This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4672.48 17592.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18393.06 10794.33 4882.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2896.26 3068.44 4098.74 2495.82 494.72 3095.90 42
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20492.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DeepPCF-MVS81.17 189.72 991.38 384.72 12393.00 6958.16 29596.72 894.41 4286.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19395.04 4095.19 1586.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2795.78 4065.94 6199.10 992.99 1693.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 19190.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4396.20 3266.56 5798.76 2389.03 4694.56 3295.92 41
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5794.15 5368.77 25490.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7794.03 5574.18 13891.74 1196.67 2165.61 6598.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2996.06 3653.55 20697.89 4391.10 3193.31 5194.54 96
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21793.55 7282.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8585.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7396.19 3364.53 7998.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2995.95 3853.45 21097.68 5091.07 3292.62 5894.54 96
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3494.53 7766.79 5497.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
lupinMVS87.74 2387.77 2587.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3995.27 5664.99 7095.80 14089.34 4191.80 7095.93 40
test_fmvsm_n_192087.69 2488.50 1785.27 10387.05 21463.55 20093.69 8791.08 17684.18 1390.17 2397.04 867.58 4997.99 3995.72 590.03 9294.26 104
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12694.84 4593.78 5969.35 24588.39 3396.34 2867.74 4897.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9786.95 21564.37 17394.30 5488.45 27780.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 90
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6293.90 7492.63 11076.86 10487.90 3595.76 4166.17 5897.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10187.10 21264.19 18094.41 5288.14 28680.24 5292.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 93
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7890.36 21790.66 18879.37 6481.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
alignmvs87.28 3086.97 3588.24 2491.30 11471.14 2195.61 2593.56 7179.30 6587.07 4195.25 5868.43 4196.93 10587.87 5184.33 14296.65 14
train_agg87.21 3187.42 3086.60 5994.18 4167.28 10094.16 5893.51 7371.87 19685.52 5495.33 5168.19 4397.27 8089.09 4494.90 2195.25 69
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3878.74 8083.87 7292.94 11764.34 8096.94 10375.19 14794.09 3695.66 47
SF-MVS87.03 3387.09 3386.84 5192.70 7767.45 9893.64 8993.76 6270.78 22886.25 4596.44 2666.98 5297.79 4788.68 4894.56 3295.28 65
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1368.48 25877.63 13094.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
canonicalmvs86.85 3586.25 4388.66 1891.80 10171.92 1493.54 9491.71 14780.26 5187.55 3795.25 5863.59 9396.93 10588.18 4984.34 14197.11 8
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14495.39 3095.10 1871.77 20185.69 5396.52 2362.07 11098.77 2286.06 7095.60 1196.03 38
SteuartSystems-ACMMP86.82 3786.90 3786.58 6190.42 12966.38 12396.09 1793.87 5777.73 9284.01 7195.66 4363.39 9597.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 3886.86 3886.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9493.08 11363.19 9997.29 7687.08 6191.38 7894.13 111
test_fmvsmconf_n86.58 3987.17 3284.82 11685.28 24462.55 22394.26 5689.78 22183.81 1687.78 3696.33 2965.33 6796.98 9894.40 1187.55 11394.95 78
jason86.40 4086.17 4487.11 4486.16 22970.54 2895.71 2492.19 12582.00 3084.58 6494.34 8761.86 11295.53 16087.76 5290.89 8495.27 66
jason: jason.
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11687.36 20763.54 20194.74 4790.02 21582.52 2490.14 2496.92 1362.93 10397.84 4695.28 882.26 15493.07 147
WTY-MVS86.32 4285.81 5187.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8494.73 7267.93 4797.63 5679.55 11782.25 15596.54 19
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9368.97 5995.04 4092.70 10479.04 7481.50 8796.50 2558.98 14596.78 11083.49 9093.93 3996.29 30
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8286.00 4993.07 11458.22 15097.00 9485.22 7484.33 14296.52 20
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4093.99 6993.76 6279.08 7278.88 11893.99 9762.25 10998.15 3685.93 7191.15 8294.15 110
CS-MVS-test86.14 4687.01 3483.52 16192.63 8059.36 28395.49 2791.92 13480.09 5385.46 5695.53 4761.82 11595.77 14386.77 6593.37 5095.41 54
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10667.53 9591.79 16293.49 7674.93 12984.61 6395.30 5359.42 13997.92 4186.13 6894.92 1994.94 79
ETV-MVS86.01 4886.11 4585.70 8990.21 13467.02 10993.43 9991.92 13481.21 4284.13 7094.07 9660.93 12395.63 15189.28 4289.81 9394.46 102
APD-MVScopyleft85.93 4985.99 4885.76 8795.98 2665.21 15193.59 9292.58 11266.54 27286.17 4795.88 3963.83 8697.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM85.89 5085.46 5587.18 4288.20 18672.42 1392.41 13592.77 10282.11 2980.34 9993.07 11468.27 4295.02 17278.39 13093.59 4794.09 113
CS-MVS85.80 5186.65 4083.27 16992.00 9458.92 28895.31 3191.86 13979.97 5484.82 6295.40 4962.26 10895.51 16186.11 6992.08 6695.37 57
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12385.73 23863.58 19893.79 8389.32 23981.42 3990.21 2296.91 1462.41 10797.67 5194.48 1080.56 17192.90 153
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13080.83 29762.33 22793.84 8088.81 26483.50 1887.00 4296.01 3763.36 9696.93 10594.04 1287.29 11694.61 92
CDPH-MVS85.71 5385.46 5586.46 6594.75 3467.19 10293.89 7592.83 10170.90 22483.09 7695.28 5463.62 9197.36 7180.63 11194.18 3594.84 83
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18569.35 5093.74 8691.89 13781.47 3580.10 10191.45 14664.80 7596.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12682.95 28163.48 20394.03 6889.46 23381.69 3389.86 2596.74 2061.85 11397.75 4994.74 982.01 15892.81 155
DeepC-MVS77.85 385.52 5785.24 5786.37 6988.80 16866.64 11792.15 14293.68 6781.07 4376.91 14093.64 10462.59 10598.44 3185.50 7292.84 5794.03 117
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18369.07 5593.04 10991.76 14481.27 4180.84 9692.07 13764.23 8196.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS85.33 5985.08 6086.06 7593.09 6865.65 14093.89 7593.41 8073.75 14979.94 10394.68 7460.61 12698.03 3882.63 9593.72 4494.52 98
MP-MVS-pluss85.24 6085.13 5985.56 9291.42 11165.59 14291.54 17292.51 11474.56 13280.62 9795.64 4459.15 14397.00 9486.94 6393.80 4194.07 115
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPR85.15 6184.47 6687.18 4296.02 2568.29 7391.85 16093.00 9676.59 11179.03 11495.00 6361.59 11697.61 5878.16 13189.00 10095.63 48
MP-MVScopyleft85.02 6284.97 6285.17 10792.60 8164.27 17893.24 10292.27 11973.13 16079.63 10794.43 8061.90 11197.17 8385.00 7792.56 5994.06 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
baseline85.01 6384.44 6786.71 5688.33 18068.73 6390.24 22291.82 14381.05 4481.18 9092.50 12663.69 8996.08 13284.45 8386.71 12595.32 61
CHOSEN 1792x268884.98 6483.45 7989.57 1089.94 13975.14 592.07 14892.32 11781.87 3175.68 14988.27 19460.18 12998.60 2780.46 11390.27 9194.96 77
EIA-MVS84.84 6584.88 6384.69 12591.30 11462.36 22693.85 7792.04 12979.45 6179.33 11194.28 9062.42 10696.35 12180.05 11491.25 8195.38 56
fmvsm_s_conf0.1_n_a84.76 6684.84 6584.53 13280.23 30763.50 20292.79 11788.73 26880.46 4989.84 2696.65 2260.96 12297.57 6193.80 1380.14 17392.53 162
HFP-MVS84.73 6784.40 6885.72 8893.75 5165.01 15793.50 9693.19 8772.19 18579.22 11294.93 6659.04 14497.67 5181.55 10292.21 6294.49 101
MVS84.66 6882.86 9490.06 290.93 12074.56 687.91 26895.54 1168.55 25672.35 19094.71 7359.78 13598.90 1981.29 10894.69 3196.74 13
GST-MVS84.63 6984.29 6985.66 9092.82 7365.27 14993.04 10993.13 9073.20 15878.89 11594.18 9359.41 14097.85 4581.45 10492.48 6193.86 125
EC-MVSNet84.53 7085.04 6183.01 17389.34 15161.37 24794.42 5191.09 17477.91 8983.24 7494.20 9258.37 14895.40 16285.35 7391.41 7792.27 172
ACMMPR84.37 7184.06 7085.28 10293.56 5464.37 17393.50 9693.15 8972.19 18578.85 12094.86 6956.69 17097.45 6581.55 10292.20 6394.02 118
region2R84.36 7284.03 7185.36 9993.54 5564.31 17693.43 9992.95 9772.16 18878.86 11994.84 7056.97 16597.53 6381.38 10692.11 6594.24 105
LFMVS84.34 7382.73 9689.18 1294.76 3373.25 994.99 4291.89 13771.90 19382.16 8393.49 10847.98 25797.05 8982.55 9684.82 13797.25 7
test_yl84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
DCV-MVSNet84.28 7483.16 8787.64 3094.52 3769.24 5195.78 1895.09 1969.19 24881.09 9192.88 12057.00 16397.44 6681.11 10981.76 16096.23 33
diffmvspermissive84.28 7483.83 7285.61 9187.40 20568.02 8290.88 20189.24 24280.54 4781.64 8692.52 12559.83 13494.52 19787.32 5885.11 13594.29 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS76.49 584.28 7483.36 8587.02 4892.22 8767.74 8884.65 29494.50 3779.15 6982.23 8287.93 20366.88 5396.94 10380.53 11282.20 15696.39 28
MAR-MVS84.18 7883.43 8086.44 6696.25 2165.93 13594.28 5594.27 5074.41 13379.16 11395.61 4553.99 20198.88 2169.62 19693.26 5294.50 100
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test84.16 7983.20 8687.05 4791.56 10769.82 3989.99 23192.05 12877.77 9182.84 7786.57 22163.93 8596.09 12974.91 15289.18 9995.25 69
CANet_DTU84.09 8083.52 7485.81 8490.30 13266.82 11291.87 15889.01 25685.27 986.09 4893.74 10147.71 26196.98 9877.90 13389.78 9593.65 130
ET-MVSNet_ETH3D84.01 8183.15 8986.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 32093.64 10473.64 2392.35 27382.66 9478.66 18796.50 24
PVSNet_Blended_VisFu83.97 8283.50 7685.39 9790.02 13766.59 12093.77 8491.73 14577.43 10077.08 13989.81 17663.77 8896.97 10079.67 11688.21 10692.60 159
MTAPA83.91 8383.38 8485.50 9391.89 9965.16 15381.75 31792.23 12075.32 12480.53 9895.21 6056.06 17897.16 8584.86 8092.55 6094.18 107
XVS83.87 8483.47 7885.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12494.31 8955.25 18497.41 6879.16 12191.58 7493.95 120
Effi-MVS+83.82 8582.76 9586.99 4989.56 14769.40 4691.35 18486.12 31072.59 17283.22 7592.81 12359.60 13796.01 13781.76 10187.80 11095.56 51
test_fmvsmvis_n_192083.80 8683.48 7784.77 12082.51 28363.72 19191.37 18283.99 33081.42 3977.68 12995.74 4258.37 14897.58 5993.38 1486.87 11993.00 150
EI-MVSNet-Vis-set83.77 8783.67 7384.06 14892.79 7663.56 19991.76 16594.81 2679.65 6077.87 12794.09 9463.35 9797.90 4279.35 11979.36 17990.74 197
MVSFormer83.75 8882.88 9386.37 6989.24 15871.18 1989.07 25090.69 18565.80 27787.13 3994.34 8764.99 7092.67 25972.83 16391.80 7095.27 66
CP-MVS83.71 8983.40 8384.65 12793.14 6663.84 18594.59 4992.28 11871.03 22277.41 13394.92 6755.21 18796.19 12581.32 10790.70 8693.91 122
test_fmvsmconf0.01_n83.70 9083.52 7484.25 14475.26 34961.72 24192.17 14187.24 29982.36 2684.91 6195.41 4855.60 18296.83 10992.85 1785.87 13194.21 106
baseline283.68 9183.42 8284.48 13587.37 20666.00 13290.06 22695.93 879.71 5969.08 22690.39 16477.92 696.28 12378.91 12581.38 16491.16 193
thisisatest051583.41 9282.49 10186.16 7489.46 15068.26 7593.54 9494.70 3074.31 13675.75 14790.92 15472.62 2896.52 11969.64 19481.50 16393.71 128
PVSNet_BlendedMVS83.38 9383.43 8083.22 17093.76 4967.53 9594.06 6393.61 6979.13 7081.00 9485.14 23663.19 9997.29 7687.08 6173.91 22584.83 296
test250683.29 9482.92 9284.37 13988.39 17863.18 20992.01 15191.35 16277.66 9478.49 12391.42 14764.58 7895.09 17173.19 15989.23 9794.85 80
iter_conf0583.27 9582.70 9784.98 11193.32 5971.84 1594.16 5881.76 34182.74 2173.83 17188.40 19072.77 2794.61 18882.10 9875.21 21488.48 229
PGM-MVS83.25 9682.70 9784.92 11292.81 7564.07 18290.44 21392.20 12471.28 21677.23 13694.43 8055.17 18897.31 7579.33 12091.38 7893.37 136
HPM-MVScopyleft83.25 9682.95 9184.17 14692.25 8662.88 21890.91 19891.86 13970.30 23477.12 13793.96 9856.75 16896.28 12382.04 9991.34 8093.34 137
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-UG-set83.14 9882.96 9083.67 15992.28 8563.19 20891.38 18194.68 3179.22 6776.60 14293.75 10062.64 10497.76 4878.07 13278.01 19090.05 206
VDD-MVS83.06 9981.81 11086.81 5390.86 12367.70 8995.40 2991.50 15775.46 12181.78 8592.34 13340.09 29897.13 8786.85 6482.04 15795.60 49
h-mvs3383.01 10082.56 10084.35 14089.34 15162.02 23392.72 12093.76 6281.45 3682.73 7992.25 13560.11 13097.13 8787.69 5362.96 30493.91 122
PAPM_NR82.97 10181.84 10986.37 6994.10 4466.76 11587.66 27392.84 10069.96 23874.07 16893.57 10663.10 10197.50 6470.66 18790.58 8894.85 80
mPP-MVS82.96 10282.44 10284.52 13392.83 7162.92 21692.76 11891.85 14171.52 21275.61 15294.24 9153.48 20996.99 9778.97 12490.73 8593.64 131
SR-MVS82.81 10382.58 9983.50 16493.35 5861.16 25092.23 14091.28 16664.48 28681.27 8895.28 5453.71 20595.86 13982.87 9388.77 10293.49 134
DP-MVS Recon82.73 10481.65 11185.98 7797.31 467.06 10695.15 3691.99 13169.08 25176.50 14493.89 9954.48 19698.20 3570.76 18585.66 13392.69 156
CLD-MVS82.73 10482.35 10483.86 15287.90 19367.65 9195.45 2892.18 12685.06 1072.58 18392.27 13452.46 21795.78 14184.18 8479.06 18288.16 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
sss82.71 10682.38 10383.73 15689.25 15559.58 27892.24 13994.89 2377.96 8779.86 10492.38 13156.70 16997.05 8977.26 13680.86 16894.55 94
3Dnovator73.91 682.69 10780.82 12288.31 2389.57 14671.26 1892.60 12894.39 4578.84 7767.89 24792.48 12948.42 25298.52 2868.80 20694.40 3495.15 71
MVSTER82.47 10882.05 10583.74 15492.68 7869.01 5791.90 15793.21 8479.83 5572.14 19185.71 23374.72 1694.72 18375.72 14372.49 23687.50 240
TESTMET0.1,182.41 10981.98 10883.72 15788.08 18763.74 18992.70 12293.77 6179.30 6577.61 13187.57 20958.19 15194.08 21373.91 15886.68 12693.33 139
CostFormer82.33 11081.15 11585.86 8289.01 16368.46 6982.39 31493.01 9475.59 11980.25 10081.57 27972.03 3294.96 17579.06 12377.48 19894.16 109
API-MVS82.28 11180.53 12987.54 3596.13 2270.59 2793.63 9091.04 18065.72 27975.45 15492.83 12256.11 17798.89 2064.10 24989.75 9693.15 143
IB-MVS77.80 482.18 11280.46 13187.35 3989.14 16070.28 3195.59 2695.17 1778.85 7670.19 21485.82 23170.66 3597.67 5172.19 17466.52 27794.09 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
xiu_mvs_v1_base_debi82.16 11381.12 11685.26 10486.42 22368.72 6492.59 13090.44 19573.12 16184.20 6794.36 8238.04 31295.73 14584.12 8586.81 12091.33 186
3Dnovator+73.60 782.10 11680.60 12886.60 5990.89 12266.80 11495.20 3493.44 7874.05 14067.42 25392.49 12849.46 24297.65 5570.80 18491.68 7295.33 59
MVS_111021_LR82.02 11781.52 11283.51 16388.42 17662.88 21889.77 23588.93 26076.78 10775.55 15393.10 11150.31 23495.38 16483.82 8987.02 11892.26 173
PMMVS81.98 11882.04 10681.78 20689.76 14356.17 31591.13 19490.69 18577.96 8780.09 10293.57 10646.33 27194.99 17481.41 10587.46 11494.17 108
baseline181.84 11981.03 12084.28 14391.60 10566.62 11891.08 19591.66 15181.87 3174.86 15891.67 14469.98 3794.92 17871.76 17764.75 29291.29 191
EPP-MVSNet81.79 12081.52 11282.61 18288.77 16960.21 27093.02 11193.66 6868.52 25772.90 17890.39 16472.19 3194.96 17574.93 15179.29 18192.67 157
iter_conf_final81.74 12180.93 12184.18 14592.66 7969.10 5492.94 11382.80 33979.01 7574.85 15988.40 19061.83 11494.61 18879.36 11876.52 20788.83 220
test_vis1_n_192081.66 12282.01 10780.64 23382.24 28655.09 32394.76 4686.87 30181.67 3484.40 6694.63 7538.17 30994.67 18791.98 2683.34 14892.16 176
APD-MVS_3200maxsize81.64 12381.32 11482.59 18392.36 8358.74 29091.39 17991.01 18163.35 29579.72 10694.62 7651.82 22096.14 12779.71 11587.93 10992.89 154
ACMMPcopyleft81.49 12480.67 12583.93 15191.71 10362.90 21792.13 14392.22 12371.79 20071.68 19893.49 10850.32 23396.96 10178.47 12984.22 14691.93 178
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDS-MVSNet81.43 12580.74 12383.52 16186.26 22764.45 16792.09 14690.65 18975.83 11873.95 17089.81 17663.97 8492.91 24971.27 18082.82 15193.20 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous81.36 12679.99 13685.46 9490.39 13168.40 7086.88 28490.61 19074.41 13370.31 21384.67 24263.79 8792.32 27473.13 16085.70 13295.67 46
ECVR-MVScopyleft81.29 12780.38 13284.01 15088.39 17861.96 23592.56 13386.79 30377.66 9476.63 14191.42 14746.34 27095.24 16974.36 15689.23 9794.85 80
thisisatest053081.15 12880.07 13384.39 13888.26 18265.63 14191.40 17794.62 3471.27 21770.93 20489.18 18172.47 2996.04 13465.62 23876.89 20491.49 182
Fast-Effi-MVS+81.14 12980.01 13584.51 13490.24 13365.86 13694.12 6289.15 24873.81 14875.37 15588.26 19557.26 15894.53 19666.97 22384.92 13693.15 143
HQP-MVS81.14 12980.64 12682.64 18187.54 20163.66 19694.06 6391.70 14979.80 5674.18 16490.30 16651.63 22495.61 15377.63 13478.90 18388.63 225
hse-mvs281.12 13181.11 11981.16 22086.52 22257.48 30589.40 24391.16 16981.45 3682.73 7990.49 16260.11 13094.58 19087.69 5360.41 33191.41 185
SR-MVS-dyc-post81.06 13280.70 12482.15 19792.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7851.26 22895.61 15378.77 12786.77 12392.28 169
HyFIR lowres test81.03 13379.56 14385.43 9587.81 19768.11 8090.18 22390.01 21670.65 23072.95 17786.06 22963.61 9294.50 19875.01 15079.75 17793.67 129
nrg03080.93 13479.86 13884.13 14783.69 27068.83 6193.23 10391.20 16775.55 12075.06 15788.22 19863.04 10294.74 18281.88 10066.88 27488.82 223
Vis-MVSNetpermissive80.92 13579.98 13783.74 15488.48 17361.80 23793.44 9888.26 28573.96 14477.73 12891.76 14149.94 23894.76 18065.84 23590.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test111180.84 13680.02 13483.33 16787.87 19460.76 25892.62 12786.86 30277.86 9075.73 14891.39 14946.35 26994.70 18672.79 16588.68 10394.52 98
131480.70 13778.95 15485.94 7987.77 19967.56 9387.91 26892.55 11372.17 18767.44 25293.09 11250.27 23597.04 9271.68 17987.64 11293.23 141
tpmrst80.57 13879.14 15384.84 11590.10 13668.28 7481.70 31889.72 22877.63 9675.96 14679.54 31164.94 7292.71 25675.43 14577.28 20193.55 132
1112_ss80.56 13979.83 13982.77 17788.65 17060.78 25692.29 13788.36 27972.58 17372.46 18794.95 6465.09 6993.42 23766.38 22977.71 19294.10 112
VDDNet80.50 14078.26 16287.21 4186.19 22869.79 4094.48 5091.31 16360.42 32079.34 11090.91 15538.48 30796.56 11782.16 9781.05 16695.27 66
BH-w/o80.49 14179.30 15084.05 14990.83 12464.36 17593.60 9189.42 23674.35 13569.09 22590.15 17155.23 18695.61 15364.61 24686.43 12992.17 175
test_cas_vis1_n_192080.45 14280.61 12779.97 25078.25 33357.01 31194.04 6788.33 28079.06 7382.81 7893.70 10238.65 30491.63 28890.82 3579.81 17591.27 192
TAMVS80.37 14379.45 14683.13 17285.14 24763.37 20491.23 18990.76 18474.81 13172.65 18188.49 18760.63 12592.95 24469.41 19881.95 15993.08 146
HQP_MVS80.34 14479.75 14082.12 19986.94 21662.42 22493.13 10591.31 16378.81 7872.53 18489.14 18350.66 23195.55 15876.74 13778.53 18888.39 232
SDMVSNet80.26 14578.88 15584.40 13789.25 15567.63 9285.35 29093.02 9376.77 10870.84 20587.12 21547.95 25896.09 12985.04 7674.55 21689.48 216
HPM-MVS_fast80.25 14679.55 14582.33 18991.55 10859.95 27391.32 18689.16 24765.23 28374.71 16193.07 11447.81 26095.74 14474.87 15488.23 10591.31 190
ab-mvs80.18 14778.31 16185.80 8588.44 17565.49 14783.00 31192.67 10671.82 19977.36 13485.01 23754.50 19396.59 11476.35 14175.63 21295.32 61
IS-MVSNet80.14 14879.41 14782.33 18987.91 19260.08 27291.97 15588.27 28372.90 16871.44 20191.73 14361.44 11793.66 23262.47 26386.53 12793.24 140
test-LLR80.10 14979.56 14381.72 20886.93 21861.17 24892.70 12291.54 15471.51 21375.62 15086.94 21753.83 20292.38 27072.21 17284.76 13991.60 180
PVSNet73.49 880.05 15078.63 15784.31 14190.92 12164.97 15892.47 13491.05 17979.18 6872.43 18890.51 16137.05 32494.06 21568.06 21086.00 13093.90 124
UA-Net80.02 15179.65 14181.11 22289.33 15357.72 30086.33 28789.00 25977.44 9981.01 9389.15 18259.33 14195.90 13861.01 27084.28 14489.73 212
test-mter79.96 15279.38 14981.72 20886.93 21861.17 24892.70 12291.54 15473.85 14675.62 15086.94 21749.84 24092.38 27072.21 17284.76 13991.60 180
QAPM79.95 15377.39 17987.64 3089.63 14571.41 1793.30 10193.70 6665.34 28267.39 25591.75 14247.83 25998.96 1657.71 28689.81 9392.54 161
UGNet79.87 15478.68 15683.45 16689.96 13861.51 24492.13 14390.79 18376.83 10678.85 12086.33 22538.16 31096.17 12667.93 21387.17 11792.67 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm279.80 15577.95 16885.34 10088.28 18168.26 7581.56 32091.42 16070.11 23677.59 13280.50 29767.40 5094.26 20767.34 21877.35 19993.51 133
thres20079.66 15678.33 16083.66 16092.54 8265.82 13893.06 10796.31 374.90 13073.30 17488.66 18559.67 13695.61 15347.84 32378.67 18689.56 215
CPTT-MVS79.59 15779.16 15280.89 23191.54 10959.80 27592.10 14588.54 27660.42 32072.96 17693.28 11048.27 25392.80 25378.89 12686.50 12890.06 205
Test_1112_low_res79.56 15878.60 15882.43 18588.24 18460.39 26792.09 14687.99 29072.10 18971.84 19487.42 21164.62 7793.04 24165.80 23677.30 20093.85 126
tttt051779.50 15978.53 15982.41 18887.22 20961.43 24689.75 23694.76 2769.29 24667.91 24588.06 20272.92 2595.63 15162.91 25973.90 22690.16 204
FIs79.47 16079.41 14779.67 25785.95 23259.40 28091.68 16993.94 5678.06 8668.96 23088.28 19366.61 5691.77 28566.20 23274.99 21587.82 237
BH-RMVSNet79.46 16177.65 17184.89 11391.68 10465.66 13993.55 9388.09 28872.93 16573.37 17391.12 15346.20 27396.12 12856.28 29085.61 13492.91 152
PCF-MVS73.15 979.29 16277.63 17284.29 14286.06 23065.96 13487.03 28091.10 17369.86 24069.79 22190.64 15757.54 15796.59 11464.37 24882.29 15390.32 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Vis-MVSNet (Re-imp)79.24 16379.57 14278.24 27888.46 17452.29 33490.41 21589.12 25074.24 13769.13 22491.91 13965.77 6390.09 31059.00 28288.09 10792.33 166
114514_t79.17 16477.67 17083.68 15895.32 2965.53 14592.85 11691.60 15363.49 29367.92 24490.63 15946.65 26695.72 14967.01 22283.54 14789.79 210
FA-MVS(test-final)79.12 16577.23 18184.81 11990.54 12763.98 18481.35 32391.71 14771.09 22174.85 15982.94 26052.85 21397.05 8967.97 21181.73 16293.41 135
VPA-MVSNet79.03 16678.00 16682.11 20285.95 23264.48 16693.22 10494.66 3275.05 12874.04 16984.95 23852.17 21993.52 23474.90 15367.04 27388.32 234
OPM-MVS79.00 16778.09 16481.73 20783.52 27363.83 18691.64 17190.30 20276.36 11471.97 19389.93 17546.30 27295.17 17075.10 14877.70 19386.19 268
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet78.97 16878.22 16381.25 21785.33 24262.73 22189.53 24093.21 8472.39 18072.14 19190.13 17260.99 12094.72 18367.73 21572.49 23686.29 264
AdaColmapbinary78.94 16977.00 18584.76 12196.34 1765.86 13692.66 12687.97 29262.18 30770.56 20792.37 13243.53 28697.35 7264.50 24782.86 15091.05 195
GeoE78.90 17077.43 17583.29 16888.95 16462.02 23392.31 13686.23 30870.24 23571.34 20289.27 18054.43 19794.04 21863.31 25580.81 17093.81 127
miper_enhance_ethall78.86 17177.97 16781.54 21288.00 19165.17 15291.41 17589.15 24875.19 12668.79 23383.98 25167.17 5192.82 25172.73 16665.30 28386.62 261
VPNet78.82 17277.53 17482.70 17984.52 25766.44 12293.93 7292.23 12080.46 4972.60 18288.38 19249.18 24693.13 24072.47 17063.97 30188.55 228
EPNet_dtu78.80 17379.26 15177.43 28688.06 18849.71 34791.96 15691.95 13377.67 9376.56 14391.28 15158.51 14790.20 30856.37 28980.95 16792.39 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpn200view978.79 17477.43 17582.88 17592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19588.83 220
TR-MVS78.77 17577.37 18082.95 17490.49 12860.88 25493.67 8890.07 21170.08 23774.51 16291.37 15045.69 27695.70 15060.12 27680.32 17292.29 168
thres40078.68 17677.43 17582.43 18592.21 8864.49 16492.05 14996.28 473.48 15571.75 19688.26 19560.07 13295.32 16545.16 33477.58 19587.48 241
BH-untuned78.68 17677.08 18283.48 16589.84 14063.74 18992.70 12288.59 27471.57 21066.83 26288.65 18651.75 22295.39 16359.03 28184.77 13891.32 189
OMC-MVS78.67 17877.91 16980.95 22985.76 23757.40 30788.49 25988.67 27173.85 14672.43 18892.10 13649.29 24594.55 19572.73 16677.89 19190.91 196
tpm78.58 17977.03 18383.22 17085.94 23464.56 16283.21 30891.14 17278.31 8373.67 17279.68 30964.01 8392.09 27966.07 23371.26 24693.03 148
OpenMVScopyleft70.45 1178.54 18075.92 19886.41 6885.93 23571.68 1692.74 11992.51 11466.49 27364.56 27791.96 13843.88 28598.10 3754.61 29590.65 8789.44 218
EPMVS78.49 18175.98 19786.02 7691.21 11669.68 4480.23 33291.20 16775.25 12572.48 18678.11 31954.65 19293.69 23157.66 28783.04 14994.69 86
AUN-MVS78.37 18277.43 17581.17 21986.60 22157.45 30689.46 24291.16 16974.11 13974.40 16390.49 16255.52 18394.57 19274.73 15560.43 33091.48 183
thres100view90078.37 18277.01 18482.46 18491.89 9963.21 20791.19 19396.33 172.28 18370.45 21087.89 20460.31 12795.32 16545.16 33477.58 19588.83 220
GA-MVS78.33 18476.23 19484.65 12783.65 27166.30 12691.44 17390.14 20976.01 11670.32 21284.02 25042.50 29094.72 18370.98 18277.00 20392.94 151
cascas78.18 18575.77 20085.41 9687.14 21169.11 5392.96 11291.15 17166.71 27170.47 20886.07 22837.49 31896.48 12070.15 19079.80 17690.65 198
UniMVSNet_NR-MVSNet78.15 18677.55 17379.98 24884.46 25960.26 26892.25 13893.20 8677.50 9868.88 23186.61 22066.10 5992.13 27766.38 22962.55 30887.54 239
thres600view778.00 18776.66 18982.03 20491.93 9663.69 19491.30 18796.33 172.43 17870.46 20987.89 20460.31 12794.92 17842.64 34676.64 20587.48 241
FC-MVSNet-test77.99 18878.08 16577.70 28184.89 25255.51 32090.27 22093.75 6576.87 10366.80 26387.59 20865.71 6490.23 30762.89 26073.94 22487.37 244
Anonymous20240521177.96 18975.33 20785.87 8193.73 5264.52 16394.85 4485.36 31662.52 30576.11 14590.18 16929.43 35397.29 7668.51 20877.24 20295.81 45
cl2277.94 19076.78 18781.42 21487.57 20064.93 16090.67 20888.86 26372.45 17767.63 25182.68 26464.07 8292.91 24971.79 17565.30 28386.44 262
XXY-MVS77.94 19076.44 19182.43 18582.60 28264.44 16892.01 15191.83 14273.59 15470.00 21785.82 23154.43 19794.76 18069.63 19568.02 26788.10 236
MS-PatchMatch77.90 19276.50 19082.12 19985.99 23169.95 3691.75 16792.70 10473.97 14362.58 29884.44 24641.11 29595.78 14163.76 25292.17 6480.62 342
FMVSNet377.73 19376.04 19682.80 17691.20 11768.99 5891.87 15891.99 13173.35 15767.04 25883.19 25956.62 17192.14 27659.80 27869.34 25487.28 248
miper_ehance_all_eth77.60 19476.44 19181.09 22685.70 23964.41 17190.65 20988.64 27372.31 18167.37 25682.52 26564.77 7692.64 26370.67 18665.30 28386.24 266
UniMVSNet (Re)77.58 19576.78 18779.98 24884.11 26560.80 25591.76 16593.17 8876.56 11269.93 22084.78 24163.32 9892.36 27264.89 24562.51 31086.78 256
PatchmatchNetpermissive77.46 19674.63 21385.96 7889.55 14870.35 3079.97 33789.55 23172.23 18470.94 20376.91 33057.03 16192.79 25454.27 29781.17 16594.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v2v48277.42 19775.65 20382.73 17880.38 30367.13 10591.85 16090.23 20675.09 12769.37 22283.39 25753.79 20494.44 19971.77 17665.00 28986.63 260
CHOSEN 280x42077.35 19876.95 18678.55 27387.07 21362.68 22269.71 36582.95 33768.80 25371.48 20087.27 21466.03 6084.00 35276.47 14082.81 15288.95 219
PS-MVSNAJss77.26 19976.31 19380.13 24480.64 30159.16 28590.63 21291.06 17872.80 16968.58 23784.57 24453.55 20693.96 22372.97 16171.96 24087.27 249
gg-mvs-nofinetune77.18 20074.31 22085.80 8591.42 11168.36 7171.78 35994.72 2949.61 36077.12 13745.92 38377.41 893.98 22267.62 21693.16 5395.05 74
MVP-Stereo77.12 20176.23 19479.79 25581.72 29166.34 12589.29 24490.88 18270.56 23262.01 30182.88 26149.34 24394.13 21065.55 24093.80 4178.88 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
sd_testset77.08 20275.37 20582.20 19589.25 15562.11 23282.06 31589.09 25276.77 10870.84 20587.12 21541.43 29495.01 17367.23 22074.55 21689.48 216
dmvs_re76.93 20375.36 20681.61 21087.78 19860.71 26180.00 33687.99 29079.42 6269.02 22889.47 17946.77 26494.32 20163.38 25474.45 21989.81 209
X-MVStestdata76.86 20474.13 22485.05 10893.22 6163.78 18792.92 11492.66 10773.99 14178.18 12410.19 39855.25 18497.41 6879.16 12191.58 7493.95 120
DU-MVS76.86 20475.84 19979.91 25182.96 27960.26 26891.26 18891.54 15476.46 11368.88 23186.35 22356.16 17592.13 27766.38 22962.55 30887.35 246
mvsmamba76.85 20675.71 20280.25 24183.07 27859.16 28591.44 17380.64 34676.84 10567.95 24386.33 22546.17 27494.24 20876.06 14272.92 23287.36 245
Anonymous2024052976.84 20774.15 22384.88 11491.02 11864.95 15993.84 8091.09 17453.57 34973.00 17587.42 21135.91 32897.32 7469.14 20272.41 23892.36 165
c3_l76.83 20875.47 20480.93 23085.02 25064.18 18190.39 21688.11 28771.66 20366.65 26481.64 27763.58 9492.56 26469.31 20062.86 30586.04 273
WR-MVS76.76 20975.74 20179.82 25484.60 25562.27 23092.60 12892.51 11476.06 11567.87 24885.34 23456.76 16790.24 30662.20 26463.69 30386.94 254
v114476.73 21074.88 21082.27 19180.23 30766.60 11991.68 16990.21 20873.69 15169.06 22781.89 27252.73 21594.40 20069.21 20165.23 28685.80 279
IterMVS-LS76.49 21175.18 20980.43 23684.49 25862.74 22090.64 21088.80 26572.40 17965.16 27181.72 27560.98 12192.27 27567.74 21464.65 29486.29 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
V4276.46 21274.55 21682.19 19679.14 32167.82 8690.26 22189.42 23673.75 14968.63 23681.89 27251.31 22794.09 21271.69 17864.84 29084.66 297
v14876.19 21374.47 21881.36 21580.05 30964.44 16891.75 16790.23 20673.68 15267.13 25780.84 29255.92 18093.86 22968.95 20461.73 31985.76 282
Effi-MVS+-dtu76.14 21475.28 20878.72 27283.22 27555.17 32289.87 23287.78 29375.42 12267.98 24281.43 28145.08 28192.52 26675.08 14971.63 24188.48 229
cl____76.07 21574.67 21180.28 23985.15 24661.76 23990.12 22488.73 26871.16 21865.43 26881.57 27961.15 11892.95 24466.54 22662.17 31286.13 271
DIV-MVS_self_test76.07 21574.67 21180.28 23985.14 24761.75 24090.12 22488.73 26871.16 21865.42 26981.60 27861.15 11892.94 24866.54 22662.16 31486.14 269
FMVSNet276.07 21574.01 22682.26 19388.85 16567.66 9091.33 18591.61 15270.84 22565.98 26582.25 26848.03 25492.00 28158.46 28368.73 26287.10 251
v14419276.05 21874.03 22582.12 19979.50 31566.55 12191.39 17989.71 22972.30 18268.17 24081.33 28451.75 22294.03 22067.94 21264.19 29685.77 280
NR-MVSNet76.05 21874.59 21480.44 23582.96 27962.18 23190.83 20391.73 14577.12 10260.96 30586.35 22359.28 14291.80 28460.74 27161.34 32387.35 246
v119275.98 22073.92 22782.15 19779.73 31166.24 12891.22 19089.75 22372.67 17168.49 23881.42 28249.86 23994.27 20567.08 22165.02 28885.95 276
FE-MVS75.97 22173.02 23784.82 11689.78 14165.56 14377.44 34891.07 17764.55 28572.66 18079.85 30746.05 27596.69 11254.97 29480.82 16992.21 174
eth_miper_zixun_eth75.96 22274.40 21980.66 23284.66 25463.02 21189.28 24588.27 28371.88 19565.73 26681.65 27659.45 13892.81 25268.13 20960.53 32886.14 269
TranMVSNet+NR-MVSNet75.86 22374.52 21779.89 25282.44 28460.64 26491.37 18291.37 16176.63 11067.65 25086.21 22752.37 21891.55 29061.84 26660.81 32687.48 241
SCA75.82 22472.76 24185.01 11086.63 22070.08 3281.06 32589.19 24571.60 20970.01 21677.09 32845.53 27790.25 30360.43 27373.27 22894.68 87
LPG-MVS_test75.82 22474.58 21579.56 26184.31 26259.37 28190.44 21389.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
GBi-Net75.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
test175.65 22673.83 22881.10 22388.85 16565.11 15490.01 22890.32 19870.84 22567.04 25880.25 30248.03 25491.54 29159.80 27869.34 25486.64 257
v192192075.63 22873.49 23382.06 20379.38 31666.35 12491.07 19789.48 23271.98 19067.99 24181.22 28749.16 24893.90 22666.56 22564.56 29585.92 278
ACMP71.68 1075.58 22974.23 22279.62 25984.97 25159.64 27690.80 20489.07 25470.39 23362.95 29487.30 21338.28 30893.87 22772.89 16271.45 24485.36 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v875.35 23073.26 23581.61 21080.67 30066.82 11289.54 23989.27 24171.65 20463.30 29080.30 30154.99 19094.06 21567.33 21962.33 31183.94 302
tpm cat175.30 23172.21 25084.58 13188.52 17167.77 8778.16 34688.02 28961.88 31268.45 23976.37 33460.65 12494.03 22053.77 30074.11 22291.93 178
PLCcopyleft68.80 1475.23 23273.68 23179.86 25392.93 7058.68 29190.64 21088.30 28160.90 31764.43 28190.53 16042.38 29194.57 19256.52 28876.54 20686.33 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v124075.21 23372.98 23881.88 20579.20 31866.00 13290.75 20689.11 25171.63 20867.41 25481.22 28747.36 26293.87 22765.46 24164.72 29385.77 280
Fast-Effi-MVS+-dtu75.04 23473.37 23480.07 24580.86 29659.52 27991.20 19285.38 31571.90 19365.20 27084.84 24041.46 29392.97 24366.50 22872.96 23187.73 238
dp75.01 23572.09 25183.76 15389.28 15466.22 12979.96 33889.75 22371.16 21867.80 24977.19 32751.81 22192.54 26550.39 30871.44 24592.51 163
TAPA-MVS70.22 1274.94 23673.53 23279.17 26690.40 13052.07 33589.19 24889.61 23062.69 30470.07 21592.67 12448.89 25194.32 20138.26 36079.97 17491.12 194
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1074.77 23772.54 24781.46 21380.33 30566.71 11689.15 24989.08 25370.94 22363.08 29379.86 30652.52 21694.04 21865.70 23762.17 31283.64 304
XVG-OURS-SEG-HR74.70 23873.08 23679.57 26078.25 33357.33 30880.49 32887.32 29663.22 29768.76 23490.12 17444.89 28291.59 28970.55 18874.09 22389.79 210
RRT_MVS74.44 23972.97 23978.84 27182.36 28557.66 30289.83 23488.79 26770.61 23164.58 27684.89 23939.24 30092.65 26270.11 19166.34 27886.21 267
ACMM69.62 1374.34 24072.73 24379.17 26684.25 26457.87 29890.36 21789.93 21763.17 29965.64 26786.04 23037.79 31694.10 21165.89 23471.52 24385.55 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA74.31 24172.30 24980.32 23791.49 11061.66 24290.85 20280.72 34556.67 34163.85 28590.64 15746.75 26590.84 29853.79 29975.99 21188.47 231
XVG-OURS74.25 24272.46 24879.63 25878.45 33157.59 30480.33 33087.39 29563.86 29068.76 23489.62 17840.50 29791.72 28669.00 20374.25 22189.58 213
test_fmvs174.07 24373.69 23075.22 30578.91 32547.34 35989.06 25274.69 36063.68 29279.41 10991.59 14524.36 36287.77 32985.22 7476.26 20990.55 201
CVMVSNet74.04 24474.27 22173.33 32085.33 24243.94 37089.53 24088.39 27854.33 34870.37 21190.13 17249.17 24784.05 35061.83 26779.36 17991.99 177
Baseline_NR-MVSNet73.99 24572.83 24077.48 28580.78 29859.29 28491.79 16284.55 32368.85 25268.99 22980.70 29356.16 17592.04 28062.67 26160.98 32581.11 336
pmmvs473.92 24671.81 25580.25 24179.17 31965.24 15087.43 27687.26 29867.64 26563.46 28883.91 25248.96 25091.53 29462.94 25865.49 28283.96 301
D2MVS73.80 24772.02 25279.15 26879.15 32062.97 21288.58 25890.07 21172.94 16459.22 31478.30 31642.31 29292.70 25865.59 23972.00 23981.79 331
CR-MVSNet73.79 24870.82 26382.70 17983.15 27667.96 8370.25 36284.00 32873.67 15369.97 21872.41 34857.82 15489.48 31452.99 30373.13 22990.64 199
test_djsdf73.76 24972.56 24677.39 28777.00 34353.93 32889.07 25090.69 18565.80 27763.92 28382.03 27143.14 28992.67 25972.83 16368.53 26385.57 284
pmmvs573.35 25071.52 25778.86 27078.64 32960.61 26591.08 19586.90 30067.69 26263.32 28983.64 25344.33 28490.53 30062.04 26566.02 28085.46 287
Anonymous2023121173.08 25170.39 26781.13 22190.62 12663.33 20591.40 17790.06 21351.84 35464.46 28080.67 29536.49 32694.07 21463.83 25164.17 29785.98 275
tt080573.07 25270.73 26480.07 24578.37 33257.05 31087.78 27092.18 12661.23 31667.04 25886.49 22231.35 34794.58 19065.06 24467.12 27288.57 227
miper_lstm_enhance73.05 25371.73 25677.03 29283.80 26858.32 29481.76 31688.88 26169.80 24161.01 30478.23 31857.19 15987.51 33365.34 24259.53 33385.27 292
jajsoiax73.05 25371.51 25877.67 28277.46 34054.83 32488.81 25490.04 21469.13 25062.85 29683.51 25531.16 34892.75 25570.83 18369.80 25085.43 288
LCM-MVSNet-Re72.93 25571.84 25476.18 30188.49 17248.02 35480.07 33570.17 37173.96 14452.25 34480.09 30549.98 23788.24 32367.35 21784.23 14592.28 169
pm-mvs172.89 25671.09 26078.26 27779.10 32257.62 30390.80 20489.30 24067.66 26362.91 29581.78 27449.11 24992.95 24460.29 27558.89 33684.22 300
tpmvs72.88 25769.76 27382.22 19490.98 11967.05 10778.22 34588.30 28163.10 30064.35 28274.98 34155.09 18994.27 20543.25 34069.57 25385.34 290
test0.0.03 172.76 25872.71 24472.88 32480.25 30647.99 35591.22 19089.45 23471.51 21362.51 29987.66 20753.83 20285.06 34650.16 31067.84 27085.58 283
UniMVSNet_ETH3D72.74 25970.53 26679.36 26378.62 33056.64 31385.01 29289.20 24463.77 29164.84 27484.44 24634.05 33591.86 28363.94 25070.89 24889.57 214
mvs_tets72.71 26071.11 25977.52 28377.41 34154.52 32688.45 26089.76 22268.76 25562.70 29783.26 25829.49 35292.71 25670.51 18969.62 25285.34 290
FMVSNet172.71 26069.91 27181.10 22383.60 27265.11 15490.01 22890.32 19863.92 28963.56 28780.25 30236.35 32791.54 29154.46 29666.75 27586.64 257
test_fmvs1_n72.69 26271.92 25374.99 30871.15 36247.08 36187.34 27875.67 35563.48 29478.08 12691.17 15220.16 37387.87 32684.65 8175.57 21390.01 207
IterMVS72.65 26370.83 26178.09 27982.17 28762.96 21387.64 27486.28 30671.56 21160.44 30778.85 31445.42 27986.66 33763.30 25661.83 31684.65 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d72.58 26472.74 24272.10 33287.87 19449.45 34988.07 26489.01 25672.91 16663.11 29188.10 19963.63 9085.54 34232.73 37469.23 25781.32 334
PatchMatch-RL72.06 26569.98 26878.28 27689.51 14955.70 31983.49 30183.39 33561.24 31563.72 28682.76 26234.77 33293.03 24253.37 30277.59 19486.12 272
PVSNet_068.08 1571.81 26668.32 28382.27 19184.68 25362.31 22988.68 25690.31 20175.84 11757.93 32580.65 29637.85 31594.19 20969.94 19229.05 38890.31 203
MIMVSNet71.64 26768.44 28181.23 21881.97 29064.44 16873.05 35888.80 26569.67 24264.59 27574.79 34232.79 33987.82 32753.99 29876.35 20891.42 184
test_vis1_n71.63 26870.73 26474.31 31569.63 36847.29 36086.91 28272.11 36663.21 29875.18 15690.17 17020.40 37185.76 34184.59 8274.42 22089.87 208
bld_raw_dy_0_6471.59 26969.71 27477.22 29177.82 33958.12 29687.71 27273.66 36268.01 26061.90 30384.29 24833.68 33688.43 32169.91 19370.43 24985.11 293
IterMVS-SCA-FT71.55 27069.97 26976.32 29981.48 29260.67 26387.64 27485.99 31166.17 27559.50 31278.88 31345.53 27783.65 35462.58 26261.93 31584.63 299
v7n71.31 27168.65 27879.28 26476.40 34560.77 25786.71 28589.45 23464.17 28858.77 31978.24 31744.59 28393.54 23357.76 28561.75 31883.52 307
anonymousdsp71.14 27269.37 27676.45 29872.95 35754.71 32584.19 29688.88 26161.92 31162.15 30079.77 30838.14 31191.44 29668.90 20567.45 27183.21 313
F-COLMAP70.66 27368.44 28177.32 28886.37 22655.91 31788.00 26686.32 30556.94 33957.28 32888.07 20133.58 33792.49 26751.02 30668.37 26483.55 305
WR-MVS_H70.59 27469.94 27072.53 32681.03 29551.43 33887.35 27792.03 13067.38 26660.23 30980.70 29355.84 18183.45 35646.33 33058.58 33882.72 320
CP-MVSNet70.50 27569.91 27172.26 32980.71 29951.00 34187.23 27990.30 20267.84 26159.64 31182.69 26350.23 23682.30 36451.28 30559.28 33483.46 309
RPMNet70.42 27665.68 29584.63 12983.15 27667.96 8370.25 36290.45 19246.83 36869.97 21865.10 36756.48 17495.30 16835.79 36573.13 22990.64 199
testing370.38 27770.83 26169.03 34385.82 23643.93 37190.72 20790.56 19168.06 25960.24 30886.82 21964.83 7484.12 34826.33 38164.10 29879.04 355
tfpnnormal70.10 27867.36 28678.32 27583.45 27460.97 25388.85 25392.77 10264.85 28460.83 30678.53 31543.52 28793.48 23531.73 37761.70 32080.52 343
TransMVSNet (Re)70.07 27967.66 28577.31 28980.62 30259.13 28791.78 16484.94 32065.97 27660.08 31080.44 29850.78 23091.87 28248.84 31645.46 36680.94 338
CL-MVSNet_self_test69.92 28068.09 28475.41 30473.25 35655.90 31890.05 22789.90 21869.96 23861.96 30276.54 33151.05 22987.64 33049.51 31450.59 35882.70 322
DP-MVS69.90 28166.48 28880.14 24395.36 2862.93 21489.56 23776.11 35350.27 35957.69 32685.23 23539.68 29995.73 14533.35 37071.05 24781.78 332
PS-CasMVS69.86 28269.13 27772.07 33380.35 30450.57 34387.02 28189.75 22367.27 26759.19 31582.28 26746.58 26782.24 36550.69 30759.02 33583.39 311
Syy-MVS69.65 28369.52 27570.03 33987.87 19443.21 37288.07 26489.01 25672.91 16663.11 29188.10 19945.28 28085.54 34222.07 38569.23 25781.32 334
MSDG69.54 28465.73 29480.96 22885.11 24963.71 19284.19 29683.28 33656.95 33854.50 33584.03 24931.50 34596.03 13542.87 34469.13 25983.14 315
PEN-MVS69.46 28568.56 27972.17 33179.27 31749.71 34786.90 28389.24 24267.24 27059.08 31682.51 26647.23 26383.54 35548.42 31857.12 33983.25 312
LS3D69.17 28666.40 29077.50 28491.92 9756.12 31685.12 29180.37 34746.96 36656.50 33087.51 21037.25 31993.71 23032.52 37679.40 17882.68 323
PatchT69.11 28765.37 29980.32 23782.07 28963.68 19567.96 37187.62 29450.86 35769.37 22265.18 36657.09 16088.53 32041.59 34966.60 27688.74 224
KD-MVS_2432*160069.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
miper_refine_blended69.03 28866.37 29177.01 29385.56 24061.06 25181.44 32190.25 20467.27 26758.00 32376.53 33254.49 19487.63 33148.04 32035.77 38082.34 326
mvsany_test168.77 29068.56 27969.39 34173.57 35545.88 36680.93 32660.88 38459.65 32671.56 19990.26 16843.22 28875.05 37474.26 15762.70 30787.25 250
ACMH63.93 1768.62 29164.81 30180.03 24785.22 24563.25 20687.72 27184.66 32260.83 31851.57 34779.43 31227.29 35894.96 17541.76 34764.84 29081.88 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS68.55 29265.41 29877.96 28078.69 32862.93 21489.86 23389.17 24660.55 31950.27 35277.73 32222.60 36794.06 21547.18 32672.65 23576.88 364
ADS-MVSNet68.54 29364.38 30881.03 22788.06 18866.90 11168.01 36984.02 32757.57 33364.48 27869.87 35838.68 30289.21 31640.87 35167.89 26886.97 252
DTE-MVSNet68.46 29467.33 28771.87 33577.94 33749.00 35286.16 28888.58 27566.36 27458.19 32082.21 26946.36 26883.87 35344.97 33755.17 34682.73 319
our_test_368.29 29564.69 30379.11 26978.92 32364.85 16188.40 26185.06 31860.32 32252.68 34276.12 33640.81 29689.80 31344.25 33955.65 34482.67 324
Patchmatch-RL test68.17 29664.49 30679.19 26571.22 36153.93 32870.07 36471.54 37069.22 24756.79 32962.89 37056.58 17288.61 31769.53 19752.61 35395.03 76
XVG-ACMP-BASELINE68.04 29765.53 29775.56 30374.06 35452.37 33378.43 34285.88 31262.03 30958.91 31881.21 28920.38 37291.15 29760.69 27268.18 26583.16 314
FMVSNet568.04 29765.66 29675.18 30784.43 26057.89 29783.54 30086.26 30761.83 31353.64 34073.30 34537.15 32285.08 34548.99 31561.77 31782.56 325
ppachtmachnet_test67.72 29963.70 31079.77 25678.92 32366.04 13188.68 25682.90 33860.11 32455.45 33275.96 33739.19 30190.55 29939.53 35552.55 35482.71 321
ACMH+65.35 1667.65 30064.55 30476.96 29584.59 25657.10 30988.08 26380.79 34458.59 33253.00 34181.09 29126.63 36092.95 24446.51 32861.69 32180.82 339
pmmvs667.57 30164.76 30276.00 30272.82 35953.37 33088.71 25586.78 30453.19 35057.58 32778.03 32035.33 33192.41 26955.56 29254.88 34882.21 328
Anonymous2023120667.53 30265.78 29372.79 32574.95 35047.59 35788.23 26287.32 29661.75 31458.07 32277.29 32537.79 31687.29 33542.91 34263.71 30283.48 308
Patchmtry67.53 30263.93 30978.34 27482.12 28864.38 17268.72 36684.00 32848.23 36559.24 31372.41 34857.82 15489.27 31546.10 33156.68 34381.36 333
USDC67.43 30464.51 30576.19 30077.94 33755.29 32178.38 34385.00 31973.17 15948.36 35980.37 29921.23 36992.48 26852.15 30464.02 30080.81 340
ADS-MVSNet266.90 30563.44 31277.26 29088.06 18860.70 26268.01 36975.56 35757.57 33364.48 27869.87 35838.68 30284.10 34940.87 35167.89 26886.97 252
CMPMVSbinary48.56 2166.77 30664.41 30773.84 31770.65 36550.31 34477.79 34785.73 31445.54 37044.76 36982.14 27035.40 33090.14 30963.18 25774.54 21881.07 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft61.12 1866.39 30762.92 31576.80 29776.51 34457.77 29989.22 24683.41 33455.48 34553.86 33977.84 32126.28 36193.95 22434.90 36768.76 26178.68 358
LTVRE_ROB59.60 1966.27 30863.54 31174.45 31284.00 26751.55 33767.08 37283.53 33258.78 33054.94 33480.31 30034.54 33393.23 23940.64 35368.03 26678.58 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM66.06 30962.45 31876.88 29681.42 29454.45 32757.49 38488.67 27149.36 36163.86 28446.86 38256.06 17890.25 30349.53 31368.83 26085.95 276
Patchmatch-test65.86 31060.94 32480.62 23483.75 26958.83 28958.91 38375.26 35944.50 37350.95 35177.09 32858.81 14687.90 32535.13 36664.03 29995.12 72
UnsupCasMVSNet_eth65.79 31163.10 31373.88 31670.71 36450.29 34581.09 32489.88 21972.58 17349.25 35774.77 34332.57 34187.43 33455.96 29141.04 37383.90 303
test_fmvs265.78 31264.84 30068.60 34566.54 37341.71 37483.27 30569.81 37254.38 34767.91 24584.54 24515.35 37881.22 36975.65 14466.16 27982.88 316
dmvs_testset65.55 31366.45 28962.86 35579.87 31022.35 39876.55 35071.74 36877.42 10155.85 33187.77 20651.39 22680.69 37031.51 38065.92 28185.55 285
pmmvs-eth3d65.53 31462.32 31975.19 30669.39 36959.59 27782.80 31283.43 33362.52 30551.30 34972.49 34632.86 33887.16 33655.32 29350.73 35778.83 357
SixPastTwentyTwo64.92 31561.78 32274.34 31478.74 32749.76 34683.42 30479.51 35062.86 30150.27 35277.35 32330.92 35090.49 30145.89 33247.06 36382.78 317
OurMVSNet-221017-064.68 31662.17 32072.21 33076.08 34847.35 35880.67 32781.02 34356.19 34251.60 34679.66 31027.05 35988.56 31953.60 30153.63 35180.71 341
test_040264.54 31761.09 32374.92 30984.10 26660.75 25987.95 26779.71 34952.03 35252.41 34377.20 32632.21 34391.64 28723.14 38361.03 32472.36 372
testgi64.48 31862.87 31669.31 34271.24 36040.62 37785.49 28979.92 34865.36 28154.18 33783.49 25623.74 36584.55 34741.60 34860.79 32782.77 318
RPSCF64.24 31961.98 32171.01 33776.10 34745.00 36775.83 35475.94 35446.94 36758.96 31784.59 24331.40 34682.00 36647.76 32460.33 33286.04 273
EU-MVSNet64.01 32063.01 31467.02 35174.40 35338.86 38283.27 30586.19 30945.11 37154.27 33681.15 29036.91 32580.01 37248.79 31757.02 34082.19 329
test20.0363.83 32162.65 31767.38 35070.58 36639.94 37886.57 28684.17 32563.29 29651.86 34577.30 32437.09 32382.47 36238.87 35954.13 35079.73 349
MDA-MVSNet_test_wron63.78 32260.16 32574.64 31078.15 33560.41 26683.49 30184.03 32656.17 34439.17 37871.59 35437.22 32083.24 35942.87 34448.73 36080.26 346
YYNet163.76 32360.14 32674.62 31178.06 33660.19 27183.46 30383.99 33056.18 34339.25 37771.56 35537.18 32183.34 35742.90 34348.70 36180.32 345
K. test v363.09 32459.61 32873.53 31976.26 34649.38 35183.27 30577.15 35264.35 28747.77 36172.32 35028.73 35487.79 32849.93 31236.69 37983.41 310
COLMAP_ROBcopyleft57.96 2062.98 32559.65 32772.98 32381.44 29353.00 33283.75 29975.53 35848.34 36448.81 35881.40 28324.14 36390.30 30232.95 37260.52 32975.65 367
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052162.09 32659.08 32971.10 33667.19 37248.72 35383.91 29885.23 31750.38 35847.84 36071.22 35720.74 37085.51 34446.47 32958.75 33779.06 354
AllTest61.66 32758.06 33172.46 32779.57 31251.42 33980.17 33368.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
UnsupCasMVSNet_bld61.60 32857.71 33273.29 32168.73 37051.64 33678.61 34189.05 25557.20 33746.11 36261.96 37328.70 35588.60 31850.08 31138.90 37779.63 350
MDA-MVSNet-bldmvs61.54 32957.70 33373.05 32279.53 31457.00 31283.08 30981.23 34257.57 33334.91 38172.45 34732.79 33986.26 34035.81 36441.95 37175.89 366
KD-MVS_self_test60.87 33058.60 33067.68 34866.13 37439.93 37975.63 35584.70 32157.32 33649.57 35568.45 36129.55 35182.87 36048.09 31947.94 36280.25 347
TinyColmap60.32 33156.42 33872.00 33478.78 32653.18 33178.36 34475.64 35652.30 35141.59 37675.82 33914.76 38188.35 32235.84 36354.71 34974.46 368
MVS-HIRNet60.25 33255.55 33974.35 31384.37 26156.57 31471.64 36074.11 36134.44 38145.54 36742.24 38831.11 34989.81 31140.36 35476.10 21076.67 365
MIMVSNet160.16 33357.33 33468.67 34469.71 36744.13 36978.92 34084.21 32455.05 34644.63 37071.85 35223.91 36481.54 36832.63 37555.03 34780.35 344
PM-MVS59.40 33456.59 33667.84 34663.63 37641.86 37376.76 34963.22 38159.01 32951.07 35072.27 35111.72 38483.25 35861.34 26850.28 35978.39 360
new-patchmatchnet59.30 33556.48 33767.79 34765.86 37544.19 36882.47 31381.77 34059.94 32543.65 37366.20 36527.67 35781.68 36739.34 35641.40 37277.50 363
test_vis1_rt59.09 33657.31 33564.43 35368.44 37146.02 36583.05 31048.63 39351.96 35349.57 35563.86 36916.30 37680.20 37171.21 18162.79 30667.07 378
test_fmvs356.82 33754.86 34062.69 35653.59 38635.47 38475.87 35365.64 37943.91 37455.10 33371.43 3566.91 39274.40 37768.64 20752.63 35278.20 361
DSMNet-mixed56.78 33854.44 34163.79 35463.21 37729.44 39364.43 37564.10 38042.12 37851.32 34871.60 35331.76 34475.04 37536.23 36265.20 28786.87 255
pmmvs355.51 33951.50 34467.53 34957.90 38450.93 34280.37 32973.66 36240.63 37944.15 37264.75 36816.30 37678.97 37344.77 33840.98 37572.69 370
TDRefinement55.28 34051.58 34366.39 35259.53 38346.15 36476.23 35272.80 36444.60 37242.49 37476.28 33515.29 37982.39 36333.20 37143.75 36870.62 374
LF4IMVS54.01 34152.12 34259.69 35762.41 37939.91 38068.59 36768.28 37642.96 37744.55 37175.18 34014.09 38368.39 38341.36 35051.68 35570.78 373
N_pmnet50.55 34249.11 34554.88 36377.17 3424.02 40684.36 2952.00 40448.59 36245.86 36568.82 36032.22 34282.80 36131.58 37851.38 35677.81 362
new_pmnet49.31 34346.44 34657.93 35862.84 37840.74 37668.47 36862.96 38236.48 38035.09 38057.81 37714.97 38072.18 37932.86 37346.44 36460.88 380
mvsany_test348.86 34446.35 34756.41 35946.00 39231.67 38962.26 37747.25 39443.71 37545.54 36768.15 36210.84 38564.44 39157.95 28435.44 38273.13 369
test_f46.58 34543.45 34955.96 36045.18 39332.05 38861.18 37849.49 39233.39 38242.05 37562.48 3727.00 39165.56 38747.08 32743.21 37070.27 375
WB-MVS46.23 34644.94 34850.11 36762.13 38021.23 40076.48 35155.49 38645.89 36935.78 37961.44 37535.54 32972.83 3789.96 39421.75 38956.27 382
FPMVS45.64 34743.10 35153.23 36551.42 38936.46 38364.97 37471.91 36729.13 38527.53 38561.55 3749.83 38765.01 38916.00 39155.58 34558.22 381
SSC-MVS44.51 34843.35 35047.99 37161.01 38218.90 40274.12 35754.36 38743.42 37634.10 38260.02 37634.42 33470.39 3819.14 39619.57 39054.68 383
EGC-MVSNET42.35 34938.09 35255.11 36274.57 35146.62 36371.63 36155.77 3850.04 3990.24 40062.70 37114.24 38274.91 37617.59 38846.06 36543.80 385
LCM-MVSNet40.54 35035.79 35554.76 36436.92 39930.81 39051.41 38769.02 37322.07 38724.63 38745.37 3844.56 39665.81 38633.67 36934.50 38367.67 376
APD_test140.50 35137.31 35450.09 36851.88 38735.27 38559.45 38252.59 38921.64 38826.12 38657.80 3784.56 39666.56 38522.64 38439.09 37648.43 384
test_vis3_rt40.46 35237.79 35348.47 37044.49 39433.35 38766.56 37332.84 40132.39 38329.65 38339.13 3913.91 39968.65 38250.17 30940.99 37443.40 386
ANet_high40.27 35335.20 35655.47 36134.74 40034.47 38663.84 37671.56 36948.42 36318.80 39041.08 3899.52 38864.45 39020.18 3868.66 39767.49 377
test_method38.59 35435.16 35748.89 36954.33 38521.35 39945.32 39053.71 3887.41 39628.74 38451.62 3808.70 38952.87 39433.73 36832.89 38472.47 371
PMMVS237.93 35533.61 35850.92 36646.31 39124.76 39660.55 38150.05 39028.94 38620.93 38847.59 3814.41 39865.13 38825.14 38218.55 39262.87 379
Gipumacopyleft34.91 35631.44 35945.30 37270.99 36339.64 38119.85 39472.56 36520.10 39016.16 39421.47 3955.08 39571.16 38013.07 39243.70 36925.08 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
APD_test232.77 35729.47 36042.67 37441.89 39630.81 39052.07 38543.45 39515.45 39118.52 39144.82 3852.12 40058.38 39216.05 38930.87 38638.83 387
PMVScopyleft26.43 2231.84 35928.16 36242.89 37325.87 40227.58 39450.92 38849.78 39121.37 38914.17 39540.81 3902.01 40266.62 3849.61 39538.88 37834.49 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN24.61 36024.00 36426.45 37843.74 39518.44 40360.86 37939.66 39715.11 3939.53 39722.10 3946.52 39346.94 3968.31 39710.14 39413.98 394
MVEpermissive24.84 2324.35 36119.77 36738.09 37634.56 40126.92 39526.57 39238.87 39911.73 39511.37 39627.44 3921.37 40350.42 39511.41 39314.60 39336.93 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS23.76 36223.20 36625.46 37941.52 39816.90 40460.56 38038.79 40014.62 3948.99 39820.24 3977.35 39045.82 3977.25 3989.46 39513.64 395
tmp_tt22.26 36323.75 36517.80 3805.23 40312.06 40535.26 39139.48 3982.82 39818.94 38944.20 38722.23 36824.64 39936.30 3619.31 39616.69 393
cdsmvs_eth3d_5k19.86 36426.47 3630.00 3840.00 4060.00 4090.00 39593.45 770.00 4020.00 40395.27 5649.56 2410.00 4030.00 4020.00 4000.00 399
wuyk23d11.30 36510.95 36812.33 38148.05 39019.89 40125.89 3931.92 4053.58 3973.12 3991.37 3990.64 40415.77 4006.23 3997.77 3981.35 396
ab-mvs-re7.91 36610.55 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.95 640.00 4070.00 4030.00 4020.00 4000.00 399
testmvs7.23 3679.62 3700.06 3830.04 4040.02 40884.98 2930.02 4060.03 4000.18 4011.21 4000.01 4060.02 4010.14 4000.01 3990.13 398
test1236.92 3689.21 3710.08 3820.03 4050.05 40781.65 3190.01 4070.02 4010.14 4020.85 4010.03 4050.02 4010.12 4010.00 4000.16 397
pcd_1.5k_mvsjas4.46 3695.95 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40253.55 2060.00 4030.00 4020.00 4000.00 399
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4000.00 399
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
WAC-MVS49.45 34931.56 379
FOURS193.95 4561.77 23893.96 7091.92 13462.14 30886.57 44
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2494.77 2596.51 21
test_one_060196.32 1869.74 4294.18 5171.42 21590.67 1896.85 1674.45 18
eth-test20.00 406
eth-test0.00 406
ZD-MVS96.63 965.50 14693.50 7570.74 22985.26 5995.19 6164.92 7397.29 7687.51 5593.01 54
RE-MVS-def80.48 13092.02 9158.56 29290.90 19990.45 19262.76 30278.89 11594.46 7849.30 24478.77 12786.77 12392.28 169
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 2195.36 1396.47 25
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4271.65 20492.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20492.11 697.05 776.79 999.11 6
9.1487.63 2693.86 4794.41 5294.18 5172.76 17086.21 4696.51 2466.64 5597.88 4490.08 3894.04 37
save fliter93.84 4867.89 8595.05 3992.66 10778.19 84
test_0728_THIRD72.48 17590.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2794.90 2196.51 21
test072696.40 1569.99 3396.76 794.33 4871.92 19191.89 1097.11 673.77 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 16
sam_mvs157.85 15394.68 87
sam_mvs54.91 191
ambc69.61 34061.38 38141.35 37549.07 38985.86 31350.18 35466.40 36410.16 38688.14 32445.73 33344.20 36779.32 353
MTGPAbinary92.23 120
test_post178.95 33920.70 39653.05 21191.50 29560.43 273
test_post23.01 39356.49 17392.67 259
patchmatchnet-post67.62 36357.62 15690.25 303
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35694.75 2878.67 12290.85 15677.91 794.56 19472.25 17193.74 4395.36 58
MTMP93.77 8432.52 402
gm-plane-assit88.42 17667.04 10878.62 8191.83 14097.37 7076.57 139
test9_res89.41 3994.96 1895.29 63
TEST994.18 4167.28 10094.16 5893.51 7371.75 20285.52 5495.33 5168.01 4597.27 80
test_894.19 4067.19 10294.15 6193.42 7971.87 19685.38 5795.35 5068.19 4396.95 102
agg_prior286.41 6694.75 2995.33 59
agg_prior94.16 4366.97 11093.31 8284.49 6596.75 111
TestCases72.46 32779.57 31251.42 33968.61 37451.25 35545.88 36381.23 28519.86 37486.58 33838.98 35757.01 34179.39 351
test_prior467.18 10493.92 73
test_prior295.10 3875.40 12385.25 6095.61 4567.94 4687.47 5694.77 25
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10895.05 74
旧先验292.00 15459.37 32887.54 3893.47 23675.39 146
新几何291.41 175
新几何184.73 12292.32 8464.28 17791.46 15959.56 32779.77 10592.90 11856.95 16696.57 11663.40 25392.91 5693.34 137
旧先验191.94 9560.74 26091.50 15794.36 8265.23 6891.84 6994.55 94
无先验92.71 12192.61 11162.03 30997.01 9366.63 22493.97 119
原ACMM292.01 151
原ACMM184.42 13693.21 6364.27 17893.40 8165.39 28079.51 10892.50 12658.11 15296.69 11265.27 24393.96 3892.32 167
test22289.77 14261.60 24389.55 23889.42 23656.83 34077.28 13592.43 13052.76 21491.14 8393.09 145
testdata296.09 12961.26 269
segment_acmp65.94 61
testdata81.34 21689.02 16257.72 30089.84 22058.65 33185.32 5894.09 9457.03 16193.28 23869.34 19990.56 8993.03 148
testdata189.21 24777.55 97
test1287.09 4594.60 3668.86 6092.91 9882.67 8165.44 6697.55 6293.69 4694.84 83
plane_prior786.94 21661.51 244
plane_prior687.23 20862.32 22850.66 231
plane_prior591.31 16395.55 15876.74 13778.53 18888.39 232
plane_prior489.14 183
plane_prior361.95 23679.09 7172.53 184
plane_prior293.13 10578.81 78
plane_prior187.15 210
plane_prior62.42 22493.85 7779.38 6378.80 185
n20.00 408
nn0.00 408
door-mid66.01 378
lessismore_v073.72 31872.93 35847.83 35661.72 38345.86 36573.76 34428.63 35689.81 31147.75 32531.37 38583.53 306
LGP-MVS_train79.56 26184.31 26259.37 28189.73 22669.49 24364.86 27288.42 18838.65 30494.30 20372.56 16872.76 23385.01 294
test1193.01 94
door66.57 377
HQP5-MVS63.66 196
HQP-NCC87.54 20194.06 6379.80 5674.18 164
ACMP_Plane87.54 20194.06 6379.80 5674.18 164
BP-MVS77.63 134
HQP4-MVS74.18 16495.61 15388.63 225
HQP3-MVS91.70 14978.90 183
HQP2-MVS51.63 224
NP-MVS87.41 20463.04 21090.30 166
MDTV_nov1_ep13_2view59.90 27480.13 33467.65 26472.79 17954.33 19959.83 27792.58 160
MDTV_nov1_ep1372.61 24589.06 16168.48 6880.33 33090.11 21071.84 19871.81 19575.92 33853.01 21293.92 22548.04 32073.38 227
ACMMP++_ref71.63 241
ACMMP++69.72 251
Test By Simon54.21 200
ITE_SJBPF70.43 33874.44 35247.06 36277.32 35160.16 32354.04 33883.53 25423.30 36684.01 35143.07 34161.58 32280.21 348
DeepMVS_CXcopyleft34.71 37751.45 38824.73 39728.48 40331.46 38417.49 39352.75 3795.80 39442.60 39818.18 38719.42 39136.81 390