCases99.63 13999.78 10599.64 11299.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7399.84 5599.94 3599.91 2899.13 8899.96 5699.83 3399.99 1699.83 43
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14199.59 20498.41 28799.32 26699.36 30398.73 14599.93 9997.29 29099.74 22499.67 102
RRT-MVS99.08 20099.00 20299.33 23899.27 31798.65 27999.62 6499.93 3299.66 10299.67 15399.82 8095.27 32399.93 9998.64 18299.09 34799.41 246
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 283
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6099.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
PS-MVSNAJ99.00 22199.08 17698.76 32699.37 28498.10 31898.00 35999.51 25199.47 14099.41 24598.50 39799.28 6899.97 3598.83 16099.34 32598.20 402
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
EI-MVSNet-UG-set99.48 9199.50 8699.42 21099.57 20598.65 27999.24 16699.46 26699.68 9499.80 9399.66 18598.99 10999.89 18499.19 11899.90 11699.72 76
EI-MVSNet-Vis-set99.47 9999.49 8899.42 21099.57 20598.66 27699.24 16699.46 26699.67 9899.79 9999.65 19098.97 11399.89 18499.15 12699.89 12699.71 79
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23499.71 8598.86 26399.19 33198.47 28398.59 35599.06 35498.08 22599.91 14796.94 31399.60 27799.60 159
test_prior499.19 22198.00 359
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34199.47 27598.47 18199.88 19897.62 26999.73 23099.67 102
v124099.56 7499.58 6999.51 18299.80 8699.00 24299.00 24399.65 16799.15 20099.90 4999.75 12799.09 9299.88 19899.90 2599.96 6899.67 102
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21299.54 6399.92 10599.63 134
test_prior297.95 36597.87 33398.05 38099.05 35597.90 23695.99 36599.49 306
X-MVStestdata96.09 37094.87 38299.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34161.30 43298.47 18199.88 19897.62 26999.73 23099.67 102
test_prior99.46 19799.35 29099.22 21599.39 28799.69 35399.48 221
旧先验297.94 36695.33 39598.94 31799.88 19896.75 325
新几何298.04 354
新几何199.52 17999.50 24299.22 21599.26 31595.66 39298.60 35499.28 32197.67 25399.89 18495.95 36899.32 32899.45 230
旧先验199.49 24799.29 19999.26 31599.39 29497.67 25399.36 32299.46 229
无先验98.01 35799.23 32295.83 38999.85 24995.79 37499.44 235
原ACMM297.92 368
原ACMM199.37 22899.47 25898.87 26099.27 31396.74 37898.26 36999.32 31297.93 23599.82 28995.96 36799.38 31999.43 241
test22299.51 23699.08 23797.83 37499.29 30995.21 39798.68 34899.31 31597.28 27199.38 31999.43 241
testdata299.89 18495.99 365
segment_acmp98.37 196
testdata99.42 21099.51 23698.93 25499.30 30896.20 38498.87 32899.40 29098.33 20299.89 18496.29 35299.28 33399.44 235
testdata197.72 37797.86 335
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10599.64 10899.93 3899.85 6398.66 15499.84 26499.88 2999.99 1699.71 79
131498.00 31797.90 31998.27 35498.90 37297.45 34999.30 14499.06 34394.98 39997.21 40199.12 34798.43 18799.67 37095.58 37898.56 38297.71 409
LFMVS98.46 28598.19 29599.26 25999.24 32398.52 28999.62 6496.94 40499.87 4399.31 27199.58 23591.04 36699.81 30498.68 17999.42 31599.45 230
VDD-MVS99.20 17299.11 16599.44 20499.43 27098.98 24599.50 9698.32 38399.80 6899.56 19999.69 16596.99 28499.85 24998.99 14499.73 23099.50 212
VDDNet98.97 22598.82 23599.42 21099.71 14498.81 26299.62 6498.68 36099.81 6599.38 25399.80 9094.25 33299.85 24998.79 16699.32 32899.59 166
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 11099.60 12399.92 4399.87 5298.75 14199.86 23199.90 2599.99 1699.73 73
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13799.81 6599.69 14599.58 23597.66 25799.86 23199.17 12399.44 31199.67 102
MVS95.72 38094.63 38598.99 29598.56 40197.98 33099.30 14498.86 35072.71 42197.30 39899.08 35298.34 20099.74 33589.21 41198.33 38799.26 280
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19899.58 21399.25 17899.81 8999.62 21098.24 20999.84 26499.83 3399.97 5599.64 129
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20499.24 18099.86 7199.70 15898.55 16899.82 28999.79 3999.95 8199.60 159
SD-MVS99.01 21999.30 13098.15 35699.50 24299.40 17598.94 25799.61 18799.22 18699.75 11999.82 8099.54 4395.51 42397.48 27999.87 14799.54 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.99 31897.68 32898.93 30499.52 23498.04 32397.19 40199.05 34498.32 30498.81 33498.97 36989.89 38499.41 40998.33 19899.05 35099.34 264
MSLP-MVS++99.05 20799.09 17498.91 30799.21 32898.36 30198.82 27299.47 26398.85 23698.90 32499.56 24698.78 13699.09 41398.57 18599.68 25099.26 280
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14498.99 21599.75 11999.71 15098.79 13499.93 9998.46 19099.85 16099.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15799.61 18799.19 18899.57 19199.64 19298.76 13999.90 16597.29 29099.62 26799.56 178
ADS-MVSNet297.78 32397.66 33098.12 35899.14 34095.36 39199.22 17398.75 35796.97 37198.25 37099.64 19290.90 36999.94 8196.51 34099.56 28699.08 329
EI-MVSNet99.38 12499.44 9899.21 26699.58 19598.09 31999.26 15999.46 26699.62 11399.75 11999.67 18098.54 17099.85 24999.15 12699.92 10599.68 94
Regformer8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
CVMVSNet98.61 26498.88 22797.80 36999.58 19593.60 40699.26 15999.64 17599.66 10299.72 13399.67 18093.26 34399.93 9999.30 10399.81 19299.87 32
pmmvs499.13 19199.06 18299.36 23299.57 20599.10 23598.01 35799.25 31898.78 24899.58 18899.44 28298.24 20999.76 32898.74 17399.93 10199.22 289
EU-MVSNet99.39 12299.62 5798.72 32899.88 4396.44 37299.56 8499.85 6099.90 3199.90 4999.85 6398.09 22399.83 27999.58 5899.95 8199.90 24
VNet99.18 17999.06 18299.56 16899.24 32399.36 18799.33 13399.31 30599.67 9899.47 22699.57 24296.48 29799.84 26499.15 12699.30 33099.47 225
test-LLR97.15 34496.95 34797.74 37298.18 41395.02 39697.38 39396.10 40698.00 32097.81 39198.58 39090.04 38299.91 14797.69 26698.78 36698.31 394
TESTMET0.1,196.24 36695.84 36797.41 37998.24 41193.84 40497.38 39395.84 41098.43 28497.81 39198.56 39379.77 41499.89 18497.77 24998.77 36898.52 385
test-mter96.23 36795.73 36997.74 37298.18 41395.02 39697.38 39396.10 40697.90 32997.81 39198.58 39079.12 41799.91 14797.69 26698.78 36698.31 394
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14499.85 5299.80 9399.81 8798.81 12999.91 14799.47 7399.88 13599.70 82
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14199.59 20498.36 29399.35 25799.38 29698.61 16099.93 9997.43 28299.75 21799.67 102
testgi99.29 14599.26 14199.37 22899.75 12998.81 26298.84 26699.89 4598.38 29199.75 11999.04 35799.36 6199.86 23199.08 13899.25 33799.45 230
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23899.89 4599.60 12399.82 8299.62 21098.81 12999.89 18499.43 7899.86 15599.47 225
thres600view796.60 35796.16 35997.93 36499.63 17896.09 38299.18 18397.57 39798.77 25098.72 34497.32 41787.04 39399.72 34088.57 41298.62 38097.98 406
ADS-MVSNet97.72 32897.67 32997.86 36799.14 34094.65 39999.22 17398.86 35096.97 37198.25 37099.64 19290.90 36999.84 26496.51 34099.56 28699.08 329
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13699.50 25598.35 29898.97 31499.48 27198.37 19699.92 12595.95 36899.75 21799.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs28.94 39133.33 39315.79 40726.03 4299.81 43296.77 40915.67 43011.55 42523.87 42650.74 43519.03 4308.53 42623.21 42533.07 42329.03 422
thres40096.40 36195.89 36497.92 36599.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38497.98 406
test12329.31 39033.05 39518.08 40625.93 43012.24 43197.53 38710.93 43111.78 42424.21 42550.08 43621.04 4298.60 42523.51 42432.43 42433.39 421
thres20096.09 37095.68 37097.33 38299.48 25296.22 37998.53 31097.57 39798.06 31998.37 36796.73 42486.84 39799.61 39086.99 41898.57 38196.16 418
test0.0.03 197.37 34096.91 35098.74 32797.72 41997.57 34497.60 38397.36 40298.00 32099.21 28998.02 40590.04 38299.79 31498.37 19495.89 41898.86 363
pmmvs398.08 31397.80 32298.91 30799.41 27797.69 34297.87 37299.66 15795.87 38799.50 22199.51 26190.35 37999.97 3598.55 18699.47 30899.08 329
EMVS96.96 34997.28 33795.99 40098.76 39291.03 41995.26 41798.61 36599.34 16598.92 32198.88 37893.79 33799.66 37592.87 40499.05 35097.30 414
E-PMN97.14 34697.43 33396.27 39798.79 38791.62 41695.54 41599.01 34799.44 14898.88 32599.12 34792.78 34999.68 36594.30 39699.03 35297.50 410
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19499.72 12997.99 32299.42 23999.60 22798.81 12999.93 9996.91 31599.74 22499.66 111
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30499.76 6399.34 12999.97 1998.93 22599.91 4699.79 10098.68 14999.93 9996.80 32399.56 28699.30 274
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29999.07 34198.40 28999.04 31199.25 32898.51 17999.80 31197.31 28999.51 30199.65 119
mvs_anonymous99.28 14699.39 10698.94 30199.19 33397.81 33699.02 23899.55 22699.78 7299.85 7499.80 9098.24 20999.86 23199.57 5999.50 30499.15 307
MVS_Test99.28 14699.31 12599.19 26999.35 29098.79 26599.36 12799.49 25999.17 19499.21 28999.67 18098.78 13699.66 37599.09 13699.66 25999.10 318
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28899.80 8697.83 33598.89 26099.72 12999.29 17099.63 16599.70 15896.47 29899.89 18498.17 21599.82 18299.50 212
CDPH-MVS98.56 27398.20 29299.61 15199.50 24299.46 15498.32 32899.41 27795.22 39699.21 28999.10 35198.34 20099.82 28995.09 38899.66 25999.56 178
test1299.54 17699.29 31299.33 19399.16 33598.43 36597.54 26099.82 28999.47 30899.48 221
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20499.85 6099.79 7099.76 11499.72 14299.33 6399.82 28999.21 11499.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive99.34 13799.32 12399.39 22299.67 17098.77 26798.57 30399.81 8299.61 11799.48 22499.41 28698.47 18199.86 23198.97 14899.90 11699.53 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.83 35196.28 35798.46 34299.09 35496.91 36498.83 26893.87 41997.23 36396.23 41498.36 39988.12 38999.90 16596.68 32998.14 39798.57 383
baseline197.73 32597.33 33698.96 29899.30 31097.73 34099.40 11598.42 37699.33 16799.46 23099.21 33791.18 36499.82 28998.35 19691.26 42199.32 268
YYNet198.95 23198.99 20998.84 31899.64 17697.14 35998.22 33699.32 30198.92 22799.59 18699.66 18597.40 26599.83 27998.27 20299.90 11699.55 181
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24498.09 34899.90 4398.95 22199.78 10399.58 23599.57 4099.93 9999.48 7299.95 8199.79 57
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31699.64 17697.16 35798.23 33599.33 29998.93 22599.56 19999.66 18597.39 26799.83 27998.29 20099.88 13599.55 181
tpmvs97.39 33997.69 32796.52 39498.41 40691.76 41499.30 14498.94 34997.74 33897.85 38999.55 25392.40 35599.73 33896.25 35498.73 37598.06 405
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25599.86 5498.85 23699.81 8999.73 13598.40 19499.92 12598.36 19599.83 17399.17 303
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27699.54 23298.94 22299.14 29999.25 32897.24 27299.82 28995.84 37299.78 20999.60 159
plane_prior799.58 19599.38 180
plane_prior699.47 25899.26 20597.24 272
plane_prior599.54 23299.82 28995.84 37299.78 20999.60 159
plane_prior499.25 328
plane_prior399.31 19698.36 29399.14 299
plane_prior298.80 27698.94 222
plane_prior199.51 236
plane_prior99.24 21298.42 32297.87 33399.71 239
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 12099.62 11399.84 7799.71 15098.62 15899.96 5699.30 10399.96 6899.86 34
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25899.56 13798.97 25299.61 18799.43 15499.67 15399.28 32197.85 24199.95 6699.17 12399.81 19299.65 119
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 12099.70 8999.84 7799.73 13598.56 16799.96 5699.29 10699.94 9499.83 43
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21299.59 5599.74 22499.71 79
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13299.72 8299.84 7799.78 11098.67 15299.97 3599.30 10399.95 8199.80 50
DU-MVS99.33 14099.21 14799.71 10199.43 27099.56 13798.83 26899.53 24199.38 16099.67 15399.36 30397.67 25399.95 6699.17 12399.81 19299.63 134
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23699.58 13498.98 25199.60 19899.43 15499.70 14299.36 30397.70 24999.88 19899.20 11799.87 14799.59 166
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18799.54 12799.80 9399.64 19297.79 24599.95 6699.21 11499.94 9499.84 39
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 11099.58 12699.85 7499.69 16598.18 21999.94 8199.28 10899.95 8199.83 43
WR-MVS99.11 19698.93 21899.66 11999.30 31099.42 16898.42 32299.37 29299.04 21299.57 19199.20 33996.89 28699.86 23198.66 18099.87 14799.70 82
NR-MVSNet99.40 11899.31 12599.68 10999.43 27099.55 14099.73 2799.50 25599.46 14399.88 6299.36 30397.54 26099.87 21298.97 14899.87 14799.63 134
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26899.86 5499.68 9499.65 16099.88 4797.67 25399.87 21299.03 14199.86 15599.76 68
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14499.63 17799.61 11799.71 13899.56 24698.76 13999.96 5699.14 13299.92 10599.68 94
TSAR-MVS + GP.99.12 19399.04 19299.38 22599.34 29999.16 22498.15 34099.29 30998.18 31399.63 16599.62 21099.18 8099.68 36598.20 20999.74 22499.30 274
n20.00 432
nn0.00 432
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23298.34 30299.01 31299.50 26498.53 17499.93 9997.18 30499.78 20999.66 111
door-mid99.83 68
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33499.73 12098.39 29099.63 16599.43 28399.70 2499.90 16597.34 28798.64 37999.44 235
mvsmamba99.08 20098.95 21699.45 20099.36 28799.18 22399.39 11798.81 35499.37 16199.35 25799.70 15896.36 30599.94 8198.66 18099.59 28199.22 289
MVSFormer99.41 11699.44 9899.31 24699.57 20598.40 29699.77 1699.80 8599.73 7899.63 16599.30 31798.02 22899.98 2199.43 7899.69 24599.55 181
jason99.16 18599.11 16599.32 24399.75 12998.44 29398.26 33399.39 28798.70 25899.74 12799.30 31798.54 17099.97 3598.48 18999.82 18299.55 181
jason: jason.
lupinMVS98.96 22898.87 22899.24 26499.57 20598.40 29698.12 34499.18 33298.28 30699.63 16599.13 34398.02 22899.97 3598.22 20799.69 24599.35 261
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8599.73 7899.97 2099.92 2599.77 1999.98 2199.43 78100.00 199.90 24
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13798.35 29899.51 21999.50 26499.31 6499.88 19898.18 21399.84 16599.69 88
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41299.78 7299.88 6299.88 4793.66 34099.97 3599.61 5399.95 8199.64 129
lessismore_v099.64 13299.86 5399.38 18090.66 42299.89 5399.83 7394.56 33099.97 3599.56 6099.92 10599.57 176
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33799.65 10599.89 5399.90 3396.20 31099.94 8199.42 8399.92 10599.67 102
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 6099.80 6899.93 3899.93 2198.54 17099.93 9999.59 5599.98 4199.76 68
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15297.72 33999.35 25799.25 32899.23 7599.92 12597.21 30299.82 18299.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37299.74 11698.36 29399.66 15899.68 17699.71 2299.90 16596.84 32199.88 13599.43 241
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26899.72 12998.36 29399.60 18399.71 15098.92 11999.91 14797.08 30799.84 16599.40 248
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15199.90 4399.71 8499.79 9999.73 13599.54 4399.84 26499.36 9199.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19499.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8599.71 8499.72 13399.69 16599.15 8399.83 27999.32 10099.94 9499.53 195
test1199.29 309
door99.77 100
EPNet_dtu97.62 33097.79 32497.11 38896.67 42392.31 41198.51 31298.04 38899.24 18095.77 41599.47 27593.78 33899.66 37598.98 14699.62 26799.37 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 28099.88 4998.66 26199.96 2499.79 10097.45 26399.93 9999.34 9599.99 1699.78 59
EPNet98.13 31097.77 32599.18 27194.57 42697.99 32599.24 16697.96 39099.74 7797.29 39999.62 21093.13 34599.97 3598.59 18499.83 17399.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS98.94 251
HQP-NCC99.31 30697.98 36197.45 35298.15 374
ACMP_Plane99.31 30697.98 36197.45 35298.15 374
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24299.62 11999.01 24099.57 21596.80 37799.54 20699.63 20398.29 20499.91 14795.24 38499.71 23999.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS94.73 390
HQP4-MVS98.15 37499.70 34799.53 195
HQP3-MVS99.37 29299.67 256
HQP2-MVS96.67 291
CNVR-MVS98.99 22498.80 23899.56 16899.25 32199.43 16598.54 30899.27 31398.58 27098.80 33699.43 28398.53 17499.70 34797.22 30199.59 28199.54 190
NCCC98.82 24598.57 25699.58 15999.21 32899.31 19698.61 29299.25 31898.65 26298.43 36599.26 32697.86 23999.81 30496.55 33799.27 33699.61 155
114514_t98.49 28298.11 30099.64 13299.73 13899.58 13499.24 16699.76 10589.94 41499.42 23999.56 24697.76 24899.86 23197.74 25499.82 18299.47 225
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 18098.38 29199.06 31099.27 32398.79 13499.94 8197.51 27899.82 18299.66 111
DSMNet-mixed99.48 9199.65 5298.95 30099.71 14497.27 35499.50 9699.82 7399.59 12599.41 24599.85 6399.62 33100.00 199.53 6699.89 12699.59 166
tpm296.35 36396.22 35896.73 39298.88 37791.75 41599.21 17598.51 37193.27 40797.89 38699.21 33784.83 40399.70 34796.04 36198.18 39598.75 374
NP-MVS99.40 27899.13 22798.83 380
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15999.76 10599.32 16899.80 9399.78 11099.29 6699.87 21299.15 12699.91 11599.66 111
tpm cat196.78 35296.98 34696.16 39998.85 37990.59 42399.08 22399.32 30192.37 40897.73 39599.46 27891.15 36599.69 35396.07 36098.80 36598.21 400
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18399.60 19898.55 27299.57 19199.67 18099.03 10599.94 8197.01 30999.80 19999.69 88
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.71 35596.79 35496.46 39698.90 37290.71 42299.41 11498.68 36094.69 40498.14 37899.34 31186.32 40099.80 31197.60 27298.07 40098.88 361
CR-MVSNet98.35 29698.20 29298.83 32099.05 35798.12 31599.30 14499.67 15297.39 35699.16 29599.79 10091.87 35899.91 14798.78 17098.77 36898.44 391
JIA-IIPM98.06 31497.92 31798.50 33998.59 40097.02 36198.80 27698.51 37199.88 4297.89 38699.87 5291.89 35799.90 16598.16 21697.68 40698.59 380
Patchmtry98.78 24998.54 26199.49 18898.89 37599.19 22199.32 13699.67 15299.65 10599.72 13399.79 10091.87 35899.95 6698.00 22899.97 5599.33 265
PatchT98.45 28698.32 28298.83 32098.94 37098.29 30399.24 16698.82 35399.84 5599.08 30699.76 12291.37 36199.94 8198.82 16299.00 35498.26 397
tpmrst97.73 32598.07 30396.73 39298.71 39692.00 41299.10 21698.86 35098.52 27798.92 32199.54 25591.90 35699.82 28998.02 22499.03 35298.37 393
BH-w/o97.20 34397.01 34597.76 37099.08 35595.69 38798.03 35698.52 37095.76 39097.96 38398.02 40595.62 31799.47 40692.82 40597.25 41098.12 404
tpm97.15 34496.95 34797.75 37198.91 37194.24 40199.32 13697.96 39097.71 34098.29 36899.32 31286.72 39899.92 12598.10 22296.24 41699.09 323
DELS-MVS99.34 13799.30 13099.48 19299.51 23699.36 18798.12 34499.53 24199.36 16499.41 24599.61 21999.22 7699.87 21299.21 11499.68 25099.20 296
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.22 30698.09 30198.58 33799.38 28297.24 35598.55 30598.98 34897.81 33799.20 29498.76 38597.01 28399.65 38194.83 38998.33 38798.86 363
RPMNet98.60 26798.53 26298.83 32099.05 35798.12 31599.30 14499.62 18099.86 4699.16 29599.74 13192.53 35299.92 12598.75 17298.77 36898.44 391
MVSTER98.47 28498.22 29099.24 26499.06 35698.35 30299.08 22399.46 26699.27 17499.75 11999.66 18588.61 38899.85 24999.14 13299.92 10599.52 205
CPTT-MVS98.74 25398.44 26999.64 13299.61 18399.38 18099.18 18399.55 22696.49 37999.27 27899.37 29997.11 28099.92 12595.74 37599.67 25699.62 145
GBi-Net99.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20499.90 3698.66 27698.94 25799.91 3897.97 32499.79 9999.73 13599.05 10299.97 3599.15 12699.99 1699.68 94
PVSNet_BlendedMVS99.03 21199.01 19899.09 28399.54 22197.99 32598.58 29999.82 7397.62 34399.34 26199.71 15098.52 17799.77 32597.98 22999.97 5599.52 205
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24899.67 15299.48 13699.55 20499.36 30394.92 32499.86 23198.95 15496.57 41399.45 230
UnsupCasMVSNet_bld98.55 27498.27 28899.40 21999.56 21699.37 18397.97 36499.68 14797.49 35199.08 30699.35 30895.41 32299.82 28997.70 26098.19 39499.01 346
PVSNet_Blended98.70 25998.59 25299.02 29399.54 22197.99 32597.58 38499.82 7395.70 39199.34 26198.98 36798.52 17799.77 32597.98 22999.83 17399.30 274
FMVSNet597.80 32297.25 33999.42 21098.83 38198.97 24799.38 12099.80 8598.87 23399.25 28099.69 16580.60 41099.91 14798.96 15099.90 11699.38 252
test199.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
new_pmnet98.88 24098.89 22698.84 31899.70 15297.62 34398.15 34099.50 25597.98 32399.62 17499.54 25598.15 22099.94 8197.55 27499.84 16598.95 351
FMVSNet398.80 24898.63 24999.32 24399.13 34298.72 27099.10 21699.48 26099.23 18299.62 17499.64 19292.57 35099.86 23198.96 15099.90 11699.39 250
dp96.86 35097.07 34396.24 39898.68 39890.30 42499.19 18298.38 38097.35 35898.23 37299.59 23287.23 39199.82 28996.27 35398.73 37598.59 380
FMVSNet299.35 13299.28 13799.55 17199.49 24799.35 19099.45 10999.57 21599.44 14899.70 14299.74 13197.21 27499.87 21299.03 14199.94 9499.44 235
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13799.67 9899.82 8299.83 7398.98 11199.90 16599.24 11099.97 5599.53 195
N_pmnet98.73 25598.53 26299.35 23499.72 14198.67 27398.34 32694.65 41398.35 29899.79 9999.68 17698.03 22799.93 9998.28 20199.92 10599.44 235
cascas96.99 34796.82 35397.48 37697.57 42295.64 38896.43 41299.56 22091.75 41097.13 40497.61 41595.58 31898.63 41796.68 32999.11 34598.18 403
BH-RMVSNet98.41 28998.14 29899.21 26699.21 32898.47 29098.60 29498.26 38498.35 29898.93 31899.31 31597.20 27799.66 37594.32 39599.10 34699.51 207
UGNet99.38 12499.34 11899.49 18898.90 37298.90 25799.70 3599.35 29699.86 4698.57 35899.81 8798.50 18099.93 9999.38 8799.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.59 27098.37 27699.26 25999.43 27098.40 29698.74 28499.13 33998.10 31599.21 28999.24 33394.82 32699.90 16597.86 24298.77 36899.49 217
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7399.39 15999.82 8299.84 6999.38 5699.91 14799.38 8799.93 10199.80 50
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21999.39 29499.57 4099.93 9999.64 5299.86 15599.20 296
sss98.90 23698.77 24099.27 25699.48 25298.44 29398.72 28699.32 30197.94 32899.37 25499.35 30896.31 30699.91 14798.85 15899.63 26699.47 225
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34899.80 8597.14 36899.46 23099.40 29096.11 31199.89 18499.01 14399.84 16599.84 39
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 31199.82 7397.65 34299.43 23699.16 34196.42 30099.91 14799.07 13999.84 16599.80 50
ab-mvs-re8.26 40411.02 4070.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.16 3410.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs99.33 14099.28 13799.47 19499.57 20599.39 17899.78 1499.43 27498.87 23399.57 19199.82 8098.06 22699.87 21298.69 17899.73 23099.15 307
TR-MVS97.44 33797.15 34298.32 34998.53 40297.46 34898.47 31697.91 39296.85 37498.21 37398.51 39696.42 30099.51 40492.16 40697.29 40997.98 406
MDTV_nov1_ep13_2view91.44 41899.14 19897.37 35799.21 28991.78 36096.75 32599.03 340
MDTV_nov1_ep1397.73 32698.70 39790.83 42099.15 19698.02 38998.51 27898.82 33399.61 21990.98 36799.66 37596.89 31798.92 359
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 10099.78 7299.93 3899.89 3897.94 23499.92 12599.65 5099.98 4199.62 145
MIMVSNet98.43 28798.20 29299.11 28099.53 22798.38 30099.58 7998.61 36598.96 21999.33 26399.76 12290.92 36899.81 30497.38 28599.76 21599.15 307
IterMVS-LS99.41 11699.47 8999.25 26299.81 8098.09 31998.85 26599.76 10599.62 11399.83 8199.64 19298.54 17099.97 3599.15 12699.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.22 16599.13 15899.50 18499.35 29099.11 23098.96 25499.54 23299.46 14399.61 18099.70 15896.31 30699.83 27999.34 9599.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.94 94
IterMVS98.97 22599.16 15298.42 34399.74 13595.64 38898.06 35399.83 6899.83 6099.85 7499.74 13196.10 31299.99 899.27 109100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.50 28098.23 28999.31 24699.49 24799.46 15498.56 30499.63 17794.86 40298.85 33099.37 29997.81 24399.59 39296.08 35999.44 31198.88 361
MVS_111021_LR99.13 19199.03 19499.42 21099.58 19599.32 19597.91 37099.73 12098.68 25999.31 27199.48 27199.09 9299.66 37597.70 26099.77 21399.29 277
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15199.61 18799.87 4399.74 12799.76 12298.69 14899.87 21298.20 20999.80 19999.75 71
ACMMP++99.79 204
HQP-MVS98.36 29398.02 30699.39 22299.31 30698.94 25197.98 36199.37 29297.45 35298.15 37498.83 38096.67 29199.70 34794.73 39099.67 25699.53 195
QAPM98.40 29197.99 30799.65 12599.39 27999.47 15099.67 5099.52 24691.70 41198.78 34099.80 9098.55 16899.95 6694.71 39299.75 21799.53 195
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9499.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet97.86 31998.22 29096.76 39099.28 31591.53 41798.38 32492.60 42099.13 20299.31 27199.96 1597.18 27899.68 36598.34 19799.83 17399.07 334
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33699.37 16199.61 18099.71 15094.73 32899.81 30497.70 26099.88 13599.58 171
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 35199.83 6898.64 26399.89 5399.60 22792.57 350100.00 199.33 9899.97 5599.72 76
EPMVS96.53 35896.32 35697.17 38798.18 41392.97 40999.39 11789.95 42498.21 31098.61 35399.59 23286.69 39999.72 34096.99 31099.23 34198.81 367
PAPM_NR98.36 29398.04 30499.33 23899.48 25298.93 25498.79 27999.28 31297.54 34798.56 35998.57 39297.12 27999.69 35394.09 39998.90 36399.38 252
TAMVS99.49 8999.45 9599.63 13999.48 25299.42 16899.45 10999.57 21599.66 10299.78 10399.83 7397.85 24199.86 23199.44 7799.96 6899.61 155
PAPR97.56 33397.07 34399.04 29298.80 38598.11 31797.63 38199.25 31894.56 40598.02 38298.25 40297.43 26499.68 36590.90 41098.74 37299.33 265
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7398.33 30399.50 22199.78 11097.90 23699.65 38196.78 32499.83 17399.44 235
Vis-MVSNet (Re-imp)98.77 25098.58 25599.34 23599.78 10598.88 25899.61 7099.56 22099.11 20699.24 28399.56 24693.00 34899.78 31797.43 28299.89 12699.35 261
test_040299.22 16599.14 15699.45 20099.79 9899.43 16599.28 15399.68 14799.54 12799.40 25099.56 24699.07 9799.82 28996.01 36299.96 6899.11 316
MVS_111021_HR99.12 19399.02 19599.40 21999.50 24299.11 23097.92 36899.71 13298.76 25399.08 30699.47 27599.17 8199.54 39897.85 24499.76 21599.54 190
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 6098.79 24699.41 24599.60 22798.92 11999.92 12598.02 22499.92 10599.43 241
PatchMatch-RL98.68 26198.47 26599.30 24999.44 26799.28 20198.14 34299.54 23297.12 36999.11 30399.25 32897.80 24499.70 34796.51 34099.30 33098.93 354
API-MVS98.38 29298.39 27498.35 34698.83 38199.26 20599.14 19899.18 33298.59 26998.66 34998.78 38498.61 16099.57 39494.14 39899.56 28696.21 417
Test By Simon98.41 190
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19898.93 15699.95 8199.60 159
USDC98.96 22898.93 21899.05 29199.54 22197.99 32597.07 40599.80 8598.21 31099.75 11999.77 11998.43 18799.64 38397.90 23699.88 13599.51 207
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32199.48 13699.56 19999.77 11994.89 32599.93 9998.72 17599.89 12699.63 134
PMMVS98.49 28298.29 28799.11 28098.96 36998.42 29597.54 38599.32 30197.53 34898.47 36398.15 40497.88 23899.82 28997.46 28099.24 33999.09 323
PAPM95.61 38294.71 38498.31 35199.12 34496.63 36896.66 41198.46 37490.77 41396.25 41298.68 38993.01 34799.69 35381.60 42197.86 40598.62 377
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16798.07 31899.52 21399.69 16598.57 16599.92 12597.18 30499.79 20499.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA98.57 27298.34 28099.28 25399.18 33699.10 23598.34 32699.41 27798.48 28298.52 36098.98 36797.05 28299.78 31795.59 37799.50 30498.96 349
PatchmatchNetpermissive97.65 32997.80 32297.18 38698.82 38492.49 41099.17 18898.39 37998.12 31498.79 33899.58 23590.71 37499.89 18497.23 30099.41 31699.16 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 19698.95 21699.59 15699.13 34299.59 13099.17 18899.65 16797.88 33299.25 28099.46 27898.97 11399.80 31197.26 29599.82 18299.37 255
F-COLMAP98.74 25398.45 26899.62 14899.57 20599.47 15098.84 26699.65 16796.31 38398.93 31899.19 34097.68 25299.87 21296.52 33999.37 32199.53 195
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3599.75 41100.00 199.84 39
wuyk23d97.58 33299.13 15892.93 40299.69 15699.49 14799.52 8999.77 10097.97 32499.96 2499.79 10099.84 1299.94 8195.85 37199.82 18279.36 420
OMC-MVS98.90 23698.72 24299.44 20499.39 27999.42 16898.58 29999.64 17597.31 36099.44 23299.62 21098.59 16299.69 35396.17 35899.79 20499.22 289
MG-MVS98.52 27798.39 27498.94 30199.15 33997.39 35298.18 33799.21 32898.89 23299.23 28499.63 20397.37 26899.74 33594.22 39799.61 27499.69 88
AdaColmapbinary98.60 26798.35 27999.38 22599.12 34499.22 21598.67 28999.42 27697.84 33698.81 33499.27 32397.32 27099.81 30495.14 38699.53 29799.10 318
uanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
ITE_SJBPF99.38 22599.63 17899.44 16199.73 12098.56 27199.33 26399.53 25798.88 12599.68 36596.01 36299.65 26199.02 345
DeepMVS_CXcopyleft97.98 36199.69 15696.95 36299.26 31575.51 42095.74 41698.28 40196.47 29899.62 38591.23 40997.89 40397.38 412
TinyColmap98.97 22598.93 21899.07 28899.46 26298.19 30997.75 37699.75 11098.79 24699.54 20699.70 15898.97 11399.62 38596.63 33599.83 17399.41 246
MAR-MVS98.24 30397.92 31799.19 26998.78 38999.65 10999.17 18899.14 33795.36 39498.04 38198.81 38397.47 26299.72 34095.47 38099.06 34898.21 400
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS99.01 21998.92 22299.27 25699.71 14499.28 20198.59 29799.77 10098.32 30499.39 25299.41 28698.62 15899.84 26496.62 33699.84 16598.69 375
MSDG99.08 20098.98 21299.37 22899.60 18599.13 22797.54 38599.74 11698.84 23999.53 21199.55 25399.10 9099.79 31497.07 30899.86 15599.18 301
LS3D99.24 15699.11 16599.61 15198.38 40799.79 4899.57 8299.68 14799.61 11799.15 29799.71 15098.70 14799.91 14797.54 27599.68 25099.13 315
CLD-MVS98.76 25198.57 25699.33 23899.57 20598.97 24797.53 38799.55 22696.41 38099.27 27899.13 34399.07 9799.78 31796.73 32799.89 12699.23 287
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS96.32 36495.50 37298.79 32499.60 18598.17 31298.46 32098.80 35597.16 36796.28 41199.63 20382.19 40699.09 41388.45 41398.89 36499.10 318
Gipumacopyleft99.57 7199.59 6699.49 18899.98 399.71 8599.72 3099.84 6699.81 6599.94 3599.78 11098.91 12199.71 34498.41 19299.95 8199.05 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015