This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23798.15 5195.43 797.95 2498.56 1893.40 2099.36 10196.77 2599.48 3799.45 41
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 12098.04 7894.81 2996.59 6298.37 3691.24 5599.64 5695.16 7999.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13498.06 7193.92 5693.38 14498.66 1486.83 11399.73 3395.60 7099.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+91.43 495.40 6994.48 9098.16 1596.90 15695.34 1698.48 2197.87 10094.65 3988.53 26398.02 6883.69 15499.71 3793.18 12198.96 7899.44 43
3Dnovator91.36 595.19 7894.44 9297.44 4596.56 17793.36 6198.65 1198.36 1794.12 5189.25 24898.06 6382.20 19099.77 3093.41 11899.32 5499.18 65
PLCcopyleft91.00 694.11 10593.43 11696.13 10398.58 6891.15 13196.69 18497.39 16287.29 26391.37 18696.71 14488.39 9199.52 8287.33 23897.13 13797.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS90.10 792.30 17991.22 19695.56 13198.33 7989.60 17496.79 17397.65 12481.83 33291.52 18297.23 12087.94 9598.91 14871.31 35598.37 9998.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM89.79 892.96 15292.50 15394.35 19396.30 19388.71 20697.58 10397.36 16791.40 14190.53 20296.65 15179.77 23198.75 16191.24 16291.64 22195.59 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS89.66 993.87 11592.95 12996.63 6797.10 14392.49 8195.64 25296.64 22989.05 20893.00 15295.79 20285.77 12999.45 9289.16 20494.35 18597.96 155
ACMP89.59 1092.62 16692.14 16194.05 20696.40 18888.20 22397.36 12897.25 17691.52 13488.30 26796.64 15278.46 25498.72 16691.86 14791.48 22695.23 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS89.48 1191.56 20689.95 24596.36 9096.60 17292.52 8092.51 33697.26 17479.41 34688.90 25296.56 16384.04 15199.55 7477.01 33797.30 13197.01 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft89.19 1292.86 15891.68 17796.40 8595.34 23592.73 7598.27 3398.12 5684.86 30485.78 30697.75 8978.89 24999.74 3287.50 23598.65 8896.73 201
LTVRE_ROB88.41 1390.99 23589.92 24794.19 19996.18 19889.55 17796.31 21997.09 18787.88 24585.67 30795.91 19378.79 25098.57 18081.50 30689.98 25194.44 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 25989.18 26693.25 24796.48 18486.45 26496.99 15996.68 22688.83 21884.79 31696.22 17970.16 31498.53 18284.42 28388.04 26894.77 298
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26493.79 22497.95 10387.13 25096.92 16495.89 26482.83 32686.88 29997.18 12273.77 29599.29 10878.44 32893.62 19694.95 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH87.59 1690.53 25189.42 26193.87 22096.21 19587.92 23297.24 13896.94 20388.45 23083.91 32796.27 17771.92 30198.62 17584.43 28289.43 25695.05 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS87.33 1789.91 26488.28 27794.79 17595.26 24587.70 23895.12 27493.95 33289.35 20187.03 29492.49 31670.74 31099.19 11589.18 20381.37 33297.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet86.66 1892.24 18391.74 17593.73 22697.77 11483.69 30692.88 33196.72 22187.91 24493.00 15294.86 24278.51 25399.05 13786.53 24997.45 12598.47 128
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 34390.55 34995.60 27783.76 31883.00 33389.95 34171.09 30797.97 24582.75 29960.79 36995.31 262
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 32190.83 30890.06 34984.05 30195.73 24894.04 33073.89 35880.17 34691.53 33259.15 35197.64 28166.92 36289.05 25990.80 354
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33289.14 35573.12 36094.17 29896.80 21873.98 35773.65 35894.93 23866.36 33597.61 28583.95 28991.28 23192.48 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft53.92 2258.58 33855.40 34168.12 35451.00 38148.64 37778.86 36787.10 36846.77 37035.84 37674.28 3668.76 38086.34 36942.07 37273.91 35469.38 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 34048.81 34566.58 35565.34 37957.50 37672.49 36970.94 38040.15 37339.28 37563.51 3716.89 38273.48 37638.29 37342.38 37168.76 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_vis1_n_192094.17 10094.58 8492.91 25997.42 13182.02 31997.83 7397.85 10594.68 3698.10 2098.49 2570.15 31599.32 10497.91 298.82 8297.40 182
test_vis1_n92.37 17492.26 15992.72 26694.75 27282.64 31198.02 5596.80 21891.18 14997.77 2897.93 7458.02 35398.29 20397.63 698.21 10397.23 188
test_fmvs1_n92.73 16492.88 13292.29 27696.08 20781.05 32797.98 5797.08 18890.72 16196.79 5098.18 5663.07 34698.45 18897.62 798.42 9897.36 183
mvsany_test193.93 11393.98 9793.78 22594.94 26086.80 25594.62 28092.55 34588.77 22396.85 4898.49 2588.98 8198.08 22795.03 8295.62 16696.46 209
APD_test179.31 32677.70 32984.14 34089.11 35669.07 36592.36 33991.50 35369.07 36173.87 35792.63 31439.93 36694.32 35370.54 35980.25 33689.02 359
test_vis1_rt86.16 30485.06 30589.46 32493.47 31780.46 33396.41 20686.61 36985.22 29779.15 34988.64 34752.41 36097.06 31493.08 12490.57 24490.87 353
test_vis3_rt72.73 32870.55 33179.27 34580.02 36968.13 36793.92 30774.30 37976.90 35458.99 36873.58 36820.29 37795.37 34684.16 28472.80 35774.31 367
test_fmvs289.77 26989.93 24689.31 32693.68 30976.37 35397.64 9795.90 26289.84 18891.49 18396.26 17858.77 35297.10 31394.65 9491.13 23494.46 306
test_fmvs193.21 13893.53 10892.25 27896.55 17981.20 32697.40 12496.96 20190.68 16396.80 4998.04 6569.25 31998.40 19197.58 898.50 9297.16 189
test_fmvs383.21 31983.02 31683.78 34186.77 36368.34 36696.76 17694.91 31086.49 27684.14 32389.48 34536.04 36891.73 36391.86 14780.77 33591.26 352
mvsany_test383.59 31782.44 32087.03 33583.80 36473.82 35893.70 31390.92 35886.42 27882.51 33490.26 33846.76 36395.71 33990.82 16776.76 34891.57 347
testf169.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
APD_test269.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
test_f80.57 32479.62 32683.41 34283.38 36667.80 36893.57 32093.72 33380.80 34077.91 35287.63 35533.40 36992.08 36287.14 24479.04 34390.34 356
FE-MVS92.05 19091.05 20095.08 15396.83 16187.93 23193.91 30895.70 27086.30 28094.15 12694.97 23576.59 27299.21 11384.10 28596.86 13998.09 153
FA-MVS(test-final)93.52 12992.92 13095.31 14496.77 16588.54 21294.82 27696.21 25389.61 19294.20 12495.25 22783.24 16299.14 12290.01 17796.16 15498.25 144
iter_conf_final93.60 12493.11 12495.04 15497.13 14191.30 11897.92 6595.65 27692.98 9691.60 17996.64 15279.28 23998.13 21695.34 7691.49 22595.70 241
bld_raw_dy_0_6492.37 17491.69 17694.39 19194.28 29389.73 17197.71 8793.65 33592.78 10490.46 20496.67 15075.88 27997.97 24592.92 13190.89 24195.48 247
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 16098.77 594.70 3597.99 2398.66 1493.61 1999.91 197.67 599.50 3399.72 10
EGC-MVSNET68.77 33463.01 33986.07 33992.49 33482.24 31893.96 30490.96 3570.71 3792.62 38090.89 33453.66 35893.46 35757.25 36884.55 30982.51 362
test250691.60 20290.78 21094.04 20797.66 12083.81 30298.27 3375.53 37793.43 7695.23 10598.21 5367.21 33099.07 13493.01 12998.49 9399.25 61
test111193.19 14092.82 13594.30 19797.58 12884.56 29498.21 4389.02 36293.53 7194.58 11698.21 5372.69 29899.05 13793.06 12598.48 9599.28 58
ECVR-MVScopyleft93.19 14092.73 14194.57 18597.66 12085.41 28098.21 4388.23 36393.43 7694.70 11498.21 5372.57 29999.07 13493.05 12698.49 9399.25 61
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
tt080591.09 23090.07 24294.16 20195.61 21988.31 21797.56 10596.51 23889.56 19389.17 24995.64 21167.08 33498.38 19691.07 16488.44 26695.80 231
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1399.58 2199.59 19
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
PC_three_145290.77 15898.89 898.28 5196.24 198.35 19895.76 5999.58 2199.59 19
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
eth-test20.00 385
eth-test0.00 385
GeoE93.89 11493.28 12195.72 12396.96 15589.75 17098.24 3996.92 20889.47 19792.12 17197.21 12184.42 14498.39 19587.71 22596.50 14999.01 82
test_method66.11 33664.89 33869.79 35372.62 37635.23 38365.19 37192.83 34220.35 37465.20 36388.08 35343.14 36582.70 37173.12 35063.46 36691.45 351
Anonymous2024052186.42 30085.44 30089.34 32590.33 34779.79 34196.73 17895.92 26083.71 31983.25 33091.36 33363.92 34496.01 33278.39 32985.36 29492.22 342
h-mvs3394.15 10193.52 11096.04 10897.81 11290.22 15797.62 10097.58 13195.19 1396.74 5297.45 11083.67 15599.61 5795.85 5579.73 33898.29 143
hse-mvs293.45 13192.99 12794.81 17197.02 15188.59 20996.69 18496.47 24095.19 1396.74 5296.16 18383.67 15598.48 18795.85 5579.13 34297.35 185
CL-MVSNet_self_test86.31 30285.15 30489.80 32288.83 35781.74 32293.93 30696.22 25186.67 27385.03 31390.80 33578.09 26194.50 35074.92 34271.86 35893.15 329
KD-MVS_2432*160084.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
KD-MVS_self_test85.95 30784.95 30688.96 32789.55 35479.11 34795.13 27396.42 24285.91 28784.07 32590.48 33670.03 31694.82 34980.04 31772.94 35692.94 331
AUN-MVS91.76 19790.75 21294.81 17197.00 15388.57 21096.65 18896.49 23989.63 19192.15 16996.12 18478.66 25198.50 18490.83 16679.18 34197.36 183
ZD-MVS99.05 3994.59 2898.08 6389.22 20497.03 4598.10 5992.52 3399.65 4994.58 9699.31 55
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2391.40 5299.56 7296.05 4799.26 5999.43 45
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2390.71 6696.05 4799.26 5999.43 45
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 999.66 1099.56 25
IU-MVS99.42 795.39 1197.94 9390.40 17798.94 597.41 1699.66 1099.74 7
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5296.04 299.24 11195.36 7599.59 1799.56 25
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 999.65 1299.74 7
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11398.27 1898.65 1693.33 2199.72 3696.49 3399.52 2899.51 33
cl2291.21 22590.56 22093.14 25296.09 20686.80 25594.41 28996.58 23587.80 24888.58 26293.99 28680.85 21297.62 28489.87 18286.93 27894.99 276
miper_ehance_all_eth91.59 20391.13 19992.97 25795.55 22386.57 26394.47 28596.88 21287.77 25088.88 25494.01 28486.22 12197.54 29089.49 19186.93 27894.79 295
miper_enhance_ethall91.54 20891.01 20193.15 25195.35 23487.07 25193.97 30396.90 20986.79 27289.17 24993.43 30686.55 11697.64 28189.97 17986.93 27894.74 299
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10896.39 7298.18 5691.61 4799.88 495.59 7199.55 2499.57 22
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10597.51 13993.92 5697.43 3398.52 2292.75 2799.32 10497.32 1799.50 3399.51 33
cl____90.96 23890.32 22692.89 26095.37 23286.21 26994.46 28796.64 22987.82 24688.15 27394.18 27982.98 17197.54 29087.70 22685.59 28994.92 283
DIV-MVS_self_test90.97 23790.33 22592.88 26195.36 23386.19 27094.46 28796.63 23287.82 24688.18 27294.23 27682.99 17097.53 29287.72 22385.57 29094.93 281
eth_miper_zixun_eth91.02 23490.59 21892.34 27595.33 23884.35 29594.10 30096.90 20988.56 22888.84 25694.33 26884.08 15097.60 28688.77 21084.37 31295.06 274
9.1496.75 3198.93 4797.73 8298.23 4091.28 14597.88 2698.44 3193.00 2499.65 4995.76 5999.47 38
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
save fliter98.91 4994.28 3497.02 15598.02 8395.35 9
ET-MVSNet_ETH3D91.49 21090.11 23895.63 12796.40 18891.57 10995.34 26293.48 33790.60 17275.58 35595.49 21980.08 22596.79 32594.25 10089.76 25498.52 120
UniMVSNet_ETH3D91.34 22090.22 23594.68 17994.86 26687.86 23597.23 14297.46 14787.99 24189.90 22496.92 13766.35 33698.23 20690.30 17590.99 23897.96 155
EIA-MVS95.53 6895.47 6195.71 12497.06 14789.63 17297.82 7497.87 10093.57 6693.92 13295.04 23490.61 6798.95 14494.62 9598.68 8798.54 118
miper_refine_blended84.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
miper_lstm_enhance90.50 25390.06 24391.83 28795.33 23883.74 30393.86 30996.70 22587.56 25787.79 27993.81 29283.45 16096.92 32287.39 23684.62 30794.82 290
ETV-MVS96.02 5595.89 5596.40 8597.16 13892.44 8297.47 11797.77 11094.55 4096.48 6794.51 25791.23 5798.92 14695.65 6498.19 10497.82 165
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4498.03 6691.72 4398.71 16797.10 1899.17 6798.90 95
D2MVS91.30 22290.95 20292.35 27494.71 27585.52 27896.18 22998.21 4188.89 21586.60 30093.82 29179.92 22997.95 25289.29 19790.95 23993.56 324
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 999.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1399.72 299.77 1
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 999.67 699.75 5
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6197.45 3098.48 2891.43 5199.59 6196.22 3999.27 5799.54 29
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26897.62 12790.43 17695.55 9997.07 12891.72 4399.50 8689.62 18998.94 7998.82 104
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10596.70 5498.06 6391.35 5399.86 894.83 8799.28 5699.47 40
test_yl94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
thisisatest053093.03 14992.21 16095.49 13797.07 14489.11 19997.49 11692.19 34790.16 18094.09 12796.41 17076.43 27699.05 13790.38 17395.68 16598.31 142
Anonymous2024052991.98 19290.73 21395.73 12298.14 9689.40 18597.99 5697.72 11679.63 34593.54 13997.41 11369.94 31799.56 7291.04 16591.11 23598.22 145
Anonymous20240521192.07 18990.83 20995.76 11798.19 9288.75 20597.58 10395.00 30586.00 28693.64 13697.45 11066.24 33899.53 7890.68 17192.71 20499.01 82
DCV-MVSNet94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
tttt051792.96 15292.33 15794.87 16797.11 14287.16 24997.97 6292.09 34890.63 16893.88 13397.01 13276.50 27399.06 13690.29 17695.45 16898.38 138
our_test_388.78 28187.98 28091.20 30492.45 33682.53 31393.61 31995.69 27285.77 28984.88 31493.71 29479.99 22796.78 32679.47 32286.24 28394.28 314
thisisatest051592.29 18091.30 19195.25 14696.60 17288.90 20394.36 29192.32 34687.92 24393.43 14394.57 25677.28 26999.00 14189.42 19395.86 16097.86 161
ppachtmachnet_test88.35 28687.29 28591.53 29692.45 33683.57 30793.75 31295.97 25984.28 31085.32 31294.18 27979.00 24896.93 32175.71 34084.99 30394.10 317
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17398.85 998.94 193.33 2199.83 2496.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.45 130
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14498.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 20
thres100view90092.43 17091.58 18094.98 16097.92 10689.37 18797.71 8794.66 31792.20 11793.31 14694.90 24078.06 26299.08 13181.40 30894.08 18896.48 207
tfpnnormal89.70 27088.40 27593.60 23395.15 24990.10 15897.56 10598.16 5087.28 26486.16 30494.63 25477.57 26798.05 23474.48 34384.59 30892.65 336
tfpn200view992.38 17391.52 18394.95 16397.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.48 207
c3_l91.38 21590.89 20392.88 26195.58 22186.30 26694.68 27996.84 21688.17 23788.83 25794.23 27685.65 13097.47 29789.36 19484.63 30694.89 285
CHOSEN 280x42093.12 14492.72 14294.34 19496.71 16987.27 24390.29 35097.72 11686.61 27591.34 18795.29 22484.29 14898.41 19093.25 12098.94 7997.35 185
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15597.96 9195.42 894.86 11197.81 8587.38 10799.82 2696.88 2399.20 6599.29 56
Fast-Effi-MVS+-dtu92.29 18091.99 16693.21 25095.27 24285.52 27897.03 15396.63 23292.09 12289.11 25195.14 23180.33 22198.08 22787.54 23494.74 18296.03 222
Effi-MVS+-dtu93.08 14693.21 12392.68 26996.02 20883.25 30997.14 15096.72 22193.85 5991.20 19793.44 30483.08 16798.30 20291.69 15395.73 16396.50 206
CANet_DTU94.37 9593.65 10496.55 7196.46 18592.13 9296.21 22796.67 22894.38 4693.53 14097.03 13179.34 23799.71 3790.76 16898.45 9797.82 165
MVS_030488.79 28087.57 28292.46 27194.65 27786.15 27296.40 21097.17 17986.44 27788.02 27691.71 33056.68 35697.03 31684.47 28192.58 20794.19 316
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16298.06 7190.67 16495.55 9998.78 1291.07 5999.86 896.58 3099.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8593.90 1599.65 4996.62 2899.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs182.76 17798.45 130
sam_mvs81.94 196
IterMVS-SCA-FT90.31 25589.81 25191.82 28895.52 22484.20 29894.30 29496.15 25590.61 17087.39 28794.27 27375.80 28196.44 32887.34 23786.88 28294.82 290
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6298.57 1398.35 3793.69 1899.40 9797.06 1999.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
OPM-MVS93.28 13692.76 13794.82 16994.63 27990.77 14496.65 18897.18 17793.72 6291.68 17897.26 11879.33 23898.63 17392.13 14092.28 21095.07 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10198.19 4492.82 10297.93 2598.74 1391.60 4899.86 896.26 3699.52 2899.67 11
ambc86.56 33783.60 36570.00 36385.69 36394.97 30780.60 34288.45 34837.42 36796.84 32482.69 30075.44 35192.86 332
MTGPAbinary98.08 63
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4797.97 7291.24 5598.75 16196.92 2299.33 5398.94 90
Effi-MVS+94.93 8594.45 9196.36 9096.61 17191.47 11396.41 20697.41 16191.02 15594.50 11895.92 19287.53 10398.78 15693.89 10896.81 14198.84 103
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13490.50 15195.44 25997.44 15693.70 6496.46 6996.18 18088.59 9099.53 7894.79 9297.81 11496.17 214
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
new-patchmatchnet83.18 32081.87 32287.11 33486.88 36275.99 35593.70 31395.18 29885.02 30277.30 35388.40 34965.99 33993.88 35674.19 34770.18 36091.47 350
pmmvs687.81 29186.19 29592.69 26891.32 34286.30 26697.34 12996.41 24380.59 34284.05 32694.37 26667.37 32997.67 27884.75 27779.51 34094.09 319
pmmvs589.86 26788.87 27092.82 26392.86 32786.23 26896.26 22295.39 28584.24 31187.12 29194.51 25774.27 29097.36 30687.61 23387.57 27294.86 286
test_post192.81 33316.58 37880.53 21697.68 27786.20 255
test_post17.58 37781.76 19898.08 227
Fast-Effi-MVS+93.46 13092.75 13995.59 13096.77 16590.03 15996.81 17297.13 18288.19 23691.30 19094.27 27386.21 12298.63 17387.66 23096.46 15298.12 149
patchmatchnet-post90.45 33782.65 18198.10 223
Anonymous2023121190.63 24989.42 26194.27 19898.24 8589.19 19798.05 5397.89 9679.95 34388.25 27094.96 23672.56 30098.13 21689.70 18685.14 29895.49 246
pmmvs-eth3d86.22 30384.45 31091.53 29688.34 35987.25 24494.47 28595.01 30483.47 32279.51 34889.61 34469.75 31895.71 33983.13 29476.73 34991.64 345
GG-mvs-BLEND93.62 23293.69 30889.20 19592.39 33883.33 37387.98 27889.84 34371.00 30896.87 32382.08 30495.40 16994.80 293
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
Anonymous2023120687.09 29586.14 29689.93 32191.22 34380.35 33496.11 23195.35 28883.57 32184.16 32193.02 30973.54 29695.61 34172.16 35286.14 28593.84 322
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13898.08 6395.07 2096.11 7998.59 1790.88 6499.90 296.18 4599.50 3399.58 21
MTMP97.86 6882.03 374
gm-plane-assit93.22 32278.89 34984.82 30593.52 30198.64 17287.72 223
test9_res94.81 8999.38 4999.45 41
MVP-Stereo90.74 24590.08 23992.71 26793.19 32388.20 22395.86 24396.27 24886.07 28584.86 31594.76 24777.84 26597.75 27383.88 29098.01 10992.17 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.70 5694.19 3896.41 20698.02 8388.17 23796.03 8197.56 10792.74 2899.59 61
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20698.02 8388.58 22696.03 8197.56 10792.73 2999.59 6195.04 8199.37 5299.39 49
gg-mvs-nofinetune87.82 29085.61 29994.44 18894.46 28489.27 19491.21 34584.61 37280.88 33789.89 22674.98 36571.50 30497.53 29285.75 26697.21 13496.51 205
SCA91.84 19591.18 19893.83 22195.59 22084.95 29094.72 27895.58 27990.82 15692.25 16793.69 29575.80 28198.10 22386.20 25595.98 15698.45 130
Patchmatch-test89.42 27287.99 27993.70 22995.27 24285.11 28688.98 35794.37 32581.11 33587.10 29393.69 29582.28 18897.50 29574.37 34594.76 18098.48 127
test_898.67 5894.06 4596.37 21498.01 8688.58 22695.98 8597.55 10992.73 2999.58 64
MS-PatchMatch90.27 25689.77 25391.78 29194.33 28984.72 29395.55 25496.73 22086.17 28486.36 30295.28 22671.28 30697.80 26884.09 28698.14 10792.81 333
Patchmatch-RL test87.38 29386.24 29490.81 30988.74 35878.40 35088.12 36193.17 33987.11 26782.17 33689.29 34681.95 19595.60 34288.64 21277.02 34698.41 135
cdsmvs_eth3d_5k23.24 34430.99 3460.00 3620.00 3850.00 3860.00 37397.63 1260.00 3800.00 38196.88 13984.38 1450.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.39 3489.85 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38088.65 870.00 3810.00 3790.00 3790.00 377
agg_prior293.94 10699.38 4999.50 36
agg_prior98.67 5893.79 5098.00 8795.68 9599.57 71
tmp_tt51.94 34253.82 34246.29 35833.73 38245.30 38178.32 36867.24 38118.02 37550.93 37187.05 35852.99 35953.11 37770.76 35725.29 37540.46 373
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12894.52 4196.27 7596.12 18487.65 10099.18 11796.20 4494.82 17998.91 94
anonymousdsp92.16 18691.55 18193.97 21292.58 33389.55 17797.51 11097.42 16089.42 19988.40 26494.84 24380.66 21397.88 26291.87 14691.28 23194.48 305
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17994.39 4596.47 6896.40 17185.89 12699.20 11496.21 4395.11 17598.95 89
nrg03094.05 10893.31 12096.27 9695.22 24694.59 2898.34 2797.46 14792.93 9991.21 19696.64 15287.23 11098.22 20794.99 8485.80 28895.98 223
v14419291.06 23290.28 22993.39 24293.66 31087.23 24696.83 17197.07 19087.43 25989.69 23194.28 27281.48 20298.00 24187.18 24284.92 30494.93 281
FIs94.09 10693.70 10295.27 14595.70 21792.03 9598.10 4998.68 893.36 8090.39 20696.70 14687.63 10197.94 25392.25 13690.50 24795.84 227
v192192090.85 24190.03 24493.29 24693.55 31186.96 25496.74 17797.04 19587.36 26189.52 23894.34 26780.23 22397.97 24586.27 25385.21 29794.94 279
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9398.13 5494.81 2996.61 6098.35 3788.87 8399.51 8390.36 17497.35 12899.11 74
v119291.07 23190.23 23393.58 23593.70 30787.82 23696.73 17897.07 19087.77 25089.58 23494.32 27080.90 21197.97 24586.52 25085.48 29194.95 277
FC-MVSNet-test93.94 11293.57 10595.04 15495.48 22691.45 11598.12 4898.71 693.37 7890.23 20996.70 14687.66 9997.85 26391.49 15690.39 24895.83 228
v114491.37 21790.60 21793.68 23193.89 30288.23 22296.84 17097.03 19788.37 23289.69 23194.39 26482.04 19297.98 24287.80 22285.37 29394.84 287
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8297.18 3898.29 4992.08 3999.83 2495.63 6699.59 1799.54 29
v14890.99 23590.38 22492.81 26493.83 30485.80 27496.78 17596.68 22689.45 19888.75 25993.93 28882.96 17397.82 26787.83 22183.25 32394.80 293
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
AllTest90.23 25888.98 26893.98 21097.94 10486.64 25996.51 20195.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
TestCases93.98 21097.94 10486.64 25995.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
v7n90.76 24389.86 24893.45 24193.54 31287.60 24097.70 8997.37 16588.85 21687.65 28294.08 28381.08 20698.10 22384.68 27883.79 32094.66 302
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8597.14 4098.34 4091.59 4999.87 795.46 7399.59 1799.64 13
iter_conf0593.18 14392.63 14494.83 16896.64 17090.69 14697.60 10195.53 28292.52 10991.58 18096.64 15276.35 27798.13 21695.43 7491.42 22895.68 243
RRT_MVS93.10 14592.83 13493.93 21894.76 27088.04 22898.47 2296.55 23693.44 7590.01 22297.04 13080.64 21497.93 25694.33 9990.21 25095.83 228
PS-MVSNAJss93.74 12193.51 11194.44 18893.91 30189.28 19397.75 7997.56 13592.50 11089.94 22396.54 16488.65 8798.18 21293.83 11190.90 24095.86 224
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13290.66 14895.31 26597.48 14293.85 5996.51 6595.70 20888.65 8799.65 4994.80 9098.27 10196.17 214
jajsoiax92.42 17191.89 17094.03 20893.33 32188.50 21497.73 8297.53 13792.00 12688.85 25596.50 16675.62 28498.11 22293.88 10991.56 22495.48 247
mvs_tets92.31 17891.76 17293.94 21693.41 31888.29 21897.63 9997.53 13792.04 12488.76 25896.45 16874.62 28898.09 22693.91 10791.48 22695.45 252
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16797.72 11694.67 3796.16 7898.46 2990.43 6999.58 6496.23 3897.96 11198.90 95
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16697.73 11494.74 3496.49 6698.49 2590.88 6499.58 6496.44 3498.32 10099.13 70
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10897.97 9095.59 596.61 6097.89 7692.57 3299.84 2195.95 5299.51 3199.40 48
test_prior493.66 5396.42 205
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6298.29 4991.70 4599.80 2895.66 6199.40 4699.62 15
v124090.70 24789.85 24993.23 24893.51 31486.80 25596.61 19497.02 19887.16 26689.58 23494.31 27179.55 23597.98 24285.52 26885.44 29294.90 284
pm-mvs190.72 24689.65 25993.96 21394.29 29289.63 17297.79 7796.82 21789.07 20786.12 30595.48 22078.61 25297.78 27086.97 24681.67 33094.46 306
test_prior296.35 21592.80 10396.03 8197.59 10492.01 4095.01 8399.38 49
X-MVStestdata91.71 19889.67 25797.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6232.69 37491.70 4599.80 2895.66 6199.40 4699.62 15
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
旧先验295.94 24081.66 33397.34 3698.82 15392.26 134
新几何295.79 246
新几何197.32 4898.60 6593.59 5497.75 11181.58 33495.75 9297.85 8290.04 7399.67 4786.50 25199.13 7198.69 112
旧先验198.38 7793.38 5997.75 11198.09 6192.30 3899.01 7699.16 66
无先验95.79 24697.87 10083.87 31799.65 4987.68 22998.89 98
原ACMM295.67 249
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 26095.22 10697.68 9390.25 7099.54 7687.95 21999.12 7298.49 125
test22298.24 8592.21 8995.33 26397.60 12879.22 34795.25 10497.84 8488.80 8599.15 6998.72 109
testdata299.67 4785.96 263
segment_acmp92.89 25
testdata95.46 14198.18 9488.90 20397.66 12282.73 32797.03 4598.07 6290.06 7298.85 15189.67 18798.98 7798.64 115
testdata195.26 27093.10 89
v891.29 22390.53 22193.57 23694.15 29488.12 22797.34 12997.06 19288.99 21088.32 26694.26 27583.08 16798.01 24087.62 23283.92 31894.57 304
131492.81 16292.03 16495.14 15095.33 23889.52 18096.04 23497.44 15687.72 25386.25 30395.33 22383.84 15298.79 15589.26 19897.05 13897.11 190
LFMVS93.60 12492.63 14496.52 7298.13 9791.27 12097.94 6393.39 33890.57 17396.29 7498.31 4669.00 32099.16 11994.18 10195.87 15999.12 73
VDD-MVS93.82 11893.08 12596.02 10997.88 10989.96 16697.72 8595.85 26592.43 11195.86 8898.44 3168.42 32499.39 9896.31 3594.85 17798.71 111
VDDNet93.05 14892.07 16296.02 10996.84 15990.39 15698.08 5195.85 26586.22 28395.79 9198.46 2967.59 32799.19 11594.92 8594.85 17798.47 128
v1091.04 23390.23 23393.49 23894.12 29588.16 22697.32 13297.08 18888.26 23588.29 26894.22 27882.17 19197.97 24586.45 25284.12 31494.33 311
VPNet92.23 18491.31 19094.99 15895.56 22290.96 13597.22 14397.86 10492.96 9890.96 19896.62 16175.06 28698.20 20991.90 14483.65 32195.80 231
MVS91.71 19890.44 22295.51 13595.20 24891.59 10796.04 23497.45 15273.44 35987.36 28895.60 21385.42 13299.10 12685.97 26297.46 12195.83 228
v2v48291.59 20390.85 20793.80 22393.87 30388.17 22596.94 16396.88 21289.54 19489.53 23794.90 24081.70 20098.02 23989.25 19985.04 30295.20 270
V4291.58 20590.87 20493.73 22694.05 29888.50 21497.32 13296.97 20088.80 22289.71 22994.33 26882.54 18298.05 23489.01 20585.07 30094.64 303
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30396.94 2199.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS91.38 21590.31 22794.59 18094.65 27787.62 23994.34 29296.19 25490.73 16090.35 20793.83 28971.84 30297.96 25087.22 24093.61 19798.21 146
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 9098.49 1394.66 3897.24 3798.41 3492.31 3798.94 14596.61 2999.46 3998.96 87
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8897.44 3198.55 2090.93 6299.55 7496.06 4699.25 6199.51 33
ADS-MVSNet289.45 27188.59 27392.03 28295.86 21082.26 31790.93 34694.32 32783.23 32491.28 19491.81 32879.01 24695.99 33379.52 32091.39 22997.84 162
EI-MVSNet93.03 14992.88 13293.48 23995.77 21586.98 25296.44 20297.12 18390.66 16691.30 19097.64 10086.56 11598.05 23489.91 18090.55 24595.41 253
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
CVMVSNet91.23 22491.75 17389.67 32395.77 21574.69 35696.44 20294.88 31285.81 28892.18 16897.64 10079.07 24195.58 34388.06 21795.86 16098.74 108
pmmvs490.93 23989.85 24994.17 20093.34 32090.79 14394.60 28196.02 25884.62 30787.45 28495.15 23081.88 19797.45 29987.70 22687.87 27094.27 315
EU-MVSNet88.72 28288.90 26988.20 33093.15 32474.21 35796.63 19394.22 32885.18 29887.32 28995.97 18976.16 27894.98 34885.27 27186.17 28495.41 253
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11198.15 5193.87 5897.52 2997.61 10385.29 13399.53 7895.81 5895.27 17199.16 66
test-LLR91.42 21391.19 19792.12 28094.59 28080.66 32994.29 29592.98 34091.11 15290.76 20092.37 31879.02 24498.07 23188.81 20896.74 14397.63 171
TESTMET0.1,190.06 26289.42 26191.97 28394.41 28780.62 33194.29 29591.97 35087.28 26490.44 20592.47 31768.79 32197.67 27888.50 21496.60 14897.61 175
test-mter90.19 26089.54 26092.12 28094.59 28080.66 32994.29 29592.98 34087.68 25490.76 20092.37 31867.67 32698.07 23188.81 20896.74 14397.63 171
VPA-MVSNet93.24 13792.48 15495.51 13595.70 21792.39 8397.86 6898.66 1092.30 11492.09 17395.37 22280.49 21798.40 19193.95 10585.86 28795.75 238
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8297.15 3998.33 4391.35 5399.86 895.63 6699.59 1799.62 15
testgi87.97 28887.21 28890.24 31892.86 32780.76 32896.67 18794.97 30791.74 13085.52 30895.83 19762.66 34894.47 35276.25 33888.36 26795.48 247
test20.0386.14 30585.40 30288.35 32890.12 34880.06 33995.90 24295.20 29788.59 22581.29 33893.62 30071.43 30592.65 36171.26 35681.17 33392.34 340
thres600view792.49 16991.60 17995.18 14897.91 10789.47 18197.65 9394.66 31792.18 12193.33 14594.91 23978.06 26299.10 12681.61 30594.06 19196.98 192
ADS-MVSNet89.89 26588.68 27293.53 23795.86 21084.89 29190.93 34695.07 30383.23 32491.28 19491.81 32879.01 24697.85 26379.52 32091.39 22997.84 162
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7895.54 10198.34 4090.59 6899.88 494.83 8799.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs13.36 34516.33 3484.48 3615.04 3832.26 38593.18 3243.28 3842.70 3778.24 37821.66 3752.29 3842.19 3797.58 3772.96 3779.00 375
thres40092.42 17191.52 18395.12 15297.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.98 192
test12313.04 34615.66 3495.18 3604.51 3843.45 38492.50 3371.81 3852.50 3787.58 37920.15 3763.67 3832.18 3807.13 3781.07 3789.90 374
thres20092.23 18491.39 18694.75 17897.61 12489.03 20096.60 19695.09 30292.08 12393.28 14794.00 28578.39 25699.04 14081.26 31294.18 18796.19 213
test0.0.03 189.37 27388.70 27191.41 30092.47 33585.63 27695.22 27192.70 34391.11 15286.91 29893.65 29979.02 24493.19 36078.00 33089.18 25895.41 253
pmmvs379.97 32577.50 33087.39 33382.80 36779.38 34592.70 33490.75 35970.69 36078.66 35087.47 35751.34 36193.40 35873.39 34969.65 36189.38 358
EMVS52.08 34151.31 34454.39 35772.62 37645.39 38083.84 36575.51 37841.13 37240.77 37459.65 37330.08 37173.60 37528.31 37529.90 37444.18 372
E-PMN53.28 33952.56 34355.43 35674.43 37447.13 37883.63 36676.30 37642.23 37142.59 37362.22 37228.57 37374.40 37431.53 37431.51 37244.78 371
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9398.98 192.22 11597.14 4098.44 3191.17 5899.85 1694.35 9899.46 3999.57 22
LCM-MVSNet-Re92.50 16792.52 15292.44 27296.82 16381.89 32096.92 16493.71 33492.41 11284.30 31994.60 25585.08 13697.03 31691.51 15597.36 12798.40 136
LCM-MVSNet72.55 32969.39 33382.03 34370.81 37865.42 37190.12 35394.36 32655.02 36865.88 36281.72 36224.16 37689.96 36474.32 34668.10 36490.71 355
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15198.07 6893.54 7096.08 8097.69 9293.86 1699.71 3796.50 3299.39 4899.55 28
mvs_anonymous93.82 11893.74 10194.06 20596.44 18685.41 28095.81 24597.05 19389.85 18790.09 21996.36 17387.44 10697.75 27393.97 10496.69 14699.02 79
MVS_Test94.89 8794.62 8295.68 12596.83 16189.55 17796.70 18297.17 17991.17 15095.60 9896.11 18787.87 9798.76 16093.01 12997.17 13698.72 109
MDA-MVSNet-bldmvs85.00 31282.95 31791.17 30593.13 32583.33 30894.56 28395.00 30584.57 30865.13 36492.65 31270.45 31195.85 33673.57 34877.49 34594.33 311
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21597.88 9886.98 26896.65 5897.89 7691.99 4199.47 8992.26 13499.46 3999.39 49
test1297.65 3998.46 7094.26 3597.66 12295.52 10290.89 6399.46 9099.25 6199.22 63
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16890.45 15397.29 13597.44 15694.00 5395.46 10397.98 7187.52 10498.73 16395.64 6597.33 12999.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive95.25 7495.13 7295.63 12796.43 18789.34 18895.99 23897.35 16892.83 10196.31 7397.37 11486.44 11898.67 17096.26 3697.19 13598.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline291.63 20190.86 20593.94 21694.33 28986.32 26595.92 24191.64 35289.37 20086.94 29694.69 25081.62 20198.69 16888.64 21294.57 18496.81 199
baseline192.82 16191.90 16995.55 13397.20 13690.77 14497.19 14594.58 32092.20 11792.36 16496.34 17484.16 14998.21 20889.20 20283.90 31997.68 170
YYNet185.87 30884.23 31290.78 31292.38 33882.46 31593.17 32595.14 30082.12 33067.69 35992.36 32178.16 26095.50 34577.31 33379.73 33894.39 309
PMMVS270.19 33166.92 33480.01 34476.35 37265.67 37086.22 36287.58 36664.83 36462.38 36580.29 36426.78 37488.49 36863.79 36354.07 37085.88 360
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33882.57 31293.17 32595.15 29982.15 32967.65 36092.33 32478.20 25795.51 34477.33 33279.74 33794.31 313
tpmvs89.83 26889.15 26791.89 28594.92 26180.30 33693.11 32895.46 28486.28 28188.08 27492.65 31280.44 21898.52 18381.47 30789.92 25296.84 198
PM-MVS83.48 31881.86 32388.31 32987.83 36177.59 35193.43 32191.75 35186.91 26980.63 34189.91 34244.42 36495.84 33785.17 27476.73 34991.50 349
HQP_MVS93.78 12093.43 11694.82 16996.21 19589.99 16297.74 8097.51 13994.85 2491.34 18796.64 15281.32 20498.60 17693.02 12792.23 21195.86 224
plane_prior796.21 19589.98 164
plane_prior696.10 20590.00 16081.32 204
plane_prior597.51 13998.60 17693.02 12792.23 21195.86 224
plane_prior496.64 152
plane_prior390.00 16094.46 4291.34 187
plane_prior297.74 8094.85 24
plane_prior196.14 203
plane_prior89.99 16297.24 13894.06 5292.16 215
PS-CasMVS91.55 20790.84 20893.69 23094.96 25788.28 21997.84 7298.24 3791.46 13788.04 27595.80 19979.67 23397.48 29687.02 24584.54 31095.31 262
UniMVSNet_NR-MVSNet93.37 13392.67 14395.47 14095.34 23592.83 7297.17 14798.58 1192.98 9690.13 21495.80 19988.37 9297.85 26391.71 15183.93 31695.73 240
PEN-MVS91.20 22690.44 22293.48 23994.49 28387.91 23497.76 7898.18 4691.29 14287.78 28095.74 20580.35 22097.33 30785.46 26982.96 32695.19 271
TransMVSNet (Re)88.94 27687.56 28393.08 25494.35 28888.45 21697.73 8295.23 29687.47 25884.26 32095.29 22479.86 23097.33 30779.44 32474.44 35393.45 327
DTE-MVSNet90.56 25089.75 25593.01 25593.95 29987.25 24497.64 9797.65 12490.74 15987.12 29195.68 20979.97 22897.00 32083.33 29281.66 33194.78 297
DU-MVS92.90 15692.04 16395.49 13794.95 25892.83 7297.16 14898.24 3793.02 9090.13 21495.71 20683.47 15897.85 26391.71 15183.93 31695.78 233
UniMVSNet (Re)93.31 13592.55 14995.61 12995.39 22993.34 6297.39 12598.71 693.14 8790.10 21894.83 24487.71 9898.03 23891.67 15483.99 31595.46 251
CP-MVSNet91.89 19491.24 19493.82 22295.05 25488.57 21097.82 7498.19 4491.70 13188.21 27195.76 20481.96 19497.52 29487.86 22084.65 30595.37 259
WR-MVS_H92.00 19191.35 18793.95 21495.09 25389.47 18198.04 5498.68 891.46 13788.34 26594.68 25185.86 12797.56 28885.77 26584.24 31394.82 290
WR-MVS92.34 17691.53 18294.77 17695.13 25190.83 14196.40 21097.98 8991.88 12889.29 24595.54 21782.50 18397.80 26889.79 18485.27 29695.69 242
NR-MVSNet92.34 17691.27 19395.53 13494.95 25893.05 6897.39 12598.07 6892.65 10784.46 31795.71 20685.00 13797.77 27289.71 18583.52 32295.78 233
Baseline_NR-MVSNet91.20 22690.62 21692.95 25893.83 30488.03 22997.01 15895.12 30188.42 23189.70 23095.13 23283.47 15897.44 30089.66 18883.24 32493.37 328
TranMVSNet+NR-MVSNet92.50 16791.63 17895.14 15094.76 27092.07 9397.53 10998.11 5992.90 10089.56 23696.12 18483.16 16497.60 28689.30 19683.20 32595.75 238
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17396.72 22194.17 5097.44 3197.66 9692.76 2699.33 10296.86 2497.76 11799.08 76
n20.00 386
nn0.00 386
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8195.95 8698.33 4391.04 6099.88 495.20 7899.57 2399.60 18
door-mid91.06 356
XVG-OURS-SEG-HR93.86 11693.55 10694.81 17197.06 14788.53 21395.28 26697.45 15291.68 13294.08 12897.68 9382.41 18698.90 14993.84 11092.47 20896.98 192
mvsmamba93.83 11793.46 11394.93 16694.88 26590.85 14098.55 1495.49 28394.24 4991.29 19396.97 13383.04 16998.14 21595.56 7291.17 23395.78 233
MVSFormer95.37 7095.16 7195.99 11196.34 19191.21 12398.22 4197.57 13291.42 13996.22 7697.32 11586.20 12397.92 25794.07 10299.05 7498.85 101
jason94.84 8994.39 9396.18 10295.52 22490.93 13796.09 23296.52 23789.28 20296.01 8497.32 11584.70 14098.77 15995.15 8098.91 8198.85 101
jason: jason.
lupinMVS94.99 8494.56 8596.29 9596.34 19191.21 12395.83 24496.27 24888.93 21496.22 7696.88 13986.20 12398.85 15195.27 7799.05 7498.82 104
test_djsdf93.07 14792.76 13794.00 20993.49 31588.70 20798.22 4197.57 13291.42 13990.08 22095.55 21682.85 17597.92 25794.07 10291.58 22395.40 256
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17396.77 5198.35 3790.21 7199.53 7894.80 9099.63 1499.38 51
K. test v387.64 29286.75 29390.32 31793.02 32679.48 34496.61 19492.08 34990.66 16680.25 34594.09 28267.21 33096.65 32785.96 26380.83 33494.83 288
lessismore_v090.45 31591.96 34179.09 34887.19 36780.32 34494.39 26466.31 33797.55 28984.00 28876.84 34794.70 300
SixPastTwentyTwo89.15 27488.54 27490.98 30693.49 31580.28 33796.70 18294.70 31690.78 15784.15 32295.57 21471.78 30397.71 27684.63 27985.07 30094.94 279
OurMVSNet-221017-090.51 25290.19 23791.44 29993.41 31881.25 32496.98 16096.28 24791.68 13286.55 30196.30 17574.20 29197.98 24288.96 20687.40 27695.09 272
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 15096.40 7197.99 7090.99 6199.58 6495.61 6899.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS93.72 12293.35 11994.80 17497.07 14488.61 20894.79 27797.46 14791.97 12793.99 12997.86 8181.74 19998.88 15092.64 13392.67 20696.92 196
XVG-ACMP-BASELINE90.93 23990.21 23693.09 25394.31 29185.89 27395.33 26397.26 17491.06 15489.38 24195.44 22168.61 32298.60 17689.46 19291.05 23694.79 295
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15791.49 11197.50 11197.56 13593.99 5495.13 10897.92 7587.89 9698.78 15695.97 5197.33 12999.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.94 15492.56 14894.10 20396.16 20088.26 22097.65 9397.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
LGP-MVS_train94.10 20396.16 20088.26 22097.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
baseline95.58 6695.42 6496.08 10496.78 16490.41 15597.16 14897.45 15293.69 6595.65 9797.85 8287.29 10898.68 16995.66 6197.25 13399.13 70
test1197.88 98
door91.13 355
EPNet_dtu91.71 19891.28 19292.99 25693.76 30683.71 30596.69 18495.28 29293.15 8687.02 29595.95 19183.37 16197.38 30579.46 32396.84 14097.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.15 10193.51 11196.06 10698.27 8289.38 18695.18 27298.48 1585.60 29193.76 13597.11 12683.15 16599.61 5791.33 15998.72 8699.19 64
EPNet95.20 7794.56 8597.14 5792.80 32992.68 7697.85 7194.87 31596.64 192.46 16097.80 8786.23 12099.65 4993.72 11298.62 8999.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS89.33 189
HQP-NCC95.86 21096.65 18893.55 6790.14 210
ACMP_Plane95.86 21096.65 18893.55 6790.14 210
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8598.10 6191.50 13598.01 2298.32 4592.33 3599.58 6494.85 8699.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.13 140
HQP4-MVS90.14 21098.50 18495.78 233
HQP3-MVS97.39 16292.10 216
HQP2-MVS80.95 207
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13698.08 6395.81 497.87 2798.31 4694.26 1399.68 4597.02 2099.49 3699.57 22
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12998.04 7895.96 297.09 4397.88 7893.18 2399.71 3795.84 5799.17 6799.56 25
114514_t93.95 11193.06 12696.63 6799.07 3791.61 10597.46 11997.96 9177.99 35193.00 15297.57 10586.14 12599.33 10289.22 20099.15 6998.94 90
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9196.45 7098.30 4891.90 4299.85 1695.61 6899.68 499.54 29
DSMNet-mixed86.34 30186.12 29787.00 33689.88 35170.43 36194.93 27590.08 36077.97 35285.42 31192.78 31174.44 28993.96 35574.43 34495.14 17296.62 203
tpm289.96 26389.21 26592.23 27994.91 26381.25 32493.78 31194.42 32380.62 34191.56 18193.44 30476.44 27597.94 25385.60 26792.08 21897.49 180
NP-MVS95.99 20989.81 16995.87 194
EG-PatchMatch MVS87.02 29685.44 30091.76 29392.67 33185.00 28896.08 23396.45 24183.41 32379.52 34793.49 30257.10 35597.72 27579.34 32590.87 24292.56 337
tpm cat188.36 28587.21 28891.81 28995.13 25180.55 33292.58 33595.70 27074.97 35687.45 28491.96 32678.01 26498.17 21380.39 31688.74 26396.72 202
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
CostFormer91.18 22990.70 21492.62 27094.84 26781.76 32194.09 30194.43 32284.15 31292.72 15993.77 29379.43 23698.20 20990.70 17092.18 21497.90 158
CR-MVSNet90.82 24289.77 25393.95 21494.45 28587.19 24790.23 35195.68 27486.89 27092.40 16192.36 32180.91 20997.05 31581.09 31393.95 19297.60 176
JIA-IIPM88.26 28787.04 29191.91 28493.52 31381.42 32389.38 35694.38 32480.84 33890.93 19980.74 36379.22 24097.92 25782.76 29891.62 22296.38 210
Patchmtry88.64 28387.25 28692.78 26594.09 29686.64 25989.82 35495.68 27480.81 33987.63 28392.36 32180.91 20997.03 31678.86 32685.12 29994.67 301
PatchT88.87 27987.42 28493.22 24994.08 29785.10 28789.51 35594.64 31981.92 33192.36 16488.15 35280.05 22697.01 31972.43 35193.65 19597.54 179
tpmrst91.44 21291.32 18991.79 29095.15 24979.20 34693.42 32295.37 28788.55 22993.49 14193.67 29882.49 18498.27 20490.41 17289.34 25797.90 158
BH-w/o92.14 18891.75 17393.31 24596.99 15485.73 27595.67 24995.69 27288.73 22489.26 24794.82 24582.97 17298.07 23185.26 27296.32 15396.13 218
tpm90.25 25789.74 25691.76 29393.92 30079.73 34293.98 30293.54 33688.28 23491.99 17493.25 30777.51 26897.44 30087.30 23987.94 26998.12 149
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23998.18 4695.23 1295.87 8797.65 9791.45 5099.70 4295.87 5399.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned92.94 15492.62 14693.92 21997.22 13486.16 27196.40 21096.25 25090.06 18289.79 22896.17 18283.19 16398.35 19887.19 24197.27 13297.24 187
RPMNet88.98 27587.05 29094.77 17694.45 28587.19 24790.23 35198.03 8077.87 35392.40 16187.55 35680.17 22499.51 8368.84 36093.95 19297.60 176
MVSTER93.20 13992.81 13694.37 19296.56 17789.59 17597.06 15297.12 18391.24 14691.30 19095.96 19082.02 19398.05 23493.48 11590.55 24595.47 250
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24995.17 10798.03 6687.09 11199.61 5793.51 11499.42 4499.02 79
GBi-Net91.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13698.25 3590.21 17894.18 12597.27 11787.48 10599.73 3393.53 11397.77 11698.55 117
PVSNet_BlendedMVS94.06 10793.92 9894.47 18798.27 8289.46 18396.73 17898.36 1790.17 17994.36 12095.24 22888.02 9399.58 6493.44 11690.72 24394.36 310
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 35082.40 31693.62 31897.37 16589.86 18578.59 35192.37 31865.25 34295.35 34782.27 30370.75 35994.10 317
UnsupCasMVSNet_bld82.13 32379.46 32790.14 31988.00 36082.47 31490.89 34896.62 23478.94 34875.61 35484.40 36156.63 35796.31 33077.30 33466.77 36591.63 346
PVSNet_Blended94.87 8894.56 8595.81 11698.27 8289.46 18395.47 25898.36 1788.84 21794.36 12096.09 18888.02 9399.58 6493.44 11698.18 10598.40 136
FMVSNet587.29 29485.79 29891.78 29194.80 26987.28 24295.49 25795.28 29284.09 31383.85 32891.82 32762.95 34794.17 35478.48 32785.34 29593.91 321
test191.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
new_pmnet82.89 32181.12 32588.18 33189.63 35280.18 33891.77 34092.57 34476.79 35575.56 35688.23 35161.22 35094.48 35171.43 35482.92 32789.87 357
FMVSNet391.78 19690.69 21595.03 15696.53 18092.27 8897.02 15596.93 20489.79 19089.35 24294.65 25377.01 27097.47 29786.12 25888.82 26095.35 260
dp88.90 27888.26 27890.81 30994.58 28276.62 35292.85 33294.93 30985.12 30090.07 22193.07 30875.81 28098.12 22180.53 31587.42 27597.71 168
FMVSNet291.31 22190.08 23994.99 15896.51 18192.21 8997.41 12096.95 20288.82 21988.62 26094.75 24873.87 29297.42 30285.20 27388.55 26595.35 260
FMVSNet189.88 26688.31 27694.59 18095.41 22891.18 12797.50 11196.93 20486.62 27487.41 28694.51 25765.94 34097.29 30983.04 29587.43 27495.31 262
N_pmnet78.73 32778.71 32878.79 34692.80 32946.50 37994.14 29943.71 38278.61 34980.83 33991.66 33174.94 28796.36 32967.24 36184.45 31193.50 325
cascas91.20 22690.08 23994.58 18494.97 25689.16 19893.65 31797.59 13079.90 34489.40 24092.92 31075.36 28598.36 19792.14 13994.75 18196.23 211
BH-RMVSNet92.72 16591.97 16794.97 16197.16 13887.99 23096.15 23095.60 27790.62 16991.87 17697.15 12578.41 25598.57 18083.16 29397.60 11998.36 140
UGNet94.04 10993.28 12196.31 9296.85 15891.19 12697.88 6797.68 12194.40 4493.00 15296.18 18073.39 29799.61 5791.72 15098.46 9698.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS94.71 9394.02 9696.79 6397.71 11792.05 9496.59 19797.35 16890.61 17094.64 11596.93 13486.41 11999.39 9891.20 16394.71 18398.94 90
XXY-MVS92.16 18691.23 19594.95 16394.75 27290.94 13697.47 11797.43 15989.14 20688.90 25296.43 16979.71 23298.24 20589.56 19087.68 27195.67 244
DROMVSNet96.42 4696.47 4296.26 9797.01 15291.52 11098.89 597.75 11194.42 4396.64 5997.68 9389.32 7798.60 17697.45 1399.11 7398.67 114
sss94.51 9493.80 10096.64 6597.07 14491.97 9796.32 21898.06 7188.94 21394.50 11896.78 14184.60 14199.27 10991.90 14496.02 15598.68 113
Test_1112_low_res92.84 16091.84 17195.85 11597.04 15089.97 16595.53 25696.64 22985.38 29489.65 23395.18 22985.86 12799.10 12687.70 22693.58 19998.49 125
1112_ss93.37 13392.42 15596.21 10197.05 14990.99 13396.31 21996.72 22186.87 27189.83 22796.69 14886.51 11799.14 12288.12 21693.67 19498.50 123
ab-mvs-re8.06 34710.74 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38196.69 1480.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs93.57 12792.55 14996.64 6597.28 13391.96 9895.40 26097.45 15289.81 18993.22 15096.28 17679.62 23499.46 9090.74 16993.11 20098.50 123
TR-MVS91.48 21190.59 21894.16 20196.40 18887.33 24195.67 24995.34 29187.68 25491.46 18495.52 21876.77 27198.35 19882.85 29793.61 19796.79 200
MDTV_nov1_ep13_2view70.35 36293.10 32983.88 31693.55 13882.47 18586.25 25498.38 138
MDTV_nov1_ep1390.76 21195.22 24680.33 33593.03 33095.28 29288.14 23992.84 15893.83 28981.34 20398.08 22782.86 29694.34 186
MIMVSNet184.93 31383.05 31590.56 31489.56 35384.84 29295.40 26095.35 28883.91 31480.38 34392.21 32557.23 35493.34 35970.69 35882.75 32993.50 325
MIMVSNet88.50 28486.76 29293.72 22894.84 26787.77 23791.39 34194.05 32986.41 27987.99 27792.59 31563.27 34595.82 33877.44 33192.84 20397.57 178
IterMVS-LS92.29 18091.94 16893.34 24496.25 19486.97 25396.57 20097.05 19390.67 16489.50 23994.80 24686.59 11497.64 28189.91 18086.11 28695.40 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.14 10493.54 10795.93 11296.18 19891.46 11496.33 21797.04 19588.97 21293.56 13796.51 16587.55 10297.89 26189.80 18395.95 15798.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref90.30 249
IterMVS90.15 26189.67 25791.61 29595.48 22683.72 30494.33 29396.12 25689.99 18387.31 29094.15 28175.78 28396.27 33186.97 24686.89 28194.83 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15398.08 6388.35 23395.09 10997.65 9789.97 7499.48 8892.08 14398.59 9098.44 133
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22698.79 493.99 5495.80 9097.65 9789.92 7599.24 11195.87 5399.20 6598.58 116
DP-MVS92.76 16391.51 18596.52 7298.77 5390.99 13397.38 12796.08 25782.38 32889.29 24597.87 7983.77 15399.69 4381.37 31196.69 14698.89 98
ACMMP++91.02 237
HQP-MVS93.19 14092.74 14094.54 18695.86 21089.33 18996.65 18897.39 16293.55 6790.14 21095.87 19480.95 20798.50 18492.13 14092.10 21695.78 233
QAPM93.45 13192.27 15896.98 6296.77 16592.62 7798.39 2698.12 5684.50 30988.27 26997.77 8882.39 18799.81 2785.40 27098.81 8398.51 122
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13791.58 10898.26 3598.12 5694.38 4694.90 11098.15 5882.28 18898.92 14691.45 15898.58 9199.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet82.47 32281.21 32486.26 33895.38 23069.21 36488.96 35889.49 36166.28 36280.79 34074.08 36768.48 32397.39 30471.93 35395.47 16792.18 343
IS-MVSNet94.90 8694.52 8896.05 10797.67 11890.56 14998.44 2396.22 25193.21 8293.99 12997.74 9085.55 13198.45 18889.98 17897.86 11299.14 69
HyFIR lowres test93.66 12392.92 13095.87 11498.24 8589.88 16794.58 28298.49 1385.06 30193.78 13495.78 20382.86 17498.67 17091.77 14995.71 16499.07 78
EPMVS90.70 24789.81 25193.37 24394.73 27484.21 29793.67 31688.02 36489.50 19692.38 16393.49 30277.82 26697.78 27086.03 26192.68 20598.11 152
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13897.73 11491.80 12992.93 15796.62 16189.13 8099.14 12289.21 20197.78 11598.97 86
TAMVS94.01 11093.46 11395.64 12696.16 20090.45 15396.71 18196.89 21189.27 20393.46 14296.92 13787.29 10897.94 25388.70 21195.74 16298.53 119
PAPR94.18 9993.42 11896.48 7897.64 12291.42 11695.55 25497.71 12088.99 21092.34 16695.82 19889.19 7899.11 12586.14 25797.38 12698.90 95
RPSCF90.75 24490.86 20590.42 31696.84 15976.29 35495.61 25396.34 24583.89 31591.38 18597.87 7976.45 27498.78 15687.16 24392.23 21196.20 212
Vis-MVSNet (Re-imp)94.15 10193.88 9994.95 16397.61 12487.92 23298.10 4995.80 26792.22 11593.02 15197.45 11084.53 14397.91 26088.24 21597.97 11099.02 79
test_040286.46 29984.79 30891.45 29895.02 25585.55 27796.29 22194.89 31180.90 33682.21 33593.97 28768.21 32597.29 30962.98 36488.68 26491.51 348
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22898.90 294.30 4895.86 8897.74 9092.33 3599.38 10096.04 4999.42 4499.28 58
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20993.97 13197.57 10592.62 3199.76 3194.66 9399.27 5799.15 68
PatchMatch-RL92.90 15692.02 16595.56 13198.19 9290.80 14295.27 26897.18 17787.96 24291.86 17795.68 20980.44 21898.99 14284.01 28797.54 12096.89 197
API-MVS94.84 8994.49 8995.90 11397.90 10892.00 9697.80 7697.48 14289.19 20594.81 11296.71 14488.84 8499.17 11888.91 20798.76 8596.53 204
Test By Simon88.73 86
TDRefinement86.53 29884.76 30991.85 28682.23 36884.25 29696.38 21395.35 28884.97 30384.09 32494.94 23765.76 34198.34 20184.60 28074.52 35292.97 330
USDC88.94 27687.83 28192.27 27794.66 27684.96 28993.86 30995.90 26287.34 26283.40 32995.56 21567.43 32898.19 21182.64 30189.67 25593.66 323
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19990.69 16294.24 12397.62 10289.79 7698.81 15493.39 11996.49 15098.92 93
PMMVS92.86 15892.34 15694.42 19094.92 26186.73 25894.53 28496.38 24484.78 30694.27 12295.12 23383.13 16698.40 19191.47 15796.49 15098.12 149
PAPM91.52 20990.30 22895.20 14795.30 24189.83 16893.38 32396.85 21586.26 28288.59 26195.80 19984.88 13898.15 21475.67 34195.93 15897.63 171
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9194.56 11798.39 3588.96 8299.85 1694.57 9797.63 11899.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 9793.53 10896.52 7298.38 7792.55 7996.59 19796.88 21290.13 18191.91 17597.24 11985.21 13499.09 12987.64 23197.83 11397.92 157
PatchmatchNetpermissive91.91 19391.35 18793.59 23495.38 23084.11 29993.15 32795.39 28589.54 19492.10 17293.68 29782.82 17698.13 21684.81 27695.32 17098.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18597.11 4298.01 6992.52 3399.69 4396.03 5099.53 2799.36 53
F-COLMAP93.58 12692.98 12895.37 14398.40 7488.98 20197.18 14697.29 17387.75 25290.49 20397.10 12785.21 13499.50 8686.70 24896.72 14597.63 171
ANet_high63.94 33759.58 34077.02 34761.24 38066.06 36985.66 36487.93 36578.53 35042.94 37271.04 36925.42 37580.71 37252.60 37030.83 37384.28 361
wuyk23d25.11 34324.57 34726.74 35973.98 37539.89 38257.88 3729.80 38312.27 37610.39 3776.97 3797.03 38136.44 37825.43 37617.39 3763.89 376
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20497.57 13292.04 12494.77 11397.96 7387.01 11299.09 12991.31 16096.77 14298.36 140
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23497.48 14293.47 7495.67 9698.10 5989.17 7999.25 11091.27 16198.77 8499.13 70
AdaColmapbinary94.34 9693.68 10396.31 9298.59 6691.68 10396.59 19797.81 10989.87 18492.15 16997.06 12983.62 15799.54 7689.34 19598.07 10897.70 169
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ITE_SJBPF92.43 27395.34 23585.37 28395.92 26091.47 13687.75 28196.39 17271.00 30897.96 25082.36 30289.86 25393.97 320
DeepMVS_CXcopyleft74.68 35290.84 34664.34 37281.61 37565.34 36367.47 36188.01 35448.60 36280.13 37362.33 36573.68 35579.58 364
TinyColmap86.82 29785.35 30391.21 30394.91 26382.99 31093.94 30594.02 33183.58 32081.56 33794.68 25162.34 34998.13 21675.78 33987.35 27792.52 338
MAR-MVS94.22 9893.46 11396.51 7598.00 10192.19 9197.67 9097.47 14588.13 24093.00 15295.84 19684.86 13999.51 8387.99 21898.17 10697.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS87.94 28987.25 28689.98 32092.38 33880.05 34094.38 29095.25 29587.59 25684.34 31894.74 24964.31 34397.66 28084.83 27587.45 27392.23 341
MSDG91.42 21390.24 23294.96 16297.15 14088.91 20293.69 31596.32 24685.72 29086.93 29796.47 16780.24 22298.98 14380.57 31495.05 17696.98 192
LS3D93.57 12792.61 14796.47 7997.59 12691.61 10597.67 9097.72 11685.17 29990.29 20898.34 4084.60 14199.73 3383.85 29198.27 10198.06 154
CLD-MVS92.98 15192.53 15194.32 19596.12 20489.20 19595.28 26697.47 14592.66 10689.90 22495.62 21280.58 21598.40 19192.73 13292.40 20995.38 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS71.27 33069.85 33275.50 35074.64 37359.03 37591.30 34291.50 35358.80 36557.92 36988.28 35029.98 37285.53 37053.43 36982.84 32881.95 363
Gipumacopyleft67.86 33565.41 33775.18 35192.66 33273.45 35966.50 37094.52 32153.33 36957.80 37066.07 37030.81 37089.20 36748.15 37178.88 34462.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015