This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3197.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 9997.51 589.13 6997.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7496.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10996.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16097.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24395.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 11895.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 25994.38 3598.85 2098.03 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10496.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7897.15 4189.82 4395.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7897.15 4189.82 4395.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9296.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5698.40 5498.62 22
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5395.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 8997.34 2388.28 9895.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
test_fmvsm_n_192094.71 2095.11 1093.50 7495.79 12084.62 8396.15 5497.64 289.85 4297.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 118
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6096.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 79
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8693.65 5997.21 4486.10 4899.49 2692.35 6998.77 2898.30 49
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 9993.15 6997.04 5586.17 4799.62 292.40 6698.81 2398.52 26
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7697.16 5085.02 6399.49 2691.99 8398.56 5098.47 33
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 12897.12 4487.13 12992.51 9096.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 8993.58 6197.27 4085.22 5899.54 2092.21 7398.74 3198.56 25
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8693.53 6497.26 4285.04 6299.54 2092.35 6998.78 2698.50 27
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17596.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9192.73 8497.23 4385.20 5999.32 4192.15 7698.83 2298.25 61
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 8996.43 10286.56 14496.84 1497.81 2587.56 3298.77 9697.14 596.82 10197.16 122
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7291.98 10097.19 4785.43 5699.56 1292.06 8298.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7796.94 5885.68 16695.05 3897.18 4887.31 3599.07 5691.90 8998.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10294.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 9993.26 6696.83 6485.48 5599.59 891.43 9798.40 5498.30 49
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14097.17 4086.26 15292.83 7897.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7295.29 14084.98 7695.61 9696.28 11586.31 15096.75 1697.86 2487.40 3398.74 9997.07 797.02 9497.07 124
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26484.80 8096.18 5196.82 7189.29 6395.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 86
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12196.52 9180.00 22394.00 20097.08 4790.05 3595.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28292.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
CS-MVS94.12 4094.44 2593.17 8296.55 8883.08 13597.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14493.64 4398.17 6298.19 64
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9496.89 6389.40 5992.81 7996.97 5785.37 5799.24 4690.87 10698.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test94.02 4294.29 3193.24 7996.69 8183.24 12597.49 596.92 6092.14 592.90 7495.77 11185.02 6398.33 13993.03 5398.62 4698.13 68
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13792.62 8796.80 6884.85 6899.17 5092.43 6498.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8491.83 10997.17 4983.96 7799.55 1691.44 9698.64 4598.43 38
balanced_conf0393.98 4594.22 3593.26 7896.13 10183.29 12496.27 4596.52 9789.82 4395.56 3095.51 12084.50 7198.79 9494.83 3098.86 1997.72 94
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10797.78 187.45 12593.26 6697.33 3884.62 7099.51 2490.75 10898.57 4998.32 48
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 17993.56 6396.28 8785.60 5399.31 4292.45 6398.79 2498.12 70
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8596.28 4396.76 7887.46 12393.75 5797.43 3384.24 7499.01 6692.73 5797.80 7997.88 84
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 9996.30 4196.87 6586.96 13393.92 5597.47 3183.88 7898.96 8092.71 6097.87 7698.26 60
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10195.62 13083.17 12896.14 5696.12 13188.13 10595.82 2698.04 1983.43 8098.48 11996.97 996.23 11296.92 135
patch_mono-293.74 5194.32 2892.01 13897.54 6078.37 26093.40 22597.19 3588.02 10794.99 3997.21 4488.35 2198.44 12994.07 3898.09 6899.23 1
MSLP-MVS++93.72 5294.08 4192.65 11397.31 6883.43 11995.79 8497.33 2590.03 3693.58 6196.96 5884.87 6797.76 18292.19 7598.66 4196.76 142
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16793.93 25989.77 5094.21 4695.59 11887.35 3498.61 11192.72 5996.15 11497.83 89
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9395.02 15383.67 11196.19 4996.10 13387.27 12795.98 2498.05 1683.07 8798.45 12796.68 1195.51 12296.88 138
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13196.69 8791.89 890.69 12595.88 10581.99 10999.54 2093.14 5297.95 7498.39 39
dcpmvs_293.49 5694.19 3991.38 17297.69 5776.78 29394.25 17896.29 11288.33 9594.46 4296.88 6188.07 2598.64 10693.62 4498.09 6898.73 18
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10293.75 22583.13 13096.02 6895.74 16387.68 12095.89 2598.17 282.78 9198.46 12396.71 1096.17 11396.98 131
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23797.24 3288.76 8191.60 11495.85 10686.07 4998.66 10491.91 8798.16 6398.03 76
MVSMamba_PlusPlus93.44 5993.54 6093.14 8496.58 8783.05 13696.06 6496.50 9984.42 19994.09 4995.56 11985.01 6698.69 10394.96 2998.66 4197.67 97
test_fmvsmvis_n_192093.44 5993.55 5993.10 8693.67 22984.26 9895.83 8296.14 12789.00 7692.43 9297.50 3083.37 8398.72 10096.61 1297.44 8696.32 157
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19296.78 7581.86 26192.77 8196.20 9087.63 2999.12 5492.14 7798.69 3597.94 80
EC-MVSNet93.44 5993.71 5592.63 11495.21 14682.43 15697.27 996.71 8590.57 2692.88 7595.80 10983.16 8498.16 15093.68 4298.14 6597.31 110
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24497.13 4390.74 2191.84 10795.09 13986.32 4599.21 4891.22 9898.45 5297.65 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16392.47 9197.13 5182.38 9599.07 5690.51 11198.40 5497.92 83
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13496.99 5189.02 7589.56 14097.37 3782.51 9499.38 3192.20 7498.30 5797.57 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10490.00 3794.09 4994.60 16082.33 9798.62 10992.40 6692.86 18198.27 56
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10490.00 3794.09 4994.60 16082.33 9798.62 10992.40 6692.86 18198.27 56
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9590.15 13597.03 5681.44 11299.51 2490.85 10795.74 11898.04 75
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10196.22 4897.37 2184.15 20290.05 13695.66 11587.77 2699.15 5389.91 11598.27 5898.07 72
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9592.49 26283.62 11496.02 6895.72 16686.78 13996.04 2298.19 182.30 9998.43 13196.38 1395.42 12896.86 139
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7089.25 35884.42 9696.06 6496.29 11289.06 7094.68 4098.13 479.22 13698.98 7797.22 497.24 8997.74 93
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13689.77 5094.12 4894.87 14680.56 11898.66 10492.42 6593.10 17798.15 67
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11089.86 4193.89 5694.66 15782.11 10498.50 11792.33 7192.82 18498.27 56
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7695.01 15483.51 11894.48 15995.77 16090.87 1592.52 8996.67 7184.50 7199.00 7191.99 8394.44 15297.36 109
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7594.59 17983.40 12195.00 12896.34 10990.30 3092.05 9896.05 9883.43 8098.15 15192.07 7995.67 11998.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 7692.54 7993.68 7196.10 10584.71 8295.66 9296.39 10691.92 793.22 6896.49 8283.16 8498.87 8584.47 18295.47 12597.45 108
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19496.66 8880.09 29292.77 8196.63 7686.62 4099.04 6087.40 14398.66 4198.17 66
ETV-MVS92.74 7892.66 7692.97 9595.20 14784.04 10395.07 12496.51 9890.73 2292.96 7391.19 28084.06 7598.34 13791.72 9296.54 10696.54 153
EI-MVSNet-UG-set92.74 7892.62 7893.12 8594.86 16683.20 12794.40 16795.74 16390.71 2392.05 9896.60 7884.00 7698.99 7391.55 9493.63 16297.17 118
DPM-MVS92.58 8091.74 8995.08 1596.19 9989.31 592.66 25696.56 9683.44 22091.68 11395.04 14086.60 4298.99 7385.60 16897.92 7596.93 134
casdiffmvspermissive92.51 8192.43 8192.74 10894.41 19281.98 16694.54 15796.23 12189.57 5591.96 10296.17 9482.58 9398.01 16990.95 10495.45 12798.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 8292.29 8392.98 9495.99 11484.43 9493.08 24296.09 13488.20 10291.12 12195.72 11481.33 11497.76 18291.74 9197.37 8896.75 143
3Dnovator+87.14 492.42 8391.37 9295.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27496.62 7775.95 17199.34 3787.77 13897.68 8398.59 24
baseline92.39 8492.29 8392.69 11294.46 18881.77 17094.14 18496.27 11689.22 6591.88 10596.00 9982.35 9697.99 17191.05 10095.27 13398.30 49
VNet92.24 8591.91 8693.24 7996.59 8583.43 11994.84 13996.44 10189.19 6794.08 5295.90 10477.85 15598.17 14988.90 12593.38 17198.13 68
CPTT-MVS91.99 8691.80 8792.55 11898.24 3181.98 16696.76 3096.49 10081.89 26090.24 13096.44 8478.59 14498.61 11189.68 11697.85 7797.06 125
EIA-MVS91.95 8791.94 8591.98 14295.16 14980.01 22295.36 10296.73 8288.44 9289.34 14592.16 24483.82 7998.45 12789.35 11997.06 9297.48 106
DP-MVS Recon91.95 8791.28 9493.96 6098.33 2785.92 5794.66 15196.66 8882.69 24090.03 13795.82 10882.30 9999.03 6184.57 18096.48 10996.91 136
EPNet91.79 8991.02 10094.10 5790.10 34585.25 7396.03 6792.05 30892.83 287.39 18295.78 11079.39 13499.01 6688.13 13497.48 8598.05 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 9091.70 9092.00 14197.08 7480.03 22193.60 21895.18 20387.85 11590.89 12396.47 8382.06 10798.36 13485.07 17297.04 9397.62 99
Vis-MVSNetpermissive91.75 9191.23 9593.29 7695.32 13983.78 10896.14 5695.98 14389.89 3990.45 12796.58 7975.09 18398.31 14284.75 17896.90 9797.78 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 9290.82 10494.44 4594.59 17986.37 4197.18 1297.02 5089.20 6684.31 26996.66 7273.74 20799.17 5086.74 15397.96 7397.79 91
EPP-MVSNet91.70 9391.56 9192.13 13795.88 11780.50 20697.33 795.25 19986.15 15589.76 13995.60 11783.42 8298.32 14187.37 14593.25 17497.56 104
MVSFormer91.68 9491.30 9392.80 10493.86 21983.88 10695.96 7395.90 15184.66 19591.76 11094.91 14377.92 15297.30 22689.64 11797.11 9097.24 114
Effi-MVS+91.59 9591.11 9793.01 9294.35 19783.39 12294.60 15395.10 20787.10 13090.57 12693.10 21681.43 11398.07 16589.29 12194.48 15097.59 102
IS-MVSNet91.43 9691.09 9992.46 12295.87 11981.38 18296.95 1993.69 26989.72 5289.50 14395.98 10178.57 14597.77 18183.02 20096.50 10898.22 63
PVSNet_Blended_VisFu91.38 9790.91 10292.80 10496.39 9483.17 12894.87 13696.66 8883.29 22589.27 14794.46 16580.29 12199.17 5087.57 14195.37 12996.05 175
diffmvspermissive91.37 9891.23 9591.77 15893.09 24680.27 21092.36 26595.52 18287.03 13291.40 11894.93 14280.08 12397.44 21092.13 7894.56 14797.61 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9991.11 9791.93 14694.37 19380.14 21493.46 22395.80 15886.46 14791.35 11993.77 19582.21 10298.09 16287.57 14194.95 13797.55 105
OMC-MVS91.23 10090.62 10793.08 8896.27 9784.07 10193.52 22095.93 14786.95 13489.51 14196.13 9678.50 14698.35 13685.84 16692.90 18096.83 141
PAPM_NR91.22 10190.78 10592.52 12097.60 5981.46 17994.37 17396.24 12086.39 14987.41 17994.80 15182.06 10798.48 11982.80 20695.37 12997.61 100
PS-MVSNAJ91.18 10290.92 10191.96 14495.26 14482.60 15592.09 27795.70 16786.27 15191.84 10792.46 23479.70 12998.99 7389.08 12395.86 11794.29 247
xiu_mvs_v2_base91.13 10390.89 10391.86 15294.97 15782.42 15792.24 27195.64 17486.11 15991.74 11293.14 21479.67 13298.89 8489.06 12495.46 12694.28 248
nrg03091.08 10490.39 10893.17 8293.07 24786.91 2296.41 3796.26 11788.30 9788.37 16194.85 14982.19 10397.64 19291.09 9982.95 30394.96 215
mamv490.92 10591.78 8888.33 28695.67 12770.75 36992.92 24996.02 14281.90 25888.11 16295.34 12685.88 5196.97 25495.22 2795.01 13697.26 113
lupinMVS90.92 10590.21 11193.03 9193.86 21983.88 10692.81 25393.86 26379.84 29591.76 11094.29 17077.92 15298.04 16790.48 11297.11 9097.17 118
RRT-MVS90.85 10790.70 10691.30 17594.25 19976.83 29294.85 13896.13 13089.04 7290.23 13194.88 14570.15 25198.72 10091.86 9094.88 13898.34 42
h-mvs3390.80 10890.15 11492.75 10796.01 11082.66 15295.43 10195.53 18189.80 4693.08 7195.64 11675.77 17299.00 7192.07 7978.05 36096.60 148
jason90.80 10890.10 11592.90 9993.04 25083.53 11793.08 24294.15 25280.22 28991.41 11794.91 14376.87 15997.93 17690.28 11396.90 9797.24 114
jason: jason.
VDD-MVS90.74 11089.92 12293.20 8196.27 9783.02 13895.73 8693.86 26388.42 9492.53 8896.84 6362.09 32498.64 10690.95 10492.62 18697.93 82
PVSNet_Blended90.73 11190.32 11091.98 14296.12 10281.25 18492.55 26096.83 6982.04 25389.10 14992.56 23281.04 11698.85 8986.72 15595.91 11695.84 182
test_yl90.69 11290.02 12092.71 10995.72 12382.41 15994.11 18795.12 20585.63 16791.49 11594.70 15374.75 18798.42 13286.13 16192.53 18897.31 110
DCV-MVSNet90.69 11290.02 12092.71 10995.72 12382.41 15994.11 18795.12 20585.63 16791.49 11594.70 15374.75 18798.42 13286.13 16192.53 18897.31 110
API-MVS90.66 11490.07 11692.45 12396.36 9584.57 8596.06 6495.22 20282.39 24389.13 14894.27 17380.32 12098.46 12380.16 25696.71 10394.33 246
xiu_mvs_v1_base_debu90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
xiu_mvs_v1_base90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
xiu_mvs_v1_base_debi90.64 11590.05 11792.40 12493.97 21684.46 9193.32 22895.46 18485.17 17692.25 9394.03 17770.59 24298.57 11490.97 10194.67 14294.18 249
HQP_MVS90.60 11890.19 11291.82 15594.70 17482.73 14895.85 8096.22 12290.81 1786.91 18894.86 14774.23 19598.12 15288.15 13289.99 21894.63 227
FIs90.51 11990.35 10990.99 19293.99 21580.98 19295.73 8697.54 489.15 6886.72 19594.68 15581.83 11197.24 23485.18 17188.31 25194.76 225
mvsmamba90.33 12089.69 12592.25 13595.17 14881.64 17295.27 11293.36 27484.88 18689.51 14194.27 17369.29 26697.42 21289.34 12096.12 11597.68 96
MAR-MVS90.30 12189.37 13393.07 9096.61 8484.48 9095.68 8995.67 16982.36 24587.85 17092.85 22176.63 16598.80 9380.01 25796.68 10495.91 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 12290.18 11390.53 20493.71 22679.85 22895.77 8597.59 389.31 6286.27 20694.67 15681.93 11097.01 25284.26 18488.09 25494.71 226
CANet_DTU90.26 12389.41 13292.81 10393.46 23683.01 13993.48 22194.47 23989.43 5887.76 17494.23 17570.54 24699.03 6184.97 17396.39 11096.38 156
SDMVSNet90.19 12489.61 12791.93 14696.00 11183.09 13492.89 25095.98 14388.73 8286.85 19295.20 13472.09 22697.08 24588.90 12589.85 22495.63 192
OPM-MVS90.12 12589.56 12891.82 15593.14 24383.90 10594.16 18395.74 16388.96 7787.86 16995.43 12472.48 22297.91 17788.10 13690.18 21793.65 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 12689.13 13992.95 9796.71 8082.32 16196.08 6089.91 36186.79 13892.15 9796.81 6662.60 32298.34 13787.18 14793.90 15898.19 64
GeoE90.05 12789.43 13191.90 15195.16 14980.37 20995.80 8394.65 23683.90 20787.55 17894.75 15278.18 15097.62 19481.28 23693.63 16297.71 95
PAPR90.02 12889.27 13892.29 13295.78 12180.95 19492.68 25596.22 12281.91 25786.66 19693.75 19782.23 10198.44 12979.40 26894.79 14097.48 106
PVSNet_BlendedMVS89.98 12989.70 12490.82 19796.12 10281.25 18493.92 20596.83 6983.49 21989.10 14992.26 24281.04 11698.85 8986.72 15587.86 25892.35 330
PS-MVSNAJss89.97 13089.62 12691.02 18991.90 28280.85 19795.26 11395.98 14386.26 15286.21 20894.29 17079.70 12997.65 19088.87 12788.10 25294.57 232
XVG-OURS-SEG-HR89.95 13189.45 12991.47 16994.00 21481.21 18791.87 28196.06 13885.78 16288.55 15795.73 11374.67 19197.27 23088.71 12889.64 22995.91 178
UGNet89.95 13188.95 14392.95 9794.51 18583.31 12395.70 8895.23 20089.37 6087.58 17693.94 18564.00 31398.78 9583.92 18996.31 11196.74 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 13389.29 13691.81 15793.39 23883.72 10994.43 16597.12 4489.80 4686.46 19993.32 20583.16 8497.23 23584.92 17481.02 33394.49 240
AdaColmapbinary89.89 13489.07 14092.37 12797.41 6583.03 13794.42 16695.92 14882.81 23786.34 20594.65 15873.89 20399.02 6480.69 24795.51 12295.05 210
hse-mvs289.88 13589.34 13491.51 16694.83 16881.12 18993.94 20393.91 26289.80 4693.08 7193.60 19975.77 17297.66 18992.07 7977.07 36795.74 187
UniMVSNet (Re)89.80 13689.07 14092.01 13893.60 23284.52 8894.78 14397.47 1189.26 6486.44 20292.32 23982.10 10597.39 22384.81 17780.84 33794.12 253
HQP-MVS89.80 13689.28 13791.34 17494.17 20381.56 17394.39 16996.04 13988.81 7885.43 23393.97 18473.83 20597.96 17387.11 15089.77 22794.50 238
FA-MVS(test-final)89.66 13888.91 14591.93 14694.57 18280.27 21091.36 29394.74 23284.87 18789.82 13892.61 23174.72 19098.47 12283.97 18893.53 16597.04 127
VPA-MVSNet89.62 13988.96 14291.60 16393.86 21982.89 14395.46 10097.33 2587.91 11088.43 16093.31 20674.17 19897.40 22087.32 14682.86 30894.52 235
WTY-MVS89.60 14088.92 14491.67 16195.47 13681.15 18892.38 26494.78 23083.11 22989.06 15194.32 16878.67 14396.61 27381.57 23390.89 20897.24 114
Vis-MVSNet (Re-imp)89.59 14189.44 13090.03 22995.74 12275.85 30795.61 9690.80 34587.66 12287.83 17195.40 12576.79 16196.46 28778.37 27496.73 10297.80 90
VDDNet89.56 14288.49 15892.76 10695.07 15282.09 16396.30 4193.19 27781.05 28391.88 10596.86 6261.16 34098.33 13988.43 13192.49 19097.84 88
114514_t89.51 14388.50 15692.54 11998.11 3681.99 16595.16 12096.36 10870.19 38885.81 21595.25 13076.70 16398.63 10882.07 22196.86 10097.00 130
QAPM89.51 14388.15 16793.59 7394.92 16184.58 8496.82 2996.70 8678.43 31883.41 28996.19 9373.18 21499.30 4377.11 29096.54 10696.89 137
CLD-MVS89.47 14588.90 14691.18 18094.22 20182.07 16492.13 27596.09 13487.90 11185.37 23992.45 23574.38 19397.56 19787.15 14890.43 21393.93 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 14688.90 14691.12 18194.47 18681.49 17795.30 10796.14 12786.73 14185.45 23095.16 13669.89 25398.10 15487.70 13989.23 23693.77 277
CDS-MVSNet89.45 14688.51 15592.29 13293.62 23183.61 11693.01 24594.68 23581.95 25587.82 17293.24 21078.69 14296.99 25380.34 25393.23 17596.28 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 14888.64 15191.71 16094.74 17080.81 19893.54 21995.10 20783.11 22986.82 19490.67 30179.74 12897.75 18580.51 25193.55 16496.57 151
ab-mvs89.41 14888.35 16092.60 11595.15 15182.65 15392.20 27395.60 17683.97 20688.55 15793.70 19874.16 19998.21 14882.46 21189.37 23296.94 133
XVG-OURS89.40 15088.70 15091.52 16594.06 20881.46 17991.27 29796.07 13686.14 15688.89 15395.77 11168.73 27597.26 23287.39 14489.96 22095.83 183
test_vis1_n_192089.39 15189.84 12388.04 29492.97 25472.64 34694.71 14896.03 14186.18 15491.94 10496.56 8161.63 32895.74 32393.42 4795.11 13595.74 187
mvs_anonymous89.37 15289.32 13589.51 25593.47 23574.22 32591.65 28894.83 22682.91 23585.45 23093.79 19381.23 11596.36 29486.47 15794.09 15597.94 80
DU-MVS89.34 15388.50 15691.85 15493.04 25083.72 10994.47 16296.59 9389.50 5686.46 19993.29 20877.25 15797.23 23584.92 17481.02 33394.59 230
TAMVS89.21 15488.29 16491.96 14493.71 22682.62 15493.30 23294.19 25082.22 24887.78 17393.94 18578.83 13996.95 25677.70 28392.98 17996.32 157
ACMM84.12 989.14 15588.48 15991.12 18194.65 17781.22 18695.31 10596.12 13185.31 17585.92 21394.34 16670.19 25098.06 16685.65 16788.86 24194.08 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 15688.64 15190.48 20995.53 13574.97 31696.08 6084.89 39288.13 10590.16 13496.65 7363.29 31898.10 15486.14 15996.90 9798.39 39
EI-MVSNet89.10 15688.86 14889.80 24291.84 28478.30 26293.70 21595.01 21185.73 16487.15 18395.28 12879.87 12697.21 23783.81 19187.36 26693.88 266
ECVR-MVScopyleft89.09 15888.53 15490.77 19995.62 13075.89 30696.16 5284.22 39487.89 11390.20 13296.65 7363.19 32098.10 15485.90 16496.94 9598.33 44
CNLPA89.07 15987.98 17092.34 12896.87 7784.78 8194.08 19193.24 27581.41 27484.46 25995.13 13875.57 17996.62 27077.21 28893.84 16095.61 194
PLCcopyleft84.53 789.06 16088.03 16992.15 13697.27 7182.69 15194.29 17695.44 18979.71 29784.01 27594.18 17676.68 16498.75 9777.28 28793.41 17095.02 211
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 16188.64 15190.21 22090.74 33179.28 24395.96 7395.90 15184.66 19585.33 24192.94 22074.02 20197.30 22689.64 11788.53 24494.05 259
HY-MVS83.01 1289.03 16187.94 17292.29 13294.86 16682.77 14492.08 27894.49 23881.52 27386.93 18692.79 22778.32 14998.23 14579.93 25890.55 21195.88 180
ACMP84.23 889.01 16388.35 16090.99 19294.73 17181.27 18395.07 12495.89 15386.48 14583.67 28294.30 16969.33 26297.99 17187.10 15288.55 24393.72 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 16488.26 16690.94 19594.05 20980.78 19991.71 28595.38 19381.55 27288.63 15693.91 18975.04 18495.47 33482.47 21091.61 19696.57 151
TranMVSNet+NR-MVSNet88.84 16587.95 17191.49 16792.68 26083.01 13994.92 13396.31 11189.88 4085.53 22493.85 19276.63 16596.96 25581.91 22579.87 35094.50 238
CHOSEN 1792x268888.84 16587.69 17692.30 13196.14 10081.42 18190.01 32795.86 15574.52 35787.41 17993.94 18575.46 18098.36 13480.36 25295.53 12197.12 123
MVSTER88.84 16588.29 16490.51 20792.95 25580.44 20793.73 21295.01 21184.66 19587.15 18393.12 21572.79 21897.21 23787.86 13787.36 26693.87 267
test_cas_vis1_n_192088.83 16888.85 14988.78 27191.15 31276.72 29493.85 20894.93 21883.23 22892.81 7996.00 9961.17 33994.45 34591.67 9394.84 13995.17 206
OpenMVScopyleft83.78 1188.74 16987.29 18693.08 8892.70 25985.39 7196.57 3596.43 10278.74 31380.85 32196.07 9769.64 25799.01 6678.01 28196.65 10594.83 222
thisisatest053088.67 17087.61 17891.86 15294.87 16580.07 21794.63 15289.90 36284.00 20588.46 15993.78 19466.88 29098.46 12383.30 19692.65 18597.06 125
Effi-MVS+-dtu88.65 17188.35 16089.54 25293.33 23976.39 30094.47 16294.36 24487.70 11985.43 23389.56 32973.45 21097.26 23285.57 16991.28 20094.97 212
tttt051788.61 17287.78 17591.11 18494.96 15877.81 27595.35 10389.69 36585.09 18188.05 16794.59 16266.93 28898.48 11983.27 19792.13 19397.03 128
BH-untuned88.60 17388.13 16890.01 23295.24 14578.50 25693.29 23394.15 25284.75 19284.46 25993.40 20275.76 17497.40 22077.59 28494.52 14994.12 253
sd_testset88.59 17487.85 17490.83 19696.00 11180.42 20892.35 26694.71 23388.73 8286.85 19295.20 13467.31 28296.43 28979.64 26289.85 22495.63 192
NR-MVSNet88.58 17587.47 18291.93 14693.04 25084.16 10094.77 14496.25 11989.05 7180.04 33493.29 20879.02 13897.05 25081.71 23280.05 34794.59 230
1112_ss88.42 17687.33 18591.72 15994.92 16180.98 19292.97 24794.54 23778.16 32483.82 27893.88 19078.78 14197.91 17779.45 26489.41 23196.26 161
WR-MVS88.38 17787.67 17790.52 20693.30 24080.18 21293.26 23595.96 14688.57 9085.47 22992.81 22576.12 16796.91 25981.24 23782.29 31394.47 243
BH-RMVSNet88.37 17887.48 18191.02 18995.28 14179.45 23592.89 25093.07 28085.45 17286.91 18894.84 15070.35 24797.76 18273.97 31894.59 14695.85 181
IterMVS-LS88.36 17987.91 17389.70 24693.80 22278.29 26393.73 21295.08 20985.73 16484.75 25191.90 25979.88 12596.92 25883.83 19082.51 30993.89 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 18086.13 22794.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7623.41 41885.02 6399.49 2691.99 8398.56 5098.47 33
LCM-MVSNet-Re88.30 18188.32 16388.27 28794.71 17372.41 35193.15 23890.98 33987.77 11779.25 34391.96 25678.35 14895.75 32283.04 19995.62 12096.65 147
jajsoiax88.24 18287.50 18090.48 20990.89 32580.14 21495.31 10595.65 17384.97 18484.24 27094.02 18065.31 30697.42 21288.56 12988.52 24593.89 263
VPNet88.20 18387.47 18290.39 21493.56 23379.46 23494.04 19595.54 18088.67 8586.96 18594.58 16369.33 26297.15 23984.05 18780.53 34294.56 233
TAPA-MVS84.62 688.16 18487.01 19491.62 16296.64 8380.65 20194.39 16996.21 12576.38 33786.19 20995.44 12279.75 12798.08 16462.75 38295.29 13196.13 167
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 18587.28 18790.57 20294.96 15880.07 21794.27 17791.29 33286.74 14087.41 17994.00 18276.77 16296.20 30080.77 24579.31 35695.44 196
Anonymous2024052988.09 18686.59 20992.58 11796.53 9081.92 16895.99 7095.84 15674.11 36189.06 15195.21 13361.44 33298.81 9283.67 19487.47 26397.01 129
HyFIR lowres test88.09 18686.81 19891.93 14696.00 11180.63 20290.01 32795.79 15973.42 36887.68 17592.10 25073.86 20497.96 17380.75 24691.70 19597.19 117
mvs_tets88.06 18887.28 18790.38 21690.94 32179.88 22695.22 11595.66 17185.10 18084.21 27193.94 18563.53 31697.40 22088.50 13088.40 24993.87 267
F-COLMAP87.95 18986.80 19991.40 17196.35 9680.88 19694.73 14695.45 18779.65 29882.04 30894.61 15971.13 23398.50 11776.24 30091.05 20694.80 224
LS3D87.89 19086.32 22092.59 11696.07 10882.92 14295.23 11494.92 21975.66 34482.89 29695.98 10172.48 22299.21 4868.43 35395.23 13495.64 191
anonymousdsp87.84 19187.09 19090.12 22589.13 35980.54 20594.67 15095.55 17882.05 25183.82 27892.12 24771.47 23197.15 23987.15 14887.80 26192.67 318
v2v48287.84 19187.06 19190.17 22190.99 31779.23 24694.00 20095.13 20484.87 18785.53 22492.07 25374.45 19297.45 20784.71 17981.75 32193.85 270
WR-MVS_H87.80 19387.37 18489.10 26493.23 24178.12 26695.61 9697.30 2987.90 11183.72 28092.01 25579.65 13396.01 30876.36 29780.54 34193.16 303
AUN-MVS87.78 19486.54 21291.48 16894.82 16981.05 19093.91 20793.93 25983.00 23286.93 18693.53 20069.50 26097.67 18786.14 15977.12 36695.73 189
PCF-MVS84.11 1087.74 19586.08 23192.70 11194.02 21084.43 9489.27 34095.87 15473.62 36684.43 26194.33 16778.48 14798.86 8770.27 33994.45 15194.81 223
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 19686.13 22792.31 13096.66 8280.74 20094.87 13691.49 32780.47 28889.46 14495.44 12254.72 37398.23 14582.19 21789.89 22297.97 78
V4287.68 19686.86 19690.15 22390.58 33680.14 21494.24 18095.28 19883.66 21385.67 21991.33 27574.73 18997.41 21884.43 18381.83 31992.89 313
thres600view787.65 19886.67 20490.59 20196.08 10778.72 24994.88 13591.58 32387.06 13188.08 16592.30 24068.91 27298.10 15470.05 34691.10 20194.96 215
XXY-MVS87.65 19886.85 19790.03 22992.14 27280.60 20493.76 21195.23 20082.94 23484.60 25494.02 18074.27 19495.49 33381.04 23983.68 29694.01 261
Test_1112_low_res87.65 19886.51 21391.08 18594.94 16079.28 24391.77 28394.30 24676.04 34283.51 28792.37 23777.86 15497.73 18678.69 27389.13 23896.22 162
thres100view90087.63 20186.71 20290.38 21696.12 10278.55 25395.03 12791.58 32387.15 12888.06 16692.29 24168.91 27298.10 15470.13 34391.10 20194.48 241
CP-MVSNet87.63 20187.26 18988.74 27593.12 24476.59 29795.29 10996.58 9488.43 9383.49 28892.98 21975.28 18195.83 31778.97 27081.15 32993.79 272
thres40087.62 20386.64 20590.57 20295.99 11478.64 25194.58 15491.98 31286.94 13588.09 16391.77 26169.18 26898.10 15470.13 34391.10 20194.96 215
v114487.61 20486.79 20090.06 22891.01 31679.34 23993.95 20295.42 19283.36 22485.66 22091.31 27874.98 18597.42 21283.37 19582.06 31593.42 292
tfpn200view987.58 20586.64 20590.41 21395.99 11478.64 25194.58 15491.98 31286.94 13588.09 16391.77 26169.18 26898.10 15470.13 34391.10 20194.48 241
BH-w/o87.57 20687.05 19289.12 26394.90 16477.90 27192.41 26293.51 27182.89 23683.70 28191.34 27475.75 17597.07 24775.49 30493.49 16792.39 328
UniMVSNet_ETH3D87.53 20786.37 21791.00 19192.44 26578.96 24894.74 14595.61 17584.07 20485.36 24094.52 16459.78 34897.34 22582.93 20187.88 25796.71 145
ET-MVSNet_ETH3D87.51 20885.91 23992.32 12993.70 22883.93 10492.33 26890.94 34184.16 20172.09 38492.52 23369.90 25295.85 31689.20 12288.36 25097.17 118
131487.51 20886.57 21090.34 21892.42 26679.74 23092.63 25795.35 19778.35 31980.14 33191.62 26974.05 20097.15 23981.05 23893.53 16594.12 253
v887.50 21086.71 20289.89 23691.37 30279.40 23694.50 15895.38 19384.81 19083.60 28591.33 27576.05 16897.42 21282.84 20480.51 34492.84 315
Fast-Effi-MVS+-dtu87.44 21186.72 20189.63 25092.04 27677.68 28194.03 19693.94 25885.81 16182.42 30191.32 27770.33 24897.06 24880.33 25490.23 21694.14 252
MVS87.44 21186.10 23091.44 17092.61 26183.62 11492.63 25795.66 17167.26 39381.47 31392.15 24577.95 15198.22 14779.71 26095.48 12492.47 324
FE-MVS87.40 21386.02 23391.57 16494.56 18379.69 23190.27 31493.72 26880.57 28688.80 15491.62 26965.32 30598.59 11374.97 31294.33 15496.44 154
FMVSNet387.40 21386.11 22991.30 17593.79 22483.64 11394.20 18294.81 22883.89 20884.37 26291.87 26068.45 27896.56 27878.23 27885.36 28093.70 282
test_fmvs187.34 21587.56 17986.68 33190.59 33571.80 35594.01 19894.04 25778.30 32091.97 10195.22 13156.28 36493.71 36092.89 5594.71 14194.52 235
thisisatest051587.33 21685.99 23491.37 17393.49 23479.55 23290.63 31089.56 36980.17 29087.56 17790.86 29167.07 28798.28 14381.50 23493.02 17896.29 159
PS-CasMVS87.32 21786.88 19588.63 27892.99 25376.33 30295.33 10496.61 9288.22 10183.30 29393.07 21773.03 21695.79 32178.36 27581.00 33593.75 279
GBi-Net87.26 21885.98 23591.08 18594.01 21183.10 13195.14 12194.94 21483.57 21584.37 26291.64 26566.59 29596.34 29578.23 27885.36 28093.79 272
test187.26 21885.98 23591.08 18594.01 21183.10 13195.14 12194.94 21483.57 21584.37 26291.64 26566.59 29596.34 29578.23 27885.36 28093.79 272
v119287.25 22086.33 21990.00 23390.76 33079.04 24793.80 20995.48 18382.57 24185.48 22891.18 28273.38 21397.42 21282.30 21482.06 31593.53 286
v1087.25 22086.38 21689.85 23791.19 30879.50 23394.48 15995.45 18783.79 21183.62 28491.19 28075.13 18297.42 21281.94 22480.60 33992.63 320
DP-MVS87.25 22085.36 25692.90 9997.65 5883.24 12594.81 14192.00 31074.99 35281.92 31095.00 14172.66 21999.05 5866.92 36592.33 19196.40 155
miper_ehance_all_eth87.22 22386.62 20889.02 26792.13 27377.40 28590.91 30694.81 22881.28 27784.32 26790.08 31779.26 13596.62 27083.81 19182.94 30493.04 308
test250687.21 22486.28 22290.02 23195.62 13073.64 33296.25 4771.38 41687.89 11390.45 12796.65 7355.29 37098.09 16286.03 16396.94 9598.33 44
thres20087.21 22486.24 22490.12 22595.36 13878.53 25493.26 23592.10 30686.42 14888.00 16891.11 28669.24 26798.00 17069.58 34791.04 20793.83 271
v14419287.19 22686.35 21889.74 24390.64 33478.24 26493.92 20595.43 19081.93 25685.51 22691.05 28874.21 19797.45 20782.86 20381.56 32393.53 286
FMVSNet287.19 22685.82 24291.30 17594.01 21183.67 11194.79 14294.94 21483.57 21583.88 27792.05 25466.59 29596.51 28277.56 28585.01 28393.73 280
c3_l87.14 22886.50 21489.04 26692.20 27077.26 28691.22 30094.70 23482.01 25484.34 26690.43 30678.81 14096.61 27383.70 19381.09 33093.25 297
testing9187.11 22986.18 22589.92 23594.43 19175.38 31591.53 29092.27 30286.48 14586.50 19790.24 30961.19 33897.53 19982.10 21990.88 20996.84 140
Baseline_NR-MVSNet87.07 23086.63 20788.40 28191.44 29777.87 27394.23 18192.57 29484.12 20385.74 21892.08 25177.25 15796.04 30582.29 21579.94 34891.30 351
v14887.04 23186.32 22089.21 26090.94 32177.26 28693.71 21494.43 24084.84 18984.36 26590.80 29576.04 16997.05 25082.12 21879.60 35393.31 294
test_fmvs1_n87.03 23287.04 19386.97 32389.74 35371.86 35394.55 15694.43 24078.47 31691.95 10395.50 12151.16 38493.81 35893.02 5494.56 14795.26 203
v192192086.97 23386.06 23289.69 24790.53 33978.11 26793.80 20995.43 19081.90 25885.33 24191.05 28872.66 21997.41 21882.05 22281.80 32093.53 286
tt080586.92 23485.74 24890.48 20992.22 26979.98 22495.63 9594.88 22283.83 21084.74 25292.80 22657.61 35997.67 18785.48 17084.42 28793.79 272
miper_enhance_ethall86.90 23586.18 22589.06 26591.66 29377.58 28390.22 32094.82 22779.16 30484.48 25889.10 33479.19 13796.66 26884.06 18682.94 30492.94 311
MonoMVSNet86.89 23686.55 21187.92 29889.46 35773.75 32994.12 18593.10 27887.82 11685.10 24490.76 29769.59 25894.94 34386.47 15782.50 31095.07 209
v7n86.81 23785.76 24689.95 23490.72 33279.25 24595.07 12495.92 14884.45 19882.29 30290.86 29172.60 22197.53 19979.42 26780.52 34393.08 307
PEN-MVS86.80 23886.27 22388.40 28192.32 26875.71 31095.18 11896.38 10787.97 10882.82 29793.15 21373.39 21295.92 31276.15 30179.03 35893.59 284
cl2286.78 23985.98 23589.18 26292.34 26777.62 28290.84 30794.13 25481.33 27683.97 27690.15 31473.96 20296.60 27584.19 18582.94 30493.33 293
v124086.78 23985.85 24189.56 25190.45 34077.79 27793.61 21795.37 19581.65 26785.43 23391.15 28471.50 23097.43 21181.47 23582.05 31793.47 290
TR-MVS86.78 23985.76 24689.82 23994.37 19378.41 25892.47 26192.83 28681.11 28286.36 20392.40 23668.73 27597.48 20373.75 32289.85 22493.57 285
PatchMatch-RL86.77 24285.54 25090.47 21295.88 11782.71 15090.54 31192.31 30079.82 29684.32 26791.57 27368.77 27496.39 29173.16 32493.48 16992.32 331
testing9986.72 24385.73 24989.69 24794.23 20074.91 31891.35 29490.97 34086.14 15686.36 20390.22 31059.41 35097.48 20382.24 21690.66 21096.69 146
PAPM86.68 24485.39 25490.53 20493.05 24979.33 24289.79 33094.77 23178.82 31081.95 30993.24 21076.81 16097.30 22666.94 36393.16 17694.95 218
pm-mvs186.61 24585.54 25089.82 23991.44 29780.18 21295.28 11194.85 22483.84 20981.66 31192.62 23072.45 22496.48 28479.67 26178.06 35992.82 316
GA-MVS86.61 24585.27 25990.66 20091.33 30578.71 25090.40 31393.81 26685.34 17485.12 24389.57 32861.25 33597.11 24480.99 24289.59 23096.15 165
Anonymous2023121186.59 24785.13 26190.98 19496.52 9181.50 17596.14 5696.16 12673.78 36483.65 28392.15 24563.26 31997.37 22482.82 20581.74 32294.06 258
test_vis1_n86.56 24886.49 21586.78 33088.51 36472.69 34394.68 14993.78 26779.55 29990.70 12495.31 12748.75 38993.28 36693.15 5193.99 15694.38 245
DIV-MVS_self_test86.53 24985.78 24388.75 27392.02 27876.45 29990.74 30894.30 24681.83 26383.34 29190.82 29475.75 17596.57 27681.73 23181.52 32593.24 298
cl____86.52 25085.78 24388.75 27392.03 27776.46 29890.74 30894.30 24681.83 26383.34 29190.78 29675.74 17796.57 27681.74 23081.54 32493.22 299
eth_miper_zixun_eth86.50 25185.77 24588.68 27691.94 27975.81 30890.47 31294.89 22082.05 25184.05 27390.46 30575.96 17096.77 26382.76 20779.36 35593.46 291
baseline286.50 25185.39 25489.84 23891.12 31376.70 29591.88 28088.58 37282.35 24679.95 33590.95 29073.42 21197.63 19380.27 25589.95 22195.19 205
EPNet_dtu86.49 25385.94 23888.14 29290.24 34372.82 34194.11 18792.20 30486.66 14379.42 34292.36 23873.52 20895.81 31971.26 33193.66 16195.80 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1186.44 25485.35 25789.69 24794.29 19875.40 31491.30 29590.53 34884.76 19185.06 24590.13 31558.95 35497.45 20782.08 22091.09 20596.21 164
cascas86.43 25584.98 26490.80 19892.10 27580.92 19590.24 31895.91 15073.10 37183.57 28688.39 34765.15 30797.46 20684.90 17691.43 19894.03 260
reproduce_monomvs86.37 25685.87 24087.87 29993.66 23073.71 33093.44 22495.02 21088.61 8882.64 30091.94 25757.88 35896.68 26789.96 11479.71 35293.22 299
SCA86.32 25785.18 26089.73 24592.15 27176.60 29691.12 30191.69 31983.53 21885.50 22788.81 34066.79 29196.48 28476.65 29390.35 21596.12 168
LTVRE_ROB82.13 1386.26 25884.90 26790.34 21894.44 19081.50 17592.31 27094.89 22083.03 23179.63 34092.67 22869.69 25697.79 18071.20 33286.26 27591.72 341
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 25985.48 25287.98 29591.65 29474.92 31794.93 13295.75 16287.36 12682.26 30393.04 21872.85 21795.82 31874.04 31777.46 36493.20 301
XVG-ACMP-BASELINE86.00 26084.84 26989.45 25691.20 30778.00 26891.70 28695.55 17885.05 18282.97 29592.25 24354.49 37497.48 20382.93 20187.45 26592.89 313
MVP-Stereo85.97 26184.86 26889.32 25890.92 32382.19 16292.11 27694.19 25078.76 31278.77 34891.63 26868.38 27996.56 27875.01 31193.95 15789.20 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 26285.09 26288.35 28390.79 32877.42 28491.83 28295.70 16780.77 28580.08 33390.02 31866.74 29396.37 29281.88 22687.97 25691.26 352
test-LLR85.87 26385.41 25387.25 31590.95 31971.67 35889.55 33489.88 36383.41 22184.54 25687.95 35467.25 28495.11 33981.82 22793.37 17294.97 212
FMVSNet185.85 26484.11 28191.08 18592.81 25783.10 13195.14 12194.94 21481.64 26882.68 29891.64 26559.01 35396.34 29575.37 30683.78 29393.79 272
PatchmatchNetpermissive85.85 26484.70 27189.29 25991.76 28875.54 31188.49 35291.30 33181.63 26985.05 24688.70 34471.71 22796.24 29974.61 31589.05 23996.08 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 26684.94 26688.26 28891.16 31172.58 34989.47 33891.04 33876.26 34086.45 20189.97 32070.74 24096.86 26282.35 21387.07 27195.34 202
PMMVS85.71 26784.96 26587.95 29688.90 36277.09 28888.68 35090.06 35772.32 37886.47 19890.76 29772.15 22594.40 34781.78 22993.49 16792.36 329
PVSNet78.82 1885.55 26884.65 27288.23 29094.72 17271.93 35287.12 37192.75 29078.80 31184.95 24890.53 30364.43 31196.71 26674.74 31393.86 15996.06 174
UBG85.51 26984.57 27588.35 28394.21 20271.78 35690.07 32589.66 36782.28 24785.91 21489.01 33661.30 33397.06 24876.58 29692.06 19496.22 162
IterMVS-SCA-FT85.45 27084.53 27688.18 29191.71 29076.87 29190.19 32292.65 29385.40 17381.44 31490.54 30266.79 29195.00 34281.04 23981.05 33192.66 319
pmmvs485.43 27183.86 28690.16 22290.02 34882.97 14190.27 31492.67 29275.93 34380.73 32291.74 26371.05 23495.73 32478.85 27283.46 30091.78 340
mvsany_test185.42 27285.30 25885.77 34287.95 37575.41 31387.61 36880.97 40276.82 33488.68 15595.83 10777.44 15690.82 38885.90 16486.51 27391.08 359
ACMH80.38 1785.36 27383.68 28890.39 21494.45 18980.63 20294.73 14694.85 22482.09 25077.24 35692.65 22960.01 34697.58 19572.25 32884.87 28492.96 310
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 27484.64 27387.49 30890.77 32972.59 34894.01 19894.40 24284.72 19379.62 34193.17 21261.91 32696.72 26481.99 22381.16 32793.16 303
CR-MVSNet85.35 27483.76 28790.12 22590.58 33679.34 23985.24 38491.96 31478.27 32185.55 22287.87 35771.03 23595.61 32673.96 31989.36 23395.40 198
tpmrst85.35 27484.99 26386.43 33490.88 32667.88 38288.71 34991.43 32980.13 29186.08 21188.80 34273.05 21596.02 30782.48 20983.40 30295.40 198
miper_lstm_enhance85.27 27784.59 27487.31 31291.28 30674.63 32087.69 36594.09 25681.20 28181.36 31689.85 32374.97 18694.30 35081.03 24179.84 35193.01 309
IB-MVS80.51 1585.24 27883.26 29491.19 17992.13 27379.86 22791.75 28491.29 33283.28 22680.66 32488.49 34661.28 33498.46 12380.99 24279.46 35495.25 204
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 27983.99 28488.65 27792.47 26378.40 25979.68 40692.76 28974.90 35481.41 31589.59 32769.85 25595.51 33079.92 25995.29 13192.03 336
RPSCF85.07 28084.27 27787.48 30992.91 25670.62 37191.69 28792.46 29576.20 34182.67 29995.22 13163.94 31497.29 22977.51 28685.80 27794.53 234
MS-PatchMatch85.05 28184.16 27987.73 30191.42 30078.51 25591.25 29893.53 27077.50 32780.15 33091.58 27161.99 32595.51 33075.69 30394.35 15389.16 380
ACMH+81.04 1485.05 28183.46 29189.82 23994.66 17679.37 23794.44 16494.12 25582.19 24978.04 35192.82 22458.23 35697.54 19873.77 32182.90 30792.54 321
mmtdpeth85.04 28384.15 28087.72 30293.11 24575.74 30994.37 17392.83 28684.98 18389.31 14686.41 37161.61 33097.14 24292.63 6262.11 39990.29 367
WBMVS84.97 28484.18 27887.34 31194.14 20771.62 36090.20 32192.35 29781.61 27084.06 27290.76 29761.82 32796.52 28178.93 27183.81 29293.89 263
IterMVS84.88 28583.98 28587.60 30491.44 29776.03 30490.18 32392.41 29683.24 22781.06 32090.42 30766.60 29494.28 35179.46 26380.98 33692.48 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 28683.09 29790.14 22493.80 22280.05 21989.18 34393.09 27978.89 30878.19 34991.91 25865.86 30497.27 23068.47 35288.45 24793.11 305
testing22284.84 28783.32 29289.43 25794.15 20675.94 30591.09 30289.41 37084.90 18585.78 21689.44 33052.70 38196.28 29870.80 33891.57 19796.07 172
tpm84.73 28884.02 28386.87 32890.33 34168.90 37889.06 34589.94 36080.85 28485.75 21789.86 32268.54 27795.97 30977.76 28284.05 29195.75 186
tfpnnormal84.72 28983.23 29589.20 26192.79 25880.05 21994.48 15995.81 15782.38 24481.08 31991.21 27969.01 27196.95 25661.69 38480.59 34090.58 366
CVMVSNet84.69 29084.79 27084.37 35591.84 28464.92 39393.70 21591.47 32866.19 39586.16 21095.28 12867.18 28693.33 36580.89 24490.42 21494.88 220
test-mter84.54 29183.64 28987.25 31590.95 31971.67 35889.55 33489.88 36379.17 30384.54 25687.95 35455.56 36695.11 33981.82 22793.37 17294.97 212
ETVMVS84.43 29282.92 30188.97 26994.37 19374.67 31991.23 29988.35 37483.37 22386.06 21289.04 33555.38 36895.67 32567.12 36191.34 19996.58 150
TransMVSNet (Re)84.43 29283.06 29988.54 27991.72 28978.44 25795.18 11892.82 28882.73 23979.67 33992.12 24773.49 20995.96 31071.10 33668.73 38991.21 353
pmmvs584.21 29482.84 30488.34 28588.95 36176.94 29092.41 26291.91 31675.63 34580.28 32891.18 28264.59 31095.57 32777.09 29183.47 29992.53 322
dmvs_re84.20 29583.22 29687.14 32191.83 28677.81 27590.04 32690.19 35384.70 19481.49 31289.17 33364.37 31291.13 38671.58 33085.65 27992.46 325
tpm284.08 29682.94 30087.48 30991.39 30171.27 36189.23 34290.37 35071.95 38084.64 25389.33 33167.30 28396.55 28075.17 30887.09 27094.63 227
test_fmvs283.98 29784.03 28283.83 36087.16 37867.53 38693.93 20492.89 28477.62 32686.89 19193.53 20047.18 39392.02 37890.54 10986.51 27391.93 338
COLMAP_ROBcopyleft80.39 1683.96 29882.04 30789.74 24395.28 14179.75 22994.25 17892.28 30175.17 35078.02 35293.77 19558.60 35597.84 17965.06 37485.92 27691.63 343
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 29981.53 31091.21 17890.58 33679.34 23985.24 38496.76 7871.44 38285.55 22282.97 39170.87 23898.91 8361.01 38689.36 23395.40 198
SixPastTwentyTwo83.91 30082.90 30286.92 32590.99 31770.67 37093.48 22191.99 31185.54 17077.62 35592.11 24960.59 34296.87 26176.05 30277.75 36193.20 301
EPMVS83.90 30182.70 30587.51 30690.23 34472.67 34488.62 35181.96 40081.37 27585.01 24788.34 34866.31 29894.45 34575.30 30787.12 26995.43 197
WB-MVSnew83.77 30283.28 29385.26 34991.48 29671.03 36591.89 27987.98 37578.91 30684.78 25090.22 31069.11 27094.02 35464.70 37590.44 21290.71 361
TESTMET0.1,183.74 30382.85 30386.42 33589.96 34971.21 36389.55 33487.88 37677.41 32883.37 29087.31 36256.71 36293.65 36280.62 24992.85 18394.40 244
UWE-MVS83.69 30483.09 29785.48 34493.06 24865.27 39290.92 30586.14 38479.90 29486.26 20790.72 30057.17 36195.81 31971.03 33792.62 18695.35 201
pmmvs683.42 30581.60 30988.87 27088.01 37377.87 27394.96 13094.24 24974.67 35678.80 34791.09 28760.17 34596.49 28377.06 29275.40 37392.23 333
AllTest83.42 30581.39 31189.52 25395.01 15477.79 27793.12 23990.89 34377.41 32876.12 36493.34 20354.08 37697.51 20168.31 35484.27 28993.26 295
tpmvs83.35 30782.07 30687.20 31991.07 31571.00 36788.31 35591.70 31878.91 30680.49 32787.18 36669.30 26597.08 24568.12 35783.56 29893.51 289
USDC82.76 30881.26 31387.26 31491.17 30974.55 32189.27 34093.39 27378.26 32275.30 37092.08 25154.43 37596.63 26971.64 32985.79 27890.61 363
Patchmtry82.71 30980.93 31588.06 29390.05 34776.37 30184.74 38991.96 31472.28 37981.32 31787.87 35771.03 23595.50 33268.97 34980.15 34692.32 331
PatchT82.68 31081.27 31286.89 32790.09 34670.94 36884.06 39190.15 35474.91 35385.63 22183.57 38669.37 26194.87 34465.19 37188.50 24694.84 221
MIMVSNet82.59 31180.53 31688.76 27291.51 29578.32 26186.57 37590.13 35579.32 30080.70 32388.69 34552.98 38093.07 37066.03 36988.86 24194.90 219
test0.0.03 182.41 31281.69 30884.59 35388.23 37072.89 34090.24 31887.83 37783.41 22179.86 33789.78 32467.25 28488.99 39765.18 37283.42 30191.90 339
EG-PatchMatch MVS82.37 31380.34 31988.46 28090.27 34279.35 23892.80 25494.33 24577.14 33273.26 38190.18 31347.47 39296.72 26470.25 34087.32 26889.30 376
tpm cat181.96 31480.27 32087.01 32291.09 31471.02 36687.38 36991.53 32666.25 39480.17 32986.35 37368.22 28096.15 30369.16 34882.29 31393.86 269
our_test_381.93 31580.46 31886.33 33688.46 36773.48 33488.46 35391.11 33476.46 33576.69 36088.25 35066.89 28994.36 34868.75 35079.08 35791.14 355
ppachtmachnet_test81.84 31680.07 32487.15 32088.46 36774.43 32489.04 34692.16 30575.33 34877.75 35388.99 33766.20 30095.37 33565.12 37377.60 36291.65 342
gg-mvs-nofinetune81.77 31779.37 33288.99 26890.85 32777.73 28086.29 37679.63 40574.88 35583.19 29469.05 40760.34 34396.11 30475.46 30594.64 14593.11 305
CL-MVSNet_self_test81.74 31880.53 31685.36 34685.96 38472.45 35090.25 31693.07 28081.24 27979.85 33887.29 36370.93 23792.52 37366.95 36269.23 38591.11 357
Patchmatch-RL test81.67 31979.96 32586.81 32985.42 38971.23 36282.17 39987.50 38078.47 31677.19 35782.50 39370.81 23993.48 36382.66 20872.89 37795.71 190
ADS-MVSNet281.66 32079.71 32987.50 30791.35 30374.19 32683.33 39488.48 37372.90 37382.24 30485.77 37764.98 30893.20 36864.57 37683.74 29495.12 207
K. test v381.59 32180.15 32385.91 34189.89 35169.42 37792.57 25987.71 37885.56 16973.44 38089.71 32655.58 36595.52 32977.17 28969.76 38392.78 317
ADS-MVSNet81.56 32279.78 32686.90 32691.35 30371.82 35483.33 39489.16 37172.90 37382.24 30485.77 37764.98 30893.76 35964.57 37683.74 29495.12 207
FMVSNet581.52 32379.60 33087.27 31391.17 30977.95 26991.49 29192.26 30376.87 33376.16 36387.91 35651.67 38292.34 37567.74 35881.16 32791.52 346
dp81.47 32480.23 32185.17 35089.92 35065.49 39086.74 37390.10 35676.30 33981.10 31887.12 36762.81 32195.92 31268.13 35679.88 34994.09 256
Patchmatch-test81.37 32579.30 33387.58 30590.92 32374.16 32780.99 40187.68 37970.52 38676.63 36188.81 34071.21 23292.76 37260.01 39086.93 27295.83 183
EU-MVSNet81.32 32680.95 31482.42 36888.50 36663.67 39793.32 22891.33 33064.02 39880.57 32692.83 22361.21 33792.27 37676.34 29880.38 34591.32 350
test_040281.30 32779.17 33787.67 30393.19 24278.17 26592.98 24691.71 31775.25 34976.02 36690.31 30859.23 35196.37 29250.22 40283.63 29788.47 387
JIA-IIPM81.04 32878.98 34187.25 31588.64 36373.48 33481.75 40089.61 36873.19 37082.05 30773.71 40366.07 30395.87 31571.18 33484.60 28692.41 327
Anonymous2023120681.03 32979.77 32884.82 35287.85 37670.26 37391.42 29292.08 30773.67 36577.75 35389.25 33262.43 32393.08 36961.50 38582.00 31891.12 356
mvs5depth80.98 33079.15 33886.45 33384.57 39273.29 33687.79 36191.67 32080.52 28782.20 30689.72 32555.14 37195.93 31173.93 32066.83 39190.12 369
pmmvs-eth3d80.97 33178.72 34387.74 30084.99 39179.97 22590.11 32491.65 32175.36 34773.51 37986.03 37459.45 34993.96 35775.17 30872.21 37889.29 378
testgi80.94 33280.20 32283.18 36187.96 37466.29 38791.28 29690.70 34783.70 21278.12 35092.84 22251.37 38390.82 38863.34 37982.46 31192.43 326
CMPMVSbinary59.16 2180.52 33379.20 33684.48 35483.98 39367.63 38589.95 32993.84 26564.79 39766.81 39591.14 28557.93 35795.17 33776.25 29988.10 25290.65 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 33479.59 33183.06 36393.44 23764.64 39493.33 22785.47 38984.34 20079.93 33690.84 29344.35 39992.39 37457.06 39787.56 26292.16 335
Anonymous2024052180.44 33579.21 33584.11 35885.75 38767.89 38192.86 25293.23 27675.61 34675.59 36987.47 36150.03 38594.33 34971.14 33581.21 32690.12 369
LF4IMVS80.37 33679.07 34084.27 35786.64 38069.87 37689.39 33991.05 33776.38 33774.97 37290.00 31947.85 39194.25 35274.55 31680.82 33888.69 385
KD-MVS_self_test80.20 33779.24 33483.07 36285.64 38865.29 39191.01 30493.93 25978.71 31476.32 36286.40 37259.20 35292.93 37172.59 32669.35 38491.00 360
Syy-MVS80.07 33879.78 32680.94 37291.92 28059.93 40389.75 33287.40 38181.72 26578.82 34587.20 36466.29 29991.29 38447.06 40487.84 25991.60 344
UnsupCasMVSNet_eth80.07 33878.27 34485.46 34585.24 39072.63 34788.45 35494.87 22382.99 23371.64 38788.07 35356.34 36391.75 38173.48 32363.36 39792.01 337
test20.0379.95 34079.08 33982.55 36585.79 38667.74 38491.09 30291.08 33581.23 28074.48 37689.96 32161.63 32890.15 39060.08 38876.38 36989.76 371
TDRefinement79.81 34177.34 34687.22 31879.24 40675.48 31293.12 23992.03 30976.45 33675.01 37191.58 27149.19 38896.44 28870.22 34269.18 38689.75 372
TinyColmap79.76 34277.69 34585.97 33891.71 29073.12 33789.55 33490.36 35175.03 35172.03 38590.19 31246.22 39696.19 30263.11 38081.03 33288.59 386
myMVS_eth3d79.67 34378.79 34282.32 36991.92 28064.08 39589.75 33287.40 38181.72 26578.82 34587.20 36445.33 39791.29 38459.09 39287.84 25991.60 344
OpenMVS_ROBcopyleft74.94 1979.51 34477.03 35186.93 32487.00 37976.23 30392.33 26890.74 34668.93 39074.52 37588.23 35149.58 38796.62 27057.64 39584.29 28887.94 390
MIMVSNet179.38 34577.28 34785.69 34386.35 38173.67 33191.61 28992.75 29078.11 32572.64 38388.12 35248.16 39091.97 38060.32 38777.49 36391.43 349
YYNet179.22 34677.20 34885.28 34888.20 37272.66 34585.87 37890.05 35974.33 35962.70 39887.61 35966.09 30292.03 37766.94 36372.97 37691.15 354
MDA-MVSNet_test_wron79.21 34777.19 34985.29 34788.22 37172.77 34285.87 37890.06 35774.34 35862.62 40087.56 36066.14 30191.99 37966.90 36673.01 37591.10 358
MDA-MVSNet-bldmvs78.85 34876.31 35386.46 33289.76 35273.88 32888.79 34890.42 34979.16 30459.18 40388.33 34960.20 34494.04 35362.00 38368.96 38791.48 348
KD-MVS_2432*160078.50 34976.02 35685.93 33986.22 38274.47 32284.80 38792.33 29879.29 30176.98 35885.92 37553.81 37893.97 35567.39 35957.42 40489.36 374
miper_refine_blended78.50 34976.02 35685.93 33986.22 38274.47 32284.80 38792.33 29879.29 30176.98 35885.92 37553.81 37893.97 35567.39 35957.42 40489.36 374
PM-MVS78.11 35176.12 35584.09 35983.54 39570.08 37488.97 34785.27 39179.93 29374.73 37486.43 37034.70 40793.48 36379.43 26672.06 37988.72 384
test_vis1_rt77.96 35276.46 35282.48 36785.89 38571.74 35790.25 31678.89 40671.03 38571.30 38881.35 39542.49 40191.05 38784.55 18182.37 31284.65 393
test_fmvs377.67 35377.16 35079.22 37579.52 40561.14 40192.34 26791.64 32273.98 36278.86 34486.59 36827.38 41187.03 39988.12 13575.97 37189.50 373
PVSNet_073.20 2077.22 35474.83 36084.37 35590.70 33371.10 36483.09 39689.67 36672.81 37573.93 37883.13 38860.79 34193.70 36168.54 35150.84 40988.30 388
DSMNet-mixed76.94 35576.29 35478.89 37683.10 39756.11 41287.78 36279.77 40460.65 40275.64 36888.71 34361.56 33188.34 39860.07 38989.29 23592.21 334
ttmdpeth76.55 35674.64 36182.29 37082.25 40067.81 38389.76 33185.69 38770.35 38775.76 36791.69 26446.88 39489.77 39266.16 36863.23 39889.30 376
new-patchmatchnet76.41 35775.17 35980.13 37382.65 39959.61 40487.66 36691.08 33578.23 32369.85 39183.22 38754.76 37291.63 38364.14 37864.89 39589.16 380
UnsupCasMVSNet_bld76.23 35873.27 36285.09 35183.79 39472.92 33985.65 38193.47 27271.52 38168.84 39379.08 39849.77 38693.21 36766.81 36760.52 40189.13 382
mvsany_test374.95 35973.26 36380.02 37474.61 41063.16 39985.53 38278.42 40774.16 36074.89 37386.46 36936.02 40689.09 39682.39 21266.91 39087.82 391
dmvs_testset74.57 36075.81 35870.86 38687.72 37740.47 42187.05 37277.90 41182.75 23871.15 38985.47 37967.98 28184.12 40845.26 40576.98 36888.00 389
MVS-HIRNet73.70 36172.20 36478.18 37991.81 28756.42 41182.94 39782.58 39855.24 40568.88 39266.48 40855.32 36995.13 33858.12 39488.42 24883.01 396
MVStest172.91 36269.70 36782.54 36678.14 40773.05 33888.21 35686.21 38360.69 40164.70 39690.53 30346.44 39585.70 40458.78 39353.62 40688.87 383
new_pmnet72.15 36370.13 36678.20 37882.95 39865.68 38883.91 39282.40 39962.94 40064.47 39779.82 39742.85 40086.26 40357.41 39674.44 37482.65 398
test_f71.95 36470.87 36575.21 38274.21 41259.37 40585.07 38685.82 38665.25 39670.42 39083.13 38823.62 41282.93 41078.32 27671.94 38083.33 395
pmmvs371.81 36568.71 36881.11 37175.86 40970.42 37286.74 37383.66 39558.95 40468.64 39480.89 39636.93 40589.52 39463.10 38163.59 39683.39 394
APD_test169.04 36666.26 37277.36 38180.51 40362.79 40085.46 38383.51 39654.11 40759.14 40484.79 38223.40 41489.61 39355.22 39870.24 38279.68 402
N_pmnet68.89 36768.44 36970.23 38789.07 36028.79 42688.06 35719.50 42669.47 38971.86 38684.93 38061.24 33691.75 38154.70 39977.15 36590.15 368
WB-MVS67.92 36867.49 37069.21 39081.09 40141.17 42088.03 35878.00 41073.50 36762.63 39983.11 39063.94 31486.52 40125.66 41651.45 40879.94 401
SSC-MVS67.06 36966.56 37168.56 39280.54 40240.06 42287.77 36377.37 41372.38 37761.75 40182.66 39263.37 31786.45 40224.48 41748.69 41179.16 403
LCM-MVSNet66.00 37062.16 37577.51 38064.51 42058.29 40683.87 39390.90 34248.17 40954.69 40673.31 40416.83 42086.75 40065.47 37061.67 40087.48 392
test_vis3_rt65.12 37162.60 37372.69 38471.44 41360.71 40287.17 37065.55 41763.80 39953.22 40765.65 41014.54 42189.44 39576.65 29365.38 39367.91 408
FPMVS64.63 37262.55 37470.88 38570.80 41456.71 40784.42 39084.42 39351.78 40849.57 40881.61 39423.49 41381.48 41140.61 41176.25 37074.46 404
EGC-MVSNET61.97 37356.37 37878.77 37789.63 35573.50 33389.12 34482.79 3970.21 4231.24 42484.80 38139.48 40290.04 39144.13 40675.94 37272.79 405
PMMVS259.60 37456.40 37769.21 39068.83 41746.58 41673.02 41177.48 41255.07 40649.21 40972.95 40517.43 41980.04 41249.32 40344.33 41280.99 400
testf159.54 37556.11 37969.85 38869.28 41556.61 40980.37 40376.55 41442.58 41245.68 41175.61 39911.26 42284.18 40643.20 40860.44 40268.75 406
APD_test259.54 37556.11 37969.85 38869.28 41556.61 40980.37 40376.55 41442.58 41245.68 41175.61 39911.26 42284.18 40643.20 40860.44 40268.75 406
ANet_high58.88 37754.22 38272.86 38356.50 42356.67 40880.75 40286.00 38573.09 37237.39 41564.63 41122.17 41579.49 41343.51 40723.96 41782.43 399
dongtai58.82 37858.24 37660.56 39583.13 39645.09 41982.32 39848.22 42567.61 39261.70 40269.15 40638.75 40376.05 41432.01 41341.31 41360.55 410
Gipumacopyleft57.99 37954.91 38167.24 39388.51 36465.59 38952.21 41490.33 35243.58 41142.84 41451.18 41520.29 41785.07 40534.77 41270.45 38151.05 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan53.51 38053.30 38354.13 39976.06 40845.36 41880.11 40548.36 42459.63 40354.84 40563.43 41237.41 40462.07 41920.73 41939.10 41454.96 413
PMVScopyleft47.18 2252.22 38148.46 38563.48 39445.72 42546.20 41773.41 41078.31 40841.03 41430.06 41765.68 4096.05 42483.43 40930.04 41465.86 39260.80 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 38248.47 38456.66 39752.26 42418.98 42841.51 41681.40 40110.10 41844.59 41375.01 40228.51 40968.16 41553.54 40049.31 41082.83 397
MVEpermissive39.65 2343.39 38338.59 38957.77 39656.52 42248.77 41555.38 41358.64 42129.33 41728.96 41852.65 4144.68 42564.62 41828.11 41533.07 41559.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 38442.29 38646.03 40065.58 41937.41 42373.51 40964.62 41833.99 41528.47 41947.87 41619.90 41867.91 41622.23 41824.45 41632.77 415
EMVS42.07 38541.12 38744.92 40163.45 42135.56 42573.65 40863.48 41933.05 41626.88 42045.45 41721.27 41667.14 41719.80 42023.02 41832.06 416
tmp_tt35.64 38639.24 38824.84 40214.87 42623.90 42762.71 41251.51 4236.58 42036.66 41662.08 41344.37 39830.34 42252.40 40122.00 41920.27 417
cdsmvs_eth3d_5k22.14 38729.52 3900.00 4060.00 4290.00 4310.00 41795.76 1610.00 4240.00 42594.29 17075.66 1780.00 4250.00 4240.00 4230.00 421
wuyk23d21.27 38820.48 39123.63 40368.59 41836.41 42449.57 4156.85 4279.37 4197.89 4214.46 4234.03 42631.37 42117.47 42116.07 4203.12 418
testmvs8.92 38911.52 3921.12 4051.06 4270.46 43086.02 3770.65 4280.62 4212.74 4229.52 4210.31 4280.45 4242.38 4220.39 4212.46 420
test1238.76 39011.22 3931.39 4040.85 4280.97 42985.76 3800.35 4290.54 4222.45 4238.14 4220.60 4270.48 4232.16 4230.17 4222.71 419
ab-mvs-re7.82 39110.43 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42593.88 1900.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.64 3928.86 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42479.70 1290.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS64.08 39559.14 391
FOURS198.86 185.54 6798.29 197.49 689.79 4996.29 18
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
PC_three_145282.47 24297.09 1097.07 5492.72 198.04 16792.70 6199.02 1298.86 11
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
eth-test20.00 429
eth-test0.00 429
ZD-MVS98.15 3486.62 3397.07 4883.63 21494.19 4796.91 6087.57 3199.26 4591.99 8398.44 53
RE-MVS-def93.68 5697.92 4384.57 8596.28 4396.76 7887.46 12393.75 5797.43 3382.94 8892.73 5797.80 7997.88 84
IU-MVS98.77 586.00 5096.84 6881.26 27897.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7298.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 2092.31 499.38 31
9.1494.47 2397.79 5296.08 6097.44 1586.13 15895.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
save fliter97.85 4985.63 6695.21 11696.82 7189.44 57
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 491.47 8
GSMVS96.12 168
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 168
sam_mvs70.60 241
ambc83.06 36379.99 40463.51 39877.47 40792.86 28574.34 37784.45 38328.74 40895.06 34173.06 32568.89 38890.61 363
MTGPAbinary96.97 53
test_post188.00 3599.81 42069.31 26495.53 32876.65 293
test_post10.29 41970.57 24595.91 314
patchmatchnet-post83.76 38571.53 22996.48 284
GG-mvs-BLEND87.94 29789.73 35477.91 27087.80 36078.23 40980.58 32583.86 38459.88 34795.33 33671.20 33292.22 19290.60 365
MTMP96.16 5260.64 420
gm-plane-assit89.60 35668.00 38077.28 33188.99 33797.57 19679.44 265
test9_res91.91 8798.71 3298.07 72
TEST997.53 6186.49 3794.07 19296.78 7581.61 27092.77 8196.20 9087.71 2899.12 54
test_897.49 6386.30 4594.02 19796.76 7881.86 26192.70 8596.20 9087.63 2999.02 64
agg_prior290.54 10998.68 3798.27 56
agg_prior97.38 6685.92 5796.72 8492.16 9698.97 78
TestCases89.52 25395.01 15477.79 27790.89 34377.41 32876.12 36493.34 20354.08 37697.51 20168.31 35484.27 28993.26 295
test_prior485.96 5494.11 187
test_prior294.12 18587.67 12192.63 8696.39 8586.62 4091.50 9598.67 40
test_prior93.82 6597.29 7084.49 8996.88 6498.87 8598.11 71
旧先验293.36 22671.25 38394.37 4397.13 24386.74 153
新几何293.11 241
新几何193.10 8697.30 6984.35 9795.56 17771.09 38491.26 12096.24 8882.87 9098.86 8779.19 26998.10 6796.07 172
旧先验196.79 7981.81 16995.67 16996.81 6686.69 3997.66 8496.97 132
无先验93.28 23496.26 11773.95 36399.05 5880.56 25096.59 149
原ACMM292.94 248
原ACMM192.01 13897.34 6781.05 19096.81 7378.89 30890.45 12795.92 10382.65 9298.84 9180.68 24898.26 5996.14 166
test22296.55 8881.70 17192.22 27295.01 21168.36 39190.20 13296.14 9580.26 12297.80 7996.05 175
testdata298.75 9778.30 277
segment_acmp87.16 36
testdata90.49 20896.40 9377.89 27295.37 19572.51 37693.63 6096.69 6982.08 10697.65 19083.08 19897.39 8795.94 177
testdata192.15 27487.94 109
test1294.34 5297.13 7386.15 4896.29 11291.04 12285.08 6199.01 6698.13 6697.86 86
plane_prior794.70 17482.74 147
plane_prior694.52 18482.75 14574.23 195
plane_prior596.22 12298.12 15288.15 13289.99 21894.63 227
plane_prior494.86 147
plane_prior382.75 14590.26 3386.91 188
plane_prior295.85 8090.81 17
plane_prior194.59 179
plane_prior82.73 14895.21 11689.66 5489.88 223
n20.00 430
nn0.00 430
door-mid85.49 388
lessismore_v086.04 33788.46 36768.78 37980.59 40373.01 38290.11 31655.39 36796.43 28975.06 31065.06 39492.90 312
LGP-MVS_train91.12 18194.47 18681.49 17796.14 12786.73 14185.45 23095.16 13669.89 25398.10 15487.70 13989.23 23693.77 277
test1196.57 95
door85.33 390
HQP5-MVS81.56 173
HQP-NCC94.17 20394.39 16988.81 7885.43 233
ACMP_Plane94.17 20394.39 16988.81 7885.43 233
BP-MVS87.11 150
HQP4-MVS85.43 23397.96 17394.51 237
HQP3-MVS96.04 13989.77 227
HQP2-MVS73.83 205
NP-MVS94.37 19382.42 15793.98 183
MDTV_nov1_ep13_2view55.91 41387.62 36773.32 36984.59 25570.33 24874.65 31495.50 195
MDTV_nov1_ep1383.56 29091.69 29269.93 37587.75 36491.54 32578.60 31584.86 24988.90 33969.54 25996.03 30670.25 34088.93 240
ACMMP++_ref87.47 263
ACMMP++88.01 255
Test By Simon80.02 124
ITE_SJBPF88.24 28991.88 28377.05 28992.92 28385.54 17080.13 33293.30 20757.29 36096.20 30072.46 32784.71 28591.49 347
DeepMVS_CXcopyleft56.31 39874.23 41151.81 41456.67 42244.85 41048.54 41075.16 40127.87 41058.74 42040.92 41052.22 40758.39 412