This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.37 297.93 6698.48 2396.30 26299.00 11389.54 33697.43 29798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS95.98 397.88 6797.58 7298.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft95.07 497.20 10996.78 11398.44 9599.29 7396.31 13698.14 23598.76 10492.41 27596.39 19098.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator94.51 597.46 9196.93 10599.07 5397.78 21997.64 6999.35 1799.06 3497.02 6493.75 27299.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
3Dnovator+94.38 697.43 9696.78 11399.38 1897.83 21798.52 2899.37 1498.71 11697.09 6292.99 29999.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
TAPA-MVS93.98 795.35 20094.56 21597.74 15199.13 10194.83 21098.33 20898.64 13686.62 36196.29 19298.61 14894.00 9699.29 17680.00 37599.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HY-MVS93.96 896.82 12596.23 13898.57 7998.46 16297.00 9698.14 23598.21 22093.95 20196.72 17497.99 21291.58 13699.76 10794.51 20596.54 21198.95 173
ACMM93.85 995.69 18095.38 17496.61 22997.61 23493.84 24898.91 9898.44 18095.25 14794.28 24498.47 16486.04 26199.12 19695.50 17693.95 25396.87 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 20194.98 19796.43 25397.67 22993.48 26398.73 15098.44 18094.94 16692.53 31298.53 15784.50 29499.14 19395.48 17794.00 25196.66 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS93.45 1194.68 23593.43 28298.42 9998.62 15196.77 10795.48 37098.20 22284.63 37493.34 28798.32 18488.55 20999.81 8184.80 36198.96 12898.68 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft93.27 1295.33 20294.87 20396.71 21799.29 7393.24 27498.58 17898.11 24289.92 33693.57 27699.10 8686.37 25499.79 9890.78 30198.10 16997.09 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft93.04 1395.83 17195.00 19598.32 10497.18 27197.32 8199.21 3898.97 4289.96 33591.14 33299.05 9786.64 24899.92 3193.38 23999.47 9997.73 231
ACMH+92.99 1494.30 26393.77 26495.88 28097.81 21892.04 29298.71 15598.37 19493.99 19990.60 33898.47 16480.86 32799.05 20692.75 25992.40 28496.55 311
LTVRE_ROB92.95 1594.60 24193.90 25496.68 22197.41 25594.42 22898.52 18798.59 14491.69 29791.21 33198.35 17884.87 28299.04 20991.06 29693.44 27096.60 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH92.88 1694.55 24593.95 25096.34 25997.63 23393.26 27298.81 13498.49 17493.43 23489.74 34498.53 15781.91 31799.08 20493.69 23093.30 27396.70 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS91.98 1793.27 29591.97 30897.19 18597.47 24693.41 26697.09 32695.99 36093.32 23892.47 31595.73 34678.06 34699.53 15394.59 20382.98 36598.62 198
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet91.96 1896.35 14596.15 13996.96 20299.17 9492.05 29196.08 35998.68 12393.69 22097.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
PVSNet_088.72 1991.28 31890.03 32495.00 30897.99 20887.29 36694.84 37598.50 16992.06 28789.86 34395.19 35579.81 33499.39 16992.27 27269.79 38998.33 213
OpenMVS_ROBcopyleft86.42 2089.00 33687.43 34493.69 33593.08 37389.42 33897.91 25896.89 34278.58 38285.86 36894.69 36069.48 37498.29 30577.13 38293.29 27493.36 377
CMPMVSbinary66.06 2189.70 33189.67 32789.78 35793.19 37276.56 38397.00 33098.35 19780.97 38081.57 37997.75 23474.75 36498.61 25889.85 31593.63 26394.17 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive62.14 2263.28 36359.38 36674.99 37674.33 40065.47 39785.55 39080.50 40252.02 39451.10 39675.00 39510.91 40580.50 39651.60 39553.40 39378.99 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 36063.57 36473.09 37857.90 40251.22 40585.05 39193.93 38454.45 39244.32 39883.57 38713.22 40289.15 39358.68 39381.00 37278.91 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
fmvsm_s_conf0.1_n_a98.08 5998.04 5998.21 11497.66 23195.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
fmvsm_s_conf0.1_n98.18 5898.21 5098.11 12698.54 15795.24 18898.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.5_n_a98.38 4698.42 2598.27 10799.09 10595.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
fmvsm_s_conf0.5_n98.42 4398.51 1898.13 12299.30 6895.25 18798.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
MM99.33 2698.14 5498.93 9597.02 33398.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
WAC-MVS90.94 31088.66 333
Syy-MVS92.55 30792.61 29892.38 34997.39 25683.41 37597.91 25897.46 30393.16 24693.42 28495.37 35384.75 28696.12 37077.00 38396.99 19797.60 236
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22597.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
test_fmvsmconf0.01_n97.86 6897.54 7798.83 6795.48 34896.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
myMVS_eth3d92.73 30592.01 30794.89 31297.39 25690.94 31097.91 25897.46 30393.16 24693.42 28495.37 35368.09 37696.12 37088.34 33696.99 19797.60 236
testing393.19 29992.48 30195.30 30098.07 20192.27 28698.64 16997.17 32493.94 20393.98 26097.04 29367.97 37796.01 37288.40 33597.14 19497.63 235
SSC-MVS84.27 34884.71 35182.96 37289.19 38668.83 39498.08 24296.30 35889.04 35181.37 38094.47 36284.60 29189.89 39249.80 39679.52 37790.15 383
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12597.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
WB-MVS84.86 34785.33 34883.46 36889.48 38469.56 39398.19 22996.42 35689.55 34381.79 37894.67 36184.80 28490.12 39152.44 39480.64 37590.69 382
test_fmvsmvis_n_192098.44 4098.51 1898.23 11398.33 17796.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 204
dmvs_re94.48 25394.18 23595.37 29797.68 22890.11 32798.54 18697.08 32694.56 17794.42 23797.24 27384.25 29797.76 33991.02 29992.83 28098.24 215
SDMVSNet96.85 12396.42 12898.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20298.76 13685.88 26299.44 16797.93 6495.59 23298.60 199
dmvs_testset87.64 34188.93 33483.79 36795.25 35363.36 39897.20 31691.17 39293.07 25085.64 37195.98 34285.30 27791.52 39069.42 38987.33 34696.49 323
sd_testset96.17 15295.76 15697.42 17399.30 6894.34 23398.82 12699.08 3295.92 11095.96 20298.76 13682.83 31499.32 17495.56 17395.59 23298.60 199
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_cas_vis1_n_192097.38 10097.36 8897.45 17098.95 12093.25 27399.00 7898.53 15997.70 2099.77 799.35 4484.71 28899.85 6398.57 2799.66 6199.26 131
test_vis1_n_192096.71 12896.84 10996.31 26199.11 10389.74 33199.05 6598.58 14998.08 1299.87 199.37 3878.48 34199.93 2599.29 1499.69 5699.27 129
test_vis1_n95.47 18895.13 18896.49 24597.77 22090.41 32299.27 2698.11 24296.58 8399.66 1599.18 7367.00 38099.62 13799.21 1599.40 10999.44 107
test_fmvs1_n95.90 16795.99 14795.63 28898.67 14688.32 35799.26 2798.22 21996.40 9299.67 1499.26 5773.91 36899.70 11999.02 1899.50 9498.87 178
mvsany_test197.69 7897.70 6897.66 16198.24 18394.18 24097.53 29297.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
APD_test188.22 33988.01 33988.86 35995.98 33274.66 38997.21 31596.44 35583.96 37686.66 36597.90 21960.95 38597.84 33782.73 36790.23 30994.09 371
test_vis1_rt91.29 31790.65 31793.19 34497.45 25086.25 36998.57 18390.90 39493.30 24086.94 36293.59 37162.07 38499.11 19897.48 10095.58 23494.22 368
test_vis3_rt79.22 34977.40 35584.67 36686.44 39174.85 38897.66 28381.43 40184.98 37267.12 39281.91 39028.09 40197.60 34388.96 33080.04 37681.55 390
test_fmvs293.43 29093.58 27592.95 34696.97 28283.91 37399.19 4297.24 32195.74 12095.20 21298.27 19069.65 37398.72 25096.26 14893.73 25996.24 335
test_fmvs196.42 14096.67 12095.66 28798.82 13288.53 35398.80 13598.20 22296.39 9399.64 1799.20 6780.35 33199.67 12699.04 1799.57 8098.78 186
test_fmvs387.17 34287.06 34587.50 36191.21 37975.66 38599.05 6596.61 35392.79 26288.85 35392.78 37643.72 39193.49 38493.95 22384.56 36193.34 378
mvsany_test388.80 33788.04 33891.09 35689.78 38381.57 38197.83 27195.49 36693.81 21087.53 35993.95 36956.14 38797.43 34994.68 19683.13 36494.26 366
testf179.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
APD_test279.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
test_f86.07 34685.39 34788.10 36089.28 38575.57 38697.73 27896.33 35789.41 34785.35 37291.56 38243.31 39395.53 37591.32 29284.23 36393.21 379
FE-MVS95.62 18394.90 20197.78 14698.37 16994.92 20597.17 32197.38 31390.95 32097.73 13297.70 23885.32 27699.63 13491.18 29398.33 16298.79 183
FA-MVS(test-final)96.41 14495.94 14897.82 14398.21 18795.20 19097.80 27297.58 28893.21 24397.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 190
iter_conf_final96.42 14096.12 14097.34 17998.46 16296.55 12199.08 6198.06 25796.03 10695.63 20698.46 16687.72 22898.59 26197.84 7393.80 25796.87 271
bld_raw_dy_0_6495.74 17595.31 18197.03 19696.35 31795.76 16599.12 5397.37 31495.97 10894.70 22598.48 16285.80 26498.49 27196.55 13993.48 26696.84 276
patch_mono-298.36 4998.87 696.82 21299.53 3690.68 31798.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
EGC-MVSNET75.22 35769.54 36092.28 35194.81 36089.58 33597.64 28596.50 3541.82 4015.57 40295.74 34468.21 37596.26 36973.80 38691.71 29190.99 381
test250694.44 25693.91 25396.04 27099.02 11088.99 34699.06 6379.47 40396.96 6798.36 9499.26 5777.21 35399.52 15696.78 13499.04 12399.59 79
test111195.94 16495.78 15496.41 25498.99 11790.12 32699.04 6892.45 38996.99 6698.03 10999.27 5681.40 32099.48 16296.87 12899.04 12399.63 73
ECVR-MVScopyleft95.95 16295.71 16196.65 22299.02 11090.86 31299.03 7191.80 39096.96 6798.10 10399.26 5781.31 32199.51 15796.90 12299.04 12399.59 79
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
tt080594.54 24693.85 25896.63 22697.98 21093.06 28098.77 14297.84 27593.67 22493.80 27098.04 20776.88 35698.96 22194.79 19592.86 27997.86 227
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27597.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 406
eth-test0.00 406
GeoE96.58 13496.07 14298.10 12798.35 17095.89 16199.34 1898.12 23993.12 24996.09 19698.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
test_method79.03 35078.17 35281.63 37386.06 39254.40 40482.75 39296.89 34239.54 39680.98 38195.57 35258.37 38694.73 38184.74 36278.61 37995.75 347
Anonymous2024052191.18 31990.44 32093.42 33793.70 37088.47 35498.94 9397.56 29088.46 35489.56 34795.08 35877.15 35596.97 35683.92 36489.55 31994.82 363
h-mvs3396.17 15295.62 16797.81 14499.03 10994.45 22698.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37099.11 155
hse-mvs295.71 17795.30 18296.93 20498.50 15993.53 26198.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37498.22 217
CL-MVSNet_self_test90.11 32889.14 33193.02 34591.86 37788.23 35996.51 35698.07 25290.49 32490.49 33994.41 36384.75 28695.34 37780.79 37374.95 38695.50 351
KD-MVS_2432*160089.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
KD-MVS_self_test90.38 32689.38 32993.40 33992.85 37488.94 34797.95 25497.94 26890.35 33090.25 34093.96 36879.82 33395.94 37384.62 36376.69 38495.33 353
AUN-MVS94.53 24893.73 26896.92 20798.50 15993.52 26298.34 20798.10 24593.83 20995.94 20497.98 21485.59 26899.03 21094.35 20980.94 37398.22 217
ZD-MVS99.46 4998.70 2398.79 9893.21 24398.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
cl2294.68 23594.19 23396.13 26898.11 19993.60 25796.94 33398.31 20392.43 27493.32 28896.87 31186.51 24998.28 30694.10 22091.16 29996.51 320
miper_ehance_all_eth95.01 21894.69 21095.97 27497.70 22793.31 27097.02 32998.07 25292.23 28293.51 28096.96 30391.85 13098.15 31293.68 23191.16 29996.44 328
miper_enhance_ethall95.10 21494.75 20796.12 26997.53 24393.73 25496.61 35398.08 25092.20 28593.89 26496.65 32192.44 11298.30 30294.21 21591.16 29996.34 331
ZNCC-MVS98.49 3498.20 5199.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
dcpmvs_298.08 5998.59 1496.56 23699.57 3390.34 32499.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
cl____94.51 25094.01 24596.02 27197.58 23693.40 26797.05 32797.96 26791.73 29692.76 30497.08 28689.06 19498.13 31492.61 26090.29 30896.52 317
DIV-MVS_self_test94.52 24994.03 24295.99 27297.57 24093.38 26897.05 32797.94 26891.74 29492.81 30297.10 28089.12 19198.07 32092.60 26190.30 30796.53 314
eth_miper_zixun_eth94.68 23594.41 22695.47 29397.64 23291.71 29896.73 35098.07 25292.71 26493.64 27397.21 27690.54 16398.17 31193.38 23989.76 31496.54 312
9.1498.06 5799.47 4798.71 15598.82 8194.36 18699.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
ET-MVSNet_ETH3D94.13 27492.98 29097.58 16598.22 18696.20 13897.31 30995.37 36794.53 17979.56 38297.63 24886.51 24997.53 34796.91 11990.74 30399.02 165
UniMVSNet_ETH3D94.24 26793.33 28496.97 20197.19 27093.38 26898.74 14698.57 15191.21 31693.81 26998.58 15372.85 37198.77 24795.05 18893.93 25498.77 187
EIA-MVS97.75 7397.58 7298.27 10798.38 16796.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
miper_refine_blended89.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
miper_lstm_enhance94.33 26194.07 24195.11 30597.75 22190.97 30997.22 31498.03 26091.67 29892.76 30496.97 30190.03 17197.78 33892.51 26889.64 31696.56 309
ETV-MVS97.96 6397.81 6498.40 10098.42 16497.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 203
CS-MVS98.44 4098.49 2198.31 10599.08 10696.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
D2MVS95.18 21095.08 19295.48 29297.10 27692.07 29098.30 21599.13 3094.02 19692.90 30096.73 31689.48 17998.73 24994.48 20693.60 26595.65 350
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
DPM-MVS97.55 8996.99 10399.23 3899.04 10898.55 2797.17 32198.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
GST-MVS98.43 4298.12 5499.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
test_yl97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
thisisatest053096.01 15895.36 17597.97 13498.38 16795.52 17498.88 10894.19 38194.04 19497.64 14098.31 18583.82 31099.46 16595.29 18297.70 18498.93 175
Anonymous2024052995.10 21494.22 23197.75 15099.01 11294.26 23698.87 11398.83 8085.79 36996.64 17698.97 10578.73 33999.85 6396.27 14794.89 23799.12 154
Anonymous20240521195.28 20494.49 21897.67 15899.00 11393.75 25298.70 15997.04 33090.66 32296.49 18698.80 12878.13 34599.83 6996.21 15195.36 23699.44 107
DCV-MVSNet97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
tttt051796.07 15695.51 16997.78 14698.41 16694.84 20899.28 2494.33 37994.26 18997.64 14098.64 14684.05 30399.47 16495.34 17897.60 18799.03 164
our_test_393.65 28893.30 28594.69 31995.45 35089.68 33496.91 33697.65 28391.97 28991.66 32896.88 30989.67 17797.93 33088.02 34091.49 29496.48 325
thisisatest051595.61 18694.89 20297.76 14998.15 19795.15 19396.77 34794.41 37792.95 25697.18 15297.43 26284.78 28599.45 16694.63 19897.73 18398.68 192
ppachtmachnet_test93.22 29792.63 29794.97 30995.45 35090.84 31396.88 34297.88 27390.60 32392.08 32397.26 27088.08 22097.86 33685.12 35890.33 30696.22 336
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22499.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.20 139
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 1099.27 35
thres100view90095.38 19694.70 20997.41 17498.98 11894.92 20598.87 11396.90 34095.38 13896.61 17896.88 30984.29 29599.56 14588.11 33796.29 21997.76 228
tfpnnormal93.66 28692.70 29696.55 24196.94 28495.94 15498.97 8499.19 2491.04 31891.38 33097.34 26584.94 28198.61 25885.45 35689.02 32995.11 358
tfpn200view995.32 20394.62 21297.43 17298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21997.76 228
c3_l94.79 23094.43 22595.89 27997.75 22193.12 27897.16 32398.03 26092.23 28293.46 28397.05 29291.39 14298.01 32393.58 23689.21 32596.53 314
CHOSEN 280x42097.18 11097.18 9597.20 18498.81 13393.27 27195.78 36699.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
CANet98.05 6197.76 6698.90 6598.73 13797.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
Fast-Effi-MVS+-dtu95.87 16895.85 15195.91 27797.74 22491.74 29798.69 16198.15 23595.56 12994.92 21797.68 24388.98 19898.79 24593.19 24597.78 18097.20 248
Effi-MVS+-dtu96.29 14796.56 12395.51 29197.89 21590.22 32598.80 13598.10 24596.57 8596.45 18996.66 31990.81 15798.91 22995.72 16797.99 17197.40 241
CANet_DTU96.96 11896.55 12498.21 11498.17 19596.07 14497.98 25298.21 22097.24 5097.13 15398.93 11486.88 24599.91 3995.00 18999.37 11298.66 195
MVS_030498.47 3798.22 4999.21 3999.00 11397.80 6798.88 10895.32 36898.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
MP-MVS-pluss98.31 5597.92 6399.49 1299.72 1298.88 1898.43 20198.78 10094.10 19297.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
IterMVS-SCA-FT94.11 27693.87 25694.85 31497.98 21090.56 32097.18 31998.11 24293.75 21292.58 31097.48 25783.97 30597.41 35092.48 27091.30 29696.58 305
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
OPM-MVS95.69 18095.33 17896.76 21596.16 32694.63 21798.43 20198.39 19096.64 8195.02 21698.78 13085.15 27899.05 20695.21 18694.20 24396.60 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
ambc89.49 35886.66 39075.78 38492.66 38596.72 34886.55 36692.50 37946.01 38997.90 33190.32 30682.09 36694.80 364
MTGPAbinary98.74 108
CS-MVS-test98.49 3498.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
Effi-MVS+97.12 11396.69 11898.39 10198.19 19196.72 11097.37 30298.43 18493.71 21797.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
xiu_mvs_v2_base97.66 8097.70 6897.56 16798.61 15295.46 17697.44 29598.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 240
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
new-patchmatchnet88.50 33887.45 34391.67 35490.31 38285.89 37097.16 32397.33 31589.47 34483.63 37692.77 37776.38 35795.06 38082.70 36877.29 38394.06 373
pmmvs691.77 31390.63 31895.17 30394.69 36391.24 30698.67 16597.92 27086.14 36589.62 34597.56 25475.79 36098.34 29690.75 30284.56 36195.94 344
pmmvs593.65 28892.97 29195.68 28695.49 34792.37 28598.20 22697.28 31889.66 34192.58 31097.26 27082.14 31698.09 31893.18 24690.95 30296.58 305
test_post196.68 35130.43 40087.85 22798.69 25192.59 263
test_post31.83 39988.83 20298.91 229
Fast-Effi-MVS+96.28 14995.70 16398.03 13198.29 18295.97 15198.58 17898.25 21791.74 29495.29 21197.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
patchmatchnet-post95.10 35789.42 18298.89 233
Anonymous2023121194.10 27793.26 28796.61 22999.11 10394.28 23499.01 7698.88 6286.43 36392.81 30297.57 25281.66 31998.68 25494.83 19289.02 32996.88 269
pmmvs-eth3d90.36 32789.05 33294.32 33091.10 38092.12 28897.63 28896.95 33788.86 35284.91 37493.13 37578.32 34296.74 36088.70 33281.81 36994.09 371
GG-mvs-BLEND96.59 23296.34 31894.98 20196.51 35688.58 39793.10 29794.34 36780.34 33298.05 32189.53 32296.99 19796.74 285
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
Anonymous2023120691.66 31491.10 31493.33 34094.02 36987.35 36598.58 17897.26 32090.48 32590.16 34196.31 33083.83 30996.53 36679.36 37789.90 31396.12 339
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
MTMP98.89 10394.14 382
gm-plane-assit95.88 33687.47 36489.74 34096.94 30699.19 18693.32 242
test9_res96.39 14699.57 8099.69 56
MVP-Stereo94.28 26693.92 25195.35 29894.95 35792.60 28497.97 25397.65 28391.61 29990.68 33797.09 28486.32 25598.42 28189.70 31999.34 11395.02 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.31 6498.50 2997.92 25698.73 11192.63 26597.74 13098.68 14296.20 2899.80 88
train_agg97.97 6297.52 7899.33 2699.31 6498.50 2997.92 25698.73 11192.98 25497.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
gg-mvs-nofinetune92.21 31190.58 31997.13 19096.75 29695.09 19595.85 36489.40 39685.43 37194.50 23081.98 38980.80 32898.40 29592.16 27398.33 16297.88 225
SCA95.46 18995.13 18896.46 25197.67 22991.29 30597.33 30797.60 28794.68 17396.92 16597.10 28083.97 30598.89 23392.59 26398.32 16499.20 139
Patchmatch-test94.42 25793.68 27296.63 22697.60 23591.76 29594.83 37697.49 30289.45 34594.14 25297.10 28088.99 19598.83 24185.37 35798.13 16899.29 127
test_899.29 7398.44 3197.89 26498.72 11392.98 25497.70 13498.66 14596.20 2899.80 88
MS-PatchMatch93.84 28593.63 27394.46 32896.18 32389.45 33797.76 27598.27 21292.23 28292.13 32297.49 25679.50 33598.69 25189.75 31799.38 11195.25 354
Patchmatch-RL test91.49 31590.85 31693.41 33891.37 37884.40 37192.81 38495.93 36391.87 29287.25 36094.87 35988.99 19596.53 36692.54 26782.00 36799.30 125
cdsmvs_eth3d_5k23.98 36531.98 3670.00 3840.00 4060.00 4090.00 39598.59 1440.00 4020.00 40398.61 14890.60 1620.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.88 36910.50 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40294.51 810.00 4030.00 4020.00 4010.00 399
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
tmp_tt68.90 35966.97 36174.68 37750.78 40359.95 40187.13 38983.47 40038.80 39762.21 39396.23 33464.70 38276.91 39988.91 33130.49 39787.19 388
canonicalmvs97.67 7997.23 9398.98 5998.70 14298.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22299.08 161
anonymousdsp95.42 19394.91 20096.94 20395.10 35595.90 16099.14 4998.41 18693.75 21293.16 29297.46 25887.50 23598.41 28995.63 17294.03 25096.50 322
alignmvs97.56 8897.07 10099.01 5698.66 14798.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21099.19 143
nrg03096.28 14995.72 15897.96 13696.90 28898.15 5299.39 1298.31 20395.47 13394.42 23798.35 17892.09 12498.69 25197.50 9989.05 32797.04 251
v14419294.39 25993.70 27096.48 24796.06 32994.35 23298.58 17898.16 23491.45 30294.33 24297.02 29687.50 23598.45 27791.08 29589.11 32696.63 300
FIs96.51 13796.12 14097.67 15897.13 27497.54 7499.36 1599.22 2395.89 11394.03 25898.35 17891.98 12798.44 27996.40 14592.76 28197.01 253
v192192094.20 26993.47 28196.40 25695.98 33294.08 24298.52 18798.15 23591.33 30894.25 24697.20 27786.41 25398.42 28190.04 31389.39 32396.69 297
UA-Net97.96 6397.62 7098.98 5998.86 12897.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
v119294.32 26293.58 27596.53 24296.10 32794.45 22698.50 19298.17 23291.54 30094.19 25097.06 29086.95 24498.43 28090.14 30889.57 31796.70 292
FC-MVSNet-test96.42 14096.05 14397.53 16896.95 28397.27 8399.36 1599.23 2095.83 11793.93 26298.37 17692.00 12698.32 29896.02 15792.72 28297.00 254
v114494.59 24393.92 25196.60 23196.21 32194.78 21498.59 17698.14 23791.86 29394.21 24997.02 29687.97 22298.41 28991.72 28689.57 31796.61 302
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
v14894.29 26493.76 26695.91 27796.10 32792.93 28198.58 17897.97 26592.59 26893.47 28296.95 30588.53 21098.32 29892.56 26587.06 35096.49 323
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
AllTest95.24 20694.65 21196.99 19899.25 8193.21 27598.59 17698.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
TestCases96.99 19899.25 8193.21 27598.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
v7n94.19 27093.43 28296.47 24895.90 33594.38 23199.26 2798.34 19991.99 28892.76 30497.13 27988.31 21398.52 26989.48 32487.70 34196.52 317
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
iter_conf0596.13 15595.79 15397.15 18898.16 19695.99 14598.88 10897.98 26395.91 11295.58 20798.46 16685.53 26998.59 26197.88 6993.75 25896.86 274
RRT_MVS95.98 16095.78 15496.56 23696.48 31194.22 23999.57 697.92 27095.89 11393.95 26198.70 14089.27 18698.42 28197.23 10893.02 27697.04 251
PS-MVSNAJss96.43 13996.26 13696.92 20795.84 33895.08 19699.16 4698.50 16995.87 11693.84 26898.34 18294.51 8198.61 25896.88 12593.45 26997.06 250
PS-MVSNAJ97.73 7497.77 6597.62 16398.68 14595.58 17097.34 30698.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 242
jajsoiax95.45 19195.03 19496.73 21695.42 35294.63 21799.14 4998.52 16295.74 12093.22 29098.36 17783.87 30898.65 25696.95 11894.04 24996.91 265
mvs_tets95.41 19595.00 19596.65 22295.58 34494.42 22899.00 7898.55 15595.73 12293.21 29198.38 17583.45 31298.63 25797.09 11294.00 25196.91 265
EI-MVSNet-UG-set98.41 4498.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
EI-MVSNet-Vis-set98.47 3798.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
test_prior498.01 5997.86 267
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
v124094.06 28193.29 28696.34 25996.03 33193.90 24698.44 19998.17 23291.18 31794.13 25397.01 29886.05 25998.42 28189.13 32989.50 32196.70 292
pm-mvs193.94 28493.06 28996.59 23296.49 31095.16 19198.95 9098.03 26092.32 27991.08 33397.84 22684.54 29398.41 28992.16 27386.13 35996.19 338
test_prior297.80 27296.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
X-MVStestdata94.06 28192.30 30499.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39695.90 4199.89 4797.85 7199.74 4599.78 21
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29191.30 31098.67 7399.80 8895.70 170
新几何297.64 285
新几何199.16 4599.34 5798.01 5998.69 12090.06 33498.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
无先验97.58 29098.72 11391.38 30499.87 5893.36 24199.60 77
原ACMM297.67 282
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24297.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
test22299.23 8897.17 9297.40 29898.66 13188.68 35398.05 10698.96 11094.14 9399.53 9199.61 75
testdata299.89 4791.65 288
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29198.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
testdata197.32 30896.34 95
v894.47 25493.77 26496.57 23596.36 31694.83 21099.05 6598.19 22491.92 29093.16 29296.97 30188.82 20398.48 27291.69 28787.79 34096.39 329
131496.25 15195.73 15797.79 14597.13 27495.55 17398.19 22998.59 14493.47 23292.03 32497.82 23091.33 14599.49 15894.62 20098.44 15598.32 214
LFMVS95.86 16994.98 19798.47 9198.87 12796.32 13498.84 12296.02 35993.40 23598.62 7999.20 6774.99 36399.63 13497.72 8097.20 19399.46 104
VDD-MVS95.82 17295.23 18497.61 16498.84 13193.98 24498.68 16297.40 31195.02 16097.95 11799.34 4874.37 36799.78 10198.64 2596.80 20299.08 161
VDDNet95.36 19994.53 21697.86 13998.10 20095.13 19498.85 11897.75 27990.46 32698.36 9499.39 3273.27 37099.64 13197.98 6096.58 20998.81 182
v1094.29 26493.55 27796.51 24496.39 31594.80 21298.99 8198.19 22491.35 30793.02 29896.99 29988.09 21998.41 28990.50 30588.41 33596.33 333
VPNet94.99 22094.19 23397.40 17697.16 27296.57 11898.71 15598.97 4295.67 12594.84 21998.24 19480.36 33098.67 25596.46 14287.32 34796.96 257
MVS94.67 23893.54 27898.08 12896.88 28996.56 11998.19 22998.50 16978.05 38392.69 30798.02 20891.07 15499.63 13490.09 30998.36 16198.04 222
v2v48294.69 23394.03 24296.65 22296.17 32494.79 21398.67 16598.08 25092.72 26394.00 25997.16 27887.69 23298.45 27792.91 25488.87 33196.72 288
V4294.78 23194.14 23896.70 21996.33 31995.22 18998.97 8498.09 24992.32 27994.31 24397.06 29088.39 21298.55 26592.90 25588.87 33196.34 331
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34398.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS94.81 22994.03 24297.14 18997.15 27393.86 24796.76 34897.58 28894.00 19894.76 22497.04 29380.91 32598.48 27291.79 28496.25 22499.09 157
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
ADS-MVSNet294.58 24494.40 22795.11 30598.00 20688.74 34996.04 36097.30 31690.15 33296.47 18796.64 32287.89 22497.56 34690.08 31097.06 19599.02 165
EI-MVSNet95.96 16195.83 15296.36 25797.93 21293.70 25698.12 23898.27 21293.70 21995.07 21499.02 9892.23 11998.54 26794.68 19693.46 26796.84 276
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
CVMVSNet95.43 19296.04 14493.57 33697.93 21283.62 37498.12 23898.59 14495.68 12496.56 18099.02 9887.51 23397.51 34893.56 23797.44 18999.60 77
pmmvs494.69 23393.99 24896.81 21395.74 33995.94 15497.40 29897.67 28290.42 32893.37 28697.59 25089.08 19398.20 30992.97 25291.67 29296.30 334
EU-MVSNet93.66 28694.14 23892.25 35295.96 33483.38 37698.52 18798.12 23994.69 17292.61 30998.13 20187.36 23896.39 36891.82 28390.00 31296.98 255
VNet97.79 7297.40 8698.96 6198.88 12597.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20699.50 91
test-LLR95.10 21494.87 20395.80 28296.77 29389.70 33296.91 33695.21 36995.11 15494.83 22195.72 34887.71 22998.97 21793.06 24898.50 15298.72 188
TESTMET0.1,194.18 27293.69 27195.63 28896.92 28589.12 34296.91 33694.78 37493.17 24594.88 21896.45 32878.52 34098.92 22893.09 24798.50 15298.85 179
test-mter94.08 27993.51 27995.80 28296.77 29389.70 33296.91 33695.21 36992.89 25894.83 22195.72 34877.69 34898.97 21793.06 24898.50 15298.72 188
VPA-MVSNet95.75 17495.11 19197.69 15697.24 26397.27 8398.94 9399.23 2095.13 15295.51 20897.32 26785.73 26598.91 22997.33 10689.55 31996.89 268
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
testgi93.06 30292.45 30294.88 31396.43 31489.90 32898.75 14397.54 29695.60 12791.63 32997.91 21874.46 36697.02 35586.10 35093.67 26097.72 232
test20.0390.89 32390.38 32192.43 34893.48 37188.14 36098.33 20897.56 29093.40 23587.96 35796.71 31880.69 32994.13 38379.15 37886.17 35795.01 362
thres600view795.49 18794.77 20597.67 15898.98 11895.02 19798.85 11896.90 34095.38 13896.63 17796.90 30884.29 29599.59 14088.65 33496.33 21798.40 209
ADS-MVSNet95.00 21994.45 22396.63 22698.00 20691.91 29396.04 36097.74 28090.15 33296.47 18796.64 32287.89 22498.96 22190.08 31097.06 19599.02 165
MP-MVScopyleft98.33 5498.01 6099.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs21.48 36624.95 36911.09 38314.89 4046.47 40896.56 3549.87 4067.55 39917.93 39939.02 3979.43 4065.90 40216.56 40112.72 39920.91 397
thres40095.38 19694.62 21297.65 16298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21998.40 209
test12320.95 36723.72 37012.64 38213.54 4058.19 40796.55 3556.13 4077.48 40016.74 40037.98 39812.97 4036.05 40116.69 4005.43 40023.68 396
thres20095.25 20594.57 21497.28 18198.81 13394.92 20598.20 22697.11 32595.24 14996.54 18496.22 33684.58 29299.53 15387.93 34196.50 21397.39 242
test0.0.03 194.08 27993.51 27995.80 28295.53 34692.89 28297.38 30095.97 36195.11 15492.51 31496.66 31987.71 22996.94 35787.03 34593.67 26097.57 238
pmmvs386.67 34584.86 35092.11 35388.16 38787.19 36796.63 35294.75 37579.88 38187.22 36192.75 37866.56 38195.20 37981.24 37276.56 38593.96 374
EMVS64.07 36263.26 36566.53 38081.73 39658.81 40391.85 38684.75 39951.93 39559.09 39575.13 39443.32 39279.09 39842.03 39839.47 39561.69 394
E-PMN64.94 36164.25 36367.02 37982.28 39559.36 40291.83 38785.63 39852.69 39360.22 39477.28 39341.06 39480.12 39746.15 39741.14 39461.57 395
PGM-MVS98.49 3498.23 4799.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
LCM-MVSNet-Re95.22 20795.32 17994.91 31098.18 19387.85 36398.75 14395.66 36595.11 15488.96 35096.85 31290.26 16997.65 34195.65 17198.44 15599.22 137
LCM-MVSNet78.70 35376.24 35886.08 36377.26 39971.99 39194.34 38196.72 34861.62 39176.53 38389.33 38433.91 39992.78 38881.85 37074.60 38793.46 376
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
mvs_anonymous96.70 12996.53 12697.18 18698.19 19193.78 24998.31 21398.19 22494.01 19794.47 23198.27 19092.08 12598.46 27697.39 10397.91 17499.31 122
MVS_Test97.28 10497.00 10298.13 12298.33 17795.97 15198.74 14698.07 25294.27 18898.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
MDA-MVSNet-bldmvs89.97 33088.35 33694.83 31695.21 35491.34 30397.64 28597.51 29988.36 35571.17 39096.13 33879.22 33796.63 36583.65 36586.27 35696.52 317
CDPH-MVS97.94 6597.49 7999.28 3299.47 4798.44 3197.91 25898.67 12892.57 26998.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
casdiffmvspermissive97.63 8297.41 8598.28 10698.33 17796.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 8697.40 8698.13 12298.32 18095.81 16498.06 24498.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline295.11 21394.52 21796.87 20996.65 30293.56 25898.27 22094.10 38393.45 23392.02 32597.43 26287.45 23799.19 18693.88 22697.41 19197.87 226
baseline195.84 17095.12 19098.01 13298.49 16195.98 14698.73 15097.03 33195.37 14096.22 19398.19 19789.96 17299.16 18894.60 20187.48 34398.90 177
YYNet190.70 32589.39 32894.62 32294.79 36190.65 31897.20 31697.46 30387.54 35872.54 38895.74 34486.51 24996.66 36486.00 35186.76 35596.54 312
PMMVS277.95 35575.44 35985.46 36482.54 39474.95 38794.23 38293.08 38772.80 38674.68 38487.38 38536.36 39691.56 38973.95 38563.94 39289.87 384
MDA-MVSNet_test_wron90.71 32489.38 32994.68 32094.83 35990.78 31597.19 31897.46 30387.60 35772.41 38995.72 34886.51 24996.71 36385.92 35286.80 35496.56 309
tpmvs94.60 24194.36 22895.33 29997.46 24788.60 35196.88 34297.68 28191.29 31193.80 27096.42 32988.58 20599.24 18091.06 29696.04 22998.17 219
PM-MVS87.77 34086.55 34691.40 35591.03 38183.36 37796.92 33495.18 37191.28 31286.48 36793.42 37253.27 38896.74 36089.43 32581.97 36894.11 370
HQP_MVS96.14 15495.90 15096.85 21097.42 25294.60 22298.80 13598.56 15397.28 4595.34 20998.28 18787.09 24099.03 21096.07 15294.27 24096.92 260
plane_prior797.42 25294.63 217
plane_prior697.35 25994.61 22087.09 240
plane_prior598.56 15399.03 21096.07 15294.27 24096.92 260
plane_prior498.28 187
plane_prior394.61 22097.02 6495.34 209
plane_prior298.80 13597.28 45
plane_prior197.37 258
plane_prior94.60 22298.44 19996.74 7794.22 242
PS-CasMVS94.67 23893.99 24896.71 21796.68 30095.26 18699.13 5299.03 3793.68 22292.33 31897.95 21685.35 27398.10 31693.59 23588.16 33896.79 280
UniMVSNet_NR-MVSNet95.71 17795.15 18797.40 17696.84 29196.97 9798.74 14699.24 1795.16 15193.88 26597.72 23791.68 13398.31 30095.81 16387.25 34896.92 260
PEN-MVS94.42 25793.73 26896.49 24596.28 32094.84 20899.17 4599.00 3993.51 23092.23 32097.83 22986.10 25897.90 33192.55 26686.92 35296.74 285
TransMVSNet (Re)92.67 30691.51 31296.15 26696.58 30594.65 21598.90 9996.73 34790.86 32189.46 34897.86 22385.62 26798.09 31886.45 34881.12 37195.71 348
DTE-MVSNet93.98 28393.26 28796.14 26796.06 32994.39 23099.20 4098.86 7593.06 25191.78 32697.81 23185.87 26397.58 34590.53 30486.17 35796.46 327
DU-MVS95.42 19394.76 20697.40 17696.53 30796.97 9798.66 16798.99 4195.43 13593.88 26597.69 24088.57 20698.31 30095.81 16387.25 34896.92 260
UniMVSNet (Re)95.78 17395.19 18697.58 16596.99 28197.47 7898.79 14099.18 2595.60 12793.92 26397.04 29391.68 13398.48 27295.80 16587.66 34296.79 280
CP-MVSNet94.94 22694.30 22996.83 21196.72 29895.56 17199.11 5598.95 4693.89 20492.42 31797.90 21987.19 23998.12 31594.32 21188.21 33696.82 279
WR-MVS_H95.05 21794.46 22196.81 21396.86 29095.82 16399.24 3099.24 1793.87 20692.53 31296.84 31390.37 16598.24 30893.24 24387.93 33996.38 330
WR-MVS95.15 21194.46 22197.22 18396.67 30196.45 12498.21 22498.81 8694.15 19093.16 29297.69 24087.51 23398.30 30295.29 18288.62 33396.90 267
NR-MVSNet94.98 22294.16 23697.44 17196.53 30797.22 9098.74 14698.95 4694.96 16389.25 34997.69 24089.32 18498.18 31094.59 20387.40 34596.92 260
Baseline_NR-MVSNet94.35 26093.81 26095.96 27596.20 32294.05 24398.61 17596.67 35191.44 30393.85 26797.60 24988.57 20698.14 31394.39 20786.93 35195.68 349
TranMVSNet+NR-MVSNet95.14 21294.48 21997.11 19296.45 31396.36 13299.03 7199.03 3795.04 15993.58 27597.93 21788.27 21498.03 32294.13 21786.90 35396.95 259
TSAR-MVS + GP.98.38 4698.24 4698.81 6899.22 8997.25 8898.11 24098.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
n20.00 408
nn0.00 408
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
door-mid94.37 378
XVG-OURS-SEG-HR96.51 13796.34 13197.02 19798.77 13593.76 25097.79 27498.50 16995.45 13496.94 16299.09 9287.87 22699.55 15296.76 13595.83 23197.74 230
mvsmamba96.57 13596.32 13397.32 18096.60 30396.43 12699.54 797.98 26396.49 8695.20 21298.64 14690.82 15698.55 26597.97 6193.65 26296.98 255
MVSFormer97.57 8797.49 7997.84 14098.07 20195.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 28996.91 11999.59 7699.34 116
jason97.32 10397.08 9998.06 13097.45 25095.59 16997.87 26697.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
lupinMVS97.44 9597.22 9498.12 12598.07 20195.76 16597.68 28197.76 27894.50 18298.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
test_djsdf96.00 15995.69 16496.93 20495.72 34095.49 17599.47 998.40 18894.98 16194.58 22797.86 22389.16 19098.41 28996.91 11994.12 24896.88 269
HPM-MVS_fast98.38 4698.13 5399.12 5099.75 397.86 6299.44 1198.82 8194.46 18498.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
K. test v392.55 30791.91 31094.48 32695.64 34289.24 34099.07 6294.88 37394.04 19486.78 36397.59 25077.64 35197.64 34292.08 27589.43 32296.57 307
lessismore_v094.45 32994.93 35888.44 35591.03 39386.77 36497.64 24676.23 35898.42 28190.31 30785.64 36096.51 320
SixPastTwentyTwo93.34 29392.86 29294.75 31895.67 34189.41 33998.75 14396.67 35193.89 20490.15 34298.25 19380.87 32698.27 30790.90 30090.64 30496.57 307
OurMVSNet-221017-094.21 26894.00 24694.85 31495.60 34389.22 34198.89 10397.43 30995.29 14492.18 32198.52 16082.86 31398.59 26193.46 23891.76 29096.74 285
HPM-MVScopyleft98.36 4998.10 5699.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS96.55 13696.41 12996.99 19898.75 13693.76 25097.50 29498.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22397.69 233
XVG-ACMP-BASELINE94.54 24694.14 23895.75 28596.55 30691.65 29998.11 24098.44 18094.96 16394.22 24897.90 21979.18 33899.11 19894.05 22293.85 25596.48 325
casdiffmvs_mvgpermissive97.72 7597.48 8198.44 9598.42 16496.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test95.62 18395.34 17696.47 24897.46 24793.54 25998.99 8198.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
LGP-MVS_train96.47 24897.46 24793.54 25998.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
baseline97.64 8197.44 8498.25 11198.35 17096.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
test1198.66 131
door94.64 376
EPNet_dtu95.21 20894.95 19995.99 27296.17 32490.45 32198.16 23497.27 31996.77 7593.14 29598.33 18390.34 16698.42 28185.57 35498.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.12 11396.80 11098.08 12899.30 6894.56 22498.05 24599.71 193.57 22997.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
EPNet97.28 10496.87 10898.51 8694.98 35696.14 14298.90 9997.02 33398.28 1095.99 20099.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS94.25 237
HQP-NCC97.20 26798.05 24596.43 8994.45 232
ACMP_Plane97.20 26798.05 24596.43 8994.45 232
APD-MVScopyleft98.35 5198.00 6199.42 1699.51 3998.72 2198.80 13598.82 8194.52 18199.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS95.30 180
HQP4-MVS94.45 23298.96 22196.87 271
HQP3-MVS98.46 17694.18 244
HQP2-MVS86.75 246
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
114514_t96.93 11996.27 13598.92 6399.50 4197.63 7098.85 11898.90 5784.80 37397.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
DSMNet-mixed92.52 30992.58 29992.33 35094.15 36582.65 37898.30 21594.26 38089.08 35092.65 30895.73 34685.01 28095.76 37486.24 34997.76 18198.59 201
tpm294.19 27093.76 26695.46 29497.23 26489.04 34497.31 30996.85 34687.08 36096.21 19496.79 31583.75 31198.74 24892.43 27196.23 22598.59 201
NP-MVS97.28 26194.51 22597.73 235
EG-PatchMatch MVS91.13 32090.12 32394.17 33394.73 36289.00 34598.13 23797.81 27689.22 34985.32 37396.46 32767.71 37898.42 28187.89 34293.82 25695.08 359
tpm cat193.36 29192.80 29395.07 30797.58 23687.97 36196.76 34897.86 27482.17 37993.53 27796.04 34086.13 25799.13 19489.24 32795.87 23098.10 221
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
CostFormer94.95 22494.73 20895.60 29097.28 26189.06 34397.53 29296.89 34289.66 34196.82 17096.72 31786.05 25998.95 22695.53 17596.13 22898.79 183
CR-MVSNet94.76 23294.15 23796.59 23297.00 27993.43 26494.96 37297.56 29092.46 27096.93 16396.24 33288.15 21797.88 33587.38 34396.65 20798.46 207
JIA-IIPM93.35 29292.49 30095.92 27696.48 31190.65 31895.01 37196.96 33685.93 36796.08 19787.33 38687.70 23198.78 24691.35 29195.58 23498.34 212
Patchmtry93.22 29792.35 30395.84 28196.77 29393.09 27994.66 37997.56 29087.37 35992.90 30096.24 33288.15 21797.90 33187.37 34490.10 31196.53 314
PatchT93.06 30291.97 30896.35 25896.69 29992.67 28394.48 38097.08 32686.62 36197.08 15592.23 38087.94 22397.90 33178.89 37996.69 20598.49 206
tpmrst95.63 18295.69 16495.44 29597.54 24188.54 35296.97 33197.56 29093.50 23197.52 14596.93 30789.49 17899.16 18895.25 18496.42 21598.64 197
BH-w/o95.38 19695.08 19296.26 26498.34 17591.79 29497.70 28097.43 30992.87 25994.24 24797.22 27588.66 20498.84 23991.55 28997.70 18498.16 220
tpm94.13 27493.80 26195.12 30496.50 30987.91 36297.44 29595.89 36492.62 26696.37 19196.30 33184.13 30298.30 30293.24 24391.66 29399.14 152
DELS-MVS98.40 4598.20 5198.99 5799.00 11397.66 6897.75 27698.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.95 16295.72 15896.65 22298.55 15692.26 28798.23 22297.79 27793.73 21594.62 22698.01 21088.97 19999.00 21693.04 25098.51 15198.68 192
RPMNet92.81 30491.34 31397.24 18297.00 27993.43 26494.96 37298.80 9382.27 37896.93 16392.12 38186.98 24399.82 7676.32 38496.65 20798.46 207
MVSTER96.06 15795.72 15897.08 19498.23 18595.93 15798.73 15098.27 21294.86 16795.07 21498.09 20388.21 21598.54 26796.59 13793.46 26796.79 280
CPTT-MVS97.72 7597.32 9098.92 6399.64 2897.10 9499.12 5398.81 8692.34 27798.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
GBi-Net94.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
PVSNet_Blended_VisFu97.70 7797.46 8298.44 9599.27 7895.91 15998.63 17299.16 2794.48 18397.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
PVSNet_BlendedMVS96.73 12796.60 12297.12 19199.25 8195.35 18398.26 22199.26 1594.28 18797.94 11997.46 25892.74 10899.81 8196.88 12593.32 27296.20 337
UnsupCasMVSNet_eth90.99 32289.92 32594.19 33294.08 36689.83 32997.13 32598.67 12893.69 22085.83 36996.19 33775.15 36296.74 36089.14 32879.41 37896.00 342
UnsupCasMVSNet_bld87.17 34285.12 34993.31 34191.94 37688.77 34894.92 37498.30 20984.30 37582.30 37790.04 38363.96 38397.25 35285.85 35374.47 38893.93 375
PVSNet_Blended97.38 10097.12 9698.14 11999.25 8195.35 18397.28 31199.26 1593.13 24897.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
FMVSNet591.81 31290.92 31594.49 32597.21 26692.09 28998.00 25197.55 29589.31 34890.86 33595.61 35174.48 36595.32 37885.57 35489.70 31596.07 341
test194.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
new_pmnet90.06 32989.00 33393.22 34394.18 36488.32 35796.42 35896.89 34286.19 36485.67 37093.62 37077.18 35497.10 35481.61 37189.29 32494.23 367
FMVSNet394.97 22394.26 23097.11 19298.18 19396.62 11298.56 18498.26 21693.67 22494.09 25497.10 28084.25 29798.01 32392.08 27592.14 28596.70 292
dp94.15 27393.90 25494.90 31197.31 26086.82 36896.97 33197.19 32391.22 31596.02 19996.61 32485.51 27099.02 21390.00 31494.30 23998.85 179
FMVSNet294.47 25493.61 27497.04 19598.21 18796.43 12698.79 14098.27 21292.46 27093.50 28197.09 28481.16 32298.00 32591.09 29491.93 28896.70 292
FMVSNet193.19 29992.07 30696.56 23697.54 24195.00 19898.82 12698.18 22790.38 32992.27 31997.07 28773.68 36997.95 32789.36 32691.30 29696.72 288
N_pmnet87.12 34487.77 34285.17 36595.46 34961.92 39997.37 30270.66 40485.83 36888.73 35596.04 34085.33 27597.76 33980.02 37490.48 30595.84 345
cascas94.63 24093.86 25796.93 20496.91 28794.27 23596.00 36398.51 16485.55 37094.54 22896.23 33484.20 30198.87 23695.80 16596.98 20097.66 234
BH-RMVSNet95.92 16695.32 17997.69 15698.32 18094.64 21698.19 22997.45 30794.56 17796.03 19898.61 14885.02 27999.12 19690.68 30399.06 12299.30 125
UGNet96.78 12696.30 13498.19 11898.24 18395.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31599.90 4596.53 14099.49 9698.79 183
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS97.37 10296.92 10698.72 7198.86 12896.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20199.48 98
XXY-MVS95.20 20994.45 22397.46 16996.75 29696.56 11998.86 11698.65 13593.30 24093.27 28998.27 19084.85 28398.87 23694.82 19391.26 29896.96 257
EC-MVSNet98.21 5798.11 5598.49 8998.34 17597.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
sss97.39 9996.98 10498.61 7798.60 15396.61 11498.22 22398.93 5093.97 20098.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
Test_1112_low_res96.34 14695.66 16698.36 10298.56 15495.94 15497.71 27998.07 25292.10 28694.79 22397.29 26991.75 13299.56 14594.17 21696.50 21399.58 83
1112_ss96.63 13096.00 14698.50 8798.56 15496.37 13198.18 23398.10 24592.92 25794.84 21998.43 16892.14 12299.58 14194.35 20996.51 21299.56 85
ab-mvs-re8.20 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.43 1680.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs96.42 14095.71 16198.55 8198.63 15096.75 10897.88 26598.74 10893.84 20796.54 18498.18 19885.34 27499.75 10995.93 15996.35 21699.15 150
TR-MVS94.94 22694.20 23297.17 18797.75 22194.14 24197.59 28997.02 33392.28 28195.75 20597.64 24683.88 30798.96 22189.77 31696.15 22798.40 209
MDTV_nov1_ep13_2view84.26 37296.89 34190.97 31997.90 12389.89 17393.91 22599.18 148
MDTV_nov1_ep1395.40 17097.48 24588.34 35696.85 34497.29 31793.74 21497.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
MIMVSNet189.67 33288.28 33793.82 33492.81 37591.08 30898.01 24997.45 30787.95 35687.90 35895.87 34367.63 37994.56 38278.73 38088.18 33795.83 346
MIMVSNet93.26 29692.21 30596.41 25497.73 22593.13 27795.65 36797.03 33191.27 31394.04 25796.06 33975.33 36197.19 35386.56 34796.23 22598.92 176
IterMVS-LS95.46 18995.21 18596.22 26598.12 19893.72 25598.32 21298.13 23893.71 21794.26 24597.31 26892.24 11898.10 31694.63 19890.12 31096.84 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.99 11796.69 11897.90 13898.05 20595.98 14698.20 22698.33 20093.67 22496.95 16198.49 16193.54 9998.42 28195.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref92.97 277
IterMVS94.09 27893.85 25894.80 31797.99 20890.35 32397.18 31998.12 23993.68 22292.46 31697.34 26584.05 30397.41 35092.51 26891.33 29596.62 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.86 6897.46 8299.06 5499.53 3698.35 4198.33 20898.89 5992.62 26698.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
MVS_111021_LR98.34 5298.23 4798.67 7499.27 7896.90 10197.95 25499.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
DP-MVS96.59 13295.93 14998.57 7999.34 5796.19 14098.70 15998.39 19089.45 34594.52 22999.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
ACMMP++93.61 264
HQP-MVS95.72 17695.40 17096.69 22097.20 26794.25 23798.05 24598.46 17696.43 8994.45 23297.73 23586.75 24698.96 22195.30 18094.18 24496.86 274
QAPM96.29 14795.40 17098.96 6197.85 21697.60 7299.23 3198.93 5089.76 33993.11 29699.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
Vis-MVSNetpermissive97.42 9797.11 9798.34 10398.66 14796.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22199.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet89.46 33588.40 33592.64 34797.58 23682.15 37994.16 38393.05 38875.73 38590.90 33482.52 38879.42 33698.33 29783.53 36698.68 14097.43 239
IS-MVSNet97.22 10696.88 10798.25 11198.85 13096.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
HyFIR lowres test96.90 12196.49 12798.14 11999.33 5995.56 17197.38 30099.65 292.34 27797.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
EPMVS94.99 22094.48 21996.52 24397.22 26591.75 29697.23 31391.66 39194.11 19197.28 14896.81 31485.70 26698.84 23993.04 25097.28 19298.97 170
PAPM_NR97.46 9197.11 9798.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
TAMVS97.02 11696.79 11297.70 15598.06 20495.31 18598.52 18798.31 20393.95 20197.05 15998.61 14893.49 10098.52 26995.33 17997.81 17899.29 127
PAPR96.84 12496.24 13798.65 7598.72 14196.92 10097.36 30498.57 15193.33 23796.67 17597.57 25294.30 8999.56 14591.05 29898.59 14799.47 100
RPSCF94.87 22895.40 17093.26 34298.89 12482.06 38098.33 20898.06 25790.30 33196.56 18099.26 5787.09 24099.49 15893.82 22896.32 21898.24 215
Vis-MVSNet (Re-imp)96.87 12296.55 12497.83 14198.73 13795.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26193.67 23398.60 14699.46 104
test_040291.32 31690.27 32294.48 32696.60 30391.12 30798.50 19297.22 32286.10 36688.30 35696.98 30077.65 35097.99 32678.13 38192.94 27894.34 365
MVS_111021_HR98.47 3798.34 3598.88 6699.22 8997.32 8197.91 25899.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
CSCG97.85 7097.74 6798.20 11699.67 2595.16 19199.22 3599.32 1193.04 25297.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
PatchMatch-RL96.59 13296.03 14598.27 10799.31 6496.51 12297.91 25899.06 3493.72 21696.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 195
API-MVS97.41 9897.25 9297.91 13798.70 14296.80 10598.82 12698.69 12094.53 17998.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 244
Test By Simon94.64 78
TDRefinement91.06 32189.68 32695.21 30185.35 39391.49 30298.51 19197.07 32891.47 30188.83 35497.84 22677.31 35299.09 20392.79 25877.98 38295.04 360
USDC93.33 29492.71 29595.21 30196.83 29290.83 31496.91 33697.50 30093.84 20790.72 33698.14 20077.69 34898.82 24289.51 32393.21 27595.97 343
EPP-MVSNet97.46 9197.28 9197.99 13398.64 14995.38 18099.33 2198.31 20393.61 22897.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
PMMVS96.60 13196.33 13297.41 17497.90 21493.93 24597.35 30598.41 18692.84 26097.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
PAPM94.95 22494.00 24697.78 14697.04 27895.65 16896.03 36298.25 21791.23 31494.19 25097.80 23291.27 14898.86 23882.61 36997.61 18698.84 181
ACMMPcopyleft98.23 5697.95 6299.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.45 9497.03 10198.73 7099.05 10797.44 8098.07 24398.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
PatchmatchNetpermissive95.71 17795.52 16896.29 26397.58 23690.72 31696.84 34597.52 29894.06 19397.08 15596.96 30389.24 18898.90 23292.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.34 5298.06 5799.18 4299.15 10098.12 5599.04 6899.09 3193.32 23898.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
F-COLMAP97.09 11596.80 11097.97 13499.45 5294.95 20498.55 18598.62 14093.02 25396.17 19598.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
ANet_high69.08 35865.37 36280.22 37465.99 40171.96 39290.91 38890.09 39582.62 37749.93 39778.39 39229.36 40081.75 39562.49 39238.52 39686.95 389
wuyk23d30.17 36430.18 36830.16 38178.61 39843.29 40666.79 39414.21 40517.31 39814.82 40111.93 40111.55 40441.43 40037.08 39919.30 3985.76 398
OMC-MVS97.55 8997.34 8998.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
MG-MVS97.81 7197.60 7198.44 9599.12 10295.97 15197.75 27698.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
AdaColmapbinary97.15 11296.70 11798.48 9099.16 9896.69 11198.01 24998.89 5994.44 18596.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ITE_SJBPF95.44 29597.42 25291.32 30497.50 30095.09 15793.59 27498.35 17881.70 31898.88 23589.71 31893.39 27196.12 339
DeepMVS_CXcopyleft86.78 36297.09 27772.30 39095.17 37275.92 38484.34 37595.19 35570.58 37295.35 37679.98 37689.04 32892.68 380
TinyColmap92.31 31091.53 31194.65 32196.92 28589.75 33096.92 33496.68 35090.45 32789.62 34597.85 22576.06 35998.81 24386.74 34692.51 28395.41 352
MAR-MVS96.91 12096.40 13098.45 9398.69 14496.90 10198.66 16798.68 12392.40 27697.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS93.14 30192.79 29494.20 33195.88 33688.67 35097.66 28397.07 32893.81 21091.71 32797.65 24477.96 34798.81 24391.47 29091.92 28995.12 357
MSDG95.93 16595.30 18297.83 14198.90 12395.36 18196.83 34698.37 19491.32 30994.43 23698.73 13890.27 16899.60 13990.05 31298.82 13798.52 205
LS3D97.16 11196.66 12198.68 7398.53 15897.19 9198.93 9598.90 5792.83 26195.99 20099.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
CLD-MVS95.62 18395.34 17696.46 25197.52 24493.75 25297.27 31298.46 17695.53 13094.42 23798.00 21186.21 25698.97 21796.25 15094.37 23896.66 298
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS77.62 35677.14 35679.05 37579.25 39760.97 40095.79 36595.94 36265.96 38967.93 39194.40 36437.73 39588.88 39468.83 39088.46 33487.29 387
Gipumacopyleft78.40 35476.75 35783.38 36995.54 34580.43 38279.42 39397.40 31164.67 39073.46 38780.82 39145.65 39093.14 38766.32 39187.43 34476.56 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015