This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9597.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 7099.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15897.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7496.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 2898.68 3998.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8896.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5698.62 21
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6997.17 112
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17584.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7797.96 75
MVS_030494.60 1894.38 2595.23 1195.41 13387.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7499.59 897.61 298.76 2898.61 22
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6497.04 5286.17 4499.62 292.40 5998.81 2298.52 26
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7497.16 4785.02 5999.49 2691.99 7798.56 5298.47 33
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12397.12 4187.13 12392.51 8896.30 8389.24 1799.34 3493.46 3998.62 4798.73 17
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6798.74 3198.56 25
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6597.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8297.23 4185.20 5599.32 3892.15 7098.83 2198.25 57
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13785.43 6895.68 8596.43 9986.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 10097.16 116
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9897.19 4485.43 5299.56 1292.06 7698.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7596.94 5585.68 16495.05 3497.18 4587.31 3599.07 5391.90 8598.61 4998.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6499.03 5893.35 4397.99 7198.48 30
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6196.83 6185.48 5199.59 891.43 9298.40 5698.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13497.17 3986.26 14992.83 7697.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13684.98 7395.61 9296.28 11386.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9397.07 119
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 8197.86 82
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11896.52 8780.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14293.64 3798.17 6298.19 60
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9096.89 6089.40 5592.81 7796.97 5485.37 5399.24 4390.87 10298.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7295.77 10885.02 5998.33 13793.03 4798.62 4798.13 64
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13192.62 8596.80 6584.85 6399.17 4792.43 5798.65 4598.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10897.17 4683.96 7199.55 1691.44 9198.64 4698.43 38
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10397.78 187.45 11993.26 6197.33 3684.62 6599.51 2490.75 10598.57 5198.32 46
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5197.43 3184.24 6899.01 6392.73 5197.80 7897.88 80
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 4997.47 2983.88 7298.96 7792.71 5497.87 7598.26 56
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12483.17 12496.14 5796.12 12988.13 10095.82 2698.04 1683.43 7598.48 11796.97 996.23 11196.92 130
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 26093.40 22097.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3298.09 6799.23 1
MSLP-MVS++93.72 4894.08 3892.65 11097.31 6583.43 11695.79 8097.33 2590.03 3693.58 5596.96 5584.87 6297.76 18092.19 6998.66 4296.76 137
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25689.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11397.83 85
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15083.67 10896.19 5096.10 13187.27 12195.98 2498.05 1383.07 8298.45 12596.68 1195.51 12096.88 133
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12696.69 8491.89 890.69 12495.88 10281.99 10699.54 2093.14 4697.95 7398.39 39
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29294.25 17496.29 11088.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6798.73 17
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 21983.13 12696.02 6895.74 16087.68 11495.89 2598.17 282.78 8698.46 12196.71 1096.17 11296.98 126
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23297.24 3288.76 7791.60 11395.85 10386.07 4698.66 9891.91 8398.16 6398.03 72
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22384.26 9595.83 7896.14 12589.00 7292.43 9097.50 2883.37 7898.72 9696.61 1297.44 8596.32 152
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25592.77 7996.20 8787.63 2999.12 5192.14 7198.69 3797.94 76
EC-MVSNet93.44 5593.71 5192.63 11195.21 14282.43 15497.27 996.71 8290.57 2692.88 7395.80 10683.16 7998.16 14893.68 3698.14 6497.31 105
DELS-MVS93.43 5893.25 5993.97 5695.42 13285.04 7293.06 23997.13 4090.74 2191.84 10695.09 13386.32 4299.21 4591.22 9398.45 5497.65 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16192.47 8997.13 4882.38 9099.07 5390.51 10898.40 5697.92 79
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 12996.99 4889.02 7189.56 13897.37 3582.51 8999.38 3192.20 6898.30 5997.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4196.41 10190.00 3794.09 4494.60 15882.33 9298.62 10392.40 5992.86 17798.27 52
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4196.41 10190.00 3794.09 4494.60 15882.33 9298.62 10392.40 5992.86 17798.27 52
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13397.03 5381.44 11299.51 2490.85 10395.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19890.05 13495.66 11287.77 2699.15 5089.91 11298.27 6098.07 68
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6895.72 16386.78 13396.04 2298.19 182.30 9598.43 12996.38 1395.42 12696.86 134
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 11089.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8897.74 89
alignmvs93.08 6792.50 7794.81 3295.62 12487.61 1495.99 7096.07 13489.77 4794.12 4394.87 14280.56 11898.66 9892.42 5893.10 17398.15 63
MGCFI-Net93.03 6892.63 7394.23 5395.62 12485.92 5796.08 6196.33 10889.86 4193.89 5094.66 15582.11 10098.50 11592.33 6592.82 18098.27 52
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15283.51 11594.48 15695.77 15790.87 1592.52 8796.67 6884.50 6699.00 6891.99 7794.44 14897.36 104
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17683.40 11895.00 12396.34 10790.30 3092.05 9696.05 9583.43 7598.15 14992.07 7395.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 7192.54 7693.68 6896.10 10084.71 7995.66 8896.39 10491.92 793.22 6396.49 7983.16 7998.87 8284.47 17795.47 12397.45 103
CDPH-MVS92.83 7192.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28492.77 7996.63 7386.62 3899.04 5787.40 13998.66 4298.17 62
MVSMamba_pp92.75 7392.66 7193.02 8895.09 14882.85 14094.72 14296.46 9786.35 14493.33 6094.96 13681.98 10798.55 11392.35 6298.70 3597.67 91
ETV-MVS92.74 7492.66 7192.97 9295.20 14384.04 10095.07 11996.51 9490.73 2292.96 7191.19 27684.06 6998.34 13591.72 8796.54 10596.54 148
EI-MVSNet-UG-set92.74 7492.62 7493.12 8094.86 16383.20 12394.40 16495.74 16090.71 2392.05 9696.60 7584.00 7098.99 7091.55 8993.63 15897.17 112
mamv492.71 7692.58 7593.09 8395.16 14483.05 13294.67 14596.50 9586.30 14693.09 6694.88 14082.03 10598.57 10891.94 8298.66 4297.63 93
DPM-MVS92.58 7791.74 8795.08 1596.19 9589.31 592.66 25196.56 9383.44 21691.68 11295.04 13486.60 4098.99 7085.60 16397.92 7496.93 129
casdiffmvspermissive92.51 7892.43 7992.74 10594.41 18981.98 16494.54 15496.23 11989.57 5191.96 10196.17 9182.58 8898.01 16790.95 10095.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 7992.29 8192.98 9195.99 10984.43 9193.08 23796.09 13288.20 9791.12 12095.72 11181.33 11497.76 18091.74 8697.37 8796.75 138
3Dnovator+87.14 492.42 8091.37 9095.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8298.59 24
baseline92.39 8192.29 8192.69 10994.46 18581.77 16994.14 18096.27 11489.22 6191.88 10496.00 9682.35 9197.99 16991.05 9595.27 13198.30 47
bld_raw_dy_0_6492.29 8292.45 7891.80 15595.49 13079.68 23193.44 21996.40 10386.21 15193.01 7094.88 14081.93 10898.57 10891.99 7798.73 3297.16 116
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13396.44 9889.19 6394.08 4695.90 10177.85 15498.17 14788.90 12193.38 16798.13 64
iter_conf05_1192.00 8491.85 8592.47 11995.02 15082.63 15192.81 24796.13 12884.85 18591.97 9994.10 17482.31 9498.51 11490.81 10498.61 4996.26 156
CPTT-MVS91.99 8591.80 8692.55 11598.24 3181.98 16496.76 3096.49 9681.89 25490.24 12996.44 8178.59 14398.61 10589.68 11397.85 7697.06 120
EIA-MVS91.95 8691.94 8391.98 13995.16 14480.01 22195.36 9896.73 7988.44 8789.34 14292.16 24283.82 7398.45 12589.35 11697.06 9197.48 101
DP-MVS Recon91.95 8691.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23690.03 13595.82 10582.30 9599.03 5884.57 17596.48 10896.91 131
EPNet91.79 8891.02 9894.10 5490.10 33985.25 7196.03 6792.05 30292.83 387.39 17895.78 10779.39 13399.01 6388.13 13097.48 8498.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8991.70 8892.00 13897.08 7180.03 22093.60 21395.18 20087.85 11090.89 12296.47 8082.06 10398.36 13285.07 16797.04 9297.62 94
Vis-MVSNetpermissive91.75 9091.23 9393.29 7395.32 13583.78 10596.14 5795.98 14089.89 3990.45 12696.58 7675.09 18298.31 14084.75 17396.90 9697.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 9190.82 10294.44 4594.59 17686.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7297.79 87
EPP-MVSNet91.70 9291.56 8992.13 13495.88 11280.50 20497.33 795.25 19686.15 15389.76 13795.60 11483.42 7798.32 13987.37 14193.25 17097.56 99
MVSFormer91.68 9391.30 9192.80 10193.86 21383.88 10395.96 7295.90 14884.66 19291.76 10994.91 13877.92 15197.30 22589.64 11497.11 8997.24 108
Effi-MVS+91.59 9491.11 9593.01 8994.35 19483.39 11994.60 15095.10 20487.10 12490.57 12593.10 21481.43 11398.07 16389.29 11794.48 14697.59 97
IS-MVSNet91.43 9591.09 9792.46 12095.87 11481.38 18096.95 1993.69 26689.72 4989.50 14095.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
PVSNet_Blended_VisFu91.38 9690.91 10092.80 10196.39 9083.17 12494.87 13196.66 8583.29 22189.27 14394.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
diffmvspermissive91.37 9791.23 9391.77 15693.09 23880.27 20892.36 26095.52 17987.03 12691.40 11794.93 13780.08 12297.44 21092.13 7294.56 14397.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9891.11 9591.93 14394.37 19080.14 21293.46 21895.80 15586.46 14191.35 11893.77 19382.21 9898.09 16087.57 13794.95 13497.55 100
OMC-MVS91.23 9990.62 10493.08 8496.27 9384.07 9893.52 21595.93 14486.95 12889.51 13996.13 9378.50 14598.35 13485.84 16192.90 17696.83 136
PAPM_NR91.22 10090.78 10392.52 11797.60 5681.46 17794.37 17096.24 11886.39 14387.41 17594.80 14882.06 10398.48 11782.80 20195.37 12797.61 95
PS-MVSNAJ91.18 10190.92 9991.96 14195.26 14082.60 15392.09 27295.70 16486.27 14891.84 10692.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
xiu_mvs_v2_base91.13 10290.89 10191.86 14994.97 15582.42 15592.24 26695.64 17186.11 15791.74 11193.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
nrg03091.08 10390.39 10693.17 7893.07 24086.91 2296.41 3996.26 11588.30 9288.37 15894.85 14582.19 9997.64 19191.09 9482.95 29994.96 209
lupinMVS90.92 10490.21 10993.03 8793.86 21383.88 10392.81 24793.86 26079.84 28791.76 10994.29 16877.92 15198.04 16590.48 10997.11 8997.17 112
h-mvs3390.80 10590.15 11292.75 10496.01 10582.66 14995.43 9795.53 17889.80 4393.08 6795.64 11375.77 17199.00 6892.07 7378.05 35496.60 143
jason90.80 10590.10 11392.90 9693.04 24383.53 11493.08 23794.15 24980.22 28191.41 11694.91 13876.87 15897.93 17490.28 11196.90 9697.24 108
jason: jason.
VDD-MVS90.74 10789.92 12093.20 7796.27 9383.02 13495.73 8293.86 26088.42 8992.53 8696.84 6062.09 32198.64 10090.95 10092.62 18297.93 78
PVSNet_Blended90.73 10890.32 10891.98 13996.12 9781.25 18292.55 25596.83 6682.04 24889.10 14592.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
test_yl90.69 10990.02 11892.71 10695.72 11882.41 15794.11 18295.12 20285.63 16591.49 11494.70 15174.75 18698.42 13086.13 15692.53 18497.31 105
DCV-MVSNet90.69 10990.02 11892.71 10695.72 11882.41 15794.11 18295.12 20285.63 16591.49 11494.70 15174.75 18698.42 13086.13 15692.53 18497.31 105
API-MVS90.66 11190.07 11492.45 12196.36 9184.57 8296.06 6595.22 19982.39 23989.13 14494.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
xiu_mvs_v1_base_debu90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
xiu_mvs_v1_base90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11592.40 12293.97 21084.46 8893.32 22395.46 18185.17 17492.25 9194.03 17570.59 24298.57 10890.97 9794.67 13894.18 245
HQP_MVS90.60 11590.19 11091.82 15294.70 17182.73 14595.85 7696.22 12090.81 1786.91 18594.86 14374.23 19498.12 15088.15 12889.99 21394.63 221
FIs90.51 11690.35 10790.99 19093.99 20980.98 19095.73 8297.54 489.15 6486.72 19294.68 15381.83 11197.24 23385.18 16688.31 24894.76 219
iter_conf0590.51 11690.46 10590.67 19893.09 23880.06 21794.62 14994.98 21086.30 14688.54 15594.80 14881.89 11097.59 19490.45 11089.49 22694.36 241
MAR-MVS90.30 11889.37 13193.07 8696.61 8184.48 8795.68 8595.67 16682.36 24187.85 16692.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11990.18 11190.53 20393.71 22079.85 22795.77 8197.59 389.31 5886.27 20394.67 15481.93 10897.01 24984.26 17988.09 25194.71 220
CANet_DTU90.26 12089.41 13092.81 10093.46 22983.01 13593.48 21694.47 23689.43 5487.76 17094.23 17270.54 24699.03 5884.97 16896.39 10996.38 151
SDMVSNet90.19 12189.61 12491.93 14396.00 10683.09 13092.89 24495.98 14088.73 7886.85 18995.20 12872.09 22697.08 24388.90 12189.85 21995.63 187
OPM-MVS90.12 12289.56 12591.82 15293.14 23683.90 10294.16 17995.74 16088.96 7387.86 16595.43 11972.48 22297.91 17588.10 13290.18 21293.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13292.15 9596.81 6362.60 31998.34 13587.18 14393.90 15498.19 60
GeoE90.05 12489.43 12991.90 14895.16 14480.37 20795.80 7994.65 23383.90 20387.55 17494.75 15078.18 14997.62 19381.28 23193.63 15897.71 90
PAPR90.02 12589.27 13692.29 13095.78 11680.95 19292.68 25096.22 12081.91 25286.66 19393.75 19582.23 9798.44 12779.40 26394.79 13697.48 101
PVSNet_BlendedMVS89.98 12689.70 12290.82 19596.12 9781.25 18293.92 20096.83 6683.49 21589.10 14592.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19595.26 10895.98 14086.26 14986.21 20594.29 16879.70 12897.65 18888.87 12388.10 24994.57 226
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16796.68 3392.37 29189.03 6987.00 18194.85 14573.05 21497.65 18891.03 9688.63 23994.51 231
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20881.21 18591.87 27696.06 13685.78 16088.55 15395.73 11074.67 19097.27 22988.71 12489.64 22495.91 173
UGNet89.95 12988.95 14192.95 9494.51 18283.31 12095.70 8495.23 19789.37 5687.58 17293.94 18364.00 31098.78 9183.92 18496.31 11096.74 139
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23183.72 10694.43 16297.12 4189.80 4386.46 19693.32 20383.16 7997.23 23484.92 16981.02 32894.49 235
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13394.42 16395.92 14582.81 23386.34 20294.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
hse-mvs289.88 13389.34 13291.51 16494.83 16581.12 18793.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7377.07 36195.74 182
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22584.52 8594.78 13797.47 1189.26 6086.44 19992.32 23782.10 10197.39 22284.81 17280.84 33294.12 249
HQP-MVS89.80 13489.28 13591.34 17294.17 19881.56 17194.39 16696.04 13788.81 7485.43 22993.97 18273.83 20497.96 17187.11 14689.77 22294.50 233
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 17980.27 20891.36 28894.74 22984.87 18389.82 13692.61 22974.72 18998.47 12083.97 18393.53 16197.04 122
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21382.89 13995.46 9697.33 2587.91 10588.43 15793.31 20474.17 19797.40 21987.32 14282.86 30494.52 229
WTY-MVS89.60 13888.92 14291.67 15995.47 13181.15 18692.38 25994.78 22783.11 22589.06 14794.32 16678.67 14296.61 26881.57 22890.89 20397.24 108
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22895.74 11775.85 30695.61 9290.80 33887.66 11687.83 16795.40 12076.79 16096.46 28178.37 26896.73 10197.80 86
VDDNet89.56 14088.49 15692.76 10395.07 14982.09 16196.30 4393.19 27381.05 27691.88 10496.86 5961.16 33498.33 13788.43 12792.49 18697.84 84
114514_t89.51 14188.50 15492.54 11698.11 3681.99 16395.16 11596.36 10670.19 37985.81 21195.25 12476.70 16298.63 10282.07 21696.86 9997.00 125
QAPM89.51 14188.15 16593.59 7094.92 15984.58 8196.82 2996.70 8378.43 31083.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 132
CLD-MVS89.47 14388.90 14491.18 17894.22 19782.07 16292.13 27096.09 13287.90 10685.37 23592.45 23374.38 19297.56 19787.15 14490.43 20893.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18381.49 17595.30 10396.14 12586.73 13585.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22483.61 11393.01 24094.68 23281.95 25087.82 16893.24 20878.69 14196.99 25080.34 24893.23 17196.28 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16780.81 19693.54 21495.10 20483.11 22586.82 19190.67 29579.74 12797.75 18380.51 24693.55 16096.57 146
ab-mvs89.41 14688.35 15892.60 11295.15 14782.65 15092.20 26895.60 17383.97 20288.55 15393.70 19674.16 19898.21 14682.46 20689.37 22896.94 128
XVG-OURS89.40 14888.70 14891.52 16394.06 20281.46 17791.27 29296.07 13486.14 15488.89 14995.77 10868.73 27297.26 23187.39 14089.96 21595.83 178
test_vis1_n_192089.39 14989.84 12188.04 29192.97 24772.64 34094.71 14396.03 13986.18 15291.94 10396.56 7861.63 32495.74 31693.42 4195.11 13395.74 182
mvs_anonymous89.37 15089.32 13389.51 25493.47 22874.22 32391.65 28394.83 22382.91 23185.45 22693.79 19181.23 11596.36 28886.47 15394.09 15197.94 76
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15996.59 9089.50 5286.46 19693.29 20677.25 15697.23 23484.92 16981.02 32894.59 224
TAMVS89.21 15288.29 16291.96 14193.71 22082.62 15293.30 22794.19 24782.22 24387.78 16993.94 18378.83 13896.95 25277.70 27792.98 17596.32 152
ACMM84.12 989.14 15388.48 15791.12 17994.65 17481.22 18495.31 10196.12 12985.31 17385.92 21094.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 15488.64 14990.48 20895.53 12974.97 31496.08 6184.89 38288.13 10090.16 13296.65 7063.29 31598.10 15286.14 15496.90 9698.39 39
EI-MVSNet89.10 15488.86 14689.80 24191.84 27878.30 26293.70 21095.01 20785.73 16287.15 17995.28 12279.87 12597.21 23683.81 18687.36 26393.88 261
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12475.89 30596.16 5384.22 38487.89 10890.20 13096.65 7063.19 31798.10 15285.90 15996.94 9498.33 43
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26784.46 25495.13 13275.57 17896.62 26577.21 28293.84 15695.61 189
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14894.29 17295.44 18679.71 28984.01 26994.18 17376.68 16398.75 9377.28 28193.41 16695.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 15988.64 14990.21 21990.74 32579.28 24395.96 7295.90 14884.66 19285.33 23792.94 21874.02 20097.30 22589.64 11488.53 24194.05 255
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16382.77 14192.08 27394.49 23581.52 26686.93 18392.79 22578.32 14898.23 14379.93 25390.55 20695.88 175
ACMP84.23 889.01 16188.35 15890.99 19094.73 16881.27 18195.07 11995.89 15086.48 13983.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 16288.26 16490.94 19394.05 20380.78 19791.71 28095.38 19081.55 26588.63 15293.91 18775.04 18395.47 32782.47 20591.61 19196.57 146
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13594.92 12896.31 10989.88 4085.53 22093.85 19076.63 16496.96 25181.91 22079.87 34594.50 233
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9681.42 17990.01 32095.86 15274.52 34987.41 17593.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
MVSTER88.84 16388.29 16290.51 20692.95 24880.44 20593.73 20795.01 20784.66 19287.15 17993.12 21372.79 21897.21 23687.86 13387.36 26393.87 262
test_cas_vis1_n_192088.83 16688.85 14788.78 27091.15 30676.72 29393.85 20394.93 21583.23 22492.81 7796.00 9661.17 33394.45 33791.67 8894.84 13595.17 201
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8492.70 25385.39 6996.57 3696.43 9978.74 30580.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 216
thisisatest053088.67 16887.61 17691.86 14994.87 16280.07 21594.63 14889.90 35584.00 20188.46 15693.78 19266.88 28798.46 12183.30 19192.65 18197.06 120
Effi-MVS+-dtu88.65 16988.35 15889.54 25193.33 23276.39 29994.47 15994.36 24187.70 11385.43 22989.56 32173.45 20997.26 23185.57 16491.28 19594.97 206
tttt051788.61 17087.78 17391.11 18294.96 15677.81 27595.35 9989.69 35885.09 17988.05 16394.59 16066.93 28598.48 11783.27 19292.13 18997.03 123
BH-untuned88.60 17188.13 16690.01 23195.24 14178.50 25693.29 22894.15 24984.75 18984.46 25493.40 20075.76 17397.40 21977.59 27894.52 14594.12 249
sd_testset88.59 17287.85 17290.83 19496.00 10680.42 20692.35 26194.71 23088.73 7886.85 18995.20 12867.31 27996.43 28379.64 25789.85 21995.63 187
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13896.25 11789.05 6780.04 32693.29 20679.02 13797.05 24781.71 22780.05 34294.59 224
1112_ss88.42 17487.33 18391.72 15794.92 15980.98 19092.97 24294.54 23478.16 31683.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 156
WR-MVS88.38 17587.67 17590.52 20593.30 23380.18 21093.26 23095.96 14388.57 8585.47 22592.81 22376.12 16696.91 25581.24 23282.29 30894.47 238
BH-RMVSNet88.37 17687.48 17991.02 18795.28 13779.45 23592.89 24493.07 27585.45 17086.91 18594.84 14770.35 24797.76 18073.97 31194.59 14295.85 176
IterMVS-LS88.36 17787.91 17189.70 24593.80 21678.29 26393.73 20795.08 20685.73 16284.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7423.41 40685.02 5999.49 2691.99 7798.56 5298.47 33
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17072.41 34593.15 23390.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 142
jajsoiax88.24 18087.50 17890.48 20890.89 31980.14 21295.31 10195.65 17084.97 18184.24 26594.02 17865.31 30397.42 21288.56 12588.52 24293.89 259
VPNet88.20 18187.47 18090.39 21393.56 22679.46 23494.04 19095.54 17788.67 8186.96 18294.58 16169.33 26097.15 23884.05 18280.53 33794.56 227
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 19994.39 16696.21 12376.38 32986.19 20695.44 11779.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 18387.28 18590.57 20194.96 15680.07 21594.27 17391.29 32586.74 13487.41 17594.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
Anonymous2024052988.09 18486.59 20792.58 11496.53 8681.92 16695.99 7095.84 15374.11 35389.06 14795.21 12761.44 32798.81 8983.67 18987.47 26097.01 124
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10680.63 20090.01 32095.79 15673.42 36087.68 17192.10 24873.86 20397.96 17180.75 24191.70 19097.19 111
mvs_tets88.06 18687.28 18590.38 21590.94 31579.88 22595.22 11095.66 16885.10 17884.21 26693.94 18363.53 31397.40 21988.50 12688.40 24693.87 262
F-COLMAP87.95 18786.80 19791.40 16996.35 9280.88 19494.73 14095.45 18479.65 29082.04 30094.61 15771.13 23398.50 11576.24 29391.05 20194.80 218
LS3D87.89 18886.32 21792.59 11396.07 10382.92 13895.23 10994.92 21675.66 33682.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
anonymousdsp87.84 18987.09 18890.12 22489.13 35280.54 20394.67 14595.55 17582.05 24683.82 27292.12 24571.47 23197.15 23887.15 14487.80 25892.67 312
v2v48287.84 18987.06 18990.17 22090.99 31179.23 24694.00 19595.13 20184.87 18385.53 22092.07 25174.45 19197.45 20784.71 17481.75 31693.85 265
WR-MVS_H87.80 19187.37 18289.10 26393.23 23478.12 26695.61 9297.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
AUN-MVS87.78 19286.54 20991.48 16694.82 16681.05 18893.91 20293.93 25683.00 22886.93 18393.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
PCF-MVS84.11 1087.74 19386.08 22892.70 10894.02 20484.43 9189.27 33295.87 15173.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14794.81 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19894.87 13191.49 32080.47 28089.46 14195.44 11754.72 36598.23 14382.19 21289.89 21797.97 74
V4287.68 19486.86 19490.15 22290.58 33080.14 21294.24 17695.28 19583.66 20985.67 21591.33 27174.73 18897.41 21784.43 17881.83 31492.89 307
thres600view787.65 19686.67 20290.59 20096.08 10278.72 24994.88 13091.58 31687.06 12588.08 16192.30 23868.91 26998.10 15270.05 33891.10 19694.96 209
XXY-MVS87.65 19686.85 19590.03 22892.14 26680.60 20293.76 20695.23 19782.94 23084.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15879.28 24391.77 27894.30 24376.04 33483.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
thres100view90087.63 19986.71 20090.38 21596.12 9778.55 25395.03 12291.58 31687.15 12288.06 16292.29 23968.91 26998.10 15270.13 33591.10 19694.48 236
CP-MVSNet87.63 19987.26 18788.74 27493.12 23776.59 29695.29 10596.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
thres40087.62 20186.64 20390.57 20195.99 10978.64 25194.58 15191.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.96 209
v114487.61 20286.79 19890.06 22791.01 31079.34 23993.95 19795.42 18983.36 22085.66 21691.31 27474.98 18497.42 21283.37 19082.06 31093.42 287
tfpn200view987.58 20386.64 20390.41 21295.99 10978.64 25194.58 15191.98 30686.94 12988.09 15991.77 25869.18 26598.10 15270.13 33591.10 19694.48 236
BH-w/o87.57 20487.05 19089.12 26294.90 16177.90 27192.41 25793.51 26882.89 23283.70 27591.34 27075.75 17497.07 24575.49 29793.49 16392.39 322
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24894.74 13995.61 17284.07 20085.36 23694.52 16259.78 34297.34 22482.93 19687.88 25496.71 140
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22283.93 10192.33 26390.94 33484.16 19772.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 112
131487.51 20686.57 20890.34 21792.42 26079.74 22992.63 25295.35 19478.35 31180.14 32391.62 26574.05 19997.15 23881.05 23393.53 16194.12 249
v887.50 20886.71 20089.89 23591.37 29679.40 23694.50 15595.38 19084.81 18783.60 27991.33 27176.05 16797.42 21282.84 19980.51 33992.84 309
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24992.04 27077.68 28194.03 19193.94 25585.81 15982.42 29491.32 27370.33 24897.06 24680.33 24990.23 21194.14 248
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25295.66 16867.26 38381.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
FE-MVS87.40 21186.02 23091.57 16294.56 18079.69 23090.27 30993.72 26580.57 27988.80 15091.62 26565.32 30298.59 10774.97 30594.33 15096.44 149
FMVSNet387.40 21186.11 22691.30 17493.79 21883.64 11094.20 17894.81 22583.89 20484.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34994.01 19394.04 25478.30 31291.97 9995.22 12556.28 35793.71 35292.89 4994.71 13794.52 229
thisisatest051587.33 21485.99 23191.37 17193.49 22779.55 23290.63 30589.56 36180.17 28287.56 17390.86 28767.07 28498.28 14181.50 22993.02 17496.29 154
PS-CasMVS87.32 21586.88 19388.63 27792.99 24676.33 30195.33 10096.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
GBi-Net87.26 21685.98 23291.08 18394.01 20583.10 12795.14 11694.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20583.10 12795.14 11694.94 21183.57 21184.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
v119287.25 21886.33 21690.00 23290.76 32479.04 24793.80 20495.48 18082.57 23785.48 22491.18 27873.38 21297.42 21282.30 20982.06 31093.53 281
v1087.25 21886.38 21389.85 23691.19 30279.50 23394.48 15695.45 18483.79 20783.62 27891.19 27675.13 18197.42 21281.94 21980.60 33492.63 314
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13592.00 30474.99 34481.92 30295.00 13572.66 21999.05 5566.92 35792.33 18796.40 150
miper_ehance_all_eth87.22 22186.62 20689.02 26692.13 26777.40 28590.91 30194.81 22581.28 27084.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
test250687.21 22286.28 21990.02 23095.62 12473.64 32896.25 4871.38 40687.89 10890.45 12696.65 7055.29 36398.09 16086.03 15896.94 9498.33 43
thres20087.21 22286.24 22190.12 22495.36 13478.53 25493.26 23092.10 30086.42 14288.00 16491.11 28269.24 26498.00 16869.58 33991.04 20293.83 266
v14419287.19 22486.35 21589.74 24290.64 32878.24 26493.92 20095.43 18781.93 25185.51 22291.05 28474.21 19697.45 20782.86 19881.56 31893.53 281
FMVSNet287.19 22485.82 23891.30 17494.01 20583.67 10894.79 13694.94 21183.57 21183.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
c3_l87.14 22686.50 21189.04 26592.20 26477.26 28691.22 29594.70 23182.01 24984.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
testing9187.11 22786.18 22289.92 23494.43 18875.38 31391.53 28592.27 29686.48 13986.50 19490.24 30261.19 33297.53 19982.10 21490.88 20496.84 135
Baseline_NR-MVSNet87.07 22886.63 20588.40 28091.44 29177.87 27394.23 17792.57 28884.12 19985.74 21492.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
v14887.04 22986.32 21789.21 25990.94 31577.26 28693.71 20994.43 23784.84 18684.36 26090.80 29176.04 16897.05 24782.12 21379.60 34793.31 289
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34794.55 15394.43 23778.47 30891.95 10295.50 11651.16 37693.81 35093.02 4894.56 14395.26 198
v192192086.97 23186.06 22989.69 24690.53 33378.11 26793.80 20495.43 18781.90 25385.33 23791.05 28472.66 21997.41 21782.05 21781.80 31593.53 281
tt080586.92 23285.74 24490.48 20892.22 26379.98 22395.63 9194.88 21983.83 20684.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
miper_enhance_ethall86.90 23386.18 22289.06 26491.66 28777.58 28390.22 31594.82 22479.16 29684.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
v7n86.81 23485.76 24289.95 23390.72 32679.25 24595.07 11995.92 14584.45 19582.29 29590.86 28772.60 22197.53 19979.42 26280.52 33893.08 301
PEN-MVS86.80 23586.27 22088.40 28092.32 26275.71 30895.18 11396.38 10587.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
cl2286.78 23685.98 23289.18 26192.34 26177.62 28290.84 30294.13 25181.33 26983.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
v124086.78 23685.85 23789.56 25090.45 33477.79 27793.61 21295.37 19281.65 26185.43 22991.15 28071.50 23097.43 21181.47 23082.05 31293.47 285
TR-MVS86.78 23685.76 24289.82 23894.37 19078.41 25892.47 25692.83 28081.11 27586.36 20092.40 23468.73 27297.48 20373.75 31489.85 21993.57 280
PatchMatch-RL86.77 23985.54 24690.47 21195.88 11282.71 14790.54 30692.31 29479.82 28884.32 26291.57 26968.77 27196.39 28573.16 31693.48 16592.32 325
testing9986.72 24085.73 24589.69 24694.23 19674.91 31691.35 28990.97 33386.14 15486.36 20090.22 30359.41 34497.48 20382.24 21190.66 20596.69 141
PAPM86.68 24185.39 25090.53 20393.05 24279.33 24289.79 32394.77 22878.82 30281.95 30193.24 20876.81 15997.30 22566.94 35593.16 17294.95 212
pm-mvs186.61 24285.54 24689.82 23891.44 29180.18 21095.28 10794.85 22183.84 20581.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
GA-MVS86.61 24285.27 25590.66 19991.33 29978.71 25090.40 30893.81 26385.34 17285.12 23989.57 32061.25 32997.11 24280.99 23789.59 22596.15 160
Anonymous2023121186.59 24485.13 25790.98 19296.52 8781.50 17396.14 5796.16 12473.78 35683.65 27792.15 24363.26 31697.37 22382.82 20081.74 31794.06 254
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33794.68 14493.78 26479.55 29190.70 12395.31 12148.75 38193.28 35893.15 4593.99 15294.38 240
DIV-MVS_self_test86.53 24685.78 23988.75 27292.02 27276.45 29890.74 30394.30 24381.83 25783.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
cl____86.52 24785.78 23988.75 27292.03 27176.46 29790.74 30394.30 24381.83 25783.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
eth_miper_zixun_eth86.50 24885.77 24188.68 27591.94 27375.81 30790.47 30794.89 21782.05 24684.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
baseline286.50 24885.39 25089.84 23791.12 30776.70 29491.88 27588.58 36482.35 24279.95 32790.95 28673.42 21097.63 19280.27 25089.95 21695.19 200
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33594.11 18292.20 29886.66 13779.42 33492.36 23673.52 20795.81 31271.26 32393.66 15795.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1186.44 25185.35 25389.69 24694.29 19575.40 31291.30 29090.53 34184.76 18885.06 24090.13 30858.95 34897.45 20782.08 21591.09 20096.21 159
cascas86.43 25284.98 26090.80 19692.10 26980.92 19390.24 31395.91 14773.10 36383.57 28088.39 33865.15 30497.46 20684.90 17191.43 19394.03 256
SCA86.32 25385.18 25689.73 24492.15 26576.60 29591.12 29691.69 31383.53 21485.50 22388.81 33166.79 28896.48 27876.65 28790.35 21096.12 163
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21794.44 18781.50 17392.31 26594.89 21783.03 22779.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31594.93 12795.75 15987.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25591.20 30178.00 26891.70 28195.55 17585.05 18082.97 28992.25 24154.49 36697.48 20382.93 19687.45 26292.89 307
MVP-Stereo85.97 25784.86 26489.32 25790.92 31782.19 16092.11 27194.19 24778.76 30478.77 34091.63 26468.38 27696.56 27375.01 30493.95 15389.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 25885.09 25888.35 28290.79 32277.42 28491.83 27795.70 16480.77 27880.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35189.55 32689.88 35683.41 21784.54 25187.95 34567.25 28195.11 33281.82 22293.37 16894.97 206
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11694.94 21181.64 26282.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
PatchmatchNetpermissive85.85 26084.70 26789.29 25891.76 28275.54 30988.49 34491.30 32481.63 26385.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34389.47 33091.04 33176.26 33286.45 19889.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28888.68 34290.06 35072.32 37086.47 19590.76 29372.15 22594.40 33981.78 22493.49 16392.36 323
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 16971.93 34687.12 36192.75 28378.80 30384.95 24390.53 29764.43 30896.71 26274.74 30693.86 15596.06 169
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29190.19 31692.65 28785.40 17181.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
pmmvs485.43 26683.86 27990.16 22190.02 34282.97 13790.27 30992.67 28675.93 33580.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31187.61 35880.97 39276.82 32688.68 15195.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
ACMH80.38 1785.36 26883.68 28190.39 21394.45 18680.63 20094.73 14094.85 22182.09 24577.24 34892.65 22760.01 34097.58 19572.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34294.01 19394.40 23984.72 19079.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
CR-MVSNet85.35 26983.76 28090.12 22490.58 33079.34 23985.24 37491.96 30878.27 31385.55 21887.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28386.08 20888.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31887.69 35594.09 25381.20 27481.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27991.29 32583.28 22280.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 27483.99 27788.65 27692.47 25778.40 25979.68 39492.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28292.46 28976.20 33382.67 29395.22 12563.94 31197.29 22877.51 28085.80 27494.53 228
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25591.25 29393.53 26777.50 31980.15 32291.58 26761.99 32295.51 32375.69 29694.35 14989.16 371
ACMH+81.04 1485.05 27683.46 28489.82 23894.66 17379.37 23794.44 16194.12 25282.19 24478.04 34392.82 22258.23 35097.54 19873.77 31382.90 30392.54 315
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30390.18 31792.41 29083.24 22381.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27983.09 29090.14 22393.80 21680.05 21889.18 33593.09 27478.89 30078.19 34191.91 25565.86 30197.27 22968.47 34488.45 24493.11 299
testing22284.84 28083.32 28589.43 25694.15 20175.94 30491.09 29789.41 36284.90 18285.78 21289.44 32252.70 37396.28 29270.80 33091.57 19296.07 167
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27785.75 21389.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
tfpnnormal84.72 28283.23 28889.20 26092.79 25280.05 21894.48 15695.81 15482.38 24081.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38586.16 20795.28 12267.18 28393.33 35780.89 23990.42 20994.88 214
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35189.55 32689.88 35679.17 29584.54 25187.95 34555.56 35995.11 33281.82 22293.37 16894.97 206
ETVMVS84.43 28582.92 29488.97 26894.37 19074.67 31791.23 29488.35 36683.37 21986.06 20989.04 32755.38 36195.67 31867.12 35391.34 19496.58 145
TransMVSNet (Re)84.43 28583.06 29288.54 27891.72 28378.44 25795.18 11392.82 28182.73 23579.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
pmmvs584.21 28782.84 29788.34 28388.95 35476.94 29092.41 25791.91 31075.63 33780.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27590.04 31990.19 34684.70 19181.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
tpm284.08 28982.94 29387.48 30391.39 29571.27 35389.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 221
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31886.89 18893.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24295.28 13779.75 22894.25 17492.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23985.24 37496.76 7571.44 37485.55 21882.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16877.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33888.62 34381.96 39081.37 26885.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35791.89 27487.98 36778.91 29884.78 24590.22 30369.11 26794.02 34664.70 36690.44 20790.71 355
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35589.55 32687.88 36877.41 32083.37 28487.31 35356.71 35593.65 35480.62 24492.85 17994.40 239
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 30086.14 37579.90 28686.26 20490.72 29457.17 35495.81 31271.03 32992.62 18295.35 196
pmmvs683.42 29881.60 30288.87 26988.01 36677.87 27394.96 12594.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
AllTest83.42 29881.39 30489.52 25295.01 15277.79 27793.12 23490.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35988.31 34791.70 31278.91 29880.49 31987.18 35769.30 26397.08 24368.12 34983.56 29493.51 284
USDC82.76 30181.26 30687.26 30791.17 30374.55 31989.27 33293.39 27078.26 31475.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 30084.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
PatchT82.68 30381.27 30586.89 32090.09 34070.94 36084.06 38190.15 34774.91 34585.63 21783.57 37669.37 25994.87 33665.19 36288.50 24394.84 215
MIMVSNet82.59 30480.53 30988.76 27191.51 28978.32 26186.57 36590.13 34879.32 29280.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33490.24 31387.83 36983.41 21779.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
EG-PatchMatch MVS82.37 30680.34 31288.46 27990.27 33679.35 23892.80 24994.33 24277.14 32473.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35887.38 35991.53 31966.25 38480.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
our_test_381.93 30880.46 31186.33 32888.46 36073.48 33088.46 34591.11 32776.46 32776.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32289.04 33892.16 29975.33 34077.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
gg-mvs-nofinetune81.77 31079.37 32588.99 26790.85 32177.73 28086.29 36679.63 39574.88 34783.19 28869.05 39660.34 33796.11 29875.46 29894.64 14193.11 299
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34490.25 31193.07 27581.24 27279.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35482.17 38887.50 37278.47 30877.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32483.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25487.71 37085.56 16773.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34883.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26991.49 28692.26 29776.87 32576.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33181.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32580.99 39087.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22391.33 32364.02 38880.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
test_040281.30 32079.17 33087.67 29793.19 23578.17 26592.98 24191.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 33081.75 38989.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28792.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33973.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29190.70 34083.70 20878.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38766.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 32679.59 32483.06 35593.44 23064.64 38493.33 22285.47 37984.34 19679.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33875.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32974.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29993.93 25678.71 30676.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25978.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34188.45 34694.87 22082.99 22971.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29791.08 32881.23 27374.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
TDRefinement79.81 33377.34 33887.22 31179.24 39675.48 31093.12 23492.03 30376.45 32875.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33289.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25978.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30292.33 26390.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32791.61 28492.75 28378.11 31772.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33985.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33685.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32688.79 34090.42 34279.16 29659.18 39288.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 32084.80 37792.33 29279.29 29376.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28574.73 36586.43 36134.70 39593.48 35579.43 26172.06 37388.72 374
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 35090.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
test_fmvs377.67 34577.16 34279.22 36579.52 39561.14 39192.34 26291.64 31573.98 35478.86 33686.59 35927.38 39987.03 39088.12 13175.97 36589.50 365
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35683.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38856.11 40287.78 35279.77 39460.65 39175.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39059.61 39487.66 35691.08 32878.23 31569.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33385.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
mvsany_test374.95 35073.26 35480.02 36474.61 39863.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39489.09 38782.39 20766.91 38487.82 381
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 40987.05 36277.90 40182.75 23471.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39368.88 38366.48 39755.32 36295.13 33158.12 38488.42 24583.01 386
new_pmnet72.15 35370.13 35778.20 36882.95 38965.68 37883.91 38282.40 38962.94 39064.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
test_f71.95 35470.87 35675.21 37274.21 40059.37 39585.07 37685.82 37765.25 38670.42 38183.13 37823.62 40082.93 40078.32 27071.94 37483.33 385
pmmvs371.81 35568.71 35881.11 36175.86 39770.42 36386.74 36383.66 38558.95 39268.64 38580.89 38636.93 39389.52 38563.10 37263.59 38983.39 384
APD_test169.04 35666.26 36277.36 37180.51 39362.79 39085.46 37383.51 38654.11 39559.14 39384.79 37223.40 40289.61 38455.22 38870.24 37679.68 392
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41488.06 34819.50 41469.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
WB-MVS67.92 35867.49 36069.21 38081.09 39141.17 40888.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40551.45 39879.94 391
SSC-MVS67.06 35966.56 36168.56 38280.54 39240.06 41087.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40648.69 40179.16 393
LCM-MVSNet66.00 36062.16 36577.51 37064.51 40858.29 39683.87 38390.90 33548.17 39754.69 39473.31 39416.83 40886.75 39165.47 36161.67 39187.48 382
test_vis3_rt65.12 36162.60 36372.69 37471.44 40160.71 39287.17 36065.55 40763.80 38953.22 39565.65 39914.54 40989.44 38676.65 28765.38 38667.91 398
FPMVS64.63 36262.55 36470.88 37570.80 40256.71 39784.42 38084.42 38351.78 39649.57 39681.61 38423.49 40181.48 40140.61 40176.25 36474.46 394
EGC-MVSNET61.97 36356.37 36778.77 36789.63 34973.50 32989.12 33682.79 3870.21 4111.24 41284.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
PMMVS259.60 36456.40 36669.21 38068.83 40546.58 40673.02 39977.48 40255.07 39449.21 39772.95 39517.43 40780.04 40249.32 39344.33 40280.99 390
testf159.54 36556.11 36869.85 37869.28 40356.61 39980.37 39276.55 40442.58 40045.68 39975.61 38911.26 41084.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36869.85 37869.28 40356.61 39980.37 39276.55 40442.58 40045.68 39975.61 38911.26 41084.18 39643.20 39860.44 39368.75 396
ANet_high58.88 36754.22 37172.86 37356.50 41156.67 39880.75 39186.00 37673.09 36437.39 40364.63 40022.17 40379.49 40343.51 39723.96 40582.43 389
Gipumacopyleft57.99 36854.91 37067.24 38388.51 35765.59 37952.21 40290.33 34543.58 39942.84 40251.18 40320.29 40585.07 39534.77 40270.45 37551.05 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36948.46 37363.48 38445.72 41346.20 40773.41 39878.31 39841.03 40230.06 40565.68 3986.05 41283.43 39930.04 40365.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 37048.47 37256.66 38652.26 41218.98 41641.51 40481.40 39110.10 40644.59 40175.01 39228.51 39768.16 40453.54 39049.31 40082.83 387
MVEpermissive39.65 2343.39 37138.59 37757.77 38556.52 41048.77 40555.38 40158.64 41129.33 40528.96 40652.65 4024.68 41364.62 40728.11 40433.07 40359.93 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 37242.29 37446.03 38865.58 40737.41 41173.51 39764.62 40833.99 40328.47 40747.87 40419.90 40667.91 40522.23 40724.45 40432.77 403
EMVS42.07 37341.12 37544.92 38963.45 40935.56 41373.65 39663.48 40933.05 40426.88 40845.45 40521.27 40467.14 40619.80 40823.02 40632.06 404
tmp_tt35.64 37439.24 37624.84 39014.87 41423.90 41562.71 40051.51 4136.58 40836.66 40462.08 40144.37 38830.34 41052.40 39122.00 40720.27 405
cdsmvs_eth3d_5k22.14 37529.52 3780.00 3940.00 4170.00 4190.00 40595.76 1580.00 4120.00 41394.29 16875.66 1770.00 4130.00 4120.00 4110.00 409
wuyk23d21.27 37620.48 37923.63 39168.59 40636.41 41249.57 4036.85 4159.37 4077.89 4094.46 4114.03 41431.37 40917.47 40916.07 4083.12 406
testmvs8.92 37711.52 3801.12 3931.06 4150.46 41886.02 3670.65 4160.62 4092.74 4109.52 4090.31 4160.45 4122.38 4100.39 4092.46 408
test1238.76 37811.22 3811.39 3920.85 4160.97 41785.76 3700.35 4170.54 4102.45 4118.14 4100.60 4150.48 4112.16 4110.17 4102.71 407
ab-mvs-re7.82 37910.43 3820.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41393.88 1880.00 4170.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas6.64 3808.86 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 41279.70 1280.00 4130.00 4120.00 4110.00 409
test_blank0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet_test0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.00 3810.00 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.00 4120.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23897.09 1097.07 5192.72 198.04 16592.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 417
eth-test0.00 417
ZD-MVS98.15 3486.62 3397.07 4583.63 21094.19 4296.91 5787.57 3199.26 4291.99 7798.44 55
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5197.43 3182.94 8392.73 5197.80 7897.88 80
IU-MVS98.77 586.00 5096.84 6581.26 27197.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6698.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15695.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6695.21 11196.82 6889.44 53
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
ambc83.06 35579.99 39463.51 38877.47 39592.86 27974.34 36884.45 37328.74 39695.06 33473.06 31768.89 38290.61 357
MTGPAbinary96.97 50
test_post188.00 3509.81 40869.31 26295.53 32176.65 287
test_post10.29 40770.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
GG-mvs-BLEND87.94 29489.73 34877.91 27087.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18890.60 359
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32388.99 32897.57 19679.44 260
test9_res91.91 8398.71 3398.07 68
TEST997.53 5886.49 3794.07 18796.78 7281.61 26492.77 7996.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19296.76 7581.86 25592.70 8396.20 8787.63 2999.02 61
agg_prior290.54 10698.68 3998.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9498.97 75
TestCases89.52 25295.01 15277.79 27790.89 33677.41 32076.12 35693.34 20154.08 36897.51 20168.31 34684.27 28693.26 290
test_prior485.96 5494.11 182
test_prior294.12 18187.67 11592.63 8496.39 8286.62 3891.50 9098.67 41
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22171.25 37594.37 3997.13 24186.74 149
新几何293.11 236
新几何193.10 8197.30 6684.35 9495.56 17471.09 37691.26 11996.24 8582.87 8598.86 8479.19 26498.10 6696.07 167
旧先验196.79 7681.81 16895.67 16696.81 6386.69 3797.66 8396.97 127
无先验93.28 22996.26 11573.95 35599.05 5580.56 24596.59 144
原ACMM292.94 243
原ACMM192.01 13597.34 6481.05 18896.81 7078.89 30090.45 12695.92 10082.65 8798.84 8880.68 24398.26 6196.14 161
test22296.55 8481.70 17092.22 26795.01 20768.36 38290.20 13096.14 9280.26 12197.80 7896.05 170
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata90.49 20796.40 8977.89 27295.37 19272.51 36893.63 5496.69 6682.08 10297.65 18883.08 19397.39 8695.94 172
testdata192.15 26987.94 104
test1294.34 5097.13 7086.15 4896.29 11091.04 12185.08 5799.01 6398.13 6597.86 82
plane_prior794.70 17182.74 144
plane_prior694.52 18182.75 14274.23 194
plane_prior596.22 12098.12 15088.15 12889.99 21394.63 221
plane_prior494.86 143
plane_prior382.75 14290.26 3386.91 185
plane_prior295.85 7690.81 17
plane_prior194.59 176
plane_prior82.73 14595.21 11189.66 5089.88 218
n20.00 418
nn0.00 418
door-mid85.49 378
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
LGP-MVS_train91.12 17994.47 18381.49 17596.14 12586.73 13585.45 22695.16 13069.89 25298.10 15287.70 13589.23 23293.77 272
test1196.57 92
door85.33 380
HQP5-MVS81.56 171
HQP-NCC94.17 19894.39 16688.81 7485.43 229
ACMP_Plane94.17 19894.39 16688.81 7485.43 229
BP-MVS87.11 146
HQP4-MVS85.43 22997.96 17194.51 231
HQP3-MVS96.04 13789.77 222
HQP2-MVS73.83 204
NP-MVS94.37 19082.42 15593.98 181
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30784.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123
ITE_SJBPF88.24 28691.88 27777.05 28992.92 27785.54 16880.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
DeepMVS_CXcopyleft56.31 38774.23 39951.81 40456.67 41244.85 39848.54 39875.16 39127.87 39858.74 40840.92 40052.22 39758.39 401