| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 60 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 87 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 59 | 94.67 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 86 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 53 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 90 | 73.65 10 | 92.66 23 | 91.17 117 | 86.57 1 | 87.39 36 | 94.97 16 | 71.70 51 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 90 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 32 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 108 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 55 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 99 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 61 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 38 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 88 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 88 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 28 |
|
| MVS_0304 | | | 88.08 14 | 88.08 17 | 88.08 14 | 89.67 115 | 72.04 48 | 92.26 33 | 89.26 174 | 84.19 2 | 85.01 56 | 95.18 13 | 69.93 70 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| SD-MVS | | | 88.06 15 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 138 | 87.63 30 | 94.27 58 | 93.65 70 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 15 | 88.01 19 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 56 | 81.50 5 | 85.79 49 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 46 |
|
| ACMMP_NAP | | | 88.05 17 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 56 | 93.59 23 | 76.27 80 | 88.14 24 | 95.09 15 | 71.06 58 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 47 |
|
| TSAR-MVS + MP. | | | 88.02 18 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 75 | 74.62 112 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 28 | 94.63 48 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 19 | 87.85 20 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 54 | 94.32 31 | 71.76 49 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 39 |
|
| MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 65 | 77.57 41 | 83.84 83 | 94.40 30 | 72.24 44 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 73 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 79 | 93.50 25 | 75.17 101 | 86.34 45 | 95.29 12 | 70.86 60 | 96.00 49 | 88.78 19 | 96.04 16 | 94.58 28 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 60 | 94.44 28 | 70.78 61 | 96.61 32 | 84.53 49 | 94.89 41 | 93.66 66 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 67 | 94.52 21 | 68.81 85 | 96.65 30 | 84.53 49 | 94.90 40 | 94.00 51 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 56 | 73.01 151 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 52 | 95.01 37 | 92.70 108 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 64 | 93.99 48 | 70.67 63 | 96.82 22 | 84.18 56 | 95.01 37 | 93.90 56 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 71 | 94.52 21 | 69.09 79 | 96.70 27 | 84.37 51 | 94.83 45 | 94.03 50 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 149 | 84.86 63 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 35 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 187 | 92.02 86 | 79.45 19 | 85.88 47 | 94.80 17 | 68.07 90 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 90 |
|
| XVS | | | 87.18 29 | 86.91 33 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 86 | 94.17 36 | 67.45 96 | 96.60 33 | 83.06 63 | 94.50 51 | 94.07 48 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 30 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 83 | 83.81 84 | 93.95 51 | 69.77 73 | 96.01 48 | 85.15 40 | 94.66 47 | 94.32 39 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 30 | 86.92 32 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 59 | 76.62 71 | 83.68 85 | 94.46 25 | 67.93 91 | 95.95 52 | 84.20 55 | 94.39 54 | 93.23 90 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 34 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 69 | 93.94 14 | 77.12 55 | 82.82 98 | 94.23 35 | 72.13 46 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 70 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 36 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 71 | 84.22 75 | 93.36 63 | 71.44 55 | 96.76 25 | 80.82 86 | 95.33 34 | 94.16 44 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS | | | 86.73 34 | 86.67 35 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 68 | 74.50 113 | 86.84 43 | 94.65 20 | 67.31 98 | 95.77 55 | 84.80 46 | 92.85 68 | 92.84 106 |
|
| CS-MVS | | | 86.69 35 | 86.95 31 | 85.90 64 | 90.76 91 | 67.57 140 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 70 | 92.27 86 | 71.47 54 | 95.02 88 | 84.24 54 | 93.46 64 | 95.13 6 |
|
| PGM-MVS | | | 86.68 36 | 86.27 40 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 71 | 93.04 38 | 75.53 92 | 83.86 82 | 94.42 29 | 67.87 93 | 96.64 31 | 82.70 72 | 94.57 50 | 93.66 66 |
|
| mPP-MVS | | | 86.67 37 | 86.32 39 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 81 | 76.87 62 | 82.81 99 | 94.25 34 | 66.44 106 | 96.24 41 | 82.88 67 | 94.28 57 | 93.38 84 |
|
| CANet | | | 86.45 38 | 86.10 45 | 87.51 37 | 90.09 102 | 70.94 67 | 89.70 83 | 92.59 67 | 81.78 4 | 81.32 115 | 91.43 106 | 70.34 65 | 97.23 13 | 84.26 52 | 93.36 65 | 94.37 36 |
|
| train_agg | | | 86.43 39 | 86.20 41 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 116 | 91.89 94 | 68.69 238 | 85.00 58 | 93.10 67 | 74.43 26 | 95.41 69 | 84.97 41 | 95.71 25 | 93.02 101 |
|
| PHI-MVS | | | 86.43 39 | 86.17 43 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 154 | 85.22 55 | 91.90 92 | 69.47 75 | 96.42 37 | 83.28 62 | 95.94 19 | 94.35 37 |
|
| CSCG | | | 86.41 41 | 86.19 42 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 57 | 93.56 24 | 73.95 124 | 83.16 93 | 91.07 117 | 75.94 18 | 95.19 77 | 79.94 95 | 94.38 55 | 93.55 77 |
|
| CS-MVS-test | | | 86.29 42 | 86.48 37 | 85.71 66 | 91.02 83 | 67.21 152 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 89 | 91.20 112 | 70.65 64 | 95.15 79 | 81.96 76 | 94.89 41 | 94.77 22 |
|
| EC-MVSNet | | | 86.01 43 | 86.38 38 | 84.91 91 | 89.31 133 | 66.27 166 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 77 | 91.88 93 | 69.04 83 | 95.43 67 | 83.93 57 | 93.77 62 | 93.01 102 |
|
| casdiffmvs_mvg |  | | 85.99 44 | 86.09 46 | 85.70 67 | 87.65 200 | 67.22 151 | 88.69 120 | 93.04 38 | 79.64 18 | 85.33 53 | 92.54 83 | 73.30 35 | 94.50 108 | 83.49 59 | 91.14 90 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 45 | 85.88 48 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 46 | 73.54 137 | 85.94 46 | 94.51 24 | 65.80 116 | 95.61 59 | 83.04 65 | 92.51 72 | 93.53 79 |
|
| test_fmvsmconf_n | | | 85.92 46 | 86.04 47 | 85.57 69 | 85.03 254 | 69.51 90 | 89.62 87 | 90.58 132 | 73.42 140 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 162 | 90.37 3 | 90.75 94 | 93.96 52 |
|
| sasdasda | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 112 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 109 | 73.28 36 | 93.91 132 | 81.50 79 | 88.80 121 | 94.77 22 |
|
| canonicalmvs | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 112 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 109 | 73.28 36 | 93.91 132 | 81.50 79 | 88.80 121 | 94.77 22 |
|
| ACMMP |  | | 85.89 49 | 85.39 55 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 124 | 93.82 53 | 64.33 126 | 96.29 39 | 82.67 73 | 90.69 95 | 93.23 90 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 50 | 85.61 53 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 77 | 73.53 138 | 85.69 50 | 94.45 26 | 65.00 124 | 95.56 60 | 82.75 68 | 91.87 80 | 92.50 117 |
|
| CDPH-MVS | | | 85.76 51 | 85.29 60 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 124 | 92.42 73 | 68.32 245 | 84.61 68 | 93.48 58 | 72.32 43 | 96.15 45 | 79.00 100 | 95.43 31 | 94.28 41 |
|
| TSAR-MVS + GP. | | | 85.71 52 | 85.33 57 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 105 | 87.28 229 | 76.41 73 | 85.80 48 | 90.22 135 | 74.15 31 | 95.37 74 | 81.82 77 | 91.88 79 | 92.65 112 |
|
| dcpmvs_2 | | | 85.63 53 | 86.15 44 | 84.06 127 | 91.71 75 | 64.94 198 | 86.47 190 | 91.87 96 | 73.63 133 | 86.60 44 | 93.02 72 | 76.57 15 | 91.87 218 | 83.36 60 | 92.15 76 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 54 | 85.65 52 | 85.50 70 | 82.99 299 | 69.39 97 | 89.65 84 | 90.29 145 | 73.31 143 | 87.77 31 | 94.15 38 | 71.72 50 | 93.23 163 | 90.31 4 | 90.67 96 | 93.89 57 |
|
| alignmvs | | | 85.48 55 | 85.32 58 | 85.96 63 | 89.51 121 | 69.47 92 | 89.74 81 | 92.47 69 | 76.17 81 | 87.73 34 | 91.46 105 | 70.32 66 | 93.78 138 | 81.51 78 | 88.95 118 | 94.63 27 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 55 | 84.47 70 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 197 | 93.37 62 | 60.40 189 | 96.75 26 | 77.20 119 | 93.73 63 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 57 | 85.76 51 | 84.45 105 | 91.93 72 | 70.24 76 | 90.71 58 | 92.86 54 | 77.46 47 | 84.22 75 | 92.81 78 | 67.16 100 | 92.94 182 | 80.36 91 | 94.35 56 | 90.16 198 |
|
| DELS-MVS | | | 85.41 58 | 85.30 59 | 85.77 65 | 88.49 164 | 67.93 133 | 85.52 220 | 93.44 27 | 78.70 29 | 83.63 88 | 89.03 165 | 74.57 24 | 95.71 57 | 80.26 93 | 94.04 60 | 93.66 66 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 59 | 84.95 64 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 104 | 73.89 127 | 82.67 101 | 94.09 40 | 62.60 145 | 95.54 62 | 80.93 84 | 92.93 67 | 93.57 75 |
|
| test_fmvsm_n_1920 | | | 85.29 60 | 85.34 56 | 85.13 81 | 86.12 234 | 69.93 83 | 88.65 122 | 90.78 128 | 69.97 205 | 88.27 23 | 93.98 49 | 71.39 56 | 91.54 230 | 88.49 23 | 90.45 98 | 93.91 54 |
|
| MVS_111021_HR | | | 85.14 61 | 84.75 65 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 203 | 90.33 142 | 76.11 82 | 82.08 104 | 91.61 100 | 71.36 57 | 94.17 121 | 81.02 83 | 92.58 71 | 92.08 134 |
|
| casdiffmvs |  | | 85.11 62 | 85.14 61 | 85.01 85 | 87.20 216 | 65.77 181 | 87.75 153 | 92.83 56 | 77.84 37 | 84.36 74 | 92.38 85 | 72.15 45 | 93.93 131 | 81.27 82 | 90.48 97 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 63 | 84.96 63 | 85.45 71 | 92.07 70 | 68.07 130 | 89.78 80 | 90.86 127 | 82.48 3 | 84.60 69 | 93.20 66 | 69.35 76 | 95.22 76 | 71.39 175 | 90.88 93 | 93.07 98 |
|
| DPM-MVS | | | 84.93 64 | 84.29 71 | 86.84 47 | 90.20 100 | 73.04 23 | 87.12 169 | 93.04 38 | 69.80 209 | 82.85 97 | 91.22 111 | 73.06 39 | 96.02 47 | 76.72 127 | 94.63 48 | 91.46 153 |
|
| baseline | | | 84.93 64 | 84.98 62 | 84.80 95 | 87.30 214 | 65.39 189 | 87.30 165 | 92.88 53 | 77.62 39 | 84.04 80 | 92.26 87 | 71.81 48 | 93.96 125 | 81.31 81 | 90.30 100 | 95.03 8 |
|
| ETV-MVS | | | 84.90 66 | 84.67 66 | 85.59 68 | 89.39 128 | 68.66 117 | 88.74 118 | 92.64 66 | 79.97 15 | 84.10 78 | 85.71 255 | 69.32 77 | 95.38 71 | 80.82 86 | 91.37 87 | 92.72 107 |
|
| test_fmvsmconf0.01_n | | | 84.73 67 | 84.52 69 | 85.34 73 | 80.25 339 | 69.03 100 | 89.47 89 | 89.65 162 | 73.24 147 | 86.98 41 | 94.27 32 | 66.62 102 | 93.23 163 | 90.26 5 | 89.95 108 | 93.78 63 |
|
| fmvsm_l_conf0.5_n | | | 84.47 68 | 84.54 67 | 84.27 115 | 85.42 244 | 68.81 106 | 88.49 126 | 87.26 230 | 68.08 247 | 88.03 27 | 93.49 57 | 72.04 47 | 91.77 220 | 88.90 17 | 89.14 117 | 92.24 128 |
|
| EI-MVSNet-Vis-set | | | 84.19 69 | 83.81 74 | 85.31 74 | 88.18 175 | 67.85 134 | 87.66 155 | 89.73 160 | 80.05 14 | 82.95 94 | 89.59 149 | 70.74 62 | 94.82 97 | 80.66 90 | 84.72 173 | 93.28 89 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 70 | 84.16 72 | 84.06 127 | 85.38 245 | 68.40 121 | 88.34 133 | 86.85 239 | 67.48 254 | 87.48 35 | 93.40 61 | 70.89 59 | 91.61 224 | 88.38 25 | 89.22 116 | 92.16 132 |
|
| test_fmvsmvis_n_1920 | | | 84.02 71 | 83.87 73 | 84.49 104 | 84.12 270 | 69.37 98 | 88.15 141 | 87.96 213 | 70.01 203 | 83.95 81 | 93.23 65 | 68.80 86 | 91.51 233 | 88.61 20 | 89.96 107 | 92.57 113 |
|
| nrg030 | | | 83.88 72 | 83.53 76 | 84.96 87 | 86.77 224 | 69.28 99 | 90.46 65 | 92.67 62 | 74.79 107 | 82.95 94 | 91.33 108 | 72.70 42 | 93.09 176 | 80.79 88 | 79.28 252 | 92.50 117 |
|
| EI-MVSNet-UG-set | | | 83.81 73 | 83.38 79 | 85.09 82 | 87.87 188 | 67.53 141 | 87.44 161 | 89.66 161 | 79.74 16 | 82.23 103 | 89.41 158 | 70.24 67 | 94.74 100 | 79.95 94 | 83.92 187 | 92.99 103 |
|
| fmvsm_s_conf0.5_n | | | 83.80 74 | 83.71 75 | 84.07 125 | 86.69 226 | 67.31 147 | 89.46 90 | 83.07 294 | 71.09 180 | 86.96 42 | 93.70 55 | 69.02 84 | 91.47 235 | 88.79 18 | 84.62 175 | 93.44 83 |
|
| CPTT-MVS | | | 83.73 75 | 83.33 81 | 84.92 90 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 138 | 68.75 237 | 79.57 135 | 92.83 76 | 60.60 185 | 93.04 180 | 80.92 85 | 91.56 85 | 90.86 171 |
|
| EPNet | | | 83.72 76 | 82.92 88 | 86.14 59 | 84.22 268 | 69.48 91 | 91.05 55 | 85.27 260 | 81.30 6 | 76.83 192 | 91.65 97 | 66.09 111 | 95.56 60 | 76.00 133 | 93.85 61 | 93.38 84 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 77 | 84.54 67 | 80.99 221 | 90.06 107 | 65.83 177 | 84.21 248 | 88.74 199 | 71.60 169 | 85.01 56 | 92.44 84 | 74.51 25 | 83.50 334 | 82.15 75 | 92.15 76 | 93.64 72 |
|
| HQP_MVS | | | 83.64 78 | 83.14 82 | 85.14 79 | 90.08 103 | 68.71 113 | 91.25 50 | 92.44 70 | 79.12 23 | 78.92 144 | 91.00 121 | 60.42 187 | 95.38 71 | 78.71 104 | 86.32 153 | 91.33 154 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 79 | 83.41 78 | 84.28 113 | 86.14 233 | 68.12 128 | 89.43 91 | 82.87 299 | 70.27 199 | 87.27 38 | 93.80 54 | 69.09 79 | 91.58 226 | 88.21 26 | 83.65 195 | 93.14 96 |
|
| Effi-MVS+ | | | 83.62 80 | 83.08 83 | 85.24 76 | 88.38 170 | 67.45 142 | 88.89 110 | 89.15 180 | 75.50 93 | 82.27 102 | 88.28 187 | 69.61 74 | 94.45 110 | 77.81 113 | 87.84 132 | 93.84 60 |
|
| fmvsm_s_conf0.1_n | | | 83.56 81 | 83.38 79 | 84.10 120 | 84.86 256 | 67.28 148 | 89.40 94 | 83.01 295 | 70.67 188 | 87.08 39 | 93.96 50 | 68.38 88 | 91.45 236 | 88.56 22 | 84.50 176 | 93.56 76 |
|
| OPM-MVS | | | 83.50 82 | 82.95 87 | 85.14 79 | 88.79 154 | 70.95 66 | 89.13 104 | 91.52 107 | 77.55 44 | 80.96 122 | 91.75 95 | 60.71 180 | 94.50 108 | 79.67 98 | 86.51 151 | 89.97 214 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 83 | 82.80 90 | 85.43 72 | 90.25 99 | 68.74 111 | 90.30 70 | 90.13 149 | 76.33 79 | 80.87 123 | 92.89 74 | 61.00 177 | 94.20 119 | 72.45 169 | 90.97 91 | 93.35 86 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 84 | 83.45 77 | 83.28 154 | 92.74 62 | 62.28 249 | 88.17 139 | 89.50 165 | 75.22 97 | 81.49 114 | 92.74 82 | 66.75 101 | 95.11 82 | 72.85 163 | 91.58 84 | 92.45 120 |
|
| EPP-MVSNet | | | 83.40 85 | 83.02 85 | 84.57 99 | 90.13 101 | 64.47 208 | 92.32 30 | 90.73 129 | 74.45 116 | 79.35 138 | 91.10 115 | 69.05 82 | 95.12 80 | 72.78 164 | 87.22 140 | 94.13 45 |
|
| 3Dnovator | | 76.31 5 | 83.38 86 | 82.31 96 | 86.59 52 | 87.94 186 | 72.94 28 | 90.64 59 | 92.14 85 | 77.21 52 | 75.47 223 | 92.83 76 | 58.56 196 | 94.72 101 | 73.24 160 | 92.71 70 | 92.13 133 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 87 | 82.99 86 | 84.28 113 | 83.79 277 | 68.07 130 | 89.34 96 | 82.85 300 | 69.80 209 | 87.36 37 | 94.06 42 | 68.34 89 | 91.56 228 | 87.95 27 | 83.46 201 | 93.21 93 |
|
| EIA-MVS | | | 83.31 88 | 82.80 90 | 84.82 93 | 89.59 117 | 65.59 183 | 88.21 137 | 92.68 61 | 74.66 110 | 78.96 142 | 86.42 242 | 69.06 81 | 95.26 75 | 75.54 139 | 90.09 104 | 93.62 73 |
|
| h-mvs33 | | | 83.15 89 | 82.19 97 | 86.02 62 | 90.56 93 | 70.85 70 | 88.15 141 | 89.16 179 | 76.02 84 | 84.67 65 | 91.39 107 | 61.54 163 | 95.50 63 | 82.71 70 | 75.48 299 | 91.72 142 |
|
| MVS_Test | | | 83.15 89 | 83.06 84 | 83.41 151 | 86.86 220 | 63.21 235 | 86.11 201 | 92.00 88 | 74.31 117 | 82.87 96 | 89.44 157 | 70.03 68 | 93.21 165 | 77.39 118 | 88.50 128 | 93.81 61 |
|
| IS-MVSNet | | | 83.15 89 | 82.81 89 | 84.18 118 | 89.94 110 | 63.30 233 | 91.59 43 | 88.46 205 | 79.04 25 | 79.49 136 | 92.16 88 | 65.10 121 | 94.28 113 | 67.71 210 | 91.86 82 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 92 | 82.09 99 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 114 | 92.20 82 | 70.53 193 | 79.17 140 | 91.03 120 | 64.12 128 | 96.03 46 | 68.39 207 | 90.14 103 | 91.50 149 |
|
| PAPM_NR | | | 83.02 93 | 82.41 93 | 84.82 93 | 92.47 67 | 66.37 164 | 87.93 148 | 91.80 99 | 73.82 128 | 77.32 181 | 90.66 126 | 67.90 92 | 94.90 93 | 70.37 184 | 89.48 113 | 93.19 94 |
|
| VDD-MVS | | | 83.01 94 | 82.36 95 | 84.96 87 | 91.02 83 | 66.40 163 | 88.91 109 | 88.11 208 | 77.57 41 | 84.39 73 | 93.29 64 | 52.19 248 | 93.91 132 | 77.05 121 | 88.70 124 | 94.57 30 |
|
| MVSFormer | | | 82.85 95 | 82.05 100 | 85.24 76 | 87.35 208 | 70.21 77 | 90.50 62 | 90.38 138 | 68.55 240 | 81.32 115 | 89.47 152 | 61.68 160 | 93.46 155 | 78.98 101 | 90.26 101 | 92.05 135 |
|
| OMC-MVS | | | 82.69 96 | 81.97 103 | 84.85 92 | 88.75 156 | 67.42 143 | 87.98 144 | 90.87 126 | 74.92 104 | 79.72 133 | 91.65 97 | 62.19 155 | 93.96 125 | 75.26 141 | 86.42 152 | 93.16 95 |
|
| PVSNet_Blended_VisFu | | | 82.62 97 | 81.83 105 | 84.96 87 | 90.80 89 | 69.76 87 | 88.74 118 | 91.70 103 | 69.39 218 | 78.96 142 | 88.46 182 | 65.47 118 | 94.87 96 | 74.42 146 | 88.57 125 | 90.24 196 |
|
| MVS_111021_LR | | | 82.61 98 | 82.11 98 | 84.11 119 | 88.82 151 | 71.58 53 | 85.15 223 | 86.16 249 | 74.69 109 | 80.47 126 | 91.04 118 | 62.29 152 | 90.55 258 | 80.33 92 | 90.08 105 | 90.20 197 |
|
| HQP-MVS | | | 82.61 98 | 82.02 101 | 84.37 107 | 89.33 130 | 66.98 155 | 89.17 99 | 92.19 83 | 76.41 73 | 77.23 184 | 90.23 134 | 60.17 190 | 95.11 82 | 77.47 116 | 85.99 161 | 91.03 165 |
|
| CLD-MVS | | | 82.31 100 | 81.65 106 | 84.29 112 | 88.47 165 | 67.73 137 | 85.81 211 | 92.35 75 | 75.78 87 | 78.33 159 | 86.58 237 | 64.01 129 | 94.35 111 | 76.05 132 | 87.48 137 | 90.79 172 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 101 | 82.41 93 | 81.62 202 | 90.82 88 | 60.93 263 | 84.47 239 | 89.78 157 | 76.36 78 | 84.07 79 | 91.88 93 | 64.71 125 | 90.26 260 | 70.68 181 | 88.89 119 | 93.66 66 |
|
| diffmvs |  | | 82.10 102 | 81.88 104 | 82.76 184 | 83.00 297 | 63.78 221 | 83.68 255 | 89.76 158 | 72.94 152 | 82.02 105 | 89.85 141 | 65.96 115 | 90.79 254 | 82.38 74 | 87.30 139 | 93.71 65 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 103 | 81.27 109 | 84.50 102 | 89.23 137 | 68.76 109 | 90.22 71 | 91.94 92 | 75.37 95 | 76.64 198 | 91.51 102 | 54.29 229 | 94.91 90 | 78.44 106 | 83.78 188 | 89.83 219 |
|
| FIs | | | 82.07 104 | 82.42 92 | 81.04 220 | 88.80 153 | 58.34 289 | 88.26 136 | 93.49 26 | 76.93 60 | 78.47 156 | 91.04 118 | 69.92 71 | 92.34 201 | 69.87 191 | 84.97 170 | 92.44 121 |
|
| PS-MVSNAJss | | | 82.07 104 | 81.31 108 | 84.34 110 | 86.51 229 | 67.27 149 | 89.27 97 | 91.51 108 | 71.75 163 | 79.37 137 | 90.22 135 | 63.15 139 | 94.27 114 | 77.69 114 | 82.36 215 | 91.49 150 |
|
| API-MVS | | | 81.99 106 | 81.23 110 | 84.26 116 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 170 | 71.51 172 | 78.66 150 | 88.28 187 | 65.26 119 | 95.10 85 | 64.74 237 | 91.23 89 | 87.51 279 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 107 | 81.54 107 | 82.92 173 | 88.46 166 | 63.46 229 | 87.13 168 | 92.37 74 | 80.19 12 | 78.38 157 | 89.14 160 | 71.66 53 | 93.05 178 | 70.05 187 | 76.46 282 | 92.25 126 |
|
| MAR-MVS | | | 81.84 108 | 80.70 119 | 85.27 75 | 91.32 79 | 71.53 54 | 89.82 77 | 90.92 123 | 69.77 211 | 78.50 154 | 86.21 246 | 62.36 151 | 94.52 107 | 65.36 231 | 92.05 78 | 89.77 222 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 109 | 81.23 110 | 83.57 146 | 91.89 73 | 63.43 231 | 89.84 76 | 81.85 310 | 77.04 58 | 83.21 91 | 93.10 67 | 52.26 247 | 93.43 157 | 71.98 170 | 89.95 108 | 93.85 58 |
|
| hse-mvs2 | | | 81.72 110 | 80.94 116 | 84.07 125 | 88.72 157 | 67.68 138 | 85.87 207 | 87.26 230 | 76.02 84 | 84.67 65 | 88.22 190 | 61.54 163 | 93.48 153 | 82.71 70 | 73.44 327 | 91.06 163 |
|
| GeoE | | | 81.71 111 | 81.01 115 | 83.80 141 | 89.51 121 | 64.45 209 | 88.97 107 | 88.73 200 | 71.27 176 | 78.63 151 | 89.76 143 | 66.32 108 | 93.20 168 | 69.89 190 | 86.02 160 | 93.74 64 |
|
| xiu_mvs_v2_base | | | 81.69 112 | 81.05 113 | 83.60 144 | 89.15 140 | 68.03 132 | 84.46 241 | 90.02 151 | 70.67 188 | 81.30 118 | 86.53 240 | 63.17 138 | 94.19 120 | 75.60 138 | 88.54 126 | 88.57 261 |
|
| PS-MVSNAJ | | | 81.69 112 | 81.02 114 | 83.70 143 | 89.51 121 | 68.21 127 | 84.28 247 | 90.09 150 | 70.79 185 | 81.26 119 | 85.62 260 | 63.15 139 | 94.29 112 | 75.62 137 | 88.87 120 | 88.59 260 |
|
| mvsmamba | | | 81.69 112 | 80.74 118 | 84.56 100 | 87.45 207 | 66.72 159 | 91.26 48 | 85.89 253 | 74.66 110 | 78.23 161 | 90.56 128 | 54.33 228 | 94.91 90 | 80.73 89 | 83.54 199 | 92.04 137 |
|
| PAPR | | | 81.66 115 | 80.89 117 | 83.99 135 | 90.27 98 | 64.00 216 | 86.76 183 | 91.77 102 | 68.84 236 | 77.13 190 | 89.50 150 | 67.63 94 | 94.88 95 | 67.55 212 | 88.52 127 | 93.09 97 |
|
| iter_conf05_11 | | | 81.63 116 | 80.44 126 | 85.20 78 | 89.46 124 | 66.20 167 | 86.21 197 | 86.97 236 | 71.53 171 | 83.35 90 | 88.53 180 | 43.22 334 | 95.94 53 | 79.82 96 | 94.85 43 | 93.47 80 |
|
| UniMVSNet (Re) | | | 81.60 117 | 81.11 112 | 83.09 164 | 88.38 170 | 64.41 210 | 87.60 156 | 93.02 42 | 78.42 32 | 78.56 153 | 88.16 191 | 69.78 72 | 93.26 161 | 69.58 194 | 76.49 281 | 91.60 143 |
|
| FC-MVSNet-test | | | 81.52 118 | 82.02 101 | 80.03 241 | 88.42 169 | 55.97 327 | 87.95 146 | 93.42 29 | 77.10 56 | 77.38 179 | 90.98 123 | 69.96 69 | 91.79 219 | 68.46 206 | 84.50 176 | 92.33 122 |
|
| VDDNet | | | 81.52 118 | 80.67 120 | 84.05 130 | 90.44 96 | 64.13 215 | 89.73 82 | 85.91 252 | 71.11 179 | 83.18 92 | 93.48 58 | 50.54 272 | 93.49 152 | 73.40 157 | 88.25 130 | 94.54 31 |
|
| ACMP | | 74.13 6 | 81.51 120 | 80.57 121 | 84.36 108 | 89.42 126 | 68.69 116 | 89.97 75 | 91.50 111 | 74.46 115 | 75.04 244 | 90.41 131 | 53.82 234 | 94.54 105 | 77.56 115 | 82.91 207 | 89.86 218 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 121 | 80.29 129 | 84.70 97 | 86.63 228 | 69.90 85 | 85.95 204 | 86.77 240 | 63.24 301 | 81.07 121 | 89.47 152 | 61.08 176 | 92.15 207 | 78.33 109 | 90.07 106 | 92.05 135 |
| jason: jason. |
| lupinMVS | | | 81.39 121 | 80.27 130 | 84.76 96 | 87.35 208 | 70.21 77 | 85.55 216 | 86.41 244 | 62.85 308 | 81.32 115 | 88.61 176 | 61.68 160 | 92.24 205 | 78.41 108 | 90.26 101 | 91.83 139 |
|
| test_yl | | | 81.17 123 | 80.47 124 | 83.24 157 | 89.13 141 | 63.62 222 | 86.21 197 | 89.95 154 | 72.43 157 | 81.78 111 | 89.61 147 | 57.50 206 | 93.58 146 | 70.75 179 | 86.90 144 | 92.52 115 |
|
| DCV-MVSNet | | | 81.17 123 | 80.47 124 | 83.24 157 | 89.13 141 | 63.62 222 | 86.21 197 | 89.95 154 | 72.43 157 | 81.78 111 | 89.61 147 | 57.50 206 | 93.58 146 | 70.75 179 | 86.90 144 | 92.52 115 |
|
| DU-MVS | | | 81.12 125 | 80.52 123 | 82.90 174 | 87.80 192 | 63.46 229 | 87.02 172 | 91.87 96 | 79.01 26 | 78.38 157 | 89.07 162 | 65.02 122 | 93.05 178 | 70.05 187 | 76.46 282 | 92.20 129 |
|
| PVSNet_Blended | | | 80.98 126 | 80.34 127 | 82.90 174 | 88.85 148 | 65.40 187 | 84.43 243 | 92.00 88 | 67.62 251 | 78.11 165 | 85.05 274 | 66.02 113 | 94.27 114 | 71.52 172 | 89.50 112 | 89.01 243 |
|
| FA-MVS(test-final) | | | 80.96 127 | 79.91 135 | 84.10 120 | 88.30 173 | 65.01 196 | 84.55 238 | 90.01 152 | 73.25 146 | 79.61 134 | 87.57 204 | 58.35 198 | 94.72 101 | 71.29 176 | 86.25 155 | 92.56 114 |
|
| QAPM | | | 80.88 128 | 79.50 144 | 85.03 84 | 88.01 185 | 68.97 104 | 91.59 43 | 92.00 88 | 66.63 265 | 75.15 240 | 92.16 88 | 57.70 203 | 95.45 65 | 63.52 243 | 88.76 123 | 90.66 178 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 129 | 80.31 128 | 82.42 189 | 87.85 189 | 62.33 247 | 87.74 154 | 91.33 113 | 80.55 9 | 77.99 169 | 89.86 140 | 65.23 120 | 92.62 188 | 67.05 219 | 75.24 309 | 92.30 124 |
|
| UGNet | | | 80.83 130 | 79.59 142 | 84.54 101 | 88.04 183 | 68.09 129 | 89.42 92 | 88.16 207 | 76.95 59 | 76.22 209 | 89.46 154 | 49.30 287 | 93.94 128 | 68.48 205 | 90.31 99 | 91.60 143 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 131 | 79.92 134 | 83.47 147 | 88.85 148 | 64.51 205 | 85.53 218 | 89.39 168 | 70.79 185 | 78.49 155 | 85.06 273 | 67.54 95 | 93.58 146 | 67.03 220 | 86.58 149 | 92.32 123 |
|
| XVG-OURS-SEG-HR | | | 80.81 131 | 79.76 138 | 83.96 137 | 85.60 241 | 68.78 108 | 83.54 261 | 90.50 135 | 70.66 191 | 76.71 196 | 91.66 96 | 60.69 181 | 91.26 241 | 76.94 122 | 81.58 223 | 91.83 139 |
|
| xiu_mvs_v1_base_debu | | | 80.80 133 | 79.72 139 | 84.03 132 | 87.35 208 | 70.19 79 | 85.56 213 | 88.77 195 | 69.06 230 | 81.83 107 | 88.16 191 | 50.91 266 | 92.85 184 | 78.29 110 | 87.56 134 | 89.06 238 |
|
| xiu_mvs_v1_base | | | 80.80 133 | 79.72 139 | 84.03 132 | 87.35 208 | 70.19 79 | 85.56 213 | 88.77 195 | 69.06 230 | 81.83 107 | 88.16 191 | 50.91 266 | 92.85 184 | 78.29 110 | 87.56 134 | 89.06 238 |
|
| xiu_mvs_v1_base_debi | | | 80.80 133 | 79.72 139 | 84.03 132 | 87.35 208 | 70.19 79 | 85.56 213 | 88.77 195 | 69.06 230 | 81.83 107 | 88.16 191 | 50.91 266 | 92.85 184 | 78.29 110 | 87.56 134 | 89.06 238 |
|
| bld_raw_dy_0_64 | | | 80.78 136 | 79.36 148 | 85.06 83 | 89.46 124 | 66.03 169 | 89.63 86 | 85.46 259 | 69.76 212 | 81.88 106 | 89.06 164 | 43.39 332 | 95.70 58 | 79.82 96 | 85.74 167 | 93.47 80 |
|
| ACMM | | 73.20 8 | 80.78 136 | 79.84 137 | 83.58 145 | 89.31 133 | 68.37 122 | 89.99 74 | 91.60 105 | 70.28 198 | 77.25 182 | 89.66 145 | 53.37 239 | 93.53 151 | 74.24 149 | 82.85 208 | 88.85 251 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 138 | 79.51 143 | 84.20 117 | 94.09 38 | 67.27 149 | 89.64 85 | 91.11 120 | 58.75 345 | 74.08 256 | 90.72 125 | 58.10 199 | 95.04 87 | 69.70 192 | 89.42 114 | 90.30 194 |
|
| CANet_DTU | | | 80.61 139 | 79.87 136 | 82.83 176 | 85.60 241 | 63.17 238 | 87.36 162 | 88.65 201 | 76.37 77 | 75.88 216 | 88.44 183 | 53.51 237 | 93.07 177 | 73.30 158 | 89.74 111 | 92.25 126 |
|
| VPA-MVSNet | | | 80.60 140 | 80.55 122 | 80.76 227 | 88.07 182 | 60.80 266 | 86.86 177 | 91.58 106 | 75.67 91 | 80.24 128 | 89.45 156 | 63.34 133 | 90.25 261 | 70.51 183 | 79.22 253 | 91.23 158 |
|
| PVSNet_BlendedMVS | | | 80.60 140 | 80.02 132 | 82.36 191 | 88.85 148 | 65.40 187 | 86.16 200 | 92.00 88 | 69.34 220 | 78.11 165 | 86.09 250 | 66.02 113 | 94.27 114 | 71.52 172 | 82.06 218 | 87.39 281 |
|
| AdaColmap |  | | 80.58 142 | 79.42 145 | 84.06 127 | 93.09 54 | 68.91 105 | 89.36 95 | 88.97 189 | 69.27 221 | 75.70 219 | 89.69 144 | 57.20 210 | 95.77 55 | 63.06 248 | 88.41 129 | 87.50 280 |
|
| EI-MVSNet | | | 80.52 143 | 79.98 133 | 82.12 192 | 84.28 266 | 63.19 237 | 86.41 191 | 88.95 190 | 74.18 121 | 78.69 148 | 87.54 207 | 66.62 102 | 92.43 195 | 72.57 167 | 80.57 236 | 90.74 176 |
|
| XVG-OURS | | | 80.41 144 | 79.23 152 | 83.97 136 | 85.64 240 | 69.02 102 | 83.03 272 | 90.39 137 | 71.09 180 | 77.63 175 | 91.49 104 | 54.62 227 | 91.35 239 | 75.71 135 | 83.47 200 | 91.54 146 |
|
| SDMVSNet | | | 80.38 145 | 80.18 131 | 80.99 221 | 89.03 146 | 64.94 198 | 80.45 304 | 89.40 167 | 75.19 99 | 76.61 200 | 89.98 138 | 60.61 184 | 87.69 302 | 76.83 125 | 83.55 197 | 90.33 192 |
|
| PCF-MVS | | 73.52 7 | 80.38 145 | 78.84 161 | 85.01 85 | 87.71 197 | 68.99 103 | 83.65 256 | 91.46 112 | 63.00 305 | 77.77 173 | 90.28 132 | 66.10 110 | 95.09 86 | 61.40 267 | 88.22 131 | 90.94 169 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 147 | 77.83 184 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 86 | 12.47 404 | 67.45 96 | 96.60 33 | 83.06 63 | 94.50 51 | 94.07 48 |
|
| RRT_MVS | | | 80.35 148 | 79.22 153 | 83.74 142 | 87.63 201 | 65.46 186 | 91.08 54 | 88.92 192 | 73.82 128 | 76.44 205 | 90.03 137 | 49.05 292 | 94.25 118 | 76.84 123 | 79.20 254 | 91.51 147 |
|
| test_djsdf | | | 80.30 149 | 79.32 149 | 83.27 155 | 83.98 274 | 65.37 190 | 90.50 62 | 90.38 138 | 68.55 240 | 76.19 210 | 88.70 172 | 56.44 214 | 93.46 155 | 78.98 101 | 80.14 242 | 90.97 168 |
|
| v2v482 | | | 80.23 150 | 79.29 150 | 83.05 167 | 83.62 280 | 64.14 214 | 87.04 171 | 89.97 153 | 73.61 134 | 78.18 164 | 87.22 215 | 61.10 175 | 93.82 136 | 76.11 130 | 76.78 279 | 91.18 159 |
|
| NR-MVSNet | | | 80.23 150 | 79.38 146 | 82.78 182 | 87.80 192 | 63.34 232 | 86.31 194 | 91.09 121 | 79.01 26 | 72.17 277 | 89.07 162 | 67.20 99 | 92.81 187 | 66.08 226 | 75.65 295 | 92.20 129 |
|
| Anonymous20240529 | | | 80.19 152 | 78.89 160 | 84.10 120 | 90.60 92 | 64.75 202 | 88.95 108 | 90.90 124 | 65.97 273 | 80.59 125 | 91.17 114 | 49.97 277 | 93.73 144 | 69.16 198 | 82.70 212 | 93.81 61 |
|
| IterMVS-LS | | | 80.06 153 | 79.38 146 | 82.11 193 | 85.89 236 | 63.20 236 | 86.79 180 | 89.34 169 | 74.19 120 | 75.45 226 | 86.72 227 | 66.62 102 | 92.39 197 | 72.58 166 | 76.86 276 | 90.75 175 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 154 | 78.57 166 | 84.42 106 | 85.13 252 | 68.74 111 | 88.77 115 | 88.10 209 | 74.99 103 | 74.97 245 | 83.49 302 | 57.27 209 | 93.36 158 | 73.53 154 | 80.88 230 | 91.18 159 |
|
| v1144 | | | 80.03 154 | 79.03 157 | 83.01 169 | 83.78 278 | 64.51 205 | 87.11 170 | 90.57 134 | 71.96 162 | 78.08 167 | 86.20 247 | 61.41 167 | 93.94 128 | 74.93 142 | 77.23 270 | 90.60 181 |
|
| iter_conf05 | | | 80.00 156 | 78.70 162 | 83.91 139 | 87.84 190 | 65.83 177 | 88.84 113 | 84.92 265 | 71.61 168 | 78.70 147 | 88.94 166 | 43.88 329 | 94.56 104 | 79.28 99 | 84.28 183 | 91.33 154 |
|
| v8 | | | 79.97 157 | 79.02 158 | 82.80 179 | 84.09 271 | 64.50 207 | 87.96 145 | 90.29 145 | 74.13 123 | 75.24 237 | 86.81 224 | 62.88 144 | 93.89 135 | 74.39 147 | 75.40 304 | 90.00 210 |
|
| OpenMVS |  | 72.83 10 | 79.77 158 | 78.33 173 | 84.09 123 | 85.17 248 | 69.91 84 | 90.57 60 | 90.97 122 | 66.70 259 | 72.17 277 | 91.91 91 | 54.70 225 | 93.96 125 | 61.81 264 | 90.95 92 | 88.41 264 |
|
| v10 | | | 79.74 159 | 78.67 163 | 82.97 172 | 84.06 272 | 64.95 197 | 87.88 151 | 90.62 131 | 73.11 148 | 75.11 241 | 86.56 238 | 61.46 166 | 94.05 124 | 73.68 152 | 75.55 297 | 89.90 216 |
|
| ECVR-MVS |  | | 79.61 160 | 79.26 151 | 80.67 229 | 90.08 103 | 54.69 341 | 87.89 150 | 77.44 349 | 74.88 105 | 80.27 127 | 92.79 79 | 48.96 294 | 92.45 194 | 68.55 204 | 92.50 73 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 160 | 78.44 169 | 83.14 162 | 89.38 129 | 65.93 174 | 84.95 228 | 87.15 233 | 73.56 136 | 78.19 163 | 89.79 142 | 56.67 213 | 93.36 158 | 59.53 281 | 86.74 147 | 90.13 200 |
|
| v1192 | | | 79.59 162 | 78.43 170 | 83.07 166 | 83.55 282 | 64.52 204 | 86.93 175 | 90.58 132 | 70.83 184 | 77.78 172 | 85.90 251 | 59.15 193 | 93.94 128 | 73.96 151 | 77.19 272 | 90.76 174 |
|
| ab-mvs | | | 79.51 163 | 78.97 159 | 81.14 217 | 88.46 166 | 60.91 264 | 83.84 253 | 89.24 176 | 70.36 195 | 79.03 141 | 88.87 169 | 63.23 137 | 90.21 262 | 65.12 233 | 82.57 213 | 92.28 125 |
|
| WR-MVS | | | 79.49 164 | 79.22 153 | 80.27 237 | 88.79 154 | 58.35 288 | 85.06 225 | 88.61 203 | 78.56 30 | 77.65 174 | 88.34 185 | 63.81 132 | 90.66 257 | 64.98 235 | 77.22 271 | 91.80 141 |
|
| v144192 | | | 79.47 165 | 78.37 171 | 82.78 182 | 83.35 285 | 63.96 217 | 86.96 173 | 90.36 141 | 69.99 204 | 77.50 176 | 85.67 258 | 60.66 182 | 93.77 140 | 74.27 148 | 76.58 280 | 90.62 179 |
|
| BH-untuned | | | 79.47 165 | 78.60 165 | 82.05 194 | 89.19 139 | 65.91 175 | 86.07 202 | 88.52 204 | 72.18 159 | 75.42 227 | 87.69 201 | 61.15 174 | 93.54 150 | 60.38 274 | 86.83 146 | 86.70 300 |
|
| test1111 | | | 79.43 167 | 79.18 155 | 80.15 239 | 89.99 108 | 53.31 354 | 87.33 164 | 77.05 352 | 75.04 102 | 80.23 129 | 92.77 81 | 48.97 293 | 92.33 202 | 68.87 201 | 92.40 75 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 168 | 79.11 156 | 80.34 235 | 84.45 265 | 57.97 295 | 82.59 274 | 87.62 222 | 67.40 255 | 76.17 213 | 88.56 179 | 68.47 87 | 89.59 273 | 70.65 182 | 86.05 159 | 93.47 80 |
|
| thisisatest0530 | | | 79.40 169 | 77.76 189 | 84.31 111 | 87.69 199 | 65.10 195 | 87.36 162 | 84.26 275 | 70.04 202 | 77.42 178 | 88.26 189 | 49.94 278 | 94.79 99 | 70.20 185 | 84.70 174 | 93.03 100 |
|
| tttt0517 | | | 79.40 169 | 77.91 181 | 83.90 140 | 88.10 180 | 63.84 219 | 88.37 132 | 84.05 277 | 71.45 173 | 76.78 194 | 89.12 161 | 49.93 280 | 94.89 94 | 70.18 186 | 83.18 205 | 92.96 104 |
|
| V42 | | | 79.38 171 | 78.24 175 | 82.83 176 | 81.10 331 | 65.50 185 | 85.55 216 | 89.82 156 | 71.57 170 | 78.21 162 | 86.12 249 | 60.66 182 | 93.18 171 | 75.64 136 | 75.46 301 | 89.81 221 |
|
| jajsoiax | | | 79.29 172 | 77.96 179 | 83.27 155 | 84.68 259 | 66.57 162 | 89.25 98 | 90.16 148 | 69.20 226 | 75.46 225 | 89.49 151 | 45.75 318 | 93.13 174 | 76.84 123 | 80.80 232 | 90.11 202 |
|
| v1921920 | | | 79.22 173 | 78.03 178 | 82.80 179 | 83.30 287 | 63.94 218 | 86.80 179 | 90.33 142 | 69.91 207 | 77.48 177 | 85.53 261 | 58.44 197 | 93.75 142 | 73.60 153 | 76.85 277 | 90.71 177 |
|
| AUN-MVS | | | 79.21 174 | 77.60 194 | 84.05 130 | 88.71 158 | 67.61 139 | 85.84 209 | 87.26 230 | 69.08 229 | 77.23 184 | 88.14 195 | 53.20 241 | 93.47 154 | 75.50 140 | 73.45 326 | 91.06 163 |
|
| TAPA-MVS | | 73.13 9 | 79.15 175 | 77.94 180 | 82.79 181 | 89.59 117 | 62.99 242 | 88.16 140 | 91.51 108 | 65.77 274 | 77.14 189 | 91.09 116 | 60.91 178 | 93.21 165 | 50.26 342 | 87.05 142 | 92.17 131 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 176 | 77.77 188 | 83.22 159 | 84.70 258 | 66.37 164 | 89.17 99 | 90.19 147 | 69.38 219 | 75.40 228 | 89.46 154 | 44.17 327 | 93.15 172 | 76.78 126 | 80.70 234 | 90.14 199 |
|
| UniMVSNet_ETH3D | | | 79.10 177 | 78.24 175 | 81.70 201 | 86.85 221 | 60.24 275 | 87.28 166 | 88.79 194 | 74.25 119 | 76.84 191 | 90.53 130 | 49.48 283 | 91.56 228 | 67.98 208 | 82.15 216 | 93.29 88 |
|
| CDS-MVSNet | | | 79.07 178 | 77.70 191 | 83.17 161 | 87.60 202 | 68.23 126 | 84.40 245 | 86.20 248 | 67.49 253 | 76.36 206 | 86.54 239 | 61.54 163 | 90.79 254 | 61.86 263 | 87.33 138 | 90.49 186 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 179 | 77.88 183 | 82.38 190 | 83.07 294 | 64.80 201 | 84.08 252 | 88.95 190 | 69.01 233 | 78.69 148 | 87.17 218 | 54.70 225 | 92.43 195 | 74.69 143 | 80.57 236 | 89.89 217 |
|
| v1240 | | | 78.99 180 | 77.78 187 | 82.64 185 | 83.21 289 | 63.54 226 | 86.62 186 | 90.30 144 | 69.74 215 | 77.33 180 | 85.68 257 | 57.04 211 | 93.76 141 | 73.13 161 | 76.92 274 | 90.62 179 |
|
| Anonymous20231211 | | | 78.97 181 | 77.69 192 | 82.81 178 | 90.54 94 | 64.29 212 | 90.11 73 | 91.51 108 | 65.01 283 | 76.16 214 | 88.13 196 | 50.56 271 | 93.03 181 | 69.68 193 | 77.56 269 | 91.11 161 |
|
| v7n | | | 78.97 181 | 77.58 195 | 83.14 162 | 83.45 284 | 65.51 184 | 88.32 134 | 91.21 115 | 73.69 132 | 72.41 274 | 86.32 245 | 57.93 200 | 93.81 137 | 69.18 197 | 75.65 295 | 90.11 202 |
|
| TAMVS | | | 78.89 183 | 77.51 196 | 83.03 168 | 87.80 192 | 67.79 136 | 84.72 232 | 85.05 263 | 67.63 250 | 76.75 195 | 87.70 200 | 62.25 153 | 90.82 253 | 58.53 292 | 87.13 141 | 90.49 186 |
|
| c3_l | | | 78.75 184 | 77.91 181 | 81.26 213 | 82.89 301 | 61.56 258 | 84.09 251 | 89.13 182 | 69.97 205 | 75.56 221 | 84.29 285 | 66.36 107 | 92.09 209 | 73.47 156 | 75.48 299 | 90.12 201 |
|
| tt0805 | | | 78.73 185 | 77.83 184 | 81.43 207 | 85.17 248 | 60.30 274 | 89.41 93 | 90.90 124 | 71.21 177 | 77.17 188 | 88.73 171 | 46.38 307 | 93.21 165 | 72.57 167 | 78.96 255 | 90.79 172 |
|
| v148 | | | 78.72 186 | 77.80 186 | 81.47 206 | 82.73 304 | 61.96 253 | 86.30 195 | 88.08 210 | 73.26 145 | 76.18 211 | 85.47 263 | 62.46 149 | 92.36 199 | 71.92 171 | 73.82 323 | 90.09 204 |
|
| VPNet | | | 78.69 187 | 78.66 164 | 78.76 264 | 88.31 172 | 55.72 330 | 84.45 242 | 86.63 242 | 76.79 64 | 78.26 160 | 90.55 129 | 59.30 192 | 89.70 272 | 66.63 221 | 77.05 273 | 90.88 170 |
|
| ET-MVSNet_ETH3D | | | 78.63 188 | 76.63 217 | 84.64 98 | 86.73 225 | 69.47 92 | 85.01 226 | 84.61 268 | 69.54 216 | 66.51 338 | 86.59 235 | 50.16 275 | 91.75 221 | 76.26 129 | 84.24 184 | 92.69 110 |
|
| anonymousdsp | | | 78.60 189 | 77.15 202 | 82.98 171 | 80.51 337 | 67.08 153 | 87.24 167 | 89.53 164 | 65.66 276 | 75.16 239 | 87.19 217 | 52.52 242 | 92.25 204 | 77.17 120 | 79.34 251 | 89.61 226 |
|
| miper_ehance_all_eth | | | 78.59 190 | 77.76 189 | 81.08 219 | 82.66 306 | 61.56 258 | 83.65 256 | 89.15 180 | 68.87 235 | 75.55 222 | 83.79 296 | 66.49 105 | 92.03 210 | 73.25 159 | 76.39 284 | 89.64 225 |
|
| WR-MVS_H | | | 78.51 191 | 78.49 167 | 78.56 268 | 88.02 184 | 56.38 321 | 88.43 127 | 92.67 62 | 77.14 54 | 73.89 257 | 87.55 206 | 66.25 109 | 89.24 279 | 58.92 287 | 73.55 325 | 90.06 208 |
|
| GBi-Net | | | 78.40 192 | 77.40 197 | 81.40 209 | 87.60 202 | 63.01 239 | 88.39 129 | 89.28 171 | 71.63 165 | 75.34 230 | 87.28 211 | 54.80 221 | 91.11 244 | 62.72 250 | 79.57 246 | 90.09 204 |
|
| test1 | | | 78.40 192 | 77.40 197 | 81.40 209 | 87.60 202 | 63.01 239 | 88.39 129 | 89.28 171 | 71.63 165 | 75.34 230 | 87.28 211 | 54.80 221 | 91.11 244 | 62.72 250 | 79.57 246 | 90.09 204 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 194 | 78.45 168 | 78.07 278 | 88.64 160 | 51.78 363 | 86.70 184 | 79.63 334 | 74.14 122 | 75.11 241 | 90.83 124 | 61.29 171 | 89.75 270 | 58.10 296 | 91.60 83 | 92.69 110 |
|
| Anonymous202405211 | | | 78.25 195 | 77.01 204 | 81.99 196 | 91.03 82 | 60.67 268 | 84.77 231 | 83.90 279 | 70.65 192 | 80.00 131 | 91.20 112 | 41.08 348 | 91.43 237 | 65.21 232 | 85.26 168 | 93.85 58 |
|
| CP-MVSNet | | | 78.22 196 | 78.34 172 | 77.84 280 | 87.83 191 | 54.54 343 | 87.94 147 | 91.17 117 | 77.65 38 | 73.48 261 | 88.49 181 | 62.24 154 | 88.43 293 | 62.19 258 | 74.07 318 | 90.55 183 |
|
| BH-w/o | | | 78.21 197 | 77.33 200 | 80.84 225 | 88.81 152 | 65.13 194 | 84.87 229 | 87.85 218 | 69.75 213 | 74.52 252 | 84.74 278 | 61.34 169 | 93.11 175 | 58.24 295 | 85.84 163 | 84.27 335 |
|
| FMVSNet2 | | | 78.20 198 | 77.21 201 | 81.20 215 | 87.60 202 | 62.89 243 | 87.47 160 | 89.02 185 | 71.63 165 | 75.29 236 | 87.28 211 | 54.80 221 | 91.10 247 | 62.38 255 | 79.38 250 | 89.61 226 |
|
| MVS | | | 78.19 199 | 76.99 206 | 81.78 199 | 85.66 239 | 66.99 154 | 84.66 233 | 90.47 136 | 55.08 365 | 72.02 279 | 85.27 266 | 63.83 131 | 94.11 123 | 66.10 225 | 89.80 110 | 84.24 336 |
|
| Baseline_NR-MVSNet | | | 78.15 200 | 78.33 173 | 77.61 285 | 85.79 237 | 56.21 325 | 86.78 181 | 85.76 255 | 73.60 135 | 77.93 170 | 87.57 204 | 65.02 122 | 88.99 283 | 67.14 218 | 75.33 306 | 87.63 275 |
|
| CNLPA | | | 78.08 201 | 76.79 211 | 81.97 197 | 90.40 97 | 71.07 62 | 87.59 157 | 84.55 269 | 66.03 272 | 72.38 275 | 89.64 146 | 57.56 205 | 86.04 313 | 59.61 280 | 83.35 202 | 88.79 254 |
|
| cl22 | | | 78.07 202 | 77.01 204 | 81.23 214 | 82.37 313 | 61.83 255 | 83.55 260 | 87.98 212 | 68.96 234 | 75.06 243 | 83.87 292 | 61.40 168 | 91.88 217 | 73.53 154 | 76.39 284 | 89.98 213 |
|
| PLC |  | 70.83 11 | 78.05 203 | 76.37 222 | 83.08 165 | 91.88 74 | 67.80 135 | 88.19 138 | 89.46 166 | 64.33 291 | 69.87 302 | 88.38 184 | 53.66 235 | 93.58 146 | 58.86 288 | 82.73 210 | 87.86 271 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 204 | 76.49 218 | 82.62 186 | 83.16 293 | 66.96 157 | 86.94 174 | 87.45 227 | 72.45 154 | 71.49 284 | 84.17 289 | 54.79 224 | 91.58 226 | 67.61 211 | 80.31 239 | 89.30 234 |
|
| PS-CasMVS | | | 78.01 205 | 78.09 177 | 77.77 282 | 87.71 197 | 54.39 345 | 88.02 143 | 91.22 114 | 77.50 46 | 73.26 263 | 88.64 175 | 60.73 179 | 88.41 294 | 61.88 262 | 73.88 322 | 90.53 184 |
|
| HY-MVS | | 69.67 12 | 77.95 206 | 77.15 202 | 80.36 234 | 87.57 206 | 60.21 276 | 83.37 263 | 87.78 220 | 66.11 269 | 75.37 229 | 87.06 222 | 63.27 135 | 90.48 259 | 61.38 268 | 82.43 214 | 90.40 190 |
|
| eth_miper_zixun_eth | | | 77.92 207 | 76.69 215 | 81.61 204 | 83.00 297 | 61.98 252 | 83.15 266 | 89.20 178 | 69.52 217 | 74.86 247 | 84.35 284 | 61.76 159 | 92.56 191 | 71.50 174 | 72.89 331 | 90.28 195 |
|
| FMVSNet3 | | | 77.88 208 | 76.85 209 | 80.97 223 | 86.84 222 | 62.36 246 | 86.52 189 | 88.77 195 | 71.13 178 | 75.34 230 | 86.66 233 | 54.07 232 | 91.10 247 | 62.72 250 | 79.57 246 | 89.45 230 |
|
| miper_enhance_ethall | | | 77.87 209 | 76.86 208 | 80.92 224 | 81.65 320 | 61.38 260 | 82.68 273 | 88.98 187 | 65.52 278 | 75.47 223 | 82.30 319 | 65.76 117 | 92.00 212 | 72.95 162 | 76.39 284 | 89.39 231 |
|
| FE-MVS | | | 77.78 210 | 75.68 227 | 84.08 124 | 88.09 181 | 66.00 172 | 83.13 267 | 87.79 219 | 68.42 244 | 78.01 168 | 85.23 268 | 45.50 320 | 95.12 80 | 59.11 285 | 85.83 164 | 91.11 161 |
|
| PEN-MVS | | | 77.73 211 | 77.69 192 | 77.84 280 | 87.07 219 | 53.91 348 | 87.91 149 | 91.18 116 | 77.56 43 | 73.14 265 | 88.82 170 | 61.23 172 | 89.17 280 | 59.95 277 | 72.37 333 | 90.43 188 |
|
| cl____ | | | 77.72 212 | 76.76 212 | 80.58 230 | 82.49 310 | 60.48 271 | 83.09 268 | 87.87 216 | 69.22 224 | 74.38 254 | 85.22 269 | 62.10 156 | 91.53 231 | 71.09 177 | 75.41 303 | 89.73 224 |
|
| DIV-MVS_self_test | | | 77.72 212 | 76.76 212 | 80.58 230 | 82.48 311 | 60.48 271 | 83.09 268 | 87.86 217 | 69.22 224 | 74.38 254 | 85.24 267 | 62.10 156 | 91.53 231 | 71.09 177 | 75.40 304 | 89.74 223 |
|
| sd_testset | | | 77.70 214 | 77.40 197 | 78.60 267 | 89.03 146 | 60.02 277 | 79.00 322 | 85.83 254 | 75.19 99 | 76.61 200 | 89.98 138 | 54.81 220 | 85.46 320 | 62.63 254 | 83.55 197 | 90.33 192 |
|
| PAPM | | | 77.68 215 | 76.40 221 | 81.51 205 | 87.29 215 | 61.85 254 | 83.78 254 | 89.59 163 | 64.74 285 | 71.23 285 | 88.70 172 | 62.59 146 | 93.66 145 | 52.66 327 | 87.03 143 | 89.01 243 |
|
| CHOSEN 1792x2688 | | | 77.63 216 | 75.69 226 | 83.44 148 | 89.98 109 | 68.58 119 | 78.70 326 | 87.50 225 | 56.38 360 | 75.80 218 | 86.84 223 | 58.67 195 | 91.40 238 | 61.58 266 | 85.75 165 | 90.34 191 |
|
| HyFIR lowres test | | | 77.53 217 | 75.40 234 | 83.94 138 | 89.59 117 | 66.62 160 | 80.36 305 | 88.64 202 | 56.29 361 | 76.45 202 | 85.17 270 | 57.64 204 | 93.28 160 | 61.34 269 | 83.10 206 | 91.91 138 |
|
| FMVSNet1 | | | 77.44 218 | 76.12 224 | 81.40 209 | 86.81 223 | 63.01 239 | 88.39 129 | 89.28 171 | 70.49 194 | 74.39 253 | 87.28 211 | 49.06 291 | 91.11 244 | 60.91 271 | 78.52 258 | 90.09 204 |
|
| TR-MVS | | | 77.44 218 | 76.18 223 | 81.20 215 | 88.24 174 | 63.24 234 | 84.61 236 | 86.40 245 | 67.55 252 | 77.81 171 | 86.48 241 | 54.10 231 | 93.15 172 | 57.75 299 | 82.72 211 | 87.20 286 |
|
| 1112_ss | | | 77.40 220 | 76.43 220 | 80.32 236 | 89.11 145 | 60.41 273 | 83.65 256 | 87.72 221 | 62.13 318 | 73.05 266 | 86.72 227 | 62.58 147 | 89.97 266 | 62.11 261 | 80.80 232 | 90.59 182 |
|
| thisisatest0515 | | | 77.33 221 | 75.38 235 | 83.18 160 | 85.27 247 | 63.80 220 | 82.11 279 | 83.27 289 | 65.06 281 | 75.91 215 | 83.84 294 | 49.54 282 | 94.27 114 | 67.24 216 | 86.19 156 | 91.48 151 |
|
| test2506 | | | 77.30 222 | 76.49 218 | 79.74 247 | 90.08 103 | 52.02 357 | 87.86 152 | 63.10 392 | 74.88 105 | 80.16 130 | 92.79 79 | 38.29 361 | 92.35 200 | 68.74 203 | 92.50 73 | 94.86 17 |
|
| pm-mvs1 | | | 77.25 223 | 76.68 216 | 78.93 262 | 84.22 268 | 58.62 287 | 86.41 191 | 88.36 206 | 71.37 174 | 73.31 262 | 88.01 197 | 61.22 173 | 89.15 281 | 64.24 241 | 73.01 330 | 89.03 242 |
|
| LCM-MVSNet-Re | | | 77.05 224 | 76.94 207 | 77.36 288 | 87.20 216 | 51.60 364 | 80.06 308 | 80.46 324 | 75.20 98 | 67.69 320 | 86.72 227 | 62.48 148 | 88.98 284 | 63.44 245 | 89.25 115 | 91.51 147 |
|
| DTE-MVSNet | | | 76.99 225 | 76.80 210 | 77.54 287 | 86.24 231 | 53.06 356 | 87.52 158 | 90.66 130 | 77.08 57 | 72.50 272 | 88.67 174 | 60.48 186 | 89.52 274 | 57.33 303 | 70.74 344 | 90.05 209 |
|
| baseline1 | | | 76.98 226 | 76.75 214 | 77.66 283 | 88.13 178 | 55.66 331 | 85.12 224 | 81.89 308 | 73.04 150 | 76.79 193 | 88.90 167 | 62.43 150 | 87.78 301 | 63.30 247 | 71.18 342 | 89.55 228 |
|
| LS3D | | | 76.95 227 | 74.82 242 | 83.37 152 | 90.45 95 | 67.36 146 | 89.15 103 | 86.94 237 | 61.87 320 | 69.52 305 | 90.61 127 | 51.71 260 | 94.53 106 | 46.38 363 | 86.71 148 | 88.21 266 |
|
| GA-MVS | | | 76.87 228 | 75.17 239 | 81.97 197 | 82.75 303 | 62.58 244 | 81.44 288 | 86.35 247 | 72.16 161 | 74.74 248 | 82.89 311 | 46.20 312 | 92.02 211 | 68.85 202 | 81.09 228 | 91.30 157 |
|
| DP-MVS | | | 76.78 229 | 74.57 244 | 83.42 149 | 93.29 48 | 69.46 94 | 88.55 125 | 83.70 281 | 63.98 297 | 70.20 293 | 88.89 168 | 54.01 233 | 94.80 98 | 46.66 360 | 81.88 221 | 86.01 312 |
|
| cascas | | | 76.72 230 | 74.64 243 | 82.99 170 | 85.78 238 | 65.88 176 | 82.33 276 | 89.21 177 | 60.85 326 | 72.74 268 | 81.02 330 | 47.28 301 | 93.75 142 | 67.48 213 | 85.02 169 | 89.34 233 |
|
| testing91 | | | 76.54 231 | 75.66 229 | 79.18 259 | 88.43 168 | 55.89 328 | 81.08 291 | 83.00 296 | 73.76 131 | 75.34 230 | 84.29 285 | 46.20 312 | 90.07 264 | 64.33 239 | 84.50 176 | 91.58 145 |
|
| 1314 | | | 76.53 232 | 75.30 238 | 80.21 238 | 83.93 275 | 62.32 248 | 84.66 233 | 88.81 193 | 60.23 330 | 70.16 296 | 84.07 291 | 55.30 218 | 90.73 256 | 67.37 214 | 83.21 204 | 87.59 278 |
|
| thres100view900 | | | 76.50 233 | 75.55 231 | 79.33 255 | 89.52 120 | 56.99 310 | 85.83 210 | 83.23 290 | 73.94 125 | 76.32 207 | 87.12 219 | 51.89 257 | 91.95 213 | 48.33 351 | 83.75 191 | 89.07 236 |
|
| thres600view7 | | | 76.50 233 | 75.44 232 | 79.68 249 | 89.40 127 | 57.16 307 | 85.53 218 | 83.23 290 | 73.79 130 | 76.26 208 | 87.09 220 | 51.89 257 | 91.89 216 | 48.05 356 | 83.72 194 | 90.00 210 |
|
| thres400 | | | 76.50 233 | 75.37 236 | 79.86 244 | 89.13 141 | 57.65 301 | 85.17 221 | 83.60 282 | 73.41 141 | 76.45 202 | 86.39 243 | 52.12 249 | 91.95 213 | 48.33 351 | 83.75 191 | 90.00 210 |
|
| tfpn200view9 | | | 76.42 236 | 75.37 236 | 79.55 254 | 89.13 141 | 57.65 301 | 85.17 221 | 83.60 282 | 73.41 141 | 76.45 202 | 86.39 243 | 52.12 249 | 91.95 213 | 48.33 351 | 83.75 191 | 89.07 236 |
|
| Test_1112_low_res | | | 76.40 237 | 75.44 232 | 79.27 256 | 89.28 135 | 58.09 291 | 81.69 283 | 87.07 234 | 59.53 337 | 72.48 273 | 86.67 232 | 61.30 170 | 89.33 277 | 60.81 273 | 80.15 241 | 90.41 189 |
|
| F-COLMAP | | | 76.38 238 | 74.33 249 | 82.50 188 | 89.28 135 | 66.95 158 | 88.41 128 | 89.03 184 | 64.05 295 | 66.83 330 | 88.61 176 | 46.78 305 | 92.89 183 | 57.48 300 | 78.55 257 | 87.67 274 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 239 | 74.54 246 | 81.41 208 | 88.60 161 | 64.38 211 | 79.24 318 | 89.12 183 | 70.76 187 | 69.79 304 | 87.86 198 | 49.09 290 | 93.20 168 | 56.21 313 | 80.16 240 | 86.65 301 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 240 | 74.46 248 | 81.13 218 | 85.37 246 | 69.79 86 | 84.42 244 | 87.95 214 | 65.03 282 | 67.46 323 | 85.33 265 | 53.28 240 | 91.73 223 | 58.01 297 | 83.27 203 | 81.85 360 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 241 | 74.27 250 | 81.62 202 | 83.20 290 | 64.67 203 | 83.60 259 | 89.75 159 | 69.75 213 | 71.85 280 | 87.09 220 | 32.78 373 | 92.11 208 | 69.99 189 | 80.43 238 | 88.09 267 |
|
| testing99 | | | 76.09 242 | 75.12 240 | 79.00 260 | 88.16 176 | 55.50 333 | 80.79 295 | 81.40 314 | 73.30 144 | 75.17 238 | 84.27 287 | 44.48 325 | 90.02 265 | 64.28 240 | 84.22 185 | 91.48 151 |
|
| ACMH+ | | 68.96 14 | 76.01 243 | 74.01 251 | 82.03 195 | 88.60 161 | 65.31 191 | 88.86 111 | 87.55 223 | 70.25 200 | 67.75 319 | 87.47 209 | 41.27 346 | 93.19 170 | 58.37 293 | 75.94 292 | 87.60 276 |
|
| ACMH | | 67.68 16 | 75.89 244 | 73.93 253 | 81.77 200 | 88.71 158 | 66.61 161 | 88.62 123 | 89.01 186 | 69.81 208 | 66.78 331 | 86.70 231 | 41.95 345 | 91.51 233 | 55.64 314 | 78.14 264 | 87.17 287 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 245 | 73.36 260 | 83.31 153 | 84.76 257 | 66.03 169 | 83.38 262 | 85.06 262 | 70.21 201 | 69.40 306 | 81.05 329 | 45.76 317 | 94.66 103 | 65.10 234 | 75.49 298 | 89.25 235 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 246 | 73.83 256 | 81.30 212 | 83.26 288 | 61.79 256 | 82.57 275 | 80.65 320 | 66.81 256 | 66.88 329 | 83.42 303 | 57.86 202 | 92.19 206 | 63.47 244 | 79.57 246 | 89.91 215 |
|
| WTY-MVS | | | 75.65 247 | 75.68 227 | 75.57 304 | 86.40 230 | 56.82 312 | 77.92 336 | 82.40 304 | 65.10 280 | 76.18 211 | 87.72 199 | 63.13 142 | 80.90 349 | 60.31 275 | 81.96 219 | 89.00 245 |
|
| thres200 | | | 75.55 248 | 74.47 247 | 78.82 263 | 87.78 195 | 57.85 298 | 83.07 270 | 83.51 285 | 72.44 156 | 75.84 217 | 84.42 280 | 52.08 252 | 91.75 221 | 47.41 358 | 83.64 196 | 86.86 296 |
|
| test_vis1_n_1920 | | | 75.52 249 | 75.78 225 | 74.75 314 | 79.84 345 | 57.44 305 | 83.26 264 | 85.52 257 | 62.83 309 | 79.34 139 | 86.17 248 | 45.10 322 | 79.71 353 | 78.75 103 | 81.21 227 | 87.10 293 |
|
| EPNet_dtu | | | 75.46 250 | 74.86 241 | 77.23 291 | 82.57 308 | 54.60 342 | 86.89 176 | 83.09 293 | 71.64 164 | 66.25 340 | 85.86 253 | 55.99 215 | 88.04 298 | 54.92 316 | 86.55 150 | 89.05 241 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 251 | 73.87 255 | 80.11 240 | 82.69 305 | 64.85 200 | 81.57 285 | 83.47 286 | 69.16 227 | 70.49 290 | 84.15 290 | 51.95 255 | 88.15 296 | 69.23 196 | 72.14 336 | 87.34 283 |
|
| XXY-MVS | | | 75.41 252 | 75.56 230 | 74.96 310 | 83.59 281 | 57.82 299 | 80.59 301 | 83.87 280 | 66.54 266 | 74.93 246 | 88.31 186 | 63.24 136 | 80.09 352 | 62.16 259 | 76.85 277 | 86.97 294 |
|
| TransMVSNet (Re) | | | 75.39 253 | 74.56 245 | 77.86 279 | 85.50 243 | 57.10 309 | 86.78 181 | 86.09 251 | 72.17 160 | 71.53 283 | 87.34 210 | 63.01 143 | 89.31 278 | 56.84 308 | 61.83 370 | 87.17 287 |
|
| CostFormer | | | 75.24 254 | 73.90 254 | 79.27 256 | 82.65 307 | 58.27 290 | 80.80 294 | 82.73 302 | 61.57 321 | 75.33 234 | 83.13 307 | 55.52 216 | 91.07 250 | 64.98 235 | 78.34 263 | 88.45 262 |
|
| testing11 | | | 75.14 255 | 74.01 251 | 78.53 270 | 88.16 176 | 56.38 321 | 80.74 298 | 80.42 325 | 70.67 188 | 72.69 271 | 83.72 298 | 43.61 331 | 89.86 267 | 62.29 257 | 83.76 190 | 89.36 232 |
|
| D2MVS | | | 74.82 256 | 73.21 261 | 79.64 251 | 79.81 346 | 62.56 245 | 80.34 306 | 87.35 228 | 64.37 290 | 68.86 311 | 82.66 315 | 46.37 308 | 90.10 263 | 67.91 209 | 81.24 226 | 86.25 305 |
|
| pmmvs6 | | | 74.69 257 | 73.39 259 | 78.61 266 | 81.38 326 | 57.48 304 | 86.64 185 | 87.95 214 | 64.99 284 | 70.18 294 | 86.61 234 | 50.43 273 | 89.52 274 | 62.12 260 | 70.18 346 | 88.83 252 |
|
| tfpnnormal | | | 74.39 258 | 73.16 262 | 78.08 277 | 86.10 235 | 58.05 292 | 84.65 235 | 87.53 224 | 70.32 197 | 71.22 286 | 85.63 259 | 54.97 219 | 89.86 267 | 43.03 374 | 75.02 311 | 86.32 304 |
|
| IterMVS | | | 74.29 259 | 72.94 264 | 78.35 273 | 81.53 323 | 63.49 228 | 81.58 284 | 82.49 303 | 68.06 248 | 69.99 299 | 83.69 299 | 51.66 261 | 85.54 318 | 65.85 228 | 71.64 339 | 86.01 312 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 260 | 72.42 269 | 79.80 246 | 83.76 279 | 59.59 282 | 85.92 206 | 86.64 241 | 66.39 267 | 66.96 328 | 87.58 203 | 39.46 354 | 91.60 225 | 65.76 229 | 69.27 349 | 88.22 265 |
|
| SCA | | | 74.22 261 | 72.33 270 | 79.91 243 | 84.05 273 | 62.17 250 | 79.96 311 | 79.29 337 | 66.30 268 | 72.38 275 | 80.13 339 | 51.95 255 | 88.60 291 | 59.25 283 | 77.67 268 | 88.96 247 |
|
| miper_lstm_enhance | | | 74.11 262 | 73.11 263 | 77.13 292 | 80.11 341 | 59.62 281 | 72.23 363 | 86.92 238 | 66.76 258 | 70.40 291 | 82.92 310 | 56.93 212 | 82.92 338 | 69.06 199 | 72.63 332 | 88.87 250 |
|
| testing222 | | | 74.04 263 | 72.66 266 | 78.19 275 | 87.89 187 | 55.36 334 | 81.06 292 | 79.20 338 | 71.30 175 | 74.65 250 | 83.57 301 | 39.11 357 | 88.67 290 | 51.43 334 | 85.75 165 | 90.53 184 |
|
| EG-PatchMatch MVS | | | 74.04 263 | 71.82 273 | 80.71 228 | 84.92 255 | 67.42 143 | 85.86 208 | 88.08 210 | 66.04 271 | 64.22 352 | 83.85 293 | 35.10 370 | 92.56 191 | 57.44 301 | 80.83 231 | 82.16 359 |
|
| pmmvs4 | | | 74.03 265 | 71.91 272 | 80.39 233 | 81.96 316 | 68.32 123 | 81.45 287 | 82.14 306 | 59.32 338 | 69.87 302 | 85.13 271 | 52.40 245 | 88.13 297 | 60.21 276 | 74.74 314 | 84.73 332 |
|
| MS-PatchMatch | | | 73.83 266 | 72.67 265 | 77.30 290 | 83.87 276 | 66.02 171 | 81.82 280 | 84.66 267 | 61.37 324 | 68.61 314 | 82.82 313 | 47.29 300 | 88.21 295 | 59.27 282 | 84.32 182 | 77.68 374 |
|
| test_cas_vis1_n_1920 | | | 73.76 267 | 73.74 257 | 73.81 322 | 75.90 366 | 59.77 279 | 80.51 302 | 82.40 304 | 58.30 347 | 81.62 113 | 85.69 256 | 44.35 326 | 76.41 371 | 76.29 128 | 78.61 256 | 85.23 323 |
|
| sss | | | 73.60 268 | 73.64 258 | 73.51 324 | 82.80 302 | 55.01 339 | 76.12 343 | 81.69 311 | 62.47 314 | 74.68 249 | 85.85 254 | 57.32 208 | 78.11 360 | 60.86 272 | 80.93 229 | 87.39 281 |
|
| RPMNet | | | 73.51 269 | 70.49 289 | 82.58 187 | 81.32 329 | 65.19 192 | 75.92 345 | 92.27 77 | 57.60 353 | 72.73 269 | 76.45 366 | 52.30 246 | 95.43 67 | 48.14 355 | 77.71 266 | 87.11 291 |
|
| SixPastTwentyTwo | | | 73.37 270 | 71.26 282 | 79.70 248 | 85.08 253 | 57.89 297 | 85.57 212 | 83.56 284 | 71.03 182 | 65.66 342 | 85.88 252 | 42.10 343 | 92.57 190 | 59.11 285 | 63.34 368 | 88.65 259 |
|
| CR-MVSNet | | | 73.37 270 | 71.27 281 | 79.67 250 | 81.32 329 | 65.19 192 | 75.92 345 | 80.30 327 | 59.92 333 | 72.73 269 | 81.19 327 | 52.50 243 | 86.69 307 | 59.84 278 | 77.71 266 | 87.11 291 |
|
| MSDG | | | 73.36 272 | 70.99 284 | 80.49 232 | 84.51 264 | 65.80 179 | 80.71 299 | 86.13 250 | 65.70 275 | 65.46 343 | 83.74 297 | 44.60 323 | 90.91 252 | 51.13 335 | 76.89 275 | 84.74 331 |
|
| tpm2 | | | 73.26 273 | 71.46 277 | 78.63 265 | 83.34 286 | 56.71 315 | 80.65 300 | 80.40 326 | 56.63 359 | 73.55 260 | 82.02 324 | 51.80 259 | 91.24 242 | 56.35 312 | 78.42 261 | 87.95 268 |
|
| RPSCF | | | 73.23 274 | 71.46 277 | 78.54 269 | 82.50 309 | 59.85 278 | 82.18 278 | 82.84 301 | 58.96 342 | 71.15 287 | 89.41 158 | 45.48 321 | 84.77 326 | 58.82 289 | 71.83 338 | 91.02 167 |
|
| PatchmatchNet |  | | 73.12 275 | 71.33 280 | 78.49 272 | 83.18 291 | 60.85 265 | 79.63 313 | 78.57 341 | 64.13 292 | 71.73 281 | 79.81 344 | 51.20 264 | 85.97 314 | 57.40 302 | 76.36 289 | 88.66 258 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| COLMAP_ROB |  | 66.92 17 | 73.01 276 | 70.41 291 | 80.81 226 | 87.13 218 | 65.63 182 | 88.30 135 | 84.19 276 | 62.96 306 | 63.80 356 | 87.69 201 | 38.04 362 | 92.56 191 | 46.66 360 | 74.91 312 | 84.24 336 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 277 | 72.58 267 | 74.25 318 | 84.28 266 | 50.85 369 | 86.41 191 | 83.45 287 | 44.56 382 | 73.23 264 | 87.54 207 | 49.38 285 | 85.70 315 | 65.90 227 | 78.44 260 | 86.19 307 |
|
| test-LLR | | | 72.94 278 | 72.43 268 | 74.48 315 | 81.35 327 | 58.04 293 | 78.38 329 | 77.46 347 | 66.66 260 | 69.95 300 | 79.00 350 | 48.06 297 | 79.24 354 | 66.13 223 | 84.83 171 | 86.15 308 |
|
| test_0402 | | | 72.79 279 | 70.44 290 | 79.84 245 | 88.13 178 | 65.99 173 | 85.93 205 | 84.29 273 | 65.57 277 | 67.40 325 | 85.49 262 | 46.92 304 | 92.61 189 | 35.88 386 | 74.38 317 | 80.94 365 |
|
| tpmrst | | | 72.39 280 | 72.13 271 | 73.18 328 | 80.54 336 | 49.91 373 | 79.91 312 | 79.08 339 | 63.11 303 | 71.69 282 | 79.95 341 | 55.32 217 | 82.77 339 | 65.66 230 | 73.89 321 | 86.87 295 |
|
| PatchMatch-RL | | | 72.38 281 | 70.90 285 | 76.80 295 | 88.60 161 | 67.38 145 | 79.53 314 | 76.17 358 | 62.75 311 | 69.36 307 | 82.00 325 | 45.51 319 | 84.89 325 | 53.62 322 | 80.58 235 | 78.12 373 |
|
| CL-MVSNet_self_test | | | 72.37 282 | 71.46 277 | 75.09 309 | 79.49 352 | 53.53 350 | 80.76 297 | 85.01 264 | 69.12 228 | 70.51 289 | 82.05 323 | 57.92 201 | 84.13 329 | 52.27 329 | 66.00 362 | 87.60 276 |
|
| tpm | | | 72.37 282 | 71.71 274 | 74.35 317 | 82.19 314 | 52.00 358 | 79.22 319 | 77.29 350 | 64.56 287 | 72.95 267 | 83.68 300 | 51.35 262 | 83.26 337 | 58.33 294 | 75.80 293 | 87.81 272 |
|
| ETVMVS | | | 72.25 284 | 71.05 283 | 75.84 300 | 87.77 196 | 51.91 360 | 79.39 316 | 74.98 361 | 69.26 222 | 73.71 258 | 82.95 309 | 40.82 350 | 86.14 312 | 46.17 364 | 84.43 181 | 89.47 229 |
|
| UWE-MVS | | | 72.13 285 | 71.49 276 | 74.03 320 | 86.66 227 | 47.70 377 | 81.40 289 | 76.89 354 | 63.60 300 | 75.59 220 | 84.22 288 | 39.94 353 | 85.62 317 | 48.98 348 | 86.13 158 | 88.77 255 |
|
| PVSNet | | 64.34 18 | 72.08 286 | 70.87 286 | 75.69 302 | 86.21 232 | 56.44 319 | 74.37 357 | 80.73 319 | 62.06 319 | 70.17 295 | 82.23 321 | 42.86 337 | 83.31 336 | 54.77 317 | 84.45 180 | 87.32 284 |
|
| WB-MVSnew | | | 71.96 287 | 71.65 275 | 72.89 329 | 84.67 262 | 51.88 361 | 82.29 277 | 77.57 346 | 62.31 315 | 73.67 259 | 83.00 308 | 53.49 238 | 81.10 348 | 45.75 367 | 82.13 217 | 85.70 317 |
|
| pmmvs5 | | | 71.55 288 | 70.20 294 | 75.61 303 | 77.83 359 | 56.39 320 | 81.74 282 | 80.89 316 | 57.76 351 | 67.46 323 | 84.49 279 | 49.26 288 | 85.32 322 | 57.08 305 | 75.29 307 | 85.11 327 |
|
| test-mter | | | 71.41 289 | 70.39 292 | 74.48 315 | 81.35 327 | 58.04 293 | 78.38 329 | 77.46 347 | 60.32 329 | 69.95 300 | 79.00 350 | 36.08 368 | 79.24 354 | 66.13 223 | 84.83 171 | 86.15 308 |
|
| K. test v3 | | | 71.19 290 | 68.51 302 | 79.21 258 | 83.04 296 | 57.78 300 | 84.35 246 | 76.91 353 | 72.90 153 | 62.99 359 | 82.86 312 | 39.27 355 | 91.09 249 | 61.65 265 | 52.66 386 | 88.75 256 |
|
| dmvs_re | | | 71.14 291 | 70.58 287 | 72.80 330 | 81.96 316 | 59.68 280 | 75.60 349 | 79.34 336 | 68.55 240 | 69.27 309 | 80.72 335 | 49.42 284 | 76.54 368 | 52.56 328 | 77.79 265 | 82.19 358 |
|
| tpmvs | | | 71.09 292 | 69.29 297 | 76.49 296 | 82.04 315 | 56.04 326 | 78.92 324 | 81.37 315 | 64.05 295 | 67.18 327 | 78.28 356 | 49.74 281 | 89.77 269 | 49.67 345 | 72.37 333 | 83.67 343 |
|
| AllTest | | | 70.96 293 | 68.09 308 | 79.58 252 | 85.15 250 | 63.62 222 | 84.58 237 | 79.83 331 | 62.31 315 | 60.32 367 | 86.73 225 | 32.02 374 | 88.96 286 | 50.28 340 | 71.57 340 | 86.15 308 |
|
| test_fmvs1 | | | 70.93 294 | 70.52 288 | 72.16 334 | 73.71 376 | 55.05 338 | 80.82 293 | 78.77 340 | 51.21 376 | 78.58 152 | 84.41 281 | 31.20 378 | 76.94 366 | 75.88 134 | 80.12 243 | 84.47 334 |
|
| test_fmvs1_n | | | 70.86 295 | 70.24 293 | 72.73 331 | 72.51 386 | 55.28 336 | 81.27 290 | 79.71 333 | 51.49 375 | 78.73 146 | 84.87 275 | 27.54 383 | 77.02 365 | 76.06 131 | 79.97 244 | 85.88 315 |
|
| Patchmtry | | | 70.74 296 | 69.16 299 | 75.49 306 | 80.72 333 | 54.07 347 | 74.94 356 | 80.30 327 | 58.34 346 | 70.01 297 | 81.19 327 | 52.50 243 | 86.54 308 | 53.37 324 | 71.09 343 | 85.87 316 |
|
| MIMVSNet | | | 70.69 297 | 69.30 296 | 74.88 311 | 84.52 263 | 56.35 323 | 75.87 347 | 79.42 335 | 64.59 286 | 67.76 318 | 82.41 317 | 41.10 347 | 81.54 345 | 46.64 362 | 81.34 224 | 86.75 299 |
|
| tpm cat1 | | | 70.57 298 | 68.31 304 | 77.35 289 | 82.41 312 | 57.95 296 | 78.08 333 | 80.22 329 | 52.04 371 | 68.54 315 | 77.66 361 | 52.00 254 | 87.84 300 | 51.77 330 | 72.07 337 | 86.25 305 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 299 | 68.19 305 | 77.65 284 | 80.26 338 | 59.41 284 | 85.01 226 | 82.96 298 | 58.76 344 | 65.43 344 | 82.33 318 | 37.63 364 | 91.23 243 | 45.34 370 | 76.03 291 | 82.32 356 |
|
| pmmvs-eth3d | | | 70.50 300 | 67.83 313 | 78.52 271 | 77.37 362 | 66.18 168 | 81.82 280 | 81.51 312 | 58.90 343 | 63.90 355 | 80.42 337 | 42.69 338 | 86.28 311 | 58.56 291 | 65.30 364 | 83.11 349 |
|
| USDC | | | 70.33 301 | 68.37 303 | 76.21 298 | 80.60 335 | 56.23 324 | 79.19 320 | 86.49 243 | 60.89 325 | 61.29 363 | 85.47 263 | 31.78 376 | 89.47 276 | 53.37 324 | 76.21 290 | 82.94 353 |
|
| Patchmatch-RL test | | | 70.24 302 | 67.78 315 | 77.61 285 | 77.43 361 | 59.57 283 | 71.16 366 | 70.33 375 | 62.94 307 | 68.65 313 | 72.77 378 | 50.62 270 | 85.49 319 | 69.58 194 | 66.58 359 | 87.77 273 |
|
| CMPMVS |  | 51.72 21 | 70.19 303 | 68.16 306 | 76.28 297 | 73.15 382 | 57.55 303 | 79.47 315 | 83.92 278 | 48.02 379 | 56.48 380 | 84.81 276 | 43.13 335 | 86.42 310 | 62.67 253 | 81.81 222 | 84.89 329 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 304 | 67.34 321 | 78.14 276 | 79.80 347 | 61.13 261 | 79.19 320 | 80.59 321 | 59.16 340 | 65.27 345 | 79.29 347 | 46.75 306 | 87.29 304 | 49.33 346 | 66.72 357 | 86.00 314 |
|
| gg-mvs-nofinetune | | | 69.95 305 | 67.96 309 | 75.94 299 | 83.07 294 | 54.51 344 | 77.23 340 | 70.29 376 | 63.11 303 | 70.32 292 | 62.33 387 | 43.62 330 | 88.69 289 | 53.88 321 | 87.76 133 | 84.62 333 |
|
| TESTMET0.1,1 | | | 69.89 306 | 69.00 300 | 72.55 332 | 79.27 355 | 56.85 311 | 78.38 329 | 74.71 365 | 57.64 352 | 68.09 317 | 77.19 363 | 37.75 363 | 76.70 367 | 63.92 242 | 84.09 186 | 84.10 339 |
|
| test_vis1_n | | | 69.85 307 | 69.21 298 | 71.77 336 | 72.66 385 | 55.27 337 | 81.48 286 | 76.21 357 | 52.03 372 | 75.30 235 | 83.20 306 | 28.97 381 | 76.22 373 | 74.60 144 | 78.41 262 | 83.81 342 |
|
| FMVSNet5 | | | 69.50 308 | 67.96 309 | 74.15 319 | 82.97 300 | 55.35 335 | 80.01 310 | 82.12 307 | 62.56 313 | 63.02 357 | 81.53 326 | 36.92 365 | 81.92 343 | 48.42 350 | 74.06 319 | 85.17 326 |
|
| PMMVS | | | 69.34 309 | 68.67 301 | 71.35 341 | 75.67 368 | 62.03 251 | 75.17 351 | 73.46 368 | 50.00 377 | 68.68 312 | 79.05 348 | 52.07 253 | 78.13 359 | 61.16 270 | 82.77 209 | 73.90 380 |
|
| our_test_3 | | | 69.14 310 | 67.00 323 | 75.57 304 | 79.80 347 | 58.80 285 | 77.96 334 | 77.81 344 | 59.55 336 | 62.90 360 | 78.25 357 | 47.43 299 | 83.97 330 | 51.71 331 | 67.58 356 | 83.93 341 |
|
| EPMVS | | | 69.02 311 | 68.16 306 | 71.59 337 | 79.61 350 | 49.80 375 | 77.40 338 | 66.93 384 | 62.82 310 | 70.01 297 | 79.05 348 | 45.79 316 | 77.86 362 | 56.58 310 | 75.26 308 | 87.13 290 |
|
| KD-MVS_self_test | | | 68.81 312 | 67.59 319 | 72.46 333 | 74.29 374 | 45.45 382 | 77.93 335 | 87.00 235 | 63.12 302 | 63.99 354 | 78.99 352 | 42.32 340 | 84.77 326 | 56.55 311 | 64.09 367 | 87.16 289 |
|
| Anonymous20240521 | | | 68.80 313 | 67.22 322 | 73.55 323 | 74.33 373 | 54.11 346 | 83.18 265 | 85.61 256 | 58.15 348 | 61.68 362 | 80.94 332 | 30.71 379 | 81.27 347 | 57.00 306 | 73.34 329 | 85.28 322 |
|
| Anonymous20231206 | | | 68.60 314 | 67.80 314 | 71.02 344 | 80.23 340 | 50.75 370 | 78.30 332 | 80.47 323 | 56.79 358 | 66.11 341 | 82.63 316 | 46.35 309 | 78.95 356 | 43.62 373 | 75.70 294 | 83.36 346 |
|
| MIMVSNet1 | | | 68.58 315 | 66.78 325 | 73.98 321 | 80.07 342 | 51.82 362 | 80.77 296 | 84.37 270 | 64.40 289 | 59.75 370 | 82.16 322 | 36.47 366 | 83.63 333 | 42.73 375 | 70.33 345 | 86.48 303 |
|
| testing3 | | | 68.56 316 | 67.67 317 | 71.22 343 | 87.33 213 | 42.87 391 | 83.06 271 | 71.54 373 | 70.36 195 | 69.08 310 | 84.38 282 | 30.33 380 | 85.69 316 | 37.50 385 | 75.45 302 | 85.09 328 |
|
| EU-MVSNet | | | 68.53 317 | 67.61 318 | 71.31 342 | 78.51 358 | 47.01 380 | 84.47 239 | 84.27 274 | 42.27 385 | 66.44 339 | 84.79 277 | 40.44 351 | 83.76 331 | 58.76 290 | 68.54 354 | 83.17 347 |
|
| PatchT | | | 68.46 318 | 67.85 311 | 70.29 347 | 80.70 334 | 43.93 389 | 72.47 362 | 74.88 362 | 60.15 331 | 70.55 288 | 76.57 365 | 49.94 278 | 81.59 344 | 50.58 336 | 74.83 313 | 85.34 321 |
|
| test_fmvs2 | | | 68.35 319 | 67.48 320 | 70.98 345 | 69.50 389 | 51.95 359 | 80.05 309 | 76.38 356 | 49.33 378 | 74.65 250 | 84.38 282 | 23.30 389 | 75.40 380 | 74.51 145 | 75.17 310 | 85.60 318 |
|
| Syy-MVS | | | 68.05 320 | 67.85 311 | 68.67 356 | 84.68 259 | 40.97 397 | 78.62 327 | 73.08 370 | 66.65 263 | 66.74 332 | 79.46 345 | 52.11 251 | 82.30 341 | 32.89 389 | 76.38 287 | 82.75 354 |
|
| test0.0.03 1 | | | 68.00 321 | 67.69 316 | 68.90 353 | 77.55 360 | 47.43 378 | 75.70 348 | 72.95 372 | 66.66 260 | 66.56 334 | 82.29 320 | 48.06 297 | 75.87 375 | 44.97 371 | 74.51 316 | 83.41 345 |
|
| TDRefinement | | | 67.49 322 | 64.34 332 | 76.92 293 | 73.47 380 | 61.07 262 | 84.86 230 | 82.98 297 | 59.77 334 | 58.30 374 | 85.13 271 | 26.06 384 | 87.89 299 | 47.92 357 | 60.59 375 | 81.81 361 |
|
| test20.03 | | | 67.45 323 | 66.95 324 | 68.94 352 | 75.48 370 | 44.84 387 | 77.50 337 | 77.67 345 | 66.66 260 | 63.01 358 | 83.80 295 | 47.02 303 | 78.40 358 | 42.53 376 | 68.86 353 | 83.58 344 |
|
| UnsupCasMVSNet_eth | | | 67.33 324 | 65.99 328 | 71.37 339 | 73.48 379 | 51.47 366 | 75.16 352 | 85.19 261 | 65.20 279 | 60.78 365 | 80.93 334 | 42.35 339 | 77.20 364 | 57.12 304 | 53.69 385 | 85.44 320 |
|
| TinyColmap | | | 67.30 325 | 64.81 330 | 74.76 313 | 81.92 318 | 56.68 316 | 80.29 307 | 81.49 313 | 60.33 328 | 56.27 381 | 83.22 304 | 24.77 386 | 87.66 303 | 45.52 368 | 69.47 348 | 79.95 369 |
|
| myMVS_eth3d | | | 67.02 326 | 66.29 327 | 69.21 351 | 84.68 259 | 42.58 392 | 78.62 327 | 73.08 370 | 66.65 263 | 66.74 332 | 79.46 345 | 31.53 377 | 82.30 341 | 39.43 382 | 76.38 287 | 82.75 354 |
|
| dp | | | 66.80 327 | 65.43 329 | 70.90 346 | 79.74 349 | 48.82 376 | 75.12 354 | 74.77 363 | 59.61 335 | 64.08 353 | 77.23 362 | 42.89 336 | 80.72 350 | 48.86 349 | 66.58 359 | 83.16 348 |
|
| MDA-MVSNet-bldmvs | | | 66.68 328 | 63.66 337 | 75.75 301 | 79.28 354 | 60.56 270 | 73.92 359 | 78.35 342 | 64.43 288 | 50.13 388 | 79.87 343 | 44.02 328 | 83.67 332 | 46.10 365 | 56.86 378 | 83.03 351 |
|
| testgi | | | 66.67 329 | 66.53 326 | 67.08 361 | 75.62 369 | 41.69 396 | 75.93 344 | 76.50 355 | 66.11 269 | 65.20 348 | 86.59 235 | 35.72 369 | 74.71 382 | 43.71 372 | 73.38 328 | 84.84 330 |
|
| CHOSEN 280x420 | | | 66.51 330 | 64.71 331 | 71.90 335 | 81.45 324 | 63.52 227 | 57.98 394 | 68.95 382 | 53.57 367 | 62.59 361 | 76.70 364 | 46.22 311 | 75.29 381 | 55.25 315 | 79.68 245 | 76.88 376 |
|
| PM-MVS | | | 66.41 331 | 64.14 333 | 73.20 327 | 73.92 375 | 56.45 318 | 78.97 323 | 64.96 390 | 63.88 299 | 64.72 349 | 80.24 338 | 19.84 392 | 83.44 335 | 66.24 222 | 64.52 366 | 79.71 370 |
|
| JIA-IIPM | | | 66.32 332 | 62.82 343 | 76.82 294 | 77.09 363 | 61.72 257 | 65.34 387 | 75.38 359 | 58.04 350 | 64.51 350 | 62.32 388 | 42.05 344 | 86.51 309 | 51.45 333 | 69.22 350 | 82.21 357 |
|
| KD-MVS_2432*1600 | | | 66.22 333 | 63.89 335 | 73.21 325 | 75.47 371 | 53.42 352 | 70.76 369 | 84.35 271 | 64.10 293 | 66.52 336 | 78.52 354 | 34.55 371 | 84.98 323 | 50.40 338 | 50.33 389 | 81.23 363 |
|
| miper_refine_blended | | | 66.22 333 | 63.89 335 | 73.21 325 | 75.47 371 | 53.42 352 | 70.76 369 | 84.35 271 | 64.10 293 | 66.52 336 | 78.52 354 | 34.55 371 | 84.98 323 | 50.40 338 | 50.33 389 | 81.23 363 |
|
| ADS-MVSNet2 | | | 66.20 335 | 63.33 338 | 74.82 312 | 79.92 343 | 58.75 286 | 67.55 380 | 75.19 360 | 53.37 368 | 65.25 346 | 75.86 369 | 42.32 340 | 80.53 351 | 41.57 377 | 68.91 351 | 85.18 324 |
|
| YYNet1 | | | 65.03 336 | 62.91 341 | 71.38 338 | 75.85 367 | 56.60 317 | 69.12 377 | 74.66 366 | 57.28 356 | 54.12 383 | 77.87 359 | 45.85 315 | 74.48 383 | 49.95 343 | 61.52 372 | 83.05 350 |
|
| MDA-MVSNet_test_wron | | | 65.03 336 | 62.92 340 | 71.37 339 | 75.93 365 | 56.73 313 | 69.09 378 | 74.73 364 | 57.28 356 | 54.03 384 | 77.89 358 | 45.88 314 | 74.39 384 | 49.89 344 | 61.55 371 | 82.99 352 |
|
| Patchmatch-test | | | 64.82 338 | 63.24 339 | 69.57 349 | 79.42 353 | 49.82 374 | 63.49 391 | 69.05 381 | 51.98 373 | 59.95 369 | 80.13 339 | 50.91 266 | 70.98 389 | 40.66 379 | 73.57 324 | 87.90 270 |
|
| ADS-MVSNet | | | 64.36 339 | 62.88 342 | 68.78 355 | 79.92 343 | 47.17 379 | 67.55 380 | 71.18 374 | 53.37 368 | 65.25 346 | 75.86 369 | 42.32 340 | 73.99 385 | 41.57 377 | 68.91 351 | 85.18 324 |
|
| LF4IMVS | | | 64.02 340 | 62.19 344 | 69.50 350 | 70.90 387 | 53.29 355 | 76.13 342 | 77.18 351 | 52.65 370 | 58.59 372 | 80.98 331 | 23.55 388 | 76.52 369 | 53.06 326 | 66.66 358 | 78.68 372 |
|
| UnsupCasMVSNet_bld | | | 63.70 341 | 61.53 347 | 70.21 348 | 73.69 377 | 51.39 367 | 72.82 361 | 81.89 308 | 55.63 363 | 57.81 376 | 71.80 380 | 38.67 358 | 78.61 357 | 49.26 347 | 52.21 387 | 80.63 366 |
|
| test_fmvs3 | | | 63.36 342 | 61.82 345 | 67.98 358 | 62.51 396 | 46.96 381 | 77.37 339 | 74.03 367 | 45.24 381 | 67.50 322 | 78.79 353 | 12.16 400 | 72.98 388 | 72.77 165 | 66.02 361 | 83.99 340 |
|
| dmvs_testset | | | 62.63 343 | 64.11 334 | 58.19 371 | 78.55 357 | 24.76 407 | 75.28 350 | 65.94 387 | 67.91 249 | 60.34 366 | 76.01 368 | 53.56 236 | 73.94 386 | 31.79 390 | 67.65 355 | 75.88 378 |
|
| mvsany_test1 | | | 62.30 344 | 61.26 348 | 65.41 363 | 69.52 388 | 54.86 340 | 66.86 382 | 49.78 403 | 46.65 380 | 68.50 316 | 83.21 305 | 49.15 289 | 66.28 395 | 56.93 307 | 60.77 373 | 75.11 379 |
|
| new-patchmatchnet | | | 61.73 345 | 61.73 346 | 61.70 367 | 72.74 384 | 24.50 408 | 69.16 376 | 78.03 343 | 61.40 322 | 56.72 379 | 75.53 372 | 38.42 359 | 76.48 370 | 45.95 366 | 57.67 377 | 84.13 338 |
|
| PVSNet_0 | | 57.27 20 | 61.67 346 | 59.27 349 | 68.85 354 | 79.61 350 | 57.44 305 | 68.01 379 | 73.44 369 | 55.93 362 | 58.54 373 | 70.41 383 | 44.58 324 | 77.55 363 | 47.01 359 | 35.91 395 | 71.55 383 |
|
| test_vis1_rt | | | 60.28 347 | 58.42 350 | 65.84 362 | 67.25 392 | 55.60 332 | 70.44 371 | 60.94 395 | 44.33 383 | 59.00 371 | 66.64 385 | 24.91 385 | 68.67 393 | 62.80 249 | 69.48 347 | 73.25 381 |
|
| MVS-HIRNet | | | 59.14 348 | 57.67 351 | 63.57 365 | 81.65 320 | 43.50 390 | 71.73 364 | 65.06 389 | 39.59 389 | 51.43 386 | 57.73 393 | 38.34 360 | 82.58 340 | 39.53 380 | 73.95 320 | 64.62 389 |
|
| pmmvs3 | | | 57.79 349 | 54.26 354 | 68.37 357 | 64.02 395 | 56.72 314 | 75.12 354 | 65.17 388 | 40.20 387 | 52.93 385 | 69.86 384 | 20.36 391 | 75.48 378 | 45.45 369 | 55.25 384 | 72.90 382 |
|
| DSMNet-mixed | | | 57.77 350 | 56.90 352 | 60.38 369 | 67.70 391 | 35.61 400 | 69.18 375 | 53.97 401 | 32.30 397 | 57.49 377 | 79.88 342 | 40.39 352 | 68.57 394 | 38.78 383 | 72.37 333 | 76.97 375 |
|
| WB-MVS | | | 54.94 351 | 54.72 353 | 55.60 377 | 73.50 378 | 20.90 409 | 74.27 358 | 61.19 394 | 59.16 340 | 50.61 387 | 74.15 374 | 47.19 302 | 75.78 376 | 17.31 401 | 35.07 396 | 70.12 384 |
|
| LCM-MVSNet | | | 54.25 352 | 49.68 362 | 67.97 359 | 53.73 404 | 45.28 385 | 66.85 383 | 80.78 318 | 35.96 393 | 39.45 394 | 62.23 389 | 8.70 404 | 78.06 361 | 48.24 354 | 51.20 388 | 80.57 367 |
|
| mvsany_test3 | | | 53.99 353 | 51.45 358 | 61.61 368 | 55.51 400 | 44.74 388 | 63.52 390 | 45.41 407 | 43.69 384 | 58.11 375 | 76.45 366 | 17.99 393 | 63.76 398 | 54.77 317 | 47.59 391 | 76.34 377 |
|
| SSC-MVS | | | 53.88 354 | 53.59 355 | 54.75 379 | 72.87 383 | 19.59 410 | 73.84 360 | 60.53 396 | 57.58 354 | 49.18 389 | 73.45 377 | 46.34 310 | 75.47 379 | 16.20 404 | 32.28 398 | 69.20 385 |
|
| FPMVS | | | 53.68 355 | 51.64 357 | 59.81 370 | 65.08 394 | 51.03 368 | 69.48 374 | 69.58 379 | 41.46 386 | 40.67 392 | 72.32 379 | 16.46 396 | 70.00 392 | 24.24 398 | 65.42 363 | 58.40 394 |
|
| APD_test1 | | | 53.31 356 | 49.93 361 | 63.42 366 | 65.68 393 | 50.13 372 | 71.59 365 | 66.90 385 | 34.43 394 | 40.58 393 | 71.56 381 | 8.65 405 | 76.27 372 | 34.64 388 | 55.36 383 | 63.86 390 |
|
| N_pmnet | | | 52.79 357 | 53.26 356 | 51.40 381 | 78.99 356 | 7.68 413 | 69.52 373 | 3.89 412 | 51.63 374 | 57.01 378 | 74.98 373 | 40.83 349 | 65.96 396 | 37.78 384 | 64.67 365 | 80.56 368 |
|
| test_f | | | 52.09 358 | 50.82 359 | 55.90 375 | 53.82 403 | 42.31 395 | 59.42 393 | 58.31 399 | 36.45 392 | 56.12 382 | 70.96 382 | 12.18 399 | 57.79 400 | 53.51 323 | 56.57 380 | 67.60 386 |
|
| EGC-MVSNET | | | 52.07 359 | 47.05 363 | 67.14 360 | 83.51 283 | 60.71 267 | 80.50 303 | 67.75 383 | 0.07 407 | 0.43 408 | 75.85 371 | 24.26 387 | 81.54 345 | 28.82 392 | 62.25 369 | 59.16 392 |
|
| new_pmnet | | | 50.91 360 | 50.29 360 | 52.78 380 | 68.58 390 | 34.94 402 | 63.71 389 | 56.63 400 | 39.73 388 | 44.95 390 | 65.47 386 | 21.93 390 | 58.48 399 | 34.98 387 | 56.62 379 | 64.92 388 |
|
| ANet_high | | | 50.57 361 | 46.10 365 | 63.99 364 | 48.67 407 | 39.13 398 | 70.99 368 | 80.85 317 | 61.39 323 | 31.18 396 | 57.70 394 | 17.02 395 | 73.65 387 | 31.22 391 | 15.89 404 | 79.18 371 |
|
| test_vis3_rt | | | 49.26 362 | 47.02 364 | 56.00 374 | 54.30 401 | 45.27 386 | 66.76 384 | 48.08 404 | 36.83 391 | 44.38 391 | 53.20 396 | 7.17 407 | 64.07 397 | 56.77 309 | 55.66 381 | 58.65 393 |
|
| testf1 | | | 45.72 363 | 41.96 366 | 57.00 372 | 56.90 398 | 45.32 383 | 66.14 385 | 59.26 397 | 26.19 398 | 30.89 397 | 60.96 391 | 4.14 408 | 70.64 390 | 26.39 396 | 46.73 393 | 55.04 395 |
|
| APD_test2 | | | 45.72 363 | 41.96 366 | 57.00 372 | 56.90 398 | 45.32 383 | 66.14 385 | 59.26 397 | 26.19 398 | 30.89 397 | 60.96 391 | 4.14 408 | 70.64 390 | 26.39 396 | 46.73 393 | 55.04 395 |
|
| Gipuma |  | | 45.18 365 | 41.86 368 | 55.16 378 | 77.03 364 | 51.52 365 | 32.50 400 | 80.52 322 | 32.46 396 | 27.12 399 | 35.02 400 | 9.52 403 | 75.50 377 | 22.31 399 | 60.21 376 | 38.45 399 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 366 | 40.28 369 | 55.82 376 | 40.82 409 | 42.54 394 | 65.12 388 | 63.99 391 | 34.43 394 | 24.48 400 | 57.12 395 | 3.92 410 | 76.17 374 | 17.10 402 | 55.52 382 | 48.75 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 367 | 38.86 370 | 46.69 382 | 53.84 402 | 16.45 411 | 48.61 397 | 49.92 402 | 37.49 390 | 31.67 395 | 60.97 390 | 8.14 406 | 56.42 401 | 28.42 393 | 30.72 399 | 67.19 387 |
|
| E-PMN | | | 31.77 368 | 30.64 371 | 35.15 385 | 52.87 405 | 27.67 404 | 57.09 395 | 47.86 405 | 24.64 400 | 16.40 405 | 33.05 401 | 11.23 401 | 54.90 402 | 14.46 405 | 18.15 402 | 22.87 401 |
|
| test_method | | | 31.52 369 | 29.28 373 | 38.23 384 | 27.03 411 | 6.50 414 | 20.94 402 | 62.21 393 | 4.05 405 | 22.35 403 | 52.50 397 | 13.33 397 | 47.58 404 | 27.04 395 | 34.04 397 | 60.62 391 |
|
| EMVS | | | 30.81 370 | 29.65 372 | 34.27 386 | 50.96 406 | 25.95 406 | 56.58 396 | 46.80 406 | 24.01 401 | 15.53 406 | 30.68 402 | 12.47 398 | 54.43 403 | 12.81 406 | 17.05 403 | 22.43 402 |
|
| MVE |  | 26.22 23 | 30.37 371 | 25.89 375 | 43.81 383 | 44.55 408 | 35.46 401 | 28.87 401 | 39.07 408 | 18.20 402 | 18.58 404 | 40.18 399 | 2.68 411 | 47.37 405 | 17.07 403 | 23.78 401 | 48.60 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 372 | 26.61 374 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 89.26 174 | 0.00 410 | 0.00 411 | 88.61 176 | 61.62 162 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| tmp_tt | | | 18.61 373 | 21.40 376 | 10.23 389 | 4.82 412 | 10.11 412 | 34.70 399 | 30.74 410 | 1.48 406 | 23.91 402 | 26.07 403 | 28.42 382 | 13.41 408 | 27.12 394 | 15.35 405 | 7.17 403 |
|
| wuyk23d | | | 16.82 374 | 15.94 377 | 19.46 388 | 58.74 397 | 31.45 403 | 39.22 398 | 3.74 413 | 6.84 404 | 6.04 407 | 2.70 407 | 1.27 412 | 24.29 407 | 10.54 407 | 14.40 406 | 2.63 404 |
|
| ab-mvs-re | | | 7.23 375 | 9.64 378 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 86.72 227 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| test123 | | | 6.12 376 | 8.11 379 | 0.14 390 | 0.06 414 | 0.09 415 | 71.05 367 | 0.03 415 | 0.04 409 | 0.25 410 | 1.30 409 | 0.05 413 | 0.03 410 | 0.21 409 | 0.01 408 | 0.29 405 |
|
| testmvs | | | 6.04 377 | 8.02 380 | 0.10 391 | 0.08 413 | 0.03 416 | 69.74 372 | 0.04 414 | 0.05 408 | 0.31 409 | 1.68 408 | 0.02 414 | 0.04 409 | 0.24 408 | 0.02 407 | 0.25 406 |
|
| pcd_1.5k_mvsjas | | | 5.26 378 | 7.02 381 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 63.15 139 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 42.58 392 | | | | | | | | 39.46 381 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 114 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 33 |
|
| PC_three_1452 | | | | | | | | | | 68.21 246 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 48 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 33 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 62 | 70.98 183 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 47 | 94.84 44 | |
|
| RE-MVS-def | | | | 85.48 54 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 77 | 73.53 138 | 85.69 50 | 94.45 26 | 63.87 130 | | 82.75 68 | 91.87 80 | 92.50 117 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 256 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 58 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 42 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 126 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 54 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 64 | 91.17 117 | 74.31 117 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 25 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 43 |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 247 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 263 | | | | 88.96 247 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 276 | | | | |
|
| ambc | | | | | 75.24 308 | 73.16 381 | 50.51 371 | 63.05 392 | 87.47 226 | | 64.28 351 | 77.81 360 | 17.80 394 | 89.73 271 | 57.88 298 | 60.64 374 | 85.49 319 |
|
| MTGPA |  | | | | | | | | 92.02 86 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 325 | | | | 5.43 406 | 48.81 296 | 85.44 321 | 59.25 283 | | |
|
| test_post | | | | | | | | | | | | 5.46 405 | 50.36 274 | 84.24 328 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 375 | 51.12 265 | 88.60 291 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 307 | 81.59 322 | 55.80 329 | 79.32 317 | 69.63 378 | | 67.19 326 | 73.67 376 | 43.24 333 | 88.90 288 | 50.41 337 | 84.50 176 | 81.45 362 |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 409 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 325 | 53.83 349 | | | 62.72 312 | | 80.94 332 | | 92.39 197 | 63.40 246 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 105 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 116 | 91.89 94 | 68.44 243 | 85.00 58 | 93.10 67 | 74.36 28 | 95.41 69 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 121 | 91.84 98 | 68.69 238 | 84.87 62 | 93.10 67 | 74.43 26 | 95.16 78 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 66 | 95.45 30 | 92.70 108 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 101 | | 84.41 72 | | | 94.93 89 | | | |
|
| TestCases | | | | | 79.58 252 | 85.15 250 | 63.62 222 | | 79.83 331 | 62.31 315 | 60.32 367 | 86.73 225 | 32.02 374 | 88.96 286 | 50.28 340 | 71.57 340 | 86.15 308 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 106 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 112 | | 75.41 94 | 84.91 60 | 93.54 56 | 74.28 29 | | 83.31 61 | 95.86 20 | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 64 | | | 93.91 54 |
|
| 旧先验2 | | | | | | | | 86.56 188 | | 58.10 349 | 87.04 40 | | | 88.98 284 | 74.07 150 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 196 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 149 | 93.13 52 | 70.71 71 | | 85.48 258 | 57.43 355 | 81.80 110 | 91.98 90 | 63.28 134 | 92.27 203 | 64.60 238 | 92.99 66 | 87.27 285 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 180 | | 86.37 246 | | | 93.08 71 | 69.31 78 | | | 92.74 69 | 88.74 257 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 159 | 88.98 187 | 60.00 332 | | | | 94.12 122 | 67.28 215 | | 88.97 246 |
|
| 原ACMM2 | | | | | | | | 86.86 177 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 109 | 93.01 57 | 68.79 107 | | 92.44 70 | 63.96 298 | 81.09 120 | 91.57 101 | 66.06 112 | 95.45 65 | 67.19 217 | 94.82 46 | 88.81 253 |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 249 | 83.20 292 | 54.63 366 | 79.74 132 | 91.63 99 | 58.97 194 | | | 91.42 86 | 86.77 298 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 251 | 62.37 256 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 242 | 90.90 86 | 64.21 213 | | 84.71 266 | 59.27 339 | 85.40 52 | 92.91 73 | 62.02 158 | 89.08 282 | 68.95 200 | 91.37 87 | 86.63 302 |
|
| testdata1 | | | | | | | | 84.14 250 | | 75.71 88 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 100 | | 82.71 100 | | 71.67 52 | 96.16 44 | | 94.50 51 | 93.54 78 |
|
| plane_prior7 | | | | | | 90.08 103 | 68.51 120 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 112 | 68.70 115 | | | | | | 60.42 187 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 70 | | | | | 95.38 71 | 78.71 104 | 86.32 153 | 91.33 154 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 121 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 144 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 68 | | 77.62 39 | | | | | | 86.16 157 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 377 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 261 | 81.01 332 | 57.15 308 | | 65.99 386 | | 61.16 364 | 82.82 313 | 39.12 356 | 91.34 240 | 59.67 279 | 46.92 392 | 88.43 263 |
|
| LGP-MVS_train | | | | | 84.50 102 | 89.23 137 | 68.76 109 | | 91.94 92 | 75.37 95 | 76.64 198 | 91.51 102 | 54.29 229 | 94.91 90 | 78.44 106 | 83.78 188 | 89.83 219 |
|
| test11 | | | | | | | | | 92.23 80 | | | | | | | | |
|
| door | | | | | | | | | 69.44 380 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 155 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 130 | | 89.17 99 | | 76.41 73 | 77.23 184 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 130 | | 89.17 99 | | 76.41 73 | 77.23 184 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 116 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 183 | | | 95.11 82 | | | 91.03 165 |
|
| HQP3-MVS | | | | | | | | | 92.19 83 | | | | | | | 85.99 161 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 190 | | | | |
|
| NP-MVS | | | | | | 89.62 116 | 68.32 123 | | | | | 90.24 133 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 399 | 75.16 352 | | 55.10 364 | 66.53 335 | | 49.34 286 | | 53.98 320 | | 87.94 269 |
|
| MDTV_nov1_ep13 | | | | 69.97 295 | | 83.18 291 | 53.48 351 | 77.10 341 | 80.18 330 | 60.45 327 | 69.33 308 | 80.44 336 | 48.89 295 | 86.90 306 | 51.60 332 | 78.51 259 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 220 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 225 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 126 | | | | |
|
| ITE_SJBPF | | | | | 78.22 274 | 81.77 319 | 60.57 269 | | 83.30 288 | 69.25 223 | 67.54 321 | 87.20 216 | 36.33 367 | 87.28 305 | 54.34 319 | 74.62 315 | 86.80 297 |
|
| DeepMVS_CX |  | | | | 27.40 387 | 40.17 410 | 26.90 405 | | 24.59 411 | 17.44 403 | 23.95 401 | 48.61 398 | 9.77 402 | 26.48 406 | 18.06 400 | 24.47 400 | 28.83 400 |
|