MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 44 | 96.26 27 | 72.84 25 | 99.38 1 | 92.64 5 | 95.93 10 | 97.08 9 |
|
DPM-MVS | | | 90.70 2 | 90.52 6 | 91.24 1 | 89.68 157 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 10 | 97.22 4 | 79.93 5 | 99.10 9 | 83.12 79 | 97.64 2 | 97.94 1 |
|
DVP-MVS++. | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 38 | 93.96 67 | 94.37 49 | 72.48 160 | 92.07 6 | 96.85 12 | 83.82 2 | 99.15 2 | 91.53 15 | 97.42 4 | 97.55 4 |
|
MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 86 | 92.83 81 | 64.03 192 | 93.06 104 | 94.33 51 | 82.19 19 | 93.65 3 | 96.15 30 | 85.89 1 | 97.19 83 | 91.02 19 | 97.75 1 | 96.43 26 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 90.32 5 | 90.89 5 | 88.61 19 | 96.76 10 | 70.65 25 | 96.47 12 | 94.83 25 | 84.83 8 | 89.07 22 | 96.80 15 | 70.86 32 | 99.06 15 | 92.64 5 | 95.71 11 | 96.12 34 |
|
ETH3 D test6400 | | | 90.27 6 | 90.44 7 | 89.75 6 | 96.82 9 | 74.33 7 | 95.89 17 | 94.80 28 | 77.13 83 | 89.13 21 | 97.38 2 | 74.49 17 | 98.48 28 | 92.32 10 | 95.98 8 | 96.46 25 |
|
DELS-MVS | | | 90.05 7 | 90.09 9 | 89.94 4 | 93.14 75 | 73.88 8 | 97.01 3 | 94.40 47 | 88.32 2 | 85.71 46 | 94.91 67 | 74.11 19 | 98.91 17 | 87.26 50 | 95.94 9 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SED-MVS | | | 89.94 8 | 90.36 8 | 88.70 16 | 96.45 14 | 69.38 48 | 96.89 4 | 94.44 42 | 71.65 191 | 92.11 4 | 97.21 5 | 76.79 9 | 99.11 6 | 92.34 7 | 95.36 14 | 97.62 2 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 127 | 93.00 78 | 58.16 288 | 96.72 7 | 94.41 45 | 86.50 5 | 90.25 17 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 4 | 95.49 13 | 97.32 6 |
|
CANet | | | 89.61 10 | 89.99 10 | 88.46 20 | 94.39 42 | 69.71 44 | 96.53 11 | 93.78 64 | 86.89 4 | 89.68 18 | 95.78 34 | 65.94 63 | 99.10 9 | 92.99 3 | 93.91 44 | 96.58 17 |
|
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 21 | 96.40 17 | 69.99 34 | 96.64 8 | 94.52 38 | 71.92 177 | 90.55 15 | 96.93 10 | 73.77 20 | 99.08 11 | 91.91 13 | 94.90 21 | 96.29 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 29 | 95.10 33 | 68.23 76 | 95.24 32 | 94.49 40 | 82.43 17 | 88.90 23 | 96.35 24 | 71.89 31 | 98.63 24 | 88.76 35 | 96.40 6 | 96.06 35 |
|
NCCC | | | 89.07 13 | 89.46 13 | 87.91 24 | 96.60 12 | 69.05 55 | 96.38 13 | 94.64 35 | 84.42 9 | 86.74 33 | 96.20 28 | 66.56 59 | 98.76 22 | 89.03 33 | 94.56 33 | 95.92 41 |
|
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 36 | 96.26 22 | 67.56 91 | 94.17 54 | 94.15 57 | 68.77 240 | 90.74 13 | 97.27 3 | 76.09 12 | 98.49 27 | 90.58 21 | 94.91 20 | 96.30 29 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 28 | 93.21 72 | 68.72 63 | 93.85 77 | 94.03 60 | 74.18 122 | 91.74 9 | 96.67 16 | 65.61 68 | 98.42 32 | 89.24 28 | 96.08 7 | 95.88 43 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PS-MVSNAJ | | | 88.14 15 | 87.61 26 | 89.71 7 | 92.06 100 | 76.72 1 | 95.75 20 | 93.26 91 | 83.86 10 | 89.55 19 | 96.06 31 | 53.55 202 | 97.89 48 | 91.10 17 | 93.31 55 | 94.54 91 |
|
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 65 | 91.73 114 | 68.04 79 | 90.36 211 | 93.55 78 | 82.89 13 | 91.29 11 | 92.89 118 | 72.27 28 | 96.03 132 | 87.99 39 | 94.77 25 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 59 | 93.51 65 | 65.32 152 | 95.15 35 | 93.84 63 | 78.17 69 | 85.93 43 | 94.80 70 | 75.80 13 | 98.21 35 | 89.38 25 | 88.78 104 | 96.59 15 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 27 | 95.86 28 | 68.32 71 | 95.74 21 | 94.11 59 | 83.82 11 | 83.49 68 | 96.19 29 | 64.53 80 | 98.44 30 | 83.42 78 | 94.88 24 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xiu_mvs_v2_base | | | 87.92 20 | 87.38 31 | 89.55 12 | 91.41 125 | 76.43 3 | 95.74 21 | 93.12 100 | 83.53 12 | 89.55 19 | 95.95 32 | 53.45 206 | 97.68 54 | 91.07 18 | 92.62 64 | 94.54 91 |
|
EPNet | | | 87.84 21 | 88.38 16 | 86.23 78 | 93.30 68 | 66.05 133 | 95.26 31 | 94.84 24 | 87.09 3 | 88.06 25 | 94.53 75 | 66.79 56 | 97.34 74 | 83.89 75 | 91.68 77 | 95.29 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
lupinMVS | | | 87.74 22 | 87.77 23 | 87.63 33 | 89.24 169 | 71.18 20 | 96.57 10 | 92.90 108 | 82.70 16 | 87.13 29 | 95.27 50 | 64.99 74 | 95.80 139 | 89.34 26 | 91.80 75 | 95.93 40 |
|
ETH3D-3000-0.1 | | | 87.61 23 | 87.89 20 | 86.75 55 | 93.58 62 | 67.21 102 | 94.31 52 | 94.14 58 | 72.92 151 | 87.13 29 | 96.62 17 | 67.81 47 | 97.94 43 | 90.13 22 | 94.42 36 | 95.09 71 |
|
CS-MVS | | | 87.54 24 | 87.81 22 | 86.74 56 | 90.46 142 | 70.23 31 | 96.34 14 | 92.31 127 | 81.40 30 | 86.14 40 | 95.17 57 | 65.49 69 | 95.92 135 | 89.09 29 | 93.91 44 | 94.06 112 |
|
APDe-MVS | | | 87.54 24 | 87.84 21 | 86.65 60 | 96.07 25 | 66.30 129 | 94.84 45 | 93.78 64 | 69.35 231 | 88.39 24 | 96.34 25 | 67.74 48 | 97.66 58 | 90.62 20 | 93.44 54 | 96.01 38 |
|
SD-MVS | | | 87.49 26 | 87.49 28 | 87.50 35 | 93.60 61 | 68.82 61 | 93.90 74 | 92.63 119 | 76.86 87 | 87.90 26 | 95.76 35 | 66.17 60 | 97.63 60 | 89.06 31 | 91.48 81 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 70 | 94.71 37 | 67.35 98 | 95.10 37 | 93.10 101 | 75.40 104 | 85.25 53 | 95.61 40 | 67.94 43 | 96.84 106 | 87.47 45 | 94.77 25 | 95.05 73 |
|
alignmvs | | | 87.28 28 | 86.97 36 | 88.24 23 | 91.30 126 | 71.14 22 | 95.61 25 | 93.56 77 | 79.30 50 | 87.07 32 | 95.25 52 | 68.43 37 | 96.93 104 | 87.87 40 | 84.33 143 | 96.65 13 |
|
Regformer-1 | | | 87.24 29 | 87.60 27 | 86.15 80 | 95.14 31 | 65.83 141 | 93.95 70 | 95.12 15 | 82.11 21 | 84.25 59 | 95.73 36 | 67.88 46 | 98.35 33 | 85.60 60 | 88.64 106 | 94.26 99 |
|
train_agg | | | 87.21 30 | 87.42 30 | 86.60 61 | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.87 182 | 85.52 48 | 95.33 45 | 68.19 39 | 97.27 81 | 89.09 29 | 94.90 21 | 95.25 66 |
|
xxxxxxxxxxxxxcwj | | | 87.14 31 | 87.19 33 | 86.99 48 | 93.84 54 | 67.89 83 | 95.05 39 | 84.72 313 | 78.19 67 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 40 | 78.74 63 | 83.87 66 | 92.94 115 | 64.34 82 | 96.94 102 | 75.19 138 | 94.09 40 | 95.66 46 |
|
ETH3D cwj APD-0.16 | | | 87.06 33 | 87.18 34 | 86.71 57 | 91.99 104 | 67.48 96 | 92.97 109 | 94.21 54 | 71.48 202 | 85.72 45 | 96.32 26 | 68.13 41 | 98.00 42 | 89.06 31 | 94.70 31 | 94.65 87 |
|
SF-MVS | | | 87.03 34 | 87.09 35 | 86.84 50 | 92.70 87 | 67.45 97 | 93.64 85 | 93.76 67 | 70.78 215 | 86.25 35 | 96.44 21 | 66.98 52 | 97.79 51 | 88.68 36 | 94.56 33 | 95.28 61 |
|
agg_prior1 | | | 87.02 35 | 87.26 32 | 86.28 77 | 94.16 48 | 66.97 111 | 94.08 61 | 93.31 89 | 71.85 184 | 84.49 57 | 95.39 43 | 68.91 36 | 96.75 110 | 88.84 34 | 94.32 38 | 95.13 69 |
|
Regformer-2 | | | 87.00 36 | 87.43 29 | 85.71 95 | 95.14 31 | 64.73 171 | 93.95 70 | 94.95 22 | 81.69 26 | 84.03 64 | 95.73 36 | 67.35 50 | 98.19 37 | 85.40 62 | 88.64 106 | 94.20 101 |
|
CSCG | | | 86.87 37 | 86.26 42 | 88.72 15 | 95.05 34 | 70.79 24 | 93.83 81 | 95.33 11 | 68.48 244 | 77.63 126 | 94.35 84 | 73.04 23 | 98.45 29 | 84.92 67 | 93.71 50 | 96.92 11 |
|
canonicalmvs | | | 86.85 38 | 86.25 43 | 88.66 18 | 91.80 113 | 71.92 15 | 93.54 90 | 91.71 154 | 80.26 41 | 87.55 27 | 95.25 52 | 63.59 94 | 96.93 104 | 88.18 38 | 84.34 142 | 97.11 8 |
|
PHI-MVS | | | 86.83 39 | 86.85 39 | 86.78 54 | 93.47 66 | 65.55 148 | 95.39 29 | 95.10 17 | 71.77 188 | 85.69 47 | 96.52 18 | 62.07 108 | 98.77 21 | 86.06 58 | 95.60 12 | 96.03 37 |
|
SteuartSystems-ACMMP | | | 86.82 40 | 86.90 37 | 86.58 63 | 90.42 143 | 66.38 126 | 96.09 16 | 93.87 62 | 77.73 76 | 84.01 65 | 95.66 38 | 63.39 96 | 97.94 43 | 87.40 47 | 93.55 53 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
PVSNet_Blended | | | 86.73 41 | 86.86 38 | 86.31 76 | 93.76 56 | 67.53 93 | 96.33 15 | 93.61 75 | 82.34 18 | 81.00 89 | 93.08 110 | 63.19 99 | 97.29 77 | 87.08 51 | 91.38 83 | 94.13 107 |
|
testtj | | | 86.62 42 | 86.66 40 | 86.50 67 | 96.95 8 | 65.70 143 | 94.41 50 | 93.45 83 | 67.74 246 | 86.19 38 | 96.39 23 | 64.38 81 | 97.91 46 | 87.33 48 | 93.14 58 | 95.90 42 |
|
jason | | | 86.40 43 | 86.17 44 | 87.11 44 | 86.16 229 | 70.54 27 | 95.71 24 | 92.19 136 | 82.00 23 | 84.58 56 | 94.34 85 | 61.86 110 | 95.53 159 | 87.76 41 | 90.89 90 | 95.27 63 |
jason: jason. |
WTY-MVS | | | 86.32 44 | 85.81 49 | 87.85 25 | 92.82 83 | 69.37 50 | 95.20 33 | 95.25 12 | 82.71 15 | 81.91 78 | 94.73 71 | 67.93 45 | 97.63 60 | 79.55 108 | 82.25 154 | 96.54 18 |
|
MSLP-MVS++ | | | 86.27 45 | 85.91 48 | 87.35 39 | 92.01 103 | 68.97 58 | 95.04 41 | 92.70 113 | 79.04 58 | 81.50 82 | 96.50 20 | 58.98 141 | 96.78 108 | 83.49 77 | 93.93 43 | 96.29 30 |
|
VNet | | | 86.20 46 | 85.65 53 | 87.84 26 | 93.92 52 | 69.99 34 | 95.73 23 | 95.94 6 | 78.43 65 | 86.00 42 | 93.07 112 | 58.22 145 | 97.00 94 | 85.22 64 | 84.33 143 | 96.52 19 |
|
MVS_111021_HR | | | 86.19 47 | 85.80 50 | 87.37 38 | 93.17 74 | 69.79 41 | 93.99 66 | 93.76 67 | 79.08 57 | 78.88 115 | 93.99 96 | 62.25 107 | 98.15 38 | 85.93 59 | 91.15 87 | 94.15 106 |
|
ACMMP_NAP | | | 86.05 48 | 85.80 50 | 86.80 53 | 91.58 118 | 67.53 93 | 91.79 156 | 93.49 82 | 74.93 112 | 84.61 55 | 95.30 47 | 59.42 134 | 97.92 45 | 86.13 57 | 94.92 19 | 94.94 78 |
|
ETV-MVS | | | 86.01 49 | 86.11 45 | 85.70 96 | 90.21 148 | 67.02 110 | 93.43 95 | 91.92 144 | 81.21 32 | 84.13 63 | 94.07 95 | 60.93 117 | 95.63 149 | 89.28 27 | 89.81 98 | 94.46 97 |
|
APD-MVS |  | | 85.93 50 | 85.99 46 | 85.76 92 | 95.98 27 | 65.21 156 | 93.59 88 | 92.58 121 | 66.54 257 | 86.17 39 | 95.88 33 | 63.83 88 | 97.00 94 | 86.39 56 | 92.94 60 | 95.06 72 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PAPM | | | 85.89 51 | 85.46 55 | 87.18 42 | 88.20 194 | 72.42 14 | 92.41 131 | 92.77 111 | 82.11 21 | 80.34 95 | 93.07 112 | 68.27 38 | 95.02 170 | 78.39 120 | 93.59 52 | 94.09 109 |
|
Regformer-3 | | | 85.80 52 | 85.92 47 | 85.46 102 | 94.17 46 | 65.09 164 | 92.95 111 | 95.11 16 | 81.13 33 | 81.68 80 | 95.04 58 | 65.82 65 | 98.32 34 | 83.02 80 | 84.36 140 | 92.97 148 |
|
CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 68 | 94.75 36 | 67.19 103 | 93.89 75 | 92.83 110 | 70.90 211 | 83.09 71 | 95.28 48 | 63.62 92 | 97.36 72 | 80.63 102 | 94.18 39 | 94.84 80 |
|
DeepC-MVS | | 77.85 3 | 85.52 54 | 85.24 57 | 86.37 73 | 88.80 179 | 66.64 120 | 92.15 137 | 93.68 72 | 81.07 34 | 76.91 136 | 93.64 101 | 62.59 104 | 98.44 30 | 85.50 61 | 92.84 62 | 94.03 114 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 85.45 55 | 85.69 52 | 84.73 125 | 94.17 46 | 63.23 209 | 92.95 111 | 94.83 25 | 80.66 38 | 81.29 83 | 95.04 58 | 65.12 72 | 98.08 40 | 82.74 82 | 84.36 140 | 92.88 152 |
|
casdiffmvs | | | 85.37 56 | 84.87 63 | 86.84 50 | 88.25 192 | 69.07 54 | 93.04 106 | 91.76 151 | 81.27 31 | 80.84 91 | 92.07 136 | 64.23 83 | 96.06 130 | 84.98 66 | 87.43 116 | 95.39 52 |
|
CS-MVS-test | | | 85.35 57 | 85.55 54 | 84.75 124 | 90.77 139 | 65.29 153 | 95.38 30 | 91.54 160 | 78.03 71 | 83.67 67 | 94.32 87 | 62.47 105 | 95.81 138 | 82.73 83 | 91.00 89 | 93.15 141 |
|
ZNCC-MVS | | | 85.33 58 | 85.08 59 | 86.06 81 | 93.09 77 | 65.65 145 | 93.89 75 | 93.41 87 | 73.75 133 | 79.94 99 | 94.68 73 | 60.61 120 | 98.03 41 | 82.63 86 | 93.72 49 | 94.52 93 |
|
MP-MVS-pluss | | | 85.24 59 | 85.13 58 | 85.56 99 | 91.42 123 | 65.59 147 | 91.54 168 | 92.51 123 | 74.56 115 | 80.62 92 | 95.64 39 | 59.15 138 | 97.00 94 | 86.94 53 | 93.80 46 | 94.07 111 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPR | | | 85.15 60 | 84.47 65 | 87.18 42 | 96.02 26 | 68.29 72 | 91.85 154 | 93.00 105 | 76.59 91 | 79.03 111 | 95.00 60 | 61.59 111 | 97.61 62 | 78.16 122 | 89.00 103 | 95.63 47 |
|
MP-MVS |  | | 85.02 61 | 84.97 61 | 85.17 113 | 92.60 89 | 64.27 188 | 93.24 99 | 92.27 129 | 73.13 145 | 79.63 104 | 94.43 78 | 61.90 109 | 97.17 84 | 85.00 65 | 92.56 65 | 94.06 112 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
baseline | | | 85.01 62 | 84.44 67 | 86.71 57 | 88.33 189 | 68.73 62 | 90.24 215 | 91.82 150 | 81.05 35 | 81.18 85 | 92.50 125 | 63.69 91 | 96.08 129 | 84.45 70 | 86.71 124 | 95.32 57 |
|
#test# | | | 84.98 63 | 84.74 64 | 85.72 93 | 93.75 58 | 65.01 165 | 94.09 60 | 93.19 95 | 73.55 139 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 82.66 84 | 92.21 69 | 94.49 95 |
|
CHOSEN 1792x2688 | | | 84.98 63 | 83.45 77 | 89.57 11 | 89.94 152 | 75.14 5 | 92.07 143 | 92.32 126 | 81.87 24 | 75.68 143 | 88.27 184 | 60.18 123 | 98.60 25 | 80.46 104 | 90.27 97 | 94.96 77 |
|
EIA-MVS | | | 84.84 65 | 84.88 62 | 84.69 128 | 91.30 126 | 62.36 227 | 93.85 77 | 92.04 139 | 79.45 48 | 79.33 107 | 94.28 89 | 62.42 106 | 96.35 119 | 80.05 105 | 91.25 86 | 95.38 53 |
|
zzz-MVS | | | 84.73 66 | 84.47 65 | 85.50 100 | 91.89 109 | 65.16 158 | 91.55 167 | 92.23 130 | 75.32 106 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 102 |
|
HFP-MVS | | | 84.73 66 | 84.40 68 | 85.72 93 | 93.75 58 | 65.01 165 | 93.50 92 | 93.19 95 | 72.19 171 | 79.22 108 | 94.93 64 | 59.04 139 | 97.67 55 | 81.55 93 | 92.21 69 | 94.49 95 |
|
MVS | | | 84.66 68 | 82.86 91 | 90.06 2 | 90.93 132 | 74.56 6 | 87.91 260 | 95.54 9 | 68.55 242 | 72.35 180 | 94.71 72 | 59.78 130 | 98.90 18 | 81.29 99 | 94.69 32 | 96.74 12 |
|
GST-MVS | | | 84.63 69 | 84.29 69 | 85.66 97 | 92.82 83 | 65.27 154 | 93.04 106 | 93.13 99 | 73.20 143 | 78.89 112 | 94.18 92 | 59.41 135 | 97.85 50 | 81.45 95 | 92.48 68 | 93.86 122 |
|
DROMVSNet | | | 84.53 70 | 85.04 60 | 83.01 166 | 89.34 164 | 61.37 244 | 94.42 49 | 91.09 181 | 77.91 74 | 83.24 69 | 94.20 91 | 58.37 144 | 95.40 161 | 85.35 63 | 91.41 82 | 92.27 168 |
|
ACMMPR | | | 84.37 71 | 84.06 70 | 85.28 109 | 93.56 63 | 64.37 183 | 93.50 92 | 93.15 98 | 72.19 171 | 78.85 117 | 94.86 68 | 56.69 166 | 97.45 66 | 81.55 93 | 92.20 71 | 94.02 115 |
|
region2R | | | 84.36 72 | 84.03 71 | 85.36 107 | 93.54 64 | 64.31 185 | 93.43 95 | 92.95 106 | 72.16 174 | 78.86 116 | 94.84 69 | 56.97 161 | 97.53 64 | 81.38 97 | 92.11 73 | 94.24 100 |
|
LFMVS | | | 84.34 73 | 82.73 94 | 89.18 13 | 94.76 35 | 73.25 10 | 94.99 42 | 91.89 146 | 71.90 179 | 82.16 77 | 93.49 105 | 47.98 252 | 97.05 89 | 82.55 87 | 84.82 136 | 97.25 7 |
|
test_yl | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 234 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 158 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 74 | 83.16 85 | 87.64 29 | 94.52 40 | 69.24 51 | 95.78 18 | 95.09 18 | 69.19 234 | 81.09 86 | 92.88 119 | 57.00 159 | 97.44 67 | 81.11 100 | 81.76 158 | 96.23 32 |
|
diffmvs | | | 84.28 74 | 83.83 72 | 85.61 98 | 87.40 209 | 68.02 80 | 90.88 196 | 89.24 245 | 80.54 39 | 81.64 81 | 92.52 124 | 59.83 129 | 94.52 190 | 87.32 49 | 85.11 134 | 94.29 98 |
|
HY-MVS | | 76.49 5 | 84.28 74 | 83.36 83 | 87.02 47 | 92.22 97 | 67.74 87 | 84.65 283 | 94.50 39 | 79.15 54 | 82.23 76 | 87.93 191 | 66.88 54 | 96.94 102 | 80.53 103 | 82.20 155 | 96.39 28 |
|
MAR-MVS | | | 84.18 78 | 83.43 78 | 86.44 69 | 96.25 23 | 65.93 138 | 94.28 53 | 94.27 53 | 74.41 116 | 79.16 110 | 95.61 40 | 53.99 197 | 98.88 20 | 69.62 183 | 93.26 56 | 94.50 94 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_Test | | | 84.16 79 | 83.20 84 | 87.05 46 | 91.56 119 | 69.82 40 | 89.99 224 | 92.05 138 | 77.77 75 | 82.84 72 | 86.57 206 | 63.93 87 | 96.09 127 | 74.91 144 | 89.18 102 | 95.25 66 |
|
CANet_DTU | | | 84.09 80 | 83.52 74 | 85.81 89 | 90.30 146 | 66.82 115 | 91.87 152 | 89.01 258 | 85.27 6 | 86.09 41 | 93.74 100 | 47.71 255 | 96.98 98 | 77.90 125 | 89.78 100 | 93.65 127 |
|
ET-MVSNet_ETH3D | | | 84.01 81 | 83.15 87 | 86.58 63 | 90.78 138 | 70.89 23 | 94.74 46 | 94.62 36 | 81.44 29 | 58.19 303 | 93.64 101 | 73.64 22 | 92.35 264 | 82.66 84 | 78.66 181 | 96.50 23 |
|
PVSNet_Blended_VisFu | | | 83.97 82 | 83.50 75 | 85.39 106 | 90.02 150 | 66.59 123 | 93.77 82 | 91.73 152 | 77.43 82 | 77.08 135 | 89.81 169 | 63.77 90 | 96.97 99 | 79.67 107 | 88.21 109 | 92.60 156 |
|
DWT-MVSNet_test | | | 83.95 83 | 82.80 92 | 87.41 37 | 92.90 80 | 70.07 33 | 89.12 242 | 94.42 44 | 82.15 20 | 77.64 125 | 91.77 140 | 70.81 33 | 96.22 122 | 65.03 229 | 81.36 162 | 95.94 39 |
|
MTAPA | | | 83.91 84 | 83.38 82 | 85.50 100 | 91.89 109 | 65.16 158 | 81.75 303 | 92.23 130 | 75.32 106 | 80.53 93 | 95.21 54 | 56.06 174 | 97.16 85 | 84.86 68 | 92.55 66 | 94.18 102 |
|
XVS | | | 83.87 85 | 83.47 76 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 125 | 78.18 120 | 94.31 88 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 117 |
|
Effi-MVS+ | | | 83.82 86 | 82.76 93 | 86.99 48 | 89.56 160 | 69.40 47 | 91.35 178 | 86.12 302 | 72.59 156 | 83.22 70 | 92.81 122 | 59.60 132 | 96.01 134 | 81.76 91 | 87.80 113 | 95.56 49 |
|
EI-MVSNet-Vis-set | | | 83.77 87 | 83.67 73 | 84.06 144 | 92.79 86 | 63.56 205 | 91.76 159 | 94.81 27 | 79.65 47 | 77.87 122 | 94.09 93 | 63.35 97 | 97.90 47 | 79.35 109 | 79.36 173 | 90.74 191 |
|
MVSFormer | | | 83.75 88 | 82.88 90 | 86.37 73 | 89.24 169 | 71.18 20 | 89.07 243 | 90.69 193 | 65.80 262 | 87.13 29 | 94.34 85 | 64.99 74 | 92.67 250 | 72.83 153 | 91.80 75 | 95.27 63 |
|
CP-MVS | | | 83.71 89 | 83.40 81 | 84.65 129 | 93.14 75 | 63.84 193 | 94.59 47 | 92.28 128 | 71.03 209 | 77.41 129 | 94.92 66 | 55.21 183 | 96.19 123 | 81.32 98 | 90.70 92 | 93.91 119 |
|
baseline2 | | | 83.68 90 | 83.42 80 | 84.48 135 | 87.37 210 | 66.00 135 | 90.06 219 | 95.93 7 | 79.71 46 | 69.08 216 | 90.39 159 | 77.92 6 | 96.28 120 | 78.91 115 | 81.38 161 | 91.16 187 |
|
thisisatest0515 | | | 83.41 91 | 82.49 98 | 86.16 79 | 89.46 163 | 68.26 74 | 93.54 90 | 94.70 32 | 74.31 119 | 75.75 142 | 90.92 148 | 72.62 26 | 96.52 117 | 69.64 181 | 81.50 160 | 93.71 125 |
|
PVSNet_BlendedMVS | | | 83.38 92 | 83.43 78 | 83.22 163 | 93.76 56 | 67.53 93 | 94.06 62 | 93.61 75 | 79.13 55 | 81.00 89 | 85.14 220 | 63.19 99 | 97.29 77 | 87.08 51 | 73.91 212 | 84.83 281 |
|
PGM-MVS | | | 83.25 93 | 82.70 95 | 84.92 118 | 92.81 85 | 64.07 191 | 90.44 207 | 92.20 135 | 71.28 204 | 77.23 132 | 94.43 78 | 55.17 184 | 97.31 76 | 79.33 110 | 91.38 83 | 93.37 132 |
|
HPM-MVS |  | | 83.25 93 | 82.95 89 | 84.17 142 | 92.25 96 | 62.88 220 | 90.91 193 | 91.86 147 | 70.30 220 | 77.12 133 | 93.96 97 | 56.75 164 | 96.28 120 | 82.04 89 | 91.34 85 | 93.34 133 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
EI-MVSNet-UG-set | | | 83.14 95 | 82.96 88 | 83.67 154 | 92.28 95 | 63.19 211 | 91.38 176 | 94.68 33 | 79.22 52 | 76.60 137 | 93.75 99 | 62.64 103 | 97.76 53 | 78.07 123 | 78.01 184 | 90.05 199 |
|
VDD-MVS | | | 83.06 96 | 81.81 107 | 86.81 52 | 90.86 136 | 67.70 88 | 95.40 28 | 91.50 164 | 75.46 101 | 81.78 79 | 92.34 132 | 40.09 288 | 97.13 87 | 86.85 54 | 82.04 156 | 95.60 48 |
|
hse-mvs3 | | | 83.01 97 | 82.56 97 | 84.35 138 | 89.34 164 | 62.02 232 | 92.72 118 | 93.76 67 | 81.45 27 | 82.73 73 | 92.25 134 | 60.11 124 | 97.13 87 | 87.69 42 | 62.96 285 | 93.91 119 |
|
PAPM_NR | | | 82.97 98 | 81.84 105 | 86.37 73 | 94.10 50 | 66.76 118 | 87.66 264 | 92.84 109 | 69.96 224 | 74.07 159 | 93.57 103 | 63.10 101 | 97.50 65 | 70.66 176 | 90.58 94 | 94.85 79 |
|
mPP-MVS | | | 82.96 99 | 82.44 99 | 84.52 133 | 92.83 81 | 62.92 218 | 92.76 116 | 91.85 148 | 71.52 199 | 75.61 146 | 94.24 90 | 53.48 205 | 96.99 97 | 78.97 114 | 90.73 91 | 93.64 128 |
|
SR-MVS | | | 82.81 100 | 82.58 96 | 83.50 159 | 93.35 67 | 61.16 247 | 92.23 136 | 91.28 173 | 64.48 270 | 81.27 84 | 95.28 48 | 53.71 201 | 95.86 137 | 82.87 81 | 88.77 105 | 93.49 131 |
|
DP-MVS Recon | | | 82.73 101 | 81.65 108 | 85.98 83 | 97.31 4 | 67.06 107 | 95.15 35 | 91.99 141 | 69.08 237 | 76.50 139 | 93.89 98 | 54.48 192 | 98.20 36 | 70.76 174 | 85.66 131 | 92.69 153 |
|
CLD-MVS | | | 82.73 101 | 82.35 101 | 83.86 147 | 87.90 201 | 67.65 90 | 95.45 27 | 92.18 137 | 85.06 7 | 72.58 173 | 92.27 133 | 52.46 212 | 95.78 140 | 84.18 71 | 79.06 176 | 88.16 223 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
sss | | | 82.71 103 | 82.38 100 | 83.73 151 | 89.25 168 | 59.58 273 | 92.24 135 | 94.89 23 | 77.96 72 | 79.86 101 | 92.38 130 | 56.70 165 | 97.05 89 | 77.26 128 | 80.86 166 | 94.55 89 |
|
3Dnovator | | 73.91 6 | 82.69 104 | 80.82 118 | 88.31 22 | 89.57 159 | 71.26 19 | 92.60 125 | 94.39 48 | 78.84 60 | 67.89 235 | 92.48 128 | 48.42 247 | 98.52 26 | 68.80 193 | 94.40 37 | 95.15 68 |
|
MVSTER | | | 82.47 105 | 82.05 102 | 83.74 149 | 92.68 88 | 69.01 56 | 91.90 151 | 93.21 92 | 79.83 42 | 72.14 181 | 85.71 216 | 74.72 15 | 94.72 180 | 75.72 135 | 72.49 222 | 87.50 228 |
|
TESTMET0.1,1 | | | 82.41 106 | 81.98 104 | 83.72 152 | 88.08 195 | 63.74 197 | 92.70 120 | 93.77 66 | 79.30 50 | 77.61 127 | 87.57 196 | 58.19 146 | 94.08 204 | 73.91 148 | 86.68 125 | 93.33 135 |
|
CostFormer | | | 82.33 107 | 81.15 112 | 85.86 88 | 89.01 174 | 68.46 68 | 82.39 301 | 93.01 103 | 75.59 99 | 80.25 96 | 81.57 261 | 72.03 30 | 94.96 172 | 79.06 113 | 77.48 193 | 94.16 105 |
|
API-MVS | | | 82.28 108 | 80.53 124 | 87.54 34 | 96.13 24 | 70.59 26 | 93.63 86 | 91.04 186 | 65.72 264 | 75.45 148 | 92.83 121 | 56.11 173 | 98.89 19 | 64.10 234 | 89.75 101 | 93.15 141 |
|
IB-MVS | | 77.80 4 | 82.18 109 | 80.46 126 | 87.35 39 | 89.14 171 | 70.28 30 | 95.59 26 | 95.17 14 | 78.85 59 | 70.19 203 | 85.82 214 | 70.66 34 | 97.67 55 | 72.19 163 | 66.52 261 | 94.09 109 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
xiu_mvs_v1_base_debu | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 223 | 68.72 63 | 92.59 127 | 90.44 201 | 73.12 146 | 84.20 60 | 94.36 80 | 38.04 299 | 95.73 143 | 84.12 72 | 86.81 119 | 91.33 181 |
|
xiu_mvs_v1_base | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 223 | 68.72 63 | 92.59 127 | 90.44 201 | 73.12 146 | 84.20 60 | 94.36 80 | 38.04 299 | 95.73 143 | 84.12 72 | 86.81 119 | 91.33 181 |
|
xiu_mvs_v1_base_debi | | | 82.16 110 | 81.12 113 | 85.26 110 | 86.42 223 | 68.72 63 | 92.59 127 | 90.44 201 | 73.12 146 | 84.20 60 | 94.36 80 | 38.04 299 | 95.73 143 | 84.12 72 | 86.81 119 | 91.33 181 |
|
3Dnovator+ | | 73.60 7 | 82.10 113 | 80.60 123 | 86.60 61 | 90.89 135 | 66.80 117 | 95.20 33 | 93.44 85 | 74.05 124 | 67.42 241 | 92.49 127 | 49.46 237 | 97.65 59 | 70.80 173 | 91.68 77 | 95.33 55 |
|
MVS_111021_LR | | | 82.02 114 | 81.52 109 | 83.51 158 | 88.42 187 | 62.88 220 | 89.77 227 | 88.93 260 | 76.78 89 | 75.55 147 | 93.10 108 | 50.31 229 | 95.38 163 | 83.82 76 | 87.02 118 | 92.26 169 |
|
PMMVS | | | 81.98 115 | 82.04 103 | 81.78 199 | 89.76 156 | 56.17 306 | 91.13 189 | 90.69 193 | 77.96 72 | 80.09 98 | 93.57 103 | 46.33 263 | 94.99 171 | 81.41 96 | 87.46 115 | 94.17 104 |
|
test1172 | | | 81.90 116 | 81.83 106 | 82.13 191 | 93.23 69 | 57.52 296 | 91.61 166 | 90.98 188 | 64.32 272 | 80.20 97 | 95.00 60 | 51.26 222 | 95.61 151 | 81.73 92 | 88.13 110 | 93.26 137 |
|
baseline1 | | | 81.84 117 | 81.03 117 | 84.28 141 | 91.60 117 | 66.62 121 | 91.08 190 | 91.66 157 | 81.87 24 | 74.86 151 | 91.67 144 | 69.98 35 | 94.92 175 | 71.76 167 | 64.75 274 | 91.29 186 |
|
EPP-MVSNet | | | 81.79 118 | 81.52 109 | 82.61 175 | 88.77 180 | 60.21 265 | 93.02 108 | 93.66 74 | 68.52 243 | 72.90 168 | 90.39 159 | 72.19 29 | 94.96 172 | 74.93 143 | 79.29 175 | 92.67 154 |
|
APD-MVS_3200maxsize | | | 81.64 119 | 81.32 111 | 82.59 176 | 92.36 92 | 58.74 282 | 91.39 174 | 91.01 187 | 63.35 278 | 79.72 103 | 94.62 74 | 51.82 215 | 96.14 125 | 79.71 106 | 87.93 112 | 92.89 151 |
|
ACMMP |  | | 81.49 120 | 80.67 121 | 83.93 146 | 91.71 115 | 62.90 219 | 92.13 138 | 92.22 134 | 71.79 187 | 71.68 189 | 93.49 105 | 50.32 228 | 96.96 100 | 78.47 119 | 84.22 147 | 91.93 172 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDS-MVSNet | | | 81.43 121 | 80.74 119 | 83.52 157 | 86.26 227 | 64.45 177 | 92.09 141 | 90.65 196 | 75.83 98 | 73.95 161 | 89.81 169 | 63.97 86 | 92.91 240 | 71.27 170 | 82.82 151 | 93.20 140 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 81.36 122 | 79.99 130 | 85.46 102 | 90.39 145 | 68.40 69 | 86.88 274 | 90.61 197 | 74.41 116 | 70.31 202 | 84.67 226 | 63.79 89 | 92.32 265 | 73.13 150 | 85.70 130 | 95.67 45 |
|
1121 | | | 81.25 123 | 80.05 128 | 84.87 121 | 92.30 94 | 64.31 185 | 87.91 260 | 91.39 168 | 59.44 310 | 79.94 99 | 92.91 116 | 57.09 155 | 97.01 92 | 66.63 208 | 92.81 63 | 93.29 136 |
|
thisisatest0530 | | | 81.15 124 | 80.07 127 | 84.39 137 | 88.26 191 | 65.63 146 | 91.40 172 | 94.62 36 | 71.27 205 | 70.93 194 | 89.18 173 | 72.47 27 | 96.04 131 | 65.62 223 | 76.89 199 | 91.49 177 |
|
Fast-Effi-MVS+ | | | 81.14 125 | 80.01 129 | 84.51 134 | 90.24 147 | 65.86 139 | 94.12 59 | 89.15 251 | 73.81 132 | 75.37 149 | 88.26 185 | 57.26 153 | 94.53 189 | 66.97 207 | 84.92 135 | 93.15 141 |
|
HQP-MVS | | | 81.14 125 | 80.64 122 | 82.64 174 | 87.54 205 | 63.66 202 | 94.06 62 | 91.70 155 | 79.80 43 | 74.18 155 | 90.30 161 | 51.63 219 | 95.61 151 | 77.63 126 | 78.90 177 | 88.63 213 |
|
hse-mvs2 | | | 81.12 127 | 81.11 116 | 81.16 214 | 86.52 222 | 57.48 297 | 89.40 235 | 91.16 176 | 81.45 27 | 82.73 73 | 90.49 157 | 60.11 124 | 94.58 183 | 87.69 42 | 60.41 312 | 91.41 180 |
|
SR-MVS-dyc-post | | | 81.06 128 | 80.70 120 | 82.15 189 | 92.02 101 | 58.56 284 | 90.90 194 | 90.45 198 | 62.76 284 | 78.89 112 | 94.46 76 | 51.26 222 | 95.61 151 | 78.77 117 | 86.77 122 | 92.28 165 |
|
HyFIR lowres test | | | 81.03 129 | 79.56 138 | 85.43 104 | 87.81 202 | 68.11 78 | 90.18 216 | 90.01 222 | 70.65 217 | 72.95 167 | 86.06 212 | 63.61 93 | 94.50 191 | 75.01 142 | 79.75 171 | 93.67 126 |
|
nrg030 | | | 80.93 130 | 79.86 132 | 84.13 143 | 83.69 267 | 68.83 60 | 93.23 100 | 91.20 174 | 75.55 100 | 75.06 150 | 88.22 188 | 63.04 102 | 94.74 179 | 81.88 90 | 66.88 258 | 88.82 211 |
|
Vis-MVSNet |  | | 80.92 131 | 79.98 131 | 83.74 149 | 88.48 184 | 61.80 235 | 93.44 94 | 88.26 280 | 73.96 128 | 77.73 123 | 91.76 141 | 49.94 233 | 94.76 177 | 65.84 220 | 90.37 96 | 94.65 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
1314 | | | 80.70 132 | 78.95 150 | 85.94 85 | 87.77 203 | 67.56 91 | 87.91 260 | 92.55 122 | 72.17 173 | 67.44 240 | 93.09 109 | 50.27 230 | 97.04 91 | 71.68 169 | 87.64 114 | 93.23 139 |
|
RRT_test8_iter05 | | | 80.61 133 | 79.62 136 | 83.60 156 | 91.87 112 | 66.90 113 | 93.42 97 | 93.68 72 | 77.09 85 | 68.83 222 | 85.63 217 | 66.82 55 | 95.42 160 | 76.46 133 | 62.74 288 | 88.48 216 |
|
tpmrst | | | 80.57 134 | 79.14 149 | 84.84 122 | 90.10 149 | 68.28 73 | 81.70 304 | 89.72 233 | 77.63 78 | 75.96 141 | 79.54 292 | 64.94 76 | 92.71 247 | 75.43 136 | 77.28 196 | 93.55 129 |
|
1112_ss | | | 80.56 135 | 79.83 133 | 82.77 170 | 88.65 181 | 60.78 253 | 92.29 133 | 88.36 275 | 72.58 157 | 72.46 177 | 94.95 62 | 65.09 73 | 93.42 228 | 66.38 214 | 77.71 186 | 94.10 108 |
|
VDDNet | | | 80.50 136 | 78.26 157 | 87.21 41 | 86.19 228 | 69.79 41 | 94.48 48 | 91.31 170 | 60.42 302 | 79.34 106 | 90.91 149 | 38.48 295 | 96.56 116 | 82.16 88 | 81.05 164 | 95.27 63 |
|
BH-w/o | | | 80.49 137 | 79.30 145 | 84.05 145 | 90.83 137 | 64.36 184 | 93.60 87 | 89.42 240 | 74.35 118 | 69.09 215 | 90.15 164 | 55.23 182 | 95.61 151 | 64.61 231 | 86.43 128 | 92.17 170 |
|
TAMVS | | | 80.37 138 | 79.45 141 | 83.13 165 | 85.14 244 | 63.37 206 | 91.23 183 | 90.76 192 | 74.81 114 | 72.65 171 | 88.49 179 | 60.63 119 | 92.95 235 | 69.41 185 | 81.95 157 | 93.08 145 |
|
HQP_MVS | | | 80.34 139 | 79.75 134 | 82.12 192 | 86.94 216 | 62.42 225 | 93.13 102 | 91.31 170 | 78.81 61 | 72.53 174 | 89.14 175 | 50.66 226 | 95.55 157 | 76.74 129 | 78.53 182 | 88.39 219 |
|
HPM-MVS_fast | | | 80.25 140 | 79.55 140 | 82.33 182 | 91.55 120 | 59.95 268 | 91.32 180 | 89.16 250 | 65.23 268 | 74.71 152 | 93.07 112 | 47.81 254 | 95.74 142 | 74.87 146 | 88.23 108 | 91.31 185 |
|
ab-mvs | | | 80.18 141 | 78.31 156 | 85.80 90 | 88.44 186 | 65.49 151 | 83.00 298 | 92.67 115 | 71.82 186 | 77.36 130 | 85.01 221 | 54.50 189 | 96.59 113 | 76.35 134 | 75.63 205 | 95.32 57 |
|
IS-MVSNet | | | 80.14 142 | 79.41 142 | 82.33 182 | 87.91 200 | 60.08 267 | 91.97 149 | 88.27 278 | 72.90 152 | 71.44 191 | 91.73 143 | 61.44 112 | 93.66 223 | 62.47 247 | 86.53 126 | 93.24 138 |
|
test-LLR | | | 80.10 143 | 79.56 138 | 81.72 201 | 86.93 218 | 61.17 245 | 92.70 120 | 91.54 160 | 71.51 200 | 75.62 144 | 86.94 203 | 53.83 198 | 92.38 261 | 72.21 161 | 84.76 138 | 91.60 175 |
|
PVSNet | | 73.49 8 | 80.05 144 | 78.63 152 | 84.31 139 | 90.92 133 | 64.97 167 | 92.47 130 | 91.05 185 | 79.18 53 | 72.43 178 | 90.51 156 | 37.05 311 | 94.06 206 | 68.06 196 | 86.00 129 | 93.90 121 |
|
UA-Net | | | 80.02 145 | 79.65 135 | 81.11 217 | 89.33 166 | 57.72 292 | 86.33 277 | 89.00 259 | 77.44 81 | 81.01 88 | 89.15 174 | 59.33 136 | 95.90 136 | 61.01 254 | 84.28 145 | 89.73 203 |
|
test-mter | | | 79.96 146 | 79.38 144 | 81.72 201 | 86.93 218 | 61.17 245 | 92.70 120 | 91.54 160 | 73.85 130 | 75.62 144 | 86.94 203 | 49.84 235 | 92.38 261 | 72.21 161 | 84.76 138 | 91.60 175 |
|
QAPM | | | 79.95 147 | 77.39 176 | 87.64 29 | 89.63 158 | 71.41 18 | 93.30 98 | 93.70 71 | 65.34 267 | 67.39 243 | 91.75 142 | 47.83 253 | 98.96 16 | 57.71 269 | 89.81 98 | 92.54 158 |
|
UGNet | | | 79.87 148 | 78.68 151 | 83.45 161 | 89.96 151 | 61.51 241 | 92.13 138 | 90.79 191 | 76.83 88 | 78.85 117 | 86.33 209 | 38.16 297 | 96.17 124 | 67.93 198 | 87.17 117 | 92.67 154 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
abl_6 | | | 79.82 149 | 79.20 147 | 81.70 203 | 89.85 153 | 58.34 286 | 88.47 253 | 90.07 217 | 62.56 287 | 77.71 124 | 93.08 110 | 47.65 256 | 96.78 108 | 77.94 124 | 85.45 133 | 89.99 200 |
|
tpm2 | | | 79.80 150 | 77.95 163 | 85.34 108 | 88.28 190 | 68.26 74 | 81.56 306 | 91.42 167 | 70.11 222 | 77.59 128 | 80.50 279 | 67.40 49 | 94.26 199 | 67.34 203 | 77.35 194 | 93.51 130 |
|
thres200 | | | 79.66 151 | 78.33 155 | 83.66 155 | 92.54 90 | 65.82 142 | 93.06 104 | 96.31 3 | 74.90 113 | 73.30 164 | 88.66 177 | 59.67 131 | 95.61 151 | 47.84 305 | 78.67 180 | 89.56 206 |
|
test_part1 | | | 79.63 152 | 77.86 166 | 84.93 117 | 92.50 91 | 71.43 17 | 94.15 57 | 91.08 183 | 72.51 159 | 70.66 195 | 84.98 222 | 59.84 128 | 95.07 169 | 72.07 164 | 62.94 286 | 88.30 222 |
|
CPTT-MVS | | | 79.59 153 | 79.16 148 | 80.89 226 | 91.54 121 | 59.80 270 | 92.10 140 | 88.54 273 | 60.42 302 | 72.96 166 | 93.28 107 | 48.27 248 | 92.80 244 | 78.89 116 | 86.50 127 | 90.06 198 |
|
Test_1112_low_res | | | 79.56 154 | 78.60 153 | 82.43 178 | 88.24 193 | 60.39 262 | 92.09 141 | 87.99 284 | 72.10 175 | 71.84 185 | 87.42 198 | 64.62 79 | 93.04 232 | 65.80 221 | 77.30 195 | 93.85 123 |
|
tttt0517 | | | 79.50 155 | 78.53 154 | 82.41 181 | 87.22 212 | 61.43 243 | 89.75 228 | 94.76 29 | 69.29 232 | 67.91 234 | 88.06 190 | 72.92 24 | 95.63 149 | 62.91 243 | 73.90 213 | 90.16 197 |
|
FIs | | | 79.47 156 | 79.41 142 | 79.67 249 | 85.95 232 | 59.40 275 | 91.68 163 | 93.94 61 | 78.06 70 | 68.96 219 | 88.28 183 | 66.61 58 | 91.77 276 | 66.20 217 | 74.99 206 | 87.82 225 |
|
BH-RMVSNet | | | 79.46 157 | 77.65 168 | 84.89 119 | 91.68 116 | 65.66 144 | 93.55 89 | 88.09 282 | 72.93 150 | 73.37 163 | 91.12 147 | 46.20 265 | 96.12 126 | 56.28 274 | 85.61 132 | 92.91 150 |
|
PCF-MVS | | 73.15 9 | 79.29 158 | 77.63 169 | 84.29 140 | 86.06 230 | 65.96 137 | 87.03 270 | 91.10 180 | 69.86 226 | 69.79 211 | 90.64 152 | 57.54 152 | 96.59 113 | 64.37 233 | 82.29 153 | 90.32 195 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Vis-MVSNet (Re-imp) | | | 79.24 159 | 79.57 137 | 78.24 269 | 88.46 185 | 52.29 325 | 90.41 209 | 89.12 253 | 74.24 121 | 69.13 214 | 91.91 138 | 65.77 66 | 90.09 300 | 59.00 266 | 88.09 111 | 92.33 162 |
|
114514_t | | | 79.17 160 | 77.67 167 | 83.68 153 | 95.32 30 | 65.53 149 | 92.85 115 | 91.60 159 | 63.49 277 | 67.92 233 | 90.63 154 | 46.65 260 | 95.72 147 | 67.01 206 | 83.54 148 | 89.79 201 |
|
VPA-MVSNet | | | 79.03 161 | 78.00 161 | 82.11 195 | 85.95 232 | 64.48 176 | 93.22 101 | 94.66 34 | 75.05 111 | 74.04 160 | 84.95 223 | 52.17 214 | 93.52 225 | 74.90 145 | 67.04 257 | 88.32 221 |
|
OPM-MVS | | | 79.00 162 | 78.09 159 | 81.73 200 | 83.52 270 | 63.83 194 | 91.64 165 | 90.30 208 | 76.36 94 | 71.97 184 | 89.93 168 | 46.30 264 | 95.17 168 | 75.10 139 | 77.70 187 | 86.19 255 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EI-MVSNet | | | 78.97 163 | 78.22 158 | 81.25 211 | 85.33 240 | 62.73 223 | 89.53 232 | 93.21 92 | 72.39 165 | 72.14 181 | 90.13 165 | 60.99 115 | 94.72 180 | 67.73 200 | 72.49 222 | 86.29 252 |
|
AdaColmap |  | | 78.94 164 | 77.00 181 | 84.76 123 | 96.34 19 | 65.86 139 | 92.66 124 | 87.97 285 | 62.18 290 | 70.56 196 | 92.37 131 | 43.53 277 | 97.35 73 | 64.50 232 | 82.86 150 | 91.05 189 |
|
GeoE | | | 78.90 165 | 77.43 172 | 83.29 162 | 88.95 175 | 62.02 232 | 92.31 132 | 86.23 300 | 70.24 221 | 71.34 192 | 89.27 172 | 54.43 193 | 94.04 209 | 63.31 239 | 80.81 167 | 93.81 124 |
|
miper_enhance_ethall | | | 78.86 166 | 77.97 162 | 81.54 205 | 88.00 199 | 65.17 157 | 91.41 170 | 89.15 251 | 75.19 109 | 68.79 223 | 83.98 233 | 67.17 51 | 92.82 242 | 72.73 155 | 65.30 265 | 86.62 248 |
|
VPNet | | | 78.82 167 | 77.53 171 | 82.70 172 | 84.52 254 | 66.44 125 | 93.93 72 | 92.23 130 | 80.46 40 | 72.60 172 | 88.38 182 | 49.18 241 | 93.13 231 | 72.47 159 | 63.97 282 | 88.55 215 |
|
EPNet_dtu | | | 78.80 168 | 79.26 146 | 77.43 277 | 88.06 196 | 49.71 338 | 91.96 150 | 91.95 143 | 77.67 77 | 76.56 138 | 91.28 146 | 58.51 143 | 90.20 298 | 56.37 273 | 80.95 165 | 92.39 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tfpn200view9 | | | 78.79 169 | 77.43 172 | 82.88 168 | 92.21 98 | 64.49 174 | 92.05 144 | 96.28 4 | 73.48 140 | 71.75 187 | 88.26 185 | 60.07 126 | 95.32 164 | 45.16 315 | 77.58 189 | 88.83 209 |
|
TR-MVS | | | 78.77 170 | 77.37 177 | 82.95 167 | 90.49 141 | 60.88 251 | 93.67 84 | 90.07 217 | 70.08 223 | 74.51 153 | 91.37 145 | 45.69 266 | 95.70 148 | 60.12 260 | 80.32 168 | 92.29 164 |
|
mvs-test1 | | | 78.74 171 | 77.95 163 | 81.14 215 | 83.22 272 | 57.13 301 | 93.96 67 | 87.78 286 | 75.42 102 | 72.68 170 | 90.80 151 | 45.08 270 | 94.54 188 | 75.08 140 | 77.49 192 | 91.74 174 |
|
thres400 | | | 78.68 172 | 77.43 172 | 82.43 178 | 92.21 98 | 64.49 174 | 92.05 144 | 96.28 4 | 73.48 140 | 71.75 187 | 88.26 185 | 60.07 126 | 95.32 164 | 45.16 315 | 77.58 189 | 87.48 229 |
|
BH-untuned | | | 78.68 172 | 77.08 178 | 83.48 160 | 89.84 154 | 63.74 197 | 92.70 120 | 88.59 271 | 71.57 197 | 66.83 249 | 88.65 178 | 51.75 217 | 95.39 162 | 59.03 265 | 84.77 137 | 91.32 184 |
|
OMC-MVS | | | 78.67 174 | 77.91 165 | 80.95 224 | 85.76 236 | 57.40 299 | 88.49 252 | 88.67 268 | 73.85 130 | 72.43 178 | 92.10 135 | 49.29 240 | 94.55 187 | 72.73 155 | 77.89 185 | 90.91 190 |
|
tpm | | | 78.58 175 | 77.03 179 | 83.22 163 | 85.94 234 | 64.56 172 | 83.21 296 | 91.14 179 | 78.31 66 | 73.67 162 | 79.68 290 | 64.01 85 | 92.09 270 | 66.07 218 | 71.26 232 | 93.03 146 |
|
OpenMVS |  | 70.45 11 | 78.54 176 | 75.92 195 | 86.41 72 | 85.93 235 | 71.68 16 | 92.74 117 | 92.51 123 | 66.49 258 | 64.56 264 | 91.96 137 | 43.88 276 | 98.10 39 | 54.61 278 | 90.65 93 | 89.44 207 |
|
EPMVS | | | 78.49 177 | 75.98 194 | 86.02 82 | 91.21 128 | 69.68 45 | 80.23 316 | 91.20 174 | 75.25 108 | 72.48 176 | 78.11 300 | 54.65 188 | 93.69 222 | 57.66 270 | 83.04 149 | 94.69 83 |
|
AUN-MVS | | | 78.37 178 | 77.43 172 | 81.17 213 | 86.60 221 | 57.45 298 | 89.46 234 | 91.16 176 | 74.11 123 | 74.40 154 | 90.49 157 | 55.52 179 | 94.57 184 | 74.73 147 | 60.43 311 | 91.48 178 |
|
thres100view900 | | | 78.37 178 | 77.01 180 | 82.46 177 | 91.89 109 | 63.21 210 | 91.19 187 | 96.33 1 | 72.28 168 | 70.45 199 | 87.89 192 | 60.31 121 | 95.32 164 | 45.16 315 | 77.58 189 | 88.83 209 |
|
GA-MVS | | | 78.33 180 | 76.23 191 | 84.65 129 | 83.65 268 | 66.30 129 | 91.44 169 | 90.14 215 | 76.01 96 | 70.32 201 | 84.02 232 | 42.50 280 | 94.72 180 | 70.98 171 | 77.00 198 | 92.94 149 |
|
cascas | | | 78.18 181 | 75.77 197 | 85.41 105 | 87.14 214 | 69.11 53 | 92.96 110 | 91.15 178 | 66.71 256 | 70.47 197 | 86.07 211 | 37.49 305 | 96.48 118 | 70.15 179 | 79.80 170 | 90.65 192 |
|
UniMVSNet_NR-MVSNet | | | 78.15 182 | 77.55 170 | 79.98 240 | 84.46 256 | 60.26 263 | 92.25 134 | 93.20 94 | 77.50 80 | 68.88 220 | 86.61 205 | 66.10 61 | 92.13 268 | 66.38 214 | 62.55 289 | 87.54 227 |
|
thres600view7 | | | 78.00 183 | 76.66 185 | 82.03 197 | 91.93 106 | 63.69 200 | 91.30 181 | 96.33 1 | 72.43 163 | 70.46 198 | 87.89 192 | 60.31 121 | 94.92 175 | 42.64 327 | 76.64 200 | 87.48 229 |
|
FC-MVSNet-test | | | 77.99 184 | 78.08 160 | 77.70 272 | 84.89 249 | 55.51 311 | 90.27 213 | 93.75 70 | 76.87 86 | 66.80 250 | 87.59 195 | 65.71 67 | 90.23 297 | 62.89 244 | 73.94 211 | 87.37 232 |
|
Anonymous202405211 | | | 77.96 185 | 75.33 201 | 85.87 87 | 93.73 60 | 64.52 173 | 94.85 44 | 85.36 308 | 62.52 288 | 76.11 140 | 90.18 163 | 29.43 336 | 97.29 77 | 68.51 194 | 77.24 197 | 95.81 44 |
|
cl-mvsnet2 | | | 77.94 186 | 76.78 183 | 81.42 207 | 87.57 204 | 64.93 169 | 90.67 202 | 88.86 263 | 72.45 162 | 67.63 239 | 82.68 246 | 64.07 84 | 92.91 240 | 71.79 165 | 65.30 265 | 86.44 249 |
|
XXY-MVS | | | 77.94 186 | 76.44 188 | 82.43 178 | 82.60 278 | 64.44 178 | 92.01 146 | 91.83 149 | 73.59 138 | 70.00 206 | 85.82 214 | 54.43 193 | 94.76 177 | 69.63 182 | 68.02 251 | 88.10 224 |
|
MS-PatchMatch | | | 77.90 188 | 76.50 187 | 82.12 192 | 85.99 231 | 69.95 37 | 91.75 161 | 92.70 113 | 73.97 127 | 62.58 283 | 84.44 229 | 41.11 285 | 95.78 140 | 63.76 237 | 92.17 72 | 80.62 325 |
|
FMVSNet3 | | | 77.73 189 | 76.04 193 | 82.80 169 | 91.20 129 | 68.99 57 | 91.87 152 | 91.99 141 | 73.35 142 | 67.04 246 | 83.19 242 | 56.62 167 | 92.14 267 | 59.80 262 | 69.34 240 | 87.28 235 |
|
miper_ehance_all_eth | | | 77.60 190 | 76.44 188 | 81.09 221 | 85.70 237 | 64.41 181 | 90.65 203 | 88.64 270 | 72.31 166 | 67.37 244 | 82.52 247 | 64.77 78 | 92.64 253 | 70.67 175 | 65.30 265 | 86.24 254 |
|
UniMVSNet (Re) | | | 77.58 191 | 76.78 183 | 79.98 240 | 84.11 262 | 60.80 252 | 91.76 159 | 93.17 97 | 76.56 92 | 69.93 209 | 84.78 225 | 63.32 98 | 92.36 263 | 64.89 230 | 62.51 291 | 86.78 242 |
|
PatchmatchNet |  | | 77.46 192 | 74.63 207 | 85.96 84 | 89.55 161 | 70.35 29 | 79.97 320 | 89.55 236 | 72.23 170 | 70.94 193 | 76.91 311 | 57.03 157 | 92.79 245 | 54.27 280 | 81.17 163 | 94.74 82 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v2v482 | | | 77.42 193 | 75.65 199 | 82.73 171 | 80.38 295 | 67.13 106 | 91.85 154 | 90.23 212 | 75.09 110 | 69.37 212 | 83.39 240 | 53.79 200 | 94.44 192 | 71.77 166 | 65.00 271 | 86.63 247 |
|
RRT_MVS | | | 77.38 194 | 76.59 186 | 79.77 247 | 90.91 134 | 63.61 204 | 91.15 188 | 90.91 189 | 72.28 168 | 72.06 183 | 87.28 201 | 43.92 275 | 89.04 307 | 73.32 149 | 67.47 255 | 86.67 243 |
|
CHOSEN 280x420 | | | 77.35 195 | 76.95 182 | 78.55 264 | 87.07 215 | 62.68 224 | 69.71 342 | 82.95 329 | 68.80 239 | 71.48 190 | 87.27 202 | 66.03 62 | 84.00 337 | 76.47 132 | 82.81 152 | 88.95 208 |
|
PS-MVSNAJss | | | 77.26 196 | 76.31 190 | 80.13 237 | 80.64 293 | 59.16 279 | 90.63 206 | 91.06 184 | 72.80 153 | 68.58 227 | 84.57 228 | 53.55 202 | 93.96 214 | 72.97 151 | 71.96 226 | 87.27 236 |
|
gg-mvs-nofinetune | | | 77.18 197 | 74.31 214 | 85.80 90 | 91.42 123 | 68.36 70 | 71.78 337 | 94.72 31 | 49.61 341 | 77.12 133 | 45.92 357 | 77.41 8 | 93.98 213 | 67.62 201 | 93.16 57 | 95.05 73 |
|
MVP-Stereo | | | 77.12 198 | 76.23 191 | 79.79 246 | 81.72 284 | 66.34 128 | 89.29 236 | 90.88 190 | 70.56 218 | 62.01 286 | 82.88 243 | 49.34 238 | 94.13 201 | 65.55 225 | 93.80 46 | 78.88 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
X-MVStestdata | | | 76.86 199 | 74.13 219 | 85.05 114 | 93.22 70 | 63.78 195 | 92.92 113 | 92.66 116 | 73.99 125 | 78.18 120 | 10.19 369 | 55.25 180 | 97.41 69 | 79.16 111 | 91.58 79 | 93.95 117 |
|
DU-MVS | | | 76.86 199 | 75.84 196 | 79.91 242 | 82.96 276 | 60.26 263 | 91.26 182 | 91.54 160 | 76.46 93 | 68.88 220 | 86.35 207 | 56.16 171 | 92.13 268 | 66.38 214 | 62.55 289 | 87.35 233 |
|
Anonymous20240529 | | | 76.84 201 | 74.15 218 | 84.88 120 | 91.02 130 | 64.95 168 | 93.84 80 | 91.09 181 | 53.57 331 | 73.00 165 | 87.42 198 | 35.91 315 | 97.32 75 | 69.14 189 | 72.41 224 | 92.36 161 |
|
cl_fuxian | | | 76.83 202 | 75.47 200 | 80.93 225 | 85.02 247 | 64.18 190 | 90.39 210 | 88.11 281 | 71.66 190 | 66.65 251 | 81.64 259 | 63.58 95 | 92.56 254 | 69.31 187 | 62.86 287 | 86.04 260 |
|
WR-MVS | | | 76.76 203 | 75.74 198 | 79.82 245 | 84.60 252 | 62.27 230 | 92.60 125 | 92.51 123 | 76.06 95 | 67.87 236 | 85.34 218 | 56.76 163 | 90.24 296 | 62.20 248 | 63.69 284 | 86.94 240 |
|
v1144 | | | 76.73 204 | 74.88 204 | 82.27 184 | 80.23 300 | 66.60 122 | 91.68 163 | 90.21 214 | 73.69 135 | 69.06 217 | 81.89 254 | 52.73 210 | 94.40 193 | 69.21 188 | 65.23 268 | 85.80 266 |
|
IterMVS-LS | | | 76.49 205 | 75.18 203 | 80.43 230 | 84.49 255 | 62.74 222 | 90.64 204 | 88.80 264 | 72.40 164 | 65.16 259 | 81.72 257 | 60.98 116 | 92.27 266 | 67.74 199 | 64.65 276 | 86.29 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
V42 | | | 76.46 206 | 74.55 210 | 82.19 188 | 79.14 312 | 67.82 85 | 90.26 214 | 89.42 240 | 73.75 133 | 68.63 226 | 81.89 254 | 51.31 221 | 94.09 203 | 71.69 168 | 64.84 272 | 84.66 282 |
|
v148 | | | 76.19 207 | 74.47 212 | 81.36 208 | 80.05 301 | 64.44 178 | 91.75 161 | 90.23 212 | 73.68 136 | 67.13 245 | 80.84 274 | 55.92 177 | 93.86 220 | 68.95 191 | 61.73 300 | 85.76 269 |
|
Effi-MVS+-dtu | | | 76.14 208 | 75.28 202 | 78.72 263 | 83.22 272 | 55.17 313 | 89.87 225 | 87.78 286 | 75.42 102 | 67.98 232 | 81.43 263 | 45.08 270 | 92.52 256 | 75.08 140 | 71.63 227 | 88.48 216 |
|
cl-mvsnet____ | | | 76.07 209 | 74.67 205 | 80.28 233 | 85.15 243 | 61.76 237 | 90.12 217 | 88.73 266 | 71.16 206 | 65.43 256 | 81.57 261 | 61.15 113 | 92.95 235 | 66.54 211 | 62.17 293 | 86.13 258 |
|
cl-mvsnet1 | | | 76.07 209 | 74.67 205 | 80.28 233 | 85.14 244 | 61.75 238 | 90.12 217 | 88.73 266 | 71.16 206 | 65.42 257 | 81.60 260 | 61.15 113 | 92.94 239 | 66.54 211 | 62.16 295 | 86.14 256 |
|
FMVSNet2 | | | 76.07 209 | 74.01 221 | 82.26 186 | 88.85 176 | 67.66 89 | 91.33 179 | 91.61 158 | 70.84 212 | 65.98 253 | 82.25 250 | 48.03 249 | 92.00 272 | 58.46 267 | 68.73 246 | 87.10 237 |
|
v144192 | | | 76.05 212 | 74.03 220 | 82.12 192 | 79.50 306 | 66.55 124 | 91.39 174 | 89.71 234 | 72.30 167 | 68.17 230 | 81.33 266 | 51.75 217 | 94.03 211 | 67.94 197 | 64.19 278 | 85.77 267 |
|
NR-MVSNet | | | 76.05 212 | 74.59 208 | 80.44 229 | 82.96 276 | 62.18 231 | 90.83 198 | 91.73 152 | 77.12 84 | 60.96 289 | 86.35 207 | 59.28 137 | 91.80 275 | 60.74 255 | 61.34 304 | 87.35 233 |
|
v1192 | | | 75.98 214 | 73.92 222 | 82.15 189 | 79.73 302 | 66.24 131 | 91.22 184 | 89.75 228 | 72.67 155 | 68.49 228 | 81.42 264 | 49.86 234 | 94.27 197 | 67.08 205 | 65.02 270 | 85.95 263 |
|
eth_miper_zixun_eth | | | 75.96 215 | 74.40 213 | 80.66 227 | 84.66 251 | 63.02 213 | 89.28 237 | 88.27 278 | 71.88 181 | 65.73 254 | 81.65 258 | 59.45 133 | 92.81 243 | 68.13 195 | 60.53 309 | 86.14 256 |
|
bset_n11_16_dypcd | | | 75.95 216 | 74.16 217 | 81.30 210 | 76.91 331 | 65.14 160 | 88.89 245 | 87.48 289 | 74.30 120 | 69.90 210 | 83.40 239 | 42.16 283 | 92.42 259 | 78.39 120 | 66.03 262 | 86.32 251 |
|
TranMVSNet+NR-MVSNet | | | 75.86 217 | 74.52 211 | 79.89 243 | 82.44 279 | 60.64 259 | 91.37 177 | 91.37 169 | 76.63 90 | 67.65 238 | 86.21 210 | 52.37 213 | 91.55 280 | 61.84 250 | 60.81 307 | 87.48 229 |
|
SCA | | | 75.82 218 | 72.76 233 | 85.01 116 | 86.63 220 | 70.08 32 | 81.06 310 | 89.19 248 | 71.60 196 | 70.01 205 | 77.09 309 | 45.53 267 | 90.25 293 | 60.43 257 | 73.27 215 | 94.68 84 |
|
LPG-MVS_test | | | 75.82 218 | 74.58 209 | 79.56 253 | 84.31 259 | 59.37 276 | 90.44 207 | 89.73 231 | 69.49 229 | 64.86 260 | 88.42 180 | 38.65 293 | 94.30 195 | 72.56 157 | 72.76 219 | 85.01 279 |
|
GBi-Net | | | 75.65 220 | 73.83 223 | 81.10 218 | 88.85 176 | 65.11 161 | 90.01 221 | 90.32 204 | 70.84 212 | 67.04 246 | 80.25 284 | 48.03 249 | 91.54 281 | 59.80 262 | 69.34 240 | 86.64 244 |
|
test1 | | | 75.65 220 | 73.83 223 | 81.10 218 | 88.85 176 | 65.11 161 | 90.01 221 | 90.32 204 | 70.84 212 | 67.04 246 | 80.25 284 | 48.03 249 | 91.54 281 | 59.80 262 | 69.34 240 | 86.64 244 |
|
v1921920 | | | 75.63 222 | 73.49 227 | 82.06 196 | 79.38 307 | 66.35 127 | 91.07 192 | 89.48 237 | 71.98 176 | 67.99 231 | 81.22 269 | 49.16 243 | 93.90 217 | 66.56 210 | 64.56 277 | 85.92 265 |
|
ACMP | | 71.68 10 | 75.58 223 | 74.23 216 | 79.62 251 | 84.97 248 | 59.64 271 | 90.80 199 | 89.07 256 | 70.39 219 | 62.95 279 | 87.30 200 | 38.28 296 | 93.87 218 | 72.89 152 | 71.45 230 | 85.36 275 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v8 | | | 75.35 224 | 73.26 229 | 81.61 204 | 80.67 292 | 66.82 115 | 89.54 231 | 89.27 244 | 71.65 191 | 63.30 277 | 80.30 283 | 54.99 186 | 94.06 206 | 67.33 204 | 62.33 292 | 83.94 287 |
|
tpm cat1 | | | 75.30 225 | 72.21 241 | 84.58 132 | 88.52 182 | 67.77 86 | 78.16 329 | 88.02 283 | 61.88 295 | 68.45 229 | 76.37 315 | 60.65 118 | 94.03 211 | 53.77 283 | 74.11 209 | 91.93 172 |
|
PLC |  | 68.80 14 | 75.23 226 | 73.68 225 | 79.86 244 | 92.93 79 | 58.68 283 | 90.64 204 | 88.30 276 | 60.90 299 | 64.43 268 | 90.53 155 | 42.38 281 | 94.57 184 | 56.52 272 | 76.54 201 | 86.33 250 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v1240 | | | 75.21 227 | 72.98 231 | 81.88 198 | 79.20 309 | 66.00 135 | 90.75 201 | 89.11 254 | 71.63 195 | 67.41 242 | 81.22 269 | 47.36 257 | 93.87 218 | 65.46 226 | 64.72 275 | 85.77 267 |
|
Fast-Effi-MVS+-dtu | | | 75.04 228 | 73.37 228 | 80.07 238 | 80.86 289 | 59.52 274 | 91.20 186 | 85.38 307 | 71.90 179 | 65.20 258 | 84.84 224 | 41.46 284 | 92.97 234 | 66.50 213 | 72.96 218 | 87.73 226 |
|
dp | | | 75.01 229 | 72.09 242 | 83.76 148 | 89.28 167 | 66.22 132 | 79.96 321 | 89.75 228 | 71.16 206 | 67.80 237 | 77.19 308 | 51.81 216 | 92.54 255 | 50.39 291 | 71.44 231 | 92.51 159 |
|
TAPA-MVS | | 70.22 12 | 74.94 230 | 73.53 226 | 79.17 258 | 90.40 144 | 52.07 326 | 89.19 240 | 89.61 235 | 62.69 286 | 70.07 204 | 92.67 123 | 48.89 246 | 94.32 194 | 38.26 341 | 79.97 169 | 91.12 188 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v10 | | | 74.77 231 | 72.54 238 | 81.46 206 | 80.33 298 | 66.71 119 | 89.15 241 | 89.08 255 | 70.94 210 | 63.08 278 | 79.86 288 | 52.52 211 | 94.04 209 | 65.70 222 | 62.17 293 | 83.64 289 |
|
XVG-OURS-SEG-HR | | | 74.70 232 | 73.08 230 | 79.57 252 | 78.25 322 | 57.33 300 | 80.49 312 | 87.32 291 | 63.22 280 | 68.76 224 | 90.12 167 | 44.89 272 | 91.59 279 | 70.55 177 | 74.09 210 | 89.79 201 |
|
ACMM | | 69.62 13 | 74.34 233 | 72.73 234 | 79.17 258 | 84.25 261 | 57.87 290 | 90.36 211 | 89.93 223 | 63.17 281 | 65.64 255 | 86.04 213 | 37.79 303 | 94.10 202 | 65.89 219 | 71.52 229 | 85.55 272 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 74.31 234 | 72.30 240 | 80.32 231 | 91.49 122 | 61.66 239 | 90.85 197 | 80.72 335 | 56.67 324 | 63.85 272 | 90.64 152 | 46.75 259 | 90.84 288 | 53.79 282 | 75.99 204 | 88.47 218 |
|
XVG-OURS | | | 74.25 235 | 72.46 239 | 79.63 250 | 78.45 321 | 57.59 295 | 80.33 314 | 87.39 290 | 63.86 275 | 68.76 224 | 89.62 171 | 40.50 287 | 91.72 277 | 69.00 190 | 74.25 208 | 89.58 204 |
|
CVMVSNet | | | 74.04 236 | 74.27 215 | 73.33 308 | 85.33 240 | 43.94 353 | 89.53 232 | 88.39 274 | 54.33 330 | 70.37 200 | 90.13 165 | 49.17 242 | 84.05 335 | 61.83 251 | 79.36 173 | 91.99 171 |
|
Baseline_NR-MVSNet | | | 73.99 237 | 72.83 232 | 77.48 276 | 80.78 290 | 59.29 278 | 91.79 156 | 84.55 316 | 68.85 238 | 68.99 218 | 80.70 275 | 56.16 171 | 92.04 271 | 62.67 245 | 60.98 306 | 81.11 319 |
|
pmmvs4 | | | 73.92 238 | 71.81 245 | 80.25 235 | 79.17 310 | 65.24 155 | 87.43 267 | 87.26 293 | 67.64 250 | 63.46 275 | 83.91 234 | 48.96 245 | 91.53 284 | 62.94 242 | 65.49 264 | 83.96 286 |
|
D2MVS | | | 73.80 239 | 72.02 243 | 79.15 260 | 79.15 311 | 62.97 214 | 88.58 251 | 90.07 217 | 72.94 149 | 59.22 297 | 78.30 297 | 42.31 282 | 92.70 249 | 65.59 224 | 72.00 225 | 81.79 316 |
|
CR-MVSNet | | | 73.79 240 | 70.82 252 | 82.70 172 | 83.15 274 | 67.96 81 | 70.25 339 | 84.00 321 | 73.67 137 | 69.97 207 | 72.41 330 | 57.82 149 | 89.48 304 | 52.99 286 | 73.13 216 | 90.64 193 |
|
test_djsdf | | | 73.76 241 | 72.56 237 | 77.39 278 | 77.00 330 | 53.93 318 | 89.07 243 | 90.69 193 | 65.80 262 | 63.92 270 | 82.03 253 | 43.14 279 | 92.67 250 | 72.83 153 | 68.53 247 | 85.57 271 |
|
pmmvs5 | | | 73.35 242 | 71.52 247 | 78.86 262 | 78.64 319 | 60.61 260 | 91.08 190 | 86.90 294 | 67.69 247 | 63.32 276 | 83.64 235 | 44.33 274 | 90.53 290 | 62.04 249 | 66.02 263 | 85.46 273 |
|
Anonymous20231211 | | | 73.08 243 | 70.39 254 | 81.13 216 | 90.62 140 | 63.33 207 | 91.40 172 | 90.06 220 | 51.84 335 | 64.46 267 | 80.67 277 | 36.49 313 | 94.07 205 | 63.83 236 | 64.17 279 | 85.98 262 |
|
miper_lstm_enhance | | | 73.05 244 | 71.73 246 | 77.03 282 | 83.80 265 | 58.32 287 | 81.76 302 | 88.88 261 | 69.80 227 | 61.01 288 | 78.23 299 | 57.19 154 | 87.51 322 | 65.34 227 | 59.53 314 | 85.27 278 |
|
jajsoiax | | | 73.05 244 | 71.51 248 | 77.67 273 | 77.46 327 | 54.83 314 | 88.81 247 | 90.04 221 | 69.13 236 | 62.85 281 | 83.51 237 | 31.16 331 | 92.75 246 | 70.83 172 | 69.80 236 | 85.43 274 |
|
LCM-MVSNet-Re | | | 72.93 246 | 71.84 244 | 76.18 291 | 88.49 183 | 48.02 343 | 80.07 319 | 70.17 355 | 73.96 128 | 52.25 325 | 80.09 287 | 49.98 232 | 88.24 313 | 67.35 202 | 84.23 146 | 92.28 165 |
|
pm-mvs1 | | | 72.89 247 | 71.09 250 | 78.26 268 | 79.10 313 | 57.62 294 | 90.80 199 | 89.30 243 | 67.66 248 | 62.91 280 | 81.78 256 | 49.11 244 | 92.95 235 | 60.29 259 | 58.89 317 | 84.22 285 |
|
tpmvs | | | 72.88 248 | 69.76 260 | 82.22 187 | 90.98 131 | 67.05 108 | 78.22 328 | 88.30 276 | 63.10 282 | 64.35 269 | 74.98 322 | 55.09 185 | 94.27 197 | 43.25 321 | 69.57 239 | 85.34 276 |
|
test0.0.03 1 | | | 72.76 249 | 72.71 235 | 72.88 312 | 80.25 299 | 47.99 344 | 91.22 184 | 89.45 238 | 71.51 200 | 62.51 284 | 87.66 194 | 53.83 198 | 85.06 332 | 50.16 292 | 67.84 254 | 85.58 270 |
|
UniMVSNet_ETH3D | | | 72.74 250 | 70.53 253 | 79.36 255 | 78.62 320 | 56.64 304 | 85.01 281 | 89.20 247 | 63.77 276 | 64.84 262 | 84.44 229 | 34.05 320 | 91.86 274 | 63.94 235 | 70.89 234 | 89.57 205 |
|
mvs_tets | | | 72.71 251 | 71.11 249 | 77.52 274 | 77.41 328 | 54.52 316 | 88.45 254 | 89.76 227 | 68.76 241 | 62.70 282 | 83.26 241 | 29.49 335 | 92.71 247 | 70.51 178 | 69.62 238 | 85.34 276 |
|
FMVSNet1 | | | 72.71 251 | 69.91 258 | 81.10 218 | 83.60 269 | 65.11 161 | 90.01 221 | 90.32 204 | 63.92 274 | 63.56 274 | 80.25 284 | 36.35 314 | 91.54 281 | 54.46 279 | 66.75 259 | 86.64 244 |
|
IterMVS | | | 72.65 253 | 70.83 251 | 78.09 270 | 82.17 280 | 62.96 215 | 87.64 265 | 86.28 298 | 71.56 198 | 60.44 291 | 78.85 295 | 45.42 269 | 86.66 326 | 63.30 240 | 61.83 297 | 84.65 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchMatch-RL | | | 72.06 254 | 69.98 255 | 78.28 267 | 89.51 162 | 55.70 310 | 83.49 290 | 83.39 327 | 61.24 298 | 63.72 273 | 82.76 244 | 34.77 318 | 93.03 233 | 53.37 285 | 77.59 188 | 86.12 259 |
|
PVSNet_0 | | 68.08 15 | 71.81 255 | 68.32 267 | 82.27 184 | 84.68 250 | 62.31 229 | 88.68 249 | 90.31 207 | 75.84 97 | 57.93 308 | 80.65 278 | 37.85 302 | 94.19 200 | 69.94 180 | 29.05 361 | 90.31 196 |
|
MIMVSNet | | | 71.64 256 | 68.44 265 | 81.23 212 | 81.97 283 | 64.44 178 | 73.05 336 | 88.80 264 | 69.67 228 | 64.59 263 | 74.79 323 | 32.79 323 | 87.82 317 | 53.99 281 | 76.35 202 | 91.42 179 |
|
IterMVS-SCA-FT | | | 71.55 257 | 69.97 256 | 76.32 289 | 81.48 285 | 60.67 258 | 87.64 265 | 85.99 303 | 66.17 260 | 59.50 295 | 78.88 294 | 45.53 267 | 83.65 339 | 62.58 246 | 61.93 296 | 84.63 284 |
|
v7n | | | 71.31 258 | 68.65 263 | 79.28 256 | 76.40 333 | 60.77 254 | 86.71 275 | 89.45 238 | 64.17 273 | 58.77 302 | 78.24 298 | 44.59 273 | 93.54 224 | 57.76 268 | 61.75 299 | 83.52 292 |
|
anonymousdsp | | | 71.14 259 | 69.37 261 | 76.45 288 | 72.95 342 | 54.71 315 | 84.19 285 | 88.88 261 | 61.92 294 | 62.15 285 | 79.77 289 | 38.14 298 | 91.44 286 | 68.90 192 | 67.45 256 | 83.21 298 |
|
F-COLMAP | | | 70.66 260 | 68.44 265 | 77.32 279 | 86.37 226 | 55.91 308 | 88.00 258 | 86.32 297 | 56.94 322 | 57.28 311 | 88.07 189 | 33.58 321 | 92.49 257 | 51.02 289 | 68.37 248 | 83.55 290 |
|
WR-MVS_H | | | 70.59 261 | 69.94 257 | 72.53 314 | 81.03 288 | 51.43 329 | 87.35 268 | 92.03 140 | 67.38 251 | 60.23 292 | 80.70 275 | 55.84 178 | 83.45 341 | 46.33 311 | 58.58 319 | 82.72 304 |
|
CP-MVSNet | | | 70.50 262 | 69.91 258 | 72.26 317 | 80.71 291 | 51.00 332 | 87.23 269 | 90.30 208 | 67.84 245 | 59.64 294 | 82.69 245 | 50.23 231 | 82.30 349 | 51.28 288 | 59.28 315 | 83.46 294 |
|
RPMNet | | | 70.42 263 | 65.68 279 | 84.63 131 | 83.15 274 | 67.96 81 | 70.25 339 | 90.45 198 | 46.83 349 | 69.97 207 | 65.10 347 | 56.48 170 | 95.30 167 | 35.79 346 | 73.13 216 | 90.64 193 |
|
tfpnnormal | | | 70.10 264 | 67.36 270 | 78.32 266 | 83.45 271 | 60.97 250 | 88.85 246 | 92.77 111 | 64.85 269 | 60.83 290 | 78.53 296 | 43.52 278 | 93.48 226 | 31.73 357 | 61.70 301 | 80.52 326 |
|
TransMVSNet (Re) | | | 70.07 265 | 67.66 269 | 77.31 280 | 80.62 294 | 59.13 280 | 91.78 158 | 84.94 312 | 65.97 261 | 60.08 293 | 80.44 280 | 50.78 225 | 91.87 273 | 48.84 298 | 45.46 345 | 80.94 321 |
|
CL-MVSNet_2432*1600 | | | 69.92 266 | 68.09 268 | 75.41 294 | 73.25 341 | 55.90 309 | 90.05 220 | 89.90 224 | 69.96 224 | 61.96 287 | 76.54 312 | 51.05 224 | 87.64 319 | 49.51 296 | 50.59 338 | 82.70 306 |
|
DP-MVS | | | 69.90 267 | 66.48 273 | 80.14 236 | 95.36 29 | 62.93 216 | 89.56 229 | 76.11 342 | 50.27 340 | 57.69 309 | 85.23 219 | 39.68 289 | 95.73 143 | 33.35 351 | 71.05 233 | 81.78 317 |
|
PS-CasMVS | | | 69.86 268 | 69.13 262 | 72.07 320 | 80.35 297 | 50.57 334 | 87.02 271 | 89.75 228 | 67.27 252 | 59.19 298 | 82.28 249 | 46.58 261 | 82.24 350 | 50.69 290 | 59.02 316 | 83.39 296 |
|
MSDG | | | 69.54 269 | 65.73 278 | 80.96 223 | 85.11 246 | 63.71 199 | 84.19 285 | 83.28 328 | 56.95 321 | 54.50 316 | 84.03 231 | 31.50 329 | 96.03 132 | 42.87 325 | 69.13 243 | 83.14 300 |
|
PEN-MVS | | | 69.46 270 | 68.56 264 | 72.17 319 | 79.27 308 | 49.71 338 | 86.90 273 | 89.24 245 | 67.24 255 | 59.08 299 | 82.51 248 | 47.23 258 | 83.54 340 | 48.42 300 | 57.12 320 | 83.25 297 |
|
LS3D | | | 69.17 271 | 66.40 274 | 77.50 275 | 91.92 107 | 56.12 307 | 85.12 280 | 80.37 336 | 46.96 347 | 56.50 313 | 87.51 197 | 37.25 306 | 93.71 221 | 32.52 356 | 79.40 172 | 82.68 307 |
|
PatchT | | | 69.11 272 | 65.37 283 | 80.32 231 | 82.07 282 | 63.68 201 | 67.96 348 | 87.62 288 | 50.86 338 | 69.37 212 | 65.18 346 | 57.09 155 | 88.53 311 | 41.59 330 | 66.60 260 | 88.74 212 |
|
KD-MVS_2432*1600 | | | 69.03 273 | 66.37 275 | 77.01 283 | 85.56 238 | 61.06 248 | 81.44 307 | 90.25 210 | 67.27 252 | 58.00 306 | 76.53 313 | 54.49 190 | 87.63 320 | 48.04 302 | 35.77 356 | 82.34 310 |
|
miper_refine_blended | | | 69.03 273 | 66.37 275 | 77.01 283 | 85.56 238 | 61.06 248 | 81.44 307 | 90.25 210 | 67.27 252 | 58.00 306 | 76.53 313 | 54.49 190 | 87.63 320 | 48.04 302 | 35.77 356 | 82.34 310 |
|
MVS_0304 | | | 68.99 275 | 67.23 272 | 74.28 303 | 80.36 296 | 52.54 323 | 87.01 272 | 86.36 296 | 59.89 308 | 66.22 252 | 73.56 326 | 24.25 345 | 88.03 315 | 57.34 271 | 70.11 235 | 82.27 312 |
|
ACMH | | 63.93 17 | 68.62 276 | 64.81 284 | 80.03 239 | 85.22 242 | 63.25 208 | 87.72 263 | 84.66 315 | 60.83 300 | 51.57 328 | 79.43 293 | 27.29 341 | 94.96 172 | 41.76 328 | 64.84 272 | 81.88 315 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EG-PatchMatch MVS | | | 68.55 277 | 65.41 282 | 77.96 271 | 78.69 318 | 62.93 216 | 89.86 226 | 89.17 249 | 60.55 301 | 50.27 333 | 77.73 303 | 22.60 350 | 94.06 206 | 47.18 308 | 72.65 221 | 76.88 345 |
|
ADS-MVSNet | | | 68.54 278 | 64.38 291 | 81.03 222 | 88.06 196 | 66.90 113 | 68.01 346 | 84.02 320 | 57.57 316 | 64.48 265 | 69.87 339 | 38.68 291 | 89.21 306 | 40.87 332 | 67.89 252 | 86.97 238 |
|
DTE-MVSNet | | | 68.46 279 | 67.33 271 | 71.87 322 | 77.94 325 | 49.00 341 | 86.16 278 | 88.58 272 | 66.36 259 | 58.19 303 | 82.21 251 | 46.36 262 | 83.87 338 | 44.97 318 | 55.17 327 | 82.73 303 |
|
our_test_3 | | | 68.29 280 | 64.69 286 | 79.11 261 | 78.92 314 | 64.85 170 | 88.40 255 | 85.06 310 | 60.32 304 | 52.68 323 | 76.12 317 | 40.81 286 | 89.80 303 | 44.25 320 | 55.65 325 | 82.67 308 |
|
Patchmatch-RL test | | | 68.17 281 | 64.49 289 | 79.19 257 | 71.22 346 | 53.93 318 | 70.07 341 | 71.54 354 | 69.22 233 | 56.79 312 | 62.89 349 | 56.58 168 | 88.61 308 | 69.53 184 | 52.61 333 | 95.03 76 |
|
XVG-ACMP-BASELINE | | | 68.04 282 | 65.53 281 | 75.56 293 | 74.06 340 | 52.37 324 | 78.43 325 | 85.88 304 | 62.03 292 | 58.91 301 | 81.21 271 | 20.38 354 | 91.15 287 | 60.69 256 | 68.18 249 | 83.16 299 |
|
FMVSNet5 | | | 68.04 282 | 65.66 280 | 75.18 296 | 84.43 257 | 57.89 289 | 83.54 289 | 86.26 299 | 61.83 296 | 53.64 321 | 73.30 327 | 37.15 309 | 85.08 331 | 48.99 297 | 61.77 298 | 82.56 309 |
|
ppachtmachnet_test | | | 67.72 284 | 63.70 293 | 79.77 247 | 78.92 314 | 66.04 134 | 88.68 249 | 82.90 330 | 60.11 306 | 55.45 314 | 75.96 318 | 39.19 290 | 90.55 289 | 39.53 336 | 52.55 334 | 82.71 305 |
|
ACMH+ | | 65.35 16 | 67.65 285 | 64.55 287 | 76.96 285 | 84.59 253 | 57.10 302 | 88.08 257 | 80.79 334 | 58.59 315 | 53.00 322 | 81.09 273 | 26.63 343 | 92.95 235 | 46.51 309 | 61.69 302 | 80.82 322 |
|
pmmvs6 | | | 67.57 286 | 64.76 285 | 76.00 292 | 72.82 344 | 53.37 320 | 88.71 248 | 86.78 295 | 53.19 332 | 57.58 310 | 78.03 301 | 35.33 317 | 92.41 260 | 55.56 276 | 54.88 329 | 82.21 313 |
|
Anonymous20231206 | | | 67.53 287 | 65.78 277 | 72.79 313 | 74.95 337 | 47.59 346 | 88.23 256 | 87.32 291 | 61.75 297 | 58.07 305 | 77.29 306 | 37.79 303 | 87.29 324 | 42.91 323 | 63.71 283 | 83.48 293 |
|
Patchmtry | | | 67.53 287 | 63.93 292 | 78.34 265 | 82.12 281 | 64.38 182 | 68.72 343 | 84.00 321 | 48.23 346 | 59.24 296 | 72.41 330 | 57.82 149 | 89.27 305 | 46.10 312 | 56.68 324 | 81.36 318 |
|
USDC | | | 67.43 289 | 64.51 288 | 76.19 290 | 77.94 325 | 55.29 312 | 78.38 326 | 85.00 311 | 73.17 144 | 48.36 339 | 80.37 281 | 21.23 352 | 92.48 258 | 52.15 287 | 64.02 281 | 80.81 323 |
|
ADS-MVSNet2 | | | 66.90 290 | 63.44 295 | 77.26 281 | 88.06 196 | 60.70 257 | 68.01 346 | 75.56 345 | 57.57 316 | 64.48 265 | 69.87 339 | 38.68 291 | 84.10 334 | 40.87 332 | 67.89 252 | 86.97 238 |
|
CMPMVS |  | 48.56 21 | 66.77 291 | 64.41 290 | 73.84 305 | 70.65 349 | 50.31 335 | 77.79 330 | 85.73 306 | 45.54 350 | 44.76 348 | 82.14 252 | 35.40 316 | 90.14 299 | 63.18 241 | 74.54 207 | 81.07 320 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 61.12 18 | 66.39 292 | 62.92 298 | 76.80 287 | 76.51 332 | 57.77 291 | 89.22 238 | 83.41 326 | 55.48 328 | 53.86 320 | 77.84 302 | 26.28 344 | 93.95 215 | 34.90 348 | 68.76 245 | 78.68 340 |
|
LTVRE_ROB | | 59.60 19 | 66.27 293 | 63.54 294 | 74.45 300 | 84.00 264 | 51.55 328 | 67.08 349 | 83.53 324 | 58.78 313 | 54.94 315 | 80.31 282 | 34.54 319 | 93.23 230 | 40.64 334 | 68.03 250 | 78.58 341 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
JIA-IIPM | | | 66.06 294 | 62.45 301 | 76.88 286 | 81.42 287 | 54.45 317 | 57.49 357 | 88.67 268 | 49.36 342 | 63.86 271 | 46.86 356 | 56.06 174 | 90.25 293 | 49.53 295 | 68.83 244 | 85.95 263 |
|
Patchmatch-test | | | 65.86 295 | 60.94 307 | 80.62 228 | 83.75 266 | 58.83 281 | 58.91 356 | 75.26 347 | 44.50 353 | 50.95 332 | 77.09 309 | 58.81 142 | 87.90 316 | 35.13 347 | 64.03 280 | 95.12 70 |
|
UnsupCasMVSNet_eth | | | 65.79 296 | 63.10 296 | 73.88 304 | 70.71 348 | 50.29 336 | 81.09 309 | 89.88 225 | 72.58 157 | 49.25 337 | 74.77 324 | 32.57 325 | 87.43 323 | 55.96 275 | 41.04 351 | 83.90 288 |
|
pmmvs-eth3d | | | 65.53 297 | 62.32 302 | 75.19 295 | 69.39 352 | 59.59 272 | 82.80 299 | 83.43 325 | 62.52 288 | 51.30 330 | 72.49 328 | 32.86 322 | 87.16 325 | 55.32 277 | 50.73 337 | 78.83 339 |
|
SixPastTwentyTwo | | | 64.92 298 | 61.78 305 | 74.34 302 | 78.74 317 | 49.76 337 | 83.42 293 | 79.51 339 | 62.86 283 | 50.27 333 | 77.35 304 | 30.92 333 | 90.49 291 | 45.89 313 | 47.06 343 | 82.78 301 |
|
OurMVSNet-221017-0 | | | 64.68 299 | 62.17 303 | 72.21 318 | 76.08 336 | 47.35 347 | 80.67 311 | 81.02 333 | 56.19 325 | 51.60 327 | 79.66 291 | 27.05 342 | 88.56 310 | 53.60 284 | 53.63 332 | 80.71 324 |
|
test_0402 | | | 64.54 300 | 61.09 306 | 74.92 297 | 84.10 263 | 60.75 255 | 87.95 259 | 79.71 338 | 52.03 334 | 52.41 324 | 77.20 307 | 32.21 327 | 91.64 278 | 23.14 360 | 61.03 305 | 72.36 352 |
|
testgi | | | 64.48 301 | 62.87 299 | 69.31 327 | 71.24 345 | 40.62 357 | 85.49 279 | 79.92 337 | 65.36 266 | 54.18 318 | 83.49 238 | 23.74 348 | 84.55 333 | 41.60 329 | 60.79 308 | 82.77 302 |
|
RPSCF | | | 64.24 302 | 61.98 304 | 71.01 324 | 76.10 335 | 45.00 350 | 75.83 333 | 75.94 343 | 46.94 348 | 58.96 300 | 84.59 227 | 31.40 330 | 82.00 351 | 47.76 306 | 60.33 313 | 86.04 260 |
|
EU-MVSNet | | | 64.01 303 | 63.01 297 | 67.02 334 | 74.40 339 | 38.86 362 | 83.27 294 | 86.19 301 | 45.11 351 | 54.27 317 | 81.15 272 | 36.91 312 | 80.01 354 | 48.79 299 | 57.02 321 | 82.19 314 |
|
test20.03 | | | 63.83 304 | 62.65 300 | 67.38 333 | 70.58 350 | 39.94 358 | 86.57 276 | 84.17 318 | 63.29 279 | 51.86 326 | 77.30 305 | 37.09 310 | 82.47 347 | 38.87 340 | 54.13 331 | 79.73 332 |
|
MDA-MVSNet_test_wron | | | 63.78 305 | 60.16 308 | 74.64 298 | 78.15 323 | 60.41 261 | 83.49 290 | 84.03 319 | 56.17 327 | 39.17 356 | 71.59 336 | 37.22 307 | 83.24 344 | 42.87 325 | 48.73 340 | 80.26 329 |
|
YYNet1 | | | 63.76 306 | 60.14 309 | 74.62 299 | 78.06 324 | 60.19 266 | 83.46 292 | 83.99 323 | 56.18 326 | 39.25 355 | 71.56 337 | 37.18 308 | 83.34 342 | 42.90 324 | 48.70 341 | 80.32 328 |
|
K. test v3 | | | 63.09 307 | 59.61 311 | 73.53 307 | 76.26 334 | 49.38 340 | 83.27 294 | 77.15 341 | 64.35 271 | 47.77 341 | 72.32 332 | 28.73 337 | 87.79 318 | 49.93 294 | 36.69 355 | 83.41 295 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 308 | 59.65 310 | 72.98 311 | 81.44 286 | 53.00 322 | 83.75 288 | 75.53 346 | 48.34 345 | 48.81 338 | 81.40 265 | 24.14 346 | 90.30 292 | 32.95 353 | 60.52 310 | 75.65 348 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Anonymous20240521 | | | 62.09 309 | 59.08 312 | 71.10 323 | 67.19 354 | 48.72 342 | 83.91 287 | 85.23 309 | 50.38 339 | 47.84 340 | 71.22 338 | 20.74 353 | 85.51 330 | 46.47 310 | 58.75 318 | 79.06 337 |
|
AllTest | | | 61.66 310 | 58.06 314 | 72.46 315 | 79.57 303 | 51.42 330 | 80.17 317 | 68.61 357 | 51.25 336 | 45.88 343 | 81.23 267 | 19.86 355 | 86.58 327 | 38.98 338 | 57.01 322 | 79.39 334 |
|
UnsupCasMVSNet_bld | | | 61.60 311 | 57.71 315 | 73.29 309 | 68.73 353 | 51.64 327 | 78.61 324 | 89.05 257 | 57.20 320 | 46.11 342 | 61.96 350 | 28.70 338 | 88.60 309 | 50.08 293 | 38.90 353 | 79.63 333 |
|
MDA-MVSNet-bldmvs | | | 61.54 312 | 57.70 316 | 73.05 310 | 79.53 305 | 57.00 303 | 83.08 297 | 81.23 332 | 57.57 316 | 34.91 358 | 72.45 329 | 32.79 323 | 86.26 329 | 35.81 345 | 41.95 349 | 75.89 347 |
|
DIV-MVS_2432*1600 | | | 60.87 313 | 58.60 313 | 67.68 331 | 66.13 355 | 39.93 359 | 75.63 334 | 84.70 314 | 57.32 319 | 49.57 336 | 68.45 342 | 29.55 334 | 82.87 345 | 48.09 301 | 47.94 342 | 80.25 330 |
|
TinyColmap | | | 60.32 314 | 56.42 320 | 72.00 321 | 78.78 316 | 53.18 321 | 78.36 327 | 75.64 344 | 52.30 333 | 41.59 354 | 75.82 320 | 14.76 360 | 88.35 312 | 35.84 344 | 54.71 330 | 74.46 349 |
|
MVS-HIRNet | | | 60.25 315 | 55.55 321 | 74.35 301 | 84.37 258 | 56.57 305 | 71.64 338 | 74.11 348 | 34.44 358 | 45.54 347 | 42.24 360 | 31.11 332 | 89.81 301 | 40.36 335 | 76.10 203 | 76.67 346 |
|
MIMVSNet1 | | | 60.16 316 | 57.33 317 | 68.67 328 | 69.71 351 | 44.13 352 | 78.92 323 | 84.21 317 | 55.05 329 | 44.63 349 | 71.85 334 | 23.91 347 | 81.54 353 | 32.63 355 | 55.03 328 | 80.35 327 |
|
PM-MVS | | | 59.40 317 | 56.59 318 | 67.84 329 | 63.63 357 | 41.86 354 | 76.76 331 | 63.22 363 | 59.01 312 | 51.07 331 | 72.27 333 | 11.72 362 | 83.25 343 | 61.34 252 | 50.28 339 | 78.39 342 |
|
new-patchmatchnet | | | 59.30 318 | 56.48 319 | 67.79 330 | 65.86 356 | 44.19 351 | 82.47 300 | 81.77 331 | 59.94 307 | 43.65 352 | 66.20 345 | 27.67 340 | 81.68 352 | 39.34 337 | 41.40 350 | 77.50 344 |
|
DSMNet-mixed | | | 56.78 319 | 54.44 322 | 63.79 336 | 63.21 358 | 29.44 366 | 64.43 351 | 64.10 362 | 42.12 355 | 51.32 329 | 71.60 335 | 31.76 328 | 75.04 356 | 36.23 343 | 65.20 269 | 86.87 241 |
|
pmmvs3 | | | 55.51 320 | 51.50 325 | 67.53 332 | 57.90 363 | 50.93 333 | 80.37 313 | 73.66 349 | 40.63 356 | 44.15 351 | 64.75 348 | 16.30 357 | 78.97 355 | 44.77 319 | 40.98 352 | 72.69 350 |
|
TDRefinement | | | 55.28 321 | 51.58 324 | 66.39 335 | 59.53 362 | 46.15 349 | 76.23 332 | 72.80 350 | 44.60 352 | 42.49 353 | 76.28 316 | 15.29 358 | 82.39 348 | 33.20 352 | 43.75 347 | 70.62 354 |
|
LF4IMVS | | | 54.01 322 | 52.12 323 | 59.69 337 | 62.41 360 | 39.91 360 | 68.59 344 | 68.28 359 | 42.96 354 | 44.55 350 | 75.18 321 | 14.09 361 | 68.39 359 | 41.36 331 | 51.68 335 | 70.78 353 |
|
N_pmnet | | | 50.55 323 | 49.11 326 | 54.88 340 | 77.17 329 | 4.02 376 | 84.36 284 | 2.00 375 | 48.59 343 | 45.86 345 | 68.82 341 | 32.22 326 | 82.80 346 | 31.58 358 | 51.38 336 | 77.81 343 |
|
new_pmnet | | | 49.31 324 | 46.44 327 | 57.93 338 | 62.84 359 | 40.74 356 | 68.47 345 | 62.96 364 | 36.48 357 | 35.09 357 | 57.81 352 | 14.97 359 | 72.18 357 | 32.86 354 | 46.44 344 | 60.88 358 |
|
FPMVS | | | 45.64 325 | 43.10 328 | 53.23 342 | 51.42 366 | 36.46 363 | 64.97 350 | 71.91 352 | 29.13 360 | 27.53 360 | 61.55 351 | 9.83 364 | 65.01 363 | 16.00 363 | 55.58 326 | 58.22 359 |
|
LCM-MVSNet | | | 40.54 326 | 35.79 329 | 54.76 341 | 36.92 371 | 30.81 365 | 51.41 358 | 69.02 356 | 22.07 362 | 24.63 361 | 45.37 358 | 4.56 371 | 65.81 361 | 33.67 350 | 34.50 358 | 67.67 355 |
|
ANet_high | | | 40.27 327 | 35.20 330 | 55.47 339 | 34.74 372 | 34.47 364 | 63.84 352 | 71.56 353 | 48.42 344 | 18.80 364 | 41.08 361 | 9.52 365 | 64.45 364 | 20.18 361 | 8.66 368 | 67.49 356 |
|
test_method | | | 38.59 328 | 35.16 331 | 48.89 344 | 54.33 364 | 21.35 371 | 45.32 361 | 53.71 366 | 7.41 368 | 28.74 359 | 51.62 354 | 8.70 366 | 52.87 365 | 33.73 349 | 32.89 359 | 72.47 351 |
|
PMMVS2 | | | 37.93 329 | 33.61 332 | 50.92 343 | 46.31 368 | 24.76 369 | 60.55 355 | 50.05 367 | 28.94 361 | 20.93 362 | 47.59 355 | 4.41 372 | 65.13 362 | 25.14 359 | 18.55 363 | 62.87 357 |
|
Gipuma |  | | 34.91 330 | 31.44 333 | 45.30 345 | 70.99 347 | 39.64 361 | 19.85 365 | 72.56 351 | 20.10 364 | 16.16 366 | 21.47 366 | 5.08 370 | 71.16 358 | 13.07 364 | 43.70 348 | 25.08 363 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 26.43 22 | 31.84 331 | 28.16 334 | 42.89 346 | 25.87 374 | 27.58 367 | 50.92 359 | 49.78 368 | 21.37 363 | 14.17 367 | 40.81 362 | 2.01 373 | 66.62 360 | 9.61 366 | 38.88 354 | 34.49 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 24.61 332 | 24.00 336 | 26.45 349 | 43.74 369 | 18.44 373 | 60.86 353 | 39.66 369 | 15.11 365 | 9.53 369 | 22.10 365 | 6.52 368 | 46.94 367 | 8.31 367 | 10.14 365 | 13.98 365 |
|
MVE |  | 24.84 23 | 24.35 333 | 19.77 339 | 38.09 347 | 34.56 373 | 26.92 368 | 26.57 363 | 38.87 371 | 11.73 367 | 11.37 368 | 27.44 363 | 1.37 374 | 50.42 366 | 11.41 365 | 14.60 364 | 36.93 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 23.76 334 | 23.20 338 | 25.46 350 | 41.52 370 | 16.90 374 | 60.56 354 | 38.79 372 | 14.62 366 | 8.99 370 | 20.24 368 | 7.35 367 | 45.82 368 | 7.25 368 | 9.46 366 | 13.64 366 |
|
tmp_tt | | | 22.26 335 | 23.75 337 | 17.80 351 | 5.23 375 | 12.06 375 | 35.26 362 | 39.48 370 | 2.82 370 | 18.94 363 | 44.20 359 | 22.23 351 | 24.64 370 | 36.30 342 | 9.31 367 | 16.69 364 |
|
cdsmvs_eth3d_5k | | | 19.86 336 | 26.47 335 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 93.45 83 | 0.00 373 | 0.00 374 | 95.27 50 | 49.56 236 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
wuyk23d | | | 11.30 337 | 10.95 340 | 12.33 352 | 48.05 367 | 19.89 372 | 25.89 364 | 1.92 376 | 3.58 369 | 3.12 371 | 1.37 370 | 0.64 375 | 15.77 371 | 6.23 369 | 7.77 369 | 1.35 367 |
|
ab-mvs-re | | | 7.91 338 | 10.55 341 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 94.95 62 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
testmvs | | | 7.23 339 | 9.62 342 | 0.06 354 | 0.04 376 | 0.02 378 | 84.98 282 | 0.02 377 | 0.03 371 | 0.18 372 | 1.21 371 | 0.01 377 | 0.02 372 | 0.14 370 | 0.01 370 | 0.13 369 |
|
test123 | | | 6.92 340 | 9.21 343 | 0.08 353 | 0.03 377 | 0.05 377 | 81.65 305 | 0.01 378 | 0.02 372 | 0.14 373 | 0.85 372 | 0.03 376 | 0.02 372 | 0.12 371 | 0.00 371 | 0.16 368 |
|
pcd_1.5k_mvsjas | | | 4.46 341 | 5.95 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 53.55 202 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 371 | 0.00 370 |
|
FOURS1 | | | | | | 93.95 51 | 61.77 236 | 93.96 67 | 91.92 144 | 62.14 291 | 86.57 34 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
PC_three_1452 | | | | | | | | | | 80.91 36 | 94.07 2 | 96.83 14 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
No_MVS | | | | | 89.60 9 | 97.31 4 | 73.22 11 | | 95.05 20 | | | | | 99.07 13 | 92.01 11 | 94.77 25 | 96.51 20 |
|
test_one_0601 | | | | | | 96.32 20 | 69.74 43 | | 94.18 55 | 71.42 203 | 90.67 14 | 96.85 12 | 74.45 18 | | | | |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 96.63 11 | 65.50 150 | | 93.50 81 | 70.74 216 | 85.26 52 | 95.19 56 | 64.92 77 | 97.29 77 | 87.51 44 | 93.01 59 | |
|
RE-MVS-def | | | | 80.48 125 | | 92.02 101 | 58.56 284 | 90.90 194 | 90.45 198 | 62.76 284 | 78.89 112 | 94.46 76 | 49.30 239 | | 78.77 117 | 86.77 122 | 92.28 165 |
|
IU-MVS | | | | | | 96.46 13 | 69.91 38 | | 95.18 13 | 80.75 37 | 95.28 1 | | | | 92.34 7 | 95.36 14 | 96.47 24 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 13 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_241102_TWO | | | | | | | | | 94.41 45 | 71.65 191 | 92.07 6 | 97.21 5 | 74.58 16 | 99.11 6 | 92.34 7 | 95.36 14 | 96.59 15 |
|
test_241102_ONE | | | | | | 96.45 14 | 69.38 48 | | 94.44 42 | 71.65 191 | 92.11 4 | 97.05 8 | 76.79 9 | 99.11 6 | | | |
|
9.14 | | | | 87.63 25 | | 93.86 53 | | 94.41 50 | 94.18 55 | 72.76 154 | 86.21 37 | 96.51 19 | 66.64 57 | 97.88 49 | 90.08 23 | 94.04 41 | |
|
save fliter | | | | | | 93.84 54 | 67.89 83 | 95.05 39 | 92.66 116 | 78.19 67 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 72.48 160 | 90.55 15 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 15 | 94.99 17 | 96.43 26 |
|
test_0728_SECOND | | | | | 88.70 16 | 96.45 14 | 70.43 28 | 96.64 8 | 94.37 49 | | | | | 99.15 2 | 91.91 13 | 94.90 21 | 96.51 20 |
|
test0726 | | | | | | 96.40 17 | 69.99 34 | 96.76 6 | 94.33 51 | 71.92 177 | 91.89 8 | 97.11 7 | 73.77 20 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 84 |
|
test_part2 | | | | | | 96.29 21 | 68.16 77 | | | | 90.78 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 148 | | | | 94.68 84 |
|
sam_mvs | | | | | | | | | | | | | 54.91 187 | | | | |
|
ambc | | | | | 69.61 326 | 61.38 361 | 41.35 355 | 49.07 360 | 85.86 305 | | 50.18 335 | 66.40 344 | 10.16 363 | 88.14 314 | 45.73 314 | 44.20 346 | 79.32 336 |
|
MTGPA |  | | | | | | | | 92.23 130 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 322 | | | | 20.70 367 | 53.05 207 | 91.50 285 | 60.43 257 | | |
|
test_post | | | | | | | | | | | | 23.01 364 | 56.49 169 | 92.67 250 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 343 | 57.62 151 | 90.25 293 | | | |
|
GG-mvs-BLEND | | | | | 86.53 66 | 91.91 108 | 69.67 46 | 75.02 335 | 94.75 30 | | 78.67 119 | 90.85 150 | 77.91 7 | 94.56 186 | 72.25 160 | 93.74 48 | 95.36 54 |
|
MTMP | | | | | | | | 93.77 82 | 32.52 373 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 187 | 67.04 109 | | | 78.62 64 | | 91.83 139 | | 97.37 71 | 76.57 131 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 24 | 94.96 18 | 95.29 59 |
|
TEST9 | | | | | | 94.18 44 | 67.28 100 | 94.16 55 | 93.51 79 | 71.75 189 | 85.52 48 | 95.33 45 | 68.01 42 | 97.27 81 | | | |
|
test_8 | | | | | | 94.19 43 | 67.19 103 | 94.15 57 | 93.42 86 | 71.87 182 | 85.38 50 | 95.35 44 | 68.19 39 | 96.95 101 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 55 | 94.75 30 | 95.33 55 |
|
agg_prior | | | | | | 94.16 48 | 66.97 111 | | 93.31 89 | | 84.49 57 | | | 96.75 110 | | | |
|
TestCases | | | | | 72.46 315 | 79.57 303 | 51.42 330 | | 68.61 357 | 51.25 336 | 45.88 343 | 81.23 267 | 19.86 355 | 86.58 327 | 38.98 338 | 57.01 322 | 79.39 334 |
|
test_prior4 | | | | | | | 67.18 105 | 93.92 73 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 104 | 85.25 53 | 95.61 40 | 67.94 43 | | 87.47 45 | 94.77 25 | |
|
test_prior | | | | | 86.42 70 | 94.71 37 | 67.35 98 | | 93.10 101 | | | | | 96.84 106 | | | 95.05 73 |
|
旧先验2 | | | | | | | | 92.00 148 | | 59.37 311 | 87.54 28 | | | 93.47 227 | 75.39 137 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 170 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 84.73 125 | 92.32 93 | 64.28 187 | | 91.46 166 | 59.56 309 | 79.77 102 | 92.90 117 | 56.95 162 | 96.57 115 | 63.40 238 | 92.91 61 | 93.34 133 |
|
旧先验1 | | | | | | 91.94 105 | 60.74 256 | | 91.50 164 | | | 94.36 80 | 65.23 71 | | | 91.84 74 | 94.55 89 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 119 | 92.61 120 | 62.03 292 | | | | 97.01 92 | 66.63 208 | | 93.97 116 |
|
原ACMM2 | | | | | | | | 92.01 146 | | | | | | | | | |
|
原ACMM1 | | | | | 84.42 136 | 93.21 72 | 64.27 188 | | 93.40 88 | 65.39 265 | 79.51 105 | 92.50 125 | 58.11 147 | 96.69 112 | 65.27 228 | 93.96 42 | 92.32 163 |
|
test222 | | | | | | 89.77 155 | 61.60 240 | 89.55 230 | 89.42 240 | 56.83 323 | 77.28 131 | 92.43 129 | 52.76 209 | | | 91.14 88 | 93.09 144 |
|
testdata2 | | | | | | | | | | | | | | 96.09 127 | 61.26 253 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 63 | | | | |
|
testdata | | | | | 81.34 209 | 89.02 173 | 57.72 292 | | 89.84 226 | 58.65 314 | 85.32 51 | 94.09 93 | 57.03 157 | 93.28 229 | 69.34 186 | 90.56 95 | 93.03 146 |
|
testdata1 | | | | | | | | 89.21 239 | | 77.55 79 | | | | | | | |
|
test12 | | | | | 87.09 45 | 94.60 39 | 68.86 59 | | 92.91 107 | | 82.67 75 | | 65.44 70 | 97.55 63 | | 93.69 51 | 94.84 80 |
|
plane_prior7 | | | | | | 86.94 216 | 61.51 241 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 211 | 62.32 228 | | | | | | 50.66 226 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 170 | | | | | 95.55 157 | 76.74 129 | 78.53 182 | 88.39 219 |
|
plane_prior4 | | | | | | | | | | | | 89.14 175 | | | | | |
|
plane_prior3 | | | | | | | 61.95 234 | | | 79.09 56 | 72.53 174 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 102 | | 78.81 61 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 213 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 225 | 93.85 77 | | 79.38 49 | | | | | | 78.80 179 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 361 | | | | | | | | |
|
lessismore_v0 | | | | | 73.72 306 | 72.93 343 | 47.83 345 | | 61.72 365 | | 45.86 345 | 73.76 325 | 28.63 339 | 89.81 301 | 47.75 307 | 31.37 360 | 83.53 291 |
|
LGP-MVS_train | | | | | 79.56 253 | 84.31 259 | 59.37 276 | | 89.73 231 | 69.49 229 | 64.86 260 | 88.42 180 | 38.65 293 | 94.30 195 | 72.56 157 | 72.76 219 | 85.01 279 |
|
test11 | | | | | | | | | 93.01 103 | | | | | | | | |
|
door | | | | | | | | | 66.57 360 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 202 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 205 | | 94.06 62 | | 79.80 43 | 74.18 155 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 205 | | 94.06 62 | | 79.80 43 | 74.18 155 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 126 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 155 | | | 95.61 151 | | | 88.63 213 |
|
HQP3-MVS | | | | | | | | | 91.70 155 | | | | | | | 78.90 177 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 219 | | | | |
|
NP-MVS | | | | | | 87.41 208 | 63.04 212 | | | | | 90.30 161 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 269 | 80.13 318 | | 67.65 249 | 72.79 169 | | 54.33 195 | | 59.83 261 | | 92.58 157 |
|
MDTV_nov1_ep13 | | | | 72.61 236 | | 89.06 172 | 68.48 67 | 80.33 314 | 90.11 216 | 71.84 185 | 71.81 186 | 75.92 319 | 53.01 208 | 93.92 216 | 48.04 302 | 73.38 214 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 227 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 237 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 196 | | | | |
|
ITE_SJBPF | | | | | 70.43 325 | 74.44 338 | 47.06 348 | | 77.32 340 | 60.16 305 | 54.04 319 | 83.53 236 | 23.30 349 | 84.01 336 | 43.07 322 | 61.58 303 | 80.21 331 |
|
DeepMVS_CX |  | | | | 34.71 348 | 51.45 365 | 24.73 370 | | 28.48 374 | 31.46 359 | 17.49 365 | 52.75 353 | 5.80 369 | 42.60 369 | 18.18 362 | 19.42 362 | 36.81 361 |
|