This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 2097.62 598.06 1592.59 299.61 495.64 2299.02 1298.86 11
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 3197.71 198.07 1392.31 499.58 1095.66 2099.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8390.27 3597.04 1398.05 1791.47 899.55 1695.62 2499.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10297.51 589.13 7397.14 1097.91 2491.64 799.62 294.61 3699.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7896.20 2298.10 989.39 1699.34 3795.88 1999.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1196.10 2396.69 7289.90 1299.30 4394.70 3498.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11296.96 5692.09 795.32 3597.08 5589.49 1599.33 4095.10 3198.85 2098.66 21
SMA-MVScopyleft95.20 895.07 1295.59 698.14 3588.48 896.26 4697.28 3185.90 16597.67 398.10 988.41 2099.56 1294.66 3599.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1395.39 3497.46 3588.98 1999.40 3094.12 4098.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1795.83 498.25 2989.65 495.92 7796.96 5691.75 1094.02 5696.83 6788.12 2499.55 1693.41 5198.94 1698.28 54
MM95.10 1194.91 1795.68 596.09 10688.34 996.68 3394.37 24795.08 194.68 4397.72 2982.94 8999.64 197.85 298.76 2999.06 7
SF-MVS94.97 1294.90 1995.20 1297.84 5087.76 1096.65 3497.48 1087.76 12395.71 3097.70 3088.28 2399.35 3693.89 4498.78 2698.48 30
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4790.42 2896.95 1597.27 4389.53 1496.91 26494.38 3898.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1594.58 4298.25 2986.33 4296.11 5996.62 9288.14 10896.10 2396.96 6189.09 1898.94 8394.48 3798.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
reproduce-ours94.82 1594.97 1394.38 5097.91 4785.46 6895.86 8097.15 4289.82 4795.23 3898.10 987.09 3799.37 3395.30 2898.25 6098.30 49
our_new_method94.82 1594.97 1394.38 5097.91 4785.46 6895.86 8097.15 4289.82 4795.23 3898.10 987.09 3799.37 3395.30 2898.25 6098.30 49
NCCC94.81 1794.69 2295.17 1497.83 5187.46 1795.66 9496.93 6092.34 593.94 5796.58 8287.74 2799.44 2992.83 6098.40 5498.62 22
reproduce_model94.76 1894.92 1694.29 5497.92 4385.18 7495.95 7597.19 3589.67 5795.27 3798.16 386.53 4399.36 3595.42 2798.15 6498.33 44
ACMMP_NAP94.74 1994.56 2395.28 1098.02 4187.70 1195.68 9197.34 2388.28 10295.30 3697.67 3185.90 5099.54 2093.91 4398.95 1598.60 23
test_fmvsm_n_192094.71 2095.11 1193.50 7695.79 12084.62 8496.15 5497.64 289.85 4697.19 997.89 2586.28 4698.71 10597.11 998.08 7097.17 121
test_fmvsmconf_n94.60 2194.81 2093.98 5894.62 18084.96 7796.15 5497.35 2289.37 6496.03 2698.11 786.36 4499.01 6697.45 597.83 7897.96 80
HFP-MVS94.52 2294.40 2794.86 2498.61 1086.81 2596.94 2097.34 2388.63 9093.65 6297.21 4786.10 4899.49 2692.35 7398.77 2898.30 49
fmvsm_s_conf0.5_n_394.49 2395.13 1092.56 12095.49 13681.10 19495.93 7697.16 4192.96 297.39 798.13 483.63 8098.80 9597.89 197.61 8597.78 94
ZNCC-MVS94.47 2494.28 3395.03 1698.52 1586.96 2096.85 2897.32 2788.24 10393.15 7297.04 5886.17 4799.62 292.40 7098.81 2398.52 26
XVS94.45 2594.32 2994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2592.85 8097.16 5385.02 6399.49 2691.99 8798.56 5098.47 33
MCST-MVS94.45 2594.20 3995.19 1398.46 1987.50 1695.00 13397.12 4587.13 13492.51 9596.30 8989.24 1799.34 3793.46 4898.62 4698.73 18
region2R94.43 2794.27 3594.92 2098.65 886.67 3096.92 2497.23 3488.60 9393.58 6497.27 4385.22 5899.54 2092.21 7798.74 3198.56 25
ACMMPR94.43 2794.28 3394.91 2198.63 986.69 2896.94 2097.32 2788.63 9093.53 6797.26 4585.04 6299.54 2092.35 7398.78 2698.50 27
MTAPA94.42 2994.22 3695.00 1898.42 2186.95 2194.36 18096.97 5491.07 1493.14 7397.56 3284.30 7399.56 1293.43 4998.75 3098.47 33
CP-MVS94.34 3094.21 3894.74 3798.39 2386.64 3297.60 497.24 3288.53 9592.73 8897.23 4685.20 5999.32 4192.15 8098.83 2298.25 61
fmvsm_l_conf0.5_n94.29 3194.46 2593.79 6895.28 14385.43 7095.68 9196.43 10586.56 14996.84 1697.81 2887.56 3298.77 9997.14 896.82 10397.16 125
MP-MVScopyleft94.25 3294.07 4394.77 3598.47 1886.31 4496.71 3196.98 5389.04 7691.98 10597.19 5085.43 5699.56 1292.06 8698.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3394.07 4394.75 3698.06 3986.90 2395.88 7996.94 5985.68 17195.05 4197.18 5187.31 3599.07 5691.90 9398.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3494.17 4194.43 4798.21 3285.78 6396.40 3896.90 6388.20 10694.33 4797.40 3884.75 6999.03 6193.35 5297.99 7298.48 30
GST-MVS94.21 3593.97 4794.90 2398.41 2286.82 2496.54 3697.19 3588.24 10393.26 6996.83 6785.48 5599.59 891.43 10198.40 5498.30 49
MP-MVS-pluss94.21 3594.00 4694.85 2598.17 3386.65 3194.82 14597.17 4086.26 15792.83 8297.87 2685.57 5499.56 1294.37 3998.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3794.40 2793.60 7495.29 14284.98 7695.61 9896.28 11886.31 15596.75 1897.86 2787.40 3398.74 10297.07 1097.02 9697.07 127
test_fmvsmconf0.1_n94.20 3794.31 3193.88 6292.46 26984.80 8096.18 5196.82 7289.29 6795.68 3198.11 785.10 6098.99 7397.38 697.75 8297.86 88
DeepPCF-MVS89.96 194.20 3794.77 2192.49 12496.52 9180.00 22894.00 20597.08 4890.05 3995.65 3297.29 4289.66 1398.97 7893.95 4298.71 3298.50 27
MVS_030494.18 4093.80 5195.34 994.91 16587.62 1495.97 7293.01 28792.58 494.22 4897.20 4980.56 11999.59 897.04 1198.68 3798.81 17
CS-MVS94.12 4194.44 2693.17 8496.55 8883.08 13797.63 396.95 5891.71 1293.50 6896.21 9285.61 5298.24 14993.64 4698.17 6298.19 64
DeepC-MVS_fast89.43 294.04 4293.79 5294.80 3397.48 6486.78 2695.65 9696.89 6489.40 6392.81 8396.97 6085.37 5799.24 4690.87 11098.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test94.02 4394.29 3293.24 8196.69 8183.24 12797.49 596.92 6192.14 692.90 7895.77 11685.02 6398.33 14493.03 5798.62 4698.13 68
HPM-MVScopyleft94.02 4393.88 4894.43 4798.39 2385.78 6397.25 1097.07 4986.90 14292.62 9296.80 7184.85 6899.17 5092.43 6898.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4593.78 5394.63 4098.50 1685.90 6096.87 2696.91 6288.70 8891.83 11497.17 5283.96 7799.55 1691.44 10098.64 4598.43 38
balanced_conf0393.98 4694.22 3693.26 8096.13 10183.29 12696.27 4596.52 10089.82 4795.56 3395.51 12584.50 7198.79 9794.83 3398.86 1997.72 97
PGM-MVS93.96 4793.72 5694.68 3898.43 2086.22 4795.30 11097.78 187.45 13093.26 6997.33 4184.62 7099.51 2490.75 11298.57 4998.32 48
PHI-MVS93.89 4893.65 6094.62 4196.84 7886.43 3996.69 3297.49 685.15 18493.56 6696.28 9085.60 5399.31 4292.45 6798.79 2498.12 71
SR-MVS-dyc-post93.82 4993.82 5093.82 6597.92 4384.57 8696.28 4396.76 7987.46 12893.75 6097.43 3684.24 7499.01 6692.73 6197.80 7997.88 86
APD-MVS_3200maxsize93.78 5093.77 5493.80 6797.92 4384.19 10196.30 4196.87 6686.96 13893.92 5897.47 3483.88 7898.96 8092.71 6497.87 7698.26 60
fmvsm_s_conf0.5_n93.76 5194.06 4592.86 10395.62 13083.17 13096.14 5696.12 13488.13 10995.82 2998.04 2083.43 8198.48 12496.97 1296.23 11596.92 140
patch_mono-293.74 5294.32 2992.01 14397.54 6078.37 26593.40 23097.19 3588.02 11194.99 4297.21 4788.35 2198.44 13494.07 4198.09 6899.23 1
MSLP-MVS++93.72 5394.08 4292.65 11597.31 6883.43 12195.79 8697.33 2590.03 4093.58 6496.96 6184.87 6797.76 18792.19 7998.66 4196.76 147
TSAR-MVS + GP.93.66 5493.41 6494.41 4996.59 8586.78 2694.40 17293.93 26489.77 5494.21 4995.59 12387.35 3498.61 11692.72 6396.15 11897.83 91
fmvsm_s_conf0.5_n_a93.57 5593.76 5593.00 9595.02 15583.67 11396.19 4996.10 13687.27 13295.98 2798.05 1783.07 8898.45 13296.68 1495.51 12796.88 143
CANet93.54 5693.20 6994.55 4395.65 12885.73 6594.94 13696.69 8891.89 990.69 13095.88 11081.99 11099.54 2093.14 5597.95 7498.39 39
dcpmvs_293.49 5794.19 4091.38 17797.69 5776.78 29894.25 18396.29 11588.33 9994.46 4596.88 6488.07 2598.64 11193.62 4798.09 6898.73 18
fmvsm_s_conf0.5_n_293.47 5893.83 4992.39 13095.36 13981.19 19095.20 12296.56 9790.37 3097.13 1198.03 2177.47 15798.96 8097.79 396.58 10897.03 131
fmvsm_s_conf0.1_n93.46 5993.66 5992.85 10493.75 23083.13 13296.02 6895.74 16787.68 12595.89 2898.17 282.78 9298.46 12896.71 1396.17 11796.98 136
MVS_111021_HR93.45 6093.31 6593.84 6496.99 7584.84 7893.24 24297.24 3288.76 8591.60 11995.85 11186.07 4998.66 10791.91 9198.16 6398.03 77
MVSMamba_PlusPlus93.44 6193.54 6293.14 8696.58 8783.05 13896.06 6496.50 10284.42 20494.09 5295.56 12485.01 6698.69 10694.96 3298.66 4197.67 100
test_fmvsmvis_n_192093.44 6193.55 6193.10 8893.67 23484.26 10095.83 8496.14 13089.00 8092.43 9797.50 3383.37 8498.72 10396.61 1597.44 8796.32 162
train_agg93.44 6193.08 7094.52 4497.53 6186.49 3794.07 19796.78 7681.86 26692.77 8596.20 9387.63 2999.12 5492.14 8198.69 3597.94 81
EC-MVSNet93.44 6193.71 5792.63 11695.21 14882.43 15897.27 996.71 8690.57 2792.88 7995.80 11483.16 8598.16 15593.68 4598.14 6597.31 113
DELS-MVS93.43 6593.25 6793.97 5995.42 13885.04 7593.06 24997.13 4490.74 2291.84 11295.09 14486.32 4599.21 4891.22 10298.45 5297.65 101
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 6693.22 6893.94 6198.36 2584.83 7997.15 1396.80 7585.77 16892.47 9697.13 5482.38 9699.07 5690.51 11598.40 5497.92 84
DeepC-MVS88.79 393.31 6792.99 7394.26 5596.07 10885.83 6194.89 13996.99 5289.02 7989.56 14597.37 4082.51 9599.38 3192.20 7898.30 5797.57 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda93.27 6892.75 7794.85 2595.70 12587.66 1296.33 3996.41 10790.00 4194.09 5294.60 16582.33 9898.62 11492.40 7092.86 18698.27 56
canonicalmvs93.27 6892.75 7794.85 2595.70 12587.66 1296.33 3996.41 10790.00 4194.09 5294.60 16582.33 9898.62 11492.40 7092.86 18698.27 56
ACMMPcopyleft93.24 7092.88 7594.30 5398.09 3885.33 7296.86 2797.45 1488.33 9990.15 14097.03 5981.44 11399.51 2490.85 11195.74 12398.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 7193.05 7193.76 6998.04 4084.07 10396.22 4897.37 2184.15 20790.05 14195.66 12087.77 2699.15 5389.91 12098.27 5898.07 73
fmvsm_s_conf0.1_n_a93.19 7293.26 6692.97 9792.49 26783.62 11696.02 6895.72 17086.78 14496.04 2598.19 182.30 10098.43 13696.38 1695.42 13396.86 144
test_fmvsmconf0.01_n93.19 7293.02 7293.71 7289.25 36384.42 9796.06 6496.29 11589.06 7494.68 4398.13 479.22 13798.98 7797.22 797.24 9197.74 96
fmvsm_s_conf0.1_n_293.16 7493.42 6392.37 13194.62 18081.13 19295.23 11795.89 15690.30 3396.74 1998.02 2276.14 16998.95 8297.64 496.21 11697.03 131
alignmvs93.08 7592.50 8394.81 3295.62 13087.61 1595.99 7096.07 13989.77 5494.12 5194.87 15180.56 11998.66 10792.42 6993.10 18298.15 67
MGCFI-Net93.03 7692.63 8094.23 5695.62 13085.92 5796.08 6096.33 11389.86 4593.89 5994.66 16282.11 10598.50 12292.33 7592.82 18998.27 56
EI-MVSNet-Vis-set93.01 7792.92 7493.29 7895.01 15683.51 12094.48 16495.77 16490.87 1692.52 9496.67 7484.50 7199.00 7191.99 8794.44 15797.36 112
casdiffmvs_mvgpermissive92.96 7892.83 7693.35 7794.59 18283.40 12395.00 13396.34 11290.30 3392.05 10396.05 10183.43 8198.15 15692.07 8395.67 12498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 7992.54 8293.68 7396.10 10584.71 8295.66 9496.39 10991.92 893.22 7196.49 8583.16 8598.87 8784.47 18795.47 13097.45 111
CDPH-MVS92.83 7992.30 8594.44 4597.79 5286.11 4994.06 19996.66 8980.09 29792.77 8596.63 7986.62 4099.04 6087.40 14898.66 4198.17 66
ETV-MVS92.74 8192.66 7992.97 9795.20 14984.04 10595.07 12996.51 10190.73 2392.96 7791.19 28584.06 7598.34 14291.72 9696.54 10996.54 158
EI-MVSNet-UG-set92.74 8192.62 8193.12 8794.86 16883.20 12994.40 17295.74 16790.71 2492.05 10396.60 8184.00 7698.99 7391.55 9893.63 16797.17 121
DPM-MVS92.58 8391.74 9395.08 1596.19 9989.31 592.66 26196.56 9783.44 22591.68 11895.04 14586.60 4298.99 7385.60 17397.92 7596.93 139
casdiffmvspermissive92.51 8492.43 8492.74 11094.41 19781.98 16894.54 16296.23 12489.57 5991.96 10796.17 9782.58 9498.01 17490.95 10895.45 13298.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BP-MVS192.48 8592.07 8893.72 7194.50 19084.39 9895.90 7894.30 25090.39 2992.67 9095.94 10674.46 19598.65 10993.14 5597.35 9098.13 68
MVS_111021_LR92.47 8692.29 8692.98 9695.99 11484.43 9593.08 24796.09 13788.20 10691.12 12695.72 11981.33 11597.76 18791.74 9597.37 8996.75 148
3Dnovator+87.14 492.42 8791.37 9795.55 795.63 12988.73 697.07 1896.77 7890.84 1784.02 27996.62 8075.95 17499.34 3787.77 14397.68 8398.59 24
baseline92.39 8892.29 8692.69 11494.46 19381.77 17294.14 18996.27 11989.22 6991.88 11096.00 10282.35 9797.99 17691.05 10495.27 13898.30 49
VNet92.24 8991.91 9093.24 8196.59 8583.43 12194.84 14496.44 10489.19 7194.08 5595.90 10877.85 15698.17 15488.90 13093.38 17698.13 68
GDP-MVS92.04 9091.46 9693.75 7094.55 18784.69 8395.60 10196.56 9787.83 12093.07 7695.89 10973.44 21598.65 10990.22 11896.03 12097.91 85
CPTT-MVS91.99 9191.80 9192.55 12198.24 3181.98 16896.76 3096.49 10381.89 26590.24 13596.44 8778.59 14598.61 11689.68 12197.85 7797.06 128
EIA-MVS91.95 9291.94 8991.98 14795.16 15180.01 22795.36 10596.73 8388.44 9689.34 15092.16 24983.82 7998.45 13289.35 12497.06 9497.48 109
DP-MVS Recon91.95 9291.28 9993.96 6098.33 2785.92 5794.66 15696.66 8982.69 24590.03 14295.82 11382.30 10099.03 6184.57 18596.48 11296.91 141
EPNet91.79 9491.02 10594.10 5790.10 35085.25 7396.03 6792.05 31392.83 387.39 18795.78 11579.39 13599.01 6688.13 13997.48 8698.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 9591.70 9492.00 14697.08 7480.03 22693.60 22395.18 20787.85 11990.89 12896.47 8682.06 10898.36 13985.07 17797.04 9597.62 102
Vis-MVSNetpermissive91.75 9691.23 10093.29 7895.32 14183.78 11096.14 5695.98 14689.89 4390.45 13296.58 8275.09 18698.31 14784.75 18396.90 9997.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 9790.82 10994.44 4594.59 18286.37 4197.18 1297.02 5189.20 7084.31 27496.66 7573.74 21199.17 5086.74 15897.96 7397.79 93
EPP-MVSNet91.70 9891.56 9592.13 14295.88 11780.50 21197.33 795.25 20386.15 16089.76 14495.60 12283.42 8398.32 14687.37 15093.25 17997.56 107
MVSFormer91.68 9991.30 9892.80 10693.86 22483.88 10895.96 7395.90 15484.66 20091.76 11594.91 14877.92 15397.30 23189.64 12297.11 9297.24 117
Effi-MVS+91.59 10091.11 10293.01 9494.35 20283.39 12494.60 15895.10 21187.10 13590.57 13193.10 22181.43 11498.07 17089.29 12694.48 15597.59 105
IS-MVSNet91.43 10191.09 10492.46 12595.87 11981.38 18496.95 1993.69 27489.72 5689.50 14895.98 10478.57 14697.77 18683.02 20596.50 11198.22 63
PVSNet_Blended_VisFu91.38 10290.91 10792.80 10696.39 9483.17 13094.87 14196.66 8983.29 23089.27 15294.46 17080.29 12299.17 5087.57 14695.37 13496.05 180
diffmvspermissive91.37 10391.23 10091.77 16393.09 25180.27 21592.36 27095.52 18687.03 13791.40 12394.93 14780.08 12497.44 21592.13 8294.56 15297.61 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 10491.11 10291.93 15194.37 19880.14 21993.46 22895.80 16286.46 15291.35 12493.77 20082.21 10398.09 16787.57 14694.95 14297.55 108
OMC-MVS91.23 10590.62 11293.08 9096.27 9784.07 10393.52 22595.93 15086.95 13989.51 14696.13 9978.50 14798.35 14185.84 17192.90 18596.83 146
PAPM_NR91.22 10690.78 11092.52 12397.60 5981.46 18194.37 17896.24 12386.39 15487.41 18494.80 15682.06 10898.48 12482.80 21195.37 13497.61 103
PS-MVSNAJ91.18 10790.92 10691.96 14995.26 14682.60 15792.09 28295.70 17186.27 15691.84 11292.46 23979.70 13098.99 7389.08 12895.86 12294.29 252
xiu_mvs_v2_base91.13 10890.89 10891.86 15794.97 15982.42 15992.24 27695.64 17886.11 16491.74 11793.14 21979.67 13398.89 8689.06 12995.46 13194.28 253
nrg03091.08 10990.39 11393.17 8493.07 25286.91 2296.41 3796.26 12088.30 10188.37 16694.85 15482.19 10497.64 19791.09 10382.95 30894.96 220
mamv490.92 11091.78 9288.33 29195.67 12770.75 37492.92 25496.02 14581.90 26388.11 16795.34 13185.88 5196.97 25995.22 3095.01 14197.26 116
lupinMVS90.92 11090.21 11693.03 9393.86 22483.88 10892.81 25893.86 26879.84 30091.76 11594.29 17577.92 15398.04 17290.48 11697.11 9297.17 121
RRT-MVS90.85 11290.70 11191.30 18094.25 20476.83 29794.85 14396.13 13389.04 7690.23 13694.88 15070.15 25698.72 10391.86 9494.88 14398.34 42
h-mvs3390.80 11390.15 11992.75 10996.01 11082.66 15495.43 10495.53 18589.80 5093.08 7495.64 12175.77 17599.00 7192.07 8378.05 36596.60 153
jason90.80 11390.10 12092.90 10193.04 25583.53 11993.08 24794.15 25780.22 29491.41 12294.91 14876.87 16197.93 18190.28 11796.90 9997.24 117
jason: jason.
VDD-MVS90.74 11589.92 12793.20 8396.27 9783.02 14095.73 8893.86 26888.42 9892.53 9396.84 6662.09 32998.64 11190.95 10892.62 19197.93 83
PVSNet_Blended90.73 11690.32 11591.98 14796.12 10281.25 18692.55 26596.83 7082.04 25889.10 15492.56 23781.04 11798.85 9186.72 16095.91 12195.84 187
test_yl90.69 11790.02 12592.71 11195.72 12382.41 16194.11 19295.12 20985.63 17291.49 12094.70 15874.75 19098.42 13786.13 16692.53 19397.31 113
DCV-MVSNet90.69 11790.02 12592.71 11195.72 12382.41 16194.11 19295.12 20985.63 17291.49 12094.70 15874.75 19098.42 13786.13 16692.53 19397.31 113
API-MVS90.66 11990.07 12192.45 12696.36 9584.57 8696.06 6495.22 20682.39 24889.13 15394.27 17880.32 12198.46 12880.16 26196.71 10594.33 251
xiu_mvs_v1_base_debu90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
xiu_mvs_v1_base90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
xiu_mvs_v1_base_debi90.64 12090.05 12292.40 12793.97 22184.46 9293.32 23395.46 18885.17 18192.25 9894.03 18270.59 24798.57 11990.97 10594.67 14794.18 254
HQP_MVS90.60 12390.19 11791.82 16094.70 17682.73 15095.85 8296.22 12590.81 1886.91 19394.86 15274.23 19998.12 15788.15 13789.99 22394.63 232
FIs90.51 12490.35 11490.99 19793.99 22080.98 19795.73 8897.54 489.15 7286.72 20094.68 16081.83 11297.24 23985.18 17688.31 25694.76 230
mvsmamba90.33 12589.69 13092.25 14095.17 15081.64 17495.27 11593.36 27984.88 19189.51 14694.27 17869.29 27197.42 21789.34 12596.12 11997.68 99
MAR-MVS90.30 12689.37 13893.07 9296.61 8484.48 9195.68 9195.67 17382.36 25087.85 17592.85 22676.63 16798.80 9580.01 26296.68 10695.91 183
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 12790.18 11890.53 20993.71 23179.85 23395.77 8797.59 389.31 6686.27 21194.67 16181.93 11197.01 25784.26 18988.09 25994.71 231
CANet_DTU90.26 12889.41 13792.81 10593.46 24183.01 14193.48 22694.47 24389.43 6287.76 17994.23 18070.54 25199.03 6184.97 17896.39 11396.38 161
SDMVSNet90.19 12989.61 13291.93 15196.00 11183.09 13692.89 25595.98 14688.73 8686.85 19795.20 13972.09 23197.08 25088.90 13089.85 22995.63 197
OPM-MVS90.12 13089.56 13391.82 16093.14 24883.90 10794.16 18895.74 16788.96 8187.86 17495.43 12972.48 22797.91 18288.10 14190.18 22293.65 288
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 13189.13 14492.95 9996.71 8082.32 16396.08 6089.91 36686.79 14392.15 10296.81 6962.60 32798.34 14287.18 15293.90 16398.19 64
GeoE90.05 13289.43 13691.90 15695.16 15180.37 21495.80 8594.65 24083.90 21287.55 18394.75 15778.18 15197.62 19981.28 24193.63 16797.71 98
PAPR90.02 13389.27 14392.29 13795.78 12180.95 19992.68 26096.22 12581.91 26286.66 20193.75 20282.23 10298.44 13479.40 27394.79 14597.48 109
PVSNet_BlendedMVS89.98 13489.70 12990.82 20296.12 10281.25 18693.92 21096.83 7083.49 22489.10 15492.26 24781.04 11798.85 9186.72 16087.86 26392.35 335
PS-MVSNAJss89.97 13589.62 13191.02 19491.90 28780.85 20295.26 11695.98 14686.26 15786.21 21394.29 17579.70 13097.65 19588.87 13288.10 25794.57 237
XVG-OURS-SEG-HR89.95 13689.45 13491.47 17494.00 21981.21 18991.87 28696.06 14185.78 16788.55 16295.73 11874.67 19497.27 23588.71 13389.64 23495.91 183
UGNet89.95 13688.95 14892.95 9994.51 18983.31 12595.70 9095.23 20489.37 6487.58 18193.94 19064.00 31898.78 9883.92 19496.31 11496.74 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 13889.29 14191.81 16293.39 24383.72 11194.43 17097.12 4589.80 5086.46 20493.32 21083.16 8597.23 24084.92 17981.02 33894.49 245
AdaColmapbinary89.89 13989.07 14592.37 13197.41 6583.03 13994.42 17195.92 15182.81 24286.34 21094.65 16373.89 20799.02 6480.69 25295.51 12795.05 215
hse-mvs289.88 14089.34 13991.51 17194.83 17081.12 19393.94 20893.91 26789.80 5093.08 7493.60 20475.77 17597.66 19492.07 8377.07 37295.74 192
UniMVSNet (Re)89.80 14189.07 14592.01 14393.60 23784.52 8994.78 14897.47 1189.26 6886.44 20792.32 24482.10 10697.39 22884.81 18280.84 34294.12 258
HQP-MVS89.80 14189.28 14291.34 17994.17 20881.56 17594.39 17496.04 14288.81 8285.43 23893.97 18973.83 20997.96 17887.11 15589.77 23294.50 243
FA-MVS(test-final)89.66 14388.91 15091.93 15194.57 18580.27 21591.36 29894.74 23684.87 19289.82 14392.61 23674.72 19398.47 12783.97 19393.53 17097.04 130
VPA-MVSNet89.62 14488.96 14791.60 16893.86 22482.89 14595.46 10397.33 2587.91 11488.43 16593.31 21174.17 20297.40 22587.32 15182.86 31394.52 240
WTY-MVS89.60 14588.92 14991.67 16695.47 13781.15 19192.38 26994.78 23483.11 23489.06 15694.32 17378.67 14496.61 27881.57 23890.89 21397.24 117
Vis-MVSNet (Re-imp)89.59 14689.44 13590.03 23495.74 12275.85 31295.61 9890.80 35087.66 12787.83 17695.40 13076.79 16396.46 29278.37 27996.73 10497.80 92
VDDNet89.56 14788.49 16392.76 10895.07 15482.09 16596.30 4193.19 28281.05 28891.88 11096.86 6561.16 34598.33 14488.43 13692.49 19597.84 90
114514_t89.51 14888.50 16192.54 12298.11 3681.99 16795.16 12596.36 11170.19 39385.81 22095.25 13576.70 16598.63 11382.07 22696.86 10297.00 135
QAPM89.51 14888.15 17293.59 7594.92 16384.58 8596.82 2996.70 8778.43 32383.41 29496.19 9673.18 21999.30 4377.11 29596.54 10996.89 142
CLD-MVS89.47 15088.90 15191.18 18594.22 20682.07 16692.13 28096.09 13787.90 11585.37 24492.45 24074.38 19797.56 20287.15 15390.43 21893.93 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 15188.90 15191.12 18694.47 19181.49 17995.30 11096.14 13086.73 14685.45 23595.16 14169.89 25898.10 15987.70 14489.23 24193.77 282
CDS-MVSNet89.45 15188.51 16092.29 13793.62 23683.61 11893.01 25094.68 23981.95 26087.82 17793.24 21578.69 14396.99 25880.34 25893.23 18096.28 165
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 15388.64 15691.71 16594.74 17280.81 20393.54 22495.10 21183.11 23486.82 19990.67 30679.74 12997.75 19080.51 25693.55 16996.57 156
ab-mvs89.41 15388.35 16592.60 11795.15 15382.65 15592.20 27895.60 18083.97 21188.55 16293.70 20374.16 20398.21 15382.46 21689.37 23796.94 138
XVG-OURS89.40 15588.70 15591.52 17094.06 21381.46 18191.27 30296.07 13986.14 16188.89 15895.77 11668.73 28097.26 23787.39 14989.96 22595.83 188
test_vis1_n_192089.39 15689.84 12888.04 29992.97 25972.64 35194.71 15396.03 14486.18 15991.94 10996.56 8461.63 33395.74 32893.42 5095.11 14095.74 192
mvs_anonymous89.37 15789.32 14089.51 26093.47 24074.22 33091.65 29394.83 23082.91 24085.45 23593.79 19881.23 11696.36 29986.47 16294.09 16097.94 81
DU-MVS89.34 15888.50 16191.85 15993.04 25583.72 11194.47 16796.59 9489.50 6086.46 20493.29 21377.25 15997.23 24084.92 17981.02 33894.59 235
TAMVS89.21 15988.29 16991.96 14993.71 23182.62 15693.30 23794.19 25582.22 25387.78 17893.94 19078.83 14096.95 26177.70 28892.98 18496.32 162
ACMM84.12 989.14 16088.48 16491.12 18694.65 17981.22 18895.31 10896.12 13485.31 18085.92 21894.34 17170.19 25598.06 17185.65 17288.86 24694.08 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 16188.64 15690.48 21495.53 13574.97 32196.08 6084.89 39788.13 10990.16 13996.65 7663.29 32398.10 15986.14 16496.90 9998.39 39
EI-MVSNet89.10 16188.86 15389.80 24791.84 28978.30 26793.70 22095.01 21585.73 16987.15 18895.28 13379.87 12797.21 24283.81 19687.36 27193.88 271
ECVR-MVScopyleft89.09 16388.53 15990.77 20495.62 13075.89 31196.16 5284.22 39987.89 11790.20 13796.65 7663.19 32598.10 15985.90 16996.94 9798.33 44
CNLPA89.07 16487.98 17592.34 13396.87 7784.78 8194.08 19693.24 28081.41 27984.46 26495.13 14375.57 18296.62 27577.21 29393.84 16595.61 199
PLCcopyleft84.53 789.06 16588.03 17492.15 14197.27 7182.69 15394.29 18195.44 19379.71 30284.01 28094.18 18176.68 16698.75 10077.28 29293.41 17595.02 216
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 16688.64 15690.21 22590.74 33679.28 24895.96 7395.90 15484.66 20085.33 24692.94 22574.02 20597.30 23189.64 12288.53 24994.05 264
HY-MVS83.01 1289.03 16687.94 17792.29 13794.86 16882.77 14692.08 28394.49 24281.52 27886.93 19192.79 23278.32 15098.23 15079.93 26390.55 21695.88 185
ACMP84.23 889.01 16888.35 16590.99 19794.73 17381.27 18595.07 12995.89 15686.48 15083.67 28794.30 17469.33 26797.99 17687.10 15788.55 24893.72 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 16988.26 17190.94 20094.05 21480.78 20491.71 29095.38 19781.55 27788.63 16193.91 19475.04 18795.47 33982.47 21591.61 20196.57 156
TranMVSNet+NR-MVSNet88.84 17087.95 17691.49 17292.68 26583.01 14194.92 13896.31 11489.88 4485.53 22993.85 19776.63 16796.96 26081.91 23079.87 35594.50 243
CHOSEN 1792x268888.84 17087.69 18192.30 13696.14 10081.42 18390.01 33295.86 15974.52 36287.41 18493.94 19075.46 18398.36 13980.36 25795.53 12697.12 126
MVSTER88.84 17088.29 16990.51 21292.95 26080.44 21293.73 21795.01 21584.66 20087.15 18893.12 22072.79 22397.21 24287.86 14287.36 27193.87 272
test_cas_vis1_n_192088.83 17388.85 15488.78 27691.15 31776.72 29993.85 21394.93 22283.23 23392.81 8396.00 10261.17 34494.45 35091.67 9794.84 14495.17 211
OpenMVScopyleft83.78 1188.74 17487.29 19193.08 9092.70 26485.39 7196.57 3596.43 10578.74 31880.85 32696.07 10069.64 26299.01 6678.01 28696.65 10794.83 227
thisisatest053088.67 17587.61 18391.86 15794.87 16780.07 22294.63 15789.90 36784.00 21088.46 16493.78 19966.88 29598.46 12883.30 20192.65 19097.06 128
Effi-MVS+-dtu88.65 17688.35 16589.54 25793.33 24476.39 30594.47 16794.36 24887.70 12485.43 23889.56 33473.45 21497.26 23785.57 17491.28 20594.97 217
tttt051788.61 17787.78 18091.11 18994.96 16077.81 28095.35 10689.69 37085.09 18688.05 17294.59 16766.93 29398.48 12483.27 20292.13 19897.03 131
BH-untuned88.60 17888.13 17390.01 23795.24 14778.50 26193.29 23894.15 25784.75 19784.46 26493.40 20775.76 17797.40 22577.59 28994.52 15494.12 258
sd_testset88.59 17987.85 17990.83 20196.00 11180.42 21392.35 27194.71 23788.73 8686.85 19795.20 13967.31 28796.43 29479.64 26789.85 22995.63 197
NR-MVSNet88.58 18087.47 18791.93 15193.04 25584.16 10294.77 14996.25 12289.05 7580.04 33993.29 21379.02 13997.05 25581.71 23780.05 35294.59 235
1112_ss88.42 18187.33 19091.72 16494.92 16380.98 19792.97 25294.54 24178.16 32983.82 28393.88 19578.78 14297.91 18279.45 26989.41 23696.26 166
WR-MVS88.38 18287.67 18290.52 21193.30 24580.18 21793.26 24095.96 14988.57 9485.47 23492.81 23076.12 17096.91 26481.24 24282.29 31894.47 248
BH-RMVSNet88.37 18387.48 18691.02 19495.28 14379.45 24092.89 25593.07 28585.45 17786.91 19394.84 15570.35 25297.76 18773.97 32394.59 15195.85 186
IterMVS-LS88.36 18487.91 17889.70 25193.80 22778.29 26893.73 21795.08 21385.73 16984.75 25691.90 26479.88 12696.92 26383.83 19582.51 31493.89 268
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 18586.13 23294.85 2598.54 1386.60 3496.93 2297.19 3590.66 2592.85 8023.41 42385.02 6399.49 2691.99 8798.56 5098.47 33
LCM-MVSNet-Re88.30 18688.32 16888.27 29294.71 17572.41 35693.15 24390.98 34487.77 12279.25 34891.96 26178.35 14995.75 32783.04 20495.62 12596.65 152
jajsoiax88.24 18787.50 18590.48 21490.89 33080.14 21995.31 10895.65 17784.97 18984.24 27594.02 18565.31 31197.42 21788.56 13488.52 25093.89 268
VPNet88.20 18887.47 18790.39 21993.56 23879.46 23994.04 20095.54 18488.67 8986.96 19094.58 16869.33 26797.15 24484.05 19280.53 34794.56 238
TAPA-MVS84.62 688.16 18987.01 19991.62 16796.64 8380.65 20694.39 17496.21 12876.38 34286.19 21495.44 12779.75 12898.08 16962.75 38795.29 13696.13 172
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 19087.28 19290.57 20794.96 16080.07 22294.27 18291.29 33786.74 14587.41 18494.00 18776.77 16496.20 30580.77 25079.31 36195.44 201
Anonymous2024052988.09 19186.59 21492.58 11996.53 9081.92 17095.99 7095.84 16074.11 36689.06 15695.21 13861.44 33798.81 9483.67 19987.47 26897.01 134
HyFIR lowres test88.09 19186.81 20391.93 15196.00 11180.63 20790.01 33295.79 16373.42 37387.68 18092.10 25573.86 20897.96 17880.75 25191.70 20097.19 120
mvs_tets88.06 19387.28 19290.38 22190.94 32679.88 23195.22 11995.66 17585.10 18584.21 27693.94 19063.53 32197.40 22588.50 13588.40 25493.87 272
F-COLMAP87.95 19486.80 20491.40 17696.35 9680.88 20194.73 15195.45 19179.65 30382.04 31394.61 16471.13 23898.50 12276.24 30591.05 21194.80 229
LS3D87.89 19586.32 22592.59 11896.07 10882.92 14495.23 11794.92 22375.66 34982.89 30195.98 10472.48 22799.21 4868.43 35895.23 13995.64 196
anonymousdsp87.84 19687.09 19590.12 23089.13 36480.54 21094.67 15595.55 18282.05 25683.82 28392.12 25271.47 23697.15 24487.15 15387.80 26692.67 323
v2v48287.84 19687.06 19690.17 22690.99 32279.23 25194.00 20595.13 20884.87 19285.53 22992.07 25874.45 19697.45 21284.71 18481.75 32693.85 275
WR-MVS_H87.80 19887.37 18989.10 26993.23 24678.12 27195.61 9897.30 2987.90 11583.72 28592.01 26079.65 13496.01 31376.36 30280.54 34693.16 308
AUN-MVS87.78 19986.54 21791.48 17394.82 17181.05 19593.91 21293.93 26483.00 23786.93 19193.53 20569.50 26597.67 19286.14 16477.12 37195.73 194
PCF-MVS84.11 1087.74 20086.08 23692.70 11394.02 21584.43 9589.27 34595.87 15873.62 37184.43 26694.33 17278.48 14898.86 8970.27 34494.45 15694.81 228
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 20186.13 23292.31 13596.66 8280.74 20594.87 14191.49 33280.47 29389.46 14995.44 12754.72 37898.23 15082.19 22289.89 22797.97 79
V4287.68 20186.86 20190.15 22890.58 34180.14 21994.24 18595.28 20283.66 21885.67 22491.33 28074.73 19297.41 22384.43 18881.83 32492.89 318
thres600view787.65 20386.67 20990.59 20696.08 10778.72 25494.88 14091.58 32887.06 13688.08 17092.30 24568.91 27798.10 15970.05 35191.10 20694.96 220
XXY-MVS87.65 20386.85 20290.03 23492.14 27780.60 20993.76 21695.23 20482.94 23984.60 25994.02 18574.27 19895.49 33881.04 24483.68 30194.01 266
Test_1112_low_res87.65 20386.51 21891.08 19094.94 16279.28 24891.77 28894.30 25076.04 34783.51 29292.37 24277.86 15597.73 19178.69 27889.13 24396.22 167
thres100view90087.63 20686.71 20790.38 22196.12 10278.55 25895.03 13291.58 32887.15 13388.06 17192.29 24668.91 27798.10 15970.13 34891.10 20694.48 246
CP-MVSNet87.63 20687.26 19488.74 28093.12 24976.59 30295.29 11296.58 9588.43 9783.49 29392.98 22475.28 18495.83 32278.97 27581.15 33493.79 277
thres40087.62 20886.64 21090.57 20795.99 11478.64 25694.58 15991.98 31786.94 14088.09 16891.77 26669.18 27398.10 15970.13 34891.10 20694.96 220
v114487.61 20986.79 20590.06 23391.01 32179.34 24493.95 20795.42 19683.36 22985.66 22591.31 28374.98 18897.42 21783.37 20082.06 32093.42 297
tfpn200view987.58 21086.64 21090.41 21895.99 11478.64 25694.58 15991.98 31786.94 14088.09 16891.77 26669.18 27398.10 15970.13 34891.10 20694.48 246
BH-w/o87.57 21187.05 19789.12 26894.90 16677.90 27692.41 26793.51 27682.89 24183.70 28691.34 27975.75 17897.07 25275.49 30993.49 17292.39 333
UniMVSNet_ETH3D87.53 21286.37 22291.00 19692.44 27078.96 25394.74 15095.61 17984.07 20985.36 24594.52 16959.78 35397.34 23082.93 20687.88 26296.71 150
ET-MVSNet_ETH3D87.51 21385.91 24492.32 13493.70 23383.93 10692.33 27390.94 34684.16 20672.09 38992.52 23869.90 25795.85 32189.20 12788.36 25597.17 121
131487.51 21386.57 21590.34 22392.42 27179.74 23592.63 26295.35 20178.35 32480.14 33691.62 27474.05 20497.15 24481.05 24393.53 17094.12 258
v887.50 21586.71 20789.89 24191.37 30779.40 24194.50 16395.38 19784.81 19583.60 29091.33 28076.05 17197.42 21782.84 20980.51 34992.84 320
Fast-Effi-MVS+-dtu87.44 21686.72 20689.63 25592.04 28177.68 28694.03 20193.94 26385.81 16682.42 30691.32 28270.33 25397.06 25380.33 25990.23 22194.14 257
MVS87.44 21686.10 23591.44 17592.61 26683.62 11692.63 26295.66 17567.26 39881.47 31892.15 25077.95 15298.22 15279.71 26595.48 12992.47 329
FE-MVS87.40 21886.02 23891.57 16994.56 18679.69 23690.27 31993.72 27380.57 29188.80 15991.62 27465.32 31098.59 11874.97 31794.33 15996.44 159
FMVSNet387.40 21886.11 23491.30 18093.79 22983.64 11594.20 18794.81 23283.89 21384.37 26791.87 26568.45 28396.56 28378.23 28385.36 28593.70 287
test_fmvs187.34 22087.56 18486.68 33690.59 34071.80 36094.01 20394.04 26278.30 32591.97 10695.22 13656.28 36993.71 36592.89 5994.71 14694.52 240
thisisatest051587.33 22185.99 23991.37 17893.49 23979.55 23790.63 31589.56 37480.17 29587.56 18290.86 29667.07 29298.28 14881.50 23993.02 18396.29 164
PS-CasMVS87.32 22286.88 20088.63 28392.99 25876.33 30795.33 10796.61 9388.22 10583.30 29893.07 22273.03 22195.79 32678.36 28081.00 34093.75 284
GBi-Net87.26 22385.98 24091.08 19094.01 21683.10 13395.14 12694.94 21883.57 22084.37 26791.64 27066.59 30096.34 30078.23 28385.36 28593.79 277
test187.26 22385.98 24091.08 19094.01 21683.10 13395.14 12694.94 21883.57 22084.37 26791.64 27066.59 30096.34 30078.23 28385.36 28593.79 277
v119287.25 22586.33 22490.00 23890.76 33579.04 25293.80 21495.48 18782.57 24685.48 23391.18 28773.38 21897.42 21782.30 21982.06 32093.53 291
v1087.25 22586.38 22189.85 24291.19 31379.50 23894.48 16495.45 19183.79 21683.62 28991.19 28575.13 18597.42 21781.94 22980.60 34492.63 325
DP-MVS87.25 22585.36 26192.90 10197.65 5883.24 12794.81 14692.00 31574.99 35781.92 31595.00 14672.66 22499.05 5866.92 37092.33 19696.40 160
miper_ehance_all_eth87.22 22886.62 21389.02 27292.13 27877.40 29090.91 31194.81 23281.28 28284.32 27290.08 32279.26 13696.62 27583.81 19682.94 30993.04 313
test250687.21 22986.28 22790.02 23695.62 13073.64 33796.25 4771.38 42187.89 11790.45 13296.65 7655.29 37598.09 16786.03 16896.94 9798.33 44
thres20087.21 22986.24 22990.12 23095.36 13978.53 25993.26 24092.10 31186.42 15388.00 17391.11 29169.24 27298.00 17569.58 35291.04 21293.83 276
v14419287.19 23186.35 22389.74 24890.64 33978.24 26993.92 21095.43 19481.93 26185.51 23191.05 29374.21 20197.45 21282.86 20881.56 32893.53 291
FMVSNet287.19 23185.82 24791.30 18094.01 21683.67 11394.79 14794.94 21883.57 22083.88 28292.05 25966.59 30096.51 28777.56 29085.01 28893.73 285
c3_l87.14 23386.50 21989.04 27192.20 27577.26 29191.22 30594.70 23882.01 25984.34 27190.43 31178.81 14196.61 27883.70 19881.09 33593.25 302
testing9187.11 23486.18 23089.92 24094.43 19675.38 32091.53 29592.27 30786.48 15086.50 20290.24 31461.19 34397.53 20482.10 22490.88 21496.84 145
Baseline_NR-MVSNet87.07 23586.63 21288.40 28691.44 30277.87 27894.23 18692.57 29984.12 20885.74 22392.08 25677.25 15996.04 31082.29 22079.94 35391.30 356
v14887.04 23686.32 22589.21 26590.94 32677.26 29193.71 21994.43 24484.84 19484.36 27090.80 30076.04 17297.05 25582.12 22379.60 35893.31 299
test_fmvs1_n87.03 23787.04 19886.97 32889.74 35871.86 35894.55 16194.43 24478.47 32191.95 10895.50 12651.16 38993.81 36393.02 5894.56 15295.26 208
v192192086.97 23886.06 23789.69 25290.53 34478.11 27293.80 21495.43 19481.90 26385.33 24691.05 29372.66 22497.41 22382.05 22781.80 32593.53 291
tt080586.92 23985.74 25390.48 21492.22 27479.98 22995.63 9794.88 22683.83 21584.74 25792.80 23157.61 36497.67 19285.48 17584.42 29293.79 277
miper_enhance_ethall86.90 24086.18 23089.06 27091.66 29877.58 28890.22 32594.82 23179.16 30984.48 26389.10 33979.19 13896.66 27384.06 19182.94 30992.94 316
MonoMVSNet86.89 24186.55 21687.92 30389.46 36273.75 33494.12 19093.10 28387.82 12185.10 24990.76 30269.59 26394.94 34886.47 16282.50 31595.07 214
v7n86.81 24285.76 25189.95 23990.72 33779.25 25095.07 12995.92 15184.45 20382.29 30790.86 29672.60 22697.53 20479.42 27280.52 34893.08 312
PEN-MVS86.80 24386.27 22888.40 28692.32 27375.71 31595.18 12396.38 11087.97 11282.82 30293.15 21873.39 21795.92 31776.15 30679.03 36393.59 289
cl2286.78 24485.98 24089.18 26792.34 27277.62 28790.84 31294.13 25981.33 28183.97 28190.15 31973.96 20696.60 28084.19 19082.94 30993.33 298
v124086.78 24485.85 24689.56 25690.45 34577.79 28293.61 22295.37 19981.65 27285.43 23891.15 28971.50 23597.43 21681.47 24082.05 32293.47 295
TR-MVS86.78 24485.76 25189.82 24494.37 19878.41 26392.47 26692.83 29181.11 28786.36 20892.40 24168.73 28097.48 20873.75 32789.85 22993.57 290
PatchMatch-RL86.77 24785.54 25590.47 21795.88 11782.71 15290.54 31692.31 30579.82 30184.32 27291.57 27868.77 27996.39 29673.16 32993.48 17492.32 336
testing9986.72 24885.73 25489.69 25294.23 20574.91 32391.35 29990.97 34586.14 16186.36 20890.22 31559.41 35597.48 20882.24 22190.66 21596.69 151
PAPM86.68 24985.39 25990.53 20993.05 25479.33 24789.79 33594.77 23578.82 31581.95 31493.24 21576.81 16297.30 23166.94 36893.16 18194.95 223
pm-mvs186.61 25085.54 25589.82 24491.44 30280.18 21795.28 11494.85 22883.84 21481.66 31692.62 23572.45 22996.48 28979.67 26678.06 36492.82 321
GA-MVS86.61 25085.27 26490.66 20591.33 31078.71 25590.40 31893.81 27185.34 17985.12 24889.57 33361.25 34097.11 24980.99 24789.59 23596.15 170
Anonymous2023121186.59 25285.13 26690.98 19996.52 9181.50 17796.14 5696.16 12973.78 36983.65 28892.15 25063.26 32497.37 22982.82 21081.74 32794.06 263
test_vis1_n86.56 25386.49 22086.78 33588.51 36972.69 34894.68 15493.78 27279.55 30490.70 12995.31 13248.75 39493.28 37193.15 5493.99 16194.38 250
DIV-MVS_self_test86.53 25485.78 24888.75 27892.02 28376.45 30490.74 31394.30 25081.83 26883.34 29690.82 29975.75 17896.57 28181.73 23681.52 33093.24 303
cl____86.52 25585.78 24888.75 27892.03 28276.46 30390.74 31394.30 25081.83 26883.34 29690.78 30175.74 18096.57 28181.74 23581.54 32993.22 304
eth_miper_zixun_eth86.50 25685.77 25088.68 28191.94 28475.81 31390.47 31794.89 22482.05 25684.05 27890.46 31075.96 17396.77 26882.76 21279.36 36093.46 296
baseline286.50 25685.39 25989.84 24391.12 31876.70 30091.88 28588.58 37782.35 25179.95 34090.95 29573.42 21697.63 19880.27 26089.95 22695.19 210
EPNet_dtu86.49 25885.94 24388.14 29790.24 34872.82 34694.11 19292.20 30986.66 14879.42 34792.36 24373.52 21295.81 32471.26 33693.66 16695.80 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1186.44 25985.35 26289.69 25294.29 20375.40 31991.30 30090.53 35384.76 19685.06 25090.13 32058.95 35997.45 21282.08 22591.09 21096.21 169
cascas86.43 26084.98 26990.80 20392.10 28080.92 20090.24 32395.91 15373.10 37683.57 29188.39 35265.15 31297.46 21184.90 18191.43 20394.03 265
reproduce_monomvs86.37 26185.87 24587.87 30493.66 23573.71 33593.44 22995.02 21488.61 9282.64 30591.94 26257.88 36396.68 27289.96 11979.71 35793.22 304
SCA86.32 26285.18 26589.73 25092.15 27676.60 30191.12 30691.69 32483.53 22385.50 23288.81 34566.79 29696.48 28976.65 29890.35 22096.12 173
LTVRE_ROB82.13 1386.26 26384.90 27290.34 22394.44 19581.50 17792.31 27594.89 22483.03 23679.63 34592.67 23369.69 26197.79 18571.20 33786.26 28091.72 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 26485.48 25787.98 30091.65 29974.92 32294.93 13795.75 16687.36 13182.26 30893.04 22372.85 22295.82 32374.04 32277.46 36993.20 306
XVG-ACMP-BASELINE86.00 26584.84 27489.45 26191.20 31278.00 27391.70 29195.55 18285.05 18782.97 30092.25 24854.49 37997.48 20882.93 20687.45 27092.89 318
MVP-Stereo85.97 26684.86 27389.32 26390.92 32882.19 16492.11 28194.19 25578.76 31778.77 35391.63 27368.38 28496.56 28375.01 31693.95 16289.20 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 26785.09 26788.35 28890.79 33377.42 28991.83 28795.70 17180.77 29080.08 33890.02 32366.74 29896.37 29781.88 23187.97 26191.26 357
test-LLR85.87 26885.41 25887.25 32090.95 32471.67 36389.55 33989.88 36883.41 22684.54 26187.95 35967.25 28995.11 34481.82 23293.37 17794.97 217
FMVSNet185.85 26984.11 28691.08 19092.81 26283.10 13395.14 12694.94 21881.64 27382.68 30391.64 27059.01 35896.34 30075.37 31183.78 29893.79 277
PatchmatchNetpermissive85.85 26984.70 27689.29 26491.76 29375.54 31688.49 35791.30 33681.63 27485.05 25188.70 34971.71 23296.24 30474.61 32089.05 24496.08 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 27184.94 27188.26 29391.16 31672.58 35489.47 34391.04 34376.26 34586.45 20689.97 32570.74 24596.86 26782.35 21887.07 27695.34 207
PMMVS85.71 27284.96 27087.95 30188.90 36777.09 29388.68 35590.06 36272.32 38386.47 20390.76 30272.15 23094.40 35281.78 23493.49 17292.36 334
PVSNet78.82 1885.55 27384.65 27788.23 29594.72 17471.93 35787.12 37692.75 29578.80 31684.95 25390.53 30864.43 31696.71 27174.74 31893.86 16496.06 179
UBG85.51 27484.57 28088.35 28894.21 20771.78 36190.07 33089.66 37282.28 25285.91 21989.01 34161.30 33897.06 25376.58 30192.06 19996.22 167
IterMVS-SCA-FT85.45 27584.53 28188.18 29691.71 29576.87 29690.19 32792.65 29885.40 17881.44 31990.54 30766.79 29695.00 34781.04 24481.05 33692.66 324
pmmvs485.43 27683.86 29190.16 22790.02 35382.97 14390.27 31992.67 29775.93 34880.73 32791.74 26871.05 23995.73 32978.85 27783.46 30591.78 345
mvsany_test185.42 27785.30 26385.77 34787.95 38075.41 31887.61 37380.97 40776.82 33988.68 16095.83 11277.44 15890.82 39385.90 16986.51 27891.08 364
ACMH80.38 1785.36 27883.68 29390.39 21994.45 19480.63 20794.73 15194.85 22882.09 25577.24 36192.65 23460.01 35197.58 20072.25 33384.87 28992.96 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 27984.64 27887.49 31390.77 33472.59 35394.01 20394.40 24684.72 19879.62 34693.17 21761.91 33196.72 26981.99 22881.16 33293.16 308
CR-MVSNet85.35 27983.76 29290.12 23090.58 34179.34 24485.24 38991.96 31978.27 32685.55 22787.87 36271.03 24095.61 33173.96 32489.36 23895.40 203
tpmrst85.35 27984.99 26886.43 33990.88 33167.88 38788.71 35491.43 33480.13 29686.08 21688.80 34773.05 22096.02 31282.48 21483.40 30795.40 203
miper_lstm_enhance85.27 28284.59 27987.31 31791.28 31174.63 32587.69 37094.09 26181.20 28681.36 32189.85 32874.97 18994.30 35581.03 24679.84 35693.01 314
IB-MVS80.51 1585.24 28383.26 29991.19 18492.13 27879.86 23291.75 28991.29 33783.28 23180.66 32988.49 35161.28 33998.46 12880.99 24779.46 35995.25 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 28483.99 28988.65 28292.47 26878.40 26479.68 41192.76 29474.90 35981.41 32089.59 33269.85 26095.51 33579.92 26495.29 13692.03 341
RPSCF85.07 28584.27 28287.48 31492.91 26170.62 37691.69 29292.46 30076.20 34682.67 30495.22 13663.94 31997.29 23477.51 29185.80 28294.53 239
MS-PatchMatch85.05 28684.16 28487.73 30691.42 30578.51 26091.25 30393.53 27577.50 33280.15 33591.58 27661.99 33095.51 33575.69 30894.35 15889.16 385
ACMH+81.04 1485.05 28683.46 29689.82 24494.66 17879.37 24294.44 16994.12 26082.19 25478.04 35692.82 22958.23 36197.54 20373.77 32682.90 31292.54 326
mmtdpeth85.04 28884.15 28587.72 30793.11 25075.74 31494.37 17892.83 29184.98 18889.31 15186.41 37661.61 33597.14 24792.63 6662.11 40490.29 372
WBMVS84.97 28984.18 28387.34 31694.14 21271.62 36590.20 32692.35 30281.61 27584.06 27790.76 30261.82 33296.52 28678.93 27683.81 29793.89 268
IterMVS84.88 29083.98 29087.60 30991.44 30276.03 30990.18 32892.41 30183.24 23281.06 32590.42 31266.60 29994.28 35679.46 26880.98 34192.48 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 29183.09 30290.14 22993.80 22780.05 22489.18 34893.09 28478.89 31378.19 35491.91 26365.86 30997.27 23568.47 35788.45 25293.11 310
testing22284.84 29283.32 29789.43 26294.15 21175.94 31091.09 30789.41 37584.90 19085.78 22189.44 33552.70 38696.28 30370.80 34391.57 20296.07 177
tpm84.73 29384.02 28886.87 33390.33 34668.90 38389.06 35089.94 36580.85 28985.75 22289.86 32768.54 28295.97 31477.76 28784.05 29695.75 191
tfpnnormal84.72 29483.23 30089.20 26692.79 26380.05 22494.48 16495.81 16182.38 24981.08 32491.21 28469.01 27696.95 26161.69 38980.59 34590.58 371
CVMVSNet84.69 29584.79 27584.37 36091.84 28964.92 39893.70 22091.47 33366.19 40086.16 21595.28 13367.18 29193.33 37080.89 24990.42 21994.88 225
test-mter84.54 29683.64 29487.25 32090.95 32471.67 36389.55 33989.88 36879.17 30884.54 26187.95 35955.56 37195.11 34481.82 23293.37 17794.97 217
ETVMVS84.43 29782.92 30688.97 27494.37 19874.67 32491.23 30488.35 37983.37 22886.06 21789.04 34055.38 37395.67 33067.12 36691.34 20496.58 155
TransMVSNet (Re)84.43 29783.06 30488.54 28491.72 29478.44 26295.18 12392.82 29382.73 24479.67 34492.12 25273.49 21395.96 31571.10 34168.73 39491.21 358
pmmvs584.21 29982.84 30988.34 29088.95 36676.94 29592.41 26791.91 32175.63 35080.28 33391.18 28764.59 31595.57 33277.09 29683.47 30492.53 327
dmvs_re84.20 30083.22 30187.14 32691.83 29177.81 28090.04 33190.19 35884.70 19981.49 31789.17 33864.37 31791.13 39171.58 33585.65 28492.46 330
tpm284.08 30182.94 30587.48 31491.39 30671.27 36689.23 34790.37 35571.95 38584.64 25889.33 33667.30 28896.55 28575.17 31387.09 27594.63 232
test_fmvs283.98 30284.03 28783.83 36587.16 38367.53 39193.93 20992.89 28977.62 33186.89 19693.53 20547.18 39892.02 38390.54 11386.51 27891.93 343
COLMAP_ROBcopyleft80.39 1683.96 30382.04 31289.74 24895.28 14379.75 23494.25 18392.28 30675.17 35578.02 35793.77 20058.60 36097.84 18465.06 37985.92 28191.63 348
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 30481.53 31591.21 18390.58 34179.34 24485.24 38996.76 7971.44 38785.55 22782.97 39670.87 24398.91 8561.01 39189.36 23895.40 203
SixPastTwentyTwo83.91 30582.90 30786.92 33090.99 32270.67 37593.48 22691.99 31685.54 17577.62 36092.11 25460.59 34796.87 26676.05 30777.75 36693.20 306
EPMVS83.90 30682.70 31087.51 31190.23 34972.67 34988.62 35681.96 40581.37 28085.01 25288.34 35366.31 30394.45 35075.30 31287.12 27495.43 202
WB-MVSnew83.77 30783.28 29885.26 35491.48 30171.03 37091.89 28487.98 38078.91 31184.78 25590.22 31569.11 27594.02 35964.70 38090.44 21790.71 366
TESTMET0.1,183.74 30882.85 30886.42 34089.96 35471.21 36889.55 33987.88 38177.41 33383.37 29587.31 36756.71 36793.65 36780.62 25492.85 18894.40 249
UWE-MVS83.69 30983.09 30285.48 34993.06 25365.27 39790.92 31086.14 38979.90 29986.26 21290.72 30557.17 36695.81 32471.03 34292.62 19195.35 206
pmmvs683.42 31081.60 31488.87 27588.01 37877.87 27894.96 13594.24 25474.67 36178.80 35291.09 29260.17 35096.49 28877.06 29775.40 37892.23 338
AllTest83.42 31081.39 31689.52 25895.01 15677.79 28293.12 24490.89 34877.41 33376.12 36993.34 20854.08 38197.51 20668.31 35984.27 29493.26 300
tpmvs83.35 31282.07 31187.20 32491.07 32071.00 37288.31 36091.70 32378.91 31180.49 33287.18 37169.30 27097.08 25068.12 36283.56 30393.51 294
USDC82.76 31381.26 31887.26 31991.17 31474.55 32689.27 34593.39 27878.26 32775.30 37592.08 25654.43 38096.63 27471.64 33485.79 28390.61 368
Patchmtry82.71 31480.93 32088.06 29890.05 35276.37 30684.74 39491.96 31972.28 38481.32 32287.87 36271.03 24095.50 33768.97 35480.15 35192.32 336
PatchT82.68 31581.27 31786.89 33290.09 35170.94 37384.06 39690.15 35974.91 35885.63 22683.57 39169.37 26694.87 34965.19 37688.50 25194.84 226
MIMVSNet82.59 31680.53 32188.76 27791.51 30078.32 26686.57 38090.13 36079.32 30580.70 32888.69 35052.98 38593.07 37566.03 37488.86 24694.90 224
test0.0.03 182.41 31781.69 31384.59 35888.23 37572.89 34590.24 32387.83 38283.41 22679.86 34289.78 32967.25 28988.99 40265.18 37783.42 30691.90 344
EG-PatchMatch MVS82.37 31880.34 32488.46 28590.27 34779.35 24392.80 25994.33 24977.14 33773.26 38690.18 31847.47 39796.72 26970.25 34587.32 27389.30 381
tpm cat181.96 31980.27 32587.01 32791.09 31971.02 37187.38 37491.53 33166.25 39980.17 33486.35 37868.22 28596.15 30869.16 35382.29 31893.86 274
our_test_381.93 32080.46 32386.33 34188.46 37273.48 33988.46 35891.11 33976.46 34076.69 36588.25 35566.89 29494.36 35368.75 35579.08 36291.14 360
ppachtmachnet_test81.84 32180.07 32987.15 32588.46 37274.43 32989.04 35192.16 31075.33 35377.75 35888.99 34266.20 30595.37 34065.12 37877.60 36791.65 347
gg-mvs-nofinetune81.77 32279.37 33788.99 27390.85 33277.73 28586.29 38179.63 41074.88 36083.19 29969.05 41260.34 34896.11 30975.46 31094.64 15093.11 310
CL-MVSNet_self_test81.74 32380.53 32185.36 35185.96 38972.45 35590.25 32193.07 28581.24 28479.85 34387.29 36870.93 24292.52 37866.95 36769.23 39091.11 362
Patchmatch-RL test81.67 32479.96 33086.81 33485.42 39471.23 36782.17 40487.50 38578.47 32177.19 36282.50 39870.81 24493.48 36882.66 21372.89 38295.71 195
ADS-MVSNet281.66 32579.71 33487.50 31291.35 30874.19 33183.33 39988.48 37872.90 37882.24 30985.77 38264.98 31393.20 37364.57 38183.74 29995.12 212
K. test v381.59 32680.15 32885.91 34689.89 35669.42 38292.57 26487.71 38385.56 17473.44 38589.71 33155.58 37095.52 33477.17 29469.76 38892.78 322
ADS-MVSNet81.56 32779.78 33186.90 33191.35 30871.82 35983.33 39989.16 37672.90 37882.24 30985.77 38264.98 31393.76 36464.57 38183.74 29995.12 212
FMVSNet581.52 32879.60 33587.27 31891.17 31477.95 27491.49 29692.26 30876.87 33876.16 36887.91 36151.67 38792.34 38067.74 36381.16 33291.52 351
dp81.47 32980.23 32685.17 35589.92 35565.49 39586.74 37890.10 36176.30 34481.10 32387.12 37262.81 32695.92 31768.13 36179.88 35494.09 261
Patchmatch-test81.37 33079.30 33887.58 31090.92 32874.16 33280.99 40687.68 38470.52 39176.63 36688.81 34571.21 23792.76 37760.01 39586.93 27795.83 188
EU-MVSNet81.32 33180.95 31982.42 37388.50 37163.67 40293.32 23391.33 33564.02 40380.57 33192.83 22861.21 34292.27 38176.34 30380.38 35091.32 355
test_040281.30 33279.17 34287.67 30893.19 24778.17 27092.98 25191.71 32275.25 35476.02 37190.31 31359.23 35696.37 29750.22 40783.63 30288.47 392
JIA-IIPM81.04 33378.98 34687.25 32088.64 36873.48 33981.75 40589.61 37373.19 37582.05 31273.71 40866.07 30895.87 32071.18 33984.60 29192.41 332
Anonymous2023120681.03 33479.77 33384.82 35787.85 38170.26 37891.42 29792.08 31273.67 37077.75 35889.25 33762.43 32893.08 37461.50 39082.00 32391.12 361
mvs5depth80.98 33579.15 34386.45 33884.57 39773.29 34187.79 36691.67 32580.52 29282.20 31189.72 33055.14 37695.93 31673.93 32566.83 39690.12 374
pmmvs-eth3d80.97 33678.72 34887.74 30584.99 39679.97 23090.11 32991.65 32675.36 35273.51 38486.03 37959.45 35493.96 36275.17 31372.21 38389.29 383
testgi80.94 33780.20 32783.18 36687.96 37966.29 39291.28 30190.70 35283.70 21778.12 35592.84 22751.37 38890.82 39363.34 38482.46 31692.43 331
CMPMVSbinary59.16 2180.52 33879.20 34184.48 35983.98 39867.63 39089.95 33493.84 27064.79 40266.81 40091.14 29057.93 36295.17 34276.25 30488.10 25790.65 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 33979.59 33683.06 36893.44 24264.64 39993.33 23285.47 39484.34 20579.93 34190.84 29844.35 40492.39 37957.06 40287.56 26792.16 340
Anonymous2024052180.44 34079.21 34084.11 36385.75 39267.89 38692.86 25793.23 28175.61 35175.59 37487.47 36650.03 39094.33 35471.14 34081.21 33190.12 374
LF4IMVS80.37 34179.07 34584.27 36286.64 38569.87 38189.39 34491.05 34276.38 34274.97 37790.00 32447.85 39694.25 35774.55 32180.82 34388.69 390
KD-MVS_self_test80.20 34279.24 33983.07 36785.64 39365.29 39691.01 30993.93 26478.71 31976.32 36786.40 37759.20 35792.93 37672.59 33169.35 38991.00 365
Syy-MVS80.07 34379.78 33180.94 37791.92 28559.93 40889.75 33787.40 38681.72 27078.82 35087.20 36966.29 30491.29 38947.06 40987.84 26491.60 349
UnsupCasMVSNet_eth80.07 34378.27 34985.46 35085.24 39572.63 35288.45 35994.87 22782.99 23871.64 39288.07 35856.34 36891.75 38673.48 32863.36 40292.01 342
test20.0379.95 34579.08 34482.55 37085.79 39167.74 38991.09 30791.08 34081.23 28574.48 38189.96 32661.63 33390.15 39560.08 39376.38 37489.76 376
TDRefinement79.81 34677.34 35187.22 32379.24 41175.48 31793.12 24492.03 31476.45 34175.01 37691.58 27649.19 39396.44 29370.22 34769.18 39189.75 377
TinyColmap79.76 34777.69 35085.97 34391.71 29573.12 34289.55 33990.36 35675.03 35672.03 39090.19 31746.22 40196.19 30763.11 38581.03 33788.59 391
myMVS_eth3d79.67 34878.79 34782.32 37491.92 28564.08 40089.75 33787.40 38681.72 27078.82 35087.20 36945.33 40291.29 38959.09 39787.84 26491.60 349
OpenMVS_ROBcopyleft74.94 1979.51 34977.03 35686.93 32987.00 38476.23 30892.33 27390.74 35168.93 39574.52 38088.23 35649.58 39296.62 27557.64 40084.29 29387.94 395
MIMVSNet179.38 35077.28 35285.69 34886.35 38673.67 33691.61 29492.75 29578.11 33072.64 38888.12 35748.16 39591.97 38560.32 39277.49 36891.43 354
YYNet179.22 35177.20 35385.28 35388.20 37772.66 35085.87 38390.05 36474.33 36462.70 40387.61 36466.09 30792.03 38266.94 36872.97 38191.15 359
MDA-MVSNet_test_wron79.21 35277.19 35485.29 35288.22 37672.77 34785.87 38390.06 36274.34 36362.62 40587.56 36566.14 30691.99 38466.90 37173.01 38091.10 363
MDA-MVSNet-bldmvs78.85 35376.31 35886.46 33789.76 35773.88 33388.79 35390.42 35479.16 30959.18 40888.33 35460.20 34994.04 35862.00 38868.96 39291.48 353
KD-MVS_2432*160078.50 35476.02 36185.93 34486.22 38774.47 32784.80 39292.33 30379.29 30676.98 36385.92 38053.81 38393.97 36067.39 36457.42 40989.36 379
miper_refine_blended78.50 35476.02 36185.93 34486.22 38774.47 32784.80 39292.33 30379.29 30676.98 36385.92 38053.81 38393.97 36067.39 36457.42 40989.36 379
PM-MVS78.11 35676.12 36084.09 36483.54 40070.08 37988.97 35285.27 39679.93 29874.73 37986.43 37534.70 41293.48 36879.43 27172.06 38488.72 389
test_vis1_rt77.96 35776.46 35782.48 37285.89 39071.74 36290.25 32178.89 41171.03 39071.30 39381.35 40042.49 40691.05 39284.55 18682.37 31784.65 398
test_fmvs377.67 35877.16 35579.22 38079.52 41061.14 40692.34 27291.64 32773.98 36778.86 34986.59 37327.38 41687.03 40488.12 14075.97 37689.50 378
PVSNet_073.20 2077.22 35974.83 36584.37 36090.70 33871.10 36983.09 40189.67 37172.81 38073.93 38383.13 39360.79 34693.70 36668.54 35650.84 41488.30 393
DSMNet-mixed76.94 36076.29 35978.89 38183.10 40256.11 41787.78 36779.77 40960.65 40775.64 37388.71 34861.56 33688.34 40360.07 39489.29 24092.21 339
ttmdpeth76.55 36174.64 36682.29 37582.25 40567.81 38889.76 33685.69 39270.35 39275.76 37291.69 26946.88 39989.77 39766.16 37363.23 40389.30 381
new-patchmatchnet76.41 36275.17 36480.13 37882.65 40459.61 40987.66 37191.08 34078.23 32869.85 39683.22 39254.76 37791.63 38864.14 38364.89 40089.16 385
UnsupCasMVSNet_bld76.23 36373.27 36785.09 35683.79 39972.92 34485.65 38693.47 27771.52 38668.84 39879.08 40349.77 39193.21 37266.81 37260.52 40689.13 387
mvsany_test374.95 36473.26 36880.02 37974.61 41563.16 40485.53 38778.42 41274.16 36574.89 37886.46 37436.02 41189.09 40182.39 21766.91 39587.82 396
dmvs_testset74.57 36575.81 36370.86 39187.72 38240.47 42687.05 37777.90 41682.75 24371.15 39485.47 38467.98 28684.12 41345.26 41076.98 37388.00 394
MVS-HIRNet73.70 36672.20 36978.18 38491.81 29256.42 41682.94 40282.58 40355.24 41068.88 39766.48 41355.32 37495.13 34358.12 39988.42 25383.01 401
MVStest172.91 36769.70 37282.54 37178.14 41273.05 34388.21 36186.21 38860.69 40664.70 40190.53 30846.44 40085.70 40958.78 39853.62 41188.87 388
new_pmnet72.15 36870.13 37178.20 38382.95 40365.68 39383.91 39782.40 40462.94 40564.47 40279.82 40242.85 40586.26 40857.41 40174.44 37982.65 403
test_f71.95 36970.87 37075.21 38774.21 41759.37 41085.07 39185.82 39165.25 40170.42 39583.13 39323.62 41782.93 41578.32 28171.94 38583.33 400
pmmvs371.81 37068.71 37381.11 37675.86 41470.42 37786.74 37883.66 40058.95 40968.64 39980.89 40136.93 41089.52 39963.10 38663.59 40183.39 399
APD_test169.04 37166.26 37777.36 38680.51 40862.79 40585.46 38883.51 40154.11 41259.14 40984.79 38723.40 41989.61 39855.22 40370.24 38779.68 407
N_pmnet68.89 37268.44 37470.23 39289.07 36528.79 43188.06 36219.50 43169.47 39471.86 39184.93 38561.24 34191.75 38654.70 40477.15 37090.15 373
WB-MVS67.92 37367.49 37569.21 39581.09 40641.17 42588.03 36378.00 41573.50 37262.63 40483.11 39563.94 31986.52 40625.66 42151.45 41379.94 406
SSC-MVS67.06 37466.56 37668.56 39780.54 40740.06 42787.77 36877.37 41872.38 38261.75 40682.66 39763.37 32286.45 40724.48 42248.69 41679.16 408
LCM-MVSNet66.00 37562.16 38077.51 38564.51 42558.29 41183.87 39890.90 34748.17 41454.69 41173.31 40916.83 42586.75 40565.47 37561.67 40587.48 397
test_vis3_rt65.12 37662.60 37872.69 38971.44 41860.71 40787.17 37565.55 42263.80 40453.22 41265.65 41514.54 42689.44 40076.65 29865.38 39867.91 413
FPMVS64.63 37762.55 37970.88 39070.80 41956.71 41284.42 39584.42 39851.78 41349.57 41381.61 39923.49 41881.48 41640.61 41676.25 37574.46 409
EGC-MVSNET61.97 37856.37 38378.77 38289.63 36073.50 33889.12 34982.79 4020.21 4281.24 42984.80 38639.48 40790.04 39644.13 41175.94 37772.79 410
PMMVS259.60 37956.40 38269.21 39568.83 42246.58 42173.02 41677.48 41755.07 41149.21 41472.95 41017.43 42480.04 41749.32 40844.33 41780.99 405
testf159.54 38056.11 38469.85 39369.28 42056.61 41480.37 40876.55 41942.58 41745.68 41675.61 40411.26 42784.18 41143.20 41360.44 40768.75 411
APD_test259.54 38056.11 38469.85 39369.28 42056.61 41480.37 40876.55 41942.58 41745.68 41675.61 40411.26 42784.18 41143.20 41360.44 40768.75 411
ANet_high58.88 38254.22 38772.86 38856.50 42856.67 41380.75 40786.00 39073.09 37737.39 42064.63 41622.17 42079.49 41843.51 41223.96 42282.43 404
dongtai58.82 38358.24 38160.56 40083.13 40145.09 42482.32 40348.22 43067.61 39761.70 40769.15 41138.75 40876.05 41932.01 41841.31 41860.55 415
Gipumacopyleft57.99 38454.91 38667.24 39888.51 36965.59 39452.21 41990.33 35743.58 41642.84 41951.18 42020.29 42285.07 41034.77 41770.45 38651.05 419
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan53.51 38553.30 38854.13 40476.06 41345.36 42380.11 41048.36 42959.63 40854.84 41063.43 41737.41 40962.07 42420.73 42439.10 41954.96 418
PMVScopyleft47.18 2252.22 38648.46 39063.48 39945.72 43046.20 42273.41 41578.31 41341.03 41930.06 42265.68 4146.05 42983.43 41430.04 41965.86 39760.80 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 38748.47 38956.66 40252.26 42918.98 43341.51 42181.40 40610.10 42344.59 41875.01 40728.51 41468.16 42053.54 40549.31 41582.83 402
MVEpermissive39.65 2343.39 38838.59 39457.77 40156.52 42748.77 42055.38 41858.64 42629.33 42228.96 42352.65 4194.68 43064.62 42328.11 42033.07 42059.93 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 38942.29 39146.03 40565.58 42437.41 42873.51 41464.62 42333.99 42028.47 42447.87 42119.90 42367.91 42122.23 42324.45 42132.77 420
EMVS42.07 39041.12 39244.92 40663.45 42635.56 43073.65 41363.48 42433.05 42126.88 42545.45 42221.27 42167.14 42219.80 42523.02 42332.06 421
tmp_tt35.64 39139.24 39324.84 40714.87 43123.90 43262.71 41751.51 4286.58 42536.66 42162.08 41844.37 40330.34 42752.40 40622.00 42420.27 422
cdsmvs_eth3d_5k22.14 39229.52 3950.00 4110.00 4340.00 4360.00 42295.76 1650.00 4290.00 43094.29 17575.66 1810.00 4300.00 4290.00 4280.00 426
wuyk23d21.27 39320.48 39623.63 40868.59 42336.41 42949.57 4206.85 4329.37 4247.89 4264.46 4284.03 43131.37 42617.47 42616.07 4253.12 423
testmvs8.92 39411.52 3971.12 4101.06 4320.46 43586.02 3820.65 4330.62 4262.74 4279.52 4260.31 4330.45 4292.38 4270.39 4262.46 425
test1238.76 39511.22 3981.39 4090.85 4330.97 43485.76 3850.35 4340.54 4272.45 4288.14 4270.60 4320.48 4282.16 4280.17 4272.71 424
ab-mvs-re7.82 39610.43 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43093.88 1950.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas6.64 3978.86 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42979.70 1300.00 4300.00 4290.00 4280.00 426
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS64.08 40059.14 396
FOURS198.86 185.54 6798.29 197.49 689.79 5396.29 21
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6799.61 496.03 1799.06 999.07 5
PC_three_145282.47 24797.09 1297.07 5792.72 198.04 17292.70 6599.02 1298.86 11
No_MVS96.52 197.78 5490.86 196.85 6799.61 496.03 1799.06 999.07 5
test_one_060198.58 1185.83 6197.44 1591.05 1596.78 1798.06 1591.45 11
eth-test20.00 434
eth-test0.00 434
ZD-MVS98.15 3486.62 3397.07 4983.63 21994.19 5096.91 6387.57 3199.26 4591.99 8798.44 53
RE-MVS-def93.68 5897.92 4384.57 8696.28 4396.76 7987.46 12893.75 6097.43 3682.94 8992.73 6197.80 7997.88 86
IU-MVS98.77 586.00 5096.84 6981.26 28397.26 895.50 2699.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5592.59 298.94 8392.25 7698.99 1498.84 14
test_241102_TWO97.44 1590.31 3197.62 598.07 1391.46 1099.58 1095.66 2099.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3797.71 197.96 2392.31 499.38 31
9.1494.47 2497.79 5296.08 6097.44 1586.13 16395.10 4097.40 3888.34 2299.22 4793.25 5398.70 34
save fliter97.85 4985.63 6695.21 12096.82 7289.44 61
test_0728_THIRD90.75 2097.04 1398.05 1792.09 699.55 1695.64 2299.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2499.08 798.99 9
test072698.78 385.93 5597.19 1197.47 1190.27 3597.64 498.13 491.47 8
GSMVS96.12 173
test_part298.55 1287.22 1996.40 20
sam_mvs171.70 23396.12 173
sam_mvs70.60 246
ambc83.06 36879.99 40963.51 40377.47 41292.86 29074.34 38284.45 38828.74 41395.06 34673.06 33068.89 39390.61 368
MTGPAbinary96.97 54
test_post188.00 3649.81 42569.31 26995.53 33376.65 298
test_post10.29 42470.57 25095.91 319
patchmatchnet-post83.76 39071.53 23496.48 289
GG-mvs-BLEND87.94 30289.73 35977.91 27587.80 36578.23 41480.58 33083.86 38959.88 35295.33 34171.20 33792.22 19790.60 370
MTMP96.16 5260.64 425
gm-plane-assit89.60 36168.00 38577.28 33688.99 34297.57 20179.44 270
test9_res91.91 9198.71 3298.07 73
TEST997.53 6186.49 3794.07 19796.78 7681.61 27592.77 8596.20 9387.71 2899.12 54
test_897.49 6386.30 4594.02 20296.76 7981.86 26692.70 8996.20 9387.63 2999.02 64
agg_prior290.54 11398.68 3798.27 56
agg_prior97.38 6685.92 5796.72 8592.16 10198.97 78
TestCases89.52 25895.01 15677.79 28290.89 34877.41 33376.12 36993.34 20854.08 38197.51 20668.31 35984.27 29493.26 300
test_prior485.96 5494.11 192
test_prior294.12 19087.67 12692.63 9196.39 8886.62 4091.50 9998.67 40
test_prior93.82 6597.29 7084.49 9096.88 6598.87 8798.11 72
旧先验293.36 23171.25 38894.37 4697.13 24886.74 158
新几何293.11 246
新几何193.10 8897.30 6984.35 9995.56 18171.09 38991.26 12596.24 9182.87 9198.86 8979.19 27498.10 6796.07 177
旧先验196.79 7981.81 17195.67 17396.81 6986.69 3997.66 8496.97 137
无先验93.28 23996.26 12073.95 36899.05 5880.56 25596.59 154
原ACMM292.94 253
原ACMM192.01 14397.34 6781.05 19596.81 7478.89 31390.45 13295.92 10782.65 9398.84 9380.68 25398.26 5996.14 171
test22296.55 8881.70 17392.22 27795.01 21568.36 39690.20 13796.14 9880.26 12397.80 7996.05 180
testdata298.75 10078.30 282
segment_acmp87.16 36
testdata90.49 21396.40 9377.89 27795.37 19972.51 38193.63 6396.69 7282.08 10797.65 19583.08 20397.39 8895.94 182
testdata192.15 27987.94 113
test1294.34 5297.13 7386.15 4896.29 11591.04 12785.08 6199.01 6698.13 6697.86 88
plane_prior794.70 17682.74 149
plane_prior694.52 18882.75 14774.23 199
plane_prior596.22 12598.12 15788.15 13789.99 22394.63 232
plane_prior494.86 152
plane_prior382.75 14790.26 3786.91 193
plane_prior295.85 8290.81 18
plane_prior194.59 182
plane_prior82.73 15095.21 12089.66 5889.88 228
n20.00 435
nn0.00 435
door-mid85.49 393
lessismore_v086.04 34288.46 37268.78 38480.59 40873.01 38790.11 32155.39 37296.43 29475.06 31565.06 39992.90 317
LGP-MVS_train91.12 18694.47 19181.49 17996.14 13086.73 14685.45 23595.16 14169.89 25898.10 15987.70 14489.23 24193.77 282
test1196.57 96
door85.33 395
HQP5-MVS81.56 175
HQP-NCC94.17 20894.39 17488.81 8285.43 238
ACMP_Plane94.17 20894.39 17488.81 8285.43 238
BP-MVS87.11 155
HQP4-MVS85.43 23897.96 17894.51 242
HQP3-MVS96.04 14289.77 232
HQP2-MVS73.83 209
NP-MVS94.37 19882.42 15993.98 188
MDTV_nov1_ep13_2view55.91 41887.62 37273.32 37484.59 26070.33 25374.65 31995.50 200
MDTV_nov1_ep1383.56 29591.69 29769.93 38087.75 36991.54 33078.60 32084.86 25488.90 34469.54 26496.03 31170.25 34588.93 245
ACMMP++_ref87.47 268
ACMMP++88.01 260
Test By Simon80.02 125
ITE_SJBPF88.24 29491.88 28877.05 29492.92 28885.54 17580.13 33793.30 21257.29 36596.20 30572.46 33284.71 29091.49 352
DeepMVS_CXcopyleft56.31 40374.23 41651.81 41956.67 42744.85 41548.54 41575.16 40627.87 41558.74 42540.92 41552.22 41258.39 417