This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 590.75 1797.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1490.31 2697.71 198.07 492.31 499.58 895.66 499.13 398.84 13
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7690.27 2997.04 1098.05 891.47 899.55 1495.62 899.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8297.51 489.13 5897.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 1989.03 6196.20 1698.10 289.39 1699.34 3295.88 399.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1091.73 896.10 1796.69 5389.90 1299.30 3894.70 1298.04 6399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9296.96 5092.09 495.32 2297.08 3689.49 1599.33 3595.10 1198.85 1998.66 19
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3588.48 896.26 4597.28 2985.90 13797.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2791.38 1095.39 2197.46 1788.98 1999.40 2894.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 2989.65 495.92 6396.96 5091.75 794.02 3596.83 4888.12 2499.55 1493.41 2898.94 1698.28 48
SF-MVS94.97 1194.90 1395.20 1097.84 4787.76 996.65 3497.48 987.76 10195.71 1997.70 1388.28 2399.35 3193.89 2298.78 2598.48 28
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4190.42 2596.95 1297.27 2589.53 1496.91 23494.38 1698.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1394.94 1194.58 3998.25 2986.33 3996.11 5396.62 8588.14 8996.10 1796.96 4289.09 1898.94 7394.48 1598.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1494.69 1595.17 1297.83 4887.46 1495.66 7696.93 5492.34 293.94 3696.58 6387.74 2799.44 2792.83 3698.40 5098.62 20
ACMMP_NAP94.74 1594.56 1695.28 898.02 4187.70 1095.68 7497.34 2188.28 8295.30 2397.67 1485.90 4399.54 1893.91 2198.95 1598.60 21
HFP-MVS94.52 1694.40 1994.86 2298.61 1086.81 2296.94 2097.34 2188.63 7193.65 4097.21 2986.10 4199.49 2492.35 4798.77 2798.30 45
ZNCC-MVS94.47 1794.28 2395.03 1498.52 1586.96 1796.85 2897.32 2588.24 8393.15 5097.04 3986.17 4099.62 192.40 4598.81 2298.52 24
XVS94.45 1894.32 2094.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5797.16 3485.02 5499.49 2491.99 6098.56 4698.47 31
MCST-MVS94.45 1894.20 2895.19 1198.46 1987.50 1395.00 11297.12 3987.13 11192.51 7096.30 6989.24 1799.34 3293.46 2698.62 4298.73 16
region2R94.43 2094.27 2594.92 1898.65 886.67 2796.92 2497.23 3288.60 7393.58 4297.27 2585.22 5099.54 1892.21 5098.74 2998.56 23
ACMMPR94.43 2094.28 2394.91 1998.63 986.69 2596.94 2097.32 2588.63 7193.53 4597.26 2785.04 5399.54 1892.35 4798.78 2598.50 25
MTAPA94.42 2294.22 2695.00 1698.42 2186.95 1894.36 15696.97 4891.07 1193.14 5197.56 1584.30 6299.56 1093.43 2798.75 2898.47 31
CP-MVS94.34 2394.21 2794.74 3498.39 2386.64 2997.60 497.24 3088.53 7592.73 6497.23 2885.20 5199.32 3692.15 5398.83 2198.25 53
MP-MVScopyleft94.25 2494.07 3294.77 3298.47 1886.31 4196.71 3196.98 4789.04 6091.98 7997.19 3185.43 4899.56 1092.06 5998.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2594.07 3294.75 3398.06 3986.90 2095.88 6496.94 5385.68 14395.05 2597.18 3287.31 3399.07 5191.90 6698.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 2694.17 3094.43 4498.21 3285.78 5996.40 3996.90 5788.20 8794.33 2997.40 2084.75 5999.03 5693.35 2997.99 6498.48 28
GST-MVS94.21 2793.97 3594.90 2198.41 2286.82 2196.54 3697.19 3388.24 8393.26 4796.83 4885.48 4799.59 791.43 7298.40 5098.30 45
MP-MVS-pluss94.21 2794.00 3494.85 2398.17 3386.65 2894.82 12397.17 3786.26 13092.83 5997.87 1285.57 4699.56 1094.37 1798.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS89.96 194.20 2994.77 1492.49 10196.52 8780.00 20494.00 18097.08 4290.05 3395.65 2097.29 2489.66 1398.97 7093.95 2098.71 3098.50 25
CS-MVS94.12 3094.44 1893.17 6896.55 8483.08 11597.63 396.95 5291.71 993.50 4696.21 7285.61 4498.24 12393.64 2498.17 5698.19 56
DeepC-MVS_fast89.43 294.04 3193.79 3894.80 3097.48 6186.78 2395.65 7896.89 5889.40 5092.81 6096.97 4185.37 4999.24 4190.87 8298.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3294.29 2293.24 6596.69 7883.24 10897.49 596.92 5592.14 392.90 5595.77 9385.02 5498.33 11893.03 3398.62 4298.13 60
HPM-MVScopyleft94.02 3293.88 3694.43 4498.39 2385.78 5997.25 1097.07 4386.90 11992.62 6796.80 5284.85 5899.17 4592.43 4398.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 3493.78 3994.63 3798.50 1685.90 5696.87 2696.91 5688.70 6991.83 8797.17 3383.96 6699.55 1491.44 7198.64 4198.43 36
PGM-MVS93.96 3593.72 4194.68 3598.43 2086.22 4495.30 9097.78 187.45 10793.26 4797.33 2384.62 6099.51 2290.75 8498.57 4598.32 44
PHI-MVS93.89 3693.65 4494.62 3896.84 7586.43 3696.69 3297.49 585.15 15793.56 4496.28 7085.60 4599.31 3792.45 4298.79 2398.12 62
SR-MVS-dyc-post93.82 3793.82 3793.82 5697.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1884.24 6399.01 6192.73 3797.80 7097.88 75
APD-MVS_3200maxsize93.78 3893.77 4093.80 5897.92 4384.19 8596.30 4196.87 6086.96 11593.92 3797.47 1683.88 6798.96 7292.71 4097.87 6898.26 52
patch_mono-293.74 3994.32 2092.01 11797.54 5778.37 24293.40 20397.19 3388.02 9194.99 2697.21 2988.35 2198.44 10994.07 1998.09 6199.23 1
MSLP-MVS++93.72 4094.08 3192.65 9397.31 6583.43 10395.79 6897.33 2390.03 3493.58 4296.96 4284.87 5797.76 16192.19 5298.66 3896.76 119
TSAR-MVS + GP.93.66 4193.41 4594.41 4696.59 8286.78 2394.40 14993.93 23489.77 4294.21 3095.59 10087.35 3298.61 9592.72 3996.15 9897.83 79
CANet93.54 4293.20 4994.55 4095.65 11785.73 6194.94 11596.69 8191.89 690.69 10395.88 8781.99 9099.54 1893.14 3297.95 6698.39 37
dcpmvs_293.49 4394.19 2991.38 15197.69 5476.78 27494.25 15996.29 10188.33 7994.46 2796.88 4588.07 2598.64 9193.62 2598.09 6198.73 16
MVS_111021_HR93.45 4493.31 4693.84 5596.99 7284.84 6893.24 21597.24 3088.76 6891.60 9295.85 8886.07 4298.66 8991.91 6498.16 5798.03 68
train_agg93.44 4593.08 5094.52 4197.53 5886.49 3494.07 17296.78 6981.86 22792.77 6196.20 7387.63 2999.12 4992.14 5498.69 3397.94 71
DROMVSNet93.44 4593.71 4292.63 9495.21 13182.43 13697.27 996.71 7990.57 2492.88 5695.80 9183.16 7198.16 12993.68 2398.14 5897.31 96
DELS-MVS93.43 4793.25 4793.97 5195.42 12485.04 6793.06 22297.13 3890.74 1991.84 8595.09 11686.32 3999.21 4391.22 7398.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 4893.22 4893.94 5398.36 2584.83 6997.15 1396.80 6885.77 14092.47 7197.13 3582.38 7999.07 5190.51 8998.40 5097.92 74
DeepC-MVS88.79 393.31 4992.99 5294.26 4996.07 10285.83 5794.89 11896.99 4689.02 6389.56 11797.37 2282.51 7899.38 2992.20 5198.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 5092.75 5694.85 2395.70 11687.66 1196.33 4096.41 9590.00 3594.09 3394.60 13782.33 8198.62 9492.40 4592.86 15898.27 50
ACMMPcopyleft93.24 5192.88 5494.30 4898.09 3885.33 6596.86 2797.45 1388.33 7990.15 11297.03 4081.44 9399.51 2290.85 8395.74 10198.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 5293.05 5193.76 5998.04 4084.07 8796.22 4797.37 2084.15 17390.05 11395.66 9787.77 2699.15 4889.91 9298.27 5498.07 64
alignmvs93.08 5392.50 6094.81 2995.62 11987.61 1295.99 5996.07 11989.77 4294.12 3294.87 12280.56 9998.66 8992.42 4493.10 15498.15 59
EI-MVSNet-Vis-set93.01 5492.92 5393.29 6395.01 13883.51 10294.48 14195.77 14090.87 1392.52 6996.67 5584.50 6199.00 6591.99 6094.44 12997.36 95
casdiffmvs_mvgpermissive92.96 5592.83 5593.35 6294.59 16183.40 10595.00 11296.34 9990.30 2892.05 7796.05 8183.43 6998.15 13092.07 5695.67 10298.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 5692.54 5993.68 6096.10 10084.71 7195.66 7696.39 9691.92 593.22 4996.49 6583.16 7198.87 7784.47 15895.47 10797.45 94
CDPH-MVS92.83 5692.30 6294.44 4297.79 4986.11 4694.06 17496.66 8280.09 25492.77 6196.63 6086.62 3699.04 5587.40 12098.66 3898.17 58
ETV-MVS92.74 5892.66 5792.97 7895.20 13284.04 8995.07 10896.51 9190.73 2092.96 5491.19 25684.06 6498.34 11691.72 6896.54 9296.54 128
EI-MVSNet-UG-set92.74 5892.62 5893.12 7094.86 14983.20 11094.40 14995.74 14390.71 2192.05 7796.60 6284.00 6598.99 6791.55 6993.63 13997.17 103
DPM-MVS92.58 6091.74 6895.08 1396.19 9589.31 592.66 23296.56 9083.44 19191.68 9195.04 11786.60 3898.99 6785.60 14497.92 6796.93 115
casdiffmvspermissive92.51 6192.43 6192.74 8894.41 17381.98 14694.54 13996.23 10889.57 4691.96 8196.17 7782.58 7798.01 14890.95 8095.45 10998.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 6292.29 6392.98 7795.99 10684.43 8293.08 22096.09 11788.20 8791.12 9995.72 9681.33 9597.76 16191.74 6797.37 7796.75 120
3Dnovator+87.14 492.42 6391.37 7195.55 695.63 11888.73 697.07 1896.77 7190.84 1484.02 24196.62 6175.95 15099.34 3287.77 11497.68 7398.59 22
baseline92.39 6492.29 6392.69 9294.46 17081.77 15194.14 16596.27 10389.22 5491.88 8396.00 8282.35 8097.99 15091.05 7595.27 11498.30 45
VNet92.24 6591.91 6693.24 6596.59 8283.43 10394.84 12296.44 9389.19 5694.08 3495.90 8677.85 13498.17 12888.90 10293.38 14898.13 60
CPTT-MVS91.99 6691.80 6792.55 9898.24 3181.98 14696.76 3096.49 9281.89 22690.24 10896.44 6778.59 12398.61 9589.68 9397.85 6997.06 107
EIA-MVS91.95 6791.94 6591.98 12195.16 13380.01 20395.36 8596.73 7688.44 7689.34 12192.16 22283.82 6898.45 10889.35 9697.06 8097.48 92
DP-MVS Recon91.95 6791.28 7393.96 5298.33 2785.92 5494.66 13396.66 8282.69 20890.03 11495.82 9082.30 8299.03 5684.57 15696.48 9596.91 116
EPNet91.79 6991.02 7994.10 5090.10 31085.25 6696.03 5892.05 28192.83 187.39 15695.78 9279.39 11499.01 6188.13 11097.48 7598.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 7091.70 6992.00 12097.08 7180.03 20293.60 19795.18 18187.85 9990.89 10196.47 6682.06 8898.36 11385.07 14897.04 8197.62 85
Vis-MVSNetpermissive91.75 7191.23 7493.29 6395.32 12683.78 9496.14 5195.98 12489.89 3690.45 10596.58 6375.09 16298.31 12184.75 15496.90 8497.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 7290.82 8394.44 4294.59 16186.37 3897.18 1297.02 4589.20 5584.31 23796.66 5673.74 18699.17 4586.74 13097.96 6597.79 81
EPP-MVSNet91.70 7391.56 7092.13 11695.88 10980.50 18797.33 795.25 17786.15 13389.76 11695.60 9983.42 7098.32 12087.37 12293.25 15197.56 90
MVSFormer91.68 7491.30 7292.80 8493.86 19483.88 9295.96 6195.90 13184.66 16891.76 8894.91 12077.92 13197.30 20589.64 9497.11 7897.24 99
Effi-MVS+91.59 7591.11 7693.01 7694.35 17783.39 10694.60 13595.10 18587.10 11290.57 10493.10 19481.43 9498.07 14489.29 9894.48 12797.59 88
IS-MVSNet91.43 7691.09 7892.46 10295.87 11181.38 16396.95 1993.69 24589.72 4489.50 11995.98 8378.57 12497.77 16083.02 17696.50 9498.22 55
PVSNet_Blended_VisFu91.38 7790.91 8192.80 8496.39 9083.17 11194.87 12096.66 8283.29 19589.27 12294.46 14180.29 10199.17 4587.57 11895.37 11096.05 146
diffmvspermissive91.37 7891.23 7491.77 13693.09 21680.27 19092.36 24195.52 16087.03 11491.40 9694.93 11980.08 10397.44 18992.13 5594.56 12497.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 7991.11 7691.93 12594.37 17480.14 19593.46 20295.80 13886.46 12691.35 9793.77 17382.21 8498.09 14187.57 11894.95 11697.55 91
OMC-MVS91.23 8090.62 8593.08 7296.27 9384.07 8793.52 19995.93 12786.95 11689.51 11896.13 7978.50 12598.35 11585.84 14292.90 15796.83 118
PAPM_NR91.22 8190.78 8492.52 10097.60 5681.46 16094.37 15596.24 10786.39 12887.41 15394.80 12882.06 8898.48 10282.80 18295.37 11097.61 86
PS-MVSNAJ91.18 8290.92 8091.96 12395.26 12982.60 13592.09 25295.70 14586.27 12991.84 8592.46 21279.70 10998.99 6789.08 10095.86 10094.29 216
xiu_mvs_v2_base91.13 8390.89 8291.86 13094.97 14182.42 13792.24 24695.64 15286.11 13691.74 9093.14 19279.67 11298.89 7689.06 10195.46 10894.28 217
nrg03091.08 8490.39 8693.17 6893.07 21786.91 1996.41 3796.26 10488.30 8188.37 13694.85 12582.19 8597.64 17291.09 7482.95 26994.96 180
lupinMVS90.92 8590.21 8993.03 7593.86 19483.88 9292.81 22993.86 23879.84 25791.76 8894.29 14777.92 13198.04 14690.48 9097.11 7897.17 103
h-mvs3390.80 8690.15 9292.75 8796.01 10482.66 13295.43 8495.53 15989.80 3893.08 5295.64 9875.77 15199.00 6592.07 5678.05 32496.60 124
jason90.80 8690.10 9392.90 8193.04 21983.53 10193.08 22094.15 22780.22 25191.41 9594.91 12076.87 13897.93 15590.28 9196.90 8497.24 99
jason: jason.
VDD-MVS90.74 8889.92 10093.20 6796.27 9383.02 11795.73 7193.86 23888.42 7892.53 6896.84 4762.09 29798.64 9190.95 8092.62 16197.93 73
PVSNet_Blended90.73 8990.32 8891.98 12196.12 9781.25 16592.55 23696.83 6482.04 22089.10 12492.56 21081.04 9798.85 8186.72 13295.91 9995.84 153
test_yl90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16795.12 18385.63 14591.49 9394.70 13174.75 16698.42 11186.13 13792.53 16297.31 96
DCV-MVSNet90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16795.12 18385.63 14591.49 9394.70 13174.75 16698.42 11186.13 13792.53 16297.31 96
API-MVS90.66 9290.07 9492.45 10396.36 9184.57 7396.06 5795.22 18082.39 21189.13 12394.27 15080.32 10098.46 10580.16 22996.71 8994.33 213
xiu_mvs_v1_base_debu90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20595.46 16285.17 15492.25 7294.03 15570.59 22198.57 9890.97 7794.67 11994.18 218
xiu_mvs_v1_base90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20595.46 16285.17 15492.25 7294.03 15570.59 22198.57 9890.97 7794.67 11994.18 218
xiu_mvs_v1_base_debi90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20595.46 16285.17 15492.25 7294.03 15570.59 22198.57 9890.97 7794.67 11994.18 218
HQP_MVS90.60 9690.19 9091.82 13394.70 15782.73 12895.85 6596.22 10990.81 1586.91 16594.86 12374.23 17498.12 13188.15 10889.99 18594.63 192
FIs90.51 9790.35 8790.99 17293.99 19080.98 17395.73 7197.54 389.15 5786.72 17094.68 13381.83 9297.24 21385.18 14788.31 21994.76 190
MAR-MVS90.30 9889.37 10993.07 7496.61 8184.48 7895.68 7495.67 14782.36 21387.85 14492.85 19976.63 14498.80 8580.01 23096.68 9095.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 9990.18 9190.53 18393.71 20079.85 20995.77 6997.59 289.31 5286.27 17994.67 13481.93 9197.01 22884.26 16088.09 22394.71 191
CANet_DTU90.26 10089.41 10892.81 8393.46 20883.01 11893.48 20094.47 21489.43 4987.76 14894.23 15170.54 22599.03 5684.97 14996.39 9696.38 131
OPM-MVS90.12 10189.56 10391.82 13393.14 21483.90 9194.16 16495.74 14388.96 6487.86 14395.43 10472.48 20297.91 15688.10 11290.18 18493.65 252
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 10289.13 11592.95 7996.71 7782.32 14196.08 5489.91 33086.79 12092.15 7696.81 5062.60 29598.34 11687.18 12493.90 13598.19 56
GeoE90.05 10389.43 10791.90 12995.16 13380.37 18995.80 6794.65 21183.90 17887.55 15294.75 13078.18 12997.62 17481.28 20993.63 13997.71 83
PAPR90.02 10489.27 11492.29 11295.78 11280.95 17592.68 23196.22 10981.91 22486.66 17193.75 17582.23 8398.44 10979.40 24094.79 11797.48 92
PVSNet_BlendedMVS89.98 10589.70 10190.82 17696.12 9781.25 16593.92 18596.83 6483.49 19089.10 12492.26 22081.04 9798.85 8186.72 13287.86 22792.35 297
PS-MVSNAJss89.97 10689.62 10291.02 16991.90 24880.85 17895.26 9595.98 12486.26 13086.21 18094.29 14779.70 10997.65 16988.87 10388.10 22194.57 197
mvsmamba89.96 10789.50 10491.33 15492.90 22581.82 14996.68 3392.37 26989.03 6187.00 16194.85 12573.05 19497.65 16991.03 7688.63 21094.51 202
XVG-OURS-SEG-HR89.95 10889.45 10591.47 14894.00 18981.21 16891.87 25596.06 12185.78 13988.55 13295.73 9574.67 17097.27 20988.71 10489.64 19495.91 149
UGNet89.95 10888.95 11992.95 7994.51 16783.31 10795.70 7395.23 17889.37 5187.58 15093.94 16364.00 28698.78 8683.92 16596.31 9796.74 121
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 11089.29 11291.81 13593.39 20983.72 9594.43 14797.12 3989.80 3886.46 17393.32 18383.16 7197.23 21484.92 15081.02 29894.49 207
AdaColmapbinary89.89 11189.07 11692.37 10797.41 6283.03 11694.42 14895.92 12882.81 20686.34 17894.65 13573.89 18299.02 5980.69 22095.51 10595.05 175
hse-mvs289.88 11289.34 11091.51 14594.83 15181.12 17093.94 18393.91 23789.80 3893.08 5293.60 17775.77 15197.66 16892.07 5677.07 33195.74 158
UniMVSNet (Re)89.80 11389.07 11692.01 11793.60 20484.52 7694.78 12697.47 1089.26 5386.44 17692.32 21782.10 8697.39 20184.81 15380.84 30294.12 222
HQP-MVS89.80 11389.28 11391.34 15394.17 18081.56 15494.39 15196.04 12288.81 6585.43 20493.97 16273.83 18497.96 15287.11 12789.77 19294.50 205
FA-MVS(test-final)89.66 11588.91 12191.93 12594.57 16480.27 19091.36 26694.74 20884.87 16289.82 11592.61 20974.72 16998.47 10483.97 16493.53 14297.04 109
VPA-MVSNet89.62 11688.96 11891.60 14193.86 19482.89 12395.46 8397.33 2387.91 9488.43 13593.31 18474.17 17797.40 19887.32 12382.86 27494.52 200
WTY-MVS89.60 11788.92 12091.67 13995.47 12381.15 16992.38 24094.78 20683.11 19889.06 12694.32 14578.67 12296.61 24881.57 20690.89 17897.24 99
Vis-MVSNet (Re-imp)89.59 11889.44 10690.03 21095.74 11375.85 28695.61 8090.80 31687.66 10487.83 14595.40 10576.79 14096.46 26178.37 24596.73 8897.80 80
VDDNet89.56 11988.49 13592.76 8695.07 13782.09 14396.30 4193.19 25281.05 24691.88 8396.86 4661.16 30798.33 11888.43 10792.49 16497.84 78
114514_t89.51 12088.50 13392.54 9998.11 3681.99 14595.16 10396.36 9870.19 34685.81 18595.25 10976.70 14298.63 9382.07 19496.86 8797.00 112
QAPM89.51 12088.15 14493.59 6194.92 14584.58 7296.82 2996.70 8078.43 27983.41 25696.19 7673.18 19399.30 3877.11 26196.54 9296.89 117
CLD-MVS89.47 12288.90 12291.18 15994.22 17982.07 14492.13 25096.09 11787.90 9585.37 21092.45 21374.38 17297.56 17787.15 12590.43 18093.93 231
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 12388.90 12291.12 16194.47 16881.49 15895.30 9096.14 11486.73 12285.45 20195.16 11369.89 23198.10 13387.70 11689.23 20193.77 245
CDS-MVSNet89.45 12388.51 13292.29 11293.62 20383.61 10093.01 22394.68 21081.95 22287.82 14693.24 18878.69 12196.99 22980.34 22693.23 15296.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 12588.69 12691.60 14195.12 13682.93 12195.75 7092.14 27887.32 10987.12 16094.07 15367.09 26197.55 17890.61 8689.01 20594.32 214
Fast-Effi-MVS+89.41 12688.64 12791.71 13894.74 15380.81 17993.54 19895.10 18583.11 19886.82 16990.67 27379.74 10897.75 16480.51 22493.55 14196.57 126
ab-mvs89.41 12688.35 13792.60 9595.15 13582.65 13392.20 24895.60 15483.97 17788.55 13293.70 17674.16 17898.21 12782.46 18789.37 19796.94 114
XVG-OURS89.40 12888.70 12591.52 14494.06 18381.46 16091.27 26896.07 11986.14 13488.89 12895.77 9368.73 25197.26 21187.39 12189.96 18795.83 154
mvs_anonymous89.37 12989.32 11189.51 23393.47 20774.22 29991.65 26294.83 20282.91 20485.45 20193.79 17181.23 9696.36 26786.47 13494.09 13297.94 71
DU-MVS89.34 13088.50 13391.85 13293.04 21983.72 9594.47 14496.59 8789.50 4786.46 17393.29 18677.25 13697.23 21484.92 15081.02 29894.59 195
TAMVS89.21 13188.29 14191.96 12393.71 20082.62 13493.30 20994.19 22582.22 21587.78 14793.94 16378.83 11896.95 23177.70 25492.98 15696.32 132
ACMM84.12 989.14 13288.48 13691.12 16194.65 16081.22 16795.31 8896.12 11685.31 15385.92 18494.34 14370.19 22998.06 14585.65 14388.86 20894.08 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 13388.64 12790.48 18995.53 12274.97 29296.08 5484.89 35288.13 9090.16 11196.65 5763.29 29198.10 13386.14 13596.90 8498.39 37
EI-MVSNet89.10 13388.86 12489.80 22291.84 25078.30 24493.70 19495.01 18885.73 14187.15 15895.28 10779.87 10697.21 21683.81 16787.36 23393.88 234
ECVR-MVScopyleft89.09 13588.53 13190.77 17895.62 11975.89 28596.16 4984.22 35487.89 9790.20 10996.65 5763.19 29398.10 13385.90 14096.94 8298.33 41
RRT_MVS89.09 13588.62 13090.49 18792.85 22679.65 21396.41 3794.41 21788.22 8585.50 19794.77 12969.36 23997.31 20489.33 9786.73 24094.51 202
CNLPA89.07 13787.98 14892.34 10896.87 7484.78 7094.08 17193.24 25081.41 23784.46 22795.13 11575.57 15896.62 24577.21 25993.84 13795.61 162
PLCcopyleft84.53 789.06 13888.03 14792.15 11597.27 6882.69 13194.29 15795.44 16779.71 25984.01 24294.18 15276.68 14398.75 8777.28 25893.41 14795.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 13988.64 12790.21 20090.74 29579.28 22595.96 6195.90 13184.66 16885.33 21292.94 19874.02 18097.30 20589.64 9488.53 21294.05 228
HY-MVS83.01 1289.03 13987.94 15092.29 11294.86 14982.77 12492.08 25394.49 21381.52 23686.93 16392.79 20578.32 12898.23 12479.93 23190.55 17995.88 151
ACMP84.23 889.01 14188.35 13790.99 17294.73 15481.27 16495.07 10895.89 13386.48 12583.67 24994.30 14669.33 24097.99 15087.10 12988.55 21193.72 249
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 14288.26 14390.94 17594.05 18480.78 18091.71 25995.38 17181.55 23588.63 13193.91 16775.04 16395.47 30382.47 18691.61 16996.57 126
iter_conf0588.85 14388.08 14691.17 16094.27 17881.64 15395.18 10092.15 27786.23 13287.28 15794.07 15363.89 28997.55 17890.63 8589.00 20694.32 214
TranMVSNet+NR-MVSNet88.84 14487.95 14991.49 14692.68 23083.01 11894.92 11796.31 10089.88 3785.53 19493.85 17076.63 14496.96 23081.91 19879.87 31594.50 205
CHOSEN 1792x268888.84 14487.69 15392.30 11196.14 9681.42 16290.01 29295.86 13574.52 31887.41 15393.94 16375.46 15998.36 11380.36 22595.53 10497.12 106
MVSTER88.84 14488.29 14190.51 18692.95 22380.44 18893.73 19195.01 18884.66 16887.15 15893.12 19372.79 19897.21 21687.86 11387.36 23393.87 235
OpenMVScopyleft83.78 1188.74 14787.29 16393.08 7292.70 22985.39 6496.57 3596.43 9478.74 27480.85 28596.07 8069.64 23599.01 6178.01 25296.65 9194.83 187
thisisatest053088.67 14887.61 15591.86 13094.87 14880.07 19894.63 13489.90 33184.00 17688.46 13493.78 17266.88 26598.46 10583.30 17292.65 16097.06 107
Effi-MVS+-dtu88.65 14988.35 13789.54 23093.33 21076.39 28094.47 14494.36 21987.70 10285.43 20489.56 29573.45 18997.26 21185.57 14591.28 17194.97 177
tttt051788.61 15087.78 15291.11 16494.96 14277.81 25795.35 8689.69 33485.09 15988.05 14194.59 13866.93 26398.48 10283.27 17392.13 16797.03 110
BH-untuned88.60 15188.13 14590.01 21395.24 13078.50 23893.29 21094.15 22784.75 16684.46 22793.40 18075.76 15397.40 19877.59 25594.52 12694.12 222
NR-MVSNet88.58 15287.47 15991.93 12593.04 21984.16 8694.77 12796.25 10689.05 5980.04 29993.29 18679.02 11797.05 22681.71 20580.05 31294.59 195
1112_ss88.42 15387.33 16291.72 13794.92 14580.98 17392.97 22594.54 21278.16 28583.82 24593.88 16878.78 12097.91 15679.45 23689.41 19696.26 135
WR-MVS88.38 15487.67 15490.52 18593.30 21180.18 19393.26 21295.96 12688.57 7485.47 20092.81 20376.12 14696.91 23481.24 21082.29 27894.47 210
BH-RMVSNet88.37 15587.48 15891.02 16995.28 12779.45 21792.89 22793.07 25485.45 15086.91 16594.84 12770.35 22697.76 16173.97 28994.59 12395.85 152
IterMVS-LS88.36 15687.91 15189.70 22693.80 19778.29 24593.73 19195.08 18785.73 14184.75 21991.90 23679.88 10596.92 23383.83 16682.51 27593.89 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 15786.13 20394.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5723.41 37385.02 5499.49 2491.99 6098.56 4698.47 31
LCM-MVSNet-Re88.30 15888.32 14088.27 26094.71 15672.41 32093.15 21690.98 31187.77 10079.25 30791.96 23478.35 12795.75 29283.04 17595.62 10396.65 123
jajsoiax88.24 15987.50 15790.48 18990.89 28980.14 19595.31 8895.65 15184.97 16184.24 23894.02 15865.31 28097.42 19188.56 10588.52 21393.89 232
VPNet88.20 16087.47 15990.39 19493.56 20579.46 21694.04 17595.54 15888.67 7086.96 16294.58 13969.33 24097.15 21884.05 16380.53 30794.56 198
TAPA-MVS84.62 688.16 16187.01 17191.62 14096.64 8080.65 18294.39 15196.21 11276.38 29886.19 18195.44 10279.75 10798.08 14362.75 34695.29 11296.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 16287.28 16490.57 18194.96 14280.07 19894.27 15891.29 30486.74 12187.41 15394.00 16076.77 14196.20 27280.77 21879.31 32095.44 164
Anonymous2024052988.09 16386.59 18792.58 9796.53 8681.92 14895.99 5995.84 13674.11 32289.06 12695.21 11261.44 30298.81 8483.67 17087.47 23097.01 111
HyFIR lowres test88.09 16386.81 17591.93 12596.00 10580.63 18390.01 29295.79 13973.42 32887.68 14992.10 22873.86 18397.96 15280.75 21991.70 16897.19 102
mvs_tets88.06 16587.28 16490.38 19690.94 28579.88 20795.22 9795.66 14985.10 15884.21 23993.94 16363.53 29097.40 19888.50 10688.40 21793.87 235
F-COLMAP87.95 16686.80 17691.40 15096.35 9280.88 17794.73 12995.45 16579.65 26082.04 27394.61 13671.13 21298.50 10176.24 27091.05 17694.80 189
LS3D87.89 16786.32 19792.59 9696.07 10282.92 12295.23 9694.92 19575.66 30582.89 26395.98 8372.48 20299.21 4368.43 32095.23 11595.64 161
anonymousdsp87.84 16887.09 16790.12 20689.13 32280.54 18694.67 13295.55 15682.05 21883.82 24592.12 22571.47 21097.15 21887.15 12587.80 22992.67 286
v2v48287.84 16887.06 16890.17 20290.99 28179.23 22894.00 18095.13 18284.87 16285.53 19492.07 23174.45 17197.45 18784.71 15581.75 28693.85 238
WR-MVS_H87.80 17087.37 16189.10 24193.23 21278.12 24895.61 8097.30 2787.90 9583.72 24792.01 23379.65 11396.01 28076.36 26780.54 30693.16 271
AUN-MVS87.78 17186.54 18991.48 14794.82 15281.05 17193.91 18793.93 23483.00 20186.93 16393.53 17869.50 23797.67 16686.14 13577.12 33095.73 159
PCF-MVS84.11 1087.74 17286.08 20792.70 9194.02 18584.43 8289.27 30295.87 13473.62 32784.43 22994.33 14478.48 12698.86 7970.27 30694.45 12894.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 17386.13 20392.31 11096.66 7980.74 18194.87 12091.49 29980.47 25089.46 12095.44 10254.72 33498.23 12482.19 19289.89 18997.97 70
V4287.68 17386.86 17390.15 20490.58 30180.14 19594.24 16195.28 17683.66 18485.67 18891.33 25174.73 16897.41 19684.43 15981.83 28492.89 281
thres600view787.65 17586.67 18290.59 18096.08 10178.72 23194.88 11991.58 29587.06 11388.08 13992.30 21868.91 24898.10 13370.05 31391.10 17294.96 180
XXY-MVS87.65 17586.85 17490.03 21092.14 24080.60 18593.76 19095.23 17882.94 20384.60 22294.02 15874.27 17395.49 30281.04 21283.68 26294.01 230
Test_1112_low_res87.65 17586.51 19091.08 16594.94 14479.28 22591.77 25794.30 22176.04 30383.51 25492.37 21577.86 13397.73 16578.69 24489.13 20396.22 136
thres100view90087.63 17886.71 18090.38 19696.12 9778.55 23595.03 11191.58 29587.15 11088.06 14092.29 21968.91 24898.10 13370.13 31091.10 17294.48 208
CP-MVSNet87.63 17887.26 16688.74 25093.12 21576.59 27795.29 9296.58 8888.43 7783.49 25592.98 19775.28 16095.83 28878.97 24281.15 29493.79 240
thres40087.62 18086.64 18390.57 18195.99 10678.64 23394.58 13691.98 28586.94 11788.09 13791.77 23869.18 24598.10 13370.13 31091.10 17294.96 180
v114487.61 18186.79 17790.06 20991.01 28079.34 22193.95 18295.42 17083.36 19485.66 18991.31 25474.98 16497.42 19183.37 17182.06 28093.42 261
bld_raw_dy_0_6487.60 18286.73 17890.21 20091.72 25480.26 19295.09 10788.61 33985.68 14385.55 19194.38 14263.93 28896.66 24287.73 11587.84 22893.72 249
tfpn200view987.58 18386.64 18390.41 19395.99 10678.64 23394.58 13691.98 28586.94 11788.09 13791.77 23869.18 24598.10 13370.13 31091.10 17294.48 208
BH-w/o87.57 18487.05 16989.12 24094.90 14777.90 25392.41 23893.51 24782.89 20583.70 24891.34 25075.75 15497.07 22475.49 27593.49 14492.39 295
UniMVSNet_ETH3D87.53 18586.37 19491.00 17192.44 23378.96 23094.74 12895.61 15384.07 17585.36 21194.52 14059.78 31597.34 20382.93 17787.88 22696.71 122
ET-MVSNet_ETH3D87.51 18685.91 21592.32 10993.70 20283.93 9092.33 24390.94 31284.16 17272.09 34592.52 21169.90 23095.85 28789.20 9988.36 21897.17 103
131487.51 18686.57 18890.34 19892.42 23479.74 21192.63 23395.35 17578.35 28080.14 29691.62 24574.05 17997.15 21881.05 21193.53 14294.12 222
v887.50 18886.71 18089.89 21691.37 26779.40 21894.50 14095.38 17184.81 16583.60 25291.33 25176.05 14797.42 19182.84 18080.51 30992.84 283
Fast-Effi-MVS+-dtu87.44 18986.72 17989.63 22892.04 24477.68 26294.03 17693.94 23385.81 13882.42 26791.32 25370.33 22797.06 22580.33 22790.23 18394.14 221
MVS87.44 18986.10 20691.44 14992.61 23183.62 9992.63 23395.66 14967.26 35081.47 27792.15 22377.95 13098.22 12679.71 23395.48 10692.47 292
FE-MVS87.40 19186.02 20991.57 14394.56 16579.69 21290.27 28293.72 24480.57 24988.80 12991.62 24565.32 27998.59 9774.97 28394.33 13196.44 129
FMVSNet387.40 19186.11 20591.30 15593.79 19983.64 9894.20 16394.81 20483.89 17984.37 23091.87 23768.45 25496.56 25378.23 24985.36 24793.70 251
test_fmvs187.34 19387.56 15686.68 29990.59 30071.80 32494.01 17894.04 23278.30 28191.97 8095.22 11056.28 32793.71 32692.89 3594.71 11894.52 200
thisisatest051587.33 19485.99 21091.37 15293.49 20679.55 21490.63 27889.56 33780.17 25287.56 15190.86 26767.07 26298.28 12281.50 20793.02 15596.29 133
PS-CasMVS87.32 19586.88 17288.63 25392.99 22276.33 28295.33 8796.61 8688.22 8583.30 26093.07 19573.03 19695.79 29178.36 24681.00 30093.75 247
GBi-Net87.26 19685.98 21191.08 16594.01 18683.10 11295.14 10494.94 19183.57 18684.37 23091.64 24166.59 27096.34 26878.23 24985.36 24793.79 240
test187.26 19685.98 21191.08 16594.01 18683.10 11295.14 10494.94 19183.57 18684.37 23091.64 24166.59 27096.34 26878.23 24985.36 24793.79 240
v119287.25 19886.33 19690.00 21490.76 29479.04 22993.80 18895.48 16182.57 20985.48 19991.18 25873.38 19297.42 19182.30 19082.06 28093.53 255
v1087.25 19886.38 19389.85 21791.19 27379.50 21594.48 14195.45 16583.79 18283.62 25191.19 25675.13 16197.42 19181.94 19780.60 30492.63 288
DP-MVS87.25 19885.36 23092.90 8197.65 5583.24 10894.81 12492.00 28374.99 31381.92 27595.00 11872.66 19999.05 5366.92 33192.33 16596.40 130
miper_ehance_all_eth87.22 20186.62 18689.02 24492.13 24177.40 26790.91 27494.81 20481.28 24084.32 23590.08 28479.26 11596.62 24583.81 16782.94 27093.04 276
test250687.21 20286.28 19990.02 21295.62 11973.64 30496.25 4671.38 37387.89 9790.45 10596.65 5755.29 33298.09 14186.03 13996.94 8298.33 41
thres20087.21 20286.24 20190.12 20695.36 12578.53 23693.26 21292.10 27986.42 12788.00 14291.11 26269.24 24498.00 14969.58 31491.04 17793.83 239
v14419287.19 20486.35 19589.74 22390.64 29878.24 24693.92 18595.43 16881.93 22385.51 19691.05 26474.21 17697.45 18782.86 17981.56 28893.53 255
FMVSNet287.19 20485.82 21791.30 15594.01 18683.67 9794.79 12594.94 19183.57 18683.88 24492.05 23266.59 27096.51 25677.56 25685.01 25093.73 248
c3_l87.14 20686.50 19189.04 24392.20 23877.26 26891.22 27094.70 20982.01 22184.34 23490.43 27778.81 11996.61 24883.70 16981.09 29593.25 266
Baseline_NR-MVSNet87.07 20786.63 18588.40 25691.44 26277.87 25594.23 16292.57 26684.12 17485.74 18792.08 22977.25 13696.04 27782.29 19179.94 31391.30 315
v14887.04 20886.32 19789.21 23790.94 28577.26 26893.71 19394.43 21584.84 16484.36 23390.80 27076.04 14897.05 22682.12 19379.60 31793.31 263
test_fmvs1_n87.03 20987.04 17086.97 29189.74 31871.86 32294.55 13894.43 21578.47 27791.95 8295.50 10151.16 34493.81 32493.02 3494.56 12495.26 170
v192192086.97 21086.06 20889.69 22790.53 30478.11 24993.80 18895.43 16881.90 22585.33 21291.05 26472.66 19997.41 19682.05 19581.80 28593.53 255
tt080586.92 21185.74 22390.48 18992.22 23779.98 20595.63 7994.88 19883.83 18184.74 22092.80 20457.61 32397.67 16685.48 14684.42 25493.79 240
miper_enhance_ethall86.90 21286.18 20289.06 24291.66 25977.58 26490.22 28894.82 20379.16 26684.48 22689.10 29879.19 11696.66 24284.06 16282.94 27092.94 279
v7n86.81 21385.76 22189.95 21590.72 29679.25 22795.07 10895.92 12884.45 17182.29 26890.86 26772.60 20197.53 18179.42 23980.52 30893.08 275
PEN-MVS86.80 21486.27 20088.40 25692.32 23675.71 28895.18 10096.38 9787.97 9282.82 26493.15 19173.39 19195.92 28376.15 27179.03 32293.59 253
cl2286.78 21585.98 21189.18 23992.34 23577.62 26390.84 27594.13 22981.33 23983.97 24390.15 28273.96 18196.60 25084.19 16182.94 27093.33 262
v124086.78 21585.85 21689.56 22990.45 30577.79 25893.61 19695.37 17381.65 23185.43 20491.15 26071.50 20997.43 19081.47 20882.05 28293.47 259
TR-MVS86.78 21585.76 22189.82 21994.37 17478.41 24092.47 23792.83 25981.11 24586.36 17792.40 21468.73 25197.48 18473.75 29289.85 19193.57 254
PatchMatch-RL86.77 21885.54 22490.47 19295.88 10982.71 13090.54 27992.31 27279.82 25884.32 23591.57 24968.77 25096.39 26473.16 29493.48 14692.32 298
PAPM86.68 21985.39 22890.53 18393.05 21879.33 22489.79 29594.77 20778.82 27181.95 27493.24 18876.81 13997.30 20566.94 32993.16 15394.95 183
pm-mvs186.61 22085.54 22489.82 21991.44 26280.18 19395.28 9494.85 20083.84 18081.66 27692.62 20872.45 20496.48 25879.67 23478.06 32392.82 284
GA-MVS86.61 22085.27 23290.66 17991.33 27078.71 23290.40 28193.81 24185.34 15285.12 21489.57 29461.25 30497.11 22280.99 21589.59 19596.15 137
Anonymous2023121186.59 22285.13 23490.98 17496.52 8781.50 15696.14 5196.16 11373.78 32583.65 25092.15 22363.26 29297.37 20282.82 18181.74 28794.06 227
test_vis1_n86.56 22386.49 19286.78 29888.51 32772.69 31394.68 13193.78 24279.55 26190.70 10295.31 10648.75 34993.28 33293.15 3193.99 13394.38 212
DIV-MVS_self_test86.53 22485.78 21888.75 24892.02 24676.45 27990.74 27694.30 22181.83 22983.34 25890.82 26975.75 15496.57 25181.73 20481.52 29093.24 267
cl____86.52 22585.78 21888.75 24892.03 24576.46 27890.74 27694.30 22181.83 22983.34 25890.78 27175.74 15696.57 25181.74 20381.54 28993.22 268
eth_miper_zixun_eth86.50 22685.77 22088.68 25191.94 24775.81 28790.47 28094.89 19682.05 21884.05 24090.46 27675.96 14996.77 23882.76 18379.36 31993.46 260
baseline286.50 22685.39 22889.84 21891.12 27776.70 27591.88 25488.58 34082.35 21479.95 30090.95 26673.42 19097.63 17380.27 22889.95 18895.19 172
EPNet_dtu86.49 22885.94 21488.14 26590.24 30872.82 31194.11 16792.20 27586.66 12479.42 30692.36 21673.52 18795.81 29071.26 30093.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 22984.98 23790.80 17792.10 24380.92 17690.24 28695.91 13073.10 33183.57 25388.39 30965.15 28197.46 18684.90 15291.43 17094.03 229
SCA86.32 23085.18 23389.73 22592.15 23976.60 27691.12 27191.69 29283.53 18985.50 19788.81 30266.79 26696.48 25876.65 26490.35 18296.12 140
LTVRE_ROB82.13 1386.26 23184.90 24090.34 19894.44 17281.50 15692.31 24594.89 19683.03 20079.63 30492.67 20669.69 23497.79 15971.20 30186.26 24391.72 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 23285.48 22687.98 26891.65 26074.92 29394.93 11695.75 14287.36 10882.26 26993.04 19672.85 19795.82 28974.04 28877.46 32893.20 269
XVG-ACMP-BASELINE86.00 23384.84 24289.45 23491.20 27278.00 25091.70 26095.55 15685.05 16082.97 26292.25 22154.49 33597.48 18482.93 17787.45 23292.89 281
MVP-Stereo85.97 23484.86 24189.32 23590.92 28782.19 14292.11 25194.19 22578.76 27378.77 31091.63 24468.38 25596.56 25375.01 28293.95 13489.20 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 23585.09 23588.35 25890.79 29277.42 26691.83 25695.70 14580.77 24880.08 29890.02 28566.74 26896.37 26581.88 19987.97 22591.26 316
test-LLR85.87 23685.41 22787.25 28490.95 28371.67 32689.55 29689.88 33283.41 19284.54 22487.95 31667.25 25895.11 30881.82 20093.37 14994.97 177
FMVSNet185.85 23784.11 25191.08 16592.81 22783.10 11295.14 10494.94 19181.64 23282.68 26591.64 24159.01 31996.34 26875.37 27783.78 25993.79 240
PatchmatchNetpermissive85.85 23784.70 24489.29 23691.76 25375.54 28988.49 31491.30 30381.63 23385.05 21588.70 30671.71 20696.24 27174.61 28689.05 20496.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 23984.94 23988.26 26191.16 27672.58 31889.47 30091.04 31076.26 30186.45 17589.97 28770.74 21996.86 23782.35 18987.07 23895.34 169
PMMVS85.71 24084.96 23887.95 26988.90 32577.09 27088.68 31290.06 32672.32 33786.47 17290.76 27272.15 20594.40 31481.78 20293.49 14492.36 296
PVSNet78.82 1885.55 24184.65 24588.23 26394.72 15571.93 32187.12 32992.75 26278.80 27284.95 21790.53 27564.43 28596.71 24174.74 28493.86 13696.06 145
IterMVS-SCA-FT85.45 24284.53 24888.18 26491.71 25676.87 27390.19 28992.65 26585.40 15181.44 27890.54 27466.79 26695.00 31181.04 21281.05 29692.66 287
pmmvs485.43 24383.86 25690.16 20390.02 31382.97 12090.27 28292.67 26475.93 30480.73 28691.74 24071.05 21395.73 29378.85 24383.46 26691.78 306
mvsany_test185.42 24485.30 23185.77 30987.95 33875.41 29187.61 32680.97 36276.82 29588.68 13095.83 8977.44 13590.82 35085.90 14086.51 24191.08 324
ACMH80.38 1785.36 24583.68 25890.39 19494.45 17180.63 18394.73 12994.85 20082.09 21777.24 31892.65 20760.01 31397.58 17572.25 29884.87 25192.96 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 24684.64 24687.49 27890.77 29372.59 31794.01 17894.40 21884.72 16779.62 30593.17 19061.91 29996.72 23981.99 19681.16 29293.16 271
CR-MVSNet85.35 24683.76 25790.12 20690.58 30179.34 22185.24 34191.96 28778.27 28285.55 19187.87 31971.03 21495.61 29473.96 29089.36 19895.40 166
tpmrst85.35 24684.99 23686.43 30190.88 29067.88 34788.71 31191.43 30180.13 25386.08 18388.80 30473.05 19496.02 27982.48 18583.40 26895.40 166
miper_lstm_enhance85.27 24984.59 24787.31 28191.28 27174.63 29487.69 32394.09 23181.20 24481.36 28089.85 29074.97 16594.30 31781.03 21479.84 31693.01 277
IB-MVS80.51 1585.24 25083.26 26291.19 15892.13 24179.86 20891.75 25891.29 30483.28 19680.66 28888.49 30861.28 30398.46 10580.99 21579.46 31895.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 25183.99 25488.65 25292.47 23278.40 24179.68 36192.76 26174.90 31581.41 27989.59 29369.85 23395.51 29979.92 23295.29 11292.03 302
RPSCF85.07 25284.27 24987.48 27992.91 22470.62 33691.69 26192.46 26776.20 30282.67 26695.22 11063.94 28797.29 20877.51 25785.80 24594.53 199
MS-PatchMatch85.05 25384.16 25087.73 27291.42 26578.51 23791.25 26993.53 24677.50 28880.15 29591.58 24761.99 29895.51 29975.69 27494.35 13089.16 341
ACMH+81.04 1485.05 25383.46 26189.82 21994.66 15979.37 21994.44 14694.12 23082.19 21678.04 31392.82 20258.23 32197.54 18073.77 29182.90 27392.54 289
IterMVS84.88 25583.98 25587.60 27491.44 26276.03 28490.18 29092.41 26883.24 19781.06 28490.42 27866.60 26994.28 31879.46 23580.98 30192.48 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25683.09 26490.14 20593.80 19780.05 20089.18 30593.09 25378.89 26978.19 31191.91 23565.86 27897.27 20968.47 31988.45 21593.11 273
tpm84.73 25784.02 25386.87 29690.33 30668.90 34389.06 30789.94 32980.85 24785.75 18689.86 28968.54 25395.97 28177.76 25384.05 25895.75 157
tfpnnormal84.72 25883.23 26389.20 23892.79 22880.05 20094.48 14195.81 13782.38 21281.08 28391.21 25569.01 24796.95 23161.69 34880.59 30590.58 330
CVMVSNet84.69 25984.79 24384.37 32091.84 25064.92 35693.70 19491.47 30066.19 35286.16 18295.28 10767.18 26093.33 33180.89 21790.42 18194.88 185
test-mter84.54 26083.64 25987.25 28490.95 28371.67 32689.55 29689.88 33279.17 26584.54 22487.95 31655.56 32995.11 30881.82 20093.37 14994.97 177
TransMVSNet (Re)84.43 26183.06 26588.54 25491.72 25478.44 23995.18 10092.82 26082.73 20779.67 30392.12 22573.49 18895.96 28271.10 30568.73 35291.21 318
pmmvs584.21 26282.84 26988.34 25988.95 32476.94 27292.41 23891.91 28975.63 30680.28 29391.18 25864.59 28495.57 29577.09 26283.47 26592.53 290
tpm284.08 26382.94 26687.48 27991.39 26671.27 32889.23 30490.37 32071.95 33984.64 22189.33 29667.30 25796.55 25575.17 27987.09 23794.63 192
test_fmvs283.98 26484.03 25283.83 32587.16 34067.53 35093.93 18492.89 25777.62 28786.89 16893.53 17847.18 35492.02 34390.54 8786.51 24191.93 304
COLMAP_ROBcopyleft80.39 1683.96 26582.04 27289.74 22395.28 12779.75 21094.25 15992.28 27375.17 31178.02 31493.77 17358.60 32097.84 15865.06 33985.92 24491.63 309
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 26681.53 27691.21 15790.58 30179.34 22185.24 34196.76 7271.44 34185.55 19182.97 34970.87 21798.91 7561.01 35089.36 19895.40 166
SixPastTwentyTwo83.91 26782.90 26786.92 29390.99 28170.67 33593.48 20091.99 28485.54 14877.62 31792.11 22760.59 30996.87 23676.05 27277.75 32593.20 269
EPMVS83.90 26882.70 27087.51 27690.23 30972.67 31488.62 31381.96 36081.37 23885.01 21688.34 31066.31 27394.45 31375.30 27887.12 23695.43 165
TESTMET0.1,183.74 26982.85 26886.42 30289.96 31471.21 33089.55 29687.88 34277.41 28983.37 25787.31 32456.71 32593.65 32880.62 22292.85 15994.40 211
MVS_030483.46 27081.92 27388.10 26690.63 29977.49 26593.26 21293.75 24380.04 25580.44 29287.24 32647.94 35195.55 29675.79 27388.16 22091.26 316
pmmvs683.42 27181.60 27588.87 24688.01 33677.87 25594.96 11494.24 22474.67 31778.80 30991.09 26360.17 31296.49 25777.06 26375.40 33692.23 300
AllTest83.42 27181.39 27789.52 23195.01 13877.79 25893.12 21790.89 31477.41 28976.12 32693.34 18154.08 33797.51 18268.31 32184.27 25693.26 264
tpmvs83.35 27382.07 27187.20 28891.07 27971.00 33388.31 31791.70 29178.91 26880.49 29187.18 32769.30 24397.08 22368.12 32483.56 26493.51 258
USDC82.76 27481.26 27987.26 28391.17 27474.55 29589.27 30293.39 24978.26 28375.30 33192.08 22954.43 33696.63 24471.64 29985.79 24690.61 327
Patchmtry82.71 27580.93 28188.06 26790.05 31276.37 28184.74 34691.96 28772.28 33881.32 28187.87 31971.03 21495.50 30168.97 31680.15 31192.32 298
PatchT82.68 27681.27 27886.89 29590.09 31170.94 33484.06 34890.15 32374.91 31485.63 19083.57 34569.37 23894.87 31265.19 33688.50 21494.84 186
MIMVSNet82.59 27780.53 28288.76 24791.51 26178.32 24386.57 33290.13 32479.32 26280.70 28788.69 30752.98 34193.07 33666.03 33488.86 20894.90 184
test0.0.03 182.41 27881.69 27484.59 31888.23 33372.89 31090.24 28687.83 34383.41 19279.86 30189.78 29167.25 25888.99 35865.18 33783.42 26791.90 305
EG-PatchMatch MVS82.37 27980.34 28588.46 25590.27 30779.35 22092.80 23094.33 22077.14 29373.26 34290.18 28147.47 35396.72 23970.25 30787.32 23589.30 338
tpm cat181.96 28080.27 28687.01 29091.09 27871.02 33287.38 32791.53 29866.25 35180.17 29486.35 33368.22 25696.15 27569.16 31582.29 27893.86 237
our_test_381.93 28180.46 28486.33 30388.46 33073.48 30688.46 31591.11 30676.46 29676.69 32288.25 31266.89 26494.36 31568.75 31779.08 32191.14 320
ppachtmachnet_test81.84 28280.07 29087.15 28988.46 33074.43 29889.04 30892.16 27675.33 30977.75 31588.99 29966.20 27495.37 30465.12 33877.60 32691.65 308
gg-mvs-nofinetune81.77 28379.37 29688.99 24590.85 29177.73 26186.29 33379.63 36574.88 31683.19 26169.05 36360.34 31096.11 27675.46 27694.64 12293.11 273
CL-MVSNet_self_test81.74 28480.53 28285.36 31285.96 34672.45 31990.25 28493.07 25481.24 24279.85 30287.29 32570.93 21692.52 33966.95 32869.23 34891.11 322
Patchmatch-RL test81.67 28579.96 29186.81 29785.42 35171.23 32982.17 35587.50 34678.47 27777.19 31982.50 35070.81 21893.48 32982.66 18472.89 34095.71 160
ADS-MVSNet281.66 28679.71 29487.50 27791.35 26874.19 30083.33 35188.48 34172.90 33382.24 27085.77 33764.98 28293.20 33464.57 34083.74 26095.12 173
K. test v381.59 28780.15 28985.91 30889.89 31669.42 34292.57 23587.71 34485.56 14773.44 34189.71 29255.58 32895.52 29877.17 26069.76 34692.78 285
ADS-MVSNet81.56 28879.78 29286.90 29491.35 26871.82 32383.33 35189.16 33872.90 33382.24 27085.77 33764.98 28293.76 32564.57 34083.74 26095.12 173
FMVSNet581.52 28979.60 29587.27 28291.17 27477.95 25191.49 26492.26 27476.87 29476.16 32587.91 31851.67 34292.34 34067.74 32581.16 29291.52 310
dp81.47 29080.23 28785.17 31589.92 31565.49 35486.74 33090.10 32576.30 30081.10 28287.12 32862.81 29495.92 28368.13 32379.88 31494.09 225
Patchmatch-test81.37 29179.30 29787.58 27590.92 28774.16 30180.99 35787.68 34570.52 34576.63 32388.81 30271.21 21192.76 33860.01 35486.93 23995.83 154
EU-MVSNet81.32 29280.95 28082.42 33188.50 32963.67 35793.32 20591.33 30264.02 35580.57 29092.83 20161.21 30692.27 34176.34 26880.38 31091.32 314
test_040281.30 29379.17 30187.67 27393.19 21378.17 24792.98 22491.71 29075.25 31076.02 32890.31 27959.23 31796.37 26550.22 36283.63 26388.47 347
JIA-IIPM81.04 29478.98 30487.25 28488.64 32673.48 30681.75 35689.61 33673.19 33082.05 27273.71 36066.07 27795.87 28671.18 30384.60 25392.41 294
Anonymous2023120681.03 29579.77 29384.82 31787.85 33970.26 33891.42 26592.08 28073.67 32677.75 31589.25 29762.43 29693.08 33561.50 34982.00 28391.12 321
pmmvs-eth3d80.97 29678.72 30587.74 27184.99 35379.97 20690.11 29191.65 29375.36 30873.51 34086.03 33459.45 31693.96 32375.17 27972.21 34189.29 339
testgi80.94 29780.20 28883.18 32687.96 33766.29 35191.28 26790.70 31883.70 18378.12 31292.84 20051.37 34390.82 35063.34 34382.46 27692.43 293
CMPMVSbinary59.16 2180.52 29879.20 30084.48 31983.98 35467.63 34989.95 29493.84 24064.79 35466.81 35591.14 26157.93 32295.17 30676.25 26988.10 22190.65 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2024052180.44 29979.21 29984.11 32385.75 34967.89 34692.86 22893.23 25175.61 30775.59 33087.47 32350.03 34594.33 31671.14 30481.21 29190.12 332
LF4IMVS80.37 30079.07 30384.27 32286.64 34269.87 34189.39 30191.05 30976.38 29874.97 33390.00 28647.85 35294.25 31974.55 28780.82 30388.69 345
KD-MVS_self_test80.20 30179.24 29883.07 32785.64 35065.29 35591.01 27393.93 23478.71 27576.32 32486.40 33259.20 31892.93 33772.59 29669.35 34791.00 325
UnsupCasMVSNet_eth80.07 30278.27 30685.46 31185.24 35272.63 31688.45 31694.87 19982.99 20271.64 34888.07 31556.34 32691.75 34673.48 29363.36 35992.01 303
test20.0379.95 30379.08 30282.55 32985.79 34867.74 34891.09 27291.08 30781.23 24374.48 33789.96 28861.63 30090.15 35260.08 35276.38 33289.76 333
TDRefinement79.81 30477.34 30887.22 28779.24 36375.48 29093.12 21792.03 28276.45 29775.01 33291.58 24749.19 34896.44 26270.22 30969.18 34989.75 334
TinyColmap79.76 30577.69 30785.97 30591.71 25673.12 30889.55 29690.36 32175.03 31272.03 34690.19 28046.22 35596.19 27463.11 34481.03 29788.59 346
OpenMVS_ROBcopyleft74.94 1979.51 30677.03 31386.93 29287.00 34176.23 28392.33 24390.74 31768.93 34874.52 33688.23 31349.58 34796.62 24557.64 35684.29 25587.94 349
MIMVSNet179.38 30777.28 30985.69 31086.35 34373.67 30391.61 26392.75 26278.11 28672.64 34488.12 31448.16 35091.97 34560.32 35177.49 32791.43 313
YYNet179.22 30877.20 31085.28 31488.20 33572.66 31585.87 33590.05 32874.33 32062.70 35787.61 32166.09 27692.03 34266.94 32972.97 33991.15 319
MDA-MVSNet_test_wron79.21 30977.19 31185.29 31388.22 33472.77 31285.87 33590.06 32674.34 31962.62 35887.56 32266.14 27591.99 34466.90 33273.01 33891.10 323
MDA-MVSNet-bldmvs78.85 31076.31 31586.46 30089.76 31773.88 30288.79 31090.42 31979.16 26659.18 35988.33 31160.20 31194.04 32062.00 34768.96 35091.48 312
KD-MVS_2432*160078.50 31176.02 31885.93 30686.22 34474.47 29684.80 34492.33 27079.29 26376.98 32085.92 33553.81 33993.97 32167.39 32657.42 36489.36 336
miper_refine_blended78.50 31176.02 31885.93 30686.22 34474.47 29684.80 34492.33 27079.29 26376.98 32085.92 33553.81 33993.97 32167.39 32657.42 36489.36 336
PM-MVS78.11 31376.12 31784.09 32483.54 35670.08 33988.97 30985.27 35179.93 25674.73 33586.43 33134.70 36293.48 32979.43 23872.06 34288.72 344
test_vis1_rt77.96 31476.46 31482.48 33085.89 34771.74 32590.25 28478.89 36671.03 34471.30 34981.35 35242.49 35891.05 34984.55 15782.37 27784.65 352
test_fmvs377.67 31577.16 31279.22 33579.52 36261.14 36192.34 24291.64 29473.98 32378.86 30886.59 32927.38 36687.03 36088.12 11175.97 33489.50 335
PVSNet_073.20 2077.22 31674.83 32184.37 32090.70 29771.10 33183.09 35389.67 33572.81 33573.93 33983.13 34760.79 30893.70 32768.54 31850.84 36788.30 348
DSMNet-mixed76.94 31776.29 31678.89 33683.10 35756.11 37187.78 32179.77 36460.65 35875.64 32988.71 30561.56 30188.34 35960.07 35389.29 20092.21 301
new-patchmatchnet76.41 31875.17 32080.13 33382.65 35959.61 36387.66 32491.08 30778.23 28469.85 35183.22 34654.76 33391.63 34864.14 34264.89 35789.16 341
UnsupCasMVSNet_bld76.23 31973.27 32285.09 31683.79 35572.92 30985.65 33893.47 24871.52 34068.84 35379.08 35549.77 34693.21 33366.81 33360.52 36189.13 343
mvsany_test374.95 32073.26 32380.02 33474.61 36563.16 35985.53 33978.42 36774.16 32174.89 33486.46 33036.02 36189.09 35782.39 18866.91 35387.82 350
MVS-HIRNet73.70 32172.20 32478.18 33991.81 25256.42 37082.94 35482.58 35855.24 36068.88 35266.48 36455.32 33195.13 30758.12 35588.42 21683.01 355
new_pmnet72.15 32270.13 32678.20 33882.95 35865.68 35283.91 34982.40 35962.94 35764.47 35679.82 35442.85 35786.26 36257.41 35774.44 33782.65 357
test_f71.95 32370.87 32575.21 34274.21 36759.37 36485.07 34385.82 34865.25 35370.42 35083.13 34723.62 36782.93 36778.32 24771.94 34383.33 354
pmmvs371.81 32468.71 32781.11 33275.86 36470.42 33786.74 33083.66 35558.95 35968.64 35480.89 35336.93 36089.52 35563.10 34563.59 35883.39 353
APD_test169.04 32566.26 32977.36 34180.51 36062.79 36085.46 34083.51 35654.11 36259.14 36084.79 34123.40 36989.61 35455.22 35870.24 34579.68 360
N_pmnet68.89 32668.44 32870.23 34689.07 32328.79 38088.06 31819.50 38169.47 34771.86 34784.93 33961.24 30591.75 34654.70 35977.15 32990.15 331
LCM-MVSNet66.00 32762.16 33277.51 34064.51 37558.29 36583.87 35090.90 31348.17 36454.69 36173.31 36116.83 37586.75 36165.47 33561.67 36087.48 351
test_vis3_rt65.12 32862.60 33072.69 34471.44 36860.71 36287.17 32865.55 37463.80 35653.22 36265.65 36614.54 37689.44 35676.65 26465.38 35567.91 365
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35351.78 36349.57 36381.61 35123.49 36881.48 36840.61 36976.25 33374.46 361
EGC-MVSNET61.97 33056.37 33478.77 33789.63 32073.50 30589.12 30682.79 3570.21 3781.24 37984.80 34039.48 35990.04 35344.13 36475.94 33572.79 362
PMMVS259.60 33156.40 33369.21 34968.83 37246.58 37573.02 36677.48 37055.07 36149.21 36472.95 36217.43 37480.04 36949.32 36344.33 36980.99 359
testf159.54 33256.11 33569.85 34769.28 37056.61 36880.37 35976.55 37142.58 36745.68 36675.61 35611.26 37784.18 36443.20 36660.44 36268.75 363
APD_test259.54 33256.11 33569.85 34769.28 37056.61 36880.37 35976.55 37142.58 36745.68 36675.61 35611.26 37784.18 36443.20 36660.44 36268.75 363
ANet_high58.88 33454.22 33872.86 34356.50 37856.67 36780.75 35886.00 34773.09 33237.39 37064.63 36722.17 37079.49 37043.51 36523.96 37282.43 358
Gipumacopyleft57.99 33554.91 33767.24 35088.51 32765.59 35352.21 36990.33 32243.58 36642.84 36951.18 37020.29 37285.07 36334.77 37070.45 34451.05 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 33648.46 34063.48 35145.72 38046.20 37673.41 36578.31 36841.03 36930.06 37265.68 3656.05 37983.43 36630.04 37165.86 35460.80 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 33748.47 33956.66 35352.26 37918.98 38241.51 37181.40 36110.10 37344.59 36875.01 35928.51 36468.16 37153.54 36049.31 36882.83 356
MVEpermissive39.65 2343.39 33838.59 34457.77 35256.52 37748.77 37455.38 36858.64 37829.33 37228.96 37352.65 3694.68 38064.62 37428.11 37233.07 37059.93 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33942.29 34146.03 35565.58 37437.41 37773.51 36464.62 37533.99 37028.47 37447.87 37119.90 37367.91 37222.23 37324.45 37132.77 370
EMVS42.07 34041.12 34244.92 35663.45 37635.56 37973.65 36363.48 37633.05 37126.88 37545.45 37221.27 37167.14 37319.80 37423.02 37332.06 371
tmp_tt35.64 34139.24 34324.84 35714.87 38123.90 38162.71 36751.51 3806.58 37536.66 37162.08 36844.37 35630.34 37752.40 36122.00 37420.27 372
cdsmvs_eth3d_5k22.14 34229.52 3450.00 3610.00 3840.00 3850.00 37295.76 1410.00 3790.00 38094.29 14775.66 1570.00 3800.00 3780.00 3780.00 376
wuyk23d21.27 34320.48 34623.63 35868.59 37336.41 37849.57 3706.85 3829.37 3747.89 3764.46 3784.03 38131.37 37617.47 37516.07 3753.12 373
testmvs8.92 34411.52 3471.12 3601.06 3820.46 38486.02 3340.65 3830.62 3762.74 3779.52 3760.31 3830.45 3792.38 3760.39 3762.46 375
test1238.76 34511.22 3481.39 3590.85 3830.97 38385.76 3370.35 3840.54 3772.45 3788.14 3770.60 3820.48 3782.16 3770.17 3772.71 374
ab-mvs-re7.82 34610.43 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38093.88 1680.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.64 3478.86 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37979.70 1090.00 3800.00 3780.00 3780.00 376
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS198.86 185.54 6398.29 197.49 589.79 4196.29 15
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
PC_three_145282.47 21097.09 997.07 3892.72 198.04 14692.70 4199.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
test_one_060198.58 1185.83 5797.44 1491.05 1296.78 1398.06 691.45 11
eth-test20.00 384
eth-test0.00 384
ZD-MVS98.15 3486.62 3097.07 4383.63 18594.19 3196.91 4487.57 3199.26 4091.99 6098.44 49
RE-MVS-def93.68 4397.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1882.94 7492.73 3797.80 7097.88 75
IU-MVS98.77 586.00 4796.84 6381.26 24197.26 795.50 1099.13 399.03 7
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3692.59 298.94 7392.25 4998.99 1498.84 13
test_241102_TWO97.44 1490.31 2697.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
test_241102_ONE98.77 585.99 4997.44 1490.26 3197.71 197.96 1092.31 499.38 29
9.1494.47 1797.79 4996.08 5497.44 1486.13 13595.10 2497.40 2088.34 2299.22 4293.25 3098.70 32
save fliter97.85 4685.63 6295.21 9896.82 6689.44 48
test_0728_THIRD90.75 1797.04 1098.05 892.09 699.55 1495.64 699.13 399.13 2
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 599.61 395.62 899.08 798.99 8
test072698.78 385.93 5297.19 1197.47 1090.27 2997.64 498.13 191.47 8
GSMVS96.12 140
test_part298.55 1287.22 1696.40 14
sam_mvs171.70 20796.12 140
sam_mvs70.60 220
ambc83.06 32879.99 36163.51 35877.47 36292.86 25874.34 33884.45 34228.74 36395.06 31073.06 29568.89 35190.61 327
MTGPAbinary96.97 48
test_post188.00 3199.81 37569.31 24295.53 29776.65 264
test_post10.29 37470.57 22495.91 285
patchmatchnet-post83.76 34471.53 20896.48 258
GG-mvs-BLEND87.94 27089.73 31977.91 25287.80 32078.23 36980.58 28983.86 34359.88 31495.33 30571.20 30192.22 16690.60 329
MTMP96.16 4960.64 377
gm-plane-assit89.60 32168.00 34577.28 29288.99 29997.57 17679.44 237
test9_res91.91 6498.71 3098.07 64
TEST997.53 5886.49 3494.07 17296.78 6981.61 23492.77 6196.20 7387.71 2899.12 49
test_897.49 6086.30 4294.02 17796.76 7281.86 22792.70 6596.20 7387.63 2999.02 59
agg_prior290.54 8798.68 3598.27 50
agg_prior97.38 6385.92 5496.72 7892.16 7598.97 70
TestCases89.52 23195.01 13877.79 25890.89 31477.41 28976.12 32693.34 18154.08 33797.51 18268.31 32184.27 25693.26 264
test_prior485.96 5194.11 167
test_prior294.12 16687.67 10392.63 6696.39 6886.62 3691.50 7098.67 37
test_prior93.82 5697.29 6784.49 7796.88 5998.87 7798.11 63
旧先验293.36 20471.25 34294.37 2897.13 22186.74 130
新几何293.11 219
新几何193.10 7197.30 6684.35 8495.56 15571.09 34391.26 9896.24 7182.87 7598.86 7979.19 24198.10 6096.07 144
旧先验196.79 7681.81 15095.67 14796.81 5086.69 3597.66 7496.97 113
无先验93.28 21196.26 10473.95 32499.05 5380.56 22396.59 125
原ACMM292.94 226
原ACMM192.01 11797.34 6481.05 17196.81 6778.89 26990.45 10595.92 8582.65 7698.84 8380.68 22198.26 5596.14 138
test22296.55 8481.70 15292.22 24795.01 18868.36 34990.20 10996.14 7880.26 10297.80 7096.05 146
testdata298.75 8778.30 248
segment_acmp87.16 34
testdata90.49 18796.40 8977.89 25495.37 17372.51 33693.63 4196.69 5382.08 8797.65 16983.08 17497.39 7695.94 148
testdata192.15 24987.94 93
test1294.34 4797.13 7086.15 4596.29 10191.04 10085.08 5299.01 6198.13 5997.86 77
plane_prior794.70 15782.74 127
plane_prior694.52 16682.75 12574.23 174
plane_prior596.22 10998.12 13188.15 10889.99 18594.63 192
plane_prior494.86 123
plane_prior382.75 12590.26 3186.91 165
plane_prior295.85 6590.81 15
plane_prior194.59 161
plane_prior82.73 12895.21 9889.66 4589.88 190
n20.00 385
nn0.00 385
door-mid85.49 349
lessismore_v086.04 30488.46 33068.78 34480.59 36373.01 34390.11 28355.39 33096.43 26375.06 28165.06 35692.90 280
LGP-MVS_train91.12 16194.47 16881.49 15896.14 11486.73 12285.45 20195.16 11369.89 23198.10 13387.70 11689.23 20193.77 245
test1196.57 89
door85.33 350
HQP5-MVS81.56 154
HQP-NCC94.17 18094.39 15188.81 6585.43 204
ACMP_Plane94.17 18094.39 15188.81 6585.43 204
BP-MVS87.11 127
HQP4-MVS85.43 20497.96 15294.51 202
HQP3-MVS96.04 12289.77 192
HQP2-MVS73.83 184
NP-MVS94.37 17482.42 13793.98 161
MDTV_nov1_ep13_2view55.91 37287.62 32573.32 32984.59 22370.33 22774.65 28595.50 163
MDTV_nov1_ep1383.56 26091.69 25869.93 34087.75 32291.54 29778.60 27684.86 21888.90 30169.54 23696.03 27870.25 30788.93 207
ACMMP++_ref87.47 230
ACMMP++88.01 224
Test By Simon80.02 104
ITE_SJBPF88.24 26291.88 24977.05 27192.92 25685.54 14880.13 29793.30 18557.29 32496.20 27272.46 29784.71 25291.49 311
DeepMVS_CXcopyleft56.31 35474.23 36651.81 37356.67 37944.85 36548.54 36575.16 35827.87 36558.74 37540.92 36852.22 36658.39 368