DVP-MVS | | | 95.67 1 | 96.02 1 | 94.64 33 | 98.78 2 | 85.93 47 | 97.09 9 | 96.73 64 | 90.27 26 | 97.04 4 | 98.05 4 | 91.47 3 | 99.55 9 | 95.62 3 | 99.08 4 | 98.45 23 |
|
DPE-MVS | | | 95.57 2 | 95.67 2 | 95.25 6 | 98.36 21 | 87.28 11 | 95.56 66 | 97.51 4 | 89.13 51 | 97.14 3 | 97.91 6 | 91.64 2 | 99.62 1 | 94.61 8 | 99.17 2 | 98.86 5 |
|
APDe-MVS | | | 95.46 3 | 95.64 3 | 94.91 16 | 98.26 24 | 86.29 42 | 97.46 2 | 97.40 13 | 89.03 54 | 96.20 8 | 98.10 2 | 89.39 9 | 99.34 27 | 95.88 1 | 99.03 6 | 99.10 3 |
|
MSP-MVS | | | 95.42 4 | 95.56 4 | 94.98 14 | 98.49 12 | 86.52 31 | 96.91 18 | 97.47 7 | 91.73 8 | 96.10 9 | 96.69 46 | 89.90 5 | 99.30 34 | 94.70 6 | 98.04 54 | 99.13 1 |
|
CNVR-MVS | | | 95.40 5 | 95.37 5 | 95.50 4 | 98.11 32 | 88.51 4 | 95.29 76 | 96.96 44 | 92.09 3 | 95.32 14 | 97.08 31 | 89.49 8 | 99.33 31 | 95.10 5 | 98.85 12 | 98.66 10 |
|
SMA-MVS | | | 95.20 6 | 95.07 8 | 95.59 2 | 98.14 31 | 88.48 5 | 96.26 33 | 97.28 23 | 85.90 123 | 97.67 1 | 98.10 2 | 88.41 13 | 99.56 4 | 94.66 7 | 99.19 1 | 98.71 8 |
|
SteuartSystems-ACMMP | | | 95.20 6 | 95.32 7 | 94.85 21 | 96.99 63 | 86.33 38 | 97.33 3 | 97.30 21 | 91.38 11 | 95.39 13 | 97.46 12 | 88.98 12 | 99.40 25 | 94.12 12 | 98.89 11 | 98.82 6 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ | | | 95.14 8 | 94.91 10 | 95.83 1 | 98.25 25 | 89.65 1 | 95.92 50 | 96.96 44 | 91.75 7 | 94.02 27 | 96.83 39 | 88.12 15 | 99.55 9 | 93.41 20 | 98.94 9 | 98.28 35 |
|
SD-MVS | | | 94.96 9 | 95.33 6 | 93.88 54 | 97.25 60 | 86.69 24 | 96.19 35 | 97.11 35 | 90.42 25 | 96.95 6 | 97.27 19 | 89.53 7 | 96.91 219 | 94.38 10 | 98.85 12 | 98.03 56 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.85 10 | 94.94 9 | 94.58 36 | 98.25 25 | 86.33 38 | 96.11 41 | 96.62 75 | 88.14 79 | 96.10 9 | 96.96 35 | 89.09 11 | 98.94 72 | 94.48 9 | 98.68 28 | 98.48 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
NCCC | | | 94.81 11 | 94.69 12 | 95.17 8 | 97.83 40 | 87.46 10 | 95.66 61 | 96.93 47 | 92.34 2 | 93.94 28 | 96.58 53 | 87.74 19 | 99.44 24 | 92.83 27 | 98.40 43 | 98.62 11 |
|
ACMMP_NAP | | | 94.74 12 | 94.56 13 | 95.28 5 | 98.02 37 | 87.70 6 | 95.68 59 | 97.34 15 | 88.28 74 | 95.30 15 | 97.67 8 | 85.90 39 | 99.54 13 | 93.91 14 | 98.95 8 | 98.60 12 |
|
HFP-MVS | | | 94.52 13 | 94.40 15 | 94.86 19 | 98.61 6 | 86.81 18 | 96.94 13 | 97.34 15 | 88.63 64 | 93.65 31 | 97.21 24 | 86.10 35 | 99.49 20 | 92.35 34 | 98.77 18 | 98.30 31 |
|
zzz-MVS | | | 94.47 14 | 94.30 17 | 95.00 11 | 98.42 16 | 86.95 13 | 95.06 93 | 96.97 41 | 91.07 13 | 93.14 43 | 97.56 9 | 84.30 57 | 99.56 4 | 93.43 18 | 98.75 20 | 98.47 19 |
|
XVS | | | 94.45 15 | 94.32 16 | 94.85 21 | 98.54 9 | 86.60 29 | 96.93 15 | 97.19 28 | 90.66 23 | 92.85 46 | 97.16 29 | 85.02 50 | 99.49 20 | 91.99 43 | 98.56 39 | 98.47 19 |
|
MCST-MVS | | | 94.45 15 | 94.20 23 | 95.19 7 | 98.46 14 | 87.50 9 | 95.00 95 | 97.12 33 | 87.13 98 | 92.51 60 | 96.30 62 | 89.24 10 | 99.34 27 | 93.46 17 | 98.62 36 | 98.73 7 |
|
region2R | | | 94.43 17 | 94.27 19 | 94.92 15 | 98.65 4 | 86.67 26 | 96.92 17 | 97.23 26 | 88.60 66 | 93.58 35 | 97.27 19 | 85.22 46 | 99.54 13 | 92.21 36 | 98.74 22 | 98.56 14 |
|
ACMMPR | | | 94.43 17 | 94.28 18 | 94.91 16 | 98.63 5 | 86.69 24 | 96.94 13 | 97.32 20 | 88.63 64 | 93.53 38 | 97.26 21 | 85.04 49 | 99.54 13 | 92.35 34 | 98.78 17 | 98.50 15 |
|
MTAPA | | | 94.42 19 | 94.22 20 | 95.00 11 | 98.42 16 | 86.95 13 | 94.36 141 | 96.97 41 | 91.07 13 | 93.14 43 | 97.56 9 | 84.30 57 | 99.56 4 | 93.43 18 | 98.75 20 | 98.47 19 |
|
testtj | | | 94.39 20 | 94.18 24 | 95.00 11 | 98.24 27 | 86.77 22 | 96.16 36 | 97.23 26 | 87.28 96 | 94.85 18 | 97.04 32 | 86.99 28 | 99.52 17 | 91.54 55 | 98.33 46 | 98.71 8 |
|
CP-MVS | | | 94.34 21 | 94.21 22 | 94.74 30 | 98.39 19 | 86.64 28 | 97.60 1 | 97.24 24 | 88.53 68 | 92.73 53 | 97.23 22 | 85.20 47 | 99.32 32 | 92.15 39 | 98.83 14 | 98.25 40 |
|
Regformer-2 | | | 94.33 22 | 94.22 20 | 94.68 31 | 95.54 109 | 86.75 23 | 94.57 122 | 96.70 68 | 91.84 6 | 94.41 19 | 96.56 55 | 87.19 25 | 99.13 45 | 93.50 15 | 97.65 64 | 98.16 45 |
|
#test# | | | 94.32 23 | 94.14 26 | 94.86 19 | 98.61 6 | 86.81 18 | 96.43 27 | 97.34 15 | 87.51 93 | 93.65 31 | 97.21 24 | 86.10 35 | 99.49 20 | 91.68 53 | 98.77 18 | 98.30 31 |
|
MP-MVS | | | 94.25 24 | 94.07 29 | 94.77 28 | 98.47 13 | 86.31 40 | 96.71 23 | 96.98 40 | 89.04 53 | 91.98 69 | 97.19 26 | 85.43 44 | 99.56 4 | 92.06 42 | 98.79 15 | 98.44 24 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS | | | 94.24 25 | 94.07 29 | 94.75 29 | 98.06 35 | 86.90 16 | 95.88 51 | 96.94 46 | 85.68 129 | 95.05 17 | 97.18 27 | 87.31 24 | 99.07 49 | 91.90 50 | 98.61 37 | 98.28 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS | | | 94.23 26 | 94.17 25 | 94.43 42 | 98.21 29 | 85.78 54 | 96.40 29 | 96.90 49 | 88.20 77 | 94.33 21 | 97.40 13 | 84.75 54 | 99.03 55 | 93.35 21 | 97.99 55 | 98.48 17 |
|
Regformer-1 | | | 94.22 27 | 94.13 27 | 94.51 39 | 95.54 109 | 86.36 37 | 94.57 122 | 96.44 83 | 91.69 9 | 94.32 22 | 96.56 55 | 87.05 27 | 99.03 55 | 93.35 21 | 97.65 64 | 98.15 46 |
|
GST-MVS | | | 94.21 28 | 93.97 32 | 94.90 18 | 98.41 18 | 86.82 17 | 96.54 26 | 97.19 28 | 88.24 75 | 93.26 39 | 96.83 39 | 85.48 43 | 99.59 3 | 91.43 59 | 98.40 43 | 98.30 31 |
|
MP-MVS-pluss | | | 94.21 28 | 94.00 31 | 94.85 21 | 98.17 30 | 86.65 27 | 94.82 106 | 97.17 31 | 86.26 117 | 92.83 48 | 97.87 7 | 85.57 42 | 99.56 4 | 94.37 11 | 98.92 10 | 98.34 28 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DeepPCF-MVS | | 89.96 1 | 94.20 30 | 94.77 11 | 92.49 100 | 96.52 76 | 80.00 191 | 94.00 164 | 97.08 36 | 90.05 29 | 95.65 11 | 97.29 17 | 89.66 6 | 98.97 68 | 93.95 13 | 98.71 23 | 98.50 15 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 31 | 93.79 35 | 94.80 27 | 97.48 49 | 86.78 20 | 95.65 63 | 96.89 50 | 89.40 43 | 92.81 49 | 96.97 34 | 85.37 45 | 99.24 36 | 90.87 69 | 98.69 26 | 98.38 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS | | | 94.02 32 | 93.88 33 | 94.43 42 | 98.39 19 | 85.78 54 | 97.25 5 | 97.07 37 | 86.90 106 | 92.62 57 | 96.80 43 | 84.85 53 | 99.17 41 | 92.43 31 | 98.65 34 | 98.33 29 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 93.99 33 | 93.78 36 | 94.63 34 | 98.50 11 | 85.90 52 | 96.87 19 | 96.91 48 | 88.70 62 | 91.83 75 | 97.17 28 | 83.96 62 | 99.55 9 | 91.44 58 | 98.64 35 | 98.43 25 |
|
PGM-MVS | | | 93.96 34 | 93.72 38 | 94.68 31 | 98.43 15 | 86.22 43 | 95.30 74 | 97.78 1 | 87.45 94 | 93.26 39 | 97.33 16 | 84.62 55 | 99.51 18 | 90.75 71 | 98.57 38 | 98.32 30 |
|
Regformer-4 | | | 93.91 35 | 93.81 34 | 94.19 49 | 95.36 113 | 85.47 58 | 94.68 114 | 96.41 86 | 91.60 10 | 93.75 30 | 96.71 44 | 85.95 38 | 99.10 48 | 93.21 24 | 96.65 81 | 98.01 58 |
|
PHI-MVS | | | 93.89 36 | 93.65 39 | 94.62 35 | 96.84 66 | 86.43 34 | 96.69 24 | 97.49 5 | 85.15 142 | 93.56 37 | 96.28 63 | 85.60 41 | 99.31 33 | 92.45 30 | 98.79 15 | 98.12 49 |
|
APD-MVS_3200maxsize | | | 93.78 37 | 93.77 37 | 93.80 59 | 97.92 38 | 84.19 82 | 96.30 31 | 96.87 53 | 86.96 102 | 93.92 29 | 97.47 11 | 83.88 63 | 98.96 71 | 92.71 29 | 97.87 59 | 98.26 39 |
|
MSLP-MVS++ | | | 93.72 38 | 94.08 28 | 92.65 93 | 97.31 54 | 83.43 100 | 95.79 54 | 97.33 18 | 90.03 30 | 93.58 35 | 96.96 35 | 84.87 52 | 97.76 151 | 92.19 38 | 98.66 32 | 96.76 109 |
|
Regformer-3 | | | 93.68 39 | 93.64 40 | 93.81 58 | 95.36 113 | 84.61 67 | 94.68 114 | 95.83 127 | 91.27 12 | 93.60 34 | 96.71 44 | 85.75 40 | 98.86 77 | 92.87 26 | 96.65 81 | 97.96 60 |
|
TSAR-MVS + GP. | | | 93.66 40 | 93.41 42 | 94.41 44 | 96.59 72 | 86.78 20 | 94.40 134 | 93.93 220 | 89.77 35 | 94.21 23 | 95.59 89 | 87.35 23 | 98.61 93 | 92.72 28 | 96.15 90 | 97.83 69 |
|
test_prior3 | | | 93.60 41 | 93.53 41 | 93.82 56 | 97.29 56 | 84.49 71 | 94.12 150 | 96.88 51 | 87.67 90 | 92.63 55 | 96.39 60 | 86.62 30 | 98.87 74 | 91.50 56 | 98.67 30 | 98.11 50 |
|
CANet | | | 93.54 42 | 93.20 46 | 94.55 37 | 95.65 105 | 85.73 56 | 94.94 98 | 96.69 70 | 91.89 5 | 90.69 92 | 95.88 80 | 81.99 84 | 99.54 13 | 93.14 25 | 97.95 57 | 98.39 26 |
|
MVS_111021_HR | | | 93.45 43 | 93.31 43 | 93.84 55 | 96.99 63 | 84.84 63 | 93.24 196 | 97.24 24 | 88.76 60 | 91.60 80 | 95.85 81 | 86.07 37 | 98.66 88 | 91.91 47 | 98.16 50 | 98.03 56 |
|
train_agg | | | 93.44 44 | 93.08 47 | 94.52 38 | 97.53 45 | 86.49 32 | 94.07 157 | 96.78 60 | 81.86 211 | 92.77 50 | 96.20 67 | 87.63 21 | 99.12 46 | 92.14 40 | 98.69 26 | 97.94 61 |
|
DELS-MVS | | | 93.43 45 | 93.25 44 | 93.97 51 | 95.42 112 | 85.04 62 | 93.06 203 | 97.13 32 | 90.74 20 | 91.84 73 | 95.09 102 | 86.32 34 | 99.21 38 | 91.22 61 | 98.45 42 | 97.65 73 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 93.40 46 | 93.22 45 | 93.94 53 | 98.36 21 | 84.83 64 | 97.15 8 | 96.80 59 | 85.77 126 | 92.47 61 | 97.13 30 | 82.38 73 | 99.07 49 | 90.51 73 | 98.40 43 | 97.92 65 |
|
DeepC-MVS | | 88.79 3 | 93.31 47 | 92.99 50 | 94.26 47 | 96.07 91 | 85.83 53 | 94.89 101 | 96.99 39 | 89.02 55 | 89.56 102 | 97.37 15 | 82.51 72 | 99.38 26 | 92.20 37 | 98.30 47 | 97.57 78 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 93.29 48 | 92.97 51 | 94.26 47 | 97.38 51 | 85.92 49 | 93.92 167 | 96.72 66 | 81.96 205 | 92.16 65 | 96.23 65 | 87.85 16 | 98.97 68 | 91.95 46 | 98.55 41 | 97.90 66 |
|
canonicalmvs | | | 93.27 49 | 92.75 54 | 94.85 21 | 95.70 104 | 87.66 7 | 96.33 30 | 96.41 86 | 90.00 31 | 94.09 25 | 94.60 120 | 82.33 75 | 98.62 92 | 92.40 33 | 92.86 145 | 98.27 37 |
|
ACMMP | | | 93.24 50 | 92.88 53 | 94.30 46 | 98.09 34 | 85.33 60 | 96.86 20 | 97.45 10 | 88.33 72 | 90.15 98 | 97.03 33 | 81.44 87 | 99.51 18 | 90.85 70 | 95.74 93 | 98.04 55 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CSCG | | | 93.23 51 | 93.05 48 | 93.76 60 | 98.04 36 | 84.07 84 | 96.22 34 | 97.37 14 | 84.15 158 | 90.05 99 | 95.66 87 | 87.77 18 | 99.15 44 | 89.91 76 | 98.27 48 | 98.07 52 |
|
abl_6 | | | 93.18 52 | 93.05 48 | 93.57 63 | 97.52 47 | 84.27 81 | 95.53 67 | 96.67 71 | 87.85 85 | 93.20 42 | 97.22 23 | 80.35 94 | 99.18 40 | 91.91 47 | 97.21 70 | 97.26 88 |
|
alignmvs | | | 93.08 53 | 92.50 59 | 94.81 26 | 95.62 107 | 87.61 8 | 95.99 46 | 96.07 109 | 89.77 35 | 94.12 24 | 94.87 108 | 80.56 93 | 98.66 88 | 92.42 32 | 93.10 140 | 98.15 46 |
|
EI-MVSNet-Vis-set | | | 93.01 54 | 92.92 52 | 93.29 64 | 95.01 125 | 83.51 99 | 94.48 126 | 95.77 131 | 90.87 15 | 92.52 59 | 96.67 48 | 84.50 56 | 99.00 64 | 91.99 43 | 94.44 118 | 97.36 84 |
|
UA-Net | | | 92.83 55 | 92.54 58 | 93.68 61 | 96.10 89 | 84.71 66 | 95.66 61 | 96.39 88 | 91.92 4 | 93.22 41 | 96.49 57 | 83.16 66 | 98.87 74 | 84.47 135 | 95.47 98 | 97.45 83 |
|
CDPH-MVS | | | 92.83 55 | 92.30 61 | 94.44 40 | 97.79 41 | 86.11 45 | 94.06 159 | 96.66 72 | 80.09 234 | 92.77 50 | 96.63 50 | 86.62 30 | 99.04 54 | 87.40 102 | 98.66 32 | 98.17 44 |
|
EIA-MVS | | | 92.74 57 | 92.66 55 | 92.97 78 | 95.20 121 | 84.04 86 | 95.07 90 | 96.51 81 | 90.73 21 | 92.96 45 | 91.19 232 | 84.06 60 | 98.34 112 | 91.72 52 | 96.54 84 | 96.54 117 |
|
EI-MVSNet-UG-set | | | 92.74 57 | 92.62 56 | 93.12 70 | 94.86 136 | 83.20 105 | 94.40 134 | 95.74 134 | 90.71 22 | 92.05 68 | 96.60 52 | 84.00 61 | 98.99 65 | 91.55 54 | 93.63 127 | 97.17 93 |
|
CS-MVS | | | 92.60 59 | 92.56 57 | 92.73 88 | 95.55 108 | 82.35 132 | 96.14 38 | 96.85 54 | 88.71 61 | 91.44 83 | 91.51 225 | 84.13 59 | 98.48 99 | 91.27 60 | 97.47 67 | 97.34 85 |
|
DPM-MVS | | | 92.58 60 | 91.74 67 | 95.08 9 | 96.19 84 | 89.31 2 | 92.66 213 | 96.56 80 | 83.44 174 | 91.68 79 | 95.04 103 | 86.60 33 | 98.99 65 | 85.60 122 | 97.92 58 | 96.93 105 |
|
casdiffmvs | | | 92.51 61 | 92.43 60 | 92.74 87 | 94.41 155 | 81.98 138 | 94.54 124 | 96.23 98 | 89.57 39 | 91.96 70 | 96.17 71 | 82.58 71 | 98.01 138 | 90.95 67 | 95.45 100 | 98.23 41 |
|
MVS_111021_LR | | | 92.47 62 | 92.29 62 | 92.98 77 | 95.99 94 | 84.43 78 | 93.08 201 | 96.09 107 | 88.20 77 | 91.12 89 | 95.72 86 | 81.33 89 | 97.76 151 | 91.74 51 | 97.37 69 | 96.75 110 |
|
3Dnovator+ | | 87.14 4 | 92.42 63 | 91.37 70 | 95.55 3 | 95.63 106 | 88.73 3 | 97.07 11 | 96.77 62 | 90.84 16 | 84.02 215 | 96.62 51 | 75.95 141 | 99.34 27 | 87.77 97 | 97.68 62 | 98.59 13 |
|
baseline | | | 92.39 64 | 92.29 62 | 92.69 92 | 94.46 152 | 81.77 142 | 94.14 149 | 96.27 93 | 89.22 47 | 91.88 71 | 96.00 75 | 82.35 74 | 97.99 140 | 91.05 63 | 95.27 105 | 98.30 31 |
|
VNet | | | 92.24 65 | 91.91 65 | 93.24 66 | 96.59 72 | 83.43 100 | 94.84 105 | 96.44 83 | 89.19 49 | 94.08 26 | 95.90 79 | 77.85 126 | 98.17 122 | 88.90 85 | 93.38 134 | 98.13 48 |
|
CPTT-MVS | | | 91.99 66 | 91.80 66 | 92.55 97 | 98.24 27 | 81.98 138 | 96.76 22 | 96.49 82 | 81.89 210 | 90.24 96 | 96.44 59 | 78.59 116 | 98.61 93 | 89.68 77 | 97.85 60 | 97.06 98 |
|
ETV-MVS | | | 91.95 67 | 91.94 64 | 91.98 120 | 95.16 122 | 80.01 190 | 95.36 69 | 96.73 64 | 88.44 69 | 89.34 106 | 92.16 198 | 83.82 64 | 98.45 105 | 89.35 80 | 97.06 73 | 97.48 81 |
|
DP-MVS Recon | | | 91.95 67 | 91.28 72 | 93.96 52 | 98.33 23 | 85.92 49 | 94.66 117 | 96.66 72 | 82.69 192 | 90.03 100 | 95.82 82 | 82.30 76 | 99.03 55 | 84.57 134 | 96.48 87 | 96.91 106 |
|
EPNet | | | 91.79 69 | 91.02 78 | 94.10 50 | 90.10 287 | 85.25 61 | 96.03 45 | 92.05 255 | 92.83 1 | 87.39 138 | 95.78 83 | 79.39 109 | 99.01 61 | 88.13 93 | 97.48 66 | 98.05 54 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 91.77 70 | 91.70 68 | 92.00 119 | 97.08 62 | 80.03 189 | 93.60 179 | 95.18 174 | 87.85 85 | 90.89 91 | 96.47 58 | 82.06 82 | 98.36 109 | 85.07 126 | 97.04 74 | 97.62 74 |
|
Vis-MVSNet | | | 91.75 71 | 91.23 73 | 93.29 64 | 95.32 116 | 83.78 91 | 96.14 38 | 95.98 114 | 89.89 32 | 90.45 94 | 96.58 53 | 75.09 151 | 98.31 116 | 84.75 132 | 96.90 75 | 97.78 72 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 86.66 5 | 91.73 72 | 90.82 82 | 94.44 40 | 94.59 146 | 86.37 36 | 97.18 7 | 97.02 38 | 89.20 48 | 84.31 210 | 96.66 49 | 73.74 173 | 99.17 41 | 86.74 112 | 97.96 56 | 97.79 71 |
|
EPP-MVSNet | | | 91.70 73 | 91.56 69 | 92.13 116 | 95.88 97 | 80.50 177 | 97.33 3 | 95.25 170 | 86.15 119 | 89.76 101 | 95.60 88 | 83.42 65 | 98.32 115 | 87.37 104 | 93.25 137 | 97.56 79 |
|
MVSFormer | | | 91.68 74 | 91.30 71 | 92.80 84 | 93.86 175 | 83.88 89 | 95.96 48 | 95.90 121 | 84.66 153 | 91.76 76 | 94.91 106 | 77.92 123 | 97.30 187 | 89.64 78 | 97.11 71 | 97.24 89 |
|
Effi-MVS+ | | | 91.59 75 | 91.11 75 | 93.01 76 | 94.35 159 | 83.39 102 | 94.60 119 | 95.10 178 | 87.10 99 | 90.57 93 | 93.10 171 | 81.43 88 | 98.07 134 | 89.29 81 | 94.48 116 | 97.59 77 |
|
IS-MVSNet | | | 91.43 76 | 91.09 77 | 92.46 101 | 95.87 99 | 81.38 153 | 96.95 12 | 93.69 226 | 89.72 37 | 89.50 104 | 95.98 76 | 78.57 117 | 97.77 150 | 83.02 149 | 96.50 86 | 98.22 42 |
|
PVSNet_Blended_VisFu | | | 91.38 77 | 90.91 80 | 92.80 84 | 96.39 79 | 83.17 106 | 94.87 103 | 96.66 72 | 83.29 178 | 89.27 107 | 94.46 124 | 80.29 96 | 99.17 41 | 87.57 100 | 95.37 101 | 96.05 135 |
|
diffmvs | | | 91.37 78 | 91.23 73 | 91.77 133 | 93.09 198 | 80.27 179 | 92.36 223 | 95.52 151 | 87.03 101 | 91.40 85 | 94.93 105 | 80.08 98 | 97.44 172 | 92.13 41 | 94.56 114 | 97.61 75 |
|
MVS_Test | | | 91.31 79 | 91.11 75 | 91.93 124 | 94.37 156 | 80.14 182 | 93.46 184 | 95.80 129 | 86.46 113 | 91.35 86 | 93.77 153 | 82.21 78 | 98.09 132 | 87.57 100 | 94.95 107 | 97.55 80 |
|
OMC-MVS | | | 91.23 80 | 90.62 84 | 93.08 72 | 96.27 82 | 84.07 84 | 93.52 181 | 95.93 117 | 86.95 103 | 89.51 103 | 96.13 73 | 78.50 118 | 98.35 111 | 85.84 120 | 92.90 144 | 96.83 108 |
|
PAPM_NR | | | 91.22 81 | 90.78 83 | 92.52 99 | 97.60 44 | 81.46 150 | 94.37 140 | 96.24 97 | 86.39 115 | 87.41 135 | 94.80 113 | 82.06 82 | 98.48 99 | 82.80 155 | 95.37 101 | 97.61 75 |
|
PS-MVSNAJ | | | 91.18 82 | 90.92 79 | 91.96 122 | 95.26 119 | 82.60 127 | 92.09 233 | 95.70 136 | 86.27 116 | 91.84 73 | 92.46 188 | 79.70 104 | 98.99 65 | 89.08 83 | 95.86 92 | 94.29 199 |
|
xiu_mvs_v2_base | | | 91.13 83 | 90.89 81 | 91.86 127 | 94.97 128 | 82.42 128 | 92.24 227 | 95.64 143 | 86.11 122 | 91.74 78 | 93.14 169 | 79.67 107 | 98.89 73 | 89.06 84 | 95.46 99 | 94.28 200 |
|
nrg030 | | | 91.08 84 | 90.39 85 | 93.17 69 | 93.07 199 | 86.91 15 | 96.41 28 | 96.26 94 | 88.30 73 | 88.37 119 | 94.85 111 | 82.19 79 | 97.64 158 | 91.09 62 | 82.95 251 | 94.96 169 |
|
lupinMVS | | | 90.92 85 | 90.21 88 | 93.03 75 | 93.86 175 | 83.88 89 | 92.81 210 | 93.86 221 | 79.84 237 | 91.76 76 | 94.29 129 | 77.92 123 | 98.04 136 | 90.48 74 | 97.11 71 | 97.17 93 |
|
jason | | | 90.80 86 | 90.10 91 | 92.90 81 | 93.04 201 | 83.53 98 | 93.08 201 | 94.15 215 | 80.22 231 | 91.41 84 | 94.91 106 | 76.87 129 | 97.93 145 | 90.28 75 | 96.90 75 | 97.24 89 |
jason: jason. |
VDD-MVS | | | 90.74 87 | 89.92 98 | 93.20 67 | 96.27 82 | 83.02 111 | 95.73 56 | 93.86 221 | 88.42 71 | 92.53 58 | 96.84 38 | 62.09 278 | 98.64 90 | 90.95 67 | 92.62 148 | 97.93 64 |
|
PVSNet_Blended | | | 90.73 88 | 90.32 87 | 91.98 120 | 96.12 86 | 81.25 155 | 92.55 218 | 96.83 55 | 82.04 203 | 89.10 109 | 92.56 186 | 81.04 91 | 98.85 80 | 86.72 115 | 95.91 91 | 95.84 142 |
|
test_yl | | | 90.69 89 | 90.02 96 | 92.71 89 | 95.72 102 | 82.41 130 | 94.11 152 | 95.12 176 | 85.63 130 | 91.49 81 | 94.70 114 | 74.75 155 | 98.42 107 | 86.13 118 | 92.53 149 | 97.31 86 |
|
DCV-MVSNet | | | 90.69 89 | 90.02 96 | 92.71 89 | 95.72 102 | 82.41 130 | 94.11 152 | 95.12 176 | 85.63 130 | 91.49 81 | 94.70 114 | 74.75 155 | 98.42 107 | 86.13 118 | 92.53 149 | 97.31 86 |
|
API-MVS | | | 90.66 91 | 90.07 92 | 92.45 102 | 96.36 80 | 84.57 69 | 96.06 44 | 95.22 173 | 82.39 194 | 89.13 108 | 94.27 132 | 80.32 95 | 98.46 102 | 80.16 203 | 96.71 79 | 94.33 198 |
|
xiu_mvs_v1_base_debu | | | 90.64 92 | 90.05 93 | 92.40 103 | 93.97 172 | 84.46 74 | 93.32 186 | 95.46 154 | 85.17 139 | 92.25 62 | 94.03 135 | 70.59 208 | 98.57 95 | 90.97 64 | 94.67 109 | 94.18 201 |
|
xiu_mvs_v1_base | | | 90.64 92 | 90.05 93 | 92.40 103 | 93.97 172 | 84.46 74 | 93.32 186 | 95.46 154 | 85.17 139 | 92.25 62 | 94.03 135 | 70.59 208 | 98.57 95 | 90.97 64 | 94.67 109 | 94.18 201 |
|
xiu_mvs_v1_base_debi | | | 90.64 92 | 90.05 93 | 92.40 103 | 93.97 172 | 84.46 74 | 93.32 186 | 95.46 154 | 85.17 139 | 92.25 62 | 94.03 135 | 70.59 208 | 98.57 95 | 90.97 64 | 94.67 109 | 94.18 201 |
|
HQP_MVS | | | 90.60 95 | 90.19 89 | 91.82 130 | 94.70 142 | 82.73 121 | 95.85 52 | 96.22 99 | 90.81 17 | 86.91 144 | 94.86 109 | 74.23 162 | 98.12 124 | 88.15 91 | 89.99 172 | 94.63 181 |
|
FIs | | | 90.51 96 | 90.35 86 | 90.99 161 | 93.99 171 | 80.98 162 | 95.73 56 | 97.54 3 | 89.15 50 | 86.72 148 | 94.68 116 | 81.83 86 | 97.24 195 | 85.18 125 | 88.31 203 | 94.76 179 |
|
1121 | | | 90.42 97 | 89.49 102 | 93.20 67 | 97.27 58 | 84.46 74 | 92.63 214 | 95.51 152 | 71.01 312 | 91.20 88 | 96.21 66 | 82.92 68 | 99.05 51 | 80.56 196 | 98.07 53 | 96.10 131 |
|
MAR-MVS | | | 90.30 98 | 89.37 106 | 93.07 74 | 96.61 71 | 84.48 73 | 95.68 59 | 95.67 138 | 82.36 196 | 87.85 127 | 92.85 176 | 76.63 135 | 98.80 84 | 80.01 204 | 96.68 80 | 95.91 138 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
FC-MVSNet-test | | | 90.27 99 | 90.18 90 | 90.53 172 | 93.71 181 | 79.85 195 | 95.77 55 | 97.59 2 | 89.31 45 | 86.27 157 | 94.67 117 | 81.93 85 | 97.01 212 | 84.26 137 | 88.09 207 | 94.71 180 |
|
CANet_DTU | | | 90.26 100 | 89.41 105 | 92.81 83 | 93.46 189 | 83.01 112 | 93.48 182 | 94.47 203 | 89.43 42 | 87.76 131 | 94.23 133 | 70.54 212 | 99.03 55 | 84.97 127 | 96.39 88 | 96.38 119 |
|
OPM-MVS | | | 90.12 101 | 89.56 101 | 91.82 130 | 93.14 196 | 83.90 88 | 94.16 148 | 95.74 134 | 88.96 56 | 87.86 126 | 95.43 92 | 72.48 189 | 97.91 146 | 88.10 94 | 90.18 171 | 93.65 234 |
|
LFMVS | | | 90.08 102 | 89.13 112 | 92.95 79 | 96.71 68 | 82.32 133 | 96.08 42 | 89.91 305 | 86.79 107 | 92.15 67 | 96.81 41 | 62.60 275 | 98.34 112 | 87.18 106 | 93.90 123 | 98.19 43 |
|
PAPR | | | 90.02 103 | 89.27 110 | 92.29 111 | 95.78 100 | 80.95 164 | 92.68 212 | 96.22 99 | 81.91 208 | 86.66 149 | 93.75 155 | 82.23 77 | 98.44 106 | 79.40 214 | 94.79 108 | 97.48 81 |
|
PVSNet_BlendedMVS | | | 89.98 104 | 89.70 99 | 90.82 165 | 96.12 86 | 81.25 155 | 93.92 167 | 96.83 55 | 83.49 173 | 89.10 109 | 92.26 196 | 81.04 91 | 98.85 80 | 86.72 115 | 87.86 211 | 92.35 276 |
|
PS-MVSNAJss | | | 89.97 105 | 89.62 100 | 91.02 158 | 91.90 225 | 80.85 167 | 95.26 79 | 95.98 114 | 86.26 117 | 86.21 158 | 94.29 129 | 79.70 104 | 97.65 156 | 88.87 86 | 88.10 205 | 94.57 186 |
|
XVG-OURS-SEG-HR | | | 89.95 106 | 89.45 103 | 91.47 141 | 94.00 170 | 81.21 158 | 91.87 236 | 96.06 111 | 85.78 125 | 88.55 115 | 95.73 85 | 74.67 158 | 97.27 191 | 88.71 87 | 89.64 181 | 95.91 138 |
|
UGNet | | | 89.95 106 | 88.95 116 | 92.95 79 | 94.51 149 | 83.31 103 | 95.70 58 | 95.23 171 | 89.37 44 | 87.58 133 | 93.94 143 | 64.00 270 | 98.78 85 | 83.92 139 | 96.31 89 | 96.74 111 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UniMVSNet_NR-MVSNet | | | 89.92 108 | 89.29 108 | 91.81 132 | 93.39 190 | 83.72 92 | 94.43 132 | 97.12 33 | 89.80 34 | 86.46 151 | 93.32 160 | 83.16 66 | 97.23 197 | 84.92 128 | 81.02 276 | 94.49 193 |
|
AdaColmap | | | 89.89 109 | 89.07 113 | 92.37 106 | 97.41 50 | 83.03 110 | 94.42 133 | 95.92 118 | 82.81 189 | 86.34 156 | 94.65 118 | 73.89 169 | 99.02 59 | 80.69 193 | 95.51 96 | 95.05 163 |
|
UniMVSNet (Re) | | | 89.80 110 | 89.07 113 | 92.01 117 | 93.60 185 | 84.52 70 | 94.78 109 | 97.47 7 | 89.26 46 | 86.44 154 | 92.32 193 | 82.10 80 | 97.39 184 | 84.81 131 | 80.84 280 | 94.12 205 |
|
HQP-MVS | | | 89.80 110 | 89.28 109 | 91.34 145 | 94.17 161 | 81.56 144 | 94.39 136 | 96.04 112 | 88.81 57 | 85.43 180 | 93.97 142 | 73.83 171 | 97.96 142 | 87.11 109 | 89.77 179 | 94.50 191 |
|
VPA-MVSNet | | | 89.62 112 | 88.96 115 | 91.60 138 | 93.86 175 | 82.89 116 | 95.46 68 | 97.33 18 | 87.91 82 | 88.43 118 | 93.31 161 | 74.17 165 | 97.40 181 | 87.32 105 | 82.86 253 | 94.52 189 |
|
WTY-MVS | | | 89.60 113 | 88.92 117 | 91.67 136 | 95.47 111 | 81.15 159 | 92.38 222 | 94.78 196 | 83.11 181 | 89.06 111 | 94.32 127 | 78.67 115 | 96.61 231 | 81.57 179 | 90.89 165 | 97.24 89 |
|
Vis-MVSNet (Re-imp) | | | 89.59 114 | 89.44 104 | 90.03 197 | 95.74 101 | 75.85 265 | 95.61 64 | 90.80 290 | 87.66 92 | 87.83 128 | 95.40 93 | 76.79 131 | 96.46 243 | 78.37 220 | 96.73 78 | 97.80 70 |
|
VDDNet | | | 89.56 115 | 88.49 127 | 92.76 86 | 95.07 124 | 82.09 135 | 96.30 31 | 93.19 232 | 81.05 226 | 91.88 71 | 96.86 37 | 61.16 288 | 98.33 114 | 88.43 90 | 92.49 151 | 97.84 68 |
|
114514_t | | | 89.51 116 | 88.50 125 | 92.54 98 | 98.11 32 | 81.99 137 | 95.16 86 | 96.36 90 | 70.19 314 | 85.81 163 | 95.25 96 | 76.70 133 | 98.63 91 | 82.07 167 | 96.86 77 | 97.00 102 |
|
QAPM | | | 89.51 116 | 88.15 136 | 93.59 62 | 94.92 132 | 84.58 68 | 96.82 21 | 96.70 68 | 78.43 253 | 83.41 230 | 96.19 70 | 73.18 181 | 99.30 34 | 77.11 235 | 96.54 84 | 96.89 107 |
|
CLD-MVS | | | 89.47 118 | 88.90 118 | 91.18 149 | 94.22 160 | 82.07 136 | 92.13 231 | 96.09 107 | 87.90 83 | 85.37 186 | 92.45 189 | 74.38 160 | 97.56 162 | 87.15 107 | 90.43 167 | 93.93 214 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
mvs-test1 | | | 89.45 119 | 89.14 111 | 90.38 182 | 93.33 191 | 77.63 246 | 94.95 97 | 94.36 206 | 87.70 88 | 87.10 141 | 92.81 180 | 73.45 176 | 98.03 137 | 85.57 123 | 93.04 141 | 95.48 151 |
|
LPG-MVS_test | | | 89.45 119 | 88.90 118 | 91.12 150 | 94.47 150 | 81.49 148 | 95.30 74 | 96.14 104 | 86.73 109 | 85.45 177 | 95.16 99 | 69.89 218 | 98.10 126 | 87.70 98 | 89.23 188 | 93.77 228 |
|
CDS-MVSNet | | | 89.45 119 | 88.51 124 | 92.29 111 | 93.62 184 | 83.61 97 | 93.01 204 | 94.68 199 | 81.95 206 | 87.82 129 | 93.24 165 | 78.69 114 | 96.99 213 | 80.34 200 | 93.23 138 | 96.28 122 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Fast-Effi-MVS+ | | | 89.41 122 | 88.64 122 | 91.71 135 | 94.74 138 | 80.81 168 | 93.54 180 | 95.10 178 | 83.11 181 | 86.82 147 | 90.67 249 | 79.74 103 | 97.75 154 | 80.51 198 | 93.55 128 | 96.57 115 |
|
ab-mvs | | | 89.41 122 | 88.35 129 | 92.60 94 | 95.15 123 | 82.65 125 | 92.20 229 | 95.60 145 | 83.97 162 | 88.55 115 | 93.70 156 | 74.16 166 | 98.21 121 | 82.46 160 | 89.37 184 | 96.94 104 |
|
XVG-OURS | | | 89.40 124 | 88.70 121 | 91.52 139 | 94.06 164 | 81.46 150 | 91.27 250 | 96.07 109 | 86.14 120 | 88.89 113 | 95.77 84 | 68.73 236 | 97.26 193 | 87.39 103 | 89.96 174 | 95.83 143 |
|
mvs_anonymous | | | 89.37 125 | 89.32 107 | 89.51 219 | 93.47 188 | 74.22 274 | 91.65 244 | 94.83 194 | 82.91 187 | 85.45 177 | 93.79 151 | 81.23 90 | 96.36 249 | 86.47 117 | 94.09 121 | 97.94 61 |
|
DU-MVS | | | 89.34 126 | 88.50 125 | 91.85 129 | 93.04 201 | 83.72 92 | 94.47 129 | 96.59 77 | 89.50 40 | 86.46 151 | 93.29 163 | 77.25 127 | 97.23 197 | 84.92 128 | 81.02 276 | 94.59 184 |
|
TAMVS | | | 89.21 127 | 88.29 133 | 91.96 122 | 93.71 181 | 82.62 126 | 93.30 190 | 94.19 213 | 82.22 198 | 87.78 130 | 93.94 143 | 78.83 111 | 96.95 216 | 77.70 228 | 92.98 143 | 96.32 120 |
|
ACMM | | 84.12 9 | 89.14 128 | 88.48 128 | 91.12 150 | 94.65 145 | 81.22 157 | 95.31 72 | 96.12 106 | 85.31 138 | 85.92 162 | 94.34 125 | 70.19 216 | 98.06 135 | 85.65 121 | 88.86 193 | 94.08 209 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EI-MVSNet | | | 89.10 129 | 88.86 120 | 89.80 208 | 91.84 227 | 78.30 227 | 93.70 176 | 95.01 181 | 85.73 127 | 87.15 139 | 95.28 94 | 79.87 101 | 97.21 199 | 83.81 141 | 87.36 216 | 93.88 218 |
|
CNLPA | | | 89.07 130 | 87.98 139 | 92.34 107 | 96.87 65 | 84.78 65 | 94.08 156 | 93.24 231 | 81.41 221 | 84.46 201 | 95.13 101 | 75.57 147 | 96.62 229 | 77.21 233 | 93.84 125 | 95.61 149 |
|
PLC | | 84.53 7 | 89.06 131 | 88.03 138 | 92.15 114 | 97.27 58 | 82.69 124 | 94.29 142 | 95.44 159 | 79.71 239 | 84.01 216 | 94.18 134 | 76.68 134 | 98.75 86 | 77.28 232 | 93.41 133 | 95.02 164 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_djsdf | | | 89.03 132 | 88.64 122 | 90.21 187 | 90.74 272 | 79.28 209 | 95.96 48 | 95.90 121 | 84.66 153 | 85.33 188 | 92.94 175 | 74.02 168 | 97.30 187 | 89.64 78 | 88.53 196 | 94.05 211 |
|
HY-MVS | | 83.01 12 | 89.03 132 | 87.94 141 | 92.29 111 | 94.86 136 | 82.77 117 | 92.08 234 | 94.49 202 | 81.52 220 | 86.93 143 | 92.79 182 | 78.32 121 | 98.23 118 | 79.93 205 | 90.55 166 | 95.88 140 |
|
ACMP | | 84.23 8 | 89.01 134 | 88.35 129 | 90.99 161 | 94.73 139 | 81.27 154 | 95.07 90 | 95.89 123 | 86.48 112 | 83.67 223 | 94.30 128 | 69.33 225 | 97.99 140 | 87.10 111 | 88.55 195 | 93.72 232 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
sss | | | 88.93 135 | 88.26 135 | 90.94 164 | 94.05 165 | 80.78 169 | 91.71 241 | 95.38 164 | 81.55 219 | 88.63 114 | 93.91 147 | 75.04 152 | 95.47 286 | 82.47 159 | 91.61 156 | 96.57 115 |
|
TranMVSNet+NR-MVSNet | | | 88.84 136 | 87.95 140 | 91.49 140 | 92.68 210 | 83.01 112 | 94.92 100 | 96.31 91 | 89.88 33 | 85.53 171 | 93.85 150 | 76.63 135 | 96.96 215 | 81.91 171 | 79.87 293 | 94.50 191 |
|
CHOSEN 1792x2688 | | | 88.84 136 | 87.69 144 | 92.30 110 | 96.14 85 | 81.42 152 | 90.01 268 | 95.86 125 | 74.52 288 | 87.41 135 | 93.94 143 | 75.46 148 | 98.36 109 | 80.36 199 | 95.53 95 | 97.12 97 |
|
MVSTER | | | 88.84 136 | 88.29 133 | 90.51 175 | 92.95 205 | 80.44 178 | 93.73 173 | 95.01 181 | 84.66 153 | 87.15 139 | 93.12 170 | 72.79 185 | 97.21 199 | 87.86 96 | 87.36 216 | 93.87 219 |
|
OpenMVS | | 83.78 11 | 88.74 139 | 87.29 153 | 93.08 72 | 92.70 209 | 85.39 59 | 96.57 25 | 96.43 85 | 78.74 250 | 80.85 259 | 96.07 74 | 69.64 222 | 99.01 61 | 78.01 226 | 96.65 81 | 94.83 176 |
|
thisisatest0530 | | | 88.67 140 | 87.61 146 | 91.86 127 | 94.87 135 | 80.07 185 | 94.63 118 | 89.90 306 | 84.00 161 | 88.46 117 | 93.78 152 | 66.88 250 | 98.46 102 | 83.30 145 | 92.65 147 | 97.06 98 |
|
Effi-MVS+-dtu | | | 88.65 141 | 88.35 129 | 89.54 216 | 93.33 191 | 76.39 260 | 94.47 129 | 94.36 206 | 87.70 88 | 85.43 180 | 89.56 270 | 73.45 176 | 97.26 193 | 85.57 123 | 91.28 158 | 94.97 166 |
|
tttt0517 | | | 88.61 142 | 87.78 143 | 91.11 153 | 94.96 129 | 77.81 240 | 95.35 70 | 89.69 309 | 85.09 144 | 88.05 124 | 94.59 121 | 66.93 248 | 98.48 99 | 83.27 146 | 92.13 154 | 97.03 100 |
|
BH-untuned | | | 88.60 143 | 88.13 137 | 90.01 199 | 95.24 120 | 78.50 222 | 93.29 191 | 94.15 215 | 84.75 151 | 84.46 201 | 93.40 157 | 75.76 142 | 97.40 181 | 77.59 229 | 94.52 115 | 94.12 205 |
|
NR-MVSNet | | | 88.58 144 | 87.47 149 | 91.93 124 | 93.04 201 | 84.16 83 | 94.77 110 | 96.25 96 | 89.05 52 | 80.04 273 | 93.29 163 | 79.02 110 | 97.05 210 | 81.71 178 | 80.05 290 | 94.59 184 |
|
1112_ss | | | 88.42 145 | 87.33 152 | 91.72 134 | 94.92 132 | 80.98 162 | 92.97 207 | 94.54 201 | 78.16 258 | 83.82 219 | 93.88 148 | 78.78 113 | 97.91 146 | 79.45 210 | 89.41 183 | 96.26 123 |
|
WR-MVS | | | 88.38 146 | 87.67 145 | 90.52 174 | 93.30 193 | 80.18 180 | 93.26 193 | 95.96 116 | 88.57 67 | 85.47 176 | 92.81 180 | 76.12 137 | 96.91 219 | 81.24 182 | 82.29 256 | 94.47 196 |
|
BH-RMVSNet | | | 88.37 147 | 87.48 148 | 91.02 158 | 95.28 117 | 79.45 201 | 92.89 209 | 93.07 234 | 85.45 135 | 86.91 144 | 94.84 112 | 70.35 213 | 97.76 151 | 73.97 261 | 94.59 113 | 95.85 141 |
|
IterMVS-LS | | | 88.36 148 | 87.91 142 | 89.70 212 | 93.80 178 | 78.29 228 | 93.73 173 | 95.08 180 | 85.73 127 | 84.75 195 | 91.90 212 | 79.88 100 | 96.92 218 | 83.83 140 | 82.51 254 | 93.89 216 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
X-MVStestdata | | | 88.31 149 | 86.13 187 | 94.85 21 | 98.54 9 | 86.60 29 | 96.93 15 | 97.19 28 | 90.66 23 | 92.85 46 | 23.41 336 | 85.02 50 | 99.49 20 | 91.99 43 | 98.56 39 | 98.47 19 |
|
LCM-MVSNet-Re | | | 88.30 150 | 88.32 132 | 88.27 245 | 94.71 141 | 72.41 293 | 93.15 197 | 90.98 284 | 87.77 87 | 79.25 280 | 91.96 210 | 78.35 120 | 95.75 274 | 83.04 148 | 95.62 94 | 96.65 113 |
|
jajsoiax | | | 88.24 151 | 87.50 147 | 90.48 177 | 90.89 266 | 80.14 182 | 95.31 72 | 95.65 142 | 84.97 146 | 84.24 212 | 94.02 138 | 65.31 264 | 97.42 174 | 88.56 88 | 88.52 197 | 93.89 216 |
|
VPNet | | | 88.20 152 | 87.47 149 | 90.39 180 | 93.56 186 | 79.46 200 | 94.04 160 | 95.54 150 | 88.67 63 | 86.96 142 | 94.58 122 | 69.33 225 | 97.15 201 | 84.05 138 | 80.53 285 | 94.56 187 |
|
TAPA-MVS | | 84.62 6 | 88.16 153 | 87.01 160 | 91.62 137 | 96.64 70 | 80.65 171 | 94.39 136 | 96.21 102 | 76.38 269 | 86.19 159 | 95.44 90 | 79.75 102 | 98.08 133 | 62.75 313 | 95.29 103 | 96.13 127 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DI_MVS_plusplus_test | | | 88.15 154 | 86.82 164 | 92.14 115 | 90.67 275 | 81.07 160 | 93.01 204 | 94.59 200 | 83.83 165 | 77.78 287 | 90.63 250 | 68.51 239 | 98.16 123 | 88.02 95 | 94.37 119 | 97.17 93 |
|
baseline1 | | | 88.10 155 | 87.28 154 | 90.57 169 | 94.96 129 | 80.07 185 | 94.27 143 | 91.29 277 | 86.74 108 | 87.41 135 | 94.00 140 | 76.77 132 | 96.20 254 | 80.77 191 | 79.31 298 | 95.44 153 |
|
Anonymous20240529 | | | 88.09 156 | 86.59 175 | 92.58 96 | 96.53 75 | 81.92 140 | 95.99 46 | 95.84 126 | 74.11 291 | 89.06 111 | 95.21 98 | 61.44 283 | 98.81 83 | 83.67 143 | 87.47 213 | 97.01 101 |
|
HyFIR lowres test | | | 88.09 156 | 86.81 165 | 91.93 124 | 96.00 93 | 80.63 172 | 90.01 268 | 95.79 130 | 73.42 296 | 87.68 132 | 92.10 204 | 73.86 170 | 97.96 142 | 80.75 192 | 91.70 155 | 97.19 92 |
|
mvs_tets | | | 88.06 158 | 87.28 154 | 90.38 182 | 90.94 262 | 79.88 193 | 95.22 81 | 95.66 140 | 85.10 143 | 84.21 213 | 93.94 143 | 63.53 272 | 97.40 181 | 88.50 89 | 88.40 201 | 93.87 219 |
|
F-COLMAP | | | 87.95 159 | 86.80 166 | 91.40 143 | 96.35 81 | 80.88 166 | 94.73 112 | 95.45 157 | 79.65 240 | 82.04 247 | 94.61 119 | 71.13 199 | 98.50 98 | 76.24 243 | 91.05 163 | 94.80 178 |
|
LS3D | | | 87.89 160 | 86.32 183 | 92.59 95 | 96.07 91 | 82.92 115 | 95.23 80 | 94.92 188 | 75.66 276 | 82.89 237 | 95.98 76 | 72.48 189 | 99.21 38 | 68.43 290 | 95.23 106 | 95.64 148 |
|
anonymousdsp | | | 87.84 161 | 87.09 157 | 90.12 192 | 89.13 297 | 80.54 175 | 94.67 116 | 95.55 148 | 82.05 201 | 83.82 219 | 92.12 201 | 71.47 197 | 97.15 201 | 87.15 107 | 87.80 212 | 92.67 265 |
|
v2v482 | | | 87.84 161 | 87.06 158 | 90.17 188 | 90.99 258 | 79.23 212 | 94.00 164 | 95.13 175 | 84.87 147 | 85.53 171 | 92.07 207 | 74.45 159 | 97.45 170 | 84.71 133 | 81.75 264 | 93.85 222 |
|
WR-MVS_H | | | 87.80 163 | 87.37 151 | 89.10 226 | 93.23 194 | 78.12 231 | 95.61 64 | 97.30 21 | 87.90 83 | 83.72 221 | 92.01 209 | 79.65 108 | 96.01 262 | 76.36 240 | 80.54 284 | 93.16 252 |
|
PCF-MVS | | 84.11 10 | 87.74 164 | 86.08 191 | 92.70 91 | 94.02 166 | 84.43 78 | 89.27 278 | 95.87 124 | 73.62 295 | 84.43 203 | 94.33 126 | 78.48 119 | 98.86 77 | 70.27 276 | 94.45 117 | 94.81 177 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Anonymous202405211 | | | 87.68 165 | 86.13 187 | 92.31 109 | 96.66 69 | 80.74 170 | 94.87 103 | 91.49 272 | 80.47 230 | 89.46 105 | 95.44 90 | 54.72 311 | 98.23 118 | 82.19 165 | 89.89 176 | 97.97 59 |
|
V42 | | | 87.68 165 | 86.86 162 | 90.15 190 | 90.58 278 | 80.14 182 | 94.24 145 | 95.28 169 | 83.66 168 | 85.67 166 | 91.33 227 | 74.73 157 | 97.41 179 | 84.43 136 | 81.83 262 | 92.89 260 |
|
thres600view7 | | | 87.65 167 | 86.67 171 | 90.59 168 | 96.08 90 | 78.72 215 | 94.88 102 | 91.58 268 | 87.06 100 | 88.08 122 | 92.30 194 | 68.91 233 | 98.10 126 | 70.05 283 | 91.10 159 | 94.96 169 |
|
XXY-MVS | | | 87.65 167 | 86.85 163 | 90.03 197 | 92.14 218 | 80.60 174 | 93.76 172 | 95.23 171 | 82.94 185 | 84.60 197 | 94.02 138 | 74.27 161 | 95.49 285 | 81.04 184 | 83.68 244 | 94.01 213 |
|
Test_1112_low_res | | | 87.65 167 | 86.51 177 | 91.08 154 | 94.94 131 | 79.28 209 | 91.77 238 | 94.30 209 | 76.04 274 | 83.51 228 | 92.37 191 | 77.86 125 | 97.73 155 | 78.69 219 | 89.13 190 | 96.22 124 |
|
thres100view900 | | | 87.63 170 | 86.71 169 | 90.38 182 | 96.12 86 | 78.55 219 | 95.03 94 | 91.58 268 | 87.15 97 | 88.06 123 | 92.29 195 | 68.91 233 | 98.10 126 | 70.13 280 | 91.10 159 | 94.48 194 |
|
CP-MVSNet | | | 87.63 170 | 87.26 156 | 88.74 234 | 93.12 197 | 76.59 257 | 95.29 76 | 96.58 78 | 88.43 70 | 83.49 229 | 92.98 174 | 75.28 149 | 95.83 270 | 78.97 216 | 81.15 272 | 93.79 224 |
|
thres400 | | | 87.62 172 | 86.64 172 | 90.57 169 | 95.99 94 | 78.64 217 | 94.58 120 | 91.98 259 | 86.94 104 | 88.09 120 | 91.77 214 | 69.18 230 | 98.10 126 | 70.13 280 | 91.10 159 | 94.96 169 |
|
v1144 | | | 87.61 173 | 86.79 167 | 90.06 196 | 91.01 257 | 79.34 205 | 93.95 166 | 95.42 163 | 83.36 177 | 85.66 167 | 91.31 230 | 74.98 153 | 97.42 174 | 83.37 144 | 82.06 258 | 93.42 243 |
|
tfpn200view9 | | | 87.58 174 | 86.64 172 | 90.41 179 | 95.99 94 | 78.64 217 | 94.58 120 | 91.98 259 | 86.94 104 | 88.09 120 | 91.77 214 | 69.18 230 | 98.10 126 | 70.13 280 | 91.10 159 | 94.48 194 |
|
BH-w/o | | | 87.57 175 | 87.05 159 | 89.12 225 | 94.90 134 | 77.90 236 | 92.41 220 | 93.51 228 | 82.89 188 | 83.70 222 | 91.34 226 | 75.75 143 | 97.07 208 | 75.49 248 | 93.49 130 | 92.39 274 |
|
UniMVSNet_ETH3D | | | 87.53 176 | 86.37 180 | 91.00 160 | 92.44 213 | 78.96 214 | 94.74 111 | 95.61 144 | 84.07 160 | 85.36 187 | 94.52 123 | 59.78 296 | 97.34 186 | 82.93 150 | 87.88 210 | 96.71 112 |
|
ET-MVSNet_ETH3D | | | 87.51 177 | 85.91 197 | 92.32 108 | 93.70 183 | 83.93 87 | 92.33 224 | 90.94 286 | 84.16 157 | 72.09 313 | 92.52 187 | 69.90 217 | 95.85 269 | 89.20 82 | 88.36 202 | 97.17 93 |
|
1314 | | | 87.51 177 | 86.57 176 | 90.34 185 | 92.42 214 | 79.74 197 | 92.63 214 | 95.35 168 | 78.35 254 | 80.14 270 | 91.62 221 | 74.05 167 | 97.15 201 | 81.05 183 | 93.53 129 | 94.12 205 |
|
v8 | | | 87.50 179 | 86.71 169 | 89.89 202 | 91.37 244 | 79.40 202 | 94.50 125 | 95.38 164 | 84.81 149 | 83.60 226 | 91.33 227 | 76.05 138 | 97.42 174 | 82.84 153 | 80.51 287 | 92.84 262 |
|
Fast-Effi-MVS+-dtu | | | 87.44 180 | 86.72 168 | 89.63 214 | 92.04 221 | 77.68 245 | 94.03 161 | 93.94 219 | 85.81 124 | 82.42 241 | 91.32 229 | 70.33 214 | 97.06 209 | 80.33 201 | 90.23 170 | 94.14 204 |
|
MVS | | | 87.44 180 | 86.10 190 | 91.44 142 | 92.61 211 | 83.62 96 | 92.63 214 | 95.66 140 | 67.26 318 | 81.47 251 | 92.15 199 | 77.95 122 | 98.22 120 | 79.71 207 | 95.48 97 | 92.47 271 |
|
FMVSNet3 | | | 87.40 182 | 86.11 189 | 91.30 146 | 93.79 180 | 83.64 95 | 94.20 147 | 94.81 195 | 83.89 163 | 84.37 204 | 91.87 213 | 68.45 240 | 96.56 235 | 78.23 223 | 85.36 229 | 93.70 233 |
|
thisisatest0515 | | | 87.33 183 | 85.99 193 | 91.37 144 | 93.49 187 | 79.55 198 | 90.63 258 | 89.56 312 | 80.17 232 | 87.56 134 | 90.86 243 | 67.07 247 | 98.28 117 | 81.50 180 | 93.02 142 | 96.29 121 |
|
PS-CasMVS | | | 87.32 184 | 86.88 161 | 88.63 238 | 92.99 204 | 76.33 262 | 95.33 71 | 96.61 76 | 88.22 76 | 83.30 234 | 93.07 172 | 73.03 183 | 95.79 273 | 78.36 221 | 81.00 278 | 93.75 230 |
|
GBi-Net | | | 87.26 185 | 85.98 194 | 91.08 154 | 94.01 167 | 83.10 107 | 95.14 87 | 94.94 184 | 83.57 169 | 84.37 204 | 91.64 217 | 66.59 255 | 96.34 250 | 78.23 223 | 85.36 229 | 93.79 224 |
|
test1 | | | 87.26 185 | 85.98 194 | 91.08 154 | 94.01 167 | 83.10 107 | 95.14 87 | 94.94 184 | 83.57 169 | 84.37 204 | 91.64 217 | 66.59 255 | 96.34 250 | 78.23 223 | 85.36 229 | 93.79 224 |
|
v1192 | | | 87.25 187 | 86.33 182 | 90.00 200 | 90.76 271 | 79.04 213 | 93.80 170 | 95.48 153 | 82.57 193 | 85.48 175 | 91.18 234 | 73.38 180 | 97.42 174 | 82.30 162 | 82.06 258 | 93.53 237 |
|
v10 | | | 87.25 187 | 86.38 179 | 89.85 203 | 91.19 250 | 79.50 199 | 94.48 126 | 95.45 157 | 83.79 166 | 83.62 225 | 91.19 232 | 75.13 150 | 97.42 174 | 81.94 170 | 80.60 282 | 92.63 267 |
|
DP-MVS | | | 87.25 187 | 85.36 211 | 92.90 81 | 97.65 43 | 83.24 104 | 94.81 107 | 92.00 257 | 74.99 283 | 81.92 249 | 95.00 104 | 72.66 186 | 99.05 51 | 66.92 298 | 92.33 152 | 96.40 118 |
|
thres200 | | | 87.21 190 | 86.24 186 | 90.12 192 | 95.36 113 | 78.53 220 | 93.26 193 | 92.10 252 | 86.42 114 | 88.00 125 | 91.11 238 | 69.24 229 | 98.00 139 | 69.58 284 | 91.04 164 | 93.83 223 |
|
v144192 | | | 87.19 191 | 86.35 181 | 89.74 209 | 90.64 276 | 78.24 229 | 93.92 167 | 95.43 161 | 81.93 207 | 85.51 173 | 91.05 240 | 74.21 164 | 97.45 170 | 82.86 152 | 81.56 266 | 93.53 237 |
|
FMVSNet2 | | | 87.19 191 | 85.82 199 | 91.30 146 | 94.01 167 | 83.67 94 | 94.79 108 | 94.94 184 | 83.57 169 | 83.88 217 | 92.05 208 | 66.59 255 | 96.51 238 | 77.56 230 | 85.01 233 | 93.73 231 |
|
cl_fuxian | | | 87.14 193 | 86.50 178 | 89.04 227 | 92.20 216 | 77.26 249 | 91.22 252 | 94.70 198 | 82.01 204 | 84.34 208 | 90.43 254 | 78.81 112 | 96.61 231 | 83.70 142 | 81.09 273 | 93.25 247 |
|
Baseline_NR-MVSNet | | | 87.07 194 | 86.63 174 | 88.40 241 | 91.44 238 | 77.87 238 | 94.23 146 | 92.57 244 | 84.12 159 | 85.74 165 | 92.08 205 | 77.25 127 | 96.04 259 | 82.29 163 | 79.94 291 | 91.30 294 |
|
v148 | | | 87.04 195 | 86.32 183 | 89.21 223 | 90.94 262 | 77.26 249 | 93.71 175 | 94.43 204 | 84.84 148 | 84.36 207 | 90.80 246 | 76.04 139 | 97.05 210 | 82.12 166 | 79.60 295 | 93.31 244 |
|
v1921920 | | | 86.97 196 | 86.06 192 | 89.69 213 | 90.53 281 | 78.11 232 | 93.80 170 | 95.43 161 | 81.90 209 | 85.33 188 | 91.05 240 | 72.66 186 | 97.41 179 | 82.05 168 | 81.80 263 | 93.53 237 |
|
v7n | | | 86.81 197 | 85.76 203 | 89.95 201 | 90.72 273 | 79.25 211 | 95.07 90 | 95.92 118 | 84.45 156 | 82.29 242 | 90.86 243 | 72.60 188 | 97.53 164 | 79.42 213 | 80.52 286 | 93.08 256 |
|
PEN-MVS | | | 86.80 198 | 86.27 185 | 88.40 241 | 92.32 215 | 75.71 267 | 95.18 84 | 96.38 89 | 87.97 80 | 82.82 238 | 93.15 168 | 73.39 179 | 95.92 265 | 76.15 244 | 79.03 300 | 93.59 235 |
|
v1240 | | | 86.78 199 | 85.85 198 | 89.56 215 | 90.45 282 | 77.79 241 | 93.61 178 | 95.37 166 | 81.65 215 | 85.43 180 | 91.15 236 | 71.50 196 | 97.43 173 | 81.47 181 | 82.05 260 | 93.47 241 |
|
TR-MVS | | | 86.78 199 | 85.76 203 | 89.82 205 | 94.37 156 | 78.41 224 | 92.47 219 | 92.83 237 | 81.11 225 | 86.36 155 | 92.40 190 | 68.73 236 | 97.48 167 | 73.75 264 | 89.85 178 | 93.57 236 |
|
PatchMatch-RL | | | 86.77 201 | 85.54 205 | 90.47 178 | 95.88 97 | 82.71 123 | 90.54 259 | 92.31 247 | 79.82 238 | 84.32 209 | 91.57 224 | 68.77 235 | 96.39 246 | 73.16 266 | 93.48 132 | 92.32 277 |
|
PAPM | | | 86.68 202 | 85.39 209 | 90.53 172 | 93.05 200 | 79.33 208 | 89.79 271 | 94.77 197 | 78.82 247 | 81.95 248 | 93.24 165 | 76.81 130 | 97.30 187 | 66.94 296 | 93.16 139 | 94.95 172 |
|
pm-mvs1 | | | 86.61 203 | 85.54 205 | 89.82 205 | 91.44 238 | 80.18 180 | 95.28 78 | 94.85 192 | 83.84 164 | 81.66 250 | 92.62 185 | 72.45 191 | 96.48 240 | 79.67 208 | 78.06 301 | 92.82 263 |
|
GA-MVS | | | 86.61 203 | 85.27 212 | 90.66 167 | 91.33 247 | 78.71 216 | 90.40 261 | 93.81 224 | 85.34 137 | 85.12 190 | 89.57 269 | 61.25 285 | 97.11 205 | 80.99 188 | 89.59 182 | 96.15 125 |
|
Anonymous20231211 | | | 86.59 205 | 85.13 214 | 90.98 163 | 96.52 76 | 81.50 146 | 96.14 38 | 96.16 103 | 73.78 293 | 83.65 224 | 92.15 199 | 63.26 273 | 97.37 185 | 82.82 154 | 81.74 265 | 94.06 210 |
|
cl-mvsnet1 | | | 86.53 206 | 85.78 200 | 88.75 232 | 92.02 223 | 76.45 259 | 90.74 256 | 94.30 209 | 81.83 213 | 83.34 232 | 90.82 245 | 75.75 143 | 96.57 233 | 81.73 177 | 81.52 268 | 93.24 248 |
|
cl-mvsnet_ | | | 86.52 207 | 85.78 200 | 88.75 232 | 92.03 222 | 76.46 258 | 90.74 256 | 94.30 209 | 81.83 213 | 83.34 232 | 90.78 247 | 75.74 145 | 96.57 233 | 81.74 176 | 81.54 267 | 93.22 249 |
|
eth_miper_zixun_eth | | | 86.50 208 | 85.77 202 | 88.68 236 | 91.94 224 | 75.81 266 | 90.47 260 | 94.89 189 | 82.05 201 | 84.05 214 | 90.46 253 | 75.96 140 | 96.77 223 | 82.76 156 | 79.36 297 | 93.46 242 |
|
baseline2 | | | 86.50 208 | 85.39 209 | 89.84 204 | 91.12 254 | 76.70 255 | 91.88 235 | 88.58 314 | 82.35 197 | 79.95 274 | 90.95 242 | 73.42 178 | 97.63 159 | 80.27 202 | 89.95 175 | 95.19 160 |
|
EPNet_dtu | | | 86.49 210 | 85.94 196 | 88.14 250 | 90.24 285 | 72.82 286 | 94.11 152 | 92.20 250 | 86.66 111 | 79.42 279 | 92.36 192 | 73.52 174 | 95.81 272 | 71.26 271 | 93.66 126 | 95.80 145 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 86.43 211 | 84.98 218 | 90.80 166 | 92.10 220 | 80.92 165 | 90.24 263 | 95.91 120 | 73.10 299 | 83.57 227 | 88.39 283 | 65.15 265 | 97.46 169 | 84.90 130 | 91.43 157 | 94.03 212 |
|
SCA | | | 86.32 212 | 85.18 213 | 89.73 211 | 92.15 217 | 76.60 256 | 91.12 254 | 91.69 266 | 83.53 172 | 85.50 174 | 88.81 276 | 66.79 251 | 96.48 240 | 76.65 238 | 90.35 169 | 96.12 128 |
|
LTVRE_ROB | | 82.13 13 | 86.26 213 | 84.90 221 | 90.34 185 | 94.44 154 | 81.50 146 | 92.31 226 | 94.89 189 | 83.03 183 | 79.63 277 | 92.67 183 | 69.69 221 | 97.79 149 | 71.20 272 | 86.26 223 | 91.72 286 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DTE-MVSNet | | | 86.11 214 | 85.48 207 | 87.98 253 | 91.65 235 | 74.92 270 | 94.93 99 | 95.75 133 | 87.36 95 | 82.26 243 | 93.04 173 | 72.85 184 | 95.82 271 | 74.04 260 | 77.46 305 | 93.20 250 |
|
PatchFormer-LS_test | | | 86.02 215 | 85.13 214 | 88.70 235 | 91.52 236 | 74.12 277 | 91.19 253 | 92.09 253 | 82.71 191 | 84.30 211 | 87.24 299 | 70.87 203 | 96.98 214 | 81.04 184 | 85.17 232 | 95.00 165 |
|
XVG-ACMP-BASELINE | | | 86.00 216 | 84.84 223 | 89.45 220 | 91.20 249 | 78.00 233 | 91.70 242 | 95.55 148 | 85.05 145 | 82.97 236 | 92.25 197 | 54.49 312 | 97.48 167 | 82.93 150 | 87.45 215 | 92.89 260 |
|
MVP-Stereo | | | 85.97 217 | 84.86 222 | 89.32 221 | 90.92 264 | 82.19 134 | 92.11 232 | 94.19 213 | 78.76 249 | 78.77 282 | 91.63 220 | 68.38 241 | 96.56 235 | 75.01 255 | 93.95 122 | 89.20 312 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
D2MVS | | | 85.90 218 | 85.09 216 | 88.35 243 | 90.79 269 | 77.42 248 | 91.83 237 | 95.70 136 | 80.77 228 | 80.08 272 | 90.02 260 | 66.74 253 | 96.37 247 | 81.88 172 | 87.97 209 | 91.26 295 |
|
test-LLR | | | 85.87 219 | 85.41 208 | 87.25 269 | 90.95 260 | 71.67 296 | 89.55 272 | 89.88 307 | 83.41 175 | 84.54 199 | 87.95 290 | 67.25 244 | 95.11 291 | 81.82 173 | 93.37 135 | 94.97 166 |
|
FMVSNet1 | | | 85.85 220 | 84.11 232 | 91.08 154 | 92.81 207 | 83.10 107 | 95.14 87 | 94.94 184 | 81.64 216 | 82.68 239 | 91.64 217 | 59.01 299 | 96.34 250 | 75.37 250 | 83.78 241 | 93.79 224 |
|
PatchmatchNet | | | 85.85 220 | 84.70 225 | 89.29 222 | 91.76 230 | 75.54 268 | 88.49 289 | 91.30 276 | 81.63 217 | 85.05 191 | 88.70 280 | 71.71 193 | 96.24 253 | 74.61 258 | 89.05 191 | 96.08 132 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CostFormer | | | 85.77 222 | 84.94 220 | 88.26 246 | 91.16 253 | 72.58 292 | 89.47 276 | 91.04 283 | 76.26 272 | 86.45 153 | 89.97 262 | 70.74 206 | 96.86 222 | 82.35 161 | 87.07 221 | 95.34 158 |
|
PMMVS | | | 85.71 223 | 84.96 219 | 87.95 254 | 88.90 300 | 77.09 251 | 88.68 287 | 90.06 301 | 72.32 305 | 86.47 150 | 90.76 248 | 72.15 192 | 94.40 297 | 81.78 175 | 93.49 130 | 92.36 275 |
|
PVSNet | | 78.82 18 | 85.55 224 | 84.65 226 | 88.23 248 | 94.72 140 | 71.93 294 | 87.12 302 | 92.75 240 | 78.80 248 | 84.95 193 | 90.53 252 | 64.43 269 | 96.71 226 | 74.74 256 | 93.86 124 | 96.06 134 |
|
IterMVS-SCA-FT | | | 85.45 225 | 84.53 229 | 88.18 249 | 91.71 232 | 76.87 254 | 90.19 265 | 92.65 243 | 85.40 136 | 81.44 252 | 90.54 251 | 66.79 251 | 95.00 294 | 81.04 184 | 81.05 274 | 92.66 266 |
|
pmmvs4 | | | 85.43 226 | 83.86 236 | 90.16 189 | 90.02 290 | 82.97 114 | 90.27 262 | 92.67 242 | 75.93 275 | 80.73 260 | 91.74 216 | 71.05 200 | 95.73 275 | 78.85 217 | 83.46 248 | 91.78 285 |
|
ACMH | | 80.38 17 | 85.36 227 | 83.68 238 | 90.39 180 | 94.45 153 | 80.63 172 | 94.73 112 | 94.85 192 | 82.09 200 | 77.24 291 | 92.65 184 | 60.01 294 | 97.58 160 | 72.25 269 | 84.87 234 | 92.96 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
OurMVSNet-221017-0 | | | 85.35 228 | 84.64 227 | 87.49 263 | 90.77 270 | 72.59 291 | 94.01 163 | 94.40 205 | 84.72 152 | 79.62 278 | 93.17 167 | 61.91 280 | 96.72 224 | 81.99 169 | 81.16 270 | 93.16 252 |
|
CR-MVSNet | | | 85.35 228 | 83.76 237 | 90.12 192 | 90.58 278 | 79.34 205 | 85.24 312 | 91.96 261 | 78.27 255 | 85.55 169 | 87.87 293 | 71.03 201 | 95.61 276 | 73.96 262 | 89.36 185 | 95.40 155 |
|
tpmrst | | | 85.35 228 | 84.99 217 | 86.43 283 | 90.88 267 | 67.88 317 | 88.71 286 | 91.43 274 | 80.13 233 | 86.08 161 | 88.80 278 | 73.05 182 | 96.02 261 | 82.48 158 | 83.40 250 | 95.40 155 |
|
miper_lstm_enhance | | | 85.27 231 | 84.59 228 | 87.31 266 | 91.28 248 | 74.63 271 | 87.69 298 | 94.09 218 | 81.20 224 | 81.36 254 | 89.85 265 | 74.97 154 | 94.30 299 | 81.03 187 | 79.84 294 | 93.01 257 |
|
IB-MVS | | 80.51 15 | 85.24 232 | 83.26 243 | 91.19 148 | 92.13 219 | 79.86 194 | 91.75 239 | 91.29 277 | 83.28 179 | 80.66 262 | 88.49 282 | 61.28 284 | 98.46 102 | 80.99 188 | 79.46 296 | 95.25 159 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CHOSEN 280x420 | | | 85.15 233 | 83.99 234 | 88.65 237 | 92.47 212 | 78.40 225 | 79.68 327 | 92.76 239 | 74.90 285 | 81.41 253 | 89.59 268 | 69.85 220 | 95.51 282 | 79.92 206 | 95.29 103 | 92.03 282 |
|
RPSCF | | | 85.07 234 | 84.27 230 | 87.48 264 | 92.91 206 | 70.62 306 | 91.69 243 | 92.46 245 | 76.20 273 | 82.67 240 | 95.22 97 | 63.94 271 | 97.29 190 | 77.51 231 | 85.80 226 | 94.53 188 |
|
MS-PatchMatch | | | 85.05 235 | 84.16 231 | 87.73 257 | 91.42 242 | 78.51 221 | 91.25 251 | 93.53 227 | 77.50 260 | 80.15 269 | 91.58 222 | 61.99 279 | 95.51 282 | 75.69 247 | 94.35 120 | 89.16 313 |
|
ACMH+ | | 81.04 14 | 85.05 235 | 83.46 242 | 89.82 205 | 94.66 144 | 79.37 203 | 94.44 131 | 94.12 217 | 82.19 199 | 78.04 285 | 92.82 179 | 58.23 301 | 97.54 163 | 73.77 263 | 82.90 252 | 92.54 268 |
|
DWT-MVSNet_test | | | 84.95 237 | 83.68 238 | 88.77 230 | 91.43 241 | 73.75 279 | 91.74 240 | 90.98 284 | 80.66 229 | 83.84 218 | 87.36 297 | 62.44 276 | 97.11 205 | 78.84 218 | 85.81 225 | 95.46 152 |
|
IterMVS | | | 84.88 238 | 83.98 235 | 87.60 259 | 91.44 238 | 76.03 264 | 90.18 266 | 92.41 246 | 83.24 180 | 81.06 258 | 90.42 255 | 66.60 254 | 94.28 300 | 79.46 209 | 80.98 279 | 92.48 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 239 | 83.09 245 | 90.14 191 | 93.80 178 | 80.05 187 | 89.18 281 | 93.09 233 | 78.89 245 | 78.19 283 | 91.91 211 | 65.86 263 | 97.27 191 | 68.47 289 | 88.45 199 | 93.11 254 |
|
tpm | | | 84.73 240 | 84.02 233 | 86.87 280 | 90.33 283 | 68.90 314 | 89.06 282 | 89.94 304 | 80.85 227 | 85.75 164 | 89.86 264 | 68.54 238 | 95.97 263 | 77.76 227 | 84.05 240 | 95.75 146 |
|
tfpnnormal | | | 84.72 241 | 83.23 244 | 89.20 224 | 92.79 208 | 80.05 187 | 94.48 126 | 95.81 128 | 82.38 195 | 81.08 257 | 91.21 231 | 69.01 232 | 96.95 216 | 61.69 315 | 80.59 283 | 90.58 306 |
|
CVMVSNet | | | 84.69 242 | 84.79 224 | 84.37 299 | 91.84 227 | 64.92 324 | 93.70 176 | 91.47 273 | 66.19 320 | 86.16 160 | 95.28 94 | 67.18 246 | 93.33 309 | 80.89 190 | 90.42 168 | 94.88 174 |
|
test-mter | | | 84.54 243 | 83.64 240 | 87.25 269 | 90.95 260 | 71.67 296 | 89.55 272 | 89.88 307 | 79.17 242 | 84.54 199 | 87.95 290 | 55.56 307 | 95.11 291 | 81.82 173 | 93.37 135 | 94.97 166 |
|
TransMVSNet (Re) | | | 84.43 244 | 83.06 246 | 88.54 239 | 91.72 231 | 78.44 223 | 95.18 84 | 92.82 238 | 82.73 190 | 79.67 276 | 92.12 201 | 73.49 175 | 95.96 264 | 71.10 275 | 68.73 321 | 91.21 297 |
|
pmmvs5 | | | 84.21 245 | 82.84 250 | 88.34 244 | 88.95 299 | 76.94 253 | 92.41 220 | 91.91 263 | 75.63 277 | 80.28 267 | 91.18 234 | 64.59 268 | 95.57 278 | 77.09 236 | 83.47 247 | 92.53 269 |
|
tpm2 | | | 84.08 246 | 82.94 247 | 87.48 264 | 91.39 243 | 71.27 298 | 89.23 280 | 90.37 295 | 71.95 307 | 84.64 196 | 89.33 271 | 67.30 243 | 96.55 237 | 75.17 252 | 87.09 220 | 94.63 181 |
|
COLMAP_ROB | | 80.39 16 | 83.96 247 | 82.04 253 | 89.74 209 | 95.28 117 | 79.75 196 | 94.25 144 | 92.28 248 | 75.17 281 | 78.02 286 | 93.77 153 | 58.60 300 | 97.84 148 | 65.06 306 | 85.92 224 | 91.63 288 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SixPastTwentyTwo | | | 83.91 248 | 82.90 248 | 86.92 277 | 90.99 258 | 70.67 305 | 93.48 182 | 91.99 258 | 85.54 133 | 77.62 290 | 92.11 203 | 60.59 290 | 96.87 221 | 76.05 245 | 77.75 302 | 93.20 250 |
|
EPMVS | | | 83.90 249 | 82.70 251 | 87.51 261 | 90.23 286 | 72.67 288 | 88.62 288 | 81.96 329 | 81.37 222 | 85.01 192 | 88.34 284 | 66.31 258 | 94.45 296 | 75.30 251 | 87.12 219 | 95.43 154 |
|
TESTMET0.1,1 | | | 83.74 250 | 82.85 249 | 86.42 284 | 89.96 291 | 71.21 300 | 89.55 272 | 87.88 316 | 77.41 261 | 83.37 231 | 87.31 298 | 56.71 304 | 93.65 306 | 80.62 195 | 92.85 146 | 94.40 197 |
|
MVS_0304 | | | 83.46 251 | 81.92 254 | 88.10 251 | 90.63 277 | 77.49 247 | 93.26 193 | 93.75 225 | 80.04 235 | 80.44 266 | 87.24 299 | 47.94 324 | 95.55 279 | 75.79 246 | 88.16 204 | 91.26 295 |
|
pmmvs6 | | | 83.42 252 | 81.60 256 | 88.87 229 | 88.01 310 | 77.87 238 | 94.96 96 | 94.24 212 | 74.67 287 | 78.80 281 | 91.09 239 | 60.17 293 | 96.49 239 | 77.06 237 | 75.40 309 | 92.23 280 |
|
AllTest | | | 83.42 252 | 81.39 257 | 89.52 217 | 95.01 125 | 77.79 241 | 93.12 198 | 90.89 288 | 77.41 261 | 76.12 296 | 93.34 158 | 54.08 314 | 97.51 165 | 68.31 291 | 84.27 238 | 93.26 245 |
|
testing_2 | | | 83.40 254 | 81.02 260 | 90.56 171 | 85.06 319 | 80.51 176 | 91.37 248 | 95.57 146 | 82.92 186 | 67.06 321 | 85.54 308 | 49.47 321 | 97.24 195 | 86.74 112 | 85.44 228 | 93.93 214 |
|
tpmvs | | | 83.35 255 | 82.07 252 | 87.20 273 | 91.07 256 | 71.00 303 | 88.31 292 | 91.70 265 | 78.91 244 | 80.49 265 | 87.18 301 | 69.30 228 | 97.08 207 | 68.12 294 | 83.56 246 | 93.51 240 |
|
RPMNet | | | 83.18 256 | 80.87 263 | 90.12 192 | 90.58 278 | 79.34 205 | 85.24 312 | 90.78 291 | 71.44 309 | 85.55 169 | 82.97 316 | 70.87 203 | 95.61 276 | 61.01 317 | 89.36 185 | 95.40 155 |
|
USDC | | | 82.76 257 | 81.26 259 | 87.26 268 | 91.17 251 | 74.55 272 | 89.27 278 | 93.39 230 | 78.26 256 | 75.30 300 | 92.08 205 | 54.43 313 | 96.63 228 | 71.64 270 | 85.79 227 | 90.61 303 |
|
Patchmtry | | | 82.71 258 | 80.93 262 | 88.06 252 | 90.05 289 | 76.37 261 | 84.74 314 | 91.96 261 | 72.28 306 | 81.32 255 | 87.87 293 | 71.03 201 | 95.50 284 | 68.97 286 | 80.15 289 | 92.32 277 |
|
PatchT | | | 82.68 259 | 81.27 258 | 86.89 279 | 90.09 288 | 70.94 304 | 84.06 316 | 90.15 298 | 74.91 284 | 85.63 168 | 83.57 313 | 69.37 224 | 94.87 295 | 65.19 303 | 88.50 198 | 94.84 175 |
|
MIMVSNet | | | 82.59 260 | 80.53 264 | 88.76 231 | 91.51 237 | 78.32 226 | 86.57 305 | 90.13 299 | 79.32 241 | 80.70 261 | 88.69 281 | 52.98 316 | 93.07 313 | 66.03 301 | 88.86 193 | 94.90 173 |
|
test0.0.03 1 | | | 82.41 261 | 81.69 255 | 84.59 297 | 88.23 307 | 72.89 285 | 90.24 263 | 87.83 317 | 83.41 175 | 79.86 275 | 89.78 266 | 67.25 244 | 88.99 326 | 65.18 304 | 83.42 249 | 91.90 284 |
|
EG-PatchMatch MVS | | | 82.37 262 | 80.34 266 | 88.46 240 | 90.27 284 | 79.35 204 | 92.80 211 | 94.33 208 | 77.14 265 | 73.26 310 | 90.18 258 | 47.47 326 | 96.72 224 | 70.25 277 | 87.32 218 | 89.30 310 |
|
tpm cat1 | | | 81.96 263 | 80.27 267 | 87.01 275 | 91.09 255 | 71.02 302 | 87.38 301 | 91.53 271 | 66.25 319 | 80.17 268 | 86.35 304 | 68.22 242 | 96.15 257 | 69.16 285 | 82.29 256 | 93.86 221 |
|
our_test_3 | | | 81.93 264 | 80.46 265 | 86.33 285 | 88.46 304 | 73.48 281 | 88.46 290 | 91.11 279 | 76.46 267 | 76.69 293 | 88.25 286 | 66.89 249 | 94.36 298 | 68.75 287 | 79.08 299 | 91.14 299 |
|
ppachtmachnet_test | | | 81.84 265 | 80.07 271 | 87.15 274 | 88.46 304 | 74.43 273 | 89.04 283 | 92.16 251 | 75.33 279 | 77.75 288 | 88.99 273 | 66.20 259 | 95.37 287 | 65.12 305 | 77.60 303 | 91.65 287 |
|
gg-mvs-nofinetune | | | 81.77 266 | 79.37 277 | 88.99 228 | 90.85 268 | 77.73 244 | 86.29 306 | 79.63 332 | 74.88 286 | 83.19 235 | 69.05 327 | 60.34 291 | 96.11 258 | 75.46 249 | 94.64 112 | 93.11 254 |
|
Patchmatch-RL test | | | 81.67 267 | 79.96 272 | 86.81 281 | 85.42 317 | 71.23 299 | 82.17 323 | 87.50 320 | 78.47 252 | 77.19 292 | 82.50 317 | 70.81 205 | 93.48 307 | 82.66 157 | 72.89 313 | 95.71 147 |
|
ADS-MVSNet2 | | | 81.66 268 | 79.71 275 | 87.50 262 | 91.35 245 | 74.19 275 | 83.33 319 | 88.48 315 | 72.90 301 | 82.24 244 | 85.77 306 | 64.98 266 | 93.20 311 | 64.57 307 | 83.74 242 | 95.12 161 |
|
K. test v3 | | | 81.59 269 | 80.15 270 | 85.91 289 | 89.89 293 | 69.42 313 | 92.57 217 | 87.71 318 | 85.56 132 | 73.44 309 | 89.71 267 | 55.58 306 | 95.52 281 | 77.17 234 | 69.76 317 | 92.78 264 |
|
ADS-MVSNet | | | 81.56 270 | 79.78 273 | 86.90 278 | 91.35 245 | 71.82 295 | 83.33 319 | 89.16 313 | 72.90 301 | 82.24 244 | 85.77 306 | 64.98 266 | 93.76 304 | 64.57 307 | 83.74 242 | 95.12 161 |
|
FMVSNet5 | | | 81.52 271 | 79.60 276 | 87.27 267 | 91.17 251 | 77.95 234 | 91.49 246 | 92.26 249 | 76.87 266 | 76.16 295 | 87.91 292 | 51.67 317 | 92.34 315 | 67.74 295 | 81.16 270 | 91.52 289 |
|
dp | | | 81.47 272 | 80.23 268 | 85.17 294 | 89.92 292 | 65.49 323 | 86.74 303 | 90.10 300 | 76.30 271 | 81.10 256 | 87.12 302 | 62.81 274 | 95.92 265 | 68.13 293 | 79.88 292 | 94.09 208 |
|
Patchmatch-test | | | 81.37 273 | 79.30 278 | 87.58 260 | 90.92 264 | 74.16 276 | 80.99 325 | 87.68 319 | 70.52 313 | 76.63 294 | 88.81 276 | 71.21 198 | 92.76 314 | 60.01 321 | 86.93 222 | 95.83 143 |
|
EU-MVSNet | | | 81.32 274 | 80.95 261 | 82.42 306 | 88.50 303 | 63.67 325 | 93.32 186 | 91.33 275 | 64.02 322 | 80.57 264 | 92.83 178 | 61.21 287 | 92.27 316 | 76.34 241 | 80.38 288 | 91.32 293 |
|
test_0402 | | | 81.30 275 | 79.17 280 | 87.67 258 | 93.19 195 | 78.17 230 | 92.98 206 | 91.71 264 | 75.25 280 | 76.02 298 | 90.31 256 | 59.23 298 | 96.37 247 | 50.22 327 | 83.63 245 | 88.47 319 |
|
JIA-IIPM | | | 81.04 276 | 78.98 283 | 87.25 269 | 88.64 301 | 73.48 281 | 81.75 324 | 89.61 311 | 73.19 298 | 82.05 246 | 73.71 323 | 66.07 262 | 95.87 268 | 71.18 274 | 84.60 236 | 92.41 273 |
|
Anonymous20231206 | | | 81.03 277 | 79.77 274 | 84.82 296 | 87.85 312 | 70.26 308 | 91.42 247 | 92.08 254 | 73.67 294 | 77.75 288 | 89.25 272 | 62.43 277 | 93.08 312 | 61.50 316 | 82.00 261 | 91.12 300 |
|
pmmvs-eth3d | | | 80.97 278 | 78.72 284 | 87.74 256 | 84.99 320 | 79.97 192 | 90.11 267 | 91.65 267 | 75.36 278 | 73.51 308 | 86.03 305 | 59.45 297 | 93.96 303 | 75.17 252 | 72.21 314 | 89.29 311 |
|
testgi | | | 80.94 279 | 80.20 269 | 83.18 303 | 87.96 311 | 66.29 320 | 91.28 249 | 90.70 293 | 83.70 167 | 78.12 284 | 92.84 177 | 51.37 318 | 90.82 323 | 63.34 310 | 82.46 255 | 92.43 272 |
|
CMPMVS | | 59.16 21 | 80.52 280 | 79.20 279 | 84.48 298 | 83.98 321 | 67.63 319 | 89.95 270 | 93.84 223 | 64.79 321 | 66.81 322 | 91.14 237 | 57.93 302 | 95.17 289 | 76.25 242 | 88.10 205 | 90.65 302 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LF4IMVS | | | 80.37 281 | 79.07 282 | 84.27 301 | 86.64 314 | 69.87 311 | 89.39 277 | 91.05 282 | 76.38 269 | 74.97 302 | 90.00 261 | 47.85 325 | 94.25 301 | 74.55 259 | 80.82 281 | 88.69 317 |
|
UnsupCasMVSNet_eth | | | 80.07 282 | 78.27 285 | 85.46 291 | 85.24 318 | 72.63 290 | 88.45 291 | 94.87 191 | 82.99 184 | 71.64 316 | 88.07 289 | 56.34 305 | 91.75 320 | 73.48 265 | 63.36 326 | 92.01 283 |
|
test20.03 | | | 79.95 283 | 79.08 281 | 82.55 305 | 85.79 316 | 67.74 318 | 91.09 255 | 91.08 280 | 81.23 223 | 74.48 305 | 89.96 263 | 61.63 281 | 90.15 324 | 60.08 319 | 76.38 307 | 89.76 308 |
|
TDRefinement | | | 79.81 284 | 77.34 287 | 87.22 272 | 79.24 329 | 75.48 269 | 93.12 198 | 92.03 256 | 76.45 268 | 75.01 301 | 91.58 222 | 49.19 322 | 96.44 244 | 70.22 279 | 69.18 318 | 89.75 309 |
|
TinyColmap | | | 79.76 285 | 77.69 286 | 85.97 288 | 91.71 232 | 73.12 283 | 89.55 272 | 90.36 296 | 75.03 282 | 72.03 314 | 90.19 257 | 46.22 327 | 96.19 256 | 63.11 311 | 81.03 275 | 88.59 318 |
|
OpenMVS_ROB | | 74.94 19 | 79.51 286 | 77.03 291 | 86.93 276 | 87.00 313 | 76.23 263 | 92.33 224 | 90.74 292 | 68.93 316 | 74.52 304 | 88.23 287 | 49.58 320 | 96.62 229 | 57.64 323 | 84.29 237 | 87.94 321 |
|
MIMVSNet1 | | | 79.38 287 | 77.28 288 | 85.69 290 | 86.35 315 | 73.67 280 | 91.61 245 | 92.75 240 | 78.11 259 | 72.64 312 | 88.12 288 | 48.16 323 | 91.97 319 | 60.32 318 | 77.49 304 | 91.43 292 |
|
YYNet1 | | | 79.22 288 | 77.20 289 | 85.28 293 | 88.20 309 | 72.66 289 | 85.87 308 | 90.05 303 | 74.33 290 | 62.70 324 | 87.61 295 | 66.09 261 | 92.03 317 | 66.94 296 | 72.97 312 | 91.15 298 |
|
MDA-MVSNet_test_wron | | | 79.21 289 | 77.19 290 | 85.29 292 | 88.22 308 | 72.77 287 | 85.87 308 | 90.06 301 | 74.34 289 | 62.62 325 | 87.56 296 | 66.14 260 | 91.99 318 | 66.90 299 | 73.01 311 | 91.10 301 |
|
MDA-MVSNet-bldmvs | | | 78.85 290 | 76.31 292 | 86.46 282 | 89.76 294 | 73.88 278 | 88.79 285 | 90.42 294 | 79.16 243 | 59.18 326 | 88.33 285 | 60.20 292 | 94.04 302 | 62.00 314 | 68.96 319 | 91.48 291 |
|
PM-MVS | | | 78.11 291 | 76.12 294 | 84.09 302 | 83.54 323 | 70.08 309 | 88.97 284 | 85.27 324 | 79.93 236 | 74.73 303 | 86.43 303 | 34.70 332 | 93.48 307 | 79.43 212 | 72.06 315 | 88.72 316 |
|
PVSNet_0 | | 73.20 20 | 77.22 292 | 74.83 296 | 84.37 299 | 90.70 274 | 71.10 301 | 83.09 321 | 89.67 310 | 72.81 303 | 73.93 307 | 83.13 315 | 60.79 289 | 93.70 305 | 68.54 288 | 50.84 330 | 88.30 320 |
|
DSMNet-mixed | | | 76.94 293 | 76.29 293 | 78.89 309 | 83.10 324 | 56.11 332 | 87.78 296 | 79.77 331 | 60.65 324 | 75.64 299 | 88.71 279 | 61.56 282 | 88.34 327 | 60.07 320 | 89.29 187 | 92.21 281 |
|
new-patchmatchnet | | | 76.41 294 | 75.17 295 | 80.13 308 | 82.65 326 | 59.61 327 | 87.66 299 | 91.08 280 | 78.23 257 | 69.85 317 | 83.22 314 | 54.76 310 | 91.63 322 | 64.14 309 | 64.89 324 | 89.16 313 |
|
UnsupCasMVSNet_bld | | | 76.23 295 | 73.27 297 | 85.09 295 | 83.79 322 | 72.92 284 | 85.65 311 | 93.47 229 | 71.52 308 | 68.84 319 | 79.08 321 | 49.77 319 | 93.21 310 | 66.81 300 | 60.52 328 | 89.13 315 |
|
test_normal | | | 75.12 296 | 71.44 299 | 86.17 286 | 81.33 327 | 69.54 312 | 50.52 336 | 95.44 159 | 84.80 150 | 55.21 327 | 70.88 326 | 41.07 330 | 96.66 227 | 82.25 164 | 81.48 269 | 92.30 279 |
|
MVS-HIRNet | | | 73.70 297 | 72.20 298 | 78.18 311 | 91.81 229 | 56.42 331 | 82.94 322 | 82.58 327 | 55.24 326 | 68.88 318 | 66.48 328 | 55.32 309 | 95.13 290 | 58.12 322 | 88.42 200 | 83.01 324 |
|
new_pmnet | | | 72.15 298 | 70.13 300 | 78.20 310 | 82.95 325 | 65.68 321 | 83.91 317 | 82.40 328 | 62.94 323 | 64.47 323 | 79.82 320 | 42.85 329 | 86.26 329 | 57.41 324 | 74.44 310 | 82.65 325 |
|
pmmvs3 | | | 71.81 299 | 68.71 301 | 81.11 307 | 75.86 330 | 70.42 307 | 86.74 303 | 83.66 326 | 58.95 325 | 68.64 320 | 80.89 319 | 36.93 331 | 89.52 325 | 63.10 312 | 63.59 325 | 83.39 323 |
|
N_pmnet | | | 68.89 300 | 68.44 302 | 70.23 315 | 89.07 298 | 28.79 341 | 88.06 293 | 19.50 342 | 69.47 315 | 71.86 315 | 84.93 309 | 61.24 286 | 91.75 320 | 54.70 325 | 77.15 306 | 90.15 307 |
|
LCM-MVSNet | | | 66.00 301 | 62.16 304 | 77.51 312 | 64.51 336 | 58.29 328 | 83.87 318 | 90.90 287 | 48.17 329 | 54.69 328 | 73.31 324 | 16.83 341 | 86.75 328 | 65.47 302 | 61.67 327 | 87.48 322 |
|
FPMVS | | | 64.63 302 | 62.55 303 | 70.88 314 | 70.80 332 | 56.71 329 | 84.42 315 | 84.42 325 | 51.78 328 | 49.57 329 | 81.61 318 | 23.49 335 | 81.48 332 | 40.61 331 | 76.25 308 | 74.46 328 |
|
PMMVS2 | | | 59.60 303 | 56.40 305 | 69.21 316 | 68.83 333 | 46.58 336 | 73.02 332 | 77.48 335 | 55.07 327 | 49.21 330 | 72.95 325 | 17.43 340 | 80.04 333 | 49.32 328 | 44.33 331 | 80.99 327 |
|
ANet_high | | | 58.88 304 | 54.22 307 | 72.86 313 | 56.50 339 | 56.67 330 | 80.75 326 | 86.00 321 | 73.09 300 | 37.39 333 | 64.63 330 | 22.17 336 | 79.49 334 | 43.51 329 | 23.96 334 | 82.43 326 |
|
Gipuma | | | 57.99 305 | 54.91 306 | 67.24 317 | 88.51 302 | 65.59 322 | 52.21 335 | 90.33 297 | 43.58 331 | 42.84 332 | 51.18 333 | 20.29 338 | 85.07 330 | 34.77 332 | 70.45 316 | 51.05 332 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 47.18 22 | 52.22 306 | 48.46 308 | 63.48 318 | 45.72 340 | 46.20 337 | 73.41 331 | 78.31 333 | 41.03 332 | 30.06 335 | 65.68 329 | 6.05 342 | 83.43 331 | 30.04 333 | 65.86 322 | 60.80 329 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 39.65 23 | 43.39 307 | 38.59 312 | 57.77 319 | 56.52 338 | 48.77 335 | 55.38 334 | 58.64 339 | 29.33 335 | 28.96 336 | 52.65 332 | 4.68 343 | 64.62 337 | 28.11 334 | 33.07 332 | 59.93 330 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 43.23 308 | 42.29 309 | 46.03 321 | 65.58 335 | 37.41 338 | 73.51 330 | 64.62 336 | 33.99 333 | 28.47 337 | 47.87 334 | 19.90 339 | 67.91 335 | 22.23 335 | 24.45 333 | 32.77 333 |
|
EMVS | | | 42.07 309 | 41.12 310 | 44.92 322 | 63.45 337 | 35.56 340 | 73.65 329 | 63.48 337 | 33.05 334 | 26.88 338 | 45.45 335 | 21.27 337 | 67.14 336 | 19.80 336 | 23.02 335 | 32.06 334 |
|
tmp_tt | | | 35.64 310 | 39.24 311 | 24.84 323 | 14.87 341 | 23.90 342 | 62.71 333 | 51.51 341 | 6.58 337 | 36.66 334 | 62.08 331 | 44.37 328 | 30.34 340 | 52.40 326 | 22.00 336 | 20.27 335 |
|
cdsmvs_eth3d_5k | | | 22.14 311 | 29.52 313 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 95.76 132 | 0.00 340 | 0.00 342 | 94.29 129 | 75.66 146 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
wuyk23d | | | 21.27 312 | 20.48 314 | 23.63 324 | 68.59 334 | 36.41 339 | 49.57 337 | 6.85 343 | 9.37 336 | 7.89 339 | 4.46 341 | 4.03 344 | 31.37 339 | 17.47 337 | 16.07 337 | 3.12 336 |
|
testmvs | | | 8.92 313 | 11.52 315 | 1.12 326 | 1.06 342 | 0.46 344 | 86.02 307 | 0.65 344 | 0.62 338 | 2.74 340 | 9.52 339 | 0.31 346 | 0.45 342 | 2.38 338 | 0.39 338 | 2.46 338 |
|
test123 | | | 8.76 314 | 11.22 316 | 1.39 325 | 0.85 343 | 0.97 343 | 85.76 310 | 0.35 345 | 0.54 339 | 2.45 341 | 8.14 340 | 0.60 345 | 0.48 341 | 2.16 339 | 0.17 339 | 2.71 337 |
|
ab-mvs-re | | | 7.82 315 | 10.43 317 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 93.88 148 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
pcd_1.5k_mvsjas | | | 6.64 316 | 8.86 318 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 79.70 104 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
uanet_test | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
sosnet-low-res | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
sosnet | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
uncertanet | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
Regformer | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
uanet | | | 0.00 317 | 0.00 319 | 0.00 327 | 0.00 344 | 0.00 345 | 0.00 338 | 0.00 346 | 0.00 340 | 0.00 342 | 0.00 342 | 0.00 347 | 0.00 343 | 0.00 340 | 0.00 340 | 0.00 339 |
|
9.14 | | | | 94.47 14 | | 97.79 41 | | 96.08 42 | 97.44 12 | 86.13 121 | 95.10 16 | 97.40 13 | 88.34 14 | 99.22 37 | 93.25 23 | 98.70 25 | |
|
save filter2 | | | | | | | | | | | 95.61 12 | 97.28 18 | 87.84 17 | 99.34 27 | 93.50 15 | 99.00 7 | 97.94 61 |
|
save fliter | | | | | | 97.85 39 | 85.63 57 | 95.21 82 | 96.82 57 | 89.44 41 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 4 | 98.05 4 | 92.09 1 | 99.55 9 | 95.64 2 | 99.13 3 | 99.13 |