This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
wuyk23d75.13 26979.30 22262.63 36575.56 36675.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39534.16 39597.11 8059.85 392
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39986.57 5295.80 2587.35 2497.62 6294.20 92
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29591.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29992.17 186
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 316
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33170.06 22295.03 16091.21 211
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29591.51 207
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
segment_acmp81.94 105
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 4002.23 40295.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
cdsmvs_eth3d_5k20.81 36627.75 3690.00 3860.00 4080.00 4110.00 39785.44 2430.00 4040.00 40582.82 32481.46 1130.00 4050.00 4040.00 4030.00 401
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34258.62 31295.03 16091.21 211
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
PC_three_145258.96 31690.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36180.39 12595.13 6073.82 18492.98 21691.04 215
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
ANet_high83.17 16385.68 11575.65 30081.24 31645.26 38079.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28883.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
Test By Simon79.09 134
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 309
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 342
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29385.02 19891.62 16777.75 14586.24 28582.79 8187.07 30893.91 109
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32987.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
MVS_Test82.47 17283.22 15680.22 23882.62 30457.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30092.40 173
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28984.51 20890.88 19277.36 15186.21 28782.72 8286.97 31293.38 133
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29974.45 33778.79 36077.20 15390.93 19364.62 27584.80 33983.32 330
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 293
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 34081.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
pcd_1.5k_mvsjas6.41 3698.55 3720.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40476.94 1590.00 4050.00 4040.00 4030.00 401
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29874.38 33977.22 37176.94 15990.94 19264.63 27484.83 33883.35 329
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28082.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 300
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28784.47 21191.33 17476.43 16785.91 29383.14 7287.14 30694.33 90
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28484.00 22590.68 19976.42 16885.89 29583.14 7287.11 30793.81 116
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31586.41 291
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33276.14 15996.80 9082.36 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31386.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
XXY-MVS74.44 28076.19 25569.21 33984.61 27552.43 34871.70 34677.18 31360.73 30580.60 28090.96 18875.44 17269.35 36556.13 32688.33 29185.86 298
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30279.36 29689.89 22075.18 17672.97 35473.32 19292.30 22691.15 213
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28175.32 33284.61 30474.99 17892.30 15759.48 30988.04 29790.68 226
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32466.84 25192.29 22889.11 257
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior692.61 8876.54 10974.84 180
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 341
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31583.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
V4283.47 15883.37 15583.75 16883.16 29863.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 324
mvs_anonymous78.13 23778.76 22976.23 29779.24 33950.31 36378.69 27284.82 25861.60 29483.09 24292.82 13173.89 19387.01 26968.33 24486.41 31791.37 208
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36273.79 19490.53 20761.59 29890.87 25985.49 302
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
diffmvspermissive80.40 20880.48 20680.17 23979.02 34260.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
EI-MVSNet82.61 16882.42 17483.20 18583.25 29563.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29887.52 280
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30188.85 264
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 282
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32182.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
HQP2-MVS72.10 216
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
testgi72.36 29574.61 26865.59 35680.56 32742.82 38868.29 36173.35 34166.87 24981.84 26189.93 21872.08 21866.92 37846.05 37792.54 22387.01 286
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16781.93 17985.19 13282.08 30580.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
新几何182.95 19193.96 5578.56 8480.24 29555.45 33683.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 347
SSC-MVS77.55 24381.64 18365.29 35990.46 15520.33 40473.56 33568.28 36685.44 3288.18 13994.64 6070.93 22681.33 32671.25 20892.03 23494.20 92
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
WB-MVS76.06 26180.01 21764.19 36289.96 16820.58 40372.18 34368.19 36783.21 5486.46 17693.49 11270.19 22978.97 33865.96 25790.46 26993.02 149
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34292.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 18981.59 18681.79 21580.86 32259.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29275.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32975.43 32978.30 36369.11 23491.44 17860.68 30387.70 30284.42 312
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32777.62 371
MVS73.21 28972.59 29175.06 30580.97 31960.81 27981.64 23185.92 23846.03 37671.68 35277.54 36668.47 23789.77 23155.70 32985.39 32474.60 377
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33258.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
testdata79.54 24892.87 8272.34 15480.14 29659.91 31285.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 360
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30975.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 299
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27980.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 34164.59 22866.58 36975.67 32473.15 17788.86 12288.99 23566.94 24381.23 32764.71 27288.22 29691.64 203
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 32855.35 33394.90 16693.12 146
test22293.31 7176.54 10979.38 26077.79 30652.59 34982.36 25190.84 19466.83 24591.69 24181.25 355
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32682.65 336
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28383.34 23787.37 26066.20 24788.66 25364.69 27385.02 33286.32 292
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34153.86 34183.82 34471.48 380
WB-MVSnew68.72 32769.01 32367.85 34683.22 29743.98 38474.93 32365.98 37655.09 33773.83 34179.11 35665.63 25271.89 35838.21 39285.04 33187.69 279
EPNet80.37 20978.41 23586.23 11176.75 35673.28 13687.18 11177.45 30976.24 13168.14 36788.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37569.64 22088.33 13590.19 21364.58 25683.63 31571.99 20690.03 27281.06 360
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36258.01 30975.47 31988.82 18958.05 32383.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31460.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
test20.0373.75 28474.59 27071.22 32781.11 31851.12 35970.15 35672.10 35070.42 21180.28 28891.50 17064.21 25974.72 35346.96 37494.58 17887.82 278
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33387.34 21055.94 33475.16 33476.53 37563.97 26091.16 18665.00 26990.97 25688.06 271
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29181.35 27186.92 27063.96 26188.78 25150.61 35793.01 21588.04 272
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35483.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 304
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
cl____80.42 20780.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
new-patchmatchnet70.10 31573.37 28260.29 37281.23 31716.95 40559.54 38274.62 32962.93 27880.97 27387.93 25062.83 27071.90 35755.24 33495.01 16392.00 192
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
131473.22 28872.56 29375.20 30380.41 32957.84 31081.64 23185.36 24451.68 35773.10 34576.65 37461.45 27385.19 30263.54 28179.21 36982.59 337
Syy-MVS69.40 32370.03 31567.49 34981.72 30938.94 39171.00 34961.99 38261.38 29670.81 35772.36 38461.37 27479.30 33564.50 27785.18 32884.22 314
CANet_DTU77.81 24177.05 24680.09 24081.37 31559.90 28883.26 19088.29 20069.16 22467.83 37083.72 31260.93 27589.47 23569.22 23089.70 27590.88 219
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33584.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 276
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33676.47 35952.70 34670.03 35780.97 29159.18 31479.36 29688.21 24560.50 27769.12 36658.33 31577.62 37687.04 285
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 31890.22 237
SCA73.32 28672.57 29275.58 30281.62 31155.86 32478.89 26971.37 35661.73 29074.93 33583.42 31760.46 27887.01 26958.11 31782.63 35583.88 318
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35877.84 30885.07 29960.32 28089.00 24570.74 21589.27 28089.03 261
jason: jason.
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 34173.66 34379.80 35260.25 28186.76 27858.37 31384.15 34387.32 283
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29454.19 33482.14 22781.96 28256.76 33369.57 36386.21 28060.03 28284.83 30649.58 36382.65 35385.11 305
Anonymous2023120671.38 30571.88 29769.88 33486.31 24654.37 33370.39 35474.62 32952.57 35076.73 31588.76 23759.94 28372.06 35644.35 38193.23 21083.23 332
IterMVS76.91 25076.34 25478.64 25880.91 32064.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28484.46 30868.61 24085.15 33087.42 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 31670.44 30968.90 34073.76 37753.42 34158.99 38567.20 37158.42 31987.10 15585.39 29259.82 28567.32 37559.79 30783.50 34685.96 295
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34173.84 37653.47 33958.93 38667.28 37058.43 31887.09 15685.40 29159.80 28667.25 37659.66 30883.54 34585.92 297
PMMVS61.65 35160.38 35865.47 35865.40 40069.26 18763.97 37561.73 38636.80 39660.11 39068.43 38959.42 28766.35 38048.97 36578.57 37260.81 391
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30378.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34779.42 33651.15 35867.82 36575.79 32254.15 34277.47 31485.36 29459.26 28970.64 36148.46 36779.35 36781.66 349
Anonymous2024052180.18 21681.25 19476.95 28583.15 29960.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34373.71 18697.55 6792.56 166
WTY-MVS67.91 33068.35 32866.58 35380.82 32348.12 36965.96 37072.60 34553.67 34471.20 35481.68 33758.97 29169.06 36748.57 36681.67 35782.55 339
cl2278.97 22578.21 23781.24 22277.74 34659.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28589.03 261
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36576.23 32082.82 32458.69 29388.94 24669.85 22388.77 28588.07 270
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33886.17 23250.70 36473.14 34485.94 28358.31 29585.90 29456.51 32383.22 34787.20 284
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
sss66.92 33367.26 33265.90 35577.23 35151.10 36064.79 37271.72 35452.12 35570.13 36080.18 34957.96 29865.36 38450.21 35881.01 36381.25 355
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32556.89 31971.53 34878.42 30358.24 32079.32 29882.92 32357.91 29984.26 31065.60 26491.36 24889.56 248
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30873.96 34087.94 24957.89 30089.45 23752.02 35174.87 38285.06 306
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34563.97 38584.73 30357.79 30192.34 15539.65 38881.33 36184.45 311
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 36083.16 27142.99 38675.92 32485.46 28957.22 30485.18 30349.87 36181.67 35786.14 294
mvsany_test158.48 36056.47 36564.50 36165.90 39968.21 19756.95 38842.11 40338.30 39465.69 37677.19 37256.96 30559.35 39346.16 37558.96 39665.93 387
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35760.97 27764.69 37385.04 25263.98 27483.20 23988.22 24456.67 30678.79 34073.22 19393.12 21292.78 157
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
our_test_371.85 29971.59 29972.62 31980.71 32553.78 33769.72 35871.71 35558.80 31778.03 30580.51 34756.61 30878.84 33962.20 29086.04 32185.23 303
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30981.63 32556.63 32279.04 37187.87 277
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34877.73 31286.38 27456.35 31084.97 30457.72 31987.05 30985.51 301
MVEpermissive40.22 2351.82 36450.47 36755.87 37662.66 40251.91 35131.61 39539.28 40440.65 38950.76 39874.98 38056.24 31144.67 39933.94 39664.11 39471.04 382
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 35862.54 35354.72 37877.26 35027.74 40174.05 33061.00 38860.48 30765.62 37767.03 39155.93 31268.23 37332.07 39869.46 39268.17 385
N_pmnet70.20 31368.80 32674.38 30880.91 32084.81 3959.12 38476.45 32055.06 33875.31 33382.36 32955.74 31354.82 39447.02 37287.24 30583.52 325
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30862.50 25573.82 33477.90 30552.44 35175.92 32481.27 33955.67 31481.75 32355.37 33277.70 37574.94 376
DSMNet-mixed60.98 35661.61 35659.09 37572.88 38345.05 38174.70 32546.61 40126.20 39765.34 37890.32 20955.46 31563.12 38841.72 38581.30 36269.09 384
pmmvs570.73 31070.07 31372.72 31877.03 35452.73 34574.14 32875.65 32550.36 36772.17 35085.37 29355.42 31680.67 33052.86 34887.59 30384.77 308
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36567.22 20381.21 23782.18 28050.78 36376.50 31687.66 25555.20 31782.99 31862.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 30671.58 30170.47 33077.58 34959.99 28774.25 32784.22 26451.06 36074.85 33679.10 35755.10 31868.83 36868.86 23679.20 37082.58 338
MIMVSNet71.09 30771.59 29969.57 33787.23 22350.07 36478.91 26871.83 35260.20 31171.26 35391.76 16455.08 31976.09 34741.06 38687.02 31182.54 340
PVSNet_051.08 2256.10 36154.97 36659.48 37475.12 37153.28 34255.16 38961.89 38444.30 38059.16 39162.48 39454.22 32065.91 38235.40 39447.01 39759.25 393
EPNet_dtu72.87 29271.33 30477.49 28077.72 34760.55 28282.35 21875.79 32266.49 25258.39 39581.06 34153.68 32185.98 29153.55 34292.97 21785.95 296
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 36359.27 36244.74 38064.30 40112.32 40640.60 39349.79 39953.19 34665.06 38284.81 30153.60 32249.76 39732.68 39789.41 27772.15 379
test_vis1_rt65.64 34264.09 34670.31 33166.09 39770.20 17861.16 38081.60 28738.65 39372.87 34669.66 38752.84 32360.04 39156.16 32577.77 37480.68 362
mvsany_test365.48 34362.97 35073.03 31769.99 39076.17 11864.83 37143.71 40243.68 38380.25 28987.05 26952.83 32463.09 38951.92 35572.44 38479.84 367
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34187.31 21146.79 37180.29 28684.30 30752.70 32592.10 16351.88 35686.73 31390.22 237
dmvs_re66.81 33666.98 33366.28 35476.87 35558.68 30571.66 34772.24 34860.29 30969.52 36473.53 38152.38 32664.40 38644.90 37981.44 36075.76 374
test_cas_vis1_n_192069.20 32569.12 32069.43 33873.68 37862.82 24970.38 35577.21 31246.18 37580.46 28578.95 35952.03 32765.53 38365.77 26377.45 37879.95 366
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
FMVSNet378.80 23078.55 23279.57 24782.89 30356.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
D2MVS76.84 25175.67 26180.34 23680.48 32862.16 26373.50 33684.80 25957.61 32782.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
PVSNet58.17 2166.41 33865.63 34268.75 34281.96 30649.88 36562.19 37972.51 34751.03 36168.04 36875.34 37950.84 33374.77 35145.82 37882.96 34881.60 350
GA-MVS75.83 26374.61 26879.48 24981.87 30759.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32389.72 246
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32667.39 36971.94 19877.80 31087.66 25550.48 33575.83 34949.95 35979.51 36558.58 394
test_fmvs375.72 26575.20 26577.27 28275.01 37369.47 18478.93 26784.88 25746.67 37287.08 15787.84 25250.44 33671.62 35977.42 14688.53 28890.72 223
test_vis1_n70.29 31269.99 31671.20 32875.97 36466.50 21276.69 30080.81 29244.22 38175.43 32977.23 37050.00 33768.59 36966.71 25382.85 35278.52 370
MVS-HIRNet61.16 35462.92 35155.87 37679.09 34035.34 39771.83 34557.98 39446.56 37359.05 39291.14 18049.95 33876.43 34638.74 39071.92 38655.84 395
CVMVSNet72.62 29371.41 30376.28 29583.25 29560.34 28383.50 18479.02 30237.77 39576.33 31885.10 29649.60 33987.41 26570.54 21877.54 37781.08 358
RPMNet78.88 22778.28 23680.68 23279.58 33362.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 34095.56 3973.48 18982.91 35083.85 321
test_fmvs273.57 28572.80 28775.90 29972.74 38568.84 19377.07 29484.32 26345.14 37882.89 24484.22 30848.37 34170.36 36273.40 19187.03 31088.52 267
tpmrst66.28 33966.69 33765.05 36072.82 38439.33 39078.20 27870.69 35953.16 34767.88 36980.36 34848.18 34274.75 35258.13 31670.79 38781.08 358
CR-MVSNet74.00 28273.04 28576.85 28979.58 33362.64 25282.58 21076.90 31550.50 36675.72 32692.38 14448.07 34384.07 31168.72 23982.91 35083.85 321
Patchmtry76.56 25677.46 24173.83 31079.37 33846.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31263.36 28395.31 15090.92 218
test_f64.31 34765.85 33959.67 37366.54 39662.24 26257.76 38770.96 35740.13 39084.36 21382.09 33146.93 34551.67 39661.99 29381.89 35665.12 388
ADS-MVSNet265.87 34163.64 34972.55 32073.16 38156.92 31867.10 36674.81 32849.74 36866.04 37482.97 32046.71 34677.26 34442.29 38369.96 38983.46 326
ADS-MVSNet61.90 35062.19 35461.03 37173.16 38136.42 39667.10 36661.75 38549.74 36866.04 37482.97 32046.71 34663.21 38742.29 38369.96 38983.46 326
PatchmatchNetpermissive69.71 32068.83 32572.33 32377.66 34853.60 33879.29 26169.99 36157.66 32672.53 34882.93 32246.45 34880.08 33460.91 30272.09 38583.31 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37389.29 27884.32 313
sam_mvs146.11 35083.88 318
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25389.31 253
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25392.66 163
baseline269.77 31966.89 33478.41 26379.51 33558.09 30776.23 30869.57 36357.50 32864.82 38377.45 36846.02 35188.44 25453.08 34477.83 37388.70 265
patchmatchnet-post81.71 33645.93 35487.01 269
sam_mvs45.92 355
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34269.16 36557.70 32586.76 16386.33 27645.79 35682.59 31969.63 22590.65 26781.54 351
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35788.80 24851.98 35290.99 25389.31 253
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
tpm cat166.76 33765.21 34471.42 32677.09 35350.62 36278.01 27973.68 34044.89 37968.64 36579.00 35845.51 35982.42 32249.91 36070.15 38881.23 357
test_post3.10 40145.43 36077.22 345
MDTV_nov1_ep1368.29 32978.03 34543.87 38574.12 32972.22 34952.17 35267.02 37285.54 28745.36 36180.85 32955.73 32784.42 341
tpmvs70.16 31469.56 31971.96 32474.71 37448.13 36879.63 25475.45 32765.02 26970.26 35981.88 33445.34 36285.68 29858.34 31475.39 38182.08 346
MDTV_nov1_ep13_2view27.60 40270.76 35246.47 37461.27 38745.20 36349.18 36483.75 323
test_post178.85 2713.13 40045.19 36480.13 33358.11 317
CostFormer69.98 31868.68 32773.87 30977.14 35250.72 36179.26 26274.51 33151.94 35670.97 35684.75 30245.16 36587.49 26455.16 33579.23 36883.40 328
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
Patchmatch-test65.91 34067.38 33161.48 37075.51 36743.21 38768.84 35963.79 38062.48 28272.80 34783.42 31744.89 36759.52 39248.27 36986.45 31681.70 348
EU-MVSNet75.12 27074.43 27277.18 28383.11 30059.48 29285.71 13882.43 27939.76 39285.64 18988.76 23744.71 36887.88 26073.86 18385.88 32284.16 317
PatchT70.52 31172.76 28963.79 36479.38 33733.53 39877.63 28665.37 37873.61 16571.77 35192.79 13444.38 36975.65 35064.53 27685.37 32582.18 344
test_vis3_rt71.42 30470.67 30673.64 31269.66 39170.46 17566.97 36889.73 17442.68 38888.20 13883.04 31943.77 37060.07 39065.35 26786.66 31490.39 235
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37566.93 20875.99 31284.21 26543.31 38579.40 29579.39 35543.47 37168.55 37069.05 23384.91 33582.10 345
test-LLR67.21 33166.74 33668.63 34376.45 36055.21 32967.89 36267.14 37262.43 28565.08 38072.39 38243.41 37269.37 36361.00 30084.89 33681.31 353
test0.0.03 164.66 34564.36 34565.57 35775.03 37246.89 37564.69 37361.58 38762.43 28571.18 35577.54 36643.41 37268.47 37240.75 38782.65 35381.35 352
test_fmvs169.57 32169.05 32271.14 32969.15 39265.77 22173.98 33183.32 27042.83 38777.77 31178.27 36443.39 37468.50 37168.39 24384.38 34279.15 368
MVSTER77.09 24875.70 26081.25 22075.27 37061.08 27277.49 29085.07 25060.78 30486.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
tpm67.95 32968.08 33067.55 34878.74 34443.53 38675.60 31567.10 37454.92 33972.23 34988.10 24642.87 37675.97 34852.21 35080.95 36483.15 333
tpm268.45 32866.83 33573.30 31478.93 34348.50 36779.76 25371.76 35347.50 37069.92 36183.60 31342.07 37788.40 25548.44 36879.51 36583.01 335
EMVS61.10 35560.81 35761.99 36765.96 39855.86 32453.10 39158.97 39267.06 24756.89 39663.33 39340.98 37867.03 37754.79 33786.18 32063.08 389
new_pmnet55.69 36257.66 36349.76 37975.47 36830.59 39959.56 38151.45 39843.62 38462.49 38675.48 37840.96 37949.15 39837.39 39372.52 38369.55 383
E-PMN61.59 35261.62 35561.49 36966.81 39555.40 32753.77 39060.34 38966.80 25058.90 39365.50 39240.48 38066.12 38155.72 32886.25 31962.95 390
EPMVS62.47 34862.63 35262.01 36670.63 38938.74 39274.76 32452.86 39753.91 34367.71 37180.01 35039.40 38166.60 37955.54 33168.81 39380.68 362
tmp_tt20.25 36724.50 3707.49 3834.47 4058.70 40734.17 39425.16 4061.00 40132.43 40018.49 39839.37 3829.21 40221.64 40043.75 3984.57 398
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 30168.11 19877.09 29376.51 31960.67 30677.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
thisisatest051573.00 29170.52 30880.46 23481.45 31359.90 28873.16 34074.31 33357.86 32476.08 32377.78 36537.60 38692.12 16265.00 26991.45 24789.35 252
FMVSNet572.10 29871.69 29873.32 31381.57 31253.02 34376.77 29878.37 30463.31 27576.37 31791.85 15836.68 38778.98 33747.87 37092.45 22487.95 274
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
dp60.70 35760.29 36061.92 36872.04 38738.67 39370.83 35164.08 37951.28 35960.75 38877.28 36936.59 38871.58 36047.41 37162.34 39575.52 375
CHOSEN 280x42059.08 35956.52 36466.76 35276.51 35864.39 23249.62 39259.00 39143.86 38255.66 39768.41 39035.55 39068.21 37443.25 38276.78 38067.69 386
IB-MVS62.13 1971.64 30168.97 32479.66 24680.80 32462.26 26173.94 33276.90 31563.27 27668.63 36676.79 37333.83 39191.84 17059.28 31087.26 30484.88 307
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 32266.64 33877.70 27773.19 38071.24 17075.67 31465.56 37770.42 21165.18 37992.97 12633.64 39283.06 31653.52 34369.61 39178.79 369
iter_conf0578.81 22977.35 24483.21 18482.98 30260.75 28084.09 16688.34 19863.12 27784.25 22289.48 22531.41 39394.51 8176.64 15395.83 13294.38 88
DeepMVS_CXcopyleft24.13 38232.95 40329.49 40021.63 40712.07 39837.95 39945.07 39730.84 39419.21 40117.94 40133.06 40023.69 397
gg-mvs-nofinetune68.96 32669.11 32168.52 34576.12 36345.32 37983.59 18255.88 39586.68 2464.62 38497.01 730.36 39583.97 31344.78 38082.94 34976.26 373
GG-mvs-BLEND67.16 35073.36 37946.54 37784.15 16455.04 39658.64 39461.95 39529.93 39683.87 31438.71 39176.92 37971.07 381
test_method30.46 36529.60 36833.06 38117.99 4043.84 40813.62 39673.92 3352.79 39918.29 40153.41 39628.53 39743.25 40022.56 39935.27 39952.11 396
test-mter65.00 34463.79 34868.63 34376.45 36055.21 32967.89 36267.14 37250.98 36265.08 38072.39 38228.27 39869.37 36361.00 30084.89 33681.31 353
TESTMET0.1,161.29 35360.32 35964.19 36272.06 38651.30 35667.89 36262.09 38145.27 37760.65 38969.01 38827.93 39964.74 38556.31 32481.65 35976.53 372
testing22266.93 33265.30 34371.81 32583.38 29345.83 37872.06 34467.50 36864.12 27369.68 36276.37 37627.34 40083.00 31738.88 38988.38 29086.62 290
test250674.12 28173.39 28176.28 29591.85 11544.20 38384.06 16748.20 40072.30 19381.90 25994.20 8127.22 40189.77 23164.81 27196.02 12194.87 67
pmmvs362.47 34860.02 36169.80 33571.58 38864.00 23670.52 35358.44 39339.77 39166.05 37375.84 37727.10 40272.28 35546.15 37684.77 34073.11 378
KD-MVS_2432*160066.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
miper_refine_blended66.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
myMVS_eth3d64.66 34563.89 34766.97 35181.72 30937.39 39471.00 34961.99 38261.38 29670.81 35772.36 38420.96 40579.30 33549.59 36285.18 32884.22 314
testing371.53 30370.79 30573.77 31188.89 18741.86 38976.60 30359.12 39072.83 18180.97 27382.08 33219.80 40687.33 26765.12 26891.68 24292.13 188
test1236.27 3708.08 3730.84 3841.11 4070.57 40962.90 3760.82 4080.54 4021.07 4042.75 4031.26 4070.30 4031.04 4021.26 4021.66 399
testmvs5.91 3717.65 3740.72 3851.20 4060.37 41059.14 3830.67 4090.49 4031.11 4032.76 4020.94 4080.24 4041.02 4031.47 4011.55 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re6.65 3688.87 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40579.80 3520.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS37.39 39452.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
eth-test20.00 408
eth-test0.00 408
IU-MVS94.18 4672.64 14590.82 14456.98 33189.67 10885.78 5097.92 4693.28 137
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
GSMVS83.88 318
test_part293.86 5777.77 9492.84 48
MTGPAbinary91.81 118
MTMP90.66 4433.14 405
gm-plane-assit75.42 36944.97 38252.17 35272.36 38487.90 25954.10 340
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
旧先验281.73 22956.88 33286.54 17484.90 30572.81 200
新几何281.72 230
无先验82.81 20585.62 24158.09 32291.41 18167.95 24784.48 310
原ACMM282.26 223
testdata286.43 28363.52 282
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 410
nn0.00 410
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
NP-MVS91.95 11074.55 12790.17 215
ACMMP++_ref95.74 139
ACMMP++97.35 73