| DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 31 | 97.78 51 | 86.00 50 | 98.29 1 | 97.49 6 | 90.75 19 | 97.62 5 | 98.06 11 | 92.59 2 | 99.61 4 | 95.64 19 | 99.02 12 | 98.86 11 |
|
| SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 33 | 98.77 5 | 85.99 52 | 97.13 14 | 97.44 15 | 90.31 28 | 97.71 1 | 98.07 9 | 92.31 4 | 99.58 10 | 95.66 17 | 99.13 3 | 98.84 14 |
|
| DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 39 | 98.78 3 | 85.93 55 | 97.09 16 | 96.73 79 | 90.27 31 | 97.04 11 | 98.05 13 | 91.47 8 | 99.55 16 | 95.62 21 | 99.08 7 | 98.45 36 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 10 | 98.36 25 | 87.28 18 | 95.56 95 | 97.51 5 | 89.13 65 | 97.14 9 | 97.91 18 | 91.64 7 | 99.62 2 | 94.61 27 | 99.17 2 | 98.86 11 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| APDe-MVS |  | | 95.46 5 | 95.64 5 | 94.91 21 | 98.26 28 | 86.29 46 | 97.46 6 | 97.40 20 | 89.03 69 | 96.20 19 | 98.10 7 | 89.39 16 | 99.34 34 | 95.88 16 | 99.03 11 | 99.10 4 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 19 | 98.49 17 | 86.52 36 | 96.91 25 | 97.47 11 | 91.73 10 | 96.10 20 | 96.69 66 | 89.90 12 | 99.30 40 | 94.70 25 | 98.04 70 | 99.13 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 8 | 98.11 36 | 88.51 7 | 95.29 105 | 96.96 52 | 92.09 6 | 95.32 31 | 97.08 49 | 89.49 15 | 99.33 37 | 95.10 24 | 98.85 19 | 98.66 20 |
|
| SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 6 | 98.14 35 | 88.48 8 | 96.26 47 | 97.28 31 | 85.90 158 | 97.67 3 | 98.10 7 | 88.41 20 | 99.56 12 | 94.66 26 | 99.19 1 | 98.71 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 25 | 96.99 72 | 86.33 42 | 97.33 7 | 97.30 29 | 91.38 12 | 95.39 30 | 97.46 30 | 88.98 19 | 99.40 30 | 94.12 31 | 98.89 18 | 98.82 16 |
| Skip Steuart: Steuart Systems R&D Blog. |
| HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 74 | 96.96 52 | 91.75 9 | 94.02 47 | 96.83 61 | 88.12 24 | 99.55 16 | 93.41 42 | 98.94 16 | 98.28 50 |
|
| MM | | | 95.10 11 | 94.91 13 | 95.68 5 | 96.09 101 | 88.34 9 | 96.68 33 | 94.37 240 | 95.08 1 | 94.68 36 | 97.72 24 | 82.94 83 | 99.64 1 | 97.85 1 | 98.76 28 | 99.06 7 |
|
| SF-MVS | | | 94.97 12 | 94.90 15 | 95.20 12 | 97.84 47 | 87.76 10 | 96.65 35 | 97.48 10 | 87.76 112 | 95.71 27 | 97.70 25 | 88.28 23 | 99.35 33 | 93.89 35 | 98.78 25 | 98.48 30 |
|
| SD-MVS | | | 94.96 13 | 95.33 8 | 93.88 59 | 97.25 69 | 86.69 28 | 96.19 50 | 97.11 43 | 90.42 27 | 96.95 13 | 97.27 38 | 89.53 14 | 96.91 255 | 94.38 29 | 98.85 19 | 98.03 72 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 94.85 14 | 94.94 12 | 94.58 42 | 98.25 29 | 86.33 42 | 96.11 60 | 96.62 88 | 88.14 99 | 96.10 20 | 96.96 55 | 89.09 18 | 98.94 78 | 94.48 28 | 98.68 39 | 98.48 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| NCCC | | | 94.81 15 | 94.69 18 | 95.17 14 | 97.83 48 | 87.46 17 | 95.66 88 | 96.93 56 | 92.34 4 | 93.94 48 | 96.58 76 | 87.74 27 | 99.44 29 | 92.83 50 | 98.40 56 | 98.62 21 |
|
| ACMMP_NAP | | | 94.74 16 | 94.56 19 | 95.28 9 | 98.02 41 | 87.70 11 | 95.68 85 | 97.34 23 | 88.28 93 | 95.30 32 | 97.67 26 | 85.90 47 | 99.54 20 | 93.91 34 | 98.95 15 | 98.60 23 |
|
| test_fmvsm_n_1920 | | | 94.71 17 | 95.11 10 | 93.50 71 | 95.79 115 | 84.62 80 | 96.15 55 | 97.64 2 | 89.85 42 | 97.19 8 | 97.89 19 | 86.28 43 | 98.71 97 | 97.11 7 | 98.08 69 | 97.17 112 |
|
| test_fmvsmconf_n | | | 94.60 18 | 94.81 16 | 93.98 55 | 94.62 175 | 84.96 74 | 96.15 55 | 97.35 22 | 89.37 56 | 96.03 23 | 98.11 5 | 86.36 41 | 99.01 63 | 97.45 3 | 97.83 77 | 97.96 75 |
|
| MVS_0304 | | | 94.60 18 | 94.38 25 | 95.23 11 | 95.41 133 | 87.49 16 | 96.53 38 | 92.75 283 | 93.82 2 | 93.07 69 | 97.84 22 | 83.66 74 | 99.59 8 | 97.61 2 | 98.76 28 | 98.61 22 |
|
| HFP-MVS | | | 94.52 20 | 94.40 23 | 94.86 24 | 98.61 10 | 86.81 25 | 96.94 20 | 97.34 23 | 88.63 82 | 93.65 53 | 97.21 42 | 86.10 45 | 99.49 26 | 92.35 62 | 98.77 27 | 98.30 47 |
|
| ZNCC-MVS | | | 94.47 21 | 94.28 30 | 95.03 16 | 98.52 15 | 86.96 20 | 96.85 28 | 97.32 27 | 88.24 94 | 93.15 64 | 97.04 52 | 86.17 44 | 99.62 2 | 92.40 59 | 98.81 22 | 98.52 26 |
|
| XVS | | | 94.45 22 | 94.32 26 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 74 | 97.16 47 | 85.02 59 | 99.49 26 | 91.99 77 | 98.56 52 | 98.47 33 |
|
| MCST-MVS | | | 94.45 22 | 94.20 35 | 95.19 13 | 98.46 19 | 87.50 15 | 95.00 123 | 97.12 41 | 87.13 123 | 92.51 88 | 96.30 83 | 89.24 17 | 99.34 34 | 93.46 39 | 98.62 47 | 98.73 17 |
|
| region2R | | | 94.43 24 | 94.27 32 | 94.92 20 | 98.65 8 | 86.67 30 | 96.92 24 | 97.23 34 | 88.60 84 | 93.58 55 | 97.27 38 | 85.22 54 | 99.54 20 | 92.21 67 | 98.74 31 | 98.56 25 |
|
| ACMMPR | | | 94.43 24 | 94.28 30 | 94.91 21 | 98.63 9 | 86.69 28 | 96.94 20 | 97.32 27 | 88.63 82 | 93.53 58 | 97.26 40 | 85.04 58 | 99.54 20 | 92.35 62 | 98.78 25 | 98.50 27 |
|
| MTAPA | | | 94.42 26 | 94.22 33 | 95.00 18 | 98.42 21 | 86.95 21 | 94.36 171 | 96.97 50 | 91.07 13 | 93.14 65 | 97.56 27 | 84.30 67 | 99.56 12 | 93.43 40 | 98.75 30 | 98.47 33 |
|
| CP-MVS | | | 94.34 27 | 94.21 34 | 94.74 37 | 98.39 23 | 86.64 32 | 97.60 4 | 97.24 32 | 88.53 86 | 92.73 82 | 97.23 41 | 85.20 55 | 99.32 38 | 92.15 70 | 98.83 21 | 98.25 57 |
|
| fmvsm_l_conf0.5_n | | | 94.29 28 | 94.46 21 | 93.79 65 | 95.28 137 | 85.43 68 | 95.68 85 | 96.43 99 | 86.56 138 | 96.84 14 | 97.81 23 | 87.56 32 | 98.77 92 | 97.14 6 | 96.82 100 | 97.16 116 |
|
| MP-MVS |  | | 94.25 29 | 94.07 39 | 94.77 35 | 98.47 18 | 86.31 44 | 96.71 31 | 96.98 49 | 89.04 68 | 91.98 98 | 97.19 44 | 85.43 52 | 99.56 12 | 92.06 76 | 98.79 23 | 98.44 37 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| APD-MVS |  | | 94.24 30 | 94.07 39 | 94.75 36 | 98.06 39 | 86.90 23 | 95.88 75 | 96.94 55 | 85.68 164 | 95.05 34 | 97.18 45 | 87.31 35 | 99.07 53 | 91.90 85 | 98.61 49 | 98.28 50 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SR-MVS | | | 94.23 31 | 94.17 37 | 94.43 47 | 98.21 32 | 85.78 63 | 96.40 40 | 96.90 59 | 88.20 97 | 94.33 40 | 97.40 33 | 84.75 64 | 99.03 58 | 93.35 43 | 97.99 71 | 98.48 30 |
|
| GST-MVS | | | 94.21 32 | 93.97 43 | 94.90 23 | 98.41 22 | 86.82 24 | 96.54 37 | 97.19 35 | 88.24 94 | 93.26 61 | 96.83 61 | 85.48 51 | 99.59 8 | 91.43 92 | 98.40 56 | 98.30 47 |
|
| MP-MVS-pluss | | | 94.21 32 | 94.00 42 | 94.85 25 | 98.17 33 | 86.65 31 | 94.82 134 | 97.17 39 | 86.26 149 | 92.83 76 | 97.87 20 | 85.57 50 | 99.56 12 | 94.37 30 | 98.92 17 | 98.34 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| fmvsm_l_conf0.5_n_a | | | 94.20 34 | 94.40 23 | 93.60 69 | 95.29 136 | 84.98 73 | 95.61 92 | 96.28 113 | 86.31 145 | 96.75 16 | 97.86 21 | 87.40 33 | 98.74 95 | 97.07 8 | 97.02 93 | 97.07 119 |
|
| test_fmvsmconf0.1_n | | | 94.20 34 | 94.31 28 | 93.88 59 | 92.46 258 | 84.80 77 | 96.18 52 | 96.82 68 | 89.29 59 | 95.68 28 | 98.11 5 | 85.10 56 | 98.99 70 | 97.38 4 | 97.75 81 | 97.86 82 |
|
| DeepPCF-MVS | | 89.96 1 | 94.20 34 | 94.77 17 | 92.49 118 | 96.52 87 | 80.00 222 | 94.00 195 | 97.08 44 | 90.05 35 | 95.65 29 | 97.29 37 | 89.66 13 | 98.97 75 | 93.95 33 | 98.71 33 | 98.50 27 |
|
| CS-MVS | | | 94.12 37 | 94.44 22 | 93.17 78 | 96.55 84 | 83.08 131 | 97.63 3 | 96.95 54 | 91.71 11 | 93.50 59 | 96.21 86 | 85.61 48 | 98.24 142 | 93.64 37 | 98.17 62 | 98.19 60 |
|
| DeepC-MVS_fast | | 89.43 2 | 94.04 38 | 93.79 46 | 94.80 33 | 97.48 61 | 86.78 26 | 95.65 90 | 96.89 60 | 89.40 55 | 92.81 77 | 96.97 54 | 85.37 53 | 99.24 43 | 90.87 102 | 98.69 37 | 98.38 41 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CS-MVS-test | | | 94.02 39 | 94.29 29 | 93.24 75 | 96.69 78 | 83.24 121 | 97.49 5 | 96.92 57 | 92.14 5 | 92.90 72 | 95.77 108 | 85.02 59 | 98.33 137 | 93.03 47 | 98.62 47 | 98.13 64 |
|
| HPM-MVS |  | | 94.02 39 | 93.88 44 | 94.43 47 | 98.39 23 | 85.78 63 | 97.25 10 | 97.07 45 | 86.90 131 | 92.62 85 | 96.80 65 | 84.85 63 | 99.17 47 | 92.43 57 | 98.65 45 | 98.33 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| mPP-MVS | | | 93.99 41 | 93.78 47 | 94.63 40 | 98.50 16 | 85.90 60 | 96.87 26 | 96.91 58 | 88.70 80 | 91.83 108 | 97.17 46 | 83.96 71 | 99.55 16 | 91.44 91 | 98.64 46 | 98.43 38 |
|
| PGM-MVS | | | 93.96 42 | 93.72 50 | 94.68 38 | 98.43 20 | 86.22 47 | 95.30 103 | 97.78 1 | 87.45 119 | 93.26 61 | 97.33 36 | 84.62 65 | 99.51 24 | 90.75 105 | 98.57 51 | 98.32 46 |
|
| PHI-MVS | | | 93.89 43 | 93.65 54 | 94.62 41 | 96.84 75 | 86.43 39 | 96.69 32 | 97.49 6 | 85.15 177 | 93.56 57 | 96.28 84 | 85.60 49 | 99.31 39 | 92.45 56 | 98.79 23 | 98.12 66 |
|
| SR-MVS-dyc-post | | | 93.82 44 | 93.82 45 | 93.82 62 | 97.92 43 | 84.57 82 | 96.28 45 | 96.76 75 | 87.46 117 | 93.75 51 | 97.43 31 | 84.24 68 | 99.01 63 | 92.73 51 | 97.80 78 | 97.88 80 |
|
| APD-MVS_3200maxsize | | | 93.78 45 | 93.77 48 | 93.80 64 | 97.92 43 | 84.19 96 | 96.30 43 | 96.87 62 | 86.96 127 | 93.92 49 | 97.47 29 | 83.88 72 | 98.96 77 | 92.71 54 | 97.87 75 | 98.26 56 |
|
| fmvsm_s_conf0.5_n | | | 93.76 46 | 94.06 41 | 92.86 98 | 95.62 124 | 83.17 124 | 96.14 57 | 96.12 129 | 88.13 100 | 95.82 26 | 98.04 16 | 83.43 75 | 98.48 117 | 96.97 9 | 96.23 111 | 96.92 130 |
|
| patch_mono-2 | | | 93.74 47 | 94.32 26 | 92.01 135 | 97.54 57 | 78.37 260 | 93.40 220 | 97.19 35 | 88.02 102 | 94.99 35 | 97.21 42 | 88.35 21 | 98.44 127 | 94.07 32 | 98.09 67 | 99.23 1 |
|
| MSLP-MVS++ | | | 93.72 48 | 94.08 38 | 92.65 110 | 97.31 65 | 83.43 116 | 95.79 80 | 97.33 25 | 90.03 36 | 93.58 55 | 96.96 55 | 84.87 62 | 97.76 180 | 92.19 69 | 98.66 42 | 96.76 137 |
|
| TSAR-MVS + GP. | | | 93.66 49 | 93.41 56 | 94.41 49 | 96.59 82 | 86.78 26 | 94.40 164 | 93.93 256 | 89.77 47 | 94.21 41 | 95.59 115 | 87.35 34 | 98.61 105 | 92.72 53 | 96.15 113 | 97.83 85 |
|
| fmvsm_s_conf0.5_n_a | | | 93.57 50 | 93.76 49 | 93.00 90 | 95.02 150 | 83.67 108 | 96.19 50 | 96.10 131 | 87.27 121 | 95.98 24 | 98.05 13 | 83.07 82 | 98.45 125 | 96.68 11 | 95.51 120 | 96.88 133 |
|
| CANet | | | 93.54 51 | 93.20 61 | 94.55 43 | 95.65 122 | 85.73 65 | 94.94 126 | 96.69 84 | 91.89 8 | 90.69 124 | 95.88 102 | 81.99 106 | 99.54 20 | 93.14 46 | 97.95 73 | 98.39 39 |
|
| dcpmvs_2 | | | 93.49 52 | 94.19 36 | 91.38 170 | 97.69 54 | 76.78 292 | 94.25 174 | 96.29 110 | 88.33 90 | 94.46 38 | 96.88 58 | 88.07 25 | 98.64 100 | 93.62 38 | 98.09 67 | 98.73 17 |
|
| fmvsm_s_conf0.1_n | | | 93.46 53 | 93.66 53 | 92.85 99 | 93.75 219 | 83.13 126 | 96.02 68 | 95.74 160 | 87.68 114 | 95.89 25 | 98.17 2 | 82.78 86 | 98.46 121 | 96.71 10 | 96.17 112 | 96.98 126 |
|
| MVS_111021_HR | | | 93.45 54 | 93.31 57 | 93.84 61 | 96.99 72 | 84.84 75 | 93.24 232 | 97.24 32 | 88.76 77 | 91.60 113 | 95.85 103 | 86.07 46 | 98.66 98 | 91.91 83 | 98.16 63 | 98.03 72 |
|
| test_fmvsmvis_n_1920 | | | 93.44 55 | 93.55 55 | 93.10 81 | 93.67 223 | 84.26 95 | 95.83 78 | 96.14 125 | 89.00 72 | 92.43 90 | 97.50 28 | 83.37 78 | 98.72 96 | 96.61 12 | 97.44 85 | 96.32 152 |
|
| train_agg | | | 93.44 55 | 93.08 62 | 94.52 44 | 97.53 58 | 86.49 37 | 94.07 187 | 96.78 72 | 81.86 255 | 92.77 79 | 96.20 87 | 87.63 29 | 99.12 51 | 92.14 71 | 98.69 37 | 97.94 76 |
|
| EC-MVSNet | | | 93.44 55 | 93.71 51 | 92.63 111 | 95.21 142 | 82.43 154 | 97.27 9 | 96.71 82 | 90.57 26 | 92.88 73 | 95.80 106 | 83.16 79 | 98.16 148 | 93.68 36 | 98.14 64 | 97.31 105 |
|
| DELS-MVS | | | 93.43 58 | 93.25 59 | 93.97 56 | 95.42 132 | 85.04 72 | 93.06 239 | 97.13 40 | 90.74 21 | 91.84 106 | 95.09 133 | 86.32 42 | 99.21 45 | 91.22 93 | 98.45 54 | 97.65 92 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 93.40 59 | 93.22 60 | 93.94 58 | 98.36 25 | 84.83 76 | 97.15 13 | 96.80 71 | 85.77 161 | 92.47 89 | 97.13 48 | 82.38 90 | 99.07 53 | 90.51 108 | 98.40 56 | 97.92 79 |
|
| DeepC-MVS | | 88.79 3 | 93.31 60 | 92.99 65 | 94.26 52 | 96.07 103 | 85.83 61 | 94.89 129 | 96.99 48 | 89.02 71 | 89.56 138 | 97.37 35 | 82.51 89 | 99.38 31 | 92.20 68 | 98.30 59 | 97.57 98 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| sasdasda | | | 93.27 61 | 92.75 69 | 94.85 25 | 95.70 120 | 87.66 12 | 96.33 41 | 96.41 101 | 90.00 37 | 94.09 44 | 94.60 158 | 82.33 92 | 98.62 103 | 92.40 59 | 92.86 177 | 98.27 52 |
|
| canonicalmvs | | | 93.27 61 | 92.75 69 | 94.85 25 | 95.70 120 | 87.66 12 | 96.33 41 | 96.41 101 | 90.00 37 | 94.09 44 | 94.60 158 | 82.33 92 | 98.62 103 | 92.40 59 | 92.86 177 | 98.27 52 |
|
| ACMMP |  | | 93.24 63 | 92.88 67 | 94.30 51 | 98.09 38 | 85.33 70 | 96.86 27 | 97.45 14 | 88.33 90 | 90.15 133 | 97.03 53 | 81.44 112 | 99.51 24 | 90.85 103 | 95.74 116 | 98.04 71 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CSCG | | | 93.23 64 | 93.05 63 | 93.76 66 | 98.04 40 | 84.07 98 | 96.22 49 | 97.37 21 | 84.15 198 | 90.05 134 | 95.66 112 | 87.77 26 | 99.15 50 | 89.91 112 | 98.27 60 | 98.07 68 |
|
| fmvsm_s_conf0.1_n_a | | | 93.19 65 | 93.26 58 | 92.97 92 | 92.49 256 | 83.62 111 | 96.02 68 | 95.72 163 | 86.78 133 | 96.04 22 | 98.19 1 | 82.30 95 | 98.43 129 | 96.38 13 | 95.42 126 | 96.86 134 |
|
| test_fmvsmconf0.01_n | | | 93.19 65 | 93.02 64 | 93.71 67 | 89.25 351 | 84.42 93 | 96.06 65 | 96.29 110 | 89.06 66 | 94.68 36 | 98.13 3 | 79.22 135 | 98.98 74 | 97.22 5 | 97.24 88 | 97.74 89 |
|
| alignmvs | | | 93.08 67 | 92.50 77 | 94.81 32 | 95.62 124 | 87.61 14 | 95.99 70 | 96.07 134 | 89.77 47 | 94.12 43 | 94.87 142 | 80.56 118 | 98.66 98 | 92.42 58 | 93.10 173 | 98.15 63 |
|
| MGCFI-Net | | | 93.03 68 | 92.63 73 | 94.23 53 | 95.62 124 | 85.92 57 | 96.08 61 | 96.33 108 | 89.86 41 | 93.89 50 | 94.66 155 | 82.11 100 | 98.50 115 | 92.33 65 | 92.82 180 | 98.27 52 |
|
| EI-MVSNet-Vis-set | | | 93.01 69 | 92.92 66 | 93.29 73 | 95.01 152 | 83.51 115 | 94.48 156 | 95.77 157 | 90.87 15 | 92.52 87 | 96.67 68 | 84.50 66 | 99.00 68 | 91.99 77 | 94.44 148 | 97.36 104 |
|
| casdiffmvs_mvg |  | | 92.96 70 | 92.83 68 | 93.35 72 | 94.59 176 | 83.40 118 | 95.00 123 | 96.34 107 | 90.30 30 | 92.05 96 | 96.05 95 | 83.43 75 | 98.15 149 | 92.07 73 | 95.67 117 | 98.49 29 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 92.83 71 | 92.54 76 | 93.68 68 | 96.10 100 | 84.71 79 | 95.66 88 | 96.39 104 | 91.92 7 | 93.22 63 | 96.49 79 | 83.16 79 | 98.87 82 | 84.47 177 | 95.47 123 | 97.45 103 |
|
| CDPH-MVS | | | 92.83 71 | 92.30 80 | 94.44 45 | 97.79 49 | 86.11 49 | 94.06 189 | 96.66 85 | 80.09 284 | 92.77 79 | 96.63 73 | 86.62 38 | 99.04 57 | 87.40 139 | 98.66 42 | 98.17 62 |
|
| MVSMamba_pp | | | 92.75 73 | 92.66 71 | 93.02 88 | 95.09 148 | 82.85 140 | 94.72 142 | 96.46 97 | 86.35 144 | 93.33 60 | 94.96 136 | 81.98 107 | 98.55 113 | 92.35 62 | 98.70 35 | 97.67 91 |
|
| ETV-MVS | | | 92.74 74 | 92.66 71 | 92.97 92 | 95.20 143 | 84.04 100 | 95.07 119 | 96.51 94 | 90.73 22 | 92.96 71 | 91.19 276 | 84.06 69 | 98.34 135 | 91.72 87 | 96.54 105 | 96.54 148 |
|
| EI-MVSNet-UG-set | | | 92.74 74 | 92.62 74 | 93.12 80 | 94.86 163 | 83.20 123 | 94.40 164 | 95.74 160 | 90.71 23 | 92.05 96 | 96.60 75 | 84.00 70 | 98.99 70 | 91.55 89 | 93.63 158 | 97.17 112 |
|
| mamv4 | | | 92.71 76 | 92.58 75 | 93.09 83 | 95.16 144 | 83.05 132 | 94.67 145 | 96.50 95 | 86.30 146 | 93.09 66 | 94.88 140 | 82.03 105 | 98.57 108 | 91.94 82 | 98.66 42 | 97.63 93 |
|
| DPM-MVS | | | 92.58 77 | 91.74 87 | 95.08 15 | 96.19 95 | 89.31 5 | 92.66 251 | 96.56 93 | 83.44 216 | 91.68 112 | 95.04 134 | 86.60 40 | 98.99 70 | 85.60 163 | 97.92 74 | 96.93 129 |
|
| casdiffmvs |  | | 92.51 78 | 92.43 79 | 92.74 105 | 94.41 189 | 81.98 164 | 94.54 154 | 96.23 119 | 89.57 51 | 91.96 101 | 96.17 91 | 82.58 88 | 98.01 167 | 90.95 100 | 95.45 125 | 98.23 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_LR | | | 92.47 79 | 92.29 81 | 92.98 91 | 95.99 109 | 84.43 91 | 93.08 237 | 96.09 132 | 88.20 97 | 91.12 120 | 95.72 111 | 81.33 114 | 97.76 180 | 91.74 86 | 97.37 87 | 96.75 138 |
|
| 3Dnovator+ | | 87.14 4 | 92.42 80 | 91.37 90 | 95.55 7 | 95.63 123 | 88.73 6 | 97.07 18 | 96.77 74 | 90.84 16 | 84.02 268 | 96.62 74 | 75.95 170 | 99.34 34 | 87.77 134 | 97.68 82 | 98.59 24 |
|
| baseline | | | 92.39 81 | 92.29 81 | 92.69 109 | 94.46 185 | 81.77 169 | 94.14 180 | 96.27 114 | 89.22 61 | 91.88 104 | 96.00 96 | 82.35 91 | 97.99 169 | 91.05 95 | 95.27 131 | 98.30 47 |
|
| bld_raw_dy_0_64 | | | 92.29 82 | 92.45 78 | 91.80 155 | 95.49 130 | 79.68 231 | 93.44 219 | 96.40 103 | 86.21 151 | 93.01 70 | 94.88 140 | 81.93 108 | 98.57 108 | 91.99 77 | 98.73 32 | 97.16 116 |
|
| VNet | | | 92.24 83 | 91.91 84 | 93.24 75 | 96.59 82 | 83.43 116 | 94.84 133 | 96.44 98 | 89.19 63 | 94.08 46 | 95.90 101 | 77.85 154 | 98.17 147 | 88.90 121 | 93.38 167 | 98.13 64 |
|
| iter_conf05_11 | | | 92.00 84 | 91.85 85 | 92.47 119 | 95.02 150 | 82.63 151 | 92.81 247 | 96.13 128 | 84.85 185 | 91.97 99 | 94.10 174 | 82.31 94 | 98.51 114 | 90.81 104 | 98.61 49 | 96.26 156 |
|
| CPTT-MVS | | | 91.99 85 | 91.80 86 | 92.55 115 | 98.24 31 | 81.98 164 | 96.76 30 | 96.49 96 | 81.89 254 | 90.24 129 | 96.44 81 | 78.59 143 | 98.61 105 | 89.68 113 | 97.85 76 | 97.06 120 |
|
| EIA-MVS | | | 91.95 86 | 91.94 83 | 91.98 139 | 95.16 144 | 80.01 221 | 95.36 98 | 96.73 79 | 88.44 87 | 89.34 142 | 92.16 242 | 83.82 73 | 98.45 125 | 89.35 116 | 97.06 91 | 97.48 101 |
|
| DP-MVS Recon | | | 91.95 86 | 91.28 92 | 93.96 57 | 98.33 27 | 85.92 57 | 94.66 147 | 96.66 85 | 82.69 236 | 90.03 135 | 95.82 105 | 82.30 95 | 99.03 58 | 84.57 175 | 96.48 108 | 96.91 131 |
|
| EPNet | | | 91.79 88 | 91.02 98 | 94.10 54 | 90.10 339 | 85.25 71 | 96.03 67 | 92.05 302 | 92.83 3 | 87.39 178 | 95.78 107 | 79.39 133 | 99.01 63 | 88.13 130 | 97.48 84 | 98.05 70 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MG-MVS | | | 91.77 89 | 91.70 88 | 92.00 138 | 97.08 71 | 80.03 220 | 93.60 213 | 95.18 200 | 87.85 110 | 90.89 122 | 96.47 80 | 82.06 103 | 98.36 132 | 85.07 167 | 97.04 92 | 97.62 94 |
|
| Vis-MVSNet |  | | 91.75 90 | 91.23 93 | 93.29 73 | 95.32 135 | 83.78 105 | 96.14 57 | 95.98 140 | 89.89 39 | 90.45 126 | 96.58 76 | 75.09 182 | 98.31 140 | 84.75 173 | 96.90 96 | 97.78 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| 3Dnovator | | 86.66 5 | 91.73 91 | 90.82 102 | 94.44 45 | 94.59 176 | 86.37 41 | 97.18 12 | 97.02 47 | 89.20 62 | 84.31 264 | 96.66 69 | 73.74 206 | 99.17 47 | 86.74 149 | 97.96 72 | 97.79 87 |
|
| EPP-MVSNet | | | 91.70 92 | 91.56 89 | 92.13 134 | 95.88 112 | 80.50 204 | 97.33 7 | 95.25 196 | 86.15 153 | 89.76 137 | 95.60 114 | 83.42 77 | 98.32 139 | 87.37 141 | 93.25 170 | 97.56 99 |
|
| MVSFormer | | | 91.68 93 | 91.30 91 | 92.80 101 | 93.86 213 | 83.88 103 | 95.96 72 | 95.90 148 | 84.66 192 | 91.76 109 | 94.91 138 | 77.92 151 | 97.30 225 | 89.64 114 | 97.11 89 | 97.24 108 |
|
| Effi-MVS+ | | | 91.59 94 | 91.11 95 | 93.01 89 | 94.35 194 | 83.39 119 | 94.60 150 | 95.10 204 | 87.10 124 | 90.57 125 | 93.10 214 | 81.43 113 | 98.07 163 | 89.29 117 | 94.48 146 | 97.59 97 |
|
| IS-MVSNet | | | 91.43 95 | 91.09 97 | 92.46 120 | 95.87 114 | 81.38 180 | 96.95 19 | 93.69 266 | 89.72 49 | 89.50 140 | 95.98 98 | 78.57 144 | 97.77 179 | 83.02 195 | 96.50 107 | 98.22 59 |
|
| PVSNet_Blended_VisFu | | | 91.38 96 | 90.91 100 | 92.80 101 | 96.39 90 | 83.17 124 | 94.87 131 | 96.66 85 | 83.29 221 | 89.27 143 | 94.46 163 | 80.29 120 | 99.17 47 | 87.57 137 | 95.37 127 | 96.05 170 |
|
| diffmvs |  | | 91.37 97 | 91.23 93 | 91.77 156 | 93.09 238 | 80.27 208 | 92.36 260 | 95.52 179 | 87.03 126 | 91.40 117 | 94.93 137 | 80.08 122 | 97.44 210 | 92.13 72 | 94.56 143 | 97.61 95 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 91.31 98 | 91.11 95 | 91.93 143 | 94.37 190 | 80.14 212 | 93.46 218 | 95.80 155 | 86.46 141 | 91.35 118 | 93.77 193 | 82.21 98 | 98.09 160 | 87.57 137 | 94.95 134 | 97.55 100 |
|
| OMC-MVS | | | 91.23 99 | 90.62 104 | 93.08 84 | 96.27 93 | 84.07 98 | 93.52 215 | 95.93 144 | 86.95 128 | 89.51 139 | 96.13 93 | 78.50 145 | 98.35 134 | 85.84 161 | 92.90 176 | 96.83 136 |
|
| PAPM_NR | | | 91.22 100 | 90.78 103 | 92.52 117 | 97.60 56 | 81.46 177 | 94.37 170 | 96.24 118 | 86.39 143 | 87.41 175 | 94.80 148 | 82.06 103 | 98.48 117 | 82.80 201 | 95.37 127 | 97.61 95 |
|
| PS-MVSNAJ | | | 91.18 101 | 90.92 99 | 91.96 141 | 95.26 140 | 82.60 153 | 92.09 272 | 95.70 164 | 86.27 148 | 91.84 106 | 92.46 232 | 79.70 128 | 98.99 70 | 89.08 119 | 95.86 115 | 94.29 243 |
|
| xiu_mvs_v2_base | | | 91.13 102 | 90.89 101 | 91.86 149 | 94.97 155 | 82.42 155 | 92.24 266 | 95.64 171 | 86.11 157 | 91.74 111 | 93.14 212 | 79.67 131 | 98.89 81 | 89.06 120 | 95.46 124 | 94.28 244 |
|
| nrg030 | | | 91.08 103 | 90.39 106 | 93.17 78 | 93.07 240 | 86.91 22 | 96.41 39 | 96.26 115 | 88.30 92 | 88.37 158 | 94.85 145 | 82.19 99 | 97.64 191 | 91.09 94 | 82.95 299 | 94.96 209 |
|
| lupinMVS | | | 90.92 104 | 90.21 109 | 93.03 87 | 93.86 213 | 83.88 103 | 92.81 247 | 93.86 260 | 79.84 287 | 91.76 109 | 94.29 168 | 77.92 151 | 98.04 165 | 90.48 109 | 97.11 89 | 97.17 112 |
|
| h-mvs33 | | | 90.80 105 | 90.15 112 | 92.75 104 | 96.01 105 | 82.66 149 | 95.43 97 | 95.53 178 | 89.80 43 | 93.08 67 | 95.64 113 | 75.77 171 | 99.00 68 | 92.07 73 | 78.05 354 | 96.60 143 |
|
| jason | | | 90.80 105 | 90.10 113 | 92.90 96 | 93.04 243 | 83.53 114 | 93.08 237 | 94.15 249 | 80.22 281 | 91.41 116 | 94.91 138 | 76.87 158 | 97.93 174 | 90.28 111 | 96.90 96 | 97.24 108 |
| jason: jason. |
| VDD-MVS | | | 90.74 107 | 89.92 120 | 93.20 77 | 96.27 93 | 83.02 134 | 95.73 82 | 93.86 260 | 88.42 89 | 92.53 86 | 96.84 60 | 62.09 321 | 98.64 100 | 90.95 100 | 92.62 182 | 97.93 78 |
|
| PVSNet_Blended | | | 90.73 108 | 90.32 108 | 91.98 139 | 96.12 97 | 81.25 182 | 92.55 255 | 96.83 66 | 82.04 248 | 89.10 145 | 92.56 230 | 81.04 116 | 98.85 86 | 86.72 151 | 95.91 114 | 95.84 177 |
|
| test_yl | | | 90.69 109 | 90.02 118 | 92.71 106 | 95.72 118 | 82.41 157 | 94.11 182 | 95.12 202 | 85.63 165 | 91.49 114 | 94.70 151 | 74.75 186 | 98.42 130 | 86.13 156 | 92.53 184 | 97.31 105 |
|
| DCV-MVSNet | | | 90.69 109 | 90.02 118 | 92.71 106 | 95.72 118 | 82.41 157 | 94.11 182 | 95.12 202 | 85.63 165 | 91.49 114 | 94.70 151 | 74.75 186 | 98.42 130 | 86.13 156 | 92.53 184 | 97.31 105 |
|
| API-MVS | | | 90.66 111 | 90.07 114 | 92.45 121 | 96.36 91 | 84.57 82 | 96.06 65 | 95.22 199 | 82.39 239 | 89.13 144 | 94.27 171 | 80.32 119 | 98.46 121 | 80.16 251 | 96.71 102 | 94.33 242 |
|
| xiu_mvs_v1_base_debu | | | 90.64 112 | 90.05 115 | 92.40 122 | 93.97 210 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 174 | 92.25 91 | 94.03 175 | 70.59 242 | 98.57 108 | 90.97 97 | 94.67 138 | 94.18 245 |
|
| xiu_mvs_v1_base | | | 90.64 112 | 90.05 115 | 92.40 122 | 93.97 210 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 174 | 92.25 91 | 94.03 175 | 70.59 242 | 98.57 108 | 90.97 97 | 94.67 138 | 94.18 245 |
|
| xiu_mvs_v1_base_debi | | | 90.64 112 | 90.05 115 | 92.40 122 | 93.97 210 | 84.46 88 | 93.32 223 | 95.46 181 | 85.17 174 | 92.25 91 | 94.03 175 | 70.59 242 | 98.57 108 | 90.97 97 | 94.67 138 | 94.18 245 |
|
| HQP_MVS | | | 90.60 115 | 90.19 110 | 91.82 152 | 94.70 171 | 82.73 145 | 95.85 76 | 96.22 120 | 90.81 17 | 86.91 185 | 94.86 143 | 74.23 194 | 98.12 150 | 88.15 128 | 89.99 213 | 94.63 221 |
|
| FIs | | | 90.51 116 | 90.35 107 | 90.99 190 | 93.99 209 | 80.98 190 | 95.73 82 | 97.54 4 | 89.15 64 | 86.72 192 | 94.68 153 | 81.83 111 | 97.24 233 | 85.18 166 | 88.31 248 | 94.76 219 |
|
| iter_conf05 | | | 90.51 116 | 90.46 105 | 90.67 198 | 93.09 238 | 80.06 217 | 94.62 149 | 94.98 210 | 86.30 146 | 88.54 155 | 94.80 148 | 81.89 110 | 97.59 194 | 90.45 110 | 89.49 226 | 94.36 241 |
|
| MAR-MVS | | | 90.30 118 | 89.37 131 | 93.07 86 | 96.61 81 | 84.48 87 | 95.68 85 | 95.67 166 | 82.36 241 | 87.85 166 | 92.85 219 | 76.63 164 | 98.80 90 | 80.01 252 | 96.68 103 | 95.91 173 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| FC-MVSNet-test | | | 90.27 119 | 90.18 111 | 90.53 203 | 93.71 220 | 79.85 227 | 95.77 81 | 97.59 3 | 89.31 58 | 86.27 203 | 94.67 154 | 81.93 108 | 97.01 249 | 84.26 179 | 88.09 251 | 94.71 220 |
|
| CANet_DTU | | | 90.26 120 | 89.41 130 | 92.81 100 | 93.46 229 | 83.01 135 | 93.48 216 | 94.47 236 | 89.43 54 | 87.76 170 | 94.23 172 | 70.54 246 | 99.03 58 | 84.97 168 | 96.39 109 | 96.38 151 |
|
| SDMVSNet | | | 90.19 121 | 89.61 124 | 91.93 143 | 96.00 106 | 83.09 130 | 92.89 244 | 95.98 140 | 88.73 78 | 86.85 189 | 95.20 128 | 72.09 226 | 97.08 243 | 88.90 121 | 89.85 219 | 95.63 187 |
|
| OPM-MVS | | | 90.12 122 | 89.56 125 | 91.82 152 | 93.14 236 | 83.90 102 | 94.16 179 | 95.74 160 | 88.96 73 | 87.86 165 | 95.43 119 | 72.48 222 | 97.91 175 | 88.10 132 | 90.18 212 | 93.65 278 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LFMVS | | | 90.08 123 | 89.13 137 | 92.95 94 | 96.71 77 | 82.32 159 | 96.08 61 | 89.91 354 | 86.79 132 | 92.15 95 | 96.81 63 | 62.60 319 | 98.34 135 | 87.18 143 | 93.90 154 | 98.19 60 |
|
| GeoE | | | 90.05 124 | 89.43 129 | 91.90 148 | 95.16 144 | 80.37 207 | 95.80 79 | 94.65 233 | 83.90 203 | 87.55 174 | 94.75 150 | 78.18 149 | 97.62 193 | 81.28 231 | 93.63 158 | 97.71 90 |
|
| PAPR | | | 90.02 125 | 89.27 136 | 92.29 130 | 95.78 116 | 80.95 192 | 92.68 250 | 96.22 120 | 81.91 252 | 86.66 193 | 93.75 195 | 82.23 97 | 98.44 127 | 79.40 263 | 94.79 136 | 97.48 101 |
|
| PVSNet_BlendedMVS | | | 89.98 126 | 89.70 122 | 90.82 195 | 96.12 97 | 81.25 182 | 93.92 200 | 96.83 66 | 83.49 215 | 89.10 145 | 92.26 240 | 81.04 116 | 98.85 86 | 86.72 151 | 87.86 255 | 92.35 324 |
|
| PS-MVSNAJss | | | 89.97 127 | 89.62 123 | 91.02 187 | 91.90 276 | 80.85 195 | 95.26 108 | 95.98 140 | 86.26 149 | 86.21 205 | 94.29 168 | 79.70 128 | 97.65 188 | 88.87 123 | 88.10 249 | 94.57 226 |
|
| mvsmamba | | | 89.96 128 | 89.50 126 | 91.33 173 | 92.90 250 | 81.82 167 | 96.68 33 | 92.37 291 | 89.03 69 | 87.00 181 | 94.85 145 | 73.05 214 | 97.65 188 | 91.03 96 | 88.63 239 | 94.51 231 |
|
| XVG-OURS-SEG-HR | | | 89.95 129 | 89.45 127 | 91.47 167 | 94.00 208 | 81.21 185 | 91.87 276 | 96.06 136 | 85.78 160 | 88.55 153 | 95.73 110 | 74.67 190 | 97.27 229 | 88.71 124 | 89.64 224 | 95.91 173 |
|
| UGNet | | | 89.95 129 | 88.95 141 | 92.95 94 | 94.51 182 | 83.31 120 | 95.70 84 | 95.23 197 | 89.37 56 | 87.58 172 | 93.94 183 | 64.00 310 | 98.78 91 | 83.92 184 | 96.31 110 | 96.74 139 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| UniMVSNet_NR-MVSNet | | | 89.92 131 | 89.29 134 | 91.81 154 | 93.39 231 | 83.72 106 | 94.43 162 | 97.12 41 | 89.80 43 | 86.46 196 | 93.32 203 | 83.16 79 | 97.23 234 | 84.92 169 | 81.02 328 | 94.49 235 |
|
| AdaColmap |  | | 89.89 132 | 89.07 138 | 92.37 125 | 97.41 62 | 83.03 133 | 94.42 163 | 95.92 145 | 82.81 233 | 86.34 202 | 94.65 156 | 73.89 202 | 99.02 61 | 80.69 242 | 95.51 120 | 95.05 204 |
|
| hse-mvs2 | | | 89.88 133 | 89.34 132 | 91.51 164 | 94.83 165 | 81.12 187 | 93.94 198 | 93.91 259 | 89.80 43 | 93.08 67 | 93.60 197 | 75.77 171 | 97.66 187 | 92.07 73 | 77.07 361 | 95.74 182 |
|
| UniMVSNet (Re) | | | 89.80 134 | 89.07 138 | 92.01 135 | 93.60 225 | 84.52 85 | 94.78 137 | 97.47 11 | 89.26 60 | 86.44 199 | 92.32 237 | 82.10 101 | 97.39 222 | 84.81 172 | 80.84 332 | 94.12 249 |
|
| HQP-MVS | | | 89.80 134 | 89.28 135 | 91.34 172 | 94.17 198 | 81.56 171 | 94.39 166 | 96.04 137 | 88.81 74 | 85.43 229 | 93.97 182 | 73.83 204 | 97.96 171 | 87.11 146 | 89.77 222 | 94.50 233 |
|
| FA-MVS(test-final) | | | 89.66 136 | 88.91 143 | 91.93 143 | 94.57 179 | 80.27 208 | 91.36 288 | 94.74 229 | 84.87 183 | 89.82 136 | 92.61 229 | 74.72 189 | 98.47 120 | 83.97 183 | 93.53 161 | 97.04 122 |
|
| VPA-MVSNet | | | 89.62 137 | 88.96 140 | 91.60 161 | 93.86 213 | 82.89 139 | 95.46 96 | 97.33 25 | 87.91 105 | 88.43 157 | 93.31 204 | 74.17 197 | 97.40 219 | 87.32 142 | 82.86 304 | 94.52 229 |
|
| WTY-MVS | | | 89.60 138 | 88.92 142 | 91.67 159 | 95.47 131 | 81.15 186 | 92.38 259 | 94.78 227 | 83.11 225 | 89.06 147 | 94.32 166 | 78.67 142 | 96.61 268 | 81.57 228 | 90.89 203 | 97.24 108 |
|
| Vis-MVSNet (Re-imp) | | | 89.59 139 | 89.44 128 | 90.03 228 | 95.74 117 | 75.85 306 | 95.61 92 | 90.80 338 | 87.66 116 | 87.83 167 | 95.40 120 | 76.79 160 | 96.46 281 | 78.37 268 | 96.73 101 | 97.80 86 |
|
| VDDNet | | | 89.56 140 | 88.49 156 | 92.76 103 | 95.07 149 | 82.09 161 | 96.30 43 | 93.19 273 | 81.05 276 | 91.88 104 | 96.86 59 | 61.16 334 | 98.33 137 | 88.43 127 | 92.49 186 | 97.84 84 |
|
| 114514_t | | | 89.51 141 | 88.50 154 | 92.54 116 | 98.11 36 | 81.99 163 | 95.16 115 | 96.36 106 | 70.19 379 | 85.81 211 | 95.25 124 | 76.70 162 | 98.63 102 | 82.07 216 | 96.86 99 | 97.00 125 |
|
| QAPM | | | 89.51 141 | 88.15 165 | 93.59 70 | 94.92 159 | 84.58 81 | 96.82 29 | 96.70 83 | 78.43 310 | 83.41 283 | 96.19 90 | 73.18 213 | 99.30 40 | 77.11 284 | 96.54 105 | 96.89 132 |
|
| CLD-MVS | | | 89.47 143 | 88.90 144 | 91.18 178 | 94.22 197 | 82.07 162 | 92.13 270 | 96.09 132 | 87.90 106 | 85.37 235 | 92.45 233 | 74.38 192 | 97.56 197 | 87.15 144 | 90.43 208 | 93.93 258 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LPG-MVS_test | | | 89.45 144 | 88.90 144 | 91.12 179 | 94.47 183 | 81.49 175 | 95.30 103 | 96.14 125 | 86.73 135 | 85.45 226 | 95.16 130 | 69.89 252 | 98.10 152 | 87.70 135 | 89.23 232 | 93.77 272 |
|
| CDS-MVSNet | | | 89.45 144 | 88.51 153 | 92.29 130 | 93.62 224 | 83.61 113 | 93.01 240 | 94.68 232 | 81.95 250 | 87.82 168 | 93.24 208 | 78.69 141 | 96.99 250 | 80.34 248 | 93.23 171 | 96.28 155 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Fast-Effi-MVS+ | | | 89.41 146 | 88.64 149 | 91.71 158 | 94.74 167 | 80.81 196 | 93.54 214 | 95.10 204 | 83.11 225 | 86.82 191 | 90.67 295 | 79.74 127 | 97.75 183 | 80.51 246 | 93.55 160 | 96.57 146 |
|
| ab-mvs | | | 89.41 146 | 88.35 158 | 92.60 112 | 95.15 147 | 82.65 150 | 92.20 268 | 95.60 173 | 83.97 202 | 88.55 153 | 93.70 196 | 74.16 198 | 98.21 146 | 82.46 206 | 89.37 228 | 96.94 128 |
|
| XVG-OURS | | | 89.40 148 | 88.70 148 | 91.52 163 | 94.06 202 | 81.46 177 | 91.27 292 | 96.07 134 | 86.14 154 | 88.89 149 | 95.77 108 | 68.73 272 | 97.26 231 | 87.39 140 | 89.96 215 | 95.83 178 |
|
| test_vis1_n_1920 | | | 89.39 149 | 89.84 121 | 88.04 291 | 92.97 247 | 72.64 340 | 94.71 143 | 96.03 139 | 86.18 152 | 91.94 103 | 96.56 78 | 61.63 324 | 95.74 316 | 93.42 41 | 95.11 133 | 95.74 182 |
|
| mvs_anonymous | | | 89.37 150 | 89.32 133 | 89.51 254 | 93.47 228 | 74.22 323 | 91.65 283 | 94.83 223 | 82.91 231 | 85.45 226 | 93.79 191 | 81.23 115 | 96.36 288 | 86.47 153 | 94.09 151 | 97.94 76 |
|
| DU-MVS | | | 89.34 151 | 88.50 154 | 91.85 151 | 93.04 243 | 83.72 106 | 94.47 159 | 96.59 90 | 89.50 52 | 86.46 196 | 93.29 206 | 77.25 156 | 97.23 234 | 84.92 169 | 81.02 328 | 94.59 224 |
|
| TAMVS | | | 89.21 152 | 88.29 162 | 91.96 141 | 93.71 220 | 82.62 152 | 93.30 227 | 94.19 247 | 82.22 243 | 87.78 169 | 93.94 183 | 78.83 138 | 96.95 252 | 77.70 277 | 92.98 175 | 96.32 152 |
|
| ACMM | | 84.12 9 | 89.14 153 | 88.48 157 | 91.12 179 | 94.65 174 | 81.22 184 | 95.31 101 | 96.12 129 | 85.31 173 | 85.92 210 | 94.34 164 | 70.19 250 | 98.06 164 | 85.65 162 | 88.86 237 | 94.08 253 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test1111 | | | 89.10 154 | 88.64 149 | 90.48 208 | 95.53 129 | 74.97 314 | 96.08 61 | 84.89 382 | 88.13 100 | 90.16 132 | 96.65 70 | 63.29 315 | 98.10 152 | 86.14 154 | 96.90 96 | 98.39 39 |
|
| EI-MVSNet | | | 89.10 154 | 88.86 146 | 89.80 241 | 91.84 278 | 78.30 262 | 93.70 210 | 95.01 207 | 85.73 162 | 87.15 179 | 95.28 122 | 79.87 125 | 97.21 236 | 83.81 186 | 87.36 263 | 93.88 261 |
|
| ECVR-MVS |  | | 89.09 156 | 88.53 152 | 90.77 197 | 95.62 124 | 75.89 305 | 96.16 53 | 84.22 384 | 87.89 108 | 90.20 130 | 96.65 70 | 63.19 317 | 98.10 152 | 85.90 159 | 96.94 94 | 98.33 43 |
|
| CNLPA | | | 89.07 157 | 87.98 168 | 92.34 126 | 96.87 74 | 84.78 78 | 94.08 186 | 93.24 271 | 81.41 267 | 84.46 254 | 95.13 132 | 75.57 178 | 96.62 265 | 77.21 282 | 93.84 156 | 95.61 189 |
|
| PLC |  | 84.53 7 | 89.06 158 | 88.03 167 | 92.15 133 | 97.27 68 | 82.69 148 | 94.29 172 | 95.44 186 | 79.71 289 | 84.01 269 | 94.18 173 | 76.68 163 | 98.75 93 | 77.28 281 | 93.41 166 | 95.02 205 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test_djsdf | | | 89.03 159 | 88.64 149 | 90.21 219 | 90.74 325 | 79.28 243 | 95.96 72 | 95.90 148 | 84.66 192 | 85.33 237 | 92.94 218 | 74.02 200 | 97.30 225 | 89.64 114 | 88.53 241 | 94.05 255 |
|
| HY-MVS | | 83.01 12 | 89.03 159 | 87.94 170 | 92.29 130 | 94.86 163 | 82.77 141 | 92.08 273 | 94.49 235 | 81.52 266 | 86.93 183 | 92.79 225 | 78.32 148 | 98.23 143 | 79.93 253 | 90.55 206 | 95.88 175 |
|
| ACMP | | 84.23 8 | 89.01 161 | 88.35 158 | 90.99 190 | 94.73 168 | 81.27 181 | 95.07 119 | 95.89 150 | 86.48 139 | 83.67 276 | 94.30 167 | 69.33 260 | 97.99 169 | 87.10 148 | 88.55 240 | 93.72 276 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| sss | | | 88.93 162 | 88.26 164 | 90.94 193 | 94.05 203 | 80.78 197 | 91.71 280 | 95.38 190 | 81.55 265 | 88.63 152 | 93.91 187 | 75.04 183 | 95.47 327 | 82.47 205 | 91.61 191 | 96.57 146 |
|
| TranMVSNet+NR-MVSNet | | | 88.84 163 | 87.95 169 | 91.49 165 | 92.68 254 | 83.01 135 | 94.92 128 | 96.31 109 | 89.88 40 | 85.53 220 | 93.85 190 | 76.63 164 | 96.96 251 | 81.91 220 | 79.87 345 | 94.50 233 |
|
| CHOSEN 1792x2688 | | | 88.84 163 | 87.69 174 | 92.30 129 | 96.14 96 | 81.42 179 | 90.01 320 | 95.86 152 | 74.52 349 | 87.41 175 | 93.94 183 | 75.46 179 | 98.36 132 | 80.36 247 | 95.53 119 | 97.12 118 |
|
| MVSTER | | | 88.84 163 | 88.29 162 | 90.51 206 | 92.95 248 | 80.44 205 | 93.73 207 | 95.01 207 | 84.66 192 | 87.15 179 | 93.12 213 | 72.79 218 | 97.21 236 | 87.86 133 | 87.36 263 | 93.87 262 |
|
| test_cas_vis1_n_1920 | | | 88.83 166 | 88.85 147 | 88.78 270 | 91.15 306 | 76.72 293 | 93.85 203 | 94.93 215 | 83.23 224 | 92.81 77 | 96.00 96 | 61.17 333 | 94.45 337 | 91.67 88 | 94.84 135 | 95.17 201 |
|
| OpenMVS |  | 83.78 11 | 88.74 167 | 87.29 184 | 93.08 84 | 92.70 253 | 85.39 69 | 96.57 36 | 96.43 99 | 78.74 305 | 80.85 313 | 96.07 94 | 69.64 256 | 99.01 63 | 78.01 275 | 96.65 104 | 94.83 216 |
|
| thisisatest0530 | | | 88.67 168 | 87.61 176 | 91.86 149 | 94.87 162 | 80.07 215 | 94.63 148 | 89.90 355 | 84.00 201 | 88.46 156 | 93.78 192 | 66.88 287 | 98.46 121 | 83.30 191 | 92.65 181 | 97.06 120 |
|
| Effi-MVS+-dtu | | | 88.65 169 | 88.35 158 | 89.54 251 | 93.33 232 | 76.39 299 | 94.47 159 | 94.36 241 | 87.70 113 | 85.43 229 | 89.56 321 | 73.45 209 | 97.26 231 | 85.57 164 | 91.28 195 | 94.97 206 |
|
| tttt0517 | | | 88.61 170 | 87.78 173 | 91.11 182 | 94.96 156 | 77.81 275 | 95.35 99 | 89.69 358 | 85.09 179 | 88.05 163 | 94.59 160 | 66.93 285 | 98.48 117 | 83.27 192 | 92.13 189 | 97.03 123 |
|
| BH-untuned | | | 88.60 171 | 88.13 166 | 90.01 231 | 95.24 141 | 78.50 256 | 93.29 228 | 94.15 249 | 84.75 189 | 84.46 254 | 93.40 200 | 75.76 173 | 97.40 219 | 77.59 278 | 94.52 145 | 94.12 249 |
|
| sd_testset | | | 88.59 172 | 87.85 172 | 90.83 194 | 96.00 106 | 80.42 206 | 92.35 261 | 94.71 230 | 88.73 78 | 86.85 189 | 95.20 128 | 67.31 279 | 96.43 283 | 79.64 257 | 89.85 219 | 95.63 187 |
|
| NR-MVSNet | | | 88.58 173 | 87.47 180 | 91.93 143 | 93.04 243 | 84.16 97 | 94.77 138 | 96.25 117 | 89.05 67 | 80.04 326 | 93.29 206 | 79.02 137 | 97.05 247 | 81.71 227 | 80.05 342 | 94.59 224 |
|
| 1112_ss | | | 88.42 174 | 87.33 183 | 91.72 157 | 94.92 159 | 80.98 190 | 92.97 242 | 94.54 234 | 78.16 316 | 83.82 272 | 93.88 188 | 78.78 140 | 97.91 175 | 79.45 259 | 89.41 227 | 96.26 156 |
|
| WR-MVS | | | 88.38 175 | 87.67 175 | 90.52 205 | 93.30 233 | 80.18 210 | 93.26 230 | 95.96 143 | 88.57 85 | 85.47 225 | 92.81 223 | 76.12 166 | 96.91 255 | 81.24 232 | 82.29 308 | 94.47 238 |
|
| BH-RMVSNet | | | 88.37 176 | 87.48 179 | 91.02 187 | 95.28 137 | 79.45 235 | 92.89 244 | 93.07 275 | 85.45 170 | 86.91 185 | 94.84 147 | 70.35 247 | 97.76 180 | 73.97 311 | 94.59 142 | 95.85 176 |
|
| IterMVS-LS | | | 88.36 177 | 87.91 171 | 89.70 245 | 93.80 216 | 78.29 263 | 93.73 207 | 95.08 206 | 85.73 162 | 84.75 246 | 91.90 256 | 79.88 124 | 96.92 254 | 83.83 185 | 82.51 305 | 93.89 259 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| X-MVStestdata | | | 88.31 178 | 86.13 224 | 94.85 25 | 98.54 13 | 86.60 34 | 96.93 22 | 97.19 35 | 90.66 24 | 92.85 74 | 23.41 406 | 85.02 59 | 99.49 26 | 91.99 77 | 98.56 52 | 98.47 33 |
|
| LCM-MVSNet-Re | | | 88.30 179 | 88.32 161 | 88.27 284 | 94.71 170 | 72.41 345 | 93.15 233 | 90.98 332 | 87.77 111 | 79.25 335 | 91.96 254 | 78.35 147 | 95.75 315 | 83.04 194 | 95.62 118 | 96.65 142 |
|
| jajsoiax | | | 88.24 180 | 87.50 178 | 90.48 208 | 90.89 319 | 80.14 212 | 95.31 101 | 95.65 170 | 84.97 181 | 84.24 265 | 94.02 178 | 65.31 303 | 97.42 212 | 88.56 125 | 88.52 242 | 93.89 259 |
|
| VPNet | | | 88.20 181 | 87.47 180 | 90.39 213 | 93.56 226 | 79.46 234 | 94.04 190 | 95.54 177 | 88.67 81 | 86.96 182 | 94.58 161 | 69.33 260 | 97.15 238 | 84.05 182 | 80.53 337 | 94.56 227 |
|
| TAPA-MVS | | 84.62 6 | 88.16 182 | 87.01 192 | 91.62 160 | 96.64 80 | 80.65 199 | 94.39 166 | 96.21 123 | 76.38 329 | 86.19 206 | 95.44 117 | 79.75 126 | 98.08 162 | 62.75 373 | 95.29 129 | 96.13 162 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| baseline1 | | | 88.10 183 | 87.28 185 | 90.57 201 | 94.96 156 | 80.07 215 | 94.27 173 | 91.29 325 | 86.74 134 | 87.41 175 | 94.00 180 | 76.77 161 | 96.20 294 | 80.77 240 | 79.31 350 | 95.44 191 |
|
| Anonymous20240529 | | | 88.09 184 | 86.59 207 | 92.58 114 | 96.53 86 | 81.92 166 | 95.99 70 | 95.84 153 | 74.11 353 | 89.06 147 | 95.21 127 | 61.44 327 | 98.81 89 | 83.67 189 | 87.47 260 | 97.01 124 |
|
| HyFIR lowres test | | | 88.09 184 | 86.81 196 | 91.93 143 | 96.00 106 | 80.63 200 | 90.01 320 | 95.79 156 | 73.42 360 | 87.68 171 | 92.10 248 | 73.86 203 | 97.96 171 | 80.75 241 | 91.70 190 | 97.19 111 |
|
| mvs_tets | | | 88.06 186 | 87.28 185 | 90.38 215 | 90.94 315 | 79.88 225 | 95.22 110 | 95.66 168 | 85.10 178 | 84.21 266 | 93.94 183 | 63.53 313 | 97.40 219 | 88.50 126 | 88.40 246 | 93.87 262 |
|
| F-COLMAP | | | 87.95 187 | 86.80 197 | 91.40 169 | 96.35 92 | 80.88 194 | 94.73 140 | 95.45 184 | 79.65 290 | 82.04 300 | 94.61 157 | 71.13 233 | 98.50 115 | 76.24 293 | 91.05 201 | 94.80 218 |
|
| LS3D | | | 87.89 188 | 86.32 217 | 92.59 113 | 96.07 103 | 82.92 138 | 95.23 109 | 94.92 216 | 75.66 336 | 82.89 290 | 95.98 98 | 72.48 222 | 99.21 45 | 68.43 345 | 95.23 132 | 95.64 186 |
|
| anonymousdsp | | | 87.84 189 | 87.09 188 | 90.12 224 | 89.13 352 | 80.54 203 | 94.67 145 | 95.55 175 | 82.05 246 | 83.82 272 | 92.12 245 | 71.47 231 | 97.15 238 | 87.15 144 | 87.80 258 | 92.67 312 |
|
| v2v482 | | | 87.84 189 | 87.06 189 | 90.17 220 | 90.99 311 | 79.23 246 | 94.00 195 | 95.13 201 | 84.87 183 | 85.53 220 | 92.07 251 | 74.45 191 | 97.45 207 | 84.71 174 | 81.75 316 | 93.85 265 |
|
| WR-MVS_H | | | 87.80 191 | 87.37 182 | 89.10 263 | 93.23 234 | 78.12 266 | 95.61 92 | 97.30 29 | 87.90 106 | 83.72 274 | 92.01 253 | 79.65 132 | 96.01 302 | 76.36 290 | 80.54 336 | 93.16 297 |
|
| AUN-MVS | | | 87.78 192 | 86.54 209 | 91.48 166 | 94.82 166 | 81.05 188 | 93.91 202 | 93.93 256 | 83.00 228 | 86.93 183 | 93.53 198 | 69.50 258 | 97.67 185 | 86.14 154 | 77.12 360 | 95.73 184 |
|
| PCF-MVS | | 84.11 10 | 87.74 193 | 86.08 228 | 92.70 108 | 94.02 204 | 84.43 91 | 89.27 332 | 95.87 151 | 73.62 358 | 84.43 256 | 94.33 165 | 78.48 146 | 98.86 84 | 70.27 331 | 94.45 147 | 94.81 217 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Anonymous202405211 | | | 87.68 194 | 86.13 224 | 92.31 128 | 96.66 79 | 80.74 198 | 94.87 131 | 91.49 320 | 80.47 280 | 89.46 141 | 95.44 117 | 54.72 365 | 98.23 143 | 82.19 212 | 89.89 217 | 97.97 74 |
|
| V42 | | | 87.68 194 | 86.86 194 | 90.15 222 | 90.58 330 | 80.14 212 | 94.24 176 | 95.28 195 | 83.66 209 | 85.67 215 | 91.33 271 | 74.73 188 | 97.41 217 | 84.43 178 | 81.83 314 | 92.89 307 |
|
| thres600view7 | | | 87.65 196 | 86.67 202 | 90.59 200 | 96.08 102 | 78.72 249 | 94.88 130 | 91.58 316 | 87.06 125 | 88.08 161 | 92.30 238 | 68.91 269 | 98.10 152 | 70.05 338 | 91.10 196 | 94.96 209 |
|
| XXY-MVS | | | 87.65 196 | 86.85 195 | 90.03 228 | 92.14 266 | 80.60 202 | 93.76 206 | 95.23 197 | 82.94 230 | 84.60 249 | 94.02 178 | 74.27 193 | 95.49 326 | 81.04 234 | 83.68 292 | 94.01 257 |
|
| Test_1112_low_res | | | 87.65 196 | 86.51 210 | 91.08 183 | 94.94 158 | 79.28 243 | 91.77 278 | 94.30 243 | 76.04 334 | 83.51 281 | 92.37 235 | 77.86 153 | 97.73 184 | 78.69 267 | 89.13 234 | 96.22 158 |
|
| thres100view900 | | | 87.63 199 | 86.71 200 | 90.38 215 | 96.12 97 | 78.55 253 | 95.03 122 | 91.58 316 | 87.15 122 | 88.06 162 | 92.29 239 | 68.91 269 | 98.10 152 | 70.13 335 | 91.10 196 | 94.48 236 |
|
| CP-MVSNet | | | 87.63 199 | 87.26 187 | 88.74 274 | 93.12 237 | 76.59 296 | 95.29 105 | 96.58 91 | 88.43 88 | 83.49 282 | 92.98 217 | 75.28 180 | 95.83 310 | 78.97 265 | 81.15 324 | 93.79 267 |
|
| thres400 | | | 87.62 201 | 86.64 203 | 90.57 201 | 95.99 109 | 78.64 251 | 94.58 151 | 91.98 306 | 86.94 129 | 88.09 159 | 91.77 258 | 69.18 265 | 98.10 152 | 70.13 335 | 91.10 196 | 94.96 209 |
|
| v1144 | | | 87.61 202 | 86.79 198 | 90.06 227 | 91.01 310 | 79.34 239 | 93.95 197 | 95.42 189 | 83.36 220 | 85.66 216 | 91.31 274 | 74.98 184 | 97.42 212 | 83.37 190 | 82.06 310 | 93.42 287 |
|
| tfpn200view9 | | | 87.58 203 | 86.64 203 | 90.41 212 | 95.99 109 | 78.64 251 | 94.58 151 | 91.98 306 | 86.94 129 | 88.09 159 | 91.77 258 | 69.18 265 | 98.10 152 | 70.13 335 | 91.10 196 | 94.48 236 |
|
| BH-w/o | | | 87.57 204 | 87.05 190 | 89.12 262 | 94.90 161 | 77.90 271 | 92.41 257 | 93.51 268 | 82.89 232 | 83.70 275 | 91.34 270 | 75.75 174 | 97.07 245 | 75.49 297 | 93.49 163 | 92.39 322 |
|
| UniMVSNet_ETH3D | | | 87.53 205 | 86.37 214 | 91.00 189 | 92.44 259 | 78.96 248 | 94.74 139 | 95.61 172 | 84.07 200 | 85.36 236 | 94.52 162 | 59.78 342 | 97.34 224 | 82.93 196 | 87.88 254 | 96.71 140 |
|
| ET-MVSNet_ETH3D | | | 87.51 206 | 85.91 236 | 92.32 127 | 93.70 222 | 83.93 101 | 92.33 263 | 90.94 334 | 84.16 197 | 72.09 375 | 92.52 231 | 69.90 251 | 95.85 309 | 89.20 118 | 88.36 247 | 97.17 112 |
|
| 1314 | | | 87.51 206 | 86.57 208 | 90.34 217 | 92.42 260 | 79.74 229 | 92.63 252 | 95.35 194 | 78.35 311 | 80.14 323 | 91.62 265 | 74.05 199 | 97.15 238 | 81.05 233 | 93.53 161 | 94.12 249 |
|
| v8 | | | 87.50 208 | 86.71 200 | 89.89 235 | 91.37 296 | 79.40 236 | 94.50 155 | 95.38 190 | 84.81 187 | 83.60 279 | 91.33 271 | 76.05 167 | 97.42 212 | 82.84 199 | 80.51 339 | 92.84 309 |
|
| Fast-Effi-MVS+-dtu | | | 87.44 209 | 86.72 199 | 89.63 249 | 92.04 270 | 77.68 281 | 94.03 191 | 93.94 255 | 85.81 159 | 82.42 294 | 91.32 273 | 70.33 248 | 97.06 246 | 80.33 249 | 90.23 211 | 94.14 248 |
|
| MVS | | | 87.44 209 | 86.10 227 | 91.44 168 | 92.61 255 | 83.62 111 | 92.63 252 | 95.66 168 | 67.26 383 | 81.47 305 | 92.15 243 | 77.95 150 | 98.22 145 | 79.71 255 | 95.48 122 | 92.47 318 |
|
| FE-MVS | | | 87.40 211 | 86.02 230 | 91.57 162 | 94.56 180 | 79.69 230 | 90.27 309 | 93.72 265 | 80.57 279 | 88.80 150 | 91.62 265 | 65.32 302 | 98.59 107 | 74.97 305 | 94.33 150 | 96.44 149 |
|
| FMVSNet3 | | | 87.40 211 | 86.11 226 | 91.30 174 | 93.79 218 | 83.64 110 | 94.20 178 | 94.81 225 | 83.89 204 | 84.37 257 | 91.87 257 | 68.45 275 | 96.56 273 | 78.23 272 | 85.36 277 | 93.70 277 |
|
| test_fmvs1 | | | 87.34 213 | 87.56 177 | 86.68 324 | 90.59 329 | 71.80 349 | 94.01 193 | 94.04 254 | 78.30 312 | 91.97 99 | 95.22 125 | 56.28 357 | 93.71 352 | 92.89 49 | 94.71 137 | 94.52 229 |
|
| thisisatest0515 | | | 87.33 214 | 85.99 231 | 91.37 171 | 93.49 227 | 79.55 232 | 90.63 305 | 89.56 361 | 80.17 282 | 87.56 173 | 90.86 287 | 67.07 284 | 98.28 141 | 81.50 229 | 93.02 174 | 96.29 154 |
|
| PS-CasMVS | | | 87.32 215 | 86.88 193 | 88.63 277 | 92.99 246 | 76.33 301 | 95.33 100 | 96.61 89 | 88.22 96 | 83.30 287 | 93.07 215 | 73.03 216 | 95.79 314 | 78.36 269 | 81.00 330 | 93.75 274 |
|
| GBi-Net | | | 87.26 216 | 85.98 232 | 91.08 183 | 94.01 205 | 83.10 127 | 95.14 116 | 94.94 211 | 83.57 211 | 84.37 257 | 91.64 261 | 66.59 292 | 96.34 289 | 78.23 272 | 85.36 277 | 93.79 267 |
|
| test1 | | | 87.26 216 | 85.98 232 | 91.08 183 | 94.01 205 | 83.10 127 | 95.14 116 | 94.94 211 | 83.57 211 | 84.37 257 | 91.64 261 | 66.59 292 | 96.34 289 | 78.23 272 | 85.36 277 | 93.79 267 |
|
| v1192 | | | 87.25 218 | 86.33 216 | 90.00 232 | 90.76 324 | 79.04 247 | 93.80 204 | 95.48 180 | 82.57 237 | 85.48 224 | 91.18 278 | 73.38 212 | 97.42 212 | 82.30 209 | 82.06 310 | 93.53 281 |
|
| v10 | | | 87.25 218 | 86.38 213 | 89.85 236 | 91.19 302 | 79.50 233 | 94.48 156 | 95.45 184 | 83.79 207 | 83.62 278 | 91.19 276 | 75.13 181 | 97.42 212 | 81.94 219 | 80.60 334 | 92.63 314 |
|
| DP-MVS | | | 87.25 218 | 85.36 252 | 92.90 96 | 97.65 55 | 83.24 121 | 94.81 135 | 92.00 304 | 74.99 344 | 81.92 302 | 95.00 135 | 72.66 219 | 99.05 55 | 66.92 357 | 92.33 187 | 96.40 150 |
|
| miper_ehance_all_eth | | | 87.22 221 | 86.62 206 | 89.02 266 | 92.13 267 | 77.40 285 | 90.91 301 | 94.81 225 | 81.28 270 | 84.32 262 | 90.08 310 | 79.26 134 | 96.62 265 | 83.81 186 | 82.94 300 | 93.04 302 |
|
| test2506 | | | 87.21 222 | 86.28 219 | 90.02 230 | 95.62 124 | 73.64 328 | 96.25 48 | 71.38 406 | 87.89 108 | 90.45 126 | 96.65 70 | 55.29 363 | 98.09 160 | 86.03 158 | 96.94 94 | 98.33 43 |
|
| thres200 | | | 87.21 222 | 86.24 221 | 90.12 224 | 95.36 134 | 78.53 254 | 93.26 230 | 92.10 300 | 86.42 142 | 88.00 164 | 91.11 282 | 69.24 264 | 98.00 168 | 69.58 339 | 91.04 202 | 93.83 266 |
|
| v144192 | | | 87.19 224 | 86.35 215 | 89.74 242 | 90.64 328 | 78.24 264 | 93.92 200 | 95.43 187 | 81.93 251 | 85.51 222 | 91.05 284 | 74.21 196 | 97.45 207 | 82.86 198 | 81.56 318 | 93.53 281 |
|
| FMVSNet2 | | | 87.19 224 | 85.82 238 | 91.30 174 | 94.01 205 | 83.67 108 | 94.79 136 | 94.94 211 | 83.57 211 | 83.88 271 | 92.05 252 | 66.59 292 | 96.51 276 | 77.56 279 | 85.01 280 | 93.73 275 |
|
| c3_l | | | 87.14 226 | 86.50 211 | 89.04 265 | 92.20 264 | 77.26 286 | 91.22 295 | 94.70 231 | 82.01 249 | 84.34 261 | 90.43 299 | 78.81 139 | 96.61 268 | 83.70 188 | 81.09 325 | 93.25 292 |
|
| testing91 | | | 87.11 227 | 86.18 222 | 89.92 234 | 94.43 188 | 75.38 313 | 91.53 285 | 92.27 296 | 86.48 139 | 86.50 194 | 90.24 302 | 61.19 332 | 97.53 199 | 82.10 214 | 90.88 204 | 96.84 135 |
|
| Baseline_NR-MVSNet | | | 87.07 228 | 86.63 205 | 88.40 280 | 91.44 291 | 77.87 273 | 94.23 177 | 92.57 288 | 84.12 199 | 85.74 214 | 92.08 249 | 77.25 156 | 96.04 299 | 82.29 210 | 79.94 343 | 91.30 345 |
|
| v148 | | | 87.04 229 | 86.32 217 | 89.21 259 | 90.94 315 | 77.26 286 | 93.71 209 | 94.43 237 | 84.84 186 | 84.36 260 | 90.80 291 | 76.04 168 | 97.05 247 | 82.12 213 | 79.60 347 | 93.31 289 |
|
| test_fmvs1_n | | | 87.03 230 | 87.04 191 | 86.97 316 | 89.74 347 | 71.86 347 | 94.55 153 | 94.43 237 | 78.47 308 | 91.95 102 | 95.50 116 | 51.16 376 | 93.81 350 | 93.02 48 | 94.56 143 | 95.26 198 |
|
| v1921920 | | | 86.97 231 | 86.06 229 | 89.69 246 | 90.53 333 | 78.11 267 | 93.80 204 | 95.43 187 | 81.90 253 | 85.33 237 | 91.05 284 | 72.66 219 | 97.41 217 | 82.05 217 | 81.80 315 | 93.53 281 |
|
| tt0805 | | | 86.92 232 | 85.74 244 | 90.48 208 | 92.22 263 | 79.98 223 | 95.63 91 | 94.88 219 | 83.83 206 | 84.74 247 | 92.80 224 | 57.61 352 | 97.67 185 | 85.48 165 | 84.42 284 | 93.79 267 |
|
| miper_enhance_ethall | | | 86.90 233 | 86.18 222 | 89.06 264 | 91.66 287 | 77.58 283 | 90.22 315 | 94.82 224 | 79.16 296 | 84.48 253 | 89.10 326 | 79.19 136 | 96.66 263 | 84.06 181 | 82.94 300 | 92.94 305 |
|
| v7n | | | 86.81 234 | 85.76 242 | 89.95 233 | 90.72 326 | 79.25 245 | 95.07 119 | 95.92 145 | 84.45 195 | 82.29 295 | 90.86 287 | 72.60 221 | 97.53 199 | 79.42 262 | 80.52 338 | 93.08 301 |
|
| PEN-MVS | | | 86.80 235 | 86.27 220 | 88.40 280 | 92.32 262 | 75.71 308 | 95.18 113 | 96.38 105 | 87.97 103 | 82.82 291 | 93.15 211 | 73.39 211 | 95.92 305 | 76.15 294 | 79.03 352 | 93.59 279 |
|
| cl22 | | | 86.78 236 | 85.98 232 | 89.18 261 | 92.34 261 | 77.62 282 | 90.84 302 | 94.13 251 | 81.33 269 | 83.97 270 | 90.15 307 | 73.96 201 | 96.60 270 | 84.19 180 | 82.94 300 | 93.33 288 |
|
| v1240 | | | 86.78 236 | 85.85 237 | 89.56 250 | 90.45 334 | 77.79 277 | 93.61 212 | 95.37 192 | 81.65 261 | 85.43 229 | 91.15 280 | 71.50 230 | 97.43 211 | 81.47 230 | 82.05 312 | 93.47 285 |
|
| TR-MVS | | | 86.78 236 | 85.76 242 | 89.82 238 | 94.37 190 | 78.41 258 | 92.47 256 | 92.83 280 | 81.11 275 | 86.36 200 | 92.40 234 | 68.73 272 | 97.48 203 | 73.75 314 | 89.85 219 | 93.57 280 |
|
| PatchMatch-RL | | | 86.77 239 | 85.54 246 | 90.47 211 | 95.88 112 | 82.71 147 | 90.54 306 | 92.31 294 | 79.82 288 | 84.32 262 | 91.57 269 | 68.77 271 | 96.39 285 | 73.16 316 | 93.48 165 | 92.32 325 |
|
| testing99 | | | 86.72 240 | 85.73 245 | 89.69 246 | 94.23 196 | 74.91 316 | 91.35 289 | 90.97 333 | 86.14 154 | 86.36 200 | 90.22 303 | 59.41 344 | 97.48 203 | 82.24 211 | 90.66 205 | 96.69 141 |
|
| PAPM | | | 86.68 241 | 85.39 250 | 90.53 203 | 93.05 242 | 79.33 242 | 89.79 323 | 94.77 228 | 78.82 302 | 81.95 301 | 93.24 208 | 76.81 159 | 97.30 225 | 66.94 355 | 93.16 172 | 94.95 212 |
|
| pm-mvs1 | | | 86.61 242 | 85.54 246 | 89.82 238 | 91.44 291 | 80.18 210 | 95.28 107 | 94.85 221 | 83.84 205 | 81.66 303 | 92.62 228 | 72.45 224 | 96.48 278 | 79.67 256 | 78.06 353 | 92.82 310 |
|
| GA-MVS | | | 86.61 242 | 85.27 255 | 90.66 199 | 91.33 299 | 78.71 250 | 90.40 308 | 93.81 263 | 85.34 172 | 85.12 239 | 89.57 320 | 61.25 329 | 97.11 242 | 80.99 237 | 89.59 225 | 96.15 160 |
|
| Anonymous20231211 | | | 86.59 244 | 85.13 257 | 90.98 192 | 96.52 87 | 81.50 173 | 96.14 57 | 96.16 124 | 73.78 356 | 83.65 277 | 92.15 243 | 63.26 316 | 97.37 223 | 82.82 200 | 81.74 317 | 94.06 254 |
|
| test_vis1_n | | | 86.56 245 | 86.49 212 | 86.78 323 | 88.51 357 | 72.69 337 | 94.68 144 | 93.78 264 | 79.55 291 | 90.70 123 | 95.31 121 | 48.75 381 | 93.28 358 | 93.15 45 | 93.99 152 | 94.38 240 |
|
| DIV-MVS_self_test | | | 86.53 246 | 85.78 239 | 88.75 272 | 92.02 272 | 76.45 298 | 90.74 303 | 94.30 243 | 81.83 257 | 83.34 285 | 90.82 290 | 75.75 174 | 96.57 271 | 81.73 226 | 81.52 320 | 93.24 293 |
|
| cl____ | | | 86.52 247 | 85.78 239 | 88.75 272 | 92.03 271 | 76.46 297 | 90.74 303 | 94.30 243 | 81.83 257 | 83.34 285 | 90.78 292 | 75.74 176 | 96.57 271 | 81.74 225 | 81.54 319 | 93.22 294 |
|
| eth_miper_zixun_eth | | | 86.50 248 | 85.77 241 | 88.68 275 | 91.94 273 | 75.81 307 | 90.47 307 | 94.89 217 | 82.05 246 | 84.05 267 | 90.46 298 | 75.96 169 | 96.77 259 | 82.76 202 | 79.36 349 | 93.46 286 |
|
| baseline2 | | | 86.50 248 | 85.39 250 | 89.84 237 | 91.12 307 | 76.70 294 | 91.88 275 | 88.58 364 | 82.35 242 | 79.95 327 | 90.95 286 | 73.42 210 | 97.63 192 | 80.27 250 | 89.95 216 | 95.19 200 |
|
| EPNet_dtu | | | 86.49 250 | 85.94 235 | 88.14 289 | 90.24 337 | 72.82 335 | 94.11 182 | 92.20 298 | 86.66 137 | 79.42 334 | 92.36 236 | 73.52 207 | 95.81 312 | 71.26 323 | 93.66 157 | 95.80 180 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| testing11 | | | 86.44 251 | 85.35 253 | 89.69 246 | 94.29 195 | 75.40 312 | 91.30 290 | 90.53 341 | 84.76 188 | 85.06 240 | 90.13 308 | 58.95 348 | 97.45 207 | 82.08 215 | 91.09 200 | 96.21 159 |
|
| cascas | | | 86.43 252 | 84.98 260 | 90.80 196 | 92.10 269 | 80.92 193 | 90.24 313 | 95.91 147 | 73.10 363 | 83.57 280 | 88.39 338 | 65.15 304 | 97.46 206 | 84.90 171 | 91.43 193 | 94.03 256 |
|
| SCA | | | 86.32 253 | 85.18 256 | 89.73 244 | 92.15 265 | 76.60 295 | 91.12 296 | 91.69 313 | 83.53 214 | 85.50 223 | 88.81 331 | 66.79 288 | 96.48 278 | 76.65 287 | 90.35 210 | 96.12 163 |
|
| LTVRE_ROB | | 82.13 13 | 86.26 254 | 84.90 263 | 90.34 217 | 94.44 187 | 81.50 173 | 92.31 265 | 94.89 217 | 83.03 227 | 79.63 332 | 92.67 226 | 69.69 255 | 97.79 178 | 71.20 324 | 86.26 272 | 91.72 335 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| DTE-MVSNet | | | 86.11 255 | 85.48 248 | 87.98 292 | 91.65 288 | 74.92 315 | 94.93 127 | 95.75 159 | 87.36 120 | 82.26 296 | 93.04 216 | 72.85 217 | 95.82 311 | 74.04 310 | 77.46 358 | 93.20 295 |
|
| XVG-ACMP-BASELINE | | | 86.00 256 | 84.84 265 | 89.45 255 | 91.20 301 | 78.00 268 | 91.70 281 | 95.55 175 | 85.05 180 | 82.97 289 | 92.25 241 | 54.49 366 | 97.48 203 | 82.93 196 | 87.45 262 | 92.89 307 |
|
| MVP-Stereo | | | 85.97 257 | 84.86 264 | 89.32 257 | 90.92 317 | 82.19 160 | 92.11 271 | 94.19 247 | 78.76 304 | 78.77 340 | 91.63 264 | 68.38 276 | 96.56 273 | 75.01 304 | 93.95 153 | 89.20 370 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| D2MVS | | | 85.90 258 | 85.09 258 | 88.35 282 | 90.79 322 | 77.42 284 | 91.83 277 | 95.70 164 | 80.77 278 | 80.08 325 | 90.02 311 | 66.74 290 | 96.37 286 | 81.88 221 | 87.97 253 | 91.26 346 |
|
| test-LLR | | | 85.87 259 | 85.41 249 | 87.25 308 | 90.95 313 | 71.67 351 | 89.55 326 | 89.88 356 | 83.41 217 | 84.54 251 | 87.95 345 | 67.25 281 | 95.11 332 | 81.82 222 | 93.37 168 | 94.97 206 |
|
| FMVSNet1 | | | 85.85 260 | 84.11 274 | 91.08 183 | 92.81 251 | 83.10 127 | 95.14 116 | 94.94 211 | 81.64 262 | 82.68 292 | 91.64 261 | 59.01 347 | 96.34 289 | 75.37 299 | 83.78 289 | 93.79 267 |
|
| PatchmatchNet |  | | 85.85 260 | 84.70 267 | 89.29 258 | 91.76 282 | 75.54 309 | 88.49 344 | 91.30 324 | 81.63 263 | 85.05 241 | 88.70 335 | 71.71 227 | 96.24 293 | 74.61 308 | 89.05 235 | 96.08 166 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CostFormer | | | 85.77 262 | 84.94 262 | 88.26 285 | 91.16 305 | 72.58 343 | 89.47 330 | 91.04 331 | 76.26 332 | 86.45 198 | 89.97 313 | 70.74 240 | 96.86 258 | 82.35 208 | 87.07 268 | 95.34 197 |
|
| PMMVS | | | 85.71 263 | 84.96 261 | 87.95 293 | 88.90 355 | 77.09 288 | 88.68 342 | 90.06 350 | 72.32 370 | 86.47 195 | 90.76 293 | 72.15 225 | 94.40 339 | 81.78 224 | 93.49 163 | 92.36 323 |
|
| PVSNet | | 78.82 18 | 85.55 264 | 84.65 268 | 88.23 287 | 94.72 169 | 71.93 346 | 87.12 361 | 92.75 283 | 78.80 303 | 84.95 243 | 90.53 297 | 64.43 308 | 96.71 262 | 74.74 306 | 93.86 155 | 96.06 169 |
|
| IterMVS-SCA-FT | | | 85.45 265 | 84.53 271 | 88.18 288 | 91.71 284 | 76.87 291 | 90.19 316 | 92.65 287 | 85.40 171 | 81.44 306 | 90.54 296 | 66.79 288 | 95.00 335 | 81.04 234 | 81.05 326 | 92.66 313 |
|
| pmmvs4 | | | 85.43 266 | 83.86 279 | 90.16 221 | 90.02 342 | 82.97 137 | 90.27 309 | 92.67 286 | 75.93 335 | 80.73 314 | 91.74 260 | 71.05 234 | 95.73 317 | 78.85 266 | 83.46 296 | 91.78 334 |
|
| mvsany_test1 | | | 85.42 267 | 85.30 254 | 85.77 334 | 87.95 368 | 75.41 311 | 87.61 358 | 80.97 392 | 76.82 326 | 88.68 151 | 95.83 104 | 77.44 155 | 90.82 380 | 85.90 159 | 86.51 270 | 91.08 353 |
|
| ACMH | | 80.38 17 | 85.36 268 | 83.68 281 | 90.39 213 | 94.45 186 | 80.63 200 | 94.73 140 | 94.85 221 | 82.09 245 | 77.24 348 | 92.65 227 | 60.01 340 | 97.58 195 | 72.25 320 | 84.87 281 | 92.96 304 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OurMVSNet-221017-0 | | | 85.35 269 | 84.64 269 | 87.49 302 | 90.77 323 | 72.59 342 | 94.01 193 | 94.40 239 | 84.72 190 | 79.62 333 | 93.17 210 | 61.91 323 | 96.72 260 | 81.99 218 | 81.16 322 | 93.16 297 |
|
| CR-MVSNet | | | 85.35 269 | 83.76 280 | 90.12 224 | 90.58 330 | 79.34 239 | 85.24 374 | 91.96 308 | 78.27 313 | 85.55 218 | 87.87 348 | 71.03 235 | 95.61 319 | 73.96 312 | 89.36 229 | 95.40 193 |
|
| tpmrst | | | 85.35 269 | 84.99 259 | 86.43 326 | 90.88 320 | 67.88 373 | 88.71 341 | 91.43 322 | 80.13 283 | 86.08 208 | 88.80 333 | 73.05 214 | 96.02 301 | 82.48 204 | 83.40 298 | 95.40 193 |
|
| miper_lstm_enhance | | | 85.27 272 | 84.59 270 | 87.31 305 | 91.28 300 | 74.63 318 | 87.69 355 | 94.09 253 | 81.20 274 | 81.36 308 | 89.85 316 | 74.97 185 | 94.30 342 | 81.03 236 | 79.84 346 | 93.01 303 |
|
| IB-MVS | | 80.51 15 | 85.24 273 | 83.26 287 | 91.19 177 | 92.13 267 | 79.86 226 | 91.75 279 | 91.29 325 | 83.28 222 | 80.66 316 | 88.49 337 | 61.28 328 | 98.46 121 | 80.99 237 | 79.46 348 | 95.25 199 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CHOSEN 280x420 | | | 85.15 274 | 83.99 277 | 88.65 276 | 92.47 257 | 78.40 259 | 79.68 394 | 92.76 282 | 74.90 346 | 81.41 307 | 89.59 319 | 69.85 254 | 95.51 323 | 79.92 254 | 95.29 129 | 92.03 330 |
|
| RPSCF | | | 85.07 275 | 84.27 272 | 87.48 303 | 92.91 249 | 70.62 362 | 91.69 282 | 92.46 289 | 76.20 333 | 82.67 293 | 95.22 125 | 63.94 311 | 97.29 228 | 77.51 280 | 85.80 274 | 94.53 228 |
|
| MS-PatchMatch | | | 85.05 276 | 84.16 273 | 87.73 296 | 91.42 294 | 78.51 255 | 91.25 293 | 93.53 267 | 77.50 319 | 80.15 322 | 91.58 267 | 61.99 322 | 95.51 323 | 75.69 296 | 94.35 149 | 89.16 371 |
|
| ACMH+ | | 81.04 14 | 85.05 276 | 83.46 284 | 89.82 238 | 94.66 173 | 79.37 237 | 94.44 161 | 94.12 252 | 82.19 244 | 78.04 343 | 92.82 222 | 58.23 350 | 97.54 198 | 73.77 313 | 82.90 303 | 92.54 315 |
|
| IterMVS | | | 84.88 278 | 83.98 278 | 87.60 298 | 91.44 291 | 76.03 303 | 90.18 317 | 92.41 290 | 83.24 223 | 81.06 312 | 90.42 300 | 66.60 291 | 94.28 343 | 79.46 258 | 80.98 331 | 92.48 317 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MSDG | | | 84.86 279 | 83.09 290 | 90.14 223 | 93.80 216 | 80.05 218 | 89.18 335 | 93.09 274 | 78.89 300 | 78.19 341 | 91.91 255 | 65.86 301 | 97.27 229 | 68.47 344 | 88.45 244 | 93.11 299 |
|
| testing222 | | | 84.84 280 | 83.32 285 | 89.43 256 | 94.15 201 | 75.94 304 | 91.09 297 | 89.41 362 | 84.90 182 | 85.78 212 | 89.44 322 | 52.70 373 | 96.28 292 | 70.80 330 | 91.57 192 | 96.07 167 |
|
| tpm | | | 84.73 281 | 84.02 276 | 86.87 321 | 90.33 335 | 68.90 369 | 89.06 337 | 89.94 353 | 80.85 277 | 85.75 213 | 89.86 315 | 68.54 274 | 95.97 303 | 77.76 276 | 84.05 288 | 95.75 181 |
|
| tfpnnormal | | | 84.72 282 | 83.23 288 | 89.20 260 | 92.79 252 | 80.05 218 | 94.48 156 | 95.81 154 | 82.38 240 | 81.08 311 | 91.21 275 | 69.01 268 | 96.95 252 | 61.69 375 | 80.59 335 | 90.58 360 |
|
| CVMVSNet | | | 84.69 283 | 84.79 266 | 84.37 347 | 91.84 278 | 64.92 383 | 93.70 210 | 91.47 321 | 66.19 385 | 86.16 207 | 95.28 122 | 67.18 283 | 93.33 357 | 80.89 239 | 90.42 209 | 94.88 214 |
|
| test-mter | | | 84.54 284 | 83.64 282 | 87.25 308 | 90.95 313 | 71.67 351 | 89.55 326 | 89.88 356 | 79.17 295 | 84.54 251 | 87.95 345 | 55.56 359 | 95.11 332 | 81.82 222 | 93.37 168 | 94.97 206 |
|
| ETVMVS | | | 84.43 285 | 82.92 294 | 88.97 268 | 94.37 190 | 74.67 317 | 91.23 294 | 88.35 366 | 83.37 219 | 86.06 209 | 89.04 327 | 55.38 361 | 95.67 318 | 67.12 353 | 91.34 194 | 96.58 145 |
|
| TransMVSNet (Re) | | | 84.43 285 | 83.06 292 | 88.54 278 | 91.72 283 | 78.44 257 | 95.18 113 | 92.82 281 | 82.73 235 | 79.67 331 | 92.12 245 | 73.49 208 | 95.96 304 | 71.10 328 | 68.73 383 | 91.21 347 |
|
| pmmvs5 | | | 84.21 287 | 82.84 297 | 88.34 283 | 88.95 354 | 76.94 290 | 92.41 257 | 91.91 310 | 75.63 337 | 80.28 320 | 91.18 278 | 64.59 307 | 95.57 320 | 77.09 285 | 83.47 295 | 92.53 316 |
|
| dmvs_re | | | 84.20 288 | 83.22 289 | 87.14 314 | 91.83 280 | 77.81 275 | 90.04 319 | 90.19 346 | 84.70 191 | 81.49 304 | 89.17 325 | 64.37 309 | 91.13 378 | 71.58 322 | 85.65 276 | 92.46 319 |
|
| tpm2 | | | 84.08 289 | 82.94 293 | 87.48 303 | 91.39 295 | 71.27 353 | 89.23 334 | 90.37 343 | 71.95 372 | 84.64 248 | 89.33 323 | 67.30 280 | 96.55 275 | 75.17 301 | 87.09 267 | 94.63 221 |
|
| test_fmvs2 | | | 83.98 290 | 84.03 275 | 83.83 352 | 87.16 371 | 67.53 376 | 93.93 199 | 92.89 278 | 77.62 318 | 86.89 188 | 93.53 198 | 47.18 385 | 92.02 370 | 90.54 106 | 86.51 270 | 91.93 332 |
|
| COLMAP_ROB |  | 80.39 16 | 83.96 291 | 82.04 300 | 89.74 242 | 95.28 137 | 79.75 228 | 94.25 174 | 92.28 295 | 75.17 342 | 78.02 344 | 93.77 193 | 58.60 349 | 97.84 177 | 65.06 365 | 85.92 273 | 91.63 337 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| RPMNet | | | 83.95 292 | 81.53 303 | 91.21 176 | 90.58 330 | 79.34 239 | 85.24 374 | 96.76 75 | 71.44 374 | 85.55 218 | 82.97 381 | 70.87 238 | 98.91 80 | 61.01 377 | 89.36 229 | 95.40 193 |
|
| SixPastTwentyTwo | | | 83.91 293 | 82.90 295 | 86.92 318 | 90.99 311 | 70.67 361 | 93.48 216 | 91.99 305 | 85.54 168 | 77.62 347 | 92.11 247 | 60.59 336 | 96.87 257 | 76.05 295 | 77.75 355 | 93.20 295 |
|
| EPMVS | | | 83.90 294 | 82.70 298 | 87.51 300 | 90.23 338 | 72.67 338 | 88.62 343 | 81.96 390 | 81.37 268 | 85.01 242 | 88.34 339 | 66.31 295 | 94.45 337 | 75.30 300 | 87.12 266 | 95.43 192 |
|
| WB-MVSnew | | | 83.77 295 | 83.28 286 | 85.26 341 | 91.48 290 | 71.03 357 | 91.89 274 | 87.98 367 | 78.91 298 | 84.78 245 | 90.22 303 | 69.11 267 | 94.02 346 | 64.70 366 | 90.44 207 | 90.71 355 |
|
| TESTMET0.1,1 | | | 83.74 296 | 82.85 296 | 86.42 327 | 89.96 343 | 71.21 355 | 89.55 326 | 87.88 368 | 77.41 320 | 83.37 284 | 87.31 353 | 56.71 355 | 93.65 354 | 80.62 244 | 92.85 179 | 94.40 239 |
|
| UWE-MVS | | | 83.69 297 | 83.09 290 | 85.48 336 | 93.06 241 | 65.27 382 | 90.92 300 | 86.14 375 | 79.90 286 | 86.26 204 | 90.72 294 | 57.17 354 | 95.81 312 | 71.03 329 | 92.62 182 | 95.35 196 |
|
| pmmvs6 | | | 83.42 298 | 81.60 302 | 88.87 269 | 88.01 366 | 77.87 273 | 94.96 125 | 94.24 246 | 74.67 348 | 78.80 339 | 91.09 283 | 60.17 339 | 96.49 277 | 77.06 286 | 75.40 367 | 92.23 327 |
|
| AllTest | | | 83.42 298 | 81.39 304 | 89.52 252 | 95.01 152 | 77.79 277 | 93.12 234 | 90.89 336 | 77.41 320 | 76.12 356 | 93.34 201 | 54.08 368 | 97.51 201 | 68.31 346 | 84.27 286 | 93.26 290 |
|
| tpmvs | | | 83.35 300 | 82.07 299 | 87.20 312 | 91.07 309 | 71.00 359 | 88.31 347 | 91.70 312 | 78.91 298 | 80.49 319 | 87.18 357 | 69.30 263 | 97.08 243 | 68.12 349 | 83.56 294 | 93.51 284 |
|
| USDC | | | 82.76 301 | 81.26 306 | 87.26 307 | 91.17 303 | 74.55 319 | 89.27 332 | 93.39 270 | 78.26 314 | 75.30 361 | 92.08 249 | 54.43 367 | 96.63 264 | 71.64 321 | 85.79 275 | 90.61 357 |
|
| Patchmtry | | | 82.71 302 | 80.93 308 | 88.06 290 | 90.05 341 | 76.37 300 | 84.74 379 | 91.96 308 | 72.28 371 | 81.32 309 | 87.87 348 | 71.03 235 | 95.50 325 | 68.97 341 | 80.15 341 | 92.32 325 |
|
| PatchT | | | 82.68 303 | 81.27 305 | 86.89 320 | 90.09 340 | 70.94 360 | 84.06 381 | 90.15 347 | 74.91 345 | 85.63 217 | 83.57 376 | 69.37 259 | 94.87 336 | 65.19 362 | 88.50 243 | 94.84 215 |
|
| MIMVSNet | | | 82.59 304 | 80.53 309 | 88.76 271 | 91.51 289 | 78.32 261 | 86.57 365 | 90.13 348 | 79.32 292 | 80.70 315 | 88.69 336 | 52.98 372 | 93.07 362 | 66.03 360 | 88.86 237 | 94.90 213 |
|
| test0.0.03 1 | | | 82.41 305 | 81.69 301 | 84.59 345 | 88.23 363 | 72.89 334 | 90.24 313 | 87.83 369 | 83.41 217 | 79.86 329 | 89.78 317 | 67.25 281 | 88.99 388 | 65.18 363 | 83.42 297 | 91.90 333 |
|
| EG-PatchMatch MVS | | | 82.37 306 | 80.34 312 | 88.46 279 | 90.27 336 | 79.35 238 | 92.80 249 | 94.33 242 | 77.14 324 | 73.26 372 | 90.18 306 | 47.47 384 | 96.72 260 | 70.25 332 | 87.32 265 | 89.30 368 |
|
| tpm cat1 | | | 81.96 307 | 80.27 313 | 87.01 315 | 91.09 308 | 71.02 358 | 87.38 359 | 91.53 319 | 66.25 384 | 80.17 321 | 86.35 363 | 68.22 277 | 96.15 297 | 69.16 340 | 82.29 308 | 93.86 264 |
|
| our_test_3 | | | 81.93 308 | 80.46 311 | 86.33 328 | 88.46 360 | 73.48 330 | 88.46 345 | 91.11 327 | 76.46 327 | 76.69 352 | 88.25 341 | 66.89 286 | 94.36 340 | 68.75 342 | 79.08 351 | 91.14 349 |
|
| ppachtmachnet_test | | | 81.84 309 | 80.07 317 | 87.15 313 | 88.46 360 | 74.43 322 | 89.04 338 | 92.16 299 | 75.33 340 | 77.75 345 | 88.99 328 | 66.20 297 | 95.37 328 | 65.12 364 | 77.60 356 | 91.65 336 |
|
| gg-mvs-nofinetune | | | 81.77 310 | 79.37 325 | 88.99 267 | 90.85 321 | 77.73 280 | 86.29 366 | 79.63 395 | 74.88 347 | 83.19 288 | 69.05 396 | 60.34 337 | 96.11 298 | 75.46 298 | 94.64 141 | 93.11 299 |
|
| CL-MVSNet_self_test | | | 81.74 311 | 80.53 309 | 85.36 338 | 85.96 377 | 72.45 344 | 90.25 311 | 93.07 275 | 81.24 272 | 79.85 330 | 87.29 354 | 70.93 237 | 92.52 365 | 66.95 354 | 69.23 379 | 91.11 351 |
|
| Patchmatch-RL test | | | 81.67 312 | 79.96 318 | 86.81 322 | 85.42 382 | 71.23 354 | 82.17 388 | 87.50 372 | 78.47 308 | 77.19 349 | 82.50 383 | 70.81 239 | 93.48 355 | 82.66 203 | 72.89 371 | 95.71 185 |
|
| ADS-MVSNet2 | | | 81.66 313 | 79.71 322 | 87.50 301 | 91.35 297 | 74.19 324 | 83.33 384 | 88.48 365 | 72.90 365 | 82.24 297 | 85.77 367 | 64.98 305 | 93.20 360 | 64.57 367 | 83.74 290 | 95.12 202 |
|
| K. test v3 | | | 81.59 314 | 80.15 316 | 85.91 333 | 89.89 345 | 69.42 368 | 92.57 254 | 87.71 370 | 85.56 167 | 73.44 371 | 89.71 318 | 55.58 358 | 95.52 322 | 77.17 283 | 69.76 377 | 92.78 311 |
|
| ADS-MVSNet | | | 81.56 315 | 79.78 319 | 86.90 319 | 91.35 297 | 71.82 348 | 83.33 384 | 89.16 363 | 72.90 365 | 82.24 297 | 85.77 367 | 64.98 305 | 93.76 351 | 64.57 367 | 83.74 290 | 95.12 202 |
|
| FMVSNet5 | | | 81.52 316 | 79.60 323 | 87.27 306 | 91.17 303 | 77.95 269 | 91.49 286 | 92.26 297 | 76.87 325 | 76.16 355 | 87.91 347 | 51.67 374 | 92.34 367 | 67.74 350 | 81.16 322 | 91.52 340 |
|
| dp | | | 81.47 317 | 80.23 314 | 85.17 342 | 89.92 344 | 65.49 380 | 86.74 363 | 90.10 349 | 76.30 331 | 81.10 310 | 87.12 358 | 62.81 318 | 95.92 305 | 68.13 348 | 79.88 344 | 94.09 252 |
|
| Patchmatch-test | | | 81.37 318 | 79.30 326 | 87.58 299 | 90.92 317 | 74.16 325 | 80.99 390 | 87.68 371 | 70.52 378 | 76.63 353 | 88.81 331 | 71.21 232 | 92.76 364 | 60.01 381 | 86.93 269 | 95.83 178 |
|
| EU-MVSNet | | | 81.32 319 | 80.95 307 | 82.42 359 | 88.50 359 | 63.67 387 | 93.32 223 | 91.33 323 | 64.02 388 | 80.57 318 | 92.83 221 | 61.21 331 | 92.27 368 | 76.34 291 | 80.38 340 | 91.32 344 |
|
| test_0402 | | | 81.30 320 | 79.17 330 | 87.67 297 | 93.19 235 | 78.17 265 | 92.98 241 | 91.71 311 | 75.25 341 | 76.02 358 | 90.31 301 | 59.23 345 | 96.37 286 | 50.22 392 | 83.63 293 | 88.47 377 |
|
| JIA-IIPM | | | 81.04 321 | 78.98 333 | 87.25 308 | 88.64 356 | 73.48 330 | 81.75 389 | 89.61 360 | 73.19 362 | 82.05 299 | 73.71 393 | 66.07 300 | 95.87 308 | 71.18 326 | 84.60 283 | 92.41 321 |
|
| Anonymous20231206 | | | 81.03 322 | 79.77 321 | 84.82 344 | 87.85 369 | 70.26 364 | 91.42 287 | 92.08 301 | 73.67 357 | 77.75 345 | 89.25 324 | 62.43 320 | 93.08 361 | 61.50 376 | 82.00 313 | 91.12 350 |
|
| pmmvs-eth3d | | | 80.97 323 | 78.72 335 | 87.74 295 | 84.99 384 | 79.97 224 | 90.11 318 | 91.65 314 | 75.36 339 | 73.51 370 | 86.03 364 | 59.45 343 | 93.96 349 | 75.17 301 | 72.21 372 | 89.29 369 |
|
| testgi | | | 80.94 324 | 80.20 315 | 83.18 353 | 87.96 367 | 66.29 377 | 91.28 291 | 90.70 340 | 83.70 208 | 78.12 342 | 92.84 220 | 51.37 375 | 90.82 380 | 63.34 370 | 82.46 306 | 92.43 320 |
|
| CMPMVS |  | 59.16 21 | 80.52 325 | 79.20 329 | 84.48 346 | 83.98 385 | 67.63 375 | 89.95 322 | 93.84 262 | 64.79 387 | 66.81 386 | 91.14 281 | 57.93 351 | 95.17 330 | 76.25 292 | 88.10 249 | 90.65 356 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| testing3 | | | 80.46 326 | 79.59 324 | 83.06 355 | 93.44 230 | 64.64 384 | 93.33 222 | 85.47 379 | 84.34 196 | 79.93 328 | 90.84 289 | 44.35 389 | 92.39 366 | 57.06 387 | 87.56 259 | 92.16 329 |
|
| Anonymous20240521 | | | 80.44 327 | 79.21 328 | 84.11 350 | 85.75 380 | 67.89 372 | 92.86 246 | 93.23 272 | 75.61 338 | 75.59 360 | 87.47 352 | 50.03 377 | 94.33 341 | 71.14 327 | 81.21 321 | 90.12 362 |
|
| LF4IMVS | | | 80.37 328 | 79.07 332 | 84.27 349 | 86.64 373 | 69.87 367 | 89.39 331 | 91.05 330 | 76.38 329 | 74.97 363 | 90.00 312 | 47.85 383 | 94.25 344 | 74.55 309 | 80.82 333 | 88.69 375 |
|
| KD-MVS_self_test | | | 80.20 329 | 79.24 327 | 83.07 354 | 85.64 381 | 65.29 381 | 91.01 299 | 93.93 256 | 78.71 306 | 76.32 354 | 86.40 362 | 59.20 346 | 92.93 363 | 72.59 318 | 69.35 378 | 91.00 354 |
|
| Syy-MVS | | | 80.07 330 | 79.78 319 | 80.94 362 | 91.92 274 | 59.93 393 | 89.75 324 | 87.40 373 | 81.72 259 | 78.82 337 | 87.20 355 | 66.29 296 | 91.29 376 | 47.06 394 | 87.84 256 | 91.60 338 |
|
| UnsupCasMVSNet_eth | | | 80.07 330 | 78.27 336 | 85.46 337 | 85.24 383 | 72.63 341 | 88.45 346 | 94.87 220 | 82.99 229 | 71.64 378 | 88.07 344 | 56.34 356 | 91.75 373 | 73.48 315 | 63.36 390 | 92.01 331 |
|
| test20.03 | | | 79.95 332 | 79.08 331 | 82.55 357 | 85.79 379 | 67.74 374 | 91.09 297 | 91.08 328 | 81.23 273 | 74.48 367 | 89.96 314 | 61.63 324 | 90.15 382 | 60.08 379 | 76.38 363 | 89.76 363 |
|
| TDRefinement | | | 79.81 333 | 77.34 338 | 87.22 311 | 79.24 396 | 75.48 310 | 93.12 234 | 92.03 303 | 76.45 328 | 75.01 362 | 91.58 267 | 49.19 380 | 96.44 282 | 70.22 334 | 69.18 380 | 89.75 364 |
|
| TinyColmap | | | 79.76 334 | 77.69 337 | 85.97 330 | 91.71 284 | 73.12 332 | 89.55 326 | 90.36 344 | 75.03 343 | 72.03 376 | 90.19 305 | 46.22 386 | 96.19 296 | 63.11 371 | 81.03 327 | 88.59 376 |
|
| myMVS_eth3d | | | 79.67 335 | 78.79 334 | 82.32 360 | 91.92 274 | 64.08 385 | 89.75 324 | 87.40 373 | 81.72 259 | 78.82 337 | 87.20 355 | 45.33 387 | 91.29 376 | 59.09 383 | 87.84 256 | 91.60 338 |
|
| OpenMVS_ROB |  | 74.94 19 | 79.51 336 | 77.03 343 | 86.93 317 | 87.00 372 | 76.23 302 | 92.33 263 | 90.74 339 | 68.93 381 | 74.52 366 | 88.23 342 | 49.58 379 | 96.62 265 | 57.64 385 | 84.29 285 | 87.94 380 |
|
| MIMVSNet1 | | | 79.38 337 | 77.28 339 | 85.69 335 | 86.35 374 | 73.67 327 | 91.61 284 | 92.75 283 | 78.11 317 | 72.64 374 | 88.12 343 | 48.16 382 | 91.97 372 | 60.32 378 | 77.49 357 | 91.43 343 |
|
| YYNet1 | | | 79.22 338 | 77.20 340 | 85.28 340 | 88.20 365 | 72.66 339 | 85.87 368 | 90.05 352 | 74.33 351 | 62.70 388 | 87.61 350 | 66.09 299 | 92.03 369 | 66.94 355 | 72.97 370 | 91.15 348 |
|
| MDA-MVSNet_test_wron | | | 79.21 339 | 77.19 341 | 85.29 339 | 88.22 364 | 72.77 336 | 85.87 368 | 90.06 350 | 74.34 350 | 62.62 390 | 87.56 351 | 66.14 298 | 91.99 371 | 66.90 358 | 73.01 369 | 91.10 352 |
|
| MDA-MVSNet-bldmvs | | | 78.85 340 | 76.31 345 | 86.46 325 | 89.76 346 | 73.88 326 | 88.79 340 | 90.42 342 | 79.16 296 | 59.18 392 | 88.33 340 | 60.20 338 | 94.04 345 | 62.00 374 | 68.96 381 | 91.48 342 |
|
| KD-MVS_2432*1600 | | | 78.50 341 | 76.02 348 | 85.93 331 | 86.22 375 | 74.47 320 | 84.80 377 | 92.33 292 | 79.29 293 | 76.98 350 | 85.92 365 | 53.81 370 | 93.97 347 | 67.39 351 | 57.42 395 | 89.36 366 |
|
| miper_refine_blended | | | 78.50 341 | 76.02 348 | 85.93 331 | 86.22 375 | 74.47 320 | 84.80 377 | 92.33 292 | 79.29 293 | 76.98 350 | 85.92 365 | 53.81 370 | 93.97 347 | 67.39 351 | 57.42 395 | 89.36 366 |
|
| PM-MVS | | | 78.11 343 | 76.12 347 | 84.09 351 | 83.54 387 | 70.08 365 | 88.97 339 | 85.27 381 | 79.93 285 | 74.73 365 | 86.43 361 | 34.70 395 | 93.48 355 | 79.43 261 | 72.06 373 | 88.72 374 |
|
| test_vis1_rt | | | 77.96 344 | 76.46 344 | 82.48 358 | 85.89 378 | 71.74 350 | 90.25 311 | 78.89 396 | 71.03 377 | 71.30 379 | 81.35 385 | 42.49 391 | 91.05 379 | 84.55 176 | 82.37 307 | 84.65 383 |
|
| test_fmvs3 | | | 77.67 345 | 77.16 342 | 79.22 365 | 79.52 395 | 61.14 391 | 92.34 262 | 91.64 315 | 73.98 354 | 78.86 336 | 86.59 359 | 27.38 399 | 87.03 390 | 88.12 131 | 75.97 365 | 89.50 365 |
|
| PVSNet_0 | | 73.20 20 | 77.22 346 | 74.83 352 | 84.37 347 | 90.70 327 | 71.10 356 | 83.09 386 | 89.67 359 | 72.81 367 | 73.93 369 | 83.13 378 | 60.79 335 | 93.70 353 | 68.54 343 | 50.84 399 | 88.30 378 |
|
| DSMNet-mixed | | | 76.94 347 | 76.29 346 | 78.89 366 | 83.10 388 | 56.11 402 | 87.78 352 | 79.77 394 | 60.65 391 | 75.64 359 | 88.71 334 | 61.56 326 | 88.34 389 | 60.07 380 | 89.29 231 | 92.21 328 |
|
| new-patchmatchnet | | | 76.41 348 | 75.17 351 | 80.13 363 | 82.65 390 | 59.61 394 | 87.66 356 | 91.08 328 | 78.23 315 | 69.85 382 | 83.22 377 | 54.76 364 | 91.63 375 | 64.14 369 | 64.89 388 | 89.16 371 |
|
| UnsupCasMVSNet_bld | | | 76.23 349 | 73.27 353 | 85.09 343 | 83.79 386 | 72.92 333 | 85.65 371 | 93.47 269 | 71.52 373 | 68.84 384 | 79.08 388 | 49.77 378 | 93.21 359 | 66.81 359 | 60.52 392 | 89.13 373 |
|
| mvsany_test3 | | | 74.95 350 | 73.26 354 | 80.02 364 | 74.61 398 | 63.16 389 | 85.53 372 | 78.42 397 | 74.16 352 | 74.89 364 | 86.46 360 | 36.02 394 | 89.09 387 | 82.39 207 | 66.91 384 | 87.82 381 |
|
| dmvs_testset | | | 74.57 351 | 75.81 350 | 70.86 376 | 87.72 370 | 40.47 409 | 87.05 362 | 77.90 401 | 82.75 234 | 71.15 380 | 85.47 369 | 67.98 278 | 84.12 398 | 45.26 395 | 76.98 362 | 88.00 379 |
|
| MVS-HIRNet | | | 73.70 352 | 72.20 355 | 78.18 369 | 91.81 281 | 56.42 401 | 82.94 387 | 82.58 388 | 55.24 393 | 68.88 383 | 66.48 397 | 55.32 362 | 95.13 331 | 58.12 384 | 88.42 245 | 83.01 386 |
|
| new_pmnet | | | 72.15 353 | 70.13 357 | 78.20 368 | 82.95 389 | 65.68 378 | 83.91 382 | 82.40 389 | 62.94 390 | 64.47 387 | 79.82 387 | 42.85 390 | 86.26 394 | 57.41 386 | 74.44 368 | 82.65 388 |
|
| test_f | | | 71.95 354 | 70.87 356 | 75.21 372 | 74.21 400 | 59.37 395 | 85.07 376 | 85.82 377 | 65.25 386 | 70.42 381 | 83.13 378 | 23.62 400 | 82.93 400 | 78.32 270 | 71.94 374 | 83.33 385 |
|
| pmmvs3 | | | 71.81 355 | 68.71 358 | 81.11 361 | 75.86 397 | 70.42 363 | 86.74 363 | 83.66 385 | 58.95 392 | 68.64 385 | 80.89 386 | 36.93 393 | 89.52 385 | 63.10 372 | 63.59 389 | 83.39 384 |
|
| APD_test1 | | | 69.04 356 | 66.26 362 | 77.36 371 | 80.51 393 | 62.79 390 | 85.46 373 | 83.51 386 | 54.11 395 | 59.14 393 | 84.79 372 | 23.40 402 | 89.61 384 | 55.22 388 | 70.24 376 | 79.68 392 |
|
| N_pmnet | | | 68.89 357 | 68.44 359 | 70.23 377 | 89.07 353 | 28.79 414 | 88.06 348 | 19.50 414 | 69.47 380 | 71.86 377 | 84.93 370 | 61.24 330 | 91.75 373 | 54.70 389 | 77.15 359 | 90.15 361 |
|
| WB-MVS | | | 67.92 358 | 67.49 360 | 69.21 380 | 81.09 391 | 41.17 408 | 88.03 349 | 78.00 400 | 73.50 359 | 62.63 389 | 83.11 380 | 63.94 311 | 86.52 392 | 25.66 405 | 51.45 398 | 79.94 391 |
|
| SSC-MVS | | | 67.06 359 | 66.56 361 | 68.56 382 | 80.54 392 | 40.06 410 | 87.77 353 | 77.37 403 | 72.38 369 | 61.75 391 | 82.66 382 | 63.37 314 | 86.45 393 | 24.48 406 | 48.69 401 | 79.16 393 |
|
| LCM-MVSNet | | | 66.00 360 | 62.16 365 | 77.51 370 | 64.51 408 | 58.29 396 | 83.87 383 | 90.90 335 | 48.17 397 | 54.69 394 | 73.31 394 | 16.83 408 | 86.75 391 | 65.47 361 | 61.67 391 | 87.48 382 |
|
| test_vis3_rt | | | 65.12 361 | 62.60 363 | 72.69 374 | 71.44 401 | 60.71 392 | 87.17 360 | 65.55 407 | 63.80 389 | 53.22 395 | 65.65 399 | 14.54 409 | 89.44 386 | 76.65 287 | 65.38 386 | 67.91 398 |
|
| FPMVS | | | 64.63 362 | 62.55 364 | 70.88 375 | 70.80 402 | 56.71 397 | 84.42 380 | 84.42 383 | 51.78 396 | 49.57 396 | 81.61 384 | 23.49 401 | 81.48 401 | 40.61 401 | 76.25 364 | 74.46 394 |
|
| EGC-MVSNET | | | 61.97 363 | 56.37 367 | 78.77 367 | 89.63 349 | 73.50 329 | 89.12 336 | 82.79 387 | 0.21 411 | 1.24 412 | 84.80 371 | 39.48 392 | 90.04 383 | 44.13 396 | 75.94 366 | 72.79 395 |
|
| PMMVS2 | | | 59.60 364 | 56.40 366 | 69.21 380 | 68.83 405 | 46.58 406 | 73.02 399 | 77.48 402 | 55.07 394 | 49.21 397 | 72.95 395 | 17.43 407 | 80.04 402 | 49.32 393 | 44.33 402 | 80.99 390 |
|
| testf1 | | | 59.54 365 | 56.11 368 | 69.85 378 | 69.28 403 | 56.61 399 | 80.37 392 | 76.55 404 | 42.58 400 | 45.68 399 | 75.61 389 | 11.26 410 | 84.18 396 | 43.20 398 | 60.44 393 | 68.75 396 |
|
| APD_test2 | | | 59.54 365 | 56.11 368 | 69.85 378 | 69.28 403 | 56.61 399 | 80.37 392 | 76.55 404 | 42.58 400 | 45.68 399 | 75.61 389 | 11.26 410 | 84.18 396 | 43.20 398 | 60.44 393 | 68.75 396 |
|
| ANet_high | | | 58.88 367 | 54.22 371 | 72.86 373 | 56.50 411 | 56.67 398 | 80.75 391 | 86.00 376 | 73.09 364 | 37.39 403 | 64.63 400 | 22.17 403 | 79.49 403 | 43.51 397 | 23.96 405 | 82.43 389 |
|
| Gipuma |  | | 57.99 368 | 54.91 370 | 67.24 383 | 88.51 357 | 65.59 379 | 52.21 402 | 90.33 345 | 43.58 399 | 42.84 402 | 51.18 403 | 20.29 405 | 85.07 395 | 34.77 402 | 70.45 375 | 51.05 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 47.18 22 | 52.22 369 | 48.46 373 | 63.48 384 | 45.72 413 | 46.20 407 | 73.41 398 | 78.31 398 | 41.03 402 | 30.06 405 | 65.68 398 | 6.05 412 | 83.43 399 | 30.04 403 | 65.86 385 | 60.80 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_method | | | 50.52 370 | 48.47 372 | 56.66 386 | 52.26 412 | 18.98 416 | 41.51 404 | 81.40 391 | 10.10 406 | 44.59 401 | 75.01 392 | 28.51 397 | 68.16 404 | 53.54 390 | 49.31 400 | 82.83 387 |
|
| MVE |  | 39.65 23 | 43.39 371 | 38.59 377 | 57.77 385 | 56.52 410 | 48.77 405 | 55.38 401 | 58.64 411 | 29.33 405 | 28.96 406 | 52.65 402 | 4.68 413 | 64.62 407 | 28.11 404 | 33.07 403 | 59.93 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 43.23 372 | 42.29 374 | 46.03 388 | 65.58 407 | 37.41 411 | 73.51 397 | 64.62 408 | 33.99 403 | 28.47 407 | 47.87 404 | 19.90 406 | 67.91 405 | 22.23 407 | 24.45 404 | 32.77 403 |
|
| EMVS | | | 42.07 373 | 41.12 375 | 44.92 389 | 63.45 409 | 35.56 413 | 73.65 396 | 63.48 409 | 33.05 404 | 26.88 408 | 45.45 405 | 21.27 404 | 67.14 406 | 19.80 408 | 23.02 406 | 32.06 404 |
|
| tmp_tt | | | 35.64 374 | 39.24 376 | 24.84 390 | 14.87 414 | 23.90 415 | 62.71 400 | 51.51 413 | 6.58 408 | 36.66 404 | 62.08 401 | 44.37 388 | 30.34 410 | 52.40 391 | 22.00 407 | 20.27 405 |
|
| cdsmvs_eth3d_5k | | | 22.14 375 | 29.52 378 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 95.76 158 | 0.00 412 | 0.00 413 | 94.29 168 | 75.66 177 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| wuyk23d | | | 21.27 376 | 20.48 379 | 23.63 391 | 68.59 406 | 36.41 412 | 49.57 403 | 6.85 415 | 9.37 407 | 7.89 409 | 4.46 411 | 4.03 414 | 31.37 409 | 17.47 409 | 16.07 408 | 3.12 406 |
|
| testmvs | | | 8.92 377 | 11.52 380 | 1.12 393 | 1.06 415 | 0.46 418 | 86.02 367 | 0.65 416 | 0.62 409 | 2.74 410 | 9.52 409 | 0.31 416 | 0.45 412 | 2.38 410 | 0.39 409 | 2.46 408 |
|
| test123 | | | 8.76 378 | 11.22 381 | 1.39 392 | 0.85 416 | 0.97 417 | 85.76 370 | 0.35 417 | 0.54 410 | 2.45 411 | 8.14 410 | 0.60 415 | 0.48 411 | 2.16 411 | 0.17 410 | 2.71 407 |
|
| ab-mvs-re | | | 7.82 379 | 10.43 382 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 93.88 188 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| pcd_1.5k_mvsjas | | | 6.64 380 | 8.86 383 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 79.70 128 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| test_blank | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uanet_test | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| DCPMVS | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet-low-res | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| sosnet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uncertanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| Regformer | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| uanet | | | 0.00 381 | 0.00 384 | 0.00 394 | 0.00 417 | 0.00 419 | 0.00 405 | 0.00 418 | 0.00 412 | 0.00 413 | 0.00 412 | 0.00 417 | 0.00 413 | 0.00 412 | 0.00 411 | 0.00 409 |
|
| WAC-MVS | | | | | | | 64.08 385 | | | | | | | | 59.14 382 | | |
|
| FOURS1 | | | | | | 98.86 1 | 85.54 67 | 98.29 1 | 97.49 6 | 89.79 46 | 96.29 18 | | | | | | |
|
| MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| PC_three_1452 | | | | | | | | | | 82.47 238 | 97.09 10 | 97.07 51 | 92.72 1 | 98.04 165 | 92.70 55 | 99.02 12 | 98.86 11 |
|
| No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 63 | | | | | 99.61 4 | 96.03 14 | 99.06 9 | 99.07 5 |
|
| test_one_0601 | | | | | | 98.58 11 | 85.83 61 | | 97.44 15 | 91.05 14 | 96.78 15 | 98.06 11 | 91.45 11 | | | | |
|
| eth-test2 | | | | | | 0.00 417 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 417 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 98.15 34 | 86.62 33 | | 97.07 45 | 83.63 210 | 94.19 42 | 96.91 57 | 87.57 31 | 99.26 42 | 91.99 77 | 98.44 55 | |
|
| RE-MVS-def | | | | 93.68 52 | | 97.92 43 | 84.57 82 | 96.28 45 | 96.76 75 | 87.46 117 | 93.75 51 | 97.43 31 | 82.94 83 | | 92.73 51 | 97.80 78 | 97.88 80 |
|
| IU-MVS | | | | | | 98.77 5 | 86.00 50 | | 96.84 65 | 81.26 271 | 97.26 7 | | | | 95.50 23 | 99.13 3 | 99.03 8 |
|
| OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 49 | 92.59 2 | 98.94 78 | 92.25 66 | 98.99 14 | 98.84 14 |
|
| test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 28 | 97.62 5 | 98.07 9 | 91.46 10 | 99.58 10 | 95.66 17 | 99.12 6 | 98.98 10 |
|
| test_241102_ONE | | | | | | 98.77 5 | 85.99 52 | | 97.44 15 | 90.26 33 | 97.71 1 | 97.96 17 | 92.31 4 | 99.38 31 | | | |
|
| 9.14 | | | | 94.47 20 | | 97.79 49 | | 96.08 61 | 97.44 15 | 86.13 156 | 95.10 33 | 97.40 33 | 88.34 22 | 99.22 44 | 93.25 44 | 98.70 35 | |
|
| save fliter | | | | | | 97.85 46 | 85.63 66 | 95.21 111 | 96.82 68 | 89.44 53 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 11 | 98.05 13 | 92.09 6 | 99.55 16 | 95.64 19 | 99.13 3 | 99.13 2 |
|
| test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 39 | 97.09 16 | 97.49 6 | | | | | 99.61 4 | 95.62 21 | 99.08 7 | 98.99 9 |
|
| test0726 | | | | | | 98.78 3 | 85.93 55 | 97.19 11 | 97.47 11 | 90.27 31 | 97.64 4 | 98.13 3 | 91.47 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 96.12 163 |
|
| test_part2 | | | | | | 98.55 12 | 87.22 19 | | | | 96.40 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 71.70 228 | | | | 96.12 163 |
|
| sam_mvs | | | | | | | | | | | | | 70.60 241 | | | | |
|
| ambc | | | | | 83.06 355 | 79.99 394 | 63.51 388 | 77.47 395 | 92.86 279 | | 74.34 368 | 84.45 373 | 28.74 396 | 95.06 334 | 73.06 317 | 68.89 382 | 90.61 357 |
|
| MTGPA |  | | | | | | | | 96.97 50 | | | | | | | | |
|
| test_post1 | | | | | | | | 88.00 350 | | | | 9.81 408 | 69.31 262 | 95.53 321 | 76.65 287 | | |
|
| test_post | | | | | | | | | | | | 10.29 407 | 70.57 245 | 95.91 307 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 83.76 375 | 71.53 229 | 96.48 278 | | | |
|
| GG-mvs-BLEND | | | | | 87.94 294 | 89.73 348 | 77.91 270 | 87.80 351 | 78.23 399 | | 80.58 317 | 83.86 374 | 59.88 341 | 95.33 329 | 71.20 324 | 92.22 188 | 90.60 359 |
|
| MTMP | | | | | | | | 96.16 53 | 60.64 410 | | | | | | | | |
|
| gm-plane-assit | | | | | | 89.60 350 | 68.00 371 | | | 77.28 323 | | 88.99 328 | | 97.57 196 | 79.44 260 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.91 83 | 98.71 33 | 98.07 68 |
|
| TEST9 | | | | | | 97.53 58 | 86.49 37 | 94.07 187 | 96.78 72 | 81.61 264 | 92.77 79 | 96.20 87 | 87.71 28 | 99.12 51 | | | |
|
| test_8 | | | | | | 97.49 60 | 86.30 45 | 94.02 192 | 96.76 75 | 81.86 255 | 92.70 83 | 96.20 87 | 87.63 29 | 99.02 61 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.54 106 | 98.68 39 | 98.27 52 |
|
| agg_prior | | | | | | 97.38 63 | 85.92 57 | | 96.72 81 | | 92.16 94 | | | 98.97 75 | | | |
|
| TestCases | | | | | 89.52 252 | 95.01 152 | 77.79 277 | | 90.89 336 | 77.41 320 | 76.12 356 | 93.34 201 | 54.08 368 | 97.51 201 | 68.31 346 | 84.27 286 | 93.26 290 |
|
| test_prior4 | | | | | | | 85.96 54 | 94.11 182 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 94.12 181 | | 87.67 115 | 92.63 84 | 96.39 82 | 86.62 38 | | 91.50 90 | 98.67 41 | |
|
| test_prior | | | | | 93.82 62 | 97.29 67 | 84.49 86 | | 96.88 61 | | | | | 98.87 82 | | | 98.11 67 |
|
| 旧先验2 | | | | | | | | 93.36 221 | | 71.25 375 | 94.37 39 | | | 97.13 241 | 86.74 149 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 93.11 236 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 93.10 81 | 97.30 66 | 84.35 94 | | 95.56 174 | 71.09 376 | 91.26 119 | 96.24 85 | 82.87 85 | 98.86 84 | 79.19 264 | 98.10 66 | 96.07 167 |
|
| 旧先验1 | | | | | | 96.79 76 | 81.81 168 | | 95.67 166 | | | 96.81 63 | 86.69 37 | | | 97.66 83 | 96.97 127 |
|
| æ— å…ˆéªŒ | | | | | | | | 93.28 229 | 96.26 115 | 73.95 355 | | | | 99.05 55 | 80.56 245 | | 96.59 144 |
|
| 原ACMM2 | | | | | | | | 92.94 243 | | | | | | | | | |
|
| 原ACMM1 | | | | | 92.01 135 | 97.34 64 | 81.05 188 | | 96.81 70 | 78.89 300 | 90.45 126 | 95.92 100 | 82.65 87 | 98.84 88 | 80.68 243 | 98.26 61 | 96.14 161 |
|
| test222 | | | | | | 96.55 84 | 81.70 170 | 92.22 267 | 95.01 207 | 68.36 382 | 90.20 130 | 96.14 92 | 80.26 121 | | | 97.80 78 | 96.05 170 |
|
| testdata2 | | | | | | | | | | | | | | 98.75 93 | 78.30 271 | | |
|
| segment_acmp | | | | | | | | | | | | | 87.16 36 | | | | |
|
| testdata | | | | | 90.49 207 | 96.40 89 | 77.89 272 | | 95.37 192 | 72.51 368 | 93.63 54 | 96.69 66 | 82.08 102 | 97.65 188 | 83.08 193 | 97.39 86 | 95.94 172 |
|
| testdata1 | | | | | | | | 92.15 269 | | 87.94 104 | | | | | | | |
|
| test12 | | | | | 94.34 50 | 97.13 70 | 86.15 48 | | 96.29 110 | | 91.04 121 | | 85.08 57 | 99.01 63 | | 98.13 65 | 97.86 82 |
|
| plane_prior7 | | | | | | 94.70 171 | 82.74 144 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 94.52 181 | 82.75 142 | | | | | | 74.23 194 | | | | |
|
| plane_prior5 | | | | | | | | | 96.22 120 | | | | | 98.12 150 | 88.15 128 | 89.99 213 | 94.63 221 |
|
| plane_prior4 | | | | | | | | | | | | 94.86 143 | | | | | |
|
| plane_prior3 | | | | | | | 82.75 142 | | | 90.26 33 | 86.91 185 | | | | | | |
|
| plane_prior2 | | | | | | | | 95.85 76 | | 90.81 17 | | | | | | | |
|
| plane_prior1 | | | | | | 94.59 176 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 82.73 145 | 95.21 111 | | 89.66 50 | | | | | | 89.88 218 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 85.49 378 | | | | | | | | |
|
| lessismore_v0 | | | | | 86.04 329 | 88.46 360 | 68.78 370 | | 80.59 393 | | 73.01 373 | 90.11 309 | 55.39 360 | 96.43 283 | 75.06 303 | 65.06 387 | 92.90 306 |
|
| LGP-MVS_train | | | | | 91.12 179 | 94.47 183 | 81.49 175 | | 96.14 125 | 86.73 135 | 85.45 226 | 95.16 130 | 69.89 252 | 98.10 152 | 87.70 135 | 89.23 232 | 93.77 272 |
|
| test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
| door | | | | | | | | | 85.33 380 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 81.56 171 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 94.17 198 | | 94.39 166 | | 88.81 74 | 85.43 229 | | | | | | |
|
| ACMP_Plane | | | | | | 94.17 198 | | 94.39 166 | | 88.81 74 | 85.43 229 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.11 146 | | |
|
| HQP4-MVS | | | | | | | | | | | 85.43 229 | | | 97.96 171 | | | 94.51 231 |
|
| HQP3-MVS | | | | | | | | | 96.04 137 | | | | | | | 89.77 222 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.83 204 | | | | |
|
| NP-MVS | | | | | | 94.37 190 | 82.42 155 | | | | | 93.98 181 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 55.91 403 | 87.62 357 | | 73.32 361 | 84.59 250 | | 70.33 248 | | 74.65 307 | | 95.50 190 |
|
| MDTV_nov1_ep13 | | | | 83.56 283 | | 91.69 286 | 69.93 366 | 87.75 354 | 91.54 318 | 78.60 307 | 84.86 244 | 88.90 330 | 69.54 257 | 96.03 300 | 70.25 332 | 88.93 236 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 260 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.01 252 | |
|
| Test By Simon | | | | | | | | | | | | | 80.02 123 | | | | |
|
| ITE_SJBPF | | | | | 88.24 286 | 91.88 277 | 77.05 289 | | 92.92 277 | 85.54 168 | 80.13 324 | 93.30 205 | 57.29 353 | 96.20 294 | 72.46 319 | 84.71 282 | 91.49 341 |
|
| DeepMVS_CX |  | | | | 56.31 387 | 74.23 399 | 51.81 404 | | 56.67 412 | 44.85 398 | 48.54 398 | 75.16 391 | 27.87 398 | 58.74 408 | 40.92 400 | 52.22 397 | 58.39 401 |
|