test_0728_SECOND | | | | | 87.71 34 | 95.34 1 | 71.43 62 | 93.49 9 | 94.23 5 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 36 |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 70 | 93.57 7 | 94.06 12 | 77.24 51 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 9 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 63 | | 92.95 56 | 66.81 239 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 12 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 70 | | 94.06 12 | 77.17 55 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 45 | 95.27 5 | 71.25 63 | 93.49 9 | 92.73 65 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 79 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 95.27 5 | 71.25 63 | 93.60 6 | 94.11 8 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 61 | | 94.14 7 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
test_part2 | | | | | | 95.06 8 | 72.65 33 | | | | 91.80 13 | | | | | | |
|
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 25 | 92.85 60 | 80.26 13 | 87.78 30 | 94.27 36 | 75.89 19 | 96.81 22 | 87.45 19 | 96.44 9 | 93.05 90 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 42 | 95.06 1 | 93.84 18 | 74.49 115 | 91.30 15 | | | | | | |
|
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 32 | 91.59 42 | 94.10 10 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 20 | 96.34 15 | 93.95 48 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 9 | 90.51 63 | 93.00 47 | 80.90 9 | 88.06 28 | 94.06 46 | 76.43 16 | 96.84 20 | 88.48 14 | 95.99 19 | 94.34 31 |
|
ACMMPR | | | 87.44 26 | 87.23 31 | 88.08 13 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 39 | 76.78 67 | 84.66 65 | 94.52 23 | 68.81 84 | 96.65 29 | 84.53 41 | 94.90 45 | 94.00 46 |
|
region2R | | | 87.42 28 | 87.20 32 | 88.09 12 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 42 | 76.73 70 | 84.45 68 | 94.52 23 | 69.09 80 | 96.70 26 | 84.37 44 | 94.83 50 | 94.03 43 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 19 | 83.77 53 | 96.48 8 | 94.88 9 |
|
HFP-MVS | | | 87.58 23 | 87.47 25 | 87.94 17 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 37 | 76.78 67 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 84.53 41 | 94.89 46 | 93.66 62 |
|
#test# | | | 87.33 31 | 87.13 33 | 87.94 17 | 94.58 16 | 73.54 15 | 92.34 27 | 93.24 37 | 75.23 100 | 84.91 56 | 94.44 30 | 70.78 61 | 96.61 32 | 83.75 54 | 94.89 46 | 93.66 62 |
|
testtj | | | 87.78 20 | 87.78 21 | 87.77 26 | 94.55 18 | 72.47 39 | 92.23 31 | 93.49 30 | 74.75 110 | 88.33 25 | 94.43 32 | 73.27 42 | 97.02 16 | 84.18 49 | 94.84 48 | 93.82 56 |
|
MCST-MVS | | | 87.37 30 | 87.25 30 | 87.73 30 | 94.53 19 | 72.46 40 | 89.82 81 | 93.82 19 | 73.07 145 | 84.86 61 | 92.89 71 | 76.22 17 | 96.33 39 | 84.89 35 | 95.13 41 | 94.40 28 |
|
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 30 | 94.49 20 | 71.69 58 | 93.83 4 | 93.96 16 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 15 | 97.03 15 | 89.09 6 | 95.65 32 | 94.47 25 |
|
DP-MVS Recon | | | 83.11 90 | 82.09 97 | 86.15 68 | 94.44 21 | 70.92 76 | 88.79 111 | 92.20 88 | 70.53 185 | 79.17 132 | 91.03 110 | 64.12 125 | 96.03 50 | 68.39 192 | 90.14 105 | 91.50 139 |
|
XVS | | | 87.18 34 | 86.91 37 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 94.17 40 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 41 |
|
X-MVStestdata | | | 80.37 143 | 77.83 177 | 88.00 15 | 94.42 22 | 73.33 20 | 92.78 17 | 92.99 49 | 79.14 22 | 83.67 83 | 12.47 367 | 67.45 93 | 96.60 34 | 83.06 60 | 94.50 56 | 94.07 41 |
|
mPP-MVS | | | 86.67 42 | 86.32 45 | 87.72 32 | 94.41 24 | 73.55 13 | 92.74 19 | 92.22 87 | 76.87 64 | 82.81 95 | 94.25 38 | 66.44 102 | 96.24 42 | 82.88 64 | 94.28 62 | 93.38 76 |
|
NCCC | | | 88.06 14 | 88.01 18 | 88.24 10 | 94.41 24 | 73.62 11 | 91.22 51 | 92.83 61 | 81.50 6 | 85.79 45 | 93.47 59 | 73.02 45 | 97.00 17 | 84.90 33 | 94.94 44 | 94.10 39 |
|
ZNCC-MVS | | | 87.94 18 | 87.85 20 | 88.20 11 | 94.39 26 | 73.33 20 | 93.03 14 | 93.81 20 | 76.81 65 | 85.24 51 | 94.32 35 | 71.76 54 | 96.93 18 | 85.53 29 | 95.79 25 | 94.32 32 |
|
ZD-MVS | | | | | | 94.38 27 | 72.22 48 | | 92.67 67 | 70.98 176 | 87.75 31 | 94.07 45 | 74.01 38 | 96.70 26 | 84.66 39 | 94.84 48 | |
|
MP-MVS |  | | 87.71 21 | 87.64 23 | 87.93 20 | 94.36 28 | 73.88 7 | 92.71 21 | 92.65 70 | 77.57 42 | 83.84 80 | 94.40 34 | 72.24 50 | 96.28 41 | 85.65 28 | 95.30 40 | 93.62 69 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DVP-MVS++. | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 29 | 71.25 63 | 95.06 1 | 94.23 5 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 5 |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 26 |
|
No_MVS | | | | | 89.16 1 | 94.34 29 | 75.53 2 | | 92.99 49 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 26 |
|
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 32 | 73.46 18 | 92.90 16 | 94.11 8 | 80.27 12 | 91.35 14 | 94.16 41 | 78.35 13 | 96.77 23 | 89.59 3 | 94.22 64 | 94.67 18 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 33 | 73.73 10 | 92.40 22 | 93.63 23 | 74.77 109 | 92.29 7 | 95.97 2 | 74.28 34 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 87.44 26 | 87.52 24 | 87.19 47 | 94.24 34 | 72.39 42 | 91.86 39 | 92.83 61 | 73.01 147 | 88.58 23 | 94.52 23 | 73.36 40 | 96.49 37 | 84.26 46 | 95.01 42 | 92.70 101 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PGM-MVS | | | 86.68 41 | 86.27 46 | 87.90 21 | 94.22 35 | 73.38 19 | 90.22 74 | 93.04 43 | 75.53 94 | 83.86 79 | 94.42 33 | 67.87 90 | 96.64 30 | 82.70 69 | 94.57 55 | 93.66 62 |
|
CP-MVS | | | 87.11 35 | 86.92 36 | 87.68 37 | 94.20 36 | 73.86 8 | 93.98 3 | 92.82 64 | 76.62 72 | 83.68 82 | 94.46 27 | 67.93 88 | 95.95 56 | 84.20 48 | 94.39 59 | 93.23 82 |
|
zzz-MVS | | | 87.53 24 | 87.41 27 | 87.90 21 | 94.18 37 | 74.25 5 | 90.23 73 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 82 |
|
MTAPA | | | 87.23 33 | 87.00 34 | 87.90 21 | 94.18 37 | 74.25 5 | 86.58 182 | 92.02 94 | 79.45 19 | 85.88 42 | 94.80 16 | 68.07 86 | 96.21 43 | 86.69 24 | 95.34 36 | 93.23 82 |
|
GST-MVS | | | 87.42 28 | 87.26 29 | 87.89 24 | 94.12 39 | 72.97 25 | 92.39 24 | 93.43 33 | 76.89 63 | 84.68 62 | 93.99 50 | 70.67 64 | 96.82 21 | 84.18 49 | 95.01 42 | 93.90 51 |
|
SR-MVS | | | 86.73 39 | 86.67 40 | 86.91 52 | 94.11 40 | 72.11 51 | 92.37 26 | 92.56 73 | 74.50 114 | 86.84 37 | 94.65 20 | 67.31 95 | 95.77 60 | 84.80 37 | 92.85 74 | 92.84 99 |
|
114514_t | | | 80.68 135 | 79.51 139 | 84.20 119 | 94.09 41 | 67.27 152 | 89.64 88 | 91.11 131 | 58.75 323 | 74.08 237 | 90.72 115 | 58.10 197 | 95.04 96 | 69.70 180 | 89.42 114 | 90.30 180 |
|
test1172 | | | 86.20 50 | 86.22 47 | 86.12 70 | 93.95 42 | 69.89 96 | 91.79 41 | 92.28 82 | 75.07 104 | 86.40 39 | 94.58 22 | 65.00 120 | 95.56 66 | 84.34 45 | 92.60 77 | 92.90 97 |
|
HPM-MVS |  | | 87.11 35 | 86.98 35 | 87.50 41 | 93.88 43 | 72.16 49 | 92.19 32 | 93.33 36 | 76.07 84 | 83.81 81 | 93.95 51 | 69.77 74 | 96.01 52 | 85.15 31 | 94.66 52 | 94.32 32 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
xxxxxxxxxxxxxcwj | | | 87.88 19 | 87.92 19 | 87.77 26 | 93.80 44 | 72.35 45 | 90.47 66 | 89.69 168 | 74.31 119 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 13 |
|
save fliter | | | | | | 93.80 44 | 72.35 45 | 90.47 66 | 91.17 129 | 74.31 119 | | | | | | | |
|
ETH3 D test6400 | | | 87.50 25 | 87.44 26 | 87.70 35 | 93.71 46 | 71.75 57 | 90.62 61 | 94.05 15 | 70.80 178 | 87.59 33 | 93.51 56 | 77.57 14 | 96.63 31 | 83.31 55 | 95.77 26 | 94.72 17 |
|
ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 17 | 93.70 47 | 73.05 23 | 90.86 56 | 93.59 25 | 76.27 81 | 88.14 26 | 95.09 15 | 71.06 59 | 96.67 28 | 87.67 16 | 96.37 14 | 94.09 40 |
|
HPM-MVS_fast | | | 85.35 63 | 84.95 70 | 86.57 61 | 93.69 48 | 70.58 85 | 92.15 34 | 91.62 113 | 73.89 130 | 82.67 97 | 94.09 44 | 62.60 145 | 95.54 69 | 80.93 81 | 92.93 72 | 93.57 71 |
|
TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 32 | 93.68 49 | 72.13 50 | 91.41 47 | 92.35 80 | 74.62 113 | 88.90 21 | 93.85 52 | 75.75 20 | 96.00 53 | 87.80 15 | 94.63 53 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS-pluss | | | 87.67 22 | 87.72 22 | 87.54 39 | 93.64 50 | 72.04 52 | 89.80 83 | 93.50 28 | 75.17 103 | 86.34 40 | 95.29 12 | 70.86 60 | 96.00 53 | 88.78 12 | 96.04 16 | 94.58 21 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ACMMP |  | | 85.89 54 | 85.39 59 | 87.38 44 | 93.59 51 | 72.63 34 | 92.74 19 | 93.18 41 | 76.78 67 | 80.73 120 | 93.82 53 | 64.33 123 | 96.29 40 | 82.67 70 | 90.69 97 | 93.23 82 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepC-MVS_fast | | 79.65 3 | 86.91 38 | 86.62 41 | 87.76 29 | 93.52 52 | 72.37 44 | 91.26 48 | 93.04 43 | 76.62 72 | 84.22 73 | 93.36 61 | 71.44 57 | 96.76 24 | 80.82 83 | 95.33 38 | 94.16 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 85.76 56 | 85.29 63 | 87.17 48 | 93.49 53 | 71.08 68 | 88.58 121 | 92.42 78 | 68.32 230 | 84.61 66 | 93.48 57 | 72.32 49 | 96.15 48 | 79.00 94 | 95.43 34 | 94.28 34 |
|
DP-MVS | | | 76.78 220 | 74.57 232 | 83.42 144 | 93.29 54 | 69.46 107 | 88.55 122 | 83.70 277 | 63.98 279 | 70.20 272 | 88.89 160 | 54.01 230 | 94.80 107 | 46.66 335 | 81.88 203 | 86.01 297 |
|
CPTT-MVS | | | 83.73 77 | 83.33 80 | 84.92 94 | 93.28 55 | 70.86 77 | 92.09 35 | 90.38 146 | 68.75 224 | 79.57 128 | 92.83 73 | 60.60 184 | 93.04 184 | 80.92 82 | 91.56 88 | 90.86 160 |
|
TEST9 | | | | | | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.44 229 | 85.00 54 | 93.10 65 | 74.36 33 | 95.41 77 | | | |
|
train_agg | | | 86.43 45 | 86.20 48 | 87.13 49 | 93.26 56 | 72.96 26 | 88.75 113 | 91.89 103 | 68.69 225 | 85.00 54 | 93.10 65 | 74.43 30 | 95.41 77 | 84.97 32 | 95.71 30 | 93.02 92 |
|
test_8 | | | | | | 93.13 58 | 72.57 36 | 88.68 118 | 91.84 106 | 68.69 225 | 84.87 60 | 93.10 65 | 74.43 30 | 95.16 89 | | | |
|
新几何1 | | | | | 83.42 144 | 93.13 58 | 70.71 80 | | 85.48 255 | 57.43 331 | 81.80 105 | 91.98 82 | 63.28 133 | 92.27 204 | 64.60 224 | 92.99 71 | 87.27 270 |
|
1121 | | | 80.84 126 | 79.77 133 | 84.05 126 | 93.11 60 | 70.78 79 | 84.66 227 | 85.42 256 | 57.37 332 | 81.76 109 | 92.02 81 | 63.41 131 | 94.12 129 | 67.28 200 | 92.93 72 | 87.26 271 |
|
AdaColmap |  | | 80.58 139 | 79.42 141 | 84.06 125 | 93.09 61 | 68.91 115 | 89.36 91 | 88.97 194 | 69.27 208 | 75.70 206 | 89.69 137 | 57.20 209 | 95.77 60 | 63.06 233 | 88.41 126 | 87.50 265 |
|
SR-MVS-dyc-post | | | 85.77 55 | 85.61 56 | 86.23 66 | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 138 | 85.69 46 | 94.45 28 | 65.00 120 | 95.56 66 | 82.75 65 | 91.87 83 | 92.50 108 |
|
RE-MVS-def | | | | 85.48 57 | | 93.06 62 | 70.63 82 | 91.88 37 | 92.27 83 | 73.53 138 | 85.69 46 | 94.45 28 | 63.87 127 | | 82.75 65 | 91.87 83 | 92.50 108 |
|
原ACMM1 | | | | | 84.35 114 | 93.01 64 | 68.79 116 | | 92.44 75 | 63.96 280 | 81.09 116 | 91.57 93 | 66.06 108 | 95.45 73 | 67.19 203 | 94.82 51 | 88.81 237 |
|
CSCG | | | 86.41 47 | 86.19 49 | 87.07 50 | 92.91 65 | 72.48 38 | 90.81 57 | 93.56 26 | 73.95 127 | 83.16 88 | 91.07 107 | 75.94 18 | 95.19 88 | 79.94 92 | 94.38 60 | 93.55 72 |
|
agg_prior1 | | | 86.22 49 | 86.09 52 | 86.62 59 | 92.85 66 | 71.94 54 | 88.59 120 | 91.78 109 | 68.96 220 | 84.41 69 | 93.18 64 | 74.94 26 | 94.93 98 | 84.75 38 | 95.33 38 | 93.01 93 |
|
agg_prior | | | | | | 92.85 66 | 71.94 54 | | 91.78 109 | | 84.41 69 | | | 94.93 98 | | | |
|
9.14 | | | | 88.26 15 | | 92.84 68 | | 91.52 45 | 94.75 1 | 73.93 129 | 88.57 24 | 94.67 19 | 75.57 23 | 95.79 59 | 86.77 23 | 95.76 28 | |
|
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 38 | 92.78 69 | 71.95 53 | 92.40 22 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 45 | 87.07 21 | 96.01 17 | 94.79 13 |
|
ETH3D-3000-0.1 | | | 88.09 13 | 88.29 14 | 87.50 41 | 92.76 70 | 71.89 56 | 91.43 46 | 94.70 3 | 74.47 116 | 88.86 22 | 94.61 21 | 75.23 24 | 95.84 58 | 86.62 26 | 95.92 21 | 94.78 15 |
|
MG-MVS | | | 83.41 83 | 83.45 78 | 83.28 149 | 92.74 71 | 62.28 244 | 88.17 138 | 89.50 172 | 75.22 101 | 81.49 110 | 92.74 76 | 66.75 98 | 95.11 91 | 72.85 154 | 91.58 87 | 92.45 111 |
|
APD-MVS_3200maxsize | | | 85.97 52 | 85.88 53 | 86.22 67 | 92.69 72 | 69.53 103 | 91.93 36 | 92.99 49 | 73.54 137 | 85.94 41 | 94.51 26 | 65.80 112 | 95.61 63 | 83.04 62 | 92.51 79 | 93.53 74 |
|
test12 | | | | | 86.80 55 | 92.63 73 | 70.70 81 | | 91.79 108 | | 82.71 96 | | 71.67 55 | 96.16 47 | | 94.50 56 | 93.54 73 |
|
test_prior3 | | | 86.73 39 | 86.86 39 | 86.33 63 | 92.61 74 | 69.59 101 | 88.85 108 | 92.97 54 | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | 95.48 71 | 83.31 55 | 95.86 22 | 93.91 49 |
|
test_prior | | | | | 86.33 63 | 92.61 74 | 69.59 101 | | 92.97 54 | | | | | 95.48 71 | | | 93.91 49 |
|
SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 57 | 92.60 76 | 72.71 30 | 91.81 40 | 93.19 40 | 77.87 36 | 90.32 17 | 94.00 48 | 74.83 27 | 93.78 145 | 87.63 17 | 94.27 63 | 93.65 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PAPM_NR | | | 83.02 91 | 82.41 91 | 84.82 98 | 92.47 77 | 66.37 165 | 87.93 146 | 91.80 107 | 73.82 131 | 77.32 169 | 90.66 116 | 67.90 89 | 94.90 102 | 70.37 172 | 89.48 113 | 93.19 86 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 56 | 92.24 78 | 69.03 110 | 89.57 89 | 93.39 35 | 77.53 46 | 89.79 18 | 94.12 43 | 78.98 12 | 96.58 36 | 85.66 27 | 95.72 29 | 94.58 21 |
|
abl_6 | | | 85.23 64 | 84.95 70 | 86.07 71 | 92.23 79 | 70.48 86 | 90.80 58 | 92.08 92 | 73.51 140 | 85.26 50 | 94.16 41 | 62.75 144 | 95.92 57 | 82.46 72 | 91.30 92 | 91.81 132 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 80 | 72.96 26 | 93.73 5 | 93.67 22 | 80.19 14 | 88.10 27 | 94.80 16 | 73.76 39 | 97.11 13 | 87.51 18 | 95.82 24 | 94.90 8 |
Skip Steuart: Steuart Systems R&D Blog. |
UA-Net | | | 85.08 68 | 84.96 69 | 85.45 78 | 92.07 81 | 68.07 137 | 89.78 84 | 90.86 137 | 82.48 2 | 84.60 67 | 93.20 63 | 69.35 77 | 95.22 87 | 71.39 164 | 90.88 96 | 93.07 89 |
|
旧先验1 | | | | | | 91.96 82 | 65.79 177 | | 86.37 246 | | | 93.08 69 | 69.31 79 | | | 92.74 75 | 88.74 240 |
|
MSLP-MVS++ | | | 85.43 61 | 85.76 55 | 84.45 109 | 91.93 83 | 70.24 87 | 90.71 59 | 92.86 59 | 77.46 48 | 84.22 73 | 92.81 75 | 67.16 97 | 92.94 186 | 80.36 88 | 94.35 61 | 90.16 184 |
|
LFMVS | | | 81.82 108 | 81.23 109 | 83.57 141 | 91.89 84 | 63.43 225 | 89.84 80 | 81.85 303 | 77.04 60 | 83.21 86 | 93.10 65 | 52.26 242 | 93.43 165 | 71.98 159 | 89.95 109 | 93.85 53 |
|
PLC |  | 70.83 11 | 78.05 196 | 76.37 213 | 83.08 161 | 91.88 85 | 67.80 141 | 88.19 137 | 89.46 173 | 64.33 273 | 69.87 281 | 88.38 174 | 53.66 232 | 93.58 154 | 58.86 270 | 82.73 193 | 87.86 256 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 85.14 66 | 84.75 72 | 86.32 65 | 91.65 86 | 72.70 31 | 85.98 197 | 90.33 150 | 76.11 83 | 82.08 100 | 91.61 92 | 71.36 58 | 94.17 128 | 81.02 80 | 92.58 78 | 92.08 124 |
|
ETH3D cwj APD-0.16 | | | 87.31 32 | 87.27 28 | 87.44 43 | 91.60 87 | 72.45 41 | 90.02 77 | 94.37 4 | 71.76 161 | 87.28 34 | 94.27 36 | 75.18 25 | 96.08 49 | 85.16 30 | 95.77 26 | 93.80 59 |
|
test222 | | | | | | 91.50 88 | 68.26 133 | 84.16 242 | 83.20 289 | 54.63 343 | 79.74 126 | 91.63 91 | 58.97 193 | | | 91.42 89 | 86.77 283 |
|
TSAR-MVS + GP. | | | 85.71 57 | 85.33 60 | 86.84 53 | 91.34 89 | 72.50 37 | 89.07 101 | 87.28 232 | 76.41 74 | 85.80 44 | 90.22 124 | 74.15 37 | 95.37 83 | 81.82 75 | 91.88 82 | 92.65 105 |
|
MAR-MVS | | | 81.84 107 | 80.70 117 | 85.27 82 | 91.32 90 | 71.53 60 | 89.82 81 | 90.92 134 | 69.77 199 | 78.50 144 | 86.21 237 | 62.36 151 | 94.52 114 | 65.36 217 | 92.05 81 | 89.77 208 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 79.81 2 | 87.08 37 | 86.88 38 | 87.69 36 | 91.16 91 | 72.32 47 | 90.31 71 | 93.94 17 | 77.12 57 | 82.82 94 | 94.23 39 | 72.13 52 | 97.09 14 | 84.83 36 | 95.37 35 | 93.65 67 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 77.84 4 | 85.48 59 | 84.47 74 | 88.51 6 | 91.08 92 | 73.49 17 | 93.18 11 | 93.78 21 | 80.79 10 | 76.66 184 | 93.37 60 | 60.40 188 | 96.75 25 | 77.20 114 | 93.73 68 | 95.29 2 |
|
Anonymous202405211 | | | 78.25 188 | 77.01 196 | 81.99 193 | 91.03 93 | 60.67 262 | 84.77 225 | 83.90 275 | 70.65 184 | 80.00 125 | 91.20 103 | 41.08 329 | 91.43 231 | 65.21 218 | 85.26 162 | 93.85 53 |
|
VDD-MVS | | | 83.01 92 | 82.36 93 | 84.96 91 | 91.02 94 | 66.40 164 | 88.91 105 | 88.11 212 | 77.57 42 | 84.39 71 | 93.29 62 | 52.19 243 | 93.91 140 | 77.05 116 | 88.70 121 | 94.57 23 |
|
API-MVS | | | 81.99 105 | 81.23 109 | 84.26 118 | 90.94 95 | 70.18 93 | 91.10 53 | 89.32 176 | 71.51 168 | 78.66 141 | 88.28 177 | 65.26 115 | 95.10 94 | 64.74 223 | 91.23 93 | 87.51 264 |
|
testdata | | | | | 79.97 235 | 90.90 96 | 64.21 207 | | 84.71 262 | 59.27 318 | 85.40 48 | 92.91 70 | 62.02 158 | 89.08 274 | 68.95 188 | 91.37 90 | 86.63 287 |
|
PHI-MVS | | | 86.43 45 | 86.17 50 | 87.24 46 | 90.88 97 | 70.96 72 | 92.27 30 | 94.07 11 | 72.45 150 | 85.22 52 | 91.90 84 | 69.47 76 | 96.42 38 | 83.28 58 | 95.94 20 | 94.35 30 |
|
VNet | | | 82.21 100 | 82.41 91 | 81.62 199 | 90.82 98 | 60.93 258 | 84.47 233 | 89.78 164 | 76.36 79 | 84.07 77 | 91.88 85 | 64.71 122 | 90.26 254 | 70.68 169 | 88.89 117 | 93.66 62 |
|
PVSNet_Blended_VisFu | | | 82.62 96 | 81.83 104 | 84.96 91 | 90.80 99 | 69.76 98 | 88.74 115 | 91.70 112 | 69.39 205 | 78.96 134 | 88.46 172 | 65.47 114 | 94.87 105 | 74.42 136 | 88.57 122 | 90.24 182 |
|
test_part1 | | | 82.78 94 | 82.08 98 | 84.89 96 | 90.66 100 | 66.97 158 | 90.96 55 | 92.93 57 | 77.19 54 | 80.53 122 | 90.04 128 | 63.44 130 | 95.39 79 | 76.04 125 | 76.90 253 | 92.31 115 |
|
Anonymous20240529 | | | 80.19 147 | 78.89 153 | 84.10 122 | 90.60 101 | 64.75 196 | 88.95 104 | 90.90 135 | 65.97 254 | 80.59 121 | 91.17 104 | 49.97 271 | 93.73 151 | 69.16 186 | 82.70 195 | 93.81 57 |
|
hse-mvs3 | | | 83.15 87 | 82.19 95 | 86.02 73 | 90.56 102 | 70.85 78 | 88.15 140 | 89.16 184 | 76.02 85 | 84.67 63 | 91.39 99 | 61.54 163 | 95.50 70 | 82.71 67 | 75.48 276 | 91.72 134 |
|
Anonymous20231211 | | | 78.97 174 | 77.69 184 | 82.81 174 | 90.54 103 | 64.29 206 | 90.11 76 | 91.51 117 | 65.01 265 | 76.16 199 | 88.13 186 | 50.56 265 | 93.03 185 | 69.68 181 | 77.56 246 | 91.11 151 |
|
LS3D | | | 76.95 218 | 74.82 230 | 83.37 147 | 90.45 104 | 67.36 151 | 89.15 99 | 86.94 238 | 61.87 299 | 69.52 284 | 90.61 117 | 51.71 254 | 94.53 113 | 46.38 338 | 86.71 147 | 88.21 250 |
|
VDDNet | | | 81.52 115 | 80.67 118 | 84.05 126 | 90.44 105 | 64.13 209 | 89.73 86 | 85.91 252 | 71.11 173 | 83.18 87 | 93.48 57 | 50.54 266 | 93.49 160 | 73.40 148 | 88.25 127 | 94.54 24 |
|
CNLPA | | | 78.08 194 | 76.79 203 | 81.97 194 | 90.40 106 | 71.07 69 | 87.59 153 | 84.55 265 | 66.03 253 | 72.38 253 | 89.64 139 | 57.56 203 | 86.04 303 | 59.61 262 | 83.35 184 | 88.79 238 |
|
PAPR | | | 81.66 113 | 80.89 116 | 83.99 132 | 90.27 107 | 64.00 210 | 86.76 178 | 91.77 111 | 68.84 223 | 77.13 177 | 89.50 143 | 67.63 91 | 94.88 104 | 67.55 197 | 88.52 124 | 93.09 88 |
|
Vis-MVSNet |  | | 83.46 82 | 82.80 88 | 85.43 79 | 90.25 108 | 68.74 120 | 90.30 72 | 90.13 156 | 76.33 80 | 80.87 119 | 92.89 71 | 61.00 177 | 94.20 125 | 72.45 158 | 90.97 94 | 93.35 78 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DPM-MVS | | | 84.93 70 | 84.29 75 | 86.84 53 | 90.20 109 | 73.04 24 | 87.12 164 | 93.04 43 | 69.80 198 | 82.85 93 | 91.22 102 | 73.06 44 | 96.02 51 | 76.72 121 | 94.63 53 | 91.46 142 |
|
EPP-MVSNet | | | 83.40 84 | 83.02 84 | 84.57 104 | 90.13 110 | 64.47 202 | 92.32 28 | 90.73 138 | 74.45 118 | 79.35 131 | 91.10 105 | 69.05 82 | 95.12 90 | 72.78 155 | 87.22 139 | 94.13 38 |
|
CANet | | | 86.45 44 | 86.10 51 | 87.51 40 | 90.09 111 | 70.94 74 | 89.70 87 | 92.59 72 | 81.78 4 | 81.32 111 | 91.43 98 | 70.34 66 | 97.23 12 | 84.26 46 | 93.36 70 | 94.37 29 |
|
HQP_MVS | | | 83.64 79 | 83.14 81 | 85.14 85 | 90.08 112 | 68.71 122 | 91.25 49 | 92.44 75 | 79.12 24 | 78.92 136 | 91.00 111 | 60.42 186 | 95.38 80 | 78.71 97 | 86.32 152 | 91.33 144 |
|
plane_prior7 | | | | | | 90.08 112 | 68.51 129 | | | | | | | | | | |
|
CHOSEN 1792x2688 | | | 77.63 207 | 75.69 216 | 83.44 143 | 89.98 114 | 68.58 128 | 78.70 304 | 87.50 228 | 56.38 337 | 75.80 205 | 86.84 213 | 58.67 194 | 91.40 232 | 61.58 248 | 85.75 161 | 90.34 179 |
|
IS-MVSNet | | | 83.15 87 | 82.81 87 | 84.18 120 | 89.94 115 | 63.30 227 | 91.59 42 | 88.46 209 | 79.04 26 | 79.49 129 | 92.16 79 | 65.10 117 | 94.28 119 | 67.71 195 | 91.86 85 | 94.95 5 |
|
plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
canonicalmvs | | | 85.91 53 | 85.87 54 | 86.04 72 | 89.84 117 | 69.44 108 | 90.45 69 | 93.00 47 | 76.70 71 | 88.01 29 | 91.23 101 | 73.28 41 | 93.91 140 | 81.50 77 | 88.80 119 | 94.77 16 |
|
plane_prior6 | | | | | | 89.84 117 | 68.70 124 | | | | | | 60.42 186 | | | | |
|
NP-MVS | | | | | | 89.62 119 | 68.32 131 | | | | | 90.24 122 | | | | | |
|
EIA-MVS | | | 83.31 86 | 82.80 88 | 84.82 98 | 89.59 120 | 65.59 181 | 88.21 136 | 92.68 66 | 74.66 112 | 78.96 134 | 86.42 233 | 69.06 81 | 95.26 85 | 75.54 131 | 90.09 106 | 93.62 69 |
|
HyFIR lowres test | | | 77.53 208 | 75.40 223 | 83.94 135 | 89.59 120 | 66.62 161 | 80.36 286 | 88.64 206 | 56.29 338 | 76.45 187 | 85.17 258 | 57.64 202 | 93.28 168 | 61.34 251 | 83.10 189 | 91.91 128 |
|
TAPA-MVS | | 73.13 9 | 79.15 168 | 77.94 173 | 82.79 177 | 89.59 120 | 62.99 237 | 88.16 139 | 91.51 117 | 65.77 255 | 77.14 176 | 91.09 106 | 60.91 178 | 93.21 170 | 50.26 318 | 87.05 141 | 92.17 122 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thres100view900 | | | 76.50 223 | 75.55 219 | 79.33 247 | 89.52 123 | 56.99 302 | 85.83 204 | 83.23 287 | 73.94 128 | 76.32 192 | 87.12 209 | 51.89 251 | 91.95 216 | 48.33 326 | 83.75 178 | 89.07 220 |
|
GeoE | | | 81.71 110 | 81.01 114 | 83.80 137 | 89.51 124 | 64.45 203 | 88.97 103 | 88.73 204 | 71.27 171 | 78.63 142 | 89.76 135 | 66.32 104 | 93.20 172 | 69.89 178 | 86.02 157 | 93.74 60 |
|
alignmvs | | | 85.48 59 | 85.32 61 | 85.96 74 | 89.51 124 | 69.47 105 | 89.74 85 | 92.47 74 | 76.17 82 | 87.73 32 | 91.46 97 | 70.32 67 | 93.78 145 | 81.51 76 | 88.95 116 | 94.63 20 |
|
PS-MVSNAJ | | | 81.69 111 | 81.02 113 | 83.70 138 | 89.51 124 | 68.21 135 | 84.28 241 | 90.09 157 | 70.79 179 | 81.26 115 | 85.62 249 | 63.15 138 | 94.29 118 | 75.62 129 | 88.87 118 | 88.59 243 |
|
ACMP | | 74.13 6 | 81.51 117 | 80.57 119 | 84.36 113 | 89.42 127 | 68.69 125 | 89.97 79 | 91.50 120 | 74.46 117 | 75.04 227 | 90.41 120 | 53.82 231 | 94.54 112 | 77.56 110 | 82.91 190 | 89.86 204 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
thres600view7 | | | 76.50 223 | 75.44 221 | 79.68 241 | 89.40 128 | 57.16 299 | 85.53 212 | 83.23 287 | 73.79 132 | 76.26 193 | 87.09 210 | 51.89 251 | 91.89 219 | 48.05 331 | 83.72 181 | 90.00 196 |
|
ETV-MVS | | | 84.90 72 | 84.67 73 | 85.59 77 | 89.39 129 | 68.66 126 | 88.74 115 | 92.64 71 | 79.97 17 | 84.10 76 | 85.71 245 | 69.32 78 | 95.38 80 | 80.82 83 | 91.37 90 | 92.72 100 |
|
BH-RMVSNet | | | 79.61 155 | 78.44 161 | 83.14 158 | 89.38 130 | 65.93 173 | 84.95 222 | 87.15 235 | 73.56 136 | 78.19 152 | 89.79 134 | 56.67 212 | 93.36 166 | 59.53 263 | 86.74 146 | 90.13 186 |
|
Regformer-1 | | | 86.41 47 | 86.33 44 | 86.64 58 | 89.33 131 | 70.93 75 | 88.43 123 | 91.39 122 | 82.14 3 | 86.65 38 | 90.09 126 | 74.39 32 | 95.01 97 | 83.97 51 | 90.63 98 | 93.97 47 |
|
Regformer-2 | | | 86.63 43 | 86.53 42 | 86.95 51 | 89.33 131 | 71.24 67 | 88.43 123 | 92.05 93 | 82.50 1 | 86.88 36 | 90.09 126 | 74.45 29 | 95.61 63 | 84.38 43 | 90.63 98 | 94.01 45 |
|
HQP-NCC | | | | | | 89.33 131 | | 89.17 95 | | 76.41 74 | 77.23 172 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 131 | | 89.17 95 | | 76.41 74 | 77.23 172 | | | | | | |
|
HQP-MVS | | | 82.61 97 | 82.02 100 | 84.37 112 | 89.33 131 | 66.98 156 | 89.17 95 | 92.19 89 | 76.41 74 | 77.23 172 | 90.23 123 | 60.17 189 | 95.11 91 | 77.47 111 | 85.99 158 | 91.03 154 |
|
DROMVSNet | | | 86.01 51 | 86.38 43 | 84.91 95 | 89.31 136 | 66.27 167 | 92.32 28 | 93.63 23 | 79.37 21 | 84.17 75 | 91.88 85 | 69.04 83 | 95.43 75 | 83.93 52 | 93.77 67 | 93.01 93 |
|
ACMM | | 73.20 8 | 80.78 134 | 79.84 132 | 83.58 140 | 89.31 136 | 68.37 130 | 89.99 78 | 91.60 114 | 70.28 189 | 77.25 170 | 89.66 138 | 53.37 234 | 93.53 159 | 74.24 139 | 82.85 191 | 88.85 235 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 85.02 69 | 85.21 64 | 84.46 108 | 89.28 138 | 65.70 179 | 91.16 52 | 93.56 26 | 77.83 38 | 81.80 105 | 89.89 131 | 70.67 64 | 95.61 63 | 80.39 87 | 92.34 80 | 92.06 125 |
|
Test_1112_low_res | | | 76.40 227 | 75.44 221 | 79.27 248 | 89.28 138 | 58.09 284 | 81.69 274 | 87.07 236 | 59.53 316 | 72.48 251 | 86.67 223 | 61.30 170 | 89.33 269 | 60.81 255 | 80.15 222 | 90.41 176 |
|
F-COLMAP | | | 76.38 228 | 74.33 237 | 82.50 184 | 89.28 138 | 66.95 160 | 88.41 126 | 89.03 189 | 64.05 277 | 66.83 306 | 88.61 167 | 46.78 294 | 92.89 187 | 57.48 282 | 78.55 235 | 87.67 259 |
|
LPG-MVS_test | | | 82.08 102 | 81.27 108 | 84.50 106 | 89.23 141 | 68.76 118 | 90.22 74 | 91.94 101 | 75.37 98 | 76.64 185 | 91.51 94 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 176 | 89.83 205 |
|
LGP-MVS_train | | | | | 84.50 106 | 89.23 141 | 68.76 118 | | 91.94 101 | 75.37 98 | 76.64 185 | 91.51 94 | 54.29 226 | 94.91 100 | 78.44 101 | 83.78 176 | 89.83 205 |
|
BH-untuned | | | 79.47 159 | 78.60 157 | 82.05 191 | 89.19 143 | 65.91 174 | 86.07 196 | 88.52 208 | 72.18 156 | 75.42 213 | 87.69 191 | 61.15 174 | 93.54 158 | 60.38 256 | 86.83 145 | 86.70 285 |
|
xiu_mvs_v2_base | | | 81.69 111 | 81.05 112 | 83.60 139 | 89.15 144 | 68.03 138 | 84.46 235 | 90.02 158 | 70.67 182 | 81.30 114 | 86.53 231 | 63.17 137 | 94.19 126 | 75.60 130 | 88.54 123 | 88.57 244 |
|
test_yl | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 145 | 63.62 216 | 86.21 192 | 89.95 160 | 72.43 153 | 81.78 107 | 89.61 140 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 143 | 92.52 106 |
|
DCV-MVSNet | | | 81.17 120 | 80.47 122 | 83.24 152 | 89.13 145 | 63.62 216 | 86.21 192 | 89.95 160 | 72.43 153 | 81.78 107 | 89.61 140 | 57.50 204 | 93.58 154 | 70.75 167 | 86.90 143 | 92.52 106 |
|
tfpn200view9 | | | 76.42 226 | 75.37 225 | 79.55 246 | 89.13 145 | 57.65 294 | 85.17 215 | 83.60 278 | 73.41 141 | 76.45 187 | 86.39 234 | 52.12 244 | 91.95 216 | 48.33 326 | 83.75 178 | 89.07 220 |
|
thres400 | | | 76.50 223 | 75.37 225 | 79.86 237 | 89.13 145 | 57.65 294 | 85.17 215 | 83.60 278 | 73.41 141 | 76.45 187 | 86.39 234 | 52.12 244 | 91.95 216 | 48.33 326 | 83.75 178 | 90.00 196 |
|
1112_ss | | | 77.40 211 | 76.43 211 | 80.32 230 | 89.11 149 | 60.41 267 | 83.65 250 | 87.72 224 | 62.13 297 | 73.05 245 | 86.72 217 | 62.58 147 | 89.97 259 | 62.11 243 | 80.80 213 | 90.59 170 |
|
Regformer-3 | | | 85.23 64 | 85.07 66 | 85.70 76 | 88.95 150 | 69.01 112 | 88.29 133 | 89.91 162 | 80.95 8 | 85.01 53 | 90.01 129 | 72.45 48 | 94.19 126 | 82.50 71 | 87.57 131 | 93.90 51 |
|
Regformer-4 | | | 85.68 58 | 85.45 58 | 86.35 62 | 88.95 150 | 69.67 100 | 88.29 133 | 91.29 124 | 81.73 5 | 85.36 49 | 90.01 129 | 72.62 47 | 95.35 84 | 83.28 58 | 87.57 131 | 94.03 43 |
|
Fast-Effi-MVS+ | | | 80.81 129 | 79.92 130 | 83.47 142 | 88.85 152 | 64.51 199 | 85.53 212 | 89.39 174 | 70.79 179 | 78.49 145 | 85.06 261 | 67.54 92 | 93.58 154 | 67.03 206 | 86.58 148 | 92.32 114 |
|
PVSNet_BlendedMVS | | | 80.60 137 | 80.02 128 | 82.36 187 | 88.85 152 | 65.40 184 | 86.16 194 | 92.00 97 | 69.34 207 | 78.11 154 | 86.09 240 | 66.02 109 | 94.27 120 | 71.52 161 | 82.06 200 | 87.39 266 |
|
PVSNet_Blended | | | 80.98 123 | 80.34 124 | 82.90 170 | 88.85 152 | 65.40 184 | 84.43 237 | 92.00 97 | 67.62 234 | 78.11 154 | 85.05 262 | 66.02 109 | 94.27 120 | 71.52 161 | 89.50 112 | 89.01 227 |
|
MVS_111021_LR | | | 82.61 97 | 82.11 96 | 84.11 121 | 88.82 155 | 71.58 59 | 85.15 217 | 86.16 249 | 74.69 111 | 80.47 123 | 91.04 108 | 62.29 152 | 90.55 252 | 80.33 89 | 90.08 107 | 90.20 183 |
|
BH-w/o | | | 78.21 190 | 77.33 192 | 80.84 220 | 88.81 156 | 65.13 191 | 84.87 223 | 87.85 222 | 69.75 200 | 74.52 233 | 84.74 265 | 61.34 169 | 93.11 179 | 58.24 277 | 85.84 160 | 84.27 315 |
|
FIs | | | 82.07 103 | 82.42 90 | 81.04 217 | 88.80 157 | 58.34 282 | 88.26 135 | 93.49 30 | 76.93 62 | 78.47 146 | 91.04 108 | 69.92 72 | 92.34 203 | 69.87 179 | 84.97 164 | 92.44 112 |
|
OPM-MVS | | | 83.50 81 | 82.95 85 | 85.14 85 | 88.79 158 | 70.95 73 | 89.13 100 | 91.52 116 | 77.55 45 | 80.96 118 | 91.75 87 | 60.71 180 | 94.50 115 | 79.67 93 | 86.51 150 | 89.97 200 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
WR-MVS | | | 79.49 158 | 79.22 148 | 80.27 231 | 88.79 158 | 58.35 281 | 85.06 219 | 88.61 207 | 78.56 30 | 77.65 162 | 88.34 175 | 63.81 129 | 90.66 251 | 64.98 221 | 77.22 249 | 91.80 133 |
|
OMC-MVS | | | 82.69 95 | 81.97 102 | 84.85 97 | 88.75 160 | 67.42 148 | 87.98 142 | 90.87 136 | 74.92 107 | 79.72 127 | 91.65 89 | 62.19 155 | 93.96 133 | 75.26 133 | 86.42 151 | 93.16 87 |
|
hse-mvs2 | | | 81.72 109 | 80.94 115 | 84.07 124 | 88.72 161 | 67.68 144 | 85.87 201 | 87.26 233 | 76.02 85 | 84.67 63 | 88.22 180 | 61.54 163 | 93.48 161 | 82.71 67 | 73.44 303 | 91.06 152 |
|
AUN-MVS | | | 79.21 167 | 77.60 186 | 84.05 126 | 88.71 162 | 67.61 145 | 85.84 203 | 87.26 233 | 69.08 215 | 77.23 172 | 88.14 185 | 53.20 236 | 93.47 162 | 75.50 132 | 73.45 302 | 91.06 152 |
|
ACMH | | 67.68 16 | 75.89 233 | 73.93 240 | 81.77 197 | 88.71 162 | 66.61 162 | 88.62 119 | 89.01 191 | 69.81 197 | 66.78 307 | 86.70 222 | 41.95 326 | 91.51 230 | 55.64 294 | 78.14 241 | 87.17 273 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 78.36 187 | 78.45 160 | 78.07 266 | 88.64 164 | 51.78 340 | 86.70 179 | 79.63 324 | 74.14 125 | 75.11 224 | 90.83 114 | 61.29 171 | 89.75 262 | 58.10 278 | 91.60 86 | 92.69 103 |
|
PatchMatch-RL | | | 72.38 268 | 70.90 268 | 76.80 284 | 88.60 165 | 67.38 150 | 79.53 294 | 76.17 339 | 62.75 291 | 69.36 286 | 82.00 301 | 45.51 305 | 84.89 312 | 53.62 301 | 80.58 216 | 78.12 348 |
|
ACMH+ | | 68.96 14 | 76.01 232 | 74.01 239 | 82.03 192 | 88.60 165 | 65.31 188 | 88.86 107 | 87.55 226 | 70.25 190 | 67.75 295 | 87.47 198 | 41.27 327 | 93.19 174 | 58.37 275 | 75.94 269 | 87.60 261 |
|
LTVRE_ROB | | 69.57 13 | 76.25 229 | 74.54 234 | 81.41 204 | 88.60 165 | 64.38 205 | 79.24 297 | 89.12 188 | 70.76 181 | 69.79 283 | 87.86 188 | 49.09 282 | 93.20 172 | 56.21 293 | 80.16 221 | 86.65 286 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DELS-MVS | | | 85.41 62 | 85.30 62 | 85.77 75 | 88.49 168 | 67.93 139 | 85.52 214 | 93.44 32 | 78.70 29 | 83.63 85 | 89.03 158 | 74.57 28 | 95.71 62 | 80.26 90 | 94.04 65 | 93.66 62 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CLD-MVS | | | 82.31 99 | 81.65 105 | 84.29 117 | 88.47 169 | 67.73 143 | 85.81 205 | 92.35 80 | 75.78 89 | 78.33 149 | 86.58 228 | 64.01 126 | 94.35 117 | 76.05 124 | 87.48 136 | 90.79 161 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_NR-MVSNet | | | 81.88 106 | 81.54 106 | 82.92 169 | 88.46 170 | 63.46 223 | 87.13 163 | 92.37 79 | 80.19 14 | 78.38 147 | 89.14 153 | 71.66 56 | 93.05 182 | 70.05 175 | 76.46 261 | 92.25 118 |
|
ab-mvs | | | 79.51 157 | 78.97 152 | 81.14 214 | 88.46 170 | 60.91 259 | 83.84 247 | 89.24 181 | 70.36 187 | 79.03 133 | 88.87 161 | 63.23 136 | 90.21 256 | 65.12 219 | 82.57 196 | 92.28 117 |
|
FC-MVSNet-test | | | 81.52 115 | 82.02 100 | 80.03 234 | 88.42 172 | 55.97 318 | 87.95 144 | 93.42 34 | 77.10 58 | 77.38 167 | 90.98 113 | 69.96 71 | 91.79 221 | 68.46 191 | 84.50 169 | 92.33 113 |
|
Effi-MVS+ | | | 83.62 80 | 83.08 82 | 85.24 83 | 88.38 173 | 67.45 147 | 88.89 106 | 89.15 185 | 75.50 95 | 82.27 98 | 88.28 177 | 69.61 75 | 94.45 116 | 77.81 108 | 87.84 129 | 93.84 55 |
|
UniMVSNet (Re) | | | 81.60 114 | 81.11 111 | 83.09 160 | 88.38 173 | 64.41 204 | 87.60 152 | 93.02 46 | 78.42 32 | 78.56 143 | 88.16 181 | 69.78 73 | 93.26 169 | 69.58 182 | 76.49 260 | 91.60 135 |
|
VPNet | | | 78.69 179 | 78.66 156 | 78.76 255 | 88.31 175 | 55.72 320 | 84.45 236 | 86.63 242 | 76.79 66 | 78.26 150 | 90.55 118 | 59.30 191 | 89.70 264 | 66.63 207 | 77.05 251 | 90.88 159 |
|
TR-MVS | | | 77.44 209 | 76.18 214 | 81.20 212 | 88.24 176 | 63.24 229 | 84.61 231 | 86.40 245 | 67.55 235 | 77.81 159 | 86.48 232 | 54.10 228 | 93.15 176 | 57.75 281 | 82.72 194 | 87.20 272 |
|
EI-MVSNet-Vis-set | | | 84.19 74 | 83.81 76 | 85.31 80 | 88.18 177 | 67.85 140 | 87.66 151 | 89.73 167 | 80.05 16 | 82.95 90 | 89.59 142 | 70.74 63 | 94.82 106 | 80.66 86 | 84.72 167 | 93.28 81 |
|
baseline1 | | | 76.98 217 | 76.75 206 | 77.66 271 | 88.13 178 | 55.66 321 | 85.12 218 | 81.89 301 | 73.04 146 | 76.79 180 | 88.90 159 | 62.43 150 | 87.78 292 | 63.30 231 | 71.18 318 | 89.55 214 |
|
test_0402 | | | 72.79 265 | 70.44 272 | 79.84 238 | 88.13 178 | 65.99 171 | 85.93 199 | 84.29 269 | 65.57 258 | 67.40 300 | 85.49 251 | 46.92 293 | 92.61 193 | 35.88 356 | 74.38 293 | 80.94 340 |
|
tttt0517 | | | 79.40 162 | 77.91 174 | 83.90 136 | 88.10 180 | 63.84 213 | 88.37 130 | 84.05 273 | 71.45 169 | 76.78 181 | 89.12 155 | 49.93 274 | 94.89 103 | 70.18 174 | 83.18 187 | 92.96 96 |
|
VPA-MVSNet | | | 80.60 137 | 80.55 120 | 80.76 222 | 88.07 181 | 60.80 261 | 86.86 172 | 91.58 115 | 75.67 93 | 80.24 124 | 89.45 149 | 63.34 132 | 90.25 255 | 70.51 171 | 79.22 234 | 91.23 147 |
|
UGNet | | | 80.83 128 | 79.59 138 | 84.54 105 | 88.04 182 | 68.09 136 | 89.42 90 | 88.16 211 | 76.95 61 | 76.22 194 | 89.46 147 | 49.30 280 | 93.94 136 | 68.48 190 | 90.31 101 | 91.60 135 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WR-MVS_H | | | 78.51 183 | 78.49 159 | 78.56 258 | 88.02 183 | 56.38 313 | 88.43 123 | 92.67 67 | 77.14 56 | 73.89 238 | 87.55 195 | 66.25 105 | 89.24 271 | 58.92 269 | 73.55 301 | 90.06 194 |
|
QAPM | | | 80.88 124 | 79.50 140 | 85.03 88 | 88.01 184 | 68.97 114 | 91.59 42 | 92.00 97 | 66.63 246 | 75.15 223 | 92.16 79 | 57.70 201 | 95.45 73 | 63.52 227 | 88.76 120 | 90.66 166 |
|
3Dnovator | | 76.31 5 | 83.38 85 | 82.31 94 | 86.59 60 | 87.94 185 | 72.94 29 | 90.64 60 | 92.14 91 | 77.21 53 | 75.47 209 | 92.83 73 | 58.56 195 | 94.72 110 | 73.24 151 | 92.71 76 | 92.13 123 |
|
EI-MVSNet-UG-set | | | 83.81 76 | 83.38 79 | 85.09 87 | 87.87 186 | 67.53 146 | 87.44 157 | 89.66 169 | 79.74 18 | 82.23 99 | 89.41 151 | 70.24 69 | 94.74 109 | 79.95 91 | 83.92 175 | 92.99 95 |
|
TranMVSNet+NR-MVSNet | | | 80.84 126 | 80.31 125 | 82.42 185 | 87.85 187 | 62.33 242 | 87.74 150 | 91.33 123 | 80.55 11 | 77.99 157 | 89.86 132 | 65.23 116 | 92.62 192 | 67.05 205 | 75.24 286 | 92.30 116 |
|
CP-MVSNet | | | 78.22 189 | 78.34 165 | 77.84 268 | 87.83 188 | 54.54 325 | 87.94 145 | 91.17 129 | 77.65 39 | 73.48 240 | 88.49 171 | 62.24 154 | 88.43 284 | 62.19 240 | 74.07 294 | 90.55 171 |
|
DU-MVS | | | 81.12 122 | 80.52 121 | 82.90 170 | 87.80 189 | 63.46 223 | 87.02 167 | 91.87 105 | 79.01 27 | 78.38 147 | 89.07 156 | 65.02 118 | 93.05 182 | 70.05 175 | 76.46 261 | 92.20 120 |
|
NR-MVSNet | | | 80.23 145 | 79.38 143 | 82.78 178 | 87.80 189 | 63.34 226 | 86.31 189 | 91.09 132 | 79.01 27 | 72.17 255 | 89.07 156 | 67.20 96 | 92.81 191 | 66.08 212 | 75.65 272 | 92.20 120 |
|
TAMVS | | | 78.89 176 | 77.51 188 | 83.03 164 | 87.80 189 | 67.79 142 | 84.72 226 | 85.05 260 | 67.63 233 | 76.75 182 | 87.70 190 | 62.25 153 | 90.82 247 | 58.53 274 | 87.13 140 | 90.49 173 |
|
thres200 | | | 75.55 237 | 74.47 235 | 78.82 254 | 87.78 192 | 57.85 291 | 83.07 262 | 83.51 281 | 72.44 152 | 75.84 204 | 84.42 267 | 52.08 246 | 91.75 222 | 47.41 333 | 83.64 182 | 86.86 281 |
|
PS-CasMVS | | | 78.01 198 | 78.09 170 | 77.77 270 | 87.71 193 | 54.39 327 | 88.02 141 | 91.22 126 | 77.50 47 | 73.26 242 | 88.64 166 | 60.73 179 | 88.41 285 | 61.88 244 | 73.88 298 | 90.53 172 |
|
PCF-MVS | | 73.52 7 | 80.38 142 | 78.84 154 | 85.01 89 | 87.71 193 | 68.99 113 | 83.65 250 | 91.46 121 | 63.00 286 | 77.77 161 | 90.28 121 | 66.10 106 | 95.09 95 | 61.40 249 | 88.22 128 | 90.94 158 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thisisatest0530 | | | 79.40 162 | 77.76 181 | 84.31 116 | 87.69 195 | 65.10 192 | 87.36 158 | 84.26 271 | 70.04 192 | 77.42 166 | 88.26 179 | 49.94 272 | 94.79 108 | 70.20 173 | 84.70 168 | 93.03 91 |
|
GBi-Net | | | 78.40 184 | 77.40 189 | 81.40 205 | 87.60 196 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 164 | 75.34 216 | 87.28 201 | 54.80 219 | 91.11 238 | 62.72 234 | 79.57 226 | 90.09 190 |
|
test1 | | | 78.40 184 | 77.40 189 | 81.40 205 | 87.60 196 | 63.01 234 | 88.39 127 | 89.28 177 | 71.63 164 | 75.34 216 | 87.28 201 | 54.80 219 | 91.11 238 | 62.72 234 | 79.57 226 | 90.09 190 |
|
FMVSNet2 | | | 78.20 191 | 77.21 193 | 81.20 212 | 87.60 196 | 62.89 238 | 87.47 156 | 89.02 190 | 71.63 164 | 75.29 220 | 87.28 201 | 54.80 219 | 91.10 241 | 62.38 238 | 79.38 230 | 89.61 212 |
|
CDS-MVSNet | | | 79.07 171 | 77.70 183 | 83.17 157 | 87.60 196 | 68.23 134 | 84.40 239 | 86.20 248 | 67.49 236 | 76.36 191 | 86.54 230 | 61.54 163 | 90.79 248 | 61.86 245 | 87.33 137 | 90.49 173 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HY-MVS | | 69.67 12 | 77.95 199 | 77.15 194 | 80.36 228 | 87.57 200 | 60.21 269 | 83.37 257 | 87.78 223 | 66.11 250 | 75.37 215 | 87.06 212 | 63.27 134 | 90.48 253 | 61.38 250 | 82.43 197 | 90.40 177 |
|
CS-MVS | | | 84.53 73 | 84.97 68 | 83.23 154 | 87.54 201 | 63.27 228 | 88.82 110 | 93.50 28 | 75.98 87 | 83.07 89 | 89.73 136 | 70.29 68 | 95.23 86 | 82.07 74 | 93.70 69 | 91.18 148 |
|
xiu_mvs_v1_base_debu | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 202 | 70.19 90 | 85.56 207 | 88.77 199 | 69.06 216 | 81.83 102 | 88.16 181 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 133 | 89.06 222 |
|
xiu_mvs_v1_base | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 202 | 70.19 90 | 85.56 207 | 88.77 199 | 69.06 216 | 81.83 102 | 88.16 181 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 133 | 89.06 222 |
|
xiu_mvs_v1_base_debi | | | 80.80 131 | 79.72 135 | 84.03 129 | 87.35 202 | 70.19 90 | 85.56 207 | 88.77 199 | 69.06 216 | 81.83 102 | 88.16 181 | 50.91 260 | 92.85 188 | 78.29 105 | 87.56 133 | 89.06 222 |
|
MVSFormer | | | 82.85 93 | 82.05 99 | 85.24 83 | 87.35 202 | 70.21 88 | 90.50 64 | 90.38 146 | 68.55 227 | 81.32 111 | 89.47 145 | 61.68 160 | 93.46 163 | 78.98 95 | 90.26 103 | 92.05 126 |
|
lupinMVS | | | 81.39 118 | 80.27 127 | 84.76 101 | 87.35 202 | 70.21 88 | 85.55 210 | 86.41 244 | 62.85 289 | 81.32 111 | 88.61 167 | 61.68 160 | 92.24 207 | 78.41 103 | 90.26 103 | 91.83 130 |
|
baseline | | | 84.93 70 | 84.98 67 | 84.80 100 | 87.30 207 | 65.39 186 | 87.30 160 | 92.88 58 | 77.62 40 | 84.04 78 | 92.26 78 | 71.81 53 | 93.96 133 | 81.31 78 | 90.30 102 | 95.03 4 |
|
PAPM | | | 77.68 206 | 76.40 212 | 81.51 202 | 87.29 208 | 61.85 249 | 83.78 248 | 89.59 170 | 64.74 267 | 71.23 263 | 88.70 163 | 62.59 146 | 93.66 153 | 52.66 305 | 87.03 142 | 89.01 227 |
|
LCM-MVSNet-Re | | | 77.05 215 | 76.94 199 | 77.36 276 | 87.20 209 | 51.60 341 | 80.06 289 | 80.46 316 | 75.20 102 | 67.69 296 | 86.72 217 | 62.48 148 | 88.98 276 | 63.44 229 | 89.25 115 | 91.51 138 |
|
casdiffmvs | | | 85.11 67 | 85.14 65 | 85.01 89 | 87.20 209 | 65.77 178 | 87.75 149 | 92.83 61 | 77.84 37 | 84.36 72 | 92.38 77 | 72.15 51 | 93.93 139 | 81.27 79 | 90.48 100 | 95.33 1 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 262 | 70.41 273 | 80.81 221 | 87.13 211 | 65.63 180 | 88.30 132 | 84.19 272 | 62.96 287 | 63.80 330 | 87.69 191 | 38.04 339 | 92.56 195 | 46.66 335 | 74.91 288 | 84.24 316 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 77.73 203 | 77.69 184 | 77.84 268 | 87.07 212 | 53.91 330 | 87.91 147 | 91.18 128 | 77.56 44 | 73.14 244 | 88.82 162 | 61.23 172 | 89.17 272 | 59.95 259 | 72.37 309 | 90.43 175 |
|
MVS_Test | | | 83.15 87 | 83.06 83 | 83.41 146 | 86.86 213 | 63.21 230 | 86.11 195 | 92.00 97 | 74.31 119 | 82.87 92 | 89.44 150 | 70.03 70 | 93.21 170 | 77.39 113 | 88.50 125 | 93.81 57 |
|
UniMVSNet_ETH3D | | | 79.10 170 | 78.24 168 | 81.70 198 | 86.85 214 | 60.24 268 | 87.28 161 | 88.79 198 | 74.25 122 | 76.84 178 | 90.53 119 | 49.48 277 | 91.56 227 | 67.98 193 | 82.15 199 | 93.29 80 |
|
FMVSNet3 | | | 77.88 201 | 76.85 201 | 80.97 218 | 86.84 215 | 62.36 241 | 86.52 185 | 88.77 199 | 71.13 172 | 75.34 216 | 86.66 224 | 54.07 229 | 91.10 241 | 62.72 234 | 79.57 226 | 89.45 215 |
|
FMVSNet1 | | | 77.44 209 | 76.12 215 | 81.40 205 | 86.81 216 | 63.01 234 | 88.39 127 | 89.28 177 | 70.49 186 | 74.39 234 | 87.28 201 | 49.06 283 | 91.11 238 | 60.91 253 | 78.52 236 | 90.09 190 |
|
nrg030 | | | 83.88 75 | 83.53 77 | 84.96 91 | 86.77 217 | 69.28 109 | 90.46 68 | 92.67 67 | 74.79 108 | 82.95 90 | 91.33 100 | 72.70 46 | 93.09 180 | 80.79 85 | 79.28 233 | 92.50 108 |
|
ET-MVSNet_ETH3D | | | 78.63 180 | 76.63 209 | 84.64 103 | 86.73 218 | 69.47 105 | 85.01 220 | 84.61 264 | 69.54 203 | 66.51 312 | 86.59 226 | 50.16 269 | 91.75 222 | 76.26 122 | 84.24 173 | 92.69 103 |
|
jason | | | 81.39 118 | 80.29 126 | 84.70 102 | 86.63 219 | 69.90 95 | 85.95 198 | 86.77 240 | 63.24 282 | 81.07 117 | 89.47 145 | 61.08 176 | 92.15 210 | 78.33 104 | 90.07 108 | 92.05 126 |
jason: jason. |
PS-MVSNAJss | | | 82.07 103 | 81.31 107 | 84.34 115 | 86.51 220 | 67.27 152 | 89.27 93 | 91.51 117 | 71.75 162 | 79.37 130 | 90.22 124 | 63.15 138 | 94.27 120 | 77.69 109 | 82.36 198 | 91.49 140 |
|
WTY-MVS | | | 75.65 236 | 75.68 217 | 75.57 292 | 86.40 221 | 56.82 304 | 77.92 312 | 82.40 297 | 65.10 262 | 76.18 196 | 87.72 189 | 63.13 141 | 80.90 331 | 60.31 257 | 81.96 201 | 89.00 229 |
|
DTE-MVSNet | | | 76.99 216 | 76.80 202 | 77.54 275 | 86.24 222 | 53.06 337 | 87.52 154 | 90.66 139 | 77.08 59 | 72.50 250 | 88.67 165 | 60.48 185 | 89.52 266 | 57.33 285 | 70.74 320 | 90.05 195 |
|
PVSNet | | 64.34 18 | 72.08 271 | 70.87 270 | 75.69 290 | 86.21 223 | 56.44 311 | 74.37 330 | 80.73 311 | 62.06 298 | 70.17 274 | 82.23 297 | 42.86 318 | 83.31 322 | 54.77 297 | 84.45 171 | 87.32 269 |
|
tfpnnormal | | | 74.39 245 | 73.16 248 | 78.08 265 | 86.10 224 | 58.05 285 | 84.65 230 | 87.53 227 | 70.32 188 | 71.22 264 | 85.63 248 | 54.97 218 | 89.86 260 | 43.03 347 | 75.02 287 | 86.32 289 |
|
RRT_test8_iter05 | | | 78.38 186 | 77.40 189 | 81.34 208 | 86.00 225 | 58.86 277 | 86.55 184 | 91.26 125 | 72.13 159 | 75.91 201 | 87.42 199 | 44.97 307 | 93.73 151 | 77.02 117 | 75.30 283 | 91.45 143 |
|
IterMVS-LS | | | 80.06 148 | 79.38 143 | 82.11 189 | 85.89 226 | 63.20 231 | 86.79 175 | 89.34 175 | 74.19 123 | 75.45 212 | 86.72 217 | 66.62 99 | 92.39 200 | 72.58 156 | 76.86 255 | 90.75 163 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Baseline_NR-MVSNet | | | 78.15 193 | 78.33 166 | 77.61 273 | 85.79 227 | 56.21 316 | 86.78 176 | 85.76 253 | 73.60 135 | 77.93 158 | 87.57 194 | 65.02 118 | 88.99 275 | 67.14 204 | 75.33 282 | 87.63 260 |
|
cascas | | | 76.72 221 | 74.64 231 | 82.99 166 | 85.78 228 | 65.88 175 | 82.33 268 | 89.21 182 | 60.85 305 | 72.74 247 | 81.02 306 | 47.28 291 | 93.75 149 | 67.48 198 | 85.02 163 | 89.34 217 |
|
MVS | | | 78.19 192 | 76.99 198 | 81.78 196 | 85.66 229 | 66.99 155 | 84.66 227 | 90.47 144 | 55.08 342 | 72.02 257 | 85.27 255 | 63.83 128 | 94.11 131 | 66.10 211 | 89.80 110 | 84.24 316 |
|
XVG-OURS | | | 80.41 141 | 79.23 147 | 83.97 133 | 85.64 230 | 69.02 111 | 83.03 263 | 90.39 145 | 71.09 174 | 77.63 163 | 91.49 96 | 54.62 225 | 91.35 233 | 75.71 127 | 83.47 183 | 91.54 137 |
|
CANet_DTU | | | 80.61 136 | 79.87 131 | 82.83 172 | 85.60 231 | 63.17 233 | 87.36 158 | 88.65 205 | 76.37 78 | 75.88 203 | 88.44 173 | 53.51 233 | 93.07 181 | 73.30 149 | 89.74 111 | 92.25 118 |
|
XVG-OURS-SEG-HR | | | 80.81 129 | 79.76 134 | 83.96 134 | 85.60 231 | 68.78 117 | 83.54 255 | 90.50 143 | 70.66 183 | 76.71 183 | 91.66 88 | 60.69 181 | 91.26 235 | 76.94 118 | 81.58 205 | 91.83 130 |
|
TransMVSNet (Re) | | | 75.39 241 | 74.56 233 | 77.86 267 | 85.50 233 | 57.10 301 | 86.78 176 | 86.09 251 | 72.17 157 | 71.53 261 | 87.34 200 | 63.01 142 | 89.31 270 | 56.84 289 | 61.83 342 | 87.17 273 |
|
RRT_MVS | | | 79.88 152 | 78.38 163 | 84.38 111 | 85.42 234 | 70.60 84 | 88.71 117 | 88.75 203 | 72.30 155 | 78.83 138 | 89.14 153 | 44.44 310 | 92.18 209 | 78.50 100 | 79.33 232 | 90.35 178 |
|
MVP-Stereo | | | 76.12 230 | 74.46 236 | 81.13 215 | 85.37 235 | 69.79 97 | 84.42 238 | 87.95 218 | 65.03 264 | 67.46 298 | 85.33 254 | 53.28 235 | 91.73 224 | 58.01 279 | 83.27 185 | 81.85 335 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
thisisatest0515 | | | 77.33 212 | 75.38 224 | 83.18 156 | 85.27 236 | 63.80 214 | 82.11 270 | 83.27 286 | 65.06 263 | 75.91 201 | 83.84 275 | 49.54 276 | 94.27 120 | 67.24 202 | 86.19 154 | 91.48 141 |
|
OpenMVS |  | 72.83 10 | 79.77 153 | 78.33 166 | 84.09 123 | 85.17 237 | 69.91 94 | 90.57 62 | 90.97 133 | 66.70 242 | 72.17 255 | 91.91 83 | 54.70 223 | 93.96 133 | 61.81 246 | 90.95 95 | 88.41 248 |
|
AllTest | | | 70.96 276 | 68.09 288 | 79.58 244 | 85.15 238 | 63.62 216 | 84.58 232 | 79.83 322 | 62.31 295 | 60.32 340 | 86.73 215 | 32.02 352 | 88.96 278 | 50.28 316 | 71.57 316 | 86.15 293 |
|
TestCases | | | | | 79.58 244 | 85.15 238 | 63.62 216 | | 79.83 322 | 62.31 295 | 60.32 340 | 86.73 215 | 32.02 352 | 88.96 278 | 50.28 316 | 71.57 316 | 86.15 293 |
|
Effi-MVS+-dtu | | | 80.03 149 | 78.57 158 | 84.42 110 | 85.13 240 | 68.74 120 | 88.77 112 | 88.10 213 | 74.99 105 | 74.97 228 | 83.49 281 | 57.27 207 | 93.36 166 | 73.53 144 | 80.88 211 | 91.18 148 |
|
mvs-test1 | | | 80.88 124 | 79.40 142 | 85.29 81 | 85.13 240 | 69.75 99 | 89.28 92 | 88.10 213 | 74.99 105 | 76.44 190 | 86.72 217 | 57.27 207 | 94.26 124 | 73.53 144 | 83.18 187 | 91.87 129 |
|
SixPastTwentyTwo | | | 73.37 256 | 71.26 266 | 79.70 240 | 85.08 242 | 57.89 290 | 85.57 206 | 83.56 280 | 71.03 175 | 65.66 316 | 85.88 242 | 42.10 324 | 92.57 194 | 59.11 267 | 63.34 341 | 88.65 242 |
|
EG-PatchMatch MVS | | | 74.04 250 | 71.82 259 | 80.71 223 | 84.92 243 | 67.42 148 | 85.86 202 | 88.08 215 | 66.04 252 | 64.22 326 | 83.85 274 | 35.10 347 | 92.56 195 | 57.44 283 | 80.83 212 | 82.16 334 |
|
IB-MVS | | 68.01 15 | 75.85 234 | 73.36 246 | 83.31 148 | 84.76 244 | 66.03 169 | 83.38 256 | 85.06 259 | 70.21 191 | 69.40 285 | 81.05 305 | 45.76 303 | 94.66 111 | 65.10 220 | 75.49 275 | 89.25 219 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_tets | | | 79.13 169 | 77.77 180 | 83.22 155 | 84.70 245 | 66.37 165 | 89.17 95 | 90.19 154 | 69.38 206 | 75.40 214 | 89.46 147 | 44.17 312 | 93.15 176 | 76.78 120 | 80.70 215 | 90.14 185 |
|
jajsoiax | | | 79.29 165 | 77.96 172 | 83.27 150 | 84.68 246 | 66.57 163 | 89.25 94 | 90.16 155 | 69.20 212 | 75.46 211 | 89.49 144 | 45.75 304 | 93.13 178 | 76.84 119 | 80.80 213 | 90.11 188 |
|
MIMVSNet | | | 70.69 278 | 69.30 277 | 74.88 299 | 84.52 247 | 56.35 314 | 75.87 322 | 79.42 325 | 64.59 268 | 67.76 294 | 82.41 293 | 41.10 328 | 81.54 329 | 46.64 337 | 81.34 206 | 86.75 284 |
|
MSDG | | | 73.36 258 | 70.99 267 | 80.49 226 | 84.51 248 | 65.80 176 | 80.71 283 | 86.13 250 | 65.70 256 | 65.46 317 | 83.74 278 | 44.60 308 | 90.91 246 | 51.13 311 | 76.89 254 | 84.74 311 |
|
mvs_anonymous | | | 79.42 161 | 79.11 149 | 80.34 229 | 84.45 249 | 57.97 288 | 82.59 265 | 87.62 225 | 67.40 237 | 76.17 198 | 88.56 170 | 68.47 85 | 89.59 265 | 70.65 170 | 86.05 156 | 93.47 75 |
|
EI-MVSNet | | | 80.52 140 | 79.98 129 | 82.12 188 | 84.28 250 | 63.19 232 | 86.41 186 | 88.95 195 | 74.18 124 | 78.69 139 | 87.54 196 | 66.62 99 | 92.43 198 | 72.57 157 | 80.57 217 | 90.74 164 |
|
CVMVSNet | | | 72.99 263 | 72.58 252 | 74.25 305 | 84.28 250 | 50.85 346 | 86.41 186 | 83.45 284 | 44.56 353 | 73.23 243 | 87.54 196 | 49.38 278 | 85.70 305 | 65.90 213 | 78.44 238 | 86.19 292 |
|
pm-mvs1 | | | 77.25 213 | 76.68 208 | 78.93 253 | 84.22 252 | 58.62 280 | 86.41 186 | 88.36 210 | 71.37 170 | 73.31 241 | 88.01 187 | 61.22 173 | 89.15 273 | 64.24 225 | 73.01 306 | 89.03 226 |
|
EPNet | | | 83.72 78 | 82.92 86 | 86.14 69 | 84.22 252 | 69.48 104 | 91.05 54 | 85.27 257 | 81.30 7 | 76.83 179 | 91.65 89 | 66.09 107 | 95.56 66 | 76.00 126 | 93.85 66 | 93.38 76 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 79.97 151 | 79.02 151 | 82.80 175 | 84.09 254 | 64.50 201 | 87.96 143 | 90.29 153 | 74.13 126 | 75.24 221 | 86.81 214 | 62.88 143 | 93.89 142 | 74.39 137 | 75.40 280 | 90.00 196 |
|
v10 | | | 79.74 154 | 78.67 155 | 82.97 168 | 84.06 255 | 64.95 193 | 87.88 148 | 90.62 140 | 73.11 144 | 75.11 224 | 86.56 229 | 61.46 166 | 94.05 132 | 73.68 142 | 75.55 274 | 89.90 202 |
|
SCA | | | 74.22 248 | 72.33 255 | 79.91 236 | 84.05 256 | 62.17 245 | 79.96 291 | 79.29 326 | 66.30 249 | 72.38 253 | 80.13 315 | 51.95 249 | 88.60 282 | 59.25 265 | 77.67 245 | 88.96 231 |
|
test_djsdf | | | 80.30 144 | 79.32 145 | 83.27 150 | 83.98 257 | 65.37 187 | 90.50 64 | 90.38 146 | 68.55 227 | 76.19 195 | 88.70 163 | 56.44 213 | 93.46 163 | 78.98 95 | 80.14 223 | 90.97 157 |
|
1314 | | | 76.53 222 | 75.30 227 | 80.21 232 | 83.93 258 | 62.32 243 | 84.66 227 | 88.81 197 | 60.23 309 | 70.16 275 | 84.07 272 | 55.30 217 | 90.73 250 | 67.37 199 | 83.21 186 | 87.59 263 |
|
MS-PatchMatch | | | 73.83 252 | 72.67 251 | 77.30 278 | 83.87 259 | 66.02 170 | 81.82 271 | 84.66 263 | 61.37 303 | 68.61 291 | 82.82 289 | 47.29 290 | 88.21 286 | 59.27 264 | 84.32 172 | 77.68 349 |
|
v1144 | | | 80.03 149 | 79.03 150 | 83.01 165 | 83.78 260 | 64.51 199 | 87.11 165 | 90.57 142 | 71.96 160 | 78.08 156 | 86.20 238 | 61.41 167 | 93.94 136 | 74.93 134 | 77.23 248 | 90.60 169 |
|
OurMVSNet-221017-0 | | | 74.26 247 | 72.42 254 | 79.80 239 | 83.76 261 | 59.59 273 | 85.92 200 | 86.64 241 | 66.39 248 | 66.96 303 | 87.58 193 | 39.46 333 | 91.60 225 | 65.76 215 | 69.27 324 | 88.22 249 |
|
v2v482 | | | 80.23 145 | 79.29 146 | 83.05 163 | 83.62 262 | 64.14 208 | 87.04 166 | 89.97 159 | 73.61 134 | 78.18 153 | 87.22 205 | 61.10 175 | 93.82 143 | 76.11 123 | 76.78 258 | 91.18 148 |
|
XXY-MVS | | | 75.41 240 | 75.56 218 | 74.96 298 | 83.59 263 | 57.82 292 | 80.59 285 | 83.87 276 | 66.54 247 | 74.93 229 | 88.31 176 | 63.24 135 | 80.09 334 | 62.16 241 | 76.85 256 | 86.97 279 |
|
v1192 | | | 79.59 156 | 78.43 162 | 83.07 162 | 83.55 264 | 64.52 198 | 86.93 170 | 90.58 141 | 70.83 177 | 77.78 160 | 85.90 241 | 59.15 192 | 93.94 136 | 73.96 141 | 77.19 250 | 90.76 162 |
|
v7n | | | 78.97 174 | 77.58 187 | 83.14 158 | 83.45 265 | 65.51 182 | 88.32 131 | 91.21 127 | 73.69 133 | 72.41 252 | 86.32 236 | 57.93 198 | 93.81 144 | 69.18 185 | 75.65 272 | 90.11 188 |
|
v144192 | | | 79.47 159 | 78.37 164 | 82.78 178 | 83.35 266 | 63.96 211 | 86.96 168 | 90.36 149 | 69.99 193 | 77.50 164 | 85.67 247 | 60.66 182 | 93.77 147 | 74.27 138 | 76.58 259 | 90.62 167 |
|
tpm2 | | | 73.26 259 | 71.46 261 | 78.63 256 | 83.34 267 | 56.71 307 | 80.65 284 | 80.40 317 | 56.63 336 | 73.55 239 | 82.02 300 | 51.80 253 | 91.24 236 | 56.35 292 | 78.42 239 | 87.95 252 |
|
v1921920 | | | 79.22 166 | 78.03 171 | 82.80 175 | 83.30 268 | 63.94 212 | 86.80 174 | 90.33 150 | 69.91 196 | 77.48 165 | 85.53 250 | 58.44 196 | 93.75 149 | 73.60 143 | 76.85 256 | 90.71 165 |
|
baseline2 | | | 75.70 235 | 73.83 243 | 81.30 209 | 83.26 269 | 61.79 251 | 82.57 266 | 80.65 312 | 66.81 239 | 66.88 304 | 83.42 282 | 57.86 200 | 92.19 208 | 63.47 228 | 79.57 226 | 89.91 201 |
|
v1240 | | | 78.99 173 | 77.78 179 | 82.64 181 | 83.21 270 | 63.54 220 | 86.62 181 | 90.30 152 | 69.74 202 | 77.33 168 | 85.68 246 | 57.04 210 | 93.76 148 | 73.13 152 | 76.92 252 | 90.62 167 |
|
XVG-ACMP-BASELINE | | | 76.11 231 | 74.27 238 | 81.62 199 | 83.20 271 | 64.67 197 | 83.60 253 | 89.75 166 | 69.75 200 | 71.85 258 | 87.09 210 | 32.78 351 | 92.11 211 | 69.99 177 | 80.43 219 | 88.09 251 |
|
MDTV_nov1_ep13 | | | | 69.97 276 | | 83.18 272 | 53.48 333 | 77.10 316 | 80.18 321 | 60.45 306 | 69.33 287 | 80.44 312 | 48.89 284 | 86.90 297 | 51.60 309 | 78.51 237 | |
|
PatchmatchNet |  | | 73.12 261 | 71.33 264 | 78.49 261 | 83.18 272 | 60.85 260 | 79.63 293 | 78.57 328 | 64.13 274 | 71.73 259 | 79.81 320 | 51.20 258 | 85.97 304 | 57.40 284 | 76.36 266 | 88.66 241 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Fast-Effi-MVS+-dtu | | | 78.02 197 | 76.49 210 | 82.62 182 | 83.16 274 | 66.96 159 | 86.94 169 | 87.45 230 | 72.45 150 | 71.49 262 | 84.17 270 | 54.79 222 | 91.58 226 | 67.61 196 | 80.31 220 | 89.30 218 |
|
gg-mvs-nofinetune | | | 69.95 286 | 67.96 289 | 75.94 288 | 83.07 275 | 54.51 326 | 77.23 315 | 70.29 352 | 63.11 284 | 70.32 271 | 62.33 353 | 43.62 314 | 88.69 281 | 53.88 300 | 87.76 130 | 84.62 314 |
|
MVSTER | | | 79.01 172 | 77.88 176 | 82.38 186 | 83.07 275 | 64.80 195 | 84.08 246 | 88.95 195 | 69.01 219 | 78.69 139 | 87.17 208 | 54.70 223 | 92.43 198 | 74.69 135 | 80.57 217 | 89.89 203 |
|
K. test v3 | | | 71.19 274 | 68.51 282 | 79.21 250 | 83.04 277 | 57.78 293 | 84.35 240 | 76.91 337 | 72.90 149 | 62.99 333 | 82.86 288 | 39.27 334 | 91.09 243 | 61.65 247 | 52.66 354 | 88.75 239 |
|
eth_miper_zixun_eth | | | 77.92 200 | 76.69 207 | 81.61 201 | 83.00 278 | 61.98 247 | 83.15 259 | 89.20 183 | 69.52 204 | 74.86 230 | 84.35 268 | 61.76 159 | 92.56 195 | 71.50 163 | 72.89 307 | 90.28 181 |
|
diffmvs | | | 82.10 101 | 81.88 103 | 82.76 180 | 83.00 278 | 63.78 215 | 83.68 249 | 89.76 165 | 72.94 148 | 82.02 101 | 89.85 133 | 65.96 111 | 90.79 248 | 82.38 73 | 87.30 138 | 93.71 61 |
|
FMVSNet5 | | | 69.50 288 | 67.96 289 | 74.15 306 | 82.97 280 | 55.35 322 | 80.01 290 | 82.12 300 | 62.56 293 | 63.02 331 | 81.53 302 | 36.92 342 | 81.92 327 | 48.42 325 | 74.06 295 | 85.17 307 |
|
DWT-MVSNet_test | | | 73.70 253 | 71.86 258 | 79.21 250 | 82.91 281 | 58.94 276 | 82.34 267 | 82.17 298 | 65.21 260 | 71.05 266 | 78.31 329 | 44.21 311 | 90.17 257 | 63.29 232 | 77.28 247 | 88.53 245 |
|
cl_fuxian | | | 78.75 177 | 77.91 174 | 81.26 210 | 82.89 282 | 61.56 253 | 84.09 245 | 89.13 187 | 69.97 194 | 75.56 207 | 84.29 269 | 66.36 103 | 92.09 212 | 73.47 147 | 75.48 276 | 90.12 187 |
|
sss | | | 73.60 254 | 73.64 244 | 73.51 309 | 82.80 283 | 55.01 323 | 76.12 318 | 81.69 304 | 62.47 294 | 74.68 232 | 85.85 244 | 57.32 206 | 78.11 341 | 60.86 254 | 80.93 210 | 87.39 266 |
|
GA-MVS | | | 76.87 219 | 75.17 228 | 81.97 194 | 82.75 284 | 62.58 239 | 81.44 278 | 86.35 247 | 72.16 158 | 74.74 231 | 82.89 287 | 46.20 299 | 92.02 214 | 68.85 189 | 81.09 209 | 91.30 146 |
|
v148 | | | 78.72 178 | 77.80 178 | 81.47 203 | 82.73 285 | 61.96 248 | 86.30 190 | 88.08 215 | 73.26 143 | 76.18 196 | 85.47 252 | 62.46 149 | 92.36 202 | 71.92 160 | 73.82 299 | 90.09 190 |
|
IterMVS-SCA-FT | | | 75.43 239 | 73.87 242 | 80.11 233 | 82.69 286 | 64.85 194 | 81.57 276 | 83.47 283 | 69.16 213 | 70.49 269 | 84.15 271 | 51.95 249 | 88.15 287 | 69.23 184 | 72.14 312 | 87.34 268 |
|
miper_ehance_all_eth | | | 78.59 182 | 77.76 181 | 81.08 216 | 82.66 287 | 61.56 253 | 83.65 250 | 89.15 185 | 68.87 222 | 75.55 208 | 83.79 277 | 66.49 101 | 92.03 213 | 73.25 150 | 76.39 263 | 89.64 211 |
|
CostFormer | | | 75.24 242 | 73.90 241 | 79.27 248 | 82.65 288 | 58.27 283 | 80.80 280 | 82.73 295 | 61.57 300 | 75.33 219 | 83.13 285 | 55.52 215 | 91.07 244 | 64.98 221 | 78.34 240 | 88.45 246 |
|
EPNet_dtu | | | 75.46 238 | 74.86 229 | 77.23 280 | 82.57 289 | 54.60 324 | 86.89 171 | 83.09 291 | 71.64 163 | 66.25 314 | 85.86 243 | 55.99 214 | 88.04 289 | 54.92 296 | 86.55 149 | 89.05 225 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 73.23 260 | 71.46 261 | 78.54 259 | 82.50 290 | 59.85 270 | 82.18 269 | 82.84 294 | 58.96 320 | 71.15 265 | 89.41 151 | 45.48 306 | 84.77 313 | 58.82 271 | 71.83 314 | 91.02 156 |
|
cl-mvsnet____ | | | 77.72 204 | 76.76 204 | 80.58 224 | 82.49 291 | 60.48 265 | 83.09 260 | 87.87 220 | 69.22 210 | 74.38 235 | 85.22 257 | 62.10 156 | 91.53 228 | 71.09 165 | 75.41 279 | 89.73 210 |
|
cl-mvsnet1 | | | 77.72 204 | 76.76 204 | 80.58 224 | 82.48 292 | 60.48 265 | 83.09 260 | 87.86 221 | 69.22 210 | 74.38 235 | 85.24 256 | 62.10 156 | 91.53 228 | 71.09 165 | 75.40 280 | 89.74 209 |
|
tpm cat1 | | | 70.57 279 | 68.31 284 | 77.35 277 | 82.41 293 | 57.95 289 | 78.08 309 | 80.22 320 | 52.04 348 | 68.54 292 | 77.66 335 | 52.00 248 | 87.84 291 | 51.77 307 | 72.07 313 | 86.25 290 |
|
cl-mvsnet2 | | | 78.07 195 | 77.01 196 | 81.23 211 | 82.37 294 | 61.83 250 | 83.55 254 | 87.98 217 | 68.96 220 | 75.06 226 | 83.87 273 | 61.40 168 | 91.88 220 | 73.53 144 | 76.39 263 | 89.98 199 |
|
MVS_0304 | | | 72.48 266 | 70.89 269 | 77.24 279 | 82.20 295 | 59.68 271 | 84.11 244 | 83.49 282 | 67.10 238 | 66.87 305 | 80.59 311 | 35.00 348 | 87.40 294 | 59.07 268 | 79.58 225 | 84.63 313 |
|
tpm | | | 72.37 269 | 71.71 260 | 74.35 304 | 82.19 296 | 52.00 338 | 79.22 298 | 77.29 335 | 64.56 269 | 72.95 246 | 83.68 280 | 51.35 256 | 83.26 323 | 58.33 276 | 75.80 270 | 87.81 257 |
|
tpmvs | | | 71.09 275 | 69.29 278 | 76.49 285 | 82.04 297 | 56.04 317 | 78.92 302 | 81.37 307 | 64.05 277 | 67.18 302 | 78.28 330 | 49.74 275 | 89.77 261 | 49.67 321 | 72.37 309 | 83.67 321 |
|
pmmvs4 | | | 74.03 251 | 71.91 257 | 80.39 227 | 81.96 298 | 68.32 131 | 81.45 277 | 82.14 299 | 59.32 317 | 69.87 281 | 85.13 259 | 52.40 240 | 88.13 288 | 60.21 258 | 74.74 290 | 84.73 312 |
|
TinyColmap | | | 67.30 302 | 64.81 306 | 74.76 301 | 81.92 299 | 56.68 308 | 80.29 288 | 81.49 306 | 60.33 307 | 56.27 352 | 83.22 284 | 24.77 358 | 87.66 293 | 45.52 341 | 69.47 323 | 79.95 344 |
|
ITE_SJBPF | | | | | 78.22 263 | 81.77 300 | 60.57 263 | | 83.30 285 | 69.25 209 | 67.54 297 | 87.20 206 | 36.33 344 | 87.28 296 | 54.34 298 | 74.62 291 | 86.80 282 |
|
miper_enhance_ethall | | | 77.87 202 | 76.86 200 | 80.92 219 | 81.65 301 | 61.38 255 | 82.68 264 | 88.98 192 | 65.52 259 | 75.47 209 | 82.30 295 | 65.76 113 | 92.00 215 | 72.95 153 | 76.39 263 | 89.39 216 |
|
MVS-HIRNet | | | 59.14 320 | 57.67 323 | 63.57 337 | 81.65 301 | 43.50 360 | 71.73 335 | 65.06 362 | 39.59 358 | 51.43 356 | 57.73 357 | 38.34 338 | 82.58 326 | 39.53 353 | 73.95 296 | 64.62 357 |
|
GG-mvs-BLEND | | | | | 75.38 295 | 81.59 303 | 55.80 319 | 79.32 296 | 69.63 354 | | 67.19 301 | 73.67 346 | 43.24 315 | 88.90 280 | 50.41 313 | 84.50 169 | 81.45 337 |
|
IterMVS | | | 74.29 246 | 72.94 250 | 78.35 262 | 81.53 304 | 63.49 222 | 81.58 275 | 82.49 296 | 68.06 232 | 69.99 278 | 83.69 279 | 51.66 255 | 85.54 306 | 65.85 214 | 71.64 315 | 86.01 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 280x420 | | | 66.51 306 | 64.71 307 | 71.90 316 | 81.45 305 | 63.52 221 | 57.98 357 | 68.95 358 | 53.57 344 | 62.59 335 | 76.70 338 | 46.22 298 | 75.29 353 | 55.25 295 | 79.68 224 | 76.88 351 |
|
gm-plane-assit | | | | | | 81.40 306 | 53.83 331 | | | 62.72 292 | | 80.94 308 | | 92.39 200 | 63.40 230 | | |
|
pmmvs6 | | | 74.69 244 | 73.39 245 | 78.61 257 | 81.38 307 | 57.48 297 | 86.64 180 | 87.95 218 | 64.99 266 | 70.18 273 | 86.61 225 | 50.43 267 | 89.52 266 | 62.12 242 | 70.18 322 | 88.83 236 |
|
test-LLR | | | 72.94 264 | 72.43 253 | 74.48 302 | 81.35 308 | 58.04 286 | 78.38 305 | 77.46 333 | 66.66 243 | 69.95 279 | 79.00 324 | 48.06 286 | 79.24 335 | 66.13 209 | 84.83 165 | 86.15 293 |
|
test-mter | | | 71.41 273 | 70.39 274 | 74.48 302 | 81.35 308 | 58.04 286 | 78.38 305 | 77.46 333 | 60.32 308 | 69.95 279 | 79.00 324 | 36.08 345 | 79.24 335 | 66.13 209 | 84.83 165 | 86.15 293 |
|
CR-MVSNet | | | 73.37 256 | 71.27 265 | 79.67 242 | 81.32 310 | 65.19 189 | 75.92 320 | 80.30 318 | 59.92 312 | 72.73 248 | 81.19 303 | 52.50 238 | 86.69 298 | 59.84 260 | 77.71 243 | 87.11 277 |
|
RPMNet | | | 73.51 255 | 70.49 271 | 82.58 183 | 81.32 310 | 65.19 189 | 75.92 320 | 92.27 83 | 57.60 330 | 72.73 248 | 76.45 340 | 52.30 241 | 95.43 75 | 48.14 330 | 77.71 243 | 87.11 277 |
|
bset_n11_16_dypcd | | | 77.12 214 | 75.47 220 | 82.06 190 | 81.12 312 | 65.99 171 | 81.37 279 | 83.20 289 | 69.94 195 | 76.09 200 | 83.38 283 | 47.75 288 | 92.26 205 | 78.51 99 | 77.91 242 | 87.95 252 |
|
V42 | | | 79.38 164 | 78.24 168 | 82.83 172 | 81.10 313 | 65.50 183 | 85.55 210 | 89.82 163 | 71.57 167 | 78.21 151 | 86.12 239 | 60.66 182 | 93.18 175 | 75.64 128 | 75.46 278 | 89.81 207 |
|
lessismore_v0 | | | | | 78.97 252 | 81.01 314 | 57.15 300 | | 65.99 360 | | 61.16 338 | 82.82 289 | 39.12 335 | 91.34 234 | 59.67 261 | 46.92 359 | 88.43 247 |
|
Patchmtry | | | 70.74 277 | 69.16 279 | 75.49 294 | 80.72 315 | 54.07 329 | 74.94 329 | 80.30 318 | 58.34 324 | 70.01 276 | 81.19 303 | 52.50 238 | 86.54 299 | 53.37 302 | 71.09 319 | 85.87 300 |
|
PatchT | | | 68.46 297 | 67.85 291 | 70.29 325 | 80.70 316 | 43.93 359 | 72.47 333 | 74.88 342 | 60.15 310 | 70.55 267 | 76.57 339 | 49.94 272 | 81.59 328 | 50.58 312 | 74.83 289 | 85.34 303 |
|
USDC | | | 70.33 282 | 68.37 283 | 76.21 287 | 80.60 317 | 56.23 315 | 79.19 299 | 86.49 243 | 60.89 304 | 61.29 337 | 85.47 252 | 31.78 354 | 89.47 268 | 53.37 302 | 76.21 267 | 82.94 331 |
|
tpmrst | | | 72.39 267 | 72.13 256 | 73.18 313 | 80.54 318 | 49.91 349 | 79.91 292 | 79.08 327 | 63.11 284 | 71.69 260 | 79.95 317 | 55.32 216 | 82.77 325 | 65.66 216 | 73.89 297 | 86.87 280 |
|
anonymousdsp | | | 78.60 181 | 77.15 194 | 82.98 167 | 80.51 319 | 67.08 154 | 87.24 162 | 89.53 171 | 65.66 257 | 75.16 222 | 87.19 207 | 52.52 237 | 92.25 206 | 77.17 115 | 79.34 231 | 89.61 212 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 280 | 68.19 285 | 77.65 272 | 80.26 320 | 59.41 275 | 85.01 220 | 82.96 293 | 58.76 322 | 65.43 318 | 82.33 294 | 37.63 341 | 91.23 237 | 45.34 343 | 76.03 268 | 82.32 332 |
|
Anonymous20231206 | | | 68.60 294 | 67.80 293 | 71.02 323 | 80.23 321 | 50.75 347 | 78.30 308 | 80.47 315 | 56.79 335 | 66.11 315 | 82.63 292 | 46.35 297 | 78.95 337 | 43.62 346 | 75.70 271 | 83.36 324 |
|
miper_lstm_enhance | | | 74.11 249 | 73.11 249 | 77.13 281 | 80.11 322 | 59.62 272 | 72.23 334 | 86.92 239 | 66.76 241 | 70.40 270 | 82.92 286 | 56.93 211 | 82.92 324 | 69.06 187 | 72.63 308 | 88.87 234 |
|
MIMVSNet1 | | | 68.58 295 | 66.78 302 | 73.98 307 | 80.07 323 | 51.82 339 | 80.77 281 | 84.37 266 | 64.40 271 | 59.75 343 | 82.16 298 | 36.47 343 | 83.63 320 | 42.73 348 | 70.33 321 | 86.48 288 |
|
ADS-MVSNet2 | | | 66.20 311 | 63.33 313 | 74.82 300 | 79.92 324 | 58.75 279 | 67.55 349 | 75.19 341 | 53.37 345 | 65.25 320 | 75.86 341 | 42.32 321 | 80.53 333 | 41.57 350 | 68.91 326 | 85.18 305 |
|
ADS-MVSNet | | | 64.36 315 | 62.88 317 | 68.78 332 | 79.92 324 | 47.17 354 | 67.55 349 | 71.18 350 | 53.37 345 | 65.25 320 | 75.86 341 | 42.32 321 | 73.99 357 | 41.57 350 | 68.91 326 | 85.18 305 |
|
D2MVS | | | 74.82 243 | 73.21 247 | 79.64 243 | 79.81 326 | 62.56 240 | 80.34 287 | 87.35 231 | 64.37 272 | 68.86 288 | 82.66 291 | 46.37 296 | 90.10 258 | 67.91 194 | 81.24 208 | 86.25 290 |
|
our_test_3 | | | 69.14 290 | 67.00 300 | 75.57 292 | 79.80 327 | 58.80 278 | 77.96 310 | 77.81 331 | 59.55 315 | 62.90 334 | 78.25 331 | 47.43 289 | 83.97 317 | 51.71 308 | 67.58 330 | 83.93 320 |
|
ppachtmachnet_test | | | 70.04 285 | 67.34 298 | 78.14 264 | 79.80 327 | 61.13 256 | 79.19 299 | 80.59 313 | 59.16 319 | 65.27 319 | 79.29 321 | 46.75 295 | 87.29 295 | 49.33 322 | 66.72 331 | 86.00 299 |
|
dp | | | 66.80 303 | 65.43 305 | 70.90 324 | 79.74 329 | 48.82 352 | 75.12 327 | 74.77 343 | 59.61 314 | 64.08 327 | 77.23 336 | 42.89 317 | 80.72 332 | 48.86 324 | 66.58 333 | 83.16 326 |
|
EPMVS | | | 69.02 291 | 68.16 286 | 71.59 317 | 79.61 330 | 49.80 351 | 77.40 314 | 66.93 359 | 62.82 290 | 70.01 276 | 79.05 322 | 45.79 302 | 77.86 343 | 56.58 290 | 75.26 285 | 87.13 276 |
|
PVSNet_0 | | 57.27 20 | 61.67 319 | 59.27 322 | 68.85 331 | 79.61 330 | 57.44 298 | 68.01 348 | 73.44 348 | 55.93 339 | 58.54 345 | 70.41 350 | 44.58 309 | 77.55 344 | 47.01 334 | 35.91 360 | 71.55 354 |
|
CL-MVSNet_2432*1600 | | | 72.37 269 | 71.46 261 | 75.09 297 | 79.49 332 | 53.53 332 | 80.76 282 | 85.01 261 | 69.12 214 | 70.51 268 | 82.05 299 | 57.92 199 | 84.13 316 | 52.27 306 | 66.00 335 | 87.60 261 |
|
Patchmatch-test | | | 64.82 314 | 63.24 314 | 69.57 327 | 79.42 333 | 49.82 350 | 63.49 355 | 69.05 357 | 51.98 349 | 59.95 342 | 80.13 315 | 50.91 260 | 70.98 359 | 40.66 352 | 73.57 300 | 87.90 255 |
|
MDA-MVSNet-bldmvs | | | 66.68 304 | 63.66 312 | 75.75 289 | 79.28 334 | 60.56 264 | 73.92 331 | 78.35 329 | 64.43 270 | 50.13 357 | 79.87 319 | 44.02 313 | 83.67 319 | 46.10 339 | 56.86 349 | 83.03 329 |
|
TESTMET0.1,1 | | | 69.89 287 | 69.00 280 | 72.55 314 | 79.27 335 | 56.85 303 | 78.38 305 | 74.71 345 | 57.64 329 | 68.09 293 | 77.19 337 | 37.75 340 | 76.70 346 | 63.92 226 | 84.09 174 | 84.10 319 |
|
N_pmnet | | | 52.79 325 | 53.26 326 | 51.40 344 | 78.99 336 | 7.68 375 | 69.52 342 | 3.89 375 | 51.63 350 | 57.01 349 | 74.98 344 | 40.83 330 | 65.96 362 | 37.78 355 | 64.67 338 | 80.56 343 |
|
EU-MVSNet | | | 68.53 296 | 67.61 296 | 71.31 322 | 78.51 337 | 47.01 355 | 84.47 233 | 84.27 270 | 42.27 354 | 66.44 313 | 84.79 264 | 40.44 331 | 83.76 318 | 58.76 272 | 68.54 329 | 83.17 325 |
|
pmmvs5 | | | 71.55 272 | 70.20 275 | 75.61 291 | 77.83 338 | 56.39 312 | 81.74 273 | 80.89 308 | 57.76 328 | 67.46 298 | 84.49 266 | 49.26 281 | 85.32 309 | 57.08 287 | 75.29 284 | 85.11 308 |
|
test0.0.03 1 | | | 68.00 298 | 67.69 295 | 68.90 330 | 77.55 339 | 47.43 353 | 75.70 323 | 72.95 349 | 66.66 243 | 66.56 308 | 82.29 296 | 48.06 286 | 75.87 350 | 44.97 344 | 74.51 292 | 83.41 323 |
|
Patchmatch-RL test | | | 70.24 283 | 67.78 294 | 77.61 273 | 77.43 340 | 59.57 274 | 71.16 336 | 70.33 351 | 62.94 288 | 68.65 290 | 72.77 347 | 50.62 264 | 85.49 307 | 69.58 182 | 66.58 333 | 87.77 258 |
|
pmmvs-eth3d | | | 70.50 281 | 67.83 292 | 78.52 260 | 77.37 341 | 66.18 168 | 81.82 271 | 81.51 305 | 58.90 321 | 63.90 329 | 80.42 313 | 42.69 319 | 86.28 302 | 58.56 273 | 65.30 337 | 83.11 327 |
|
JIA-IIPM | | | 66.32 308 | 62.82 318 | 76.82 283 | 77.09 342 | 61.72 252 | 65.34 352 | 75.38 340 | 58.04 327 | 64.51 324 | 62.32 354 | 42.05 325 | 86.51 300 | 51.45 310 | 69.22 325 | 82.21 333 |
|
Gipuma |  | | 45.18 328 | 41.86 331 | 55.16 342 | 77.03 343 | 51.52 342 | 32.50 363 | 80.52 314 | 32.46 362 | 27.12 363 | 35.02 363 | 9.52 370 | 75.50 351 | 22.31 363 | 60.21 347 | 38.45 362 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet_test_wron | | | 65.03 312 | 62.92 315 | 71.37 319 | 75.93 344 | 56.73 305 | 69.09 347 | 74.73 344 | 57.28 333 | 54.03 354 | 77.89 332 | 45.88 300 | 74.39 356 | 49.89 320 | 61.55 343 | 82.99 330 |
|
YYNet1 | | | 65.03 312 | 62.91 316 | 71.38 318 | 75.85 345 | 56.60 309 | 69.12 346 | 74.66 346 | 57.28 333 | 54.12 353 | 77.87 333 | 45.85 301 | 74.48 355 | 49.95 319 | 61.52 344 | 83.05 328 |
|
PMMVS | | | 69.34 289 | 68.67 281 | 71.35 321 | 75.67 346 | 62.03 246 | 75.17 324 | 73.46 347 | 50.00 351 | 68.68 289 | 79.05 322 | 52.07 247 | 78.13 340 | 61.16 252 | 82.77 192 | 73.90 352 |
|
testgi | | | 66.67 305 | 66.53 303 | 67.08 335 | 75.62 347 | 41.69 362 | 75.93 319 | 76.50 338 | 66.11 250 | 65.20 322 | 86.59 226 | 35.72 346 | 74.71 354 | 43.71 345 | 73.38 304 | 84.84 310 |
|
test20.03 | | | 67.45 300 | 66.95 301 | 68.94 329 | 75.48 348 | 44.84 358 | 77.50 313 | 77.67 332 | 66.66 243 | 63.01 332 | 83.80 276 | 47.02 292 | 78.40 339 | 42.53 349 | 68.86 328 | 83.58 322 |
|
KD-MVS_2432*1600 | | | 66.22 309 | 63.89 310 | 73.21 310 | 75.47 349 | 53.42 334 | 70.76 339 | 84.35 267 | 64.10 275 | 66.52 310 | 78.52 327 | 34.55 349 | 84.98 310 | 50.40 314 | 50.33 357 | 81.23 338 |
|
miper_refine_blended | | | 66.22 309 | 63.89 310 | 73.21 310 | 75.47 349 | 53.42 334 | 70.76 339 | 84.35 267 | 64.10 275 | 66.52 310 | 78.52 327 | 34.55 349 | 84.98 310 | 50.40 314 | 50.33 357 | 81.23 338 |
|
Anonymous20240521 | | | 68.80 293 | 67.22 299 | 73.55 308 | 74.33 351 | 54.11 328 | 83.18 258 | 85.61 254 | 58.15 325 | 61.68 336 | 80.94 308 | 30.71 355 | 81.27 330 | 57.00 288 | 73.34 305 | 85.28 304 |
|
DIV-MVS_2432*1600 | | | 68.81 292 | 67.59 297 | 72.46 315 | 74.29 352 | 45.45 356 | 77.93 311 | 87.00 237 | 63.12 283 | 63.99 328 | 78.99 326 | 42.32 321 | 84.77 313 | 56.55 291 | 64.09 340 | 87.16 275 |
|
PM-MVS | | | 66.41 307 | 64.14 309 | 73.20 312 | 73.92 353 | 56.45 310 | 78.97 301 | 64.96 363 | 63.88 281 | 64.72 323 | 80.24 314 | 19.84 362 | 83.44 321 | 66.24 208 | 64.52 339 | 79.71 345 |
|
UnsupCasMVSNet_bld | | | 63.70 317 | 61.53 321 | 70.21 326 | 73.69 354 | 51.39 344 | 72.82 332 | 81.89 301 | 55.63 340 | 57.81 347 | 71.80 349 | 38.67 336 | 78.61 338 | 49.26 323 | 52.21 355 | 80.63 341 |
|
UnsupCasMVSNet_eth | | | 67.33 301 | 65.99 304 | 71.37 319 | 73.48 355 | 51.47 343 | 75.16 325 | 85.19 258 | 65.20 261 | 60.78 339 | 80.93 310 | 42.35 320 | 77.20 345 | 57.12 286 | 53.69 353 | 85.44 302 |
|
TDRefinement | | | 67.49 299 | 64.34 308 | 76.92 282 | 73.47 356 | 61.07 257 | 84.86 224 | 82.98 292 | 59.77 313 | 58.30 346 | 85.13 259 | 26.06 357 | 87.89 290 | 47.92 332 | 60.59 346 | 81.81 336 |
|
ambc | | | | | 75.24 296 | 73.16 357 | 50.51 348 | 63.05 356 | 87.47 229 | | 64.28 325 | 77.81 334 | 17.80 363 | 89.73 263 | 57.88 280 | 60.64 345 | 85.49 301 |
|
CMPMVS |  | 51.72 21 | 70.19 284 | 68.16 286 | 76.28 286 | 73.15 358 | 57.55 296 | 79.47 295 | 83.92 274 | 48.02 352 | 56.48 351 | 84.81 263 | 43.13 316 | 86.42 301 | 62.67 237 | 81.81 204 | 84.89 309 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
new-patchmatchnet | | | 61.73 318 | 61.73 320 | 61.70 338 | 72.74 359 | 24.50 372 | 69.16 345 | 78.03 330 | 61.40 301 | 56.72 350 | 75.53 343 | 38.42 337 | 76.48 348 | 45.95 340 | 57.67 348 | 84.13 318 |
|
LF4IMVS | | | 64.02 316 | 62.19 319 | 69.50 328 | 70.90 360 | 53.29 336 | 76.13 317 | 77.18 336 | 52.65 347 | 58.59 344 | 80.98 307 | 23.55 359 | 76.52 347 | 53.06 304 | 66.66 332 | 78.68 347 |
|
new_pmnet | | | 50.91 326 | 50.29 328 | 52.78 343 | 68.58 361 | 34.94 367 | 63.71 354 | 56.63 366 | 39.73 357 | 44.95 358 | 65.47 352 | 21.93 360 | 58.48 363 | 34.98 357 | 56.62 350 | 64.92 356 |
|
DSMNet-mixed | | | 57.77 322 | 56.90 324 | 60.38 339 | 67.70 362 | 35.61 365 | 69.18 344 | 53.97 367 | 32.30 363 | 57.49 348 | 79.88 318 | 40.39 332 | 68.57 361 | 38.78 354 | 72.37 309 | 76.97 350 |
|
FPMVS | | | 53.68 324 | 51.64 327 | 59.81 340 | 65.08 363 | 51.03 345 | 69.48 343 | 69.58 355 | 41.46 355 | 40.67 359 | 72.32 348 | 16.46 365 | 70.00 360 | 24.24 362 | 65.42 336 | 58.40 359 |
|
pmmvs3 | | | 57.79 321 | 54.26 325 | 68.37 333 | 64.02 364 | 56.72 306 | 75.12 327 | 65.17 361 | 40.20 356 | 52.93 355 | 69.86 351 | 20.36 361 | 75.48 352 | 45.45 342 | 55.25 352 | 72.90 353 |
|
wuyk23d | | | 16.82 337 | 15.94 340 | 19.46 351 | 58.74 365 | 31.45 368 | 39.22 361 | 3.74 376 | 6.84 368 | 6.04 371 | 2.70 370 | 1.27 375 | 24.29 370 | 10.54 369 | 14.40 369 | 2.63 367 |
|
PMMVS2 | | | 40.82 330 | 38.86 333 | 46.69 345 | 53.84 366 | 16.45 373 | 48.61 360 | 49.92 368 | 37.49 359 | 31.67 361 | 60.97 356 | 8.14 372 | 56.42 364 | 28.42 359 | 30.72 362 | 67.19 355 |
|
LCM-MVSNet | | | 54.25 323 | 49.68 329 | 67.97 334 | 53.73 367 | 45.28 357 | 66.85 351 | 80.78 310 | 35.96 360 | 39.45 360 | 62.23 355 | 8.70 371 | 78.06 342 | 48.24 329 | 51.20 356 | 80.57 342 |
|
E-PMN | | | 31.77 331 | 30.64 334 | 35.15 348 | 52.87 368 | 27.67 369 | 57.09 358 | 47.86 369 | 24.64 364 | 16.40 369 | 33.05 364 | 11.23 368 | 54.90 365 | 14.46 367 | 18.15 365 | 22.87 364 |
|
EMVS | | | 30.81 333 | 29.65 335 | 34.27 349 | 50.96 369 | 25.95 371 | 56.58 359 | 46.80 370 | 24.01 365 | 15.53 370 | 30.68 365 | 12.47 367 | 54.43 366 | 12.81 368 | 17.05 366 | 22.43 365 |
|
ANet_high | | | 50.57 327 | 46.10 330 | 63.99 336 | 48.67 370 | 39.13 363 | 70.99 338 | 80.85 309 | 61.39 302 | 31.18 362 | 57.70 358 | 17.02 364 | 73.65 358 | 31.22 358 | 15.89 367 | 79.18 346 |
|
MVE |  | 26.22 23 | 30.37 334 | 25.89 338 | 43.81 346 | 44.55 371 | 35.46 366 | 28.87 364 | 39.07 371 | 18.20 366 | 18.58 368 | 40.18 362 | 2.68 374 | 47.37 368 | 17.07 366 | 23.78 364 | 48.60 361 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 37.38 22 | 44.16 329 | 40.28 332 | 55.82 341 | 40.82 372 | 42.54 361 | 65.12 353 | 63.99 364 | 34.43 361 | 24.48 364 | 57.12 359 | 3.92 373 | 76.17 349 | 17.10 365 | 55.52 351 | 48.75 360 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepMVS_CX |  | | | | 27.40 350 | 40.17 373 | 26.90 370 | | 24.59 374 | 17.44 367 | 23.95 365 | 48.61 361 | 9.77 369 | 26.48 369 | 18.06 364 | 24.47 363 | 28.83 363 |
|
test_method | | | 31.52 332 | 29.28 336 | 38.23 347 | 27.03 374 | 6.50 376 | 20.94 365 | 62.21 365 | 4.05 369 | 22.35 367 | 52.50 360 | 13.33 366 | 47.58 367 | 27.04 361 | 34.04 361 | 60.62 358 |
|
tmp_tt | | | 18.61 336 | 21.40 339 | 10.23 352 | 4.82 375 | 10.11 374 | 34.70 362 | 30.74 373 | 1.48 370 | 23.91 366 | 26.07 366 | 28.42 356 | 13.41 371 | 27.12 360 | 15.35 368 | 7.17 366 |
|
testmvs | | | 6.04 340 | 8.02 343 | 0.10 354 | 0.08 376 | 0.03 378 | 69.74 341 | 0.04 377 | 0.05 371 | 0.31 372 | 1.68 371 | 0.02 377 | 0.04 372 | 0.24 370 | 0.02 370 | 0.25 369 |
|
test123 | | | 6.12 339 | 8.11 342 | 0.14 353 | 0.06 377 | 0.09 377 | 71.05 337 | 0.03 378 | 0.04 372 | 0.25 373 | 1.30 372 | 0.05 376 | 0.03 373 | 0.21 371 | 0.01 371 | 0.29 368 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 19.96 335 | 26.61 337 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 89.26 180 | 0.00 373 | 0.00 374 | 88.61 167 | 61.62 162 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 5.26 341 | 7.02 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 63.15 138 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 7.23 338 | 9.64 341 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 86.72 217 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
PC_three_1452 | | | | | | | | | | 68.21 231 | 92.02 12 | 94.00 48 | 82.09 5 | 95.98 55 | 84.58 40 | 96.68 2 | 94.95 5 |
|
test_241102_TWO | | | | | | | | | 94.06 12 | 77.24 51 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 35 |
|
test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 18 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 231 |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 257 | | | | 88.96 231 |
|
sam_mvs | | | | | | | | | | | | | 50.01 270 | | | | |
|
MTGPA |  | | | | | | | | 92.02 94 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 303 | | | | 5.43 369 | 48.81 285 | 85.44 308 | 59.25 265 | | |
|
test_post | | | | | | | | | | | | 5.46 368 | 50.36 268 | 84.24 315 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 345 | 51.12 259 | 88.60 282 | | | |
|
MTMP | | | | | | | | 92.18 33 | 32.83 372 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 33 | 95.70 31 | 92.87 98 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 63 | 95.45 33 | 92.70 101 |
|
test_prior4 | | | | | | | 72.60 35 | 89.01 102 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 108 | | 75.41 96 | 84.91 56 | 93.54 54 | 74.28 34 | | 83.31 55 | 95.86 22 | |
|
旧先验2 | | | | | | | | 86.56 183 | | 58.10 326 | 87.04 35 | | | 88.98 276 | 74.07 140 | | |
|
新几何2 | | | | | | | | 86.29 191 | | | | | | | | | |
|
无先验 | | | | | | | | 87.48 155 | 88.98 192 | 60.00 311 | | | | 94.12 129 | 67.28 200 | | 88.97 230 |
|
原ACMM2 | | | | | | | | 86.86 172 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 91.01 245 | 62.37 239 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 43 | | | | |
|
testdata1 | | | | | | | | 84.14 243 | | 75.71 90 | | | | | | | |
|
plane_prior5 | | | | | | | | | 92.44 75 | | | | | 95.38 80 | 78.71 97 | 86.32 152 | 91.33 144 |
|
plane_prior4 | | | | | | | | | | | | 91.00 111 | | | | | |
|
plane_prior3 | | | | | | | 68.60 127 | | | 78.44 31 | 78.92 136 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 49 | | 79.12 24 | | | | | | | |
|
plane_prior | | | | | | | 68.71 122 | 90.38 70 | | 77.62 40 | | | | | | 86.16 155 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 353 | | | | | | | | |
|
test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
door | | | | | | | | | 69.44 356 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 156 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 111 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 171 | | | 95.11 91 | | | 91.03 154 |
|
HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 158 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 189 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 364 | 75.16 325 | | 55.10 341 | 66.53 309 | | 49.34 279 | | 53.98 299 | | 87.94 254 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 202 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 207 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 123 | | | | |
|