This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3894.78 4798.93 1298.87 2196.04 299.86 997.45 3599.58 2399.59 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 4195.13 2999.19 698.89 1995.54 599.85 1897.52 3199.66 1099.56 31
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 12294.92 3898.73 2198.87 2195.08 899.84 2397.52 3199.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16998.35 2995.16 2898.71 2398.80 2895.05 1099.89 396.70 5299.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3494.76 4998.30 2998.90 1893.77 1799.68 6097.93 1999.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 16198.08 7995.81 1297.87 4398.31 6694.26 1399.68 6097.02 4399.49 3899.57 28
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8898.73 995.04 3499.30 298.84 2693.34 2299.78 3999.32 399.13 8499.50 43
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9298.68 1394.93 3699.24 598.87 2193.52 2099.79 3699.32 399.21 7499.40 57
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 4195.34 2398.11 3298.56 3694.53 1299.71 5296.57 5699.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3695.55 1998.56 2597.81 10793.90 1599.65 6496.62 5399.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 799.30 298.92 1692.39 4199.79 3699.16 799.46 4198.08 180
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10598.20 5595.80 1397.88 4098.98 1292.91 2799.81 3097.68 2399.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10598.20 5595.80 1397.88 4098.98 1292.91 2799.81 3097.68 2399.43 4899.67 13
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9498.21 5395.73 1697.99 3699.03 992.63 3699.82 2897.80 2199.42 5099.67 13
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14992.37 9597.91 7698.88 495.83 1198.92 1599.05 891.45 5799.80 3399.12 899.46 4199.69 12
TSAR-MVS + MP.97.42 1697.33 1997.69 4199.25 2794.24 4198.07 5597.85 12293.72 8598.57 2498.35 5793.69 1899.40 11697.06 4299.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6994.82 4499.01 998.55 3894.18 1497.41 34096.94 4499.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1897.13 2098.17 1599.02 4295.28 1998.23 3998.27 4192.37 13898.27 3098.65 3493.33 2399.72 5196.49 5899.52 3099.51 40
SMA-MVScopyleft97.35 1997.03 2898.30 899.06 3895.42 1097.94 7398.18 6290.57 20498.85 1898.94 1593.33 2399.83 2696.72 5199.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 2096.97 3198.47 599.08 3696.16 497.55 12997.97 10695.59 1796.61 8297.89 9692.57 3899.84 2395.95 8099.51 3399.40 57
NCCC97.30 2197.03 2898.11 1798.77 5695.06 2597.34 15498.04 9495.96 997.09 6497.88 9893.18 2599.71 5295.84 8599.17 7999.56 31
MM97.29 2296.98 3098.23 1198.01 11195.03 2698.07 5595.76 29797.78 197.52 4798.80 2888.09 10799.86 999.44 199.37 6199.80 1
ACMMP_NAP97.20 2396.86 3698.23 1199.09 3495.16 2297.60 12198.19 6092.82 12997.93 3998.74 3191.60 5599.86 996.26 6199.52 3099.67 13
XVS97.18 2496.96 3297.81 2899.38 1494.03 5098.59 1298.20 5594.85 4096.59 8498.29 6991.70 5299.80 3395.66 8999.40 5599.62 20
MCST-MVS97.18 2496.84 3898.20 1499.30 2495.35 1597.12 17698.07 8493.54 9496.08 10697.69 11493.86 1699.71 5296.50 5799.39 5799.55 34
fmvsm_s_conf0.5_n_397.15 2697.36 1896.52 8997.98 11491.19 14497.84 8598.65 1797.08 299.25 499.10 387.88 11399.79 3699.32 399.18 7898.59 135
HFP-MVS97.14 2796.92 3497.83 2699.42 794.12 4698.52 1598.32 3293.21 10697.18 5898.29 6992.08 4699.83 2695.63 9499.59 1999.54 36
test_fmvsmconf0.1_n97.09 2897.06 2397.19 6795.67 25692.21 10297.95 7298.27 4195.78 1598.40 2899.00 1089.99 8499.78 3999.06 999.41 5399.59 24
MTAPA97.08 2996.78 4597.97 2399.37 1694.42 3697.24 16398.08 7995.07 3396.11 10498.59 3590.88 7499.90 296.18 7399.50 3599.58 27
region2R97.07 3096.84 3897.77 3399.46 293.79 5498.52 1598.24 4993.19 10997.14 6198.34 6091.59 5699.87 795.46 10099.59 1999.64 18
ACMMPR97.07 3096.84 3897.79 3099.44 693.88 5298.52 1598.31 3393.21 10697.15 6098.33 6391.35 6199.86 995.63 9499.59 1999.62 20
CP-MVS97.02 3296.81 4397.64 4499.33 2193.54 5998.80 898.28 3892.99 11896.45 9298.30 6891.90 4999.85 1895.61 9699.68 499.54 36
SR-MVS97.01 3396.86 3697.47 5199.09 3493.27 7097.98 6398.07 8493.75 8497.45 4998.48 4691.43 5999.59 8096.22 6499.27 6799.54 36
ZNCC-MVS96.96 3496.67 5097.85 2599.37 1694.12 4698.49 1998.18 6292.64 13496.39 9498.18 7691.61 5499.88 495.59 9999.55 2699.57 28
APD-MVScopyleft96.95 3596.60 5298.01 2099.03 4194.93 2797.72 10398.10 7791.50 16298.01 3598.32 6592.33 4299.58 8394.85 11299.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3697.06 2396.59 8598.72 5891.86 11497.67 10998.49 2194.66 5497.24 5798.41 5292.31 4498.94 17496.61 5499.46 4198.96 98
DeepC-MVS_fast93.89 296.93 3796.64 5197.78 3198.64 6794.30 3797.41 14498.04 9494.81 4596.59 8498.37 5591.24 6499.64 7295.16 10599.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test96.89 3897.04 2796.45 10098.29 8591.66 12299.03 497.85 12295.84 1096.90 6897.97 9291.24 6498.75 19596.92 4599.33 6398.94 101
SR-MVS-dyc-post96.88 3996.80 4497.11 7099.02 4292.34 9697.98 6398.03 9693.52 9697.43 5298.51 4191.40 6099.56 9196.05 7599.26 6999.43 54
CS-MVS96.86 4097.06 2396.26 11698.16 10191.16 14999.09 397.87 11795.30 2497.06 6598.03 8691.72 5098.71 20297.10 4199.17 7998.90 108
mPP-MVS96.86 4096.60 5297.64 4499.40 1193.44 6198.50 1898.09 7893.27 10595.95 11298.33 6391.04 6999.88 495.20 10399.57 2599.60 23
fmvsm_s_conf0.5_n96.85 4297.13 2096.04 12998.07 10890.28 17897.97 6998.76 894.93 3698.84 1999.06 788.80 9799.65 6499.06 998.63 10798.18 169
GST-MVS96.85 4296.52 5697.82 2799.36 1894.14 4598.29 2998.13 7092.72 13196.70 7698.06 8391.35 6199.86 994.83 11499.28 6699.47 49
balanced_conf0396.84 4496.89 3596.68 7997.63 13892.22 10198.17 4897.82 12894.44 6498.23 3197.36 13990.97 7199.22 13397.74 2299.66 1098.61 132
patch_mono-296.83 4597.44 1695.01 18499.05 3985.39 31196.98 18898.77 794.70 5197.99 3698.66 3293.61 1999.91 197.67 2799.50 3599.72 11
APD-MVS_3200maxsize96.81 4696.71 4997.12 6999.01 4592.31 9897.98 6398.06 8793.11 11597.44 5098.55 3890.93 7299.55 9396.06 7499.25 7199.51 40
PGM-MVS96.81 4696.53 5597.65 4299.35 2093.53 6097.65 11298.98 292.22 14097.14 6198.44 4991.17 6799.85 1894.35 12799.46 4199.57 28
MP-MVScopyleft96.77 4896.45 6397.72 3899.39 1393.80 5398.41 2398.06 8793.37 10195.54 12798.34 6090.59 7899.88 494.83 11499.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4896.46 6297.71 4098.40 7894.07 4898.21 4298.45 2489.86 22197.11 6398.01 8992.52 3999.69 5896.03 7899.53 2999.36 63
fmvsm_s_conf0.5_n_a96.75 5096.93 3396.20 12197.64 13690.72 16498.00 6198.73 994.55 5898.91 1699.08 488.22 10699.63 7398.91 1298.37 12098.25 164
MVS_030496.74 5196.31 6798.02 1996.87 17794.65 3097.58 12294.39 35796.47 697.16 5998.39 5387.53 12299.87 798.97 1199.41 5399.55 34
test_fmvsmvis_n_192096.70 5296.84 3896.31 11096.62 19791.73 11697.98 6398.30 3496.19 896.10 10598.95 1489.42 8899.76 4298.90 1399.08 8897.43 216
MP-MVS-pluss96.70 5296.27 6997.98 2299.23 3094.71 2996.96 19098.06 8790.67 19595.55 12598.78 3091.07 6899.86 996.58 5599.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 5496.49 5797.27 6198.31 8493.39 6296.79 20396.72 24894.17 7297.44 5097.66 11892.76 3199.33 12196.86 4797.76 14399.08 87
HPM-MVScopyleft96.69 5496.45 6397.40 5399.36 1893.11 7598.87 698.06 8791.17 17896.40 9397.99 9090.99 7099.58 8395.61 9699.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5696.58 5496.99 7598.46 7392.31 9896.20 25798.90 394.30 7195.86 11497.74 11292.33 4299.38 11996.04 7799.42 5099.28 68
fmvsm_s_conf0.5_n_296.62 5796.82 4296.02 13197.98 11490.43 17497.50 13398.59 1896.59 499.31 199.08 484.47 16599.75 4599.37 298.45 11797.88 190
DELS-MVS96.61 5896.38 6697.30 5797.79 12793.19 7395.96 26898.18 6295.23 2595.87 11397.65 11991.45 5799.70 5795.87 8199.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5897.09 2295.15 17698.09 10486.63 28796.00 26698.15 6795.43 2097.95 3898.56 3693.40 2199.36 12096.77 4899.48 3999.45 50
fmvsm_s_conf0.1_n96.58 6096.77 4696.01 13496.67 19590.25 17997.91 7698.38 2594.48 6298.84 1999.14 188.06 10899.62 7498.82 1498.60 10998.15 173
MVSMamba_PlusPlus96.51 6196.48 5896.59 8598.07 10891.97 11198.14 4997.79 13090.43 20897.34 5597.52 13291.29 6399.19 13698.12 1899.64 1498.60 133
EI-MVSNet-Vis-set96.51 6196.47 5996.63 8298.24 9091.20 14396.89 19497.73 13694.74 5096.49 8898.49 4390.88 7499.58 8396.44 5998.32 12299.13 80
HPM-MVS_fast96.51 6196.27 6997.22 6499.32 2292.74 8498.74 998.06 8790.57 20496.77 7398.35 5790.21 8199.53 9794.80 11799.63 1699.38 61
EC-MVSNet96.42 6496.47 5996.26 11697.01 17291.52 12898.89 597.75 13394.42 6596.64 8197.68 11589.32 8998.60 21297.45 3599.11 8798.67 130
fmvsm_s_conf0.1_n_a96.40 6596.47 5996.16 12395.48 26490.69 16597.91 7698.33 3194.07 7498.93 1299.14 187.44 12699.61 7598.63 1698.32 12298.18 169
CANet96.39 6696.02 7397.50 4997.62 13993.38 6397.02 18297.96 10795.42 2194.86 13897.81 10787.38 12899.82 2896.88 4699.20 7699.29 66
dcpmvs_296.37 6797.05 2694.31 22698.96 4984.11 33297.56 12597.51 16593.92 7997.43 5298.52 4092.75 3299.32 12397.32 4099.50 3599.51 40
EI-MVSNet-UG-set96.34 6896.30 6896.47 9798.20 9690.93 15696.86 19697.72 13894.67 5396.16 10398.46 4790.43 7999.58 8396.23 6397.96 13698.90 108
fmvsm_s_conf0.1_n_296.33 6996.44 6596.00 13597.30 15290.37 17797.53 13097.92 11296.52 599.14 899.08 483.21 18799.74 4699.22 698.06 13397.88 190
train_agg96.30 7095.83 7897.72 3898.70 5994.19 4296.41 23698.02 9988.58 26696.03 10797.56 12992.73 3499.59 8095.04 10799.37 6199.39 59
ACMMPcopyleft96.27 7195.93 7497.28 6099.24 2892.62 8798.25 3598.81 592.99 11894.56 14598.39 5388.96 9499.85 1894.57 12597.63 14499.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 7296.19 7196.39 10598.23 9491.35 13696.24 25598.79 693.99 7795.80 11697.65 11989.92 8699.24 13195.87 8199.20 7698.58 136
test_fmvsmconf0.01_n96.15 7395.85 7797.03 7492.66 37291.83 11597.97 6997.84 12695.57 1897.53 4699.00 1084.20 17199.76 4298.82 1499.08 8899.48 47
DeepC-MVS93.07 396.06 7495.66 7997.29 5897.96 11693.17 7497.30 15998.06 8793.92 7993.38 17498.66 3286.83 13499.73 4895.60 9899.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 7595.91 7596.46 9999.24 2890.47 17198.30 2898.57 2089.01 24993.97 16197.57 12792.62 3799.76 4294.66 12099.27 6799.15 78
sasdasda96.02 7695.45 8597.75 3597.59 14295.15 2398.28 3097.60 15294.52 6096.27 9896.12 20987.65 11799.18 13996.20 6994.82 20898.91 105
ETV-MVS96.02 7695.89 7696.40 10397.16 15892.44 9397.47 14097.77 13294.55 5896.48 8994.51 28891.23 6698.92 17695.65 9298.19 12797.82 197
canonicalmvs96.02 7695.45 8597.75 3597.59 14295.15 2398.28 3097.60 15294.52 6096.27 9896.12 20987.65 11799.18 13996.20 6994.82 20898.91 105
CDPH-MVS95.97 7995.38 9097.77 3398.93 5094.44 3596.35 24497.88 11586.98 31196.65 8097.89 9691.99 4899.47 10892.26 16299.46 4199.39 59
UA-Net95.95 8095.53 8197.20 6697.67 13292.98 7997.65 11298.13 7094.81 4596.61 8298.35 5788.87 9599.51 10290.36 20497.35 15499.11 84
MGCFI-Net95.94 8195.40 8997.56 4897.59 14294.62 3198.21 4297.57 15794.41 6696.17 10296.16 20787.54 12199.17 14196.19 7194.73 21398.91 105
BP-MVS195.89 8295.49 8297.08 7296.67 19593.20 7298.08 5396.32 27294.56 5796.32 9597.84 10484.07 17499.15 14596.75 4998.78 10198.90 108
VNet95.89 8295.45 8597.21 6598.07 10892.94 8097.50 13398.15 6793.87 8197.52 4797.61 12585.29 15499.53 9795.81 8695.27 19999.16 76
alignmvs95.87 8495.23 9497.78 3197.56 14795.19 2197.86 8197.17 20794.39 6896.47 9096.40 19585.89 14799.20 13596.21 6895.11 20498.95 100
casdiffmvs_mvgpermissive95.81 8595.57 8096.51 9396.87 17791.49 12997.50 13397.56 16193.99 7795.13 13497.92 9587.89 11298.78 19095.97 7997.33 15599.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 8694.92 10198.01 2098.08 10795.71 995.27 30597.62 15190.43 20895.55 12597.07 15591.72 5099.50 10589.62 22098.94 9698.82 120
DP-MVS Recon95.68 8795.12 9997.37 5499.19 3194.19 4297.03 18098.08 7988.35 27595.09 13597.65 11989.97 8599.48 10792.08 17198.59 11098.44 153
casdiffmvspermissive95.64 8895.49 8296.08 12596.76 19390.45 17297.29 16097.44 18394.00 7695.46 12997.98 9187.52 12498.73 19895.64 9397.33 15599.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GDP-MVS95.62 8995.13 9797.09 7196.79 18793.26 7197.89 7997.83 12793.58 8996.80 7097.82 10683.06 19499.16 14394.40 12697.95 13798.87 114
MG-MVS95.61 9095.38 9096.31 11098.42 7690.53 16996.04 26397.48 16993.47 9895.67 12298.10 7989.17 9199.25 13091.27 18998.77 10299.13 80
baseline95.58 9195.42 8896.08 12596.78 18890.41 17597.16 17397.45 17993.69 8895.65 12397.85 10287.29 12998.68 20495.66 8997.25 16099.13 80
CPTT-MVS95.57 9295.19 9596.70 7899.27 2691.48 13098.33 2698.11 7587.79 29295.17 13398.03 8687.09 13299.61 7593.51 14299.42 5099.02 90
EIA-MVS95.53 9395.47 8495.71 15197.06 16689.63 19597.82 9097.87 11793.57 9093.92 16295.04 26290.61 7798.95 17294.62 12298.68 10598.54 138
3Dnovator+91.43 495.40 9494.48 11798.16 1696.90 17695.34 1698.48 2097.87 11794.65 5588.53 30098.02 8883.69 17899.71 5293.18 14998.96 9599.44 52
PS-MVSNAJ95.37 9595.33 9295.49 16497.35 15190.66 16795.31 30297.48 16993.85 8296.51 8795.70 23488.65 10099.65 6494.80 11798.27 12496.17 254
MVSFormer95.37 9595.16 9695.99 13696.34 22591.21 14198.22 4097.57 15791.42 16696.22 10097.32 14086.20 14497.92 29294.07 13099.05 9098.85 116
xiu_mvs_v2_base95.32 9795.29 9395.40 16997.22 15490.50 17095.44 29697.44 18393.70 8796.46 9196.18 20488.59 10399.53 9794.79 11997.81 14096.17 254
PVSNet_Blended_VisFu95.27 9894.91 10296.38 10698.20 9690.86 15897.27 16198.25 4790.21 21294.18 15597.27 14487.48 12599.73 4893.53 14197.77 14298.55 137
diffmvspermissive95.25 9995.13 9795.63 15496.43 22089.34 21195.99 26797.35 19692.83 12896.31 9697.37 13886.44 13998.67 20596.26 6197.19 16298.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 10094.81 10396.51 9397.18 15791.58 12698.26 3498.12 7294.38 6994.90 13798.15 7882.28 21398.92 17691.45 18698.58 11199.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 10195.04 10095.76 14497.49 14889.56 19998.67 1097.00 22690.69 19394.24 15397.62 12489.79 8798.81 18793.39 14796.49 17798.92 104
EPNet95.20 10294.56 11197.14 6892.80 36992.68 8697.85 8494.87 34596.64 392.46 19097.80 10986.23 14199.65 6493.72 14098.62 10899.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 10394.44 11997.44 5296.56 20493.36 6598.65 1198.36 2694.12 7389.25 28498.06 8382.20 21599.77 4193.41 14699.32 6499.18 75
OMC-MVS95.09 10494.70 10796.25 11998.46 7391.28 13796.43 23497.57 15792.04 14994.77 14197.96 9387.01 13399.09 15591.31 18896.77 16998.36 160
xiu_mvs_v1_base_debu95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
xiu_mvs_v1_base95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
xiu_mvs_v1_base_debi95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
PAPM_NR95.01 10594.59 10996.26 11698.89 5490.68 16697.24 16397.73 13691.80 15492.93 18796.62 18589.13 9299.14 14889.21 23397.78 14198.97 97
lupinMVS94.99 10994.56 11196.29 11496.34 22591.21 14195.83 27596.27 27688.93 25496.22 10096.88 16586.20 14498.85 18395.27 10299.05 9098.82 120
Effi-MVS+94.93 11094.45 11896.36 10896.61 19891.47 13196.41 23697.41 18891.02 18494.50 14795.92 21887.53 12298.78 19093.89 13696.81 16898.84 119
IS-MVSNet94.90 11194.52 11596.05 12897.67 13290.56 16898.44 2196.22 27993.21 10693.99 15997.74 11285.55 15298.45 22489.98 20997.86 13899.14 79
MVS_Test94.89 11294.62 10895.68 15296.83 18289.55 20096.70 21297.17 20791.17 17895.60 12496.11 21387.87 11498.76 19493.01 15797.17 16398.72 125
PVSNet_Blended94.87 11394.56 11195.81 14398.27 8689.46 20695.47 29598.36 2688.84 25794.36 15096.09 21488.02 10999.58 8393.44 14498.18 12898.40 156
jason94.84 11494.39 12096.18 12295.52 26290.93 15696.09 26196.52 26389.28 24096.01 11097.32 14084.70 16198.77 19395.15 10698.91 9898.85 116
jason: jason.
API-MVS94.84 11494.49 11695.90 13897.90 12292.00 11097.80 9397.48 16989.19 24394.81 13996.71 17188.84 9699.17 14188.91 24098.76 10396.53 243
test_yl94.78 11694.23 12296.43 10197.74 12991.22 13996.85 19797.10 21291.23 17595.71 11996.93 16084.30 16899.31 12593.10 15095.12 20298.75 122
DCV-MVSNet94.78 11694.23 12296.43 10197.74 12991.22 13996.85 19797.10 21291.23 17595.71 11996.93 16084.30 16899.31 12593.10 15095.12 20298.75 122
WTY-MVS94.71 11894.02 12596.79 7797.71 13192.05 10896.59 22797.35 19690.61 20194.64 14396.93 16086.41 14099.39 11791.20 19194.71 21498.94 101
mamv494.66 11996.10 7290.37 35598.01 11173.41 40396.82 20197.78 13189.95 21994.52 14697.43 13692.91 2799.09 15598.28 1799.16 8198.60 133
mvsmamba94.57 12094.14 12495.87 13997.03 17089.93 19097.84 8595.85 29391.34 16994.79 14096.80 16780.67 23998.81 18794.85 11298.12 13198.85 116
RRT-MVS94.51 12194.35 12194.98 18796.40 22186.55 29097.56 12597.41 18893.19 10994.93 13697.04 15779.12 26899.30 12796.19 7197.32 15799.09 86
sss94.51 12193.80 12996.64 8097.07 16391.97 11196.32 24798.06 8788.94 25394.50 14796.78 16884.60 16299.27 12991.90 17296.02 18298.68 129
test_cas_vis1_n_192094.48 12394.55 11494.28 22896.78 18886.45 29297.63 11897.64 14893.32 10497.68 4598.36 5673.75 32899.08 15896.73 5099.05 9097.31 223
CANet_DTU94.37 12493.65 13396.55 8796.46 21892.13 10696.21 25696.67 25594.38 6993.53 17097.03 15879.34 26499.71 5290.76 19798.45 11797.82 197
AdaColmapbinary94.34 12593.68 13296.31 11098.59 6991.68 12196.59 22797.81 12989.87 22092.15 20197.06 15683.62 18199.54 9589.34 22798.07 13297.70 202
CNLPA94.28 12693.53 13896.52 8998.38 8192.55 9096.59 22796.88 23990.13 21691.91 20897.24 14685.21 15599.09 15587.64 26597.83 13997.92 187
MAR-MVS94.22 12793.46 14396.51 9398.00 11392.19 10597.67 10997.47 17288.13 28293.00 18295.84 22284.86 16099.51 10287.99 25298.17 12997.83 196
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 12893.42 14796.48 9697.64 13691.42 13495.55 29097.71 14288.99 25092.34 19795.82 22489.19 9099.11 15186.14 29197.38 15298.90 108
SDMVSNet94.17 12993.61 13495.86 14198.09 10491.37 13597.35 15398.20 5593.18 11191.79 21297.28 14279.13 26798.93 17594.61 12392.84 24397.28 224
test_vis1_n_192094.17 12994.58 11092.91 29097.42 15082.02 35797.83 8897.85 12294.68 5298.10 3398.49 4370.15 35199.32 12397.91 2098.82 9997.40 218
h-mvs3394.15 13193.52 14096.04 12997.81 12690.22 18097.62 12097.58 15695.19 2696.74 7497.45 13383.67 17999.61 7595.85 8379.73 37998.29 163
CHOSEN 1792x268894.15 13193.51 14196.06 12798.27 8689.38 20995.18 31198.48 2385.60 33493.76 16597.11 15383.15 19099.61 7591.33 18798.72 10499.19 74
Vis-MVSNet (Re-imp)94.15 13193.88 12894.95 19197.61 14087.92 25598.10 5195.80 29692.22 14093.02 18197.45 13384.53 16497.91 29588.24 24897.97 13599.02 90
CDS-MVSNet94.14 13493.54 13795.93 13796.18 23291.46 13296.33 24697.04 22288.97 25293.56 16796.51 18987.55 12097.89 29689.80 21495.95 18498.44 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 13593.43 14596.13 12498.58 7191.15 15096.69 21497.39 19087.29 30691.37 22296.71 17188.39 10499.52 10187.33 27297.13 16497.73 200
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 13693.70 13195.27 17295.70 25492.03 10998.10 5198.68 1393.36 10390.39 24396.70 17387.63 11997.94 28992.25 16490.50 28495.84 267
PVSNet_BlendedMVS94.06 13793.92 12794.47 21598.27 8689.46 20696.73 20898.36 2690.17 21394.36 15095.24 25688.02 10999.58 8393.44 14490.72 28094.36 350
nrg03094.05 13893.31 14996.27 11595.22 28694.59 3298.34 2597.46 17492.93 12591.21 23296.64 17887.23 13198.22 24394.99 11085.80 32795.98 263
UGNet94.04 13993.28 15096.31 11096.85 17991.19 14497.88 8097.68 14394.40 6793.00 18296.18 20473.39 33099.61 7591.72 17898.46 11698.13 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 14093.46 14395.64 15396.16 23490.45 17296.71 21196.89 23889.27 24193.46 17296.92 16387.29 12997.94 28988.70 24495.74 18998.53 139
114514_t93.95 14193.06 15496.63 8299.07 3791.61 12397.46 14297.96 10777.99 39793.00 18297.57 12786.14 14699.33 12189.22 23299.15 8298.94 101
FC-MVSNet-test93.94 14293.57 13595.04 18295.48 26491.45 13398.12 5098.71 1193.37 10190.23 24696.70 17387.66 11697.85 29891.49 18490.39 28595.83 268
mvsany_test193.93 14393.98 12693.78 25694.94 30286.80 28094.62 32392.55 38888.77 26396.85 6998.49 4388.98 9398.08 26195.03 10895.62 19396.46 248
GeoE93.89 14493.28 15095.72 15096.96 17589.75 19498.24 3896.92 23589.47 23492.12 20397.21 14884.42 16698.39 23187.71 25996.50 17699.01 93
HY-MVS89.66 993.87 14592.95 15796.63 8297.10 16292.49 9295.64 28896.64 25689.05 24893.00 18295.79 22885.77 15099.45 11189.16 23694.35 21697.96 185
XVG-OURS-SEG-HR93.86 14693.55 13694.81 19797.06 16688.53 23795.28 30397.45 17991.68 15894.08 15897.68 11582.41 21198.90 17993.84 13892.47 24996.98 231
VDD-MVS93.82 14793.08 15396.02 13197.88 12389.96 18997.72 10395.85 29392.43 13695.86 11498.44 4968.42 36599.39 11796.31 6094.85 20698.71 127
mvs_anonymous93.82 14793.74 13094.06 23696.44 21985.41 30995.81 27697.05 22089.85 22390.09 25696.36 19787.44 12697.75 31093.97 13296.69 17399.02 90
HQP_MVS93.78 14993.43 14594.82 19596.21 22989.99 18597.74 9897.51 16594.85 4091.34 22396.64 17881.32 22998.60 21293.02 15592.23 25295.86 264
PS-MVSNAJss93.74 15093.51 14194.44 21793.91 34089.28 21697.75 9797.56 16192.50 13589.94 25996.54 18888.65 10098.18 24893.83 13990.90 27895.86 264
XVG-OURS93.72 15193.35 14894.80 20097.07 16388.61 23294.79 32097.46 17491.97 15293.99 15997.86 10181.74 22498.88 18092.64 16192.67 24896.92 235
HyFIR lowres test93.66 15292.92 15895.87 13998.24 9089.88 19194.58 32598.49 2185.06 34493.78 16495.78 22982.86 19998.67 20591.77 17795.71 19199.07 89
LFMVS93.60 15392.63 17196.52 8998.13 10391.27 13897.94 7393.39 37790.57 20496.29 9798.31 6669.00 35899.16 14394.18 12995.87 18699.12 83
F-COLMAP93.58 15492.98 15695.37 17098.40 7888.98 22597.18 17197.29 20187.75 29590.49 24197.10 15485.21 15599.50 10586.70 28296.72 17297.63 204
ab-mvs93.57 15592.55 17596.64 8097.28 15391.96 11395.40 29797.45 17989.81 22593.22 18096.28 20079.62 26199.46 10990.74 19893.11 24098.50 143
LS3D93.57 15592.61 17396.47 9797.59 14291.61 12397.67 10997.72 13885.17 34290.29 24598.34 6084.60 16299.73 4883.85 32598.27 12498.06 181
FA-MVS(test-final)93.52 15792.92 15895.31 17196.77 19088.54 23694.82 31996.21 28189.61 22994.20 15495.25 25583.24 18699.14 14890.01 20896.16 18198.25 164
Fast-Effi-MVS+93.46 15892.75 16695.59 15796.77 19090.03 18296.81 20297.13 20988.19 27891.30 22694.27 30586.21 14398.63 20987.66 26496.46 17998.12 175
hse-mvs293.45 15992.99 15594.81 19797.02 17188.59 23396.69 21496.47 26695.19 2696.74 7496.16 20783.67 17998.48 22395.85 8379.13 38397.35 221
QAPM93.45 15992.27 18596.98 7696.77 19092.62 8798.39 2498.12 7284.50 35288.27 30897.77 11082.39 21299.81 3085.40 30498.81 10098.51 142
UniMVSNet_NR-MVSNet93.37 16192.67 17095.47 16795.34 27592.83 8197.17 17298.58 1992.98 12390.13 25195.80 22588.37 10597.85 29891.71 17983.93 35695.73 278
1112_ss93.37 16192.42 18296.21 12097.05 16890.99 15296.31 24896.72 24886.87 31489.83 26396.69 17586.51 13899.14 14888.12 24993.67 23498.50 143
UniMVSNet (Re)93.31 16392.55 17595.61 15695.39 26993.34 6697.39 14998.71 1193.14 11490.10 25594.83 27287.71 11598.03 27291.67 18283.99 35595.46 287
OPM-MVS93.28 16492.76 16494.82 19594.63 31890.77 16296.65 21897.18 20593.72 8591.68 21697.26 14579.33 26598.63 20992.13 16892.28 25195.07 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 16592.48 18095.51 16295.70 25492.39 9497.86 8198.66 1692.30 13992.09 20595.37 24880.49 24398.40 22793.95 13385.86 32695.75 276
test_fmvs193.21 16693.53 13892.25 31196.55 20681.20 36497.40 14896.96 22890.68 19496.80 7098.04 8569.25 35798.40 22797.58 3098.50 11297.16 228
MVSTER93.20 16792.81 16394.37 22096.56 20489.59 19897.06 17997.12 21091.24 17491.30 22695.96 21682.02 21898.05 26893.48 14390.55 28295.47 286
test111193.19 16892.82 16294.30 22797.58 14684.56 32698.21 4289.02 40793.53 9594.58 14498.21 7372.69 33199.05 16593.06 15398.48 11599.28 68
ECVR-MVScopyleft93.19 16892.73 16894.57 21297.66 13485.41 30998.21 4288.23 40993.43 9994.70 14298.21 7372.57 33299.07 16293.05 15498.49 11399.25 71
HQP-MVS93.19 16892.74 16794.54 21395.86 24689.33 21296.65 21897.39 19093.55 9190.14 24795.87 22080.95 23398.50 22092.13 16892.10 25795.78 272
CHOSEN 280x42093.12 17192.72 16994.34 22396.71 19487.27 26890.29 39797.72 13886.61 31891.34 22395.29 25084.29 17098.41 22693.25 14898.94 9697.35 221
sd_testset93.10 17292.45 18195.05 18198.09 10489.21 21896.89 19497.64 14893.18 11191.79 21297.28 14275.35 31498.65 20788.99 23892.84 24397.28 224
Effi-MVS+-dtu93.08 17393.21 15292.68 30196.02 24383.25 34297.14 17596.72 24893.85 8291.20 23393.44 34283.08 19298.30 23891.69 18195.73 19096.50 245
test_djsdf93.07 17492.76 16494.00 24093.49 35488.70 23198.22 4097.57 15791.42 16690.08 25795.55 24282.85 20097.92 29294.07 13091.58 26495.40 292
VDDNet93.05 17592.07 18996.02 13196.84 18090.39 17698.08 5395.85 29386.22 32695.79 11798.46 4767.59 36899.19 13694.92 11194.85 20698.47 148
thisisatest053093.03 17692.21 18795.49 16497.07 16389.11 22397.49 13992.19 39090.16 21494.09 15796.41 19476.43 30599.05 16590.38 20395.68 19298.31 162
EI-MVSNet93.03 17692.88 16093.48 27095.77 25286.98 27796.44 23297.12 21090.66 19791.30 22697.64 12286.56 13698.05 26889.91 21190.55 28295.41 289
CLD-MVS92.98 17892.53 17794.32 22496.12 23989.20 21995.28 30397.47 17292.66 13289.90 26095.62 23880.58 24198.40 22792.73 16092.40 25095.38 294
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 17992.33 18494.87 19497.11 16187.16 27497.97 6992.09 39190.63 19993.88 16397.01 15976.50 30299.06 16490.29 20695.45 19698.38 158
ACMM89.79 892.96 17992.50 17994.35 22196.30 22788.71 23097.58 12297.36 19591.40 16890.53 24096.65 17779.77 25798.75 19591.24 19091.64 26295.59 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 18192.56 17494.10 23496.16 23488.26 24497.65 11297.46 17491.29 17090.12 25397.16 15079.05 27098.73 19892.25 16491.89 26095.31 299
BH-untuned92.94 18192.62 17293.92 25097.22 15486.16 30096.40 24096.25 27890.06 21789.79 26496.17 20683.19 18898.35 23487.19 27597.27 15997.24 226
DU-MVS92.90 18392.04 19095.49 16494.95 30092.83 8197.16 17398.24 4993.02 11790.13 25195.71 23283.47 18297.85 29891.71 17983.93 35695.78 272
PatchMatch-RL92.90 18392.02 19295.56 15898.19 9890.80 16095.27 30597.18 20587.96 28491.86 21195.68 23580.44 24498.99 17084.01 32097.54 14696.89 236
PMMVS92.86 18592.34 18394.42 21994.92 30386.73 28394.53 32796.38 27084.78 34994.27 15295.12 26183.13 19198.40 22791.47 18596.49 17798.12 175
OpenMVScopyleft89.19 1292.86 18591.68 20496.40 10395.34 27592.73 8598.27 3298.12 7284.86 34785.78 34897.75 11178.89 27799.74 4687.50 26998.65 10696.73 240
Test_1112_low_res92.84 18791.84 19895.85 14297.04 16989.97 18895.53 29296.64 25685.38 33789.65 26995.18 25785.86 14899.10 15287.70 26093.58 23998.49 145
baseline192.82 18891.90 19695.55 16097.20 15690.77 16297.19 17094.58 35192.20 14292.36 19496.34 19884.16 17298.21 24489.20 23483.90 35997.68 203
131492.81 18992.03 19195.14 17795.33 27889.52 20396.04 26397.44 18387.72 29686.25 34595.33 24983.84 17698.79 18989.26 23097.05 16597.11 229
DP-MVS92.76 19091.51 21296.52 8998.77 5690.99 15297.38 15196.08 28582.38 37389.29 28197.87 9983.77 17799.69 5881.37 34796.69 17398.89 112
test_fmvs1_n92.73 19192.88 16092.29 30996.08 24281.05 36597.98 6397.08 21590.72 19296.79 7298.18 7663.07 39098.45 22497.62 2998.42 11997.36 219
BH-RMVSNet92.72 19291.97 19494.97 18997.16 15887.99 25396.15 25995.60 30790.62 20091.87 21097.15 15278.41 28398.57 21683.16 32797.60 14598.36 160
ACMP89.59 1092.62 19392.14 18894.05 23796.40 22188.20 24797.36 15297.25 20491.52 16188.30 30696.64 17878.46 28298.72 20191.86 17591.48 26695.23 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 19492.52 17892.44 30396.82 18481.89 35896.92 19293.71 37492.41 13784.30 36194.60 28385.08 15797.03 35391.51 18397.36 15398.40 156
TranMVSNet+NR-MVSNet92.50 19491.63 20595.14 17794.76 31192.07 10797.53 13098.11 7592.90 12789.56 27296.12 20983.16 18997.60 32389.30 22883.20 36595.75 276
thres600view792.49 19691.60 20695.18 17597.91 12189.47 20497.65 11294.66 34892.18 14693.33 17594.91 26778.06 29099.10 15281.61 34194.06 22996.98 231
thres100view90092.43 19791.58 20794.98 18797.92 12089.37 21097.71 10594.66 34892.20 14293.31 17694.90 26878.06 29099.08 15881.40 34494.08 22596.48 246
jajsoiax92.42 19891.89 19794.03 23993.33 36088.50 23897.73 10097.53 16392.00 15188.85 29296.50 19075.62 31298.11 25593.88 13791.56 26595.48 284
thres40092.42 19891.52 21095.12 17997.85 12489.29 21497.41 14494.88 34292.19 14493.27 17894.46 29378.17 28699.08 15881.40 34494.08 22596.98 231
tfpn200view992.38 20091.52 21094.95 19197.85 12489.29 21497.41 14494.88 34292.19 14493.27 17894.46 29378.17 28699.08 15881.40 34494.08 22596.48 246
test_vis1_n92.37 20192.26 18692.72 29894.75 31282.64 34798.02 5996.80 24591.18 17797.77 4497.93 9458.02 39998.29 23997.63 2898.21 12697.23 227
WR-MVS92.34 20291.53 20994.77 20295.13 29390.83 15996.40 24097.98 10591.88 15389.29 28195.54 24382.50 20897.80 30489.79 21585.27 33595.69 279
NR-MVSNet92.34 20291.27 22095.53 16194.95 30093.05 7697.39 14998.07 8492.65 13384.46 35995.71 23285.00 15897.77 30889.71 21683.52 36295.78 272
mvs_tets92.31 20491.76 20093.94 24793.41 35788.29 24297.63 11897.53 16392.04 14988.76 29596.45 19274.62 32098.09 26093.91 13591.48 26695.45 288
TAPA-MVS90.10 792.30 20591.22 22395.56 15898.33 8389.60 19796.79 20397.65 14681.83 37791.52 21897.23 14787.94 11198.91 17871.31 39998.37 12098.17 172
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 20691.30 21895.25 17396.60 19988.90 22794.36 33592.32 38987.92 28593.43 17394.57 28477.28 29799.00 16989.42 22595.86 18797.86 193
Fast-Effi-MVS+-dtu92.29 20691.99 19393.21 28195.27 28285.52 30797.03 18096.63 25992.09 14789.11 28795.14 25980.33 24798.08 26187.54 26894.74 21296.03 262
IterMVS-LS92.29 20691.94 19593.34 27596.25 22886.97 27896.57 23097.05 22090.67 19589.50 27594.80 27486.59 13597.64 31889.91 21186.11 32595.40 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 20991.74 20393.73 25797.77 12883.69 33992.88 37796.72 24887.91 28693.00 18294.86 27078.51 28199.05 16586.53 28397.45 15198.47 148
VPNet92.23 21091.31 21794.99 18595.56 26090.96 15497.22 16897.86 12192.96 12490.96 23496.62 18575.06 31598.20 24591.90 17283.65 36195.80 270
thres20092.23 21091.39 21394.75 20497.61 14089.03 22496.60 22695.09 33292.08 14893.28 17794.00 31978.39 28499.04 16881.26 35094.18 22196.19 253
anonymousdsp92.16 21291.55 20893.97 24392.58 37489.55 20097.51 13297.42 18789.42 23788.40 30294.84 27180.66 24097.88 29791.87 17491.28 27094.48 345
XXY-MVS92.16 21291.23 22294.95 19194.75 31290.94 15597.47 14097.43 18689.14 24488.90 28996.43 19379.71 25898.24 24189.56 22187.68 30995.67 280
BH-w/o92.14 21491.75 20193.31 27696.99 17485.73 30495.67 28395.69 30288.73 26489.26 28394.82 27382.97 19798.07 26585.26 30696.32 18096.13 258
Anonymous20240521192.07 21590.83 23895.76 14498.19 9888.75 22997.58 12295.00 33586.00 32993.64 16697.45 13366.24 38099.53 9790.68 20092.71 24699.01 93
FE-MVS92.05 21691.05 22895.08 18096.83 18287.93 25493.91 35395.70 30086.30 32394.15 15694.97 26376.59 30199.21 13484.10 31896.86 16698.09 179
WR-MVS_H92.00 21791.35 21493.95 24595.09 29589.47 20498.04 5898.68 1391.46 16488.34 30494.68 27985.86 14897.56 32585.77 29984.24 35394.82 330
Anonymous2024052991.98 21890.73 24495.73 14998.14 10289.40 20897.99 6297.72 13879.63 39193.54 16997.41 13769.94 35399.56 9191.04 19491.11 27398.22 166
MonoMVSNet91.92 21991.77 19992.37 30592.94 36683.11 34397.09 17895.55 31092.91 12690.85 23694.55 28581.27 23196.52 36593.01 15787.76 30897.47 215
PatchmatchNetpermissive91.91 22091.35 21493.59 26595.38 27084.11 33293.15 37295.39 31589.54 23192.10 20493.68 33282.82 20198.13 25184.81 31095.32 19898.52 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 22191.02 22994.53 21496.54 20786.55 29095.86 27395.64 30691.77 15591.89 20993.47 34169.94 35398.86 18190.23 20793.86 23298.18 169
CP-MVSNet91.89 22291.24 22193.82 25395.05 29688.57 23497.82 9098.19 6091.70 15788.21 31095.76 23081.96 21997.52 33187.86 25484.65 34495.37 295
SCA91.84 22391.18 22593.83 25295.59 25884.95 32294.72 32195.58 30990.82 18792.25 19993.69 33075.80 30998.10 25686.20 28995.98 18398.45 150
FMVSNet391.78 22490.69 24795.03 18396.53 20992.27 10097.02 18296.93 23189.79 22689.35 27894.65 28177.01 29897.47 33486.12 29288.82 29795.35 296
AUN-MVS91.76 22590.75 24294.81 19797.00 17388.57 23496.65 21896.49 26589.63 22892.15 20196.12 20978.66 27998.50 22090.83 19579.18 38297.36 219
X-MVStestdata91.71 22689.67 29097.81 2899.38 1494.03 5098.59 1298.20 5594.85 4096.59 8432.69 42391.70 5299.80 3395.66 8999.40 5599.62 20
MVS91.71 22690.44 25495.51 16295.20 28891.59 12596.04 26397.45 17973.44 40787.36 32795.60 23985.42 15399.10 15285.97 29697.46 14795.83 268
EPNet_dtu91.71 22691.28 21992.99 28793.76 34583.71 33896.69 21495.28 32293.15 11387.02 33595.95 21783.37 18597.38 34279.46 36296.84 16797.88 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 22990.75 24294.47 21596.53 20986.56 28995.76 28094.51 35491.10 18291.24 23193.59 33668.59 36298.86 18191.10 19294.29 21898.00 184
baseline291.63 23090.86 23493.94 24794.33 32986.32 29495.92 27091.64 39589.37 23886.94 33894.69 27881.62 22698.69 20388.64 24594.57 21596.81 238
testing9991.62 23190.72 24594.32 22496.48 21586.11 30195.81 27694.76 34691.55 16091.75 21493.44 34268.55 36398.82 18590.43 20193.69 23398.04 182
test250691.60 23290.78 23994.04 23897.66 13483.81 33598.27 3275.53 42493.43 9995.23 13198.21 7367.21 37199.07 16293.01 15798.49 11399.25 71
miper_ehance_all_eth91.59 23391.13 22692.97 28895.55 26186.57 28894.47 32996.88 23987.77 29388.88 29194.01 31886.22 14297.54 32789.49 22286.93 31794.79 335
v2v48291.59 23390.85 23693.80 25493.87 34288.17 24996.94 19196.88 23989.54 23189.53 27394.90 26881.70 22598.02 27389.25 23185.04 34195.20 307
V4291.58 23590.87 23393.73 25794.05 33788.50 23897.32 15796.97 22788.80 26289.71 26594.33 30082.54 20798.05 26889.01 23785.07 33994.64 343
PCF-MVS89.48 1191.56 23689.95 27896.36 10896.60 19992.52 9192.51 38297.26 20279.41 39288.90 28996.56 18784.04 17599.55 9377.01 37697.30 15897.01 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UBG91.55 23790.76 24093.94 24796.52 21185.06 31895.22 30894.54 35290.47 20791.98 20792.71 35272.02 33598.74 19788.10 25095.26 20098.01 183
PS-CasMVS91.55 23790.84 23793.69 26194.96 29988.28 24397.84 8598.24 4991.46 16488.04 31495.80 22579.67 25997.48 33387.02 27984.54 35095.31 299
miper_enhance_ethall91.54 23991.01 23093.15 28295.35 27487.07 27693.97 34896.90 23686.79 31589.17 28593.43 34586.55 13797.64 31889.97 21086.93 31794.74 339
PAPM91.52 24090.30 26095.20 17495.30 28189.83 19293.38 36896.85 24286.26 32588.59 29895.80 22584.88 15998.15 25075.67 38195.93 18597.63 204
ET-MVSNet_ETH3D91.49 24190.11 27095.63 15496.40 22191.57 12795.34 29993.48 37690.60 20375.58 39995.49 24580.08 25196.79 36294.25 12889.76 29098.52 140
TR-MVS91.48 24290.59 25094.16 23296.40 22187.33 26595.67 28395.34 32187.68 29791.46 22095.52 24476.77 30098.35 23482.85 33293.61 23796.79 239
tpmrst91.44 24391.32 21691.79 32595.15 29179.20 38893.42 36795.37 31788.55 26993.49 17193.67 33382.49 20998.27 24090.41 20289.34 29497.90 188
test-LLR91.42 24491.19 22492.12 31394.59 31980.66 36894.29 34092.98 38191.11 18090.76 23892.37 36079.02 27298.07 26588.81 24196.74 17097.63 204
MSDG91.42 24490.24 26494.96 19097.15 16088.91 22693.69 36096.32 27285.72 33386.93 33996.47 19180.24 24898.98 17180.57 35395.05 20596.98 231
c3_l91.38 24690.89 23292.88 29295.58 25986.30 29594.68 32296.84 24388.17 27988.83 29494.23 30885.65 15197.47 33489.36 22684.63 34594.89 325
GA-MVS91.38 24690.31 25994.59 20794.65 31787.62 26394.34 33696.19 28290.73 19190.35 24493.83 32371.84 33797.96 28487.22 27493.61 23798.21 167
v114491.37 24890.60 24993.68 26293.89 34188.23 24696.84 19997.03 22488.37 27489.69 26794.39 29582.04 21797.98 27787.80 25685.37 33294.84 327
GBi-Net91.35 24990.27 26294.59 20796.51 21291.18 14697.50 13396.93 23188.82 25989.35 27894.51 28873.87 32497.29 34686.12 29288.82 29795.31 299
test191.35 24990.27 26294.59 20796.51 21291.18 14697.50 13396.93 23188.82 25989.35 27894.51 28873.87 32497.29 34686.12 29288.82 29795.31 299
UniMVSNet_ETH3D91.34 25190.22 26794.68 20594.86 30787.86 25897.23 16797.46 17487.99 28389.90 26096.92 16366.35 37898.23 24290.30 20590.99 27697.96 185
FMVSNet291.31 25290.08 27194.99 18596.51 21292.21 10297.41 14496.95 22988.82 25988.62 29794.75 27673.87 32497.42 33985.20 30788.55 30295.35 296
reproduce_monomvs91.30 25391.10 22791.92 31796.82 18482.48 35197.01 18597.49 16894.64 5688.35 30395.27 25370.53 34698.10 25695.20 10384.60 34795.19 310
D2MVS91.30 25390.95 23192.35 30694.71 31585.52 30796.18 25898.21 5388.89 25586.60 34293.82 32579.92 25597.95 28889.29 22990.95 27793.56 363
v891.29 25590.53 25393.57 26794.15 33388.12 25197.34 15497.06 21988.99 25088.32 30594.26 30783.08 19298.01 27487.62 26683.92 35894.57 344
CVMVSNet91.23 25691.75 20189.67 36395.77 25274.69 39996.44 23294.88 34285.81 33192.18 20097.64 12279.07 26995.58 38288.06 25195.86 18798.74 124
cl2291.21 25790.56 25293.14 28396.09 24186.80 28094.41 33396.58 26287.80 29188.58 29993.99 32080.85 23897.62 32189.87 21386.93 31794.99 316
PEN-MVS91.20 25890.44 25493.48 27094.49 32387.91 25797.76 9698.18 6291.29 17087.78 31895.74 23180.35 24697.33 34485.46 30382.96 36695.19 310
Baseline_NR-MVSNet91.20 25890.62 24892.95 28993.83 34388.03 25297.01 18595.12 33188.42 27389.70 26695.13 26083.47 18297.44 33789.66 21983.24 36493.37 367
cascas91.20 25890.08 27194.58 21194.97 29889.16 22293.65 36297.59 15579.90 39089.40 27692.92 35075.36 31398.36 23392.14 16794.75 21196.23 250
CostFormer91.18 26190.70 24692.62 30294.84 30881.76 35994.09 34694.43 35584.15 35592.72 18993.77 32779.43 26398.20 24590.70 19992.18 25597.90 188
tt080591.09 26290.07 27494.16 23295.61 25788.31 24197.56 12596.51 26489.56 23089.17 28595.64 23767.08 37598.38 23291.07 19388.44 30395.80 270
v119291.07 26390.23 26593.58 26693.70 34687.82 26096.73 20897.07 21787.77 29389.58 27094.32 30280.90 23797.97 28086.52 28485.48 33094.95 317
v14419291.06 26490.28 26193.39 27393.66 34987.23 27196.83 20097.07 21787.43 30289.69 26794.28 30481.48 22798.00 27587.18 27684.92 34394.93 321
v1091.04 26590.23 26593.49 26994.12 33488.16 25097.32 15797.08 21588.26 27788.29 30794.22 31082.17 21697.97 28086.45 28684.12 35494.33 351
eth_miper_zixun_eth91.02 26690.59 25092.34 30895.33 27884.35 32894.10 34596.90 23688.56 26888.84 29394.33 30084.08 17397.60 32388.77 24384.37 35295.06 314
v14890.99 26790.38 25692.81 29593.83 34385.80 30396.78 20596.68 25389.45 23688.75 29693.93 32282.96 19897.82 30287.83 25583.25 36394.80 333
LTVRE_ROB88.41 1390.99 26789.92 28094.19 23096.18 23289.55 20096.31 24897.09 21487.88 28785.67 34995.91 21978.79 27898.57 21681.50 34289.98 28794.44 348
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 26990.33 25792.88 29295.36 27386.19 29994.46 33196.63 25987.82 28988.18 31194.23 30882.99 19597.53 32987.72 25785.57 32994.93 321
cl____90.96 27090.32 25892.89 29195.37 27286.21 29894.46 33196.64 25687.82 28988.15 31294.18 31182.98 19697.54 32787.70 26085.59 32894.92 323
pmmvs490.93 27189.85 28294.17 23193.34 35990.79 16194.60 32496.02 28684.62 35087.45 32395.15 25881.88 22297.45 33687.70 26087.87 30794.27 355
XVG-ACMP-BASELINE90.93 27190.21 26893.09 28494.31 33185.89 30295.33 30097.26 20291.06 18389.38 27795.44 24768.61 36198.60 21289.46 22391.05 27494.79 335
v192192090.85 27390.03 27693.29 27793.55 35086.96 27996.74 20797.04 22287.36 30489.52 27494.34 29980.23 24997.97 28086.27 28785.21 33694.94 319
CR-MVSNet90.82 27489.77 28693.95 24594.45 32587.19 27290.23 39895.68 30486.89 31392.40 19192.36 36380.91 23597.05 35281.09 35193.95 23097.60 209
v7n90.76 27589.86 28193.45 27293.54 35187.60 26497.70 10897.37 19388.85 25687.65 32094.08 31681.08 23298.10 25684.68 31283.79 36094.66 342
RPSCF90.75 27690.86 23490.42 35496.84 18076.29 39795.61 28996.34 27183.89 35891.38 22197.87 9976.45 30398.78 19087.16 27792.23 25296.20 252
MVP-Stereo90.74 27790.08 27192.71 29993.19 36288.20 24795.86 27396.27 27686.07 32884.86 35794.76 27577.84 29397.75 31083.88 32498.01 13492.17 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 27889.65 29293.96 24494.29 33289.63 19597.79 9496.82 24489.07 24686.12 34795.48 24678.61 28097.78 30686.97 28081.67 37194.46 346
v124090.70 27989.85 28293.23 27993.51 35386.80 28096.61 22497.02 22587.16 30989.58 27094.31 30379.55 26297.98 27785.52 30285.44 33194.90 324
EPMVS90.70 27989.81 28493.37 27494.73 31484.21 33093.67 36188.02 41089.50 23392.38 19393.49 33977.82 29497.78 30686.03 29592.68 24798.11 178
WBMVS90.69 28189.99 27792.81 29596.48 21585.00 31995.21 31096.30 27489.46 23589.04 28894.05 31772.45 33497.82 30289.46 22387.41 31495.61 281
Anonymous2023121190.63 28289.42 29794.27 22998.24 9089.19 22198.05 5797.89 11379.95 38988.25 30994.96 26472.56 33398.13 25189.70 21785.14 33795.49 283
DTE-MVSNet90.56 28389.75 28893.01 28693.95 33887.25 26997.64 11697.65 14690.74 19087.12 33095.68 23579.97 25497.00 35683.33 32681.66 37294.78 337
ACMH87.59 1690.53 28489.42 29793.87 25196.21 22987.92 25597.24 16396.94 23088.45 27283.91 36996.27 20171.92 33698.62 21184.43 31589.43 29395.05 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 28589.14 30494.67 20696.81 18687.85 25995.91 27193.97 36889.71 22792.34 19792.48 35865.41 38597.96 28481.37 34794.27 21998.21 167
OurMVSNet-221017-090.51 28690.19 26991.44 33493.41 35781.25 36296.98 18896.28 27591.68 15886.55 34396.30 19974.20 32397.98 27788.96 23987.40 31595.09 312
miper_lstm_enhance90.50 28790.06 27591.83 32295.33 27883.74 33693.86 35496.70 25287.56 30087.79 31793.81 32683.45 18496.92 35887.39 27084.62 34694.82 330
COLMAP_ROBcopyleft87.81 1590.40 28889.28 30093.79 25597.95 11787.13 27596.92 19295.89 29282.83 37086.88 34197.18 14973.77 32799.29 12878.44 36793.62 23694.95 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 28988.96 30694.35 22196.54 20787.29 26695.50 29393.84 37290.97 18591.75 21492.96 34962.18 39598.00 27582.86 33094.08 22597.76 199
IterMVS-SCA-FT90.31 28989.81 28491.82 32395.52 26284.20 33194.30 33996.15 28390.61 20187.39 32694.27 30575.80 30996.44 36687.34 27186.88 32194.82 330
MS-PatchMatch90.27 29189.77 28691.78 32694.33 32984.72 32595.55 29096.73 24786.17 32786.36 34495.28 25271.28 34197.80 30484.09 31998.14 13092.81 373
tpm90.25 29289.74 28991.76 32893.92 33979.73 38293.98 34793.54 37588.28 27691.99 20693.25 34677.51 29697.44 33787.30 27387.94 30698.12 175
AllTest90.23 29388.98 30593.98 24197.94 11886.64 28496.51 23195.54 31185.38 33785.49 35196.77 16970.28 34899.15 14580.02 35792.87 24196.15 256
dmvs_re90.21 29489.50 29592.35 30695.47 26785.15 31595.70 28294.37 35990.94 18688.42 30193.57 33774.63 31995.67 37982.80 33389.57 29296.22 251
ACMH+87.92 1490.20 29589.18 30293.25 27896.48 21586.45 29296.99 18796.68 25388.83 25884.79 35896.22 20370.16 35098.53 21884.42 31688.04 30594.77 338
test-mter90.19 29689.54 29492.12 31394.59 31980.66 36894.29 34092.98 38187.68 29790.76 23892.37 36067.67 36798.07 26588.81 24196.74 17097.63 204
IterMVS90.15 29789.67 29091.61 33095.48 26483.72 33794.33 33796.12 28489.99 21887.31 32994.15 31375.78 31196.27 36986.97 28086.89 32094.83 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 29889.42 29791.97 31694.41 32780.62 37094.29 34091.97 39387.28 30790.44 24292.47 35968.79 35997.67 31588.50 24796.60 17597.61 208
tpm289.96 29989.21 30192.23 31294.91 30581.25 36293.78 35694.42 35680.62 38791.56 21793.44 34276.44 30497.94 28985.60 30192.08 25997.49 213
UWE-MVS89.91 30089.48 29691.21 33895.88 24578.23 39394.91 31890.26 40389.11 24592.35 19694.52 28768.76 36097.96 28483.95 32295.59 19497.42 217
IB-MVS87.33 1789.91 30088.28 31694.79 20195.26 28587.70 26295.12 31393.95 36989.35 23987.03 33492.49 35770.74 34599.19 13689.18 23581.37 37397.49 213
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 30288.68 31193.53 26895.86 24684.89 32390.93 39395.07 33383.23 36891.28 22991.81 37279.01 27497.85 29879.52 35991.39 26897.84 194
WB-MVSnew89.88 30389.56 29390.82 34694.57 32283.06 34495.65 28792.85 38387.86 28890.83 23794.10 31479.66 26096.88 35976.34 37794.19 22092.54 379
FMVSNet189.88 30388.31 31594.59 20795.41 26891.18 14697.50 13396.93 23186.62 31787.41 32594.51 28865.94 38397.29 34683.04 32987.43 31295.31 299
pmmvs589.86 30588.87 30992.82 29492.86 36786.23 29796.26 25195.39 31584.24 35487.12 33094.51 28874.27 32297.36 34387.61 26787.57 31094.86 326
tpmvs89.83 30689.15 30391.89 32094.92 30380.30 37593.11 37395.46 31486.28 32488.08 31392.65 35380.44 24498.52 21981.47 34389.92 28896.84 237
test_fmvs289.77 30789.93 27989.31 36993.68 34876.37 39697.64 11695.90 29089.84 22491.49 21996.26 20258.77 39897.10 35094.65 12191.13 27294.46 346
mmtdpeth89.70 30888.96 30691.90 31995.84 25184.42 32797.46 14295.53 31390.27 21194.46 14990.50 38069.74 35698.95 17297.39 3969.48 40592.34 382
tfpnnormal89.70 30888.40 31493.60 26495.15 29190.10 18197.56 12598.16 6687.28 30786.16 34694.63 28277.57 29598.05 26874.48 38584.59 34892.65 376
ADS-MVSNet289.45 31088.59 31292.03 31595.86 24682.26 35590.93 39394.32 36283.23 36891.28 22991.81 37279.01 27495.99 37179.52 35991.39 26897.84 194
Patchmatch-test89.42 31187.99 31893.70 26095.27 28285.11 31688.98 40594.37 35981.11 38187.10 33393.69 33082.28 21397.50 33274.37 38794.76 21098.48 147
test0.0.03 189.37 31288.70 31091.41 33592.47 37685.63 30595.22 30892.70 38691.11 18086.91 34093.65 33479.02 27293.19 40478.00 36989.18 29595.41 289
SixPastTwentyTwo89.15 31388.54 31390.98 34293.49 35480.28 37696.70 21294.70 34790.78 18884.15 36495.57 24071.78 33897.71 31384.63 31385.07 33994.94 319
RPMNet88.98 31487.05 32894.77 20294.45 32587.19 27290.23 39898.03 9677.87 39992.40 19187.55 40380.17 25099.51 10268.84 40493.95 23097.60 209
TransMVSNet (Re)88.94 31587.56 32193.08 28594.35 32888.45 24097.73 10095.23 32687.47 30184.26 36295.29 25079.86 25697.33 34479.44 36374.44 39693.45 366
USDC88.94 31587.83 32092.27 31094.66 31684.96 32193.86 35495.90 29087.34 30583.40 37195.56 24167.43 36998.19 24782.64 33789.67 29193.66 362
dp88.90 31788.26 31790.81 34794.58 32176.62 39592.85 37894.93 33985.12 34390.07 25893.07 34775.81 30898.12 25480.53 35487.42 31397.71 201
PatchT88.87 31887.42 32293.22 28094.08 33685.10 31789.51 40394.64 35081.92 37692.36 19488.15 39980.05 25297.01 35572.43 39593.65 23597.54 212
our_test_388.78 31987.98 31991.20 34092.45 37782.53 34993.61 36495.69 30285.77 33284.88 35693.71 32879.99 25396.78 36379.47 36186.24 32294.28 354
EU-MVSNet88.72 32088.90 30888.20 37393.15 36374.21 40096.63 22394.22 36485.18 34187.32 32895.97 21576.16 30694.98 38885.27 30586.17 32395.41 289
Patchmtry88.64 32187.25 32492.78 29794.09 33586.64 28489.82 40295.68 30480.81 38587.63 32192.36 36380.91 23597.03 35378.86 36585.12 33894.67 341
MIMVSNet88.50 32286.76 33293.72 25994.84 30887.77 26191.39 38894.05 36586.41 32187.99 31592.59 35663.27 38995.82 37677.44 37092.84 24397.57 211
tpm cat188.36 32387.21 32691.81 32495.13 29380.55 37192.58 38195.70 30074.97 40387.45 32391.96 37078.01 29298.17 24980.39 35588.74 30096.72 241
ppachtmachnet_test88.35 32487.29 32391.53 33192.45 37783.57 34093.75 35795.97 28784.28 35385.32 35494.18 31179.00 27696.93 35775.71 38084.99 34294.10 356
JIA-IIPM88.26 32587.04 32991.91 31893.52 35281.42 36189.38 40494.38 35880.84 38490.93 23580.74 41179.22 26697.92 29282.76 33491.62 26396.38 249
testgi87.97 32687.21 32690.24 35792.86 36780.76 36696.67 21794.97 33791.74 15685.52 35095.83 22362.66 39394.47 39276.25 37888.36 30495.48 284
LF4IMVS87.94 32787.25 32489.98 36092.38 37980.05 38094.38 33495.25 32587.59 29984.34 36094.74 27764.31 38797.66 31784.83 30987.45 31192.23 385
gg-mvs-nofinetune87.82 32885.61 34094.44 21794.46 32489.27 21791.21 39284.61 41880.88 38389.89 26274.98 41471.50 33997.53 32985.75 30097.21 16196.51 244
pmmvs687.81 32986.19 33692.69 30091.32 38486.30 29597.34 15496.41 26980.59 38884.05 36894.37 29767.37 37097.67 31584.75 31179.51 38194.09 358
testing387.67 33086.88 33190.05 35996.14 23780.71 36797.10 17792.85 38390.15 21587.54 32294.55 28555.70 40494.10 39573.77 39194.10 22495.35 296
K. test v387.64 33186.75 33390.32 35693.02 36579.48 38696.61 22492.08 39290.66 19780.25 38894.09 31567.21 37196.65 36485.96 29780.83 37594.83 328
Patchmatch-RL test87.38 33286.24 33590.81 34788.74 40278.40 39288.12 41093.17 37987.11 31082.17 37989.29 39181.95 22095.60 38188.64 24577.02 38798.41 155
FMVSNet587.29 33385.79 33991.78 32694.80 31087.28 26795.49 29495.28 32284.09 35683.85 37091.82 37162.95 39194.17 39478.48 36685.34 33493.91 360
myMVS_eth3d87.18 33486.38 33489.58 36495.16 28979.53 38395.00 31593.93 37088.55 26986.96 33691.99 36856.23 40394.00 39675.47 38394.11 22295.20 307
Syy-MVS87.13 33587.02 33087.47 37695.16 28973.21 40495.00 31593.93 37088.55 26986.96 33691.99 36875.90 30794.00 39661.59 41094.11 22295.20 307
Anonymous2023120687.09 33686.14 33789.93 36191.22 38580.35 37396.11 26095.35 31883.57 36584.16 36393.02 34873.54 32995.61 38072.16 39686.14 32493.84 361
EG-PatchMatch MVS87.02 33785.44 34191.76 32892.67 37185.00 31996.08 26296.45 26783.41 36779.52 39093.49 33957.10 40197.72 31279.34 36490.87 27992.56 378
TinyColmap86.82 33885.35 34491.21 33894.91 30582.99 34593.94 35094.02 36783.58 36481.56 38094.68 27962.34 39498.13 25175.78 37987.35 31692.52 380
mvs5depth86.53 33985.08 34690.87 34488.74 40282.52 35091.91 38694.23 36386.35 32287.11 33293.70 32966.52 37697.76 30981.37 34775.80 39292.31 384
TDRefinement86.53 33984.76 35191.85 32182.23 41784.25 32996.38 24295.35 31884.97 34684.09 36694.94 26565.76 38498.34 23784.60 31474.52 39592.97 370
test_040286.46 34184.79 35091.45 33395.02 29785.55 30696.29 25094.89 34180.90 38282.21 37893.97 32168.21 36697.29 34662.98 40888.68 30191.51 393
Anonymous2024052186.42 34285.44 34189.34 36890.33 38979.79 38196.73 20895.92 28883.71 36383.25 37391.36 37663.92 38896.01 37078.39 36885.36 33392.22 386
DSMNet-mixed86.34 34386.12 33887.00 38089.88 39370.43 40694.93 31790.08 40477.97 39885.42 35392.78 35174.44 32193.96 39874.43 38695.14 20196.62 242
CL-MVSNet_self_test86.31 34485.15 34589.80 36288.83 40081.74 36093.93 35196.22 27986.67 31685.03 35590.80 37978.09 28994.50 39074.92 38471.86 40193.15 369
pmmvs-eth3d86.22 34584.45 35391.53 33188.34 40487.25 26994.47 32995.01 33483.47 36679.51 39189.61 38969.75 35595.71 37783.13 32876.73 39091.64 390
test_vis1_rt86.16 34685.06 34789.46 36593.47 35680.46 37296.41 23686.61 41585.22 34079.15 39288.64 39452.41 40797.06 35193.08 15290.57 28190.87 398
test20.0386.14 34785.40 34388.35 37190.12 39080.06 37995.90 27295.20 32788.59 26581.29 38193.62 33571.43 34092.65 40571.26 40081.17 37492.34 382
UnsupCasMVSNet_eth85.99 34884.45 35390.62 35189.97 39282.40 35493.62 36397.37 19389.86 22178.59 39492.37 36065.25 38695.35 38682.27 33970.75 40294.10 356
KD-MVS_self_test85.95 34984.95 34888.96 37089.55 39679.11 38995.13 31296.42 26885.91 33084.07 36790.48 38170.03 35294.82 38980.04 35672.94 39992.94 371
ttmdpeth85.91 35084.76 35189.36 36789.14 39780.25 37795.66 28693.16 38083.77 36183.39 37295.26 25466.24 38095.26 38780.65 35275.57 39392.57 377
YYNet185.87 35184.23 35590.78 35092.38 37982.46 35393.17 37095.14 33082.12 37567.69 40792.36 36378.16 28895.50 38477.31 37279.73 37994.39 349
MDA-MVSNet_test_wron85.87 35184.23 35590.80 34992.38 37982.57 34893.17 37095.15 32982.15 37467.65 40992.33 36678.20 28595.51 38377.33 37179.74 37894.31 353
CMPMVSbinary62.92 2185.62 35384.92 34987.74 37589.14 39773.12 40594.17 34396.80 24573.98 40473.65 40394.93 26666.36 37797.61 32283.95 32291.28 27092.48 381
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 35483.64 35790.92 34395.27 28279.49 38590.55 39695.60 30783.76 36283.00 37689.95 38671.09 34297.97 28082.75 33560.79 41695.31 299
MDA-MVSNet-bldmvs85.00 35582.95 36091.17 34193.13 36483.33 34194.56 32695.00 33584.57 35165.13 41392.65 35370.45 34795.85 37473.57 39277.49 38694.33 351
MIMVSNet184.93 35683.05 35890.56 35289.56 39584.84 32495.40 29795.35 31883.91 35780.38 38692.21 36757.23 40093.34 40270.69 40282.75 36993.50 364
KD-MVS_2432*160084.81 35782.64 36191.31 33691.07 38685.34 31391.22 39095.75 29885.56 33583.09 37490.21 38467.21 37195.89 37277.18 37462.48 41492.69 374
miper_refine_blended84.81 35782.64 36191.31 33691.07 38685.34 31391.22 39095.75 29885.56 33583.09 37490.21 38467.21 37195.89 37277.18 37462.48 41492.69 374
OpenMVS_ROBcopyleft81.14 2084.42 35982.28 36590.83 34590.06 39184.05 33495.73 28194.04 36673.89 40680.17 38991.53 37559.15 39797.64 31866.92 40689.05 29690.80 399
mvsany_test383.59 36082.44 36487.03 37983.80 41273.82 40193.70 35890.92 40186.42 32082.51 37790.26 38346.76 41295.71 37790.82 19676.76 38991.57 392
PM-MVS83.48 36181.86 36788.31 37287.83 40677.59 39493.43 36691.75 39486.91 31280.63 38489.91 38744.42 41395.84 37585.17 30876.73 39091.50 394
test_fmvs383.21 36283.02 35983.78 38586.77 40968.34 41196.76 20694.91 34086.49 31984.14 36589.48 39036.04 41791.73 40791.86 17580.77 37691.26 397
new-patchmatchnet83.18 36381.87 36687.11 37886.88 40875.99 39893.70 35895.18 32885.02 34577.30 39788.40 39665.99 38293.88 39974.19 38970.18 40391.47 395
new_pmnet82.89 36481.12 36988.18 37489.63 39480.18 37891.77 38792.57 38776.79 40175.56 40088.23 39861.22 39694.48 39171.43 39882.92 36789.87 402
MVS-HIRNet82.47 36581.21 36886.26 38295.38 27069.21 40988.96 40689.49 40566.28 41180.79 38374.08 41668.48 36497.39 34171.93 39795.47 19592.18 387
MVStest182.38 36680.04 37089.37 36687.63 40782.83 34695.03 31493.37 37873.90 40573.50 40494.35 29862.89 39293.25 40373.80 39065.92 41192.04 389
UnsupCasMVSNet_bld82.13 36779.46 37290.14 35888.00 40582.47 35290.89 39596.62 26178.94 39475.61 39884.40 40956.63 40296.31 36877.30 37366.77 41091.63 391
dmvs_testset81.38 36882.60 36377.73 39191.74 38351.49 42693.03 37584.21 41989.07 24678.28 39591.25 37776.97 29988.53 41456.57 41482.24 37093.16 368
test_f80.57 36979.62 37183.41 38683.38 41567.80 41393.57 36593.72 37380.80 38677.91 39687.63 40233.40 41892.08 40687.14 27879.04 38490.34 401
pmmvs379.97 37077.50 37587.39 37782.80 41679.38 38792.70 38090.75 40270.69 40878.66 39387.47 40451.34 40893.40 40173.39 39369.65 40489.38 403
APD_test179.31 37177.70 37484.14 38489.11 39969.07 41092.36 38591.50 39669.07 40973.87 40292.63 35539.93 41594.32 39370.54 40380.25 37789.02 404
N_pmnet78.73 37278.71 37378.79 39092.80 36946.50 42994.14 34443.71 43178.61 39580.83 38291.66 37474.94 31796.36 36767.24 40584.45 35193.50 364
WB-MVS76.77 37376.63 37677.18 39285.32 41056.82 42494.53 32789.39 40682.66 37271.35 40589.18 39275.03 31688.88 41235.42 42166.79 40985.84 406
SSC-MVS76.05 37475.83 37776.72 39684.77 41156.22 42594.32 33888.96 40881.82 37870.52 40688.91 39374.79 31888.71 41333.69 42264.71 41285.23 407
test_vis3_rt72.73 37570.55 37879.27 38980.02 41868.13 41293.92 35274.30 42676.90 40058.99 41773.58 41720.29 42695.37 38584.16 31772.80 40074.31 414
LCM-MVSNet72.55 37669.39 38082.03 38770.81 42765.42 41690.12 40094.36 36155.02 41765.88 41181.72 41024.16 42589.96 40874.32 38868.10 40890.71 400
FPMVS71.27 37769.85 37975.50 39774.64 42259.03 42291.30 38991.50 39658.80 41457.92 41888.28 39729.98 42185.53 41753.43 41582.84 36881.95 410
PMMVS270.19 37866.92 38280.01 38876.35 42165.67 41586.22 41187.58 41264.83 41362.38 41480.29 41326.78 42388.49 41563.79 40754.07 41885.88 405
dongtai69.99 37969.33 38171.98 40088.78 40161.64 42089.86 40159.93 43075.67 40274.96 40185.45 40650.19 40981.66 41943.86 41855.27 41772.63 415
testf169.31 38066.76 38376.94 39478.61 41961.93 41888.27 40886.11 41655.62 41559.69 41585.31 40720.19 42789.32 40957.62 41169.44 40679.58 411
APD_test269.31 38066.76 38376.94 39478.61 41961.93 41888.27 40886.11 41655.62 41559.69 41585.31 40720.19 42789.32 40957.62 41169.44 40679.58 411
EGC-MVSNET68.77 38263.01 38886.07 38392.49 37582.24 35693.96 34990.96 4000.71 4282.62 42990.89 37853.66 40593.46 40057.25 41384.55 34982.51 409
Gipumacopyleft67.86 38365.41 38575.18 39892.66 37273.45 40266.50 41994.52 35353.33 41857.80 41966.07 41930.81 41989.20 41148.15 41778.88 38562.90 419
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 38464.89 38669.79 40172.62 42535.23 43365.19 42092.83 38520.35 42365.20 41288.08 40043.14 41482.70 41873.12 39463.46 41391.45 396
kuosan65.27 38564.66 38767.11 40383.80 41261.32 42188.53 40760.77 42968.22 41067.67 40880.52 41249.12 41070.76 42529.67 42453.64 41969.26 417
ANet_high63.94 38659.58 38977.02 39361.24 42966.06 41485.66 41387.93 41178.53 39642.94 42171.04 41825.42 42480.71 42052.60 41630.83 42284.28 408
PMVScopyleft53.92 2258.58 38755.40 39068.12 40251.00 43048.64 42778.86 41687.10 41446.77 41935.84 42574.28 4158.76 42986.34 41642.07 41973.91 39769.38 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 38852.56 39255.43 40574.43 42347.13 42883.63 41576.30 42342.23 42042.59 42262.22 42128.57 42274.40 42231.53 42331.51 42144.78 420
MVEpermissive50.73 2353.25 38948.81 39466.58 40465.34 42857.50 42372.49 41870.94 42740.15 42239.28 42463.51 4206.89 43173.48 42438.29 42042.38 42068.76 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 39051.31 39354.39 40672.62 42545.39 43083.84 41475.51 42541.13 42140.77 42359.65 42230.08 42073.60 42328.31 42529.90 42344.18 421
tmp_tt51.94 39153.82 39146.29 40733.73 43145.30 43178.32 41767.24 42818.02 42450.93 42087.05 40552.99 40653.11 42670.76 40125.29 42440.46 422
wuyk23d25.11 39224.57 39626.74 40873.98 42439.89 43257.88 4219.80 43212.27 42510.39 4266.97 4287.03 43036.44 42725.43 42617.39 4253.89 425
cdsmvs_eth3d_5k23.24 39330.99 3950.00 4110.00 4340.00 4360.00 42297.63 1500.00 4290.00 43096.88 16584.38 1670.00 4300.00 4290.00 4280.00 426
testmvs13.36 39416.33 3974.48 4105.04 4322.26 43593.18 3693.28 4332.70 4268.24 42721.66 4242.29 4332.19 4287.58 4272.96 4269.00 424
test12313.04 39515.66 3985.18 4094.51 4333.45 43492.50 3831.81 4342.50 4277.58 42820.15 4253.67 4322.18 4297.13 4281.07 4279.90 423
ab-mvs-re8.06 39610.74 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43096.69 1750.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas7.39 3979.85 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42988.65 1000.00 4300.00 4290.00 4280.00 426
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS79.53 38375.56 382
FOURS199.55 193.34 6699.29 198.35 2994.98 3598.49 26
MSC_two_6792asdad98.86 198.67 6196.94 197.93 11099.86 997.68 2399.67 699.77 2
PC_three_145290.77 18998.89 1798.28 7196.24 198.35 23495.76 8799.58 2399.59 24
No_MVS98.86 198.67 6196.94 197.93 11099.86 997.68 2399.67 699.77 2
test_one_060199.32 2295.20 2098.25 4795.13 2998.48 2798.87 2195.16 7
eth-test20.00 434
eth-test0.00 434
ZD-MVS99.05 3994.59 3298.08 7989.22 24297.03 6698.10 7992.52 3999.65 6494.58 12499.31 65
RE-MVS-def96.72 4899.02 4292.34 9697.98 6398.03 9693.52 9697.43 5298.51 4190.71 7696.05 7599.26 6999.43 54
IU-MVS99.42 795.39 1197.94 10990.40 21098.94 1197.41 3899.66 1099.74 8
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 7296.04 299.24 13195.36 10199.59 1999.56 31
test_241102_TWO98.27 4195.13 2998.93 1298.89 1994.99 1199.85 1897.52 3199.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 4195.09 3299.19 698.81 2795.54 599.65 64
9.1496.75 4798.93 5097.73 10098.23 5291.28 17397.88 4098.44 4993.00 2699.65 6495.76 8799.47 40
save fliter98.91 5294.28 3897.02 18298.02 9995.35 22
test_0728_THIRD94.78 4798.73 2198.87 2195.87 499.84 2397.45 3599.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3899.86 997.52 3199.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3694.92 3898.99 1098.92 1695.08 8
GSMVS98.45 150
test_part299.28 2595.74 898.10 33
sam_mvs182.76 20298.45 150
sam_mvs81.94 221
ambc86.56 38183.60 41470.00 40885.69 41294.97 33780.60 38588.45 39537.42 41696.84 36182.69 33675.44 39492.86 372
MTGPAbinary98.08 79
test_post192.81 37916.58 42780.53 24297.68 31486.20 289
test_post17.58 42681.76 22398.08 261
patchmatchnet-post90.45 38282.65 20698.10 256
GG-mvs-BLEND93.62 26393.69 34789.20 21992.39 38483.33 42087.98 31689.84 38871.00 34396.87 36082.08 34095.40 19794.80 333
MTMP97.86 8182.03 421
gm-plane-assit93.22 36178.89 39184.82 34893.52 33898.64 20887.72 257
test9_res94.81 11699.38 5899.45 50
TEST998.70 5994.19 4296.41 23698.02 9988.17 27996.03 10797.56 12992.74 3399.59 80
test_898.67 6194.06 4996.37 24398.01 10288.58 26695.98 11197.55 13192.73 3499.58 83
agg_prior293.94 13499.38 5899.50 43
agg_prior98.67 6193.79 5498.00 10395.68 12199.57 90
TestCases93.98 24197.94 11886.64 28495.54 31185.38 33785.49 35196.77 16970.28 34899.15 14580.02 35792.87 24196.15 256
test_prior493.66 5796.42 235
test_prior296.35 24492.80 13096.03 10797.59 12692.01 4795.01 10999.38 58
test_prior97.23 6398.67 6192.99 7898.00 10399.41 11599.29 66
旧先验295.94 26981.66 37997.34 5598.82 18592.26 162
新几何295.79 278
新几何197.32 5698.60 6893.59 5897.75 13381.58 38095.75 11897.85 10290.04 8399.67 6286.50 28599.13 8498.69 128
旧先验198.38 8193.38 6397.75 13398.09 8192.30 4599.01 9399.16 76
无先验95.79 27897.87 11783.87 36099.65 6487.68 26398.89 112
原ACMM295.67 283
原ACMM196.38 10698.59 6991.09 15197.89 11387.41 30395.22 13297.68 11590.25 8099.54 9587.95 25399.12 8698.49 145
test22298.24 9092.21 10295.33 30097.60 15279.22 39395.25 13097.84 10488.80 9799.15 8298.72 125
testdata299.67 6285.96 297
segment_acmp92.89 30
testdata95.46 16898.18 10088.90 22797.66 14482.73 37197.03 6698.07 8290.06 8298.85 18389.67 21898.98 9498.64 131
testdata195.26 30793.10 116
test1297.65 4298.46 7394.26 3997.66 14495.52 12890.89 7399.46 10999.25 7199.22 73
plane_prior796.21 22989.98 187
plane_prior696.10 24090.00 18381.32 229
plane_prior597.51 16598.60 21293.02 15592.23 25295.86 264
plane_prior496.64 178
plane_prior390.00 18394.46 6391.34 223
plane_prior297.74 9894.85 40
plane_prior196.14 237
plane_prior89.99 18597.24 16394.06 7592.16 256
n20.00 435
nn0.00 435
door-mid91.06 399
lessismore_v090.45 35391.96 38279.09 39087.19 41380.32 38794.39 29566.31 37997.55 32684.00 32176.84 38894.70 340
LGP-MVS_train94.10 23496.16 23488.26 24497.46 17491.29 17090.12 25397.16 15079.05 27098.73 19892.25 16491.89 26095.31 299
test1197.88 115
door91.13 398
HQP5-MVS89.33 212
HQP-NCC95.86 24696.65 21893.55 9190.14 247
ACMP_Plane95.86 24696.65 21893.55 9190.14 247
BP-MVS92.13 168
HQP4-MVS90.14 24798.50 22095.78 272
HQP3-MVS97.39 19092.10 257
HQP2-MVS80.95 233
NP-MVS95.99 24489.81 19395.87 220
MDTV_nov1_ep13_2view70.35 40793.10 37483.88 35993.55 16882.47 21086.25 28898.38 158
MDTV_nov1_ep1390.76 24095.22 28680.33 37493.03 37595.28 32288.14 28192.84 18893.83 32381.34 22898.08 26182.86 33094.34 217
ACMMP++_ref90.30 286
ACMMP++91.02 275
Test By Simon88.73 99
ITE_SJBPF92.43 30495.34 27585.37 31295.92 28891.47 16387.75 31996.39 19671.00 34397.96 28482.36 33889.86 28993.97 359
DeepMVS_CXcopyleft74.68 39990.84 38864.34 41781.61 42265.34 41267.47 41088.01 40148.60 41180.13 42162.33 40973.68 39879.58 411