This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3794.78 4698.93 1198.87 2096.04 299.86 997.45 3499.58 2399.59 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 4095.13 2899.19 598.89 1895.54 599.85 1897.52 3099.66 1099.56 31
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 12194.92 3798.73 2098.87 2095.08 899.84 2397.52 3099.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16898.35 2895.16 2798.71 2298.80 2795.05 1099.89 396.70 5199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3394.76 4898.30 2898.90 1793.77 1799.68 5997.93 1899.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 16098.08 7895.81 1197.87 4298.31 6594.26 1399.68 5997.02 4299.49 3899.57 28
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3399.30 298.84 2593.34 2299.78 3899.32 399.13 8399.50 43
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3599.24 498.87 2093.52 2099.79 3699.32 399.21 7499.40 57
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 4095.34 2298.11 3198.56 3594.53 1299.71 5196.57 5599.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3595.55 1898.56 2497.81 10693.90 1599.65 6396.62 5299.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 699.30 298.92 1592.39 4199.79 3699.16 699.46 4198.08 179
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5495.80 1297.88 3998.98 1192.91 2799.81 3097.68 2299.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5495.80 1297.88 3998.98 1192.91 2799.81 3097.68 2299.43 4899.67 13
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5295.73 1597.99 3599.03 892.63 3699.82 2897.80 2099.42 5099.67 13
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14892.37 9597.91 7698.88 495.83 1098.92 1499.05 791.45 5799.80 3399.12 799.46 4199.69 12
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 12193.72 8498.57 2398.35 5693.69 1899.40 11597.06 4199.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6894.82 4399.01 898.55 3794.18 1497.41 33996.94 4399.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 4092.37 13798.27 2998.65 3393.33 2399.72 5096.49 5799.52 3099.51 40
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6190.57 20398.85 1798.94 1493.33 2399.83 2696.72 5099.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10595.59 1696.61 8197.89 9592.57 3899.84 2395.95 7999.51 3399.40 57
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15398.04 9395.96 897.09 6397.88 9793.18 2599.71 5195.84 8499.17 7899.56 31
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29697.78 197.52 4698.80 2788.09 10799.86 999.44 199.37 6199.80 1
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5992.82 12897.93 3898.74 3091.60 5599.86 996.26 6099.52 3099.67 13
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5494.85 3996.59 8398.29 6891.70 5299.80 3395.66 8899.40 5599.62 20
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17598.07 8393.54 9396.08 10597.69 11393.86 1699.71 5196.50 5699.39 5799.55 34
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3193.21 10597.18 5798.29 6892.08 4699.83 2695.63 9399.59 1999.54 36
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25592.21 10297.95 7298.27 4095.78 1498.40 2799.00 989.99 8499.78 3899.06 899.41 5399.59 24
MTAPA97.08 2896.78 4497.97 2399.37 1694.42 3697.24 16298.08 7895.07 3296.11 10398.59 3490.88 7499.90 296.18 7299.50 3599.58 27
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4893.19 10897.14 6098.34 5991.59 5699.87 795.46 9999.59 1999.64 18
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3293.21 10597.15 5998.33 6291.35 6199.86 995.63 9399.59 1999.62 20
CP-MVS97.02 3196.81 4297.64 4499.33 2193.54 5998.80 898.28 3792.99 11796.45 9198.30 6791.90 4999.85 1895.61 9599.68 499.54 36
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8393.75 8397.45 4898.48 4591.43 5999.59 7996.22 6399.27 6799.54 36
ZNCC-MVS96.96 3396.67 4997.85 2599.37 1694.12 4698.49 1998.18 6192.64 13396.39 9398.18 7591.61 5499.88 495.59 9899.55 2699.57 28
APD-MVScopyleft96.95 3496.60 5198.01 2099.03 4194.93 2797.72 10298.10 7691.50 16198.01 3498.32 6492.33 4299.58 8294.85 11199.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 2094.66 5397.24 5698.41 5192.31 4498.94 17396.61 5399.46 4198.96 98
DeepC-MVS_fast93.89 296.93 3696.64 5097.78 3198.64 6794.30 3797.41 14398.04 9394.81 4496.59 8398.37 5491.24 6499.64 7195.16 10499.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 12195.84 996.90 6797.97 9191.24 6498.75 19496.92 4499.33 6398.94 101
SR-MVS-dyc-post96.88 3896.80 4397.11 7099.02 4292.34 9697.98 6398.03 9593.52 9597.43 5198.51 4091.40 6099.56 9096.05 7499.26 6999.43 54
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11695.30 2397.06 6498.03 8591.72 5098.71 20197.10 4099.17 7898.90 108
mPP-MVS96.86 3996.60 5197.64 4499.40 1193.44 6198.50 1898.09 7793.27 10495.95 11198.33 6291.04 6999.88 495.20 10299.57 2599.60 23
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17797.97 6998.76 894.93 3598.84 1899.06 688.80 9799.65 6399.06 898.63 10698.18 168
GST-MVS96.85 4196.52 5597.82 2799.36 1894.14 4598.29 2998.13 6992.72 13096.70 7598.06 8291.35 6199.86 994.83 11399.28 6699.47 49
balanced_conf0396.84 4396.89 3496.68 7997.63 13792.22 10198.17 4897.82 12794.44 6398.23 3097.36 13890.97 7199.22 13297.74 2199.66 1098.61 132
patch_mono-296.83 4497.44 1695.01 18399.05 3985.39 31096.98 18798.77 794.70 5097.99 3598.66 3193.61 1999.91 197.67 2699.50 3599.72 11
APD-MVS_3200maxsize96.81 4596.71 4897.12 6999.01 4592.31 9897.98 6398.06 8693.11 11497.44 4998.55 3790.93 7299.55 9296.06 7399.25 7199.51 40
PGM-MVS96.81 4596.53 5497.65 4299.35 2093.53 6097.65 11198.98 292.22 13997.14 6098.44 4891.17 6799.85 1894.35 12699.46 4199.57 28
MP-MVScopyleft96.77 4796.45 6297.72 3899.39 1393.80 5398.41 2398.06 8693.37 10095.54 12698.34 5990.59 7899.88 494.83 11399.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4796.46 6197.71 4098.40 7894.07 4898.21 4298.45 2389.86 22097.11 6298.01 8892.52 3999.69 5796.03 7799.53 2999.36 63
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13590.72 16398.00 6198.73 994.55 5798.91 1599.08 388.22 10699.63 7298.91 1198.37 11998.25 163
MVS_030496.74 5096.31 6698.02 1996.87 17694.65 3097.58 12194.39 35696.47 597.16 5898.39 5287.53 12199.87 798.97 1099.41 5399.55 34
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19691.73 11697.98 6398.30 3396.19 796.10 10498.95 1389.42 8899.76 4198.90 1299.08 8797.43 215
MP-MVS-pluss96.70 5196.27 6897.98 2299.23 3094.71 2996.96 18998.06 8690.67 19495.55 12498.78 2991.07 6899.86 996.58 5499.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 5396.49 5697.27 6198.31 8493.39 6296.79 20296.72 24794.17 7197.44 4997.66 11792.76 3199.33 12096.86 4697.76 14299.08 87
HPM-MVScopyleft96.69 5396.45 6297.40 5399.36 1893.11 7598.87 698.06 8691.17 17796.40 9297.99 8990.99 7099.58 8295.61 9599.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5596.58 5396.99 7598.46 7392.31 9896.20 25698.90 394.30 7095.86 11397.74 11192.33 4299.38 11896.04 7699.42 5099.28 68
fmvsm_s_conf0.5_n_296.62 5696.82 4196.02 13097.98 11490.43 17397.50 13298.59 1796.59 399.31 199.08 384.47 16499.75 4499.37 298.45 11697.88 189
DELS-MVS96.61 5796.38 6597.30 5797.79 12693.19 7395.96 26798.18 6195.23 2495.87 11297.65 11891.45 5799.70 5695.87 8099.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5797.09 2195.15 17598.09 10486.63 28696.00 26598.15 6695.43 1997.95 3798.56 3593.40 2199.36 11996.77 4799.48 3999.45 50
fmvsm_s_conf0.1_n96.58 5996.77 4596.01 13396.67 19490.25 17897.91 7698.38 2494.48 6198.84 1899.14 188.06 10899.62 7398.82 1398.60 10898.15 172
MVSMamba_PlusPlus96.51 6096.48 5796.59 8598.07 10891.97 11198.14 4997.79 12990.43 20797.34 5497.52 13191.29 6399.19 13598.12 1799.64 1498.60 133
EI-MVSNet-Vis-set96.51 6096.47 5896.63 8298.24 9091.20 14396.89 19397.73 13594.74 4996.49 8798.49 4290.88 7499.58 8296.44 5898.32 12199.13 80
HPM-MVS_fast96.51 6096.27 6897.22 6499.32 2292.74 8498.74 998.06 8690.57 20396.77 7298.35 5690.21 8199.53 9694.80 11699.63 1699.38 61
EC-MVSNet96.42 6396.47 5896.26 11597.01 17191.52 12898.89 597.75 13294.42 6496.64 8097.68 11489.32 8998.60 21197.45 3499.11 8698.67 130
fmvsm_s_conf0.1_n_a96.40 6496.47 5896.16 12295.48 26390.69 16497.91 7698.33 3094.07 7398.93 1199.14 187.44 12599.61 7498.63 1598.32 12198.18 168
CANet96.39 6596.02 7297.50 4997.62 13893.38 6397.02 18197.96 10695.42 2094.86 13797.81 10687.38 12799.82 2896.88 4599.20 7699.29 66
dcpmvs_296.37 6697.05 2594.31 22598.96 4984.11 33197.56 12497.51 16493.92 7897.43 5198.52 3992.75 3299.32 12297.32 3999.50 3599.51 40
EI-MVSNet-UG-set96.34 6796.30 6796.47 9698.20 9690.93 15596.86 19597.72 13794.67 5296.16 10298.46 4690.43 7999.58 8296.23 6297.96 13598.90 108
fmvsm_s_conf0.1_n_296.33 6896.44 6496.00 13497.30 15190.37 17697.53 12997.92 11196.52 499.14 799.08 383.21 18699.74 4599.22 598.06 13297.88 189
train_agg96.30 6995.83 7797.72 3898.70 5994.19 4296.41 23598.02 9888.58 26596.03 10697.56 12892.73 3499.59 7995.04 10699.37 6199.39 59
ACMMPcopyleft96.27 7095.93 7397.28 6099.24 2892.62 8798.25 3598.81 592.99 11794.56 14498.39 5288.96 9499.85 1894.57 12497.63 14399.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 7196.19 7096.39 10498.23 9491.35 13696.24 25498.79 693.99 7695.80 11597.65 11889.92 8699.24 13095.87 8099.20 7698.58 135
test_fmvsmconf0.01_n96.15 7295.85 7697.03 7492.66 37191.83 11597.97 6997.84 12595.57 1797.53 4599.00 984.20 17099.76 4198.82 1399.08 8799.48 47
DeepC-MVS93.07 396.06 7395.66 7897.29 5897.96 11593.17 7497.30 15898.06 8693.92 7893.38 17398.66 3186.83 13399.73 4795.60 9799.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 7495.91 7496.46 9899.24 2890.47 17098.30 2898.57 1989.01 24893.97 16097.57 12692.62 3799.76 4194.66 11999.27 6799.15 78
sasdasda96.02 7595.45 8497.75 3597.59 14195.15 2398.28 3097.60 15194.52 5996.27 9796.12 20887.65 11699.18 13896.20 6894.82 20798.91 105
ETV-MVS96.02 7595.89 7596.40 10297.16 15792.44 9397.47 13997.77 13194.55 5796.48 8894.51 28791.23 6698.92 17595.65 9198.19 12697.82 196
canonicalmvs96.02 7595.45 8497.75 3597.59 14195.15 2398.28 3097.60 15194.52 5996.27 9796.12 20887.65 11699.18 13896.20 6894.82 20798.91 105
CDPH-MVS95.97 7895.38 8997.77 3398.93 5094.44 3596.35 24397.88 11486.98 31096.65 7997.89 9591.99 4899.47 10792.26 16199.46 4199.39 59
UA-Net95.95 7995.53 8097.20 6697.67 13192.98 7997.65 11198.13 6994.81 4496.61 8198.35 5688.87 9599.51 10190.36 20397.35 15399.11 84
MGCFI-Net95.94 8095.40 8897.56 4897.59 14194.62 3198.21 4297.57 15694.41 6596.17 10196.16 20687.54 12099.17 14096.19 7094.73 21298.91 105
BP-MVS195.89 8195.49 8197.08 7296.67 19493.20 7298.08 5396.32 27194.56 5696.32 9497.84 10384.07 17399.15 14496.75 4898.78 10098.90 108
VNet95.89 8195.45 8497.21 6598.07 10892.94 8097.50 13298.15 6693.87 8097.52 4697.61 12485.29 15399.53 9695.81 8595.27 19899.16 76
alignmvs95.87 8395.23 9397.78 3197.56 14695.19 2197.86 8197.17 20694.39 6796.47 8996.40 19485.89 14699.20 13496.21 6795.11 20398.95 100
casdiffmvs_mvgpermissive95.81 8495.57 7996.51 9296.87 17691.49 12997.50 13297.56 16093.99 7695.13 13397.92 9487.89 11298.78 18995.97 7897.33 15499.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 8594.92 10098.01 2098.08 10795.71 995.27 30497.62 15090.43 20795.55 12497.07 15491.72 5099.50 10489.62 21998.94 9598.82 120
DP-MVS Recon95.68 8695.12 9897.37 5499.19 3194.19 4297.03 17998.08 7888.35 27495.09 13497.65 11889.97 8599.48 10692.08 17098.59 10998.44 152
casdiffmvspermissive95.64 8795.49 8196.08 12496.76 19290.45 17197.29 15997.44 18294.00 7595.46 12897.98 9087.52 12398.73 19795.64 9297.33 15499.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GDP-MVS95.62 8895.13 9697.09 7196.79 18693.26 7197.89 7997.83 12693.58 8896.80 6997.82 10583.06 19399.16 14294.40 12597.95 13698.87 114
MG-MVS95.61 8995.38 8996.31 10998.42 7690.53 16896.04 26297.48 16893.47 9795.67 12198.10 7889.17 9199.25 12991.27 18898.77 10199.13 80
baseline95.58 9095.42 8796.08 12496.78 18790.41 17497.16 17297.45 17893.69 8795.65 12297.85 10187.29 12898.68 20395.66 8897.25 15999.13 80
CPTT-MVS95.57 9195.19 9496.70 7899.27 2691.48 13098.33 2698.11 7487.79 29195.17 13298.03 8587.09 13199.61 7493.51 14199.42 5099.02 90
EIA-MVS95.53 9295.47 8395.71 15097.06 16589.63 19497.82 8997.87 11693.57 8993.92 16195.04 26190.61 7798.95 17194.62 12198.68 10498.54 137
3Dnovator+91.43 495.40 9394.48 11698.16 1696.90 17595.34 1698.48 2097.87 11694.65 5488.53 29998.02 8783.69 17799.71 5193.18 14898.96 9499.44 52
PS-MVSNAJ95.37 9495.33 9195.49 16397.35 15090.66 16695.31 30197.48 16893.85 8196.51 8695.70 23388.65 10099.65 6394.80 11698.27 12396.17 253
MVSFormer95.37 9495.16 9595.99 13596.34 22491.21 14198.22 4097.57 15691.42 16596.22 9997.32 13986.20 14397.92 29194.07 12999.05 8998.85 116
xiu_mvs_v2_base95.32 9695.29 9295.40 16897.22 15390.50 16995.44 29597.44 18293.70 8696.46 9096.18 20388.59 10399.53 9694.79 11897.81 13996.17 253
PVSNet_Blended_VisFu95.27 9794.91 10196.38 10598.20 9690.86 15797.27 16098.25 4690.21 21194.18 15497.27 14387.48 12499.73 4793.53 14097.77 14198.55 136
diffmvspermissive95.25 9895.13 9695.63 15396.43 21989.34 21095.99 26697.35 19592.83 12796.31 9597.37 13786.44 13898.67 20496.26 6097.19 16198.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 9994.81 10296.51 9297.18 15691.58 12698.26 3498.12 7194.38 6894.90 13698.15 7782.28 21298.92 17591.45 18598.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 10095.04 9995.76 14397.49 14789.56 19898.67 1097.00 22590.69 19294.24 15297.62 12389.79 8798.81 18693.39 14696.49 17698.92 104
EPNet95.20 10194.56 11097.14 6892.80 36892.68 8697.85 8494.87 34496.64 292.46 18997.80 10886.23 14099.65 6393.72 13998.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 10294.44 11897.44 5296.56 20393.36 6598.65 1198.36 2594.12 7289.25 28398.06 8282.20 21499.77 4093.41 14599.32 6499.18 75
OMC-MVS95.09 10394.70 10696.25 11898.46 7391.28 13796.43 23397.57 15692.04 14894.77 14097.96 9287.01 13299.09 15491.31 18796.77 16898.36 159
xiu_mvs_v1_base_debu95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
xiu_mvs_v1_base95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
xiu_mvs_v1_base_debi95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
PAPM_NR95.01 10494.59 10896.26 11598.89 5490.68 16597.24 16297.73 13591.80 15392.93 18696.62 18489.13 9299.14 14789.21 23297.78 14098.97 97
lupinMVS94.99 10894.56 11096.29 11396.34 22491.21 14195.83 27496.27 27588.93 25396.22 9996.88 16486.20 14398.85 18295.27 10199.05 8998.82 120
Effi-MVS+94.93 10994.45 11796.36 10796.61 19791.47 13196.41 23597.41 18791.02 18394.50 14695.92 21787.53 12198.78 18993.89 13596.81 16798.84 119
IS-MVSNet94.90 11094.52 11496.05 12797.67 13190.56 16798.44 2196.22 27893.21 10593.99 15897.74 11185.55 15198.45 22389.98 20897.86 13799.14 79
MVS_Test94.89 11194.62 10795.68 15196.83 18189.55 19996.70 21197.17 20691.17 17795.60 12396.11 21287.87 11398.76 19393.01 15697.17 16298.72 125
PVSNet_Blended94.87 11294.56 11095.81 14298.27 8689.46 20595.47 29498.36 2588.84 25694.36 14996.09 21388.02 10999.58 8293.44 14398.18 12798.40 155
jason94.84 11394.39 11996.18 12195.52 26190.93 15596.09 26096.52 26289.28 23996.01 10997.32 13984.70 16098.77 19295.15 10598.91 9798.85 116
jason: jason.
API-MVS94.84 11394.49 11595.90 13797.90 12192.00 11097.80 9297.48 16889.19 24294.81 13896.71 17088.84 9699.17 14088.91 23998.76 10296.53 242
test_yl94.78 11594.23 12196.43 10097.74 12891.22 13996.85 19697.10 21191.23 17495.71 11896.93 15984.30 16799.31 12493.10 14995.12 20198.75 122
DCV-MVSNet94.78 11594.23 12196.43 10097.74 12891.22 13996.85 19697.10 21191.23 17495.71 11896.93 15984.30 16799.31 12493.10 14995.12 20198.75 122
WTY-MVS94.71 11794.02 12496.79 7797.71 13092.05 10896.59 22697.35 19590.61 20094.64 14296.93 15986.41 13999.39 11691.20 19094.71 21398.94 101
mamv494.66 11896.10 7190.37 35498.01 11173.41 40296.82 20097.78 13089.95 21894.52 14597.43 13592.91 2799.09 15498.28 1699.16 8098.60 133
mvsmamba94.57 11994.14 12395.87 13897.03 16989.93 18997.84 8595.85 29291.34 16894.79 13996.80 16680.67 23898.81 18694.85 11198.12 13098.85 116
RRT-MVS94.51 12094.35 12094.98 18696.40 22086.55 28997.56 12497.41 18793.19 10894.93 13597.04 15679.12 26799.30 12696.19 7097.32 15699.09 86
sss94.51 12093.80 12896.64 8097.07 16291.97 11196.32 24698.06 8688.94 25294.50 14696.78 16784.60 16199.27 12891.90 17196.02 18198.68 129
test_cas_vis1_n_192094.48 12294.55 11394.28 22796.78 18786.45 29197.63 11797.64 14793.32 10397.68 4498.36 5573.75 32799.08 15796.73 4999.05 8997.31 222
CANet_DTU94.37 12393.65 13296.55 8796.46 21792.13 10696.21 25596.67 25494.38 6893.53 16997.03 15779.34 26399.71 5190.76 19698.45 11697.82 196
AdaColmapbinary94.34 12493.68 13196.31 10998.59 6991.68 12196.59 22697.81 12889.87 21992.15 20097.06 15583.62 18099.54 9489.34 22698.07 13197.70 201
CNLPA94.28 12593.53 13796.52 8998.38 8192.55 9096.59 22696.88 23890.13 21591.91 20797.24 14585.21 15499.09 15487.64 26497.83 13897.92 186
MAR-MVS94.22 12693.46 14296.51 9298.00 11392.19 10597.67 10897.47 17188.13 28193.00 18195.84 22184.86 15999.51 10187.99 25198.17 12897.83 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 12793.42 14696.48 9597.64 13591.42 13495.55 28997.71 14188.99 24992.34 19695.82 22389.19 9099.11 15086.14 29097.38 15198.90 108
SDMVSNet94.17 12893.61 13395.86 14098.09 10491.37 13597.35 15298.20 5493.18 11091.79 21197.28 14179.13 26698.93 17494.61 12292.84 24297.28 223
test_vis1_n_192094.17 12894.58 10992.91 28997.42 14982.02 35697.83 8797.85 12194.68 5198.10 3298.49 4270.15 35099.32 12297.91 1998.82 9897.40 217
h-mvs3394.15 13093.52 13996.04 12897.81 12590.22 17997.62 11997.58 15595.19 2596.74 7397.45 13283.67 17899.61 7495.85 8279.73 37898.29 162
CHOSEN 1792x268894.15 13093.51 14096.06 12698.27 8689.38 20895.18 31098.48 2285.60 33393.76 16497.11 15283.15 18999.61 7491.33 18698.72 10399.19 74
Vis-MVSNet (Re-imp)94.15 13093.88 12794.95 19097.61 13987.92 25498.10 5195.80 29592.22 13993.02 18097.45 13284.53 16397.91 29488.24 24797.97 13499.02 90
CDS-MVSNet94.14 13393.54 13695.93 13696.18 23191.46 13296.33 24597.04 22188.97 25193.56 16696.51 18887.55 11997.89 29589.80 21395.95 18398.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 13493.43 14496.13 12398.58 7191.15 14996.69 21397.39 18987.29 30591.37 22196.71 17088.39 10499.52 10087.33 27197.13 16397.73 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 13593.70 13095.27 17195.70 25392.03 10998.10 5198.68 1393.36 10290.39 24296.70 17287.63 11897.94 28892.25 16390.50 28395.84 266
PVSNet_BlendedMVS94.06 13693.92 12694.47 21498.27 8689.46 20596.73 20798.36 2590.17 21294.36 14995.24 25588.02 10999.58 8293.44 14390.72 27994.36 349
nrg03094.05 13793.31 14896.27 11495.22 28594.59 3298.34 2597.46 17392.93 12491.21 23196.64 17787.23 13098.22 24294.99 10985.80 32695.98 262
UGNet94.04 13893.28 14996.31 10996.85 17891.19 14497.88 8097.68 14294.40 6693.00 18196.18 20373.39 32999.61 7491.72 17798.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 13993.46 14295.64 15296.16 23390.45 17196.71 21096.89 23789.27 24093.46 17196.92 16287.29 12897.94 28888.70 24395.74 18898.53 138
114514_t93.95 14093.06 15396.63 8299.07 3791.61 12397.46 14197.96 10677.99 39693.00 18197.57 12686.14 14599.33 12089.22 23199.15 8198.94 101
FC-MVSNet-test93.94 14193.57 13495.04 18195.48 26391.45 13398.12 5098.71 1193.37 10090.23 24596.70 17287.66 11597.85 29791.49 18390.39 28495.83 267
mvsany_test193.93 14293.98 12593.78 25594.94 30186.80 27994.62 32292.55 38788.77 26296.85 6898.49 4288.98 9398.08 26095.03 10795.62 19296.46 247
GeoE93.89 14393.28 14995.72 14996.96 17489.75 19398.24 3896.92 23489.47 23392.12 20297.21 14784.42 16598.39 23087.71 25896.50 17599.01 93
HY-MVS89.66 993.87 14492.95 15696.63 8297.10 16192.49 9295.64 28796.64 25589.05 24793.00 18195.79 22785.77 14999.45 11089.16 23594.35 21597.96 184
XVG-OURS-SEG-HR93.86 14593.55 13594.81 19697.06 16588.53 23695.28 30297.45 17891.68 15794.08 15797.68 11482.41 21098.90 17893.84 13792.47 24896.98 230
VDD-MVS93.82 14693.08 15296.02 13097.88 12289.96 18897.72 10295.85 29292.43 13595.86 11398.44 4868.42 36499.39 11696.31 5994.85 20598.71 127
mvs_anonymous93.82 14693.74 12994.06 23596.44 21885.41 30895.81 27597.05 21989.85 22290.09 25596.36 19687.44 12597.75 30993.97 13196.69 17299.02 90
HQP_MVS93.78 14893.43 14494.82 19496.21 22889.99 18497.74 9797.51 16494.85 3991.34 22296.64 17781.32 22898.60 21193.02 15492.23 25195.86 263
PS-MVSNAJss93.74 14993.51 14094.44 21693.91 33989.28 21597.75 9697.56 16092.50 13489.94 25896.54 18788.65 10098.18 24793.83 13890.90 27795.86 263
XVG-OURS93.72 15093.35 14794.80 19997.07 16288.61 23194.79 31997.46 17391.97 15193.99 15897.86 10081.74 22398.88 17992.64 16092.67 24796.92 234
HyFIR lowres test93.66 15192.92 15795.87 13898.24 9089.88 19094.58 32498.49 2085.06 34393.78 16395.78 22882.86 19898.67 20491.77 17695.71 19099.07 89
LFMVS93.60 15292.63 17096.52 8998.13 10391.27 13897.94 7393.39 37690.57 20396.29 9698.31 6569.00 35799.16 14294.18 12895.87 18599.12 83
F-COLMAP93.58 15392.98 15595.37 16998.40 7888.98 22497.18 17097.29 20087.75 29490.49 24097.10 15385.21 15499.50 10486.70 28196.72 17197.63 203
ab-mvs93.57 15492.55 17496.64 8097.28 15291.96 11395.40 29697.45 17889.81 22493.22 17996.28 19979.62 26099.46 10890.74 19793.11 23998.50 142
LS3D93.57 15492.61 17296.47 9697.59 14191.61 12397.67 10897.72 13785.17 34190.29 24498.34 5984.60 16199.73 4783.85 32498.27 12398.06 180
FA-MVS(test-final)93.52 15692.92 15795.31 17096.77 18988.54 23594.82 31896.21 28089.61 22894.20 15395.25 25483.24 18599.14 14790.01 20796.16 18098.25 163
Fast-Effi-MVS+93.46 15792.75 16595.59 15696.77 18990.03 18196.81 20197.13 20888.19 27791.30 22594.27 30486.21 14298.63 20887.66 26396.46 17898.12 174
hse-mvs293.45 15892.99 15494.81 19697.02 17088.59 23296.69 21396.47 26595.19 2596.74 7396.16 20683.67 17898.48 22295.85 8279.13 38297.35 220
QAPM93.45 15892.27 18496.98 7696.77 18992.62 8798.39 2498.12 7184.50 35188.27 30797.77 10982.39 21199.81 3085.40 30398.81 9998.51 141
UniMVSNet_NR-MVSNet93.37 16092.67 16995.47 16695.34 27492.83 8197.17 17198.58 1892.98 12290.13 25095.80 22488.37 10597.85 29791.71 17883.93 35595.73 277
1112_ss93.37 16092.42 18196.21 11997.05 16790.99 15196.31 24796.72 24786.87 31389.83 26296.69 17486.51 13799.14 14788.12 24893.67 23398.50 142
UniMVSNet (Re)93.31 16292.55 17495.61 15595.39 26893.34 6697.39 14898.71 1193.14 11390.10 25494.83 27187.71 11498.03 27191.67 18183.99 35495.46 286
OPM-MVS93.28 16392.76 16394.82 19494.63 31790.77 16196.65 21797.18 20493.72 8491.68 21597.26 14479.33 26498.63 20892.13 16792.28 25095.07 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 16492.48 17995.51 16195.70 25392.39 9497.86 8198.66 1692.30 13892.09 20495.37 24780.49 24298.40 22693.95 13285.86 32595.75 275
test_fmvs193.21 16593.53 13792.25 31096.55 20581.20 36397.40 14796.96 22790.68 19396.80 6998.04 8469.25 35698.40 22697.58 2998.50 11197.16 227
MVSTER93.20 16692.81 16294.37 21996.56 20389.59 19797.06 17897.12 20991.24 17391.30 22595.96 21582.02 21798.05 26793.48 14290.55 28195.47 285
test111193.19 16792.82 16194.30 22697.58 14584.56 32598.21 4289.02 40693.53 9494.58 14398.21 7272.69 33099.05 16493.06 15298.48 11499.28 68
ECVR-MVScopyleft93.19 16792.73 16794.57 21197.66 13385.41 30898.21 4288.23 40893.43 9894.70 14198.21 7272.57 33199.07 16193.05 15398.49 11299.25 71
HQP-MVS93.19 16792.74 16694.54 21295.86 24589.33 21196.65 21797.39 18993.55 9090.14 24695.87 21980.95 23298.50 21992.13 16792.10 25695.78 271
CHOSEN 280x42093.12 17092.72 16894.34 22296.71 19387.27 26790.29 39697.72 13786.61 31791.34 22295.29 24984.29 16998.41 22593.25 14798.94 9597.35 220
sd_testset93.10 17192.45 18095.05 18098.09 10489.21 21796.89 19397.64 14793.18 11091.79 21197.28 14175.35 31398.65 20688.99 23792.84 24297.28 223
Effi-MVS+-dtu93.08 17293.21 15192.68 30096.02 24283.25 34197.14 17496.72 24793.85 8191.20 23293.44 34183.08 19198.30 23791.69 18095.73 18996.50 244
test_djsdf93.07 17392.76 16394.00 23993.49 35388.70 23098.22 4097.57 15691.42 16590.08 25695.55 24182.85 19997.92 29194.07 12991.58 26395.40 291
VDDNet93.05 17492.07 18896.02 13096.84 17990.39 17598.08 5395.85 29286.22 32595.79 11698.46 4667.59 36799.19 13594.92 11094.85 20598.47 147
thisisatest053093.03 17592.21 18695.49 16397.07 16289.11 22297.49 13892.19 38990.16 21394.09 15696.41 19376.43 30499.05 16490.38 20295.68 19198.31 161
EI-MVSNet93.03 17592.88 15993.48 26995.77 25186.98 27696.44 23197.12 20990.66 19691.30 22597.64 12186.56 13598.05 26789.91 21090.55 28195.41 288
CLD-MVS92.98 17792.53 17694.32 22396.12 23889.20 21895.28 30297.47 17192.66 13189.90 25995.62 23780.58 24098.40 22692.73 15992.40 24995.38 293
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 17892.33 18394.87 19397.11 16087.16 27397.97 6992.09 39090.63 19893.88 16297.01 15876.50 30199.06 16390.29 20595.45 19598.38 157
ACMM89.79 892.96 17892.50 17894.35 22096.30 22688.71 22997.58 12197.36 19491.40 16790.53 23996.65 17679.77 25698.75 19491.24 18991.64 26195.59 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 18092.56 17394.10 23396.16 23388.26 24397.65 11197.46 17391.29 16990.12 25297.16 14979.05 26998.73 19792.25 16391.89 25995.31 298
BH-untuned92.94 18092.62 17193.92 24997.22 15386.16 29996.40 23996.25 27790.06 21689.79 26396.17 20583.19 18798.35 23387.19 27497.27 15897.24 225
DU-MVS92.90 18292.04 18995.49 16394.95 29992.83 8197.16 17298.24 4893.02 11690.13 25095.71 23183.47 18197.85 29791.71 17883.93 35595.78 271
PatchMatch-RL92.90 18292.02 19195.56 15798.19 9890.80 15995.27 30497.18 20487.96 28391.86 21095.68 23480.44 24398.99 16984.01 31997.54 14596.89 235
PMMVS92.86 18492.34 18294.42 21894.92 30286.73 28294.53 32696.38 26984.78 34894.27 15195.12 26083.13 19098.40 22691.47 18496.49 17698.12 174
OpenMVScopyleft89.19 1292.86 18491.68 20396.40 10295.34 27492.73 8598.27 3298.12 7184.86 34685.78 34797.75 11078.89 27699.74 4587.50 26898.65 10596.73 239
Test_1112_low_res92.84 18691.84 19795.85 14197.04 16889.97 18795.53 29196.64 25585.38 33689.65 26895.18 25685.86 14799.10 15187.70 25993.58 23898.49 144
baseline192.82 18791.90 19595.55 15997.20 15590.77 16197.19 16994.58 35092.20 14192.36 19396.34 19784.16 17198.21 24389.20 23383.90 35897.68 202
131492.81 18892.03 19095.14 17695.33 27789.52 20296.04 26297.44 18287.72 29586.25 34495.33 24883.84 17598.79 18889.26 22997.05 16497.11 228
DP-MVS92.76 18991.51 21196.52 8998.77 5690.99 15197.38 15096.08 28482.38 37289.29 28097.87 9883.77 17699.69 5781.37 34696.69 17298.89 112
test_fmvs1_n92.73 19092.88 15992.29 30896.08 24181.05 36497.98 6397.08 21490.72 19196.79 7198.18 7563.07 38998.45 22397.62 2898.42 11897.36 218
BH-RMVSNet92.72 19191.97 19394.97 18897.16 15787.99 25296.15 25895.60 30690.62 19991.87 20997.15 15178.41 28298.57 21583.16 32697.60 14498.36 159
ACMP89.59 1092.62 19292.14 18794.05 23696.40 22088.20 24697.36 15197.25 20391.52 16088.30 30596.64 17778.46 28198.72 20091.86 17491.48 26595.23 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 19392.52 17792.44 30296.82 18381.89 35796.92 19193.71 37392.41 13684.30 36094.60 28285.08 15697.03 35291.51 18297.36 15298.40 155
TranMVSNet+NR-MVSNet92.50 19391.63 20495.14 17694.76 31092.07 10797.53 12998.11 7492.90 12689.56 27196.12 20883.16 18897.60 32289.30 22783.20 36495.75 275
thres600view792.49 19591.60 20595.18 17497.91 12089.47 20397.65 11194.66 34792.18 14593.33 17494.91 26678.06 28999.10 15181.61 34094.06 22896.98 230
thres100view90092.43 19691.58 20694.98 18697.92 11989.37 20997.71 10494.66 34792.20 14193.31 17594.90 26778.06 28999.08 15781.40 34394.08 22496.48 245
jajsoiax92.42 19791.89 19694.03 23893.33 35988.50 23797.73 9997.53 16292.00 15088.85 29196.50 18975.62 31198.11 25493.88 13691.56 26495.48 283
thres40092.42 19791.52 20995.12 17897.85 12389.29 21397.41 14394.88 34192.19 14393.27 17794.46 29278.17 28599.08 15781.40 34394.08 22496.98 230
tfpn200view992.38 19991.52 20994.95 19097.85 12389.29 21397.41 14394.88 34192.19 14393.27 17794.46 29278.17 28599.08 15781.40 34394.08 22496.48 245
test_vis1_n92.37 20092.26 18592.72 29794.75 31182.64 34698.02 5996.80 24491.18 17697.77 4397.93 9358.02 39898.29 23897.63 2798.21 12597.23 226
WR-MVS92.34 20191.53 20894.77 20195.13 29290.83 15896.40 23997.98 10491.88 15289.29 28095.54 24282.50 20797.80 30389.79 21485.27 33495.69 278
NR-MVSNet92.34 20191.27 21995.53 16094.95 29993.05 7697.39 14898.07 8392.65 13284.46 35895.71 23185.00 15797.77 30789.71 21583.52 36195.78 271
mvs_tets92.31 20391.76 19993.94 24693.41 35688.29 24197.63 11797.53 16292.04 14888.76 29496.45 19174.62 31998.09 25993.91 13491.48 26595.45 287
TAPA-MVS90.10 792.30 20491.22 22295.56 15798.33 8389.60 19696.79 20297.65 14581.83 37691.52 21797.23 14687.94 11198.91 17771.31 39898.37 11998.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 20591.30 21795.25 17296.60 19888.90 22694.36 33492.32 38887.92 28493.43 17294.57 28377.28 29699.00 16889.42 22495.86 18697.86 192
Fast-Effi-MVS+-dtu92.29 20591.99 19293.21 28095.27 28185.52 30697.03 17996.63 25892.09 14689.11 28695.14 25880.33 24698.08 26087.54 26794.74 21196.03 261
IterMVS-LS92.29 20591.94 19493.34 27496.25 22786.97 27796.57 22997.05 21990.67 19489.50 27494.80 27386.59 13497.64 31789.91 21086.11 32495.40 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 20891.74 20293.73 25697.77 12783.69 33892.88 37696.72 24787.91 28593.00 18194.86 26978.51 28099.05 16486.53 28297.45 15098.47 147
VPNet92.23 20991.31 21694.99 18495.56 25990.96 15397.22 16797.86 12092.96 12390.96 23396.62 18475.06 31498.20 24491.90 17183.65 36095.80 269
thres20092.23 20991.39 21294.75 20397.61 13989.03 22396.60 22595.09 33192.08 14793.28 17694.00 31878.39 28399.04 16781.26 34994.18 22096.19 252
anonymousdsp92.16 21191.55 20793.97 24292.58 37389.55 19997.51 13197.42 18689.42 23688.40 30194.84 27080.66 23997.88 29691.87 17391.28 26994.48 344
XXY-MVS92.16 21191.23 22194.95 19094.75 31190.94 15497.47 13997.43 18589.14 24388.90 28896.43 19279.71 25798.24 24089.56 22087.68 30895.67 279
BH-w/o92.14 21391.75 20093.31 27596.99 17385.73 30395.67 28295.69 30188.73 26389.26 28294.82 27282.97 19698.07 26485.26 30596.32 17996.13 257
Anonymous20240521192.07 21490.83 23795.76 14398.19 9888.75 22897.58 12195.00 33486.00 32893.64 16597.45 13266.24 37999.53 9690.68 19992.71 24599.01 93
FE-MVS92.05 21591.05 22795.08 17996.83 18187.93 25393.91 35295.70 29986.30 32294.15 15594.97 26276.59 30099.21 13384.10 31796.86 16598.09 178
WR-MVS_H92.00 21691.35 21393.95 24495.09 29489.47 20398.04 5898.68 1391.46 16388.34 30394.68 27885.86 14797.56 32485.77 29884.24 35294.82 329
Anonymous2024052991.98 21790.73 24395.73 14898.14 10289.40 20797.99 6297.72 13779.63 39093.54 16897.41 13669.94 35299.56 9091.04 19391.11 27298.22 165
MonoMVSNet91.92 21891.77 19892.37 30492.94 36583.11 34297.09 17795.55 30992.91 12590.85 23594.55 28481.27 23096.52 36493.01 15687.76 30797.47 214
PatchmatchNetpermissive91.91 21991.35 21393.59 26495.38 26984.11 33193.15 37195.39 31489.54 23092.10 20393.68 33182.82 20098.13 25084.81 30995.32 19798.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 22091.02 22894.53 21396.54 20686.55 28995.86 27295.64 30591.77 15491.89 20893.47 34069.94 35298.86 18090.23 20693.86 23198.18 168
CP-MVSNet91.89 22191.24 22093.82 25295.05 29588.57 23397.82 8998.19 5991.70 15688.21 30995.76 22981.96 21897.52 33087.86 25384.65 34395.37 294
SCA91.84 22291.18 22493.83 25195.59 25784.95 32194.72 32095.58 30890.82 18692.25 19893.69 32975.80 30898.10 25586.20 28895.98 18298.45 149
FMVSNet391.78 22390.69 24695.03 18296.53 20892.27 10097.02 18196.93 23089.79 22589.35 27794.65 28077.01 29797.47 33386.12 29188.82 29695.35 295
AUN-MVS91.76 22490.75 24194.81 19697.00 17288.57 23396.65 21796.49 26489.63 22792.15 20096.12 20878.66 27898.50 21990.83 19479.18 38197.36 218
X-MVStestdata91.71 22589.67 28997.81 2899.38 1494.03 5098.59 1298.20 5494.85 3996.59 8332.69 42291.70 5299.80 3395.66 8899.40 5599.62 20
MVS91.71 22590.44 25395.51 16195.20 28791.59 12596.04 26297.45 17873.44 40687.36 32695.60 23885.42 15299.10 15185.97 29597.46 14695.83 267
EPNet_dtu91.71 22591.28 21892.99 28693.76 34483.71 33796.69 21395.28 32193.15 11287.02 33495.95 21683.37 18497.38 34179.46 36196.84 16697.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 22890.75 24194.47 21496.53 20886.56 28895.76 27994.51 35391.10 18191.24 23093.59 33568.59 36198.86 18091.10 19194.29 21798.00 183
baseline291.63 22990.86 23393.94 24694.33 32886.32 29395.92 26991.64 39489.37 23786.94 33794.69 27781.62 22598.69 20288.64 24494.57 21496.81 237
testing9991.62 23090.72 24494.32 22396.48 21486.11 30095.81 27594.76 34591.55 15991.75 21393.44 34168.55 36298.82 18490.43 20093.69 23298.04 181
test250691.60 23190.78 23894.04 23797.66 13383.81 33498.27 3275.53 42393.43 9895.23 13098.21 7267.21 37099.07 16193.01 15698.49 11299.25 71
miper_ehance_all_eth91.59 23291.13 22592.97 28795.55 26086.57 28794.47 32896.88 23887.77 29288.88 29094.01 31786.22 14197.54 32689.49 22186.93 31694.79 334
v2v48291.59 23290.85 23593.80 25393.87 34188.17 24896.94 19096.88 23889.54 23089.53 27294.90 26781.70 22498.02 27289.25 23085.04 34095.20 306
V4291.58 23490.87 23293.73 25694.05 33688.50 23797.32 15696.97 22688.80 26189.71 26494.33 29982.54 20698.05 26789.01 23685.07 33894.64 342
PCF-MVS89.48 1191.56 23589.95 27796.36 10796.60 19892.52 9192.51 38197.26 20179.41 39188.90 28896.56 18684.04 17499.55 9277.01 37597.30 15797.01 229
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UBG91.55 23690.76 23993.94 24696.52 21085.06 31795.22 30794.54 35190.47 20691.98 20692.71 35172.02 33498.74 19688.10 24995.26 19998.01 182
PS-CasMVS91.55 23690.84 23693.69 26094.96 29888.28 24297.84 8598.24 4891.46 16388.04 31395.80 22479.67 25897.48 33287.02 27884.54 34995.31 298
miper_enhance_ethall91.54 23891.01 22993.15 28195.35 27387.07 27593.97 34796.90 23586.79 31489.17 28493.43 34486.55 13697.64 31789.97 20986.93 31694.74 338
PAPM91.52 23990.30 25995.20 17395.30 28089.83 19193.38 36796.85 24186.26 32488.59 29795.80 22484.88 15898.15 24975.67 38095.93 18497.63 203
ET-MVSNet_ETH3D91.49 24090.11 26995.63 15396.40 22091.57 12795.34 29893.48 37590.60 20275.58 39895.49 24480.08 25096.79 36194.25 12789.76 28998.52 139
TR-MVS91.48 24190.59 24994.16 23196.40 22087.33 26495.67 28295.34 32087.68 29691.46 21995.52 24376.77 29998.35 23382.85 33193.61 23696.79 238
tpmrst91.44 24291.32 21591.79 32495.15 29079.20 38793.42 36695.37 31688.55 26893.49 17093.67 33282.49 20898.27 23990.41 20189.34 29397.90 187
test-LLR91.42 24391.19 22392.12 31294.59 31880.66 36794.29 33992.98 38091.11 17990.76 23792.37 35979.02 27198.07 26488.81 24096.74 16997.63 203
MSDG91.42 24390.24 26394.96 18997.15 15988.91 22593.69 35996.32 27185.72 33286.93 33896.47 19080.24 24798.98 17080.57 35295.05 20496.98 230
c3_l91.38 24590.89 23192.88 29195.58 25886.30 29494.68 32196.84 24288.17 27888.83 29394.23 30785.65 15097.47 33389.36 22584.63 34494.89 324
GA-MVS91.38 24590.31 25894.59 20694.65 31687.62 26294.34 33596.19 28190.73 19090.35 24393.83 32271.84 33697.96 28387.22 27393.61 23698.21 166
v114491.37 24790.60 24893.68 26193.89 34088.23 24596.84 19897.03 22388.37 27389.69 26694.39 29482.04 21697.98 27687.80 25585.37 33194.84 326
GBi-Net91.35 24890.27 26194.59 20696.51 21191.18 14597.50 13296.93 23088.82 25889.35 27794.51 28773.87 32397.29 34586.12 29188.82 29695.31 298
test191.35 24890.27 26194.59 20696.51 21191.18 14597.50 13296.93 23088.82 25889.35 27794.51 28773.87 32397.29 34586.12 29188.82 29695.31 298
UniMVSNet_ETH3D91.34 25090.22 26694.68 20494.86 30687.86 25797.23 16697.46 17387.99 28289.90 25996.92 16266.35 37798.23 24190.30 20490.99 27597.96 184
FMVSNet291.31 25190.08 27094.99 18496.51 21192.21 10297.41 14396.95 22888.82 25888.62 29694.75 27573.87 32397.42 33885.20 30688.55 30195.35 295
reproduce_monomvs91.30 25291.10 22691.92 31696.82 18382.48 35097.01 18497.49 16794.64 5588.35 30295.27 25270.53 34598.10 25595.20 10284.60 34695.19 309
D2MVS91.30 25290.95 23092.35 30594.71 31485.52 30696.18 25798.21 5288.89 25486.60 34193.82 32479.92 25497.95 28789.29 22890.95 27693.56 362
v891.29 25490.53 25293.57 26694.15 33288.12 25097.34 15397.06 21888.99 24988.32 30494.26 30683.08 19198.01 27387.62 26583.92 35794.57 343
CVMVSNet91.23 25591.75 20089.67 36295.77 25174.69 39896.44 23194.88 34185.81 33092.18 19997.64 12179.07 26895.58 38188.06 25095.86 18698.74 124
cl2291.21 25690.56 25193.14 28296.09 24086.80 27994.41 33296.58 26187.80 29088.58 29893.99 31980.85 23797.62 32089.87 21286.93 31694.99 315
PEN-MVS91.20 25790.44 25393.48 26994.49 32287.91 25697.76 9598.18 6191.29 16987.78 31795.74 23080.35 24597.33 34385.46 30282.96 36595.19 309
Baseline_NR-MVSNet91.20 25790.62 24792.95 28893.83 34288.03 25197.01 18495.12 33088.42 27289.70 26595.13 25983.47 18197.44 33689.66 21883.24 36393.37 366
cascas91.20 25790.08 27094.58 21094.97 29789.16 22193.65 36197.59 15479.90 38989.40 27592.92 34975.36 31298.36 23292.14 16694.75 21096.23 249
CostFormer91.18 26090.70 24592.62 30194.84 30781.76 35894.09 34594.43 35484.15 35492.72 18893.77 32679.43 26298.20 24490.70 19892.18 25497.90 187
tt080591.09 26190.07 27394.16 23195.61 25688.31 24097.56 12496.51 26389.56 22989.17 28495.64 23667.08 37498.38 23191.07 19288.44 30295.80 269
v119291.07 26290.23 26493.58 26593.70 34587.82 25996.73 20797.07 21687.77 29289.58 26994.32 30180.90 23697.97 27986.52 28385.48 32994.95 316
v14419291.06 26390.28 26093.39 27293.66 34887.23 27096.83 19997.07 21687.43 30189.69 26694.28 30381.48 22698.00 27487.18 27584.92 34294.93 320
v1091.04 26490.23 26493.49 26894.12 33388.16 24997.32 15697.08 21488.26 27688.29 30694.22 30982.17 21597.97 27986.45 28584.12 35394.33 350
eth_miper_zixun_eth91.02 26590.59 24992.34 30795.33 27784.35 32794.10 34496.90 23588.56 26788.84 29294.33 29984.08 17297.60 32288.77 24284.37 35195.06 313
v14890.99 26690.38 25592.81 29493.83 34285.80 30296.78 20496.68 25289.45 23588.75 29593.93 32182.96 19797.82 30187.83 25483.25 36294.80 332
LTVRE_ROB88.41 1390.99 26689.92 27994.19 22996.18 23189.55 19996.31 24797.09 21387.88 28685.67 34895.91 21878.79 27798.57 21581.50 34189.98 28694.44 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 26890.33 25692.88 29195.36 27286.19 29894.46 33096.63 25887.82 28888.18 31094.23 30782.99 19497.53 32887.72 25685.57 32894.93 320
cl____90.96 26990.32 25792.89 29095.37 27186.21 29794.46 33096.64 25587.82 28888.15 31194.18 31082.98 19597.54 32687.70 25985.59 32794.92 322
pmmvs490.93 27089.85 28194.17 23093.34 35890.79 16094.60 32396.02 28584.62 34987.45 32295.15 25781.88 22197.45 33587.70 25987.87 30694.27 354
XVG-ACMP-BASELINE90.93 27090.21 26793.09 28394.31 33085.89 30195.33 29997.26 20191.06 18289.38 27695.44 24668.61 36098.60 21189.46 22291.05 27394.79 334
v192192090.85 27290.03 27593.29 27693.55 34986.96 27896.74 20697.04 22187.36 30389.52 27394.34 29880.23 24897.97 27986.27 28685.21 33594.94 318
CR-MVSNet90.82 27389.77 28593.95 24494.45 32487.19 27190.23 39795.68 30386.89 31292.40 19092.36 36280.91 23497.05 35181.09 35093.95 22997.60 208
v7n90.76 27489.86 28093.45 27193.54 35087.60 26397.70 10797.37 19288.85 25587.65 31994.08 31581.08 23198.10 25584.68 31183.79 35994.66 341
RPSCF90.75 27590.86 23390.42 35396.84 17976.29 39695.61 28896.34 27083.89 35791.38 22097.87 9876.45 30298.78 18987.16 27692.23 25196.20 251
MVP-Stereo90.74 27690.08 27092.71 29893.19 36188.20 24695.86 27296.27 27586.07 32784.86 35694.76 27477.84 29297.75 30983.88 32398.01 13392.17 387
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 27789.65 29193.96 24394.29 33189.63 19497.79 9396.82 24389.07 24586.12 34695.48 24578.61 27997.78 30586.97 27981.67 37094.46 345
v124090.70 27889.85 28193.23 27893.51 35286.80 27996.61 22397.02 22487.16 30889.58 26994.31 30279.55 26197.98 27685.52 30185.44 33094.90 323
EPMVS90.70 27889.81 28393.37 27394.73 31384.21 32993.67 36088.02 40989.50 23292.38 19293.49 33877.82 29397.78 30586.03 29492.68 24698.11 177
WBMVS90.69 28089.99 27692.81 29496.48 21485.00 31895.21 30996.30 27389.46 23489.04 28794.05 31672.45 33397.82 30189.46 22287.41 31395.61 280
Anonymous2023121190.63 28189.42 29694.27 22898.24 9089.19 22098.05 5797.89 11279.95 38888.25 30894.96 26372.56 33298.13 25089.70 21685.14 33695.49 282
DTE-MVSNet90.56 28289.75 28793.01 28593.95 33787.25 26897.64 11597.65 14590.74 18987.12 32995.68 23479.97 25397.00 35583.33 32581.66 37194.78 336
ACMH87.59 1690.53 28389.42 29693.87 25096.21 22887.92 25497.24 16296.94 22988.45 27183.91 36896.27 20071.92 33598.62 21084.43 31489.43 29295.05 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 28489.14 30394.67 20596.81 18587.85 25895.91 27093.97 36789.71 22692.34 19692.48 35765.41 38497.96 28381.37 34694.27 21898.21 166
OurMVSNet-221017-090.51 28590.19 26891.44 33393.41 35681.25 36196.98 18796.28 27491.68 15786.55 34296.30 19874.20 32297.98 27688.96 23887.40 31495.09 311
miper_lstm_enhance90.50 28690.06 27491.83 32195.33 27783.74 33593.86 35396.70 25187.56 29987.79 31693.81 32583.45 18396.92 35787.39 26984.62 34594.82 329
COLMAP_ROBcopyleft87.81 1590.40 28789.28 29993.79 25497.95 11687.13 27496.92 19195.89 29182.83 36986.88 34097.18 14873.77 32699.29 12778.44 36693.62 23594.95 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 28888.96 30594.35 22096.54 20687.29 26595.50 29293.84 37190.97 18491.75 21392.96 34862.18 39498.00 27482.86 32994.08 22497.76 198
IterMVS-SCA-FT90.31 28889.81 28391.82 32295.52 26184.20 33094.30 33896.15 28290.61 20087.39 32594.27 30475.80 30896.44 36587.34 27086.88 32094.82 329
MS-PatchMatch90.27 29089.77 28591.78 32594.33 32884.72 32495.55 28996.73 24686.17 32686.36 34395.28 25171.28 34097.80 30384.09 31898.14 12992.81 372
tpm90.25 29189.74 28891.76 32793.92 33879.73 38193.98 34693.54 37488.28 27591.99 20593.25 34577.51 29597.44 33687.30 27287.94 30598.12 174
AllTest90.23 29288.98 30493.98 24097.94 11786.64 28396.51 23095.54 31085.38 33685.49 35096.77 16870.28 34799.15 14480.02 35692.87 24096.15 255
dmvs_re90.21 29389.50 29492.35 30595.47 26685.15 31495.70 28194.37 35890.94 18588.42 30093.57 33674.63 31895.67 37882.80 33289.57 29196.22 250
ACMH+87.92 1490.20 29489.18 30193.25 27796.48 21486.45 29196.99 18696.68 25288.83 25784.79 35796.22 20270.16 34998.53 21784.42 31588.04 30494.77 337
test-mter90.19 29589.54 29392.12 31294.59 31880.66 36794.29 33992.98 38087.68 29690.76 23792.37 35967.67 36698.07 26488.81 24096.74 16997.63 203
IterMVS90.15 29689.67 28991.61 32995.48 26383.72 33694.33 33696.12 28389.99 21787.31 32894.15 31275.78 31096.27 36886.97 27986.89 31994.83 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 29789.42 29691.97 31594.41 32680.62 36994.29 33991.97 39287.28 30690.44 24192.47 35868.79 35897.67 31488.50 24696.60 17497.61 207
tpm289.96 29889.21 30092.23 31194.91 30481.25 36193.78 35594.42 35580.62 38691.56 21693.44 34176.44 30397.94 28885.60 30092.08 25897.49 212
UWE-MVS89.91 29989.48 29591.21 33795.88 24478.23 39294.91 31790.26 40289.11 24492.35 19594.52 28668.76 35997.96 28383.95 32195.59 19397.42 216
IB-MVS87.33 1789.91 29988.28 31594.79 20095.26 28487.70 26195.12 31293.95 36889.35 23887.03 33392.49 35670.74 34499.19 13589.18 23481.37 37297.49 212
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 30188.68 31093.53 26795.86 24584.89 32290.93 39295.07 33283.23 36791.28 22891.81 37179.01 27397.85 29779.52 35891.39 26797.84 193
WB-MVSnew89.88 30289.56 29290.82 34594.57 32183.06 34395.65 28692.85 38287.86 28790.83 23694.10 31379.66 25996.88 35876.34 37694.19 21992.54 378
FMVSNet189.88 30288.31 31494.59 20695.41 26791.18 14597.50 13296.93 23086.62 31687.41 32494.51 28765.94 38297.29 34583.04 32887.43 31195.31 298
pmmvs589.86 30488.87 30892.82 29392.86 36686.23 29696.26 25095.39 31484.24 35387.12 32994.51 28774.27 32197.36 34287.61 26687.57 30994.86 325
tpmvs89.83 30589.15 30291.89 31994.92 30280.30 37493.11 37295.46 31386.28 32388.08 31292.65 35280.44 24398.52 21881.47 34289.92 28796.84 236
test_fmvs289.77 30689.93 27889.31 36893.68 34776.37 39597.64 11595.90 28989.84 22391.49 21896.26 20158.77 39797.10 34994.65 12091.13 27194.46 345
mmtdpeth89.70 30788.96 30591.90 31895.84 25084.42 32697.46 14195.53 31290.27 21094.46 14890.50 37969.74 35598.95 17197.39 3869.48 40492.34 381
tfpnnormal89.70 30788.40 31393.60 26395.15 29090.10 18097.56 12498.16 6587.28 30686.16 34594.63 28177.57 29498.05 26774.48 38484.59 34792.65 375
ADS-MVSNet289.45 30988.59 31192.03 31495.86 24582.26 35490.93 39294.32 36183.23 36791.28 22891.81 37179.01 27395.99 37079.52 35891.39 26797.84 193
Patchmatch-test89.42 31087.99 31793.70 25995.27 28185.11 31588.98 40494.37 35881.11 38087.10 33293.69 32982.28 21297.50 33174.37 38694.76 20998.48 146
test0.0.03 189.37 31188.70 30991.41 33492.47 37585.63 30495.22 30792.70 38591.11 17986.91 33993.65 33379.02 27193.19 40378.00 36889.18 29495.41 288
SixPastTwentyTwo89.15 31288.54 31290.98 34193.49 35380.28 37596.70 21194.70 34690.78 18784.15 36395.57 23971.78 33797.71 31284.63 31285.07 33894.94 318
RPMNet88.98 31387.05 32794.77 20194.45 32487.19 27190.23 39798.03 9577.87 39892.40 19087.55 40280.17 24999.51 10168.84 40393.95 22997.60 208
TransMVSNet (Re)88.94 31487.56 32093.08 28494.35 32788.45 23997.73 9995.23 32587.47 30084.26 36195.29 24979.86 25597.33 34379.44 36274.44 39593.45 365
USDC88.94 31487.83 31992.27 30994.66 31584.96 32093.86 35395.90 28987.34 30483.40 37095.56 24067.43 36898.19 24682.64 33689.67 29093.66 361
dp88.90 31688.26 31690.81 34694.58 32076.62 39492.85 37794.93 33885.12 34290.07 25793.07 34675.81 30798.12 25380.53 35387.42 31297.71 200
PatchT88.87 31787.42 32193.22 27994.08 33585.10 31689.51 40294.64 34981.92 37592.36 19388.15 39880.05 25197.01 35472.43 39493.65 23497.54 211
our_test_388.78 31887.98 31891.20 33992.45 37682.53 34893.61 36395.69 30185.77 33184.88 35593.71 32779.99 25296.78 36279.47 36086.24 32194.28 353
EU-MVSNet88.72 31988.90 30788.20 37293.15 36274.21 39996.63 22294.22 36385.18 34087.32 32795.97 21476.16 30594.98 38785.27 30486.17 32295.41 288
Patchmtry88.64 32087.25 32392.78 29694.09 33486.64 28389.82 40195.68 30380.81 38487.63 32092.36 36280.91 23497.03 35278.86 36485.12 33794.67 340
MIMVSNet88.50 32186.76 33193.72 25894.84 30787.77 26091.39 38794.05 36486.41 32087.99 31492.59 35563.27 38895.82 37577.44 36992.84 24297.57 210
tpm cat188.36 32287.21 32591.81 32395.13 29280.55 37092.58 38095.70 29974.97 40287.45 32291.96 36978.01 29198.17 24880.39 35488.74 29996.72 240
ppachtmachnet_test88.35 32387.29 32291.53 33092.45 37683.57 33993.75 35695.97 28684.28 35285.32 35394.18 31079.00 27596.93 35675.71 37984.99 34194.10 355
JIA-IIPM88.26 32487.04 32891.91 31793.52 35181.42 36089.38 40394.38 35780.84 38390.93 23480.74 41079.22 26597.92 29182.76 33391.62 26296.38 248
testgi87.97 32587.21 32590.24 35692.86 36680.76 36596.67 21694.97 33691.74 15585.52 34995.83 22262.66 39294.47 39176.25 37788.36 30395.48 283
LF4IMVS87.94 32687.25 32389.98 35992.38 37880.05 37994.38 33395.25 32487.59 29884.34 35994.74 27664.31 38697.66 31684.83 30887.45 31092.23 384
gg-mvs-nofinetune87.82 32785.61 33994.44 21694.46 32389.27 21691.21 39184.61 41780.88 38289.89 26174.98 41371.50 33897.53 32885.75 29997.21 16096.51 243
pmmvs687.81 32886.19 33592.69 29991.32 38386.30 29497.34 15396.41 26880.59 38784.05 36794.37 29667.37 36997.67 31484.75 31079.51 38094.09 357
testing387.67 32986.88 33090.05 35896.14 23680.71 36697.10 17692.85 38290.15 21487.54 32194.55 28455.70 40394.10 39473.77 39094.10 22395.35 295
K. test v387.64 33086.75 33290.32 35593.02 36479.48 38596.61 22392.08 39190.66 19680.25 38794.09 31467.21 37096.65 36385.96 29680.83 37494.83 327
Patchmatch-RL test87.38 33186.24 33490.81 34688.74 40178.40 39188.12 40993.17 37887.11 30982.17 37889.29 39081.95 21995.60 38088.64 24477.02 38698.41 154
FMVSNet587.29 33285.79 33891.78 32594.80 30987.28 26695.49 29395.28 32184.09 35583.85 36991.82 37062.95 39094.17 39378.48 36585.34 33393.91 359
myMVS_eth3d87.18 33386.38 33389.58 36395.16 28879.53 38295.00 31493.93 36988.55 26886.96 33591.99 36756.23 40294.00 39575.47 38294.11 22195.20 306
Syy-MVS87.13 33487.02 32987.47 37595.16 28873.21 40395.00 31493.93 36988.55 26886.96 33591.99 36775.90 30694.00 39561.59 40994.11 22195.20 306
Anonymous2023120687.09 33586.14 33689.93 36091.22 38480.35 37296.11 25995.35 31783.57 36484.16 36293.02 34773.54 32895.61 37972.16 39586.14 32393.84 360
EG-PatchMatch MVS87.02 33685.44 34091.76 32792.67 37085.00 31896.08 26196.45 26683.41 36679.52 38993.49 33857.10 40097.72 31179.34 36390.87 27892.56 377
TinyColmap86.82 33785.35 34391.21 33794.91 30482.99 34493.94 34994.02 36683.58 36381.56 37994.68 27862.34 39398.13 25075.78 37887.35 31592.52 379
mvs5depth86.53 33885.08 34590.87 34388.74 40182.52 34991.91 38594.23 36286.35 32187.11 33193.70 32866.52 37597.76 30881.37 34675.80 39192.31 383
TDRefinement86.53 33884.76 35091.85 32082.23 41684.25 32896.38 24195.35 31784.97 34584.09 36594.94 26465.76 38398.34 23684.60 31374.52 39492.97 369
test_040286.46 34084.79 34991.45 33295.02 29685.55 30596.29 24994.89 34080.90 38182.21 37793.97 32068.21 36597.29 34562.98 40788.68 30091.51 392
Anonymous2024052186.42 34185.44 34089.34 36790.33 38879.79 38096.73 20795.92 28783.71 36283.25 37291.36 37563.92 38796.01 36978.39 36785.36 33292.22 385
DSMNet-mixed86.34 34286.12 33787.00 37989.88 39270.43 40594.93 31690.08 40377.97 39785.42 35292.78 35074.44 32093.96 39774.43 38595.14 20096.62 241
CL-MVSNet_self_test86.31 34385.15 34489.80 36188.83 39981.74 35993.93 35096.22 27886.67 31585.03 35490.80 37878.09 28894.50 38974.92 38371.86 40093.15 368
pmmvs-eth3d86.22 34484.45 35291.53 33088.34 40387.25 26894.47 32895.01 33383.47 36579.51 39089.61 38869.75 35495.71 37683.13 32776.73 38991.64 389
test_vis1_rt86.16 34585.06 34689.46 36493.47 35580.46 37196.41 23586.61 41485.22 33979.15 39188.64 39352.41 40697.06 35093.08 15190.57 28090.87 397
test20.0386.14 34685.40 34288.35 37090.12 38980.06 37895.90 27195.20 32688.59 26481.29 38093.62 33471.43 33992.65 40471.26 39981.17 37392.34 381
UnsupCasMVSNet_eth85.99 34784.45 35290.62 35089.97 39182.40 35393.62 36297.37 19289.86 22078.59 39392.37 35965.25 38595.35 38582.27 33870.75 40194.10 355
KD-MVS_self_test85.95 34884.95 34788.96 36989.55 39579.11 38895.13 31196.42 26785.91 32984.07 36690.48 38070.03 35194.82 38880.04 35572.94 39892.94 370
ttmdpeth85.91 34984.76 35089.36 36689.14 39680.25 37695.66 28593.16 37983.77 36083.39 37195.26 25366.24 37995.26 38680.65 35175.57 39292.57 376
YYNet185.87 35084.23 35490.78 34992.38 37882.46 35293.17 36995.14 32982.12 37467.69 40692.36 36278.16 28795.50 38377.31 37179.73 37894.39 348
MDA-MVSNet_test_wron85.87 35084.23 35490.80 34892.38 37882.57 34793.17 36995.15 32882.15 37367.65 40892.33 36578.20 28495.51 38277.33 37079.74 37794.31 352
CMPMVSbinary62.92 2185.62 35284.92 34887.74 37489.14 39673.12 40494.17 34296.80 24473.98 40373.65 40294.93 26566.36 37697.61 32183.95 32191.28 26992.48 380
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 35383.64 35690.92 34295.27 28179.49 38490.55 39595.60 30683.76 36183.00 37589.95 38571.09 34197.97 27982.75 33460.79 41595.31 298
MDA-MVSNet-bldmvs85.00 35482.95 35991.17 34093.13 36383.33 34094.56 32595.00 33484.57 35065.13 41292.65 35270.45 34695.85 37373.57 39177.49 38594.33 350
MIMVSNet184.93 35583.05 35790.56 35189.56 39484.84 32395.40 29695.35 31783.91 35680.38 38592.21 36657.23 39993.34 40170.69 40182.75 36893.50 363
KD-MVS_2432*160084.81 35682.64 36091.31 33591.07 38585.34 31291.22 38995.75 29785.56 33483.09 37390.21 38367.21 37095.89 37177.18 37362.48 41392.69 373
miper_refine_blended84.81 35682.64 36091.31 33591.07 38585.34 31291.22 38995.75 29785.56 33483.09 37390.21 38367.21 37095.89 37177.18 37362.48 41392.69 373
OpenMVS_ROBcopyleft81.14 2084.42 35882.28 36490.83 34490.06 39084.05 33395.73 28094.04 36573.89 40580.17 38891.53 37459.15 39697.64 31766.92 40589.05 29590.80 398
mvsany_test383.59 35982.44 36387.03 37883.80 41173.82 40093.70 35790.92 40086.42 31982.51 37690.26 38246.76 41195.71 37690.82 19576.76 38891.57 391
PM-MVS83.48 36081.86 36688.31 37187.83 40577.59 39393.43 36591.75 39386.91 31180.63 38389.91 38644.42 41295.84 37485.17 30776.73 38991.50 393
test_fmvs383.21 36183.02 35883.78 38486.77 40868.34 41096.76 20594.91 33986.49 31884.14 36489.48 38936.04 41691.73 40691.86 17480.77 37591.26 396
new-patchmatchnet83.18 36281.87 36587.11 37786.88 40775.99 39793.70 35795.18 32785.02 34477.30 39688.40 39565.99 38193.88 39874.19 38870.18 40291.47 394
new_pmnet82.89 36381.12 36888.18 37389.63 39380.18 37791.77 38692.57 38676.79 40075.56 39988.23 39761.22 39594.48 39071.43 39782.92 36689.87 401
MVS-HIRNet82.47 36481.21 36786.26 38195.38 26969.21 40888.96 40589.49 40466.28 41080.79 38274.08 41568.48 36397.39 34071.93 39695.47 19492.18 386
MVStest182.38 36580.04 36989.37 36587.63 40682.83 34595.03 31393.37 37773.90 40473.50 40394.35 29762.89 39193.25 40273.80 38965.92 41092.04 388
UnsupCasMVSNet_bld82.13 36679.46 37190.14 35788.00 40482.47 35190.89 39496.62 26078.94 39375.61 39784.40 40856.63 40196.31 36777.30 37266.77 40991.63 390
dmvs_testset81.38 36782.60 36277.73 39091.74 38251.49 42593.03 37484.21 41889.07 24578.28 39491.25 37676.97 29888.53 41356.57 41382.24 36993.16 367
test_f80.57 36879.62 37083.41 38583.38 41467.80 41293.57 36493.72 37280.80 38577.91 39587.63 40133.40 41792.08 40587.14 27779.04 38390.34 400
pmmvs379.97 36977.50 37487.39 37682.80 41579.38 38692.70 37990.75 40170.69 40778.66 39287.47 40351.34 40793.40 40073.39 39269.65 40389.38 402
APD_test179.31 37077.70 37384.14 38389.11 39869.07 40992.36 38491.50 39569.07 40873.87 40192.63 35439.93 41494.32 39270.54 40280.25 37689.02 403
N_pmnet78.73 37178.71 37278.79 38992.80 36846.50 42894.14 34343.71 43078.61 39480.83 38191.66 37374.94 31696.36 36667.24 40484.45 35093.50 363
WB-MVS76.77 37276.63 37577.18 39185.32 40956.82 42394.53 32689.39 40582.66 37171.35 40489.18 39175.03 31588.88 41135.42 42066.79 40885.84 405
SSC-MVS76.05 37375.83 37676.72 39584.77 41056.22 42494.32 33788.96 40781.82 37770.52 40588.91 39274.79 31788.71 41233.69 42164.71 41185.23 406
test_vis3_rt72.73 37470.55 37779.27 38880.02 41768.13 41193.92 35174.30 42576.90 39958.99 41673.58 41620.29 42595.37 38484.16 31672.80 39974.31 413
LCM-MVSNet72.55 37569.39 37982.03 38670.81 42665.42 41590.12 39994.36 36055.02 41665.88 41081.72 40924.16 42489.96 40774.32 38768.10 40790.71 399
FPMVS71.27 37669.85 37875.50 39674.64 42159.03 42191.30 38891.50 39558.80 41357.92 41788.28 39629.98 42085.53 41653.43 41482.84 36781.95 409
PMMVS270.19 37766.92 38180.01 38776.35 42065.67 41486.22 41087.58 41164.83 41262.38 41380.29 41226.78 42288.49 41463.79 40654.07 41785.88 404
dongtai69.99 37869.33 38071.98 39988.78 40061.64 41989.86 40059.93 42975.67 40174.96 40085.45 40550.19 40881.66 41843.86 41755.27 41672.63 414
testf169.31 37966.76 38276.94 39378.61 41861.93 41788.27 40786.11 41555.62 41459.69 41485.31 40620.19 42689.32 40857.62 41069.44 40579.58 410
APD_test269.31 37966.76 38276.94 39378.61 41861.93 41788.27 40786.11 41555.62 41459.69 41485.31 40620.19 42689.32 40857.62 41069.44 40579.58 410
EGC-MVSNET68.77 38163.01 38786.07 38292.49 37482.24 35593.96 34890.96 3990.71 4272.62 42890.89 37753.66 40493.46 39957.25 41284.55 34882.51 408
Gipumacopyleft67.86 38265.41 38475.18 39792.66 37173.45 40166.50 41894.52 35253.33 41757.80 41866.07 41830.81 41889.20 41048.15 41678.88 38462.90 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 38364.89 38569.79 40072.62 42435.23 43265.19 41992.83 38420.35 42265.20 41188.08 39943.14 41382.70 41773.12 39363.46 41291.45 395
kuosan65.27 38464.66 38667.11 40283.80 41161.32 42088.53 40660.77 42868.22 40967.67 40780.52 41149.12 40970.76 42429.67 42353.64 41869.26 416
ANet_high63.94 38559.58 38877.02 39261.24 42866.06 41385.66 41287.93 41078.53 39542.94 42071.04 41725.42 42380.71 41952.60 41530.83 42184.28 407
PMVScopyleft53.92 2258.58 38655.40 38968.12 40151.00 42948.64 42678.86 41587.10 41346.77 41835.84 42474.28 4148.76 42886.34 41542.07 41873.91 39669.38 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 38752.56 39155.43 40474.43 42247.13 42783.63 41476.30 42242.23 41942.59 42162.22 42028.57 42174.40 42131.53 42231.51 42044.78 419
MVEpermissive50.73 2353.25 38848.81 39366.58 40365.34 42757.50 42272.49 41770.94 42640.15 42139.28 42363.51 4196.89 43073.48 42338.29 41942.38 41968.76 417
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 38951.31 39254.39 40572.62 42445.39 42983.84 41375.51 42441.13 42040.77 42259.65 42130.08 41973.60 42228.31 42429.90 42244.18 420
tmp_tt51.94 39053.82 39046.29 40633.73 43045.30 43078.32 41667.24 42718.02 42350.93 41987.05 40452.99 40553.11 42570.76 40025.29 42340.46 421
wuyk23d25.11 39124.57 39526.74 40773.98 42339.89 43157.88 4209.80 43112.27 42410.39 4256.97 4277.03 42936.44 42625.43 42517.39 4243.89 424
cdsmvs_eth3d_5k23.24 39230.99 3940.00 4100.00 4330.00 4350.00 42197.63 1490.00 4280.00 42996.88 16484.38 1660.00 4290.00 4280.00 4270.00 425
testmvs13.36 39316.33 3964.48 4095.04 4312.26 43493.18 3683.28 4322.70 4258.24 42621.66 4232.29 4322.19 4277.58 4262.96 4259.00 423
test12313.04 39415.66 3975.18 4084.51 4323.45 43392.50 3821.81 4332.50 4267.58 42720.15 4243.67 4312.18 4287.13 4271.07 4269.90 422
ab-mvs-re8.06 39510.74 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42996.69 1740.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas7.39 3969.85 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42888.65 1000.00 4290.00 4280.00 4270.00 425
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS79.53 38275.56 381
FOURS199.55 193.34 6699.29 198.35 2894.98 3498.49 25
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10999.86 997.68 2299.67 699.77 2
PC_three_145290.77 18898.89 1698.28 7096.24 198.35 23395.76 8699.58 2399.59 24
No_MVS98.86 198.67 6196.94 197.93 10999.86 997.68 2299.67 699.77 2
test_one_060199.32 2295.20 2098.25 4695.13 2898.48 2698.87 2095.16 7
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.05 3994.59 3298.08 7889.22 24197.03 6598.10 7892.52 3999.65 6394.58 12399.31 65
RE-MVS-def96.72 4799.02 4292.34 9697.98 6398.03 9593.52 9597.43 5198.51 4090.71 7696.05 7499.26 6999.43 54
IU-MVS99.42 795.39 1197.94 10890.40 20998.94 1097.41 3799.66 1099.74 8
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 7196.04 299.24 13095.36 10099.59 1999.56 31
test_241102_TWO98.27 4095.13 2898.93 1198.89 1894.99 1199.85 1897.52 3099.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 4095.09 3199.19 598.81 2695.54 599.65 63
9.1496.75 4698.93 5097.73 9998.23 5191.28 17297.88 3998.44 4893.00 2699.65 6395.76 8699.47 40
save fliter98.91 5294.28 3897.02 18198.02 9895.35 21
test_0728_THIRD94.78 4698.73 2098.87 2095.87 499.84 2397.45 3499.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3799.86 997.52 3099.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3594.92 3798.99 998.92 1595.08 8
GSMVS98.45 149
test_part299.28 2595.74 898.10 32
sam_mvs182.76 20198.45 149
sam_mvs81.94 220
ambc86.56 38083.60 41370.00 40785.69 41194.97 33680.60 38488.45 39437.42 41596.84 36082.69 33575.44 39392.86 371
MTGPAbinary98.08 78
test_post192.81 37816.58 42680.53 24197.68 31386.20 288
test_post17.58 42581.76 22298.08 260
patchmatchnet-post90.45 38182.65 20598.10 255
GG-mvs-BLEND93.62 26293.69 34689.20 21892.39 38383.33 41987.98 31589.84 38771.00 34296.87 35982.08 33995.40 19694.80 332
MTMP97.86 8182.03 420
gm-plane-assit93.22 36078.89 39084.82 34793.52 33798.64 20787.72 256
test9_res94.81 11599.38 5899.45 50
TEST998.70 5994.19 4296.41 23598.02 9888.17 27896.03 10697.56 12892.74 3399.59 79
test_898.67 6194.06 4996.37 24298.01 10188.58 26595.98 11097.55 13092.73 3499.58 82
agg_prior293.94 13399.38 5899.50 43
agg_prior98.67 6193.79 5498.00 10295.68 12099.57 89
TestCases93.98 24097.94 11786.64 28395.54 31085.38 33685.49 35096.77 16870.28 34799.15 14480.02 35692.87 24096.15 255
test_prior493.66 5796.42 234
test_prior296.35 24392.80 12996.03 10697.59 12592.01 4795.01 10899.38 58
test_prior97.23 6398.67 6192.99 7898.00 10299.41 11499.29 66
旧先验295.94 26881.66 37897.34 5498.82 18492.26 161
新几何295.79 277
新几何197.32 5698.60 6893.59 5897.75 13281.58 37995.75 11797.85 10190.04 8399.67 6186.50 28499.13 8398.69 128
旧先验198.38 8193.38 6397.75 13298.09 8092.30 4599.01 9299.16 76
无先验95.79 27797.87 11683.87 35999.65 6387.68 26298.89 112
原ACMM295.67 282
原ACMM196.38 10598.59 6991.09 15097.89 11287.41 30295.22 13197.68 11490.25 8099.54 9487.95 25299.12 8598.49 144
test22298.24 9092.21 10295.33 29997.60 15179.22 39295.25 12997.84 10388.80 9799.15 8198.72 125
testdata299.67 6185.96 296
segment_acmp92.89 30
testdata95.46 16798.18 10088.90 22697.66 14382.73 37097.03 6598.07 8190.06 8298.85 18289.67 21798.98 9398.64 131
testdata195.26 30693.10 115
test1297.65 4298.46 7394.26 3997.66 14395.52 12790.89 7399.46 10899.25 7199.22 73
plane_prior796.21 22889.98 186
plane_prior696.10 23990.00 18281.32 228
plane_prior597.51 16498.60 21193.02 15492.23 25195.86 263
plane_prior496.64 177
plane_prior390.00 18294.46 6291.34 222
plane_prior297.74 9794.85 39
plane_prior196.14 236
plane_prior89.99 18497.24 16294.06 7492.16 255
n20.00 434
nn0.00 434
door-mid91.06 398
lessismore_v090.45 35291.96 38179.09 38987.19 41280.32 38694.39 29466.31 37897.55 32584.00 32076.84 38794.70 339
LGP-MVS_train94.10 23396.16 23388.26 24397.46 17391.29 16990.12 25297.16 14979.05 26998.73 19792.25 16391.89 25995.31 298
test1197.88 114
door91.13 397
HQP5-MVS89.33 211
HQP-NCC95.86 24596.65 21793.55 9090.14 246
ACMP_Plane95.86 24596.65 21793.55 9090.14 246
BP-MVS92.13 167
HQP4-MVS90.14 24698.50 21995.78 271
HQP3-MVS97.39 18992.10 256
HQP2-MVS80.95 232
NP-MVS95.99 24389.81 19295.87 219
MDTV_nov1_ep13_2view70.35 40693.10 37383.88 35893.55 16782.47 20986.25 28798.38 157
MDTV_nov1_ep1390.76 23995.22 28580.33 37393.03 37495.28 32188.14 28092.84 18793.83 32281.34 22798.08 26082.86 32994.34 216
ACMMP++_ref90.30 285
ACMMP++91.02 274
Test By Simon88.73 99
ITE_SJBPF92.43 30395.34 27485.37 31195.92 28791.47 16287.75 31896.39 19571.00 34297.96 28382.36 33789.86 28893.97 358
DeepMVS_CXcopyleft74.68 39890.84 38764.34 41681.61 42165.34 41167.47 40988.01 40048.60 41080.13 42062.33 40873.68 39779.58 410