This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25194.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14692.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14496.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25484.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 132
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21583.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21984.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 147
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25283.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 143
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18481.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 133
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 25190.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23390.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 15089.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
MVSFormer91.68 8791.30 8592.80 9793.86 20983.88 10195.96 7195.90 14284.66 18991.76 10394.91 13777.92 14497.30 22189.64 10997.11 8597.24 104
Effi-MVS+91.59 8891.11 8993.01 8594.35 18983.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21889.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 164
diffmvspermissive91.37 9191.23 8791.77 15093.09 23480.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20592.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9291.11 8991.93 13894.37 18580.14 21093.46 21795.80 14986.46 14191.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 131
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14387.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14591.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 239
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15491.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 240
nrg03091.08 9790.39 9993.17 7693.07 23586.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29694.96 203
lupinMVS90.92 9890.21 10293.03 8493.86 20983.88 10192.81 24593.86 25479.84 28491.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 138
jason90.80 9990.10 10692.90 9293.04 23883.53 11293.08 23594.15 24380.22 27891.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24589.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 171
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16391.49 10894.70 14874.75 17998.42 12486.13 15392.53 17897.31 101
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13894.27 16780.32 11298.46 11580.16 24896.71 9894.33 236
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20684.46 8693.32 22195.46 17585.17 17292.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 241
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20794.63 215
FIs90.51 11090.35 10090.99 18693.99 20580.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22985.18 16388.31 24394.76 213
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23887.85 15992.85 21676.63 15798.80 9080.01 24996.68 9995.91 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21679.85 22495.77 8097.59 389.31 5686.27 19894.67 15181.93 10397.01 24584.26 17688.09 24694.71 214
CANet_DTU90.26 11389.41 12392.81 9693.46 22583.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 146
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23988.90 11789.85 21395.63 181
OPM-MVS90.12 11589.56 11891.82 14793.14 23283.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20693.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 35086.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 20087.55 16794.75 14778.18 14297.62 18781.28 22893.63 15497.71 88
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24986.66 18893.75 19282.23 9598.44 12179.40 26094.79 13297.48 97
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 21289.10 13992.26 23781.04 10998.85 8686.72 14887.86 25092.35 321
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 27280.85 19295.26 10895.98 13486.26 14686.21 20094.29 16479.70 12197.65 18288.87 11988.10 24494.57 220
mvsmamba89.96 12189.50 11991.33 16892.90 24581.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23494.51 225
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20481.21 18291.87 27396.06 13085.78 15788.55 14795.73 11074.67 18397.27 22588.71 12089.64 21895.91 167
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 134
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22783.72 10494.43 16197.12 4189.80 4186.46 19193.32 20083.16 7997.23 23084.92 16681.02 32594.49 230
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 23086.34 19794.65 15273.89 19599.02 6180.69 23995.51 11695.05 198
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35895.74 176
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 22184.52 8394.78 13997.47 1189.26 5886.44 19492.32 23482.10 9897.39 21784.81 16980.84 32994.12 245
HQP-MVS89.80 12789.28 12891.34 16794.17 19481.56 16894.39 16596.04 13188.81 7285.43 22693.97 17973.83 19797.96 16587.11 14389.77 21694.50 228
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28594.74 22284.87 18189.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20982.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21487.32 13982.86 30194.52 223
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 22289.06 14194.32 16278.67 13596.61 26581.57 22590.89 19797.24 104
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33487.66 11587.83 16095.40 12076.79 15396.46 27878.37 26596.73 9797.80 84
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27391.88 9896.86 5961.16 33198.33 13188.43 12392.49 18097.84 82
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37685.81 20695.25 12476.70 15598.63 10282.07 21396.86 9597.00 120
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10196.89 127
CLD-MVS89.47 13688.90 13791.18 17394.22 19382.07 15892.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19087.15 14190.43 20293.93 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
CDS-MVSNet89.45 13788.51 14892.29 12593.62 22083.61 11193.01 23894.68 22581.95 24787.82 16193.24 20578.69 13496.99 24680.34 24593.23 16796.28 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29587.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22994.32 237
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 22286.82 18690.67 29279.74 12097.75 17780.51 24393.55 15696.57 141
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19988.55 14793.70 19374.16 19198.21 14082.46 20389.37 22196.94 123
XVG-OURS89.40 14288.70 14191.52 15894.06 19881.46 17491.27 28996.07 12886.14 15188.89 14395.77 10868.73 26697.26 22787.39 13789.96 20995.83 172
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24272.64 33794.71 14496.03 13386.18 14991.94 9796.56 7861.63 32195.74 31393.42 4195.11 12995.74 176
mvs_anonymous89.37 14489.32 12689.51 25193.47 22474.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14797.94 74
DU-MVS89.34 14588.50 14991.85 14693.04 23883.72 10494.47 15896.59 9089.50 5086.46 19193.29 20377.25 14997.23 23084.92 16681.02 32594.59 218
TAMVS89.21 14688.29 15791.96 13693.71 21682.62 14893.30 22594.19 24182.22 24087.78 16293.94 18078.83 13196.95 24877.70 27492.98 17196.32 147
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 17185.92 20594.34 16070.19 24398.06 15885.65 15988.86 23294.08 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 14888.64 14390.48 20495.53 12774.97 31196.08 6184.89 37988.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
EI-MVSNet89.10 14888.86 13989.80 23891.84 27478.30 25993.70 20995.01 20185.73 15987.15 17395.28 12279.87 11897.21 23283.81 18387.36 25993.88 257
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 38187.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
RRT_MVS89.09 15088.62 14690.49 20292.85 24679.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22089.33 11286.73 26694.51 225
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15295.61 183
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16295.02 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 15488.64 14390.21 21590.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22189.64 10988.53 23694.05 251
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26386.93 17892.79 22278.32 14198.23 13779.93 25090.55 20095.88 169
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 27394.30 16369.33 25497.99 16387.10 14588.55 23593.72 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 15788.26 15990.94 18994.05 19980.78 19491.71 27795.38 18481.55 26288.63 14693.91 18475.04 17695.47 32482.47 20291.61 18596.57 141
iter_conf0588.85 15888.08 16291.17 17494.27 19181.64 16795.18 11392.15 29486.23 14887.28 17294.07 17063.89 30997.55 19190.63 10089.00 23094.32 237
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 25083.01 13294.92 13096.31 10489.88 3985.53 21693.85 18776.63 15796.96 24781.91 21779.87 34294.50 228
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31795.86 14674.52 34687.41 16893.94 18075.46 17298.36 12680.36 24495.53 11597.12 113
MVSTER88.84 15988.29 15790.51 20192.95 24380.44 20293.73 20695.01 20184.66 18987.15 17393.12 21072.79 21197.21 23287.86 12987.36 25993.87 258
test_cas_vis1_n_192088.83 16288.85 14088.78 26791.15 30376.72 29093.85 20294.93 20883.23 22192.81 7296.00 9661.17 33094.45 33491.67 8394.84 13195.17 195
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24985.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10094.83 210
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 35184.00 19888.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
Effi-MVS+-dtu88.65 16588.35 15389.54 24893.33 22876.39 29694.47 15894.36 23587.70 11285.43 22689.56 31873.45 20297.26 22785.57 16191.28 18994.97 200
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35485.09 17788.05 15694.59 15566.93 28098.48 11183.27 18992.13 18397.03 118
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18684.46 25193.40 19775.76 16697.40 21477.59 27594.52 14194.12 245
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 28079.64 25489.85 21395.63 181
NR-MVSNet88.58 16987.47 17691.93 13893.04 23884.16 9594.77 14096.25 11289.05 6580.04 32393.29 20379.02 13097.05 24381.71 22480.05 33994.59 218
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 31383.82 26993.88 18578.78 13397.91 16979.45 25689.41 22096.26 151
WR-MVS88.38 17187.67 17190.52 20093.30 22980.18 20893.26 22895.96 13788.57 8385.47 22292.81 22076.12 15996.91 25181.24 22982.29 30594.47 233
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16886.91 18094.84 14470.35 24097.76 17473.97 30894.59 13895.85 170
IterMVS-LS88.36 17387.91 16789.70 24293.80 21278.29 26093.73 20695.08 20085.73 15984.75 24391.90 25379.88 11796.92 25083.83 18282.51 30293.89 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 17486.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4898.47 33
LCM-MVSNet-Re88.30 17588.32 15688.27 28194.71 16572.41 34293.15 23190.98 32887.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11496.65 137
jajsoiax88.24 17687.50 17490.48 20490.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17565.31 29897.42 20788.56 12188.52 23793.89 255
VPNet88.20 17787.47 17690.39 20993.56 22279.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23484.05 17980.53 33494.56 221
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32686.19 20195.44 11779.75 11998.08 15662.75 37095.29 12596.13 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32186.74 13487.41 16894.00 17776.77 15496.20 29180.77 23779.31 34795.44 185
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 35089.06 14195.21 12761.44 32498.81 8983.67 18687.47 25697.01 119
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31795.79 15073.42 35787.68 16492.10 24573.86 19697.96 16580.75 23891.70 18497.19 107
mvs_tets88.06 18287.28 18190.38 21190.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 31097.40 21488.50 12288.40 24193.87 258
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28782.04 29794.61 15371.13 22698.50 11076.24 29091.05 19594.80 212
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12895.64 180
anonymousdsp87.84 18587.09 18490.12 22189.13 34980.54 20094.67 14695.55 16982.05 24383.82 26992.12 24271.47 22497.15 23487.15 14187.80 25492.67 309
v2v48287.84 18587.06 18590.17 21790.99 30879.23 24394.00 19495.13 19584.87 18185.53 21692.07 24874.45 18497.45 20284.71 17181.75 31393.85 261
WR-MVS_H87.80 18787.37 17889.10 26093.23 23078.12 26395.61 9297.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22586.93 17893.53 19569.50 25197.67 17986.14 15177.12 35795.73 178
PCF-MVS84.11 1087.74 18986.08 22592.70 10494.02 20084.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14394.81 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 19086.13 22192.31 12396.66 7980.74 19594.87 13391.49 31680.47 27789.46 13595.44 11754.72 36298.23 13782.19 20989.89 21197.97 72
V4287.68 19086.86 19090.15 21990.58 32780.14 21094.24 17595.28 18983.66 20685.67 21091.33 26874.73 18197.41 21284.43 17581.83 31192.89 304
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31287.06 12588.08 15492.30 23568.91 26398.10 14670.05 33591.10 19094.96 203
XXY-MVS87.65 19286.85 19190.03 22592.14 26280.60 19993.76 20595.23 19182.94 22784.60 24694.02 17574.27 18695.49 32381.04 23183.68 28994.01 253
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 17878.69 26489.13 22796.22 152
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31287.15 12288.06 15592.29 23668.91 26398.10 14670.13 33291.10 19094.48 231
CP-MVSNet87.63 19587.26 18388.74 27193.12 23376.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 263
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.96 203
v114487.61 19886.79 19490.06 22491.01 30779.34 23693.95 19695.42 18383.36 21785.66 21191.31 27174.98 17797.42 20783.37 18782.06 30793.42 284
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27980.26 20795.09 12088.61 36085.68 16185.55 21394.38 15963.93 30896.66 25987.73 13187.84 25193.72 272
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30286.94 12988.09 15291.77 25569.18 25998.10 14670.13 33291.10 19094.48 231
BH-w/o87.57 20187.05 18689.12 25994.90 15677.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24175.49 29493.49 15992.39 319
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25578.96 24594.74 14195.61 16684.07 19785.36 23394.52 15759.78 33997.34 21982.93 19387.88 24996.71 135
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12293.70 21883.93 9992.33 26090.94 33084.16 19472.09 37292.52 22869.90 24495.85 30689.20 11488.36 24297.17 108
131487.51 20386.57 20590.34 21392.42 25679.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23481.05 23093.53 15794.12 245
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15495.38 18484.81 18483.60 27691.33 26876.05 16097.42 20782.84 19680.51 33692.84 306
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26677.68 27894.03 19093.94 24985.81 15682.42 29191.32 27070.33 24197.06 24280.33 24690.23 20594.14 244
MVS87.44 20686.10 22491.44 16392.61 25183.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 13979.71 25295.48 11892.47 315
FE-MVS87.40 20886.02 22791.57 15794.56 17579.69 22790.27 30693.72 25980.57 27688.80 14491.62 26265.32 29798.59 10674.97 30294.33 14696.44 144
FMVSNet387.40 20886.11 22391.30 16993.79 21483.64 10894.20 17794.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
test_fmvs187.34 21087.56 17386.68 32190.59 32671.80 34694.01 19294.04 24878.30 30991.97 9495.22 12556.28 35493.71 34992.89 4994.71 13394.52 223
thisisatest051587.33 21185.99 22891.37 16693.49 22379.55 22990.63 30289.56 35780.17 27987.56 16690.86 28467.07 27998.28 13581.50 22693.02 17096.29 149
PS-CasMVS87.32 21286.88 18988.63 27492.99 24176.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 270
GBi-Net87.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
test187.26 21385.98 22991.08 17994.01 20183.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28796.34 28678.23 26985.36 27493.79 263
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20395.48 17482.57 23485.48 22191.18 27573.38 20597.42 20782.30 20682.06 30793.53 278
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15595.45 17883.79 20483.62 27591.19 27375.13 17497.42 20781.94 21680.60 33192.63 311
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13792.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18196.40 145
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26377.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12096.65 7055.29 36098.09 15486.03 15596.94 9098.33 43
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29686.42 14288.00 15791.11 27969.24 25898.00 16269.58 33691.04 19693.83 262
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19995.43 18181.93 24885.51 21891.05 28174.21 18997.45 20282.86 19581.56 31593.53 278
FMVSNet287.19 22185.82 23591.30 16994.01 20183.67 10694.79 13894.94 20483.57 20883.88 26892.05 24966.59 28796.51 27377.56 27685.01 27793.73 271
c3_l87.14 22386.50 20889.04 26292.20 26077.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
testing9187.11 22486.18 21989.92 23194.43 18375.38 31091.53 28292.27 29086.48 13986.50 18990.24 29961.19 32997.53 19482.10 21190.88 19896.84 130
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17692.57 28284.12 19685.74 20992.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20894.43 23084.84 18384.36 25790.80 28876.04 16197.05 24382.12 21079.60 34493.31 286
test_fmvs1_n87.03 22787.04 18786.97 31389.74 34471.86 34494.55 15294.43 23078.47 30591.95 9695.50 11651.16 37393.81 34793.02 4894.56 13995.26 192
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20395.43 18181.90 25085.33 23491.05 28172.66 21297.41 21282.05 21481.80 31293.53 278
tt080586.92 22985.74 24190.48 20492.22 25979.98 22095.63 9194.88 21283.83 20384.74 24492.80 22157.61 34997.67 17985.48 16284.42 28193.79 263
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 25984.06 17882.94 29792.94 302
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12195.92 13984.45 19282.29 29290.86 28472.60 21497.53 19479.42 25980.52 33593.08 298
PEN-MVS86.80 23286.27 21788.40 27792.32 25875.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
cl2286.78 23385.98 22989.18 25892.34 25777.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21195.37 18681.65 25885.43 22691.15 27771.50 22397.43 20681.47 22782.05 30993.47 282
TR-MVS86.78 23385.76 23989.82 23594.37 18578.41 25592.47 25392.83 27481.11 27286.36 19592.40 23168.73 26697.48 19873.75 31189.85 21393.57 277
PatchMatch-RL86.77 23685.54 24390.47 20795.88 11282.71 14490.54 30392.31 28879.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16192.32 322
testing9986.72 23785.73 24289.69 24394.23 19274.91 31391.35 28690.97 32986.14 15186.36 19590.22 30059.41 34197.48 19882.24 20890.66 19996.69 136
PAPM86.68 23885.39 24790.53 19893.05 23779.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22166.94 35293.16 16894.95 206
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
GA-MVS86.61 23985.27 25290.66 19491.33 29678.71 24790.40 30593.81 25785.34 17085.12 23689.57 31761.25 32697.11 23880.99 23489.59 21996.15 154
Anonymous2023121186.59 24185.13 25490.98 18896.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31397.37 21882.82 19781.74 31494.06 250
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14593.78 25879.55 28890.70 11795.31 12148.75 37893.28 35593.15 4593.99 14894.38 235
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26876.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
cl____86.52 24485.78 23688.75 26992.03 26776.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 26975.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25582.76 19979.36 34693.46 283
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18680.27 24789.95 21095.19 194
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18192.20 29286.66 13779.42 33192.36 23373.52 20095.81 30971.26 32093.66 15395.80 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1186.44 24885.35 25089.69 24394.29 19075.40 30991.30 28790.53 33784.76 18585.06 23790.13 30558.95 34597.45 20282.08 21291.09 19496.21 153
cascas86.43 24984.98 25790.80 19292.10 26580.92 19090.24 31095.91 14173.10 36083.57 27788.39 33565.15 29997.46 20184.90 16891.43 18794.03 252
SCA86.32 25085.18 25389.73 24192.15 26176.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28396.48 27576.65 28490.35 20496.12 157
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21394.44 18281.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17271.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12995.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19882.93 19387.45 25892.89 304
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15692.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 14989.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28596.37 28381.88 21887.97 24891.26 343
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35283.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16494.97 200
FMVSNet185.85 25784.11 27191.08 17992.81 24783.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 263
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27875.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 22896.08 160
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32776.26 32986.45 19389.97 31070.74 23396.86 25482.35 20587.07 26495.34 191
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34672.32 36786.47 19090.76 29072.15 21894.40 33681.78 22193.49 15992.36 320
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16471.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30396.71 25874.74 30393.86 15196.06 163
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16981.44 30390.54 29366.79 28395.00 33281.04 23181.05 32392.66 310
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14595.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
ACMH80.38 1785.36 26583.68 27890.39 20994.45 18180.63 19794.73 14294.85 21482.09 24277.24 34592.65 22460.01 33797.58 18872.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19294.40 23384.72 18779.62 33093.17 20761.91 32096.72 25681.99 21581.16 31993.16 294
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21387.87 34571.03 22895.61 31673.96 30989.36 22295.40 187
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20388.80 33073.05 20796.02 29882.48 20183.40 29595.40 187
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
IB-MVS80.51 1585.24 27083.26 28491.19 17292.13 26379.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32598.46 11580.99 23479.46 34595.25 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25378.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12592.03 327
RPSCF85.07 27284.27 26987.48 30092.91 24470.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30697.29 22477.51 27785.80 27194.53 222
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31995.51 32075.69 29394.35 14589.16 368
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16879.37 23494.44 16094.12 24682.19 24178.04 34092.82 21958.23 34797.54 19373.77 31082.90 30092.54 312
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28483.24 22081.06 30990.42 29766.60 28694.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27683.09 28790.14 22093.80 21280.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29697.27 22568.47 34188.45 23993.11 296
testing22284.84 27783.32 28289.43 25394.15 19775.94 30191.09 29489.41 35884.90 18085.78 20789.44 31952.70 37096.28 28970.80 32791.57 18696.07 161
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 34980.85 27485.75 20889.86 31268.54 26895.97 30077.76 27384.05 28595.75 175
tfpnnormal84.72 27983.23 28589.20 25792.79 24880.05 21594.48 15595.81 14882.38 23781.08 30891.21 27269.01 26296.95 24861.69 37280.59 33290.58 357
CVMVSNet84.69 28084.79 26384.37 34491.84 27464.92 38093.70 20991.47 31766.19 38286.16 20295.28 12267.18 27793.33 35480.89 23690.42 20394.88 208
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35279.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16494.97 200
ETVMVS84.43 28282.92 29188.97 26594.37 18574.67 31491.23 29188.35 36383.37 21686.06 20489.04 32455.38 35895.67 31567.12 35091.34 18896.58 140
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 27978.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30295.57 31777.09 28283.47 29292.53 313
dmvs_re84.20 28583.22 28687.14 31191.83 27677.81 27290.04 31690.19 34284.70 18881.49 30189.17 32264.37 30491.13 37571.58 31985.65 27392.46 316
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 33971.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 215
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19892.89 27277.62 31586.89 18393.53 19547.18 38292.02 36790.54 10286.51 26791.93 329
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17392.28 28975.17 33978.02 34193.77 19058.60 34697.84 17165.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 28981.53 30091.21 17190.58 32779.34 23685.24 37196.76 7571.44 37185.55 21382.97 37870.87 23198.91 8061.01 37489.36 22295.40 187
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21591.99 30185.54 16677.62 34492.11 24460.59 33396.87 25376.05 29277.75 35293.20 292
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 29094.45 33475.30 29787.12 26295.43 186
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20190.71 352
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17494.40 234
UWE-MVS83.69 29483.09 28785.48 33393.06 23665.27 37990.92 29786.14 37279.90 28386.26 19990.72 29157.17 35195.81 30971.03 32692.62 17695.35 190
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12794.24 24074.67 34578.80 33691.09 28060.17 33696.49 27477.06 28375.40 36492.23 324
AllTest83.42 29581.39 30189.52 24995.01 14777.79 27493.12 23290.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 23968.12 34683.56 29193.51 281
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34374.91 34285.63 21283.57 37369.37 25294.87 33365.19 35988.50 23894.84 209
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34479.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23294.90 207
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25670.25 32987.32 26189.30 365
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 260
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32376.46 32476.69 34988.25 33866.89 28194.36 33768.75 33979.08 34891.14 346
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29375.33 33777.75 34288.99 32566.20 29295.37 32565.12 36177.60 35391.65 333
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33496.11 29575.46 29594.64 13793.11 296
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 179
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 30093.20 35764.57 36483.74 28795.12 196
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16573.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 35972.90 36282.24 29485.77 36464.98 30093.76 34864.57 36483.74 28795.12 196
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29176.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34576.30 32881.10 30787.12 35562.81 31595.92 30268.13 34579.88 34194.09 248
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 172
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22191.33 31964.02 38580.57 31592.83 21861.21 32892.27 36576.34 28880.38 33791.32 341
test_040281.30 31779.17 32787.67 29493.19 23178.17 26292.98 23991.71 30775.25 33876.02 35590.31 29859.23 34296.37 28350.22 38983.63 29088.47 374
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35673.19 35982.05 29673.71 39066.07 29595.87 30571.18 32384.60 28092.41 318
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31793.08 35861.50 37382.00 31091.12 347
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 34093.96 34675.17 29872.21 36989.29 366
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33683.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24490.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 32379.59 32183.06 35293.44 22664.64 38193.33 22085.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32676.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34392.93 36072.59 31569.35 37591.00 351
Syy-MVS80.07 32779.78 31680.94 35991.92 27059.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29191.29 37347.06 39187.84 25191.60 335
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32481.23 27074.48 36489.96 31161.63 32190.15 37960.08 37676.38 36089.76 360
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23292.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34075.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27064.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25191.60 335
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33568.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34874.33 34862.70 38587.61 34766.09 29492.03 36666.94 35272.97 36791.15 345
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34674.34 34762.62 38787.56 34866.14 29391.99 36866.90 35573.01 36691.10 349
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33879.16 29359.18 38988.33 33760.20 33594.04 34262.00 37168.96 37891.48 339
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28679.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12775.97 36289.50 362
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35572.81 36473.93 36683.13 37560.79 33293.70 35068.54 34050.84 39688.30 375
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32388.34 38660.07 37789.29 22492.21 325
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32478.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27756.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24083.01 383
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32791.75 37054.70 38677.15 35690.15 358
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30686.52 38925.66 40251.45 39579.94 388
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 31186.45 39024.48 40348.69 39879.16 390
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33148.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34143.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS64.08 38259.14 379
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 157
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 157
sam_mvs70.60 234
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
MTGPAbinary96.97 50
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33895.33 32671.20 32192.22 18290.60 356
MTMP96.16 5360.64 407
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 18979.44 257
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
TestCases89.52 24995.01 14777.79 27490.89 33277.41 31776.12 35393.34 19854.08 36597.51 19668.31 34384.27 28393.26 287
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 37294.37 3997.13 23786.74 146
新几何293.11 234
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11396.24 8582.87 8598.86 8479.19 26198.10 6296.07 161
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 35299.05 5580.56 24296.59 139
原ACMM292.94 241
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29790.45 12095.92 10082.65 8798.84 8880.68 24098.26 5796.14 155
test22296.55 8481.70 16692.22 26495.01 20168.36 37990.20 12496.14 9280.26 11497.80 7496.05 164
testdata298.75 9378.30 268
segment_acmp87.16 36
testdata90.49 20296.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 166
testdata192.15 26687.94 103
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20794.63 215
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 212
n20.00 415
nn0.00 415
door-mid85.49 375
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22395.16 13069.89 24598.10 14687.70 13289.23 22593.77 268
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
HQP-NCC94.17 19494.39 16588.81 7285.43 226
ACMP_Plane94.17 19494.39 16588.81 7285.43 226
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16594.51 225
HQP3-MVS96.04 13189.77 216
HQP2-MVS73.83 197
NP-MVS94.37 18582.42 15193.98 178
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 184
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 231
ACMMP++_ref87.47 256
ACMMP++88.01 247
Test By Simon80.02 116
ITE_SJBPF88.24 28391.88 27377.05 28692.92 27185.54 16680.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398