This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 19498.94 897.41 2999.66 1099.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39691.70 4899.80 3095.66 7599.40 5099.62 18
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19096.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
test_part299.28 2595.74 898.10 29
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27095.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22893.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18195.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25495.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37393.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19098.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29796.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
ZD-MVS99.05 3994.59 2998.08 7489.22 22297.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
dcpmvs_296.37 5997.05 2294.31 21198.96 4684.11 31597.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 28996.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 34989.29 26197.87 9383.77 16699.69 5281.37 32796.69 16098.89 105
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
TEST998.70 5694.19 4096.41 22398.02 9488.17 25896.03 9597.56 12192.74 3099.59 74
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24596.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_898.67 5894.06 4796.37 23098.01 9788.58 24595.98 9997.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5198.60 6593.59 5697.75 12381.58 35695.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28195.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20292.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 181
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28491.37 20296.71 16088.39 9999.52 9587.33 25497.13 15197.73 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 31996.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20397.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27390.49 21997.10 14385.21 14699.50 9986.70 26496.72 15997.63 183
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 19991.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35391.52 19897.23 13687.94 10698.91 16371.31 37498.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 28998.48 2185.60 31193.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19694.36 13495.24 24488.02 10499.58 7793.44 13190.72 26194.36 330
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27598.36 2488.84 23694.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
Anonymous2023121190.63 26489.42 27794.27 21498.24 8789.19 21298.05 5497.89 10779.95 36588.25 28794.96 25272.56 32198.13 23289.70 20185.14 31795.49 263
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
test22298.24 8792.21 9495.33 28097.60 14279.22 36995.25 11897.84 9888.80 9299.15 7598.72 116
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30198.49 1985.06 32193.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19594.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30693.64 15097.45 12466.24 35999.53 9190.68 18692.71 22399.01 89
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28597.18 19187.96 26391.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 213
testdata95.46 15598.18 9788.90 21897.66 13482.73 34797.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36793.54 15397.41 12769.94 33899.56 8591.04 18091.11 25398.22 153
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35690.57 19096.29 8698.31 6069.00 34199.16 13294.18 11695.87 17399.12 80
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25498.93 16094.61 11092.84 22097.28 201
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30298.65 18788.99 22192.84 22097.28 201
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27796.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28597.62 14190.43 19395.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26193.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28093.79 24097.95 10987.13 26596.92 18095.89 27782.83 34686.88 31897.18 13873.77 31599.29 12178.44 34493.62 21394.95 297
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 27388.98 28493.98 22697.94 11086.64 27496.51 21895.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
TestCases93.98 22697.94 11086.64 27495.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27699.08 14481.40 32494.08 20596.48 223
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27699.10 13981.61 32194.06 20896.98 208
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22394.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 220
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34599.39 11196.31 4994.85 19198.71 118
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.48 223
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.98 208
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 35898.29 150
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 19891.74 19093.73 24297.77 12083.69 32292.88 35396.72 23487.91 26593.00 16694.86 25878.51 26799.05 15186.53 26597.45 13998.47 135
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18794.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
test250691.60 21790.78 22594.04 22397.66 12683.81 31898.27 3375.53 39993.43 8995.23 11998.21 6767.21 35199.07 14893.01 14498.49 10599.25 68
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29598.21 4388.23 38493.43 8994.70 12898.21 6772.57 32099.07 14893.05 14198.49 10599.25 68
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27197.71 13288.99 22992.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30278.39 27099.04 15481.26 32894.18 20196.19 230
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27688.24 23197.97 12499.02 86
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 31990.29 22498.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
test111193.19 15492.82 14994.30 21297.58 13684.56 31098.21 4389.02 38293.53 8494.58 13098.21 6772.69 31999.05 15193.06 14098.48 10799.28 65
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 17994.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
test_vis1_n_192094.17 11394.58 9692.91 27597.42 14082.02 33597.83 8497.85 11694.68 4698.10 2998.49 3870.15 33699.32 11797.91 1598.82 9297.40 195
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28297.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 231
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27797.45 16689.81 20793.22 16496.28 19279.62 24799.46 10390.74 18493.11 21798.50 130
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27697.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 231
BH-untuned92.94 16992.62 16093.92 23597.22 14386.16 28796.40 22796.25 26390.06 20089.79 24496.17 19883.19 17698.35 21487.19 25797.27 14697.24 203
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 33897.68 182
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18691.87 19097.15 14178.41 26998.57 19683.16 30897.60 13398.36 147
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33696.32 25985.72 31086.93 31696.47 18380.24 23598.98 15780.57 33095.05 19096.98 208
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19596.64 16879.28 25298.13 23295.34 9091.49 24395.70 258
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26497.97 6792.09 36790.63 18593.88 14797.01 14876.50 28899.06 15090.29 19195.45 18298.38 145
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 26996.64 24289.05 22793.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36690.16 19794.09 14196.41 18676.43 29199.05 15190.38 18895.68 17998.31 149
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29697.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22596.92 212
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23294.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28397.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22696.98 208
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29289.83 24396.69 16486.51 12999.14 13588.12 23293.67 21198.50 130
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27396.64 24285.38 31489.65 24995.18 24585.86 13999.10 13987.70 24293.58 21698.49 132
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36297.35 198
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 20992.15 18396.12 20078.66 26598.50 20090.83 18179.18 36197.36 196
BH-w/o92.14 20391.75 18893.31 26196.99 16385.73 29095.67 26695.69 28688.73 24389.26 26394.82 26182.97 18598.07 24785.26 28896.32 16796.13 235
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21592.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 27998.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31899.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30395.79 10598.46 4267.59 34899.19 12894.92 9994.85 19198.47 135
RPSCF90.75 25990.86 22090.42 33296.84 16876.29 37395.61 27096.34 25883.89 33591.38 20197.87 9376.45 28998.78 17187.16 25992.23 22996.20 229
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 32995.70 28486.30 30094.15 14094.97 25176.59 28799.21 12684.10 30096.86 15398.09 164
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
LCM-MVSNet-Re92.50 18292.52 16692.44 28796.82 17281.89 33696.92 18093.71 35292.41 12884.30 33894.60 27185.08 14897.03 33291.51 17097.36 14198.40 143
test_cas_vis1_n_192094.48 10794.55 10094.28 21396.78 17386.45 27997.63 11297.64 13893.32 9497.68 3898.36 5073.75 31699.08 14496.73 3999.05 8397.31 200
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29596.21 26689.61 21094.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25791.30 20694.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 32988.27 28697.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42093.12 15892.72 15694.34 20996.71 17987.27 25890.29 37297.72 12886.61 29691.34 20395.29 24084.29 16098.41 20693.25 13598.94 8997.35 198
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19696.64 16876.35 29298.13 23295.43 8891.42 24695.68 260
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 194
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31192.32 36587.92 26493.43 15794.57 27277.28 28399.00 15589.42 20895.86 17497.86 173
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 35897.26 18879.41 36888.90 26896.56 17984.04 16499.55 8777.01 35397.30 14597.01 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20695.96 20682.02 20698.05 25093.48 13090.55 26395.47 267
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26498.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
test_fmvs193.21 15293.53 12292.25 29496.55 19181.20 34297.40 13896.96 21490.68 18096.80 6198.04 7969.25 34098.40 20797.58 2198.50 10497.16 205
FMVSNet391.78 21190.69 23095.03 17196.53 19292.27 9397.02 17196.93 21789.79 20889.35 25894.65 26977.01 28497.47 31386.12 27488.82 27995.35 277
GBi-Net91.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
test191.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
FMVSNet291.31 23690.08 25494.99 17396.51 19392.21 9497.41 13496.95 21588.82 23888.62 27694.75 26473.87 31297.42 31885.20 28988.55 28495.35 277
ACMH+87.92 1490.20 27589.18 28293.25 26396.48 19686.45 27996.99 17596.68 23988.83 23784.79 33596.22 19570.16 33598.53 19884.42 29888.04 28794.77 318
CANet_DTU94.37 10893.65 11796.55 7896.46 19792.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25099.71 4690.76 18398.45 10997.82 177
mvs_anonymous93.82 13293.74 11494.06 22196.44 19885.41 29595.81 26197.05 20689.85 20590.09 23596.36 18987.44 11797.75 28993.97 11996.69 16099.02 86
diffmvspermissive95.25 8695.13 8495.63 14196.43 19989.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20091.57 11895.34 27993.48 35590.60 18975.58 37595.49 23580.08 23896.79 34094.25 11589.76 27298.52 127
TR-MVS91.48 22690.59 23394.16 21796.40 20087.33 25695.67 26695.34 30587.68 27591.46 20095.52 23476.77 28698.35 21482.85 31293.61 21496.79 216
ACMP89.59 1092.62 18192.14 17694.05 22296.40 20088.20 23897.36 14297.25 19091.52 15088.30 28496.64 16878.46 26898.72 18191.86 16291.48 24495.23 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 8295.16 8395.99 12496.34 20391.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27394.07 11799.05 8398.85 108
lupinMVS94.99 9694.56 9796.29 10496.34 20391.21 13395.83 26096.27 26188.93 23396.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
ACMM89.79 892.96 16792.50 16794.35 20896.30 20588.71 22197.58 11797.36 18191.40 15790.53 21896.65 16779.77 24498.75 17691.24 17791.64 23995.59 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 19591.94 18393.34 26096.25 20686.97 26896.57 21797.05 20690.67 18189.50 25594.80 26286.59 12697.64 29789.91 19586.11 30595.40 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 13493.43 13094.82 18496.21 20789.99 17697.74 9397.51 15394.85 3491.34 20396.64 16881.32 21798.60 19293.02 14292.23 22995.86 241
plane_prior796.21 20789.98 178
ACMH87.59 1690.53 26689.42 27793.87 23696.21 20787.92 24797.24 15396.94 21688.45 25183.91 34696.27 19371.92 32298.62 19184.43 29789.43 27595.05 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21091.46 12396.33 23397.04 20888.97 23193.56 15196.51 18187.55 11397.89 27789.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21596.18 21089.55 19196.31 23597.09 20087.88 26685.67 32695.91 20978.79 26498.57 19681.50 32289.98 26994.44 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 16992.56 16294.10 21996.16 21288.26 23597.65 10697.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
LGP-MVS_train94.10 21996.16 21288.26 23597.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
TAMVS94.01 12493.46 12795.64 14096.16 21290.45 16596.71 19896.89 22489.27 22193.46 15696.92 15387.29 12097.94 26988.70 22795.74 17698.53 126
testing387.67 30786.88 30890.05 33696.14 21580.71 34597.10 16792.85 36090.15 19887.54 30094.55 27355.70 37994.10 37173.77 36694.10 20495.35 277
plane_prior196.14 215
CLD-MVS92.98 16692.53 16594.32 21096.12 21789.20 21095.28 28397.47 15992.66 12289.90 24095.62 22880.58 22898.40 20792.73 14792.40 22795.38 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 21890.00 17481.32 217
cl2291.21 24090.56 23593.14 26896.09 21986.80 27094.41 30996.58 24887.80 26988.58 27893.99 30380.85 22597.62 30089.87 19786.93 29794.99 296
test_fmvs1_n92.73 17992.88 14692.29 29296.08 22081.05 34397.98 6197.08 20190.72 17896.79 6298.18 7063.07 36798.45 20497.62 2098.42 11097.36 196
Effi-MVS+-dtu93.08 16193.21 13792.68 28596.02 22183.25 32597.14 16596.72 23493.85 7291.20 21393.44 32283.08 18098.30 21891.69 16895.73 17796.50 222
NP-MVS95.99 22289.81 18395.87 210
ADS-MVSNet289.45 28788.59 28992.03 29895.86 22382.26 33390.93 36894.32 34283.23 34491.28 21091.81 34879.01 26095.99 34879.52 33691.39 24797.84 174
ADS-MVSNet89.89 28188.68 28893.53 25395.86 22384.89 30790.93 36895.07 31783.23 34491.28 21091.81 34879.01 26097.85 27979.52 33691.39 24797.84 174
HQP-NCC95.86 22396.65 20593.55 8090.14 226
ACMP_Plane95.86 22396.65 20593.55 8090.14 226
HQP-MVS93.19 15492.74 15494.54 20195.86 22389.33 20396.65 20597.39 17693.55 8090.14 22695.87 21080.95 22098.50 20092.13 15592.10 23495.78 250
EI-MVSNet93.03 16492.88 14693.48 25595.77 22886.98 26796.44 21997.12 19690.66 18391.30 20697.64 11486.56 12798.05 25089.91 19590.55 26395.41 270
CVMVSNet91.23 23991.75 18889.67 34095.77 22874.69 37596.44 21994.88 32685.81 30892.18 18297.64 11479.07 25595.58 35988.06 23395.86 17498.74 115
FIs94.09 12093.70 11595.27 15995.70 23092.03 10198.10 4998.68 1393.36 9390.39 22296.70 16287.63 11297.94 26992.25 15190.50 26595.84 244
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23092.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30695.75 255
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23292.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
tt080591.09 24590.07 25794.16 21795.61 23388.31 23297.56 11996.51 25189.56 21189.17 26595.64 22767.08 35598.38 21291.07 17988.44 28595.80 248
SCA91.84 21091.18 21393.83 23795.59 23484.95 30694.72 29795.58 29390.82 17392.25 18193.69 31275.80 29798.10 23986.20 27195.98 17098.45 137
c3_l91.38 23090.89 21892.88 27795.58 23586.30 28294.68 29896.84 22988.17 25888.83 27394.23 29385.65 14297.47 31389.36 20984.63 32594.89 305
VPNet92.23 19991.31 20594.99 17395.56 23690.96 14597.22 15897.86 11592.96 11490.96 21496.62 17775.06 30398.20 22591.90 15983.65 34095.80 248
miper_ehance_all_eth91.59 21891.13 21492.97 27395.55 23786.57 27894.47 30596.88 22587.77 27188.88 27094.01 30186.22 13397.54 30689.49 20686.93 29794.79 315
IterMVS-SCA-FT90.31 27089.81 26691.82 30495.52 23884.20 31494.30 31596.15 26890.61 18787.39 30494.27 29075.80 29796.44 34387.34 25386.88 30194.82 310
jason94.84 10194.39 10696.18 11295.52 23890.93 14796.09 24896.52 25089.28 22096.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24090.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24091.45 12498.12 4898.71 1193.37 9190.23 22596.70 16287.66 11097.85 27991.49 17190.39 26695.83 245
IterMVS90.15 27789.67 27291.61 31195.48 24083.72 32094.33 31396.12 26989.99 20187.31 30794.15 29875.78 29996.27 34686.97 26286.89 30094.83 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re90.21 27489.50 27692.35 28995.47 24385.15 30195.70 26594.37 33990.94 17288.42 28093.57 31874.63 30795.67 35682.80 31389.57 27496.22 228
FMVSNet189.88 28288.31 29294.59 19595.41 24491.18 13797.50 12596.93 21786.62 29587.41 30394.51 27465.94 36197.29 32583.04 31087.43 29395.31 280
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24593.34 6497.39 13998.71 1193.14 10390.10 23494.83 26087.71 10998.03 25491.67 16983.99 33495.46 268
MVS-HIRNet82.47 34081.21 34386.26 35795.38 24669.21 38488.96 38089.49 38066.28 38480.79 35974.08 38968.48 34497.39 32071.93 37295.47 18192.18 363
PatchmatchNetpermissive91.91 20891.35 20293.59 25095.38 24684.11 31593.15 34895.39 29989.54 21292.10 18693.68 31482.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 25390.32 24192.89 27695.37 24886.21 28594.46 30796.64 24287.82 26788.15 29094.18 29682.98 18497.54 30687.70 24285.59 30894.92 303
DIV-MVS_self_test90.97 25290.33 24092.88 27795.36 24986.19 28694.46 30796.63 24587.82 26788.18 28994.23 29382.99 18397.53 30887.72 23985.57 30994.93 301
miper_enhance_ethall91.54 22391.01 21693.15 26795.35 25087.07 26693.97 32496.90 22286.79 29389.17 26593.43 32486.55 12897.64 29789.97 19486.93 29794.74 319
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25192.83 7497.17 16298.58 1792.98 11290.13 23095.80 21588.37 10097.85 27991.71 16683.93 33595.73 257
ITE_SJBPF92.43 28895.34 25185.37 29895.92 27391.47 15287.75 29796.39 18871.00 32997.96 26682.36 31889.86 27193.97 339
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25192.73 7898.27 3398.12 6784.86 32485.78 32597.75 10378.89 26399.74 4187.50 25198.65 9896.73 217
eth_miper_zixun_eth91.02 24990.59 23392.34 29195.33 25484.35 31194.10 32196.90 22288.56 24788.84 27294.33 28584.08 16397.60 30288.77 22684.37 33195.06 294
miper_lstm_enhance90.50 26890.06 25891.83 30395.33 25483.74 31993.86 33096.70 23887.56 27887.79 29593.81 30983.45 17396.92 33787.39 25284.62 32694.82 310
131492.81 17792.03 17995.14 16495.33 25489.52 19496.04 25097.44 17087.72 27486.25 32295.33 23983.84 16598.79 17089.26 21397.05 15297.11 206
PAPM91.52 22490.30 24395.20 16195.30 25789.83 18293.38 34496.85 22886.26 30288.59 27795.80 21584.88 15098.15 23075.67 35795.93 17297.63 183
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26695.27 25885.52 29397.03 16996.63 24592.09 13889.11 26795.14 24780.33 23498.08 24387.54 25094.74 19696.03 239
Patchmatch-test89.42 28887.99 29593.70 24595.27 25885.11 30288.98 37994.37 33981.11 35787.10 31093.69 31282.28 20197.50 31174.37 36394.76 19498.48 134
PVSNet_082.17 1985.46 32983.64 33290.92 32395.27 25879.49 36290.55 37195.60 29183.76 33883.00 35289.95 36171.09 32897.97 26182.75 31560.79 39195.31 280
IB-MVS87.33 1789.91 28088.28 29394.79 19095.26 26187.70 25395.12 29193.95 34889.35 21987.03 31192.49 33470.74 33199.19 12889.18 21881.37 35297.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 12293.31 13496.27 10595.22 26294.59 2998.34 2797.46 16192.93 11591.21 21296.64 16887.23 12298.22 22394.99 9885.80 30795.98 240
MDTV_nov1_ep1390.76 22695.22 26280.33 35293.03 35195.28 30688.14 26092.84 17293.83 30681.34 21698.08 24382.86 31194.34 200
MVS91.71 21390.44 23795.51 14995.20 26491.59 11696.04 25097.45 16673.44 38187.36 30595.60 22985.42 14499.10 13985.97 27897.46 13595.83 245
Syy-MVS87.13 31287.02 30787.47 35195.16 26573.21 37995.00 29293.93 34988.55 24886.96 31391.99 34475.90 29494.00 37261.59 38594.11 20295.20 288
myMVS_eth3d87.18 31186.38 31189.58 34195.16 26579.53 36095.00 29293.93 34988.55 24886.96 31391.99 34456.23 37894.00 37275.47 35994.11 20295.20 288
tfpnnormal89.70 28688.40 29193.60 24995.15 26790.10 17297.56 11998.16 6187.28 28586.16 32394.63 27077.57 28198.05 25074.48 36184.59 32792.65 356
tpmrst91.44 22791.32 20491.79 30695.15 26779.20 36593.42 34395.37 30188.55 24893.49 15593.67 31582.49 19798.27 22090.41 18789.34 27697.90 170
WR-MVS92.34 19191.53 19794.77 19195.13 26990.83 15196.40 22797.98 10091.88 14489.29 26195.54 23382.50 19697.80 28489.79 19985.27 31595.69 259
tpm cat188.36 30087.21 30391.81 30595.13 26980.55 34992.58 35795.70 28474.97 37887.45 30191.96 34678.01 27898.17 22980.39 33288.74 28296.72 218
WR-MVS_H92.00 20691.35 20293.95 23095.09 27189.47 19598.04 5598.68 1391.46 15388.34 28294.68 26785.86 13997.56 30485.77 28184.24 33294.82 310
CP-MVSNet91.89 20991.24 20993.82 23895.05 27288.57 22597.82 8698.19 5591.70 14788.21 28895.76 22081.96 20797.52 31087.86 23684.65 32495.37 276
test_040286.46 31784.79 32691.45 31495.02 27385.55 29296.29 23794.89 32580.90 35882.21 35493.97 30468.21 34697.29 32562.98 38388.68 28391.51 368
cascas91.20 24190.08 25494.58 19994.97 27489.16 21393.65 33897.59 14479.90 36689.40 25692.92 32875.36 30198.36 21392.14 15494.75 19596.23 227
PS-CasMVS91.55 22290.84 22393.69 24694.96 27588.28 23497.84 8398.24 4791.46 15388.04 29295.80 21579.67 24697.48 31287.02 26184.54 32995.31 280
DU-MVS92.90 17192.04 17895.49 15194.95 27692.83 7497.16 16398.24 4793.02 10690.13 23095.71 22283.47 17197.85 27991.71 16683.93 33595.78 250
NR-MVSNet92.34 19191.27 20895.53 14894.95 27693.05 7097.39 13998.07 7992.65 12384.46 33695.71 22285.00 14997.77 28889.71 20083.52 34195.78 250
mvsany_test193.93 12793.98 11093.78 24194.94 27886.80 27094.62 29992.55 36488.77 24296.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 225
tpmvs89.83 28489.15 28391.89 30194.92 27980.30 35393.11 34995.46 29886.28 30188.08 29192.65 33080.44 23198.52 19981.47 32389.92 27096.84 214
PMMVS92.86 17392.34 17194.42 20594.92 27986.73 27394.53 30396.38 25784.78 32694.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
tpm289.96 27989.21 28192.23 29594.91 28181.25 34093.78 33294.42 33780.62 36391.56 19793.44 32276.44 29097.94 26985.60 28392.08 23697.49 192
TinyColmap86.82 31585.35 32191.21 31994.91 28182.99 32693.94 32694.02 34783.58 34081.56 35694.68 26762.34 37098.13 23275.78 35587.35 29692.52 358
mvsmamba93.83 13193.46 12794.93 18194.88 28390.85 15098.55 1495.49 29794.24 6191.29 20996.97 14983.04 18298.14 23195.56 8691.17 25195.78 250
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28487.86 25097.23 15797.46 16187.99 26289.90 24096.92 15366.35 35798.23 22290.30 19090.99 25697.96 167
CostFormer91.18 24490.70 22992.62 28694.84 28581.76 33794.09 32294.43 33684.15 33292.72 17393.77 31079.43 24998.20 22590.70 18592.18 23297.90 170
MIMVSNet88.50 29986.76 30993.72 24494.84 28587.77 25291.39 36394.05 34586.41 29987.99 29392.59 33363.27 36695.82 35377.44 34792.84 22097.57 190
FMVSNet587.29 31085.79 31691.78 30794.80 28787.28 25795.49 27495.28 30684.09 33383.85 34791.82 34762.95 36894.17 37078.48 34385.34 31493.91 340
RRT_MVS93.10 15992.83 14893.93 23494.76 28888.04 24398.47 2296.55 24993.44 8890.01 23897.04 14680.64 22797.93 27294.33 11490.21 26895.83 245
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28892.07 9997.53 12398.11 7092.90 11689.56 25296.12 20083.16 17797.60 30289.30 21183.20 34495.75 255
test_vis1_n92.37 18992.26 17492.72 28294.75 29082.64 32798.02 5696.80 23191.18 16597.77 3797.93 8858.02 37498.29 21997.63 1998.21 11797.23 204
XXY-MVS92.16 20191.23 21094.95 17894.75 29090.94 14697.47 13197.43 17389.14 22488.90 26896.43 18579.71 24598.24 22189.56 20587.68 29095.67 261
EPMVS90.70 26289.81 26693.37 25994.73 29284.21 31393.67 33788.02 38589.50 21492.38 17793.49 32077.82 28097.78 28686.03 27792.68 22498.11 163
D2MVS91.30 23790.95 21792.35 28994.71 29385.52 29396.18 24598.21 5188.89 23486.60 31993.82 30879.92 24297.95 26889.29 21290.95 25793.56 343
USDC88.94 29287.83 29792.27 29394.66 29484.96 30593.86 33095.90 27587.34 28383.40 34895.56 23167.43 34998.19 22782.64 31789.67 27393.66 342
GA-MVS91.38 23090.31 24294.59 19594.65 29587.62 25494.34 31296.19 26790.73 17790.35 22393.83 30671.84 32397.96 26687.22 25693.61 21498.21 154
OPM-MVS93.28 15092.76 15194.82 18494.63 29690.77 15496.65 20597.18 19193.72 7591.68 19497.26 13479.33 25198.63 18992.13 15592.28 22895.07 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 22891.19 21292.12 29694.59 29780.66 34694.29 31692.98 35891.11 16890.76 21692.37 33679.02 25898.07 24788.81 22496.74 15797.63 183
test-mter90.19 27689.54 27592.12 29694.59 29780.66 34694.29 31692.98 35887.68 27590.76 21692.37 33667.67 34798.07 24788.81 22496.74 15797.63 183
dp88.90 29488.26 29490.81 32594.58 29976.62 37192.85 35494.93 32385.12 32090.07 23793.07 32675.81 29698.12 23780.53 33187.42 29497.71 180
PEN-MVS91.20 24190.44 23793.48 25594.49 30087.91 24997.76 9198.18 5791.29 15887.78 29695.74 22180.35 23397.33 32385.46 28582.96 34595.19 291
gg-mvs-nofinetune87.82 30585.61 31794.44 20394.46 30189.27 20891.21 36784.61 39380.88 35989.89 24274.98 38771.50 32597.53 30885.75 28297.21 14896.51 221
CR-MVSNet90.82 25789.77 26893.95 23094.45 30287.19 26290.23 37395.68 28886.89 29192.40 17592.36 33980.91 22297.05 33181.09 32993.95 20997.60 188
RPMNet88.98 29187.05 30594.77 19194.45 30287.19 26290.23 37398.03 9177.87 37592.40 17587.55 37880.17 23799.51 9668.84 37993.95 20997.60 188
TESTMET0.1,190.06 27889.42 27791.97 29994.41 30480.62 34894.29 31691.97 36987.28 28590.44 22192.47 33568.79 34297.67 29488.50 23096.60 16297.61 187
TransMVSNet (Re)88.94 29287.56 29893.08 27094.35 30588.45 23197.73 9595.23 31087.47 27984.26 33995.29 24079.86 24397.33 32379.44 34074.44 37393.45 346
MS-PatchMatch90.27 27189.77 26891.78 30794.33 30684.72 30995.55 27196.73 23386.17 30486.36 32195.28 24271.28 32797.80 28484.09 30198.14 12192.81 353
baseline291.63 21690.86 22093.94 23294.33 30686.32 28195.92 25791.64 37189.37 21886.94 31594.69 26681.62 21498.69 18388.64 22894.57 19896.81 215
XVG-ACMP-BASELINE90.93 25490.21 25193.09 26994.31 30885.89 28895.33 28097.26 18891.06 17089.38 25795.44 23768.61 34398.60 19289.46 20791.05 25494.79 315
pm-mvs190.72 26189.65 27493.96 22994.29 30989.63 18697.79 9096.82 23089.07 22586.12 32495.48 23678.61 26697.78 28686.97 26281.67 35094.46 326
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31089.73 18597.71 10093.65 35392.78 12090.46 22096.67 16675.88 29597.97 26192.92 14690.89 25995.48 264
v891.29 23890.53 23693.57 25294.15 31188.12 24297.34 14497.06 20588.99 22988.32 28394.26 29283.08 18098.01 25687.62 24883.92 33794.57 324
v1091.04 24890.23 24893.49 25494.12 31288.16 24197.32 14797.08 20188.26 25688.29 28594.22 29582.17 20497.97 26186.45 26884.12 33394.33 331
Patchmtry88.64 29887.25 30192.78 28194.09 31386.64 27489.82 37695.68 28880.81 36187.63 29992.36 33980.91 22297.03 33278.86 34285.12 31894.67 321
PatchT88.87 29587.42 29993.22 26594.08 31485.10 30389.51 37794.64 33381.92 35292.36 17888.15 37480.05 23997.01 33472.43 37093.65 21297.54 191
V4291.58 22090.87 21993.73 24294.05 31588.50 22997.32 14796.97 21388.80 24189.71 24594.33 28582.54 19598.05 25089.01 22085.07 31994.64 323
DTE-MVSNet90.56 26589.75 27093.01 27193.95 31687.25 25997.64 11097.65 13690.74 17687.12 30895.68 22579.97 24197.00 33583.33 30781.66 35194.78 317
tpm90.25 27289.74 27191.76 30993.92 31779.73 35993.98 32393.54 35488.28 25591.99 18893.25 32577.51 28297.44 31687.30 25587.94 28898.12 160
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 31889.28 20797.75 9297.56 14992.50 12689.94 23996.54 18088.65 9598.18 22893.83 12690.90 25895.86 241
v114491.37 23290.60 23293.68 24793.89 31988.23 23796.84 18797.03 21088.37 25389.69 24794.39 28182.04 20597.98 25887.80 23885.37 31294.84 307
v2v48291.59 21890.85 22293.80 23993.87 32088.17 24096.94 17996.88 22589.54 21289.53 25394.90 25681.70 21398.02 25589.25 21485.04 32195.20 288
v14890.99 25090.38 23992.81 28093.83 32185.80 28996.78 19296.68 23989.45 21688.75 27593.93 30582.96 18697.82 28387.83 23783.25 34294.80 313
Baseline_NR-MVSNet91.20 24190.62 23192.95 27493.83 32188.03 24497.01 17495.12 31588.42 25289.70 24695.13 24883.47 17197.44 31689.66 20383.24 34393.37 347
EPNet_dtu91.71 21391.28 20792.99 27293.76 32383.71 32196.69 20195.28 30693.15 10287.02 31295.95 20783.37 17497.38 32179.46 33996.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 24690.23 24893.58 25193.70 32487.82 25196.73 19597.07 20387.77 27189.58 25094.32 28780.90 22497.97 26186.52 26685.48 31094.95 297
GG-mvs-BLEND93.62 24893.69 32589.20 21092.39 36083.33 39587.98 29489.84 36371.00 32996.87 33882.08 32095.40 18394.80 313
test_fmvs289.77 28589.93 26189.31 34493.68 32676.37 37297.64 11095.90 27589.84 20691.49 19996.26 19458.77 37397.10 32994.65 10891.13 25294.46 326
v14419291.06 24790.28 24493.39 25893.66 32787.23 26196.83 18897.07 20387.43 28089.69 24794.28 28981.48 21598.00 25787.18 25884.92 32394.93 301
v192192090.85 25690.03 25993.29 26293.55 32886.96 26996.74 19497.04 20887.36 28289.52 25494.34 28480.23 23697.97 26186.27 26985.21 31694.94 299
v7n90.76 25889.86 26393.45 25793.54 32987.60 25597.70 10297.37 17988.85 23587.65 29894.08 30081.08 21998.10 23984.68 29483.79 33994.66 322
JIA-IIPM88.26 30287.04 30691.91 30093.52 33081.42 33989.38 37894.38 33880.84 36090.93 21580.74 38579.22 25397.92 27382.76 31491.62 24096.38 226
v124090.70 26289.85 26493.23 26493.51 33186.80 27096.61 21197.02 21187.16 28789.58 25094.31 28879.55 24897.98 25885.52 28485.44 31194.90 304
test_djsdf93.07 16292.76 15194.00 22593.49 33288.70 22298.22 4197.57 14691.42 15590.08 23695.55 23282.85 18897.92 27394.07 11791.58 24195.40 273
SixPastTwentyTwo89.15 29088.54 29090.98 32293.49 33280.28 35496.70 19994.70 33090.78 17484.15 34195.57 23071.78 32497.71 29284.63 29585.07 31994.94 299
test_vis1_rt86.16 32285.06 32389.46 34293.47 33480.46 35096.41 22386.61 39085.22 31779.15 36888.64 36952.41 38297.06 33093.08 13990.57 26290.87 373
mvs_tets92.31 19391.76 18793.94 23293.41 33588.29 23397.63 11297.53 15192.04 14088.76 27496.45 18474.62 30898.09 24293.91 12291.48 24495.45 269
OurMVSNet-221017-090.51 26790.19 25291.44 31593.41 33581.25 34096.98 17696.28 26091.68 14886.55 32096.30 19174.20 31197.98 25888.96 22287.40 29595.09 292
pmmvs490.93 25489.85 26494.17 21693.34 33790.79 15394.60 30096.02 27184.62 32787.45 30195.15 24681.88 21097.45 31587.70 24287.87 28994.27 335
jajsoiax92.42 18691.89 18594.03 22493.33 33888.50 22997.73 9597.53 15192.00 14288.85 27196.50 18275.62 30098.11 23893.88 12491.56 24295.48 264
gm-plane-assit93.22 33978.89 36884.82 32593.52 31998.64 18887.72 239
MVP-Stereo90.74 26090.08 25492.71 28393.19 34088.20 23895.86 25996.27 26186.07 30584.86 33494.76 26377.84 27997.75 28983.88 30598.01 12392.17 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 29788.90 28588.20 34893.15 34174.21 37696.63 21094.22 34385.18 31887.32 30695.97 20576.16 29394.98 36485.27 28786.17 30395.41 270
MDA-MVSNet-bldmvs85.00 33082.95 33591.17 32193.13 34283.33 32494.56 30295.00 31984.57 32865.13 38692.65 33070.45 33295.85 35173.57 36777.49 36594.33 331
K. test v387.64 30886.75 31090.32 33393.02 34379.48 36396.61 21192.08 36890.66 18380.25 36494.09 29967.21 35196.65 34285.96 27980.83 35494.83 308
pmmvs589.86 28388.87 28692.82 27992.86 34486.23 28496.26 23895.39 29984.24 33187.12 30894.51 27474.27 31097.36 32287.61 24987.57 29194.86 306
testgi87.97 30387.21 30390.24 33492.86 34480.76 34496.67 20494.97 32191.74 14685.52 32795.83 21362.66 36994.47 36876.25 35488.36 28695.48 264
EPNet95.20 8994.56 9797.14 6392.80 34692.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 34678.71 34778.79 36592.80 34646.50 40294.14 32043.71 40478.61 37180.83 35891.66 35074.94 30596.36 34467.24 38084.45 33093.50 344
EG-PatchMatch MVS87.02 31485.44 31891.76 30992.67 34885.00 30496.08 24996.45 25483.41 34379.52 36693.49 32057.10 37697.72 29179.34 34190.87 26092.56 357
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 34991.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
Gipumacopyleft67.86 35665.41 35875.18 37392.66 34973.45 37866.50 39294.52 33553.33 39157.80 39266.07 39230.81 39289.20 38648.15 39278.88 36462.90 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 20191.55 19693.97 22892.58 35189.55 19197.51 12497.42 17489.42 21788.40 28194.84 25980.66 22697.88 27891.87 16191.28 24994.48 325
EGC-MVSNET68.77 35563.01 36086.07 35892.49 35282.24 33493.96 32590.96 3760.71 4012.62 40290.89 35453.66 38093.46 37657.25 38884.55 32882.51 384
test0.0.03 189.37 28988.70 28791.41 31692.47 35385.63 29195.22 28892.70 36291.11 16886.91 31793.65 31679.02 25893.19 37978.00 34689.18 27795.41 270
our_test_388.78 29687.98 29691.20 32092.45 35482.53 32993.61 34095.69 28685.77 30984.88 33393.71 31179.99 24096.78 34179.47 33886.24 30294.28 334
ppachtmachnet_test88.35 30187.29 30091.53 31292.45 35483.57 32393.75 33395.97 27284.28 33085.32 33194.18 29679.00 26296.93 33675.71 35684.99 32294.10 336
YYNet185.87 32684.23 33090.78 32892.38 35682.46 33193.17 34695.14 31482.12 35167.69 38192.36 33978.16 27495.50 36177.31 34979.73 35894.39 329
MDA-MVSNet_test_wron85.87 32684.23 33090.80 32792.38 35682.57 32893.17 34695.15 31382.15 35067.65 38292.33 34278.20 27195.51 36077.33 34879.74 35794.31 333
LF4IMVS87.94 30487.25 30189.98 33792.38 35680.05 35794.38 31095.25 30987.59 27784.34 33794.74 26564.31 36497.66 29684.83 29187.45 29292.23 361
lessismore_v090.45 33191.96 35979.09 36787.19 38880.32 36394.39 28166.31 35897.55 30584.00 30376.84 36794.70 320
dmvs_testset81.38 34282.60 33877.73 36691.74 36051.49 39993.03 35184.21 39489.07 22578.28 37191.25 35376.97 28588.53 38956.57 38982.24 34993.16 348
pmmvs687.81 30686.19 31392.69 28491.32 36186.30 28297.34 14496.41 25680.59 36484.05 34594.37 28367.37 35097.67 29484.75 29379.51 36094.09 338
Anonymous2023120687.09 31386.14 31489.93 33891.22 36280.35 35196.11 24795.35 30283.57 34184.16 34093.02 32773.54 31795.61 35772.16 37186.14 30493.84 341
KD-MVS_2432*160084.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
miper_refine_blended84.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
DeepMVS_CXcopyleft74.68 37490.84 36564.34 39281.61 39765.34 38567.47 38388.01 37648.60 38480.13 39562.33 38473.68 37579.58 386
Anonymous2024052186.42 31885.44 31889.34 34390.33 36679.79 35896.73 19595.92 27383.71 33983.25 34991.36 35263.92 36596.01 34778.39 34585.36 31392.22 362
test20.0386.14 32385.40 32088.35 34690.12 36780.06 35695.90 25895.20 31188.59 24481.29 35793.62 31771.43 32692.65 38071.26 37581.17 35392.34 360
OpenMVS_ROBcopyleft81.14 2084.42 33482.28 34090.83 32490.06 36884.05 31795.73 26494.04 34673.89 38080.17 36591.53 35159.15 37297.64 29766.92 38189.05 27890.80 374
UnsupCasMVSNet_eth85.99 32484.45 32890.62 32989.97 36982.40 33293.62 33997.37 17989.86 20378.59 37092.37 33665.25 36395.35 36382.27 31970.75 37994.10 336
DSMNet-mixed86.34 31986.12 31587.00 35589.88 37070.43 38194.93 29490.08 37977.97 37485.42 33092.78 32974.44 30993.96 37474.43 36295.14 18696.62 219
new_pmnet82.89 33981.12 34488.18 34989.63 37180.18 35591.77 36292.57 36376.79 37775.56 37688.23 37361.22 37194.48 36771.43 37382.92 34689.87 377
MIMVSNet184.93 33183.05 33390.56 33089.56 37284.84 30895.40 27795.35 30283.91 33480.38 36292.21 34357.23 37593.34 37870.69 37782.75 34893.50 344
KD-MVS_self_test85.95 32584.95 32488.96 34589.55 37379.11 36695.13 29096.42 25585.91 30784.07 34490.48 35670.03 33794.82 36580.04 33372.94 37692.94 351
CMPMVSbinary62.92 2185.62 32884.92 32587.74 35089.14 37473.12 38094.17 31996.80 23173.98 37973.65 37894.93 25466.36 35697.61 30183.95 30491.28 24992.48 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test179.31 34577.70 34884.14 35989.11 37569.07 38592.36 36191.50 37269.07 38373.87 37792.63 33239.93 38894.32 36970.54 37880.25 35689.02 379
CL-MVSNet_self_test86.31 32085.15 32289.80 33988.83 37681.74 33893.93 32796.22 26486.67 29485.03 33290.80 35578.09 27594.50 36674.92 36071.86 37893.15 349
Patchmatch-RL test87.38 30986.24 31290.81 32588.74 37778.40 36988.12 38393.17 35787.11 28882.17 35589.29 36681.95 20895.60 35888.64 22877.02 36698.41 142
pmmvs-eth3d86.22 32184.45 32891.53 31288.34 37887.25 25994.47 30595.01 31883.47 34279.51 36789.61 36469.75 33995.71 35483.13 30976.73 36991.64 365
UnsupCasMVSNet_bld82.13 34179.46 34690.14 33588.00 37982.47 33090.89 37096.62 24778.94 37075.61 37484.40 38356.63 37796.31 34577.30 35066.77 38691.63 366
PM-MVS83.48 33681.86 34288.31 34787.83 38077.59 37093.43 34291.75 37086.91 29080.63 36089.91 36244.42 38695.84 35285.17 29076.73 36991.50 369
new-patchmatchnet83.18 33881.87 34187.11 35386.88 38175.99 37493.70 33495.18 31285.02 32277.30 37388.40 37165.99 36093.88 37574.19 36570.18 38091.47 370
test_fmvs383.21 33783.02 33483.78 36086.77 38268.34 38696.76 19394.91 32486.49 29784.14 34289.48 36536.04 39091.73 38291.86 16280.77 35591.26 372
WB-MVS76.77 34776.63 35077.18 36785.32 38356.82 39794.53 30389.39 38182.66 34871.35 37989.18 36775.03 30488.88 38735.42 39566.79 38585.84 381
SSC-MVS76.05 34875.83 35176.72 37184.77 38456.22 39894.32 31488.96 38381.82 35470.52 38088.91 36874.79 30688.71 38833.69 39664.71 38785.23 382
mvsany_test383.59 33582.44 33987.03 35483.80 38573.82 37793.70 33490.92 37786.42 29882.51 35390.26 35846.76 38595.71 35490.82 18276.76 36891.57 367
ambc86.56 35683.60 38670.00 38385.69 38594.97 32180.60 36188.45 37037.42 38996.84 33982.69 31675.44 37192.86 352
test_f80.57 34379.62 34583.41 36183.38 38767.80 38893.57 34193.72 35180.80 36277.91 37287.63 37733.40 39192.08 38187.14 26079.04 36390.34 376
pmmvs379.97 34477.50 34987.39 35282.80 38879.38 36492.70 35690.75 37870.69 38278.66 36987.47 37951.34 38393.40 37773.39 36869.65 38189.38 378
TDRefinement86.53 31684.76 32791.85 30282.23 38984.25 31296.38 22995.35 30284.97 32384.09 34394.94 25365.76 36298.34 21784.60 29674.52 37292.97 350
test_vis3_rt72.73 34970.55 35279.27 36480.02 39068.13 38793.92 32874.30 40176.90 37658.99 39073.58 39020.29 39995.37 36284.16 29972.80 37774.31 389
testf169.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
APD_test269.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
PMMVS270.19 35266.92 35580.01 36376.35 39365.67 39086.22 38487.58 38764.83 38662.38 38780.29 38626.78 39688.49 39063.79 38254.07 39285.88 380
FPMVS71.27 35169.85 35375.50 37274.64 39459.03 39591.30 36491.50 37258.80 38757.92 39188.28 37229.98 39485.53 39253.43 39082.84 34781.95 385
E-PMN53.28 36052.56 36455.43 37874.43 39547.13 40183.63 38876.30 39842.23 39342.59 39562.22 39428.57 39574.40 39631.53 39731.51 39444.78 393
wuyk23d25.11 36424.57 36826.74 38173.98 39639.89 40557.88 3949.80 40512.27 39810.39 3996.97 4017.03 40336.44 40025.43 39917.39 3983.89 398
test_method66.11 35764.89 35969.79 37572.62 39735.23 40665.19 39392.83 36120.35 39665.20 38588.08 37543.14 38782.70 39373.12 36963.46 38891.45 371
EMVS52.08 36251.31 36554.39 37972.62 39745.39 40383.84 38775.51 40041.13 39440.77 39659.65 39530.08 39373.60 39728.31 39829.90 39644.18 394
LCM-MVSNet72.55 35069.39 35482.03 36270.81 39965.42 39190.12 37594.36 34155.02 39065.88 38481.72 38424.16 39889.96 38374.32 36468.10 38490.71 375
MVEpermissive50.73 2353.25 36148.81 36666.58 37765.34 40057.50 39672.49 39170.94 40240.15 39539.28 39763.51 3936.89 40473.48 39838.29 39442.38 39368.76 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 35859.58 36177.02 36861.24 40166.06 38985.66 38687.93 38678.53 37242.94 39471.04 39125.42 39780.71 39452.60 39130.83 39584.28 383
PMVScopyleft53.92 2258.58 35955.40 36268.12 37651.00 40248.64 40078.86 38987.10 38946.77 39235.84 39874.28 3888.76 40286.34 39142.07 39373.91 37469.38 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 36353.82 36346.29 38033.73 40345.30 40478.32 39067.24 40318.02 39750.93 39387.05 38052.99 38153.11 39970.76 37625.29 39740.46 395
testmvs13.36 36616.33 3694.48 3835.04 4042.26 40893.18 3453.28 4062.70 3998.24 40021.66 3972.29 4062.19 4017.58 4002.96 3999.00 397
test12313.04 36715.66 3705.18 3824.51 4053.45 40792.50 3591.81 4072.50 4007.58 40120.15 3983.67 4052.18 4027.13 4011.07 4009.90 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.24 36530.99 3670.00 3840.00 4060.00 4090.00 39597.63 1400.00 4020.00 40396.88 15584.38 1570.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.39 3699.85 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40288.65 950.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.06 36810.74 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40396.69 1640.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
WAC-MVS79.53 36075.56 358
PC_three_145290.77 17598.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 137
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 35516.58 40080.53 22997.68 29386.20 271
test_post17.58 39981.76 21198.08 243
patchmatchnet-post90.45 35782.65 19498.10 239
MTMP97.86 7982.03 396
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 35597.34 4898.82 16892.26 149
新几何295.79 262
无先验95.79 26297.87 11183.87 33799.65 5887.68 24598.89 105
原ACMM295.67 266
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata195.26 28793.10 105
plane_prior597.51 15398.60 19293.02 14292.23 22995.86 241
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 203
plane_prior297.74 9394.85 34
plane_prior89.99 17697.24 15394.06 6592.16 233
n20.00 408
nn0.00 408
door-mid91.06 375
test1197.88 109
door91.13 374
HQP5-MVS89.33 203
BP-MVS92.13 155
HQP4-MVS90.14 22698.50 20095.78 250
HQP3-MVS97.39 17692.10 234
HQP2-MVS80.95 220
MDTV_nov1_ep13_2view70.35 38293.10 35083.88 33693.55 15282.47 19886.25 27098.38 145
ACMMP++_ref90.30 267
ACMMP++91.02 255
Test By Simon88.73 94