CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 11 | 98.78 11 | 86.42 27 | 99.95 3 | 97.59 12 | 99.18 7 | 99.00 27 |
|
DPM-MVS | | | 96.21 2 | 95.53 10 | 98.26 1 | 96.26 110 | 95.09 1 | 99.15 4 | 96.98 30 | 93.39 9 | 96.45 17 | 98.79 10 | 90.17 9 | 99.99 1 | 89.33 114 | 99.25 6 | 99.70 3 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 15 | 97.10 24 | 95.17 2 | 92.11 72 | 98.46 26 | 87.33 23 | 99.97 2 | 97.21 16 | 99.31 4 | 99.63 7 |
|
DVP-MVS++. | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 10 | 85.34 49 | 98.13 38 | 96.77 53 | 88.38 59 | 97.70 6 | 98.77 12 | 92.06 3 | 99.84 12 | 97.47 13 | 99.37 1 | 99.70 3 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 16 | 85.03 61 | 99.12 6 | 96.78 47 | 88.72 51 | 97.79 4 | 98.91 3 | 88.48 16 | 99.82 17 | 98.15 3 | 98.97 17 | 99.74 1 |
|
NCCC | | | 95.63 6 | 95.94 7 | 94.69 27 | 99.21 7 | 85.15 59 | 99.16 3 | 96.96 33 | 94.11 6 | 95.59 24 | 98.64 21 | 85.07 31 | 99.91 4 | 95.61 31 | 99.10 9 | 99.00 27 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 95 | 98.31 54 | 80.10 170 | 97.42 93 | 96.78 47 | 92.20 13 | 97.11 10 | 98.29 31 | 93.46 1 | 99.10 99 | 96.01 24 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 95.58 8 | 95.91 8 | 94.57 29 | 99.05 10 | 85.18 54 | 99.06 9 | 96.46 99 | 88.75 49 | 96.69 12 | 98.76 14 | 87.69 21 | 99.76 24 | 97.90 8 | 98.85 22 | 98.77 34 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
ETH3 D test6400 | | | 95.56 9 | 95.41 12 | 96.00 9 | 99.02 19 | 89.42 9 | 98.75 18 | 96.80 46 | 87.28 83 | 95.88 22 | 98.95 2 | 85.92 29 | 99.41 66 | 97.15 17 | 98.95 20 | 99.18 24 |
|
DPE-MVS |  | | 95.32 10 | 95.55 9 | 94.64 28 | 98.79 25 | 84.87 66 | 97.77 60 | 96.74 58 | 86.11 98 | 96.54 16 | 98.89 7 | 88.39 18 | 99.74 32 | 97.67 11 | 99.05 12 | 99.31 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS++ |  | | 95.32 10 | 95.48 11 | 94.85 23 | 98.62 38 | 86.04 34 | 97.81 58 | 96.93 36 | 92.45 11 | 95.69 23 | 98.50 24 | 85.38 30 | 99.85 10 | 94.75 42 | 99.18 7 | 98.65 42 |
|
DELS-MVS | | | 94.98 12 | 94.49 20 | 96.44 6 | 96.42 108 | 90.59 7 | 99.21 2 | 97.02 27 | 94.40 5 | 91.46 81 | 97.08 104 | 83.32 46 | 99.69 40 | 92.83 68 | 98.70 33 | 99.04 25 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 94.89 13 | 94.64 17 | 95.63 12 | 97.55 86 | 88.12 15 | 99.06 9 | 96.39 111 | 94.07 7 | 95.34 27 | 97.80 68 | 76.83 118 | 99.87 8 | 97.08 18 | 97.64 73 | 98.89 30 |
|
SD-MVS | | | 94.84 14 | 95.02 14 | 94.29 37 | 97.87 75 | 84.61 70 | 97.76 64 | 96.19 128 | 89.59 39 | 96.66 14 | 98.17 39 | 84.33 35 | 99.60 50 | 96.09 22 | 98.50 41 | 98.66 41 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.79 15 | 95.17 13 | 93.64 60 | 97.66 80 | 84.10 78 | 95.85 198 | 96.42 104 | 91.26 20 | 97.49 9 | 96.80 116 | 86.50 26 | 98.49 131 | 95.54 32 | 99.03 13 | 98.33 57 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SMA-MVS |  | | 94.70 16 | 94.68 16 | 94.76 25 | 98.02 69 | 85.94 37 | 97.47 85 | 96.77 53 | 85.32 117 | 97.92 3 | 98.70 18 | 83.09 50 | 99.84 12 | 95.79 28 | 99.08 10 | 98.49 50 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepPCF-MVS | | 89.82 1 | 94.61 17 | 96.17 5 | 89.91 188 | 97.09 102 | 70.21 316 | 98.99 14 | 96.69 66 | 95.57 1 | 95.08 31 | 99.23 1 | 86.40 28 | 99.87 8 | 97.84 10 | 98.66 34 | 99.65 6 |
|
APDe-MVS | | | 94.56 18 | 94.75 15 | 93.96 48 | 98.84 24 | 83.40 92 | 98.04 46 | 96.41 105 | 85.79 106 | 95.00 34 | 98.28 32 | 84.32 38 | 99.18 91 | 97.35 15 | 98.77 29 | 99.28 19 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 19 | 94.30 27 | 95.02 19 | 98.86 23 | 85.68 44 | 98.06 44 | 96.64 75 | 93.64 8 | 91.74 78 | 98.54 22 | 80.17 73 | 99.90 5 | 92.28 75 | 98.75 30 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETH3D-3000-0.1 | | | 94.43 20 | 94.42 23 | 94.45 31 | 97.78 76 | 85.78 40 | 97.98 48 | 96.53 91 | 85.29 120 | 95.45 25 | 98.81 8 | 83.36 45 | 99.38 68 | 96.07 23 | 98.53 37 | 98.19 69 |
|
xxxxxxxxxxxxxcwj | | | 94.38 21 | 94.62 18 | 93.68 58 | 98.24 57 | 83.34 93 | 98.61 23 | 92.69 296 | 91.32 18 | 95.07 32 | 98.74 16 | 82.93 51 | 99.38 68 | 95.42 34 | 98.51 38 | 98.32 58 |
|
TSAR-MVS + GP. | | | 94.35 22 | 94.50 19 | 93.89 49 | 97.38 96 | 83.04 102 | 98.10 40 | 95.29 180 | 91.57 16 | 93.81 51 | 97.45 84 | 86.64 24 | 99.43 65 | 96.28 21 | 94.01 125 | 99.20 22 |
|
train_agg | | | 94.28 23 | 94.45 21 | 93.74 54 | 98.64 35 | 83.71 85 | 97.82 56 | 96.65 72 | 84.50 141 | 95.16 28 | 98.09 46 | 84.33 35 | 99.36 74 | 95.91 27 | 98.96 19 | 98.16 72 |
|
MSLP-MVS++ | | | 94.28 23 | 94.39 24 | 93.97 47 | 98.30 55 | 84.06 79 | 98.64 21 | 96.93 36 | 90.71 26 | 93.08 60 | 98.70 18 | 79.98 74 | 99.21 84 | 94.12 49 | 99.07 11 | 98.63 43 |
|
MG-MVS | | | 94.25 25 | 93.72 35 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 48 | 98.09 8 | 89.99 35 | 92.34 69 | 96.97 108 | 81.30 62 | 98.99 105 | 88.54 119 | 98.88 21 | 99.20 22 |
|
SF-MVS | | | 94.17 26 | 94.05 31 | 94.55 30 | 97.56 85 | 85.95 35 | 97.73 66 | 96.43 103 | 84.02 155 | 95.07 32 | 98.74 16 | 82.93 51 | 99.38 68 | 95.42 34 | 98.51 38 | 98.32 58 |
|
PS-MVSNAJ | | | 94.17 26 | 93.52 39 | 96.10 8 | 95.65 126 | 92.35 2 | 98.21 33 | 95.79 150 | 92.42 12 | 96.24 18 | 98.18 35 | 71.04 199 | 99.17 92 | 96.77 19 | 97.39 80 | 96.79 155 |
|
SteuartSystems-ACMMP | | | 94.13 28 | 94.44 22 | 93.20 79 | 95.41 131 | 81.35 139 | 99.02 13 | 96.59 82 | 89.50 40 | 94.18 48 | 98.36 30 | 83.68 43 | 99.45 64 | 94.77 41 | 98.45 44 | 98.81 33 |
Skip Steuart: Steuart Systems R&D Blog. |
agg_prior1 | | | 94.10 29 | 94.31 26 | 93.48 70 | 98.59 39 | 83.13 98 | 97.77 60 | 96.56 86 | 84.38 145 | 94.19 45 | 98.13 41 | 84.66 33 | 99.16 93 | 95.74 29 | 98.74 31 | 98.15 74 |
|
testtj | | | 94.09 30 | 94.08 30 | 94.09 45 | 99.28 6 | 83.32 95 | 97.59 75 | 96.61 78 | 83.60 170 | 94.77 39 | 98.46 26 | 82.72 55 | 99.64 46 | 95.29 36 | 98.42 46 | 99.32 17 |
|
EPNet | | | 94.06 31 | 94.15 29 | 93.76 53 | 97.27 99 | 84.35 72 | 98.29 30 | 97.64 13 | 94.57 4 | 95.36 26 | 96.88 111 | 79.96 75 | 99.12 98 | 91.30 84 | 96.11 104 | 97.82 102 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_prior3 | | | 94.03 32 | 94.34 25 | 93.09 84 | 98.68 29 | 81.91 122 | 98.37 28 | 96.40 108 | 86.08 100 | 94.57 41 | 98.02 52 | 83.14 47 | 99.06 101 | 95.05 38 | 98.79 27 | 98.29 63 |
|
Regformer-1 | | | 94.00 33 | 94.04 32 | 93.87 50 | 98.41 48 | 84.29 74 | 97.43 91 | 97.04 26 | 89.50 40 | 92.75 66 | 98.13 41 | 82.60 57 | 99.26 79 | 93.55 55 | 96.99 88 | 98.06 81 |
|
xiu_mvs_v2_base | | | 93.92 34 | 93.26 42 | 95.91 10 | 95.07 142 | 92.02 6 | 98.19 34 | 95.68 155 | 92.06 14 | 96.01 21 | 98.14 40 | 70.83 202 | 98.96 107 | 96.74 20 | 96.57 99 | 96.76 158 |
|
Regformer-2 | | | 93.92 34 | 94.01 33 | 93.67 59 | 98.41 48 | 83.75 84 | 97.43 91 | 97.00 28 | 89.43 42 | 92.69 67 | 98.13 41 | 82.48 58 | 99.22 82 | 93.51 56 | 96.99 88 | 98.04 82 |
|
ETH3D cwj APD-0.16 | | | 93.91 36 | 93.76 34 | 94.36 34 | 96.70 106 | 85.74 41 | 97.22 100 | 96.41 105 | 83.94 158 | 94.13 49 | 98.69 20 | 83.13 49 | 99.37 72 | 95.25 37 | 98.39 51 | 97.97 92 |
|
lupinMVS | | | 93.87 37 | 93.58 38 | 94.75 26 | 93.00 199 | 88.08 16 | 99.15 4 | 95.50 165 | 91.03 23 | 94.90 35 | 97.66 72 | 78.84 87 | 97.56 162 | 94.64 45 | 97.46 75 | 98.62 44 |
|
APD-MVS |  | | 93.61 38 | 93.59 37 | 93.69 57 | 98.76 26 | 83.26 96 | 97.21 102 | 96.09 133 | 82.41 192 | 94.65 40 | 98.21 34 | 81.96 60 | 98.81 118 | 94.65 44 | 98.36 54 | 99.01 26 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PHI-MVS | | | 93.59 39 | 93.63 36 | 93.48 70 | 98.05 68 | 81.76 130 | 98.64 21 | 97.13 21 | 82.60 190 | 94.09 50 | 98.49 25 | 80.35 68 | 99.85 10 | 94.74 43 | 98.62 35 | 98.83 32 |
|
ACMMP_NAP | | | 93.46 40 | 93.23 43 | 94.17 42 | 97.16 100 | 84.28 75 | 96.82 140 | 96.65 72 | 86.24 96 | 94.27 44 | 97.99 55 | 77.94 100 | 99.83 16 | 93.39 57 | 98.57 36 | 98.39 55 |
|
MVS_111021_HR | | | 93.41 41 | 93.39 40 | 93.47 73 | 97.34 97 | 82.83 105 | 97.56 78 | 98.27 6 | 89.16 45 | 89.71 107 | 97.14 100 | 79.77 76 | 99.56 55 | 93.65 53 | 97.94 66 | 98.02 84 |
|
Regformer-3 | | | 93.19 42 | 93.19 44 | 93.19 80 | 98.10 65 | 83.01 103 | 97.08 121 | 96.98 30 | 88.98 46 | 91.35 86 | 97.89 62 | 80.80 64 | 99.23 80 | 92.30 74 | 95.20 115 | 97.32 135 |
|
PVSNet_Blended | | | 93.13 43 | 92.98 47 | 93.57 64 | 97.47 87 | 83.86 81 | 99.32 1 | 96.73 59 | 91.02 24 | 89.53 112 | 96.21 125 | 76.42 125 | 99.57 53 | 94.29 47 | 95.81 111 | 97.29 139 |
|
CS-MVS | | | 93.12 44 | 93.27 41 | 92.64 105 | 93.86 177 | 83.12 100 | 98.85 16 | 94.85 200 | 88.61 54 | 94.19 45 | 97.42 88 | 79.02 85 | 97.02 192 | 94.89 40 | 97.77 70 | 97.78 105 |
|
CDPH-MVS | | | 93.12 44 | 92.91 48 | 93.74 54 | 98.65 34 | 83.88 80 | 97.67 70 | 96.26 121 | 83.00 181 | 93.22 58 | 98.24 33 | 81.31 61 | 99.21 84 | 89.12 115 | 98.74 31 | 98.14 75 |
|
Regformer-4 | | | 93.06 46 | 93.12 45 | 92.89 94 | 98.10 65 | 82.20 116 | 97.08 121 | 96.92 38 | 88.87 48 | 91.23 88 | 97.89 62 | 80.57 67 | 99.19 89 | 92.21 76 | 95.20 115 | 97.29 139 |
|
#test# | | | 92.99 47 | 92.99 46 | 92.98 89 | 98.71 27 | 81.12 142 | 97.77 60 | 96.70 63 | 85.75 107 | 91.75 76 | 97.97 59 | 78.47 92 | 99.71 36 | 91.36 83 | 98.41 48 | 98.12 77 |
|
alignmvs | | | 92.97 48 | 92.26 62 | 95.12 18 | 95.54 128 | 87.77 19 | 98.67 19 | 96.38 112 | 88.04 67 | 93.01 61 | 97.45 84 | 79.20 83 | 98.60 125 | 93.25 62 | 88.76 168 | 98.99 29 |
|
HFP-MVS | | | 92.89 49 | 92.86 50 | 92.98 89 | 98.71 27 | 81.12 142 | 97.58 76 | 96.70 63 | 85.20 123 | 91.75 76 | 97.97 59 | 78.47 92 | 99.71 36 | 90.95 87 | 98.41 48 | 98.12 77 |
|
PAPM | | | 92.87 50 | 92.40 58 | 94.30 36 | 92.25 220 | 87.85 18 | 96.40 168 | 96.38 112 | 91.07 22 | 88.72 122 | 96.90 109 | 82.11 59 | 97.37 175 | 90.05 104 | 97.70 72 | 97.67 113 |
|
ZNCC-MVS | | | 92.75 51 | 92.60 56 | 93.23 78 | 98.24 57 | 81.82 128 | 97.63 71 | 96.50 95 | 85.00 128 | 91.05 91 | 97.74 70 | 78.38 94 | 99.80 23 | 90.48 96 | 98.34 55 | 98.07 80 |
|
zzz-MVS | | | 92.74 52 | 92.71 51 | 92.86 95 | 97.90 71 | 80.85 150 | 96.47 159 | 96.33 116 | 87.92 69 | 90.20 102 | 98.18 35 | 76.71 121 | 99.76 24 | 92.57 72 | 98.09 60 | 97.96 93 |
|
PAPR | | | 92.74 52 | 92.17 65 | 94.45 31 | 98.89 22 | 84.87 66 | 97.20 104 | 96.20 126 | 87.73 75 | 88.40 126 | 98.12 44 | 78.71 90 | 99.76 24 | 87.99 126 | 96.28 102 | 98.74 35 |
|
jason | | | 92.73 54 | 92.23 63 | 94.21 41 | 90.50 259 | 87.30 25 | 98.65 20 | 95.09 186 | 90.61 27 | 92.76 65 | 97.13 101 | 75.28 152 | 97.30 178 | 93.32 60 | 96.75 98 | 98.02 84 |
jason: jason. |
ETV-MVS | | | 92.72 55 | 92.87 49 | 92.28 118 | 94.54 157 | 81.89 124 | 97.98 48 | 95.21 183 | 89.77 38 | 93.11 59 | 96.83 113 | 77.23 113 | 97.50 169 | 95.74 29 | 95.38 113 | 97.44 129 |
|
region2R | | | 92.72 55 | 92.70 53 | 92.79 98 | 98.68 29 | 80.53 160 | 97.53 80 | 96.51 93 | 85.22 121 | 91.94 74 | 97.98 57 | 77.26 109 | 99.67 44 | 90.83 91 | 98.37 53 | 98.18 70 |
|
XVS | | | 92.69 57 | 92.71 51 | 92.63 106 | 98.52 42 | 80.29 163 | 97.37 96 | 96.44 101 | 87.04 91 | 91.38 82 | 97.83 67 | 77.24 111 | 99.59 51 | 90.46 97 | 98.07 62 | 98.02 84 |
|
ACMMPR | | | 92.69 57 | 92.67 54 | 92.75 99 | 98.66 32 | 80.57 157 | 97.58 76 | 96.69 66 | 85.20 123 | 91.57 80 | 97.92 61 | 77.01 115 | 99.67 44 | 90.95 87 | 98.41 48 | 98.00 89 |
|
WTY-MVS | | | 92.65 59 | 91.68 74 | 95.56 13 | 96.00 117 | 88.90 12 | 98.23 32 | 97.65 12 | 88.57 55 | 89.82 106 | 97.22 98 | 79.29 79 | 99.06 101 | 89.57 110 | 88.73 169 | 98.73 39 |
|
MP-MVS |  | | 92.61 60 | 92.67 54 | 92.42 113 | 98.13 64 | 79.73 179 | 97.33 98 | 96.20 126 | 85.63 109 | 90.53 97 | 97.66 72 | 78.14 98 | 99.70 39 | 92.12 77 | 98.30 57 | 97.85 99 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 92.58 61 | 92.35 59 | 93.29 75 | 97.30 98 | 82.53 109 | 96.44 164 | 96.04 137 | 84.68 135 | 89.12 117 | 98.37 29 | 77.48 107 | 99.74 32 | 93.31 61 | 98.38 52 | 97.59 120 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 92.54 62 | 92.60 56 | 92.34 115 | 98.50 45 | 79.90 173 | 98.40 26 | 96.40 108 | 84.75 131 | 90.48 99 | 98.09 46 | 77.40 108 | 99.21 84 | 91.15 86 | 98.23 59 | 97.92 95 |
|
MTAPA | | | 92.45 63 | 92.31 60 | 92.86 95 | 97.90 71 | 80.85 150 | 92.88 279 | 96.33 116 | 87.92 69 | 90.20 102 | 98.18 35 | 76.71 121 | 99.76 24 | 92.57 72 | 98.09 60 | 97.96 93 |
|
GST-MVS | | | 92.43 64 | 92.22 64 | 93.04 87 | 98.17 62 | 81.64 135 | 97.40 95 | 96.38 112 | 84.71 134 | 90.90 93 | 97.40 90 | 77.55 106 | 99.76 24 | 89.75 108 | 97.74 71 | 97.72 109 |
|
canonicalmvs | | | 92.27 65 | 91.22 80 | 95.41 15 | 95.80 121 | 88.31 13 | 97.09 119 | 94.64 214 | 88.49 57 | 92.99 62 | 97.31 92 | 72.68 182 | 98.57 127 | 93.38 59 | 88.58 171 | 99.36 16 |
|
SR-MVS | | | 92.16 66 | 92.27 61 | 91.83 134 | 98.37 51 | 78.41 211 | 96.67 152 | 95.76 151 | 82.19 196 | 91.97 73 | 98.07 50 | 76.44 124 | 98.64 122 | 93.71 52 | 97.27 82 | 98.45 52 |
|
VNet | | | 92.11 67 | 91.22 80 | 94.79 24 | 96.91 103 | 86.98 26 | 97.91 51 | 97.96 9 | 86.38 95 | 93.65 53 | 95.74 133 | 70.16 207 | 98.95 110 | 93.39 57 | 88.87 167 | 98.43 53 |
|
CSCG | | | 92.02 68 | 91.65 75 | 93.12 82 | 98.53 41 | 80.59 156 | 97.47 85 | 97.18 20 | 77.06 280 | 84.64 158 | 97.98 57 | 83.98 40 | 99.52 57 | 90.72 93 | 97.33 81 | 99.23 21 |
|
PGM-MVS | | | 91.93 69 | 91.80 72 | 92.32 117 | 98.27 56 | 79.74 178 | 95.28 215 | 97.27 17 | 83.83 163 | 90.89 94 | 97.78 69 | 76.12 131 | 99.56 55 | 88.82 117 | 97.93 68 | 97.66 114 |
|
CS-MVS-test | | | 91.92 70 | 92.11 66 | 91.37 144 | 94.00 175 | 79.66 180 | 98.39 27 | 94.38 228 | 87.14 90 | 92.87 64 | 97.05 106 | 77.17 114 | 96.97 195 | 91.44 82 | 96.55 100 | 97.47 128 |
|
mPP-MVS | | | 91.88 71 | 91.82 71 | 92.07 124 | 98.38 50 | 78.63 205 | 97.29 99 | 96.09 133 | 85.12 125 | 88.45 125 | 97.66 72 | 75.53 142 | 99.68 42 | 89.83 106 | 98.02 65 | 97.88 96 |
|
EI-MVSNet-Vis-set | | | 91.84 72 | 91.77 73 | 92.04 126 | 97.60 82 | 81.17 141 | 96.61 153 | 96.87 40 | 88.20 64 | 89.19 116 | 97.55 82 | 78.69 91 | 99.14 95 | 90.29 102 | 90.94 154 | 95.80 181 |
|
EIA-MVS | | | 91.73 73 | 92.05 68 | 90.78 162 | 94.52 158 | 76.40 257 | 98.06 44 | 95.34 177 | 89.19 44 | 88.90 120 | 97.28 96 | 77.56 105 | 97.73 156 | 90.77 92 | 96.86 95 | 98.20 68 |
|
DROMVSNet | | | 91.73 73 | 92.11 66 | 90.58 166 | 93.54 185 | 77.77 234 | 98.07 43 | 94.40 227 | 87.44 79 | 92.99 62 | 97.11 103 | 74.59 163 | 96.87 202 | 93.75 51 | 97.08 86 | 97.11 144 |
|
DP-MVS Recon | | | 91.72 75 | 90.85 85 | 94.34 35 | 99.50 1 | 85.00 63 | 98.51 25 | 95.96 140 | 80.57 218 | 88.08 131 | 97.63 77 | 76.84 117 | 99.89 7 | 85.67 141 | 94.88 119 | 98.13 76 |
|
CHOSEN 280x420 | | | 91.71 76 | 91.85 70 | 91.29 147 | 94.94 147 | 82.69 106 | 87.89 320 | 96.17 129 | 85.94 103 | 87.27 137 | 94.31 169 | 90.27 8 | 95.65 255 | 94.04 50 | 95.86 109 | 95.53 188 |
|
test1172 | | | 91.64 77 | 92.00 69 | 90.54 168 | 98.20 61 | 74.48 280 | 96.45 162 | 95.65 156 | 81.97 200 | 91.63 79 | 98.02 52 | 75.76 137 | 98.61 123 | 93.16 63 | 97.17 84 | 98.52 49 |
|
HY-MVS | | 84.06 6 | 91.63 78 | 90.37 93 | 95.39 16 | 96.12 114 | 88.25 14 | 90.22 303 | 97.58 14 | 88.33 62 | 90.50 98 | 91.96 201 | 79.26 81 | 99.06 101 | 90.29 102 | 89.07 164 | 98.88 31 |
|
HPM-MVS |  | | 91.62 79 | 91.53 77 | 91.89 130 | 97.88 74 | 79.22 190 | 96.99 126 | 95.73 153 | 82.07 197 | 89.50 114 | 97.19 99 | 75.59 141 | 98.93 113 | 90.91 89 | 97.94 66 | 97.54 121 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_LR | | | 91.60 80 | 91.64 76 | 91.47 143 | 95.74 122 | 78.79 203 | 96.15 182 | 96.77 53 | 88.49 57 | 88.64 123 | 97.07 105 | 72.33 185 | 99.19 89 | 93.13 66 | 96.48 101 | 96.43 166 |
|
DeepC-MVS | | 86.58 3 | 91.53 81 | 91.06 84 | 92.94 92 | 94.52 158 | 81.89 124 | 95.95 190 | 95.98 139 | 90.76 25 | 83.76 170 | 96.76 117 | 73.24 178 | 99.71 36 | 91.67 81 | 96.96 90 | 97.22 142 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_yl | | | 91.46 82 | 90.53 90 | 94.24 39 | 97.41 91 | 85.18 54 | 98.08 41 | 97.72 10 | 80.94 210 | 89.85 104 | 96.14 126 | 75.61 139 | 98.81 118 | 90.42 100 | 88.56 172 | 98.74 35 |
|
DCV-MVSNet | | | 91.46 82 | 90.53 90 | 94.24 39 | 97.41 91 | 85.18 54 | 98.08 41 | 97.72 10 | 80.94 210 | 89.85 104 | 96.14 126 | 75.61 139 | 98.81 118 | 90.42 100 | 88.56 172 | 98.74 35 |
|
PAPM_NR | | | 91.46 82 | 90.82 86 | 93.37 74 | 98.50 45 | 81.81 129 | 95.03 229 | 96.13 130 | 84.65 137 | 86.10 147 | 97.65 76 | 79.24 82 | 99.75 30 | 83.20 169 | 96.88 93 | 98.56 46 |
|
MVSFormer | | | 91.36 85 | 90.57 89 | 93.73 56 | 93.00 199 | 88.08 16 | 94.80 234 | 94.48 221 | 80.74 214 | 94.90 35 | 97.13 101 | 78.84 87 | 95.10 284 | 83.77 156 | 97.46 75 | 98.02 84 |
|
EI-MVSNet-UG-set | | | 91.35 86 | 91.22 80 | 91.73 135 | 97.39 93 | 80.68 154 | 96.47 159 | 96.83 43 | 87.92 69 | 88.30 129 | 97.36 91 | 77.84 102 | 99.13 97 | 89.43 113 | 89.45 161 | 95.37 191 |
|
SR-MVS-dyc-post | | | 91.29 87 | 91.45 78 | 90.80 160 | 97.76 78 | 76.03 263 | 96.20 180 | 95.44 169 | 80.56 219 | 90.72 95 | 97.84 65 | 75.76 137 | 98.61 123 | 91.99 79 | 96.79 96 | 97.75 107 |
|
PVSNet_Blended_VisFu | | | 91.24 88 | 90.77 87 | 92.66 104 | 95.09 140 | 82.40 112 | 97.77 60 | 95.87 147 | 88.26 63 | 86.39 143 | 93.94 180 | 76.77 119 | 99.27 77 | 88.80 118 | 94.00 126 | 96.31 172 |
|
APD-MVS_3200maxsize | | | 91.23 89 | 91.35 79 | 90.89 158 | 97.89 73 | 76.35 258 | 96.30 174 | 95.52 164 | 79.82 237 | 91.03 92 | 97.88 64 | 74.70 159 | 98.54 128 | 92.11 78 | 96.89 92 | 97.77 106 |
|
diffmvs | | | 91.17 90 | 90.74 88 | 92.44 112 | 93.11 198 | 82.50 111 | 96.25 177 | 93.62 266 | 87.79 73 | 90.40 100 | 95.93 130 | 73.44 176 | 97.42 172 | 93.62 54 | 92.55 140 | 97.41 131 |
|
CHOSEN 1792x2688 | | | 91.07 91 | 90.21 96 | 93.64 60 | 95.18 138 | 83.53 89 | 96.26 176 | 96.13 130 | 88.92 47 | 84.90 153 | 93.10 191 | 72.86 180 | 99.62 49 | 88.86 116 | 95.67 112 | 97.79 104 |
|
CANet_DTU | | | 90.98 92 | 90.04 100 | 93.83 51 | 94.76 152 | 86.23 32 | 96.32 173 | 93.12 289 | 93.11 10 | 93.71 52 | 96.82 115 | 63.08 245 | 99.48 62 | 84.29 151 | 95.12 118 | 95.77 182 |
|
thisisatest0515 | | | 90.95 93 | 90.26 94 | 93.01 88 | 94.03 174 | 84.27 76 | 97.91 51 | 96.67 68 | 83.18 175 | 86.87 141 | 95.51 142 | 88.66 15 | 97.85 152 | 80.46 184 | 89.01 165 | 96.92 151 |
|
casdiffmvs | | | 90.95 93 | 90.39 92 | 92.63 106 | 92.82 204 | 82.53 109 | 96.83 139 | 94.47 223 | 87.69 76 | 88.47 124 | 95.56 141 | 74.04 168 | 97.54 166 | 90.90 90 | 92.74 138 | 97.83 101 |
|
sss | | | 90.87 95 | 89.96 102 | 93.60 63 | 94.15 168 | 83.84 83 | 97.14 112 | 98.13 7 | 85.93 104 | 89.68 108 | 96.09 128 | 71.67 191 | 99.30 76 | 87.69 127 | 89.16 163 | 97.66 114 |
|
baseline | | | 90.76 96 | 90.10 99 | 92.74 100 | 92.90 203 | 82.56 108 | 94.60 236 | 94.56 219 | 87.69 76 | 89.06 119 | 95.67 137 | 73.76 171 | 97.51 168 | 90.43 99 | 92.23 146 | 98.16 72 |
|
Effi-MVS+ | | | 90.70 97 | 89.90 105 | 93.09 84 | 93.61 182 | 83.48 90 | 95.20 220 | 92.79 294 | 83.22 174 | 91.82 75 | 95.70 135 | 71.82 190 | 97.48 170 | 91.25 85 | 93.67 130 | 98.32 58 |
|
1121 | | | 90.66 98 | 89.82 107 | 93.16 81 | 97.39 93 | 81.71 133 | 93.33 266 | 96.66 71 | 74.45 296 | 91.38 82 | 97.55 82 | 79.27 80 | 99.52 57 | 79.95 190 | 98.43 45 | 98.26 66 |
|
MAR-MVS | | | 90.63 99 | 90.22 95 | 91.86 131 | 98.47 47 | 78.20 221 | 97.18 106 | 96.61 78 | 83.87 162 | 88.18 130 | 98.18 35 | 68.71 212 | 99.75 30 | 83.66 161 | 97.15 85 | 97.63 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS | | | 90.60 100 | 88.64 123 | 96.50 5 | 94.25 166 | 90.53 8 | 93.33 266 | 97.21 19 | 77.59 271 | 78.88 220 | 97.31 92 | 71.52 194 | 99.69 40 | 89.60 109 | 98.03 64 | 99.27 20 |
|
xiu_mvs_v1_base_debu | | | 90.54 101 | 89.54 111 | 93.55 65 | 92.31 213 | 87.58 22 | 96.99 126 | 94.87 197 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 284 | 98.32 136 | 92.72 69 | 93.46 133 | 94.74 201 |
|
xiu_mvs_v1_base | | | 90.54 101 | 89.54 111 | 93.55 65 | 92.31 213 | 87.58 22 | 96.99 126 | 94.87 197 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 284 | 98.32 136 | 92.72 69 | 93.46 133 | 94.74 201 |
|
xiu_mvs_v1_base_debi | | | 90.54 101 | 89.54 111 | 93.55 65 | 92.31 213 | 87.58 22 | 96.99 126 | 94.87 197 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 284 | 98.32 136 | 92.72 69 | 93.46 133 | 94.74 201 |
|
DWT-MVSNet_test | | | 90.52 104 | 89.80 108 | 92.70 103 | 95.73 124 | 82.20 116 | 93.69 257 | 96.55 88 | 88.34 61 | 87.04 140 | 95.34 145 | 86.53 25 | 97.55 163 | 76.32 228 | 88.66 170 | 98.34 56 |
|
baseline2 | | | 90.39 105 | 90.21 96 | 90.93 156 | 90.86 253 | 80.99 146 | 95.20 220 | 97.41 15 | 86.03 102 | 80.07 213 | 94.61 164 | 90.58 6 | 97.47 171 | 87.29 131 | 89.86 159 | 94.35 207 |
|
ACMMP |  | | 90.39 105 | 89.97 101 | 91.64 137 | 97.58 84 | 78.21 220 | 96.78 143 | 96.72 61 | 84.73 133 | 84.72 156 | 97.23 97 | 71.22 196 | 99.63 48 | 88.37 124 | 92.41 143 | 97.08 146 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS_fast | | | 90.38 107 | 90.17 98 | 91.03 154 | 97.61 81 | 77.35 243 | 97.15 111 | 95.48 166 | 79.51 243 | 88.79 121 | 96.90 109 | 71.64 193 | 98.81 118 | 87.01 135 | 97.44 77 | 96.94 148 |
|
MVS_Test | | | 90.29 108 | 89.18 115 | 93.62 62 | 95.23 135 | 84.93 64 | 94.41 240 | 94.66 211 | 84.31 147 | 90.37 101 | 91.02 214 | 75.13 154 | 97.82 153 | 83.11 171 | 94.42 121 | 98.12 77 |
|
API-MVS | | | 90.18 109 | 88.97 118 | 93.80 52 | 98.66 32 | 82.95 104 | 97.50 84 | 95.63 159 | 75.16 290 | 86.31 144 | 97.69 71 | 72.49 183 | 99.90 5 | 81.26 180 | 96.07 105 | 98.56 46 |
|
PVSNet_BlendedMVS | | | 90.05 110 | 89.96 102 | 90.33 174 | 97.47 87 | 83.86 81 | 98.02 47 | 96.73 59 | 87.98 68 | 89.53 112 | 89.61 235 | 76.42 125 | 99.57 53 | 94.29 47 | 79.59 234 | 87.57 303 |
|
ET-MVSNet_ETH3D | | | 90.01 111 | 89.03 116 | 92.95 91 | 94.38 164 | 86.77 28 | 98.14 35 | 96.31 119 | 89.30 43 | 63.33 331 | 96.72 119 | 90.09 10 | 93.63 313 | 90.70 94 | 82.29 224 | 98.46 51 |
|
TESTMET0.1,1 | | | 89.83 112 | 89.34 114 | 91.31 145 | 92.54 211 | 80.19 168 | 97.11 115 | 96.57 84 | 86.15 97 | 86.85 142 | 91.83 205 | 79.32 78 | 96.95 196 | 81.30 179 | 92.35 144 | 96.77 157 |
|
abl_6 | | | 89.80 113 | 89.71 110 | 90.07 180 | 96.53 107 | 75.52 271 | 94.48 237 | 95.04 189 | 81.12 208 | 89.22 115 | 97.00 107 | 68.83 211 | 98.96 107 | 89.86 105 | 95.27 114 | 95.73 183 |
|
EPP-MVSNet | | | 89.76 114 | 89.72 109 | 89.87 189 | 93.78 178 | 76.02 265 | 97.22 100 | 96.51 93 | 79.35 245 | 85.11 151 | 95.01 158 | 84.82 32 | 97.10 190 | 87.46 130 | 88.21 176 | 96.50 164 |
|
CPTT-MVS | | | 89.72 115 | 89.87 106 | 89.29 200 | 98.33 53 | 73.30 289 | 97.70 68 | 95.35 176 | 75.68 286 | 87.40 134 | 97.44 87 | 70.43 204 | 98.25 139 | 89.56 111 | 96.90 91 | 96.33 171 |
|
thisisatest0530 | | | 89.65 116 | 89.02 117 | 91.53 141 | 93.46 189 | 80.78 152 | 96.52 156 | 96.67 68 | 81.69 203 | 83.79 169 | 94.90 160 | 88.85 14 | 97.68 157 | 77.80 207 | 87.49 182 | 96.14 175 |
|
3Dnovator+ | | 82.88 8 | 89.63 117 | 87.85 134 | 94.99 20 | 94.49 162 | 86.76 29 | 97.84 55 | 95.74 152 | 86.10 99 | 75.47 264 | 96.02 129 | 65.00 236 | 99.51 60 | 82.91 173 | 97.07 87 | 98.72 40 |
|
CDS-MVSNet | | | 89.50 118 | 88.96 119 | 91.14 152 | 91.94 236 | 80.93 148 | 97.09 119 | 95.81 149 | 84.26 150 | 84.72 156 | 94.20 174 | 80.31 69 | 95.64 256 | 83.37 167 | 88.96 166 | 96.85 154 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PMMVS | | | 89.46 119 | 89.92 104 | 88.06 226 | 94.64 153 | 69.57 323 | 96.22 178 | 94.95 193 | 87.27 84 | 91.37 85 | 96.54 122 | 65.88 228 | 97.39 174 | 88.54 119 | 93.89 127 | 97.23 141 |
|
HyFIR lowres test | | | 89.36 120 | 88.60 124 | 91.63 139 | 94.91 149 | 80.76 153 | 95.60 206 | 95.53 162 | 82.56 191 | 84.03 163 | 91.24 211 | 78.03 99 | 96.81 206 | 87.07 134 | 88.41 174 | 97.32 135 |
|
3Dnovator | | 82.32 10 | 89.33 121 | 87.64 139 | 94.42 33 | 93.73 181 | 85.70 43 | 97.73 66 | 96.75 57 | 86.73 94 | 76.21 252 | 95.93 130 | 62.17 250 | 99.68 42 | 81.67 178 | 97.81 69 | 97.88 96 |
|
hse-mvs3 | | | 89.30 122 | 88.95 120 | 90.36 172 | 95.07 142 | 76.04 262 | 96.96 132 | 97.11 23 | 90.39 31 | 92.22 70 | 95.10 155 | 74.70 159 | 98.86 115 | 93.14 64 | 65.89 324 | 96.16 174 |
|
LFMVS | | | 89.27 123 | 87.64 139 | 94.16 44 | 97.16 100 | 85.52 47 | 97.18 106 | 94.66 211 | 79.17 251 | 89.63 110 | 96.57 121 | 55.35 299 | 98.22 140 | 89.52 112 | 89.54 160 | 98.74 35 |
|
MVSTER | | | 89.25 124 | 88.92 121 | 90.24 176 | 95.98 118 | 84.66 69 | 96.79 142 | 95.36 174 | 87.19 88 | 80.33 208 | 90.61 221 | 90.02 11 | 95.97 233 | 85.38 144 | 78.64 243 | 90.09 246 |
|
CostFormer | | | 89.08 125 | 88.39 127 | 91.15 151 | 93.13 196 | 79.15 193 | 88.61 314 | 96.11 132 | 83.14 176 | 89.58 111 | 86.93 272 | 83.83 42 | 96.87 202 | 88.22 125 | 85.92 194 | 97.42 130 |
|
PVSNet | | 82.34 9 | 89.02 126 | 87.79 136 | 92.71 102 | 95.49 129 | 81.50 137 | 97.70 68 | 97.29 16 | 87.76 74 | 85.47 149 | 95.12 154 | 56.90 288 | 98.90 114 | 80.33 185 | 94.02 124 | 97.71 111 |
|
test-mter | | | 88.95 127 | 88.60 124 | 89.98 184 | 92.26 218 | 77.23 245 | 97.11 115 | 95.96 140 | 85.32 117 | 86.30 145 | 91.38 208 | 76.37 127 | 96.78 208 | 80.82 181 | 91.92 148 | 95.94 178 |
|
1314 | | | 88.94 128 | 87.20 151 | 94.17 42 | 93.21 192 | 85.73 42 | 93.33 266 | 96.64 75 | 82.89 183 | 75.98 255 | 96.36 123 | 66.83 224 | 99.39 67 | 83.52 166 | 96.02 107 | 97.39 133 |
|
UA-Net | | | 88.92 129 | 88.48 126 | 90.24 176 | 94.06 171 | 77.18 247 | 93.04 275 | 94.66 211 | 87.39 81 | 91.09 90 | 93.89 181 | 74.92 157 | 98.18 143 | 75.83 233 | 91.43 151 | 95.35 192 |
|
thres200 | | | 88.92 129 | 87.65 138 | 92.73 101 | 96.30 109 | 85.62 45 | 97.85 54 | 98.86 1 | 84.38 145 | 84.82 154 | 93.99 179 | 75.12 155 | 98.01 144 | 70.86 272 | 86.67 185 | 94.56 206 |
|
Vis-MVSNet (Re-imp) | | | 88.88 131 | 88.87 122 | 88.91 206 | 93.89 176 | 74.43 281 | 96.93 135 | 94.19 235 | 84.39 144 | 83.22 175 | 95.67 137 | 78.24 96 | 94.70 294 | 78.88 203 | 94.40 122 | 97.61 119 |
|
baseline1 | | | 88.85 132 | 87.49 145 | 92.93 93 | 95.21 137 | 86.85 27 | 95.47 210 | 94.61 216 | 87.29 82 | 83.11 177 | 94.99 159 | 80.70 65 | 96.89 200 | 82.28 175 | 73.72 264 | 95.05 195 |
|
AdaColmap |  | | 88.81 133 | 87.61 142 | 92.39 114 | 99.33 4 | 79.95 171 | 96.70 151 | 95.58 160 | 77.51 272 | 83.05 178 | 96.69 120 | 61.90 257 | 99.72 35 | 84.29 151 | 93.47 132 | 97.50 126 |
|
OMC-MVS | | | 88.80 134 | 88.16 130 | 90.72 163 | 95.30 134 | 77.92 230 | 94.81 233 | 94.51 220 | 86.80 93 | 84.97 152 | 96.85 112 | 67.53 217 | 98.60 125 | 85.08 146 | 87.62 179 | 95.63 185 |
|
114514_t | | | 88.79 135 | 87.57 143 | 92.45 111 | 98.21 60 | 81.74 131 | 96.99 126 | 95.45 168 | 75.16 290 | 82.48 181 | 95.69 136 | 68.59 213 | 98.50 130 | 80.33 185 | 95.18 117 | 97.10 145 |
|
mvs_anonymous | | | 88.68 136 | 87.62 141 | 91.86 131 | 94.80 151 | 81.69 134 | 93.53 262 | 94.92 194 | 82.03 198 | 78.87 221 | 90.43 225 | 75.77 136 | 95.34 269 | 85.04 147 | 93.16 136 | 98.55 48 |
|
Vis-MVSNet |  | | 88.67 137 | 87.82 135 | 91.24 149 | 92.68 205 | 78.82 200 | 96.95 133 | 93.85 252 | 87.55 78 | 87.07 139 | 95.13 153 | 63.43 243 | 97.21 183 | 77.58 213 | 96.15 103 | 97.70 112 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IS-MVSNet | | | 88.67 137 | 88.16 130 | 90.20 178 | 93.61 182 | 76.86 250 | 96.77 145 | 93.07 290 | 84.02 155 | 83.62 171 | 95.60 140 | 74.69 162 | 96.24 226 | 78.43 206 | 93.66 131 | 97.49 127 |
|
IB-MVS | | 85.34 4 | 88.67 137 | 87.14 155 | 93.26 76 | 93.12 197 | 84.32 73 | 98.76 17 | 97.27 17 | 87.19 88 | 79.36 217 | 90.45 224 | 83.92 41 | 98.53 129 | 84.41 150 | 69.79 291 | 96.93 149 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 88.60 140 | 87.47 147 | 92.00 127 | 93.21 192 | 80.97 147 | 96.47 159 | 92.46 298 | 83.64 168 | 80.86 201 | 97.30 94 | 80.24 71 | 97.62 159 | 77.60 212 | 85.49 199 | 97.40 132 |
|
tttt0517 | | | 88.57 141 | 88.19 129 | 89.71 195 | 93.00 199 | 75.99 266 | 95.67 203 | 96.67 68 | 80.78 213 | 81.82 194 | 94.40 168 | 88.97 13 | 97.58 161 | 76.05 231 | 86.31 188 | 95.57 187 |
|
tfpn200view9 | | | 88.48 142 | 87.15 153 | 92.47 110 | 96.21 111 | 85.30 52 | 97.44 87 | 98.85 2 | 83.37 172 | 83.99 164 | 93.82 182 | 75.36 149 | 97.93 146 | 69.04 278 | 86.24 191 | 94.17 208 |
|
test-LLR | | | 88.48 142 | 87.98 132 | 89.98 184 | 92.26 218 | 77.23 245 | 97.11 115 | 95.96 140 | 83.76 165 | 86.30 145 | 91.38 208 | 72.30 186 | 96.78 208 | 80.82 181 | 91.92 148 | 95.94 178 |
|
TAMVS | | | 88.48 142 | 87.79 136 | 90.56 167 | 91.09 248 | 79.18 191 | 96.45 162 | 95.88 145 | 83.64 168 | 83.12 176 | 93.33 187 | 75.94 134 | 95.74 251 | 82.40 174 | 88.27 175 | 96.75 159 |
|
thres400 | | | 88.42 145 | 87.15 153 | 92.23 119 | 96.21 111 | 85.30 52 | 97.44 87 | 98.85 2 | 83.37 172 | 83.99 164 | 93.82 182 | 75.36 149 | 97.93 146 | 69.04 278 | 86.24 191 | 93.45 221 |
|
tpmrst | | | 88.36 146 | 87.38 149 | 91.31 145 | 94.36 165 | 79.92 172 | 87.32 324 | 95.26 182 | 85.32 117 | 88.34 127 | 86.13 288 | 80.60 66 | 96.70 210 | 83.78 155 | 85.34 202 | 97.30 138 |
|
thres100view900 | | | 88.30 147 | 86.95 158 | 92.33 116 | 96.10 115 | 84.90 65 | 97.14 112 | 98.85 2 | 82.69 188 | 83.41 172 | 93.66 185 | 75.43 146 | 97.93 146 | 69.04 278 | 86.24 191 | 94.17 208 |
|
VDD-MVS | | | 88.28 148 | 87.02 157 | 92.06 125 | 95.09 140 | 80.18 169 | 97.55 79 | 94.45 225 | 83.09 177 | 89.10 118 | 95.92 132 | 47.97 321 | 98.49 131 | 93.08 67 | 86.91 184 | 97.52 125 |
|
BH-w/o | | | 88.24 149 | 87.47 147 | 90.54 168 | 95.03 145 | 78.54 206 | 97.41 94 | 93.82 253 | 84.08 153 | 78.23 227 | 94.51 167 | 69.34 210 | 97.21 183 | 80.21 188 | 94.58 120 | 95.87 180 |
|
hse-mvs2 | | | 88.22 150 | 88.21 128 | 88.25 222 | 93.54 185 | 73.41 286 | 95.41 213 | 95.89 144 | 90.39 31 | 92.22 70 | 94.22 172 | 74.70 159 | 96.66 213 | 93.14 64 | 64.37 329 | 94.69 205 |
|
thres600view7 | | | 88.06 151 | 86.70 161 | 92.15 122 | 96.10 115 | 85.17 58 | 97.14 112 | 98.85 2 | 82.70 187 | 83.41 172 | 93.66 185 | 75.43 146 | 97.82 153 | 67.13 287 | 85.88 195 | 93.45 221 |
|
Test_1112_low_res | | | 88.03 152 | 86.73 160 | 91.94 129 | 93.15 195 | 80.88 149 | 96.44 164 | 92.41 299 | 83.59 171 | 80.74 203 | 91.16 212 | 80.18 72 | 97.59 160 | 77.48 215 | 85.40 200 | 97.36 134 |
|
PLC |  | 83.97 7 | 88.00 153 | 87.38 149 | 89.83 191 | 98.02 69 | 76.46 255 | 97.16 110 | 94.43 226 | 79.26 250 | 81.98 191 | 96.28 124 | 69.36 209 | 99.27 77 | 77.71 211 | 92.25 145 | 93.77 216 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CLD-MVS | | | 87.97 154 | 87.48 146 | 89.44 197 | 92.16 225 | 80.54 159 | 98.14 35 | 94.92 194 | 91.41 17 | 79.43 216 | 95.40 144 | 62.34 248 | 97.27 181 | 90.60 95 | 82.90 218 | 90.50 236 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Fast-Effi-MVS+ | | | 87.93 155 | 86.94 159 | 90.92 157 | 94.04 172 | 79.16 192 | 98.26 31 | 93.72 262 | 81.29 206 | 83.94 167 | 92.90 192 | 69.83 208 | 96.68 211 | 76.70 222 | 91.74 150 | 96.93 149 |
|
HQP-MVS | | | 87.91 156 | 87.55 144 | 88.98 205 | 92.08 227 | 78.48 207 | 97.63 71 | 94.80 203 | 90.52 28 | 82.30 184 | 94.56 165 | 65.40 232 | 97.32 176 | 87.67 128 | 83.01 215 | 91.13 228 |
|
UGNet | | | 87.73 157 | 86.55 162 | 91.27 148 | 95.16 139 | 79.11 194 | 96.35 170 | 96.23 123 | 88.14 65 | 87.83 133 | 90.48 222 | 50.65 311 | 99.09 100 | 80.13 189 | 94.03 123 | 95.60 186 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EPNet_dtu | | | 87.65 158 | 87.89 133 | 86.93 251 | 94.57 155 | 71.37 310 | 96.72 147 | 96.50 95 | 88.56 56 | 87.12 138 | 95.02 157 | 75.91 135 | 94.01 306 | 66.62 289 | 90.00 158 | 95.42 190 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP_MVS | | | 87.50 159 | 87.09 156 | 88.74 211 | 91.86 237 | 77.96 227 | 97.18 106 | 94.69 207 | 89.89 36 | 81.33 196 | 94.15 175 | 64.77 237 | 97.30 178 | 87.08 132 | 82.82 219 | 90.96 230 |
|
EPMVS | | | 87.47 160 | 85.90 168 | 92.18 121 | 95.41 131 | 82.26 115 | 87.00 326 | 96.28 120 | 85.88 105 | 84.23 161 | 85.57 294 | 75.07 156 | 96.26 224 | 71.14 270 | 92.50 141 | 98.03 83 |
|
tpm2 | | | 87.35 161 | 86.26 164 | 90.62 165 | 92.93 202 | 78.67 204 | 88.06 319 | 95.99 138 | 79.33 246 | 87.40 134 | 86.43 283 | 80.28 70 | 96.40 218 | 80.23 187 | 85.73 198 | 96.79 155 |
|
RRT_test8_iter05 | | | 87.14 162 | 86.41 163 | 89.32 199 | 94.41 163 | 81.10 144 | 97.06 123 | 95.33 178 | 84.67 136 | 76.27 250 | 90.48 222 | 83.60 44 | 96.33 221 | 85.10 145 | 70.78 280 | 90.53 235 |
|
ab-mvs | | | 87.08 163 | 84.94 182 | 93.48 70 | 93.34 191 | 83.67 87 | 88.82 311 | 95.70 154 | 81.18 207 | 84.55 159 | 90.14 231 | 62.72 246 | 98.94 112 | 85.49 143 | 82.54 223 | 97.85 99 |
|
CNLPA | | | 86.96 164 | 85.37 173 | 91.72 136 | 97.59 83 | 79.34 188 | 97.21 102 | 91.05 318 | 74.22 297 | 78.90 219 | 96.75 118 | 67.21 221 | 98.95 110 | 74.68 242 | 90.77 155 | 96.88 153 |
|
BH-untuned | | | 86.95 165 | 85.94 167 | 89.99 183 | 94.52 158 | 77.46 240 | 96.78 143 | 93.37 279 | 81.80 201 | 76.62 243 | 93.81 184 | 66.64 225 | 97.02 192 | 76.06 230 | 93.88 128 | 95.48 189 |
|
RRT_MVS | | | 86.89 166 | 85.96 166 | 89.68 196 | 95.01 146 | 84.13 77 | 96.33 172 | 94.98 192 | 84.20 152 | 80.10 212 | 92.07 199 | 70.52 203 | 95.01 288 | 83.30 168 | 77.14 252 | 89.91 250 |
|
QAPM | | | 86.88 167 | 84.51 186 | 93.98 46 | 94.04 172 | 85.89 38 | 97.19 105 | 96.05 136 | 73.62 301 | 75.12 267 | 95.62 139 | 62.02 253 | 99.74 32 | 70.88 271 | 96.06 106 | 96.30 173 |
|
BH-RMVSNet | | | 86.84 168 | 85.28 174 | 91.49 142 | 95.35 133 | 80.26 166 | 96.95 133 | 92.21 300 | 82.86 185 | 81.77 195 | 95.46 143 | 59.34 270 | 97.64 158 | 69.79 276 | 93.81 129 | 96.57 163 |
|
mvs-test1 | | | 86.83 169 | 87.17 152 | 85.81 267 | 91.96 233 | 65.24 336 | 97.90 53 | 93.34 280 | 85.57 110 | 84.51 160 | 95.14 152 | 61.99 254 | 97.19 185 | 83.55 162 | 90.55 156 | 95.00 196 |
|
PatchmatchNet |  | | 86.83 169 | 85.12 179 | 91.95 128 | 94.12 169 | 82.27 114 | 86.55 330 | 95.64 158 | 84.59 139 | 82.98 179 | 84.99 306 | 77.26 109 | 95.96 236 | 68.61 282 | 91.34 152 | 97.64 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
nrg030 | | | 86.79 171 | 85.43 171 | 90.87 159 | 88.76 282 | 85.34 49 | 97.06 123 | 94.33 230 | 84.31 147 | 80.45 206 | 91.98 200 | 72.36 184 | 96.36 220 | 88.48 122 | 71.13 277 | 90.93 232 |
|
PCF-MVS | | 84.09 5 | 86.77 172 | 85.00 181 | 92.08 123 | 92.06 230 | 83.07 101 | 92.14 287 | 94.47 223 | 79.63 241 | 76.90 239 | 94.78 161 | 71.15 197 | 99.20 88 | 72.87 256 | 91.05 153 | 93.98 213 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
FIs | | | 86.73 173 | 86.10 165 | 88.61 213 | 90.05 267 | 80.21 167 | 96.14 183 | 96.95 34 | 85.56 113 | 78.37 226 | 92.30 196 | 76.73 120 | 95.28 273 | 79.51 194 | 79.27 237 | 90.35 238 |
|
cascas | | | 86.50 174 | 84.48 188 | 92.55 109 | 92.64 209 | 85.95 35 | 97.04 125 | 95.07 188 | 75.32 288 | 80.50 204 | 91.02 214 | 54.33 306 | 97.98 145 | 86.79 136 | 87.62 179 | 93.71 217 |
|
VDDNet | | | 86.44 175 | 84.51 186 | 92.22 120 | 91.56 240 | 81.83 127 | 97.10 118 | 94.64 214 | 69.50 326 | 87.84 132 | 95.19 148 | 48.01 320 | 97.92 151 | 89.82 107 | 86.92 183 | 96.89 152 |
|
GeoE | | | 86.36 176 | 85.20 175 | 89.83 191 | 93.17 194 | 76.13 260 | 97.53 80 | 92.11 301 | 79.58 242 | 80.99 199 | 94.01 178 | 66.60 226 | 96.17 228 | 73.48 254 | 89.30 162 | 97.20 143 |
|
TR-MVS | | | 86.30 177 | 84.93 183 | 90.42 170 | 94.63 154 | 77.58 238 | 96.57 155 | 93.82 253 | 80.30 227 | 82.42 183 | 95.16 150 | 58.74 274 | 97.55 163 | 74.88 240 | 87.82 178 | 96.13 176 |
|
X-MVStestdata | | | 86.26 178 | 84.14 194 | 92.63 106 | 98.52 42 | 80.29 163 | 97.37 96 | 96.44 101 | 87.04 91 | 91.38 82 | 20.73 369 | 77.24 111 | 99.59 51 | 90.46 97 | 98.07 62 | 98.02 84 |
|
AUN-MVS | | | 86.25 179 | 85.57 169 | 88.26 221 | 93.57 184 | 73.38 287 | 95.45 211 | 95.88 145 | 83.94 158 | 85.47 149 | 94.21 173 | 73.70 174 | 96.67 212 | 83.54 164 | 64.41 328 | 94.73 204 |
|
OpenMVS |  | 79.58 14 | 86.09 180 | 83.62 201 | 93.50 68 | 90.95 250 | 86.71 30 | 97.44 87 | 95.83 148 | 75.35 287 | 72.64 286 | 95.72 134 | 57.42 287 | 99.64 46 | 71.41 265 | 95.85 110 | 94.13 211 |
|
FC-MVSNet-test | | | 85.96 181 | 85.39 172 | 87.66 233 | 89.38 279 | 78.02 224 | 95.65 205 | 96.87 40 | 85.12 125 | 77.34 232 | 91.94 203 | 76.28 129 | 94.74 293 | 77.09 217 | 78.82 241 | 90.21 242 |
|
miper_enhance_ethall | | | 85.95 182 | 85.20 175 | 88.19 225 | 94.85 150 | 79.76 175 | 96.00 187 | 94.06 244 | 82.98 182 | 77.74 230 | 88.76 245 | 79.42 77 | 95.46 265 | 80.58 183 | 72.42 272 | 89.36 261 |
|
OPM-MVS | | | 85.84 183 | 85.10 180 | 88.06 226 | 88.34 288 | 77.83 233 | 95.72 201 | 94.20 234 | 87.89 72 | 80.45 206 | 94.05 177 | 58.57 275 | 97.26 182 | 83.88 154 | 82.76 221 | 89.09 267 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EI-MVSNet | | | 85.80 184 | 85.20 175 | 87.59 235 | 91.55 241 | 77.41 241 | 95.13 223 | 95.36 174 | 80.43 224 | 80.33 208 | 94.71 162 | 73.72 172 | 95.97 233 | 76.96 220 | 78.64 243 | 89.39 256 |
|
GA-MVS | | | 85.79 185 | 84.04 195 | 91.02 155 | 89.47 277 | 80.27 165 | 96.90 136 | 94.84 201 | 85.57 110 | 80.88 200 | 89.08 239 | 56.56 292 | 96.47 217 | 77.72 210 | 85.35 201 | 96.34 169 |
|
XVG-OURS-SEG-HR | | | 85.74 186 | 85.16 178 | 87.49 240 | 90.22 263 | 71.45 309 | 91.29 297 | 94.09 242 | 81.37 205 | 83.90 168 | 95.22 146 | 60.30 263 | 97.53 167 | 85.58 142 | 84.42 206 | 93.50 219 |
|
SCA | | | 85.63 187 | 83.64 200 | 91.60 140 | 92.30 216 | 81.86 126 | 92.88 279 | 95.56 161 | 84.85 129 | 82.52 180 | 85.12 304 | 58.04 279 | 95.39 266 | 73.89 250 | 87.58 181 | 97.54 121 |
|
tpm | | | 85.55 188 | 84.47 189 | 88.80 210 | 90.19 264 | 75.39 273 | 88.79 312 | 94.69 207 | 84.83 130 | 83.96 166 | 85.21 300 | 78.22 97 | 94.68 295 | 76.32 228 | 78.02 250 | 96.34 169 |
|
UniMVSNet_NR-MVSNet | | | 85.49 189 | 84.59 185 | 88.21 224 | 89.44 278 | 79.36 186 | 96.71 149 | 96.41 105 | 85.22 121 | 78.11 228 | 90.98 216 | 76.97 116 | 95.14 280 | 79.14 200 | 68.30 305 | 90.12 244 |
|
gg-mvs-nofinetune | | | 85.48 190 | 82.90 210 | 93.24 77 | 94.51 161 | 85.82 39 | 79.22 345 | 96.97 32 | 61.19 347 | 87.33 136 | 53.01 359 | 90.58 6 | 96.07 229 | 86.07 139 | 97.23 83 | 97.81 103 |
|
VPA-MVSNet | | | 85.32 191 | 83.83 196 | 89.77 194 | 90.25 262 | 82.63 107 | 96.36 169 | 97.07 25 | 83.03 180 | 81.21 198 | 89.02 241 | 61.58 258 | 96.31 223 | 85.02 148 | 70.95 279 | 90.36 237 |
|
UniMVSNet (Re) | | | 85.31 192 | 84.23 192 | 88.55 214 | 89.75 270 | 80.55 158 | 96.72 147 | 96.89 39 | 85.42 114 | 78.40 225 | 88.93 243 | 75.38 148 | 95.52 263 | 78.58 204 | 68.02 308 | 89.57 254 |
|
XVG-OURS | | | 85.18 193 | 84.38 190 | 87.59 235 | 90.42 261 | 71.73 306 | 91.06 300 | 94.07 243 | 82.00 199 | 83.29 174 | 95.08 156 | 56.42 293 | 97.55 163 | 83.70 160 | 83.42 211 | 93.49 220 |
|
cl-mvsnet2 | | | 85.11 194 | 84.17 193 | 87.92 228 | 95.06 144 | 78.82 200 | 95.51 208 | 94.22 233 | 79.74 239 | 76.77 240 | 87.92 258 | 75.96 133 | 95.68 252 | 79.93 192 | 72.42 272 | 89.27 262 |
|
TAPA-MVS | | 81.61 12 | 85.02 195 | 83.67 198 | 89.06 202 | 96.79 104 | 73.27 291 | 95.92 192 | 94.79 205 | 74.81 293 | 80.47 205 | 96.83 113 | 71.07 198 | 98.19 142 | 49.82 350 | 92.57 139 | 95.71 184 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PatchMatch-RL | | | 85.00 196 | 83.66 199 | 89.02 204 | 95.86 120 | 74.55 279 | 92.49 283 | 93.60 267 | 79.30 248 | 79.29 218 | 91.47 206 | 58.53 276 | 98.45 133 | 70.22 275 | 92.17 147 | 94.07 212 |
|
PS-MVSNAJss | | | 84.91 197 | 84.30 191 | 86.74 252 | 85.89 314 | 74.40 282 | 94.95 230 | 94.16 237 | 83.93 160 | 76.45 245 | 90.11 232 | 71.04 199 | 95.77 246 | 83.16 170 | 79.02 240 | 90.06 248 |
|
CVMVSNet | | | 84.83 198 | 85.57 169 | 82.63 309 | 91.55 241 | 60.38 350 | 95.13 223 | 95.03 190 | 80.60 217 | 82.10 190 | 94.71 162 | 66.40 227 | 90.19 345 | 74.30 247 | 90.32 157 | 97.31 137 |
|
test_part1 | | | 84.72 199 | 82.85 211 | 90.34 173 | 95.73 124 | 84.79 68 | 96.75 146 | 94.10 241 | 79.05 257 | 75.97 256 | 89.51 236 | 67.69 214 | 95.94 237 | 79.34 196 | 67.50 314 | 90.30 241 |
|
FMVSNet3 | | | 84.71 200 | 82.71 215 | 90.70 164 | 94.55 156 | 87.71 20 | 95.92 192 | 94.67 210 | 81.73 202 | 75.82 259 | 88.08 256 | 66.99 222 | 94.47 298 | 71.23 267 | 75.38 258 | 89.91 250 |
|
VPNet | | | 84.69 201 | 82.92 209 | 90.01 182 | 89.01 281 | 83.45 91 | 96.71 149 | 95.46 167 | 85.71 108 | 79.65 215 | 92.18 198 | 56.66 291 | 96.01 232 | 83.05 172 | 67.84 311 | 90.56 234 |
|
Effi-MVS+-dtu | | | 84.61 202 | 84.90 184 | 83.72 298 | 91.96 233 | 63.14 343 | 94.95 230 | 93.34 280 | 85.57 110 | 79.79 214 | 87.12 269 | 61.99 254 | 95.61 259 | 83.55 162 | 85.83 196 | 92.41 224 |
|
miper_ehance_all_eth | | | 84.57 203 | 83.60 202 | 87.50 239 | 92.64 209 | 78.25 216 | 95.40 214 | 93.47 271 | 79.28 249 | 76.41 246 | 87.64 261 | 76.53 123 | 95.24 275 | 78.58 204 | 72.42 272 | 89.01 272 |
|
DU-MVS | | | 84.57 203 | 83.33 206 | 88.28 220 | 88.76 282 | 79.36 186 | 96.43 166 | 95.41 173 | 85.42 114 | 78.11 228 | 90.82 217 | 67.61 215 | 95.14 280 | 79.14 200 | 68.30 305 | 90.33 239 |
|
F-COLMAP | | | 84.50 205 | 83.44 205 | 87.67 232 | 95.22 136 | 72.22 296 | 95.95 190 | 93.78 258 | 75.74 285 | 76.30 249 | 95.18 149 | 59.50 268 | 98.45 133 | 72.67 258 | 86.59 187 | 92.35 225 |
|
Anonymous202405211 | | | 84.41 206 | 81.93 225 | 91.85 133 | 96.78 105 | 78.41 211 | 97.44 87 | 91.34 313 | 70.29 322 | 84.06 162 | 94.26 171 | 41.09 343 | 98.96 107 | 79.46 195 | 82.65 222 | 98.17 71 |
|
bset_n11_16_dypcd | | | 84.35 207 | 82.83 213 | 88.91 206 | 82.54 338 | 82.07 118 | 94.12 251 | 93.47 271 | 85.39 116 | 78.55 223 | 88.98 242 | 62.23 249 | 95.11 282 | 86.75 137 | 73.42 266 | 89.55 255 |
|
WR-MVS | | | 84.32 208 | 82.96 208 | 88.41 216 | 89.38 279 | 80.32 162 | 96.59 154 | 96.25 122 | 83.97 157 | 76.63 242 | 90.36 226 | 67.53 217 | 94.86 291 | 75.82 234 | 70.09 289 | 90.06 248 |
|
dp | | | 84.30 209 | 82.31 220 | 90.28 175 | 94.24 167 | 77.97 226 | 86.57 329 | 95.53 162 | 79.94 236 | 80.75 202 | 85.16 302 | 71.49 195 | 96.39 219 | 63.73 304 | 83.36 212 | 96.48 165 |
|
LPG-MVS_test | | | 84.20 210 | 83.49 204 | 86.33 258 | 90.88 251 | 73.06 292 | 95.28 215 | 94.13 238 | 82.20 194 | 76.31 247 | 93.20 188 | 54.83 304 | 96.95 196 | 83.72 158 | 80.83 227 | 88.98 273 |
|
ACMP | | 81.66 11 | 84.00 211 | 83.22 207 | 86.33 258 | 91.53 243 | 72.95 294 | 95.91 194 | 93.79 257 | 83.70 167 | 73.79 274 | 92.22 197 | 54.31 307 | 96.89 200 | 83.98 153 | 79.74 233 | 89.16 265 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IterMVS-LS | | | 83.93 212 | 82.80 214 | 87.31 244 | 91.46 244 | 77.39 242 | 95.66 204 | 93.43 274 | 80.44 222 | 75.51 263 | 87.26 266 | 73.72 172 | 95.16 279 | 76.99 218 | 70.72 282 | 89.39 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XXY-MVS | | | 83.84 213 | 82.00 224 | 89.35 198 | 87.13 299 | 81.38 138 | 95.72 201 | 94.26 232 | 80.15 231 | 75.92 258 | 90.63 220 | 61.96 256 | 96.52 215 | 78.98 202 | 73.28 270 | 90.14 243 |
|
cl_fuxian | | | 83.80 214 | 82.65 216 | 87.25 246 | 92.10 226 | 77.74 236 | 95.25 218 | 93.04 291 | 78.58 261 | 76.01 254 | 87.21 268 | 75.25 153 | 95.11 282 | 77.54 214 | 68.89 299 | 88.91 278 |
|
LCM-MVSNet-Re | | | 83.75 215 | 83.54 203 | 84.39 291 | 93.54 185 | 64.14 339 | 92.51 282 | 84.03 355 | 83.90 161 | 66.14 320 | 86.59 277 | 67.36 219 | 92.68 320 | 84.89 149 | 92.87 137 | 96.35 168 |
|
ACMM | | 80.70 13 | 83.72 216 | 82.85 211 | 86.31 261 | 91.19 246 | 72.12 299 | 95.88 195 | 94.29 231 | 80.44 222 | 77.02 237 | 91.96 201 | 55.24 300 | 97.14 189 | 79.30 198 | 80.38 229 | 89.67 253 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tpm cat1 | | | 83.63 217 | 81.38 233 | 90.39 171 | 93.53 188 | 78.19 222 | 85.56 336 | 95.09 186 | 70.78 320 | 78.51 224 | 83.28 319 | 74.80 158 | 97.03 191 | 66.77 288 | 84.05 207 | 95.95 177 |
|
CR-MVSNet | | | 83.53 218 | 81.36 234 | 90.06 181 | 90.16 265 | 79.75 176 | 79.02 347 | 91.12 315 | 84.24 151 | 82.27 188 | 80.35 333 | 75.45 144 | 93.67 312 | 63.37 307 | 86.25 189 | 96.75 159 |
|
v2v482 | | | 83.46 219 | 81.86 226 | 88.25 222 | 86.19 308 | 79.65 181 | 96.34 171 | 94.02 245 | 81.56 204 | 77.32 233 | 88.23 253 | 65.62 229 | 96.03 230 | 77.77 208 | 69.72 293 | 89.09 267 |
|
NR-MVSNet | | | 83.35 220 | 81.52 232 | 88.84 208 | 88.76 282 | 81.31 140 | 94.45 239 | 95.16 184 | 84.65 137 | 67.81 310 | 90.82 217 | 70.36 205 | 94.87 290 | 74.75 241 | 66.89 321 | 90.33 239 |
|
Fast-Effi-MVS+-dtu | | | 83.33 221 | 82.60 217 | 85.50 273 | 89.55 275 | 69.38 324 | 96.09 186 | 91.38 310 | 82.30 193 | 75.96 257 | 91.41 207 | 56.71 289 | 95.58 261 | 75.13 239 | 84.90 204 | 91.54 226 |
|
cl-mvsnet____ | | | 83.27 222 | 82.12 221 | 86.74 252 | 92.20 221 | 75.95 267 | 95.11 225 | 93.27 283 | 78.44 264 | 74.82 269 | 87.02 271 | 74.19 166 | 95.19 277 | 74.67 243 | 69.32 295 | 89.09 267 |
|
cl-mvsnet1 | | | 83.27 222 | 82.12 221 | 86.74 252 | 92.19 222 | 75.92 268 | 95.11 225 | 93.26 284 | 78.44 264 | 74.81 270 | 87.08 270 | 74.19 166 | 95.19 277 | 74.66 244 | 69.30 296 | 89.11 266 |
|
TranMVSNet+NR-MVSNet | | | 83.24 224 | 81.71 228 | 87.83 229 | 87.71 295 | 78.81 202 | 96.13 185 | 94.82 202 | 84.52 140 | 76.18 253 | 90.78 219 | 64.07 240 | 94.60 296 | 74.60 245 | 66.59 323 | 90.09 246 |
|
Anonymous20240529 | | | 83.15 225 | 80.60 243 | 90.80 160 | 95.74 122 | 78.27 215 | 96.81 141 | 94.92 194 | 60.10 352 | 81.89 193 | 92.54 195 | 45.82 328 | 98.82 117 | 79.25 199 | 78.32 248 | 95.31 193 |
|
eth_miper_zixun_eth | | | 83.12 226 | 82.01 223 | 86.47 257 | 91.85 239 | 74.80 276 | 94.33 243 | 93.18 286 | 79.11 252 | 75.74 262 | 87.25 267 | 72.71 181 | 95.32 271 | 76.78 221 | 67.13 318 | 89.27 262 |
|
MS-PatchMatch | | | 83.05 227 | 81.82 227 | 86.72 256 | 89.64 273 | 79.10 195 | 94.88 232 | 94.59 218 | 79.70 240 | 70.67 298 | 89.65 234 | 50.43 313 | 96.82 205 | 70.82 274 | 95.99 108 | 84.25 337 |
|
V42 | | | 83.04 228 | 81.53 231 | 87.57 237 | 86.27 307 | 79.09 196 | 95.87 196 | 94.11 240 | 80.35 226 | 77.22 235 | 86.79 275 | 65.32 234 | 96.02 231 | 77.74 209 | 70.14 285 | 87.61 302 |
|
tpmvs | | | 83.04 228 | 80.77 239 | 89.84 190 | 95.43 130 | 77.96 227 | 85.59 335 | 95.32 179 | 75.31 289 | 76.27 250 | 83.70 316 | 73.89 169 | 97.41 173 | 59.53 318 | 81.93 225 | 94.14 210 |
|
test_djsdf | | | 83.00 230 | 82.45 219 | 84.64 284 | 84.07 333 | 69.78 320 | 94.80 234 | 94.48 221 | 80.74 214 | 75.41 265 | 87.70 260 | 61.32 260 | 95.10 284 | 83.77 156 | 79.76 231 | 89.04 270 |
|
v1144 | | | 82.90 231 | 81.27 235 | 87.78 231 | 86.29 306 | 79.07 197 | 96.14 183 | 93.93 247 | 80.05 233 | 77.38 231 | 86.80 274 | 65.50 230 | 95.93 239 | 75.21 238 | 70.13 286 | 88.33 288 |
|
test0.0.03 1 | | | 82.79 232 | 82.48 218 | 83.74 297 | 86.81 301 | 72.22 296 | 96.52 156 | 95.03 190 | 83.76 165 | 73.00 282 | 93.20 188 | 72.30 186 | 88.88 348 | 64.15 302 | 77.52 251 | 90.12 244 |
|
FMVSNet2 | | | 82.79 232 | 80.44 245 | 89.83 191 | 92.66 206 | 85.43 48 | 95.42 212 | 94.35 229 | 79.06 254 | 74.46 271 | 87.28 264 | 56.38 294 | 94.31 301 | 69.72 277 | 74.68 261 | 89.76 252 |
|
D2MVS | | | 82.67 234 | 81.55 230 | 86.04 265 | 87.77 294 | 76.47 254 | 95.21 219 | 96.58 83 | 82.66 189 | 70.26 301 | 85.46 297 | 60.39 262 | 95.80 245 | 76.40 226 | 79.18 238 | 85.83 327 |
|
MVP-Stereo | | | 82.65 235 | 81.67 229 | 85.59 272 | 86.10 311 | 78.29 214 | 93.33 266 | 92.82 293 | 77.75 269 | 69.17 308 | 87.98 257 | 59.28 271 | 95.76 247 | 71.77 262 | 96.88 93 | 82.73 345 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pmmvs4 | | | 82.54 236 | 80.79 238 | 87.79 230 | 86.11 310 | 80.49 161 | 93.55 261 | 93.18 286 | 77.29 275 | 73.35 278 | 89.40 238 | 65.26 235 | 95.05 287 | 75.32 237 | 73.61 265 | 87.83 296 |
|
v144192 | | | 82.43 237 | 80.73 240 | 87.54 238 | 85.81 315 | 78.22 217 | 95.98 188 | 93.78 258 | 79.09 253 | 77.11 236 | 86.49 279 | 64.66 239 | 95.91 240 | 74.20 248 | 69.42 294 | 88.49 282 |
|
GBi-Net | | | 82.42 238 | 80.43 246 | 88.39 217 | 92.66 206 | 81.95 119 | 94.30 245 | 93.38 276 | 79.06 254 | 75.82 259 | 85.66 290 | 56.38 294 | 93.84 308 | 71.23 267 | 75.38 258 | 89.38 258 |
|
test1 | | | 82.42 238 | 80.43 246 | 88.39 217 | 92.66 206 | 81.95 119 | 94.30 245 | 93.38 276 | 79.06 254 | 75.82 259 | 85.66 290 | 56.38 294 | 93.84 308 | 71.23 267 | 75.38 258 | 89.38 258 |
|
v148 | | | 82.41 240 | 80.89 237 | 86.99 250 | 86.18 309 | 76.81 251 | 96.27 175 | 93.82 253 | 80.49 221 | 75.28 266 | 86.11 289 | 67.32 220 | 95.75 248 | 75.48 236 | 67.03 320 | 88.42 286 |
|
v1192 | | | 82.31 241 | 80.55 244 | 87.60 234 | 85.94 312 | 78.47 210 | 95.85 198 | 93.80 256 | 79.33 246 | 76.97 238 | 86.51 278 | 63.33 244 | 95.87 241 | 73.11 255 | 70.13 286 | 88.46 284 |
|
LS3D | | | 82.22 242 | 79.94 254 | 89.06 202 | 97.43 90 | 74.06 285 | 93.20 273 | 92.05 302 | 61.90 343 | 73.33 279 | 95.21 147 | 59.35 269 | 99.21 84 | 54.54 338 | 92.48 142 | 93.90 215 |
|
jajsoiax | | | 82.12 243 | 81.15 236 | 85.03 278 | 84.19 331 | 70.70 312 | 94.22 249 | 93.95 246 | 83.07 178 | 73.48 276 | 89.75 233 | 49.66 316 | 95.37 268 | 82.24 176 | 79.76 231 | 89.02 271 |
|
v1921920 | | | 82.02 244 | 80.23 248 | 87.41 241 | 85.62 316 | 77.92 230 | 95.79 200 | 93.69 263 | 78.86 258 | 76.67 241 | 86.44 281 | 62.50 247 | 95.83 243 | 72.69 257 | 69.77 292 | 88.47 283 |
|
v8 | | | 81.88 245 | 80.06 252 | 87.32 243 | 86.63 302 | 79.04 198 | 94.41 240 | 93.65 265 | 78.77 259 | 73.19 281 | 85.57 294 | 66.87 223 | 95.81 244 | 73.84 252 | 67.61 313 | 87.11 310 |
|
mvs_tets | | | 81.74 246 | 80.71 241 | 84.84 279 | 84.22 330 | 70.29 315 | 93.91 254 | 93.78 258 | 82.77 186 | 73.37 277 | 89.46 237 | 47.36 325 | 95.31 272 | 81.99 177 | 79.55 236 | 88.92 277 |
|
v1240 | | | 81.70 247 | 79.83 255 | 87.30 245 | 85.50 317 | 77.70 237 | 95.48 209 | 93.44 273 | 78.46 263 | 76.53 244 | 86.44 281 | 60.85 261 | 95.84 242 | 71.59 264 | 70.17 284 | 88.35 287 |
|
PVSNet_0 | | 77.72 15 | 81.70 247 | 78.95 261 | 89.94 187 | 90.77 256 | 76.72 253 | 95.96 189 | 96.95 34 | 85.01 127 | 70.24 302 | 88.53 250 | 52.32 308 | 98.20 141 | 86.68 138 | 44.08 359 | 94.89 197 |
|
miper_lstm_enhance | | | 81.66 249 | 80.66 242 | 84.67 283 | 91.19 246 | 71.97 302 | 91.94 289 | 93.19 285 | 77.86 268 | 72.27 289 | 85.26 298 | 73.46 175 | 93.42 315 | 73.71 253 | 67.05 319 | 88.61 280 |
|
DP-MVS | | | 81.47 250 | 78.28 264 | 91.04 153 | 98.14 63 | 78.48 207 | 95.09 228 | 86.97 343 | 61.14 348 | 71.12 295 | 92.78 194 | 59.59 266 | 99.38 68 | 53.11 342 | 86.61 186 | 95.27 194 |
|
v10 | | | 81.43 251 | 79.53 257 | 87.11 248 | 86.38 303 | 78.87 199 | 94.31 244 | 93.43 274 | 77.88 267 | 73.24 280 | 85.26 298 | 65.44 231 | 95.75 248 | 72.14 261 | 67.71 312 | 86.72 314 |
|
pmmvs5 | | | 81.34 252 | 79.54 256 | 86.73 255 | 85.02 324 | 76.91 249 | 96.22 178 | 91.65 308 | 77.65 270 | 73.55 275 | 88.61 247 | 55.70 297 | 94.43 299 | 74.12 249 | 73.35 269 | 88.86 279 |
|
ADS-MVSNet | | | 81.26 253 | 78.36 263 | 89.96 186 | 93.78 178 | 79.78 174 | 79.48 343 | 93.60 267 | 73.09 307 | 80.14 210 | 79.99 336 | 62.15 251 | 95.24 275 | 59.49 319 | 83.52 209 | 94.85 198 |
|
Baseline_NR-MVSNet | | | 81.22 254 | 80.07 251 | 84.68 282 | 85.32 322 | 75.12 275 | 96.48 158 | 88.80 336 | 76.24 284 | 77.28 234 | 86.40 284 | 67.61 215 | 94.39 300 | 75.73 235 | 66.73 322 | 84.54 334 |
|
WR-MVS_H | | | 81.02 255 | 80.09 249 | 83.79 295 | 88.08 292 | 71.26 311 | 94.46 238 | 96.54 89 | 80.08 232 | 72.81 285 | 86.82 273 | 70.36 205 | 92.65 321 | 64.18 301 | 67.50 314 | 87.46 307 |
|
CP-MVSNet | | | 81.01 256 | 80.08 250 | 83.79 295 | 87.91 293 | 70.51 313 | 94.29 248 | 95.65 156 | 80.83 212 | 72.54 288 | 88.84 244 | 63.71 241 | 92.32 324 | 68.58 283 | 68.36 304 | 88.55 281 |
|
anonymousdsp | | | 80.98 257 | 79.97 253 | 84.01 292 | 81.73 339 | 70.44 314 | 92.49 283 | 93.58 269 | 77.10 279 | 72.98 283 | 86.31 285 | 57.58 283 | 94.90 289 | 79.32 197 | 78.63 245 | 86.69 315 |
|
UniMVSNet_ETH3D | | | 80.86 258 | 78.75 262 | 87.22 247 | 86.31 305 | 72.02 300 | 91.95 288 | 93.76 261 | 73.51 302 | 75.06 268 | 90.16 230 | 43.04 337 | 95.66 253 | 76.37 227 | 78.55 246 | 93.98 213 |
|
IterMVS | | | 80.67 259 | 79.16 259 | 85.20 276 | 89.79 269 | 76.08 261 | 92.97 277 | 91.86 304 | 80.28 228 | 71.20 294 | 85.14 303 | 57.93 282 | 91.34 335 | 72.52 259 | 70.74 281 | 88.18 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 80.62 260 | 77.77 268 | 89.14 201 | 93.43 190 | 77.24 244 | 91.89 290 | 90.18 325 | 69.86 325 | 68.02 309 | 91.94 203 | 52.21 309 | 98.84 116 | 59.32 321 | 83.12 213 | 91.35 227 |
|
IterMVS-SCA-FT | | | 80.51 261 | 79.10 260 | 84.73 281 | 89.63 274 | 74.66 277 | 92.98 276 | 91.81 306 | 80.05 233 | 71.06 296 | 85.18 301 | 58.04 279 | 91.40 334 | 72.48 260 | 70.70 283 | 88.12 292 |
|
PS-CasMVS | | | 80.27 262 | 79.18 258 | 83.52 302 | 87.56 297 | 69.88 318 | 94.08 252 | 95.29 180 | 80.27 229 | 72.08 290 | 88.51 251 | 59.22 272 | 92.23 326 | 67.49 285 | 68.15 307 | 88.45 285 |
|
pm-mvs1 | | | 80.05 263 | 78.02 266 | 86.15 263 | 85.42 318 | 75.81 269 | 95.11 225 | 92.69 296 | 77.13 277 | 70.36 300 | 87.43 263 | 58.44 277 | 95.27 274 | 71.36 266 | 64.25 330 | 87.36 308 |
|
RPMNet | | | 79.85 264 | 75.92 282 | 91.64 137 | 90.16 265 | 79.75 176 | 79.02 347 | 95.44 169 | 58.43 356 | 82.27 188 | 72.55 351 | 73.03 179 | 98.41 135 | 46.10 356 | 86.25 189 | 96.75 159 |
|
PatchT | | | 79.75 265 | 76.85 275 | 88.42 215 | 89.55 275 | 75.49 272 | 77.37 351 | 94.61 216 | 63.07 339 | 82.46 182 | 73.32 350 | 75.52 143 | 93.41 316 | 51.36 345 | 84.43 205 | 96.36 167 |
|
Anonymous20231211 | | | 79.72 266 | 77.19 272 | 87.33 242 | 95.59 127 | 77.16 248 | 95.18 222 | 94.18 236 | 59.31 354 | 72.57 287 | 86.20 287 | 47.89 322 | 95.66 253 | 74.53 246 | 69.24 297 | 89.18 264 |
|
ADS-MVSNet2 | | | 79.57 267 | 77.53 269 | 85.71 270 | 93.78 178 | 72.13 298 | 79.48 343 | 86.11 348 | 73.09 307 | 80.14 210 | 79.99 336 | 62.15 251 | 90.14 346 | 59.49 319 | 83.52 209 | 94.85 198 |
|
FMVSNet1 | | | 79.50 268 | 76.54 278 | 88.39 217 | 88.47 287 | 81.95 119 | 94.30 245 | 93.38 276 | 73.14 306 | 72.04 291 | 85.66 290 | 43.86 331 | 93.84 308 | 65.48 296 | 72.53 271 | 89.38 258 |
|
PEN-MVS | | | 79.47 269 | 78.26 265 | 83.08 305 | 86.36 304 | 68.58 326 | 93.85 255 | 94.77 206 | 79.76 238 | 71.37 292 | 88.55 248 | 59.79 264 | 92.46 322 | 64.50 300 | 65.40 325 | 88.19 290 |
|
XVG-ACMP-BASELINE | | | 79.38 270 | 77.90 267 | 83.81 294 | 84.98 325 | 67.14 333 | 89.03 310 | 93.18 286 | 80.26 230 | 72.87 284 | 88.15 255 | 38.55 346 | 96.26 224 | 76.05 231 | 78.05 249 | 88.02 293 |
|
v7n | | | 79.32 271 | 77.34 270 | 85.28 275 | 84.05 334 | 72.89 295 | 93.38 264 | 93.87 251 | 75.02 292 | 70.68 297 | 84.37 310 | 59.58 267 | 95.62 258 | 67.60 284 | 67.50 314 | 87.32 309 |
|
MIMVSNet | | | 79.18 272 | 75.99 281 | 88.72 212 | 87.37 298 | 80.66 155 | 79.96 342 | 91.82 305 | 77.38 274 | 74.33 272 | 81.87 325 | 41.78 340 | 90.74 341 | 66.36 294 | 83.10 214 | 94.76 200 |
|
JIA-IIPM | | | 79.00 273 | 77.20 271 | 84.40 290 | 89.74 272 | 64.06 340 | 75.30 354 | 95.44 169 | 62.15 342 | 81.90 192 | 59.08 357 | 78.92 86 | 95.59 260 | 66.51 292 | 85.78 197 | 93.54 218 |
|
USDC | | | 78.65 274 | 76.25 279 | 85.85 266 | 87.58 296 | 74.60 278 | 89.58 306 | 90.58 324 | 84.05 154 | 63.13 332 | 88.23 253 | 40.69 345 | 96.86 204 | 66.57 291 | 75.81 256 | 86.09 323 |
|
MVS_0304 | | | 78.43 275 | 76.70 276 | 83.60 300 | 88.22 290 | 69.81 319 | 92.91 278 | 95.10 185 | 72.32 314 | 78.71 222 | 80.29 335 | 33.78 354 | 93.37 317 | 68.77 281 | 80.23 230 | 87.63 300 |
|
DTE-MVSNet | | | 78.37 276 | 77.06 273 | 82.32 312 | 85.22 323 | 67.17 332 | 93.40 263 | 93.66 264 | 78.71 260 | 70.53 299 | 88.29 252 | 59.06 273 | 92.23 326 | 61.38 314 | 63.28 334 | 87.56 304 |
|
Patchmatch-test | | | 78.25 277 | 74.72 290 | 88.83 209 | 91.20 245 | 74.10 284 | 73.91 357 | 88.70 339 | 59.89 353 | 66.82 316 | 85.12 304 | 78.38 94 | 94.54 297 | 48.84 352 | 79.58 235 | 97.86 98 |
|
tfpnnormal | | | 78.14 278 | 75.42 284 | 86.31 261 | 88.33 289 | 79.24 189 | 94.41 240 | 96.22 124 | 73.51 302 | 69.81 304 | 85.52 296 | 55.43 298 | 95.75 248 | 47.65 354 | 67.86 310 | 83.95 340 |
|
ACMH | | 75.40 17 | 77.99 279 | 74.96 286 | 87.10 249 | 90.67 257 | 76.41 256 | 93.19 274 | 91.64 309 | 72.47 313 | 63.44 330 | 87.61 262 | 43.34 334 | 97.16 186 | 58.34 323 | 73.94 263 | 87.72 297 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 73.68 18 | 77.99 279 | 75.74 283 | 84.74 280 | 90.45 260 | 72.02 300 | 86.41 331 | 91.12 315 | 72.57 312 | 66.63 317 | 87.27 265 | 54.95 303 | 96.98 194 | 56.29 333 | 75.98 254 | 85.21 331 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
our_test_3 | | | 77.90 281 | 75.37 285 | 85.48 274 | 85.39 319 | 76.74 252 | 93.63 258 | 91.67 307 | 73.39 305 | 65.72 322 | 84.65 309 | 58.20 278 | 93.13 319 | 57.82 325 | 67.87 309 | 86.57 316 |
|
RPSCF | | | 77.73 282 | 76.63 277 | 81.06 317 | 88.66 286 | 55.76 358 | 87.77 321 | 87.88 341 | 64.82 338 | 74.14 273 | 92.79 193 | 49.22 317 | 96.81 206 | 67.47 286 | 76.88 253 | 90.62 233 |
|
KD-MVS_2432*1600 | | | 77.63 283 | 74.92 288 | 85.77 268 | 90.86 253 | 79.44 184 | 88.08 317 | 93.92 248 | 76.26 282 | 67.05 314 | 82.78 321 | 72.15 188 | 91.92 329 | 61.53 311 | 41.62 360 | 85.94 325 |
|
miper_refine_blended | | | 77.63 283 | 74.92 288 | 85.77 268 | 90.86 253 | 79.44 184 | 88.08 317 | 93.92 248 | 76.26 282 | 67.05 314 | 82.78 321 | 72.15 188 | 91.92 329 | 61.53 311 | 41.62 360 | 85.94 325 |
|
ACMH+ | | 76.62 16 | 77.47 285 | 74.94 287 | 85.05 277 | 91.07 249 | 71.58 308 | 93.26 271 | 90.01 326 | 71.80 316 | 64.76 325 | 88.55 248 | 41.62 341 | 96.48 216 | 62.35 310 | 71.00 278 | 87.09 311 |
|
Patchmtry | | | 77.36 286 | 74.59 291 | 85.67 271 | 89.75 270 | 75.75 270 | 77.85 350 | 91.12 315 | 60.28 350 | 71.23 293 | 80.35 333 | 75.45 144 | 93.56 314 | 57.94 324 | 67.34 317 | 87.68 299 |
|
ppachtmachnet_test | | | 77.19 287 | 74.22 295 | 86.13 264 | 85.39 319 | 78.22 217 | 93.98 253 | 91.36 312 | 71.74 317 | 67.11 313 | 84.87 307 | 56.67 290 | 93.37 317 | 52.21 343 | 64.59 327 | 86.80 313 |
|
OurMVSNet-221017-0 | | | 77.18 288 | 76.06 280 | 80.55 320 | 83.78 335 | 60.00 351 | 90.35 302 | 91.05 318 | 77.01 281 | 66.62 318 | 87.92 258 | 47.73 323 | 94.03 305 | 71.63 263 | 68.44 303 | 87.62 301 |
|
TransMVSNet (Re) | | | 76.94 289 | 74.38 293 | 84.62 285 | 85.92 313 | 75.25 274 | 95.28 215 | 89.18 333 | 73.88 300 | 67.22 311 | 86.46 280 | 59.64 265 | 94.10 304 | 59.24 322 | 52.57 350 | 84.50 335 |
|
EU-MVSNet | | | 76.92 290 | 76.95 274 | 76.83 331 | 84.10 332 | 54.73 360 | 91.77 292 | 92.71 295 | 72.74 310 | 69.57 305 | 88.69 246 | 58.03 281 | 87.43 353 | 64.91 299 | 70.00 290 | 88.33 288 |
|
Patchmatch-RL test | | | 76.65 291 | 74.01 298 | 84.55 286 | 77.37 353 | 64.23 338 | 78.49 349 | 82.84 359 | 78.48 262 | 64.63 326 | 73.40 349 | 76.05 132 | 91.70 333 | 76.99 218 | 57.84 340 | 97.72 109 |
|
FMVSNet5 | | | 76.46 292 | 74.16 296 | 83.35 304 | 90.05 267 | 76.17 259 | 89.58 306 | 89.85 327 | 71.39 319 | 65.29 324 | 80.42 332 | 50.61 312 | 87.70 352 | 61.05 316 | 69.24 297 | 86.18 321 |
|
SixPastTwentyTwo | | | 76.04 293 | 74.32 294 | 81.22 316 | 84.54 327 | 61.43 349 | 91.16 298 | 89.30 332 | 77.89 266 | 64.04 327 | 86.31 285 | 48.23 318 | 94.29 302 | 63.54 306 | 63.84 332 | 87.93 295 |
|
AllTest | | | 75.92 294 | 73.06 301 | 84.47 287 | 92.18 223 | 67.29 330 | 91.07 299 | 84.43 353 | 67.63 329 | 63.48 328 | 90.18 228 | 38.20 347 | 97.16 186 | 57.04 329 | 73.37 267 | 88.97 275 |
|
CL-MVSNet_2432*1600 | | | 75.81 295 | 74.14 297 | 80.83 319 | 78.33 349 | 67.79 329 | 94.22 249 | 93.52 270 | 77.28 276 | 69.82 303 | 81.54 327 | 61.47 259 | 89.22 347 | 57.59 327 | 53.51 346 | 85.48 329 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 296 | 73.00 302 | 83.94 293 | 92.38 212 | 69.08 325 | 91.85 291 | 86.93 344 | 61.48 346 | 65.32 323 | 90.27 227 | 42.27 339 | 96.93 199 | 50.91 347 | 75.63 257 | 85.80 328 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CMPMVS |  | 54.94 21 | 75.71 297 | 74.56 292 | 79.17 326 | 79.69 345 | 55.98 356 | 89.59 305 | 93.30 282 | 60.28 350 | 53.85 354 | 89.07 240 | 47.68 324 | 96.33 221 | 76.55 223 | 81.02 226 | 85.22 330 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20231206 | | | 75.29 298 | 73.64 299 | 80.22 321 | 80.75 340 | 63.38 342 | 93.36 265 | 90.71 323 | 73.09 307 | 67.12 312 | 83.70 316 | 50.33 314 | 90.85 340 | 53.63 341 | 70.10 288 | 86.44 317 |
|
EG-PatchMatch MVS | | | 74.92 299 | 72.02 304 | 83.62 299 | 83.76 336 | 73.28 290 | 93.62 259 | 92.04 303 | 68.57 328 | 58.88 345 | 83.80 315 | 31.87 358 | 95.57 262 | 56.97 331 | 78.67 242 | 82.00 351 |
|
testgi | | | 74.88 300 | 73.40 300 | 79.32 325 | 80.13 344 | 61.75 346 | 93.21 272 | 86.64 346 | 79.49 244 | 66.56 319 | 91.06 213 | 35.51 352 | 88.67 349 | 56.79 332 | 71.25 276 | 87.56 304 |
|
pmmvs6 | | | 74.65 301 | 71.67 305 | 83.60 300 | 79.13 347 | 69.94 317 | 93.31 270 | 90.88 322 | 61.05 349 | 65.83 321 | 84.15 313 | 43.43 333 | 94.83 292 | 66.62 289 | 60.63 337 | 86.02 324 |
|
K. test v3 | | | 73.62 302 | 71.59 306 | 79.69 323 | 82.98 337 | 59.85 352 | 90.85 301 | 88.83 335 | 77.13 277 | 58.90 344 | 82.11 323 | 43.62 332 | 91.72 332 | 65.83 295 | 54.10 345 | 87.50 306 |
|
pmmvs-eth3d | | | 73.59 303 | 70.66 309 | 82.38 310 | 76.40 357 | 73.38 287 | 89.39 309 | 89.43 330 | 72.69 311 | 60.34 343 | 77.79 342 | 46.43 327 | 91.26 337 | 66.42 293 | 57.06 341 | 82.51 346 |
|
MDA-MVSNet_test_wron | | | 73.54 304 | 70.43 311 | 82.86 306 | 84.55 326 | 71.85 303 | 91.74 293 | 91.32 314 | 67.63 329 | 46.73 358 | 81.09 330 | 55.11 301 | 90.42 344 | 55.91 335 | 59.76 338 | 86.31 319 |
|
YYNet1 | | | 73.53 305 | 70.43 311 | 82.85 307 | 84.52 328 | 71.73 306 | 91.69 294 | 91.37 311 | 67.63 329 | 46.79 357 | 81.21 329 | 55.04 302 | 90.43 343 | 55.93 334 | 59.70 339 | 86.38 318 |
|
UnsupCasMVSNet_eth | | | 73.25 306 | 70.57 310 | 81.30 315 | 77.53 351 | 66.33 334 | 87.24 325 | 93.89 250 | 80.38 225 | 57.90 349 | 81.59 326 | 42.91 338 | 90.56 342 | 65.18 298 | 48.51 353 | 87.01 312 |
|
DSMNet-mixed | | | 73.13 307 | 72.45 303 | 75.19 337 | 77.51 352 | 46.82 363 | 85.09 337 | 82.01 360 | 67.61 333 | 69.27 307 | 81.33 328 | 50.89 310 | 86.28 355 | 54.54 338 | 83.80 208 | 92.46 223 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 308 | 69.57 314 | 83.37 303 | 80.54 343 | 71.82 304 | 93.60 260 | 88.22 340 | 62.37 341 | 61.98 337 | 83.15 320 | 35.31 353 | 95.47 264 | 45.08 357 | 75.88 255 | 82.82 343 |
|
test_0402 | | | 72.68 309 | 69.54 315 | 82.09 313 | 88.67 285 | 71.81 305 | 92.72 281 | 86.77 345 | 61.52 345 | 62.21 336 | 83.91 314 | 43.22 335 | 93.76 311 | 34.60 361 | 72.23 275 | 80.72 353 |
|
TinyColmap | | | 72.41 310 | 68.99 317 | 82.68 308 | 88.11 291 | 69.59 322 | 88.41 315 | 85.20 350 | 65.55 335 | 57.91 348 | 84.82 308 | 30.80 360 | 95.94 237 | 51.38 344 | 68.70 300 | 82.49 348 |
|
test20.03 | | | 72.36 311 | 71.15 307 | 75.98 335 | 77.79 350 | 59.16 353 | 92.40 285 | 89.35 331 | 74.09 298 | 61.50 339 | 84.32 311 | 48.09 319 | 85.54 358 | 50.63 348 | 62.15 336 | 83.24 341 |
|
LF4IMVS | | | 72.36 311 | 70.82 308 | 76.95 330 | 79.18 346 | 56.33 355 | 86.12 332 | 86.11 348 | 69.30 327 | 63.06 333 | 86.66 276 | 33.03 356 | 92.25 325 | 65.33 297 | 68.64 301 | 82.28 349 |
|
Anonymous20240521 | | | 72.06 313 | 69.91 313 | 78.50 327 | 77.11 354 | 61.67 348 | 91.62 296 | 90.97 320 | 65.52 336 | 62.37 335 | 79.05 339 | 36.32 349 | 90.96 339 | 57.75 326 | 68.52 302 | 82.87 342 |
|
MDA-MVSNet-bldmvs | | | 71.45 314 | 67.94 318 | 81.98 314 | 85.33 321 | 68.50 327 | 92.35 286 | 88.76 337 | 70.40 321 | 42.99 359 | 81.96 324 | 46.57 326 | 91.31 336 | 48.75 353 | 54.39 344 | 86.11 322 |
|
MVS-HIRNet | | | 71.36 315 | 67.00 319 | 84.46 289 | 90.58 258 | 69.74 321 | 79.15 346 | 87.74 342 | 46.09 359 | 61.96 338 | 50.50 360 | 45.14 329 | 95.64 256 | 53.74 340 | 88.11 177 | 88.00 294 |
|
DIV-MVS_2432*1600 | | | 70.97 316 | 69.31 316 | 75.95 336 | 76.24 359 | 55.39 359 | 87.45 322 | 90.94 321 | 70.20 323 | 62.96 334 | 77.48 343 | 44.01 330 | 88.09 350 | 61.25 315 | 53.26 347 | 84.37 336 |
|
MIMVSNet1 | | | 69.44 317 | 66.65 321 | 77.84 328 | 76.48 356 | 62.84 344 | 87.42 323 | 88.97 334 | 66.96 334 | 57.75 350 | 79.72 338 | 32.77 357 | 85.83 357 | 46.32 355 | 63.42 333 | 84.85 333 |
|
PM-MVS | | | 69.32 318 | 66.93 320 | 76.49 332 | 73.60 361 | 55.84 357 | 85.91 333 | 79.32 364 | 74.72 294 | 61.09 340 | 78.18 341 | 21.76 362 | 91.10 338 | 70.86 272 | 56.90 342 | 82.51 346 |
|
TDRefinement | | | 69.20 319 | 65.78 323 | 79.48 324 | 66.04 365 | 62.21 345 | 88.21 316 | 86.12 347 | 62.92 340 | 61.03 341 | 85.61 293 | 33.23 355 | 94.16 303 | 55.82 336 | 53.02 348 | 82.08 350 |
|
new-patchmatchnet | | | 68.85 320 | 65.93 322 | 77.61 329 | 73.57 362 | 63.94 341 | 90.11 304 | 88.73 338 | 71.62 318 | 55.08 352 | 73.60 348 | 40.84 344 | 87.22 354 | 51.35 346 | 48.49 354 | 81.67 352 |
|
UnsupCasMVSNet_bld | | | 68.60 321 | 64.50 324 | 80.92 318 | 74.63 360 | 67.80 328 | 83.97 338 | 92.94 292 | 65.12 337 | 54.63 353 | 68.23 355 | 35.97 350 | 92.17 328 | 60.13 317 | 44.83 357 | 82.78 344 |
|
new_pmnet | | | 66.18 322 | 63.18 325 | 75.18 338 | 76.27 358 | 61.74 347 | 83.79 339 | 84.66 352 | 56.64 357 | 51.57 355 | 71.85 354 | 31.29 359 | 87.93 351 | 49.98 349 | 62.55 335 | 75.86 356 |
|
pmmvs3 | | | 65.75 323 | 62.18 326 | 76.45 333 | 67.12 364 | 64.54 337 | 88.68 313 | 85.05 351 | 54.77 358 | 57.54 351 | 73.79 347 | 29.40 361 | 86.21 356 | 55.49 337 | 47.77 355 | 78.62 354 |
|
N_pmnet | | | 61.30 324 | 60.20 327 | 64.60 341 | 84.32 329 | 17.00 376 | 91.67 295 | 10.98 375 | 61.77 344 | 58.45 347 | 78.55 340 | 49.89 315 | 91.83 331 | 42.27 359 | 63.94 331 | 84.97 332 |
|
test_method | | | 56.77 325 | 54.53 328 | 63.49 343 | 76.49 355 | 40.70 368 | 75.68 353 | 74.24 366 | 19.47 367 | 48.73 356 | 71.89 353 | 19.31 363 | 65.80 366 | 57.46 328 | 47.51 356 | 83.97 339 |
|
FPMVS | | | 55.09 326 | 52.93 329 | 61.57 344 | 55.98 366 | 40.51 369 | 83.11 340 | 83.41 358 | 37.61 361 | 34.95 362 | 71.95 352 | 14.40 366 | 76.95 360 | 29.81 362 | 65.16 326 | 67.25 360 |
|
LCM-MVSNet | | | 52.52 327 | 48.24 330 | 65.35 339 | 47.63 371 | 41.45 367 | 72.55 358 | 83.62 357 | 31.75 362 | 37.66 361 | 57.92 358 | 9.19 372 | 76.76 361 | 49.26 351 | 44.60 358 | 77.84 355 |
|
PMMVS2 | | | 50.90 328 | 46.31 331 | 64.67 340 | 55.53 367 | 46.67 364 | 77.30 352 | 71.02 367 | 40.89 360 | 34.16 363 | 59.32 356 | 9.83 371 | 76.14 363 | 40.09 360 | 28.63 363 | 71.21 357 |
|
ANet_high | | | 46.22 329 | 41.28 334 | 61.04 345 | 39.91 373 | 46.25 365 | 70.59 359 | 76.18 365 | 58.87 355 | 23.09 366 | 48.00 362 | 12.58 368 | 66.54 365 | 28.65 363 | 13.62 366 | 70.35 358 |
|
Gipuma |  | | 45.11 330 | 42.05 332 | 54.30 346 | 80.69 341 | 51.30 362 | 35.80 364 | 83.81 356 | 28.13 363 | 27.94 365 | 34.53 364 | 11.41 370 | 76.70 362 | 21.45 364 | 54.65 343 | 34.90 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 41.54 331 | 41.93 333 | 40.38 349 | 20.10 375 | 26.84 372 | 61.93 361 | 59.09 371 | 14.81 369 | 28.51 364 | 80.58 331 | 35.53 351 | 48.33 370 | 63.70 305 | 13.11 367 | 45.96 363 |
|
PMVS |  | 34.80 23 | 39.19 332 | 35.53 335 | 50.18 347 | 29.72 374 | 30.30 371 | 59.60 362 | 66.20 370 | 26.06 364 | 17.91 368 | 49.53 361 | 3.12 373 | 74.09 364 | 18.19 366 | 49.40 351 | 46.14 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 35.65 22 | 33.85 333 | 29.49 338 | 46.92 348 | 41.86 372 | 36.28 370 | 50.45 363 | 56.52 372 | 18.75 368 | 18.28 367 | 37.84 363 | 2.41 374 | 58.41 367 | 18.71 365 | 20.62 364 | 46.06 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 334 | 32.39 336 | 33.65 350 | 53.35 369 | 25.70 373 | 74.07 356 | 53.33 373 | 21.08 365 | 17.17 369 | 33.63 366 | 11.85 369 | 54.84 368 | 12.98 367 | 14.04 365 | 20.42 365 |
|
EMVS | | | 31.70 335 | 31.45 337 | 32.48 351 | 50.72 370 | 23.95 374 | 74.78 355 | 52.30 374 | 20.36 366 | 16.08 370 | 31.48 367 | 12.80 367 | 53.60 369 | 11.39 368 | 13.10 368 | 19.88 366 |
|
cdsmvs_eth3d_5k | | | 21.43 336 | 28.57 339 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 95.93 143 | 0.00 373 | 0.00 374 | 97.66 72 | 63.57 242 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
wuyk23d | | | 14.10 337 | 13.89 340 | 14.72 352 | 55.23 368 | 22.91 375 | 33.83 365 | 3.56 376 | 4.94 370 | 4.11 371 | 2.28 372 | 2.06 375 | 19.66 371 | 10.23 369 | 8.74 369 | 1.59 369 |
|
testmvs | | | 9.92 338 | 12.94 341 | 0.84 354 | 0.65 376 | 0.29 378 | 93.78 256 | 0.39 377 | 0.42 371 | 2.85 372 | 15.84 370 | 0.17 377 | 0.30 373 | 2.18 370 | 0.21 370 | 1.91 368 |
|
test123 | | | 9.07 339 | 11.73 342 | 1.11 353 | 0.50 377 | 0.77 377 | 89.44 308 | 0.20 378 | 0.34 372 | 2.15 373 | 10.72 371 | 0.34 376 | 0.32 372 | 1.79 371 | 0.08 371 | 2.23 367 |
|
ab-mvs-re | | | 8.11 340 | 10.81 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 97.30 94 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 5.92 341 | 7.89 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 71.04 199 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
FOURS1 | | | | | | 98.51 44 | 78.01 225 | 98.13 38 | 96.21 125 | 83.04 179 | 94.39 43 | | | | | | |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 43 | | | | | 99.81 20 | 98.08 6 | 98.81 25 | 99.43 11 |
|
PC_three_1452 | | | | | | | | | | 91.12 21 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 20 | 98.96 2 | 99.37 1 | 99.70 3 |
|
No_MVS | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 43 | | | | | 99.81 20 | 98.08 6 | 98.81 25 | 99.43 11 |
|
test_one_0601 | | | | | | 98.91 20 | 84.56 71 | | 96.70 63 | 88.06 66 | 96.57 15 | 98.77 12 | 88.04 19 | | | | |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.09 9 | 83.22 97 | | 96.60 81 | 82.88 184 | 93.61 54 | 98.06 51 | 82.93 51 | 99.14 95 | 95.51 33 | 98.49 42 | |
|
RE-MVS-def | | | | 91.18 83 | | 97.76 78 | 76.03 263 | 96.20 180 | 95.44 169 | 80.56 219 | 90.72 95 | 97.84 65 | 73.36 177 | | 91.99 79 | 96.79 96 | 97.75 107 |
|
IU-MVS | | | | | | 99.03 16 | 85.34 49 | | 96.86 42 | 92.05 15 | 98.74 1 | | | | 98.15 3 | 98.97 17 | 99.42 13 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 22 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 47 | 88.72 51 | 97.70 6 | 98.91 3 | 87.86 20 | 99.82 17 | 98.15 3 | 99.00 15 | 99.47 9 |
|
test_241102_ONE | | | | | | 99.03 16 | 85.03 61 | | 96.78 47 | 88.72 51 | 97.79 4 | 98.90 6 | 88.48 16 | 99.82 17 | | | |
|
9.14 | | | | 94.26 28 | | 98.10 65 | | 98.14 35 | 96.52 92 | 84.74 132 | 94.83 37 | 98.80 9 | 82.80 54 | 99.37 72 | 95.95 26 | 98.42 46 | |
|
save fliter | | | | | | 98.24 57 | 83.34 93 | 98.61 23 | 96.57 84 | 91.32 18 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 88.38 59 | 96.69 12 | 98.76 14 | 89.64 12 | 99.76 24 | 97.47 13 | 98.84 24 | 99.38 14 |
|
test_0728_SECOND | | | | | 95.14 17 | 99.04 15 | 86.14 33 | 99.06 9 | 96.77 53 | | | | | 99.84 12 | 97.90 8 | 98.85 22 | 99.45 10 |
|
test0726 | | | | | | 99.05 10 | 85.18 54 | 99.11 8 | 96.78 47 | 88.75 49 | 97.65 8 | 98.91 3 | 87.69 21 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 121 |
|
test_part2 | | | | | | 98.90 21 | 85.14 60 | | | | 96.07 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 104 | | | | 97.54 121 |
|
sam_mvs | | | | | | | | | | | | | 75.35 151 | | | | |
|
ambc | | | | | 76.02 334 | 68.11 363 | 51.43 361 | 64.97 360 | 89.59 328 | | 60.49 342 | 74.49 346 | 17.17 365 | 92.46 322 | 61.50 313 | 52.85 349 | 84.17 338 |
|
MTGPA |  | | | | | | | | 96.33 116 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 334 | | | | 30.24 368 | 73.77 170 | 95.07 286 | 73.89 250 | | |
|
test_post | | | | | | | | | | | | 33.80 365 | 76.17 130 | 95.97 233 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 344 | 77.78 103 | 95.39 266 | | | |
|
GG-mvs-BLEND | | | | | 93.49 69 | 94.94 147 | 86.26 31 | 81.62 341 | 97.00 28 | | 88.32 128 | 94.30 170 | 91.23 5 | 96.21 227 | 88.49 121 | 97.43 78 | 98.00 89 |
|
MTMP | | | | | | | | 97.53 80 | 68.16 368 | | | | | | | | |
|
gm-plane-assit | | | | | | 92.27 217 | 79.64 182 | | | 84.47 143 | | 95.15 151 | | 97.93 146 | 85.81 140 | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 25 | 99.03 13 | 98.31 61 |
|
TEST9 | | | | | | 98.64 35 | 83.71 85 | 97.82 56 | 96.65 72 | 84.29 149 | 95.16 28 | 98.09 46 | 84.39 34 | 99.36 74 | | | |
|
test_8 | | | | | | 98.63 37 | 83.64 88 | 97.81 58 | 96.63 77 | 84.50 141 | 95.10 30 | 98.11 45 | 84.33 35 | 99.23 80 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 46 | 99.00 15 | 98.57 45 |
|
agg_prior | | | | | | 98.59 39 | 83.13 98 | | 96.56 86 | | 94.19 45 | | | 99.16 93 | | | |
|
TestCases | | | | | 84.47 287 | 92.18 223 | 67.29 330 | | 84.43 353 | 67.63 329 | 63.48 328 | 90.18 228 | 38.20 347 | 97.16 186 | 57.04 329 | 73.37 267 | 88.97 275 |
|
test_prior4 | | | | | | | 82.34 113 | 97.75 65 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 28 | | 86.08 100 | 94.57 41 | 98.02 52 | 83.14 47 | | 95.05 38 | 98.79 27 | |
|
test_prior | | | | | 93.09 84 | 98.68 29 | 81.91 122 | | 96.40 108 | | | | | 99.06 101 | | | 98.29 63 |
|
旧先验2 | | | | | | | | 96.97 131 | | 74.06 299 | 96.10 19 | | | 97.76 155 | 88.38 123 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 167 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 93.12 82 | 97.44 89 | 81.60 136 | | 96.71 62 | 74.54 295 | 91.22 89 | 97.57 78 | 79.13 84 | 99.51 60 | 77.40 216 | 98.46 43 | 98.26 66 |
|
旧先验1 | | | | | | 97.39 93 | 79.58 183 | | 96.54 89 | | | 98.08 49 | 84.00 39 | | | 97.42 79 | 97.62 118 |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 137 | 96.78 47 | 77.39 273 | | | | 99.52 57 | 79.95 190 | | 98.43 53 |
|
原ACMM2 | | | | | | | | 96.84 138 | | | | | | | | | |
|
原ACMM1 | | | | | 91.22 150 | 97.77 77 | 78.10 223 | | 96.61 78 | 81.05 209 | 91.28 87 | 97.42 88 | 77.92 101 | 98.98 106 | 79.85 193 | 98.51 38 | 96.59 162 |
|
test222 | | | | | | 96.15 113 | 78.41 211 | 95.87 196 | 96.46 99 | 71.97 315 | 89.66 109 | 97.45 84 | 76.33 128 | | | 98.24 58 | 98.30 62 |
|
testdata2 | | | | | | | | | | | | | | 99.48 62 | 76.45 225 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 56 | | | | |
|
testdata | | | | | 90.13 179 | 95.92 119 | 74.17 283 | | 96.49 98 | 73.49 304 | 94.82 38 | 97.99 55 | 78.80 89 | 97.93 146 | 83.53 165 | 97.52 74 | 98.29 63 |
|
testdata1 | | | | | | | | 95.57 207 | | 87.44 79 | | | | | | | |
|
test12 | | | | | 94.25 38 | 98.34 52 | 85.55 46 | | 96.35 115 | | 92.36 68 | | 80.84 63 | 99.22 82 | | 98.31 56 | 97.98 91 |
|
plane_prior7 | | | | | | 91.86 237 | 77.55 239 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 232 | 77.92 230 | | | | | | 64.77 237 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 207 | | | | | 97.30 178 | 87.08 132 | 82.82 219 | 90.96 230 |
|
plane_prior4 | | | | | | | | | | | | 94.15 175 | | | | | |
|
plane_prior3 | | | | | | | 77.75 235 | | | 90.17 34 | 81.33 196 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 106 | | 89.89 36 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 235 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 227 | 97.52 83 | | 90.36 33 | | | | | | 82.96 217 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 363 | | | | | | | | |
|
lessismore_v0 | | | | | 79.98 322 | 80.59 342 | 58.34 354 | | 80.87 361 | | 58.49 346 | 83.46 318 | 43.10 336 | 93.89 307 | 63.11 308 | 48.68 352 | 87.72 297 |
|
LGP-MVS_train | | | | | 86.33 258 | 90.88 251 | 73.06 292 | | 94.13 238 | 82.20 194 | 76.31 247 | 93.20 188 | 54.83 304 | 96.95 196 | 83.72 158 | 80.83 227 | 88.98 273 |
|
test11 | | | | | | | | | 96.50 95 | | | | | | | | |
|
door | | | | | | | | | 80.13 362 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 207 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 227 | | 97.63 71 | | 90.52 28 | 82.30 184 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 227 | | 97.63 71 | | 90.52 28 | 82.30 184 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 128 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 184 | | | 97.32 176 | | | 91.13 228 |
|
HQP3-MVS | | | | | | | | | 94.80 203 | | | | | | | 83.01 215 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 232 | | | | |
|
NP-MVS | | | | | | 92.04 231 | 78.22 217 | | | | | 94.56 165 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 131 | 86.80 327 | | 80.65 216 | 85.65 148 | | 74.26 165 | | 76.52 224 | | 96.98 147 |
|
MDTV_nov1_ep13 | | | | 83.69 197 | | 94.09 170 | 81.01 145 | 86.78 328 | 96.09 133 | 83.81 164 | 84.75 155 | 84.32 311 | 74.44 164 | 96.54 214 | 63.88 303 | 85.07 203 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 247 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 239 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 192 | | | | |
|
ITE_SJBPF | | | | | 82.38 310 | 87.00 300 | 65.59 335 | | 89.55 329 | 79.99 235 | 69.37 306 | 91.30 210 | 41.60 342 | 95.33 270 | 62.86 309 | 74.63 262 | 86.24 320 |
|
DeepMVS_CX |  | | | | 64.06 342 | 78.53 348 | 43.26 366 | | 68.11 369 | 69.94 324 | 38.55 360 | 76.14 345 | 18.53 364 | 79.34 359 | 43.72 358 | 41.62 360 | 69.57 359 |
|