This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
SF-MVS94.97 1194.90 1495.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SD-MVS94.96 1295.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1394.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1494.69 1795.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
ACMMP_NAP94.74 1594.56 1895.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
test_fmvsm_n_192094.71 1695.11 1093.50 6995.79 11484.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
test_fmvsmconf_n94.60 1794.81 1593.98 5394.62 16984.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
MVS_030494.60 1794.38 2495.23 1195.41 12987.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
HFP-MVS94.52 1994.40 2294.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ZNCC-MVS94.47 2094.28 2995.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
XVS94.45 2194.32 2594.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
MCST-MVS94.45 2194.20 3495.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
region2R94.43 2394.27 3194.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
ACMMPR94.43 2394.28 2994.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
MTAPA94.42 2594.22 3295.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
CP-MVS94.34 2694.21 3394.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
fmvsm_l_conf0.5_n94.29 2794.46 2093.79 6395.28 13385.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
MP-MVScopyleft94.25 2894.07 3894.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2994.07 3894.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3094.17 3694.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
GST-MVS94.21 3193.97 4294.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
MP-MVS-pluss94.21 3194.00 4194.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3394.40 2293.60 6795.29 13284.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
test_fmvsmconf0.1_n94.20 3394.31 2793.88 5792.46 24884.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
DeepPCF-MVS89.96 194.20 3394.77 1692.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
CS-MVS94.12 3694.44 2193.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
DeepC-MVS_fast89.43 294.04 3793.79 4594.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3894.29 2893.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
HPM-MVScopyleft94.02 3893.88 4394.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4093.78 4694.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PGM-MVS93.96 4193.72 4994.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
PHI-MVS93.89 4293.65 5394.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
SR-MVS-dyc-post93.82 4393.82 4493.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
APD-MVS_3200maxsize93.78 4493.77 4793.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_s_conf0.5_n93.76 4594.06 4092.86 9495.62 12283.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
patch_mono-293.74 4694.32 2592.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
MSLP-MVS++93.72 4794.08 3792.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
TSAR-MVS + GP.93.66 4893.41 5594.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
fmvsm_s_conf0.5_n_a93.57 4993.76 4893.00 8695.02 14583.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
CANet93.54 5093.20 6094.55 4295.65 12085.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
dcpmvs_293.49 5194.19 3591.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
fmvsm_s_conf0.1_n93.46 5293.66 5292.85 9593.75 21083.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
MVS_111021_HR93.45 5393.31 5693.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
test_fmvsmvis_n_192093.44 5493.55 5493.10 7993.67 21484.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 144
train_agg93.44 5493.08 6194.52 4397.53 5886.49 3694.07 18696.78 7281.86 24892.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
EC-MVSNet93.44 5493.71 5092.63 10795.21 13882.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
DELS-MVS93.43 5793.25 5893.97 5495.42 12885.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5893.22 5993.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
DeepC-MVS88.79 393.31 5992.99 6494.26 5196.07 10285.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 6092.75 6894.85 2595.70 11987.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
ACMMPcopyleft93.24 6192.88 6694.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6293.05 6293.76 6498.04 4084.07 9696.22 4997.37 2184.15 19290.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
fmvsm_s_conf0.1_n_a93.19 6393.26 5792.97 8892.49 24683.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
test_fmvsmconf0.01_n93.19 6393.02 6393.71 6589.25 34284.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
alignmvs93.08 6592.50 7294.81 3195.62 12287.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
EI-MVSNet-Vis-set93.01 6692.92 6593.29 7195.01 14683.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
casdiffmvs_mvgpermissive92.96 6792.83 6793.35 7094.59 17083.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 6892.54 7193.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
CDPH-MVS92.83 6892.30 7494.44 4497.79 4986.11 4894.06 18896.66 8580.09 27792.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
ETV-MVS92.74 7092.66 6992.97 8895.20 13984.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 140
EI-MVSNet-UG-set92.74 7092.62 7093.12 7894.86 15783.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
DPM-MVS92.58 7291.74 8095.08 1596.19 9589.31 592.66 24896.56 9383.44 21091.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
casdiffmvspermissive92.51 7392.43 7392.74 10194.41 18281.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 7492.29 7592.98 8795.99 10884.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
3Dnovator+87.14 492.42 7591.37 8395.55 795.63 12188.73 697.07 1896.77 7490.84 1684.02 26096.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
baseline92.39 7692.29 7592.69 10594.46 17981.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
VNet92.24 7791.91 7893.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
CPTT-MVS91.99 7891.80 7992.55 11198.24 3181.98 16096.76 3096.49 9581.89 24790.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
EIA-MVS91.95 7991.94 7791.98 13495.16 14080.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
DP-MVS Recon91.95 7991.28 8593.96 5598.33 2785.92 5694.66 14796.66 8582.69 22990.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
EPNet91.79 8191.02 9194.10 5290.10 33085.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8291.70 8192.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
Vis-MVSNetpermissive91.75 8391.23 8693.29 7195.32 13183.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8490.82 9594.44 4494.59 17086.37 4097.18 1297.02 4789.20 6084.31 25696.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
EPP-MVSNet91.70 8591.56 8292.13 12995.88 11180.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10195.96 7195.90 14284.66 18691.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
Effi-MVS+91.59 8791.11 8893.01 8594.35 18683.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
IS-MVSNet91.43 8891.09 9092.46 11595.87 11381.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9083.17 12294.87 13396.66 8583.29 21489.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 160
diffmvspermissive91.37 9091.23 8691.77 15093.09 22980.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9191.11 8891.93 13894.37 18380.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
OMC-MVS91.23 9290.62 9793.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
PAPM_NR91.22 9390.78 9692.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
PS-MVSNAJ91.18 9490.92 9291.96 13695.26 13682.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 234
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 14982.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 235
nrg03091.08 9690.39 9893.17 7693.07 23086.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29194.96 198
lupinMVS90.92 9790.21 10193.03 8493.86 20483.88 10192.81 24593.86 25479.84 27991.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
h-mvs3390.80 9890.15 10492.75 10096.01 10482.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34696.60 136
jason90.80 9890.10 10592.90 9293.04 23283.53 11293.08 23594.15 24380.22 27491.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
VDD-MVS90.74 10089.92 11293.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
PVSNet_Blended90.73 10190.32 10091.98 13496.12 9781.25 17992.55 25296.83 6682.04 24189.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 167
test_yl90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10290.02 11092.71 10295.72 11782.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
API-MVS90.66 10490.07 10692.45 11696.36 9184.57 8096.06 6495.22 19382.39 23289.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 231
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 236
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 236
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 236
HQP_MVS90.60 10890.19 10291.82 14794.70 16582.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20294.63 210
FIs90.51 10990.35 9990.99 18693.99 20080.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23894.76 208
MAR-MVS90.30 11089.37 12393.07 8396.61 8184.48 8595.68 8595.67 16082.36 23487.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 163
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11190.18 10390.53 19893.71 21179.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 24194.71 209
CANet_DTU90.26 11289.41 12292.81 9693.46 22083.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 143
SDMVSNet90.19 11389.61 11691.93 13896.00 10583.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20895.63 177
OPM-MVS90.12 11489.56 11791.82 14793.14 22783.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20193.65 270
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 11589.13 12992.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
GeoE90.05 11689.43 12191.90 14395.16 14080.37 20495.80 7894.65 22683.90 19787.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
PAPR90.02 11789.27 12892.29 12595.78 11580.95 18992.68 24796.22 11581.91 24586.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
PVSNet_BlendedMVS89.98 11889.70 11490.82 19196.12 9781.25 17993.92 19996.83 6683.49 20989.10 13992.26 23781.04 10998.85 8686.72 14887.86 24592.35 316
PS-MVSNAJss89.97 11989.62 11591.02 18391.90 26680.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 23994.57 215
mvsmamba89.96 12089.50 11891.33 16892.90 23981.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 22994.51 220
XVG-OURS-SEG-HR89.95 12189.45 11991.47 16294.00 19981.21 18291.87 27396.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21395.91 163
UGNet89.95 12188.95 13392.95 9094.51 17683.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 12389.29 12691.81 14993.39 22283.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 32094.49 225
AdaColmapbinary89.89 12489.07 13092.37 12097.41 6283.03 13094.42 16295.92 13982.81 22686.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 193
hse-mvs289.88 12589.34 12491.51 15994.83 15981.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35395.74 172
UniMVSNet (Re)89.80 12689.07 13092.01 13093.60 21684.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32494.12 240
HQP-MVS89.80 12689.28 12791.34 16794.17 18981.56 16894.39 16596.04 13188.81 7285.43 22293.97 17973.83 19797.96 16587.11 14389.77 21194.50 223
FA-MVS(test-final)89.66 12888.91 13591.93 13894.57 17380.27 20591.36 28494.74 22284.87 17989.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
VPA-MVSNet89.62 12988.96 13291.60 15593.86 20482.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29694.52 218
WTY-MVS89.60 13088.92 13491.67 15395.47 12781.15 18392.38 25694.78 22083.11 21889.06 14194.32 16278.67 13596.61 26281.57 22290.89 19497.24 104
Vis-MVSNet (Re-imp)89.59 13189.44 12090.03 22595.74 11675.85 30395.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
VDDNet89.56 13288.49 15092.76 9995.07 14482.09 15796.30 4393.19 26781.05 26991.88 9896.86 5961.16 33098.33 13188.43 12392.49 17997.84 82
114514_t89.51 13388.50 14892.54 11298.11 3681.99 15995.16 11696.36 10270.19 37185.81 20295.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
QAPM89.51 13388.15 15993.59 6894.92 15384.58 7996.82 2996.70 8378.43 30283.41 27596.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
CLD-MVS89.47 13588.90 13691.18 17394.22 18882.07 15892.13 26796.09 12687.90 10585.37 22892.45 23074.38 18597.56 19087.15 14190.43 19793.93 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 13688.90 13691.12 17594.47 17781.49 17295.30 10396.14 12086.73 13585.45 21995.16 13069.89 24598.10 14687.70 13289.23 22093.77 263
CDS-MVSNet89.45 13688.51 14792.29 12593.62 21583.61 11193.01 23894.68 22581.95 24387.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 13888.69 14191.60 15595.12 14382.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22494.32 232
Fast-Effi-MVS+89.41 13988.64 14291.71 15294.74 16180.81 19393.54 21395.10 19883.11 21886.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 138
ab-mvs89.41 13988.35 15292.60 10895.15 14282.65 14792.20 26595.60 16783.97 19688.55 14793.70 19374.16 19198.21 14082.46 20389.37 21696.94 123
XVG-OURS89.40 14188.70 14091.52 15894.06 19381.46 17491.27 28696.07 12886.14 15088.89 14395.77 10868.73 26697.26 22487.39 13789.96 20495.83 168
test_vis1_n_192089.39 14289.84 11388.04 28492.97 23672.64 33394.71 14496.03 13386.18 14891.94 9796.56 7861.63 32195.74 30993.42 4195.11 12995.74 172
mvs_anonymous89.37 14389.32 12589.51 24893.47 21974.22 31691.65 28094.83 21682.91 22485.45 21993.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
DU-MVS89.34 14488.50 14891.85 14693.04 23283.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 32094.59 213
TAMVS89.21 14588.29 15691.96 13693.71 21182.62 14893.30 22594.19 24182.22 23687.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 144
ACMM84.12 989.14 14688.48 15191.12 17594.65 16881.22 18195.31 10196.12 12385.31 16985.92 20194.34 16070.19 24398.06 15885.65 15988.86 22794.08 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 14788.64 14290.48 20495.53 12674.97 30996.08 6184.89 37488.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
EI-MVSNet89.10 14788.86 13889.80 23791.84 26878.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25493.88 252
ECVR-MVScopyleft89.09 14988.53 14690.77 19395.62 12275.89 30296.16 5384.22 37687.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
RRT_MVS89.09 14988.62 14590.49 20292.85 24079.65 22896.41 3994.41 23288.22 9485.50 21594.77 14669.36 25397.31 21789.33 11286.73 26194.51 220
CNLPA89.07 15187.98 16392.34 12196.87 7484.78 7694.08 18593.24 26581.41 26084.46 24695.13 13275.57 17196.62 25977.21 27693.84 15295.61 179
PLCcopyleft84.53 789.06 15288.03 16292.15 12897.27 6882.69 14594.29 17195.44 18079.71 28184.01 26194.18 16976.68 15698.75 9377.28 27593.41 16295.02 194
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 15388.64 14290.21 21590.74 31679.28 24095.96 7195.90 14284.66 18685.33 23092.94 21574.02 19397.30 21889.64 10988.53 23194.05 246
HY-MVS83.01 1289.03 15387.94 16592.29 12594.86 15782.77 13892.08 27094.49 22881.52 25986.93 17892.79 22278.32 14198.23 13779.93 24790.55 19595.88 165
ACMP84.23 889.01 15588.35 15290.99 18694.73 16281.27 17895.07 12195.89 14486.48 13983.67 26894.30 16369.33 25497.99 16387.10 14588.55 23093.72 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 15688.26 15890.94 18994.05 19480.78 19491.71 27795.38 18481.55 25888.63 14693.91 18475.04 17695.47 31982.47 20291.61 18496.57 138
iter_conf0588.85 15788.08 16191.17 17494.27 18781.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30997.55 19190.63 10089.00 22594.32 232
TranMVSNet+NR-MVSNet88.84 15887.95 16491.49 16092.68 24483.01 13294.92 13096.31 10489.88 3985.53 21293.85 18776.63 15796.96 24481.91 21479.87 33794.50 223
CHOSEN 1792x268888.84 15887.69 16992.30 12496.14 9681.42 17690.01 31295.86 14674.52 34187.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
MVSTER88.84 15888.29 15690.51 20192.95 23780.44 20293.73 20695.01 20184.66 18687.15 17393.12 21072.79 21197.21 22987.86 12987.36 25493.87 253
test_cas_vis1_n_192088.83 16188.85 13988.78 26391.15 29776.72 29093.85 20294.93 20883.23 21792.81 7296.00 9661.17 32994.45 32991.67 8394.84 13195.17 190
OpenMVScopyleft83.78 1188.74 16287.29 17993.08 8192.70 24385.39 6796.57 3696.43 9778.74 29780.85 30596.07 9469.64 24999.01 6378.01 26996.65 10094.83 205
thisisatest053088.67 16387.61 17191.86 14494.87 15680.07 21394.63 14889.90 34884.00 19588.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
Effi-MVS+-dtu88.65 16488.35 15289.54 24593.33 22376.39 29694.47 15894.36 23587.70 11285.43 22289.56 31473.45 20297.26 22485.57 16191.28 18794.97 195
tttt051788.61 16587.78 16891.11 17894.96 15077.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 28098.48 11183.27 18992.13 18297.03 118
BH-untuned88.60 16688.13 16090.01 22895.24 13778.50 25393.29 22694.15 24384.75 18384.46 24693.40 19775.76 16697.40 21177.59 27294.52 14194.12 240
sd_testset88.59 16787.85 16790.83 19096.00 10580.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 27779.64 25189.85 20895.63 177
NR-MVSNet88.58 16887.47 17591.93 13893.04 23284.16 9594.77 14096.25 11289.05 6580.04 31893.29 20379.02 13097.05 24081.71 22180.05 33494.59 213
1112_ss88.42 16987.33 17891.72 15194.92 15380.98 18792.97 24094.54 22778.16 30883.82 26493.88 18578.78 13397.91 16979.45 25389.41 21596.26 148
WR-MVS88.38 17087.67 17090.52 20093.30 22480.18 20893.26 22895.96 13788.57 8385.47 21892.81 22076.12 15996.91 24881.24 22682.29 30094.47 228
BH-RMVSNet88.37 17187.48 17491.02 18395.28 13379.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 166
IterMVS-LS88.36 17287.91 16689.70 24193.80 20778.29 26093.73 20695.08 20085.73 15784.75 23891.90 25379.88 11796.92 24783.83 18282.51 29793.89 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 17386.13 21994.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39885.02 5999.49 2691.99 7498.56 4898.47 33
LCM-MVSNet-Re88.30 17488.32 15588.27 27794.71 16472.41 33893.15 23190.98 32787.77 11079.25 32791.96 25178.35 14095.75 30883.04 19195.62 11496.65 135
jajsoiax88.24 17587.50 17390.48 20490.89 31080.14 21095.31 10195.65 16484.97 17784.24 25794.02 17565.31 29897.42 20488.56 12188.52 23293.89 250
VPNet88.20 17687.47 17590.39 20993.56 21779.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 32994.56 216
TAPA-MVS84.62 688.16 17787.01 18791.62 15496.64 8080.65 19694.39 16596.21 11876.38 32186.19 19895.44 11779.75 11998.08 15662.75 36595.29 12596.13 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 17887.28 18090.57 19694.96 15080.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28880.77 23479.31 34295.44 181
Anonymous2024052988.09 17986.59 20392.58 11096.53 8681.92 16295.99 6995.84 14774.11 34589.06 14195.21 12761.44 32498.81 8983.67 18687.47 25197.01 119
HyFIR lowres test88.09 17986.81 19191.93 13896.00 10580.63 19790.01 31295.79 15073.42 35287.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
mvs_tets88.06 18187.28 18090.38 21190.94 30679.88 22295.22 11095.66 16285.10 17484.21 25893.94 18063.53 31097.40 21188.50 12288.40 23693.87 253
F-COLMAP87.95 18286.80 19291.40 16496.35 9280.88 19194.73 14295.45 17879.65 28282.04 29294.61 15371.13 22698.50 11076.24 28791.05 19294.80 207
LS3D87.89 18386.32 21392.59 10996.07 10282.92 13695.23 10994.92 20975.66 32882.89 28295.98 9872.48 21599.21 4568.43 33895.23 12895.64 176
anonymousdsp87.84 18487.09 18390.12 22189.13 34380.54 20094.67 14695.55 16982.05 23983.82 26492.12 24271.47 22497.15 23187.15 14187.80 24992.67 304
v2v48287.84 18487.06 18490.17 21790.99 30279.23 24394.00 19495.13 19584.87 17985.53 21292.07 24874.45 18497.45 20084.71 17181.75 30893.85 256
WR-MVS_H87.80 18687.37 17789.10 25793.23 22578.12 26395.61 9297.30 2987.90 10583.72 26692.01 25079.65 12596.01 29676.36 28480.54 32893.16 289
AUN-MVS87.78 18786.54 20591.48 16194.82 16081.05 18593.91 20193.93 25083.00 22186.93 17893.53 19569.50 25197.67 17986.14 15177.12 35295.73 174
PCF-MVS84.11 1087.74 18886.08 22392.70 10494.02 19584.43 8989.27 32495.87 14573.62 35084.43 24894.33 16178.48 13998.86 8470.27 32494.45 14394.81 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 18986.13 21992.31 12396.66 7980.74 19594.87 13391.49 31580.47 27389.46 13595.44 11754.72 35798.23 13782.19 20889.89 20697.97 72
V4287.68 18986.86 18990.15 21990.58 32180.14 21094.24 17595.28 18983.66 20385.67 20691.33 26874.73 18197.41 20984.43 17581.83 30692.89 299
thres600view787.65 19186.67 19890.59 19596.08 10178.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26398.10 14670.05 33191.10 18894.96 198
XXY-MVS87.65 19186.85 19090.03 22592.14 25680.60 19993.76 20595.23 19182.94 22384.60 24194.02 17574.27 18695.49 31881.04 22883.68 28494.01 248
Test_1112_low_res87.65 19186.51 20691.08 17994.94 15279.28 24091.77 27594.30 23776.04 32683.51 27392.37 23277.86 14697.73 17878.69 26189.13 22296.22 149
thres100view90087.63 19486.71 19690.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26398.10 14670.13 32891.10 18894.48 226
CP-MVSNet87.63 19487.26 18288.74 26793.12 22876.59 29395.29 10596.58 9188.43 8683.49 27492.98 21475.28 17395.83 30478.97 25981.15 31693.79 258
thres40087.62 19686.64 19990.57 19695.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18894.96 198
v114487.61 19786.79 19390.06 22491.01 30179.34 23693.95 19695.42 18383.36 21385.66 20791.31 27174.98 17797.42 20483.37 18782.06 30293.42 279
bld_raw_dy_0_6487.60 19886.73 19490.21 21591.72 27380.26 20795.09 12088.61 35785.68 15985.55 20994.38 15963.93 30896.66 25687.73 13187.84 24693.72 267
tfpn200view987.58 19986.64 19990.41 20895.99 10878.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18894.48 226
BH-w/o87.57 20087.05 18589.12 25694.90 15577.90 26892.41 25493.51 26282.89 22583.70 26791.34 26775.75 16797.07 23875.49 29193.49 15992.39 314
UniMVSNet_ETH3D87.53 20186.37 21091.00 18592.44 24978.96 24594.74 14195.61 16684.07 19485.36 22994.52 15759.78 33897.34 21682.93 19387.88 24496.71 134
ET-MVSNet_ETH3D87.51 20285.91 23192.32 12293.70 21383.93 9992.33 26090.94 32884.16 19172.09 36792.52 22869.90 24495.85 30389.20 11488.36 23797.17 108
131487.51 20286.57 20490.34 21392.42 25079.74 22692.63 24995.35 18878.35 30380.14 31591.62 26274.05 19297.15 23181.05 22793.53 15794.12 240
v887.50 20486.71 19689.89 23191.37 28779.40 23394.50 15495.38 18484.81 18283.60 27191.33 26876.05 16097.42 20482.84 19680.51 33192.84 301
Fast-Effi-MVS+-dtu87.44 20586.72 19589.63 24392.04 26077.68 27894.03 19093.94 24985.81 15482.42 28691.32 27070.33 24197.06 23980.33 24390.23 20094.14 239
MVS87.44 20586.10 22291.44 16392.61 24583.62 10992.63 24995.66 16267.26 37581.47 29792.15 24077.95 14398.22 13979.71 24995.48 11892.47 310
FE-MVS87.40 20786.02 22591.57 15794.56 17479.69 22790.27 30193.72 25980.57 27288.80 14491.62 26265.32 29798.59 10674.97 29994.33 14696.44 141
FMVSNet387.40 20786.11 22191.30 16993.79 20983.64 10894.20 17794.81 21883.89 19884.37 24991.87 25468.45 26996.56 26778.23 26685.36 26993.70 269
test_fmvs187.34 20987.56 17286.68 31790.59 32071.80 34294.01 19294.04 24878.30 30491.97 9495.22 12556.28 35093.71 34492.89 4994.71 13394.52 218
thisisatest051587.33 21085.99 22691.37 16693.49 21879.55 22990.63 29789.56 35480.17 27587.56 16690.86 28467.07 27998.28 13581.50 22393.02 17096.29 146
PS-CasMVS87.32 21186.88 18888.63 27092.99 23576.33 29895.33 10096.61 8988.22 9483.30 27993.07 21273.03 20995.79 30778.36 26381.00 32293.75 265
GBi-Net87.26 21285.98 22791.08 17994.01 19683.10 12595.14 11794.94 20483.57 20584.37 24991.64 25866.59 28796.34 28378.23 26685.36 26993.79 258
test187.26 21285.98 22791.08 17994.01 19683.10 12595.14 11794.94 20483.57 20584.37 24991.64 25866.59 28796.34 28378.23 26685.36 26993.79 258
v119287.25 21486.33 21290.00 22990.76 31579.04 24493.80 20395.48 17482.57 23085.48 21791.18 27573.38 20597.42 20482.30 20682.06 30293.53 273
v1087.25 21486.38 20989.85 23291.19 29379.50 23094.48 15595.45 17883.79 20183.62 27091.19 27375.13 17497.42 20481.94 21380.60 32692.63 306
DP-MVS87.25 21485.36 24692.90 9297.65 5583.24 11994.81 13792.00 29974.99 33681.92 29495.00 13572.66 21299.05 5566.92 34992.33 18096.40 142
miper_ehance_all_eth87.22 21786.62 20289.02 26092.13 25777.40 28290.91 29394.81 21881.28 26384.32 25490.08 30379.26 12796.62 25983.81 18382.94 29293.04 294
test250687.21 21886.28 21590.02 22795.62 12273.64 32196.25 4871.38 39887.89 10790.45 12096.65 7055.29 35598.09 15486.03 15596.94 9098.33 43
thres20087.21 21886.24 21790.12 22195.36 13078.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33291.04 19393.83 257
v14419287.19 22086.35 21189.74 23890.64 31978.24 26193.92 19995.43 18181.93 24485.51 21491.05 28174.21 18997.45 20082.86 19581.56 31093.53 273
FMVSNet287.19 22085.82 23391.30 16994.01 19683.67 10694.79 13894.94 20483.57 20583.88 26392.05 24966.59 28796.51 27077.56 27385.01 27293.73 266
c3_l87.14 22286.50 20789.04 25992.20 25477.26 28391.22 28894.70 22482.01 24284.34 25390.43 29578.81 13296.61 26283.70 18581.09 31793.25 284
Baseline_NR-MVSNet87.07 22386.63 20188.40 27391.44 28277.87 27094.23 17692.57 28284.12 19385.74 20592.08 24677.25 14996.04 29382.29 20779.94 33591.30 337
v14887.04 22486.32 21389.21 25390.94 30677.26 28393.71 20894.43 23084.84 18184.36 25290.80 28876.04 16197.05 24082.12 20979.60 33993.31 281
test_fmvs1_n87.03 22587.04 18686.97 30989.74 33871.86 34094.55 15294.43 23078.47 30091.95 9695.50 11651.16 36893.81 34293.02 4894.56 13995.26 187
v192192086.97 22686.06 22489.69 24290.53 32478.11 26493.80 20395.43 18181.90 24685.33 23091.05 28172.66 21297.41 20982.05 21181.80 30793.53 273
tt080586.92 22785.74 23990.48 20492.22 25379.98 22095.63 9194.88 21283.83 20084.74 23992.80 22157.61 34697.67 17985.48 16284.42 27693.79 258
miper_enhance_ethall86.90 22886.18 21889.06 25891.66 27877.58 28090.22 30794.82 21779.16 28884.48 24589.10 31979.19 12996.66 25684.06 17882.94 29292.94 297
v7n86.81 22985.76 23789.95 23090.72 31779.25 24295.07 12195.92 13984.45 18982.29 28790.86 28472.60 21497.53 19479.42 25680.52 33093.08 293
PEN-MVS86.80 23086.27 21688.40 27392.32 25275.71 30595.18 11396.38 10187.97 10282.82 28393.15 20873.39 20495.92 29976.15 28879.03 34493.59 271
cl2286.78 23185.98 22789.18 25592.34 25177.62 27990.84 29494.13 24581.33 26283.97 26290.15 30173.96 19496.60 26484.19 17782.94 29293.33 280
v124086.78 23185.85 23289.56 24490.45 32577.79 27493.61 21195.37 18681.65 25485.43 22291.15 27771.50 22397.43 20381.47 22482.05 30493.47 277
TR-MVS86.78 23185.76 23789.82 23494.37 18378.41 25592.47 25392.83 27481.11 26886.36 19492.40 23168.73 26697.48 19773.75 30889.85 20893.57 272
PatchMatch-RL86.77 23485.54 24090.47 20795.88 11182.71 14490.54 29892.31 28879.82 28084.32 25491.57 26668.77 26596.39 27973.16 31093.48 16192.32 317
PAPM86.68 23585.39 24490.53 19893.05 23179.33 23989.79 31594.77 22178.82 29481.95 29393.24 20576.81 15297.30 21866.94 34793.16 16894.95 201
pm-mvs186.61 23685.54 24089.82 23491.44 28280.18 20895.28 10794.85 21483.84 19981.66 29592.62 22572.45 21796.48 27279.67 25078.06 34592.82 302
GA-MVS86.61 23685.27 24890.66 19491.33 29078.71 24790.40 30093.81 25785.34 16885.12 23289.57 31361.25 32697.11 23580.99 23189.59 21496.15 150
Anonymous2023121186.59 23885.13 25090.98 18896.52 8781.50 17096.14 5796.16 11973.78 34883.65 26992.15 24063.26 31397.37 21582.82 19781.74 30994.06 245
test_vis1_n86.56 23986.49 20886.78 31688.51 34872.69 33094.68 14593.78 25879.55 28390.70 11795.31 12148.75 37393.28 35093.15 4593.99 14894.38 230
DIV-MVS_self_test86.53 24085.78 23488.75 26592.02 26276.45 29590.74 29594.30 23781.83 25083.34 27790.82 28775.75 16796.57 26581.73 22081.52 31293.24 285
cl____86.52 24185.78 23488.75 26592.03 26176.46 29490.74 29594.30 23781.83 25083.34 27790.78 28975.74 16996.57 26581.74 21981.54 31193.22 286
eth_miper_zixun_eth86.50 24285.77 23688.68 26891.94 26375.81 30490.47 29994.89 21082.05 23984.05 25990.46 29475.96 16296.77 25282.76 19979.36 34193.46 278
baseline286.50 24285.39 24489.84 23391.12 29876.70 29191.88 27288.58 35882.35 23579.95 31990.95 28373.42 20397.63 18680.27 24489.95 20595.19 189
EPNet_dtu86.49 24485.94 23088.14 28290.24 32872.82 32894.11 18192.20 29186.66 13779.42 32692.36 23373.52 20095.81 30671.26 31793.66 15395.80 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 24584.98 25390.80 19292.10 25980.92 19090.24 30595.91 14173.10 35583.57 27288.39 33065.15 29997.46 19984.90 16891.43 18694.03 247
SCA86.32 24685.18 24989.73 24092.15 25576.60 29291.12 28991.69 30883.53 20885.50 21588.81 32366.79 28396.48 27276.65 28190.35 19996.12 153
LTVRE_ROB82.13 1386.26 24784.90 25690.34 21394.44 18181.50 17092.31 26294.89 21083.03 22079.63 32492.67 22369.69 24897.79 17271.20 31886.26 26491.72 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 24885.48 24287.98 28591.65 27974.92 31094.93 12995.75 15387.36 11982.26 28893.04 21372.85 21095.82 30574.04 30477.46 35093.20 287
XVG-ACMP-BASELINE86.00 24984.84 25889.45 24991.20 29278.00 26591.70 27895.55 16985.05 17682.97 28192.25 23854.49 35897.48 19782.93 19387.45 25392.89 299
MVP-Stereo85.97 25084.86 25789.32 25190.92 30882.19 15692.11 26894.19 24178.76 29678.77 33291.63 26168.38 27096.56 26775.01 29893.95 14989.20 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 25185.09 25188.35 27590.79 31377.42 28191.83 27495.70 15880.77 27180.08 31790.02 30466.74 28596.37 28081.88 21587.97 24391.26 338
test-LLR85.87 25285.41 24387.25 30190.95 30471.67 34489.55 31889.88 34983.41 21184.54 24387.95 33767.25 27595.11 32481.82 21693.37 16494.97 195
FMVSNet185.85 25384.11 26791.08 17992.81 24183.10 12595.14 11794.94 20481.64 25582.68 28491.64 25859.01 34296.34 28375.37 29383.78 28193.79 258
PatchmatchNetpermissive85.85 25384.70 26089.29 25291.76 27275.54 30688.49 33691.30 31981.63 25685.05 23388.70 32771.71 22096.24 28774.61 30289.05 22396.08 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 25584.94 25588.26 27891.16 29672.58 33689.47 32291.04 32676.26 32486.45 19289.97 30670.74 23396.86 25182.35 20587.07 25995.34 186
PMMVS85.71 25684.96 25487.95 28688.90 34677.09 28588.68 33490.06 34372.32 36286.47 18990.76 29072.15 21894.40 33181.78 21893.49 15992.36 315
PVSNet78.82 1885.55 25784.65 26188.23 28094.72 16371.93 33987.12 35392.75 27778.80 29584.95 23590.53 29364.43 30396.71 25574.74 30093.86 15196.06 159
IterMVS-SCA-FT85.45 25884.53 26488.18 28191.71 27576.87 28890.19 30892.65 28185.40 16781.44 29890.54 29266.79 28395.00 32781.04 22881.05 31892.66 305
pmmvs485.43 25983.86 27290.16 21890.02 33382.97 13490.27 30192.67 28075.93 32780.73 30691.74 25771.05 22795.73 31078.85 26083.46 28891.78 326
mvsany_test185.42 26085.30 24785.77 32787.95 35975.41 30887.61 35080.97 38476.82 31888.68 14595.83 10477.44 14890.82 37285.90 15686.51 26291.08 345
ACMH80.38 1785.36 26183.68 27490.39 20994.45 18080.63 19794.73 14294.85 21482.09 23877.24 34092.65 22460.01 33697.58 18872.25 31484.87 27392.96 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 26284.64 26287.49 29590.77 31472.59 33594.01 19294.40 23384.72 18479.62 32593.17 20761.91 32096.72 25381.99 21281.16 31493.16 289
CR-MVSNet85.35 26283.76 27390.12 22190.58 32179.34 23685.24 36691.96 30378.27 30585.55 20987.87 34071.03 22895.61 31173.96 30689.36 21795.40 183
tpmrst85.35 26284.99 25286.43 31990.88 31167.88 36688.71 33391.43 31780.13 27686.08 20088.80 32573.05 20796.02 29582.48 20183.40 29095.40 183
miper_lstm_enhance85.27 26584.59 26387.31 29891.28 29174.63 31187.69 34794.09 24781.20 26781.36 30089.85 30974.97 17894.30 33481.03 23079.84 33893.01 295
IB-MVS80.51 1585.24 26683.26 28091.19 17292.13 25779.86 22391.75 27691.29 32083.28 21580.66 30888.49 32961.28 32598.46 11580.99 23179.46 34095.25 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 26783.99 27088.65 26992.47 24778.40 25679.68 38692.76 27674.90 33881.41 29989.59 31269.85 24795.51 31579.92 24895.29 12592.03 322
RPSCF85.07 26884.27 26587.48 29692.91 23870.62 35591.69 27992.46 28376.20 32582.67 28595.22 12563.94 30697.29 22177.51 27485.80 26694.53 217
MS-PatchMatch85.05 26984.16 26687.73 28991.42 28578.51 25291.25 28793.53 26177.50 31180.15 31491.58 26461.99 31995.51 31575.69 29094.35 14589.16 363
ACMH+81.04 1485.05 26983.46 27789.82 23494.66 16779.37 23494.44 16094.12 24682.19 23778.04 33592.82 21958.23 34497.54 19373.77 30782.90 29592.54 307
IterMVS84.88 27183.98 27187.60 29191.44 28276.03 30090.18 30992.41 28483.24 21681.06 30490.42 29666.60 28694.28 33579.46 25280.98 32392.48 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27283.09 28390.14 22093.80 20780.05 21589.18 32793.09 26878.89 29278.19 33391.91 25265.86 29697.27 22268.47 33788.45 23493.11 291
testing22284.84 27383.32 27889.43 25094.15 19275.94 30191.09 29089.41 35584.90 17885.78 20389.44 31552.70 36596.28 28670.80 32391.57 18596.07 157
tpm84.73 27484.02 26986.87 31490.33 32668.90 36289.06 32989.94 34680.85 27085.75 20489.86 30868.54 26895.97 29777.76 27084.05 28095.75 171
tfpnnormal84.72 27583.23 28189.20 25492.79 24280.05 21594.48 15595.81 14882.38 23381.08 30391.21 27269.01 26296.95 24561.69 36780.59 32790.58 352
CVMVSNet84.69 27684.79 25984.37 33991.84 26864.92 37593.70 20991.47 31666.19 37786.16 19995.28 12267.18 27793.33 34980.89 23390.42 19894.88 203
test-mter84.54 27783.64 27587.25 30190.95 30471.67 34489.55 31889.88 34979.17 28784.54 24387.95 33755.56 35295.11 32481.82 21693.37 16494.97 195
TransMVSNet (Re)84.43 27883.06 28488.54 27191.72 27378.44 25495.18 11392.82 27582.73 22879.67 32392.12 24273.49 20195.96 29871.10 32268.73 37591.21 339
pmmvs584.21 27982.84 28888.34 27688.95 34576.94 28792.41 25491.91 30575.63 32980.28 31291.18 27564.59 30295.57 31277.09 27983.47 28792.53 308
dmvs_re84.20 28083.22 28287.14 30791.83 27077.81 27290.04 31190.19 33984.70 18581.49 29689.17 31864.37 30491.13 37071.58 31685.65 26892.46 311
tpm284.08 28182.94 28587.48 29691.39 28671.27 34689.23 32690.37 33671.95 36484.64 24089.33 31667.30 27496.55 26975.17 29587.09 25894.63 210
test_fmvs283.98 28284.03 26883.83 34487.16 36267.53 36993.93 19892.89 27277.62 31086.89 18393.53 19547.18 37792.02 36290.54 10286.51 26291.93 324
COLMAP_ROBcopyleft80.39 1683.96 28382.04 29189.74 23895.28 13379.75 22594.25 17392.28 28975.17 33478.02 33693.77 19058.60 34397.84 17165.06 35785.92 26591.63 329
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 28481.53 29491.21 17190.58 32179.34 23685.24 36696.76 7571.44 36685.55 20982.97 37370.87 23198.91 8061.01 36989.36 21795.40 183
SixPastTwentyTwo83.91 28582.90 28686.92 31190.99 30270.67 35493.48 21591.99 30085.54 16477.62 33992.11 24460.59 33296.87 25076.05 28977.75 34793.20 287
EPMVS83.90 28682.70 28987.51 29390.23 32972.67 33188.62 33581.96 38281.37 26185.01 23488.34 33166.31 29094.45 32975.30 29487.12 25795.43 182
WB-MVSnew83.77 28783.28 27985.26 33391.48 28171.03 35091.89 27187.98 36078.91 29084.78 23790.22 29869.11 26194.02 33864.70 35890.44 19690.71 347
TESTMET0.1,183.74 28882.85 28786.42 32089.96 33471.21 34889.55 31887.88 36177.41 31283.37 27687.31 34556.71 34893.65 34680.62 23892.85 17494.40 229
pmmvs683.42 28981.60 29388.87 26288.01 35777.87 27094.96 12794.24 24074.67 34078.80 33191.09 28060.17 33596.49 27177.06 28075.40 35992.23 319
AllTest83.42 28981.39 29589.52 24695.01 14677.79 27493.12 23290.89 33077.41 31276.12 34893.34 19854.08 36097.51 19568.31 33984.27 27893.26 282
tpmvs83.35 29182.07 29087.20 30591.07 30071.00 35288.31 33991.70 30778.91 29080.49 31187.18 34969.30 25797.08 23668.12 34283.56 28693.51 276
USDC82.76 29281.26 29787.26 30091.17 29474.55 31289.27 32493.39 26478.26 30675.30 35392.08 24654.43 35996.63 25871.64 31585.79 26790.61 349
Patchmtry82.71 29380.93 29988.06 28390.05 33276.37 29784.74 37191.96 30372.28 36381.32 30187.87 34071.03 22895.50 31768.97 33480.15 33392.32 317
PatchT82.68 29481.27 29686.89 31390.09 33170.94 35384.06 37390.15 34074.91 33785.63 20883.57 36869.37 25294.87 32865.19 35488.50 23394.84 204
MIMVSNet82.59 29580.53 30088.76 26491.51 28078.32 25886.57 35790.13 34179.32 28480.70 30788.69 32852.98 36493.07 35466.03 35288.86 22794.90 202
test0.0.03 182.41 29681.69 29284.59 33788.23 35472.89 32790.24 30587.83 36283.41 21179.86 32189.78 31067.25 27588.99 38065.18 35583.42 28991.90 325
EG-PatchMatch MVS82.37 29780.34 30388.46 27290.27 32779.35 23592.80 24694.33 23677.14 31673.26 36490.18 30047.47 37696.72 25370.25 32587.32 25689.30 360
tpm cat181.96 29880.27 30487.01 30891.09 29971.02 35187.38 35191.53 31466.25 37680.17 31386.35 35568.22 27196.15 29169.16 33382.29 30093.86 255
our_test_381.93 29980.46 30286.33 32188.46 35173.48 32388.46 33791.11 32276.46 31976.69 34488.25 33366.89 28194.36 33268.75 33579.08 34391.14 341
ppachtmachnet_test81.84 30080.07 30887.15 30688.46 35174.43 31589.04 33092.16 29275.33 33277.75 33788.99 32066.20 29295.37 32065.12 35677.60 34891.65 328
gg-mvs-nofinetune81.77 30179.37 31688.99 26190.85 31277.73 27786.29 35879.63 38774.88 33983.19 28069.05 38860.34 33396.11 29275.46 29294.64 13793.11 291
CL-MVSNet_self_test81.74 30280.53 30085.36 33085.96 36872.45 33790.25 30393.07 26981.24 26579.85 32287.29 34670.93 23092.52 35766.95 34669.23 37191.11 343
Patchmatch-RL test81.67 30379.96 30986.81 31585.42 37371.23 34782.17 38087.50 36578.47 30077.19 34182.50 37570.81 23293.48 34782.66 20072.89 36395.71 175
ADS-MVSNet281.66 30479.71 31387.50 29491.35 28874.19 31783.33 37688.48 35972.90 35782.24 28985.77 35964.98 30093.20 35264.57 35983.74 28295.12 191
K. test v381.59 30580.15 30785.91 32689.89 33669.42 36192.57 25187.71 36385.56 16373.44 36389.71 31155.58 35195.52 31477.17 27769.76 36992.78 303
ADS-MVSNet81.56 30679.78 31086.90 31291.35 28871.82 34183.33 37689.16 35672.90 35782.24 28985.77 35964.98 30093.76 34364.57 35983.74 28295.12 191
FMVSNet581.52 30779.60 31487.27 29991.17 29477.95 26691.49 28292.26 29076.87 31776.16 34787.91 33951.67 36692.34 35967.74 34381.16 31491.52 332
dp81.47 30880.23 30585.17 33489.92 33565.49 37386.74 35590.10 34276.30 32381.10 30287.12 35062.81 31595.92 29968.13 34179.88 33694.09 243
Patchmatch-test81.37 30979.30 31787.58 29290.92 30874.16 31880.99 38287.68 36470.52 37076.63 34588.81 32371.21 22592.76 35660.01 37386.93 26095.83 168
EU-MVSNet81.32 31080.95 29882.42 35188.50 35063.67 37993.32 22191.33 31864.02 38080.57 31092.83 21861.21 32892.27 36076.34 28580.38 33291.32 336
test_040281.30 31179.17 32187.67 29093.19 22678.17 26292.98 23991.71 30675.25 33376.02 35090.31 29759.23 34096.37 28050.22 38483.63 28588.47 369
JIA-IIPM81.04 31278.98 32487.25 30188.64 34773.48 32381.75 38189.61 35373.19 35482.05 29173.71 38566.07 29595.87 30271.18 32084.60 27592.41 313
Anonymous2023120681.03 31379.77 31284.82 33687.85 36070.26 35791.42 28392.08 29673.67 34977.75 33789.25 31762.43 31793.08 35361.50 36882.00 30591.12 342
pmmvs-eth3d80.97 31478.72 32687.74 28884.99 37579.97 22190.11 31091.65 30975.36 33173.51 36286.03 35659.45 33993.96 34175.17 29572.21 36489.29 361
testgi80.94 31580.20 30683.18 34587.96 35866.29 37091.28 28590.70 33483.70 20278.12 33492.84 21751.37 36790.82 37263.34 36282.46 29892.43 312
CMPMVSbinary59.16 2180.52 31679.20 32084.48 33883.98 37667.63 36889.95 31493.84 25664.79 37966.81 37891.14 27857.93 34595.17 32276.25 28688.10 23990.65 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 31779.59 31583.06 34793.44 22164.64 37693.33 22085.47 37184.34 19079.93 32090.84 28644.35 38192.39 35857.06 37987.56 25092.16 321
Anonymous2024052180.44 31879.21 31984.11 34285.75 37167.89 36592.86 24493.23 26675.61 33075.59 35287.47 34450.03 36994.33 33371.14 32181.21 31390.12 354
LF4IMVS80.37 31979.07 32384.27 34186.64 36469.87 36089.39 32391.05 32576.38 32174.97 35590.00 30547.85 37594.25 33674.55 30380.82 32588.69 367
KD-MVS_self_test80.20 32079.24 31883.07 34685.64 37265.29 37491.01 29293.93 25078.71 29876.32 34686.40 35459.20 34192.93 35572.59 31269.35 37091.00 346
Syy-MVS80.07 32179.78 31080.94 35491.92 26459.93 38589.75 31687.40 36681.72 25278.82 32987.20 34766.29 29191.29 36847.06 38687.84 24691.60 330
UnsupCasMVSNet_eth80.07 32178.27 32785.46 32985.24 37472.63 33488.45 33894.87 21382.99 22271.64 37088.07 33656.34 34991.75 36573.48 30963.36 38292.01 323
test20.0379.95 32379.08 32282.55 34985.79 37067.74 36791.09 29091.08 32381.23 26674.48 35989.96 30761.63 32190.15 37460.08 37176.38 35589.76 355
TDRefinement79.81 32477.34 32987.22 30479.24 38775.48 30793.12 23292.03 29876.45 32075.01 35491.58 26449.19 37296.44 27670.22 32769.18 37289.75 356
TinyColmap79.76 32577.69 32885.97 32391.71 27573.12 32589.55 31890.36 33775.03 33572.03 36890.19 29946.22 37896.19 29063.11 36381.03 31988.59 368
myMVS_eth3d79.67 32678.79 32582.32 35291.92 26464.08 37789.75 31687.40 36681.72 25278.82 32987.20 34745.33 37991.29 36859.09 37587.84 24691.60 330
OpenMVS_ROBcopyleft74.94 1979.51 32777.03 33486.93 31087.00 36376.23 29992.33 26090.74 33368.93 37374.52 35888.23 33449.58 37196.62 25957.64 37784.29 27787.94 372
MIMVSNet179.38 32877.28 33085.69 32886.35 36573.67 32091.61 28192.75 27778.11 30972.64 36688.12 33548.16 37491.97 36460.32 37077.49 34991.43 335
YYNet179.22 32977.20 33185.28 33288.20 35672.66 33285.87 36090.05 34574.33 34362.70 38087.61 34266.09 29492.03 36166.94 34772.97 36291.15 340
MDA-MVSNet_test_wron79.21 33077.19 33285.29 33188.22 35572.77 32985.87 36090.06 34374.34 34262.62 38287.56 34366.14 29391.99 36366.90 35073.01 36191.10 344
MDA-MVSNet-bldmvs78.85 33176.31 33686.46 31889.76 33773.88 31988.79 33290.42 33579.16 28859.18 38488.33 33260.20 33494.04 33762.00 36668.96 37391.48 334
KD-MVS_2432*160078.50 33276.02 33985.93 32486.22 36674.47 31384.80 36992.33 28679.29 28576.98 34285.92 35753.81 36293.97 33967.39 34457.42 38789.36 358
miper_refine_blended78.50 33276.02 33985.93 32486.22 36674.47 31384.80 36992.33 28679.29 28576.98 34285.92 35753.81 36293.97 33967.39 34457.42 38789.36 358
PM-MVS78.11 33476.12 33884.09 34383.54 37870.08 35888.97 33185.27 37379.93 27874.73 35786.43 35334.70 38793.48 34779.43 25572.06 36588.72 366
test_vis1_rt77.96 33576.46 33582.48 35085.89 36971.74 34390.25 30378.89 38871.03 36971.30 37181.35 37742.49 38391.05 37184.55 17382.37 29984.65 375
test_fmvs377.67 33677.16 33379.22 35779.52 38661.14 38392.34 25991.64 31073.98 34678.86 32886.59 35127.38 39187.03 38288.12 12775.97 35789.50 357
PVSNet_073.20 2077.22 33774.83 34384.37 33990.70 31871.10 34983.09 37889.67 35272.81 35973.93 36183.13 37060.79 33193.70 34568.54 33650.84 39188.30 370
DSMNet-mixed76.94 33876.29 33778.89 35883.10 37956.11 39487.78 34479.77 38660.65 38375.64 35188.71 32661.56 32388.34 38160.07 37289.29 21992.21 320
new-patchmatchnet76.41 33975.17 34280.13 35582.65 38159.61 38687.66 34891.08 32378.23 30769.85 37483.22 36954.76 35691.63 36764.14 36164.89 38089.16 363
UnsupCasMVSNet_bld76.23 34073.27 34485.09 33583.79 37772.92 32685.65 36393.47 26371.52 36568.84 37679.08 38049.77 37093.21 35166.81 35160.52 38489.13 365
mvsany_test374.95 34173.26 34580.02 35674.61 38963.16 38185.53 36478.42 38974.16 34474.89 35686.46 35236.02 38689.09 37982.39 20466.91 37687.82 373
dmvs_testset74.57 34275.81 34170.86 36887.72 36140.47 40187.05 35477.90 39382.75 22771.15 37285.47 36167.98 27284.12 39045.26 38776.98 35488.00 371
MVS-HIRNet73.70 34372.20 34678.18 36191.81 27156.42 39382.94 37982.58 38055.24 38568.88 37566.48 38955.32 35495.13 32358.12 37688.42 23583.01 378
new_pmnet72.15 34470.13 34878.20 36082.95 38065.68 37183.91 37482.40 38162.94 38264.47 37979.82 37942.85 38286.26 38657.41 37874.44 36082.65 380
test_f71.95 34570.87 34775.21 36474.21 39159.37 38785.07 36885.82 36965.25 37870.42 37383.13 37023.62 39282.93 39278.32 26471.94 36683.33 377
pmmvs371.81 34668.71 34981.11 35375.86 38870.42 35686.74 35583.66 37758.95 38468.64 37780.89 37836.93 38589.52 37763.10 36463.59 38183.39 376
APD_test169.04 34766.26 35377.36 36380.51 38462.79 38285.46 36583.51 37854.11 38759.14 38584.79 36423.40 39489.61 37655.22 38070.24 36879.68 384
N_pmnet68.89 34868.44 35070.23 36989.07 34428.79 40688.06 34019.50 40669.47 37271.86 36984.93 36261.24 32791.75 36554.70 38177.15 35190.15 353
WB-MVS67.92 34967.49 35169.21 37281.09 38241.17 40088.03 34178.00 39273.50 35162.63 38183.11 37263.94 30686.52 38425.66 39751.45 39079.94 383
SSC-MVS67.06 35066.56 35268.56 37480.54 38340.06 40287.77 34577.37 39572.38 36161.75 38382.66 37463.37 31186.45 38524.48 39848.69 39379.16 385
LCM-MVSNet66.00 35162.16 35677.51 36264.51 39958.29 38883.87 37590.90 32948.17 38954.69 38673.31 38616.83 40086.75 38365.47 35361.67 38387.48 374
test_vis3_rt65.12 35262.60 35472.69 36671.44 39260.71 38487.17 35265.55 39963.80 38153.22 38765.65 39114.54 40189.44 37876.65 28165.38 37867.91 390
FPMVS64.63 35362.55 35570.88 36770.80 39356.71 38984.42 37284.42 37551.78 38849.57 38881.61 37623.49 39381.48 39340.61 39376.25 35674.46 386
EGC-MVSNET61.97 35456.37 35878.77 35989.63 34073.50 32289.12 32882.79 3790.21 4031.24 40484.80 36339.48 38490.04 37544.13 38875.94 35872.79 387
PMMVS259.60 35556.40 35769.21 37268.83 39646.58 39873.02 39177.48 39455.07 38649.21 38972.95 38717.43 39980.04 39449.32 38544.33 39480.99 382
testf159.54 35656.11 35969.85 37069.28 39456.61 39180.37 38476.55 39642.58 39245.68 39175.61 38111.26 40284.18 38843.20 39060.44 38568.75 388
APD_test259.54 35656.11 35969.85 37069.28 39456.61 39180.37 38476.55 39642.58 39245.68 39175.61 38111.26 40284.18 38843.20 39060.44 38568.75 388
ANet_high58.88 35854.22 36272.86 36556.50 40256.67 39080.75 38386.00 36873.09 35637.39 39564.63 39222.17 39579.49 39543.51 38923.96 39782.43 381
Gipumacopyleft57.99 35954.91 36167.24 37588.51 34865.59 37252.21 39490.33 33843.58 39142.84 39451.18 39520.29 39785.07 38734.77 39470.45 36751.05 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36048.46 36463.48 37645.72 40446.20 39973.41 39078.31 39041.03 39430.06 39765.68 3906.05 40483.43 39130.04 39565.86 37760.80 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 36148.47 36356.66 37852.26 40318.98 40841.51 39681.40 38310.10 39844.59 39375.01 38428.51 38968.16 39653.54 38249.31 39282.83 379
MVEpermissive39.65 2343.39 36238.59 36857.77 37756.52 40148.77 39755.38 39358.64 40329.33 39728.96 39852.65 3944.68 40564.62 39928.11 39633.07 39559.93 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 36342.29 36546.03 38065.58 39837.41 40373.51 38964.62 40033.99 39528.47 39947.87 39619.90 39867.91 39722.23 39924.45 39632.77 395
EMVS42.07 36441.12 36644.92 38163.45 40035.56 40573.65 38863.48 40133.05 39626.88 40045.45 39721.27 39667.14 39819.80 40023.02 39832.06 396
tmp_tt35.64 36539.24 36724.84 38214.87 40523.90 40762.71 39251.51 4056.58 40036.66 39662.08 39344.37 38030.34 40252.40 38322.00 39920.27 397
cdsmvs_eth3d_5k22.14 36629.52 3690.00 3860.00 4080.00 4110.00 39795.76 1520.00 4040.00 40594.29 16475.66 1700.00 4050.00 4040.00 4030.00 401
wuyk23d21.27 36720.48 37023.63 38368.59 39736.41 40449.57 3956.85 4079.37 3997.89 4014.46 4034.03 40631.37 40117.47 40116.07 4003.12 398
testmvs8.92 36811.52 3711.12 3851.06 4060.46 41086.02 3590.65 4080.62 4012.74 4029.52 4010.31 4080.45 4042.38 4020.39 4012.46 400
test1238.76 36911.22 3721.39 3840.85 4070.97 40985.76 3620.35 4090.54 4022.45 4038.14 4020.60 4070.48 4032.16 4030.17 4022.71 399
ab-mvs-re7.82 37010.43 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40593.88 1850.00 4090.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas6.64 3718.86 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40479.70 1210.00 4050.00 4040.00 4030.00 401
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM95.68 588.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
WAC-MVS64.08 37759.14 374
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23197.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 408
eth-test0.00 408
ZD-MVS98.15 3486.62 3297.07 4583.63 20494.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5197.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26497.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 1997.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 153
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 153
sam_mvs70.60 234
ambc83.06 34779.99 38563.51 38077.47 38792.86 27374.34 36084.45 36528.74 38895.06 32673.06 31168.89 37490.61 349
MTGPAbinary96.97 50
test_post188.00 3429.81 40069.31 25695.53 31376.65 281
test_post10.29 39970.57 23895.91 301
patchmatchnet-post83.76 36771.53 22296.48 272
GG-mvs-BLEND87.94 28789.73 33977.91 26787.80 34378.23 39180.58 30983.86 36659.88 33795.33 32171.20 31892.22 18190.60 351
MTMP96.16 5360.64 402
gm-plane-assit89.60 34168.00 36477.28 31588.99 32097.57 18979.44 254
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 25792.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 24892.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
TestCases89.52 24695.01 14677.79 27490.89 33077.41 31276.12 34893.34 19854.08 36097.51 19568.31 33984.27 27893.26 282
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 36794.37 3997.13 23486.74 146
新几何293.11 234
新几何193.10 7997.30 6684.35 9295.56 16871.09 36891.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 157
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 34799.05 5580.56 23996.59 137
原ACMM292.94 241
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29290.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 151
test22296.55 8481.70 16692.22 26495.01 20168.36 37490.20 12496.14 9280.26 11497.80 7496.05 160
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata90.49 20296.40 8977.89 26995.37 18672.51 36093.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 162
testdata192.15 26687.94 103
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16582.74 141
plane_prior694.52 17582.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20294.63 210
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 170
plane_prior82.73 14295.21 11189.66 4889.88 207
n20.00 410
nn0.00 410
door-mid85.49 370
lessismore_v086.04 32288.46 35168.78 36380.59 38573.01 36590.11 30255.39 35396.43 27775.06 29765.06 37992.90 298
LGP-MVS_train91.12 17594.47 17781.49 17296.14 12086.73 13585.45 21995.16 13069.89 24598.10 14687.70 13289.23 22093.77 263
test1196.57 92
door85.33 372
HQP5-MVS81.56 168
HQP-NCC94.17 18994.39 16588.81 7285.43 222
ACMP_Plane94.17 18994.39 16588.81 7285.43 222
BP-MVS87.11 143
HQP4-MVS85.43 22297.96 16594.51 220
HQP3-MVS96.04 13189.77 211
HQP2-MVS73.83 197
NP-MVS94.37 18382.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39587.62 34973.32 35384.59 24270.33 24174.65 30195.50 180
MDTV_nov1_ep1383.56 27691.69 27769.93 35987.75 34691.54 31378.60 29984.86 23688.90 32269.54 25096.03 29470.25 32588.93 226
ACMMP++_ref87.47 251
ACMMP++88.01 242
Test By Simon80.02 116
ITE_SJBPF88.24 27991.88 26777.05 28692.92 27185.54 16480.13 31693.30 20257.29 34796.20 28872.46 31384.71 27491.49 333
DeepMVS_CXcopyleft56.31 37974.23 39051.81 39656.67 40444.85 39048.54 39075.16 38327.87 39058.74 40040.92 39252.22 38958.39 393