DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 28 | 97.78 51 | 86.00 47 | 98.29 1 | 97.49 5 | 90.75 17 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 6 | 99.02 12 | 98.86 10 |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 30 | 98.77 5 | 85.99 49 | 97.13 14 | 97.44 14 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 4 | 99.13 3 | 98.84 13 |
|
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 36 | 98.78 3 | 85.93 52 | 97.09 16 | 96.73 76 | 90.27 29 | 97.04 10 | 98.05 8 | 91.47 8 | 99.55 14 | 95.62 8 | 99.08 7 | 98.45 34 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 25 | 87.28 15 | 95.56 82 | 97.51 4 | 89.13 58 | 97.14 8 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 14 | 99.17 2 | 98.86 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 19 | 98.26 28 | 86.29 43 | 97.46 6 | 97.40 19 | 89.03 61 | 96.20 16 | 98.10 2 | 89.39 16 | 99.34 32 | 95.88 3 | 99.03 11 | 99.10 4 |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 17 | 98.49 17 | 86.52 33 | 96.91 25 | 97.47 10 | 91.73 8 | 96.10 17 | 96.69 53 | 89.90 12 | 99.30 38 | 94.70 12 | 98.04 63 | 99.13 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 36 | 88.51 7 | 95.29 92 | 96.96 50 | 92.09 4 | 95.32 22 | 97.08 36 | 89.49 15 | 99.33 35 | 95.10 11 | 98.85 19 | 98.66 19 |
|
SMA-MVS |  | | 95.20 8 | 95.07 10 | 95.59 5 | 98.14 35 | 88.48 8 | 96.26 45 | 97.28 29 | 85.90 137 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 13 | 99.19 1 | 98.71 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 23 | 96.99 72 | 86.33 39 | 97.33 7 | 97.30 27 | 91.38 10 | 95.39 21 | 97.46 17 | 88.98 19 | 99.40 28 | 94.12 18 | 98.89 18 | 98.82 15 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ |  | | 95.14 10 | 94.91 12 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 63 | 96.96 50 | 91.75 7 | 94.02 35 | 96.83 48 | 88.12 24 | 99.55 14 | 93.41 28 | 98.94 16 | 98.28 48 |
|
SF-MVS | | | 94.97 11 | 94.90 13 | 95.20 10 | 97.84 47 | 87.76 9 | 96.65 34 | 97.48 9 | 87.76 101 | 95.71 19 | 97.70 13 | 88.28 23 | 99.35 31 | 93.89 22 | 98.78 25 | 98.48 28 |
|
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 54 | 97.25 69 | 86.69 25 | 96.19 48 | 97.11 41 | 90.42 25 | 96.95 12 | 97.27 25 | 89.53 14 | 96.91 234 | 94.38 16 | 98.85 19 | 98.03 68 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.85 13 | 94.94 11 | 94.58 39 | 98.25 29 | 86.33 39 | 96.11 53 | 96.62 85 | 88.14 89 | 96.10 17 | 96.96 42 | 89.09 18 | 98.94 73 | 94.48 15 | 98.68 35 | 98.48 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
NCCC | | | 94.81 14 | 94.69 15 | 95.17 12 | 97.83 48 | 87.46 14 | 95.66 76 | 96.93 54 | 92.34 2 | 93.94 36 | 96.58 63 | 87.74 27 | 99.44 27 | 92.83 36 | 98.40 50 | 98.62 20 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 16 | 95.28 8 | 98.02 41 | 87.70 10 | 95.68 74 | 97.34 21 | 88.28 82 | 95.30 23 | 97.67 14 | 85.90 43 | 99.54 18 | 93.91 21 | 98.95 15 | 98.60 21 |
|
HFP-MVS | | | 94.52 16 | 94.40 19 | 94.86 22 | 98.61 10 | 86.81 22 | 96.94 20 | 97.34 21 | 88.63 71 | 93.65 40 | 97.21 29 | 86.10 41 | 99.49 24 | 92.35 47 | 98.77 27 | 98.30 45 |
|
ZNCC-MVS | | | 94.47 17 | 94.28 23 | 95.03 14 | 98.52 15 | 86.96 17 | 96.85 28 | 97.32 25 | 88.24 83 | 93.15 50 | 97.04 39 | 86.17 40 | 99.62 1 | 92.40 45 | 98.81 22 | 98.52 24 |
|
XVS | | | 94.45 18 | 94.32 20 | 94.85 23 | 98.54 13 | 86.60 31 | 96.93 22 | 97.19 33 | 90.66 22 | 92.85 57 | 97.16 34 | 85.02 54 | 99.49 24 | 91.99 60 | 98.56 46 | 98.47 31 |
|
MCST-MVS | | | 94.45 18 | 94.20 28 | 95.19 11 | 98.46 19 | 87.50 13 | 95.00 112 | 97.12 39 | 87.13 111 | 92.51 70 | 96.30 69 | 89.24 17 | 99.34 32 | 93.46 26 | 98.62 42 | 98.73 16 |
|
region2R | | | 94.43 20 | 94.27 25 | 94.92 18 | 98.65 8 | 86.67 27 | 96.92 24 | 97.23 32 | 88.60 73 | 93.58 42 | 97.27 25 | 85.22 50 | 99.54 18 | 92.21 50 | 98.74 29 | 98.56 23 |
|
ACMMPR | | | 94.43 20 | 94.28 23 | 94.91 19 | 98.63 9 | 86.69 25 | 96.94 20 | 97.32 25 | 88.63 71 | 93.53 45 | 97.26 27 | 85.04 53 | 99.54 18 | 92.35 47 | 98.78 25 | 98.50 25 |
|
MTAPA | | | 94.42 22 | 94.22 26 | 95.00 16 | 98.42 21 | 86.95 18 | 94.36 156 | 96.97 48 | 91.07 11 | 93.14 51 | 97.56 15 | 84.30 62 | 99.56 10 | 93.43 27 | 98.75 28 | 98.47 31 |
|
CP-MVS | | | 94.34 23 | 94.21 27 | 94.74 34 | 98.39 23 | 86.64 29 | 97.60 4 | 97.24 30 | 88.53 75 | 92.73 64 | 97.23 28 | 85.20 51 | 99.32 36 | 92.15 53 | 98.83 21 | 98.25 53 |
|
MP-MVS |  | | 94.25 24 | 94.07 32 | 94.77 32 | 98.47 18 | 86.31 41 | 96.71 31 | 96.98 47 | 89.04 60 | 91.98 79 | 97.19 31 | 85.43 48 | 99.56 10 | 92.06 59 | 98.79 23 | 98.44 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS |  | | 94.24 25 | 94.07 32 | 94.75 33 | 98.06 39 | 86.90 20 | 95.88 64 | 96.94 53 | 85.68 143 | 95.05 25 | 97.18 32 | 87.31 33 | 99.07 51 | 91.90 66 | 98.61 44 | 98.28 48 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS | | | 94.23 26 | 94.17 30 | 94.43 44 | 98.21 32 | 85.78 59 | 96.40 39 | 96.90 57 | 88.20 87 | 94.33 29 | 97.40 20 | 84.75 59 | 99.03 56 | 93.35 29 | 97.99 64 | 98.48 28 |
|
GST-MVS | | | 94.21 27 | 93.97 35 | 94.90 21 | 98.41 22 | 86.82 21 | 96.54 36 | 97.19 33 | 88.24 83 | 93.26 47 | 96.83 48 | 85.48 47 | 99.59 7 | 91.43 72 | 98.40 50 | 98.30 45 |
|
MP-MVS-pluss | | | 94.21 27 | 94.00 34 | 94.85 23 | 98.17 33 | 86.65 28 | 94.82 123 | 97.17 37 | 86.26 130 | 92.83 59 | 97.87 12 | 85.57 46 | 99.56 10 | 94.37 17 | 98.92 17 | 98.34 40 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DeepPCF-MVS | | 89.96 1 | 94.20 29 | 94.77 14 | 92.49 101 | 96.52 87 | 80.00 204 | 94.00 180 | 97.08 42 | 90.05 33 | 95.65 20 | 97.29 24 | 89.66 13 | 98.97 70 | 93.95 20 | 98.71 30 | 98.50 25 |
|
CS-MVS | | | 94.12 30 | 94.44 18 | 93.17 68 | 96.55 84 | 83.08 115 | 97.63 3 | 96.95 52 | 91.71 9 | 93.50 46 | 96.21 72 | 85.61 44 | 98.24 123 | 93.64 24 | 98.17 56 | 98.19 56 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 31 | 93.79 38 | 94.80 30 | 97.48 61 | 86.78 23 | 95.65 78 | 96.89 58 | 89.40 50 | 92.81 60 | 96.97 41 | 85.37 49 | 99.24 41 | 90.87 82 | 98.69 33 | 98.38 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS-test | | | 94.02 32 | 94.29 22 | 93.24 65 | 96.69 78 | 83.24 108 | 97.49 5 | 96.92 55 | 92.14 3 | 92.90 55 | 95.77 93 | 85.02 54 | 98.33 118 | 93.03 33 | 98.62 42 | 98.13 60 |
|
HPM-MVS |  | | 94.02 32 | 93.88 36 | 94.43 44 | 98.39 23 | 85.78 59 | 97.25 10 | 97.07 43 | 86.90 119 | 92.62 67 | 96.80 52 | 84.85 58 | 99.17 45 | 92.43 43 | 98.65 40 | 98.33 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 93.99 34 | 93.78 39 | 94.63 37 | 98.50 16 | 85.90 56 | 96.87 26 | 96.91 56 | 88.70 69 | 91.83 87 | 97.17 33 | 83.96 66 | 99.55 14 | 91.44 71 | 98.64 41 | 98.43 36 |
|
PGM-MVS | | | 93.96 35 | 93.72 41 | 94.68 35 | 98.43 20 | 86.22 44 | 95.30 90 | 97.78 1 | 87.45 107 | 93.26 47 | 97.33 23 | 84.62 60 | 99.51 22 | 90.75 84 | 98.57 45 | 98.32 44 |
|
PHI-MVS | | | 93.89 36 | 93.65 44 | 94.62 38 | 96.84 75 | 86.43 36 | 96.69 32 | 97.49 5 | 85.15 157 | 93.56 44 | 96.28 70 | 85.60 45 | 99.31 37 | 92.45 42 | 98.79 23 | 98.12 62 |
|
SR-MVS-dyc-post | | | 93.82 37 | 93.82 37 | 93.82 56 | 97.92 43 | 84.57 73 | 96.28 43 | 96.76 72 | 87.46 105 | 93.75 38 | 97.43 18 | 84.24 63 | 99.01 61 | 92.73 37 | 97.80 70 | 97.88 75 |
|
APD-MVS_3200maxsize | | | 93.78 38 | 93.77 40 | 93.80 58 | 97.92 43 | 84.19 85 | 96.30 41 | 96.87 60 | 86.96 115 | 93.92 37 | 97.47 16 | 83.88 67 | 98.96 72 | 92.71 40 | 97.87 68 | 98.26 52 |
|
patch_mono-2 | | | 93.74 39 | 94.32 20 | 92.01 117 | 97.54 57 | 78.37 242 | 93.40 203 | 97.19 33 | 88.02 91 | 94.99 26 | 97.21 29 | 88.35 21 | 98.44 109 | 94.07 19 | 98.09 61 | 99.23 1 |
|
MSLP-MVS++ | | | 93.72 40 | 94.08 31 | 92.65 93 | 97.31 65 | 83.43 103 | 95.79 68 | 97.33 23 | 90.03 34 | 93.58 42 | 96.96 42 | 84.87 57 | 97.76 161 | 92.19 52 | 98.66 38 | 96.76 119 |
|
TSAR-MVS + GP. | | | 93.66 41 | 93.41 45 | 94.41 46 | 96.59 82 | 86.78 23 | 94.40 149 | 93.93 234 | 89.77 42 | 94.21 30 | 95.59 100 | 87.35 32 | 98.61 95 | 92.72 39 | 96.15 98 | 97.83 79 |
|
CANet | | | 93.54 42 | 93.20 49 | 94.55 40 | 95.65 117 | 85.73 61 | 94.94 115 | 96.69 81 | 91.89 6 | 90.69 103 | 95.88 87 | 81.99 90 | 99.54 18 | 93.14 32 | 97.95 66 | 98.39 37 |
|
dcpmvs_2 | | | 93.49 43 | 94.19 29 | 91.38 151 | 97.69 54 | 76.78 274 | 94.25 159 | 96.29 101 | 88.33 79 | 94.46 27 | 96.88 45 | 88.07 25 | 98.64 91 | 93.62 25 | 98.09 61 | 98.73 16 |
|
MVS_111021_HR | | | 93.45 44 | 93.31 46 | 93.84 55 | 96.99 72 | 84.84 68 | 93.24 215 | 97.24 30 | 88.76 68 | 91.60 92 | 95.85 88 | 86.07 42 | 98.66 89 | 91.91 64 | 98.16 57 | 98.03 68 |
|
train_agg | | | 93.44 45 | 93.08 50 | 94.52 41 | 97.53 58 | 86.49 34 | 94.07 172 | 96.78 69 | 81.86 227 | 92.77 61 | 96.20 73 | 87.63 29 | 99.12 49 | 92.14 54 | 98.69 33 | 97.94 71 |
|
DROMVSNet | | | 93.44 45 | 93.71 42 | 92.63 94 | 95.21 131 | 82.43 136 | 97.27 9 | 96.71 79 | 90.57 24 | 92.88 56 | 95.80 91 | 83.16 71 | 98.16 129 | 93.68 23 | 98.14 58 | 97.31 96 |
|
DELS-MVS | | | 93.43 47 | 93.25 47 | 93.97 51 | 95.42 124 | 85.04 67 | 93.06 222 | 97.13 38 | 90.74 19 | 91.84 85 | 95.09 116 | 86.32 39 | 99.21 43 | 91.22 73 | 98.45 48 | 97.65 84 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 93.40 48 | 93.22 48 | 93.94 53 | 98.36 25 | 84.83 69 | 97.15 13 | 96.80 68 | 85.77 140 | 92.47 71 | 97.13 35 | 82.38 79 | 99.07 51 | 90.51 89 | 98.40 50 | 97.92 74 |
|
DeepC-MVS | | 88.79 3 | 93.31 49 | 92.99 52 | 94.26 49 | 96.07 102 | 85.83 57 | 94.89 118 | 96.99 46 | 89.02 63 | 89.56 117 | 97.37 22 | 82.51 78 | 99.38 29 | 92.20 51 | 98.30 53 | 97.57 89 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
canonicalmvs | | | 93.27 50 | 92.75 56 | 94.85 23 | 95.70 116 | 87.66 11 | 96.33 40 | 96.41 95 | 90.00 35 | 94.09 33 | 94.60 137 | 82.33 81 | 98.62 94 | 92.40 45 | 92.86 158 | 98.27 50 |
|
ACMMP |  | | 93.24 51 | 92.88 54 | 94.30 48 | 98.09 38 | 85.33 65 | 96.86 27 | 97.45 13 | 88.33 79 | 90.15 112 | 97.03 40 | 81.44 93 | 99.51 22 | 90.85 83 | 95.74 101 | 98.04 67 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 93.23 52 | 93.05 51 | 93.76 59 | 98.04 40 | 84.07 87 | 96.22 47 | 97.37 20 | 84.15 173 | 90.05 113 | 95.66 97 | 87.77 26 | 99.15 48 | 89.91 92 | 98.27 54 | 98.07 64 |
|
alignmvs | | | 93.08 53 | 92.50 60 | 94.81 29 | 95.62 119 | 87.61 12 | 95.99 59 | 96.07 119 | 89.77 42 | 94.12 32 | 94.87 122 | 80.56 99 | 98.66 89 | 92.42 44 | 93.10 154 | 98.15 59 |
|
EI-MVSNet-Vis-set | | | 93.01 54 | 92.92 53 | 93.29 63 | 95.01 138 | 83.51 102 | 94.48 141 | 95.77 140 | 90.87 13 | 92.52 69 | 96.67 55 | 84.50 61 | 99.00 65 | 91.99 60 | 94.44 129 | 97.36 95 |
|
casdiffmvs_mvg |  | | 92.96 55 | 92.83 55 | 93.35 62 | 94.59 161 | 83.40 105 | 95.00 112 | 96.34 99 | 90.30 28 | 92.05 77 | 96.05 81 | 83.43 69 | 98.15 130 | 92.07 56 | 95.67 102 | 98.49 27 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 92.83 56 | 92.54 59 | 93.68 60 | 96.10 100 | 84.71 71 | 95.66 76 | 96.39 96 | 91.92 5 | 93.22 49 | 96.49 65 | 83.16 71 | 98.87 77 | 84.47 158 | 95.47 107 | 97.45 94 |
|
CDPH-MVS | | | 92.83 56 | 92.30 62 | 94.44 42 | 97.79 49 | 86.11 46 | 94.06 174 | 96.66 82 | 80.09 254 | 92.77 61 | 96.63 60 | 86.62 36 | 99.04 55 | 87.40 120 | 98.66 38 | 98.17 58 |
|
ETV-MVS | | | 92.74 58 | 92.66 57 | 92.97 78 | 95.20 132 | 84.04 89 | 95.07 108 | 96.51 91 | 90.73 20 | 92.96 54 | 91.19 256 | 84.06 64 | 98.34 116 | 91.72 68 | 96.54 92 | 96.54 128 |
|
EI-MVSNet-UG-set | | | 92.74 58 | 92.62 58 | 93.12 70 | 94.86 149 | 83.20 110 | 94.40 149 | 95.74 143 | 90.71 21 | 92.05 77 | 96.60 62 | 84.00 65 | 98.99 67 | 91.55 69 | 93.63 139 | 97.17 103 |
|
DPM-MVS | | | 92.58 60 | 91.74 68 | 95.08 13 | 96.19 95 | 89.31 5 | 92.66 232 | 96.56 90 | 83.44 191 | 91.68 91 | 95.04 117 | 86.60 38 | 98.99 67 | 85.60 144 | 97.92 67 | 96.93 115 |
|
casdiffmvs |  | | 92.51 61 | 92.43 61 | 92.74 88 | 94.41 173 | 81.98 146 | 94.54 139 | 96.23 108 | 89.57 46 | 91.96 81 | 96.17 77 | 82.58 77 | 98.01 148 | 90.95 80 | 95.45 109 | 98.23 54 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_111021_LR | | | 92.47 62 | 92.29 63 | 92.98 77 | 95.99 106 | 84.43 82 | 93.08 220 | 96.09 117 | 88.20 87 | 91.12 99 | 95.72 96 | 81.33 95 | 97.76 161 | 91.74 67 | 97.37 77 | 96.75 120 |
|
3Dnovator+ | | 87.14 4 | 92.42 63 | 91.37 71 | 95.55 6 | 95.63 118 | 88.73 6 | 97.07 18 | 96.77 71 | 90.84 14 | 84.02 241 | 96.62 61 | 75.95 150 | 99.34 32 | 87.77 114 | 97.68 73 | 98.59 22 |
|
baseline | | | 92.39 64 | 92.29 63 | 92.69 92 | 94.46 170 | 81.77 151 | 94.14 165 | 96.27 103 | 89.22 54 | 91.88 83 | 96.00 82 | 82.35 80 | 97.99 150 | 91.05 75 | 95.27 114 | 98.30 45 |
|
VNet | | | 92.24 65 | 91.91 66 | 93.24 65 | 96.59 82 | 83.43 103 | 94.84 122 | 96.44 93 | 89.19 56 | 94.08 34 | 95.90 86 | 77.85 134 | 98.17 128 | 88.90 102 | 93.38 148 | 98.13 60 |
|
CPTT-MVS | | | 91.99 66 | 91.80 67 | 92.55 98 | 98.24 31 | 81.98 146 | 96.76 30 | 96.49 92 | 81.89 226 | 90.24 108 | 96.44 67 | 78.59 123 | 98.61 95 | 89.68 93 | 97.85 69 | 97.06 107 |
|
EIA-MVS | | | 91.95 67 | 91.94 65 | 91.98 121 | 95.16 133 | 80.01 203 | 95.36 85 | 96.73 76 | 88.44 76 | 89.34 121 | 92.16 222 | 83.82 68 | 98.45 108 | 89.35 96 | 97.06 80 | 97.48 92 |
|
DP-MVS Recon | | | 91.95 67 | 91.28 73 | 93.96 52 | 98.33 27 | 85.92 54 | 94.66 133 | 96.66 82 | 82.69 208 | 90.03 114 | 95.82 90 | 82.30 82 | 99.03 56 | 84.57 156 | 96.48 95 | 96.91 116 |
|
EPNet | | | 91.79 69 | 91.02 79 | 94.10 50 | 90.10 310 | 85.25 66 | 96.03 58 | 92.05 281 | 92.83 1 | 87.39 156 | 95.78 92 | 79.39 114 | 99.01 61 | 88.13 110 | 97.48 75 | 98.05 66 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 91.77 70 | 91.70 69 | 92.00 120 | 97.08 71 | 80.03 202 | 93.60 197 | 95.18 181 | 87.85 99 | 90.89 101 | 96.47 66 | 82.06 88 | 98.36 113 | 85.07 148 | 97.04 81 | 97.62 85 |
|
Vis-MVSNet |  | | 91.75 71 | 91.23 74 | 93.29 63 | 95.32 126 | 83.78 94 | 96.14 51 | 95.98 124 | 89.89 36 | 90.45 105 | 96.58 63 | 75.09 162 | 98.31 121 | 84.75 154 | 96.90 84 | 97.78 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 86.66 5 | 91.73 72 | 90.82 83 | 94.44 42 | 94.59 161 | 86.37 38 | 97.18 12 | 97.02 45 | 89.20 55 | 84.31 237 | 96.66 56 | 73.74 186 | 99.17 45 | 86.74 130 | 97.96 65 | 97.79 81 |
|
EPP-MVSNet | | | 91.70 73 | 91.56 70 | 92.13 116 | 95.88 109 | 80.50 187 | 97.33 7 | 95.25 177 | 86.15 133 | 89.76 116 | 95.60 99 | 83.42 70 | 98.32 120 | 87.37 122 | 93.25 151 | 97.56 90 |
|
MVSFormer | | | 91.68 74 | 91.30 72 | 92.80 84 | 93.86 194 | 83.88 92 | 95.96 61 | 95.90 131 | 84.66 168 | 91.76 88 | 94.91 120 | 77.92 131 | 97.30 205 | 89.64 94 | 97.11 78 | 97.24 99 |
|
Effi-MVS+ | | | 91.59 75 | 91.11 76 | 93.01 76 | 94.35 177 | 83.39 106 | 94.60 135 | 95.10 185 | 87.10 112 | 90.57 104 | 93.10 194 | 81.43 94 | 98.07 144 | 89.29 98 | 94.48 127 | 97.59 88 |
|
IS-MVSNet | | | 91.43 76 | 91.09 78 | 92.46 102 | 95.87 111 | 81.38 163 | 96.95 19 | 93.69 245 | 89.72 44 | 89.50 119 | 95.98 83 | 78.57 124 | 97.77 160 | 83.02 176 | 96.50 94 | 98.22 55 |
|
PVSNet_Blended_VisFu | | | 91.38 77 | 90.91 81 | 92.80 84 | 96.39 90 | 83.17 111 | 94.87 120 | 96.66 82 | 83.29 195 | 89.27 122 | 94.46 141 | 80.29 101 | 99.17 45 | 87.57 118 | 95.37 110 | 96.05 146 |
|
diffmvs |  | | 91.37 78 | 91.23 74 | 91.77 136 | 93.09 216 | 80.27 190 | 92.36 241 | 95.52 160 | 87.03 114 | 91.40 96 | 94.93 119 | 80.08 103 | 97.44 189 | 92.13 55 | 94.56 124 | 97.61 86 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_Test | | | 91.31 79 | 91.11 76 | 91.93 125 | 94.37 174 | 80.14 195 | 93.46 202 | 95.80 138 | 86.46 126 | 91.35 97 | 93.77 173 | 82.21 84 | 98.09 141 | 87.57 118 | 94.95 116 | 97.55 91 |
|
OMC-MVS | | | 91.23 80 | 90.62 85 | 93.08 72 | 96.27 93 | 84.07 87 | 93.52 199 | 95.93 127 | 86.95 116 | 89.51 118 | 96.13 79 | 78.50 125 | 98.35 115 | 85.84 142 | 92.90 157 | 96.83 118 |
|
PAPM_NR | | | 91.22 81 | 90.78 84 | 92.52 100 | 97.60 56 | 81.46 160 | 94.37 155 | 96.24 107 | 86.39 128 | 87.41 153 | 94.80 128 | 82.06 88 | 98.48 102 | 82.80 182 | 95.37 110 | 97.61 86 |
|
PS-MVSNAJ | | | 91.18 82 | 90.92 80 | 91.96 123 | 95.26 129 | 82.60 135 | 92.09 252 | 95.70 145 | 86.27 129 | 91.84 85 | 92.46 212 | 79.70 109 | 98.99 67 | 89.08 100 | 95.86 100 | 94.29 216 |
|
xiu_mvs_v2_base | | | 91.13 83 | 90.89 82 | 91.86 130 | 94.97 141 | 82.42 137 | 92.24 246 | 95.64 152 | 86.11 136 | 91.74 90 | 93.14 192 | 79.67 112 | 98.89 76 | 89.06 101 | 95.46 108 | 94.28 217 |
|
nrg030 | | | 91.08 84 | 90.39 86 | 93.17 68 | 93.07 217 | 86.91 19 | 96.41 37 | 96.26 104 | 88.30 81 | 88.37 136 | 94.85 125 | 82.19 85 | 97.64 172 | 91.09 74 | 82.95 269 | 94.96 180 |
|
lupinMVS | | | 90.92 85 | 90.21 89 | 93.03 75 | 93.86 194 | 83.88 92 | 92.81 229 | 93.86 238 | 79.84 257 | 91.76 88 | 94.29 147 | 77.92 131 | 98.04 146 | 90.48 90 | 97.11 78 | 97.17 103 |
|
h-mvs33 | | | 90.80 86 | 90.15 92 | 92.75 87 | 96.01 104 | 82.66 132 | 95.43 84 | 95.53 159 | 89.80 38 | 93.08 52 | 95.64 98 | 75.77 151 | 99.00 65 | 92.07 56 | 78.05 324 | 96.60 124 |
|
jason | | | 90.80 86 | 90.10 93 | 92.90 81 | 93.04 219 | 83.53 101 | 93.08 220 | 94.15 227 | 80.22 251 | 91.41 95 | 94.91 120 | 76.87 138 | 97.93 155 | 90.28 91 | 96.90 84 | 97.24 99 |
jason: jason. |
VDD-MVS | | | 90.74 88 | 89.92 100 | 93.20 67 | 96.27 93 | 83.02 117 | 95.73 71 | 93.86 238 | 88.42 78 | 92.53 68 | 96.84 47 | 62.09 297 | 98.64 91 | 90.95 80 | 92.62 161 | 97.93 73 |
|
PVSNet_Blended | | | 90.73 89 | 90.32 88 | 91.98 121 | 96.12 97 | 81.25 165 | 92.55 236 | 96.83 64 | 82.04 220 | 89.10 124 | 92.56 210 | 81.04 97 | 98.85 81 | 86.72 132 | 95.91 99 | 95.84 153 |
|
test_yl | | | 90.69 90 | 90.02 98 | 92.71 89 | 95.72 114 | 82.41 139 | 94.11 167 | 95.12 183 | 85.63 145 | 91.49 93 | 94.70 131 | 74.75 166 | 98.42 111 | 86.13 137 | 92.53 162 | 97.31 96 |
|
DCV-MVSNet | | | 90.69 90 | 90.02 98 | 92.71 89 | 95.72 114 | 82.41 139 | 94.11 167 | 95.12 183 | 85.63 145 | 91.49 93 | 94.70 131 | 74.75 166 | 98.42 111 | 86.13 137 | 92.53 162 | 97.31 96 |
|
API-MVS | | | 90.66 92 | 90.07 94 | 92.45 103 | 96.36 91 | 84.57 73 | 96.06 57 | 95.22 180 | 82.39 211 | 89.13 123 | 94.27 150 | 80.32 100 | 98.46 105 | 80.16 229 | 96.71 89 | 94.33 213 |
|
xiu_mvs_v1_base_debu | | | 90.64 93 | 90.05 95 | 92.40 104 | 93.97 191 | 84.46 79 | 93.32 205 | 95.46 162 | 85.17 154 | 92.25 72 | 94.03 155 | 70.59 221 | 98.57 98 | 90.97 77 | 94.67 119 | 94.18 218 |
|
xiu_mvs_v1_base | | | 90.64 93 | 90.05 95 | 92.40 104 | 93.97 191 | 84.46 79 | 93.32 205 | 95.46 162 | 85.17 154 | 92.25 72 | 94.03 155 | 70.59 221 | 98.57 98 | 90.97 77 | 94.67 119 | 94.18 218 |
|
xiu_mvs_v1_base_debi | | | 90.64 93 | 90.05 95 | 92.40 104 | 93.97 191 | 84.46 79 | 93.32 205 | 95.46 162 | 85.17 154 | 92.25 72 | 94.03 155 | 70.59 221 | 98.57 98 | 90.97 77 | 94.67 119 | 94.18 218 |
|
HQP_MVS | | | 90.60 96 | 90.19 90 | 91.82 133 | 94.70 157 | 82.73 128 | 95.85 65 | 96.22 109 | 90.81 15 | 86.91 165 | 94.86 123 | 74.23 174 | 98.12 131 | 88.15 108 | 89.99 185 | 94.63 192 |
|
FIs | | | 90.51 97 | 90.35 87 | 90.99 172 | 93.99 190 | 80.98 173 | 95.73 71 | 97.54 3 | 89.15 57 | 86.72 170 | 94.68 133 | 81.83 92 | 97.24 213 | 85.18 147 | 88.31 219 | 94.76 190 |
|
MAR-MVS | | | 90.30 98 | 89.37 109 | 93.07 74 | 96.61 81 | 84.48 78 | 95.68 74 | 95.67 147 | 82.36 213 | 87.85 144 | 92.85 199 | 76.63 144 | 98.80 85 | 80.01 230 | 96.68 90 | 95.91 149 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FC-MVSNet-test | | | 90.27 99 | 90.18 91 | 90.53 183 | 93.71 200 | 79.85 209 | 95.77 69 | 97.59 2 | 89.31 52 | 86.27 179 | 94.67 134 | 81.93 91 | 97.01 228 | 84.26 160 | 88.09 223 | 94.71 191 |
|
CANet_DTU | | | 90.26 100 | 89.41 108 | 92.81 83 | 93.46 208 | 83.01 118 | 93.48 200 | 94.47 214 | 89.43 49 | 87.76 148 | 94.23 151 | 70.54 225 | 99.03 56 | 84.97 149 | 96.39 96 | 96.38 131 |
|
OPM-MVS | | | 90.12 101 | 89.56 103 | 91.82 133 | 93.14 214 | 83.90 91 | 94.16 164 | 95.74 143 | 88.96 64 | 87.86 143 | 95.43 104 | 72.48 202 | 97.91 156 | 88.10 112 | 90.18 184 | 93.65 252 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LFMVS | | | 90.08 102 | 89.13 115 | 92.95 79 | 96.71 77 | 82.32 141 | 96.08 54 | 89.91 330 | 86.79 120 | 92.15 76 | 96.81 50 | 62.60 295 | 98.34 116 | 87.18 124 | 93.90 135 | 98.19 56 |
|
GeoE | | | 90.05 103 | 89.43 107 | 91.90 129 | 95.16 133 | 80.37 189 | 95.80 67 | 94.65 211 | 83.90 178 | 87.55 152 | 94.75 130 | 78.18 129 | 97.62 174 | 81.28 209 | 93.63 139 | 97.71 83 |
|
PAPR | | | 90.02 104 | 89.27 114 | 92.29 112 | 95.78 112 | 80.95 175 | 92.68 231 | 96.22 109 | 81.91 224 | 86.66 171 | 93.75 175 | 82.23 83 | 98.44 109 | 79.40 240 | 94.79 117 | 97.48 92 |
|
PVSNet_BlendedMVS | | | 89.98 105 | 89.70 101 | 90.82 176 | 96.12 97 | 81.25 165 | 93.92 185 | 96.83 64 | 83.49 190 | 89.10 124 | 92.26 220 | 81.04 97 | 98.85 81 | 86.72 132 | 87.86 227 | 92.35 297 |
|
PS-MVSNAJss | | | 89.97 106 | 89.62 102 | 91.02 169 | 91.90 248 | 80.85 178 | 95.26 95 | 95.98 124 | 86.26 130 | 86.21 180 | 94.29 147 | 79.70 109 | 97.65 169 | 88.87 103 | 88.10 221 | 94.57 197 |
|
mvsmamba | | | 89.96 107 | 89.50 104 | 91.33 154 | 92.90 225 | 81.82 149 | 96.68 33 | 92.37 269 | 89.03 61 | 87.00 161 | 94.85 125 | 73.05 194 | 97.65 169 | 91.03 76 | 88.63 210 | 94.51 202 |
|
XVG-OURS-SEG-HR | | | 89.95 108 | 89.45 105 | 91.47 148 | 94.00 189 | 81.21 168 | 91.87 255 | 96.06 121 | 85.78 139 | 88.55 132 | 95.73 95 | 74.67 170 | 97.27 209 | 88.71 104 | 89.64 194 | 95.91 149 |
|
UGNet | | | 89.95 108 | 88.95 119 | 92.95 79 | 94.51 167 | 83.31 107 | 95.70 73 | 95.23 178 | 89.37 51 | 87.58 150 | 93.94 163 | 64.00 286 | 98.78 86 | 83.92 165 | 96.31 97 | 96.74 121 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UniMVSNet_NR-MVSNet | | | 89.92 110 | 89.29 112 | 91.81 135 | 93.39 209 | 83.72 95 | 94.43 147 | 97.12 39 | 89.80 38 | 86.46 173 | 93.32 183 | 83.16 71 | 97.23 214 | 84.92 150 | 81.02 298 | 94.49 207 |
|
AdaColmap |  | | 89.89 111 | 89.07 116 | 92.37 107 | 97.41 62 | 83.03 116 | 94.42 148 | 95.92 128 | 82.81 206 | 86.34 178 | 94.65 135 | 73.89 182 | 99.02 59 | 80.69 220 | 95.51 105 | 95.05 175 |
|
hse-mvs2 | | | 89.88 112 | 89.34 110 | 91.51 145 | 94.83 151 | 81.12 170 | 93.94 183 | 93.91 237 | 89.80 38 | 93.08 52 | 93.60 177 | 75.77 151 | 97.66 168 | 92.07 56 | 77.07 331 | 95.74 158 |
|
UniMVSNet (Re) | | | 89.80 113 | 89.07 116 | 92.01 117 | 93.60 204 | 84.52 76 | 94.78 126 | 97.47 10 | 89.26 53 | 86.44 176 | 92.32 217 | 82.10 86 | 97.39 201 | 84.81 153 | 80.84 302 | 94.12 222 |
|
HQP-MVS | | | 89.80 113 | 89.28 113 | 91.34 153 | 94.17 180 | 81.56 154 | 94.39 151 | 96.04 122 | 88.81 65 | 85.43 204 | 93.97 162 | 73.83 184 | 97.96 152 | 87.11 127 | 89.77 192 | 94.50 205 |
|
FA-MVS(test-final) | | | 89.66 115 | 88.91 121 | 91.93 125 | 94.57 164 | 80.27 190 | 91.36 266 | 94.74 208 | 84.87 162 | 89.82 115 | 92.61 209 | 74.72 169 | 98.47 104 | 83.97 164 | 93.53 142 | 97.04 109 |
|
VPA-MVSNet | | | 89.62 116 | 88.96 118 | 91.60 141 | 93.86 194 | 82.89 123 | 95.46 83 | 97.33 23 | 87.91 94 | 88.43 135 | 93.31 184 | 74.17 177 | 97.40 198 | 87.32 123 | 82.86 274 | 94.52 200 |
|
WTY-MVS | | | 89.60 117 | 88.92 120 | 91.67 139 | 95.47 123 | 81.15 169 | 92.38 240 | 94.78 206 | 83.11 198 | 89.06 126 | 94.32 145 | 78.67 122 | 96.61 248 | 81.57 206 | 90.89 178 | 97.24 99 |
|
Vis-MVSNet (Re-imp) | | | 89.59 118 | 89.44 106 | 90.03 210 | 95.74 113 | 75.85 286 | 95.61 80 | 90.80 316 | 87.66 104 | 87.83 145 | 95.40 105 | 76.79 140 | 96.46 261 | 78.37 245 | 96.73 88 | 97.80 80 |
|
VDDNet | | | 89.56 119 | 88.49 135 | 92.76 86 | 95.07 137 | 82.09 143 | 96.30 41 | 93.19 252 | 81.05 246 | 91.88 83 | 96.86 46 | 61.16 307 | 98.33 118 | 88.43 107 | 92.49 164 | 97.84 78 |
|
114514_t | | | 89.51 120 | 88.50 133 | 92.54 99 | 98.11 36 | 81.99 145 | 95.16 103 | 96.36 98 | 70.19 346 | 85.81 185 | 95.25 109 | 76.70 142 | 98.63 93 | 82.07 194 | 96.86 87 | 97.00 112 |
|
QAPM | | | 89.51 120 | 88.15 144 | 93.59 61 | 94.92 145 | 84.58 72 | 96.82 29 | 96.70 80 | 78.43 279 | 83.41 256 | 96.19 76 | 73.18 193 | 99.30 38 | 77.11 261 | 96.54 92 | 96.89 117 |
|
CLD-MVS | | | 89.47 122 | 88.90 122 | 91.18 159 | 94.22 179 | 82.07 144 | 92.13 250 | 96.09 117 | 87.90 95 | 85.37 210 | 92.45 213 | 74.38 172 | 97.56 177 | 87.15 125 | 90.43 180 | 93.93 231 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 89.45 123 | 88.90 122 | 91.12 161 | 94.47 168 | 81.49 158 | 95.30 90 | 96.14 114 | 86.73 122 | 85.45 201 | 95.16 113 | 69.89 231 | 98.10 133 | 87.70 116 | 89.23 201 | 93.77 245 |
|
CDS-MVSNet | | | 89.45 123 | 88.51 132 | 92.29 112 | 93.62 203 | 83.61 100 | 93.01 223 | 94.68 210 | 81.95 222 | 87.82 146 | 93.24 188 | 78.69 121 | 96.99 229 | 80.34 226 | 93.23 152 | 96.28 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
iter_conf_final | | | 89.42 125 | 88.69 126 | 91.60 141 | 95.12 136 | 82.93 121 | 95.75 70 | 92.14 278 | 87.32 109 | 87.12 160 | 94.07 153 | 67.09 261 | 97.55 178 | 90.61 86 | 89.01 205 | 94.32 214 |
|
Fast-Effi-MVS+ | | | 89.41 126 | 88.64 127 | 91.71 138 | 94.74 153 | 80.81 179 | 93.54 198 | 95.10 185 | 83.11 198 | 86.82 169 | 90.67 273 | 79.74 108 | 97.75 164 | 80.51 224 | 93.55 141 | 96.57 126 |
|
ab-mvs | | | 89.41 126 | 88.35 137 | 92.60 95 | 95.15 135 | 82.65 133 | 92.20 248 | 95.60 154 | 83.97 177 | 88.55 132 | 93.70 176 | 74.16 178 | 98.21 127 | 82.46 187 | 89.37 197 | 96.94 114 |
|
XVG-OURS | | | 89.40 128 | 88.70 125 | 91.52 144 | 94.06 183 | 81.46 160 | 91.27 268 | 96.07 119 | 86.14 134 | 88.89 128 | 95.77 93 | 68.73 251 | 97.26 211 | 87.39 121 | 89.96 187 | 95.83 154 |
|
mvs_anonymous | | | 89.37 129 | 89.32 111 | 89.51 233 | 93.47 207 | 74.22 299 | 91.65 262 | 94.83 202 | 82.91 204 | 85.45 201 | 93.79 171 | 81.23 96 | 96.36 267 | 86.47 134 | 94.09 132 | 97.94 71 |
|
DU-MVS | | | 89.34 130 | 88.50 133 | 91.85 132 | 93.04 219 | 83.72 95 | 94.47 144 | 96.59 87 | 89.50 47 | 86.46 173 | 93.29 186 | 77.25 136 | 97.23 214 | 84.92 150 | 81.02 298 | 94.59 195 |
|
TAMVS | | | 89.21 131 | 88.29 141 | 91.96 123 | 93.71 200 | 82.62 134 | 93.30 209 | 94.19 225 | 82.22 215 | 87.78 147 | 93.94 163 | 78.83 118 | 96.95 231 | 77.70 254 | 92.98 156 | 96.32 132 |
|
ACMM | | 84.12 9 | 89.14 132 | 88.48 136 | 91.12 161 | 94.65 160 | 81.22 167 | 95.31 88 | 96.12 116 | 85.31 153 | 85.92 184 | 94.34 143 | 70.19 229 | 98.06 145 | 85.65 143 | 88.86 208 | 94.08 226 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test1111 | | | 89.10 133 | 88.64 127 | 90.48 189 | 95.53 122 | 74.97 292 | 96.08 54 | 84.89 352 | 88.13 90 | 90.16 111 | 96.65 57 | 63.29 291 | 98.10 133 | 86.14 135 | 96.90 84 | 98.39 37 |
|
EI-MVSNet | | | 89.10 133 | 88.86 124 | 89.80 222 | 91.84 250 | 78.30 244 | 93.70 194 | 95.01 188 | 85.73 141 | 87.15 158 | 95.28 107 | 79.87 106 | 97.21 216 | 83.81 167 | 87.36 233 | 93.88 234 |
|
ECVR-MVS |  | | 89.09 135 | 88.53 131 | 90.77 178 | 95.62 119 | 75.89 285 | 96.16 49 | 84.22 354 | 87.89 97 | 90.20 109 | 96.65 57 | 63.19 293 | 98.10 133 | 85.90 140 | 96.94 82 | 98.33 41 |
|
RRT_MVS | | | 89.09 135 | 88.62 130 | 90.49 187 | 92.85 226 | 79.65 213 | 96.41 37 | 94.41 217 | 88.22 85 | 85.50 197 | 94.77 129 | 69.36 239 | 97.31 204 | 89.33 97 | 86.73 240 | 94.51 202 |
|
CNLPA | | | 89.07 137 | 87.98 148 | 92.34 108 | 96.87 74 | 84.78 70 | 94.08 171 | 93.24 250 | 81.41 237 | 84.46 227 | 95.13 115 | 75.57 158 | 96.62 245 | 77.21 259 | 93.84 137 | 95.61 162 |
|
PLC |  | 84.53 7 | 89.06 138 | 88.03 147 | 92.15 115 | 97.27 68 | 82.69 131 | 94.29 157 | 95.44 167 | 79.71 259 | 84.01 242 | 94.18 152 | 76.68 143 | 98.75 87 | 77.28 258 | 93.41 147 | 95.02 176 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_djsdf | | | 89.03 139 | 88.64 127 | 90.21 200 | 90.74 295 | 79.28 225 | 95.96 61 | 95.90 131 | 84.66 168 | 85.33 212 | 92.94 198 | 74.02 180 | 97.30 205 | 89.64 94 | 88.53 212 | 94.05 228 |
|
HY-MVS | | 83.01 12 | 89.03 139 | 87.94 150 | 92.29 112 | 94.86 149 | 82.77 124 | 92.08 253 | 94.49 213 | 81.52 236 | 86.93 163 | 92.79 205 | 78.32 128 | 98.23 124 | 79.93 231 | 90.55 179 | 95.88 151 |
|
ACMP | | 84.23 8 | 89.01 141 | 88.35 137 | 90.99 172 | 94.73 154 | 81.27 164 | 95.07 108 | 95.89 133 | 86.48 125 | 83.67 249 | 94.30 146 | 69.33 240 | 97.99 150 | 87.10 129 | 88.55 211 | 93.72 249 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
sss | | | 88.93 142 | 88.26 143 | 90.94 175 | 94.05 184 | 80.78 180 | 91.71 259 | 95.38 171 | 81.55 235 | 88.63 131 | 93.91 167 | 75.04 163 | 95.47 303 | 82.47 186 | 91.61 169 | 96.57 126 |
|
iter_conf05 | | | 88.85 143 | 88.08 146 | 91.17 160 | 94.27 178 | 81.64 153 | 95.18 100 | 92.15 277 | 86.23 132 | 87.28 157 | 94.07 153 | 63.89 289 | 97.55 178 | 90.63 85 | 89.00 206 | 94.32 214 |
|
TranMVSNet+NR-MVSNet | | | 88.84 144 | 87.95 149 | 91.49 146 | 92.68 230 | 83.01 118 | 94.92 117 | 96.31 100 | 89.88 37 | 85.53 194 | 93.85 170 | 76.63 144 | 96.96 230 | 81.91 198 | 79.87 315 | 94.50 205 |
|
CHOSEN 1792x2688 | | | 88.84 144 | 87.69 153 | 92.30 111 | 96.14 96 | 81.42 162 | 90.01 292 | 95.86 135 | 74.52 318 | 87.41 153 | 93.94 163 | 75.46 159 | 98.36 113 | 80.36 225 | 95.53 104 | 97.12 106 |
|
MVSTER | | | 88.84 144 | 88.29 141 | 90.51 186 | 92.95 223 | 80.44 188 | 93.73 191 | 95.01 188 | 84.66 168 | 87.15 158 | 93.12 193 | 72.79 198 | 97.21 216 | 87.86 113 | 87.36 233 | 93.87 235 |
|
OpenMVS |  | 83.78 11 | 88.74 147 | 87.29 163 | 93.08 72 | 92.70 229 | 85.39 64 | 96.57 35 | 96.43 94 | 78.74 274 | 80.85 285 | 96.07 80 | 69.64 235 | 99.01 61 | 78.01 252 | 96.65 91 | 94.83 187 |
|
thisisatest0530 | | | 88.67 148 | 87.61 155 | 91.86 130 | 94.87 148 | 80.07 198 | 94.63 134 | 89.90 331 | 84.00 176 | 88.46 134 | 93.78 172 | 66.88 265 | 98.46 105 | 83.30 172 | 92.65 160 | 97.06 107 |
|
Effi-MVS+-dtu | | | 88.65 149 | 88.35 137 | 89.54 230 | 93.33 210 | 76.39 280 | 94.47 144 | 94.36 219 | 87.70 102 | 85.43 204 | 89.56 295 | 73.45 189 | 97.26 211 | 85.57 145 | 91.28 171 | 94.97 177 |
|
tttt0517 | | | 88.61 150 | 87.78 152 | 91.11 164 | 94.96 142 | 77.81 257 | 95.35 86 | 89.69 334 | 85.09 159 | 88.05 141 | 94.59 138 | 66.93 263 | 98.48 102 | 83.27 173 | 92.13 167 | 97.03 110 |
|
BH-untuned | | | 88.60 151 | 88.13 145 | 90.01 213 | 95.24 130 | 78.50 238 | 93.29 210 | 94.15 227 | 84.75 166 | 84.46 227 | 93.40 180 | 75.76 153 | 97.40 198 | 77.59 255 | 94.52 126 | 94.12 222 |
|
NR-MVSNet | | | 88.58 152 | 87.47 159 | 91.93 125 | 93.04 219 | 84.16 86 | 94.77 127 | 96.25 106 | 89.05 59 | 80.04 299 | 93.29 186 | 79.02 117 | 97.05 226 | 81.71 205 | 80.05 312 | 94.59 195 |
|
1112_ss | | | 88.42 153 | 87.33 162 | 91.72 137 | 94.92 145 | 80.98 173 | 92.97 225 | 94.54 212 | 78.16 285 | 83.82 245 | 93.88 168 | 78.78 120 | 97.91 156 | 79.45 236 | 89.41 196 | 96.26 135 |
|
WR-MVS | | | 88.38 154 | 87.67 154 | 90.52 185 | 93.30 211 | 80.18 193 | 93.26 212 | 95.96 126 | 88.57 74 | 85.47 200 | 92.81 203 | 76.12 146 | 96.91 234 | 81.24 210 | 82.29 278 | 94.47 210 |
|
BH-RMVSNet | | | 88.37 155 | 87.48 158 | 91.02 169 | 95.28 127 | 79.45 217 | 92.89 227 | 93.07 254 | 85.45 150 | 86.91 165 | 94.84 127 | 70.35 226 | 97.76 161 | 73.97 289 | 94.59 123 | 95.85 152 |
|
IterMVS-LS | | | 88.36 156 | 87.91 151 | 89.70 226 | 93.80 197 | 78.29 245 | 93.73 191 | 95.08 187 | 85.73 141 | 84.75 219 | 91.90 236 | 79.88 105 | 96.92 233 | 83.83 166 | 82.51 275 | 93.89 232 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
X-MVStestdata | | | 88.31 157 | 86.13 203 | 94.85 23 | 98.54 13 | 86.60 31 | 96.93 22 | 97.19 33 | 90.66 22 | 92.85 57 | 23.41 373 | 85.02 54 | 99.49 24 | 91.99 60 | 98.56 46 | 98.47 31 |
|
LCM-MVSNet-Re | | | 88.30 158 | 88.32 140 | 88.27 260 | 94.71 156 | 72.41 320 | 93.15 216 | 90.98 311 | 87.77 100 | 79.25 307 | 91.96 234 | 78.35 127 | 95.75 292 | 83.04 175 | 95.62 103 | 96.65 123 |
|
jajsoiax | | | 88.24 159 | 87.50 157 | 90.48 189 | 90.89 289 | 80.14 195 | 95.31 88 | 95.65 151 | 84.97 161 | 84.24 238 | 94.02 158 | 65.31 280 | 97.42 191 | 88.56 105 | 88.52 213 | 93.89 232 |
|
VPNet | | | 88.20 160 | 87.47 159 | 90.39 194 | 93.56 205 | 79.46 216 | 94.04 175 | 95.54 158 | 88.67 70 | 86.96 162 | 94.58 139 | 69.33 240 | 97.15 218 | 84.05 163 | 80.53 307 | 94.56 198 |
|
TAPA-MVS | | 84.62 6 | 88.16 161 | 87.01 171 | 91.62 140 | 96.64 80 | 80.65 182 | 94.39 151 | 96.21 112 | 76.38 298 | 86.19 181 | 95.44 102 | 79.75 107 | 98.08 143 | 62.75 346 | 95.29 112 | 96.13 139 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
baseline1 | | | 88.10 162 | 87.28 164 | 90.57 181 | 94.96 142 | 80.07 198 | 94.27 158 | 91.29 304 | 86.74 121 | 87.41 153 | 94.00 160 | 76.77 141 | 96.20 272 | 80.77 218 | 79.31 320 | 95.44 164 |
|
Anonymous20240529 | | | 88.09 163 | 86.59 187 | 92.58 97 | 96.53 86 | 81.92 148 | 95.99 59 | 95.84 136 | 74.11 322 | 89.06 126 | 95.21 112 | 61.44 302 | 98.81 84 | 83.67 170 | 87.47 230 | 97.01 111 |
|
HyFIR lowres test | | | 88.09 163 | 86.81 175 | 91.93 125 | 96.00 105 | 80.63 183 | 90.01 292 | 95.79 139 | 73.42 328 | 87.68 149 | 92.10 228 | 73.86 183 | 97.96 152 | 80.75 219 | 91.70 168 | 97.19 102 |
|
mvs_tets | | | 88.06 165 | 87.28 164 | 90.38 196 | 90.94 285 | 79.88 207 | 95.22 97 | 95.66 149 | 85.10 158 | 84.21 239 | 93.94 163 | 63.53 290 | 97.40 198 | 88.50 106 | 88.40 217 | 93.87 235 |
|
F-COLMAP | | | 87.95 166 | 86.80 176 | 91.40 150 | 96.35 92 | 80.88 177 | 94.73 129 | 95.45 165 | 79.65 260 | 82.04 273 | 94.61 136 | 71.13 212 | 98.50 101 | 76.24 270 | 91.05 176 | 94.80 189 |
|
LS3D | | | 87.89 167 | 86.32 197 | 92.59 96 | 96.07 102 | 82.92 122 | 95.23 96 | 94.92 195 | 75.66 305 | 82.89 263 | 95.98 83 | 72.48 202 | 99.21 43 | 68.43 320 | 95.23 115 | 95.64 161 |
|
anonymousdsp | | | 87.84 168 | 87.09 167 | 90.12 206 | 89.13 322 | 80.54 186 | 94.67 132 | 95.55 156 | 82.05 218 | 83.82 245 | 92.12 225 | 71.47 210 | 97.15 218 | 87.15 125 | 87.80 229 | 92.67 286 |
|
v2v482 | | | 87.84 168 | 87.06 168 | 90.17 202 | 90.99 281 | 79.23 228 | 94.00 180 | 95.13 182 | 84.87 162 | 85.53 194 | 92.07 231 | 74.45 171 | 97.45 187 | 84.71 155 | 81.75 286 | 93.85 238 |
|
WR-MVS_H | | | 87.80 170 | 87.37 161 | 89.10 241 | 93.23 212 | 78.12 248 | 95.61 80 | 97.30 27 | 87.90 95 | 83.72 247 | 92.01 233 | 79.65 113 | 96.01 280 | 76.36 267 | 80.54 306 | 93.16 271 |
|
AUN-MVS | | | 87.78 171 | 86.54 189 | 91.48 147 | 94.82 152 | 81.05 171 | 93.91 187 | 93.93 234 | 83.00 201 | 86.93 163 | 93.53 178 | 69.50 237 | 97.67 166 | 86.14 135 | 77.12 330 | 95.73 159 |
|
PCF-MVS | | 84.11 10 | 87.74 172 | 86.08 207 | 92.70 91 | 94.02 185 | 84.43 82 | 89.27 302 | 95.87 134 | 73.62 327 | 84.43 229 | 94.33 144 | 78.48 126 | 98.86 79 | 70.27 306 | 94.45 128 | 94.81 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Anonymous202405211 | | | 87.68 173 | 86.13 203 | 92.31 110 | 96.66 79 | 80.74 181 | 94.87 120 | 91.49 299 | 80.47 250 | 89.46 120 | 95.44 102 | 54.72 334 | 98.23 124 | 82.19 192 | 89.89 189 | 97.97 70 |
|
V42 | | | 87.68 173 | 86.86 173 | 90.15 204 | 90.58 301 | 80.14 195 | 94.24 161 | 95.28 176 | 83.66 184 | 85.67 188 | 91.33 251 | 74.73 168 | 97.41 196 | 84.43 159 | 81.83 284 | 92.89 281 |
|
thres600view7 | | | 87.65 175 | 86.67 182 | 90.59 180 | 96.08 101 | 78.72 231 | 94.88 119 | 91.58 295 | 87.06 113 | 88.08 139 | 92.30 218 | 68.91 248 | 98.10 133 | 70.05 313 | 91.10 172 | 94.96 180 |
|
XXY-MVS | | | 87.65 175 | 86.85 174 | 90.03 210 | 92.14 240 | 80.60 185 | 93.76 190 | 95.23 178 | 82.94 203 | 84.60 222 | 94.02 158 | 74.27 173 | 95.49 302 | 81.04 212 | 83.68 262 | 94.01 230 |
|
Test_1112_low_res | | | 87.65 175 | 86.51 190 | 91.08 165 | 94.94 144 | 79.28 225 | 91.77 257 | 94.30 221 | 76.04 303 | 83.51 254 | 92.37 215 | 77.86 133 | 97.73 165 | 78.69 244 | 89.13 203 | 96.22 136 |
|
thres100view900 | | | 87.63 178 | 86.71 180 | 90.38 196 | 96.12 97 | 78.55 235 | 95.03 111 | 91.58 295 | 87.15 110 | 88.06 140 | 92.29 219 | 68.91 248 | 98.10 133 | 70.13 310 | 91.10 172 | 94.48 208 |
|
CP-MVSNet | | | 87.63 178 | 87.26 166 | 88.74 250 | 93.12 215 | 76.59 277 | 95.29 92 | 96.58 88 | 88.43 77 | 83.49 255 | 92.98 197 | 75.28 160 | 95.83 288 | 78.97 242 | 81.15 294 | 93.79 240 |
|
thres400 | | | 87.62 180 | 86.64 183 | 90.57 181 | 95.99 106 | 78.64 233 | 94.58 136 | 91.98 285 | 86.94 117 | 88.09 137 | 91.77 238 | 69.18 245 | 98.10 133 | 70.13 310 | 91.10 172 | 94.96 180 |
|
v1144 | | | 87.61 181 | 86.79 177 | 90.06 209 | 91.01 280 | 79.34 221 | 93.95 182 | 95.42 170 | 83.36 194 | 85.66 189 | 91.31 254 | 74.98 164 | 97.42 191 | 83.37 171 | 82.06 280 | 93.42 261 |
|
bld_raw_dy_0_64 | | | 87.60 182 | 86.73 178 | 90.21 200 | 91.72 254 | 80.26 192 | 95.09 107 | 88.61 339 | 85.68 143 | 85.55 191 | 94.38 142 | 63.93 288 | 96.66 242 | 87.73 115 | 87.84 228 | 93.72 249 |
|
tfpn200view9 | | | 87.58 183 | 86.64 183 | 90.41 193 | 95.99 106 | 78.64 233 | 94.58 136 | 91.98 285 | 86.94 117 | 88.09 137 | 91.77 238 | 69.18 245 | 98.10 133 | 70.13 310 | 91.10 172 | 94.48 208 |
|
BH-w/o | | | 87.57 184 | 87.05 169 | 89.12 240 | 94.90 147 | 77.90 253 | 92.41 238 | 93.51 247 | 82.89 205 | 83.70 248 | 91.34 250 | 75.75 154 | 97.07 224 | 75.49 275 | 93.49 144 | 92.39 295 |
|
UniMVSNet_ETH3D | | | 87.53 185 | 86.37 194 | 91.00 171 | 92.44 233 | 78.96 230 | 94.74 128 | 95.61 153 | 84.07 175 | 85.36 211 | 94.52 140 | 59.78 315 | 97.34 203 | 82.93 177 | 87.88 226 | 96.71 122 |
|
ET-MVSNet_ETH3D | | | 87.51 186 | 85.91 215 | 92.32 109 | 93.70 202 | 83.93 90 | 92.33 243 | 90.94 312 | 84.16 172 | 72.09 345 | 92.52 211 | 69.90 230 | 95.85 287 | 89.20 99 | 88.36 218 | 97.17 103 |
|
1314 | | | 87.51 186 | 86.57 188 | 90.34 198 | 92.42 234 | 79.74 211 | 92.63 233 | 95.35 175 | 78.35 280 | 80.14 296 | 91.62 245 | 74.05 179 | 97.15 218 | 81.05 211 | 93.53 142 | 94.12 222 |
|
v8 | | | 87.50 188 | 86.71 180 | 89.89 216 | 91.37 267 | 79.40 218 | 94.50 140 | 95.38 171 | 84.81 165 | 83.60 252 | 91.33 251 | 76.05 147 | 97.42 191 | 82.84 180 | 80.51 309 | 92.84 283 |
|
Fast-Effi-MVS+-dtu | | | 87.44 189 | 86.72 179 | 89.63 228 | 92.04 244 | 77.68 262 | 94.03 176 | 93.94 233 | 85.81 138 | 82.42 267 | 91.32 253 | 70.33 227 | 97.06 225 | 80.33 227 | 90.23 183 | 94.14 221 |
|
MVS | | | 87.44 189 | 86.10 206 | 91.44 149 | 92.61 231 | 83.62 99 | 92.63 233 | 95.66 149 | 67.26 350 | 81.47 277 | 92.15 223 | 77.95 130 | 98.22 126 | 79.71 233 | 95.48 106 | 92.47 292 |
|
FE-MVS | | | 87.40 191 | 86.02 209 | 91.57 143 | 94.56 165 | 79.69 212 | 90.27 282 | 93.72 244 | 80.57 249 | 88.80 129 | 91.62 245 | 65.32 279 | 98.59 97 | 74.97 283 | 94.33 131 | 96.44 129 |
|
FMVSNet3 | | | 87.40 191 | 86.11 205 | 91.30 155 | 93.79 199 | 83.64 98 | 94.20 163 | 94.81 204 | 83.89 179 | 84.37 230 | 91.87 237 | 68.45 254 | 96.56 253 | 78.23 249 | 85.36 247 | 93.70 251 |
|
test_fmvs1 | | | 87.34 193 | 87.56 156 | 86.68 299 | 90.59 300 | 71.80 324 | 94.01 178 | 94.04 232 | 78.30 281 | 91.97 80 | 95.22 110 | 56.28 327 | 93.71 326 | 92.89 35 | 94.71 118 | 94.52 200 |
|
thisisatest0515 | | | 87.33 194 | 85.99 210 | 91.37 152 | 93.49 206 | 79.55 214 | 90.63 278 | 89.56 337 | 80.17 252 | 87.56 151 | 90.86 267 | 67.07 262 | 98.28 122 | 81.50 207 | 93.02 155 | 96.29 133 |
|
PS-CasMVS | | | 87.32 195 | 86.88 172 | 88.63 253 | 92.99 222 | 76.33 282 | 95.33 87 | 96.61 86 | 88.22 85 | 83.30 260 | 93.07 195 | 73.03 196 | 95.79 291 | 78.36 246 | 81.00 300 | 93.75 247 |
|
GBi-Net | | | 87.26 196 | 85.98 211 | 91.08 165 | 94.01 186 | 83.10 112 | 95.14 104 | 94.94 191 | 83.57 186 | 84.37 230 | 91.64 241 | 66.59 270 | 96.34 268 | 78.23 249 | 85.36 247 | 93.79 240 |
|
test1 | | | 87.26 196 | 85.98 211 | 91.08 165 | 94.01 186 | 83.10 112 | 95.14 104 | 94.94 191 | 83.57 186 | 84.37 230 | 91.64 241 | 66.59 270 | 96.34 268 | 78.23 249 | 85.36 247 | 93.79 240 |
|
v1192 | | | 87.25 198 | 86.33 196 | 90.00 214 | 90.76 294 | 79.04 229 | 93.80 188 | 95.48 161 | 82.57 209 | 85.48 199 | 91.18 258 | 73.38 192 | 97.42 191 | 82.30 190 | 82.06 280 | 93.53 255 |
|
v10 | | | 87.25 198 | 86.38 193 | 89.85 217 | 91.19 273 | 79.50 215 | 94.48 141 | 95.45 165 | 83.79 182 | 83.62 251 | 91.19 256 | 75.13 161 | 97.42 191 | 81.94 197 | 80.60 304 | 92.63 288 |
|
DP-MVS | | | 87.25 198 | 85.36 230 | 92.90 81 | 97.65 55 | 83.24 108 | 94.81 124 | 92.00 283 | 74.99 313 | 81.92 275 | 95.00 118 | 72.66 199 | 99.05 53 | 66.92 331 | 92.33 165 | 96.40 130 |
|
miper_ehance_all_eth | | | 87.22 201 | 86.62 186 | 89.02 244 | 92.13 241 | 77.40 267 | 90.91 274 | 94.81 204 | 81.28 240 | 84.32 235 | 90.08 284 | 79.26 115 | 96.62 245 | 83.81 167 | 82.94 270 | 93.04 276 |
|
test2506 | | | 87.21 202 | 86.28 199 | 90.02 212 | 95.62 119 | 73.64 304 | 96.25 46 | 71.38 373 | 87.89 97 | 90.45 105 | 96.65 57 | 55.29 332 | 98.09 141 | 86.03 139 | 96.94 82 | 98.33 41 |
|
thres200 | | | 87.21 202 | 86.24 201 | 90.12 206 | 95.36 125 | 78.53 236 | 93.26 212 | 92.10 279 | 86.42 127 | 88.00 142 | 91.11 262 | 69.24 244 | 98.00 149 | 69.58 314 | 91.04 177 | 93.83 239 |
|
v144192 | | | 87.19 204 | 86.35 195 | 89.74 223 | 90.64 298 | 78.24 246 | 93.92 185 | 95.43 168 | 81.93 223 | 85.51 196 | 91.05 264 | 74.21 176 | 97.45 187 | 82.86 179 | 81.56 288 | 93.53 255 |
|
FMVSNet2 | | | 87.19 204 | 85.82 217 | 91.30 155 | 94.01 186 | 83.67 97 | 94.79 125 | 94.94 191 | 83.57 186 | 83.88 244 | 92.05 232 | 66.59 270 | 96.51 256 | 77.56 256 | 85.01 250 | 93.73 248 |
|
c3_l | | | 87.14 206 | 86.50 191 | 89.04 243 | 92.20 238 | 77.26 268 | 91.22 270 | 94.70 209 | 82.01 221 | 84.34 234 | 90.43 277 | 78.81 119 | 96.61 248 | 83.70 169 | 81.09 295 | 93.25 266 |
|
Baseline_NR-MVSNet | | | 87.07 207 | 86.63 185 | 88.40 256 | 91.44 262 | 77.87 255 | 94.23 162 | 92.57 266 | 84.12 174 | 85.74 187 | 92.08 229 | 77.25 136 | 96.04 277 | 82.29 191 | 79.94 313 | 91.30 315 |
|
v148 | | | 87.04 208 | 86.32 197 | 89.21 237 | 90.94 285 | 77.26 268 | 93.71 193 | 94.43 215 | 84.84 164 | 84.36 233 | 90.80 270 | 76.04 148 | 97.05 226 | 82.12 193 | 79.60 317 | 93.31 263 |
|
test_fmvs1_n | | | 87.03 209 | 87.04 170 | 86.97 291 | 89.74 318 | 71.86 322 | 94.55 138 | 94.43 215 | 78.47 277 | 91.95 82 | 95.50 101 | 51.16 344 | 93.81 324 | 93.02 34 | 94.56 124 | 95.26 170 |
|
v1921920 | | | 86.97 210 | 86.06 208 | 89.69 227 | 90.53 304 | 78.11 249 | 93.80 188 | 95.43 168 | 81.90 225 | 85.33 212 | 91.05 264 | 72.66 199 | 97.41 196 | 82.05 195 | 81.80 285 | 93.53 255 |
|
tt0805 | | | 86.92 211 | 85.74 223 | 90.48 189 | 92.22 237 | 79.98 205 | 95.63 79 | 94.88 198 | 83.83 181 | 84.74 220 | 92.80 204 | 57.61 323 | 97.67 166 | 85.48 146 | 84.42 254 | 93.79 240 |
|
miper_enhance_ethall | | | 86.90 212 | 86.18 202 | 89.06 242 | 91.66 259 | 77.58 264 | 90.22 288 | 94.82 203 | 79.16 266 | 84.48 226 | 89.10 298 | 79.19 116 | 96.66 242 | 84.06 162 | 82.94 270 | 92.94 279 |
|
v7n | | | 86.81 213 | 85.76 221 | 89.95 215 | 90.72 296 | 79.25 227 | 95.07 108 | 95.92 128 | 84.45 171 | 82.29 268 | 90.86 267 | 72.60 201 | 97.53 181 | 79.42 239 | 80.52 308 | 93.08 275 |
|
PEN-MVS | | | 86.80 214 | 86.27 200 | 88.40 256 | 92.32 236 | 75.71 288 | 95.18 100 | 96.38 97 | 87.97 92 | 82.82 264 | 93.15 191 | 73.39 191 | 95.92 283 | 76.15 271 | 79.03 322 | 93.59 253 |
|
cl22 | | | 86.78 215 | 85.98 211 | 89.18 239 | 92.34 235 | 77.62 263 | 90.84 275 | 94.13 229 | 81.33 239 | 83.97 243 | 90.15 282 | 73.96 181 | 96.60 250 | 84.19 161 | 82.94 270 | 93.33 262 |
|
v1240 | | | 86.78 215 | 85.85 216 | 89.56 229 | 90.45 305 | 77.79 258 | 93.61 196 | 95.37 173 | 81.65 231 | 85.43 204 | 91.15 260 | 71.50 209 | 97.43 190 | 81.47 208 | 82.05 282 | 93.47 259 |
|
TR-MVS | | | 86.78 215 | 85.76 221 | 89.82 219 | 94.37 174 | 78.41 240 | 92.47 237 | 92.83 259 | 81.11 245 | 86.36 177 | 92.40 214 | 68.73 251 | 97.48 184 | 73.75 292 | 89.85 191 | 93.57 254 |
|
PatchMatch-RL | | | 86.77 218 | 85.54 224 | 90.47 192 | 95.88 109 | 82.71 130 | 90.54 279 | 92.31 272 | 79.82 258 | 84.32 235 | 91.57 249 | 68.77 250 | 96.39 264 | 73.16 294 | 93.48 146 | 92.32 298 |
|
PAPM | | | 86.68 219 | 85.39 228 | 90.53 183 | 93.05 218 | 79.33 224 | 89.79 295 | 94.77 207 | 78.82 271 | 81.95 274 | 93.24 188 | 76.81 139 | 97.30 205 | 66.94 329 | 93.16 153 | 94.95 183 |
|
pm-mvs1 | | | 86.61 220 | 85.54 224 | 89.82 219 | 91.44 262 | 80.18 193 | 95.28 94 | 94.85 200 | 83.84 180 | 81.66 276 | 92.62 208 | 72.45 204 | 96.48 258 | 79.67 234 | 78.06 323 | 92.82 284 |
|
GA-MVS | | | 86.61 220 | 85.27 232 | 90.66 179 | 91.33 270 | 78.71 232 | 90.40 281 | 93.81 241 | 85.34 152 | 85.12 214 | 89.57 294 | 61.25 304 | 97.11 222 | 80.99 215 | 89.59 195 | 96.15 137 |
|
Anonymous20231211 | | | 86.59 222 | 85.13 234 | 90.98 174 | 96.52 87 | 81.50 156 | 96.14 51 | 96.16 113 | 73.78 325 | 83.65 250 | 92.15 223 | 63.26 292 | 97.37 202 | 82.82 181 | 81.74 287 | 94.06 227 |
|
test_vis1_n | | | 86.56 223 | 86.49 192 | 86.78 298 | 88.51 327 | 72.69 313 | 94.68 131 | 93.78 242 | 79.55 261 | 90.70 102 | 95.31 106 | 48.75 349 | 93.28 332 | 93.15 31 | 93.99 133 | 94.38 212 |
|
DIV-MVS_self_test | | | 86.53 224 | 85.78 218 | 88.75 248 | 92.02 246 | 76.45 279 | 90.74 276 | 94.30 221 | 81.83 229 | 83.34 258 | 90.82 269 | 75.75 154 | 96.57 251 | 81.73 204 | 81.52 290 | 93.24 267 |
|
cl____ | | | 86.52 225 | 85.78 218 | 88.75 248 | 92.03 245 | 76.46 278 | 90.74 276 | 94.30 221 | 81.83 229 | 83.34 258 | 90.78 271 | 75.74 156 | 96.57 251 | 81.74 203 | 81.54 289 | 93.22 268 |
|
eth_miper_zixun_eth | | | 86.50 226 | 85.77 220 | 88.68 251 | 91.94 247 | 75.81 287 | 90.47 280 | 94.89 196 | 82.05 218 | 84.05 240 | 90.46 276 | 75.96 149 | 96.77 238 | 82.76 183 | 79.36 319 | 93.46 260 |
|
baseline2 | | | 86.50 226 | 85.39 228 | 89.84 218 | 91.12 277 | 76.70 275 | 91.88 254 | 88.58 340 | 82.35 214 | 79.95 300 | 90.95 266 | 73.42 190 | 97.63 173 | 80.27 228 | 89.95 188 | 95.19 172 |
|
EPNet_dtu | | | 86.49 228 | 85.94 214 | 88.14 265 | 90.24 308 | 72.82 311 | 94.11 167 | 92.20 275 | 86.66 124 | 79.42 306 | 92.36 216 | 73.52 187 | 95.81 290 | 71.26 300 | 93.66 138 | 95.80 156 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 86.43 229 | 84.98 237 | 90.80 177 | 92.10 243 | 80.92 176 | 90.24 286 | 95.91 130 | 73.10 331 | 83.57 253 | 88.39 309 | 65.15 281 | 97.46 186 | 84.90 152 | 91.43 170 | 94.03 229 |
|
SCA | | | 86.32 230 | 85.18 233 | 89.73 225 | 92.15 239 | 76.60 276 | 91.12 271 | 91.69 292 | 83.53 189 | 85.50 197 | 88.81 302 | 66.79 266 | 96.48 258 | 76.65 264 | 90.35 182 | 96.12 140 |
|
LTVRE_ROB | | 82.13 13 | 86.26 231 | 84.90 240 | 90.34 198 | 94.44 172 | 81.50 156 | 92.31 245 | 94.89 196 | 83.03 200 | 79.63 304 | 92.67 206 | 69.69 234 | 97.79 159 | 71.20 301 | 86.26 243 | 91.72 307 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DTE-MVSNet | | | 86.11 232 | 85.48 226 | 87.98 268 | 91.65 260 | 74.92 293 | 94.93 116 | 95.75 142 | 87.36 108 | 82.26 269 | 93.04 196 | 72.85 197 | 95.82 289 | 74.04 288 | 77.46 328 | 93.20 269 |
|
XVG-ACMP-BASELINE | | | 86.00 233 | 84.84 242 | 89.45 234 | 91.20 272 | 78.00 250 | 91.70 260 | 95.55 156 | 85.05 160 | 82.97 262 | 92.25 221 | 54.49 335 | 97.48 184 | 82.93 177 | 87.45 232 | 92.89 281 |
|
MVP-Stereo | | | 85.97 234 | 84.86 241 | 89.32 235 | 90.92 287 | 82.19 142 | 92.11 251 | 94.19 225 | 78.76 273 | 78.77 310 | 91.63 244 | 68.38 255 | 96.56 253 | 75.01 282 | 93.95 134 | 89.20 340 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
D2MVS | | | 85.90 235 | 85.09 235 | 88.35 258 | 90.79 292 | 77.42 266 | 91.83 256 | 95.70 145 | 80.77 248 | 80.08 298 | 90.02 285 | 66.74 268 | 96.37 265 | 81.88 199 | 87.97 225 | 91.26 316 |
|
test-LLR | | | 85.87 236 | 85.41 227 | 87.25 284 | 90.95 283 | 71.67 326 | 89.55 296 | 89.88 332 | 83.41 192 | 84.54 224 | 87.95 316 | 67.25 258 | 95.11 308 | 81.82 200 | 93.37 149 | 94.97 177 |
|
FMVSNet1 | | | 85.85 237 | 84.11 251 | 91.08 165 | 92.81 227 | 83.10 112 | 95.14 104 | 94.94 191 | 81.64 232 | 82.68 265 | 91.64 241 | 59.01 319 | 96.34 268 | 75.37 277 | 83.78 259 | 93.79 240 |
|
PatchmatchNet |  | | 85.85 237 | 84.70 244 | 89.29 236 | 91.76 253 | 75.54 289 | 88.49 314 | 91.30 303 | 81.63 233 | 85.05 215 | 88.70 306 | 71.71 206 | 96.24 271 | 74.61 286 | 89.05 204 | 96.08 143 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CostFormer | | | 85.77 239 | 84.94 239 | 88.26 261 | 91.16 276 | 72.58 318 | 89.47 300 | 91.04 310 | 76.26 301 | 86.45 175 | 89.97 287 | 70.74 219 | 96.86 237 | 82.35 189 | 87.07 238 | 95.34 169 |
|
PMMVS | | | 85.71 240 | 84.96 238 | 87.95 269 | 88.90 325 | 77.09 270 | 88.68 312 | 90.06 326 | 72.32 337 | 86.47 172 | 90.76 272 | 72.15 205 | 94.40 314 | 81.78 202 | 93.49 144 | 92.36 296 |
|
PVSNet | | 78.82 18 | 85.55 241 | 84.65 245 | 88.23 263 | 94.72 155 | 71.93 321 | 87.12 329 | 92.75 262 | 78.80 272 | 84.95 217 | 90.53 275 | 64.43 285 | 96.71 241 | 74.74 284 | 93.86 136 | 96.06 145 |
|
IterMVS-SCA-FT | | | 85.45 242 | 84.53 248 | 88.18 264 | 91.71 256 | 76.87 273 | 90.19 289 | 92.65 265 | 85.40 151 | 81.44 278 | 90.54 274 | 66.79 266 | 95.00 311 | 81.04 212 | 81.05 296 | 92.66 287 |
|
pmmvs4 | | | 85.43 243 | 83.86 256 | 90.16 203 | 90.02 313 | 82.97 120 | 90.27 282 | 92.67 264 | 75.93 304 | 80.73 286 | 91.74 240 | 71.05 213 | 95.73 293 | 78.85 243 | 83.46 266 | 91.78 306 |
|
mvsany_test1 | | | 85.42 244 | 85.30 231 | 85.77 309 | 87.95 338 | 75.41 291 | 87.61 326 | 80.97 362 | 76.82 295 | 88.68 130 | 95.83 89 | 77.44 135 | 90.82 350 | 85.90 140 | 86.51 241 | 91.08 324 |
|
ACMH | | 80.38 17 | 85.36 245 | 83.68 258 | 90.39 194 | 94.45 171 | 80.63 183 | 94.73 129 | 94.85 200 | 82.09 217 | 77.24 318 | 92.65 207 | 60.01 313 | 97.58 175 | 72.25 298 | 84.87 251 | 92.96 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 85.35 246 | 84.64 246 | 87.49 278 | 90.77 293 | 72.59 317 | 94.01 178 | 94.40 218 | 84.72 167 | 79.62 305 | 93.17 190 | 61.91 299 | 96.72 239 | 81.99 196 | 81.16 292 | 93.16 271 |
|
CR-MVSNet | | | 85.35 246 | 83.76 257 | 90.12 206 | 90.58 301 | 79.34 221 | 85.24 341 | 91.96 287 | 78.27 282 | 85.55 191 | 87.87 319 | 71.03 214 | 95.61 294 | 73.96 290 | 89.36 198 | 95.40 166 |
|
tpmrst | | | 85.35 246 | 84.99 236 | 86.43 301 | 90.88 290 | 67.88 347 | 88.71 311 | 91.43 301 | 80.13 253 | 86.08 183 | 88.80 304 | 73.05 194 | 96.02 279 | 82.48 185 | 83.40 268 | 95.40 166 |
|
miper_lstm_enhance | | | 85.27 249 | 84.59 247 | 87.31 281 | 91.28 271 | 74.63 294 | 87.69 323 | 94.09 231 | 81.20 244 | 81.36 280 | 89.85 290 | 74.97 165 | 94.30 317 | 81.03 214 | 79.84 316 | 93.01 277 |
|
IB-MVS | | 80.51 15 | 85.24 250 | 83.26 262 | 91.19 158 | 92.13 241 | 79.86 208 | 91.75 258 | 91.29 304 | 83.28 196 | 80.66 288 | 88.49 308 | 61.28 303 | 98.46 105 | 80.99 215 | 79.46 318 | 95.25 171 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CHOSEN 280x420 | | | 85.15 251 | 83.99 254 | 88.65 252 | 92.47 232 | 78.40 241 | 79.68 361 | 92.76 261 | 74.90 315 | 81.41 279 | 89.59 293 | 69.85 233 | 95.51 299 | 79.92 232 | 95.29 112 | 92.03 302 |
|
RPSCF | | | 85.07 252 | 84.27 249 | 87.48 279 | 92.91 224 | 70.62 336 | 91.69 261 | 92.46 267 | 76.20 302 | 82.67 266 | 95.22 110 | 63.94 287 | 97.29 208 | 77.51 257 | 85.80 245 | 94.53 199 |
|
MS-PatchMatch | | | 85.05 253 | 84.16 250 | 87.73 272 | 91.42 265 | 78.51 237 | 91.25 269 | 93.53 246 | 77.50 288 | 80.15 295 | 91.58 247 | 61.99 298 | 95.51 299 | 75.69 274 | 94.35 130 | 89.16 341 |
|
ACMH+ | | 81.04 14 | 85.05 253 | 83.46 261 | 89.82 219 | 94.66 159 | 79.37 219 | 94.44 146 | 94.12 230 | 82.19 216 | 78.04 313 | 92.82 202 | 58.23 321 | 97.54 180 | 73.77 291 | 82.90 273 | 92.54 289 |
|
IterMVS | | | 84.88 255 | 83.98 255 | 87.60 274 | 91.44 262 | 76.03 284 | 90.18 290 | 92.41 268 | 83.24 197 | 81.06 284 | 90.42 278 | 66.60 269 | 94.28 318 | 79.46 235 | 80.98 301 | 92.48 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 256 | 83.09 264 | 90.14 205 | 93.80 197 | 80.05 200 | 89.18 305 | 93.09 253 | 78.89 269 | 78.19 311 | 91.91 235 | 65.86 278 | 97.27 209 | 68.47 319 | 88.45 215 | 93.11 273 |
|
tpm | | | 84.73 257 | 84.02 253 | 86.87 296 | 90.33 306 | 68.90 343 | 89.06 307 | 89.94 329 | 80.85 247 | 85.75 186 | 89.86 289 | 68.54 253 | 95.97 281 | 77.76 253 | 84.05 258 | 95.75 157 |
|
tfpnnormal | | | 84.72 258 | 83.23 263 | 89.20 238 | 92.79 228 | 80.05 200 | 94.48 141 | 95.81 137 | 82.38 212 | 81.08 283 | 91.21 255 | 69.01 247 | 96.95 231 | 61.69 348 | 80.59 305 | 90.58 330 |
|
CVMVSNet | | | 84.69 259 | 84.79 243 | 84.37 320 | 91.84 250 | 64.92 356 | 93.70 194 | 91.47 300 | 66.19 352 | 86.16 182 | 95.28 107 | 67.18 260 | 93.33 331 | 80.89 217 | 90.42 181 | 94.88 185 |
|
test-mter | | | 84.54 260 | 83.64 259 | 87.25 284 | 90.95 283 | 71.67 326 | 89.55 296 | 89.88 332 | 79.17 265 | 84.54 224 | 87.95 316 | 55.56 329 | 95.11 308 | 81.82 200 | 93.37 149 | 94.97 177 |
|
TransMVSNet (Re) | | | 84.43 261 | 83.06 265 | 88.54 254 | 91.72 254 | 78.44 239 | 95.18 100 | 92.82 260 | 82.73 207 | 79.67 303 | 92.12 225 | 73.49 188 | 95.96 282 | 71.10 305 | 68.73 352 | 91.21 318 |
|
pmmvs5 | | | 84.21 262 | 82.84 269 | 88.34 259 | 88.95 324 | 76.94 272 | 92.41 238 | 91.91 289 | 75.63 306 | 80.28 293 | 91.18 258 | 64.59 284 | 95.57 295 | 77.09 262 | 83.47 265 | 92.53 290 |
|
tpm2 | | | 84.08 263 | 82.94 266 | 87.48 279 | 91.39 266 | 71.27 328 | 89.23 304 | 90.37 320 | 71.95 339 | 84.64 221 | 89.33 296 | 67.30 257 | 96.55 255 | 75.17 279 | 87.09 237 | 94.63 192 |
|
test_fmvs2 | | | 83.98 264 | 84.03 252 | 83.83 325 | 87.16 340 | 67.53 350 | 93.93 184 | 92.89 257 | 77.62 287 | 86.89 168 | 93.53 178 | 47.18 354 | 92.02 343 | 90.54 87 | 86.51 241 | 91.93 304 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 265 | 82.04 272 | 89.74 223 | 95.28 127 | 79.75 210 | 94.25 159 | 92.28 273 | 75.17 311 | 78.02 314 | 93.77 173 | 58.60 320 | 97.84 158 | 65.06 339 | 85.92 244 | 91.63 309 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
RPMNet | | | 83.95 266 | 81.53 276 | 91.21 157 | 90.58 301 | 79.34 221 | 85.24 341 | 96.76 72 | 71.44 341 | 85.55 191 | 82.97 349 | 70.87 217 | 98.91 75 | 61.01 350 | 89.36 198 | 95.40 166 |
|
SixPastTwentyTwo | | | 83.91 267 | 82.90 267 | 86.92 293 | 90.99 281 | 70.67 335 | 93.48 200 | 91.99 284 | 85.54 148 | 77.62 317 | 92.11 227 | 60.59 309 | 96.87 236 | 76.05 272 | 77.75 325 | 93.20 269 |
|
EPMVS | | | 83.90 268 | 82.70 270 | 87.51 276 | 90.23 309 | 72.67 314 | 88.62 313 | 81.96 360 | 81.37 238 | 85.01 216 | 88.34 310 | 66.31 273 | 94.45 313 | 75.30 278 | 87.12 236 | 95.43 165 |
|
TESTMET0.1,1 | | | 83.74 269 | 82.85 268 | 86.42 302 | 89.96 314 | 71.21 330 | 89.55 296 | 87.88 342 | 77.41 289 | 83.37 257 | 87.31 324 | 56.71 325 | 93.65 328 | 80.62 222 | 92.85 159 | 94.40 211 |
|
MVS_0304 | | | 83.46 270 | 81.92 273 | 88.10 266 | 90.63 299 | 77.49 265 | 93.26 212 | 93.75 243 | 80.04 255 | 80.44 292 | 87.24 326 | 47.94 351 | 95.55 296 | 75.79 273 | 88.16 220 | 91.26 316 |
|
pmmvs6 | | | 83.42 271 | 81.60 275 | 88.87 246 | 88.01 336 | 77.87 255 | 94.96 114 | 94.24 224 | 74.67 317 | 78.80 309 | 91.09 263 | 60.17 312 | 96.49 257 | 77.06 263 | 75.40 336 | 92.23 300 |
|
AllTest | | | 83.42 271 | 81.39 277 | 89.52 231 | 95.01 138 | 77.79 258 | 93.12 217 | 90.89 314 | 77.41 289 | 76.12 326 | 93.34 181 | 54.08 337 | 97.51 182 | 68.31 321 | 84.27 256 | 93.26 264 |
|
tpmvs | | | 83.35 273 | 82.07 271 | 87.20 288 | 91.07 279 | 71.00 333 | 88.31 317 | 91.70 291 | 78.91 268 | 80.49 291 | 87.18 327 | 69.30 243 | 97.08 223 | 68.12 324 | 83.56 264 | 93.51 258 |
|
USDC | | | 82.76 274 | 81.26 279 | 87.26 283 | 91.17 274 | 74.55 295 | 89.27 302 | 93.39 249 | 78.26 283 | 75.30 331 | 92.08 229 | 54.43 336 | 96.63 244 | 71.64 299 | 85.79 246 | 90.61 327 |
|
Patchmtry | | | 82.71 275 | 80.93 281 | 88.06 267 | 90.05 312 | 76.37 281 | 84.74 346 | 91.96 287 | 72.28 338 | 81.32 281 | 87.87 319 | 71.03 214 | 95.50 301 | 68.97 316 | 80.15 311 | 92.32 298 |
|
PatchT | | | 82.68 276 | 81.27 278 | 86.89 295 | 90.09 311 | 70.94 334 | 84.06 348 | 90.15 323 | 74.91 314 | 85.63 190 | 83.57 345 | 69.37 238 | 94.87 312 | 65.19 336 | 88.50 214 | 94.84 186 |
|
MIMVSNet | | | 82.59 277 | 80.53 282 | 88.76 247 | 91.51 261 | 78.32 243 | 86.57 332 | 90.13 324 | 79.32 262 | 80.70 287 | 88.69 307 | 52.98 341 | 93.07 336 | 66.03 334 | 88.86 208 | 94.90 184 |
|
test0.0.03 1 | | | 82.41 278 | 81.69 274 | 84.59 318 | 88.23 333 | 72.89 310 | 90.24 286 | 87.83 343 | 83.41 192 | 79.86 301 | 89.78 291 | 67.25 258 | 88.99 358 | 65.18 337 | 83.42 267 | 91.90 305 |
|
EG-PatchMatch MVS | | | 82.37 279 | 80.34 285 | 88.46 255 | 90.27 307 | 79.35 220 | 92.80 230 | 94.33 220 | 77.14 293 | 73.26 342 | 90.18 281 | 47.47 353 | 96.72 239 | 70.25 307 | 87.32 235 | 89.30 338 |
|
tpm cat1 | | | 81.96 280 | 80.27 286 | 87.01 290 | 91.09 278 | 71.02 332 | 87.38 327 | 91.53 298 | 66.25 351 | 80.17 294 | 86.35 333 | 68.22 256 | 96.15 275 | 69.16 315 | 82.29 278 | 93.86 237 |
|
our_test_3 | | | 81.93 281 | 80.46 284 | 86.33 303 | 88.46 330 | 73.48 306 | 88.46 315 | 91.11 306 | 76.46 296 | 76.69 322 | 88.25 312 | 66.89 264 | 94.36 315 | 68.75 317 | 79.08 321 | 91.14 320 |
|
ppachtmachnet_test | | | 81.84 282 | 80.07 290 | 87.15 289 | 88.46 330 | 74.43 298 | 89.04 308 | 92.16 276 | 75.33 309 | 77.75 315 | 88.99 299 | 66.20 274 | 95.37 304 | 65.12 338 | 77.60 326 | 91.65 308 |
|
gg-mvs-nofinetune | | | 81.77 283 | 79.37 296 | 88.99 245 | 90.85 291 | 77.73 261 | 86.29 333 | 79.63 365 | 74.88 316 | 83.19 261 | 69.05 363 | 60.34 310 | 96.11 276 | 75.46 276 | 94.64 122 | 93.11 273 |
|
CL-MVSNet_self_test | | | 81.74 284 | 80.53 282 | 85.36 312 | 85.96 346 | 72.45 319 | 90.25 284 | 93.07 254 | 81.24 242 | 79.85 302 | 87.29 325 | 70.93 216 | 92.52 339 | 66.95 328 | 69.23 348 | 91.11 322 |
|
Patchmatch-RL test | | | 81.67 285 | 79.96 291 | 86.81 297 | 85.42 351 | 71.23 329 | 82.17 355 | 87.50 346 | 78.47 277 | 77.19 319 | 82.50 350 | 70.81 218 | 93.48 329 | 82.66 184 | 72.89 340 | 95.71 160 |
|
ADS-MVSNet2 | | | 81.66 286 | 79.71 294 | 87.50 277 | 91.35 268 | 74.19 300 | 83.33 351 | 88.48 341 | 72.90 333 | 82.24 270 | 85.77 337 | 64.98 282 | 93.20 334 | 64.57 340 | 83.74 260 | 95.12 173 |
|
K. test v3 | | | 81.59 287 | 80.15 289 | 85.91 308 | 89.89 316 | 69.42 342 | 92.57 235 | 87.71 344 | 85.56 147 | 73.44 341 | 89.71 292 | 55.58 328 | 95.52 298 | 77.17 260 | 69.76 346 | 92.78 285 |
|
ADS-MVSNet | | | 81.56 288 | 79.78 292 | 86.90 294 | 91.35 268 | 71.82 323 | 83.33 351 | 89.16 338 | 72.90 333 | 82.24 270 | 85.77 337 | 64.98 282 | 93.76 325 | 64.57 340 | 83.74 260 | 95.12 173 |
|
FMVSNet5 | | | 81.52 289 | 79.60 295 | 87.27 282 | 91.17 274 | 77.95 251 | 91.49 264 | 92.26 274 | 76.87 294 | 76.16 325 | 87.91 318 | 51.67 342 | 92.34 340 | 67.74 325 | 81.16 292 | 91.52 310 |
|
dp | | | 81.47 290 | 80.23 287 | 85.17 315 | 89.92 315 | 65.49 354 | 86.74 330 | 90.10 325 | 76.30 300 | 81.10 282 | 87.12 328 | 62.81 294 | 95.92 283 | 68.13 323 | 79.88 314 | 94.09 225 |
|
Patchmatch-test | | | 81.37 291 | 79.30 297 | 87.58 275 | 90.92 287 | 74.16 301 | 80.99 357 | 87.68 345 | 70.52 345 | 76.63 323 | 88.81 302 | 71.21 211 | 92.76 338 | 60.01 354 | 86.93 239 | 95.83 154 |
|
EU-MVSNet | | | 81.32 292 | 80.95 280 | 82.42 331 | 88.50 329 | 63.67 357 | 93.32 205 | 91.33 302 | 64.02 355 | 80.57 290 | 92.83 201 | 61.21 306 | 92.27 341 | 76.34 268 | 80.38 310 | 91.32 314 |
|
test_0402 | | | 81.30 293 | 79.17 301 | 87.67 273 | 93.19 213 | 78.17 247 | 92.98 224 | 91.71 290 | 75.25 310 | 76.02 328 | 90.31 279 | 59.23 317 | 96.37 265 | 50.22 362 | 83.63 263 | 88.47 347 |
|
JIA-IIPM | | | 81.04 294 | 78.98 304 | 87.25 284 | 88.64 326 | 73.48 306 | 81.75 356 | 89.61 336 | 73.19 330 | 82.05 272 | 73.71 360 | 66.07 277 | 95.87 286 | 71.18 303 | 84.60 253 | 92.41 294 |
|
Anonymous20231206 | | | 81.03 295 | 79.77 293 | 84.82 317 | 87.85 339 | 70.26 338 | 91.42 265 | 92.08 280 | 73.67 326 | 77.75 315 | 89.25 297 | 62.43 296 | 93.08 335 | 61.50 349 | 82.00 283 | 91.12 321 |
|
pmmvs-eth3d | | | 80.97 296 | 78.72 305 | 87.74 271 | 84.99 353 | 79.97 206 | 90.11 291 | 91.65 293 | 75.36 308 | 73.51 340 | 86.03 334 | 59.45 316 | 93.96 323 | 75.17 279 | 72.21 341 | 89.29 339 |
|
testgi | | | 80.94 297 | 80.20 288 | 83.18 326 | 87.96 337 | 66.29 351 | 91.28 267 | 90.70 318 | 83.70 183 | 78.12 312 | 92.84 200 | 51.37 343 | 90.82 350 | 63.34 343 | 82.46 276 | 92.43 293 |
|
CMPMVS |  | 59.16 21 | 80.52 298 | 79.20 300 | 84.48 319 | 83.98 354 | 67.63 349 | 89.95 294 | 93.84 240 | 64.79 354 | 66.81 355 | 91.14 261 | 57.93 322 | 95.17 306 | 76.25 269 | 88.10 221 | 90.65 326 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Anonymous20240521 | | | 80.44 299 | 79.21 299 | 84.11 323 | 85.75 349 | 67.89 346 | 92.86 228 | 93.23 251 | 75.61 307 | 75.59 330 | 87.47 323 | 50.03 345 | 94.33 316 | 71.14 304 | 81.21 291 | 90.12 332 |
|
LF4IMVS | | | 80.37 300 | 79.07 303 | 84.27 322 | 86.64 342 | 69.87 341 | 89.39 301 | 91.05 309 | 76.38 298 | 74.97 333 | 90.00 286 | 47.85 352 | 94.25 319 | 74.55 287 | 80.82 303 | 88.69 345 |
|
KD-MVS_self_test | | | 80.20 301 | 79.24 298 | 83.07 327 | 85.64 350 | 65.29 355 | 91.01 273 | 93.93 234 | 78.71 275 | 76.32 324 | 86.40 332 | 59.20 318 | 92.93 337 | 72.59 296 | 69.35 347 | 91.00 325 |
|
UnsupCasMVSNet_eth | | | 80.07 302 | 78.27 306 | 85.46 311 | 85.24 352 | 72.63 316 | 88.45 316 | 94.87 199 | 82.99 202 | 71.64 348 | 88.07 315 | 56.34 326 | 91.75 346 | 73.48 293 | 63.36 359 | 92.01 303 |
|
test20.03 | | | 79.95 303 | 79.08 302 | 82.55 329 | 85.79 348 | 67.74 348 | 91.09 272 | 91.08 307 | 81.23 243 | 74.48 337 | 89.96 288 | 61.63 300 | 90.15 352 | 60.08 352 | 76.38 332 | 89.76 333 |
|
TDRefinement | | | 79.81 304 | 77.34 308 | 87.22 287 | 79.24 363 | 75.48 290 | 93.12 217 | 92.03 282 | 76.45 297 | 75.01 332 | 91.58 247 | 49.19 348 | 96.44 262 | 70.22 309 | 69.18 349 | 89.75 334 |
|
TinyColmap | | | 79.76 305 | 77.69 307 | 85.97 305 | 91.71 256 | 73.12 308 | 89.55 296 | 90.36 321 | 75.03 312 | 72.03 346 | 90.19 280 | 46.22 355 | 96.19 274 | 63.11 344 | 81.03 297 | 88.59 346 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 306 | 77.03 313 | 86.93 292 | 87.00 341 | 76.23 283 | 92.33 243 | 90.74 317 | 68.93 348 | 74.52 336 | 88.23 313 | 49.58 347 | 96.62 245 | 57.64 356 | 84.29 255 | 87.94 349 |
|
MIMVSNet1 | | | 79.38 307 | 77.28 309 | 85.69 310 | 86.35 343 | 73.67 303 | 91.61 263 | 92.75 262 | 78.11 286 | 72.64 344 | 88.12 314 | 48.16 350 | 91.97 345 | 60.32 351 | 77.49 327 | 91.43 313 |
|
YYNet1 | | | 79.22 308 | 77.20 310 | 85.28 314 | 88.20 335 | 72.66 315 | 85.87 335 | 90.05 328 | 74.33 320 | 62.70 357 | 87.61 321 | 66.09 276 | 92.03 342 | 66.94 329 | 72.97 339 | 91.15 319 |
|
MDA-MVSNet_test_wron | | | 79.21 309 | 77.19 311 | 85.29 313 | 88.22 334 | 72.77 312 | 85.87 335 | 90.06 326 | 74.34 319 | 62.62 358 | 87.56 322 | 66.14 275 | 91.99 344 | 66.90 332 | 73.01 338 | 91.10 323 |
|
MDA-MVSNet-bldmvs | | | 78.85 310 | 76.31 315 | 86.46 300 | 89.76 317 | 73.88 302 | 88.79 310 | 90.42 319 | 79.16 266 | 59.18 359 | 88.33 311 | 60.20 311 | 94.04 320 | 62.00 347 | 68.96 350 | 91.48 312 |
|
KD-MVS_2432*1600 | | | 78.50 311 | 76.02 318 | 85.93 306 | 86.22 344 | 74.47 296 | 84.80 344 | 92.33 270 | 79.29 263 | 76.98 320 | 85.92 335 | 53.81 339 | 93.97 321 | 67.39 326 | 57.42 364 | 89.36 336 |
|
miper_refine_blended | | | 78.50 311 | 76.02 318 | 85.93 306 | 86.22 344 | 74.47 296 | 84.80 344 | 92.33 270 | 79.29 263 | 76.98 320 | 85.92 335 | 53.81 339 | 93.97 321 | 67.39 326 | 57.42 364 | 89.36 336 |
|
PM-MVS | | | 78.11 313 | 76.12 317 | 84.09 324 | 83.54 356 | 70.08 339 | 88.97 309 | 85.27 351 | 79.93 256 | 74.73 335 | 86.43 331 | 34.70 362 | 93.48 329 | 79.43 238 | 72.06 342 | 88.72 344 |
|
test_vis1_rt | | | 77.96 314 | 76.46 314 | 82.48 330 | 85.89 347 | 71.74 325 | 90.25 284 | 78.89 366 | 71.03 344 | 71.30 349 | 81.35 352 | 42.49 358 | 91.05 349 | 84.55 157 | 82.37 277 | 84.65 352 |
|
test_fmvs3 | | | 77.67 315 | 77.16 312 | 79.22 335 | 79.52 362 | 61.14 361 | 92.34 242 | 91.64 294 | 73.98 323 | 78.86 308 | 86.59 329 | 27.38 366 | 87.03 360 | 88.12 111 | 75.97 334 | 89.50 335 |
|
PVSNet_0 | | 73.20 20 | 77.22 316 | 74.83 321 | 84.37 320 | 90.70 297 | 71.10 331 | 83.09 353 | 89.67 335 | 72.81 335 | 73.93 339 | 83.13 347 | 60.79 308 | 93.70 327 | 68.54 318 | 50.84 367 | 88.30 348 |
|
DSMNet-mixed | | | 76.94 317 | 76.29 316 | 78.89 336 | 83.10 357 | 56.11 371 | 87.78 321 | 79.77 364 | 60.65 358 | 75.64 329 | 88.71 305 | 61.56 301 | 88.34 359 | 60.07 353 | 89.29 200 | 92.21 301 |
|
new-patchmatchnet | | | 76.41 318 | 75.17 320 | 80.13 333 | 82.65 359 | 59.61 363 | 87.66 324 | 91.08 307 | 78.23 284 | 69.85 351 | 83.22 346 | 54.76 333 | 91.63 348 | 64.14 342 | 64.89 357 | 89.16 341 |
|
UnsupCasMVSNet_bld | | | 76.23 319 | 73.27 322 | 85.09 316 | 83.79 355 | 72.92 309 | 85.65 338 | 93.47 248 | 71.52 340 | 68.84 353 | 79.08 355 | 49.77 346 | 93.21 333 | 66.81 333 | 60.52 361 | 89.13 343 |
|
mvsany_test3 | | | 74.95 320 | 73.26 323 | 80.02 334 | 74.61 365 | 63.16 359 | 85.53 339 | 78.42 367 | 74.16 321 | 74.89 334 | 86.46 330 | 36.02 361 | 89.09 357 | 82.39 188 | 66.91 353 | 87.82 350 |
|
MVS-HIRNet | | | 73.70 321 | 72.20 324 | 78.18 339 | 91.81 252 | 56.42 370 | 82.94 354 | 82.58 358 | 55.24 360 | 68.88 352 | 66.48 364 | 55.32 331 | 95.13 307 | 58.12 355 | 88.42 216 | 83.01 355 |
|
new_pmnet | | | 72.15 322 | 70.13 326 | 78.20 338 | 82.95 358 | 65.68 352 | 83.91 349 | 82.40 359 | 62.94 357 | 64.47 356 | 79.82 354 | 42.85 357 | 86.26 362 | 57.41 357 | 74.44 337 | 82.65 357 |
|
test_f | | | 71.95 323 | 70.87 325 | 75.21 342 | 74.21 367 | 59.37 364 | 85.07 343 | 85.82 348 | 65.25 353 | 70.42 350 | 83.13 347 | 23.62 367 | 82.93 367 | 78.32 247 | 71.94 343 | 83.33 354 |
|
pmmvs3 | | | 71.81 324 | 68.71 327 | 81.11 332 | 75.86 364 | 70.42 337 | 86.74 330 | 83.66 355 | 58.95 359 | 68.64 354 | 80.89 353 | 36.93 360 | 89.52 355 | 63.10 345 | 63.59 358 | 83.39 353 |
|
APD_test1 | | | 69.04 325 | 66.26 329 | 77.36 341 | 80.51 360 | 62.79 360 | 85.46 340 | 83.51 356 | 54.11 362 | 59.14 360 | 84.79 341 | 23.40 369 | 89.61 354 | 55.22 358 | 70.24 345 | 79.68 360 |
|
N_pmnet | | | 68.89 326 | 68.44 328 | 70.23 346 | 89.07 323 | 28.79 380 | 88.06 318 | 19.50 381 | 69.47 347 | 71.86 347 | 84.93 339 | 61.24 305 | 91.75 346 | 54.70 359 | 77.15 329 | 90.15 331 |
|
LCM-MVSNet | | | 66.00 327 | 62.16 332 | 77.51 340 | 64.51 375 | 58.29 365 | 83.87 350 | 90.90 313 | 48.17 364 | 54.69 361 | 73.31 361 | 16.83 375 | 86.75 361 | 65.47 335 | 61.67 360 | 87.48 351 |
|
test_vis3_rt | | | 65.12 328 | 62.60 330 | 72.69 344 | 71.44 368 | 60.71 362 | 87.17 328 | 65.55 374 | 63.80 356 | 53.22 362 | 65.65 366 | 14.54 376 | 89.44 356 | 76.65 264 | 65.38 355 | 67.91 365 |
|
FPMVS | | | 64.63 329 | 62.55 331 | 70.88 345 | 70.80 369 | 56.71 366 | 84.42 347 | 84.42 353 | 51.78 363 | 49.57 363 | 81.61 351 | 23.49 368 | 81.48 368 | 40.61 369 | 76.25 333 | 74.46 361 |
|
EGC-MVSNET | | | 61.97 330 | 56.37 334 | 78.77 337 | 89.63 320 | 73.50 305 | 89.12 306 | 82.79 357 | 0.21 378 | 1.24 379 | 84.80 340 | 39.48 359 | 90.04 353 | 44.13 364 | 75.94 335 | 72.79 362 |
|
PMMVS2 | | | 59.60 331 | 56.40 333 | 69.21 349 | 68.83 372 | 46.58 375 | 73.02 366 | 77.48 370 | 55.07 361 | 49.21 364 | 72.95 362 | 17.43 374 | 80.04 369 | 49.32 363 | 44.33 369 | 80.99 359 |
|
testf1 | | | 59.54 332 | 56.11 335 | 69.85 347 | 69.28 370 | 56.61 368 | 80.37 359 | 76.55 371 | 42.58 367 | 45.68 366 | 75.61 356 | 11.26 377 | 84.18 364 | 43.20 366 | 60.44 362 | 68.75 363 |
|
APD_test2 | | | 59.54 332 | 56.11 335 | 69.85 347 | 69.28 370 | 56.61 368 | 80.37 359 | 76.55 371 | 42.58 367 | 45.68 366 | 75.61 356 | 11.26 377 | 84.18 364 | 43.20 366 | 60.44 362 | 68.75 363 |
|
ANet_high | | | 58.88 334 | 54.22 338 | 72.86 343 | 56.50 378 | 56.67 367 | 80.75 358 | 86.00 347 | 73.09 332 | 37.39 370 | 64.63 367 | 22.17 370 | 79.49 370 | 43.51 365 | 23.96 372 | 82.43 358 |
|
Gipuma |  | | 57.99 335 | 54.91 337 | 67.24 350 | 88.51 327 | 65.59 353 | 52.21 369 | 90.33 322 | 43.58 366 | 42.84 369 | 51.18 370 | 20.29 372 | 85.07 363 | 34.77 370 | 70.45 344 | 51.05 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 47.18 22 | 52.22 336 | 48.46 340 | 63.48 351 | 45.72 380 | 46.20 376 | 73.41 365 | 78.31 368 | 41.03 369 | 30.06 372 | 65.68 365 | 6.05 379 | 83.43 366 | 30.04 371 | 65.86 354 | 60.80 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 50.52 337 | 48.47 339 | 56.66 353 | 52.26 379 | 18.98 382 | 41.51 371 | 81.40 361 | 10.10 373 | 44.59 368 | 75.01 359 | 28.51 364 | 68.16 371 | 53.54 360 | 49.31 368 | 82.83 356 |
|
MVE |  | 39.65 23 | 43.39 338 | 38.59 344 | 57.77 352 | 56.52 377 | 48.77 374 | 55.38 368 | 58.64 378 | 29.33 372 | 28.96 373 | 52.65 369 | 4.68 380 | 64.62 374 | 28.11 372 | 33.07 370 | 59.93 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 43.23 339 | 42.29 341 | 46.03 355 | 65.58 374 | 37.41 377 | 73.51 364 | 64.62 375 | 33.99 370 | 28.47 374 | 47.87 371 | 19.90 373 | 67.91 372 | 22.23 373 | 24.45 371 | 32.77 370 |
|
EMVS | | | 42.07 340 | 41.12 342 | 44.92 356 | 63.45 376 | 35.56 379 | 73.65 363 | 63.48 376 | 33.05 371 | 26.88 375 | 45.45 372 | 21.27 371 | 67.14 373 | 19.80 374 | 23.02 373 | 32.06 371 |
|
tmp_tt | | | 35.64 341 | 39.24 343 | 24.84 357 | 14.87 381 | 23.90 381 | 62.71 367 | 51.51 380 | 6.58 375 | 36.66 371 | 62.08 368 | 44.37 356 | 30.34 377 | 52.40 361 | 22.00 374 | 20.27 372 |
|
cdsmvs_eth3d_5k | | | 22.14 342 | 29.52 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 95.76 141 | 0.00 379 | 0.00 380 | 94.29 147 | 75.66 157 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
wuyk23d | | | 21.27 343 | 20.48 346 | 23.63 358 | 68.59 373 | 36.41 378 | 49.57 370 | 6.85 382 | 9.37 374 | 7.89 376 | 4.46 378 | 4.03 381 | 31.37 376 | 17.47 375 | 16.07 375 | 3.12 373 |
|
testmvs | | | 8.92 344 | 11.52 347 | 1.12 360 | 1.06 382 | 0.46 384 | 86.02 334 | 0.65 383 | 0.62 376 | 2.74 377 | 9.52 376 | 0.31 383 | 0.45 379 | 2.38 376 | 0.39 376 | 2.46 375 |
|
test123 | | | 8.76 345 | 11.22 348 | 1.39 359 | 0.85 383 | 0.97 383 | 85.76 337 | 0.35 384 | 0.54 377 | 2.45 378 | 8.14 377 | 0.60 382 | 0.48 378 | 2.16 377 | 0.17 377 | 2.71 374 |
|
ab-mvs-re | | | 7.82 346 | 10.43 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 93.88 168 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 6.64 347 | 8.86 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 79.70 109 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 98.86 1 | 85.54 63 | 98.29 1 | 97.49 5 | 89.79 41 | 96.29 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 61 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
PC_three_1452 | | | | | | | | | | 82.47 210 | 97.09 9 | 97.07 38 | 92.72 1 | 98.04 146 | 92.70 41 | 99.02 12 | 98.86 10 |
|
No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 61 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 5 |
|
test_one_0601 | | | | | | 98.58 11 | 85.83 57 | | 97.44 14 | 91.05 12 | 96.78 13 | 98.06 6 | 91.45 11 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.15 34 | 86.62 30 | | 97.07 43 | 83.63 185 | 94.19 31 | 96.91 44 | 87.57 31 | 99.26 40 | 91.99 60 | 98.44 49 | |
|
RE-MVS-def | | | | 93.68 43 | | 97.92 43 | 84.57 73 | 96.28 43 | 96.76 72 | 87.46 105 | 93.75 38 | 97.43 18 | 82.94 74 | | 92.73 37 | 97.80 70 | 97.88 75 |
|
IU-MVS | | | | | | 98.77 5 | 86.00 47 | | 96.84 63 | 81.26 241 | 97.26 7 | | | | 95.50 10 | 99.13 3 | 99.03 7 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 36 | 92.59 2 | 98.94 73 | 92.25 49 | 98.99 14 | 98.84 13 |
|
test_241102_TWO | | | | | | | | | 97.44 14 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 4 | 99.12 6 | 98.98 9 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 49 | | 97.44 14 | 90.26 31 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 29 | | | |
|
9.14 | | | | 94.47 17 | | 97.79 49 | | 96.08 54 | 97.44 14 | 86.13 135 | 95.10 24 | 97.40 20 | 88.34 22 | 99.22 42 | 93.25 30 | 98.70 32 | |
|
save fliter | | | | | | 97.85 46 | 85.63 62 | 95.21 98 | 96.82 66 | 89.44 48 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 17 | 97.04 10 | 98.05 8 | 92.09 6 | 99.55 14 | 95.64 6 | 99.13 3 | 99.13 2 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 2 | 86.43 36 | 97.09 16 | 97.49 5 | | | | | 99.61 3 | 95.62 8 | 99.08 7 | 98.99 8 |
|
test0726 | | | | | | 98.78 3 | 85.93 52 | 97.19 11 | 97.47 10 | 90.27 29 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 140 |
|
test_part2 | | | | | | 98.55 12 | 87.22 16 | | | | 96.40 14 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 207 | | | | 96.12 140 |
|
sam_mvs | | | | | | | | | | | | | 70.60 220 | | | | |
|
ambc | | | | | 83.06 328 | 79.99 361 | 63.51 358 | 77.47 362 | 92.86 258 | | 74.34 338 | 84.45 342 | 28.74 363 | 95.06 310 | 73.06 295 | 68.89 351 | 90.61 327 |
|
MTGPA |  | | | | | | | | 96.97 48 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 319 | | | | 9.81 375 | 69.31 242 | 95.53 297 | 76.65 264 | | |
|
test_post | | | | | | | | | | | | 10.29 374 | 70.57 224 | 95.91 285 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 344 | 71.53 208 | 96.48 258 | | | |
|
GG-mvs-BLEND | | | | | 87.94 270 | 89.73 319 | 77.91 252 | 87.80 320 | 78.23 369 | | 80.58 289 | 83.86 343 | 59.88 314 | 95.33 305 | 71.20 301 | 92.22 166 | 90.60 329 |
|
MTMP | | | | | | | | 96.16 49 | 60.64 377 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 321 | 68.00 345 | | | 77.28 292 | | 88.99 299 | | 97.57 176 | 79.44 237 | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 64 | 98.71 30 | 98.07 64 |
|
TEST9 | | | | | | 97.53 58 | 86.49 34 | 94.07 172 | 96.78 69 | 81.61 234 | 92.77 61 | 96.20 73 | 87.71 28 | 99.12 49 | | | |
|
test_8 | | | | | | 97.49 60 | 86.30 42 | 94.02 177 | 96.76 72 | 81.86 227 | 92.70 65 | 96.20 73 | 87.63 29 | 99.02 59 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 87 | 98.68 35 | 98.27 50 |
|
agg_prior | | | | | | 97.38 63 | 85.92 54 | | 96.72 78 | | 92.16 75 | | | 98.97 70 | | | |
|
TestCases | | | | | 89.52 231 | 95.01 138 | 77.79 258 | | 90.89 314 | 77.41 289 | 76.12 326 | 93.34 181 | 54.08 337 | 97.51 182 | 68.31 321 | 84.27 256 | 93.26 264 |
|
test_prior4 | | | | | | | 85.96 51 | 94.11 167 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 166 | | 87.67 103 | 92.63 66 | 96.39 68 | 86.62 36 | | 91.50 70 | 98.67 37 | |
|
test_prior | | | | | 93.82 56 | 97.29 67 | 84.49 77 | | 96.88 59 | | | | | 98.87 77 | | | 98.11 63 |
|
旧先验2 | | | | | | | | 93.36 204 | | 71.25 342 | 94.37 28 | | | 97.13 221 | 86.74 130 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 219 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 93.10 71 | 97.30 66 | 84.35 84 | | 95.56 155 | 71.09 343 | 91.26 98 | 96.24 71 | 82.87 75 | 98.86 79 | 79.19 241 | 98.10 60 | 96.07 144 |
|
旧先验1 | | | | | | 96.79 76 | 81.81 150 | | 95.67 147 | | | 96.81 50 | 86.69 35 | | | 97.66 74 | 96.97 113 |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 211 | 96.26 104 | 73.95 324 | | | | 99.05 53 | 80.56 223 | | 96.59 125 |
|
原ACMM2 | | | | | | | | 92.94 226 | | | | | | | | | |
|
原ACMM1 | | | | | 92.01 117 | 97.34 64 | 81.05 171 | | 96.81 67 | 78.89 269 | 90.45 105 | 95.92 85 | 82.65 76 | 98.84 83 | 80.68 221 | 98.26 55 | 96.14 138 |
|
test222 | | | | | | 96.55 84 | 81.70 152 | 92.22 247 | 95.01 188 | 68.36 349 | 90.20 109 | 96.14 78 | 80.26 102 | | | 97.80 70 | 96.05 146 |
|
testdata2 | | | | | | | | | | | | | | 98.75 87 | 78.30 248 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 34 | | | | |
|
testdata | | | | | 90.49 187 | 96.40 89 | 77.89 254 | | 95.37 173 | 72.51 336 | 93.63 41 | 96.69 53 | 82.08 87 | 97.65 169 | 83.08 174 | 97.39 76 | 95.94 148 |
|
testdata1 | | | | | | | | 92.15 249 | | 87.94 93 | | | | | | | |
|
test12 | | | | | 94.34 47 | 97.13 70 | 86.15 45 | | 96.29 101 | | 91.04 100 | | 85.08 52 | 99.01 61 | | 98.13 59 | 97.86 77 |
|
plane_prior7 | | | | | | 94.70 157 | 82.74 127 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 166 | 82.75 125 | | | | | | 74.23 174 | | | | |
|
plane_prior5 | | | | | | | | | 96.22 109 | | | | | 98.12 131 | 88.15 108 | 89.99 185 | 94.63 192 |
|
plane_prior4 | | | | | | | | | | | | 94.86 123 | | | | | |
|
plane_prior3 | | | | | | | 82.75 125 | | | 90.26 31 | 86.91 165 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 65 | | 90.81 15 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 161 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 128 | 95.21 98 | | 89.66 45 | | | | | | 89.88 190 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 349 | | | | | | | | |
|
lessismore_v0 | | | | | 86.04 304 | 88.46 330 | 68.78 344 | | 80.59 363 | | 73.01 343 | 90.11 283 | 55.39 330 | 96.43 263 | 75.06 281 | 65.06 356 | 92.90 280 |
|
LGP-MVS_train | | | | | 91.12 161 | 94.47 168 | 81.49 158 | | 96.14 114 | 86.73 122 | 85.45 201 | 95.16 113 | 69.89 231 | 98.10 133 | 87.70 116 | 89.23 201 | 93.77 245 |
|
test11 | | | | | | | | | 96.57 89 | | | | | | | | |
|
door | | | | | | | | | 85.33 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 154 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 180 | | 94.39 151 | | 88.81 65 | 85.43 204 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 180 | | 94.39 151 | | 88.81 65 | 85.43 204 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 127 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 204 | | | 97.96 152 | | | 94.51 202 |
|
HQP3-MVS | | | | | | | | | 96.04 122 | | | | | | | 89.77 192 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 184 | | | | |
|
NP-MVS | | | | | | 94.37 174 | 82.42 137 | | | | | 93.98 161 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 372 | 87.62 325 | | 73.32 329 | 84.59 223 | | 70.33 227 | | 74.65 285 | | 95.50 163 |
|
MDTV_nov1_ep13 | | | | 83.56 260 | | 91.69 258 | 69.93 340 | 87.75 322 | 91.54 297 | 78.60 276 | 84.86 218 | 88.90 301 | 69.54 236 | 96.03 278 | 70.25 307 | 88.93 207 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 230 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 224 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 104 | | | | |
|
ITE_SJBPF | | | | | 88.24 262 | 91.88 249 | 77.05 271 | | 92.92 256 | 85.54 148 | 80.13 297 | 93.30 185 | 57.29 324 | 96.20 272 | 72.46 297 | 84.71 252 | 91.49 311 |
|
DeepMVS_CX |  | | | | 56.31 354 | 74.23 366 | 51.81 373 | | 56.67 379 | 44.85 365 | 48.54 365 | 75.16 358 | 27.87 365 | 58.74 375 | 40.92 368 | 52.22 366 | 58.39 368 |
|