This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
RPMNet78.88 22778.28 23680.68 23279.58 33362.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 34095.56 3973.48 18982.91 35083.85 321
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36180.39 12595.13 6073.82 18492.98 21691.04 215
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39986.57 5295.80 2587.35 2497.62 6294.20 92
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 309
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
ANet_high83.17 16385.68 11575.65 30081.24 31645.26 38079.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
HQP3-MVS92.68 9194.47 180
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29992.17 186
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29591.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28883.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
MVS_Test82.47 17283.22 15680.22 23882.62 30457.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30092.40 173
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32987.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 118
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27980.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28082.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 300
test1191.46 124
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30975.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 299
IU-MVS94.18 4672.64 14590.82 14456.98 33189.67 10885.78 5097.92 4693.28 137
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 34081.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28175.32 33284.61 30474.99 17892.30 15759.48 30988.04 29790.68 226
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31386.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29275.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32975.43 32978.30 36369.11 23491.44 17860.68 30387.70 30284.42 312
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33276.14 15996.80 9082.36 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30188.85 264
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
diffmvspermissive80.40 20880.48 20680.17 23979.02 34260.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15883.37 15583.75 16883.16 29863.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
c3_l81.64 18981.59 18681.79 21580.86 32259.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31460.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28589.03 261
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 316
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 30470.67 30673.64 31269.66 39170.46 17566.97 36889.73 17442.68 38888.20 13883.04 31943.77 37060.07 39065.35 26786.66 31490.39 235
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33258.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29591.51 207
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 282
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31586.41 291
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36258.01 30975.47 31988.82 18958.05 32383.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32466.84 25192.29 22889.11 257
LF4IMVS82.75 16781.93 17985.19 13282.08 30580.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 341
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
iter_conf0578.81 22977.35 24483.21 18482.98 30260.75 28084.09 16688.34 19863.12 27784.25 22289.48 22531.41 39394.51 8176.64 15395.83 13294.38 88
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 293
CANet_DTU77.81 24177.05 24680.09 24081.37 31559.90 28883.26 19088.29 20069.16 22467.83 37083.72 31260.93 27589.47 23569.22 23089.70 27590.88 219
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35483.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 304
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36273.79 19490.53 20761.59 29890.87 25985.49 302
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 342
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33387.34 21055.94 33475.16 33476.53 37563.97 26091.16 18665.00 26990.97 25688.06 271
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34187.31 21146.79 37180.29 28684.30 30752.70 32592.10 16351.88 35686.73 31390.22 237
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
cl2278.97 22578.21 23781.24 22277.74 34659.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29874.38 33977.22 37176.94 15990.94 19264.63 27484.83 33883.35 329
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29974.45 33778.79 36077.20 15390.93 19364.62 27584.80 33983.32 330
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 34173.66 34379.80 35260.25 28186.76 27858.37 31384.15 34387.32 283
cl____80.42 20780.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34563.97 38584.73 30357.79 30192.34 15539.65 38881.33 36184.45 311
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32777.62 371
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 4002.23 40295.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29887.52 280
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33886.17 23250.70 36473.14 34485.94 28358.31 29585.90 29456.51 32383.22 34787.20 284
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31583.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33170.06 22295.03 16091.21 211
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
Anonymous2024052180.18 21681.25 19476.95 28583.15 29960.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34373.71 18697.55 6792.56 166
MVS73.21 28972.59 29175.06 30580.97 31960.81 27981.64 23185.92 23846.03 37671.68 35277.54 36668.47 23789.77 23155.70 32985.39 32474.60 377
FMVSNet378.80 23078.55 23279.57 24782.89 30356.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34292.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 20585.62 24158.09 32291.41 18167.95 24784.48 310
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32182.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
cdsmvs_eth3d_5k20.81 36627.75 3690.00 3860.00 4080.00 4110.00 39785.44 2430.00 4040.00 40582.82 32481.46 1130.00 4050.00 4040.00 4030.00 401
131473.22 28872.56 29375.20 30380.41 32957.84 31081.64 23185.36 24451.68 35773.10 34576.65 37461.45 27385.19 30263.54 28179.21 36982.59 337
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30873.96 34087.94 24957.89 30089.45 23752.02 35174.87 38285.06 306
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
EI-MVSNet82.61 16882.42 17483.20 18583.25 29563.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
MVSTER77.09 24875.70 26081.25 22075.27 37061.08 27277.49 29085.07 25060.78 30486.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35760.97 27764.69 37385.04 25263.98 27483.20 23988.22 24456.67 30678.79 34073.22 19393.12 21292.78 157
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
test_fmvs375.72 26575.20 26577.27 28275.01 37369.47 18478.93 26784.88 25746.67 37287.08 15787.84 25250.44 33671.62 35977.42 14688.53 28890.72 223
mvs_anonymous78.13 23778.76 22976.23 29779.24 33950.31 36378.69 27284.82 25861.60 29483.09 24292.82 13173.89 19387.01 26968.33 24486.41 31791.37 208
D2MVS76.84 25175.67 26180.34 23680.48 32862.16 26373.50 33684.80 25957.61 32782.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
test_fmvs273.57 28572.80 28775.90 29972.74 38568.84 19377.07 29484.32 26345.14 37882.89 24484.22 30848.37 34170.36 36273.40 19187.03 31088.52 267
test_vis1_n_192071.30 30671.58 30170.47 33077.58 34959.99 28774.25 32784.22 26451.06 36074.85 33679.10 35755.10 31868.83 36868.86 23679.20 37082.58 338
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37566.93 20875.99 31284.21 26543.31 38579.40 29579.39 35543.47 37168.55 37069.05 23384.91 33582.10 345
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
test_fmvs169.57 32169.05 32271.14 32969.15 39265.77 22173.98 33183.32 27042.83 38777.77 31178.27 36443.39 37468.50 37168.39 24384.38 34279.15 368
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 36083.16 27142.99 38675.92 32485.46 28957.22 30485.18 30349.87 36181.67 35786.14 294
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30279.36 29689.89 22075.18 17672.97 35473.32 19292.30 22691.15 213
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32682.65 336
GA-MVS75.83 26374.61 26879.48 24981.87 30759.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32389.72 246
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34258.62 31295.03 16091.21 211
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28383.34 23787.37 26066.20 24788.66 25364.69 27385.02 33286.32 292
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
EU-MVSNet75.12 27074.43 27277.18 28383.11 30059.48 29285.71 13882.43 27939.76 39285.64 18988.76 23744.71 36887.88 26073.86 18385.88 32284.16 317
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36567.22 20381.21 23782.18 28050.78 36376.50 31687.66 25555.20 31782.99 31862.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30378.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29454.19 33482.14 22781.96 28256.76 33369.57 36386.21 28060.03 28284.83 30649.58 36382.65 35385.11 305
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35877.84 30885.07 29960.32 28089.00 24570.74 21589.27 28089.03 261
jason: jason.
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 324
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
test_vis1_rt65.64 34264.09 34670.31 33166.09 39770.20 17861.16 38081.60 28738.65 39372.87 34669.66 38752.84 32360.04 39156.16 32577.77 37480.68 362
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 31890.22 237
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33676.47 35952.70 34670.03 35780.97 29159.18 31479.36 29688.21 24560.50 27769.12 36658.33 31577.62 37687.04 285
test_vis1_n70.29 31269.99 31671.20 32875.97 36466.50 21276.69 30080.81 29244.22 38175.43 32977.23 37050.00 33768.59 36966.71 25382.85 35278.52 370
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36576.23 32082.82 32458.69 29388.94 24669.85 22388.77 28588.07 270
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 32855.35 33394.90 16693.12 146
新几何182.95 19193.96 5578.56 8480.24 29555.45 33683.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 347
testdata79.54 24892.87 8272.34 15480.14 29659.91 31285.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 360
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29181.35 27186.92 27063.96 26188.78 25150.61 35793.01 21588.04 272
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33584.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 276
KD-MVS_2432*160066.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
miper_refine_blended66.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
IterMVS76.91 25076.34 25478.64 25880.91 32064.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28484.46 30868.61 24085.15 33087.42 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 29371.41 30376.28 29583.25 29560.34 28383.50 18479.02 30237.77 39576.33 31885.10 29649.60 33987.41 26570.54 21877.54 37781.08 358
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32556.89 31971.53 34878.42 30358.24 32079.32 29882.92 32357.91 29984.26 31065.60 26491.36 24889.56 248
FMVSNet572.10 29871.69 29873.32 31381.57 31253.02 34376.77 29878.37 30463.31 27576.37 31791.85 15836.68 38778.98 33747.87 37092.45 22487.95 274
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30862.50 25573.82 33477.90 30552.44 35175.92 32481.27 33955.67 31481.75 32355.37 33277.70 37574.94 376
test22293.31 7176.54 10979.38 26077.79 30652.59 34982.36 25190.84 19466.83 24591.69 24181.25 355
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29385.02 19891.62 16777.75 14586.24 28582.79 8187.07 30893.91 109
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34877.73 31286.38 27456.35 31084.97 30457.72 31987.05 30985.51 301
EPNet80.37 20978.41 23586.23 11176.75 35673.28 13687.18 11177.45 30976.24 13168.14 36788.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28784.47 21191.33 17476.43 16785.91 29383.14 7287.14 30694.33 90
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28984.51 20890.88 19277.36 15186.21 28782.72 8286.97 31293.38 133
test_cas_vis1_n_192069.20 32569.12 32069.43 33873.68 37862.82 24970.38 35577.21 31246.18 37580.46 28578.95 35952.03 32765.53 38365.77 26377.45 37879.95 366
XXY-MVS74.44 28076.19 25569.21 33984.61 27552.43 34871.70 34677.18 31360.73 30580.60 28090.96 18875.44 17269.35 36556.13 32688.33 29185.86 298
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28484.00 22590.68 19976.42 16885.89 29583.14 7287.11 30793.81 116
CR-MVSNet74.00 28273.04 28576.85 28979.58 33362.64 25282.58 21076.90 31550.50 36675.72 32692.38 14448.07 34384.07 31168.72 23982.91 35083.85 321
Patchmtry76.56 25677.46 24173.83 31079.37 33846.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31263.36 28395.31 15090.92 218
IB-MVS62.13 1971.64 30168.97 32479.66 24680.80 32462.26 26173.94 33276.90 31563.27 27668.63 36676.79 37333.83 39191.84 17059.28 31087.26 30484.88 307
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 30168.11 19877.09 29376.51 31960.67 30677.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
N_pmnet70.20 31368.80 32674.38 30880.91 32084.81 3959.12 38476.45 32055.06 33875.31 33382.36 32955.74 31354.82 39447.02 37287.24 30583.52 325
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
EPNet_dtu72.87 29271.33 30477.49 28077.72 34760.55 28282.35 21875.79 32266.49 25258.39 39581.06 34153.68 32185.98 29153.55 34292.97 21785.95 296
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34779.42 33651.15 35867.82 36575.79 32254.15 34277.47 31485.36 29459.26 28970.64 36148.46 36779.35 36781.66 349
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 34164.59 22866.58 36975.67 32473.15 17788.86 12288.99 23566.94 24381.23 32764.71 27288.22 29691.64 203
pmmvs570.73 31070.07 31372.72 31877.03 35452.73 34574.14 32875.65 32550.36 36772.17 35085.37 29355.42 31680.67 33052.86 34887.59 30384.77 308
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
tpmvs70.16 31469.56 31971.96 32474.71 37448.13 36879.63 25475.45 32765.02 26970.26 35981.88 33445.34 36285.68 29858.34 31475.39 38182.08 346
ADS-MVSNet265.87 34163.64 34972.55 32073.16 38156.92 31867.10 36674.81 32849.74 36866.04 37482.97 32046.71 34677.26 34442.29 38369.96 38983.46 326
new-patchmatchnet70.10 31573.37 28260.29 37281.23 31716.95 40559.54 38274.62 32962.93 27880.97 27387.93 25062.83 27071.90 35755.24 33495.01 16392.00 192
Anonymous2023120671.38 30571.88 29769.88 33486.31 24654.37 33370.39 35474.62 32952.57 35076.73 31588.76 23759.94 28372.06 35644.35 38193.23 21083.23 332
CostFormer69.98 31868.68 32773.87 30977.14 35250.72 36179.26 26274.51 33151.94 35670.97 35684.75 30245.16 36587.49 26455.16 33579.23 36883.40 328
door-mid74.45 332
thisisatest051573.00 29170.52 30880.46 23481.45 31359.90 28873.16 34074.31 33357.86 32476.08 32377.78 36537.60 38692.12 16265.00 26991.45 24789.35 252
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30981.63 32556.63 32279.04 37187.87 277
test_method30.46 36529.60 36833.06 38117.99 4043.84 40813.62 39673.92 3352.79 39918.29 40153.41 39628.53 39743.25 40022.56 39935.27 39952.11 396
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25389.31 253
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25392.66 163
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37389.29 27884.32 313
tpm cat166.76 33765.21 34471.42 32677.09 35350.62 36278.01 27973.68 34044.89 37968.64 36579.00 35845.51 35982.42 32249.91 36070.15 38881.23 357
testgi72.36 29574.61 26865.59 35680.56 32742.82 38868.29 36173.35 34166.87 24981.84 26189.93 21872.08 21866.92 37846.05 37792.54 22387.01 286
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35788.80 24851.98 35290.99 25389.31 253
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
wuyk23d75.13 26979.30 22262.63 36575.56 36675.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39534.16 39597.11 8059.85 392
WTY-MVS67.91 33068.35 32866.58 35380.82 32348.12 36965.96 37072.60 34553.67 34471.20 35481.68 33758.97 29169.06 36748.57 36681.67 35782.55 339
door72.57 346
PVSNet58.17 2166.41 33865.63 34268.75 34281.96 30649.88 36562.19 37972.51 34751.03 36168.04 36875.34 37950.84 33374.77 35145.82 37882.96 34881.60 350
dmvs_re66.81 33666.98 33366.28 35476.87 35558.68 30571.66 34772.24 34860.29 30969.52 36473.53 38152.38 32664.40 38644.90 37981.44 36075.76 374
MDTV_nov1_ep1368.29 32978.03 34543.87 38574.12 32972.22 34952.17 35267.02 37285.54 28745.36 36180.85 32955.73 32784.42 341
test20.0373.75 28474.59 27071.22 32781.11 31851.12 35970.15 35672.10 35070.42 21180.28 28891.50 17064.21 25974.72 35346.96 37494.58 17887.82 278
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
MIMVSNet71.09 30771.59 29969.57 33787.23 22350.07 36478.91 26871.83 35260.20 31171.26 35391.76 16455.08 31976.09 34741.06 38687.02 31182.54 340
tpm268.45 32866.83 33573.30 31478.93 34348.50 36779.76 25371.76 35347.50 37069.92 36183.60 31342.07 37788.40 25548.44 36879.51 36583.01 335
sss66.92 33367.26 33265.90 35577.23 35151.10 36064.79 37271.72 35452.12 35570.13 36080.18 34957.96 29865.36 38450.21 35881.01 36381.25 355
our_test_371.85 29971.59 29972.62 31980.71 32553.78 33769.72 35871.71 35558.80 31778.03 30580.51 34756.61 30878.84 33962.20 29086.04 32185.23 303
SCA73.32 28672.57 29275.58 30281.62 31155.86 32478.89 26971.37 35661.73 29074.93 33583.42 31760.46 27887.01 26958.11 31782.63 35583.88 318
test_f64.31 34765.85 33959.67 37366.54 39662.24 26257.76 38770.96 35740.13 39084.36 21382.09 33146.93 34551.67 39661.99 29381.89 35665.12 388
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
tpmrst66.28 33966.69 33765.05 36072.82 38439.33 39078.20 27870.69 35953.16 34767.88 36980.36 34848.18 34274.75 35258.13 31670.79 38781.08 358
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34153.86 34183.82 34471.48 380
PatchmatchNetpermissive69.71 32068.83 32572.33 32377.66 34853.60 33879.29 26169.99 36157.66 32672.53 34882.93 32246.45 34880.08 33460.91 30272.09 38583.31 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
baseline269.77 31966.89 33478.41 26379.51 33558.09 30776.23 30869.57 36357.50 32864.82 38377.45 36846.02 35188.44 25453.08 34477.83 37388.70 265
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34269.16 36557.70 32586.76 16386.33 27645.79 35682.59 31969.63 22590.65 26781.54 351
SSC-MVS77.55 24381.64 18365.29 35990.46 15520.33 40473.56 33568.28 36685.44 3288.18 13994.64 6070.93 22681.33 32671.25 20892.03 23494.20 92
WB-MVS76.06 26180.01 21764.19 36289.96 16820.58 40372.18 34368.19 36783.21 5486.46 17693.49 11270.19 22978.97 33865.96 25790.46 26993.02 149
testing22266.93 33265.30 34371.81 32583.38 29345.83 37872.06 34467.50 36864.12 27369.68 36276.37 37627.34 40083.00 31738.88 38988.38 29086.62 290
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32667.39 36971.94 19877.80 31087.66 25550.48 33575.83 34949.95 35979.51 36558.58 394
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34173.84 37653.47 33958.93 38667.28 37058.43 31887.09 15685.40 29159.80 28667.25 37659.66 30883.54 34585.92 297
YYNet170.06 31670.44 30968.90 34073.76 37753.42 34158.99 38567.20 37158.42 31987.10 15585.39 29259.82 28567.32 37559.79 30783.50 34685.96 295
test-LLR67.21 33166.74 33668.63 34376.45 36055.21 32967.89 36267.14 37262.43 28565.08 38072.39 38243.41 37269.37 36361.00 30084.89 33681.31 353
test-mter65.00 34463.79 34868.63 34376.45 36055.21 32967.89 36267.14 37250.98 36265.08 38072.39 38228.27 39869.37 36361.00 30084.89 33681.31 353
tpm67.95 32968.08 33067.55 34878.74 34443.53 38675.60 31567.10 37454.92 33972.23 34988.10 24642.87 37675.97 34852.21 35080.95 36483.15 333
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37569.64 22088.33 13590.19 21364.58 25683.63 31571.99 20690.03 27281.06 360
WB-MVSnew68.72 32769.01 32367.85 34683.22 29743.98 38474.93 32365.98 37655.09 33773.83 34179.11 35665.63 25271.89 35838.21 39285.04 33187.69 279
JIA-IIPM69.41 32266.64 33877.70 27773.19 38071.24 17075.67 31465.56 37770.42 21165.18 37992.97 12633.64 39283.06 31653.52 34369.61 39178.79 369
PatchT70.52 31172.76 28963.79 36479.38 33733.53 39877.63 28665.37 37873.61 16571.77 35192.79 13444.38 36975.65 35064.53 27685.37 32582.18 344
dp60.70 35760.29 36061.92 36872.04 38738.67 39370.83 35164.08 37951.28 35960.75 38877.28 36936.59 38871.58 36047.41 37162.34 39575.52 375
Patchmatch-test65.91 34067.38 33161.48 37075.51 36743.21 38768.84 35963.79 38062.48 28272.80 34783.42 31744.89 36759.52 39248.27 36986.45 31681.70 348
TESTMET0.1,161.29 35360.32 35964.19 36272.06 38651.30 35667.89 36262.09 38145.27 37760.65 38969.01 38827.93 39964.74 38556.31 32481.65 35976.53 372
Syy-MVS69.40 32370.03 31567.49 34981.72 30938.94 39171.00 34961.99 38261.38 29670.81 35772.36 38461.37 27479.30 33564.50 27785.18 32884.22 314
myMVS_eth3d64.66 34563.89 34766.97 35181.72 30937.39 39471.00 34961.99 38261.38 29670.81 35772.36 38420.96 40579.30 33549.59 36285.18 32884.22 314
PVSNet_051.08 2256.10 36154.97 36659.48 37475.12 37153.28 34255.16 38961.89 38444.30 38059.16 39162.48 39454.22 32065.91 38235.40 39447.01 39759.25 393
ADS-MVSNet61.90 35062.19 35461.03 37173.16 38136.42 39667.10 36661.75 38549.74 36866.04 37482.97 32046.71 34663.21 38742.29 38369.96 38983.46 326
PMMVS61.65 35160.38 35865.47 35865.40 40069.26 18763.97 37561.73 38636.80 39660.11 39068.43 38959.42 28766.35 38048.97 36578.57 37260.81 391
test0.0.03 164.66 34564.36 34565.57 35775.03 37246.89 37564.69 37361.58 38762.43 28571.18 35577.54 36643.41 37268.47 37240.75 38782.65 35381.35 352
dmvs_testset60.59 35862.54 35354.72 37877.26 35027.74 40174.05 33061.00 38860.48 30765.62 37767.03 39155.93 31268.23 37332.07 39869.46 39268.17 385
E-PMN61.59 35261.62 35561.49 36966.81 39555.40 32753.77 39060.34 38966.80 25058.90 39365.50 39240.48 38066.12 38155.72 32886.25 31962.95 390
testing371.53 30370.79 30573.77 31188.89 18741.86 38976.60 30359.12 39072.83 18180.97 27382.08 33219.80 40687.33 26765.12 26891.68 24292.13 188
CHOSEN 280x42059.08 35956.52 36466.76 35276.51 35864.39 23249.62 39259.00 39143.86 38255.66 39768.41 39035.55 39068.21 37443.25 38276.78 38067.69 386
EMVS61.10 35560.81 35761.99 36765.96 39855.86 32453.10 39158.97 39267.06 24756.89 39663.33 39340.98 37867.03 37754.79 33786.18 32063.08 389
pmmvs362.47 34860.02 36169.80 33571.58 38864.00 23670.52 35358.44 39339.77 39166.05 37375.84 37727.10 40272.28 35546.15 37684.77 34073.11 378
MVS-HIRNet61.16 35462.92 35155.87 37679.09 34035.34 39771.83 34557.98 39446.56 37359.05 39291.14 18049.95 33876.43 34638.74 39071.92 38655.84 395
gg-mvs-nofinetune68.96 32669.11 32168.52 34576.12 36345.32 37983.59 18255.88 39586.68 2464.62 38497.01 730.36 39583.97 31344.78 38082.94 34976.26 373
GG-mvs-BLEND67.16 35073.36 37946.54 37784.15 16455.04 39658.64 39461.95 39529.93 39683.87 31438.71 39176.92 37971.07 381
EPMVS62.47 34862.63 35262.01 36670.63 38938.74 39274.76 32452.86 39753.91 34367.71 37180.01 35039.40 38166.60 37955.54 33168.81 39380.68 362
new_pmnet55.69 36257.66 36349.76 37975.47 36830.59 39959.56 38151.45 39843.62 38462.49 38675.48 37840.96 37949.15 39837.39 39372.52 38369.55 383
PMMVS255.64 36359.27 36244.74 38064.30 40112.32 40640.60 39349.79 39953.19 34665.06 38284.81 30153.60 32249.76 39732.68 39789.41 27772.15 379
test250674.12 28173.39 28176.28 29591.85 11544.20 38384.06 16748.20 40072.30 19381.90 25994.20 8127.22 40189.77 23164.81 27196.02 12194.87 67
DSMNet-mixed60.98 35661.61 35659.09 37572.88 38345.05 38174.70 32546.61 40126.20 39765.34 37890.32 20955.46 31563.12 38841.72 38581.30 36269.09 384
mvsany_test365.48 34362.97 35073.03 31769.99 39076.17 11864.83 37143.71 40243.68 38380.25 28987.05 26952.83 32463.09 38951.92 35572.44 38479.84 367
mvsany_test158.48 36056.47 36564.50 36165.90 39968.21 19756.95 38842.11 40338.30 39465.69 37677.19 37256.96 30559.35 39346.16 37558.96 39665.93 387
MVEpermissive40.22 2351.82 36450.47 36755.87 37662.66 40251.91 35131.61 39539.28 40440.65 38950.76 39874.98 38056.24 31144.67 39933.94 39664.11 39471.04 382
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4433.14 405
tmp_tt20.25 36724.50 3707.49 3834.47 4058.70 40734.17 39425.16 4061.00 40132.43 40018.49 39839.37 3829.21 40221.64 40043.75 3984.57 398
DeepMVS_CXcopyleft24.13 38232.95 40329.49 40021.63 40712.07 39837.95 39945.07 39730.84 39419.21 40117.94 40133.06 40023.69 397
test1236.27 3708.08 3730.84 3841.11 4070.57 40962.90 3760.82 4080.54 4021.07 4042.75 4031.26 4070.30 4031.04 4021.26 4021.66 399
testmvs5.91 3717.65 3740.72 3851.20 4060.37 41059.14 3830.67 4090.49 4031.11 4032.76 4020.94 4080.24 4041.02 4031.47 4011.55 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas6.41 3698.55 3720.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40476.94 1590.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
n20.00 410
nn0.00 410
ab-mvs-re6.65 3688.87 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40579.80 3520.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS37.39 39452.61 349
PC_three_145258.96 31690.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
eth-test20.00 408
eth-test0.00 408
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
GSMVS83.88 318
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35083.88 318
sam_mvs45.92 355
test_post178.85 2713.13 40045.19 36480.13 33358.11 317
test_post3.10 40145.43 36077.22 345
patchmatchnet-post81.71 33645.93 35487.01 269
gm-plane-assit75.42 36944.97 38252.17 35272.36 38487.90 25954.10 340
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
旧先验281.73 22956.88 33286.54 17484.90 30572.81 200
新几何281.72 230
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep13_2view27.60 40270.76 35246.47 37461.27 38745.20 36349.18 36483.75 323
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134