This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1398.26 196.26 10195.09 199.15 896.98 3893.39 1696.45 2598.79 890.17 1099.99 189.33 12899.25 699.70 3
OPU-MVS97.30 299.19 792.31 399.12 1298.54 2092.06 399.84 1299.11 299.37 199.74 1
MSC_two_6792asdad97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 5299.81 2198.08 1498.81 2499.43 11
MVS90.60 11088.64 13596.50 594.25 16790.53 893.33 29197.21 2377.59 29878.88 24397.31 9471.52 20699.69 4989.60 12398.03 5599.27 22
DELS-MVS94.98 1494.49 2496.44 696.42 9590.59 799.21 597.02 3694.40 991.46 8997.08 10883.32 4999.69 4992.83 8398.70 3199.04 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 2497.10 3295.17 392.11 8198.46 2887.33 2499.97 297.21 2899.31 499.63 7
MM95.85 695.74 1096.15 896.34 9689.50 999.18 698.10 895.68 196.64 2197.92 6080.72 6599.80 2599.16 197.96 5799.15 26
PS-MVSNAJ94.17 2993.52 4096.10 995.65 12392.35 298.21 4595.79 15892.42 2396.24 2798.18 4071.04 21199.17 9596.77 3397.39 7696.79 163
xiu_mvs_v2_base93.92 3493.26 4495.91 1095.07 14092.02 698.19 4695.68 16492.06 2796.01 3198.14 4470.83 21498.96 10996.74 3596.57 9596.76 166
MVS_030495.36 1095.20 1795.85 1194.89 14789.22 1298.83 2697.88 1194.68 495.14 3997.99 5480.80 6499.81 2198.60 697.95 5898.50 54
MG-MVS94.25 2893.72 3495.85 1199.38 389.35 1197.98 6098.09 989.99 5392.34 7796.97 11281.30 6298.99 10788.54 13598.88 2099.20 24
CANet94.89 1694.64 2295.63 1397.55 7588.12 1799.06 1796.39 11294.07 1295.34 3597.80 6976.83 12299.87 897.08 3097.64 6798.89 34
WTY-MVS92.65 5991.68 7595.56 1496.00 10888.90 1398.23 4497.65 1488.57 7089.82 11397.22 10279.29 8099.06 10489.57 12488.73 18198.73 43
CNVR-MVS96.30 196.54 195.55 1599.31 587.69 2399.06 1797.12 3094.66 596.79 1798.78 986.42 2899.95 397.59 2399.18 799.00 31
sasdasda92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
canonicalmvs92.27 6791.22 8395.41 1695.80 11888.31 1497.09 13394.64 22188.49 7292.99 7097.31 9472.68 19098.57 12793.38 7388.58 18399.36 16
HY-MVS84.06 691.63 8490.37 10495.39 1896.12 10588.25 1690.22 32997.58 1688.33 7790.50 10691.96 22779.26 8199.06 10490.29 11689.07 17598.88 35
test_0728_SECOND95.14 1999.04 1486.14 3799.06 1796.77 6199.84 1297.90 1798.85 2199.45 10
alignmvs92.97 4792.26 6395.12 2095.54 12587.77 2198.67 3096.38 11388.04 8393.01 6997.45 8779.20 8398.60 12593.25 7788.76 18098.99 33
DeepC-MVS_fast89.06 294.48 2494.30 2995.02 2198.86 2185.68 4898.06 5696.64 8193.64 1491.74 8798.54 2080.17 7399.90 592.28 8898.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+82.88 889.63 12887.85 14894.99 2294.49 16286.76 3297.84 6895.74 16186.10 12475.47 28796.02 13565.00 24799.51 7182.91 19397.07 8398.72 44
DVP-MVS++96.05 496.41 394.96 2399.05 985.34 5698.13 5096.77 6188.38 7597.70 998.77 1092.06 399.84 1297.47 2499.37 199.70 3
SED-MVS95.88 596.22 494.87 2499.03 1585.03 6999.12 1296.78 5588.72 6797.79 798.91 288.48 1799.82 1898.15 1198.97 1799.74 1
HPM-MVS++copyleft95.32 1195.48 1494.85 2598.62 3486.04 3897.81 7196.93 4492.45 2295.69 3298.50 2585.38 3099.85 1094.75 5699.18 798.65 47
VNet92.11 7191.22 8394.79 2696.91 9186.98 2897.91 6497.96 1086.38 12093.65 6095.74 14070.16 21998.95 11193.39 7188.87 17998.43 59
SMA-MVScopyleft94.70 2194.68 2194.76 2798.02 5985.94 4297.47 9796.77 6185.32 14097.92 398.70 1583.09 5199.84 1295.79 4499.08 1098.49 55
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
lupinMVS93.87 3593.58 3994.75 2893.00 20688.08 1899.15 895.50 17391.03 3994.90 4497.66 7478.84 8897.56 17694.64 5997.46 7198.62 49
MGCFI-Net91.95 7391.03 9094.72 2995.68 12286.38 3496.93 14894.48 23088.25 7992.78 7397.24 10072.34 19598.46 13593.13 8088.43 18799.32 19
NCCC95.63 795.94 894.69 3099.21 685.15 6699.16 796.96 4194.11 1195.59 3398.64 1785.07 3299.91 495.61 4799.10 999.00 31
DPE-MVScopyleft95.32 1195.55 1294.64 3198.79 2384.87 7497.77 7396.74 6686.11 12396.54 2498.89 688.39 1999.74 3897.67 2299.05 1299.31 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.58 995.91 994.57 3299.05 985.18 6199.06 1796.46 10288.75 6596.69 1898.76 1287.69 2299.76 3197.90 1798.85 2198.77 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS94.17 2994.05 3394.55 3397.56 7485.95 4097.73 7796.43 10684.02 17895.07 4298.74 1482.93 5299.38 7895.42 5198.51 3598.32 64
PAPR92.74 5292.17 6694.45 3498.89 2084.87 7497.20 11696.20 12987.73 9188.40 13898.12 4578.71 9199.76 3187.99 14296.28 9898.74 39
3Dnovator82.32 1089.33 13287.64 15394.42 3593.73 18485.70 4697.73 7796.75 6586.73 11976.21 27595.93 13662.17 26199.68 5181.67 20097.81 6297.88 95
DP-MVS Recon91.72 8290.85 9194.34 3699.50 185.00 7198.51 3695.96 14880.57 24688.08 14397.63 8076.84 12099.89 785.67 16094.88 11798.13 78
PAPM92.87 5092.40 5994.30 3792.25 23187.85 2096.40 18496.38 11391.07 3888.72 13496.90 11382.11 5797.37 19390.05 11997.70 6597.67 113
iter_conf05_1191.95 7391.17 8894.29 3896.33 9785.50 5499.61 191.84 32294.36 1097.89 698.51 2446.72 35098.24 14796.54 3698.75 2899.13 27
SD-MVS94.84 1895.02 1994.29 3897.87 6484.61 7897.76 7596.19 13189.59 5896.66 2098.17 4384.33 3899.60 5996.09 3998.50 3798.66 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.25 4098.34 4685.55 5296.35 11792.36 7680.84 6399.22 8798.31 4897.98 90
test_yl91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
DCV-MVSNet91.46 8890.53 9894.24 4197.41 8085.18 6198.08 5397.72 1280.94 23789.85 11196.14 13275.61 14298.81 11990.42 11488.56 18598.74 39
jason92.73 5392.23 6494.21 4390.50 27687.30 2798.65 3195.09 19490.61 4492.76 7497.13 10575.28 15797.30 19693.32 7596.75 9298.02 83
jason: jason.
ACMMP_NAP93.46 3993.23 4594.17 4497.16 8884.28 8496.82 15696.65 7886.24 12194.27 5397.99 5477.94 10199.83 1693.39 7198.57 3498.39 61
131488.94 13987.20 16694.17 4493.21 19885.73 4593.33 29196.64 8182.89 20675.98 27896.36 12866.83 23599.39 7783.52 18796.02 10697.39 136
LFMVS89.27 13487.64 15394.16 4697.16 8885.52 5397.18 11994.66 21879.17 27989.63 11796.57 12655.35 31798.22 14889.52 12689.54 17098.74 39
bld_raw_dy_0_6488.31 16086.38 17994.07 4796.33 9784.79 7697.19 11784.75 37894.48 882.36 20298.47 2746.18 35398.30 14596.54 3681.13 24999.13 27
QAPM86.88 18484.51 20593.98 4894.04 17785.89 4397.19 11796.05 14173.62 33075.12 29095.62 14662.02 26499.74 3870.88 29696.06 10496.30 182
MSLP-MVS++94.28 2694.39 2793.97 4998.30 4984.06 8798.64 3296.93 4490.71 4293.08 6898.70 1579.98 7599.21 8894.12 6499.07 1198.63 48
APDe-MVScopyleft94.56 2394.75 2093.96 5098.84 2283.40 10098.04 5896.41 10885.79 13195.00 4398.28 3684.32 4199.18 9497.35 2698.77 2799.28 21
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
TSAR-MVS + GP.94.35 2594.50 2393.89 5197.38 8483.04 10798.10 5295.29 18891.57 3293.81 5897.45 8786.64 2699.43 7696.28 3894.01 12999.20 24
fmvsm_l_conf0.5_n94.89 1695.24 1693.86 5294.42 16384.61 7899.13 1196.15 13392.06 2797.92 398.52 2384.52 3699.74 3898.76 595.67 11197.22 144
CANet_DTU90.98 10290.04 11293.83 5394.76 15086.23 3696.32 18993.12 30593.11 1893.71 5996.82 11963.08 25799.48 7384.29 17095.12 11695.77 191
API-MVS90.18 11888.97 12993.80 5498.66 2882.95 10897.50 9695.63 16775.16 31986.31 15897.69 7272.49 19399.90 581.26 20296.07 10398.56 51
testing1192.48 6392.04 7093.78 5595.94 11286.00 3997.56 8997.08 3387.52 9689.32 12295.40 15284.60 3598.02 15391.93 9489.04 17697.32 138
EPNet94.06 3294.15 3193.76 5697.27 8784.35 8198.29 4297.64 1594.57 695.36 3496.88 11579.96 7699.12 10091.30 9796.11 10297.82 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
train_agg94.28 2694.45 2593.74 5798.64 3183.71 9297.82 6996.65 7884.50 16495.16 3698.09 4784.33 3899.36 8195.91 4398.96 1998.16 75
CDPH-MVS93.12 4392.91 4993.74 5798.65 3083.88 8897.67 8296.26 12383.00 20493.22 6698.24 3781.31 6199.21 8889.12 12998.74 3098.14 77
MVSFormer91.36 9190.57 9793.73 5993.00 20688.08 1894.80 25894.48 23080.74 24294.90 4497.13 10578.84 8895.10 30583.77 17897.46 7198.02 83
fmvsm_l_conf0.5_n_a94.91 1595.30 1593.72 6094.50 16184.30 8399.14 1096.00 14491.94 3097.91 598.60 1884.78 3499.77 2998.84 496.03 10597.08 152
APD-MVScopyleft93.61 3793.59 3893.69 6198.76 2483.26 10397.21 11496.09 13782.41 21894.65 4998.21 3881.96 5998.81 11994.65 5898.36 4699.01 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testing9191.90 7791.31 8293.66 6295.99 10985.68 4897.39 10796.89 4786.75 11888.85 13095.23 15883.93 4597.90 16288.91 13087.89 19497.41 133
TSAR-MVS + MP.94.79 2095.17 1893.64 6397.66 6984.10 8695.85 21596.42 10791.26 3597.49 1396.80 12086.50 2798.49 13295.54 4999.03 1398.33 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 1792x268891.07 10090.21 10893.64 6395.18 13683.53 9796.26 19296.13 13488.92 6484.90 17193.10 21272.86 18899.62 5888.86 13195.67 11197.79 105
MVS_Test90.29 11789.18 12693.62 6595.23 13384.93 7294.41 26394.66 21884.31 16990.37 10991.02 24275.13 15997.82 16583.11 19194.42 12498.12 79
testing9991.91 7691.35 8093.60 6695.98 11085.70 4697.31 11196.92 4686.82 11488.91 12895.25 15584.26 4297.89 16388.80 13387.94 19397.21 146
sss90.87 10689.96 11593.60 6694.15 17183.84 9197.14 12698.13 785.93 12989.68 11596.09 13471.67 20399.30 8387.69 14589.16 17497.66 114
PVSNet_Blended93.13 4292.98 4893.57 6897.47 7683.86 8999.32 296.73 6791.02 4089.53 11996.21 13176.42 12999.57 6494.29 6195.81 11097.29 142
xiu_mvs_v1_base_debu90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
xiu_mvs_v1_base_debi90.54 11189.54 12293.55 6992.31 22487.58 2496.99 13894.87 20487.23 10493.27 6397.56 8357.43 30098.32 14292.72 8493.46 13994.74 217
OpenMVScopyleft79.58 1486.09 19783.62 22193.50 7290.95 26586.71 3397.44 10095.83 15675.35 31672.64 31195.72 14157.42 30399.64 5571.41 29095.85 10994.13 227
GG-mvs-BLEND93.49 7394.94 14486.26 3581.62 37697.00 3788.32 14094.30 18691.23 596.21 24788.49 13797.43 7498.00 88
ab-mvs87.08 18084.94 20093.48 7493.34 19783.67 9488.82 33795.70 16381.18 23484.55 17890.14 25862.72 25898.94 11385.49 16282.54 24297.85 99
PHI-MVS93.59 3893.63 3793.48 7498.05 5881.76 13398.64 3297.13 2882.60 21494.09 5698.49 2680.35 6899.85 1094.74 5798.62 3398.83 36
MVS_111021_HR93.41 4093.39 4393.47 7697.34 8582.83 10997.56 8998.27 689.16 6389.71 11497.14 10479.77 7799.56 6693.65 6997.94 5998.02 83
PAPM_NR91.46 8890.82 9293.37 7798.50 4081.81 13295.03 25296.13 13484.65 16086.10 16197.65 7879.24 8299.75 3683.20 18996.88 8798.56 51
MP-MVS-pluss92.58 6192.35 6093.29 7897.30 8682.53 11396.44 18096.04 14284.68 15989.12 12598.37 3177.48 11099.74 3893.31 7698.38 4497.59 120
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IB-MVS85.34 488.67 14887.14 16993.26 7993.12 20484.32 8298.76 2797.27 2187.19 10779.36 24090.45 25183.92 4698.53 13084.41 16969.79 32096.93 157
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune85.48 20982.90 23393.24 8094.51 16085.82 4479.22 38096.97 4061.19 37887.33 14953.01 39690.58 696.07 25086.07 15797.23 8097.81 104
ZNCC-MVS92.75 5192.60 5693.23 8198.24 5181.82 13197.63 8396.50 9885.00 15191.05 9897.74 7178.38 9499.80 2590.48 10998.34 4798.07 81
SteuartSystems-ACMMP94.13 3194.44 2693.20 8295.41 12881.35 14399.02 2196.59 8889.50 5994.18 5598.36 3283.68 4899.45 7594.77 5598.45 4098.81 37
Skip Steuart: Steuart Systems R&D Blog.
ETVMVS90.99 10190.26 10593.19 8395.81 11785.64 5096.97 14397.18 2685.43 13788.77 13394.86 17582.00 5896.37 24082.70 19488.60 18297.57 121
casdiffmvs_mvgpermissive91.13 9790.45 10193.17 8492.99 20983.58 9697.46 9994.56 22787.69 9287.19 15294.98 17374.50 17097.60 17391.88 9592.79 14698.34 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
新几何193.12 8597.44 7881.60 14096.71 7074.54 32491.22 9697.57 8279.13 8499.51 7177.40 24198.46 3998.26 71
CSCG92.02 7291.65 7693.12 8598.53 3680.59 16197.47 9797.18 2677.06 30784.64 17797.98 5783.98 4499.52 6990.72 10697.33 7799.23 23
Effi-MVS+90.70 10889.90 11893.09 8793.61 18583.48 9895.20 24292.79 31083.22 19791.82 8595.70 14271.82 20297.48 18691.25 9893.67 13598.32 64
test_prior93.09 8798.68 2681.91 12696.40 11099.06 10498.29 68
GST-MVS92.43 6592.22 6593.04 8998.17 5481.64 13897.40 10696.38 11384.71 15890.90 10197.40 9277.55 10999.76 3189.75 12297.74 6497.72 109
thisisatest051590.95 10490.26 10593.01 9094.03 17984.27 8597.91 6496.67 7583.18 19886.87 15595.51 15088.66 1697.85 16480.46 20689.01 17796.92 159
HFP-MVS92.89 4992.86 5192.98 9198.71 2581.12 14697.58 8796.70 7185.20 14591.75 8697.97 5978.47 9399.71 4590.95 10098.41 4298.12 79
ET-MVSNet_ETH3D90.01 12189.03 12792.95 9294.38 16486.77 3198.14 4796.31 12089.30 6163.33 35896.72 12490.09 1193.63 33790.70 10782.29 24598.46 57
DeepC-MVS86.58 391.53 8791.06 8992.94 9394.52 15781.89 12795.95 20795.98 14690.76 4183.76 18896.76 12173.24 18699.71 4591.67 9696.96 8497.22 144
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline188.85 14387.49 15992.93 9495.21 13586.85 3095.47 23094.61 22487.29 10283.11 19594.99 17280.70 6696.89 21982.28 19673.72 29495.05 209
testing22291.09 9890.49 10092.87 9595.82 11685.04 6896.51 17597.28 2086.05 12689.13 12495.34 15480.16 7496.62 23385.82 15888.31 18996.96 155
test_fmvsmconf_n93.99 3394.36 2892.86 9692.82 21381.12 14699.26 496.37 11693.47 1595.16 3698.21 3879.00 8599.64 5598.21 1096.73 9397.83 101
MSP-MVS95.62 896.54 192.86 9698.31 4880.10 17797.42 10496.78 5592.20 2497.11 1598.29 3593.46 199.10 10196.01 4099.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA92.45 6492.31 6192.86 9697.90 6180.85 15592.88 30296.33 11887.92 8690.20 11098.18 4076.71 12599.76 3192.57 8798.09 5297.96 93
region2R92.72 5592.70 5392.79 9998.68 2680.53 16697.53 9296.51 9685.22 14391.94 8497.98 5777.26 11299.67 5390.83 10498.37 4598.18 73
ACMMPR92.69 5792.67 5492.75 10098.66 2880.57 16297.58 8796.69 7385.20 14591.57 8897.92 6077.01 11799.67 5390.95 10098.41 4298.00 88
baseline90.76 10790.10 11192.74 10192.90 21282.56 11294.60 26094.56 22787.69 9289.06 12795.67 14473.76 17997.51 18390.43 11392.23 15598.16 75
thres20088.92 14087.65 15292.73 10296.30 9985.62 5197.85 6798.86 184.38 16884.82 17293.99 19575.12 16098.01 15470.86 29786.67 20394.56 222
PVSNet82.34 989.02 13787.79 15092.71 10395.49 12681.50 14197.70 7997.29 1987.76 9085.47 16595.12 16756.90 30698.90 11580.33 20794.02 12897.71 111
PVSNet_Blended_VisFu91.24 9490.77 9392.66 10495.09 13882.40 11797.77 7395.87 15588.26 7886.39 15793.94 19676.77 12399.27 8488.80 13394.00 13096.31 181
test_fmvsmconf0.1_n93.08 4593.22 4692.65 10588.45 30780.81 15699.00 2295.11 19393.21 1794.00 5797.91 6276.84 12099.59 6097.91 1696.55 9697.54 122
test250690.96 10390.39 10292.65 10593.54 18882.46 11696.37 18597.35 1886.78 11687.55 14695.25 15577.83 10597.50 18484.07 17294.80 11897.98 90
XVS92.69 5792.71 5292.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9097.83 6877.24 11499.59 6090.46 11098.07 5398.02 83
X-MVStestdata86.26 19584.14 21492.63 10798.52 3780.29 16997.37 10896.44 10487.04 10991.38 9020.73 40777.24 11499.59 6090.46 11098.07 5398.02 83
casdiffmvspermissive90.95 10490.39 10292.63 10792.82 21382.53 11396.83 15494.47 23387.69 9288.47 13695.56 14974.04 17697.54 18090.90 10392.74 14797.83 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
cascas86.50 19084.48 20792.55 11092.64 21985.95 4097.04 13795.07 19675.32 31780.50 22591.02 24254.33 32497.98 15586.79 15587.62 19693.71 235
tfpn200view988.48 15487.15 16792.47 11196.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21094.17 224
test_fmvsm_n_192094.81 1995.60 1192.45 11295.29 13280.96 15299.29 397.21 2394.50 797.29 1498.44 2982.15 5699.78 2898.56 797.68 6696.61 170
114514_t88.79 14687.57 15792.45 11298.21 5381.74 13496.99 13895.45 17775.16 31982.48 19995.69 14368.59 22498.50 13180.33 20795.18 11597.10 151
diffmvspermissive91.17 9690.74 9492.44 11493.11 20582.50 11596.25 19393.62 28387.79 8990.40 10895.93 13673.44 18497.42 18893.62 7092.55 14997.41 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft92.61 6092.67 5492.42 11598.13 5679.73 18797.33 11096.20 12985.63 13390.53 10597.66 7478.14 9999.70 4892.12 9098.30 4997.85 99
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary88.81 14487.61 15692.39 11699.33 479.95 17896.70 16695.58 16877.51 29983.05 19696.69 12561.90 26799.72 4384.29 17093.47 13897.50 128
fmvsm_s_conf0.5_n93.69 3694.13 3292.34 11794.56 15482.01 12199.07 1697.13 2892.09 2596.25 2698.53 2276.47 12799.80 2598.39 894.71 12095.22 207
CP-MVS92.54 6292.60 5692.34 11798.50 4079.90 18098.40 3996.40 11084.75 15590.48 10798.09 4777.40 11199.21 8891.15 9998.23 5197.92 94
patch_mono-295.14 1396.08 792.33 11998.44 4377.84 24398.43 3797.21 2392.58 2197.68 1197.65 7886.88 2599.83 1698.25 997.60 6899.33 18
thres100view90088.30 16186.95 17392.33 11996.10 10684.90 7397.14 12698.85 282.69 21283.41 19093.66 20275.43 15097.93 15669.04 30586.24 21094.17 224
PGM-MVS91.93 7591.80 7392.32 12198.27 5079.74 18695.28 23697.27 2183.83 18690.89 10297.78 7076.12 13599.56 6688.82 13297.93 6197.66 114
test_fmvsmconf0.01_n91.08 9990.68 9592.29 12282.43 36680.12 17697.94 6393.93 26192.07 2691.97 8297.60 8167.56 22799.53 6897.09 2995.56 11397.21 146
ETV-MVS92.72 5592.87 5092.28 12394.54 15681.89 12797.98 6095.21 19189.77 5793.11 6796.83 11777.23 11697.50 18495.74 4595.38 11497.44 131
fmvsm_s_conf0.1_n92.93 4893.16 4792.24 12490.52 27581.92 12598.42 3896.24 12591.17 3696.02 3098.35 3375.34 15699.74 3897.84 2094.58 12295.05 209
thres40088.42 15787.15 16792.23 12596.21 10285.30 5997.44 10098.85 283.37 19583.99 18293.82 19875.36 15397.93 15669.04 30586.24 21093.45 240
fmvsm_s_conf0.5_n_a93.34 4193.71 3592.22 12693.38 19681.71 13698.86 2596.98 3891.64 3196.85 1698.55 1975.58 14599.77 2997.88 1993.68 13495.18 208
VDDNet86.44 19184.51 20592.22 12691.56 25281.83 13097.10 13294.64 22169.50 35687.84 14495.19 16248.01 34397.92 16189.82 12186.92 20196.89 160
EPMVS87.47 17885.90 18492.18 12895.41 12882.26 12087.00 35396.28 12185.88 13084.23 17985.57 32275.07 16196.26 24471.14 29592.50 15098.03 82
test_fmvsmvis_n_192092.12 7092.10 6892.17 12990.87 26881.04 14898.34 4193.90 26592.71 2087.24 15197.90 6374.83 16399.72 4396.96 3196.20 9995.76 192
FA-MVS(test-final)87.71 17486.23 18192.17 12994.19 16980.55 16387.16 35296.07 14082.12 22385.98 16288.35 27872.04 20198.49 13280.26 20989.87 16897.48 130
thres600view788.06 16686.70 17792.15 13196.10 10685.17 6597.14 12698.85 282.70 21183.41 19093.66 20275.43 15097.82 16567.13 31485.88 21493.45 240
PCF-MVS84.09 586.77 18885.00 19992.08 13292.06 24383.07 10692.14 31094.47 23379.63 26976.90 26294.78 17771.15 20999.20 9272.87 28191.05 16393.98 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mPP-MVS91.88 7891.82 7292.07 13398.38 4478.63 21597.29 11296.09 13785.12 14788.45 13797.66 7475.53 14699.68 5189.83 12098.02 5697.88 95
fmvsm_s_conf0.1_n_a92.38 6692.49 5892.06 13488.08 31181.62 13997.97 6296.01 14390.62 4396.58 2298.33 3474.09 17599.71 4597.23 2793.46 13994.86 213
VDD-MVS88.28 16287.02 17292.06 13495.09 13880.18 17597.55 9194.45 23583.09 20089.10 12695.92 13847.97 34498.49 13293.08 8286.91 20297.52 127
EI-MVSNet-Vis-set91.84 7991.77 7492.04 13697.60 7181.17 14596.61 16896.87 4988.20 8089.19 12397.55 8678.69 9299.14 9790.29 11690.94 16495.80 190
dcpmvs_293.10 4493.46 4292.02 13797.77 6579.73 18794.82 25693.86 26886.91 11191.33 9396.76 12185.20 3198.06 15296.90 3297.60 6898.27 70
1112_ss88.60 15187.47 16192.00 13893.21 19880.97 15196.47 17792.46 31383.64 19280.86 22297.30 9780.24 7197.62 17277.60 23685.49 21897.40 135
PatchmatchNetpermissive86.83 18685.12 19791.95 13994.12 17482.27 11986.55 35795.64 16684.59 16282.98 19784.99 33477.26 11295.96 25868.61 30891.34 16297.64 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res88.03 16786.73 17591.94 14093.15 20180.88 15496.44 18092.41 31583.59 19480.74 22491.16 24080.18 7297.59 17477.48 23985.40 21997.36 137
HPM-MVScopyleft91.62 8591.53 7891.89 14197.88 6379.22 19996.99 13895.73 16282.07 22489.50 12197.19 10375.59 14498.93 11490.91 10297.94 5997.54 122
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvs_anonymous88.68 14787.62 15591.86 14294.80 14981.69 13793.53 28794.92 20182.03 22578.87 24490.43 25275.77 14095.34 29185.04 16593.16 14398.55 53
MAR-MVS90.63 10990.22 10791.86 14298.47 4278.20 23197.18 11996.61 8483.87 18588.18 14298.18 4068.71 22399.75 3683.66 18397.15 8197.63 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521184.41 22681.93 24891.85 14496.78 9378.41 22197.44 10091.34 33270.29 35284.06 18094.26 18741.09 37098.96 10979.46 21782.65 24198.17 74
SR-MVS92.16 6992.27 6291.83 14598.37 4578.41 22196.67 16795.76 15982.19 22291.97 8298.07 5176.44 12898.64 12393.71 6897.27 7998.45 58
FE-MVS86.06 19884.15 21391.78 14694.33 16679.81 18184.58 36896.61 8476.69 30985.00 16987.38 29170.71 21598.37 14170.39 30091.70 16097.17 149
EI-MVSNet-UG-set91.35 9291.22 8391.73 14797.39 8280.68 15996.47 17796.83 5287.92 8688.30 14197.36 9377.84 10499.13 9989.43 12789.45 17195.37 202
CNLPA86.96 18285.37 19191.72 14897.59 7279.34 19797.21 11491.05 33774.22 32578.90 24296.75 12367.21 23298.95 11174.68 26790.77 16596.88 161
ECVR-MVScopyleft88.35 15987.25 16591.65 14993.54 18879.40 19496.56 17290.78 34286.78 11685.57 16495.25 15557.25 30497.56 17684.73 16894.80 11897.98 90
RPMNet79.85 28975.92 30891.64 15090.16 28279.75 18479.02 38295.44 17858.43 38882.27 20772.55 38573.03 18798.41 14046.10 38686.25 20896.75 167
ACMMPcopyleft90.39 11489.97 11491.64 15097.58 7378.21 23096.78 15996.72 6984.73 15784.72 17597.23 10171.22 20899.63 5788.37 14092.41 15297.08 152
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HyFIR lowres test89.36 13188.60 13691.63 15294.91 14680.76 15895.60 22695.53 17082.56 21584.03 18191.24 23978.03 10096.81 22587.07 15288.41 18897.32 138
SCA85.63 20583.64 22091.60 15392.30 22781.86 12992.88 30295.56 16984.85 15382.52 19885.12 33258.04 29395.39 28873.89 27587.58 19897.54 122
thisisatest053089.65 12789.02 12891.53 15493.46 19480.78 15796.52 17396.67 7581.69 23083.79 18794.90 17488.85 1597.68 16977.80 23087.49 19996.14 184
BH-RMVSNet86.84 18585.28 19291.49 15595.35 13080.26 17296.95 14692.21 31782.86 20881.77 21595.46 15159.34 28297.64 17169.79 30393.81 13396.57 172
MVS_111021_LR91.60 8691.64 7791.47 15695.74 12078.79 21296.15 19996.77 6188.49 7288.64 13597.07 10972.33 19699.19 9393.13 8096.48 9796.43 175
test111188.11 16587.04 17191.35 15793.15 20178.79 21296.57 17090.78 34286.88 11385.04 16895.20 16157.23 30597.39 19183.88 17594.59 12197.87 97
TESTMET0.1,189.83 12489.34 12591.31 15892.54 22180.19 17497.11 12996.57 9086.15 12286.85 15691.83 23179.32 7996.95 21581.30 20192.35 15396.77 165
tpmrst88.36 15887.38 16391.31 15894.36 16579.92 17987.32 35095.26 19085.32 14088.34 13986.13 31680.60 6796.70 22983.78 17785.34 22197.30 141
CHOSEN 280x42091.71 8391.85 7191.29 16094.94 14482.69 11087.89 34696.17 13285.94 12887.27 15094.31 18590.27 995.65 27794.04 6595.86 10895.53 198
UGNet87.73 17386.55 17891.27 16195.16 13779.11 20396.35 18796.23 12688.14 8187.83 14590.48 25050.65 33399.09 10280.13 21294.03 12795.60 195
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet87.02 18185.61 18691.24 16294.14 17283.30 10293.88 27995.98 14684.30 17179.63 23792.01 22358.23 29097.68 16990.28 11882.02 24692.75 243
Vis-MVSNetpermissive88.67 14887.82 14991.24 16292.68 21578.82 20996.95 14693.85 26987.55 9587.07 15495.13 16663.43 25597.21 20177.58 23796.15 10197.70 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
原ACMM191.22 16497.77 6578.10 23396.61 8481.05 23691.28 9597.42 9177.92 10398.98 10879.85 21598.51 3596.59 171
iter_conf0590.14 11989.79 12091.17 16595.85 11586.93 2997.68 8188.67 36289.93 5481.73 21692.80 21590.37 896.03 25190.44 11280.65 25490.56 257
CostFormer89.08 13688.39 14091.15 16693.13 20379.15 20288.61 34096.11 13683.14 19989.58 11886.93 30083.83 4796.87 22188.22 14185.92 21397.42 132
CDS-MVSNet89.50 12988.96 13091.14 16791.94 24880.93 15397.09 13395.81 15784.26 17484.72 17594.20 19080.31 6995.64 27883.37 18888.96 17896.85 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS81.47 27378.28 29091.04 16898.14 5578.48 21795.09 25186.97 36861.14 37971.12 32192.78 21759.59 27899.38 7853.11 37086.61 20495.27 206
HPM-MVS_fast90.38 11690.17 11091.03 16997.61 7077.35 25597.15 12595.48 17479.51 27188.79 13196.90 11371.64 20598.81 11987.01 15397.44 7396.94 156
GA-MVS85.79 20384.04 21591.02 17089.47 29680.27 17196.90 15194.84 20785.57 13480.88 22189.08 26656.56 31096.47 23777.72 23385.35 22096.34 178
baseline290.39 11490.21 10890.93 17190.86 26980.99 15095.20 24297.41 1786.03 12780.07 23494.61 18090.58 697.47 18787.29 14989.86 16994.35 223
Fast-Effi-MVS+87.93 17086.94 17490.92 17294.04 17779.16 20198.26 4393.72 27981.29 23383.94 18592.90 21369.83 22096.68 23076.70 24791.74 15996.93 157
CS-MVS-test92.98 4693.67 3690.90 17396.52 9476.87 26298.68 2994.73 21390.36 5094.84 4697.89 6477.94 10197.15 20794.28 6397.80 6398.70 45
APD-MVS_3200maxsize91.23 9591.35 8090.89 17497.89 6276.35 27296.30 19095.52 17279.82 26591.03 9997.88 6574.70 16598.54 12992.11 9196.89 8697.77 106
nrg03086.79 18785.43 18990.87 17588.76 30185.34 5697.06 13694.33 24284.31 16980.45 22791.98 22672.36 19496.36 24188.48 13871.13 30790.93 255
SR-MVS-dyc-post91.29 9391.45 7990.80 17697.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6675.76 14198.61 12491.99 9296.79 9097.75 107
Anonymous2024052983.15 24780.60 26790.80 17695.74 12078.27 22596.81 15794.92 20160.10 38381.89 21292.54 21845.82 35498.82 11879.25 22178.32 27695.31 204
EIA-MVS91.73 8092.05 6990.78 17894.52 15776.40 27198.06 5695.34 18689.19 6288.90 12997.28 9977.56 10897.73 16890.77 10596.86 8998.20 72
OMC-MVS88.80 14588.16 14490.72 17995.30 13177.92 24094.81 25794.51 22986.80 11584.97 17096.85 11667.53 22898.60 12585.08 16487.62 19695.63 194
FMVSNet384.71 21982.71 23790.70 18094.55 15587.71 2295.92 20994.67 21781.73 22975.82 28288.08 28366.99 23394.47 32271.23 29275.38 28789.91 273
tpm287.35 17986.26 18090.62 18192.93 21178.67 21488.06 34595.99 14579.33 27487.40 14786.43 31180.28 7096.40 23880.23 21085.73 21796.79 163
EC-MVSNet91.73 8092.11 6790.58 18293.54 18877.77 24698.07 5594.40 23887.44 9892.99 7097.11 10774.59 16996.87 22193.75 6797.08 8297.11 150
TAMVS88.48 15487.79 15090.56 18391.09 26379.18 20096.45 17995.88 15383.64 19283.12 19493.33 20775.94 13895.74 27382.40 19588.27 19096.75 167
BH-w/o88.24 16387.47 16190.54 18495.03 14378.54 21697.41 10593.82 27084.08 17678.23 24994.51 18369.34 22297.21 20180.21 21194.58 12295.87 189
CS-MVS92.73 5393.48 4190.48 18596.27 10075.93 28298.55 3594.93 20089.32 6094.54 5197.67 7378.91 8797.02 21193.80 6697.32 7898.49 55
TR-MVS86.30 19484.93 20190.42 18694.63 15277.58 25096.57 17093.82 27080.30 25582.42 20195.16 16458.74 28697.55 17874.88 26587.82 19596.13 185
tpm cat183.63 23981.38 25690.39 18793.53 19378.19 23285.56 36495.09 19470.78 35078.51 24683.28 34774.80 16497.03 21066.77 31584.05 22695.95 186
h-mvs3389.30 13388.95 13190.36 18895.07 14076.04 27696.96 14597.11 3190.39 4892.22 7995.10 16874.70 16598.86 11693.14 7865.89 35296.16 183
PVSNet_BlendedMVS90.05 12089.96 11590.33 18997.47 7683.86 8998.02 5996.73 6787.98 8489.53 11989.61 26376.42 12999.57 6494.29 6179.59 26187.57 327
dp84.30 22882.31 24290.28 19094.24 16877.97 23686.57 35695.53 17079.94 26480.75 22385.16 33071.49 20796.39 23963.73 33283.36 23196.48 174
UA-Net88.92 14088.48 13990.24 19194.06 17677.18 25993.04 29994.66 21887.39 10091.09 9793.89 19774.92 16298.18 15175.83 25791.43 16195.35 203
MVSTER89.25 13588.92 13290.24 19195.98 11084.66 7796.79 15895.36 18387.19 10780.33 22990.61 24990.02 1295.97 25585.38 16378.64 27090.09 269
IS-MVSNet88.67 14888.16 14490.20 19393.61 18576.86 26396.77 16193.07 30684.02 17883.62 18995.60 14774.69 16896.24 24678.43 22993.66 13697.49 129
testdata90.13 19495.92 11374.17 29896.49 10173.49 33394.82 4897.99 5478.80 9097.93 15683.53 18697.52 7098.29 68
CR-MVSNet83.53 24081.36 25790.06 19590.16 28279.75 18479.02 38291.12 33484.24 17582.27 20780.35 36175.45 14893.67 33663.37 33586.25 20896.75 167
VPNet84.69 22082.92 23290.01 19689.01 30083.45 9996.71 16495.46 17685.71 13279.65 23692.18 22256.66 30996.01 25483.05 19267.84 34090.56 257
BH-untuned86.95 18385.94 18389.99 19794.52 15777.46 25296.78 15993.37 29581.80 22776.62 26693.81 20066.64 23697.02 21176.06 25493.88 13295.48 200
test-LLR88.48 15487.98 14689.98 19892.26 22977.23 25797.11 12995.96 14883.76 18986.30 15991.38 23572.30 19796.78 22780.82 20391.92 15795.94 187
test-mter88.95 13888.60 13689.98 19892.26 22977.23 25797.11 12995.96 14885.32 14086.30 15991.38 23576.37 13196.78 22780.82 20391.92 15795.94 187
ADS-MVSNet81.26 27678.36 28989.96 20093.78 18179.78 18279.48 37893.60 28473.09 33680.14 23179.99 36362.15 26295.24 29759.49 34783.52 22894.85 214
PVSNet_077.72 1581.70 27078.95 28789.94 20190.77 27276.72 26695.96 20696.95 4285.01 15070.24 32888.53 27652.32 32798.20 14986.68 15644.08 39394.89 212
DeepPCF-MVS89.82 194.61 2296.17 589.91 20297.09 9070.21 33598.99 2396.69 7395.57 295.08 4199.23 186.40 2999.87 897.84 2098.66 3299.65 6
EPP-MVSNet89.76 12589.72 12189.87 20393.78 18176.02 27997.22 11396.51 9679.35 27385.11 16795.01 17184.82 3397.10 20987.46 14888.21 19196.50 173
tpmvs83.04 25080.77 26389.84 20495.43 12777.96 23785.59 36395.32 18775.31 31876.27 27383.70 34473.89 17797.41 18959.53 34681.93 24894.14 226
GeoE86.36 19285.20 19389.83 20593.17 20076.13 27497.53 9292.11 31879.58 27080.99 22094.01 19466.60 23796.17 24973.48 27989.30 17297.20 148
FMVSNet282.79 25480.44 26989.83 20592.66 21685.43 5595.42 23294.35 24079.06 28274.46 29487.28 29256.38 31294.31 32569.72 30474.68 29189.76 275
PLCcopyleft83.97 788.00 16887.38 16389.83 20598.02 5976.46 26997.16 12394.43 23679.26 27881.98 21096.28 13069.36 22199.27 8477.71 23492.25 15493.77 234
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VPA-MVSNet85.32 21083.83 21689.77 20890.25 27982.63 11196.36 18697.07 3483.03 20381.21 21989.02 26861.58 26896.31 24385.02 16670.95 30990.36 260
tttt051788.57 15288.19 14389.71 20993.00 20675.99 28095.67 22196.67 7580.78 24181.82 21394.40 18488.97 1497.58 17576.05 25586.31 20795.57 196
test_cas_vis1_n_192089.90 12390.02 11389.54 21090.14 28474.63 29398.71 2894.43 23693.04 1992.40 7596.35 12953.41 32699.08 10395.59 4896.16 10094.90 211
CLD-MVS87.97 16987.48 16089.44 21192.16 23680.54 16598.14 4794.92 20191.41 3379.43 23995.40 15262.34 26097.27 19990.60 10882.90 23790.50 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS83.84 23582.00 24789.35 21287.13 32281.38 14295.72 21994.26 24580.15 25975.92 28090.63 24861.96 26696.52 23578.98 22473.28 29990.14 265
CPTT-MVS89.72 12689.87 11989.29 21398.33 4773.30 30497.70 7995.35 18575.68 31587.40 14797.44 9070.43 21698.25 14689.56 12596.90 8596.33 180
sd_testset84.62 22183.11 23089.17 21494.14 17277.78 24591.54 32094.38 23984.30 17179.63 23792.01 22352.28 32896.98 21377.67 23582.02 24692.75 243
MSDG80.62 28577.77 29589.14 21593.43 19577.24 25691.89 31390.18 34669.86 35568.02 33591.94 22952.21 32998.84 11759.32 34983.12 23291.35 250
TAPA-MVS81.61 1285.02 21583.67 21889.06 21696.79 9273.27 30795.92 20994.79 21174.81 32280.47 22696.83 11771.07 21098.19 15049.82 37992.57 14895.71 193
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D82.22 26479.94 27889.06 21697.43 7974.06 30093.20 29792.05 31961.90 37373.33 30495.21 16059.35 28199.21 8854.54 36692.48 15193.90 232
PatchMatch-RL85.00 21683.66 21989.02 21895.86 11474.55 29592.49 30693.60 28479.30 27679.29 24191.47 23358.53 28898.45 13770.22 30192.17 15694.07 229
HQP-MVS87.91 17187.55 15888.98 21992.08 24078.48 21797.63 8394.80 20990.52 4582.30 20394.56 18165.40 24397.32 19487.67 14683.01 23491.13 251
Vis-MVSNet (Re-imp)88.88 14288.87 13488.91 22093.89 18074.43 29696.93 14894.19 25084.39 16783.22 19395.67 14478.24 9694.70 31678.88 22594.40 12597.61 119
NR-MVSNet83.35 24281.52 25588.84 22188.76 30181.31 14494.45 26295.16 19284.65 16067.81 33690.82 24570.36 21794.87 31174.75 26666.89 34990.33 262
Patchmatch-test78.25 30274.72 31688.83 22291.20 25974.10 29973.91 39388.70 36159.89 38466.82 34285.12 33278.38 9494.54 32048.84 38279.58 26297.86 98
tpm85.55 20784.47 20888.80 22390.19 28175.39 28788.79 33894.69 21484.83 15483.96 18485.21 32878.22 9794.68 31876.32 25378.02 27896.34 178
HQP_MVS87.50 17787.09 17088.74 22491.86 24977.96 23797.18 11994.69 21489.89 5581.33 21794.15 19164.77 24997.30 19687.08 15082.82 23890.96 253
MIMVSNet79.18 29875.99 30788.72 22587.37 32180.66 16079.96 37791.82 32377.38 30174.33 29581.87 35341.78 36690.74 36666.36 32283.10 23394.76 216
FIs86.73 18986.10 18288.61 22690.05 28580.21 17396.14 20096.95 4285.56 13678.37 24892.30 22076.73 12495.28 29579.51 21679.27 26490.35 261
UniMVSNet (Re)85.31 21184.23 21188.55 22789.75 28980.55 16396.72 16296.89 4785.42 13878.40 24788.93 26975.38 15295.52 28578.58 22768.02 33789.57 277
PatchT79.75 29076.85 30288.42 22889.55 29475.49 28677.37 38694.61 22463.07 36982.46 20073.32 38275.52 14793.41 34151.36 37384.43 22496.36 176
WR-MVS84.32 22782.96 23188.41 22989.38 29880.32 16896.59 16996.25 12483.97 18076.63 26590.36 25367.53 22894.86 31275.82 25870.09 31890.06 271
GBi-Net82.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
test182.42 26080.43 27088.39 23092.66 21681.95 12294.30 26893.38 29279.06 28275.82 28285.66 31856.38 31293.84 33271.23 29275.38 28789.38 280
FMVSNet179.50 29476.54 30488.39 23088.47 30681.95 12294.30 26893.38 29273.14 33572.04 31685.66 31843.86 35793.84 33265.48 32472.53 30089.38 280
DU-MVS84.57 22383.33 22788.28 23388.76 30179.36 19596.43 18295.41 18285.42 13878.11 25090.82 24567.61 22595.14 30279.14 22268.30 33490.33 262
AUN-MVS86.25 19685.57 18788.26 23493.57 18773.38 30295.45 23195.88 15383.94 18285.47 16594.21 18973.70 18296.67 23183.54 18564.41 35694.73 220
hse-mvs288.22 16488.21 14288.25 23593.54 18873.41 30195.41 23395.89 15290.39 4892.22 7994.22 18874.70 16596.66 23293.14 7864.37 35794.69 221
v2v48283.46 24181.86 24988.25 23586.19 33279.65 18996.34 18894.02 25981.56 23177.32 25688.23 28065.62 24096.03 25177.77 23169.72 32289.09 290
UniMVSNet_NR-MVSNet85.49 20884.59 20388.21 23789.44 29779.36 19596.71 16496.41 10885.22 14378.11 25090.98 24476.97 11995.14 30279.14 22268.30 33490.12 266
miper_enhance_ethall85.95 20085.20 19388.19 23894.85 14879.76 18396.00 20494.06 25882.98 20577.74 25388.76 27179.42 7895.46 28780.58 20572.42 30189.36 283
OPM-MVS85.84 20185.10 19888.06 23988.34 30877.83 24495.72 21994.20 24987.89 8880.45 22794.05 19358.57 28797.26 20083.88 17582.76 24089.09 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS89.46 13089.92 11788.06 23994.64 15169.57 34196.22 19494.95 19987.27 10391.37 9296.54 12765.88 23997.39 19188.54 13593.89 13197.23 143
test_vis1_n_192089.95 12290.59 9688.03 24192.36 22368.98 34499.12 1294.34 24193.86 1393.64 6197.01 11151.54 33099.59 6096.76 3496.71 9495.53 198
cl2285.11 21484.17 21287.92 24295.06 14278.82 20995.51 22894.22 24879.74 26776.77 26387.92 28575.96 13795.68 27479.93 21472.42 30189.27 285
TranMVSNet+NR-MVSNet83.24 24681.71 25187.83 24387.71 31678.81 21196.13 20294.82 20884.52 16376.18 27690.78 24764.07 25294.60 31974.60 27066.59 35190.09 269
pmmvs482.54 25880.79 26287.79 24486.11 33480.49 16793.55 28693.18 30277.29 30273.35 30389.40 26565.26 24695.05 30975.32 26273.61 29587.83 321
v114482.90 25381.27 25887.78 24586.29 33079.07 20696.14 20093.93 26180.05 26177.38 25486.80 30265.50 24195.93 26075.21 26370.13 31588.33 313
dmvs_re84.10 23082.90 23387.70 24691.41 25773.28 30590.59 32793.19 30085.02 14977.96 25293.68 20157.92 29896.18 24875.50 26080.87 25193.63 236
F-COLMAP84.50 22583.44 22687.67 24795.22 13472.22 31395.95 20793.78 27575.74 31476.30 27295.18 16359.50 28098.45 13772.67 28386.59 20592.35 248
FC-MVSNet-test85.96 19985.39 19087.66 24889.38 29878.02 23495.65 22396.87 4985.12 14777.34 25591.94 22976.28 13394.74 31577.09 24278.82 26890.21 264
tt080581.20 27879.06 28687.61 24986.50 32672.97 31093.66 28295.48 17474.11 32676.23 27491.99 22541.36 36997.40 19077.44 24074.78 29092.45 246
v119282.31 26380.55 26887.60 25085.94 33678.47 22095.85 21593.80 27379.33 27476.97 26186.51 30663.33 25695.87 26373.11 28070.13 31588.46 309
EI-MVSNet85.80 20285.20 19387.59 25191.55 25377.41 25395.13 24695.36 18380.43 25280.33 22994.71 17873.72 18095.97 25576.96 24578.64 27089.39 278
XVG-OURS85.18 21284.38 20987.59 25190.42 27871.73 32591.06 32494.07 25782.00 22683.29 19295.08 16956.42 31197.55 17883.70 18283.42 23093.49 239
V4283.04 25081.53 25487.57 25386.27 33179.09 20595.87 21394.11 25580.35 25477.22 25886.79 30365.32 24596.02 25377.74 23270.14 31487.61 326
v14419282.43 25980.73 26487.54 25485.81 33978.22 22795.98 20593.78 27579.09 28177.11 25986.49 30764.66 25195.91 26174.20 27369.42 32388.49 307
UWE-MVS88.56 15388.91 13387.50 25594.17 17072.19 31595.82 21797.05 3584.96 15284.78 17393.51 20681.33 6094.75 31479.43 21889.17 17395.57 196
miper_ehance_all_eth84.57 22383.60 22287.50 25592.64 21978.25 22695.40 23493.47 28879.28 27776.41 26987.64 28876.53 12695.24 29778.58 22772.42 30189.01 295
XVG-OURS-SEG-HR85.74 20485.16 19687.49 25790.22 28071.45 32891.29 32194.09 25681.37 23283.90 18695.22 15960.30 27597.53 18285.58 16184.42 22593.50 238
v192192082.02 26680.23 27287.41 25885.62 34077.92 24095.79 21893.69 28078.86 28576.67 26486.44 30962.50 25995.83 26572.69 28269.77 32188.47 308
Anonymous2023121179.72 29177.19 29987.33 25995.59 12477.16 26095.18 24594.18 25159.31 38672.57 31286.20 31547.89 34695.66 27574.53 27169.24 32689.18 287
v881.88 26880.06 27687.32 26086.63 32579.04 20794.41 26393.65 28278.77 28673.19 30685.57 32266.87 23495.81 26673.84 27767.61 34287.11 335
IterMVS-LS83.93 23382.80 23687.31 26191.46 25677.39 25495.66 22293.43 29080.44 25075.51 28687.26 29473.72 18095.16 30176.99 24370.72 31189.39 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124081.70 27079.83 28087.30 26285.50 34177.70 24995.48 22993.44 28978.46 29076.53 26786.44 30960.85 27295.84 26471.59 28970.17 31388.35 312
c3_l83.80 23682.65 23887.25 26392.10 23977.74 24895.25 23993.04 30778.58 28876.01 27787.21 29675.25 15895.11 30477.54 23868.89 32888.91 301
UniMVSNet_ETH3D80.86 28278.75 28887.22 26486.31 32972.02 31991.95 31193.76 27873.51 33175.06 29190.16 25743.04 36395.66 27576.37 25278.55 27393.98 230
v1081.43 27479.53 28287.11 26586.38 32778.87 20894.31 26793.43 29077.88 29473.24 30585.26 32665.44 24295.75 27072.14 28667.71 34186.72 339
ACMH75.40 1777.99 30474.96 31287.10 26690.67 27376.41 27093.19 29891.64 32772.47 34263.44 35787.61 28943.34 36097.16 20458.34 35173.94 29387.72 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba85.17 21384.54 20487.05 26787.94 31375.11 29096.22 19487.79 36686.91 11178.55 24591.77 23264.93 24895.91 26186.94 15479.80 25690.12 266
v14882.41 26280.89 26186.99 26886.18 33376.81 26496.27 19193.82 27080.49 24975.28 28986.11 31767.32 23195.75 27075.48 26167.03 34888.42 311
EPNet_dtu87.65 17587.89 14786.93 26994.57 15371.37 32996.72 16296.50 9888.56 7187.12 15395.02 17075.91 13994.01 33066.62 31790.00 16795.42 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cl____83.27 24482.12 24486.74 27092.20 23275.95 28195.11 24893.27 29878.44 29174.82 29287.02 29974.19 17395.19 29974.67 26869.32 32489.09 290
DIV-MVS_self_test83.27 24482.12 24486.74 27092.19 23375.92 28395.11 24893.26 29978.44 29174.81 29387.08 29874.19 17395.19 29974.66 26969.30 32589.11 289
PS-MVSNAJss84.91 21784.30 21086.74 27085.89 33874.40 29794.95 25394.16 25283.93 18376.45 26890.11 25971.04 21195.77 26883.16 19079.02 26790.06 271
pmmvs581.34 27579.54 28186.73 27385.02 34876.91 26196.22 19491.65 32677.65 29773.55 29888.61 27355.70 31594.43 32374.12 27473.35 29888.86 302
MS-PatchMatch83.05 24981.82 25086.72 27489.64 29279.10 20494.88 25594.59 22679.70 26870.67 32489.65 26250.43 33596.82 22470.82 29995.99 10784.25 364
eth_miper_zixun_eth83.12 24882.01 24686.47 27591.85 25174.80 29194.33 26693.18 30279.11 28075.74 28587.25 29572.71 18995.32 29376.78 24667.13 34689.27 285
LPG-MVS_test84.20 22983.49 22586.33 27690.88 26673.06 30895.28 23694.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
LGP-MVS_train86.33 27690.88 26673.06 30894.13 25382.20 22076.31 27093.20 20854.83 32296.95 21583.72 18080.83 25288.98 296
ACMP81.66 1184.00 23283.22 22986.33 27691.53 25572.95 31195.91 21193.79 27483.70 19173.79 29792.22 22154.31 32596.89 21983.98 17379.74 25989.16 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tfpnnormal78.14 30375.42 31086.31 27988.33 30979.24 19894.41 26396.22 12773.51 33169.81 33085.52 32455.43 31695.75 27047.65 38467.86 33983.95 367
ACMM80.70 1383.72 23882.85 23586.31 27991.19 26072.12 31795.88 21294.29 24480.44 25077.02 26091.96 22755.24 31897.14 20879.30 22080.38 25589.67 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs180.05 28878.02 29386.15 28185.42 34275.81 28495.11 24892.69 31277.13 30470.36 32687.43 29058.44 28995.27 29671.36 29164.25 35887.36 333
ppachtmachnet_test77.19 31374.22 32186.13 28285.39 34378.22 22793.98 27591.36 33171.74 34667.11 33984.87 33556.67 30893.37 34252.21 37164.59 35586.80 338
D2MVS82.67 25681.55 25386.04 28387.77 31576.47 26895.21 24196.58 8982.66 21370.26 32785.46 32560.39 27495.80 26776.40 25179.18 26585.83 354
USDC78.65 30076.25 30585.85 28487.58 31774.60 29489.58 33290.58 34584.05 17763.13 35988.23 28040.69 37396.86 22366.57 31975.81 28586.09 349
WB-MVSnew84.08 23183.51 22485.80 28591.34 25876.69 26795.62 22596.27 12281.77 22881.81 21492.81 21458.23 29094.70 31666.66 31687.06 20085.99 351
KD-MVS_2432*160077.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
miper_refine_blended77.63 30974.92 31485.77 28690.86 26979.44 19288.08 34393.92 26376.26 31167.05 34082.78 34972.15 19991.92 35361.53 33941.62 39685.94 352
RRT_MVS83.88 23483.27 22885.71 28887.53 32072.12 31795.35 23594.33 24283.81 18775.86 28191.28 23860.55 27395.09 30783.93 17476.76 28189.90 274
ADS-MVSNet279.57 29377.53 29685.71 28893.78 18172.13 31679.48 37886.11 37473.09 33680.14 23179.99 36362.15 26290.14 37159.49 34783.52 22894.85 214
mvsany_test187.58 17688.22 14185.67 29089.78 28867.18 35195.25 23987.93 36483.96 18188.79 13197.06 11072.52 19294.53 32192.21 8986.45 20695.30 205
Patchmtry77.36 31274.59 31785.67 29089.75 28975.75 28577.85 38591.12 33460.28 38171.23 31980.35 36175.45 14893.56 33857.94 35267.34 34587.68 324
test_fmvs187.79 17288.52 13885.62 29292.98 21064.31 36097.88 6692.42 31487.95 8592.24 7895.82 13947.94 34598.44 13995.31 5294.09 12694.09 228
MVP-Stereo82.65 25781.67 25285.59 29386.10 33578.29 22493.33 29192.82 30977.75 29669.17 33487.98 28459.28 28395.76 26971.77 28796.88 8782.73 372
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Fast-Effi-MVS+-dtu83.33 24382.60 23985.50 29489.55 29469.38 34296.09 20391.38 32982.30 21975.96 27991.41 23456.71 30795.58 28375.13 26484.90 22391.54 249
our_test_377.90 30775.37 31185.48 29585.39 34376.74 26593.63 28391.67 32573.39 33465.72 34984.65 33758.20 29293.13 34357.82 35367.87 33886.57 342
test_vis1_n85.60 20685.70 18585.33 29684.79 35064.98 35896.83 15491.61 32887.36 10191.00 10094.84 17636.14 37897.18 20395.66 4693.03 14493.82 233
v7n79.32 29777.34 29785.28 29784.05 35972.89 31293.38 28993.87 26775.02 32170.68 32384.37 33859.58 27995.62 28067.60 31067.50 34387.32 334
IterMVS80.67 28479.16 28485.20 29889.79 28776.08 27592.97 30191.86 32180.28 25671.20 32085.14 33157.93 29791.34 36072.52 28470.74 31088.18 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs1_n86.34 19386.72 17685.17 29987.54 31963.64 36596.91 15092.37 31687.49 9791.33 9395.58 14840.81 37298.46 13595.00 5493.49 13793.41 242
ACMH+76.62 1677.47 31174.94 31385.05 30091.07 26471.58 32793.26 29590.01 34771.80 34564.76 35288.55 27441.62 36796.48 23662.35 33871.00 30887.09 336
jajsoiax82.12 26581.15 26085.03 30184.19 35670.70 33194.22 27293.95 26083.07 20173.48 29989.75 26149.66 33995.37 29082.24 19779.76 25789.02 294
mvs_tets81.74 26980.71 26584.84 30284.22 35570.29 33493.91 27893.78 27582.77 21073.37 30289.46 26447.36 34995.31 29481.99 19879.55 26388.92 300
LTVRE_ROB73.68 1877.99 30475.74 30984.74 30390.45 27772.02 31986.41 35891.12 33472.57 34166.63 34487.27 29354.95 32196.98 21356.29 36175.98 28285.21 358
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.51 28679.10 28584.73 30489.63 29374.66 29292.98 30091.81 32480.05 26171.06 32285.18 32958.04 29391.40 35972.48 28570.70 31288.12 317
Baseline_NR-MVSNet81.22 27780.07 27584.68 30585.32 34675.12 28996.48 17688.80 35876.24 31377.28 25786.40 31267.61 22594.39 32475.73 25966.73 35084.54 361
miper_lstm_enhance81.66 27280.66 26684.67 30691.19 26071.97 32191.94 31293.19 30077.86 29572.27 31485.26 32673.46 18393.42 34073.71 27867.05 34788.61 303
test_djsdf83.00 25282.45 24184.64 30784.07 35869.78 33894.80 25894.48 23080.74 24275.41 28887.70 28761.32 27195.10 30583.77 17879.76 25789.04 293
TransMVSNet (Re)76.94 31574.38 31984.62 30885.92 33775.25 28895.28 23689.18 35573.88 32967.22 33786.46 30859.64 27794.10 32859.24 35052.57 38284.50 362
Patchmatch-RL test76.65 31774.01 32484.55 30977.37 38264.23 36178.49 38482.84 38678.48 28964.63 35373.40 38176.05 13691.70 35876.99 24357.84 37197.72 109
AllTest75.92 32073.06 32884.47 31092.18 23467.29 34991.07 32384.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
TestCases84.47 31092.18 23467.29 34984.43 38067.63 35963.48 35590.18 25538.20 37597.16 20457.04 35773.37 29688.97 298
MVS-HIRNet71.36 34367.00 34884.46 31290.58 27469.74 33979.15 38187.74 36746.09 39361.96 36650.50 39745.14 35595.64 27853.74 36888.11 19288.00 319
JIA-IIPM79.00 29977.20 29884.40 31389.74 29164.06 36375.30 39095.44 17862.15 37281.90 21159.08 39478.92 8695.59 28266.51 32085.78 21693.54 237
LCM-MVSNet-Re83.75 23783.54 22384.39 31493.54 18864.14 36292.51 30584.03 38283.90 18466.14 34786.59 30567.36 23092.68 34484.89 16792.87 14596.35 177
anonymousdsp80.98 28179.97 27784.01 31581.73 36870.44 33392.49 30693.58 28677.10 30672.98 30886.31 31357.58 29994.90 31079.32 21978.63 27286.69 340
COLMAP_ROBcopyleft73.24 1975.74 32273.00 32983.94 31692.38 22269.08 34391.85 31486.93 36961.48 37665.32 35090.27 25442.27 36596.93 21850.91 37575.63 28685.80 355
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE79.38 29677.90 29483.81 31784.98 34967.14 35589.03 33693.18 30280.26 25872.87 30988.15 28238.55 37496.26 24476.05 25578.05 27788.02 318
CP-MVSNet81.01 28080.08 27483.79 31887.91 31470.51 33294.29 27195.65 16580.83 23972.54 31388.84 27063.71 25392.32 34868.58 30968.36 33388.55 304
WR-MVS_H81.02 27980.09 27383.79 31888.08 31171.26 33094.46 26196.54 9380.08 26072.81 31086.82 30170.36 21792.65 34564.18 32967.50 34387.46 332
test0.0.03 182.79 25482.48 24083.74 32086.81 32472.22 31396.52 17395.03 19783.76 18973.00 30793.20 20872.30 19788.88 37364.15 33077.52 27990.12 266
Effi-MVS+-dtu84.61 22284.90 20283.72 32191.96 24663.14 36894.95 25393.34 29685.57 13479.79 23587.12 29761.99 26595.61 28183.55 18485.83 21592.41 247
EG-PatchMatch MVS74.92 32572.02 33283.62 32283.76 36373.28 30593.62 28492.04 32068.57 35858.88 37583.80 34331.87 38795.57 28456.97 35978.67 26982.00 378
pmmvs674.65 32771.67 33383.60 32379.13 37669.94 33693.31 29490.88 34161.05 38065.83 34884.15 34143.43 35994.83 31366.62 31760.63 36786.02 350
PS-CasMVS80.27 28779.18 28383.52 32487.56 31869.88 33794.08 27495.29 18880.27 25772.08 31588.51 27759.22 28492.23 35067.49 31168.15 33688.45 310
OpenMVS_ROBcopyleft68.52 2073.02 33569.57 34283.37 32580.54 37271.82 32393.60 28588.22 36362.37 37161.98 36583.15 34835.31 38295.47 28645.08 38775.88 28482.82 370
FMVSNet576.46 31874.16 32283.35 32690.05 28576.17 27389.58 33289.85 34871.39 34865.29 35180.42 36050.61 33487.70 38061.05 34469.24 32686.18 347
PEN-MVS79.47 29578.26 29183.08 32786.36 32868.58 34593.85 28094.77 21279.76 26671.37 31788.55 27459.79 27692.46 34664.50 32865.40 35388.19 315
MDA-MVSNet_test_wron73.54 33170.43 33982.86 32884.55 35171.85 32291.74 31691.32 33367.63 35946.73 38981.09 35855.11 31990.42 36955.91 36359.76 36886.31 345
YYNet173.53 33270.43 33982.85 32984.52 35371.73 32591.69 31791.37 33067.63 35946.79 38881.21 35755.04 32090.43 36855.93 36259.70 36986.38 344
TinyColmap72.41 33768.99 34682.68 33088.11 31069.59 34088.41 34185.20 37665.55 36557.91 37884.82 33630.80 38995.94 25951.38 37268.70 32982.49 375
CVMVSNet84.83 21885.57 18782.63 33191.55 25360.38 37695.13 24695.03 19780.60 24582.10 20994.71 17866.40 23890.19 37074.30 27290.32 16697.31 140
pmmvs-eth3d73.59 33070.66 33782.38 33276.40 38673.38 30289.39 33589.43 35272.69 34060.34 37277.79 36946.43 35291.26 36266.42 32157.06 37282.51 373
ITE_SJBPF82.38 33287.00 32365.59 35789.55 35079.99 26369.37 33291.30 23741.60 36895.33 29262.86 33774.63 29286.24 346
DTE-MVSNet78.37 30177.06 30082.32 33485.22 34767.17 35493.40 28893.66 28178.71 28770.53 32588.29 27959.06 28592.23 35061.38 34263.28 36287.56 328
test_040272.68 33669.54 34382.09 33588.67 30471.81 32492.72 30486.77 37161.52 37562.21 36483.91 34243.22 36193.76 33534.60 39472.23 30480.72 382
MDA-MVSNet-bldmvs71.45 34267.94 34781.98 33685.33 34568.50 34692.35 30988.76 35970.40 35142.99 39281.96 35246.57 35191.31 36148.75 38354.39 37686.11 348
UnsupCasMVSNet_eth73.25 33370.57 33881.30 33777.53 38066.33 35687.24 35193.89 26680.38 25357.90 37981.59 35442.91 36490.56 36765.18 32648.51 38787.01 337
SixPastTwentyTwo76.04 31974.32 32081.22 33884.54 35261.43 37491.16 32289.30 35477.89 29364.04 35486.31 31348.23 34194.29 32663.54 33463.84 36087.93 320
myMVS_eth3d81.93 26782.18 24381.18 33992.13 23767.18 35193.97 27694.23 24682.43 21673.39 30093.57 20476.98 11887.86 37750.53 37782.34 24388.51 305
RPSCF77.73 30876.63 30381.06 34088.66 30555.76 38787.77 34787.88 36564.82 36874.14 29692.79 21649.22 34096.81 22567.47 31276.88 28090.62 256
UnsupCasMVSNet_bld68.60 35064.50 35480.92 34174.63 38967.80 34783.97 37092.94 30865.12 36754.63 38468.23 39035.97 37992.17 35260.13 34544.83 39182.78 371
CL-MVSNet_self_test75.81 32174.14 32380.83 34278.33 37867.79 34894.22 27293.52 28777.28 30369.82 32981.54 35561.47 27089.22 37257.59 35553.51 37885.48 356
OurMVSNet-221017-077.18 31476.06 30680.55 34383.78 36260.00 37890.35 32891.05 33777.01 30866.62 34587.92 28547.73 34794.03 32971.63 28868.44 33287.62 325
Anonymous2023120675.29 32473.64 32580.22 34480.75 36963.38 36793.36 29090.71 34473.09 33667.12 33883.70 34450.33 33690.85 36553.63 36970.10 31786.44 343
lessismore_v079.98 34580.59 37158.34 38180.87 38858.49 37683.46 34643.10 36293.89 33163.11 33648.68 38687.72 322
K. test v373.62 32971.59 33479.69 34682.98 36459.85 37990.85 32688.83 35777.13 30458.90 37482.11 35143.62 35891.72 35765.83 32354.10 37787.50 331
TDRefinement69.20 34865.78 35279.48 34766.04 39862.21 37088.21 34286.12 37362.92 37061.03 37085.61 32133.23 38494.16 32755.82 36453.02 38082.08 377
testing380.74 28381.17 25979.44 34891.15 26263.48 36697.16 12395.76 15980.83 23971.36 31893.15 21178.22 9787.30 38243.19 38979.67 26087.55 330
testgi74.88 32673.40 32679.32 34980.13 37361.75 37193.21 29686.64 37279.49 27266.56 34691.06 24135.51 38188.67 37456.79 36071.25 30687.56 328
CMPMVSbinary54.94 2175.71 32374.56 31879.17 35079.69 37455.98 38489.59 33193.30 29760.28 38153.85 38589.07 26747.68 34896.33 24276.55 24881.02 25085.22 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs279.59 29279.90 27978.67 35182.86 36555.82 38695.20 24289.55 35081.09 23580.12 23389.80 26034.31 38393.51 33987.82 14378.36 27586.69 340
test_vis1_rt73.96 32872.40 33178.64 35283.91 36061.16 37595.63 22468.18 40276.32 31060.09 37374.77 37629.01 39197.54 18087.74 14475.94 28377.22 386
Anonymous2024052172.06 34069.91 34178.50 35377.11 38361.67 37391.62 31990.97 33965.52 36662.37 36379.05 36636.32 37790.96 36457.75 35468.52 33182.87 369
MIMVSNet169.44 34666.65 35077.84 35476.48 38562.84 36987.42 34988.97 35666.96 36457.75 38079.72 36532.77 38685.83 38646.32 38563.42 36184.85 360
Syy-MVS77.97 30678.05 29277.74 35592.13 23756.85 38293.97 27694.23 24682.43 21673.39 30093.57 20457.95 29687.86 37732.40 39582.34 24388.51 305
new-patchmatchnet68.85 34965.93 35177.61 35673.57 39163.94 36490.11 33088.73 36071.62 34755.08 38373.60 38040.84 37187.22 38351.35 37448.49 38881.67 381
LF4IMVS72.36 33870.82 33676.95 35779.18 37556.33 38386.12 36086.11 37469.30 35763.06 36086.66 30433.03 38592.25 34965.33 32568.64 33082.28 376
EU-MVSNet76.92 31676.95 30176.83 35884.10 35754.73 38991.77 31592.71 31172.74 33969.57 33188.69 27258.03 29587.43 38164.91 32770.00 31988.33 313
PM-MVS69.32 34766.93 34976.49 35973.60 39055.84 38585.91 36179.32 39274.72 32361.09 36978.18 36821.76 39491.10 36370.86 29756.90 37382.51 373
pmmvs365.75 35362.18 35676.45 36067.12 39764.54 35988.68 33985.05 37754.77 39257.54 38173.79 37929.40 39086.21 38555.49 36547.77 38978.62 384
ambc76.02 36168.11 39551.43 39064.97 39889.59 34960.49 37174.49 37817.17 39792.46 34661.50 34152.85 38184.17 365
test20.0372.36 33871.15 33575.98 36277.79 37959.16 38092.40 30889.35 35374.09 32761.50 36784.32 33948.09 34285.54 38750.63 37662.15 36583.24 368
KD-MVS_self_test70.97 34469.31 34475.95 36376.24 38855.39 38887.45 34890.94 34070.20 35362.96 36277.48 37044.01 35688.09 37561.25 34353.26 37984.37 363
DSMNet-mixed73.13 33472.45 33075.19 36477.51 38146.82 39485.09 36682.01 38767.61 36369.27 33381.33 35650.89 33286.28 38454.54 36683.80 22792.46 245
new_pmnet66.18 35263.18 35575.18 36576.27 38761.74 37283.79 37184.66 37956.64 39051.57 38671.85 38831.29 38887.93 37649.98 37862.55 36375.86 387
mvsany_test367.19 35165.34 35372.72 36663.08 39948.57 39283.12 37378.09 39372.07 34361.21 36877.11 37222.94 39387.78 37978.59 22651.88 38381.80 379
test_fmvs369.56 34569.19 34570.67 36769.01 39347.05 39390.87 32586.81 37071.31 34966.79 34377.15 37116.40 39883.17 39081.84 19962.51 36481.79 380
test_f64.01 35462.13 35769.65 36863.00 40045.30 39983.66 37280.68 38961.30 37755.70 38272.62 38414.23 40084.64 38869.84 30258.11 37079.00 383
dmvs_testset72.00 34173.36 32767.91 36983.83 36131.90 40985.30 36577.12 39482.80 20963.05 36192.46 21961.54 26982.55 39242.22 39171.89 30589.29 284
EGC-MVSNET52.46 36347.56 36667.15 37081.98 36760.11 37782.54 37572.44 3980.11 4100.70 41174.59 37725.11 39283.26 38929.04 39761.51 36658.09 395
APD_test156.56 35853.58 36265.50 37167.93 39646.51 39677.24 38872.95 39738.09 39542.75 39375.17 37513.38 40182.78 39140.19 39254.53 37567.23 392
LCM-MVSNet52.52 36248.24 36565.35 37247.63 40941.45 40172.55 39483.62 38431.75 39737.66 39557.92 3959.19 40776.76 39749.26 38044.60 39277.84 385
PMMVS250.90 36446.31 36764.67 37355.53 40346.67 39577.30 38771.02 39940.89 39434.16 39859.32 3939.83 40676.14 39940.09 39328.63 40171.21 388
N_pmnet61.30 35560.20 35864.60 37484.32 35417.00 41591.67 31810.98 41361.77 37458.45 37778.55 36749.89 33891.83 35642.27 39063.94 35984.97 359
DeepMVS_CXcopyleft64.06 37578.53 37743.26 40068.11 40469.94 35438.55 39476.14 37418.53 39679.34 39343.72 38841.62 39669.57 390
test_method56.77 35754.53 36163.49 37676.49 38440.70 40275.68 38974.24 39619.47 40448.73 38771.89 38719.31 39565.80 40457.46 35647.51 39083.97 366
test_vis3_rt54.10 36151.04 36463.27 37758.16 40146.08 39884.17 36949.32 41256.48 39136.56 39649.48 3998.03 40891.91 35567.29 31349.87 38451.82 398
FPMVS55.09 36052.93 36361.57 37855.98 40240.51 40383.11 37483.41 38537.61 39634.95 39771.95 38614.40 39976.95 39629.81 39665.16 35467.25 391
ANet_high46.22 36541.28 37261.04 37939.91 41146.25 39770.59 39576.18 39558.87 38723.09 40348.00 40012.58 40366.54 40328.65 39813.62 40470.35 389
WB-MVS57.26 35656.22 35960.39 38069.29 39235.91 40786.39 35970.06 40059.84 38546.46 39072.71 38351.18 33178.11 39415.19 40434.89 39967.14 393
SSC-MVS56.01 35954.96 36059.17 38168.42 39434.13 40884.98 36769.23 40158.08 38945.36 39171.67 38950.30 33777.46 39514.28 40532.33 40065.91 394
testf145.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
APD_test245.70 36642.41 36855.58 38253.29 40640.02 40468.96 39662.67 40627.45 39929.85 39961.58 3915.98 40973.83 40128.49 39943.46 39452.90 396
Gipumacopyleft45.11 36842.05 37054.30 38480.69 37051.30 39135.80 40283.81 38328.13 39827.94 40234.53 40211.41 40576.70 39821.45 40154.65 37434.90 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft34.80 2339.19 37035.53 37350.18 38529.72 41230.30 41059.60 40066.20 40526.06 40117.91 40549.53 3983.12 41174.09 40018.19 40349.40 38546.14 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 37129.49 37646.92 38641.86 41036.28 40650.45 40156.52 40918.75 40518.28 40437.84 4012.41 41258.41 40518.71 40220.62 40246.06 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt41.54 36941.93 37140.38 38720.10 41326.84 41161.93 39959.09 40814.81 40628.51 40180.58 35935.53 38048.33 40863.70 33313.11 40545.96 401
E-PMN32.70 37232.39 37433.65 38853.35 40525.70 41274.07 39253.33 41021.08 40217.17 40633.63 40411.85 40454.84 40612.98 40614.04 40320.42 403
EMVS31.70 37331.45 37532.48 38950.72 40823.95 41374.78 39152.30 41120.36 40316.08 40731.48 40512.80 40253.60 40711.39 40713.10 40619.88 404
wuyk23d14.10 37513.89 37814.72 39055.23 40422.91 41433.83 4033.56 4144.94 4074.11 4082.28 4102.06 41319.66 40910.23 4088.74 4071.59 407
test1239.07 37711.73 3801.11 3910.50 4150.77 41689.44 3340.20 4160.34 4092.15 41010.72 4090.34 4140.32 4101.79 4100.08 4092.23 405
testmvs9.92 37612.94 3790.84 3920.65 4140.29 41793.78 2810.39 4150.42 4082.85 40915.84 4080.17 4150.30 4112.18 4090.21 4081.91 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k21.43 37428.57 3770.00 3930.00 4160.00 4180.00 40495.93 1510.00 4110.00 41297.66 7463.57 2540.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.92 3797.89 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41171.04 2110.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.11 37810.81 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.30 970.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS67.18 35149.00 381
FOURS198.51 3978.01 23598.13 5096.21 12883.04 20294.39 52
PC_three_145291.12 3798.33 298.42 3092.51 299.81 2198.96 399.37 199.70 3
test_one_060198.91 1884.56 8096.70 7188.06 8296.57 2398.77 1088.04 20
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.09 883.22 10496.60 8782.88 20793.61 6298.06 5282.93 5299.14 9795.51 5098.49 38
RE-MVS-def91.18 8797.76 6776.03 27796.20 19795.44 17880.56 24790.72 10397.84 6673.36 18591.99 9296.79 9097.75 107
IU-MVS99.03 1585.34 5696.86 5192.05 2998.74 198.15 1198.97 1799.42 13
test_241102_TWO96.78 5588.72 6797.70 998.91 287.86 2199.82 1898.15 1199.00 1599.47 9
test_241102_ONE99.03 1585.03 6996.78 5588.72 6797.79 798.90 588.48 1799.82 18
9.1494.26 3098.10 5798.14 4796.52 9584.74 15694.83 4798.80 782.80 5499.37 8095.95 4298.42 41
save fliter98.24 5183.34 10198.61 3496.57 9091.32 34
test_0728_THIRD88.38 7596.69 1898.76 1289.64 1399.76 3197.47 2498.84 2399.38 14
test072699.05 985.18 6199.11 1596.78 5588.75 6597.65 1298.91 287.69 22
GSMVS97.54 122
test_part298.90 1985.14 6796.07 29
sam_mvs177.59 10797.54 122
sam_mvs75.35 155
MTGPAbinary96.33 118
test_post185.88 36230.24 40673.77 17895.07 30873.89 275
test_post33.80 40376.17 13495.97 255
patchmatchnet-post77.09 37377.78 10695.39 288
MTMP97.53 9268.16 403
gm-plane-assit92.27 22879.64 19084.47 16695.15 16597.93 15685.81 159
test9_res96.00 4199.03 1398.31 66
TEST998.64 3183.71 9297.82 6996.65 7884.29 17395.16 3698.09 4784.39 3799.36 81
test_898.63 3383.64 9597.81 7196.63 8384.50 16495.10 4098.11 4684.33 3899.23 86
agg_prior294.30 6099.00 1598.57 50
agg_prior98.59 3583.13 10596.56 9294.19 5499.16 96
test_prior482.34 11897.75 76
test_prior298.37 4086.08 12594.57 5098.02 5383.14 5095.05 5398.79 26
旧先验296.97 14374.06 32896.10 2897.76 16788.38 139
新几何296.42 183
旧先验197.39 8279.58 19196.54 9398.08 5084.00 4397.42 7597.62 118
无先验96.87 15296.78 5577.39 30099.52 6979.95 21398.43 59
原ACMM296.84 153
test22296.15 10478.41 22195.87 21396.46 10271.97 34489.66 11697.45 8776.33 13298.24 5098.30 67
testdata299.48 7376.45 250
segment_acmp82.69 55
testdata195.57 22787.44 98
plane_prior791.86 24977.55 251
plane_prior691.98 24577.92 24064.77 249
plane_prior594.69 21497.30 19687.08 15082.82 23890.96 253
plane_prior494.15 191
plane_prior377.75 24790.17 5281.33 217
plane_prior297.18 11989.89 55
plane_prior191.95 247
plane_prior77.96 23797.52 9590.36 5082.96 236
n20.00 417
nn0.00 417
door-mid79.75 391
test1196.50 98
door80.13 390
HQP5-MVS78.48 217
HQP-NCC92.08 24097.63 8390.52 4582.30 203
ACMP_Plane92.08 24097.63 8390.52 4582.30 203
BP-MVS87.67 146
HQP4-MVS82.30 20397.32 19491.13 251
HQP3-MVS94.80 20983.01 234
HQP2-MVS65.40 243
NP-MVS92.04 24478.22 22794.56 181
MDTV_nov1_ep13_2view81.74 13486.80 35480.65 24485.65 16374.26 17276.52 24996.98 154
MDTV_nov1_ep1383.69 21794.09 17581.01 14986.78 35596.09 13783.81 18784.75 17484.32 33974.44 17196.54 23463.88 33185.07 222
ACMMP++_ref78.45 274
ACMMP++79.05 266
Test By Simon71.65 204