APDe-MVS | | | 95.46 1 | 95.64 1 | 94.91 6 | 98.26 13 | 86.29 21 | 97.46 2 | 97.40 5 | 89.03 36 | 96.20 2 | 98.10 1 | 89.39 4 | 99.34 13 | 95.88 1 | 99.03 1 | 99.10 1 |
|
CNVR-MVS | | | 95.40 2 | 95.37 2 | 95.50 3 | 98.11 16 | 88.51 3 | 95.29 49 | 96.96 26 | 92.09 3 | 95.32 5 | 97.08 16 | 89.49 3 | 99.33 16 | 95.10 2 | 98.85 4 | 98.66 4 |
|
SteuartSystems-ACMMP | | | 95.20 3 | 95.32 4 | 94.85 9 | 96.99 38 | 86.33 19 | 97.33 3 | 97.30 11 | 91.38 8 | 95.39 4 | 97.46 3 | 88.98 6 | 99.40 11 | 94.12 4 | 98.89 3 | 98.82 2 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ | | | 95.14 4 | 94.91 5 | 95.83 1 | 98.25 14 | 89.65 1 | 95.92 31 | 96.96 26 | 91.75 5 | 94.02 12 | 96.83 22 | 88.12 7 | 99.55 2 | 93.41 8 | 98.94 2 | 98.28 17 |
|
SD-MVS | | | 94.96 5 | 95.33 3 | 93.88 33 | 97.25 35 | 86.69 11 | 96.19 24 | 97.11 20 | 90.42 18 | 96.95 1 | 97.27 7 | 89.53 2 | 96.91 149 | 94.38 3 | 98.85 4 | 98.03 33 |
|
NCCC | | | 94.81 6 | 94.69 7 | 95.17 5 | 97.83 22 | 87.46 5 | 95.66 39 | 96.93 29 | 92.34 2 | 93.94 13 | 96.58 34 | 87.74 9 | 99.44 10 | 92.83 12 | 98.40 25 | 98.62 5 |
|
XVS | | | 94.45 7 | 94.32 8 | 94.85 9 | 98.54 3 | 86.60 14 | 96.93 11 | 97.19 15 | 90.66 16 | 92.85 23 | 97.16 14 | 85.02 30 | 99.49 7 | 91.99 22 | 98.56 22 | 98.47 9 |
|
MCST-MVS | | | 94.45 7 | 94.20 12 | 95.19 4 | 98.46 7 | 87.50 4 | 95.00 62 | 97.12 18 | 87.13 65 | 92.51 33 | 96.30 42 | 89.24 5 | 99.34 13 | 93.46 7 | 98.62 19 | 98.73 3 |
|
ACMMPR | | | 94.43 9 | 94.28 9 | 94.91 6 | 98.63 1 | 86.69 11 | 96.94 10 | 97.32 10 | 88.63 44 | 93.53 21 | 97.26 8 | 85.04 29 | 99.54 4 | 92.35 17 | 98.78 9 | 98.50 7 |
|
CP-MVS | | | 94.34 10 | 94.21 11 | 94.74 15 | 98.39 9 | 86.64 13 | 97.60 1 | 97.24 13 | 88.53 46 | 92.73 27 | 97.23 9 | 85.20 27 | 99.32 17 | 92.15 20 | 98.83 6 | 98.25 20 |
|
Regformer-2 | | | 94.33 11 | 94.22 10 | 94.68 16 | 95.54 67 | 86.75 10 | 94.57 79 | 96.70 40 | 91.84 4 | 94.41 7 | 96.56 36 | 87.19 12 | 99.13 27 | 93.50 6 | 97.65 40 | 98.16 24 |
|
#test# | | | 94.32 12 | 94.14 13 | 94.86 8 | 98.61 2 | 86.81 7 | 96.43 20 | 97.34 7 | 87.51 62 | 93.65 16 | 97.21 10 | 86.10 20 | 99.49 7 | 91.68 28 | 98.77 10 | 98.30 16 |
|
MP-MVS |  | | 94.25 13 | 94.07 16 | 94.77 13 | 98.47 6 | 86.31 20 | 96.71 17 | 96.98 25 | 89.04 35 | 91.98 37 | 97.19 11 | 85.43 25 | 99.56 1 | 92.06 21 | 98.79 7 | 98.44 11 |
|
APD-MVS |  | | 94.24 14 | 94.07 16 | 94.75 14 | 98.06 19 | 86.90 6 | 95.88 32 | 96.94 28 | 85.68 83 | 95.05 6 | 97.18 12 | 87.31 11 | 99.07 29 | 91.90 26 | 98.61 20 | 98.28 17 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Regformer-1 | | | 94.22 15 | 94.13 14 | 94.51 20 | 95.54 67 | 86.36 18 | 94.57 79 | 96.44 50 | 91.69 6 | 94.32 9 | 96.56 36 | 87.05 14 | 99.03 35 | 93.35 9 | 97.65 40 | 98.15 25 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 16 | 94.77 6 | 92.49 67 | 96.52 49 | 80.00 128 | 94.00 114 | 97.08 21 | 90.05 20 | 95.65 3 | 97.29 6 | 89.66 1 | 98.97 44 | 93.95 5 | 98.71 11 | 98.50 7 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 17 | 93.79 20 | 94.80 12 | 97.48 26 | 86.78 8 | 95.65 40 | 96.89 31 | 89.40 29 | 92.81 25 | 96.97 18 | 85.37 26 | 99.24 20 | 90.87 35 | 98.69 12 | 98.38 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS | | | 94.02 18 | 93.88 18 | 94.43 23 | 98.39 9 | 85.78 29 | 97.25 5 | 97.07 22 | 86.90 68 | 92.62 30 | 96.80 25 | 84.85 33 | 99.17 23 | 92.43 16 | 98.65 17 | 98.33 14 |
|
mPP-MVS | | | 93.99 19 | 93.78 21 | 94.63 18 | 98.50 5 | 85.90 27 | 96.87 13 | 96.91 30 | 88.70 42 | 91.83 41 | 97.17 13 | 83.96 37 | 99.55 2 | 91.44 32 | 98.64 18 | 98.43 12 |
|
PGM-MVS | | | 93.96 20 | 93.72 23 | 94.68 16 | 98.43 8 | 86.22 22 | 95.30 47 | 97.78 1 | 87.45 63 | 93.26 22 | 97.33 5 | 84.62 34 | 99.51 5 | 90.75 37 | 98.57 21 | 98.32 15 |
|
Regformer-4 | | | 93.91 21 | 93.81 19 | 94.19 28 | 95.36 71 | 85.47 30 | 94.68 76 | 96.41 53 | 91.60 7 | 93.75 15 | 96.71 26 | 85.95 22 | 99.10 28 | 93.21 10 | 96.65 55 | 98.01 35 |
|
PHI-MVS | | | 93.89 22 | 93.65 24 | 94.62 19 | 96.84 41 | 86.43 16 | 96.69 18 | 97.49 2 | 85.15 90 | 93.56 20 | 96.28 43 | 85.60 24 | 99.31 18 | 92.45 15 | 98.79 7 | 98.12 27 |
|
patchmatch test | | | 93.78 23 | 93.77 22 | 93.80 38 | 97.92 21 | 84.19 49 | 96.30 21 | 96.87 34 | 86.96 66 | 93.92 14 | 97.47 2 | 83.88 38 | 98.96 45 | 92.71 14 | 97.87 35 | 98.26 19 |
|
MSLP-MVS | | | 93.72 24 | 94.08 15 | 92.65 61 | 97.31 29 | 83.43 64 | 95.79 35 | 97.33 8 | 90.03 21 | 93.58 19 | 96.96 19 | 84.87 32 | 97.76 94 | 92.19 19 | 98.66 15 | 96.76 68 |
|
Regformer-3 | | | 93.68 25 | 93.64 25 | 93.81 37 | 95.36 71 | 84.61 38 | 94.68 76 | 95.83 84 | 91.27 9 | 93.60 18 | 96.71 26 | 85.75 23 | 98.86 48 | 92.87 11 | 96.65 55 | 97.96 36 |
|
TSAR-MVS | | | 93.66 26 | 93.41 27 | 94.41 24 | 96.59 46 | 86.78 8 | 94.40 88 | 93.93 160 | 89.77 25 | 94.21 10 | 95.59 62 | 87.35 10 | 98.61 61 | 92.72 13 | 96.15 62 | 97.83 43 |
|
test_prior3 | | | 93.60 27 | 93.53 26 | 93.82 35 | 97.29 31 | 84.49 42 | 94.12 104 | 96.88 32 | 87.67 59 | 92.63 28 | 96.39 40 | 86.62 16 | 98.87 46 | 91.50 30 | 98.67 13 | 98.11 28 |
|
MVS_111021_HR | | | 93.45 28 | 93.31 28 | 93.84 34 | 96.99 38 | 84.84 35 | 93.24 140 | 97.24 13 | 88.76 41 | 91.60 44 | 95.85 54 | 86.07 21 | 98.66 58 | 91.91 25 | 98.16 30 | 98.03 33 |
|
DELS-MVS | | | 93.43 29 | 93.25 29 | 93.97 30 | 95.42 70 | 85.04 34 | 93.06 146 | 97.13 17 | 90.74 14 | 91.84 39 | 95.09 72 | 86.32 19 | 99.21 21 | 91.22 33 | 98.45 24 | 97.65 47 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 93.40 30 | 93.22 30 | 93.94 32 | 98.36 11 | 84.83 36 | 97.15 7 | 96.80 38 | 85.77 80 | 92.47 34 | 97.13 15 | 82.38 45 | 99.07 29 | 90.51 38 | 98.40 25 | 97.92 39 |
|
DeepC-MVS | | 88.79 3 | 93.31 31 | 92.99 32 | 94.26 27 | 96.07 58 | 85.83 28 | 94.89 65 | 96.99 24 | 89.02 37 | 89.56 59 | 97.37 4 | 82.51 44 | 99.38 12 | 92.20 18 | 98.30 27 | 97.57 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP |  | | 93.24 32 | 92.88 34 | 94.30 26 | 98.09 18 | 85.33 32 | 96.86 14 | 97.45 4 | 88.33 49 | 90.15 55 | 97.03 17 | 81.44 52 | 99.51 5 | 90.85 36 | 95.74 65 | 98.04 32 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 93.23 33 | 93.05 31 | 93.76 39 | 98.04 20 | 84.07 51 | 96.22 23 | 97.37 6 | 84.15 106 | 90.05 56 | 95.66 60 | 87.77 8 | 99.15 26 | 89.91 41 | 98.27 28 | 98.07 30 |
|
EI-MVSNet-Vis | | | 93.01 34 | 92.92 33 | 93.29 41 | 95.01 81 | 83.51 63 | 94.48 82 | 95.77 85 | 90.87 10 | 92.52 32 | 96.67 29 | 84.50 35 | 99.00 41 | 91.99 22 | 94.44 77 | 97.36 55 |
|
CDPH-MVS | | | 92.83 35 | 92.30 36 | 94.44 21 | 97.79 23 | 86.11 24 | 94.06 111 | 96.66 42 | 80.09 170 | 92.77 26 | 96.63 31 | 86.62 16 | 99.04 34 | 87.40 60 | 98.66 15 | 98.17 23 |
|
EI-MVSNet-UG | | | 92.74 36 | 92.62 35 | 93.12 46 | 94.86 86 | 83.20 68 | 94.40 88 | 95.74 87 | 90.71 15 | 92.05 36 | 96.60 33 | 84.00 36 | 98.99 42 | 91.55 29 | 93.63 84 | 97.17 59 |
|
MVS_111021_LR | | | 92.47 37 | 92.29 37 | 92.98 52 | 95.99 60 | 84.43 46 | 93.08 144 | 96.09 68 | 88.20 51 | 91.12 48 | 95.72 59 | 81.33 53 | 97.76 94 | 91.74 27 | 97.37 45 | 96.75 69 |
|
3Dnovator+ | | 87.14 4 | 92.42 38 | 91.37 42 | 95.55 2 | 95.63 66 | 88.73 2 | 97.07 8 | 96.77 39 | 90.84 11 | 84.02 149 | 96.62 32 | 75.95 108 | 99.34 13 | 87.77 56 | 97.68 38 | 98.59 6 |
|
VNet | | | 92.24 39 | 91.91 38 | 93.24 43 | 96.59 46 | 83.43 64 | 94.84 67 | 96.44 50 | 89.19 33 | 94.08 11 | 95.90 53 | 77.85 86 | 98.17 77 | 88.90 46 | 93.38 90 | 98.13 26 |
|
CPTT-MVS | | | 91.99 40 | 91.80 39 | 92.55 64 | 98.24 15 | 81.98 94 | 96.76 16 | 96.49 49 | 81.89 154 | 90.24 53 | 96.44 39 | 78.59 75 | 98.61 61 | 89.68 42 | 97.85 36 | 97.06 61 |
|
DP-MVS Recon | | | 91.95 41 | 91.28 44 | 93.96 31 | 98.33 12 | 85.92 26 | 94.66 78 | 96.66 42 | 82.69 145 | 90.03 57 | 95.82 55 | 82.30 46 | 99.03 35 | 84.57 84 | 96.48 60 | 96.91 65 |
|
EPNet | | | 91.79 42 | 91.02 47 | 94.10 29 | 90.10 212 | 85.25 33 | 96.03 28 | 92.05 186 | 92.83 1 | 87.39 79 | 95.78 56 | 79.39 69 | 99.01 38 | 88.13 54 | 97.48 42 | 98.05 31 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 91.77 43 | 91.70 40 | 92.00 79 | 97.08 37 | 80.03 127 | 93.60 131 | 95.18 119 | 87.85 57 | 90.89 50 | 96.47 38 | 82.06 50 | 98.36 68 | 85.07 77 | 97.04 48 | 97.62 48 |
|
Vis-MVSNet |  | | 91.75 44 | 91.23 45 | 93.29 41 | 95.32 73 | 83.78 55 | 96.14 25 | 95.98 74 | 89.89 22 | 90.45 51 | 96.58 34 | 75.09 119 | 98.31 73 | 84.75 82 | 96.90 49 | 97.78 46 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 86.66 5 | 91.73 45 | 90.82 50 | 94.44 21 | 94.59 95 | 86.37 17 | 97.18 6 | 97.02 23 | 89.20 32 | 84.31 145 | 96.66 30 | 73.74 135 | 99.17 23 | 86.74 69 | 97.96 34 | 97.79 45 |
|
EPP-MVSNet | | | 91.70 46 | 91.56 41 | 92.13 76 | 95.88 61 | 80.50 121 | 97.33 3 | 95.25 113 | 86.15 77 | 89.76 58 | 95.60 61 | 83.42 39 | 98.32 72 | 87.37 62 | 93.25 94 | 97.56 52 |
|
MVSFormer | | | 91.68 47 | 91.30 43 | 92.80 57 | 93.86 116 | 83.88 53 | 95.96 29 | 95.90 80 | 84.66 98 | 91.76 42 | 94.91 74 | 77.92 83 | 97.30 123 | 89.64 43 | 97.11 46 | 97.24 56 |
|
IS-MVSNet | | | 91.43 48 | 91.09 46 | 92.46 68 | 95.87 63 | 81.38 104 | 96.95 9 | 93.69 165 | 89.72 26 | 89.50 61 | 95.98 50 | 78.57 76 | 97.77 93 | 83.02 100 | 96.50 59 | 98.22 21 |
|
PVSNet_Blended_VisFu | | | 91.38 49 | 90.91 49 | 92.80 57 | 96.39 51 | 83.17 69 | 94.87 66 | 96.66 42 | 83.29 123 | 89.27 62 | 94.46 84 | 80.29 60 | 99.17 23 | 87.57 59 | 95.37 69 | 96.05 86 |
|
OMC-MVS | | | 91.23 50 | 90.62 52 | 93.08 48 | 96.27 54 | 84.07 51 | 93.52 132 | 95.93 77 | 86.95 67 | 89.51 60 | 96.13 48 | 78.50 77 | 98.35 69 | 85.84 75 | 92.90 98 | 96.83 67 |
|
PAPM_NR | | | 91.22 51 | 90.78 51 | 92.52 66 | 97.60 25 | 81.46 102 | 94.37 94 | 96.24 60 | 86.39 74 | 87.41 78 | 94.80 80 | 82.06 50 | 98.48 64 | 82.80 103 | 95.37 69 | 97.61 49 |
|
PS-MVSNAJ | | | 91.18 52 | 90.92 48 | 91.96 81 | 95.26 76 | 82.60 88 | 92.09 169 | 95.70 88 | 86.27 75 | 91.84 39 | 92.46 134 | 79.70 66 | 98.99 42 | 89.08 45 | 95.86 64 | 94.29 139 |
|
lupinMVS | | | 90.92 53 | 90.21 54 | 93.03 51 | 93.86 116 | 83.88 53 | 92.81 152 | 93.86 161 | 79.84 172 | 91.76 42 | 94.29 89 | 77.92 83 | 98.04 84 | 90.48 39 | 97.11 46 | 97.17 59 |
|
jason | | | 90.80 54 | 90.10 56 | 92.90 55 | 93.04 134 | 83.53 62 | 93.08 144 | 94.15 148 | 80.22 168 | 91.41 45 | 94.91 74 | 76.87 89 | 97.93 88 | 90.28 40 | 96.90 49 | 97.24 56 |
jason: jason. |
VDD-MVS | | | 90.74 55 | 89.92 58 | 93.20 44 | 96.27 54 | 83.02 74 | 95.73 36 | 93.86 161 | 88.42 48 | 92.53 31 | 96.84 21 | 62.09 202 | 98.64 59 | 90.95 34 | 92.62 100 | 97.93 38 |
|
PVSNet_Blended | | | 90.73 56 | 90.32 53 | 91.98 80 | 96.12 56 | 81.25 106 | 92.55 159 | 96.83 35 | 82.04 151 | 89.10 64 | 92.56 133 | 81.04 56 | 98.85 51 | 86.72 71 | 95.91 63 | 95.84 93 |
|
API-MVS | | | 90.66 57 | 90.07 57 | 92.45 69 | 96.36 52 | 84.57 40 | 96.06 27 | 95.22 118 | 82.39 146 | 89.13 63 | 94.27 91 | 80.32 59 | 98.46 65 | 80.16 136 | 96.71 53 | 94.33 138 |
|
HQP_MVS | | | 90.60 58 | 90.19 55 | 91.82 85 | 94.70 91 | 82.73 82 | 95.85 33 | 96.22 61 | 90.81 12 | 86.91 84 | 94.86 76 | 74.23 126 | 98.12 78 | 88.15 52 | 89.99 110 | 94.63 123 |
|
liao | | | 90.42 59 | 89.49 61 | 93.20 44 | 97.27 33 | 84.46 45 | 92.63 155 | 95.51 100 | 71.01 233 | 91.20 47 | 96.21 45 | 82.92 41 | 99.05 31 | 80.56 130 | 98.07 33 | 96.10 82 |
|
MAR-MVS | | | 90.30 60 | 89.37 64 | 93.07 50 | 96.61 45 | 84.48 44 | 95.68 38 | 95.67 89 | 82.36 147 | 87.85 72 | 92.85 125 | 76.63 94 | 98.80 54 | 80.01 137 | 96.68 54 | 95.91 89 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 90.08 61 | 89.13 69 | 92.95 53 | 96.71 43 | 82.32 90 | 96.08 26 | 89.91 226 | 86.79 69 | 92.15 35 | 96.81 23 | 62.60 199 | 98.34 70 | 87.18 64 | 93.90 80 | 98.19 22 |
|
PAPR | | | 90.02 62 | 89.27 68 | 92.29 72 | 95.78 64 | 80.95 113 | 92.68 154 | 96.22 61 | 81.91 153 | 86.66 87 | 93.75 107 | 82.23 47 | 98.44 67 | 79.40 149 | 94.79 73 | 97.48 53 |
|
PVSNet_BlendedMVS | | | 89.98 63 | 89.70 59 | 90.82 112 | 96.12 56 | 81.25 106 | 93.92 116 | 96.83 35 | 83.49 118 | 89.10 64 | 92.26 140 | 81.04 56 | 98.85 51 | 86.72 71 | 87.86 141 | 92.35 195 |
|
PS-MVSNAJss | | | 89.97 64 | 89.62 60 | 91.02 108 | 91.90 150 | 80.85 116 | 95.26 51 | 95.98 74 | 86.26 76 | 86.21 95 | 94.29 89 | 79.70 66 | 97.65 98 | 88.87 47 | 88.10 138 | 94.57 128 |
|
XVG-OURS-SEG-HR | | | 89.95 65 | 89.45 62 | 91.47 93 | 94.00 115 | 81.21 109 | 91.87 171 | 96.06 71 | 85.78 79 | 88.55 69 | 95.73 58 | 74.67 122 | 97.27 127 | 88.71 48 | 89.64 117 | 95.91 89 |
|
UGNet | | | 89.95 65 | 88.95 74 | 92.95 53 | 94.51 98 | 83.31 66 | 95.70 37 | 95.23 116 | 89.37 30 | 87.58 76 | 93.94 97 | 64.00 195 | 98.78 55 | 83.92 92 | 96.31 61 | 96.74 70 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UniMVSNet_NR-MVSNet | | | 89.92 67 | 89.29 66 | 91.81 86 | 93.39 128 | 83.72 56 | 94.43 86 | 97.12 18 | 89.80 24 | 86.46 89 | 93.32 111 | 83.16 40 | 97.23 130 | 84.92 78 | 81.02 197 | 94.49 135 |
|
AdaColmap |  | | 89.89 68 | 89.07 70 | 92.37 70 | 97.41 27 | 83.03 73 | 94.42 87 | 95.92 78 | 82.81 140 | 86.34 94 | 94.65 81 | 73.89 132 | 99.02 37 | 80.69 127 | 95.51 67 | 95.05 111 |
|
UniMVSNet (Re) | | | 89.80 69 | 89.07 70 | 92.01 77 | 93.60 124 | 84.52 41 | 94.78 70 | 97.47 3 | 89.26 31 | 86.44 92 | 92.32 139 | 82.10 48 | 97.39 122 | 84.81 81 | 80.84 201 | 94.12 140 |
|
HQP-MVS | | | 89.80 69 | 89.28 67 | 91.34 96 | 94.17 106 | 81.56 97 | 94.39 90 | 96.04 72 | 88.81 38 | 85.43 120 | 93.97 96 | 73.83 133 | 97.96 86 | 87.11 66 | 89.77 115 | 94.50 133 |
|
VPA-MVSNet | | | 89.62 71 | 88.96 73 | 91.60 90 | 93.86 116 | 82.89 77 | 95.46 43 | 97.33 8 | 87.91 54 | 88.43 71 | 93.31 112 | 74.17 128 | 97.40 119 | 87.32 63 | 82.86 178 | 94.52 131 |
|
WTY-MVS | | | 89.60 72 | 88.92 75 | 91.67 88 | 95.47 69 | 81.15 110 | 92.38 162 | 94.78 138 | 83.11 126 | 89.06 66 | 94.32 87 | 78.67 74 | 96.61 159 | 81.57 119 | 90.89 106 | 97.24 56 |
|
Vis-MVSNet (Re-imp) | | | 89.59 73 | 89.44 63 | 90.03 138 | 95.74 65 | 75.85 184 | 95.61 41 | 90.80 210 | 87.66 61 | 87.83 73 | 95.40 64 | 76.79 91 | 96.46 164 | 78.37 155 | 96.73 52 | 97.80 44 |
|
VDDNet | | | 89.56 74 | 88.49 86 | 92.76 59 | 95.07 80 | 82.09 91 | 96.30 21 | 93.19 170 | 81.05 163 | 91.88 38 | 96.86 20 | 61.16 210 | 98.33 71 | 88.43 51 | 92.49 101 | 97.84 42 |
|
114514_t | | | 89.51 75 | 88.50 84 | 92.54 65 | 98.11 16 | 81.99 93 | 95.16 57 | 96.36 55 | 70.19 234 | 85.81 100 | 95.25 67 | 76.70 92 | 98.63 60 | 82.07 111 | 96.86 51 | 97.00 62 |
|
QAPM | | | 89.51 75 | 88.15 94 | 93.59 40 | 94.92 83 | 84.58 39 | 96.82 15 | 96.70 40 | 78.43 186 | 83.41 163 | 96.19 46 | 73.18 140 | 99.30 19 | 77.11 170 | 96.54 58 | 96.89 66 |
|
CLD-MVS | | | 89.47 77 | 88.90 76 | 91.18 100 | 94.22 105 | 82.07 92 | 92.13 168 | 96.09 68 | 87.90 55 | 85.37 124 | 92.45 135 | 74.38 124 | 97.56 101 | 87.15 65 | 90.43 108 | 93.93 148 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 89.45 78 | 88.90 76 | 91.12 101 | 94.47 99 | 81.49 100 | 95.30 47 | 96.14 65 | 86.73 70 | 85.45 117 | 95.16 69 | 69.89 160 | 98.10 80 | 87.70 57 | 89.23 124 | 93.77 160 |
|
CDS-MVSNet | | | 89.45 78 | 88.51 83 | 92.29 72 | 93.62 123 | 83.61 61 | 93.01 147 | 94.68 140 | 81.95 152 | 87.82 74 | 93.24 116 | 78.69 73 | 96.99 143 | 80.34 133 | 93.23 95 | 96.28 76 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ab-mvs | | | 89.41 80 | 88.35 88 | 92.60 62 | 95.15 79 | 82.65 86 | 92.20 166 | 95.60 94 | 83.97 108 | 88.55 69 | 93.70 109 | 74.16 129 | 98.21 76 | 82.46 108 | 89.37 120 | 96.94 64 |
|
XVG-OURS | | | 89.40 81 | 88.70 79 | 91.52 91 | 94.06 109 | 81.46 102 | 91.27 185 | 96.07 70 | 86.14 78 | 88.89 67 | 95.77 57 | 68.73 170 | 97.26 129 | 87.39 61 | 89.96 112 | 95.83 94 |
|
mvs_anonymous | | | 89.37 82 | 89.32 65 | 89.51 149 | 93.47 127 | 74.22 190 | 91.65 179 | 94.83 136 | 82.91 138 | 85.45 117 | 93.79 105 | 81.23 55 | 96.36 169 | 86.47 73 | 94.09 78 | 97.94 37 |
|
DU-MVS | | | 89.34 83 | 88.50 84 | 91.85 84 | 93.04 134 | 83.72 56 | 94.47 84 | 96.59 46 | 89.50 28 | 86.46 89 | 93.29 114 | 77.25 87 | 97.23 130 | 84.92 78 | 81.02 197 | 94.59 126 |
|
TAMVS | | | 89.21 84 | 88.29 91 | 91.96 81 | 93.71 122 | 82.62 87 | 93.30 136 | 94.19 147 | 82.22 148 | 87.78 75 | 93.94 97 | 78.83 71 | 96.95 147 | 77.70 163 | 92.98 97 | 96.32 75 |
|
ACMM | | 84.12 9 | 89.14 85 | 88.48 87 | 91.12 101 | 94.65 94 | 81.22 108 | 95.31 45 | 96.12 67 | 85.31 89 | 85.92 99 | 94.34 85 | 70.19 159 | 98.06 83 | 85.65 76 | 88.86 129 | 94.08 144 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EI-MVSNet | | | 89.10 86 | 88.86 78 | 89.80 145 | 91.84 152 | 78.30 167 | 93.70 127 | 95.01 123 | 85.73 81 | 87.15 80 | 95.28 65 | 79.87 64 | 97.21 132 | 83.81 94 | 87.36 144 | 93.88 151 |
|
CNLPA | | | 89.07 87 | 87.98 97 | 92.34 71 | 96.87 40 | 84.78 37 | 94.08 110 | 93.24 169 | 81.41 159 | 84.46 138 | 95.13 71 | 75.57 114 | 96.62 157 | 77.21 168 | 93.84 82 | 95.61 99 |
|
PLC |  | 84.53 7 | 89.06 88 | 88.03 96 | 92.15 75 | 97.27 33 | 82.69 85 | 94.29 98 | 95.44 104 | 79.71 174 | 84.01 150 | 94.18 92 | 76.68 93 | 98.75 56 | 77.28 167 | 93.41 89 | 95.02 112 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_djsdf | | | 89.03 89 | 88.64 82 | 90.21 126 | 90.74 203 | 79.28 154 | 95.96 29 | 95.90 80 | 84.66 98 | 85.33 126 | 92.94 124 | 74.02 131 | 97.30 123 | 89.64 43 | 88.53 132 | 94.05 145 |
|
HY-MVS | | 83.01 12 | 89.03 89 | 87.94 99 | 92.29 72 | 94.86 86 | 82.77 78 | 92.08 170 | 94.49 142 | 81.52 158 | 86.93 83 | 92.79 130 | 78.32 80 | 98.23 74 | 79.93 140 | 90.55 107 | 95.88 91 |
|
ACMP | | 84.23 8 | 89.01 91 | 88.35 88 | 90.99 110 | 94.73 88 | 81.27 105 | 95.07 61 | 95.89 82 | 86.48 73 | 83.67 157 | 94.30 88 | 69.33 166 | 97.99 85 | 87.10 68 | 88.55 131 | 93.72 164 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVS_Test | | | 88.97 92 | 88.97 72 | 88.96 156 | 93.01 137 | 73.25 201 | 91.49 181 | 94.42 143 | 82.72 143 | 85.36 125 | 93.75 107 | 80.41 58 | 96.26 173 | 86.28 74 | 93.30 93 | 97.38 54 |
|
HyFIR | | | 88.94 93 | 88.67 81 | 89.73 147 | 95.18 78 | 73.70 198 | 88.40 216 | 95.10 121 | 77.72 192 | 87.50 77 | 94.85 78 | 78.16 81 | 97.92 89 | 83.75 95 | 97.38 44 | 97.59 50 |
|
sss | | | 88.93 94 | 88.26 93 | 90.94 111 | 94.05 110 | 80.78 117 | 91.71 176 | 95.38 105 | 81.55 157 | 88.63 68 | 93.91 101 | 75.04 120 | 95.47 197 | 82.47 107 | 91.61 103 | 96.57 73 |
|
TranMVSNet+NR-MVSNet | | | 88.84 95 | 87.95 98 | 91.49 92 | 92.68 143 | 83.01 75 | 94.92 64 | 96.31 56 | 89.88 23 | 85.53 114 | 93.85 104 | 76.63 94 | 96.96 146 | 81.91 114 | 79.87 214 | 94.50 133 |
|
MVSTER | | | 88.84 95 | 88.29 91 | 90.51 117 | 92.95 139 | 80.44 122 | 93.73 124 | 95.01 123 | 84.66 98 | 87.15 80 | 93.12 120 | 72.79 144 | 97.21 132 | 87.86 55 | 87.36 144 | 93.87 152 |
|
OpenMVS |  | 83.78 11 | 88.74 97 | 87.29 108 | 93.08 48 | 92.70 142 | 85.39 31 | 96.57 19 | 96.43 52 | 78.74 184 | 80.85 186 | 96.07 49 | 69.64 163 | 99.01 38 | 78.01 161 | 96.65 55 | 94.83 120 |
|
BH-untuned | | | 88.60 98 | 88.13 95 | 90.01 140 | 95.24 77 | 78.50 163 | 93.29 137 | 94.15 148 | 84.75 96 | 84.46 138 | 93.40 110 | 75.76 112 | 97.40 119 | 77.59 164 | 94.52 75 | 94.12 140 |
|
NR-MVSNet | | | 88.58 99 | 87.47 104 | 91.93 83 | 93.04 134 | 84.16 50 | 94.77 71 | 96.25 59 | 89.05 34 | 80.04 194 | 93.29 114 | 79.02 70 | 97.05 142 | 81.71 118 | 80.05 209 | 94.59 126 |
|
diffmvs | | | 88.54 100 | 88.69 80 | 88.08 182 | 93.51 126 | 71.68 216 | 90.93 188 | 94.84 135 | 80.77 165 | 85.65 110 | 93.92 100 | 81.28 54 | 94.65 213 | 83.26 97 | 94.03 79 | 97.91 40 |
|
1112_ss | | | 88.42 101 | 87.33 107 | 91.72 87 | 94.92 83 | 80.98 112 | 92.97 149 | 94.54 141 | 78.16 190 | 83.82 154 | 93.88 102 | 78.78 72 | 97.91 90 | 79.45 147 | 89.41 119 | 96.26 77 |
|
WR-MVS | | | 88.38 102 | 87.67 101 | 90.52 116 | 93.30 129 | 80.18 123 | 93.26 139 | 95.96 76 | 88.57 45 | 85.47 116 | 92.81 129 | 76.12 98 | 96.91 149 | 81.24 120 | 82.29 183 | 94.47 136 |
|
BH-RMVSNet | | | 88.37 103 | 87.48 103 | 91.02 108 | 95.28 74 | 79.45 141 | 92.89 151 | 93.07 172 | 85.45 87 | 86.91 84 | 94.84 79 | 70.35 157 | 97.76 94 | 73.97 189 | 94.59 74 | 95.85 92 |
|
IterMVS-LS | | | 88.36 104 | 87.91 100 | 89.70 148 | 93.80 119 | 78.29 168 | 93.73 124 | 95.08 122 | 85.73 81 | 84.75 132 | 91.90 152 | 79.88 63 | 96.92 148 | 83.83 93 | 82.51 181 | 93.89 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
X-MVStestdata | | | 88.31 105 | 86.13 131 | 94.85 9 | 98.54 3 | 86.60 14 | 96.93 11 | 97.19 15 | 90.66 16 | 92.85 23 | 23.41 261 | 85.02 30 | 99.49 7 | 91.99 22 | 98.56 22 | 98.47 9 |
|
LCM-MVSNet-Re | | | 88.30 106 | 88.32 90 | 88.27 177 | 94.71 90 | 72.41 213 | 93.15 141 | 90.98 206 | 87.77 58 | 79.25 201 | 91.96 150 | 78.35 79 | 95.75 191 | 83.04 99 | 95.62 66 | 96.65 71 |
|
jajsoiax | | | 88.24 107 | 87.50 102 | 90.48 119 | 90.89 199 | 80.14 124 | 95.31 45 | 95.65 93 | 84.97 93 | 84.24 147 | 94.02 93 | 65.31 190 | 97.42 115 | 88.56 49 | 88.52 133 | 93.89 149 |
|
VPNet | | | 88.20 108 | 87.47 104 | 90.39 121 | 93.56 125 | 79.46 139 | 94.04 112 | 95.54 97 | 88.67 43 | 86.96 82 | 94.58 83 | 69.33 166 | 97.15 134 | 84.05 91 | 80.53 205 | 94.56 129 |
|
TAPA-MVS | | 84.62 6 | 88.16 109 | 87.01 118 | 91.62 89 | 96.64 44 | 80.65 118 | 94.39 90 | 96.21 64 | 76.38 197 | 86.19 96 | 95.44 63 | 79.75 65 | 98.08 82 | 62.75 231 | 95.29 71 | 96.13 81 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_tets | | | 88.06 110 | 87.28 109 | 90.38 123 | 90.94 198 | 79.88 129 | 95.22 53 | 95.66 91 | 85.10 91 | 84.21 148 | 93.94 97 | 63.53 197 | 97.40 119 | 88.50 50 | 88.40 137 | 93.87 152 |
|
v1neww | | | 87.98 111 | 87.25 111 | 90.16 128 | 91.38 169 | 79.41 143 | 94.37 94 | 95.28 109 | 84.48 101 | 85.77 102 | 91.53 161 | 76.12 98 | 97.45 107 | 84.45 86 | 81.89 186 | 93.61 169 |
|
v7new | | | 87.98 111 | 87.25 111 | 90.16 128 | 91.38 169 | 79.41 143 | 94.37 94 | 95.28 109 | 84.48 101 | 85.77 102 | 91.53 161 | 76.12 98 | 97.45 107 | 84.45 86 | 81.89 186 | 93.61 169 |
|
v6 | | | 87.98 111 | 87.25 111 | 90.16 128 | 91.36 172 | 79.39 148 | 94.37 94 | 95.27 112 | 84.48 101 | 85.78 101 | 91.51 163 | 76.15 97 | 97.46 105 | 84.46 85 | 81.88 188 | 93.62 168 |
|
F-COLMAP | | | 87.95 114 | 86.80 123 | 91.40 95 | 96.35 53 | 80.88 115 | 94.73 72 | 95.45 102 | 79.65 175 | 82.04 178 | 94.61 82 | 71.13 151 | 98.50 63 | 76.24 174 | 91.05 105 | 94.80 122 |
|
LS3D | | | 87.89 115 | 86.32 129 | 92.59 63 | 96.07 58 | 82.92 76 | 95.23 52 | 94.92 131 | 75.66 203 | 82.89 168 | 95.98 50 | 72.48 146 | 99.21 21 | 68.43 212 | 95.23 72 | 95.64 98 |
|
v1 | | | 87.85 116 | 87.10 114 | 90.11 136 | 91.21 185 | 79.24 156 | 94.09 108 | 95.24 114 | 84.44 104 | 85.70 107 | 91.31 167 | 75.96 107 | 97.45 107 | 84.18 89 | 81.73 191 | 93.64 166 |
|
divwei89l23v2f112 | | | 87.84 117 | 87.09 115 | 90.10 137 | 91.23 184 | 79.24 156 | 94.09 108 | 95.24 114 | 84.44 104 | 85.70 107 | 91.31 167 | 75.91 109 | 97.44 113 | 84.17 90 | 81.73 191 | 93.64 166 |
|
v2v482 | | | 87.84 117 | 87.06 116 | 90.17 127 | 90.99 194 | 79.23 158 | 94.00 114 | 95.13 120 | 84.87 94 | 85.53 114 | 92.07 147 | 74.45 123 | 97.45 107 | 84.71 83 | 81.75 190 | 93.85 155 |
|
WR-MVS_H | | | 87.80 119 | 87.37 106 | 89.10 155 | 93.23 130 | 78.12 170 | 95.61 41 | 97.30 11 | 87.90 55 | 83.72 155 | 92.01 149 | 79.65 68 | 96.01 181 | 76.36 171 | 80.54 204 | 93.16 177 |
|
v7 | | | 87.75 120 | 86.96 119 | 90.12 133 | 91.20 186 | 79.50 134 | 94.28 99 | 95.46 101 | 83.45 120 | 85.75 104 | 91.56 160 | 75.13 117 | 97.43 114 | 83.60 96 | 82.18 185 | 93.42 174 |
|
PCF-MVS | | 84.11 10 | 87.74 121 | 86.08 134 | 92.70 60 | 94.02 111 | 84.43 46 | 89.27 204 | 95.87 83 | 73.62 213 | 84.43 140 | 94.33 86 | 78.48 78 | 98.86 48 | 70.27 204 | 94.45 76 | 94.81 121 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
V42 | | | 87.68 122 | 86.86 121 | 90.15 131 | 90.58 205 | 80.14 124 | 94.24 101 | 95.28 109 | 83.66 112 | 85.67 109 | 91.33 165 | 74.73 121 | 97.41 118 | 84.43 88 | 81.83 189 | 92.89 183 |
|
XXY-MVS | | | 87.65 123 | 86.85 122 | 90.03 138 | 92.14 147 | 80.60 120 | 93.76 121 | 95.23 116 | 82.94 137 | 84.60 134 | 94.02 93 | 74.27 125 | 95.49 196 | 81.04 122 | 83.68 171 | 94.01 147 |
|
Test_1112_low_res | | | 87.65 123 | 86.51 127 | 91.08 104 | 94.94 82 | 79.28 154 | 91.77 172 | 94.30 146 | 76.04 202 | 83.51 161 | 92.37 137 | 77.86 85 | 97.73 97 | 78.69 154 | 89.13 126 | 96.22 78 |
|
CP-MVSNet | | | 87.63 125 | 87.26 110 | 88.74 160 | 93.12 132 | 76.59 179 | 95.29 49 | 96.58 47 | 88.43 47 | 83.49 162 | 92.98 123 | 75.28 116 | 95.83 187 | 78.97 151 | 81.15 195 | 93.79 156 |
|
BH-w/o | | | 87.57 126 | 87.05 117 | 89.12 154 | 94.90 85 | 77.90 173 | 92.41 161 | 93.51 166 | 82.89 139 | 83.70 156 | 91.34 164 | 75.75 113 | 97.07 141 | 75.49 177 | 93.49 86 | 92.39 193 |
|
liao1 | | | 87.51 127 | 86.57 126 | 90.34 124 | 92.42 145 | 79.74 132 | 92.63 155 | 95.35 108 | 78.35 187 | 80.14 192 | 91.62 157 | 74.05 130 | 97.15 134 | 81.05 121 | 93.53 85 | 94.12 140 |
|
v8 | | | 87.50 128 | 86.71 124 | 89.89 141 | 91.37 171 | 79.40 147 | 94.50 81 | 95.38 105 | 84.81 95 | 83.60 159 | 91.33 165 | 76.05 102 | 97.42 115 | 82.84 102 | 80.51 206 | 92.84 185 |
|
HC-MVS | | | 87.44 129 | 86.10 133 | 91.44 94 | 92.61 144 | 83.62 60 | 92.63 155 | 95.66 91 | 67.26 242 | 81.47 182 | 92.15 142 | 77.95 82 | 98.22 75 | 79.71 144 | 95.48 68 | 92.47 190 |
|
FMVSNet3 | | | 87.40 130 | 86.11 132 | 91.30 97 | 93.79 121 | 83.64 59 | 94.20 103 | 94.81 137 | 83.89 109 | 84.37 141 | 91.87 153 | 68.45 173 | 96.56 161 | 78.23 158 | 85.36 157 | 93.70 165 |
|
PS-CasMVS | | | 87.32 131 | 86.88 120 | 88.63 162 | 92.99 138 | 76.33 181 | 95.33 44 | 96.61 45 | 88.22 50 | 83.30 165 | 93.07 121 | 73.03 142 | 95.79 190 | 78.36 156 | 81.00 199 | 93.75 162 |
|
GBi-Net | | | 87.26 132 | 85.98 135 | 91.08 104 | 94.01 112 | 83.10 70 | 95.14 58 | 94.94 127 | 83.57 115 | 84.37 141 | 91.64 154 | 66.59 181 | 96.34 170 | 78.23 158 | 85.36 157 | 93.79 156 |
|
test1 | | | 87.26 132 | 85.98 135 | 91.08 104 | 94.01 112 | 83.10 70 | 95.14 58 | 94.94 127 | 83.57 115 | 84.37 141 | 91.64 154 | 66.59 181 | 96.34 170 | 78.23 158 | 85.36 157 | 93.79 156 |
|
v10 | | | 87.25 134 | 86.38 128 | 89.85 142 | 91.19 188 | 79.50 134 | 94.48 82 | 95.45 102 | 83.79 110 | 83.62 158 | 91.19 169 | 75.13 117 | 97.42 115 | 81.94 113 | 80.60 203 | 92.63 187 |
|
DP-MVS | | | 87.25 134 | 85.36 146 | 92.90 55 | 97.65 24 | 83.24 67 | 94.81 68 | 92.00 188 | 74.99 207 | 81.92 180 | 95.00 73 | 72.66 145 | 99.05 31 | 66.92 218 | 92.33 102 | 96.40 74 |
|
FMVSNet2 | | | 87.19 136 | 85.82 138 | 91.30 97 | 94.01 112 | 83.67 58 | 94.79 69 | 94.94 127 | 83.57 115 | 83.88 151 | 92.05 148 | 66.59 181 | 96.51 163 | 77.56 165 | 85.01 161 | 93.73 163 |
|
Baseline_NR-MVSNet | | | 87.07 137 | 86.63 125 | 88.40 175 | 91.44 163 | 77.87 175 | 94.23 102 | 92.57 178 | 84.12 107 | 85.74 106 | 92.08 145 | 77.25 87 | 96.04 178 | 82.29 110 | 79.94 212 | 91.30 211 |
|
PEN-MVS | | | 86.80 138 | 86.27 130 | 88.40 175 | 92.32 146 | 75.71 185 | 95.18 55 | 96.38 54 | 87.97 52 | 82.82 169 | 93.15 119 | 73.39 138 | 95.92 184 | 76.15 175 | 79.03 217 | 93.59 171 |
|
TR-MVS | | | 86.78 139 | 85.76 139 | 89.82 143 | 94.37 103 | 78.41 165 | 92.47 160 | 92.83 174 | 81.11 162 | 86.36 93 | 92.40 136 | 68.73 170 | 97.48 103 | 73.75 192 | 89.85 114 | 93.57 172 |
|
PatchMatch-RL | | | 86.77 140 | 85.54 140 | 90.47 120 | 95.88 61 | 82.71 84 | 90.54 190 | 92.31 181 | 79.82 173 | 84.32 144 | 91.57 159 | 68.77 169 | 96.39 167 | 73.16 194 | 93.48 88 | 92.32 197 |
|
PAPM | | | 86.68 141 | 85.39 145 | 90.53 115 | 93.05 133 | 79.33 153 | 89.79 197 | 94.77 139 | 78.82 182 | 81.95 179 | 93.24 116 | 76.81 90 | 97.30 123 | 66.94 216 | 93.16 96 | 94.95 116 |
|
GA-MVS | | | 86.61 142 | 85.27 147 | 90.66 114 | 91.33 177 | 78.71 162 | 90.40 191 | 93.81 164 | 85.34 88 | 85.12 127 | 89.57 188 | 61.25 207 | 97.11 137 | 80.99 124 | 89.59 118 | 96.15 79 |
|
v52 | | | 86.50 143 | 85.53 142 | 89.39 151 | 89.17 220 | 78.99 160 | 94.72 75 | 95.54 97 | 83.59 113 | 82.10 175 | 90.60 174 | 71.59 150 | 97.45 107 | 82.52 104 | 79.99 211 | 91.73 203 |
|
V4 | | | 86.50 143 | 85.54 140 | 89.39 151 | 89.13 221 | 78.99 160 | 94.73 72 | 95.54 97 | 83.59 113 | 82.10 175 | 90.61 173 | 71.60 149 | 97.45 107 | 82.52 104 | 80.01 210 | 91.74 202 |
|
EPNet_dtu | | | 86.49 145 | 85.94 137 | 88.14 181 | 90.24 210 | 72.82 205 | 94.11 106 | 92.20 184 | 86.66 72 | 79.42 200 | 92.36 138 | 73.52 136 | 95.81 189 | 71.26 200 | 93.66 83 | 95.80 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 86.43 146 | 84.98 150 | 90.80 113 | 92.10 149 | 80.92 114 | 90.24 192 | 95.91 79 | 73.10 216 | 83.57 160 | 88.39 197 | 65.15 191 | 97.46 105 | 84.90 80 | 91.43 104 | 94.03 146 |
|
LTVRE_ROB | | 82.13 13 | 86.26 147 | 84.90 153 | 90.34 124 | 94.44 102 | 81.50 99 | 92.31 164 | 94.89 132 | 83.03 132 | 79.63 198 | 92.67 131 | 69.69 162 | 97.79 92 | 71.20 201 | 86.26 151 | 91.72 204 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DTE-MVSNet | | | 86.11 148 | 85.48 143 | 87.98 185 | 91.65 159 | 74.92 188 | 94.93 63 | 95.75 86 | 87.36 64 | 82.26 172 | 93.04 122 | 72.85 143 | 95.82 188 | 74.04 188 | 77.46 220 | 93.20 175 |
|
PatchFormer-LS_test | | | 86.02 149 | 85.13 148 | 88.70 161 | 91.52 160 | 74.12 192 | 91.19 186 | 92.09 185 | 82.71 144 | 84.30 146 | 87.24 213 | 70.87 154 | 96.98 144 | 81.04 122 | 85.17 160 | 95.00 113 |
|
XVG-ACMP-BASELINE | | | 86.00 150 | 84.84 154 | 89.45 150 | 91.20 186 | 78.00 171 | 91.70 177 | 95.55 96 | 85.05 92 | 82.97 166 | 92.25 141 | 54.49 228 | 97.48 103 | 82.93 101 | 87.45 143 | 92.89 183 |
|
test-LLR | | | 85.87 151 | 85.41 144 | 87.25 197 | 90.95 196 | 71.67 217 | 89.55 198 | 89.88 227 | 83.41 121 | 84.54 136 | 87.95 203 | 67.25 176 | 95.11 210 | 81.82 115 | 93.37 91 | 94.97 114 |
|
FMVSNet1 | | | 85.85 152 | 84.11 161 | 91.08 104 | 92.81 141 | 83.10 70 | 95.14 58 | 94.94 127 | 81.64 155 | 82.68 170 | 91.64 154 | 59.01 216 | 96.34 170 | 75.37 178 | 83.78 168 | 93.79 156 |
|
PatchmatchNet |  | | 85.85 152 | 84.70 156 | 89.29 153 | 91.76 155 | 75.54 186 | 88.49 214 | 91.30 201 | 81.63 156 | 85.05 128 | 88.70 194 | 71.71 148 | 96.24 174 | 74.61 185 | 89.05 127 | 96.08 83 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CostFormer | | | 85.77 154 | 84.94 152 | 88.26 178 | 91.16 191 | 72.58 212 | 89.47 202 | 91.04 205 | 76.26 200 | 86.45 91 | 89.97 182 | 70.74 156 | 96.86 152 | 82.35 109 | 87.07 149 | 95.34 107 |
|
PMMVS | | | 85.71 155 | 84.96 151 | 87.95 186 | 88.90 223 | 77.09 176 | 88.68 212 | 90.06 222 | 72.32 223 | 86.47 88 | 90.76 171 | 72.15 147 | 94.40 215 | 81.78 117 | 93.49 86 | 92.36 194 |
|
PVSNet | | 78.82 18 | 85.55 156 | 84.65 157 | 88.23 180 | 94.72 89 | 71.93 214 | 87.12 223 | 92.75 176 | 78.80 183 | 84.95 130 | 90.53 175 | 64.43 194 | 96.71 155 | 74.74 183 | 93.86 81 | 96.06 85 |
|
ACMH | | 80.38 17 | 85.36 157 | 83.68 169 | 90.39 121 | 94.45 101 | 80.63 119 | 94.73 72 | 94.85 134 | 82.09 150 | 77.24 207 | 92.65 132 | 60.01 214 | 97.58 100 | 72.25 196 | 84.87 162 | 92.96 181 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 85.35 158 | 84.64 158 | 87.49 192 | 90.77 202 | 72.59 211 | 94.01 113 | 94.40 144 | 84.72 97 | 79.62 199 | 93.17 118 | 61.91 203 | 96.72 153 | 81.99 112 | 81.16 193 | 93.16 177 |
|
CR-MVSNet | | | 85.35 158 | 83.76 165 | 90.12 133 | 90.58 205 | 79.34 151 | 85.24 234 | 91.96 190 | 78.27 188 | 85.55 112 | 87.87 206 | 71.03 152 | 95.61 192 | 73.96 190 | 89.36 121 | 95.40 104 |
|
tpmrst | | | 85.35 158 | 84.99 149 | 86.43 209 | 90.88 200 | 67.88 234 | 88.71 211 | 91.43 199 | 80.13 169 | 86.08 98 | 88.80 192 | 73.05 141 | 96.02 180 | 82.48 106 | 83.40 175 | 95.40 104 |
|
PT_06_test | | | 85.24 161 | 84.34 159 | 87.92 187 | 90.78 201 | 74.02 193 | 91.74 174 | 94.96 126 | 83.48 119 | 82.90 167 | 87.36 210 | 73.23 139 | 96.61 159 | 75.30 179 | 79.34 216 | 93.14 179 |
|
IB-MVS | | 80.51 15 | 85.24 161 | 83.26 180 | 91.19 99 | 92.13 148 | 79.86 130 | 91.75 173 | 91.29 202 | 83.28 124 | 80.66 188 | 88.49 196 | 61.28 206 | 98.46 65 | 80.99 124 | 79.46 215 | 95.25 108 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
RPSCF | | | 85.07 163 | 84.27 160 | 87.48 193 | 92.91 140 | 70.62 226 | 91.69 178 | 92.46 179 | 76.20 201 | 82.67 171 | 95.22 68 | 63.94 196 | 97.29 126 | 77.51 166 | 85.80 155 | 94.53 130 |
|
Test4 | | | 85.05 164 | 83.81 164 | 88.77 157 | 91.43 165 | 73.75 196 | 90.68 189 | 90.98 206 | 80.66 166 | 83.84 152 | 89.59 187 | 62.44 200 | 97.11 137 | 78.84 152 | 85.81 153 | 95.46 101 |
|
ACMH+ | | 81.04 14 | 85.05 164 | 83.46 176 | 89.82 143 | 94.66 93 | 79.37 149 | 94.44 85 | 94.12 150 | 82.19 149 | 78.04 204 | 92.82 128 | 58.23 218 | 97.54 102 | 73.77 191 | 82.90 177 | 92.54 188 |
|
v18 | | | 84.97 166 | 83.76 165 | 88.60 165 | 91.36 172 | 79.41 143 | 93.82 119 | 94.04 151 | 83.00 135 | 76.61 208 | 86.60 216 | 76.19 96 | 95.43 198 | 80.39 132 | 71.79 231 | 90.96 215 |
|
v16 | | | 84.96 167 | 83.74 167 | 88.62 163 | 91.40 167 | 79.48 137 | 93.83 117 | 94.04 151 | 83.03 132 | 76.54 209 | 86.59 217 | 76.11 101 | 95.42 199 | 80.33 134 | 71.80 230 | 90.95 217 |
|
DWT-MVSNet_test | | | 84.95 168 | 83.68 169 | 88.77 157 | 91.43 165 | 73.75 196 | 91.74 174 | 90.98 206 | 80.66 166 | 83.84 152 | 87.36 210 | 62.44 200 | 97.11 137 | 78.84 152 | 85.81 153 | 95.46 101 |
|
v17 | | | 84.93 169 | 83.70 168 | 88.62 163 | 91.36 172 | 79.48 137 | 93.83 117 | 94.03 153 | 83.04 131 | 76.51 210 | 86.57 218 | 76.05 102 | 95.42 199 | 80.31 135 | 71.65 232 | 90.96 215 |
|
IterMVS | | | 84.88 170 | 83.98 163 | 87.60 189 | 91.44 163 | 76.03 183 | 90.18 194 | 92.41 180 | 83.24 125 | 81.06 185 | 90.42 176 | 66.60 180 | 94.28 216 | 79.46 146 | 80.98 200 | 92.48 189 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 171 | 83.09 181 | 90.14 132 | 93.80 119 | 80.05 126 | 89.18 207 | 93.09 171 | 78.89 180 | 78.19 202 | 91.91 151 | 65.86 189 | 97.27 127 | 68.47 211 | 88.45 135 | 93.11 180 |
|
v15 | | | 84.79 172 | 83.53 173 | 88.57 169 | 91.30 183 | 79.41 143 | 93.70 127 | 94.01 154 | 83.06 128 | 76.27 211 | 86.42 222 | 76.03 104 | 95.38 201 | 80.01 137 | 71.00 235 | 90.92 218 |
|
V14 | | | 84.79 172 | 83.52 174 | 88.57 169 | 91.32 179 | 79.43 142 | 93.72 126 | 94.01 154 | 83.06 128 | 76.22 212 | 86.43 219 | 76.01 105 | 95.37 202 | 79.96 139 | 70.99 236 | 90.91 219 |
|
V9 | | | 84.77 174 | 83.50 175 | 88.58 166 | 91.33 177 | 79.46 139 | 93.75 122 | 94.00 157 | 83.07 127 | 76.07 215 | 86.43 219 | 75.97 106 | 95.37 202 | 79.91 141 | 70.93 238 | 90.91 219 |
|
v12 | | | 84.74 175 | 83.46 176 | 88.58 166 | 91.32 179 | 79.50 134 | 93.75 122 | 94.01 154 | 83.06 128 | 75.98 217 | 86.41 223 | 75.82 111 | 95.36 204 | 79.87 142 | 70.89 239 | 90.89 221 |
|
tpm | | | 84.73 176 | 84.02 162 | 86.87 207 | 90.33 208 | 68.90 232 | 89.06 208 | 89.94 225 | 80.85 164 | 85.75 104 | 89.86 184 | 68.54 172 | 95.97 182 | 77.76 162 | 84.05 167 | 95.75 96 |
|
v13 | | | 84.72 177 | 83.44 178 | 88.58 166 | 91.31 182 | 79.52 133 | 93.77 120 | 94.00 157 | 83.03 132 | 75.85 218 | 86.38 224 | 75.84 110 | 95.35 205 | 79.83 143 | 70.95 237 | 90.87 222 |
|
CVMVSNet | | | 84.69 178 | 84.79 155 | 84.37 223 | 91.84 152 | 64.92 241 | 93.70 127 | 91.47 197 | 66.19 244 | 86.16 97 | 95.28 65 | 67.18 179 | 93.33 223 | 80.89 126 | 90.42 109 | 94.88 118 |
|
v11 | | | 84.67 179 | 83.41 179 | 88.44 174 | 91.32 179 | 79.13 159 | 93.69 130 | 93.99 159 | 82.81 140 | 76.20 213 | 86.24 226 | 75.48 115 | 95.35 205 | 79.53 145 | 71.48 234 | 90.85 223 |
|
test-mter | | | 84.54 180 | 83.64 171 | 87.25 197 | 90.95 196 | 71.67 217 | 89.55 198 | 89.88 227 | 79.17 177 | 84.54 136 | 87.95 203 | 55.56 225 | 95.11 210 | 81.82 115 | 93.37 91 | 94.97 114 |
|
TransMVSNet (Re) | | | 84.43 181 | 83.06 182 | 88.54 171 | 91.72 156 | 78.44 164 | 95.18 55 | 92.82 175 | 82.73 142 | 79.67 197 | 92.12 143 | 73.49 137 | 95.96 183 | 71.10 203 | 68.73 245 | 91.21 212 |
|
tpm2 | | | 84.08 182 | 82.94 183 | 87.48 193 | 91.39 168 | 71.27 219 | 89.23 206 | 90.37 215 | 71.95 226 | 84.64 133 | 89.33 189 | 67.30 175 | 96.55 162 | 75.17 181 | 87.09 148 | 94.63 123 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 183 | 82.04 190 | 89.74 146 | 95.28 74 | 79.75 131 | 94.25 100 | 92.28 182 | 75.17 205 | 78.02 205 | 93.77 106 | 58.60 217 | 97.84 91 | 65.06 225 | 85.92 152 | 91.63 205 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SixPastTwentyTwo | | | 83.91 184 | 82.90 184 | 86.92 204 | 90.99 194 | 70.67 225 | 93.48 133 | 91.99 189 | 85.54 85 | 77.62 206 | 92.11 144 | 60.59 212 | 96.87 151 | 76.05 176 | 77.75 218 | 93.20 175 |
|
EPMVS | | | 83.90 185 | 82.70 186 | 87.51 190 | 90.23 211 | 72.67 208 | 88.62 213 | 81.96 254 | 81.37 160 | 85.01 129 | 88.34 198 | 66.31 184 | 94.45 214 | 75.30 179 | 87.12 147 | 95.43 103 |
|
tpmp4_e23 | | | 83.87 186 | 82.33 187 | 88.48 172 | 91.46 162 | 72.82 205 | 89.82 196 | 91.57 194 | 73.02 218 | 81.86 181 | 89.05 190 | 66.20 185 | 96.97 145 | 71.57 199 | 86.39 150 | 95.66 97 |
|
TESTMET0.1,1 | | | 83.74 187 | 82.85 185 | 86.42 210 | 89.96 215 | 71.21 220 | 89.55 198 | 87.88 239 | 77.41 193 | 83.37 164 | 87.31 212 | 56.71 222 | 93.65 221 | 80.62 129 | 92.85 99 | 94.40 137 |
|
pm-mvs1 | | | 83.61 188 | 82.12 188 | 88.08 182 | 89.60 219 | 76.64 178 | 91.36 183 | 91.45 198 | 74.39 209 | 79.77 196 | 90.72 172 | 67.20 178 | 95.25 207 | 71.99 197 | 82.61 180 | 92.34 196 |
|
tpmvs | | | 83.35 189 | 82.07 189 | 87.20 201 | 91.07 193 | 71.00 223 | 88.31 217 | 91.70 193 | 78.91 179 | 80.49 190 | 87.18 214 | 69.30 168 | 97.08 140 | 68.12 214 | 83.56 173 | 93.51 173 |
|
RPMNet | | | 83.18 190 | 80.87 196 | 90.12 133 | 90.58 205 | 79.34 151 | 85.24 234 | 90.78 211 | 71.44 228 | 85.55 112 | 82.97 233 | 70.87 154 | 95.61 192 | 61.01 233 | 89.36 121 | 95.40 104 |
|
USDC | | | 82.76 191 | 81.26 193 | 87.26 196 | 91.17 189 | 74.55 189 | 89.27 204 | 93.39 168 | 78.26 189 | 75.30 220 | 92.08 145 | 54.43 229 | 96.63 156 | 71.64 198 | 85.79 156 | 90.61 225 |
|
Patchmtry | | | 82.71 192 | 80.93 195 | 88.06 184 | 90.05 214 | 76.37 180 | 84.74 236 | 91.96 190 | 72.28 224 | 81.32 183 | 87.87 206 | 71.03 152 | 95.50 195 | 68.97 209 | 80.15 208 | 92.32 197 |
|
PatchT | | | 82.68 193 | 81.27 192 | 86.89 206 | 90.09 213 | 70.94 224 | 84.06 241 | 90.15 219 | 74.91 208 | 85.63 111 | 83.57 231 | 69.37 165 | 94.87 212 | 65.19 223 | 88.50 134 | 94.84 119 |
|
MIMVSNet | | | 82.59 194 | 80.53 197 | 88.76 159 | 91.51 161 | 78.32 166 | 86.57 226 | 90.13 220 | 79.32 176 | 80.70 187 | 88.69 195 | 52.98 230 | 93.07 227 | 66.03 221 | 88.86 129 | 94.90 117 |
|
test0.0.03 1 | | | 82.41 195 | 81.69 191 | 84.59 221 | 88.23 228 | 72.89 204 | 90.24 192 | 87.83 240 | 83.41 121 | 79.86 195 | 89.78 185 | 67.25 176 | 88.99 239 | 65.18 224 | 83.42 174 | 91.90 201 |
|
EG-PatchMatch MVS | | | 82.37 196 | 80.34 198 | 88.46 173 | 90.27 209 | 79.35 150 | 92.80 153 | 94.33 145 | 77.14 194 | 73.26 228 | 90.18 179 | 47.47 238 | 96.72 153 | 70.25 205 | 87.32 146 | 89.30 230 |
|
tpm cat1 | | | 81.96 197 | 80.27 199 | 87.01 202 | 91.09 192 | 71.02 222 | 87.38 222 | 91.53 196 | 66.25 243 | 80.17 191 | 86.35 225 | 68.22 174 | 96.15 177 | 69.16 208 | 82.29 183 | 93.86 154 |
|
ADS-MVSNet2 | | | 81.66 198 | 79.71 204 | 87.50 191 | 91.35 175 | 74.19 191 | 83.33 245 | 88.48 236 | 72.90 219 | 82.24 173 | 85.77 227 | 64.98 192 | 93.20 225 | 64.57 226 | 83.74 169 | 95.12 109 |
|
K. test v3 | | | 81.59 199 | 80.15 202 | 85.91 213 | 89.89 217 | 69.42 231 | 92.57 158 | 87.71 241 | 85.56 84 | 73.44 227 | 89.71 186 | 55.58 224 | 95.52 194 | 77.17 169 | 69.76 242 | 92.78 186 |
|
ADS-MVSNet | | | 81.56 200 | 79.78 203 | 86.90 205 | 91.35 175 | 71.82 215 | 83.33 245 | 89.16 232 | 72.90 219 | 82.24 173 | 85.77 227 | 64.98 192 | 93.76 219 | 64.57 226 | 83.74 169 | 95.12 109 |
|
FMVSNet5 | | | 81.52 201 | 79.60 205 | 87.27 195 | 91.17 189 | 77.95 172 | 91.49 181 | 92.26 183 | 76.87 195 | 76.16 214 | 87.91 205 | 51.67 231 | 92.34 228 | 67.74 215 | 81.16 193 | 91.52 206 |
|
dp | | | 81.47 202 | 80.23 200 | 85.17 219 | 89.92 216 | 65.49 240 | 86.74 224 | 90.10 221 | 76.30 199 | 81.10 184 | 87.12 215 | 62.81 198 | 95.92 184 | 68.13 213 | 79.88 213 | 94.09 143 |
|
EU-MVSNet | | | 81.32 203 | 80.95 194 | 82.42 229 | 88.50 226 | 63.67 243 | 93.32 135 | 91.33 200 | 64.02 248 | 80.57 189 | 92.83 127 | 61.21 209 | 92.27 229 | 76.34 172 | 80.38 207 | 91.32 210 |
|
test_0402 | | | 81.30 204 | 79.17 207 | 87.67 188 | 93.19 131 | 78.17 169 | 92.98 148 | 91.71 192 | 75.25 204 | 76.02 216 | 90.31 177 | 59.23 215 | 96.37 168 | 50.22 245 | 83.63 172 | 88.47 238 |
|
JIA-IIPM | | | 81.04 205 | 78.98 210 | 87.25 197 | 88.64 224 | 73.48 200 | 81.75 249 | 89.61 231 | 73.19 215 | 82.05 177 | 73.71 248 | 66.07 188 | 95.87 186 | 71.18 202 | 84.60 164 | 92.41 192 |
|
testgi | | | 80.94 206 | 80.20 201 | 83.18 227 | 87.96 231 | 66.29 237 | 91.28 184 | 90.70 213 | 83.70 111 | 78.12 203 | 92.84 126 | 51.37 232 | 90.82 236 | 63.34 228 | 82.46 182 | 92.43 191 |
|
CMPMVS |  | 59.16 21 | 80.52 207 | 79.20 206 | 84.48 222 | 83.98 240 | 67.63 236 | 89.95 195 | 93.84 163 | 64.79 247 | 66.81 241 | 91.14 170 | 57.93 220 | 95.17 208 | 76.25 173 | 88.10 138 | 90.65 224 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LF4IMVS | | | 80.37 208 | 79.07 209 | 84.27 225 | 86.64 234 | 69.87 230 | 89.39 203 | 91.05 204 | 76.38 197 | 74.97 222 | 90.00 181 | 47.85 237 | 94.25 217 | 74.55 186 | 80.82 202 | 88.69 234 |
|
UnsupCasMVSNet_eth | | | 80.07 209 | 78.27 211 | 85.46 216 | 85.24 238 | 72.63 210 | 88.45 215 | 94.87 133 | 82.99 136 | 71.64 235 | 88.07 202 | 56.34 223 | 91.75 233 | 73.48 193 | 63.36 250 | 92.01 200 |
|
test20.03 | | | 79.95 210 | 79.08 208 | 82.55 228 | 85.79 237 | 67.74 235 | 91.09 187 | 91.08 203 | 81.23 161 | 74.48 225 | 89.96 183 | 61.63 204 | 90.15 237 | 60.08 236 | 76.38 222 | 89.76 227 |
|
TDRefinement | | | 79.81 211 | 77.34 213 | 87.22 200 | 79.24 249 | 75.48 187 | 93.12 142 | 92.03 187 | 76.45 196 | 75.01 221 | 91.58 158 | 49.19 235 | 96.44 165 | 70.22 207 | 69.18 243 | 89.75 228 |
|
TinyColmap | | | 79.76 212 | 77.69 212 | 85.97 212 | 91.71 157 | 73.12 202 | 89.55 198 | 90.36 216 | 75.03 206 | 72.03 233 | 90.19 178 | 46.22 240 | 96.19 176 | 63.11 229 | 81.03 196 | 88.59 235 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 213 | 77.03 217 | 86.93 203 | 87.00 233 | 76.23 182 | 92.33 163 | 90.74 212 | 68.93 237 | 74.52 224 | 88.23 200 | 49.58 234 | 96.62 157 | 57.64 239 | 84.29 166 | 87.94 240 |
|
MIMVSNet1 | | | 79.38 214 | 77.28 214 | 85.69 214 | 86.35 236 | 73.67 199 | 91.61 180 | 92.75 176 | 78.11 191 | 72.64 231 | 88.12 201 | 48.16 236 | 91.97 232 | 60.32 234 | 77.49 219 | 91.43 209 |
|
YYNet1 | | | 79.22 215 | 77.20 215 | 85.28 218 | 88.20 230 | 72.66 209 | 85.87 229 | 90.05 224 | 74.33 211 | 62.70 247 | 87.61 208 | 66.09 187 | 92.03 230 | 66.94 216 | 72.97 228 | 91.15 213 |
|
MDA-MVSNet_test_wron | | | 79.21 216 | 77.19 216 | 85.29 217 | 88.22 229 | 72.77 207 | 85.87 229 | 90.06 222 | 74.34 210 | 62.62 248 | 87.56 209 | 66.14 186 | 91.99 231 | 66.90 219 | 73.01 227 | 91.10 214 |
|
MDA-MVSNet-bldmvs | | | 78.85 217 | 76.31 218 | 86.46 208 | 89.76 218 | 73.88 195 | 88.79 210 | 90.42 214 | 79.16 178 | 59.18 249 | 88.33 199 | 60.20 213 | 94.04 218 | 62.00 232 | 68.96 244 | 91.48 208 |
|
PM-MVS | | | 78.11 218 | 76.12 220 | 84.09 226 | 83.54 242 | 70.08 228 | 88.97 209 | 85.27 247 | 79.93 171 | 74.73 223 | 86.43 219 | 34.70 248 | 93.48 222 | 79.43 148 | 72.06 229 | 88.72 233 |
|
PVSNet_0 | | 73.20 20 | 77.22 219 | 74.83 221 | 84.37 223 | 90.70 204 | 71.10 221 | 83.09 247 | 89.67 230 | 72.81 221 | 73.93 226 | 83.13 232 | 60.79 211 | 93.70 220 | 68.54 210 | 50.84 255 | 88.30 239 |
|
DSMNet-mixed | | | 76.94 220 | 76.29 219 | 78.89 231 | 83.10 243 | 56.11 253 | 87.78 219 | 79.77 257 | 60.65 251 | 75.64 219 | 88.71 193 | 61.56 205 | 88.34 241 | 60.07 237 | 89.29 123 | 92.21 199 |
|
UnsupCasMVSNet_bld | | | 76.23 221 | 73.27 223 | 85.09 220 | 83.79 241 | 72.92 203 | 85.65 233 | 93.47 167 | 71.52 227 | 68.84 238 | 79.08 243 | 49.77 233 | 93.21 224 | 66.81 220 | 60.52 252 | 89.13 231 |
|
LP | | | 75.51 222 | 72.15 226 | 85.61 215 | 87.86 232 | 73.93 194 | 80.20 251 | 88.43 237 | 67.39 239 | 70.05 236 | 80.56 240 | 58.18 219 | 93.18 226 | 46.28 251 | 70.36 241 | 89.71 229 |
|
test2356 | | | 74.50 223 | 73.27 223 | 78.20 232 | 80.81 246 | 59.84 245 | 83.76 244 | 88.33 238 | 71.43 229 | 72.37 232 | 81.84 236 | 45.60 241 | 86.26 247 | 50.97 243 | 84.32 165 | 88.50 236 |
|
testus | | | 74.41 224 | 73.35 222 | 77.59 236 | 82.49 245 | 57.08 249 | 86.02 227 | 90.21 218 | 72.28 224 | 72.89 230 | 84.32 230 | 37.08 246 | 86.96 245 | 52.24 242 | 82.65 179 | 88.73 232 |
|
MVS-HIRNet | | | 73.70 225 | 72.20 225 | 78.18 234 | 91.81 154 | 56.42 252 | 82.94 248 | 82.58 252 | 55.24 254 | 68.88 237 | 66.48 251 | 55.32 227 | 95.13 209 | 58.12 238 | 88.42 136 | 83.01 245 |
|
test1235678 | | | 72.22 226 | 70.31 228 | 77.93 235 | 78.04 250 | 58.04 248 | 85.76 231 | 89.80 229 | 70.15 235 | 63.43 245 | 80.20 241 | 42.24 243 | 87.24 244 | 48.68 247 | 74.50 225 | 88.50 236 |
|
new_pmnet | | | 72.15 227 | 70.13 229 | 78.20 232 | 82.95 244 | 65.68 238 | 83.91 242 | 82.40 253 | 62.94 250 | 64.47 244 | 79.82 242 | 42.85 242 | 86.26 247 | 57.41 240 | 74.44 226 | 82.65 246 |
|
pmmvs3 | | | 71.81 228 | 68.71 232 | 81.11 230 | 75.86 251 | 70.42 227 | 86.74 224 | 83.66 249 | 58.95 252 | 68.64 240 | 80.89 239 | 36.93 247 | 89.52 238 | 63.10 230 | 63.59 249 | 83.39 244 |
|
testpf | | | 71.41 229 | 72.11 227 | 69.30 246 | 84.53 239 | 59.79 246 | 62.74 261 | 83.14 250 | 71.11 231 | 68.83 239 | 81.57 238 | 46.70 239 | 84.83 252 | 74.51 187 | 75.86 224 | 63.30 254 |
|
HyFIR lowres test | | | 70.96 230 | 69.05 231 | 76.67 238 | 86.42 235 | 64.06 242 | 77.75 254 | 82.95 251 | 55.25 253 | 62.90 246 | 78.84 244 | 33.89 249 | 90.95 235 | 60.14 235 | 83.30 176 | 75.01 252 |
|
1111 | | | 70.54 231 | 69.71 230 | 73.04 241 | 79.30 247 | 44.83 261 | 84.23 239 | 88.96 233 | 67.33 240 | 65.42 242 | 82.28 234 | 41.11 244 | 88.11 242 | 47.12 249 | 71.60 233 | 86.19 242 |
|
N_pmnet | | | 68.89 232 | 68.44 233 | 70.23 244 | 89.07 222 | 28.79 268 | 88.06 218 | 19.50 265 | 69.47 236 | 71.86 234 | 84.93 229 | 61.24 208 | 91.75 233 | 54.70 241 | 77.15 221 | 90.15 226 |
|
LCM-MVSNet | | | 66.00 233 | 62.16 237 | 77.51 237 | 64.51 261 | 58.29 247 | 83.87 243 | 90.90 209 | 48.17 257 | 54.69 251 | 73.31 249 | 16.83 260 | 86.75 246 | 65.47 222 | 61.67 251 | 87.48 241 |
|
testmv | | | 65.49 234 | 62.66 235 | 73.96 240 | 68.78 256 | 53.14 256 | 84.70 237 | 88.56 235 | 65.94 245 | 52.35 252 | 74.65 247 | 25.02 253 | 85.14 250 | 43.54 253 | 60.40 253 | 83.60 243 |
|
test12356 | | | 64.99 235 | 63.78 234 | 68.61 248 | 72.69 253 | 39.14 264 | 78.46 252 | 87.61 242 | 64.91 246 | 55.77 250 | 77.48 245 | 28.10 250 | 85.59 249 | 44.69 252 | 64.35 248 | 81.12 248 |
|
FPMVS | | | 64.63 236 | 62.55 236 | 70.88 243 | 70.80 254 | 56.71 250 | 84.42 238 | 84.42 248 | 51.78 256 | 49.57 253 | 81.61 237 | 23.49 254 | 81.48 254 | 40.61 256 | 76.25 223 | 74.46 253 |
|
no-one | | | 61.56 237 | 56.58 239 | 76.49 239 | 67.80 259 | 62.76 244 | 78.13 253 | 86.11 243 | 63.16 249 | 43.24 256 | 64.70 253 | 26.12 252 | 88.95 240 | 50.84 244 | 29.15 258 | 77.77 250 |
|
PMMVS2 | | | 59.60 238 | 56.40 240 | 69.21 247 | 68.83 255 | 46.58 259 | 73.02 259 | 77.48 259 | 55.07 255 | 49.21 254 | 72.95 250 | 17.43 259 | 80.04 255 | 49.32 246 | 44.33 256 | 80.99 249 |
|
ANet_high | | | 58.88 239 | 54.22 242 | 72.86 242 | 56.50 265 | 56.67 251 | 80.75 250 | 86.00 244 | 73.09 217 | 37.39 258 | 64.63 254 | 22.17 255 | 79.49 257 | 43.51 254 | 23.96 262 | 82.43 247 |
|
Gipuma |  | | 57.99 240 | 54.91 241 | 67.24 249 | 88.51 225 | 65.59 239 | 52.21 263 | 90.33 217 | 43.58 260 | 42.84 257 | 51.18 257 | 20.29 257 | 85.07 251 | 34.77 258 | 70.45 240 | 51.05 259 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
.test1245 | | | 57.63 241 | 61.79 238 | 45.14 255 | 79.30 247 | 44.83 261 | 84.23 239 | 88.96 233 | 67.33 240 | 65.42 242 | 82.28 234 | 41.11 244 | 88.11 242 | 47.12 249 | 0.39 265 | 2.46 264 |
|
PMVS |  | 47.18 22 | 52.22 242 | 48.46 243 | 63.48 250 | 45.72 266 | 46.20 260 | 73.41 257 | 78.31 258 | 41.03 261 | 30.06 260 | 65.68 252 | 6.05 262 | 83.43 253 | 30.04 259 | 65.86 246 | 60.80 256 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuykxyi23d | | | 50.55 243 | 44.13 245 | 69.81 245 | 56.77 263 | 54.58 255 | 73.22 258 | 80.78 255 | 39.79 262 | 22.08 264 | 46.69 259 | 4.03 264 | 79.71 256 | 47.65 248 | 26.13 260 | 75.14 251 |
|
PNet_i23d | | | 50.48 244 | 47.18 244 | 60.36 251 | 68.59 257 | 44.56 263 | 72.75 260 | 72.61 260 | 43.92 259 | 33.91 259 | 60.19 255 | 6.16 261 | 73.52 258 | 38.50 257 | 28.04 259 | 63.01 255 |
|
MVE |  | 39.65 23 | 43.39 245 | 38.59 248 | 57.77 252 | 56.52 264 | 48.77 258 | 55.38 262 | 58.64 263 | 29.33 265 | 28.96 261 | 52.65 256 | 4.68 263 | 64.62 261 | 28.11 260 | 33.07 257 | 59.93 257 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 43.23 246 | 42.29 246 | 46.03 254 | 65.58 260 | 37.41 265 | 73.51 256 | 64.62 261 | 33.99 263 | 28.47 262 | 47.87 258 | 19.90 258 | 67.91 259 | 22.23 261 | 24.45 261 | 32.77 260 |
|
EMVS | | | 42.07 247 | 41.12 247 | 44.92 256 | 63.45 262 | 35.56 267 | 73.65 255 | 63.48 262 | 33.05 264 | 26.88 263 | 45.45 260 | 21.27 256 | 67.14 260 | 19.80 262 | 23.02 263 | 32.06 261 |
|
wuyk23d | | | 21.27 248 | 20.48 249 | 23.63 257 | 68.59 257 | 36.41 266 | 49.57 264 | 6.85 266 | 9.37 266 | 7.89 265 | 4.46 264 | 4.03 264 | 31.37 263 | 17.47 263 | 16.07 264 | 3.12 262 |
|
testmvs | | | 8.92 249 | 11.52 250 | 1.12 259 | 1.06 267 | 0.46 270 | 86.02 227 | 0.65 267 | 0.62 267 | 2.74 266 | 9.52 262 | 0.31 267 | 0.45 265 | 2.38 264 | 0.39 265 | 2.46 264 |
|
test123 | | | 8.76 250 | 11.22 251 | 1.39 258 | 0.85 268 | 0.97 269 | 85.76 231 | 0.35 268 | 0.54 268 | 2.45 267 | 8.14 263 | 0.60 266 | 0.48 264 | 2.16 265 | 0.17 267 | 2.71 263 |
|
ab-mvs-re | | | 7.82 251 | 10.43 252 | 0.00 260 | 0.00 269 | 0.00 271 | 0.00 265 | 0.00 269 | 0.00 269 | 0.00 268 | 93.88 102 | 0.00 268 | 0.00 266 | 0.00 266 | 0.00 268 | 0.00 266 |
|
Regformer | | | 0.00 252 | 0.00 253 | 0.00 260 | 0.00 269 | 0.00 271 | 0.00 265 | 0.00 269 | 0.00 269 | 0.00 268 | 0.00 265 | 0.00 268 | 0.00 266 | 0.00 266 | 0.00 268 | 0.00 266 |
|
test_prior4 | | | | | | | 85.96 25 | 94.11 106 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 104 | | 87.67 59 | 92.63 28 | 96.39 40 | 86.62 16 | | 91.50 30 | 98.67 13 | |
|
test_prior | | | | | 93.82 35 | 97.29 31 | 84.49 42 | | 96.88 32 | | | | | 98.87 46 | | | 98.11 28 |
|
旧先验2 | | | | | | | | 93.36 134 | | 71.25 230 | 94.37 8 | | | 97.13 136 | 86.74 69 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 143 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 93.10 47 | 97.30 30 | 84.35 48 | | 95.56 95 | 71.09 232 | 91.26 46 | 96.24 44 | 82.87 42 | 98.86 48 | 79.19 150 | 98.10 32 | 96.07 84 |
|
旧先验1 | | | | | | 96.79 42 | 81.81 95 | | 95.67 89 | | | 96.81 23 | 86.69 15 | | | 97.66 39 | 96.97 63 |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 138 | 96.26 58 | 73.95 212 | | | | 99.05 31 | 80.56 130 | | 96.59 72 |
|
原ACMM2 | | | | | | | | 92.94 150 | | | | | | | | | |
|
原ACMM1 | | | | | 92.01 77 | 97.34 28 | 81.05 111 | | 96.81 37 | 78.89 180 | 90.45 51 | 95.92 52 | 82.65 43 | 98.84 53 | 80.68 128 | 98.26 29 | 96.14 80 |
|
test222 | | | | | | 96.55 48 | 81.70 96 | 92.22 165 | 95.01 123 | 68.36 238 | 90.20 54 | 96.14 47 | 80.26 61 | | | 97.80 37 | 96.05 86 |
|
testdata2 | | | | | | | | | | | | | | 98.75 56 | 78.30 157 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 13 | | | | |
|
testdata | | | | | 90.49 118 | 96.40 50 | 77.89 174 | | 95.37 107 | 72.51 222 | 93.63 17 | 96.69 28 | 82.08 49 | 97.65 98 | 83.08 98 | 97.39 43 | 95.94 88 |
|
testdata1 | | | | | | | | 92.15 167 | | 87.94 53 | | | | | | | |
|
test12 | | | | | 94.34 25 | 97.13 36 | 86.15 23 | | 96.29 57 | | 91.04 49 | | 85.08 28 | 99.01 38 | | 98.13 31 | 97.86 41 |
|
plane_prior7 | | | | | | 94.70 91 | 82.74 81 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 97 | 82.75 79 | | | | | | 74.23 126 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 61 | | | | | 98.12 78 | 88.15 52 | 89.99 110 | 94.63 123 |
|
plane_prior4 | | | | | | | | | | | | 94.86 76 | | | | | |
|
plane_prior3 | | | | | | | 82.75 79 | | | 90.26 19 | 86.91 84 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 33 | | 90.81 12 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 95 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 82 | 95.21 54 | | 89.66 27 | | | | | | 89.88 113 | |
|
n2 | | | | | | | | | 0.00 269 | | | | | | | | |
|
nn | | | | | | | | | 0.00 269 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 245 | | | | | | | | |
|
lessismore_v0 | | | | | 86.04 211 | 88.46 227 | 68.78 233 | | 80.59 256 | | 73.01 229 | 90.11 180 | 55.39 226 | 96.43 166 | 75.06 182 | 65.06 247 | 92.90 182 |
|
LGP-MVS_train | | | | | 91.12 101 | 94.47 99 | 81.49 100 | | 96.14 65 | 86.73 70 | 85.45 117 | 95.16 69 | 69.89 160 | 98.10 80 | 87.70 57 | 89.23 124 | 93.77 160 |
|
test11 | | | | | | | | | 96.57 48 | | | | | | | | |
|
door | | | | | | | | | 85.33 246 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 97 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 106 | | 94.39 90 | | 88.81 38 | 85.43 120 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 106 | | 94.39 90 | | 88.81 38 | 85.43 120 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 66 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 120 | | | 97.96 86 | | | 94.51 132 |
|
HQP3-MVS | | | | | | | | | 96.04 72 | | | | | | | 89.77 115 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 133 | | | | |
|
NP-MVS | | | | | | 94.37 103 | 82.42 89 | | | | | 93.98 95 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 254 | 87.62 221 | | 73.32 214 | 84.59 135 | | 70.33 158 | | 74.65 184 | | 95.50 100 |
|
MDTV_nov1_ep13 | | | | 83.56 172 | | 91.69 158 | 69.93 229 | 87.75 220 | 91.54 195 | 78.60 185 | 84.86 131 | 88.90 191 | 69.54 164 | 96.03 179 | 70.25 205 | 88.93 128 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 142 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 140 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 62 | | | | |
|
ITE_SJBPF | | | | | 88.24 179 | 91.88 151 | 77.05 177 | | 92.92 173 | 85.54 85 | 80.13 193 | 93.30 113 | 57.29 221 | 96.20 175 | 72.46 195 | 84.71 163 | 91.49 207 |
|
DeepMVS_CX |  | | | | 56.31 253 | 74.23 252 | 51.81 257 | | 56.67 264 | 44.85 258 | 48.54 255 | 75.16 246 | 27.87 251 | 58.74 262 | 40.92 255 | 52.22 254 | 58.39 258 |
|