This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 21100.00 193.81 22699.94 5599.98 51
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 14100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 34100.00 199.74 33100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 24100.00 199.75 31100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 135100.00 199.99 5100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13596.48 6399.80 1799.93 1197.44 14100.00 199.92 1399.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 27100.00 1100.00 1100.00 1100.00 1
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18299.96 6599.89 1799.43 11599.98 51
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12797.48 2799.64 4399.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 12099.99 3699.94 1199.41 11799.95 74
MVS96.60 14295.56 16699.72 1396.85 26899.22 2098.31 33398.94 4191.57 23890.90 26399.61 10686.66 23099.96 6597.36 15399.88 7399.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 17100.00 199.54 42100.00 1100.00 1
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19099.44 1997.33 3199.00 9799.72 8494.03 9799.98 4798.73 90100.00 1100.00 1
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 12199.71 8687.80 21499.95 7399.75 3199.38 11899.83 94
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9397.56 2599.44 6699.85 3395.38 51100.00 199.31 5499.99 2199.87 90
HY-MVS92.50 797.79 8497.17 10299.63 1798.98 12299.32 997.49 35599.52 1495.69 8698.32 13397.41 25293.32 11599.77 13198.08 12695.75 21799.81 97
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11998.38 16393.19 17699.77 2799.94 495.54 46100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25198.47 11998.14 1099.08 9299.91 1493.09 124100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS98.10 6697.60 8299.60 2298.92 13099.28 1799.89 10299.52 1495.58 8998.24 13899.39 13093.33 11499.74 13797.98 13295.58 22099.78 103
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 13099.71 3599.86 2995.94 3899.85 11199.69 3899.98 3299.99 23
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5498.43 13595.35 9598.03 14399.75 7294.03 9799.98 4798.11 12399.83 7799.99 23
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7198.34 17396.38 6999.81 1599.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8198.44 12792.06 22598.40 13099.84 4495.68 44100.00 198.19 11899.71 8899.97 61
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12298.37 16694.68 11599.53 5899.83 4692.87 130100.00 198.66 9599.84 7699.99 23
3Dnovator+91.53 1196.31 15595.24 17499.52 2896.88 26798.64 5499.72 17298.24 18995.27 9888.42 31498.98 16482.76 26399.94 8197.10 16099.83 7799.96 67
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15997.20 3899.46 6499.85 3395.53 4899.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9398.21 19393.53 16599.81 1599.89 2294.70 7199.86 11099.84 2299.93 6199.96 67
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13999.24 14492.58 13999.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 40100.00 199.51 43100.00 1100.00 1
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10898.33 17493.97 15099.76 2899.87 2794.99 6299.75 13598.55 100100.00 199.98 51
131496.84 12995.96 15099.48 3496.74 27598.52 5898.31 33398.86 5395.82 8289.91 27498.98 16487.49 21899.96 6597.80 14099.73 8799.96 67
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6799.75 13599.98 3299.99 23
新几何199.42 3799.75 6998.27 6498.63 8192.69 19899.55 5599.82 4994.40 79100.00 191.21 26299.94 5599.99 23
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14998.38 16396.73 5699.88 699.74 7994.89 6499.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10898.36 16794.08 14399.74 3199.73 8194.08 9599.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sasdasda97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
canonicalmvs97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
MP-MVS-pluss98.07 6797.64 8099.38 4299.74 7098.41 6399.74 16198.18 19793.35 17096.45 18899.85 3392.64 13699.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MGCFI-Net97.00 12196.22 13899.34 4398.86 13898.80 3999.67 18497.30 29094.31 13397.77 15399.41 12786.36 23499.50 15898.38 10993.90 24699.72 110
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 7899.39 23198.28 18395.76 8497.18 16999.88 2492.74 134100.00 198.67 9399.88 7399.99 23
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7999.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8299.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
alignmvs97.81 8197.33 9499.25 4698.77 14498.66 5199.99 498.44 12794.40 12998.41 12899.47 11993.65 10899.42 16798.57 9994.26 24099.67 118
thres20096.96 12396.21 13999.22 4898.97 12398.84 3699.85 12299.71 793.17 17796.26 19498.88 17989.87 19099.51 15694.26 21694.91 23199.31 187
test_yl97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
DCV-MVSNet97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
tfpn200view996.79 13195.99 14499.19 5198.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.27 193
thres100view90096.74 13695.92 15499.18 5298.90 13598.77 4299.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.84 22394.57 23499.27 193
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8599.98 1598.44 12796.85 4999.80 1799.91 1497.57 899.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
sss97.57 9397.03 10799.18 5298.37 17198.04 7199.73 16899.38 2293.46 16798.76 11199.06 15591.21 16399.89 9996.33 17497.01 18999.62 130
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9099.94 7198.44 12794.31 13398.50 12499.82 4993.06 12599.99 3698.30 11599.99 2199.93 79
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9199.93 7898.39 15994.04 14898.80 10699.74 7992.98 127100.00 198.16 12099.76 8599.93 79
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20898.17 19897.34 2999.85 999.85 3391.20 16499.89 9999.41 5199.67 9098.69 230
thres40096.78 13395.99 14499.16 5798.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.16 200
XVS98.70 2998.55 2899.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7099.78 6294.34 8499.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22392.06 25699.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7041.37 42494.34 8499.96 6598.92 7699.95 5099.99 23
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9999.95 5498.61 8394.77 11099.31 7899.85 3394.22 90100.00 198.70 9199.98 3299.98 51
thres600view796.69 13995.87 15799.14 6198.90 13598.78 4199.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.44 23594.50 23799.16 200
114514_t97.41 10296.83 11599.14 6199.51 9497.83 8099.89 10298.27 18588.48 31199.06 9499.66 9990.30 18599.64 15196.32 17599.97 4299.96 67
PAPM98.60 3398.42 3499.14 6196.05 28898.96 2699.90 9399.35 2496.68 5898.35 13299.66 9996.45 3398.51 22099.45 4899.89 7099.96 67
VNet97.21 11096.57 12899.13 6598.97 12397.82 8199.03 27599.21 2994.31 13399.18 8798.88 17986.26 23599.89 9998.93 7594.32 23899.69 115
balanced_conf0398.27 5697.99 6299.11 6698.64 15398.43 6299.47 21997.79 23894.56 11899.74 3198.35 22294.33 8699.25 17199.12 6199.96 4699.64 124
QAPM95.40 18194.17 20399.10 6796.92 26297.71 8599.40 22798.68 7189.31 28988.94 30298.89 17882.48 26499.96 6593.12 24299.83 7799.62 130
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
3Dnovator91.47 1296.28 15895.34 17199.08 7096.82 27097.47 9899.45 22498.81 6195.52 9289.39 28999.00 16181.97 26799.95 7397.27 15599.83 7799.84 93
region2R98.54 3698.37 3999.05 7199.96 897.18 10899.96 3598.55 9994.87 10899.45 6599.85 3394.07 96100.00 198.67 93100.00 199.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10899.95 5498.60 8594.77 11099.31 7899.84 4493.73 106100.00 198.70 9199.98 3299.98 51
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11399.73 16898.23 19197.02 4599.18 8799.90 1894.54 7699.99 3699.77 2899.90 6999.99 23
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11199.95 5498.39 15994.70 11498.26 13799.81 5391.84 158100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11399.98 1598.80 6390.78 26699.62 4799.78 6295.30 52100.00 199.80 2599.93 6199.99 23
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14798.66 5199.52 21098.08 21197.05 4399.86 799.86 2990.65 17799.71 14199.39 5398.63 14698.69 230
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10899.93 7899.90 196.81 5498.67 11599.77 6493.92 9999.89 9999.27 5699.94 5599.96 67
MVSMamba_PlusPlus97.83 7797.45 8898.99 7898.60 15598.15 6599.58 19997.74 24190.34 27599.26 8398.32 22594.29 8899.23 17299.03 7099.89 7099.58 143
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11699.75 15899.50 1793.90 15699.37 7599.76 6693.24 120100.00 197.75 14799.96 4699.98 51
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10599.95 5498.42 14797.50 2699.52 6099.88 2497.43 1699.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12099.95 5498.38 16395.04 10198.61 11999.80 5493.39 111100.00 198.64 96100.00 199.98 51
原ACMM198.96 8299.73 7396.99 11798.51 11094.06 14699.62 4799.85 3394.97 6399.96 6595.11 19199.95 5099.92 84
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32499.42 2197.03 4499.02 9699.09 15299.35 298.21 25399.73 3599.78 8499.77 104
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11599.84 12798.35 16994.92 10599.32 7799.80 5493.35 11399.78 12899.30 5599.95 5099.96 67
CNLPA97.76 8697.38 9198.92 8599.53 9196.84 12299.87 10898.14 20793.78 15996.55 18699.69 9092.28 14899.98 4797.13 15899.44 11499.93 79
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13099.97 2898.39 15994.43 12598.90 10199.87 2794.30 87100.00 199.04 6799.99 2199.99 23
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12999.97 2897.92 22798.07 1198.76 11199.55 11395.00 6199.94 8199.91 1697.68 17299.99 23
PVSNet_Blended97.94 6997.64 8098.83 8899.59 8596.99 117100.00 199.10 3195.38 9498.27 13599.08 15389.00 20499.95 7399.12 6199.25 12499.57 145
BP-MVS198.33 5298.18 5198.81 8997.44 23797.98 7499.96 3598.17 19894.88 10798.77 10899.59 10797.59 799.08 18698.24 11698.93 13799.36 179
test_fmvsmconf_n98.43 4698.32 4398.78 9098.12 19396.41 13899.99 498.83 6098.22 799.67 3999.64 10291.11 16899.94 8199.67 3999.62 9599.98 51
APD-MVS_3200maxsize98.25 6098.08 5998.78 9099.81 6096.60 13199.82 13798.30 18193.95 15299.37 7599.77 6492.84 13199.76 13498.95 7399.92 6499.97 61
EPNet98.49 4098.40 3598.77 9299.62 8496.80 12599.90 9399.51 1697.60 2299.20 8499.36 13393.71 10799.91 9297.99 13098.71 14599.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GDP-MVS97.88 7297.59 8498.75 9397.59 22997.81 8299.95 5497.37 28294.44 12499.08 9299.58 11097.13 2399.08 18694.99 19498.17 15999.37 177
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9399.83 5796.59 13399.40 22798.51 11095.29 9798.51 12399.76 6693.60 11099.71 14198.53 10399.52 10599.95 74
SR-MVS-dyc-post98.31 5398.17 5298.71 9599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7293.28 11899.78 12898.90 7999.92 6499.97 61
PAPM_NR98.12 6597.93 6998.70 9699.94 1396.13 15499.82 13798.43 13594.56 11897.52 15799.70 8894.40 7999.98 4797.00 16299.98 3299.99 23
HPM-MVS_fast97.80 8297.50 8698.68 9799.79 6296.42 13799.88 10598.16 20391.75 23598.94 9999.54 11591.82 15999.65 15097.62 15099.99 2199.99 23
HPM-MVScopyleft97.96 6897.72 7698.68 9799.84 5696.39 14199.90 9398.17 19892.61 20398.62 11899.57 11291.87 15799.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu97.27 10796.81 11698.66 9998.81 14196.67 12899.92 8198.64 7794.51 12096.38 19298.49 21389.05 20399.88 10597.10 16098.34 15299.43 171
ACMMPcopyleft97.74 8797.44 8998.66 9999.92 3196.13 15499.18 25699.45 1894.84 10996.41 19199.71 8691.40 16199.99 3697.99 13098.03 16799.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n97.74 8797.44 8998.64 10195.76 29996.20 15099.94 7198.05 21498.17 998.89 10299.42 12387.65 21699.90 9499.50 4499.60 10199.82 95
lupinMVS97.85 7597.60 8298.62 10297.28 25097.70 8799.99 497.55 26195.50 9399.43 6899.67 9790.92 17298.71 20998.40 10899.62 9599.45 168
MVS_Test96.46 14795.74 15998.61 10398.18 18797.23 10699.31 24197.15 30691.07 25798.84 10397.05 26588.17 21298.97 19094.39 21197.50 17599.61 134
CANet_DTU96.76 13496.15 14098.60 10498.78 14397.53 9299.84 12797.63 24997.25 3799.20 8499.64 10281.36 27599.98 4792.77 24698.89 13898.28 239
EI-MVSNet-UG-set98.14 6497.99 6298.60 10499.80 6196.27 14499.36 23698.50 11695.21 9998.30 13499.75 7293.29 11799.73 14098.37 11199.30 12299.81 97
thisisatest051597.41 10297.02 10898.59 10697.71 22197.52 9399.97 2898.54 10291.83 23197.45 16099.04 15697.50 999.10 18594.75 20496.37 20199.16 200
test250697.53 9497.19 10098.58 10798.66 15096.90 12198.81 30199.77 594.93 10397.95 14598.96 16892.51 14199.20 17794.93 19698.15 16099.64 124
CPTT-MVS97.64 9297.32 9598.58 10799.97 395.77 16499.96 3598.35 16989.90 28398.36 13199.79 5891.18 16799.99 3698.37 11199.99 2199.99 23
xiu_mvs_v1_base_debu97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base_debi97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
GG-mvs-BLEND98.54 11298.21 18498.01 7293.87 39598.52 10797.92 14697.92 24099.02 397.94 27198.17 11999.58 10299.67 118
baseline195.78 16994.86 18798.54 11298.47 16698.07 6999.06 26897.99 21792.68 19994.13 22898.62 20393.28 11898.69 21193.79 22885.76 30498.84 221
MVS_111021_LR98.42 4798.38 3798.53 11499.39 9995.79 16399.87 10899.86 296.70 5798.78 10799.79 5892.03 15499.90 9499.17 6099.86 7599.88 88
ab-mvs94.69 20093.42 22498.51 11598.07 19496.26 14596.49 37498.68 7190.31 27694.54 21997.00 26776.30 32499.71 14195.98 18093.38 25299.56 146
AdaColmapbinary97.23 10996.80 11798.51 11599.99 195.60 17599.09 26198.84 5993.32 17296.74 18199.72 8486.04 236100.00 198.01 12899.43 11599.94 78
gg-mvs-nofinetune93.51 23591.86 26198.47 11797.72 21997.96 7792.62 39998.51 11074.70 40197.33 16469.59 41598.91 497.79 27597.77 14599.56 10399.67 118
API-MVS97.86 7497.66 7998.47 11799.52 9295.41 18299.47 21998.87 5291.68 23698.84 10399.85 3392.34 14799.99 3698.44 10799.96 46100.00 1
PVSNet91.05 1397.13 11396.69 12398.45 11999.52 9295.81 16299.95 5499.65 1294.73 11299.04 9599.21 14684.48 25199.95 7394.92 19798.74 14499.58 143
DeepC-MVS94.51 496.92 12796.40 13398.45 11999.16 11195.90 16099.66 18598.06 21296.37 7294.37 22399.49 11883.29 26099.90 9497.63 14999.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 18694.10 20498.43 12198.55 15995.99 15897.91 35097.31 28990.35 27489.48 28899.22 14585.19 24499.89 9990.40 28398.47 15099.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testdata98.42 12299.47 9695.33 18598.56 9393.78 15999.79 2599.85 3393.64 10999.94 8194.97 19599.94 55100.00 1
Test_1112_low_res95.72 17094.83 18898.42 12297.79 21196.41 13899.65 18696.65 35292.70 19792.86 24496.13 29692.15 15199.30 16991.88 25693.64 24899.55 147
1112_ss96.01 16495.20 17698.42 12297.80 21096.41 13899.65 18696.66 35192.71 19692.88 24399.40 12892.16 15099.30 16991.92 25593.66 24799.55 147
jason97.24 10896.86 11498.38 12595.73 30297.32 10299.97 2897.40 27995.34 9698.60 12099.54 11587.70 21598.56 21797.94 13399.47 11099.25 195
jason: jason.
OpenMVScopyleft90.15 1594.77 19893.59 21898.33 12696.07 28797.48 9799.56 20498.57 9090.46 27186.51 33898.95 17378.57 30699.94 8193.86 22299.74 8697.57 256
test_fmvsmconf0.01_n96.39 15195.74 15998.32 12791.47 37995.56 17699.84 12797.30 29097.74 1897.89 14899.35 13479.62 29499.85 11199.25 5799.24 12599.55 147
LFMVS94.75 19993.56 22098.30 12899.03 11795.70 16998.74 30697.98 21987.81 32298.47 12599.39 13067.43 37199.53 15398.01 12895.20 22999.67 118
UBG97.84 7697.69 7898.29 12998.38 16996.59 13399.90 9398.53 10593.91 15598.52 12198.42 22096.77 2599.17 18098.54 10196.20 20299.11 206
UA-Net96.54 14495.96 15098.27 13098.23 18295.71 16898.00 34898.45 12293.72 16298.41 12899.27 13988.71 20899.66 14991.19 26397.69 17199.44 170
ETV-MVS97.92 7197.80 7598.25 13198.14 19196.48 13599.98 1597.63 24995.61 8899.29 8199.46 12192.55 14098.82 19899.02 7198.54 14899.46 166
thisisatest053097.10 11496.72 12198.22 13297.60 22896.70 12699.92 8198.54 10291.11 25597.07 17298.97 16697.47 1299.03 18893.73 23196.09 20598.92 216
ETVMVS97.03 12096.64 12498.20 13398.67 14997.12 11299.89 10298.57 9091.10 25698.17 14098.59 20493.86 10398.19 25495.64 18695.24 22899.28 192
Effi-MVS+96.30 15695.69 16198.16 13497.85 20796.26 14597.41 35797.21 29990.37 27398.65 11798.58 20786.61 23198.70 21097.11 15997.37 18099.52 157
TESTMET0.1,196.74 13696.26 13698.16 13497.36 24396.48 13599.96 3598.29 18291.93 22895.77 20698.07 23395.54 4698.29 24590.55 27898.89 13899.70 113
IB-MVS92.85 694.99 19193.94 21098.16 13497.72 21995.69 17199.99 498.81 6194.28 13692.70 24596.90 26995.08 5699.17 18096.07 17873.88 38399.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FA-MVS(test-final)95.86 16695.09 18098.15 13797.74 21495.62 17496.31 37898.17 19891.42 24796.26 19496.13 29690.56 18099.47 16592.18 25197.07 18599.35 182
MAR-MVS97.43 9797.19 10098.15 13799.47 9694.79 20499.05 27298.76 6492.65 20198.66 11699.82 4988.52 20999.98 4798.12 12299.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1197.48 9697.27 9698.10 13998.36 17296.02 15799.92 8198.45 12293.45 16998.15 14198.70 19495.48 4999.22 17397.85 13895.05 23099.07 210
diffmvspermissive97.00 12196.64 12498.09 14097.64 22696.17 15399.81 13997.19 30094.67 11698.95 9899.28 13686.43 23298.76 20398.37 11197.42 17899.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPMVS96.53 14596.01 14398.09 14098.43 16796.12 15696.36 37699.43 2093.53 16597.64 15595.04 34194.41 7898.38 23691.13 26498.11 16399.75 106
testing22297.08 11996.75 11998.06 14298.56 15696.82 12399.85 12298.61 8392.53 20998.84 10398.84 18893.36 11298.30 24495.84 18394.30 23999.05 211
PLCcopyleft95.54 397.93 7097.89 7298.05 14399.82 5894.77 20599.92 8198.46 12193.93 15397.20 16799.27 13995.44 5099.97 5797.41 15299.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D95.84 16895.11 17998.02 14499.85 5495.10 19598.74 30698.50 11687.22 32993.66 23299.86 2987.45 21999.95 7390.94 27099.81 8399.02 213
testing9197.16 11296.90 11197.97 14598.35 17495.67 17299.91 8798.42 14792.91 18697.33 16498.72 19294.81 6699.21 17496.98 16494.63 23399.03 212
testing9997.17 11196.91 11097.95 14698.35 17495.70 16999.91 8798.43 13592.94 18497.36 16398.72 19294.83 6599.21 17497.00 16294.64 23298.95 215
MVSFormer96.94 12496.60 12697.95 14697.28 25097.70 8799.55 20697.27 29591.17 25299.43 6899.54 11590.92 17296.89 32394.67 20799.62 9599.25 195
PatchMatch-RL96.04 16395.40 16897.95 14699.59 8595.22 19199.52 21099.07 3493.96 15196.49 18798.35 22282.28 26599.82 12390.15 28699.22 12798.81 223
RRT-MVS96.24 16095.68 16397.94 14997.65 22594.92 19999.27 24997.10 31192.79 19397.43 16197.99 23781.85 26999.37 16898.46 10698.57 14799.53 155
test_fmvsm_n_192098.44 4498.61 2797.92 15099.27 10695.18 193100.00 198.90 4798.05 1299.80 1799.73 8192.64 13699.99 3699.58 4199.51 10898.59 233
tttt051796.85 12896.49 13097.92 15097.48 23695.89 16199.85 12298.54 10290.72 26896.63 18398.93 17797.47 1299.02 18993.03 24395.76 21698.85 220
test_fmvsmvis_n_192097.67 9197.59 8497.91 15297.02 25795.34 18499.95 5498.45 12297.87 1597.02 17399.59 10789.64 19299.98 4799.41 5199.34 12198.42 236
DP-MVS94.54 20593.42 22497.91 15299.46 9894.04 22298.93 28697.48 27181.15 38290.04 27199.55 11387.02 22599.95 7388.97 29698.11 16399.73 108
casdiffmvs_mvgpermissive96.43 14895.94 15297.89 15497.44 23795.47 17899.86 11997.29 29393.35 17096.03 19899.19 14785.39 24298.72 20897.89 13797.04 18799.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.18 18694.31 20097.80 15598.17 18895.23 19099.76 15497.53 26592.52 21094.27 22699.25 14376.84 31798.80 19990.89 27299.54 10499.35 182
EC-MVSNet97.38 10497.24 9797.80 15597.41 23995.64 17399.99 497.06 31794.59 11799.63 4499.32 13589.20 20298.14 25698.76 8899.23 12699.62 130
FE-MVS95.70 17495.01 18497.79 15798.21 18494.57 20695.03 39098.69 6988.90 30197.50 15996.19 29392.60 13899.49 16389.99 28897.94 16999.31 187
test-LLR96.47 14696.04 14297.78 15897.02 25795.44 17999.96 3598.21 19394.07 14495.55 20896.38 28693.90 10198.27 24990.42 28198.83 14299.64 124
test-mter96.39 15195.93 15397.78 15897.02 25795.44 17999.96 3598.21 19391.81 23395.55 20896.38 28695.17 5398.27 24990.42 28198.83 14299.64 124
fmvsm_s_conf0.5_n_a97.73 8997.72 7697.77 16098.63 15494.26 21799.96 3598.92 4697.18 3999.75 2999.69 9087.00 22699.97 5799.46 4798.89 13899.08 209
casdiffmvspermissive96.42 15095.97 14997.77 16097.30 24894.98 19699.84 12797.09 31493.75 16196.58 18599.26 14285.07 24598.78 20197.77 14597.04 18799.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS97.53 9497.46 8797.76 16298.04 19694.84 20199.98 1597.61 25594.41 12897.90 14799.59 10792.40 14598.87 19598.04 12799.13 13099.59 137
baseline96.43 14895.98 14697.76 16297.34 24495.17 19499.51 21297.17 30393.92 15496.90 17699.28 13685.37 24398.64 21497.50 15196.86 19399.46 166
cascas94.64 20393.61 21597.74 16497.82 20996.26 14599.96 3597.78 24085.76 34794.00 22997.54 24976.95 31699.21 17497.23 15695.43 22397.76 251
SPE-MVS-test97.88 7297.94 6897.70 16599.28 10595.20 19299.98 1597.15 30695.53 9199.62 4799.79 5892.08 15398.38 23698.75 8999.28 12399.52 157
fmvsm_s_conf0.5_n97.80 8297.85 7397.67 16699.06 11594.41 21199.98 1598.97 4097.34 2999.63 4499.69 9087.27 22199.97 5799.62 4099.06 13398.62 232
test_cas_vis1_n_192096.59 14396.23 13797.65 16798.22 18394.23 21899.99 497.25 29797.77 1799.58 5499.08 15377.10 31299.97 5797.64 14899.45 11398.74 227
ET-MVSNet_ETH3D94.37 21393.28 23097.64 16898.30 17697.99 7399.99 497.61 25594.35 13071.57 40199.45 12296.23 3595.34 37196.91 16985.14 31199.59 137
CHOSEN 1792x268896.81 13096.53 12997.64 16898.91 13493.07 24699.65 18699.80 395.64 8795.39 21198.86 18484.35 25399.90 9496.98 16499.16 12899.95 74
fmvsm_s_conf0.1_n_a97.09 11696.90 11197.63 17095.65 30994.21 21999.83 13498.50 11696.27 7499.65 4199.64 10284.72 24899.93 8899.04 6798.84 14198.74 227
UGNet95.33 18494.57 19397.62 17198.55 15994.85 20098.67 31499.32 2695.75 8596.80 18096.27 29172.18 34999.96 6594.58 20999.05 13498.04 244
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n97.30 10597.21 9997.60 17297.38 24194.40 21399.90 9398.64 7796.47 6599.51 6299.65 10184.99 24799.93 8899.22 5899.09 13298.46 234
mvsany_test197.82 8097.90 7197.55 17398.77 14493.04 24999.80 14397.93 22496.95 4899.61 5399.68 9690.92 17299.83 12199.18 5998.29 15799.80 99
mvsmamba96.94 12496.73 12097.55 17397.99 19894.37 21499.62 19397.70 24393.13 17998.42 12797.92 24088.02 21398.75 20598.78 8699.01 13599.52 157
mvs_anonymous95.65 17695.03 18397.53 17598.19 18695.74 16699.33 23897.49 27090.87 26190.47 26797.10 26188.23 21197.16 30295.92 18197.66 17399.68 116
Fast-Effi-MVS+95.02 19094.19 20297.52 17697.88 20494.55 20799.97 2897.08 31588.85 30394.47 22297.96 23984.59 25098.41 22889.84 29097.10 18499.59 137
ECVR-MVScopyleft95.66 17595.05 18297.51 17798.66 15093.71 23198.85 29898.45 12294.93 10396.86 17798.96 16875.22 33599.20 17795.34 18898.15 16099.64 124
TR-MVS94.54 20593.56 22097.49 17897.96 20094.34 21598.71 30997.51 26890.30 27794.51 22198.69 19575.56 33098.77 20292.82 24595.99 20799.35 182
Vis-MVSNetpermissive95.72 17095.15 17897.45 17997.62 22794.28 21699.28 24798.24 18994.27 13896.84 17898.94 17579.39 29698.76 20393.25 23698.49 14999.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet96.29 15795.90 15597.45 17998.13 19294.80 20399.08 26397.61 25592.02 22795.54 21098.96 16890.64 17898.08 26093.73 23197.41 17999.47 165
CS-MVS97.79 8497.91 7097.43 18199.10 11394.42 21099.99 497.10 31195.07 10099.68 3899.75 7292.95 12898.34 24098.38 10999.14 12999.54 151
OMC-MVS97.28 10697.23 9897.41 18299.76 6693.36 24499.65 18697.95 22296.03 7997.41 16299.70 8889.61 19399.51 15696.73 17198.25 15899.38 175
MSDG94.37 21393.36 22897.40 18398.88 13793.95 22699.37 23497.38 28085.75 34990.80 26499.17 14984.11 25599.88 10586.35 32798.43 15198.36 238
PatchmatchNetpermissive95.94 16595.45 16797.39 18497.83 20894.41 21196.05 38398.40 15692.86 18797.09 17095.28 33494.21 9298.07 26289.26 29498.11 16399.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test111195.57 17794.98 18597.37 18598.56 15693.37 24398.86 29698.45 12294.95 10296.63 18398.95 17375.21 33699.11 18395.02 19398.14 16299.64 124
baseline296.71 13896.49 13097.37 18595.63 31195.96 15999.74 16198.88 5192.94 18491.61 25598.97 16697.72 698.62 21594.83 20198.08 16697.53 257
HyFIR lowres test96.66 14196.43 13297.36 18799.05 11693.91 22799.70 17999.80 390.54 27096.26 19498.08 23292.15 15198.23 25296.84 17095.46 22199.93 79
Vis-MVSNet (Re-imp)96.32 15495.98 14697.35 18897.93 20294.82 20299.47 21998.15 20691.83 23195.09 21599.11 15191.37 16297.47 28793.47 23497.43 17699.74 107
SDMVSNet94.80 19593.96 20997.33 18998.92 13095.42 18199.59 19798.99 3792.41 21492.55 24797.85 24375.81 32998.93 19497.90 13691.62 25997.64 252
SCA94.69 20093.81 21497.33 18997.10 25394.44 20898.86 29698.32 17693.30 17396.17 19795.59 31276.48 32297.95 26991.06 26697.43 17699.59 137
CSCG97.10 11497.04 10697.27 19199.89 4591.92 27599.90 9399.07 3488.67 30795.26 21499.82 4993.17 12399.98 4798.15 12199.47 11099.90 86
RPMNet89.76 31887.28 33497.19 19296.29 28192.66 25892.01 40298.31 17870.19 40896.94 17485.87 40787.25 22299.78 12862.69 40995.96 20899.13 204
tpmrst96.27 15995.98 14697.13 19397.96 20093.15 24596.34 37798.17 19892.07 22398.71 11495.12 33893.91 10098.73 20694.91 19996.62 19499.50 162
CDS-MVSNet96.34 15396.07 14197.13 19397.37 24294.96 19799.53 20997.91 22891.55 23995.37 21298.32 22595.05 5897.13 30593.80 22795.75 21799.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet94.79 19694.02 20797.11 19597.87 20593.79 22894.24 39198.16 20390.07 27996.43 18994.48 35990.29 18698.19 25487.44 31397.23 18199.36 179
UWE-MVS96.79 13196.72 12197.00 19698.51 16393.70 23299.71 17598.60 8592.96 18397.09 17098.34 22496.67 3198.85 19792.11 25296.50 19798.44 235
GeoE94.36 21593.48 22296.99 19797.29 24993.54 23799.96 3596.72 34988.35 31493.43 23398.94 17582.05 26698.05 26388.12 30896.48 19999.37 177
EPP-MVSNet96.69 13996.60 12696.96 19897.74 21493.05 24899.37 23498.56 9388.75 30595.83 20599.01 15996.01 3698.56 21796.92 16897.20 18399.25 195
dp95.05 18994.43 19596.91 19997.99 19892.73 25696.29 37997.98 21989.70 28695.93 20194.67 35493.83 10598.45 22586.91 32696.53 19699.54 151
TAPA-MVS92.12 894.42 21193.60 21796.90 20099.33 10291.78 27999.78 14698.00 21689.89 28494.52 22099.47 11991.97 15599.18 17969.90 39799.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
F-COLMAP96.93 12696.95 10996.87 20199.71 7691.74 28099.85 12297.95 22293.11 18195.72 20799.16 15092.35 14699.94 8195.32 18999.35 12098.92 216
GA-MVS93.83 22392.84 23696.80 20295.73 30293.57 23599.88 10597.24 29892.57 20792.92 24196.66 27878.73 30497.67 28087.75 31194.06 24399.17 199
CostFormer96.10 16195.88 15696.78 20397.03 25692.55 26297.08 36597.83 23690.04 28198.72 11394.89 34895.01 6098.29 24596.54 17395.77 21599.50 162
VDDNet93.12 24491.91 25996.76 20496.67 27892.65 26098.69 31298.21 19382.81 37597.75 15499.28 13661.57 39299.48 16498.09 12594.09 24298.15 241
PMMVS96.76 13496.76 11896.76 20498.28 17992.10 27099.91 8797.98 21994.12 14199.53 5899.39 13086.93 22798.73 20696.95 16797.73 17099.45 168
PVSNet_BlendedMVS96.05 16295.82 15896.72 20699.59 8596.99 11799.95 5499.10 3194.06 14698.27 13595.80 30389.00 20499.95 7399.12 6187.53 29693.24 355
BH-w/o95.71 17295.38 17096.68 20798.49 16592.28 26699.84 12797.50 26992.12 22292.06 25398.79 18984.69 24998.67 21395.29 19099.66 9199.09 207
EPNet_dtu95.71 17295.39 16996.66 20898.92 13093.41 24199.57 20298.90 4796.19 7797.52 15798.56 20992.65 13597.36 28977.89 37898.33 15399.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS95.85 16795.58 16596.65 20997.07 25493.50 23899.17 25797.82 23791.39 24995.02 21698.01 23492.20 14997.30 29593.75 23095.83 21499.14 203
h-mvs3394.92 19294.36 19796.59 21098.85 13991.29 29198.93 28698.94 4195.90 8098.77 10898.42 22090.89 17599.77 13197.80 14070.76 38998.72 229
Anonymous2024052992.10 26790.65 27996.47 21198.82 14090.61 30598.72 30898.67 7475.54 39893.90 23198.58 20766.23 37599.90 9494.70 20690.67 26298.90 219
tpm cat193.51 23592.52 24996.47 21197.77 21291.47 29096.13 38198.06 21280.98 38392.91 24293.78 36889.66 19198.87 19587.03 32296.39 20099.09 207
nrg03093.51 23592.53 24896.45 21394.36 33097.20 10799.81 13997.16 30591.60 23789.86 27697.46 25086.37 23397.68 27995.88 18280.31 35294.46 279
MVSTER95.53 17895.22 17596.45 21398.56 15697.72 8499.91 8797.67 24692.38 21691.39 25797.14 25997.24 1897.30 29594.80 20287.85 29194.34 292
Anonymous20240521193.10 24591.99 25796.40 21599.10 11389.65 32498.88 29297.93 22483.71 36794.00 22998.75 19168.79 36299.88 10595.08 19291.71 25899.68 116
tpmvs94.28 21793.57 21996.40 21598.55 15991.50 28995.70 38998.55 9987.47 32492.15 25094.26 36491.42 16098.95 19388.15 30695.85 21398.76 225
PVSNet_088.03 1991.80 27490.27 28896.38 21798.27 18090.46 30999.94 7199.61 1393.99 14986.26 34497.39 25471.13 35699.89 9998.77 8767.05 40098.79 224
tpm295.47 17995.18 17796.35 21896.91 26391.70 28496.96 36897.93 22488.04 31898.44 12695.40 32393.32 11597.97 26694.00 21995.61 21999.38 175
reproduce_monomvs95.38 18295.07 18196.32 21999.32 10496.60 13199.76 15498.85 5696.65 5987.83 32096.05 30099.52 198.11 25896.58 17281.07 34494.25 297
VDD-MVS93.77 22792.94 23596.27 22098.55 15990.22 31498.77 30597.79 23890.85 26296.82 17999.42 12361.18 39499.77 13198.95 7394.13 24198.82 222
BH-untuned95.18 18694.83 18896.22 22198.36 17291.22 29299.80 14397.32 28890.91 26091.08 26098.67 19683.51 25798.54 21994.23 21799.61 9998.92 216
VPA-MVSNet92.70 25491.55 26696.16 22295.09 31796.20 15098.88 29299.00 3691.02 25991.82 25495.29 33376.05 32897.96 26895.62 18781.19 33994.30 293
FIs94.10 21993.43 22396.11 22394.70 32496.82 12399.58 19998.93 4592.54 20889.34 29197.31 25587.62 21797.10 30894.22 21886.58 30094.40 285
Patchmatch-test92.65 25791.50 26796.10 22496.85 26890.49 30891.50 40497.19 30082.76 37690.23 26895.59 31295.02 5998.00 26577.41 38096.98 19099.82 95
FMVSNet392.69 25591.58 26495.99 22598.29 17797.42 10099.26 25097.62 25289.80 28589.68 28095.32 32981.62 27396.27 35087.01 32385.65 30594.29 294
WBMVS94.52 20894.03 20695.98 22698.38 16996.68 12799.92 8197.63 24990.75 26789.64 28495.25 33596.77 2596.90 32294.35 21483.57 32394.35 290
MonoMVSNet94.82 19394.43 19595.98 22694.54 32790.73 30199.03 27597.06 31793.16 17893.15 23895.47 32088.29 21097.57 28397.85 13891.33 26199.62 130
CR-MVSNet93.45 23892.62 24295.94 22896.29 28192.66 25892.01 40296.23 36392.62 20296.94 17493.31 37391.04 16996.03 36079.23 37095.96 20899.13 204
UniMVSNet (Re)93.07 24692.13 25395.88 22994.84 32196.24 14999.88 10598.98 3892.49 21289.25 29395.40 32387.09 22497.14 30493.13 24178.16 36394.26 295
XXY-MVS91.82 27090.46 28295.88 22993.91 33895.40 18398.87 29597.69 24588.63 30987.87 31997.08 26274.38 34297.89 27291.66 25884.07 32094.35 290
VPNet91.81 27190.46 28295.85 23194.74 32395.54 17798.98 27998.59 8792.14 22190.77 26597.44 25168.73 36497.54 28594.89 20077.89 36594.46 279
test_vis1_n_192095.44 18095.31 17295.82 23298.50 16488.74 33499.98 1597.30 29097.84 1699.85 999.19 14766.82 37399.97 5798.82 8399.46 11298.76 225
FC-MVSNet-test93.81 22593.15 23295.80 23394.30 33296.20 15099.42 22698.89 4992.33 21889.03 30197.27 25787.39 22096.83 32893.20 23786.48 30194.36 287
sd_testset93.55 23492.83 23795.74 23498.92 13090.89 29998.24 33798.85 5692.41 21492.55 24797.85 24371.07 35798.68 21293.93 22091.62 25997.64 252
NR-MVSNet91.56 27990.22 28995.60 23594.05 33595.76 16598.25 33698.70 6891.16 25480.78 37596.64 28083.23 26196.57 33891.41 26077.73 36794.46 279
patch_mono-298.24 6199.12 595.59 23699.67 8186.91 35699.95 5498.89 4997.60 2299.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
miper_enhance_ethall94.36 21593.98 20895.49 23798.68 14895.24 18999.73 16897.29 29393.28 17489.86 27695.97 30194.37 8397.05 31192.20 25084.45 31694.19 302
UniMVSNet_NR-MVSNet92.95 24892.11 25495.49 23794.61 32695.28 18799.83 13499.08 3391.49 24089.21 29696.86 27287.14 22396.73 33293.20 23777.52 36894.46 279
DU-MVS92.46 26091.45 26995.49 23794.05 33595.28 18799.81 13998.74 6592.25 22089.21 29696.64 28081.66 27196.73 33293.20 23777.52 36894.46 279
WR-MVS92.31 26391.25 27195.48 24094.45 32995.29 18699.60 19698.68 7190.10 27888.07 31796.89 27080.68 28496.80 33093.14 24079.67 35694.36 287
dcpmvs_297.42 10198.09 5895.42 24199.58 8987.24 35299.23 25296.95 32994.28 13698.93 10099.73 8194.39 8299.16 18299.89 1799.82 8199.86 92
FMVSNet291.02 28889.56 30295.41 24297.53 23295.74 16698.98 27997.41 27887.05 33088.43 31295.00 34471.34 35396.24 35285.12 33785.21 31094.25 297
test_vis1_n93.61 23393.03 23495.35 24395.86 29486.94 35499.87 10896.36 36196.85 4999.54 5798.79 18952.41 40499.83 12198.64 9698.97 13699.29 191
AUN-MVS93.28 23992.60 24395.34 24498.29 17790.09 31799.31 24198.56 9391.80 23496.35 19398.00 23589.38 19698.28 24792.46 24769.22 39497.64 252
cl2293.77 22793.25 23195.33 24599.49 9594.43 20999.61 19598.09 20990.38 27289.16 29995.61 31090.56 18097.34 29191.93 25484.45 31694.21 301
hse-mvs294.38 21294.08 20595.31 24698.27 18090.02 31899.29 24698.56 9395.90 8098.77 10898.00 23590.89 17598.26 25197.80 14069.20 39597.64 252
MVS-HIRNet86.22 34283.19 35595.31 24696.71 27790.29 31292.12 40197.33 28762.85 40986.82 33370.37 41469.37 36197.49 28675.12 38897.99 16898.15 241
PatchT90.38 30388.75 31995.25 24895.99 29090.16 31591.22 40697.54 26376.80 39397.26 16686.01 40691.88 15696.07 35966.16 40595.91 21299.51 160
pmmvs492.10 26791.07 27595.18 24992.82 36194.96 19799.48 21896.83 34187.45 32588.66 30796.56 28483.78 25696.83 32889.29 29384.77 31493.75 340
MIMVSNet90.30 30688.67 32095.17 25096.45 28091.64 28692.39 40097.15 30685.99 34490.50 26693.19 37566.95 37294.86 37982.01 35893.43 25099.01 214
XVG-OURS-SEG-HR94.79 19694.70 19295.08 25198.05 19589.19 32899.08 26397.54 26393.66 16394.87 21799.58 11078.78 30399.79 12697.31 15493.40 25196.25 266
XVG-OURS94.82 19394.74 19195.06 25298.00 19789.19 32899.08 26397.55 26194.10 14294.71 21899.62 10580.51 28799.74 13796.04 17993.06 25696.25 266
v2v48291.30 28190.07 29595.01 25393.13 35093.79 22899.77 14997.02 32188.05 31789.25 29395.37 32780.73 28397.15 30387.28 31780.04 35594.09 315
AllTest92.48 25991.64 26295.00 25499.01 11888.43 34098.94 28496.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
TestCases95.00 25499.01 11888.43 34096.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
JIA-IIPM91.76 27790.70 27894.94 25696.11 28687.51 34993.16 39898.13 20875.79 39797.58 15677.68 41292.84 13197.97 26688.47 30396.54 19599.33 185
HQP-MVS94.61 20494.50 19494.92 25795.78 29591.85 27699.87 10897.89 22996.82 5193.37 23498.65 19980.65 28598.39 23297.92 13489.60 26494.53 274
v114491.09 28789.83 29694.87 25893.25 34993.69 23399.62 19396.98 32686.83 33689.64 28494.99 34580.94 28097.05 31185.08 33881.16 34093.87 334
HQP_MVS94.49 20994.36 19794.87 25895.71 30591.74 28099.84 12797.87 23196.38 6993.01 23998.59 20480.47 28998.37 23897.79 14389.55 26794.52 276
TranMVSNet+NR-MVSNet91.68 27890.61 28194.87 25893.69 34293.98 22599.69 18098.65 7591.03 25888.44 31096.83 27680.05 29296.18 35390.26 28576.89 37694.45 284
kuosan93.17 24292.60 24394.86 26198.40 16889.54 32698.44 32698.53 10584.46 36288.49 30897.92 24090.57 17997.05 31183.10 35093.49 24997.99 245
miper_ehance_all_eth93.16 24392.60 24394.82 26297.57 23093.56 23699.50 21497.07 31688.75 30588.85 30395.52 31690.97 17196.74 33190.77 27484.45 31694.17 303
V4291.28 28390.12 29494.74 26393.42 34793.46 23999.68 18297.02 32187.36 32689.85 27895.05 34081.31 27797.34 29187.34 31680.07 35493.40 350
EI-MVSNet93.73 22993.40 22794.74 26396.80 27192.69 25799.06 26897.67 24688.96 29891.39 25799.02 15788.75 20797.30 29591.07 26587.85 29194.22 299
v119290.62 29989.25 30994.72 26593.13 35093.07 24699.50 21497.02 32186.33 34189.56 28795.01 34279.22 29897.09 31082.34 35681.16 34094.01 321
v890.54 30089.17 31094.66 26693.43 34693.40 24299.20 25496.94 33385.76 34787.56 32494.51 35781.96 26897.19 30184.94 33978.25 36293.38 352
test0.0.03 193.86 22293.61 21594.64 26795.02 32092.18 26999.93 7898.58 8894.07 14487.96 31898.50 21293.90 10194.96 37681.33 36193.17 25396.78 261
PS-MVSNAJss93.64 23293.31 22994.61 26892.11 37092.19 26899.12 25997.38 28092.51 21188.45 30996.99 26891.20 16497.29 29894.36 21287.71 29394.36 287
tt080591.28 28390.18 29194.60 26996.26 28387.55 34898.39 33198.72 6689.00 29589.22 29598.47 21762.98 38798.96 19290.57 27788.00 29097.28 258
v14419290.79 29489.52 30494.59 27093.11 35392.77 25299.56 20496.99 32486.38 34089.82 27994.95 34780.50 28897.10 30883.98 34480.41 35093.90 331
tpm93.70 23193.41 22694.58 27195.36 31587.41 35097.01 36696.90 33690.85 26296.72 18294.14 36590.40 18396.84 32690.75 27588.54 28399.51 160
v1090.25 30888.82 31794.57 27293.53 34493.43 24099.08 26396.87 33985.00 35687.34 33094.51 35780.93 28197.02 31882.85 35279.23 35793.26 354
CLD-MVS94.06 22093.90 21194.55 27396.02 28990.69 30299.98 1597.72 24296.62 6291.05 26298.85 18777.21 31198.47 22198.11 12389.51 26994.48 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl____92.31 26391.58 26494.52 27497.33 24692.77 25299.57 20296.78 34686.97 33487.56 32495.51 31789.43 19596.62 33688.60 29982.44 33094.16 308
c3_l92.53 25891.87 26094.52 27497.40 24092.99 25099.40 22796.93 33487.86 32088.69 30695.44 32189.95 18996.44 34390.45 28080.69 34994.14 312
v192192090.46 30189.12 31194.50 27692.96 35792.46 26399.49 21696.98 32686.10 34389.61 28695.30 33078.55 30797.03 31682.17 35780.89 34894.01 321
UniMVSNet_ETH3D90.06 31388.58 32194.49 27794.67 32588.09 34597.81 35397.57 26083.91 36688.44 31097.41 25257.44 39897.62 28291.41 26088.59 28297.77 250
DIV-MVS_self_test92.32 26291.60 26394.47 27897.31 24792.74 25499.58 19996.75 34786.99 33387.64 32295.54 31489.55 19496.50 34088.58 30082.44 33094.17 303
test_djsdf92.83 25192.29 25294.47 27891.90 37392.46 26399.55 20697.27 29591.17 25289.96 27296.07 29981.10 27896.89 32394.67 20788.91 27394.05 318
OPM-MVS93.21 24092.80 23894.44 28093.12 35290.85 30099.77 14997.61 25596.19 7791.56 25698.65 19975.16 33798.47 22193.78 22989.39 27093.99 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v124090.20 30988.79 31894.44 28093.05 35592.27 26799.38 23296.92 33585.89 34589.36 29094.87 34977.89 31097.03 31680.66 36481.08 34394.01 321
IterMVS-LS92.69 25592.11 25494.43 28296.80 27192.74 25499.45 22496.89 33788.98 29689.65 28395.38 32688.77 20696.34 34790.98 26982.04 33394.22 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp91.79 27690.92 27694.41 28390.76 38592.93 25198.93 28697.17 30389.08 29187.46 32795.30 33078.43 30996.92 32192.38 24888.73 27893.39 351
test_fmvs195.35 18395.68 16394.36 28498.99 12184.98 36699.96 3596.65 35297.60 2299.73 3398.96 16871.58 35299.93 8898.31 11499.37 11998.17 240
tfpnnormal89.29 32587.61 33294.34 28594.35 33194.13 22198.95 28398.94 4183.94 36484.47 35695.51 31774.84 33897.39 28877.05 38380.41 35091.48 378
CP-MVSNet91.23 28590.22 28994.26 28693.96 33792.39 26599.09 26198.57 9088.95 29986.42 34196.57 28379.19 29996.37 34590.29 28478.95 35894.02 319
COLMAP_ROBcopyleft90.47 1492.18 26691.49 26894.25 28799.00 12088.04 34698.42 33096.70 35082.30 37888.43 31299.01 15976.97 31599.85 11186.11 33196.50 19794.86 273
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax91.92 26991.18 27294.15 28891.35 38090.95 29799.00 27897.42 27692.61 20387.38 32897.08 26272.46 34897.36 28994.53 21088.77 27794.13 313
WR-MVS_H91.30 28190.35 28594.15 28894.17 33492.62 26199.17 25798.94 4188.87 30286.48 34094.46 36184.36 25296.61 33788.19 30578.51 36193.21 356
Anonymous2023121189.86 31688.44 32394.13 29098.93 12790.68 30398.54 32198.26 18676.28 39486.73 33495.54 31470.60 35897.56 28490.82 27380.27 35394.15 309
GBi-Net90.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
test190.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
FMVSNet188.50 33086.64 33794.08 29195.62 31291.97 27198.43 32796.95 32983.00 37386.08 34694.72 35059.09 39696.11 35581.82 36084.07 32094.17 303
LTVRE_ROB88.28 1890.29 30789.05 31494.02 29495.08 31890.15 31697.19 36197.43 27484.91 35983.99 35997.06 26474.00 34498.28 24784.08 34287.71 29393.62 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 32487.81 33094.01 29593.40 34891.93 27498.62 31796.48 35986.25 34283.86 36096.14 29573.68 34597.04 31486.16 33075.73 38193.04 359
mvs_tets91.81 27191.08 27494.00 29691.63 37790.58 30698.67 31497.43 27492.43 21387.37 32997.05 26571.76 35097.32 29394.75 20488.68 27994.11 314
PS-CasMVS90.63 29889.51 30593.99 29793.83 33991.70 28498.98 27998.52 10788.48 31186.15 34596.53 28575.46 33196.31 34988.83 29778.86 36093.95 327
ACMM91.95 1092.88 25092.52 24993.98 29895.75 30189.08 33299.77 14997.52 26793.00 18289.95 27397.99 23776.17 32698.46 22493.63 23388.87 27594.39 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs1_n94.25 21894.36 19793.92 29997.68 22283.70 37399.90 9396.57 35597.40 2899.67 3998.88 17961.82 39199.92 9198.23 11799.13 13098.14 243
v14890.70 29589.63 30093.92 29992.97 35690.97 29499.75 15896.89 33787.51 32388.27 31595.01 34281.67 27097.04 31487.40 31577.17 37393.75 340
DeepPCF-MVS95.94 297.71 9098.98 1293.92 29999.63 8381.76 38699.96 3598.56 9399.47 199.19 8699.99 194.16 94100.00 199.92 1399.93 61100.00 1
CVMVSNet94.68 20294.94 18693.89 30296.80 27186.92 35599.06 26898.98 3894.45 12194.23 22799.02 15785.60 23895.31 37290.91 27195.39 22499.43 171
eth_miper_zixun_eth92.41 26191.93 25893.84 30397.28 25090.68 30398.83 29996.97 32888.57 31089.19 29895.73 30789.24 20196.69 33489.97 28981.55 33694.15 309
ACMP92.05 992.74 25392.42 25193.73 30495.91 29388.72 33599.81 13997.53 26594.13 14087.00 33298.23 22874.07 34398.47 22196.22 17788.86 27693.99 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n89.65 32088.29 32593.72 30592.22 36890.56 30799.07 26797.10 31185.42 35486.73 33494.72 35080.06 29197.13 30581.14 36278.12 36493.49 348
LPG-MVS_test92.96 24792.71 24193.71 30695.43 31388.67 33699.75 15897.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
LGP-MVS_train93.71 30695.43 31388.67 33697.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
KD-MVS_2432*160088.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
miper_refine_blended88.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
ACMH89.72 1790.64 29789.63 30093.66 31095.64 31088.64 33898.55 31997.45 27289.03 29381.62 37097.61 24769.75 36098.41 22889.37 29287.62 29593.92 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS90.19 31089.06 31393.57 31193.06 35490.90 29899.06 26898.47 11988.11 31685.91 34796.30 29076.67 31895.94 36387.07 32076.91 37593.89 332
myMVS_eth3d94.46 21094.76 19093.55 31297.68 22290.97 29499.71 17598.35 16990.79 26492.10 25198.67 19692.46 14493.09 39487.13 31995.95 21096.59 264
ADS-MVSNet293.80 22693.88 21293.55 31297.87 20585.94 36094.24 39196.84 34090.07 27996.43 18994.48 35990.29 18695.37 37087.44 31397.23 18199.36 179
pmmvs590.17 31189.09 31293.40 31492.10 37189.77 32399.74 16195.58 37885.88 34687.24 33195.74 30573.41 34696.48 34188.54 30183.56 32493.95 327
dmvs_re93.20 24193.15 23293.34 31596.54 27983.81 37298.71 30998.51 11091.39 24992.37 24998.56 20978.66 30597.83 27493.89 22189.74 26398.38 237
Patchmtry89.70 31988.49 32293.33 31696.24 28489.94 32291.37 40596.23 36378.22 39187.69 32193.31 37391.04 16996.03 36080.18 36882.10 33294.02 319
Fast-Effi-MVS+-dtu93.72 23093.86 21393.29 31797.06 25586.16 35899.80 14396.83 34192.66 20092.58 24697.83 24581.39 27497.67 28089.75 29196.87 19296.05 271
D2MVS92.76 25292.59 24793.27 31895.13 31689.54 32699.69 18099.38 2292.26 21987.59 32394.61 35685.05 24697.79 27591.59 25988.01 28992.47 368
WB-MVSnew92.90 24992.77 24093.26 31996.95 26193.63 23499.71 17598.16 20391.49 24094.28 22598.14 23081.33 27696.48 34179.47 36995.46 22189.68 395
ppachtmachnet_test89.58 32188.35 32493.25 32092.40 36690.44 31099.33 23896.73 34885.49 35285.90 34895.77 30481.09 27996.00 36276.00 38782.49 32993.30 353
TransMVSNet (Re)87.25 33885.28 34593.16 32193.56 34391.03 29398.54 32194.05 40083.69 36881.09 37396.16 29475.32 33296.40 34476.69 38468.41 39692.06 372
our_test_390.39 30289.48 30793.12 32292.40 36689.57 32599.33 23896.35 36287.84 32185.30 35094.99 34584.14 25496.09 35880.38 36584.56 31593.71 345
IterMVS90.91 29090.17 29293.12 32296.78 27490.42 31198.89 29097.05 32089.03 29386.49 33995.42 32276.59 32095.02 37487.22 31884.09 31993.93 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC90.00 31488.96 31593.10 32494.81 32288.16 34498.71 30995.54 37993.66 16383.75 36197.20 25865.58 37798.31 24383.96 34587.49 29792.85 362
miper_lstm_enhance91.81 27191.39 27093.06 32597.34 24489.18 33099.38 23296.79 34586.70 33787.47 32695.22 33690.00 18895.86 36488.26 30481.37 33894.15 309
testing393.92 22194.23 20192.99 32697.54 23190.23 31399.99 499.16 3090.57 26991.33 25998.63 20292.99 12692.52 39882.46 35495.39 22496.22 269
IterMVS-SCA-FT90.85 29390.16 29392.93 32796.72 27689.96 31998.89 29096.99 32488.95 29986.63 33695.67 30876.48 32295.00 37587.04 32184.04 32293.84 336
DTE-MVSNet89.40 32388.24 32692.88 32892.66 36389.95 32099.10 26098.22 19287.29 32785.12 35296.22 29276.27 32595.30 37383.56 34875.74 38093.41 349
dongtai91.55 28091.13 27392.82 32998.16 18986.35 35799.47 21998.51 11083.24 37085.07 35397.56 24890.33 18494.94 37776.09 38691.73 25797.18 259
Baseline_NR-MVSNet90.33 30589.51 30592.81 33092.84 35989.95 32099.77 14993.94 40184.69 36189.04 30095.66 30981.66 27196.52 33990.99 26876.98 37491.97 374
ACMH+89.98 1690.35 30489.54 30392.78 33195.99 29086.12 35998.81 30197.18 30289.38 28883.14 36397.76 24668.42 36698.43 22689.11 29586.05 30393.78 339
XVG-ACMP-BASELINE91.22 28690.75 27792.63 33293.73 34185.61 36198.52 32397.44 27392.77 19489.90 27596.85 27366.64 37498.39 23292.29 24988.61 28093.89 332
ITE_SJBPF92.38 33395.69 30885.14 36495.71 37492.81 19089.33 29298.11 23170.23 35998.42 22785.91 33388.16 28893.59 347
MVP-Stereo90.93 28990.45 28492.37 33491.25 38288.76 33398.05 34796.17 36587.27 32884.04 35795.30 33078.46 30897.27 30083.78 34699.70 8991.09 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu94.53 20795.30 17392.22 33597.77 21282.54 37999.59 19797.06 31794.92 10595.29 21395.37 32785.81 23797.89 27294.80 20297.07 18596.23 268
MDA-MVSNet_test_wron85.51 34683.32 35492.10 33690.96 38388.58 33999.20 25496.52 35779.70 38857.12 41492.69 37779.11 30093.86 38877.10 38277.46 37093.86 335
YYNet185.50 34783.33 35392.00 33790.89 38488.38 34399.22 25396.55 35679.60 38957.26 41392.72 37679.09 30293.78 38977.25 38177.37 37193.84 336
TinyColmap87.87 33786.51 33891.94 33895.05 31985.57 36297.65 35494.08 39884.40 36381.82 36996.85 27362.14 39098.33 24180.25 36786.37 30291.91 375
testgi89.01 32788.04 32891.90 33993.49 34584.89 36799.73 16895.66 37693.89 15885.14 35198.17 22959.68 39594.66 38177.73 37988.88 27496.16 270
MVStest185.03 35082.76 35991.83 34092.95 35889.16 33198.57 31894.82 39071.68 40668.54 40695.11 33983.17 26295.66 36674.69 38965.32 40390.65 385
MDA-MVSNet-bldmvs84.09 35781.52 36491.81 34191.32 38188.00 34798.67 31495.92 37080.22 38655.60 41593.32 37268.29 36793.60 39173.76 39076.61 37793.82 338
ttmdpeth88.23 33387.06 33691.75 34289.91 39287.35 35198.92 28995.73 37387.92 31984.02 35896.31 28968.23 36896.84 32686.33 32876.12 37891.06 380
MS-PatchMatch90.65 29690.30 28791.71 34394.22 33385.50 36398.24 33797.70 24388.67 30786.42 34196.37 28867.82 36998.03 26483.62 34799.62 9591.60 376
LCM-MVSNet-Re92.31 26392.60 24391.43 34497.53 23279.27 39699.02 27791.83 41192.07 22380.31 37694.38 36283.50 25895.48 36897.22 15797.58 17499.54 151
TDRefinement84.76 35282.56 36091.38 34574.58 41884.80 36997.36 35894.56 39584.73 36080.21 37796.12 29863.56 38498.39 23287.92 30963.97 40690.95 383
pmmvs685.69 34383.84 35091.26 34690.00 39184.41 37097.82 35296.15 36675.86 39681.29 37295.39 32561.21 39396.87 32583.52 34973.29 38492.50 367
SixPastTwentyTwo88.73 32888.01 32990.88 34791.85 37482.24 38198.22 34095.18 38788.97 29782.26 36696.89 27071.75 35196.67 33584.00 34382.98 32593.72 344
FMVSNet588.32 33187.47 33390.88 34796.90 26688.39 34297.28 35995.68 37582.60 37784.67 35592.40 38179.83 29391.16 40376.39 38581.51 33793.09 357
mmtdpeth88.52 32987.75 33190.85 34995.71 30583.47 37598.94 28494.85 38988.78 30497.19 16889.58 39263.29 38598.97 19098.54 10162.86 40890.10 391
OurMVSNet-221017-089.81 31789.48 30790.83 35091.64 37681.21 38898.17 34295.38 38291.48 24285.65 34997.31 25572.66 34797.29 29888.15 30684.83 31393.97 326
mvs5depth84.87 35182.90 35890.77 35185.59 40384.84 36891.10 40793.29 40683.14 37185.07 35394.33 36362.17 38997.32 29378.83 37572.59 38790.14 390
lessismore_v090.53 35290.58 38680.90 39195.80 37177.01 39095.84 30266.15 37696.95 31983.03 35175.05 38293.74 343
test_040285.58 34483.94 34990.50 35393.81 34085.04 36598.55 31995.20 38676.01 39579.72 38095.13 33764.15 38396.26 35166.04 40686.88 29990.21 389
K. test v388.05 33487.24 33590.47 35491.82 37582.23 38298.96 28297.42 27689.05 29276.93 39195.60 31168.49 36595.42 36985.87 33481.01 34693.75 340
LF4IMVS89.25 32688.85 31690.45 35592.81 36281.19 38998.12 34394.79 39191.44 24486.29 34397.11 26065.30 38098.11 25888.53 30285.25 30992.07 371
mamv495.24 18596.90 11190.25 35698.65 15272.11 40398.28 33597.64 24889.99 28295.93 20198.25 22794.74 6899.11 18399.01 7299.64 9299.53 155
pmmvs-eth3d84.03 35881.97 36290.20 35784.15 40587.09 35398.10 34594.73 39383.05 37274.10 39987.77 40165.56 37894.01 38581.08 36369.24 39389.49 398
UnsupCasMVSNet_eth85.52 34583.99 34790.10 35889.36 39483.51 37496.65 37297.99 21789.14 29075.89 39593.83 36763.25 38693.92 38681.92 35967.90 39992.88 361
OpenMVS_ROBcopyleft79.82 2083.77 36081.68 36390.03 35988.30 39782.82 37698.46 32495.22 38573.92 40376.00 39491.29 38555.00 40096.94 32068.40 40088.51 28490.34 387
EG-PatchMatch MVS85.35 34883.81 35189.99 36090.39 38781.89 38498.21 34196.09 36781.78 38074.73 39793.72 36951.56 40697.12 30779.16 37388.61 28090.96 382
Patchmatch-RL test86.90 33985.98 34389.67 36184.45 40475.59 39989.71 41092.43 40886.89 33577.83 38890.94 38794.22 9093.63 39087.75 31169.61 39199.79 100
EU-MVSNet90.14 31290.34 28689.54 36292.55 36481.06 39098.69 31298.04 21591.41 24886.59 33796.84 27580.83 28293.31 39386.20 32981.91 33494.26 295
test_vis1_rt86.87 34086.05 34289.34 36396.12 28578.07 39799.87 10883.54 42292.03 22678.21 38689.51 39345.80 40899.91 9296.25 17693.11 25590.03 392
new_pmnet84.49 35682.92 35789.21 36490.03 39082.60 37896.89 37095.62 37780.59 38475.77 39689.17 39465.04 38194.79 38072.12 39481.02 34590.23 388
Anonymous2024052185.15 34983.81 35189.16 36588.32 39682.69 37798.80 30395.74 37279.72 38781.53 37190.99 38665.38 37994.16 38472.69 39281.11 34290.63 386
Anonymous2023120686.32 34185.42 34489.02 36689.11 39580.53 39499.05 27295.28 38385.43 35382.82 36493.92 36674.40 34193.44 39266.99 40281.83 33593.08 358
RPSCF91.80 27492.79 23988.83 36798.15 19069.87 40598.11 34496.60 35483.93 36594.33 22499.27 13979.60 29599.46 16691.99 25393.16 25497.18 259
UnsupCasMVSNet_bld79.97 37177.03 37688.78 36885.62 40281.98 38393.66 39697.35 28375.51 39970.79 40283.05 40948.70 40794.91 37878.31 37760.29 41289.46 399
MIMVSNet182.58 36280.51 36888.78 36886.68 40084.20 37196.65 37295.41 38178.75 39078.59 38492.44 37851.88 40589.76 40665.26 40778.95 35892.38 370
test_fmvs289.47 32289.70 29988.77 37094.54 32775.74 39899.83 13494.70 39494.71 11391.08 26096.82 27754.46 40197.78 27792.87 24488.27 28692.80 363
CL-MVSNet_self_test84.50 35583.15 35688.53 37186.00 40181.79 38598.82 30097.35 28385.12 35583.62 36290.91 38876.66 31991.40 40269.53 39860.36 41192.40 369
DSMNet-mixed88.28 33288.24 32688.42 37289.64 39375.38 40098.06 34689.86 41585.59 35188.20 31692.14 38376.15 32791.95 40178.46 37696.05 20697.92 246
KD-MVS_self_test83.59 36182.06 36188.20 37386.93 39980.70 39297.21 36096.38 36082.87 37482.49 36588.97 39567.63 37092.32 39973.75 39162.30 41091.58 377
Syy-MVS90.00 31490.63 28088.11 37497.68 22274.66 40199.71 17598.35 16990.79 26492.10 25198.67 19679.10 30193.09 39463.35 40895.95 21096.59 264
pmmvs380.27 36877.77 37387.76 37580.32 41382.43 38098.23 33991.97 41072.74 40578.75 38287.97 40057.30 39990.99 40470.31 39662.37 40989.87 393
test20.0384.72 35483.99 34786.91 37688.19 39880.62 39398.88 29295.94 36988.36 31378.87 38194.62 35568.75 36389.11 40766.52 40475.82 37991.00 381
new-patchmatchnet81.19 36479.34 37186.76 37782.86 40880.36 39597.92 34995.27 38482.09 37972.02 40086.87 40362.81 38890.74 40571.10 39563.08 40789.19 401
EGC-MVSNET69.38 37563.76 38586.26 37890.32 38881.66 38796.24 38093.85 4020.99 4253.22 42692.33 38252.44 40392.92 39659.53 41284.90 31284.21 406
PM-MVS80.47 36778.88 37285.26 37983.79 40772.22 40295.89 38791.08 41285.71 35076.56 39388.30 39736.64 41293.90 38782.39 35569.57 39289.66 397
mvsany_test382.12 36381.14 36585.06 38081.87 40970.41 40497.09 36492.14 40991.27 25177.84 38788.73 39639.31 41195.49 36790.75 27571.24 38889.29 400
test_method80.79 36679.70 37084.08 38192.83 36067.06 40799.51 21295.42 38054.34 41381.07 37493.53 37044.48 40992.22 40078.90 37477.23 37292.94 360
CMPMVSbinary61.59 2184.75 35385.14 34683.57 38290.32 38862.54 41096.98 36797.59 25974.33 40269.95 40396.66 27864.17 38298.32 24287.88 31088.41 28589.84 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.23 38377.17 41662.61 40987.38 41294.55 39676.72 39286.65 40430.16 41396.36 34684.85 34069.86 39090.73 384
DeepMVS_CXcopyleft82.92 38495.98 29258.66 41596.01 36892.72 19578.34 38595.51 31758.29 39798.08 26082.57 35385.29 30892.03 373
APD_test181.15 36580.92 36681.86 38592.45 36559.76 41496.04 38493.61 40473.29 40477.06 38996.64 28044.28 41096.16 35472.35 39382.52 32889.67 396
test_f78.40 37277.59 37480.81 38680.82 41162.48 41196.96 36893.08 40783.44 36974.57 39884.57 40827.95 41792.63 39784.15 34172.79 38687.32 405
test_fmvs379.99 37080.17 36979.45 38784.02 40662.83 40899.05 27293.49 40588.29 31580.06 37986.65 40428.09 41688.00 40888.63 29873.27 38587.54 404
N_pmnet80.06 36980.78 36777.89 38891.94 37245.28 42698.80 30356.82 42878.10 39280.08 37893.33 37177.03 31395.76 36568.14 40182.81 32692.64 364
dmvs_testset83.79 35986.07 34176.94 38992.14 36948.60 42496.75 37190.27 41489.48 28778.65 38398.55 21179.25 29786.65 41266.85 40382.69 32795.57 272
LCM-MVSNet67.77 38064.73 38376.87 39062.95 42456.25 41789.37 41193.74 40344.53 41661.99 40880.74 41020.42 42386.53 41369.37 39959.50 41387.84 402
PMMVS267.15 38164.15 38476.14 39170.56 42162.07 41293.89 39487.52 41958.09 41060.02 40978.32 41122.38 42084.54 41459.56 41147.03 41681.80 409
test_vis3_rt68.82 37666.69 38175.21 39276.24 41760.41 41396.44 37568.71 42775.13 40050.54 41869.52 41616.42 42696.32 34880.27 36666.92 40168.89 414
WB-MVS76.28 37377.28 37573.29 39381.18 41054.68 41897.87 35194.19 39781.30 38169.43 40490.70 38977.02 31482.06 41635.71 42168.11 39883.13 407
Gipumacopyleft66.95 38265.00 38272.79 39491.52 37867.96 40666.16 41795.15 38847.89 41558.54 41267.99 41729.74 41487.54 41150.20 41677.83 36662.87 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf168.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
APD_test268.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
SSC-MVS75.42 37476.40 37772.49 39780.68 41253.62 41997.42 35694.06 39980.42 38568.75 40590.14 39176.54 32181.66 41733.25 42266.34 40282.19 408
tmp_tt65.23 38362.94 38672.13 39844.90 42750.03 42381.05 41489.42 41838.45 41748.51 41999.90 1854.09 40278.70 41991.84 25718.26 42187.64 403
FPMVS68.72 37768.72 37868.71 39965.95 42244.27 42895.97 38694.74 39251.13 41453.26 41690.50 39025.11 41983.00 41560.80 41080.97 34778.87 412
ANet_high56.10 38452.24 38767.66 40049.27 42656.82 41683.94 41382.02 42370.47 40733.28 42364.54 41817.23 42569.16 42145.59 41823.85 42077.02 413
MVEpermissive53.74 2251.54 38747.86 39162.60 40159.56 42550.93 42079.41 41577.69 42435.69 42036.27 42261.76 4215.79 43069.63 42037.97 42036.61 41767.24 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 38551.34 38960.97 40240.80 42834.68 42974.82 41689.62 41737.55 41828.67 42472.12 4137.09 42881.63 41843.17 41968.21 39766.59 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 38652.18 38852.67 40371.51 41945.40 42593.62 39776.60 42536.01 41943.50 42064.13 41927.11 41867.31 42231.06 42326.06 41845.30 421
EMVS51.44 38851.22 39052.11 40470.71 42044.97 42794.04 39375.66 42635.34 42142.40 42161.56 42228.93 41565.87 42327.64 42424.73 41945.49 420
test12337.68 39039.14 39333.31 40519.94 42924.83 43198.36 3329.75 43015.53 42351.31 41787.14 40219.62 42417.74 42547.10 4173.47 42457.36 418
testmvs40.60 38944.45 39229.05 40619.49 43014.11 43299.68 18218.47 42920.74 42264.59 40798.48 21610.95 42717.09 42656.66 41511.01 42255.94 419
wuyk23d20.37 39220.84 39518.99 40765.34 42327.73 43050.43 4187.67 4319.50 4248.01 4256.34 4256.13 42926.24 42423.40 42510.69 4232.99 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.02 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.43 39131.24 3940.00 4080.00 4310.00 4330.00 41998.09 2090.00 4260.00 42799.67 9783.37 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.60 39410.13 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42791.20 1640.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.28 39311.04 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.40 1280.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.97 29486.10 332
FOURS199.92 3197.66 8999.95 5498.36 16795.58 8999.52 60
PC_three_145296.96 4799.80 1799.79 5897.49 10100.00 199.99 599.98 32100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 10
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.92 3198.57 5698.52 10792.34 21799.31 7899.83 4695.06 5799.80 12499.70 3799.97 42
RE-MVS-def98.13 5599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7292.95 12898.90 7999.92 6499.97 61
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 27100.00 1
9.1498.38 3799.87 5199.91 8798.33 17493.22 17599.78 2699.89 2294.57 7599.85 11199.84 2299.97 42
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 19
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6999.59 137
sam_mvs94.25 89
MTGPAbinary98.28 183
test_post195.78 38859.23 42393.20 12297.74 27891.06 266
test_post63.35 42094.43 7798.13 257
patchmatchnet-post91.70 38495.12 5497.95 269
MTMP99.87 10896.49 358
gm-plane-assit96.97 26093.76 23091.47 24398.96 16898.79 20094.92 197
test9_res99.71 3699.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15699.71 3599.86 2995.88 4199.85 111
test_899.92 3198.88 3299.96 3598.43 13594.35 13099.69 3799.85 3395.94 3899.85 111
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
test_prior498.05 7099.94 71
test_prior299.95 5495.78 8399.73 3399.76 6696.00 3799.78 27100.00 1
旧先验299.46 22394.21 13999.85 999.95 7396.96 166
新几何299.40 227
旧先验199.76 6697.52 9398.64 7799.85 3395.63 4599.94 5599.99 23
无先验99.49 21698.71 6793.46 167100.00 194.36 21299.99 23
原ACMM299.90 93
test22299.55 9097.41 10199.34 23798.55 9991.86 23099.27 8299.83 4693.84 10499.95 5099.99 23
testdata299.99 3690.54 279
segment_acmp96.68 29
testdata199.28 24796.35 73
plane_prior795.71 30591.59 288
plane_prior695.76 29991.72 28380.47 289
plane_prior597.87 23198.37 23897.79 14389.55 26794.52 276
plane_prior498.59 204
plane_prior391.64 28696.63 6093.01 239
plane_prior299.84 12796.38 69
plane_prior195.73 302
plane_prior91.74 28099.86 11996.76 5589.59 266
n20.00 432
nn0.00 432
door-mid89.69 416
test1198.44 127
door90.31 413
HQP5-MVS91.85 276
HQP-NCC95.78 29599.87 10896.82 5193.37 234
ACMP_Plane95.78 29599.87 10896.82 5193.37 234
BP-MVS97.92 134
HQP4-MVS93.37 23498.39 23294.53 274
HQP3-MVS97.89 22989.60 264
HQP2-MVS80.65 285
NP-MVS95.77 29891.79 27898.65 199
MDTV_nov1_ep13_2view96.26 14596.11 38291.89 22998.06 14294.40 7994.30 21599.67 118
MDTV_nov1_ep1395.69 16197.90 20394.15 22095.98 38598.44 12793.12 18097.98 14495.74 30595.10 5598.58 21690.02 28796.92 191
ACMMP++_ref87.04 298
ACMMP++88.23 287
Test By Simon92.82 133