This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268876.24 5974.03 8682.88 183.09 11762.84 285.73 11185.39 10869.79 2864.87 15483.49 20141.52 17093.69 2970.55 10381.82 6992.12 40
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 5064.83 9273.52 5988.09 13748.07 7892.19 5462.24 16484.53 5291.53 62
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5663.22 12374.63 4890.83 7541.38 17194.40 2075.42 7279.90 9194.72 2
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13888.88 3458.00 22183.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19771.82 8290.05 9759.72 1096.04 1078.37 5088.40 1493.75 7
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3257.50 23584.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 2057.71 22981.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3496.39 481.68 2987.13 2192.47 31
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3895.57 1285.80 1085.87 3893.31 11
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 26089.51 2469.76 2971.05 9486.66 16458.68 1593.24 3184.64 1490.40 693.14 18
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 9077.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7470.62 2280.75 2193.22 2437.77 20692.50 4682.75 2386.25 3591.57 60
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7770.30 2680.77 2093.07 2937.63 21192.28 5282.73 2485.71 3991.57 60
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3670.31 2577.64 3693.87 752.58 4693.91 2684.17 1587.92 1692.39 33
MVS76.91 4975.48 6381.23 1984.56 8255.21 6580.23 26691.64 458.65 21165.37 14691.48 6245.72 10695.05 1672.11 9889.52 1093.44 9
VDDNet74.37 8972.13 11281.09 2079.58 20456.52 3790.02 2686.70 8152.61 29271.23 9087.20 15531.75 29193.96 2574.30 8275.77 13492.79 27
MVSMamba_PlusPlus75.28 7773.39 8980.96 2180.85 18358.25 1074.47 30987.61 6750.53 30665.24 14783.41 20357.38 1892.83 3673.92 8687.13 2191.80 54
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2275.28 482.41 1193.86 854.30 3593.98 2390.29 187.13 2193.30 12
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 14155.82 2692.65 4269.61 10975.00 14892.05 44
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5467.71 4873.81 5692.75 3246.88 9193.28 3078.79 4784.07 5591.50 64
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14583.68 15867.85 4569.36 10790.24 8960.20 892.10 5884.14 1680.40 8292.82 25
API-MVS74.17 9272.07 11480.49 2590.02 1158.55 987.30 7584.27 14557.51 23465.77 14387.77 14641.61 16895.97 1151.71 25682.63 6186.94 178
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8274.48 582.63 1093.80 950.83 6193.70 2890.11 286.44 3393.01 21
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13757.29 1992.63 4469.24 11375.13 14491.91 49
3Dnovator64.70 674.46 8772.48 10280.41 2982.84 13055.40 5983.08 19988.61 4767.61 5159.85 21388.66 12334.57 26293.97 2458.42 19988.70 1291.85 52
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5855.55 26581.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2962.95 12770.54 10392.33 3941.05 17294.95 1757.90 21086.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SD-MVS76.18 6074.85 7480.18 3285.39 6756.90 2885.75 10982.45 18256.79 24974.48 5191.81 5243.72 13790.75 9174.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10288.37 12957.69 1792.30 5075.25 7476.24 12891.20 73
Effi-MVS+75.24 7973.61 8880.16 3381.92 14857.42 2185.21 12776.71 29660.68 17273.32 6289.34 11047.30 8691.63 6568.28 12079.72 9391.42 65
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7961.48 15480.26 2393.10 2546.53 9692.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++74.21 9172.25 10880.11 3681.45 16956.47 3886.32 9679.65 23658.19 21766.36 13492.29 4036.11 24490.66 9367.39 12482.49 6393.18 17
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8673.13 879.89 2593.10 2549.88 7092.98 3384.09 1784.75 5093.08 19
IB-MVS68.87 274.01 9472.03 11779.94 3883.04 11955.50 5390.24 2588.65 4367.14 5561.38 20081.74 23753.21 4294.28 2160.45 18462.41 25790.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6866.04 7679.46 2693.00 3053.10 4391.76 6380.40 3789.56 992.68 29
QAPM71.88 13469.33 16079.52 4082.20 14354.30 9386.30 9788.77 4056.61 25359.72 21587.48 15033.90 26995.36 1347.48 28481.49 7288.90 132
VDD-MVS76.08 6374.97 7279.44 4184.27 9053.33 11991.13 2085.88 9865.33 8772.37 7689.34 11032.52 28192.76 4077.90 5775.96 13192.22 39
MVS_111021_HR76.39 5875.38 6679.42 4285.33 6956.47 3888.15 5384.97 12665.15 9066.06 13789.88 10043.79 13492.16 5575.03 7580.03 8989.64 113
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7662.94 12871.65 8391.56 6042.33 15592.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
test1279.24 4486.89 4656.08 4585.16 12172.27 7847.15 8891.10 8285.93 3790.54 89
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6255.91 26078.56 3092.49 3748.20 7792.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 13069.12 3476.67 3992.02 4644.82 12390.23 10780.83 3680.09 8692.08 41
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10571.67 1571.38 8888.35 13151.58 5091.22 7779.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12255.19 2891.24 7665.18 14876.32 12791.29 71
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9768.31 3671.33 8992.75 3245.52 10990.37 10071.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
RRT-MVS73.29 10971.37 12579.07 5284.63 8054.16 9978.16 28586.64 8461.67 14960.17 21082.35 22840.63 18092.26 5370.19 10677.87 10890.81 83
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17588.57 4988.59 4858.14 21873.60 5793.31 2143.14 14793.79 2773.81 8788.53 1392.37 34
test_yl75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
DCV-MVSNet75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9872.11 1371.57 8588.63 12750.89 6090.35 10176.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12858.53 1689.08 13773.21 9477.98 10792.08 41
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9168.60 3570.18 10588.84 12051.57 5187.16 21265.48 14186.68 3090.15 101
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13585.04 13588.63 4566.08 7386.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 8066.96 5867.91 12089.97 9948.03 7991.41 7175.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16885.35 11061.10 16172.99 6591.50 6140.25 18291.00 8476.84 6286.98 2590.51 90
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17384.88 12971.38 1971.51 8689.15 11550.51 6290.55 9775.71 6778.65 10191.39 66
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15468.26 3774.10 5490.91 7242.14 15989.99 11279.30 4179.12 9791.36 68
jason: jason.
ET-MVSNet_ETH3D75.23 8074.08 8478.67 6484.52 8355.59 5188.92 4489.21 2868.06 4253.13 30590.22 9149.71 7187.62 20172.12 9770.82 18492.82 25
CostFormer73.89 9872.30 10778.66 6582.36 14156.58 3375.56 29985.30 11366.06 7470.50 10476.88 28957.02 2089.06 13868.27 12168.74 20090.33 93
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5276.17 279.40 2791.09 6455.43 2790.09 11085.01 1280.40 8291.99 48
MVS_Test75.85 6874.93 7378.62 6684.08 9255.20 6783.99 17085.17 12068.07 4173.38 6182.76 21250.44 6389.00 14265.90 13780.61 7891.64 56
CDPH-MVS76.05 6475.19 6878.62 6686.51 5054.98 7587.32 7384.59 13858.62 21270.75 9790.85 7443.10 14990.63 9570.50 10484.51 5390.24 96
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19290.02 2690.57 1656.58 25474.26 5391.60 5954.26 3692.16 5575.87 6679.91 9093.05 20
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 11168.20 3873.10 6490.52 8145.23 11390.66 9379.37 4080.95 7490.22 97
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 24086.41 8769.61 3181.72 1688.16 13655.09 3188.04 18374.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15257.84 22672.99 6590.98 6744.99 11788.58 16078.19 5285.32 4491.34 70
PAPR75.20 8174.13 8278.41 7388.31 3255.10 7184.31 16085.66 10263.76 11067.55 12290.73 7743.48 14289.40 12766.36 13277.03 11590.73 85
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10666.11 7176.59 4191.99 4854.07 3989.05 13977.34 6077.00 11692.89 23
test_prior78.39 7486.35 5354.91 7785.45 10689.70 12190.55 87
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 14086.63 9287.80 5958.78 20974.63 4892.38 3847.75 8391.35 7278.18 5486.85 2791.15 75
ZNCC-MVS75.82 7175.02 7178.23 7783.88 9853.80 10386.91 8786.05 9659.71 18367.85 12190.55 7942.23 15791.02 8372.66 9685.29 4589.87 110
VNet77.99 3777.92 3178.19 7887.43 4250.12 19390.93 2291.41 867.48 5275.12 4390.15 9546.77 9391.00 8473.52 8978.46 10393.44 9
EIA-MVS75.92 6675.18 6978.13 7985.14 7251.60 16087.17 8085.32 11264.69 9368.56 11590.53 8045.79 10591.58 6767.21 12682.18 6691.20 73
HFP-MVS74.37 8973.13 9778.10 8084.30 8753.68 10685.58 11584.36 14356.82 24765.78 14290.56 7840.70 17990.90 8869.18 11480.88 7589.71 111
tpm270.82 15468.44 17077.98 8180.78 18556.11 4474.21 31181.28 20360.24 17768.04 11975.27 30752.26 4888.50 16555.82 23068.03 20489.33 121
thisisatest051573.64 10572.20 10977.97 8281.63 15953.01 12986.69 9188.81 3962.53 13464.06 16785.65 17452.15 4992.50 4658.43 19769.84 19288.39 149
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14989.36 3984.07 15173.22 777.03 3891.72 5449.32 7490.17 10973.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GDP-MVS75.27 7874.38 8077.95 8479.04 21652.86 13385.22 12686.19 9362.43 13870.66 10090.40 8653.51 4091.60 6669.25 11272.68 16789.39 120
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8585.46 6649.56 20590.99 2186.66 8270.58 2380.07 2495.30 156.18 2490.97 8782.57 2586.22 3693.28 13
GST-MVS74.87 8573.90 8777.77 8683.30 11053.45 11285.75 10985.29 11459.22 19666.50 13389.85 10140.94 17490.76 9070.94 10283.35 5889.10 129
GG-mvs-BLEND77.77 8686.68 4850.61 17668.67 34788.45 5168.73 11487.45 15159.15 1190.67 9254.83 23387.67 1792.03 45
BP-MVS176.09 6275.55 6177.71 8879.49 20552.27 14684.70 14890.49 1764.44 9569.86 10690.31 8855.05 3291.35 7270.07 10775.58 13789.53 117
cascas69.01 18766.13 21677.66 8979.36 20755.41 5886.99 8383.75 15756.69 25158.92 23381.35 24124.31 34092.10 5853.23 24370.61 18685.46 211
3Dnovator+62.71 772.29 12670.50 13677.65 9083.40 10851.29 16987.32 7386.40 8859.01 20458.49 24388.32 13332.40 28291.27 7457.04 21982.15 6790.38 92
MVSFormer73.53 10672.19 11077.57 9183.02 12055.24 6381.63 23781.44 19950.28 30776.67 3990.91 7244.82 12386.11 24360.83 17680.09 8691.36 68
APD-MVScopyleft76.15 6175.68 5877.54 9288.52 2753.44 11387.26 7885.03 12553.79 28274.91 4691.68 5643.80 13390.31 10374.36 8081.82 6988.87 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+72.73 11771.15 12977.48 9382.75 13254.76 7986.77 9080.64 21463.05 12665.93 13984.01 19144.42 12889.03 14056.45 22676.36 12688.64 140
EPMVS68.45 19965.44 23577.47 9484.91 7656.17 4371.89 33381.91 19161.72 14860.85 20472.49 33336.21 24387.06 21547.32 28571.62 17689.17 127
PatchmatchNetpermissive67.07 23363.63 25377.40 9583.10 11558.03 1172.11 33177.77 27558.85 20759.37 22370.83 34637.84 20584.93 27042.96 31069.83 19389.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
region2R73.75 10172.55 10177.33 9683.90 9752.98 13085.54 11984.09 15056.83 24665.10 14990.45 8237.34 22090.24 10668.89 11680.83 7788.77 138
WTY-MVS77.47 4377.52 3877.30 9788.33 3046.25 28788.46 5090.32 1871.40 1872.32 7791.72 5453.44 4192.37 4966.28 13375.42 13893.28 13
OpenMVScopyleft61.00 1169.99 16967.55 18977.30 9778.37 23454.07 10184.36 15885.76 10157.22 24056.71 27287.67 14830.79 29792.83 3643.04 30984.06 5685.01 216
MTAPA72.73 11771.22 12777.27 9981.54 16553.57 10867.06 35481.31 20159.41 19068.39 11690.96 6936.07 24689.01 14173.80 8882.45 6489.23 124
PAPM_NR71.80 13669.98 15077.26 10081.54 16553.34 11878.60 28385.25 11753.46 28560.53 20888.66 12345.69 10789.24 13256.49 22379.62 9689.19 126
ACMMPR73.76 10072.61 9977.24 10183.92 9652.96 13185.58 11584.29 14456.82 24765.12 14890.45 8237.24 22390.18 10869.18 11480.84 7688.58 142
h-mvs3373.95 9572.89 9877.15 10280.17 19750.37 18684.68 15083.33 16468.08 3971.97 8088.65 12642.50 15391.15 8078.82 4557.78 29789.91 109
SPE-MVS-test77.20 4577.25 4177.05 10384.60 8149.04 22089.42 3685.83 10065.90 7772.85 6891.98 5045.10 11491.27 7475.02 7684.56 5190.84 82
MP-MVS-pluss75.54 7575.03 7077.04 10481.37 17152.65 13784.34 15984.46 14161.16 15869.14 11091.76 5339.98 18988.99 14478.19 5284.89 4989.48 119
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HyFIR lowres test69.94 17167.58 18777.04 10477.11 25557.29 2281.49 24579.11 25058.27 21658.86 23580.41 24842.33 15586.96 21861.91 16768.68 20186.87 180
DP-MVS Recon71.99 13170.31 14377.01 10690.65 853.44 11389.37 3782.97 17556.33 25763.56 17889.47 10734.02 26792.15 5754.05 23972.41 16985.43 212
Anonymous2024052969.71 17467.28 19577.00 10783.78 9950.36 18788.87 4685.10 12447.22 32964.03 16883.37 20427.93 31292.10 5857.78 21367.44 20988.53 145
CS-MVS76.77 5376.70 4876.99 10883.55 10248.75 23088.60 4885.18 11966.38 6672.47 7591.62 5845.53 10890.99 8674.48 7982.51 6291.23 72
baseline275.15 8274.54 7976.98 10981.67 15851.74 15783.84 17591.94 369.97 2758.98 23086.02 17059.73 991.73 6468.37 11970.40 18987.48 169
MP-MVScopyleft74.99 8474.33 8176.95 11082.89 12753.05 12885.63 11483.50 16357.86 22567.25 12490.24 8943.38 14488.85 15376.03 6482.23 6588.96 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mvs_anonymous72.29 12670.74 13276.94 11182.85 12954.72 8278.43 28481.54 19763.77 10961.69 19779.32 25851.11 5485.31 26162.15 16675.79 13390.79 84
ETVMVS75.80 7275.44 6476.89 11286.23 5450.38 18585.55 11891.42 771.30 2068.80 11387.94 14356.42 2389.24 13256.54 22274.75 15191.07 77
XVS72.92 11371.62 11976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 17089.63 10535.50 25189.78 11765.50 13980.50 8088.16 152
X-MVStestdata65.85 25162.20 25976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 1704.82 42235.50 25189.78 11765.50 13980.50 8088.16 152
PGM-MVS72.60 11971.20 12876.80 11582.95 12352.82 13483.07 20082.14 18456.51 25563.18 18089.81 10235.68 25089.76 11967.30 12580.19 8587.83 161
Anonymous20240521170.11 16367.88 18076.79 11687.20 4447.24 27389.49 3577.38 28354.88 27466.14 13586.84 16020.93 36091.54 6856.45 22671.62 17691.59 58
tpm cat166.28 24562.78 25576.77 11781.40 17057.14 2470.03 34077.19 28553.00 28958.76 23870.73 34946.17 9886.73 22543.27 30864.46 23386.44 191
PVSNet_Blended76.53 5676.54 4976.50 11885.91 5651.83 15588.89 4584.24 14867.82 4669.09 11189.33 11246.70 9488.13 17975.43 7081.48 7389.55 115
diffmvspermissive75.11 8374.65 7776.46 11978.52 23053.35 11783.28 19479.94 22870.51 2471.64 8488.72 12146.02 10286.08 24877.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu73.40 10872.44 10376.30 12081.32 17354.70 8385.81 10578.82 25463.70 11164.53 16085.38 17847.11 8987.38 20867.75 12377.55 11086.81 186
BH-RMVSNet70.08 16568.01 17776.27 12184.21 9151.22 17187.29 7679.33 24758.96 20663.63 17686.77 16133.29 27590.30 10544.63 30273.96 15587.30 175
CLD-MVS75.60 7375.39 6576.24 12280.69 18852.40 14190.69 2386.20 9274.40 665.01 15288.93 11742.05 16190.58 9676.57 6373.96 15585.73 205
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE69.96 17067.88 18076.22 12381.11 17551.71 15884.15 16476.74 29559.83 18160.91 20384.38 18741.56 16988.10 18151.67 25770.57 18788.84 135
131471.11 14769.41 15776.22 12379.32 20950.49 18080.23 26685.14 12359.44 18958.93 23288.89 11933.83 27189.60 12461.49 17177.42 11388.57 143
thisisatest053070.47 16168.56 16776.20 12579.78 20251.52 16383.49 18688.58 4957.62 23258.60 23982.79 21151.03 5691.48 6952.84 24862.36 25985.59 210
FA-MVS(test-final)69.00 18866.60 20776.19 12683.48 10447.96 26174.73 30682.07 18657.27 23962.18 19278.47 26736.09 24592.89 3453.76 24271.32 18087.73 164
HY-MVS67.03 573.90 9773.14 9576.18 12784.70 7947.36 27075.56 29986.36 8966.27 6870.66 10083.91 19351.05 5589.31 13067.10 12772.61 16891.88 51
gg-mvs-nofinetune67.43 22164.53 24676.13 12885.95 5547.79 26564.38 36188.28 5339.34 36666.62 12941.27 40358.69 1489.00 14249.64 26986.62 3191.59 58
原ACMM176.13 12884.89 7754.59 8885.26 11651.98 29666.70 12787.07 15840.15 18589.70 12151.23 26085.06 4884.10 229
GA-MVS69.04 18666.70 20476.06 13075.11 28152.36 14283.12 19880.23 22263.32 12160.65 20779.22 26030.98 29688.37 16861.25 17266.41 21887.46 170
mPP-MVS71.79 13770.38 14176.04 13182.65 13652.06 14884.45 15681.78 19455.59 26462.05 19589.68 10433.48 27388.28 17665.45 14478.24 10687.77 163
MVSTER73.25 11072.33 10576.01 13285.54 6453.76 10583.52 18087.16 7267.06 5663.88 17281.66 23852.77 4490.44 9864.66 15264.69 23183.84 240
CP-MVS72.59 12171.46 12276.00 13382.93 12552.32 14486.93 8682.48 18155.15 26963.65 17590.44 8535.03 25888.53 16468.69 11777.83 10987.15 176
HPM-MVScopyleft72.60 11971.50 12175.89 13482.02 14451.42 16580.70 25883.05 17256.12 25964.03 16889.53 10637.55 21488.37 16870.48 10580.04 8887.88 160
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t69.87 17267.88 18075.85 13588.38 2952.35 14386.94 8583.68 15853.70 28355.68 28285.60 17530.07 30291.20 7855.84 22971.02 18283.99 233
reproduce-ours71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
our_new_method71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
PMMVS72.98 11272.05 11575.78 13683.57 10148.60 23384.08 16682.85 17761.62 15068.24 11890.33 8728.35 30887.78 19372.71 9576.69 12190.95 80
SDMVSNet71.89 13370.62 13575.70 13981.70 15551.61 15973.89 31288.72 4266.58 6161.64 19882.38 22537.63 21189.48 12577.44 5965.60 22586.01 197
EC-MVSNet75.30 7675.20 6775.62 14080.98 17649.00 22187.43 7084.68 13663.49 11870.97 9590.15 9542.86 15291.14 8174.33 8181.90 6886.71 187
test_fmvsm_n_192075.56 7475.54 6275.61 14174.60 29049.51 21081.82 23174.08 31866.52 6480.40 2293.46 1746.95 9089.72 12086.69 775.30 13987.61 167
MS-PatchMatch72.34 12471.26 12675.61 14182.38 14055.55 5288.00 5589.95 2165.38 8556.51 27680.74 24732.28 28492.89 3457.95 20888.10 1578.39 316
fmvsm_s_conf0.5_n74.48 8674.12 8375.56 14376.96 25647.85 26385.32 12369.80 35464.16 10178.74 2893.48 1645.51 11089.29 13186.48 866.62 21589.55 115
WBMVS73.93 9673.39 8975.55 14487.82 3955.21 6589.37 3787.29 7067.27 5363.70 17480.30 24960.32 686.47 23361.58 17062.85 25484.97 217
xiu_mvs_v1_base_debu71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base_debi71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
test_fmvsmconf_n74.41 8874.05 8575.49 14874.16 29648.38 24282.66 20772.57 33167.05 5775.11 4492.88 3146.35 9787.81 18883.93 1871.71 17590.28 95
fmvsm_s_conf0.1_n73.80 9973.26 9275.43 14973.28 30447.80 26484.57 15569.43 35663.34 12078.40 3193.29 2244.73 12689.22 13485.99 966.28 22289.26 122
CANet_DTU73.71 10273.14 9575.40 15082.61 13750.05 19484.67 15279.36 24469.72 3075.39 4290.03 9829.41 30485.93 25467.99 12279.11 9890.22 97
ACMMPcopyleft70.81 15569.29 16175.39 15181.52 16751.92 15383.43 18783.03 17356.67 25258.80 23788.91 11831.92 28988.58 16065.89 13873.39 15985.67 206
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n73.69 10373.15 9375.34 15270.71 33448.26 24782.15 22171.83 33666.75 6074.47 5292.59 3644.89 12087.78 19383.59 1971.35 17989.97 106
SCA63.84 26060.01 28175.32 15378.58 22957.92 1261.61 37377.53 27956.71 25057.75 25570.77 34731.97 28779.91 32148.80 27556.36 30388.13 155
fmvsm_l_conf0.5_n_a75.88 6776.07 5675.31 15476.08 26848.34 24485.24 12570.62 34763.13 12581.45 1893.62 1449.98 6887.40 20787.76 676.77 12090.20 99
fmvsm_l_conf0.5_n75.95 6576.16 5575.31 15476.01 27248.44 24184.98 13871.08 34463.50 11781.70 1793.52 1550.00 6687.18 21187.80 576.87 11990.32 94
FE-MVS64.15 25760.43 27775.30 15680.85 18349.86 19968.28 34978.37 26650.26 31059.31 22573.79 31826.19 32591.92 6140.19 31766.67 21484.12 228
fmvsm_s_conf0.5_n_a73.68 10473.15 9375.29 15775.45 27948.05 25683.88 17468.84 35963.43 11978.60 2993.37 2045.32 11188.92 14985.39 1164.04 23588.89 133
ab-mvs70.65 15769.11 16375.29 15780.87 18246.23 28873.48 31685.24 11859.99 17966.65 12880.94 24443.13 14888.69 15563.58 15668.07 20390.95 80
reproduce_model71.07 14869.67 15475.28 15981.51 16848.82 22881.73 23480.57 21747.81 32568.26 11790.78 7636.49 24188.60 15965.12 14974.76 15088.42 148
TR-MVS69.71 17467.85 18375.27 16082.94 12448.48 23987.40 7280.86 21157.15 24264.61 15887.08 15732.67 28089.64 12346.38 29371.55 17887.68 166
v2v48269.55 18067.64 18675.26 16172.32 31853.83 10284.93 14281.94 18865.37 8660.80 20579.25 25941.62 16788.98 14563.03 15959.51 27282.98 256
PCF-MVS61.03 1070.10 16468.40 17175.22 16277.15 25451.99 15079.30 27882.12 18556.47 25661.88 19686.48 16843.98 13087.24 21055.37 23172.79 16686.43 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.1_n_a72.82 11672.05 11575.12 16370.95 33347.97 25982.72 20668.43 36162.52 13578.17 3293.08 2844.21 12988.86 15084.82 1363.54 24188.54 144
test_fmvsmconf0.01_n71.97 13270.95 13175.04 16466.21 35947.87 26280.35 26370.08 35165.85 7872.69 7091.68 5639.99 18887.67 19782.03 2869.66 19489.58 114
HQP-MVS72.34 12471.44 12375.03 16579.02 21751.56 16188.00 5583.68 15865.45 8164.48 16185.13 17937.35 21888.62 15766.70 12873.12 16184.91 219
AdaColmapbinary67.86 20965.48 23275.00 16688.15 3654.99 7486.10 10176.63 29849.30 31457.80 25286.65 16529.39 30588.94 14845.10 29970.21 19081.06 286
EI-MVSNet-Vis-set73.19 11172.60 10074.99 16782.56 13849.80 20182.55 21289.00 3166.17 7065.89 14088.98 11643.83 13292.29 5165.38 14769.01 19882.87 258
mvsmamba69.38 18267.52 19174.95 16882.86 12852.22 14767.36 35276.75 29361.14 15949.43 32682.04 23437.26 22284.14 27773.93 8576.91 11788.50 146
tpmrst71.04 15069.77 15274.86 16983.19 11455.86 5075.64 29878.73 25867.88 4464.99 15373.73 31949.96 6979.56 32565.92 13667.85 20789.14 128
v114468.81 19266.82 20074.80 17072.34 31753.46 11084.68 15081.77 19564.25 9960.28 20977.91 27040.23 18388.95 14660.37 18559.52 27181.97 265
v119267.96 20865.74 22774.63 17171.79 32153.43 11584.06 16880.99 21063.19 12459.56 21977.46 27737.50 21788.65 15658.20 20358.93 27881.79 268
BH-w/o70.02 16768.51 16974.56 17282.77 13150.39 18486.60 9378.14 27059.77 18259.65 21685.57 17639.27 19487.30 20949.86 26774.94 14985.99 199
SR-MVS70.92 15369.73 15374.50 17383.38 10950.48 18184.27 16179.35 24548.96 31766.57 13290.45 8233.65 27287.11 21366.42 13074.56 15285.91 202
tttt051768.33 20266.29 21274.46 17478.08 23649.06 21780.88 25589.08 3054.40 28054.75 29080.77 24651.31 5390.33 10249.35 27158.01 29183.99 233
TESTMET0.1,172.86 11572.33 10574.46 17481.98 14550.77 17385.13 13085.47 10466.09 7267.30 12383.69 19837.27 22183.57 28565.06 15078.97 10089.05 130
nrg03072.27 12871.56 12074.42 17675.93 27350.60 17786.97 8483.21 16962.75 13067.15 12584.38 18750.07 6586.66 22771.19 10062.37 25885.99 199
RPMNet59.29 29354.25 31774.42 17673.97 29956.57 3460.52 37676.98 28935.72 37857.49 26158.87 38837.73 20985.26 26327.01 37659.93 26881.42 276
Vis-MVSNetpermissive70.61 15869.34 15974.42 17680.95 18148.49 23886.03 10377.51 28058.74 21065.55 14587.78 14534.37 26485.95 25352.53 25480.61 7888.80 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet71.14 14570.07 14974.33 17979.18 21346.52 28083.81 17686.49 8556.32 25857.95 24984.90 18554.23 3789.14 13658.14 20469.65 19587.33 173
test250672.91 11472.43 10474.32 18080.12 19844.18 31183.19 19684.77 13364.02 10365.97 13887.43 15247.67 8488.72 15459.08 19079.66 9490.08 103
EI-MVSNet-UG-set72.37 12371.73 11874.29 18181.60 16149.29 21581.85 22988.64 4465.29 8965.05 15088.29 13443.18 14591.83 6263.74 15567.97 20581.75 269
ECVR-MVScopyleft71.81 13571.00 13074.26 18280.12 19843.49 31684.69 14982.16 18364.02 10364.64 15687.43 15235.04 25789.21 13561.24 17379.66 9490.08 103
OPM-MVS70.75 15669.58 15574.26 18275.55 27851.34 16786.05 10283.29 16861.94 14562.95 18485.77 17334.15 26688.44 16665.44 14571.07 18182.99 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419267.86 20965.76 22674.16 18471.68 32353.09 12684.14 16580.83 21262.85 12959.21 22877.28 28139.30 19388.00 18458.67 19557.88 29581.40 278
HQP_MVS70.96 15269.91 15174.12 18577.95 23849.57 20385.76 10782.59 17963.60 11462.15 19383.28 20636.04 24788.30 17465.46 14272.34 17084.49 223
v192192067.45 22065.23 23974.10 18671.51 32652.90 13283.75 17880.44 21862.48 13759.12 22977.13 28236.98 23087.90 18657.53 21558.14 28981.49 273
v867.25 22664.99 24274.04 18772.89 31153.31 12082.37 21980.11 22461.54 15254.29 29676.02 30342.89 15188.41 16758.43 19756.36 30380.39 295
VPNet72.07 13071.42 12474.04 18778.64 22847.17 27489.91 3187.97 5772.56 1164.66 15585.04 18241.83 16688.33 17261.17 17460.97 26486.62 188
test_fmvsmvis_n_192071.29 14470.38 14174.00 18971.04 33248.79 22979.19 27964.62 37062.75 13066.73 12691.99 4840.94 17488.35 17083.00 2173.18 16084.85 221
MonoMVSNet66.80 23964.41 24773.96 19076.21 26648.07 25576.56 29678.26 26864.34 9754.32 29574.02 31637.21 22486.36 23864.85 15153.96 32787.45 171
v124066.99 23464.68 24473.93 19171.38 32952.66 13683.39 19179.98 22661.97 14458.44 24677.11 28335.25 25387.81 18856.46 22558.15 28781.33 281
BH-untuned68.28 20366.40 20973.91 19281.62 16050.01 19585.56 11777.39 28257.63 23157.47 26383.69 19836.36 24287.08 21444.81 30073.08 16484.65 222
v14868.24 20566.35 21073.88 19371.76 32251.47 16484.23 16281.90 19263.69 11258.94 23176.44 29443.72 13787.78 19360.63 17855.86 31382.39 262
V4267.66 21465.60 23173.86 19470.69 33653.63 10781.50 24378.61 26163.85 10859.49 22277.49 27637.98 20387.65 19862.33 16258.43 28280.29 296
Fast-Effi-MVS+-dtu66.53 24264.10 25173.84 19572.41 31652.30 14584.73 14775.66 30559.51 18756.34 27779.11 26228.11 31085.85 25557.74 21463.29 24683.35 245
v1066.61 24164.20 25073.83 19672.59 31453.37 11681.88 22879.91 23061.11 16054.09 29875.60 30540.06 18788.26 17756.47 22456.10 30979.86 301
APD-MVS_3200maxsize69.62 17968.23 17573.80 19781.58 16348.22 24881.91 22779.50 23948.21 32364.24 16689.75 10331.91 29087.55 20363.08 15873.85 15785.64 208
AUN-MVS68.20 20666.35 21073.76 19876.37 26047.45 26879.52 27579.52 23860.98 16462.34 18986.02 17036.59 24086.94 21962.32 16353.47 33386.89 179
PVSNet_BlendedMVS73.42 10773.30 9173.76 19885.91 5651.83 15586.18 9984.24 14865.40 8469.09 11180.86 24546.70 9488.13 17975.43 7065.92 22481.33 281
hse-mvs271.44 14370.68 13373.73 20076.34 26147.44 26979.45 27679.47 24068.08 3971.97 8086.01 17242.50 15386.93 22078.82 4553.46 33486.83 185
baseline172.51 12272.12 11373.69 20185.05 7344.46 30483.51 18486.13 9571.61 1664.64 15687.97 14255.00 3389.48 12559.07 19156.05 31087.13 177
CDS-MVSNet70.48 16069.43 15673.64 20277.56 24548.83 22783.51 18477.45 28163.27 12262.33 19085.54 17743.85 13183.29 29057.38 21874.00 15488.79 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet62.49 869.27 18467.81 18473.64 20284.41 8551.85 15484.63 15377.80 27466.42 6559.80 21484.95 18422.14 35580.44 31355.03 23275.11 14588.62 141
PS-MVSNAJss68.78 19467.17 19773.62 20473.01 30848.33 24684.95 14184.81 13159.30 19558.91 23479.84 25437.77 20688.86 15062.83 16063.12 25183.67 243
TAMVS69.51 18168.16 17673.56 20576.30 26448.71 23282.57 21077.17 28662.10 14161.32 20184.23 18941.90 16483.46 28754.80 23573.09 16388.50 146
UGNet68.71 19567.11 19873.50 20680.55 19247.61 26684.08 16678.51 26359.45 18865.68 14482.73 21523.78 34285.08 26852.80 24976.40 12287.80 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sd_testset67.79 21265.95 22173.32 20781.70 15546.33 28568.99 34580.30 22166.58 6161.64 19882.38 22530.45 29987.63 19955.86 22865.60 22586.01 197
Anonymous2023121166.08 24963.67 25273.31 20883.07 11848.75 23086.01 10484.67 13745.27 34356.54 27476.67 29228.06 31188.95 14652.78 25059.95 26782.23 263
新几何173.30 20983.10 11553.48 10971.43 34245.55 34166.14 13587.17 15633.88 27080.54 31148.50 27880.33 8485.88 204
reproduce_monomvs69.71 17468.52 16873.29 21086.43 5248.21 24983.91 17286.17 9468.02 4354.91 28777.46 27742.96 15088.86 15068.44 11848.38 34782.80 259
FMVSNet368.84 19067.40 19373.19 21185.05 7348.53 23685.71 11385.36 10960.90 16857.58 25879.15 26142.16 15886.77 22347.25 28663.40 24284.27 227
thres20068.71 19567.27 19673.02 21284.73 7846.76 27785.03 13687.73 6362.34 13959.87 21283.45 20243.15 14688.32 17331.25 35867.91 20683.98 235
PVSNet_057.04 1361.19 28457.24 29773.02 21277.45 24750.31 19079.43 27777.36 28463.96 10747.51 34172.45 33525.03 33483.78 28252.76 25219.22 41084.96 218
test111171.06 14970.42 14072.97 21479.48 20641.49 33984.82 14682.74 17864.20 10062.98 18387.43 15235.20 25487.92 18558.54 19678.42 10489.49 118
dp64.41 25561.58 26372.90 21582.40 13954.09 10072.53 32376.59 29960.39 17555.68 28270.39 35035.18 25576.90 34739.34 32061.71 26187.73 164
FMVSNet267.57 21765.79 22572.90 21582.71 13347.97 25985.15 12984.93 12758.55 21356.71 27278.26 26836.72 23786.67 22646.15 29562.94 25384.07 230
XXY-MVS70.18 16269.28 16272.89 21777.64 24242.88 32685.06 13487.50 6962.58 13362.66 18882.34 22943.64 13989.83 11658.42 19963.70 24085.96 201
CR-MVSNet62.47 27659.04 28872.77 21873.97 29956.57 3460.52 37671.72 33860.04 17857.49 26165.86 36538.94 19680.31 31442.86 31159.93 26881.42 276
WB-MVSnew69.36 18368.24 17472.72 21979.26 21149.40 21285.72 11288.85 3761.33 15564.59 15982.38 22534.57 26287.53 20446.82 29070.63 18581.22 285
EI-MVSNet69.70 17768.70 16672.68 22075.00 28448.90 22579.54 27387.16 7261.05 16263.88 17283.74 19645.87 10390.44 9857.42 21764.68 23278.70 309
HPM-MVS_fast67.86 20966.28 21372.61 22180.67 18948.34 24481.18 24875.95 30450.81 30559.55 22088.05 14027.86 31385.98 25058.83 19373.58 15883.51 244
MVP-Stereo70.97 15170.44 13772.59 22276.03 27151.36 16685.02 13786.99 7560.31 17656.53 27578.92 26340.11 18690.00 11160.00 18890.01 776.41 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_111021_LR69.07 18567.91 17872.54 22377.27 24949.56 20579.77 27173.96 32159.33 19460.73 20687.82 14430.19 30181.53 29869.94 10872.19 17286.53 189
IS-MVSNet68.80 19367.55 18972.54 22378.50 23143.43 31881.03 25079.35 24559.12 20257.27 26686.71 16246.05 10187.70 19644.32 30475.60 13686.49 190
VPA-MVSNet71.12 14670.66 13472.49 22578.75 22344.43 30687.64 6590.02 1963.97 10665.02 15181.58 24042.14 15987.42 20663.42 15763.38 24585.63 209
SR-MVS-dyc-post68.27 20466.87 19972.48 22680.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10831.17 29586.09 24760.52 18272.06 17383.19 251
dmvs_re67.61 21566.00 21972.42 22781.86 15043.45 31764.67 36080.00 22569.56 3260.07 21185.00 18334.71 26087.63 19951.48 25866.68 21386.17 196
miper_enhance_ethall69.77 17368.90 16572.38 22878.93 22049.91 19783.29 19378.85 25264.90 9159.37 22379.46 25652.77 4485.16 26663.78 15458.72 27982.08 264
cl2268.85 18967.69 18572.35 22978.07 23749.98 19682.45 21778.48 26462.50 13658.46 24477.95 26949.99 6785.17 26562.55 16158.72 27981.90 267
MGCFI-Net74.07 9374.64 7872.34 23082.90 12643.33 32180.04 26979.96 22765.61 7974.93 4591.85 5148.01 8080.86 30571.41 9977.10 11492.84 24
MSDG59.44 29255.14 31272.32 23174.69 28750.71 17474.39 31073.58 32444.44 35043.40 35677.52 27519.45 36490.87 8931.31 35757.49 29975.38 344
UWE-MVS72.17 12972.15 11172.21 23282.26 14244.29 30886.83 8989.58 2365.58 8065.82 14185.06 18145.02 11684.35 27654.07 23875.18 14187.99 159
v7n62.50 27559.27 28672.20 23367.25 35849.83 20077.87 28880.12 22352.50 29348.80 33173.07 32732.10 28587.90 18646.83 28954.92 31978.86 307
1112_ss70.05 16669.37 15872.10 23480.77 18642.78 32785.12 13376.75 29359.69 18461.19 20292.12 4247.48 8583.84 28053.04 24668.21 20289.66 112
miper_ehance_all_eth68.70 19767.58 18772.08 23576.91 25749.48 21182.47 21678.45 26562.68 13258.28 24877.88 27150.90 5785.01 26961.91 16758.72 27981.75 269
eth_miper_zixun_eth66.98 23565.28 23872.06 23675.61 27750.40 18381.00 25176.97 29262.00 14256.99 26876.97 28544.84 12285.58 25658.75 19454.42 32480.21 297
LPG-MVS_test66.44 24464.58 24572.02 23774.42 29248.60 23383.07 20080.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
LGP-MVS_train72.02 23774.42 29248.60 23380.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
ACMP61.11 966.24 24764.33 24872.00 23974.89 28649.12 21683.18 19779.83 23155.41 26752.29 31082.68 21625.83 32786.10 24560.89 17563.94 23880.78 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GBi-Net67.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
test167.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
FMVSNet164.57 25462.11 26071.96 24077.32 24846.36 28283.52 18083.31 16552.43 29454.42 29376.23 29827.80 31486.20 23942.59 31361.34 26383.32 246
cl____67.43 22165.93 22271.95 24376.33 26248.02 25782.58 20979.12 24961.30 15756.72 27176.92 28746.12 9986.44 23557.98 20656.31 30581.38 280
DIV-MVS_self_test67.43 22165.93 22271.94 24476.33 26248.01 25882.57 21079.11 25061.31 15656.73 27076.92 28746.09 10086.43 23657.98 20656.31 30581.39 279
Patchmatch-RL test58.72 30354.32 31671.92 24563.91 37444.25 30961.73 37255.19 38457.38 23749.31 32854.24 39437.60 21380.89 30362.19 16547.28 35590.63 86
c3_l67.97 20766.66 20571.91 24676.20 26749.31 21482.13 22378.00 27261.99 14357.64 25776.94 28649.41 7284.93 27060.62 17957.01 30181.49 273
tfpn200view967.57 21766.13 21671.89 24784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21982.78 260
MIMVSNet63.12 26860.29 27871.61 24875.92 27446.65 27865.15 35781.94 18859.14 20154.65 29169.47 35325.74 32880.63 30941.03 31669.56 19787.55 168
test-LLR69.65 17869.01 16471.60 24978.67 22548.17 25085.13 13079.72 23359.18 19963.13 18182.58 21936.91 23280.24 31560.56 18075.17 14286.39 193
test-mter68.36 20067.29 19471.60 24978.67 22548.17 25085.13 13079.72 23353.38 28663.13 18182.58 21927.23 31880.24 31560.56 18075.17 14286.39 193
sss70.49 15970.13 14871.58 25181.59 16239.02 35080.78 25784.71 13559.34 19266.61 13088.09 13737.17 22585.52 25761.82 16971.02 18290.20 99
tpmvs62.45 27759.42 28471.53 25283.93 9554.32 9270.03 34077.61 27851.91 29753.48 30468.29 35937.91 20486.66 22733.36 34858.27 28573.62 360
ACMM58.35 1264.35 25662.01 26171.38 25374.21 29548.51 23782.25 22079.66 23547.61 32754.54 29280.11 25025.26 33286.00 24951.26 25963.16 24979.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH53.70 1659.78 29055.94 30871.28 25476.59 25948.35 24380.15 26876.11 30249.74 31241.91 36273.45 32616.50 38090.31 10331.42 35657.63 29875.17 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ppachtmachnet_test58.56 30554.34 31571.24 25571.42 32754.74 8081.84 23072.27 33349.02 31645.86 35068.99 35726.27 32383.30 28930.12 36043.23 36975.69 341
thres100view90066.87 23765.42 23671.24 25583.29 11143.15 32381.67 23687.78 6059.04 20355.92 28082.18 23143.73 13587.80 19028.80 36566.36 21982.78 260
thres40067.40 22466.13 21671.19 25784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21980.71 291
our_test_359.11 29755.08 31371.18 25871.42 32753.29 12181.96 22574.52 31448.32 32142.08 36069.28 35628.14 30982.15 29434.35 34545.68 36478.11 321
CPTT-MVS67.15 22965.84 22471.07 25980.96 17850.32 18981.94 22674.10 31746.18 33957.91 25087.64 14929.57 30381.31 30064.10 15370.18 19181.56 272
NR-MVSNet67.25 22665.99 22071.04 26073.27 30543.91 31285.32 12384.75 13466.05 7553.65 30382.11 23245.05 11585.97 25247.55 28356.18 30883.24 249
tpm68.36 20067.48 19270.97 26179.93 20151.34 16776.58 29578.75 25767.73 4763.54 17974.86 30948.33 7672.36 36953.93 24063.71 23989.21 125
TranMVSNet+NR-MVSNet66.94 23665.61 23070.93 26273.45 30143.38 31983.02 20284.25 14665.31 8858.33 24781.90 23639.92 19085.52 25749.43 27054.89 32083.89 239
EG-PatchMatch MVS62.40 27859.59 28270.81 26373.29 30349.05 21885.81 10584.78 13251.85 29944.19 35173.48 32515.52 38389.85 11540.16 31867.24 21073.54 361
test_djsdf63.84 26061.56 26470.70 26468.78 34744.69 30381.63 23781.44 19950.28 30752.27 31176.26 29726.72 32186.11 24360.83 17655.84 31481.29 284
UA-Net67.32 22566.23 21470.59 26578.85 22141.23 34273.60 31475.45 30861.54 15266.61 13084.53 18638.73 19986.57 23242.48 31474.24 15383.98 235
thres600view766.46 24365.12 24070.47 26683.41 10543.80 31482.15 22187.78 6059.37 19156.02 27982.21 23043.73 13586.90 22126.51 37764.94 22880.71 291
UniMVSNet (Re)67.71 21366.80 20170.45 26774.44 29142.93 32582.42 21884.90 12863.69 11259.63 21780.99 24347.18 8785.23 26451.17 26156.75 30283.19 251
IterMVS-LS66.63 24065.36 23770.42 26875.10 28248.90 22581.45 24676.69 29761.05 16255.71 28177.10 28445.86 10483.65 28457.44 21657.88 29578.70 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet68.82 19168.29 17370.40 26975.71 27642.59 32984.23 16286.78 7866.31 6758.51 24082.45 22251.57 5184.64 27453.11 24455.96 31183.96 237
jajsoiax63.21 26760.84 27270.32 27068.33 35244.45 30581.23 24781.05 20553.37 28750.96 32077.81 27317.49 37485.49 25959.31 18958.05 29081.02 287
mvs_tets62.96 27060.55 27470.19 27168.22 35544.24 31080.90 25480.74 21352.99 29050.82 32277.56 27416.74 37885.44 26059.04 19257.94 29280.89 288
pmmvs463.34 26661.07 27170.16 27270.14 33850.53 17979.97 27071.41 34355.08 27054.12 29778.58 26532.79 27982.09 29650.33 26457.22 30077.86 322
DU-MVS66.84 23865.74 22770.16 27273.27 30542.59 32981.50 24382.92 17663.53 11658.51 24082.11 23240.75 17684.64 27453.11 24455.96 31183.24 249
Effi-MVS+-dtu66.24 24764.96 24370.08 27475.17 28049.64 20282.01 22474.48 31562.15 14057.83 25176.08 30230.59 29883.79 28165.40 14660.93 26576.81 331
IterMVS63.77 26261.67 26270.08 27472.68 31351.24 17080.44 26175.51 30660.51 17451.41 31573.70 32232.08 28678.91 32654.30 23754.35 32580.08 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS67.58 21666.76 20270.04 27675.92 27445.06 30286.23 9885.28 11564.31 9858.50 24281.00 24244.80 12582.00 29749.21 27355.57 31683.06 254
Test_1112_low_res67.18 22866.23 21470.02 27778.75 22341.02 34383.43 18773.69 32357.29 23858.45 24582.39 22445.30 11280.88 30450.50 26366.26 22388.16 152
D2MVS63.49 26461.39 26669.77 27869.29 34448.93 22478.89 28177.71 27760.64 17349.70 32572.10 34127.08 31983.48 28654.48 23662.65 25576.90 330
tt080563.39 26561.31 26869.64 27969.36 34338.87 35178.00 28685.48 10348.82 31855.66 28481.66 23824.38 33986.37 23749.04 27459.36 27583.68 242
XVG-OURS61.88 28059.34 28569.49 28065.37 36446.27 28664.80 35973.49 32647.04 33157.41 26582.85 21025.15 33378.18 33053.00 24764.98 22784.01 232
XVG-OURS-SEG-HR62.02 27959.54 28369.46 28165.30 36545.88 29065.06 35873.57 32546.45 33557.42 26483.35 20526.95 32078.09 33253.77 24164.03 23684.42 225
test_vis1_n_192068.59 19868.31 17269.44 28269.16 34541.51 33884.63 15368.58 36058.80 20873.26 6388.37 12925.30 33180.60 31079.10 4267.55 20886.23 195
FIs70.00 16870.24 14769.30 28377.93 24038.55 35383.99 17087.72 6466.86 5957.66 25684.17 19052.28 4785.31 26152.72 25368.80 19984.02 231
Baseline_NR-MVSNet65.49 25364.27 24969.13 28474.37 29441.65 33683.39 19178.85 25259.56 18659.62 21876.88 28940.75 17687.44 20549.99 26555.05 31878.28 318
TransMVSNet (Re)62.82 27160.76 27369.02 28573.98 29841.61 33786.36 9579.30 24856.90 24452.53 30876.44 29441.85 16587.60 20238.83 32140.61 37477.86 322
anonymousdsp60.46 28857.65 29468.88 28663.63 37645.09 29872.93 32078.63 26046.52 33451.12 31772.80 33121.46 35883.07 29157.79 21253.97 32678.47 313
ADS-MVSNet56.17 32051.95 33068.84 28780.60 19053.07 12755.03 38870.02 35244.72 34751.00 31861.19 38022.83 34778.88 32728.54 36853.63 32974.57 354
OpenMVS_ROBcopyleft53.19 1759.20 29556.00 30768.83 28871.13 33144.30 30783.64 17975.02 31146.42 33646.48 34773.03 32818.69 36888.14 17827.74 37361.80 26074.05 357
Patchmatch-test53.33 33548.17 34568.81 28973.31 30242.38 33342.98 40058.23 38032.53 38438.79 37770.77 34739.66 19173.51 36325.18 38052.06 33990.55 87
pm-mvs164.12 25862.56 25668.78 29071.68 32338.87 35182.89 20481.57 19655.54 26653.89 30077.82 27237.73 20986.74 22448.46 27953.49 33280.72 290
miper_lstm_enhance63.91 25962.30 25868.75 29175.06 28346.78 27669.02 34481.14 20459.68 18552.76 30772.39 33640.71 17877.99 33656.81 22153.09 33581.48 275
OMC-MVS65.97 25065.06 24168.71 29272.97 30942.58 33178.61 28275.35 30954.72 27559.31 22586.25 16933.30 27477.88 33857.99 20567.05 21185.66 207
DP-MVS59.24 29456.12 30668.63 29388.24 3450.35 18882.51 21564.43 37141.10 36346.70 34578.77 26424.75 33788.57 16322.26 38956.29 30766.96 381
tfpnnormal61.47 28359.09 28768.62 29476.29 26541.69 33581.14 24985.16 12154.48 27851.32 31673.63 32332.32 28386.89 22221.78 39155.71 31577.29 328
test_cas_vis1_n_192067.10 23066.60 20768.59 29565.17 36743.23 32283.23 19569.84 35355.34 26870.67 9987.71 14724.70 33876.66 34978.57 4964.20 23485.89 203
UniMVSNet_ETH3D62.51 27460.49 27568.57 29668.30 35340.88 34573.89 31279.93 22951.81 30054.77 28979.61 25524.80 33681.10 30149.93 26661.35 26283.73 241
CL-MVSNet_self_test62.98 26961.14 27068.50 29765.86 36242.96 32484.37 15782.98 17460.98 16453.95 29972.70 33240.43 18183.71 28341.10 31547.93 35078.83 308
ACMH+54.58 1558.55 30655.24 31068.50 29774.68 28845.80 29380.27 26470.21 35047.15 33042.77 35975.48 30616.73 37985.98 25035.10 34354.78 32173.72 359
lessismore_v067.98 29964.76 37141.25 34145.75 39436.03 38465.63 36819.29 36684.11 27835.67 33521.24 40778.59 312
K. test v354.04 33049.42 34267.92 30068.55 34942.57 33275.51 30163.07 37552.07 29539.21 37464.59 37119.34 36582.21 29337.11 32725.31 40178.97 306
pmmvs562.80 27261.18 26967.66 30169.53 34242.37 33482.65 20875.19 31054.30 28152.03 31378.51 26631.64 29280.67 30848.60 27758.15 28779.95 300
PatchT56.60 31652.97 32367.48 30272.94 31046.16 28957.30 38473.78 32238.77 36854.37 29457.26 39137.52 21578.06 33332.02 35352.79 33678.23 320
Patchmtry56.56 31752.95 32467.42 30372.53 31550.59 17859.05 38071.72 33837.86 37246.92 34365.86 36538.94 19680.06 31836.94 33046.72 36071.60 371
mmtdpeth57.93 31054.78 31467.39 30472.32 31843.38 31972.72 32168.93 35854.45 27956.85 26962.43 37617.02 37683.46 28757.95 20830.31 39575.31 345
SixPastTwentyTwo54.37 32750.10 33667.21 30570.70 33541.46 34074.73 30664.69 36947.56 32839.12 37569.49 35218.49 37184.69 27331.87 35434.20 38975.48 343
pmmvs659.64 29157.15 29867.09 30666.01 36036.86 36180.50 25978.64 25945.05 34549.05 32973.94 31727.28 31786.10 24543.96 30649.94 34478.31 317
testdata67.08 30777.59 24445.46 29669.20 35744.47 34971.50 8788.34 13231.21 29470.76 37452.20 25575.88 13285.03 215
CNLPA60.59 28758.44 29167.05 30879.21 21247.26 27279.75 27264.34 37242.46 36151.90 31483.94 19227.79 31575.41 35437.12 32659.49 27378.47 313
KD-MVS_2432*160059.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
miper_refine_blended59.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
TAPA-MVS56.12 1461.82 28160.18 28066.71 31178.48 23237.97 35775.19 30476.41 30146.82 33257.04 26786.52 16727.67 31677.03 34426.50 37867.02 21285.14 214
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_040256.45 31853.03 32266.69 31276.78 25850.31 19081.76 23269.61 35542.79 35943.88 35272.13 33922.82 34986.46 23416.57 40350.94 34163.31 390
PLCcopyleft52.38 1860.89 28558.97 28966.68 31381.77 15245.70 29478.96 28074.04 32043.66 35547.63 33883.19 20823.52 34577.78 34137.47 32360.46 26676.55 337
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet255.21 32651.44 33166.51 31480.60 19049.56 20555.03 38865.44 36744.72 34751.00 31861.19 38022.83 34775.41 35428.54 36853.63 32974.57 354
FC-MVSNet-test67.49 21967.91 17866.21 31576.06 26933.06 37480.82 25687.18 7164.44 9554.81 28882.87 20950.40 6482.60 29248.05 28166.55 21782.98 256
JIA-IIPM52.33 34047.77 34866.03 31671.20 33046.92 27540.00 40576.48 30037.10 37346.73 34437.02 40532.96 27677.88 33835.97 33452.45 33873.29 363
LCM-MVSNet-Re58.82 30256.54 30165.68 31779.31 21029.09 39361.39 37545.79 39360.73 17137.65 38072.47 33431.42 29381.08 30249.66 26870.41 18886.87 180
XVG-ACMP-BASELINE56.03 32152.85 32565.58 31861.91 38140.95 34463.36 36472.43 33245.20 34446.02 34874.09 3149.20 39678.12 33145.13 29858.27 28577.66 325
pmmvs-eth3d55.97 32252.78 32665.54 31961.02 38346.44 28175.36 30367.72 36349.61 31343.65 35467.58 36121.63 35777.04 34344.11 30544.33 36673.15 365
MDA-MVSNet_test_wron53.82 33249.95 33965.43 32070.13 33949.05 21872.30 32671.65 34144.23 35331.85 39663.13 37423.68 34474.01 35833.25 35039.35 37773.23 364
YYNet153.82 33249.96 33865.41 32170.09 34048.95 22272.30 32671.66 34044.25 35231.89 39563.07 37523.73 34373.95 35933.26 34939.40 37673.34 362
PatchMatch-RL56.66 31553.75 32065.37 32277.91 24145.28 29769.78 34260.38 37841.35 36247.57 33973.73 31916.83 37776.91 34536.99 32959.21 27673.92 358
Vis-MVSNet (Re-imp)65.52 25265.63 22965.17 32377.49 24630.54 38175.49 30277.73 27659.34 19252.26 31286.69 16349.38 7380.53 31237.07 32875.28 14084.42 225
FMVSNet558.61 30456.45 30265.10 32477.20 25339.74 34774.77 30577.12 28750.27 30943.28 35767.71 36026.15 32676.90 34736.78 33154.78 32178.65 311
EPNet_dtu66.25 24666.71 20364.87 32578.66 22734.12 36982.80 20575.51 30661.75 14764.47 16486.90 15937.06 22872.46 36843.65 30769.63 19688.02 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth57.56 31255.15 31164.79 32664.57 37233.12 37373.17 31983.87 15658.98 20541.75 36370.03 35122.54 35079.92 31946.12 29635.31 38381.32 283
LS3D56.40 31953.82 31964.12 32781.12 17445.69 29573.42 31766.14 36635.30 38243.24 35879.88 25222.18 35479.62 32419.10 39864.00 23767.05 380
UnsupCasMVSNet_bld53.86 33150.53 33563.84 32863.52 37734.75 36471.38 33481.92 19046.53 33338.95 37657.93 38920.55 36180.20 31739.91 31934.09 39076.57 336
USDC54.36 32851.23 33263.76 32964.29 37337.71 35862.84 36973.48 32856.85 24535.47 38571.94 3429.23 39578.43 32838.43 32248.57 34675.13 348
Anonymous2023120659.08 29857.59 29563.55 33068.77 34832.14 37980.26 26579.78 23250.00 31149.39 32772.39 33626.64 32278.36 32933.12 35157.94 29280.14 298
CMPMVSbinary40.41 2155.34 32452.64 32763.46 33160.88 38443.84 31361.58 37471.06 34530.43 39036.33 38274.63 31124.14 34175.44 35348.05 28166.62 21571.12 374
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
myMVS_eth3d63.52 26363.56 25463.40 33281.73 15334.28 36680.97 25281.02 20660.93 16655.06 28582.64 21748.00 8280.81 30623.42 38758.32 28375.10 349
OurMVSNet-221017-052.39 33948.73 34363.35 33365.21 36638.42 35468.54 34864.95 36838.19 36939.57 37371.43 34313.23 38679.92 31937.16 32540.32 37571.72 370
MDA-MVSNet-bldmvs51.56 34247.75 34963.00 33471.60 32547.32 27169.70 34372.12 33443.81 35427.65 40363.38 37321.97 35675.96 35127.30 37532.19 39165.70 386
mvs5depth50.97 34446.98 35062.95 33556.63 39134.23 36862.73 37067.35 36545.03 34648.00 33565.41 36910.40 39279.88 32336.00 33331.27 39474.73 352
F-COLMAP55.96 32353.65 32162.87 33672.76 31242.77 32874.70 30870.37 34940.03 36441.11 36879.36 25717.77 37373.70 36232.80 35253.96 32772.15 367
test0.0.03 162.54 27362.44 25762.86 33772.28 32029.51 39082.93 20378.78 25559.18 19953.07 30682.41 22336.91 23277.39 34237.45 32458.96 27781.66 271
CVMVSNet60.85 28660.44 27662.07 33875.00 28432.73 37679.54 27373.49 32636.98 37456.28 27883.74 19629.28 30669.53 37746.48 29263.23 24783.94 238
ambc62.06 33953.98 39529.38 39135.08 40879.65 23641.37 36459.96 3846.27 40782.15 29435.34 33838.22 37874.65 353
Syy-MVS61.51 28261.35 26762.00 34081.73 15330.09 38580.97 25281.02 20660.93 16655.06 28582.64 21735.09 25680.81 30616.40 40458.32 28375.10 349
PEN-MVS58.35 30857.15 29861.94 34167.55 35734.39 36577.01 29178.35 26751.87 29847.72 33776.73 29133.91 26873.75 36134.03 34647.17 35677.68 324
MVS-HIRNet49.01 34944.71 35361.92 34276.06 26946.61 27963.23 36654.90 38524.77 39833.56 39036.60 40721.28 35975.88 35229.49 36262.54 25663.26 391
LTVRE_ROB45.45 1952.73 33649.74 34061.69 34369.78 34134.99 36344.52 39767.60 36443.11 35843.79 35374.03 31518.54 37081.45 29928.39 37057.94 29268.62 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H58.91 30158.04 29361.54 34469.07 34633.83 37176.91 29281.99 18751.40 30248.17 33274.67 31040.23 18374.15 35731.78 35548.10 34876.64 335
CP-MVSNet58.54 30757.57 29661.46 34568.50 35033.96 37076.90 29378.60 26251.67 30147.83 33676.60 29334.99 25972.79 36635.45 33647.58 35277.64 326
PS-CasMVS58.12 30957.03 30061.37 34668.24 35433.80 37276.73 29478.01 27151.20 30347.54 34076.20 30132.85 27772.76 36735.17 34147.37 35477.55 327
Anonymous2024052151.65 34148.42 34461.34 34756.43 39239.65 34973.57 31573.47 32936.64 37636.59 38163.98 37210.75 39172.25 37035.35 33749.01 34572.11 368
CHOSEN 280x42057.53 31356.38 30560.97 34874.01 29748.10 25446.30 39654.31 38648.18 32450.88 32177.43 27938.37 20259.16 39254.83 23363.14 25075.66 342
DTE-MVSNet57.03 31455.73 30960.95 34965.94 36132.57 37775.71 29777.09 28851.16 30446.65 34676.34 29632.84 27873.22 36530.94 35944.87 36577.06 329
IterMVS-SCA-FT59.12 29658.81 29060.08 35070.68 33745.07 29980.42 26274.25 31643.54 35650.02 32473.73 31931.97 28756.74 39651.06 26253.60 33178.42 315
COLMAP_ROBcopyleft43.60 2050.90 34548.05 34659.47 35167.81 35640.57 34671.25 33562.72 37736.49 37736.19 38373.51 32413.48 38573.92 36020.71 39350.26 34363.92 389
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing359.97 28960.19 27959.32 35277.60 24330.01 38781.75 23381.79 19353.54 28450.34 32379.94 25148.99 7576.91 34517.19 40250.59 34271.03 375
testgi54.25 32952.57 32859.29 35362.76 37921.65 40872.21 32870.47 34853.25 28841.94 36177.33 28014.28 38477.95 33729.18 36451.72 34078.28 318
TinyColmap48.15 35144.49 35559.13 35465.73 36338.04 35563.34 36562.86 37638.78 36729.48 39867.23 3636.46 40673.30 36424.59 38241.90 37266.04 384
test20.0355.22 32554.07 31858.68 35563.14 37825.00 39977.69 28974.78 31352.64 29143.43 35572.39 33626.21 32474.76 35629.31 36347.05 35876.28 339
EU-MVSNet52.63 33750.72 33458.37 35662.69 38028.13 39672.60 32275.97 30330.94 38940.76 37072.11 34020.16 36270.80 37335.11 34246.11 36276.19 340
MIMVSNet150.35 34647.81 34757.96 35761.53 38227.80 39767.40 35174.06 31943.25 35733.31 39465.38 37016.03 38171.34 37121.80 39047.55 35374.75 351
pmmvs345.53 35641.55 36257.44 35848.97 40539.68 34870.06 33957.66 38128.32 39334.06 38857.29 3908.50 39966.85 38034.86 34434.26 38865.80 385
test_fmvs153.60 33452.54 32956.78 35958.07 38730.26 38368.95 34642.19 39932.46 38563.59 17782.56 22111.55 38860.81 38658.25 20255.27 31779.28 303
test_fmvs1_n52.55 33851.19 33356.65 36051.90 39830.14 38467.66 35042.84 39832.27 38662.30 19182.02 2359.12 39760.84 38557.82 21154.75 32378.99 305
KD-MVS_self_test49.24 34846.85 35156.44 36154.32 39322.87 40257.39 38373.36 33044.36 35137.98 37959.30 38718.97 36771.17 37233.48 34742.44 37075.26 346
PM-MVS46.92 35343.76 36056.41 36252.18 39732.26 37863.21 36738.18 40537.99 37140.78 36966.20 3645.09 41065.42 38148.19 28041.99 37171.54 372
dmvs_testset57.65 31158.21 29255.97 36374.62 2899.82 42463.75 36363.34 37467.23 5448.89 33083.68 20039.12 19576.14 35023.43 38659.80 27081.96 266
test_vis1_n51.19 34349.66 34155.76 36451.26 40029.85 38867.20 35338.86 40432.12 38759.50 22179.86 2538.78 39858.23 39356.95 22052.46 33779.19 304
AllTest47.32 35244.66 35455.32 36565.08 36837.50 35962.96 36854.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
TestCases55.32 36565.08 36837.50 35954.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
new-patchmatchnet48.21 35046.55 35253.18 36757.73 38918.19 41670.24 33871.02 34645.70 34033.70 38960.23 38318.00 37269.86 37627.97 37234.35 38771.49 373
ITE_SJBPF51.84 36858.03 38831.94 38053.57 38936.67 37541.32 36675.23 30811.17 39051.57 40125.81 37948.04 34972.02 369
RPSCF45.77 35544.13 35750.68 36957.67 39029.66 38954.92 39045.25 39526.69 39545.92 34975.92 30417.43 37545.70 40727.44 37445.95 36376.67 332
test_fmvs245.89 35444.32 35650.62 37045.85 40924.70 40058.87 38237.84 40725.22 39652.46 30974.56 3127.07 40154.69 39749.28 27247.70 35172.48 366
kuosan50.20 34750.09 33750.52 37173.09 30729.09 39365.25 35674.89 31248.27 32241.34 36560.85 38243.45 14367.48 37918.59 40025.07 40255.01 396
ttmdpeth40.58 36237.50 36649.85 37249.40 40322.71 40356.65 38546.78 39128.35 39240.29 37269.42 3545.35 40961.86 38420.16 39521.06 40864.96 387
MVStest138.35 36434.53 37049.82 37351.43 39930.41 38250.39 39255.25 38317.56 40626.45 40465.85 36711.72 38757.00 39514.79 40517.31 41262.05 392
ANet_high34.39 37029.59 37648.78 37430.34 41922.28 40455.53 38763.79 37338.11 37015.47 41136.56 4086.94 40259.98 38813.93 4075.64 42264.08 388
TDRefinement40.91 36138.37 36548.55 37550.45 40233.03 37558.98 38150.97 39028.50 39129.89 39767.39 3626.21 40854.51 39817.67 40135.25 38458.11 393
DSMNet-mixed38.35 36435.36 36947.33 37648.11 40714.91 42037.87 40636.60 40819.18 40334.37 38759.56 38615.53 38253.01 40020.14 39646.89 35974.07 356
mvsany_test143.38 35842.57 36145.82 37750.96 40126.10 39855.80 38627.74 41727.15 39447.41 34274.39 31318.67 36944.95 40844.66 30136.31 38166.40 383
N_pmnet41.25 36039.77 36345.66 37868.50 3500.82 43072.51 3240.38 42935.61 37935.26 38661.51 37920.07 36367.74 37823.51 38540.63 37368.42 379
test_vis1_rt40.29 36338.64 36445.25 37948.91 40630.09 38559.44 37927.07 41824.52 39938.48 37851.67 3996.71 40449.44 40244.33 30346.59 36156.23 394
test_fmvs337.95 36635.75 36844.55 38035.50 41518.92 41248.32 39334.00 41218.36 40541.31 36761.58 3782.29 41748.06 40642.72 31237.71 37966.66 382
EGC-MVSNET33.75 37130.42 37543.75 38164.94 37036.21 36260.47 37840.70 4020.02 4230.10 42453.79 3957.39 40060.26 38711.09 41035.23 38534.79 409
dongtai43.51 35744.07 35841.82 38263.75 37521.90 40663.80 36272.05 33539.59 36533.35 39354.54 39341.04 17357.30 39410.75 41117.77 41146.26 405
LCM-MVSNet28.07 37423.85 38240.71 38327.46 42418.93 41130.82 41246.19 39212.76 41116.40 40934.70 4101.90 42048.69 40520.25 39424.22 40354.51 397
FPMVS35.40 36833.67 37240.57 38446.34 40828.74 39541.05 40257.05 38220.37 40222.27 40753.38 3966.87 40344.94 4098.62 41247.11 35748.01 403
WB-MVS37.41 36736.37 36740.54 38554.23 39410.43 42365.29 35543.75 39634.86 38327.81 40254.63 39224.94 33563.21 3826.81 41815.00 41347.98 404
new_pmnet33.56 37231.89 37438.59 38649.01 40420.42 40951.01 39137.92 40620.58 40023.45 40646.79 4016.66 40549.28 40420.00 39731.57 39346.09 406
mamv442.60 35944.05 35938.26 38759.21 38638.00 35644.14 39939.03 40325.03 39740.61 37168.39 35837.01 22924.28 42146.62 29136.43 38052.50 399
SSC-MVS35.20 36934.30 37137.90 38852.58 3968.65 42661.86 37141.64 40031.81 38825.54 40552.94 39823.39 34659.28 3916.10 41912.86 41445.78 407
PMMVS226.71 37822.98 38337.87 38936.89 4138.51 42742.51 40129.32 41619.09 40413.01 41337.54 4042.23 41853.11 39914.54 40611.71 41551.99 401
Gipumacopyleft27.47 37624.26 38137.12 39060.55 38529.17 39211.68 41760.00 37914.18 40910.52 41815.12 4192.20 41963.01 3838.39 41335.65 38219.18 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS33.04 37332.55 37334.52 39140.96 41022.03 40544.45 39835.62 40920.42 40128.12 40162.35 3775.03 41131.88 42021.61 39234.42 38649.63 402
mvsany_test328.00 37525.98 37734.05 39228.97 42015.31 41834.54 40918.17 42316.24 40729.30 39953.37 3972.79 41533.38 41930.01 36120.41 40953.45 398
test_f27.12 37724.85 37833.93 39326.17 42515.25 41930.24 41322.38 42212.53 41228.23 40049.43 4002.59 41634.34 41825.12 38126.99 39952.20 400
test_method24.09 38221.07 38633.16 39427.67 4238.35 42826.63 41435.11 4113.40 42014.35 41236.98 4063.46 41435.31 41519.08 39922.95 40455.81 395
PMVScopyleft19.57 2225.07 38022.43 38532.99 39523.12 42622.98 40140.98 40335.19 41015.99 40811.95 41735.87 4091.47 42349.29 4035.41 42131.90 39226.70 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test126.46 37924.41 38032.62 39637.58 41221.74 40740.50 40430.39 41411.45 41316.33 41043.76 4021.63 42241.62 41011.24 40926.82 40034.51 410
test_vis3_rt24.79 38122.95 38430.31 39728.59 42118.92 41237.43 40717.27 42512.90 41021.28 40829.92 4141.02 42436.35 41328.28 37129.82 39835.65 408
MVEpermissive16.60 2317.34 38813.39 39129.16 39828.43 42219.72 41013.73 41623.63 4217.23 4197.96 41921.41 4150.80 42536.08 4146.97 41610.39 41631.69 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf121.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
APD_test221.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
E-PMN19.16 38518.40 38921.44 40136.19 41413.63 42147.59 39430.89 41310.73 4145.91 42116.59 4173.66 41339.77 4115.95 4208.14 41710.92 417
EMVS18.42 38617.66 39020.71 40234.13 41612.64 42246.94 39529.94 41510.46 4165.58 42214.93 4204.23 41238.83 4125.24 4227.51 41910.67 418
DeepMVS_CXcopyleft13.10 40321.34 4278.99 42510.02 42710.59 4157.53 42030.55 4131.82 42114.55 4226.83 4177.52 41815.75 416
wuyk23d9.11 3908.77 39410.15 40440.18 41116.76 41720.28 4151.01 4282.58 4212.66 4230.98 4230.23 42812.49 4234.08 4236.90 4201.19 420
tmp_tt9.44 38910.68 3925.73 4052.49 4284.21 42910.48 41818.04 4240.34 42212.59 41420.49 41611.39 3897.03 42413.84 4086.46 4215.95 419
testmvs6.14 3928.18 3950.01 4060.01 4290.00 43273.40 3180.00 4300.00 4240.02 4250.15 4240.00 4290.00 4250.02 4240.00 4230.02 421
test1236.01 3938.01 3960.01 4060.00 4300.01 43171.93 3320.00 4300.00 4240.02 4250.11 4250.00 4290.00 4250.02 4240.00 4230.02 421
mmdepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k18.33 38724.44 3790.00 4080.00 4300.00 4320.00 41989.40 250.00 4240.00 42792.02 4638.55 2000.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.15 3944.20 3970.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 42637.77 2060.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
ab-mvs-re7.68 39110.24 3930.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 42792.12 420.00 4290.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
WAC-MVS34.28 36622.56 388
FOURS183.24 11249.90 19884.98 13878.76 25647.71 32673.42 60
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
test_one_060189.39 2257.29 2288.09 5557.21 24182.06 1393.39 1854.94 34
eth-test20.00 430
eth-test0.00 430
ZD-MVS89.55 1453.46 11084.38 14257.02 24373.97 5591.03 6544.57 12791.17 7975.41 7381.78 71
RE-MVS-def66.66 20580.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10829.28 30660.52 18272.06 17383.19 251
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
test_241102_TWO88.76 4157.50 23583.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
test_241102_ONE89.48 1756.89 2988.94 3257.53 23384.61 493.29 2258.81 1296.45 1
9.1478.19 2885.67 6188.32 5188.84 3859.89 18074.58 5092.62 3546.80 9292.66 4181.40 3585.62 41
save fliter85.35 6856.34 4189.31 4081.46 19861.55 151
test_0728_THIRD58.00 22181.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
test072689.40 2057.45 1992.32 788.63 4557.71 22983.14 993.96 655.17 29
GSMVS88.13 155
test_part289.33 2355.48 5482.27 12
sam_mvs138.86 19888.13 155
sam_mvs35.99 249
MTGPAbinary81.31 201
test_post170.84 33714.72 42134.33 26583.86 27948.80 275
test_post16.22 41837.52 21584.72 272
patchmatchnet-post59.74 38538.41 20179.91 321
MTMP87.27 7715.34 426
gm-plane-assit83.24 11254.21 9670.91 2188.23 13595.25 1466.37 131
test9_res78.72 4885.44 4391.39 66
TEST985.68 5955.42 5687.59 6784.00 15257.72 22872.99 6590.98 6744.87 12188.58 160
test_885.72 5855.31 6187.60 6683.88 15557.84 22672.84 6990.99 6644.99 11788.34 171
agg_prior275.65 6885.11 4791.01 78
agg_prior85.64 6254.92 7683.61 16272.53 7488.10 181
test_prior456.39 4087.15 81
test_prior289.04 4361.88 14673.55 5891.46 6348.01 8074.73 7785.46 42
旧先验281.73 23445.53 34274.66 4770.48 37558.31 201
新几何281.61 239
旧先验181.57 16447.48 26771.83 33688.66 12336.94 23178.34 10588.67 139
无先验85.19 12878.00 27249.08 31585.13 26752.78 25087.45 171
原ACMM283.77 177
test22279.36 20750.97 17277.99 28767.84 36242.54 36062.84 18586.53 16630.26 30076.91 11785.23 213
testdata277.81 34045.64 297
segment_acmp44.97 119
testdata177.55 29064.14 102
plane_prior777.95 23848.46 240
plane_prior678.42 23349.39 21336.04 247
plane_prior582.59 17988.30 17465.46 14272.34 17084.49 223
plane_prior483.28 206
plane_prior348.95 22264.01 10562.15 193
plane_prior285.76 10763.60 114
plane_prior178.31 235
plane_prior49.57 20387.43 7064.57 9472.84 165
n20.00 430
nn0.00 430
door-mid41.31 401
test1184.25 146
door43.27 397
HQP5-MVS51.56 161
HQP-NCC79.02 21788.00 5565.45 8164.48 161
ACMP_Plane79.02 21788.00 5565.45 8164.48 161
BP-MVS66.70 128
HQP4-MVS64.47 16488.61 15884.91 219
HQP3-MVS83.68 15873.12 161
HQP2-MVS37.35 218
NP-MVS78.76 22250.43 18285.12 180
MDTV_nov1_ep13_2view43.62 31571.13 33654.95 27359.29 22736.76 23446.33 29487.32 174
MDTV_nov1_ep1361.56 26481.68 15755.12 6972.41 32578.18 26959.19 19758.85 23669.29 35534.69 26186.16 24236.76 33262.96 252
ACMMP++_ref63.20 248
ACMMP++59.38 274
Test By Simon39.38 192