This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32096.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19198.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23392.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29896.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20497.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 195
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18295.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27896.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19196.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24190.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
dcpmvs_296.37 5997.05 2294.31 21298.96 4684.11 31697.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24696.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 35191.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22993.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 29196.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28797.62 14190.43 19495.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25595.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27295.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 28198.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28497.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 232
MVSFormer95.37 8295.16 8395.99 12496.34 20491.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27494.07 11799.05 8398.85 108
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27897.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 232
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19694.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
diffmvspermissive95.25 8695.13 8495.63 14196.43 20089.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 18094.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
EPNet95.20 8994.56 9797.14 6392.80 34892.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26698.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 237
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 237
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 237
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
lupinMVS94.99 9694.56 9796.29 10496.34 20491.21 13395.83 26096.27 26188.93 23496.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27798.36 2488.84 23794.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
jason94.84 10194.39 10696.18 11295.52 23990.93 14796.09 24896.52 25089.28 22196.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22494.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 221
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18894.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23394.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
test_cas_vis1_n_192094.48 10794.55 10094.28 21496.78 17386.45 28097.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 201
CANet_DTU94.37 10893.65 11796.55 7896.46 19892.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18398.45 10997.82 177
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20392.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 182
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 20091.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26293.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27297.71 13288.99 23092.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25598.93 16094.61 11092.84 22297.28 202
test_vis1_n_192094.17 11394.58 9692.91 27697.42 14082.02 33797.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 196
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36098.29 150
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 29198.48 2185.60 31393.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27788.24 23197.97 12499.02 86
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21191.46 12396.33 23397.04 20888.97 23293.56 15196.51 18187.55 11397.89 27889.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28691.37 20396.71 16088.39 9999.52 9587.33 25497.13 15197.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12093.70 11595.27 15995.70 23192.03 10198.10 4998.68 1393.36 9390.39 22496.70 16287.63 11297.94 27092.25 15190.50 26795.84 245
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19794.36 13495.24 24488.02 10499.58 7793.44 13190.72 26394.36 331
nrg03094.05 12293.31 13496.27 10595.22 26394.59 2998.34 2797.46 16192.93 11591.21 21396.64 16887.23 12298.22 22394.99 9885.80 30995.98 241
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 12493.46 12795.64 14096.16 21390.45 16596.71 19896.89 22489.27 22293.46 15696.92 15387.29 12097.94 27088.70 22795.74 17698.53 126
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37593.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24191.45 12498.12 4898.71 1193.37 9190.23 22796.70 16287.66 11097.85 28091.49 17190.39 26895.83 246
mvsany_test193.93 12793.98 11093.78 24294.94 27986.80 27194.62 30192.55 36688.77 24396.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 226
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21692.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 27096.64 24289.05 22893.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28597.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22896.98 209
mvsmamba93.83 13193.46 12794.93 18194.88 28490.85 15098.55 1495.49 29794.24 6191.29 21096.97 14983.04 18298.14 23195.56 8691.17 25395.78 251
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34699.39 11196.31 4994.85 19198.71 118
mvs_anonymous93.82 13293.74 11494.06 22296.44 19985.41 29695.81 26197.05 20689.85 20690.09 23796.36 18987.44 11797.75 29093.97 11996.69 16099.02 86
HQP_MVS93.78 13493.43 13094.82 18496.21 20889.99 17697.74 9397.51 15394.85 3491.34 20496.64 16881.32 21798.60 19293.02 14292.23 23195.86 242
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 32089.28 20797.75 9297.56 14992.50 12689.94 24196.54 18088.65 9598.18 22893.83 12690.90 26095.86 242
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29897.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22796.92 213
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30398.49 1985.06 32393.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19696.64 16879.28 25398.13 23295.34 9091.49 24595.70 259
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35790.57 19196.29 8698.31 6069.00 34299.16 13294.18 11695.87 17399.12 80
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27590.49 22197.10 14385.21 14699.50 9986.70 26496.72 15997.63 184
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27997.45 16689.81 20893.22 16496.28 19279.62 24899.46 10390.74 18493.11 21998.50 130
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 32190.29 22698.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29796.21 26689.61 21194.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25891.30 20794.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36497.35 199
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 33188.27 28897.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25292.83 7497.17 16298.58 1792.98 11290.13 23295.80 21588.37 10097.85 28091.71 16683.93 33795.73 258
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29489.83 24596.69 16486.51 12999.14 13588.12 23293.67 21398.50 130
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24693.34 6497.39 13998.71 1193.14 10390.10 23694.83 26087.71 10998.03 25491.67 16983.99 33695.46 269
OPM-MVS93.28 15092.76 15194.82 18494.63 29790.77 15496.65 20597.18 19193.72 7591.68 19597.26 13479.33 25298.63 18992.13 15592.28 23095.07 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23192.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30895.75 256
test_fmvs193.21 15293.53 12292.25 29596.55 19181.20 34497.40 13896.96 21490.68 18196.80 6198.04 7969.25 34198.40 20797.58 2198.50 10497.16 206
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20795.96 20682.02 20698.05 25093.48 13090.55 26595.47 268
test111193.19 15492.82 14994.30 21397.58 13684.56 31198.21 4389.02 38493.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29698.21 4388.23 38693.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
HQP-MVS93.19 15492.74 15494.54 20195.86 22489.33 20396.65 20597.39 17693.55 8090.14 22895.87 21080.95 22098.50 20092.13 15592.10 23695.78 251
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19796.64 16876.35 29398.13 23295.43 8891.42 24895.68 261
CHOSEN 280x42093.12 15892.72 15694.34 21096.71 17987.27 25990.29 37497.72 12886.61 29891.34 20495.29 24084.29 16098.41 20693.25 13598.94 8997.35 199
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30398.65 18788.99 22192.84 22297.28 202
RRT_MVS93.10 15992.83 14893.93 23594.76 28988.04 24398.47 2296.55 24993.44 8890.01 24097.04 14680.64 22797.93 27394.33 11490.21 27095.83 246
Effi-MVS+-dtu93.08 16193.21 13792.68 28696.02 22283.25 32697.14 16596.72 23493.85 7291.20 21493.44 32383.08 18098.30 21891.69 16895.73 17796.50 223
test_djsdf93.07 16292.76 15194.00 22693.49 33488.70 22298.22 4197.57 14691.42 15590.08 23895.55 23282.85 18897.92 27494.07 11791.58 24395.40 274
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30595.79 10598.46 4267.59 34999.19 12894.92 9994.85 19198.47 135
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36890.16 19894.09 14196.41 18676.43 29299.05 15190.38 18895.68 17998.31 149
EI-MVSNet93.03 16492.88 14693.48 25695.77 22986.98 26896.44 21997.12 19690.66 18491.30 20797.64 11486.56 12798.05 25089.91 19590.55 26595.41 271
CLD-MVS92.98 16692.53 16594.32 21196.12 21889.20 21095.28 28597.47 15992.66 12289.90 24295.62 22880.58 22898.40 20792.73 14792.40 22995.38 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26597.97 6792.09 36990.63 18693.88 14797.01 14876.50 28999.06 15090.29 19195.45 18298.38 145
ACMM89.79 892.96 16792.50 16794.35 20896.30 20688.71 22197.58 11797.36 18191.40 15790.53 22096.65 16779.77 24498.75 17691.24 17791.64 24195.59 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 16992.56 16294.10 22096.16 21388.26 23597.65 10697.46 16191.29 15890.12 23497.16 13979.05 25798.73 17892.25 15191.89 23995.31 281
BH-untuned92.94 16992.62 16093.92 23697.22 14386.16 28896.40 22796.25 26390.06 20189.79 24696.17 19883.19 17698.35 21487.19 25797.27 14697.24 204
DU-MVS92.90 17192.04 17895.49 15194.95 27792.83 7497.16 16398.24 4793.02 10690.13 23295.71 22283.47 17197.85 28091.71 16683.93 33795.78 251
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28797.18 19187.96 26491.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 214
PMMVS92.86 17392.34 17194.42 20594.92 28086.73 27494.53 30596.38 25784.78 32894.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25292.73 7898.27 3398.12 6784.86 32685.78 32797.75 10378.89 26499.74 4187.50 25198.65 9896.73 218
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27496.64 24285.38 31689.65 25195.18 24585.86 13999.10 13987.70 24293.58 21898.49 132
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 34097.68 183
131492.81 17792.03 17995.14 16495.33 25589.52 19496.04 25097.44 17087.72 27686.25 32495.33 23983.84 16598.79 17089.26 21397.05 15297.11 207
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 35189.29 26397.87 9383.77 16699.69 5281.37 32896.69 16098.89 105
test_fmvs1_n92.73 17992.88 14692.29 29396.08 22181.05 34597.98 6197.08 20190.72 17996.79 6298.18 7063.07 36898.45 20497.62 2098.42 11097.36 197
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18791.87 19097.15 14178.41 27098.57 19683.16 30897.60 13398.36 147
ACMP89.59 1092.62 18192.14 17694.05 22396.40 20188.20 23897.36 14297.25 19091.52 15088.30 28696.64 16878.46 26998.72 18191.86 16291.48 24695.23 288
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 18292.52 16692.44 28896.82 17281.89 33896.92 18093.71 35392.41 12884.30 34094.60 27185.08 14897.03 33391.51 17097.36 14198.40 143
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28992.07 9997.53 12398.11 7092.90 11689.56 25496.12 20083.16 17797.60 30389.30 21183.20 34695.75 256
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27799.10 13981.61 32294.06 21096.98 209
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27799.08 14481.40 32594.08 20696.48 224
jajsoiax92.42 18691.89 18594.03 22593.33 34088.50 22997.73 9597.53 15192.00 14288.85 27396.50 18275.62 30198.11 23893.88 12491.56 24495.48 265
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20696.98 209
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20696.48 224
test_vis1_n92.37 18992.26 17492.72 28394.75 29182.64 32998.02 5696.80 23191.18 16597.77 3797.93 8858.02 37698.29 21997.63 1998.21 11797.23 205
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31289.73 18597.71 10093.65 35492.78 12090.46 22296.67 16675.88 29697.97 26292.92 14690.89 26195.48 265
WR-MVS92.34 19191.53 19794.77 19195.13 27090.83 15196.40 22797.98 10091.88 14489.29 26395.54 23382.50 19697.80 28589.79 19985.27 31795.69 260
NR-MVSNet92.34 19191.27 20895.53 14894.95 27793.05 7097.39 13998.07 7992.65 12384.46 33895.71 22285.00 14997.77 28989.71 20083.52 34395.78 251
mvs_tets92.31 19391.76 18793.94 23393.41 33788.29 23397.63 11297.53 15192.04 14088.76 27696.45 18474.62 30998.09 24293.91 12291.48 24695.45 270
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35591.52 19997.23 13687.94 10698.91 16371.31 37698.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31392.32 36787.92 26593.43 15794.57 27277.28 28499.00 15589.42 20895.86 17497.86 173
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26795.27 25985.52 29497.03 16996.63 24592.09 13889.11 26995.14 24780.33 23498.08 24387.54 25094.74 19696.03 240
IterMVS-LS92.29 19591.94 18393.34 26196.25 20786.97 26996.57 21797.05 20690.67 18289.50 25794.80 26286.59 12697.64 29889.91 19586.11 30795.40 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 19891.74 19093.73 24397.77 12083.69 32392.88 35596.72 23487.91 26693.00 16694.86 25878.51 26899.05 15186.53 26597.45 13998.47 135
VPNet92.23 19991.31 20594.99 17395.56 23790.96 14597.22 15897.86 11592.96 11490.96 21596.62 17775.06 30498.20 22591.90 15983.65 34295.80 249
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30378.39 27199.04 15481.26 32994.18 20296.19 231
anonymousdsp92.16 20191.55 19693.97 22992.58 35389.55 19197.51 12497.42 17489.42 21888.40 28394.84 25980.66 22697.88 27991.87 16191.28 25194.48 326
XXY-MVS92.16 20191.23 21094.95 17894.75 29190.94 14697.47 13197.43 17389.14 22588.90 27096.43 18579.71 24598.24 22189.56 20587.68 29295.67 262
BH-w/o92.14 20391.75 18893.31 26296.99 16385.73 29195.67 26695.69 28688.73 24489.26 26594.82 26182.97 18598.07 24785.26 28896.32 16796.13 236
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30893.64 15097.45 12466.24 36099.53 9190.68 18692.71 22599.01 89
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 33195.70 28486.30 30294.15 14094.97 25176.59 28899.21 12684.10 30096.86 15398.09 164
WR-MVS_H92.00 20691.35 20293.95 23195.09 27289.47 19598.04 5598.68 1391.46 15388.34 28494.68 26785.86 13997.56 30585.77 28184.24 33494.82 311
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36993.54 15397.41 12769.94 33999.56 8591.04 18091.11 25598.22 153
PatchmatchNetpermissive91.91 20891.35 20293.59 25195.38 24784.11 31693.15 35095.39 29989.54 21392.10 18693.68 31582.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CP-MVSNet91.89 20991.24 20993.82 23995.05 27388.57 22597.82 8698.19 5591.70 14788.21 29095.76 22081.96 20797.52 31187.86 23684.65 32695.37 277
SCA91.84 21091.18 21393.83 23895.59 23584.95 30794.72 29995.58 29390.82 17492.25 18193.69 31375.80 29898.10 23986.20 27195.98 17098.45 137
FMVSNet391.78 21190.69 23095.03 17196.53 19392.27 9397.02 17196.93 21789.79 20989.35 26094.65 26977.01 28597.47 31486.12 27488.82 28195.35 278
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 21092.15 18396.12 20078.66 26698.50 20090.83 18179.18 36397.36 197
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39891.70 4899.80 3095.66 7599.40 5099.62 18
MVS91.71 21390.44 23795.51 14995.20 26591.59 11696.04 25097.45 16673.44 38387.36 30795.60 22985.42 14499.10 13985.97 27897.46 13595.83 246
EPNet_dtu91.71 21391.28 20792.99 27393.76 32583.71 32296.69 20195.28 30693.15 10287.02 31495.95 20783.37 17497.38 32279.46 34096.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 21690.86 22093.94 23394.33 30886.32 28295.92 25791.64 37389.37 21986.94 31794.69 26681.62 21498.69 18388.64 22894.57 19896.81 216
test250691.60 21790.78 22594.04 22497.66 12683.81 31998.27 3375.53 40193.43 8995.23 11998.21 6767.21 35299.07 14893.01 14498.49 10599.25 68
miper_ehance_all_eth91.59 21891.13 21492.97 27495.55 23886.57 27994.47 30796.88 22587.77 27388.88 27294.01 30286.22 13397.54 30789.49 20686.93 29994.79 316
v2v48291.59 21890.85 22293.80 24093.87 32288.17 24096.94 17996.88 22589.54 21389.53 25594.90 25681.70 21398.02 25589.25 21485.04 32395.20 289
V4291.58 22090.87 21993.73 24394.05 31788.50 22997.32 14796.97 21388.80 24289.71 24794.33 28582.54 19598.05 25089.01 22085.07 32194.64 324
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 36097.26 18879.41 37088.90 27096.56 17984.04 16499.55 8777.01 35497.30 14597.01 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 22290.84 22393.69 24794.96 27688.28 23497.84 8398.24 4791.46 15388.04 29495.80 21579.67 24697.48 31387.02 26184.54 33195.31 281
miper_enhance_ethall91.54 22391.01 21693.15 26895.35 25187.07 26793.97 32696.90 22286.79 29589.17 26793.43 32586.55 12897.64 29889.97 19486.93 29994.74 320
PAPM91.52 22490.30 24395.20 16195.30 25889.83 18293.38 34696.85 22886.26 30488.59 27995.80 21584.88 15098.15 23075.67 35995.93 17297.63 184
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20191.57 11895.34 28193.48 35690.60 19075.58 37795.49 23580.08 23896.79 34294.25 11589.76 27498.52 127
TR-MVS91.48 22690.59 23394.16 21896.40 20187.33 25695.67 26695.34 30587.68 27791.46 20195.52 23476.77 28798.35 21482.85 31393.61 21696.79 217
tpmrst91.44 22791.32 20491.79 30795.15 26879.20 36793.42 34595.37 30188.55 24993.49 15593.67 31682.49 19798.27 22090.41 18789.34 27897.90 170
test-LLR91.42 22891.19 21292.12 29794.59 29880.66 34894.29 31892.98 35991.11 16890.76 21892.37 33879.02 25998.07 24788.81 22496.74 15797.63 184
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33896.32 25985.72 31286.93 31896.47 18380.24 23598.98 15780.57 33195.05 19096.98 209
c3_l91.38 23090.89 21892.88 27895.58 23686.30 28394.68 30096.84 22988.17 25988.83 27594.23 29385.65 14297.47 31489.36 20984.63 32794.89 306
GA-MVS91.38 23090.31 24294.59 19594.65 29687.62 25494.34 31496.19 26790.73 17890.35 22593.83 30771.84 32497.96 26787.22 25693.61 21698.21 154
v114491.37 23290.60 23293.68 24893.89 32188.23 23796.84 18797.03 21088.37 25489.69 24994.39 28182.04 20597.98 25987.80 23885.37 31494.84 308
GBi-Net91.35 23390.27 24594.59 19596.51 19491.18 13797.50 12596.93 21788.82 23989.35 26094.51 27473.87 31397.29 32686.12 27488.82 28195.31 281
test191.35 23390.27 24594.59 19596.51 19491.18 13797.50 12596.93 21788.82 23989.35 26094.51 27473.87 31397.29 32686.12 27488.82 28195.31 281
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28587.86 25097.23 15797.46 16187.99 26389.90 24296.92 15366.35 35898.23 22290.30 19090.99 25897.96 167
FMVSNet291.31 23690.08 25494.99 17396.51 19492.21 9497.41 13496.95 21588.82 23988.62 27894.75 26473.87 31397.42 31985.20 28988.55 28695.35 278
D2MVS91.30 23790.95 21792.35 29094.71 29485.52 29496.18 24598.21 5188.89 23586.60 32193.82 30979.92 24297.95 26989.29 21290.95 25993.56 344
v891.29 23890.53 23693.57 25394.15 31388.12 24297.34 14497.06 20588.99 23088.32 28594.26 29283.08 18098.01 25687.62 24883.92 33994.57 325
CVMVSNet91.23 23991.75 18889.67 34295.77 22974.69 37796.44 21994.88 32685.81 31092.18 18297.64 11479.07 25695.58 36188.06 23395.86 17498.74 115
cl2291.21 24090.56 23593.14 26996.09 22086.80 27194.41 31196.58 24887.80 27188.58 28093.99 30480.85 22597.62 30189.87 19786.93 29994.99 297
PEN-MVS91.20 24190.44 23793.48 25694.49 30287.91 24997.76 9198.18 5791.29 15887.78 29895.74 22180.35 23397.33 32485.46 28582.96 34795.19 292
Baseline_NR-MVSNet91.20 24190.62 23192.95 27593.83 32388.03 24497.01 17495.12 31588.42 25389.70 24895.13 24883.47 17197.44 31789.66 20383.24 34593.37 348
cascas91.20 24190.08 25494.58 19994.97 27589.16 21393.65 34097.59 14479.90 36889.40 25892.92 33075.36 30298.36 21392.14 15494.75 19596.23 228
CostFormer91.18 24490.70 22992.62 28794.84 28681.76 33994.09 32494.43 33684.15 33492.72 17393.77 31179.43 25098.20 22590.70 18592.18 23497.90 170
tt080591.09 24590.07 25794.16 21895.61 23488.31 23297.56 11996.51 25189.56 21289.17 26795.64 22767.08 35698.38 21291.07 17988.44 28795.80 249
v119291.07 24690.23 24893.58 25293.70 32687.82 25196.73 19597.07 20387.77 27389.58 25294.32 28780.90 22497.97 26286.52 26685.48 31294.95 298
v14419291.06 24790.28 24493.39 25993.66 32987.23 26296.83 18897.07 20387.43 28289.69 24994.28 28981.48 21598.00 25787.18 25884.92 32594.93 302
v1091.04 24890.23 24893.49 25594.12 31488.16 24197.32 14797.08 20188.26 25788.29 28794.22 29582.17 20497.97 26286.45 26884.12 33594.33 332
eth_miper_zixun_eth91.02 24990.59 23392.34 29295.33 25584.35 31294.10 32396.90 22288.56 24888.84 27494.33 28584.08 16397.60 30388.77 22684.37 33395.06 295
v14890.99 25090.38 23992.81 28193.83 32385.80 29096.78 19296.68 23989.45 21788.75 27793.93 30682.96 18697.82 28487.83 23783.25 34494.80 314
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21696.18 21189.55 19196.31 23597.09 20087.88 26785.67 32895.91 20978.79 26598.57 19681.50 32389.98 27194.44 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 25290.33 24092.88 27895.36 25086.19 28794.46 30996.63 24587.82 26988.18 29194.23 29382.99 18397.53 30987.72 23985.57 31194.93 302
cl____90.96 25390.32 24192.89 27795.37 24986.21 28694.46 30996.64 24287.82 26988.15 29294.18 29682.98 18497.54 30787.70 24285.59 31094.92 304
pmmvs490.93 25489.85 26494.17 21793.34 33990.79 15394.60 30296.02 27184.62 32987.45 30395.15 24681.88 21097.45 31687.70 24287.87 29194.27 336
XVG-ACMP-BASELINE90.93 25490.21 25193.09 27094.31 31085.89 28995.33 28297.26 18891.06 17089.38 25995.44 23768.61 34498.60 19289.46 20791.05 25694.79 316
v192192090.85 25690.03 25993.29 26393.55 33086.96 27096.74 19497.04 20887.36 28489.52 25694.34 28480.23 23697.97 26286.27 26985.21 31894.94 300
CR-MVSNet90.82 25789.77 26893.95 23194.45 30487.19 26390.23 37595.68 28886.89 29392.40 17592.36 34180.91 22297.05 33281.09 33093.95 21197.60 189
v7n90.76 25889.86 26393.45 25893.54 33187.60 25597.70 10297.37 17988.85 23687.65 30094.08 30181.08 21998.10 23984.68 29483.79 34194.66 323
RPSCF90.75 25990.86 22090.42 33496.84 16876.29 37595.61 27196.34 25883.89 33791.38 20297.87 9376.45 29098.78 17187.16 25992.23 23196.20 230
MVP-Stereo90.74 26090.08 25492.71 28493.19 34288.20 23895.86 25996.27 26186.07 30784.86 33694.76 26377.84 28097.75 29083.88 30598.01 12392.17 366
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 26189.65 27493.96 23094.29 31189.63 18697.79 9096.82 23089.07 22686.12 32695.48 23678.61 26797.78 28786.97 26281.67 35294.46 327
v124090.70 26289.85 26493.23 26593.51 33386.80 27196.61 21197.02 21187.16 28989.58 25294.31 28879.55 24997.98 25985.52 28485.44 31394.90 305
EPMVS90.70 26289.81 26693.37 26094.73 29384.21 31493.67 33988.02 38789.50 21592.38 17793.49 32177.82 28197.78 28786.03 27792.68 22698.11 163
Anonymous2023121190.63 26489.42 27894.27 21598.24 8789.19 21298.05 5497.89 10779.95 36788.25 28994.96 25272.56 32298.13 23289.70 20185.14 31995.49 264
DTE-MVSNet90.56 26589.75 27093.01 27293.95 31887.25 26097.64 11097.65 13690.74 17787.12 31095.68 22579.97 24197.00 33683.33 30781.66 35394.78 318
ACMH87.59 1690.53 26689.42 27893.87 23796.21 20887.92 24797.24 15396.94 21688.45 25283.91 34896.27 19371.92 32398.62 19184.43 29789.43 27795.05 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-090.51 26790.19 25291.44 31693.41 33781.25 34296.98 17696.28 26091.68 14886.55 32296.30 19174.20 31297.98 25988.96 22287.40 29795.09 293
miper_lstm_enhance90.50 26890.06 25891.83 30495.33 25583.74 32093.86 33296.70 23887.56 28087.79 29793.81 31083.45 17396.92 33887.39 25284.62 32894.82 311
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28193.79 24197.95 10987.13 26696.92 18095.89 27782.83 34886.88 32097.18 13873.77 31699.29 12178.44 34593.62 21594.95 298
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 27088.96 28694.35 20896.54 19287.29 25795.50 27593.84 35190.97 17291.75 19492.96 32962.18 37298.00 25782.86 31194.08 20697.76 179
IterMVS-SCA-FT90.31 27089.81 26691.82 30595.52 23984.20 31594.30 31796.15 26890.61 18887.39 30694.27 29075.80 29896.44 34587.34 25386.88 30394.82 311
MS-PatchMatch90.27 27289.77 26891.78 30894.33 30884.72 31095.55 27296.73 23386.17 30686.36 32395.28 24271.28 32897.80 28584.09 30198.14 12192.81 354
tpm90.25 27389.74 27191.76 31093.92 31979.73 36193.98 32593.54 35588.28 25691.99 18893.25 32677.51 28397.44 31787.30 25587.94 29098.12 160
AllTest90.23 27488.98 28593.98 22797.94 11086.64 27596.51 21895.54 29485.38 31685.49 33096.77 15870.28 33499.15 13380.02 33592.87 22096.15 234
dmvs_re90.21 27589.50 27792.35 29095.47 24485.15 30295.70 26594.37 33990.94 17388.42 28293.57 31974.63 30895.67 35882.80 31489.57 27696.22 229
ACMH+87.92 1490.20 27689.18 28393.25 26496.48 19786.45 28096.99 17596.68 23988.83 23884.79 33796.22 19570.16 33698.53 19884.42 29888.04 28994.77 319
test-mter90.19 27789.54 27692.12 29794.59 29880.66 34894.29 31892.98 35987.68 27790.76 21892.37 33867.67 34898.07 24788.81 22496.74 15797.63 184
IterMVS90.15 27889.67 27291.61 31295.48 24183.72 32194.33 31596.12 26989.99 20287.31 30994.15 29875.78 30096.27 34886.97 26286.89 30294.83 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 27989.42 27891.97 30094.41 30680.62 35094.29 31891.97 37187.28 28790.44 22392.47 33768.79 34397.67 29588.50 23096.60 16297.61 188
tpm289.96 28089.21 28292.23 29694.91 28281.25 34293.78 33494.42 33780.62 36591.56 19893.44 32376.44 29197.94 27085.60 28392.08 23897.49 193
IB-MVS87.33 1789.91 28188.28 29594.79 19095.26 26287.70 25395.12 29393.95 34889.35 22087.03 31392.49 33670.74 33299.19 12889.18 21881.37 35497.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 28288.68 29093.53 25495.86 22484.89 30890.93 37095.07 31783.23 34691.28 21191.81 35079.01 26197.85 28079.52 33791.39 24997.84 174
WB-MVSnew89.88 28389.56 27590.82 32694.57 30183.06 32795.65 26992.85 36187.86 26890.83 21794.10 29979.66 24796.88 33976.34 35594.19 20192.54 359
FMVSNet189.88 28388.31 29494.59 19595.41 24591.18 13797.50 12596.93 21786.62 29787.41 30594.51 27465.94 36297.29 32683.04 31087.43 29595.31 281
pmmvs589.86 28588.87 28892.82 28092.86 34686.23 28596.26 23895.39 29984.24 33387.12 31094.51 27474.27 31197.36 32387.61 24987.57 29394.86 307
tpmvs89.83 28689.15 28491.89 30294.92 28080.30 35593.11 35195.46 29886.28 30388.08 29392.65 33280.44 23198.52 19981.47 32489.92 27296.84 215
test_fmvs289.77 28789.93 26189.31 34693.68 32876.37 37497.64 11095.90 27589.84 20791.49 20096.26 19458.77 37597.10 33094.65 10891.13 25494.46 327
tfpnnormal89.70 28888.40 29393.60 25095.15 26890.10 17297.56 11998.16 6187.28 28786.16 32594.63 27077.57 28298.05 25074.48 36384.59 32992.65 357
ADS-MVSNet289.45 28988.59 29192.03 29995.86 22482.26 33590.93 37094.32 34283.23 34691.28 21191.81 35079.01 26195.99 35079.52 33791.39 24997.84 174
Patchmatch-test89.42 29087.99 29793.70 24695.27 25985.11 30388.98 38194.37 33981.11 35987.10 31293.69 31382.28 20197.50 31274.37 36594.76 19498.48 134
test0.0.03 189.37 29188.70 28991.41 31792.47 35585.63 29295.22 29092.70 36491.11 16886.91 31993.65 31779.02 25993.19 38178.00 34789.18 27995.41 271
SixPastTwentyTwo89.15 29288.54 29290.98 32393.49 33480.28 35696.70 19994.70 33090.78 17584.15 34395.57 23071.78 32597.71 29384.63 29585.07 32194.94 300
RPMNet88.98 29387.05 30794.77 19194.45 30487.19 26390.23 37598.03 9177.87 37792.40 17587.55 38080.17 23799.51 9668.84 38193.95 21197.60 189
TransMVSNet (Re)88.94 29487.56 30093.08 27194.35 30788.45 23197.73 9595.23 31087.47 28184.26 34195.29 24079.86 24397.33 32479.44 34174.44 37593.45 347
USDC88.94 29487.83 29992.27 29494.66 29584.96 30693.86 33295.90 27587.34 28583.40 35095.56 23167.43 35098.19 22782.64 31889.67 27593.66 343
dp88.90 29688.26 29690.81 32794.58 30076.62 37392.85 35694.93 32385.12 32290.07 23993.07 32775.81 29798.12 23780.53 33287.42 29697.71 181
PatchT88.87 29787.42 30193.22 26694.08 31685.10 30489.51 37994.64 33381.92 35492.36 17888.15 37680.05 23997.01 33572.43 37293.65 21497.54 192
our_test_388.78 29887.98 29891.20 32192.45 35682.53 33193.61 34295.69 28685.77 31184.88 33593.71 31279.99 24096.78 34379.47 33986.24 30494.28 335
EU-MVSNet88.72 29988.90 28788.20 35093.15 34374.21 37896.63 21094.22 34385.18 32087.32 30895.97 20576.16 29494.98 36685.27 28786.17 30595.41 271
Patchmtry88.64 30087.25 30392.78 28294.09 31586.64 27589.82 37895.68 28880.81 36387.63 30192.36 34180.91 22297.03 33378.86 34385.12 32094.67 322
MIMVSNet88.50 30186.76 31193.72 24594.84 28687.77 25291.39 36594.05 34586.41 30187.99 29592.59 33563.27 36795.82 35577.44 34892.84 22297.57 191
tpm cat188.36 30287.21 30591.81 30695.13 27080.55 35192.58 35995.70 28474.97 38087.45 30391.96 34878.01 27998.17 22980.39 33388.74 28496.72 219
ppachtmachnet_test88.35 30387.29 30291.53 31392.45 35683.57 32493.75 33595.97 27284.28 33285.32 33394.18 29679.00 26396.93 33775.71 35884.99 32494.10 337
JIA-IIPM88.26 30487.04 30891.91 30193.52 33281.42 34189.38 38094.38 33880.84 36290.93 21680.74 38779.22 25497.92 27482.76 31591.62 24296.38 227
testgi87.97 30587.21 30590.24 33692.86 34680.76 34696.67 20494.97 32191.74 14685.52 32995.83 21362.66 37094.47 37076.25 35688.36 28895.48 265
LF4IMVS87.94 30687.25 30389.98 33992.38 35880.05 35994.38 31295.25 30987.59 27984.34 33994.74 26564.31 36597.66 29784.83 29187.45 29492.23 363
gg-mvs-nofinetune87.82 30785.61 31994.44 20394.46 30389.27 20891.21 36984.61 39580.88 36189.89 24474.98 38971.50 32697.53 30985.75 28297.21 14896.51 222
pmmvs687.81 30886.19 31592.69 28591.32 36386.30 28397.34 14496.41 25680.59 36684.05 34794.37 28367.37 35197.67 29584.75 29379.51 36294.09 339
testing387.67 30986.88 31090.05 33896.14 21680.71 34797.10 16792.85 36190.15 19987.54 30294.55 27355.70 38194.10 37373.77 36894.10 20595.35 278
K. test v387.64 31086.75 31290.32 33593.02 34579.48 36596.61 21192.08 37090.66 18480.25 36694.09 30067.21 35296.65 34485.96 27980.83 35694.83 309
Patchmatch-RL test87.38 31186.24 31490.81 32788.74 37978.40 37188.12 38593.17 35887.11 29082.17 35789.29 36881.95 20895.60 36088.64 22877.02 36898.41 142
FMVSNet587.29 31285.79 31891.78 30894.80 28887.28 25895.49 27695.28 30684.09 33583.85 34991.82 34962.95 36994.17 37278.48 34485.34 31693.91 341
myMVS_eth3d87.18 31386.38 31389.58 34395.16 26679.53 36295.00 29493.93 34988.55 24986.96 31591.99 34656.23 38094.00 37475.47 36194.11 20395.20 289
Syy-MVS87.13 31487.02 30987.47 35395.16 26673.21 38195.00 29493.93 34988.55 24986.96 31591.99 34675.90 29594.00 37461.59 38794.11 20395.20 289
Anonymous2023120687.09 31586.14 31689.93 34091.22 36480.35 35396.11 24795.35 30283.57 34384.16 34293.02 32873.54 31895.61 35972.16 37386.14 30693.84 342
EG-PatchMatch MVS87.02 31685.44 32091.76 31092.67 35085.00 30596.08 24996.45 25483.41 34579.52 36893.49 32157.10 37897.72 29279.34 34290.87 26292.56 358
TinyColmap86.82 31785.35 32391.21 32094.91 28282.99 32893.94 32894.02 34783.58 34281.56 35894.68 26762.34 37198.13 23275.78 35787.35 29892.52 360
TDRefinement86.53 31884.76 32991.85 30382.23 39184.25 31396.38 22995.35 30284.97 32584.09 34594.94 25365.76 36398.34 21784.60 29674.52 37492.97 351
test_040286.46 31984.79 32891.45 31595.02 27485.55 29396.29 23794.89 32580.90 36082.21 35693.97 30568.21 34797.29 32662.98 38588.68 28591.51 370
Anonymous2024052186.42 32085.44 32089.34 34590.33 36879.79 36096.73 19595.92 27383.71 34183.25 35191.36 35463.92 36696.01 34978.39 34685.36 31592.22 364
DSMNet-mixed86.34 32186.12 31787.00 35789.88 37270.43 38394.93 29690.08 38177.97 37685.42 33292.78 33174.44 31093.96 37674.43 36495.14 18696.62 220
CL-MVSNet_self_test86.31 32285.15 32489.80 34188.83 37881.74 34093.93 32996.22 26486.67 29685.03 33490.80 35778.09 27694.50 36874.92 36271.86 38093.15 350
pmmvs-eth3d86.22 32384.45 33091.53 31388.34 38087.25 26094.47 30795.01 31883.47 34479.51 36989.61 36669.75 34095.71 35683.13 30976.73 37191.64 367
test_vis1_rt86.16 32485.06 32589.46 34493.47 33680.46 35296.41 22386.61 39285.22 31979.15 37088.64 37152.41 38497.06 33193.08 13990.57 26490.87 375
test20.0386.14 32585.40 32288.35 34890.12 36980.06 35895.90 25895.20 31188.59 24581.29 35993.62 31871.43 32792.65 38271.26 37781.17 35592.34 362
UnsupCasMVSNet_eth85.99 32684.45 33090.62 33189.97 37182.40 33493.62 34197.37 17989.86 20478.59 37292.37 33865.25 36495.35 36582.27 32070.75 38194.10 337
KD-MVS_self_test85.95 32784.95 32688.96 34789.55 37579.11 36895.13 29296.42 25585.91 30984.07 34690.48 35870.03 33894.82 36780.04 33472.94 37892.94 352
YYNet185.87 32884.23 33290.78 33092.38 35882.46 33393.17 34895.14 31482.12 35367.69 38392.36 34178.16 27595.50 36377.31 35079.73 36094.39 330
MDA-MVSNet_test_wron85.87 32884.23 33290.80 32992.38 35882.57 33093.17 34895.15 31382.15 35267.65 38492.33 34478.20 27295.51 36277.33 34979.74 35994.31 334
CMPMVSbinary62.92 2185.62 33084.92 32787.74 35289.14 37673.12 38294.17 32196.80 23173.98 38173.65 38094.93 25466.36 35797.61 30283.95 30491.28 25192.48 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 33183.64 33490.92 32495.27 25979.49 36490.55 37395.60 29183.76 34083.00 35489.95 36371.09 32997.97 26282.75 31660.79 39395.31 281
MDA-MVSNet-bldmvs85.00 33282.95 33791.17 32293.13 34483.33 32594.56 30495.00 31984.57 33065.13 38892.65 33270.45 33395.85 35373.57 36977.49 36794.33 332
MIMVSNet184.93 33383.05 33590.56 33289.56 37484.84 30995.40 27995.35 30283.91 33680.38 36492.21 34557.23 37793.34 38070.69 37982.75 35093.50 345
KD-MVS_2432*160084.81 33482.64 33891.31 31891.07 36585.34 30091.22 36795.75 28285.56 31483.09 35290.21 36167.21 35295.89 35177.18 35262.48 39192.69 355
miper_refine_blended84.81 33482.64 33891.31 31891.07 36585.34 30091.22 36795.75 28285.56 31483.09 35290.21 36167.21 35295.89 35177.18 35262.48 39192.69 355
OpenMVS_ROBcopyleft81.14 2084.42 33682.28 34290.83 32590.06 37084.05 31895.73 26494.04 34673.89 38280.17 36791.53 35359.15 37497.64 29866.92 38389.05 28090.80 376
mvsany_test383.59 33782.44 34187.03 35683.80 38773.82 37993.70 33690.92 37986.42 30082.51 35590.26 36046.76 38795.71 35690.82 18276.76 37091.57 369
PM-MVS83.48 33881.86 34488.31 34987.83 38277.59 37293.43 34491.75 37286.91 29280.63 36289.91 36444.42 38895.84 35485.17 29076.73 37191.50 371
test_fmvs383.21 33983.02 33683.78 36286.77 38468.34 38896.76 19394.91 32486.49 29984.14 34489.48 36736.04 39291.73 38491.86 16280.77 35791.26 374
new-patchmatchnet83.18 34081.87 34387.11 35586.88 38375.99 37693.70 33695.18 31285.02 32477.30 37588.40 37365.99 36193.88 37774.19 36770.18 38291.47 372
new_pmnet82.89 34181.12 34688.18 35189.63 37380.18 35791.77 36492.57 36576.79 37975.56 37888.23 37561.22 37394.48 36971.43 37582.92 34889.87 379
MVS-HIRNet82.47 34281.21 34586.26 35995.38 24769.21 38688.96 38289.49 38266.28 38680.79 36174.08 39168.48 34597.39 32171.93 37495.47 18192.18 365
UnsupCasMVSNet_bld82.13 34379.46 34890.14 33788.00 38182.47 33290.89 37296.62 24778.94 37275.61 37684.40 38556.63 37996.31 34777.30 35166.77 38891.63 368
dmvs_testset81.38 34482.60 34077.73 36891.74 36251.49 40193.03 35384.21 39689.07 22678.28 37391.25 35576.97 28688.53 39156.57 39182.24 35193.16 349
test_f80.57 34579.62 34783.41 36383.38 38967.80 39093.57 34393.72 35280.80 36477.91 37487.63 37933.40 39392.08 38387.14 26079.04 36590.34 378
pmmvs379.97 34677.50 35187.39 35482.80 39079.38 36692.70 35890.75 38070.69 38478.66 37187.47 38151.34 38593.40 37973.39 37069.65 38389.38 380
APD_test179.31 34777.70 35084.14 36189.11 37769.07 38792.36 36391.50 37469.07 38573.87 37992.63 33439.93 39094.32 37170.54 38080.25 35889.02 381
N_pmnet78.73 34878.71 34978.79 36792.80 34846.50 40494.14 32243.71 40678.61 37380.83 36091.66 35274.94 30696.36 34667.24 38284.45 33293.50 345
WB-MVS76.77 34976.63 35277.18 36985.32 38556.82 39994.53 30589.39 38382.66 35071.35 38189.18 36975.03 30588.88 38935.42 39766.79 38785.84 383
SSC-MVS76.05 35075.83 35376.72 37384.77 38656.22 40094.32 31688.96 38581.82 35670.52 38288.91 37074.79 30788.71 39033.69 39864.71 38985.23 384
test_vis3_rt72.73 35170.55 35479.27 36680.02 39268.13 38993.92 33074.30 40376.90 37858.99 39273.58 39220.29 40195.37 36484.16 29972.80 37974.31 391
LCM-MVSNet72.55 35269.39 35682.03 36470.81 40165.42 39390.12 37794.36 34155.02 39265.88 38681.72 38624.16 40089.96 38574.32 36668.10 38690.71 377
FPMVS71.27 35369.85 35575.50 37474.64 39659.03 39791.30 36691.50 37458.80 38957.92 39388.28 37429.98 39685.53 39453.43 39282.84 34981.95 387
PMMVS270.19 35466.92 35780.01 36576.35 39565.67 39286.22 38687.58 38964.83 38862.38 38980.29 38826.78 39888.49 39263.79 38454.07 39485.88 382
testf169.31 35566.76 35876.94 37178.61 39361.93 39588.27 38386.11 39355.62 39059.69 39085.31 38320.19 40289.32 38657.62 38869.44 38479.58 388
APD_test269.31 35566.76 35876.94 37178.61 39361.93 39588.27 38386.11 39355.62 39059.69 39085.31 38320.19 40289.32 38657.62 38869.44 38479.58 388
EGC-MVSNET68.77 35763.01 36286.07 36092.49 35482.24 33693.96 32790.96 3780.71 4032.62 40490.89 35653.66 38293.46 37857.25 39084.55 33082.51 386
Gipumacopyleft67.86 35865.41 36075.18 37592.66 35173.45 38066.50 39494.52 33553.33 39357.80 39466.07 39430.81 39489.20 38848.15 39478.88 36662.90 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 35964.89 36169.79 37772.62 39935.23 40865.19 39592.83 36320.35 39865.20 38788.08 37743.14 38982.70 39573.12 37163.46 39091.45 373
ANet_high63.94 36059.58 36377.02 37061.24 40366.06 39185.66 38887.93 38878.53 37442.94 39671.04 39325.42 39980.71 39652.60 39330.83 39784.28 385
PMVScopyleft53.92 2258.58 36155.40 36468.12 37851.00 40448.64 40278.86 39187.10 39146.77 39435.84 40074.28 3908.76 40486.34 39342.07 39573.91 37669.38 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 36252.56 36655.43 38074.43 39747.13 40383.63 39076.30 40042.23 39542.59 39762.22 39628.57 39774.40 39831.53 39931.51 39644.78 395
MVEpermissive50.73 2353.25 36348.81 36866.58 37965.34 40257.50 39872.49 39370.94 40440.15 39739.28 39963.51 3956.89 40673.48 40038.29 39642.38 39568.76 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 36451.31 36754.39 38172.62 39945.39 40583.84 38975.51 40241.13 39640.77 39859.65 39730.08 39573.60 39928.31 40029.90 39844.18 396
tmp_tt51.94 36553.82 36546.29 38233.73 40545.30 40678.32 39267.24 40518.02 39950.93 39587.05 38252.99 38353.11 40170.76 37825.29 39940.46 397
wuyk23d25.11 36624.57 37026.74 38373.98 39839.89 40757.88 3969.80 40712.27 40010.39 4016.97 4037.03 40536.44 40225.43 40117.39 4003.89 400
cdsmvs_eth3d_5k23.24 36730.99 3690.00 3860.00 4080.00 4110.00 39797.63 1400.00 4040.00 40596.88 15584.38 1570.00 4050.00 4040.00 4030.00 401
testmvs13.36 36816.33 3714.48 3855.04 4062.26 41093.18 3473.28 4082.70 4018.24 40221.66 3992.29 4082.19 4037.58 4022.96 4019.00 399
test12313.04 36915.66 3725.18 3844.51 4073.45 40992.50 3611.81 4092.50 4027.58 40320.15 4003.67 4072.18 4047.13 4031.07 4029.90 398
ab-mvs-re8.06 37010.74 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40596.69 1640.00 4090.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas7.39 3719.85 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40488.65 950.00 4050.00 4040.00 4030.00 401
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
WAC-MVS79.53 36275.56 360
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
PC_three_145290.77 17698.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 408
eth-test0.00 408
ZD-MVS99.05 3994.59 2998.08 7489.22 22397.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19598.94 897.41 2999.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
ambc86.56 35883.60 38870.00 38585.69 38794.97 32180.60 36388.45 37237.42 39196.84 34182.69 31775.44 37392.86 353
MTGPAbinary98.08 74
test_post192.81 35716.58 40280.53 22997.68 29486.20 271
test_post17.58 40181.76 21198.08 243
patchmatchnet-post90.45 35982.65 19498.10 239
GG-mvs-BLEND93.62 24993.69 32789.20 21092.39 36283.33 39787.98 29689.84 36571.00 33096.87 34082.08 32195.40 18394.80 314
MTMP97.86 7982.03 398
gm-plane-assit93.22 34178.89 37084.82 32793.52 32098.64 18887.72 239
test9_res94.81 10399.38 5399.45 47
TEST998.70 5694.19 4096.41 22398.02 9488.17 25996.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 24695.98 9997.55 12392.73 3199.58 77
agg_prior293.94 12199.38 5399.50 40
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
TestCases93.98 22797.94 11086.64 27595.54 29485.38 31685.49 33096.77 15870.28 33499.15 13380.02 33592.87 22096.15 234
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
旧先验295.94 25681.66 35797.34 4898.82 16892.26 149
新几何295.79 262
新几何197.32 5198.60 6593.59 5697.75 12381.58 35895.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
无先验95.79 26297.87 11183.87 33999.65 5887.68 24598.89 105
原ACMM295.67 266
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28395.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
test22298.24 8792.21 9495.33 28297.60 14279.22 37195.25 11897.84 9888.80 9299.15 7598.72 116
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata95.46 15598.18 9788.90 21897.66 13482.73 34997.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
testdata195.26 28993.10 105
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
plane_prior796.21 20889.98 178
plane_prior696.10 21990.00 17481.32 217
plane_prior597.51 15398.60 19293.02 14292.23 23195.86 242
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 204
plane_prior297.74 9394.85 34
plane_prior196.14 216
plane_prior89.99 17697.24 15394.06 6592.16 235
n20.00 410
nn0.00 410
door-mid91.06 377
lessismore_v090.45 33391.96 36179.09 36987.19 39080.32 36594.39 28166.31 35997.55 30684.00 30376.84 36994.70 321
LGP-MVS_train94.10 22096.16 21388.26 23597.46 16191.29 15890.12 23497.16 13979.05 25798.73 17892.25 15191.89 23995.31 281
test1197.88 109
door91.13 376
HQP5-MVS89.33 203
HQP-NCC95.86 22496.65 20593.55 8090.14 228
ACMP_Plane95.86 22496.65 20593.55 8090.14 228
BP-MVS92.13 155
HQP4-MVS90.14 22898.50 20095.78 251
HQP3-MVS97.39 17692.10 236
HQP2-MVS80.95 220
NP-MVS95.99 22389.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38493.10 35283.88 33893.55 15282.47 19886.25 27098.38 145
MDTV_nov1_ep1390.76 22695.22 26380.33 35493.03 35395.28 30688.14 26192.84 17293.83 30781.34 21698.08 24382.86 31194.34 200
ACMMP++_ref90.30 269
ACMMP++91.02 257
Test By Simon88.73 94
ITE_SJBPF92.43 28995.34 25285.37 29995.92 27391.47 15287.75 29996.39 18871.00 33097.96 26782.36 31989.86 27393.97 340
DeepMVS_CXcopyleft74.68 37690.84 36764.34 39481.61 39965.34 38767.47 38588.01 37848.60 38680.13 39762.33 38673.68 37779.58 388