This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1298.26 196.26 9895.09 199.15 796.98 3493.39 1496.45 2498.79 890.17 1099.99 189.33 12399.25 699.70 3
OPU-MVS97.30 299.19 792.31 399.12 1198.54 2092.06 399.84 1299.11 299.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4699.81 2198.08 1498.81 2499.43 11
MVS90.60 10188.64 12696.50 594.25 15890.53 893.33 28297.21 2277.59 28978.88 23397.31 9271.52 19999.69 4989.60 11898.03 5499.27 20
DELS-MVS94.98 1394.49 2396.44 696.42 9590.59 799.21 497.02 3294.40 891.46 8697.08 10483.32 4799.69 4992.83 7998.70 3099.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2397.10 3095.17 392.11 7898.46 2687.33 2499.97 297.21 2899.31 499.63 7
MM96.15 889.50 999.18 598.10 895.68 196.64 2097.92 5880.72 6199.80 2599.16 197.96 5699.15 24
PS-MVSNAJ94.17 2893.52 3996.10 995.65 11392.35 298.21 4495.79 15192.42 2196.24 2698.18 3871.04 20499.17 9596.77 3397.39 7596.79 154
xiu_mvs_v2_base93.92 3393.26 4395.91 1095.07 13192.02 698.19 4595.68 15792.06 2596.01 3098.14 4270.83 20798.96 10996.74 3596.57 9496.76 157
MVS_030495.36 995.20 1695.85 1194.89 13889.22 1298.83 2597.88 1194.68 495.14 3897.99 5280.80 6099.81 2198.60 697.95 5798.50 50
MG-MVS94.25 2793.72 3395.85 1199.38 389.35 1197.98 5998.09 989.99 5192.34 7496.97 10881.30 5898.99 10788.54 12998.88 2099.20 22
CANet94.89 1594.64 2195.63 1397.55 7588.12 1699.06 1696.39 10694.07 1095.34 3497.80 6776.83 11799.87 897.08 3097.64 6698.89 30
WTY-MVS92.65 5891.68 7395.56 1496.00 10588.90 1398.23 4397.65 1488.57 6989.82 11097.22 9879.29 7599.06 10489.57 11988.73 17898.73 39
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2299.06 1697.12 2894.66 596.79 1698.78 986.42 2999.95 397.59 2399.18 799.00 27
canonicalmvs92.27 6591.22 7995.41 1695.80 11088.31 1497.09 12994.64 21488.49 7192.99 6997.31 9272.68 18598.57 12793.38 7188.58 17999.36 16
HY-MVS84.06 691.63 7790.37 9695.39 1796.12 10288.25 1590.22 32097.58 1688.33 7590.50 10391.96 21779.26 7699.06 10490.29 11189.07 17398.88 31
test_0728_SECOND95.14 1899.04 1486.14 3599.06 1696.77 5599.84 1297.90 1798.85 2199.45 10
alignmvs92.97 4692.26 6295.12 1995.54 11687.77 2098.67 2996.38 10788.04 8093.01 6897.45 8579.20 7898.60 12593.25 7488.76 17798.99 29
DeepC-MVS_fast89.06 294.48 2394.30 2895.02 2098.86 2185.68 4498.06 5596.64 7593.64 1291.74 8498.54 2080.17 6999.90 592.28 8498.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+82.88 889.63 11987.85 13994.99 2194.49 15386.76 3197.84 6795.74 15486.10 11875.47 27896.02 13165.00 24099.51 7182.91 18697.07 8298.72 40
DVP-MVS++96.05 496.41 394.96 2299.05 985.34 4998.13 4996.77 5588.38 7397.70 898.77 1092.06 399.84 1297.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2399.03 1585.03 6199.12 1196.78 4988.72 6697.79 698.91 288.48 1799.82 1898.15 1198.97 1799.74 1
HPM-MVS++copyleft95.32 1095.48 1394.85 2498.62 3486.04 3697.81 7096.93 4092.45 2095.69 3198.50 2485.38 3199.85 1094.75 5499.18 798.65 43
VNet92.11 6891.22 7994.79 2596.91 9186.98 2797.91 6397.96 1086.38 11493.65 5995.74 13670.16 21298.95 11193.39 6988.87 17698.43 55
SMA-MVScopyleft94.70 2094.68 2094.76 2698.02 5985.94 3997.47 9596.77 5585.32 13297.92 398.70 1583.09 4999.84 1295.79 4299.08 1098.49 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS93.87 3493.58 3894.75 2793.00 19688.08 1799.15 795.50 16691.03 3794.90 4397.66 7278.84 8397.56 16994.64 5797.46 7098.62 45
NCCC95.63 695.94 894.69 2899.21 685.15 5999.16 696.96 3794.11 995.59 3298.64 1785.07 3399.91 495.61 4599.10 999.00 27
DPE-MVScopyleft95.32 1095.55 1194.64 2998.79 2384.87 6697.77 7296.74 6086.11 11796.54 2398.89 688.39 1999.74 3897.67 2299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.58 895.91 994.57 3099.05 985.18 5499.06 1696.46 9688.75 6496.69 1798.76 1287.69 2299.76 3197.90 1798.85 2198.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS94.17 2894.05 3294.55 3197.56 7485.95 3797.73 7696.43 10084.02 16995.07 4198.74 1482.93 5099.38 7895.42 4998.51 3498.32 60
PAPR92.74 5192.17 6594.45 3298.89 2084.87 6697.20 11396.20 12287.73 8888.40 13098.12 4378.71 8699.76 3187.99 13696.28 9798.74 35
3Dnovator82.32 1089.33 12487.64 14494.42 3393.73 17485.70 4397.73 7696.75 5986.73 11376.21 26695.93 13262.17 25499.68 5181.67 19297.81 6197.88 91
DP-MVS Recon91.72 7590.85 8494.34 3499.50 185.00 6398.51 3595.96 14180.57 23788.08 13597.63 7876.84 11599.89 785.67 15394.88 11698.13 74
PAPM92.87 4992.40 5894.30 3592.25 22187.85 1996.40 17696.38 10791.07 3688.72 12696.90 10982.11 5597.37 18690.05 11497.70 6497.67 109
SD-MVS94.84 1795.02 1894.29 3697.87 6484.61 6997.76 7496.19 12489.59 5696.66 1998.17 4184.33 3899.60 5996.09 3798.50 3698.66 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.25 3798.34 4685.55 4696.35 11192.36 7380.84 5999.22 8798.31 4797.98 86
test_yl91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
DCV-MVSNet91.46 8190.53 9194.24 3897.41 8085.18 5498.08 5297.72 1280.94 22889.85 10896.14 12875.61 13798.81 11990.42 10988.56 18098.74 35
jason92.73 5292.23 6394.21 4090.50 26587.30 2698.65 3095.09 18790.61 4292.76 7197.13 10175.28 15297.30 18993.32 7296.75 9198.02 79
jason: jason.
ACMMP_NAP93.46 3893.23 4494.17 4197.16 8884.28 7696.82 14996.65 7286.24 11594.27 5297.99 5277.94 9699.83 1693.39 6998.57 3398.39 57
131488.94 13187.20 15794.17 4193.21 18885.73 4293.33 28296.64 7582.89 19875.98 26996.36 12466.83 22899.39 7783.52 18096.02 10597.39 130
LFMVS89.27 12687.64 14494.16 4397.16 8885.52 4797.18 11594.66 21179.17 27089.63 11496.57 12255.35 30998.22 14489.52 12189.54 16998.74 35
QAPM86.88 17484.51 19593.98 4494.04 16785.89 4097.19 11496.05 13473.62 32175.12 28195.62 14262.02 25799.74 3870.88 28896.06 10396.30 173
MSLP-MVS++94.28 2594.39 2693.97 4598.30 4984.06 7998.64 3196.93 4090.71 4093.08 6798.70 1579.98 7099.21 8894.12 6299.07 1198.63 44
APDe-MVScopyleft94.56 2294.75 1993.96 4698.84 2283.40 9298.04 5796.41 10285.79 12495.00 4298.28 3484.32 4199.18 9497.35 2698.77 2799.28 19
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + GP.94.35 2494.50 2293.89 4797.38 8483.04 9998.10 5195.29 18191.57 3093.81 5797.45 8586.64 2799.43 7696.28 3694.01 12899.20 22
fmvsm_l_conf0.5_n94.89 1595.24 1593.86 4894.42 15484.61 6999.13 1096.15 12692.06 2597.92 398.52 2384.52 3699.74 3898.76 595.67 11097.22 137
CANet_DTU90.98 9390.04 10393.83 4994.76 14186.23 3496.32 18193.12 29693.11 1693.71 5896.82 11563.08 25099.48 7384.29 16395.12 11595.77 182
API-MVS90.18 10988.97 12193.80 5098.66 2882.95 10097.50 9495.63 16075.16 31086.31 15097.69 7072.49 18799.90 581.26 19496.07 10298.56 47
EPNet94.06 3194.15 3093.76 5197.27 8784.35 7398.29 4197.64 1594.57 695.36 3396.88 11179.96 7199.12 10091.30 9296.11 10197.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
train_agg94.28 2594.45 2493.74 5298.64 3183.71 8497.82 6896.65 7284.50 15595.16 3598.09 4584.33 3899.36 8195.91 4198.96 1998.16 71
CDPH-MVS93.12 4292.91 4893.74 5298.65 3083.88 8097.67 8196.26 11683.00 19693.22 6598.24 3581.31 5799.21 8889.12 12498.74 2998.14 73
MVSFormer91.36 8490.57 9093.73 5493.00 19688.08 1794.80 24894.48 22280.74 23394.90 4397.13 10178.84 8395.10 29783.77 17197.46 7098.02 79
fmvsm_l_conf0.5_n_a94.91 1495.30 1493.72 5594.50 15284.30 7599.14 996.00 13791.94 2897.91 598.60 1884.78 3599.77 2998.84 496.03 10497.08 144
APD-MVScopyleft93.61 3693.59 3793.69 5698.76 2483.26 9597.21 11196.09 13082.41 21094.65 4898.21 3681.96 5698.81 11994.65 5698.36 4599.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.94.79 1995.17 1793.64 5797.66 6984.10 7895.85 20796.42 10191.26 3397.49 1296.80 11686.50 2898.49 13195.54 4799.03 1398.33 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 1792x268891.07 9290.21 9993.64 5795.18 12783.53 8996.26 18496.13 12788.92 6384.90 16393.10 20272.86 18399.62 5888.86 12695.67 11097.79 101
MVS_Test90.29 10889.18 11893.62 5995.23 12484.93 6494.41 25394.66 21184.31 16090.37 10691.02 23275.13 15497.82 15883.11 18494.42 12398.12 75
sss90.87 9789.96 10693.60 6094.15 16183.84 8397.14 12298.13 785.93 12289.68 11296.09 13071.67 19699.30 8387.69 13989.16 17297.66 110
PVSNet_Blended93.13 4192.98 4793.57 6197.47 7683.86 8199.32 196.73 6191.02 3889.53 11696.21 12776.42 12499.57 6494.29 5995.81 10997.29 135
xiu_mvs_v1_base_debu90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
xiu_mvs_v1_base_debi90.54 10289.54 11393.55 6292.31 21487.58 2396.99 13394.87 19787.23 10093.27 6297.56 8157.43 29298.32 14092.72 8093.46 13894.74 207
OpenMVScopyleft79.58 1486.09 18783.62 21193.50 6590.95 25486.71 3297.44 9895.83 14975.35 30772.64 30295.72 13757.42 29599.64 5571.41 28295.85 10894.13 217
GG-mvs-BLEND93.49 6694.94 13586.26 3381.62 36797.00 3388.32 13294.30 17791.23 596.21 23888.49 13197.43 7398.00 84
ab-mvs87.08 17084.94 19093.48 6793.34 18783.67 8688.82 32895.70 15681.18 22584.55 16990.14 24962.72 25198.94 11385.49 15582.54 23297.85 95
PHI-MVS93.59 3793.63 3693.48 6798.05 5881.76 12598.64 3197.13 2682.60 20694.09 5598.49 2580.35 6499.85 1094.74 5598.62 3298.83 32
MVS_111021_HR93.41 3993.39 4293.47 6997.34 8582.83 10197.56 8898.27 689.16 6189.71 11197.14 10079.77 7299.56 6693.65 6797.94 5898.02 79
PAPM_NR91.46 8190.82 8593.37 7098.50 4081.81 12495.03 24296.13 12784.65 15186.10 15397.65 7679.24 7799.75 3683.20 18296.88 8698.56 47
MP-MVS-pluss92.58 6092.35 5993.29 7197.30 8682.53 10596.44 17296.04 13584.68 15089.12 12098.37 2977.48 10599.74 3893.31 7398.38 4397.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IB-MVS85.34 488.67 14087.14 16093.26 7293.12 19484.32 7498.76 2697.27 2087.19 10379.36 23090.45 24283.92 4498.53 12984.41 16269.79 31196.93 148
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune85.48 19982.90 22293.24 7394.51 15185.82 4179.22 37196.97 3661.19 36987.33 14153.01 38790.58 696.07 24186.07 15197.23 7997.81 100
ZNCC-MVS92.75 5092.60 5593.23 7498.24 5181.82 12397.63 8296.50 9285.00 14391.05 9597.74 6978.38 8999.80 2590.48 10498.34 4698.07 77
SteuartSystems-ACMMP94.13 3094.44 2593.20 7595.41 11981.35 13599.02 2096.59 8289.50 5794.18 5498.36 3083.68 4699.45 7594.77 5398.45 3998.81 33
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs_mvgpermissive91.13 9090.45 9393.17 7692.99 19983.58 8897.46 9794.56 21987.69 8987.19 14494.98 16574.50 16597.60 16691.88 9092.79 14598.34 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
新几何193.12 7797.44 7881.60 13296.71 6474.54 31591.22 9397.57 8079.13 7999.51 7177.40 23398.46 3898.26 67
CSCG92.02 6991.65 7493.12 7798.53 3680.59 15397.47 9597.18 2577.06 29884.64 16897.98 5583.98 4399.52 6990.72 10197.33 7699.23 21
Effi-MVS+90.70 9989.90 10993.09 7993.61 17583.48 9095.20 23292.79 30183.22 18891.82 8295.70 13871.82 19597.48 17991.25 9393.67 13498.32 60
test_prior93.09 7998.68 2681.91 11896.40 10499.06 10498.29 64
GST-MVS92.43 6392.22 6493.04 8198.17 5481.64 13097.40 10496.38 10784.71 14990.90 9897.40 9077.55 10499.76 3189.75 11797.74 6397.72 105
thisisatest051590.95 9590.26 9793.01 8294.03 16984.27 7797.91 6396.67 6983.18 18986.87 14795.51 14688.66 1697.85 15780.46 19989.01 17496.92 150
HFP-MVS92.89 4892.86 5092.98 8398.71 2581.12 13897.58 8696.70 6585.20 13791.75 8397.97 5778.47 8899.71 4590.95 9598.41 4198.12 75
ET-MVSNet_ETH3D90.01 11289.03 11992.95 8494.38 15586.77 3098.14 4696.31 11489.30 5963.33 34996.72 12090.09 1193.63 32890.70 10282.29 23598.46 53
DeepC-MVS86.58 391.53 8091.06 8392.94 8594.52 14881.89 11995.95 19995.98 13990.76 3983.76 17996.76 11773.24 18199.71 4591.67 9196.96 8397.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline188.85 13587.49 15092.93 8695.21 12686.85 2995.47 22094.61 21687.29 9883.11 18694.99 16480.70 6296.89 21282.28 18873.72 28595.05 199
test_fmvsmconf_n93.99 3294.36 2792.86 8792.82 20381.12 13899.26 396.37 11093.47 1395.16 3598.21 3679.00 8099.64 5598.21 1096.73 9297.83 97
MSP-MVS95.62 796.54 192.86 8798.31 4880.10 16997.42 10296.78 4992.20 2297.11 1498.29 3393.46 199.10 10196.01 3899.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA92.45 6292.31 6092.86 8797.90 6180.85 14792.88 29396.33 11287.92 8390.20 10798.18 3876.71 12099.76 3192.57 8398.09 5197.96 89
region2R92.72 5492.70 5292.79 9098.68 2680.53 15897.53 9096.51 9085.22 13591.94 8197.98 5577.26 10799.67 5390.83 9998.37 4498.18 69
ACMMPR92.69 5692.67 5392.75 9198.66 2880.57 15497.58 8696.69 6785.20 13791.57 8597.92 5877.01 11299.67 5390.95 9598.41 4198.00 84
baseline90.76 9890.10 10292.74 9292.90 20282.56 10494.60 25094.56 21987.69 8989.06 12295.67 14073.76 17497.51 17690.43 10892.23 15498.16 71
thres20088.92 13287.65 14392.73 9396.30 9685.62 4597.85 6698.86 184.38 15984.82 16493.99 18675.12 15598.01 14970.86 28986.67 19394.56 212
PVSNet82.34 989.02 12987.79 14192.71 9495.49 11781.50 13397.70 7897.29 1987.76 8785.47 15795.12 15956.90 29898.90 11580.33 20094.02 12797.71 107
PVSNet_Blended_VisFu91.24 8790.77 8692.66 9595.09 12982.40 10997.77 7295.87 14888.26 7686.39 14993.94 18776.77 11899.27 8488.80 12894.00 12996.31 172
test_fmvsmconf0.1_n93.08 4493.22 4592.65 9688.45 29680.81 14899.00 2195.11 18693.21 1594.00 5697.91 6076.84 11599.59 6097.91 1696.55 9597.54 117
test250690.96 9490.39 9492.65 9693.54 17882.46 10896.37 17797.35 1886.78 11187.55 13895.25 14977.83 10097.50 17784.07 16594.80 11797.98 86
XVS92.69 5692.71 5192.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8797.83 6677.24 10999.59 6090.46 10598.07 5298.02 79
X-MVStestdata86.26 18584.14 20492.63 9898.52 3780.29 16197.37 10596.44 9887.04 10591.38 8720.73 39877.24 10999.59 6090.46 10598.07 5298.02 79
casdiffmvspermissive90.95 9590.39 9492.63 9892.82 20382.53 10596.83 14794.47 22487.69 8988.47 12895.56 14574.04 17197.54 17390.90 9892.74 14697.83 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas86.50 18084.48 19792.55 10192.64 20985.95 3797.04 13295.07 18975.32 30880.50 21591.02 23254.33 31697.98 15086.79 14987.62 18793.71 225
tfpn200view988.48 14587.15 15892.47 10296.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20094.17 214
test_fmvsm_n_192094.81 1895.60 1092.45 10395.29 12380.96 14499.29 297.21 2294.50 797.29 1398.44 2782.15 5499.78 2898.56 797.68 6596.61 161
114514_t88.79 13887.57 14892.45 10398.21 5381.74 12696.99 13395.45 17075.16 31082.48 19095.69 13968.59 21798.50 13080.33 20095.18 11497.10 143
diffmvspermissive91.17 8990.74 8792.44 10593.11 19582.50 10796.25 18593.62 27487.79 8690.40 10595.93 13273.44 17997.42 18193.62 6892.55 14897.41 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft92.61 5992.67 5392.42 10698.13 5679.73 17997.33 10796.20 12285.63 12690.53 10297.66 7278.14 9499.70 4892.12 8698.30 4897.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary88.81 13687.61 14792.39 10799.33 479.95 17096.70 15995.58 16177.51 29083.05 18796.69 12161.90 26099.72 4384.29 16393.47 13797.50 123
fmvsm_s_conf0.5_n93.69 3594.13 3192.34 10894.56 14582.01 11399.07 1597.13 2692.09 2396.25 2598.53 2276.47 12299.80 2598.39 894.71 11995.22 197
CP-MVS92.54 6192.60 5592.34 10898.50 4079.90 17298.40 3896.40 10484.75 14690.48 10498.09 4577.40 10699.21 8891.15 9498.23 5097.92 90
patch_mono-295.14 1296.08 792.33 11098.44 4377.84 23598.43 3697.21 2292.58 1997.68 1097.65 7686.88 2699.83 1698.25 997.60 6799.33 17
thres100view90088.30 15186.95 16492.33 11096.10 10384.90 6597.14 12298.85 282.69 20483.41 18193.66 19375.43 14597.93 15169.04 29786.24 20094.17 214
PGM-MVS91.93 7091.80 7192.32 11298.27 5079.74 17895.28 22697.27 2083.83 17790.89 9997.78 6876.12 13099.56 6688.82 12797.93 6097.66 110
test_fmvsmconf0.01_n91.08 9190.68 8892.29 11382.43 35680.12 16897.94 6293.93 25292.07 2491.97 7997.60 7967.56 22099.53 6897.09 2995.56 11297.21 139
ETV-MVS92.72 5492.87 4992.28 11494.54 14781.89 11997.98 5995.21 18489.77 5593.11 6696.83 11377.23 11197.50 17795.74 4395.38 11397.44 126
fmvsm_s_conf0.1_n92.93 4793.16 4692.24 11590.52 26481.92 11798.42 3796.24 11891.17 3496.02 2998.35 3175.34 15199.74 3897.84 2094.58 12195.05 199
thres40088.42 14887.15 15892.23 11696.21 9985.30 5297.44 9898.85 283.37 18683.99 17393.82 18975.36 14897.93 15169.04 29786.24 20093.45 230
fmvsm_s_conf0.5_n_a93.34 4093.71 3492.22 11793.38 18681.71 12898.86 2496.98 3491.64 2996.85 1598.55 1975.58 14099.77 2997.88 1993.68 13395.18 198
VDDNet86.44 18184.51 19592.22 11791.56 24281.83 12297.10 12894.64 21469.50 34787.84 13695.19 15448.01 33697.92 15689.82 11686.92 19196.89 151
EPMVS87.47 16885.90 17492.18 11995.41 11982.26 11287.00 34496.28 11585.88 12384.23 17085.57 31375.07 15696.26 23571.14 28792.50 14998.03 78
test_fmvsmvis_n_192092.12 6792.10 6792.17 12090.87 25781.04 14098.34 4093.90 25692.71 1887.24 14397.90 6174.83 15899.72 4396.96 3196.20 9895.76 183
FA-MVS(test-final)87.71 16486.23 17192.17 12094.19 16080.55 15587.16 34396.07 13382.12 21585.98 15488.35 26972.04 19498.49 13180.26 20289.87 16797.48 125
thres600view788.06 15686.70 16892.15 12296.10 10385.17 5897.14 12298.85 282.70 20383.41 18193.66 19375.43 14597.82 15867.13 30685.88 20493.45 230
PCF-MVS84.09 586.77 17885.00 18992.08 12392.06 23383.07 9892.14 30194.47 22479.63 26076.90 25294.78 16871.15 20299.20 9272.87 27391.05 16293.98 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mPP-MVS91.88 7191.82 7092.07 12498.38 4478.63 20797.29 10896.09 13085.12 13988.45 12997.66 7275.53 14199.68 5189.83 11598.02 5597.88 91
fmvsm_s_conf0.1_n_a92.38 6492.49 5792.06 12588.08 30081.62 13197.97 6196.01 13690.62 4196.58 2198.33 3274.09 17099.71 4597.23 2793.46 13894.86 203
VDD-MVS88.28 15287.02 16392.06 12595.09 12980.18 16797.55 8994.45 22683.09 19289.10 12195.92 13447.97 33798.49 13193.08 7886.91 19297.52 122
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12797.60 7181.17 13796.61 16196.87 4388.20 7789.19 11997.55 8478.69 8799.14 9790.29 11190.94 16395.80 181
dcpmvs_293.10 4393.46 4192.02 12897.77 6579.73 17994.82 24693.86 25986.91 10791.33 9096.76 11785.20 3298.06 14896.90 3297.60 6798.27 66
1112_ss88.60 14387.47 15292.00 12993.21 18880.97 14396.47 16992.46 30483.64 18380.86 21297.30 9480.24 6797.62 16577.60 22885.49 20897.40 129
PatchmatchNetpermissive86.83 17685.12 18791.95 13094.12 16482.27 11186.55 34895.64 15984.59 15382.98 18884.99 32577.26 10795.96 25068.61 30091.34 16197.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res88.03 15786.73 16691.94 13193.15 19180.88 14696.44 17292.41 30683.59 18580.74 21491.16 23080.18 6897.59 16777.48 23185.40 20997.36 131
HPM-MVScopyleft91.62 7891.53 7691.89 13297.88 6379.22 19196.99 13395.73 15582.07 21689.50 11897.19 9975.59 13998.93 11490.91 9797.94 5897.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_anonymous88.68 13987.62 14691.86 13394.80 14081.69 12993.53 27894.92 19482.03 21778.87 23490.43 24375.77 13595.34 28385.04 15893.16 14298.55 49
MAR-MVS90.63 10090.22 9891.86 13398.47 4278.20 22397.18 11596.61 7883.87 17688.18 13498.18 3868.71 21699.75 3683.66 17697.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521184.41 21681.93 23791.85 13596.78 9378.41 21397.44 9891.34 32270.29 34384.06 17194.26 17841.09 36198.96 10979.46 21082.65 23198.17 70
SR-MVS92.16 6692.27 6191.83 13698.37 4578.41 21396.67 16095.76 15282.19 21491.97 7998.07 4976.44 12398.64 12393.71 6697.27 7898.45 54
FE-MVS86.06 18884.15 20391.78 13794.33 15779.81 17384.58 35996.61 7876.69 30085.00 16187.38 28270.71 20898.37 13970.39 29291.70 15997.17 141
EI-MVSNet-UG-set91.35 8591.22 7991.73 13897.39 8280.68 15196.47 16996.83 4687.92 8388.30 13397.36 9177.84 9999.13 9989.43 12289.45 17095.37 192
CNLPA86.96 17285.37 18191.72 13997.59 7279.34 18997.21 11191.05 32774.22 31678.90 23296.75 11967.21 22598.95 11174.68 25990.77 16496.88 152
ECVR-MVScopyleft88.35 15087.25 15691.65 14093.54 17879.40 18696.56 16590.78 33286.78 11185.57 15695.25 14957.25 29697.56 16984.73 16194.80 11797.98 86
RPMNet79.85 27975.92 29891.64 14190.16 27179.75 17679.02 37395.44 17158.43 37982.27 19772.55 37673.03 18298.41 13846.10 37786.25 19896.75 158
ACMMPcopyleft90.39 10589.97 10591.64 14197.58 7378.21 22296.78 15296.72 6384.73 14884.72 16697.23 9771.22 20199.63 5788.37 13492.41 15197.08 144
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HyFIR lowres test89.36 12388.60 12791.63 14394.91 13780.76 15095.60 21695.53 16382.56 20784.03 17291.24 22978.03 9596.81 21887.07 14688.41 18297.32 132
SCA85.63 19583.64 21091.60 14492.30 21781.86 12192.88 29395.56 16284.85 14482.52 18985.12 32358.04 28595.39 28073.89 26787.58 18997.54 117
thisisatest053089.65 11889.02 12091.53 14593.46 18480.78 14996.52 16696.67 6981.69 22183.79 17894.90 16688.85 1597.68 16277.80 22287.49 19096.14 175
BH-RMVSNet86.84 17585.28 18291.49 14695.35 12180.26 16496.95 14092.21 30882.86 20081.77 20595.46 14759.34 27597.64 16469.79 29593.81 13296.57 163
MVS_111021_LR91.60 7991.64 7591.47 14795.74 11178.79 20496.15 19196.77 5588.49 7188.64 12797.07 10572.33 18999.19 9393.13 7796.48 9696.43 166
test111188.11 15587.04 16291.35 14893.15 19178.79 20496.57 16390.78 33286.88 10985.04 16095.20 15357.23 29797.39 18483.88 16894.59 12097.87 93
TESTMET0.1,189.83 11589.34 11691.31 14992.54 21180.19 16697.11 12596.57 8486.15 11686.85 14891.83 22179.32 7496.95 20881.30 19392.35 15296.77 156
tpmrst88.36 14987.38 15491.31 14994.36 15679.92 17187.32 34195.26 18385.32 13288.34 13186.13 30780.60 6396.70 22283.78 17085.34 21197.30 134
CHOSEN 280x42091.71 7691.85 6991.29 15194.94 13582.69 10287.89 33796.17 12585.94 12187.27 14294.31 17690.27 995.65 26994.04 6395.86 10795.53 188
UGNet87.73 16386.55 16991.27 15295.16 12879.11 19596.35 17996.23 11988.14 7887.83 13790.48 24150.65 32699.09 10280.13 20594.03 12695.60 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet87.02 17185.61 17691.24 15394.14 16283.30 9493.88 27095.98 13984.30 16279.63 22792.01 21358.23 28397.68 16290.28 11382.02 23692.75 233
Vis-MVSNetpermissive88.67 14087.82 14091.24 15392.68 20578.82 20196.95 14093.85 26087.55 9287.07 14695.13 15863.43 24897.21 19477.58 22996.15 10097.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
原ACMM191.22 15597.77 6578.10 22596.61 7881.05 22791.28 9297.42 8977.92 9898.98 10879.85 20898.51 3496.59 162
iter_conf0590.14 11089.79 11191.17 15695.85 10986.93 2897.68 8088.67 35389.93 5281.73 20692.80 20490.37 896.03 24290.44 10780.65 24490.56 248
CostFormer89.08 12888.39 13191.15 15793.13 19379.15 19488.61 33196.11 12983.14 19089.58 11586.93 29183.83 4596.87 21488.22 13585.92 20397.42 127
CDS-MVSNet89.50 12188.96 12291.14 15891.94 23880.93 14597.09 12995.81 15084.26 16584.72 16694.20 18180.31 6595.64 27083.37 18188.96 17596.85 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS81.47 26378.28 28091.04 15998.14 5578.48 20995.09 24186.97 35961.14 37071.12 31292.78 20759.59 27199.38 7853.11 36186.61 19495.27 196
HPM-MVS_fast90.38 10790.17 10191.03 16097.61 7077.35 24797.15 12195.48 16779.51 26288.79 12496.90 10971.64 19898.81 11987.01 14797.44 7296.94 147
GA-MVS85.79 19384.04 20591.02 16189.47 28580.27 16396.90 14494.84 20085.57 12780.88 21189.08 25756.56 30296.47 22977.72 22585.35 21096.34 169
baseline290.39 10590.21 9990.93 16290.86 25880.99 14295.20 23297.41 1786.03 12080.07 22494.61 17190.58 697.47 18087.29 14389.86 16894.35 213
Fast-Effi-MVS+87.93 16086.94 16590.92 16394.04 16779.16 19398.26 4293.72 27081.29 22483.94 17692.90 20369.83 21396.68 22376.70 23991.74 15896.93 148
CS-MVS-test92.98 4593.67 3590.90 16496.52 9476.87 25498.68 2894.73 20690.36 4894.84 4597.89 6277.94 9697.15 20094.28 6197.80 6298.70 41
APD-MVS_3200maxsize91.23 8891.35 7890.89 16597.89 6276.35 26396.30 18295.52 16579.82 25691.03 9697.88 6374.70 16098.54 12892.11 8796.89 8597.77 102
nrg03086.79 17785.43 17990.87 16688.76 29085.34 4997.06 13194.33 23384.31 16080.45 21791.98 21672.36 18896.36 23288.48 13271.13 29890.93 245
SR-MVS-dyc-post91.29 8691.45 7790.80 16797.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6475.76 13698.61 12491.99 8896.79 8997.75 103
Anonymous2024052983.15 23680.60 25790.80 16795.74 11178.27 21796.81 15094.92 19460.10 37481.89 20392.54 20845.82 34598.82 11879.25 21378.32 26795.31 194
EIA-MVS91.73 7392.05 6890.78 16994.52 14876.40 26298.06 5595.34 17989.19 6088.90 12397.28 9677.56 10397.73 16190.77 10096.86 8898.20 68
OMC-MVS88.80 13788.16 13590.72 17095.30 12277.92 23294.81 24794.51 22186.80 11084.97 16296.85 11267.53 22198.60 12585.08 15787.62 18795.63 185
FMVSNet384.71 20982.71 22690.70 17194.55 14687.71 2195.92 20194.67 21081.73 22075.82 27388.08 27466.99 22694.47 31371.23 28475.38 27889.91 264
tpm287.35 16986.26 17090.62 17292.93 20178.67 20688.06 33695.99 13879.33 26587.40 13986.43 30280.28 6696.40 23080.23 20385.73 20796.79 154
EC-MVSNet91.73 7392.11 6690.58 17393.54 17877.77 23898.07 5494.40 22987.44 9492.99 6997.11 10374.59 16496.87 21493.75 6597.08 8197.11 142
TAMVS88.48 14587.79 14190.56 17491.09 25279.18 19296.45 17195.88 14683.64 18383.12 18593.33 19775.94 13395.74 26582.40 18788.27 18396.75 158
BH-w/o88.24 15387.47 15290.54 17595.03 13478.54 20897.41 10393.82 26184.08 16778.23 23994.51 17469.34 21597.21 19480.21 20494.58 12195.87 180
CS-MVS92.73 5293.48 4090.48 17696.27 9775.93 27398.55 3494.93 19389.32 5894.54 5097.67 7178.91 8297.02 20493.80 6497.32 7798.49 51
TR-MVS86.30 18484.93 19190.42 17794.63 14377.58 24296.57 16393.82 26180.30 24682.42 19295.16 15658.74 27997.55 17174.88 25787.82 18696.13 176
iter_conf_final89.51 12089.21 11790.39 17895.60 11484.44 7297.22 10989.09 34689.11 6282.07 20092.80 20487.03 2596.03 24289.10 12580.89 24090.70 246
tpm cat183.63 22881.38 24590.39 17893.53 18378.19 22485.56 35595.09 18770.78 34178.51 23683.28 33874.80 15997.03 20366.77 30784.05 21695.95 177
h-mvs3389.30 12588.95 12390.36 18095.07 13176.04 26796.96 13997.11 2990.39 4692.22 7695.10 16074.70 16098.86 11693.14 7565.89 34396.16 174
PVSNet_BlendedMVS90.05 11189.96 10690.33 18197.47 7683.86 8198.02 5896.73 6187.98 8189.53 11689.61 25476.42 12499.57 6494.29 5979.59 25187.57 319
dp84.30 21882.31 23190.28 18294.24 15977.97 22886.57 34795.53 16379.94 25580.75 21385.16 32171.49 20096.39 23163.73 32383.36 22196.48 165
UA-Net88.92 13288.48 13090.24 18394.06 16677.18 25193.04 29094.66 21187.39 9691.09 9493.89 18874.92 15798.18 14775.83 24991.43 16095.35 193
MVSTER89.25 12788.92 12490.24 18395.98 10684.66 6896.79 15195.36 17687.19 10380.33 21990.61 24090.02 1295.97 24785.38 15678.64 26090.09 260
IS-MVSNet88.67 14088.16 13590.20 18593.61 17576.86 25596.77 15493.07 29784.02 16983.62 18095.60 14374.69 16396.24 23778.43 22193.66 13597.49 124
testdata90.13 18695.92 10774.17 29096.49 9573.49 32494.82 4797.99 5278.80 8597.93 15183.53 17997.52 6998.29 64
CR-MVSNet83.53 22981.36 24690.06 18790.16 27179.75 17679.02 37391.12 32484.24 16682.27 19780.35 35275.45 14393.67 32763.37 32686.25 19896.75 158
VPNet84.69 21082.92 22190.01 18889.01 28983.45 9196.71 15795.46 16985.71 12579.65 22692.18 21256.66 30196.01 24683.05 18567.84 33190.56 248
BH-untuned86.95 17385.94 17389.99 18994.52 14877.46 24496.78 15293.37 28681.80 21976.62 25693.81 19166.64 22997.02 20476.06 24693.88 13195.48 190
test-LLR88.48 14587.98 13789.98 19092.26 21977.23 24997.11 12595.96 14183.76 18086.30 15191.38 22572.30 19096.78 22080.82 19691.92 15695.94 178
test-mter88.95 13088.60 12789.98 19092.26 21977.23 24997.11 12595.96 14185.32 13286.30 15191.38 22576.37 12696.78 22080.82 19691.92 15695.94 178
ADS-MVSNet81.26 26678.36 27989.96 19293.78 17179.78 17479.48 36993.60 27573.09 32780.14 22179.99 35462.15 25595.24 28959.49 33883.52 21894.85 204
PVSNet_077.72 1581.70 26078.95 27789.94 19390.77 26176.72 25895.96 19896.95 3885.01 14270.24 31988.53 26752.32 32098.20 14586.68 15044.08 38494.89 202
DeepPCF-MVS89.82 194.61 2196.17 589.91 19497.09 9070.21 32698.99 2296.69 6795.57 295.08 4099.23 186.40 3099.87 897.84 2098.66 3199.65 6
EPP-MVSNet89.76 11689.72 11289.87 19593.78 17176.02 27097.22 10996.51 9079.35 26485.11 15995.01 16384.82 3497.10 20287.46 14288.21 18496.50 164
tpmvs83.04 23980.77 25289.84 19695.43 11877.96 22985.59 35495.32 18075.31 30976.27 26483.70 33573.89 17297.41 18259.53 33781.93 23894.14 216
GeoE86.36 18285.20 18389.83 19793.17 19076.13 26597.53 9092.11 30979.58 26180.99 21094.01 18566.60 23096.17 24073.48 27189.30 17197.20 140
FMVSNet282.79 24380.44 25989.83 19792.66 20685.43 4895.42 22294.35 23179.06 27374.46 28587.28 28356.38 30494.31 31669.72 29674.68 28289.76 266
PLCcopyleft83.97 788.00 15887.38 15489.83 19798.02 5976.46 26097.16 11994.43 22779.26 26981.98 20196.28 12669.36 21499.27 8477.71 22692.25 15393.77 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPA-MVSNet85.32 20083.83 20689.77 20090.25 26882.63 10396.36 17897.07 3183.03 19581.21 20989.02 25961.58 26196.31 23485.02 15970.95 30090.36 251
tttt051788.57 14488.19 13489.71 20193.00 19675.99 27195.67 21296.67 6980.78 23281.82 20494.40 17588.97 1497.58 16876.05 24786.31 19795.57 187
test_cas_vis1_n_192089.90 11490.02 10489.54 20290.14 27374.63 28598.71 2794.43 22793.04 1792.40 7296.35 12553.41 31999.08 10395.59 4696.16 9994.90 201
CLD-MVS87.97 15987.48 15189.44 20392.16 22680.54 15798.14 4694.92 19491.41 3179.43 22995.40 14862.34 25397.27 19290.60 10382.90 22790.50 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS83.84 22482.00 23689.35 20487.13 31181.38 13495.72 21094.26 23680.15 25075.92 27190.63 23961.96 25996.52 22778.98 21673.28 29090.14 256
CPTT-MVS89.72 11789.87 11089.29 20598.33 4773.30 29697.70 7895.35 17875.68 30687.40 13997.44 8870.43 20998.25 14389.56 12096.90 8496.33 171
sd_testset84.62 21183.11 21989.17 20694.14 16277.78 23791.54 31194.38 23084.30 16279.63 22792.01 21352.28 32196.98 20677.67 22782.02 23692.75 233
MSDG80.62 27577.77 28589.14 20793.43 18577.24 24891.89 30490.18 33669.86 34668.02 32691.94 21952.21 32298.84 11759.32 34083.12 22291.35 240
TAPA-MVS81.61 1285.02 20583.67 20889.06 20896.79 9273.27 29995.92 20194.79 20474.81 31380.47 21696.83 11371.07 20398.19 14649.82 37092.57 14795.71 184
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D82.22 25379.94 26889.06 20897.43 7974.06 29293.20 28892.05 31061.90 36473.33 29595.21 15259.35 27499.21 8854.54 35792.48 15093.90 222
PatchMatch-RL85.00 20683.66 20989.02 21095.86 10874.55 28792.49 29793.60 27579.30 26779.29 23191.47 22358.53 28198.45 13570.22 29392.17 15594.07 219
HQP-MVS87.91 16187.55 14988.98 21192.08 23078.48 20997.63 8294.80 20290.52 4382.30 19394.56 17265.40 23697.32 18787.67 14083.01 22491.13 241
Vis-MVSNet (Re-imp)88.88 13488.87 12588.91 21293.89 17074.43 28896.93 14294.19 24184.39 15883.22 18495.67 14078.24 9194.70 30778.88 21794.40 12497.61 115
NR-MVSNet83.35 23181.52 24488.84 21388.76 29081.31 13694.45 25295.16 18584.65 15167.81 32790.82 23670.36 21094.87 30374.75 25866.89 34090.33 253
Patchmatch-test78.25 29274.72 30688.83 21491.20 24874.10 29173.91 38488.70 35259.89 37566.82 33385.12 32378.38 8994.54 31148.84 37379.58 25297.86 94
tpm85.55 19784.47 19888.80 21590.19 27075.39 27888.79 32994.69 20784.83 14583.96 17585.21 31978.22 9294.68 30876.32 24578.02 26996.34 169
HQP_MVS87.50 16787.09 16188.74 21691.86 23977.96 22997.18 11594.69 20789.89 5381.33 20794.15 18264.77 24297.30 18987.08 14482.82 22890.96 243
MIMVSNet79.18 28875.99 29788.72 21787.37 31080.66 15279.96 36891.82 31377.38 29274.33 28681.87 34441.78 35790.74 35766.36 31383.10 22394.76 206
FIs86.73 17986.10 17288.61 21890.05 27480.21 16596.14 19296.95 3885.56 12978.37 23892.30 21076.73 11995.28 28779.51 20979.27 25490.35 252
UniMVSNet (Re)85.31 20184.23 20188.55 21989.75 27880.55 15596.72 15596.89 4285.42 13078.40 23788.93 26075.38 14795.52 27778.58 21968.02 32889.57 268
PatchT79.75 28076.85 29288.42 22089.55 28375.49 27777.37 37794.61 21663.07 36082.46 19173.32 37375.52 14293.41 33251.36 36484.43 21496.36 167
WR-MVS84.32 21782.96 22088.41 22189.38 28780.32 16096.59 16296.25 11783.97 17176.63 25590.36 24467.53 22194.86 30475.82 25070.09 30990.06 262
GBi-Net82.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
test182.42 24980.43 26088.39 22292.66 20681.95 11494.30 25993.38 28379.06 27375.82 27385.66 30956.38 30493.84 32371.23 28475.38 27889.38 271
FMVSNet179.50 28476.54 29488.39 22288.47 29581.95 11494.30 25993.38 28373.14 32672.04 30785.66 30943.86 34893.84 32365.48 31572.53 29189.38 271
DU-MVS84.57 21383.33 21688.28 22588.76 29079.36 18796.43 17495.41 17585.42 13078.11 24090.82 23667.61 21895.14 29479.14 21468.30 32590.33 253
AUN-MVS86.25 18685.57 17788.26 22693.57 17773.38 29495.45 22195.88 14683.94 17385.47 15794.21 18073.70 17796.67 22483.54 17864.41 34794.73 210
hse-mvs288.22 15488.21 13388.25 22793.54 17873.41 29395.41 22395.89 14590.39 4692.22 7694.22 17974.70 16096.66 22593.14 7564.37 34894.69 211
v2v48283.46 23081.86 23888.25 22786.19 32179.65 18196.34 18094.02 25081.56 22277.32 24688.23 27165.62 23396.03 24277.77 22369.72 31389.09 282
UniMVSNet_NR-MVSNet85.49 19884.59 19388.21 22989.44 28679.36 18796.71 15796.41 10285.22 13578.11 24090.98 23476.97 11495.14 29479.14 21468.30 32590.12 257
miper_enhance_ethall85.95 19085.20 18388.19 23094.85 13979.76 17596.00 19694.06 24982.98 19777.74 24388.76 26279.42 7395.46 27980.58 19872.42 29289.36 274
OPM-MVS85.84 19185.10 18888.06 23188.34 29777.83 23695.72 21094.20 24087.89 8580.45 21794.05 18458.57 28097.26 19383.88 16882.76 23089.09 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS89.46 12289.92 10888.06 23194.64 14269.57 33296.22 18694.95 19287.27 9991.37 8996.54 12365.88 23297.39 18488.54 12993.89 13097.23 136
test_vis1_n_192089.95 11390.59 8988.03 23392.36 21368.98 33599.12 1194.34 23293.86 1193.64 6097.01 10751.54 32399.59 6096.76 3496.71 9395.53 188
cl2285.11 20484.17 20287.92 23495.06 13378.82 20195.51 21894.22 23979.74 25876.77 25387.92 27675.96 13295.68 26679.93 20772.42 29289.27 276
TranMVSNet+NR-MVSNet83.24 23581.71 24087.83 23587.71 30578.81 20396.13 19494.82 20184.52 15476.18 26790.78 23864.07 24594.60 30974.60 26266.59 34290.09 260
pmmvs482.54 24780.79 25187.79 23686.11 32380.49 15993.55 27793.18 29377.29 29373.35 29489.40 25665.26 23995.05 30175.32 25473.61 28687.83 313
v114482.90 24281.27 24787.78 23786.29 31979.07 19896.14 19293.93 25280.05 25277.38 24486.80 29365.50 23495.93 25275.21 25570.13 30688.33 305
dmvs_re84.10 22082.90 22287.70 23891.41 24773.28 29790.59 31893.19 29185.02 14177.96 24293.68 19257.92 29096.18 23975.50 25280.87 24193.63 226
F-COLMAP84.50 21583.44 21587.67 23995.22 12572.22 30595.95 19993.78 26675.74 30576.30 26395.18 15559.50 27398.45 13572.67 27586.59 19592.35 238
FC-MVSNet-test85.96 18985.39 18087.66 24089.38 28778.02 22695.65 21496.87 4385.12 13977.34 24591.94 21976.28 12894.74 30677.09 23478.82 25890.21 255
tt080581.20 26879.06 27687.61 24186.50 31572.97 30293.66 27395.48 16774.11 31776.23 26591.99 21541.36 36097.40 18377.44 23274.78 28192.45 236
v119282.31 25280.55 25887.60 24285.94 32578.47 21295.85 20793.80 26479.33 26576.97 25186.51 29763.33 24995.87 25573.11 27270.13 30688.46 301
EI-MVSNet85.80 19285.20 18387.59 24391.55 24377.41 24595.13 23695.36 17680.43 24380.33 21994.71 16973.72 17595.97 24776.96 23778.64 26089.39 269
XVG-OURS85.18 20284.38 19987.59 24390.42 26771.73 31691.06 31594.07 24882.00 21883.29 18395.08 16156.42 30397.55 17183.70 17583.42 22093.49 229
V4283.04 23981.53 24387.57 24586.27 32079.09 19795.87 20594.11 24680.35 24577.22 24886.79 29465.32 23896.02 24577.74 22470.14 30587.61 318
v14419282.43 24880.73 25487.54 24685.81 32878.22 21995.98 19793.78 26679.09 27277.11 24986.49 29864.66 24495.91 25374.20 26569.42 31488.49 299
miper_ehance_all_eth84.57 21383.60 21287.50 24792.64 20978.25 21895.40 22493.47 27979.28 26876.41 26087.64 27976.53 12195.24 28978.58 21972.42 29289.01 287
XVG-OURS-SEG-HR85.74 19485.16 18687.49 24890.22 26971.45 31991.29 31294.09 24781.37 22383.90 17795.22 15160.30 26897.53 17585.58 15484.42 21593.50 228
v192192082.02 25680.23 26287.41 24985.62 33077.92 23295.79 20993.69 27178.86 27676.67 25486.44 30062.50 25295.83 25772.69 27469.77 31288.47 300
Anonymous2023121179.72 28177.19 28987.33 25095.59 11577.16 25295.18 23594.18 24259.31 37772.57 30386.20 30647.89 33995.66 26774.53 26369.24 31789.18 278
v881.88 25880.06 26687.32 25186.63 31479.04 19994.41 25393.65 27378.77 27773.19 29785.57 31366.87 22795.81 25873.84 26967.61 33387.11 327
IterMVS-LS83.93 22282.80 22587.31 25291.46 24677.39 24695.66 21393.43 28180.44 24175.51 27787.26 28573.72 17595.16 29376.99 23570.72 30289.39 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124081.70 26079.83 27087.30 25385.50 33177.70 24195.48 21993.44 28078.46 28176.53 25786.44 30060.85 26595.84 25671.59 28170.17 30488.35 304
c3_l83.80 22582.65 22787.25 25492.10 22977.74 24095.25 22993.04 29878.58 27976.01 26887.21 28775.25 15395.11 29677.54 23068.89 31988.91 293
UniMVSNet_ETH3D80.86 27278.75 27887.22 25586.31 31872.02 31091.95 30293.76 26973.51 32275.06 28290.16 24843.04 35495.66 26776.37 24478.55 26493.98 220
v1081.43 26479.53 27287.11 25686.38 31678.87 20094.31 25893.43 28177.88 28573.24 29685.26 31765.44 23595.75 26272.14 27867.71 33286.72 331
ACMH75.40 1777.99 29474.96 30287.10 25790.67 26276.41 26193.19 28991.64 31772.47 33363.44 34887.61 28043.34 35197.16 19758.34 34273.94 28487.72 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba85.17 20384.54 19487.05 25887.94 30275.11 28196.22 18687.79 35786.91 10778.55 23591.77 22264.93 24195.91 25386.94 14879.80 24690.12 257
v14882.41 25180.89 25086.99 25986.18 32276.81 25696.27 18393.82 26180.49 24075.28 28086.11 30867.32 22495.75 26275.48 25367.03 33988.42 303
EPNet_dtu87.65 16587.89 13886.93 26094.57 14471.37 32096.72 15596.50 9288.56 7087.12 14595.02 16275.91 13494.01 32166.62 30890.00 16695.42 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl____83.27 23382.12 23386.74 26192.20 22275.95 27295.11 23893.27 28978.44 28274.82 28387.02 29074.19 16895.19 29174.67 26069.32 31589.09 282
DIV-MVS_self_test83.27 23382.12 23386.74 26192.19 22375.92 27495.11 23893.26 29078.44 28274.81 28487.08 28974.19 16895.19 29174.66 26169.30 31689.11 281
PS-MVSNAJss84.91 20784.30 20086.74 26185.89 32774.40 28994.95 24394.16 24383.93 17476.45 25990.11 25071.04 20495.77 26083.16 18379.02 25790.06 262
pmmvs581.34 26579.54 27186.73 26485.02 33876.91 25396.22 18691.65 31677.65 28873.55 28988.61 26455.70 30794.43 31474.12 26673.35 28988.86 294
MS-PatchMatch83.05 23881.82 23986.72 26589.64 28179.10 19694.88 24594.59 21879.70 25970.67 31589.65 25350.43 32896.82 21770.82 29195.99 10684.25 355
eth_miper_zixun_eth83.12 23782.01 23586.47 26691.85 24174.80 28394.33 25793.18 29379.11 27175.74 27687.25 28672.71 18495.32 28576.78 23867.13 33789.27 276
LPG-MVS_test84.20 21983.49 21486.33 26790.88 25573.06 30095.28 22694.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
LGP-MVS_train86.33 26790.88 25573.06 30094.13 24482.20 21276.31 26193.20 19854.83 31496.95 20883.72 17380.83 24288.98 288
ACMP81.66 1184.00 22183.22 21886.33 26791.53 24572.95 30395.91 20393.79 26583.70 18273.79 28892.22 21154.31 31796.89 21283.98 16679.74 24989.16 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tfpnnormal78.14 29375.42 30086.31 27088.33 29879.24 19094.41 25396.22 12073.51 32269.81 32185.52 31555.43 30895.75 26247.65 37567.86 33083.95 358
ACMM80.70 1383.72 22782.85 22486.31 27091.19 24972.12 30895.88 20494.29 23580.44 24177.02 25091.96 21755.24 31097.14 20179.30 21280.38 24589.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6482.13 25480.76 25386.24 27285.78 32975.03 28294.40 25682.62 37783.12 19176.46 25890.96 23553.83 31894.55 31081.04 19578.60 26389.14 280
pm-mvs180.05 27878.02 28386.15 27385.42 33275.81 27595.11 23892.69 30377.13 29570.36 31787.43 28158.44 28295.27 28871.36 28364.25 34987.36 325
ppachtmachnet_test77.19 30374.22 31186.13 27485.39 33378.22 21993.98 26691.36 32171.74 33767.11 33084.87 32656.67 30093.37 33352.21 36264.59 34686.80 330
D2MVS82.67 24581.55 24286.04 27587.77 30476.47 25995.21 23196.58 8382.66 20570.26 31885.46 31660.39 26795.80 25976.40 24379.18 25585.83 345
USDC78.65 29076.25 29585.85 27687.58 30674.60 28689.58 32390.58 33584.05 16863.13 35088.23 27140.69 36496.86 21666.57 31075.81 27686.09 341
KD-MVS_2432*160077.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
miper_refine_blended77.63 29974.92 30485.77 27790.86 25879.44 18488.08 33493.92 25476.26 30267.05 33182.78 34072.15 19291.92 34461.53 33041.62 38785.94 343
RRT_MVS83.88 22383.27 21785.71 27987.53 30972.12 30895.35 22594.33 23383.81 17875.86 27291.28 22860.55 26695.09 29983.93 16776.76 27289.90 265
ADS-MVSNet279.57 28377.53 28685.71 27993.78 17172.13 30779.48 36986.11 36573.09 32780.14 22179.99 35462.15 25590.14 36259.49 33883.52 21894.85 204
mvsany_test187.58 16688.22 13285.67 28189.78 27767.18 34295.25 22987.93 35583.96 17288.79 12497.06 10672.52 18694.53 31292.21 8586.45 19695.30 195
Patchmtry77.36 30274.59 30785.67 28189.75 27875.75 27677.85 37691.12 32460.28 37271.23 31080.35 35275.45 14393.56 32957.94 34367.34 33687.68 316
test_fmvs187.79 16288.52 12985.62 28392.98 20064.31 35197.88 6592.42 30587.95 8292.24 7595.82 13547.94 33898.44 13795.31 5094.09 12594.09 218
MVP-Stereo82.65 24681.67 24185.59 28486.10 32478.29 21693.33 28292.82 30077.75 28769.17 32587.98 27559.28 27695.76 26171.77 27996.88 8682.73 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Fast-Effi-MVS+-dtu83.33 23282.60 22885.50 28589.55 28369.38 33396.09 19591.38 31982.30 21175.96 27091.41 22456.71 29995.58 27575.13 25684.90 21391.54 239
our_test_377.90 29775.37 30185.48 28685.39 33376.74 25793.63 27491.67 31573.39 32565.72 34084.65 32858.20 28493.13 33457.82 34467.87 32986.57 334
test_vis1_n85.60 19685.70 17585.33 28784.79 34064.98 34996.83 14791.61 31887.36 9791.00 9794.84 16736.14 36997.18 19695.66 4493.03 14393.82 223
v7n79.32 28777.34 28785.28 28884.05 34972.89 30493.38 28093.87 25875.02 31270.68 31484.37 32959.58 27295.62 27267.60 30267.50 33487.32 326
IterMVS80.67 27479.16 27485.20 28989.79 27676.08 26692.97 29291.86 31280.28 24771.20 31185.14 32257.93 28991.34 35172.52 27670.74 30188.18 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs1_n86.34 18386.72 16785.17 29087.54 30863.64 35696.91 14392.37 30787.49 9391.33 9095.58 14440.81 36398.46 13495.00 5293.49 13693.41 232
ACMH+76.62 1677.47 30174.94 30385.05 29191.07 25371.58 31893.26 28690.01 33771.80 33664.76 34388.55 26541.62 35896.48 22862.35 32971.00 29987.09 328
jajsoiax82.12 25581.15 24985.03 29284.19 34670.70 32294.22 26393.95 25183.07 19373.48 29089.75 25249.66 33295.37 28282.24 18979.76 24789.02 286
mvs_tets81.74 25980.71 25584.84 29384.22 34570.29 32593.91 26993.78 26682.77 20273.37 29389.46 25547.36 34295.31 28681.99 19079.55 25388.92 292
LTVRE_ROB73.68 1877.99 29475.74 29984.74 29490.45 26672.02 31086.41 34991.12 32472.57 33266.63 33587.27 28454.95 31396.98 20656.29 35275.98 27385.21 349
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.51 27679.10 27584.73 29589.63 28274.66 28492.98 29191.81 31480.05 25271.06 31385.18 32058.04 28591.40 35072.48 27770.70 30388.12 309
Baseline_NR-MVSNet81.22 26780.07 26584.68 29685.32 33675.12 28096.48 16888.80 34976.24 30477.28 24786.40 30367.61 21894.39 31575.73 25166.73 34184.54 352
miper_lstm_enhance81.66 26280.66 25684.67 29791.19 24971.97 31291.94 30393.19 29177.86 28672.27 30585.26 31773.46 17893.42 33173.71 27067.05 33888.61 295
test_djsdf83.00 24182.45 23084.64 29884.07 34869.78 32994.80 24894.48 22280.74 23375.41 27987.70 27861.32 26495.10 29783.77 17179.76 24789.04 285
TransMVSNet (Re)76.94 30574.38 30984.62 29985.92 32675.25 27995.28 22689.18 34573.88 32067.22 32886.46 29959.64 27094.10 31959.24 34152.57 37384.50 353
Patchmatch-RL test76.65 30774.01 31484.55 30077.37 37264.23 35278.49 37582.84 37678.48 28064.63 34473.40 37276.05 13191.70 34976.99 23557.84 36297.72 105
AllTest75.92 31073.06 31884.47 30192.18 22467.29 34091.07 31484.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
TestCases84.47 30192.18 22467.29 34084.43 37067.63 35063.48 34690.18 24638.20 36697.16 19757.04 34873.37 28788.97 290
MVS-HIRNet71.36 33367.00 33884.46 30390.58 26369.74 33079.15 37287.74 35846.09 38461.96 35750.50 38845.14 34695.64 27053.74 35988.11 18588.00 311
JIA-IIPM79.00 28977.20 28884.40 30489.74 28064.06 35475.30 38195.44 17162.15 36381.90 20259.08 38578.92 8195.59 27466.51 31185.78 20693.54 227
LCM-MVSNet-Re83.75 22683.54 21384.39 30593.54 17864.14 35392.51 29684.03 37283.90 17566.14 33886.59 29667.36 22392.68 33584.89 16092.87 14496.35 168
anonymousdsp80.98 27179.97 26784.01 30681.73 35870.44 32492.49 29793.58 27777.10 29772.98 29986.31 30457.58 29194.90 30279.32 21178.63 26286.69 332
COLMAP_ROBcopyleft73.24 1975.74 31273.00 31983.94 30792.38 21269.08 33491.85 30586.93 36061.48 36765.32 34190.27 24542.27 35696.93 21150.91 36675.63 27785.80 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE79.38 28677.90 28483.81 30884.98 33967.14 34689.03 32793.18 29380.26 24972.87 30088.15 27338.55 36596.26 23576.05 24778.05 26888.02 310
CP-MVSNet81.01 27080.08 26483.79 30987.91 30370.51 32394.29 26295.65 15880.83 23072.54 30488.84 26163.71 24692.32 33968.58 30168.36 32488.55 296
WR-MVS_H81.02 26980.09 26383.79 30988.08 30071.26 32194.46 25196.54 8780.08 25172.81 30186.82 29270.36 21092.65 33664.18 32067.50 33487.46 324
test0.0.03 182.79 24382.48 22983.74 31186.81 31372.22 30596.52 16695.03 19083.76 18073.00 29893.20 19872.30 19088.88 36464.15 32177.52 27090.12 257
Effi-MVS+-dtu84.61 21284.90 19283.72 31291.96 23663.14 35994.95 24393.34 28785.57 12779.79 22587.12 28861.99 25895.61 27383.55 17785.83 20592.41 237
EG-PatchMatch MVS74.92 31572.02 32283.62 31383.76 35373.28 29793.62 27592.04 31168.57 34958.88 36683.80 33431.87 37895.57 27656.97 35078.67 25982.00 369
pmmvs674.65 31771.67 32383.60 31479.13 36669.94 32793.31 28590.88 33161.05 37165.83 33984.15 33243.43 35094.83 30566.62 30860.63 35886.02 342
PS-CasMVS80.27 27779.18 27383.52 31587.56 30769.88 32894.08 26595.29 18180.27 24872.08 30688.51 26859.22 27792.23 34167.49 30368.15 32788.45 302
OpenMVS_ROBcopyleft68.52 2073.02 32569.57 33283.37 31680.54 36271.82 31493.60 27688.22 35462.37 36261.98 35683.15 33935.31 37395.47 27845.08 37875.88 27582.82 361
FMVSNet576.46 30874.16 31283.35 31790.05 27476.17 26489.58 32389.85 33871.39 33965.29 34280.42 35150.61 32787.70 37161.05 33569.24 31786.18 339
PEN-MVS79.47 28578.26 28183.08 31886.36 31768.58 33693.85 27194.77 20579.76 25771.37 30888.55 26559.79 26992.46 33764.50 31965.40 34488.19 307
MDA-MVSNet_test_wron73.54 32170.43 32982.86 31984.55 34171.85 31391.74 30791.32 32367.63 35046.73 38081.09 34955.11 31190.42 36055.91 35459.76 35986.31 337
YYNet173.53 32270.43 32982.85 32084.52 34371.73 31691.69 30891.37 32067.63 35046.79 37981.21 34855.04 31290.43 35955.93 35359.70 36086.38 336
TinyColmap72.41 32768.99 33682.68 32188.11 29969.59 33188.41 33285.20 36765.55 35657.91 36984.82 32730.80 38095.94 25151.38 36368.70 32082.49 366
CVMVSNet84.83 20885.57 17782.63 32291.55 24360.38 36795.13 23695.03 19080.60 23682.10 19994.71 16966.40 23190.19 36174.30 26490.32 16597.31 133
pmmvs-eth3d73.59 32070.66 32782.38 32376.40 37673.38 29489.39 32689.43 34272.69 33160.34 36377.79 36046.43 34491.26 35366.42 31257.06 36382.51 364
ITE_SJBPF82.38 32387.00 31265.59 34889.55 34079.99 25469.37 32391.30 22741.60 35995.33 28462.86 32874.63 28386.24 338
DTE-MVSNet78.37 29177.06 29082.32 32585.22 33767.17 34593.40 27993.66 27278.71 27870.53 31688.29 27059.06 27892.23 34161.38 33363.28 35387.56 320
test_040272.68 32669.54 33382.09 32688.67 29371.81 31592.72 29586.77 36261.52 36662.21 35583.91 33343.22 35293.76 32634.60 38572.23 29580.72 373
MDA-MVSNet-bldmvs71.45 33267.94 33781.98 32785.33 33568.50 33792.35 30088.76 35070.40 34242.99 38381.96 34346.57 34391.31 35248.75 37454.39 36786.11 340
UnsupCasMVSNet_eth73.25 32370.57 32881.30 32877.53 37066.33 34787.24 34293.89 25780.38 24457.90 37081.59 34542.91 35590.56 35865.18 31748.51 37887.01 329
SixPastTwentyTwo76.04 30974.32 31081.22 32984.54 34261.43 36591.16 31389.30 34477.89 28464.04 34586.31 30448.23 33494.29 31763.54 32563.84 35187.93 312
myMVS_eth3d81.93 25782.18 23281.18 33092.13 22767.18 34293.97 26794.23 23782.43 20873.39 29193.57 19576.98 11387.86 36850.53 36882.34 23388.51 297
RPSCF77.73 29876.63 29381.06 33188.66 29455.76 37887.77 33887.88 35664.82 35974.14 28792.79 20649.22 33396.81 21867.47 30476.88 27190.62 247
UnsupCasMVSNet_bld68.60 34064.50 34480.92 33274.63 37967.80 33883.97 36192.94 29965.12 35854.63 37568.23 38135.97 37092.17 34360.13 33644.83 38282.78 362
CL-MVSNet_self_test75.81 31174.14 31380.83 33378.33 36867.79 33994.22 26393.52 27877.28 29469.82 32081.54 34661.47 26389.22 36357.59 34653.51 36985.48 347
OurMVSNet-221017-077.18 30476.06 29680.55 33483.78 35260.00 36990.35 31991.05 32777.01 29966.62 33687.92 27647.73 34094.03 32071.63 28068.44 32387.62 317
Anonymous2023120675.29 31473.64 31580.22 33580.75 35963.38 35893.36 28190.71 33473.09 32767.12 32983.70 33550.33 32990.85 35653.63 36070.10 30886.44 335
lessismore_v079.98 33680.59 36158.34 37280.87 37958.49 36783.46 33743.10 35393.89 32263.11 32748.68 37787.72 314
K. test v373.62 31971.59 32479.69 33782.98 35459.85 37090.85 31788.83 34877.13 29558.90 36582.11 34243.62 34991.72 34865.83 31454.10 36887.50 323
TDRefinement69.20 33865.78 34279.48 33866.04 38862.21 36188.21 33386.12 36462.92 36161.03 36185.61 31233.23 37594.16 31855.82 35553.02 37182.08 368
testing380.74 27381.17 24879.44 33991.15 25163.48 35797.16 11995.76 15280.83 23071.36 30993.15 20178.22 9287.30 37343.19 38079.67 25087.55 322
testgi74.88 31673.40 31679.32 34080.13 36361.75 36293.21 28786.64 36379.49 26366.56 33791.06 23135.51 37288.67 36556.79 35171.25 29787.56 320
CMPMVSbinary54.94 2175.71 31374.56 30879.17 34179.69 36455.98 37589.59 32293.30 28860.28 37253.85 37689.07 25847.68 34196.33 23376.55 24081.02 23985.22 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs279.59 28279.90 26978.67 34282.86 35555.82 37795.20 23289.55 34081.09 22680.12 22389.80 25134.31 37493.51 33087.82 13778.36 26686.69 332
test_vis1_rt73.96 31872.40 32178.64 34383.91 35061.16 36695.63 21568.18 39376.32 30160.09 36474.77 36729.01 38297.54 17387.74 13875.94 27477.22 377
Anonymous2024052172.06 33069.91 33178.50 34477.11 37361.67 36491.62 31090.97 32965.52 35762.37 35479.05 35736.32 36890.96 35557.75 34568.52 32282.87 360
MIMVSNet169.44 33666.65 34077.84 34576.48 37562.84 36087.42 34088.97 34766.96 35557.75 37179.72 35632.77 37785.83 37746.32 37663.42 35284.85 351
Syy-MVS77.97 29678.05 28277.74 34692.13 22756.85 37393.97 26794.23 23782.43 20873.39 29193.57 19557.95 28887.86 36832.40 38682.34 23388.51 297
new-patchmatchnet68.85 33965.93 34177.61 34773.57 38163.94 35590.11 32188.73 35171.62 33855.08 37473.60 37140.84 36287.22 37451.35 36548.49 37981.67 372
LF4IMVS72.36 32870.82 32676.95 34879.18 36556.33 37486.12 35186.11 36569.30 34863.06 35186.66 29533.03 37692.25 34065.33 31668.64 32182.28 367
EU-MVSNet76.92 30676.95 29176.83 34984.10 34754.73 38091.77 30692.71 30272.74 33069.57 32288.69 26358.03 28787.43 37264.91 31870.00 31088.33 305
PM-MVS69.32 33766.93 33976.49 35073.60 38055.84 37685.91 35279.32 38374.72 31461.09 36078.18 35921.76 38591.10 35470.86 28956.90 36482.51 364
pmmvs365.75 34362.18 34676.45 35167.12 38764.54 35088.68 33085.05 36854.77 38357.54 37273.79 37029.40 38186.21 37655.49 35647.77 38078.62 375
ambc76.02 35268.11 38551.43 38164.97 38989.59 33960.49 36274.49 36917.17 38892.46 33761.50 33252.85 37284.17 356
test20.0372.36 32871.15 32575.98 35377.79 36959.16 37192.40 29989.35 34374.09 31861.50 35884.32 33048.09 33585.54 37850.63 36762.15 35683.24 359
KD-MVS_self_test70.97 33469.31 33475.95 35476.24 37855.39 37987.45 33990.94 33070.20 34462.96 35377.48 36144.01 34788.09 36661.25 33453.26 37084.37 354
DSMNet-mixed73.13 32472.45 32075.19 35577.51 37146.82 38585.09 35782.01 37867.61 35469.27 32481.33 34750.89 32586.28 37554.54 35783.80 21792.46 235
new_pmnet66.18 34263.18 34575.18 35676.27 37761.74 36383.79 36284.66 36956.64 38151.57 37771.85 37931.29 37987.93 36749.98 36962.55 35475.86 378
mvsany_test367.19 34165.34 34372.72 35763.08 38948.57 38383.12 36478.09 38472.07 33461.21 35977.11 36322.94 38487.78 37078.59 21851.88 37481.80 370
test_fmvs369.56 33569.19 33570.67 35869.01 38347.05 38490.87 31686.81 36171.31 34066.79 33477.15 36216.40 38983.17 38181.84 19162.51 35581.79 371
test_f64.01 34462.13 34769.65 35963.00 39045.30 39083.66 36380.68 38061.30 36855.70 37372.62 37514.23 39184.64 37969.84 29458.11 36179.00 374
dmvs_testset72.00 33173.36 31767.91 36083.83 35131.90 40085.30 35677.12 38582.80 20163.05 35292.46 20961.54 26282.55 38342.22 38271.89 29689.29 275
EGC-MVSNET52.46 35347.56 35667.15 36181.98 35760.11 36882.54 36672.44 3890.11 4010.70 40274.59 36825.11 38383.26 38029.04 38861.51 35758.09 386
APD_test156.56 34853.58 35265.50 36267.93 38646.51 38777.24 37972.95 38838.09 38642.75 38475.17 36613.38 39282.78 38240.19 38354.53 36667.23 383
LCM-MVSNet52.52 35248.24 35565.35 36347.63 39941.45 39272.55 38583.62 37431.75 38837.66 38657.92 3869.19 39876.76 38849.26 37144.60 38377.84 376
PMMVS250.90 35446.31 35764.67 36455.53 39346.67 38677.30 37871.02 39040.89 38534.16 38959.32 3849.83 39776.14 39040.09 38428.63 39271.21 379
N_pmnet61.30 34560.20 34864.60 36584.32 34417.00 40691.67 30910.98 40461.77 36558.45 36878.55 35849.89 33191.83 34742.27 38163.94 35084.97 350
DeepMVS_CXcopyleft64.06 36678.53 36743.26 39168.11 39569.94 34538.55 38576.14 36518.53 38779.34 38443.72 37941.62 38769.57 381
test_method56.77 34754.53 35163.49 36776.49 37440.70 39375.68 38074.24 38719.47 39548.73 37871.89 37819.31 38665.80 39557.46 34747.51 38183.97 357
test_vis3_rt54.10 35151.04 35463.27 36858.16 39146.08 38984.17 36049.32 40356.48 38236.56 38749.48 3908.03 39991.91 34667.29 30549.87 37551.82 389
FPMVS55.09 35052.93 35361.57 36955.98 39240.51 39483.11 36583.41 37537.61 38734.95 38871.95 37714.40 39076.95 38729.81 38765.16 34567.25 382
ANet_high46.22 35541.28 36261.04 37039.91 40146.25 38870.59 38676.18 38658.87 37823.09 39448.00 39112.58 39466.54 39428.65 38913.62 39570.35 380
WB-MVS57.26 34656.22 34960.39 37169.29 38235.91 39886.39 35070.06 39159.84 37646.46 38172.71 37451.18 32478.11 38515.19 39534.89 39067.14 384
SSC-MVS56.01 34954.96 35059.17 37268.42 38434.13 39984.98 35869.23 39258.08 38045.36 38271.67 38050.30 33077.46 38614.28 39632.33 39165.91 385
testf145.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
APD_test245.70 35642.41 35855.58 37353.29 39640.02 39568.96 38762.67 39727.45 39029.85 39061.58 3825.98 40073.83 39228.49 39043.46 38552.90 387
Gipumacopyleft45.11 35842.05 36054.30 37580.69 36051.30 38235.80 39383.81 37328.13 38927.94 39334.53 39311.41 39676.70 38921.45 39254.65 36534.90 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft34.80 2339.19 36035.53 36350.18 37629.72 40230.30 40159.60 39166.20 39626.06 39217.91 39649.53 3893.12 40274.09 39118.19 39449.40 37646.14 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 36129.49 36646.92 37741.86 40036.28 39750.45 39256.52 40018.75 39618.28 39537.84 3922.41 40358.41 39618.71 39320.62 39346.06 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 35941.93 36140.38 37820.10 40326.84 40261.93 39059.09 39914.81 39728.51 39280.58 35035.53 37148.33 39963.70 32413.11 39645.96 392
E-PMN32.70 36232.39 36433.65 37953.35 39525.70 40374.07 38353.33 40121.08 39317.17 39733.63 39511.85 39554.84 39712.98 39714.04 39420.42 394
EMVS31.70 36331.45 36532.48 38050.72 39823.95 40474.78 38252.30 40220.36 39416.08 39831.48 39612.80 39353.60 39811.39 39813.10 39719.88 395
wuyk23d14.10 36513.89 36814.72 38155.23 39422.91 40533.83 3943.56 4054.94 3984.11 3992.28 4012.06 40419.66 40010.23 3998.74 3981.59 398
test1239.07 36711.73 3701.11 3820.50 4050.77 40789.44 3250.20 4070.34 4002.15 40110.72 4000.34 4050.32 4011.79 4010.08 4002.23 396
testmvs9.92 36612.94 3690.84 3830.65 4040.29 40893.78 2720.39 4060.42 3992.85 40015.84 3990.17 4060.30 4022.18 4000.21 3991.91 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k21.43 36428.57 3670.00 3840.00 4060.00 4090.00 39595.93 1440.00 4020.00 40397.66 7263.57 2470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.92 3697.89 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40271.04 2040.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.11 36810.81 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.30 940.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS67.18 34249.00 372
FOURS198.51 3978.01 22798.13 4996.21 12183.04 19494.39 51
PC_three_145291.12 3598.33 298.42 2892.51 299.81 2198.96 399.37 199.70 3
test_one_060198.91 1884.56 7196.70 6588.06 7996.57 2298.77 1088.04 20
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.09 883.22 9696.60 8182.88 19993.61 6198.06 5082.93 5099.14 9795.51 4898.49 37
RE-MVS-def91.18 8297.76 6776.03 26896.20 18995.44 17180.56 23890.72 10097.84 6473.36 18091.99 8896.79 8997.75 103
IU-MVS99.03 1585.34 4996.86 4592.05 2798.74 198.15 1198.97 1799.42 13
test_241102_TWO96.78 4988.72 6697.70 898.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6196.78 4988.72 6697.79 698.90 588.48 1799.82 18
9.1494.26 2998.10 5798.14 4696.52 8984.74 14794.83 4698.80 782.80 5299.37 8095.95 4098.42 40
save fliter98.24 5183.34 9398.61 3396.57 8491.32 32
test_0728_THIRD88.38 7396.69 1798.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test072699.05 985.18 5499.11 1496.78 4988.75 6497.65 1198.91 287.69 22
GSMVS97.54 117
test_part298.90 1985.14 6096.07 28
sam_mvs177.59 10297.54 117
sam_mvs75.35 150
MTGPAbinary96.33 112
test_post185.88 35330.24 39773.77 17395.07 30073.89 267
test_post33.80 39476.17 12995.97 247
patchmatchnet-post77.09 36477.78 10195.39 280
MTMP97.53 9068.16 394
gm-plane-assit92.27 21879.64 18284.47 15795.15 15797.93 15185.81 152
test9_res96.00 3999.03 1398.31 62
TEST998.64 3183.71 8497.82 6896.65 7284.29 16495.16 3598.09 4584.39 3799.36 81
test_898.63 3383.64 8797.81 7096.63 7784.50 15595.10 3998.11 4484.33 3899.23 86
agg_prior294.30 5899.00 1598.57 46
agg_prior98.59 3583.13 9796.56 8694.19 5399.16 96
test_prior482.34 11097.75 75
test_prior298.37 3986.08 11994.57 4998.02 5183.14 4895.05 5198.79 26
旧先验296.97 13874.06 31996.10 2797.76 16088.38 133
新几何296.42 175
旧先验197.39 8279.58 18396.54 8798.08 4884.00 4297.42 7497.62 114
无先验96.87 14596.78 4977.39 29199.52 6979.95 20698.43 55
原ACMM296.84 146
test22296.15 10178.41 21395.87 20596.46 9671.97 33589.66 11397.45 8576.33 12798.24 4998.30 63
testdata299.48 7376.45 242
segment_acmp82.69 53
testdata195.57 21787.44 94
plane_prior791.86 23977.55 243
plane_prior691.98 23577.92 23264.77 242
plane_prior594.69 20797.30 18987.08 14482.82 22890.96 243
plane_prior494.15 182
plane_prior377.75 23990.17 5081.33 207
plane_prior297.18 11589.89 53
plane_prior191.95 237
plane_prior77.96 22997.52 9390.36 4882.96 226
n20.00 408
nn0.00 408
door-mid79.75 382
test1196.50 92
door80.13 381
HQP5-MVS78.48 209
HQP-NCC92.08 23097.63 8290.52 4382.30 193
ACMP_Plane92.08 23097.63 8290.52 4382.30 193
BP-MVS87.67 140
HQP4-MVS82.30 19397.32 18791.13 241
HQP3-MVS94.80 20283.01 224
HQP2-MVS65.40 236
NP-MVS92.04 23478.22 21994.56 172
MDTV_nov1_ep13_2view81.74 12686.80 34580.65 23585.65 15574.26 16776.52 24196.98 146
MDTV_nov1_ep1383.69 20794.09 16581.01 14186.78 34696.09 13083.81 17884.75 16584.32 33074.44 16696.54 22663.88 32285.07 212
ACMMP++_ref78.45 265
ACMMP++79.05 256
Test By Simon71.65 197