This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15898.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15098.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 169
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7498.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32596.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3299.40 54
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14398.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7499.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11498.19 5592.82 11797.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5199.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16598.07 7993.54 8396.08 9597.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1899.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 24092.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15298.08 7495.07 2796.11 9398.59 3090.88 6899.90 296.18 5999.50 3499.58 25
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1899.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1899.62 18
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34797.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12396.39 8498.18 7091.61 5099.88 495.59 8599.55 2599.57 26
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15398.01 3198.32 5992.33 3899.58 7794.85 10199.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10298.49 1994.66 4897.24 4998.41 4792.31 4098.94 16196.61 4399.46 4098.96 94
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13398.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9299.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18196.92 3599.33 5998.94 97
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6599.43 51
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 13999.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18797.10 3199.17 7498.90 102
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10198.33 5791.04 6499.88 495.20 9199.57 2499.60 21
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16897.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 158
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12096.70 6698.06 7791.35 5799.86 894.83 10299.28 6299.47 46
patch_mono-296.83 4197.44 1395.01 17399.05 3985.39 30296.98 17598.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6799.51 37
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10598.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11499.46 4099.57 26
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11698.34 5490.59 7299.88 494.83 10299.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20797.11 5498.01 8392.52 3599.69 5296.03 6499.53 2899.36 60
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15598.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 151
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18591.73 10797.98 6198.30 3296.19 596.10 9498.95 889.42 8399.76 3898.90 1099.08 8297.43 201
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17798.06 8290.67 18595.55 11498.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 18996.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16896.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24398.90 394.30 6095.86 10397.74 10492.33 3899.38 11396.04 6399.42 4799.28 65
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25498.18 5795.23 1995.87 10297.65 11191.45 5399.70 5195.87 6799.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16598.09 10186.63 27996.00 25298.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18390.25 16997.91 7498.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 162
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13496.89 18197.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19496.77 6398.35 5190.21 7599.53 9194.80 10599.63 1499.38 58
EC-MVSNet96.42 5796.47 5396.26 10697.01 16391.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19797.45 2699.11 8198.67 121
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24890.69 15697.91 7498.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11498.18 158
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17097.96 10295.42 1594.86 12697.81 9987.38 11999.82 2896.88 3699.20 7299.29 63
dcpmvs_296.37 6097.05 2294.31 21698.96 4684.11 32097.56 11897.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14696.86 18397.72 12894.67 4796.16 9298.46 4290.43 7399.58 7796.23 5297.96 12698.90 102
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22298.02 9488.58 25196.03 9697.56 12192.73 3199.59 7495.04 9499.37 5799.39 56
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13298.39 4888.96 8999.85 1894.57 11397.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24198.79 693.99 6795.80 10597.65 11189.92 8099.24 12495.87 6799.20 7298.58 123
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35791.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8299.48 44
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14898.06 8293.92 6993.38 15998.66 2786.83 12599.73 4295.60 8499.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16398.30 3098.57 1889.01 23493.97 14697.57 11992.62 3399.76 3894.66 10899.27 6399.15 75
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13097.77 12294.55 5096.48 7994.51 27591.23 6198.92 16395.65 7898.19 11997.82 183
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19598.91 101
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23097.88 10986.98 29696.65 7097.89 9091.99 4499.47 10292.26 14999.46 4099.39 56
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10598.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14399.11 81
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12498.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18799.16 73
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19198.95 96
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16891.49 12097.50 12497.56 14993.99 6795.13 12397.92 8987.89 10798.78 17695.97 6597.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29197.62 14190.43 19795.55 11497.07 14491.72 4699.50 9989.62 20798.94 9098.82 111
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16898.08 7488.35 26095.09 12497.65 11189.97 7999.48 10192.08 15898.59 10398.44 140
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18190.45 16497.29 14997.44 17094.00 6695.46 11897.98 8587.52 11598.73 18395.64 7997.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16196.04 24997.48 15693.47 8795.67 11198.10 7389.17 8699.25 12391.27 17698.77 9599.13 77
baseline95.58 7995.42 7796.08 11596.78 17690.41 16697.16 16297.45 16693.69 7895.65 11297.85 9687.29 12098.68 18995.66 7597.25 14899.13 77
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27795.17 12298.03 8087.09 12399.61 6993.51 13099.42 4799.02 86
EIA-MVS95.53 8195.47 7495.71 13997.06 15689.63 18697.82 8697.87 11193.57 7993.92 14795.04 25090.61 7198.95 16094.62 11098.68 9898.54 125
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16795.34 1698.48 2197.87 11194.65 4988.53 28698.02 8283.69 16799.71 4693.18 13798.96 8999.44 49
PS-MVSNAJ95.37 8395.33 8095.49 15397.35 14290.66 15995.31 28897.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10598.27 11696.17 239
MVSFormer95.37 8395.16 8495.99 12496.34 21091.21 13298.22 4197.57 14691.42 15796.22 8997.32 12986.20 13597.92 27994.07 11899.05 8498.85 108
xiu_mvs_v2_base95.32 8595.29 8195.40 15897.22 14490.50 16295.44 28297.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10797.81 12996.17 239
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14897.27 15098.25 4590.21 19994.18 14097.27 13387.48 11699.73 4293.53 12997.77 13198.55 124
diffmvspermissive95.25 8795.13 8595.63 14396.43 20689.34 20295.99 25397.35 18292.83 11696.31 8597.37 12886.44 13098.67 19096.26 5097.19 15098.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12598.15 7282.28 20198.92 16391.45 17398.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8995.04 8795.76 13297.49 13989.56 19098.67 1097.00 21290.69 18394.24 13897.62 11689.79 8198.81 17493.39 13596.49 16598.92 100
EPNet95.20 9094.56 9897.14 6392.80 35492.68 7997.85 8294.87 32996.64 392.46 17697.80 10186.23 13299.65 5893.72 12898.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19293.36 6398.65 1198.36 2494.12 6389.25 27198.06 7782.20 20399.77 3793.41 13499.32 6099.18 72
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12896.43 22097.57 14692.04 14094.77 12897.96 8787.01 12499.09 14291.31 17596.77 15798.36 147
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13496.58 18991.71 10996.25 23897.35 18292.99 10796.70 6696.63 17382.67 19199.44 10696.22 5397.46 13696.11 244
xiu_mvs_v1_base95.01 9394.76 9195.75 13496.58 18991.71 10996.25 23897.35 18292.99 10796.70 6696.63 17382.67 19199.44 10696.22 5397.46 13696.11 244
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13496.58 18991.71 10996.25 23897.35 18292.99 10796.70 6696.63 17382.67 19199.44 10696.22 5397.46 13696.11 244
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15897.24 15297.73 12691.80 14592.93 17296.62 17689.13 8799.14 13589.21 21997.78 13098.97 93
lupinMVS94.99 9794.56 9896.29 10496.34 21091.21 13295.83 26196.27 26188.93 23996.22 8996.88 15586.20 13598.85 17095.27 9099.05 8498.82 111
Effi-MVS+94.93 9894.45 10596.36 9896.61 18691.47 12296.41 22297.41 17591.02 17494.50 13395.92 20887.53 11498.78 17693.89 12496.81 15698.84 110
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16098.44 2396.22 26493.21 9693.99 14497.74 10485.55 14398.45 20989.98 19697.86 12799.14 76
MVS_Test94.89 10094.62 9595.68 14196.83 17289.55 19196.70 19897.17 19391.17 16895.60 11396.11 20387.87 10898.76 18093.01 14597.17 15198.72 116
PVSNet_Blended94.87 10194.56 9895.81 13198.27 8389.46 19795.47 28198.36 2488.84 24294.36 13596.09 20488.02 10499.58 7793.44 13298.18 12098.40 143
jason94.84 10294.39 10796.18 11295.52 24690.93 14696.09 24796.52 25089.28 22596.01 9997.32 12984.70 15298.77 17995.15 9398.91 9298.85 108
jason: jason.
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22894.81 12796.71 16188.84 9199.17 13188.91 22698.76 9696.53 228
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13096.85 18497.10 19891.23 16595.71 10896.93 15084.30 15899.31 11993.10 13895.12 18998.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13096.85 18497.10 19891.23 16595.71 10896.93 15084.30 15899.31 11993.10 13895.12 18998.75 113
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21397.35 18290.61 19194.64 13096.93 15086.41 13199.39 11191.20 17894.71 19998.94 97
sss94.51 10793.80 11496.64 7297.07 15391.97 10396.32 23398.06 8288.94 23894.50 13396.78 15884.60 15399.27 12291.90 15996.02 17098.68 120
test_cas_vis1_n_192094.48 10894.55 10194.28 21896.78 17686.45 28397.63 11197.64 13893.32 9497.68 3898.36 5073.75 31599.08 14496.73 3999.05 8497.31 208
CANet_DTU94.37 10993.65 11896.55 7896.46 20492.13 9896.21 24296.67 24194.38 5893.53 15597.03 14779.34 25199.71 4690.76 18498.45 11097.82 183
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21397.81 12189.87 20692.15 18797.06 14583.62 17099.54 8989.34 21398.07 12397.70 188
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21396.88 22590.13 20391.91 19397.24 13585.21 14699.09 14287.64 25097.83 12897.92 175
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10297.47 15988.13 26793.00 16795.84 21284.86 15199.51 9687.99 23798.17 12197.83 182
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27697.71 13288.99 23592.34 18395.82 21489.19 8599.11 13886.14 27697.38 14198.90 102
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14298.20 5293.18 10091.79 19797.28 13179.13 25498.93 16294.61 11192.84 22897.28 209
test_vis1_n_192094.17 11494.58 9792.91 28097.42 14182.02 34197.83 8497.85 11694.68 4698.10 2998.49 3870.15 33599.32 11797.91 1598.82 9397.40 203
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17097.62 11397.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36598.29 150
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29598.48 2185.60 31893.76 15097.11 14283.15 17899.61 6991.33 17498.72 9799.19 71
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17997.61 13287.92 24798.10 4995.80 28092.22 13193.02 16697.45 12484.53 15597.91 28288.24 23497.97 12599.02 86
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21791.46 12396.33 23297.04 20888.97 23793.56 15296.51 18087.55 11397.89 28389.80 20195.95 17298.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14096.69 20097.39 17687.29 29191.37 20896.71 16188.39 9999.52 9587.33 25797.13 15297.73 186
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12193.70 11695.27 16195.70 23892.03 10198.10 4998.68 1393.36 9390.39 22996.70 16387.63 11297.94 27592.25 15190.50 27295.84 252
PVSNet_BlendedMVS94.06 12293.92 11294.47 20598.27 8389.46 19796.73 19498.36 2490.17 20094.36 13595.24 24488.02 10499.58 7793.44 13290.72 26894.36 336
nrg03094.05 12393.31 13596.27 10595.22 27094.59 2998.34 2797.46 16192.93 11491.21 21996.64 16887.23 12298.22 22894.99 9985.80 31495.98 248
UGNet94.04 12493.28 13696.31 10096.85 16991.19 13597.88 7797.68 13394.40 5693.00 16796.18 19673.39 31799.61 6991.72 16598.46 10998.13 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 12593.46 12895.64 14296.16 21990.45 16496.71 19796.89 22489.27 22693.46 15796.92 15387.29 12097.94 27588.70 23095.74 17798.53 126
114514_t93.95 12693.06 14096.63 7499.07 3791.61 11497.46 13297.96 10277.99 38093.00 16797.57 11986.14 13799.33 11589.22 21899.15 7698.94 97
FC-MVSNet-test93.94 12793.57 12095.04 17195.48 24891.45 12498.12 4898.71 1193.37 9190.23 23296.70 16387.66 11097.85 28591.49 17190.39 27395.83 253
mvsany_test193.93 12893.98 11193.78 24694.94 28686.80 27294.62 30692.55 37088.77 24896.85 6098.49 3888.98 8898.08 24795.03 9595.62 18196.46 233
GeoE93.89 12993.28 13695.72 13896.96 16689.75 18598.24 3996.92 22189.47 22092.12 18997.21 13784.42 15698.39 21687.71 24496.50 16499.01 89
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15292.49 8595.64 27396.64 24289.05 23393.00 16795.79 21885.77 14199.45 10589.16 22294.35 20197.96 173
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18797.06 15688.53 22895.28 28997.45 16691.68 14994.08 14397.68 10782.41 19998.90 16693.84 12692.47 23496.98 216
mvsmamba93.83 13293.46 12894.93 18294.88 29190.85 14998.55 1495.49 29794.24 6191.29 21596.97 14983.04 18298.14 23695.56 8691.17 25995.78 258
VDD-MVS93.82 13393.08 13996.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10398.44 4468.42 35099.39 11196.31 4994.85 19398.71 118
mvs_anonymous93.82 13393.74 11594.06 22696.44 20585.41 30095.81 26297.05 20689.85 20990.09 24296.36 18987.44 11797.75 29593.97 12096.69 16199.02 86
HQP_MVS93.78 13593.43 13194.82 18596.21 21489.99 17697.74 9397.51 15394.85 3491.34 20996.64 16881.32 21798.60 19793.02 14392.23 23795.86 249
PS-MVSNAJss93.74 13693.51 12694.44 20793.91 32689.28 20797.75 9297.56 14992.50 12689.94 24696.54 17988.65 9598.18 23393.83 12790.90 26695.86 249
XVG-OURS93.72 13793.35 13494.80 19097.07 15388.61 22394.79 30397.46 16191.97 14393.99 14497.86 9581.74 21298.88 16792.64 14892.67 23396.92 220
iter_conf05_1193.70 13892.99 14195.84 13097.02 16090.22 17095.57 27594.66 33292.81 11896.17 9196.51 18069.56 34099.07 14895.03 9599.60 1798.23 153
HyFIR lowres test93.66 13992.92 14595.87 12798.24 8789.88 18194.58 30898.49 1985.06 32893.78 14995.78 21982.86 18798.67 19091.77 16495.71 17999.07 85
LFMVS93.60 14092.63 15996.52 8098.13 10091.27 12997.94 7193.39 36190.57 19496.29 8698.31 6069.00 34399.16 13294.18 11795.87 17499.12 80
F-COLMAP93.58 14192.98 14395.37 15998.40 7588.98 21697.18 16097.29 18787.75 28090.49 22797.10 14385.21 14699.50 9986.70 26796.72 16097.63 190
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28397.45 16689.81 21193.22 16596.28 19279.62 24899.46 10390.74 18593.11 22598.50 130
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10297.72 12885.17 32690.29 23198.34 5484.60 15399.73 4283.85 31098.27 11698.06 170
FA-MVS(test-final)93.52 14492.92 14595.31 16096.77 17888.54 22794.82 30296.21 26689.61 21594.20 13995.25 24383.24 17599.14 13590.01 19596.16 16998.25 151
Fast-Effi-MVS+93.46 14592.75 15495.59 14696.77 17890.03 17396.81 18897.13 19588.19 26391.30 21294.27 29186.21 13498.63 19487.66 24996.46 16798.12 164
hse-mvs293.45 14692.99 14194.81 18797.02 16088.59 22496.69 20096.47 25395.19 2096.74 6496.16 19983.67 16898.48 20895.85 6979.13 36997.35 206
QAPM93.45 14692.27 17496.98 6996.77 17892.62 8098.39 2698.12 6784.50 33688.27 29397.77 10282.39 20099.81 2985.40 28998.81 9498.51 129
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15695.34 25992.83 7497.17 16198.58 1792.98 11290.13 23795.80 21588.37 10097.85 28591.71 16683.93 34295.73 265
1112_ss93.37 14892.42 17196.21 11097.05 15890.99 14296.31 23496.72 23486.87 29989.83 25096.69 16586.51 12999.14 13588.12 23593.67 21998.50 130
UniMVSNet (Re)93.31 15092.55 16495.61 14595.39 25393.34 6497.39 13898.71 1193.14 10390.10 24194.83 26087.71 10998.03 25891.67 16983.99 34195.46 274
OPM-MVS93.28 15192.76 15294.82 18594.63 30490.77 15396.65 20497.18 19193.72 7591.68 20197.26 13479.33 25298.63 19492.13 15592.28 23695.07 299
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 15292.48 16995.51 15195.70 23892.39 8797.86 7998.66 1692.30 13092.09 19195.37 23880.49 23098.40 21293.95 12185.86 31395.75 263
test_fmvs193.21 15393.53 12392.25 29996.55 19481.20 34897.40 13796.96 21490.68 18496.80 6198.04 7969.25 34298.40 21297.58 2198.50 10597.16 213
MVSTER93.20 15492.81 15194.37 21096.56 19289.59 18997.06 16797.12 19691.24 16491.30 21295.96 20682.02 20698.05 25493.48 13190.55 27095.47 273
test111193.19 15592.82 15094.30 21797.58 13784.56 31598.21 4389.02 38993.53 8494.58 13198.21 6772.69 31899.05 15293.06 14198.48 10899.28 65
ECVR-MVScopyleft93.19 15592.73 15694.57 20297.66 12785.41 30098.21 4388.23 39193.43 8994.70 12998.21 6772.57 31999.07 14893.05 14298.49 10699.25 68
HQP-MVS93.19 15592.74 15594.54 20395.86 23189.33 20396.65 20497.39 17693.55 8090.14 23395.87 21080.95 22098.50 20592.13 15592.10 24295.78 258
iter_conf0593.18 15892.63 15994.83 18496.64 18490.69 15697.60 11495.53 29692.52 12591.58 20296.64 16876.35 29298.13 23795.43 8891.42 25495.68 267
CHOSEN 280x42093.12 15992.72 15794.34 21396.71 18287.27 26090.29 37997.72 12886.61 30391.34 20995.29 24084.29 16098.41 21193.25 13698.94 9097.35 206
sd_testset93.10 16092.45 17095.05 17098.09 10189.21 20996.89 18197.64 13893.18 10091.79 19797.28 13175.35 30198.65 19288.99 22492.84 22897.28 209
RRT_MVS93.10 16092.83 14993.93 23994.76 29688.04 24398.47 2296.55 24993.44 8890.01 24597.04 14680.64 22797.93 27894.33 11590.21 27595.83 253
Effi-MVS+-dtu93.08 16293.21 13892.68 29096.02 22883.25 33097.14 16496.72 23493.85 7291.20 22093.44 32683.08 18098.30 22391.69 16895.73 17896.50 230
test_djsdf93.07 16392.76 15294.00 23093.49 34088.70 22298.22 4197.57 14691.42 15790.08 24395.55 23282.85 18897.92 27994.07 11891.58 25095.40 279
VDDNet93.05 16492.07 17896.02 12196.84 17090.39 16798.08 5195.85 27886.22 31095.79 10698.46 4267.59 35399.19 12894.92 10094.85 19398.47 135
thisisatest053093.03 16592.21 17695.49 15397.07 15389.11 21497.49 12992.19 37290.16 20194.09 14296.41 18676.43 29199.05 15290.38 19095.68 18098.31 149
EI-MVSNet93.03 16592.88 14793.48 26095.77 23686.98 26996.44 21897.12 19690.66 18791.30 21297.64 11486.56 12798.05 25489.91 19890.55 27095.41 276
CLD-MVS92.98 16792.53 16694.32 21496.12 22489.20 21095.28 28997.47 15992.66 12189.90 24795.62 22880.58 22898.40 21292.73 14792.40 23595.38 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 16892.33 17394.87 18397.11 15187.16 26697.97 6792.09 37390.63 18993.88 14897.01 14876.50 28899.06 15190.29 19395.45 18498.38 145
ACMM89.79 892.96 16892.50 16894.35 21196.30 21288.71 22197.58 11697.36 18191.40 15990.53 22696.65 16779.77 24498.75 18191.24 17791.64 24895.59 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 17092.56 16394.10 22496.16 21988.26 23597.65 10597.46 16191.29 16090.12 23997.16 13979.05 25698.73 18392.25 15191.89 24595.31 286
BH-untuned92.94 17092.62 16193.92 24097.22 14486.16 29196.40 22696.25 26390.06 20489.79 25196.17 19883.19 17698.35 21987.19 26097.27 14797.24 211
DU-MVS92.90 17292.04 17995.49 15394.95 28492.83 7497.16 16298.24 4793.02 10690.13 23795.71 22283.47 17197.85 28591.71 16683.93 34295.78 258
PatchMatch-RL92.90 17292.02 18195.56 14798.19 9590.80 15195.27 29197.18 19187.96 26991.86 19695.68 22580.44 23198.99 15884.01 30597.54 13596.89 221
PMMVS92.86 17492.34 17294.42 20994.92 28786.73 27594.53 31096.38 25784.78 33394.27 13795.12 24983.13 17998.40 21291.47 17296.49 16598.12 164
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25992.73 7898.27 3398.12 6784.86 33185.78 33297.75 10378.89 26399.74 4187.50 25498.65 9996.73 225
bld_raw_dy_0_6492.85 17691.91 18595.69 14097.02 16089.81 18397.88 7793.96 35292.57 12492.59 17596.79 15769.53 34199.02 15695.03 9591.78 24798.23 153
Test_1112_low_res92.84 17791.84 18895.85 12997.04 15989.97 17995.53 27896.64 24285.38 32189.65 25695.18 24585.86 13999.10 13987.70 24593.58 22498.49 132
baseline192.82 17891.90 18695.55 14997.20 14690.77 15397.19 15994.58 33692.20 13392.36 18096.34 19084.16 16298.21 22989.20 22083.90 34597.68 189
131492.81 17992.03 18095.14 16695.33 26289.52 19496.04 24997.44 17087.72 28186.25 32995.33 23983.84 16598.79 17589.26 21697.05 15397.11 214
DP-MVS92.76 18091.51 20196.52 8098.77 5390.99 14297.38 14096.08 27082.38 35689.29 26897.87 9383.77 16699.69 5281.37 33296.69 16198.89 105
test_fmvs1_n92.73 18192.88 14792.29 29796.08 22781.05 34997.98 6197.08 20190.72 18296.79 6298.18 7063.07 37398.45 20997.62 2098.42 11197.36 204
BH-RMVSNet92.72 18291.97 18394.97 17797.16 14887.99 24596.15 24595.60 29190.62 19091.87 19597.15 14178.41 26998.57 20183.16 31297.60 13498.36 147
ACMP89.59 1092.62 18392.14 17794.05 22796.40 20788.20 23897.36 14197.25 19091.52 15288.30 29196.64 16878.46 26898.72 18691.86 16291.48 25295.23 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 18492.52 16792.44 29296.82 17481.89 34296.92 17993.71 35892.41 12884.30 34594.60 27185.08 14897.03 33891.51 17097.36 14298.40 143
TranMVSNet+NR-MVSNet92.50 18491.63 19495.14 16694.76 29692.07 9997.53 12298.11 7092.90 11589.56 25996.12 20083.16 17797.60 30889.30 21483.20 35195.75 263
thres600view792.49 18691.60 19595.18 16497.91 11489.47 19597.65 10594.66 33292.18 13793.33 16094.91 25578.06 27699.10 13981.61 32694.06 21496.98 216
thres100view90092.43 18791.58 19694.98 17697.92 11389.37 20197.71 10094.66 33292.20 13393.31 16194.90 25678.06 27699.08 14481.40 32994.08 21096.48 231
jajsoiax92.42 18891.89 18794.03 22993.33 34688.50 22997.73 9597.53 15192.00 14288.85 27896.50 18275.62 29998.11 24293.88 12591.56 25195.48 271
thres40092.42 18891.52 19995.12 16897.85 11789.29 20597.41 13394.88 32692.19 13593.27 16394.46 28078.17 27299.08 14481.40 32994.08 21096.98 216
tfpn200view992.38 19091.52 19994.95 17997.85 11789.29 20597.41 13394.88 32692.19 13593.27 16394.46 28078.17 27299.08 14481.40 32994.08 21096.48 231
test_vis1_n92.37 19192.26 17592.72 28794.75 29882.64 33398.02 5696.80 23191.18 16797.77 3797.93 8858.02 38198.29 22497.63 1998.21 11897.23 212
WR-MVS92.34 19291.53 19894.77 19295.13 27790.83 15096.40 22697.98 10091.88 14489.29 26895.54 23382.50 19697.80 29089.79 20285.27 32295.69 266
NR-MVSNet92.34 19291.27 20995.53 15094.95 28493.05 7097.39 13898.07 7992.65 12284.46 34395.71 22285.00 14997.77 29489.71 20383.52 34895.78 258
mvs_tets92.31 19491.76 18993.94 23793.41 34388.29 23397.63 11197.53 15192.04 14088.76 28196.45 18474.62 30798.09 24693.91 12391.48 25295.45 275
TAPA-MVS90.10 792.30 19591.22 21295.56 14798.33 8089.60 18896.79 18997.65 13681.83 36091.52 20497.23 13687.94 10698.91 16571.31 38198.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 19691.30 20795.25 16296.60 18788.90 21894.36 31892.32 37187.92 27093.43 15894.57 27277.28 28399.00 15789.42 21195.86 17597.86 179
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27195.27 26685.52 29897.03 16896.63 24592.09 13889.11 27495.14 24780.33 23498.08 24787.54 25394.74 19896.03 247
IterMVS-LS92.29 19691.94 18493.34 26596.25 21386.97 27096.57 21697.05 20690.67 18589.50 26294.80 26286.59 12697.64 30389.91 19886.11 31295.40 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 19991.74 19293.73 24797.77 12183.69 32792.88 36096.72 23487.91 27193.00 16794.86 25878.51 26799.05 15286.53 26897.45 14098.47 135
VPNet92.23 20091.31 20694.99 17495.56 24490.96 14497.22 15797.86 11592.96 11390.96 22196.62 17675.06 30298.20 23091.90 15983.65 34795.80 256
thres20092.23 20091.39 20294.75 19497.61 13289.03 21596.60 21295.09 31692.08 13993.28 16294.00 30478.39 27099.04 15581.26 33494.18 20696.19 238
anonymousdsp92.16 20291.55 19793.97 23392.58 35989.55 19197.51 12397.42 17489.42 22288.40 28894.84 25980.66 22697.88 28491.87 16191.28 25794.48 331
XXY-MVS92.16 20291.23 21194.95 17994.75 29890.94 14597.47 13097.43 17389.14 22988.90 27596.43 18579.71 24598.24 22689.56 20887.68 29795.67 268
BH-w/o92.14 20491.75 19093.31 26696.99 16585.73 29595.67 26995.69 28688.73 24989.26 27094.82 26182.97 18598.07 25185.26 29196.32 16896.13 243
Anonymous20240521192.07 20590.83 22695.76 13298.19 9588.75 22097.58 11695.00 31986.00 31393.64 15197.45 12466.24 36499.53 9190.68 18792.71 23199.01 89
FE-MVS92.05 20691.05 21695.08 16996.83 17287.93 24693.91 33695.70 28486.30 30794.15 14194.97 25176.59 28799.21 12684.10 30396.86 15498.09 168
WR-MVS_H92.00 20791.35 20393.95 23595.09 27989.47 19598.04 5598.68 1391.46 15588.34 28994.68 26785.86 13997.56 31085.77 28484.24 33994.82 316
Anonymous2024052991.98 20890.73 23195.73 13798.14 9989.40 19997.99 6097.72 12879.63 37493.54 15497.41 12769.94 33799.56 8591.04 18191.11 26198.22 155
PatchmatchNetpermissive91.91 20991.35 20393.59 25595.38 25484.11 32093.15 35595.39 29989.54 21792.10 19093.68 31682.82 18998.13 23784.81 29595.32 18698.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 21091.02 21794.53 20496.54 19586.55 28295.86 25995.64 29091.77 14691.89 19493.47 32569.94 33798.86 16890.23 19493.86 21798.18 158
CP-MVSNet91.89 21191.24 21093.82 24395.05 28088.57 22597.82 8698.19 5591.70 14888.21 29595.76 22081.96 20797.52 31687.86 23984.65 33195.37 282
SCA91.84 21291.18 21493.83 24295.59 24284.95 31194.72 30495.58 29390.82 17792.25 18593.69 31475.80 29698.10 24386.20 27495.98 17198.45 137
FMVSNet391.78 21390.69 23495.03 17296.53 19792.27 9397.02 17096.93 21789.79 21289.35 26594.65 26977.01 28497.47 31986.12 27788.82 28695.35 283
AUN-MVS91.76 21490.75 22994.81 18797.00 16488.57 22596.65 20496.49 25289.63 21492.15 18796.12 20078.66 26598.50 20590.83 18279.18 36897.36 204
X-MVStestdata91.71 21589.67 27697.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40391.70 4899.80 3095.66 7599.40 5199.62 18
MVS91.71 21590.44 24195.51 15195.20 27291.59 11696.04 24997.45 16673.44 38887.36 31295.60 22985.42 14499.10 13985.97 28197.46 13695.83 253
EPNet_dtu91.71 21591.28 20892.99 27793.76 33183.71 32696.69 20095.28 30693.15 10287.02 31995.95 20783.37 17497.38 32779.46 34596.84 15597.88 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 21890.75 22994.47 20596.53 19786.56 28195.76 26694.51 33891.10 17291.24 21893.59 32068.59 34798.86 16891.10 17994.29 20398.00 172
baseline291.63 21990.86 22293.94 23794.33 31586.32 28595.92 25691.64 37789.37 22386.94 32294.69 26681.62 21498.69 18888.64 23194.57 20096.81 223
testing9991.62 22090.72 23294.32 21496.48 20286.11 29295.81 26294.76 33091.55 15191.75 19993.44 32668.55 34898.82 17290.43 18893.69 21898.04 171
test250691.60 22190.78 22794.04 22897.66 12783.81 32398.27 3375.53 40693.43 8995.23 12098.21 6767.21 35699.07 14893.01 14598.49 10699.25 68
miper_ehance_all_eth91.59 22291.13 21592.97 27895.55 24586.57 28094.47 31296.88 22587.77 27888.88 27794.01 30386.22 13397.54 31289.49 20986.93 30494.79 321
v2v48291.59 22290.85 22493.80 24493.87 32888.17 24096.94 17896.88 22589.54 21789.53 26094.90 25681.70 21398.02 25989.25 21785.04 32895.20 294
V4291.58 22490.87 22193.73 24794.05 32388.50 22997.32 14696.97 21388.80 24789.71 25294.33 28682.54 19598.05 25489.01 22385.07 32694.64 329
PCF-MVS89.48 1191.56 22589.95 26496.36 9896.60 18792.52 8492.51 36597.26 18879.41 37588.90 27596.56 17884.04 16499.55 8777.01 35997.30 14697.01 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 22690.84 22593.69 25194.96 28388.28 23497.84 8398.24 4791.46 15588.04 29995.80 21579.67 24697.48 31887.02 26484.54 33695.31 286
miper_enhance_ethall91.54 22791.01 21893.15 27295.35 25887.07 26893.97 33196.90 22286.79 30089.17 27293.43 32986.55 12897.64 30389.97 19786.93 30494.74 325
PAPM91.52 22890.30 24795.20 16395.30 26589.83 18293.38 35196.85 22886.26 30988.59 28495.80 21584.88 15098.15 23575.67 36495.93 17397.63 190
ET-MVSNet_ETH3D91.49 22990.11 25795.63 14396.40 20791.57 11895.34 28593.48 36090.60 19375.58 38295.49 23580.08 23896.79 34794.25 11689.76 27998.52 127
TR-MVS91.48 23090.59 23794.16 22296.40 20787.33 25795.67 26995.34 30587.68 28291.46 20695.52 23476.77 28698.35 21982.85 31793.61 22296.79 224
tpmrst91.44 23191.32 20591.79 31195.15 27579.20 37193.42 35095.37 30188.55 25493.49 15693.67 31782.49 19798.27 22590.41 18989.34 28397.90 176
test-LLR91.42 23291.19 21392.12 30194.59 30580.66 35294.29 32392.98 36391.11 17090.76 22492.37 34379.02 25898.07 25188.81 22796.74 15897.63 190
MSDG91.42 23290.24 25194.96 17897.15 15088.91 21793.69 34396.32 25985.72 31786.93 32396.47 18380.24 23598.98 15980.57 33695.05 19296.98 216
c3_l91.38 23490.89 22092.88 28295.58 24386.30 28694.68 30596.84 22988.17 26488.83 28094.23 29485.65 14297.47 31989.36 21284.63 33294.89 311
GA-MVS91.38 23490.31 24694.59 19794.65 30387.62 25594.34 31996.19 26790.73 18190.35 23093.83 30871.84 32297.96 27087.22 25993.61 22298.21 156
v114491.37 23690.60 23693.68 25293.89 32788.23 23796.84 18697.03 21088.37 25989.69 25494.39 28282.04 20597.98 26387.80 24185.37 31994.84 313
GBi-Net91.35 23790.27 24994.59 19796.51 19991.18 13697.50 12496.93 21788.82 24489.35 26594.51 27573.87 31197.29 33186.12 27788.82 28695.31 286
test191.35 23790.27 24994.59 19796.51 19991.18 13697.50 12496.93 21788.82 24489.35 26594.51 27573.87 31197.29 33186.12 27788.82 28695.31 286
UniMVSNet_ETH3D91.34 23990.22 25494.68 19594.86 29287.86 25097.23 15697.46 16187.99 26889.90 24796.92 15366.35 36298.23 22790.30 19290.99 26497.96 173
FMVSNet291.31 24090.08 25894.99 17496.51 19992.21 9497.41 13396.95 21588.82 24488.62 28394.75 26473.87 31197.42 32485.20 29288.55 29195.35 283
D2MVS91.30 24190.95 21992.35 29494.71 30185.52 29896.18 24498.21 5188.89 24086.60 32693.82 31079.92 24297.95 27489.29 21590.95 26593.56 349
v891.29 24290.53 24093.57 25794.15 31988.12 24297.34 14397.06 20588.99 23588.32 29094.26 29383.08 18098.01 26087.62 25183.92 34494.57 330
CVMVSNet91.23 24391.75 19089.67 34795.77 23674.69 38296.44 21894.88 32685.81 31592.18 18697.64 11479.07 25595.58 36688.06 23695.86 17598.74 115
cl2291.21 24490.56 23993.14 27396.09 22686.80 27294.41 31696.58 24887.80 27688.58 28593.99 30580.85 22597.62 30689.87 20086.93 30494.99 302
PEN-MVS91.20 24590.44 24193.48 26094.49 30987.91 24997.76 9198.18 5791.29 16087.78 30395.74 22180.35 23397.33 32985.46 28882.96 35295.19 297
Baseline_NR-MVSNet91.20 24590.62 23592.95 27993.83 32988.03 24497.01 17395.12 31588.42 25889.70 25395.13 24883.47 17197.44 32289.66 20683.24 35093.37 353
cascas91.20 24590.08 25894.58 20194.97 28289.16 21393.65 34597.59 14479.90 37389.40 26392.92 33475.36 30098.36 21892.14 15494.75 19796.23 235
CostFormer91.18 24890.70 23392.62 29194.84 29381.76 34394.09 32994.43 33984.15 33992.72 17493.77 31279.43 25098.20 23090.70 18692.18 24097.90 176
tt080591.09 24990.07 26194.16 22295.61 24188.31 23297.56 11896.51 25189.56 21689.17 27295.64 22767.08 36098.38 21791.07 18088.44 29295.80 256
v119291.07 25090.23 25293.58 25693.70 33287.82 25296.73 19497.07 20387.77 27889.58 25794.32 28880.90 22497.97 26686.52 26985.48 31794.95 303
v14419291.06 25190.28 24893.39 26393.66 33587.23 26396.83 18797.07 20387.43 28789.69 25494.28 29081.48 21598.00 26187.18 26184.92 33094.93 307
v1091.04 25290.23 25293.49 25994.12 32088.16 24197.32 14697.08 20188.26 26288.29 29294.22 29682.17 20497.97 26686.45 27184.12 34094.33 337
eth_miper_zixun_eth91.02 25390.59 23792.34 29695.33 26284.35 31694.10 32896.90 22288.56 25388.84 27994.33 28684.08 16397.60 30888.77 22984.37 33895.06 300
v14890.99 25490.38 24392.81 28593.83 32985.80 29496.78 19196.68 23989.45 22188.75 28293.93 30782.96 18697.82 28987.83 24083.25 34994.80 319
LTVRE_ROB88.41 1390.99 25489.92 26694.19 22096.18 21789.55 19196.31 23497.09 20087.88 27285.67 33395.91 20978.79 26498.57 20181.50 32789.98 27694.44 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 25690.33 24492.88 28295.36 25786.19 29094.46 31496.63 24587.82 27488.18 29694.23 29482.99 18397.53 31487.72 24285.57 31694.93 307
cl____90.96 25790.32 24592.89 28195.37 25686.21 28994.46 31496.64 24287.82 27488.15 29794.18 29782.98 18497.54 31287.70 24585.59 31594.92 309
pmmvs490.93 25889.85 26894.17 22193.34 34590.79 15294.60 30796.02 27184.62 33487.45 30895.15 24681.88 21097.45 32187.70 24587.87 29694.27 341
XVG-ACMP-BASELINE90.93 25890.21 25593.09 27494.31 31785.89 29395.33 28697.26 18891.06 17389.38 26495.44 23768.61 34698.60 19789.46 21091.05 26294.79 321
v192192090.85 26090.03 26393.29 26793.55 33686.96 27196.74 19397.04 20887.36 28989.52 26194.34 28580.23 23697.97 26686.27 27285.21 32394.94 305
CR-MVSNet90.82 26189.77 27293.95 23594.45 31187.19 26490.23 38095.68 28886.89 29892.40 17792.36 34680.91 22297.05 33781.09 33593.95 21597.60 195
v7n90.76 26289.86 26793.45 26293.54 33787.60 25697.70 10197.37 17988.85 24187.65 30594.08 30281.08 21998.10 24384.68 29783.79 34694.66 328
RPSCF90.75 26390.86 22290.42 33996.84 17076.29 38095.61 27496.34 25883.89 34291.38 20797.87 9376.45 28998.78 17687.16 26292.23 23796.20 237
MVP-Stereo90.74 26490.08 25892.71 28893.19 34888.20 23895.86 25996.27 26186.07 31284.86 34194.76 26377.84 27997.75 29583.88 30998.01 12492.17 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 26589.65 27893.96 23494.29 31889.63 18697.79 9096.82 23089.07 23186.12 33195.48 23678.61 26697.78 29286.97 26581.67 35794.46 332
v124090.70 26689.85 26893.23 26993.51 33986.80 27296.61 21097.02 21187.16 29489.58 25794.31 28979.55 24997.98 26385.52 28785.44 31894.90 310
EPMVS90.70 26689.81 27093.37 26494.73 30084.21 31893.67 34488.02 39289.50 21992.38 17993.49 32377.82 28097.78 29286.03 28092.68 23298.11 167
Anonymous2023121190.63 26889.42 28394.27 21998.24 8789.19 21298.05 5497.89 10779.95 37288.25 29494.96 25272.56 32098.13 23789.70 20485.14 32495.49 270
DTE-MVSNet90.56 26989.75 27493.01 27693.95 32487.25 26197.64 10997.65 13690.74 18087.12 31595.68 22579.97 24197.00 34183.33 31181.66 35894.78 323
ACMH87.59 1690.53 27089.42 28393.87 24196.21 21487.92 24797.24 15296.94 21688.45 25783.91 35396.27 19371.92 32198.62 19684.43 30089.43 28295.05 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 27189.14 29094.67 19696.81 17587.85 25195.91 25793.97 35189.71 21392.34 18392.48 34165.41 36897.96 27081.37 33294.27 20498.21 156
OurMVSNet-221017-090.51 27290.19 25691.44 32093.41 34381.25 34696.98 17596.28 26091.68 14986.55 32796.30 19174.20 31097.98 26388.96 22587.40 30295.09 298
miper_lstm_enhance90.50 27390.06 26291.83 30895.33 26283.74 32493.86 33796.70 23887.56 28587.79 30293.81 31183.45 17396.92 34387.39 25584.62 33394.82 316
COLMAP_ROBcopyleft87.81 1590.40 27489.28 28693.79 24597.95 11087.13 26796.92 17995.89 27782.83 35386.88 32597.18 13873.77 31499.29 12178.44 35093.62 22194.95 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 27588.96 29294.35 21196.54 19587.29 25895.50 27993.84 35690.97 17591.75 19992.96 33362.18 37798.00 26182.86 31594.08 21097.76 185
IterMVS-SCA-FT90.31 27589.81 27091.82 30995.52 24684.20 31994.30 32296.15 26890.61 19187.39 31194.27 29175.80 29696.44 35087.34 25686.88 30894.82 316
MS-PatchMatch90.27 27789.77 27291.78 31294.33 31584.72 31495.55 27696.73 23386.17 31186.36 32895.28 24271.28 32697.80 29084.09 30498.14 12292.81 359
tpm90.25 27889.74 27591.76 31493.92 32579.73 36593.98 33093.54 35988.28 26191.99 19293.25 33077.51 28297.44 32287.30 25887.94 29598.12 164
AllTest90.23 27988.98 29193.98 23197.94 11186.64 27696.51 21795.54 29485.38 32185.49 33596.77 15970.28 33299.15 13380.02 34092.87 22696.15 241
dmvs_re90.21 28089.50 28192.35 29495.47 25185.15 30695.70 26894.37 34290.94 17688.42 28793.57 32174.63 30695.67 36382.80 31889.57 28196.22 236
ACMH+87.92 1490.20 28189.18 28893.25 26896.48 20286.45 28396.99 17496.68 23988.83 24384.79 34296.22 19570.16 33498.53 20384.42 30188.04 29494.77 324
test-mter90.19 28289.54 28092.12 30194.59 30580.66 35294.29 32392.98 36387.68 28290.76 22492.37 34367.67 35298.07 25188.81 22796.74 15897.63 190
IterMVS90.15 28389.67 27691.61 31695.48 24883.72 32594.33 32096.12 26989.99 20587.31 31494.15 29975.78 29896.27 35386.97 26586.89 30794.83 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 28489.42 28391.97 30494.41 31380.62 35494.29 32391.97 37587.28 29290.44 22892.47 34268.79 34497.67 30088.50 23396.60 16397.61 194
tpm289.96 28589.21 28792.23 30094.91 28981.25 34693.78 33994.42 34080.62 37091.56 20393.44 32676.44 29097.94 27585.60 28692.08 24497.49 199
UWE-MVS89.91 28689.48 28291.21 32495.88 23078.23 37694.91 30190.26 38589.11 23092.35 18294.52 27468.76 34597.96 27083.95 30795.59 18297.42 202
IB-MVS87.33 1789.91 28688.28 30194.79 19195.26 26987.70 25495.12 29793.95 35389.35 22487.03 31892.49 34070.74 33099.19 12889.18 22181.37 35997.49 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 28888.68 29693.53 25895.86 23184.89 31290.93 37595.07 31783.23 35191.28 21691.81 35579.01 26097.85 28579.52 34291.39 25597.84 180
WB-MVSnew89.88 28989.56 27990.82 33194.57 30883.06 33195.65 27292.85 36587.86 27390.83 22394.10 30079.66 24796.88 34476.34 36094.19 20592.54 364
FMVSNet189.88 28988.31 30094.59 19795.41 25291.18 13697.50 12496.93 21786.62 30287.41 31094.51 27565.94 36697.29 33183.04 31487.43 30095.31 286
pmmvs589.86 29188.87 29492.82 28492.86 35286.23 28896.26 23795.39 29984.24 33887.12 31594.51 27574.27 30997.36 32887.61 25287.57 29894.86 312
tpmvs89.83 29289.15 28991.89 30694.92 28780.30 35993.11 35695.46 29886.28 30888.08 29892.65 33680.44 23198.52 20481.47 32889.92 27796.84 222
test_fmvs289.77 29389.93 26589.31 35193.68 33476.37 37997.64 10995.90 27589.84 21091.49 20596.26 19458.77 38097.10 33594.65 10991.13 26094.46 332
tfpnnormal89.70 29488.40 29993.60 25495.15 27590.10 17297.56 11898.16 6187.28 29286.16 33094.63 27077.57 28198.05 25474.48 36884.59 33492.65 362
ADS-MVSNet289.45 29588.59 29792.03 30395.86 23182.26 33990.93 37594.32 34583.23 35191.28 21691.81 35579.01 26095.99 35579.52 34291.39 25597.84 180
Patchmatch-test89.42 29687.99 30393.70 25095.27 26685.11 30788.98 38694.37 34281.11 36487.10 31793.69 31482.28 20197.50 31774.37 37094.76 19698.48 134
test0.0.03 189.37 29788.70 29591.41 32192.47 36185.63 29695.22 29492.70 36891.11 17086.91 32493.65 31879.02 25893.19 38678.00 35289.18 28495.41 276
SixPastTwentyTwo89.15 29888.54 29890.98 32893.49 34080.28 36096.70 19894.70 33190.78 17884.15 34895.57 23071.78 32397.71 29884.63 29885.07 32694.94 305
RPMNet88.98 29987.05 31394.77 19294.45 31187.19 26490.23 38098.03 9177.87 38292.40 17787.55 38580.17 23799.51 9668.84 38693.95 21597.60 195
TransMVSNet (Re)88.94 30087.56 30693.08 27594.35 31488.45 23197.73 9595.23 31087.47 28684.26 34695.29 24079.86 24397.33 32979.44 34674.44 38093.45 352
USDC88.94 30087.83 30592.27 29894.66 30284.96 31093.86 33795.90 27587.34 29083.40 35595.56 23167.43 35498.19 23282.64 32289.67 28093.66 348
dp88.90 30288.26 30290.81 33294.58 30776.62 37892.85 36194.93 32385.12 32790.07 24493.07 33175.81 29598.12 24180.53 33787.42 30197.71 187
PatchT88.87 30387.42 30793.22 27094.08 32285.10 30889.51 38494.64 33581.92 35992.36 18088.15 38180.05 23997.01 34072.43 37793.65 22097.54 198
our_test_388.78 30487.98 30491.20 32692.45 36282.53 33593.61 34795.69 28685.77 31684.88 34093.71 31379.99 24096.78 34879.47 34486.24 30994.28 340
EU-MVSNet88.72 30588.90 29388.20 35593.15 34974.21 38396.63 20994.22 34685.18 32587.32 31395.97 20576.16 29394.98 37185.27 29086.17 31095.41 276
Patchmtry88.64 30687.25 30992.78 28694.09 32186.64 27689.82 38395.68 28880.81 36887.63 30692.36 34680.91 22297.03 33878.86 34885.12 32594.67 327
MIMVSNet88.50 30786.76 31793.72 24994.84 29387.77 25391.39 37094.05 34886.41 30687.99 30092.59 33963.27 37295.82 36077.44 35392.84 22897.57 197
tpm cat188.36 30887.21 31191.81 31095.13 27780.55 35592.58 36495.70 28474.97 38587.45 30891.96 35378.01 27898.17 23480.39 33888.74 28996.72 226
ppachtmachnet_test88.35 30987.29 30891.53 31792.45 36283.57 32893.75 34095.97 27284.28 33785.32 33894.18 29779.00 26296.93 34275.71 36384.99 32994.10 342
JIA-IIPM88.26 31087.04 31491.91 30593.52 33881.42 34589.38 38594.38 34180.84 36790.93 22280.74 39279.22 25397.92 27982.76 31991.62 24996.38 234
testgi87.97 31187.21 31190.24 34192.86 35280.76 35096.67 20394.97 32191.74 14785.52 33495.83 21362.66 37594.47 37576.25 36188.36 29395.48 271
LF4IMVS87.94 31287.25 30989.98 34492.38 36480.05 36394.38 31795.25 30987.59 28484.34 34494.74 26564.31 37097.66 30284.83 29487.45 29992.23 368
gg-mvs-nofinetune87.82 31385.61 32594.44 20794.46 31089.27 20891.21 37484.61 40080.88 36689.89 24974.98 39471.50 32497.53 31485.75 28597.21 14996.51 229
pmmvs687.81 31486.19 32192.69 28991.32 36986.30 28697.34 14396.41 25680.59 37184.05 35294.37 28467.37 35597.67 30084.75 29679.51 36794.09 344
testing387.67 31586.88 31690.05 34396.14 22280.71 35197.10 16692.85 36590.15 20287.54 30794.55 27355.70 38694.10 37873.77 37394.10 20995.35 283
K. test v387.64 31686.75 31890.32 34093.02 35179.48 36996.61 21092.08 37490.66 18780.25 37194.09 30167.21 35696.65 34985.96 28280.83 36194.83 314
Patchmatch-RL test87.38 31786.24 32090.81 33288.74 38578.40 37588.12 39093.17 36287.11 29582.17 36289.29 37381.95 20895.60 36588.64 23177.02 37398.41 142
FMVSNet587.29 31885.79 32491.78 31294.80 29587.28 25995.49 28095.28 30684.09 34083.85 35491.82 35462.95 37494.17 37778.48 34985.34 32193.91 346
myMVS_eth3d87.18 31986.38 31989.58 34895.16 27379.53 36695.00 29893.93 35488.55 25486.96 32091.99 35156.23 38594.00 37975.47 36694.11 20795.20 294
Syy-MVS87.13 32087.02 31587.47 35895.16 27373.21 38695.00 29893.93 35488.55 25486.96 32091.99 35175.90 29494.00 37961.59 39294.11 20795.20 294
Anonymous2023120687.09 32186.14 32289.93 34591.22 37080.35 35796.11 24695.35 30283.57 34884.16 34793.02 33273.54 31695.61 36472.16 37886.14 31193.84 347
EG-PatchMatch MVS87.02 32285.44 32691.76 31492.67 35685.00 30996.08 24896.45 25483.41 35079.52 37393.49 32357.10 38397.72 29779.34 34790.87 26792.56 363
TinyColmap86.82 32385.35 32991.21 32494.91 28982.99 33293.94 33394.02 35083.58 34781.56 36394.68 26762.34 37698.13 23775.78 36287.35 30392.52 365
TDRefinement86.53 32484.76 33591.85 30782.23 39784.25 31796.38 22895.35 30284.97 33084.09 35094.94 25365.76 36798.34 22284.60 29974.52 37992.97 356
test_040286.46 32584.79 33491.45 31995.02 28185.55 29796.29 23694.89 32580.90 36582.21 36193.97 30668.21 35197.29 33162.98 39088.68 29091.51 375
Anonymous2024052186.42 32685.44 32689.34 35090.33 37479.79 36496.73 19495.92 27383.71 34683.25 35691.36 35963.92 37196.01 35478.39 35185.36 32092.22 369
DSMNet-mixed86.34 32786.12 32387.00 36289.88 37870.43 38894.93 30090.08 38677.97 38185.42 33792.78 33574.44 30893.96 38174.43 36995.14 18896.62 227
CL-MVSNet_self_test86.31 32885.15 33089.80 34688.83 38481.74 34493.93 33496.22 26486.67 30185.03 33990.80 36278.09 27594.50 37374.92 36771.86 38593.15 355
pmmvs-eth3d86.22 32984.45 33691.53 31788.34 38687.25 26194.47 31295.01 31883.47 34979.51 37489.61 37169.75 33995.71 36183.13 31376.73 37691.64 372
test_vis1_rt86.16 33085.06 33189.46 34993.47 34280.46 35696.41 22286.61 39785.22 32479.15 37588.64 37652.41 38997.06 33693.08 14090.57 26990.87 380
test20.0386.14 33185.40 32888.35 35390.12 37580.06 36295.90 25895.20 31188.59 25081.29 36493.62 31971.43 32592.65 38771.26 38281.17 36092.34 367
UnsupCasMVSNet_eth85.99 33284.45 33690.62 33689.97 37782.40 33893.62 34697.37 17989.86 20778.59 37792.37 34365.25 36995.35 37082.27 32470.75 38694.10 342
KD-MVS_self_test85.95 33384.95 33288.96 35289.55 38179.11 37295.13 29696.42 25585.91 31484.07 35190.48 36370.03 33694.82 37280.04 33972.94 38392.94 357
YYNet185.87 33484.23 33890.78 33592.38 36482.46 33793.17 35395.14 31482.12 35867.69 38892.36 34678.16 27495.50 36877.31 35579.73 36594.39 335
MDA-MVSNet_test_wron85.87 33484.23 33890.80 33492.38 36482.57 33493.17 35395.15 31382.15 35767.65 38992.33 34978.20 27195.51 36777.33 35479.74 36494.31 339
CMPMVSbinary62.92 2185.62 33684.92 33387.74 35789.14 38273.12 38794.17 32696.80 23173.98 38673.65 38594.93 25466.36 36197.61 30783.95 30791.28 25792.48 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 33783.64 34090.92 32995.27 26679.49 36890.55 37895.60 29183.76 34583.00 35989.95 36871.09 32797.97 26682.75 32060.79 39895.31 286
MDA-MVSNet-bldmvs85.00 33882.95 34391.17 32793.13 35083.33 32994.56 30995.00 31984.57 33565.13 39392.65 33670.45 33195.85 35873.57 37477.49 37294.33 337
MIMVSNet184.93 33983.05 34190.56 33789.56 38084.84 31395.40 28395.35 30283.91 34180.38 36992.21 35057.23 38293.34 38570.69 38482.75 35593.50 350
KD-MVS_2432*160084.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
miper_refine_blended84.81 34082.64 34491.31 32291.07 37185.34 30491.22 37295.75 28285.56 31983.09 35790.21 36667.21 35695.89 35677.18 35762.48 39692.69 360
OpenMVS_ROBcopyleft81.14 2084.42 34282.28 34890.83 33090.06 37684.05 32295.73 26794.04 34973.89 38780.17 37291.53 35859.15 37997.64 30366.92 38889.05 28590.80 381
mvsany_test383.59 34382.44 34787.03 36183.80 39373.82 38493.70 34190.92 38386.42 30582.51 36090.26 36546.76 39295.71 36190.82 18376.76 37591.57 374
PM-MVS83.48 34481.86 35088.31 35487.83 38877.59 37793.43 34991.75 37686.91 29780.63 36789.91 36944.42 39395.84 35985.17 29376.73 37691.50 376
test_fmvs383.21 34583.02 34283.78 36786.77 39068.34 39396.76 19294.91 32486.49 30484.14 34989.48 37236.04 39791.73 38991.86 16280.77 36291.26 379
new-patchmatchnet83.18 34681.87 34987.11 36086.88 38975.99 38193.70 34195.18 31285.02 32977.30 38088.40 37865.99 36593.88 38274.19 37270.18 38791.47 377
new_pmnet82.89 34781.12 35288.18 35689.63 37980.18 36191.77 36992.57 36976.79 38475.56 38388.23 38061.22 37894.48 37471.43 38082.92 35389.87 384
MVS-HIRNet82.47 34881.21 35186.26 36495.38 25469.21 39188.96 38789.49 38766.28 39180.79 36674.08 39668.48 34997.39 32671.93 37995.47 18392.18 370
UnsupCasMVSNet_bld82.13 34979.46 35490.14 34288.00 38782.47 33690.89 37796.62 24778.94 37775.61 38184.40 39056.63 38496.31 35277.30 35666.77 39391.63 373
dmvs_testset81.38 35082.60 34677.73 37391.74 36851.49 40693.03 35884.21 40189.07 23178.28 37891.25 36076.97 28588.53 39656.57 39682.24 35693.16 354
test_f80.57 35179.62 35383.41 36883.38 39567.80 39593.57 34893.72 35780.80 36977.91 37987.63 38433.40 39892.08 38887.14 26379.04 37090.34 383
pmmvs379.97 35277.50 35787.39 35982.80 39679.38 37092.70 36390.75 38470.69 38978.66 37687.47 38651.34 39093.40 38473.39 37569.65 38889.38 385
APD_test179.31 35377.70 35684.14 36689.11 38369.07 39292.36 36891.50 37869.07 39073.87 38492.63 33839.93 39594.32 37670.54 38580.25 36389.02 386
N_pmnet78.73 35478.71 35578.79 37292.80 35446.50 40994.14 32743.71 41178.61 37880.83 36591.66 35774.94 30496.36 35167.24 38784.45 33793.50 350
WB-MVS76.77 35576.63 35877.18 37485.32 39156.82 40494.53 31089.39 38882.66 35571.35 38689.18 37475.03 30388.88 39435.42 40266.79 39285.84 388
SSC-MVS76.05 35675.83 35976.72 37884.77 39256.22 40594.32 32188.96 39081.82 36170.52 38788.91 37574.79 30588.71 39533.69 40364.71 39485.23 389
test_vis3_rt72.73 35770.55 36079.27 37180.02 39868.13 39493.92 33574.30 40876.90 38358.99 39773.58 39720.29 40695.37 36984.16 30272.80 38474.31 396
LCM-MVSNet72.55 35869.39 36282.03 36970.81 40765.42 39890.12 38294.36 34455.02 39765.88 39181.72 39124.16 40589.96 39074.32 37168.10 39190.71 382
FPMVS71.27 35969.85 36175.50 37974.64 40259.03 40291.30 37191.50 37858.80 39457.92 39888.28 37929.98 40185.53 39953.43 39782.84 35481.95 392
PMMVS270.19 36066.92 36380.01 37076.35 40165.67 39786.22 39187.58 39464.83 39362.38 39480.29 39326.78 40388.49 39763.79 38954.07 39985.88 387
testf169.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
APD_test269.31 36166.76 36476.94 37678.61 39961.93 40088.27 38886.11 39855.62 39559.69 39585.31 38820.19 40789.32 39157.62 39369.44 38979.58 393
EGC-MVSNET68.77 36363.01 36886.07 36592.49 36082.24 34093.96 33290.96 3820.71 4082.62 40990.89 36153.66 38793.46 38357.25 39584.55 33582.51 391
Gipumacopyleft67.86 36465.41 36675.18 38092.66 35773.45 38566.50 39994.52 33753.33 39857.80 39966.07 39930.81 39989.20 39348.15 39978.88 37162.90 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36564.89 36769.79 38272.62 40535.23 41365.19 40092.83 36720.35 40365.20 39288.08 38243.14 39482.70 40073.12 37663.46 39591.45 378
ANet_high63.94 36659.58 36977.02 37561.24 40966.06 39685.66 39387.93 39378.53 37942.94 40171.04 39825.42 40480.71 40152.60 39830.83 40284.28 390
PMVScopyleft53.92 2258.58 36755.40 37068.12 38351.00 41048.64 40778.86 39687.10 39646.77 39935.84 40574.28 3958.76 40986.34 39842.07 40073.91 38169.38 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 36852.56 37255.43 38574.43 40347.13 40883.63 39576.30 40542.23 40042.59 40262.22 40128.57 40274.40 40331.53 40431.51 40144.78 400
MVEpermissive50.73 2353.25 36948.81 37466.58 38465.34 40857.50 40372.49 39870.94 40940.15 40239.28 40463.51 4006.89 41173.48 40538.29 40142.38 40068.76 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 37051.31 37354.39 38672.62 40545.39 41083.84 39475.51 40741.13 40140.77 40359.65 40230.08 40073.60 40428.31 40529.90 40344.18 401
tmp_tt51.94 37153.82 37146.29 38733.73 41145.30 41178.32 39767.24 41018.02 40450.93 40087.05 38752.99 38853.11 40670.76 38325.29 40440.46 402
wuyk23d25.11 37224.57 37626.74 38873.98 40439.89 41257.88 4019.80 41212.27 40510.39 4066.97 4087.03 41036.44 40725.43 40617.39 4053.89 405
cdsmvs_eth3d_5k23.24 37330.99 3750.00 3910.00 4140.00 4160.00 40297.63 1400.00 4090.00 41096.88 15584.38 1570.00 4100.00 4090.00 4080.00 406
testmvs13.36 37416.33 3774.48 3905.04 4122.26 41593.18 3523.28 4132.70 4068.24 40721.66 4042.29 4132.19 4087.58 4072.96 4069.00 404
test12313.04 37515.66 3785.18 3894.51 4133.45 41492.50 3661.81 4142.50 4077.58 40820.15 4053.67 4122.18 4097.13 4081.07 4079.90 403
ab-mvs-re8.06 37610.74 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41096.69 1650.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.39 3779.85 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40988.65 950.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.53 36675.56 365
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 21995.76 7399.58 2299.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.05 3994.59 2998.08 7489.22 22797.03 5798.10 7392.52 3599.65 5894.58 11299.31 61
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6599.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19898.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1899.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9598.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 7399.47 39
save fliter98.91 4994.28 3697.02 17098.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
ambc86.56 36383.60 39470.00 39085.69 39294.97 32180.60 36888.45 37737.42 39696.84 34682.69 32175.44 37892.86 358
MTGPAbinary98.08 74
test_post192.81 36216.58 40780.53 22997.68 29986.20 274
test_post17.58 40681.76 21198.08 247
patchmatchnet-post90.45 36482.65 19498.10 243
GG-mvs-BLEND93.62 25393.69 33389.20 21092.39 36783.33 40287.98 30189.84 37071.00 32896.87 34582.08 32595.40 18594.80 319
MTMP97.86 7982.03 403
gm-plane-assit93.22 34778.89 37484.82 33293.52 32298.64 19387.72 242
test9_res94.81 10499.38 5499.45 47
TEST998.70 5694.19 4096.41 22298.02 9488.17 26496.03 9697.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 22998.01 9788.58 25195.98 10097.55 12392.73 3199.58 77
agg_prior293.94 12299.38 5499.50 40
agg_prior98.67 5893.79 5298.00 9895.68 11099.57 84
TestCases93.98 23197.94 11186.64 27695.54 29485.38 32185.49 33596.77 15970.28 33299.15 13380.02 34092.87 22696.15 241
test_prior493.66 5596.42 221
test_prior296.35 23092.80 11996.03 9697.59 11892.01 4395.01 9899.38 54
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25581.66 36297.34 4898.82 17292.26 149
新几何295.79 264
新几何197.32 5198.60 6593.59 5697.75 12381.58 36395.75 10797.85 9690.04 7799.67 5686.50 27099.13 7898.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8799.16 73
无先验95.79 26497.87 11183.87 34499.65 5887.68 24898.89 105
原ACMM295.67 269
原ACMM196.38 9698.59 6691.09 14197.89 10787.41 28895.22 12197.68 10790.25 7499.54 8987.95 23899.12 8098.49 132
test22298.24 8792.21 9495.33 28697.60 14279.22 37695.25 11997.84 9888.80 9299.15 7698.72 116
testdata299.67 5685.96 282
segment_acmp92.89 27
testdata95.46 15798.18 9788.90 21897.66 13482.73 35497.03 5798.07 7690.06 7698.85 17089.67 20598.98 8898.64 122
testdata195.26 29393.10 105
test1297.65 4198.46 7094.26 3797.66 13495.52 11790.89 6799.46 10399.25 6799.22 70
plane_prior796.21 21489.98 178
plane_prior696.10 22590.00 17481.32 217
plane_prior597.51 15398.60 19793.02 14392.23 23795.86 249
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 209
plane_prior297.74 9394.85 34
plane_prior196.14 222
plane_prior89.99 17697.24 15294.06 6592.16 241
n20.00 415
nn0.00 415
door-mid91.06 381
lessismore_v090.45 33891.96 36779.09 37387.19 39580.32 37094.39 28266.31 36397.55 31184.00 30676.84 37494.70 326
LGP-MVS_train94.10 22496.16 21988.26 23597.46 16191.29 16090.12 23997.16 13979.05 25698.73 18392.25 15191.89 24595.31 286
test1197.88 109
door91.13 380
HQP5-MVS89.33 203
HQP-NCC95.86 23196.65 20493.55 8090.14 233
ACMP_Plane95.86 23196.65 20493.55 8090.14 233
BP-MVS92.13 155
HQP4-MVS90.14 23398.50 20595.78 258
HQP3-MVS97.39 17692.10 242
HQP2-MVS80.95 220
NP-MVS95.99 22989.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38993.10 35783.88 34393.55 15382.47 19886.25 27398.38 145
MDTV_nov1_ep1390.76 22895.22 27080.33 35893.03 35895.28 30688.14 26692.84 17393.83 30881.34 21698.08 24782.86 31594.34 202
ACMMP++_ref90.30 274
ACMMP++91.02 263
Test By Simon88.73 94
ITE_SJBPF92.43 29395.34 25985.37 30395.92 27391.47 15487.75 30496.39 18871.00 32897.96 27082.36 32389.86 27893.97 345
DeepMVS_CXcopyleft74.68 38190.84 37364.34 39981.61 40465.34 39267.47 39088.01 38348.60 39180.13 40262.33 39173.68 38279.58 393