This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21699.94 5499.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS96.60 13395.56 15699.72 1396.85 25699.22 2098.31 32098.94 4191.57 23290.90 25499.61 10586.66 21699.96 6197.36 14399.88 6999.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34199.52 1595.69 8498.32 12597.41 24493.32 10599.77 12898.08 11795.75 20799.81 94
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17299.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12793.33 10499.74 13497.98 12395.58 21099.78 100
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11499.83 7399.99 23
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12392.06 21998.40 12299.84 4195.68 40100.00 198.19 10999.71 8499.97 58
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
3Dnovator+91.53 1196.31 14695.24 16599.52 2896.88 25598.64 5499.72 16798.24 18395.27 9688.42 30498.98 16182.76 25099.94 7797.10 15199.83 7399.96 64
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9198.21 18693.53 16199.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13199.24 14192.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10698.33 17093.97 14699.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
131496.84 12095.96 14099.48 3496.74 26398.52 5898.31 32098.86 5395.82 8089.91 26598.98 16187.49 20499.96 6197.80 13099.73 8399.96 64
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
test1299.43 3599.74 6998.56 5798.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
新几何199.42 3799.75 6898.27 6398.63 8092.69 19199.55 5599.82 4694.40 71100.00 191.21 25299.94 5499.99 23
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10698.36 16394.08 13999.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6299.74 15998.18 19093.35 16696.45 17899.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MGCFI-Net97.00 11396.22 12899.34 4398.86 13498.80 3999.67 17997.30 27794.31 12897.77 14599.41 12486.36 22099.50 15598.38 10193.90 23699.72 107
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7599.39 22498.28 17995.76 8297.18 15999.88 2192.74 124100.00 198.67 8899.88 6999.99 23
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7699.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 7999.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
alignmvs97.81 7397.33 8699.25 4698.77 14098.66 5199.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16498.57 9494.26 23099.67 117
thres20096.96 11596.21 12999.22 4898.97 11998.84 3699.85 12199.71 793.17 17396.26 18498.88 17689.87 17899.51 15394.26 20694.91 22199.31 178
test_yl97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
tfpn200view996.79 12295.99 13499.19 5198.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.27 184
thres100view90096.74 12795.92 14599.18 5298.90 13198.77 4299.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.84 21394.57 22499.27 184
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8199.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
sss97.57 8597.03 9999.18 5298.37 16498.04 6999.73 16499.38 2393.46 16398.76 10499.06 15291.21 15399.89 9696.33 16597.01 18099.62 128
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8699.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10799.99 2199.93 76
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8799.93 7698.39 15594.04 14498.80 10099.74 7892.98 116100.00 198.16 11199.76 8199.93 76
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20398.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 220
thres40096.78 12495.99 13499.16 5798.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.16 191
XVS98.70 2698.55 2599.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21392.06 24699.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6941.37 40994.34 7699.96 6198.92 7099.95 4999.99 23
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9699.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
thres600view796.69 13095.87 14899.14 6198.90 13198.78 4199.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.44 22594.50 22799.16 191
114514_t97.41 9496.83 10699.14 6199.51 9097.83 7799.89 9998.27 18188.48 30199.06 8899.66 9890.30 17399.64 14896.32 16699.97 4299.96 64
PAPM98.60 3098.42 3199.14 6196.05 27698.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 21099.45 4599.89 6799.96 64
VNet97.21 10296.57 11899.13 6598.97 11997.82 7899.03 26799.21 2994.31 12899.18 8598.88 17686.26 22299.89 9698.93 6994.32 22899.69 112
QAPM95.40 17394.17 19299.10 6696.92 25097.71 8199.40 22098.68 7089.31 28088.94 29298.89 17582.48 25199.96 6193.12 23299.83 7399.62 128
3Dnovator91.47 1296.28 14995.34 16299.08 6796.82 25897.47 9599.45 21798.81 6095.52 9089.39 27999.00 15881.97 25499.95 6997.27 14599.83 7399.84 90
region2R98.54 3398.37 3699.05 6899.96 897.18 10399.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10399.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10699.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10899.98 1598.80 6290.78 26099.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20598.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 220
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10399.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11099.75 15699.50 1893.90 15199.37 7499.76 6593.24 110100.00 197.75 13799.96 4699.98 48
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10099.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11499.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
原ACMM198.96 7799.73 7296.99 11198.51 10794.06 14299.62 4799.85 3094.97 5999.96 6195.11 18299.95 4999.92 81
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31299.42 2297.03 4299.02 9099.09 14999.35 198.21 24399.73 3299.78 8099.77 101
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 10999.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
CNLPA97.76 7897.38 8398.92 8099.53 8796.84 11699.87 10698.14 19993.78 15496.55 17699.69 8992.28 13899.98 4397.13 14999.44 10999.93 76
CP-MVS98.45 4098.32 4098.87 8199.96 896.62 12399.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
TSAR-MVS + GP.98.60 3098.51 2898.86 8299.73 7296.63 12299.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
PVSNet_Blended97.94 6497.64 7498.83 8399.59 8196.99 111100.00 199.10 3195.38 9298.27 12799.08 15089.00 19299.95 6999.12 5899.25 11999.57 141
test_fmvsmconf_n98.43 4398.32 4098.78 8498.12 18596.41 12999.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
APD-MVS_3200maxsize98.25 5598.08 5598.78 8499.81 6096.60 12499.82 13698.30 17793.95 14899.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
EPNet98.49 3798.40 3298.77 8699.62 8096.80 11999.90 9199.51 1797.60 2299.20 8299.36 13093.71 9799.91 8997.99 12198.71 13899.61 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8799.83 5796.59 12599.40 22098.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
SR-MVS-dyc-post98.31 4998.17 4898.71 8899.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
PAPM_NR98.12 6097.93 6498.70 8999.94 1396.13 14599.82 13698.43 13194.56 11597.52 14999.70 8794.40 7199.98 4397.00 15399.98 3299.99 23
HPM-MVS_fast97.80 7497.50 7998.68 9099.79 6296.42 12899.88 10398.16 19591.75 22998.94 9399.54 11291.82 14999.65 14797.62 14099.99 2199.99 23
HPM-MVScopyleft97.96 6397.72 7198.68 9099.84 5696.39 13299.90 9198.17 19192.61 19698.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9298.81 13796.67 12199.92 7998.64 7694.51 11696.38 18298.49 21089.05 19199.88 10297.10 15198.34 14499.43 164
ACMMPcopyleft97.74 7997.44 8198.66 9299.92 3196.13 14599.18 24899.45 1994.84 10696.41 18199.71 8591.40 15199.99 3697.99 12198.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9495.76 28796.20 14199.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
lupinMVS97.85 6997.60 7698.62 9597.28 23897.70 8399.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19998.40 10099.62 9099.45 161
MVS_Test96.46 13895.74 15098.61 9698.18 18097.23 10199.31 23497.15 29391.07 25198.84 9797.05 25788.17 19998.97 18294.39 20297.50 16699.61 131
CANet_DTU96.76 12596.15 13098.60 9798.78 13997.53 8899.84 12697.63 23897.25 3799.20 8299.64 10181.36 26199.98 4392.77 23698.89 13198.28 229
EI-MVSNet-UG-set98.14 5997.99 5898.60 9799.80 6196.27 13599.36 22998.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10399.30 11799.81 94
thisisatest051597.41 9497.02 10098.59 9997.71 21297.52 8999.97 2898.54 10191.83 22597.45 15299.04 15397.50 899.10 17894.75 19596.37 19299.16 191
test250697.53 8697.19 9298.58 10098.66 14696.90 11598.81 29099.77 594.93 10197.95 13798.96 16592.51 13199.20 17194.93 18798.15 15199.64 123
CPTT-MVS97.64 8497.32 8798.58 10099.97 395.77 15599.96 3598.35 16589.90 27498.36 12399.79 5791.18 15799.99 3698.37 10399.99 2199.99 23
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
GG-mvs-BLEND98.54 10598.21 17798.01 7093.87 38198.52 10497.92 13897.92 23399.02 297.94 26098.17 11099.58 9799.67 117
baseline195.78 16194.86 17798.54 10598.47 16198.07 6799.06 26097.99 20992.68 19294.13 21798.62 20093.28 10898.69 20193.79 21885.76 29598.84 211
MVS_111021_LR98.42 4498.38 3498.53 10799.39 9595.79 15499.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
ab-mvs94.69 18993.42 21398.51 10898.07 18696.26 13696.49 36098.68 7090.31 26894.54 20897.00 25976.30 31099.71 13895.98 17193.38 24199.56 142
AdaColmapbinary97.23 10196.80 10898.51 10899.99 195.60 16699.09 25398.84 5893.32 16896.74 17199.72 8386.04 223100.00 198.01 11999.43 11199.94 74
gg-mvs-nofinetune93.51 22591.86 25198.47 11097.72 21097.96 7492.62 38598.51 10774.70 38797.33 15569.59 40098.91 397.79 26497.77 13599.56 9899.67 117
API-MVS97.86 6897.66 7398.47 11099.52 8895.41 17499.47 21498.87 5291.68 23098.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
PVSNet91.05 1397.13 10596.69 11398.45 11299.52 8895.81 15399.95 5399.65 1294.73 10999.04 8999.21 14384.48 23899.95 6994.92 18898.74 13799.58 140
DeepC-MVS94.51 496.92 11896.40 12398.45 11299.16 10795.90 15199.66 18198.06 20496.37 7094.37 21299.49 11583.29 24899.90 9197.63 13999.61 9499.55 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 17694.10 19398.43 11498.55 15495.99 14997.91 33697.31 27690.35 26789.48 27899.22 14285.19 23199.89 9690.40 27398.47 14299.41 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testdata98.42 11599.47 9295.33 17798.56 9293.78 15499.79 2699.85 3093.64 9999.94 7794.97 18699.94 54100.00 1
Test_1112_low_res95.72 16294.83 17898.42 11597.79 20296.41 12999.65 18396.65 33892.70 19092.86 23296.13 28792.15 14199.30 16591.88 24693.64 23899.55 143
1112_ss96.01 15695.20 16798.42 11597.80 20196.41 12999.65 18396.66 33792.71 18992.88 23199.40 12592.16 14099.30 16591.92 24593.66 23799.55 143
jason97.24 10096.86 10598.38 11895.73 29097.32 9999.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20797.94 12499.47 10599.25 186
jason: jason.
OpenMVScopyleft90.15 1594.77 18793.59 20798.33 11996.07 27597.48 9499.56 19998.57 8990.46 26486.51 32798.95 17078.57 29299.94 7793.86 21299.74 8297.57 245
test_fmvsmconf0.01_n96.39 14295.74 15098.32 12091.47 36695.56 16799.84 12697.30 27797.74 1897.89 14099.35 13179.62 28099.85 10899.25 5499.24 12099.55 143
LFMVS94.75 18893.56 20998.30 12199.03 11395.70 16098.74 29597.98 21187.81 31198.47 11899.39 12767.43 35899.53 15098.01 11995.20 21999.67 117
UA-Net96.54 13595.96 14098.27 12298.23 17595.71 15998.00 33498.45 11893.72 15798.41 12099.27 13688.71 19699.66 14691.19 25397.69 16299.44 163
ETV-MVS97.92 6697.80 7098.25 12398.14 18396.48 12699.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18999.02 6698.54 14099.46 159
thisisatest053097.10 10696.72 11198.22 12497.60 21896.70 12099.92 7998.54 10191.11 24997.07 16298.97 16397.47 1199.03 18093.73 22196.09 19598.92 206
ETVMVS97.03 11296.64 11498.20 12598.67 14597.12 10799.89 9998.57 8991.10 25098.17 13298.59 20193.86 9398.19 24495.64 17795.24 21899.28 183
Effi-MVS+96.30 14795.69 15298.16 12697.85 19896.26 13697.41 34397.21 28690.37 26698.65 11198.58 20486.61 21798.70 20097.11 15097.37 17199.52 151
TESTMET0.1,196.74 12796.26 12698.16 12697.36 23196.48 12699.96 3598.29 17891.93 22295.77 19598.07 22695.54 4298.29 23590.55 26898.89 13199.70 110
IB-MVS92.85 694.99 18193.94 19898.16 12697.72 21095.69 16299.99 598.81 6094.28 13192.70 23396.90 26195.08 5299.17 17596.07 16973.88 37199.60 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FA-MVS(test-final)95.86 15895.09 17198.15 12997.74 20595.62 16596.31 36498.17 19191.42 24196.26 18496.13 28790.56 16999.47 16292.18 24197.07 17699.35 173
MAR-MVS97.43 8997.19 9298.15 12999.47 9294.79 19699.05 26498.76 6392.65 19498.66 11099.82 4688.52 19799.98 4398.12 11399.63 8999.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1197.48 8897.27 8898.10 13198.36 16596.02 14899.92 7998.45 11893.45 16598.15 13398.70 19195.48 4599.22 16797.85 12995.05 22099.07 200
iter_conf05_1196.12 15195.46 15798.10 13198.62 14995.52 169100.00 196.30 35096.54 6099.81 1599.80 5169.19 34899.10 17898.92 7099.91 6699.68 113
diffmvspermissive97.00 11396.64 11498.09 13397.64 21696.17 14499.81 13897.19 28794.67 11398.95 9299.28 13386.43 21898.76 19498.37 10397.42 16999.33 176
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS96.53 13696.01 13398.09 13398.43 16296.12 14796.36 36299.43 2193.53 16197.64 14795.04 32894.41 7098.38 22691.13 25498.11 15499.75 103
testing22297.08 11196.75 11098.06 13598.56 15196.82 11799.85 12198.61 8292.53 20298.84 9798.84 18593.36 10298.30 23495.84 17494.30 22999.05 201
PLCcopyleft95.54 397.93 6597.89 6798.05 13699.82 5894.77 19799.92 7998.46 11793.93 14997.20 15899.27 13695.44 4699.97 5397.41 14299.51 10399.41 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D95.84 16095.11 17098.02 13799.85 5495.10 18798.74 29598.50 11287.22 31893.66 22199.86 2687.45 20599.95 6990.94 26099.81 7999.02 203
bld_raw_dy_0_6494.22 20792.97 22497.98 13898.62 14995.09 18899.89 9993.09 39196.55 5992.59 23499.80 5168.57 35299.19 17398.92 7088.69 26699.68 113
testing9197.16 10496.90 10397.97 13998.35 16795.67 16399.91 8498.42 14392.91 18097.33 15598.72 18994.81 6299.21 16896.98 15594.63 22399.03 202
testing9997.17 10396.91 10297.95 14098.35 16795.70 16099.91 8498.43 13192.94 17897.36 15498.72 18994.83 6199.21 16897.00 15394.64 22298.95 205
MVSFormer96.94 11696.60 11697.95 14097.28 23897.70 8399.55 20197.27 28291.17 24699.43 6799.54 11290.92 16296.89 31194.67 19899.62 9099.25 186
PatchMatch-RL96.04 15595.40 15997.95 14099.59 8195.22 18399.52 20599.07 3493.96 14796.49 17798.35 21882.28 25299.82 12090.15 27699.22 12298.81 213
test_fmvsm_n_192098.44 4198.61 2397.92 14399.27 10195.18 185100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 223
tttt051796.85 11996.49 12097.92 14397.48 22595.89 15299.85 12198.54 10190.72 26196.63 17398.93 17497.47 1199.02 18193.03 23395.76 20698.85 210
test_fmvsmvis_n_192097.67 8397.59 7897.91 14597.02 24595.34 17699.95 5398.45 11897.87 1597.02 16399.59 10689.64 18099.98 4399.41 4899.34 11698.42 226
DP-MVS94.54 19493.42 21397.91 14599.46 9494.04 21498.93 27697.48 25981.15 36890.04 26299.55 11087.02 21199.95 6988.97 28698.11 15499.73 105
casdiffmvs_mvgpermissive96.43 13995.94 14397.89 14797.44 22695.47 17099.86 11897.29 28093.35 16696.03 18899.19 14485.39 22998.72 19897.89 12897.04 17899.49 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.18 17694.31 18997.80 14898.17 18195.23 18299.76 15397.53 25392.52 20494.27 21599.25 14076.84 30398.80 19090.89 26299.54 9999.35 173
EC-MVSNet97.38 9697.24 8997.80 14897.41 22795.64 16499.99 597.06 30394.59 11499.63 4499.32 13289.20 19098.14 24698.76 8399.23 12199.62 128
FE-MVS95.70 16695.01 17497.79 15098.21 17794.57 19895.03 37698.69 6888.90 29297.50 15196.19 28492.60 12899.49 16089.99 27897.94 16099.31 178
test-LLR96.47 13796.04 13297.78 15197.02 24595.44 17199.96 3598.21 18694.07 14095.55 19796.38 27893.90 9198.27 23990.42 27198.83 13599.64 123
test-mter96.39 14295.93 14497.78 15197.02 24595.44 17199.96 3598.21 18691.81 22795.55 19796.38 27895.17 4998.27 23990.42 27198.83 13599.64 123
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15398.63 14894.26 20899.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 199
casdiffmvspermissive96.42 14195.97 13997.77 15397.30 23694.98 18999.84 12697.09 30093.75 15696.58 17599.26 13985.07 23298.78 19297.77 13597.04 17899.54 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS97.53 8697.46 8097.76 15598.04 18894.84 19399.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18698.04 11899.13 12599.59 134
baseline96.43 13995.98 13697.76 15597.34 23295.17 18699.51 20797.17 29093.92 15096.90 16699.28 13385.37 23098.64 20497.50 14196.86 18499.46 159
cascas94.64 19293.61 20497.74 15797.82 20096.26 13699.96 3597.78 23185.76 33694.00 21897.54 24176.95 30299.21 16897.23 14795.43 21397.76 240
CS-MVS-test97.88 6797.94 6397.70 15899.28 10095.20 18499.98 1597.15 29395.53 8999.62 4799.79 5792.08 14398.38 22698.75 8499.28 11899.52 151
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15999.06 11194.41 20399.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 222
test_cas_vis1_n_192096.59 13496.23 12797.65 16098.22 17694.23 20999.99 597.25 28497.77 1799.58 5499.08 15077.10 29899.97 5397.64 13899.45 10898.74 217
ET-MVSNet_ETH3D94.37 20193.28 21997.64 16198.30 16997.99 7199.99 597.61 24394.35 12571.57 38799.45 11996.23 3195.34 35796.91 16085.14 30299.59 134
CHOSEN 1792x268896.81 12196.53 11997.64 16198.91 13093.07 23899.65 18399.80 395.64 8595.39 20098.86 18184.35 24199.90 9196.98 15599.16 12399.95 71
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16395.65 29694.21 21099.83 13398.50 11296.27 7299.65 4199.64 10184.72 23599.93 8599.04 6398.84 13498.74 217
UGNet95.33 17594.57 18397.62 16498.55 15494.85 19298.67 30399.32 2695.75 8396.80 17096.27 28272.18 33599.96 6194.58 20099.05 12998.04 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16597.38 22994.40 20599.90 9198.64 7696.47 6399.51 6299.65 10084.99 23499.93 8599.22 5599.09 12798.46 224
mvsany_test197.82 7297.90 6697.55 16698.77 14093.04 24199.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
mvs_anonymous95.65 16895.03 17397.53 16798.19 17995.74 15799.33 23197.49 25890.87 25590.47 25897.10 25388.23 19897.16 29195.92 17297.66 16499.68 113
Fast-Effi-MVS+95.02 18094.19 19197.52 16897.88 19594.55 19999.97 2897.08 30188.85 29494.47 21197.96 23284.59 23798.41 21889.84 28097.10 17599.59 134
ECVR-MVScopyleft95.66 16795.05 17297.51 16998.66 14693.71 22398.85 28798.45 11894.93 10196.86 16798.96 16575.22 32199.20 17195.34 17998.15 15199.64 123
TR-MVS94.54 19493.56 20997.49 17097.96 19194.34 20698.71 29897.51 25690.30 26994.51 21098.69 19275.56 31698.77 19392.82 23595.99 19799.35 173
Vis-MVSNetpermissive95.72 16295.15 16997.45 17197.62 21794.28 20799.28 24098.24 18394.27 13396.84 16898.94 17279.39 28298.76 19493.25 22698.49 14199.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet96.29 14895.90 14697.45 17198.13 18494.80 19599.08 25597.61 24392.02 22195.54 19998.96 16590.64 16898.08 24993.73 22197.41 17099.47 158
CS-MVS97.79 7697.91 6597.43 17399.10 10994.42 20299.99 597.10 29895.07 9899.68 3899.75 7192.95 11798.34 23098.38 10199.14 12499.54 147
OMC-MVS97.28 9897.23 9097.41 17499.76 6693.36 23699.65 18397.95 21496.03 7797.41 15399.70 8789.61 18199.51 15396.73 16298.25 15099.38 168
MSDG94.37 20193.36 21797.40 17598.88 13393.95 21899.37 22797.38 26885.75 33890.80 25599.17 14684.11 24399.88 10286.35 31798.43 14398.36 228
PatchmatchNetpermissive95.94 15795.45 15897.39 17697.83 19994.41 20396.05 36998.40 15292.86 18197.09 16095.28 32394.21 8298.07 25189.26 28498.11 15499.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111195.57 16994.98 17597.37 17798.56 15193.37 23598.86 28598.45 11894.95 10096.63 17398.95 17075.21 32299.11 17795.02 18598.14 15399.64 123
baseline296.71 12996.49 12097.37 17795.63 29895.96 15099.74 15998.88 5192.94 17891.61 24598.97 16397.72 698.62 20594.83 19298.08 15797.53 246
HyFIR lowres test96.66 13296.43 12297.36 17999.05 11293.91 21999.70 17499.80 390.54 26396.26 18498.08 22592.15 14198.23 24296.84 16195.46 21199.93 76
Vis-MVSNet (Re-imp)96.32 14595.98 13697.35 18097.93 19394.82 19499.47 21498.15 19891.83 22595.09 20499.11 14891.37 15297.47 27593.47 22497.43 16799.74 104
SDMVSNet94.80 18493.96 19797.33 18198.92 12695.42 17399.59 19398.99 3792.41 20892.55 23697.85 23475.81 31598.93 18597.90 12791.62 24797.64 241
SCA94.69 18993.81 20297.33 18197.10 24194.44 20098.86 28598.32 17293.30 16996.17 18795.59 30276.48 30897.95 25891.06 25697.43 16799.59 134
CSCG97.10 10697.04 9897.27 18399.89 4591.92 26799.90 9199.07 3488.67 29795.26 20399.82 4693.17 11299.98 4398.15 11299.47 10599.90 83
RPMNet89.76 30787.28 32297.19 18496.29 26992.66 25092.01 38898.31 17470.19 39396.94 16485.87 39287.25 20899.78 12562.69 39495.96 19899.13 195
tpmrst96.27 15095.98 13697.13 18597.96 19193.15 23796.34 36398.17 19192.07 21798.71 10895.12 32693.91 9098.73 19694.91 19096.62 18599.50 155
CDS-MVSNet96.34 14496.07 13197.13 18597.37 23094.96 19099.53 20497.91 22091.55 23395.37 20198.32 22095.05 5497.13 29493.80 21795.75 20799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet94.79 18594.02 19597.11 18797.87 19693.79 22094.24 37798.16 19590.07 27196.43 17994.48 34690.29 17498.19 24487.44 30397.23 17299.36 171
UWE-MVS96.79 12296.72 11197.00 18898.51 15893.70 22499.71 17098.60 8492.96 17797.09 16098.34 21996.67 2798.85 18892.11 24296.50 18898.44 225
GeoE94.36 20393.48 21196.99 18997.29 23793.54 22999.96 3596.72 33588.35 30493.43 22298.94 17282.05 25398.05 25288.12 29896.48 19099.37 170
EPP-MVSNet96.69 13096.60 11696.96 19097.74 20593.05 24099.37 22798.56 9288.75 29595.83 19499.01 15696.01 3298.56 20796.92 15997.20 17499.25 186
dp95.05 17994.43 18596.91 19197.99 19092.73 24896.29 36597.98 21189.70 27795.93 19194.67 34193.83 9598.45 21586.91 31696.53 18799.54 147
TAPA-MVS92.12 894.42 19993.60 20696.90 19299.33 9891.78 27199.78 14598.00 20889.89 27594.52 20999.47 11691.97 14599.18 17469.90 38299.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
F-COLMAP96.93 11796.95 10196.87 19399.71 7591.74 27299.85 12197.95 21493.11 17595.72 19699.16 14792.35 13699.94 7795.32 18099.35 11598.92 206
GA-MVS93.83 21392.84 22796.80 19495.73 29093.57 22799.88 10397.24 28592.57 20092.92 22996.66 27078.73 29097.67 26987.75 30194.06 23399.17 190
CostFormer96.10 15295.88 14796.78 19597.03 24492.55 25497.08 35197.83 22890.04 27398.72 10794.89 33595.01 5698.29 23596.54 16495.77 20599.50 155
VDDNet93.12 23491.91 24996.76 19696.67 26692.65 25298.69 30198.21 18682.81 36197.75 14699.28 13361.57 37799.48 16198.09 11694.09 23298.15 231
PMMVS96.76 12596.76 10996.76 19698.28 17292.10 26299.91 8497.98 21194.12 13799.53 5899.39 12786.93 21398.73 19696.95 15897.73 16199.45 161
PVSNet_BlendedMVS96.05 15495.82 14996.72 19899.59 8196.99 11199.95 5399.10 3194.06 14298.27 12795.80 29389.00 19299.95 6999.12 5887.53 28693.24 344
BH-w/o95.71 16495.38 16196.68 19998.49 16092.28 25899.84 12697.50 25792.12 21692.06 24398.79 18684.69 23698.67 20395.29 18199.66 8799.09 197
EPNet_dtu95.71 16495.39 16096.66 20098.92 12693.41 23399.57 19798.90 4796.19 7597.52 14998.56 20692.65 12597.36 27777.89 36598.33 14599.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS95.85 15995.58 15596.65 20197.07 24293.50 23099.17 24997.82 22991.39 24395.02 20598.01 22792.20 13997.30 28393.75 22095.83 20499.14 194
h-mvs3394.92 18294.36 18696.59 20298.85 13591.29 28398.93 27698.94 4195.90 7898.77 10298.42 21790.89 16599.77 12897.80 13070.76 37698.72 219
Anonymous2024052992.10 25790.65 26896.47 20398.82 13690.61 29698.72 29798.67 7375.54 38493.90 22098.58 20466.23 36299.90 9194.70 19790.67 24998.90 209
tpm cat193.51 22592.52 23996.47 20397.77 20391.47 28296.13 36798.06 20480.98 36992.91 23093.78 35489.66 17998.87 18687.03 31296.39 19199.09 197
nrg03093.51 22592.53 23896.45 20594.36 31697.20 10299.81 13897.16 29291.60 23189.86 26797.46 24286.37 21997.68 26895.88 17380.31 34194.46 267
MVSTER95.53 17095.22 16696.45 20598.56 15197.72 8099.91 8497.67 23692.38 21091.39 24797.14 25197.24 1797.30 28394.80 19387.85 28194.34 282
iter_conf0596.07 15395.95 14296.44 20798.43 16297.52 8999.91 8496.85 32594.16 13592.49 23897.98 23198.20 497.34 27997.26 14688.29 27494.45 272
Anonymous20240521193.10 23591.99 24796.40 20899.10 10989.65 31698.88 28197.93 21683.71 35594.00 21898.75 18868.79 34999.88 10295.08 18491.71 24699.68 113
tpmvs94.28 20593.57 20896.40 20898.55 15491.50 28195.70 37598.55 9887.47 31392.15 24094.26 35091.42 15098.95 18488.15 29695.85 20398.76 215
PVSNet_088.03 1991.80 26490.27 27796.38 21098.27 17390.46 30099.94 6999.61 1493.99 14586.26 33397.39 24671.13 34299.89 9698.77 8267.05 38798.79 214
tpm295.47 17195.18 16896.35 21196.91 25191.70 27696.96 35497.93 21688.04 30898.44 11995.40 31293.32 10597.97 25594.00 20995.61 20999.38 168
VDD-MVS93.77 21792.94 22596.27 21298.55 15490.22 30598.77 29497.79 23090.85 25696.82 16999.42 12061.18 37999.77 12898.95 6794.13 23198.82 212
BH-untuned95.18 17694.83 17896.22 21398.36 16591.22 28499.80 14297.32 27590.91 25491.08 25198.67 19383.51 24598.54 20994.23 20799.61 9498.92 206
VPA-MVSNet92.70 24491.55 25696.16 21495.09 30496.20 14198.88 28199.00 3691.02 25391.82 24495.29 32276.05 31497.96 25795.62 17881.19 32994.30 283
FIs94.10 20893.43 21296.11 21594.70 31196.82 11799.58 19598.93 4592.54 20189.34 28197.31 24787.62 20397.10 29794.22 20886.58 29194.40 274
Patchmatch-test92.65 24791.50 25796.10 21696.85 25690.49 29991.50 39097.19 28782.76 36290.23 25995.59 30295.02 5598.00 25477.41 36796.98 18199.82 92
FMVSNet392.69 24591.58 25495.99 21798.29 17097.42 9799.26 24297.62 24089.80 27689.68 27195.32 31881.62 25996.27 33787.01 31385.65 29694.29 284
CR-MVSNet93.45 22892.62 23395.94 21896.29 26992.66 25092.01 38896.23 35192.62 19596.94 16493.31 35991.04 15996.03 34779.23 35895.96 19899.13 195
UniMVSNet (Re)93.07 23692.13 24395.88 21994.84 30896.24 14099.88 10398.98 3892.49 20689.25 28395.40 31287.09 21097.14 29393.13 23178.16 35294.26 285
XXY-MVS91.82 26090.46 27195.88 21993.91 32495.40 17598.87 28497.69 23488.63 29987.87 30997.08 25474.38 32897.89 26191.66 24884.07 31194.35 281
VPNet91.81 26190.46 27195.85 22194.74 31095.54 16898.98 27098.59 8692.14 21590.77 25697.44 24368.73 35197.54 27394.89 19177.89 35494.46 267
test_vis1_n_192095.44 17295.31 16395.82 22298.50 15988.74 32499.98 1597.30 27797.84 1699.85 999.19 14466.82 36099.97 5398.82 7999.46 10798.76 215
FC-MVSNet-test93.81 21593.15 22195.80 22394.30 31896.20 14199.42 21998.89 4992.33 21289.03 29197.27 24987.39 20696.83 31593.20 22786.48 29294.36 278
sd_testset93.55 22492.83 22895.74 22498.92 12690.89 29198.24 32398.85 5692.41 20892.55 23697.85 23471.07 34398.68 20293.93 21091.62 24797.64 241
NR-MVSNet91.56 26990.22 27895.60 22594.05 32195.76 15698.25 32298.70 6791.16 24880.78 36196.64 27283.23 24996.57 32591.41 25077.73 35694.46 267
patch_mono-298.24 5699.12 595.59 22699.67 7786.91 34599.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
miper_enhance_ethall94.36 20393.98 19695.49 22798.68 14495.24 18199.73 16497.29 28093.28 17089.86 26795.97 29194.37 7597.05 30092.20 24084.45 30794.19 291
UniMVSNet_NR-MVSNet92.95 23892.11 24495.49 22794.61 31395.28 17999.83 13399.08 3391.49 23489.21 28696.86 26487.14 20996.73 31993.20 22777.52 35794.46 267
DU-MVS92.46 25091.45 25995.49 22794.05 32195.28 17999.81 13898.74 6492.25 21489.21 28696.64 27281.66 25796.73 31993.20 22777.52 35794.46 267
WR-MVS92.31 25391.25 26195.48 23094.45 31595.29 17899.60 19298.68 7090.10 27088.07 30796.89 26280.68 27096.80 31793.14 23079.67 34594.36 278
dcpmvs_297.42 9398.09 5495.42 23199.58 8587.24 34199.23 24496.95 31494.28 13198.93 9499.73 8094.39 7499.16 17699.89 1699.82 7799.86 89
FMVSNet291.02 27789.56 29195.41 23297.53 22195.74 15798.98 27097.41 26687.05 31988.43 30295.00 33171.34 33996.24 33985.12 32685.21 30194.25 287
test_vis1_n93.61 22393.03 22395.35 23395.86 28286.94 34399.87 10696.36 34896.85 4699.54 5798.79 18652.41 38999.83 11898.64 9198.97 13099.29 182
AUN-MVS93.28 22992.60 23495.34 23498.29 17090.09 30899.31 23498.56 9291.80 22896.35 18398.00 22889.38 18498.28 23792.46 23769.22 38197.64 241
cl2293.77 21793.25 22095.33 23599.49 9194.43 20199.61 19198.09 20190.38 26589.16 28995.61 30090.56 16997.34 27991.93 24484.45 30794.21 290
hse-mvs294.38 20094.08 19495.31 23698.27 17390.02 31099.29 23998.56 9295.90 7898.77 10298.00 22890.89 16598.26 24197.80 13069.20 38297.64 241
MVS-HIRNet86.22 32983.19 34295.31 23696.71 26590.29 30392.12 38797.33 27462.85 39486.82 32270.37 39969.37 34797.49 27475.12 37497.99 15998.15 231
mvsmamba94.10 20893.72 20395.25 23893.57 32994.13 21299.67 17996.45 34693.63 16091.34 24997.77 23786.29 22197.22 28996.65 16388.10 27894.40 274
PatchT90.38 29288.75 30895.25 23895.99 27890.16 30691.22 39297.54 25176.80 37997.26 15786.01 39191.88 14696.07 34666.16 39095.91 20299.51 153
pmmvs492.10 25791.07 26495.18 24092.82 34894.96 19099.48 21396.83 32787.45 31488.66 29896.56 27683.78 24496.83 31589.29 28384.77 30593.75 329
MIMVSNet90.30 29588.67 30995.17 24196.45 26891.64 27892.39 38697.15 29385.99 33390.50 25793.19 36166.95 35994.86 36482.01 34693.43 23999.01 204
XVG-OURS-SEG-HR94.79 18594.70 18295.08 24298.05 18789.19 31999.08 25597.54 25193.66 15894.87 20699.58 10878.78 28999.79 12397.31 14493.40 24096.25 254
XVG-OURS94.82 18394.74 18195.06 24398.00 18989.19 31999.08 25597.55 24994.10 13894.71 20799.62 10480.51 27399.74 13496.04 17093.06 24596.25 254
v2v48291.30 27090.07 28495.01 24493.13 33893.79 22099.77 14897.02 30688.05 30789.25 28395.37 31680.73 26997.15 29287.28 30780.04 34494.09 304
AllTest92.48 24991.64 25295.00 24599.01 11488.43 33098.94 27596.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
TestCases95.00 24599.01 11488.43 33096.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
JIA-IIPM91.76 26790.70 26794.94 24796.11 27487.51 33993.16 38498.13 20075.79 38397.58 14877.68 39792.84 12097.97 25588.47 29396.54 18699.33 176
HQP-MVS94.61 19394.50 18494.92 24895.78 28391.85 26899.87 10697.89 22196.82 4893.37 22398.65 19680.65 27198.39 22297.92 12589.60 25194.53 262
v114491.09 27689.83 28594.87 24993.25 33793.69 22599.62 19096.98 31186.83 32589.64 27594.99 33280.94 26697.05 30085.08 32781.16 33093.87 323
HQP_MVS94.49 19794.36 18694.87 24995.71 29391.74 27299.84 12697.87 22396.38 6793.01 22798.59 20180.47 27598.37 22897.79 13389.55 25494.52 264
TranMVSNet+NR-MVSNet91.68 26890.61 27094.87 24993.69 32893.98 21799.69 17598.65 7491.03 25288.44 30096.83 26880.05 27896.18 34090.26 27576.89 36594.45 272
miper_ehance_all_eth93.16 23292.60 23494.82 25297.57 21993.56 22899.50 20997.07 30288.75 29588.85 29495.52 30690.97 16196.74 31890.77 26484.45 30794.17 292
V4291.28 27290.12 28394.74 25393.42 33493.46 23199.68 17797.02 30687.36 31589.85 26995.05 32781.31 26397.34 27987.34 30680.07 34393.40 339
EI-MVSNet93.73 21993.40 21694.74 25396.80 25992.69 24999.06 26097.67 23688.96 28991.39 24799.02 15488.75 19597.30 28391.07 25587.85 28194.22 288
v119290.62 28889.25 29894.72 25593.13 33893.07 23899.50 20997.02 30686.33 33089.56 27795.01 32979.22 28497.09 29982.34 34481.16 33094.01 310
v890.54 28989.17 29994.66 25693.43 33393.40 23499.20 24696.94 31885.76 33687.56 31394.51 34481.96 25597.19 29084.94 32878.25 35193.38 341
test0.0.03 193.86 21293.61 20494.64 25795.02 30792.18 26199.93 7698.58 8794.07 14087.96 30898.50 20993.90 9194.96 36281.33 34993.17 24296.78 249
PS-MVSNAJss93.64 22293.31 21894.61 25892.11 35792.19 26099.12 25197.38 26892.51 20588.45 29996.99 26091.20 15497.29 28694.36 20387.71 28394.36 278
tt080591.28 27290.18 28094.60 25996.26 27187.55 33898.39 31898.72 6589.00 28689.22 28598.47 21462.98 37398.96 18390.57 26788.00 28097.28 247
v14419290.79 28389.52 29394.59 26093.11 34192.77 24499.56 19996.99 30986.38 32989.82 27094.95 33480.50 27497.10 29783.98 33380.41 33993.90 320
tpm93.70 22193.41 21594.58 26195.36 30287.41 34097.01 35296.90 32190.85 25696.72 17294.14 35190.40 17296.84 31490.75 26588.54 27199.51 153
v1090.25 29788.82 30694.57 26293.53 33193.43 23299.08 25596.87 32485.00 34587.34 31994.51 34480.93 26797.02 30682.85 34079.23 34693.26 343
CLD-MVS94.06 21093.90 19994.55 26396.02 27790.69 29399.98 1597.72 23296.62 5891.05 25398.85 18477.21 29798.47 21198.11 11489.51 25694.48 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____92.31 25391.58 25494.52 26497.33 23492.77 24499.57 19796.78 33286.97 32387.56 31395.51 30789.43 18396.62 32388.60 28982.44 32094.16 297
c3_l92.53 24891.87 25094.52 26497.40 22892.99 24299.40 22096.93 31987.86 30988.69 29795.44 31089.95 17796.44 33090.45 27080.69 33894.14 301
v192192090.46 29089.12 30094.50 26692.96 34592.46 25599.49 21196.98 31186.10 33289.61 27695.30 31978.55 29397.03 30482.17 34580.89 33794.01 310
UniMVSNet_ETH3D90.06 30288.58 31094.49 26794.67 31288.09 33597.81 33997.57 24883.91 35488.44 30097.41 24457.44 38397.62 27191.41 25088.59 27097.77 239
DIV-MVS_self_test92.32 25291.60 25394.47 26897.31 23592.74 24699.58 19596.75 33386.99 32287.64 31195.54 30489.55 18296.50 32788.58 29082.44 32094.17 292
test_djsdf92.83 24192.29 24294.47 26891.90 36092.46 25599.55 20197.27 28291.17 24689.96 26396.07 29081.10 26496.89 31194.67 19888.91 26094.05 307
OPM-MVS93.21 23092.80 22994.44 27093.12 34090.85 29299.77 14897.61 24396.19 7591.56 24698.65 19675.16 32398.47 21193.78 21989.39 25793.99 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v124090.20 29888.79 30794.44 27093.05 34392.27 25999.38 22596.92 32085.89 33489.36 28094.87 33677.89 29697.03 30480.66 35281.08 33394.01 310
IterMVS-LS92.69 24592.11 24494.43 27296.80 25992.74 24699.45 21796.89 32288.98 28789.65 27495.38 31588.77 19496.34 33490.98 25982.04 32394.22 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp91.79 26690.92 26594.41 27390.76 37292.93 24398.93 27697.17 29089.08 28287.46 31695.30 31978.43 29596.92 31092.38 23888.73 26593.39 340
test_fmvs195.35 17495.68 15494.36 27498.99 11784.98 35499.96 3596.65 33897.60 2299.73 3398.96 16571.58 33899.93 8598.31 10699.37 11498.17 230
tfpnnormal89.29 31487.61 32094.34 27594.35 31794.13 21298.95 27498.94 4183.94 35284.47 34395.51 30774.84 32497.39 27677.05 37080.41 33991.48 367
CP-MVSNet91.23 27490.22 27894.26 27693.96 32392.39 25799.09 25398.57 8988.95 29086.42 33096.57 27579.19 28596.37 33290.29 27478.95 34794.02 308
COLMAP_ROBcopyleft90.47 1492.18 25691.49 25894.25 27799.00 11688.04 33698.42 31796.70 33682.30 36488.43 30299.01 15676.97 30199.85 10886.11 32096.50 18894.86 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax91.92 25991.18 26294.15 27891.35 36790.95 28999.00 26997.42 26492.61 19687.38 31797.08 25472.46 33497.36 27794.53 20188.77 26494.13 302
WR-MVS_H91.30 27090.35 27494.15 27894.17 32092.62 25399.17 24998.94 4188.87 29386.48 32994.46 34884.36 23996.61 32488.19 29578.51 35093.21 345
Anonymous2023121189.86 30588.44 31294.13 28098.93 12390.68 29498.54 30998.26 18276.28 38086.73 32395.54 30470.60 34497.56 27290.82 26380.27 34294.15 298
GBi-Net90.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
test190.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
FMVSNet188.50 31886.64 32494.08 28195.62 29991.97 26398.43 31496.95 31483.00 35986.08 33594.72 33759.09 38196.11 34281.82 34884.07 31194.17 292
LTVRE_ROB88.28 1890.29 29689.05 30394.02 28495.08 30590.15 30797.19 34797.43 26284.91 34883.99 34597.06 25674.00 33098.28 23784.08 33187.71 28393.62 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 31387.81 31994.01 28593.40 33591.93 26698.62 30696.48 34586.25 33183.86 34696.14 28673.68 33197.04 30286.16 31975.73 36993.04 348
mvs_tets91.81 26191.08 26394.00 28691.63 36490.58 29798.67 30397.43 26292.43 20787.37 31897.05 25771.76 33697.32 28294.75 19588.68 26794.11 303
PS-CasMVS90.63 28789.51 29493.99 28793.83 32591.70 27698.98 27098.52 10488.48 30186.15 33496.53 27775.46 31796.31 33688.83 28778.86 34993.95 316
ACMM91.95 1092.88 24092.52 23993.98 28895.75 28989.08 32299.77 14897.52 25593.00 17689.95 26497.99 23076.17 31298.46 21493.63 22388.87 26294.39 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n94.25 20694.36 18693.92 28997.68 21383.70 36099.90 9196.57 34197.40 2899.67 3998.88 17661.82 37699.92 8898.23 10899.13 12598.14 233
v14890.70 28489.63 28993.92 28992.97 34490.97 28699.75 15696.89 32287.51 31288.27 30595.01 32981.67 25697.04 30287.40 30577.17 36293.75 329
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28999.63 7981.76 37299.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
CVMVSNet94.68 19194.94 17693.89 29296.80 25986.92 34499.06 26098.98 3894.45 11794.23 21699.02 15485.60 22595.31 35890.91 26195.39 21499.43 164
eth_miper_zixun_eth92.41 25191.93 24893.84 29397.28 23890.68 29498.83 28896.97 31388.57 30089.19 28895.73 29789.24 18996.69 32189.97 27981.55 32694.15 298
RRT_MVS93.14 23392.92 22693.78 29493.31 33690.04 30999.66 18197.69 23492.53 20288.91 29397.76 23884.36 23996.93 30995.10 18386.99 28994.37 277
ACMP92.05 992.74 24392.42 24193.73 29595.91 28188.72 32599.81 13897.53 25394.13 13687.00 32198.23 22174.07 32998.47 21196.22 16888.86 26393.99 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n89.65 30988.29 31493.72 29692.22 35590.56 29899.07 25997.10 29885.42 34386.73 32394.72 33780.06 27797.13 29481.14 35078.12 35393.49 337
LPG-MVS_test92.96 23792.71 23293.71 29795.43 30088.67 32699.75 15697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
LGP-MVS_train93.71 29795.43 30088.67 32697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
KD-MVS_2432*160088.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
miper_refine_blended88.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
ACMH89.72 1790.64 28689.63 28993.66 30195.64 29788.64 32898.55 30797.45 26089.03 28481.62 35697.61 24069.75 34698.41 21889.37 28287.62 28593.92 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS90.19 29989.06 30293.57 30293.06 34290.90 29099.06 26098.47 11588.11 30685.91 33696.30 28176.67 30495.94 35087.07 31076.91 36493.89 321
myMVS_eth3d94.46 19894.76 18093.55 30397.68 21390.97 28699.71 17098.35 16590.79 25892.10 24198.67 19392.46 13493.09 37987.13 30995.95 20096.59 252
ADS-MVSNet293.80 21693.88 20093.55 30397.87 19685.94 34894.24 37796.84 32690.07 27196.43 17994.48 34690.29 17495.37 35687.44 30397.23 17299.36 171
pmmvs590.17 30089.09 30193.40 30592.10 35889.77 31599.74 15995.58 36585.88 33587.24 32095.74 29573.41 33296.48 32888.54 29183.56 31493.95 316
dmvs_re93.20 23193.15 22193.34 30696.54 26783.81 35998.71 29898.51 10791.39 24392.37 23998.56 20678.66 29197.83 26393.89 21189.74 25098.38 227
Patchmtry89.70 30888.49 31193.33 30796.24 27289.94 31491.37 39196.23 35178.22 37787.69 31093.31 35991.04 15996.03 34780.18 35682.10 32294.02 308
Fast-Effi-MVS+-dtu93.72 22093.86 20193.29 30897.06 24386.16 34699.80 14296.83 32792.66 19392.58 23597.83 23681.39 26097.67 26989.75 28196.87 18396.05 259
D2MVS92.76 24292.59 23793.27 30995.13 30389.54 31899.69 17599.38 2392.26 21387.59 31294.61 34385.05 23397.79 26491.59 24988.01 27992.47 357
WB-MVSnew92.90 23992.77 23193.26 31096.95 24993.63 22699.71 17098.16 19591.49 23494.28 21498.14 22381.33 26296.48 32879.47 35795.46 21189.68 380
ppachtmachnet_test89.58 31088.35 31393.25 31192.40 35390.44 30199.33 23196.73 33485.49 34185.90 33795.77 29481.09 26596.00 34976.00 37382.49 31993.30 342
TransMVSNet (Re)87.25 32585.28 33293.16 31293.56 33091.03 28598.54 30994.05 38583.69 35681.09 35996.16 28575.32 31896.40 33176.69 37168.41 38392.06 361
our_test_390.39 29189.48 29693.12 31392.40 35389.57 31799.33 23196.35 34987.84 31085.30 33994.99 33284.14 24296.09 34580.38 35384.56 30693.71 334
IterMVS90.91 27990.17 28193.12 31396.78 26290.42 30298.89 27997.05 30589.03 28486.49 32895.42 31176.59 30695.02 36087.22 30884.09 31093.93 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC90.00 30388.96 30493.10 31594.81 30988.16 33498.71 29895.54 36693.66 15883.75 34797.20 25065.58 36498.31 23383.96 33487.49 28792.85 351
miper_lstm_enhance91.81 26191.39 26093.06 31697.34 23289.18 32199.38 22596.79 33186.70 32687.47 31595.22 32490.00 17695.86 35188.26 29481.37 32894.15 298
testing393.92 21194.23 19092.99 31797.54 22090.23 30499.99 599.16 3090.57 26291.33 25098.63 19992.99 11592.52 38382.46 34295.39 21496.22 257
IterMVS-SCA-FT90.85 28290.16 28292.93 31896.72 26489.96 31198.89 27996.99 30988.95 29086.63 32595.67 29876.48 30895.00 36187.04 31184.04 31393.84 325
DTE-MVSNet89.40 31288.24 31592.88 31992.66 35089.95 31299.10 25298.22 18587.29 31685.12 34196.22 28376.27 31195.30 35983.56 33775.74 36893.41 338
Baseline_NR-MVSNet90.33 29489.51 29492.81 32092.84 34689.95 31299.77 14893.94 38684.69 35089.04 29095.66 29981.66 25796.52 32690.99 25876.98 36391.97 363
ACMH+89.98 1690.35 29389.54 29292.78 32195.99 27886.12 34798.81 29097.18 28989.38 27983.14 34997.76 23868.42 35498.43 21689.11 28586.05 29493.78 328
XVG-ACMP-BASELINE91.22 27590.75 26692.63 32293.73 32785.61 34998.52 31197.44 26192.77 18789.90 26696.85 26566.64 36198.39 22292.29 23988.61 26893.89 321
ITE_SJBPF92.38 32395.69 29585.14 35295.71 36192.81 18489.33 28298.11 22470.23 34598.42 21785.91 32288.16 27793.59 336
MVP-Stereo90.93 27890.45 27392.37 32491.25 36988.76 32398.05 33396.17 35387.27 31784.04 34495.30 31978.46 29497.27 28883.78 33599.70 8591.09 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu94.53 19695.30 16492.22 32597.77 20382.54 36599.59 19397.06 30394.92 10395.29 20295.37 31685.81 22497.89 26194.80 19397.07 17696.23 256
MDA-MVSNet_test_wron85.51 33383.32 34192.10 32690.96 37088.58 32999.20 24696.52 34379.70 37457.12 39992.69 36379.11 28693.86 37377.10 36977.46 35993.86 324
YYNet185.50 33483.33 34092.00 32790.89 37188.38 33399.22 24596.55 34279.60 37557.26 39892.72 36279.09 28893.78 37477.25 36877.37 36093.84 325
TinyColmap87.87 32486.51 32591.94 32895.05 30685.57 35097.65 34094.08 38384.40 35181.82 35596.85 26562.14 37598.33 23180.25 35586.37 29391.91 364
testgi89.01 31688.04 31791.90 32993.49 33284.89 35599.73 16495.66 36393.89 15385.14 34098.17 22259.68 38094.66 36677.73 36688.88 26196.16 258
MDA-MVSNet-bldmvs84.09 34281.52 34991.81 33091.32 36888.00 33798.67 30395.92 35880.22 37255.60 40093.32 35868.29 35593.60 37673.76 37576.61 36693.82 327
MS-PatchMatch90.65 28590.30 27691.71 33194.22 31985.50 35198.24 32397.70 23388.67 29786.42 33096.37 28067.82 35698.03 25383.62 33699.62 9091.60 365
LCM-MVSNet-Re92.31 25392.60 23491.43 33297.53 22179.27 38299.02 26891.83 39692.07 21780.31 36294.38 34983.50 24695.48 35497.22 14897.58 16599.54 147
TDRefinement84.76 33782.56 34591.38 33374.58 40384.80 35697.36 34494.56 38084.73 34980.21 36396.12 28963.56 37198.39 22287.92 29963.97 39290.95 371
pmmvs685.69 33083.84 33791.26 33490.00 37884.41 35797.82 33896.15 35475.86 38281.29 35895.39 31461.21 37896.87 31383.52 33873.29 37292.50 356
SixPastTwentyTwo88.73 31788.01 31890.88 33591.85 36182.24 36798.22 32695.18 37488.97 28882.26 35296.89 26271.75 33796.67 32284.00 33282.98 31593.72 333
FMVSNet588.32 31987.47 32190.88 33596.90 25488.39 33297.28 34595.68 36282.60 36384.67 34292.40 36779.83 27991.16 38876.39 37281.51 32793.09 346
OurMVSNet-221017-089.81 30689.48 29690.83 33791.64 36381.21 37498.17 32895.38 36991.48 23685.65 33897.31 24772.66 33397.29 28688.15 29684.83 30493.97 315
lessismore_v090.53 33890.58 37380.90 37795.80 35977.01 37695.84 29266.15 36396.95 30783.03 33975.05 37093.74 332
test_040285.58 33183.94 33690.50 33993.81 32685.04 35398.55 30795.20 37376.01 38179.72 36695.13 32564.15 37096.26 33866.04 39186.88 29090.21 376
K. test v388.05 32187.24 32390.47 34091.82 36282.23 36898.96 27397.42 26489.05 28376.93 37795.60 30168.49 35395.42 35585.87 32381.01 33593.75 329
LF4IMVS89.25 31588.85 30590.45 34192.81 34981.19 37598.12 32994.79 37691.44 23886.29 33297.11 25265.30 36798.11 24888.53 29285.25 30092.07 360
pmmvs-eth3d84.03 34381.97 34790.20 34284.15 39087.09 34298.10 33194.73 37883.05 35874.10 38587.77 38665.56 36594.01 37081.08 35169.24 38089.49 383
UnsupCasMVSNet_eth85.52 33283.99 33490.10 34389.36 38083.51 36196.65 35897.99 20989.14 28175.89 38193.83 35363.25 37293.92 37181.92 34767.90 38692.88 350
OpenMVS_ROBcopyleft79.82 2083.77 34581.68 34890.03 34488.30 38382.82 36298.46 31295.22 37273.92 38976.00 38091.29 37155.00 38596.94 30868.40 38588.51 27290.34 374
EG-PatchMatch MVS85.35 33583.81 33889.99 34590.39 37481.89 37098.21 32796.09 35581.78 36674.73 38393.72 35551.56 39197.12 29679.16 36188.61 26890.96 370
Patchmatch-RL test86.90 32685.98 33089.67 34684.45 38975.59 38589.71 39592.43 39386.89 32477.83 37490.94 37394.22 8093.63 37587.75 30169.61 37899.79 97
EU-MVSNet90.14 30190.34 27589.54 34792.55 35181.06 37698.69 30198.04 20791.41 24286.59 32696.84 26780.83 26893.31 37886.20 31881.91 32494.26 285
test_vis1_rt86.87 32786.05 32989.34 34896.12 27378.07 38399.87 10683.54 40792.03 22078.21 37289.51 37845.80 39399.91 8996.25 16793.11 24490.03 377
new_pmnet84.49 34182.92 34489.21 34990.03 37782.60 36496.89 35695.62 36480.59 37075.77 38289.17 37965.04 36894.79 36572.12 37981.02 33490.23 375
Anonymous2024052185.15 33683.81 33889.16 35088.32 38282.69 36398.80 29295.74 36079.72 37381.53 35790.99 37265.38 36694.16 36972.69 37781.11 33290.63 373
Anonymous2023120686.32 32885.42 33189.02 35189.11 38180.53 38099.05 26495.28 37085.43 34282.82 35093.92 35274.40 32793.44 37766.99 38781.83 32593.08 347
RPSCF91.80 26492.79 23088.83 35298.15 18269.87 39098.11 33096.60 34083.93 35394.33 21399.27 13679.60 28199.46 16391.99 24393.16 24397.18 248
UnsupCasMVSNet_bld79.97 35677.03 36188.78 35385.62 38881.98 36993.66 38297.35 27075.51 38570.79 38883.05 39448.70 39294.91 36378.31 36460.29 39789.46 384
MIMVSNet182.58 34780.51 35388.78 35386.68 38684.20 35896.65 35895.41 36878.75 37678.59 37092.44 36451.88 39089.76 39165.26 39278.95 34792.38 359
test_fmvs289.47 31189.70 28888.77 35594.54 31475.74 38499.83 13394.70 37994.71 11091.08 25196.82 26954.46 38697.78 26692.87 23488.27 27592.80 352
CL-MVSNet_self_test84.50 34083.15 34388.53 35686.00 38781.79 37198.82 28997.35 27085.12 34483.62 34890.91 37476.66 30591.40 38769.53 38360.36 39692.40 358
DSMNet-mixed88.28 32088.24 31588.42 35789.64 37975.38 38698.06 33289.86 40085.59 34088.20 30692.14 36976.15 31391.95 38678.46 36396.05 19697.92 235
KD-MVS_self_test83.59 34682.06 34688.20 35886.93 38580.70 37897.21 34696.38 34782.87 36082.49 35188.97 38067.63 35792.32 38473.75 37662.30 39591.58 366
Syy-MVS90.00 30390.63 26988.11 35997.68 21374.66 38799.71 17098.35 16590.79 25892.10 24198.67 19379.10 28793.09 37963.35 39395.95 20096.59 252
pmmvs380.27 35377.77 35887.76 36080.32 39882.43 36698.23 32591.97 39572.74 39178.75 36887.97 38557.30 38490.99 38970.31 38162.37 39489.87 378
test20.0384.72 33983.99 33486.91 36188.19 38480.62 37998.88 28195.94 35788.36 30378.87 36794.62 34268.75 35089.11 39266.52 38975.82 36791.00 369
new-patchmatchnet81.19 34979.34 35686.76 36282.86 39380.36 38197.92 33595.27 37182.09 36572.02 38686.87 38862.81 37490.74 39071.10 38063.08 39389.19 386
EGC-MVSNET69.38 36063.76 37086.26 36390.32 37581.66 37396.24 36693.85 3870.99 4103.22 41192.33 36852.44 38892.92 38159.53 39784.90 30384.21 391
PM-MVS80.47 35278.88 35785.26 36483.79 39272.22 38895.89 37391.08 39785.71 33976.56 37988.30 38236.64 39793.90 37282.39 34369.57 37989.66 382
mvsany_test382.12 34881.14 35085.06 36581.87 39470.41 38997.09 35092.14 39491.27 24577.84 37388.73 38139.31 39695.49 35390.75 26571.24 37589.29 385
test_method80.79 35179.70 35584.08 36692.83 34767.06 39299.51 20795.42 36754.34 39881.07 36093.53 35644.48 39492.22 38578.90 36277.23 36192.94 349
CMPMVSbinary61.59 2184.75 33885.14 33383.57 36790.32 37562.54 39596.98 35397.59 24774.33 38869.95 38996.66 27064.17 36998.32 23287.88 30088.41 27389.84 379
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.23 36877.17 40162.61 39487.38 39794.55 38176.72 37886.65 38930.16 39896.36 33384.85 32969.86 37790.73 372
DeepMVS_CXcopyleft82.92 36995.98 28058.66 40096.01 35692.72 18878.34 37195.51 30758.29 38298.08 24982.57 34185.29 29992.03 362
APD_test181.15 35080.92 35181.86 37092.45 35259.76 39996.04 37093.61 38973.29 39077.06 37596.64 27244.28 39596.16 34172.35 37882.52 31889.67 381
test_f78.40 35777.59 35980.81 37180.82 39662.48 39696.96 35493.08 39283.44 35774.57 38484.57 39327.95 40292.63 38284.15 33072.79 37487.32 390
test_fmvs379.99 35580.17 35479.45 37284.02 39162.83 39399.05 26493.49 39088.29 30580.06 36586.65 38928.09 40188.00 39388.63 28873.27 37387.54 389
N_pmnet80.06 35480.78 35277.89 37391.94 35945.28 41198.80 29256.82 41378.10 37880.08 36493.33 35777.03 29995.76 35268.14 38682.81 31692.64 353
dmvs_testset83.79 34486.07 32876.94 37492.14 35648.60 40996.75 35790.27 39989.48 27878.65 36998.55 20879.25 28386.65 39766.85 38882.69 31795.57 260
LCM-MVSNet67.77 36564.73 36876.87 37562.95 40956.25 40289.37 39693.74 38844.53 40161.99 39380.74 39520.42 40886.53 39869.37 38459.50 39887.84 387
PMMVS267.15 36664.15 36976.14 37670.56 40662.07 39793.89 38087.52 40458.09 39560.02 39478.32 39622.38 40584.54 39959.56 39647.03 40181.80 394
test_vis3_rt68.82 36166.69 36675.21 37776.24 40260.41 39896.44 36168.71 41275.13 38650.54 40369.52 40116.42 41196.32 33580.27 35466.92 38868.89 399
WB-MVS76.28 35877.28 36073.29 37881.18 39554.68 40397.87 33794.19 38281.30 36769.43 39090.70 37577.02 30082.06 40135.71 40668.11 38583.13 392
Gipumacopyleft66.95 36765.00 36772.79 37991.52 36567.96 39166.16 40295.15 37547.89 40058.54 39767.99 40229.74 39987.54 39650.20 40177.83 35562.87 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf168.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
APD_test268.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
SSC-MVS75.42 35976.40 36272.49 38280.68 39753.62 40497.42 34294.06 38480.42 37168.75 39190.14 37776.54 30781.66 40233.25 40766.34 38982.19 393
tmp_tt65.23 36862.94 37172.13 38344.90 41250.03 40881.05 39989.42 40338.45 40248.51 40499.90 1854.09 38778.70 40491.84 24718.26 40687.64 388
FPMVS68.72 36268.72 36368.71 38465.95 40744.27 41395.97 37294.74 37751.13 39953.26 40190.50 37625.11 40483.00 40060.80 39580.97 33678.87 397
ANet_high56.10 36952.24 37267.66 38549.27 41156.82 40183.94 39882.02 40870.47 39233.28 40864.54 40317.23 41069.16 40645.59 40323.85 40577.02 398
MVEpermissive53.74 2251.54 37247.86 37662.60 38659.56 41050.93 40579.41 40077.69 40935.69 40536.27 40761.76 4065.79 41569.63 40537.97 40536.61 40267.24 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 37051.34 37460.97 38740.80 41334.68 41474.82 40189.62 40237.55 40328.67 40972.12 3987.09 41381.63 40343.17 40468.21 38466.59 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 37152.18 37352.67 38871.51 40445.40 41093.62 38376.60 41036.01 40443.50 40564.13 40427.11 40367.31 40731.06 40826.06 40345.30 406
EMVS51.44 37351.22 37552.11 38970.71 40544.97 41294.04 37975.66 41135.34 40642.40 40661.56 40728.93 40065.87 40827.64 40924.73 40445.49 405
test12337.68 37539.14 37833.31 39019.94 41424.83 41698.36 3199.75 41515.53 40851.31 40287.14 38719.62 40917.74 41047.10 4023.47 40957.36 403
testmvs40.60 37444.45 37729.05 39119.49 41514.11 41799.68 17718.47 41420.74 40764.59 39298.48 21310.95 41217.09 41156.66 40011.01 40755.94 404
wuyk23d20.37 37720.84 38018.99 39265.34 40827.73 41550.43 4037.67 4169.50 4098.01 4106.34 4106.13 41426.24 40923.40 41010.69 4082.99 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.02 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.43 37631.24 3790.00 3930.00 4160.00 4180.00 40498.09 2010.00 4110.00 41299.67 9683.37 2470.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.60 37910.13 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41291.20 1540.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.28 37811.04 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.40 1250.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.97 28686.10 321
FOURS199.92 3197.66 8599.95 5398.36 16395.58 8799.52 60
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.92 3198.57 5698.52 10492.34 21199.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
RE-MVS-def98.13 5199.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
9.1498.38 3499.87 5199.91 8498.33 17093.22 17199.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15297.66 21
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
GSMVS99.59 134
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 134
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37459.23 40893.20 11197.74 26791.06 256
test_post63.35 40594.43 6998.13 247
patchmatchnet-post91.70 37095.12 5097.95 258
MTMP99.87 10696.49 344
gm-plane-assit96.97 24893.76 22291.47 23798.96 16598.79 19194.92 188
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13193.90 15199.71 3599.86 2695.88 3799.85 108
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13199.63 4499.85 108
test_prior498.05 6899.94 69
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
旧先验299.46 21694.21 13499.85 999.95 6996.96 157
新几何299.40 220
旧先验199.76 6697.52 8998.64 7699.85 3095.63 4199.94 5499.99 23
无先验99.49 21198.71 6693.46 163100.00 194.36 20399.99 23
原ACMM299.90 91
test22299.55 8697.41 9899.34 23098.55 9891.86 22499.27 8199.83 4393.84 9499.95 4999.99 23
testdata299.99 3690.54 269
segment_acmp96.68 25
testdata199.28 24096.35 71
plane_prior795.71 29391.59 280
plane_prior695.76 28791.72 27580.47 275
plane_prior597.87 22398.37 22897.79 13389.55 25494.52 264
plane_prior498.59 201
plane_prior391.64 27896.63 5693.01 227
plane_prior299.84 12696.38 67
plane_prior195.73 290
plane_prior91.74 27299.86 11896.76 5289.59 253
n20.00 417
nn0.00 417
door-mid89.69 401
test1198.44 123
door90.31 398
HQP5-MVS91.85 268
HQP-NCC95.78 28399.87 10696.82 4893.37 223
ACMP_Plane95.78 28399.87 10696.82 4893.37 223
BP-MVS97.92 125
HQP4-MVS93.37 22398.39 22294.53 262
HQP3-MVS97.89 22189.60 251
HQP2-MVS80.65 271
NP-MVS95.77 28691.79 27098.65 196
MDTV_nov1_ep13_2view96.26 13696.11 36891.89 22398.06 13494.40 7194.30 20599.67 117
MDTV_nov1_ep1395.69 15297.90 19494.15 21195.98 37198.44 12393.12 17497.98 13695.74 29595.10 5198.58 20690.02 27796.92 182
ACMMP++_ref87.04 288
ACMMP++88.23 276
Test By Simon92.82 122