This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 23399.98 1698.96 32100.00 1100.00 199.96 599.42 247100.00 1100.00 1100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11599.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13199.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12199.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 117100.00 199.21 76100.00 1100.00 1100.00 199.99 107
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13198.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13198.87 47100.00 1100.00 199.65 1599.96 134100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13199.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13198.91 41100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14799.95 32100.00 199.42 13198.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
PAPM99.78 1699.76 1299.85 8599.01 27399.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 207100.00 1100.00 1100.00 1
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29299.52 7299.06 12100.00 1100.00 198.80 116100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 22799.47 7999.09 9100.00 1100.00 198.59 125100.00 199.95 91100.00 1100.00 1
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 63100.00 199.99 61100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 69100.00 199.99 61100.00 1100.00 1
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13198.02 108100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 78100.00 199.99 61100.00 1100.00 1
API-MVS99.72 2699.70 2199.79 10399.97 8899.37 14199.96 23899.94 2298.48 75100.00 1100.00 198.92 105100.00 1100.00 1100.00 1100.00 1
CNLPA99.72 2699.65 3199.91 6899.97 8899.72 95100.00 199.47 7998.43 7899.88 155100.00 199.14 83100.00 199.97 83100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 112100.00 198.97 96100.00 199.94 93100.00 1100.00 1
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.97 123100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9599.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 14699.95 146100.00 1100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 22799.44 11598.35 8699.99 103100.00 199.04 9199.96 13499.98 73100.00 1100.00 1
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9399.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14299.95 14699.99 61100.00 1100.00 1
PLCcopyleft98.56 299.70 3299.74 1699.58 139100.00 198.79 188100.00 199.54 7198.58 7299.96 117100.00 199.59 20100.00 1100.00 1100.00 199.94 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12197.50 162100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030499.69 3599.63 3799.86 8199.96 9399.63 107100.00 199.92 3499.03 2099.97 112100.00 197.87 14499.96 134100.00 199.96 113100.00 1
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 24499.44 11598.35 86100.00 1100.00 198.98 9599.97 12399.98 73100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 137100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13197.91 120100.00 1100.00 199.04 91100.00 1100.00 1100.00 1100.00 1
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 151100.00 1100.00 198.99 9499.99 94100.00 1100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13198.32 8899.94 142100.00 198.65 122100.00 199.96 85100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13197.53 157100.00 1100.00 199.27 7299.97 123100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 13197.83 125100.00 1100.00 198.89 108100.00 199.98 73100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13197.77 130100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13197.67 138100.00 1100.00 199.05 8999.99 94100.00 1100.00 1100.00 1
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 155100.00 1100.00 198.97 9699.99 9499.98 73100.00 1100.00 1
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 28699.73 5698.16 9699.75 177100.00 198.90 107100.00 199.96 8599.88 128100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13399.95 140100.00 198.39 131100.00 199.96 8599.99 97100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14499.81 8599.95 24499.42 13198.38 80100.00 1100.00 198.75 118100.00 199.88 10399.99 9799.74 221
F-COLMAP99.64 4899.64 3399.67 12399.99 4999.07 169100.00 199.44 11598.30 8999.90 150100.00 199.18 7999.99 9499.91 98100.00 199.94 133
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 11999.58 111100.00 199.36 20598.98 30100.00 1100.00 197.85 14699.99 94100.00 199.94 118100.00 1
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12699.59 110100.00 199.36 20598.98 30100.00 1100.00 197.92 14399.99 94100.00 199.95 116100.00 1
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.65 12299.99 9499.99 61100.00 1100.00 1
DPM-MVS99.63 5199.51 62100.00 199.90 107100.00 1100.00 199.43 12199.00 27100.00 1100.00 199.58 22100.00 197.64 260100.00 1100.00 1
EPNet99.62 5599.69 2299.42 15699.99 4998.37 212100.00 199.89 3798.83 53100.00 1100.00 198.97 96100.00 199.90 9999.61 15499.89 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS99.62 5599.56 5499.82 9199.92 10399.45 131100.00 199.78 4798.92 3999.73 179100.00 197.70 153100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVS-pluss99.61 5799.50 6399.97 3199.98 8499.92 48100.00 199.42 13197.53 15799.77 174100.00 198.77 117100.00 199.99 61100.00 199.99 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft99.61 5799.49 6599.98 2399.99 4999.94 40100.00 199.42 13197.82 12699.99 103100.00 198.20 134100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.99.61 5799.69 2299.35 16599.99 4998.06 237100.00 199.36 20599.83 2100.00 1100.00 198.95 10099.99 94100.00 199.11 162100.00 1
HPM-MVS_fast99.60 6099.49 6599.91 6899.99 4999.78 88100.00 199.42 13197.09 192100.00 1100.00 198.95 10099.96 13499.98 73100.00 1100.00 1
HPM-MVScopyleft99.59 6199.50 6399.89 73100.00 199.70 100100.00 199.42 13197.46 166100.00 1100.00 198.60 12499.96 13499.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mvsany_test199.57 6299.48 6899.85 8599.86 11499.54 115100.00 199.36 20598.94 37100.00 1100.00 197.97 140100.00 199.88 10399.28 159100.00 1
test_fmvsmconf_n99.56 6399.46 6999.86 8199.68 15899.58 111100.00 199.31 23198.92 3999.88 155100.00 197.35 17099.99 9499.98 7399.99 97100.00 1
test_fmvsm_n_192099.55 6499.49 6599.73 11699.85 11599.19 160100.00 199.41 17798.87 47100.00 1100.00 197.34 171100.00 199.98 7399.90 125100.00 1
WTY-MVS99.54 6599.40 7199.95 5199.81 12699.93 43100.00 1100.00 197.98 11299.84 159100.00 198.94 10299.98 11899.86 10798.21 19999.94 133
test_yl99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
DCV-MVSNet99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
xiu_mvs_v2_base99.51 6699.41 7099.82 9199.70 15399.73 9499.92 25299.40 18198.15 98100.00 1100.00 198.50 128100.00 199.85 10999.13 16199.74 221
HY-MVS96.53 999.50 6999.35 8199.96 4299.81 12699.93 4399.64 304100.00 197.97 11499.84 15999.85 23598.94 10299.99 9499.86 10798.23 19899.95 128
PHI-MVS99.50 6999.39 7299.82 91100.00 199.45 131100.00 199.94 2296.38 244100.00 1100.00 198.18 135100.00 1100.00 1100.00 1100.00 1
CPTT-MVS99.49 7199.38 7399.85 85100.00 199.54 115100.00 199.42 13197.58 15299.98 108100.00 197.43 168100.00 199.99 61100.00 1100.00 1
MAR-MVS99.49 7199.36 7999.89 7399.97 8899.66 10399.74 28799.95 1997.89 121100.00 1100.00 196.71 191100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250699.48 7399.38 7399.75 11299.89 10999.51 12199.45 325100.00 198.38 8099.83 161100.00 198.86 10999.81 18699.25 18698.78 17099.94 133
PVSNet_Blended99.48 7399.36 7999.83 8999.98 8499.60 108100.00 1100.00 197.79 128100.00 1100.00 196.57 19499.99 94100.00 199.88 12899.90 156
test_fmvsmvis_n_192099.46 7599.37 7699.73 11698.88 29099.18 162100.00 199.26 25998.85 4999.79 171100.00 197.70 153100.00 199.98 7399.86 132100.00 1
sss99.45 7699.34 8399.80 10199.76 14799.50 122100.00 199.91 3697.72 13399.98 10899.94 22198.45 129100.00 199.53 16998.75 17399.89 161
AdaColmapbinary99.44 7799.26 8899.95 51100.00 199.86 7799.70 29799.99 1398.53 7399.90 150100.00 195.34 212100.00 199.92 96100.00 1100.00 1
thisisatest051599.42 7899.31 8499.74 11399.59 18799.55 113100.00 199.46 9496.65 22699.92 146100.00 199.44 4699.85 17799.09 19899.63 15399.81 200
CANet99.40 7999.24 9199.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 173100.00 195.28 21399.96 134100.00 199.99 9799.96 122
114514_t99.39 8099.25 8999.81 9699.97 8899.48 129100.00 199.42 13195.53 274100.00 1100.00 198.37 13299.95 14699.97 83100.00 1100.00 1
alignmvs99.38 8199.21 9599.91 6899.73 15099.92 48100.00 199.51 7697.61 148100.00 1100.00 199.06 8899.93 16199.83 11397.12 23499.90 156
131499.38 8199.19 9999.96 4298.88 29099.89 6599.24 34699.93 3098.88 4498.79 244100.00 197.02 177100.00 1100.00 1100.00 1100.00 1
thisisatest053099.37 8399.27 8599.69 12199.59 18799.41 136100.00 199.46 9496.46 23799.90 150100.00 199.44 4699.85 17798.97 20199.58 15599.80 211
xiu_mvs_v1_base_debu99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base_debi99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
ETV-MVS99.34 8799.24 9199.64 12899.58 19299.33 143100.00 199.25 26197.57 15399.96 117100.00 197.44 16799.79 18899.70 13799.65 15199.81 200
tttt051799.34 8799.23 9499.67 12399.57 19599.38 138100.00 199.46 9496.33 24799.89 153100.00 199.44 4699.84 17998.93 20399.46 15899.78 216
CS-MVS99.33 8999.27 8599.50 14699.99 4999.00 179100.00 199.13 30997.26 18399.96 117100.00 197.79 15099.64 20699.64 15399.67 14999.87 180
PVSNet_Blended_VisFu99.33 8999.18 10199.78 10799.82 12099.49 125100.00 199.95 1997.36 17399.63 184100.00 196.45 19899.95 14699.79 11999.65 15199.89 161
fmvsm_s_conf0.5_n_a99.32 9199.15 10399.81 9699.80 13799.47 130100.00 199.35 21698.22 91100.00 1100.00 195.21 21699.99 9499.96 8599.86 13299.98 109
HyFIR lowres test99.32 9199.24 9199.58 13999.95 9599.26 150100.00 199.99 1396.72 21899.29 20699.91 22599.49 3999.47 23999.74 12898.08 206100.00 1
CS-MVS-test99.31 9399.27 8599.43 15499.99 4998.77 189100.00 199.19 28697.24 18499.96 117100.00 197.56 16099.70 20399.68 14599.81 14099.82 192
LS3D99.31 9399.13 10499.87 7899.99 4999.71 9699.55 31599.46 9497.32 17899.82 169100.00 196.85 18899.97 12399.14 194100.00 199.92 145
PVSNet94.91 1899.30 9599.25 8999.44 152100.00 198.32 218100.00 199.86 3898.04 107100.00 1100.00 196.10 201100.00 199.55 16499.73 144100.00 1
lupinMVS99.29 9699.16 10299.69 12199.45 23199.49 125100.00 199.15 30097.45 16799.97 112100.00 196.76 18999.76 19599.67 148100.00 199.81 200
CSCG99.28 9799.35 8199.05 18999.99 4997.15 280100.00 199.47 7997.44 16899.42 195100.00 197.83 149100.00 199.99 61100.00 1100.00 1
thres20099.27 9899.04 10899.96 4299.81 12699.90 58100.00 199.94 2297.31 18099.83 16199.96 20997.04 174100.00 199.62 15797.88 21699.98 109
OMC-MVS99.27 9899.38 7398.96 19799.95 9597.06 284100.00 199.40 18198.83 5399.88 155100.00 197.01 17899.86 17299.47 17299.84 13799.97 116
EIA-MVS99.26 10099.19 9999.45 15199.63 17698.75 190100.00 199.27 25396.93 20199.95 140100.00 197.47 16499.79 18899.74 12899.72 14599.82 192
tfpn200view999.26 10099.03 10999.96 4299.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.98 109
thres40099.26 10099.03 10999.95 5199.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.97 116
test_fmvsmconf0.1_n99.25 10399.05 10799.82 9198.92 28699.55 113100.00 199.23 27098.91 4199.75 17799.97 19594.79 22399.94 15899.94 9399.99 9799.97 116
thres100view90099.25 10399.01 11199.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.59 15997.85 21899.98 109
EPMVS99.25 10399.13 10499.60 13399.60 18599.20 15999.60 310100.00 196.93 20199.92 14699.36 30799.05 8999.71 20298.77 21298.94 16799.90 156
thres600view799.24 10699.00 11399.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.54 16797.77 22599.97 116
MVS99.22 10798.96 11799.98 2399.00 27799.95 3299.24 34699.94 2298.14 9998.88 234100.00 195.63 210100.00 199.85 109100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 10899.01 11199.83 8999.84 11699.53 117100.00 199.38 19698.29 90100.00 1100.00 193.62 23799.99 9499.99 6199.93 12199.98 109
EC-MVSNet99.19 10999.09 10699.48 14999.42 23499.07 169100.00 199.21 28296.95 20099.96 117100.00 196.88 18799.48 23799.64 15399.79 14399.88 172
FE-MVS99.16 11098.99 11599.66 12699.65 16899.18 16299.58 31299.43 12195.24 28499.91 14899.59 28799.37 5799.97 12398.31 23699.81 14099.83 187
PMMVS99.12 11198.97 11699.58 13999.57 19598.98 181100.00 199.30 23597.14 18999.96 117100.00 196.53 19799.82 18399.70 13798.49 17999.94 133
jason99.11 11298.96 11799.59 13599.17 25799.31 146100.00 199.13 30997.38 17299.83 161100.00 195.54 21199.72 20199.57 16399.97 11099.74 221
jason: jason.
EPP-MVSNet99.10 11399.00 11399.40 15999.51 21498.68 19699.92 25299.43 12195.47 28099.65 183100.00 199.51 3399.76 19599.53 16998.00 20799.75 220
TESTMET0.1,199.08 11498.96 11799.44 15299.63 17699.38 138100.00 199.45 10295.53 27499.48 191100.00 199.71 1399.02 26696.84 28599.99 9799.91 147
IS-MVSNet99.08 11498.91 12599.59 13599.65 16899.38 13899.78 27799.24 26696.70 22099.51 189100.00 198.44 13099.52 23298.47 23098.39 18799.88 172
UA-Net99.06 11698.83 13199.74 11399.52 20999.40 13799.08 37099.45 10297.64 14299.83 161100.00 195.80 20599.94 15898.35 23499.80 14299.88 172
3Dnovator95.63 1499.06 11698.76 13999.96 4298.86 29499.90 5899.98 22799.93 3098.95 3598.49 264100.00 192.91 248100.00 199.71 134100.00 1100.00 1
patch_mono-299.04 11899.79 696.81 31699.92 10390.47 363100.00 199.41 17798.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 128
VNet99.04 11898.75 14199.90 7199.81 12699.75 9199.50 32199.47 7998.36 84100.00 199.99 18294.66 225100.00 199.90 9997.09 23599.96 122
canonicalmvs99.03 12098.73 14399.94 6399.75 14999.95 32100.00 199.30 23597.64 142100.00 1100.00 195.22 21599.97 12399.76 12696.90 24099.91 147
test-LLR99.03 12098.91 12599.40 15999.40 24199.28 148100.00 199.45 10296.70 22099.42 19599.12 31699.31 6399.01 26796.82 28699.99 9799.91 147
PatchmatchNetpermissive99.03 12098.96 11799.26 17999.49 22298.33 21699.38 33399.45 10296.64 22799.96 11799.58 28999.49 3999.50 23597.63 26199.00 16699.93 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
3Dnovator+95.58 1599.03 12098.71 14699.96 4298.99 28099.89 65100.00 199.51 7698.96 3298.32 272100.00 192.78 250100.00 199.87 106100.00 1100.00 1
CANet_DTU99.02 12498.90 12899.41 15799.88 11198.71 194100.00 199.29 23998.84 51100.00 1100.00 194.02 232100.00 198.08 24599.96 11399.52 236
PatchMatch-RL99.02 12498.78 13699.74 11399.99 4999.29 147100.00 1100.00 198.38 8099.89 15399.81 24493.14 24699.99 9497.85 25599.98 10799.95 128
FA-MVS(test-final)99.00 12698.75 14199.73 11699.63 17699.43 13499.83 26799.43 12195.84 26599.52 18899.37 30697.84 14899.96 13497.63 26199.68 14799.79 213
CHOSEN 1792x268899.00 12698.91 12599.25 18099.90 10797.79 257100.00 199.99 1398.79 6098.28 275100.00 193.63 23699.95 14699.66 15199.95 116100.00 1
DeepC-MVS97.84 599.00 12698.80 13599.60 13399.93 10099.03 174100.00 199.40 18198.61 7199.33 204100.00 192.23 25999.95 14699.74 12899.96 11399.83 187
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline298.99 12998.93 12399.18 18499.26 25499.15 166100.00 199.46 9496.71 21996.79 331100.00 199.42 5299.25 25898.75 21499.94 11899.15 242
QAPM98.99 12998.66 14899.96 4299.01 27399.87 7499.88 26199.93 3097.99 11098.68 249100.00 193.17 244100.00 199.32 181100.00 1100.00 1
Vis-MVSNet (Re-imp)98.99 12998.89 12999.29 17499.64 17498.89 18599.98 22799.31 23196.74 21599.48 191100.00 198.11 13799.10 26298.39 23298.34 19199.89 161
tpmrst98.98 13298.93 12399.14 18699.61 18397.74 25899.52 31999.36 20596.05 25699.98 10899.64 27599.04 9199.86 17298.94 20298.19 20199.82 192
test-mter98.96 13398.82 13299.40 15999.40 24199.28 148100.00 199.45 10295.44 28399.42 19599.12 31699.70 1499.01 26796.82 28699.99 9799.91 147
diffmvspermissive98.96 13398.73 14399.63 12999.54 19999.16 165100.00 199.18 29397.33 17799.96 117100.00 194.60 22699.91 16499.66 15198.33 19499.82 192
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet98.96 13398.95 12199.01 19399.48 22498.36 21499.93 25199.37 19996.79 21199.31 20599.83 23899.77 1098.91 27698.07 24697.98 20899.77 217
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer98.94 13698.82 13299.28 17799.45 23199.49 125100.00 199.13 30995.46 28199.97 112100.00 196.76 18998.59 30898.63 222100.00 199.74 221
MVS_Test98.93 13798.65 14999.77 11099.62 18199.50 12299.99 20399.19 28695.52 27699.96 11799.86 23196.54 19699.98 11898.65 21998.48 18099.82 192
baseline198.91 13898.61 15399.81 9699.71 15199.77 8999.78 27799.44 11597.51 16198.81 24299.99 18298.25 13399.76 19598.60 22595.41 25399.89 161
1112_ss98.91 13898.71 14699.51 14499.69 15498.75 19099.99 20399.15 30096.82 20998.84 239100.00 197.45 16599.89 16798.66 21797.75 22699.89 161
MSDG98.90 14098.63 15199.70 12099.92 10399.25 152100.00 199.37 19995.71 26899.40 201100.00 196.58 19399.95 14696.80 28899.94 11899.91 147
dcpmvs_298.87 14199.53 5996.90 31099.87 11390.88 36299.94 24999.07 32998.20 94100.00 1100.00 198.69 12199.86 172100.00 1100.00 199.95 128
DP-MVS98.86 14298.54 15999.81 9699.97 8899.45 13199.52 31999.40 18194.35 30898.36 268100.00 196.13 20099.97 12399.12 197100.00 1100.00 1
CostFormer98.84 14398.77 13799.04 19199.41 23697.58 26399.67 30299.35 21694.66 29799.96 11799.36 30799.28 7199.74 19899.41 17597.81 22299.81 200
Test_1112_low_res98.83 14498.60 15599.51 14499.69 15498.75 19099.99 20399.14 30596.81 21098.84 23999.06 32097.45 16599.89 16798.66 21797.75 22699.89 161
BH-w/o98.82 14598.81 13498.88 20299.62 18196.71 292100.00 199.28 24597.09 19298.81 242100.00 194.91 22199.96 13499.54 167100.00 199.96 122
mvs_anonymous98.80 14698.60 15599.38 16399.57 19599.24 154100.00 199.21 28295.87 26098.92 23099.82 24196.39 19999.03 26599.13 19698.50 17899.88 172
fmvsm_s_conf0.1_n98.77 14798.42 16699.82 9199.47 22799.52 120100.00 199.27 25397.53 157100.00 1100.00 189.73 29199.96 13499.84 11299.93 12199.97 116
TAMVS98.76 14898.73 14398.86 20399.44 23397.69 25999.57 31399.34 22296.57 23199.12 21699.81 24498.83 11399.16 26097.97 25297.91 21499.73 225
OpenMVScopyleft95.20 1798.76 14898.41 16799.78 10798.89 28999.81 8599.99 20399.76 4998.02 10898.02 290100.00 191.44 265100.00 199.63 15699.97 11099.55 234
iter_conf0598.73 15098.77 13798.60 21599.65 16899.22 157100.00 199.22 27396.68 22498.98 22899.97 19599.99 398.84 28499.29 18495.11 27297.75 266
iter_conf_final98.72 15198.76 13998.59 21799.64 17499.17 164100.00 199.22 27396.63 22999.02 22599.97 19599.98 498.84 28499.22 19195.18 26697.76 255
dp98.72 15198.61 15399.03 19299.53 20297.39 26999.45 32599.39 19495.62 27199.94 14299.52 29798.83 11399.82 18396.77 29198.42 18499.89 161
fmvsm_s_conf0.1_n_a98.71 15398.36 17499.78 10799.09 26399.42 135100.00 199.26 25997.42 170100.00 1100.00 189.78 28999.96 13499.82 11899.85 13599.97 116
PVSNet_BlendedMVS98.71 15398.62 15298.98 19699.98 8499.60 108100.00 1100.00 197.23 185100.00 199.03 32596.57 19499.99 94100.00 194.75 28097.35 350
ADS-MVSNet98.70 15598.51 16199.28 17799.51 21498.39 20999.24 34699.44 11595.52 27699.96 11799.70 25997.57 15899.58 21397.11 27798.54 17699.88 172
baseline98.69 15698.45 16599.41 15799.52 20998.67 197100.00 199.17 29897.03 19799.13 215100.00 193.17 24499.74 19899.70 13798.34 19199.81 200
PCF-MVS98.23 398.69 15698.37 17299.62 13099.78 14499.02 17599.23 35199.06 33796.43 23898.08 284100.00 194.72 22499.95 14698.16 24399.91 12499.90 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvspermissive98.65 15898.38 17099.46 15099.52 20998.74 193100.00 199.15 30096.91 20499.05 223100.00 192.75 25199.83 18099.70 13798.38 18899.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive98.64 15998.39 16999.40 15999.50 21898.60 200100.00 199.22 27396.85 20799.10 217100.00 192.75 25199.78 19299.71 13498.35 19099.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm298.64 15998.58 15798.81 20699.42 23497.12 28199.69 29999.37 19993.63 32499.94 14299.67 26798.96 9999.47 23998.62 22497.95 21299.83 187
BH-untuned98.64 15998.65 14998.60 21599.59 18796.17 298100.00 199.28 24596.67 22598.41 267100.00 194.52 22799.83 18099.41 175100.00 199.81 200
test_cas_vis1_n_192098.63 16298.25 17899.77 11099.69 15499.32 144100.00 199.31 23198.84 5199.96 117100.00 187.42 31999.99 9499.14 19499.86 132100.00 1
test_fmvsmconf0.01_n98.60 16398.24 18099.67 12396.90 36199.21 15899.99 20399.04 34298.80 5799.57 18699.96 20990.12 28399.91 16499.89 10199.89 12699.90 156
tpmvs98.59 16498.38 17099.23 18199.69 15497.90 24999.31 34199.47 7994.52 30299.68 18299.28 31197.64 15699.89 16797.71 25898.17 20399.89 161
Effi-MVS+98.58 16598.24 18099.61 13199.60 18599.26 15097.85 38699.10 31996.22 25299.97 11299.89 22793.75 23499.77 19399.43 17398.34 19199.81 200
MVSTER98.58 16598.52 16098.77 20899.65 16899.68 102100.00 199.29 23995.63 27098.65 25099.80 24799.78 898.88 28298.59 22695.31 25797.73 295
CVMVSNet98.56 16798.47 16498.82 20499.11 26097.67 26099.74 28799.47 7997.57 15399.06 222100.00 195.72 20798.97 27298.21 24297.33 23399.83 187
AllTest98.55 16898.40 16898.99 19499.93 10097.35 271100.00 199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
DeepPCF-MVS98.03 498.54 16999.72 1994.98 33899.99 4984.94 377100.00 199.42 13199.98 1100.00 1100.00 198.11 137100.00 1100.00 1100.00 1100.00 1
EPNet_dtu98.53 17098.23 18399.43 15499.92 10399.01 17799.96 23899.47 7998.80 5799.96 11799.96 20998.56 12699.30 25587.78 36999.68 147100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
myMVS_eth3d98.52 17198.51 16198.53 22099.50 21897.98 242100.00 199.57 6896.23 25098.07 285100.00 199.09 8697.81 35496.17 29897.96 21099.82 192
Vis-MVSNetpermissive98.52 17198.25 17899.34 16699.68 15898.55 20299.68 30199.41 17797.34 17699.94 142100.00 190.38 28299.70 20399.03 20098.84 16899.76 219
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.51 17398.86 13097.47 28699.77 14694.21 335100.00 198.94 35397.61 14899.91 14898.75 34395.89 20399.51 23499.36 17799.48 15798.68 248
SDMVSNet98.49 17498.08 19099.73 11699.82 12099.53 11799.99 20399.45 10297.62 14499.38 20299.86 23190.06 28699.88 17199.92 9696.61 24399.79 213
BH-RMVSNet98.46 17598.08 19099.59 13599.61 18399.19 160100.00 199.28 24597.06 19698.95 229100.00 188.99 30199.82 18398.83 210100.00 199.77 217
testing398.44 17698.37 17298.65 21299.51 21498.32 218100.00 199.62 6696.43 23897.93 29599.99 18299.11 8497.81 35494.88 31897.80 22399.82 192
ECVR-MVScopyleft98.43 17798.14 18699.32 17199.89 10998.21 22699.46 323100.00 198.38 8099.47 194100.00 187.91 31299.80 18799.35 17898.78 17099.94 133
cascas98.43 17798.07 19299.50 14699.65 16899.02 175100.00 199.22 27394.21 31199.72 18099.98 18792.03 26299.93 16199.68 14598.12 20499.54 235
test111198.42 17998.12 18799.29 17499.88 11198.15 22999.46 323100.00 198.36 8499.42 195100.00 187.91 31299.79 18899.31 18298.78 17099.94 133
ab-mvs98.42 17998.02 19799.61 13199.71 15199.00 17999.10 36799.64 6496.70 22099.04 22499.81 24490.64 27699.98 11899.64 15397.93 21399.84 184
UGNet98.41 18198.11 18899.31 17399.54 19998.55 20299.18 354100.00 198.64 7099.79 17199.04 32387.61 317100.00 199.30 18399.89 12699.40 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+98.40 18298.02 19799.55 14399.63 17699.06 171100.00 199.15 30095.07 28699.42 19599.95 21793.26 24299.73 20097.44 26798.24 19799.87 180
Fast-Effi-MVS+-dtu98.38 18398.56 15897.82 27699.58 19294.44 332100.00 199.16 29996.75 21399.51 18999.63 27995.03 21999.60 20797.71 25899.67 14999.42 238
test_fmvs198.37 18498.04 19599.34 16699.84 11698.07 235100.00 199.00 34898.85 49100.00 1100.00 185.11 33999.96 13499.69 14499.88 128100.00 1
miper_enhance_ethall98.33 18598.27 17798.51 22199.66 16799.04 173100.00 199.22 27397.53 15798.51 26299.38 30599.49 3998.75 29498.02 24892.61 30197.76 255
SCA98.30 18697.98 19999.23 18199.41 23698.25 22399.99 20399.45 10296.91 20499.76 17699.58 28989.65 29399.54 22698.31 23698.79 16999.91 147
XVG-OURS98.30 18698.36 17498.13 25199.58 19295.91 301100.00 199.36 20598.69 6599.23 208100.00 191.20 26899.92 16399.34 17997.82 22198.56 251
COLMAP_ROBcopyleft97.10 798.29 18898.17 18598.65 21299.94 9897.39 26999.30 34299.40 18195.64 26997.75 304100.00 192.69 25599.95 14698.89 20599.92 12398.62 250
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ADS-MVSNet298.28 18998.51 16197.62 28299.51 21495.03 31299.24 34699.41 17795.52 27699.96 11799.70 25997.57 15897.94 35197.11 27798.54 17699.88 172
XVG-OURS-SEG-HR98.27 19098.31 17698.14 24899.59 18795.92 300100.00 199.36 20598.48 7599.21 209100.00 189.27 29899.94 15899.76 12699.17 16098.56 251
tpm98.24 19198.22 18498.32 23399.13 25995.79 30399.53 31899.12 31595.20 28599.96 11799.36 30797.58 15799.28 25797.41 26996.67 24199.88 172
cl2298.23 19298.11 18898.58 21999.82 12099.01 177100.00 199.28 24596.92 20398.33 27199.21 31398.09 13998.97 27298.72 21592.61 30197.76 255
TR-MVS98.14 19397.74 20799.33 16999.59 18798.28 22199.27 34399.21 28296.42 24099.15 21499.94 22188.87 30499.79 18898.88 20698.29 19599.93 143
mvsmamba98.13 19498.06 19398.32 23398.22 32198.50 205100.00 199.22 27396.41 24198.91 23299.96 20995.69 20898.73 29699.19 19394.95 27997.73 295
test0.0.03 198.12 19598.03 19698.39 22799.11 26098.07 235100.00 199.93 3096.70 22096.91 32799.95 21799.31 6398.19 33191.93 34498.44 18298.91 246
GeoE98.06 19697.65 21299.29 17499.47 22798.41 206100.00 199.19 28694.85 29198.88 234100.00 191.21 26799.59 20997.02 27998.19 20199.88 172
tpm cat198.05 19797.76 20598.92 19999.50 21897.10 28399.77 28299.30 23590.20 36399.72 18098.71 34497.71 15299.86 17296.75 29298.20 20099.81 200
PS-MVSNAJss98.03 19898.06 19397.94 27097.63 34297.33 27499.89 25999.23 27096.27 24998.03 28899.59 28798.75 11898.78 28998.52 22894.61 28497.70 311
CR-MVSNet98.02 19997.71 21098.93 19899.31 24898.86 18699.13 36499.00 34896.53 23499.96 11798.98 32996.94 18498.10 34191.18 34998.40 18599.84 184
EI-MVSNet97.98 20097.93 20098.16 24699.11 26097.84 25499.74 28799.29 23994.39 30798.65 250100.00 197.21 17298.88 28297.62 26395.31 25797.75 266
FIs97.95 20197.73 20998.62 21498.53 30699.24 154100.00 199.43 12196.74 21597.87 29999.82 24195.27 21498.89 27998.78 21193.07 29697.74 289
Anonymous20240521197.87 20297.53 21598.90 20099.81 12696.70 29399.35 33699.46 9492.98 33998.83 24199.99 18290.63 277100.00 199.70 13797.03 236100.00 1
FC-MVSNet-test97.84 20397.63 21398.45 22498.30 31699.05 172100.00 199.43 12196.63 22997.61 31099.82 24195.19 21798.57 31198.64 22093.05 29797.73 295
Patchmatch-test97.83 20497.42 21899.06 18799.08 26497.66 26198.66 38099.21 28293.65 32398.25 27999.58 28999.47 4399.57 21490.25 35898.59 17599.95 128
sd_testset97.81 20597.48 21698.79 20799.82 12096.80 29099.32 33899.45 10297.62 14499.38 20299.86 23185.56 33799.77 19399.72 13196.61 24399.79 213
miper_ehance_all_eth97.81 20597.66 21198.23 23999.49 22298.37 21299.99 20399.11 31794.78 29298.25 27999.21 31398.18 13598.57 31197.35 27392.61 30197.76 255
test_vis1_n_192097.77 20797.24 23099.34 16699.79 14198.04 239100.00 199.25 26198.88 44100.00 1100.00 177.52 370100.00 199.88 10399.85 135100.00 1
RRT_MVS97.77 20797.76 20597.78 27897.89 33497.06 284100.00 199.29 23995.74 26798.00 29399.97 19595.94 20298.55 31498.87 20794.18 28797.72 302
HQP-MVS97.73 20997.85 20297.39 28899.07 26594.82 316100.00 199.40 18199.04 1599.17 21099.97 19588.61 30799.57 21499.79 11995.58 24797.77 253
GA-MVS97.72 21097.27 22899.06 18799.24 25597.93 248100.00 199.24 26695.80 26698.99 22799.64 27589.77 29099.36 25095.12 31597.62 23199.89 161
bld_raw_dy_0_6497.71 21197.56 21498.15 24797.83 33798.16 22799.95 24499.12 31595.95 25998.73 24799.97 19593.19 24398.63 30298.64 22094.69 28297.66 322
HQP_MVS97.71 21197.82 20497.37 28999.00 27794.80 319100.00 199.40 18199.00 2799.08 22099.97 19588.58 30999.55 22399.79 11995.57 25197.76 255
nrg03097.64 21397.27 22898.75 20998.34 31199.53 117100.00 199.22 27396.21 25398.27 27799.95 21794.40 22898.98 27099.23 18989.78 33797.75 266
TAPA-MVS96.40 1097.64 21397.37 22298.45 22499.94 9895.70 304100.00 199.40 18197.65 14099.53 187100.00 199.31 6399.66 20580.48 384100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS97.64 21397.74 20797.36 29099.01 27394.76 324100.00 199.34 22299.30 499.00 22699.97 19587.49 31899.57 21499.96 8595.58 24797.75 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
D2MVS97.63 21697.83 20397.05 30198.83 29794.60 328100.00 199.82 4096.89 20698.28 27599.03 32594.05 23099.47 23998.58 22794.97 27797.09 356
c3_l97.58 21797.42 21898.06 25899.48 22498.16 22799.96 23899.10 31994.54 30198.13 28399.20 31597.87 14498.25 33097.28 27491.20 32597.75 266
IterMVS-LS97.56 21897.44 21797.92 27399.38 24597.90 24999.89 25999.10 31994.41 30698.32 27299.54 29697.21 17298.11 33897.50 26591.62 31797.75 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf97.55 21997.38 22198.07 25497.50 35097.99 241100.00 199.13 30995.46 28198.47 26599.85 23592.01 26398.59 30898.63 22295.36 25597.62 333
dmvs_re97.54 22097.88 20196.54 32199.55 19890.35 36499.86 26399.46 9497.00 19899.41 200100.00 190.78 27599.30 25599.60 15895.24 26299.96 122
cl____97.54 22097.32 22498.18 24399.47 22798.14 231100.00 199.10 31994.16 31497.60 31199.63 27997.52 16198.65 30196.47 29391.97 31397.76 255
IB-MVS96.24 1297.54 22096.95 23499.33 16999.67 16398.10 234100.00 199.47 7997.42 17099.26 20799.69 26298.83 11399.89 16799.43 17378.77 381100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DIV-MVS_self_test97.52 22397.35 22398.05 26299.46 23098.11 232100.00 199.10 31994.21 31197.62 30999.63 27997.65 15598.29 32796.47 29391.98 31297.76 255
eth_miper_zixun_eth97.47 22497.28 22698.06 25899.41 23697.94 24799.62 30899.08 32594.46 30598.19 28299.56 29396.91 18698.50 31796.78 28991.49 32097.74 289
test_fmvs1_n97.43 22596.86 23799.15 18599.68 15897.48 26699.99 20398.98 35198.82 55100.00 1100.00 174.85 37599.96 13499.67 14899.70 146100.00 1
LFMVS97.42 22696.62 24699.81 9699.80 13799.50 12299.16 36099.56 7094.48 304100.00 1100.00 179.35 365100.00 199.89 10197.37 23299.94 133
miper_lstm_enhance97.40 22797.28 22697.75 27999.48 22497.52 264100.00 199.07 32994.08 31598.01 29199.61 28597.38 16997.98 34996.44 29691.47 32297.76 255
RPSCF97.37 22898.24 18094.76 34199.80 13784.57 37899.99 20399.05 33994.95 28999.82 169100.00 194.03 231100.00 198.15 24498.38 18899.70 226
ACMM97.17 697.37 22897.40 22097.29 29499.01 27394.64 327100.00 199.25 26198.07 10698.44 26699.98 18787.38 32099.55 22399.25 18695.19 26597.69 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test97.31 23097.32 22497.28 29598.85 29594.60 328100.00 199.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
FMVSNet397.30 23196.95 23498.37 22999.65 16899.25 15299.71 29599.28 24594.23 30998.53 25998.91 33693.30 24198.11 33895.31 31193.60 29097.73 295
UniMVSNet (Re)97.29 23296.85 23898.59 21798.49 30799.13 167100.00 199.42 13196.52 23598.24 28198.90 33794.93 22098.89 27997.54 26487.61 35597.75 266
OPM-MVS97.21 23397.18 23297.32 29398.08 32794.66 325100.00 199.28 24598.65 6998.92 23099.98 18786.03 33399.56 21898.28 24095.41 25397.72 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP97.00 897.19 23497.16 23397.27 29798.97 28294.58 331100.00 199.32 22697.97 11497.45 31599.98 18785.79 33599.56 21899.70 13795.24 26297.67 321
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs497.17 23596.80 23998.27 23697.68 34198.64 199100.00 199.18 29394.22 31098.55 25799.71 25693.67 23598.47 32095.66 30592.57 30497.71 310
anonymousdsp97.16 23696.88 23698.00 26697.08 36098.06 23799.81 27199.15 30094.58 29997.84 30099.62 28390.49 27998.60 30697.98 24995.32 25697.33 351
UniMVSNet_NR-MVSNet97.16 23696.80 23998.22 24098.38 31098.41 206100.00 199.45 10296.14 25597.76 30199.64 27595.05 21898.50 31797.98 24986.84 35997.75 266
XXY-MVS97.14 23896.63 24598.67 21198.65 30098.92 18499.54 31799.29 23995.57 27397.63 30799.83 23887.79 31699.35 25298.39 23292.95 29897.75 266
WR-MVS97.09 23996.64 24498.46 22398.43 30899.09 16899.97 23399.33 22495.62 27197.76 30199.67 26791.17 26998.56 31398.49 22989.28 34397.74 289
JIA-IIPM97.09 23996.34 26099.36 16498.88 29098.59 20199.81 27199.43 12184.81 37999.96 11790.34 38998.55 12799.52 23297.00 28098.28 19699.98 109
jajsoiax97.07 24196.79 24197.89 27497.28 35897.12 28199.95 24499.19 28696.55 23297.31 31899.69 26287.35 32298.91 27698.70 21695.12 27197.66 322
MIMVSNet97.06 24296.73 24298.05 26299.38 24596.64 29598.47 38299.35 21693.41 32999.48 19198.53 35189.66 29297.70 36094.16 32798.11 20599.80 211
X-MVStestdata97.04 24396.06 27199.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40099.16 80100.00 1100.00 1100.00 1100.00 1
h-mvs3397.03 24496.53 24998.51 22199.79 14195.90 30299.45 32599.45 10298.21 92100.00 199.78 25097.49 16299.99 9499.72 13174.92 38399.65 233
VPA-MVSNet97.03 24496.43 25598.82 20498.64 30199.32 14499.38 33399.47 7996.73 21798.91 23298.94 33487.00 32499.40 24899.23 18989.59 33897.76 255
mvs_tets97.00 24696.69 24397.94 27097.41 35797.27 27699.60 31099.18 29396.51 23697.35 31799.69 26286.53 32898.91 27698.84 20895.09 27397.65 327
gg-mvs-nofinetune96.95 24796.10 26999.50 14699.41 23699.36 14299.07 37299.52 7283.69 38199.96 11783.60 397100.00 199.20 25999.68 14599.99 9799.96 122
Anonymous2024052996.93 24896.22 26599.05 18999.79 14197.30 27599.16 36099.47 7988.51 36998.69 248100.00 183.50 350100.00 199.83 11397.02 23799.83 187
DU-MVS96.93 24896.49 25298.22 24098.31 31498.41 206100.00 199.37 19996.41 24197.76 30199.65 27192.14 26098.50 31797.98 24986.84 35997.75 266
Patchmtry96.81 25096.37 25898.14 24899.31 24898.55 20298.91 37599.00 34890.45 35997.92 29698.98 32996.94 18498.12 33694.27 32491.53 31997.75 266
hse-mvs296.79 25196.38 25798.04 26499.68 15895.54 30699.81 27199.42 13198.21 92100.00 199.80 24797.49 16299.46 24399.72 13173.27 38699.12 243
ACMH96.25 1196.77 25296.62 24697.21 29898.96 28394.43 33399.64 30499.33 22497.43 16996.55 33699.97 19583.52 34999.54 22699.07 19995.13 27097.66 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS96.76 25396.46 25497.63 28099.41 23696.89 28799.99 20399.13 30994.74 29597.59 31299.66 26989.63 29598.28 32895.71 30392.31 30797.72 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet96.73 25496.25 26398.18 24398.21 32298.67 19799.77 28299.32 22695.06 28797.20 32199.65 27190.10 28498.19 33198.06 24788.90 34697.66 322
WR-MVS_H96.73 25496.32 26297.95 26998.26 31897.88 25199.72 29499.43 12195.06 28796.99 32498.68 34693.02 24798.53 31597.43 26888.33 35197.43 346
IterMVS-SCA-FT96.72 25696.42 25697.62 28299.40 24196.83 28999.99 20399.14 30594.65 29897.55 31399.72 25489.65 29398.31 32695.62 30792.05 31097.73 295
v2v48296.70 25796.18 26698.27 23698.04 32898.39 209100.00 199.13 30994.19 31398.58 25599.08 31990.48 28098.67 29995.69 30490.44 33397.75 266
test_vis1_n96.69 25895.81 28199.32 17199.14 25897.98 24299.97 23398.98 35198.45 77100.00 1100.00 166.44 38699.99 9499.78 12599.57 156100.00 1
V4296.65 25996.16 26898.11 25398.17 32598.23 22499.99 20399.09 32493.97 31698.74 24699.05 32291.09 27098.82 28795.46 30989.90 33597.27 352
EU-MVSNet96.63 26096.53 24996.94 30897.59 34696.87 28899.76 28499.47 7996.35 24596.85 32999.78 25092.57 25696.27 37495.33 31091.08 32697.68 317
NR-MVSNet96.63 26096.04 27298.38 22898.31 31498.98 18199.22 35399.35 21695.87 26094.43 35999.65 27192.73 25398.40 32396.78 28988.05 35297.75 266
XVG-ACMP-BASELINE96.60 26296.52 25196.84 31498.41 30993.29 34499.99 20399.32 22697.76 13298.51 26299.29 31081.95 35699.54 22698.40 23195.03 27497.68 317
VDD-MVS96.58 26395.99 27498.34 23199.52 20995.33 30799.18 35499.38 19696.64 22799.77 174100.00 172.51 380100.00 1100.00 196.94 23999.70 226
tt080596.52 26496.23 26497.40 28799.30 25193.55 34099.32 33899.45 10296.75 21397.88 29899.99 18279.99 36399.59 20997.39 27195.98 24699.06 245
LCM-MVSNet-Re96.52 26497.21 23194.44 34299.27 25285.80 37599.85 26596.61 39295.98 25792.75 36698.48 35393.97 23397.55 36199.58 16298.43 18399.98 109
our_test_396.51 26696.35 25996.98 30697.61 34495.05 31199.98 22799.01 34794.68 29696.77 33399.06 32095.87 20498.14 33491.81 34592.37 30697.75 266
MVP-Stereo96.51 26696.48 25396.60 32095.65 37294.25 33498.84 37798.16 36995.85 26495.23 35099.04 32392.54 25799.13 26192.98 33799.98 10796.43 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114496.51 26695.97 27698.13 25197.98 33198.04 23999.99 20399.08 32593.51 32898.62 25398.98 32990.98 27498.62 30393.79 33190.79 32997.74 289
ACMH+96.20 1396.49 26996.33 26197.00 30499.06 26993.80 33899.81 27199.31 23197.32 17895.89 34799.97 19582.62 35499.54 22698.34 23594.63 28397.65 327
TranMVSNet+NR-MVSNet96.45 27096.01 27397.79 27798.00 33097.62 262100.00 199.35 21695.98 25797.31 31899.64 27590.09 28598.00 34896.89 28486.80 36297.75 266
ET-MVSNet_ETH3D96.41 27195.48 30199.20 18399.81 12699.75 91100.00 199.02 34597.30 18278.33 389100.00 197.73 15197.94 35199.70 13787.41 35699.92 145
VPNet96.41 27195.76 28698.33 23298.61 30298.30 22099.48 32299.45 10296.98 19998.87 23699.88 22881.57 35798.93 27499.22 19187.82 35497.76 255
PVSNet_093.57 1996.41 27195.74 28798.41 22699.84 11695.22 309100.00 1100.00 198.08 10597.55 31399.78 25084.40 342100.00 1100.00 181.99 374100.00 1
v14419296.40 27495.81 28198.17 24597.89 33498.11 23299.99 20399.06 33793.39 33098.75 24599.09 31890.43 28198.66 30093.10 33690.55 33297.75 266
VDDNet96.39 27595.55 29698.90 20099.27 25297.45 26799.15 36299.92 3491.28 35299.98 108100.00 173.55 376100.00 199.85 10996.98 23899.24 240
tfpnnormal96.36 27695.69 29298.37 22998.55 30498.71 19499.69 29999.45 10293.16 33796.69 33599.71 25688.44 31198.99 26994.17 32591.38 32397.41 347
v896.35 27795.73 28898.21 24298.11 32698.23 22499.94 24999.07 32992.66 34598.29 27499.00 32891.46 26498.77 29294.17 32588.83 34897.62 333
PS-CasMVS96.34 27895.78 28598.03 26598.18 32498.27 22299.71 29599.32 22694.75 29396.82 33099.65 27186.98 32598.15 33397.74 25788.85 34797.66 322
LTVRE_ROB95.29 1696.32 27996.10 26996.99 30598.55 30493.88 33799.45 32599.28 24594.50 30396.46 33799.52 29784.86 34099.48 23797.26 27595.03 27497.59 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121196.29 28095.70 28998.07 25499.80 13797.49 26599.15 36299.40 18189.11 36697.75 30499.45 30288.93 30398.98 27098.26 24189.47 34097.73 295
v14896.29 28095.84 28097.63 28097.74 33996.53 296100.00 199.07 32993.52 32798.01 29199.42 30491.22 26698.60 30696.37 29787.22 35897.75 266
AUN-MVS96.26 28295.67 29398.06 25899.68 15895.60 30599.82 27099.42 13196.78 21299.88 15599.80 24794.84 22299.47 23997.48 26673.29 38599.12 243
FMVSNet296.22 28395.60 29598.06 25899.53 20298.33 21699.45 32599.27 25393.71 31998.03 28898.84 33984.23 34498.10 34193.97 32993.40 29397.73 295
LF4IMVS96.19 28496.18 26696.23 32798.26 31892.09 354100.00 197.89 37997.82 12697.94 29499.87 22982.71 35399.38 24997.41 26993.71 28997.20 353
v119296.18 28595.49 29998.26 23898.01 32998.15 22999.99 20399.08 32593.36 33198.54 25898.97 33289.47 29698.89 27991.15 35090.82 32897.75 266
testgi96.18 28595.93 27796.93 30998.98 28194.20 336100.00 199.07 32997.16 18896.06 34499.86 23184.08 34797.79 35790.38 35797.80 22398.81 247
Syy-MVS96.17 28796.57 24895.00 33699.50 21887.37 373100.00 199.57 6896.23 25098.07 285100.00 192.41 25897.81 35485.34 37497.96 21099.82 192
ppachtmachnet_test96.17 28795.89 27897.02 30397.61 34495.24 30899.99 20399.24 26693.31 33396.71 33499.62 28394.34 22998.07 34389.87 35992.30 30897.75 266
v192192096.16 28995.50 29798.14 24897.88 33697.96 24599.99 20399.07 32993.33 33298.60 25499.24 31289.37 29798.71 29791.28 34890.74 33097.75 266
Baseline_NR-MVSNet96.16 28995.70 28997.56 28598.28 31796.79 291100.00 197.86 38091.93 34997.63 30799.47 30192.14 26098.35 32597.13 27686.83 36197.54 340
v1096.14 29195.50 29798.07 25498.19 32397.96 24599.83 26799.07 32992.10 34898.07 28598.94 33491.07 27198.61 30492.41 34389.82 33697.63 331
OurMVSNet-221017-096.14 29195.98 27596.62 31997.49 35293.44 34299.92 25298.16 36995.86 26297.65 30699.95 21785.71 33698.78 28994.93 31794.18 28797.64 330
GBi-Net96.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
test196.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
v7n96.06 29595.42 30597.99 26897.58 34797.35 27199.86 26399.11 31792.81 34497.91 29799.49 29990.99 27398.92 27592.51 34088.49 35097.70 311
PEN-MVS96.01 29695.48 30197.58 28497.74 33997.26 27799.90 25699.29 23994.55 30096.79 33199.55 29487.38 32097.84 35396.92 28387.24 35797.65 327
v124095.96 29795.25 30698.07 25497.91 33397.87 25399.96 23899.07 32993.24 33598.64 25298.96 33388.98 30298.61 30489.58 36390.92 32797.75 266
pmmvs595.94 29895.61 29496.95 30797.42 35594.66 325100.00 198.08 37393.60 32597.05 32399.43 30387.02 32398.46 32195.76 30192.12 30997.72 302
PatchT95.90 29994.95 31398.75 20999.03 27198.39 20999.08 37099.32 22685.52 37799.96 11794.99 38197.94 14198.05 34780.20 38598.47 18199.81 200
USDC95.90 29995.70 28996.50 32298.60 30392.56 352100.00 198.30 36797.77 13096.92 32599.94 22181.25 36099.45 24493.54 33394.96 27897.49 343
pm-mvs195.76 30195.01 31198.00 26698.23 32097.45 26799.24 34699.04 34293.13 33895.93 34699.72 25486.28 32998.84 28495.62 30787.92 35397.72 302
SixPastTwentyTwo95.71 30295.49 29996.38 32497.42 35593.01 34599.84 26698.23 36894.75 29395.98 34599.97 19585.35 33898.43 32294.71 31993.17 29597.69 315
MS-PatchMatch95.66 30395.87 27995.05 33497.80 33889.25 36798.88 37699.30 23596.35 24596.86 32899.01 32781.35 35999.43 24593.30 33599.98 10796.46 367
DTE-MVSNet95.52 30494.99 31297.08 30097.49 35296.45 297100.00 199.25 26193.82 31896.17 34299.57 29287.81 31597.18 36294.57 32086.26 36497.62 333
TinyColmap95.50 30595.12 31096.64 31898.69 29993.00 34699.40 33197.75 38296.40 24396.14 34399.87 22979.47 36499.50 23593.62 33294.72 28197.40 348
K. test v395.46 30695.14 30996.40 32397.53 34993.40 34399.99 20399.23 27095.49 27992.70 36799.73 25384.26 34398.12 33693.94 33093.38 29497.68 317
FMVSNet595.32 30795.43 30494.99 33799.39 24492.99 34799.25 34599.24 26690.45 35997.44 31698.45 35495.78 20694.39 38387.02 37091.88 31497.59 337
UniMVSNet_ETH3D95.28 30894.41 31497.89 27498.91 28795.14 31099.13 36499.35 21692.11 34797.17 32299.66 26970.28 38399.36 25097.88 25495.18 26699.16 241
RPMNet95.26 30993.82 31799.56 14299.31 24898.86 18699.13 36499.42 13179.82 38699.96 11795.13 37995.69 20899.98 11877.54 38998.40 18599.84 184
DSMNet-mixed95.18 31095.21 30895.08 33396.03 36790.21 36599.65 30393.64 39892.91 34098.34 27097.40 37090.05 28795.51 38091.02 35197.86 21799.51 237
test_fmvs295.17 31195.23 30795.01 33598.95 28588.99 36999.99 20397.77 38197.79 12898.58 25599.70 25973.36 37799.34 25395.88 30095.03 27496.70 364
TransMVSNet (Re)94.78 31293.72 31897.93 27298.34 31197.88 25199.23 35197.98 37791.60 35094.55 35699.71 25687.89 31498.36 32489.30 36584.92 36597.56 339
FMVSNet194.45 31393.63 32096.89 31198.87 29394.87 31399.18 35499.27 25390.95 35697.31 31898.81 34072.89 37998.07 34392.61 33892.81 29997.72 302
test_040294.35 31493.70 31996.32 32597.92 33293.60 33999.61 30998.85 36088.19 37294.68 35599.48 30080.01 36298.58 31089.39 36495.15 26996.77 362
UnsupCasMVSNet_eth94.25 31593.89 31695.34 33297.63 34292.13 35399.73 29299.36 20594.88 29092.78 36498.63 34882.72 35296.53 37094.57 32084.73 36697.36 349
KD-MVS_2432*160094.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
miper_refine_blended94.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
MVS-HIRNet94.12 31892.73 33198.29 23599.33 24795.95 29999.38 33399.19 28674.54 38998.26 27886.34 39386.07 33199.06 26491.60 34799.87 13199.85 183
new_pmnet94.11 31993.47 32296.04 32996.60 36492.82 34899.97 23398.91 35690.21 36295.26 34998.05 36585.89 33498.14 33484.28 37692.01 31197.16 354
pmmvs693.64 32092.87 32895.94 33097.47 35491.41 35998.92 37499.02 34587.84 37395.01 35299.61 28577.24 37198.77 29294.33 32386.41 36397.63 331
Patchmatch-RL test93.49 32193.63 32093.05 35391.78 38383.41 37998.21 38496.95 38991.58 35191.05 36997.64 36999.40 5595.83 37894.11 32881.95 37599.91 147
Anonymous2023120693.45 32293.17 32494.30 34595.00 37789.69 36699.98 22798.43 36693.30 33494.50 35898.59 34990.52 27895.73 37977.46 39090.73 33197.48 345
Anonymous2024052193.29 32392.76 33094.90 34095.64 37391.27 36099.97 23398.82 36187.04 37494.71 35498.19 36083.86 34896.80 36584.04 37792.56 30596.64 365
dmvs_testset93.27 32495.48 30186.65 36598.74 29868.42 39499.92 25298.91 35696.19 25493.28 363100.00 191.06 27291.67 39089.64 36291.54 31899.86 182
test20.0393.11 32592.85 32993.88 35095.19 37691.83 355100.00 198.87 35993.68 32292.76 36598.88 33889.20 29992.71 38877.88 38889.19 34497.09 356
test_vis1_rt93.10 32692.93 32793.58 35199.63 17685.07 37699.99 20393.71 39797.49 16390.96 37097.10 37160.40 38899.95 14699.24 18897.90 21595.72 374
APD_test193.07 32794.14 31589.85 35999.18 25672.49 38799.76 28498.90 35892.86 34396.35 33899.94 22175.56 37399.91 16486.73 37197.98 20897.15 355
EG-PatchMatch MVS92.94 32892.49 33294.29 34695.87 36987.07 37499.07 37298.11 37293.19 33688.98 37698.66 34770.89 38199.08 26392.43 34295.21 26496.72 363
MDA-MVSNet_test_wron92.61 32991.09 33797.19 29996.71 36397.26 277100.00 199.14 30588.61 36867.90 39598.32 35989.03 30096.57 36990.47 35689.59 33897.74 289
YYNet192.44 33090.92 33897.03 30296.20 36597.06 28499.99 20399.14 30588.21 37167.93 39498.43 35688.63 30696.28 37390.64 35289.08 34597.74 289
MIMVSNet191.96 33191.20 33494.23 34794.94 37891.69 35799.34 33799.22 27388.23 37094.18 36098.45 35475.52 37493.41 38779.37 38691.49 32097.60 336
TDRefinement91.93 33290.48 34096.27 32681.60 39692.65 35199.10 36797.61 38593.96 31793.77 36199.85 23580.03 36199.53 23197.82 25670.59 38796.63 366
OpenMVS_ROBcopyleft88.34 2091.89 33391.12 33594.19 34895.55 37487.63 37299.26 34498.03 37486.61 37690.65 37496.82 37370.14 38498.78 28986.54 37296.50 24596.15 369
N_pmnet91.88 33493.37 32387.40 36497.24 35966.33 39799.90 25691.05 40089.77 36595.65 34898.58 35090.05 28798.11 33885.39 37392.72 30097.75 266
pmmvs-eth3d91.73 33590.67 33994.92 33991.63 38592.71 35099.90 25698.54 36591.19 35388.08 37895.50 37779.31 36696.13 37590.55 35581.32 37795.91 373
MDA-MVSNet-bldmvs91.65 33689.94 34496.79 31796.72 36296.70 29399.42 33098.94 35388.89 36766.97 39798.37 35781.43 35895.91 37789.24 36689.46 34197.75 266
KD-MVS_self_test91.16 33790.09 34294.35 34494.44 37991.27 36099.74 28799.08 32590.82 35794.53 35794.91 38286.11 33094.78 38282.67 37968.52 38896.99 358
CL-MVSNet_self_test91.07 33890.35 34193.24 35293.27 38089.16 36899.55 31599.25 26192.34 34695.23 35097.05 37288.86 30593.59 38680.67 38366.95 38996.96 359
test_method91.04 33991.10 33690.85 35698.34 31177.63 383100.00 198.93 35576.69 38796.25 34198.52 35270.44 38297.98 34989.02 36891.74 31596.92 360
CMPMVSbinary66.12 2290.65 34092.04 33386.46 36696.18 36666.87 39698.03 38599.38 19683.38 38285.49 38499.55 29477.59 36998.80 28894.44 32294.31 28693.72 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs390.62 34189.36 34794.40 34390.53 39091.49 358100.00 196.73 39084.21 38093.65 36296.65 37482.56 35594.83 38182.28 38077.62 38296.89 361
new-patchmatchnet90.30 34289.46 34692.84 35490.77 38888.55 37199.83 26798.80 36290.07 36487.86 37995.00 38078.77 36794.30 38484.86 37579.15 37995.68 376
UnsupCasMVSNet_bld89.50 34388.00 34993.99 34995.30 37588.86 37098.52 38199.28 24585.50 37887.80 38094.11 38361.63 38796.96 36490.63 35379.26 37896.15 369
mvsany_test389.36 34488.96 34890.56 35791.95 38278.97 38299.74 28796.59 39396.84 20889.25 37596.07 37552.59 39097.11 36395.17 31482.44 37395.58 377
PM-MVS88.39 34587.41 35091.31 35591.73 38482.02 38199.79 27696.62 39191.06 35590.71 37395.73 37648.60 39295.96 37690.56 35481.91 37695.97 372
WB-MVS88.24 34690.09 34282.68 37291.56 38669.51 392100.00 198.73 36390.72 35887.29 38198.12 36192.87 24985.01 39462.19 39589.34 34293.54 383
SSC-MVS87.61 34789.47 34582.04 37390.63 38968.77 39399.99 20398.66 36490.34 36186.70 38298.08 36292.72 25484.12 39559.41 39888.71 34993.22 386
test_fmvs387.19 34887.02 35187.71 36392.69 38176.64 38499.96 23897.27 38693.55 32690.82 37294.03 38438.00 39892.19 38993.49 33483.35 37294.32 379
test_f86.87 34986.06 35289.28 36091.45 38776.37 38599.87 26297.11 38791.10 35488.46 37793.05 38638.31 39796.66 36891.77 34683.46 37194.82 378
Gipumacopyleft84.73 35083.50 35588.40 36297.50 35082.21 38088.87 39199.05 33965.81 39185.71 38390.49 38853.70 38996.31 37278.64 38791.74 31586.67 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf184.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
APD_test284.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
testmvs80.17 35381.95 35674.80 37758.54 40359.58 402100.00 187.14 40376.09 38899.61 185100.00 167.06 38574.19 40098.84 20850.30 39490.64 389
test_vis3_rt79.61 35478.19 35983.86 36988.68 39169.56 39199.81 27182.19 40586.78 37568.57 39384.51 39625.06 40298.26 32989.18 36778.94 38083.75 393
EGC-MVSNET79.46 35574.04 36395.72 33196.00 36892.73 34999.09 36999.04 3425.08 40116.72 40198.71 34473.03 37898.74 29582.05 38196.64 24295.69 375
test12379.44 35679.23 35880.05 37580.03 39771.72 388100.00 177.93 40662.52 39294.81 35399.69 26278.21 36874.53 39992.57 33927.33 39993.90 380
PMMVS279.15 35777.28 36084.76 36882.34 39572.66 38699.70 29795.11 39671.68 39084.78 38790.87 38732.05 40089.99 39175.53 39363.45 39291.64 387
LCM-MVSNet79.01 35876.93 36185.27 36778.28 39868.01 39596.57 38898.03 37455.10 39582.03 38893.27 38531.99 40193.95 38582.72 37874.37 38493.84 381
FPMVS77.92 35979.45 35773.34 37976.87 39946.81 40698.24 38399.05 33959.89 39473.55 39098.34 35836.81 39986.55 39280.96 38291.35 32486.65 391
tmp_tt75.80 36074.26 36280.43 37452.91 40553.67 40587.42 39397.98 37761.80 39367.04 396100.00 176.43 37296.40 37196.47 29328.26 39891.23 388
E-PMN70.72 36170.06 36472.69 38083.92 39465.48 39999.95 24492.72 39949.88 39772.30 39186.26 39447.17 39377.43 39753.83 39944.49 39575.17 397
EMVS69.88 36269.09 36572.24 38184.70 39365.82 39899.96 23887.08 40449.82 39871.51 39284.74 39549.30 39175.32 39850.97 40043.71 39675.59 396
MVEpermissive68.59 2167.22 36364.68 36774.84 37674.67 40162.32 40195.84 38990.87 40150.98 39658.72 39881.05 39812.20 40678.95 39661.06 39756.75 39383.24 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high66.05 36463.44 36873.88 37861.14 40263.45 40095.68 39087.18 40279.93 38547.35 39980.68 39922.35 40372.33 40161.24 39635.42 39785.88 392
PMVScopyleft60.66 2365.98 36565.05 36668.75 38255.06 40438.40 40788.19 39296.98 38848.30 39944.82 40088.52 39112.22 40586.49 39367.58 39483.79 37081.35 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 36629.73 37023.92 38375.89 40032.61 40866.50 39412.88 40716.09 40014.59 40216.59 40112.35 40432.36 40239.36 40113.36 4006.79 398
cdsmvs_eth3d_5k24.41 36732.55 3690.00 3840.00 4060.00 4090.00 39599.39 1940.00 4020.00 403100.00 193.55 2380.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.33 36811.11 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.24 36910.99 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 40398.75 1180.00 4030.00 4020.00 4010.00 399
test_blank0.07 3700.09 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.79 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
MM99.94 6399.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 192100.00 1100.00 199.97 110100.00 1
WAC-MVS97.98 24295.74 302
FOURS1100.00 199.97 21100.00 199.42 13198.52 74100.00 1
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13198.72 64100.00 1100.00 199.60 17
eth-test20.00 406
eth-test0.00 406
ZD-MVS100.00 199.98 1799.80 4397.31 180100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.94 10299.99 61100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13199.12 6100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_241102_TWO99.42 13199.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13199.03 20100.00 1100.00 199.50 37100.00 1
9.1499.57 4999.99 49100.00 199.42 13197.54 155100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
save fliter99.99 4999.93 43100.00 199.42 13198.93 38
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29
GSMVS99.91 147
test_part2100.00 199.99 5100.00 1
sam_mvs199.29 6999.91 147
sam_mvs99.33 58
ambc88.45 36186.84 39270.76 39097.79 38798.02 37690.91 37195.14 37838.69 39698.51 31694.97 31684.23 36796.09 371
MTGPAbinary99.42 131
test_post199.32 33888.24 39299.33 5899.59 20998.31 236
test_post89.05 39099.49 3999.59 209
patchmatchnet-post97.79 36699.41 5499.54 226
GG-mvs-BLEND99.59 13599.54 19999.49 12599.17 35999.52 7299.96 11799.68 266100.00 199.33 25499.71 13499.99 9799.96 122
MTMP100.00 199.18 293
gm-plane-assit99.52 20997.26 27795.86 262100.00 199.43 24598.76 213
test9_res100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13197.65 140100.00 1100.00 199.53 2999.97 123
test_8100.00 199.91 51100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.98 118
agg_prior2100.00 1100.00 1100.00 1
agg_prior100.00 199.88 7299.42 131100.00 199.97 123
TestCases98.99 19499.93 10097.35 27199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
test_prior499.93 43100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
test_prior99.90 71100.00 199.75 9199.73 5699.97 123100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 148
新几何2100.00 1
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 77100.00 197.91 253100.00 1100.00 1
旧先验199.99 4999.88 7299.82 40100.00 199.27 72100.00 1100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 180100.00 1
原ACMM2100.00 1
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 171100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 139100.00 1100.00 199.30 68100.00 1100.00 1
testdata2100.00 197.36 272
segment_acmp99.55 25
testdata99.66 12699.99 4998.97 18399.73 5697.96 117100.00 1100.00 199.42 52100.00 199.28 185100.00 1100.00 1
testdata1100.00 198.77 63
test1299.95 5199.99 4999.89 6599.42 131100.00 199.24 7499.97 123100.00 1100.00 1
plane_prior799.00 27794.78 323
plane_prior699.06 26994.80 31988.58 309
plane_prior599.40 18199.55 22399.79 11995.57 25197.76 255
plane_prior499.97 195
plane_prior394.79 32299.03 2099.08 220
plane_prior2100.00 199.00 27
plane_prior199.02 272
plane_prior94.80 319100.00 199.03 2095.58 247
n20.00 408
nn0.00 408
door-mid96.32 394
lessismore_v096.05 32897.55 34891.80 35699.22 27391.87 36899.91 22583.50 35098.68 29892.48 34190.42 33497.68 317
LGP-MVS_train97.28 29598.85 29594.60 32899.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
test1199.42 131
door96.13 395
HQP5-MVS94.82 316
HQP-NCC99.07 265100.00 199.04 1599.17 210
ACMP_Plane99.07 265100.00 199.04 1599.17 210
BP-MVS99.79 119
HQP4-MVS99.17 21099.57 21497.77 253
HQP3-MVS99.40 18195.58 247
HQP2-MVS88.61 307
NP-MVS99.07 26594.81 31899.97 195
MDTV_nov1_ep13_2view99.24 15499.56 31496.31 24899.96 11798.86 10998.92 20499.89 161
MDTV_nov1_ep1398.94 12299.53 20298.36 21499.39 33299.46 9496.54 23399.99 10399.63 27998.92 10599.86 17298.30 23998.71 174
ACMMP++_ref94.58 285
ACMMP++95.17 268
Test By Simon99.10 85
ITE_SJBPF96.84 31498.96 28393.49 34198.12 37198.12 10398.35 26999.97 19584.45 34199.56 21895.63 30695.25 26197.49 343
DeepMVS_CXcopyleft89.98 35898.90 28871.46 38999.18 29397.61 14896.92 32599.83 23886.07 33199.83 18096.02 29997.65 23098.65 249