| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 59 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 66 | 93.57 7 | 94.06 10 | 77.24 52 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 59 | 93.49 9 | 92.73 64 | 77.33 49 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 12 | 96.41 12 | 93.33 89 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 40 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 60 | 94.67 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 89 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 33 | 96.34 15 | 93.95 57 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 95 | 73.65 10 | 92.66 23 | 91.17 124 | 86.57 1 | 87.39 41 | 94.97 18 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 93 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 36 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 114 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 59 | 80.26 11 | 87.78 33 | 94.27 35 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 104 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 62 | 93.00 46 | 80.90 7 | 88.06 29 | 94.06 45 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 42 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 72 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 28 | 94.80 19 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 64 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 91 | 89.16 19 | 95.10 16 | 75.65 21 | 96.19 46 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 53 | 92.24 71 | 69.03 103 | 89.57 90 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 42 | 78.98 12 | 96.58 35 | 85.66 40 | 95.72 24 | 94.58 31 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 54 | 92.60 69 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 49 | 74.83 23 | 93.78 139 | 87.63 30 | 94.27 59 | 93.65 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 54 | 92.83 60 | 81.50 5 | 85.79 55 | 93.47 63 | 73.02 40 | 97.00 18 | 84.90 46 | 94.94 40 | 94.10 50 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 57 | 93.59 23 | 76.27 83 | 88.14 27 | 95.09 17 | 71.06 63 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 51 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 50 | 92.35 81 | 74.62 118 | 88.90 22 | 93.85 55 | 75.75 20 | 96.00 54 | 87.80 28 | 94.63 48 | 95.04 8 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 65 | 85.24 60 | 94.32 33 | 71.76 51 | 96.93 19 | 85.53 43 | 95.79 22 | 94.32 43 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 69 | 77.57 41 | 83.84 89 | 94.40 32 | 72.24 45 | 96.28 43 | 85.65 41 | 95.30 35 | 93.62 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVS_0304 | | | 87.69 20 | 87.55 24 | 88.12 13 | 89.45 129 | 71.76 51 | 91.47 49 | 89.54 171 | 82.14 3 | 86.65 49 | 94.28 34 | 68.28 95 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 6 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 81 | 93.50 25 | 75.17 104 | 86.34 51 | 95.29 15 | 70.86 65 | 96.00 54 | 88.78 19 | 96.04 16 | 94.58 31 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 26 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 67 | 84.91 65 | 94.44 30 | 70.78 66 | 96.61 32 | 84.53 54 | 94.89 42 | 93.66 70 |
|
| reproduce-ours | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 107 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 102 |
|
| our_new_method | | | 87.47 23 | 87.61 22 | 87.07 45 | 93.27 50 | 71.60 53 | 91.56 46 | 93.19 35 | 74.98 107 | 88.96 20 | 95.54 12 | 71.20 61 | 96.54 36 | 86.28 37 | 93.49 65 | 93.06 102 |
|
| ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 67 | 84.66 72 | 94.52 23 | 68.81 90 | 96.65 30 | 84.53 54 | 94.90 41 | 94.00 55 |
|
| APD-MVS |  | | 87.44 25 | 87.52 25 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 60 | 73.01 157 | 88.58 24 | 94.52 23 | 73.36 34 | 96.49 38 | 84.26 57 | 95.01 37 | 92.70 114 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 63 | 84.68 69 | 93.99 51 | 70.67 68 | 96.82 22 | 84.18 61 | 95.01 37 | 93.90 60 |
|
| region2R | | | 87.42 27 | 87.20 31 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 40 | 76.73 70 | 84.45 77 | 94.52 23 | 69.09 84 | 96.70 27 | 84.37 56 | 94.83 45 | 94.03 54 |
|
| MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 79 | 93.82 16 | 73.07 155 | 84.86 68 | 92.89 77 | 76.22 17 | 96.33 41 | 84.89 48 | 95.13 36 | 94.40 39 |
|
| reproduce_model | | | 87.28 30 | 87.39 27 | 86.95 48 | 93.10 56 | 71.24 63 | 91.60 42 | 93.19 35 | 74.69 115 | 88.80 23 | 95.61 11 | 70.29 72 | 96.44 39 | 86.20 39 | 93.08 69 | 93.16 97 |
|
| MTAPA | | | 87.23 31 | 87.00 32 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 191 | 92.02 92 | 79.45 19 | 85.88 53 | 94.80 19 | 68.07 96 | 96.21 45 | 86.69 36 | 95.34 32 | 93.23 92 |
|
| XVS | | | 87.18 32 | 86.91 37 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 92 | 94.17 39 | 67.45 103 | 96.60 33 | 83.06 68 | 94.50 51 | 94.07 52 |
|
| HPM-MVS |  | | 87.11 33 | 86.98 34 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 86 | 83.81 90 | 93.95 54 | 69.77 78 | 96.01 53 | 85.15 44 | 94.66 47 | 94.32 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 33 | 86.92 36 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 63 | 76.62 73 | 83.68 91 | 94.46 27 | 67.93 98 | 95.95 57 | 84.20 60 | 94.39 55 | 93.23 92 |
|
| DeepC-MVS | | 79.81 2 | 87.08 35 | 86.88 38 | 87.69 33 | 91.16 84 | 72.32 43 | 90.31 71 | 93.94 14 | 77.12 57 | 82.82 103 | 94.23 38 | 72.13 47 | 97.09 16 | 84.83 49 | 95.37 31 | 93.65 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 36 | 86.62 40 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 51 | 93.04 41 | 76.62 73 | 84.22 81 | 93.36 66 | 71.44 57 | 96.76 25 | 80.82 93 | 95.33 33 | 94.16 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| balanced_conf03 | | | 86.78 37 | 86.99 33 | 86.15 61 | 91.24 83 | 67.61 143 | 90.51 62 | 92.90 56 | 77.26 51 | 87.44 40 | 91.63 103 | 71.27 60 | 96.06 49 | 85.62 42 | 95.01 37 | 94.78 22 |
|
| SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 74 | 74.50 119 | 86.84 48 | 94.65 22 | 67.31 105 | 95.77 59 | 84.80 50 | 92.85 72 | 92.84 112 |
|
| CS-MVS | | | 86.69 39 | 86.95 35 | 85.90 69 | 90.76 96 | 67.57 145 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 76 | 92.27 89 | 71.47 56 | 95.02 91 | 84.24 59 | 93.46 67 | 95.13 7 |
|
| PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 73 | 93.04 41 | 75.53 95 | 83.86 88 | 94.42 31 | 67.87 100 | 96.64 31 | 82.70 78 | 94.57 50 | 93.66 70 |
|
| mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 87 | 76.87 64 | 82.81 104 | 94.25 37 | 66.44 113 | 96.24 44 | 82.88 73 | 94.28 58 | 93.38 86 |
|
| CANet | | | 86.45 42 | 86.10 49 | 87.51 37 | 90.09 107 | 70.94 70 | 89.70 85 | 92.59 73 | 81.78 4 | 81.32 119 | 91.43 111 | 70.34 70 | 97.23 14 | 84.26 57 | 93.36 68 | 94.37 40 |
|
| train_agg | | | 86.43 43 | 86.20 45 | 87.13 44 | 93.26 52 | 72.96 25 | 88.75 118 | 91.89 100 | 68.69 244 | 85.00 63 | 93.10 70 | 74.43 26 | 95.41 72 | 84.97 45 | 95.71 25 | 93.02 106 |
|
| PHI-MVS | | | 86.43 43 | 86.17 47 | 87.24 41 | 90.88 92 | 70.96 68 | 92.27 32 | 94.07 9 | 72.45 161 | 85.22 61 | 91.90 95 | 69.47 80 | 96.42 40 | 83.28 67 | 95.94 19 | 94.35 41 |
|
| CSCG | | | 86.41 45 | 86.19 46 | 87.07 45 | 92.91 61 | 72.48 37 | 90.81 58 | 93.56 24 | 73.95 130 | 83.16 98 | 91.07 123 | 75.94 18 | 95.19 80 | 79.94 101 | 94.38 56 | 93.55 81 |
|
| CS-MVS-test | | | 86.29 46 | 86.48 41 | 85.71 71 | 91.02 88 | 67.21 158 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 95 | 91.20 118 | 70.65 69 | 95.15 82 | 81.96 82 | 94.89 42 | 94.77 23 |
|
| EC-MVSNet | | | 86.01 47 | 86.38 42 | 84.91 94 | 89.31 138 | 66.27 171 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 83 | 91.88 96 | 69.04 88 | 95.43 70 | 83.93 62 | 93.77 63 | 93.01 107 |
|
| MVSMamba_PlusPlus | | | 85.99 48 | 85.96 52 | 86.05 64 | 91.09 85 | 67.64 142 | 89.63 88 | 92.65 69 | 72.89 160 | 84.64 73 | 91.71 99 | 71.85 49 | 96.03 50 | 84.77 51 | 94.45 54 | 94.49 35 |
|
| casdiffmvs_mvg |  | | 85.99 48 | 86.09 50 | 85.70 72 | 87.65 207 | 67.22 157 | 88.69 122 | 93.04 41 | 79.64 18 | 85.33 59 | 92.54 86 | 73.30 35 | 94.50 110 | 83.49 64 | 91.14 94 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 50 | 85.88 53 | 86.22 60 | 92.69 66 | 69.53 92 | 91.93 37 | 92.99 49 | 73.54 142 | 85.94 52 | 94.51 26 | 65.80 123 | 95.61 62 | 83.04 70 | 92.51 76 | 93.53 83 |
|
| test_fmvsmconf_n | | | 85.92 51 | 86.04 51 | 85.57 74 | 85.03 260 | 69.51 93 | 89.62 89 | 90.58 139 | 73.42 146 | 87.75 35 | 94.02 47 | 72.85 41 | 93.24 164 | 90.37 3 | 90.75 98 | 93.96 56 |
|
| sasdasda | | | 85.91 52 | 85.87 54 | 86.04 65 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 71 | 88.01 31 | 91.23 115 | 73.28 36 | 93.91 133 | 81.50 85 | 88.80 126 | 94.77 23 |
|
| canonicalmvs | | | 85.91 52 | 85.87 54 | 86.04 65 | 89.84 117 | 69.44 98 | 90.45 68 | 93.00 46 | 76.70 71 | 88.01 31 | 91.23 115 | 73.28 36 | 93.91 133 | 81.50 85 | 88.80 126 | 94.77 23 |
|
| ACMMP |  | | 85.89 54 | 85.39 61 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 39 | 76.78 67 | 80.73 128 | 93.82 56 | 64.33 133 | 96.29 42 | 82.67 79 | 90.69 99 | 93.23 92 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 55 | 85.61 58 | 86.23 59 | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 143 | 85.69 56 | 94.45 28 | 65.00 131 | 95.56 63 | 82.75 74 | 91.87 84 | 92.50 123 |
|
| CDPH-MVS | | | 85.76 56 | 85.29 66 | 87.17 43 | 93.49 47 | 71.08 64 | 88.58 126 | 92.42 79 | 68.32 251 | 84.61 74 | 93.48 61 | 72.32 44 | 96.15 48 | 79.00 104 | 95.43 30 | 94.28 45 |
|
| TSAR-MVS + GP. | | | 85.71 57 | 85.33 63 | 86.84 50 | 91.34 81 | 72.50 36 | 89.07 108 | 87.28 235 | 76.41 76 | 85.80 54 | 90.22 142 | 74.15 31 | 95.37 77 | 81.82 83 | 91.88 83 | 92.65 118 |
|
| dcpmvs_2 | | | 85.63 58 | 86.15 48 | 84.06 131 | 91.71 78 | 64.94 200 | 86.47 194 | 91.87 102 | 73.63 138 | 86.60 50 | 93.02 75 | 76.57 15 | 91.87 221 | 83.36 65 | 92.15 80 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 59 | 85.65 57 | 85.50 75 | 82.99 307 | 69.39 100 | 89.65 86 | 90.29 152 | 73.31 149 | 87.77 34 | 94.15 41 | 71.72 52 | 93.23 165 | 90.31 4 | 90.67 100 | 93.89 61 |
|
| alignmvs | | | 85.48 60 | 85.32 64 | 85.96 68 | 89.51 126 | 69.47 95 | 89.74 83 | 92.47 75 | 76.17 84 | 87.73 37 | 91.46 110 | 70.32 71 | 93.78 139 | 81.51 84 | 88.95 123 | 94.63 30 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 60 | 84.47 76 | 88.51 7 | 91.08 86 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 201 | 93.37 65 | 60.40 196 | 96.75 26 | 77.20 123 | 93.73 64 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 62 | 85.76 56 | 84.45 107 | 91.93 75 | 70.24 79 | 90.71 59 | 92.86 58 | 77.46 47 | 84.22 81 | 92.81 81 | 67.16 107 | 92.94 184 | 80.36 97 | 94.35 57 | 90.16 201 |
|
| DELS-MVS | | | 85.41 63 | 85.30 65 | 85.77 70 | 88.49 169 | 67.93 136 | 85.52 224 | 93.44 27 | 78.70 29 | 83.63 94 | 89.03 170 | 74.57 24 | 95.71 61 | 80.26 99 | 94.04 61 | 93.66 70 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 64 | 84.95 70 | 86.57 56 | 93.69 42 | 70.58 78 | 92.15 35 | 91.62 110 | 73.89 133 | 82.67 106 | 94.09 43 | 62.60 152 | 95.54 65 | 80.93 91 | 92.93 71 | 93.57 79 |
|
| test_fmvsm_n_1920 | | | 85.29 65 | 85.34 62 | 85.13 85 | 86.12 239 | 69.93 86 | 88.65 124 | 90.78 135 | 69.97 212 | 88.27 26 | 93.98 52 | 71.39 58 | 91.54 233 | 88.49 23 | 90.45 102 | 93.91 58 |
|
| MVS_111021_HR | | | 85.14 66 | 84.75 71 | 86.32 58 | 91.65 79 | 72.70 30 | 85.98 207 | 90.33 149 | 76.11 85 | 82.08 109 | 91.61 105 | 71.36 59 | 94.17 122 | 81.02 90 | 92.58 75 | 92.08 140 |
|
| casdiffmvs |  | | 85.11 67 | 85.14 67 | 85.01 88 | 87.20 221 | 65.77 183 | 87.75 155 | 92.83 60 | 77.84 37 | 84.36 80 | 92.38 88 | 72.15 46 | 93.93 132 | 81.27 89 | 90.48 101 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 68 | 84.96 69 | 85.45 76 | 92.07 73 | 68.07 133 | 89.78 82 | 90.86 134 | 82.48 2 | 84.60 75 | 93.20 69 | 69.35 81 | 95.22 79 | 71.39 181 | 90.88 97 | 93.07 101 |
|
| MGCFI-Net | | | 85.06 69 | 85.51 59 | 83.70 145 | 89.42 130 | 63.01 241 | 89.43 93 | 92.62 72 | 76.43 75 | 87.53 38 | 91.34 113 | 72.82 42 | 93.42 159 | 81.28 88 | 88.74 129 | 94.66 29 |
|
| DPM-MVS | | | 84.93 70 | 84.29 77 | 86.84 50 | 90.20 105 | 73.04 23 | 87.12 173 | 93.04 41 | 69.80 216 | 82.85 102 | 91.22 117 | 73.06 39 | 96.02 52 | 76.72 131 | 94.63 48 | 91.46 157 |
|
| baseline | | | 84.93 70 | 84.98 68 | 84.80 98 | 87.30 219 | 65.39 191 | 87.30 169 | 92.88 57 | 77.62 39 | 84.04 86 | 92.26 90 | 71.81 50 | 93.96 126 | 81.31 87 | 90.30 104 | 95.03 9 |
|
| ETV-MVS | | | 84.90 72 | 84.67 72 | 85.59 73 | 89.39 133 | 68.66 120 | 88.74 120 | 92.64 71 | 79.97 15 | 84.10 84 | 85.71 259 | 69.32 82 | 95.38 74 | 80.82 93 | 91.37 91 | 92.72 113 |
|
| test_fmvsmconf0.01_n | | | 84.73 73 | 84.52 75 | 85.34 78 | 80.25 348 | 69.03 103 | 89.47 91 | 89.65 169 | 73.24 153 | 86.98 46 | 94.27 35 | 66.62 109 | 93.23 165 | 90.26 5 | 89.95 112 | 93.78 67 |
|
| fmvsm_l_conf0.5_n | | | 84.47 74 | 84.54 73 | 84.27 117 | 85.42 250 | 68.81 109 | 88.49 128 | 87.26 236 | 68.08 253 | 88.03 30 | 93.49 60 | 72.04 48 | 91.77 223 | 88.90 17 | 89.14 122 | 92.24 134 |
|
| EI-MVSNet-Vis-set | | | 84.19 75 | 83.81 80 | 85.31 79 | 88.18 180 | 67.85 137 | 87.66 157 | 89.73 167 | 80.05 14 | 82.95 99 | 89.59 155 | 70.74 67 | 94.82 99 | 80.66 96 | 84.72 179 | 93.28 91 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 76 | 84.16 78 | 84.06 131 | 85.38 251 | 68.40 124 | 88.34 135 | 86.85 246 | 67.48 260 | 87.48 39 | 93.40 64 | 70.89 64 | 91.61 227 | 88.38 25 | 89.22 120 | 92.16 138 |
|
| test_fmvsmvis_n_1920 | | | 84.02 77 | 83.87 79 | 84.49 106 | 84.12 276 | 69.37 101 | 88.15 143 | 87.96 219 | 70.01 210 | 83.95 87 | 93.23 68 | 68.80 91 | 91.51 236 | 88.61 20 | 89.96 111 | 92.57 119 |
|
| nrg030 | | | 83.88 78 | 83.53 82 | 84.96 90 | 86.77 229 | 69.28 102 | 90.46 67 | 92.67 66 | 74.79 113 | 82.95 99 | 91.33 114 | 72.70 43 | 93.09 178 | 80.79 95 | 79.28 257 | 92.50 123 |
|
| EI-MVSNet-UG-set | | | 83.81 79 | 83.38 85 | 85.09 86 | 87.87 196 | 67.53 146 | 87.44 165 | 89.66 168 | 79.74 16 | 82.23 108 | 89.41 164 | 70.24 73 | 94.74 102 | 79.95 100 | 83.92 193 | 92.99 109 |
|
| fmvsm_s_conf0.5_n | | | 83.80 80 | 83.71 81 | 84.07 129 | 86.69 231 | 67.31 152 | 89.46 92 | 83.07 301 | 71.09 186 | 86.96 47 | 93.70 58 | 69.02 89 | 91.47 238 | 88.79 18 | 84.62 181 | 93.44 85 |
|
| CPTT-MVS | | | 83.73 81 | 83.33 87 | 84.92 93 | 93.28 49 | 70.86 72 | 92.09 36 | 90.38 145 | 68.75 243 | 79.57 140 | 92.83 79 | 60.60 192 | 93.04 182 | 80.92 92 | 91.56 89 | 90.86 174 |
|
| EPNet | | | 83.72 82 | 82.92 94 | 86.14 63 | 84.22 274 | 69.48 94 | 91.05 56 | 85.27 266 | 81.30 6 | 76.83 196 | 91.65 101 | 66.09 118 | 95.56 63 | 76.00 137 | 93.85 62 | 93.38 86 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 83 | 84.54 73 | 80.99 224 | 90.06 112 | 65.83 180 | 84.21 253 | 88.74 205 | 71.60 176 | 85.01 62 | 92.44 87 | 74.51 25 | 83.50 343 | 82.15 81 | 92.15 80 | 93.64 76 |
|
| HQP_MVS | | | 83.64 84 | 83.14 88 | 85.14 83 | 90.08 108 | 68.71 116 | 91.25 52 | 92.44 76 | 79.12 23 | 78.92 149 | 91.00 128 | 60.42 194 | 95.38 74 | 78.71 108 | 86.32 160 | 91.33 158 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 85 | 83.41 84 | 84.28 115 | 86.14 238 | 68.12 131 | 89.43 93 | 82.87 306 | 70.27 205 | 87.27 43 | 93.80 57 | 69.09 84 | 91.58 229 | 88.21 26 | 83.65 201 | 93.14 99 |
|
| Effi-MVS+ | | | 83.62 86 | 83.08 89 | 85.24 81 | 88.38 175 | 67.45 147 | 88.89 113 | 89.15 187 | 75.50 96 | 82.27 107 | 88.28 191 | 69.61 79 | 94.45 112 | 77.81 117 | 87.84 139 | 93.84 64 |
|
| fmvsm_s_conf0.1_n | | | 83.56 87 | 83.38 85 | 84.10 123 | 84.86 262 | 67.28 153 | 89.40 97 | 83.01 302 | 70.67 194 | 87.08 44 | 93.96 53 | 68.38 93 | 91.45 239 | 88.56 22 | 84.50 182 | 93.56 80 |
|
| OPM-MVS | | | 83.50 88 | 82.95 93 | 85.14 83 | 88.79 159 | 70.95 69 | 89.13 107 | 91.52 113 | 77.55 44 | 80.96 126 | 91.75 98 | 60.71 187 | 94.50 110 | 79.67 103 | 86.51 158 | 89.97 217 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 89 | 82.80 96 | 85.43 77 | 90.25 104 | 68.74 114 | 90.30 72 | 90.13 156 | 76.33 82 | 80.87 127 | 92.89 77 | 61.00 184 | 94.20 120 | 72.45 175 | 90.97 95 | 93.35 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 90 | 83.45 83 | 83.28 157 | 92.74 65 | 62.28 253 | 88.17 141 | 89.50 173 | 75.22 100 | 81.49 118 | 92.74 85 | 66.75 108 | 95.11 85 | 72.85 169 | 91.58 88 | 92.45 126 |
|
| EPP-MVSNet | | | 83.40 91 | 83.02 91 | 84.57 102 | 90.13 106 | 64.47 210 | 92.32 30 | 90.73 136 | 74.45 122 | 79.35 143 | 91.10 121 | 69.05 87 | 95.12 83 | 72.78 170 | 87.22 147 | 94.13 49 |
|
| 3Dnovator | | 76.31 5 | 83.38 92 | 82.31 102 | 86.59 55 | 87.94 193 | 72.94 28 | 90.64 60 | 92.14 91 | 77.21 54 | 75.47 226 | 92.83 79 | 58.56 203 | 94.72 103 | 73.24 166 | 92.71 74 | 92.13 139 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 93 | 82.99 92 | 84.28 115 | 83.79 284 | 68.07 133 | 89.34 99 | 82.85 307 | 69.80 216 | 87.36 42 | 94.06 45 | 68.34 94 | 91.56 231 | 87.95 27 | 83.46 206 | 93.21 95 |
|
| EIA-MVS | | | 83.31 94 | 82.80 96 | 84.82 96 | 89.59 122 | 65.59 186 | 88.21 139 | 92.68 65 | 74.66 117 | 78.96 147 | 86.42 246 | 69.06 86 | 95.26 78 | 75.54 143 | 90.09 108 | 93.62 77 |
|
| h-mvs33 | | | 83.15 95 | 82.19 103 | 86.02 67 | 90.56 98 | 70.85 73 | 88.15 143 | 89.16 186 | 76.02 87 | 84.67 70 | 91.39 112 | 61.54 170 | 95.50 66 | 82.71 76 | 75.48 305 | 91.72 147 |
|
| MVS_Test | | | 83.15 95 | 83.06 90 | 83.41 154 | 86.86 225 | 63.21 237 | 86.11 205 | 92.00 94 | 74.31 123 | 82.87 101 | 89.44 163 | 70.03 74 | 93.21 167 | 77.39 122 | 88.50 134 | 93.81 65 |
|
| IS-MVSNet | | | 83.15 95 | 82.81 95 | 84.18 121 | 89.94 115 | 63.30 235 | 91.59 43 | 88.46 211 | 79.04 25 | 79.49 141 | 92.16 91 | 65.10 128 | 94.28 115 | 67.71 217 | 91.86 86 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 98 | 82.09 106 | 86.15 61 | 94.44 19 | 70.92 71 | 88.79 116 | 92.20 88 | 70.53 199 | 79.17 145 | 91.03 126 | 64.12 135 | 96.03 50 | 68.39 214 | 90.14 107 | 91.50 153 |
|
| PAPM_NR | | | 83.02 99 | 82.41 99 | 84.82 96 | 92.47 70 | 66.37 169 | 87.93 150 | 91.80 105 | 73.82 134 | 77.32 184 | 90.66 133 | 67.90 99 | 94.90 95 | 70.37 191 | 89.48 117 | 93.19 96 |
|
| VDD-MVS | | | 83.01 100 | 82.36 101 | 84.96 90 | 91.02 88 | 66.40 168 | 88.91 112 | 88.11 214 | 77.57 41 | 84.39 79 | 93.29 67 | 52.19 255 | 93.91 133 | 77.05 126 | 88.70 130 | 94.57 33 |
|
| MVSFormer | | | 82.85 101 | 82.05 107 | 85.24 81 | 87.35 213 | 70.21 80 | 90.50 64 | 90.38 145 | 68.55 246 | 81.32 119 | 89.47 158 | 61.68 167 | 93.46 156 | 78.98 105 | 90.26 105 | 92.05 141 |
|
| OMC-MVS | | | 82.69 102 | 81.97 110 | 84.85 95 | 88.75 161 | 67.42 148 | 87.98 146 | 90.87 133 | 74.92 109 | 79.72 138 | 91.65 101 | 62.19 162 | 93.96 126 | 75.26 147 | 86.42 159 | 93.16 97 |
|
| PVSNet_Blended_VisFu | | | 82.62 103 | 81.83 112 | 84.96 90 | 90.80 94 | 69.76 90 | 88.74 120 | 91.70 109 | 69.39 224 | 78.96 147 | 88.46 186 | 65.47 125 | 94.87 98 | 74.42 152 | 88.57 131 | 90.24 199 |
|
| MVS_111021_LR | | | 82.61 104 | 82.11 104 | 84.11 122 | 88.82 156 | 71.58 55 | 85.15 227 | 86.16 257 | 74.69 115 | 80.47 130 | 91.04 124 | 62.29 159 | 90.55 261 | 80.33 98 | 90.08 109 | 90.20 200 |
|
| HQP-MVS | | | 82.61 104 | 82.02 108 | 84.37 109 | 89.33 135 | 66.98 161 | 89.17 102 | 92.19 89 | 76.41 76 | 77.23 187 | 90.23 141 | 60.17 197 | 95.11 85 | 77.47 120 | 85.99 168 | 91.03 168 |
|
| RRT-MVS | | | 82.60 106 | 82.10 105 | 84.10 123 | 87.98 192 | 62.94 246 | 87.45 164 | 91.27 120 | 77.42 48 | 79.85 136 | 90.28 138 | 56.62 221 | 94.70 105 | 79.87 102 | 88.15 138 | 94.67 26 |
|
| CLD-MVS | | | 82.31 107 | 81.65 113 | 84.29 114 | 88.47 170 | 67.73 140 | 85.81 215 | 92.35 81 | 75.78 90 | 78.33 163 | 86.58 241 | 64.01 136 | 94.35 113 | 76.05 136 | 87.48 144 | 90.79 175 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 108 | 82.41 99 | 81.62 205 | 90.82 93 | 60.93 268 | 84.47 244 | 89.78 164 | 76.36 81 | 84.07 85 | 91.88 96 | 64.71 132 | 90.26 263 | 70.68 188 | 88.89 124 | 93.66 70 |
|
| diffmvs |  | | 82.10 109 | 81.88 111 | 82.76 187 | 83.00 305 | 63.78 223 | 83.68 261 | 89.76 165 | 72.94 158 | 82.02 110 | 89.85 147 | 65.96 122 | 90.79 257 | 82.38 80 | 87.30 146 | 93.71 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 110 | 81.27 116 | 84.50 104 | 89.23 142 | 68.76 112 | 90.22 73 | 91.94 98 | 75.37 98 | 76.64 202 | 91.51 107 | 54.29 236 | 94.91 93 | 78.44 110 | 83.78 194 | 89.83 222 |
|
| FIs | | | 82.07 111 | 82.42 98 | 81.04 223 | 88.80 158 | 58.34 295 | 88.26 138 | 93.49 26 | 76.93 62 | 78.47 160 | 91.04 124 | 69.92 76 | 92.34 204 | 69.87 198 | 84.97 176 | 92.44 127 |
|
| PS-MVSNAJss | | | 82.07 111 | 81.31 115 | 84.34 112 | 86.51 234 | 67.27 154 | 89.27 100 | 91.51 114 | 71.75 171 | 79.37 142 | 90.22 142 | 63.15 146 | 94.27 116 | 77.69 118 | 82.36 220 | 91.49 154 |
|
| API-MVS | | | 81.99 113 | 81.23 117 | 84.26 119 | 90.94 90 | 70.18 85 | 91.10 55 | 89.32 178 | 71.51 178 | 78.66 154 | 88.28 191 | 65.26 126 | 95.10 88 | 64.74 244 | 91.23 93 | 87.51 286 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 114 | 81.54 114 | 82.92 176 | 88.46 171 | 63.46 231 | 87.13 172 | 92.37 80 | 80.19 12 | 78.38 161 | 89.14 166 | 71.66 55 | 93.05 180 | 70.05 194 | 76.46 288 | 92.25 132 |
|
| MAR-MVS | | | 81.84 115 | 80.70 125 | 85.27 80 | 91.32 82 | 71.53 56 | 89.82 79 | 90.92 130 | 69.77 218 | 78.50 158 | 86.21 250 | 62.36 158 | 94.52 109 | 65.36 238 | 92.05 82 | 89.77 225 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 116 | 81.23 117 | 83.57 149 | 91.89 76 | 63.43 233 | 89.84 78 | 81.85 318 | 77.04 60 | 83.21 96 | 93.10 70 | 52.26 254 | 93.43 158 | 71.98 176 | 89.95 112 | 93.85 62 |
|
| hse-mvs2 | | | 81.72 117 | 80.94 123 | 84.07 129 | 88.72 162 | 67.68 141 | 85.87 211 | 87.26 236 | 76.02 87 | 84.67 70 | 88.22 194 | 61.54 170 | 93.48 154 | 82.71 76 | 73.44 333 | 91.06 166 |
|
| GeoE | | | 81.71 118 | 81.01 122 | 83.80 144 | 89.51 126 | 64.45 211 | 88.97 110 | 88.73 206 | 71.27 182 | 78.63 155 | 89.76 149 | 66.32 115 | 93.20 170 | 69.89 197 | 86.02 167 | 93.74 68 |
|
| xiu_mvs_v2_base | | | 81.69 119 | 81.05 120 | 83.60 147 | 89.15 145 | 68.03 135 | 84.46 246 | 90.02 158 | 70.67 194 | 81.30 122 | 86.53 244 | 63.17 145 | 94.19 121 | 75.60 142 | 88.54 132 | 88.57 265 |
|
| PS-MVSNAJ | | | 81.69 119 | 81.02 121 | 83.70 145 | 89.51 126 | 68.21 130 | 84.28 252 | 90.09 157 | 70.79 191 | 81.26 123 | 85.62 264 | 63.15 146 | 94.29 114 | 75.62 141 | 88.87 125 | 88.59 264 |
|
| PAPR | | | 81.66 121 | 80.89 124 | 83.99 139 | 90.27 103 | 64.00 218 | 86.76 187 | 91.77 108 | 68.84 242 | 77.13 194 | 89.50 156 | 67.63 101 | 94.88 97 | 67.55 219 | 88.52 133 | 93.09 100 |
|
| UniMVSNet (Re) | | | 81.60 122 | 81.11 119 | 83.09 167 | 88.38 175 | 64.41 212 | 87.60 158 | 93.02 45 | 78.42 32 | 78.56 157 | 88.16 195 | 69.78 77 | 93.26 163 | 69.58 201 | 76.49 287 | 91.60 148 |
|
| FC-MVSNet-test | | | 81.52 123 | 82.02 108 | 80.03 244 | 88.42 174 | 55.97 334 | 87.95 148 | 93.42 29 | 77.10 58 | 77.38 182 | 90.98 130 | 69.96 75 | 91.79 222 | 68.46 213 | 84.50 182 | 92.33 128 |
|
| VDDNet | | | 81.52 123 | 80.67 126 | 84.05 134 | 90.44 101 | 64.13 217 | 89.73 84 | 85.91 260 | 71.11 185 | 83.18 97 | 93.48 61 | 50.54 281 | 93.49 153 | 73.40 163 | 88.25 136 | 94.54 34 |
|
| ACMP | | 74.13 6 | 81.51 125 | 80.57 127 | 84.36 110 | 89.42 130 | 68.69 119 | 89.97 77 | 91.50 117 | 74.46 121 | 75.04 248 | 90.41 137 | 53.82 241 | 94.54 107 | 77.56 119 | 82.91 212 | 89.86 221 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 126 | 80.29 134 | 84.70 100 | 86.63 233 | 69.90 88 | 85.95 208 | 86.77 247 | 63.24 311 | 81.07 125 | 89.47 158 | 61.08 183 | 92.15 210 | 78.33 113 | 90.07 110 | 92.05 141 |
| jason: jason. |
| lupinMVS | | | 81.39 126 | 80.27 135 | 84.76 99 | 87.35 213 | 70.21 80 | 85.55 220 | 86.41 251 | 62.85 318 | 81.32 119 | 88.61 181 | 61.68 167 | 92.24 208 | 78.41 112 | 90.26 105 | 91.83 144 |
|
| test_yl | | | 81.17 128 | 80.47 130 | 83.24 160 | 89.13 146 | 63.62 224 | 86.21 202 | 89.95 161 | 72.43 164 | 81.78 115 | 89.61 153 | 57.50 213 | 93.58 147 | 70.75 186 | 86.90 151 | 92.52 121 |
|
| DCV-MVSNet | | | 81.17 128 | 80.47 130 | 83.24 160 | 89.13 146 | 63.62 224 | 86.21 202 | 89.95 161 | 72.43 164 | 81.78 115 | 89.61 153 | 57.50 213 | 93.58 147 | 70.75 186 | 86.90 151 | 92.52 121 |
|
| DU-MVS | | | 81.12 130 | 80.52 129 | 82.90 177 | 87.80 199 | 63.46 231 | 87.02 176 | 91.87 102 | 79.01 26 | 78.38 161 | 89.07 168 | 65.02 129 | 93.05 180 | 70.05 194 | 76.46 288 | 92.20 135 |
|
| PVSNet_Blended | | | 80.98 131 | 80.34 132 | 82.90 177 | 88.85 153 | 65.40 189 | 84.43 248 | 92.00 94 | 67.62 257 | 78.11 168 | 85.05 278 | 66.02 120 | 94.27 116 | 71.52 178 | 89.50 116 | 89.01 246 |
|
| FA-MVS(test-final) | | | 80.96 132 | 79.91 140 | 84.10 123 | 88.30 178 | 65.01 198 | 84.55 243 | 90.01 159 | 73.25 152 | 79.61 139 | 87.57 208 | 58.35 205 | 94.72 103 | 71.29 182 | 86.25 162 | 92.56 120 |
|
| QAPM | | | 80.88 133 | 79.50 149 | 85.03 87 | 88.01 191 | 68.97 107 | 91.59 43 | 92.00 94 | 66.63 272 | 75.15 244 | 92.16 91 | 57.70 210 | 95.45 68 | 63.52 250 | 88.76 128 | 90.66 181 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 134 | 80.31 133 | 82.42 192 | 87.85 197 | 62.33 251 | 87.74 156 | 91.33 119 | 80.55 9 | 77.99 172 | 89.86 146 | 65.23 127 | 92.62 190 | 67.05 226 | 75.24 315 | 92.30 130 |
|
| UGNet | | | 80.83 135 | 79.59 147 | 84.54 103 | 88.04 188 | 68.09 132 | 89.42 95 | 88.16 213 | 76.95 61 | 76.22 212 | 89.46 160 | 49.30 296 | 93.94 129 | 68.48 212 | 90.31 103 | 91.60 148 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 136 | 79.92 139 | 83.47 150 | 88.85 153 | 64.51 207 | 85.53 222 | 89.39 176 | 70.79 191 | 78.49 159 | 85.06 277 | 67.54 102 | 93.58 147 | 67.03 227 | 86.58 156 | 92.32 129 |
|
| XVG-OURS-SEG-HR | | | 80.81 136 | 79.76 143 | 83.96 141 | 85.60 247 | 68.78 111 | 83.54 267 | 90.50 142 | 70.66 197 | 76.71 200 | 91.66 100 | 60.69 188 | 91.26 244 | 76.94 127 | 81.58 228 | 91.83 144 |
|
| xiu_mvs_v1_base_debu | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 236 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| xiu_mvs_v1_base | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 236 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| xiu_mvs_v1_base_debi | | | 80.80 138 | 79.72 144 | 84.03 136 | 87.35 213 | 70.19 82 | 85.56 217 | 88.77 201 | 69.06 236 | 81.83 111 | 88.16 195 | 50.91 275 | 92.85 186 | 78.29 114 | 87.56 141 | 89.06 241 |
|
| ACMM | | 73.20 8 | 80.78 141 | 79.84 142 | 83.58 148 | 89.31 138 | 68.37 125 | 89.99 76 | 91.60 111 | 70.28 204 | 77.25 185 | 89.66 151 | 53.37 246 | 93.53 152 | 74.24 155 | 82.85 213 | 88.85 254 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 142 | 79.51 148 | 84.20 120 | 94.09 38 | 67.27 154 | 89.64 87 | 91.11 127 | 58.75 355 | 74.08 262 | 90.72 132 | 58.10 206 | 95.04 90 | 69.70 199 | 89.42 118 | 90.30 197 |
|
| CANet_DTU | | | 80.61 143 | 79.87 141 | 82.83 179 | 85.60 247 | 63.17 240 | 87.36 166 | 88.65 207 | 76.37 80 | 75.88 219 | 88.44 187 | 53.51 244 | 93.07 179 | 73.30 164 | 89.74 115 | 92.25 132 |
|
| VPA-MVSNet | | | 80.60 144 | 80.55 128 | 80.76 230 | 88.07 187 | 60.80 271 | 86.86 181 | 91.58 112 | 75.67 94 | 80.24 132 | 89.45 162 | 63.34 140 | 90.25 264 | 70.51 190 | 79.22 258 | 91.23 161 |
|
| mvsmamba | | | 80.60 144 | 79.38 151 | 84.27 117 | 89.74 120 | 67.24 156 | 87.47 162 | 86.95 242 | 70.02 209 | 75.38 232 | 88.93 171 | 51.24 272 | 92.56 193 | 75.47 145 | 89.22 120 | 93.00 108 |
|
| PVSNet_BlendedMVS | | | 80.60 144 | 80.02 137 | 82.36 194 | 88.85 153 | 65.40 189 | 86.16 204 | 92.00 94 | 69.34 226 | 78.11 168 | 86.09 254 | 66.02 120 | 94.27 116 | 71.52 178 | 82.06 223 | 87.39 288 |
|
| AdaColmap |  | | 80.58 147 | 79.42 150 | 84.06 131 | 93.09 57 | 68.91 108 | 89.36 98 | 88.97 196 | 69.27 227 | 75.70 222 | 89.69 150 | 57.20 217 | 95.77 59 | 63.06 255 | 88.41 135 | 87.50 287 |
|
| EI-MVSNet | | | 80.52 148 | 79.98 138 | 82.12 195 | 84.28 272 | 63.19 239 | 86.41 195 | 88.95 197 | 74.18 127 | 78.69 152 | 87.54 211 | 66.62 109 | 92.43 198 | 72.57 173 | 80.57 241 | 90.74 179 |
|
| XVG-OURS | | | 80.41 149 | 79.23 157 | 83.97 140 | 85.64 246 | 69.02 105 | 83.03 278 | 90.39 144 | 71.09 186 | 77.63 178 | 91.49 109 | 54.62 235 | 91.35 242 | 75.71 139 | 83.47 205 | 91.54 151 |
|
| SDMVSNet | | | 80.38 150 | 80.18 136 | 80.99 224 | 89.03 151 | 64.94 200 | 80.45 310 | 89.40 175 | 75.19 102 | 76.61 204 | 89.98 144 | 60.61 191 | 87.69 307 | 76.83 129 | 83.55 203 | 90.33 195 |
|
| PCF-MVS | | 73.52 7 | 80.38 150 | 78.84 165 | 85.01 88 | 87.71 204 | 68.99 106 | 83.65 262 | 91.46 118 | 63.00 315 | 77.77 176 | 90.28 138 | 66.10 117 | 95.09 89 | 61.40 274 | 88.22 137 | 90.94 172 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 152 | 77.83 188 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 49 | 79.14 21 | 83.67 92 | 12.47 418 | 67.45 103 | 96.60 33 | 83.06 68 | 94.50 51 | 94.07 52 |
|
| test_djsdf | | | 80.30 153 | 79.32 154 | 83.27 158 | 83.98 280 | 65.37 192 | 90.50 64 | 90.38 145 | 68.55 246 | 76.19 213 | 88.70 177 | 56.44 222 | 93.46 156 | 78.98 105 | 80.14 247 | 90.97 171 |
|
| v2v482 | | | 80.23 154 | 79.29 155 | 83.05 170 | 83.62 288 | 64.14 216 | 87.04 175 | 89.97 160 | 73.61 139 | 78.18 167 | 87.22 219 | 61.10 182 | 93.82 137 | 76.11 134 | 76.78 285 | 91.18 162 |
|
| NR-MVSNet | | | 80.23 154 | 79.38 151 | 82.78 185 | 87.80 199 | 63.34 234 | 86.31 199 | 91.09 128 | 79.01 26 | 72.17 286 | 89.07 168 | 67.20 106 | 92.81 189 | 66.08 233 | 75.65 301 | 92.20 135 |
|
| Anonymous20240529 | | | 80.19 156 | 78.89 164 | 84.10 123 | 90.60 97 | 64.75 204 | 88.95 111 | 90.90 131 | 65.97 280 | 80.59 129 | 91.17 120 | 49.97 286 | 93.73 145 | 69.16 205 | 82.70 217 | 93.81 65 |
|
| IterMVS-LS | | | 80.06 157 | 79.38 151 | 82.11 196 | 85.89 242 | 63.20 238 | 86.79 184 | 89.34 177 | 74.19 126 | 75.45 229 | 86.72 231 | 66.62 109 | 92.39 200 | 72.58 172 | 76.86 282 | 90.75 178 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 158 | 78.57 169 | 84.42 108 | 85.13 258 | 68.74 114 | 88.77 117 | 88.10 215 | 74.99 106 | 74.97 249 | 83.49 310 | 57.27 216 | 93.36 160 | 73.53 160 | 80.88 235 | 91.18 162 |
|
| v1144 | | | 80.03 158 | 79.03 161 | 83.01 172 | 83.78 285 | 64.51 207 | 87.11 174 | 90.57 141 | 71.96 170 | 78.08 170 | 86.20 251 | 61.41 174 | 93.94 129 | 74.93 148 | 77.23 276 | 90.60 184 |
|
| v8 | | | 79.97 160 | 79.02 162 | 82.80 182 | 84.09 277 | 64.50 209 | 87.96 147 | 90.29 152 | 74.13 129 | 75.24 241 | 86.81 228 | 62.88 151 | 93.89 136 | 74.39 153 | 75.40 310 | 90.00 213 |
|
| OpenMVS |  | 72.83 10 | 79.77 161 | 78.33 176 | 84.09 127 | 85.17 254 | 69.91 87 | 90.57 61 | 90.97 129 | 66.70 266 | 72.17 286 | 91.91 94 | 54.70 233 | 93.96 126 | 61.81 271 | 90.95 96 | 88.41 269 |
|
| v10 | | | 79.74 162 | 78.67 166 | 82.97 175 | 84.06 278 | 64.95 199 | 87.88 153 | 90.62 138 | 73.11 154 | 75.11 245 | 86.56 242 | 61.46 173 | 94.05 125 | 73.68 158 | 75.55 303 | 89.90 219 |
|
| ECVR-MVS |  | | 79.61 163 | 79.26 156 | 80.67 232 | 90.08 108 | 54.69 349 | 87.89 152 | 77.44 358 | 74.88 110 | 80.27 131 | 92.79 82 | 48.96 302 | 92.45 197 | 68.55 211 | 92.50 77 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 163 | 78.44 172 | 83.14 165 | 89.38 134 | 65.93 177 | 84.95 233 | 87.15 239 | 73.56 141 | 78.19 166 | 89.79 148 | 56.67 220 | 93.36 160 | 59.53 289 | 86.74 154 | 90.13 203 |
|
| v1192 | | | 79.59 165 | 78.43 173 | 83.07 169 | 83.55 290 | 64.52 206 | 86.93 179 | 90.58 139 | 70.83 190 | 77.78 175 | 85.90 255 | 59.15 200 | 93.94 129 | 73.96 157 | 77.19 278 | 90.76 177 |
|
| ab-mvs | | | 79.51 166 | 78.97 163 | 81.14 220 | 88.46 171 | 60.91 269 | 83.84 258 | 89.24 183 | 70.36 201 | 79.03 146 | 88.87 174 | 63.23 144 | 90.21 265 | 65.12 240 | 82.57 218 | 92.28 131 |
|
| WR-MVS | | | 79.49 167 | 79.22 158 | 80.27 240 | 88.79 159 | 58.35 294 | 85.06 230 | 88.61 209 | 78.56 30 | 77.65 177 | 88.34 189 | 63.81 139 | 90.66 260 | 64.98 242 | 77.22 277 | 91.80 146 |
|
| v144192 | | | 79.47 168 | 78.37 174 | 82.78 185 | 83.35 293 | 63.96 219 | 86.96 177 | 90.36 148 | 69.99 211 | 77.50 179 | 85.67 262 | 60.66 189 | 93.77 141 | 74.27 154 | 76.58 286 | 90.62 182 |
|
| BH-untuned | | | 79.47 168 | 78.60 168 | 82.05 197 | 89.19 144 | 65.91 178 | 86.07 206 | 88.52 210 | 72.18 166 | 75.42 230 | 87.69 205 | 61.15 181 | 93.54 151 | 60.38 281 | 86.83 153 | 86.70 307 |
|
| test1111 | | | 79.43 170 | 79.18 159 | 80.15 242 | 89.99 113 | 53.31 362 | 87.33 168 | 77.05 362 | 75.04 105 | 80.23 133 | 92.77 84 | 48.97 301 | 92.33 205 | 68.87 208 | 92.40 79 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 171 | 79.11 160 | 80.34 238 | 84.45 271 | 57.97 301 | 82.59 280 | 87.62 228 | 67.40 261 | 76.17 216 | 88.56 184 | 68.47 92 | 89.59 276 | 70.65 189 | 86.05 166 | 93.47 84 |
|
| thisisatest0530 | | | 79.40 172 | 77.76 193 | 84.31 113 | 87.69 206 | 65.10 197 | 87.36 166 | 84.26 281 | 70.04 208 | 77.42 181 | 88.26 193 | 49.94 287 | 94.79 101 | 70.20 192 | 84.70 180 | 93.03 105 |
|
| tttt0517 | | | 79.40 172 | 77.91 185 | 83.90 143 | 88.10 185 | 63.84 221 | 88.37 134 | 84.05 283 | 71.45 179 | 76.78 198 | 89.12 167 | 49.93 289 | 94.89 96 | 70.18 193 | 83.18 210 | 92.96 110 |
|
| V42 | | | 79.38 174 | 78.24 178 | 82.83 179 | 81.10 340 | 65.50 188 | 85.55 220 | 89.82 163 | 71.57 177 | 78.21 165 | 86.12 253 | 60.66 189 | 93.18 173 | 75.64 140 | 75.46 307 | 89.81 224 |
|
| jajsoiax | | | 79.29 175 | 77.96 183 | 83.27 158 | 84.68 265 | 66.57 167 | 89.25 101 | 90.16 155 | 69.20 232 | 75.46 228 | 89.49 157 | 45.75 327 | 93.13 176 | 76.84 128 | 80.80 237 | 90.11 205 |
|
| v1921920 | | | 79.22 176 | 78.03 182 | 82.80 182 | 83.30 295 | 63.94 220 | 86.80 183 | 90.33 149 | 69.91 214 | 77.48 180 | 85.53 265 | 58.44 204 | 93.75 143 | 73.60 159 | 76.85 283 | 90.71 180 |
|
| AUN-MVS | | | 79.21 177 | 77.60 198 | 84.05 134 | 88.71 163 | 67.61 143 | 85.84 213 | 87.26 236 | 69.08 235 | 77.23 187 | 88.14 199 | 53.20 248 | 93.47 155 | 75.50 144 | 73.45 332 | 91.06 166 |
|
| TAPA-MVS | | 73.13 9 | 79.15 178 | 77.94 184 | 82.79 184 | 89.59 122 | 62.99 245 | 88.16 142 | 91.51 114 | 65.77 281 | 77.14 193 | 91.09 122 | 60.91 185 | 93.21 167 | 50.26 352 | 87.05 149 | 92.17 137 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 179 | 77.77 192 | 83.22 162 | 84.70 264 | 66.37 169 | 89.17 102 | 90.19 154 | 69.38 225 | 75.40 231 | 89.46 160 | 44.17 337 | 93.15 174 | 76.78 130 | 80.70 239 | 90.14 202 |
|
| UniMVSNet_ETH3D | | | 79.10 180 | 78.24 178 | 81.70 204 | 86.85 226 | 60.24 280 | 87.28 170 | 88.79 200 | 74.25 125 | 76.84 195 | 90.53 136 | 49.48 292 | 91.56 231 | 67.98 215 | 82.15 221 | 93.29 90 |
|
| CDS-MVSNet | | | 79.07 181 | 77.70 195 | 83.17 164 | 87.60 208 | 68.23 129 | 84.40 250 | 86.20 256 | 67.49 259 | 76.36 209 | 86.54 243 | 61.54 170 | 90.79 257 | 61.86 270 | 87.33 145 | 90.49 189 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 182 | 77.88 187 | 82.38 193 | 83.07 302 | 64.80 203 | 84.08 257 | 88.95 197 | 69.01 239 | 78.69 152 | 87.17 222 | 54.70 233 | 92.43 198 | 74.69 149 | 80.57 241 | 89.89 220 |
|
| v1240 | | | 78.99 183 | 77.78 191 | 82.64 188 | 83.21 297 | 63.54 228 | 86.62 190 | 90.30 151 | 69.74 221 | 77.33 183 | 85.68 261 | 57.04 218 | 93.76 142 | 73.13 167 | 76.92 280 | 90.62 182 |
|
| Anonymous20231211 | | | 78.97 184 | 77.69 196 | 82.81 181 | 90.54 99 | 64.29 214 | 90.11 75 | 91.51 114 | 65.01 292 | 76.16 217 | 88.13 200 | 50.56 280 | 93.03 183 | 69.68 200 | 77.56 275 | 91.11 164 |
|
| v7n | | | 78.97 184 | 77.58 199 | 83.14 165 | 83.45 292 | 65.51 187 | 88.32 136 | 91.21 122 | 73.69 137 | 72.41 282 | 86.32 249 | 57.93 207 | 93.81 138 | 69.18 204 | 75.65 301 | 90.11 205 |
|
| TAMVS | | | 78.89 186 | 77.51 200 | 83.03 171 | 87.80 199 | 67.79 139 | 84.72 237 | 85.05 270 | 67.63 256 | 76.75 199 | 87.70 204 | 62.25 160 | 90.82 256 | 58.53 300 | 87.13 148 | 90.49 189 |
|
| c3_l | | | 78.75 187 | 77.91 185 | 81.26 216 | 82.89 309 | 61.56 262 | 84.09 256 | 89.13 189 | 69.97 212 | 75.56 224 | 84.29 292 | 66.36 114 | 92.09 212 | 73.47 162 | 75.48 305 | 90.12 204 |
|
| tt0805 | | | 78.73 188 | 77.83 188 | 81.43 210 | 85.17 254 | 60.30 279 | 89.41 96 | 90.90 131 | 71.21 183 | 77.17 192 | 88.73 176 | 46.38 316 | 93.21 167 | 72.57 173 | 78.96 259 | 90.79 175 |
|
| v148 | | | 78.72 189 | 77.80 190 | 81.47 209 | 82.73 312 | 61.96 257 | 86.30 200 | 88.08 216 | 73.26 151 | 76.18 214 | 85.47 267 | 62.46 156 | 92.36 202 | 71.92 177 | 73.82 329 | 90.09 207 |
|
| VPNet | | | 78.69 190 | 78.66 167 | 78.76 267 | 88.31 177 | 55.72 338 | 84.45 247 | 86.63 249 | 76.79 66 | 78.26 164 | 90.55 135 | 59.30 199 | 89.70 275 | 66.63 228 | 77.05 279 | 90.88 173 |
|
| ET-MVSNet_ETH3D | | | 78.63 191 | 76.63 221 | 84.64 101 | 86.73 230 | 69.47 95 | 85.01 231 | 84.61 274 | 69.54 222 | 66.51 348 | 86.59 239 | 50.16 284 | 91.75 224 | 76.26 133 | 84.24 190 | 92.69 116 |
|
| anonymousdsp | | | 78.60 192 | 77.15 206 | 82.98 174 | 80.51 346 | 67.08 159 | 87.24 171 | 89.53 172 | 65.66 283 | 75.16 243 | 87.19 221 | 52.52 249 | 92.25 207 | 77.17 124 | 79.34 256 | 89.61 229 |
|
| miper_ehance_all_eth | | | 78.59 193 | 77.76 193 | 81.08 222 | 82.66 314 | 61.56 262 | 83.65 262 | 89.15 187 | 68.87 241 | 75.55 225 | 83.79 303 | 66.49 112 | 92.03 213 | 73.25 165 | 76.39 290 | 89.64 228 |
|
| WR-MVS_H | | | 78.51 194 | 78.49 170 | 78.56 272 | 88.02 189 | 56.38 328 | 88.43 129 | 92.67 66 | 77.14 56 | 73.89 263 | 87.55 210 | 66.25 116 | 89.24 283 | 58.92 295 | 73.55 331 | 90.06 211 |
|
| GBi-Net | | | 78.40 195 | 77.40 201 | 81.40 212 | 87.60 208 | 63.01 241 | 88.39 131 | 89.28 179 | 71.63 173 | 75.34 234 | 87.28 215 | 54.80 229 | 91.11 247 | 62.72 257 | 79.57 251 | 90.09 207 |
|
| test1 | | | 78.40 195 | 77.40 201 | 81.40 212 | 87.60 208 | 63.01 241 | 88.39 131 | 89.28 179 | 71.63 173 | 75.34 234 | 87.28 215 | 54.80 229 | 91.11 247 | 62.72 257 | 79.57 251 | 90.09 207 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 197 | 78.45 171 | 78.07 283 | 88.64 165 | 51.78 372 | 86.70 188 | 79.63 343 | 74.14 128 | 75.11 245 | 90.83 131 | 61.29 178 | 89.75 273 | 58.10 305 | 91.60 87 | 92.69 116 |
|
| Anonymous202405211 | | | 78.25 198 | 77.01 208 | 81.99 199 | 91.03 87 | 60.67 273 | 84.77 236 | 83.90 285 | 70.65 198 | 80.00 135 | 91.20 118 | 41.08 356 | 91.43 240 | 65.21 239 | 85.26 174 | 93.85 62 |
|
| CP-MVSNet | | | 78.22 199 | 78.34 175 | 77.84 285 | 87.83 198 | 54.54 351 | 87.94 149 | 91.17 124 | 77.65 38 | 73.48 268 | 88.49 185 | 62.24 161 | 88.43 298 | 62.19 265 | 74.07 324 | 90.55 186 |
|
| BH-w/o | | | 78.21 200 | 77.33 204 | 80.84 228 | 88.81 157 | 65.13 196 | 84.87 234 | 87.85 224 | 69.75 219 | 74.52 257 | 84.74 284 | 61.34 176 | 93.11 177 | 58.24 304 | 85.84 170 | 84.27 344 |
|
| FMVSNet2 | | | 78.20 201 | 77.21 205 | 81.20 218 | 87.60 208 | 62.89 247 | 87.47 162 | 89.02 192 | 71.63 173 | 75.29 240 | 87.28 215 | 54.80 229 | 91.10 250 | 62.38 262 | 79.38 255 | 89.61 229 |
|
| MVS | | | 78.19 202 | 76.99 210 | 81.78 202 | 85.66 245 | 66.99 160 | 84.66 238 | 90.47 143 | 55.08 375 | 72.02 288 | 85.27 270 | 63.83 138 | 94.11 124 | 66.10 232 | 89.80 114 | 84.24 345 |
|
| Baseline_NR-MVSNet | | | 78.15 203 | 78.33 176 | 77.61 290 | 85.79 243 | 56.21 332 | 86.78 185 | 85.76 262 | 73.60 140 | 77.93 173 | 87.57 208 | 65.02 129 | 88.99 287 | 67.14 225 | 75.33 312 | 87.63 282 |
|
| CNLPA | | | 78.08 204 | 76.79 215 | 81.97 200 | 90.40 102 | 71.07 65 | 87.59 159 | 84.55 275 | 66.03 279 | 72.38 283 | 89.64 152 | 57.56 212 | 86.04 320 | 59.61 288 | 83.35 207 | 88.79 257 |
|
| cl22 | | | 78.07 205 | 77.01 208 | 81.23 217 | 82.37 321 | 61.83 259 | 83.55 266 | 87.98 218 | 68.96 240 | 75.06 247 | 83.87 299 | 61.40 175 | 91.88 220 | 73.53 160 | 76.39 290 | 89.98 216 |
|
| PLC |  | 70.83 11 | 78.05 206 | 76.37 226 | 83.08 168 | 91.88 77 | 67.80 138 | 88.19 140 | 89.46 174 | 64.33 300 | 69.87 312 | 88.38 188 | 53.66 242 | 93.58 147 | 58.86 296 | 82.73 215 | 87.86 278 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 207 | 76.49 222 | 82.62 189 | 83.16 301 | 66.96 163 | 86.94 178 | 87.45 233 | 72.45 161 | 71.49 294 | 84.17 296 | 54.79 232 | 91.58 229 | 67.61 218 | 80.31 244 | 89.30 237 |
|
| PS-CasMVS | | | 78.01 208 | 78.09 181 | 77.77 287 | 87.71 204 | 54.39 353 | 88.02 145 | 91.22 121 | 77.50 46 | 73.26 270 | 88.64 180 | 60.73 186 | 88.41 299 | 61.88 269 | 73.88 328 | 90.53 187 |
|
| HY-MVS | | 69.67 12 | 77.95 209 | 77.15 206 | 80.36 237 | 87.57 212 | 60.21 281 | 83.37 269 | 87.78 226 | 66.11 276 | 75.37 233 | 87.06 226 | 63.27 142 | 90.48 262 | 61.38 275 | 82.43 219 | 90.40 193 |
|
| eth_miper_zixun_eth | | | 77.92 210 | 76.69 219 | 81.61 207 | 83.00 305 | 61.98 256 | 83.15 272 | 89.20 185 | 69.52 223 | 74.86 251 | 84.35 291 | 61.76 166 | 92.56 193 | 71.50 180 | 72.89 337 | 90.28 198 |
|
| FMVSNet3 | | | 77.88 211 | 76.85 213 | 80.97 226 | 86.84 227 | 62.36 250 | 86.52 193 | 88.77 201 | 71.13 184 | 75.34 234 | 86.66 237 | 54.07 239 | 91.10 250 | 62.72 257 | 79.57 251 | 89.45 233 |
|
| miper_enhance_ethall | | | 77.87 212 | 76.86 212 | 80.92 227 | 81.65 328 | 61.38 264 | 82.68 279 | 88.98 194 | 65.52 285 | 75.47 226 | 82.30 330 | 65.76 124 | 92.00 215 | 72.95 168 | 76.39 290 | 89.39 234 |
|
| FE-MVS | | | 77.78 213 | 75.68 232 | 84.08 128 | 88.09 186 | 66.00 175 | 83.13 273 | 87.79 225 | 68.42 250 | 78.01 171 | 85.23 272 | 45.50 330 | 95.12 83 | 59.11 293 | 85.83 171 | 91.11 164 |
|
| PEN-MVS | | | 77.73 214 | 77.69 196 | 77.84 285 | 87.07 224 | 53.91 356 | 87.91 151 | 91.18 123 | 77.56 43 | 73.14 272 | 88.82 175 | 61.23 179 | 89.17 284 | 59.95 284 | 72.37 339 | 90.43 191 |
|
| cl____ | | | 77.72 215 | 76.76 216 | 80.58 233 | 82.49 318 | 60.48 276 | 83.09 274 | 87.87 222 | 69.22 230 | 74.38 260 | 85.22 273 | 62.10 163 | 91.53 234 | 71.09 183 | 75.41 309 | 89.73 227 |
|
| DIV-MVS_self_test | | | 77.72 215 | 76.76 216 | 80.58 233 | 82.48 319 | 60.48 276 | 83.09 274 | 87.86 223 | 69.22 230 | 74.38 260 | 85.24 271 | 62.10 163 | 91.53 234 | 71.09 183 | 75.40 310 | 89.74 226 |
|
| sd_testset | | | 77.70 217 | 77.40 201 | 78.60 270 | 89.03 151 | 60.02 282 | 79.00 329 | 85.83 261 | 75.19 102 | 76.61 204 | 89.98 144 | 54.81 228 | 85.46 328 | 62.63 261 | 83.55 203 | 90.33 195 |
|
| PAPM | | | 77.68 218 | 76.40 225 | 81.51 208 | 87.29 220 | 61.85 258 | 83.78 259 | 89.59 170 | 64.74 294 | 71.23 295 | 88.70 177 | 62.59 153 | 93.66 146 | 52.66 337 | 87.03 150 | 89.01 246 |
|
| CHOSEN 1792x2688 | | | 77.63 219 | 75.69 231 | 83.44 151 | 89.98 114 | 68.58 122 | 78.70 334 | 87.50 231 | 56.38 370 | 75.80 221 | 86.84 227 | 58.67 202 | 91.40 241 | 61.58 273 | 85.75 172 | 90.34 194 |
|
| HyFIR lowres test | | | 77.53 220 | 75.40 239 | 83.94 142 | 89.59 122 | 66.62 165 | 80.36 311 | 88.64 208 | 56.29 371 | 76.45 206 | 85.17 274 | 57.64 211 | 93.28 162 | 61.34 276 | 83.10 211 | 91.91 143 |
|
| FMVSNet1 | | | 77.44 221 | 76.12 228 | 81.40 212 | 86.81 228 | 63.01 241 | 88.39 131 | 89.28 179 | 70.49 200 | 74.39 259 | 87.28 215 | 49.06 300 | 91.11 247 | 60.91 278 | 78.52 262 | 90.09 207 |
|
| TR-MVS | | | 77.44 221 | 76.18 227 | 81.20 218 | 88.24 179 | 63.24 236 | 84.61 241 | 86.40 252 | 67.55 258 | 77.81 174 | 86.48 245 | 54.10 238 | 93.15 174 | 57.75 308 | 82.72 216 | 87.20 293 |
|
| 1112_ss | | | 77.40 223 | 76.43 224 | 80.32 239 | 89.11 150 | 60.41 278 | 83.65 262 | 87.72 227 | 62.13 328 | 73.05 273 | 86.72 231 | 62.58 154 | 89.97 269 | 62.11 268 | 80.80 237 | 90.59 185 |
|
| thisisatest0515 | | | 77.33 224 | 75.38 240 | 83.18 163 | 85.27 253 | 63.80 222 | 82.11 285 | 83.27 295 | 65.06 290 | 75.91 218 | 83.84 301 | 49.54 291 | 94.27 116 | 67.24 223 | 86.19 163 | 91.48 155 |
|
| test2506 | | | 77.30 225 | 76.49 222 | 79.74 250 | 90.08 108 | 52.02 366 | 87.86 154 | 63.10 404 | 74.88 110 | 80.16 134 | 92.79 82 | 38.29 370 | 92.35 203 | 68.74 210 | 92.50 77 | 94.86 17 |
|
| pm-mvs1 | | | 77.25 226 | 76.68 220 | 78.93 265 | 84.22 274 | 58.62 292 | 86.41 195 | 88.36 212 | 71.37 180 | 73.31 269 | 88.01 201 | 61.22 180 | 89.15 285 | 64.24 248 | 73.01 336 | 89.03 245 |
|
| LCM-MVSNet-Re | | | 77.05 227 | 76.94 211 | 77.36 294 | 87.20 221 | 51.60 373 | 80.06 314 | 80.46 333 | 75.20 101 | 67.69 330 | 86.72 231 | 62.48 155 | 88.98 288 | 63.44 252 | 89.25 119 | 91.51 152 |
|
| DTE-MVSNet | | | 76.99 228 | 76.80 214 | 77.54 293 | 86.24 236 | 53.06 365 | 87.52 160 | 90.66 137 | 77.08 59 | 72.50 280 | 88.67 179 | 60.48 193 | 89.52 277 | 57.33 312 | 70.74 351 | 90.05 212 |
|
| baseline1 | | | 76.98 229 | 76.75 218 | 77.66 288 | 88.13 183 | 55.66 339 | 85.12 228 | 81.89 316 | 73.04 156 | 76.79 197 | 88.90 172 | 62.43 157 | 87.78 306 | 63.30 254 | 71.18 349 | 89.55 231 |
|
| LS3D | | | 76.95 230 | 74.82 247 | 83.37 155 | 90.45 100 | 67.36 151 | 89.15 106 | 86.94 243 | 61.87 330 | 69.52 315 | 90.61 134 | 51.71 268 | 94.53 108 | 46.38 373 | 86.71 155 | 88.21 272 |
|
| GA-MVS | | | 76.87 231 | 75.17 244 | 81.97 200 | 82.75 311 | 62.58 248 | 81.44 294 | 86.35 254 | 72.16 168 | 74.74 252 | 82.89 321 | 46.20 321 | 92.02 214 | 68.85 209 | 81.09 233 | 91.30 160 |
|
| mamv4 | | | 76.81 232 | 78.23 180 | 72.54 342 | 86.12 239 | 65.75 184 | 78.76 333 | 82.07 315 | 64.12 302 | 72.97 274 | 91.02 127 | 67.97 97 | 68.08 406 | 83.04 70 | 78.02 269 | 83.80 352 |
|
| DP-MVS | | | 76.78 233 | 74.57 249 | 83.42 152 | 93.29 48 | 69.46 97 | 88.55 127 | 83.70 287 | 63.98 307 | 70.20 303 | 88.89 173 | 54.01 240 | 94.80 100 | 46.66 370 | 81.88 226 | 86.01 319 |
|
| cascas | | | 76.72 234 | 74.64 248 | 82.99 173 | 85.78 244 | 65.88 179 | 82.33 282 | 89.21 184 | 60.85 336 | 72.74 276 | 81.02 341 | 47.28 309 | 93.75 143 | 67.48 220 | 85.02 175 | 89.34 236 |
|
| testing91 | | | 76.54 235 | 75.66 234 | 79.18 262 | 88.43 173 | 55.89 335 | 81.08 297 | 83.00 303 | 73.76 136 | 75.34 234 | 84.29 292 | 46.20 321 | 90.07 267 | 64.33 246 | 84.50 182 | 91.58 150 |
|
| 1314 | | | 76.53 236 | 75.30 243 | 80.21 241 | 83.93 281 | 62.32 252 | 84.66 238 | 88.81 199 | 60.23 340 | 70.16 306 | 84.07 298 | 55.30 226 | 90.73 259 | 67.37 221 | 83.21 209 | 87.59 285 |
|
| thres100view900 | | | 76.50 237 | 75.55 236 | 79.33 258 | 89.52 125 | 56.99 317 | 85.83 214 | 83.23 296 | 73.94 131 | 76.32 210 | 87.12 223 | 51.89 264 | 91.95 216 | 48.33 361 | 83.75 197 | 89.07 239 |
|
| thres600view7 | | | 76.50 237 | 75.44 237 | 79.68 252 | 89.40 132 | 57.16 314 | 85.53 222 | 83.23 296 | 73.79 135 | 76.26 211 | 87.09 224 | 51.89 264 | 91.89 219 | 48.05 366 | 83.72 200 | 90.00 213 |
|
| thres400 | | | 76.50 237 | 75.37 241 | 79.86 247 | 89.13 146 | 57.65 308 | 85.17 225 | 83.60 288 | 73.41 147 | 76.45 206 | 86.39 247 | 52.12 256 | 91.95 216 | 48.33 361 | 83.75 197 | 90.00 213 |
|
| MonoMVSNet | | | 76.49 240 | 75.80 229 | 78.58 271 | 81.55 331 | 58.45 293 | 86.36 198 | 86.22 255 | 74.87 112 | 74.73 253 | 83.73 305 | 51.79 267 | 88.73 293 | 70.78 185 | 72.15 342 | 88.55 266 |
|
| tfpn200view9 | | | 76.42 241 | 75.37 241 | 79.55 257 | 89.13 146 | 57.65 308 | 85.17 225 | 83.60 288 | 73.41 147 | 76.45 206 | 86.39 247 | 52.12 256 | 91.95 216 | 48.33 361 | 83.75 197 | 89.07 239 |
|
| Test_1112_low_res | | | 76.40 242 | 75.44 237 | 79.27 259 | 89.28 140 | 58.09 297 | 81.69 289 | 87.07 240 | 59.53 347 | 72.48 281 | 86.67 236 | 61.30 177 | 89.33 280 | 60.81 280 | 80.15 246 | 90.41 192 |
|
| F-COLMAP | | | 76.38 243 | 74.33 255 | 82.50 191 | 89.28 140 | 66.95 164 | 88.41 130 | 89.03 191 | 64.05 305 | 66.83 340 | 88.61 181 | 46.78 313 | 92.89 185 | 57.48 309 | 78.55 261 | 87.67 281 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 244 | 74.54 251 | 81.41 211 | 88.60 166 | 64.38 213 | 79.24 324 | 89.12 190 | 70.76 193 | 69.79 314 | 87.86 202 | 49.09 299 | 93.20 170 | 56.21 322 | 80.16 245 | 86.65 308 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 245 | 74.46 253 | 81.13 221 | 85.37 252 | 69.79 89 | 84.42 249 | 87.95 220 | 65.03 291 | 67.46 333 | 85.33 269 | 53.28 247 | 91.73 226 | 58.01 306 | 83.27 208 | 81.85 371 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 246 | 74.27 256 | 81.62 205 | 83.20 298 | 64.67 205 | 83.60 265 | 89.75 166 | 69.75 219 | 71.85 289 | 87.09 224 | 32.78 383 | 92.11 211 | 69.99 196 | 80.43 243 | 88.09 274 |
|
| testing99 | | | 76.09 247 | 75.12 245 | 79.00 263 | 88.16 181 | 55.50 341 | 80.79 301 | 81.40 322 | 73.30 150 | 75.17 242 | 84.27 294 | 44.48 335 | 90.02 268 | 64.28 247 | 84.22 191 | 91.48 155 |
|
| ACMH+ | | 68.96 14 | 76.01 248 | 74.01 257 | 82.03 198 | 88.60 166 | 65.31 193 | 88.86 114 | 87.55 229 | 70.25 206 | 67.75 329 | 87.47 213 | 41.27 354 | 93.19 172 | 58.37 302 | 75.94 298 | 87.60 283 |
|
| ACMH | | 67.68 16 | 75.89 249 | 73.93 259 | 81.77 203 | 88.71 163 | 66.61 166 | 88.62 125 | 89.01 193 | 69.81 215 | 66.78 341 | 86.70 235 | 41.95 353 | 91.51 236 | 55.64 323 | 78.14 268 | 87.17 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 250 | 73.36 266 | 83.31 156 | 84.76 263 | 66.03 173 | 83.38 268 | 85.06 269 | 70.21 207 | 69.40 316 | 81.05 340 | 45.76 326 | 94.66 106 | 65.10 241 | 75.49 304 | 89.25 238 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 251 | 73.83 262 | 81.30 215 | 83.26 296 | 61.79 260 | 82.57 281 | 80.65 329 | 66.81 263 | 66.88 339 | 83.42 311 | 57.86 209 | 92.19 209 | 63.47 251 | 79.57 251 | 89.91 218 |
|
| WTY-MVS | | | 75.65 252 | 75.68 232 | 75.57 310 | 86.40 235 | 56.82 319 | 77.92 346 | 82.40 311 | 65.10 289 | 76.18 214 | 87.72 203 | 63.13 149 | 80.90 358 | 60.31 282 | 81.96 224 | 89.00 248 |
|
| thres200 | | | 75.55 253 | 74.47 252 | 78.82 266 | 87.78 202 | 57.85 304 | 83.07 276 | 83.51 291 | 72.44 163 | 75.84 220 | 84.42 287 | 52.08 259 | 91.75 224 | 47.41 368 | 83.64 202 | 86.86 303 |
|
| test_vis1_n_1920 | | | 75.52 254 | 75.78 230 | 74.75 323 | 79.84 354 | 57.44 312 | 83.26 270 | 85.52 264 | 62.83 319 | 79.34 144 | 86.17 252 | 45.10 332 | 79.71 362 | 78.75 107 | 81.21 232 | 87.10 300 |
|
| EPNet_dtu | | | 75.46 255 | 74.86 246 | 77.23 297 | 82.57 316 | 54.60 350 | 86.89 180 | 83.09 300 | 71.64 172 | 66.25 350 | 85.86 257 | 55.99 223 | 88.04 303 | 54.92 326 | 86.55 157 | 89.05 244 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 256 | 73.87 261 | 80.11 243 | 82.69 313 | 64.85 202 | 81.57 291 | 83.47 292 | 69.16 233 | 70.49 300 | 84.15 297 | 51.95 262 | 88.15 301 | 69.23 203 | 72.14 343 | 87.34 290 |
|
| XXY-MVS | | | 75.41 257 | 75.56 235 | 74.96 319 | 83.59 289 | 57.82 305 | 80.59 307 | 83.87 286 | 66.54 273 | 74.93 250 | 88.31 190 | 63.24 143 | 80.09 361 | 62.16 266 | 76.85 283 | 86.97 301 |
|
| reproduce_monomvs | | | 75.40 258 | 74.38 254 | 78.46 277 | 83.92 282 | 57.80 306 | 83.78 259 | 86.94 243 | 73.47 145 | 72.25 285 | 84.47 286 | 38.74 366 | 89.27 282 | 75.32 146 | 70.53 352 | 88.31 270 |
|
| TransMVSNet (Re) | | | 75.39 259 | 74.56 250 | 77.86 284 | 85.50 249 | 57.10 316 | 86.78 185 | 86.09 259 | 72.17 167 | 71.53 293 | 87.34 214 | 63.01 150 | 89.31 281 | 56.84 317 | 61.83 378 | 87.17 294 |
|
| CostFormer | | | 75.24 260 | 73.90 260 | 79.27 259 | 82.65 315 | 58.27 296 | 80.80 300 | 82.73 309 | 61.57 331 | 75.33 238 | 83.13 316 | 55.52 224 | 91.07 253 | 64.98 242 | 78.34 267 | 88.45 267 |
|
| testing11 | | | 75.14 261 | 74.01 257 | 78.53 274 | 88.16 181 | 56.38 328 | 80.74 304 | 80.42 334 | 70.67 194 | 72.69 279 | 83.72 306 | 43.61 341 | 89.86 270 | 62.29 264 | 83.76 196 | 89.36 235 |
|
| D2MVS | | | 74.82 262 | 73.21 267 | 79.64 254 | 79.81 355 | 62.56 249 | 80.34 312 | 87.35 234 | 64.37 299 | 68.86 321 | 82.66 325 | 46.37 317 | 90.10 266 | 67.91 216 | 81.24 231 | 86.25 312 |
|
| pmmvs6 | | | 74.69 263 | 73.39 265 | 78.61 269 | 81.38 335 | 57.48 311 | 86.64 189 | 87.95 220 | 64.99 293 | 70.18 304 | 86.61 238 | 50.43 282 | 89.52 277 | 62.12 267 | 70.18 354 | 88.83 255 |
|
| tfpnnormal | | | 74.39 264 | 73.16 268 | 78.08 282 | 86.10 241 | 58.05 298 | 84.65 240 | 87.53 230 | 70.32 203 | 71.22 296 | 85.63 263 | 54.97 227 | 89.86 270 | 43.03 384 | 75.02 317 | 86.32 311 |
|
| IterMVS | | | 74.29 265 | 72.94 271 | 78.35 278 | 81.53 332 | 63.49 230 | 81.58 290 | 82.49 310 | 68.06 254 | 69.99 309 | 83.69 307 | 51.66 269 | 85.54 326 | 65.85 235 | 71.64 346 | 86.01 319 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 266 | 72.42 277 | 79.80 249 | 83.76 286 | 59.59 287 | 85.92 210 | 86.64 248 | 66.39 274 | 66.96 338 | 87.58 207 | 39.46 362 | 91.60 228 | 65.76 236 | 69.27 357 | 88.22 271 |
|
| SCA | | | 74.22 267 | 72.33 278 | 79.91 246 | 84.05 279 | 62.17 254 | 79.96 317 | 79.29 346 | 66.30 275 | 72.38 283 | 80.13 351 | 51.95 262 | 88.60 296 | 59.25 291 | 77.67 274 | 88.96 250 |
|
| mmtdpeth | | | 74.16 268 | 73.01 270 | 77.60 292 | 83.72 287 | 61.13 265 | 85.10 229 | 85.10 268 | 72.06 169 | 77.21 191 | 80.33 349 | 43.84 339 | 85.75 322 | 77.14 125 | 52.61 396 | 85.91 322 |
|
| miper_lstm_enhance | | | 74.11 269 | 73.11 269 | 77.13 298 | 80.11 350 | 59.62 286 | 72.23 374 | 86.92 245 | 66.76 265 | 70.40 301 | 82.92 320 | 56.93 219 | 82.92 347 | 69.06 206 | 72.63 338 | 88.87 253 |
|
| testing222 | | | 74.04 270 | 72.66 274 | 78.19 280 | 87.89 195 | 55.36 342 | 81.06 298 | 79.20 347 | 71.30 181 | 74.65 255 | 83.57 309 | 39.11 365 | 88.67 295 | 51.43 344 | 85.75 172 | 90.53 187 |
|
| EG-PatchMatch MVS | | | 74.04 270 | 71.82 282 | 80.71 231 | 84.92 261 | 67.42 148 | 85.86 212 | 88.08 216 | 66.04 278 | 64.22 362 | 83.85 300 | 35.10 379 | 92.56 193 | 57.44 310 | 80.83 236 | 82.16 370 |
|
| pmmvs4 | | | 74.03 272 | 71.91 281 | 80.39 236 | 81.96 324 | 68.32 126 | 81.45 293 | 82.14 313 | 59.32 348 | 69.87 312 | 85.13 275 | 52.40 252 | 88.13 302 | 60.21 283 | 74.74 320 | 84.73 341 |
|
| MS-PatchMatch | | | 73.83 273 | 72.67 273 | 77.30 296 | 83.87 283 | 66.02 174 | 81.82 286 | 84.66 273 | 61.37 334 | 68.61 324 | 82.82 323 | 47.29 308 | 88.21 300 | 59.27 290 | 84.32 189 | 77.68 386 |
|
| test_cas_vis1_n_1920 | | | 73.76 274 | 73.74 263 | 73.81 331 | 75.90 375 | 59.77 284 | 80.51 308 | 82.40 311 | 58.30 357 | 81.62 117 | 85.69 260 | 44.35 336 | 76.41 380 | 76.29 132 | 78.61 260 | 85.23 332 |
|
| sss | | | 73.60 275 | 73.64 264 | 73.51 333 | 82.80 310 | 55.01 347 | 76.12 353 | 81.69 319 | 62.47 324 | 74.68 254 | 85.85 258 | 57.32 215 | 78.11 369 | 60.86 279 | 80.93 234 | 87.39 288 |
|
| RPMNet | | | 73.51 276 | 70.49 298 | 82.58 190 | 81.32 338 | 65.19 194 | 75.92 355 | 92.27 83 | 57.60 363 | 72.73 277 | 76.45 378 | 52.30 253 | 95.43 70 | 48.14 365 | 77.71 272 | 87.11 298 |
|
| WBMVS | | | 73.43 277 | 72.81 272 | 75.28 316 | 87.91 194 | 50.99 379 | 78.59 337 | 81.31 324 | 65.51 287 | 74.47 258 | 84.83 281 | 46.39 315 | 86.68 313 | 58.41 301 | 77.86 270 | 88.17 273 |
|
| SixPastTwentyTwo | | | 73.37 278 | 71.26 291 | 79.70 251 | 85.08 259 | 57.89 303 | 85.57 216 | 83.56 290 | 71.03 188 | 65.66 352 | 85.88 256 | 42.10 351 | 92.57 192 | 59.11 293 | 63.34 376 | 88.65 263 |
|
| CR-MVSNet | | | 73.37 278 | 71.27 290 | 79.67 253 | 81.32 338 | 65.19 194 | 75.92 355 | 80.30 336 | 59.92 343 | 72.73 277 | 81.19 338 | 52.50 250 | 86.69 312 | 59.84 285 | 77.71 272 | 87.11 298 |
|
| MSDG | | | 73.36 280 | 70.99 293 | 80.49 235 | 84.51 270 | 65.80 181 | 80.71 305 | 86.13 258 | 65.70 282 | 65.46 353 | 83.74 304 | 44.60 333 | 90.91 255 | 51.13 345 | 76.89 281 | 84.74 340 |
|
| tpm2 | | | 73.26 281 | 71.46 286 | 78.63 268 | 83.34 294 | 56.71 322 | 80.65 306 | 80.40 335 | 56.63 369 | 73.55 267 | 82.02 335 | 51.80 266 | 91.24 245 | 56.35 321 | 78.42 265 | 87.95 275 |
|
| RPSCF | | | 73.23 282 | 71.46 286 | 78.54 273 | 82.50 317 | 59.85 283 | 82.18 284 | 82.84 308 | 58.96 352 | 71.15 297 | 89.41 164 | 45.48 331 | 84.77 335 | 58.82 297 | 71.83 345 | 91.02 170 |
|
| PatchmatchNet |  | | 73.12 283 | 71.33 289 | 78.49 276 | 83.18 299 | 60.85 270 | 79.63 319 | 78.57 350 | 64.13 301 | 71.73 290 | 79.81 356 | 51.20 273 | 85.97 321 | 57.40 311 | 76.36 295 | 88.66 262 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| UBG | | | 73.08 284 | 72.27 279 | 75.51 312 | 88.02 189 | 51.29 377 | 78.35 341 | 77.38 359 | 65.52 285 | 73.87 264 | 82.36 328 | 45.55 328 | 86.48 316 | 55.02 325 | 84.39 188 | 88.75 259 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 285 | 70.41 300 | 80.81 229 | 87.13 223 | 65.63 185 | 88.30 137 | 84.19 282 | 62.96 316 | 63.80 366 | 87.69 205 | 38.04 371 | 92.56 193 | 46.66 370 | 74.91 318 | 84.24 345 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 286 | 72.58 275 | 74.25 327 | 84.28 272 | 50.85 380 | 86.41 195 | 83.45 293 | 44.56 395 | 73.23 271 | 87.54 211 | 49.38 294 | 85.70 323 | 65.90 234 | 78.44 264 | 86.19 314 |
|
| test-LLR | | | 72.94 287 | 72.43 276 | 74.48 324 | 81.35 336 | 58.04 299 | 78.38 338 | 77.46 356 | 66.66 267 | 69.95 310 | 79.00 362 | 48.06 305 | 79.24 363 | 66.13 230 | 84.83 177 | 86.15 315 |
|
| test_0402 | | | 72.79 288 | 70.44 299 | 79.84 248 | 88.13 183 | 65.99 176 | 85.93 209 | 84.29 279 | 65.57 284 | 67.40 335 | 85.49 266 | 46.92 312 | 92.61 191 | 35.88 398 | 74.38 323 | 80.94 376 |
|
| tpmrst | | | 72.39 289 | 72.13 280 | 73.18 337 | 80.54 345 | 49.91 384 | 79.91 318 | 79.08 348 | 63.11 313 | 71.69 291 | 79.95 353 | 55.32 225 | 82.77 348 | 65.66 237 | 73.89 327 | 86.87 302 |
|
| PatchMatch-RL | | | 72.38 290 | 70.90 294 | 76.80 301 | 88.60 166 | 67.38 150 | 79.53 320 | 76.17 368 | 62.75 321 | 69.36 317 | 82.00 336 | 45.51 329 | 84.89 334 | 53.62 332 | 80.58 240 | 78.12 385 |
|
| CL-MVSNet_self_test | | | 72.37 291 | 71.46 286 | 75.09 318 | 79.49 361 | 53.53 358 | 80.76 303 | 85.01 271 | 69.12 234 | 70.51 299 | 82.05 334 | 57.92 208 | 84.13 338 | 52.27 339 | 66.00 370 | 87.60 283 |
|
| tpm | | | 72.37 291 | 71.71 283 | 74.35 326 | 82.19 322 | 52.00 367 | 79.22 325 | 77.29 360 | 64.56 296 | 72.95 275 | 83.68 308 | 51.35 270 | 83.26 346 | 58.33 303 | 75.80 299 | 87.81 279 |
|
| ETVMVS | | | 72.25 293 | 71.05 292 | 75.84 306 | 87.77 203 | 51.91 369 | 79.39 322 | 74.98 371 | 69.26 228 | 73.71 265 | 82.95 319 | 40.82 358 | 86.14 319 | 46.17 374 | 84.43 187 | 89.47 232 |
|
| UWE-MVS | | | 72.13 294 | 71.49 285 | 74.03 329 | 86.66 232 | 47.70 388 | 81.40 295 | 76.89 364 | 63.60 310 | 75.59 223 | 84.22 295 | 39.94 361 | 85.62 325 | 48.98 358 | 86.13 165 | 88.77 258 |
|
| PVSNet | | 64.34 18 | 72.08 295 | 70.87 295 | 75.69 308 | 86.21 237 | 56.44 326 | 74.37 368 | 80.73 328 | 62.06 329 | 70.17 305 | 82.23 332 | 42.86 345 | 83.31 345 | 54.77 327 | 84.45 186 | 87.32 291 |
|
| WB-MVSnew | | | 71.96 296 | 71.65 284 | 72.89 338 | 84.67 268 | 51.88 370 | 82.29 283 | 77.57 355 | 62.31 325 | 73.67 266 | 83.00 318 | 53.49 245 | 81.10 357 | 45.75 377 | 82.13 222 | 85.70 325 |
|
| pmmvs5 | | | 71.55 297 | 70.20 303 | 75.61 309 | 77.83 368 | 56.39 327 | 81.74 288 | 80.89 325 | 57.76 361 | 67.46 333 | 84.49 285 | 49.26 297 | 85.32 330 | 57.08 314 | 75.29 313 | 85.11 336 |
|
| test-mter | | | 71.41 298 | 70.39 301 | 74.48 324 | 81.35 336 | 58.04 299 | 78.38 338 | 77.46 356 | 60.32 339 | 69.95 310 | 79.00 362 | 36.08 377 | 79.24 363 | 66.13 230 | 84.83 177 | 86.15 315 |
|
| K. test v3 | | | 71.19 299 | 68.51 311 | 79.21 261 | 83.04 304 | 57.78 307 | 84.35 251 | 76.91 363 | 72.90 159 | 62.99 369 | 82.86 322 | 39.27 363 | 91.09 252 | 61.65 272 | 52.66 395 | 88.75 259 |
|
| dmvs_re | | | 71.14 300 | 70.58 296 | 72.80 339 | 81.96 324 | 59.68 285 | 75.60 359 | 79.34 345 | 68.55 246 | 69.27 319 | 80.72 346 | 49.42 293 | 76.54 377 | 52.56 338 | 77.79 271 | 82.19 369 |
|
| tpmvs | | | 71.09 301 | 69.29 306 | 76.49 302 | 82.04 323 | 56.04 333 | 78.92 331 | 81.37 323 | 64.05 305 | 67.18 337 | 78.28 368 | 49.74 290 | 89.77 272 | 49.67 355 | 72.37 339 | 83.67 353 |
|
| AllTest | | | 70.96 302 | 68.09 317 | 79.58 255 | 85.15 256 | 63.62 224 | 84.58 242 | 79.83 340 | 62.31 325 | 60.32 378 | 86.73 229 | 32.02 384 | 88.96 290 | 50.28 350 | 71.57 347 | 86.15 315 |
|
| test_fmvs1 | | | 70.93 303 | 70.52 297 | 72.16 344 | 73.71 386 | 55.05 346 | 80.82 299 | 78.77 349 | 51.21 387 | 78.58 156 | 84.41 288 | 31.20 388 | 76.94 375 | 75.88 138 | 80.12 248 | 84.47 343 |
|
| test_fmvs1_n | | | 70.86 304 | 70.24 302 | 72.73 340 | 72.51 397 | 55.28 344 | 81.27 296 | 79.71 342 | 51.49 386 | 78.73 151 | 84.87 280 | 27.54 393 | 77.02 374 | 76.06 135 | 79.97 249 | 85.88 323 |
|
| Patchmtry | | | 70.74 305 | 69.16 308 | 75.49 313 | 80.72 342 | 54.07 355 | 74.94 366 | 80.30 336 | 58.34 356 | 70.01 307 | 81.19 338 | 52.50 250 | 86.54 314 | 53.37 334 | 71.09 350 | 85.87 324 |
|
| MIMVSNet | | | 70.69 306 | 69.30 305 | 74.88 320 | 84.52 269 | 56.35 330 | 75.87 357 | 79.42 344 | 64.59 295 | 67.76 328 | 82.41 327 | 41.10 355 | 81.54 354 | 46.64 372 | 81.34 229 | 86.75 306 |
|
| tpm cat1 | | | 70.57 307 | 68.31 313 | 77.35 295 | 82.41 320 | 57.95 302 | 78.08 343 | 80.22 338 | 52.04 382 | 68.54 325 | 77.66 373 | 52.00 261 | 87.84 305 | 51.77 340 | 72.07 344 | 86.25 312 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 308 | 68.19 314 | 77.65 289 | 80.26 347 | 59.41 289 | 85.01 231 | 82.96 305 | 58.76 354 | 65.43 354 | 82.33 329 | 37.63 373 | 91.23 246 | 45.34 380 | 76.03 297 | 82.32 367 |
|
| pmmvs-eth3d | | | 70.50 309 | 67.83 322 | 78.52 275 | 77.37 371 | 66.18 172 | 81.82 286 | 81.51 320 | 58.90 353 | 63.90 365 | 80.42 348 | 42.69 346 | 86.28 318 | 58.56 299 | 65.30 372 | 83.11 359 |
|
| USDC | | | 70.33 310 | 68.37 312 | 76.21 304 | 80.60 344 | 56.23 331 | 79.19 326 | 86.49 250 | 60.89 335 | 61.29 374 | 85.47 267 | 31.78 386 | 89.47 279 | 53.37 334 | 76.21 296 | 82.94 363 |
|
| Patchmatch-RL test | | | 70.24 311 | 67.78 324 | 77.61 290 | 77.43 370 | 59.57 288 | 71.16 378 | 70.33 385 | 62.94 317 | 68.65 323 | 72.77 390 | 50.62 279 | 85.49 327 | 69.58 201 | 66.58 367 | 87.77 280 |
|
| CMPMVS |  | 51.72 21 | 70.19 312 | 68.16 315 | 76.28 303 | 73.15 393 | 57.55 310 | 79.47 321 | 83.92 284 | 48.02 391 | 56.48 391 | 84.81 282 | 43.13 343 | 86.42 317 | 62.67 260 | 81.81 227 | 84.89 338 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 313 | 67.34 331 | 78.14 281 | 79.80 356 | 61.13 265 | 79.19 326 | 80.59 330 | 59.16 350 | 65.27 355 | 79.29 359 | 46.75 314 | 87.29 309 | 49.33 356 | 66.72 365 | 86.00 321 |
|
| gg-mvs-nofinetune | | | 69.95 314 | 67.96 318 | 75.94 305 | 83.07 302 | 54.51 352 | 77.23 350 | 70.29 386 | 63.11 313 | 70.32 302 | 62.33 399 | 43.62 340 | 88.69 294 | 53.88 331 | 87.76 140 | 84.62 342 |
|
| TESTMET0.1,1 | | | 69.89 315 | 69.00 309 | 72.55 341 | 79.27 364 | 56.85 318 | 78.38 338 | 74.71 375 | 57.64 362 | 68.09 327 | 77.19 375 | 37.75 372 | 76.70 376 | 63.92 249 | 84.09 192 | 84.10 348 |
|
| test_vis1_n | | | 69.85 316 | 69.21 307 | 71.77 346 | 72.66 396 | 55.27 345 | 81.48 292 | 76.21 367 | 52.03 383 | 75.30 239 | 83.20 315 | 28.97 391 | 76.22 382 | 74.60 150 | 78.41 266 | 83.81 351 |
|
| FMVSNet5 | | | 69.50 317 | 67.96 318 | 74.15 328 | 82.97 308 | 55.35 343 | 80.01 316 | 82.12 314 | 62.56 323 | 63.02 367 | 81.53 337 | 36.92 374 | 81.92 352 | 48.42 360 | 74.06 325 | 85.17 335 |
|
| mvs5depth | | | 69.45 318 | 67.45 330 | 75.46 314 | 73.93 384 | 55.83 336 | 79.19 326 | 83.23 296 | 66.89 262 | 71.63 292 | 83.32 312 | 33.69 382 | 85.09 331 | 59.81 286 | 55.34 392 | 85.46 328 |
|
| PMMVS | | | 69.34 319 | 68.67 310 | 71.35 351 | 75.67 377 | 62.03 255 | 75.17 361 | 73.46 378 | 50.00 388 | 68.68 322 | 79.05 360 | 52.07 260 | 78.13 368 | 61.16 277 | 82.77 214 | 73.90 392 |
|
| our_test_3 | | | 69.14 320 | 67.00 333 | 75.57 310 | 79.80 356 | 58.80 290 | 77.96 344 | 77.81 353 | 59.55 346 | 62.90 370 | 78.25 369 | 47.43 307 | 83.97 339 | 51.71 341 | 67.58 364 | 83.93 350 |
|
| EPMVS | | | 69.02 321 | 68.16 315 | 71.59 347 | 79.61 359 | 49.80 386 | 77.40 348 | 66.93 396 | 62.82 320 | 70.01 307 | 79.05 360 | 45.79 325 | 77.86 371 | 56.58 319 | 75.26 314 | 87.13 297 |
|
| KD-MVS_self_test | | | 68.81 322 | 67.59 328 | 72.46 343 | 74.29 383 | 45.45 394 | 77.93 345 | 87.00 241 | 63.12 312 | 63.99 364 | 78.99 364 | 42.32 348 | 84.77 335 | 56.55 320 | 64.09 375 | 87.16 296 |
|
| Anonymous20240521 | | | 68.80 323 | 67.22 332 | 73.55 332 | 74.33 382 | 54.11 354 | 83.18 271 | 85.61 263 | 58.15 358 | 61.68 373 | 80.94 343 | 30.71 389 | 81.27 356 | 57.00 315 | 73.34 335 | 85.28 331 |
|
| Anonymous20231206 | | | 68.60 324 | 67.80 323 | 71.02 354 | 80.23 349 | 50.75 381 | 78.30 342 | 80.47 332 | 56.79 368 | 66.11 351 | 82.63 326 | 46.35 318 | 78.95 365 | 43.62 383 | 75.70 300 | 83.36 356 |
|
| MIMVSNet1 | | | 68.58 325 | 66.78 335 | 73.98 330 | 80.07 351 | 51.82 371 | 80.77 302 | 84.37 276 | 64.40 298 | 59.75 381 | 82.16 333 | 36.47 375 | 83.63 342 | 42.73 385 | 70.33 353 | 86.48 310 |
|
| testing3 | | | 68.56 326 | 67.67 326 | 71.22 353 | 87.33 218 | 42.87 403 | 83.06 277 | 71.54 383 | 70.36 201 | 69.08 320 | 84.38 289 | 30.33 390 | 85.69 324 | 37.50 396 | 75.45 308 | 85.09 337 |
|
| EU-MVSNet | | | 68.53 327 | 67.61 327 | 71.31 352 | 78.51 367 | 47.01 391 | 84.47 244 | 84.27 280 | 42.27 398 | 66.44 349 | 84.79 283 | 40.44 359 | 83.76 340 | 58.76 298 | 68.54 362 | 83.17 357 |
|
| PatchT | | | 68.46 328 | 67.85 320 | 70.29 357 | 80.70 343 | 43.93 401 | 72.47 373 | 74.88 372 | 60.15 341 | 70.55 298 | 76.57 377 | 49.94 287 | 81.59 353 | 50.58 346 | 74.83 319 | 85.34 330 |
|
| test_fmvs2 | | | 68.35 329 | 67.48 329 | 70.98 355 | 69.50 400 | 51.95 368 | 80.05 315 | 76.38 366 | 49.33 389 | 74.65 255 | 84.38 289 | 23.30 402 | 75.40 390 | 74.51 151 | 75.17 316 | 85.60 326 |
|
| Syy-MVS | | | 68.05 330 | 67.85 320 | 68.67 366 | 84.68 265 | 40.97 409 | 78.62 335 | 73.08 380 | 66.65 270 | 66.74 342 | 79.46 357 | 52.11 258 | 82.30 350 | 32.89 401 | 76.38 293 | 82.75 364 |
|
| test0.0.03 1 | | | 68.00 331 | 67.69 325 | 68.90 363 | 77.55 369 | 47.43 389 | 75.70 358 | 72.95 382 | 66.66 267 | 66.56 344 | 82.29 331 | 48.06 305 | 75.87 385 | 44.97 381 | 74.51 322 | 83.41 355 |
|
| TDRefinement | | | 67.49 332 | 64.34 342 | 76.92 299 | 73.47 390 | 61.07 267 | 84.86 235 | 82.98 304 | 59.77 344 | 58.30 385 | 85.13 275 | 26.06 394 | 87.89 304 | 47.92 367 | 60.59 383 | 81.81 372 |
|
| test20.03 | | | 67.45 333 | 66.95 334 | 68.94 362 | 75.48 379 | 44.84 399 | 77.50 347 | 77.67 354 | 66.66 267 | 63.01 368 | 83.80 302 | 47.02 311 | 78.40 367 | 42.53 387 | 68.86 361 | 83.58 354 |
|
| UnsupCasMVSNet_eth | | | 67.33 334 | 65.99 338 | 71.37 349 | 73.48 389 | 51.47 375 | 75.16 362 | 85.19 267 | 65.20 288 | 60.78 376 | 80.93 345 | 42.35 347 | 77.20 373 | 57.12 313 | 53.69 394 | 85.44 329 |
|
| TinyColmap | | | 67.30 335 | 64.81 340 | 74.76 322 | 81.92 326 | 56.68 323 | 80.29 313 | 81.49 321 | 60.33 338 | 56.27 392 | 83.22 313 | 24.77 398 | 87.66 308 | 45.52 378 | 69.47 356 | 79.95 381 |
|
| myMVS_eth3d | | | 67.02 336 | 66.29 337 | 69.21 361 | 84.68 265 | 42.58 404 | 78.62 335 | 73.08 380 | 66.65 270 | 66.74 342 | 79.46 357 | 31.53 387 | 82.30 350 | 39.43 393 | 76.38 293 | 82.75 364 |
|
| dp | | | 66.80 337 | 65.43 339 | 70.90 356 | 79.74 358 | 48.82 387 | 75.12 364 | 74.77 373 | 59.61 345 | 64.08 363 | 77.23 374 | 42.89 344 | 80.72 359 | 48.86 359 | 66.58 367 | 83.16 358 |
|
| MDA-MVSNet-bldmvs | | | 66.68 338 | 63.66 347 | 75.75 307 | 79.28 363 | 60.56 275 | 73.92 370 | 78.35 351 | 64.43 297 | 50.13 400 | 79.87 355 | 44.02 338 | 83.67 341 | 46.10 375 | 56.86 386 | 83.03 361 |
|
| testgi | | | 66.67 339 | 66.53 336 | 67.08 373 | 75.62 378 | 41.69 408 | 75.93 354 | 76.50 365 | 66.11 276 | 65.20 358 | 86.59 239 | 35.72 378 | 74.71 392 | 43.71 382 | 73.38 334 | 84.84 339 |
|
| CHOSEN 280x420 | | | 66.51 340 | 64.71 341 | 71.90 345 | 81.45 333 | 63.52 229 | 57.98 408 | 68.95 392 | 53.57 378 | 62.59 371 | 76.70 376 | 46.22 320 | 75.29 391 | 55.25 324 | 79.68 250 | 76.88 388 |
|
| PM-MVS | | | 66.41 341 | 64.14 343 | 73.20 336 | 73.92 385 | 56.45 325 | 78.97 330 | 64.96 402 | 63.88 309 | 64.72 359 | 80.24 350 | 19.84 406 | 83.44 344 | 66.24 229 | 64.52 374 | 79.71 382 |
|
| JIA-IIPM | | | 66.32 342 | 62.82 353 | 76.82 300 | 77.09 372 | 61.72 261 | 65.34 401 | 75.38 369 | 58.04 360 | 64.51 360 | 62.32 400 | 42.05 352 | 86.51 315 | 51.45 343 | 69.22 358 | 82.21 368 |
|
| KD-MVS_2432*1600 | | | 66.22 343 | 63.89 345 | 73.21 334 | 75.47 380 | 53.42 360 | 70.76 381 | 84.35 277 | 64.10 303 | 66.52 346 | 78.52 366 | 34.55 380 | 84.98 332 | 50.40 348 | 50.33 399 | 81.23 374 |
|
| miper_refine_blended | | | 66.22 343 | 63.89 345 | 73.21 334 | 75.47 380 | 53.42 360 | 70.76 381 | 84.35 277 | 64.10 303 | 66.52 346 | 78.52 366 | 34.55 380 | 84.98 332 | 50.40 348 | 50.33 399 | 81.23 374 |
|
| ADS-MVSNet2 | | | 66.20 345 | 63.33 348 | 74.82 321 | 79.92 352 | 58.75 291 | 67.55 393 | 75.19 370 | 53.37 379 | 65.25 356 | 75.86 381 | 42.32 348 | 80.53 360 | 41.57 388 | 68.91 359 | 85.18 333 |
|
| YYNet1 | | | 65.03 346 | 62.91 351 | 71.38 348 | 75.85 376 | 56.60 324 | 69.12 389 | 74.66 376 | 57.28 366 | 54.12 394 | 77.87 371 | 45.85 324 | 74.48 393 | 49.95 353 | 61.52 380 | 83.05 360 |
|
| MDA-MVSNet_test_wron | | | 65.03 346 | 62.92 350 | 71.37 349 | 75.93 374 | 56.73 320 | 69.09 390 | 74.73 374 | 57.28 366 | 54.03 395 | 77.89 370 | 45.88 323 | 74.39 394 | 49.89 354 | 61.55 379 | 82.99 362 |
|
| Patchmatch-test | | | 64.82 348 | 63.24 349 | 69.57 359 | 79.42 362 | 49.82 385 | 63.49 405 | 69.05 391 | 51.98 384 | 59.95 380 | 80.13 351 | 50.91 275 | 70.98 399 | 40.66 390 | 73.57 330 | 87.90 277 |
|
| ADS-MVSNet | | | 64.36 349 | 62.88 352 | 68.78 365 | 79.92 352 | 47.17 390 | 67.55 393 | 71.18 384 | 53.37 379 | 65.25 356 | 75.86 381 | 42.32 348 | 73.99 395 | 41.57 388 | 68.91 359 | 85.18 333 |
|
| LF4IMVS | | | 64.02 350 | 62.19 354 | 69.50 360 | 70.90 398 | 53.29 363 | 76.13 352 | 77.18 361 | 52.65 381 | 58.59 383 | 80.98 342 | 23.55 401 | 76.52 378 | 53.06 336 | 66.66 366 | 78.68 384 |
|
| UnsupCasMVSNet_bld | | | 63.70 351 | 61.53 357 | 70.21 358 | 73.69 387 | 51.39 376 | 72.82 372 | 81.89 316 | 55.63 373 | 57.81 387 | 71.80 392 | 38.67 367 | 78.61 366 | 49.26 357 | 52.21 397 | 80.63 378 |
|
| test_fmvs3 | | | 63.36 352 | 61.82 355 | 67.98 370 | 62.51 409 | 46.96 392 | 77.37 349 | 74.03 377 | 45.24 394 | 67.50 332 | 78.79 365 | 12.16 414 | 72.98 398 | 72.77 171 | 66.02 369 | 83.99 349 |
|
| dmvs_testset | | | 62.63 353 | 64.11 344 | 58.19 383 | 78.55 366 | 24.76 421 | 75.28 360 | 65.94 399 | 67.91 255 | 60.34 377 | 76.01 380 | 53.56 243 | 73.94 396 | 31.79 402 | 67.65 363 | 75.88 390 |
|
| mvsany_test1 | | | 62.30 354 | 61.26 358 | 65.41 375 | 69.52 399 | 54.86 348 | 66.86 395 | 49.78 415 | 46.65 392 | 68.50 326 | 83.21 314 | 49.15 298 | 66.28 407 | 56.93 316 | 60.77 381 | 75.11 391 |
|
| new-patchmatchnet | | | 61.73 355 | 61.73 356 | 61.70 379 | 72.74 395 | 24.50 422 | 69.16 388 | 78.03 352 | 61.40 332 | 56.72 390 | 75.53 384 | 38.42 368 | 76.48 379 | 45.95 376 | 57.67 385 | 84.13 347 |
|
| PVSNet_0 | | 57.27 20 | 61.67 356 | 59.27 359 | 68.85 364 | 79.61 359 | 57.44 312 | 68.01 391 | 73.44 379 | 55.93 372 | 58.54 384 | 70.41 395 | 44.58 334 | 77.55 372 | 47.01 369 | 35.91 407 | 71.55 395 |
|
| test_vis1_rt | | | 60.28 357 | 58.42 360 | 65.84 374 | 67.25 403 | 55.60 340 | 70.44 383 | 60.94 407 | 44.33 396 | 59.00 382 | 66.64 397 | 24.91 397 | 68.67 404 | 62.80 256 | 69.48 355 | 73.25 393 |
|
| ttmdpeth | | | 59.91 358 | 57.10 362 | 68.34 368 | 67.13 404 | 46.65 393 | 74.64 367 | 67.41 395 | 48.30 390 | 62.52 372 | 85.04 279 | 20.40 404 | 75.93 384 | 42.55 386 | 45.90 405 | 82.44 366 |
|
| MVS-HIRNet | | | 59.14 359 | 57.67 361 | 63.57 377 | 81.65 328 | 43.50 402 | 71.73 375 | 65.06 401 | 39.59 402 | 51.43 397 | 57.73 405 | 38.34 369 | 82.58 349 | 39.53 391 | 73.95 326 | 64.62 401 |
|
| pmmvs3 | | | 57.79 360 | 54.26 365 | 68.37 367 | 64.02 408 | 56.72 321 | 75.12 364 | 65.17 400 | 40.20 400 | 52.93 396 | 69.86 396 | 20.36 405 | 75.48 388 | 45.45 379 | 55.25 393 | 72.90 394 |
|
| DSMNet-mixed | | | 57.77 361 | 56.90 363 | 60.38 381 | 67.70 402 | 35.61 412 | 69.18 387 | 53.97 413 | 32.30 411 | 57.49 388 | 79.88 354 | 40.39 360 | 68.57 405 | 38.78 394 | 72.37 339 | 76.97 387 |
|
| MVStest1 | | | 56.63 362 | 52.76 368 | 68.25 369 | 61.67 410 | 53.25 364 | 71.67 376 | 68.90 393 | 38.59 403 | 50.59 399 | 83.05 317 | 25.08 396 | 70.66 400 | 36.76 397 | 38.56 406 | 80.83 377 |
|
| WB-MVS | | | 54.94 363 | 54.72 364 | 55.60 389 | 73.50 388 | 20.90 423 | 74.27 369 | 61.19 406 | 59.16 350 | 50.61 398 | 74.15 386 | 47.19 310 | 75.78 386 | 17.31 414 | 35.07 408 | 70.12 396 |
|
| LCM-MVSNet | | | 54.25 364 | 49.68 374 | 67.97 371 | 53.73 418 | 45.28 397 | 66.85 396 | 80.78 327 | 35.96 407 | 39.45 408 | 62.23 401 | 8.70 418 | 78.06 370 | 48.24 364 | 51.20 398 | 80.57 379 |
|
| mvsany_test3 | | | 53.99 365 | 51.45 370 | 61.61 380 | 55.51 414 | 44.74 400 | 63.52 404 | 45.41 419 | 43.69 397 | 58.11 386 | 76.45 378 | 17.99 407 | 63.76 410 | 54.77 327 | 47.59 401 | 76.34 389 |
|
| SSC-MVS | | | 53.88 366 | 53.59 366 | 54.75 391 | 72.87 394 | 19.59 424 | 73.84 371 | 60.53 408 | 57.58 364 | 49.18 402 | 73.45 389 | 46.34 319 | 75.47 389 | 16.20 417 | 32.28 410 | 69.20 397 |
|
| FPMVS | | | 53.68 367 | 51.64 369 | 59.81 382 | 65.08 406 | 51.03 378 | 69.48 386 | 69.58 389 | 41.46 399 | 40.67 406 | 72.32 391 | 16.46 410 | 70.00 403 | 24.24 410 | 65.42 371 | 58.40 406 |
|
| APD_test1 | | | 53.31 368 | 49.93 373 | 63.42 378 | 65.68 405 | 50.13 383 | 71.59 377 | 66.90 397 | 34.43 408 | 40.58 407 | 71.56 393 | 8.65 419 | 76.27 381 | 34.64 400 | 55.36 391 | 63.86 402 |
|
| N_pmnet | | | 52.79 369 | 53.26 367 | 51.40 393 | 78.99 365 | 7.68 427 | 69.52 385 | 3.89 426 | 51.63 385 | 57.01 389 | 74.98 385 | 40.83 357 | 65.96 408 | 37.78 395 | 64.67 373 | 80.56 380 |
|
| test_f | | | 52.09 370 | 50.82 371 | 55.90 387 | 53.82 417 | 42.31 407 | 59.42 407 | 58.31 411 | 36.45 406 | 56.12 393 | 70.96 394 | 12.18 413 | 57.79 413 | 53.51 333 | 56.57 388 | 67.60 398 |
|
| EGC-MVSNET | | | 52.07 371 | 47.05 375 | 67.14 372 | 83.51 291 | 60.71 272 | 80.50 309 | 67.75 394 | 0.07 421 | 0.43 422 | 75.85 383 | 24.26 399 | 81.54 354 | 28.82 404 | 62.25 377 | 59.16 404 |
|
| new_pmnet | | | 50.91 372 | 50.29 372 | 52.78 392 | 68.58 401 | 34.94 414 | 63.71 403 | 56.63 412 | 39.73 401 | 44.95 403 | 65.47 398 | 21.93 403 | 58.48 412 | 34.98 399 | 56.62 387 | 64.92 400 |
|
| ANet_high | | | 50.57 373 | 46.10 377 | 63.99 376 | 48.67 421 | 39.13 410 | 70.99 380 | 80.85 326 | 61.39 333 | 31.18 410 | 57.70 406 | 17.02 409 | 73.65 397 | 31.22 403 | 15.89 418 | 79.18 383 |
|
| test_vis3_rt | | | 49.26 374 | 47.02 376 | 56.00 386 | 54.30 415 | 45.27 398 | 66.76 397 | 48.08 416 | 36.83 405 | 44.38 404 | 53.20 409 | 7.17 421 | 64.07 409 | 56.77 318 | 55.66 389 | 58.65 405 |
|
| testf1 | | | 45.72 375 | 41.96 379 | 57.00 384 | 56.90 412 | 45.32 395 | 66.14 398 | 59.26 409 | 26.19 412 | 30.89 411 | 60.96 403 | 4.14 422 | 70.64 401 | 26.39 408 | 46.73 403 | 55.04 407 |
|
| APD_test2 | | | 45.72 375 | 41.96 379 | 57.00 384 | 56.90 412 | 45.32 395 | 66.14 398 | 59.26 409 | 26.19 412 | 30.89 411 | 60.96 403 | 4.14 422 | 70.64 401 | 26.39 408 | 46.73 403 | 55.04 407 |
|
| dongtai | | | 45.42 377 | 45.38 378 | 45.55 395 | 73.36 391 | 26.85 419 | 67.72 392 | 34.19 421 | 54.15 377 | 49.65 401 | 56.41 408 | 25.43 395 | 62.94 411 | 19.45 412 | 28.09 412 | 46.86 411 |
|
| Gipuma |  | | 45.18 378 | 41.86 381 | 55.16 390 | 77.03 373 | 51.52 374 | 32.50 414 | 80.52 331 | 32.46 410 | 27.12 413 | 35.02 414 | 9.52 417 | 75.50 387 | 22.31 411 | 60.21 384 | 38.45 413 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 379 | 40.28 383 | 55.82 388 | 40.82 423 | 42.54 406 | 65.12 402 | 63.99 403 | 34.43 408 | 24.48 414 | 57.12 407 | 3.92 424 | 76.17 383 | 17.10 415 | 55.52 390 | 48.75 409 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 380 | 38.86 384 | 46.69 394 | 53.84 416 | 16.45 425 | 48.61 411 | 49.92 414 | 37.49 404 | 31.67 409 | 60.97 402 | 8.14 420 | 56.42 414 | 28.42 405 | 30.72 411 | 67.19 399 |
|
| kuosan | | | 39.70 381 | 40.40 382 | 37.58 398 | 64.52 407 | 26.98 417 | 65.62 400 | 33.02 422 | 46.12 393 | 42.79 405 | 48.99 411 | 24.10 400 | 46.56 419 | 12.16 420 | 26.30 413 | 39.20 412 |
|
| E-PMN | | | 31.77 382 | 30.64 385 | 35.15 399 | 52.87 419 | 27.67 416 | 57.09 409 | 47.86 417 | 24.64 414 | 16.40 419 | 33.05 415 | 11.23 415 | 54.90 415 | 14.46 418 | 18.15 416 | 22.87 415 |
|
| test_method | | | 31.52 383 | 29.28 387 | 38.23 397 | 27.03 425 | 6.50 428 | 20.94 416 | 62.21 405 | 4.05 419 | 22.35 417 | 52.50 410 | 13.33 411 | 47.58 417 | 27.04 407 | 34.04 409 | 60.62 403 |
|
| EMVS | | | 30.81 384 | 29.65 386 | 34.27 400 | 50.96 420 | 25.95 420 | 56.58 410 | 46.80 418 | 24.01 415 | 15.53 420 | 30.68 416 | 12.47 412 | 54.43 416 | 12.81 419 | 17.05 417 | 22.43 416 |
|
| MVE |  | 26.22 23 | 30.37 385 | 25.89 389 | 43.81 396 | 44.55 422 | 35.46 413 | 28.87 415 | 39.07 420 | 18.20 416 | 18.58 418 | 40.18 413 | 2.68 425 | 47.37 418 | 17.07 416 | 23.78 415 | 48.60 410 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 386 | 26.61 388 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 89.26 182 | 0.00 424 | 0.00 425 | 88.61 181 | 61.62 169 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| tmp_tt | | | 18.61 387 | 21.40 390 | 10.23 403 | 4.82 426 | 10.11 426 | 34.70 413 | 30.74 424 | 1.48 420 | 23.91 416 | 26.07 417 | 28.42 392 | 13.41 422 | 27.12 406 | 15.35 419 | 7.17 417 |
|
| wuyk23d | | | 16.82 388 | 15.94 391 | 19.46 402 | 58.74 411 | 31.45 415 | 39.22 412 | 3.74 427 | 6.84 418 | 6.04 421 | 2.70 421 | 1.27 426 | 24.29 421 | 10.54 421 | 14.40 420 | 2.63 418 |
|
| ab-mvs-re | | | 7.23 389 | 9.64 392 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 86.72 231 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test123 | | | 6.12 390 | 8.11 393 | 0.14 404 | 0.06 428 | 0.09 429 | 71.05 379 | 0.03 429 | 0.04 423 | 0.25 424 | 1.30 423 | 0.05 427 | 0.03 424 | 0.21 423 | 0.01 422 | 0.29 419 |
|
| testmvs | | | 6.04 391 | 8.02 394 | 0.10 405 | 0.08 427 | 0.03 430 | 69.74 384 | 0.04 428 | 0.05 422 | 0.31 423 | 1.68 422 | 0.02 428 | 0.04 423 | 0.24 422 | 0.02 421 | 0.25 420 |
|
| pcd_1.5k_mvsjas | | | 5.26 392 | 7.02 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 63.15 146 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 42.58 404 | | | | | | | | 39.46 392 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 120 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| PC_three_1452 | | | | | | | | | | 68.21 252 | 92.02 12 | 94.00 49 | 82.09 5 | 95.98 56 | 84.58 53 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 49 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 57 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 66 | 70.98 189 | 87.75 35 | 94.07 44 | 74.01 32 | 96.70 27 | 84.66 52 | 94.84 44 | |
|
| RE-MVS-def | | | | 85.48 60 | | 93.06 58 | 70.63 76 | 91.88 38 | 92.27 83 | 73.53 143 | 85.69 56 | 94.45 28 | 63.87 137 | | 82.75 74 | 91.87 84 | 92.50 123 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 55 | 66.81 263 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 47 | 82.45 3 | 96.87 20 | 83.77 63 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 52 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 14 | 96.58 6 | 94.26 46 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 66 | | 94.06 10 | 77.17 55 | 93.10 1 | 95.39 14 | 82.99 1 | 97.27 12 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 63 | | 91.52 48 | 94.75 1 | 73.93 132 | 88.57 25 | 94.67 21 | 75.57 22 | 95.79 58 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 66 | 91.17 124 | 74.31 123 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 9 | 96.57 7 | 94.67 26 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 58 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 47 |
|
| test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 6 | 94.11 6 | 77.33 49 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 250 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 271 | | | | 88.96 250 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 285 | | | | |
|
| ambc | | | | | 75.24 317 | 73.16 392 | 50.51 382 | 63.05 406 | 87.47 232 | | 64.28 361 | 77.81 372 | 17.80 408 | 89.73 274 | 57.88 307 | 60.64 382 | 85.49 327 |
|
| MTGPA |  | | | | | | | | 92.02 92 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 332 | | | | 5.43 420 | 48.81 304 | 85.44 329 | 59.25 291 | | |
|
| test_post | | | | | | | | | | | | 5.46 419 | 50.36 283 | 84.24 337 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 387 | 51.12 274 | 88.60 296 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 315 | 81.59 330 | 55.80 337 | 79.32 323 | 69.63 388 | | 67.19 336 | 73.67 388 | 43.24 342 | 88.90 292 | 50.41 347 | 84.50 182 | 81.45 373 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 423 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 334 | 53.83 357 | | | 62.72 322 | | 80.94 343 | | 92.39 200 | 63.40 253 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 46 | 95.70 26 | 92.87 111 |
|
| TEST9 | | | | | | 93.26 52 | 72.96 25 | 88.75 118 | 91.89 100 | 68.44 249 | 85.00 63 | 93.10 70 | 74.36 28 | 95.41 72 | | | |
|
| test_8 | | | | | | 93.13 54 | 72.57 35 | 88.68 123 | 91.84 104 | 68.69 244 | 84.87 67 | 93.10 70 | 74.43 26 | 95.16 81 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 72 | 95.45 29 | 92.70 114 |
|
| agg_prior | | | | | | 92.85 62 | 71.94 50 | | 91.78 107 | | 84.41 78 | | | 94.93 92 | | | |
|
| TestCases | | | | | 79.58 255 | 85.15 256 | 63.62 224 | | 79.83 340 | 62.31 325 | 60.32 378 | 86.73 229 | 32.02 384 | 88.96 290 | 50.28 350 | 71.57 347 | 86.15 315 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 109 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 115 | | 75.41 97 | 84.91 65 | 93.54 59 | 74.28 29 | | 83.31 66 | 95.86 20 | |
|
| test_prior | | | | | 86.33 57 | 92.61 68 | 69.59 91 | | 92.97 54 | | | | | 95.48 67 | | | 93.91 58 |
|
| 旧先验2 | | | | | | | | 86.56 192 | | 58.10 359 | 87.04 45 | | | 88.98 288 | 74.07 156 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 201 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 152 | 93.13 54 | 70.71 74 | | 85.48 265 | 57.43 365 | 81.80 114 | 91.98 93 | 63.28 141 | 92.27 206 | 64.60 245 | 92.99 70 | 87.27 292 |
|
| 旧先验1 | | | | | | 91.96 74 | 65.79 182 | | 86.37 253 | | | 93.08 74 | 69.31 83 | | | 92.74 73 | 88.74 261 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 161 | 88.98 194 | 60.00 342 | | | | 94.12 123 | 67.28 222 | | 88.97 249 |
|
| 原ACMM2 | | | | | | | | 86.86 181 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 111 | 93.01 60 | 68.79 110 | | 92.44 76 | 63.96 308 | 81.09 124 | 91.57 106 | 66.06 119 | 95.45 68 | 67.19 224 | 94.82 46 | 88.81 256 |
|
| test222 | | | | | | 91.50 80 | 68.26 128 | 84.16 254 | 83.20 299 | 54.63 376 | 79.74 137 | 91.63 103 | 58.97 201 | | | 91.42 90 | 86.77 305 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 254 | 62.37 263 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 245 | 90.90 91 | 64.21 215 | | 84.71 272 | 59.27 349 | 85.40 58 | 92.91 76 | 62.02 165 | 89.08 286 | 68.95 207 | 91.37 91 | 86.63 309 |
|
| testdata1 | | | | | | | | 84.14 255 | | 75.71 91 | | | | | | | |
|
| test12 | | | | | 86.80 52 | 92.63 67 | 70.70 75 | | 91.79 106 | | 82.71 105 | | 71.67 54 | 96.16 47 | | 94.50 51 | 93.54 82 |
|
| plane_prior7 | | | | | | 90.08 108 | 68.51 123 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 117 | 68.70 118 | | | | | | 60.42 194 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 76 | | | | | 95.38 74 | 78.71 108 | 86.32 160 | 91.33 158 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 128 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 121 | | | 78.44 31 | 78.92 149 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 52 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 116 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 116 | 90.38 70 | | 77.62 39 | | | | | | 86.16 164 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 387 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 264 | 81.01 341 | 57.15 315 | | 65.99 398 | | 61.16 375 | 82.82 323 | 39.12 364 | 91.34 243 | 59.67 287 | 46.92 402 | 88.43 268 |
|
| LGP-MVS_train | | | | | 84.50 104 | 89.23 142 | 68.76 112 | | 91.94 98 | 75.37 98 | 76.64 202 | 91.51 107 | 54.29 236 | 94.91 93 | 78.44 110 | 83.78 194 | 89.83 222 |
|
| test11 | | | | | | | | | 92.23 86 | | | | | | | | |
|
| door | | | | | | | | | 69.44 390 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 161 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 135 | | 89.17 102 | | 76.41 76 | 77.23 187 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 135 | | 89.17 102 | | 76.41 76 | 77.23 187 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 120 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 186 | | | 95.11 85 | | | 91.03 168 |
|
| HQP3-MVS | | | | | | | | | 92.19 89 | | | | | | | 85.99 168 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 197 | | | | |
|
| NP-MVS | | | | | | 89.62 121 | 68.32 126 | | | | | 90.24 140 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 411 | 75.16 362 | | 55.10 374 | 66.53 345 | | 49.34 295 | | 53.98 330 | | 87.94 276 |
|
| MDTV_nov1_ep13 | | | | 69.97 304 | | 83.18 299 | 53.48 359 | 77.10 351 | 80.18 339 | 60.45 337 | 69.33 318 | 80.44 347 | 48.89 303 | 86.90 311 | 51.60 342 | 78.51 263 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 225 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 230 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 133 | | | | |
|
| ITE_SJBPF | | | | | 78.22 279 | 81.77 327 | 60.57 274 | | 83.30 294 | 69.25 229 | 67.54 331 | 87.20 220 | 36.33 376 | 87.28 310 | 54.34 329 | 74.62 321 | 86.80 304 |
|
| DeepMVS_CX |  | | | | 27.40 401 | 40.17 424 | 26.90 418 | | 24.59 425 | 17.44 417 | 23.95 415 | 48.61 412 | 9.77 416 | 26.48 420 | 18.06 413 | 24.47 414 | 28.83 414 |
|