This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 166
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32196.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19198.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23592.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 29996.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20497.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 196
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18295.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 159
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19196.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24390.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
dcpmvs_296.37 6097.05 2294.31 21398.96 4684.11 31797.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 24796.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35391.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23093.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 178
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29296.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 28897.62 14190.43 19495.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 25695.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27395.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28298.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28597.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 233
MVSFormer95.37 8395.16 8495.99 12496.34 20691.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27594.07 11799.05 8398.85 108
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 27997.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 233
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19694.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
diffmvspermissive95.25 8795.13 8595.63 14196.43 20289.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18094.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
EPNet95.20 9094.56 9897.14 6392.80 35092.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 26798.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
lupinMVS94.99 9794.56 9896.29 10496.34 20691.21 13395.83 26196.27 26188.93 23596.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 27898.36 2488.84 23894.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
jason94.84 10294.39 10796.18 11295.52 24190.93 14796.09 24896.52 25089.28 22296.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22594.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 222
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 18894.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23494.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
test_cas_vis1_n_192094.48 10894.55 10194.28 21596.78 17586.45 28197.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 202
CANet_DTU94.37 10993.65 11896.55 7896.46 20092.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18398.45 10997.82 178
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20392.15 18497.06 14583.62 17099.54 8989.34 21098.07 12297.70 183
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20091.91 19097.24 13585.21 14699.09 14287.64 24797.83 12797.92 170
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26393.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27397.71 13288.99 23192.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19397.28 13179.13 25598.93 16094.61 11092.84 22397.28 203
test_vis1_n_192094.17 11494.58 9792.91 27797.42 14182.02 33897.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 197
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36198.29 150
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29298.48 2185.60 31493.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27888.24 23197.97 12499.02 86
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21391.46 12396.33 23397.04 20888.97 23393.56 15196.51 18187.55 11397.89 27989.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 28791.37 20496.71 16088.39 9999.52 9587.33 25497.13 15197.73 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12193.70 11695.27 15995.70 23392.03 10198.10 4998.68 1393.36 9390.39 22596.70 16287.63 11297.94 27192.25 15190.50 26895.84 246
PVSNet_BlendedMVS94.06 12293.92 11294.47 20398.27 8389.46 19796.73 19598.36 2490.17 19794.36 13495.24 24488.02 10499.58 7793.44 13190.72 26494.36 332
nrg03094.05 12393.31 13596.27 10595.22 26594.59 2998.34 2797.46 16192.93 11591.21 21496.64 16887.23 12298.22 22394.99 9885.80 31095.98 242
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 12593.46 12895.64 14096.16 21590.45 16596.71 19896.89 22489.27 22393.46 15696.92 15387.29 12097.94 27188.70 22795.74 17698.53 126
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 37693.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24391.45 12498.12 4898.71 1193.37 9190.23 22896.70 16287.66 11097.85 28191.49 17190.39 26995.83 247
mvsany_test193.93 12893.98 11193.78 24394.94 28186.80 27294.62 30292.55 36788.77 24496.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 227
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 21792.12 18697.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27196.64 24289.05 22993.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 168
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28697.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22996.98 210
mvsmamba93.83 13293.46 12894.93 18194.88 28690.85 15098.55 1495.49 29794.24 6191.29 21196.97 14983.04 18298.14 23195.56 8691.17 25495.78 252
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34699.39 11196.31 4994.85 19198.71 118
mvs_anonymous93.82 13393.74 11594.06 22396.44 20185.41 29795.81 26297.05 20689.85 20690.09 23896.36 18987.44 11797.75 29193.97 11996.69 16099.02 86
HQP_MVS93.78 13593.43 13194.82 18496.21 21089.99 17697.74 9397.51 15394.85 3491.34 20596.64 16881.32 21798.60 19293.02 14292.23 23295.86 243
PS-MVSNAJss93.74 13693.51 12694.44 20493.91 32289.28 20797.75 9297.56 14992.50 12689.94 24296.54 18088.65 9598.18 22893.83 12690.90 26195.86 243
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 29997.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22896.92 214
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30498.49 1985.06 32493.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 19796.64 16879.28 25398.13 23295.34 9091.49 24695.70 260
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 35890.57 19196.29 8698.31 6069.00 34299.16 13294.18 11695.87 17399.12 80
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 27690.49 22297.10 14385.21 14699.50 9986.70 26496.72 15997.63 185
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28097.45 16689.81 20893.22 16496.28 19279.62 24899.46 10390.74 18493.11 22098.50 130
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32290.29 22798.34 5484.60 15399.73 4283.85 30698.27 11598.06 167
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 29896.21 26689.61 21294.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 25991.30 20894.27 29086.21 13498.63 18987.66 24696.46 16698.12 161
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36597.35 200
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33288.27 28997.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25492.83 7497.17 16298.58 1792.98 11290.13 23395.80 21588.37 10097.85 28191.71 16683.93 33895.73 259
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29589.83 24696.69 16486.51 12999.14 13588.12 23293.67 21498.50 130
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 24893.34 6497.39 13998.71 1193.14 10390.10 23794.83 26087.71 10998.03 25491.67 16983.99 33795.46 270
OPM-MVS93.28 15192.76 15294.82 18494.63 29990.77 15496.65 20597.18 19193.72 7591.68 19697.26 13479.33 25298.63 18992.13 15592.28 23195.07 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23392.39 8797.86 7998.66 1692.30 13092.09 18895.37 23880.49 23098.40 20793.95 12085.86 30995.75 257
test_fmvs193.21 15393.53 12392.25 29696.55 19381.20 34597.40 13896.96 21490.68 18196.80 6198.04 7969.25 34198.40 20797.58 2198.50 10497.16 207
MVSTER93.20 15492.81 15194.37 20896.56 19189.59 18997.06 16897.12 19691.24 16291.30 20895.96 20682.02 20698.05 25093.48 13090.55 26695.47 269
test111193.19 15592.82 15094.30 21497.58 13784.56 31298.21 4389.02 38593.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 29798.21 4388.23 38793.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
HQP-MVS93.19 15592.74 15594.54 20295.86 22689.33 20396.65 20597.39 17693.55 8090.14 22995.87 21080.95 22098.50 20092.13 15592.10 23795.78 252
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29692.52 12591.58 19896.64 16876.35 29398.13 23295.43 8891.42 24995.68 262
CHOSEN 280x42093.12 15992.72 15794.34 21196.71 18187.27 26090.29 37597.72 12886.61 29991.34 20595.29 24084.29 16098.41 20693.25 13598.94 8997.35 200
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19397.28 13175.35 30398.65 18788.99 22192.84 22397.28 203
RRT_MVS93.10 16092.83 14993.93 23694.76 29188.04 24398.47 2296.55 24993.44 8890.01 24197.04 14680.64 22797.93 27494.33 11490.21 27195.83 247
Effi-MVS+-dtu93.08 16293.21 13892.68 28796.02 22483.25 32797.14 16596.72 23493.85 7291.20 21593.44 32383.08 18098.30 21891.69 16895.73 17796.50 224
test_djsdf93.07 16392.76 15294.00 22793.49 33688.70 22298.22 4197.57 14691.42 15590.08 23995.55 23282.85 18897.92 27594.07 11791.58 24495.40 275
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 30695.79 10598.46 4267.59 34999.19 12894.92 9994.85 19198.47 135
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 36990.16 19894.09 14196.41 18676.43 29299.05 15190.38 18895.68 17998.31 149
EI-MVSNet93.03 16592.88 14793.48 25795.77 23186.98 26996.44 21997.12 19690.66 18491.30 20897.64 11486.56 12798.05 25089.91 19590.55 26695.41 272
CLD-MVS92.98 16792.53 16694.32 21296.12 22089.20 21095.28 28697.47 15992.66 12289.90 24395.62 22880.58 22898.40 20792.73 14792.40 23095.38 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37090.63 18693.88 14797.01 14876.50 28999.06 15090.29 19195.45 18298.38 145
ACMM89.79 892.96 16892.50 16894.35 20996.30 20888.71 22197.58 11797.36 18191.40 15790.53 22196.65 16779.77 24498.75 17691.24 17791.64 24295.59 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 17092.56 16394.10 22196.16 21588.26 23597.65 10697.46 16191.29 15890.12 23597.16 13979.05 25798.73 17892.25 15191.89 24095.31 282
BH-untuned92.94 17092.62 16193.92 23797.22 14486.16 28996.40 22796.25 26390.06 20189.79 24796.17 19883.19 17698.35 21487.19 25797.27 14697.24 205
DU-MVS92.90 17292.04 17995.49 15194.95 27992.83 7497.16 16398.24 4793.02 10690.13 23395.71 22283.47 17197.85 28191.71 16683.93 33895.78 252
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 28897.18 19187.96 26591.86 19295.68 22580.44 23198.99 15684.01 30297.54 13496.89 215
PMMVS92.86 17492.34 17294.42 20694.92 28286.73 27594.53 30696.38 25784.78 32994.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 161
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25492.73 7898.27 3398.12 6784.86 32785.78 32897.75 10378.89 26499.74 4187.50 25198.65 9896.73 219
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27596.64 24285.38 31789.65 25295.18 24585.86 13999.10 13987.70 24293.58 21998.49 132
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 34197.68 184
131492.81 17892.03 18095.14 16495.33 25789.52 19496.04 25097.44 17087.72 27786.25 32595.33 23983.84 16598.79 17089.26 21397.05 15297.11 208
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35289.29 26497.87 9383.77 16699.69 5281.37 32896.69 16098.89 105
test_fmvs1_n92.73 18092.88 14792.29 29496.08 22381.05 34697.98 6197.08 20190.72 17996.79 6298.18 7063.07 36998.45 20497.62 2098.42 11097.36 198
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29190.62 18791.87 19197.15 14178.41 27098.57 19683.16 30897.60 13398.36 147
ACMP89.59 1092.62 18292.14 17794.05 22496.40 20388.20 23897.36 14297.25 19091.52 15088.30 28796.64 16878.46 26998.72 18191.86 16291.48 24795.23 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 18392.52 16792.44 28996.82 17381.89 33996.92 18093.71 35492.41 12884.30 34194.60 27185.08 14897.03 33491.51 17097.36 14198.40 143
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29192.07 9997.53 12398.11 7092.90 11689.56 25596.12 20083.16 17797.60 30489.30 21183.20 34795.75 257
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27799.10 13981.61 32294.06 21196.98 210
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27799.08 14481.40 32594.08 20796.48 225
jajsoiax92.42 18791.89 18694.03 22693.33 34288.50 22997.73 9597.53 15192.00 14288.85 27496.50 18275.62 30198.11 23893.88 12491.56 24595.48 266
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20796.98 210
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20796.48 225
test_vis1_n92.37 19092.26 17592.72 28494.75 29382.64 33098.02 5696.80 23191.18 16597.77 3797.93 8858.02 37798.29 21997.63 1998.21 11797.23 206
bld_raw_dy_0_6492.37 19091.69 19294.39 20794.28 31489.73 18597.71 10093.65 35592.78 12090.46 22396.67 16675.88 29697.97 26292.92 14690.89 26295.48 266
WR-MVS92.34 19291.53 19894.77 19195.13 27290.83 15196.40 22797.98 10091.88 14489.29 26495.54 23382.50 19697.80 28689.79 19985.27 31895.69 261
NR-MVSNet92.34 19291.27 20995.53 14894.95 27993.05 7097.39 13998.07 7992.65 12384.46 33995.71 22285.00 14997.77 29089.71 20083.52 34495.78 252
mvs_tets92.31 19491.76 18893.94 23493.41 33988.29 23397.63 11297.53 15192.04 14088.76 27796.45 18474.62 30998.09 24293.91 12291.48 24795.45 271
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 35691.52 20097.23 13687.94 10698.91 16371.31 37798.37 11198.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31492.32 36887.92 26693.43 15794.57 27277.28 28499.00 15589.42 20895.86 17497.86 174
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 26895.27 26185.52 29597.03 16996.63 24592.09 13889.11 27095.14 24780.33 23498.08 24387.54 25094.74 19696.03 241
IterMVS-LS92.29 19691.94 18493.34 26296.25 20986.97 27096.57 21797.05 20690.67 18289.50 25894.80 26286.59 12697.64 29989.91 19586.11 30895.40 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 19991.74 19193.73 24497.77 12183.69 32492.88 35696.72 23487.91 26793.00 16694.86 25878.51 26899.05 15186.53 26597.45 13998.47 135
VPNet92.23 20091.31 20694.99 17395.56 23990.96 14597.22 15897.86 11592.96 11490.96 21696.62 17775.06 30498.20 22591.90 15983.65 34395.80 250
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31692.08 13993.28 16194.00 30378.39 27199.04 15481.26 33094.18 20396.19 232
anonymousdsp92.16 20291.55 19793.97 23092.58 35589.55 19197.51 12497.42 17489.42 21988.40 28494.84 25980.66 22697.88 28091.87 16191.28 25294.48 327
XXY-MVS92.16 20291.23 21194.95 17894.75 29390.94 14697.47 13197.43 17389.14 22688.90 27196.43 18579.71 24598.24 22189.56 20587.68 29395.67 263
BH-w/o92.14 20491.75 18993.31 26396.99 16485.73 29295.67 26795.69 28688.73 24589.26 26694.82 26182.97 18598.07 24785.26 28896.32 16796.13 237
Anonymous20240521192.07 20590.83 22595.76 13198.19 9588.75 22097.58 11795.00 31986.00 30993.64 15097.45 12466.24 36099.53 9190.68 18692.71 22699.01 89
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33295.70 28486.30 30394.15 14094.97 25176.59 28899.21 12684.10 30096.86 15398.09 165
WR-MVS_H92.00 20791.35 20393.95 23295.09 27489.47 19598.04 5598.68 1391.46 15388.34 28594.68 26785.86 13997.56 30685.77 28184.24 33594.82 312
Anonymous2024052991.98 20890.73 22995.73 13698.14 9989.40 19997.99 6097.72 12879.63 37093.54 15397.41 12769.94 33999.56 8591.04 18091.11 25698.22 153
PatchmatchNetpermissive91.91 20991.35 20393.59 25295.38 24984.11 31793.15 35195.39 29989.54 21492.10 18793.68 31582.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 21091.24 21093.82 24095.05 27588.57 22597.82 8698.19 5591.70 14788.21 29195.76 22081.96 20797.52 31287.86 23684.65 32795.37 278
SCA91.84 21191.18 21493.83 23995.59 23784.95 30894.72 30095.58 29390.82 17492.25 18293.69 31375.80 29898.10 23986.20 27195.98 17098.45 137
FMVSNet391.78 21290.69 23195.03 17196.53 19592.27 9397.02 17196.93 21789.79 20989.35 26194.65 26977.01 28597.47 31586.12 27488.82 28295.35 279
AUN-MVS91.76 21390.75 22894.81 18697.00 16388.57 22596.65 20596.49 25289.63 21192.15 18496.12 20078.66 26698.50 20090.83 18179.18 36497.36 198
X-MVStestdata91.71 21489.67 27397.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39991.70 4899.80 3095.66 7599.40 5099.62 18
MVS91.71 21490.44 23895.51 14995.20 26791.59 11696.04 25097.45 16673.44 38487.36 30895.60 22985.42 14499.10 13985.97 27897.46 13595.83 247
EPNet_dtu91.71 21491.28 20892.99 27493.76 32783.71 32396.69 20195.28 30693.15 10287.02 31595.95 20783.37 17497.38 32379.46 34196.84 15497.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 21790.86 22193.94 23494.33 31086.32 28395.92 25791.64 37489.37 22086.94 31894.69 26681.62 21498.69 18388.64 22894.57 19896.81 217
test250691.60 21890.78 22694.04 22597.66 12783.81 32098.27 3375.53 40293.43 8995.23 11998.21 6767.21 35299.07 14893.01 14498.49 10599.25 68
miper_ehance_all_eth91.59 21991.13 21592.97 27595.55 24086.57 28094.47 30896.88 22587.77 27488.88 27394.01 30286.22 13397.54 30889.49 20686.93 30094.79 317
v2v48291.59 21990.85 22393.80 24193.87 32488.17 24096.94 17996.88 22589.54 21489.53 25694.90 25681.70 21398.02 25589.25 21485.04 32495.20 290
V4291.58 22190.87 22093.73 24494.05 31988.50 22997.32 14796.97 21388.80 24389.71 24894.33 28582.54 19598.05 25089.01 22085.07 32294.64 325
PCF-MVS89.48 1191.56 22289.95 26196.36 9896.60 18692.52 8492.51 36197.26 18879.41 37188.90 27196.56 17984.04 16499.55 8777.01 35597.30 14597.01 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 22390.84 22493.69 24894.96 27888.28 23497.84 8398.24 4791.46 15388.04 29595.80 21579.67 24697.48 31487.02 26184.54 33295.31 282
miper_enhance_ethall91.54 22491.01 21793.15 26995.35 25387.07 26893.97 32796.90 22286.79 29689.17 26893.43 32586.55 12897.64 29989.97 19486.93 30094.74 321
PAPM91.52 22590.30 24495.20 16195.30 26089.83 18293.38 34796.85 22886.26 30588.59 28095.80 21584.88 15098.15 23075.67 36095.93 17297.63 185
ET-MVSNet_ETH3D91.49 22690.11 25495.63 14196.40 20391.57 11895.34 28293.48 35790.60 19075.58 37895.49 23580.08 23896.79 34394.25 11589.76 27598.52 127
TR-MVS91.48 22790.59 23494.16 21996.40 20387.33 25795.67 26795.34 30587.68 27891.46 20295.52 23476.77 28798.35 21482.85 31393.61 21796.79 218
tpmrst91.44 22891.32 20591.79 30895.15 27079.20 36893.42 34695.37 30188.55 25093.49 15593.67 31682.49 19798.27 22090.41 18789.34 27997.90 171
test-LLR91.42 22991.19 21392.12 29894.59 30080.66 34994.29 31992.98 36091.11 16890.76 21992.37 33979.02 25998.07 24788.81 22496.74 15797.63 185
MSDG91.42 22990.24 24894.96 17797.15 15088.91 21793.69 33996.32 25985.72 31386.93 31996.47 18380.24 23598.98 15780.57 33295.05 19096.98 210
c3_l91.38 23190.89 21992.88 27995.58 23886.30 28494.68 30196.84 22988.17 26088.83 27694.23 29385.65 14297.47 31589.36 20984.63 32894.89 307
GA-MVS91.38 23190.31 24394.59 19694.65 29887.62 25594.34 31596.19 26790.73 17890.35 22693.83 30771.84 32497.96 26787.22 25693.61 21798.21 154
v114491.37 23390.60 23393.68 24993.89 32388.23 23796.84 18797.03 21088.37 25589.69 25094.39 28182.04 20597.98 25987.80 23885.37 31594.84 309
GBi-Net91.35 23490.27 24694.59 19696.51 19691.18 13797.50 12596.93 21788.82 24089.35 26194.51 27473.87 31397.29 32786.12 27488.82 28295.31 282
test191.35 23490.27 24694.59 19696.51 19691.18 13797.50 12596.93 21788.82 24089.35 26194.51 27473.87 31397.29 32786.12 27488.82 28295.31 282
UniMVSNet_ETH3D91.34 23690.22 25194.68 19494.86 28787.86 25097.23 15797.46 16187.99 26489.90 24396.92 15366.35 35898.23 22290.30 19090.99 25997.96 168
FMVSNet291.31 23790.08 25594.99 17396.51 19692.21 9497.41 13496.95 21588.82 24088.62 27994.75 26473.87 31397.42 32085.20 28988.55 28795.35 279
D2MVS91.30 23890.95 21892.35 29194.71 29685.52 29596.18 24598.21 5188.89 23686.60 32293.82 30979.92 24297.95 27089.29 21290.95 26093.56 345
v891.29 23990.53 23793.57 25494.15 31588.12 24297.34 14497.06 20588.99 23188.32 28694.26 29283.08 18098.01 25687.62 24883.92 34094.57 326
CVMVSNet91.23 24091.75 18989.67 34395.77 23174.69 37896.44 21994.88 32685.81 31192.18 18397.64 11479.07 25695.58 36288.06 23395.86 17498.74 115
cl2291.21 24190.56 23693.14 27096.09 22286.80 27294.41 31296.58 24887.80 27288.58 28193.99 30480.85 22597.62 30289.87 19786.93 30094.99 298
PEN-MVS91.20 24290.44 23893.48 25794.49 30487.91 24997.76 9198.18 5791.29 15887.78 29995.74 22180.35 23397.33 32585.46 28582.96 34895.19 293
Baseline_NR-MVSNet91.20 24290.62 23292.95 27693.83 32588.03 24497.01 17495.12 31588.42 25489.70 24995.13 24883.47 17197.44 31889.66 20383.24 34693.37 349
cascas91.20 24290.08 25594.58 20094.97 27789.16 21393.65 34197.59 14479.90 36989.40 25992.92 33075.36 30298.36 21392.14 15494.75 19596.23 229
CostFormer91.18 24590.70 23092.62 28894.84 28881.76 34094.09 32594.43 33684.15 33592.72 17393.77 31179.43 25098.20 22590.70 18592.18 23597.90 171
tt080591.09 24690.07 25894.16 21995.61 23688.31 23297.56 11996.51 25189.56 21389.17 26895.64 22767.08 35698.38 21291.07 17988.44 28895.80 250
v119291.07 24790.23 24993.58 25393.70 32887.82 25296.73 19597.07 20387.77 27489.58 25394.32 28780.90 22497.97 26286.52 26685.48 31394.95 299
v14419291.06 24890.28 24593.39 26093.66 33187.23 26396.83 18897.07 20387.43 28389.69 25094.28 28981.48 21598.00 25787.18 25884.92 32694.93 303
v1091.04 24990.23 24993.49 25694.12 31688.16 24197.32 14797.08 20188.26 25888.29 28894.22 29582.17 20497.97 26286.45 26884.12 33694.33 333
eth_miper_zixun_eth91.02 25090.59 23492.34 29395.33 25784.35 31394.10 32496.90 22288.56 24988.84 27594.33 28584.08 16397.60 30488.77 22684.37 33495.06 296
v14890.99 25190.38 24092.81 28293.83 32585.80 29196.78 19296.68 23989.45 21888.75 27893.93 30682.96 18697.82 28587.83 23783.25 34594.80 315
LTVRE_ROB88.41 1390.99 25189.92 26394.19 21796.18 21389.55 19196.31 23597.09 20087.88 26885.67 32995.91 20978.79 26598.57 19681.50 32389.98 27294.44 330
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 25390.33 24192.88 27995.36 25286.19 28894.46 31096.63 24587.82 27088.18 29294.23 29382.99 18397.53 31087.72 23985.57 31294.93 303
cl____90.96 25490.32 24292.89 27895.37 25186.21 28794.46 31096.64 24287.82 27088.15 29394.18 29682.98 18497.54 30887.70 24285.59 31194.92 305
pmmvs490.93 25589.85 26594.17 21893.34 34190.79 15394.60 30396.02 27184.62 33087.45 30495.15 24681.88 21097.45 31787.70 24287.87 29294.27 337
XVG-ACMP-BASELINE90.93 25590.21 25293.09 27194.31 31285.89 29095.33 28397.26 18891.06 17089.38 26095.44 23768.61 34498.60 19289.46 20791.05 25794.79 317
v192192090.85 25790.03 26093.29 26493.55 33286.96 27196.74 19497.04 20887.36 28589.52 25794.34 28480.23 23697.97 26286.27 26985.21 31994.94 301
CR-MVSNet90.82 25889.77 26993.95 23294.45 30687.19 26490.23 37695.68 28886.89 29492.40 17592.36 34280.91 22297.05 33381.09 33193.95 21297.60 190
v7n90.76 25989.86 26493.45 25993.54 33387.60 25697.70 10297.37 17988.85 23787.65 30194.08 30181.08 21998.10 23984.68 29483.79 34294.66 324
RPSCF90.75 26090.86 22190.42 33596.84 16976.29 37695.61 27296.34 25883.89 33891.38 20397.87 9376.45 29098.78 17187.16 25992.23 23296.20 231
MVP-Stereo90.74 26190.08 25592.71 28593.19 34488.20 23895.86 26096.27 26186.07 30884.86 33794.76 26377.84 28097.75 29183.88 30598.01 12392.17 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 26289.65 27593.96 23194.29 31389.63 18697.79 9096.82 23089.07 22786.12 32795.48 23678.61 26797.78 28886.97 26281.67 35394.46 328
v124090.70 26389.85 26593.23 26693.51 33586.80 27296.61 21197.02 21187.16 29089.58 25394.31 28879.55 24997.98 25985.52 28485.44 31494.90 306
EPMVS90.70 26389.81 26793.37 26194.73 29584.21 31593.67 34088.02 38889.50 21692.38 17793.49 32177.82 28197.78 28886.03 27792.68 22798.11 164
Anonymous2023121190.63 26589.42 27994.27 21698.24 8789.19 21298.05 5497.89 10779.95 36888.25 29094.96 25272.56 32298.13 23289.70 20185.14 32095.49 265
DTE-MVSNet90.56 26689.75 27193.01 27393.95 32087.25 26197.64 11097.65 13690.74 17787.12 31195.68 22579.97 24197.00 33783.33 30781.66 35494.78 319
ACMH87.59 1690.53 26789.42 27993.87 23896.21 21087.92 24797.24 15396.94 21688.45 25383.91 34996.27 19371.92 32398.62 19184.43 29789.43 27895.05 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 26889.14 28694.67 19596.81 17487.85 25195.91 25893.97 34889.71 21092.34 18092.48 33765.41 36497.96 26781.37 32894.27 20198.21 154
OurMVSNet-221017-090.51 26990.19 25391.44 31793.41 33981.25 34396.98 17696.28 26091.68 14886.55 32396.30 19174.20 31297.98 25988.96 22287.40 29895.09 294
miper_lstm_enhance90.50 27090.06 25991.83 30595.33 25783.74 32193.86 33396.70 23887.56 28187.79 29893.81 31083.45 17396.92 33987.39 25284.62 32994.82 312
COLMAP_ROBcopyleft87.81 1590.40 27189.28 28293.79 24297.95 11087.13 26796.92 18095.89 27782.83 34986.88 32197.18 13873.77 31699.29 12178.44 34693.62 21694.95 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 27288.96 28894.35 20996.54 19487.29 25895.50 27693.84 35290.97 17291.75 19592.96 32962.18 37398.00 25782.86 31194.08 20797.76 180
IterMVS-SCA-FT90.31 27289.81 26791.82 30695.52 24184.20 31694.30 31896.15 26890.61 18887.39 30794.27 29075.80 29896.44 34687.34 25386.88 30494.82 312
MS-PatchMatch90.27 27489.77 26991.78 30994.33 31084.72 31195.55 27396.73 23386.17 30786.36 32495.28 24271.28 32897.80 28684.09 30198.14 12192.81 355
tpm90.25 27589.74 27291.76 31193.92 32179.73 36293.98 32693.54 35688.28 25791.99 18993.25 32677.51 28397.44 31887.30 25587.94 29198.12 161
AllTest90.23 27688.98 28793.98 22897.94 11186.64 27696.51 21895.54 29485.38 31785.49 33196.77 15870.28 33499.15 13380.02 33692.87 22196.15 235
dmvs_re90.21 27789.50 27892.35 29195.47 24685.15 30395.70 26694.37 33990.94 17388.42 28393.57 31974.63 30895.67 35982.80 31489.57 27796.22 230
ACMH+87.92 1490.20 27889.18 28493.25 26596.48 19986.45 28196.99 17596.68 23988.83 23984.79 33896.22 19570.16 33698.53 19884.42 29888.04 29094.77 320
test-mter90.19 27989.54 27792.12 29894.59 30080.66 34994.29 31992.98 36087.68 27890.76 21992.37 33967.67 34898.07 24788.81 22496.74 15797.63 185
IterMVS90.15 28089.67 27391.61 31395.48 24383.72 32294.33 31696.12 26989.99 20287.31 31094.15 29875.78 30096.27 34986.97 26286.89 30394.83 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 28189.42 27991.97 30194.41 30880.62 35194.29 31991.97 37287.28 28890.44 22492.47 33868.79 34397.67 29688.50 23096.60 16297.61 189
tpm289.96 28289.21 28392.23 29794.91 28481.25 34393.78 33594.42 33780.62 36691.56 19993.44 32376.44 29197.94 27185.60 28392.08 23997.49 194
IB-MVS87.33 1789.91 28388.28 29794.79 19095.26 26487.70 25495.12 29493.95 34989.35 22187.03 31492.49 33670.74 33299.19 12889.18 21881.37 35597.49 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 28488.68 29293.53 25595.86 22684.89 30990.93 37195.07 31783.23 34791.28 21291.81 35179.01 26197.85 28179.52 33891.39 25097.84 175
WB-MVSnew89.88 28589.56 27690.82 32794.57 30383.06 32895.65 27092.85 36287.86 26990.83 21894.10 29979.66 24796.88 34076.34 35694.19 20292.54 360
FMVSNet189.88 28588.31 29694.59 19695.41 24791.18 13797.50 12596.93 21786.62 29887.41 30694.51 27465.94 36297.29 32783.04 31087.43 29695.31 282
pmmvs589.86 28788.87 29092.82 28192.86 34886.23 28696.26 23895.39 29984.24 33487.12 31194.51 27474.27 31197.36 32487.61 24987.57 29494.86 308
tpmvs89.83 28889.15 28591.89 30394.92 28280.30 35693.11 35295.46 29886.28 30488.08 29492.65 33280.44 23198.52 19981.47 32489.92 27396.84 216
test_fmvs289.77 28989.93 26289.31 34793.68 33076.37 37597.64 11095.90 27589.84 20791.49 20196.26 19458.77 37697.10 33194.65 10891.13 25594.46 328
tfpnnormal89.70 29088.40 29593.60 25195.15 27090.10 17297.56 11998.16 6187.28 28886.16 32694.63 27077.57 28298.05 25074.48 36484.59 33092.65 358
ADS-MVSNet289.45 29188.59 29392.03 30095.86 22682.26 33690.93 37194.32 34283.23 34791.28 21291.81 35179.01 26195.99 35179.52 33891.39 25097.84 175
Patchmatch-test89.42 29287.99 29993.70 24795.27 26185.11 30488.98 38294.37 33981.11 36087.10 31393.69 31382.28 20197.50 31374.37 36694.76 19498.48 134
test0.0.03 189.37 29388.70 29191.41 31892.47 35785.63 29395.22 29192.70 36591.11 16886.91 32093.65 31779.02 25993.19 38278.00 34889.18 28095.41 272
SixPastTwentyTwo89.15 29488.54 29490.98 32493.49 33680.28 35796.70 19994.70 33090.78 17584.15 34495.57 23071.78 32597.71 29484.63 29585.07 32294.94 301
RPMNet88.98 29587.05 30994.77 19194.45 30687.19 26490.23 37698.03 9177.87 37892.40 17587.55 38180.17 23799.51 9668.84 38293.95 21297.60 190
TransMVSNet (Re)88.94 29687.56 30293.08 27294.35 30988.45 23197.73 9595.23 31087.47 28284.26 34295.29 24079.86 24397.33 32579.44 34274.44 37693.45 348
USDC88.94 29687.83 30192.27 29594.66 29784.96 30793.86 33395.90 27587.34 28683.40 35195.56 23167.43 35098.19 22782.64 31889.67 27693.66 344
dp88.90 29888.26 29890.81 32894.58 30276.62 37492.85 35794.93 32385.12 32390.07 24093.07 32775.81 29798.12 23780.53 33387.42 29797.71 182
PatchT88.87 29987.42 30393.22 26794.08 31885.10 30589.51 38094.64 33381.92 35592.36 17888.15 37780.05 23997.01 33672.43 37393.65 21597.54 193
our_test_388.78 30087.98 30091.20 32292.45 35882.53 33293.61 34395.69 28685.77 31284.88 33693.71 31279.99 24096.78 34479.47 34086.24 30594.28 336
EU-MVSNet88.72 30188.90 28988.20 35193.15 34574.21 37996.63 21094.22 34385.18 32187.32 30995.97 20576.16 29494.98 36785.27 28786.17 30695.41 272
Patchmtry88.64 30287.25 30592.78 28394.09 31786.64 27689.82 37995.68 28880.81 36487.63 30292.36 34280.91 22297.03 33478.86 34485.12 32194.67 323
MIMVSNet88.50 30386.76 31393.72 24694.84 28887.77 25391.39 36694.05 34586.41 30287.99 29692.59 33563.27 36895.82 35677.44 34992.84 22397.57 192
tpm cat188.36 30487.21 30791.81 30795.13 27280.55 35292.58 36095.70 28474.97 38187.45 30491.96 34978.01 27998.17 22980.39 33488.74 28596.72 220
ppachtmachnet_test88.35 30587.29 30491.53 31492.45 35883.57 32593.75 33695.97 27284.28 33385.32 33494.18 29679.00 26396.93 33875.71 35984.99 32594.10 338
JIA-IIPM88.26 30687.04 31091.91 30293.52 33481.42 34289.38 38194.38 33880.84 36390.93 21780.74 38879.22 25497.92 27582.76 31591.62 24396.38 228
testgi87.97 30787.21 30790.24 33792.86 34880.76 34796.67 20494.97 32191.74 14685.52 33095.83 21362.66 37194.47 37176.25 35788.36 28995.48 266
LF4IMVS87.94 30887.25 30589.98 34092.38 36080.05 36094.38 31395.25 30987.59 28084.34 34094.74 26564.31 36697.66 29884.83 29187.45 29592.23 364
gg-mvs-nofinetune87.82 30985.61 32194.44 20494.46 30589.27 20891.21 37084.61 39680.88 36289.89 24574.98 39071.50 32697.53 31085.75 28297.21 14896.51 223
pmmvs687.81 31086.19 31792.69 28691.32 36586.30 28497.34 14496.41 25680.59 36784.05 34894.37 28367.37 35197.67 29684.75 29379.51 36394.09 340
testing387.67 31186.88 31290.05 33996.14 21880.71 34897.10 16792.85 36290.15 19987.54 30394.55 27355.70 38294.10 37473.77 36994.10 20695.35 279
K. test v387.64 31286.75 31490.32 33693.02 34779.48 36696.61 21192.08 37190.66 18480.25 36794.09 30067.21 35296.65 34585.96 27980.83 35794.83 310
Patchmatch-RL test87.38 31386.24 31690.81 32888.74 38178.40 37288.12 38693.17 35987.11 29182.17 35889.29 36981.95 20895.60 36188.64 22877.02 36998.41 142
FMVSNet587.29 31485.79 32091.78 30994.80 29087.28 25995.49 27795.28 30684.09 33683.85 35091.82 35062.95 37094.17 37378.48 34585.34 31793.91 342
myMVS_eth3d87.18 31586.38 31589.58 34495.16 26879.53 36395.00 29593.93 35088.55 25086.96 31691.99 34756.23 38194.00 37575.47 36294.11 20495.20 290
Syy-MVS87.13 31687.02 31187.47 35495.16 26873.21 38295.00 29593.93 35088.55 25086.96 31691.99 34775.90 29594.00 37561.59 38894.11 20495.20 290
Anonymous2023120687.09 31786.14 31889.93 34191.22 36680.35 35496.11 24795.35 30283.57 34484.16 34393.02 32873.54 31895.61 36072.16 37486.14 30793.84 343
EG-PatchMatch MVS87.02 31885.44 32291.76 31192.67 35285.00 30696.08 24996.45 25483.41 34679.52 36993.49 32157.10 37997.72 29379.34 34390.87 26392.56 359
TinyColmap86.82 31985.35 32591.21 32194.91 28482.99 32993.94 32994.02 34783.58 34381.56 35994.68 26762.34 37298.13 23275.78 35887.35 29992.52 361
TDRefinement86.53 32084.76 33191.85 30482.23 39384.25 31496.38 22995.35 30284.97 32684.09 34694.94 25365.76 36398.34 21784.60 29674.52 37592.97 352
test_040286.46 32184.79 33091.45 31695.02 27685.55 29496.29 23794.89 32580.90 36182.21 35793.97 30568.21 34797.29 32762.98 38688.68 28691.51 371
Anonymous2024052186.42 32285.44 32289.34 34690.33 37079.79 36196.73 19595.92 27383.71 34283.25 35291.36 35563.92 36796.01 35078.39 34785.36 31692.22 365
DSMNet-mixed86.34 32386.12 31987.00 35889.88 37470.43 38494.93 29790.08 38277.97 37785.42 33392.78 33174.44 31093.96 37774.43 36595.14 18696.62 221
CL-MVSNet_self_test86.31 32485.15 32689.80 34288.83 38081.74 34193.93 33096.22 26486.67 29785.03 33590.80 35878.09 27694.50 36974.92 36371.86 38193.15 351
pmmvs-eth3d86.22 32584.45 33291.53 31488.34 38287.25 26194.47 30895.01 31883.47 34579.51 37089.61 36769.75 34095.71 35783.13 30976.73 37291.64 368
test_vis1_rt86.16 32685.06 32789.46 34593.47 33880.46 35396.41 22386.61 39385.22 32079.15 37188.64 37252.41 38597.06 33293.08 13990.57 26590.87 376
test20.0386.14 32785.40 32488.35 34990.12 37180.06 35995.90 25995.20 31188.59 24681.29 36093.62 31871.43 32792.65 38371.26 37881.17 35692.34 363
UnsupCasMVSNet_eth85.99 32884.45 33290.62 33289.97 37382.40 33593.62 34297.37 17989.86 20478.59 37392.37 33965.25 36595.35 36682.27 32070.75 38294.10 338
KD-MVS_self_test85.95 32984.95 32888.96 34889.55 37779.11 36995.13 29396.42 25585.91 31084.07 34790.48 35970.03 33894.82 36880.04 33572.94 37992.94 353
YYNet185.87 33084.23 33490.78 33192.38 36082.46 33493.17 34995.14 31482.12 35467.69 38492.36 34278.16 27595.50 36477.31 35179.73 36194.39 331
MDA-MVSNet_test_wron85.87 33084.23 33490.80 33092.38 36082.57 33193.17 34995.15 31382.15 35367.65 38592.33 34578.20 27295.51 36377.33 35079.74 36094.31 335
CMPMVSbinary62.92 2185.62 33284.92 32987.74 35389.14 37873.12 38394.17 32296.80 23173.98 38273.65 38194.93 25466.36 35797.61 30383.95 30491.28 25292.48 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 33383.64 33690.92 32595.27 26179.49 36590.55 37495.60 29183.76 34183.00 35589.95 36471.09 32997.97 26282.75 31660.79 39495.31 282
MDA-MVSNet-bldmvs85.00 33482.95 33991.17 32393.13 34683.33 32694.56 30595.00 31984.57 33165.13 38992.65 33270.45 33395.85 35473.57 37077.49 36894.33 333
MIMVSNet184.93 33583.05 33790.56 33389.56 37684.84 31095.40 28095.35 30283.91 33780.38 36592.21 34657.23 37893.34 38170.69 38082.75 35193.50 346
KD-MVS_2432*160084.81 33682.64 34091.31 31991.07 36785.34 30191.22 36895.75 28285.56 31583.09 35390.21 36267.21 35295.89 35277.18 35362.48 39292.69 356
miper_refine_blended84.81 33682.64 34091.31 31991.07 36785.34 30191.22 36895.75 28285.56 31583.09 35390.21 36267.21 35295.89 35277.18 35362.48 39292.69 356
OpenMVS_ROBcopyleft81.14 2084.42 33882.28 34490.83 32690.06 37284.05 31995.73 26594.04 34673.89 38380.17 36891.53 35459.15 37597.64 29966.92 38489.05 28190.80 377
mvsany_test383.59 33982.44 34387.03 35783.80 38973.82 38093.70 33790.92 38086.42 30182.51 35690.26 36146.76 38895.71 35790.82 18276.76 37191.57 370
PM-MVS83.48 34081.86 34688.31 35087.83 38477.59 37393.43 34591.75 37386.91 29380.63 36389.91 36544.42 38995.84 35585.17 29076.73 37291.50 372
test_fmvs383.21 34183.02 33883.78 36386.77 38668.34 38996.76 19394.91 32486.49 30084.14 34589.48 36836.04 39391.73 38591.86 16280.77 35891.26 375
new-patchmatchnet83.18 34281.87 34587.11 35686.88 38575.99 37793.70 33795.18 31285.02 32577.30 37688.40 37465.99 36193.88 37874.19 36870.18 38391.47 373
new_pmnet82.89 34381.12 34888.18 35289.63 37580.18 35891.77 36592.57 36676.79 38075.56 37988.23 37661.22 37494.48 37071.43 37682.92 34989.87 380
MVS-HIRNet82.47 34481.21 34786.26 36095.38 24969.21 38788.96 38389.49 38366.28 38780.79 36274.08 39268.48 34597.39 32271.93 37595.47 18192.18 366
UnsupCasMVSNet_bld82.13 34579.46 35090.14 33888.00 38382.47 33390.89 37396.62 24778.94 37375.61 37784.40 38656.63 38096.31 34877.30 35266.77 38991.63 369
dmvs_testset81.38 34682.60 34277.73 36991.74 36451.49 40293.03 35484.21 39789.07 22778.28 37491.25 35676.97 28688.53 39256.57 39282.24 35293.16 350
test_f80.57 34779.62 34983.41 36483.38 39167.80 39193.57 34493.72 35380.80 36577.91 37587.63 38033.40 39492.08 38487.14 26079.04 36690.34 379
pmmvs379.97 34877.50 35387.39 35582.80 39279.38 36792.70 35990.75 38170.69 38578.66 37287.47 38251.34 38693.40 38073.39 37169.65 38489.38 381
APD_test179.31 34977.70 35284.14 36289.11 37969.07 38892.36 36491.50 37569.07 38673.87 38092.63 33439.93 39194.32 37270.54 38180.25 35989.02 382
N_pmnet78.73 35078.71 35178.79 36892.80 35046.50 40594.14 32343.71 40778.61 37480.83 36191.66 35374.94 30696.36 34767.24 38384.45 33393.50 346
WB-MVS76.77 35176.63 35477.18 37085.32 38756.82 40094.53 30689.39 38482.66 35171.35 38289.18 37075.03 30588.88 39035.42 39866.79 38885.84 384
SSC-MVS76.05 35275.83 35576.72 37484.77 38856.22 40194.32 31788.96 38681.82 35770.52 38388.91 37174.79 30788.71 39133.69 39964.71 39085.23 385
test_vis3_rt72.73 35370.55 35679.27 36780.02 39468.13 39093.92 33174.30 40476.90 37958.99 39373.58 39320.29 40295.37 36584.16 29972.80 38074.31 392
LCM-MVSNet72.55 35469.39 35882.03 36570.81 40365.42 39490.12 37894.36 34155.02 39365.88 38781.72 38724.16 40189.96 38674.32 36768.10 38790.71 378
FPMVS71.27 35569.85 35775.50 37574.64 39859.03 39891.30 36791.50 37558.80 39057.92 39488.28 37529.98 39785.53 39553.43 39382.84 35081.95 388
PMMVS270.19 35666.92 35980.01 36676.35 39765.67 39386.22 38787.58 39064.83 38962.38 39080.29 38926.78 39988.49 39363.79 38554.07 39585.88 383
testf169.31 35766.76 36076.94 37278.61 39561.93 39688.27 38486.11 39455.62 39159.69 39185.31 38420.19 40389.32 38757.62 38969.44 38579.58 389
APD_test269.31 35766.76 36076.94 37278.61 39561.93 39688.27 38486.11 39455.62 39159.69 39185.31 38420.19 40389.32 38757.62 38969.44 38579.58 389
EGC-MVSNET68.77 35963.01 36486.07 36192.49 35682.24 33793.96 32890.96 3790.71 4042.62 40590.89 35753.66 38393.46 37957.25 39184.55 33182.51 387
Gipumacopyleft67.86 36065.41 36275.18 37692.66 35373.45 38166.50 39594.52 33553.33 39457.80 39566.07 39530.81 39589.20 38948.15 39578.88 36762.90 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36164.89 36369.79 37872.62 40135.23 40965.19 39692.83 36420.35 39965.20 38888.08 37843.14 39082.70 39673.12 37263.46 39191.45 374
ANet_high63.94 36259.58 36577.02 37161.24 40566.06 39285.66 38987.93 38978.53 37542.94 39771.04 39425.42 40080.71 39752.60 39430.83 39884.28 386
PMVScopyleft53.92 2258.58 36355.40 36668.12 37951.00 40648.64 40378.86 39287.10 39246.77 39535.84 40174.28 3918.76 40586.34 39442.07 39673.91 37769.38 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 36452.56 36855.43 38174.43 39947.13 40483.63 39176.30 40142.23 39642.59 39862.22 39728.57 39874.40 39931.53 40031.51 39744.78 396
MVEpermissive50.73 2353.25 36548.81 37066.58 38065.34 40457.50 39972.49 39470.94 40540.15 39839.28 40063.51 3966.89 40773.48 40138.29 39742.38 39668.76 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 36651.31 36954.39 38272.62 40145.39 40683.84 39075.51 40341.13 39740.77 39959.65 39830.08 39673.60 40028.31 40129.90 39944.18 397
tmp_tt51.94 36753.82 36746.29 38333.73 40745.30 40778.32 39367.24 40618.02 40050.93 39687.05 38352.99 38453.11 40270.76 37925.29 40040.46 398
wuyk23d25.11 36824.57 37226.74 38473.98 40039.89 40857.88 3979.80 40812.27 40110.39 4026.97 4047.03 40636.44 40325.43 40217.39 4013.89 401
cdsmvs_eth3d_5k23.24 36930.99 3710.00 3870.00 4100.00 4120.00 39897.63 1400.00 4050.00 40696.88 15584.38 1570.00 4060.00 4050.00 4040.00 402
testmvs13.36 37016.33 3734.48 3865.04 4082.26 41193.18 3483.28 4092.70 4028.24 40321.66 4002.29 4092.19 4047.58 4032.96 4029.00 400
test12313.04 37115.66 3745.18 3854.51 4093.45 41092.50 3621.81 4102.50 4037.58 40420.15 4013.67 4082.18 4057.13 4041.07 4039.90 399
ab-mvs-re8.06 37210.74 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40696.69 1640.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas7.39 3739.85 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40588.65 950.00 4060.00 4050.00 4040.00 402
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS79.53 36375.56 361
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 17698.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 410
eth-test0.00 410
ZD-MVS99.05 3994.59 2998.08 7489.22 22497.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19598.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
ambc86.56 35983.60 39070.00 38685.69 38894.97 32180.60 36488.45 37337.42 39296.84 34282.69 31775.44 37492.86 354
MTGPAbinary98.08 74
test_post192.81 35816.58 40380.53 22997.68 29586.20 271
test_post17.58 40281.76 21198.08 243
patchmatchnet-post90.45 36082.65 19498.10 239
GG-mvs-BLEND93.62 25093.69 32989.20 21092.39 36383.33 39887.98 29789.84 36671.00 33096.87 34182.08 32195.40 18394.80 315
MTMP97.86 7982.03 399
gm-plane-assit93.22 34378.89 37184.82 32893.52 32098.64 18887.72 239
test9_res94.81 10399.38 5399.45 47
TEST998.70 5694.19 4096.41 22398.02 9488.17 26096.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 24795.98 9997.55 12392.73 3199.58 77
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
TestCases93.98 22897.94 11186.64 27695.54 29485.38 31785.49 33196.77 15870.28 33499.15 13380.02 33692.87 22196.15 235
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25681.66 35897.34 4898.82 16892.26 149
新几何295.79 263
新几何197.32 5198.60 6593.59 5697.75 12381.58 35995.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26397.87 11183.87 34099.65 5887.68 24598.89 105
原ACMM295.67 267
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28495.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
test22298.24 8792.21 9495.33 28397.60 14279.22 37295.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata95.46 15598.18 9788.90 21897.66 13482.73 35097.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
testdata195.26 29093.10 105
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
plane_prior796.21 21089.98 178
plane_prior696.10 22190.00 17481.32 217
plane_prior597.51 15398.60 19293.02 14292.23 23295.86 243
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 205
plane_prior297.74 9394.85 34
plane_prior196.14 218
plane_prior89.99 17697.24 15394.06 6592.16 236
n20.00 411
nn0.00 411
door-mid91.06 378
lessismore_v090.45 33491.96 36379.09 37087.19 39180.32 36694.39 28166.31 35997.55 30784.00 30376.84 37094.70 322
LGP-MVS_train94.10 22196.16 21588.26 23597.46 16191.29 15890.12 23597.16 13979.05 25798.73 17892.25 15191.89 24095.31 282
test1197.88 109
door91.13 377
HQP5-MVS89.33 203
HQP-NCC95.86 22696.65 20593.55 8090.14 229
ACMP_Plane95.86 22696.65 20593.55 8090.14 229
BP-MVS92.13 155
HQP4-MVS90.14 22998.50 20095.78 252
HQP3-MVS97.39 17692.10 237
HQP2-MVS80.95 220
NP-MVS95.99 22589.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38593.10 35383.88 33993.55 15282.47 19886.25 27098.38 145
MDTV_nov1_ep1390.76 22795.22 26580.33 35593.03 35495.28 30688.14 26292.84 17293.83 30781.34 21698.08 24382.86 31194.34 200
ACMMP++_ref90.30 270
ACMMP++91.02 258
Test By Simon88.73 94
ITE_SJBPF92.43 29095.34 25485.37 30095.92 27391.47 15287.75 30096.39 18871.00 33097.96 26782.36 31989.86 27493.97 341
DeepMVS_CXcopyleft74.68 37790.84 36964.34 39581.61 40065.34 38867.47 38688.01 37948.60 38780.13 39862.33 38773.68 37879.58 389