This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16798.09 10186.63 28196.00 25498.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9499.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS93.07 396.06 6695.66 7097.29 5597.96 10993.17 7097.30 15098.06 8293.92 7193.38 16198.66 2786.83 12799.73 4295.60 8699.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+91.43 495.40 8494.48 10698.16 1696.90 16995.34 1698.48 2197.87 11194.65 4988.53 28898.02 8283.69 16999.71 4693.18 13998.96 8999.44 49
3Dnovator91.36 595.19 9394.44 10897.44 4996.56 19493.36 6598.65 1198.36 2494.12 6589.25 27398.06 7782.20 20599.77 3793.41 13699.32 6099.18 72
PLCcopyleft91.00 694.11 12293.43 13396.13 11698.58 6891.15 14296.69 20297.39 17887.29 29391.37 21096.71 16188.39 9999.52 9587.33 25997.13 15297.73 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.10 792.30 19791.22 21495.56 14998.33 8089.60 19096.79 19197.65 13681.83 36291.52 20697.23 13687.94 10698.91 16771.31 38398.37 11298.17 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM89.79 892.96 17092.50 17094.35 21396.30 21488.71 22397.58 11897.36 18391.40 16190.53 22896.65 16779.77 24698.75 18391.24 17991.64 25095.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS89.66 993.87 13292.95 14696.63 7697.10 15492.49 8795.64 27596.64 24489.05 23593.00 16995.79 22085.77 14399.45 10589.16 22494.35 20397.96 175
ACMP89.59 1092.62 18592.14 17994.05 22996.40 20988.20 24097.36 14397.25 19291.52 15488.30 29396.64 16878.46 27098.72 18891.86 16491.48 25495.23 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS89.48 1191.56 22789.95 26696.36 10096.60 18992.52 8692.51 36797.26 19079.41 37788.90 27796.56 17884.04 16699.55 8777.01 36197.30 14697.01 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft89.19 1292.86 17691.68 19596.40 9595.34 26192.73 8098.27 3498.12 6784.86 33385.78 33497.75 10378.89 26599.74 4187.50 25698.65 9996.73 227
LTVRE_ROB88.41 1390.99 25689.92 26894.19 22296.18 21989.55 19396.31 23697.09 20287.88 27485.67 33595.91 21178.79 26698.57 20381.50 32989.98 27894.44 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 28389.18 29093.25 27096.48 20486.45 28596.99 17696.68 24188.83 24584.79 34496.22 19570.16 33698.53 20584.42 30388.04 29694.77 326
COLMAP_ROBcopyleft87.81 1590.40 27689.28 28893.79 24797.95 11087.13 26996.92 18195.89 27982.83 35586.88 32797.18 13873.77 31699.29 12178.44 35293.62 22394.95 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH87.59 1690.53 27289.42 28593.87 24396.21 21687.92 24997.24 15496.94 21888.45 25983.91 35596.27 19371.92 32398.62 19884.43 30289.43 28495.05 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS87.33 1789.91 28888.28 30394.79 19395.26 27187.70 25695.12 29993.95 35589.35 22687.03 32092.49 34270.74 33299.19 12889.18 22381.37 36197.49 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet86.66 1892.24 20191.74 19493.73 24997.77 12183.69 32992.88 36296.72 23687.91 27393.00 16994.86 26078.51 26999.05 15486.53 27097.45 14098.47 137
PVSNet_082.17 1985.46 33983.64 34290.92 33195.27 26879.49 37090.55 38095.60 29383.76 34783.00 36189.95 37071.09 32997.97 26882.75 32260.79 40095.31 288
OpenMVS_ROBcopyleft81.14 2084.42 34482.28 35090.83 33290.06 37884.05 32495.73 26994.04 35173.89 38980.17 37491.53 36059.15 38197.64 30566.92 39089.05 28790.80 383
CMPMVSbinary62.92 2185.62 33884.92 33587.74 35989.14 38473.12 38994.17 32896.80 23373.98 38873.65 38794.93 25666.36 36397.61 30983.95 30991.28 25992.48 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft53.92 2258.58 36955.40 37268.12 38551.00 41248.64 40978.86 39887.10 39846.77 40135.84 40774.28 3978.76 41186.34 40042.07 40273.91 38369.38 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 37148.81 37666.58 38665.34 41057.50 40572.49 40070.94 41140.15 40439.28 40663.51 4026.89 41373.48 40738.29 40342.38 40268.76 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net95.94 7395.40 7997.56 4697.59 13594.62 3098.21 4497.57 14794.41 5796.17 9296.16 19987.54 11599.17 13296.19 6094.73 20098.91 101
testing9191.90 21291.02 21994.53 20696.54 19786.55 28495.86 26195.64 29291.77 14891.89 19693.47 32769.94 33998.86 17090.23 19693.86 21998.18 160
testing1191.68 22090.75 23194.47 20796.53 19986.56 28395.76 26894.51 34091.10 17491.24 22093.59 32268.59 34998.86 17091.10 18194.29 20598.00 174
testing9991.62 22290.72 23494.32 21696.48 20486.11 29495.81 26494.76 33291.55 15391.75 20193.44 32868.55 35098.82 17490.43 19093.69 22098.04 173
UWE-MVS89.91 28889.48 28491.21 32695.88 23278.23 37894.91 30390.26 38789.11 23292.35 18494.52 27668.76 34797.96 27283.95 30995.59 18297.42 204
ETVMVS90.52 27389.14 29294.67 19896.81 17787.85 25395.91 25993.97 35389.71 21592.34 18592.48 34365.41 37097.96 27281.37 33494.27 20698.21 158
sasdasda96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
testing22290.31 27788.96 29494.35 21396.54 19787.29 26095.50 28193.84 35890.97 17791.75 20192.96 33562.18 37998.00 26382.86 31794.08 21297.76 187
WB-MVSnew89.88 29189.56 28190.82 33394.57 31083.06 33395.65 27492.85 36787.86 27590.83 22594.10 30279.66 24996.88 34676.34 36294.19 20792.54 366
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11595.48 25090.69 15897.91 7698.33 2994.07 6698.93 999.14 187.44 11999.61 6998.63 1398.32 11498.18 160
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12596.67 18590.25 17197.91 7698.38 2394.48 5498.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 164
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11397.64 12990.72 15798.00 6198.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 153
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12198.07 10590.28 17097.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 160
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28397.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
WAC-MVS79.53 36875.56 367
Syy-MVS87.13 32287.02 31787.47 36095.16 27573.21 38895.00 30093.93 35688.55 25686.96 32291.99 35375.90 29694.00 38161.59 39494.11 20995.20 296
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24292.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6992.66 35991.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16399.76 3898.82 1199.08 8299.48 44
myMVS_eth3d87.18 32186.38 32189.58 35095.16 27579.53 36895.00 30093.93 35688.55 25686.96 32291.99 35356.23 38794.00 38175.47 36894.11 20995.20 296
testing387.67 31786.88 31890.05 34596.14 22480.71 35397.10 16892.85 36790.15 20487.54 30994.55 27555.70 38894.10 38073.77 37594.10 21195.35 285
SSC-MVS76.05 35875.83 36176.72 38084.77 39456.22 40794.32 32388.96 39281.82 36370.52 38988.91 37774.79 30788.71 39733.69 40564.71 39685.23 391
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14292.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
WB-MVS76.77 35776.63 36077.18 37685.32 39356.82 40694.53 31289.39 39082.66 35771.35 38889.18 37675.03 30588.88 39635.42 40466.79 39485.84 390
test_fmvsmvis_n_192096.70 4796.84 3396.31 10296.62 18791.73 10997.98 6398.30 3296.19 596.10 9698.95 889.42 8399.76 3898.90 1099.08 8297.43 203
dmvs_re90.21 28289.50 28392.35 29695.47 25385.15 30895.70 27094.37 34490.94 17888.42 28993.57 32374.63 30895.67 36582.80 32089.57 28396.22 238
SDMVSNet94.17 11693.61 12195.86 13098.09 10191.37 12897.35 14498.20 5293.18 10291.79 19997.28 13179.13 25698.93 16494.61 11392.84 23097.28 211
dmvs_testset81.38 35282.60 34877.73 37591.74 37051.49 40893.03 36084.21 40389.07 23378.28 38091.25 36276.97 28788.53 39856.57 39882.24 35893.16 356
sd_testset93.10 16292.45 17295.05 17298.09 10189.21 21196.89 18397.64 13893.18 10291.79 19997.28 13175.35 30398.65 19488.99 22692.84 23097.28 211
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 10998.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 171
test_cas_vis1_n_192094.48 11094.55 10394.28 22096.78 17886.45 28597.63 11397.64 13893.32 9697.68 3898.36 5073.75 31799.08 14696.73 3999.05 8497.31 210
test_vis1_n_192094.17 11694.58 9992.91 28297.42 14382.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9397.40 205
test_vis1_n92.37 19392.26 17792.72 28994.75 30082.64 33598.02 5896.80 23391.18 16997.77 3797.93 8858.02 38398.29 22697.63 1998.21 11897.23 214
test_fmvs1_n92.73 18392.88 14992.29 29996.08 22981.05 35197.98 6397.08 20390.72 18496.79 6298.18 7063.07 37598.45 21197.62 2098.42 11197.36 206
mvsany_test193.93 13093.98 11393.78 24894.94 28886.80 27494.62 30892.55 37288.77 25096.85 6098.49 3888.98 8898.08 24995.03 9795.62 18196.46 235
APD_test179.31 35577.70 35884.14 36889.11 38569.07 39492.36 37091.50 38069.07 39273.87 38692.63 34039.93 39794.32 37870.54 38780.25 36589.02 388
test_vis1_rt86.16 33285.06 33389.46 35193.47 34480.46 35896.41 22486.61 39985.22 32679.15 37788.64 37852.41 39197.06 33893.08 14290.57 27190.87 382
test_vis3_rt72.73 35970.55 36279.27 37380.02 40068.13 39693.92 33774.30 41076.90 38558.99 39973.58 39920.29 40895.37 37184.16 30472.80 38674.31 398
test_fmvs289.77 29589.93 26789.31 35393.68 33676.37 38197.64 11195.90 27789.84 21291.49 20796.26 19458.77 38297.10 33794.65 11191.13 26294.46 334
test_fmvs193.21 15593.53 12592.25 30196.55 19681.20 35097.40 13996.96 21690.68 18696.80 6198.04 7969.25 34498.40 21497.58 2198.50 10597.16 215
test_fmvs383.21 34783.02 34483.78 36986.77 39268.34 39596.76 19494.91 32686.49 30684.14 35189.48 37436.04 39991.73 39191.86 16480.77 36491.26 381
mvsany_test383.59 34582.44 34987.03 36383.80 39573.82 38693.70 34390.92 38586.42 30782.51 36290.26 36746.76 39495.71 36390.82 18576.76 37791.57 376
testf169.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
APD_test269.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
test_f80.57 35379.62 35583.41 37083.38 39767.80 39793.57 35093.72 35980.80 37177.91 38187.63 38633.40 40092.08 39087.14 26579.04 37290.34 385
FE-MVS92.05 20891.05 21895.08 17196.83 17487.93 24893.91 33895.70 28686.30 30994.15 14394.97 25376.59 28999.21 12684.10 30596.86 15498.09 170
FA-MVS(test-final)93.52 14692.92 14795.31 16296.77 18088.54 22994.82 30496.21 26889.61 21794.20 14195.25 24583.24 17799.14 13790.01 19796.16 16998.25 153
iter_conf05_1193.70 14092.99 14395.84 13297.02 16290.22 17295.57 27794.66 33492.81 12096.17 9296.51 18069.56 34299.07 15095.03 9799.60 1798.23 155
bld_raw_dy_0_6492.85 17891.91 18795.69 14297.02 16289.81 18597.88 7993.96 35492.57 12692.59 17796.79 15769.53 34399.02 15895.03 9791.78 24998.23 155
patch_mono-296.83 4197.44 1395.01 17599.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
EGC-MVSNET68.77 36563.01 37086.07 36792.49 36282.24 34293.96 33490.96 3840.71 4102.62 41190.89 36353.66 38993.46 38557.25 39784.55 33782.51 393
test250691.60 22390.78 22994.04 23097.66 12783.81 32598.27 3475.53 40893.43 9195.23 12298.21 6767.21 35899.07 15093.01 14798.49 10699.25 68
test111193.19 15792.82 15294.30 21997.58 13984.56 31798.21 4489.02 39193.53 8694.58 13398.21 6772.69 32099.05 15493.06 14398.48 10899.28 65
ECVR-MVScopyleft93.19 15792.73 15894.57 20497.66 12785.41 30298.21 4488.23 39393.43 9194.70 13198.21 6772.57 32199.07 15093.05 14498.49 10699.25 68
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080591.09 25190.07 26394.16 22495.61 24388.31 23497.56 12096.51 25389.56 21889.17 27495.64 22967.08 36298.38 21991.07 18288.44 29495.80 258
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22195.76 7599.58 2299.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 416
eth-test0.00 416
GeoE93.89 13193.28 13895.72 14096.96 16889.75 18798.24 4096.92 22389.47 22292.12 19197.21 13784.42 15898.39 21887.71 24696.50 16499.01 89
test_method66.11 36764.89 36969.79 38472.62 40735.23 41565.19 40292.83 36920.35 40565.20 39488.08 38443.14 39682.70 40273.12 37863.46 39791.45 380
Anonymous2024052186.42 32885.44 32889.34 35290.33 37679.79 36696.73 19695.92 27583.71 34883.25 35891.36 36163.92 37396.01 35678.39 35385.36 32292.22 371
h-mvs3394.15 11893.52 12796.04 12197.81 11990.22 17297.62 11597.58 14695.19 2096.74 6497.45 12483.67 17099.61 6995.85 7179.73 36798.29 152
hse-mvs293.45 14892.99 14394.81 18997.02 16288.59 22696.69 20296.47 25595.19 2096.74 6496.16 19983.67 17098.48 21095.85 7179.13 37197.35 208
CL-MVSNet_self_test86.31 33085.15 33289.80 34888.83 38681.74 34693.93 33696.22 26686.67 30385.03 34190.80 36478.09 27794.50 37574.92 36971.86 38793.15 357
KD-MVS_2432*160084.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
KD-MVS_self_test85.95 33584.95 33488.96 35489.55 38379.11 37495.13 29896.42 25785.91 31684.07 35390.48 36570.03 33894.82 37480.04 34172.94 38592.94 359
AUN-MVS91.76 21690.75 23194.81 18997.00 16688.57 22796.65 20696.49 25489.63 21692.15 18996.12 20178.66 26798.50 20790.83 18479.18 37097.36 206
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5798.10 7392.52 3599.65 5894.58 11499.31 61
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6399.26 6599.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6399.26 6599.43 51
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3798.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3798.26 6696.04 299.24 12495.36 9199.59 1899.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4198.27 3992.37 13198.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
cl2291.21 24690.56 24193.14 27596.09 22886.80 27494.41 31896.58 25087.80 27888.58 28793.99 30780.85 22797.62 30889.87 20286.93 30694.99 304
miper_ehance_all_eth91.59 22491.13 21792.97 28095.55 24786.57 28294.47 31496.88 22787.77 28088.88 27994.01 30586.22 13597.54 31489.49 21186.93 30694.79 323
miper_enhance_ethall91.54 22991.01 22093.15 27495.35 26087.07 27093.97 33396.90 22486.79 30289.17 27493.43 33186.55 13097.64 30589.97 19986.93 30694.74 327
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12596.39 8498.18 7091.61 5099.88 495.59 8799.55 2599.57 26
dcpmvs_296.37 6097.05 2294.31 21898.96 4684.11 32297.56 12097.51 15593.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
cl____90.96 25990.32 24792.89 28395.37 25886.21 29194.46 31696.64 24487.82 27688.15 29994.18 29982.98 18697.54 31487.70 24785.59 31794.92 311
DIV-MVS_self_test90.97 25890.33 24692.88 28495.36 25986.19 29294.46 31696.63 24787.82 27688.18 29894.23 29682.99 18597.53 31687.72 24485.57 31894.93 309
eth_miper_zixun_eth91.02 25590.59 23992.34 29895.33 26484.35 31894.10 33096.90 22488.56 25588.84 28194.33 28884.08 16597.60 31088.77 23184.37 34095.06 302
9.1496.75 4198.93 4797.73 9798.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7599.47 39
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
ET-MVSNet_ETH3D91.49 23190.11 25995.63 14596.40 20991.57 12095.34 28793.48 36290.60 19575.58 38495.49 23780.08 24096.79 34994.25 11889.76 28198.52 129
UniMVSNet_ETH3D91.34 24190.22 25694.68 19794.86 29487.86 25297.23 15897.46 16387.99 27089.90 24996.92 15366.35 36498.23 22990.30 19490.99 26697.96 175
EIA-MVS95.53 8395.47 7495.71 14197.06 15889.63 18897.82 8897.87 11193.57 8193.92 14995.04 25290.61 7198.95 16294.62 11298.68 9898.54 127
miper_refine_blended84.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
miper_lstm_enhance90.50 27590.06 26491.83 31095.33 26483.74 32693.86 33996.70 24087.56 28787.79 30493.81 31383.45 17596.92 34587.39 25784.62 33594.82 318
ETV-MVS96.02 6895.89 6796.40 9597.16 15092.44 8897.47 13297.77 12294.55 5096.48 7994.51 27791.23 6198.92 16595.65 8098.19 11997.82 185
CS-MVS96.86 3797.06 1996.26 10898.16 9891.16 14199.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18997.10 3199.17 7498.90 104
D2MVS91.30 24390.95 22192.35 29694.71 30385.52 30096.18 24698.21 5188.89 24286.60 32893.82 31279.92 24497.95 27689.29 21790.95 26793.56 351
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4497.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4498.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
DPM-MVS95.69 7794.92 9098.01 1998.08 10495.71 995.27 29397.62 14190.43 19995.55 11697.07 14491.72 4699.50 9989.62 20998.94 9098.82 113
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3198.13 6592.72 12296.70 6698.06 7791.35 5799.86 894.83 10499.28 6299.47 46
test_yl94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
thisisatest053093.03 16792.21 17895.49 15597.07 15589.11 21697.49 13192.19 37490.16 20394.09 14496.41 18676.43 29399.05 15490.38 19295.68 18098.31 151
Anonymous2024052991.98 21090.73 23395.73 13998.14 9989.40 20197.99 6297.72 12879.63 37693.54 15697.41 12769.94 33999.56 8591.04 18391.11 26398.22 157
Anonymous20240521192.07 20790.83 22895.76 13498.19 9588.75 22297.58 11895.00 32186.00 31593.64 15397.45 12466.24 36699.53 9190.68 18992.71 23399.01 89
DCV-MVSNet94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
tttt051792.96 17092.33 17594.87 18597.11 15387.16 26897.97 6992.09 37590.63 19193.88 15097.01 14876.50 29099.06 15390.29 19595.45 18498.38 147
our_test_388.78 30687.98 30691.20 32892.45 36482.53 33793.61 34995.69 28885.77 31884.88 34293.71 31579.99 24296.78 35079.47 34686.24 31194.28 342
thisisatest051592.29 19891.30 20995.25 16496.60 18988.90 22094.36 32092.32 37387.92 27293.43 16094.57 27477.28 28599.00 15989.42 21395.86 17597.86 181
ppachtmachnet_test88.35 31187.29 31091.53 31992.45 36483.57 33093.75 34295.97 27484.28 33985.32 34094.18 29979.00 26496.93 34475.71 36584.99 33194.10 344
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.45 139
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
thres100view90092.43 18991.58 19894.98 17897.92 11389.37 20397.71 10294.66 33492.20 13593.31 16394.90 25878.06 27899.08 14681.40 33194.08 21296.48 233
tfpnnormal89.70 29688.40 30193.60 25695.15 27790.10 17497.56 12098.16 6187.28 29486.16 33294.63 27277.57 28398.05 25674.48 37084.59 33692.65 364
tfpn200view992.38 19291.52 20194.95 18197.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.48 233
c3_l91.38 23690.89 22292.88 28495.58 24586.30 28894.68 30796.84 23188.17 26688.83 28294.23 29685.65 14497.47 32189.36 21484.63 33494.89 313
CHOSEN 280x42093.12 16192.72 15994.34 21596.71 18487.27 26290.29 38197.72 12886.61 30591.34 21195.29 24284.29 16298.41 21393.25 13898.94 9097.35 208
CANet96.39 5996.02 6497.50 4797.62 13193.38 6397.02 17297.96 10295.42 1594.86 12897.81 9987.38 12199.82 2896.88 3699.20 7299.29 63
Fast-Effi-MVS+-dtu92.29 19891.99 18493.21 27395.27 26885.52 30097.03 17096.63 24792.09 14089.11 27695.14 24980.33 23698.08 24987.54 25594.74 19996.03 249
Effi-MVS+-dtu93.08 16493.21 14092.68 29296.02 23083.25 33297.14 16696.72 23693.85 7491.20 22293.44 32883.08 18298.30 22591.69 17095.73 17896.50 232
CANet_DTU94.37 11193.65 12096.55 8096.46 20692.13 10096.21 24496.67 24394.38 6093.53 15797.03 14779.34 25399.71 4690.76 18698.45 11097.82 185
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 34997.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18795.55 11698.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs182.76 19298.45 139
sam_mvs81.94 211
IterMVS-SCA-FT90.31 27789.81 27291.82 31195.52 24884.20 32194.30 32496.15 27090.61 19387.39 31394.27 29375.80 29896.44 35287.34 25886.88 31094.82 318
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
OPM-MVS93.28 15392.76 15494.82 18794.63 30690.77 15596.65 20697.18 19393.72 7791.68 20397.26 13479.33 25498.63 19692.13 15792.28 23895.07 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11997.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
ambc86.56 36583.60 39670.00 39285.69 39494.97 32380.60 37088.45 37937.42 39896.84 34882.69 32375.44 38092.86 360
MTGPAbinary98.08 74
CS-MVS-test96.89 3597.04 2396.45 9298.29 8291.66 11599.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18396.92 3599.33 5998.94 97
Effi-MVS+94.93 10094.45 10796.36 10096.61 18891.47 12496.41 22497.41 17791.02 17694.50 13595.92 21087.53 11698.78 17893.89 12696.81 15698.84 112
xiu_mvs_v2_base95.32 8795.29 8395.40 16097.22 14690.50 16495.44 28497.44 17293.70 7996.46 8196.18 19688.59 9899.53 9194.79 10997.81 12996.17 241
xiu_mvs_v1_base95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
new-patchmatchnet83.18 34881.87 35187.11 36286.88 39175.99 38393.70 34395.18 31485.02 33177.30 38288.40 38065.99 36793.88 38474.19 37470.18 38991.47 379
pmmvs687.81 31686.19 32392.69 29191.32 37186.30 28897.34 14596.41 25880.59 37384.05 35494.37 28667.37 35797.67 30284.75 29879.51 36994.09 346
pmmvs589.86 29388.87 29692.82 28692.86 35486.23 29096.26 23995.39 30184.24 34087.12 31794.51 27774.27 31197.36 33087.61 25487.57 30094.86 314
test_post192.81 36416.58 40980.53 23197.68 30186.20 276
test_post17.58 40881.76 21398.08 249
Fast-Effi-MVS+93.46 14792.75 15695.59 14896.77 18090.03 17596.81 19097.13 19788.19 26591.30 21494.27 29386.21 13698.63 19687.66 25196.46 16798.12 166
patchmatchnet-post90.45 36682.65 19698.10 245
Anonymous2023121190.63 27089.42 28594.27 22198.24 8789.19 21498.05 5697.89 10779.95 37488.25 29694.96 25472.56 32298.13 23989.70 20685.14 32695.49 272
pmmvs-eth3d86.22 33184.45 33891.53 31988.34 38887.25 26394.47 31495.01 32083.47 35179.51 37689.61 37369.75 34195.71 36383.13 31576.73 37891.64 374
GG-mvs-BLEND93.62 25593.69 33589.20 21292.39 36983.33 40487.98 30389.84 37271.00 33096.87 34782.08 32795.40 18594.80 321
xiu_mvs_v1_base_debi95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
Anonymous2023120687.09 32386.14 32489.93 34791.22 37280.35 35996.11 24895.35 30483.57 35084.16 34993.02 33473.54 31895.61 36672.16 38086.14 31393.84 349
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9598.59 3090.88 6899.90 296.18 6199.50 3499.58 25
MTMP97.86 8182.03 405
gm-plane-assit93.22 34978.89 37684.82 33493.52 32498.64 19587.72 244
test9_res94.81 10699.38 5499.45 47
MVP-Stereo90.74 26690.08 26092.71 29093.19 35088.20 24095.86 26196.27 26386.07 31484.86 34394.76 26577.84 28197.75 29783.88 31198.01 12492.17 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.70 5694.19 4296.41 22498.02 9488.17 26696.03 9897.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3898.70 5694.19 4296.41 22498.02 9488.58 25396.03 9897.56 12192.73 3199.59 7495.04 9699.37 5799.39 56
gg-mvs-nofinetune87.82 31585.61 32794.44 20994.46 31289.27 21091.21 37684.61 40280.88 36889.89 25174.98 39671.50 32697.53 31685.75 28797.21 14996.51 231
SCA91.84 21491.18 21693.83 24495.59 24484.95 31394.72 30695.58 29590.82 17992.25 18793.69 31675.80 29898.10 24586.20 27695.98 17198.45 139
Patchmatch-test89.42 29887.99 30593.70 25295.27 26885.11 30988.98 38894.37 34481.11 36687.10 31993.69 31682.28 20397.50 31974.37 37294.76 19798.48 136
test_898.67 5894.06 4996.37 23198.01 9788.58 25395.98 10297.55 12392.73 3199.58 77
MS-PatchMatch90.27 27989.77 27491.78 31494.33 31784.72 31695.55 27896.73 23586.17 31386.36 33095.28 24471.28 32897.80 29284.09 30698.14 12292.81 361
Patchmatch-RL test87.38 31986.24 32290.81 33488.74 38778.40 37788.12 39293.17 36487.11 29782.17 36489.29 37581.95 21095.60 36788.64 23377.02 37598.41 144
cdsmvs_eth3d_5k23.24 37530.99 3770.00 3930.00 4160.00 4180.00 40497.63 1400.00 4110.00 41296.88 15584.38 1590.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.39 3799.85 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41188.65 950.00 4120.00 4110.00 4100.00 408
agg_prior293.94 12499.38 5499.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11299.57 84
tmp_tt51.94 37353.82 37346.29 38933.73 41345.30 41378.32 39967.24 41218.02 40650.93 40287.05 38952.99 39053.11 40870.76 38525.29 40640.46 404
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
anonymousdsp92.16 20491.55 19993.97 23592.58 36189.55 19397.51 12597.42 17689.42 22488.40 29094.84 26180.66 22897.88 28691.87 16391.28 25994.48 333
alignmvs95.87 7595.23 8497.78 3197.56 14095.19 2197.86 8197.17 19594.39 5996.47 8096.40 18785.89 14099.20 12796.21 5795.11 19198.95 96
nrg03094.05 12593.31 13796.27 10795.22 27294.59 3198.34 2797.46 16392.93 11691.21 22196.64 16887.23 12498.22 23094.99 10185.80 31695.98 250
v14419291.06 25390.28 25093.39 26593.66 33787.23 26596.83 18997.07 20587.43 28989.69 25694.28 29281.48 21798.00 26387.18 26384.92 33294.93 309
FIs94.09 12393.70 11895.27 16395.70 24092.03 10398.10 5198.68 1393.36 9590.39 23196.70 16387.63 11397.94 27792.25 15390.50 27495.84 254
v192192090.85 26290.03 26593.29 26993.55 33886.96 27396.74 19597.04 21087.36 29189.52 26394.34 28780.23 23897.97 26886.27 27485.21 32594.94 307
UA-Net95.95 7295.53 7297.20 6397.67 12592.98 7497.65 10798.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19397.35 14399.11 81
v119291.07 25290.23 25493.58 25893.70 33487.82 25496.73 19697.07 20587.77 28089.58 25994.32 29080.90 22697.97 26886.52 27185.48 31994.95 305
FC-MVSNet-test93.94 12993.57 12295.04 17395.48 25091.45 12698.12 5098.71 1193.37 9390.23 23496.70 16387.66 11097.85 28791.49 17390.39 27595.83 255
v114491.37 23890.60 23893.68 25493.89 32988.23 23996.84 18897.03 21288.37 26189.69 25694.39 28482.04 20797.98 26587.80 24385.37 32194.84 315
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9897.18 5098.29 6392.08 4299.83 2695.63 8299.59 1899.54 33
v14890.99 25690.38 24592.81 28793.83 33185.80 29696.78 19396.68 24189.45 22388.75 28493.93 30982.96 18897.82 29187.83 24283.25 35194.80 321
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest90.23 28188.98 29393.98 23397.94 11186.64 27896.51 21995.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
TestCases93.98 23397.94 11186.64 27895.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
v7n90.76 26489.86 26993.45 26493.54 33987.60 25897.70 10397.37 18188.85 24387.65 30794.08 30481.08 22198.10 24584.68 29983.79 34894.66 330
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10197.14 5298.34 5491.59 5299.87 795.46 8999.59 1899.64 16
iter_conf0593.18 16092.63 16194.83 18696.64 18690.69 15897.60 11695.53 29892.52 12791.58 20496.64 16876.35 29498.13 23995.43 9091.42 25695.68 269
RRT_MVS93.10 16292.83 15193.93 24194.76 29888.04 24598.47 2296.55 25193.44 9090.01 24797.04 14680.64 22997.93 28094.33 11790.21 27795.83 255
PS-MVSNAJss93.74 13893.51 12894.44 20993.91 32889.28 20997.75 9497.56 15192.50 12889.94 24896.54 17988.65 9598.18 23593.83 12990.90 26895.86 251
PS-MVSNAJ95.37 8595.33 8295.49 15597.35 14490.66 16195.31 29097.48 15893.85 7496.51 7795.70 22688.65 9599.65 5894.80 10798.27 11696.17 241
jajsoiax92.42 19091.89 18994.03 23193.33 34888.50 23197.73 9797.53 15392.00 14488.85 28096.50 18275.62 30198.11 24493.88 12791.56 25395.48 273
mvs_tets92.31 19691.76 19193.94 23993.41 34588.29 23597.63 11397.53 15392.04 14288.76 28396.45 18474.62 30998.09 24893.91 12591.48 25495.45 277
EI-MVSNet-UG-set96.34 6196.30 6096.47 8998.20 9390.93 14896.86 18597.72 12894.67 4796.16 9498.46 4290.43 7399.58 7796.23 5297.96 12698.90 104
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13696.89 18397.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6899.51 3299.40 54
test_prior493.66 5796.42 223
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7799.40 5199.62 18
v124090.70 26889.85 27093.23 27193.51 34186.80 27496.61 21297.02 21387.16 29689.58 25994.31 29179.55 25197.98 26585.52 28985.44 32094.90 312
pm-mvs190.72 26789.65 28093.96 23694.29 32089.63 18897.79 9296.82 23289.07 23386.12 33395.48 23878.61 26897.78 29486.97 26781.67 35994.46 334
test_prior296.35 23292.80 12196.03 9897.59 11892.01 4395.01 10099.38 54
X-MVStestdata91.71 21789.67 27897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7432.69 40591.70 4899.80 3095.66 7799.40 5199.62 18
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25781.66 36497.34 4898.82 17492.26 151
新几何295.79 266
新几何197.32 5398.60 6593.59 5897.75 12381.58 36595.75 10997.85 9690.04 7799.67 5686.50 27299.13 7898.69 121
旧先验198.38 7893.38 6397.75 12398.09 7592.30 4199.01 8799.16 73
无先验95.79 26697.87 11183.87 34699.65 5887.68 25098.89 107
原ACMM295.67 271
原ACMM196.38 9898.59 6691.09 14397.89 10787.41 29095.22 12397.68 10790.25 7499.54 8987.95 24099.12 8098.49 134
test22298.24 8792.21 9695.33 28897.60 14279.22 37895.25 12197.84 9888.80 9299.15 7698.72 118
testdata299.67 5685.96 284
segment_acmp92.89 27
testdata95.46 15998.18 9788.90 22097.66 13482.73 35697.03 5798.07 7690.06 7698.85 17289.67 20798.98 8898.64 124
testdata195.26 29593.10 107
v891.29 24490.53 24293.57 25994.15 32188.12 24497.34 14597.06 20788.99 23788.32 29294.26 29583.08 18298.01 26287.62 25383.92 34694.57 332
131492.81 18192.03 18295.14 16895.33 26489.52 19696.04 25197.44 17287.72 28386.25 33195.33 24183.84 16798.79 17789.26 21897.05 15397.11 216
LFMVS93.60 14292.63 16196.52 8298.13 10091.27 13197.94 7393.39 36390.57 19696.29 8698.31 6069.00 34599.16 13494.18 11995.87 17499.12 80
VDD-MVS93.82 13593.08 14196.02 12397.88 11689.96 18297.72 10095.85 28092.43 12995.86 10598.44 4468.42 35299.39 11196.31 4994.85 19398.71 120
VDDNet93.05 16692.07 18096.02 12396.84 17290.39 16998.08 5395.85 28086.22 31295.79 10898.46 4267.59 35599.19 12894.92 10294.85 19398.47 137
v1091.04 25490.23 25493.49 26194.12 32288.16 24397.32 14897.08 20388.26 26488.29 29494.22 29882.17 20697.97 26886.45 27384.12 34294.33 339
VPNet92.23 20291.31 20894.99 17695.56 24690.96 14697.22 15997.86 11592.96 11590.96 22396.62 17675.06 30498.20 23291.90 16183.65 34995.80 258
MVS91.71 21790.44 24395.51 15395.20 27491.59 11896.04 25197.45 16873.44 39087.36 31495.60 23185.42 14699.10 14185.97 28397.46 13695.83 255
v2v48291.59 22490.85 22693.80 24693.87 33088.17 24296.94 18096.88 22789.54 21989.53 26294.90 25881.70 21598.02 26189.25 21985.04 33095.20 296
V4291.58 22690.87 22393.73 24994.05 32588.50 23197.32 14896.97 21588.80 24989.71 25494.33 28882.54 19798.05 25689.01 22585.07 32894.64 331
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32796.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS91.38 23690.31 24894.59 19994.65 30587.62 25794.34 32196.19 26990.73 18390.35 23293.83 31071.84 32497.96 27287.22 26193.61 22498.21 158
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10498.49 1994.66 4897.24 4998.41 4792.31 4098.94 16396.61 4399.46 4098.96 94
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10697.44 4398.55 3390.93 6699.55 8796.06 6299.25 6799.51 37
ADS-MVSNet289.45 29788.59 29992.03 30595.86 23382.26 34190.93 37794.32 34783.23 35391.28 21891.81 35779.01 26295.99 35779.52 34491.39 25797.84 182
EI-MVSNet93.03 16792.88 14993.48 26295.77 23886.98 27196.44 22097.12 19890.66 18991.30 21497.64 11486.56 12998.05 25689.91 20090.55 27295.41 278
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet91.23 24591.75 19289.67 34995.77 23874.69 38496.44 22094.88 32885.81 31792.18 18897.64 11479.07 25795.58 36888.06 23895.86 17598.74 117
pmmvs490.93 26089.85 27094.17 22393.34 34790.79 15494.60 30996.02 27384.62 33687.45 31095.15 24881.88 21297.45 32387.70 24787.87 29894.27 343
EU-MVSNet88.72 30788.90 29588.20 35793.15 35174.21 38596.63 21194.22 34885.18 32787.32 31595.97 20776.16 29594.98 37385.27 29286.17 31295.41 278
VNet95.89 7495.45 7597.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4097.61 11785.29 14799.53 9195.81 7495.27 18799.16 73
test-LLR91.42 23491.19 21592.12 30394.59 30780.66 35494.29 32592.98 36591.11 17290.76 22692.37 34579.02 26098.07 25388.81 22996.74 15897.63 192
TESTMET0.1,190.06 28689.42 28591.97 30694.41 31580.62 35694.29 32591.97 37787.28 29490.44 23092.47 34468.79 34697.67 30288.50 23596.60 16397.61 196
test-mter90.19 28489.54 28292.12 30394.59 30780.66 35494.29 32592.98 36587.68 28490.76 22692.37 34567.67 35498.07 25388.81 22996.74 15897.63 192
VPA-MVSNet93.24 15492.48 17195.51 15395.70 24092.39 8997.86 8198.66 1692.30 13292.09 19395.37 24080.49 23298.40 21493.95 12385.86 31595.75 265
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9897.15 5198.33 5791.35 5799.86 895.63 8299.59 1899.62 18
testgi87.97 31387.21 31390.24 34392.86 35480.76 35296.67 20594.97 32391.74 14985.52 33695.83 21562.66 37794.47 37776.25 36388.36 29595.48 273
test20.0386.14 33385.40 33088.35 35590.12 37780.06 36495.90 26095.20 31388.59 25281.29 36693.62 32171.43 32792.65 38971.26 38481.17 36292.34 369
thres600view792.49 18891.60 19795.18 16697.91 11489.47 19797.65 10794.66 33492.18 13993.33 16294.91 25778.06 27899.10 14181.61 32894.06 21696.98 218
ADS-MVSNet89.89 29088.68 29893.53 26095.86 23384.89 31490.93 37795.07 31983.23 35391.28 21891.81 35779.01 26297.85 28779.52 34491.39 25797.84 182
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2598.06 8293.37 9395.54 11898.34 5490.59 7299.88 494.83 10499.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs13.36 37616.33 3794.48 3925.04 4142.26 41793.18 3543.28 4152.70 4088.24 40921.66 4062.29 4152.19 4107.58 4092.96 4089.00 406
thres40092.42 19091.52 20195.12 17097.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.98 218
test12313.04 37715.66 3805.18 3914.51 4153.45 41692.50 3681.81 4162.50 4097.58 41020.15 4073.67 4142.18 4117.13 4101.07 4099.90 405
thres20092.23 20291.39 20494.75 19697.61 13289.03 21796.60 21495.09 31892.08 14193.28 16494.00 30678.39 27299.04 15781.26 33694.18 20896.19 240
test0.0.03 189.37 29988.70 29791.41 32392.47 36385.63 29895.22 29692.70 37091.11 17286.91 32693.65 32079.02 26093.19 38878.00 35489.18 28695.41 278
pmmvs379.97 35477.50 35987.39 36182.80 39879.38 37292.70 36590.75 38670.69 39178.66 37887.47 38851.34 39293.40 38673.39 37769.65 39089.38 387
EMVS52.08 37251.31 37554.39 38872.62 40745.39 41283.84 39675.51 40941.13 40340.77 40559.65 40430.08 40273.60 40628.31 40729.90 40544.18 403
E-PMN53.28 37052.56 37455.43 38774.43 40547.13 41083.63 39776.30 40742.23 40242.59 40462.22 40328.57 40474.40 40531.53 40631.51 40344.78 402
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13397.14 5298.44 4491.17 6299.85 1894.35 11699.46 4099.57 26
LCM-MVSNet-Re92.50 18692.52 16992.44 29496.82 17681.89 34496.92 18193.71 36092.41 13084.30 34794.60 27385.08 15097.03 34091.51 17297.36 14298.40 145
LCM-MVSNet72.55 36069.39 36482.03 37170.81 40965.42 40090.12 38494.36 34655.02 39965.88 39381.72 39324.16 40789.96 39274.32 37368.10 39390.71 384
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9797.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
mvs_anonymous93.82 13593.74 11794.06 22896.44 20785.41 30295.81 26497.05 20889.85 21190.09 24496.36 18987.44 11997.75 29793.97 12296.69 16199.02 86
MVS_Test94.89 10294.62 9795.68 14396.83 17489.55 19396.70 20097.17 19591.17 17095.60 11596.11 20587.87 10898.76 18293.01 14797.17 15198.72 118
MDA-MVSNet-bldmvs85.00 34082.95 34591.17 32993.13 35283.33 33194.56 31195.00 32184.57 33765.13 39592.65 33870.45 33395.85 36073.57 37677.49 37494.33 339
CDPH-MVS95.97 7195.38 8097.77 3398.93 4794.44 3496.35 23297.88 10986.98 29896.65 7097.89 9091.99 4499.47 10292.26 15199.46 4099.39 56
test1297.65 4298.46 7094.26 3997.66 13495.52 11990.89 6799.46 10399.25 6799.22 70
casdiffmvspermissive95.64 7995.49 7396.08 11796.76 18390.45 16697.29 15197.44 17294.00 6895.46 12097.98 8587.52 11798.73 18595.64 8197.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive95.25 8995.13 8795.63 14596.43 20889.34 20495.99 25597.35 18492.83 11896.31 8597.37 12886.44 13298.67 19296.26 5097.19 15098.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline291.63 22190.86 22493.94 23994.33 31786.32 28795.92 25891.64 37989.37 22586.94 32494.69 26881.62 21698.69 19088.64 23394.57 20296.81 225
baseline192.82 18091.90 18895.55 15197.20 14890.77 15597.19 16194.58 33892.20 13592.36 18296.34 19084.16 16498.21 23189.20 22283.90 34797.68 191
YYNet185.87 33684.23 34090.78 33792.38 36682.46 33993.17 35595.14 31682.12 36067.69 39092.36 34878.16 27695.50 37077.31 35779.73 36794.39 337
PMMVS270.19 36266.92 36580.01 37276.35 40365.67 39986.22 39387.58 39664.83 39562.38 39680.29 39526.78 40588.49 39963.79 39154.07 40185.88 389
MDA-MVSNet_test_wron85.87 33684.23 34090.80 33692.38 36682.57 33693.17 35595.15 31582.15 35967.65 39192.33 35178.20 27395.51 36977.33 35679.74 36694.31 341
tpmvs89.83 29489.15 29191.89 30894.92 28980.30 36193.11 35895.46 30086.28 31088.08 30092.65 33880.44 23398.52 20681.47 33089.92 27996.84 224
PM-MVS83.48 34681.86 35288.31 35687.83 39077.59 37993.43 35191.75 37886.91 29980.63 36989.91 37144.42 39595.84 36185.17 29576.73 37891.50 378
HQP_MVS93.78 13793.43 13394.82 18796.21 21689.99 17897.74 9597.51 15594.85 3491.34 21196.64 16881.32 21998.60 19993.02 14592.23 23995.86 251
plane_prior796.21 21689.98 180
plane_prior696.10 22790.00 17681.32 219
plane_prior597.51 15598.60 19993.02 14592.23 23995.86 251
plane_prior496.64 168
plane_prior390.00 17694.46 5591.34 211
plane_prior297.74 9594.85 34
plane_prior196.14 224
plane_prior89.99 17897.24 15494.06 6792.16 243
PS-CasMVS91.55 22890.84 22793.69 25394.96 28588.28 23697.84 8598.24 4791.46 15788.04 30195.80 21779.67 24897.48 32087.02 26684.54 33895.31 288
UniMVSNet_NR-MVSNet93.37 15092.67 16095.47 15895.34 26192.83 7697.17 16398.58 1792.98 11490.13 23995.80 21788.37 10097.85 28791.71 16883.93 34495.73 267
PEN-MVS91.20 24790.44 24393.48 26294.49 31187.91 25197.76 9398.18 5791.29 16287.78 30595.74 22380.35 23597.33 33185.46 29082.96 35495.19 299
TransMVSNet (Re)88.94 30287.56 30893.08 27794.35 31688.45 23397.73 9795.23 31287.47 28884.26 34895.29 24279.86 24597.33 33179.44 34874.44 38293.45 354
DTE-MVSNet90.56 27189.75 27693.01 27893.95 32687.25 26397.64 11197.65 13690.74 18287.12 31795.68 22779.97 24397.00 34383.33 31381.66 36094.78 325
DU-MVS92.90 17492.04 18195.49 15594.95 28692.83 7697.16 16498.24 4793.02 10890.13 23995.71 22483.47 17397.85 28791.71 16883.93 34495.78 260
UniMVSNet (Re)93.31 15292.55 16695.61 14795.39 25593.34 6697.39 14098.71 1193.14 10590.10 24394.83 26287.71 10998.03 26091.67 17183.99 34395.46 276
CP-MVSNet91.89 21391.24 21293.82 24595.05 28288.57 22797.82 8898.19 5591.70 15088.21 29795.76 22281.96 20997.52 31887.86 24184.65 33395.37 284
WR-MVS_H92.00 20991.35 20593.95 23795.09 28189.47 19798.04 5798.68 1391.46 15788.34 29194.68 26985.86 14197.56 31285.77 28684.24 34194.82 318
WR-MVS92.34 19491.53 20094.77 19495.13 27990.83 15296.40 22897.98 10091.88 14689.29 27095.54 23582.50 19897.80 29289.79 20485.27 32495.69 268
NR-MVSNet92.34 19491.27 21195.53 15294.95 28693.05 7297.39 14098.07 7992.65 12484.46 34595.71 22485.00 15197.77 29689.71 20583.52 35095.78 260
Baseline_NR-MVSNet91.20 24790.62 23792.95 28193.83 33188.03 24697.01 17595.12 31788.42 26089.70 25595.13 25083.47 17397.44 32489.66 20883.24 35293.37 355
TranMVSNet+NR-MVSNet92.50 18691.63 19695.14 16894.76 29892.07 10197.53 12498.11 7092.90 11789.56 26196.12 20183.16 17997.60 31089.30 21683.20 35395.75 265
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19196.72 23694.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
n20.00 417
nn0.00 417
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9795.95 10398.33 5791.04 6499.88 495.20 9399.57 2499.60 21
door-mid91.06 383
XVG-OURS-SEG-HR93.86 13393.55 12394.81 18997.06 15888.53 23095.28 29197.45 16891.68 15194.08 14597.68 10782.41 20198.90 16893.84 12892.47 23696.98 218
mvsmamba93.83 13493.46 13094.93 18494.88 29390.85 15198.55 1495.49 29994.24 6391.29 21796.97 14983.04 18498.14 23895.56 8891.17 26195.78 260
MVSFormer95.37 8595.16 8695.99 12696.34 21291.21 13498.22 4297.57 14791.42 15996.22 9097.32 12986.20 13797.92 28194.07 12099.05 8498.85 110
jason94.84 10494.39 10996.18 11495.52 24890.93 14896.09 24996.52 25289.28 22796.01 10197.32 12984.70 15498.77 18195.15 9598.91 9298.85 110
jason: jason.
lupinMVS94.99 9994.56 10096.29 10696.34 21291.21 13495.83 26396.27 26388.93 24196.22 9096.88 15586.20 13798.85 17295.27 9299.05 8498.82 113
test_djsdf93.07 16592.76 15494.00 23293.49 34288.70 22498.22 4297.57 14791.42 15990.08 24595.55 23482.85 19097.92 28194.07 12091.58 25295.40 281
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6398.35 5190.21 7599.53 9194.80 10799.63 1499.38 58
K. test v387.64 31886.75 32090.32 34293.02 35379.48 37196.61 21292.08 37690.66 18980.25 37394.09 30367.21 35896.65 35185.96 28480.83 36394.83 316
lessismore_v090.45 34091.96 36979.09 37587.19 39780.32 37294.39 28466.31 36597.55 31384.00 30876.84 37694.70 328
SixPastTwentyTwo89.15 30088.54 30090.98 33093.49 34280.28 36296.70 20094.70 33390.78 18084.15 35095.57 23271.78 32597.71 30084.63 30085.07 32894.94 307
OurMVSNet-221017-090.51 27490.19 25891.44 32293.41 34581.25 34896.98 17796.28 26291.68 15186.55 32996.30 19174.20 31297.98 26588.96 22787.40 30495.09 300
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8397.99 8490.99 6599.58 7795.61 8499.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS93.72 13993.35 13694.80 19297.07 15588.61 22594.79 30597.46 16391.97 14593.99 14697.86 9581.74 21498.88 16992.64 15092.67 23596.92 222
XVG-ACMP-BASELINE90.93 26090.21 25793.09 27694.31 31985.89 29595.33 28897.26 19091.06 17589.38 26695.44 23968.61 34898.60 19989.46 21291.05 26494.79 323
casdiffmvs_mvgpermissive95.81 7695.57 7196.51 8596.87 17091.49 12297.50 12697.56 15193.99 6995.13 12597.92 8987.89 10798.78 17895.97 6797.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 17292.56 16594.10 22696.16 22188.26 23797.65 10797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
LGP-MVS_train94.10 22696.16 22188.26 23797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
baseline95.58 8195.42 7896.08 11796.78 17890.41 16897.16 16497.45 16893.69 8095.65 11497.85 9687.29 12298.68 19195.66 7797.25 14899.13 77
test1197.88 109
door91.13 382
EPNet_dtu91.71 21791.28 21092.99 27993.76 33383.71 32896.69 20295.28 30893.15 10487.02 32195.95 20983.37 17697.38 32979.46 34796.84 15597.88 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.15 11893.51 12896.06 11998.27 8389.38 20295.18 29798.48 2185.60 32093.76 15297.11 14283.15 18099.61 6991.33 17698.72 9799.19 71
EPNet95.20 9294.56 10097.14 6592.80 35692.68 8197.85 8494.87 33196.64 392.46 17897.80 10186.23 13499.65 5893.72 13098.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS89.33 205
HQP-NCC95.86 23396.65 20693.55 8290.14 235
ACMP_Plane95.86 23396.65 20693.55 8290.14 235
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10399.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.13 157
HQP4-MVS90.14 23598.50 20795.78 260
HQP3-MVS97.39 17892.10 244
HQP2-MVS80.95 222
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7399.17 7499.56 29
114514_t93.95 12893.06 14296.63 7699.07 3791.61 11697.46 13497.96 10277.99 38293.00 16997.57 11986.14 13999.33 11589.22 22099.15 7698.94 97
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8298.30 6291.90 4599.85 1895.61 8499.68 499.54 33
DSMNet-mixed86.34 32986.12 32587.00 36489.88 38070.43 39094.93 30290.08 38877.97 38385.42 33992.78 33774.44 31093.96 38374.43 37195.14 18896.62 229
tpm289.96 28789.21 28992.23 30294.91 29181.25 34893.78 34194.42 34280.62 37291.56 20593.44 32876.44 29297.94 27785.60 28892.08 24697.49 201
NP-MVS95.99 23189.81 18595.87 212
EG-PatchMatch MVS87.02 32485.44 32891.76 31692.67 35885.00 31196.08 25096.45 25683.41 35279.52 37593.49 32557.10 38597.72 29979.34 34990.87 26992.56 365
tpm cat188.36 31087.21 31391.81 31295.13 27980.55 35792.58 36695.70 28674.97 38787.45 31091.96 35578.01 28098.17 23680.39 34088.74 29196.72 228
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
CostFormer91.18 25090.70 23592.62 29394.84 29581.76 34594.09 33194.43 34184.15 34192.72 17693.77 31479.43 25298.20 23290.70 18892.18 24297.90 178
CR-MVSNet90.82 26389.77 27493.95 23794.45 31387.19 26690.23 38295.68 29086.89 30092.40 17992.36 34880.91 22497.05 33981.09 33793.95 21797.60 197
JIA-IIPM88.26 31287.04 31691.91 30793.52 34081.42 34789.38 38794.38 34380.84 36990.93 22480.74 39479.22 25597.92 28182.76 32191.62 25196.38 236
Patchmtry88.64 30887.25 31192.78 28894.09 32386.64 27889.82 38595.68 29080.81 37087.63 30892.36 34880.91 22497.03 34078.86 35085.12 32794.67 329
PatchT88.87 30587.42 30993.22 27294.08 32485.10 31089.51 38694.64 33781.92 36192.36 18288.15 38380.05 24197.01 34272.43 37993.65 22297.54 200
tpmrst91.44 23391.32 20791.79 31395.15 27779.20 37393.42 35295.37 30388.55 25693.49 15893.67 31982.49 19998.27 22790.41 19189.34 28597.90 178
BH-w/o92.14 20691.75 19293.31 26896.99 16785.73 29795.67 27195.69 28888.73 25189.26 27294.82 26382.97 18798.07 25385.26 29396.32 16896.13 245
tpm90.25 28089.74 27791.76 31693.92 32779.73 36793.98 33293.54 36188.28 26391.99 19493.25 33277.51 28497.44 32487.30 26087.94 29798.12 166
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25698.18 5795.23 1995.87 10497.65 11191.45 5399.70 5195.87 6999.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned92.94 17292.62 16393.92 24297.22 14686.16 29396.40 22896.25 26590.06 20689.79 25396.17 19883.19 17898.35 22187.19 26297.27 14797.24 213
RPMNet88.98 30187.05 31594.77 19494.45 31387.19 26690.23 38298.03 9177.87 38492.40 17987.55 38780.17 23999.51 9668.84 38893.95 21797.60 197
MVSTER93.20 15692.81 15394.37 21296.56 19489.59 19197.06 16997.12 19891.24 16691.30 21495.96 20882.02 20898.05 25693.48 13390.55 27295.47 275
CPTT-MVS95.57 8295.19 8596.70 7399.27 2691.48 12398.33 2898.11 7087.79 27995.17 12498.03 8087.09 12599.61 6993.51 13299.42 4799.02 86
GBi-Net91.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
PVSNet_Blended_VisFu95.27 8894.91 9196.38 9898.20 9390.86 15097.27 15298.25 4590.21 20194.18 14297.27 13387.48 11899.73 4293.53 13197.77 13198.55 126
PVSNet_BlendedMVS94.06 12493.92 11494.47 20798.27 8389.46 19996.73 19698.36 2490.17 20294.36 13795.24 24688.02 10499.58 7793.44 13490.72 27094.36 338
UnsupCasMVSNet_eth85.99 33484.45 33890.62 33889.97 37982.40 34093.62 34897.37 18189.86 20978.59 37992.37 34565.25 37195.35 37282.27 32670.75 38894.10 344
UnsupCasMVSNet_bld82.13 35179.46 35690.14 34488.00 38982.47 33890.89 37996.62 24978.94 37975.61 38384.40 39256.63 38696.31 35477.30 35866.77 39591.63 375
PVSNet_Blended94.87 10394.56 10095.81 13398.27 8389.46 19995.47 28398.36 2488.84 24494.36 13796.09 20688.02 10499.58 7793.44 13498.18 12098.40 145
FMVSNet587.29 32085.79 32691.78 31494.80 29787.28 26195.49 28295.28 30884.09 34283.85 35691.82 35662.95 37694.17 37978.48 35185.34 32393.91 348
test191.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
new_pmnet82.89 34981.12 35488.18 35889.63 38180.18 36391.77 37192.57 37176.79 38675.56 38588.23 38261.22 38094.48 37671.43 38282.92 35589.87 386
FMVSNet391.78 21590.69 23695.03 17496.53 19992.27 9597.02 17296.93 21989.79 21489.35 26794.65 27177.01 28697.47 32186.12 27988.82 28895.35 285
dp88.90 30488.26 30490.81 33494.58 30976.62 38092.85 36394.93 32585.12 32990.07 24693.07 33375.81 29798.12 24380.53 33987.42 30397.71 189
FMVSNet291.31 24290.08 26094.99 17696.51 20192.21 9697.41 13596.95 21788.82 24688.62 28594.75 26673.87 31397.42 32685.20 29488.55 29395.35 285
FMVSNet189.88 29188.31 30294.59 19995.41 25491.18 13897.50 12696.93 21986.62 30487.41 31294.51 27765.94 36897.29 33383.04 31687.43 30295.31 288
N_pmnet78.73 35678.71 35778.79 37492.80 35646.50 41194.14 32943.71 41378.61 38080.83 36791.66 35974.94 30696.36 35367.24 38984.45 33993.50 352
cascas91.20 24790.08 26094.58 20394.97 28489.16 21593.65 34797.59 14579.90 37589.40 26592.92 33675.36 30298.36 22092.14 15694.75 19896.23 237
BH-RMVSNet92.72 18491.97 18594.97 17997.16 15087.99 24796.15 24795.60 29390.62 19291.87 19797.15 14178.41 27198.57 20383.16 31497.60 13498.36 149
UGNet94.04 12693.28 13896.31 10296.85 17191.19 13797.88 7997.68 13394.40 5893.00 16996.18 19673.39 31999.61 6991.72 16798.46 10998.13 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS94.71 10894.02 11296.79 7297.71 12492.05 10296.59 21597.35 18490.61 19394.64 13296.93 15086.41 13399.39 11191.20 18094.71 20198.94 97
XXY-MVS92.16 20491.23 21394.95 18194.75 30090.94 14797.47 13297.43 17589.14 23188.90 27796.43 18579.71 24798.24 22889.56 21087.68 29995.67 270
EC-MVSNet96.42 5796.47 5396.26 10897.01 16591.52 12198.89 597.75 12394.42 5696.64 7197.68 10789.32 8498.60 19997.45 2699.11 8198.67 123
sss94.51 10993.80 11696.64 7497.07 15591.97 10596.32 23598.06 8288.94 24094.50 13596.78 15884.60 15599.27 12291.90 16196.02 17098.68 122
Test_1112_low_res92.84 17991.84 19095.85 13197.04 16189.97 18195.53 28096.64 24485.38 32389.65 25895.18 24785.86 14199.10 14187.70 24793.58 22698.49 134
1112_ss93.37 15092.42 17396.21 11297.05 16090.99 14496.31 23696.72 23686.87 30189.83 25296.69 16586.51 13199.14 13788.12 23793.67 22198.50 132
ab-mvs-re8.06 37810.74 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41296.69 1650.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs93.57 14492.55 16696.64 7497.28 14591.96 10695.40 28597.45 16889.81 21393.22 16796.28 19279.62 25099.46 10390.74 18793.11 22798.50 132
TR-MVS91.48 23290.59 23994.16 22496.40 20987.33 25995.67 27195.34 30787.68 28491.46 20895.52 23676.77 28898.35 22182.85 31993.61 22496.79 226
MDTV_nov1_ep13_2view70.35 39193.10 35983.88 34593.55 15582.47 20086.25 27598.38 147
MDTV_nov1_ep1390.76 23095.22 27280.33 36093.03 36095.28 30888.14 26892.84 17593.83 31081.34 21898.08 24982.86 31794.34 204
MIMVSNet184.93 34183.05 34390.56 33989.56 38284.84 31595.40 28595.35 30483.91 34380.38 37192.21 35257.23 38493.34 38770.69 38682.75 35793.50 352
MIMVSNet88.50 30986.76 31993.72 25194.84 29587.77 25591.39 37294.05 35086.41 30887.99 30292.59 34163.27 37495.82 36277.44 35592.84 23097.57 199
IterMVS-LS92.29 19891.94 18693.34 26796.25 21586.97 27296.57 21897.05 20890.67 18789.50 26494.80 26486.59 12897.64 30589.91 20086.11 31495.40 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.14 12193.54 12495.93 12796.18 21991.46 12596.33 23497.04 21088.97 23993.56 15496.51 18087.55 11497.89 28589.80 20395.95 17298.44 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref90.30 276
IterMVS90.15 28589.67 27891.61 31895.48 25083.72 32794.33 32296.12 27189.99 20787.31 31694.15 30175.78 30096.27 35586.97 26786.89 30994.83 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.68 7895.12 8897.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12697.65 11189.97 7999.48 10192.08 16098.59 10398.44 142
MVS_111021_LR96.24 6496.19 6396.39 9798.23 9191.35 12996.24 24398.79 693.99 6995.80 10797.65 11189.92 8099.24 12495.87 6999.20 7298.58 125
DP-MVS92.76 18291.51 20396.52 8298.77 5390.99 14497.38 14296.08 27282.38 35889.29 27097.87 9383.77 16899.69 5281.37 33496.69 16198.89 107
ACMMP++91.02 265
HQP-MVS93.19 15792.74 15794.54 20595.86 23389.33 20596.65 20697.39 17893.55 8290.14 23595.87 21280.95 22298.50 20792.13 15792.10 24495.78 260
QAPM93.45 14892.27 17696.98 7196.77 18092.62 8298.39 2698.12 6784.50 33888.27 29597.77 10282.39 20299.81 2985.40 29198.81 9498.51 131
Vis-MVSNetpermissive95.23 9094.81 9296.51 8597.18 14991.58 11998.26 3698.12 6794.38 6094.90 12798.15 7282.28 20398.92 16591.45 17598.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet82.47 35081.21 35386.26 36695.38 25669.21 39388.96 38989.49 38966.28 39380.79 36874.08 39868.48 35197.39 32871.93 38195.47 18392.18 372
IS-MVSNet94.90 10194.52 10496.05 12097.67 12590.56 16298.44 2396.22 26693.21 9893.99 14697.74 10485.55 14598.45 21189.98 19897.86 12799.14 76
HyFIR lowres test93.66 14192.92 14795.87 12998.24 8789.88 18394.58 31098.49 1985.06 33093.78 15195.78 22182.86 18998.67 19291.77 16695.71 17999.07 85
EPMVS90.70 26889.81 27293.37 26694.73 30284.21 32093.67 34688.02 39489.50 22192.38 18193.49 32577.82 28297.78 29486.03 28292.68 23498.11 169
PAPM_NR95.01 9594.59 9896.26 10898.89 5190.68 16097.24 15497.73 12691.80 14792.93 17496.62 17689.13 8799.14 13789.21 22197.78 13098.97 93
TAMVS94.01 12793.46 13095.64 14496.16 22190.45 16696.71 19996.89 22689.27 22893.46 15996.92 15387.29 12297.94 27788.70 23295.74 17798.53 128
PAPR94.18 11593.42 13596.48 8897.64 12991.42 12795.55 27897.71 13288.99 23792.34 18595.82 21689.19 8599.11 14086.14 27897.38 14198.90 104
RPSCF90.75 26590.86 22490.42 34196.84 17276.29 38295.61 27696.34 26083.89 34491.38 20997.87 9376.45 29198.78 17887.16 26492.23 23996.20 239
Vis-MVSNet (Re-imp)94.15 11893.88 11594.95 18197.61 13287.92 24998.10 5195.80 28292.22 13393.02 16897.45 12484.53 15797.91 28488.24 23697.97 12599.02 86
test_040286.46 32784.79 33691.45 32195.02 28385.55 29996.29 23894.89 32780.90 36782.21 36393.97 30868.21 35397.29 33362.98 39288.68 29291.51 377
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24598.90 394.30 6295.86 10597.74 10492.33 3899.38 11396.04 6599.42 4799.28 65
CSCG96.05 6795.91 6696.46 9199.24 2890.47 16598.30 3098.57 1889.01 23693.97 14897.57 11992.62 3399.76 3894.66 11099.27 6399.15 75
PatchMatch-RL92.90 17492.02 18395.56 14998.19 9590.80 15395.27 29397.18 19387.96 27191.86 19895.68 22780.44 23398.99 16084.01 30797.54 13596.89 223
API-MVS94.84 10494.49 10595.90 12897.90 11592.00 10497.80 9197.48 15889.19 23094.81 12996.71 16188.84 9199.17 13288.91 22898.76 9696.53 230
Test By Simon88.73 94
TDRefinement86.53 32684.76 33791.85 30982.23 39984.25 31996.38 23095.35 30484.97 33284.09 35294.94 25565.76 36998.34 22484.60 30174.52 38192.97 358
USDC88.94 30287.83 30792.27 30094.66 30484.96 31293.86 33995.90 27787.34 29283.40 35795.56 23367.43 35698.19 23482.64 32489.67 28293.66 350
EPP-MVSNet95.22 9195.04 8995.76 13497.49 14189.56 19298.67 1097.00 21490.69 18594.24 14097.62 11689.79 8198.81 17693.39 13796.49 16598.92 100
PMMVS92.86 17692.34 17494.42 21194.92 28986.73 27794.53 31296.38 25984.78 33594.27 13995.12 25183.13 18198.40 21491.47 17496.49 16598.12 166
PAPM91.52 23090.30 24995.20 16595.30 26789.83 18493.38 35396.85 23086.26 31188.59 28695.80 21784.88 15298.15 23775.67 36695.93 17397.63 192
ACMMPcopyleft96.27 6395.93 6597.28 5799.24 2892.62 8298.25 3798.81 592.99 10994.56 13498.39 4888.96 8999.85 1894.57 11597.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 11393.53 12596.52 8298.38 7892.55 8596.59 21596.88 22790.13 20591.91 19597.24 13585.21 14899.09 14487.64 25297.83 12897.92 177
PatchmatchNetpermissive91.91 21191.35 20593.59 25795.38 25684.11 32293.15 35795.39 30189.54 21992.10 19293.68 31882.82 19198.13 23984.81 29795.32 18698.52 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4498.45 2289.86 20997.11 5498.01 8392.52 3599.69 5296.03 6699.53 2899.36 60
F-COLMAP93.58 14392.98 14595.37 16198.40 7588.98 21897.18 16297.29 18987.75 28290.49 22997.10 14385.21 14899.50 9986.70 26996.72 16097.63 192
ANet_high63.94 36859.58 37177.02 37761.24 41166.06 39885.66 39587.93 39578.53 38142.94 40371.04 40025.42 40680.71 40352.60 40030.83 40484.28 392
wuyk23d25.11 37424.57 37826.74 39073.98 40639.89 41457.88 4039.80 41412.27 40710.39 4086.97 4107.03 41236.44 40925.43 40817.39 4073.89 407
OMC-MVS95.09 9494.70 9696.25 11198.46 7091.28 13096.43 22297.57 14792.04 14294.77 13097.96 8787.01 12699.09 14491.31 17796.77 15798.36 149
MG-MVS95.61 8095.38 8096.31 10298.42 7390.53 16396.04 25197.48 15893.47 8995.67 11398.10 7389.17 8699.25 12391.27 17898.77 9599.13 77
AdaColmapbinary94.34 11293.68 11996.31 10298.59 6691.68 11496.59 21597.81 12189.87 20892.15 18997.06 14583.62 17299.54 8989.34 21598.07 12397.70 190
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF92.43 29595.34 26185.37 30595.92 27591.47 15687.75 30696.39 18871.00 33097.96 27282.36 32589.86 28093.97 347
DeepMVS_CXcopyleft74.68 38390.84 37564.34 40181.61 40665.34 39467.47 39288.01 38548.60 39380.13 40462.33 39373.68 38479.58 395
TinyColmap86.82 32585.35 33191.21 32694.91 29182.99 33493.94 33594.02 35283.58 34981.56 36594.68 26962.34 37898.13 23975.78 36487.35 30592.52 367
MAR-MVS94.22 11493.46 13096.51 8598.00 10892.19 9997.67 10497.47 16188.13 26993.00 16995.84 21484.86 15399.51 9687.99 23998.17 12197.83 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS87.94 31487.25 31189.98 34692.38 36680.05 36594.38 31995.25 31187.59 28684.34 34694.74 26764.31 37297.66 30484.83 29687.45 30192.23 370
MSDG91.42 23490.24 25394.96 18097.15 15288.91 21993.69 34596.32 26185.72 31986.93 32596.47 18380.24 23798.98 16180.57 33895.05 19296.98 218
LS3D93.57 14492.61 16496.47 8997.59 13591.61 11697.67 10497.72 12885.17 32890.29 23398.34 5484.60 15599.73 4283.85 31298.27 11698.06 172
CLD-MVS92.98 16992.53 16894.32 21696.12 22689.20 21295.28 29197.47 16192.66 12389.90 24995.62 23080.58 23098.40 21492.73 14992.40 23795.38 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS71.27 36169.85 36375.50 38174.64 40459.03 40491.30 37391.50 38058.80 39657.92 40088.28 38129.98 40385.53 40153.43 39982.84 35681.95 394
Gipumacopyleft67.86 36665.41 36875.18 38292.66 35973.45 38766.50 40194.52 33953.33 40057.80 40166.07 40130.81 40189.20 39548.15 40178.88 37362.90 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015