This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12299.59 7399.36 19899.46 17399.07 1499.79 2999.82 4998.85 4499.92 8398.68 11399.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3699.63 7799.95 295.82 17799.94 5799.37 2399.97 399.73 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32099.60 13691.75 35798.61 33199.44 19499.35 199.83 1999.85 2998.70 6599.81 15999.02 5999.91 1699.81 43
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11299.01 14899.24 23799.52 9196.85 24499.27 16399.48 23398.25 9899.91 9497.76 20499.62 12999.65 117
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM97.58 598.37 16598.34 16098.48 24699.41 18797.10 26599.56 10299.45 18598.53 6799.04 21399.85 2993.00 26299.71 19998.74 10297.45 24798.64 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20799.59 4397.55 17798.70 26599.89 1095.83 17699.90 10998.10 17599.90 2399.08 202
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18499.08 14099.62 7099.36 23297.39 19899.28 16099.68 15096.44 15699.92 8398.37 15498.22 21099.40 179
ACMH97.28 898.10 18997.99 18798.44 25599.41 18796.96 28299.60 7799.56 5798.09 11898.15 30699.91 590.87 31399.70 20598.88 7497.45 24798.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 25899.66 5999.84 999.74 1099.09 1198.92 23299.90 795.94 17199.98 698.95 6599.92 1199.79 57
ACMH+97.24 1097.92 21697.78 21098.32 26699.46 17596.68 29299.56 10299.54 7498.41 7897.79 32099.87 2090.18 32099.66 21498.05 18497.18 25998.62 289
ACMP97.20 1198.06 19397.94 19598.45 25299.37 19897.01 27699.44 15999.49 13297.54 18098.45 28999.79 9091.95 29299.72 19397.91 19197.49 24598.62 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 20197.90 19898.40 25999.23 23296.80 28899.70 3899.60 4097.12 22198.18 30599.70 13591.73 29899.72 19398.39 15097.45 24798.68 260
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25199.68 5499.81 1599.51 10499.20 498.72 25899.89 1095.68 18299.97 1198.86 8399.86 5199.81 43
PCF-MVS97.08 1497.66 26197.06 28299.47 11799.61 13299.09 13998.04 35499.25 27591.24 34998.51 28599.70 13594.55 22899.91 9492.76 34299.85 5899.42 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS97.07 1597.74 24697.34 26698.94 18599.70 9597.53 25199.25 23599.51 10491.90 34699.30 15599.63 17698.78 5199.64 22188.09 35799.87 4099.65 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27499.53 8599.82 1399.72 1194.56 32898.08 30899.88 1594.73 21999.98 697.47 23599.76 10099.06 208
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7797.28 25798.32 34799.60 4097.86 14199.50 10999.57 19996.75 14699.86 12898.56 13499.70 11499.54 147
IB-MVS95.67 1896.22 29995.44 30998.57 23699.21 23896.70 29098.65 32997.74 35696.71 25297.27 32898.54 33886.03 35099.92 8398.47 14586.30 35299.10 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_094.43 1996.09 30495.47 30797.94 29199.31 21494.34 34297.81 35699.70 1597.12 22197.46 32498.75 33289.71 32499.79 16797.69 21481.69 35899.68 107
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33297.38 34893.17 35299.06 27098.75 32786.58 35694.84 35198.26 34581.53 36099.32 27189.01 35397.87 22596.76 355
MVEpermissive76.82 2176.91 33474.31 33884.70 34685.38 37276.05 37196.88 36093.17 37267.39 36671.28 36889.01 36621.66 37787.69 36771.74 36672.29 36490.35 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 33574.97 33679.01 35170.98 37455.18 37593.37 36398.21 34765.08 36961.78 37093.83 36021.74 37692.53 36578.59 36491.12 34489.34 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34197.24 35280.01 36698.52 33799.48 14589.01 35391.99 35799.67 15685.67 35299.13 30095.44 30797.03 26296.39 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DVP-MVS++.99.59 399.50 899.88 699.51 15499.88 899.87 599.51 10498.99 2699.88 599.81 6299.27 599.96 1998.85 8599.80 8799.81 43
FOURS199.91 199.93 199.87 599.56 5799.10 899.81 24
MSC_two_6792asdad99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
PC_three_145298.18 10799.84 1499.70 13599.31 398.52 33898.30 16299.80 8799.81 43
No_MVS99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
test_one_060199.81 4199.88 899.49 13298.97 3299.65 7399.81 6299.09 14
eth-test20.00 378
eth-test0.00 378
GeoE98.85 13098.62 14199.53 10299.61 13299.08 14099.80 1999.51 10497.10 22599.31 15399.78 9795.23 19999.77 17498.21 16599.03 17099.75 73
test_method91.10 32591.36 32890.31 34495.85 35873.72 37294.89 36199.25 27568.39 36595.82 34699.02 31780.50 36198.95 32993.64 33194.89 31198.25 330
Anonymous2024052196.20 30195.89 30297.13 31997.72 34594.96 33499.79 2499.29 27093.01 34297.20 33199.03 31589.69 32598.36 34091.16 34796.13 27998.07 336
hse-mvs397.70 25497.28 27298.97 18199.70 9597.27 25899.36 19899.45 18598.94 3699.66 6899.64 17094.93 20499.99 199.48 1584.36 35499.65 117
hse-mvs297.50 27297.14 27998.59 23299.49 16697.05 27199.28 21999.22 27998.94 3699.66 6899.42 24894.93 20499.65 21899.48 1583.80 35699.08 202
CL-MVSNet_2432*160094.49 31893.97 32196.08 33396.16 35793.67 34998.33 34699.38 22295.13 31597.33 32798.15 34692.69 27596.57 36088.67 35479.87 36097.99 343
KD-MVS_2432*160094.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
DIV-MVS_2432*160095.00 31394.34 31896.96 32397.07 35695.39 32599.56 10299.44 19495.11 31797.13 33397.32 35391.86 29497.27 35690.35 35081.23 35998.23 332
AUN-MVS96.88 28896.31 29398.59 23299.48 17397.04 27499.27 22499.22 27997.44 19298.51 28599.41 25291.97 29199.66 21497.71 21183.83 35599.07 207
ZD-MVS99.71 8899.79 3399.61 3596.84 24599.56 9699.54 21098.58 7399.96 1996.93 27099.75 102
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9399.74 4499.79 9098.53 7599.95 4698.55 13799.78 9499.79 57
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.53 7599.95 4698.61 12399.81 8399.77 67
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.75 5998.61 12399.81 8399.77 67
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1299.91 199.81 6299.20 799.96 1998.91 7199.85 5899.79 57
IU-MVS99.84 3399.88 899.32 25898.30 9299.84 1498.86 8399.85 5899.89 2
OPU-MVS99.64 8099.56 14699.72 4799.60 7799.70 13599.27 599.42 25198.24 16499.80 8799.79 57
test_241102_TWO99.48 14599.08 1299.88 599.81 6298.94 3499.96 1998.91 7199.84 6599.88 7
test_241102_ONE99.84 3399.90 299.48 14599.07 1499.91 199.74 11999.20 799.76 178
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25599.53 8599.00 2399.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9599.54 7497.82 15199.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15499.60 7099.23 23899.44 19497.04 23099.39 13699.67 15698.30 9599.92 8397.27 24599.69 11599.64 124
cl-mvsnet297.85 22497.64 22798.48 24699.09 26597.87 23998.60 33399.33 24897.11 22498.87 24099.22 29592.38 28799.17 29598.21 16595.99 28398.42 319
miper_ehance_all_eth98.18 18098.10 17498.41 25799.23 23297.72 24798.72 32399.31 26196.60 26398.88 23899.29 28597.29 12899.13 30097.60 21995.99 28398.38 324
miper_enhance_ethall98.16 18298.08 17898.41 25798.96 28697.72 24798.45 34099.32 25896.95 23898.97 22599.17 30097.06 13599.22 28697.86 19595.99 28398.29 327
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12299.55 10099.64 17098.91 3999.96 1998.72 10699.90 2399.82 38
ETH3 D test640098.70 14398.35 15999.73 6199.69 9899.60 7099.16 24999.45 18595.42 31399.27 16399.60 18997.39 12299.91 9495.36 31199.83 7499.70 100
cl-mvsnet____98.01 20497.84 20598.55 24099.25 23097.97 23298.71 32499.34 24196.47 27598.59 28299.54 21095.65 18499.21 29197.21 24995.77 28998.46 316
cl-mvsnet198.01 20497.85 20498.48 24699.24 23197.95 23698.71 32499.35 23796.50 26898.60 28199.54 21095.72 18199.03 31397.21 24995.77 28998.46 316
eth_miper_zixun_eth98.05 19897.96 19198.33 26499.26 22697.38 25598.56 33699.31 26196.65 25798.88 23899.52 21796.58 15099.12 30497.39 24295.53 29798.47 312
9.1499.10 7299.72 8299.40 18299.51 10497.53 18299.64 7699.78 9798.84 4599.91 9497.63 21799.82 80
testtj99.12 8898.87 10799.86 2199.72 8299.79 3399.44 15999.51 10497.29 20599.59 9199.74 11998.15 10599.96 1996.74 27899.69 11599.81 43
uanet_test0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7799.69 5299.38 19199.51 10497.45 18999.61 8499.75 11398.51 7899.91 9497.45 23899.83 7499.71 98
save fliter99.76 5499.59 7399.14 25599.40 21299.00 23
ET-MVSNet_ETH3D96.49 29595.64 30699.05 17099.53 15098.82 17798.84 31197.51 35897.63 17084.77 36099.21 29892.09 29098.91 33198.98 6292.21 34199.41 178
UniMVSNet_ETH3D97.32 28096.81 28698.87 20599.40 19297.46 25399.51 12499.53 8595.86 30998.54 28499.77 10482.44 35999.66 21498.68 11397.52 23999.50 162
EIA-MVS99.18 7499.09 7499.45 12099.49 16699.18 12599.67 4899.53 8597.66 16899.40 13499.44 24298.10 10699.81 15998.94 6699.62 12999.35 182
miper_refine_blended94.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
miper_lstm_enhance98.00 20697.91 19798.28 27299.34 20597.43 25498.88 30799.36 23296.48 27398.80 25099.55 20595.98 16798.91 33197.27 24595.50 29898.51 308
ETV-MVS99.26 6699.21 6299.40 12899.46 17599.30 11299.56 10299.52 9198.52 6899.44 12199.27 29098.41 8899.86 12899.10 5299.59 13299.04 210
CS-MVS99.34 5399.31 3999.43 12699.44 18299.47 9599.68 4599.56 5798.41 7899.62 8199.41 25298.35 9299.76 17899.52 799.76 10099.05 209
D2MVS98.41 16198.50 15198.15 27999.26 22696.62 29499.40 18299.61 3597.71 16198.98 22399.36 26796.04 16699.67 21198.70 10897.41 25198.15 334
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9599.37 23199.10 899.81 2499.80 7898.94 3499.96 1998.93 6899.86 5199.81 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2699.81 2499.80 7899.09 1499.96 1998.85 8599.90 2399.88 7
test_0728_SECOND99.91 299.84 3399.89 499.57 9599.51 10499.96 1998.93 6899.86 5199.88 7
test072699.85 2699.89 499.62 7099.50 12499.10 899.86 1299.82 4998.94 34
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10399.73 4699.79 9098.68 6699.96 1998.44 14899.77 9799.79 57
DPM-MVS98.95 11598.71 12799.66 7199.63 12299.55 8098.64 33099.10 29497.93 13799.42 12599.55 20598.67 6999.80 16495.80 30099.68 12099.61 132
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13499.63 7799.68 15098.52 7799.95 4698.38 15299.86 5199.81 43
test_yl98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
thisisatest053098.35 16698.03 18399.31 13999.63 12298.56 19699.54 11496.75 36397.53 18299.73 4699.65 16391.25 30999.89 11798.62 12099.56 13399.48 164
Anonymous2024052998.09 19097.68 22299.34 13399.66 11298.44 21199.40 18299.43 20293.67 33599.22 17699.89 1090.23 31999.93 7299.26 3798.33 20499.66 113
Anonymous20240521198.30 17097.98 18899.26 15199.57 14298.16 22399.41 17498.55 34296.03 30799.19 18599.74 11991.87 29399.92 8399.16 4798.29 20999.70 100
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
tttt051798.42 15998.14 17199.28 14999.66 11298.38 21599.74 3496.85 36197.68 16499.79 2999.74 11991.39 30699.89 11798.83 9199.56 13399.57 143
our_test_397.65 26297.68 22297.55 31098.62 32594.97 33398.84 31199.30 26596.83 24798.19 30499.34 27397.01 13799.02 31595.00 31796.01 28198.64 279
thisisatest051598.14 18597.79 20799.19 15899.50 16498.50 20698.61 33196.82 36296.95 23899.54 10199.43 24591.66 30299.86 12898.08 18099.51 13799.22 191
ppachtmachnet_test97.49 27597.45 24697.61 30798.62 32595.24 32798.80 31599.46 17396.11 30298.22 30399.62 18296.45 15598.97 32793.77 32995.97 28698.61 298
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7799.83 1799.56 10299.47 16397.45 18999.78 3499.82 4999.18 1099.91 9498.79 9799.89 3399.81 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.52 153
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 19899.51 10498.73 5699.88 599.84 3898.72 6399.96 1998.16 17299.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.81 4199.83 1799.77 36
test_part197.75 24397.24 27699.29 14699.59 13899.63 6599.65 5999.49 13296.17 29598.44 29099.69 14389.80 32399.47 23898.68 11393.66 32798.78 231
thres100view90097.76 23997.45 24698.69 22799.72 8297.86 24199.59 8398.74 33097.93 13799.26 16898.62 33591.75 29699.83 14893.22 33598.18 21498.37 325
tfpnnormal97.84 22797.47 24398.98 17999.20 24099.22 12299.64 6299.61 3596.32 28298.27 30299.70 13593.35 25799.44 24695.69 30295.40 29998.27 328
tfpn200view997.72 24997.38 25998.72 22599.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.37 325
cl_fuxian98.12 18898.04 18298.38 26199.30 21597.69 25098.81 31499.33 24896.67 25598.83 24699.34 27397.11 13298.99 31997.58 22195.34 30098.48 310
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11297.89 23898.43 34199.71 1398.88 4299.62 8199.76 10896.63 14999.70 20599.46 1899.99 199.66 113
CANet99.25 6899.14 6899.59 8799.41 18799.16 12899.35 20499.57 5198.82 4799.51 10899.61 18696.46 15499.95 4699.59 299.98 299.65 117
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18796.99 27899.52 12099.49 13298.11 11599.24 17199.34 27396.96 13999.79 16797.95 18999.45 13899.02 213
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20696.91 28499.57 9599.30 26598.47 7199.41 12998.99 31996.78 14399.74 18298.73 10499.38 14298.74 243
CANet_DTU98.97 11498.87 10799.25 15299.33 20698.42 21499.08 26699.30 26599.16 599.43 12299.75 11395.27 19599.97 1198.56 13499.95 699.36 181
MVS_030496.79 29096.52 29097.59 30899.22 23694.92 33599.04 27799.59 4396.49 26998.43 29198.99 31980.48 36299.39 25397.15 25799.27 15098.47 312
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21399.52 9197.18 21599.60 8899.79 9098.79 5099.95 4698.83 9199.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 5899.77 3699.49 22798.21 9999.95 4698.46 14699.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.86 20999.52 153
sam_mvs94.72 220
IterMVS-SCA-FT97.82 23297.75 21698.06 28399.57 14296.36 30299.02 28199.49 13297.18 21598.71 25999.72 13092.72 27199.14 29797.44 23995.86 28898.67 267
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4199.78 3499.85 2999.36 299.94 5798.84 8899.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
OPM-MVS98.19 17898.10 17498.45 25298.88 29297.07 26999.28 21999.38 22298.57 6599.22 17699.81 6292.12 28999.66 21498.08 18097.54 23898.61 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15199.48 14598.05 12899.76 4099.86 2398.82 4799.93 7298.82 9599.91 1699.84 20
ambc93.06 33992.68 36482.36 36398.47 33998.73 33595.09 34997.41 35055.55 36899.10 30796.42 28991.32 34397.71 350
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 19899.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
MTGPAbinary99.47 163
mvs-test198.86 12298.84 11398.89 19899.33 20697.77 24499.44 15999.30 26598.47 7199.10 20099.43 24596.78 14399.95 4698.73 10499.02 17298.96 220
CS-MVS-test99.30 5899.25 5799.45 12099.46 17599.23 12099.80 1999.57 5198.28 9399.53 10399.44 24298.16 10499.79 16799.38 2299.61 13199.34 184
Effi-MVS+98.81 13498.59 14799.48 11499.46 17599.12 13798.08 35399.50 12497.50 18599.38 13999.41 25296.37 15899.81 15999.11 5198.54 19899.51 159
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15098.91 16699.02 28199.45 18598.80 5199.71 5099.26 29198.94 3499.98 699.34 2899.23 15298.98 217
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36292.41 35599.18 24799.28 27294.55 32993.49 35497.37 35287.86 34697.01 35891.57 34588.36 34997.61 351
pmmvs696.53 29496.09 29797.82 30098.69 31995.47 32299.37 19499.47 16393.46 33997.41 32599.78 9787.06 34899.33 27096.92 27292.70 33998.65 277
pmmvs597.52 26997.30 27198.16 27898.57 33096.73 28999.27 22498.90 31896.14 30098.37 29599.53 21491.54 30599.14 29797.51 23195.87 28798.63 287
test_post199.23 23865.14 37094.18 24199.71 19997.58 221
test_post65.99 36994.65 22499.73 189
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15499.28 11499.52 12099.47 16396.11 30299.01 21699.34 27396.20 16399.84 13997.88 19398.82 18599.39 180
patchmatchnet-post98.70 33394.79 21299.74 182
Anonymous2023121197.88 21997.54 23698.90 19599.71 8898.53 19999.48 14699.57 5194.16 33198.81 24899.68 15093.23 25899.42 25198.84 8894.42 31798.76 237
pmmvs-eth3d95.34 31294.73 31497.15 31795.53 36195.94 31199.35 20499.10 29495.13 31593.55 35397.54 34988.15 34297.91 34894.58 32089.69 34897.61 351
GG-mvs-BLEND98.45 25298.55 33198.16 22399.43 16593.68 37197.23 32998.46 33989.30 32999.22 28695.43 30898.22 21097.98 344
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
Anonymous2023120696.22 29996.03 29896.79 32897.31 35194.14 34399.63 6499.08 29796.17 29597.04 33599.06 31293.94 24797.76 35286.96 36095.06 30698.47 312
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
MTMP99.54 11498.88 320
gm-plane-assit98.54 33292.96 35394.65 32799.15 30399.64 22197.56 226
test9_res97.49 23299.72 10999.75 73
MVP-Stereo97.81 23497.75 21697.99 28997.53 34696.60 29598.96 29698.85 32297.22 21397.23 32999.36 26795.28 19499.46 24095.51 30699.78 9497.92 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.67 10399.65 6299.05 27299.41 20696.22 29198.95 22799.49 22798.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10399.65 6299.05 27299.41 20696.28 28498.95 22799.49 22798.76 5699.91 9497.63 21799.72 10999.75 73
gg-mvs-nofinetune96.17 30295.32 31098.73 22398.79 30498.14 22599.38 19194.09 37091.07 35198.07 31191.04 36489.62 32799.35 26696.75 27799.09 16598.68 260
SCA98.19 17898.16 16998.27 27399.30 21595.55 31899.07 26798.97 30797.57 17599.43 12299.57 19992.72 27199.74 18297.58 22199.20 15499.52 153
Patchmatch-test97.93 21397.65 22598.77 22199.18 24597.07 26999.03 27899.14 29196.16 29798.74 25699.57 19994.56 22799.72 19393.36 33499.11 16199.52 153
test_899.67 10399.61 6899.03 27899.41 20696.28 28498.93 23199.48 23398.76 5699.91 94
MS-PatchMatch97.24 28397.32 26996.99 32198.45 33593.51 35198.82 31399.32 25897.41 19698.13 30799.30 28388.99 33199.56 23295.68 30399.80 8797.90 349
Patchmatch-RL test95.84 30695.81 30495.95 33495.61 35990.57 35998.24 34998.39 34495.10 31995.20 34898.67 33494.78 21397.77 35196.28 29290.02 34699.51 159
cdsmvs_eth3d_5k24.64 33932.85 3420.00 3550.00 3780.00 3790.00 36699.51 1040.00 3730.00 37499.56 20296.58 1500.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.27 34111.03 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 37399.01 190.00 3740.00 3720.00 3720.00 370
agg_prior199.01 11098.76 12399.76 5399.67 10399.62 6698.99 28899.40 21296.26 28798.87 24099.49 22798.77 5499.91 9497.69 21499.72 10999.75 73
agg_prior297.21 24999.73 10899.75 73
agg_prior99.67 10399.62 6699.40 21298.87 24099.91 94
tmp_tt82.80 33081.52 33386.66 34566.61 37568.44 37392.79 36497.92 35268.96 36480.04 36799.85 2985.77 35196.15 36397.86 19543.89 36895.39 359
canonicalmvs99.02 10798.86 11199.51 11099.42 18499.32 10899.80 1999.48 14598.63 6199.31 15398.81 32897.09 13399.75 18199.27 3697.90 22499.47 169
anonymousdsp98.44 15798.28 16598.94 18598.50 33398.96 15799.77 2799.50 12497.07 22798.87 24099.77 10494.76 21799.28 27698.66 11697.60 23298.57 304
alignmvs98.81 13498.56 14999.58 9099.43 18399.42 10199.51 12498.96 30998.61 6399.35 14798.92 32594.78 21399.77 17499.35 2498.11 22099.54 147
nrg03098.64 15098.42 15599.28 14999.05 27399.69 5299.81 1599.46 17398.04 12999.01 21699.82 4996.69 14899.38 25599.34 2894.59 31498.78 231
v14419297.92 21697.60 23098.87 20598.83 30298.65 18999.55 11199.34 24196.20 29299.32 15299.40 25694.36 23399.26 28096.37 29195.03 30798.70 251
FIs98.78 13898.63 13699.23 15699.18 24599.54 8299.83 1299.59 4398.28 9398.79 25299.81 6296.75 14699.37 25899.08 5496.38 27498.78 231
v192192097.80 23697.45 24698.84 21298.80 30398.53 19999.52 12099.34 24196.15 29999.24 17199.47 23693.98 24699.29 27595.40 30995.13 30598.69 255
UA-Net99.42 4099.29 4799.80 4399.62 12899.55 8099.50 13099.70 1598.79 5299.77 3699.96 197.45 12199.96 1998.92 7099.90 2399.89 2
v119297.81 23497.44 25198.91 19398.88 29298.68 18699.51 12499.34 24196.18 29499.20 18299.34 27394.03 24599.36 26295.32 31295.18 30398.69 255
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26799.45 9899.86 899.60 4098.23 10098.70 26599.82 4996.80 14299.22 28699.07 5596.38 27498.79 230
v114497.98 20897.69 22198.85 21198.87 29698.66 18899.54 11499.35 23796.27 28699.23 17599.35 27094.67 22299.23 28396.73 27995.16 30498.68 260
sosnet-low-res0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 10999.68 5799.69 14399.06 1699.96 1998.69 11199.87 4099.84 20
v14897.79 23797.55 23398.50 24398.74 31297.72 24799.54 11499.33 24896.26 28798.90 23599.51 22194.68 22199.14 29797.83 19893.15 33498.63 287
sosnet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10299.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
v7n97.87 22197.52 23798.92 18998.76 31198.58 19599.84 999.46 17396.20 29298.91 23399.70 13594.89 20899.44 24696.03 29593.89 32598.75 239
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11199.66 6899.68 15098.96 2899.96 1998.62 12099.87 4099.84 20
bset_n11_16_dypcd98.16 18297.97 18998.73 22398.26 33898.28 21997.99 35598.01 35197.68 16499.10 20099.63 17695.68 18299.15 29698.78 10096.55 26998.75 239
RRT_MVS98.60 15298.44 15399.05 17098.88 29299.14 13399.49 14099.38 22297.76 15599.29 15899.86 2395.38 19099.36 26298.81 9697.16 26098.64 279
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30798.53 19999.78 2599.54 7498.07 12399.00 22199.76 10899.01 1999.37 25899.13 4997.23 25698.81 228
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14298.94 16298.97 29599.46 17398.92 4099.71 5099.24 29399.01 1999.98 699.35 2499.66 12398.97 218
jajsoiax98.43 15898.28 16598.88 20198.60 32898.43 21299.82 1399.53 8598.19 10498.63 27699.80 7893.22 26099.44 24699.22 3997.50 24298.77 235
mvs_tets98.40 16398.23 16798.91 19398.67 32198.51 20599.66 5299.53 8598.19 10498.65 27499.81 6292.75 26899.44 24699.31 3197.48 24698.77 235
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11199.67 2297.83 14699.68 5799.69 14399.06 1699.96 1998.39 15099.87 4099.84 20
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 1999.90 399.83 4298.98 2699.93 7299.59 299.95 699.86 13
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 1999.89 499.82 4999.01 1999.92 8399.56 599.95 699.85 16
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9099.44 19499.01 1999.87 1199.80 7898.97 2799.91 9499.44 2199.92 1199.83 31
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9099.49 13299.02 1699.88 599.80 7899.00 2599.94 5799.45 1999.92 1199.84 20
Regformer-199.53 1299.47 1099.72 6499.71 8899.44 9999.49 14099.46 17398.95 3599.83 1999.76 10899.01 1999.93 7299.17 4599.87 4099.80 53
Regformer-299.54 1099.47 1099.75 5499.71 8899.52 8899.49 14099.49 13298.94 3699.83 1999.76 10899.01 1999.94 5799.15 4899.87 4099.80 53
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16599.51 10498.68 6099.27 16399.53 21498.64 7199.96 1998.44 14899.80 8799.79 57
test_prior499.56 7898.99 288
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14199.74 11998.81 4899.94 5798.79 9799.86 5199.84 20
v124097.69 25597.32 26998.79 21998.85 30098.43 21299.48 14699.36 23296.11 30299.27 16399.36 26793.76 25399.24 28294.46 32295.23 30298.70 251
test_prior399.21 7099.05 7799.68 6899.67 10399.48 9398.96 29699.56 5798.34 8799.01 21699.52 21798.68 6699.83 14897.96 18799.74 10599.74 78
pm-mvs197.68 25797.28 27298.88 20199.06 27098.62 19299.50 13099.45 18596.32 28297.87 31699.79 9092.47 28299.35 26697.54 22893.54 32998.67 267
test_prior298.96 29698.34 8799.01 21699.52 21798.68 6697.96 18799.74 105
X-MVStestdata96.55 29395.45 30899.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14164.01 37198.81 4899.94 5798.79 9799.86 5199.84 20
test_prior99.68 6899.67 10399.48 9399.56 5799.83 14899.74 78
旧先验298.96 29696.70 25399.47 11499.94 5798.19 167
新几何299.01 286
新几何199.75 5499.75 6499.59 7399.54 7496.76 24999.29 15899.64 17098.43 8499.94 5796.92 27299.66 12399.72 91
旧先验199.74 7299.59 7399.54 7499.69 14398.47 8199.68 12099.73 85
无先验98.99 28899.51 10496.89 24299.93 7297.53 22999.72 91
原ACMM298.95 300
原ACMM199.65 7599.73 7799.33 10799.47 16397.46 18699.12 19599.66 16298.67 6999.91 9497.70 21399.69 11599.71 98
test22299.75 6499.49 9198.91 30599.49 13296.42 27899.34 15099.65 16398.28 9799.69 11599.72 91
testdata299.95 4696.67 283
segment_acmp98.96 28
testdata99.54 9699.75 6498.95 15999.51 10497.07 22799.43 12299.70 13598.87 4299.94 5797.76 20499.64 12699.72 91
testdata198.85 31098.32 91
v897.95 21297.63 22898.93 18798.95 28798.81 17999.80 1999.41 20696.03 30799.10 20099.42 24894.92 20699.30 27496.94 26994.08 32398.66 275
131498.68 14698.54 15099.11 16598.89 29198.65 18999.27 22499.49 13296.89 24297.99 31399.56 20297.72 11799.83 14897.74 20799.27 15098.84 227
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22499.48 14596.82 24899.25 17099.65 16398.38 8999.93 7297.53 22999.67 12299.73 85
LFMVS97.90 21897.35 26399.54 9699.52 15299.01 14899.39 18698.24 34697.10 22599.65 7399.79 9084.79 35499.91 9499.28 3498.38 20399.69 103
VDD-MVS97.73 24797.35 26398.88 20199.47 17497.12 26499.34 20798.85 32298.19 10499.67 6399.85 2982.98 35699.92 8399.49 1498.32 20899.60 134
VDDNet97.55 26697.02 28399.16 16199.49 16698.12 22799.38 19199.30 26595.35 31499.68 5799.90 782.62 35899.93 7299.31 3198.13 21999.42 176
v1097.85 22497.52 23798.86 20898.99 28098.67 18799.75 3199.41 20695.70 31098.98 22399.41 25294.75 21899.23 28396.01 29694.63 31398.67 267
VPNet97.84 22797.44 25199.01 17599.21 23898.94 16299.48 14699.57 5198.38 8199.28 16099.73 12688.89 33299.39 25399.19 4293.27 33298.71 247
MVS97.28 28196.55 28999.48 11498.78 30798.95 15999.27 22499.39 21683.53 35998.08 30899.54 21096.97 13899.87 12594.23 32599.16 15699.63 128
v2v48298.06 19397.77 21298.92 18998.90 29098.82 17799.57 9599.36 23296.65 25799.19 18599.35 27094.20 23899.25 28197.72 21094.97 30898.69 255
V4298.06 19397.79 20798.86 20898.98 28398.84 17399.69 4099.34 24196.53 26799.30 15599.37 26494.67 22299.32 27197.57 22594.66 31298.42 319
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15499.52 9199.11 799.88 599.91 599.43 197.70 35398.72 10699.93 1099.77 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.85 22497.47 24399.00 17799.38 19697.99 23198.57 33499.15 28997.04 23098.90 23599.30 28389.83 32299.38 25596.70 28198.33 20499.62 130
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13699.16 12899.41 17499.71 1398.98 2999.45 11799.78 9799.19 999.54 23599.28 3499.84 6599.63 128
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1699.88 599.85 2999.18 1099.96 1999.22 3999.92 1199.90 1
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8599.79 2999.82 4998.86 4399.95 4698.62 12099.81 8399.78 65
ADS-MVSNet298.02 20198.07 18197.87 29699.33 20695.19 32999.23 23899.08 29796.24 28999.10 20099.67 15694.11 24298.93 33096.81 27599.05 16899.48 164
EI-MVSNet98.67 14798.67 13198.68 22899.35 20197.97 23299.50 13099.38 22296.93 24199.20 18299.83 4297.87 11199.36 26298.38 15297.56 23698.71 247
Regformer0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
CVMVSNet98.57 15398.67 13198.30 26899.35 20195.59 31799.50 13099.55 6798.60 6499.39 13699.83 4294.48 23099.45 24198.75 10198.56 19799.85 16
pmmvs498.13 18697.90 19898.81 21698.61 32798.87 16998.99 28899.21 28296.44 27699.06 21199.58 19595.90 17499.11 30597.18 25596.11 28098.46 316
EU-MVSNet97.98 20898.03 18397.81 30198.72 31596.65 29399.66 5299.66 2798.09 11898.35 29799.82 4995.25 19898.01 34697.41 24195.30 30198.78 231
VNet99.11 9398.90 10399.73 6199.52 15299.56 7899.41 17499.39 21699.01 1999.74 4499.78 9795.56 18599.92 8399.52 798.18 21499.72 91
test-LLR98.06 19397.90 19898.55 24098.79 30497.10 26598.67 32697.75 35497.34 20098.61 27998.85 32694.45 23199.45 24197.25 24799.38 14299.10 197
TESTMET0.1,197.55 26697.27 27598.40 25998.93 28896.53 29698.67 32697.61 35796.96 23698.64 27599.28 28788.63 33699.45 24197.30 24499.38 14299.21 192
test-mter97.49 27597.13 28098.55 24098.79 30497.10 26598.67 32697.75 35496.65 25798.61 27998.85 32688.23 34099.45 24197.25 24799.38 14299.10 197
VPA-MVSNet98.29 17197.95 19399.30 14399.16 25399.54 8299.50 13099.58 4998.27 9699.35 14799.37 26492.53 28099.65 21899.35 2494.46 31598.72 245
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 10999.67 6399.69 14398.95 3199.96 1998.69 11199.87 4099.84 20
testgi97.65 26297.50 24098.13 28099.36 20096.45 29999.42 17299.48 14597.76 15597.87 31699.45 24191.09 31098.81 33494.53 32198.52 19999.13 196
test20.0396.12 30395.96 30096.63 32997.44 34795.45 32399.51 12499.38 22296.55 26696.16 34399.25 29293.76 25396.17 36287.35 35994.22 32098.27 328
thres600view797.86 22397.51 23998.92 18999.72 8297.95 23699.59 8398.74 33097.94 13699.27 16398.62 33591.75 29699.86 12893.73 33098.19 21398.96 220
ADS-MVSNet98.20 17798.08 17898.56 23899.33 20696.48 29899.23 23899.15 28996.24 28999.10 20099.67 15694.11 24299.71 19996.81 27599.05 16899.48 164
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 11899.48 11399.74 11998.29 9699.96 1997.93 19099.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs39.17 33743.78 33925.37 35436.04 37716.84 37898.36 34226.56 37620.06 37138.51 37267.32 36729.64 37415.30 37337.59 37039.90 36943.98 368
thres40097.77 23897.38 25998.92 18999.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.96 220
test12339.01 33842.50 34028.53 35339.17 37620.91 37798.75 32019.17 37819.83 37238.57 37166.67 36833.16 37315.42 37237.50 37129.66 37049.26 367
thres20097.61 26497.28 27298.62 23099.64 11998.03 22899.26 23398.74 33097.68 16499.09 20598.32 34491.66 30299.81 15992.88 33998.22 21098.03 339
test0.0.03 197.71 25397.42 25598.56 23898.41 33697.82 24298.78 31798.63 33997.34 20098.05 31298.98 32294.45 23198.98 32095.04 31697.15 26198.89 224
pmmvs394.09 32293.25 32596.60 33094.76 36394.49 33998.92 30398.18 34989.66 35296.48 34098.06 34786.28 34997.33 35589.68 35287.20 35197.97 345
EMVS80.02 33279.22 33582.43 35091.19 36576.40 36997.55 35992.49 37566.36 36883.01 36391.27 36364.63 36685.79 36965.82 36860.65 36685.08 365
E-PMN80.61 33179.88 33482.81 34890.75 36676.38 37097.69 35795.76 36766.44 36783.52 36192.25 36262.54 36787.16 36868.53 36761.40 36584.89 366
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9099.65 3297.84 14599.71 5099.80 7899.12 1399.97 1198.33 15899.87 4099.83 31
LCM-MVSNet-Re97.83 22998.15 17096.87 32699.30 21592.25 35699.59 8398.26 34597.43 19396.20 34299.13 30596.27 16198.73 33698.17 17198.99 17499.64 124
LCM-MVSNet86.80 32885.22 33291.53 34287.81 36980.96 36598.23 35198.99 30571.05 36390.13 35996.51 35648.45 37196.88 35990.51 34885.30 35396.76 355
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21799.40 21298.79 5299.52 10699.62 18298.91 3999.90 10998.64 11899.75 10299.82 38
mvs_anonymous99.03 10698.99 9099.16 16199.38 19698.52 20399.51 12499.38 22297.79 15299.38 13999.81 6297.30 12799.45 24199.35 2498.99 17499.51 159
MVS_Test99.10 9698.97 9499.48 11499.49 16699.14 13399.67 4899.34 24197.31 20399.58 9399.76 10897.65 11899.82 15598.87 7899.07 16799.46 171
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 29398.24 33997.27 25899.15 25399.33 24893.80 33480.09 36699.03 31588.31 33997.86 35093.49 33394.36 31898.62 289
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25399.41 20696.60 26399.60 8899.55 20598.83 4699.90 10997.48 23399.83 7499.78 65
test1299.75 5499.64 11999.61 6899.29 27099.21 17998.38 8999.89 11799.74 10599.74 78
casdiffmvs99.13 8298.98 9399.56 9499.65 11799.16 12899.56 10299.50 12498.33 9099.41 12999.86 2395.92 17299.83 14899.45 1999.16 15699.70 100
diffmvs99.14 8099.02 8599.51 11099.61 13298.96 15799.28 21999.49 13298.46 7399.72 4999.71 13196.50 15399.88 12299.31 3199.11 16199.67 110
baseline297.87 22197.55 23398.82 21499.18 24598.02 22999.41 17496.58 36596.97 23596.51 33999.17 30093.43 25599.57 23197.71 21199.03 17098.86 225
baseline198.31 16897.95 19399.38 13199.50 16498.74 18299.59 8398.93 31198.41 7899.14 19299.60 18994.59 22599.79 16798.48 14293.29 33199.61 132
YYNet195.36 31194.51 31797.92 29397.89 34297.10 26599.10 26599.23 27893.26 34180.77 36499.04 31492.81 26798.02 34594.30 32394.18 32198.64 279
PMMVS286.87 32785.37 33191.35 34390.21 36783.80 36298.89 30697.45 35983.13 36091.67 35895.03 35748.49 37094.70 36485.86 36277.62 36195.54 358
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28798.16 34097.21 26399.11 26399.24 27793.49 33880.73 36598.98 32293.02 26198.18 34194.22 32694.45 31698.64 279
tpmvs97.98 20898.02 18597.84 29899.04 27494.73 33899.31 21199.20 28396.10 30698.76 25599.42 24894.94 20399.81 15996.97 26698.45 20298.97 218
PM-MVS92.96 32492.23 32795.14 33695.61 35989.98 36199.37 19498.21 34794.80 32495.04 35097.69 34865.06 36597.90 34994.30 32389.98 34797.54 354
HQP_MVS98.27 17398.22 16898.44 25599.29 21996.97 28099.39 18699.47 16398.97 3299.11 19799.61 18692.71 27399.69 20997.78 20297.63 22998.67 267
plane_prior799.29 21997.03 275
plane_prior699.27 22496.98 27992.71 273
plane_prior599.47 16399.69 20997.78 20297.63 22998.67 267
plane_prior499.61 186
plane_prior397.00 27798.69 5999.11 197
plane_prior299.39 18698.97 32
plane_prior199.26 226
plane_prior96.97 28099.21 24598.45 7497.60 232
PS-CasMVS97.93 21397.59 23298.95 18498.99 28099.06 14399.68 4599.52 9197.13 21998.31 29999.68 15092.44 28699.05 31098.51 14094.08 32398.75 239
UniMVSNet_NR-MVSNet98.22 17497.97 18998.96 18298.92 28998.98 15099.48 14699.53 8597.76 15598.71 25999.46 24096.43 15799.22 28698.57 13192.87 33798.69 255
PEN-MVS97.76 23997.44 25198.72 22598.77 31098.54 19899.78 2599.51 10497.06 22998.29 30199.64 17092.63 27798.89 33398.09 17693.16 33398.72 245
TransMVSNet (Re)97.15 28496.58 28898.86 20899.12 25898.85 17299.49 14098.91 31695.48 31297.16 33299.80 7893.38 25699.11 30594.16 32791.73 34298.62 289
DTE-MVSNet97.51 27197.19 27898.46 25198.63 32498.13 22699.84 999.48 14596.68 25497.97 31499.67 15692.92 26498.56 33796.88 27492.60 34098.70 251
DU-MVS98.08 19297.79 20798.96 18298.87 29698.98 15099.41 17499.45 18597.87 14098.71 25999.50 22494.82 21099.22 28698.57 13192.87 33798.68 260
UniMVSNet (Re)98.29 17198.00 18699.13 16499.00 27999.36 10699.49 14099.51 10497.95 13598.97 22599.13 30596.30 16099.38 25598.36 15693.34 33098.66 275
CP-MVSNet98.09 19097.78 21099.01 17598.97 28599.24 11999.67 4899.46 17397.25 20998.48 28899.64 17093.79 25199.06 30998.63 11994.10 32298.74 243
WR-MVS_H98.13 18697.87 20398.90 19599.02 27798.84 17399.70 3899.59 4397.27 20798.40 29399.19 29995.53 18699.23 28398.34 15793.78 32698.61 298
WR-MVS98.06 19397.73 21899.06 16898.86 29999.25 11899.19 24699.35 23797.30 20498.66 26899.43 24593.94 24799.21 29198.58 12994.28 31998.71 247
NR-MVSNet97.97 21197.61 22999.02 17498.87 29699.26 11799.47 15199.42 20497.63 17097.08 33499.50 22495.07 20299.13 30097.86 19593.59 32898.68 260
Baseline_NR-MVSNet97.76 23997.45 24698.68 22899.09 26598.29 21799.41 17498.85 32295.65 31198.63 27699.67 15694.82 21099.10 30798.07 18392.89 33698.64 279
TranMVSNet+NR-MVSNet97.93 21397.66 22498.76 22298.78 30798.62 19299.65 5999.49 13297.76 15598.49 28799.60 18994.23 23798.97 32798.00 18592.90 33598.70 251
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10398.61 19499.07 26799.33 24899.00 2399.82 2299.81 6299.06 1699.84 13999.09 5399.42 14099.65 117
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11199.82 2299.81 6298.60 7299.96 1998.46 14699.88 3699.79 57
n20.00 379
nn0.00 379
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11399.50 10999.75 11398.78 5199.97 1198.57 13199.89 3399.83 31
door-mid98.05 350
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 8897.74 24599.12 25799.54 7498.44 7799.42 12599.71 13194.20 23899.92 8398.54 13998.90 18199.00 214
DWT-MVSNet_test97.53 26897.40 25797.93 29299.03 27694.86 33699.57 9598.63 33996.59 26598.36 29698.79 32989.32 32899.74 18298.14 17498.16 21899.20 193
MVSFormer99.17 7699.12 7099.29 14699.51 15498.94 16299.88 199.46 17397.55 17799.80 2799.65 16397.39 12299.28 27699.03 5799.85 5899.65 117
jason99.13 8299.03 8299.45 12099.46 17598.87 16999.12 25799.26 27398.03 13199.79 2999.65 16397.02 13699.85 13499.02 5999.90 2399.65 117
jason: jason.
lupinMVS99.13 8299.01 8999.46 11999.51 15498.94 16299.05 27299.16 28897.86 14199.80 2799.56 20297.39 12299.86 12898.94 6699.85 5899.58 142
test_djsdf98.67 14798.57 14898.98 17998.70 31898.91 16699.88 199.46 17397.55 17799.22 17699.88 1595.73 18099.28 27699.03 5797.62 23198.75 239
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16099.76 4099.75 11399.13 1299.92 8399.07 5599.92 1199.85 16
RRT_test8_iter0597.72 24997.60 23098.08 28199.23 23296.08 30999.63 6499.49 13297.54 18098.94 22999.81 6287.99 34399.35 26699.21 4196.51 27198.81 228
K. test v397.10 28696.79 28798.01 28798.72 31596.33 30399.87 597.05 36097.59 17296.16 34399.80 7888.71 33399.04 31196.69 28296.55 26998.65 277
lessismore_v097.79 30298.69 31995.44 32494.75 36895.71 34799.87 2088.69 33499.32 27195.89 29794.93 31098.62 289
SixPastTwentyTwo97.50 27297.33 26898.03 28498.65 32296.23 30699.77 2798.68 33897.14 21897.90 31599.93 490.45 31499.18 29497.00 26396.43 27398.67 267
OurMVSNet-221017-097.88 21997.77 21298.19 27698.71 31796.53 29699.88 199.00 30497.79 15298.78 25399.94 391.68 29999.35 26697.21 24996.99 26398.69 255
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17299.68 5799.63 17698.91 3999.94 5798.58 12999.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.73 14298.68 13098.88 20199.70 9597.73 24698.92 30399.55 6798.52 6899.45 11799.84 3895.27 19599.91 9498.08 18098.84 18499.00 214
XVG-ACMP-BASELINE97.83 22997.71 22098.20 27599.11 26096.33 30399.41 17499.52 9198.06 12799.05 21299.50 22489.64 32699.73 18997.73 20897.38 25398.53 306
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20697.05 27199.58 9099.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
LGP-MVS_train98.49 24499.33 20697.05 27199.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
baseline99.15 7999.02 8599.53 10299.66 11299.14 13399.72 3599.48 14598.35 8699.42 12599.84 3896.07 16599.79 16799.51 999.14 15999.67 110
test1199.35 237
door97.92 352
EPNet_dtu98.03 19997.96 19198.23 27498.27 33795.54 32099.23 23898.75 32799.02 1697.82 31899.71 13196.11 16499.48 23793.04 33899.65 12599.69 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18699.94 198.73 5699.11 19799.89 1095.50 18799.94 5799.50 1099.97 399.89 2
EPNet98.86 12298.71 12799.30 14397.20 35398.18 22299.62 7098.91 31699.28 298.63 27699.81 6295.96 16899.99 199.24 3899.72 10999.73 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.83 285
HQP-NCC99.19 24298.98 29298.24 9798.66 268
ACMP_Plane99.19 24298.98 29298.24 9798.66 268
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13099.50 12497.16 21799.77 3699.82 4998.78 5199.94 5797.56 22699.86 5199.80 53
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.19 253
HQP4-MVS98.66 26899.64 22198.64 279
HQP3-MVS99.39 21697.58 234
HQP2-MVS92.47 282
CNVR-MVS99.42 4099.30 4399.78 4899.62 12899.71 4999.26 23399.52 9198.82 4799.39 13699.71 13198.96 2899.85 13498.59 12899.80 8799.77 67
NCCC99.34 5399.19 6499.79 4699.61 13299.65 6299.30 21399.48 14598.86 4399.21 17999.63 17698.72 6399.90 10998.25 16399.63 12899.80 53
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34499.71 5099.78 9798.06 10899.90 10998.84 8899.91 1699.74 78
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12399.53 10399.63 17698.93 3899.97 1198.74 10299.91 1699.83 31
DSMNet-mixed97.25 28297.35 26396.95 32497.84 34393.61 35099.57 9596.63 36496.13 30198.87 24098.61 33794.59 22597.70 35395.08 31598.86 18399.55 145
tpm297.44 27797.34 26697.74 30499.15 25694.36 34199.45 15598.94 31093.45 34098.90 23599.44 24291.35 30799.59 23097.31 24398.07 22199.29 188
NP-MVS99.23 23296.92 28399.40 256
EG-PatchMatch MVS95.97 30595.69 30596.81 32797.78 34492.79 35499.16 24998.93 31196.16 29794.08 35299.22 29582.72 35799.47 23895.67 30497.50 24298.17 333
tpm cat197.39 27897.36 26197.50 31299.17 25193.73 34699.43 16599.31 26191.27 34898.71 25999.08 30994.31 23699.77 17496.41 29098.50 20099.00 214
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6299.79 2999.83 4299.28 499.97 1198.48 14299.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
CostFormer97.72 24997.73 21897.71 30599.15 25694.02 34499.54 11499.02 30394.67 32699.04 21399.35 27092.35 28899.77 17498.50 14197.94 22399.34 184
CR-MVSNet98.17 18197.93 19698.87 20599.18 24598.49 20799.22 24399.33 24896.96 23699.56 9699.38 26194.33 23499.00 31894.83 31998.58 19499.14 194
JIA-IIPM97.50 27297.02 28398.93 18798.73 31397.80 24399.30 21398.97 30791.73 34798.91 23394.86 35995.10 20199.71 19997.58 22197.98 22299.28 189
Patchmtry97.75 24397.40 25798.81 21699.10 26398.87 16999.11 26399.33 24894.83 32398.81 24899.38 26194.33 23499.02 31596.10 29395.57 29598.53 306
PatchT97.03 28796.44 29198.79 21998.99 28098.34 21699.16 24999.07 29992.13 34599.52 10697.31 35494.54 22998.98 32088.54 35598.73 19099.03 211
tpmrst98.33 16798.48 15297.90 29599.16 25394.78 33799.31 21199.11 29397.27 20799.45 11799.59 19295.33 19399.84 13998.48 14298.61 19199.09 201
BH-w/o98.00 20697.89 20298.32 26699.35 20196.20 30799.01 28698.90 31896.42 27898.38 29499.00 31895.26 19799.72 19396.06 29498.61 19199.03 211
tpm97.67 26097.55 23398.03 28499.02 27795.01 33299.43 16598.54 34396.44 27699.12 19599.34 27391.83 29599.60 22997.75 20696.46 27299.48 164
DELS-MVS99.48 2099.42 1499.65 7599.72 8299.40 10499.05 27299.66 2799.14 699.57 9599.80 7898.46 8299.94 5799.57 499.84 6599.60 134
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.42 15998.36 15798.59 23299.49 16696.70 29099.27 22499.13 29297.24 21198.80 25099.38 26195.75 17999.74 18297.07 26199.16 15699.33 186
RPMNet96.72 29195.90 30199.19 15899.18 24598.49 20799.22 24399.52 9188.72 35599.56 9697.38 35194.08 24499.95 4686.87 36198.58 19499.14 194
MVSTER98.49 15498.32 16299.00 17799.35 20199.02 14699.54 11499.38 22297.41 19699.20 18299.73 12693.86 25099.36 26298.87 7897.56 23698.62 289
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23299.63 7799.69 14397.27 12999.96 1997.82 19999.84 6599.81 43
GBi-Net97.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15199.93 297.66 16899.71 5099.86 2397.73 11699.96 1999.47 1799.82 8099.79 57
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 21999.91 397.42 19599.67 6399.37 26497.53 11999.88 12298.98 6297.29 25598.42 319
UnsupCasMVSNet_eth96.44 29696.12 29697.40 31498.65 32295.65 31599.36 19899.51 10497.13 21996.04 34598.99 31988.40 33898.17 34296.71 28090.27 34598.40 322
UnsupCasMVSNet_bld93.53 32392.51 32696.58 33197.38 34893.82 34598.24 34999.48 14591.10 35093.10 35596.66 35574.89 36398.37 33994.03 32887.71 35097.56 353
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31799.91 396.74 25099.67 6399.49 22797.53 11999.88 12298.98 6299.85 5899.60 134
FMVSNet596.43 29796.19 29597.15 31799.11 26095.89 31299.32 20999.52 9194.47 33098.34 29899.07 31087.54 34797.07 35792.61 34395.72 29298.47 312
test197.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
new_pmnet96.38 29896.03 29897.41 31398.13 34195.16 33199.05 27299.20 28393.94 33297.39 32698.79 32991.61 30499.04 31190.43 34995.77 28998.05 338
FMVSNet398.03 19997.76 21598.84 21299.39 19598.98 15099.40 18299.38 22296.67 25599.07 20799.28 28792.93 26398.98 32097.10 25896.65 26598.56 305
dp97.75 24397.80 20697.59 30899.10 26393.71 34799.32 20998.88 32096.48 27399.08 20699.55 20592.67 27699.82 15596.52 28698.58 19499.24 190
FMVSNet297.72 24997.36 26198.80 21899.51 15498.84 17399.45 15599.42 20496.49 26998.86 24599.29 28590.26 31698.98 32096.44 28896.56 26898.58 303
FMVSNet196.84 28996.36 29298.29 26999.32 21397.26 26099.43 16599.48 14595.11 31798.55 28399.32 28083.95 35598.98 32095.81 29996.26 27798.62 289
N_pmnet94.95 31595.83 30392.31 34098.47 33479.33 36799.12 25792.81 37493.87 33397.68 32199.13 30593.87 24999.01 31791.38 34696.19 27898.59 302
cascas97.69 25597.43 25498.48 24698.60 32897.30 25698.18 35299.39 21692.96 34398.41 29298.78 33193.77 25299.27 27998.16 17298.61 19198.86 225
BH-RMVSNet98.41 16198.08 17899.40 12899.41 18798.83 17699.30 21398.77 32697.70 16298.94 22999.65 16392.91 26699.74 18296.52 28699.55 13599.64 124
UGNet98.87 11998.69 12999.40 12899.22 23698.72 18499.44 15999.68 1999.24 399.18 18899.42 24892.74 27099.96 1999.34 2899.94 999.53 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS99.06 10198.88 10699.61 8599.62 12899.16 12899.37 19499.56 5798.04 12999.53 10399.62 18296.84 14199.94 5798.85 8598.49 20199.72 91
XXY-MVS98.38 16498.09 17799.24 15499.26 22699.32 10899.56 10299.55 6797.45 18998.71 25999.83 4293.23 25899.63 22698.88 7496.32 27698.76 237
DROMVSNet99.44 3199.39 1899.58 9099.56 14699.49 9199.88 199.58 4998.38 8199.73 4699.69 14398.20 10099.70 20599.64 199.82 8099.54 147
sss99.17 7699.05 7799.53 10299.62 12898.97 15399.36 19899.62 3397.83 14699.67 6399.65 16397.37 12699.95 4699.19 4299.19 15599.68 107
Test_1112_low_res98.89 11898.66 13499.57 9299.69 9898.95 15999.03 27899.47 16396.98 23499.15 19199.23 29496.77 14599.89 11798.83 9198.78 18899.86 13
1112_ss98.98 11298.77 12199.59 8799.68 10299.02 14699.25 23599.48 14597.23 21299.13 19399.58 19596.93 14099.90 10998.87 7898.78 18899.84 20
ab-mvs-re8.30 34011.06 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.58 1950.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs98.86 12298.63 13699.54 9699.64 11999.19 12399.44 15999.54 7497.77 15499.30 15599.81 6294.20 23899.93 7299.17 4598.82 18599.49 163
TR-MVS97.76 23997.41 25698.82 21499.06 27097.87 23998.87 30998.56 34196.63 26098.68 26799.22 29592.49 28199.65 21895.40 30997.79 22698.95 223
MDTV_nov1_ep13_2view95.18 33099.35 20496.84 24599.58 9395.19 20097.82 19999.46 171
MDTV_nov1_ep1398.32 16299.11 26094.44 34099.27 22498.74 33097.51 18499.40 13499.62 18294.78 21399.76 17897.59 22098.81 187
MIMVSNet195.51 30895.04 31296.92 32597.38 34895.60 31699.52 12099.50 12493.65 33696.97 33799.17 30085.28 35396.56 36188.36 35695.55 29698.60 301
MIMVSNet97.73 24797.45 24698.57 23699.45 18197.50 25299.02 28198.98 30696.11 30299.41 12999.14 30490.28 31598.74 33595.74 30198.93 17799.47 169
IterMVS-LS98.46 15698.42 15598.58 23599.59 13898.00 23099.37 19499.43 20296.94 24099.07 20799.59 19297.87 11199.03 31398.32 16095.62 29498.71 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18498.73 18399.45 15599.46 17398.11 11599.46 11699.77 10498.01 10999.37 25898.70 10898.92 17999.66 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref97.19 258
IterMVS97.83 22997.77 21298.02 28699.58 14096.27 30599.02 28199.48 14597.22 21398.71 25999.70 13592.75 26899.13 30097.46 23696.00 28298.67 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22499.57 5196.40 28099.42 12599.68 15098.75 5999.80 16497.98 18699.72 10999.44 174
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30299.85 698.82 4799.65 7399.74 11998.51 7899.80 16498.83 9199.89 3399.64 124
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17499.50 12497.03 23299.04 21399.88 1597.39 12299.92 8398.66 11699.90 2399.87 12
ACMMP++97.43 250
HQP-MVS98.02 20197.90 19898.37 26299.19 24296.83 28598.98 29299.39 21698.24 9798.66 26899.40 25692.47 28299.64 22197.19 25397.58 23498.64 279
QAPM98.67 14798.30 16499.80 4399.20 24099.67 5799.77 2799.72 1194.74 32598.73 25799.90 795.78 17899.98 696.96 26799.88 3699.76 72
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7099.86 1299.87 2094.77 21699.84 13999.19 4299.41 14199.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet95.75 30795.16 31197.51 31199.30 21593.69 34898.88 30795.78 36685.09 35898.78 25392.65 36191.29 30899.37 25894.85 31899.85 5899.46 171
IS-MVSNet99.05 10398.87 10799.57 9299.73 7799.32 10899.75 3199.20 28398.02 13299.56 9699.86 2396.54 15299.67 21198.09 17699.13 16099.73 85
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28199.91 397.67 16799.59 9199.75 11395.90 17499.73 18999.53 699.02 17299.86 13
EPMVS97.82 23297.65 22598.35 26398.88 29295.98 31099.49 14094.71 36997.57 17599.26 16899.48 23392.46 28599.71 19997.87 19499.08 16699.35 182
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18699.38 22297.70 16299.28 16099.28 28798.34 9399.85 13496.96 26799.45 13899.69 103
TAMVS99.12 8899.08 7599.24 15499.46 17598.55 19799.51 12499.46 17398.09 11899.45 11799.82 4998.34 9399.51 23698.70 10898.93 17799.67 110
PAPR98.63 15198.34 16099.51 11099.40 19299.03 14598.80 31599.36 23296.33 28199.00 22199.12 30898.46 8299.84 13995.23 31399.37 14699.66 113
RPSCF98.22 17498.62 14196.99 32199.82 3891.58 35899.72 3599.44 19496.61 26199.66 6899.89 1095.92 17299.82 15597.46 23699.10 16499.57 143
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 8898.88 16899.80 1999.44 19497.91 13999.36 14499.78 9795.49 18899.43 25097.91 19199.11 16199.62 130
test_040296.64 29296.24 29497.85 29798.85 30096.43 30099.44 15999.26 27393.52 33796.98 33699.52 21788.52 33799.20 29392.58 34497.50 24297.93 347
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8299.47 9598.95 30099.85 698.82 4799.54 10199.73 12698.51 7899.74 18298.91 7199.88 3699.77 67
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11599.41 12999.80 7898.37 9199.96 1998.99 6199.96 599.72 91
PatchMatch-RL98.84 13398.62 14199.52 10899.71 8899.28 11499.06 27099.77 997.74 15999.50 10999.53 21495.41 18999.84 13997.17 25699.64 12699.44 174
API-MVS99.04 10499.03 8299.06 16899.40 19299.31 11199.55 11199.56 5798.54 6699.33 15199.39 26098.76 5699.78 17296.98 26599.78 9498.07 336
Test By Simon98.75 59
TDRefinement95.42 31094.57 31697.97 29089.83 36896.11 30899.48 14698.75 32796.74 25096.68 33899.88 1588.65 33599.71 19998.37 15482.74 35798.09 335
USDC97.34 27997.20 27797.75 30399.07 26895.20 32898.51 33899.04 30297.99 13398.31 29999.86 2389.02 33099.55 23495.67 30497.36 25498.49 309
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11799.06 14399.81 1599.33 24897.43 19399.60 8899.88 1597.14 13199.84 13999.13 4998.94 17699.69 103
PMMVS98.80 13798.62 14199.34 13399.27 22498.70 18598.76 31999.31 26197.34 20099.21 17999.07 31097.20 13099.82 15598.56 13498.87 18299.52 153
PAPM97.59 26597.09 28199.07 16799.06 27098.26 22098.30 34899.10 29494.88 32298.08 30899.34 27396.27 16199.64 22189.87 35198.92 17999.31 187
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11399.63 7799.84 3898.73 6299.96 1998.55 13799.83 7499.81 43
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.14 8098.99 9099.59 8799.58 14099.41 10299.16 24999.44 19498.45 7499.19 18599.49 22798.08 10799.89 11797.73 20899.75 10299.48 164
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25395.32 32699.27 22498.92 31397.37 19999.37 14199.58 19594.90 20799.70 20597.43 24099.21 15399.54 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.30 5899.17 6699.70 6799.56 14699.52 8899.58 9099.80 897.12 22199.62 8199.73 12698.58 7399.90 10998.61 12399.91 1699.68 107
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17299.54 7497.29 20599.41 12999.59 19298.42 8799.93 7298.19 16799.69 11599.73 85
ANet_high77.30 33374.86 33784.62 34775.88 37377.61 36897.63 35893.15 37388.81 35464.27 36989.29 36536.51 37283.93 37075.89 36552.31 36792.33 362
wuyk23d40.18 33641.29 34136.84 35286.18 37149.12 37679.73 36522.81 37727.64 37025.46 37328.45 37221.98 37548.89 37155.80 36923.56 37112.51 369
OMC-MVS99.08 9999.04 8099.20 15799.67 10398.22 22199.28 21999.52 9198.07 12399.66 6899.81 6297.79 11499.78 17297.79 20199.81 8399.60 134
MG-MVS99.13 8299.02 8599.45 12099.57 14298.63 19199.07 26799.34 24198.99 2699.61 8499.82 4997.98 11099.87 12597.00 26399.80 8799.85 16
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14699.54 8299.18 24799.70 1598.18 10799.35 14799.63 17696.32 15999.90 10997.48 23399.77 9799.55 145
uanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
ITE_SJBPF98.08 28199.29 21996.37 30198.92 31398.34 8798.83 24699.75 11391.09 31099.62 22795.82 29897.40 25298.25 330
DeepMVS_CXcopyleft93.34 33899.29 21982.27 36499.22 27985.15 35796.33 34199.05 31390.97 31299.73 18993.57 33297.77 22798.01 340
TinyColmap97.12 28596.89 28597.83 29999.07 26895.52 32198.57 33498.74 33097.58 17497.81 31999.79 9088.16 34199.56 23295.10 31497.21 25798.39 323
MAR-MVS98.86 12298.63 13699.54 9699.37 19899.66 5999.45 15599.54 7496.61 26199.01 21699.40 25697.09 13399.86 12897.68 21699.53 13699.10 197
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.52 26997.46 24597.70 30698.98 28395.55 31899.29 21798.82 32598.07 12398.66 26899.64 17089.97 32199.61 22897.01 26296.68 26497.94 346
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32099.55 6797.25 20999.47 11499.77 10497.82 11399.87 12596.93 27099.90 2399.54 147
LS3D99.27 6499.12 7099.74 5999.18 24599.75 4399.56 10299.57 5198.45 7499.49 11299.85 2997.77 11599.94 5798.33 15899.84 6599.52 153
CLD-MVS98.16 18298.10 17498.33 26499.29 21996.82 28798.75 32099.44 19497.83 14699.13 19399.55 20592.92 26499.67 21198.32 16097.69 22898.48 310
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.93 32985.65 33082.75 34986.77 37063.39 37498.35 34398.92 31374.11 36283.39 36298.98 32250.85 36992.40 36684.54 36394.97 30892.46 360
Gipumacopyleft90.99 32690.15 32993.51 33798.73 31390.12 36093.98 36299.45 18579.32 36192.28 35694.91 35869.61 36497.98 34787.42 35895.67 29392.45 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015