This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16499.80 2699.94 18
MSP-MVS97.77 998.18 296.53 9499.54 3690.14 14499.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8599.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 89
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8799.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 74
MVS_030497.53 1497.15 2298.67 1197.30 13296.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 73
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6699.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6599.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7499.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7198.52 17597.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.25 1997.34 2097.01 6297.38 12891.46 10899.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9797.65 10289.55 16099.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10599.86 1299.97 7
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6397.45 14489.60 15698.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7599.38 7297.66 9590.18 13898.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11598.24 12588.17 7299.83 7396.11 8999.60 4999.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-297.10 2697.97 894.49 17799.21 6183.73 29299.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
test_fmvsm_n_192097.08 2797.55 1495.67 13597.94 10589.61 16399.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 202
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 66
TSAR-MVS + GP.96.95 2996.91 2697.07 5998.88 7991.62 10499.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6799.16 9797.44 14790.08 14398.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 13097.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 189
EPNet96.82 3296.68 3497.25 5598.65 8693.10 7799.48 5498.76 1596.54 1397.84 5598.22 12687.49 8499.66 9495.35 10597.78 11999.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3396.85 2896.66 8697.85 10894.42 5394.76 33098.36 2992.50 8395.62 10897.52 15297.92 197.38 24098.31 4498.80 9298.20 183
test_fmvsmconf_n96.78 3496.84 2996.61 8795.99 19290.25 13999.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
MVS_111021_HR96.69 3596.69 3396.72 8298.58 8891.00 12399.14 10699.45 193.86 5695.15 11698.73 9188.48 6799.76 8697.23 6599.56 5199.40 89
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 189
PHI-MVS96.65 3796.46 3897.21 5699.34 5091.77 10199.70 2798.05 4686.48 24998.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6898.88 13597.59 11690.66 12297.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6299.13 10997.44 14789.02 17397.90 5499.22 2788.90 6399.49 11294.63 12499.79 2799.68 56
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22898.71 8578.11 35099.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
XVS96.47 4196.37 4096.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9699.43 6099.78 38
HFP-MVS96.42 4296.26 4296.90 7199.69 890.96 12499.47 5697.81 6890.54 12996.88 7499.05 5687.57 8299.96 2895.65 9699.72 3199.78 38
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5899.42 6897.55 12392.43 8493.82 14199.12 4887.30 9299.91 4594.02 13199.06 7699.74 47
PAPM96.35 4395.94 5497.58 4294.10 25995.25 2698.93 13098.17 3794.26 4493.94 13798.72 9389.68 5697.88 20496.36 8499.29 6899.62 68
lupinMVS96.32 4595.94 5497.44 4695.05 23394.87 3899.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19296.98 7098.97 8299.37 92
region2R96.30 4696.17 4896.70 8399.70 790.31 13899.46 6097.66 9590.55 12897.07 7299.07 5386.85 10299.97 2195.43 10399.74 2999.81 33
ACMMPR96.28 4796.14 5296.73 8099.68 990.47 13699.47 5697.80 7090.54 12996.83 7999.03 5886.51 11399.95 3195.65 9699.72 3199.75 46
CP-MVS96.22 4896.15 5196.42 10099.67 1089.62 16299.70 2797.61 11090.07 14496.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14897.37 12989.16 16899.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 222
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17298.59 17097.33 15890.44 13296.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
ZNCC-MVS96.09 5195.81 6096.95 7099.42 4791.19 11399.55 4597.53 12789.72 15195.86 10098.94 7486.59 10999.97 2195.13 11099.56 5199.68 56
MTAPA96.09 5195.80 6196.96 6999.29 5591.19 11397.23 26997.45 14492.58 8194.39 13099.24 2586.43 11599.99 596.22 8599.40 6399.71 51
ETV-MVS96.00 5396.00 5396.00 12296.56 16391.05 12199.63 3796.61 20693.26 7097.39 6298.30 12386.62 10898.13 18998.07 4997.57 12298.82 144
MP-MVScopyleft96.00 5395.82 5896.54 9399.47 4690.13 14699.36 7697.41 15190.64 12595.49 11098.95 7185.51 13099.98 996.00 9299.59 5099.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test95.98 5596.34 4194.90 16298.06 10287.66 20699.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22296.96 7198.90 8899.37 92
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14796.51 16789.01 17499.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 218
GST-MVS95.97 5695.66 6696.90 7199.49 4591.22 11199.45 6297.48 13989.69 15295.89 9798.72 9386.37 11699.95 3194.62 12599.22 7199.52 77
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11498.46 11886.56 11199.46 11895.00 11592.69 18899.50 80
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10292.42 29689.92 15599.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 88
PVSNet_Blended95.94 5995.66 6696.75 7898.77 8391.61 10599.88 498.04 4893.64 6494.21 13297.76 13983.50 15699.87 5897.41 6197.75 12098.79 147
mPP-MVS95.90 6195.75 6396.38 10399.58 3089.41 16699.26 8697.41 15190.66 12294.82 12098.95 7186.15 12199.98 995.24 10999.64 4099.74 47
PGM-MVS95.85 6295.65 6896.45 9899.50 4289.77 15998.22 20998.90 1389.19 16896.74 8298.95 7185.91 12599.92 4093.94 13299.46 5699.66 60
DP-MVS Recon95.85 6295.15 7797.95 3299.87 294.38 5499.60 3997.48 13986.58 24494.42 12899.13 4687.36 9099.98 993.64 13998.33 10899.48 81
MP-MVS-pluss95.80 6495.30 7297.29 5298.95 7692.66 8898.59 17097.14 17588.95 17693.12 15099.25 2385.62 12799.94 3496.56 8199.48 5599.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6595.94 5495.28 14998.19 9887.69 20398.80 14299.26 793.39 6795.04 11898.69 9884.09 15099.76 8696.96 7199.06 7698.38 170
alignmvs95.77 6695.00 8298.06 2997.35 13095.68 2099.71 2697.50 13691.50 10596.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 79
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 18197.82 6591.92 9694.75 12298.88 8287.06 9799.48 11695.40 10497.17 13598.70 154
SR-MVS-dyc-post95.75 6895.86 5795.41 14399.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 69
CS-MVS95.75 6896.19 4394.40 18197.88 10786.22 24399.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22896.71 7498.62 10099.39 91
dcpmvs_295.67 7096.18 4594.12 19498.82 8184.22 28597.37 26295.45 29590.70 12195.77 10398.63 10390.47 4498.68 16699.20 2099.22 7199.45 85
APD-MVS_3200maxsize95.64 7195.65 6895.62 13799.24 5887.80 20298.42 18897.22 16688.93 17896.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15194.35 25289.10 17099.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 225
test_fmvsmvis_n_192095.47 7395.40 7195.70 13394.33 25390.22 14299.70 2796.98 19396.80 792.75 15498.89 8082.46 18499.92 4098.36 4098.33 10896.97 219
EI-MVSNet-UG-set95.43 7495.29 7395.86 12899.07 7089.87 15698.43 18797.80 7091.78 9894.11 13498.77 8786.25 11999.48 11694.95 11796.45 14498.22 181
PAPM_NR95.43 7495.05 8196.57 9299.42 4790.14 14498.58 17297.51 13390.65 12492.44 15898.90 7887.77 8199.90 5090.88 17299.32 6599.68 56
HPM-MVScopyleft95.41 7695.22 7595.99 12399.29 5589.14 16999.17 9697.09 18387.28 22995.40 11198.48 11584.93 14099.38 12895.64 10099.65 3899.47 82
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7794.86 8497.03 6192.91 29194.23 5699.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20196.08 9098.47 10698.96 127
jason: jason.
testing1195.33 7894.98 8396.37 10497.20 13792.31 9499.29 8297.68 9090.59 12694.43 12797.20 16890.79 4198.60 17095.25 10892.38 19398.18 184
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33898.74 1692.42 8695.65 10794.76 24086.52 11299.49 11295.29 10792.97 18499.53 76
test_yl95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
DCV-MVSNet95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15292.06 30288.94 17899.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 223
EIA-MVS95.11 8395.27 7494.64 17496.34 17586.51 23199.59 4196.62 20592.51 8294.08 13598.64 10186.05 12298.24 18695.07 11298.50 10499.18 109
EC-MVSNet95.09 8495.17 7694.84 16595.42 21088.17 19499.48 5495.92 26191.47 10697.34 6498.36 12082.77 17397.41 23997.24 6498.58 10198.94 132
VNet95.08 8594.26 9397.55 4598.07 10193.88 6398.68 15598.73 1890.33 13597.16 7197.43 15779.19 21799.53 10996.91 7391.85 20599.24 104
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
MGCFI-Net94.89 8893.84 11398.06 2997.49 12595.55 2198.64 16196.10 24391.60 10395.75 10498.46 11879.31 21698.98 15395.95 9391.24 22399.65 63
HPM-MVS_fast94.89 8894.62 8695.70 13399.11 6688.44 19299.14 10697.11 17985.82 25795.69 10698.47 11683.46 15899.32 13593.16 14999.63 4499.35 94
testing9194.88 9094.44 9096.21 11097.19 13991.90 10099.23 8897.66 9589.91 14793.66 14397.05 17990.21 5198.50 17393.52 14191.53 21698.25 177
testing9994.88 9094.45 8996.17 11497.20 13791.91 9999.20 9097.66 9589.95 14693.68 14297.06 17790.28 5098.50 17393.52 14191.54 21398.12 186
CSCG94.87 9294.71 8595.36 14499.54 3686.49 23299.34 7898.15 4082.71 31190.15 19699.25 2389.48 5799.86 6394.97 11698.82 9199.72 50
sss94.85 9393.94 10997.58 4296.43 17094.09 6198.93 13099.16 889.50 16195.27 11397.85 13381.50 19699.65 9892.79 15694.02 17598.99 124
test250694.80 9494.21 9596.58 9096.41 17192.18 9798.01 23098.96 1190.82 11993.46 14697.28 16185.92 12398.45 17689.82 18697.19 13399.12 115
API-MVS94.78 9594.18 9896.59 8999.21 6190.06 15198.80 14297.78 7383.59 29593.85 13999.21 2983.79 15399.97 2192.37 15999.00 8099.74 47
thisisatest051594.75 9694.19 9696.43 9996.13 19092.64 9199.47 5697.60 11287.55 22593.17 14997.59 14994.71 1298.42 17788.28 20493.20 18198.24 180
xiu_mvs_v1_base_debu94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base_debi94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
MVSFormer94.71 10094.08 10196.61 8795.05 23394.87 3897.77 24496.17 23986.84 23898.04 4998.52 10885.52 12895.99 30889.83 18498.97 8298.96 127
PVSNet_Blended_VisFu94.67 10194.11 9996.34 10697.14 14491.10 11899.32 8097.43 14992.10 9591.53 17396.38 20883.29 16299.68 9293.42 14696.37 14698.25 177
ACMMPcopyleft94.67 10194.30 9295.79 13099.25 5788.13 19698.41 19098.67 2290.38 13491.43 17498.72 9382.22 18899.95 3193.83 13695.76 15899.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS94.60 10394.43 9195.09 15599.66 1286.85 22799.44 6397.47 14183.22 30094.34 13198.96 6882.50 17999.55 10694.81 11899.50 5498.88 137
diffmvspermissive94.59 10494.19 9695.81 12995.54 20690.69 13098.70 15395.68 28291.61 10195.96 9597.81 13580.11 20698.06 19496.52 8295.76 15898.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsany_test194.57 10595.09 8092.98 21995.84 19682.07 31498.76 14895.24 30892.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 194
DeepC-MVS91.02 494.56 10693.92 11096.46 9697.16 14290.76 12898.39 19797.11 17993.92 5288.66 20998.33 12178.14 22599.85 6795.02 11398.57 10298.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETVMVS94.50 10793.90 11196.31 10797.48 12692.98 8199.07 11497.86 5988.09 20694.40 12996.90 18688.35 6997.28 24490.72 17792.25 19998.66 159
testing22294.48 10894.00 10395.95 12597.30 13292.27 9598.82 13997.92 5589.20 16794.82 12097.26 16387.13 9497.32 24391.95 16291.56 21198.25 177
MAR-MVS94.43 10994.09 10095.45 14199.10 6887.47 21298.39 19797.79 7288.37 19594.02 13699.17 3778.64 22399.91 4592.48 15898.85 9098.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268894.35 11093.82 11495.95 12597.40 12788.74 18698.41 19098.27 3192.18 9391.43 17496.40 20578.88 21899.81 7993.59 14097.81 11699.30 99
CANet_DTU94.31 11193.35 12597.20 5797.03 15194.71 4698.62 16495.54 29095.61 2797.21 6798.47 11671.88 26999.84 6988.38 20397.46 12797.04 216
iter_conf05_1194.23 11293.49 12196.46 9697.51 12291.32 11099.96 194.31 33795.62 2699.32 899.22 2757.79 34798.59 17298.00 5099.64 4099.46 83
PLCcopyleft91.07 394.23 11294.01 10294.87 16399.17 6387.49 21199.25 8796.55 21388.43 19391.26 17898.21 12885.92 12399.86 6389.77 18897.57 12297.24 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n94.14 11493.51 12096.04 11986.79 36989.19 16799.28 8595.94 25795.70 2195.50 10998.49 11273.27 25699.79 8298.28 4598.32 11099.15 111
114514_t94.06 11593.05 13497.06 6099.08 6992.26 9698.97 12897.01 19182.58 31392.57 15698.22 12680.68 20499.30 13689.34 19499.02 7999.63 66
baseline294.04 11693.80 11594.74 16993.07 29090.25 13998.12 21998.16 3989.86 14886.53 23296.95 18395.56 698.05 19691.44 16694.53 17095.93 241
thisisatest053094.00 11793.52 11995.43 14295.76 19990.02 15398.99 12597.60 11286.58 24491.74 16597.36 16094.78 1198.34 17986.37 22592.48 19297.94 191
casdiffmvs_mvgpermissive94.00 11793.33 12696.03 12095.22 21790.90 12699.09 11295.99 25090.58 12791.55 17297.37 15979.91 20898.06 19495.01 11495.22 16599.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive93.98 11993.43 12295.61 13895.07 23289.86 15798.80 14295.84 27490.98 11692.74 15597.66 14679.71 20998.10 19194.72 12195.37 16498.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS93.92 12092.28 14998.83 795.69 20196.82 896.22 30698.17 3784.89 27584.34 25098.61 10579.32 21599.83 7393.88 13499.43 6099.86 29
baseline93.91 12193.30 12795.72 13295.10 23090.07 14897.48 25895.91 26691.03 11493.54 14597.68 14479.58 21098.02 19894.27 12995.14 16699.08 119
OMC-MVS93.90 12293.62 11894.73 17098.63 8787.00 22598.04 22996.56 21292.19 9292.46 15798.73 9179.49 21499.14 14592.16 16194.34 17398.03 188
Effi-MVS+93.87 12393.15 13296.02 12195.79 19790.76 12896.70 29195.78 27586.98 23595.71 10597.17 17279.58 21098.01 19994.57 12696.09 15399.31 98
test_cas_vis1_n_192093.86 12493.74 11694.22 19095.39 21386.08 24999.73 2396.07 24796.38 1797.19 7097.78 13865.46 31999.86 6396.71 7498.92 8696.73 223
TESTMET0.1,193.82 12593.26 12995.49 14095.21 21890.25 13999.15 10397.54 12689.18 16991.79 16494.87 23789.13 5997.63 22586.21 22796.29 15098.60 160
AdaColmapbinary93.82 12593.06 13396.10 11799.88 189.07 17198.33 20197.55 12386.81 24090.39 19398.65 10075.09 23899.98 993.32 14797.53 12599.26 103
EPP-MVSNet93.75 12793.67 11794.01 20095.86 19585.70 26198.67 15797.66 9584.46 28091.36 17797.18 17191.16 3097.79 21092.93 15293.75 17798.53 162
thres20093.69 12892.59 14596.97 6897.76 10994.74 4599.35 7799.36 289.23 16691.21 18096.97 18283.42 15998.77 15985.08 23990.96 22497.39 204
PVSNet87.13 1293.69 12892.83 14096.28 10897.99 10490.22 14299.38 7298.93 1291.42 10993.66 14397.68 14471.29 27699.64 10087.94 20997.20 13298.98 125
HyFIR lowres test93.68 13093.29 12894.87 16397.57 11988.04 19898.18 21398.47 2587.57 22491.24 17995.05 23485.49 13197.46 23593.22 14892.82 18599.10 117
MVS_Test93.67 13192.67 14396.69 8496.72 16092.66 8897.22 27096.03 24987.69 22295.12 11794.03 24881.55 19598.28 18389.17 19896.46 14399.14 112
CNLPA93.64 13292.74 14196.36 10598.96 7590.01 15499.19 9195.89 26986.22 25289.40 20498.85 8380.66 20599.84 6988.57 20196.92 13899.24 104
PMMVS93.62 13393.90 11192.79 22396.79 15881.40 32198.85 13696.81 19891.25 11296.82 8098.15 13077.02 23198.13 18993.15 15096.30 14998.83 143
iter_conf0593.48 13493.18 13194.39 18497.15 14394.17 5999.30 8192.97 35592.38 9086.70 23195.42 22895.67 596.59 26994.67 12384.32 26692.39 263
CDS-MVSNet93.47 13593.04 13594.76 16794.75 24489.45 16598.82 13997.03 18887.91 21390.97 18196.48 20389.06 6096.36 28689.50 19092.81 18798.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 13691.98 15797.84 3495.24 21594.38 5496.22 30697.92 5590.18 13882.28 27897.71 14377.63 22899.80 8191.94 16398.67 9899.34 96
tfpn200view993.43 13792.27 15096.90 7197.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22697.12 211
3Dnovator+87.72 893.43 13791.84 16098.17 2395.73 20095.08 3498.92 13297.04 18691.42 10981.48 29597.60 14874.60 24199.79 8290.84 17398.97 8299.64 64
thres40093.39 13992.27 15096.73 8097.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22696.61 226
PVSNet_BlendedMVS93.36 14093.20 13093.84 20598.77 8391.61 10599.47 5698.04 4891.44 10794.21 13292.63 28083.50 15699.87 5897.41 6183.37 27790.05 339
thres100view90093.34 14192.15 15396.90 7197.62 11494.84 4099.06 11799.36 287.96 21190.47 19196.78 19483.29 16298.75 16184.11 25590.69 22697.12 211
tttt051793.30 14293.01 13694.17 19295.57 20486.47 23398.51 17897.60 11285.99 25590.55 18897.19 17094.80 1098.31 18085.06 24091.86 20497.74 193
UA-Net93.30 14292.62 14495.34 14596.27 17888.53 19195.88 31696.97 19490.90 11795.37 11297.07 17682.38 18699.10 14783.91 25994.86 16998.38 170
test-mter93.27 14492.89 13994.40 18194.94 23887.27 22099.15 10397.25 16188.95 17691.57 16994.04 24688.03 7797.58 22985.94 23196.13 15198.36 173
Vis-MVSNet (Re-imp)93.26 14593.00 13794.06 19796.14 18786.71 23098.68 15596.70 20188.30 19989.71 20397.64 14785.43 13496.39 28488.06 20896.32 14799.08 119
UWE-MVS93.18 14693.40 12492.50 23196.56 16383.55 29498.09 22597.84 6189.50 16191.72 16696.23 21191.08 3396.70 26586.28 22693.33 18097.26 208
thres600view793.18 14692.00 15696.75 7897.62 11494.92 3599.07 11499.36 287.96 21190.47 19196.78 19483.29 16298.71 16582.93 26990.47 23096.61 226
3Dnovator87.35 1193.17 14891.77 16297.37 5195.41 21193.07 7898.82 13997.85 6091.53 10482.56 27097.58 15071.97 26899.82 7691.01 17099.23 7099.22 107
test-LLR93.11 14992.68 14294.40 18194.94 23887.27 22099.15 10397.25 16190.21 13691.57 16994.04 24684.89 14197.58 22985.94 23196.13 15198.36 173
test_vis1_n_192093.08 15093.42 12392.04 24196.31 17679.36 33899.83 1096.06 24896.72 998.53 3398.10 13158.57 34499.91 4597.86 5598.79 9596.85 221
IS-MVSNet93.00 15192.51 14694.49 17796.14 18787.36 21698.31 20495.70 28088.58 18690.17 19597.50 15383.02 16997.22 24587.06 21496.07 15598.90 136
CostFormer92.89 15292.48 14794.12 19494.99 23585.89 25692.89 34897.00 19286.98 23595.00 11990.78 31190.05 5397.51 23392.92 15391.73 20898.96 127
tpmrst92.78 15392.16 15294.65 17296.27 17887.45 21391.83 35797.10 18289.10 17294.68 12490.69 31588.22 7197.73 22089.78 18791.80 20698.77 150
MVSTER92.71 15492.32 14893.86 20497.29 13492.95 8499.01 12396.59 20890.09 14285.51 23994.00 25094.61 1596.56 27290.77 17683.03 27992.08 280
1112_ss92.71 15491.55 16696.20 11195.56 20591.12 11698.48 18394.69 32688.29 20086.89 22898.50 11087.02 9898.66 16784.75 24489.77 23498.81 145
Vis-MVSNetpermissive92.64 15691.85 15995.03 15995.12 22688.23 19398.48 18396.81 19891.61 10192.16 16297.22 16771.58 27498.00 20085.85 23497.81 11698.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 15792.09 15594.20 19194.10 25987.68 20498.41 19096.97 19487.53 22689.74 20196.04 21784.77 14596.49 27988.97 20092.31 19698.42 166
baseline192.61 15891.28 17196.58 9097.05 15094.63 4897.72 24896.20 23489.82 14988.56 21096.85 19086.85 10297.82 20888.42 20280.10 29597.30 206
EPMVS92.59 15991.59 16595.59 13997.22 13690.03 15291.78 35898.04 4890.42 13391.66 16890.65 31886.49 11497.46 23581.78 28096.31 14899.28 101
ET-MVSNet_ETH3D92.56 16091.45 16895.88 12796.39 17394.13 6099.46 6096.97 19492.18 9366.94 37898.29 12494.65 1494.28 35194.34 12883.82 27399.24 104
mvs_anonymous92.50 16191.65 16495.06 15696.60 16289.64 16197.06 27596.44 22086.64 24384.14 25193.93 25282.49 18096.17 30191.47 16596.08 15499.35 94
h-mvs3392.47 16291.95 15894.05 19897.13 14585.01 27598.36 19998.08 4493.85 5796.27 9196.73 19683.19 16599.43 12295.81 9468.09 36397.70 195
test_fmvs192.35 16392.94 13890.57 27497.19 13975.43 35999.55 4594.97 31595.20 3396.82 8097.57 15159.59 34299.84 6997.30 6398.29 11196.46 233
BH-w/o92.32 16491.79 16193.91 20396.85 15386.18 24599.11 11195.74 27888.13 20484.81 24397.00 18177.26 23097.91 20189.16 19998.03 11397.64 196
ECVR-MVScopyleft92.29 16591.33 17095.15 15396.41 17187.84 20198.10 22294.84 31990.82 11991.42 17697.28 16165.61 31698.49 17590.33 18097.19 13399.12 115
EPNet_dtu92.28 16692.15 15392.70 22797.29 13484.84 27798.64 16197.82 6592.91 7793.02 15297.02 18085.48 13395.70 32272.25 34694.89 16897.55 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 16790.97 17796.18 11295.53 20791.10 11898.47 18594.66 32788.28 20186.83 22993.50 26587.00 9998.65 16984.69 24589.74 23598.80 146
LFMVS92.23 16890.84 18196.42 10098.24 9591.08 12098.24 20896.22 23383.39 29894.74 12398.31 12261.12 33798.85 15694.45 12792.82 18599.32 97
FA-MVS(test-final)92.22 16991.08 17595.64 13696.05 19188.98 17591.60 36197.25 16186.99 23291.84 16392.12 28383.03 16899.00 15186.91 21993.91 17698.93 133
test111192.12 17091.19 17394.94 16196.15 18587.36 21698.12 21994.84 31990.85 11890.97 18197.26 16365.60 31798.37 17889.74 18997.14 13699.07 121
IB-MVS89.43 692.12 17090.83 18395.98 12495.40 21290.78 12799.81 1298.06 4591.23 11385.63 23893.66 26090.63 4298.78 15891.22 16771.85 35398.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 17291.75 16393.02 21898.16 9982.89 30498.79 14695.97 25286.54 24687.92 21497.80 13678.69 22299.65 9885.97 22995.93 15796.53 231
PatchmatchNetpermissive92.05 17391.04 17695.06 15696.17 18489.04 17291.26 36697.26 16089.56 15990.64 18790.56 32488.35 6997.11 24879.53 29396.07 15599.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UGNet91.91 17490.85 18095.10 15497.06 14988.69 18798.01 23098.24 3492.41 8792.39 15993.61 26160.52 33999.68 9288.14 20697.25 13196.92 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 17591.09 17493.82 20694.83 24285.56 26492.51 35397.16 17484.00 28693.83 14090.66 31787.54 8397.17 24687.73 21191.55 21298.72 152
Fast-Effi-MVS+91.72 17690.79 18494.49 17795.89 19487.40 21599.54 5095.70 28085.01 27389.28 20695.68 22377.75 22797.57 23283.22 26495.06 16798.51 163
hse-mvs291.67 17791.51 16792.15 23896.22 18082.61 31097.74 24797.53 12793.85 5796.27 9196.15 21283.19 16597.44 23795.81 9466.86 37096.40 235
HQP-MVS91.50 17891.23 17292.29 23393.95 26486.39 23699.16 9796.37 22393.92 5287.57 21796.67 19973.34 25397.77 21293.82 13786.29 24792.72 258
PatchMatch-RL91.47 17990.54 18894.26 18898.20 9686.36 23896.94 27997.14 17587.75 21888.98 20795.75 22271.80 27199.40 12780.92 28597.39 12997.02 217
BH-untuned91.46 18090.84 18193.33 21396.51 16784.83 27898.84 13895.50 29286.44 25183.50 25596.70 19775.49 23797.77 21286.78 22297.81 11697.40 203
QAPM91.41 18189.49 20297.17 5895.66 20393.42 7298.60 16897.51 13380.92 33681.39 29697.41 15872.89 26199.87 5882.33 27498.68 9798.21 182
FE-MVS91.38 18290.16 19395.05 15896.46 16987.53 21089.69 37597.84 6182.97 30592.18 16192.00 28984.07 15198.93 15580.71 28795.52 16298.68 155
bld_raw_dy_0_6491.37 18389.75 19796.23 10997.51 12290.58 13499.16 9788.98 38995.64 2587.18 22499.20 3057.19 35198.66 16798.00 5084.86 26099.46 83
HQP_MVS91.26 18490.95 17892.16 23793.84 27186.07 25199.02 12196.30 22793.38 6886.99 22596.52 20172.92 25997.75 21893.46 14486.17 25092.67 260
PCF-MVS89.78 591.26 18489.63 19996.16 11695.44 20991.58 10795.29 32696.10 24385.07 27082.75 26497.45 15678.28 22499.78 8480.60 28995.65 16197.12 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 18689.99 19495.03 15996.75 15988.55 18998.65 15994.95 31687.74 21987.74 21697.80 13668.27 29398.14 18880.53 29097.49 12698.41 167
VDD-MVS91.24 18790.18 19294.45 18097.08 14885.84 25998.40 19396.10 24386.99 23293.36 14798.16 12954.27 36399.20 13896.59 8090.63 22998.31 176
SDMVSNet91.09 18889.91 19594.65 17296.80 15690.54 13597.78 24297.81 6888.34 19785.73 23595.26 23166.44 31198.26 18494.25 13086.75 24495.14 244
test_fmvs1_n91.07 18991.41 16990.06 28894.10 25974.31 36399.18 9394.84 31994.81 3596.37 9097.46 15550.86 37499.82 7697.14 6697.90 11496.04 240
CLD-MVS91.06 19090.71 18592.10 23994.05 26386.10 24899.55 4596.29 23094.16 4784.70 24597.17 17269.62 28597.82 20894.74 12086.08 25292.39 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 19189.17 20996.69 8495.96 19391.72 10392.62 35297.23 16585.61 26189.74 20193.89 25468.55 29099.42 12391.09 16887.84 23998.92 135
XVG-OURS-SEG-HR90.95 19290.66 18791.83 24495.18 22281.14 32895.92 31395.92 26188.40 19490.33 19497.85 13370.66 27999.38 12892.83 15488.83 23694.98 247
cascas90.93 19389.33 20795.76 13195.69 20193.03 8098.99 12596.59 20880.49 33886.79 23094.45 24365.23 32098.60 17093.52 14192.18 20095.66 243
XVG-OURS90.83 19490.49 18991.86 24395.23 21681.25 32595.79 32195.92 26188.96 17590.02 19898.03 13271.60 27399.35 13391.06 16987.78 24094.98 247
TR-MVS90.77 19589.44 20394.76 16796.31 17688.02 19997.92 23495.96 25485.52 26288.22 21397.23 16666.80 30798.09 19284.58 24792.38 19398.17 185
OpenMVScopyleft85.28 1490.75 19688.84 21696.48 9593.58 27893.51 7098.80 14297.41 15182.59 31278.62 32497.49 15468.00 29799.82 7684.52 24998.55 10396.11 239
FIs90.70 19789.87 19693.18 21592.29 29791.12 11698.17 21598.25 3289.11 17183.44 25694.82 23982.26 18796.17 30187.76 21082.76 28192.25 269
X-MVStestdata90.69 19888.66 22196.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7529.59 40987.37 8799.87 5895.65 9699.43 6099.78 38
SCA90.64 19989.25 20894.83 16694.95 23788.83 18296.26 30397.21 16790.06 14590.03 19790.62 32066.61 30896.81 26183.16 26594.36 17298.84 140
GeoE90.60 20089.56 20093.72 20995.10 23085.43 26599.41 6994.94 31783.96 28887.21 22396.83 19374.37 24597.05 25280.50 29193.73 17898.67 156
test_vis1_n90.40 20190.27 19190.79 26991.55 31276.48 35599.12 11094.44 33194.31 4397.34 6496.95 18343.60 38599.42 12397.57 5997.60 12196.47 232
TAPA-MVS87.50 990.35 20289.05 21294.25 18998.48 9185.17 27298.42 18896.58 21182.44 31887.24 22298.53 10782.77 17398.84 15759.09 38497.88 11598.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 20389.70 19892.22 23497.12 14688.93 18098.35 20095.96 25488.60 18583.14 26292.33 28287.38 8696.18 30086.49 22477.89 30491.55 295
CVMVSNet90.30 20490.91 17988.46 32294.32 25473.58 36797.61 25597.59 11690.16 14188.43 21297.10 17476.83 23292.86 36182.64 27193.54 17998.93 133
nrg03090.23 20588.87 21594.32 18691.53 31393.54 6998.79 14695.89 26988.12 20584.55 24794.61 24278.80 22196.88 25892.35 16075.21 31892.53 262
FC-MVSNet-test90.22 20689.40 20592.67 22991.78 30989.86 15797.89 23598.22 3588.81 18182.96 26394.66 24181.90 19395.96 31085.89 23382.52 28492.20 275
LS3D90.19 20788.72 21994.59 17698.97 7386.33 24096.90 28196.60 20774.96 36384.06 25398.74 9075.78 23599.83 7374.93 32697.57 12297.62 199
AUN-MVS90.17 20889.50 20192.19 23696.21 18182.67 30897.76 24697.53 12788.05 20791.67 16796.15 21283.10 16797.47 23488.11 20766.91 36996.43 234
dp90.16 20988.83 21794.14 19396.38 17486.42 23491.57 36297.06 18584.76 27788.81 20890.19 33684.29 14897.43 23875.05 32591.35 22298.56 161
GA-MVS90.10 21088.69 22094.33 18592.44 29587.97 20099.08 11396.26 23189.65 15386.92 22793.11 27368.09 29596.96 25482.54 27390.15 23198.05 187
VDDNet90.08 21188.54 22794.69 17194.41 25187.68 20498.21 21196.40 22176.21 35893.33 14897.75 14054.93 36198.77 15994.71 12290.96 22497.61 200
gg-mvs-nofinetune90.00 21287.71 23996.89 7596.15 18594.69 4785.15 38497.74 7768.32 38492.97 15360.16 39796.10 396.84 25993.89 13398.87 8999.14 112
mvsmamba89.99 21389.42 20491.69 25190.64 32586.34 23998.40 19392.27 36491.01 11584.80 24494.93 23576.12 23396.51 27692.81 15583.84 27092.21 273
Effi-MVS+-dtu89.97 21490.68 18687.81 32695.15 22371.98 37397.87 23895.40 29991.92 9687.57 21791.44 29974.27 24796.84 25989.45 19193.10 18394.60 249
EI-MVSNet89.87 21589.38 20691.36 25694.32 25485.87 25797.61 25596.59 20885.10 26885.51 23997.10 17481.30 20196.56 27283.85 26183.03 27991.64 287
OPM-MVS89.76 21689.15 21091.57 25390.53 32685.58 26398.11 22195.93 26092.88 7886.05 23396.47 20467.06 30697.87 20589.29 19786.08 25291.26 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm89.67 21788.95 21491.82 24592.54 29481.43 32092.95 34795.92 26187.81 21590.50 19089.44 34384.99 13995.65 32383.67 26282.71 28298.38 170
UniMVSNet_NR-MVSNet89.60 21888.55 22692.75 22592.17 30090.07 14898.74 14998.15 4088.37 19583.21 25893.98 25182.86 17195.93 31286.95 21772.47 34792.25 269
cl2289.57 21988.79 21891.91 24297.94 10587.62 20797.98 23296.51 21585.03 27182.37 27791.79 29283.65 15496.50 27785.96 23077.89 30491.61 292
PS-MVSNAJss89.54 22089.05 21291.00 26288.77 34984.36 28397.39 25995.97 25288.47 18781.88 28893.80 25682.48 18196.50 27789.34 19483.34 27892.15 276
UniMVSNet (Re)89.50 22188.32 23093.03 21792.21 29990.96 12498.90 13498.39 2789.13 17083.22 25792.03 28581.69 19496.34 29286.79 22172.53 34691.81 285
sd_testset89.23 22288.05 23692.74 22696.80 15685.33 26895.85 31997.03 18888.34 19785.73 23595.26 23161.12 33797.76 21785.61 23586.75 24495.14 244
tpmvs89.16 22387.76 23793.35 21297.19 13984.75 27990.58 37397.36 15681.99 32384.56 24689.31 34683.98 15298.17 18774.85 32890.00 23397.12 211
VPA-MVSNet89.10 22487.66 24093.45 21192.56 29391.02 12297.97 23398.32 3086.92 23786.03 23492.01 28768.84 28997.10 25090.92 17175.34 31792.23 271
ADS-MVSNet88.99 22587.30 24594.07 19696.21 18187.56 20987.15 37996.78 20083.01 30389.91 19987.27 35978.87 21997.01 25374.20 33392.27 19797.64 196
test0.0.03 188.96 22688.61 22290.03 29291.09 31984.43 28298.97 12897.02 19090.21 13680.29 30596.31 21084.89 14191.93 37572.98 34285.70 25593.73 251
miper_ehance_all_eth88.94 22788.12 23491.40 25495.32 21486.93 22697.85 23995.55 28984.19 28381.97 28691.50 29884.16 14995.91 31584.69 24577.89 30491.36 303
RRT_MVS88.91 22888.56 22589.93 29390.31 32981.61 31898.08 22696.38 22289.30 16582.41 27594.84 23873.15 25796.04 30790.38 17982.23 28692.15 276
tpm cat188.89 22987.27 24693.76 20795.79 19785.32 26990.76 37197.09 18376.14 35985.72 23788.59 34982.92 17098.04 19776.96 31291.43 21897.90 192
LPG-MVS_test88.86 23088.47 22890.06 28893.35 28580.95 33098.22 20995.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
Anonymous20240521188.84 23187.03 25094.27 18798.14 10084.18 28698.44 18695.58 28876.79 35789.34 20596.88 18953.42 36699.54 10887.53 21387.12 24399.09 118
Fast-Effi-MVS+-dtu88.84 23188.59 22489.58 30493.44 28378.18 34898.65 15994.62 32888.46 18984.12 25295.37 23068.91 28796.52 27582.06 27791.70 20994.06 250
DU-MVS88.83 23387.51 24192.79 22391.46 31490.07 14898.71 15097.62 10988.87 18083.21 25893.68 25874.63 23995.93 31286.95 21772.47 34792.36 265
CR-MVSNet88.83 23387.38 24493.16 21693.47 28086.24 24184.97 38694.20 34088.92 17990.76 18586.88 36384.43 14694.82 34370.64 35092.17 20198.41 167
FMVSNet388.81 23587.08 24993.99 20196.52 16694.59 4998.08 22696.20 23485.85 25682.12 28191.60 29674.05 24995.40 33179.04 29780.24 29291.99 283
ACMM86.95 1388.77 23688.22 23290.43 27993.61 27781.34 32398.50 17995.92 26187.88 21483.85 25495.20 23367.20 30497.89 20386.90 22084.90 25992.06 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 23786.56 25695.34 14598.92 7787.45 21397.64 25493.52 35170.55 37581.49 29497.25 16574.43 24499.88 5471.14 34994.09 17498.67 156
ACMP87.39 1088.71 23888.24 23190.12 28793.91 26981.06 32998.50 17995.67 28389.43 16380.37 30495.55 22465.67 31497.83 20790.55 17884.51 26291.47 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WB-MVSnew88.69 23988.34 22989.77 29994.30 25885.99 25498.14 21697.31 15987.15 23187.85 21596.07 21669.91 28095.52 32672.83 34491.47 21787.80 363
dmvs_re88.69 23988.06 23590.59 27393.83 27378.68 34495.75 32296.18 23887.99 21084.48 24996.32 20967.52 30196.94 25684.98 24285.49 25696.14 238
myMVS_eth3d88.68 24189.07 21187.50 32995.14 22479.74 33697.68 25196.66 20386.52 24782.63 26796.84 19185.22 13889.89 38169.43 35591.54 21392.87 256
LCM-MVSNet-Re88.59 24288.61 22288.51 32195.53 20772.68 37196.85 28388.43 39088.45 19073.14 35590.63 31975.82 23494.38 35092.95 15195.71 16098.48 165
WR-MVS88.54 24387.22 24892.52 23091.93 30789.50 16498.56 17397.84 6186.99 23281.87 28993.81 25574.25 24895.92 31485.29 23774.43 32792.12 278
IterMVS-LS88.34 24487.44 24291.04 26194.10 25985.85 25898.10 22295.48 29385.12 26782.03 28591.21 30481.35 20095.63 32483.86 26075.73 31691.63 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 24586.57 25593.49 21091.95 30591.35 10998.18 21397.20 17188.61 18484.52 24894.89 23662.21 33296.76 26489.34 19472.26 35092.36 265
MSDG88.29 24686.37 25894.04 19996.90 15286.15 24796.52 29494.36 33677.89 35379.22 31996.95 18369.72 28399.59 10473.20 34192.58 19196.37 236
test_djsdf88.26 24787.73 23889.84 29688.05 35882.21 31297.77 24496.17 23986.84 23882.41 27591.95 29172.07 26795.99 30889.83 18484.50 26391.32 305
c3_l88.19 24887.23 24791.06 26094.97 23686.17 24697.72 24895.38 30083.43 29781.68 29391.37 30082.81 17295.72 32184.04 25873.70 33591.29 307
D2MVS87.96 24987.39 24389.70 30191.84 30883.40 29698.31 20498.49 2388.04 20878.23 33090.26 33073.57 25196.79 26384.21 25283.53 27588.90 355
cl____87.82 25086.79 25490.89 26694.88 24085.43 26597.81 24095.24 30882.91 31080.71 30191.22 30381.97 19295.84 31781.34 28275.06 31991.40 302
DIV-MVS_self_test87.82 25086.81 25390.87 26794.87 24185.39 26797.81 24095.22 31382.92 30980.76 30091.31 30281.99 19095.81 31981.36 28175.04 32091.42 301
eth_miper_zixun_eth87.76 25287.00 25190.06 28894.67 24682.65 30997.02 27895.37 30184.19 28381.86 29191.58 29781.47 19795.90 31683.24 26373.61 33691.61 292
testing387.75 25388.22 23286.36 33794.66 24777.41 35399.52 5197.95 5486.05 25481.12 29796.69 19886.18 12089.31 38561.65 37990.12 23292.35 268
TranMVSNet+NR-MVSNet87.75 25386.31 25992.07 24090.81 32288.56 18898.33 20197.18 17287.76 21781.87 28993.90 25372.45 26395.43 32983.13 26771.30 35792.23 271
XXY-MVS87.75 25386.02 26392.95 22190.46 32789.70 16097.71 25095.90 26784.02 28580.95 29894.05 24567.51 30297.10 25085.16 23878.41 30192.04 282
NR-MVSNet87.74 25686.00 26492.96 22091.46 31490.68 13196.65 29297.42 15088.02 20973.42 35293.68 25877.31 22995.83 31884.26 25171.82 35492.36 265
Anonymous2024052987.66 25785.58 27093.92 20297.59 11785.01 27598.13 21797.13 17766.69 38988.47 21196.01 21855.09 36099.51 11087.00 21684.12 26897.23 210
ADS-MVSNet287.62 25886.88 25289.86 29596.21 18179.14 34087.15 37992.99 35483.01 30389.91 19987.27 35978.87 21992.80 36474.20 33392.27 19797.64 196
pmmvs487.58 25986.17 26291.80 24689.58 33988.92 18197.25 26795.28 30482.54 31480.49 30393.17 27275.62 23696.05 30682.75 27078.90 29990.42 330
jajsoiax87.35 26086.51 25789.87 29487.75 36381.74 31697.03 27695.98 25188.47 18780.15 30793.80 25661.47 33496.36 28689.44 19284.47 26491.50 296
PVSNet_083.28 1687.31 26185.16 27693.74 20894.78 24384.59 28098.91 13398.69 2189.81 15078.59 32693.23 27061.95 33399.34 13494.75 11955.72 39097.30 206
v2v48287.27 26285.76 26791.78 25089.59 33887.58 20898.56 17395.54 29084.53 27982.51 27191.78 29373.11 25896.47 28082.07 27674.14 33391.30 306
mvs_tets87.09 26386.22 26089.71 30087.87 35981.39 32296.73 29095.90 26788.19 20379.99 30993.61 26159.96 34196.31 29489.40 19384.34 26591.43 300
V4287.00 26485.68 26990.98 26389.91 33286.08 24998.32 20395.61 28683.67 29482.72 26590.67 31674.00 25096.53 27481.94 27974.28 33090.32 332
miper_lstm_enhance86.90 26586.20 26189.00 31694.53 24981.19 32696.74 28995.24 30882.33 31980.15 30790.51 32781.99 19094.68 34780.71 28773.58 33791.12 311
FMVSNet286.90 26584.79 28493.24 21495.11 22792.54 9297.67 25395.86 27382.94 30680.55 30291.17 30562.89 32995.29 33377.23 30979.71 29891.90 284
v114486.83 26785.31 27591.40 25489.75 33687.21 22498.31 20495.45 29583.22 30082.70 26690.78 31173.36 25296.36 28679.49 29474.69 32490.63 327
MS-PatchMatch86.75 26885.92 26589.22 31191.97 30382.47 31196.91 28096.14 24183.74 29177.73 33193.53 26458.19 34697.37 24276.75 31598.35 10787.84 361
anonymousdsp86.69 26985.75 26889.53 30586.46 37182.94 30196.39 29795.71 27983.97 28779.63 31490.70 31468.85 28895.94 31186.01 22884.02 26989.72 345
GBi-Net86.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
test186.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
MVP-Stereo86.61 27285.83 26688.93 31888.70 35183.85 29196.07 31094.41 33582.15 32275.64 34291.96 29067.65 30096.45 28277.20 31198.72 9686.51 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 27385.45 27389.79 29891.02 32182.78 30797.38 26197.56 12285.37 26479.53 31693.03 27471.86 27095.25 33479.92 29273.43 34191.34 304
WR-MVS_H86.53 27485.49 27289.66 30391.04 32083.31 29897.53 25798.20 3684.95 27479.64 31390.90 30978.01 22695.33 33276.29 31872.81 34390.35 331
tt080586.50 27584.79 28491.63 25291.97 30381.49 31996.49 29597.38 15482.24 32082.44 27295.82 22151.22 37198.25 18584.55 24880.96 29195.13 246
v14419286.40 27684.89 28190.91 26489.48 34285.59 26298.21 21195.43 29882.45 31782.62 26990.58 32372.79 26296.36 28678.45 30474.04 33490.79 320
v14886.38 27785.06 27790.37 28389.47 34384.10 28798.52 17595.48 29383.80 29080.93 29990.22 33474.60 24196.31 29480.92 28571.55 35590.69 325
v119286.32 27884.71 28691.17 25889.53 34186.40 23598.13 21795.44 29782.52 31582.42 27490.62 32071.58 27496.33 29377.23 30974.88 32190.79 320
Patchmatch-test86.25 27984.06 29692.82 22294.42 25082.88 30582.88 39394.23 33971.58 37179.39 31790.62 32089.00 6296.42 28363.03 37591.37 22199.16 110
v886.11 28084.45 29191.10 25989.99 33186.85 22797.24 26895.36 30281.99 32379.89 31189.86 33974.53 24396.39 28478.83 30172.32 34990.05 339
v192192086.02 28184.44 29290.77 27089.32 34485.20 27098.10 22295.35 30382.19 32182.25 27990.71 31370.73 27796.30 29776.85 31474.49 32690.80 319
JIA-IIPM85.97 28284.85 28289.33 31093.23 28773.68 36685.05 38597.13 17769.62 38091.56 17168.03 39588.03 7796.96 25477.89 30793.12 18297.34 205
pmmvs585.87 28384.40 29490.30 28488.53 35384.23 28498.60 16893.71 34781.53 32880.29 30592.02 28664.51 32295.52 32682.04 27878.34 30291.15 310
XVG-ACMP-BASELINE85.86 28484.95 28088.57 32089.90 33377.12 35494.30 33495.60 28787.40 22882.12 28192.99 27653.42 36697.66 22285.02 24183.83 27190.92 316
Baseline_NR-MVSNet85.83 28584.82 28388.87 31988.73 35083.34 29798.63 16391.66 37380.41 34182.44 27291.35 30174.63 23995.42 33084.13 25471.39 35687.84 361
PS-CasMVS85.81 28684.58 28989.49 30890.77 32382.11 31397.20 27197.36 15684.83 27679.12 32192.84 27767.42 30395.16 33678.39 30573.25 34291.21 309
IterMVS85.81 28684.67 28789.22 31193.51 27983.67 29396.32 30094.80 32285.09 26978.69 32290.17 33766.57 31093.17 36079.48 29577.42 31090.81 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 28884.11 29590.73 27189.26 34585.15 27397.88 23795.23 31281.89 32682.16 28090.55 32569.60 28696.31 29475.59 32374.87 32290.72 324
IterMVS-SCA-FT85.73 28984.64 28889.00 31693.46 28282.90 30396.27 30194.70 32585.02 27278.62 32490.35 32966.61 30893.33 35779.38 29677.36 31190.76 322
v1085.73 28984.01 29790.87 26790.03 33086.73 22997.20 27195.22 31381.25 33179.85 31289.75 34073.30 25596.28 29876.87 31372.64 34589.61 347
UniMVSNet_ETH3D85.65 29183.79 29991.21 25790.41 32880.75 33295.36 32595.78 27578.76 34781.83 29294.33 24449.86 37696.66 26684.30 25083.52 27696.22 237
PatchT85.44 29283.19 30192.22 23493.13 28983.00 30083.80 39296.37 22370.62 37490.55 18879.63 38784.81 14394.87 34158.18 38691.59 21098.79 147
RPSCF85.33 29385.55 27184.67 34994.63 24862.28 38893.73 34093.76 34574.38 36685.23 24297.06 17764.09 32398.31 18080.98 28386.08 25293.41 255
PEN-MVS85.21 29483.93 29889.07 31589.89 33481.31 32497.09 27497.24 16484.45 28178.66 32392.68 27968.44 29294.87 34175.98 32070.92 35891.04 313
test_fmvs285.10 29585.45 27384.02 35289.85 33565.63 38698.49 18192.59 36090.45 13185.43 24193.32 26643.94 38396.59 26990.81 17484.19 26789.85 343
RPMNet85.07 29681.88 31394.64 17493.47 28086.24 24184.97 38697.21 16764.85 39190.76 18578.80 38880.95 20399.27 13753.76 39092.17 20198.41 167
AllTest84.97 29783.12 30290.52 27796.82 15478.84 34295.89 31492.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
USDC84.74 29882.93 30390.16 28691.73 31083.54 29595.00 32893.30 35388.77 18273.19 35493.30 26853.62 36597.65 22475.88 32181.54 28989.30 350
Anonymous2023121184.72 29982.65 31090.91 26497.71 11184.55 28197.28 26596.67 20266.88 38879.18 32090.87 31058.47 34596.60 26882.61 27274.20 33191.59 294
pm-mvs184.68 30082.78 30790.40 28089.58 33985.18 27197.31 26394.73 32481.93 32576.05 33792.01 28765.48 31896.11 30478.75 30269.14 36089.91 342
ACMH83.09 1784.60 30182.61 31190.57 27493.18 28882.94 30196.27 30194.92 31881.01 33472.61 36193.61 26156.54 35297.79 21074.31 33181.07 29090.99 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 30282.72 30990.18 28592.89 29283.18 29993.15 34594.74 32378.99 34475.14 34592.69 27865.64 31597.63 22569.46 35481.82 28889.74 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 30382.82 30489.70 30196.72 16078.85 34195.89 31492.83 35871.55 37277.54 33395.89 22059.40 34399.14 14567.26 36388.26 23791.11 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 30481.83 31492.42 23291.73 31087.36 21685.52 38294.42 33481.40 32981.91 28787.58 35351.92 36992.81 36373.84 33688.15 23897.08 215
our_test_384.47 30582.80 30589.50 30689.01 34683.90 29097.03 27694.56 32981.33 33075.36 34490.52 32671.69 27294.54 34968.81 35776.84 31290.07 337
v7n84.42 30682.75 30889.43 30988.15 35681.86 31596.75 28895.67 28380.53 33778.38 32889.43 34469.89 28196.35 29173.83 33772.13 35190.07 337
ACMH+83.78 1584.21 30782.56 31289.15 31393.73 27679.16 33996.43 29694.28 33881.09 33374.00 34994.03 24854.58 36297.67 22176.10 31978.81 30090.63 327
EU-MVSNet84.19 30884.42 29383.52 35588.64 35267.37 38496.04 31195.76 27785.29 26578.44 32793.18 27170.67 27891.48 37775.79 32275.98 31491.70 286
DTE-MVSNet84.14 30982.80 30588.14 32388.95 34879.87 33596.81 28496.24 23283.50 29677.60 33292.52 28167.89 29994.24 35272.64 34569.05 36190.32 332
OurMVSNet-221017-084.13 31083.59 30085.77 34287.81 36070.24 37894.89 32993.65 34986.08 25376.53 33493.28 26961.41 33596.14 30380.95 28477.69 30990.93 315
Syy-MVS84.10 31184.53 29082.83 35795.14 22465.71 38597.68 25196.66 20386.52 24782.63 26796.84 19168.15 29489.89 38145.62 39591.54 21392.87 256
FMVSNet183.94 31281.32 32091.80 24691.94 30688.81 18396.77 28595.25 30577.98 34978.25 32990.25 33150.37 37594.97 33873.27 34077.81 30891.62 289
tfpnnormal83.65 31381.35 31990.56 27691.37 31688.06 19797.29 26497.87 5878.51 34876.20 33590.91 30864.78 32196.47 28061.71 37873.50 33887.13 370
ppachtmachnet_test83.63 31481.57 31789.80 29789.01 34685.09 27497.13 27394.50 33078.84 34576.14 33691.00 30769.78 28294.61 34863.40 37374.36 32889.71 346
Patchmtry83.61 31581.64 31589.50 30693.36 28482.84 30684.10 38994.20 34069.47 38179.57 31586.88 36384.43 14694.78 34468.48 35974.30 32990.88 317
KD-MVS_2432*160082.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
miper_refine_blended82.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
SixPastTwentyTwo82.63 31881.58 31685.79 34188.12 35771.01 37695.17 32792.54 36184.33 28272.93 35992.08 28460.41 34095.61 32574.47 33074.15 33290.75 323
testgi82.29 31981.00 32286.17 33987.24 36674.84 36297.39 25991.62 37488.63 18375.85 34195.42 22846.07 38291.55 37666.87 36679.94 29692.12 278
FMVSNet582.29 31980.54 32387.52 32893.79 27584.01 28893.73 34092.47 36276.92 35674.27 34786.15 36763.69 32789.24 38669.07 35674.79 32389.29 351
TransMVSNet (Re)81.97 32179.61 33089.08 31489.70 33784.01 28897.26 26691.85 37278.84 34573.07 35891.62 29567.17 30595.21 33567.50 36259.46 38488.02 360
LF4IMVS81.94 32281.17 32184.25 35187.23 36768.87 38393.35 34491.93 37183.35 29975.40 34393.00 27549.25 37996.65 26778.88 30078.11 30387.22 369
Patchmatch-RL test81.90 32380.13 32687.23 33280.71 38770.12 38084.07 39088.19 39183.16 30270.57 36382.18 37887.18 9392.59 36682.28 27562.78 37798.98 125
DSMNet-mixed81.60 32481.43 31882.10 36084.36 37760.79 38993.63 34286.74 39379.00 34379.32 31887.15 36163.87 32589.78 38366.89 36591.92 20395.73 242
test_vis1_rt81.31 32580.05 32885.11 34491.29 31770.66 37798.98 12777.39 40585.76 25968.80 36982.40 37636.56 39299.44 11992.67 15786.55 24685.24 380
K. test v381.04 32679.77 32984.83 34787.41 36470.23 37995.60 32493.93 34483.70 29367.51 37689.35 34555.76 35493.58 35676.67 31668.03 36490.67 326
Anonymous2023120680.76 32779.42 33184.79 34884.78 37672.98 36896.53 29392.97 35579.56 34274.33 34688.83 34761.27 33692.15 37260.59 38175.92 31589.24 352
CMPMVSbinary58.40 2180.48 32880.11 32781.59 36385.10 37559.56 39194.14 33795.95 25668.54 38360.71 38793.31 26755.35 35997.87 20583.06 26884.85 26187.33 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 32977.94 33487.85 32592.09 30178.58 34593.74 33989.94 38374.99 36269.77 36691.78 29346.09 38197.58 22965.17 37177.89 30487.38 365
EG-PatchMatch MVS79.92 33077.59 33586.90 33487.06 36877.90 35296.20 30894.06 34274.61 36466.53 38088.76 34840.40 39096.20 29967.02 36483.66 27486.61 371
pmmvs679.90 33177.31 33787.67 32784.17 37878.13 34995.86 31893.68 34867.94 38572.67 36089.62 34250.98 37395.75 32074.80 32966.04 37189.14 353
CL-MVSNet_self_test79.89 33278.34 33384.54 35081.56 38575.01 36096.88 28295.62 28581.10 33275.86 34085.81 36868.49 29190.26 37963.21 37456.51 38888.35 358
MDA-MVSNet_test_wron79.65 33377.05 33887.45 33087.79 36280.13 33396.25 30494.44 33173.87 36751.80 39387.47 35868.04 29692.12 37366.02 36767.79 36690.09 335
YYNet179.64 33477.04 33987.43 33187.80 36179.98 33496.23 30594.44 33173.83 36851.83 39287.53 35467.96 29892.07 37466.00 36867.75 36790.23 334
MVS-HIRNet79.01 33575.13 34790.66 27293.82 27481.69 31785.16 38393.75 34654.54 39374.17 34859.15 39957.46 34996.58 27163.74 37294.38 17193.72 252
UnsupCasMVSNet_eth78.90 33676.67 34185.58 34382.81 38374.94 36191.98 35696.31 22684.64 27865.84 38287.71 35251.33 37092.23 37172.89 34356.50 38989.56 348
test_040278.81 33776.33 34286.26 33891.18 31878.44 34795.88 31691.34 37768.55 38270.51 36589.91 33852.65 36894.99 33747.14 39479.78 29785.34 379
pmmvs-eth3d78.71 33876.16 34386.38 33680.25 38981.19 32694.17 33692.13 36877.97 35066.90 37982.31 37755.76 35492.56 36773.63 33962.31 38085.38 377
Anonymous2024052178.63 33976.90 34083.82 35382.82 38272.86 36995.72 32393.57 35073.55 36972.17 36284.79 37049.69 37792.51 36865.29 37074.50 32586.09 375
test20.0378.51 34077.48 33681.62 36283.07 38171.03 37596.11 30992.83 35881.66 32769.31 36889.68 34157.53 34887.29 39158.65 38568.47 36286.53 372
TDRefinement78.01 34175.31 34586.10 34070.06 40073.84 36593.59 34391.58 37574.51 36573.08 35791.04 30649.63 37897.12 24774.88 32759.47 38387.33 367
OpenMVS_ROBcopyleft73.86 2077.99 34275.06 34886.77 33583.81 38077.94 35196.38 29891.53 37667.54 38668.38 37187.13 36243.94 38396.08 30555.03 38981.83 28786.29 374
MDA-MVSNet-bldmvs77.82 34374.75 34987.03 33388.33 35478.52 34696.34 29992.85 35775.57 36048.87 39587.89 35157.32 35092.49 36960.79 38064.80 37590.08 336
KD-MVS_self_test77.47 34475.88 34482.24 35881.59 38468.93 38292.83 35194.02 34377.03 35573.14 35583.39 37355.44 35890.42 37867.95 36057.53 38787.38 365
dmvs_testset77.17 34578.99 33271.71 37387.25 36538.55 41091.44 36381.76 40185.77 25869.49 36795.94 21969.71 28484.37 39352.71 39276.82 31392.21 273
new_pmnet76.02 34673.71 35182.95 35683.88 37972.85 37091.26 36692.26 36570.44 37662.60 38581.37 38047.64 38092.32 37061.85 37772.10 35283.68 385
MIMVSNet175.92 34773.30 35283.81 35481.29 38675.57 35892.26 35492.05 36973.09 37067.48 37786.18 36640.87 38987.64 39055.78 38870.68 35988.21 359
mvsany_test375.85 34874.52 35079.83 36573.53 39760.64 39091.73 35987.87 39283.91 28970.55 36482.52 37531.12 39493.66 35486.66 22362.83 37685.19 381
test_fmvs375.09 34975.19 34674.81 37077.45 39354.08 39695.93 31290.64 38082.51 31673.29 35381.19 38122.29 39986.29 39285.50 23667.89 36584.06 383
PM-MVS74.88 35072.85 35380.98 36478.98 39164.75 38790.81 37085.77 39480.95 33568.23 37382.81 37429.08 39692.84 36276.54 31762.46 37985.36 378
new-patchmatchnet74.80 35172.40 35481.99 36178.36 39272.20 37294.44 33292.36 36377.06 35463.47 38479.98 38651.04 37288.85 38760.53 38254.35 39184.92 382
UnsupCasMVSNet_bld73.85 35270.14 35684.99 34679.44 39075.73 35788.53 37695.24 30870.12 37861.94 38674.81 39241.41 38893.62 35568.65 35851.13 39685.62 376
pmmvs372.86 35369.76 35882.17 35973.86 39674.19 36494.20 33589.01 38864.23 39267.72 37480.91 38441.48 38788.65 38862.40 37654.02 39283.68 385
test_f71.94 35470.82 35575.30 36972.77 39853.28 39791.62 36089.66 38675.44 36164.47 38378.31 38920.48 40089.56 38478.63 30366.02 37283.05 388
N_pmnet70.19 35569.87 35771.12 37588.24 35530.63 41495.85 31928.70 41370.18 37768.73 37086.55 36564.04 32493.81 35353.12 39173.46 33988.94 354
test_method70.10 35668.66 35974.41 37286.30 37355.84 39494.47 33189.82 38435.18 40166.15 38184.75 37130.54 39577.96 40270.40 35360.33 38289.44 349
APD_test168.93 35766.98 36074.77 37180.62 38853.15 39887.97 37785.01 39653.76 39459.26 38887.52 35525.19 39789.95 38056.20 38767.33 36881.19 389
WB-MVS66.44 35866.29 36166.89 37874.84 39444.93 40593.00 34684.09 39971.15 37355.82 39081.63 37963.79 32680.31 40021.85 40450.47 39775.43 391
SSC-MVS65.42 35965.20 36266.06 37973.96 39543.83 40692.08 35583.54 40069.77 37954.73 39180.92 38363.30 32879.92 40120.48 40548.02 39874.44 392
FPMVS61.57 36060.32 36365.34 38060.14 40742.44 40891.02 36989.72 38544.15 39642.63 39980.93 38219.02 40180.59 39942.50 39672.76 34473.00 393
test_vis3_rt61.29 36158.75 36468.92 37767.41 40152.84 39991.18 36859.23 41266.96 38741.96 40058.44 40011.37 40894.72 34674.25 33257.97 38659.20 399
EGC-MVSNET60.70 36255.37 36676.72 36786.35 37271.08 37489.96 37484.44 3980.38 4101.50 41184.09 37237.30 39188.10 38940.85 39973.44 34070.97 395
LCM-MVSNet60.07 36356.37 36571.18 37454.81 40948.67 40282.17 39489.48 38737.95 39949.13 39469.12 39313.75 40781.76 39459.28 38351.63 39583.10 387
PMMVS258.97 36455.07 36770.69 37662.72 40455.37 39585.97 38180.52 40249.48 39545.94 39668.31 39415.73 40580.78 39849.79 39337.12 40175.91 390
testf156.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
APD_test256.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
Gipumacopyleft54.77 36752.22 37162.40 38486.50 37059.37 39250.20 40290.35 38236.52 40041.20 40149.49 40218.33 40381.29 39532.10 40165.34 37346.54 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 36852.86 37056.05 38532.75 41341.97 40973.42 39976.12 40621.91 40639.68 40296.39 20742.59 38665.10 40578.00 30614.92 40661.08 398
ANet_high50.71 36946.17 37264.33 38144.27 41152.30 40076.13 39878.73 40364.95 39027.37 40455.23 40114.61 40667.74 40436.01 40018.23 40472.95 394
PMVScopyleft41.42 2345.67 37042.50 37355.17 38634.28 41232.37 41266.24 40078.71 40430.72 40222.04 40759.59 3984.59 41177.85 40327.49 40258.84 38555.29 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 37137.64 37653.90 38749.46 41043.37 40765.09 40166.66 40926.19 40525.77 40648.53 4033.58 41363.35 40626.15 40327.28 40254.97 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37240.93 37441.29 38861.97 40533.83 41184.00 39165.17 41027.17 40327.56 40346.72 40417.63 40460.41 40719.32 40618.82 40329.61 403
EMVS39.96 37339.88 37540.18 38959.57 40832.12 41384.79 38864.57 41126.27 40426.14 40544.18 40718.73 40259.29 40817.03 40717.67 40529.12 404
cdsmvs_eth3d_5k22.52 37430.03 3770.00 3930.00 4160.00 4180.00 40497.17 1730.00 4110.00 41298.77 8774.35 2460.00 4120.00 4110.00 4100.00 408
testmvs18.81 37523.05 3786.10 3924.48 4142.29 41797.78 2423.00 4153.27 40818.60 40862.71 3961.53 4152.49 41114.26 4091.80 40813.50 406
wuyk23d16.71 37616.73 38016.65 39060.15 40625.22 41541.24 4035.17 4146.56 4075.48 4103.61 4103.64 41222.72 40915.20 4089.52 4071.99 407
test12316.58 37719.47 3797.91 3913.59 4155.37 41694.32 3331.39 4162.49 40913.98 40944.60 4062.91 4142.65 41011.35 4100.57 40915.70 405
ab-mvs-re8.21 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.50 1100.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.87 3799.16 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41182.48 1810.00 4120.00 4110.00 4100.00 408
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.74 33667.75 361
FOURS199.50 4288.94 17899.55 4597.47 14191.32 11198.12 45
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
test_one_060199.59 2894.89 3697.64 10393.14 7198.93 2299.45 1493.45 17
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.67 1093.28 7397.61 11087.78 21697.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
RE-MVS-def95.70 6499.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6485.24 13796.62 7799.31 6699.60 69
IU-MVS99.63 1895.38 2497.73 8095.54 2899.54 399.69 699.81 2399.99 1
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4799.30 999.49 993.32 1899.98 9
9.1496.87 2799.34 5099.50 5297.49 13889.41 16498.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
save fliter99.34 5093.85 6499.65 3697.63 10795.69 22
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
test072699.66 1295.20 3299.77 1897.70 8693.95 5099.35 799.54 393.18 21
GSMVS98.84 140
test_part299.54 3695.42 2298.13 43
sam_mvs188.39 6898.84 140
sam_mvs87.08 96
ambc79.60 36672.76 39956.61 39376.20 39792.01 37068.25 37280.23 38523.34 39894.73 34573.78 33860.81 38187.48 364
MTGPAbinary97.45 144
test_post190.74 37241.37 40885.38 13596.36 28683.16 265
test_post46.00 40587.37 8797.11 248
patchmatchnet-post84.86 36988.73 6596.81 261
GG-mvs-BLEND96.98 6796.53 16594.81 4387.20 37897.74 7793.91 13896.40 20596.56 296.94 25695.08 11198.95 8599.20 108
MTMP99.21 8991.09 378
gm-plane-assit94.69 24588.14 19588.22 20297.20 16898.29 18290.79 175
test9_res98.60 3399.87 999.90 22
TEST999.57 3393.17 7599.38 7297.66 9589.57 15898.39 3699.18 3590.88 3899.66 94
test_899.55 3593.07 7899.37 7597.64 10390.18 13898.36 3899.19 3290.94 3599.64 100
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8897.64 10397.98 5299.61 102
TestCases90.52 27796.82 15478.84 34292.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
test_prior492.00 9899.41 69
test_prior299.57 4391.43 10898.12 4598.97 6490.43 4598.33 4299.81 23
test_prior97.01 6299.58 3091.77 10197.57 12199.49 11299.79 36
旧先验298.67 15785.75 26098.96 2198.97 15493.84 135
新几何298.26 207
新几何197.40 4998.92 7792.51 9397.77 7585.52 26296.69 8499.06 5588.08 7699.89 5384.88 24399.62 4599.79 36
旧先验198.97 7392.90 8697.74 7799.15 4191.05 3499.33 6499.60 69
无先验98.52 17597.82 6587.20 23099.90 5087.64 21299.85 30
原ACMM298.69 154
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17497.00 7398.97 6488.14 7599.71 9088.23 20599.62 4598.76 151
test22298.32 9291.21 11298.08 22697.58 11883.74 29195.87 9999.02 6086.74 10599.64 4099.81 33
testdata299.88 5484.16 253
segment_acmp90.56 43
testdata95.26 15098.20 9687.28 21997.60 11285.21 26698.48 3499.15 4188.15 7498.72 16490.29 18199.45 5899.78 38
testdata197.89 23592.43 84
test1297.83 3599.33 5394.45 5197.55 12397.56 5788.60 6699.50 11199.71 3499.55 74
plane_prior793.84 27185.73 260
plane_prior693.92 26886.02 25372.92 259
plane_prior596.30 22797.75 21893.46 14486.17 25092.67 260
plane_prior496.52 201
plane_prior385.91 25593.65 6386.99 225
plane_prior299.02 12193.38 68
plane_prior193.90 270
plane_prior86.07 25199.14 10693.81 6086.26 249
n20.00 417
nn0.00 417
door-mid84.90 397
lessismore_v085.08 34585.59 37469.28 38190.56 38167.68 37590.21 33554.21 36495.46 32873.88 33562.64 37890.50 329
LGP-MVS_train90.06 28893.35 28580.95 33095.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
test1197.68 90
door85.30 395
HQP5-MVS86.39 236
HQP-NCC93.95 26499.16 9793.92 5287.57 217
ACMP_Plane93.95 26499.16 9793.92 5287.57 217
BP-MVS93.82 137
HQP4-MVS87.57 21797.77 21292.72 258
HQP3-MVS96.37 22386.29 247
HQP2-MVS73.34 253
NP-MVS93.94 26786.22 24396.67 199
MDTV_nov1_ep13_2view91.17 11591.38 36487.45 22793.08 15186.67 10787.02 21598.95 131
MDTV_nov1_ep1390.47 19096.14 18788.55 18991.34 36597.51 13389.58 15792.24 16090.50 32886.99 10097.61 22777.64 30892.34 195
ACMMP++_ref82.64 283
ACMMP++83.83 271
Test By Simon83.62 155
ITE_SJBPF87.93 32492.26 29876.44 35693.47 35287.67 22379.95 31095.49 22756.50 35397.38 24075.24 32482.33 28589.98 341
DeepMVS_CXcopyleft76.08 36890.74 32451.65 40190.84 37986.47 25057.89 38987.98 35035.88 39392.60 36565.77 36965.06 37483.97 384