This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5293.10 195.72 882.99 197.44 789.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 4992.12 995.78 480.98 997.40 989.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8992.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12486.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9391.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 36
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11492.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 104
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 42
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9189.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4589.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 31
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 50
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8388.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 51
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8174.62 11888.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6585.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 43
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6977.57 4183.84 8994.40 3272.24 4596.28 4385.65 4195.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17182.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 6
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10486.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6784.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 70
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10788.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 102
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6784.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 55
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15788.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6384.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 60
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7084.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 54
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15584.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 39
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11588.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 97
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19192.02 9279.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 92
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9294.17 3967.45 10396.60 3383.06 6894.50 5194.07 52
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8683.81 9093.95 5469.77 7896.01 5385.15 4494.66 4794.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7383.68 9194.46 2767.93 9895.95 5784.20 6094.39 5593.23 92
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5782.82 10394.23 3872.13 4797.09 1684.83 4995.37 3193.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7384.22 8193.36 6671.44 5796.76 2580.82 9395.33 3394.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0386.78 3786.99 3386.15 6191.24 8367.61 14390.51 6292.90 5677.26 5187.44 4091.63 10371.27 6096.06 4985.62 4295.01 3794.78 22
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7474.50 11986.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 112
CS-MVS86.69 3986.95 3585.90 6990.76 9667.57 14592.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9184.24 5993.46 6795.13 7
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9583.86 8894.42 3167.87 10096.64 3182.70 7894.57 5093.66 70
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8776.87 6482.81 10494.25 3766.44 11396.24 4482.88 7394.28 5893.38 86
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7381.78 481.32 11991.43 11170.34 7097.23 1484.26 5793.36 6894.37 40
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 11891.89 10068.69 24485.00 6393.10 7074.43 2695.41 7284.97 4595.71 2593.02 106
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16185.22 6191.90 9569.47 8096.42 4083.28 6795.94 1994.35 41
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13083.16 9891.07 12375.94 1895.19 8079.94 10194.38 5693.55 81
CS-MVS-test86.29 4686.48 4185.71 7191.02 8867.21 15892.36 2993.78 1878.97 2883.51 9591.20 11870.65 6995.15 8281.96 8294.89 4294.77 23
EC-MVSNet86.01 4786.38 4284.91 9489.31 13866.27 17192.32 3093.63 2179.37 2084.17 8391.88 9669.04 8895.43 7083.93 6293.77 6393.01 107
MVSMamba_PlusPlus85.99 4885.96 5286.05 6491.09 8567.64 14289.63 8892.65 6972.89 16084.64 7391.71 9971.85 4996.03 5084.77 5194.45 5494.49 35
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7287.65 20767.22 15788.69 12293.04 4179.64 1885.33 5992.54 8673.30 3594.50 11083.49 6491.14 9495.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14285.94 5294.51 2665.80 12395.61 6283.04 7092.51 7693.53 83
test_fmvsmconf_n85.92 5186.04 5185.57 7485.03 26069.51 9389.62 8990.58 13973.42 14687.75 3594.02 4772.85 4193.24 16490.37 390.75 9893.96 56
sasdasda85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
canonicalmvs85.91 5285.87 5486.04 6589.84 11769.44 9890.45 6893.00 4676.70 7188.01 3191.23 11573.28 3693.91 13381.50 8588.80 12694.77 23
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6780.73 12893.82 5664.33 13396.29 4282.67 7990.69 9993.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2865.00 13195.56 6382.75 7491.87 8492.50 123
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12692.42 7968.32 25184.61 7493.48 6172.32 4496.15 4879.00 10495.43 3094.28 45
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 10887.28 23576.41 7685.80 5490.22 14274.15 3195.37 7781.82 8391.88 8392.65 118
dcpmvs_285.63 5886.15 4884.06 13191.71 7864.94 20086.47 19491.87 10273.63 13886.60 5093.02 7576.57 1591.87 22183.36 6592.15 8095.35 3
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7582.99 30769.39 10089.65 8690.29 15273.31 14987.77 3494.15 4171.72 5293.23 16590.31 490.67 10093.89 61
alignmvs85.48 6085.32 6485.96 6889.51 12669.47 9589.74 8392.47 7576.17 8487.73 3791.46 11070.32 7193.78 13981.51 8488.95 12394.63 30
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20193.37 6560.40 19696.75 2677.20 12393.73 6495.29 5
MSLP-MVS++85.43 6285.76 5684.45 10791.93 7570.24 7990.71 5992.86 5877.46 4784.22 8192.81 8167.16 10792.94 18480.36 9794.35 5790.16 201
DELS-MVS85.41 6385.30 6585.77 7088.49 16967.93 13685.52 22493.44 2778.70 2983.63 9489.03 17074.57 2495.71 6180.26 9994.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11073.89 13382.67 10694.09 4362.60 15295.54 6580.93 9192.93 7193.57 79
test_fmvsm_n_192085.29 6585.34 6285.13 8586.12 23969.93 8688.65 12490.78 13569.97 21288.27 2693.98 5271.39 5891.54 23388.49 2390.45 10293.91 58
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20790.33 14976.11 8582.08 10991.61 10571.36 5994.17 12281.02 9092.58 7592.08 140
casdiffmvspermissive85.11 6785.14 6785.01 8887.20 22165.77 18387.75 15592.83 6077.84 3784.36 8092.38 8872.15 4693.93 13281.27 8990.48 10195.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6884.96 6985.45 7692.07 7368.07 13389.78 8290.86 13482.48 284.60 7593.20 6969.35 8195.22 7971.39 18190.88 9793.07 101
MGCFI-Net85.06 6985.51 5983.70 14589.42 13063.01 24189.43 9392.62 7276.43 7587.53 3891.34 11372.82 4293.42 15981.28 8888.74 12994.66 29
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17393.04 4169.80 21682.85 10291.22 11773.06 3996.02 5276.72 13194.63 4891.46 157
baseline84.93 7084.98 6884.80 9887.30 21965.39 19187.30 16992.88 5777.62 3984.04 8692.26 9071.81 5093.96 12681.31 8790.30 10495.03 9
ETV-MVS84.90 7284.67 7285.59 7389.39 13368.66 12088.74 12092.64 7179.97 1584.10 8485.71 25969.32 8295.38 7480.82 9391.37 9192.72 113
test_fmvsmconf0.01_n84.73 7384.52 7585.34 7880.25 34869.03 10389.47 9189.65 16973.24 15386.98 4694.27 3566.62 10993.23 16590.26 589.95 11293.78 67
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11785.42 25068.81 10988.49 12887.26 23668.08 25388.03 3093.49 6072.04 4891.77 22388.90 1789.14 12292.24 134
EI-MVSNet-Vis-set84.19 7583.81 8085.31 7988.18 18067.85 13787.66 15789.73 16780.05 1482.95 9989.59 15570.74 6794.82 9980.66 9684.72 17993.28 91
fmvsm_l_conf0.5_n_a84.13 7684.16 7884.06 13185.38 25168.40 12488.34 13586.85 24667.48 26087.48 3993.40 6470.89 6491.61 22788.38 2589.22 12092.16 138
test_fmvsmvis_n_192084.02 7783.87 7984.49 10684.12 27669.37 10188.15 14387.96 21970.01 21083.95 8793.23 6868.80 9191.51 23688.61 2089.96 11192.57 119
nrg03083.88 7883.53 8284.96 9086.77 22969.28 10290.46 6792.67 6674.79 11382.95 9991.33 11472.70 4393.09 17880.79 9579.28 25792.50 123
EI-MVSNet-UG-set83.81 7983.38 8585.09 8687.87 19667.53 14687.44 16589.66 16879.74 1682.23 10889.41 16470.24 7394.74 10279.95 10083.92 19392.99 109
fmvsm_s_conf0.5_n83.80 8083.71 8184.07 12986.69 23167.31 15289.46 9283.07 30171.09 18686.96 4793.70 5869.02 8991.47 23888.79 1884.62 18193.44 85
CPTT-MVS83.73 8183.33 8784.92 9393.28 4970.86 7292.09 3690.38 14568.75 24379.57 14092.83 7960.60 19293.04 18280.92 9291.56 8990.86 174
EPNet83.72 8282.92 9486.14 6384.22 27469.48 9491.05 5685.27 26681.30 676.83 19691.65 10166.09 11895.56 6376.00 13793.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 8384.54 7380.99 22490.06 11265.83 18084.21 25388.74 20571.60 17685.01 6292.44 8774.51 2583.50 34382.15 8192.15 8093.64 76
HQP_MVS83.64 8483.14 8885.14 8390.08 10868.71 11691.25 5292.44 7679.12 2378.92 14991.00 12860.42 19495.38 7478.71 10886.32 16091.33 158
fmvsm_s_conf0.5_n_a83.63 8583.41 8484.28 11586.14 23868.12 13189.43 9382.87 30670.27 20587.27 4393.80 5769.09 8491.58 22988.21 2683.65 20193.14 99
Effi-MVS+83.62 8683.08 8985.24 8188.38 17567.45 14788.89 11389.15 18775.50 9682.27 10788.28 19169.61 7994.45 11277.81 11787.84 13993.84 64
fmvsm_s_conf0.1_n83.56 8783.38 8584.10 12384.86 26267.28 15389.40 9783.01 30270.67 19487.08 4493.96 5368.38 9391.45 23988.56 2284.50 18293.56 80
OPM-MVS83.50 8882.95 9385.14 8388.79 15970.95 6989.13 10791.52 11377.55 4480.96 12691.75 9860.71 18794.50 11079.67 10386.51 15889.97 217
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8982.80 9685.43 7790.25 10468.74 11490.30 7290.13 15676.33 8280.87 12792.89 7761.00 18494.20 12072.45 17590.97 9593.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 9083.45 8383.28 15792.74 6562.28 25388.17 14189.50 17375.22 10081.49 11892.74 8566.75 10895.11 8572.85 16991.58 8892.45 126
EPP-MVSNet83.40 9183.02 9184.57 10290.13 10664.47 21092.32 3090.73 13674.45 12279.35 14391.10 12169.05 8795.12 8372.78 17087.22 14794.13 49
3Dnovator76.31 583.38 9282.31 10286.59 5587.94 19372.94 2890.64 6092.14 9177.21 5475.47 22692.83 7958.56 20394.72 10373.24 16692.71 7492.13 139
fmvsm_s_conf0.1_n_a83.32 9382.99 9284.28 11583.79 28468.07 13389.34 9982.85 30769.80 21687.36 4294.06 4568.34 9491.56 23187.95 2783.46 20693.21 95
EIA-MVS83.31 9482.80 9684.82 9689.59 12265.59 18688.21 13992.68 6574.66 11778.96 14786.42 24669.06 8695.26 7875.54 14390.09 10893.62 77
h-mvs3383.15 9582.19 10386.02 6790.56 9870.85 7388.15 14389.16 18676.02 8784.67 7091.39 11261.54 17095.50 6682.71 7675.48 30591.72 147
MVS_Test83.15 9583.06 9083.41 15486.86 22563.21 23786.11 20592.00 9474.31 12382.87 10189.44 16370.03 7493.21 16777.39 12288.50 13493.81 65
IS-MVSNet83.15 9582.81 9584.18 12189.94 11563.30 23591.59 4388.46 21179.04 2579.49 14192.16 9165.10 12894.28 11567.71 21791.86 8694.95 10
DP-MVS Recon83.11 9882.09 10686.15 6194.44 1970.92 7188.79 11692.20 8870.53 19979.17 14591.03 12664.12 13596.03 5068.39 21490.14 10791.50 153
PAPM_NR83.02 9982.41 9984.82 9692.47 7066.37 16987.93 15091.80 10573.82 13477.32 18490.66 13367.90 9994.90 9570.37 19189.48 11793.19 96
VDD-MVS83.01 10082.36 10184.96 9091.02 8866.40 16888.91 11288.11 21477.57 4184.39 7993.29 6752.19 25593.91 13377.05 12688.70 13094.57 33
MVSFormer82.85 10182.05 10785.24 8187.35 21370.21 8090.50 6490.38 14568.55 24681.32 11989.47 15861.68 16793.46 15678.98 10590.26 10592.05 141
OMC-MVS82.69 10281.97 11084.85 9588.75 16167.42 14887.98 14690.87 13374.92 10979.72 13891.65 10162.19 16293.96 12675.26 14786.42 15993.16 97
PVSNet_Blended_VisFu82.62 10381.83 11284.96 9090.80 9469.76 9088.74 12091.70 10969.39 22478.96 14788.46 18665.47 12594.87 9874.42 15288.57 13190.24 199
MVS_111021_LR82.61 10482.11 10484.11 12288.82 15671.58 5585.15 22786.16 25774.69 11580.47 13091.04 12462.29 15990.55 26180.33 9890.08 10990.20 200
HQP-MVS82.61 10482.02 10884.37 10989.33 13566.98 16189.17 10292.19 8976.41 7677.23 18790.23 14160.17 19795.11 8577.47 12085.99 16891.03 168
RRT-MVS82.60 10682.10 10584.10 12387.98 19262.94 24687.45 16491.27 12077.42 4879.85 13690.28 13856.62 22194.70 10579.87 10288.15 13894.67 26
CLD-MVS82.31 10781.65 11384.29 11488.47 17067.73 14085.81 21592.35 8175.78 9078.33 16386.58 24164.01 13694.35 11376.05 13687.48 14490.79 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10882.41 9981.62 20590.82 9360.93 26884.47 24489.78 16476.36 8184.07 8591.88 9664.71 13290.26 26370.68 18888.89 12493.66 70
diffmvspermissive82.10 10981.88 11182.76 18783.00 30563.78 22383.68 26189.76 16572.94 15882.02 11089.85 14765.96 12290.79 25782.38 8087.30 14693.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 11081.27 11684.50 10489.23 14268.76 11290.22 7391.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
FIs82.07 11182.42 9881.04 22388.80 15858.34 29588.26 13893.49 2676.93 6278.47 16091.04 12469.92 7692.34 20469.87 19884.97 17692.44 127
PS-MVSNAJss82.07 11181.31 11584.34 11286.51 23467.27 15489.27 10091.51 11471.75 17179.37 14290.22 14263.15 14694.27 11677.69 11882.36 22091.49 154
API-MVS81.99 11381.23 11784.26 11990.94 9070.18 8591.10 5589.32 17871.51 17878.66 15488.28 19165.26 12695.10 8864.74 24491.23 9387.51 286
UniMVSNet_NR-MVSNet81.88 11481.54 11482.92 17688.46 17163.46 23187.13 17292.37 8080.19 1278.38 16189.14 16671.66 5593.05 18070.05 19476.46 28892.25 132
MAR-MVS81.84 11580.70 12585.27 8091.32 8271.53 5689.82 7990.92 13069.77 21878.50 15886.21 25062.36 15894.52 10965.36 23892.05 8289.77 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 11681.23 11783.57 14991.89 7663.43 23389.84 7881.85 31877.04 6083.21 9693.10 7052.26 25493.43 15871.98 17689.95 11293.85 62
hse-mvs281.72 11780.94 12384.07 12988.72 16267.68 14185.87 21187.26 23676.02 8784.67 7088.22 19461.54 17093.48 15482.71 7673.44 33391.06 166
GeoE81.71 11881.01 12283.80 14489.51 12664.45 21188.97 11088.73 20671.27 18278.63 15589.76 14966.32 11593.20 17069.89 19786.02 16793.74 68
xiu_mvs_v2_base81.69 11981.05 12083.60 14789.15 14568.03 13584.46 24690.02 15870.67 19481.30 12286.53 24463.17 14594.19 12175.60 14288.54 13288.57 265
PS-MVSNAJ81.69 11981.02 12183.70 14589.51 12668.21 13084.28 25290.09 15770.79 19181.26 12385.62 26463.15 14694.29 11475.62 14188.87 12588.59 264
PAPR81.66 12180.89 12483.99 13990.27 10364.00 21886.76 18791.77 10868.84 24277.13 19489.50 15667.63 10194.88 9767.55 21988.52 13393.09 100
UniMVSNet (Re)81.60 12281.11 11983.09 16788.38 17564.41 21287.60 15893.02 4578.42 3278.56 15788.16 19569.78 7793.26 16369.58 20176.49 28791.60 148
FC-MVSNet-test81.52 12382.02 10880.03 24488.42 17455.97 33487.95 14893.42 2977.10 5877.38 18290.98 13069.96 7591.79 22268.46 21384.50 18292.33 128
VDDNet81.52 12380.67 12684.05 13490.44 10164.13 21789.73 8485.91 26071.11 18583.18 9793.48 6150.54 28193.49 15373.40 16388.25 13694.54 34
ACMP74.13 681.51 12580.57 12784.36 11089.42 13068.69 11989.97 7791.50 11774.46 12175.04 24890.41 13753.82 24194.54 10777.56 11982.91 21289.86 221
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 12680.29 13484.70 10086.63 23369.90 8885.95 20886.77 24763.24 31181.07 12589.47 15861.08 18392.15 21078.33 11390.07 11092.05 141
jason: jason.
lupinMVS81.39 12680.27 13584.76 9987.35 21370.21 8085.55 22086.41 25162.85 31881.32 11988.61 18161.68 16792.24 20878.41 11290.26 10591.83 144
test_yl81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DCV-MVSNet81.17 12880.47 13083.24 16089.13 14663.62 22486.21 20289.95 16172.43 16481.78 11589.61 15357.50 21393.58 14770.75 18686.90 15192.52 121
DU-MVS81.12 13080.52 12982.90 17787.80 19963.46 23187.02 17691.87 10279.01 2678.38 16189.07 16865.02 12993.05 18070.05 19476.46 28892.20 135
PVSNet_Blended80.98 13180.34 13282.90 17788.85 15365.40 18984.43 24892.00 9467.62 25778.11 16885.05 27866.02 12094.27 11671.52 17889.50 11689.01 246
FA-MVS(test-final)80.96 13279.91 14084.10 12388.30 17865.01 19884.55 24390.01 15973.25 15279.61 13987.57 20858.35 20594.72 10371.29 18286.25 16292.56 120
QAPM80.88 13379.50 14985.03 8788.01 19168.97 10791.59 4392.00 9466.63 27275.15 24492.16 9157.70 21095.45 6863.52 25088.76 12890.66 181
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19287.85 19762.33 25187.74 15691.33 11980.55 977.99 17289.86 14665.23 12792.62 19067.05 22675.24 31592.30 130
UGNet80.83 13579.59 14784.54 10388.04 18868.09 13289.42 9588.16 21376.95 6176.22 21289.46 16049.30 29693.94 12968.48 21290.31 10391.60 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 13679.92 13983.47 15088.85 15364.51 20785.53 22289.39 17670.79 19178.49 15985.06 27767.54 10293.58 14767.03 22786.58 15692.32 129
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14185.60 24768.78 11183.54 26790.50 14270.66 19776.71 20091.66 10060.69 18891.26 24476.94 12781.58 22891.83 144
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13687.35 21370.19 8285.56 21788.77 20169.06 23681.83 11188.16 19550.91 27592.85 18678.29 11487.56 14189.06 241
ACMM73.20 880.78 14179.84 14283.58 14889.31 13868.37 12589.99 7691.60 11170.28 20477.25 18589.66 15153.37 24693.53 15274.24 15582.85 21388.85 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 14279.51 14884.20 12094.09 3867.27 15489.64 8791.11 12758.75 35574.08 26290.72 13258.10 20695.04 9069.70 19989.42 11890.30 197
CANet_DTU80.61 14379.87 14182.83 17985.60 24763.17 24087.36 16688.65 20776.37 8075.88 21988.44 18753.51 24493.07 17973.30 16489.74 11592.25 132
VPA-MVSNet80.60 14480.55 12880.76 23088.07 18760.80 27186.86 18191.58 11275.67 9480.24 13289.45 16263.34 14090.25 26470.51 19079.22 25891.23 161
mvsmamba80.60 14479.38 15184.27 11789.74 12067.24 15687.47 16286.95 24270.02 20975.38 23288.93 17151.24 27292.56 19375.47 14589.22 12093.00 108
PVSNet_BlendedMVS80.60 14480.02 13782.36 19488.85 15365.40 18986.16 20492.00 9469.34 22678.11 16886.09 25466.02 12094.27 11671.52 17882.06 22387.39 288
AdaColmapbinary80.58 14779.42 15084.06 13193.09 5768.91 10889.36 9888.97 19669.27 22775.70 22289.69 15057.20 21795.77 5963.06 25588.41 13587.50 287
EI-MVSNet80.52 14879.98 13882.12 19584.28 27263.19 23986.41 19588.95 19774.18 12778.69 15287.54 21166.62 10992.43 19872.57 17380.57 24190.74 179
XVG-OURS80.41 14979.23 15783.97 14085.64 24669.02 10583.03 27890.39 14471.09 18677.63 17891.49 10954.62 23591.35 24275.71 13983.47 20591.54 151
SDMVSNet80.38 15080.18 13680.99 22489.03 15164.94 20080.45 31089.40 17575.19 10276.61 20489.98 14460.61 19187.69 30776.83 12983.55 20390.33 195
PCF-MVS73.52 780.38 15078.84 16585.01 8887.71 20468.99 10683.65 26291.46 11863.00 31577.77 17690.28 13866.10 11795.09 8961.40 27488.22 13790.94 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 15277.83 18888.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9212.47 41867.45 10396.60 3383.06 6894.50 5194.07 52
test_djsdf80.30 15379.32 15483.27 15883.98 28065.37 19290.50 6490.38 14568.55 24676.19 21388.70 17756.44 22293.46 15678.98 10580.14 24790.97 171
v2v48280.23 15479.29 15583.05 17083.62 28864.14 21687.04 17589.97 16073.61 13978.18 16787.22 21961.10 18293.82 13776.11 13476.78 28591.18 162
NR-MVSNet80.23 15479.38 15182.78 18587.80 19963.34 23486.31 19991.09 12879.01 2672.17 28689.07 16867.20 10692.81 18966.08 23375.65 30192.20 135
Anonymous2024052980.19 15678.89 16484.10 12390.60 9764.75 20488.95 11190.90 13165.97 28080.59 12991.17 12049.97 28693.73 14569.16 20582.70 21793.81 65
IterMVS-LS80.06 15779.38 15182.11 19685.89 24263.20 23886.79 18489.34 17774.19 12675.45 22986.72 23166.62 10992.39 20072.58 17276.86 28290.75 178
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15878.57 16984.42 10885.13 25868.74 11488.77 11788.10 21574.99 10674.97 24983.49 31057.27 21693.36 16073.53 16080.88 23591.18 162
v114480.03 15879.03 16183.01 17283.78 28564.51 20787.11 17490.57 14171.96 17078.08 17086.20 25161.41 17493.94 12974.93 14877.23 27690.60 184
v879.97 16079.02 16282.80 18284.09 27764.50 20987.96 14790.29 15274.13 12975.24 24186.81 22862.88 15193.89 13674.39 15375.40 31090.00 213
OpenMVScopyleft72.83 1079.77 16178.33 17684.09 12785.17 25469.91 8790.57 6190.97 12966.70 26672.17 28691.91 9454.70 23393.96 12661.81 27190.95 9688.41 269
v1079.74 16278.67 16682.97 17584.06 27864.95 19987.88 15390.62 13873.11 15475.11 24586.56 24261.46 17394.05 12573.68 15875.55 30389.90 219
ECVR-MVScopyleft79.61 16379.26 15680.67 23290.08 10854.69 34987.89 15277.44 35874.88 11080.27 13192.79 8248.96 30292.45 19768.55 21192.50 7794.86 17
BH-RMVSNet79.61 16378.44 17283.14 16589.38 13465.93 17784.95 23387.15 23973.56 14178.19 16689.79 14856.67 22093.36 16059.53 28986.74 15490.13 203
v119279.59 16578.43 17383.07 16983.55 29064.52 20686.93 17990.58 13970.83 19077.78 17585.90 25559.15 20093.94 12973.96 15777.19 27890.76 177
ab-mvs79.51 16678.97 16381.14 22088.46 17160.91 26983.84 25889.24 18370.36 20179.03 14688.87 17463.23 14490.21 26565.12 24082.57 21892.28 131
WR-MVS79.49 16779.22 15880.27 24088.79 15958.35 29485.06 23088.61 20978.56 3077.65 17788.34 18963.81 13990.66 26064.98 24277.22 27791.80 146
v14419279.47 16878.37 17482.78 18583.35 29363.96 21986.96 17790.36 14869.99 21177.50 17985.67 26260.66 18993.77 14174.27 15476.58 28690.62 182
BH-untuned79.47 16878.60 16882.05 19789.19 14465.91 17886.07 20688.52 21072.18 16675.42 23087.69 20561.15 18193.54 15160.38 28186.83 15386.70 307
test111179.43 17079.18 15980.15 24289.99 11353.31 36287.33 16877.05 36275.04 10580.23 13392.77 8448.97 30192.33 20568.87 20892.40 7994.81 20
mvs_anonymous79.42 17179.11 16080.34 23884.45 27157.97 30182.59 28087.62 22867.40 26176.17 21688.56 18468.47 9289.59 27670.65 18986.05 16693.47 84
thisisatest053079.40 17277.76 19384.31 11387.69 20665.10 19787.36 16684.26 28170.04 20877.42 18188.26 19349.94 28794.79 10170.20 19284.70 18093.03 105
tttt051779.40 17277.91 18583.90 14388.10 18563.84 22188.37 13484.05 28371.45 17976.78 19889.12 16749.93 28994.89 9670.18 19383.18 21092.96 110
V4279.38 17478.24 17882.83 17981.10 34065.50 18885.55 22089.82 16371.57 17778.21 16586.12 25360.66 18993.18 17375.64 14075.46 30789.81 224
jajsoiax79.29 17577.96 18383.27 15884.68 26566.57 16789.25 10190.16 15569.20 23275.46 22889.49 15745.75 32793.13 17676.84 12880.80 23790.11 205
v192192079.22 17678.03 18282.80 18283.30 29563.94 22086.80 18390.33 14969.91 21477.48 18085.53 26558.44 20493.75 14373.60 15976.85 28390.71 180
AUN-MVS79.21 17777.60 19884.05 13488.71 16367.61 14385.84 21387.26 23669.08 23577.23 18788.14 19953.20 24893.47 15575.50 14473.45 33291.06 166
TAPA-MVS73.13 979.15 17877.94 18482.79 18489.59 12262.99 24588.16 14291.51 11465.77 28177.14 19391.09 12260.91 18593.21 16750.26 35287.05 14992.17 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17977.77 19283.22 16284.70 26466.37 16989.17 10290.19 15469.38 22575.40 23189.46 16044.17 33793.15 17476.78 13080.70 23990.14 202
UniMVSNet_ETH3D79.10 18078.24 17881.70 20486.85 22660.24 28087.28 17088.79 20074.25 12576.84 19590.53 13649.48 29291.56 23167.98 21582.15 22193.29 90
CDS-MVSNet79.07 18177.70 19583.17 16487.60 20868.23 12984.40 25086.20 25667.49 25976.36 20986.54 24361.54 17090.79 25761.86 27087.33 14590.49 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 18277.88 18782.38 19383.07 30264.80 20384.08 25788.95 19769.01 23978.69 15287.17 22254.70 23392.43 19874.69 14980.57 24189.89 220
v124078.99 18377.78 19182.64 18883.21 29763.54 22886.62 19090.30 15169.74 22177.33 18385.68 26157.04 21893.76 14273.13 16776.92 28090.62 182
Anonymous2023121178.97 18477.69 19682.81 18190.54 9964.29 21490.11 7591.51 11465.01 29276.16 21788.13 20050.56 28093.03 18369.68 20077.56 27591.11 164
v7n78.97 18477.58 19983.14 16583.45 29265.51 18788.32 13691.21 12273.69 13772.41 28286.32 24957.93 20793.81 13869.18 20475.65 30190.11 205
TAMVS78.89 18677.51 20083.03 17187.80 19967.79 13984.72 23785.05 27067.63 25676.75 19987.70 20462.25 16090.82 25658.53 30087.13 14890.49 189
c3_l78.75 18777.91 18581.26 21682.89 30961.56 26284.09 25689.13 18969.97 21275.56 22484.29 29266.36 11492.09 21273.47 16275.48 30590.12 204
tt080578.73 18877.83 18881.43 21085.17 25460.30 27989.41 9690.90 13171.21 18377.17 19288.73 17646.38 31693.21 16772.57 17378.96 25990.79 175
v14878.72 18977.80 19081.47 20982.73 31261.96 25786.30 20088.08 21673.26 15176.18 21485.47 26762.46 15692.36 20271.92 17773.82 32990.09 207
VPNet78.69 19078.66 16778.76 26788.31 17755.72 33884.45 24786.63 24976.79 6678.26 16490.55 13559.30 19989.70 27566.63 22877.05 27990.88 173
ET-MVSNet_ETH3D78.63 19176.63 22184.64 10186.73 23069.47 9585.01 23184.61 27469.54 22266.51 34886.59 23950.16 28491.75 22476.26 13384.24 19092.69 116
anonymousdsp78.60 19277.15 20682.98 17480.51 34667.08 15987.24 17189.53 17265.66 28375.16 24387.19 22152.52 24992.25 20777.17 12479.34 25689.61 229
miper_ehance_all_eth78.59 19377.76 19381.08 22282.66 31461.56 26283.65 26289.15 18768.87 24175.55 22583.79 30366.49 11292.03 21373.25 16576.39 29089.64 228
WR-MVS_H78.51 19478.49 17078.56 27288.02 18956.38 32888.43 12992.67 6677.14 5673.89 26387.55 21066.25 11689.24 28358.92 29573.55 33190.06 211
GBi-Net78.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
test178.40 19577.40 20181.40 21287.60 20863.01 24188.39 13189.28 17971.63 17375.34 23487.28 21554.80 22991.11 24762.72 25779.57 25190.09 207
Vis-MVSNet (Re-imp)78.36 19778.45 17178.07 28388.64 16551.78 37286.70 18879.63 34374.14 12875.11 24590.83 13161.29 17889.75 27358.10 30591.60 8792.69 116
Anonymous20240521178.25 19877.01 20881.99 19991.03 8760.67 27384.77 23683.90 28570.65 19880.00 13591.20 11841.08 35691.43 24065.21 23985.26 17493.85 62
CP-MVSNet78.22 19978.34 17577.84 28587.83 19854.54 35187.94 14991.17 12477.65 3873.48 26888.49 18562.24 16188.43 29862.19 26574.07 32490.55 186
BH-w/o78.21 20077.33 20480.84 22888.81 15765.13 19684.87 23487.85 22469.75 21974.52 25784.74 28461.34 17693.11 17758.24 30485.84 17084.27 344
FMVSNet278.20 20177.21 20581.20 21887.60 20862.89 24787.47 16289.02 19271.63 17375.29 24087.28 21554.80 22991.10 25062.38 26279.38 25589.61 229
MVS78.19 20276.99 21081.78 20285.66 24566.99 16084.66 23890.47 14355.08 37572.02 28885.27 27063.83 13894.11 12466.10 23289.80 11484.24 345
Baseline_NR-MVSNet78.15 20378.33 17677.61 29085.79 24356.21 33286.78 18585.76 26273.60 14077.93 17387.57 20865.02 12988.99 28767.14 22575.33 31287.63 282
CNLPA78.08 20476.79 21581.97 20090.40 10271.07 6587.59 15984.55 27566.03 27972.38 28389.64 15257.56 21286.04 32059.61 28883.35 20788.79 257
cl2278.07 20577.01 20881.23 21782.37 32161.83 25983.55 26687.98 21868.96 24075.06 24783.87 29961.40 17591.88 22073.53 16076.39 29089.98 216
PLCcopyleft70.83 1178.05 20676.37 22683.08 16891.88 7767.80 13888.19 14089.46 17464.33 30069.87 31288.38 18853.66 24293.58 14758.86 29682.73 21587.86 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20776.49 22282.62 18983.16 30166.96 16386.94 17887.45 23372.45 16171.49 29484.17 29654.79 23291.58 22967.61 21880.31 24489.30 237
PS-CasMVS78.01 20878.09 18177.77 28787.71 20454.39 35388.02 14591.22 12177.50 4673.26 27088.64 18060.73 18688.41 29961.88 26973.88 32890.53 187
HY-MVS69.67 1277.95 20977.15 20680.36 23787.57 21260.21 28183.37 26987.78 22666.11 27675.37 23387.06 22663.27 14290.48 26261.38 27582.43 21990.40 193
eth_miper_zixun_eth77.92 21076.69 21981.61 20783.00 30561.98 25683.15 27289.20 18569.52 22374.86 25184.35 29161.76 16692.56 19371.50 18072.89 33790.28 198
FMVSNet377.88 21176.85 21380.97 22686.84 22762.36 25086.52 19388.77 20171.13 18475.34 23486.66 23754.07 23991.10 25062.72 25779.57 25189.45 233
miper_enhance_ethall77.87 21276.86 21280.92 22781.65 32861.38 26482.68 27988.98 19465.52 28575.47 22682.30 33065.76 12492.00 21572.95 16876.39 29089.39 234
FE-MVS77.78 21375.68 23284.08 12888.09 18666.00 17583.13 27387.79 22568.42 25078.01 17185.23 27245.50 33095.12 8359.11 29385.83 17191.11 164
PEN-MVS77.73 21477.69 19677.84 28587.07 22453.91 35687.91 15191.18 12377.56 4373.14 27288.82 17561.23 17989.17 28459.95 28472.37 33990.43 191
cl____77.72 21576.76 21680.58 23382.49 31860.48 27683.09 27487.87 22269.22 23074.38 26085.22 27362.10 16391.53 23471.09 18375.41 30989.73 227
DIV-MVS_self_test77.72 21576.76 21680.58 23382.48 31960.48 27683.09 27487.86 22369.22 23074.38 26085.24 27162.10 16391.53 23471.09 18375.40 31089.74 226
sd_testset77.70 21777.40 20178.60 27089.03 15160.02 28279.00 32985.83 26175.19 10276.61 20489.98 14454.81 22885.46 32862.63 26183.55 20390.33 195
PAPM77.68 21876.40 22581.51 20887.29 22061.85 25883.78 25989.59 17064.74 29471.23 29588.70 17762.59 15393.66 14652.66 33787.03 15089.01 246
CHOSEN 1792x268877.63 21975.69 23183.44 15189.98 11468.58 12278.70 33487.50 23156.38 37075.80 22186.84 22758.67 20291.40 24161.58 27385.75 17290.34 194
HyFIR lowres test77.53 22075.40 23983.94 14289.59 12266.62 16580.36 31188.64 20856.29 37176.45 20685.17 27457.64 21193.28 16261.34 27683.10 21191.91 143
FMVSNet177.44 22176.12 22881.40 21286.81 22863.01 24188.39 13189.28 17970.49 20074.39 25987.28 21549.06 30091.11 24760.91 27878.52 26290.09 207
TR-MVS77.44 22176.18 22781.20 21888.24 17963.24 23684.61 24186.40 25267.55 25877.81 17486.48 24554.10 23893.15 17457.75 30882.72 21687.20 293
1112_ss77.40 22376.43 22480.32 23989.11 15060.41 27883.65 26287.72 22762.13 32873.05 27386.72 23162.58 15489.97 26962.11 26880.80 23790.59 185
thisisatest051577.33 22475.38 24083.18 16385.27 25363.80 22282.11 28583.27 29565.06 29075.91 21883.84 30149.54 29194.27 11667.24 22386.19 16391.48 155
test250677.30 22576.49 22279.74 25090.08 10852.02 36687.86 15463.10 40474.88 11080.16 13492.79 8238.29 37092.35 20368.74 21092.50 7794.86 17
pm-mvs177.25 22676.68 22078.93 26584.22 27458.62 29286.41 19588.36 21271.37 18073.31 26988.01 20161.22 18089.15 28564.24 24873.01 33689.03 245
LCM-MVSNet-Re77.05 22776.94 21177.36 29487.20 22151.60 37380.06 31480.46 33375.20 10167.69 33086.72 23162.48 15588.98 28863.44 25289.25 11991.51 152
DTE-MVSNet76.99 22876.80 21477.54 29386.24 23653.06 36587.52 16090.66 13777.08 5972.50 28088.67 17960.48 19389.52 27757.33 31270.74 35190.05 212
baseline176.98 22976.75 21877.66 28888.13 18355.66 33985.12 22881.89 31673.04 15676.79 19788.90 17262.43 15787.78 30663.30 25471.18 34989.55 231
LS3D76.95 23074.82 24783.37 15590.45 10067.36 15189.15 10686.94 24361.87 33069.52 31590.61 13451.71 26894.53 10846.38 37386.71 15588.21 272
GA-MVS76.87 23175.17 24481.97 20082.75 31162.58 24881.44 29486.35 25472.16 16874.74 25282.89 32146.20 32192.02 21468.85 20981.09 23391.30 160
mamv476.81 23278.23 18072.54 34286.12 23965.75 18478.76 33382.07 31564.12 30272.97 27491.02 12767.97 9768.08 40683.04 7078.02 26983.80 352
DP-MVS76.78 23374.57 24983.42 15293.29 4869.46 9788.55 12783.70 28763.98 30770.20 30388.89 17354.01 24094.80 10046.66 37081.88 22686.01 319
cascas76.72 23474.64 24882.99 17385.78 24465.88 17982.33 28289.21 18460.85 33672.74 27681.02 34147.28 30993.75 14367.48 22085.02 17589.34 236
testing9176.54 23575.66 23479.18 26288.43 17355.89 33581.08 29783.00 30373.76 13675.34 23484.29 29246.20 32190.07 26764.33 24684.50 18291.58 150
131476.53 23675.30 24380.21 24183.93 28162.32 25284.66 23888.81 19960.23 34070.16 30684.07 29855.30 22690.73 25967.37 22183.21 20987.59 285
thres100view90076.50 23775.55 23679.33 25889.52 12556.99 31785.83 21483.23 29673.94 13176.32 21087.12 22351.89 26491.95 21648.33 36183.75 19789.07 239
thres600view776.50 23775.44 23779.68 25289.40 13257.16 31485.53 22283.23 29673.79 13576.26 21187.09 22451.89 26491.89 21948.05 36683.72 20090.00 213
thres40076.50 23775.37 24179.86 24789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19790.00 213
MonoMVSNet76.49 24075.80 22978.58 27181.55 33158.45 29386.36 19886.22 25574.87 11274.73 25383.73 30551.79 26788.73 29370.78 18572.15 34288.55 266
tfpn200view976.42 24175.37 24179.55 25789.13 14657.65 30885.17 22583.60 28873.41 14776.45 20686.39 24752.12 25691.95 21648.33 36183.75 19789.07 239
Test_1112_low_res76.40 24275.44 23779.27 25989.28 14058.09 29781.69 28987.07 24059.53 34772.48 28186.67 23661.30 17789.33 28060.81 28080.15 24690.41 192
F-COLMAP76.38 24374.33 25582.50 19189.28 14066.95 16488.41 13089.03 19164.05 30566.83 34088.61 18146.78 31392.89 18557.48 30978.55 26187.67 281
LTVRE_ROB69.57 1376.25 24474.54 25181.41 21188.60 16664.38 21379.24 32489.12 19070.76 19369.79 31487.86 20249.09 29993.20 17056.21 32280.16 24586.65 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24574.46 25381.13 22185.37 25269.79 8984.42 24987.95 22065.03 29167.46 33385.33 26953.28 24791.73 22658.01 30683.27 20881.85 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 24674.27 25681.62 20583.20 29864.67 20583.60 26589.75 16669.75 21971.85 28987.09 22432.78 38392.11 21169.99 19680.43 24388.09 274
testing9976.09 24775.12 24579.00 26388.16 18155.50 34180.79 30181.40 32273.30 15075.17 24284.27 29444.48 33590.02 26864.28 24784.22 19191.48 155
ACMH+68.96 1476.01 24874.01 25782.03 19888.60 16665.31 19388.86 11487.55 22970.25 20667.75 32987.47 21341.27 35493.19 17258.37 30275.94 29887.60 283
ACMH67.68 1675.89 24973.93 25981.77 20388.71 16366.61 16688.62 12589.01 19369.81 21566.78 34186.70 23541.95 35391.51 23655.64 32378.14 26887.17 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 25073.36 26683.31 15684.76 26366.03 17383.38 26885.06 26970.21 20769.40 31681.05 34045.76 32694.66 10665.10 24175.49 30489.25 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 25173.83 26281.30 21583.26 29661.79 26082.57 28180.65 32966.81 26366.88 33983.42 31157.86 20992.19 20963.47 25179.57 25189.91 218
WTY-MVS75.65 25275.68 23275.57 31086.40 23556.82 31977.92 34682.40 31165.10 28976.18 21487.72 20363.13 14980.90 35860.31 28281.96 22489.00 248
thres20075.55 25374.47 25278.82 26687.78 20257.85 30483.07 27683.51 29172.44 16375.84 22084.42 28752.08 25991.75 22447.41 36883.64 20286.86 303
test_vis1_n_192075.52 25475.78 23074.75 32379.84 35457.44 31283.26 27085.52 26462.83 31979.34 14486.17 25245.10 33279.71 36278.75 10781.21 23287.10 300
EPNet_dtu75.46 25574.86 24677.23 29782.57 31654.60 35086.89 18083.09 30071.64 17266.25 35085.86 25755.99 22388.04 30354.92 32686.55 15789.05 244
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 25673.87 26180.11 24382.69 31364.85 20281.57 29183.47 29269.16 23370.49 30084.15 29751.95 26288.15 30169.23 20372.14 34387.34 290
XXY-MVS75.41 25775.56 23574.96 31983.59 28957.82 30580.59 30783.87 28666.54 27374.93 25088.31 19063.24 14380.09 36162.16 26676.85 28386.97 301
reproduce_monomvs75.40 25874.38 25478.46 27783.92 28257.80 30683.78 25986.94 24373.47 14572.25 28584.47 28638.74 36689.27 28275.32 14670.53 35288.31 270
TransMVSNet (Re)75.39 25974.56 25077.86 28485.50 24957.10 31686.78 18586.09 25972.17 16771.53 29387.34 21463.01 15089.31 28156.84 31761.83 37887.17 294
CostFormer75.24 26073.90 26079.27 25982.65 31558.27 29680.80 30082.73 30961.57 33175.33 23883.13 31655.52 22491.07 25364.98 24278.34 26788.45 267
testing1175.14 26174.01 25778.53 27488.16 18156.38 32880.74 30480.42 33470.67 19472.69 27983.72 30643.61 34189.86 27062.29 26483.76 19689.36 235
D2MVS74.82 26273.21 26779.64 25479.81 35562.56 24980.34 31287.35 23464.37 29968.86 32182.66 32546.37 31790.10 26667.91 21681.24 23186.25 312
pmmvs674.69 26373.39 26578.61 26981.38 33557.48 31186.64 18987.95 22064.99 29370.18 30486.61 23850.43 28289.52 27762.12 26770.18 35488.83 255
tfpnnormal74.39 26473.16 26878.08 28286.10 24158.05 29884.65 24087.53 23070.32 20371.22 29685.63 26354.97 22789.86 27043.03 38475.02 31786.32 311
IterMVS74.29 26572.94 27178.35 27881.53 33263.49 23081.58 29082.49 31068.06 25469.99 30983.69 30751.66 26985.54 32665.85 23571.64 34686.01 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 26672.42 27779.80 24983.76 28659.59 28785.92 21086.64 24866.39 27466.96 33887.58 20739.46 36291.60 22865.76 23669.27 35788.22 271
SCA74.22 26772.33 27879.91 24684.05 27962.17 25479.96 31779.29 34666.30 27572.38 28380.13 35151.95 26288.60 29659.25 29177.67 27488.96 250
mmtdpeth74.16 26873.01 27077.60 29283.72 28761.13 26585.10 22985.10 26872.06 16977.21 19180.33 34943.84 33985.75 32277.14 12552.61 39685.91 322
miper_lstm_enhance74.11 26973.11 26977.13 29880.11 35059.62 28672.23 37486.92 24566.76 26570.40 30182.92 32056.93 21982.92 34769.06 20672.63 33888.87 253
testing22274.04 27072.66 27478.19 28087.89 19555.36 34281.06 29879.20 34771.30 18174.65 25583.57 30939.11 36588.67 29551.43 34485.75 17290.53 187
EG-PatchMatch MVS74.04 27071.82 28280.71 23184.92 26167.42 14885.86 21288.08 21666.04 27864.22 36283.85 30035.10 37992.56 19357.44 31080.83 23682.16 370
pmmvs474.03 27271.91 28180.39 23681.96 32468.32 12681.45 29382.14 31359.32 34869.87 31285.13 27552.40 25288.13 30260.21 28374.74 32084.73 341
MS-PatchMatch73.83 27372.67 27377.30 29683.87 28366.02 17481.82 28684.66 27361.37 33468.61 32482.82 32347.29 30888.21 30059.27 29084.32 18977.68 386
test_cas_vis1_n_192073.76 27473.74 26373.81 33175.90 37559.77 28480.51 30882.40 31158.30 35781.62 11785.69 26044.35 33676.41 38076.29 13278.61 26085.23 332
sss73.60 27573.64 26473.51 33382.80 31055.01 34776.12 35381.69 31962.47 32474.68 25485.85 25857.32 21578.11 36960.86 27980.93 23487.39 288
RPMNet73.51 27670.49 29882.58 19081.32 33865.19 19475.92 35592.27 8357.60 36372.73 27776.45 37852.30 25395.43 7048.14 36577.71 27287.11 298
WBMVS73.43 27772.81 27275.28 31687.91 19450.99 37978.59 33781.31 32465.51 28774.47 25884.83 28146.39 31586.68 31358.41 30177.86 27088.17 273
SixPastTwentyTwo73.37 27871.26 29179.70 25185.08 25957.89 30385.57 21683.56 29071.03 18865.66 35285.88 25642.10 35192.57 19259.11 29363.34 37688.65 263
CR-MVSNet73.37 27871.27 29079.67 25381.32 33865.19 19475.92 35580.30 33659.92 34372.73 27781.19 33852.50 25086.69 31259.84 28577.71 27287.11 298
MSDG73.36 28070.99 29380.49 23584.51 27065.80 18180.71 30586.13 25865.70 28265.46 35383.74 30444.60 33390.91 25551.13 34576.89 28184.74 340
tpm273.26 28171.46 28678.63 26883.34 29456.71 32280.65 30680.40 33556.63 36973.55 26782.02 33551.80 26691.24 24556.35 32178.42 26587.95 275
RPSCF73.23 28271.46 28678.54 27382.50 31759.85 28382.18 28482.84 30858.96 35271.15 29789.41 16445.48 33184.77 33558.82 29771.83 34591.02 170
PatchmatchNetpermissive73.12 28371.33 28978.49 27683.18 29960.85 27079.63 31978.57 35064.13 30171.73 29079.81 35651.20 27385.97 32157.40 31176.36 29588.66 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UBG73.08 28472.27 27975.51 31288.02 18951.29 37778.35 34177.38 35965.52 28573.87 26482.36 32845.55 32886.48 31655.02 32584.39 18888.75 259
COLMAP_ROBcopyleft66.92 1773.01 28570.41 30080.81 22987.13 22365.63 18588.30 13784.19 28262.96 31663.80 36687.69 20538.04 37192.56 19346.66 37074.91 31884.24 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 28672.58 27574.25 32784.28 27250.85 38086.41 19583.45 29344.56 39573.23 27187.54 21149.38 29485.70 32365.90 23478.44 26486.19 314
test-LLR72.94 28772.43 27674.48 32481.35 33658.04 29978.38 33877.46 35666.66 26769.95 31079.00 36248.06 30579.24 36366.13 23084.83 17786.15 315
test_040272.79 28870.44 29979.84 24888.13 18365.99 17685.93 20984.29 27965.57 28467.40 33585.49 26646.92 31292.61 19135.88 39874.38 32380.94 376
tpmrst72.39 28972.13 28073.18 33780.54 34549.91 38479.91 31879.08 34863.11 31371.69 29179.95 35355.32 22582.77 34865.66 23773.89 32786.87 302
PatchMatch-RL72.38 29070.90 29476.80 30188.60 16667.38 15079.53 32076.17 36862.75 32169.36 31782.00 33645.51 32984.89 33453.62 33280.58 24078.12 385
CL-MVSNet_self_test72.37 29171.46 28675.09 31879.49 36153.53 35880.76 30385.01 27169.12 23470.51 29982.05 33457.92 20884.13 33852.27 33966.00 37087.60 283
tpm72.37 29171.71 28374.35 32682.19 32252.00 36779.22 32577.29 36064.56 29672.95 27583.68 30851.35 27083.26 34658.33 30375.80 29987.81 279
ETVMVS72.25 29371.05 29275.84 30687.77 20351.91 36979.39 32274.98 37169.26 22873.71 26582.95 31940.82 35886.14 31946.17 37484.43 18789.47 232
UWE-MVS72.13 29471.49 28574.03 32986.66 23247.70 38881.40 29576.89 36463.60 31075.59 22384.22 29539.94 36185.62 32548.98 35886.13 16588.77 258
PVSNet64.34 1872.08 29570.87 29575.69 30886.21 23756.44 32674.37 36880.73 32862.06 32970.17 30582.23 33242.86 34583.31 34554.77 32784.45 18687.32 291
WB-MVSnew71.96 29671.65 28472.89 33884.67 26851.88 37082.29 28377.57 35562.31 32573.67 26683.00 31853.49 24581.10 35745.75 37782.13 22285.70 325
pmmvs571.55 29770.20 30375.61 30977.83 36856.39 32781.74 28880.89 32557.76 36167.46 33384.49 28549.26 29785.32 33057.08 31475.29 31385.11 336
test-mter71.41 29870.39 30174.48 32481.35 33658.04 29978.38 33877.46 35660.32 33969.95 31079.00 36236.08 37779.24 36366.13 23084.83 17786.15 315
K. test v371.19 29968.51 31179.21 26183.04 30457.78 30784.35 25176.91 36372.90 15962.99 36982.86 32239.27 36391.09 25261.65 27252.66 39588.75 259
dmvs_re71.14 30070.58 29672.80 33981.96 32459.68 28575.60 35979.34 34568.55 24669.27 31980.72 34649.42 29376.54 37752.56 33877.79 27182.19 369
tpmvs71.09 30169.29 30676.49 30282.04 32356.04 33378.92 33181.37 32364.05 30567.18 33778.28 36849.74 29089.77 27249.67 35572.37 33983.67 353
AllTest70.96 30268.09 31779.58 25585.15 25663.62 22484.58 24279.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
test_fmvs170.93 30370.52 29772.16 34473.71 38655.05 34680.82 29978.77 34951.21 38778.58 15684.41 28831.20 38876.94 37575.88 13880.12 24884.47 343
test_fmvs1_n70.86 30470.24 30272.73 34072.51 39755.28 34481.27 29679.71 34251.49 38678.73 15184.87 28027.54 39377.02 37476.06 13579.97 24985.88 323
Patchmtry70.74 30569.16 30875.49 31380.72 34254.07 35574.94 36680.30 33658.34 35670.01 30781.19 33852.50 25086.54 31453.37 33471.09 35085.87 324
MIMVSNet70.69 30669.30 30574.88 32084.52 26956.35 33075.87 35779.42 34464.59 29567.76 32882.41 32741.10 35581.54 35446.64 37281.34 22986.75 306
tpm cat170.57 30768.31 31377.35 29582.41 32057.95 30278.08 34380.22 33852.04 38268.54 32577.66 37352.00 26187.84 30551.77 34072.07 34486.25 312
OpenMVS_ROBcopyleft64.09 1970.56 30868.19 31477.65 28980.26 34759.41 28985.01 23182.96 30558.76 35465.43 35482.33 32937.63 37391.23 24645.34 38076.03 29782.32 367
pmmvs-eth3d70.50 30967.83 32278.52 27577.37 37166.18 17281.82 28681.51 32058.90 35363.90 36580.42 34842.69 34686.28 31858.56 29965.30 37283.11 359
USDC70.33 31068.37 31276.21 30480.60 34456.23 33179.19 32686.49 25060.89 33561.29 37485.47 26731.78 38689.47 27953.37 33476.21 29682.94 363
Patchmatch-RL test70.24 31167.78 32477.61 29077.43 37059.57 28871.16 37870.33 38562.94 31768.65 32372.77 39050.62 27985.49 32769.58 20166.58 36787.77 280
CMPMVSbinary51.72 2170.19 31268.16 31576.28 30373.15 39357.55 31079.47 32183.92 28448.02 39156.48 39184.81 28243.13 34386.42 31762.67 26081.81 22784.89 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 31367.34 33178.14 28179.80 35661.13 26579.19 32680.59 33059.16 35065.27 35579.29 35946.75 31487.29 30949.33 35666.72 36586.00 321
gg-mvs-nofinetune69.95 31467.96 31875.94 30583.07 30254.51 35277.23 35070.29 38663.11 31370.32 30262.33 39943.62 34088.69 29453.88 33187.76 14084.62 342
TESTMET0.1,169.89 31569.00 30972.55 34179.27 36456.85 31878.38 33874.71 37557.64 36268.09 32777.19 37537.75 37276.70 37663.92 24984.09 19284.10 348
test_vis1_n69.85 31669.21 30771.77 34672.66 39655.27 34581.48 29276.21 36752.03 38375.30 23983.20 31528.97 39176.22 38274.60 15078.41 26683.81 351
FMVSNet569.50 31767.96 31874.15 32882.97 30855.35 34380.01 31682.12 31462.56 32363.02 36781.53 33736.92 37481.92 35248.42 36074.06 32585.17 335
mvs5depth69.45 31867.45 33075.46 31473.93 38455.83 33679.19 32683.23 29666.89 26271.63 29283.32 31233.69 38285.09 33159.81 28655.34 39285.46 328
PMMVS69.34 31968.67 31071.35 35175.67 37762.03 25575.17 36173.46 37850.00 38868.68 32279.05 36052.07 26078.13 36861.16 27782.77 21473.90 392
our_test_369.14 32067.00 33375.57 31079.80 35658.80 29077.96 34477.81 35359.55 34662.90 37078.25 36947.43 30783.97 33951.71 34167.58 36483.93 350
EPMVS69.02 32168.16 31571.59 34779.61 35949.80 38677.40 34866.93 39662.82 32070.01 30779.05 36045.79 32577.86 37156.58 31975.26 31487.13 297
KD-MVS_self_test68.81 32267.59 32872.46 34374.29 38345.45 39477.93 34587.00 24163.12 31263.99 36478.99 36442.32 34884.77 33556.55 32064.09 37587.16 296
Anonymous2024052168.80 32367.22 33273.55 33274.33 38254.11 35483.18 27185.61 26358.15 35861.68 37380.94 34330.71 38981.27 35657.00 31573.34 33585.28 331
Anonymous2023120668.60 32467.80 32371.02 35480.23 34950.75 38178.30 34280.47 33256.79 36866.11 35182.63 32646.35 31878.95 36543.62 38375.70 30083.36 356
MIMVSNet168.58 32566.78 33573.98 33080.07 35151.82 37180.77 30284.37 27664.40 29859.75 38182.16 33336.47 37583.63 34242.73 38570.33 35386.48 310
testing368.56 32667.67 32671.22 35387.33 21842.87 40383.06 27771.54 38370.36 20169.08 32084.38 28930.33 39085.69 32437.50 39675.45 30885.09 337
EU-MVSNet68.53 32767.61 32771.31 35278.51 36747.01 39184.47 24484.27 28042.27 39866.44 34984.79 28340.44 35983.76 34058.76 29868.54 36283.17 357
PatchT68.46 32867.85 32070.29 35780.70 34343.93 40172.47 37374.88 37260.15 34170.55 29876.57 37749.94 28781.59 35350.58 34674.83 31985.34 330
test_fmvs268.35 32967.48 32970.98 35569.50 40051.95 36880.05 31576.38 36649.33 38974.65 25584.38 28923.30 40275.40 39074.51 15175.17 31685.60 326
Syy-MVS68.05 33067.85 32068.67 36684.68 26540.97 40978.62 33573.08 38066.65 27066.74 34279.46 35752.11 25882.30 35032.89 40176.38 29382.75 364
test0.0.03 168.00 33167.69 32568.90 36377.55 36947.43 38975.70 35872.95 38266.66 26766.56 34482.29 33148.06 30575.87 38544.97 38174.51 32283.41 355
TDRefinement67.49 33264.34 34276.92 29973.47 39061.07 26784.86 23582.98 30459.77 34458.30 38585.13 27526.06 39487.89 30447.92 36760.59 38381.81 372
test20.0367.45 33366.95 33468.94 36275.48 37944.84 39977.50 34777.67 35466.66 26763.01 36883.80 30247.02 31178.40 36742.53 38768.86 36183.58 354
UnsupCasMVSNet_eth67.33 33465.99 33871.37 34973.48 38951.47 37575.16 36285.19 26765.20 28860.78 37680.93 34542.35 34777.20 37357.12 31353.69 39485.44 329
TinyColmap67.30 33564.81 34074.76 32281.92 32656.68 32380.29 31381.49 32160.33 33856.27 39283.22 31324.77 39887.66 30845.52 37869.47 35679.95 381
myMVS_eth3d67.02 33666.29 33769.21 36184.68 26542.58 40478.62 33573.08 38066.65 27066.74 34279.46 35731.53 38782.30 35039.43 39376.38 29382.75 364
dp66.80 33765.43 33970.90 35679.74 35848.82 38775.12 36474.77 37359.61 34564.08 36377.23 37442.89 34480.72 35948.86 35966.58 36783.16 358
MDA-MVSNet-bldmvs66.68 33863.66 34775.75 30779.28 36360.56 27573.92 37078.35 35164.43 29750.13 40079.87 35544.02 33883.67 34146.10 37556.86 38683.03 361
testgi66.67 33966.53 33667.08 37375.62 37841.69 40875.93 35476.50 36566.11 27665.20 35886.59 23935.72 37874.71 39243.71 38273.38 33484.84 339
CHOSEN 280x42066.51 34064.71 34171.90 34581.45 33363.52 22957.98 40868.95 39253.57 37862.59 37176.70 37646.22 32075.29 39155.25 32479.68 25076.88 388
PM-MVS66.41 34164.14 34373.20 33673.92 38556.45 32578.97 33064.96 40263.88 30964.72 35980.24 35019.84 40683.44 34466.24 22964.52 37479.71 382
JIA-IIPM66.32 34262.82 35376.82 30077.09 37261.72 26165.34 40175.38 36958.04 36064.51 36062.32 40042.05 35286.51 31551.45 34369.22 35882.21 368
KD-MVS_2432*160066.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
miper_refine_blended66.22 34363.89 34573.21 33475.47 38053.42 36070.76 38184.35 27764.10 30366.52 34678.52 36634.55 38084.98 33250.40 34850.33 39981.23 374
ADS-MVSNet266.20 34563.33 34874.82 32179.92 35258.75 29167.55 39375.19 37053.37 37965.25 35675.86 38142.32 34880.53 36041.57 38868.91 35985.18 333
YYNet165.03 34662.91 35171.38 34875.85 37656.60 32469.12 38974.66 37657.28 36654.12 39477.87 37145.85 32474.48 39349.95 35361.52 38083.05 360
MDA-MVSNet_test_wron65.03 34662.92 35071.37 34975.93 37456.73 32069.09 39074.73 37457.28 36654.03 39577.89 37045.88 32374.39 39449.89 35461.55 37982.99 362
Patchmatch-test64.82 34863.24 34969.57 35979.42 36249.82 38563.49 40569.05 39151.98 38459.95 38080.13 35150.91 27570.98 39940.66 39073.57 33087.90 277
ADS-MVSNet64.36 34962.88 35268.78 36579.92 35247.17 39067.55 39371.18 38453.37 37965.25 35675.86 38142.32 34873.99 39541.57 38868.91 35985.18 333
LF4IMVS64.02 35062.19 35469.50 36070.90 39853.29 36376.13 35277.18 36152.65 38158.59 38380.98 34223.55 40176.52 37853.06 33666.66 36678.68 384
UnsupCasMVSNet_bld63.70 35161.53 35770.21 35873.69 38751.39 37672.82 37281.89 31655.63 37357.81 38771.80 39238.67 36778.61 36649.26 35752.21 39780.63 378
test_fmvs363.36 35261.82 35567.98 37062.51 40946.96 39277.37 34974.03 37745.24 39467.50 33278.79 36512.16 41472.98 39872.77 17166.02 36983.99 349
dmvs_testset62.63 35364.11 34458.19 38378.55 36624.76 42175.28 36065.94 39967.91 25560.34 37776.01 38053.56 24373.94 39631.79 40267.65 36375.88 390
mvsany_test162.30 35461.26 35865.41 37569.52 39954.86 34866.86 39549.78 41546.65 39268.50 32683.21 31449.15 29866.28 40756.93 31660.77 38175.11 391
new-patchmatchnet61.73 35561.73 35661.70 37972.74 39524.50 42269.16 38878.03 35261.40 33256.72 39075.53 38438.42 36876.48 37945.95 37657.67 38584.13 347
PVSNet_057.27 2061.67 35659.27 35968.85 36479.61 35957.44 31268.01 39173.44 37955.93 37258.54 38470.41 39544.58 33477.55 37247.01 36935.91 40771.55 395
test_vis1_rt60.28 35758.42 36065.84 37467.25 40355.60 34070.44 38360.94 40744.33 39659.00 38266.64 39724.91 39768.67 40462.80 25669.48 35573.25 393
ttmdpeth59.91 35857.10 36268.34 36867.13 40446.65 39374.64 36767.41 39548.30 39062.52 37285.04 27920.40 40475.93 38442.55 38645.90 40582.44 366
MVS-HIRNet59.14 35957.67 36163.57 37781.65 32843.50 40271.73 37565.06 40139.59 40251.43 39757.73 40538.34 36982.58 34939.53 39173.95 32664.62 401
pmmvs357.79 36054.26 36568.37 36764.02 40856.72 32175.12 36465.17 40040.20 40052.93 39669.86 39620.36 40575.48 38845.45 37955.25 39372.90 394
DSMNet-mixed57.77 36156.90 36360.38 38167.70 40235.61 41269.18 38753.97 41332.30 41157.49 38879.88 35440.39 36068.57 40538.78 39472.37 33976.97 387
MVStest156.63 36252.76 36868.25 36961.67 41053.25 36471.67 37668.90 39338.59 40350.59 39983.05 31725.08 39670.66 40036.76 39738.56 40680.83 377
WB-MVS54.94 36354.72 36455.60 38973.50 38820.90 42374.27 36961.19 40659.16 35050.61 39874.15 38647.19 31075.78 38617.31 41435.07 40870.12 396
LCM-MVSNet54.25 36449.68 37467.97 37153.73 41845.28 39766.85 39680.78 32735.96 40739.45 40862.23 4018.70 41878.06 37048.24 36451.20 39880.57 379
mvsany_test353.99 36551.45 37061.61 38055.51 41444.74 40063.52 40445.41 41943.69 39758.11 38676.45 37817.99 40763.76 41054.77 32747.59 40176.34 389
SSC-MVS53.88 36653.59 36654.75 39172.87 39419.59 42473.84 37160.53 40857.58 36449.18 40273.45 38946.34 31975.47 38916.20 41732.28 41069.20 397
FPMVS53.68 36751.64 36959.81 38265.08 40651.03 37869.48 38669.58 38941.46 39940.67 40672.32 39116.46 41070.00 40324.24 41065.42 37158.40 406
APD_test153.31 36849.93 37363.42 37865.68 40550.13 38371.59 37766.90 39734.43 40840.58 40771.56 3938.65 41976.27 38134.64 40055.36 39163.86 402
N_pmnet52.79 36953.26 36751.40 39378.99 3657.68 42769.52 3853.89 42651.63 38557.01 38974.98 38540.83 35765.96 40837.78 39564.67 37380.56 380
test_f52.09 37050.82 37155.90 38753.82 41742.31 40759.42 40758.31 41136.45 40656.12 39370.96 39412.18 41357.79 41353.51 33356.57 38867.60 398
EGC-MVSNET52.07 37147.05 37567.14 37283.51 29160.71 27280.50 30967.75 3940.07 4210.43 42275.85 38324.26 39981.54 35428.82 40462.25 37759.16 404
new_pmnet50.91 37250.29 37252.78 39268.58 40134.94 41463.71 40356.63 41239.73 40144.95 40365.47 39821.93 40358.48 41234.98 39956.62 38764.92 400
ANet_high50.57 37346.10 37763.99 37648.67 42139.13 41070.99 38080.85 32661.39 33331.18 41057.70 40617.02 40973.65 39731.22 40315.89 41879.18 383
test_vis3_rt49.26 37447.02 37656.00 38654.30 41545.27 39866.76 39748.08 41636.83 40544.38 40453.20 4097.17 42164.07 40956.77 31855.66 38958.65 405
testf145.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
APD_test245.72 37541.96 37957.00 38456.90 41245.32 39566.14 39859.26 40926.19 41230.89 41160.96 4034.14 42270.64 40126.39 40846.73 40355.04 407
dongtai45.42 37745.38 37845.55 39573.36 39126.85 41967.72 39234.19 42154.15 37749.65 40156.41 40825.43 39562.94 41119.45 41228.09 41246.86 411
Gipumacopyleft45.18 37841.86 38155.16 39077.03 37351.52 37432.50 41480.52 33132.46 41027.12 41335.02 4149.52 41775.50 38722.31 41160.21 38438.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 37940.28 38355.82 38840.82 42342.54 40665.12 40263.99 40334.43 40824.48 41457.12 4073.92 42476.17 38317.10 41555.52 39048.75 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38038.86 38446.69 39453.84 41616.45 42548.61 41149.92 41437.49 40431.67 40960.97 4028.14 42056.42 41428.42 40530.72 41167.19 399
kuosan39.70 38140.40 38237.58 39864.52 40726.98 41765.62 40033.02 42246.12 39342.79 40548.99 41124.10 40046.56 41912.16 42026.30 41339.20 412
E-PMN31.77 38230.64 38535.15 39952.87 41927.67 41657.09 40947.86 41724.64 41416.40 41933.05 41511.23 41554.90 41514.46 41818.15 41622.87 415
test_method31.52 38329.28 38738.23 39727.03 4256.50 42820.94 41662.21 4054.05 41922.35 41752.50 41013.33 41147.58 41727.04 40734.04 40960.62 403
EMVS30.81 38429.65 38634.27 40050.96 42025.95 42056.58 41046.80 41824.01 41515.53 42030.68 41612.47 41254.43 41612.81 41917.05 41722.43 416
MVEpermissive26.22 2330.37 38525.89 38943.81 39644.55 42235.46 41328.87 41539.07 42018.20 41618.58 41840.18 4132.68 42547.37 41817.07 41623.78 41548.60 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 38626.61 3880.00 4060.00 4290.00 4310.00 41789.26 1820.00 4240.00 42588.61 18161.62 1690.00 4250.00 4240.00 4230.00 421
tmp_tt18.61 38721.40 39010.23 4034.82 42610.11 42634.70 41330.74 4241.48 42023.91 41626.07 41728.42 39213.41 42227.12 40615.35 4197.17 417
wuyk23d16.82 38815.94 39119.46 40258.74 41131.45 41539.22 4123.74 4276.84 4186.04 4212.70 4211.27 42624.29 42110.54 42114.40 4202.63 418
ab-mvs-re7.23 3899.64 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42586.72 2310.00 4290.00 4250.00 4240.00 4230.00 421
test1236.12 3908.11 3930.14 4040.06 4280.09 42971.05 3790.03 4290.04 4230.25 4241.30 4230.05 4270.03 4240.21 4230.01 4220.29 419
testmvs6.04 3918.02 3940.10 4050.08 4270.03 43069.74 3840.04 4280.05 4220.31 4231.68 4220.02 4280.04 4230.24 4220.02 4210.25 420
pcd_1.5k_mvsjas5.26 3927.02 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42463.15 1460.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS42.58 40439.46 392
FOURS195.00 1072.39 3995.06 193.84 1574.49 12091.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
PC_three_145268.21 25292.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 37
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 429
eth-test0.00 429
ZD-MVS94.38 2572.22 4492.67 6670.98 18987.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8373.53 14385.69 5694.45 2863.87 13782.75 7491.87 8492.50 123
IU-MVS95.30 271.25 5992.95 5566.81 26392.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6396.48 894.88 14
test_241102_TWO94.06 1077.24 5292.78 495.72 881.26 897.44 789.07 1496.58 694.26 46
test_241102_ONE95.30 270.98 6694.06 1077.17 5593.10 195.39 1482.99 197.27 12
9.1488.26 1592.84 6391.52 4894.75 173.93 13288.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
save fliter93.80 4072.35 4290.47 6691.17 12474.31 123
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 26
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 47
test072695.27 571.25 5993.60 694.11 677.33 4992.81 395.79 380.98 9
GSMVS88.96 250
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27188.96 250
sam_mvs50.01 285
ambc75.24 31773.16 39250.51 38263.05 40687.47 23264.28 36177.81 37217.80 40889.73 27457.88 30760.64 38285.49 327
MTGPAbinary92.02 92
test_post178.90 3325.43 42048.81 30485.44 32959.25 291
test_post5.46 41950.36 28384.24 337
patchmatchnet-post74.00 38751.12 27488.60 296
GG-mvs-BLEND75.38 31581.59 33055.80 33779.32 32369.63 38867.19 33673.67 38843.24 34288.90 29250.41 34784.50 18281.45 373
MTMP92.18 3432.83 423
gm-plane-assit81.40 33453.83 35762.72 32280.94 34392.39 20063.40 253
test9_res84.90 4695.70 2692.87 111
TEST993.26 5272.96 2588.75 11891.89 10068.44 24985.00 6393.10 7074.36 2895.41 72
test_893.13 5472.57 3588.68 12391.84 10468.69 24484.87 6793.10 7074.43 2695.16 81
agg_prior282.91 7295.45 2992.70 114
agg_prior92.85 6271.94 5091.78 10784.41 7894.93 92
TestCases79.58 25585.15 25663.62 22479.83 34062.31 32560.32 37886.73 22932.02 38488.96 29050.28 35071.57 34786.15 315
test_prior472.60 3489.01 109
test_prior288.85 11575.41 9784.91 6593.54 5974.28 2983.31 6695.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 58
旧先验286.56 19258.10 35987.04 4588.98 28874.07 156
新几何286.29 201
新几何183.42 15293.13 5470.71 7485.48 26557.43 36581.80 11491.98 9363.28 14192.27 20664.60 24592.99 7087.27 292
旧先验191.96 7465.79 18286.37 25393.08 7469.31 8392.74 7388.74 261
无先验87.48 16188.98 19460.00 34294.12 12367.28 22288.97 249
原ACMM286.86 181
原ACMM184.35 11193.01 6068.79 11092.44 7663.96 30881.09 12491.57 10666.06 11995.45 6867.19 22494.82 4688.81 256
test22291.50 8068.26 12884.16 25483.20 29954.63 37679.74 13791.63 10358.97 20191.42 9086.77 305
testdata291.01 25462.37 263
segment_acmp73.08 38
testdata79.97 24590.90 9164.21 21584.71 27259.27 34985.40 5892.91 7662.02 16589.08 28668.95 20791.37 9186.63 309
testdata184.14 25575.71 91
test1286.80 5292.63 6770.70 7591.79 10682.71 10571.67 5496.16 4794.50 5193.54 82
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7695.38 7478.71 10886.32 16091.33 158
plane_prior491.00 128
plane_prior368.60 12178.44 3178.92 149
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 3986.16 164
n20.00 430
nn0.00 430
door-mid69.98 387
lessismore_v078.97 26481.01 34157.15 31565.99 39861.16 37582.82 32339.12 36491.34 24359.67 28746.92 40288.43 268
LGP-MVS_train84.50 10489.23 14268.76 11291.94 9875.37 9876.64 20291.51 10754.29 23694.91 9378.44 11083.78 19489.83 222
test1192.23 86
door69.44 390
HQP5-MVS66.98 161
HQP-NCC89.33 13589.17 10276.41 7677.23 187
ACMP_Plane89.33 13589.17 10276.41 7677.23 187
BP-MVS77.47 120
HQP4-MVS77.24 18695.11 8591.03 168
HQP3-MVS92.19 8985.99 168
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12690.24 140
MDTV_nov1_ep13_2view37.79 41175.16 36255.10 37466.53 34549.34 29553.98 33087.94 276
MDTV_nov1_ep1369.97 30483.18 29953.48 35977.10 35180.18 33960.45 33769.33 31880.44 34748.89 30386.90 31151.60 34278.51 263
ACMMP++_ref81.95 225
ACMMP++81.25 230
Test By Simon64.33 133
ITE_SJBPF78.22 27981.77 32760.57 27483.30 29469.25 22967.54 33187.20 22036.33 37687.28 31054.34 32974.62 32186.80 304
DeepMVS_CXcopyleft27.40 40140.17 42426.90 41824.59 42517.44 41723.95 41548.61 4129.77 41626.48 42018.06 41324.47 41428.83 414