This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8692.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 53
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11786.57 187.39 3694.97 1671.70 5197.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9091.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 32
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10892.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 99
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 38
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8889.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 28
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17484.19 285.01 5695.18 1369.93 7097.20 1491.63 295.60 2994.99 9
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 4993.47 6073.02 4097.00 1884.90 4294.94 3994.10 46
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8088.14 2495.09 1571.06 5896.67 2987.67 2996.37 1494.09 47
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7574.62 11288.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5494.32 3171.76 4996.93 1985.53 3995.79 2294.32 39
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8394.40 3072.24 4496.28 4085.65 3895.30 3593.62 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10186.34 4595.29 1270.86 6096.00 4988.78 1996.04 1694.58 28
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6094.44 2870.78 6196.61 3284.53 4994.89 4193.66 66
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6794.52 2168.81 8596.65 3084.53 4994.90 4094.00 51
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6493.99 4870.67 6396.82 2284.18 5695.01 3793.90 56
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7194.52 2169.09 7996.70 2784.37 5194.83 4594.03 50
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6392.89 7476.22 1796.33 3884.89 4495.13 3694.40 35
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8679.45 1985.88 4794.80 1768.07 9096.21 4286.69 3695.34 3393.23 90
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8694.17 3667.45 9696.60 3383.06 6394.50 5194.07 48
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8383.81 8493.95 5169.77 7396.01 4885.15 4094.66 4794.32 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8594.46 2567.93 9195.95 5284.20 5594.39 5493.23 90
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9894.23 3572.13 4697.09 1684.83 4595.37 3293.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7593.36 6371.44 5596.76 2580.82 8695.33 3494.16 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6874.50 11386.84 4394.65 2067.31 9895.77 5584.80 4692.85 6892.84 106
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7092.27 8671.47 5495.02 8884.24 5493.46 6495.13 6
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9283.86 8294.42 2967.87 9396.64 3182.70 7294.57 5093.66 66
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8176.87 6282.81 9994.25 3466.44 10696.24 4182.88 6794.28 5793.38 84
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6781.78 481.32 11591.43 10670.34 6597.23 1384.26 5293.36 6594.37 36
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11691.89 9468.69 23885.00 5893.10 6774.43 2695.41 6984.97 4195.71 2593.02 101
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5591.90 9269.47 7596.42 3783.28 6295.94 1994.35 37
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12483.16 9391.07 11775.94 1895.19 7779.94 9594.38 5593.55 77
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 8991.20 11270.65 6495.15 7981.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 9189.31 13366.27 16692.32 3093.63 2179.37 2084.17 7791.88 9369.04 8395.43 6783.93 5793.77 6293.01 102
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20067.22 15188.69 12093.04 3879.64 1885.33 5392.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4694.51 2465.80 11695.61 5983.04 6592.51 7293.53 79
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25469.51 9089.62 8790.58 13273.42 14087.75 3294.02 4472.85 4193.24 16290.37 390.75 9493.96 52
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13281.50 7988.80 12194.77 22
ACMMPcopyleft85.89 4985.39 5587.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12493.82 5364.33 12696.29 3982.67 7390.69 9593.23 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2665.00 12495.56 6082.75 6891.87 8092.50 117
CDPH-MVS85.76 5185.29 6087.17 4393.49 4771.08 6188.58 12492.42 7368.32 24584.61 6893.48 5872.32 4396.15 4579.00 10095.43 3194.28 41
TSAR-MVS + GP.85.71 5285.33 5786.84 4791.34 7872.50 3689.07 10587.28 22976.41 7385.80 4890.22 13574.15 3195.37 7481.82 7791.88 7992.65 112
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19091.87 9673.63 13386.60 4493.02 7276.57 1591.87 21883.36 6092.15 7695.35 3
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 29969.39 9789.65 8490.29 14573.31 14387.77 3194.15 3871.72 5093.23 16390.31 490.67 9693.89 57
alignmvs85.48 5585.32 5885.96 6389.51 12169.47 9289.74 8192.47 6976.17 8187.73 3491.46 10570.32 6693.78 13881.51 7888.95 11894.63 27
3Dnovator+77.84 485.48 5584.47 7088.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19793.37 6260.40 18996.75 2677.20 11993.73 6395.29 5
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7592.81 7867.16 10092.94 18280.36 9194.35 5690.16 198
DELS-MVS85.41 5885.30 5985.77 6588.49 16467.93 13385.52 22093.44 2778.70 2983.63 8889.03 16574.57 2495.71 5780.26 9394.04 6093.66 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5984.95 6486.57 5393.69 4270.58 7592.15 3691.62 10473.89 12782.67 10194.09 4062.60 14595.54 6280.93 8492.93 6793.57 75
test_fmvsm_n_192085.29 6085.34 5685.13 8186.12 23469.93 8388.65 12290.78 12869.97 20588.27 2393.98 4971.39 5691.54 23088.49 2390.45 9893.91 54
MVS_111021_HR85.14 6184.75 6586.32 5591.65 7672.70 3085.98 20390.33 14276.11 8282.08 10491.61 10071.36 5794.17 12181.02 8392.58 7192.08 134
casdiffmvspermissive85.11 6285.14 6185.01 8587.20 21665.77 18187.75 15392.83 5677.84 3784.36 7492.38 8572.15 4593.93 13181.27 8290.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6384.96 6385.45 7192.07 7068.07 13089.78 8090.86 12782.48 384.60 6993.20 6669.35 7695.22 7671.39 17590.88 9393.07 98
DPM-MVS84.93 6484.29 7186.84 4790.20 10073.04 2387.12 16993.04 3869.80 20982.85 9791.22 11173.06 3996.02 4776.72 12794.63 4891.46 153
baseline84.93 6484.98 6284.80 9587.30 21465.39 18987.30 16592.88 5377.62 3984.04 8092.26 8771.81 4893.96 12581.31 8190.30 10095.03 8
ETV-MVS84.90 6684.67 6685.59 6889.39 12868.66 11788.74 11892.64 6679.97 1584.10 7885.71 25569.32 7795.38 7180.82 8691.37 8792.72 107
test_fmvsmconf0.01_n84.73 6784.52 6985.34 7380.25 33969.03 10089.47 8989.65 16273.24 14786.98 4194.27 3266.62 10293.23 16390.26 589.95 10893.78 63
fmvsm_l_conf0.5_n84.47 6884.54 6784.27 11585.42 24468.81 10688.49 12687.26 23068.08 24788.03 2793.49 5772.04 4791.77 22088.90 1789.14 11792.24 128
EI-MVSNet-Vis-set84.19 6983.81 7485.31 7488.18 17567.85 13487.66 15589.73 16080.05 1482.95 9489.59 14970.74 6294.82 9780.66 9084.72 17393.28 89
fmvsm_l_conf0.5_n_a84.13 7084.16 7284.06 12785.38 24568.40 12188.34 13386.85 23967.48 25487.48 3593.40 6170.89 5991.61 22488.38 2589.22 11692.16 132
test_fmvsmvis_n_192084.02 7183.87 7384.49 10484.12 27069.37 9888.15 14187.96 21370.01 20383.95 8193.23 6568.80 8691.51 23388.61 2089.96 10792.57 113
nrg03083.88 7283.53 7684.96 8786.77 22469.28 9990.46 6592.67 6274.79 10782.95 9491.33 10872.70 4293.09 17680.79 8879.28 25292.50 117
EI-MVSNet-UG-set83.81 7383.38 7985.09 8287.87 18867.53 14187.44 16189.66 16179.74 1682.23 10389.41 15870.24 6794.74 10079.95 9483.92 18792.99 103
fmvsm_s_conf0.5_n83.80 7483.71 7584.07 12586.69 22667.31 14789.46 9083.07 29471.09 18086.96 4293.70 5569.02 8491.47 23588.79 1884.62 17593.44 83
CPTT-MVS83.73 7583.33 8184.92 9093.28 4970.86 6992.09 3790.38 13868.75 23779.57 13592.83 7660.60 18593.04 18080.92 8591.56 8590.86 171
EPNet83.72 7682.92 8886.14 5984.22 26869.48 9191.05 5585.27 26081.30 676.83 19291.65 9766.09 11195.56 6076.00 13393.85 6193.38 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 7784.54 6780.99 22190.06 10765.83 17784.21 24888.74 19971.60 16985.01 5692.44 8474.51 2583.50 33482.15 7592.15 7693.64 72
HQP_MVS83.64 7883.14 8285.14 7990.08 10368.71 11391.25 5092.44 7079.12 2378.92 14491.00 12160.42 18795.38 7178.71 10486.32 15391.33 154
fmvsm_s_conf0.5_n_a83.63 7983.41 7884.28 11386.14 23368.12 12889.43 9182.87 29970.27 19987.27 3893.80 5469.09 7991.58 22688.21 2683.65 19593.14 96
Effi-MVS+83.62 8083.08 8385.24 7688.38 17067.45 14288.89 11089.15 18075.50 9382.27 10288.28 18769.61 7494.45 11077.81 11387.84 13293.84 60
fmvsm_s_conf0.1_n83.56 8183.38 7984.10 12084.86 25667.28 14889.40 9483.01 29570.67 18887.08 3993.96 5068.38 8891.45 23688.56 2284.50 17693.56 76
OPM-MVS83.50 8282.95 8785.14 7988.79 15470.95 6689.13 10491.52 10777.55 4480.96 12291.75 9560.71 18094.50 10879.67 9886.51 15189.97 214
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8382.80 9085.43 7290.25 9968.74 11190.30 7090.13 14976.33 7980.87 12392.89 7461.00 17794.20 11972.45 16990.97 9193.35 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8483.45 7783.28 15492.74 6262.28 24988.17 13989.50 16575.22 9781.49 11492.74 8266.75 10195.11 8272.85 16391.58 8492.45 120
EPP-MVSNet83.40 8583.02 8584.57 9990.13 10164.47 20892.32 3090.73 12974.45 11679.35 13891.10 11569.05 8295.12 8072.78 16487.22 14094.13 45
3Dnovator76.31 583.38 8682.31 9686.59 5287.94 18672.94 2890.64 5992.14 8577.21 5275.47 22392.83 7658.56 19694.72 10173.24 16092.71 7092.13 133
fmvsm_s_conf0.1_n_a83.32 8782.99 8684.28 11383.79 27768.07 13089.34 9682.85 30069.80 20987.36 3794.06 4268.34 8991.56 22887.95 2783.46 20193.21 93
EIA-MVS83.31 8882.80 9084.82 9389.59 11765.59 18388.21 13792.68 6174.66 11078.96 14286.42 24269.06 8195.26 7575.54 13990.09 10493.62 73
h-mvs3383.15 8982.19 9786.02 6290.56 9370.85 7088.15 14189.16 17976.02 8484.67 6591.39 10761.54 16395.50 6382.71 7075.48 29991.72 142
MVS_Test83.15 8983.06 8483.41 15186.86 22063.21 23586.11 20192.00 8874.31 11782.87 9689.44 15770.03 6893.21 16577.39 11888.50 12893.81 61
IS-MVSNet83.15 8982.81 8984.18 11889.94 11063.30 23391.59 4388.46 20579.04 2579.49 13692.16 8865.10 12194.28 11367.71 21091.86 8294.95 10
DP-MVS Recon83.11 9282.09 9986.15 5894.44 1970.92 6888.79 11492.20 8270.53 19379.17 14091.03 12064.12 12896.03 4668.39 20790.14 10391.50 149
PAPM_NR83.02 9382.41 9384.82 9392.47 6766.37 16487.93 14891.80 9973.82 12877.32 18190.66 12667.90 9294.90 9370.37 18489.48 11393.19 94
VDD-MVS83.01 9482.36 9584.96 8791.02 8366.40 16388.91 10988.11 20877.57 4184.39 7393.29 6452.19 24893.91 13277.05 12188.70 12494.57 30
MVSFormer82.85 9582.05 10085.24 7687.35 20870.21 7790.50 6290.38 13868.55 24081.32 11589.47 15261.68 16093.46 15578.98 10190.26 10192.05 135
OMC-MVS82.69 9681.97 10384.85 9288.75 15667.42 14387.98 14490.87 12674.92 10479.72 13391.65 9762.19 15593.96 12575.26 14186.42 15293.16 95
PVSNet_Blended_VisFu82.62 9781.83 10584.96 8790.80 8969.76 8788.74 11891.70 10369.39 21878.96 14288.46 18265.47 11894.87 9674.42 14688.57 12590.24 196
MVS_111021_LR82.61 9882.11 9884.11 11988.82 15171.58 5385.15 22386.16 24974.69 10980.47 12691.04 11862.29 15290.55 25880.33 9290.08 10590.20 197
HQP-MVS82.61 9882.02 10184.37 10789.33 13066.98 15589.17 9992.19 8376.41 7377.23 18490.23 13460.17 19095.11 8277.47 11685.99 16191.03 165
CLD-MVS82.31 10081.65 10684.29 11288.47 16567.73 13785.81 21192.35 7575.78 8778.33 15986.58 23764.01 12994.35 11176.05 13287.48 13790.79 172
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10182.41 9381.62 20290.82 8860.93 26384.47 23989.78 15776.36 7884.07 7991.88 9364.71 12590.26 26070.68 18188.89 11993.66 66
diffmvspermissive82.10 10281.88 10482.76 18483.00 29763.78 22183.68 25589.76 15872.94 15282.02 10589.85 14165.96 11590.79 25482.38 7487.30 13993.71 65
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10381.27 10984.50 10289.23 13768.76 10990.22 7191.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
FIs82.07 10482.42 9281.04 22088.80 15358.34 28988.26 13693.49 2676.93 6078.47 15691.04 11869.92 7192.34 20169.87 19184.97 17092.44 121
PS-MVSNAJss82.07 10481.31 10884.34 11086.51 22967.27 14989.27 9791.51 10871.75 16379.37 13790.22 13563.15 13994.27 11477.69 11482.36 21591.49 150
API-MVS81.99 10681.23 11084.26 11690.94 8570.18 8291.10 5389.32 17071.51 17278.66 15088.28 18765.26 11995.10 8564.74 23791.23 8987.51 279
UniMVSNet_NR-MVSNet81.88 10781.54 10782.92 17388.46 16663.46 22987.13 16892.37 7480.19 1278.38 15789.14 16071.66 5393.05 17870.05 18776.46 28292.25 126
MAR-MVS81.84 10880.70 11985.27 7591.32 7971.53 5489.82 7790.92 12369.77 21178.50 15486.21 24662.36 15194.52 10765.36 23192.05 7889.77 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10981.23 11083.57 14691.89 7363.43 23189.84 7681.85 31077.04 5883.21 9193.10 6752.26 24793.43 15771.98 17089.95 10893.85 58
hse-mvs281.72 11080.94 11684.07 12588.72 15767.68 13885.87 20787.26 23076.02 8484.67 6588.22 19061.54 16393.48 15382.71 7073.44 32791.06 163
GeoE81.71 11181.01 11583.80 14189.51 12164.45 20988.97 10788.73 20071.27 17678.63 15189.76 14366.32 10893.20 16869.89 19086.02 16093.74 64
xiu_mvs_v2_base81.69 11281.05 11383.60 14489.15 14068.03 13284.46 24190.02 15170.67 18881.30 11886.53 24063.17 13894.19 12075.60 13888.54 12688.57 261
PS-MVSNAJ81.69 11281.02 11483.70 14389.51 12168.21 12784.28 24790.09 15070.79 18581.26 11985.62 26063.15 13994.29 11275.62 13788.87 12088.59 260
mvsmamba81.69 11280.74 11884.56 10087.45 20766.72 15991.26 4885.89 25374.66 11078.23 16190.56 12854.33 22894.91 9080.73 8983.54 19992.04 137
PAPR81.66 11580.89 11783.99 13590.27 9864.00 21686.76 18391.77 10268.84 23677.13 19089.50 15067.63 9494.88 9567.55 21288.52 12793.09 97
iter_conf05_1181.63 11680.44 12685.20 7889.46 12466.20 16786.21 19786.97 23671.53 17183.35 9088.53 18043.22 33495.94 5379.82 9694.85 4393.47 80
UniMVSNet (Re)81.60 11781.11 11283.09 16488.38 17064.41 21087.60 15693.02 4278.42 3278.56 15388.16 19169.78 7293.26 16169.58 19476.49 28191.60 143
FC-MVSNet-test81.52 11882.02 10180.03 24188.42 16955.97 32787.95 14693.42 2977.10 5677.38 17990.98 12369.96 6991.79 21968.46 20684.50 17692.33 122
VDDNet81.52 11880.67 12084.05 13090.44 9664.13 21589.73 8285.91 25271.11 17983.18 9293.48 5850.54 27293.49 15273.40 15788.25 13094.54 31
ACMP74.13 681.51 12080.57 12184.36 10889.42 12668.69 11689.97 7591.50 11174.46 11575.04 24490.41 13153.82 23494.54 10577.56 11582.91 20789.86 218
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 12180.29 12984.70 9786.63 22869.90 8585.95 20486.77 24063.24 30181.07 12189.47 15261.08 17692.15 20778.33 10990.07 10692.05 135
jason: jason.
lupinMVS81.39 12180.27 13084.76 9687.35 20870.21 7785.55 21686.41 24462.85 30881.32 11588.61 17661.68 16092.24 20578.41 10890.26 10191.83 139
test_yl81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
DCV-MVSNet81.17 12380.47 12483.24 15789.13 14163.62 22286.21 19789.95 15472.43 15781.78 11189.61 14757.50 20693.58 14670.75 17986.90 14492.52 115
DU-MVS81.12 12580.52 12382.90 17487.80 19263.46 22987.02 17291.87 9679.01 2678.38 15789.07 16265.02 12293.05 17870.05 18776.46 28292.20 129
PVSNet_Blended80.98 12680.34 12782.90 17488.85 14865.40 18784.43 24392.00 8867.62 25178.11 16585.05 27466.02 11394.27 11471.52 17289.50 11289.01 243
FA-MVS(test-final)80.96 12779.91 13584.10 12088.30 17365.01 19684.55 23890.01 15273.25 14679.61 13487.57 20458.35 19894.72 10171.29 17686.25 15592.56 114
QAPM80.88 12879.50 14485.03 8488.01 18568.97 10491.59 4392.00 8866.63 26575.15 24092.16 8857.70 20395.45 6563.52 24388.76 12390.66 178
TranMVSNet+NR-MVSNet80.84 12980.31 12882.42 18987.85 18962.33 24787.74 15491.33 11380.55 977.99 16989.86 14065.23 12092.62 18867.05 21975.24 30992.30 124
UGNet80.83 13079.59 14284.54 10188.04 18368.09 12989.42 9288.16 20776.95 5976.22 20989.46 15449.30 28793.94 12868.48 20590.31 9991.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 13179.92 13483.47 14788.85 14864.51 20585.53 21889.39 16870.79 18578.49 15585.06 27367.54 9593.58 14667.03 22086.58 14992.32 123
XVG-OURS-SEG-HR80.81 13179.76 13883.96 13785.60 24168.78 10883.54 26190.50 13570.66 19176.71 19691.66 9660.69 18191.26 24176.94 12281.58 22391.83 139
xiu_mvs_v1_base_debu80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
xiu_mvs_v1_base_debi80.80 13379.72 13984.03 13287.35 20870.19 7985.56 21388.77 19569.06 23081.83 10788.16 19150.91 26692.85 18478.29 11087.56 13489.06 238
bld_raw_dy_0_6480.78 13679.36 14885.06 8389.46 12466.03 16989.63 8685.46 25969.76 21281.88 10689.06 16443.39 33295.70 5879.82 9685.74 16793.47 80
ACMM73.20 880.78 13679.84 13783.58 14589.31 13368.37 12289.99 7491.60 10570.28 19877.25 18289.66 14553.37 23993.53 15174.24 14982.85 20888.85 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 13879.51 14384.20 11794.09 3867.27 14989.64 8591.11 12058.75 34574.08 25690.72 12558.10 19995.04 8769.70 19289.42 11490.30 194
CANet_DTU80.61 13979.87 13682.83 17685.60 24163.17 23887.36 16288.65 20176.37 7775.88 21688.44 18353.51 23793.07 17773.30 15889.74 11192.25 126
VPA-MVSNet80.60 14080.55 12280.76 22788.07 18260.80 26686.86 17791.58 10675.67 9180.24 12889.45 15663.34 13390.25 26170.51 18379.22 25391.23 158
PVSNet_BlendedMVS80.60 14080.02 13282.36 19188.85 14865.40 18786.16 20092.00 8869.34 22078.11 16586.09 25066.02 11394.27 11471.52 17282.06 21887.39 281
AdaColmapbinary80.58 14279.42 14584.06 12793.09 5468.91 10589.36 9588.97 18969.27 22175.70 21989.69 14457.20 21095.77 5563.06 24888.41 12987.50 280
EI-MVSNet80.52 14379.98 13382.12 19284.28 26663.19 23786.41 19188.95 19074.18 12178.69 14887.54 20766.62 10292.43 19572.57 16780.57 23690.74 176
XVG-OURS80.41 14479.23 15283.97 13685.64 24069.02 10283.03 27290.39 13771.09 18077.63 17591.49 10454.62 22791.35 23975.71 13583.47 20091.54 146
SDMVSNet80.38 14580.18 13180.99 22189.03 14664.94 19880.45 30489.40 16775.19 9976.61 20089.98 13860.61 18487.69 30276.83 12583.55 19790.33 192
PCF-MVS73.52 780.38 14578.84 16185.01 8587.71 19768.99 10383.65 25691.46 11263.00 30577.77 17390.28 13266.10 11095.09 8661.40 26788.22 13190.94 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 14777.83 18488.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8612.47 40467.45 9696.60 3383.06 6394.50 5194.07 48
RRT_MVS80.35 14879.22 15383.74 14287.63 20165.46 18691.08 5488.92 19273.82 12876.44 20590.03 13749.05 29294.25 11876.84 12379.20 25491.51 147
test_djsdf80.30 14979.32 14983.27 15583.98 27465.37 19090.50 6290.38 13868.55 24076.19 21088.70 17256.44 21493.46 15578.98 10180.14 24290.97 168
v2v48280.23 15079.29 15083.05 16783.62 28064.14 21487.04 17189.97 15373.61 13478.18 16487.22 21561.10 17593.82 13676.11 13076.78 27991.18 159
NR-MVSNet80.23 15079.38 14682.78 18287.80 19263.34 23286.31 19491.09 12179.01 2672.17 27789.07 16267.20 9992.81 18766.08 22675.65 29592.20 129
Anonymous2024052980.19 15278.89 16084.10 12090.60 9264.75 20288.95 10890.90 12465.97 27380.59 12591.17 11449.97 27793.73 14469.16 19882.70 21293.81 61
IterMVS-LS80.06 15379.38 14682.11 19385.89 23663.20 23686.79 18089.34 16974.19 12075.45 22686.72 22766.62 10292.39 19772.58 16676.86 27690.75 175
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15478.57 16684.42 10685.13 25268.74 11188.77 11588.10 20974.99 10374.97 24583.49 30257.27 20993.36 15873.53 15480.88 23091.18 159
v114480.03 15479.03 15783.01 16983.78 27864.51 20587.11 17090.57 13471.96 16278.08 16786.20 24761.41 16793.94 12874.93 14277.23 27090.60 181
iter_conf0580.00 15678.70 16283.91 13987.84 19065.83 17788.84 11384.92 26571.61 16878.70 14788.94 16643.88 32994.56 10479.28 9984.28 18391.33 154
v879.97 15779.02 15882.80 17984.09 27164.50 20787.96 14590.29 14574.13 12375.24 23786.81 22462.88 14493.89 13574.39 14775.40 30490.00 210
OpenMVScopyleft72.83 1079.77 15878.33 17384.09 12385.17 24869.91 8490.57 6090.97 12266.70 25972.17 27791.91 9154.70 22593.96 12561.81 26490.95 9288.41 264
v1079.74 15978.67 16382.97 17284.06 27264.95 19787.88 15190.62 13173.11 14875.11 24186.56 23861.46 16694.05 12473.68 15275.55 29789.90 216
ECVR-MVScopyleft79.61 16079.26 15180.67 22990.08 10354.69 34187.89 15077.44 34974.88 10580.27 12792.79 7948.96 29492.45 19468.55 20492.50 7394.86 17
BH-RMVSNet79.61 16078.44 16983.14 16289.38 12965.93 17484.95 22887.15 23373.56 13678.19 16389.79 14256.67 21393.36 15859.53 28186.74 14790.13 200
v119279.59 16278.43 17083.07 16683.55 28264.52 20486.93 17590.58 13270.83 18477.78 17285.90 25159.15 19393.94 12873.96 15177.19 27290.76 174
ab-mvs79.51 16378.97 15981.14 21788.46 16660.91 26483.84 25389.24 17670.36 19579.03 14188.87 16963.23 13790.21 26265.12 23382.57 21392.28 125
WR-MVS79.49 16479.22 15380.27 23788.79 15458.35 28885.06 22588.61 20378.56 3077.65 17488.34 18563.81 13290.66 25764.98 23577.22 27191.80 141
v14419279.47 16578.37 17182.78 18283.35 28563.96 21786.96 17390.36 14169.99 20477.50 17685.67 25860.66 18293.77 14074.27 14876.58 28090.62 179
BH-untuned79.47 16578.60 16582.05 19489.19 13965.91 17586.07 20288.52 20472.18 15975.42 22787.69 20161.15 17493.54 15060.38 27486.83 14686.70 300
test111179.43 16779.18 15580.15 23989.99 10853.31 35487.33 16477.05 35275.04 10280.23 12992.77 8148.97 29392.33 20268.87 20192.40 7594.81 20
mvs_anonymous79.42 16879.11 15680.34 23584.45 26557.97 29582.59 27487.62 22267.40 25576.17 21388.56 17968.47 8789.59 27370.65 18286.05 15993.47 80
thisisatest053079.40 16977.76 18984.31 11187.69 19965.10 19587.36 16284.26 27570.04 20277.42 17888.26 18949.94 27894.79 9970.20 18584.70 17493.03 100
tttt051779.40 16977.91 18183.90 14088.10 18063.84 21988.37 13284.05 27771.45 17376.78 19489.12 16149.93 28094.89 9470.18 18683.18 20592.96 104
V4279.38 17178.24 17582.83 17681.10 33165.50 18585.55 21689.82 15671.57 17078.21 16286.12 24960.66 18293.18 17175.64 13675.46 30189.81 221
jajsoiax79.29 17277.96 17983.27 15584.68 25966.57 16289.25 9890.16 14869.20 22675.46 22589.49 15145.75 31893.13 17476.84 12380.80 23290.11 202
v192192079.22 17378.03 17882.80 17983.30 28763.94 21886.80 17990.33 14269.91 20777.48 17785.53 26158.44 19793.75 14273.60 15376.85 27790.71 177
AUN-MVS79.21 17477.60 19484.05 13088.71 15867.61 13985.84 20987.26 23069.08 22977.23 18488.14 19553.20 24193.47 15475.50 14073.45 32691.06 163
TAPA-MVS73.13 979.15 17577.94 18082.79 18189.59 11762.99 24288.16 14091.51 10865.77 27477.14 18991.09 11660.91 17893.21 16550.26 34287.05 14292.17 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17677.77 18883.22 15984.70 25866.37 16489.17 9990.19 14769.38 21975.40 22889.46 15444.17 32793.15 17276.78 12680.70 23490.14 199
UniMVSNet_ETH3D79.10 17778.24 17581.70 20186.85 22160.24 27587.28 16688.79 19474.25 11976.84 19190.53 13049.48 28391.56 22867.98 20882.15 21693.29 88
CDS-MVSNet79.07 17877.70 19183.17 16187.60 20268.23 12684.40 24586.20 24867.49 25376.36 20686.54 23961.54 16390.79 25461.86 26387.33 13890.49 186
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 17977.88 18382.38 19083.07 29464.80 20184.08 25288.95 19069.01 23378.69 14887.17 21854.70 22592.43 19574.69 14380.57 23689.89 217
v124078.99 18077.78 18782.64 18583.21 28963.54 22686.62 18690.30 14469.74 21577.33 18085.68 25757.04 21193.76 14173.13 16176.92 27490.62 179
Anonymous2023121178.97 18177.69 19282.81 17890.54 9464.29 21290.11 7391.51 10865.01 28376.16 21488.13 19650.56 27193.03 18169.68 19377.56 26991.11 161
v7n78.97 18177.58 19583.14 16283.45 28465.51 18488.32 13491.21 11573.69 13272.41 27486.32 24557.93 20093.81 13769.18 19775.65 29590.11 202
TAMVS78.89 18377.51 19683.03 16887.80 19267.79 13684.72 23285.05 26367.63 25076.75 19587.70 20062.25 15390.82 25358.53 29287.13 14190.49 186
c3_l78.75 18477.91 18181.26 21382.89 30161.56 25884.09 25189.13 18269.97 20575.56 22184.29 28566.36 10792.09 20973.47 15675.48 29990.12 201
tt080578.73 18577.83 18481.43 20785.17 24860.30 27489.41 9390.90 12471.21 17777.17 18888.73 17146.38 30793.21 16572.57 16778.96 25590.79 172
v14878.72 18677.80 18681.47 20682.73 30461.96 25386.30 19588.08 21073.26 14576.18 21185.47 26362.46 14992.36 19971.92 17173.82 32390.09 204
VPNet78.69 18778.66 16478.76 26488.31 17255.72 33084.45 24286.63 24276.79 6478.26 16090.55 12959.30 19289.70 27266.63 22177.05 27390.88 170
ET-MVSNet_ETH3D78.63 18876.63 21784.64 9886.73 22569.47 9285.01 22684.61 26869.54 21666.51 33886.59 23550.16 27591.75 22176.26 12984.24 18492.69 110
anonymousdsp78.60 18977.15 20282.98 17180.51 33767.08 15387.24 16789.53 16465.66 27675.16 23987.19 21752.52 24292.25 20477.17 12079.34 25189.61 226
miper_ehance_all_eth78.59 19077.76 18981.08 21982.66 30661.56 25883.65 25689.15 18068.87 23575.55 22283.79 29666.49 10592.03 21073.25 15976.39 28489.64 225
WR-MVS_H78.51 19178.49 16778.56 26888.02 18456.38 32188.43 12792.67 6277.14 5473.89 25787.55 20666.25 10989.24 27958.92 28773.55 32590.06 208
GBi-Net78.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
test178.40 19277.40 19781.40 20987.60 20263.01 23988.39 12989.28 17171.63 16575.34 23087.28 21154.80 22191.11 24462.72 25079.57 24690.09 204
Vis-MVSNet (Re-imp)78.36 19478.45 16878.07 27888.64 16051.78 36386.70 18479.63 33474.14 12275.11 24190.83 12461.29 17189.75 27058.10 29691.60 8392.69 110
Anonymous20240521178.25 19577.01 20481.99 19691.03 8260.67 26884.77 23183.90 27970.65 19280.00 13191.20 11241.08 34891.43 23765.21 23285.26 16893.85 58
CP-MVSNet78.22 19678.34 17277.84 28087.83 19154.54 34387.94 14791.17 11777.65 3873.48 26188.49 18162.24 15488.43 29362.19 25874.07 31890.55 183
BH-w/o78.21 19777.33 20080.84 22588.81 15265.13 19484.87 22987.85 21869.75 21374.52 25284.74 27861.34 16993.11 17558.24 29585.84 16384.27 335
FMVSNet278.20 19877.21 20181.20 21587.60 20262.89 24387.47 16089.02 18571.63 16575.29 23687.28 21154.80 22191.10 24762.38 25579.38 25089.61 226
MVS78.19 19976.99 20681.78 19985.66 23966.99 15484.66 23390.47 13655.08 36572.02 27985.27 26663.83 13194.11 12366.10 22589.80 11084.24 336
Baseline_NR-MVSNet78.15 20078.33 17377.61 28585.79 23756.21 32586.78 18185.76 25573.60 13577.93 17087.57 20465.02 12288.99 28367.14 21875.33 30687.63 275
CNLPA78.08 20176.79 21181.97 19790.40 9771.07 6287.59 15784.55 26966.03 27272.38 27589.64 14657.56 20586.04 31359.61 28083.35 20288.79 254
cl2278.07 20277.01 20481.23 21482.37 31361.83 25583.55 26087.98 21268.96 23475.06 24383.87 29261.40 16891.88 21773.53 15476.39 28489.98 213
PLCcopyleft70.83 1178.05 20376.37 22283.08 16591.88 7467.80 13588.19 13889.46 16664.33 29169.87 30288.38 18453.66 23593.58 14658.86 28882.73 21087.86 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20476.49 21882.62 18683.16 29366.96 15786.94 17487.45 22772.45 15471.49 28484.17 28954.79 22491.58 22667.61 21180.31 23989.30 234
PS-CasMVS78.01 20578.09 17777.77 28287.71 19754.39 34588.02 14391.22 11477.50 4673.26 26388.64 17560.73 17988.41 29461.88 26273.88 32290.53 184
HY-MVS69.67 1277.95 20677.15 20280.36 23487.57 20660.21 27683.37 26387.78 22066.11 26975.37 22987.06 22263.27 13590.48 25961.38 26882.43 21490.40 190
eth_miper_zixun_eth77.92 20776.69 21581.61 20483.00 29761.98 25283.15 26689.20 17869.52 21774.86 24784.35 28461.76 15992.56 19171.50 17472.89 33190.28 195
FMVSNet377.88 20876.85 20980.97 22386.84 22262.36 24686.52 18988.77 19571.13 17875.34 23086.66 23354.07 23291.10 24762.72 25079.57 24689.45 230
miper_enhance_ethall77.87 20976.86 20880.92 22481.65 32061.38 26082.68 27388.98 18765.52 27875.47 22382.30 31965.76 11792.00 21272.95 16276.39 28489.39 231
FE-MVS77.78 21075.68 22784.08 12488.09 18166.00 17283.13 26787.79 21968.42 24478.01 16885.23 26845.50 32095.12 8059.11 28585.83 16491.11 161
PEN-MVS77.73 21177.69 19277.84 28087.07 21953.91 34887.91 14991.18 11677.56 4373.14 26588.82 17061.23 17289.17 28059.95 27772.37 33390.43 188
cl____77.72 21276.76 21280.58 23082.49 31060.48 27183.09 26887.87 21669.22 22474.38 25485.22 26962.10 15691.53 23171.09 17775.41 30389.73 224
DIV-MVS_self_test77.72 21276.76 21280.58 23082.48 31160.48 27183.09 26887.86 21769.22 22474.38 25485.24 26762.10 15691.53 23171.09 17775.40 30489.74 223
sd_testset77.70 21477.40 19778.60 26789.03 14660.02 27779.00 32285.83 25475.19 9976.61 20089.98 13854.81 22085.46 32062.63 25483.55 19790.33 192
PAPM77.68 21576.40 22181.51 20587.29 21561.85 25483.78 25489.59 16364.74 28571.23 28588.70 17262.59 14693.66 14552.66 32787.03 14389.01 243
CHOSEN 1792x268877.63 21675.69 22683.44 14889.98 10968.58 11978.70 32687.50 22556.38 36075.80 21886.84 22358.67 19591.40 23861.58 26685.75 16590.34 191
HyFIR lowres test77.53 21775.40 23483.94 13889.59 11766.62 16080.36 30588.64 20256.29 36176.45 20285.17 27057.64 20493.28 16061.34 26983.10 20691.91 138
FMVSNet177.44 21876.12 22481.40 20986.81 22363.01 23988.39 12989.28 17170.49 19474.39 25387.28 21149.06 29191.11 24460.91 27178.52 25890.09 204
TR-MVS77.44 21876.18 22381.20 21588.24 17463.24 23484.61 23686.40 24567.55 25277.81 17186.48 24154.10 23193.15 17257.75 29982.72 21187.20 286
1112_ss77.40 22076.43 22080.32 23689.11 14560.41 27383.65 25687.72 22162.13 31873.05 26686.72 22762.58 14789.97 26662.11 26180.80 23290.59 182
thisisatest051577.33 22175.38 23583.18 16085.27 24763.80 22082.11 27983.27 28965.06 28175.91 21583.84 29449.54 28294.27 11467.24 21686.19 15691.48 151
test250677.30 22276.49 21879.74 24790.08 10352.02 35787.86 15263.10 39274.88 10580.16 13092.79 7938.29 36192.35 20068.74 20392.50 7394.86 17
pm-mvs177.25 22376.68 21678.93 26284.22 26858.62 28786.41 19188.36 20671.37 17473.31 26288.01 19761.22 17389.15 28164.24 24173.01 33089.03 242
LCM-MVSNet-Re77.05 22476.94 20777.36 28887.20 21651.60 36480.06 30880.46 32475.20 9867.69 32086.72 22762.48 14888.98 28463.44 24589.25 11591.51 147
DTE-MVSNet76.99 22576.80 21077.54 28786.24 23153.06 35687.52 15890.66 13077.08 5772.50 27288.67 17460.48 18689.52 27457.33 30370.74 34490.05 209
baseline176.98 22676.75 21477.66 28388.13 17855.66 33185.12 22481.89 30873.04 15076.79 19388.90 16762.43 15087.78 30163.30 24771.18 34289.55 228
LS3D76.95 22774.82 24283.37 15290.45 9567.36 14689.15 10386.94 23761.87 32069.52 30590.61 12751.71 26094.53 10646.38 36386.71 14888.21 266
GA-MVS76.87 22875.17 23981.97 19782.75 30362.58 24481.44 28886.35 24772.16 16174.74 24882.89 31146.20 31292.02 21168.85 20281.09 22891.30 157
DP-MVS76.78 22974.57 24483.42 14993.29 4869.46 9488.55 12583.70 28163.98 29770.20 29388.89 16854.01 23394.80 9846.66 36081.88 22186.01 312
cascas76.72 23074.64 24382.99 17085.78 23865.88 17682.33 27689.21 17760.85 32672.74 26881.02 33047.28 30193.75 14267.48 21385.02 16989.34 233
testing9176.54 23175.66 22979.18 25988.43 16855.89 32881.08 29183.00 29673.76 13175.34 23084.29 28546.20 31290.07 26464.33 23984.50 17691.58 145
131476.53 23275.30 23880.21 23883.93 27562.32 24884.66 23388.81 19360.23 33070.16 29684.07 29155.30 21890.73 25667.37 21483.21 20487.59 278
thres100view90076.50 23375.55 23179.33 25589.52 12056.99 31085.83 21083.23 29073.94 12576.32 20787.12 21951.89 25791.95 21348.33 35183.75 19189.07 236
thres600view776.50 23375.44 23279.68 24989.40 12757.16 30785.53 21883.23 29073.79 13076.26 20887.09 22051.89 25791.89 21648.05 35683.72 19490.00 210
thres40076.50 23375.37 23679.86 24489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19190.00 210
tfpn200view976.42 23675.37 23679.55 25489.13 14157.65 30185.17 22183.60 28273.41 14176.45 20286.39 24352.12 24991.95 21348.33 35183.75 19189.07 236
Test_1112_low_res76.40 23775.44 23279.27 25689.28 13558.09 29181.69 28387.07 23459.53 33772.48 27386.67 23261.30 17089.33 27760.81 27380.15 24190.41 189
F-COLMAP76.38 23874.33 24982.50 18889.28 13566.95 15888.41 12889.03 18464.05 29566.83 33088.61 17646.78 30592.89 18357.48 30078.55 25787.67 274
LTVRE_ROB69.57 1376.25 23974.54 24681.41 20888.60 16164.38 21179.24 31889.12 18370.76 18769.79 30487.86 19849.09 29093.20 16856.21 31380.16 24086.65 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24074.46 24881.13 21885.37 24669.79 8684.42 24487.95 21465.03 28267.46 32385.33 26553.28 24091.73 22358.01 29783.27 20381.85 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 24174.27 25081.62 20283.20 29064.67 20383.60 25989.75 15969.75 21371.85 28087.09 22032.78 37392.11 20869.99 18980.43 23888.09 267
testing9976.09 24275.12 24079.00 26088.16 17655.50 33380.79 29581.40 31473.30 14475.17 23884.27 28744.48 32590.02 26564.28 24084.22 18591.48 151
ACMH+68.96 1476.01 24374.01 25182.03 19588.60 16165.31 19188.86 11187.55 22370.25 20067.75 31987.47 20941.27 34693.19 17058.37 29375.94 29287.60 276
ACMH67.68 1675.89 24473.93 25381.77 20088.71 15866.61 16188.62 12389.01 18669.81 20866.78 33186.70 23141.95 34591.51 23355.64 31478.14 26487.17 287
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 24573.36 26083.31 15384.76 25766.03 16983.38 26285.06 26270.21 20169.40 30681.05 32945.76 31794.66 10365.10 23475.49 29889.25 235
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 24673.83 25681.30 21283.26 28861.79 25682.57 27580.65 32066.81 25666.88 32983.42 30357.86 20292.19 20663.47 24479.57 24689.91 215
WTY-MVS75.65 24775.68 22775.57 30486.40 23056.82 31277.92 33682.40 30465.10 28076.18 21187.72 19963.13 14280.90 34960.31 27581.96 21989.00 245
thres20075.55 24874.47 24778.82 26387.78 19557.85 29883.07 27083.51 28572.44 15675.84 21784.42 28052.08 25291.75 22147.41 35883.64 19686.86 296
test_vis1_n_192075.52 24975.78 22574.75 31479.84 34557.44 30583.26 26485.52 25762.83 30979.34 13986.17 24845.10 32279.71 35378.75 10381.21 22787.10 293
EPNet_dtu75.46 25074.86 24177.23 29182.57 30854.60 34286.89 17683.09 29371.64 16466.25 34085.86 25355.99 21588.04 29854.92 31686.55 15089.05 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 25173.87 25580.11 24082.69 30564.85 20081.57 28583.47 28669.16 22770.49 29084.15 29051.95 25588.15 29669.23 19672.14 33687.34 283
XXY-MVS75.41 25275.56 23074.96 31083.59 28157.82 29980.59 30183.87 28066.54 26674.93 24688.31 18663.24 13680.09 35262.16 25976.85 27786.97 294
TransMVSNet (Re)75.39 25374.56 24577.86 27985.50 24357.10 30986.78 18186.09 25172.17 16071.53 28387.34 21063.01 14389.31 27856.84 30861.83 37087.17 287
CostFormer75.24 25473.90 25479.27 25682.65 30758.27 29080.80 29482.73 30261.57 32175.33 23483.13 30755.52 21691.07 25064.98 23578.34 26388.45 262
testing1175.14 25574.01 25178.53 27088.16 17656.38 32180.74 29880.42 32570.67 18872.69 27183.72 29843.61 33189.86 26762.29 25783.76 19089.36 232
D2MVS74.82 25673.21 26179.64 25179.81 34662.56 24580.34 30687.35 22864.37 29068.86 31182.66 31546.37 30890.10 26367.91 20981.24 22686.25 305
pmmvs674.69 25773.39 25978.61 26681.38 32657.48 30486.64 18587.95 21464.99 28470.18 29486.61 23450.43 27389.52 27462.12 26070.18 34688.83 252
tfpnnormal74.39 25873.16 26278.08 27786.10 23558.05 29284.65 23587.53 22470.32 19771.22 28685.63 25954.97 21989.86 26743.03 37475.02 31186.32 304
IterMVS74.29 25972.94 26478.35 27381.53 32363.49 22881.58 28482.49 30368.06 24869.99 29983.69 29951.66 26185.54 31865.85 22871.64 33986.01 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26072.42 26979.80 24683.76 27959.59 28285.92 20686.64 24166.39 26766.96 32887.58 20339.46 35491.60 22565.76 22969.27 34988.22 265
SCA74.22 26172.33 27079.91 24384.05 27362.17 25079.96 31179.29 33766.30 26872.38 27580.13 33951.95 25588.60 29159.25 28377.67 26888.96 247
miper_lstm_enhance74.11 26273.11 26377.13 29280.11 34159.62 28172.23 36386.92 23866.76 25870.40 29182.92 31056.93 21282.92 33869.06 19972.63 33288.87 250
testing22274.04 26372.66 26678.19 27587.89 18755.36 33481.06 29279.20 33871.30 17574.65 25083.57 30139.11 35788.67 29051.43 33485.75 16590.53 184
EG-PatchMatch MVS74.04 26371.82 27380.71 22884.92 25567.42 14385.86 20888.08 21066.04 27164.22 35283.85 29335.10 37092.56 19157.44 30180.83 23182.16 359
pmmvs474.03 26571.91 27280.39 23381.96 31668.32 12381.45 28782.14 30659.32 33869.87 30285.13 27152.40 24588.13 29760.21 27674.74 31484.73 332
MS-PatchMatch73.83 26672.67 26577.30 29083.87 27666.02 17181.82 28084.66 26761.37 32468.61 31482.82 31347.29 30088.21 29559.27 28284.32 18277.68 374
test_cas_vis1_n_192073.76 26773.74 25773.81 32275.90 36659.77 27980.51 30282.40 30458.30 34781.62 11385.69 25644.35 32676.41 37176.29 12878.61 25685.23 323
sss73.60 26873.64 25873.51 32482.80 30255.01 33976.12 34381.69 31162.47 31474.68 24985.85 25457.32 20878.11 36060.86 27280.93 22987.39 281
RPMNet73.51 26970.49 28982.58 18781.32 32965.19 19275.92 34592.27 7757.60 35372.73 26976.45 36652.30 24695.43 6748.14 35577.71 26687.11 291
SixPastTwentyTwo73.37 27071.26 28279.70 24885.08 25357.89 29785.57 21283.56 28471.03 18265.66 34285.88 25242.10 34392.57 19059.11 28563.34 36888.65 259
CR-MVSNet73.37 27071.27 28179.67 25081.32 32965.19 19275.92 34580.30 32759.92 33372.73 26981.19 32752.50 24386.69 30759.84 27877.71 26687.11 291
MSDG73.36 27270.99 28480.49 23284.51 26465.80 17980.71 29986.13 25065.70 27565.46 34383.74 29744.60 32390.91 25251.13 33576.89 27584.74 331
tpm273.26 27371.46 27778.63 26583.34 28656.71 31580.65 30080.40 32656.63 35973.55 26082.02 32451.80 25991.24 24256.35 31278.42 26187.95 268
RPSCF73.23 27471.46 27778.54 26982.50 30959.85 27882.18 27882.84 30158.96 34271.15 28789.41 15845.48 32184.77 32658.82 28971.83 33891.02 167
PatchmatchNetpermissive73.12 27571.33 28078.49 27283.18 29160.85 26579.63 31378.57 34164.13 29271.73 28179.81 34451.20 26485.97 31457.40 30276.36 28988.66 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 27670.41 29180.81 22687.13 21865.63 18288.30 13584.19 27662.96 30663.80 35687.69 20138.04 36292.56 19146.66 36074.91 31284.24 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 27772.58 26774.25 31884.28 26650.85 36986.41 19183.45 28744.56 38273.23 26487.54 20749.38 28585.70 31565.90 22778.44 26086.19 307
test-LLR72.94 27872.43 26874.48 31581.35 32758.04 29378.38 32977.46 34766.66 26069.95 30079.00 35048.06 29779.24 35466.13 22384.83 17186.15 308
test_040272.79 27970.44 29079.84 24588.13 17865.99 17385.93 20584.29 27365.57 27767.40 32585.49 26246.92 30492.61 18935.88 38674.38 31780.94 365
tpmrst72.39 28072.13 27173.18 32880.54 33649.91 37379.91 31279.08 33963.11 30371.69 28279.95 34155.32 21782.77 33965.66 23073.89 32186.87 295
PatchMatch-RL72.38 28170.90 28576.80 29588.60 16167.38 14579.53 31476.17 35862.75 31169.36 30782.00 32545.51 31984.89 32553.62 32280.58 23578.12 373
CL-MVSNet_self_test72.37 28271.46 27775.09 30979.49 35253.53 35080.76 29785.01 26469.12 22870.51 28982.05 32357.92 20184.13 32952.27 32966.00 36287.60 276
tpm72.37 28271.71 27474.35 31782.19 31452.00 35879.22 31977.29 35064.56 28772.95 26783.68 30051.35 26283.26 33758.33 29475.80 29387.81 272
ETVMVS72.25 28471.05 28375.84 30087.77 19651.91 36079.39 31674.98 36169.26 22273.71 25882.95 30940.82 35086.14 31246.17 36484.43 18189.47 229
UWE-MVS72.13 28571.49 27674.03 32086.66 22747.70 37781.40 28976.89 35463.60 30075.59 22084.22 28839.94 35385.62 31748.98 34886.13 15888.77 255
PVSNet64.34 1872.08 28670.87 28675.69 30286.21 23256.44 31974.37 35780.73 31962.06 31970.17 29582.23 32142.86 33783.31 33654.77 31784.45 18087.32 284
WB-MVSnew71.96 28771.65 27572.89 32984.67 26251.88 36182.29 27777.57 34662.31 31573.67 25983.00 30853.49 23881.10 34845.75 36782.13 21785.70 317
pmmvs571.55 28870.20 29475.61 30377.83 35956.39 32081.74 28280.89 31657.76 35167.46 32384.49 27949.26 28885.32 32257.08 30575.29 30785.11 327
test-mter71.41 28970.39 29274.48 31581.35 32758.04 29378.38 32977.46 34760.32 32969.95 30079.00 35036.08 36879.24 35466.13 22384.83 17186.15 308
K. test v371.19 29068.51 30279.21 25883.04 29657.78 30084.35 24676.91 35372.90 15362.99 35982.86 31239.27 35591.09 24961.65 26552.66 38688.75 256
dmvs_re71.14 29170.58 28772.80 33081.96 31659.68 28075.60 34979.34 33668.55 24069.27 30980.72 33549.42 28476.54 36852.56 32877.79 26582.19 358
tpmvs71.09 29269.29 29776.49 29682.04 31556.04 32678.92 32481.37 31564.05 29567.18 32778.28 35649.74 28189.77 26949.67 34572.37 33383.67 343
AllTest70.96 29368.09 30879.58 25285.15 25063.62 22284.58 23779.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
test_fmvs170.93 29470.52 28872.16 33473.71 37655.05 33880.82 29378.77 34051.21 37678.58 15284.41 28131.20 37876.94 36675.88 13480.12 24384.47 334
test_fmvs1_n70.86 29570.24 29372.73 33172.51 38655.28 33681.27 29079.71 33351.49 37578.73 14684.87 27527.54 38377.02 36576.06 13179.97 24485.88 315
Patchmtry70.74 29669.16 29975.49 30680.72 33354.07 34774.94 35680.30 32758.34 34670.01 29781.19 32752.50 24386.54 30853.37 32471.09 34385.87 316
MIMVSNet70.69 29769.30 29674.88 31184.52 26356.35 32375.87 34779.42 33564.59 28667.76 31882.41 31741.10 34781.54 34546.64 36281.34 22486.75 299
tpm cat170.57 29868.31 30477.35 28982.41 31257.95 29678.08 33380.22 32952.04 37168.54 31577.66 36152.00 25487.84 30051.77 33072.07 33786.25 305
OpenMVS_ROBcopyleft64.09 1970.56 29968.19 30577.65 28480.26 33859.41 28485.01 22682.96 29858.76 34465.43 34482.33 31837.63 36491.23 24345.34 37076.03 29182.32 356
pmmvs-eth3d70.50 30067.83 31378.52 27177.37 36266.18 16881.82 28081.51 31258.90 34363.90 35580.42 33742.69 33886.28 31158.56 29165.30 36483.11 349
USDC70.33 30168.37 30376.21 29880.60 33556.23 32479.19 32086.49 24360.89 32561.29 36385.47 26331.78 37689.47 27653.37 32476.21 29082.94 353
Patchmatch-RL test70.24 30267.78 31577.61 28577.43 36159.57 28371.16 36670.33 37562.94 30768.65 31372.77 37850.62 27085.49 31969.58 19466.58 35987.77 273
CMPMVSbinary51.72 2170.19 30368.16 30676.28 29773.15 38257.55 30379.47 31583.92 27848.02 37956.48 38084.81 27643.13 33586.42 31062.67 25381.81 22284.89 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 30467.34 32178.14 27679.80 34761.13 26179.19 32080.59 32159.16 34065.27 34579.29 34746.75 30687.29 30449.33 34666.72 35786.00 314
gg-mvs-nofinetune69.95 30567.96 30975.94 29983.07 29454.51 34477.23 34070.29 37663.11 30370.32 29262.33 38743.62 33088.69 28953.88 32187.76 13384.62 333
TESTMET0.1,169.89 30669.00 30072.55 33279.27 35556.85 31178.38 32974.71 36557.64 35268.09 31777.19 36337.75 36376.70 36763.92 24284.09 18684.10 339
test_vis1_n69.85 30769.21 29871.77 33672.66 38555.27 33781.48 28676.21 35752.03 37275.30 23583.20 30628.97 38176.22 37374.60 14478.41 26283.81 342
FMVSNet569.50 30867.96 30974.15 31982.97 30055.35 33580.01 31082.12 30762.56 31363.02 35781.53 32636.92 36581.92 34348.42 35074.06 31985.17 326
PMMVS69.34 30968.67 30171.35 34175.67 36862.03 25175.17 35173.46 36850.00 37768.68 31279.05 34852.07 25378.13 35961.16 27082.77 20973.90 380
our_test_369.14 31067.00 32375.57 30479.80 34758.80 28577.96 33477.81 34459.55 33662.90 36078.25 35747.43 29983.97 33051.71 33167.58 35683.93 341
EPMVS69.02 31168.16 30671.59 33779.61 35049.80 37577.40 33866.93 38462.82 31070.01 29779.05 34845.79 31677.86 36256.58 31075.26 30887.13 290
KD-MVS_self_test68.81 31267.59 31972.46 33374.29 37445.45 38277.93 33587.00 23563.12 30263.99 35478.99 35242.32 34084.77 32656.55 31164.09 36787.16 289
Anonymous2024052168.80 31367.22 32273.55 32374.33 37354.11 34683.18 26585.61 25658.15 34861.68 36280.94 33230.71 37981.27 34757.00 30673.34 32985.28 322
Anonymous2023120668.60 31467.80 31471.02 34480.23 34050.75 37078.30 33280.47 32356.79 35866.11 34182.63 31646.35 30978.95 35643.62 37375.70 29483.36 346
MIMVSNet168.58 31566.78 32573.98 32180.07 34251.82 36280.77 29684.37 27064.40 28959.75 37082.16 32236.47 36683.63 33342.73 37570.33 34586.48 303
testing368.56 31667.67 31771.22 34387.33 21342.87 39183.06 27171.54 37370.36 19569.08 31084.38 28230.33 38085.69 31637.50 38575.45 30285.09 328
EU-MVSNet68.53 31767.61 31871.31 34278.51 35847.01 38084.47 23984.27 27442.27 38566.44 33984.79 27740.44 35183.76 33158.76 29068.54 35483.17 347
PatchT68.46 31867.85 31170.29 34780.70 33443.93 38972.47 36274.88 36260.15 33170.55 28876.57 36549.94 27881.59 34450.58 33674.83 31385.34 321
test_fmvs268.35 31967.48 32070.98 34569.50 38951.95 35980.05 30976.38 35649.33 37874.65 25084.38 28223.30 38975.40 38074.51 14575.17 31085.60 318
Syy-MVS68.05 32067.85 31168.67 35684.68 25940.97 39778.62 32773.08 37066.65 26366.74 33279.46 34552.11 25182.30 34132.89 38976.38 28782.75 354
test0.0.03 168.00 32167.69 31668.90 35377.55 36047.43 37875.70 34872.95 37266.66 26066.56 33482.29 32048.06 29775.87 37544.97 37174.51 31683.41 345
TDRefinement67.49 32264.34 33276.92 29373.47 38061.07 26284.86 23082.98 29759.77 33458.30 37485.13 27126.06 38487.89 29947.92 35760.59 37581.81 361
test20.0367.45 32366.95 32468.94 35275.48 37044.84 38777.50 33777.67 34566.66 26063.01 35883.80 29547.02 30378.40 35842.53 37668.86 35383.58 344
UnsupCasMVSNet_eth67.33 32465.99 32871.37 33973.48 37951.47 36675.16 35285.19 26165.20 27960.78 36580.93 33442.35 33977.20 36457.12 30453.69 38585.44 320
TinyColmap67.30 32564.81 33074.76 31381.92 31856.68 31680.29 30781.49 31360.33 32856.27 38183.22 30424.77 38687.66 30345.52 36869.47 34879.95 369
myMVS_eth3d67.02 32666.29 32769.21 35184.68 25942.58 39278.62 32773.08 37066.65 26366.74 33279.46 34531.53 37782.30 34139.43 38276.38 28782.75 354
dp66.80 32765.43 32970.90 34679.74 34948.82 37675.12 35474.77 36359.61 33564.08 35377.23 36242.89 33680.72 35048.86 34966.58 35983.16 348
MDA-MVSNet-bldmvs66.68 32863.66 33775.75 30179.28 35460.56 27073.92 35978.35 34264.43 28850.13 38879.87 34344.02 32883.67 33246.10 36556.86 37883.03 351
testgi66.67 32966.53 32667.08 36175.62 36941.69 39675.93 34476.50 35566.11 26965.20 34886.59 23535.72 36974.71 38243.71 37273.38 32884.84 330
CHOSEN 280x42066.51 33064.71 33171.90 33581.45 32463.52 22757.98 39468.95 38253.57 36762.59 36176.70 36446.22 31175.29 38155.25 31579.68 24576.88 376
PM-MVS66.41 33164.14 33373.20 32773.92 37556.45 31878.97 32364.96 39063.88 29964.72 34980.24 33819.84 39283.44 33566.24 22264.52 36679.71 370
JIA-IIPM66.32 33262.82 34376.82 29477.09 36361.72 25765.34 38775.38 35958.04 35064.51 35062.32 38842.05 34486.51 30951.45 33369.22 35082.21 357
KD-MVS_2432*160066.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
miper_refine_blended66.22 33363.89 33573.21 32575.47 37153.42 35270.76 36984.35 27164.10 29366.52 33678.52 35434.55 37184.98 32350.40 33850.33 38981.23 363
ADS-MVSNet266.20 33563.33 33874.82 31279.92 34358.75 28667.55 38075.19 36053.37 36865.25 34675.86 36942.32 34080.53 35141.57 37768.91 35185.18 324
YYNet165.03 33662.91 34171.38 33875.85 36756.60 31769.12 37774.66 36657.28 35654.12 38377.87 35945.85 31574.48 38349.95 34361.52 37283.05 350
MDA-MVSNet_test_wron65.03 33662.92 34071.37 33975.93 36556.73 31369.09 37874.73 36457.28 35654.03 38477.89 35845.88 31474.39 38449.89 34461.55 37182.99 352
Patchmatch-test64.82 33863.24 33969.57 34979.42 35349.82 37463.49 39169.05 38151.98 37359.95 36980.13 33950.91 26670.98 38940.66 37973.57 32487.90 270
ADS-MVSNet64.36 33962.88 34268.78 35579.92 34347.17 37967.55 38071.18 37453.37 36865.25 34675.86 36942.32 34073.99 38541.57 37768.91 35185.18 324
LF4IMVS64.02 34062.19 34469.50 35070.90 38753.29 35576.13 34277.18 35152.65 37058.59 37280.98 33123.55 38876.52 36953.06 32666.66 35878.68 372
UnsupCasMVSNet_bld63.70 34161.53 34770.21 34873.69 37751.39 36772.82 36181.89 30855.63 36357.81 37671.80 38038.67 35878.61 35749.26 34752.21 38780.63 366
test_fmvs363.36 34261.82 34567.98 35862.51 39646.96 38177.37 33974.03 36745.24 38167.50 32278.79 35312.16 40072.98 38872.77 16566.02 36183.99 340
dmvs_testset62.63 34364.11 33458.19 37178.55 35724.76 40775.28 35065.94 38767.91 24960.34 36676.01 36853.56 23673.94 38631.79 39067.65 35575.88 378
mvsany_test162.30 34461.26 34865.41 36369.52 38854.86 34066.86 38249.78 40346.65 38068.50 31683.21 30549.15 28966.28 39556.93 30760.77 37375.11 379
new-patchmatchnet61.73 34561.73 34661.70 36772.74 38424.50 40869.16 37678.03 34361.40 32256.72 37975.53 37238.42 35976.48 37045.95 36657.67 37784.13 338
PVSNet_057.27 2061.67 34659.27 34968.85 35479.61 35057.44 30568.01 37973.44 36955.93 36258.54 37370.41 38344.58 32477.55 36347.01 35935.91 39571.55 383
test_vis1_rt60.28 34758.42 35065.84 36267.25 39255.60 33270.44 37160.94 39544.33 38359.00 37166.64 38524.91 38568.67 39362.80 24969.48 34773.25 381
MVS-HIRNet59.14 34857.67 35163.57 36581.65 32043.50 39071.73 36465.06 38939.59 38951.43 38657.73 39338.34 36082.58 34039.53 38073.95 32064.62 389
pmmvs357.79 34954.26 35468.37 35764.02 39556.72 31475.12 35465.17 38840.20 38752.93 38569.86 38420.36 39175.48 37845.45 36955.25 38472.90 382
DSMNet-mixed57.77 35056.90 35260.38 36967.70 39135.61 40069.18 37553.97 40132.30 39757.49 37779.88 34240.39 35268.57 39438.78 38372.37 33376.97 375
WB-MVS54.94 35154.72 35355.60 37773.50 37820.90 40974.27 35861.19 39459.16 34050.61 38774.15 37447.19 30275.78 37617.31 40135.07 39670.12 384
LCM-MVSNet54.25 35249.68 36267.97 35953.73 40445.28 38566.85 38380.78 31835.96 39339.45 39462.23 3898.70 40478.06 36148.24 35451.20 38880.57 367
mvsany_test353.99 35351.45 35861.61 36855.51 40044.74 38863.52 39045.41 40743.69 38458.11 37576.45 36617.99 39363.76 39854.77 31747.59 39176.34 377
SSC-MVS53.88 35453.59 35554.75 37972.87 38319.59 41073.84 36060.53 39657.58 35449.18 38973.45 37746.34 31075.47 37916.20 40432.28 39869.20 385
FPMVS53.68 35551.64 35759.81 37065.08 39451.03 36869.48 37469.58 37941.46 38640.67 39272.32 37916.46 39670.00 39224.24 39865.42 36358.40 394
APD_test153.31 35649.93 36163.42 36665.68 39350.13 37271.59 36566.90 38534.43 39440.58 39371.56 3818.65 40576.27 37234.64 38855.36 38363.86 390
N_pmnet52.79 35753.26 35651.40 38178.99 3567.68 41369.52 3733.89 41251.63 37457.01 37874.98 37340.83 34965.96 39637.78 38464.67 36580.56 368
test_f52.09 35850.82 35955.90 37553.82 40342.31 39559.42 39358.31 39936.45 39256.12 38270.96 38212.18 39957.79 40053.51 32356.57 38067.60 386
EGC-MVSNET52.07 35947.05 36367.14 36083.51 28360.71 26780.50 30367.75 3830.07 4070.43 40875.85 37124.26 38781.54 34528.82 39262.25 36959.16 392
new_pmnet50.91 36050.29 36052.78 38068.58 39034.94 40263.71 38956.63 40039.73 38844.95 39065.47 38621.93 39058.48 39934.98 38756.62 37964.92 388
ANet_high50.57 36146.10 36563.99 36448.67 40739.13 39870.99 36880.85 31761.39 32331.18 39657.70 39417.02 39573.65 38731.22 39115.89 40479.18 371
test_vis3_rt49.26 36247.02 36456.00 37454.30 40145.27 38666.76 38448.08 40436.83 39144.38 39153.20 3967.17 40764.07 39756.77 30955.66 38158.65 393
testf145.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
APD_test245.72 36341.96 36657.00 37256.90 39845.32 38366.14 38559.26 39726.19 39830.89 39760.96 3914.14 40870.64 39026.39 39646.73 39355.04 395
Gipumacopyleft45.18 36541.86 36855.16 37877.03 36451.52 36532.50 40080.52 32232.46 39627.12 39935.02 4009.52 40375.50 37722.31 39960.21 37638.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36640.28 36955.82 37640.82 40942.54 39465.12 38863.99 39134.43 39424.48 40057.12 3953.92 41076.17 37417.10 40255.52 38248.75 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36738.86 37046.69 38253.84 40216.45 41148.61 39749.92 40237.49 39031.67 39560.97 3908.14 40656.42 40128.42 39330.72 39967.19 387
E-PMN31.77 36830.64 37135.15 38552.87 40527.67 40457.09 39547.86 40524.64 40016.40 40533.05 40111.23 40154.90 40214.46 40518.15 40222.87 401
test_method31.52 36929.28 37338.23 38427.03 4116.50 41420.94 40262.21 3934.05 40522.35 40352.50 39713.33 39747.58 40427.04 39534.04 39760.62 391
EMVS30.81 37029.65 37234.27 38650.96 40625.95 40656.58 39646.80 40624.01 40115.53 40630.68 40212.47 39854.43 40312.81 40617.05 40322.43 402
MVEpermissive26.22 2330.37 37125.89 37543.81 38344.55 40835.46 40128.87 40139.07 40818.20 40218.58 40440.18 3992.68 41147.37 40517.07 40323.78 40148.60 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 37226.61 3740.00 3920.00 4150.00 4170.00 40389.26 1740.00 4100.00 41188.61 17661.62 1620.00 4110.00 4100.00 4090.00 407
tmp_tt18.61 37321.40 37610.23 3894.82 41210.11 41234.70 39930.74 4101.48 40623.91 40226.07 40328.42 38213.41 40827.12 39415.35 4057.17 403
wuyk23d16.82 37415.94 37719.46 38858.74 39731.45 40339.22 3983.74 4136.84 4046.04 4072.70 4071.27 41224.29 40710.54 40714.40 4062.63 404
ab-mvs-re7.23 3759.64 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41186.72 2270.00 4150.00 4110.00 4100.00 4090.00 407
test1236.12 3768.11 3790.14 3900.06 4140.09 41571.05 3670.03 4150.04 4090.25 4101.30 4090.05 4130.03 4100.21 4090.01 4080.29 405
testmvs6.04 3778.02 3800.10 3910.08 4130.03 41669.74 3720.04 4140.05 4080.31 4091.68 4080.02 4140.04 4090.24 4080.02 4070.25 406
pcd_1.5k_mvsjas5.26 3787.02 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41063.15 1390.00 4110.00 4100.00 4090.00 407
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS42.58 39239.46 381
FOURS195.00 1072.39 3995.06 193.84 1574.49 11491.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
PC_three_145268.21 24692.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 33
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 415
eth-test0.00 415
ZD-MVS94.38 2572.22 4492.67 6270.98 18387.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
RE-MVS-def85.48 5493.06 5570.63 7391.88 3992.27 7773.53 13885.69 5094.45 2663.87 13082.75 6891.87 8092.50 117
IU-MVS95.30 271.25 5792.95 5266.81 25692.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 42
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12688.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11774.31 117
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 43
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 247
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26388.96 247
sam_mvs50.01 276
ambc75.24 30873.16 38150.51 37163.05 39287.47 22664.28 35177.81 36017.80 39489.73 27157.88 29860.64 37485.49 319
MTGPAbinary92.02 86
test_post178.90 3255.43 40648.81 29685.44 32159.25 283
test_post5.46 40550.36 27484.24 328
patchmatchnet-post74.00 37551.12 26588.60 291
GG-mvs-BLEND75.38 30781.59 32255.80 32979.32 31769.63 37867.19 32673.67 37643.24 33388.90 28850.41 33784.50 17681.45 362
MTMP92.18 3532.83 409
gm-plane-assit81.40 32553.83 34962.72 31280.94 33292.39 19763.40 246
test9_res84.90 4295.70 2692.87 105
TEST993.26 5072.96 2588.75 11691.89 9468.44 24385.00 5893.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12191.84 9868.69 23884.87 6293.10 6774.43 2695.16 78
agg_prior282.91 6695.45 3092.70 108
agg_prior92.85 5971.94 5191.78 10184.41 7294.93 89
TestCases79.58 25285.15 25063.62 22279.83 33162.31 31560.32 36786.73 22532.02 37488.96 28650.28 34071.57 34086.15 308
test_prior472.60 3489.01 106
test_prior288.85 11275.41 9484.91 6093.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 54
旧先验286.56 18858.10 34987.04 4088.98 28474.07 150
新几何286.29 196
新几何183.42 14993.13 5270.71 7185.48 25857.43 35581.80 11091.98 9063.28 13492.27 20364.60 23892.99 6687.27 285
旧先验191.96 7165.79 18086.37 24693.08 7169.31 7892.74 6988.74 257
无先验87.48 15988.98 18760.00 33294.12 12267.28 21588.97 246
原ACMM286.86 177
原ACMM184.35 10993.01 5768.79 10792.44 7063.96 29881.09 12091.57 10166.06 11295.45 6567.19 21794.82 4688.81 253
test22291.50 7768.26 12584.16 24983.20 29254.63 36679.74 13291.63 9958.97 19491.42 8686.77 298
testdata291.01 25162.37 256
segment_acmp73.08 38
testdata79.97 24290.90 8664.21 21384.71 26659.27 33985.40 5292.91 7362.02 15889.08 28268.95 20091.37 8786.63 302
testdata184.14 25075.71 88
test1286.80 4992.63 6470.70 7291.79 10082.71 10071.67 5296.16 4494.50 5193.54 78
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 187
plane_prior592.44 7095.38 7178.71 10486.32 15391.33 154
plane_prior491.00 121
plane_prior368.60 11878.44 3178.92 144
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11390.38 6877.62 3986.16 157
n20.00 416
nn0.00 416
door-mid69.98 377
lessismore_v078.97 26181.01 33257.15 30865.99 38661.16 36482.82 31339.12 35691.34 24059.67 27946.92 39288.43 263
LGP-MVS_train84.50 10289.23 13768.76 10991.94 9275.37 9576.64 19891.51 10254.29 22994.91 9078.44 10683.78 18889.83 219
test1192.23 80
door69.44 380
HQP5-MVS66.98 155
HQP-NCC89.33 13089.17 9976.41 7377.23 184
ACMP_Plane89.33 13089.17 9976.41 7377.23 184
BP-MVS77.47 116
HQP4-MVS77.24 18395.11 8291.03 165
HQP3-MVS92.19 8385.99 161
HQP2-MVS60.17 190
NP-MVS89.62 11668.32 12390.24 133
MDTV_nov1_ep13_2view37.79 39975.16 35255.10 36466.53 33549.34 28653.98 32087.94 269
MDTV_nov1_ep1369.97 29583.18 29153.48 35177.10 34180.18 33060.45 32769.33 30880.44 33648.89 29586.90 30651.60 33278.51 259
ACMMP++_ref81.95 220
ACMMP++81.25 225
Test By Simon64.33 126
ITE_SJBPF78.22 27481.77 31960.57 26983.30 28869.25 22367.54 32187.20 21636.33 36787.28 30554.34 31974.62 31586.80 297
DeepMVS_CXcopyleft27.40 38740.17 41026.90 40524.59 41117.44 40323.95 40148.61 3989.77 40226.48 40618.06 40024.47 40028.83 400