This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9497.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15597.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25294.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8796.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8497.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 108
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17184.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 73
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4998.47 33
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12497.12 4187.13 12292.51 8396.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 16996.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8496.43 9786.56 13796.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 112
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9497.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 16195.05 3497.18 4587.31 3599.07 5391.90 8098.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5398.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13597.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9196.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 114
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25584.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 80
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19397.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13893.64 3798.17 5998.19 58
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 8996.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13393.03 4798.62 4598.13 62
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13092.62 8096.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10397.17 4683.96 7199.55 1691.44 8698.64 4498.43 38
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4898.32 46
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17593.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7597.88 78
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12693.92 4897.47 2983.88 7298.96 7792.71 5497.87 7298.26 54
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11296.97 996.23 10896.92 127
patch_mono-293.74 4794.32 2692.01 13297.54 5778.37 25793.40 21797.19 3588.02 10194.99 3597.21 4288.35 2198.44 12294.07 3298.09 6499.23 1
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17692.19 6698.66 4196.76 134
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16293.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 11097.83 83
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14783.67 10696.19 5096.10 12587.27 12095.98 2498.05 1383.07 8298.45 12096.68 1195.51 11796.88 130
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12796.69 8491.89 890.69 11995.88 10281.99 10299.54 2093.14 4697.95 7098.39 39
dcpmvs_293.49 5294.19 3691.38 16697.69 5476.78 28994.25 17296.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21683.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11696.71 1096.17 10996.98 123
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 22997.24 3288.76 7591.60 10895.85 10386.07 4698.66 9891.91 7898.16 6098.03 70
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 22084.26 9395.83 7796.14 12089.00 7092.43 8697.50 2883.37 7898.72 9696.61 1297.44 8296.32 149
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18596.78 7281.86 25292.77 7496.20 8787.63 2999.12 5192.14 6898.69 3697.94 74
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 14997.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14493.68 3698.14 6197.31 101
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23697.13 4090.74 2191.84 10195.09 13386.32 4299.21 4591.22 8898.45 5197.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15892.47 8597.13 4882.38 9099.07 5390.51 10398.40 5397.92 77
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13096.99 4889.02 6989.56 13397.37 3582.51 8999.38 3192.20 6598.30 5697.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17498.27 52
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12897.03 5381.44 10599.51 2490.85 9895.74 11398.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19590.05 12995.66 11287.77 2699.15 5089.91 10898.27 5798.07 66
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 25383.62 10996.02 6795.72 15786.78 13296.04 2298.19 182.30 9398.43 12596.38 1395.42 12396.86 131
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34884.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8597.74 87
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 17098.15 61
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14883.51 11394.48 15495.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14597.36 100
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17283.40 11695.00 12496.34 10390.30 3092.05 9296.05 9583.43 7598.15 14592.07 7095.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8796.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 12097.45 99
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18796.66 8580.09 28192.77 7496.63 7386.62 3899.04 5787.40 13698.66 4198.17 60
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12096.51 9490.73 2292.96 6691.19 27384.06 6998.34 13191.72 8296.54 10296.54 145
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15983.20 12194.40 16295.74 15490.71 2392.05 9296.60 7584.00 7098.99 7091.55 8493.63 15597.17 108
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21391.68 10795.04 13486.60 4098.99 7085.60 16097.92 7196.93 126
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18581.98 15994.54 15296.23 11489.57 4991.96 9696.17 9182.58 8898.01 16390.95 9595.45 12298.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23496.09 12688.20 9691.12 11595.72 11181.33 10797.76 17691.74 8197.37 8496.75 135
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26596.62 7475.95 16399.34 3487.77 13197.68 7998.59 24
baseline92.39 7792.29 7692.69 10594.46 18181.77 16494.14 17896.27 10989.22 5991.88 9996.00 9682.35 9197.99 16591.05 9095.27 12898.30 47
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13496.44 9689.19 6194.08 4595.90 10177.85 14798.17 14388.90 11893.38 16498.13 62
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 15996.76 3096.49 9581.89 25190.24 12496.44 8178.59 13698.61 10489.68 10997.85 7397.06 115
EIA-MVS91.95 8091.94 7891.98 13695.16 14180.01 21895.36 9896.73 7988.44 8589.34 13792.16 23983.82 7398.45 12089.35 11297.06 8897.48 97
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14696.66 8582.69 23390.03 13095.82 10582.30 9399.03 5884.57 17296.48 10596.91 128
EPNet91.79 8291.02 9294.10 5290.10 33685.25 6996.03 6692.05 29892.83 387.39 17395.78 10779.39 12699.01 6388.13 12797.48 8198.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8391.70 8292.00 13597.08 7180.03 21793.60 21195.18 19487.85 10990.89 11796.47 8082.06 10098.36 12885.07 16497.04 8997.62 90
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12196.58 7675.09 17598.31 13684.75 17096.90 9397.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17286.37 4097.18 1297.02 4789.20 6084.31 26196.66 6973.74 19999.17 4786.74 14697.96 6997.79 85
EPP-MVSNet91.70 8691.56 8392.13 13195.88 11280.50 20297.33 795.25 19086.15 15089.76 13295.60 11483.42 7798.32 13587.37 13893.25 16797.56 95
MVSFormer91.68 8791.30 8592.80 9793.86 21083.88 10195.96 7195.90 14284.66 18991.76 10494.91 13777.92 14497.30 22289.64 11097.11 8697.24 104
Effi-MVS+91.59 8891.11 8993.01 8594.35 19083.39 11794.60 14895.10 19887.10 12390.57 12093.10 21181.43 10698.07 15989.29 11494.48 14397.59 93
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13595.98 9878.57 13797.77 17583.02 19296.50 10498.22 57
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13296.66 8583.29 21889.27 13894.46 15880.29 11399.17 4787.57 13495.37 12496.05 166
diffmvspermissive91.37 9191.23 8791.77 15293.09 23580.27 20692.36 25795.52 17387.03 12591.40 11294.93 13680.08 11597.44 20692.13 6994.56 14097.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9291.11 8991.93 14094.37 18680.14 21093.46 21695.80 14986.46 14091.35 11393.77 19082.21 9698.09 15687.57 13494.95 13197.55 96
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21395.93 13886.95 12789.51 13496.13 9378.50 13898.35 13085.84 15892.90 17396.83 133
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16896.24 11386.39 14287.41 17094.80 14582.06 10098.48 11282.80 19895.37 12497.61 91
PS-MVSNAJ91.18 9590.92 9391.96 13895.26 13782.60 14892.09 26995.70 15886.27 14491.84 10192.46 22979.70 12198.99 7089.08 11695.86 11294.29 240
xiu_mvs_v2_base91.13 9690.89 9591.86 14694.97 15182.42 15092.24 26395.64 16586.11 15491.74 10693.14 20979.67 12498.89 8189.06 11795.46 12194.28 241
nrg03091.08 9790.39 9993.17 7693.07 23686.91 2196.41 3996.26 11088.30 9088.37 15394.85 14282.19 9797.64 18791.09 8982.95 29694.96 205
lupinMVS90.92 9890.21 10293.03 8493.86 21083.88 10192.81 24593.86 25479.84 28491.76 10494.29 16477.92 14498.04 16190.48 10697.11 8697.17 108
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14595.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 35196.60 140
jason90.80 9990.10 10692.90 9293.04 23983.53 11293.08 23494.15 24380.22 27891.41 11194.91 13776.87 15197.93 17090.28 10796.90 9397.24 104
jason: jason.
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8193.86 25488.42 8792.53 8196.84 6062.09 31698.64 10090.95 9592.62 17797.93 76
PVSNet_Blended90.73 10290.32 10191.98 13696.12 9781.25 17992.55 25296.83 6682.04 24589.10 14092.56 22781.04 10998.85 8686.72 14895.91 11195.84 173
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15294.11 18095.12 19685.63 16291.49 10994.70 14874.75 17998.42 12686.13 15392.53 17997.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15294.11 18095.12 19685.63 16291.49 10994.70 14874.75 17998.42 12686.13 15392.53 17997.31 101
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23689.13 13994.27 16780.32 11298.46 11680.16 24896.71 9994.33 238
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
xiu_mvs_v1_base90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11893.97 20784.46 8693.32 22095.46 17585.17 17292.25 8794.03 17170.59 23598.57 10890.97 9294.67 13594.18 242
HQP_MVS90.60 10990.19 10391.82 14994.70 16782.73 14195.85 7596.22 11590.81 1786.91 18194.86 14074.23 18798.12 14688.15 12589.99 20894.63 217
FIs90.51 11090.35 10090.99 18793.99 20680.98 18895.73 8197.54 489.15 6286.72 18894.68 15081.83 10497.24 23085.18 16388.31 24494.76 215
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8495.67 16082.36 23887.85 16192.85 21676.63 15798.80 9080.01 24996.68 10095.91 169
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11290.18 10490.53 19993.71 21779.85 22495.77 8097.59 389.31 5686.27 19994.67 15181.93 10397.01 24684.26 17688.09 24794.71 216
CANet_DTU90.26 11389.41 12392.81 9693.46 22683.01 13293.48 21494.47 22989.43 5287.76 16594.23 16870.54 23999.03 5884.97 16596.39 10696.38 148
SDMVSNet90.19 11489.61 11791.93 14096.00 10683.09 12892.89 24195.98 13488.73 7686.85 18595.20 12872.09 21997.08 24088.90 11889.85 21495.63 183
OPM-MVS90.12 11589.56 11891.82 14993.14 23383.90 10094.16 17795.74 15488.96 7187.86 16095.43 11972.48 21597.91 17188.10 12990.18 20793.65 275
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15496.08 6189.91 35186.79 13192.15 9196.81 6362.60 31498.34 13187.18 14093.90 15198.19 58
GeoE90.05 11789.43 12291.90 14595.16 14180.37 20595.80 7894.65 22683.90 20087.55 16994.75 14778.18 14297.62 18981.28 22893.63 15597.71 88
PAPR90.02 11889.27 12992.29 12695.78 11680.95 19092.68 24796.22 11581.91 24986.66 18993.75 19282.23 9598.44 12279.40 26094.79 13397.48 97
PVSNet_BlendedMVS89.98 11989.70 11590.82 19296.12 9781.25 17993.92 19896.83 6683.49 21289.10 14092.26 23781.04 10998.85 8686.72 14887.86 25192.35 321
PS-MVSNAJss89.97 12089.62 11691.02 18491.90 27380.85 19395.26 10895.98 13486.26 14586.21 20194.29 16479.70 12197.65 18488.87 12088.10 24594.57 222
mvsmamba89.96 12189.50 11991.33 16992.90 24681.82 16296.68 3392.37 28689.03 6787.00 17794.85 14273.05 20797.65 18491.03 9188.63 23594.51 227
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16394.00 20581.21 18291.87 27396.06 13085.78 15788.55 14995.73 11074.67 18397.27 22688.71 12189.64 21995.91 169
UGNet89.95 12288.95 13592.95 9094.51 17883.31 11895.70 8395.23 19189.37 5487.58 16793.94 18064.00 30498.78 9183.92 18196.31 10796.74 136
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 15193.39 22883.72 10494.43 16097.12 4189.80 4186.46 19293.32 20083.16 7997.23 23184.92 16681.02 32594.49 232
AdaColmapbinary89.89 12589.07 13192.37 12197.41 6283.03 13094.42 16195.92 13982.81 23086.34 19894.65 15273.89 19599.02 6180.69 23995.51 11795.05 200
iter_conf05_1189.88 12689.04 13392.41 11795.12 14481.63 16792.87 24392.45 28486.21 14892.48 8493.95 17959.05 34298.60 10690.50 10498.72 3296.99 121
hse-mvs289.88 12689.34 12591.51 16094.83 16181.12 18593.94 19693.91 25389.80 4193.08 6393.60 19475.77 16497.66 18392.07 7077.07 35895.74 178
UniMVSNet (Re)89.80 12889.07 13192.01 13293.60 22284.52 8394.78 13897.47 1189.26 5886.44 19592.32 23482.10 9897.39 21884.81 16980.84 32994.12 246
HQP-MVS89.80 12889.28 12891.34 16894.17 19581.56 16894.39 16496.04 13188.81 7285.43 22693.97 17873.83 19797.96 16787.11 14389.77 21794.50 230
FA-MVS(test-final)89.66 13088.91 13791.93 14094.57 17580.27 20691.36 28594.74 22284.87 18189.82 13192.61 22674.72 18298.47 11583.97 18093.53 15897.04 117
VPA-MVSNet89.62 13188.96 13491.60 15793.86 21082.89 13695.46 9697.33 2587.91 10488.43 15293.31 20174.17 19097.40 21587.32 13982.86 30194.52 225
WTY-MVS89.60 13288.92 13691.67 15595.47 12881.15 18492.38 25694.78 22083.11 22289.06 14394.32 16278.67 13596.61 26581.57 22590.89 19897.24 104
Vis-MVSNet (Re-imp)89.59 13389.44 12190.03 22595.74 11775.85 30395.61 9190.80 33587.66 11587.83 16295.40 12076.79 15396.46 27878.37 26596.73 9897.80 84
VDDNet89.56 13488.49 15192.76 9995.07 14682.09 15696.30 4393.19 26781.05 27391.88 9996.86 5961.16 32998.33 13388.43 12492.49 18197.84 82
114514_t89.51 13588.50 14992.54 11298.11 3681.99 15895.16 11696.36 10270.19 37685.81 20795.25 12476.70 15598.63 10282.07 21396.86 9697.00 120
QAPM89.51 13588.15 16093.59 6894.92 15584.58 7996.82 2996.70 8378.43 30783.41 28096.19 9073.18 20699.30 4077.11 28196.54 10296.89 129
CLD-MVS89.47 13788.90 13891.18 17494.22 19482.07 15792.13 26796.09 12687.90 10585.37 23292.45 23074.38 18597.56 19287.15 14190.43 20393.93 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 13888.90 13891.12 17694.47 17981.49 17295.30 10396.14 12086.73 13485.45 22395.16 13069.89 24598.10 14887.70 13289.23 22793.77 269
CDS-MVSNet89.45 13888.51 14892.29 12693.62 22183.61 11193.01 23794.68 22581.95 24787.82 16393.24 20578.69 13496.99 24780.34 24593.23 16896.28 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+89.41 14088.64 14391.71 15494.74 16380.81 19493.54 21295.10 19883.11 22286.82 18790.67 29279.74 12097.75 17980.51 24393.55 15796.57 143
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14692.20 26595.60 16783.97 19988.55 14993.70 19374.16 19198.21 14282.46 20389.37 22396.94 125
XVG-OURS89.40 14288.70 14291.52 15994.06 19981.46 17491.27 28996.07 12886.14 15188.89 14595.77 10868.73 26697.26 22887.39 13789.96 21095.83 174
test_vis1_n_192089.39 14389.84 11488.04 28892.97 24372.64 33794.71 14396.03 13386.18 14991.94 9896.56 7861.63 31995.74 31393.42 4195.11 13095.74 178
mvs_anonymous89.37 14489.32 12689.51 25193.47 22574.22 32091.65 28094.83 21682.91 22885.45 22393.79 18881.23 10896.36 28586.47 15094.09 14897.94 74
DU-MVS89.34 14588.50 14991.85 14893.04 23983.72 10494.47 15796.59 9089.50 5086.46 19293.29 20377.25 14997.23 23184.92 16681.02 32594.59 220
TAMVS89.21 14688.29 15791.96 13893.71 21782.62 14793.30 22494.19 24182.22 24087.78 16493.94 18078.83 13196.95 24977.70 27492.98 17296.32 149
ACMM84.12 989.14 14788.48 15291.12 17694.65 17081.22 18195.31 10196.12 12385.31 17085.92 20694.34 16070.19 24398.06 16085.65 15988.86 23394.08 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 14888.64 14390.48 20595.53 12774.97 31196.08 6184.89 37988.13 9990.16 12796.65 7063.29 31098.10 14886.14 15196.90 9398.39 39
EI-MVSNet89.10 14888.86 14089.80 23891.84 27578.30 25993.70 20895.01 20185.73 15987.15 17595.28 12279.87 11897.21 23383.81 18387.36 25993.88 258
ECVR-MVScopyleft89.09 15088.53 14790.77 19495.62 12375.89 30296.16 5384.22 38187.89 10790.20 12596.65 7063.19 31298.10 14885.90 15696.94 9198.33 43
RRT_MVS89.09 15088.62 14690.49 20392.85 24779.65 22896.41 3994.41 23288.22 9485.50 21994.77 14669.36 25397.31 22189.33 11386.73 26694.51 227
CNLPA89.07 15287.98 16492.34 12296.87 7484.78 7694.08 18493.24 26581.41 26484.46 25195.13 13275.57 17196.62 26277.21 27993.84 15395.61 185
PLCcopyleft84.53 789.06 15388.03 16392.15 13097.27 6882.69 14494.29 17095.44 18079.71 28684.01 26694.18 16976.68 15698.75 9377.28 27893.41 16395.02 201
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 15488.64 14390.21 21690.74 32279.28 24095.96 7195.90 14284.66 18985.33 23492.94 21574.02 19397.30 22289.64 11088.53 23794.05 252
HY-MVS83.01 1289.03 15487.94 16692.29 12694.86 15982.77 13792.08 27094.49 22881.52 26386.93 17992.79 22278.32 14198.23 13979.93 25090.55 20195.88 171
ACMP84.23 889.01 15688.35 15390.99 18794.73 16481.27 17895.07 12095.89 14486.48 13883.67 27394.30 16369.33 25497.99 16587.10 14588.55 23693.72 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 15788.26 15990.94 19094.05 20080.78 19591.71 27795.38 18481.55 26288.63 14893.91 18475.04 17695.47 32482.47 20291.61 18696.57 143
bld_raw_dy_0_6488.86 15887.75 17092.21 12995.12 14481.19 18395.56 9491.29 32185.30 17189.10 14094.38 15959.04 34398.44 12290.50 10489.43 22196.99 121
iter_conf0588.85 15988.08 16291.17 17594.27 19281.64 16695.18 11392.15 29586.23 14787.28 17494.07 17063.89 30797.55 19390.63 10089.00 23194.32 239
TranMVSNet+NR-MVSNet88.84 16087.95 16591.49 16192.68 25183.01 13294.92 12996.31 10489.88 3985.53 21693.85 18776.63 15796.96 24881.91 21779.87 34294.50 230
CHOSEN 1792x268888.84 16087.69 17192.30 12596.14 9681.42 17690.01 31795.86 14674.52 34687.41 17093.94 18075.46 17298.36 12880.36 24495.53 11697.12 113
MVSTER88.84 16088.29 15790.51 20292.95 24480.44 20393.73 20595.01 20184.66 18987.15 17593.12 21072.79 21197.21 23387.86 13087.36 25993.87 259
test_cas_vis1_n_192088.83 16388.85 14188.78 26791.15 30376.72 29093.85 20194.93 20883.23 22192.81 7296.00 9661.17 32894.45 33491.67 8394.84 13295.17 197
OpenMVScopyleft83.78 1188.74 16487.29 18193.08 8192.70 25085.39 6796.57 3696.43 9778.74 30280.85 31096.07 9469.64 24999.01 6378.01 27296.65 10194.83 212
thisisatest053088.67 16587.61 17391.86 14694.87 15880.07 21394.63 14789.90 35284.00 19888.46 15193.78 18966.88 28198.46 11683.30 18892.65 17697.06 115
Effi-MVS+-dtu88.65 16688.35 15389.54 24893.33 22976.39 29694.47 15794.36 23587.70 11285.43 22689.56 31873.45 20297.26 22885.57 16191.28 19094.97 202
tttt051788.61 16787.78 16991.11 17994.96 15277.81 27295.35 9989.69 35585.09 17788.05 15894.59 15566.93 27998.48 11283.27 18992.13 18497.03 118
BH-untuned88.60 16888.13 16190.01 22895.24 13878.50 25393.29 22594.15 24384.75 18684.46 25193.40 19775.76 16697.40 21577.59 27594.52 14294.12 246
sd_testset88.59 16987.85 16890.83 19196.00 10680.42 20492.35 25894.71 22388.73 7686.85 18595.20 12867.31 27396.43 28079.64 25489.85 21495.63 183
NR-MVSNet88.58 17087.47 17791.93 14093.04 23984.16 9594.77 13996.25 11289.05 6580.04 32393.29 20379.02 13097.05 24481.71 22480.05 33994.59 220
1112_ss88.42 17187.33 18091.72 15394.92 15580.98 18892.97 23994.54 22778.16 31383.82 26993.88 18578.78 13397.91 17179.45 25689.41 22296.26 153
WR-MVS88.38 17287.67 17290.52 20193.30 23080.18 20893.26 22795.96 13788.57 8385.47 22292.81 22076.12 15996.91 25281.24 22982.29 30594.47 235
BH-RMVSNet88.37 17387.48 17691.02 18495.28 13479.45 23292.89 24193.07 26985.45 16786.91 18194.84 14470.35 24097.76 17673.97 30894.59 13995.85 172
IterMVS-LS88.36 17487.91 16789.70 24293.80 21378.29 26093.73 20595.08 20085.73 15984.75 24391.90 25379.88 11796.92 25183.83 18282.51 30293.89 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 17586.13 22194.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 40385.02 5999.49 2691.99 7498.56 4998.47 33
LCM-MVSNet-Re88.30 17688.32 15688.27 28194.71 16672.41 34293.15 23090.98 32987.77 11079.25 33291.96 25178.35 14095.75 31283.04 19195.62 11596.65 139
jajsoiax88.24 17787.50 17590.48 20590.89 31680.14 21095.31 10195.65 16484.97 17984.24 26294.02 17465.31 29797.42 20888.56 12288.52 23893.89 256
VPNet88.20 17887.47 17790.39 21093.56 22379.46 23194.04 18895.54 17188.67 7986.96 17894.58 15669.33 25497.15 23584.05 17980.53 33494.56 223
TAPA-MVS84.62 688.16 17987.01 18991.62 15696.64 8080.65 19794.39 16496.21 11876.38 32686.19 20295.44 11779.75 11998.08 15862.75 37095.29 12696.13 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 18087.28 18290.57 19794.96 15280.07 21394.27 17191.29 32186.74 13387.41 17094.00 17676.77 15496.20 29180.77 23779.31 34795.44 187
Anonymous2024052988.09 18186.59 20492.58 11096.53 8681.92 16195.99 6995.84 14774.11 35089.06 14395.21 12761.44 32298.81 8983.67 18687.47 25697.01 119
HyFIR lowres test88.09 18186.81 19391.93 14096.00 10680.63 19890.01 31795.79 15073.42 35787.68 16692.10 24573.86 19697.96 16780.75 23891.70 18597.19 107
mvs_tets88.06 18387.28 18290.38 21290.94 31279.88 22295.22 11095.66 16285.10 17684.21 26393.94 18063.53 30897.40 21588.50 12388.40 24293.87 259
F-COLMAP87.95 18486.80 19491.40 16596.35 9280.88 19294.73 14195.45 17879.65 28782.04 29794.61 15371.13 22698.50 11176.24 29091.05 19694.80 214
LS3D87.89 18586.32 21492.59 10996.07 10382.92 13595.23 10994.92 20975.66 33382.89 28795.98 9872.48 21599.21 4568.43 34295.23 12995.64 182
anonymousdsp87.84 18687.09 18590.12 22189.13 34980.54 20194.67 14595.55 16982.05 24383.82 26992.12 24271.47 22497.15 23587.15 14187.80 25492.67 309
v2v48287.84 18687.06 18690.17 21790.99 30879.23 24394.00 19395.13 19584.87 18185.53 21692.07 24874.45 18497.45 20384.71 17181.75 31393.85 262
WR-MVS_H87.80 18887.37 17989.10 26093.23 23178.12 26395.61 9197.30 2987.90 10583.72 27192.01 25079.65 12596.01 29976.36 28780.54 33393.16 294
AUN-MVS87.78 18986.54 20691.48 16294.82 16281.05 18693.91 20093.93 25083.00 22586.93 17993.53 19569.50 25197.67 18186.14 15177.12 35795.73 180
PCF-MVS84.11 1087.74 19086.08 22592.70 10494.02 20184.43 8989.27 32995.87 14573.62 35584.43 25394.33 16178.48 13998.86 8470.27 32894.45 14494.81 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 19186.13 22192.31 12496.66 7980.74 19694.87 13291.49 31680.47 27789.46 13695.44 11754.72 36298.23 13982.19 20989.89 21297.97 72
V4287.68 19186.86 19190.15 21990.58 32780.14 21094.24 17495.28 18983.66 20685.67 21191.33 26874.73 18197.41 21384.43 17581.83 31192.89 304
thres600view787.65 19386.67 19990.59 19696.08 10278.72 24694.88 13191.58 31287.06 12488.08 15692.30 23568.91 26398.10 14870.05 33591.10 19194.96 205
XXY-MVS87.65 19386.85 19290.03 22592.14 26380.60 20093.76 20495.23 19182.94 22784.60 24694.02 17474.27 18695.49 32381.04 23183.68 28994.01 254
Test_1112_low_res87.65 19386.51 20791.08 18094.94 15479.28 24091.77 27594.30 23776.04 33183.51 27892.37 23277.86 14697.73 18078.69 26489.13 22996.22 154
thres100view90087.63 19686.71 19790.38 21296.12 9778.55 25095.03 12391.58 31287.15 12188.06 15792.29 23668.91 26398.10 14870.13 33291.10 19194.48 233
CP-MVSNet87.63 19687.26 18488.74 27193.12 23476.59 29395.29 10596.58 9188.43 8683.49 27992.98 21475.28 17395.83 30778.97 26281.15 32193.79 264
thres40087.62 19886.64 20090.57 19795.99 10978.64 24894.58 14991.98 30286.94 12888.09 15491.77 25569.18 25998.10 14870.13 33291.10 19194.96 205
v114487.61 19986.79 19590.06 22491.01 30779.34 23693.95 19595.42 18383.36 21785.66 21291.31 27174.98 17797.42 20883.37 18782.06 30793.42 284
tfpn200view987.58 20086.64 20090.41 20995.99 10978.64 24894.58 14991.98 30286.94 12888.09 15491.77 25569.18 25998.10 14870.13 33291.10 19194.48 233
BH-w/o87.57 20187.05 18789.12 25994.90 15777.90 26892.41 25493.51 26282.89 22983.70 27291.34 26775.75 16797.07 24275.49 29493.49 16092.39 319
UniMVSNet_ETH3D87.53 20286.37 21191.00 18692.44 25678.96 24594.74 14095.61 16684.07 19785.36 23394.52 15759.78 33797.34 22082.93 19387.88 25096.71 137
ET-MVSNet_ETH3D87.51 20385.91 23392.32 12393.70 21983.93 9992.33 26090.94 33184.16 19472.09 37292.52 22869.90 24495.85 30689.20 11588.36 24397.17 108
131487.51 20386.57 20590.34 21492.42 25779.74 22692.63 24995.35 18878.35 30880.14 32091.62 26274.05 19297.15 23581.05 23093.53 15894.12 246
v887.50 20586.71 19789.89 23291.37 29379.40 23394.50 15395.38 18484.81 18483.60 27691.33 26876.05 16097.42 20882.84 19680.51 33692.84 306
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24692.04 26777.68 27894.03 18993.94 24985.81 15682.42 29191.32 27070.33 24197.06 24380.33 24690.23 20694.14 245
MVS87.44 20686.10 22491.44 16492.61 25283.62 10992.63 24995.66 16267.26 38081.47 30292.15 24077.95 14398.22 14179.71 25295.48 11992.47 315
FE-MVS87.40 20886.02 22791.57 15894.56 17679.69 22790.27 30693.72 25980.57 27688.80 14691.62 26265.32 29698.59 10774.97 30294.33 14796.44 146
FMVSNet387.40 20886.11 22391.30 17093.79 21583.64 10894.20 17694.81 21883.89 20184.37 25491.87 25468.45 26996.56 27078.23 26985.36 27493.70 274
test_fmvs187.34 21087.56 17486.68 32190.59 32671.80 34694.01 19194.04 24878.30 30991.97 9595.22 12556.28 35493.71 34992.89 4994.71 13494.52 225
thisisatest051587.33 21185.99 22891.37 16793.49 22479.55 22990.63 30289.56 35880.17 27987.56 16890.86 28467.07 27898.28 13781.50 22693.02 17196.29 151
PS-CasMVS87.32 21286.88 19088.63 27492.99 24276.33 29895.33 10096.61 8988.22 9483.30 28493.07 21273.03 20995.79 31178.36 26681.00 32793.75 271
GBi-Net87.26 21385.98 22991.08 18094.01 20283.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28696.34 28678.23 26985.36 27493.79 264
test187.26 21385.98 22991.08 18094.01 20283.10 12595.14 11794.94 20483.57 20884.37 25491.64 25866.59 28696.34 28678.23 26985.36 27493.79 264
v119287.25 21586.33 21390.00 22990.76 32179.04 24493.80 20295.48 17482.57 23485.48 22191.18 27573.38 20597.42 20882.30 20682.06 30793.53 278
v1087.25 21586.38 21089.85 23391.19 29979.50 23094.48 15495.45 17883.79 20483.62 27591.19 27375.13 17497.42 20881.94 21680.60 33192.63 311
DP-MVS87.25 21585.36 24992.90 9297.65 5583.24 11994.81 13692.00 30074.99 34181.92 29995.00 13572.66 21299.05 5566.92 35492.33 18296.40 147
miper_ehance_all_eth87.22 21886.62 20389.02 26392.13 26477.40 28290.91 29894.81 21881.28 26784.32 25990.08 30779.26 12796.62 26283.81 18382.94 29793.04 299
test250687.21 21986.28 21690.02 22795.62 12373.64 32596.25 4871.38 40387.89 10790.45 12196.65 7055.29 36098.09 15686.03 15596.94 9198.33 43
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22792.10 29686.42 14188.00 15991.11 27969.24 25898.00 16469.58 33691.04 19793.83 263
v14419287.19 22186.35 21289.74 23990.64 32578.24 26193.92 19895.43 18181.93 24885.51 21891.05 28174.21 18997.45 20382.86 19581.56 31593.53 278
FMVSNet287.19 22185.82 23591.30 17094.01 20283.67 10694.79 13794.94 20483.57 20883.88 26892.05 24966.59 28696.51 27377.56 27685.01 27793.73 272
c3_l87.14 22386.50 20889.04 26292.20 26177.26 28391.22 29294.70 22482.01 24684.34 25890.43 29678.81 13296.61 26583.70 18581.09 32293.25 289
testing9187.11 22486.18 21989.92 23194.43 18475.38 31091.53 28292.27 29186.48 13886.50 19090.24 29961.19 32797.53 19582.10 21190.88 19996.84 132
Baseline_NR-MVSNet87.07 22586.63 20288.40 27791.44 28877.87 27094.23 17592.57 28284.12 19685.74 21092.08 24677.25 14996.04 29682.29 20779.94 34091.30 342
v14887.04 22686.32 21489.21 25690.94 31277.26 28393.71 20794.43 23084.84 18384.36 25790.80 28876.04 16197.05 24482.12 21079.60 34493.31 286
test_fmvs1_n87.03 22787.04 18886.97 31389.74 34471.86 34494.55 15194.43 23078.47 30591.95 9795.50 11651.16 37393.81 34793.02 4894.56 14095.26 194
v192192086.97 22886.06 22689.69 24390.53 33078.11 26493.80 20295.43 18181.90 25085.33 23491.05 28172.66 21297.41 21382.05 21481.80 31293.53 278
tt080586.92 22985.74 24190.48 20592.22 26079.98 22095.63 9094.88 21283.83 20384.74 24492.80 22157.61 34997.67 18185.48 16284.42 28193.79 264
miper_enhance_ethall86.90 23086.18 21989.06 26191.66 28477.58 28090.22 31294.82 21779.16 29384.48 25089.10 32379.19 12996.66 26084.06 17882.94 29792.94 302
v7n86.81 23185.76 23989.95 23090.72 32379.25 24295.07 12095.92 13984.45 19282.29 29290.86 28472.60 21497.53 19579.42 25980.52 33593.08 298
PEN-MVS86.80 23286.27 21788.40 27792.32 25975.71 30595.18 11396.38 10187.97 10282.82 28893.15 20873.39 20495.92 30276.15 29179.03 34993.59 276
cl2286.78 23385.98 22989.18 25892.34 25877.62 27990.84 29994.13 24581.33 26683.97 26790.15 30473.96 19496.60 26784.19 17782.94 29793.33 285
v124086.78 23385.85 23489.56 24790.45 33177.79 27493.61 21095.37 18681.65 25885.43 22691.15 27771.50 22397.43 20781.47 22782.05 30993.47 282
TR-MVS86.78 23385.76 23989.82 23594.37 18678.41 25592.47 25392.83 27481.11 27286.36 19692.40 23168.73 26697.48 19973.75 31189.85 21493.57 277
PatchMatch-RL86.77 23685.54 24390.47 20895.88 11282.71 14390.54 30392.31 28979.82 28584.32 25991.57 26668.77 26596.39 28273.16 31393.48 16292.32 322
testing9986.72 23785.73 24289.69 24394.23 19374.91 31391.35 28690.97 33086.14 15186.36 19690.22 30059.41 33997.48 19982.24 20890.66 20096.69 138
PAPM86.68 23885.39 24790.53 19993.05 23879.33 23989.79 32094.77 22178.82 29981.95 29893.24 20576.81 15297.30 22266.94 35293.16 16994.95 208
pm-mvs186.61 23985.54 24389.82 23591.44 28880.18 20895.28 10794.85 21483.84 20281.66 30092.62 22572.45 21796.48 27579.67 25378.06 35092.82 307
GA-MVS86.61 23985.27 25290.66 19591.33 29678.71 24790.40 30593.81 25785.34 16985.12 23689.57 31761.25 32497.11 23980.99 23489.59 22096.15 156
Anonymous2023121186.59 24185.13 25490.98 18996.52 8781.50 17096.14 5796.16 11973.78 35383.65 27492.15 24063.26 31197.37 21982.82 19781.74 31494.06 251
test_vis1_n86.56 24286.49 20986.78 32088.51 35472.69 33494.68 14493.78 25879.55 28890.70 11895.31 12148.75 37893.28 35593.15 4593.99 14994.38 237
DIV-MVS_self_test86.53 24385.78 23688.75 26992.02 26976.45 29590.74 30094.30 23781.83 25483.34 28290.82 28775.75 16796.57 26881.73 22381.52 31793.24 290
cl____86.52 24485.78 23688.75 26992.03 26876.46 29490.74 30094.30 23781.83 25483.34 28290.78 28975.74 16996.57 26881.74 22281.54 31693.22 291
eth_miper_zixun_eth86.50 24585.77 23888.68 27291.94 27075.81 30490.47 30494.89 21082.05 24384.05 26490.46 29575.96 16296.77 25682.76 19979.36 34693.46 283
baseline286.50 24585.39 24789.84 23491.12 30476.70 29191.88 27288.58 36182.35 23979.95 32490.95 28373.42 20397.63 18880.27 24789.95 21195.19 196
EPNet_dtu86.49 24785.94 23288.14 28690.24 33472.82 33294.11 18092.20 29386.66 13679.42 33192.36 23373.52 20095.81 30971.26 32093.66 15495.80 176
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1186.44 24885.35 25089.69 24394.29 19175.40 30991.30 28790.53 33884.76 18585.06 23790.13 30558.95 34597.45 20382.08 21291.09 19596.21 155
cascas86.43 24984.98 25790.80 19392.10 26680.92 19190.24 31095.91 14173.10 36083.57 27788.39 33565.15 29897.46 20284.90 16891.43 18894.03 253
SCA86.32 25085.18 25389.73 24192.15 26276.60 29291.12 29391.69 30983.53 21185.50 21988.81 32866.79 28296.48 27576.65 28490.35 20596.12 159
LTVRE_ROB82.13 1386.26 25184.90 26090.34 21494.44 18381.50 17092.31 26294.89 21083.03 22479.63 32992.67 22369.69 24897.79 17471.20 32186.26 26991.72 332
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 25285.48 24587.98 28991.65 28574.92 31294.93 12895.75 15387.36 11982.26 29393.04 21372.85 21095.82 30874.04 30777.46 35593.20 292
XVG-ACMP-BASELINE86.00 25384.84 26289.45 25291.20 29878.00 26591.70 27895.55 16985.05 17882.97 28692.25 23854.49 36397.48 19982.93 19387.45 25892.89 304
MVP-Stereo85.97 25484.86 26189.32 25490.92 31482.19 15592.11 26894.19 24178.76 30178.77 33791.63 26168.38 27096.56 27075.01 30193.95 15089.20 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 25585.09 25588.35 27990.79 31977.42 28191.83 27495.70 15880.77 27580.08 32290.02 30866.74 28496.37 28381.88 21887.97 24991.26 343
test-LLR85.87 25685.41 24687.25 30590.95 31071.67 34889.55 32389.88 35383.41 21484.54 24887.95 34267.25 27595.11 32981.82 21993.37 16594.97 202
FMVSNet185.85 25784.11 27191.08 18092.81 24883.10 12595.14 11794.94 20481.64 25982.68 28991.64 25859.01 34496.34 28675.37 29683.78 28693.79 264
PatchmatchNetpermissive85.85 25784.70 26489.29 25591.76 27975.54 30688.49 34191.30 32081.63 26085.05 23888.70 33271.71 22096.24 29074.61 30589.05 23096.08 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 25984.94 25988.26 28291.16 30272.58 34089.47 32791.04 32876.26 32986.45 19489.97 31070.74 23396.86 25582.35 20587.07 26495.34 193
PMMVS85.71 26084.96 25887.95 29088.90 35277.09 28588.68 33990.06 34772.32 36786.47 19190.76 29072.15 21894.40 33681.78 22193.49 16092.36 320
PVSNet78.82 1885.55 26184.65 26588.23 28494.72 16571.93 34387.12 35892.75 27778.80 30084.95 24090.53 29464.43 30296.71 25974.74 30393.86 15296.06 165
IterMVS-SCA-FT85.45 26284.53 26888.18 28591.71 28176.87 28890.19 31392.65 28185.40 16881.44 30390.54 29366.79 28295.00 33281.04 23181.05 32392.66 310
pmmvs485.43 26383.86 27690.16 21890.02 33982.97 13490.27 30692.67 28075.93 33280.73 31191.74 25771.05 22795.73 31478.85 26383.46 29391.78 331
mvsany_test185.42 26485.30 25185.77 33187.95 36575.41 30887.61 35580.97 38976.82 32388.68 14795.83 10477.44 14890.82 37785.90 15686.51 26791.08 350
ACMH80.38 1785.36 26583.68 27890.39 21094.45 18280.63 19894.73 14194.85 21482.09 24277.24 34592.65 22460.01 33597.58 19072.25 31784.87 27892.96 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 26684.64 26687.49 29990.77 32072.59 33994.01 19194.40 23384.72 18779.62 33093.17 20761.91 31896.72 25781.99 21581.16 31993.16 294
CR-MVSNet85.35 26683.76 27790.12 22190.58 32779.34 23685.24 37191.96 30478.27 31085.55 21487.87 34571.03 22895.61 31673.96 30989.36 22495.40 189
tpmrst85.35 26684.99 25686.43 32390.88 31767.88 37088.71 33891.43 31880.13 28086.08 20488.80 33073.05 20796.02 29882.48 20183.40 29595.40 189
miper_lstm_enhance85.27 26984.59 26787.31 30291.28 29774.63 31587.69 35294.09 24781.20 27181.36 30589.85 31374.97 17894.30 33981.03 23379.84 34393.01 300
IB-MVS80.51 1585.24 27083.26 28491.19 17392.13 26479.86 22391.75 27691.29 32183.28 21980.66 31388.49 33461.28 32398.46 11680.99 23479.46 34595.25 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 27183.99 27488.65 27392.47 25478.40 25679.68 39192.76 27674.90 34381.41 30489.59 31669.85 24795.51 32079.92 25195.29 12692.03 327
RPSCF85.07 27284.27 26987.48 30092.91 24570.62 35991.69 27992.46 28376.20 33082.67 29095.22 12563.94 30597.29 22577.51 27785.80 27194.53 224
MS-PatchMatch85.05 27384.16 27087.73 29391.42 29178.51 25291.25 29093.53 26177.50 31680.15 31991.58 26461.99 31795.51 32075.69 29394.35 14689.16 368
ACMH+81.04 1485.05 27383.46 28189.82 23594.66 16979.37 23494.44 15994.12 24682.19 24178.04 34092.82 21958.23 34797.54 19473.77 31082.90 30092.54 312
IterMVS84.88 27583.98 27587.60 29591.44 28876.03 30090.18 31492.41 28583.24 22081.06 30990.42 29766.60 28594.28 34079.46 25580.98 32892.48 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27683.09 28790.14 22093.80 21380.05 21589.18 33293.09 26878.89 29778.19 33891.91 25265.86 29597.27 22668.47 34188.45 24093.11 296
testing22284.84 27783.32 28289.43 25394.15 19875.94 30191.09 29489.41 35984.90 18085.78 20889.44 31952.70 37096.28 28970.80 32791.57 18796.07 163
tpm84.73 27884.02 27386.87 31890.33 33268.90 36689.06 33489.94 35080.85 27485.75 20989.86 31268.54 26895.97 30077.76 27384.05 28595.75 177
tfpnnormal84.72 27983.23 28589.20 25792.79 24980.05 21594.48 15495.81 14882.38 23781.08 30891.21 27269.01 26296.95 24961.69 37280.59 33290.58 357
CVMVSNet84.69 28084.79 26384.37 34491.84 27564.92 38093.70 20891.47 31766.19 38286.16 20395.28 12267.18 27793.33 35480.89 23690.42 20494.88 210
test-mter84.54 28183.64 27987.25 30590.95 31071.67 34889.55 32389.88 35379.17 29284.54 24887.95 34255.56 35695.11 32981.82 21993.37 16594.97 202
ETVMVS84.43 28282.92 29188.97 26594.37 18674.67 31491.23 29188.35 36383.37 21686.06 20589.04 32455.38 35895.67 31567.12 35091.34 18996.58 142
TransMVSNet (Re)84.43 28283.06 28988.54 27591.72 28078.44 25495.18 11392.82 27582.73 23279.67 32892.12 24273.49 20195.96 30171.10 32568.73 38091.21 344
pmmvs584.21 28482.84 29488.34 28088.95 35176.94 28792.41 25491.91 30675.63 33480.28 31791.18 27564.59 30195.57 31777.09 28283.47 29292.53 313
dmvs_re84.20 28583.22 28687.14 31191.83 27777.81 27290.04 31690.19 34384.70 18881.49 30189.17 32264.37 30391.13 37571.58 31985.65 27392.46 316
tpm284.08 28682.94 29087.48 30091.39 29271.27 35089.23 33190.37 34071.95 36984.64 24589.33 32067.30 27496.55 27275.17 29887.09 26394.63 217
test_fmvs283.98 28784.03 27283.83 34987.16 36867.53 37393.93 19792.89 27277.62 31586.89 18493.53 19547.18 38292.02 36790.54 10186.51 26791.93 329
COLMAP_ROBcopyleft80.39 1683.96 28882.04 29789.74 23995.28 13479.75 22594.25 17292.28 29075.17 33978.02 34193.77 19058.60 34697.84 17365.06 36285.92 27091.63 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 28981.53 30091.21 17290.58 32779.34 23685.24 37196.76 7571.44 37185.55 21482.97 37870.87 23198.91 8061.01 37489.36 22495.40 189
SixPastTwentyTwo83.91 29082.90 29286.92 31590.99 30870.67 35893.48 21491.99 30185.54 16577.62 34492.11 24460.59 33196.87 25476.05 29277.75 35293.20 292
EPMVS83.90 29182.70 29587.51 29790.23 33572.67 33588.62 34081.96 38781.37 26585.01 23988.34 33666.31 28994.45 33475.30 29787.12 26295.43 188
WB-MVSnew83.77 29283.28 28385.26 33891.48 28771.03 35491.89 27187.98 36478.91 29584.78 24290.22 30069.11 26194.02 34364.70 36390.44 20290.71 352
TESTMET0.1,183.74 29382.85 29386.42 32489.96 34071.21 35289.55 32387.88 36577.41 31783.37 28187.31 35056.71 35293.65 35180.62 24192.85 17594.40 236
UWE-MVS83.69 29483.09 28785.48 33393.06 23765.27 37990.92 29786.14 37279.90 28386.26 20090.72 29157.17 35195.81 30971.03 32692.62 17795.35 192
pmmvs683.42 29581.60 29988.87 26688.01 36377.87 27094.96 12694.24 24074.67 34578.80 33691.09 28060.17 33496.49 27477.06 28375.40 36492.23 324
AllTest83.42 29581.39 30189.52 24995.01 14877.79 27493.12 23190.89 33377.41 31776.12 35393.34 19854.08 36597.51 19768.31 34384.27 28393.26 287
tpmvs83.35 29782.07 29687.20 30991.07 30671.00 35688.31 34491.70 30878.91 29580.49 31687.18 35469.30 25797.08 24068.12 34683.56 29193.51 281
USDC82.76 29881.26 30387.26 30491.17 30074.55 31689.27 32993.39 26478.26 31175.30 35892.08 24654.43 36496.63 26171.64 31885.79 27290.61 354
Patchmtry82.71 29980.93 30588.06 28790.05 33876.37 29784.74 37691.96 30472.28 36881.32 30687.87 34571.03 22895.50 32268.97 33880.15 33892.32 322
PatchT82.68 30081.27 30286.89 31790.09 33770.94 35784.06 37890.15 34474.91 34285.63 21383.57 37369.37 25294.87 33365.19 35988.50 23994.84 211
MIMVSNet82.59 30180.53 30688.76 26891.51 28678.32 25886.57 36290.13 34579.32 28980.70 31288.69 33352.98 36993.07 35966.03 35788.86 23394.90 209
test0.0.03 182.41 30281.69 29884.59 34288.23 36072.89 33190.24 31087.83 36683.41 21479.86 32689.78 31467.25 27588.99 38565.18 36083.42 29491.90 330
EG-PatchMatch MVS82.37 30380.34 30988.46 27690.27 33379.35 23592.80 24694.33 23677.14 32173.26 36990.18 30347.47 38196.72 25770.25 32987.32 26189.30 365
tpm cat181.96 30480.27 31087.01 31291.09 30571.02 35587.38 35691.53 31566.25 38180.17 31886.35 36068.22 27196.15 29469.16 33782.29 30593.86 261
our_test_381.93 30580.46 30886.33 32588.46 35773.48 32788.46 34291.11 32476.46 32476.69 34988.25 33866.89 28094.36 33768.75 33979.08 34891.14 346
ppachtmachnet_test81.84 30680.07 31487.15 31088.46 35774.43 31989.04 33592.16 29475.33 33777.75 34288.99 32566.20 29195.37 32565.12 36177.60 35391.65 333
gg-mvs-nofinetune81.77 30779.37 32288.99 26490.85 31877.73 27786.29 36379.63 39274.88 34483.19 28569.05 39360.34 33296.11 29575.46 29594.64 13893.11 296
CL-MVSNet_self_test81.74 30880.53 30685.36 33585.96 37472.45 34190.25 30893.07 26981.24 26979.85 32787.29 35170.93 23092.52 36266.95 35169.23 37691.11 348
Patchmatch-RL test81.67 30979.96 31586.81 31985.42 37971.23 35182.17 38587.50 36978.47 30577.19 34682.50 38070.81 23293.48 35282.66 20072.89 36895.71 181
ADS-MVSNet281.66 31079.71 31987.50 29891.35 29474.19 32183.33 38188.48 36272.90 36282.24 29485.77 36464.98 29993.20 35764.57 36483.74 28795.12 198
K. test v381.59 31180.15 31385.91 33089.89 34269.42 36592.57 25187.71 36785.56 16473.44 36889.71 31555.58 35595.52 31977.17 28069.76 37492.78 308
ADS-MVSNet81.56 31279.78 31686.90 31691.35 29471.82 34583.33 38189.16 36072.90 36282.24 29485.77 36464.98 29993.76 34864.57 36483.74 28795.12 198
FMVSNet581.52 31379.60 32087.27 30391.17 30077.95 26691.49 28392.26 29276.87 32276.16 35287.91 34451.67 37192.34 36467.74 34781.16 31991.52 337
dp81.47 31480.23 31185.17 33989.92 34165.49 37786.74 36090.10 34676.30 32881.10 30787.12 35562.81 31395.92 30268.13 34579.88 34194.09 249
Patchmatch-test81.37 31579.30 32387.58 29690.92 31474.16 32280.99 38787.68 36870.52 37576.63 35088.81 32871.21 22592.76 36160.01 37886.93 26595.83 174
EU-MVSNet81.32 31680.95 30482.42 35688.50 35663.67 38493.32 22091.33 31964.02 38580.57 31592.83 21861.21 32692.27 36576.34 28880.38 33791.32 341
test_040281.30 31779.17 32787.67 29493.19 23278.17 26292.98 23891.71 30775.25 33876.02 35590.31 29859.23 34096.37 28350.22 38983.63 29088.47 374
JIA-IIPM81.04 31878.98 33087.25 30588.64 35373.48 32781.75 38689.61 35773.19 35982.05 29673.71 39066.07 29495.87 30571.18 32384.60 28092.41 318
Anonymous2023120681.03 31979.77 31884.82 34187.85 36670.26 36191.42 28492.08 29773.67 35477.75 34289.25 32162.43 31593.08 35861.50 37382.00 31091.12 347
pmmvs-eth3d80.97 32078.72 33287.74 29284.99 38179.97 22190.11 31591.65 31075.36 33673.51 36786.03 36159.45 33893.96 34675.17 29872.21 36989.29 366
testgi80.94 32180.20 31283.18 35087.96 36466.29 37491.28 28890.70 33783.70 20578.12 33992.84 21751.37 37290.82 37763.34 36782.46 30392.43 317
CMPMVSbinary59.16 2180.52 32279.20 32684.48 34383.98 38267.63 37289.95 31993.84 25664.79 38466.81 38391.14 27857.93 34895.17 32776.25 28988.10 24590.65 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 32379.59 32183.06 35293.44 22764.64 38193.33 21985.47 37684.34 19379.93 32590.84 28644.35 38692.39 36357.06 38487.56 25592.16 326
Anonymous2024052180.44 32479.21 32584.11 34785.75 37767.89 36992.86 24493.23 26675.61 33575.59 35787.47 34950.03 37494.33 33871.14 32481.21 31890.12 359
LF4IMVS80.37 32579.07 32984.27 34686.64 37069.87 36489.39 32891.05 32776.38 32674.97 36090.00 30947.85 38094.25 34174.55 30680.82 33088.69 372
KD-MVS_self_test80.20 32679.24 32483.07 35185.64 37865.29 37891.01 29693.93 25078.71 30376.32 35186.40 35959.20 34192.93 36072.59 31569.35 37591.00 351
Syy-MVS80.07 32779.78 31680.94 35991.92 27159.93 39089.75 32187.40 37081.72 25678.82 33487.20 35266.29 29091.29 37347.06 39187.84 25291.60 335
UnsupCasMVSNet_eth80.07 32778.27 33385.46 33485.24 38072.63 33888.45 34394.87 21382.99 22671.64 37588.07 34156.34 35391.75 37073.48 31263.36 38792.01 328
test20.0379.95 32979.08 32882.55 35485.79 37667.74 37191.09 29491.08 32581.23 27074.48 36489.96 31161.63 31990.15 37960.08 37676.38 36089.76 360
TDRefinement79.81 33077.34 33587.22 30879.24 39375.48 30793.12 23192.03 29976.45 32575.01 35991.58 26449.19 37796.44 27970.22 33169.18 37789.75 361
TinyColmap79.76 33177.69 33485.97 32791.71 28173.12 32989.55 32390.36 34175.03 34072.03 37390.19 30246.22 38396.19 29363.11 36881.03 32488.59 373
myMVS_eth3d79.67 33278.79 33182.32 35791.92 27164.08 38289.75 32187.40 37081.72 25678.82 33487.20 35245.33 38491.29 37359.09 38087.84 25291.60 335
OpenMVS_ROBcopyleft74.94 1979.51 33377.03 34086.93 31487.00 36976.23 29992.33 26090.74 33668.93 37874.52 36388.23 33949.58 37696.62 26257.64 38284.29 28287.94 377
MIMVSNet179.38 33477.28 33685.69 33286.35 37173.67 32491.61 28192.75 27778.11 31472.64 37188.12 34048.16 37991.97 36960.32 37577.49 35491.43 340
YYNet179.22 33577.20 33785.28 33788.20 36272.66 33685.87 36590.05 34974.33 34862.70 38587.61 34766.09 29392.03 36666.94 35272.97 36791.15 345
MDA-MVSNet_test_wron79.21 33677.19 33885.29 33688.22 36172.77 33385.87 36590.06 34774.34 34762.62 38787.56 34866.14 29291.99 36866.90 35573.01 36691.10 349
MDA-MVSNet-bldmvs78.85 33776.31 34286.46 32289.76 34373.88 32388.79 33790.42 33979.16 29359.18 38988.33 33760.20 33394.04 34262.00 37168.96 37891.48 339
KD-MVS_2432*160078.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28779.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
miper_refine_blended78.50 33876.02 34585.93 32886.22 37274.47 31784.80 37492.33 28779.29 29076.98 34785.92 36253.81 36793.97 34467.39 34857.42 39289.36 363
PM-MVS78.11 34076.12 34484.09 34883.54 38470.08 36288.97 33685.27 37879.93 28274.73 36286.43 35834.70 39293.48 35279.43 25872.06 37088.72 371
test_vis1_rt77.96 34176.46 34182.48 35585.89 37571.74 34790.25 30878.89 39371.03 37471.30 37681.35 38242.49 38891.05 37684.55 17382.37 30484.65 380
test_fmvs377.67 34277.16 33979.22 36279.52 39261.14 38892.34 25991.64 31173.98 35178.86 33386.59 35627.38 39687.03 38788.12 12875.97 36289.50 362
PVSNet_073.20 2077.22 34374.83 34984.37 34490.70 32471.10 35383.09 38389.67 35672.81 36473.93 36683.13 37560.79 33093.70 35068.54 34050.84 39688.30 375
DSMNet-mixed76.94 34476.29 34378.89 36383.10 38556.11 39987.78 34979.77 39160.65 38875.64 35688.71 33161.56 32188.34 38660.07 37789.29 22692.21 325
new-patchmatchnet76.41 34575.17 34880.13 36082.65 38759.61 39187.66 35391.08 32578.23 31269.85 37983.22 37454.76 36191.63 37264.14 36664.89 38589.16 368
UnsupCasMVSNet_bld76.23 34673.27 35085.09 34083.79 38372.92 33085.65 36893.47 26371.52 37068.84 38179.08 38549.77 37593.21 35666.81 35660.52 38989.13 370
mvsany_test374.95 34773.26 35180.02 36174.61 39563.16 38685.53 36978.42 39474.16 34974.89 36186.46 35736.02 39189.09 38482.39 20466.91 38187.82 378
dmvs_testset74.57 34875.81 34770.86 37387.72 36740.47 40687.05 35977.90 39882.75 23171.15 37785.47 36667.98 27284.12 39545.26 39276.98 35988.00 376
MVS-HIRNet73.70 34972.20 35278.18 36691.81 27856.42 39882.94 38482.58 38555.24 39068.88 38066.48 39455.32 35995.13 32858.12 38188.42 24183.01 383
new_pmnet72.15 35070.13 35478.20 36582.95 38665.68 37583.91 37982.40 38662.94 38764.47 38479.82 38442.85 38786.26 39157.41 38374.44 36582.65 385
test_f71.95 35170.87 35375.21 36974.21 39759.37 39285.07 37385.82 37465.25 38370.42 37883.13 37523.62 39782.93 39778.32 26771.94 37183.33 382
pmmvs371.81 35268.71 35581.11 35875.86 39470.42 36086.74 36083.66 38258.95 38968.64 38280.89 38336.93 39089.52 38263.10 36963.59 38683.39 381
APD_test169.04 35366.26 35977.36 36880.51 39062.79 38785.46 37083.51 38354.11 39259.14 39084.79 36923.40 39989.61 38155.22 38570.24 37379.68 389
N_pmnet68.89 35468.44 35670.23 37489.07 35028.79 41188.06 34519.50 41169.47 37771.86 37484.93 36761.24 32591.75 37054.70 38677.15 35690.15 358
WB-MVS67.92 35567.49 35769.21 37781.09 38841.17 40588.03 34678.00 39773.50 35662.63 38683.11 37763.94 30586.52 38925.66 40251.45 39579.94 388
SSC-MVS67.06 35666.56 35868.56 37980.54 38940.06 40787.77 35077.37 40072.38 36661.75 38882.66 37963.37 30986.45 39024.48 40348.69 39879.16 390
LCM-MVSNet66.00 35762.16 36277.51 36764.51 40558.29 39383.87 38090.90 33248.17 39454.69 39173.31 39116.83 40586.75 38865.47 35861.67 38887.48 379
test_vis3_rt65.12 35862.60 36072.69 37171.44 39860.71 38987.17 35765.55 40463.80 38653.22 39265.65 39614.54 40689.44 38376.65 28465.38 38367.91 395
FPMVS64.63 35962.55 36170.88 37270.80 39956.71 39484.42 37784.42 38051.78 39349.57 39381.61 38123.49 39881.48 39840.61 39876.25 36174.46 391
EGC-MVSNET61.97 36056.37 36478.77 36489.63 34673.50 32689.12 33382.79 3840.21 4081.24 40984.80 36839.48 38990.04 38044.13 39375.94 36372.79 392
PMMVS259.60 36156.40 36369.21 37768.83 40246.58 40373.02 39677.48 39955.07 39149.21 39472.95 39217.43 40480.04 39949.32 39044.33 39980.99 387
testf159.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
APD_test259.54 36256.11 36569.85 37569.28 40056.61 39680.37 38976.55 40142.58 39745.68 39675.61 38611.26 40784.18 39343.20 39560.44 39068.75 393
ANet_high58.88 36454.22 36872.86 37056.50 40856.67 39580.75 38886.00 37373.09 36137.39 40064.63 39722.17 40079.49 40043.51 39423.96 40282.43 386
Gipumacopyleft57.99 36554.91 36767.24 38088.51 35465.59 37652.21 39990.33 34243.58 39642.84 39951.18 40020.29 40285.07 39234.77 39970.45 37251.05 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36648.46 37063.48 38145.72 41046.20 40473.41 39578.31 39541.03 39930.06 40265.68 3956.05 40983.43 39630.04 40065.86 38260.80 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 36748.47 36956.66 38352.26 40918.98 41341.51 40181.40 38810.10 40344.59 39875.01 38928.51 39468.16 40153.54 38749.31 39782.83 384
MVEpermissive39.65 2343.39 36838.59 37457.77 38256.52 40748.77 40255.38 39858.64 40829.33 40228.96 40352.65 3994.68 41064.62 40428.11 40133.07 40059.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 36942.29 37146.03 38565.58 40437.41 40873.51 39464.62 40533.99 40028.47 40447.87 40119.90 40367.91 40222.23 40424.45 40132.77 400
EMVS42.07 37041.12 37244.92 38663.45 40635.56 41073.65 39363.48 40633.05 40126.88 40545.45 40221.27 40167.14 40319.80 40523.02 40332.06 401
tmp_tt35.64 37139.24 37324.84 38714.87 41123.90 41262.71 39751.51 4106.58 40536.66 40162.08 39844.37 38530.34 40752.40 38822.00 40420.27 402
cdsmvs_eth3d_5k22.14 37229.52 3750.00 3910.00 4140.00 4160.00 40295.76 1520.00 4090.00 41094.29 16475.66 1700.00 4100.00 4090.00 4080.00 406
wuyk23d21.27 37320.48 37623.63 38868.59 40336.41 40949.57 4006.85 4129.37 4047.89 4064.46 4084.03 41131.37 40617.47 40616.07 4053.12 403
testmvs8.92 37411.52 3771.12 3901.06 4120.46 41586.02 3640.65 4130.62 4062.74 4079.52 4060.31 4130.45 4092.38 4070.39 4062.46 405
test1238.76 37511.22 3781.39 3890.85 4130.97 41485.76 3670.35 4140.54 4072.45 4088.14 4070.60 4120.48 4082.16 4080.17 4072.71 404
ab-mvs-re7.82 37610.43 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41093.88 1850.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.64 3778.86 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40979.70 1210.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS64.08 38259.14 379
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23597.09 1097.07 5192.72 198.04 16192.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.15 3486.62 3297.07 4583.63 20794.19 4296.91 5787.57 3199.26 4291.99 7498.44 52
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7597.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26897.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15395.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 159
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 159
sam_mvs70.60 234
ambc83.06 35279.99 39163.51 38577.47 39292.86 27374.34 36584.45 37028.74 39395.06 33173.06 31468.89 37990.61 354
MTGPAbinary96.97 50
test_post188.00 3479.81 40569.31 25695.53 31876.65 284
test_post10.29 40470.57 23895.91 304
patchmatchnet-post83.76 37271.53 22296.48 275
GG-mvs-BLEND87.94 29189.73 34577.91 26787.80 34878.23 39680.58 31483.86 37159.88 33695.33 32671.20 32192.22 18390.60 356
MTMP96.16 5360.64 407
gm-plane-assit89.60 34768.00 36877.28 32088.99 32597.57 19179.44 257
test9_res91.91 7898.71 3398.07 66
TEST997.53 5886.49 3694.07 18596.78 7281.61 26192.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19096.76 7581.86 25292.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10198.68 3898.27 52
agg_prior97.38 6385.92 5696.72 8192.16 9098.97 75
TestCases89.52 24995.01 14877.79 27490.89 33377.41 31776.12 35393.34 19854.08 36597.51 19768.31 34384.27 28393.26 287
test_prior485.96 5394.11 180
test_prior294.12 17987.67 11492.63 7996.39 8286.62 3891.50 8598.67 40
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21871.25 37294.37 3997.13 23886.74 146
新几何293.11 233
新几何193.10 7997.30 6684.35 9295.56 16871.09 37391.26 11496.24 8582.87 8598.86 8479.19 26198.10 6396.07 163
旧先验196.79 7681.81 16395.67 16096.81 6386.69 3797.66 8096.97 124
无先验93.28 22696.26 11073.95 35299.05 5580.56 24296.59 141
原ACMM292.94 240
原ACMM192.01 13297.34 6481.05 18696.81 7078.89 29790.45 12195.92 10082.65 8798.84 8880.68 24098.26 5896.14 157
test22296.55 8481.70 16592.22 26495.01 20168.36 37990.20 12596.14 9280.26 11497.80 7596.05 166
testdata298.75 9378.30 268
segment_acmp87.16 36
testdata90.49 20396.40 8977.89 26995.37 18672.51 36593.63 5296.69 6682.08 9997.65 18483.08 19097.39 8395.94 168
testdata192.15 26687.94 103
test1294.34 4997.13 7086.15 4796.29 10591.04 11685.08 5799.01 6398.13 6297.86 80
plane_prior794.70 16782.74 140
plane_prior694.52 17782.75 13874.23 187
plane_prior596.22 11598.12 14688.15 12589.99 20894.63 217
plane_prior494.86 140
plane_prior382.75 13890.26 3386.91 181
plane_prior295.85 7590.81 17
plane_prior194.59 172
plane_prior82.73 14195.21 11189.66 4889.88 213
n20.00 415
nn0.00 415
door-mid85.49 375
lessismore_v086.04 32688.46 35768.78 36780.59 39073.01 37090.11 30655.39 35796.43 28075.06 30065.06 38492.90 303
LGP-MVS_train91.12 17694.47 17981.49 17296.14 12086.73 13485.45 22395.16 13069.89 24598.10 14887.70 13289.23 22793.77 269
test1196.57 92
door85.33 377
HQP5-MVS81.56 168
HQP-NCC94.17 19594.39 16488.81 7285.43 226
ACMP_Plane94.17 19594.39 16488.81 7285.43 226
BP-MVS87.11 143
HQP4-MVS85.43 22697.96 16794.51 227
HQP3-MVS96.04 13189.77 217
HQP2-MVS73.83 197
NP-MVS94.37 18682.42 15093.98 177
MDTV_nov1_ep13_2view55.91 40087.62 35473.32 35884.59 24770.33 24174.65 30495.50 186
MDTV_nov1_ep1383.56 28091.69 28369.93 36387.75 35191.54 31478.60 30484.86 24188.90 32769.54 25096.03 29770.25 32988.93 232
ACMMP++_ref87.47 256
ACMMP++88.01 248
Test By Simon80.02 116
ITE_SJBPF88.24 28391.88 27477.05 28692.92 27185.54 16580.13 32193.30 20257.29 35096.20 29172.46 31684.71 27991.49 338
DeepMVS_CXcopyleft56.31 38474.23 39651.81 40156.67 40944.85 39548.54 39575.16 38827.87 39558.74 40540.92 39752.22 39458.39 398