This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2599.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1299.56 29
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 799.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 4099.57 26
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7399.40 54
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1999.65 15
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7399.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4398.08 173
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14392.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4399.69 12
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4399.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1599.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 13098.27 2798.65 2993.33 2399.72 4596.49 4899.52 3299.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19798.85 1598.94 993.33 2399.83 2696.72 4099.68 599.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3599.40 54
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7799.56 29
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 6099.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3299.67 13
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5499.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 10097.69 10693.86 1699.71 4696.50 4799.39 5699.55 32
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2199.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5399.59 22
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9898.59 3090.88 6899.90 296.18 6599.50 3799.58 25
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2199.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2199.62 18
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 35197.33 296.29 9098.79 2489.73 8299.86 899.36 299.42 5099.67 13
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8698.30 6291.90 4599.85 1895.61 8899.68 599.54 33
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6699.54 33
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8898.18 7091.61 5099.88 495.59 9199.55 2899.57 26
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15698.01 3198.32 5992.33 3899.58 7794.85 10599.51 3599.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4398.96 94
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3299.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6298.94 97
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6899.43 51
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7798.90 104
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10698.33 5791.04 6499.88 495.20 9699.57 2799.60 21
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17297.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10398.18 162
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6599.47 46
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3799.72 11
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 7099.51 37
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13497.14 5398.44 4491.17 6299.85 1894.35 11899.46 4399.57 26
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12198.34 5490.59 7299.88 494.83 10699.54 3099.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 21097.11 5598.01 8392.52 3599.69 5296.03 7099.53 3199.36 60
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16098.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 157
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9998.95 889.42 8399.76 3898.90 1099.08 8597.43 205
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18895.55 11998.78 2591.07 6399.86 896.58 4499.55 2899.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17196.40 8797.99 8490.99 6599.58 7795.61 8899.61 2099.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10897.74 10492.33 3899.38 11396.04 6999.42 5099.28 65
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25898.18 5795.23 1995.87 10797.65 11191.45 5399.70 5195.87 7399.44 4999.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25698.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4199.45 47
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17397.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 166
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8298.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19796.77 6598.35 5190.21 7599.53 9194.80 10999.63 1899.38 58
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8498.67 124
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16197.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 162
CANet96.39 5996.02 6597.50 4797.62 13193.38 6397.02 17397.96 10295.42 1594.86 13197.81 9987.38 12699.82 2896.88 3699.20 7599.29 63
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15993.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3799.51 37
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15096.86 18697.72 13294.67 4796.16 9798.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25496.03 10197.56 12192.73 3199.59 7495.04 10099.37 6099.39 56
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13798.39 4888.96 8999.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 11097.65 11189.92 8099.24 12495.87 7399.20 7598.58 127
iter_conf05_1196.17 6596.16 6496.21 11497.48 14290.74 15998.14 4997.80 12292.80 11997.34 4897.29 13188.54 9999.10 14196.40 5099.64 1598.80 115
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 14088.50 10299.07 15296.54 4699.67 798.60 126
DeepC-MVS93.07 396.06 6795.66 7497.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9099.22 7298.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16798.30 2998.57 1889.01 23793.97 15197.57 11992.62 3399.76 3894.66 11299.27 6699.15 75
sasdasda96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8394.51 27891.23 6198.92 16795.65 8498.19 12297.82 187
canonicalmvs96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13196.58 8097.14 14588.51 10199.06 15596.27 5399.64 1598.57 128
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29996.65 7297.89 9091.99 4499.47 10292.26 15299.46 4399.39 56
UA-Net95.95 7595.53 7697.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9099.51 9690.36 19497.35 14699.11 81
MGCFI-Net95.94 7695.40 8397.56 4697.59 13594.62 3098.21 4397.57 15194.41 5796.17 9696.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
alignmvs95.87 7895.23 8897.78 3197.56 14095.19 2197.86 8097.17 19994.39 5996.47 8496.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17291.49 12497.50 12497.56 15593.99 6995.13 12897.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29497.62 14590.43 20095.55 11997.07 14991.72 4699.50 9989.62 21098.94 9398.82 113
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17198.08 7488.35 26395.09 12997.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18590.45 16897.29 15197.44 17694.00 6895.46 12397.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6495.63 8395.76 7395.24 16697.27 14788.36 23596.07 25297.73 12992.43 12796.59 7697.25 13688.50 10299.09 14596.32 5199.69 398.27 156
MG-MVS95.61 8495.38 8496.31 10498.42 7390.53 16596.04 25397.48 16293.47 8995.67 11698.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
baseline95.58 8595.42 8296.08 12096.78 18090.41 17097.16 16597.45 17293.69 8095.65 11797.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
CPTT-MVS95.57 8695.19 8996.70 7399.27 2691.48 12598.33 2798.11 7087.79 28095.17 12798.03 8087.09 13099.61 6993.51 13399.42 5099.02 86
EIA-MVS95.53 8795.47 7895.71 14397.06 16089.63 18897.82 8797.87 11193.57 8193.92 15295.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
3Dnovator+91.43 495.40 8894.48 11098.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
PS-MVSNAJ95.37 8995.33 8695.49 15697.35 14590.66 16395.31 29197.48 16293.85 7496.51 8195.70 22788.65 9599.65 5894.80 10998.27 11996.17 243
MVSFormer95.37 8995.16 9095.99 12996.34 21391.21 13698.22 4197.57 15191.42 16096.22 9497.32 12986.20 14297.92 28294.07 12199.05 8798.85 110
xiu_mvs_v2_base95.32 9195.29 8795.40 16197.22 14890.50 16695.44 28597.44 17693.70 7996.46 8596.18 19788.59 9899.53 9194.79 11197.81 13296.17 243
PVSNet_Blended_VisFu95.27 9294.91 9596.38 10098.20 9390.86 15297.27 15298.25 4590.21 20294.18 14597.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
diffmvspermissive95.25 9395.13 9195.63 14696.43 20989.34 20495.99 25797.35 18892.83 11796.31 8997.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 9494.81 9696.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 13098.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 9595.04 9395.76 13697.49 14189.56 19298.67 1097.00 21890.69 18694.24 14397.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
EPNet95.20 9694.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9794.44 11297.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6399.18 72
OMC-MVS95.09 9894.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14394.77 13397.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
xiu_mvs_v1_base_debu95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
PAPM_NR95.01 9994.59 10296.26 11098.89 5190.68 16297.24 15597.73 12991.80 14892.93 17796.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
lupinMVS94.99 10394.56 10496.29 10896.34 21391.21 13695.83 26596.27 26788.93 24296.22 9496.88 15986.20 14298.85 17495.27 9599.05 8798.82 113
Effi-MVS+94.93 10494.45 11196.36 10296.61 18991.47 12696.41 22597.41 18191.02 17794.50 13895.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
IS-MVSNet94.90 10594.52 10896.05 12397.67 12590.56 16498.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
MVS_Test94.89 10694.62 10195.68 14496.83 17689.55 19396.70 20197.17 19991.17 17195.60 11896.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
PVSNet_Blended94.87 10794.56 10495.81 13598.27 8389.46 19995.47 28498.36 2488.84 24594.36 14096.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
jason94.84 10894.39 11396.18 11795.52 24990.93 15096.09 25096.52 25689.28 22896.01 10497.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
API-MVS94.84 10894.49 10995.90 13197.90 11592.00 10497.80 9097.48 16289.19 23194.81 13296.71 16488.84 9199.17 13288.91 22998.76 9996.53 232
test_yl94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
WTY-MVS94.71 11294.02 11696.79 7297.71 12492.05 10296.59 21697.35 18890.61 19494.64 13596.93 15486.41 13899.39 11191.20 18194.71 20498.94 97
sss94.51 11393.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24194.50 13896.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18086.45 28697.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14896.73 3999.05 8797.31 212
CANet_DTU94.37 11593.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 16097.03 15179.34 25799.71 4690.76 18798.45 11397.82 187
AdaColmapbinary94.34 11693.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20992.15 19297.06 15083.62 17799.54 8989.34 21698.07 12697.70 192
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20691.91 19897.24 13785.21 15399.09 14587.64 25397.83 13197.92 179
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16588.13 27093.00 17295.84 21584.86 15899.51 9687.99 24098.17 12497.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27997.71 13688.99 23892.34 18795.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20297.28 13279.13 26098.93 16694.61 11592.84 23397.28 213
test_vis1_n_192094.17 12094.58 10392.91 28397.42 14482.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 207
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17497.62 11497.58 15095.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20295.18 29898.48 2185.60 32193.76 15597.11 14683.15 18599.61 6991.33 17798.72 10099.19 71
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13287.92 25098.10 5195.80 28692.22 13493.02 17197.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 24093.56 15796.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29491.37 21296.71 16488.39 10499.52 9587.33 26097.13 15597.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12793.70 12395.27 16495.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
PVSNet_BlendedMVS94.06 12893.92 11994.47 20898.27 8389.46 19996.73 19798.36 2490.17 20394.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13794.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11298.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
iter_conf0594.01 13194.00 11794.04 23195.06 28388.46 23397.27 15296.57 25592.32 13192.26 18997.10 14788.54 9998.10 24695.10 9991.82 25295.57 272
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16896.71 20096.89 23089.27 22993.46 16296.92 15787.29 12797.94 27988.70 23395.74 18098.53 131
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
mvsany_test193.93 13593.98 11893.78 24994.94 29086.80 27594.62 30992.55 37388.77 25196.85 6198.49 3888.98 8898.08 25195.03 10195.62 18496.46 237
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18798.24 3996.92 22789.47 22392.12 19497.21 13984.42 16398.39 22087.71 24796.50 16799.01 89
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27796.64 24889.05 23693.00 17295.79 22185.77 14899.45 10589.16 22594.35 20697.96 177
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23095.28 29297.45 17291.68 15294.08 14897.68 10782.41 20698.90 17093.84 12992.47 23996.98 220
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15398.55 1495.49 30294.24 6391.29 21996.97 15383.04 18998.14 24095.56 9291.17 26395.78 261
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18397.72 9995.85 28492.43 12795.86 10898.44 4468.42 35399.39 11196.31 5294.85 19698.71 121
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26697.05 21289.85 21290.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 17997.74 9497.51 15994.85 3491.34 21396.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 20997.75 9397.56 15592.50 12589.94 24996.54 18188.65 9598.18 23793.83 13090.90 27095.86 253
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22594.79 30697.46 16791.97 14693.99 14997.86 9581.74 21998.88 17192.64 15192.67 23896.92 224
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18494.58 31198.49 1985.06 33193.78 15495.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19796.29 9098.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
F-COLMAP93.58 14792.98 14995.37 16298.40 7588.98 21897.18 16397.29 19387.75 28390.49 23197.10 14785.21 15399.50 9986.70 27096.72 16397.63 194
ab-mvs93.57 14892.55 16896.64 7497.28 14691.96 10795.40 28697.45 17289.81 21493.22 17096.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
LS3D93.57 14892.61 16696.47 9197.59 13591.61 11897.67 10397.72 13285.17 32990.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 174
FA-MVS(test-final)93.52 15092.92 15195.31 16396.77 18288.54 22994.82 30596.21 27289.61 21894.20 14495.25 24683.24 18299.14 13790.01 19896.16 17298.25 157
Fast-Effi-MVS+93.46 15192.75 15995.59 14996.77 18290.03 17696.81 19197.13 20188.19 26691.30 21694.27 29486.21 14198.63 19887.66 25296.46 17098.12 168
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22696.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 210
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33988.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 15995.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30289.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
UniMVSNet (Re)93.31 15692.55 16895.61 14895.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15796.65 20797.18 19793.72 7791.68 20697.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 15892.48 17395.51 15495.70 24192.39 8997.86 8098.66 1692.30 13392.09 19695.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18796.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 217
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19197.06 17097.12 20291.24 16791.30 21695.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
test111193.19 16192.82 15594.30 22097.58 13984.56 31898.21 4389.02 39293.53 8694.58 13698.21 6772.69 32399.05 15793.06 14498.48 11199.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13498.21 6772.57 32499.07 15293.05 14598.49 10999.25 68
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20596.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13286.61 30691.34 21395.29 24384.29 16798.41 21593.25 13998.94 9397.35 210
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21196.89 18497.64 14293.18 10191.79 20297.28 13275.35 30698.65 19688.99 22792.84 23397.28 213
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22498.22 4197.57 15191.42 16090.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17198.08 5395.85 28486.22 31395.79 11198.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
thisisatest053093.03 16992.21 18095.49 15697.07 15789.11 21697.49 12992.19 37590.16 20494.09 14796.41 18776.43 29799.05 15790.38 19395.68 18398.31 154
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 19091.30 21697.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21295.28 29297.47 16592.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19293.88 15397.01 15276.50 29499.06 15590.29 19695.45 18798.38 150
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22397.58 11697.36 18791.40 16290.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20789.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 215
DU-MVS92.90 17692.04 18395.49 15694.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
PatchMatch-RL92.90 17692.02 18595.56 15098.19 9590.80 15595.27 29497.18 19787.96 27291.86 20195.68 22880.44 23798.99 16284.01 30897.54 13896.89 225
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33694.27 14295.12 25283.13 18698.40 21691.47 17596.49 16898.12 168
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33485.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18295.53 28196.64 24885.38 32489.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
baseline192.82 18191.90 18995.55 15297.20 15090.77 15797.19 16294.58 34092.20 13692.36 18496.34 19184.16 16998.21 23389.20 22383.90 34897.68 193
131492.81 18292.03 18495.14 17095.33 26589.52 19696.04 25397.44 17687.72 28486.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 218
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35989.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18596.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 208
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19391.87 20097.15 14478.41 27598.57 20583.16 31597.60 13798.36 152
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15588.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12984.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19797.65 10694.66 33792.18 14093.33 16594.91 25878.06 28299.10 14181.61 32994.06 21996.98 220
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20397.71 10194.66 33792.20 13693.31 16694.90 25978.06 28299.08 14881.40 33294.08 21596.48 235
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23197.73 9697.53 15792.00 14588.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
thres40092.42 19191.52 20295.12 17297.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.98 220
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.48 235
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 17097.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 216
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15496.40 22997.98 10091.88 14789.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
NR-MVSNet92.34 19591.27 21295.53 15394.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15792.04 14388.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
TAPA-MVS90.10 792.30 19891.22 21595.56 15098.33 8089.60 19096.79 19297.65 14081.83 36391.52 20897.23 13887.94 11198.91 16971.31 38498.37 11598.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 19991.30 21095.25 16596.60 19088.90 22094.36 32192.32 37487.92 27393.43 16394.57 27577.28 28999.00 16189.42 21495.86 17897.86 183
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14189.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18889.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27493.00 17294.86 26178.51 27399.05 15786.53 27197.45 14398.47 140
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
thres20092.23 20391.39 20594.75 19797.61 13289.03 21796.60 21595.09 32192.08 14293.28 16794.00 30778.39 27699.04 16081.26 33794.18 21196.19 242
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19397.51 12397.42 18089.42 22588.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 14997.47 13097.43 17989.14 23288.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27395.69 29288.73 25289.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22297.58 11695.00 32486.00 31693.64 15697.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 31094.15 14694.97 25476.59 29399.21 12684.10 30696.86 15798.09 172
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19798.04 5798.68 1391.46 15888.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20197.99 6297.72 13279.63 37793.54 15997.41 12769.94 34299.56 8591.04 18491.11 26598.22 159
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 22092.10 19593.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26395.64 29691.77 14991.89 19993.47 32869.94 34298.86 17290.23 19793.86 22298.18 162
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22797.82 8798.19 5591.70 15188.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 18092.25 19093.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21589.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22796.65 20796.49 25889.63 21792.15 19296.12 20278.66 27198.50 20990.83 18579.18 37197.36 208
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5499.62 18
MVS91.71 21890.44 24495.51 15495.20 27591.59 12096.04 25397.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 27094.51 34291.10 17591.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 176
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 26091.64 38089.37 22686.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26694.76 33591.55 15491.75 20493.44 32968.55 35198.82 17690.43 19193.69 22398.04 175
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12598.21 6767.21 35999.07 15293.01 14898.49 10999.25 68
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28188.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 22089.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
V4291.58 22790.87 22493.73 25094.05 32688.50 23197.32 14796.97 21988.80 25089.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15888.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30389.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18593.38 35496.85 23486.26 31288.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 194
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28893.48 36390.60 19675.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27395.34 31087.68 28591.46 21095.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25793.49 16193.67 32082.49 20498.27 22990.41 19289.34 28697.90 180
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17390.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 194
MSDG91.42 23590.24 25494.96 18297.15 15488.91 21993.69 34696.32 26585.72 32086.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 220
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26788.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18490.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 160
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26289.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27189.90 25096.92 15766.35 36598.23 23190.30 19590.99 26897.96 177
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24788.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24386.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23888.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31892.18 19197.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27988.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16387.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26189.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
cascas91.20 24890.08 26194.58 20494.97 28689.16 21593.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34292.72 17993.77 31579.43 25698.20 23490.70 18992.18 24597.90 180
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21989.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28189.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 29089.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26588.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25688.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22488.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19396.31 23797.09 20687.88 27585.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27788.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27788.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15694.60 31096.02 27784.62 33787.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28997.26 19491.06 17689.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29289.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30192.40 18192.36 34980.91 22997.05 34081.09 33893.95 22097.60 199
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24487.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27896.34 26483.89 34591.38 21197.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26396.27 26786.07 31584.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18897.79 9196.82 23689.07 23486.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29789.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22292.38 18393.49 32677.82 28697.78 29586.03 28392.68 23798.11 171
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21498.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 14090.74 18387.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 26083.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26193.97 35589.71 21692.34 18792.48 34465.41 37197.96 27481.37 33594.27 20998.21 160
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15286.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28887.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35686.88 32897.18 14173.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28293.84 35990.97 17891.75 20492.96 33662.18 38098.00 26582.86 31894.08 21597.76 189
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19487.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27996.73 23986.17 31486.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26491.99 19793.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27294.37 34690.94 17988.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24684.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28590.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 194
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20887.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29590.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 198
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20793.44 32976.44 29697.94 27985.60 28992.08 24997.49 203
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23392.35 18694.52 27768.76 34897.96 27483.95 31095.59 18597.42 206
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22787.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35491.28 22091.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27692.85 36887.86 27690.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30587.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34187.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31188.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21391.49 20996.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17597.56 11898.16 6187.28 29586.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35491.28 22091.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29792.70 37191.11 17386.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18184.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22097.60 199
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23497.73 9695.23 31587.47 28984.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29383.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 33090.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 191
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22597.54 202
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31984.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32887.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30987.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 201
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 34085.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 15085.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28784.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21091.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20587.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 19080.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29882.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28395.28 31184.09 34383.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25786.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25786.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35184.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35379.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 35081.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33384.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34983.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30485.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35279.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32779.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26295.20 31688.59 25381.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 21078.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31784.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34883.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33865.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28695.35 30783.91 34480.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27194.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30882.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 30080.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30784.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33277.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23478.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35871.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15984.38 1640.00 4150.00 4140.00 4130.00 411
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 950.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
PC_three_145290.77 18298.89 1498.28 6596.24 198.35 22395.76 7999.58 2599.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.05 3994.59 3198.08 7489.22 23097.03 5898.10 7392.52 3599.65 5894.58 11699.31 64
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6899.43 51
IU-MVS99.42 795.39 1197.94 10490.40 20198.94 897.41 2999.66 1299.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2199.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1499.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9698.23 5091.28 16697.88 3598.44 4493.00 2699.65 5895.76 7999.47 42
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 799.75 6
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
GG-mvs-BLEND93.62 25693.69 33689.20 21292.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37784.82 33593.52 32598.64 19787.72 245
test9_res94.81 10899.38 5799.45 47
TEST998.70 5694.19 4296.41 22598.02 9488.17 26796.03 10197.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25495.98 10597.55 12392.73 3199.58 77
agg_prior293.94 12599.38 5799.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11599.57 84
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11996.03 10197.59 11892.01 4395.01 10299.38 57
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25981.66 36597.34 4898.82 17692.26 152
新几何295.79 268
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11297.85 9690.04 7799.67 5686.50 27399.13 8198.69 122
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 9099.16 73
无先验95.79 26897.87 11183.87 34799.65 5887.68 25198.89 107
原ACMM295.67 273
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29195.22 12697.68 10790.25 7499.54 8987.95 24199.12 8398.49 137
test22298.24 8792.21 9695.33 28997.60 14679.22 37995.25 12497.84 9888.80 9299.15 7998.72 119
testdata299.67 5685.96 285
segment_acmp92.89 27
testdata95.46 16098.18 9788.90 22097.66 13882.73 35797.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
testdata195.26 29693.10 106
test1297.65 4298.46 7094.26 3997.66 13895.52 12290.89 6799.46 10399.25 7099.22 70
plane_prior796.21 21789.98 181
plane_prior696.10 22890.00 17781.32 224
plane_prior597.51 15998.60 20193.02 14692.23 24295.86 253
plane_prior496.64 171
plane_prior390.00 17794.46 5591.34 213
plane_prior297.74 9494.85 34
plane_prior196.14 225
plane_prior89.99 17997.24 15594.06 6792.16 246
n20.00 420
nn0.00 420
door-mid91.06 384
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
test1197.88 109
door91.13 383
HQP5-MVS89.33 205
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18695.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34693.55 15882.47 20586.25 27698.38 150
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26992.84 17893.83 31181.34 22398.08 25182.86 31894.34 207
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 94
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15787.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396