This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9994.23 3572.13 4797.09 1684.83 4595.37 3293.65 71
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7693.36 6371.44 5696.76 2580.82 8795.33 3494.16 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5584.47 7188.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19096.75 2677.20 12093.73 6395.29 5
3Dnovator76.31 583.38 8782.31 9786.59 5287.94 18772.94 2890.64 5992.14 8677.21 5275.47 22492.83 7658.56 19794.72 10173.24 16192.71 7092.13 134
ACMP74.13 681.51 12180.57 12284.36 10889.42 12668.69 11689.97 7591.50 11274.46 11675.04 24590.41 13253.82 23594.54 10577.56 11682.91 20889.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14678.84 16285.01 8587.71 19868.99 10383.65 25791.46 11363.00 30677.77 17490.28 13366.10 11195.09 8661.40 26888.22 13290.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMM73.20 880.78 13779.84 13883.58 14689.31 13468.37 12289.99 7491.60 10670.28 19977.25 18389.66 14653.37 24093.53 15174.24 15082.85 20988.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS73.13 979.15 17677.94 18182.79 18289.59 11762.99 24388.16 14191.51 10965.77 27577.14 19091.09 11760.91 17993.21 16650.26 34387.05 14392.17 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12385.17 24969.91 8490.57 6090.97 12366.70 26072.17 27891.91 9154.70 22693.96 12561.81 26590.95 9288.41 265
PLCcopyleft70.83 1178.05 20476.37 22383.08 16691.88 7467.80 13588.19 13989.46 16764.33 29269.87 30388.38 18553.66 23693.58 14658.86 28982.73 21187.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HY-MVS69.67 1277.95 20777.15 20380.36 23587.57 20760.21 27783.37 26487.78 22166.11 27075.37 23087.06 22363.27 13690.48 26061.38 26982.43 21590.40 191
LTVRE_ROB69.57 1376.25 24074.54 24781.41 20988.60 16264.38 21179.24 31989.12 18470.76 18869.79 30587.86 19949.09 29193.20 16956.21 31480.16 24186.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+68.96 1476.01 24474.01 25282.03 19688.60 16265.31 19188.86 11287.55 22470.25 20167.75 32087.47 21041.27 34793.19 17158.37 29475.94 29387.60 277
IB-MVS68.01 1575.85 24673.36 26183.31 15484.76 25866.03 16983.38 26385.06 26370.21 20269.40 30781.05 33045.76 31894.66 10365.10 23575.49 29989.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH67.68 1675.89 24573.93 25481.77 20188.71 15966.61 16188.62 12489.01 18769.81 20966.78 33286.70 23241.95 34691.51 23455.64 31578.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft66.92 1773.01 27770.41 29280.81 22787.13 21965.63 18288.30 13684.19 27762.96 30763.80 35787.69 20238.04 36392.56 19246.66 36174.91 31384.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet64.34 1872.08 28770.87 28775.69 30386.21 23356.44 32074.37 35880.73 32062.06 32070.17 29682.23 32242.86 33883.31 33754.77 31884.45 18187.32 285
OpenMVS_ROBcopyleft64.09 1970.56 30068.19 30677.65 28580.26 33959.41 28585.01 22782.96 29958.76 34565.43 34582.33 31937.63 36591.23 24445.34 37176.03 29282.32 357
PVSNet_057.27 2061.67 34759.27 35068.85 35579.61 35157.44 30668.01 38073.44 37055.93 36358.54 37470.41 38444.58 32577.55 36447.01 36035.91 39671.55 384
CMPMVSbinary51.72 2170.19 30468.16 30776.28 29873.15 38357.55 30479.47 31683.92 27948.02 38056.48 38184.81 27743.13 33686.42 31162.67 25481.81 22384.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft37.38 2244.16 36740.28 37055.82 37740.82 41042.54 39565.12 38963.99 39234.43 39524.48 40157.12 3963.92 41176.17 37517.10 40355.52 38348.75 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 37225.89 37643.81 38444.55 40935.46 40228.87 40239.07 40918.20 40318.58 40540.18 4002.68 41247.37 40617.07 40423.78 40248.60 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net85.06 6485.51 5483.70 14389.42 12663.01 23989.43 9192.62 6776.43 7387.53 3591.34 10872.82 4293.42 15881.28 8288.74 12494.66 27
testing9176.54 23275.66 23079.18 26088.43 16955.89 32981.08 29283.00 29773.76 13275.34 23184.29 28646.20 31390.07 26564.33 24084.50 17791.58 146
testing1175.14 25674.01 25278.53 27188.16 17756.38 32280.74 29980.42 32670.67 18972.69 27283.72 29943.61 33289.86 26862.29 25883.76 19189.36 233
testing9976.09 24375.12 24179.00 26188.16 17755.50 33480.79 29681.40 31573.30 14575.17 23984.27 28844.48 32690.02 26664.28 24184.22 18691.48 152
UWE-MVS72.13 28671.49 27774.03 32186.66 22847.70 37881.40 29076.89 35563.60 30175.59 22184.22 28939.94 35485.62 31848.98 34986.13 15988.77 256
ETVMVS72.25 28571.05 28475.84 30187.77 19751.91 36179.39 31774.98 36269.26 22373.71 25982.95 31040.82 35186.14 31346.17 36584.43 18289.47 230
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
testing22274.04 26472.66 26778.19 27687.89 18855.36 33581.06 29379.20 33971.30 17674.65 25183.57 30239.11 35888.67 29151.43 33585.75 16690.53 185
WB-MVSnew71.96 28871.65 27672.89 33084.67 26351.88 36282.29 27877.57 34762.31 31673.67 26083.00 30953.49 23981.10 34945.75 36882.13 21885.70 318
fmvsm_l_conf0.5_n_a84.13 7184.16 7384.06 12785.38 24668.40 12188.34 13486.85 24067.48 25587.48 3693.40 6170.89 6091.61 22588.38 2589.22 11692.16 133
fmvsm_l_conf0.5_n84.47 6984.54 6884.27 11585.42 24568.81 10688.49 12787.26 23168.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 11792.24 129
fmvsm_s_conf0.1_n_a83.32 8882.99 8784.28 11383.79 27868.07 13089.34 9782.85 30169.80 21087.36 3894.06 4268.34 9091.56 22987.95 2783.46 20293.21 94
fmvsm_s_conf0.1_n83.56 8283.38 8084.10 12084.86 25767.28 14889.40 9583.01 29670.67 18987.08 4093.96 5068.38 8991.45 23788.56 2284.50 17793.56 77
fmvsm_s_conf0.5_n_a83.63 8083.41 7984.28 11386.14 23468.12 12889.43 9182.87 30070.27 20087.27 3993.80 5469.09 8091.58 22788.21 2683.65 19693.14 97
fmvsm_s_conf0.5_n83.80 7583.71 7684.07 12586.69 22767.31 14789.46 9083.07 29571.09 18186.96 4393.70 5569.02 8591.47 23688.79 1884.62 17693.44 84
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11886.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
WAC-MVS42.58 39339.46 382
Syy-MVS68.05 32167.85 31268.67 35784.68 26040.97 39878.62 32873.08 37166.65 26466.74 33379.46 34652.11 25282.30 34232.89 39076.38 28882.75 355
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 30069.39 9789.65 8490.29 14673.31 14487.77 3194.15 3871.72 5193.23 16490.31 490.67 9693.89 58
test_fmvsmconf0.01_n84.73 6884.52 7085.34 7380.25 34069.03 10089.47 8989.65 16373.24 14886.98 4294.27 3266.62 10393.23 16490.26 589.95 10893.78 64
myMVS_eth3d67.02 32766.29 32869.21 35284.68 26042.58 39378.62 32873.08 37166.65 26466.74 33379.46 34631.53 37882.30 34239.43 38376.38 28882.75 355
testing368.56 31767.67 31871.22 34487.33 21442.87 39283.06 27271.54 37470.36 19669.08 31184.38 28330.33 38185.69 31737.50 38675.45 30385.09 329
SSC-MVS53.88 35553.59 35654.75 38072.87 38419.59 41173.84 36160.53 39757.58 35549.18 39073.45 37846.34 31175.47 38016.20 40532.28 39969.20 386
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25569.51 9089.62 8790.58 13373.42 14187.75 3294.02 4472.85 4193.24 16390.37 390.75 9493.96 53
WB-MVS54.94 35254.72 35455.60 37873.50 37920.90 41074.27 35961.19 39559.16 34150.61 38874.15 37547.19 30375.78 37717.31 40235.07 39770.12 385
test_fmvsmvis_n_192084.02 7283.87 7484.49 10484.12 27169.37 9888.15 14287.96 21470.01 20483.95 8293.23 6568.80 8791.51 23488.61 2089.96 10792.57 114
dmvs_re71.14 29270.58 28872.80 33181.96 31759.68 28175.60 35079.34 33768.55 24169.27 31080.72 33649.42 28576.54 36952.56 32977.79 26682.19 359
SDMVSNet80.38 14680.18 13280.99 22289.03 14764.94 19880.45 30589.40 16875.19 10076.61 20189.98 13960.61 18587.69 30376.83 12683.55 19890.33 193
dmvs_testset62.63 34464.11 33558.19 37278.55 35824.76 40875.28 35165.94 38867.91 25060.34 36776.01 36953.56 23773.94 38731.79 39167.65 35675.88 379
sd_testset77.70 21577.40 19878.60 26889.03 14760.02 27879.00 32385.83 25575.19 10076.61 20189.98 13954.81 22185.46 32162.63 25583.55 19890.33 193
test_fmvsm_n_192085.29 6085.34 5785.13 8186.12 23569.93 8388.65 12390.78 12969.97 20688.27 2393.98 4971.39 5791.54 23188.49 2390.45 9893.91 55
test_cas_vis1_n_192073.76 26873.74 25873.81 32375.90 36759.77 28080.51 30382.40 30558.30 34881.62 11485.69 25744.35 32776.41 37276.29 12978.61 25785.23 324
test_vis1_n_192075.52 25075.78 22674.75 31579.84 34657.44 30683.26 26585.52 25862.83 31079.34 14086.17 24945.10 32379.71 35478.75 10481.21 22887.10 294
test_vis1_n69.85 30869.21 29971.77 33772.66 38655.27 33881.48 28776.21 35852.03 37375.30 23683.20 30728.97 38276.22 37474.60 14578.41 26383.81 343
test_fmvs1_n70.86 29670.24 29472.73 33272.51 38755.28 33781.27 29179.71 33451.49 37678.73 14784.87 27627.54 38477.02 36676.06 13279.97 24585.88 316
mvsany_test162.30 34561.26 34965.41 36469.52 38954.86 34166.86 38349.78 40446.65 38168.50 31783.21 30649.15 29066.28 39656.93 30860.77 37475.11 380
APD_test153.31 35749.93 36263.42 36765.68 39450.13 37371.59 36666.90 38634.43 39540.58 39471.56 3828.65 40676.27 37334.64 38955.36 38463.86 391
test_vis1_rt60.28 34858.42 35165.84 36367.25 39355.60 33370.44 37260.94 39644.33 38459.00 37266.64 38624.91 38668.67 39462.80 25069.48 34873.25 382
test_vis3_rt49.26 36347.02 36556.00 37554.30 40245.27 38766.76 38548.08 40536.83 39244.38 39253.20 3977.17 40864.07 39856.77 31055.66 38258.65 394
test_fmvs268.35 32067.48 32170.98 34669.50 39051.95 36080.05 31076.38 35749.33 37974.65 25184.38 28323.30 39075.40 38174.51 14675.17 31185.60 319
test_fmvs170.93 29570.52 28972.16 33573.71 37755.05 33980.82 29478.77 34151.21 37778.58 15384.41 28231.20 37976.94 36775.88 13580.12 24484.47 335
test_fmvs363.36 34361.82 34667.98 35962.51 39746.96 38277.37 34074.03 36845.24 38267.50 32378.79 35412.16 40172.98 38972.77 16666.02 36283.99 341
mvsany_test353.99 35451.45 35961.61 36955.51 40144.74 38963.52 39145.41 40843.69 38558.11 37676.45 36717.99 39463.76 39954.77 31847.59 39276.34 378
testf145.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
APD_test245.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
test_f52.09 35950.82 36055.90 37653.82 40442.31 39659.42 39458.31 40036.45 39356.12 38370.96 38312.18 40057.79 40153.51 32456.57 38167.60 387
FE-MVS77.78 21175.68 22884.08 12488.09 18266.00 17283.13 26887.79 22068.42 24578.01 16985.23 26945.50 32195.12 8059.11 28685.83 16591.11 162
FA-MVS(test-final)80.96 12879.91 13684.10 12088.30 17465.01 19684.55 23990.01 15373.25 14779.61 13587.57 20558.35 19994.72 10171.29 17786.25 15692.56 115
iter_conf05_1181.63 11780.44 12785.20 7889.46 12466.20 16786.21 19886.97 23771.53 17283.35 9188.53 18143.22 33595.94 5379.82 9794.85 4393.47 81
bld_raw_dy_0_6480.78 13779.36 14985.06 8389.46 12466.03 16989.63 8685.46 26069.76 21381.88 10789.06 16543.39 33395.70 5879.82 9785.74 16893.47 81
patch_mono-283.65 7884.54 6880.99 22290.06 10765.83 17784.21 24988.74 20071.60 17085.01 5792.44 8474.51 2583.50 33582.15 7592.15 7693.64 73
EGC-MVSNET52.07 36047.05 36467.14 36183.51 28460.71 26880.50 30467.75 3840.07 4080.43 40975.85 37224.26 38881.54 34628.82 39362.25 37059.16 393
test250677.30 22376.49 21979.74 24890.08 10352.02 35887.86 15363.10 39374.88 10680.16 13192.79 7938.29 36292.35 20168.74 20492.50 7394.86 17
test111179.43 16879.18 15680.15 24089.99 10853.31 35587.33 16577.05 35375.04 10380.23 13092.77 8148.97 29492.33 20368.87 20292.40 7594.81 20
ECVR-MVScopyleft79.61 16179.26 15280.67 23090.08 10354.69 34287.89 15177.44 35074.88 10680.27 12892.79 7948.96 29592.45 19568.55 20592.50 7394.86 17
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080578.73 18677.83 18581.43 20885.17 24960.30 27589.41 9490.90 12571.21 17877.17 18988.73 17246.38 30893.21 16672.57 16878.96 25690.79 173
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 416
eth-test0.00 416
GeoE81.71 11281.01 11683.80 14189.51 12164.45 20988.97 10888.73 20171.27 17778.63 15289.76 14466.32 10993.20 16969.89 19186.02 16193.74 65
test_method31.52 37029.28 37438.23 38527.03 4126.50 41520.94 40362.21 3944.05 40622.35 40452.50 39813.33 39847.58 40527.04 39634.04 39860.62 392
Anonymous2024052168.80 31467.22 32373.55 32474.33 37454.11 34783.18 26685.61 25758.15 34961.68 36380.94 33330.71 38081.27 34857.00 30773.34 33085.28 323
h-mvs3383.15 9082.19 9886.02 6290.56 9370.85 7088.15 14289.16 18076.02 8584.67 6691.39 10761.54 16495.50 6382.71 7075.48 30091.72 143
hse-mvs281.72 11180.94 11784.07 12588.72 15867.68 13885.87 20887.26 23176.02 8584.67 6688.22 19161.54 16493.48 15382.71 7073.44 32891.06 164
CL-MVSNet_self_test72.37 28371.46 27875.09 31079.49 35353.53 35180.76 29885.01 26569.12 22970.51 29082.05 32457.92 20284.13 33052.27 33066.00 36387.60 277
KD-MVS_2432*160066.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
KD-MVS_self_test68.81 31367.59 32072.46 33474.29 37545.45 38377.93 33687.00 23663.12 30363.99 35578.99 35342.32 34184.77 32756.55 31264.09 36887.16 290
AUN-MVS79.21 17577.60 19584.05 13088.71 15967.61 13985.84 21087.26 23169.08 23077.23 18588.14 19653.20 24293.47 15475.50 14173.45 32791.06 164
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2665.00 12595.56 6082.75 6891.87 8092.50 118
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2663.87 13182.75 6891.87 8092.50 118
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
cl2278.07 20377.01 20581.23 21582.37 31461.83 25683.55 26187.98 21368.96 23575.06 24483.87 29361.40 16991.88 21873.53 15576.39 28589.98 214
miper_ehance_all_eth78.59 19177.76 19081.08 22082.66 30761.56 25983.65 25789.15 18168.87 23675.55 22383.79 29766.49 10692.03 21173.25 16076.39 28589.64 226
miper_enhance_ethall77.87 21076.86 20980.92 22581.65 32161.38 26182.68 27488.98 18865.52 27975.47 22482.30 32065.76 11892.00 21372.95 16376.39 28589.39 232
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 40
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19191.87 9773.63 13486.60 4593.02 7276.57 1591.87 21983.36 6092.15 7695.35 3
cl____77.72 21376.76 21380.58 23182.49 31160.48 27283.09 26987.87 21769.22 22574.38 25585.22 27062.10 15791.53 23271.09 17875.41 30489.73 225
DIV-MVS_self_test77.72 21376.76 21380.58 23182.48 31260.48 27283.09 26987.86 21869.22 22574.38 25585.24 26862.10 15791.53 23271.09 17875.40 30589.74 224
eth_miper_zixun_eth77.92 20876.69 21681.61 20583.00 29861.98 25383.15 26789.20 17969.52 21874.86 24884.35 28561.76 16092.56 19271.50 17572.89 33290.28 196
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter93.80 4072.35 4290.47 6491.17 11874.31 118
ET-MVSNet_ETH3D78.63 18976.63 21884.64 9886.73 22669.47 9285.01 22784.61 26969.54 21766.51 33986.59 23650.16 27691.75 22276.26 13084.24 18592.69 111
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27687.28 16788.79 19574.25 12076.84 19290.53 13149.48 28491.56 22967.98 20982.15 21793.29 89
EIA-MVS83.31 8982.80 9184.82 9389.59 11765.59 18388.21 13892.68 6174.66 11178.96 14386.42 24369.06 8295.26 7575.54 14090.09 10493.62 74
miper_refine_blended66.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
miper_lstm_enhance74.11 26373.11 26477.13 29380.11 34259.62 28272.23 36486.92 23966.76 25970.40 29282.92 31156.93 21382.92 33969.06 20072.63 33388.87 251
ETV-MVS84.90 6784.67 6785.59 6889.39 12968.66 11788.74 11992.64 6679.97 1584.10 7985.71 25669.32 7895.38 7180.82 8791.37 8792.72 108
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 8884.24 5493.46 6495.13 6
D2MVS74.82 25773.21 26279.64 25279.81 34762.56 24680.34 30787.35 22964.37 29168.86 31282.66 31646.37 30990.10 26467.91 21081.24 22786.25 306
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 88
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 44
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6974.50 11486.84 4494.65 2067.31 9995.77 5584.80 4692.85 6892.84 107
DPM-MVS84.93 6584.29 7286.84 4790.20 10073.04 2387.12 17093.04 3869.80 21082.85 9891.22 11273.06 3996.02 4776.72 12894.63 4891.46 154
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 57
test_yl81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
thisisatest053079.40 17077.76 19084.31 11187.69 20065.10 19587.36 16384.26 27670.04 20377.42 17988.26 19049.94 27994.79 9970.20 18684.70 17593.03 101
Anonymous2024052980.19 15378.89 16184.10 12090.60 9264.75 20288.95 10990.90 12565.97 27480.59 12691.17 11549.97 27893.73 14469.16 19982.70 21393.81 62
Anonymous20240521178.25 19677.01 20581.99 19791.03 8260.67 26984.77 23283.90 28070.65 19380.00 13291.20 11341.08 34991.43 23865.21 23385.26 16993.85 59
DCV-MVSNet81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
tttt051779.40 17077.91 18283.90 14088.10 18163.84 21988.37 13384.05 27871.45 17476.78 19589.12 16249.93 28194.89 9470.18 18783.18 20692.96 105
our_test_369.14 31167.00 32475.57 30579.80 34858.80 28677.96 33577.81 34559.55 33762.90 36178.25 35847.43 30083.97 33151.71 33267.58 35783.93 342
thisisatest051577.33 22275.38 23683.18 16185.27 24863.80 22082.11 28083.27 29065.06 28275.91 21683.84 29549.54 28394.27 11467.24 21786.19 15791.48 152
ppachtmachnet_test70.04 30567.34 32278.14 27779.80 34861.13 26279.19 32180.59 32259.16 34165.27 34679.29 34846.75 30787.29 30549.33 34766.72 35886.00 315
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS88.96 248
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
thres100view90076.50 23475.55 23279.33 25689.52 12056.99 31185.83 21183.23 29173.94 12676.32 20887.12 22051.89 25891.95 21448.33 35283.75 19289.07 237
tfpnnormal74.39 25973.16 26378.08 27886.10 23658.05 29384.65 23687.53 22570.32 19871.22 28785.63 26054.97 22089.86 26843.03 37575.02 31286.32 305
tfpn200view976.42 23775.37 23779.55 25589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19289.07 237
c3_l78.75 18577.91 18281.26 21482.89 30261.56 25984.09 25289.13 18369.97 20675.56 22284.29 28666.36 10892.09 21073.47 15775.48 30090.12 202
CHOSEN 280x42066.51 33164.71 33271.90 33681.45 32563.52 22757.98 39568.95 38353.57 36862.59 36276.70 36546.22 31275.29 38255.25 31679.68 24676.88 377
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6881.78 481.32 11691.43 10670.34 6697.23 1384.26 5293.36 6594.37 37
Fast-Effi-MVS+-dtu78.02 20576.49 21982.62 18783.16 29466.96 15786.94 17587.45 22872.45 15571.49 28584.17 29054.79 22591.58 22767.61 21280.31 24089.30 235
Effi-MVS+-dtu80.03 15578.57 16784.42 10685.13 25368.74 11188.77 11688.10 21074.99 10474.97 24683.49 30357.27 21093.36 15973.53 15580.88 23191.18 160
CANet_DTU80.61 14079.87 13782.83 17785.60 24263.17 23887.36 16388.65 20276.37 7875.88 21788.44 18453.51 23893.07 17873.30 15989.74 11192.25 127
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17584.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs151.32 26488.96 248
sam_mvs50.01 277
IterMVS-SCA-FT75.43 25273.87 25680.11 24182.69 30664.85 20081.57 28683.47 28769.16 22870.49 29184.15 29151.95 25688.15 29769.23 19772.14 33787.34 284
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7674.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
OPM-MVS83.50 8382.95 8885.14 7988.79 15570.95 6689.13 10591.52 10877.55 4480.96 12391.75 9560.71 18194.50 10879.67 9986.51 15289.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 48
ambc75.24 30973.16 38250.51 37263.05 39387.47 22764.28 35277.81 36117.80 39589.73 27257.88 29960.64 37585.49 320
MTGPAbinary92.02 87
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 9091.20 11370.65 6595.15 7981.96 7694.89 4194.77 22
Effi-MVS+83.62 8183.08 8485.24 7688.38 17167.45 14288.89 11189.15 18175.50 9482.27 10388.28 18869.61 7594.45 11077.81 11487.84 13393.84 61
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 14168.03 13284.46 24290.02 15270.67 18981.30 11986.53 24163.17 13994.19 12075.60 13988.54 12788.57 262
xiu_mvs_v1_base80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
new-patchmatchnet61.73 34661.73 34761.70 36872.74 38524.50 40969.16 37778.03 34461.40 32356.72 38075.53 37338.42 36076.48 37145.95 36757.67 37884.13 339
pmmvs674.69 25873.39 26078.61 26781.38 32757.48 30586.64 18687.95 21564.99 28570.18 29586.61 23550.43 27489.52 27562.12 26170.18 34788.83 253
pmmvs571.55 28970.20 29575.61 30477.83 36056.39 32181.74 28380.89 31757.76 35267.46 32484.49 28049.26 28985.32 32357.08 30675.29 30885.11 328
test_post178.90 3265.43 40748.81 29785.44 32259.25 284
test_post5.46 40650.36 27584.24 329
Fast-Effi-MVS+80.81 13279.92 13583.47 14888.85 14964.51 20585.53 21989.39 16970.79 18678.49 15685.06 27467.54 9693.58 14667.03 22186.58 15092.32 124
patchmatchnet-post74.00 37651.12 26688.60 292
Anonymous2023121178.97 18277.69 19382.81 17990.54 9464.29 21290.11 7391.51 10965.01 28476.16 21588.13 19750.56 27293.03 18269.68 19477.56 27091.11 162
pmmvs-eth3d70.50 30167.83 31478.52 27277.37 36366.18 16881.82 28181.51 31358.90 34463.90 35680.42 33842.69 33986.28 31258.56 29265.30 36583.11 350
GG-mvs-BLEND75.38 30881.59 32355.80 33079.32 31869.63 37967.19 32773.67 37743.24 33488.90 28950.41 33884.50 17781.45 363
xiu_mvs_v1_base_debi80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
Anonymous2023120668.60 31567.80 31571.02 34580.23 34150.75 37178.30 33380.47 32456.79 35966.11 34282.63 31746.35 31078.95 35743.62 37475.70 29583.36 347
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8779.45 1985.88 4894.80 1768.07 9196.21 4286.69 3695.34 3393.23 91
MTMP92.18 3532.83 410
gm-plane-assit81.40 32653.83 35062.72 31380.94 33392.39 19863.40 247
test9_res84.90 4295.70 2692.87 106
MVP-Stereo76.12 24174.46 24981.13 21985.37 24769.79 8684.42 24587.95 21565.03 28367.46 32485.33 26653.28 24191.73 22458.01 29883.27 20481.85 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST993.26 5072.96 2588.75 11791.89 9568.44 24485.00 5993.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11791.89 9568.69 23985.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 102
gg-mvs-nofinetune69.95 30667.96 31075.94 30083.07 29554.51 34577.23 34170.29 37763.11 30470.32 29362.33 38843.62 33188.69 29053.88 32287.76 13484.62 334
SCA74.22 26272.33 27179.91 24484.05 27462.17 25179.96 31279.29 33866.30 26972.38 27680.13 34051.95 25688.60 29259.25 28477.67 26988.96 248
Patchmatch-test64.82 33963.24 34069.57 35079.42 35449.82 37563.49 39269.05 38251.98 37459.95 37080.13 34050.91 26770.98 39040.66 38073.57 32587.90 271
test_893.13 5272.57 3588.68 12291.84 9968.69 23984.87 6393.10 6774.43 2695.16 78
MS-PatchMatch73.83 26772.67 26677.30 29183.87 27766.02 17181.82 28184.66 26861.37 32568.61 31582.82 31447.29 30188.21 29659.27 28384.32 18377.68 375
Patchmatch-RL test70.24 30367.78 31677.61 28677.43 36259.57 28471.16 36770.33 37662.94 30868.65 31472.77 37950.62 27185.49 32069.58 19566.58 36087.77 274
cdsmvs_eth3d_5k19.96 37326.61 3750.00 3930.00 4160.00 4180.00 40489.26 1750.00 4110.00 41288.61 17761.62 1630.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.26 3797.02 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41163.15 1400.00 4120.00 4110.00 4100.00 408
agg_prior282.91 6695.45 3092.70 109
agg_prior92.85 5971.94 5191.78 10284.41 7394.93 89
tmp_tt18.61 37421.40 37710.23 3904.82 41310.11 41334.70 40030.74 4111.48 40723.91 40326.07 40428.42 38313.41 40927.12 39515.35 4067.17 404
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
anonymousdsp78.60 19077.15 20382.98 17280.51 33867.08 15387.24 16889.53 16565.66 27775.16 24087.19 21852.52 24392.25 20577.17 12179.34 25289.61 227
alignmvs85.48 5585.32 5985.96 6389.51 12169.47 9289.74 8192.47 7076.17 8287.73 3491.46 10570.32 6793.78 13881.51 7888.95 11894.63 28
nrg03083.88 7383.53 7784.96 8786.77 22569.28 9990.46 6592.67 6274.79 10882.95 9591.33 10972.70 4393.09 17780.79 8979.28 25392.50 118
v14419279.47 16678.37 17282.78 18383.35 28663.96 21786.96 17490.36 14269.99 20577.50 17785.67 25960.66 18393.77 14074.27 14976.58 28190.62 180
FIs82.07 10582.42 9381.04 22188.80 15458.34 29088.26 13793.49 2676.93 6078.47 15791.04 11969.92 7292.34 20269.87 19284.97 17192.44 122
v192192079.22 17478.03 17982.80 18083.30 28863.94 21886.80 18090.33 14369.91 20877.48 17885.53 26258.44 19893.75 14273.60 15476.85 27890.71 178
UA-Net85.08 6384.96 6485.45 7192.07 7068.07 13089.78 8090.86 12882.48 384.60 7093.20 6669.35 7795.22 7671.39 17690.88 9393.07 99
v119279.59 16378.43 17183.07 16783.55 28364.52 20486.93 17690.58 13370.83 18577.78 17385.90 25259.15 19493.94 12873.96 15277.19 27390.76 175
FC-MVSNet-test81.52 11982.02 10280.03 24288.42 17055.97 32887.95 14793.42 2977.10 5677.38 18090.98 12469.96 7091.79 22068.46 20784.50 17792.33 123
v114480.03 15579.03 15883.01 17083.78 27964.51 20587.11 17190.57 13571.96 16378.08 16886.20 24861.41 16893.94 12874.93 14377.23 27190.60 182
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 67
v14878.72 18777.80 18781.47 20782.73 30561.96 25486.30 19688.08 21173.26 14676.18 21285.47 26462.46 15092.36 20071.92 17273.82 32490.09 205
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest70.96 29468.09 30979.58 25385.15 25163.62 22284.58 23879.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
TestCases79.58 25385.15 25163.62 22279.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
v7n78.97 18277.58 19683.14 16383.45 28565.51 18488.32 13591.21 11673.69 13372.41 27586.32 24657.93 20193.81 13769.18 19875.65 29690.11 203
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7294.52 2169.09 8096.70 2784.37 5194.83 4594.03 51
iter_conf0580.00 15778.70 16383.91 13987.84 19165.83 17788.84 11484.92 26671.61 16978.70 14888.94 16743.88 33094.56 10479.28 10084.28 18491.33 155
RRT_MVS80.35 14979.22 15483.74 14287.63 20265.46 18691.08 5488.92 19373.82 12976.44 20690.03 13849.05 29394.25 11876.84 12479.20 25591.51 148
PS-MVSNAJss82.07 10581.31 10984.34 11086.51 23067.27 14989.27 9891.51 10971.75 16479.37 13890.22 13663.15 14094.27 11477.69 11582.36 21691.49 151
PS-MVSNAJ81.69 11381.02 11583.70 14389.51 12168.21 12784.28 24890.09 15170.79 18681.26 12085.62 26163.15 14094.29 11275.62 13888.87 12088.59 261
jajsoiax79.29 17377.96 18083.27 15684.68 26066.57 16289.25 9990.16 14969.20 22775.46 22689.49 15245.75 31993.13 17576.84 12480.80 23390.11 203
mvs_tets79.13 17777.77 18983.22 16084.70 25966.37 16489.17 10090.19 14869.38 22075.40 22989.46 15544.17 32893.15 17376.78 12780.70 23590.14 200
EI-MVSNet-UG-set83.81 7483.38 8085.09 8287.87 18967.53 14187.44 16289.66 16279.74 1682.23 10489.41 15970.24 6894.74 10079.95 9583.92 18892.99 104
EI-MVSNet-Vis-set84.19 7083.81 7585.31 7488.18 17667.85 13487.66 15689.73 16180.05 1482.95 9589.59 15070.74 6394.82 9780.66 9184.72 17493.28 90
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 100
test_prior472.60 3489.01 107
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8794.17 3667.45 9796.60 3383.06 6394.50 5194.07 49
v124078.99 18177.78 18882.64 18683.21 29063.54 22686.62 18790.30 14569.74 21677.33 18185.68 25857.04 21293.76 14173.13 16276.92 27590.62 180
pm-mvs177.25 22476.68 21778.93 26384.22 26958.62 28886.41 19288.36 20771.37 17573.31 26388.01 19861.22 17489.15 28264.24 24273.01 33189.03 243
test_prior288.85 11375.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
X-MVStestdata80.37 14877.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8712.47 40567.45 9796.60 3383.06 6394.50 5194.07 49
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 55
旧先验286.56 18958.10 35087.04 4188.98 28574.07 151
新几何286.29 197
新几何183.42 15093.13 5270.71 7185.48 25957.43 35681.80 11191.98 9063.28 13592.27 20464.60 23992.99 6687.27 286
旧先验191.96 7165.79 18086.37 24793.08 7169.31 7992.74 6988.74 258
无先验87.48 16088.98 18860.00 33394.12 12267.28 21688.97 247
原ACMM286.86 178
原ACMM184.35 10993.01 5768.79 10792.44 7163.96 29981.09 12191.57 10166.06 11395.45 6567.19 21894.82 4688.81 254
test22291.50 7768.26 12584.16 25083.20 29354.63 36779.74 13391.63 9958.97 19591.42 8686.77 299
testdata291.01 25262.37 257
segment_acmp73.08 38
testdata79.97 24390.90 8664.21 21384.71 26759.27 34085.40 5392.91 7362.02 15989.08 28368.95 20191.37 8786.63 303
testdata184.14 25175.71 89
v879.97 15879.02 15982.80 18084.09 27264.50 20787.96 14690.29 14674.13 12475.24 23886.81 22562.88 14593.89 13574.39 14875.40 30590.00 211
131476.53 23375.30 23980.21 23983.93 27662.32 24984.66 23488.81 19460.23 33170.16 29784.07 29255.30 21990.73 25767.37 21583.21 20587.59 279
LFMVS81.82 11081.23 11183.57 14791.89 7363.43 23189.84 7681.85 31177.04 5883.21 9293.10 6752.26 24893.43 15771.98 17189.95 10893.85 59
VDD-MVS83.01 9582.36 9684.96 8791.02 8366.40 16388.91 11088.11 20977.57 4184.39 7493.29 6452.19 24993.91 13277.05 12288.70 12594.57 31
VDDNet81.52 11980.67 12184.05 13090.44 9664.13 21589.73 8285.91 25371.11 18083.18 9393.48 5850.54 27393.49 15273.40 15888.25 13194.54 32
v1079.74 16078.67 16482.97 17384.06 27364.95 19787.88 15290.62 13273.11 14975.11 24286.56 23961.46 16794.05 12473.68 15375.55 29889.90 217
VPNet78.69 18878.66 16578.76 26588.31 17355.72 33184.45 24386.63 24376.79 6478.26 16190.55 13059.30 19389.70 27366.63 22277.05 27490.88 171
MVS78.19 20076.99 20781.78 20085.66 24066.99 15484.66 23490.47 13755.08 36672.02 28085.27 26763.83 13294.11 12366.10 22689.80 11084.24 337
v2v48280.23 15179.29 15183.05 16883.62 28164.14 21487.04 17289.97 15473.61 13578.18 16587.22 21661.10 17693.82 13676.11 13176.78 28091.18 160
V4279.38 17278.24 17682.83 17781.10 33265.50 18585.55 21789.82 15771.57 17178.21 16386.12 25060.66 18393.18 17275.64 13775.46 30289.81 222
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS76.87 22975.17 24081.97 19882.75 30462.58 24581.44 28986.35 24872.16 16274.74 24982.89 31246.20 31392.02 21268.85 20381.09 22991.30 158
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7692.81 7867.16 10192.94 18380.36 9294.35 5690.16 199
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 33
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13885.94 4794.51 2465.80 11795.61 5983.04 6592.51 7293.53 80
ADS-MVSNet266.20 33663.33 33974.82 31379.92 34458.75 28767.55 38175.19 36153.37 36965.25 34775.86 37042.32 34180.53 35241.57 37868.91 35285.18 325
EI-MVSNet80.52 14479.98 13482.12 19384.28 26763.19 23786.41 19288.95 19174.18 12278.69 14987.54 20866.62 10392.43 19672.57 16880.57 23790.74 177
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet72.99 27872.58 26874.25 31984.28 26750.85 37086.41 19283.45 28844.56 38373.23 26587.54 20849.38 28685.70 31665.90 22878.44 26186.19 308
pmmvs474.03 26671.91 27380.39 23481.96 31768.32 12381.45 28882.14 30759.32 33969.87 30385.13 27252.40 24688.13 29860.21 27774.74 31584.73 333
EU-MVSNet68.53 31867.61 31971.31 34378.51 35947.01 38184.47 24084.27 27542.27 38666.44 34084.79 27840.44 35283.76 33258.76 29168.54 35583.17 348
VNet82.21 10282.41 9481.62 20390.82 8860.93 26484.47 24089.78 15876.36 7984.07 8091.88 9364.71 12690.26 26170.68 18288.89 11993.66 67
test-LLR72.94 27972.43 26974.48 31681.35 32858.04 29478.38 33077.46 34866.66 26169.95 30179.00 35148.06 29879.24 35566.13 22484.83 17286.15 309
TESTMET0.1,169.89 30769.00 30172.55 33379.27 35656.85 31278.38 33074.71 36657.64 35368.09 31877.19 36437.75 36476.70 36863.92 24384.09 18784.10 340
test-mter71.41 29070.39 29374.48 31681.35 32858.04 29478.38 33077.46 34860.32 33069.95 30179.00 35136.08 36979.24 35566.13 22484.83 17286.15 309
VPA-MVSNet80.60 14180.55 12380.76 22888.07 18360.80 26786.86 17891.58 10775.67 9280.24 12989.45 15763.34 13490.25 26270.51 18479.22 25491.23 159
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8696.65 3084.53 4994.90 4094.00 52
testgi66.67 33066.53 32767.08 36275.62 37041.69 39775.93 34576.50 35666.11 27065.20 34986.59 23635.72 37074.71 38343.71 37373.38 32984.84 331
test20.0367.45 32466.95 32568.94 35375.48 37144.84 38877.50 33877.67 34666.66 26163.01 35983.80 29647.02 30478.40 35942.53 37768.86 35483.58 345
thres600view776.50 23475.44 23379.68 25089.40 12857.16 30885.53 21983.23 29173.79 13176.26 20987.09 22151.89 25891.89 21748.05 35783.72 19590.00 211
ADS-MVSNet64.36 34062.88 34368.78 35679.92 34447.17 38067.55 38171.18 37553.37 36965.25 34775.86 37042.32 34173.99 38641.57 37868.91 35285.18 325
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8494.40 3072.24 4596.28 4085.65 3895.30 3593.62 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs6.04 3788.02 3810.10 3920.08 4140.03 41769.74 3730.04 4150.05 4090.31 4101.68 4090.02 4150.04 4100.24 4090.02 4080.25 407
thres40076.50 23475.37 23779.86 24589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19290.00 211
test1236.12 3778.11 3800.14 3910.06 4150.09 41671.05 3680.03 4160.04 4100.25 4111.30 4100.05 4140.03 4110.21 4100.01 4090.29 406
thres20075.55 24974.47 24878.82 26487.78 19657.85 29983.07 27183.51 28672.44 15775.84 21884.42 28152.08 25391.75 22247.41 35983.64 19786.86 297
test0.0.03 168.00 32267.69 31768.90 35477.55 36147.43 37975.70 34972.95 37366.66 26166.56 33582.29 32148.06 29875.87 37644.97 37274.51 31783.41 346
pmmvs357.79 35054.26 35568.37 35864.02 39656.72 31575.12 35565.17 38940.20 38852.93 38669.86 38520.36 39275.48 37945.45 37055.25 38572.90 383
EMVS30.81 37129.65 37334.27 38750.96 40725.95 40756.58 39746.80 40724.01 40215.53 40730.68 40312.47 39954.43 40412.81 40717.05 40422.43 403
E-PMN31.77 36930.64 37235.15 38652.87 40627.67 40557.09 39647.86 40624.64 40116.40 40633.05 40211.23 40254.90 40314.46 40618.15 40322.87 402
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9383.86 8394.42 2967.87 9496.64 3182.70 7294.57 5093.66 67
LCM-MVSNet-Re77.05 22576.94 20877.36 28987.20 21751.60 36580.06 30980.46 32575.20 9967.69 32186.72 22862.48 14988.98 28563.44 24689.25 11591.51 148
LCM-MVSNet54.25 35349.68 36367.97 36053.73 40545.28 38666.85 38480.78 31935.96 39439.45 39562.23 3908.70 40578.06 36248.24 35551.20 38980.57 368
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 15084.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 36
mvs_anonymous79.42 16979.11 15780.34 23684.45 26657.97 29682.59 27587.62 22367.40 25676.17 21488.56 18068.47 8889.59 27470.65 18386.05 16093.47 81
MVS_Test83.15 9083.06 8583.41 15286.86 22163.21 23586.11 20292.00 8974.31 11882.87 9789.44 15870.03 6993.21 16677.39 11988.50 12993.81 62
MDA-MVSNet-bldmvs66.68 32963.66 33875.75 30279.28 35560.56 27173.92 36078.35 34364.43 28950.13 38979.87 34444.02 32983.67 33346.10 36656.86 37983.03 352
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12592.42 7468.32 24684.61 6993.48 5872.32 4496.15 4579.00 10195.43 3194.28 42
test1286.80 4992.63 6470.70 7291.79 10182.71 10171.67 5396.16 4494.50 5193.54 79
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21765.77 18187.75 15492.83 5677.84 3784.36 7592.38 8572.15 4693.93 13181.27 8390.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive82.10 10381.88 10582.76 18583.00 29863.78 22183.68 25689.76 15972.94 15382.02 10689.85 14265.96 11690.79 25582.38 7487.30 14093.71 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline275.70 24773.83 25781.30 21383.26 28961.79 25782.57 27680.65 32166.81 25766.88 33083.42 30457.86 20392.19 20763.47 24579.57 24789.91 216
baseline176.98 22776.75 21577.66 28488.13 17955.66 33285.12 22581.89 30973.04 15176.79 19488.90 16862.43 15187.78 30263.30 24871.18 34389.55 229
YYNet165.03 33762.91 34271.38 33975.85 36856.60 31869.12 37874.66 36757.28 35754.12 38477.87 36045.85 31674.48 38449.95 34461.52 37383.05 351
PMMVS240.82 36838.86 37146.69 38353.84 40316.45 41248.61 39849.92 40337.49 39131.67 39660.97 3918.14 40756.42 40228.42 39430.72 40067.19 388
MDA-MVSNet_test_wron65.03 33762.92 34171.37 34075.93 36656.73 31469.09 37974.73 36557.28 35754.03 38577.89 35945.88 31574.39 38549.89 34561.55 37282.99 353
tpmvs71.09 29369.29 29876.49 29782.04 31656.04 32778.92 32581.37 31664.05 29667.18 32878.28 35749.74 28289.77 27049.67 34672.37 33483.67 344
PM-MVS66.41 33264.14 33473.20 32873.92 37656.45 31978.97 32464.96 39163.88 30064.72 35080.24 33919.84 39383.44 33666.24 22364.52 36779.71 371
HQP_MVS83.64 7983.14 8385.14 7990.08 10368.71 11391.25 5092.44 7179.12 2378.92 14591.00 12260.42 18895.38 7178.71 10586.32 15491.33 155
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 188
plane_prior592.44 7195.38 7178.71 10586.32 15491.33 155
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 145
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 158
PS-CasMVS78.01 20678.09 17877.77 28387.71 19854.39 34688.02 14491.22 11577.50 4673.26 26488.64 17660.73 18088.41 29561.88 26373.88 32390.53 185
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17488.46 16763.46 22987.13 16992.37 7580.19 1278.38 15889.14 16171.66 5493.05 17970.05 18876.46 28392.25 127
PEN-MVS77.73 21277.69 19377.84 28187.07 22053.91 34987.91 15091.18 11777.56 4373.14 26688.82 17161.23 17389.17 28159.95 27872.37 33490.43 189
TransMVSNet (Re)75.39 25474.56 24677.86 28085.50 24457.10 31086.78 18286.09 25272.17 16171.53 28487.34 21163.01 14489.31 27956.84 30961.83 37187.17 288
DTE-MVSNet76.99 22676.80 21177.54 28886.24 23253.06 35787.52 15990.66 13177.08 5772.50 27388.67 17560.48 18789.52 27557.33 30470.74 34590.05 210
DU-MVS81.12 12680.52 12482.90 17587.80 19363.46 22987.02 17391.87 9779.01 2678.38 15889.07 16365.02 12393.05 17970.05 18876.46 28392.20 130
UniMVSNet (Re)81.60 11881.11 11383.09 16588.38 17164.41 21087.60 15793.02 4278.42 3278.56 15488.16 19269.78 7393.26 16269.58 19576.49 28291.60 144
CP-MVSNet78.22 19778.34 17377.84 28187.83 19254.54 34487.94 14891.17 11877.65 3873.48 26288.49 18262.24 15588.43 29462.19 25974.07 31990.55 184
WR-MVS_H78.51 19278.49 16878.56 26988.02 18556.38 32288.43 12892.67 6277.14 5473.89 25887.55 20766.25 11089.24 28058.92 28873.55 32690.06 209
WR-MVS79.49 16579.22 15480.27 23888.79 15558.35 28985.06 22688.61 20478.56 3077.65 17588.34 18663.81 13390.66 25864.98 23677.22 27291.80 142
NR-MVSNet80.23 15179.38 14782.78 18387.80 19363.34 23286.31 19591.09 12279.01 2672.17 27889.07 16367.20 10092.81 18866.08 22775.65 29692.20 130
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23856.21 32686.78 18285.76 25673.60 13677.93 17187.57 20565.02 12388.99 28467.14 21975.33 30787.63 276
TranMVSNet+NR-MVSNet80.84 13080.31 12982.42 19087.85 19062.33 24887.74 15591.33 11480.55 977.99 17089.86 14165.23 12192.62 18967.05 22075.24 31092.30 125
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10687.28 23076.41 7485.80 4990.22 13674.15 3195.37 7481.82 7791.88 7992.65 113
n20.00 417
nn0.00 417
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8276.87 6282.81 10094.25 3466.44 10796.24 4182.88 6794.28 5793.38 85
door-mid69.98 378
XVG-OURS-SEG-HR80.81 13279.76 13983.96 13785.60 24268.78 10883.54 26290.50 13670.66 19276.71 19791.66 9660.69 18291.26 24276.94 12381.58 22491.83 140
mvsmamba81.69 11380.74 11984.56 10087.45 20866.72 15991.26 4885.89 25474.66 11178.23 16290.56 12954.33 22994.91 9080.73 9083.54 20092.04 138
MVSFormer82.85 9682.05 10185.24 7687.35 20970.21 7790.50 6290.38 13968.55 24181.32 11689.47 15361.68 16193.46 15578.98 10290.26 10192.05 136
jason81.39 12280.29 13084.70 9786.63 22969.90 8585.95 20586.77 24163.24 30281.07 12289.47 15361.08 17792.15 20878.33 11090.07 10692.05 136
jason: jason.
lupinMVS81.39 12280.27 13184.76 9687.35 20970.21 7785.55 21786.41 24562.85 30981.32 11688.61 17761.68 16192.24 20678.41 10990.26 10191.83 140
test_djsdf80.30 15079.32 15083.27 15683.98 27565.37 19090.50 6290.38 13968.55 24176.19 21188.70 17356.44 21593.46 15578.98 10280.14 24390.97 169
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10573.89 12882.67 10294.09 4062.60 14695.54 6280.93 8592.93 6793.57 76
K. test v371.19 29168.51 30379.21 25983.04 29757.78 30184.35 24776.91 35472.90 15462.99 36082.86 31339.27 35691.09 25061.65 26652.66 38788.75 257
lessismore_v078.97 26281.01 33357.15 30965.99 38761.16 36582.82 31439.12 35791.34 24159.67 28046.92 39388.43 264
SixPastTwentyTwo73.37 27171.26 28379.70 24985.08 25457.89 29885.57 21383.56 28571.03 18365.66 34385.88 25342.10 34492.57 19159.11 28663.34 36988.65 260
OurMVSNet-221017-074.26 26172.42 27079.80 24783.76 28059.59 28385.92 20786.64 24266.39 26866.96 32987.58 20439.46 35591.60 22665.76 23069.27 35088.22 266
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8593.95 5169.77 7496.01 4885.15 4094.66 4794.32 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS80.41 14579.23 15383.97 13685.64 24169.02 10283.03 27390.39 13871.09 18177.63 17691.49 10454.62 22891.35 24075.71 13683.47 20191.54 147
XVG-ACMP-BASELINE76.11 24274.27 25181.62 20383.20 29164.67 20383.60 26089.75 16069.75 21471.85 28187.09 22132.78 37492.11 20969.99 19080.43 23988.09 268
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20167.22 15188.69 12193.04 3879.64 1885.33 5492.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10481.27 11084.50 10289.23 13868.76 10990.22 7191.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
LGP-MVS_train84.50 10289.23 13868.76 10991.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
baseline84.93 6584.98 6384.80 9587.30 21565.39 18987.30 16692.88 5377.62 3984.04 8192.26 8771.81 4993.96 12581.31 8190.30 10095.03 8
test1192.23 81
door69.44 381
EPNet_dtu75.46 25174.86 24277.23 29282.57 30954.60 34386.89 17783.09 29471.64 16566.25 34185.86 25455.99 21688.04 29954.92 31786.55 15189.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268877.63 21775.69 22783.44 14989.98 10968.58 11978.70 32787.50 22656.38 36175.80 21986.84 22458.67 19691.40 23961.58 26785.75 16690.34 192
EPNet83.72 7782.92 8986.14 5984.22 26969.48 9191.05 5585.27 26181.30 676.83 19391.65 9766.09 11295.56 6076.00 13493.85 6193.38 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS66.98 155
HQP-NCC89.33 13189.17 10076.41 7477.23 185
ACMP_Plane89.33 13189.17 10076.41 7477.23 185
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15288.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.47 117
HQP4-MVS77.24 18495.11 8291.03 166
HQP3-MVS92.19 8485.99 162
HQP2-MVS60.17 191
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 39
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 47
114514_t80.68 13979.51 14484.20 11794.09 3867.27 14989.64 8591.11 12158.75 34674.08 25790.72 12658.10 20095.04 8769.70 19389.42 11490.30 195
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8694.46 2567.93 9295.95 5284.20 5594.39 5493.23 91
DSMNet-mixed57.77 35156.90 35360.38 37067.70 39235.61 40169.18 37653.97 40232.30 39857.49 37879.88 34340.39 35368.57 39538.78 38472.37 33476.97 376
tpm273.26 27471.46 27878.63 26683.34 28756.71 31680.65 30180.40 32756.63 36073.55 26182.02 32551.80 26091.24 24356.35 31378.42 26287.95 269
NP-MVS89.62 11668.32 12390.24 134
EG-PatchMatch MVS74.04 26471.82 27480.71 22984.92 25667.42 14385.86 20988.08 21166.04 27264.22 35383.85 29435.10 37192.56 19257.44 30280.83 23282.16 360
tpm cat170.57 29968.31 30577.35 29082.41 31357.95 29778.08 33480.22 33052.04 37268.54 31677.66 36252.00 25587.84 30151.77 33172.07 33886.25 306
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
CostFormer75.24 25573.90 25579.27 25782.65 30858.27 29180.80 29582.73 30361.57 32275.33 23583.13 30855.52 21791.07 25164.98 23678.34 26488.45 263
CR-MVSNet73.37 27171.27 28279.67 25181.32 33065.19 19275.92 34680.30 32859.92 33472.73 27081.19 32852.50 24486.69 30859.84 27977.71 26787.11 292
JIA-IIPM66.32 33362.82 34476.82 29577.09 36461.72 25865.34 38875.38 36058.04 35164.51 35162.32 38942.05 34586.51 31051.45 33469.22 35182.21 358
Patchmtry70.74 29769.16 30075.49 30780.72 33454.07 34874.94 35780.30 32858.34 34770.01 29881.19 32852.50 24486.54 30953.37 32571.09 34485.87 317
PatchT68.46 31967.85 31270.29 34880.70 33543.93 39072.47 36374.88 36360.15 33270.55 28976.57 36649.94 27981.59 34550.58 33774.83 31485.34 322
tpmrst72.39 28172.13 27273.18 32980.54 33749.91 37479.91 31379.08 34063.11 30471.69 28379.95 34255.32 21882.77 34065.66 23173.89 32286.87 296
BH-w/o78.21 19877.33 20180.84 22688.81 15365.13 19484.87 23087.85 21969.75 21474.52 25384.74 27961.34 17093.11 17658.24 29685.84 16484.27 336
tpm72.37 28371.71 27574.35 31882.19 31552.00 35979.22 32077.29 35164.56 28872.95 26883.68 30151.35 26383.26 33858.33 29575.80 29487.81 273
DELS-MVS85.41 5885.30 6085.77 6588.49 16567.93 13385.52 22193.44 2778.70 2983.63 8989.03 16674.57 2495.71 5780.26 9494.04 6093.66 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned79.47 16678.60 16682.05 19589.19 14065.91 17586.07 20388.52 20572.18 16075.42 22887.69 20261.15 17593.54 15060.38 27586.83 14786.70 301
RPMNet73.51 27070.49 29082.58 18881.32 33065.19 19275.92 34692.27 7857.60 35472.73 27076.45 36752.30 24795.43 6748.14 35677.71 26787.11 292
MVSTER79.01 18077.88 18482.38 19183.07 29564.80 20184.08 25388.95 19169.01 23478.69 14987.17 21954.70 22692.43 19674.69 14480.57 23789.89 218
CPTT-MVS83.73 7683.33 8284.92 9093.28 4970.86 6992.09 3790.38 13968.75 23879.57 13692.83 7660.60 18693.04 18180.92 8691.56 8590.86 172
GBi-Net78.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
PVSNet_Blended_VisFu82.62 9881.83 10684.96 8790.80 8969.76 8788.74 11991.70 10469.39 21978.96 14388.46 18365.47 11994.87 9674.42 14788.57 12690.24 197
PVSNet_BlendedMVS80.60 14180.02 13382.36 19288.85 14965.40 18786.16 20192.00 8969.34 22178.11 16686.09 25166.02 11494.27 11471.52 17382.06 21987.39 282
UnsupCasMVSNet_eth67.33 32565.99 32971.37 34073.48 38051.47 36775.16 35385.19 26265.20 28060.78 36680.93 33542.35 34077.20 36557.12 30553.69 38685.44 321
UnsupCasMVSNet_bld63.70 34261.53 34870.21 34973.69 37851.39 36872.82 36281.89 30955.63 36457.81 37771.80 38138.67 35978.61 35849.26 34852.21 38880.63 367
PVSNet_Blended80.98 12780.34 12882.90 17588.85 14965.40 18784.43 24492.00 8967.62 25278.11 16685.05 27566.02 11494.27 11471.52 17389.50 11289.01 244
FMVSNet569.50 30967.96 31074.15 32082.97 30155.35 33680.01 31182.12 30862.56 31463.02 35881.53 32736.92 36681.92 34448.42 35174.06 32085.17 327
test178.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
new_pmnet50.91 36150.29 36152.78 38168.58 39134.94 40363.71 39056.63 40139.73 38944.95 39165.47 38721.93 39158.48 40034.98 38856.62 38064.92 389
FMVSNet377.88 20976.85 21080.97 22486.84 22362.36 24786.52 19088.77 19671.13 17975.34 23186.66 23454.07 23391.10 24862.72 25179.57 24789.45 231
dp66.80 32865.43 33070.90 34779.74 35048.82 37775.12 35574.77 36459.61 33664.08 35477.23 36342.89 33780.72 35148.86 35066.58 36083.16 349
FMVSNet278.20 19977.21 20281.20 21687.60 20362.89 24487.47 16189.02 18671.63 16675.29 23787.28 21254.80 22291.10 24862.38 25679.38 25189.61 227
FMVSNet177.44 21976.12 22581.40 21086.81 22463.01 23988.39 13089.28 17270.49 19574.39 25487.28 21249.06 29291.11 24560.91 27278.52 25990.09 205
N_pmnet52.79 35853.26 35751.40 38278.99 3577.68 41469.52 3743.89 41351.63 37557.01 37974.98 37440.83 35065.96 39737.78 38564.67 36680.56 369
cascas76.72 23174.64 24482.99 17185.78 23965.88 17682.33 27789.21 17860.85 32772.74 26981.02 33147.28 30293.75 14267.48 21485.02 17089.34 234
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13065.93 17484.95 22987.15 23473.56 13778.19 16489.79 14356.67 21493.36 15959.53 28286.74 14890.13 201
UGNet80.83 13179.59 14384.54 10188.04 18468.09 12989.42 9388.16 20876.95 5976.22 21089.46 15549.30 28893.94 12868.48 20690.31 9991.60 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS75.65 24875.68 22875.57 30586.40 23156.82 31377.92 33782.40 30565.10 28176.18 21287.72 20063.13 14380.90 35060.31 27681.96 22089.00 246
XXY-MVS75.41 25375.56 23174.96 31183.59 28257.82 30080.59 30283.87 28166.54 26774.93 24788.31 18763.24 13780.09 35362.16 26076.85 27886.97 295
EC-MVSNet86.01 4386.38 3884.91 9189.31 13466.27 16692.32 3093.63 2179.37 2084.17 7891.88 9369.04 8495.43 6783.93 5793.77 6293.01 103
sss73.60 26973.64 25973.51 32582.80 30355.01 34076.12 34481.69 31262.47 31574.68 25085.85 25557.32 20978.11 36160.86 27380.93 23087.39 282
Test_1112_low_res76.40 23875.44 23379.27 25789.28 13658.09 29281.69 28487.07 23559.53 33872.48 27486.67 23361.30 17189.33 27860.81 27480.15 24290.41 190
1112_ss77.40 22176.43 22180.32 23789.11 14660.41 27483.65 25787.72 22262.13 31973.05 26786.72 22862.58 14889.97 26762.11 26280.80 23390.59 183
ab-mvs-re7.23 3769.64 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41286.72 2280.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs79.51 16478.97 16081.14 21888.46 16760.91 26583.84 25489.24 17770.36 19679.03 14288.87 17063.23 13890.21 26365.12 23482.57 21492.28 126
TR-MVS77.44 21976.18 22481.20 21688.24 17563.24 23484.61 23786.40 24667.55 25377.81 17286.48 24254.10 23293.15 17357.75 30082.72 21287.20 287
MDTV_nov1_ep13_2view37.79 40075.16 35355.10 36566.53 33649.34 28753.98 32187.94 270
MDTV_nov1_ep1369.97 29683.18 29253.48 35277.10 34280.18 33160.45 32869.33 30980.44 33748.89 29686.90 30751.60 33378.51 260
MIMVSNet168.58 31666.78 32673.98 32280.07 34351.82 36380.77 29784.37 27164.40 29059.75 37182.16 32336.47 36783.63 33442.73 37670.33 34686.48 304
MIMVSNet70.69 29869.30 29774.88 31284.52 26456.35 32475.87 34879.42 33664.59 28767.76 31982.41 31841.10 34881.54 34646.64 36381.34 22586.75 300
IterMVS-LS80.06 15479.38 14782.11 19485.89 23763.20 23686.79 18189.34 17074.19 12175.45 22786.72 22866.62 10392.39 19872.58 16776.86 27790.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet79.07 17977.70 19283.17 16287.60 20368.23 12684.40 24686.20 24967.49 25476.36 20786.54 24061.54 16490.79 25561.86 26487.33 13990.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref81.95 221
IterMVS74.29 26072.94 26578.35 27481.53 32463.49 22881.58 28582.49 30468.06 24969.99 30083.69 30051.66 26285.54 31965.85 22971.64 34086.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon83.11 9382.09 10086.15 5894.44 1970.92 6888.79 11592.20 8370.53 19479.17 14191.03 12164.12 12996.03 4668.39 20890.14 10391.50 150
MVS_111021_LR82.61 9982.11 9984.11 11988.82 15271.58 5385.15 22486.16 25074.69 11080.47 12791.04 11962.29 15390.55 25980.33 9390.08 10590.20 198
DP-MVS76.78 23074.57 24583.42 15093.29 4869.46 9488.55 12683.70 28263.98 29870.20 29488.89 16954.01 23494.80 9846.66 36181.88 22286.01 313
ACMMP++81.25 226
HQP-MVS82.61 9982.02 10284.37 10789.33 13166.98 15589.17 10092.19 8476.41 7477.23 18590.23 13560.17 19195.11 8277.47 11785.99 16291.03 166
QAPM80.88 12979.50 14585.03 8488.01 18668.97 10491.59 4392.00 8966.63 26675.15 24192.16 8857.70 20495.45 6563.52 24488.76 12390.66 179
Vis-MVSNetpermissive83.46 8482.80 9185.43 7290.25 9968.74 11190.30 7090.13 15076.33 8080.87 12492.89 7461.00 17894.20 11972.45 17090.97 9193.35 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet59.14 34957.67 35263.57 36681.65 32143.50 39171.73 36565.06 39039.59 39051.43 38757.73 39438.34 36182.58 34139.53 38173.95 32164.62 390
IS-MVSNet83.15 9082.81 9084.18 11889.94 11063.30 23391.59 4388.46 20679.04 2579.49 13792.16 8865.10 12294.28 11367.71 21191.86 8294.95 10
HyFIR lowres test77.53 21875.40 23583.94 13889.59 11766.62 16080.36 30688.64 20356.29 36276.45 20385.17 27157.64 20593.28 16161.34 27083.10 20791.91 139
EPMVS69.02 31268.16 30771.59 33879.61 35149.80 37677.40 33966.93 38562.82 31170.01 29879.05 34945.79 31777.86 36356.58 31175.26 30987.13 291
PAPM_NR83.02 9482.41 9484.82 9392.47 6766.37 16487.93 14991.80 10073.82 12977.32 18290.66 12767.90 9394.90 9370.37 18589.48 11393.19 95
TAMVS78.89 18477.51 19783.03 16987.80 19367.79 13684.72 23385.05 26467.63 25176.75 19687.70 20162.25 15490.82 25458.53 29387.13 14290.49 187
PAPR81.66 11680.89 11883.99 13590.27 9864.00 21686.76 18491.77 10368.84 23777.13 19189.50 15167.63 9594.88 9567.55 21388.52 12893.09 98
RPSCF73.23 27571.46 27878.54 27082.50 31059.85 27982.18 27982.84 30258.96 34371.15 28889.41 15945.48 32284.77 32758.82 29071.83 33991.02 168
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16151.78 36486.70 18579.63 33574.14 12375.11 24290.83 12561.29 17289.75 27158.10 29791.60 8392.69 111
test_040272.79 28070.44 29179.84 24688.13 17965.99 17385.93 20684.29 27465.57 27867.40 32685.49 26346.92 30592.61 19035.88 38774.38 31880.94 366
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14376.11 8382.08 10591.61 10071.36 5894.17 12181.02 8492.58 7192.08 135
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12583.16 9491.07 11875.94 1895.19 7779.94 9694.38 5593.55 78
PatchMatch-RL72.38 28270.90 28676.80 29688.60 16267.38 14579.53 31576.17 35962.75 31269.36 30882.00 32645.51 32084.89 32653.62 32380.58 23678.12 374
API-MVS81.99 10781.23 11184.26 11690.94 8570.18 8291.10 5389.32 17171.51 17378.66 15188.28 18865.26 12095.10 8564.74 23891.23 8987.51 280
Test By Simon64.33 127
TDRefinement67.49 32364.34 33376.92 29473.47 38161.07 26384.86 23182.98 29859.77 33558.30 37585.13 27226.06 38587.89 30047.92 35860.59 37681.81 362
USDC70.33 30268.37 30476.21 29980.60 33656.23 32579.19 32186.49 24460.89 32661.29 36485.47 26431.78 37789.47 27753.37 32576.21 29182.94 354
EPP-MVSNet83.40 8683.02 8684.57 9990.13 10164.47 20892.32 3090.73 13074.45 11779.35 13991.10 11669.05 8395.12 8072.78 16587.22 14194.13 46
PMMVS69.34 31068.67 30271.35 34275.67 36962.03 25275.17 35273.46 36950.00 37868.68 31379.05 34952.07 25478.13 36061.16 27182.77 21073.90 381
PAPM77.68 21676.40 22281.51 20687.29 21661.85 25583.78 25589.59 16464.74 28671.23 28688.70 17362.59 14793.66 14552.66 32887.03 14489.01 244
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12593.82 5364.33 12796.29 3982.67 7390.69 9593.23 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA78.08 20276.79 21281.97 19890.40 9771.07 6287.59 15884.55 27066.03 27372.38 27689.64 14757.56 20686.04 31459.61 28183.35 20388.79 255
PatchmatchNetpermissive73.12 27671.33 28178.49 27383.18 29260.85 26679.63 31478.57 34264.13 29371.73 28279.81 34551.20 26585.97 31557.40 30376.36 29088.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 38
F-COLMAP76.38 23974.33 25082.50 18989.28 13666.95 15888.41 12989.03 18564.05 29666.83 33188.61 17746.78 30692.89 18457.48 30178.55 25887.67 275
ANet_high50.57 36246.10 36663.99 36548.67 40839.13 39970.99 36980.85 31861.39 32431.18 39757.70 39517.02 39673.65 38831.22 39215.89 40579.18 372
wuyk23d16.82 37515.94 37819.46 38958.74 39831.45 40439.22 3993.74 4146.84 4056.04 4082.70 4081.27 41324.29 40810.54 40814.40 4072.63 405
OMC-MVS82.69 9781.97 10484.85 9288.75 15767.42 14387.98 14590.87 12774.92 10579.72 13491.65 9762.19 15693.96 12575.26 14286.42 15393.16 96
MG-MVS83.41 8583.45 7883.28 15592.74 6262.28 25088.17 14089.50 16675.22 9881.49 11592.74 8266.75 10295.11 8272.85 16491.58 8492.45 121
AdaColmapbinary80.58 14379.42 14684.06 12793.09 5468.91 10589.36 9688.97 19069.27 22275.70 22089.69 14557.20 21195.77 5563.06 24988.41 13087.50 281
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF78.22 27581.77 32060.57 27083.30 28969.25 22467.54 32287.20 21736.33 36887.28 30654.34 32074.62 31686.80 298
DeepMVS_CXcopyleft27.40 38840.17 41126.90 40624.59 41217.44 40423.95 40248.61 3999.77 40326.48 40718.06 40124.47 40128.83 401
TinyColmap67.30 32664.81 33174.76 31481.92 31956.68 31780.29 30881.49 31460.33 32956.27 38283.22 30524.77 38787.66 30445.52 36969.47 34979.95 370
MAR-MVS81.84 10980.70 12085.27 7591.32 7971.53 5489.82 7790.92 12469.77 21278.50 15586.21 24762.36 15294.52 10765.36 23292.05 7889.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS64.02 34162.19 34569.50 35170.90 38853.29 35676.13 34377.18 35252.65 37158.59 37380.98 33223.55 38976.52 37053.06 32766.66 35978.68 373
MSDG73.36 27370.99 28580.49 23384.51 26565.80 17980.71 30086.13 25165.70 27665.46 34483.74 29844.60 32490.91 25351.13 33676.89 27684.74 332
LS3D76.95 22874.82 24383.37 15390.45 9567.36 14689.15 10486.94 23861.87 32169.52 30690.61 12851.71 26194.53 10646.38 36486.71 14988.21 267
CLD-MVS82.31 10181.65 10784.29 11288.47 16667.73 13785.81 21292.35 7675.78 8878.33 16086.58 23864.01 13094.35 11176.05 13387.48 13890.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS53.68 35651.64 35859.81 37165.08 39551.03 36969.48 37569.58 38041.46 38740.67 39372.32 38016.46 39770.00 39324.24 39965.42 36458.40 395
Gipumacopyleft45.18 36641.86 36955.16 37977.03 36551.52 36632.50 40180.52 32332.46 39727.12 40035.02 4019.52 40475.50 37822.31 40060.21 37738.45 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015