This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1299.58 2199.59 19
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 899.66 1099.56 25
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 899.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14398.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2699.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13598.08 6395.81 497.87 2698.31 4594.26 1399.68 4597.02 1999.49 3699.57 22
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3099.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8493.90 1599.65 4996.62 2799.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6198.57 1398.35 3693.69 1899.40 9797.06 1899.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30296.94 2099.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11298.27 1898.65 1693.33 2199.72 3696.49 3299.52 2899.51 33
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17298.85 998.94 193.33 2199.83 2496.72 2599.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10797.97 9095.59 596.61 5997.89 7592.57 3299.84 2195.95 5199.51 3199.40 48
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12898.04 7895.96 297.09 4297.88 7793.18 2399.71 3795.84 5699.17 6799.56 25
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10098.19 4492.82 10197.93 2498.74 1391.60 4899.86 896.26 3599.52 2899.67 11
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6198.29 4891.70 4599.80 2895.66 6099.40 4699.62 15
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15098.07 6893.54 6996.08 7997.69 9193.86 1699.71 3796.50 3199.39 4899.55 28
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8197.18 3798.29 4892.08 3999.83 2495.63 6599.59 1799.54 29
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13798.08 6395.07 2096.11 7898.59 1790.88 6499.90 296.18 4499.50 3399.58 21
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8497.14 3998.34 3991.59 4999.87 795.46 7299.59 1799.64 13
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8197.15 3898.33 4291.35 5399.86 895.63 6599.59 1799.62 15
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9096.45 6998.30 4791.90 4299.85 1695.61 6799.68 499.54 29
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6097.45 2998.48 2791.43 5199.59 6196.22 3899.27 5799.54 29
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10796.39 7198.18 5591.61 4799.88 495.59 7099.55 2499.57 22
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8498.10 6191.50 13498.01 2198.32 4492.33 3599.58 6494.85 8599.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 8998.49 1394.66 3797.24 3698.41 3392.31 3798.94 14496.61 2899.46 3998.96 87
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 11998.04 7894.81 2996.59 6198.37 3591.24 5599.64 5695.16 7899.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4697.97 7191.24 5598.75 16096.92 2199.33 5398.94 90
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7197.43 3298.51 2391.40 5299.56 7296.05 4699.26 5999.43 45
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4398.03 6591.72 4398.71 16697.10 1799.17 6798.90 95
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8095.95 8598.33 4291.04 6099.88 495.20 7799.57 2399.60 18
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10496.70 5398.06 6291.35 5399.86 894.83 8699.28 5699.47 40
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 15998.77 594.70 3597.99 2298.66 1493.61 1999.91 197.67 499.50 3399.72 10
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8797.44 3098.55 2090.93 6299.55 7496.06 4599.25 6199.51 33
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9298.98 192.22 11497.14 3998.44 3091.17 5899.85 1694.35 9799.46 3999.57 22
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7795.54 10098.34 3990.59 6899.88 494.83 8699.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18497.11 4198.01 6892.52 3399.69 4396.03 4999.53 2799.36 53
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16198.06 7190.67 16395.55 9898.78 1291.07 5999.86 896.58 2999.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17296.72 22094.17 4997.44 3097.66 9592.76 2699.33 10296.86 2397.76 11699.08 76
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 14996.40 7097.99 6990.99 6199.58 6495.61 6799.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22798.90 294.30 4795.86 8797.74 8992.33 3599.38 10096.04 4899.42 4499.28 58
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23898.18 4695.23 1295.87 8697.65 9691.45 5099.70 4295.87 5299.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23698.15 5195.43 797.95 2398.56 1893.40 2099.36 10196.77 2499.48 3799.45 41
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16597.73 11394.74 3496.49 6598.49 2590.88 6499.58 6496.44 3398.32 9999.13 70
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17296.77 5098.35 3690.21 7199.53 7894.80 8999.63 1499.38 51
DROMVSNet96.42 4696.47 4296.26 9797.01 15191.52 11098.89 597.75 11094.42 4296.64 5897.68 9289.32 7798.60 17597.45 1299.11 7398.67 114
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15497.96 9195.42 894.86 11097.81 8487.38 10799.82 2696.88 2299.20 6599.29 56
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10497.51 13893.92 5597.43 3298.52 2292.75 2799.32 10497.32 1699.50 3399.51 33
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16697.72 11594.67 3696.16 7798.46 2890.43 6999.58 6496.23 3797.96 11098.90 95
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20598.02 8388.58 22596.03 8097.56 10692.73 2999.59 6195.04 8099.37 5299.39 49
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9094.56 11698.39 3488.96 8299.85 1694.57 9697.63 11799.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22598.79 493.99 5395.80 8997.65 9689.92 7599.24 11095.87 5299.20 6598.58 116
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13398.06 7193.92 5593.38 14398.66 1486.83 11399.73 3395.60 6999.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20893.97 13097.57 10492.62 3199.76 3194.66 9299.27 5799.15 68
ETV-MVS96.02 5595.89 5596.40 8597.16 13792.44 8297.47 11697.77 10994.55 3996.48 6694.51 25691.23 5798.92 14595.65 6398.19 10397.82 165
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12794.52 4096.27 7496.12 18387.65 10099.18 11696.20 4394.82 17898.91 94
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21497.88 9886.98 26796.65 5797.89 7591.99 4199.47 8992.26 13399.46 3999.39 49
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9298.13 5494.81 2996.61 5998.35 3688.87 8399.51 8390.36 17397.35 12799.11 74
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11098.15 5193.87 5797.52 2897.61 10285.29 13399.53 7895.81 5795.27 17099.16 66
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17894.39 4496.47 6796.40 17085.89 12699.20 11396.21 4295.11 17498.95 89
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15691.49 11197.50 11097.56 13493.99 5395.13 10797.92 7487.89 9698.78 15595.97 5097.33 12899.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26797.62 12690.43 17595.55 9897.07 12791.72 4399.50 8689.62 18898.94 7998.82 104
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15298.08 6388.35 23295.09 10897.65 9689.97 7499.48 8892.08 14298.59 8998.44 133
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16790.45 15397.29 13497.44 15594.00 5295.46 10297.98 7087.52 10498.73 16295.64 6497.33 12899.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23397.48 14193.47 7395.67 9598.10 5889.17 7999.25 10991.27 16098.77 8399.13 70
baseline95.58 6695.42 6496.08 10496.78 16390.41 15597.16 14797.45 15193.69 6495.65 9697.85 8187.29 10898.68 16895.66 6097.25 13299.13 70
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24895.17 10698.03 6587.09 11199.61 5793.51 11399.42 4499.02 79
EIA-MVS95.53 6895.47 6195.71 12497.06 14689.63 17297.82 7397.87 10093.57 6593.92 13195.04 23390.61 6798.95 14394.62 9498.68 8698.54 118
3Dnovator+91.43 495.40 6994.48 8998.16 1596.90 15595.34 1698.48 2197.87 10094.65 3888.53 26298.02 6783.69 15499.71 3793.18 12098.96 7899.44 43
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13190.66 14895.31 26497.48 14193.85 5896.51 6495.70 20788.65 8799.65 4994.80 8998.27 10096.17 213
MVSFormer95.37 7095.16 7195.99 11196.34 19091.21 12398.22 4197.57 13191.42 13896.22 7597.32 11486.20 12397.92 25694.07 10199.05 7498.85 101
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13390.50 15195.44 25897.44 15593.70 6396.46 6896.18 17988.59 9099.53 7894.79 9197.81 11396.17 213
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13598.25 3590.21 17794.18 12497.27 11687.48 10599.73 3393.53 11297.77 11598.55 117
diffmvspermissive95.25 7495.13 7295.63 12796.43 18689.34 18895.99 23797.35 16792.83 10096.31 7297.37 11386.44 11898.67 16996.26 3597.19 13498.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13691.58 10898.26 3598.12 5694.38 4594.90 10998.15 5782.28 18898.92 14591.45 15798.58 9099.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19890.69 16194.24 12297.62 10189.79 7698.81 15393.39 11896.49 14998.92 93
EPNet95.20 7794.56 8497.14 5792.80 32892.68 7697.85 7194.87 31496.64 192.46 15997.80 8686.23 12099.65 4993.72 11198.62 8899.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 7894.44 9197.44 4596.56 17693.36 6198.65 1198.36 1794.12 5089.25 24798.06 6282.20 19099.77 3093.41 11799.32 5499.18 65
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20397.57 13192.04 12394.77 11297.96 7287.01 11299.09 12891.31 15996.77 14198.36 140
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17391.71 10096.25 22297.35 16792.99 9096.70 5396.63 15782.67 17899.44 9396.22 3897.46 12096.11 218
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17391.71 10096.25 22297.35 16792.99 9096.70 5396.63 15782.67 17899.44 9396.22 3897.46 12096.11 218
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17391.71 10096.25 22297.35 16792.99 9096.70 5396.63 15782.67 17899.44 9396.22 3897.46 12096.11 218
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13797.73 11391.80 12892.93 15696.62 16089.13 8099.14 12189.21 20097.78 11498.97 86
lupinMVS94.99 8494.56 8496.29 9596.34 19091.21 12395.83 24396.27 24788.93 21396.22 7596.88 13886.20 12398.85 15095.27 7699.05 7498.82 104
Effi-MVS+94.93 8594.45 9096.36 9096.61 17091.47 11396.41 20597.41 16091.02 15494.50 11795.92 19187.53 10398.78 15593.89 10796.81 14098.84 103
IS-MVSNet94.90 8694.52 8796.05 10797.67 11890.56 14998.44 2396.22 25093.21 8193.99 12897.74 8985.55 13198.45 18789.98 17797.86 11199.14 69
MVS_Test94.89 8794.62 8295.68 12596.83 16089.55 17796.70 18197.17 17891.17 14995.60 9796.11 18687.87 9798.76 15993.01 12897.17 13598.72 109
PVSNet_Blended94.87 8894.56 8495.81 11698.27 8289.46 18395.47 25798.36 1788.84 21694.36 11996.09 18788.02 9399.58 6493.44 11598.18 10498.40 136
jason94.84 8994.39 9296.18 10295.52 22390.93 13796.09 23196.52 23689.28 20196.01 8397.32 11484.70 14098.77 15895.15 7998.91 8198.85 101
jason: jason.
API-MVS94.84 8994.49 8895.90 11397.90 10892.00 9697.80 7597.48 14189.19 20494.81 11196.71 14388.84 8499.17 11788.91 20698.76 8496.53 203
test_yl94.78 9194.23 9396.43 8397.74 11591.22 12196.85 16797.10 18491.23 14695.71 9296.93 13384.30 14699.31 10593.10 12195.12 17298.75 106
DCV-MVSNet94.78 9194.23 9396.43 8397.74 11591.22 12196.85 16797.10 18491.23 14695.71 9296.93 13384.30 14699.31 10593.10 12195.12 17298.75 106
WTY-MVS94.71 9394.02 9596.79 6397.71 11792.05 9496.59 19697.35 16790.61 16994.64 11496.93 13386.41 11999.39 9891.20 16294.71 18298.94 90
sss94.51 9493.80 9996.64 6597.07 14391.97 9796.32 21798.06 7188.94 21294.50 11796.78 14084.60 14199.27 10891.90 14396.02 15498.68 113
CANet_DTU94.37 9593.65 10396.55 7196.46 18492.13 9296.21 22696.67 22794.38 4593.53 13997.03 13079.34 23799.71 3790.76 16798.45 9697.82 165
AdaColmapbinary94.34 9693.68 10296.31 9298.59 6691.68 10396.59 19697.81 10889.87 18392.15 16897.06 12883.62 15799.54 7689.34 19498.07 10797.70 169
CNLPA94.28 9793.53 10796.52 7298.38 7792.55 7996.59 19696.88 21190.13 18091.91 17497.24 11885.21 13499.09 12887.64 23097.83 11297.92 157
MAR-MVS94.22 9893.46 11296.51 7598.00 10192.19 9197.67 8997.47 14488.13 23993.00 15195.84 19584.86 13999.51 8387.99 21798.17 10597.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 9993.42 11796.48 7897.64 12291.42 11695.55 25397.71 11988.99 20992.34 16595.82 19789.19 7899.11 12486.14 25697.38 12598.90 95
h-mvs3394.15 10093.52 10996.04 10897.81 11290.22 15797.62 9997.58 13095.19 1396.74 5197.45 10983.67 15599.61 5795.85 5479.73 33798.29 143
CHOSEN 1792x268894.15 10093.51 11096.06 10698.27 8289.38 18695.18 27198.48 1585.60 29093.76 13497.11 12583.15 16599.61 5791.33 15898.72 8599.19 64
Vis-MVSNet (Re-imp)94.15 10093.88 9894.95 16397.61 12487.92 23298.10 4995.80 26692.22 11493.02 15097.45 10984.53 14397.91 25988.24 21497.97 10999.02 79
CDS-MVSNet94.14 10393.54 10695.93 11296.18 19791.46 11496.33 21697.04 19488.97 21193.56 13696.51 16487.55 10297.89 26089.80 18295.95 15698.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 10493.43 11596.13 10398.58 6891.15 13196.69 18397.39 16187.29 26291.37 18596.71 14388.39 9199.52 8287.33 23797.13 13697.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 10593.70 10195.27 14595.70 21692.03 9598.10 4998.68 893.36 7990.39 20596.70 14587.63 10197.94 25292.25 13590.50 24695.84 226
PVSNet_BlendedMVS94.06 10693.92 9794.47 18798.27 8289.46 18396.73 17798.36 1790.17 17894.36 11995.24 22788.02 9399.58 6493.44 11590.72 24294.36 309
nrg03094.05 10793.31 11996.27 9695.22 24594.59 2898.34 2797.46 14692.93 9891.21 19596.64 15187.23 11098.22 20694.99 8385.80 28795.98 222
UGNet94.04 10893.28 12096.31 9296.85 15791.19 12697.88 6797.68 12094.40 4393.00 15196.18 17973.39 29799.61 5791.72 14998.46 9598.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 10993.46 11295.64 12696.16 19990.45 15396.71 18096.89 21089.27 20293.46 14196.92 13687.29 10897.94 25288.70 21095.74 16198.53 119
114514_t93.95 11093.06 12596.63 6799.07 3791.61 10597.46 11897.96 9177.99 35093.00 15197.57 10486.14 12599.33 10289.22 19999.15 6998.94 90
FC-MVSNet-test93.94 11193.57 10495.04 15495.48 22591.45 11598.12 4898.71 693.37 7790.23 20896.70 14587.66 9997.85 26291.49 15590.39 24795.83 227
mvsany_test193.93 11293.98 9693.78 22594.94 25986.80 25594.62 27992.55 34488.77 22296.85 4798.49 2588.98 8198.08 22695.03 8195.62 16596.46 208
GeoE93.89 11393.28 12095.72 12396.96 15489.75 17098.24 3996.92 20789.47 19692.12 17097.21 12084.42 14498.39 19487.71 22496.50 14899.01 82
HY-MVS89.66 993.87 11492.95 12896.63 6797.10 14292.49 8195.64 25196.64 22889.05 20793.00 15195.79 20185.77 12999.45 9289.16 20394.35 18497.96 155
XVG-OURS-SEG-HR93.86 11593.55 10594.81 17197.06 14688.53 21395.28 26597.45 15191.68 13194.08 12797.68 9282.41 18698.90 14893.84 10992.47 20796.98 191
mvsmamba93.83 11693.46 11294.93 16694.88 26490.85 14098.55 1495.49 28294.24 4891.29 19296.97 13283.04 16998.14 21495.56 7191.17 23295.78 232
VDD-MVS93.82 11793.08 12496.02 10997.88 10989.96 16697.72 8495.85 26492.43 11095.86 8798.44 3068.42 32399.39 9896.31 3494.85 17698.71 111
mvs_anonymous93.82 11793.74 10094.06 20596.44 18585.41 28095.81 24497.05 19289.85 18690.09 21896.36 17287.44 10697.75 27293.97 10396.69 14599.02 79
HQP_MVS93.78 11993.43 11594.82 16996.21 19489.99 16297.74 7997.51 13894.85 2491.34 18696.64 15181.32 20498.60 17593.02 12692.23 21095.86 223
PS-MVSNAJss93.74 12093.51 11094.44 18893.91 30089.28 19397.75 7897.56 13492.50 10989.94 22296.54 16388.65 8798.18 21193.83 11090.90 23995.86 223
XVG-OURS93.72 12193.35 11894.80 17497.07 14388.61 20894.79 27697.46 14691.97 12693.99 12897.86 8081.74 19998.88 14992.64 13292.67 20596.92 195
HyFIR lowres test93.66 12292.92 12995.87 11498.24 8589.88 16794.58 28198.49 1385.06 30093.78 13395.78 20282.86 17498.67 16991.77 14895.71 16399.07 78
iter_conf_final93.60 12393.11 12395.04 15497.13 14091.30 11897.92 6595.65 27592.98 9591.60 17896.64 15179.28 23998.13 21595.34 7591.49 22495.70 240
LFMVS93.60 12392.63 14396.52 7298.13 9791.27 12097.94 6393.39 33790.57 17296.29 7398.31 4569.00 31999.16 11894.18 10095.87 15899.12 73
F-COLMAP93.58 12592.98 12795.37 14398.40 7488.98 20197.18 14597.29 17287.75 25190.49 20297.10 12685.21 13499.50 8686.70 24796.72 14497.63 171
ab-mvs93.57 12692.55 14896.64 6597.28 13291.96 9895.40 25997.45 15189.81 18893.22 14996.28 17579.62 23499.46 9090.74 16893.11 19998.50 123
LS3D93.57 12692.61 14696.47 7997.59 12691.61 10597.67 8997.72 11585.17 29890.29 20798.34 3984.60 14199.73 3383.85 29098.27 10098.06 154
FA-MVS(test-final)93.52 12892.92 12995.31 14496.77 16488.54 21294.82 27596.21 25289.61 19194.20 12395.25 22683.24 16299.14 12190.01 17696.16 15398.25 144
Fast-Effi-MVS+93.46 12992.75 13895.59 13096.77 16490.03 15996.81 17197.13 18188.19 23591.30 18994.27 27286.21 12298.63 17287.66 22996.46 15198.12 149
hse-mvs293.45 13092.99 12694.81 17197.02 15088.59 20996.69 18396.47 23995.19 1396.74 5196.16 18283.67 15598.48 18695.85 5479.13 34197.35 184
QAPM93.45 13092.27 15796.98 6296.77 16492.62 7798.39 2698.12 5684.50 30888.27 26897.77 8782.39 18799.81 2785.40 26998.81 8298.51 122
UniMVSNet_NR-MVSNet93.37 13292.67 14295.47 14095.34 23492.83 7297.17 14698.58 1192.98 9590.13 21395.80 19888.37 9297.85 26291.71 15083.93 31595.73 239
1112_ss93.37 13292.42 15496.21 10197.05 14890.99 13396.31 21896.72 22086.87 27089.83 22696.69 14786.51 11799.14 12188.12 21593.67 19398.50 123
UniMVSNet (Re)93.31 13492.55 14895.61 12995.39 22893.34 6297.39 12498.71 693.14 8690.10 21794.83 24387.71 9898.03 23791.67 15383.99 31495.46 250
OPM-MVS93.28 13592.76 13694.82 16994.63 27890.77 14496.65 18797.18 17693.72 6191.68 17797.26 11779.33 23898.63 17292.13 13992.28 20995.07 272
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 13692.48 15395.51 13595.70 21692.39 8397.86 6898.66 1092.30 11392.09 17295.37 22180.49 21798.40 19093.95 10485.86 28695.75 237
test_fmvs193.21 13793.53 10792.25 27796.55 17881.20 32597.40 12396.96 20090.68 16296.80 4898.04 6469.25 31898.40 19097.58 798.50 9197.16 188
MVSTER93.20 13892.81 13594.37 19296.56 17689.59 17597.06 15197.12 18291.24 14591.30 18995.96 18982.02 19398.05 23393.48 11490.55 24495.47 249
test111193.19 13992.82 13494.30 19797.58 12884.56 29498.21 4389.02 36193.53 7094.58 11598.21 5272.69 29899.05 13693.06 12498.48 9499.28 58
ECVR-MVScopyleft93.19 13992.73 14094.57 18597.66 12085.41 28098.21 4388.23 36293.43 7594.70 11398.21 5272.57 29999.07 13393.05 12598.49 9299.25 61
HQP-MVS93.19 13992.74 13994.54 18695.86 20989.33 18996.65 18797.39 16193.55 6690.14 20995.87 19380.95 20798.50 18392.13 13992.10 21595.78 232
iter_conf0593.18 14292.63 14394.83 16896.64 16990.69 14697.60 10095.53 28192.52 10891.58 17996.64 15176.35 27798.13 21595.43 7391.42 22795.68 242
CHOSEN 280x42093.12 14392.72 14194.34 19496.71 16887.27 24390.29 34997.72 11586.61 27491.34 18695.29 22384.29 14898.41 18993.25 11998.94 7997.35 184
RRT_MVS93.10 14492.83 13393.93 21894.76 26988.04 22898.47 2296.55 23593.44 7490.01 22197.04 12980.64 21497.93 25594.33 9890.21 24995.83 227
Effi-MVS+-dtu93.08 14593.21 12292.68 26896.02 20783.25 30997.14 14996.72 22093.85 5891.20 19693.44 30383.08 16798.30 20191.69 15295.73 16296.50 205
test_djsdf93.07 14692.76 13694.00 20993.49 31488.70 20798.22 4197.57 13191.42 13890.08 21995.55 21582.85 17597.92 25694.07 10191.58 22295.40 255
VDDNet93.05 14792.07 16196.02 10996.84 15890.39 15698.08 5195.85 26486.22 28295.79 9098.46 2867.59 32699.19 11494.92 8494.85 17698.47 128
thisisatest053093.03 14892.21 15995.49 13797.07 14389.11 19997.49 11592.19 34690.16 17994.09 12696.41 16976.43 27699.05 13690.38 17295.68 16498.31 142
EI-MVSNet93.03 14892.88 13193.48 23995.77 21486.98 25296.44 20197.12 18290.66 16591.30 18997.64 9986.56 11598.05 23389.91 17990.55 24495.41 252
CLD-MVS92.98 15092.53 15094.32 19596.12 20389.20 19595.28 26597.47 14492.66 10589.90 22395.62 21180.58 21598.40 19092.73 13192.40 20895.38 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 15192.33 15694.87 16797.11 14187.16 24997.97 6292.09 34790.63 16793.88 13297.01 13176.50 27399.06 13590.29 17595.45 16798.38 138
ACMM89.79 892.96 15192.50 15294.35 19396.30 19288.71 20697.58 10297.36 16691.40 14090.53 20196.65 15079.77 23198.75 16091.24 16191.64 22095.59 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 15392.56 14794.10 20396.16 19988.26 22097.65 9297.46 14691.29 14190.12 21597.16 12279.05 24298.73 16292.25 13591.89 21895.31 261
BH-untuned92.94 15392.62 14593.92 21997.22 13386.16 27196.40 20996.25 24990.06 18189.79 22796.17 18183.19 16398.35 19787.19 24097.27 13197.24 186
DU-MVS92.90 15592.04 16295.49 13794.95 25792.83 7297.16 14798.24 3793.02 8990.13 21395.71 20583.47 15897.85 26291.71 15083.93 31595.78 232
PatchMatch-RL92.90 15592.02 16495.56 13198.19 9290.80 14295.27 26797.18 17687.96 24191.86 17695.68 20880.44 21898.99 14184.01 28697.54 11996.89 196
PMMVS92.86 15792.34 15594.42 19094.92 26086.73 25894.53 28396.38 24384.78 30594.27 12195.12 23283.13 16698.40 19091.47 15696.49 14998.12 149
OpenMVScopyleft89.19 1292.86 15791.68 17696.40 8595.34 23492.73 7598.27 3398.12 5684.86 30385.78 30597.75 8878.89 24999.74 3287.50 23498.65 8796.73 200
Test_1112_low_res92.84 15991.84 17095.85 11597.04 14989.97 16595.53 25596.64 22885.38 29389.65 23295.18 22885.86 12799.10 12587.70 22593.58 19898.49 125
baseline192.82 16091.90 16895.55 13397.20 13590.77 14497.19 14494.58 31992.20 11692.36 16396.34 17384.16 14998.21 20789.20 20183.90 31897.68 170
131492.81 16192.03 16395.14 15095.33 23789.52 18096.04 23397.44 15587.72 25286.25 30295.33 22283.84 15298.79 15489.26 19797.05 13797.11 189
DP-MVS92.76 16291.51 18496.52 7298.77 5390.99 13397.38 12696.08 25682.38 32789.29 24497.87 7883.77 15399.69 4381.37 31096.69 14598.89 98
test_fmvs1_n92.73 16392.88 13192.29 27596.08 20681.05 32697.98 5797.08 18790.72 16096.79 4998.18 5563.07 34598.45 18797.62 698.42 9797.36 182
BH-RMVSNet92.72 16491.97 16694.97 16197.16 13787.99 23096.15 22995.60 27690.62 16891.87 17597.15 12478.41 25598.57 17983.16 29297.60 11898.36 140
ACMP89.59 1092.62 16592.14 16094.05 20696.40 18788.20 22397.36 12797.25 17591.52 13388.30 26696.64 15178.46 25498.72 16591.86 14691.48 22595.23 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 16692.52 15192.44 27196.82 16281.89 31996.92 16393.71 33392.41 11184.30 31894.60 25485.08 13697.03 31591.51 15497.36 12698.40 136
TranMVSNet+NR-MVSNet92.50 16691.63 17795.14 15094.76 26992.07 9397.53 10898.11 5992.90 9989.56 23596.12 18383.16 16497.60 28589.30 19583.20 32495.75 237
thres600view792.49 16891.60 17895.18 14897.91 10789.47 18197.65 9294.66 31692.18 12093.33 14494.91 23878.06 26299.10 12581.61 30494.06 19096.98 191
thres100view90092.43 16991.58 17994.98 16097.92 10689.37 18797.71 8694.66 31692.20 11693.31 14594.90 23978.06 26299.08 13081.40 30794.08 18796.48 206
jajsoiax92.42 17091.89 16994.03 20893.33 32088.50 21497.73 8197.53 13692.00 12588.85 25496.50 16575.62 28498.11 22193.88 10891.56 22395.48 246
thres40092.42 17091.52 18295.12 15297.85 11089.29 19197.41 11994.88 31192.19 11893.27 14794.46 26178.17 25899.08 13081.40 30794.08 18796.98 191
tfpn200view992.38 17291.52 18294.95 16397.85 11089.29 19197.41 11994.88 31192.19 11893.27 14794.46 26178.17 25899.08 13081.40 30794.08 18796.48 206
test_vis1_n92.37 17392.26 15892.72 26594.75 27182.64 31198.02 5596.80 21791.18 14897.77 2797.93 7358.02 35298.29 20297.63 598.21 10297.23 187
bld_raw_dy_0_6492.37 17391.69 17594.39 19194.28 29289.73 17197.71 8693.65 33492.78 10390.46 20396.67 14975.88 27997.97 24492.92 13090.89 24095.48 246
WR-MVS92.34 17591.53 18194.77 17695.13 25090.83 14196.40 20997.98 8991.88 12789.29 24495.54 21682.50 18397.80 26789.79 18385.27 29595.69 241
NR-MVSNet92.34 17591.27 19295.53 13494.95 25793.05 6897.39 12498.07 6892.65 10684.46 31695.71 20585.00 13797.77 27189.71 18483.52 32195.78 232
mvs_tets92.31 17791.76 17193.94 21693.41 31788.29 21897.63 9897.53 13692.04 12388.76 25796.45 16774.62 28898.09 22593.91 10691.48 22595.45 251
TAPA-MVS90.10 792.30 17891.22 19595.56 13198.33 7989.60 17496.79 17297.65 12381.83 33191.52 18197.23 11987.94 9598.91 14771.31 35498.37 9898.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 17991.30 19095.25 14696.60 17188.90 20394.36 29092.32 34587.92 24293.43 14294.57 25577.28 26999.00 14089.42 19295.86 15997.86 161
Fast-Effi-MVS+-dtu92.29 17991.99 16593.21 25095.27 24185.52 27897.03 15296.63 23192.09 12189.11 25095.14 23080.33 22198.08 22687.54 23394.74 18196.03 221
IterMVS-LS92.29 17991.94 16793.34 24496.25 19386.97 25396.57 19997.05 19290.67 16389.50 23894.80 24586.59 11497.64 28089.91 17986.11 28595.40 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 18291.74 17493.73 22697.77 11483.69 30692.88 33096.72 22087.91 24393.00 15194.86 24178.51 25399.05 13686.53 24897.45 12498.47 128
VPNet92.23 18391.31 18994.99 15895.56 22190.96 13597.22 14297.86 10492.96 9790.96 19796.62 16075.06 28698.20 20891.90 14383.65 32095.80 230
thres20092.23 18391.39 18594.75 17897.61 12489.03 20096.60 19595.09 30192.08 12293.28 14694.00 28478.39 25699.04 13981.26 31194.18 18696.19 212
anonymousdsp92.16 18591.55 18093.97 21292.58 33289.55 17797.51 10997.42 15989.42 19888.40 26394.84 24280.66 21397.88 26191.87 14591.28 23094.48 304
XXY-MVS92.16 18591.23 19494.95 16394.75 27190.94 13697.47 11697.43 15889.14 20588.90 25196.43 16879.71 23298.24 20489.56 18987.68 27095.67 243
BH-w/o92.14 18791.75 17293.31 24596.99 15385.73 27595.67 24895.69 27188.73 22389.26 24694.82 24482.97 17298.07 23085.26 27196.32 15296.13 217
Anonymous20240521192.07 18890.83 20895.76 11798.19 9288.75 20597.58 10295.00 30486.00 28593.64 13597.45 10966.24 33799.53 7890.68 17092.71 20399.01 82
FE-MVS92.05 18991.05 19995.08 15396.83 16087.93 23193.91 30795.70 26986.30 27994.15 12594.97 23476.59 27299.21 11284.10 28496.86 13898.09 153
WR-MVS_H92.00 19091.35 18693.95 21495.09 25289.47 18198.04 5498.68 891.46 13688.34 26494.68 25085.86 12797.56 28785.77 26484.24 31294.82 289
Anonymous2024052991.98 19190.73 21295.73 12298.14 9689.40 18597.99 5697.72 11579.63 34493.54 13897.41 11269.94 31699.56 7291.04 16491.11 23498.22 145
PatchmatchNetpermissive91.91 19291.35 18693.59 23495.38 22984.11 29993.15 32695.39 28489.54 19392.10 17193.68 29682.82 17698.13 21584.81 27595.32 16998.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 19391.24 19393.82 22295.05 25388.57 21097.82 7398.19 4491.70 13088.21 27095.76 20381.96 19497.52 29387.86 21984.65 30495.37 258
SCA91.84 19491.18 19793.83 22195.59 21984.95 29094.72 27795.58 27890.82 15592.25 16693.69 29475.80 28198.10 22286.20 25495.98 15598.45 130
FMVSNet391.78 19590.69 21495.03 15696.53 17992.27 8897.02 15496.93 20389.79 18989.35 24194.65 25277.01 27097.47 29686.12 25788.82 25995.35 259
AUN-MVS91.76 19690.75 21194.81 17197.00 15288.57 21096.65 18796.49 23889.63 19092.15 16896.12 18378.66 25198.50 18390.83 16579.18 34097.36 182
X-MVStestdata91.71 19789.67 25697.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6132.69 37391.70 4599.80 2895.66 6099.40 4699.62 15
MVS91.71 19790.44 22195.51 13595.20 24791.59 10796.04 23397.45 15173.44 35887.36 28795.60 21285.42 13299.10 12585.97 26197.46 12095.83 227
EPNet_dtu91.71 19791.28 19192.99 25693.76 30583.71 30596.69 18395.28 29193.15 8587.02 29495.95 19083.37 16197.38 30479.46 32296.84 13997.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20090.86 20493.94 21694.33 28886.32 26595.92 24091.64 35189.37 19986.94 29594.69 24981.62 20198.69 16788.64 21194.57 18396.81 198
test250691.60 20190.78 20994.04 20797.66 12083.81 30298.27 3375.53 37693.43 7595.23 10498.21 5267.21 32999.07 13393.01 12898.49 9299.25 61
miper_ehance_all_eth91.59 20291.13 19892.97 25795.55 22286.57 26394.47 28496.88 21187.77 24988.88 25394.01 28386.22 12197.54 28989.49 19086.93 27794.79 294
v2v48291.59 20290.85 20693.80 22393.87 30288.17 22596.94 16296.88 21189.54 19389.53 23694.90 23981.70 20098.02 23889.25 19885.04 30195.20 269
V4291.58 20490.87 20393.73 22694.05 29788.50 21497.32 13196.97 19988.80 22189.71 22894.33 26782.54 18298.05 23389.01 20485.07 29994.64 302
PCF-MVS89.48 1191.56 20589.95 24496.36 9096.60 17192.52 8092.51 33597.26 17379.41 34588.90 25196.56 16284.04 15199.55 7477.01 33697.30 13097.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 20690.84 20793.69 23094.96 25688.28 21997.84 7298.24 3791.46 13688.04 27495.80 19879.67 23397.48 29587.02 24484.54 30995.31 261
miper_enhance_ethall91.54 20791.01 20093.15 25195.35 23387.07 25193.97 30296.90 20886.79 27189.17 24893.43 30586.55 11697.64 28089.97 17886.93 27794.74 298
PAPM91.52 20890.30 22795.20 14795.30 24089.83 16893.38 32296.85 21486.26 28188.59 26095.80 19884.88 13898.15 21375.67 34095.93 15797.63 171
ET-MVSNet_ETH3D91.49 20990.11 23795.63 12796.40 18791.57 10995.34 26193.48 33690.60 17175.58 35495.49 21880.08 22596.79 32494.25 9989.76 25398.52 120
TR-MVS91.48 21090.59 21794.16 20196.40 18787.33 24195.67 24895.34 29087.68 25391.46 18395.52 21776.77 27198.35 19782.85 29693.61 19696.79 199
tpmrst91.44 21191.32 18891.79 28995.15 24879.20 34593.42 32195.37 28688.55 22893.49 14093.67 29782.49 18498.27 20390.41 17189.34 25697.90 158
test-LLR91.42 21291.19 19692.12 27994.59 27980.66 32894.29 29492.98 33991.11 15190.76 19992.37 31779.02 24498.07 23088.81 20796.74 14297.63 171
MSDG91.42 21290.24 23194.96 16297.15 13988.91 20293.69 31496.32 24585.72 28986.93 29696.47 16680.24 22298.98 14280.57 31395.05 17596.98 191
c3_l91.38 21490.89 20292.88 26095.58 22086.30 26694.68 27896.84 21588.17 23688.83 25694.23 27585.65 13097.47 29689.36 19384.63 30594.89 284
GA-MVS91.38 21490.31 22694.59 18094.65 27687.62 23994.34 29196.19 25390.73 15990.35 20693.83 28871.84 30297.96 24987.22 23993.61 19698.21 146
v114491.37 21690.60 21693.68 23193.89 30188.23 22296.84 16997.03 19688.37 23189.69 23094.39 26382.04 19297.98 24187.80 22185.37 29294.84 286
GBi-Net91.35 21790.27 22994.59 18096.51 18091.18 12797.50 11096.93 20388.82 21889.35 24194.51 25673.87 29297.29 30886.12 25788.82 25995.31 261
test191.35 21790.27 22994.59 18096.51 18091.18 12797.50 11096.93 20388.82 21889.35 24194.51 25673.87 29297.29 30886.12 25788.82 25995.31 261
UniMVSNet_ETH3D91.34 21990.22 23494.68 17994.86 26587.86 23597.23 14197.46 14687.99 24089.90 22396.92 13666.35 33598.23 20590.30 17490.99 23797.96 155
FMVSNet291.31 22090.08 23894.99 15896.51 18092.21 8997.41 11996.95 20188.82 21888.62 25994.75 24773.87 29297.42 30185.20 27288.55 26495.35 259
D2MVS91.30 22190.95 20192.35 27394.71 27485.52 27896.18 22898.21 4188.89 21486.60 29993.82 29079.92 22997.95 25189.29 19690.95 23893.56 323
v891.29 22290.53 22093.57 23694.15 29388.12 22797.34 12897.06 19188.99 20988.32 26594.26 27483.08 16798.01 23987.62 23183.92 31794.57 303
CVMVSNet91.23 22391.75 17289.67 32295.77 21474.69 35596.44 20194.88 31185.81 28792.18 16797.64 9979.07 24195.58 34288.06 21695.86 15998.74 108
cl2291.21 22490.56 21993.14 25296.09 20586.80 25594.41 28896.58 23487.80 24788.58 26193.99 28580.85 21297.62 28389.87 18186.93 27794.99 275
PEN-MVS91.20 22590.44 22193.48 23994.49 28287.91 23497.76 7798.18 4691.29 14187.78 27995.74 20480.35 22097.33 30685.46 26882.96 32595.19 270
Baseline_NR-MVSNet91.20 22590.62 21592.95 25893.83 30388.03 22997.01 15795.12 30088.42 23089.70 22995.13 23183.47 15897.44 29989.66 18783.24 32393.37 327
cascas91.20 22590.08 23894.58 18494.97 25589.16 19893.65 31697.59 12979.90 34389.40 23992.92 30975.36 28598.36 19692.14 13894.75 18096.23 210
CostFormer91.18 22890.70 21392.62 26994.84 26681.76 32094.09 30094.43 32184.15 31192.72 15893.77 29279.43 23698.20 20890.70 16992.18 21397.90 158
tt080591.09 22990.07 24194.16 20195.61 21888.31 21797.56 10496.51 23789.56 19289.17 24895.64 21067.08 33398.38 19591.07 16388.44 26595.80 230
v119291.07 23090.23 23293.58 23593.70 30687.82 23696.73 17797.07 18987.77 24989.58 23394.32 26980.90 21197.97 24486.52 24985.48 29094.95 276
v14419291.06 23190.28 22893.39 24293.66 30987.23 24696.83 17097.07 18987.43 25889.69 23094.28 27181.48 20298.00 24087.18 24184.92 30394.93 280
v1091.04 23290.23 23293.49 23894.12 29488.16 22697.32 13197.08 18788.26 23488.29 26794.22 27782.17 19197.97 24486.45 25184.12 31394.33 310
eth_miper_zixun_eth91.02 23390.59 21792.34 27495.33 23784.35 29594.10 29996.90 20888.56 22788.84 25594.33 26784.08 15097.60 28588.77 20984.37 31195.06 273
v14890.99 23490.38 22392.81 26393.83 30385.80 27496.78 17496.68 22589.45 19788.75 25893.93 28782.96 17397.82 26687.83 22083.25 32294.80 292
LTVRE_ROB88.41 1390.99 23489.92 24694.19 19996.18 19789.55 17796.31 21897.09 18687.88 24485.67 30695.91 19278.79 25098.57 17981.50 30589.98 25094.44 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 23690.33 22492.88 26095.36 23286.19 27094.46 28696.63 23187.82 24588.18 27194.23 27582.99 17097.53 29187.72 22285.57 28994.93 280
cl____90.96 23790.32 22592.89 25995.37 23186.21 26994.46 28696.64 22887.82 24588.15 27294.18 27882.98 17197.54 28987.70 22585.59 28894.92 282
pmmvs490.93 23889.85 24894.17 20093.34 31990.79 14394.60 28096.02 25784.62 30687.45 28395.15 22981.88 19797.45 29887.70 22587.87 26994.27 314
XVG-ACMP-BASELINE90.93 23890.21 23593.09 25394.31 29085.89 27395.33 26297.26 17391.06 15389.38 24095.44 22068.61 32198.60 17589.46 19191.05 23594.79 294
v192192090.85 24090.03 24393.29 24693.55 31086.96 25496.74 17697.04 19487.36 26089.52 23794.34 26680.23 22397.97 24486.27 25285.21 29694.94 278
CR-MVSNet90.82 24189.77 25293.95 21494.45 28487.19 24790.23 35095.68 27386.89 26992.40 16092.36 32080.91 20997.05 31481.09 31293.95 19197.60 176
v7n90.76 24289.86 24793.45 24193.54 31187.60 24097.70 8897.37 16488.85 21587.65 28194.08 28281.08 20698.10 22284.68 27783.79 31994.66 301
RPSCF90.75 24390.86 20490.42 31596.84 15876.29 35395.61 25296.34 24483.89 31491.38 18497.87 7876.45 27498.78 15587.16 24292.23 21096.20 211
MVP-Stereo90.74 24490.08 23892.71 26693.19 32288.20 22395.86 24296.27 24786.07 28484.86 31494.76 24677.84 26597.75 27283.88 28998.01 10892.17 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 24589.65 25893.96 21394.29 29189.63 17297.79 7696.82 21689.07 20686.12 30495.48 21978.61 25297.78 26986.97 24581.67 32994.46 305
v124090.70 24689.85 24893.23 24893.51 31386.80 25596.61 19397.02 19787.16 26589.58 23394.31 27079.55 23597.98 24185.52 26785.44 29194.90 283
EPMVS90.70 24689.81 25093.37 24394.73 27384.21 29793.67 31588.02 36389.50 19592.38 16293.49 30177.82 26697.78 26986.03 26092.68 20498.11 152
Anonymous2023121190.63 24889.42 26094.27 19898.24 8589.19 19798.05 5397.89 9679.95 34288.25 26994.96 23572.56 30098.13 21589.70 18585.14 29795.49 245
DTE-MVSNet90.56 24989.75 25493.01 25593.95 29887.25 24497.64 9697.65 12390.74 15887.12 29095.68 20879.97 22897.00 31983.33 29181.66 33094.78 296
ACMH87.59 1690.53 25089.42 26093.87 22096.21 19487.92 23297.24 13796.94 20288.45 22983.91 32696.27 17671.92 30198.62 17484.43 28189.43 25595.05 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-090.51 25190.19 23691.44 29893.41 31781.25 32396.98 15996.28 24691.68 13186.55 30096.30 17474.20 29197.98 24188.96 20587.40 27595.09 271
miper_lstm_enhance90.50 25290.06 24291.83 28695.33 23783.74 30393.86 30896.70 22487.56 25687.79 27893.81 29183.45 16096.92 32187.39 23584.62 30694.82 289
COLMAP_ROBcopyleft87.81 1590.40 25389.28 26393.79 22497.95 10387.13 25096.92 16395.89 26382.83 32586.88 29897.18 12173.77 29599.29 10778.44 32793.62 19594.95 276
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT90.31 25489.81 25091.82 28795.52 22384.20 29894.30 29396.15 25490.61 16987.39 28694.27 27275.80 28196.44 32787.34 23686.88 28194.82 289
MS-PatchMatch90.27 25589.77 25291.78 29094.33 28884.72 29395.55 25396.73 21986.17 28386.36 30195.28 22571.28 30697.80 26784.09 28598.14 10692.81 332
tpm90.25 25689.74 25591.76 29293.92 29979.73 34193.98 30193.54 33588.28 23391.99 17393.25 30677.51 26897.44 29987.30 23887.94 26898.12 149
AllTest90.23 25788.98 26793.98 21097.94 10486.64 25996.51 20095.54 27985.38 29385.49 30896.77 14170.28 31299.15 11980.02 31792.87 20096.15 215
ACMH+87.92 1490.20 25889.18 26593.25 24796.48 18386.45 26496.99 15896.68 22588.83 21784.79 31596.22 17870.16 31498.53 18184.42 28288.04 26794.77 297
test-mter90.19 25989.54 25992.12 27994.59 27980.66 32894.29 29492.98 33987.68 25390.76 19992.37 31767.67 32598.07 23088.81 20796.74 14297.63 171
IterMVS90.15 26089.67 25691.61 29495.48 22583.72 30494.33 29296.12 25589.99 18287.31 28994.15 28075.78 28396.27 33086.97 24586.89 28094.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 26189.42 26091.97 28294.41 28680.62 33094.29 29491.97 34987.28 26390.44 20492.47 31668.79 32097.67 27788.50 21396.60 14797.61 175
tpm289.96 26289.21 26492.23 27894.91 26281.25 32393.78 31094.42 32280.62 34091.56 18093.44 30376.44 27597.94 25285.60 26692.08 21797.49 180
IB-MVS87.33 1789.91 26388.28 27694.79 17595.26 24487.70 23895.12 27393.95 33189.35 20087.03 29392.49 31570.74 31099.19 11489.18 20281.37 33197.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 26488.68 27193.53 23795.86 20984.89 29190.93 34595.07 30283.23 32391.28 19391.81 32779.01 24697.85 26279.52 31991.39 22897.84 162
FMVSNet189.88 26588.31 27594.59 18095.41 22791.18 12797.50 11096.93 20386.62 27387.41 28594.51 25665.94 33997.29 30883.04 29487.43 27395.31 261
pmmvs589.86 26688.87 26992.82 26292.86 32686.23 26896.26 22195.39 28484.24 31087.12 29094.51 25674.27 29097.36 30587.61 23287.57 27194.86 285
tpmvs89.83 26789.15 26691.89 28494.92 26080.30 33593.11 32795.46 28386.28 28088.08 27392.65 31180.44 21898.52 18281.47 30689.92 25196.84 197
test_fmvs289.77 26889.93 24589.31 32593.68 30876.37 35297.64 9695.90 26189.84 18791.49 18296.26 17758.77 35197.10 31294.65 9391.13 23394.46 305
tfpnnormal89.70 26988.40 27493.60 23395.15 24890.10 15897.56 10498.16 5087.28 26386.16 30394.63 25377.57 26798.05 23374.48 34284.59 30792.65 335
ADS-MVSNet289.45 27088.59 27292.03 28195.86 20982.26 31790.93 34594.32 32683.23 32391.28 19391.81 32779.01 24695.99 33279.52 31991.39 22897.84 162
Patchmatch-test89.42 27187.99 27893.70 22995.27 24185.11 28688.98 35694.37 32481.11 33487.10 29293.69 29482.28 18897.50 29474.37 34494.76 17998.48 127
test0.0.03 189.37 27288.70 27091.41 29992.47 33485.63 27695.22 27092.70 34291.11 15186.91 29793.65 29879.02 24493.19 35978.00 32989.18 25795.41 252
SixPastTwentyTwo89.15 27388.54 27390.98 30593.49 31480.28 33696.70 18194.70 31590.78 15684.15 32195.57 21371.78 30397.71 27584.63 27885.07 29994.94 278
RPMNet88.98 27487.05 28994.77 17694.45 28487.19 24790.23 35098.03 8077.87 35292.40 16087.55 35580.17 22499.51 8368.84 35993.95 19197.60 176
TransMVSNet (Re)88.94 27587.56 28293.08 25494.35 28788.45 21697.73 8195.23 29587.47 25784.26 31995.29 22379.86 23097.33 30679.44 32374.44 35293.45 326
USDC88.94 27587.83 28092.27 27694.66 27584.96 28993.86 30895.90 26187.34 26183.40 32895.56 21467.43 32798.19 21082.64 30089.67 25493.66 322
dp88.90 27788.26 27790.81 30894.58 28176.62 35192.85 33194.93 30885.12 29990.07 22093.07 30775.81 28098.12 22080.53 31487.42 27497.71 168
PatchT88.87 27887.42 28393.22 24994.08 29685.10 28789.51 35494.64 31881.92 33092.36 16388.15 35180.05 22697.01 31872.43 35093.65 19497.54 179
MVS_030488.79 27987.57 28192.46 27094.65 27686.15 27296.40 20997.17 17886.44 27688.02 27591.71 32956.68 35597.03 31584.47 28092.58 20694.19 315
our_test_388.78 28087.98 27991.20 30392.45 33582.53 31393.61 31895.69 27185.77 28884.88 31393.71 29379.99 22796.78 32579.47 32186.24 28294.28 313
EU-MVSNet88.72 28188.90 26888.20 32993.15 32374.21 35696.63 19294.22 32785.18 29787.32 28895.97 18876.16 27894.98 34785.27 27086.17 28395.41 252
Patchmtry88.64 28287.25 28592.78 26494.09 29586.64 25989.82 35395.68 27380.81 33887.63 28292.36 32080.91 20997.03 31578.86 32585.12 29894.67 300
MIMVSNet88.50 28386.76 29193.72 22894.84 26687.77 23791.39 34094.05 32886.41 27887.99 27692.59 31463.27 34495.82 33777.44 33092.84 20297.57 178
tpm cat188.36 28487.21 28791.81 28895.13 25080.55 33192.58 33495.70 26974.97 35587.45 28391.96 32578.01 26498.17 21280.39 31588.74 26296.72 201
ppachtmachnet_test88.35 28587.29 28491.53 29592.45 33583.57 30793.75 31195.97 25884.28 30985.32 31194.18 27879.00 24896.93 32075.71 33984.99 30294.10 316
JIA-IIPM88.26 28687.04 29091.91 28393.52 31281.42 32289.38 35594.38 32380.84 33790.93 19880.74 36279.22 24097.92 25682.76 29791.62 22196.38 209
testgi87.97 28787.21 28790.24 31792.86 32680.76 32796.67 18694.97 30691.74 12985.52 30795.83 19662.66 34794.47 35176.25 33788.36 26695.48 246
LF4IMVS87.94 28887.25 28589.98 31992.38 33780.05 33994.38 28995.25 29487.59 25584.34 31794.74 24864.31 34297.66 27984.83 27487.45 27292.23 340
gg-mvs-nofinetune87.82 28985.61 29894.44 18894.46 28389.27 19491.21 34484.61 37180.88 33689.89 22574.98 36471.50 30497.53 29185.75 26597.21 13396.51 204
pmmvs687.81 29086.19 29492.69 26791.32 34186.30 26697.34 12896.41 24280.59 34184.05 32594.37 26567.37 32897.67 27784.75 27679.51 33994.09 318
K. test v387.64 29186.75 29290.32 31693.02 32579.48 34396.61 19392.08 34890.66 16580.25 34494.09 28167.21 32996.65 32685.96 26280.83 33394.83 287
Patchmatch-RL test87.38 29286.24 29390.81 30888.74 35778.40 34988.12 36093.17 33887.11 26682.17 33589.29 34581.95 19595.60 34188.64 21177.02 34598.41 135
FMVSNet587.29 29385.79 29791.78 29094.80 26887.28 24295.49 25695.28 29184.09 31283.85 32791.82 32662.95 34694.17 35378.48 32685.34 29493.91 320
Anonymous2023120687.09 29486.14 29589.93 32091.22 34280.35 33396.11 23095.35 28783.57 32084.16 32093.02 30873.54 29695.61 34072.16 35186.14 28493.84 321
EG-PatchMatch MVS87.02 29585.44 29991.76 29292.67 33085.00 28896.08 23296.45 24083.41 32279.52 34693.49 30157.10 35497.72 27479.34 32490.87 24192.56 336
TinyColmap86.82 29685.35 30291.21 30294.91 26282.99 31093.94 30494.02 33083.58 31981.56 33694.68 25062.34 34898.13 21575.78 33887.35 27692.52 337
TDRefinement86.53 29784.76 30891.85 28582.23 36784.25 29696.38 21295.35 28784.97 30284.09 32394.94 23665.76 34098.34 20084.60 27974.52 35192.97 329
test_040286.46 29884.79 30791.45 29795.02 25485.55 27796.29 22094.89 31080.90 33582.21 33493.97 28668.21 32497.29 30862.98 36388.68 26391.51 347
Anonymous2024052186.42 29985.44 29989.34 32490.33 34679.79 34096.73 17795.92 25983.71 31883.25 32991.36 33263.92 34396.01 33178.39 32885.36 29392.22 341
DSMNet-mixed86.34 30086.12 29687.00 33589.88 35070.43 36094.93 27490.08 35977.97 35185.42 31092.78 31074.44 28993.96 35474.43 34395.14 17196.62 202
CL-MVSNet_self_test86.31 30185.15 30389.80 32188.83 35681.74 32193.93 30596.22 25086.67 27285.03 31290.80 33478.09 26194.50 34974.92 34171.86 35793.15 328
pmmvs-eth3d86.22 30284.45 30991.53 29588.34 35887.25 24494.47 28495.01 30383.47 32179.51 34789.61 34369.75 31795.71 33883.13 29376.73 34891.64 344
test_vis1_rt86.16 30385.06 30489.46 32393.47 31680.46 33296.41 20586.61 36885.22 29679.15 34888.64 34652.41 35997.06 31393.08 12390.57 24390.87 352
test20.0386.14 30485.40 30188.35 32790.12 34780.06 33895.90 24195.20 29688.59 22481.29 33793.62 29971.43 30592.65 36071.26 35581.17 33292.34 339
UnsupCasMVSNet_eth85.99 30584.45 30990.62 31289.97 34982.40 31693.62 31797.37 16489.86 18478.59 35092.37 31765.25 34195.35 34682.27 30270.75 35894.10 316
KD-MVS_self_test85.95 30684.95 30588.96 32689.55 35379.11 34695.13 27296.42 24185.91 28684.07 32490.48 33570.03 31594.82 34880.04 31672.94 35592.94 330
YYNet185.87 30784.23 31190.78 31192.38 33782.46 31593.17 32495.14 29982.12 32967.69 35892.36 32078.16 26095.50 34477.31 33279.73 33794.39 308
MDA-MVSNet_test_wron85.87 30784.23 31190.80 31092.38 33782.57 31293.17 32495.15 29882.15 32867.65 35992.33 32378.20 25795.51 34377.33 33179.74 33694.31 312
CMPMVSbinary62.92 2185.62 30984.92 30687.74 33189.14 35473.12 35994.17 29796.80 21773.98 35673.65 35794.93 23766.36 33497.61 28483.95 28891.28 23092.48 338
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 31083.64 31390.92 30695.27 24179.49 34290.55 34895.60 27683.76 31783.00 33289.95 34071.09 30797.97 24482.75 29860.79 36895.31 261
MDA-MVSNet-bldmvs85.00 31182.95 31691.17 30493.13 32483.33 30894.56 28295.00 30484.57 30765.13 36392.65 31170.45 31195.85 33573.57 34777.49 34494.33 310
MIMVSNet184.93 31283.05 31490.56 31389.56 35284.84 29295.40 25995.35 28783.91 31380.38 34292.21 32457.23 35393.34 35870.69 35782.75 32893.50 324
KD-MVS_2432*160084.81 31382.64 31791.31 30091.07 34385.34 28491.22 34295.75 26785.56 29183.09 33090.21 33867.21 32995.89 33377.18 33462.48 36692.69 333
miper_refine_blended84.81 31382.64 31791.31 30091.07 34385.34 28491.22 34295.75 26785.56 29183.09 33090.21 33867.21 32995.89 33377.18 33462.48 36692.69 333
OpenMVS_ROBcopyleft81.14 2084.42 31582.28 32090.83 30790.06 34884.05 30195.73 24794.04 32973.89 35780.17 34591.53 33159.15 35097.64 28066.92 36189.05 25890.80 353
mvsany_test383.59 31682.44 31987.03 33483.80 36373.82 35793.70 31290.92 35786.42 27782.51 33390.26 33746.76 36295.71 33890.82 16676.76 34791.57 346
PM-MVS83.48 31781.86 32288.31 32887.83 36077.59 35093.43 32091.75 35086.91 26880.63 34089.91 34144.42 36395.84 33685.17 27376.73 34891.50 348
test_fmvs383.21 31883.02 31583.78 34086.77 36268.34 36596.76 17594.91 30986.49 27584.14 32289.48 34436.04 36791.73 36291.86 14680.77 33491.26 351
new-patchmatchnet83.18 31981.87 32187.11 33386.88 36175.99 35493.70 31295.18 29785.02 30177.30 35288.40 34865.99 33893.88 35574.19 34670.18 35991.47 349
new_pmnet82.89 32081.12 32488.18 33089.63 35180.18 33791.77 33992.57 34376.79 35475.56 35588.23 35061.22 34994.48 35071.43 35382.92 32689.87 356
MVS-HIRNet82.47 32181.21 32386.26 33795.38 22969.21 36388.96 35789.49 36066.28 36180.79 33974.08 36668.48 32297.39 30371.93 35295.47 16692.18 342
UnsupCasMVSNet_bld82.13 32279.46 32690.14 31888.00 35982.47 31490.89 34796.62 23378.94 34775.61 35384.40 36056.63 35696.31 32977.30 33366.77 36491.63 345
test_f80.57 32379.62 32583.41 34183.38 36567.80 36793.57 31993.72 33280.80 33977.91 35187.63 35433.40 36892.08 36187.14 24379.04 34290.34 355
pmmvs379.97 32477.50 32987.39 33282.80 36679.38 34492.70 33390.75 35870.69 35978.66 34987.47 35651.34 36093.40 35773.39 34869.65 36089.38 357
APD_test179.31 32577.70 32884.14 33989.11 35569.07 36492.36 33891.50 35269.07 36073.87 35692.63 31339.93 36594.32 35270.54 35880.25 33589.02 358
N_pmnet78.73 32678.71 32778.79 34592.80 32846.50 37894.14 29843.71 38178.61 34880.83 33891.66 33074.94 28796.36 32867.24 36084.45 31093.50 324
test_vis3_rt72.73 32770.55 33079.27 34480.02 36868.13 36693.92 30674.30 37876.90 35358.99 36773.58 36720.29 37695.37 34584.16 28372.80 35674.31 366
LCM-MVSNet72.55 32869.39 33282.03 34270.81 37765.42 37090.12 35294.36 32555.02 36765.88 36181.72 36124.16 37589.96 36374.32 34568.10 36390.71 354
FPMVS71.27 32969.85 33175.50 34974.64 37259.03 37491.30 34191.50 35258.80 36457.92 36888.28 34929.98 37185.53 36953.43 36882.84 32781.95 362
PMMVS270.19 33066.92 33380.01 34376.35 37165.67 36986.22 36187.58 36564.83 36362.38 36480.29 36326.78 37388.49 36763.79 36254.07 36985.88 359
testf169.31 33166.76 33476.94 34778.61 36961.93 37288.27 35886.11 36955.62 36559.69 36585.31 35820.19 37789.32 36457.62 36569.44 36179.58 363
APD_test269.31 33166.76 33476.94 34778.61 36961.93 37288.27 35886.11 36955.62 36559.69 36585.31 35820.19 37789.32 36457.62 36569.44 36179.58 363
EGC-MVSNET68.77 33363.01 33886.07 33892.49 33382.24 31893.96 30390.96 3560.71 3782.62 37990.89 33353.66 35793.46 35657.25 36784.55 30882.51 361
Gipumacopyleft67.86 33465.41 33675.18 35092.66 33173.45 35866.50 36994.52 32053.33 36857.80 36966.07 36930.81 36989.20 36648.15 37078.88 34362.90 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 33564.89 33769.79 35272.62 37535.23 38265.19 37092.83 34120.35 37365.20 36288.08 35243.14 36482.70 37073.12 34963.46 36591.45 350
ANet_high63.94 33659.58 33977.02 34661.24 37966.06 36885.66 36387.93 36478.53 34942.94 37171.04 36825.42 37480.71 37152.60 36930.83 37284.28 360
PMVScopyleft53.92 2258.58 33755.40 34068.12 35351.00 38048.64 37678.86 36687.10 36746.77 36935.84 37574.28 3658.76 37986.34 36842.07 37173.91 35369.38 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 33852.56 34255.43 35574.43 37347.13 37783.63 36576.30 37542.23 37042.59 37262.22 37128.57 37274.40 37331.53 37331.51 37144.78 370
MVEpermissive50.73 2353.25 33948.81 34466.58 35465.34 37857.50 37572.49 36870.94 37940.15 37239.28 37463.51 3706.89 38173.48 37538.29 37242.38 37068.76 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 34051.31 34354.39 35672.62 37545.39 37983.84 36475.51 37741.13 37140.77 37359.65 37230.08 37073.60 37428.31 37429.90 37344.18 371
tmp_tt51.94 34153.82 34146.29 35733.73 38145.30 38078.32 36767.24 38018.02 37450.93 37087.05 35752.99 35853.11 37670.76 35625.29 37440.46 372
wuyk23d25.11 34224.57 34626.74 35873.98 37439.89 38157.88 3719.80 38212.27 37510.39 3766.97 3787.03 38036.44 37725.43 37517.39 3753.89 375
cdsmvs_eth3d_5k23.24 34330.99 3450.00 3610.00 3840.00 3850.00 37297.63 1250.00 3790.00 38096.88 13884.38 1450.00 3800.00 3780.00 3780.00 376
testmvs13.36 34416.33 3474.48 3605.04 3822.26 38493.18 3233.28 3832.70 3768.24 37721.66 3742.29 3832.19 3787.58 3762.96 3769.00 374
test12313.04 34515.66 3485.18 3594.51 3833.45 38392.50 3361.81 3842.50 3777.58 37820.15 3753.67 3822.18 3797.13 3771.07 3779.90 373
ab-mvs-re8.06 34610.74 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38096.69 1470.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.39 3479.85 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37988.65 870.00 3800.00 3780.00 3780.00 376
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 299.67 699.77 1
PC_three_145290.77 15798.89 898.28 5096.24 198.35 19795.76 5899.58 2199.59 19
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 299.67 699.77 1
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.05 3994.59 2898.08 6389.22 20397.03 4498.10 5892.52 3399.65 4994.58 9599.31 55
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7197.43 3298.51 2390.71 6696.05 4699.26 5999.43 45
IU-MVS99.42 795.39 1197.94 9390.40 17698.94 597.41 1599.66 1099.74 7
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5196.04 299.24 11095.36 7499.59 1799.56 25
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 899.65 1299.74 7
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
9.1496.75 3198.93 4797.73 8198.23 4091.28 14497.88 2598.44 3093.00 2499.65 4995.76 5899.47 38
save fliter98.91 4994.28 3497.02 15498.02 8395.35 9
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1299.72 299.77 1
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 899.67 699.75 5
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
GSMVS98.45 130
test_part299.28 2595.74 898.10 20
sam_mvs182.76 17798.45 130
sam_mvs81.94 196
ambc86.56 33683.60 36470.00 36285.69 36294.97 30680.60 34188.45 34737.42 36696.84 32382.69 29975.44 35092.86 331
MTGPAbinary98.08 63
test_post192.81 33216.58 37780.53 21697.68 27686.20 254
test_post17.58 37681.76 19898.08 226
patchmatchnet-post90.45 33682.65 18198.10 222
GG-mvs-BLEND93.62 23293.69 30789.20 19592.39 33783.33 37287.98 27789.84 34271.00 30896.87 32282.08 30395.40 16894.80 292
MTMP97.86 6882.03 373
gm-plane-assit93.22 32178.89 34884.82 30493.52 30098.64 17187.72 222
test9_res94.81 8899.38 4999.45 41
TEST998.70 5694.19 3896.41 20598.02 8388.17 23696.03 8097.56 10692.74 2899.59 61
test_898.67 5894.06 4596.37 21398.01 8688.58 22595.98 8497.55 10892.73 2999.58 64
agg_prior293.94 10599.38 4999.50 36
agg_prior98.67 5893.79 5098.00 8795.68 9499.57 71
TestCases93.98 21097.94 10486.64 25995.54 27985.38 29385.49 30896.77 14170.28 31299.15 11980.02 31792.87 20096.15 215
test_prior493.66 5396.42 204
test_prior296.35 21492.80 10296.03 8097.59 10392.01 4095.01 8299.38 49
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
旧先验295.94 23981.66 33297.34 3598.82 15292.26 133
新几何295.79 245
新几何197.32 4898.60 6593.59 5497.75 11081.58 33395.75 9197.85 8190.04 7399.67 4786.50 25099.13 7198.69 112
旧先验198.38 7793.38 5997.75 11098.09 6092.30 3899.01 7699.16 66
无先验95.79 24597.87 10083.87 31699.65 4987.68 22898.89 98
原ACMM295.67 248
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 25995.22 10597.68 9290.25 7099.54 7687.95 21899.12 7298.49 125
test22298.24 8592.21 8995.33 26297.60 12779.22 34695.25 10397.84 8388.80 8599.15 6998.72 109
testdata299.67 4785.96 262
segment_acmp92.89 25
testdata95.46 14198.18 9488.90 20397.66 12182.73 32697.03 4498.07 6190.06 7298.85 15089.67 18698.98 7798.64 115
testdata195.26 26993.10 88
test1297.65 3998.46 7094.26 3597.66 12195.52 10190.89 6399.46 9099.25 6199.22 63
plane_prior796.21 19489.98 164
plane_prior696.10 20490.00 16081.32 204
plane_prior597.51 13898.60 17593.02 12692.23 21095.86 223
plane_prior496.64 151
plane_prior390.00 16094.46 4191.34 186
plane_prior297.74 7994.85 24
plane_prior196.14 202
plane_prior89.99 16297.24 13794.06 5192.16 214
n20.00 385
nn0.00 385
door-mid91.06 355
lessismore_v090.45 31491.96 34079.09 34787.19 36680.32 34394.39 26366.31 33697.55 28884.00 28776.84 34694.70 299
LGP-MVS_train94.10 20396.16 19988.26 22097.46 14691.29 14190.12 21597.16 12279.05 24298.73 16292.25 13591.89 21895.31 261
test1197.88 98
door91.13 354
HQP5-MVS89.33 189
HQP-NCC95.86 20996.65 18793.55 6690.14 209
ACMP_Plane95.86 20996.65 18793.55 6690.14 209
BP-MVS92.13 139
HQP4-MVS90.14 20998.50 18395.78 232
HQP3-MVS97.39 16192.10 215
HQP2-MVS80.95 207
NP-MVS95.99 20889.81 16995.87 193
MDTV_nov1_ep13_2view70.35 36193.10 32883.88 31593.55 13782.47 18586.25 25398.38 138
MDTV_nov1_ep1390.76 21095.22 24580.33 33493.03 32995.28 29188.14 23892.84 15793.83 28881.34 20398.08 22682.86 29594.34 185
ACMMP++_ref90.30 248
ACMMP++91.02 236
Test By Simon88.73 86
ITE_SJBPF92.43 27295.34 23485.37 28395.92 25991.47 13587.75 28096.39 17171.00 30897.96 24982.36 30189.86 25293.97 319
DeepMVS_CXcopyleft74.68 35190.84 34564.34 37181.61 37465.34 36267.47 36088.01 35348.60 36180.13 37262.33 36473.68 35479.58 363