DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 27 | 94.78 31 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 8 | 97.45 12 | 99.58 21 | 99.59 19 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 36 | 98.27 30 | 95.13 16 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 16 | 97.52 8 | 99.66 10 | 99.56 25 |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 43 | 97.85 105 | 94.92 22 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 21 | 97.52 8 | 99.67 6 | 99.48 39 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 143 | 98.35 20 | 95.16 15 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 3 | 96.70 26 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 17 | 99.15 33 | 94.82 26 | 98.81 7 | 98.30 24 | 94.76 33 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 45 | 97.93 1 | 99.69 3 | 99.75 5 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 135 | 98.08 63 | 95.81 4 | 97.87 26 | 98.31 45 | 94.26 13 | 99.68 45 | 97.02 19 | 99.49 36 | 99.57 22 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 22 | 98.39 76 | 94.25 36 | 98.43 24 | 98.27 30 | 95.34 10 | 98.11 19 | 98.56 18 | 94.53 12 | 99.71 37 | 96.57 30 | 99.62 15 | 99.65 12 |
Skip Steuart: Steuart Systems R&D Blog. |
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 34 | 99.40 11 | 93.77 52 | 98.53 15 | 98.29 25 | 95.55 6 | 98.56 14 | 97.81 84 | 93.90 15 | 99.65 49 | 96.62 27 | 99.21 64 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 97.42 9 | 97.33 11 | 97.69 38 | 99.25 27 | 94.24 37 | 98.07 52 | 97.85 105 | 93.72 61 | 98.57 13 | 98.35 36 | 93.69 18 | 99.40 97 | 97.06 18 | 99.46 39 | 99.44 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 60 | 98.57 69 | 94.46 30 | 97.92 65 | 98.14 53 | 94.82 28 | 99.01 3 | 98.55 20 | 94.18 14 | 97.41 302 | 96.94 20 | 99.64 13 | 99.32 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SF-MVS | | | 97.39 11 | 97.13 12 | 98.17 14 | 99.02 42 | 95.28 19 | 98.23 40 | 98.27 30 | 92.37 112 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 36 | 96.49 32 | 99.52 28 | 99.51 33 |
|
SMA-MVS |  | | 97.35 12 | 97.03 18 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 63 | 98.18 46 | 90.57 172 | 98.85 9 | 98.94 1 | 93.33 21 | 99.83 24 | 96.72 25 | 99.68 4 | 99.63 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HPM-MVS++ |  | | 97.34 13 | 96.97 20 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 107 | 97.97 90 | 95.59 5 | 96.61 59 | 97.89 75 | 92.57 32 | 99.84 21 | 95.95 51 | 99.51 31 | 99.40 48 |
|
NCCC | | | 97.30 14 | 97.03 18 | 98.11 16 | 98.77 53 | 95.06 24 | 97.34 128 | 98.04 78 | 95.96 2 | 97.09 42 | 97.88 77 | 93.18 23 | 99.71 37 | 95.84 56 | 99.17 67 | 99.56 25 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 23 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 100 | 98.19 44 | 92.82 101 | 97.93 24 | 98.74 13 | 91.60 48 | 99.86 8 | 96.26 35 | 99.52 28 | 99.67 11 |
|
XVS | | | 97.18 16 | 96.96 21 | 97.81 26 | 99.38 14 | 94.03 46 | 98.59 12 | 98.20 42 | 94.85 24 | 96.59 61 | 98.29 48 | 91.70 45 | 99.80 28 | 95.66 60 | 99.40 46 | 99.62 15 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 13 | 99.30 24 | 95.35 15 | 97.12 150 | 98.07 68 | 93.54 69 | 96.08 79 | 97.69 91 | 93.86 16 | 99.71 37 | 96.50 31 | 99.39 48 | 99.55 28 |
|
HFP-MVS | | | 97.14 18 | 96.92 22 | 97.83 24 | 99.42 7 | 94.12 42 | 98.52 16 | 98.32 22 | 93.21 81 | 97.18 37 | 98.29 48 | 92.08 39 | 99.83 24 | 95.63 65 | 99.59 17 | 99.54 29 |
|
MTAPA | | | 97.08 19 | 96.78 30 | 97.97 21 | 99.37 16 | 94.42 32 | 97.24 137 | 98.08 63 | 95.07 20 | 96.11 78 | 98.59 17 | 90.88 64 | 99.90 2 | 96.18 44 | 99.50 33 | 99.58 21 |
|
region2R | | | 97.07 20 | 96.84 25 | 97.77 31 | 99.46 2 | 93.79 50 | 98.52 16 | 98.24 37 | 93.19 84 | 97.14 39 | 98.34 39 | 91.59 49 | 99.87 7 | 95.46 72 | 99.59 17 | 99.64 13 |
|
ACMMPR | | | 97.07 20 | 96.84 25 | 97.79 28 | 99.44 6 | 93.88 48 | 98.52 16 | 98.31 23 | 93.21 81 | 97.15 38 | 98.33 42 | 91.35 53 | 99.86 8 | 95.63 65 | 99.59 17 | 99.62 15 |
|
CP-MVS | | | 97.02 22 | 96.81 28 | 97.64 41 | 99.33 21 | 93.54 55 | 98.80 8 | 98.28 27 | 92.99 90 | 96.45 69 | 98.30 47 | 91.90 42 | 99.85 16 | 95.61 67 | 99.68 4 | 99.54 29 |
|
SR-MVS | | | 97.01 23 | 96.86 23 | 97.47 44 | 99.09 34 | 93.27 64 | 97.98 57 | 98.07 68 | 93.75 60 | 97.45 29 | 98.48 27 | 91.43 51 | 99.59 61 | 96.22 38 | 99.27 57 | 99.54 29 |
|
ZNCC-MVS | | | 96.96 24 | 96.67 34 | 97.85 23 | 99.37 16 | 94.12 42 | 98.49 20 | 98.18 46 | 92.64 107 | 96.39 71 | 98.18 55 | 91.61 47 | 99.88 4 | 95.59 70 | 99.55 24 | 99.57 22 |
|
APD-MVS |  | | 96.95 25 | 96.60 36 | 98.01 18 | 99.03 41 | 94.93 25 | 97.72 84 | 98.10 61 | 91.50 134 | 98.01 21 | 98.32 44 | 92.33 35 | 99.58 64 | 94.85 85 | 99.51 31 | 99.53 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSLP-MVS++ | | | 96.94 26 | 97.06 14 | 96.59 70 | 98.72 55 | 91.86 99 | 97.67 89 | 98.49 13 | 94.66 37 | 97.24 36 | 98.41 33 | 92.31 37 | 98.94 144 | 96.61 28 | 99.46 39 | 98.96 87 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 27 | 96.64 35 | 97.78 29 | 98.64 64 | 94.30 33 | 97.41 119 | 98.04 78 | 94.81 29 | 96.59 61 | 98.37 35 | 91.24 55 | 99.64 56 | 95.16 78 | 99.52 28 | 99.42 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS-test | | | 96.89 28 | 97.04 17 | 96.45 82 | 98.29 81 | 91.66 104 | 99.03 4 | 97.85 105 | 95.84 3 | 96.90 46 | 97.97 71 | 91.24 55 | 98.75 160 | 96.92 21 | 99.33 53 | 98.94 90 |
|
SR-MVS-dyc-post | | | 96.88 29 | 96.80 29 | 97.11 59 | 99.02 42 | 92.34 84 | 97.98 57 | 98.03 80 | 93.52 71 | 97.43 32 | 98.51 23 | 91.40 52 | 99.56 72 | 96.05 46 | 99.26 59 | 99.43 45 |
|
CS-MVS | | | 96.86 30 | 97.06 14 | 96.26 97 | 98.16 95 | 91.16 130 | 99.09 3 | 97.87 100 | 95.30 11 | 97.06 43 | 98.03 65 | 91.72 43 | 98.71 166 | 97.10 17 | 99.17 67 | 98.90 95 |
|
mPP-MVS | | | 96.86 30 | 96.60 36 | 97.64 41 | 99.40 11 | 93.44 57 | 98.50 19 | 98.09 62 | 93.27 80 | 95.95 85 | 98.33 42 | 91.04 60 | 99.88 4 | 95.20 77 | 99.57 23 | 99.60 18 |
|
GST-MVS | | | 96.85 32 | 96.52 40 | 97.82 25 | 99.36 18 | 94.14 41 | 98.29 31 | 98.13 54 | 92.72 104 | 96.70 53 | 98.06 62 | 91.35 53 | 99.86 8 | 94.83 86 | 99.28 56 | 99.47 40 |
|
patch_mono-2 | | | 96.83 33 | 97.44 9 | 95.01 157 | 99.05 39 | 85.39 282 | 96.98 159 | 98.77 5 | 94.70 35 | 97.99 22 | 98.66 14 | 93.61 19 | 99.91 1 | 97.67 4 | 99.50 33 | 99.72 10 |
|
APD-MVS_3200maxsize | | | 96.81 34 | 96.71 33 | 97.12 58 | 99.01 45 | 92.31 86 | 97.98 57 | 98.06 71 | 93.11 87 | 97.44 30 | 98.55 20 | 90.93 62 | 99.55 74 | 96.06 45 | 99.25 61 | 99.51 33 |
|
PGM-MVS | | | 96.81 34 | 96.53 39 | 97.65 39 | 99.35 20 | 93.53 56 | 97.65 92 | 98.98 1 | 92.22 114 | 97.14 39 | 98.44 30 | 91.17 58 | 99.85 16 | 94.35 97 | 99.46 39 | 99.57 22 |
|
MP-MVS |  | | 96.77 36 | 96.45 45 | 97.72 35 | 99.39 13 | 93.80 49 | 98.41 25 | 98.06 71 | 93.37 77 | 95.54 100 | 98.34 39 | 90.59 68 | 99.88 4 | 94.83 86 | 99.54 26 | 99.49 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 96.77 36 | 96.46 44 | 97.71 37 | 98.40 74 | 94.07 44 | 98.21 43 | 98.45 16 | 89.86 184 | 97.11 41 | 98.01 68 | 92.52 33 | 99.69 43 | 96.03 49 | 99.53 27 | 99.36 53 |
|
MP-MVS-pluss | | | 96.70 38 | 96.27 49 | 97.98 20 | 99.23 30 | 94.71 27 | 96.96 161 | 98.06 71 | 90.67 163 | 95.55 98 | 98.78 12 | 91.07 59 | 99.86 8 | 96.58 29 | 99.55 24 | 99.38 51 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + GP. | | | 96.69 39 | 96.49 41 | 97.27 52 | 98.31 80 | 93.39 58 | 96.79 172 | 96.72 220 | 94.17 49 | 97.44 30 | 97.66 95 | 92.76 26 | 99.33 102 | 96.86 23 | 97.76 116 | 99.08 76 |
|
HPM-MVS |  | | 96.69 39 | 96.45 45 | 97.40 46 | 99.36 18 | 93.11 67 | 98.87 6 | 98.06 71 | 91.17 149 | 96.40 70 | 97.99 69 | 90.99 61 | 99.58 64 | 95.61 67 | 99.61 16 | 99.49 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 96.68 41 | 96.58 38 | 96.99 61 | 98.46 70 | 92.31 86 | 96.20 227 | 98.90 2 | 94.30 47 | 95.86 87 | 97.74 89 | 92.33 35 | 99.38 100 | 96.04 48 | 99.42 44 | 99.28 58 |
|
DELS-MVS | | | 96.61 42 | 96.38 47 | 97.30 49 | 97.79 113 | 93.19 65 | 95.96 238 | 98.18 46 | 95.23 12 | 95.87 86 | 97.65 96 | 91.45 50 | 99.70 42 | 95.87 52 | 99.44 43 | 99.00 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepPCF-MVS | | 93.97 1 | 96.61 42 | 97.09 13 | 95.15 149 | 98.09 98 | 86.63 262 | 96.00 236 | 98.15 51 | 95.43 7 | 97.95 23 | 98.56 18 | 93.40 20 | 99.36 101 | 96.77 24 | 99.48 37 | 99.45 41 |
|
EI-MVSNet-Vis-set | | | 96.51 44 | 96.47 42 | 96.63 67 | 98.24 85 | 91.20 125 | 96.89 165 | 97.73 113 | 94.74 34 | 96.49 65 | 98.49 25 | 90.88 64 | 99.58 64 | 96.44 33 | 98.32 99 | 99.13 70 |
|
HPM-MVS_fast | | | 96.51 44 | 96.27 49 | 97.22 54 | 99.32 22 | 92.74 74 | 98.74 9 | 98.06 71 | 90.57 172 | 96.77 50 | 98.35 36 | 90.21 71 | 99.53 78 | 94.80 89 | 99.63 14 | 99.38 51 |
|
DROMVSNet | | | 96.42 46 | 96.47 42 | 96.26 97 | 97.01 151 | 91.52 110 | 98.89 5 | 97.75 110 | 94.42 42 | 96.64 58 | 97.68 92 | 89.32 77 | 98.60 175 | 97.45 12 | 99.11 73 | 98.67 114 |
|
CANet | | | 96.39 47 | 96.02 52 | 97.50 43 | 97.62 123 | 93.38 59 | 97.02 154 | 97.96 91 | 95.42 8 | 94.86 110 | 97.81 84 | 87.38 107 | 99.82 26 | 96.88 22 | 99.20 65 | 99.29 56 |
|
dcpmvs_2 | | | 96.37 48 | 97.05 16 | 94.31 196 | 98.96 46 | 84.11 299 | 97.56 104 | 97.51 138 | 93.92 55 | 97.43 32 | 98.52 22 | 92.75 27 | 99.32 104 | 97.32 16 | 99.50 33 | 99.51 33 |
|
EI-MVSNet-UG-set | | | 96.34 49 | 96.30 48 | 96.47 79 | 98.20 90 | 90.93 137 | 96.86 166 | 97.72 115 | 94.67 36 | 96.16 77 | 98.46 28 | 90.43 69 | 99.58 64 | 96.23 37 | 97.96 110 | 98.90 95 |
|
train_agg | | | 96.30 50 | 95.83 56 | 97.72 35 | 98.70 56 | 94.19 38 | 96.41 205 | 98.02 83 | 88.58 225 | 96.03 80 | 97.56 106 | 92.73 29 | 99.59 61 | 95.04 80 | 99.37 52 | 99.39 49 |
|
ACMMP |  | | 96.27 51 | 95.93 53 | 97.28 51 | 99.24 28 | 92.62 77 | 98.25 36 | 98.81 3 | 92.99 90 | 94.56 116 | 98.39 34 | 88.96 82 | 99.85 16 | 94.57 96 | 97.63 117 | 99.36 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 96.24 52 | 96.19 51 | 96.39 87 | 98.23 89 | 91.35 117 | 96.24 225 | 98.79 4 | 93.99 53 | 95.80 89 | 97.65 96 | 89.92 75 | 99.24 110 | 95.87 52 | 99.20 65 | 98.58 116 |
|
DeepC-MVS | | 93.07 3 | 96.06 53 | 95.66 57 | 97.29 50 | 97.96 102 | 93.17 66 | 97.30 133 | 98.06 71 | 93.92 55 | 93.38 143 | 98.66 14 | 86.83 113 | 99.73 33 | 95.60 69 | 99.22 63 | 98.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 96.05 54 | 95.91 54 | 96.46 81 | 99.24 28 | 90.47 152 | 98.30 30 | 98.57 12 | 89.01 208 | 93.97 130 | 97.57 104 | 92.62 31 | 99.76 31 | 94.66 92 | 99.27 57 | 99.15 68 |
|
ETV-MVS | | | 96.02 55 | 95.89 55 | 96.40 85 | 97.16 137 | 92.44 82 | 97.47 116 | 97.77 109 | 94.55 39 | 96.48 66 | 94.51 256 | 91.23 57 | 98.92 145 | 95.65 63 | 98.19 103 | 97.82 165 |
|
canonicalmvs | | | 96.02 55 | 95.45 62 | 97.75 33 | 97.59 126 | 95.15 23 | 98.28 32 | 97.60 127 | 94.52 40 | 96.27 74 | 96.12 183 | 87.65 100 | 99.18 116 | 96.20 43 | 94.82 178 | 98.91 94 |
|
CDPH-MVS | | | 95.97 57 | 95.38 65 | 97.77 31 | 98.93 47 | 94.44 31 | 96.35 214 | 97.88 98 | 86.98 267 | 96.65 57 | 97.89 75 | 91.99 41 | 99.47 89 | 92.26 133 | 99.46 39 | 99.39 49 |
|
UA-Net | | | 95.95 58 | 95.53 59 | 97.20 56 | 97.67 118 | 92.98 70 | 97.65 92 | 98.13 54 | 94.81 29 | 96.61 59 | 98.35 36 | 88.87 83 | 99.51 83 | 90.36 173 | 97.35 127 | 99.11 74 |
|
VNet | | | 95.89 59 | 95.45 62 | 97.21 55 | 98.07 100 | 92.94 71 | 97.50 110 | 98.15 51 | 93.87 57 | 97.52 28 | 97.61 102 | 85.29 133 | 99.53 78 | 95.81 57 | 95.27 170 | 99.16 66 |
|
alignmvs | | | 95.87 60 | 95.23 69 | 97.78 29 | 97.56 129 | 95.19 21 | 97.86 68 | 97.17 178 | 94.39 44 | 96.47 67 | 96.40 170 | 85.89 126 | 99.20 113 | 96.21 42 | 95.11 174 | 98.95 89 |
|
casdiffmvs_mvg |  | | 95.81 61 | 95.57 58 | 96.51 75 | 96.87 156 | 91.49 111 | 97.50 110 | 97.56 134 | 93.99 53 | 95.13 107 | 97.92 74 | 87.89 96 | 98.78 155 | 95.97 50 | 97.33 128 | 99.26 60 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DPM-MVS | | | 95.69 62 | 94.92 75 | 98.01 18 | 98.08 99 | 95.71 9 | 95.27 267 | 97.62 126 | 90.43 175 | 95.55 98 | 97.07 127 | 91.72 43 | 99.50 86 | 89.62 188 | 98.94 79 | 98.82 104 |
|
DP-MVS Recon | | | 95.68 63 | 95.12 73 | 97.37 47 | 99.19 31 | 94.19 38 | 97.03 152 | 98.08 63 | 88.35 232 | 95.09 108 | 97.65 96 | 89.97 74 | 99.48 88 | 92.08 142 | 98.59 89 | 98.44 133 |
|
casdiffmvs |  | | 95.64 64 | 95.49 60 | 96.08 104 | 96.76 167 | 90.45 153 | 97.29 134 | 97.44 155 | 94.00 52 | 95.46 102 | 97.98 70 | 87.52 104 | 98.73 162 | 95.64 64 | 97.33 128 | 99.08 76 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MG-MVS | | | 95.61 65 | 95.38 65 | 96.31 92 | 98.42 73 | 90.53 150 | 96.04 233 | 97.48 141 | 93.47 73 | 95.67 95 | 98.10 58 | 89.17 79 | 99.25 109 | 91.27 160 | 98.77 83 | 99.13 70 |
|
baseline | | | 95.58 66 | 95.42 64 | 96.08 104 | 96.78 163 | 90.41 155 | 97.16 147 | 97.45 151 | 93.69 64 | 95.65 96 | 97.85 81 | 87.29 108 | 98.68 168 | 95.66 60 | 97.25 132 | 99.13 70 |
|
CPTT-MVS | | | 95.57 67 | 95.19 70 | 96.70 64 | 99.27 26 | 91.48 112 | 98.33 28 | 98.11 59 | 87.79 248 | 95.17 106 | 98.03 65 | 87.09 111 | 99.61 57 | 93.51 113 | 99.42 44 | 99.02 79 |
|
EIA-MVS | | | 95.53 68 | 95.47 61 | 95.71 124 | 97.06 146 | 89.63 172 | 97.82 73 | 97.87 100 | 93.57 65 | 93.92 131 | 95.04 233 | 90.61 67 | 98.95 143 | 94.62 94 | 98.68 86 | 98.54 118 |
|
3Dnovator+ | | 91.43 4 | 95.40 69 | 94.48 89 | 98.16 15 | 96.90 155 | 95.34 16 | 98.48 21 | 97.87 100 | 94.65 38 | 88.53 262 | 98.02 67 | 83.69 154 | 99.71 37 | 93.18 120 | 98.96 78 | 99.44 43 |
|
PS-MVSNAJ | | | 95.37 70 | 95.33 67 | 95.49 137 | 97.35 131 | 90.66 148 | 95.31 264 | 97.48 141 | 93.85 58 | 96.51 64 | 95.70 207 | 88.65 87 | 99.65 49 | 94.80 89 | 98.27 100 | 96.17 213 |
|
MVSFormer | | | 95.37 70 | 95.16 71 | 95.99 111 | 96.34 190 | 91.21 123 | 98.22 41 | 97.57 131 | 91.42 138 | 96.22 75 | 97.32 114 | 86.20 123 | 97.92 256 | 94.07 101 | 99.05 74 | 98.85 101 |
|
xiu_mvs_v2_base | | | 95.32 72 | 95.29 68 | 95.40 142 | 97.22 133 | 90.50 151 | 95.44 258 | 97.44 155 | 93.70 63 | 96.46 68 | 96.18 179 | 88.59 90 | 99.53 78 | 94.79 91 | 97.81 113 | 96.17 213 |
|
PVSNet_Blended_VisFu | | | 95.27 73 | 94.91 76 | 96.38 88 | 98.20 90 | 90.86 139 | 97.27 135 | 98.25 35 | 90.21 177 | 94.18 124 | 97.27 116 | 87.48 105 | 99.73 33 | 93.53 112 | 97.77 115 | 98.55 117 |
|
diffmvs |  | | 95.25 74 | 95.13 72 | 95.63 127 | 96.43 186 | 89.34 188 | 95.99 237 | 97.35 167 | 92.83 100 | 96.31 72 | 97.37 113 | 86.44 118 | 98.67 169 | 96.26 35 | 97.19 134 | 98.87 100 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Vis-MVSNet |  | | 95.23 75 | 94.81 77 | 96.51 75 | 97.18 136 | 91.58 108 | 98.26 35 | 98.12 56 | 94.38 45 | 94.90 109 | 98.15 57 | 82.28 188 | 98.92 145 | 91.45 157 | 98.58 90 | 99.01 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 95.22 76 | 95.04 74 | 95.76 117 | 97.49 130 | 89.56 176 | 98.67 10 | 97.00 198 | 90.69 161 | 94.24 122 | 97.62 101 | 89.79 76 | 98.81 153 | 93.39 118 | 96.49 149 | 98.92 93 |
|
EPNet | | | 95.20 77 | 94.56 84 | 97.14 57 | 92.80 328 | 92.68 76 | 97.85 71 | 94.87 314 | 96.64 1 | 92.46 159 | 97.80 86 | 86.23 120 | 99.65 49 | 93.72 111 | 98.62 88 | 99.10 75 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
3Dnovator | | 91.36 5 | 95.19 78 | 94.44 91 | 97.44 45 | 96.56 176 | 93.36 61 | 98.65 11 | 98.36 17 | 94.12 50 | 89.25 247 | 98.06 62 | 82.20 190 | 99.77 30 | 93.41 117 | 99.32 54 | 99.18 65 |
|
OMC-MVS | | | 95.09 79 | 94.70 81 | 96.25 100 | 98.46 70 | 91.28 119 | 96.43 203 | 97.57 131 | 92.04 123 | 94.77 112 | 97.96 72 | 87.01 112 | 99.09 128 | 91.31 159 | 96.77 141 | 98.36 140 |
|
xiu_mvs_v1_base_debu | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 173 | 91.71 100 | 96.25 222 | 97.35 167 | 92.99 90 | 96.70 53 | 96.63 157 | 82.67 178 | 99.44 93 | 96.22 38 | 97.46 120 | 96.11 218 |
|
xiu_mvs_v1_base | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 173 | 91.71 100 | 96.25 222 | 97.35 167 | 92.99 90 | 96.70 53 | 96.63 157 | 82.67 178 | 99.44 93 | 96.22 38 | 97.46 120 | 96.11 218 |
|
xiu_mvs_v1_base_debi | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 173 | 91.71 100 | 96.25 222 | 97.35 167 | 92.99 90 | 96.70 53 | 96.63 157 | 82.67 178 | 99.44 93 | 96.22 38 | 97.46 120 | 96.11 218 |
|
PAPM_NR | | | 95.01 80 | 94.59 83 | 96.26 97 | 98.89 51 | 90.68 147 | 97.24 137 | 97.73 113 | 91.80 128 | 92.93 156 | 96.62 160 | 89.13 80 | 99.14 121 | 89.21 200 | 97.78 114 | 98.97 86 |
|
lupinMVS | | | 94.99 84 | 94.56 84 | 96.29 95 | 96.34 190 | 91.21 123 | 95.83 243 | 96.27 247 | 88.93 213 | 96.22 75 | 96.88 138 | 86.20 123 | 98.85 150 | 95.27 76 | 99.05 74 | 98.82 104 |
|
Effi-MVS+ | | | 94.93 85 | 94.45 90 | 96.36 90 | 96.61 170 | 91.47 113 | 96.41 205 | 97.41 160 | 91.02 154 | 94.50 117 | 95.92 191 | 87.53 103 | 98.78 155 | 93.89 107 | 96.81 140 | 98.84 103 |
|
IS-MVSNet | | | 94.90 86 | 94.52 87 | 96.05 107 | 97.67 118 | 90.56 149 | 98.44 23 | 96.22 250 | 93.21 81 | 93.99 128 | 97.74 89 | 85.55 131 | 98.45 187 | 89.98 177 | 97.86 111 | 99.14 69 |
|
MVS_Test | | | 94.89 87 | 94.62 82 | 95.68 125 | 96.83 160 | 89.55 177 | 96.70 181 | 97.17 178 | 91.17 149 | 95.60 97 | 96.11 186 | 87.87 97 | 98.76 159 | 93.01 128 | 97.17 135 | 98.72 109 |
|
PVSNet_Blended | | | 94.87 88 | 94.56 84 | 95.81 116 | 98.27 82 | 89.46 183 | 95.47 257 | 98.36 17 | 88.84 216 | 94.36 119 | 96.09 187 | 88.02 93 | 99.58 64 | 93.44 115 | 98.18 104 | 98.40 136 |
|
jason | | | 94.84 89 | 94.39 92 | 96.18 102 | 95.52 223 | 90.93 137 | 96.09 231 | 96.52 236 | 89.28 201 | 96.01 83 | 97.32 114 | 84.70 140 | 98.77 158 | 95.15 79 | 98.91 81 | 98.85 101 |
jason: jason. |
API-MVS | | | 94.84 89 | 94.49 88 | 95.90 113 | 97.90 108 | 92.00 96 | 97.80 75 | 97.48 141 | 89.19 204 | 94.81 111 | 96.71 143 | 88.84 84 | 99.17 117 | 88.91 206 | 98.76 84 | 96.53 203 |
|
test_yl | | | 94.78 91 | 94.23 93 | 96.43 83 | 97.74 115 | 91.22 121 | 96.85 167 | 97.10 184 | 91.23 146 | 95.71 92 | 96.93 133 | 84.30 146 | 99.31 105 | 93.10 121 | 95.12 172 | 98.75 106 |
|
DCV-MVSNet | | | 94.78 91 | 94.23 93 | 96.43 83 | 97.74 115 | 91.22 121 | 96.85 167 | 97.10 184 | 91.23 146 | 95.71 92 | 96.93 133 | 84.30 146 | 99.31 105 | 93.10 121 | 95.12 172 | 98.75 106 |
|
WTY-MVS | | | 94.71 93 | 94.02 95 | 96.79 63 | 97.71 117 | 92.05 94 | 96.59 196 | 97.35 167 | 90.61 169 | 94.64 114 | 96.93 133 | 86.41 119 | 99.39 98 | 91.20 162 | 94.71 182 | 98.94 90 |
|
sss | | | 94.51 94 | 93.80 99 | 96.64 65 | 97.07 143 | 91.97 97 | 96.32 217 | 98.06 71 | 88.94 212 | 94.50 117 | 96.78 140 | 84.60 141 | 99.27 108 | 91.90 143 | 96.02 154 | 98.68 113 |
|
CANet_DTU | | | 94.37 95 | 93.65 103 | 96.55 71 | 96.46 184 | 92.13 92 | 96.21 226 | 96.67 227 | 94.38 45 | 93.53 139 | 97.03 130 | 79.34 237 | 99.71 37 | 90.76 167 | 98.45 96 | 97.82 165 |
|
AdaColmap |  | | 94.34 96 | 93.68 102 | 96.31 92 | 98.59 66 | 91.68 103 | 96.59 196 | 97.81 108 | 89.87 183 | 92.15 168 | 97.06 128 | 83.62 157 | 99.54 76 | 89.34 194 | 98.07 107 | 97.70 169 |
|
CNLPA | | | 94.28 97 | 93.53 107 | 96.52 72 | 98.38 77 | 92.55 79 | 96.59 196 | 96.88 211 | 90.13 180 | 91.91 174 | 97.24 118 | 85.21 134 | 99.09 128 | 87.64 230 | 97.83 112 | 97.92 157 |
|
MAR-MVS | | | 94.22 98 | 93.46 112 | 96.51 75 | 98.00 101 | 92.19 91 | 97.67 89 | 97.47 144 | 88.13 239 | 93.00 151 | 95.84 195 | 84.86 139 | 99.51 83 | 87.99 217 | 98.17 105 | 97.83 164 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPR | | | 94.18 99 | 93.42 117 | 96.48 78 | 97.64 122 | 91.42 116 | 95.55 253 | 97.71 119 | 88.99 209 | 92.34 165 | 95.82 197 | 89.19 78 | 99.11 124 | 86.14 256 | 97.38 125 | 98.90 95 |
|
h-mvs33 | | | 94.15 100 | 93.52 109 | 96.04 108 | 97.81 112 | 90.22 157 | 97.62 99 | 97.58 130 | 95.19 13 | 96.74 51 | 97.45 109 | 83.67 155 | 99.61 57 | 95.85 54 | 79.73 337 | 98.29 143 |
|
CHOSEN 1792x2688 | | | 94.15 100 | 93.51 110 | 96.06 106 | 98.27 82 | 89.38 186 | 95.18 271 | 98.48 15 | 85.60 290 | 93.76 134 | 97.11 125 | 83.15 165 | 99.61 57 | 91.33 158 | 98.72 85 | 99.19 64 |
|
Vis-MVSNet (Re-imp) | | | 94.15 100 | 93.88 98 | 94.95 163 | 97.61 124 | 87.92 232 | 98.10 49 | 95.80 266 | 92.22 114 | 93.02 150 | 97.45 109 | 84.53 143 | 97.91 259 | 88.24 214 | 97.97 109 | 99.02 79 |
|
CDS-MVSNet | | | 94.14 103 | 93.54 106 | 95.93 112 | 96.18 197 | 91.46 114 | 96.33 216 | 97.04 194 | 88.97 211 | 93.56 136 | 96.51 164 | 87.55 102 | 97.89 260 | 89.80 182 | 95.95 156 | 98.44 133 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 91.00 6 | 94.11 104 | 93.43 115 | 96.13 103 | 98.58 68 | 91.15 131 | 96.69 183 | 97.39 161 | 87.29 262 | 91.37 185 | 96.71 143 | 88.39 91 | 99.52 82 | 87.33 237 | 97.13 136 | 97.73 167 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
FIs | | | 94.09 105 | 93.70 101 | 95.27 145 | 95.70 216 | 92.03 95 | 98.10 49 | 98.68 8 | 93.36 79 | 90.39 205 | 96.70 145 | 87.63 101 | 97.94 252 | 92.25 135 | 90.50 246 | 95.84 226 |
|
PVSNet_BlendedMVS | | | 94.06 106 | 93.92 97 | 94.47 187 | 98.27 82 | 89.46 183 | 96.73 177 | 98.36 17 | 90.17 178 | 94.36 119 | 95.24 227 | 88.02 93 | 99.58 64 | 93.44 115 | 90.72 242 | 94.36 309 |
|
nrg030 | | | 94.05 107 | 93.31 119 | 96.27 96 | 95.22 245 | 94.59 28 | 98.34 27 | 97.46 146 | 92.93 98 | 91.21 195 | 96.64 151 | 87.23 110 | 98.22 206 | 94.99 83 | 85.80 287 | 95.98 222 |
|
UGNet | | | 94.04 108 | 93.28 120 | 96.31 92 | 96.85 157 | 91.19 126 | 97.88 67 | 97.68 120 | 94.40 43 | 93.00 151 | 96.18 179 | 73.39 297 | 99.61 57 | 91.72 149 | 98.46 95 | 98.13 148 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAMVS | | | 94.01 109 | 93.46 112 | 95.64 126 | 96.16 199 | 90.45 153 | 96.71 180 | 96.89 210 | 89.27 202 | 93.46 141 | 96.92 136 | 87.29 108 | 97.94 252 | 88.70 210 | 95.74 161 | 98.53 119 |
|
114514_t | | | 93.95 110 | 93.06 125 | 96.63 67 | 99.07 37 | 91.61 105 | 97.46 118 | 97.96 91 | 77.99 350 | 93.00 151 | 97.57 104 | 86.14 125 | 99.33 102 | 89.22 199 | 99.15 69 | 98.94 90 |
|
FC-MVSNet-test | | | 93.94 111 | 93.57 104 | 95.04 154 | 95.48 225 | 91.45 115 | 98.12 48 | 98.71 6 | 93.37 77 | 90.23 208 | 96.70 145 | 87.66 99 | 97.85 262 | 91.49 155 | 90.39 247 | 95.83 227 |
|
mvsany_test1 | | | 93.93 112 | 93.98 96 | 93.78 225 | 94.94 259 | 86.80 255 | 94.62 279 | 92.55 344 | 88.77 222 | 96.85 47 | 98.49 25 | 88.98 81 | 98.08 226 | 95.03 81 | 95.62 165 | 96.46 208 |
|
GeoE | | | 93.89 113 | 93.28 120 | 95.72 123 | 96.96 154 | 89.75 170 | 98.24 39 | 96.92 207 | 89.47 196 | 92.12 170 | 97.21 120 | 84.42 144 | 98.39 194 | 87.71 224 | 96.50 148 | 99.01 82 |
|
HY-MVS | | 89.66 9 | 93.87 114 | 92.95 128 | 96.63 67 | 97.10 142 | 92.49 81 | 95.64 251 | 96.64 228 | 89.05 207 | 93.00 151 | 95.79 201 | 85.77 129 | 99.45 92 | 89.16 203 | 94.35 184 | 97.96 155 |
|
XVG-OURS-SEG-HR | | | 93.86 115 | 93.55 105 | 94.81 171 | 97.06 146 | 88.53 213 | 95.28 265 | 97.45 151 | 91.68 131 | 94.08 127 | 97.68 92 | 82.41 186 | 98.90 148 | 93.84 109 | 92.47 207 | 96.98 191 |
|
mvsmamba | | | 93.83 116 | 93.46 112 | 94.93 166 | 94.88 264 | 90.85 140 | 98.55 14 | 95.49 282 | 94.24 48 | 91.29 192 | 96.97 132 | 83.04 169 | 98.14 214 | 95.56 71 | 91.17 232 | 95.78 232 |
|
VDD-MVS | | | 93.82 117 | 93.08 124 | 96.02 109 | 97.88 109 | 89.96 166 | 97.72 84 | 95.85 264 | 92.43 110 | 95.86 87 | 98.44 30 | 68.42 323 | 99.39 98 | 96.31 34 | 94.85 176 | 98.71 111 |
|
mvs_anonymous | | | 93.82 117 | 93.74 100 | 94.06 205 | 96.44 185 | 85.41 280 | 95.81 244 | 97.05 192 | 89.85 186 | 90.09 218 | 96.36 172 | 87.44 106 | 97.75 272 | 93.97 103 | 96.69 145 | 99.02 79 |
|
HQP_MVS | | | 93.78 119 | 93.43 115 | 94.82 169 | 96.21 194 | 89.99 162 | 97.74 79 | 97.51 138 | 94.85 24 | 91.34 186 | 96.64 151 | 81.32 204 | 98.60 175 | 93.02 126 | 92.23 210 | 95.86 223 |
|
PS-MVSNAJss | | | 93.74 120 | 93.51 110 | 94.44 188 | 93.91 300 | 89.28 193 | 97.75 78 | 97.56 134 | 92.50 109 | 89.94 222 | 96.54 163 | 88.65 87 | 98.18 211 | 93.83 110 | 90.90 239 | 95.86 223 |
|
XVG-OURS | | | 93.72 121 | 93.35 118 | 94.80 174 | 97.07 143 | 88.61 208 | 94.79 276 | 97.46 146 | 91.97 126 | 93.99 128 | 97.86 80 | 81.74 199 | 98.88 149 | 92.64 132 | 92.67 205 | 96.92 195 |
|
HyFIR lowres test | | | 93.66 122 | 92.92 129 | 95.87 114 | 98.24 85 | 89.88 167 | 94.58 281 | 98.49 13 | 85.06 300 | 93.78 133 | 95.78 202 | 82.86 174 | 98.67 169 | 91.77 148 | 95.71 163 | 99.07 78 |
|
iter_conf_final | | | 93.60 123 | 93.11 123 | 95.04 154 | 97.13 140 | 91.30 118 | 97.92 65 | 95.65 275 | 92.98 95 | 91.60 178 | 96.64 151 | 79.28 239 | 98.13 215 | 95.34 75 | 91.49 224 | 95.70 240 |
|
LFMVS | | | 93.60 123 | 92.63 143 | 96.52 72 | 98.13 97 | 91.27 120 | 97.94 63 | 93.39 337 | 90.57 172 | 96.29 73 | 98.31 45 | 69.00 319 | 99.16 118 | 94.18 100 | 95.87 158 | 99.12 73 |
|
F-COLMAP | | | 93.58 125 | 92.98 127 | 95.37 143 | 98.40 74 | 88.98 201 | 97.18 145 | 97.29 172 | 87.75 251 | 90.49 202 | 97.10 126 | 85.21 134 | 99.50 86 | 86.70 247 | 96.72 144 | 97.63 171 |
|
ab-mvs | | | 93.57 126 | 92.55 148 | 96.64 65 | 97.28 132 | 91.96 98 | 95.40 259 | 97.45 151 | 89.81 188 | 93.22 149 | 96.28 175 | 79.62 234 | 99.46 90 | 90.74 168 | 93.11 199 | 98.50 123 |
|
LS3D | | | 93.57 126 | 92.61 146 | 96.47 79 | 97.59 126 | 91.61 105 | 97.67 89 | 97.72 115 | 85.17 298 | 90.29 207 | 98.34 39 | 84.60 141 | 99.73 33 | 83.85 290 | 98.27 100 | 98.06 154 |
|
FA-MVS(test-final) | | | 93.52 128 | 92.92 129 | 95.31 144 | 96.77 164 | 88.54 212 | 94.82 275 | 96.21 252 | 89.61 191 | 94.20 123 | 95.25 226 | 83.24 162 | 99.14 121 | 90.01 176 | 96.16 153 | 98.25 144 |
|
Fast-Effi-MVS+ | | | 93.46 129 | 92.75 138 | 95.59 130 | 96.77 164 | 90.03 159 | 96.81 171 | 97.13 181 | 88.19 235 | 91.30 189 | 94.27 272 | 86.21 122 | 98.63 172 | 87.66 229 | 96.46 151 | 98.12 149 |
|
hse-mvs2 | | | 93.45 130 | 92.99 126 | 94.81 171 | 97.02 150 | 88.59 209 | 96.69 183 | 96.47 239 | 95.19 13 | 96.74 51 | 96.16 182 | 83.67 155 | 98.48 186 | 95.85 54 | 79.13 341 | 97.35 184 |
|
QAPM | | | 93.45 130 | 92.27 157 | 96.98 62 | 96.77 164 | 92.62 77 | 98.39 26 | 98.12 56 | 84.50 308 | 88.27 268 | 97.77 87 | 82.39 187 | 99.81 27 | 85.40 269 | 98.81 82 | 98.51 122 |
|
UniMVSNet_NR-MVSNet | | | 93.37 132 | 92.67 142 | 95.47 140 | 95.34 234 | 92.83 72 | 97.17 146 | 98.58 11 | 92.98 95 | 90.13 213 | 95.80 198 | 88.37 92 | 97.85 262 | 91.71 150 | 83.93 315 | 95.73 239 |
|
1112_ss | | | 93.37 132 | 92.42 154 | 96.21 101 | 97.05 148 | 90.99 133 | 96.31 218 | 96.72 220 | 86.87 270 | 89.83 226 | 96.69 147 | 86.51 117 | 99.14 121 | 88.12 215 | 93.67 193 | 98.50 123 |
|
UniMVSNet (Re) | | | 93.31 134 | 92.55 148 | 95.61 129 | 95.39 228 | 93.34 62 | 97.39 124 | 98.71 6 | 93.14 86 | 90.10 217 | 94.83 243 | 87.71 98 | 98.03 237 | 91.67 153 | 83.99 314 | 95.46 250 |
|
OPM-MVS | | | 93.28 135 | 92.76 136 | 94.82 169 | 94.63 278 | 90.77 144 | 96.65 187 | 97.18 176 | 93.72 61 | 91.68 177 | 97.26 117 | 79.33 238 | 98.63 172 | 92.13 139 | 92.28 209 | 95.07 272 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
VPA-MVSNet | | | 93.24 136 | 92.48 153 | 95.51 135 | 95.70 216 | 92.39 83 | 97.86 68 | 98.66 10 | 92.30 113 | 92.09 172 | 95.37 221 | 80.49 217 | 98.40 190 | 93.95 104 | 85.86 286 | 95.75 237 |
|
test_fmvs1 | | | 93.21 137 | 93.53 107 | 92.25 277 | 96.55 178 | 81.20 325 | 97.40 123 | 96.96 200 | 90.68 162 | 96.80 48 | 98.04 64 | 69.25 318 | 98.40 190 | 97.58 7 | 98.50 91 | 97.16 188 |
|
MVSTER | | | 93.20 138 | 92.81 135 | 94.37 192 | 96.56 176 | 89.59 175 | 97.06 151 | 97.12 182 | 91.24 145 | 91.30 189 | 95.96 189 | 82.02 193 | 98.05 233 | 93.48 114 | 90.55 244 | 95.47 249 |
|
test1111 | | | 93.19 139 | 92.82 134 | 94.30 197 | 97.58 128 | 84.56 294 | 98.21 43 | 89.02 361 | 93.53 70 | 94.58 115 | 98.21 52 | 72.69 298 | 99.05 136 | 93.06 124 | 98.48 94 | 99.28 58 |
|
ECVR-MVS |  | | 93.19 139 | 92.73 140 | 94.57 185 | 97.66 120 | 85.41 280 | 98.21 43 | 88.23 362 | 93.43 75 | 94.70 113 | 98.21 52 | 72.57 299 | 99.07 133 | 93.05 125 | 98.49 92 | 99.25 61 |
|
HQP-MVS | | | 93.19 139 | 92.74 139 | 94.54 186 | 95.86 209 | 89.33 189 | 96.65 187 | 97.39 161 | 93.55 66 | 90.14 209 | 95.87 193 | 80.95 207 | 98.50 183 | 92.13 139 | 92.10 215 | 95.78 232 |
|
iter_conf05 | | | 93.18 142 | 92.63 143 | 94.83 168 | 96.64 169 | 90.69 146 | 97.60 100 | 95.53 281 | 92.52 108 | 91.58 179 | 96.64 151 | 76.35 277 | 98.13 215 | 95.43 73 | 91.42 227 | 95.68 242 |
|
CHOSEN 280x420 | | | 93.12 143 | 92.72 141 | 94.34 194 | 96.71 168 | 87.27 243 | 90.29 349 | 97.72 115 | 86.61 274 | 91.34 186 | 95.29 223 | 84.29 148 | 98.41 189 | 93.25 119 | 98.94 79 | 97.35 184 |
|
RRT_MVS | | | 93.10 144 | 92.83 133 | 93.93 218 | 94.76 269 | 88.04 228 | 98.47 22 | 96.55 235 | 93.44 74 | 90.01 221 | 97.04 129 | 80.64 214 | 97.93 255 | 94.33 98 | 90.21 249 | 95.83 227 |
|
Effi-MVS+-dtu | | | 93.08 145 | 93.21 122 | 92.68 268 | 96.02 207 | 83.25 309 | 97.14 149 | 96.72 220 | 93.85 58 | 91.20 196 | 93.44 303 | 83.08 167 | 98.30 201 | 91.69 152 | 95.73 162 | 96.50 205 |
|
test_djsdf | | | 93.07 146 | 92.76 136 | 94.00 209 | 93.49 314 | 88.70 207 | 98.22 41 | 97.57 131 | 91.42 138 | 90.08 219 | 95.55 215 | 82.85 175 | 97.92 256 | 94.07 101 | 91.58 222 | 95.40 255 |
|
VDDNet | | | 93.05 147 | 92.07 161 | 96.02 109 | 96.84 158 | 90.39 156 | 98.08 51 | 95.85 264 | 86.22 282 | 95.79 90 | 98.46 28 | 67.59 326 | 99.19 114 | 94.92 84 | 94.85 176 | 98.47 128 |
|
thisisatest0530 | | | 93.03 148 | 92.21 159 | 95.49 137 | 97.07 143 | 89.11 199 | 97.49 115 | 92.19 346 | 90.16 179 | 94.09 126 | 96.41 169 | 76.43 276 | 99.05 136 | 90.38 172 | 95.68 164 | 98.31 142 |
|
EI-MVSNet | | | 93.03 148 | 92.88 131 | 93.48 239 | 95.77 214 | 86.98 252 | 96.44 201 | 97.12 182 | 90.66 165 | 91.30 189 | 97.64 99 | 86.56 115 | 98.05 233 | 89.91 179 | 90.55 244 | 95.41 252 |
|
CLD-MVS | | | 92.98 150 | 92.53 150 | 94.32 195 | 96.12 203 | 89.20 195 | 95.28 265 | 97.47 144 | 92.66 105 | 89.90 223 | 95.62 211 | 80.58 215 | 98.40 190 | 92.73 131 | 92.40 208 | 95.38 257 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
tttt0517 | | | 92.96 151 | 92.33 156 | 94.87 167 | 97.11 141 | 87.16 249 | 97.97 62 | 92.09 347 | 90.63 167 | 93.88 132 | 97.01 131 | 76.50 273 | 99.06 135 | 90.29 175 | 95.45 167 | 98.38 138 |
|
ACMM | | 89.79 8 | 92.96 151 | 92.50 152 | 94.35 193 | 96.30 192 | 88.71 206 | 97.58 102 | 97.36 166 | 91.40 140 | 90.53 201 | 96.65 150 | 79.77 231 | 98.75 160 | 91.24 161 | 91.64 220 | 95.59 244 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LPG-MVS_test | | | 92.94 153 | 92.56 147 | 94.10 203 | 96.16 199 | 88.26 220 | 97.65 92 | 97.46 146 | 91.29 141 | 90.12 215 | 97.16 122 | 79.05 242 | 98.73 162 | 92.25 135 | 91.89 218 | 95.31 261 |
|
BH-untuned | | | 92.94 153 | 92.62 145 | 93.92 219 | 97.22 133 | 86.16 271 | 96.40 209 | 96.25 249 | 90.06 181 | 89.79 227 | 96.17 181 | 83.19 163 | 98.35 197 | 87.19 240 | 97.27 131 | 97.24 186 |
|
DU-MVS | | | 92.90 155 | 92.04 162 | 95.49 137 | 94.95 257 | 92.83 72 | 97.16 147 | 98.24 37 | 93.02 89 | 90.13 213 | 95.71 205 | 83.47 158 | 97.85 262 | 91.71 150 | 83.93 315 | 95.78 232 |
|
PatchMatch-RL | | | 92.90 155 | 92.02 164 | 95.56 131 | 98.19 92 | 90.80 142 | 95.27 267 | 97.18 176 | 87.96 241 | 91.86 176 | 95.68 208 | 80.44 218 | 98.99 141 | 84.01 286 | 97.54 119 | 96.89 196 |
|
PMMVS | | | 92.86 157 | 92.34 155 | 94.42 190 | 94.92 260 | 86.73 258 | 94.53 283 | 96.38 243 | 84.78 305 | 94.27 121 | 95.12 232 | 83.13 166 | 98.40 190 | 91.47 156 | 96.49 149 | 98.12 149 |
|
OpenMVS |  | 89.19 12 | 92.86 157 | 91.68 176 | 96.40 85 | 95.34 234 | 92.73 75 | 98.27 33 | 98.12 56 | 84.86 303 | 85.78 305 | 97.75 88 | 78.89 249 | 99.74 32 | 87.50 234 | 98.65 87 | 96.73 200 |
|
Test_1112_low_res | | | 92.84 159 | 91.84 170 | 95.85 115 | 97.04 149 | 89.97 165 | 95.53 255 | 96.64 228 | 85.38 293 | 89.65 232 | 95.18 228 | 85.86 127 | 99.10 125 | 87.70 225 | 93.58 198 | 98.49 125 |
|
baseline1 | | | 92.82 160 | 91.90 168 | 95.55 133 | 97.20 135 | 90.77 144 | 97.19 144 | 94.58 319 | 92.20 116 | 92.36 163 | 96.34 173 | 84.16 149 | 98.21 207 | 89.20 201 | 83.90 318 | 97.68 170 |
|
1314 | | | 92.81 161 | 92.03 163 | 95.14 150 | 95.33 237 | 89.52 180 | 96.04 233 | 97.44 155 | 87.72 252 | 86.25 302 | 95.33 222 | 83.84 152 | 98.79 154 | 89.26 197 | 97.05 137 | 97.11 189 |
|
DP-MVS | | | 92.76 162 | 91.51 184 | 96.52 72 | 98.77 53 | 90.99 133 | 97.38 126 | 96.08 256 | 82.38 327 | 89.29 244 | 97.87 78 | 83.77 153 | 99.69 43 | 81.37 310 | 96.69 145 | 98.89 98 |
|
test_fmvs1_n | | | 92.73 163 | 92.88 131 | 92.29 275 | 96.08 206 | 81.05 326 | 97.98 57 | 97.08 187 | 90.72 160 | 96.79 49 | 98.18 55 | 63.07 345 | 98.45 187 | 97.62 6 | 98.42 97 | 97.36 182 |
|
BH-RMVSNet | | | 92.72 164 | 91.97 166 | 94.97 161 | 97.16 137 | 87.99 230 | 96.15 229 | 95.60 276 | 90.62 168 | 91.87 175 | 97.15 124 | 78.41 255 | 98.57 179 | 83.16 292 | 97.60 118 | 98.36 140 |
|
ACMP | | 89.59 10 | 92.62 165 | 92.14 160 | 94.05 206 | 96.40 187 | 88.20 223 | 97.36 127 | 97.25 175 | 91.52 133 | 88.30 266 | 96.64 151 | 78.46 254 | 98.72 165 | 91.86 146 | 91.48 225 | 95.23 268 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LCM-MVSNet-Re | | | 92.50 166 | 92.52 151 | 92.44 271 | 96.82 162 | 81.89 319 | 96.92 163 | 93.71 333 | 92.41 111 | 84.30 318 | 94.60 254 | 85.08 136 | 97.03 315 | 91.51 154 | 97.36 126 | 98.40 136 |
|
TranMVSNet+NR-MVSNet | | | 92.50 166 | 91.63 177 | 95.14 150 | 94.76 269 | 92.07 93 | 97.53 108 | 98.11 59 | 92.90 99 | 89.56 235 | 96.12 183 | 83.16 164 | 97.60 285 | 89.30 195 | 83.20 324 | 95.75 237 |
|
thres600view7 | | | 92.49 168 | 91.60 178 | 95.18 148 | 97.91 107 | 89.47 181 | 97.65 92 | 94.66 316 | 92.18 120 | 93.33 144 | 94.91 238 | 78.06 262 | 99.10 125 | 81.61 304 | 94.06 190 | 96.98 191 |
|
thres100view900 | | | 92.43 169 | 91.58 179 | 94.98 160 | 97.92 106 | 89.37 187 | 97.71 86 | 94.66 316 | 92.20 116 | 93.31 145 | 94.90 239 | 78.06 262 | 99.08 130 | 81.40 307 | 94.08 187 | 96.48 206 |
|
jajsoiax | | | 92.42 170 | 91.89 169 | 94.03 208 | 93.33 320 | 88.50 214 | 97.73 81 | 97.53 136 | 92.00 125 | 88.85 254 | 96.50 165 | 75.62 284 | 98.11 221 | 93.88 108 | 91.56 223 | 95.48 246 |
|
thres400 | | | 92.42 170 | 91.52 182 | 95.12 152 | 97.85 110 | 89.29 191 | 97.41 119 | 94.88 311 | 92.19 118 | 93.27 147 | 94.46 261 | 78.17 258 | 99.08 130 | 81.40 307 | 94.08 187 | 96.98 191 |
|
tfpn200view9 | | | 92.38 172 | 91.52 182 | 94.95 163 | 97.85 110 | 89.29 191 | 97.41 119 | 94.88 311 | 92.19 118 | 93.27 147 | 94.46 261 | 78.17 258 | 99.08 130 | 81.40 307 | 94.08 187 | 96.48 206 |
|
test_vis1_n | | | 92.37 173 | 92.26 158 | 92.72 265 | 94.75 271 | 82.64 311 | 98.02 55 | 96.80 217 | 91.18 148 | 97.77 27 | 97.93 73 | 58.02 352 | 98.29 202 | 97.63 5 | 98.21 102 | 97.23 187 |
|
bld_raw_dy_0_64 | | | 92.37 173 | 91.69 175 | 94.39 191 | 94.28 292 | 89.73 171 | 97.71 86 | 93.65 334 | 92.78 103 | 90.46 203 | 96.67 149 | 75.88 279 | 97.97 244 | 92.92 130 | 90.89 240 | 95.48 246 |
|
WR-MVS | | | 92.34 175 | 91.53 181 | 94.77 176 | 95.13 250 | 90.83 141 | 96.40 209 | 97.98 89 | 91.88 127 | 89.29 244 | 95.54 216 | 82.50 183 | 97.80 267 | 89.79 183 | 85.27 295 | 95.69 241 |
|
NR-MVSNet | | | 92.34 175 | 91.27 192 | 95.53 134 | 94.95 257 | 93.05 68 | 97.39 124 | 98.07 68 | 92.65 106 | 84.46 316 | 95.71 205 | 85.00 137 | 97.77 271 | 89.71 184 | 83.52 321 | 95.78 232 |
|
mvs_tets | | | 92.31 177 | 91.76 171 | 93.94 216 | 93.41 317 | 88.29 218 | 97.63 98 | 97.53 136 | 92.04 123 | 88.76 257 | 96.45 167 | 74.62 288 | 98.09 225 | 93.91 106 | 91.48 225 | 95.45 251 |
|
TAPA-MVS | | 90.10 7 | 92.30 178 | 91.22 195 | 95.56 131 | 98.33 79 | 89.60 174 | 96.79 172 | 97.65 123 | 81.83 331 | 91.52 181 | 97.23 119 | 87.94 95 | 98.91 147 | 71.31 354 | 98.37 98 | 98.17 147 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thisisatest0515 | | | 92.29 179 | 91.30 190 | 95.25 146 | 96.60 171 | 88.90 203 | 94.36 290 | 92.32 345 | 87.92 242 | 93.43 142 | 94.57 255 | 77.28 269 | 99.00 140 | 89.42 192 | 95.86 159 | 97.86 161 |
|
Fast-Effi-MVS+-dtu | | | 92.29 179 | 91.99 165 | 93.21 250 | 95.27 241 | 85.52 278 | 97.03 152 | 96.63 231 | 92.09 121 | 89.11 250 | 95.14 230 | 80.33 221 | 98.08 226 | 87.54 233 | 94.74 181 | 96.03 221 |
|
IterMVS-LS | | | 92.29 179 | 91.94 167 | 93.34 244 | 96.25 193 | 86.97 253 | 96.57 199 | 97.05 192 | 90.67 163 | 89.50 238 | 94.80 245 | 86.59 114 | 97.64 280 | 89.91 179 | 86.11 285 | 95.40 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PVSNet | | 86.66 18 | 92.24 182 | 91.74 174 | 93.73 226 | 97.77 114 | 83.69 306 | 92.88 330 | 96.72 220 | 87.91 243 | 93.00 151 | 94.86 241 | 78.51 253 | 99.05 136 | 86.53 248 | 97.45 124 | 98.47 128 |
|
VPNet | | | 92.23 183 | 91.31 189 | 94.99 158 | 95.56 221 | 90.96 135 | 97.22 142 | 97.86 104 | 92.96 97 | 90.96 197 | 96.62 160 | 75.06 286 | 98.20 208 | 91.90 143 | 83.65 320 | 95.80 230 |
|
thres200 | | | 92.23 183 | 91.39 185 | 94.75 178 | 97.61 124 | 89.03 200 | 96.60 195 | 95.09 301 | 92.08 122 | 93.28 146 | 94.00 284 | 78.39 256 | 99.04 139 | 81.26 311 | 94.18 186 | 96.19 212 |
|
anonymousdsp | | | 92.16 185 | 91.55 180 | 93.97 212 | 92.58 332 | 89.55 177 | 97.51 109 | 97.42 159 | 89.42 198 | 88.40 263 | 94.84 242 | 80.66 213 | 97.88 261 | 91.87 145 | 91.28 230 | 94.48 304 |
|
XXY-MVS | | | 92.16 185 | 91.23 194 | 94.95 163 | 94.75 271 | 90.94 136 | 97.47 116 | 97.43 158 | 89.14 205 | 88.90 251 | 96.43 168 | 79.71 232 | 98.24 204 | 89.56 189 | 87.68 270 | 95.67 243 |
|
BH-w/o | | | 92.14 187 | 91.75 172 | 93.31 245 | 96.99 153 | 85.73 275 | 95.67 248 | 95.69 271 | 88.73 223 | 89.26 246 | 94.82 244 | 82.97 172 | 98.07 230 | 85.26 271 | 96.32 152 | 96.13 217 |
|
Anonymous202405211 | | | 92.07 188 | 90.83 208 | 95.76 117 | 98.19 92 | 88.75 205 | 97.58 102 | 95.00 304 | 86.00 285 | 93.64 135 | 97.45 109 | 66.24 337 | 99.53 78 | 90.68 170 | 92.71 203 | 99.01 82 |
|
FE-MVS | | | 92.05 189 | 91.05 199 | 95.08 153 | 96.83 160 | 87.93 231 | 93.91 307 | 95.70 269 | 86.30 279 | 94.15 125 | 94.97 234 | 76.59 272 | 99.21 112 | 84.10 284 | 96.86 138 | 98.09 153 |
|
WR-MVS_H | | | 92.00 190 | 91.35 186 | 93.95 214 | 95.09 252 | 89.47 181 | 98.04 54 | 98.68 8 | 91.46 136 | 88.34 264 | 94.68 250 | 85.86 127 | 97.56 287 | 85.77 264 | 84.24 312 | 94.82 289 |
|
Anonymous20240529 | | | 91.98 191 | 90.73 212 | 95.73 122 | 98.14 96 | 89.40 185 | 97.99 56 | 97.72 115 | 79.63 344 | 93.54 138 | 97.41 112 | 69.94 316 | 99.56 72 | 91.04 164 | 91.11 234 | 98.22 145 |
|
PatchmatchNet |  | | 91.91 192 | 91.35 186 | 93.59 234 | 95.38 229 | 84.11 299 | 93.15 326 | 95.39 284 | 89.54 193 | 92.10 171 | 93.68 296 | 82.82 176 | 98.13 215 | 84.81 275 | 95.32 169 | 98.52 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CP-MVSNet | | | 91.89 193 | 91.24 193 | 93.82 222 | 95.05 253 | 88.57 210 | 97.82 73 | 98.19 44 | 91.70 130 | 88.21 270 | 95.76 203 | 81.96 194 | 97.52 293 | 87.86 219 | 84.65 304 | 95.37 258 |
|
SCA | | | 91.84 194 | 91.18 197 | 93.83 221 | 95.59 219 | 84.95 290 | 94.72 277 | 95.58 278 | 90.82 155 | 92.25 166 | 93.69 294 | 75.80 281 | 98.10 222 | 86.20 254 | 95.98 155 | 98.45 130 |
|
FMVSNet3 | | | 91.78 195 | 90.69 214 | 95.03 156 | 96.53 179 | 92.27 88 | 97.02 154 | 96.93 203 | 89.79 189 | 89.35 241 | 94.65 252 | 77.01 270 | 97.47 296 | 86.12 257 | 88.82 259 | 95.35 259 |
|
AUN-MVS | | | 91.76 196 | 90.75 211 | 94.81 171 | 97.00 152 | 88.57 210 | 96.65 187 | 96.49 238 | 89.63 190 | 92.15 168 | 96.12 183 | 78.66 251 | 98.50 183 | 90.83 165 | 79.18 340 | 97.36 182 |
|
X-MVStestdata | | | 91.71 197 | 89.67 256 | 97.81 26 | 99.38 14 | 94.03 46 | 98.59 12 | 98.20 42 | 94.85 24 | 96.59 61 | 32.69 373 | 91.70 45 | 99.80 28 | 95.66 60 | 99.40 46 | 99.62 15 |
|
MVS | | | 91.71 197 | 90.44 221 | 95.51 135 | 95.20 247 | 91.59 107 | 96.04 233 | 97.45 151 | 73.44 358 | 87.36 287 | 95.60 212 | 85.42 132 | 99.10 125 | 85.97 261 | 97.46 120 | 95.83 227 |
|
EPNet_dtu | | | 91.71 197 | 91.28 191 | 92.99 256 | 93.76 305 | 83.71 305 | 96.69 183 | 95.28 291 | 93.15 85 | 87.02 294 | 95.95 190 | 83.37 161 | 97.38 304 | 79.46 322 | 96.84 139 | 97.88 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline2 | | | 91.63 200 | 90.86 204 | 93.94 216 | 94.33 288 | 86.32 265 | 95.92 240 | 91.64 351 | 89.37 199 | 86.94 295 | 94.69 249 | 81.62 201 | 98.69 167 | 88.64 211 | 94.57 183 | 96.81 198 |
|
test2506 | | | 91.60 201 | 90.78 209 | 94.04 207 | 97.66 120 | 83.81 302 | 98.27 33 | 75.53 376 | 93.43 75 | 95.23 104 | 98.21 52 | 67.21 329 | 99.07 133 | 93.01 128 | 98.49 92 | 99.25 61 |
|
miper_ehance_all_eth | | | 91.59 202 | 91.13 198 | 92.97 257 | 95.55 222 | 86.57 263 | 94.47 284 | 96.88 211 | 87.77 249 | 88.88 253 | 94.01 283 | 86.22 121 | 97.54 289 | 89.49 190 | 86.93 277 | 94.79 294 |
|
v2v482 | | | 91.59 202 | 90.85 206 | 93.80 223 | 93.87 302 | 88.17 225 | 96.94 162 | 96.88 211 | 89.54 193 | 89.53 236 | 94.90 239 | 81.70 200 | 98.02 238 | 89.25 198 | 85.04 301 | 95.20 269 |
|
V42 | | | 91.58 204 | 90.87 203 | 93.73 226 | 94.05 297 | 88.50 214 | 97.32 131 | 96.97 199 | 88.80 221 | 89.71 228 | 94.33 267 | 82.54 182 | 98.05 233 | 89.01 204 | 85.07 299 | 94.64 302 |
|
PCF-MVS | | 89.48 11 | 91.56 205 | 89.95 244 | 96.36 90 | 96.60 171 | 92.52 80 | 92.51 335 | 97.26 173 | 79.41 345 | 88.90 251 | 96.56 162 | 84.04 151 | 99.55 74 | 77.01 336 | 97.30 130 | 97.01 190 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PS-CasMVS | | | 91.55 206 | 90.84 207 | 93.69 230 | 94.96 256 | 88.28 219 | 97.84 72 | 98.24 37 | 91.46 136 | 88.04 274 | 95.80 198 | 79.67 233 | 97.48 295 | 87.02 244 | 84.54 309 | 95.31 261 |
|
miper_enhance_ethall | | | 91.54 207 | 91.01 200 | 93.15 251 | 95.35 233 | 87.07 251 | 93.97 302 | 96.90 208 | 86.79 271 | 89.17 248 | 93.43 305 | 86.55 116 | 97.64 280 | 89.97 178 | 86.93 277 | 94.74 298 |
|
PAPM | | | 91.52 208 | 90.30 227 | 95.20 147 | 95.30 240 | 89.83 168 | 93.38 322 | 96.85 214 | 86.26 281 | 88.59 260 | 95.80 198 | 84.88 138 | 98.15 213 | 75.67 340 | 95.93 157 | 97.63 171 |
|
ET-MVSNet_ETH3D | | | 91.49 209 | 90.11 237 | 95.63 127 | 96.40 187 | 91.57 109 | 95.34 261 | 93.48 336 | 90.60 171 | 75.58 354 | 95.49 218 | 80.08 225 | 96.79 324 | 94.25 99 | 89.76 253 | 98.52 120 |
|
TR-MVS | | | 91.48 210 | 90.59 217 | 94.16 201 | 96.40 187 | 87.33 241 | 95.67 248 | 95.34 290 | 87.68 253 | 91.46 183 | 95.52 217 | 76.77 271 | 98.35 197 | 82.85 296 | 93.61 196 | 96.79 199 |
|
tpmrst | | | 91.44 211 | 91.32 188 | 91.79 289 | 95.15 248 | 79.20 345 | 93.42 321 | 95.37 286 | 88.55 228 | 93.49 140 | 93.67 297 | 82.49 184 | 98.27 203 | 90.41 171 | 89.34 256 | 97.90 158 |
|
test-LLR | | | 91.42 212 | 91.19 196 | 92.12 279 | 94.59 279 | 80.66 328 | 94.29 294 | 92.98 339 | 91.11 151 | 90.76 199 | 92.37 317 | 79.02 244 | 98.07 230 | 88.81 207 | 96.74 142 | 97.63 171 |
|
MSDG | | | 91.42 212 | 90.24 231 | 94.96 162 | 97.15 139 | 88.91 202 | 93.69 314 | 96.32 245 | 85.72 289 | 86.93 296 | 96.47 166 | 80.24 222 | 98.98 142 | 80.57 313 | 95.05 175 | 96.98 191 |
|
c3_l | | | 91.38 214 | 90.89 202 | 92.88 260 | 95.58 220 | 86.30 266 | 94.68 278 | 96.84 215 | 88.17 236 | 88.83 256 | 94.23 275 | 85.65 130 | 97.47 296 | 89.36 193 | 84.63 305 | 94.89 284 |
|
GA-MVS | | | 91.38 214 | 90.31 226 | 94.59 180 | 94.65 276 | 87.62 239 | 94.34 291 | 96.19 253 | 90.73 159 | 90.35 206 | 93.83 288 | 71.84 302 | 97.96 249 | 87.22 239 | 93.61 196 | 98.21 146 |
|
v1144 | | | 91.37 216 | 90.60 216 | 93.68 231 | 93.89 301 | 88.23 222 | 96.84 169 | 97.03 196 | 88.37 231 | 89.69 230 | 94.39 263 | 82.04 192 | 97.98 241 | 87.80 221 | 85.37 292 | 94.84 286 |
|
GBi-Net | | | 91.35 217 | 90.27 229 | 94.59 180 | 96.51 180 | 91.18 127 | 97.50 110 | 96.93 203 | 88.82 218 | 89.35 241 | 94.51 256 | 73.87 292 | 97.29 308 | 86.12 257 | 88.82 259 | 95.31 261 |
|
test1 | | | 91.35 217 | 90.27 229 | 94.59 180 | 96.51 180 | 91.18 127 | 97.50 110 | 96.93 203 | 88.82 218 | 89.35 241 | 94.51 256 | 73.87 292 | 97.29 308 | 86.12 257 | 88.82 259 | 95.31 261 |
|
UniMVSNet_ETH3D | | | 91.34 219 | 90.22 234 | 94.68 179 | 94.86 265 | 87.86 235 | 97.23 141 | 97.46 146 | 87.99 240 | 89.90 223 | 96.92 136 | 66.35 335 | 98.23 205 | 90.30 174 | 90.99 237 | 97.96 155 |
|
FMVSNet2 | | | 91.31 220 | 90.08 238 | 94.99 158 | 96.51 180 | 92.21 89 | 97.41 119 | 96.95 201 | 88.82 218 | 88.62 259 | 94.75 247 | 73.87 292 | 97.42 301 | 85.20 272 | 88.55 264 | 95.35 259 |
|
D2MVS | | | 91.30 221 | 90.95 201 | 92.35 273 | 94.71 274 | 85.52 278 | 96.18 228 | 98.21 41 | 88.89 214 | 86.60 299 | 93.82 290 | 79.92 229 | 97.95 251 | 89.29 196 | 90.95 238 | 93.56 323 |
|
v8 | | | 91.29 222 | 90.53 220 | 93.57 236 | 94.15 293 | 88.12 227 | 97.34 128 | 97.06 191 | 88.99 209 | 88.32 265 | 94.26 274 | 83.08 167 | 98.01 239 | 87.62 231 | 83.92 317 | 94.57 303 |
|
CVMVSNet | | | 91.23 223 | 91.75 172 | 89.67 322 | 95.77 214 | 74.69 355 | 96.44 201 | 94.88 311 | 85.81 287 | 92.18 167 | 97.64 99 | 79.07 241 | 95.58 342 | 88.06 216 | 95.86 159 | 98.74 108 |
|
cl22 | | | 91.21 224 | 90.56 219 | 93.14 252 | 96.09 205 | 86.80 255 | 94.41 288 | 96.58 234 | 87.80 247 | 88.58 261 | 93.99 285 | 80.85 212 | 97.62 283 | 89.87 181 | 86.93 277 | 94.99 275 |
|
PEN-MVS | | | 91.20 225 | 90.44 221 | 93.48 239 | 94.49 282 | 87.91 234 | 97.76 77 | 98.18 46 | 91.29 141 | 87.78 279 | 95.74 204 | 80.35 220 | 97.33 306 | 85.46 268 | 82.96 325 | 95.19 270 |
|
Baseline_NR-MVSNet | | | 91.20 225 | 90.62 215 | 92.95 258 | 93.83 303 | 88.03 229 | 97.01 157 | 95.12 300 | 88.42 230 | 89.70 229 | 95.13 231 | 83.47 158 | 97.44 299 | 89.66 187 | 83.24 323 | 93.37 327 |
|
cascas | | | 91.20 225 | 90.08 238 | 94.58 184 | 94.97 255 | 89.16 198 | 93.65 316 | 97.59 129 | 79.90 343 | 89.40 239 | 92.92 309 | 75.36 285 | 98.36 196 | 92.14 138 | 94.75 180 | 96.23 210 |
|
CostFormer | | | 91.18 228 | 90.70 213 | 92.62 269 | 94.84 266 | 81.76 320 | 94.09 300 | 94.43 321 | 84.15 311 | 92.72 158 | 93.77 292 | 79.43 236 | 98.20 208 | 90.70 169 | 92.18 213 | 97.90 158 |
|
tt0805 | | | 91.09 229 | 90.07 241 | 94.16 201 | 95.61 218 | 88.31 217 | 97.56 104 | 96.51 237 | 89.56 192 | 89.17 248 | 95.64 210 | 67.08 333 | 98.38 195 | 91.07 163 | 88.44 265 | 95.80 230 |
|
v1192 | | | 91.07 230 | 90.23 232 | 93.58 235 | 93.70 306 | 87.82 236 | 96.73 177 | 97.07 189 | 87.77 249 | 89.58 233 | 94.32 269 | 80.90 211 | 97.97 244 | 86.52 249 | 85.48 290 | 94.95 276 |
|
v144192 | | | 91.06 231 | 90.28 228 | 93.39 242 | 93.66 309 | 87.23 246 | 96.83 170 | 97.07 189 | 87.43 258 | 89.69 230 | 94.28 271 | 81.48 202 | 98.00 240 | 87.18 241 | 84.92 303 | 94.93 280 |
|
v10 | | | 91.04 232 | 90.23 232 | 93.49 238 | 94.12 294 | 88.16 226 | 97.32 131 | 97.08 187 | 88.26 234 | 88.29 267 | 94.22 277 | 82.17 191 | 97.97 244 | 86.45 251 | 84.12 313 | 94.33 310 |
|
eth_miper_zixun_eth | | | 91.02 233 | 90.59 217 | 92.34 274 | 95.33 237 | 84.35 295 | 94.10 299 | 96.90 208 | 88.56 227 | 88.84 255 | 94.33 267 | 84.08 150 | 97.60 285 | 88.77 209 | 84.37 311 | 95.06 273 |
|
v148 | | | 90.99 234 | 90.38 223 | 92.81 263 | 93.83 303 | 85.80 274 | 96.78 174 | 96.68 225 | 89.45 197 | 88.75 258 | 93.93 287 | 82.96 173 | 97.82 266 | 87.83 220 | 83.25 322 | 94.80 292 |
|
LTVRE_ROB | | 88.41 13 | 90.99 234 | 89.92 246 | 94.19 199 | 96.18 197 | 89.55 177 | 96.31 218 | 97.09 186 | 87.88 244 | 85.67 306 | 95.91 192 | 78.79 250 | 98.57 179 | 81.50 305 | 89.98 250 | 94.44 307 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DIV-MVS_self_test | | | 90.97 236 | 90.33 224 | 92.88 260 | 95.36 232 | 86.19 270 | 94.46 286 | 96.63 231 | 87.82 245 | 88.18 271 | 94.23 275 | 82.99 170 | 97.53 291 | 87.72 222 | 85.57 289 | 94.93 280 |
|
cl____ | | | 90.96 237 | 90.32 225 | 92.89 259 | 95.37 231 | 86.21 269 | 94.46 286 | 96.64 228 | 87.82 245 | 88.15 272 | 94.18 278 | 82.98 171 | 97.54 289 | 87.70 225 | 85.59 288 | 94.92 282 |
|
pmmvs4 | | | 90.93 238 | 89.85 248 | 94.17 200 | 93.34 319 | 90.79 143 | 94.60 280 | 96.02 257 | 84.62 306 | 87.45 283 | 95.15 229 | 81.88 197 | 97.45 298 | 87.70 225 | 87.87 269 | 94.27 314 |
|
XVG-ACMP-BASELINE | | | 90.93 238 | 90.21 235 | 93.09 253 | 94.31 290 | 85.89 273 | 95.33 262 | 97.26 173 | 91.06 153 | 89.38 240 | 95.44 220 | 68.61 321 | 98.60 175 | 89.46 191 | 91.05 235 | 94.79 294 |
|
v1921920 | | | 90.85 240 | 90.03 243 | 93.29 246 | 93.55 310 | 86.96 254 | 96.74 176 | 97.04 194 | 87.36 260 | 89.52 237 | 94.34 266 | 80.23 223 | 97.97 244 | 86.27 252 | 85.21 296 | 94.94 278 |
|
CR-MVSNet | | | 90.82 241 | 89.77 252 | 93.95 214 | 94.45 284 | 87.19 247 | 90.23 350 | 95.68 273 | 86.89 269 | 92.40 160 | 92.36 320 | 80.91 209 | 97.05 314 | 81.09 312 | 93.95 191 | 97.60 176 |
|
v7n | | | 90.76 242 | 89.86 247 | 93.45 241 | 93.54 311 | 87.60 240 | 97.70 88 | 97.37 164 | 88.85 215 | 87.65 281 | 94.08 282 | 81.08 206 | 98.10 222 | 84.68 277 | 83.79 319 | 94.66 301 |
|
RPSCF | | | 90.75 243 | 90.86 204 | 90.42 315 | 96.84 158 | 76.29 353 | 95.61 252 | 96.34 244 | 83.89 314 | 91.38 184 | 97.87 78 | 76.45 274 | 98.78 155 | 87.16 242 | 92.23 210 | 96.20 211 |
|
MVP-Stereo | | | 90.74 244 | 90.08 238 | 92.71 266 | 93.19 322 | 88.20 223 | 95.86 242 | 96.27 247 | 86.07 284 | 84.86 314 | 94.76 246 | 77.84 265 | 97.75 272 | 83.88 289 | 98.01 108 | 92.17 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
pm-mvs1 | | | 90.72 245 | 89.65 258 | 93.96 213 | 94.29 291 | 89.63 172 | 97.79 76 | 96.82 216 | 89.07 206 | 86.12 304 | 95.48 219 | 78.61 252 | 97.78 269 | 86.97 245 | 81.67 329 | 94.46 305 |
|
v1240 | | | 90.70 246 | 89.85 248 | 93.23 248 | 93.51 313 | 86.80 255 | 96.61 193 | 97.02 197 | 87.16 265 | 89.58 233 | 94.31 270 | 79.55 235 | 97.98 241 | 85.52 267 | 85.44 291 | 94.90 283 |
|
EPMVS | | | 90.70 246 | 89.81 250 | 93.37 243 | 94.73 273 | 84.21 297 | 93.67 315 | 88.02 363 | 89.50 195 | 92.38 162 | 93.49 301 | 77.82 266 | 97.78 269 | 86.03 260 | 92.68 204 | 98.11 152 |
|
Anonymous20231211 | | | 90.63 248 | 89.42 260 | 94.27 198 | 98.24 85 | 89.19 197 | 98.05 53 | 97.89 96 | 79.95 342 | 88.25 269 | 94.96 235 | 72.56 300 | 98.13 215 | 89.70 185 | 85.14 297 | 95.49 245 |
|
DTE-MVSNet | | | 90.56 249 | 89.75 254 | 93.01 255 | 93.95 298 | 87.25 244 | 97.64 96 | 97.65 123 | 90.74 158 | 87.12 290 | 95.68 208 | 79.97 228 | 97.00 319 | 83.33 291 | 81.66 330 | 94.78 296 |
|
ACMH | | 87.59 16 | 90.53 250 | 89.42 260 | 93.87 220 | 96.21 194 | 87.92 232 | 97.24 137 | 96.94 202 | 88.45 229 | 83.91 326 | 96.27 176 | 71.92 301 | 98.62 174 | 84.43 281 | 89.43 255 | 95.05 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 90.51 251 | 90.19 236 | 91.44 298 | 93.41 317 | 81.25 323 | 96.98 159 | 96.28 246 | 91.68 131 | 86.55 300 | 96.30 174 | 74.20 291 | 97.98 241 | 88.96 205 | 87.40 275 | 95.09 271 |
|
miper_lstm_enhance | | | 90.50 252 | 90.06 242 | 91.83 286 | 95.33 237 | 83.74 303 | 93.86 308 | 96.70 224 | 87.56 256 | 87.79 278 | 93.81 291 | 83.45 160 | 96.92 321 | 87.39 235 | 84.62 306 | 94.82 289 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 253 | 89.28 263 | 93.79 224 | 97.95 103 | 87.13 250 | 96.92 163 | 95.89 263 | 82.83 325 | 86.88 298 | 97.18 121 | 73.77 295 | 99.29 107 | 78.44 327 | 93.62 195 | 94.95 276 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-SCA-FT | | | 90.31 254 | 89.81 250 | 91.82 287 | 95.52 223 | 84.20 298 | 94.30 293 | 96.15 254 | 90.61 169 | 87.39 286 | 94.27 272 | 75.80 281 | 96.44 327 | 87.34 236 | 86.88 281 | 94.82 289 |
|
MS-PatchMatch | | | 90.27 255 | 89.77 252 | 91.78 290 | 94.33 288 | 84.72 293 | 95.55 253 | 96.73 219 | 86.17 283 | 86.36 301 | 95.28 225 | 71.28 306 | 97.80 267 | 84.09 285 | 98.14 106 | 92.81 332 |
|
tpm | | | 90.25 256 | 89.74 255 | 91.76 292 | 93.92 299 | 79.73 341 | 93.98 301 | 93.54 335 | 88.28 233 | 91.99 173 | 93.25 306 | 77.51 268 | 97.44 299 | 87.30 238 | 87.94 268 | 98.12 149 |
|
AllTest | | | 90.23 257 | 88.98 267 | 93.98 210 | 97.94 104 | 86.64 259 | 96.51 200 | 95.54 279 | 85.38 293 | 85.49 308 | 96.77 141 | 70.28 312 | 99.15 119 | 80.02 317 | 92.87 200 | 96.15 215 |
|
ACMH+ | | 87.92 14 | 90.20 258 | 89.18 265 | 93.25 247 | 96.48 183 | 86.45 264 | 96.99 158 | 96.68 225 | 88.83 217 | 84.79 315 | 96.22 178 | 70.16 314 | 98.53 181 | 84.42 282 | 88.04 267 | 94.77 297 |
|
test-mter | | | 90.19 259 | 89.54 259 | 92.12 279 | 94.59 279 | 80.66 328 | 94.29 294 | 92.98 339 | 87.68 253 | 90.76 199 | 92.37 317 | 67.67 325 | 98.07 230 | 88.81 207 | 96.74 142 | 97.63 171 |
|
IterMVS | | | 90.15 260 | 89.67 256 | 91.61 294 | 95.48 225 | 83.72 304 | 94.33 292 | 96.12 255 | 89.99 182 | 87.31 289 | 94.15 280 | 75.78 283 | 96.27 330 | 86.97 245 | 86.89 280 | 94.83 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 90.06 261 | 89.42 260 | 91.97 282 | 94.41 286 | 80.62 330 | 94.29 294 | 91.97 349 | 87.28 263 | 90.44 204 | 92.47 316 | 68.79 320 | 97.67 277 | 88.50 213 | 96.60 147 | 97.61 175 |
|
tpm2 | | | 89.96 262 | 89.21 264 | 92.23 278 | 94.91 262 | 81.25 323 | 93.78 310 | 94.42 322 | 80.62 340 | 91.56 180 | 93.44 303 | 76.44 275 | 97.94 252 | 85.60 266 | 92.08 217 | 97.49 180 |
|
IB-MVS | | 87.33 17 | 89.91 263 | 88.28 276 | 94.79 175 | 95.26 244 | 87.70 238 | 95.12 273 | 93.95 331 | 89.35 200 | 87.03 293 | 92.49 315 | 70.74 310 | 99.19 114 | 89.18 202 | 81.37 331 | 97.49 180 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ADS-MVSNet | | | 89.89 264 | 88.68 271 | 93.53 237 | 95.86 209 | 84.89 291 | 90.93 345 | 95.07 302 | 83.23 323 | 91.28 193 | 91.81 327 | 79.01 246 | 97.85 262 | 79.52 319 | 91.39 228 | 97.84 162 |
|
FMVSNet1 | | | 89.88 265 | 88.31 275 | 94.59 180 | 95.41 227 | 91.18 127 | 97.50 110 | 96.93 203 | 86.62 273 | 87.41 285 | 94.51 256 | 65.94 339 | 97.29 308 | 83.04 294 | 87.43 273 | 95.31 261 |
|
pmmvs5 | | | 89.86 266 | 88.87 269 | 92.82 262 | 92.86 326 | 86.23 268 | 96.26 221 | 95.39 284 | 84.24 310 | 87.12 290 | 94.51 256 | 74.27 290 | 97.36 305 | 87.61 232 | 87.57 271 | 94.86 285 |
|
tpmvs | | | 89.83 267 | 89.15 266 | 91.89 284 | 94.92 260 | 80.30 335 | 93.11 327 | 95.46 283 | 86.28 280 | 88.08 273 | 92.65 311 | 80.44 218 | 98.52 182 | 81.47 306 | 89.92 251 | 96.84 197 |
|
test_fmvs2 | | | 89.77 268 | 89.93 245 | 89.31 325 | 93.68 308 | 76.37 352 | 97.64 96 | 95.90 261 | 89.84 187 | 91.49 182 | 96.26 177 | 58.77 351 | 97.10 312 | 94.65 93 | 91.13 233 | 94.46 305 |
|
tfpnnormal | | | 89.70 269 | 88.40 274 | 93.60 233 | 95.15 248 | 90.10 158 | 97.56 104 | 98.16 50 | 87.28 263 | 86.16 303 | 94.63 253 | 77.57 267 | 98.05 233 | 74.48 342 | 84.59 307 | 92.65 335 |
|
ADS-MVSNet2 | | | 89.45 270 | 88.59 272 | 92.03 281 | 95.86 209 | 82.26 317 | 90.93 345 | 94.32 326 | 83.23 323 | 91.28 193 | 91.81 327 | 79.01 246 | 95.99 332 | 79.52 319 | 91.39 228 | 97.84 162 |
|
Patchmatch-test | | | 89.42 271 | 87.99 278 | 93.70 229 | 95.27 241 | 85.11 286 | 88.98 356 | 94.37 324 | 81.11 334 | 87.10 292 | 93.69 294 | 82.28 188 | 97.50 294 | 74.37 344 | 94.76 179 | 98.48 127 |
|
test0.0.03 1 | | | 89.37 272 | 88.70 270 | 91.41 299 | 92.47 334 | 85.63 276 | 95.22 270 | 92.70 342 | 91.11 151 | 86.91 297 | 93.65 298 | 79.02 244 | 93.19 359 | 78.00 329 | 89.18 257 | 95.41 252 |
|
SixPastTwentyTwo | | | 89.15 273 | 88.54 273 | 90.98 305 | 93.49 314 | 80.28 336 | 96.70 181 | 94.70 315 | 90.78 156 | 84.15 321 | 95.57 213 | 71.78 303 | 97.71 275 | 84.63 278 | 85.07 299 | 94.94 278 |
|
RPMNet | | | 88.98 274 | 87.05 289 | 94.77 176 | 94.45 284 | 87.19 247 | 90.23 350 | 98.03 80 | 77.87 352 | 92.40 160 | 87.55 355 | 80.17 224 | 99.51 83 | 68.84 359 | 93.95 191 | 97.60 176 |
|
TransMVSNet (Re) | | | 88.94 275 | 87.56 282 | 93.08 254 | 94.35 287 | 88.45 216 | 97.73 81 | 95.23 295 | 87.47 257 | 84.26 319 | 95.29 223 | 79.86 230 | 97.33 306 | 79.44 323 | 74.44 352 | 93.45 326 |
|
USDC | | | 88.94 275 | 87.83 280 | 92.27 276 | 94.66 275 | 84.96 289 | 93.86 308 | 95.90 261 | 87.34 261 | 83.40 328 | 95.56 214 | 67.43 327 | 98.19 210 | 82.64 300 | 89.67 254 | 93.66 322 |
|
dp | | | 88.90 277 | 88.26 277 | 90.81 308 | 94.58 281 | 76.62 351 | 92.85 331 | 94.93 308 | 85.12 299 | 90.07 220 | 93.07 307 | 75.81 280 | 98.12 220 | 80.53 314 | 87.42 274 | 97.71 168 |
|
PatchT | | | 88.87 278 | 87.42 283 | 93.22 249 | 94.08 296 | 85.10 287 | 89.51 354 | 94.64 318 | 81.92 330 | 92.36 163 | 88.15 351 | 80.05 226 | 97.01 318 | 72.43 350 | 93.65 194 | 97.54 179 |
|
MVS_0304 | | | 88.79 279 | 87.57 281 | 92.46 270 | 94.65 276 | 86.15 272 | 96.40 209 | 97.17 178 | 86.44 276 | 88.02 275 | 91.71 329 | 56.68 355 | 97.03 315 | 84.47 280 | 92.58 206 | 94.19 315 |
|
our_test_3 | | | 88.78 280 | 87.98 279 | 91.20 303 | 92.45 335 | 82.53 313 | 93.61 318 | 95.69 271 | 85.77 288 | 84.88 313 | 93.71 293 | 79.99 227 | 96.78 325 | 79.47 321 | 86.24 282 | 94.28 313 |
|
EU-MVSNet | | | 88.72 281 | 88.90 268 | 88.20 329 | 93.15 323 | 74.21 356 | 96.63 192 | 94.22 327 | 85.18 297 | 87.32 288 | 95.97 188 | 76.16 278 | 94.98 347 | 85.27 270 | 86.17 283 | 95.41 252 |
|
Patchmtry | | | 88.64 282 | 87.25 285 | 92.78 264 | 94.09 295 | 86.64 259 | 89.82 353 | 95.68 273 | 80.81 338 | 87.63 282 | 92.36 320 | 80.91 209 | 97.03 315 | 78.86 325 | 85.12 298 | 94.67 300 |
|
MIMVSNet | | | 88.50 283 | 86.76 291 | 93.72 228 | 94.84 266 | 87.77 237 | 91.39 340 | 94.05 328 | 86.41 278 | 87.99 276 | 92.59 314 | 63.27 344 | 95.82 337 | 77.44 330 | 92.84 202 | 97.57 178 |
|
tpm cat1 | | | 88.36 284 | 87.21 287 | 91.81 288 | 95.13 250 | 80.55 331 | 92.58 334 | 95.70 269 | 74.97 355 | 87.45 283 | 91.96 325 | 78.01 264 | 98.17 212 | 80.39 315 | 88.74 262 | 96.72 201 |
|
ppachtmachnet_test | | | 88.35 285 | 87.29 284 | 91.53 295 | 92.45 335 | 83.57 307 | 93.75 311 | 95.97 258 | 84.28 309 | 85.32 311 | 94.18 278 | 79.00 248 | 96.93 320 | 75.71 339 | 84.99 302 | 94.10 316 |
|
JIA-IIPM | | | 88.26 286 | 87.04 290 | 91.91 283 | 93.52 312 | 81.42 322 | 89.38 355 | 94.38 323 | 80.84 337 | 90.93 198 | 80.74 362 | 79.22 240 | 97.92 256 | 82.76 297 | 91.62 221 | 96.38 209 |
|
testgi | | | 87.97 287 | 87.21 287 | 90.24 317 | 92.86 326 | 80.76 327 | 96.67 186 | 94.97 306 | 91.74 129 | 85.52 307 | 95.83 196 | 62.66 347 | 94.47 351 | 76.25 337 | 88.36 266 | 95.48 246 |
|
LF4IMVS | | | 87.94 288 | 87.25 285 | 89.98 319 | 92.38 337 | 80.05 339 | 94.38 289 | 95.25 294 | 87.59 255 | 84.34 317 | 94.74 248 | 64.31 342 | 97.66 279 | 84.83 274 | 87.45 272 | 92.23 340 |
|
gg-mvs-nofinetune | | | 87.82 289 | 85.61 298 | 94.44 188 | 94.46 283 | 89.27 194 | 91.21 344 | 84.61 371 | 80.88 336 | 89.89 225 | 74.98 364 | 71.50 304 | 97.53 291 | 85.75 265 | 97.21 133 | 96.51 204 |
|
pmmvs6 | | | 87.81 290 | 86.19 294 | 92.69 267 | 91.32 341 | 86.30 266 | 97.34 128 | 96.41 242 | 80.59 341 | 84.05 325 | 94.37 265 | 67.37 328 | 97.67 277 | 84.75 276 | 79.51 339 | 94.09 318 |
|
K. test v3 | | | 87.64 291 | 86.75 292 | 90.32 316 | 93.02 325 | 79.48 343 | 96.61 193 | 92.08 348 | 90.66 165 | 80.25 344 | 94.09 281 | 67.21 329 | 96.65 326 | 85.96 262 | 80.83 333 | 94.83 287 |
|
Patchmatch-RL test | | | 87.38 292 | 86.24 293 | 90.81 308 | 88.74 357 | 78.40 349 | 88.12 360 | 93.17 338 | 87.11 266 | 82.17 335 | 89.29 345 | 81.95 195 | 95.60 341 | 88.64 211 | 77.02 345 | 98.41 135 |
|
FMVSNet5 | | | 87.29 293 | 85.79 297 | 91.78 290 | 94.80 268 | 87.28 242 | 95.49 256 | 95.28 291 | 84.09 312 | 83.85 327 | 91.82 326 | 62.95 346 | 94.17 353 | 78.48 326 | 85.34 294 | 93.91 320 |
|
Anonymous20231206 | | | 87.09 294 | 86.14 295 | 89.93 320 | 91.22 342 | 80.35 333 | 96.11 230 | 95.35 287 | 83.57 320 | 84.16 320 | 93.02 308 | 73.54 296 | 95.61 340 | 72.16 351 | 86.14 284 | 93.84 321 |
|
EG-PatchMatch MVS | | | 87.02 295 | 85.44 299 | 91.76 292 | 92.67 330 | 85.00 288 | 96.08 232 | 96.45 240 | 83.41 322 | 79.52 346 | 93.49 301 | 57.10 354 | 97.72 274 | 79.34 324 | 90.87 241 | 92.56 336 |
|
TinyColmap | | | 86.82 296 | 85.35 302 | 91.21 302 | 94.91 262 | 82.99 310 | 93.94 304 | 94.02 330 | 83.58 319 | 81.56 336 | 94.68 250 | 62.34 348 | 98.13 215 | 75.78 338 | 87.35 276 | 92.52 337 |
|
TDRefinement | | | 86.53 297 | 84.76 308 | 91.85 285 | 82.23 367 | 84.25 296 | 96.38 212 | 95.35 287 | 84.97 302 | 84.09 323 | 94.94 236 | 65.76 340 | 98.34 200 | 84.60 279 | 74.52 351 | 92.97 329 |
|
test_0402 | | | 86.46 298 | 84.79 307 | 91.45 297 | 95.02 254 | 85.55 277 | 96.29 220 | 94.89 310 | 80.90 335 | 82.21 334 | 93.97 286 | 68.21 324 | 97.29 308 | 62.98 363 | 88.68 263 | 91.51 347 |
|
Anonymous20240521 | | | 86.42 299 | 85.44 299 | 89.34 324 | 90.33 346 | 79.79 340 | 96.73 177 | 95.92 259 | 83.71 318 | 83.25 329 | 91.36 332 | 63.92 343 | 96.01 331 | 78.39 328 | 85.36 293 | 92.22 341 |
|
DSMNet-mixed | | | 86.34 300 | 86.12 296 | 87.00 335 | 89.88 350 | 70.43 360 | 94.93 274 | 90.08 359 | 77.97 351 | 85.42 310 | 92.78 310 | 74.44 289 | 93.96 354 | 74.43 343 | 95.14 171 | 96.62 202 |
|
CL-MVSNet_self_test | | | 86.31 301 | 85.15 303 | 89.80 321 | 88.83 356 | 81.74 321 | 93.93 305 | 96.22 250 | 86.67 272 | 85.03 312 | 90.80 334 | 78.09 261 | 94.50 349 | 74.92 341 | 71.86 357 | 93.15 328 |
|
pmmvs-eth3d | | | 86.22 302 | 84.45 309 | 91.53 295 | 88.34 358 | 87.25 244 | 94.47 284 | 95.01 303 | 83.47 321 | 79.51 347 | 89.61 343 | 69.75 317 | 95.71 338 | 83.13 293 | 76.73 348 | 91.64 344 |
|
test_vis1_rt | | | 86.16 303 | 85.06 304 | 89.46 323 | 93.47 316 | 80.46 332 | 96.41 205 | 86.61 368 | 85.22 296 | 79.15 348 | 88.64 346 | 52.41 359 | 97.06 313 | 93.08 123 | 90.57 243 | 90.87 352 |
|
test20.03 | | | 86.14 304 | 85.40 301 | 88.35 327 | 90.12 347 | 80.06 338 | 95.90 241 | 95.20 296 | 88.59 224 | 81.29 337 | 93.62 299 | 71.43 305 | 92.65 360 | 71.26 355 | 81.17 332 | 92.34 339 |
|
UnsupCasMVSNet_eth | | | 85.99 305 | 84.45 309 | 90.62 312 | 89.97 349 | 82.40 316 | 93.62 317 | 97.37 164 | 89.86 184 | 78.59 350 | 92.37 317 | 65.25 341 | 95.35 346 | 82.27 302 | 70.75 358 | 94.10 316 |
|
KD-MVS_self_test | | | 85.95 306 | 84.95 305 | 88.96 326 | 89.55 353 | 79.11 346 | 95.13 272 | 96.42 241 | 85.91 286 | 84.07 324 | 90.48 335 | 70.03 315 | 94.82 348 | 80.04 316 | 72.94 355 | 92.94 330 |
|
YYNet1 | | | 85.87 307 | 84.23 311 | 90.78 311 | 92.38 337 | 82.46 315 | 93.17 324 | 95.14 299 | 82.12 329 | 67.69 358 | 92.36 320 | 78.16 260 | 95.50 344 | 77.31 332 | 79.73 337 | 94.39 308 |
|
MDA-MVSNet_test_wron | | | 85.87 307 | 84.23 311 | 90.80 310 | 92.38 337 | 82.57 312 | 93.17 324 | 95.15 298 | 82.15 328 | 67.65 359 | 92.33 323 | 78.20 257 | 95.51 343 | 77.33 331 | 79.74 336 | 94.31 312 |
|
CMPMVS |  | 62.92 21 | 85.62 309 | 84.92 306 | 87.74 331 | 89.14 354 | 73.12 359 | 94.17 297 | 96.80 217 | 73.98 356 | 73.65 357 | 94.93 237 | 66.36 334 | 97.61 284 | 83.95 288 | 91.28 230 | 92.48 338 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PVSNet_0 | | 82.17 19 | 85.46 310 | 83.64 313 | 90.92 306 | 95.27 241 | 79.49 342 | 90.55 348 | 95.60 276 | 83.76 317 | 83.00 332 | 89.95 340 | 71.09 307 | 97.97 244 | 82.75 298 | 60.79 368 | 95.31 261 |
|
MDA-MVSNet-bldmvs | | | 85.00 311 | 82.95 316 | 91.17 304 | 93.13 324 | 83.33 308 | 94.56 282 | 95.00 304 | 84.57 307 | 65.13 363 | 92.65 311 | 70.45 311 | 95.85 335 | 73.57 347 | 77.49 344 | 94.33 310 |
|
MIMVSNet1 | | | 84.93 312 | 83.05 314 | 90.56 313 | 89.56 352 | 84.84 292 | 95.40 259 | 95.35 287 | 83.91 313 | 80.38 342 | 92.21 324 | 57.23 353 | 93.34 358 | 70.69 357 | 82.75 328 | 93.50 324 |
|
KD-MVS_2432*1600 | | | 84.81 313 | 82.64 317 | 91.31 300 | 91.07 343 | 85.34 284 | 91.22 342 | 95.75 267 | 85.56 291 | 83.09 330 | 90.21 338 | 67.21 329 | 95.89 333 | 77.18 334 | 62.48 366 | 92.69 333 |
|
miper_refine_blended | | | 84.81 313 | 82.64 317 | 91.31 300 | 91.07 343 | 85.34 284 | 91.22 342 | 95.75 267 | 85.56 291 | 83.09 330 | 90.21 338 | 67.21 329 | 95.89 333 | 77.18 334 | 62.48 366 | 92.69 333 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 315 | 82.28 320 | 90.83 307 | 90.06 348 | 84.05 301 | 95.73 247 | 94.04 329 | 73.89 357 | 80.17 345 | 91.53 331 | 59.15 350 | 97.64 280 | 66.92 361 | 89.05 258 | 90.80 353 |
|
mvsany_test3 | | | 83.59 316 | 82.44 319 | 87.03 334 | 83.80 363 | 73.82 357 | 93.70 312 | 90.92 357 | 86.42 277 | 82.51 333 | 90.26 337 | 46.76 362 | 95.71 338 | 90.82 166 | 76.76 347 | 91.57 346 |
|
PM-MVS | | | 83.48 317 | 81.86 322 | 88.31 328 | 87.83 360 | 77.59 350 | 93.43 320 | 91.75 350 | 86.91 268 | 80.63 340 | 89.91 341 | 44.42 363 | 95.84 336 | 85.17 273 | 76.73 348 | 91.50 348 |
|
test_fmvs3 | | | 83.21 318 | 83.02 315 | 83.78 340 | 86.77 362 | 68.34 365 | 96.76 175 | 94.91 309 | 86.49 275 | 84.14 322 | 89.48 344 | 36.04 367 | 91.73 362 | 91.86 146 | 80.77 334 | 91.26 351 |
|
new-patchmatchnet | | | 83.18 319 | 81.87 321 | 87.11 333 | 86.88 361 | 75.99 354 | 93.70 312 | 95.18 297 | 85.02 301 | 77.30 352 | 88.40 348 | 65.99 338 | 93.88 355 | 74.19 346 | 70.18 359 | 91.47 349 |
|
new_pmnet | | | 82.89 320 | 81.12 324 | 88.18 330 | 89.63 351 | 80.18 337 | 91.77 339 | 92.57 343 | 76.79 354 | 75.56 355 | 88.23 350 | 61.22 349 | 94.48 350 | 71.43 353 | 82.92 326 | 89.87 356 |
|
MVS-HIRNet | | | 82.47 321 | 81.21 323 | 86.26 337 | 95.38 229 | 69.21 363 | 88.96 357 | 89.49 360 | 66.28 361 | 80.79 339 | 74.08 366 | 68.48 322 | 97.39 303 | 71.93 352 | 95.47 166 | 92.18 342 |
|
UnsupCasMVSNet_bld | | | 82.13 322 | 79.46 326 | 90.14 318 | 88.00 359 | 82.47 314 | 90.89 347 | 96.62 233 | 78.94 347 | 75.61 353 | 84.40 360 | 56.63 356 | 96.31 329 | 77.30 333 | 66.77 364 | 91.63 345 |
|
test_f | | | 80.57 323 | 79.62 325 | 83.41 341 | 83.38 365 | 67.80 367 | 93.57 319 | 93.72 332 | 80.80 339 | 77.91 351 | 87.63 354 | 33.40 368 | 92.08 361 | 87.14 243 | 79.04 342 | 90.34 355 |
|
pmmvs3 | | | 79.97 324 | 77.50 329 | 87.39 332 | 82.80 366 | 79.38 344 | 92.70 333 | 90.75 358 | 70.69 359 | 78.66 349 | 87.47 356 | 51.34 360 | 93.40 357 | 73.39 348 | 69.65 360 | 89.38 357 |
|
APD_test1 | | | 79.31 325 | 77.70 328 | 84.14 339 | 89.11 355 | 69.07 364 | 92.36 338 | 91.50 352 | 69.07 360 | 73.87 356 | 92.63 313 | 39.93 365 | 94.32 352 | 70.54 358 | 80.25 335 | 89.02 358 |
|
N_pmnet | | | 78.73 326 | 78.71 327 | 78.79 345 | 92.80 328 | 46.50 378 | 94.14 298 | 43.71 381 | 78.61 348 | 80.83 338 | 91.66 330 | 74.94 287 | 96.36 328 | 67.24 360 | 84.45 310 | 93.50 324 |
|
test_vis3_rt | | | 72.73 327 | 70.55 330 | 79.27 344 | 80.02 368 | 68.13 366 | 93.92 306 | 74.30 378 | 76.90 353 | 58.99 367 | 73.58 367 | 20.29 376 | 95.37 345 | 84.16 283 | 72.80 356 | 74.31 366 |
|
LCM-MVSNet | | | 72.55 328 | 69.39 332 | 82.03 342 | 70.81 377 | 65.42 370 | 90.12 352 | 94.36 325 | 55.02 367 | 65.88 361 | 81.72 361 | 24.16 375 | 89.96 363 | 74.32 345 | 68.10 363 | 90.71 354 |
|
FPMVS | | | 71.27 329 | 69.85 331 | 75.50 349 | 74.64 372 | 59.03 374 | 91.30 341 | 91.50 352 | 58.80 364 | 57.92 368 | 88.28 349 | 29.98 371 | 85.53 369 | 53.43 368 | 82.84 327 | 81.95 362 |
|
PMMVS2 | | | 70.19 330 | 66.92 333 | 80.01 343 | 76.35 371 | 65.67 369 | 86.22 361 | 87.58 365 | 64.83 363 | 62.38 364 | 80.29 363 | 26.78 373 | 88.49 367 | 63.79 362 | 54.07 369 | 85.88 359 |
|
testf1 | | | 69.31 331 | 66.76 334 | 76.94 347 | 78.61 369 | 61.93 372 | 88.27 358 | 86.11 369 | 55.62 365 | 59.69 365 | 85.31 358 | 20.19 377 | 89.32 364 | 57.62 365 | 69.44 361 | 79.58 363 |
|
APD_test2 | | | 69.31 331 | 66.76 334 | 76.94 347 | 78.61 369 | 61.93 372 | 88.27 358 | 86.11 369 | 55.62 365 | 59.69 365 | 85.31 358 | 20.19 377 | 89.32 364 | 57.62 365 | 69.44 361 | 79.58 363 |
|
EGC-MVSNET | | | 68.77 333 | 63.01 338 | 86.07 338 | 92.49 333 | 82.24 318 | 93.96 303 | 90.96 356 | 0.71 378 | 2.62 379 | 90.89 333 | 53.66 357 | 93.46 356 | 57.25 367 | 84.55 308 | 82.51 361 |
|
Gipuma |  | | 67.86 334 | 65.41 336 | 75.18 350 | 92.66 331 | 73.45 358 | 66.50 369 | 94.52 320 | 53.33 368 | 57.80 369 | 66.07 369 | 30.81 369 | 89.20 366 | 48.15 370 | 78.88 343 | 62.90 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 66.11 335 | 64.89 337 | 69.79 352 | 72.62 375 | 35.23 382 | 65.19 370 | 92.83 341 | 20.35 373 | 65.20 362 | 88.08 352 | 43.14 364 | 82.70 370 | 73.12 349 | 63.46 365 | 91.45 350 |
|
ANet_high | | | 63.94 336 | 59.58 339 | 77.02 346 | 61.24 379 | 66.06 368 | 85.66 363 | 87.93 364 | 78.53 349 | 42.94 371 | 71.04 368 | 25.42 374 | 80.71 371 | 52.60 369 | 30.83 372 | 84.28 360 |
|
PMVS |  | 53.92 22 | 58.58 337 | 55.40 340 | 68.12 353 | 51.00 380 | 48.64 376 | 78.86 366 | 87.10 367 | 46.77 369 | 35.84 375 | 74.28 365 | 8.76 379 | 86.34 368 | 42.07 371 | 73.91 353 | 69.38 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 53.28 338 | 52.56 342 | 55.43 355 | 74.43 373 | 47.13 377 | 83.63 365 | 76.30 375 | 42.23 370 | 42.59 372 | 62.22 371 | 28.57 372 | 74.40 373 | 31.53 373 | 31.51 371 | 44.78 370 |
|
MVE |  | 50.73 23 | 53.25 339 | 48.81 344 | 66.58 354 | 65.34 378 | 57.50 375 | 72.49 368 | 70.94 379 | 40.15 372 | 39.28 374 | 63.51 370 | 6.89 381 | 73.48 375 | 38.29 372 | 42.38 370 | 68.76 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 52.08 340 | 51.31 343 | 54.39 356 | 72.62 375 | 45.39 379 | 83.84 364 | 75.51 377 | 41.13 371 | 40.77 373 | 59.65 372 | 30.08 370 | 73.60 374 | 28.31 374 | 29.90 373 | 44.18 371 |
|
tmp_tt | | | 51.94 341 | 53.82 341 | 46.29 357 | 33.73 381 | 45.30 380 | 78.32 367 | 67.24 380 | 18.02 374 | 50.93 370 | 87.05 357 | 52.99 358 | 53.11 376 | 70.76 356 | 25.29 374 | 40.46 372 |
|
wuyk23d | | | 25.11 342 | 24.57 346 | 26.74 358 | 73.98 374 | 39.89 381 | 57.88 371 | 9.80 382 | 12.27 375 | 10.39 376 | 6.97 378 | 7.03 380 | 36.44 377 | 25.43 375 | 17.39 375 | 3.89 375 |
|
cdsmvs_eth3d_5k | | | 23.24 343 | 30.99 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 97.63 125 | 0.00 379 | 0.00 380 | 96.88 138 | 84.38 145 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
testmvs | | | 13.36 344 | 16.33 347 | 4.48 360 | 5.04 382 | 2.26 384 | 93.18 323 | 3.28 383 | 2.70 376 | 8.24 377 | 21.66 374 | 2.29 383 | 2.19 378 | 7.58 376 | 2.96 376 | 9.00 374 |
|
test123 | | | 13.04 345 | 15.66 348 | 5.18 359 | 4.51 383 | 3.45 383 | 92.50 336 | 1.81 384 | 2.50 377 | 7.58 378 | 20.15 375 | 3.67 382 | 2.18 379 | 7.13 377 | 1.07 377 | 9.90 373 |
|
ab-mvs-re | | | 8.06 346 | 10.74 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 96.69 147 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 7.39 347 | 9.85 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 88.65 87 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 62 | 99.29 1 | 98.35 20 | 94.98 21 | 98.49 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 94 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
PC_three_1452 | | | | | | | | | | 90.77 157 | 98.89 8 | 98.28 50 | 96.24 1 | 98.35 197 | 95.76 58 | 99.58 21 | 99.59 19 |
|
No_MVS | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 94 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 35 | 95.13 16 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.05 39 | 94.59 28 | | 98.08 63 | 89.22 203 | 97.03 44 | 98.10 58 | 92.52 33 | 99.65 49 | 94.58 95 | 99.31 55 | |
|
RE-MVS-def | | | | 96.72 32 | | 99.02 42 | 92.34 84 | 97.98 57 | 98.03 80 | 93.52 71 | 97.43 32 | 98.51 23 | 90.71 66 | | 96.05 46 | 99.26 59 | 99.43 45 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 93 | 90.40 176 | 98.94 5 | | | | 97.41 15 | 99.66 10 | 99.74 7 |
|
OPU-MVS | | | | | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 36 | | | | 98.26 51 | 96.04 2 | 99.24 110 | 95.36 74 | 99.59 17 | 99.56 25 |
|
test_241102_TWO | | | | | | | | | 98.27 30 | 95.13 16 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 16 | 97.52 8 | 99.65 12 | 99.74 7 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 30 | 95.09 19 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 49 | | | |
|
9.14 | | | | 96.75 31 | | 98.93 47 | | 97.73 81 | 98.23 40 | 91.28 144 | 97.88 25 | 98.44 30 | 93.00 24 | 99.65 49 | 95.76 58 | 99.47 38 | |
|
save fliter | | | | | | 98.91 49 | 94.28 34 | 97.02 154 | 98.02 83 | 95.35 9 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 94.78 31 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 21 | 97.45 12 | 99.72 2 | 99.77 1 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 43 | 98.28 27 | | | | | 99.86 8 | 97.52 8 | 99.67 6 | 99.75 5 |
|
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 25 | 94.92 22 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 130 |
|
test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 177 | | | | 98.45 130 |
|
sam_mvs | | | | | | | | | | | | | 81.94 196 | | | | |
|
ambc | | | | | 86.56 336 | 83.60 364 | 70.00 362 | 85.69 362 | 94.97 306 | | 80.60 341 | 88.45 347 | 37.42 366 | 96.84 323 | 82.69 299 | 75.44 350 | 92.86 331 |
|
MTGPA |  | | | | | | | | 98.08 63 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 332 | | | | 16.58 377 | 80.53 216 | 97.68 276 | 86.20 254 | | |
|
test_post | | | | | | | | | | | | 17.58 376 | 81.76 198 | 98.08 226 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 336 | 82.65 181 | 98.10 222 | | | |
|
GG-mvs-BLEND | | | | | 93.62 232 | 93.69 307 | 89.20 195 | 92.39 337 | 83.33 372 | | 87.98 277 | 89.84 342 | 71.00 308 | 96.87 322 | 82.08 303 | 95.40 168 | 94.80 292 |
|
MTMP | | | | | | | | 97.86 68 | 82.03 373 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 321 | 78.89 348 | | | 84.82 304 | | 93.52 300 | | 98.64 171 | 87.72 222 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 88 | 99.38 49 | 99.45 41 |
|
TEST9 | | | | | | 98.70 56 | 94.19 38 | 96.41 205 | 98.02 83 | 88.17 236 | 96.03 80 | 97.56 106 | 92.74 28 | 99.59 61 | | | |
|
test_8 | | | | | | 98.67 58 | 94.06 45 | 96.37 213 | 98.01 86 | 88.58 225 | 95.98 84 | 97.55 108 | 92.73 29 | 99.58 64 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 105 | 99.38 49 | 99.50 36 |
|
agg_prior | | | | | | 98.67 58 | 93.79 50 | | 98.00 87 | | 95.68 94 | | | 99.57 71 | | | |
|
TestCases | | | | | 93.98 210 | 97.94 104 | 86.64 259 | | 95.54 279 | 85.38 293 | 85.49 308 | 96.77 141 | 70.28 312 | 99.15 119 | 80.02 317 | 92.87 200 | 96.15 215 |
|
test_prior4 | | | | | | | 93.66 53 | 96.42 204 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 214 | | 92.80 102 | 96.03 80 | 97.59 103 | 92.01 40 | | 95.01 82 | 99.38 49 | |
|
test_prior | | | | | 97.23 53 | 98.67 58 | 92.99 69 | | 98.00 87 | | | | | 99.41 96 | | | 99.29 56 |
|
旧先验2 | | | | | | | | 95.94 239 | | 81.66 332 | 97.34 35 | | | 98.82 152 | 92.26 133 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 95.79 245 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 97.32 48 | 98.60 65 | 93.59 54 | | 97.75 110 | 81.58 333 | 95.75 91 | 97.85 81 | 90.04 73 | 99.67 47 | 86.50 250 | 99.13 71 | 98.69 112 |
|
旧先验1 | | | | | | 98.38 77 | 93.38 59 | | 97.75 110 | | | 98.09 60 | 92.30 38 | | | 99.01 76 | 99.16 66 |
|
æ— å…ˆéªŒ | | | | | | | | 95.79 245 | 97.87 100 | 83.87 316 | | | | 99.65 49 | 87.68 228 | | 98.89 98 |
|
原ACMM2 | | | | | | | | 95.67 248 | | | | | | | | | |
|
原ACMM1 | | | | | 96.38 88 | 98.59 66 | 91.09 132 | | 97.89 96 | 87.41 259 | 95.22 105 | 97.68 92 | 90.25 70 | 99.54 76 | 87.95 218 | 99.12 72 | 98.49 125 |
|
test222 | | | | | | 98.24 85 | 92.21 89 | 95.33 262 | 97.60 127 | 79.22 346 | 95.25 103 | 97.84 83 | 88.80 85 | | | 99.15 69 | 98.72 109 |
|
testdata2 | | | | | | | | | | | | | | 99.67 47 | 85.96 262 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 25 | | | | |
|
testdata | | | | | 95.46 141 | 98.18 94 | 88.90 203 | | 97.66 121 | 82.73 326 | 97.03 44 | 98.07 61 | 90.06 72 | 98.85 150 | 89.67 186 | 98.98 77 | 98.64 115 |
|
testdata1 | | | | | | | | 95.26 269 | | 93.10 88 | | | | | | | |
|
test12 | | | | | 97.65 39 | 98.46 70 | 94.26 35 | | 97.66 121 | | 95.52 101 | | 90.89 63 | 99.46 90 | | 99.25 61 | 99.22 63 |
|
plane_prior7 | | | | | | 96.21 194 | 89.98 164 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 204 | 90.00 160 | | | | | | 81.32 204 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 138 | | | | | 98.60 175 | 93.02 126 | 92.23 210 | 95.86 223 |
|
plane_prior4 | | | | | | | | | | | | 96.64 151 | | | | | |
|
plane_prior3 | | | | | | | 90.00 160 | | | 94.46 41 | 91.34 186 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 79 | | 94.85 24 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 202 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 162 | 97.24 137 | | 94.06 51 | | | | | | 92.16 214 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 355 | | | | | | | | |
|
lessismore_v0 | | | | | 90.45 314 | 91.96 340 | 79.09 347 | | 87.19 366 | | 80.32 343 | 94.39 263 | 66.31 336 | 97.55 288 | 84.00 287 | 76.84 346 | 94.70 299 |
|
LGP-MVS_train | | | | | 94.10 203 | 96.16 199 | 88.26 220 | | 97.46 146 | 91.29 141 | 90.12 215 | 97.16 122 | 79.05 242 | 98.73 162 | 92.25 135 | 91.89 218 | 95.31 261 |
|
test11 | | | | | | | | | 97.88 98 | | | | | | | | |
|
door | | | | | | | | | 91.13 354 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 189 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 209 | | 96.65 187 | | 93.55 66 | 90.14 209 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 209 | | 96.65 187 | | 93.55 66 | 90.14 209 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 139 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 209 | | | 98.50 183 | | | 95.78 232 |
|
HQP3-MVS | | | | | | | | | 97.39 161 | | | | | | | 92.10 215 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 207 | | | | |
|
NP-MVS | | | | | | 95.99 208 | 89.81 169 | | | | | 95.87 193 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 361 | 93.10 328 | | 83.88 315 | 93.55 137 | | 82.47 185 | | 86.25 253 | | 98.38 138 |
|
MDTV_nov1_ep13 | | | | 90.76 210 | | 95.22 245 | 80.33 334 | 93.03 329 | 95.28 291 | 88.14 238 | 92.84 157 | 93.83 288 | 81.34 203 | 98.08 226 | 82.86 295 | 94.34 185 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 248 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 236 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 86 | | | | |
|
ITE_SJBPF | | | | | 92.43 272 | 95.34 234 | 85.37 283 | | 95.92 259 | 91.47 135 | 87.75 280 | 96.39 171 | 71.00 308 | 97.96 249 | 82.36 301 | 89.86 252 | 93.97 319 |
|
DeepMVS_CX |  | | | | 74.68 351 | 90.84 345 | 64.34 371 | | 81.61 374 | 65.34 362 | 67.47 360 | 88.01 353 | 48.60 361 | 80.13 372 | 62.33 364 | 73.68 354 | 79.58 363 |
|