This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10197.14 5298.34 5491.59 5299.87 795.46 8999.59 1899.64 16
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4497.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4498.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9897.15 5198.33 5791.35 5799.86 895.63 8299.59 1899.62 18
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3798.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1099.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9897.18 5098.29 6392.08 4299.83 2695.63 8299.59 1899.54 33
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9795.95 10398.33 5791.04 6499.88 495.20 9399.57 2499.60 21
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2598.06 8293.37 9395.54 11898.34 5490.59 7299.88 494.83 10499.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7799.40 5199.62 18
X-MVStestdata91.71 21789.67 27897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7432.69 40591.70 4899.80 3095.66 7799.40 5199.62 18
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12596.39 8498.18 7091.61 5099.88 495.59 8799.55 2599.57 26
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9598.59 3090.88 6899.90 296.18 6199.50 3499.58 25
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3198.13 6592.72 12296.70 6698.06 7791.35 5799.86 894.83 10499.28 6299.47 46
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8397.99 8490.99 6599.58 7795.61 8499.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13397.14 5298.44 4491.17 6299.85 1894.35 11699.46 4099.57 26
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8298.30 6291.90 4599.85 1895.61 8499.68 499.54 33
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6398.35 5190.21 7599.53 9194.80 10799.63 1499.38 58
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9797.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
test_part299.28 2595.74 898.10 29
CPTT-MVS95.57 8295.19 8596.70 7399.27 2691.48 12398.33 2898.11 7087.79 27995.17 12498.03 8087.09 12599.61 6993.51 13299.42 4799.02 86
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6795.91 6696.46 9199.24 2890.47 16598.30 3098.57 1889.01 23693.97 14897.57 11992.62 3399.76 3894.66 11099.27 6399.15 75
ACMMPcopyleft96.27 6395.93 6597.28 5799.24 2892.62 8298.25 3798.81 592.99 10994.56 13498.39 4888.96 8999.85 1894.57 11597.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18795.55 11698.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7895.12 8897.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12697.65 11189.97 7999.48 10192.08 16098.59 10398.44 142
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11997.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6899.51 3299.40 54
114514_t93.95 12893.06 14296.63 7699.07 3791.61 11697.46 13497.96 10277.99 38293.00 16997.57 11986.14 13999.33 11589.22 22099.15 7698.94 97
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-296.83 4197.44 1395.01 17599.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5798.10 7392.52 3599.65 5894.58 11499.31 61
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10399.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6399.26 6599.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6399.26 6599.43 51
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4198.27 3992.37 13198.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10697.44 4398.55 3390.93 6699.55 8796.06 6299.25 6799.51 37
dcpmvs_296.37 6097.05 2294.31 21898.96 4684.11 32297.56 12097.51 15593.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
9.1496.75 4198.93 4797.73 9798.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7599.47 39
CDPH-MVS95.97 7195.38 8097.77 3398.93 4794.44 3496.35 23297.88 10986.98 29896.65 7097.89 9091.99 4499.47 10292.26 15199.46 4099.39 56
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
PAPM_NR95.01 9594.59 9896.26 10898.89 5190.68 16097.24 15497.73 12691.80 14792.93 17496.62 17689.13 8799.14 13789.21 22197.78 13098.97 93
OPU-MVS98.55 398.82 5296.86 398.25 3798.26 6696.04 299.24 12495.36 9199.59 1899.56 29
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7399.17 7499.56 29
DP-MVS92.76 18291.51 20396.52 8298.77 5390.99 14497.38 14296.08 27282.38 35889.29 27097.87 9383.77 16899.69 5281.37 33496.69 16198.89 107
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10498.49 1994.66 4897.24 4998.41 4792.31 4098.94 16396.61 4399.46 4098.96 94
TEST998.70 5694.19 4296.41 22498.02 9488.17 26696.03 9897.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3898.70 5694.19 4296.41 22498.02 9488.58 25396.03 9897.56 12192.73 3199.59 7495.04 9699.37 5799.39 56
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_898.67 5894.06 4996.37 23198.01 9788.58 25395.98 10297.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11299.57 84
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9499.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5398.60 6593.59 5897.75 12381.58 36595.75 10997.85 9690.04 7799.67 5686.50 27299.13 7898.69 121
原ACMM196.38 9898.59 6691.09 14397.89 10787.41 29095.22 12397.68 10790.25 7499.54 8987.95 24099.12 8098.49 134
AdaColmapbinary94.34 11293.68 11996.31 10298.59 6691.68 11496.59 21597.81 12189.87 20892.15 18997.06 14583.62 17299.54 8989.34 21598.07 12397.70 190
PLCcopyleft91.00 694.11 12293.43 13396.13 11698.58 6891.15 14296.69 20297.39 17887.29 29391.37 21096.71 16188.39 9999.52 9587.33 25997.13 15297.73 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32796.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4298.46 7094.26 3997.66 13495.52 11990.89 6799.46 10399.25 6799.22 70
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24598.90 394.30 6295.86 10597.74 10492.33 3899.38 11396.04 6599.42 4799.28 65
OMC-MVS95.09 9494.70 9696.25 11198.46 7091.28 13096.43 22297.57 14792.04 14294.77 13097.96 8787.01 12699.09 14491.31 17796.77 15798.36 149
MG-MVS95.61 8095.38 8096.31 10298.42 7390.53 16396.04 25197.48 15893.47 8995.67 11398.10 7389.17 8699.25 12391.27 17898.77 9599.13 77
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 10998.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 171
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4498.45 2289.86 20997.11 5498.01 8392.52 3599.69 5296.03 6699.53 2899.36 60
F-COLMAP93.58 14392.98 14595.37 16198.40 7588.98 21897.18 16297.29 18987.75 28290.49 22997.10 14385.21 14899.50 9986.70 26996.72 16097.63 192
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 7893.38 6397.75 12398.09 7592.30 4199.01 8799.16 73
CNLPA94.28 11393.53 12596.52 8298.38 7892.55 8596.59 21596.88 22790.13 20591.91 19597.24 13585.21 14899.09 14487.64 25297.83 12897.92 177
TAPA-MVS90.10 792.30 19791.22 21495.56 14998.33 8089.60 19096.79 19197.65 13681.83 36291.52 20697.23 13687.94 10698.91 16771.31 38398.37 11298.17 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19196.72 23694.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
CS-MVS-test96.89 3597.04 2396.45 9298.29 8291.66 11599.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18396.92 3599.33 5998.94 97
CHOSEN 1792x268894.15 11893.51 12896.06 11998.27 8389.38 20295.18 29798.48 2185.60 32093.76 15297.11 14283.15 18099.61 6991.33 17698.72 9799.19 71
PVSNet_BlendedMVS94.06 12493.92 11494.47 20798.27 8389.46 19996.73 19698.36 2490.17 20294.36 13795.24 24688.02 10499.58 7793.44 13490.72 27094.36 338
PVSNet_Blended94.87 10394.56 10095.81 13398.27 8389.46 19995.47 28398.36 2488.84 24494.36 13796.09 20688.02 10499.58 7793.44 13498.18 12098.40 145
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
Anonymous2023121190.63 27089.42 28594.27 22198.24 8789.19 21498.05 5697.89 10779.95 37488.25 29694.96 25472.56 32298.13 23989.70 20685.14 32695.49 272
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13696.89 18397.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
test22298.24 8792.21 9695.33 28897.60 14279.22 37895.25 12197.84 9888.80 9299.15 7698.72 118
HyFIR lowres test93.66 14192.92 14795.87 12998.24 8789.88 18394.58 31098.49 1985.06 33093.78 15195.78 22182.86 18998.67 19291.77 16695.71 17999.07 85
MVS_111021_LR96.24 6496.19 6396.39 9798.23 9191.35 12996.24 24398.79 693.99 6995.80 10797.65 11189.92 8099.24 12495.87 6999.20 7298.58 125
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
EI-MVSNet-UG-set96.34 6196.30 6096.47 8998.20 9390.93 14896.86 18597.72 12894.67 4796.16 9498.46 4290.43 7399.58 7796.23 5297.96 12698.90 104
PVSNet_Blended_VisFu95.27 8894.91 9196.38 9898.20 9390.86 15097.27 15298.25 4590.21 20194.18 14297.27 13387.48 11899.73 4293.53 13197.77 13198.55 126
Anonymous20240521192.07 20790.83 22895.76 13498.19 9588.75 22297.58 11895.00 32186.00 31593.64 15397.45 12466.24 36699.53 9190.68 18992.71 23399.01 89
PatchMatch-RL92.90 17492.02 18395.56 14998.19 9590.80 15395.27 29397.18 19387.96 27191.86 19895.68 22780.44 23398.99 16084.01 30797.54 13596.89 223
testdata95.46 15998.18 9788.90 22097.66 13482.73 35697.03 5798.07 7690.06 7698.85 17289.67 20798.98 8898.64 124
CS-MVS96.86 3797.06 1996.26 10898.16 9891.16 14199.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18997.10 3199.17 7498.90 104
Anonymous2024052991.98 21090.73 23395.73 13998.14 9989.40 20197.99 6297.72 12879.63 37693.54 15697.41 12769.94 33999.56 8591.04 18391.11 26398.22 157
LFMVS93.60 14292.63 16196.52 8298.13 10091.27 13197.94 7393.39 36390.57 19696.29 8698.31 6069.00 34599.16 13494.18 11995.87 17499.12 80
SDMVSNet94.17 11693.61 12195.86 13098.09 10191.37 12897.35 14498.20 5293.18 10291.79 19997.28 13179.13 25698.93 16494.61 11392.84 23097.28 211
sd_testset93.10 16292.45 17295.05 17298.09 10189.21 21196.89 18397.64 13893.18 10291.79 19997.28 13175.35 30398.65 19488.99 22692.84 23097.28 211
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16798.09 10186.63 28196.00 25498.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
DPM-MVS95.69 7794.92 9098.01 1998.08 10495.71 995.27 29397.62 14190.43 19995.55 11697.07 14491.72 4699.50 9989.62 20998.94 9098.82 113
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12198.07 10590.28 17097.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 160
VNet95.89 7495.45 7597.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4097.61 11785.29 14799.53 9195.81 7495.27 18799.16 73
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28397.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
MAR-MVS94.22 11493.46 13096.51 8598.00 10892.19 9997.67 10497.47 16188.13 26993.00 16995.84 21484.86 15399.51 9687.99 23998.17 12197.83 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6695.66 7097.29 5597.96 10993.17 7097.30 15098.06 8293.92 7193.38 16198.66 2786.83 12799.73 4295.60 8699.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 27689.28 28893.79 24797.95 11087.13 26996.92 18195.89 27982.83 35586.88 32797.18 13873.77 31699.29 12178.44 35293.62 22394.95 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 28188.98 29393.98 23397.94 11186.64 27896.51 21995.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
TestCases93.98 23397.94 11186.64 27895.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
thres100view90092.43 18991.58 19894.98 17897.92 11389.37 20397.71 10294.66 33492.20 13593.31 16394.90 25878.06 27899.08 14681.40 33194.08 21296.48 233
thres600view792.49 18891.60 19795.18 16697.91 11489.47 19797.65 10794.66 33492.18 13993.33 16294.91 25778.06 27899.10 14181.61 32894.06 21696.98 218
API-MVS94.84 10494.49 10595.90 12897.90 11592.00 10497.80 9197.48 15889.19 23094.81 12996.71 16188.84 9199.17 13288.91 22898.76 9696.53 230
VDD-MVS93.82 13593.08 14196.02 12397.88 11689.96 18297.72 10095.85 28092.43 12995.86 10598.44 4468.42 35299.39 11196.31 4994.85 19398.71 120
tfpn200view992.38 19291.52 20194.95 18197.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.48 233
thres40092.42 19091.52 20195.12 17097.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.98 218
h-mvs3394.15 11893.52 12796.04 12197.81 11990.22 17297.62 11597.58 14695.19 2096.74 6497.45 12483.67 17099.61 6995.85 7179.73 36798.29 152
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25698.18 5795.23 1995.87 10497.65 11191.45 5399.70 5195.87 6999.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 20191.74 19493.73 24997.77 12183.69 32992.88 36296.72 23687.91 27393.00 16994.86 26078.51 26999.05 15486.53 27097.45 14098.47 137
test_yl94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
DCV-MVSNet94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
WTY-MVS94.71 10894.02 11296.79 7297.71 12492.05 10296.59 21597.35 18490.61 19394.64 13296.93 15086.41 13399.39 11191.20 18094.71 20198.94 97
UA-Net95.95 7295.53 7297.20 6397.67 12592.98 7497.65 10798.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19397.35 14399.11 81
IS-MVSNet94.90 10194.52 10496.05 12097.67 12590.56 16298.44 2396.22 26693.21 9893.99 14697.74 10485.55 14598.45 21189.98 19897.86 12799.14 76
test250691.60 22390.78 22994.04 23097.66 12783.81 32598.27 3475.53 40893.43 9195.23 12298.21 6767.21 35899.07 15093.01 14798.49 10699.25 68
ECVR-MVScopyleft93.19 15792.73 15894.57 20497.66 12785.41 30298.21 4488.23 39393.43 9194.70 13198.21 6772.57 32199.07 15093.05 14498.49 10699.25 68
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11397.64 12990.72 15798.00 6198.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 153
PAPR94.18 11593.42 13596.48 8897.64 12991.42 12795.55 27897.71 13288.99 23792.34 18595.82 21689.19 8599.11 14086.14 27897.38 14198.90 104
CANet96.39 5996.02 6497.50 4797.62 13193.38 6397.02 17297.96 10295.42 1594.86 12897.81 9987.38 12199.82 2896.88 3699.20 7299.29 63
thres20092.23 20291.39 20494.75 19697.61 13289.03 21796.60 21495.09 31892.08 14193.28 16494.00 30678.39 27299.04 15781.26 33694.18 20896.19 240
Vis-MVSNet (Re-imp)94.15 11893.88 11594.95 18197.61 13287.92 24998.10 5195.80 28292.22 13393.02 16897.45 12484.53 15797.91 28488.24 23697.97 12599.02 86
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 34997.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
MGCFI-Net95.94 7395.40 7997.56 4697.59 13594.62 3098.21 4497.57 14794.41 5796.17 9296.16 19987.54 11599.17 13296.19 6094.73 20098.91 101
sasdasda96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
LS3D93.57 14492.61 16496.47 8997.59 13591.61 11697.67 10497.72 12885.17 32890.29 23398.34 5484.60 15599.73 4283.85 31298.27 11698.06 172
test111193.19 15792.82 15294.30 21997.58 13984.56 31798.21 4489.02 39193.53 8694.58 13398.21 6772.69 32099.05 15493.06 14398.48 10899.28 65
alignmvs95.87 7595.23 8497.78 3197.56 14095.19 2197.86 8197.17 19594.39 5996.47 8096.40 18785.89 14099.20 12796.21 5795.11 19198.95 96
EPP-MVSNet95.22 9195.04 8995.76 13497.49 14189.56 19298.67 1097.00 21490.69 18594.24 14097.62 11689.79 8198.81 17693.39 13796.49 16598.92 100
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14292.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
test_vis1_n_192094.17 11694.58 9992.91 28297.42 14382.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9397.40 205
PS-MVSNAJ95.37 8595.33 8295.49 15597.35 14490.66 16195.31 29097.48 15893.85 7496.51 7795.70 22688.65 9599.65 5894.80 10798.27 11696.17 241
ab-mvs93.57 14492.55 16696.64 7497.28 14591.96 10695.40 28597.45 16889.81 21393.22 16796.28 19279.62 25099.46 10390.74 18793.11 22798.50 132
xiu_mvs_v2_base95.32 8795.29 8395.40 16097.22 14690.50 16495.44 28497.44 17293.70 7996.46 8196.18 19688.59 9899.53 9194.79 10997.81 12996.17 241
BH-untuned92.94 17292.62 16393.92 24297.22 14686.16 29396.40 22896.25 26590.06 20689.79 25396.17 19883.19 17898.35 22187.19 26297.27 14797.24 213
baseline192.82 18091.90 18895.55 15197.20 14890.77 15597.19 16194.58 33892.20 13592.36 18296.34 19084.16 16498.21 23189.20 22283.90 34797.68 191
Vis-MVSNetpermissive95.23 9094.81 9296.51 8597.18 14991.58 11998.26 3698.12 6794.38 6094.90 12798.15 7282.28 20398.92 16591.45 17598.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6895.89 6796.40 9597.16 15092.44 8897.47 13297.77 12294.55 5096.48 7994.51 27791.23 6198.92 16595.65 8098.19 11997.82 185
BH-RMVSNet92.72 18491.97 18594.97 17997.16 15087.99 24796.15 24795.60 29390.62 19291.87 19797.15 14178.41 27198.57 20383.16 31497.60 13498.36 149
MSDG91.42 23490.24 25394.96 18097.15 15288.91 21993.69 34596.32 26185.72 31986.93 32596.47 18380.24 23798.98 16180.57 33895.05 19296.98 218
tttt051792.96 17092.33 17594.87 18597.11 15387.16 26897.97 6992.09 37590.63 19193.88 15097.01 14876.50 29099.06 15390.29 19595.45 18498.38 147
HY-MVS89.66 993.87 13292.95 14696.63 7697.10 15492.49 8795.64 27596.64 24489.05 23593.00 16995.79 22085.77 14399.45 10589.16 22494.35 20397.96 175
thisisatest053093.03 16792.21 17895.49 15597.07 15589.11 21697.49 13192.19 37490.16 20394.09 14496.41 18676.43 29399.05 15490.38 19295.68 18098.31 151
XVG-OURS93.72 13993.35 13694.80 19297.07 15588.61 22594.79 30597.46 16391.97 14593.99 14697.86 9581.74 21498.88 16992.64 15092.67 23596.92 222
sss94.51 10993.80 11696.64 7497.07 15591.97 10596.32 23598.06 8288.94 24094.50 13596.78 15884.60 15599.27 12291.90 16196.02 17098.68 122
EIA-MVS95.53 8395.47 7495.71 14197.06 15889.63 18897.82 8897.87 11193.57 8193.92 14995.04 25290.61 7198.95 16294.62 11298.68 9898.54 127
XVG-OURS-SEG-HR93.86 13393.55 12394.81 18997.06 15888.53 23095.28 29197.45 16891.68 15194.08 14597.68 10782.41 20198.90 16893.84 12892.47 23696.98 218
1112_ss93.37 15092.42 17396.21 11297.05 16090.99 14496.31 23696.72 23686.87 30189.83 25296.69 16586.51 13199.14 13788.12 23793.67 22198.50 132
Test_1112_low_res92.84 17991.84 19095.85 13197.04 16189.97 18195.53 28096.64 24485.38 32389.65 25895.18 24785.86 14199.10 14187.70 24793.58 22698.49 134
iter_conf05_1193.70 14092.99 14395.84 13297.02 16290.22 17295.57 27794.66 33492.81 12096.17 9296.51 18069.56 34299.07 15095.03 9799.60 1798.23 155
bld_raw_dy_0_6492.85 17891.91 18795.69 14297.02 16289.81 18597.88 7993.96 35492.57 12692.59 17796.79 15769.53 34399.02 15895.03 9791.78 24998.23 155
hse-mvs293.45 14892.99 14394.81 18997.02 16288.59 22696.69 20296.47 25595.19 2096.74 6496.16 19983.67 17098.48 21095.85 7179.13 37197.35 208
EC-MVSNet96.42 5796.47 5396.26 10897.01 16591.52 12198.89 597.75 12394.42 5696.64 7197.68 10789.32 8498.60 19997.45 2699.11 8198.67 123
AUN-MVS91.76 21690.75 23194.81 18997.00 16688.57 22796.65 20696.49 25489.63 21692.15 18996.12 20178.66 26798.50 20790.83 18479.18 37097.36 206
BH-w/o92.14 20691.75 19293.31 26896.99 16785.73 29795.67 27195.69 28888.73 25189.26 27294.82 26382.97 18798.07 25385.26 29396.32 16896.13 245
GeoE93.89 13193.28 13895.72 14096.96 16889.75 18798.24 4096.92 22389.47 22292.12 19197.21 13784.42 15898.39 21887.71 24696.50 16499.01 89
3Dnovator+91.43 495.40 8494.48 10698.16 1696.90 16995.34 1698.48 2197.87 11194.65 4988.53 28898.02 8283.69 16999.71 4693.18 13998.96 8999.44 49
casdiffmvs_mvgpermissive95.81 7695.57 7196.51 8596.87 17091.49 12297.50 12697.56 15193.99 6995.13 12597.92 8987.89 10798.78 17895.97 6797.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet94.04 12693.28 13896.31 10296.85 17191.19 13797.88 7997.68 13394.40 5893.00 16996.18 19673.39 31999.61 6991.72 16798.46 10998.13 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 16692.07 18096.02 12396.84 17290.39 16998.08 5395.85 28086.22 31295.79 10898.46 4267.59 35599.19 12894.92 10294.85 19398.47 137
RPSCF90.75 26590.86 22490.42 34196.84 17276.29 38295.61 27696.34 26083.89 34491.38 20997.87 9376.45 29198.78 17887.16 26492.23 23996.20 239
FE-MVS92.05 20891.05 21895.08 17196.83 17487.93 24893.91 33895.70 28686.30 30994.15 14394.97 25376.59 28999.21 12684.10 30596.86 15498.09 170
MVS_Test94.89 10294.62 9795.68 14396.83 17489.55 19396.70 20097.17 19591.17 17095.60 11596.11 20587.87 10898.76 18293.01 14797.17 15198.72 118
LCM-MVSNet-Re92.50 18692.52 16992.44 29496.82 17681.89 34496.92 18193.71 36092.41 13084.30 34794.60 27385.08 15097.03 34091.51 17297.36 14298.40 145
ETVMVS90.52 27389.14 29294.67 19896.81 17787.85 25395.91 25993.97 35389.71 21592.34 18592.48 34365.41 37097.96 27281.37 33494.27 20698.21 158
test_cas_vis1_n_192094.48 11094.55 10394.28 22096.78 17886.45 28597.63 11397.64 13893.32 9697.68 3898.36 5073.75 31799.08 14696.73 3999.05 8497.31 210
baseline95.58 8195.42 7896.08 11796.78 17890.41 16897.16 16497.45 16893.69 8095.65 11497.85 9687.29 12298.68 19195.66 7797.25 14899.13 77
FA-MVS(test-final)93.52 14692.92 14795.31 16296.77 18088.54 22994.82 30496.21 26889.61 21794.20 14195.25 24583.24 17799.14 13790.01 19796.16 16998.25 153
Fast-Effi-MVS+93.46 14792.75 15695.59 14896.77 18090.03 17596.81 19097.13 19788.19 26591.30 21494.27 29386.21 13698.63 19687.66 25196.46 16798.12 166
QAPM93.45 14892.27 17696.98 7196.77 18092.62 8298.39 2698.12 6784.50 33888.27 29597.77 10282.39 20299.81 2985.40 29198.81 9498.51 131
casdiffmvspermissive95.64 7995.49 7396.08 11796.76 18390.45 16697.29 15197.44 17294.00 6895.46 12097.98 8587.52 11798.73 18595.64 8197.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42093.12 16192.72 15994.34 21596.71 18487.27 26290.29 38197.72 12886.61 30591.34 21195.29 24284.29 16298.41 21393.25 13898.94 9097.35 208
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12596.67 18590.25 17197.91 7698.38 2394.48 5498.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 164
iter_conf0593.18 16092.63 16194.83 18696.64 18690.69 15897.60 11695.53 29892.52 12791.58 20496.64 16876.35 29498.13 23995.43 9091.42 25695.68 269
test_fmvsmvis_n_192096.70 4796.84 3396.31 10296.62 18791.73 10997.98 6398.30 3296.19 596.10 9698.95 889.42 8399.76 3898.90 1099.08 8297.43 203
Effi-MVS+94.93 10094.45 10796.36 10096.61 18891.47 12496.41 22497.41 17791.02 17694.50 13595.92 21087.53 11698.78 17893.89 12696.81 15698.84 112
thisisatest051592.29 19891.30 20995.25 16496.60 18988.90 22094.36 32092.32 37387.92 27293.43 16094.57 27477.28 28599.00 15989.42 21395.86 17597.86 181
PCF-MVS89.48 1191.56 22789.95 26696.36 10096.60 18992.52 8692.51 36797.26 19079.41 37788.90 27796.56 17884.04 16699.55 8777.01 36197.30 14697.01 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base_debi95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
MVSTER93.20 15692.81 15394.37 21296.56 19489.59 19197.06 16997.12 19891.24 16691.30 21495.96 20882.02 20898.05 25693.48 13390.55 27295.47 275
3Dnovator91.36 595.19 9394.44 10897.44 4996.56 19493.36 6598.65 1198.36 2494.12 6589.25 27398.06 7782.20 20599.77 3793.41 13699.32 6099.18 72
test_fmvs193.21 15593.53 12592.25 30196.55 19681.20 35097.40 13996.96 21690.68 18696.80 6198.04 7969.25 34498.40 21497.58 2198.50 10597.16 215
testing9191.90 21291.02 21994.53 20696.54 19786.55 28495.86 26195.64 29291.77 14891.89 19693.47 32769.94 33998.86 17090.23 19693.86 21998.18 160
testing22290.31 27788.96 29494.35 21396.54 19787.29 26095.50 28193.84 35890.97 17791.75 20192.96 33562.18 37998.00 26382.86 31794.08 21297.76 187
testing1191.68 22090.75 23194.47 20796.53 19986.56 28395.76 26894.51 34091.10 17491.24 22093.59 32268.59 34998.86 17091.10 18194.29 20598.00 174
FMVSNet391.78 21590.69 23695.03 17496.53 19992.27 9597.02 17296.93 21989.79 21489.35 26794.65 27177.01 28697.47 32186.12 27988.82 28895.35 285
GBi-Net91.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
test191.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
FMVSNet291.31 24290.08 26094.99 17696.51 20192.21 9697.41 13596.95 21788.82 24688.62 28594.75 26673.87 31397.42 32685.20 29488.55 29395.35 285
testing9991.62 22290.72 23494.32 21696.48 20486.11 29495.81 26494.76 33291.55 15391.75 20193.44 32868.55 35098.82 17490.43 19093.69 22098.04 173
ACMH+87.92 1490.20 28389.18 29093.25 27096.48 20486.45 28596.99 17696.68 24188.83 24584.79 34496.22 19570.16 33698.53 20584.42 30388.04 29694.77 326
CANet_DTU94.37 11193.65 12096.55 8096.46 20692.13 10096.21 24496.67 24394.38 6093.53 15797.03 14779.34 25399.71 4690.76 18698.45 11097.82 185
mvs_anonymous93.82 13593.74 11794.06 22896.44 20785.41 30295.81 26497.05 20889.85 21190.09 24496.36 18987.44 11997.75 29793.97 12296.69 16199.02 86
diffmvspermissive95.25 8995.13 8795.63 14596.43 20889.34 20495.99 25597.35 18492.83 11896.31 8597.37 12886.44 13298.67 19296.26 5097.19 15098.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D91.49 23190.11 25995.63 14596.40 20991.57 12095.34 28793.48 36290.60 19575.58 38495.49 23780.08 24096.79 34994.25 11889.76 28198.52 129
TR-MVS91.48 23290.59 23994.16 22496.40 20987.33 25995.67 27195.34 30787.68 28491.46 20895.52 23676.77 28898.35 22182.85 31993.61 22496.79 226
ACMP89.59 1092.62 18592.14 17994.05 22996.40 20988.20 24097.36 14397.25 19291.52 15488.30 29396.64 16878.46 27098.72 18891.86 16491.48 25495.23 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 8595.16 8695.99 12696.34 21291.21 13498.22 4297.57 14791.42 15996.22 9097.32 12986.20 13797.92 28194.07 12099.05 8498.85 110
lupinMVS94.99 9994.56 10096.29 10696.34 21291.21 13495.83 26396.27 26388.93 24196.22 9096.88 15586.20 13798.85 17295.27 9299.05 8498.82 113
ACMM89.79 892.96 17092.50 17094.35 21396.30 21488.71 22397.58 11897.36 18391.40 16190.53 22896.65 16779.77 24698.75 18391.24 17991.64 25095.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 19891.94 18693.34 26796.25 21586.97 27296.57 21897.05 20890.67 18789.50 26494.80 26486.59 12897.64 30589.91 20086.11 31495.40 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 13793.43 13394.82 18796.21 21689.99 17897.74 9597.51 15594.85 3491.34 21196.64 16881.32 21998.60 19993.02 14592.23 23995.86 251
plane_prior796.21 21689.98 180
ACMH87.59 1690.53 27289.42 28593.87 24396.21 21687.92 24997.24 15496.94 21888.45 25983.91 35596.27 19371.92 32398.62 19884.43 30289.43 28495.05 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 12193.54 12495.93 12796.18 21991.46 12596.33 23497.04 21088.97 23993.56 15496.51 18087.55 11497.89 28589.80 20395.95 17298.44 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 25689.92 26894.19 22296.18 21989.55 19396.31 23697.09 20287.88 27485.67 33595.91 21178.79 26698.57 20381.50 32989.98 27894.44 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 17292.56 16594.10 22696.16 22188.26 23797.65 10797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
LGP-MVS_train94.10 22696.16 22188.26 23797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
TAMVS94.01 12793.46 13095.64 14496.16 22190.45 16696.71 19996.89 22689.27 22893.46 15996.92 15387.29 12297.94 27788.70 23295.74 17798.53 128
testing387.67 31786.88 31890.05 34596.14 22480.71 35397.10 16892.85 36790.15 20487.54 30994.55 27555.70 38894.10 38073.77 37594.10 21195.35 285
plane_prior196.14 224
CLD-MVS92.98 16992.53 16894.32 21696.12 22689.20 21295.28 29197.47 16192.66 12389.90 24995.62 23080.58 23098.40 21492.73 14992.40 23795.38 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 22790.00 17681.32 219
cl2291.21 24690.56 24193.14 27596.09 22886.80 27494.41 31896.58 25087.80 27888.58 28793.99 30780.85 22797.62 30889.87 20286.93 30694.99 304
test_fmvs1_n92.73 18392.88 14992.29 29996.08 22981.05 35197.98 6397.08 20390.72 18496.79 6298.18 7063.07 37598.45 21197.62 2098.42 11197.36 206
Effi-MVS+-dtu93.08 16493.21 14092.68 29296.02 23083.25 33297.14 16696.72 23693.85 7491.20 22293.44 32883.08 18298.30 22591.69 17095.73 17896.50 232
NP-MVS95.99 23189.81 18595.87 212
UWE-MVS89.91 28889.48 28491.21 32695.88 23278.23 37894.91 30390.26 38789.11 23292.35 18494.52 27668.76 34797.96 27283.95 30995.59 18297.42 204
ADS-MVSNet289.45 29788.59 29992.03 30595.86 23382.26 34190.93 37794.32 34783.23 35391.28 21891.81 35779.01 26295.99 35779.52 34491.39 25797.84 182
ADS-MVSNet89.89 29088.68 29893.53 26095.86 23384.89 31490.93 37795.07 31983.23 35391.28 21891.81 35779.01 26297.85 28779.52 34491.39 25797.84 182
HQP-NCC95.86 23396.65 20693.55 8290.14 235
ACMP_Plane95.86 23396.65 20693.55 8290.14 235
HQP-MVS93.19 15792.74 15794.54 20595.86 23389.33 20596.65 20697.39 17893.55 8290.14 23595.87 21280.95 22298.50 20792.13 15792.10 24495.78 260
EI-MVSNet93.03 16792.88 14993.48 26295.77 23886.98 27196.44 22097.12 19890.66 18991.30 21497.64 11486.56 12998.05 25689.91 20090.55 27295.41 278
CVMVSNet91.23 24591.75 19289.67 34995.77 23874.69 38496.44 22094.88 32885.81 31792.18 18897.64 11479.07 25795.58 36888.06 23895.86 17598.74 117
FIs94.09 12393.70 11895.27 16395.70 24092.03 10398.10 5198.68 1393.36 9590.39 23196.70 16387.63 11397.94 27792.25 15390.50 27495.84 254
VPA-MVSNet93.24 15492.48 17195.51 15395.70 24092.39 8997.86 8198.66 1692.30 13292.09 19395.37 24080.49 23298.40 21493.95 12385.86 31595.75 265
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24292.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
tt080591.09 25190.07 26394.16 22495.61 24388.31 23497.56 12096.51 25389.56 21889.17 27495.64 22967.08 36298.38 21991.07 18288.44 29495.80 258
SCA91.84 21491.18 21693.83 24495.59 24484.95 31394.72 30695.58 29590.82 17992.25 18793.69 31675.80 29898.10 24586.20 27695.98 17198.45 139
c3_l91.38 23690.89 22292.88 28495.58 24586.30 28894.68 30796.84 23188.17 26688.83 28294.23 29685.65 14497.47 32189.36 21484.63 33494.89 313
VPNet92.23 20291.31 20894.99 17695.56 24690.96 14697.22 15997.86 11592.96 11590.96 22396.62 17675.06 30498.20 23291.90 16183.65 34995.80 258
miper_ehance_all_eth91.59 22491.13 21792.97 28095.55 24786.57 28294.47 31496.88 22787.77 28088.88 27994.01 30586.22 13597.54 31489.49 21186.93 30694.79 323
IterMVS-SCA-FT90.31 27789.81 27291.82 31195.52 24884.20 32194.30 32496.15 27090.61 19387.39 31394.27 29375.80 29896.44 35287.34 25886.88 31094.82 318
jason94.84 10494.39 10996.18 11495.52 24890.93 14896.09 24996.52 25289.28 22796.01 10197.32 12984.70 15498.77 18195.15 9598.91 9298.85 110
jason: jason.
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11595.48 25090.69 15897.91 7698.33 2994.07 6698.93 999.14 187.44 11999.61 6998.63 1398.32 11498.18 160
FC-MVSNet-test93.94 12993.57 12295.04 17395.48 25091.45 12698.12 5098.71 1193.37 9390.23 23496.70 16387.66 11097.85 28791.49 17390.39 27595.83 255
IterMVS90.15 28589.67 27891.61 31895.48 25083.72 32794.33 32296.12 27189.99 20787.31 31694.15 30175.78 30096.27 35586.97 26786.89 30994.83 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re90.21 28289.50 28392.35 29695.47 25385.15 30895.70 27094.37 34490.94 17888.42 28993.57 32374.63 30895.67 36582.80 32089.57 28396.22 238
FMVSNet189.88 29188.31 30294.59 19995.41 25491.18 13897.50 12696.93 21986.62 30487.41 31294.51 27765.94 36897.29 33383.04 31687.43 30295.31 288
UniMVSNet (Re)93.31 15292.55 16695.61 14795.39 25593.34 6697.39 14098.71 1193.14 10590.10 24394.83 26287.71 10998.03 26091.67 17183.99 34395.46 276
MVS-HIRNet82.47 35081.21 35386.26 36695.38 25669.21 39388.96 38989.49 38966.28 39380.79 36874.08 39868.48 35197.39 32871.93 38195.47 18392.18 372
PatchmatchNetpermissive91.91 21191.35 20593.59 25795.38 25684.11 32293.15 35795.39 30189.54 21992.10 19293.68 31882.82 19198.13 23984.81 29795.32 18698.52 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 25990.32 24792.89 28395.37 25886.21 29194.46 31696.64 24487.82 27688.15 29994.18 29982.98 18697.54 31487.70 24785.59 31794.92 311
DIV-MVS_self_test90.97 25890.33 24692.88 28495.36 25986.19 29294.46 31696.63 24787.82 27688.18 29894.23 29682.99 18597.53 31687.72 24485.57 31894.93 309
miper_enhance_ethall91.54 22991.01 22093.15 27495.35 26087.07 27093.97 33396.90 22486.79 30289.17 27493.43 33186.55 13097.64 30589.97 19986.93 30694.74 327
UniMVSNet_NR-MVSNet93.37 15092.67 16095.47 15895.34 26192.83 7697.17 16398.58 1792.98 11490.13 23995.80 21788.37 10097.85 28791.71 16883.93 34495.73 267
ITE_SJBPF92.43 29595.34 26185.37 30595.92 27591.47 15687.75 30696.39 18871.00 33097.96 27282.36 32589.86 28093.97 347
OpenMVScopyleft89.19 1292.86 17691.68 19596.40 9595.34 26192.73 8098.27 3498.12 6784.86 33385.78 33497.75 10378.89 26599.74 4187.50 25698.65 9996.73 227
eth_miper_zixun_eth91.02 25590.59 23992.34 29895.33 26484.35 31894.10 33096.90 22488.56 25588.84 28194.33 28884.08 16597.60 31088.77 23184.37 34095.06 302
miper_lstm_enhance90.50 27590.06 26491.83 31095.33 26483.74 32693.86 33996.70 24087.56 28787.79 30493.81 31383.45 17596.92 34587.39 25784.62 33594.82 318
131492.81 18192.03 18295.14 16895.33 26489.52 19696.04 25197.44 17287.72 28386.25 33195.33 24183.84 16798.79 17789.26 21897.05 15397.11 216
PAPM91.52 23090.30 24995.20 16595.30 26789.83 18493.38 35396.85 23086.26 31188.59 28695.80 21784.88 15298.15 23775.67 36695.93 17397.63 192
Fast-Effi-MVS+-dtu92.29 19891.99 18493.21 27395.27 26885.52 30097.03 17096.63 24792.09 14089.11 27695.14 24980.33 23698.08 24987.54 25594.74 19996.03 249
Patchmatch-test89.42 29887.99 30593.70 25295.27 26885.11 30988.98 38894.37 34481.11 36687.10 31993.69 31682.28 20397.50 31974.37 37294.76 19798.48 136
PVSNet_082.17 1985.46 33983.64 34290.92 33195.27 26879.49 37090.55 38095.60 29383.76 34783.00 36189.95 37071.09 32997.97 26882.75 32260.79 40095.31 288
IB-MVS87.33 1789.91 28888.28 30394.79 19395.26 27187.70 25695.12 29993.95 35589.35 22687.03 32092.49 34270.74 33299.19 12889.18 22381.37 36197.49 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 12593.31 13796.27 10795.22 27294.59 3198.34 2797.46 16392.93 11691.21 22196.64 16887.23 12498.22 23094.99 10185.80 31695.98 250
MDTV_nov1_ep1390.76 23095.22 27280.33 36093.03 36095.28 30888.14 26892.84 17593.83 31081.34 21898.08 24982.86 31794.34 204
MVS91.71 21790.44 24395.51 15395.20 27491.59 11896.04 25197.45 16873.44 39087.36 31495.60 23185.42 14699.10 14185.97 28397.46 13695.83 255
Syy-MVS87.13 32287.02 31787.47 36095.16 27573.21 38895.00 30093.93 35688.55 25686.96 32291.99 35375.90 29694.00 38161.59 39494.11 20995.20 296
myMVS_eth3d87.18 32186.38 32189.58 35095.16 27579.53 36895.00 30093.93 35688.55 25686.96 32291.99 35356.23 38794.00 38175.47 36894.11 20995.20 296
tfpnnormal89.70 29688.40 30193.60 25695.15 27790.10 17497.56 12098.16 6187.28 29486.16 33294.63 27277.57 28398.05 25674.48 37084.59 33692.65 364
tpmrst91.44 23391.32 20791.79 31395.15 27779.20 37393.42 35295.37 30388.55 25693.49 15893.67 31982.49 19998.27 22790.41 19189.34 28597.90 178
WR-MVS92.34 19491.53 20094.77 19495.13 27990.83 15296.40 22897.98 10091.88 14689.29 27095.54 23582.50 19897.80 29289.79 20485.27 32495.69 268
tpm cat188.36 31087.21 31391.81 31295.13 27980.55 35792.58 36695.70 28674.97 38787.45 31091.96 35578.01 28098.17 23680.39 34088.74 29196.72 228
WR-MVS_H92.00 20991.35 20593.95 23795.09 28189.47 19798.04 5798.68 1391.46 15788.34 29194.68 26985.86 14197.56 31285.77 28684.24 34194.82 318
CP-MVSNet91.89 21391.24 21293.82 24595.05 28288.57 22797.82 8898.19 5591.70 15088.21 29795.76 22281.96 20997.52 31887.86 24184.65 33395.37 284
test_040286.46 32784.79 33691.45 32195.02 28385.55 29996.29 23894.89 32780.90 36782.21 36393.97 30868.21 35397.29 33362.98 39288.68 29291.51 377
cascas91.20 24790.08 26094.58 20394.97 28489.16 21593.65 34797.59 14579.90 37589.40 26592.92 33675.36 30298.36 22092.14 15694.75 19896.23 237
PS-CasMVS91.55 22890.84 22793.69 25394.96 28588.28 23697.84 8598.24 4791.46 15788.04 30195.80 21779.67 24897.48 32087.02 26684.54 33895.31 288
DU-MVS92.90 17492.04 18195.49 15594.95 28692.83 7697.16 16498.24 4793.02 10890.13 23995.71 22483.47 17397.85 28791.71 16883.93 34495.78 260
NR-MVSNet92.34 19491.27 21195.53 15294.95 28693.05 7297.39 14098.07 7992.65 12484.46 34595.71 22485.00 15197.77 29689.71 20583.52 35095.78 260
mvsany_test193.93 13093.98 11393.78 24894.94 28886.80 27494.62 30892.55 37288.77 25096.85 6098.49 3888.98 8898.08 24995.03 9795.62 18196.46 235
tpmvs89.83 29489.15 29191.89 30894.92 28980.30 36193.11 35895.46 30086.28 31088.08 30092.65 33880.44 23398.52 20681.47 33089.92 27996.84 224
PMMVS92.86 17692.34 17494.42 21194.92 28986.73 27794.53 31296.38 25984.78 33594.27 13995.12 25183.13 18198.40 21491.47 17496.49 16598.12 166
tpm289.96 28789.21 28992.23 30294.91 29181.25 34893.78 34194.42 34280.62 37291.56 20593.44 32876.44 29297.94 27785.60 28892.08 24697.49 201
TinyColmap86.82 32585.35 33191.21 32694.91 29182.99 33493.94 33594.02 35283.58 34981.56 36594.68 26962.34 37898.13 23975.78 36487.35 30592.52 367
mvsmamba93.83 13493.46 13094.93 18494.88 29390.85 15198.55 1495.49 29994.24 6391.29 21796.97 14983.04 18498.14 23895.56 8891.17 26195.78 260
UniMVSNet_ETH3D91.34 24190.22 25694.68 19794.86 29487.86 25297.23 15897.46 16387.99 27089.90 24996.92 15366.35 36498.23 22990.30 19490.99 26697.96 175
CostFormer91.18 25090.70 23592.62 29394.84 29581.76 34594.09 33194.43 34184.15 34192.72 17693.77 31479.43 25298.20 23290.70 18892.18 24297.90 178
MIMVSNet88.50 30986.76 31993.72 25194.84 29587.77 25591.39 37294.05 35086.41 30887.99 30292.59 34163.27 37495.82 36277.44 35592.84 23097.57 199
FMVSNet587.29 32085.79 32691.78 31494.80 29787.28 26195.49 28295.28 30884.09 34283.85 35691.82 35662.95 37694.17 37978.48 35185.34 32393.91 348
RRT_MVS93.10 16292.83 15193.93 24194.76 29888.04 24598.47 2296.55 25193.44 9090.01 24797.04 14680.64 22997.93 28094.33 11790.21 27795.83 255
TranMVSNet+NR-MVSNet92.50 18691.63 19695.14 16894.76 29892.07 10197.53 12498.11 7092.90 11789.56 26196.12 20183.16 17997.60 31089.30 21683.20 35395.75 265
test_vis1_n92.37 19392.26 17792.72 28994.75 30082.64 33598.02 5896.80 23391.18 16997.77 3797.93 8858.02 38398.29 22697.63 1998.21 11897.23 214
XXY-MVS92.16 20491.23 21394.95 18194.75 30090.94 14797.47 13297.43 17589.14 23188.90 27796.43 18579.71 24798.24 22889.56 21087.68 29995.67 270
EPMVS90.70 26889.81 27293.37 26694.73 30284.21 32093.67 34688.02 39489.50 22192.38 18193.49 32577.82 28297.78 29486.03 28292.68 23498.11 169
D2MVS91.30 24390.95 22192.35 29694.71 30385.52 30096.18 24698.21 5188.89 24286.60 32893.82 31279.92 24497.95 27689.29 21790.95 26793.56 351
USDC88.94 30287.83 30792.27 30094.66 30484.96 31293.86 33995.90 27787.34 29283.40 35795.56 23367.43 35698.19 23482.64 32489.67 28293.66 350
GA-MVS91.38 23690.31 24894.59 19994.65 30587.62 25794.34 32196.19 26990.73 18390.35 23293.83 31071.84 32497.96 27287.22 26193.61 22498.21 158
OPM-MVS93.28 15392.76 15494.82 18794.63 30690.77 15596.65 20697.18 19393.72 7791.68 20397.26 13479.33 25498.63 19692.13 15792.28 23895.07 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 23491.19 21592.12 30394.59 30780.66 35494.29 32592.98 36591.11 17290.76 22692.37 34579.02 26098.07 25388.81 22996.74 15897.63 192
test-mter90.19 28489.54 28292.12 30394.59 30780.66 35494.29 32592.98 36587.68 28490.76 22692.37 34567.67 35498.07 25388.81 22996.74 15897.63 192
dp88.90 30488.26 30490.81 33494.58 30976.62 38092.85 36394.93 32585.12 32990.07 24693.07 33375.81 29798.12 24380.53 33987.42 30397.71 189
WB-MVSnew89.88 29189.56 28190.82 33394.57 31083.06 33395.65 27492.85 36787.86 27590.83 22594.10 30279.66 24996.88 34676.34 36294.19 20792.54 366
PEN-MVS91.20 24790.44 24393.48 26294.49 31187.91 25197.76 9398.18 5791.29 16287.78 30595.74 22380.35 23597.33 33185.46 29082.96 35495.19 299
gg-mvs-nofinetune87.82 31585.61 32794.44 20994.46 31289.27 21091.21 37684.61 40280.88 36889.89 25174.98 39671.50 32697.53 31685.75 28797.21 14996.51 231
CR-MVSNet90.82 26389.77 27493.95 23794.45 31387.19 26690.23 38295.68 29086.89 30092.40 17992.36 34880.91 22497.05 33981.09 33793.95 21797.60 197
RPMNet88.98 30187.05 31594.77 19494.45 31387.19 26690.23 38298.03 9177.87 38492.40 17987.55 38780.17 23999.51 9668.84 38893.95 21797.60 197
TESTMET0.1,190.06 28689.42 28591.97 30694.41 31580.62 35694.29 32591.97 37787.28 29490.44 23092.47 34468.79 34697.67 30288.50 23596.60 16397.61 196
TransMVSNet (Re)88.94 30287.56 30893.08 27794.35 31688.45 23397.73 9795.23 31287.47 28884.26 34895.29 24279.86 24597.33 33179.44 34874.44 38293.45 354
MS-PatchMatch90.27 27989.77 27491.78 31494.33 31784.72 31695.55 27896.73 23586.17 31386.36 33095.28 24471.28 32897.80 29284.09 30698.14 12292.81 361
baseline291.63 22190.86 22493.94 23994.33 31786.32 28795.92 25891.64 37989.37 22586.94 32494.69 26881.62 21698.69 19088.64 23394.57 20296.81 225
XVG-ACMP-BASELINE90.93 26090.21 25793.09 27694.31 31985.89 29595.33 28897.26 19091.06 17589.38 26695.44 23968.61 34898.60 19989.46 21291.05 26494.79 323
pm-mvs190.72 26789.65 28093.96 23694.29 32089.63 18897.79 9296.82 23289.07 23386.12 33395.48 23878.61 26897.78 29486.97 26781.67 35994.46 334
v891.29 24490.53 24293.57 25994.15 32188.12 24497.34 14597.06 20788.99 23788.32 29294.26 29583.08 18298.01 26287.62 25383.92 34694.57 332
v1091.04 25490.23 25493.49 26194.12 32288.16 24397.32 14897.08 20388.26 26488.29 29494.22 29882.17 20697.97 26886.45 27384.12 34294.33 339
Patchmtry88.64 30887.25 31192.78 28894.09 32386.64 27889.82 38595.68 29080.81 37087.63 30892.36 34880.91 22497.03 34078.86 35085.12 32794.67 329
PatchT88.87 30587.42 30993.22 27294.08 32485.10 31089.51 38694.64 33781.92 36192.36 18288.15 38380.05 24197.01 34272.43 37993.65 22297.54 200
V4291.58 22690.87 22393.73 24994.05 32588.50 23197.32 14896.97 21588.80 24989.71 25494.33 28882.54 19798.05 25689.01 22585.07 32894.64 331
DTE-MVSNet90.56 27189.75 27693.01 27893.95 32687.25 26397.64 11197.65 13690.74 18287.12 31795.68 22779.97 24397.00 34383.33 31381.66 36094.78 325
tpm90.25 28089.74 27791.76 31693.92 32779.73 36793.98 33293.54 36188.28 26391.99 19493.25 33277.51 28497.44 32487.30 26087.94 29798.12 166
PS-MVSNAJss93.74 13893.51 12894.44 20993.91 32889.28 20997.75 9497.56 15192.50 12889.94 24896.54 17988.65 9598.18 23593.83 12990.90 26895.86 251
v114491.37 23890.60 23893.68 25493.89 32988.23 23996.84 18897.03 21288.37 26189.69 25694.39 28482.04 20797.98 26587.80 24385.37 32194.84 315
v2v48291.59 22490.85 22693.80 24693.87 33088.17 24296.94 18096.88 22789.54 21989.53 26294.90 25881.70 21598.02 26189.25 21985.04 33095.20 296
v14890.99 25690.38 24592.81 28793.83 33185.80 29696.78 19396.68 24189.45 22388.75 28493.93 30982.96 18897.82 29187.83 24283.25 35194.80 321
Baseline_NR-MVSNet91.20 24790.62 23792.95 28193.83 33188.03 24697.01 17595.12 31788.42 26089.70 25595.13 25083.47 17397.44 32489.66 20883.24 35293.37 355
EPNet_dtu91.71 21791.28 21092.99 27993.76 33383.71 32896.69 20295.28 30893.15 10487.02 32195.95 20983.37 17697.38 32979.46 34796.84 15597.88 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 25290.23 25493.58 25893.70 33487.82 25496.73 19697.07 20587.77 28089.58 25994.32 29080.90 22697.97 26886.52 27185.48 31994.95 305
GG-mvs-BLEND93.62 25593.69 33589.20 21292.39 36983.33 40487.98 30389.84 37271.00 33096.87 34782.08 32795.40 18594.80 321
test_fmvs289.77 29589.93 26789.31 35393.68 33676.37 38197.64 11195.90 27789.84 21291.49 20796.26 19458.77 38297.10 33794.65 11191.13 26294.46 334
v14419291.06 25390.28 25093.39 26593.66 33787.23 26596.83 18997.07 20587.43 28989.69 25694.28 29281.48 21798.00 26387.18 26384.92 33294.93 309
v192192090.85 26290.03 26593.29 26993.55 33886.96 27396.74 19597.04 21087.36 29189.52 26394.34 28780.23 23897.97 26886.27 27485.21 32594.94 307
v7n90.76 26489.86 26993.45 26493.54 33987.60 25897.70 10397.37 18188.85 24387.65 30794.08 30481.08 22198.10 24584.68 29983.79 34894.66 330
JIA-IIPM88.26 31287.04 31691.91 30793.52 34081.42 34789.38 38794.38 34380.84 36990.93 22480.74 39479.22 25597.92 28182.76 32191.62 25196.38 236
v124090.70 26889.85 27093.23 27193.51 34186.80 27496.61 21297.02 21387.16 29689.58 25994.31 29179.55 25197.98 26585.52 28985.44 32094.90 312
test_djsdf93.07 16592.76 15494.00 23293.49 34288.70 22498.22 4297.57 14791.42 15990.08 24595.55 23482.85 19097.92 28194.07 12091.58 25295.40 281
SixPastTwentyTwo89.15 30088.54 30090.98 33093.49 34280.28 36296.70 20094.70 33390.78 18084.15 35095.57 23271.78 32597.71 30084.63 30085.07 32894.94 307
test_vis1_rt86.16 33285.06 33389.46 35193.47 34480.46 35896.41 22486.61 39985.22 32679.15 37788.64 37852.41 39197.06 33893.08 14290.57 27190.87 382
mvs_tets92.31 19691.76 19193.94 23993.41 34588.29 23597.63 11397.53 15392.04 14288.76 28396.45 18474.62 30998.09 24893.91 12591.48 25495.45 277
OurMVSNet-221017-090.51 27490.19 25891.44 32293.41 34581.25 34896.98 17796.28 26291.68 15186.55 32996.30 19174.20 31297.98 26588.96 22787.40 30495.09 300
pmmvs490.93 26089.85 27094.17 22393.34 34790.79 15494.60 30996.02 27384.62 33687.45 31095.15 24881.88 21297.45 32387.70 24787.87 29894.27 343
jajsoiax92.42 19091.89 18994.03 23193.33 34888.50 23197.73 9797.53 15392.00 14488.85 28096.50 18275.62 30198.11 24493.88 12791.56 25395.48 273
gm-plane-assit93.22 34978.89 37684.82 33493.52 32498.64 19587.72 244
MVP-Stereo90.74 26690.08 26092.71 29093.19 35088.20 24095.86 26196.27 26386.07 31484.86 34394.76 26577.84 28197.75 29783.88 31198.01 12492.17 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 30788.90 29588.20 35793.15 35174.21 38596.63 21194.22 34885.18 32787.32 31595.97 20776.16 29594.98 37385.27 29286.17 31295.41 278
MDA-MVSNet-bldmvs85.00 34082.95 34591.17 32993.13 35283.33 33194.56 31195.00 32184.57 33765.13 39592.65 33870.45 33395.85 36073.57 37677.49 37494.33 339
K. test v387.64 31886.75 32090.32 34293.02 35379.48 37196.61 21292.08 37690.66 18980.25 37394.09 30367.21 35896.65 35185.96 28480.83 36394.83 316
pmmvs589.86 29388.87 29692.82 28692.86 35486.23 29096.26 23995.39 30184.24 34087.12 31794.51 27774.27 31197.36 33087.61 25487.57 30094.86 314
testgi87.97 31387.21 31390.24 34392.86 35480.76 35296.67 20594.97 32391.74 14985.52 33695.83 21562.66 37794.47 37776.25 36388.36 29595.48 273
EPNet95.20 9294.56 10097.14 6592.80 35692.68 8197.85 8494.87 33196.64 392.46 17897.80 10186.23 13499.65 5893.72 13098.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 35678.71 35778.79 37492.80 35646.50 41194.14 32943.71 41378.61 38080.83 36791.66 35974.94 30696.36 35367.24 38984.45 33993.50 352
EG-PatchMatch MVS87.02 32485.44 32891.76 31692.67 35885.00 31196.08 25096.45 25683.41 35279.52 37593.49 32557.10 38597.72 29979.34 34990.87 26992.56 365
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6992.66 35991.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16399.76 3898.82 1199.08 8299.48 44
Gipumacopyleft67.86 36665.41 36875.18 38292.66 35973.45 38766.50 40194.52 33953.33 40057.80 40166.07 40130.81 40189.20 39548.15 40178.88 37362.90 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 20491.55 19993.97 23592.58 36189.55 19397.51 12597.42 17689.42 22488.40 29094.84 26180.66 22897.88 28691.87 16391.28 25994.48 333
EGC-MVSNET68.77 36563.01 37086.07 36792.49 36282.24 34293.96 33490.96 3840.71 4102.62 41190.89 36353.66 38993.46 38557.25 39784.55 33782.51 393
test0.0.03 189.37 29988.70 29791.41 32392.47 36385.63 29895.22 29692.70 37091.11 17286.91 32693.65 32079.02 26093.19 38878.00 35489.18 28695.41 278
our_test_388.78 30687.98 30691.20 32892.45 36482.53 33793.61 34995.69 28885.77 31884.88 34293.71 31579.99 24296.78 35079.47 34686.24 31194.28 342
ppachtmachnet_test88.35 31187.29 31091.53 31992.45 36483.57 33093.75 34295.97 27484.28 33985.32 34094.18 29979.00 26496.93 34475.71 36584.99 33194.10 344
YYNet185.87 33684.23 34090.78 33792.38 36682.46 33993.17 35595.14 31682.12 36067.69 39092.36 34878.16 27695.50 37077.31 35779.73 36794.39 337
MDA-MVSNet_test_wron85.87 33684.23 34090.80 33692.38 36682.57 33693.17 35595.15 31582.15 35967.65 39192.33 35178.20 27395.51 36977.33 35679.74 36694.31 341
LF4IMVS87.94 31487.25 31189.98 34692.38 36680.05 36594.38 31995.25 31187.59 28684.34 34694.74 26764.31 37297.66 30484.83 29687.45 30192.23 370
lessismore_v090.45 34091.96 36979.09 37587.19 39780.32 37294.39 28466.31 36597.55 31384.00 30876.84 37694.70 328
dmvs_testset81.38 35282.60 34877.73 37591.74 37051.49 40893.03 36084.21 40389.07 23378.28 38091.25 36276.97 28788.53 39856.57 39882.24 35893.16 356
pmmvs687.81 31686.19 32392.69 29191.32 37186.30 28897.34 14596.41 25880.59 37384.05 35494.37 28667.37 35797.67 30284.75 29879.51 36994.09 346
Anonymous2023120687.09 32386.14 32489.93 34791.22 37280.35 35996.11 24895.35 30483.57 35084.16 34993.02 33473.54 31895.61 36672.16 38086.14 31393.84 349
KD-MVS_2432*160084.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
miper_refine_blended84.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
DeepMVS_CXcopyleft74.68 38390.84 37564.34 40181.61 40665.34 39467.47 39288.01 38548.60 39380.13 40462.33 39373.68 38479.58 395
Anonymous2024052186.42 32885.44 32889.34 35290.33 37679.79 36696.73 19695.92 27583.71 34883.25 35891.36 36163.92 37396.01 35678.39 35385.36 32292.22 371
test20.0386.14 33385.40 33088.35 35590.12 37780.06 36495.90 26095.20 31388.59 25281.29 36693.62 32171.43 32792.65 38971.26 38481.17 36292.34 369
OpenMVS_ROBcopyleft81.14 2084.42 34482.28 35090.83 33290.06 37884.05 32495.73 26994.04 35173.89 38980.17 37491.53 36059.15 38197.64 30566.92 39089.05 28790.80 383
UnsupCasMVSNet_eth85.99 33484.45 33890.62 33889.97 37982.40 34093.62 34897.37 18189.86 20978.59 37992.37 34565.25 37195.35 37282.27 32670.75 38894.10 344
DSMNet-mixed86.34 32986.12 32587.00 36489.88 38070.43 39094.93 30290.08 38877.97 38385.42 33992.78 33774.44 31093.96 38374.43 37195.14 18896.62 229
new_pmnet82.89 34981.12 35488.18 35889.63 38180.18 36391.77 37192.57 37176.79 38675.56 38588.23 38261.22 38094.48 37671.43 38282.92 35589.87 386
MIMVSNet184.93 34183.05 34390.56 33989.56 38284.84 31595.40 28595.35 30483.91 34380.38 37192.21 35257.23 38493.34 38770.69 38682.75 35793.50 352
KD-MVS_self_test85.95 33584.95 33488.96 35489.55 38379.11 37495.13 29896.42 25785.91 31684.07 35390.48 36570.03 33894.82 37480.04 34172.94 38592.94 359
CMPMVSbinary62.92 2185.62 33884.92 33587.74 35989.14 38473.12 38994.17 32896.80 23373.98 38873.65 38794.93 25666.36 36397.61 30983.95 30991.28 25992.48 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test179.31 35577.70 35884.14 36889.11 38569.07 39492.36 37091.50 38069.07 39273.87 38692.63 34039.93 39794.32 37870.54 38780.25 36589.02 388
CL-MVSNet_self_test86.31 33085.15 33289.80 34888.83 38681.74 34693.93 33696.22 26686.67 30385.03 34190.80 36478.09 27794.50 37574.92 36971.86 38793.15 357
Patchmatch-RL test87.38 31986.24 32290.81 33488.74 38778.40 37788.12 39293.17 36487.11 29782.17 36489.29 37581.95 21095.60 36788.64 23377.02 37598.41 144
pmmvs-eth3d86.22 33184.45 33891.53 31988.34 38887.25 26394.47 31495.01 32083.47 35179.51 37689.61 37369.75 34195.71 36383.13 31576.73 37891.64 374
UnsupCasMVSNet_bld82.13 35179.46 35690.14 34488.00 38982.47 33890.89 37996.62 24978.94 37975.61 38384.40 39256.63 38696.31 35477.30 35866.77 39591.63 375
PM-MVS83.48 34681.86 35288.31 35687.83 39077.59 37993.43 35191.75 37886.91 29980.63 36989.91 37144.42 39595.84 36185.17 29576.73 37891.50 378
new-patchmatchnet83.18 34881.87 35187.11 36286.88 39175.99 38393.70 34395.18 31485.02 33177.30 38288.40 38065.99 36793.88 38474.19 37470.18 38991.47 379
test_fmvs383.21 34783.02 34483.78 36986.77 39268.34 39596.76 19494.91 32686.49 30684.14 35189.48 37436.04 39991.73 39191.86 16480.77 36491.26 381
WB-MVS76.77 35776.63 36077.18 37685.32 39356.82 40694.53 31289.39 39082.66 35771.35 38889.18 37675.03 30588.88 39635.42 40466.79 39485.84 390
SSC-MVS76.05 35875.83 36176.72 38084.77 39456.22 40794.32 32388.96 39281.82 36370.52 38988.91 37774.79 30788.71 39733.69 40564.71 39685.23 391
mvsany_test383.59 34582.44 34987.03 36383.80 39573.82 38693.70 34390.92 38586.42 30782.51 36290.26 36746.76 39495.71 36390.82 18576.76 37791.57 376
ambc86.56 36583.60 39670.00 39285.69 39494.97 32380.60 37088.45 37937.42 39896.84 34882.69 32375.44 38092.86 360
test_f80.57 35379.62 35583.41 37083.38 39767.80 39793.57 35093.72 35980.80 37177.91 38187.63 38633.40 40092.08 39087.14 26579.04 37290.34 385
pmmvs379.97 35477.50 35987.39 36182.80 39879.38 37292.70 36590.75 38670.69 39178.66 37887.47 38851.34 39293.40 38673.39 37769.65 39089.38 387
TDRefinement86.53 32684.76 33791.85 30982.23 39984.25 31996.38 23095.35 30484.97 33284.09 35294.94 25565.76 36998.34 22484.60 30174.52 38192.97 358
test_vis3_rt72.73 35970.55 36279.27 37380.02 40068.13 39693.92 33774.30 41076.90 38558.99 39973.58 39920.29 40895.37 37184.16 30472.80 38674.31 398
testf169.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
APD_test269.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
PMMVS270.19 36266.92 36580.01 37276.35 40365.67 39986.22 39387.58 39664.83 39562.38 39680.29 39526.78 40588.49 39963.79 39154.07 40185.88 389
FPMVS71.27 36169.85 36375.50 38174.64 40459.03 40491.30 37391.50 38058.80 39657.92 40088.28 38129.98 40385.53 40153.43 39982.84 35681.95 394
E-PMN53.28 37052.56 37455.43 38774.43 40547.13 41083.63 39776.30 40742.23 40242.59 40462.22 40328.57 40474.40 40531.53 40631.51 40344.78 402
wuyk23d25.11 37424.57 37826.74 39073.98 40639.89 41457.88 4039.80 41412.27 40710.39 4086.97 4107.03 41236.44 40925.43 40817.39 4073.89 407
test_method66.11 36764.89 36969.79 38472.62 40735.23 41565.19 40292.83 36920.35 40565.20 39488.08 38443.14 39682.70 40273.12 37863.46 39791.45 380
EMVS52.08 37251.31 37554.39 38872.62 40745.39 41283.84 39675.51 40941.13 40340.77 40559.65 40430.08 40273.60 40628.31 40729.90 40544.18 403
LCM-MVSNet72.55 36069.39 36482.03 37170.81 40965.42 40090.12 38494.36 34655.02 39965.88 39381.72 39324.16 40789.96 39274.32 37368.10 39390.71 384
MVEpermissive50.73 2353.25 37148.81 37666.58 38665.34 41057.50 40572.49 40070.94 41140.15 40439.28 40663.51 4026.89 41373.48 40738.29 40342.38 40268.76 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 36859.58 37177.02 37761.24 41166.06 39885.66 39587.93 39578.53 38142.94 40371.04 40025.42 40680.71 40352.60 40030.83 40484.28 392
PMVScopyleft53.92 2258.58 36955.40 37268.12 38551.00 41248.64 40978.86 39887.10 39846.77 40135.84 40774.28 3978.76 41186.34 40042.07 40273.91 38369.38 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 37353.82 37346.29 38933.73 41345.30 41378.32 39967.24 41218.02 40650.93 40287.05 38952.99 39053.11 40870.76 38525.29 40640.46 404
testmvs13.36 37616.33 3794.48 3925.04 4142.26 41793.18 3543.28 4152.70 4088.24 40921.66 4062.29 4152.19 4107.58 4092.96 4089.00 406
test12313.04 37715.66 3805.18 3914.51 4153.45 41692.50 3681.81 4162.50 4097.58 41020.15 4073.67 4142.18 4117.13 4101.07 4099.90 405
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.24 37530.99 3770.00 3930.00 4160.00 4180.00 40497.63 1400.00 4110.00 41296.88 15584.38 1590.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.39 3799.85 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41188.65 950.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.06 37810.74 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41296.69 1650.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.53 36875.56 367
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22195.76 7599.58 2299.59 22
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 139
sam_mvs182.76 19298.45 139
sam_mvs81.94 211
MTGPAbinary98.08 74
test_post192.81 36416.58 40980.53 23197.68 30186.20 276
test_post17.58 40881.76 21398.08 249
patchmatchnet-post90.45 36682.65 19698.10 245
MTMP97.86 8182.03 405
test9_res94.81 10699.38 5499.45 47
agg_prior293.94 12499.38 5499.50 40
test_prior493.66 5796.42 223
test_prior296.35 23292.80 12196.03 9897.59 11892.01 4395.01 10099.38 54
旧先验295.94 25781.66 36497.34 4898.82 17492.26 151
新几何295.79 266
无先验95.79 26697.87 11183.87 34699.65 5887.68 25098.89 107
原ACMM295.67 271
testdata299.67 5685.96 284
segment_acmp92.89 27
testdata195.26 29593.10 107
plane_prior597.51 15598.60 19993.02 14592.23 23995.86 251
plane_prior496.64 168
plane_prior390.00 17694.46 5591.34 211
plane_prior297.74 9594.85 34
plane_prior89.99 17897.24 15494.06 6792.16 243
n20.00 417
nn0.00 417
door-mid91.06 383
test1197.88 109
door91.13 382
HQP5-MVS89.33 205
BP-MVS92.13 157
HQP4-MVS90.14 23598.50 20795.78 260
HQP3-MVS97.39 17892.10 244
HQP2-MVS80.95 222
MDTV_nov1_ep13_2view70.35 39193.10 35983.88 34593.55 15582.47 20086.25 27598.38 147
ACMMP++_ref90.30 276
ACMMP++91.02 265
Test By Simon88.73 94