This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16598.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15798.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8297.83 8698.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8897.81 9098.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10393.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 8798.41 7791.73 11598.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 178
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10398.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10398.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7697.79 9298.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9497.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1797.53 1197.06 7298.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33696.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13498.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20098.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12797.97 10495.59 1496.61 7897.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15098.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29397.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 11998.19 5892.82 12597.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8098.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17298.07 8293.54 9096.08 10297.69 11093.86 1699.71 4996.50 5499.39 5799.55 34
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10297.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25292.21 10197.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 15998.08 7795.07 3096.11 10098.59 3290.88 7499.90 296.18 7099.50 3599.58 27
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10597.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10297.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11496.45 8898.30 6591.90 4999.85 1895.61 9399.68 499.54 36
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13096.39 9098.18 7391.61 5499.88 495.59 9699.55 2699.57 28
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10198.10 7591.50 15898.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3597.06 2296.59 8498.72 5891.86 11397.67 10798.49 1994.66 5197.24 5498.41 4992.31 4498.94 17096.61 5199.46 4198.96 98
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14098.04 9294.81 4296.59 8098.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test96.89 3797.04 2696.45 9898.29 8591.66 12199.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19196.92 4299.33 6398.94 101
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9597.98 6398.03 9493.52 9297.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
CS-MVS96.86 3997.06 2296.26 11498.16 10191.16 14799.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19897.10 3899.17 7898.90 108
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10195.95 10898.33 6091.04 6999.88 495.20 10099.57 2599.60 23
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12798.07 10890.28 17497.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 167
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12796.70 7298.06 8091.35 6199.86 994.83 11199.28 6699.47 49
balanced_conf0396.84 4396.89 3496.68 7897.63 13692.22 10098.17 4897.82 12494.44 6198.23 2897.36 13590.97 7199.22 13097.74 1999.66 1098.61 131
patch_mono-296.83 4497.44 1695.01 18099.05 3985.39 30796.98 18498.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9797.98 6398.06 8593.11 11197.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11098.98 292.22 13697.14 5898.44 4691.17 6799.85 1894.35 12399.46 4199.57 28
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9795.54 12398.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21797.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 11997.64 13490.72 16298.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 162
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12094.39 35396.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
test_fmvsmvis_n_192096.70 5196.84 3796.31 10896.62 19391.73 11597.98 6398.30 3296.19 596.10 10198.95 1189.42 8899.76 4198.90 1099.08 8797.43 212
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18698.06 8590.67 19195.55 12198.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 19996.72 24494.17 6997.44 4797.66 11492.76 3199.33 11896.86 4497.76 13999.08 87
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7498.87 698.06 8591.17 17496.40 8997.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5596.58 5296.99 7498.46 7392.31 9796.20 25398.90 394.30 6895.86 11097.74 10892.33 4299.38 11696.04 7499.42 5099.28 68
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7295.96 26498.18 6095.23 2295.87 10997.65 11591.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17298.09 10486.63 28396.00 26298.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13196.67 19190.25 17597.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 171
MVSMamba_PlusPlus96.51 5996.48 5696.59 8498.07 10891.97 11098.14 4997.79 12690.43 20497.34 5297.52 12891.29 6399.19 13398.12 1599.64 1498.60 132
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8198.24 9091.20 14296.89 19097.73 13294.74 4796.49 8498.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8398.74 998.06 8590.57 20096.77 6998.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
EC-MVSNet96.42 6296.47 5796.26 11497.01 16991.52 12798.89 597.75 12994.42 6296.64 7797.68 11189.32 8998.60 20897.45 3299.11 8698.67 129
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12195.48 26090.69 16397.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 167
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17897.96 10595.42 1894.86 13497.81 10387.38 12799.82 2896.88 4399.20 7699.29 66
dcpmvs_296.37 6597.05 2594.31 22298.96 4984.11 32897.56 12397.51 16193.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
EI-MVSNet-UG-set96.34 6696.30 6596.47 9598.20 9690.93 15496.86 19297.72 13494.67 5096.16 9998.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23298.02 9788.58 26296.03 10397.56 12592.73 3499.59 7795.04 10499.37 6199.39 59
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8698.25 3598.81 592.99 11494.56 14198.39 5088.96 9499.85 1894.57 12297.63 14099.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6996.19 6896.39 10398.23 9491.35 13596.24 25198.79 693.99 7495.80 11297.65 11589.92 8699.24 12895.87 7899.20 7698.58 134
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7392.66 36891.83 11497.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7397.30 15598.06 8593.92 7693.38 17098.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 7295.91 7296.46 9799.24 2890.47 16998.30 2898.57 1889.01 24593.97 15797.57 12392.62 3799.76 4194.66 11799.27 6799.15 78
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14894.52 5796.27 9496.12 20587.65 11699.18 13696.20 6694.82 20498.91 105
ETV-MVS96.02 7395.89 7396.40 10197.16 15592.44 9297.47 13697.77 12894.55 5596.48 8594.51 28491.23 6698.92 17295.65 8998.19 12597.82 193
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14894.52 5796.27 9496.12 20587.65 11699.18 13696.20 6694.82 20498.91 105
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24097.88 11286.98 30796.65 7697.89 9391.99 4899.47 10592.26 15899.46 4199.39 59
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7897.65 11098.13 6894.81 4296.61 7898.35 5488.87 9599.51 9990.36 20097.35 15099.11 84
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15394.41 6396.17 9896.16 20387.54 12099.17 13896.19 6894.73 20998.91 105
BP-MVS195.89 7995.49 7997.08 7196.67 19193.20 7198.08 5396.32 26894.56 5496.32 9197.84 10184.07 17299.15 14196.75 4698.78 10098.90 108
VNet95.89 7995.45 8297.21 6598.07 10892.94 7997.50 13098.15 6593.87 7897.52 4497.61 12185.29 15399.53 9495.81 8395.27 19599.16 76
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8097.17 20394.39 6596.47 8696.40 19185.89 14699.20 13296.21 6595.11 20098.95 100
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9196.87 17491.49 12897.50 13097.56 15793.99 7495.13 13097.92 9287.89 11298.78 18695.97 7697.33 15199.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 8394.92 9798.01 2098.08 10795.71 995.27 30197.62 14790.43 20495.55 12197.07 15191.72 5099.50 10289.62 21698.94 9598.82 119
DP-MVS Recon95.68 8495.12 9597.37 5499.19 3194.19 4297.03 17698.08 7788.35 27195.09 13197.65 11589.97 8599.48 10492.08 16798.59 10998.44 151
casdiffmvspermissive95.64 8595.49 7996.08 12396.76 18990.45 17097.29 15697.44 17994.00 7395.46 12597.98 8887.52 12398.73 19495.64 9097.33 15199.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 8695.38 8796.31 10898.42 7690.53 16796.04 25997.48 16593.47 9495.67 11898.10 7689.17 9199.25 12791.27 18598.77 10199.13 80
baseline95.58 8795.42 8596.08 12396.78 18490.41 17297.16 16997.45 17593.69 8595.65 11997.85 9987.29 12898.68 20095.66 8697.25 15699.13 80
CPTT-MVS95.57 8895.19 9296.70 7799.27 2691.48 12998.33 2698.11 7387.79 28895.17 12998.03 8387.09 13199.61 7293.51 13899.42 5099.02 90
EIA-MVS95.53 8995.47 8195.71 14797.06 16389.63 19197.82 8897.87 11493.57 8693.92 15895.04 25890.61 7798.95 16894.62 11998.68 10498.54 136
3Dnovator+91.43 495.40 9094.48 11398.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29698.02 8583.69 17699.71 4993.18 14598.96 9499.44 52
PS-MVSNAJ95.37 9195.33 8995.49 16097.35 14990.66 16595.31 29897.48 16593.85 7996.51 8395.70 23088.65 10099.65 6194.80 11498.27 12296.17 250
MVSFormer95.37 9195.16 9395.99 13296.34 22191.21 14098.22 4097.57 15391.42 16296.22 9697.32 13686.20 14397.92 28894.07 12699.05 8998.85 115
xiu_mvs_v2_base95.32 9395.29 9095.40 16597.22 15190.50 16895.44 29297.44 17993.70 8496.46 8796.18 20088.59 10399.53 9494.79 11697.81 13696.17 250
PVSNet_Blended_VisFu95.27 9494.91 9896.38 10498.20 9690.86 15697.27 15798.25 4590.21 20894.18 15197.27 14087.48 12499.73 4593.53 13797.77 13898.55 135
diffmvspermissive95.25 9595.13 9495.63 15096.43 21689.34 20795.99 26397.35 19292.83 12496.31 9297.37 13486.44 13898.67 20196.26 5897.19 15898.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 9694.81 9996.51 9197.18 15491.58 12598.26 3498.12 7094.38 6694.90 13398.15 7582.28 20998.92 17291.45 18298.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 9795.04 9695.76 14097.49 14689.56 19598.67 1097.00 22290.69 18994.24 14997.62 12089.79 8798.81 18393.39 14396.49 17398.92 104
EPNet95.20 9894.56 10797.14 6892.80 36592.68 8597.85 8394.87 34196.64 292.46 18697.80 10586.23 14099.65 6193.72 13698.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9994.44 11597.44 5296.56 20093.36 6598.65 1198.36 2494.12 7089.25 28098.06 8082.20 21199.77 4093.41 14299.32 6499.18 75
OMC-MVS95.09 10094.70 10396.25 11798.46 7391.28 13696.43 23097.57 15392.04 14594.77 13797.96 9087.01 13299.09 15191.31 18496.77 16598.36 158
xiu_mvs_v1_base_debu95.01 10194.76 10095.75 14296.58 19791.71 11796.25 24897.35 19292.99 11496.70 7296.63 17882.67 19999.44 10996.22 6197.46 14396.11 255
xiu_mvs_v1_base95.01 10194.76 10095.75 14296.58 19791.71 11796.25 24897.35 19292.99 11496.70 7296.63 17882.67 19999.44 10996.22 6197.46 14396.11 255
xiu_mvs_v1_base_debi95.01 10194.76 10095.75 14296.58 19791.71 11796.25 24897.35 19292.99 11496.70 7296.63 17882.67 19999.44 10996.22 6197.46 14396.11 255
PAPM_NR95.01 10194.59 10596.26 11498.89 5490.68 16497.24 15997.73 13291.80 15092.93 18396.62 18189.13 9299.14 14489.21 22997.78 13798.97 97
lupinMVS94.99 10594.56 10796.29 11296.34 22191.21 14095.83 27196.27 27288.93 25096.22 9696.88 16186.20 14398.85 17995.27 9999.05 8998.82 119
Effi-MVS+94.93 10694.45 11496.36 10696.61 19491.47 13096.41 23297.41 18491.02 18094.50 14395.92 21487.53 12198.78 18693.89 13296.81 16498.84 118
IS-MVSNet94.90 10794.52 11196.05 12697.67 13090.56 16698.44 2196.22 27593.21 10293.99 15597.74 10885.55 15198.45 22089.98 20597.86 13499.14 79
MVS_Test94.89 10894.62 10495.68 14896.83 17989.55 19696.70 20897.17 20391.17 17495.60 12096.11 20987.87 11398.76 19093.01 15397.17 15998.72 124
PVSNet_Blended94.87 10994.56 10795.81 13998.27 8689.46 20295.47 29198.36 2488.84 25394.36 14696.09 21088.02 10999.58 8093.44 14098.18 12698.40 154
jason94.84 11094.39 11696.18 12095.52 25890.93 15496.09 25796.52 25989.28 23696.01 10697.32 13684.70 16098.77 18995.15 10398.91 9798.85 115
jason: jason.
API-MVS94.84 11094.49 11295.90 13497.90 12092.00 10997.80 9197.48 16589.19 23994.81 13596.71 16788.84 9699.17 13888.91 23698.76 10296.53 239
test_yl94.78 11294.23 11896.43 9997.74 12791.22 13896.85 19397.10 20891.23 17195.71 11596.93 15684.30 16699.31 12293.10 14695.12 19898.75 121
DCV-MVSNet94.78 11294.23 11896.43 9997.74 12791.22 13896.85 19397.10 20891.23 17195.71 11596.93 15684.30 16699.31 12293.10 14695.12 19898.75 121
WTY-MVS94.71 11494.02 12196.79 7697.71 12992.05 10796.59 22397.35 19290.61 19794.64 13996.93 15686.41 13999.39 11491.20 18794.71 21098.94 101
mamv494.66 11596.10 6990.37 35198.01 11173.41 39996.82 19797.78 12789.95 21594.52 14297.43 13292.91 2799.09 15198.28 1499.16 8098.60 132
mvsmamba94.57 11694.14 12095.87 13597.03 16789.93 18697.84 8495.85 28991.34 16594.79 13696.80 16380.67 23598.81 18394.85 10998.12 12998.85 115
RRT-MVS94.51 11794.35 11794.98 18396.40 21786.55 28697.56 12397.41 18493.19 10594.93 13297.04 15379.12 26499.30 12496.19 6897.32 15399.09 86
sss94.51 11793.80 12596.64 7997.07 16091.97 11096.32 24398.06 8588.94 24994.50 14396.78 16484.60 16199.27 12691.90 16896.02 17898.68 128
test_cas_vis1_n_192094.48 11994.55 11094.28 22496.78 18486.45 28897.63 11697.64 14493.32 10097.68 4298.36 5373.75 32499.08 15496.73 4799.05 8997.31 219
CANet_DTU94.37 12093.65 12996.55 8696.46 21492.13 10596.21 25296.67 25194.38 6693.53 16697.03 15479.34 26099.71 4990.76 19398.45 11697.82 193
AdaColmapbinary94.34 12193.68 12896.31 10898.59 6991.68 12096.59 22397.81 12589.87 21692.15 19797.06 15283.62 17999.54 9289.34 22398.07 13097.70 198
CNLPA94.28 12293.53 13496.52 8898.38 8192.55 8996.59 22396.88 23590.13 21291.91 20497.24 14285.21 15499.09 15187.64 26197.83 13597.92 185
MAR-MVS94.22 12393.46 13996.51 9198.00 11392.19 10497.67 10797.47 16888.13 27893.00 17895.84 21884.86 15999.51 9987.99 24898.17 12797.83 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 12493.42 14396.48 9497.64 13491.42 13395.55 28697.71 13888.99 24692.34 19395.82 22089.19 9099.11 14786.14 28797.38 14898.90 108
SDMVSNet94.17 12593.61 13095.86 13798.09 10491.37 13497.35 14998.20 5393.18 10791.79 20897.28 13879.13 26398.93 17194.61 12092.84 23997.28 220
test_vis1_n_192094.17 12594.58 10692.91 28697.42 14882.02 35397.83 8697.85 11994.68 4998.10 3098.49 4070.15 34799.32 12097.91 1798.82 9897.40 214
h-mvs3394.15 12793.52 13696.04 12797.81 12490.22 17697.62 11897.58 15295.19 2396.74 7097.45 12983.67 17799.61 7295.85 8079.73 37598.29 161
CHOSEN 1792x268894.15 12793.51 13796.06 12598.27 8689.38 20595.18 30798.48 2185.60 33093.76 16197.11 14983.15 18799.61 7291.33 18398.72 10399.19 74
Vis-MVSNet (Re-imp)94.15 12793.88 12494.95 18797.61 13887.92 25198.10 5195.80 29292.22 13693.02 17797.45 12984.53 16397.91 29188.24 24497.97 13299.02 90
CDS-MVSNet94.14 13093.54 13395.93 13396.18 22891.46 13196.33 24297.04 21888.97 24893.56 16396.51 18587.55 11997.89 29289.80 21095.95 18098.44 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 13193.43 14196.13 12298.58 7191.15 14896.69 21097.39 18687.29 30291.37 21896.71 16788.39 10499.52 9887.33 26897.13 16097.73 196
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 13293.70 12795.27 16895.70 25092.03 10898.10 5198.68 1393.36 9990.39 23996.70 16987.63 11897.94 28592.25 16090.50 28095.84 263
PVSNet_BlendedMVS94.06 13393.92 12394.47 21198.27 8689.46 20296.73 20498.36 2490.17 20994.36 14695.24 25288.02 10999.58 8093.44 14090.72 27694.36 346
nrg03094.05 13493.31 14596.27 11395.22 28294.59 3298.34 2597.46 17092.93 12191.21 22896.64 17487.23 13098.22 23994.99 10785.80 32395.98 259
UGNet94.04 13593.28 14696.31 10896.85 17691.19 14397.88 7997.68 13994.40 6493.00 17896.18 20073.39 32699.61 7291.72 17498.46 11598.13 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 13693.46 13995.64 14996.16 23090.45 17096.71 20796.89 23489.27 23793.46 16896.92 15987.29 12897.94 28588.70 24095.74 18598.53 137
114514_t93.95 13793.06 15096.63 8199.07 3791.61 12297.46 13897.96 10577.99 39393.00 17897.57 12386.14 14599.33 11889.22 22899.15 8198.94 101
FC-MVSNet-test93.94 13893.57 13195.04 17895.48 26091.45 13298.12 5098.71 1193.37 9790.23 24296.70 16987.66 11597.85 29491.49 18090.39 28195.83 264
mvsany_test193.93 13993.98 12293.78 25294.94 29886.80 27694.62 31992.55 38488.77 25996.85 6698.49 4088.98 9398.08 25795.03 10595.62 18996.46 244
GeoE93.89 14093.28 14695.72 14696.96 17289.75 19098.24 3896.92 23189.47 23092.12 19997.21 14484.42 16498.39 22787.71 25596.50 17299.01 93
HY-MVS89.66 993.87 14192.95 15396.63 8197.10 15992.49 9195.64 28496.64 25289.05 24493.00 17895.79 22485.77 14999.45 10889.16 23294.35 21297.96 183
XVG-OURS-SEG-HR93.86 14293.55 13294.81 19397.06 16388.53 23395.28 29997.45 17591.68 15494.08 15497.68 11182.41 20798.90 17593.84 13492.47 24596.98 227
VDD-MVS93.82 14393.08 14996.02 12997.88 12189.96 18597.72 10195.85 28992.43 13295.86 11098.44 4668.42 36199.39 11496.31 5794.85 20298.71 126
mvs_anonymous93.82 14393.74 12694.06 23296.44 21585.41 30595.81 27297.05 21689.85 21990.09 25296.36 19387.44 12597.75 30693.97 12896.69 16999.02 90
HQP_MVS93.78 14593.43 14194.82 19196.21 22589.99 18197.74 9697.51 16194.85 3791.34 21996.64 17481.32 22598.60 20893.02 15192.23 24895.86 260
PS-MVSNAJss93.74 14693.51 13794.44 21393.91 33689.28 21297.75 9597.56 15792.50 13189.94 25596.54 18488.65 10098.18 24493.83 13590.90 27495.86 260
XVG-OURS93.72 14793.35 14494.80 19697.07 16088.61 22894.79 31697.46 17091.97 14893.99 15597.86 9881.74 22098.88 17692.64 15792.67 24496.92 231
HyFIR lowres test93.66 14892.92 15495.87 13598.24 9089.88 18794.58 32198.49 1985.06 34093.78 16095.78 22582.86 19598.67 20191.77 17395.71 18799.07 89
LFMVS93.60 14992.63 16796.52 8898.13 10391.27 13797.94 7393.39 37390.57 20096.29 9398.31 6369.00 35499.16 14094.18 12595.87 18299.12 83
F-COLMAP93.58 15092.98 15295.37 16698.40 7888.98 22197.18 16797.29 19787.75 29190.49 23797.10 15085.21 15499.50 10286.70 27896.72 16897.63 200
ab-mvs93.57 15192.55 17196.64 7997.28 15091.96 11295.40 29397.45 17589.81 22193.22 17696.28 19679.62 25799.46 10690.74 19493.11 23698.50 141
LS3D93.57 15192.61 16996.47 9597.59 14091.61 12297.67 10797.72 13485.17 33890.29 24198.34 5784.60 16199.73 4583.85 32198.27 12298.06 179
FA-MVS(test-final)93.52 15392.92 15495.31 16796.77 18688.54 23294.82 31596.21 27789.61 22594.20 15095.25 25183.24 18499.14 14490.01 20496.16 17798.25 162
Fast-Effi-MVS+93.46 15492.75 16295.59 15396.77 18690.03 17896.81 19897.13 20588.19 27491.30 22294.27 30186.21 14298.63 20587.66 26096.46 17598.12 173
hse-mvs293.45 15592.99 15194.81 19397.02 16888.59 22996.69 21096.47 26295.19 2396.74 7096.16 20383.67 17798.48 21995.85 8079.13 37997.35 217
QAPM93.45 15592.27 18196.98 7596.77 18692.62 8698.39 2498.12 7084.50 34888.27 30497.77 10682.39 20899.81 3085.40 30098.81 9998.51 140
UniMVSNet_NR-MVSNet93.37 15792.67 16695.47 16395.34 27192.83 8097.17 16898.58 1792.98 11990.13 24795.80 22188.37 10597.85 29491.71 17583.93 35295.73 274
1112_ss93.37 15792.42 17896.21 11897.05 16590.99 15096.31 24496.72 24486.87 31089.83 25996.69 17186.51 13799.14 14488.12 24593.67 23098.50 141
UniMVSNet (Re)93.31 15992.55 17195.61 15295.39 26593.34 6697.39 14598.71 1193.14 11090.10 25194.83 26887.71 11498.03 26891.67 17883.99 35195.46 283
OPM-MVS93.28 16092.76 16094.82 19194.63 31490.77 16096.65 21497.18 20193.72 8291.68 21297.26 14179.33 26198.63 20592.13 16492.28 24795.07 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 16192.48 17695.51 15895.70 25092.39 9397.86 8098.66 1692.30 13592.09 20195.37 24480.49 23998.40 22393.95 12985.86 32295.75 272
test_fmvs193.21 16293.53 13492.25 30796.55 20281.20 36097.40 14496.96 22490.68 19096.80 6798.04 8269.25 35398.40 22397.58 2798.50 11197.16 224
MVSTER93.20 16392.81 15994.37 21696.56 20089.59 19497.06 17597.12 20691.24 17091.30 22295.96 21282.02 21498.05 26493.48 13990.55 27895.47 282
test111193.19 16492.82 15894.30 22397.58 14484.56 32298.21 4289.02 40393.53 9194.58 14098.21 7072.69 32799.05 16193.06 14998.48 11499.28 68
ECVR-MVScopyleft93.19 16492.73 16494.57 20897.66 13285.41 30598.21 4288.23 40593.43 9594.70 13898.21 7072.57 32899.07 15893.05 15098.49 11299.25 71
HQP-MVS93.19 16492.74 16394.54 20995.86 24289.33 20896.65 21497.39 18693.55 8790.14 24395.87 21680.95 22998.50 21692.13 16492.10 25395.78 268
CHOSEN 280x42093.12 16792.72 16594.34 21996.71 19087.27 26490.29 39397.72 13486.61 31491.34 21995.29 24684.29 16898.41 22293.25 14498.94 9597.35 217
sd_testset93.10 16892.45 17795.05 17798.09 10489.21 21496.89 19097.64 14493.18 10791.79 20897.28 13875.35 31098.65 20388.99 23492.84 23997.28 220
Effi-MVS+-dtu93.08 16993.21 14892.68 29796.02 23983.25 33897.14 17196.72 24493.85 7991.20 22993.44 33883.08 18998.30 23491.69 17795.73 18696.50 241
test_djsdf93.07 17092.76 16094.00 23693.49 35088.70 22798.22 4097.57 15391.42 16290.08 25395.55 23882.85 19697.92 28894.07 12691.58 26095.40 288
VDDNet93.05 17192.07 18596.02 12996.84 17790.39 17398.08 5395.85 28986.22 32295.79 11398.46 4467.59 36499.19 13394.92 10894.85 20298.47 146
thisisatest053093.03 17292.21 18395.49 16097.07 16089.11 21997.49 13592.19 38690.16 21094.09 15396.41 19076.43 30199.05 16190.38 19995.68 18898.31 160
EI-MVSNet93.03 17292.88 15693.48 26695.77 24886.98 27396.44 22897.12 20690.66 19391.30 22297.64 11886.56 13598.05 26489.91 20790.55 27895.41 285
CLD-MVS92.98 17492.53 17394.32 22096.12 23589.20 21595.28 29997.47 16892.66 12889.90 25695.62 23480.58 23798.40 22392.73 15692.40 24695.38 290
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 17592.33 18094.87 19097.11 15887.16 27097.97 6992.09 38790.63 19593.88 15997.01 15576.50 29899.06 16090.29 20295.45 19298.38 156
ACMM89.79 892.96 17592.50 17594.35 21796.30 22388.71 22697.58 12097.36 19191.40 16490.53 23696.65 17379.77 25398.75 19191.24 18691.64 25895.59 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 17792.56 17094.10 23096.16 23088.26 24097.65 11097.46 17091.29 16690.12 24997.16 14679.05 26698.73 19492.25 16091.89 25695.31 295
BH-untuned92.94 17792.62 16893.92 24697.22 15186.16 29696.40 23696.25 27490.06 21389.79 26096.17 20283.19 18598.35 23087.19 27197.27 15597.24 222
DU-MVS92.90 17992.04 18695.49 16094.95 29692.83 8097.16 16998.24 4793.02 11390.13 24795.71 22883.47 18097.85 29491.71 17583.93 35295.78 268
PatchMatch-RL92.90 17992.02 18895.56 15498.19 9890.80 15895.27 30197.18 20187.96 28091.86 20795.68 23180.44 24098.99 16684.01 31697.54 14296.89 232
PMMVS92.86 18192.34 17994.42 21594.92 29986.73 27994.53 32396.38 26684.78 34594.27 14895.12 25783.13 18898.40 22391.47 18196.49 17398.12 173
OpenMVScopyleft89.19 1292.86 18191.68 20096.40 10195.34 27192.73 8498.27 3298.12 7084.86 34385.78 34497.75 10778.89 27399.74 4487.50 26598.65 10596.73 236
Test_1112_low_res92.84 18391.84 19495.85 13897.04 16689.97 18495.53 28896.64 25285.38 33389.65 26595.18 25385.86 14799.10 14887.70 25693.58 23598.49 143
baseline192.82 18491.90 19295.55 15697.20 15390.77 16097.19 16694.58 34792.20 13892.36 19096.34 19484.16 17098.21 24089.20 23083.90 35597.68 199
131492.81 18592.03 18795.14 17395.33 27489.52 19996.04 25997.44 17987.72 29286.25 34195.33 24583.84 17498.79 18589.26 22697.05 16197.11 225
DP-MVS92.76 18691.51 20896.52 8898.77 5690.99 15097.38 14796.08 28182.38 36989.29 27797.87 9683.77 17599.69 5581.37 34396.69 16998.89 112
test_fmvs1_n92.73 18792.88 15692.29 30596.08 23881.05 36197.98 6397.08 21190.72 18896.79 6898.18 7363.07 38698.45 22097.62 2698.42 11797.36 215
BH-RMVSNet92.72 18891.97 19094.97 18597.16 15587.99 24996.15 25595.60 30390.62 19691.87 20697.15 14878.41 27998.57 21283.16 32397.60 14198.36 158
ACMP89.59 1092.62 18992.14 18494.05 23396.40 21788.20 24397.36 14897.25 20091.52 15788.30 30296.64 17478.46 27898.72 19791.86 17191.48 26295.23 302
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 19092.52 17492.44 29996.82 18181.89 35496.92 18893.71 37092.41 13384.30 35794.60 27985.08 15697.03 34991.51 17997.36 14998.40 154
TranMVSNet+NR-MVSNet92.50 19091.63 20195.14 17394.76 30792.07 10697.53 12898.11 7392.90 12389.56 26896.12 20583.16 18697.60 31989.30 22483.20 36195.75 272
thres600view792.49 19291.60 20295.18 17197.91 11989.47 20097.65 11094.66 34492.18 14293.33 17194.91 26378.06 28699.10 14881.61 33794.06 22596.98 227
thres100view90092.43 19391.58 20394.98 18397.92 11889.37 20697.71 10394.66 34492.20 13893.31 17294.90 26478.06 28699.08 15481.40 34094.08 22196.48 242
jajsoiax92.42 19491.89 19394.03 23593.33 35688.50 23497.73 9897.53 15992.00 14788.85 28896.50 18675.62 30898.11 25193.88 13391.56 26195.48 280
thres40092.42 19491.52 20695.12 17597.85 12289.29 21097.41 14094.88 33892.19 14093.27 17494.46 28978.17 28299.08 15481.40 34094.08 22196.98 227
tfpn200view992.38 19691.52 20694.95 18797.85 12289.29 21097.41 14094.88 33892.19 14093.27 17494.46 28978.17 28299.08 15481.40 34094.08 22196.48 242
test_vis1_n92.37 19792.26 18292.72 29494.75 30882.64 34398.02 5996.80 24191.18 17397.77 4197.93 9158.02 39598.29 23597.63 2598.21 12497.23 223
WR-MVS92.34 19891.53 20594.77 19895.13 28990.83 15796.40 23697.98 10391.88 14989.29 27795.54 23982.50 20497.80 30089.79 21185.27 33195.69 275
NR-MVSNet92.34 19891.27 21695.53 15794.95 29693.05 7597.39 14598.07 8292.65 12984.46 35595.71 22885.00 15797.77 30489.71 21283.52 35895.78 268
mvs_tets92.31 20091.76 19693.94 24393.41 35388.29 23897.63 11697.53 15992.04 14588.76 29196.45 18874.62 31698.09 25693.91 13191.48 26295.45 284
TAPA-MVS90.10 792.30 20191.22 21995.56 15498.33 8389.60 19396.79 19997.65 14281.83 37391.52 21497.23 14387.94 11198.91 17471.31 39598.37 11898.17 170
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 20291.30 21495.25 16996.60 19588.90 22394.36 33192.32 38587.92 28193.43 16994.57 28077.28 29399.00 16589.42 22195.86 18397.86 189
Fast-Effi-MVS+-dtu92.29 20291.99 18993.21 27795.27 27885.52 30397.03 17696.63 25592.09 14389.11 28395.14 25580.33 24398.08 25787.54 26494.74 20896.03 258
IterMVS-LS92.29 20291.94 19193.34 27196.25 22486.97 27496.57 22697.05 21690.67 19189.50 27194.80 27086.59 13497.64 31489.91 20786.11 32195.40 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 20591.74 19993.73 25397.77 12683.69 33592.88 37396.72 24487.91 28293.00 17894.86 26678.51 27799.05 16186.53 27997.45 14798.47 146
VPNet92.23 20691.31 21394.99 18195.56 25690.96 15297.22 16497.86 11892.96 12090.96 23096.62 18175.06 31198.20 24191.90 16883.65 35795.80 266
thres20092.23 20691.39 20994.75 20097.61 13889.03 22096.60 22295.09 32892.08 14493.28 17394.00 31578.39 28099.04 16481.26 34694.18 21796.19 249
anonymousdsp92.16 20891.55 20493.97 23992.58 37089.55 19697.51 12997.42 18389.42 23388.40 29894.84 26780.66 23697.88 29391.87 17091.28 26694.48 341
XXY-MVS92.16 20891.23 21894.95 18794.75 30890.94 15397.47 13697.43 18289.14 24088.90 28596.43 18979.71 25498.24 23789.56 21787.68 30595.67 276
BH-w/o92.14 21091.75 19793.31 27296.99 17185.73 30095.67 27995.69 29888.73 26089.26 27994.82 26982.97 19398.07 26185.26 30296.32 17696.13 254
Anonymous20240521192.07 21190.83 23495.76 14098.19 9888.75 22597.58 12095.00 33186.00 32593.64 16297.45 12966.24 37699.53 9490.68 19692.71 24299.01 93
FE-MVS92.05 21291.05 22495.08 17696.83 17987.93 25093.91 34995.70 29686.30 31994.15 15294.97 25976.59 29799.21 13184.10 31496.86 16298.09 177
WR-MVS_H92.00 21391.35 21093.95 24195.09 29189.47 20098.04 5898.68 1391.46 16088.34 30094.68 27585.86 14797.56 32185.77 29584.24 34994.82 326
Anonymous2024052991.98 21490.73 24095.73 14598.14 10289.40 20497.99 6297.72 13479.63 38793.54 16597.41 13369.94 34999.56 8891.04 19091.11 26998.22 164
MonoMVSNet91.92 21591.77 19592.37 30192.94 36283.11 33997.09 17495.55 30692.91 12290.85 23294.55 28181.27 22796.52 36193.01 15387.76 30497.47 211
PatchmatchNetpermissive91.91 21691.35 21093.59 26195.38 26684.11 32893.15 36895.39 31189.54 22792.10 20093.68 32882.82 19798.13 24784.81 30695.32 19498.52 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 21791.02 22594.53 21096.54 20386.55 28695.86 26995.64 30291.77 15191.89 20593.47 33769.94 34998.86 17790.23 20393.86 22898.18 167
CP-MVSNet91.89 21891.24 21793.82 24995.05 29288.57 23097.82 8898.19 5891.70 15388.21 30695.76 22681.96 21597.52 32787.86 25084.65 34095.37 291
SCA91.84 21991.18 22193.83 24895.59 25484.95 31894.72 31795.58 30590.82 18392.25 19593.69 32675.80 30598.10 25286.20 28595.98 17998.45 148
FMVSNet391.78 22090.69 24395.03 17996.53 20592.27 9997.02 17896.93 22789.79 22289.35 27494.65 27777.01 29497.47 33086.12 28888.82 29395.35 292
AUN-MVS91.76 22190.75 23894.81 19397.00 17088.57 23096.65 21496.49 26189.63 22492.15 19796.12 20578.66 27598.50 21690.83 19179.18 37897.36 215
X-MVStestdata91.71 22289.67 28697.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8032.69 41991.70 5299.80 3395.66 8699.40 5599.62 20
MVS91.71 22290.44 25095.51 15895.20 28491.59 12496.04 25997.45 17573.44 40387.36 32395.60 23585.42 15299.10 14885.97 29297.46 14395.83 264
EPNet_dtu91.71 22291.28 21592.99 28393.76 34183.71 33496.69 21095.28 31893.15 10987.02 33195.95 21383.37 18397.38 33879.46 35896.84 16397.88 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 22590.75 23894.47 21196.53 20586.56 28595.76 27694.51 35091.10 17891.24 22793.59 33268.59 35898.86 17791.10 18894.29 21498.00 182
baseline291.63 22690.86 23093.94 24394.33 32586.32 29095.92 26691.64 39189.37 23486.94 33494.69 27481.62 22298.69 19988.64 24194.57 21196.81 234
testing9991.62 22790.72 24194.32 22096.48 21186.11 29795.81 27294.76 34291.55 15691.75 21093.44 33868.55 35998.82 18190.43 19793.69 22998.04 180
test250691.60 22890.78 23594.04 23497.66 13283.81 33198.27 3275.53 42093.43 9595.23 12798.21 7067.21 36799.07 15893.01 15398.49 11299.25 71
miper_ehance_all_eth91.59 22991.13 22292.97 28495.55 25786.57 28494.47 32596.88 23587.77 28988.88 28794.01 31486.22 14197.54 32389.49 21886.93 31394.79 331
v2v48291.59 22990.85 23293.80 25093.87 33888.17 24596.94 18796.88 23589.54 22789.53 26994.90 26481.70 22198.02 26989.25 22785.04 33795.20 303
V4291.58 23190.87 22993.73 25394.05 33388.50 23497.32 15396.97 22388.80 25889.71 26194.33 29682.54 20398.05 26489.01 23385.07 33594.64 339
PCF-MVS89.48 1191.56 23289.95 27496.36 10696.60 19592.52 9092.51 37897.26 19879.41 38888.90 28596.56 18384.04 17399.55 9077.01 37297.30 15497.01 226
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UBG91.55 23390.76 23693.94 24396.52 20785.06 31495.22 30494.54 34890.47 20391.98 20392.71 34872.02 33198.74 19388.10 24695.26 19698.01 181
PS-CasMVS91.55 23390.84 23393.69 25794.96 29588.28 23997.84 8498.24 4791.46 16088.04 31095.80 22179.67 25597.48 32987.02 27584.54 34695.31 295
miper_enhance_ethall91.54 23591.01 22693.15 27895.35 27087.07 27293.97 34496.90 23286.79 31189.17 28193.43 34186.55 13697.64 31489.97 20686.93 31394.74 335
PAPM91.52 23690.30 25695.20 17095.30 27789.83 18893.38 36496.85 23886.26 32188.59 29495.80 22184.88 15898.15 24675.67 37795.93 18197.63 200
ET-MVSNet_ETH3D91.49 23790.11 26695.63 15096.40 21791.57 12695.34 29593.48 37290.60 19975.58 39595.49 24180.08 24796.79 35894.25 12489.76 28698.52 138
TR-MVS91.48 23890.59 24694.16 22896.40 21787.33 26195.67 27995.34 31787.68 29391.46 21695.52 24076.77 29698.35 23082.85 32893.61 23396.79 235
tpmrst91.44 23991.32 21291.79 32195.15 28779.20 38493.42 36395.37 31388.55 26593.49 16793.67 32982.49 20598.27 23690.41 19889.34 29097.90 186
test-LLR91.42 24091.19 22092.12 30994.59 31580.66 36494.29 33692.98 37791.11 17690.76 23492.37 35679.02 26898.07 26188.81 23796.74 16697.63 200
MSDG91.42 24090.24 26094.96 18697.15 15788.91 22293.69 35696.32 26885.72 32986.93 33596.47 18780.24 24498.98 16780.57 34995.05 20196.98 227
c3_l91.38 24290.89 22892.88 28895.58 25586.30 29194.68 31896.84 23988.17 27588.83 29094.23 30485.65 15097.47 33089.36 22284.63 34194.89 321
GA-MVS91.38 24290.31 25594.59 20394.65 31387.62 25994.34 33296.19 27890.73 18790.35 24093.83 31971.84 33397.96 28087.22 27093.61 23398.21 165
v114491.37 24490.60 24593.68 25893.89 33788.23 24296.84 19597.03 22088.37 27089.69 26394.39 29182.04 21397.98 27387.80 25285.37 32894.84 323
GBi-Net91.35 24590.27 25894.59 20396.51 20891.18 14497.50 13096.93 22788.82 25589.35 27494.51 28473.87 32097.29 34286.12 28888.82 29395.31 295
test191.35 24590.27 25894.59 20396.51 20891.18 14497.50 13096.93 22788.82 25589.35 27494.51 28473.87 32097.29 34286.12 28888.82 29395.31 295
UniMVSNet_ETH3D91.34 24790.22 26394.68 20194.86 30387.86 25497.23 16397.46 17087.99 27989.90 25696.92 15966.35 37498.23 23890.30 20190.99 27297.96 183
FMVSNet291.31 24890.08 26794.99 18196.51 20892.21 10197.41 14096.95 22588.82 25588.62 29394.75 27273.87 32097.42 33585.20 30388.55 29895.35 292
reproduce_monomvs91.30 24991.10 22391.92 31396.82 18182.48 34797.01 18197.49 16494.64 5388.35 29995.27 24970.53 34298.10 25295.20 10084.60 34395.19 306
D2MVS91.30 24990.95 22792.35 30294.71 31185.52 30396.18 25498.21 5188.89 25186.60 33893.82 32179.92 25197.95 28489.29 22590.95 27393.56 359
v891.29 25190.53 24993.57 26394.15 32988.12 24797.34 15097.06 21588.99 24688.32 30194.26 30383.08 18998.01 27087.62 26283.92 35494.57 340
CVMVSNet91.23 25291.75 19789.67 35995.77 24874.69 39596.44 22894.88 33885.81 32792.18 19697.64 11879.07 26595.58 37888.06 24795.86 18398.74 123
cl2291.21 25390.56 24893.14 27996.09 23786.80 27694.41 32996.58 25887.80 28788.58 29593.99 31680.85 23497.62 31789.87 20986.93 31394.99 312
PEN-MVS91.20 25490.44 25093.48 26694.49 31987.91 25397.76 9498.18 6091.29 16687.78 31495.74 22780.35 24297.33 34085.46 29982.96 36295.19 306
Baseline_NR-MVSNet91.20 25490.62 24492.95 28593.83 33988.03 24897.01 18195.12 32788.42 26989.70 26295.13 25683.47 18097.44 33389.66 21583.24 36093.37 363
cascas91.20 25490.08 26794.58 20794.97 29489.16 21893.65 35897.59 15179.90 38689.40 27292.92 34675.36 30998.36 22992.14 16394.75 20796.23 246
CostFormer91.18 25790.70 24292.62 29894.84 30481.76 35594.09 34294.43 35184.15 35192.72 18593.77 32379.43 25998.20 24190.70 19592.18 25197.90 186
tt080591.09 25890.07 27094.16 22895.61 25388.31 23797.56 12396.51 26089.56 22689.17 28195.64 23367.08 37198.38 22891.07 18988.44 29995.80 266
v119291.07 25990.23 26193.58 26293.70 34287.82 25696.73 20497.07 21387.77 28989.58 26694.32 29880.90 23397.97 27686.52 28085.48 32694.95 313
v14419291.06 26090.28 25793.39 26993.66 34587.23 26796.83 19697.07 21387.43 29889.69 26394.28 30081.48 22398.00 27187.18 27284.92 33994.93 317
v1091.04 26190.23 26193.49 26594.12 33088.16 24697.32 15397.08 21188.26 27388.29 30394.22 30682.17 21297.97 27686.45 28284.12 35094.33 347
eth_miper_zixun_eth91.02 26290.59 24692.34 30495.33 27484.35 32494.10 34196.90 23288.56 26488.84 28994.33 29684.08 17197.60 31988.77 23984.37 34895.06 310
v14890.99 26390.38 25292.81 29193.83 33985.80 29996.78 20196.68 24989.45 23288.75 29293.93 31882.96 19497.82 29887.83 25183.25 35994.80 329
LTVRE_ROB88.41 1390.99 26389.92 27694.19 22696.18 22889.55 19696.31 24497.09 21087.88 28385.67 34595.91 21578.79 27498.57 21281.50 33889.98 28394.44 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 26590.33 25392.88 28895.36 26986.19 29594.46 32796.63 25587.82 28588.18 30794.23 30482.99 19197.53 32587.72 25385.57 32594.93 317
cl____90.96 26690.32 25492.89 28795.37 26886.21 29494.46 32796.64 25287.82 28588.15 30894.18 30782.98 19297.54 32387.70 25685.59 32494.92 319
pmmvs490.93 26789.85 27894.17 22793.34 35590.79 15994.60 32096.02 28284.62 34687.45 31995.15 25481.88 21897.45 33287.70 25687.87 30394.27 351
XVG-ACMP-BASELINE90.93 26790.21 26493.09 28094.31 32785.89 29895.33 29697.26 19891.06 17989.38 27395.44 24368.61 35798.60 20889.46 21991.05 27094.79 331
v192192090.85 26990.03 27293.29 27393.55 34686.96 27596.74 20397.04 21887.36 30089.52 27094.34 29580.23 24597.97 27686.27 28385.21 33294.94 315
CR-MVSNet90.82 27089.77 28293.95 24194.45 32187.19 26890.23 39495.68 30086.89 30992.40 18792.36 35980.91 23197.05 34881.09 34793.95 22697.60 205
v7n90.76 27189.86 27793.45 26893.54 34787.60 26097.70 10697.37 18988.85 25287.65 31694.08 31281.08 22898.10 25284.68 30883.79 35694.66 338
RPSCF90.75 27290.86 23090.42 35096.84 17776.29 39395.61 28596.34 26783.89 35491.38 21797.87 9676.45 29998.78 18687.16 27392.23 24896.20 248
MVP-Stereo90.74 27390.08 26792.71 29593.19 35888.20 24395.86 26996.27 27286.07 32484.86 35394.76 27177.84 28997.75 30683.88 32098.01 13192.17 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 27489.65 28893.96 24094.29 32889.63 19197.79 9296.82 24089.07 24286.12 34395.48 24278.61 27697.78 30286.97 27681.67 36794.46 342
v124090.70 27589.85 27893.23 27593.51 34986.80 27696.61 22097.02 22187.16 30589.58 26694.31 29979.55 25897.98 27385.52 29885.44 32794.90 320
EPMVS90.70 27589.81 28093.37 27094.73 31084.21 32693.67 35788.02 40689.50 22992.38 18993.49 33577.82 29097.78 30286.03 29192.68 24398.11 176
WBMVS90.69 27789.99 27392.81 29196.48 21185.00 31595.21 30696.30 27089.46 23189.04 28494.05 31372.45 33097.82 29889.46 21987.41 31095.61 277
Anonymous2023121190.63 27889.42 29394.27 22598.24 9089.19 21798.05 5797.89 11079.95 38588.25 30594.96 26072.56 32998.13 24789.70 21385.14 33395.49 279
DTE-MVSNet90.56 27989.75 28493.01 28293.95 33487.25 26597.64 11497.65 14290.74 18687.12 32695.68 23179.97 25097.00 35283.33 32281.66 36894.78 333
ACMH87.59 1690.53 28089.42 29393.87 24796.21 22587.92 25197.24 15996.94 22688.45 26883.91 36596.27 19771.92 33298.62 20784.43 31189.43 28995.05 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 28189.14 30094.67 20296.81 18387.85 25595.91 26793.97 36489.71 22392.34 19392.48 35465.41 38197.96 28081.37 34394.27 21598.21 165
OurMVSNet-221017-090.51 28290.19 26591.44 33093.41 35381.25 35896.98 18496.28 27191.68 15486.55 33996.30 19574.20 31997.98 27388.96 23587.40 31195.09 308
miper_lstm_enhance90.50 28390.06 27191.83 31895.33 27483.74 33293.86 35096.70 24887.56 29687.79 31393.81 32283.45 18296.92 35487.39 26684.62 34294.82 326
COLMAP_ROBcopyleft87.81 1590.40 28489.28 29693.79 25197.95 11587.13 27196.92 18895.89 28882.83 36686.88 33797.18 14573.77 32399.29 12578.44 36393.62 23294.95 313
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 28588.96 30294.35 21796.54 20387.29 26295.50 28993.84 36890.97 18191.75 21092.96 34562.18 39198.00 27182.86 32694.08 22197.76 195
IterMVS-SCA-FT90.31 28589.81 28091.82 31995.52 25884.20 32794.30 33596.15 27990.61 19787.39 32294.27 30175.80 30596.44 36287.34 26786.88 31794.82 326
MS-PatchMatch90.27 28789.77 28291.78 32294.33 32584.72 32195.55 28696.73 24386.17 32386.36 34095.28 24871.28 33797.80 30084.09 31598.14 12892.81 369
tpm90.25 28889.74 28591.76 32493.92 33579.73 37893.98 34393.54 37188.28 27291.99 20293.25 34277.51 29297.44 33387.30 26987.94 30298.12 173
AllTest90.23 28988.98 30193.98 23797.94 11686.64 28096.51 22795.54 30785.38 33385.49 34796.77 16570.28 34499.15 14180.02 35392.87 23796.15 252
dmvs_re90.21 29089.50 29192.35 30295.47 26385.15 31195.70 27894.37 35590.94 18288.42 29793.57 33374.63 31595.67 37582.80 32989.57 28896.22 247
ACMH+87.92 1490.20 29189.18 29893.25 27496.48 21186.45 28896.99 18396.68 24988.83 25484.79 35496.22 19970.16 34698.53 21484.42 31288.04 30194.77 334
test-mter90.19 29289.54 29092.12 30994.59 31580.66 36494.29 33692.98 37787.68 29390.76 23492.37 35667.67 36398.07 26188.81 23796.74 16697.63 200
IterMVS90.15 29389.67 28691.61 32695.48 26083.72 33394.33 33396.12 28089.99 21487.31 32594.15 30975.78 30796.27 36586.97 27686.89 31694.83 324
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 29489.42 29391.97 31294.41 32380.62 36694.29 33691.97 38987.28 30390.44 23892.47 35568.79 35597.67 31188.50 24396.60 17197.61 204
tpm289.96 29589.21 29792.23 30894.91 30181.25 35893.78 35294.42 35280.62 38391.56 21393.44 33876.44 30097.94 28585.60 29792.08 25597.49 209
UWE-MVS89.91 29689.48 29291.21 33495.88 24178.23 38994.91 31490.26 39989.11 24192.35 19294.52 28368.76 35697.96 28083.95 31895.59 19097.42 213
IB-MVS87.33 1789.91 29688.28 31294.79 19795.26 28187.70 25895.12 30993.95 36589.35 23587.03 33092.49 35370.74 34199.19 13389.18 23181.37 36997.49 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 29888.68 30793.53 26495.86 24284.89 31990.93 38995.07 32983.23 36491.28 22591.81 36879.01 27097.85 29479.52 35591.39 26497.84 190
WB-MVSnew89.88 29989.56 28990.82 34294.57 31883.06 34095.65 28392.85 37987.86 28490.83 23394.10 31079.66 25696.88 35576.34 37394.19 21692.54 375
FMVSNet189.88 29988.31 31194.59 20395.41 26491.18 14497.50 13096.93 22786.62 31387.41 32194.51 28465.94 37997.29 34283.04 32587.43 30895.31 295
pmmvs589.86 30188.87 30592.82 29092.86 36386.23 29396.26 24795.39 31184.24 35087.12 32694.51 28474.27 31897.36 33987.61 26387.57 30694.86 322
tpmvs89.83 30289.15 29991.89 31694.92 29980.30 37193.11 36995.46 31086.28 32088.08 30992.65 34980.44 24098.52 21581.47 33989.92 28496.84 233
test_fmvs289.77 30389.93 27589.31 36593.68 34476.37 39297.64 11495.90 28689.84 22091.49 21596.26 19858.77 39497.10 34694.65 11891.13 26894.46 342
mmtdpeth89.70 30488.96 30291.90 31595.84 24784.42 32397.46 13895.53 30990.27 20794.46 14590.50 37669.74 35298.95 16897.39 3669.48 40192.34 378
tfpnnormal89.70 30488.40 31093.60 26095.15 28790.10 17797.56 12398.16 6487.28 30386.16 34294.63 27877.57 29198.05 26474.48 38184.59 34492.65 372
ADS-MVSNet289.45 30688.59 30892.03 31195.86 24282.26 35190.93 38994.32 35883.23 36491.28 22591.81 36879.01 27095.99 36779.52 35591.39 26497.84 190
Patchmatch-test89.42 30787.99 31493.70 25695.27 27885.11 31288.98 40194.37 35581.11 37787.10 32993.69 32682.28 20997.50 32874.37 38394.76 20698.48 145
test0.0.03 189.37 30888.70 30691.41 33192.47 37285.63 30195.22 30492.70 38291.11 17686.91 33693.65 33079.02 26893.19 40078.00 36589.18 29195.41 285
SixPastTwentyTwo89.15 30988.54 30990.98 33893.49 35080.28 37296.70 20894.70 34390.78 18484.15 36095.57 23671.78 33497.71 30984.63 30985.07 33594.94 315
RPMNet88.98 31087.05 32494.77 19894.45 32187.19 26890.23 39498.03 9477.87 39592.40 18787.55 39980.17 24699.51 9968.84 40093.95 22697.60 205
TransMVSNet (Re)88.94 31187.56 31793.08 28194.35 32488.45 23697.73 9895.23 32287.47 29784.26 35895.29 24679.86 25297.33 34079.44 35974.44 39293.45 362
USDC88.94 31187.83 31692.27 30694.66 31284.96 31793.86 35095.90 28687.34 30183.40 36795.56 23767.43 36598.19 24382.64 33389.67 28793.66 358
dp88.90 31388.26 31390.81 34394.58 31776.62 39192.85 37494.93 33585.12 33990.07 25493.07 34375.81 30498.12 25080.53 35087.42 30997.71 197
PatchT88.87 31487.42 31893.22 27694.08 33285.10 31389.51 39994.64 34681.92 37292.36 19088.15 39580.05 24897.01 35172.43 39193.65 23197.54 208
our_test_388.78 31587.98 31591.20 33692.45 37382.53 34593.61 36095.69 29885.77 32884.88 35293.71 32479.99 24996.78 35979.47 35786.24 31894.28 350
EU-MVSNet88.72 31688.90 30488.20 36993.15 35974.21 39696.63 21994.22 36085.18 33787.32 32495.97 21176.16 30294.98 38485.27 30186.17 31995.41 285
Patchmtry88.64 31787.25 32092.78 29394.09 33186.64 28089.82 39895.68 30080.81 38187.63 31792.36 35980.91 23197.03 34978.86 36185.12 33494.67 337
MIMVSNet88.50 31886.76 32893.72 25594.84 30487.77 25791.39 38494.05 36186.41 31787.99 31192.59 35263.27 38595.82 37277.44 36692.84 23997.57 207
tpm cat188.36 31987.21 32291.81 32095.13 28980.55 36792.58 37795.70 29674.97 39987.45 31991.96 36678.01 28898.17 24580.39 35188.74 29696.72 237
ppachtmachnet_test88.35 32087.29 31991.53 32792.45 37383.57 33693.75 35395.97 28384.28 34985.32 35094.18 30779.00 27296.93 35375.71 37684.99 33894.10 352
JIA-IIPM88.26 32187.04 32591.91 31493.52 34881.42 35789.38 40094.38 35480.84 38090.93 23180.74 40779.22 26297.92 28882.76 33091.62 25996.38 245
testgi87.97 32287.21 32290.24 35392.86 36380.76 36296.67 21394.97 33391.74 15285.52 34695.83 21962.66 38994.47 38876.25 37488.36 30095.48 280
LF4IMVS87.94 32387.25 32089.98 35692.38 37580.05 37694.38 33095.25 32187.59 29584.34 35694.74 27364.31 38397.66 31384.83 30587.45 30792.23 381
gg-mvs-nofinetune87.82 32485.61 33694.44 21394.46 32089.27 21391.21 38884.61 41480.88 37989.89 25874.98 41071.50 33597.53 32585.75 29697.21 15796.51 240
pmmvs687.81 32586.19 33292.69 29691.32 38086.30 29197.34 15096.41 26580.59 38484.05 36494.37 29367.37 36697.67 31184.75 30779.51 37794.09 354
testing387.67 32686.88 32790.05 35596.14 23380.71 36397.10 17392.85 37990.15 21187.54 31894.55 28155.70 40094.10 39173.77 38794.10 22095.35 292
K. test v387.64 32786.75 32990.32 35293.02 36179.48 38296.61 22092.08 38890.66 19380.25 38494.09 31167.21 36796.65 36085.96 29380.83 37194.83 324
Patchmatch-RL test87.38 32886.24 33190.81 34388.74 39878.40 38888.12 40693.17 37587.11 30682.17 37589.29 38781.95 21695.60 37788.64 24177.02 38398.41 153
FMVSNet587.29 32985.79 33591.78 32294.80 30687.28 26395.49 29095.28 31884.09 35283.85 36691.82 36762.95 38794.17 39078.48 36285.34 33093.91 356
myMVS_eth3d87.18 33086.38 33089.58 36095.16 28579.53 37995.00 31193.93 36688.55 26586.96 33291.99 36456.23 39994.00 39275.47 37994.11 21895.20 303
Syy-MVS87.13 33187.02 32687.47 37295.16 28573.21 40095.00 31193.93 36688.55 26586.96 33291.99 36475.90 30394.00 39261.59 40694.11 21895.20 303
Anonymous2023120687.09 33286.14 33389.93 35791.22 38180.35 36996.11 25695.35 31483.57 36184.16 35993.02 34473.54 32595.61 37672.16 39286.14 32093.84 357
EG-PatchMatch MVS87.02 33385.44 33791.76 32492.67 36785.00 31596.08 25896.45 26383.41 36379.52 38693.49 33557.10 39797.72 30879.34 36090.87 27592.56 374
TinyColmap86.82 33485.35 34091.21 33494.91 30182.99 34193.94 34694.02 36383.58 36081.56 37694.68 27562.34 39098.13 24775.78 37587.35 31292.52 376
mvs5depth86.53 33585.08 34290.87 34088.74 39882.52 34691.91 38294.23 35986.35 31887.11 32893.70 32566.52 37297.76 30581.37 34375.80 38892.31 380
TDRefinement86.53 33584.76 34791.85 31782.23 41384.25 32596.38 23895.35 31484.97 34284.09 36294.94 26165.76 38098.34 23384.60 31074.52 39192.97 366
test_040286.46 33784.79 34691.45 32995.02 29385.55 30296.29 24694.89 33780.90 37882.21 37493.97 31768.21 36297.29 34262.98 40488.68 29791.51 389
Anonymous2024052186.42 33885.44 33789.34 36490.33 38579.79 37796.73 20495.92 28483.71 35983.25 36991.36 37263.92 38496.01 36678.39 36485.36 32992.22 382
DSMNet-mixed86.34 33986.12 33487.00 37689.88 38970.43 40294.93 31390.08 40077.97 39485.42 34992.78 34774.44 31793.96 39474.43 38295.14 19796.62 238
CL-MVSNet_self_test86.31 34085.15 34189.80 35888.83 39681.74 35693.93 34796.22 27586.67 31285.03 35190.80 37578.09 28594.50 38674.92 38071.86 39793.15 365
pmmvs-eth3d86.22 34184.45 34991.53 32788.34 40087.25 26594.47 32595.01 33083.47 36279.51 38789.61 38569.75 35195.71 37383.13 32476.73 38691.64 386
test_vis1_rt86.16 34285.06 34389.46 36193.47 35280.46 36896.41 23286.61 41185.22 33679.15 38888.64 39052.41 40397.06 34793.08 14890.57 27790.87 394
test20.0386.14 34385.40 33988.35 36790.12 38680.06 37595.90 26895.20 32388.59 26181.29 37793.62 33171.43 33692.65 40171.26 39681.17 37092.34 378
UnsupCasMVSNet_eth85.99 34484.45 34990.62 34789.97 38882.40 35093.62 35997.37 18989.86 21778.59 39092.37 35665.25 38295.35 38282.27 33570.75 39894.10 352
KD-MVS_self_test85.95 34584.95 34488.96 36689.55 39279.11 38595.13 30896.42 26485.91 32684.07 36390.48 37770.03 34894.82 38580.04 35272.94 39592.94 367
ttmdpeth85.91 34684.76 34789.36 36389.14 39380.25 37395.66 28293.16 37683.77 35783.39 36895.26 25066.24 37695.26 38380.65 34875.57 38992.57 373
YYNet185.87 34784.23 35190.78 34692.38 37582.46 34993.17 36695.14 32682.12 37167.69 40392.36 35978.16 28495.50 38077.31 36879.73 37594.39 345
MDA-MVSNet_test_wron85.87 34784.23 35190.80 34592.38 37582.57 34493.17 36695.15 32582.15 37067.65 40592.33 36278.20 28195.51 37977.33 36779.74 37494.31 349
CMPMVSbinary62.92 2185.62 34984.92 34587.74 37189.14 39373.12 40194.17 33996.80 24173.98 40073.65 39994.93 26266.36 37397.61 31883.95 31891.28 26692.48 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 35083.64 35390.92 33995.27 27879.49 38190.55 39295.60 30383.76 35883.00 37289.95 38271.09 33897.97 27682.75 33160.79 41295.31 295
MDA-MVSNet-bldmvs85.00 35182.95 35691.17 33793.13 36083.33 33794.56 32295.00 33184.57 34765.13 40992.65 34970.45 34395.85 37073.57 38877.49 38294.33 347
MIMVSNet184.93 35283.05 35490.56 34889.56 39184.84 32095.40 29395.35 31483.91 35380.38 38292.21 36357.23 39693.34 39870.69 39882.75 36593.50 360
KD-MVS_2432*160084.81 35382.64 35791.31 33291.07 38285.34 30991.22 38695.75 29485.56 33183.09 37090.21 38067.21 36795.89 36877.18 37062.48 41092.69 370
miper_refine_blended84.81 35382.64 35791.31 33291.07 38285.34 30991.22 38695.75 29485.56 33183.09 37090.21 38067.21 36795.89 36877.18 37062.48 41092.69 370
OpenMVS_ROBcopyleft81.14 2084.42 35582.28 36190.83 34190.06 38784.05 33095.73 27794.04 36273.89 40280.17 38591.53 37159.15 39397.64 31466.92 40289.05 29290.80 395
mvsany_test383.59 35682.44 36087.03 37583.80 40873.82 39793.70 35490.92 39786.42 31682.51 37390.26 37946.76 40895.71 37390.82 19276.76 38591.57 388
PM-MVS83.48 35781.86 36388.31 36887.83 40277.59 39093.43 36291.75 39086.91 30880.63 38089.91 38344.42 40995.84 37185.17 30476.73 38691.50 390
test_fmvs383.21 35883.02 35583.78 38186.77 40568.34 40796.76 20294.91 33686.49 31584.14 36189.48 38636.04 41391.73 40391.86 17180.77 37291.26 393
new-patchmatchnet83.18 35981.87 36287.11 37486.88 40475.99 39493.70 35495.18 32485.02 34177.30 39388.40 39265.99 37893.88 39574.19 38570.18 39991.47 391
new_pmnet82.89 36081.12 36588.18 37089.63 39080.18 37491.77 38392.57 38376.79 39775.56 39688.23 39461.22 39294.48 38771.43 39482.92 36389.87 398
MVS-HIRNet82.47 36181.21 36486.26 37895.38 26669.21 40588.96 40289.49 40166.28 40780.79 37974.08 41268.48 36097.39 33771.93 39395.47 19192.18 383
MVStest182.38 36280.04 36689.37 36287.63 40382.83 34295.03 31093.37 37473.90 40173.50 40094.35 29462.89 38893.25 39973.80 38665.92 40792.04 385
UnsupCasMVSNet_bld82.13 36379.46 36890.14 35488.00 40182.47 34890.89 39196.62 25778.94 39075.61 39484.40 40556.63 39896.31 36477.30 36966.77 40691.63 387
dmvs_testset81.38 36482.60 35977.73 38791.74 37951.49 42293.03 37184.21 41589.07 24278.28 39191.25 37376.97 29588.53 41056.57 41082.24 36693.16 364
test_f80.57 36579.62 36783.41 38283.38 41167.80 40993.57 36193.72 36980.80 38277.91 39287.63 39833.40 41492.08 40287.14 27479.04 38090.34 397
pmmvs379.97 36677.50 37187.39 37382.80 41279.38 38392.70 37690.75 39870.69 40478.66 38987.47 40051.34 40493.40 39773.39 38969.65 40089.38 399
APD_test179.31 36777.70 37084.14 38089.11 39569.07 40692.36 38191.50 39269.07 40573.87 39892.63 35139.93 41194.32 38970.54 39980.25 37389.02 400
N_pmnet78.73 36878.71 36978.79 38692.80 36546.50 42594.14 34043.71 42778.61 39180.83 37891.66 37074.94 31396.36 36367.24 40184.45 34793.50 360
WB-MVS76.77 36976.63 37277.18 38885.32 40656.82 42094.53 32389.39 40282.66 36871.35 40189.18 38875.03 31288.88 40835.42 41766.79 40585.84 402
SSC-MVS76.05 37075.83 37376.72 39284.77 40756.22 42194.32 33488.96 40481.82 37470.52 40288.91 38974.79 31488.71 40933.69 41864.71 40885.23 403
test_vis3_rt72.73 37170.55 37479.27 38580.02 41468.13 40893.92 34874.30 42276.90 39658.99 41373.58 41320.29 42295.37 38184.16 31372.80 39674.31 410
LCM-MVSNet72.55 37269.39 37682.03 38370.81 42365.42 41290.12 39694.36 35755.02 41365.88 40781.72 40624.16 42189.96 40474.32 38468.10 40490.71 396
FPMVS71.27 37369.85 37575.50 39374.64 41859.03 41891.30 38591.50 39258.80 41057.92 41488.28 39329.98 41785.53 41353.43 41182.84 36481.95 406
PMMVS270.19 37466.92 37880.01 38476.35 41765.67 41186.22 40787.58 40864.83 40962.38 41080.29 40926.78 41988.49 41163.79 40354.07 41485.88 401
dongtai69.99 37569.33 37771.98 39688.78 39761.64 41689.86 39759.93 42675.67 39874.96 39785.45 40250.19 40581.66 41543.86 41455.27 41372.63 411
testf169.31 37666.76 37976.94 39078.61 41561.93 41488.27 40486.11 41255.62 41159.69 41185.31 40320.19 42389.32 40557.62 40769.44 40279.58 407
APD_test269.31 37666.76 37976.94 39078.61 41561.93 41488.27 40486.11 41255.62 41159.69 41185.31 40320.19 42389.32 40557.62 40769.44 40279.58 407
EGC-MVSNET68.77 37863.01 38486.07 37992.49 37182.24 35293.96 34590.96 3960.71 4242.62 42590.89 37453.66 40193.46 39657.25 40984.55 34582.51 405
Gipumacopyleft67.86 37965.41 38175.18 39492.66 36873.45 39866.50 41594.52 34953.33 41457.80 41566.07 41530.81 41589.20 40748.15 41378.88 38162.90 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 38064.89 38269.79 39772.62 42135.23 42965.19 41692.83 38120.35 41965.20 40888.08 39643.14 41082.70 41473.12 39063.46 40991.45 392
kuosan65.27 38164.66 38367.11 39983.80 40861.32 41788.53 40360.77 42568.22 40667.67 40480.52 40849.12 40670.76 42129.67 42053.64 41569.26 413
ANet_high63.94 38259.58 38577.02 38961.24 42566.06 41085.66 40987.93 40778.53 39242.94 41771.04 41425.42 42080.71 41652.60 41230.83 41884.28 404
PMVScopyleft53.92 2258.58 38355.40 38668.12 39851.00 42648.64 42378.86 41287.10 41046.77 41535.84 42174.28 4118.76 42586.34 41242.07 41573.91 39369.38 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 38452.56 38855.43 40174.43 41947.13 42483.63 41176.30 41942.23 41642.59 41862.22 41728.57 41874.40 41831.53 41931.51 41744.78 416
MVEpermissive50.73 2353.25 38548.81 39066.58 40065.34 42457.50 41972.49 41470.94 42340.15 41839.28 42063.51 4166.89 42773.48 42038.29 41642.38 41668.76 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 38651.31 38954.39 40272.62 42145.39 42683.84 41075.51 42141.13 41740.77 41959.65 41830.08 41673.60 41928.31 42129.90 41944.18 417
tmp_tt51.94 38753.82 38746.29 40333.73 42745.30 42778.32 41367.24 42418.02 42050.93 41687.05 40152.99 40253.11 42270.76 39725.29 42040.46 418
wuyk23d25.11 38824.57 39226.74 40473.98 42039.89 42857.88 4179.80 42812.27 42110.39 4226.97 4247.03 42636.44 42325.43 42217.39 4213.89 421
cdsmvs_eth3d_5k23.24 38930.99 3910.00 4070.00 4300.00 4320.00 41897.63 1460.00 4250.00 42696.88 16184.38 1650.00 4260.00 4250.00 4240.00 422
testmvs13.36 39016.33 3934.48 4065.04 4282.26 43193.18 3653.28 4292.70 4228.24 42321.66 4202.29 4292.19 4247.58 4232.96 4229.00 420
test12313.04 39115.66 3945.18 4054.51 4293.45 43092.50 3791.81 4302.50 4237.58 42420.15 4213.67 4282.18 4257.13 4241.07 4239.90 419
ab-mvs-re8.06 39210.74 3950.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42696.69 1710.00 4300.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas7.39 3939.85 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42588.65 1000.00 4260.00 4250.00 4240.00 422
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS79.53 37975.56 378
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
PC_three_145290.77 18598.89 1498.28 6896.24 198.35 23095.76 8499.58 2399.59 24
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
eth-test20.00 430
eth-test0.00 430
ZD-MVS99.05 3994.59 3298.08 7789.22 23897.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
RE-MVS-def96.72 4699.02 4292.34 9597.98 6398.03 9493.52 9297.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
IU-MVS99.42 795.39 1197.94 10790.40 20698.94 897.41 3599.66 1099.74 8
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
9.1496.75 4598.93 5097.73 9898.23 5091.28 16997.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
save fliter98.91 5294.28 3897.02 17898.02 9795.35 19
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
GSMVS98.45 148
test_part299.28 2595.74 898.10 30
sam_mvs182.76 19898.45 148
sam_mvs81.94 217
ambc86.56 37783.60 41070.00 40485.69 40894.97 33380.60 38188.45 39137.42 41296.84 35782.69 33275.44 39092.86 368
MTGPAbinary98.08 77
test_post192.81 37516.58 42380.53 23897.68 31086.20 285
test_post17.58 42281.76 21998.08 257
patchmatchnet-post90.45 37882.65 20298.10 252
GG-mvs-BLEND93.62 25993.69 34389.20 21592.39 38083.33 41687.98 31289.84 38471.00 33996.87 35682.08 33695.40 19394.80 329
MTMP97.86 8082.03 417
gm-plane-assit93.22 35778.89 38784.82 34493.52 33498.64 20487.72 253
test9_res94.81 11399.38 5899.45 50
TEST998.70 5994.19 4296.41 23298.02 9788.17 27596.03 10397.56 12592.74 3399.59 77
test_898.67 6194.06 4996.37 23998.01 10088.58 26295.98 10797.55 12792.73 3499.58 80
agg_prior293.94 13099.38 5899.50 43
agg_prior98.67 6193.79 5498.00 10195.68 11799.57 87
TestCases93.98 23797.94 11686.64 28095.54 30785.38 33385.49 34796.77 16570.28 34499.15 14180.02 35392.87 23796.15 252
test_prior493.66 5796.42 231
test_prior296.35 24092.80 12696.03 10397.59 12292.01 4795.01 10699.38 58
test_prior97.23 6398.67 6192.99 7798.00 10199.41 11299.29 66
旧先验295.94 26581.66 37597.34 5298.82 18192.26 158
新几何295.79 274
新几何197.32 5698.60 6893.59 5897.75 12981.58 37695.75 11497.85 9990.04 8399.67 5986.50 28199.13 8398.69 127
旧先验198.38 8193.38 6397.75 12998.09 7892.30 4599.01 9299.16 76
无先验95.79 27497.87 11483.87 35699.65 6187.68 25998.89 112
原ACMM295.67 279
原ACMM196.38 10498.59 6991.09 14997.89 11087.41 29995.22 12897.68 11190.25 8099.54 9287.95 24999.12 8598.49 143
test22298.24 9092.21 10195.33 29697.60 14879.22 38995.25 12697.84 10188.80 9799.15 8198.72 124
testdata299.67 5985.96 293
segment_acmp92.89 30
testdata95.46 16498.18 10088.90 22397.66 14082.73 36797.03 6398.07 7990.06 8298.85 17989.67 21498.98 9398.64 130
testdata195.26 30393.10 112
test1297.65 4298.46 7394.26 3997.66 14095.52 12490.89 7399.46 10699.25 7199.22 73
plane_prior796.21 22589.98 183
plane_prior696.10 23690.00 17981.32 225
plane_prior597.51 16198.60 20893.02 15192.23 24895.86 260
plane_prior496.64 174
plane_prior390.00 17994.46 6091.34 219
plane_prior297.74 9694.85 37
plane_prior196.14 233
plane_prior89.99 18197.24 15994.06 7292.16 252
n20.00 431
nn0.00 431
door-mid91.06 395
lessismore_v090.45 34991.96 37879.09 38687.19 40980.32 38394.39 29166.31 37597.55 32284.00 31776.84 38494.70 336
LGP-MVS_train94.10 23096.16 23088.26 24097.46 17091.29 16690.12 24997.16 14679.05 26698.73 19492.25 16091.89 25695.31 295
test1197.88 112
door91.13 394
HQP5-MVS89.33 208
HQP-NCC95.86 24296.65 21493.55 8790.14 243
ACMP_Plane95.86 24296.65 21493.55 8790.14 243
BP-MVS92.13 164
HQP4-MVS90.14 24398.50 21695.78 268
HQP3-MVS97.39 18692.10 253
HQP2-MVS80.95 229
NP-MVS95.99 24089.81 18995.87 216
MDTV_nov1_ep13_2view70.35 40393.10 37083.88 35593.55 16482.47 20686.25 28498.38 156
MDTV_nov1_ep1390.76 23695.22 28280.33 37093.03 37195.28 31888.14 27792.84 18493.83 31981.34 22498.08 25782.86 32694.34 213
ACMMP++_ref90.30 282
ACMMP++91.02 271
Test By Simon88.73 99
ITE_SJBPF92.43 30095.34 27185.37 30895.92 28491.47 15987.75 31596.39 19271.00 33997.96 28082.36 33489.86 28593.97 355
DeepMVS_CXcopyleft74.68 39590.84 38464.34 41381.61 41865.34 40867.47 40688.01 39748.60 40780.13 41762.33 40573.68 39479.58 407