This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3097.78 5186.00 4998.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3298.77 585.99 5197.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3898.78 385.93 5497.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1795.56 9597.51 589.13 6397.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4597.46 697.40 2089.03 6796.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3596.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6699.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10596.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15397.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4197.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7396.96 5291.75 994.02 4696.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23495.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11195.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SD-MVS94.96 1395.33 893.88 5797.25 6986.69 2796.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 24894.38 2998.85 1998.03 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.85 1494.94 1294.58 4198.25 2986.33 4196.11 6096.62 8888.14 9896.10 2096.96 5589.09 1898.94 7894.48 2898.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1695.66 8896.93 5692.34 493.94 4796.58 7687.74 2799.44 2992.83 5098.40 5298.62 21
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8597.34 2388.28 9195.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
test_fmvsm_n_192094.71 1795.11 1093.50 6995.79 11584.62 7896.15 5597.64 289.85 4097.19 897.89 1986.28 4398.71 9797.11 798.08 6597.17 108
test_fmvsmconf_n94.60 1894.81 1693.98 5394.62 17084.96 7296.15 5597.35 2289.37 5496.03 2398.11 586.36 4199.01 6397.45 397.83 7397.96 73
MVS_030494.60 1894.38 2595.23 1195.41 13087.49 1596.53 3892.75 27793.82 293.07 6597.84 2283.66 7499.59 897.61 298.76 2898.61 22
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2496.94 2097.34 2388.63 8093.65 5197.21 4286.10 4599.49 2692.35 6198.77 2798.30 47
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 1996.85 2897.32 2788.24 9293.15 6197.04 5286.17 4499.62 292.40 5998.81 2298.52 26
XVS94.45 2294.32 2694.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6997.16 4785.02 5999.49 2691.99 7498.56 4898.47 33
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1495.00 12597.12 4187.13 12392.51 8396.30 8389.24 1799.34 3493.46 3998.62 4498.73 17
region2R94.43 2494.27 3294.92 2098.65 886.67 2996.92 2497.23 3488.60 8293.58 5397.27 3885.22 5499.54 2092.21 6498.74 3198.56 25
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2796.94 2097.32 2788.63 8093.53 5697.26 4085.04 5899.54 2092.35 6198.78 2598.50 27
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2094.36 17096.97 5091.07 1393.14 6297.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
CP-MVS94.34 2794.21 3494.74 3698.39 2386.64 3197.60 497.24 3288.53 8492.73 7797.23 4185.20 5599.32 3892.15 6798.83 2198.25 55
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6395.28 13485.43 6695.68 8596.43 9786.56 13896.84 1497.81 2387.56 3298.77 9297.14 696.82 9697.16 112
MP-MVScopyleft94.25 2994.07 3994.77 3498.47 1886.31 4396.71 3196.98 4989.04 6691.98 9397.19 4485.43 5299.56 1292.06 7398.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3598.06 3986.90 2295.88 7496.94 5585.68 15995.05 3497.18 4587.31 3599.07 5391.90 8098.61 4698.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS94.23 3194.17 3794.43 4698.21 3285.78 6196.40 4196.90 5988.20 9694.33 4097.40 3384.75 6499.03 5893.35 4397.99 6798.48 30
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2396.54 3797.19 3588.24 9293.26 5896.83 6185.48 5199.59 891.43 8798.40 5298.30 47
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3094.82 13697.17 3986.26 14592.83 7197.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6795.29 13384.98 7195.61 9296.28 10886.31 14396.75 1697.86 2187.40 3398.74 9597.07 897.02 8997.07 114
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5792.46 25084.80 7596.18 5296.82 6889.29 5795.68 2898.11 585.10 5698.99 7097.38 497.75 7797.86 80
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11496.52 8780.00 21994.00 19497.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3298.50 27
CS-MVS94.12 3794.44 2293.17 7696.55 8483.08 12997.63 396.95 5491.71 1193.50 5796.21 8685.61 4898.24 13693.64 3798.17 5898.19 58
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3297.48 6186.78 2595.65 9096.89 6089.40 5392.81 7296.97 5485.37 5399.24 4390.87 9798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test94.02 3994.29 2993.24 7396.69 7883.24 11997.49 596.92 5792.14 592.90 6795.77 10885.02 5998.33 13193.03 4798.62 4498.13 62
HPM-MVScopyleft94.02 3993.88 4494.43 4698.39 2385.78 6197.25 1097.07 4586.90 13192.62 8096.80 6584.85 6399.17 4792.43 5798.65 4298.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS93.99 4193.78 4794.63 3998.50 1685.90 5896.87 2696.91 5888.70 7891.83 10297.17 4683.96 7199.55 1691.44 8698.64 4398.43 38
PGM-MVS93.96 4293.72 5094.68 3798.43 2086.22 4695.30 10397.78 187.45 11893.26 5897.33 3684.62 6599.51 2490.75 9998.57 4798.32 46
PHI-MVS93.89 4393.65 5494.62 4096.84 7586.43 3896.69 3297.49 685.15 17393.56 5596.28 8485.60 4999.31 3992.45 5698.79 2398.12 64
SR-MVS-dyc-post93.82 4493.82 4593.82 6097.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3184.24 6899.01 6392.73 5197.80 7497.88 78
APD-MVS_3200maxsize93.78 4593.77 4893.80 6297.92 4384.19 9496.30 4396.87 6286.96 12793.92 4897.47 2983.88 7298.96 7792.71 5497.87 7198.26 54
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9495.62 12383.17 12296.14 5796.12 12388.13 9995.82 2698.04 1683.43 7598.48 11196.97 996.23 10796.92 125
patch_mono-293.74 4794.32 2692.01 13097.54 5778.37 25793.40 21897.19 3588.02 10194.99 3597.21 4288.35 2198.44 12194.07 3298.09 6399.23 1
MSLP-MVS++93.72 4894.08 3892.65 10697.31 6583.43 11495.79 7997.33 2590.03 3693.58 5396.96 5584.87 6297.76 17492.19 6698.66 4096.76 131
TSAR-MVS + GP.93.66 4993.41 5694.41 4896.59 8286.78 2594.40 16393.93 25089.77 4594.21 4195.59 11587.35 3498.61 10492.72 5396.15 10997.83 83
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8695.02 14683.67 10696.19 5096.10 12587.27 12195.98 2498.05 1383.07 8298.45 11996.68 1195.51 11696.88 128
CANet93.54 5193.20 6194.55 4295.65 12185.73 6394.94 12896.69 8491.89 890.69 11895.88 10281.99 10299.54 2093.14 4697.95 6998.39 39
dcpmvs_293.49 5294.19 3691.38 16597.69 5476.78 28994.25 17396.29 10588.33 8894.46 3896.88 5888.07 2598.64 10093.62 3898.09 6398.73 17
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9593.75 21283.13 12496.02 6795.74 15487.68 11395.89 2598.17 282.78 8698.46 11596.71 1096.17 10896.98 121
MVS_111021_HR93.45 5493.31 5793.84 5996.99 7284.84 7393.24 23097.24 3288.76 7591.60 10795.85 10386.07 4698.66 9891.91 7898.16 5998.03 70
test_fmvsmvis_n_192093.44 5593.55 5593.10 7993.67 21684.26 9395.83 7796.14 12089.00 7092.43 8597.50 2883.37 7898.72 9696.61 1297.44 8196.32 145
train_agg93.44 5593.08 6294.52 4397.53 5886.49 3694.07 18696.78 7281.86 24992.77 7496.20 8787.63 2999.12 5192.14 6898.69 3597.94 74
EC-MVSNet93.44 5593.71 5192.63 10795.21 13982.43 15097.27 996.71 8290.57 2692.88 6895.80 10683.16 7998.16 14293.68 3698.14 6097.31 101
DELS-MVS93.43 5893.25 5993.97 5495.42 12985.04 7093.06 23797.13 4090.74 2191.84 10095.09 13386.32 4299.21 4591.22 8898.45 5097.65 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5993.22 6093.94 5698.36 2584.83 7497.15 1396.80 7185.77 15692.47 8497.13 4882.38 9099.07 5390.51 10498.40 5297.92 77
DeepC-MVS88.79 393.31 6092.99 6594.26 5196.07 10385.83 5994.89 13196.99 4889.02 6989.56 13297.37 3582.51 8999.38 3192.20 6598.30 5597.57 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15482.33 9298.62 10392.40 5992.86 17398.27 52
ACMMPcopyleft93.24 6292.88 6794.30 5098.09 3885.33 6896.86 2797.45 1488.33 8890.15 12797.03 5381.44 10599.51 2490.85 9895.74 11298.04 69
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6393.05 6393.76 6498.04 4084.07 9696.22 4997.37 2184.15 19290.05 12895.66 11287.77 2699.15 5089.91 10798.27 5698.07 66
fmvsm_s_conf0.1_n_a93.19 6493.26 5892.97 8892.49 24883.62 10996.02 6795.72 15786.78 13396.04 2298.19 182.30 9398.43 12396.38 1395.42 12296.86 129
test_fmvsmconf0.01_n93.19 6493.02 6493.71 6589.25 34484.42 9196.06 6496.29 10589.06 6494.68 3698.13 379.22 12898.98 7497.22 597.24 8497.74 87
alignmvs93.08 6692.50 7394.81 3195.62 12387.61 1395.99 6996.07 12889.77 4594.12 4394.87 13980.56 11198.66 9892.42 5893.10 16998.15 61
EI-MVSNet-Vis-set93.01 6792.92 6693.29 7195.01 14783.51 11394.48 15595.77 15190.87 1592.52 8296.67 6884.50 6699.00 6891.99 7494.44 14497.36 100
casdiffmvs_mvgpermissive92.96 6892.83 6893.35 7094.59 17183.40 11695.00 12596.34 10390.30 3092.05 9196.05 9583.43 7598.15 14392.07 7095.67 11398.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net92.83 6992.54 7293.68 6696.10 10084.71 7795.66 8896.39 10091.92 793.22 6096.49 7983.16 7998.87 8284.47 17495.47 11997.45 99
CDPH-MVS92.83 6992.30 7594.44 4497.79 4986.11 4894.06 18896.66 8580.09 27892.77 7496.63 7386.62 3899.04 5787.40 13698.66 4098.17 60
ETV-MVS92.74 7192.66 7092.97 8895.20 14084.04 9895.07 12196.51 9490.73 2292.96 6691.19 27384.06 6998.34 12991.72 8296.54 10196.54 141
EI-MVSNet-UG-set92.74 7192.62 7193.12 7894.86 15883.20 12194.40 16395.74 15490.71 2392.05 9196.60 7584.00 7098.99 7091.55 8493.63 15497.17 108
DPM-MVS92.58 7391.74 8195.08 1596.19 9589.31 592.66 24896.56 9383.44 21091.68 10695.04 13486.60 4098.99 7085.60 16097.92 7096.93 124
casdiffmvspermissive92.51 7492.43 7492.74 10194.41 18381.98 16094.54 15396.23 11489.57 4991.96 9596.17 9182.58 8898.01 16190.95 9595.45 12198.23 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR92.47 7592.29 7692.98 8795.99 10984.43 8993.08 23596.09 12688.20 9691.12 11495.72 11181.33 10797.76 17491.74 8197.37 8396.75 132
3Dnovator+87.14 492.42 7691.37 8495.55 795.63 12288.73 697.07 1896.77 7490.84 1684.02 26196.62 7475.95 16399.34 3487.77 13097.68 7898.59 24
baseline92.39 7792.29 7692.69 10594.46 18081.77 16594.14 17996.27 10989.22 5991.88 9896.00 9682.35 9197.99 16391.05 9095.27 12798.30 47
VNet92.24 7891.91 7993.24 7396.59 8283.43 11494.84 13596.44 9689.19 6194.08 4595.90 10177.85 14798.17 14188.90 11793.38 16398.13 62
CPTT-MVS91.99 7991.80 8092.55 11198.24 3181.98 16096.76 3096.49 9581.89 24890.24 12396.44 8178.59 13698.61 10489.68 10897.85 7297.06 115
EIA-MVS91.95 8091.94 7891.98 13495.16 14180.01 21895.36 9896.73 7988.44 8589.34 13692.16 23983.82 7398.45 11989.35 11197.06 8797.48 97
DP-MVS Recon91.95 8091.28 8693.96 5598.33 2785.92 5694.66 14796.66 8582.69 23090.03 12995.82 10582.30 9399.03 5884.57 17296.48 10496.91 126
EPNet91.79 8291.02 9294.10 5290.10 33285.25 6996.03 6692.05 29792.83 387.39 17195.78 10779.39 12699.01 6388.13 12697.48 8098.05 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS91.77 8391.70 8292.00 13397.08 7180.03 21793.60 21295.18 19487.85 10990.89 11696.47 8082.06 10098.36 12685.07 16497.04 8897.62 90
Vis-MVSNetpermissive91.75 8491.23 8793.29 7195.32 13283.78 10396.14 5795.98 13489.89 3890.45 12096.58 7675.09 17598.31 13484.75 17096.90 9297.78 86
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator86.66 591.73 8590.82 9694.44 4494.59 17186.37 4097.18 1297.02 4789.20 6084.31 25796.66 6973.74 19999.17 4786.74 14697.96 6897.79 85
EPP-MVSNet91.70 8691.56 8392.13 12995.88 11280.50 20197.33 795.25 19086.15 14989.76 13195.60 11483.42 7798.32 13387.37 13893.25 16697.56 95
MVSFormer91.68 8791.30 8592.80 9793.86 20683.88 10195.96 7195.90 14284.66 18691.76 10394.91 13777.92 14497.30 21889.64 10997.11 8597.24 104
Effi-MVS+91.59 8891.11 8993.01 8594.35 18883.39 11794.60 14995.10 19887.10 12490.57 11993.10 21181.43 10698.07 15789.29 11394.48 14297.59 93
IS-MVSNet91.43 8991.09 9192.46 11595.87 11481.38 17796.95 1993.69 26089.72 4789.50 13495.98 9878.57 13797.77 17383.02 19296.50 10398.22 57
PVSNet_Blended_VisFu91.38 9090.91 9492.80 9796.39 9083.17 12294.87 13396.66 8583.29 21589.27 13794.46 15880.29 11399.17 4787.57 13495.37 12396.05 161
diffmvspermissive91.37 9191.23 8791.77 15093.09 23180.27 20592.36 25795.52 17387.03 12691.40 11194.93 13680.08 11597.44 20292.13 6994.56 13997.61 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9291.11 8991.93 13894.37 18480.14 21093.46 21795.80 14986.46 14091.35 11293.77 19082.21 9698.09 15487.57 13494.95 13097.55 96
OMC-MVS91.23 9390.62 9893.08 8196.27 9384.07 9693.52 21495.93 13886.95 12889.51 13396.13 9378.50 13898.35 12885.84 15892.90 17296.83 130
PAPM_NR91.22 9490.78 9792.52 11397.60 5681.46 17494.37 16996.24 11386.39 14287.41 16894.80 14582.06 10098.48 11182.80 19895.37 12397.61 91
PS-MVSNAJ91.18 9590.92 9391.96 13695.26 13782.60 14992.09 26995.70 15886.27 14491.84 10092.46 22979.70 12198.99 7089.08 11595.86 11194.29 235
xiu_mvs_v2_base91.13 9690.89 9591.86 14494.97 15082.42 15192.24 26395.64 16586.11 15291.74 10593.14 20979.67 12498.89 8189.06 11695.46 12094.28 236
nrg03091.08 9790.39 9993.17 7693.07 23286.91 2196.41 3996.26 11088.30 9088.37 15194.85 14282.19 9797.64 18591.09 8982.95 29294.96 199
lupinMVS90.92 9890.21 10293.03 8493.86 20683.88 10192.81 24593.86 25479.84 28091.76 10394.29 16477.92 14498.04 15990.48 10597.11 8597.17 108
h-mvs3390.80 9990.15 10592.75 10096.01 10582.66 14695.43 9795.53 17289.80 4193.08 6395.64 11375.77 16499.00 6892.07 7078.05 34796.60 136
jason90.80 9990.10 10692.90 9293.04 23483.53 11293.08 23594.15 24380.22 27591.41 11094.91 13776.87 15197.93 16890.28 10696.90 9297.24 104
jason: jason.
VDD-MVS90.74 10189.92 11393.20 7596.27 9383.02 13195.73 8293.86 25488.42 8792.53 8196.84 6062.09 31898.64 10090.95 9592.62 17697.93 76
PVSNet_Blended90.73 10290.32 10191.98 13496.12 9781.25 17992.55 25296.83 6682.04 24289.10 13992.56 22781.04 10998.85 8686.72 14895.91 11095.84 168
test_yl90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
DCV-MVSNet90.69 10390.02 11192.71 10295.72 11882.41 15394.11 18195.12 19685.63 16191.49 10894.70 14874.75 17998.42 12486.13 15392.53 17797.31 101
API-MVS90.66 10590.07 10792.45 11696.36 9184.57 8096.06 6495.22 19382.39 23389.13 13894.27 16780.32 11298.46 11580.16 24596.71 9894.33 232
xiu_mvs_v1_base_debu90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
xiu_mvs_v1_base90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
xiu_mvs_v1_base_debi90.64 10690.05 10892.40 11793.97 20384.46 8693.32 22195.46 17585.17 17092.25 8694.03 17270.59 23598.57 10790.97 9294.67 13494.18 237
HQP_MVS90.60 10990.19 10391.82 14794.70 16682.73 14295.85 7596.22 11590.81 1786.91 18094.86 14074.23 18798.12 14488.15 12489.99 20394.63 211
FIs90.51 11090.35 10090.99 18693.99 20280.98 18795.73 8297.54 489.15 6286.72 18794.68 15081.83 10497.24 22685.18 16388.31 23994.76 209
MAR-MVS90.30 11189.37 12493.07 8396.61 8184.48 8595.68 8595.67 16082.36 23587.85 15992.85 21676.63 15798.80 9080.01 24696.68 9995.91 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FC-MVSNet-test90.27 11290.18 10490.53 19893.71 21379.85 22495.77 8097.59 389.31 5686.27 19694.67 15181.93 10397.01 24284.26 17688.09 24294.71 210
CANet_DTU90.26 11389.41 12392.81 9693.46 22283.01 13293.48 21594.47 22989.43 5287.76 16394.23 16870.54 23999.03 5884.97 16596.39 10596.38 144
SDMVSNet90.19 11489.61 11791.93 13896.00 10683.09 12892.89 24295.98 13488.73 7686.85 18495.20 12872.09 21997.08 23688.90 11789.85 20995.63 178
OPM-MVS90.12 11589.56 11891.82 14793.14 22983.90 10094.16 17895.74 15488.96 7187.86 15895.43 11972.48 21597.91 16988.10 12890.18 20293.65 271
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LFMVS90.08 11689.13 13092.95 9096.71 7782.32 15596.08 6189.91 34786.79 13292.15 9096.81 6362.60 31698.34 12987.18 14093.90 15098.19 58
GeoE90.05 11789.43 12291.90 14395.16 14180.37 20495.80 7894.65 22683.90 19787.55 16794.75 14778.18 14297.62 18781.28 22593.63 15497.71 88
PAPR90.02 11889.27 12992.29 12595.78 11680.95 18992.68 24796.22 11581.91 24686.66 18893.75 19282.23 9598.44 12179.40 25794.79 13297.48 97
PVSNet_BlendedMVS89.98 11989.70 11590.82 19196.12 9781.25 17993.92 19996.83 6683.49 20989.10 13992.26 23781.04 10998.85 8686.72 14887.86 24692.35 317
PS-MVSNAJss89.97 12089.62 11691.02 18391.90 26880.85 19295.26 10895.98 13486.26 14586.21 19794.29 16479.70 12197.65 18288.87 11988.10 24094.57 216
mvsmamba89.96 12189.50 11991.33 16892.90 24181.82 16396.68 3392.37 28589.03 6787.00 17694.85 14273.05 20797.65 18291.03 9188.63 23094.51 221
XVG-OURS-SEG-HR89.95 12289.45 12091.47 16294.00 20181.21 18291.87 27396.06 13085.78 15588.55 14795.73 11074.67 18397.27 22288.71 12089.64 21495.91 164
UGNet89.95 12288.95 13492.95 9094.51 17783.31 11895.70 8495.23 19189.37 5487.58 16593.94 18064.00 30598.78 9183.92 18196.31 10696.74 133
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet89.92 12489.29 12791.81 14993.39 22483.72 10494.43 16197.12 4189.80 4186.46 19093.32 20083.16 7997.23 22784.92 16681.02 32194.49 226
AdaColmapbinary89.89 12589.07 13192.37 12097.41 6283.03 13094.42 16295.92 13982.81 22786.34 19594.65 15273.89 19599.02 6180.69 23695.51 11695.05 194
hse-mvs289.88 12689.34 12591.51 15994.83 16081.12 18493.94 19793.91 25389.80 4193.08 6393.60 19475.77 16497.66 18192.07 7077.07 35495.74 173
UniMVSNet (Re)89.80 12789.07 13192.01 13093.60 21884.52 8394.78 13997.47 1189.26 5886.44 19392.32 23482.10 9897.39 21484.81 16980.84 32594.12 241
HQP-MVS89.80 12789.28 12891.34 16794.17 19181.56 16894.39 16596.04 13188.81 7285.43 22393.97 17973.83 19797.96 16587.11 14389.77 21294.50 224
FA-MVS(test-final)89.66 12988.91 13691.93 13894.57 17480.27 20591.36 28494.74 22284.87 17989.82 13092.61 22674.72 18298.47 11483.97 18093.53 15797.04 117
VPA-MVSNet89.62 13088.96 13391.60 15593.86 20682.89 13795.46 9697.33 2587.91 10488.43 15093.31 20174.17 19097.40 21187.32 13982.86 29794.52 219
WTY-MVS89.60 13188.92 13591.67 15395.47 12881.15 18392.38 25694.78 22083.11 21989.06 14194.32 16278.67 13596.61 26281.57 22290.89 19597.24 104
Vis-MVSNet (Re-imp)89.59 13289.44 12190.03 22595.74 11775.85 30395.61 9290.80 33287.66 11587.83 16095.40 12076.79 15396.46 27578.37 26296.73 9797.80 84
VDDNet89.56 13388.49 15192.76 9995.07 14582.09 15796.30 4393.19 26781.05 27091.88 9896.86 5961.16 33098.33 13188.43 12392.49 17997.84 82
114514_t89.51 13488.50 14992.54 11298.11 3681.99 15995.16 11696.36 10270.19 37285.81 20395.25 12476.70 15598.63 10282.07 21096.86 9597.00 120
QAPM89.51 13488.15 16093.59 6894.92 15484.58 7996.82 2996.70 8378.43 30383.41 27696.19 9073.18 20699.30 4077.11 27896.54 10196.89 127
CLD-MVS89.47 13688.90 13791.18 17394.22 19082.07 15892.13 26796.09 12687.90 10585.37 22992.45 23074.38 18597.56 19087.15 14190.43 19893.93 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test89.45 13788.90 13791.12 17594.47 17881.49 17295.30 10396.14 12086.73 13585.45 22095.16 13069.89 24598.10 14687.70 13289.23 22193.77 264
CDS-MVSNet89.45 13788.51 14892.29 12593.62 21783.61 11193.01 23894.68 22581.95 24487.82 16193.24 20578.69 13496.99 24380.34 24293.23 16796.28 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
iter_conf_final89.42 13988.69 14291.60 15595.12 14482.93 13595.75 8192.14 29487.32 12087.12 17594.07 17067.09 27897.55 19190.61 10189.01 22594.32 233
Fast-Effi-MVS+89.41 14088.64 14391.71 15294.74 16280.81 19393.54 21395.10 19883.11 21986.82 18690.67 29179.74 12097.75 17780.51 24093.55 15696.57 139
ab-mvs89.41 14088.35 15392.60 10895.15 14382.65 14792.20 26595.60 16783.97 19688.55 14793.70 19374.16 19198.21 14082.46 20389.37 21796.94 123
XVG-OURS89.40 14288.70 14191.52 15894.06 19581.46 17491.27 28696.07 12886.14 15088.89 14395.77 10868.73 26697.26 22487.39 13789.96 20595.83 169
test_vis1_n_192089.39 14389.84 11488.04 28592.97 23872.64 33494.71 14496.03 13386.18 14891.94 9796.56 7861.63 32195.74 30993.42 4195.11 12995.74 173
mvs_anonymous89.37 14489.32 12689.51 24893.47 22174.22 31791.65 28094.83 21682.91 22585.45 22093.79 18881.23 10896.36 28286.47 15094.09 14797.94 74
DU-MVS89.34 14588.50 14991.85 14693.04 23483.72 10494.47 15896.59 9089.50 5086.46 19093.29 20377.25 14997.23 22784.92 16681.02 32194.59 214
TAMVS89.21 14688.29 15791.96 13693.71 21382.62 14893.30 22594.19 24182.22 23787.78 16293.94 18078.83 13196.95 24577.70 27192.98 17196.32 145
ACMM84.12 989.14 14788.48 15291.12 17594.65 16981.22 18195.31 10196.12 12385.31 16985.92 20294.34 16070.19 24398.06 15885.65 15988.86 22894.08 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111189.10 14888.64 14390.48 20495.53 12774.97 30996.08 6184.89 37588.13 9990.16 12696.65 7063.29 31298.10 14686.14 15196.90 9298.39 39
EI-MVSNet89.10 14888.86 13989.80 23791.84 27078.30 25993.70 20995.01 20185.73 15787.15 17395.28 12279.87 11897.21 22983.81 18387.36 25593.88 253
ECVR-MVScopyleft89.09 15088.53 14790.77 19395.62 12375.89 30296.16 5384.22 37787.89 10790.20 12496.65 7063.19 31498.10 14685.90 15696.94 9098.33 43
RRT_MVS89.09 15088.62 14690.49 20292.85 24279.65 22896.41 3994.41 23288.22 9485.50 21694.77 14669.36 25397.31 21789.33 11286.73 26294.51 221
CNLPA89.07 15287.98 16492.34 12196.87 7484.78 7694.08 18593.24 26581.41 26184.46 24795.13 13275.57 17196.62 25977.21 27693.84 15295.61 180
PLCcopyleft84.53 789.06 15388.03 16392.15 12897.27 6882.69 14594.29 17195.44 18079.71 28284.01 26294.18 16976.68 15698.75 9377.28 27593.41 16295.02 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_djsdf89.03 15488.64 14390.21 21590.74 31879.28 24095.96 7195.90 14284.66 18685.33 23192.94 21574.02 19397.30 21889.64 10988.53 23294.05 247
HY-MVS83.01 1289.03 15487.94 16692.29 12594.86 15882.77 13892.08 27094.49 22881.52 26086.93 17892.79 22278.32 14198.23 13779.93 24790.55 19695.88 166
ACMP84.23 889.01 15688.35 15390.99 18694.73 16381.27 17895.07 12195.89 14486.48 13983.67 26994.30 16369.33 25497.99 16387.10 14588.55 23193.72 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
sss88.93 15788.26 15990.94 18994.05 19680.78 19491.71 27795.38 18481.55 25988.63 14693.91 18475.04 17695.47 32082.47 20291.61 18496.57 139
iter_conf0588.85 15888.08 16291.17 17494.27 18981.64 16795.18 11392.15 29386.23 14787.28 17294.07 17063.89 30997.55 19190.63 10089.00 22694.32 233
TranMVSNet+NR-MVSNet88.84 15987.95 16591.49 16092.68 24683.01 13294.92 13096.31 10489.88 3985.53 21393.85 18776.63 15796.96 24481.91 21479.87 33894.50 224
CHOSEN 1792x268888.84 15987.69 17092.30 12496.14 9681.42 17690.01 31395.86 14674.52 34287.41 16893.94 18075.46 17298.36 12680.36 24195.53 11597.12 113
MVSTER88.84 15988.29 15790.51 20192.95 23980.44 20293.73 20695.01 20184.66 18687.15 17393.12 21072.79 21197.21 22987.86 12987.36 25593.87 254
test_cas_vis1_n_192088.83 16288.85 14088.78 26491.15 29976.72 29093.85 20294.93 20883.23 21892.81 7296.00 9661.17 32994.45 33091.67 8394.84 13195.17 191
OpenMVScopyleft83.78 1188.74 16387.29 18093.08 8192.70 24585.39 6796.57 3696.43 9778.74 29880.85 30696.07 9469.64 24999.01 6378.01 26996.65 10094.83 206
thisisatest053088.67 16487.61 17291.86 14494.87 15780.07 21394.63 14889.90 34884.00 19588.46 14993.78 18966.88 28298.46 11583.30 18892.65 17597.06 115
Effi-MVS+-dtu88.65 16588.35 15389.54 24593.33 22576.39 29694.47 15894.36 23587.70 11285.43 22389.56 31473.45 20297.26 22485.57 16191.28 18894.97 196
tttt051788.61 16687.78 16991.11 17894.96 15177.81 27295.35 9989.69 35185.09 17588.05 15694.59 15566.93 28098.48 11183.27 18992.13 18297.03 118
BH-untuned88.60 16788.13 16190.01 22895.24 13878.50 25393.29 22694.15 24384.75 18384.46 24793.40 19775.76 16697.40 21177.59 27294.52 14194.12 241
sd_testset88.59 16887.85 16890.83 19096.00 10680.42 20392.35 25894.71 22388.73 7686.85 18495.20 12867.31 27396.43 27779.64 25189.85 20995.63 178
NR-MVSNet88.58 16987.47 17691.93 13893.04 23484.16 9594.77 14096.25 11289.05 6580.04 31993.29 20379.02 13097.05 24081.71 22180.05 33594.59 214
1112_ss88.42 17087.33 17991.72 15194.92 15480.98 18792.97 24094.54 22778.16 30983.82 26593.88 18578.78 13397.91 16979.45 25389.41 21696.26 149
WR-MVS88.38 17187.67 17190.52 20093.30 22680.18 20893.26 22895.96 13788.57 8385.47 21992.81 22076.12 15996.91 24881.24 22682.29 30194.47 229
BH-RMVSNet88.37 17287.48 17591.02 18395.28 13479.45 23292.89 24293.07 26985.45 16686.91 18094.84 14470.35 24097.76 17473.97 30594.59 13895.85 167
IterMVS-LS88.36 17387.91 16789.70 24193.80 20978.29 26093.73 20695.08 20085.73 15784.75 23991.90 25379.88 11796.92 24783.83 18282.51 29893.89 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata88.31 17486.13 22094.85 2598.54 1386.60 3396.93 2297.19 3590.66 2492.85 6923.41 39985.02 5999.49 2691.99 7498.56 4898.47 33
LCM-MVSNet-Re88.30 17588.32 15688.27 27894.71 16572.41 33993.15 23190.98 32787.77 11079.25 32891.96 25178.35 14095.75 30883.04 19195.62 11496.65 135
jajsoiax88.24 17687.50 17490.48 20490.89 31280.14 21095.31 10195.65 16484.97 17784.24 25894.02 17565.31 29897.42 20488.56 12188.52 23393.89 251
VPNet88.20 17787.47 17690.39 20993.56 21979.46 23194.04 18995.54 17188.67 7986.96 17794.58 15669.33 25497.15 23184.05 17980.53 33094.56 217
TAPA-MVS84.62 688.16 17887.01 18891.62 15496.64 8080.65 19694.39 16596.21 11876.38 32286.19 19895.44 11779.75 11998.08 15662.75 36695.29 12596.13 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline188.10 17987.28 18190.57 19694.96 15180.07 21394.27 17291.29 32086.74 13487.41 16894.00 17776.77 15496.20 28880.77 23479.31 34395.44 182
Anonymous2024052988.09 18086.59 20492.58 11096.53 8681.92 16295.99 6995.84 14774.11 34689.06 14195.21 12761.44 32498.81 8983.67 18687.47 25297.01 119
HyFIR lowres test88.09 18086.81 19291.93 13896.00 10680.63 19790.01 31395.79 15073.42 35387.68 16492.10 24573.86 19697.96 16580.75 23591.70 18397.19 107
mvs_tets88.06 18287.28 18190.38 21190.94 30879.88 22295.22 11095.66 16285.10 17484.21 25993.94 18063.53 31097.40 21188.50 12288.40 23793.87 254
F-COLMAP87.95 18386.80 19391.40 16496.35 9280.88 19194.73 14295.45 17879.65 28382.04 29394.61 15371.13 22698.50 11076.24 28791.05 19394.80 208
LS3D87.89 18486.32 21492.59 10996.07 10382.92 13695.23 10994.92 20975.66 32982.89 28395.98 9872.48 21599.21 4568.43 33895.23 12895.64 177
anonymousdsp87.84 18587.09 18490.12 22189.13 34580.54 20094.67 14695.55 16982.05 24083.82 26592.12 24271.47 22497.15 23187.15 14187.80 25092.67 305
v2v48287.84 18587.06 18590.17 21790.99 30479.23 24394.00 19495.13 19584.87 17985.53 21392.07 24874.45 18497.45 20084.71 17181.75 30993.85 257
WR-MVS_H87.80 18787.37 17889.10 25793.23 22778.12 26395.61 9297.30 2987.90 10583.72 26792.01 25079.65 12596.01 29676.36 28480.54 32993.16 290
AUN-MVS87.78 18886.54 20691.48 16194.82 16181.05 18593.91 20193.93 25083.00 22286.93 17893.53 19569.50 25197.67 17986.14 15177.12 35395.73 175
PCF-MVS84.11 1087.74 18986.08 22492.70 10494.02 19784.43 8989.27 32595.87 14573.62 35184.43 24994.33 16178.48 13998.86 8470.27 32494.45 14394.81 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous20240521187.68 19086.13 22092.31 12396.66 7980.74 19594.87 13391.49 31580.47 27489.46 13595.44 11754.72 35898.23 13782.19 20889.89 20797.97 72
V4287.68 19086.86 19090.15 21990.58 32380.14 21094.24 17595.28 18983.66 20385.67 20791.33 26874.73 18197.41 20984.43 17581.83 30792.89 300
thres600view787.65 19286.67 19990.59 19596.08 10278.72 24694.88 13291.58 31187.06 12588.08 15492.30 23568.91 26398.10 14670.05 33191.10 18994.96 199
XXY-MVS87.65 19286.85 19190.03 22592.14 25880.60 19993.76 20595.23 19182.94 22484.60 24294.02 17574.27 18695.49 31981.04 22883.68 28594.01 249
Test_1112_low_res87.65 19286.51 20791.08 17994.94 15379.28 24091.77 27594.30 23776.04 32783.51 27492.37 23277.86 14697.73 17878.69 26189.13 22396.22 150
thres100view90087.63 19586.71 19790.38 21196.12 9778.55 25095.03 12491.58 31187.15 12288.06 15592.29 23668.91 26398.10 14670.13 32891.10 18994.48 227
CP-MVSNet87.63 19587.26 18388.74 26893.12 23076.59 29395.29 10596.58 9188.43 8683.49 27592.98 21475.28 17395.83 30478.97 25981.15 31793.79 259
thres40087.62 19786.64 20090.57 19695.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18994.96 199
v114487.61 19886.79 19490.06 22491.01 30379.34 23693.95 19695.42 18383.36 21485.66 20891.31 27174.98 17797.42 20483.37 18782.06 30393.42 280
bld_raw_dy_0_6487.60 19986.73 19590.21 21591.72 27580.26 20795.09 12088.61 35785.68 15985.55 21094.38 15963.93 30896.66 25687.73 13187.84 24793.72 268
tfpn200view987.58 20086.64 20090.41 20895.99 10978.64 24894.58 15091.98 30186.94 12988.09 15291.77 25569.18 25998.10 14670.13 32891.10 18994.48 227
BH-w/o87.57 20187.05 18689.12 25694.90 15677.90 26892.41 25493.51 26282.89 22683.70 26891.34 26775.75 16797.07 23875.49 29193.49 15992.39 315
UniMVSNet_ETH3D87.53 20286.37 21191.00 18592.44 25178.96 24594.74 14195.61 16684.07 19485.36 23094.52 15759.78 33897.34 21682.93 19387.88 24596.71 134
ET-MVSNet_ETH3D87.51 20385.91 23292.32 12293.70 21583.93 9992.33 26090.94 32884.16 19172.09 36892.52 22869.90 24495.85 30389.20 11488.36 23897.17 108
131487.51 20386.57 20590.34 21392.42 25279.74 22692.63 24995.35 18878.35 30480.14 31691.62 26274.05 19297.15 23181.05 22793.53 15794.12 241
v887.50 20586.71 19789.89 23191.37 28979.40 23394.50 15495.38 18484.81 18283.60 27291.33 26876.05 16097.42 20482.84 19680.51 33292.84 302
Fast-Effi-MVS+-dtu87.44 20686.72 19689.63 24392.04 26277.68 27894.03 19093.94 24985.81 15482.42 28791.32 27070.33 24197.06 23980.33 24390.23 20194.14 240
MVS87.44 20686.10 22391.44 16392.61 24783.62 10992.63 24995.66 16267.26 37681.47 29892.15 24077.95 14398.22 13979.71 24995.48 11892.47 311
FE-MVS87.40 20886.02 22691.57 15794.56 17579.69 22790.27 30293.72 25980.57 27388.80 14491.62 26265.32 29798.59 10674.97 29994.33 14696.44 142
FMVSNet387.40 20886.11 22291.30 16993.79 21183.64 10894.20 17794.81 21883.89 19884.37 25091.87 25468.45 26996.56 26778.23 26685.36 27093.70 270
test_fmvs187.34 21087.56 17386.68 31890.59 32271.80 34394.01 19294.04 24878.30 30591.97 9495.22 12556.28 35093.71 34592.89 4994.71 13394.52 219
thisisatest051587.33 21185.99 22791.37 16693.49 22079.55 22990.63 29889.56 35480.17 27687.56 16690.86 28467.07 27998.28 13581.50 22393.02 17096.29 147
PS-CasMVS87.32 21286.88 18988.63 27192.99 23776.33 29895.33 10096.61 8988.22 9483.30 28093.07 21273.03 20995.79 30778.36 26381.00 32393.75 266
GBi-Net87.26 21385.98 22891.08 17994.01 19883.10 12595.14 11794.94 20483.57 20584.37 25091.64 25866.59 28796.34 28378.23 26685.36 27093.79 259
test187.26 21385.98 22891.08 17994.01 19883.10 12595.14 11794.94 20483.57 20584.37 25091.64 25866.59 28796.34 28378.23 26685.36 27093.79 259
v119287.25 21586.33 21390.00 22990.76 31779.04 24493.80 20395.48 17482.57 23185.48 21891.18 27573.38 20597.42 20482.30 20682.06 30393.53 274
v1087.25 21586.38 21089.85 23291.19 29579.50 23094.48 15595.45 17883.79 20183.62 27191.19 27375.13 17497.42 20481.94 21380.60 32792.63 307
DP-MVS87.25 21585.36 24792.90 9297.65 5583.24 11994.81 13792.00 29974.99 33781.92 29595.00 13572.66 21299.05 5566.92 35092.33 18096.40 143
miper_ehance_all_eth87.22 21886.62 20389.02 26092.13 25977.40 28290.91 29494.81 21881.28 26484.32 25590.08 30379.26 12796.62 25983.81 18382.94 29393.04 295
test250687.21 21986.28 21690.02 22795.62 12373.64 32296.25 4871.38 39987.89 10790.45 12096.65 7055.29 35698.09 15486.03 15596.94 9098.33 43
thres20087.21 21986.24 21890.12 22195.36 13178.53 25193.26 22892.10 29586.42 14188.00 15791.11 27969.24 25898.00 16269.58 33291.04 19493.83 258
v14419287.19 22186.35 21289.74 23890.64 32178.24 26193.92 19995.43 18181.93 24585.51 21591.05 28174.21 18997.45 20082.86 19581.56 31193.53 274
FMVSNet287.19 22185.82 23491.30 16994.01 19883.67 10694.79 13894.94 20483.57 20583.88 26492.05 24966.59 28796.51 27077.56 27385.01 27393.73 267
c3_l87.14 22386.50 20889.04 25992.20 25677.26 28391.22 28994.70 22482.01 24384.34 25490.43 29578.81 13296.61 26283.70 18581.09 31893.25 285
Baseline_NR-MVSNet87.07 22486.63 20288.40 27491.44 28477.87 27094.23 17692.57 28284.12 19385.74 20692.08 24677.25 14996.04 29382.29 20779.94 33691.30 338
v14887.04 22586.32 21489.21 25390.94 30877.26 28393.71 20894.43 23084.84 18184.36 25390.80 28876.04 16197.05 24082.12 20979.60 34093.31 282
test_fmvs1_n87.03 22687.04 18786.97 31089.74 34071.86 34194.55 15294.43 23078.47 30191.95 9695.50 11651.16 36993.81 34393.02 4894.56 13995.26 188
v192192086.97 22786.06 22589.69 24290.53 32678.11 26493.80 20395.43 18181.90 24785.33 23191.05 28172.66 21297.41 20982.05 21181.80 30893.53 274
tt080586.92 22885.74 24090.48 20492.22 25579.98 22095.63 9194.88 21283.83 20084.74 24092.80 22157.61 34697.67 17985.48 16284.42 27793.79 259
miper_enhance_ethall86.90 22986.18 21989.06 25891.66 28077.58 28090.22 30894.82 21779.16 28984.48 24689.10 31979.19 12996.66 25684.06 17882.94 29392.94 298
v7n86.81 23085.76 23889.95 23090.72 31979.25 24295.07 12195.92 13984.45 18982.29 28890.86 28472.60 21497.53 19479.42 25680.52 33193.08 294
PEN-MVS86.80 23186.27 21788.40 27492.32 25475.71 30595.18 11396.38 10187.97 10282.82 28493.15 20873.39 20495.92 29976.15 28879.03 34593.59 272
cl2286.78 23285.98 22889.18 25592.34 25377.62 27990.84 29594.13 24581.33 26383.97 26390.15 30173.96 19496.60 26484.19 17782.94 29393.33 281
v124086.78 23285.85 23389.56 24490.45 32777.79 27493.61 21195.37 18681.65 25585.43 22391.15 27771.50 22397.43 20381.47 22482.05 30593.47 278
TR-MVS86.78 23285.76 23889.82 23494.37 18478.41 25592.47 25392.83 27481.11 26986.36 19492.40 23168.73 26697.48 19773.75 30889.85 20993.57 273
PatchMatch-RL86.77 23585.54 24190.47 20795.88 11282.71 14490.54 29992.31 28879.82 28184.32 25591.57 26668.77 26596.39 27973.16 31093.48 16192.32 318
PAPM86.68 23685.39 24590.53 19893.05 23379.33 23989.79 31694.77 22178.82 29581.95 29493.24 20576.81 15297.30 21866.94 34893.16 16894.95 202
pm-mvs186.61 23785.54 24189.82 23491.44 28480.18 20895.28 10794.85 21483.84 19981.66 29692.62 22572.45 21796.48 27279.67 25078.06 34692.82 303
GA-MVS86.61 23785.27 24990.66 19491.33 29278.71 24790.40 30193.81 25785.34 16885.12 23389.57 31361.25 32697.11 23580.99 23189.59 21596.15 151
Anonymous2023121186.59 23985.13 25190.98 18896.52 8781.50 17096.14 5796.16 11973.78 34983.65 27092.15 24063.26 31397.37 21582.82 19781.74 31094.06 246
test_vis1_n86.56 24086.49 20986.78 31788.51 35072.69 33194.68 14593.78 25879.55 28490.70 11795.31 12148.75 37493.28 35193.15 4593.99 14894.38 231
DIV-MVS_self_test86.53 24185.78 23588.75 26692.02 26476.45 29590.74 29694.30 23781.83 25183.34 27890.82 28775.75 16796.57 26581.73 22081.52 31393.24 286
cl____86.52 24285.78 23588.75 26692.03 26376.46 29490.74 29694.30 23781.83 25183.34 27890.78 28975.74 16996.57 26581.74 21981.54 31293.22 287
eth_miper_zixun_eth86.50 24385.77 23788.68 26991.94 26575.81 30490.47 30094.89 21082.05 24084.05 26090.46 29475.96 16296.77 25282.76 19979.36 34293.46 279
baseline286.50 24385.39 24589.84 23391.12 30076.70 29191.88 27288.58 35882.35 23679.95 32090.95 28373.42 20397.63 18680.27 24489.95 20695.19 190
EPNet_dtu86.49 24585.94 23188.14 28390.24 33072.82 32994.11 18192.20 29186.66 13779.42 32792.36 23373.52 20095.81 30671.26 31793.66 15395.80 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas86.43 24684.98 25490.80 19292.10 26180.92 19090.24 30695.91 14173.10 35683.57 27388.39 33165.15 29997.46 19984.90 16891.43 18694.03 248
SCA86.32 24785.18 25089.73 24092.15 25776.60 29291.12 29091.69 30883.53 20885.50 21688.81 32466.79 28396.48 27276.65 28190.35 20096.12 154
LTVRE_ROB82.13 1386.26 24884.90 25790.34 21394.44 18281.50 17092.31 26294.89 21083.03 22179.63 32592.67 22369.69 24897.79 17271.20 31886.26 26591.72 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet86.11 24985.48 24387.98 28691.65 28174.92 31094.93 12995.75 15387.36 11982.26 28993.04 21372.85 21095.82 30574.04 30477.46 35193.20 288
XVG-ACMP-BASELINE86.00 25084.84 25989.45 24991.20 29478.00 26591.70 27895.55 16985.05 17682.97 28292.25 23854.49 35997.48 19782.93 19387.45 25492.89 300
MVP-Stereo85.97 25184.86 25889.32 25190.92 31082.19 15692.11 26894.19 24178.76 29778.77 33391.63 26168.38 27096.56 26775.01 29893.95 14989.20 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS85.90 25285.09 25288.35 27690.79 31577.42 28191.83 27495.70 15880.77 27280.08 31890.02 30466.74 28596.37 28081.88 21587.97 24491.26 339
test-LLR85.87 25385.41 24487.25 30290.95 30671.67 34589.55 31989.88 34983.41 21184.54 24487.95 33867.25 27595.11 32581.82 21693.37 16494.97 196
FMVSNet185.85 25484.11 26891.08 17992.81 24383.10 12595.14 11794.94 20481.64 25682.68 28591.64 25859.01 34296.34 28375.37 29383.78 28293.79 259
PatchmatchNetpermissive85.85 25484.70 26189.29 25291.76 27475.54 30688.49 33791.30 31981.63 25785.05 23488.70 32871.71 22096.24 28774.61 30289.05 22496.08 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer85.77 25684.94 25688.26 27991.16 29872.58 33789.47 32391.04 32676.26 32586.45 19289.97 30670.74 23396.86 25182.35 20587.07 26095.34 187
PMMVS85.71 25784.96 25587.95 28788.90 34877.09 28588.68 33590.06 34372.32 36386.47 18990.76 29072.15 21894.40 33281.78 21893.49 15992.36 316
PVSNet78.82 1885.55 25884.65 26288.23 28194.72 16471.93 34087.12 35492.75 27778.80 29684.95 23690.53 29364.43 30396.71 25574.74 30093.86 15196.06 160
IterMVS-SCA-FT85.45 25984.53 26588.18 28291.71 27776.87 28890.19 30992.65 28185.40 16781.44 29990.54 29266.79 28395.00 32881.04 22881.05 31992.66 306
pmmvs485.43 26083.86 27390.16 21890.02 33582.97 13490.27 30292.67 28075.93 32880.73 30791.74 25771.05 22795.73 31078.85 26083.46 28991.78 327
mvsany_test185.42 26185.30 24885.77 32887.95 36175.41 30887.61 35180.97 38576.82 31988.68 14595.83 10477.44 14890.82 37385.90 15686.51 26391.08 346
ACMH80.38 1785.36 26283.68 27590.39 20994.45 18180.63 19794.73 14294.85 21482.09 23977.24 34192.65 22460.01 33697.58 18872.25 31484.87 27492.96 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-085.35 26384.64 26387.49 29690.77 31672.59 33694.01 19294.40 23384.72 18479.62 32693.17 20761.91 32096.72 25381.99 21281.16 31593.16 290
CR-MVSNet85.35 26383.76 27490.12 22190.58 32379.34 23685.24 36791.96 30378.27 30685.55 21087.87 34171.03 22895.61 31273.96 30689.36 21895.40 184
tpmrst85.35 26384.99 25386.43 32090.88 31367.88 36788.71 33491.43 31780.13 27786.08 20088.80 32673.05 20796.02 29582.48 20183.40 29195.40 184
miper_lstm_enhance85.27 26684.59 26487.31 29991.28 29374.63 31287.69 34894.09 24781.20 26881.36 30189.85 30974.97 17894.30 33581.03 23079.84 33993.01 296
IB-MVS80.51 1585.24 26783.26 28191.19 17292.13 25979.86 22391.75 27691.29 32083.28 21680.66 30988.49 33061.28 32598.46 11580.99 23179.46 34195.25 189
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42085.15 26883.99 27188.65 27092.47 24978.40 25679.68 38792.76 27674.90 33981.41 30089.59 31269.85 24795.51 31679.92 24895.29 12592.03 323
RPSCF85.07 26984.27 26687.48 29792.91 24070.62 35691.69 27992.46 28376.20 32682.67 28695.22 12563.94 30697.29 22177.51 27485.80 26794.53 218
MS-PatchMatch85.05 27084.16 26787.73 29091.42 28778.51 25291.25 28793.53 26177.50 31280.15 31591.58 26461.99 31995.51 31675.69 29094.35 14589.16 364
ACMH+81.04 1485.05 27083.46 27889.82 23494.66 16879.37 23494.44 16094.12 24682.19 23878.04 33692.82 21958.23 34497.54 19373.77 30782.90 29692.54 308
IterMVS84.88 27283.98 27287.60 29291.44 28476.03 30090.18 31092.41 28483.24 21781.06 30590.42 29666.60 28694.28 33679.46 25280.98 32492.48 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 27383.09 28490.14 22093.80 20980.05 21589.18 32893.09 26878.89 29378.19 33491.91 25265.86 29697.27 22268.47 33788.45 23593.11 292
testing22284.84 27483.32 27989.43 25094.15 19475.94 30191.09 29189.41 35584.90 17885.78 20489.44 31552.70 36696.28 28670.80 32391.57 18596.07 158
tpm84.73 27584.02 27086.87 31590.33 32868.90 36389.06 33089.94 34680.85 27185.75 20589.86 30868.54 26895.97 29777.76 27084.05 28195.75 172
tfpnnormal84.72 27683.23 28289.20 25492.79 24480.05 21594.48 15595.81 14882.38 23481.08 30491.21 27269.01 26296.95 24561.69 36880.59 32890.58 353
CVMVSNet84.69 27784.79 26084.37 34091.84 27064.92 37693.70 20991.47 31666.19 37886.16 19995.28 12267.18 27793.33 35080.89 23390.42 19994.88 204
test-mter84.54 27883.64 27687.25 30290.95 30671.67 34589.55 31989.88 34979.17 28884.54 24487.95 33855.56 35295.11 32581.82 21693.37 16494.97 196
ETVMVS84.43 27982.92 28788.97 26294.37 18474.67 31191.23 28888.35 36083.37 21386.06 20189.04 32055.38 35495.67 31167.12 34691.34 18796.58 138
TransMVSNet (Re)84.43 27983.06 28588.54 27291.72 27578.44 25495.18 11392.82 27582.73 22979.67 32492.12 24273.49 20195.96 29871.10 32268.73 37691.21 340
pmmvs584.21 28182.84 29088.34 27788.95 34776.94 28792.41 25491.91 30575.63 33080.28 31391.18 27564.59 30295.57 31377.09 27983.47 28892.53 309
dmvs_re84.20 28283.22 28387.14 30891.83 27277.81 27290.04 31290.19 33984.70 18581.49 29789.17 31864.37 30491.13 37171.58 31685.65 26992.46 312
tpm284.08 28382.94 28687.48 29791.39 28871.27 34789.23 32790.37 33671.95 36584.64 24189.33 31667.30 27496.55 26975.17 29587.09 25994.63 211
test_fmvs283.98 28484.03 26983.83 34587.16 36467.53 37093.93 19892.89 27277.62 31186.89 18393.53 19547.18 37892.02 36390.54 10286.51 26391.93 325
COLMAP_ROBcopyleft80.39 1683.96 28582.04 29389.74 23895.28 13479.75 22594.25 17392.28 28975.17 33578.02 33793.77 19058.60 34397.84 17165.06 35885.92 26691.63 330
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet83.95 28681.53 29691.21 17190.58 32379.34 23685.24 36796.76 7571.44 36785.55 21082.97 37470.87 23198.91 8061.01 37089.36 21895.40 184
SixPastTwentyTwo83.91 28782.90 28886.92 31290.99 30470.67 35593.48 21591.99 30085.54 16477.62 34092.11 24460.59 33296.87 25076.05 28977.75 34893.20 288
EPMVS83.90 28882.70 29187.51 29490.23 33172.67 33288.62 33681.96 38381.37 26285.01 23588.34 33266.31 29094.45 33075.30 29487.12 25895.43 183
WB-MVSnew83.77 28983.28 28085.26 33491.48 28371.03 35191.89 27187.98 36178.91 29184.78 23890.22 29869.11 26194.02 33964.70 35990.44 19790.71 348
TESTMET0.1,183.74 29082.85 28986.42 32189.96 33671.21 34989.55 31987.88 36277.41 31383.37 27787.31 34656.71 34893.65 34780.62 23892.85 17494.40 230
pmmvs683.42 29181.60 29588.87 26388.01 35977.87 27094.96 12794.24 24074.67 34178.80 33291.09 28060.17 33596.49 27177.06 28075.40 36092.23 320
AllTest83.42 29181.39 29789.52 24695.01 14777.79 27493.12 23290.89 33077.41 31376.12 34993.34 19854.08 36197.51 19568.31 33984.27 27993.26 283
tpmvs83.35 29382.07 29287.20 30691.07 30271.00 35388.31 34091.70 30778.91 29180.49 31287.18 35069.30 25797.08 23668.12 34283.56 28793.51 277
USDC82.76 29481.26 29987.26 30191.17 29674.55 31389.27 32593.39 26478.26 30775.30 35492.08 24654.43 36096.63 25871.64 31585.79 26890.61 350
Patchmtry82.71 29580.93 30188.06 28490.05 33476.37 29784.74 37291.96 30372.28 36481.32 30287.87 34171.03 22895.50 31868.97 33480.15 33492.32 318
PatchT82.68 29681.27 29886.89 31490.09 33370.94 35484.06 37490.15 34074.91 33885.63 20983.57 36969.37 25294.87 32965.19 35588.50 23494.84 205
MIMVSNet82.59 29780.53 30288.76 26591.51 28278.32 25886.57 35890.13 34179.32 28580.70 30888.69 32952.98 36593.07 35566.03 35388.86 22894.90 203
test0.0.03 182.41 29881.69 29484.59 33888.23 35672.89 32890.24 30687.83 36383.41 21179.86 32289.78 31067.25 27588.99 38165.18 35683.42 29091.90 326
EG-PatchMatch MVS82.37 29980.34 30588.46 27390.27 32979.35 23592.80 24694.33 23677.14 31773.26 36590.18 30047.47 37796.72 25370.25 32587.32 25789.30 361
tpm cat181.96 30080.27 30687.01 30991.09 30171.02 35287.38 35291.53 31466.25 37780.17 31486.35 35668.22 27196.15 29169.16 33382.29 30193.86 256
our_test_381.93 30180.46 30486.33 32288.46 35373.48 32488.46 33891.11 32276.46 32076.69 34588.25 33466.89 28194.36 33368.75 33579.08 34491.14 342
ppachtmachnet_test81.84 30280.07 31087.15 30788.46 35374.43 31689.04 33192.16 29275.33 33377.75 33888.99 32166.20 29295.37 32165.12 35777.60 34991.65 329
gg-mvs-nofinetune81.77 30379.37 31888.99 26190.85 31477.73 27786.29 35979.63 38874.88 34083.19 28169.05 38960.34 33396.11 29275.46 29294.64 13793.11 292
CL-MVSNet_self_test81.74 30480.53 30285.36 33185.96 37072.45 33890.25 30493.07 26981.24 26679.85 32387.29 34770.93 23092.52 35866.95 34769.23 37291.11 344
Patchmatch-RL test81.67 30579.96 31186.81 31685.42 37571.23 34882.17 38187.50 36678.47 30177.19 34282.50 37670.81 23293.48 34882.66 20072.89 36495.71 176
ADS-MVSNet281.66 30679.71 31587.50 29591.35 29074.19 31883.33 37788.48 35972.90 35882.24 29085.77 36064.98 30093.20 35364.57 36083.74 28395.12 192
K. test v381.59 30780.15 30985.91 32789.89 33869.42 36292.57 25187.71 36485.56 16373.44 36489.71 31155.58 35195.52 31577.17 27769.76 37092.78 304
ADS-MVSNet81.56 30879.78 31286.90 31391.35 29071.82 34283.33 37789.16 35672.90 35882.24 29085.77 36064.98 30093.76 34464.57 36083.74 28395.12 192
FMVSNet581.52 30979.60 31687.27 30091.17 29677.95 26691.49 28292.26 29076.87 31876.16 34887.91 34051.67 36792.34 36067.74 34381.16 31591.52 333
dp81.47 31080.23 30785.17 33589.92 33765.49 37486.74 35690.10 34276.30 32481.10 30387.12 35162.81 31595.92 29968.13 34179.88 33794.09 244
Patchmatch-test81.37 31179.30 31987.58 29390.92 31074.16 31980.99 38387.68 36570.52 37176.63 34688.81 32471.21 22592.76 35760.01 37486.93 26195.83 169
EU-MVSNet81.32 31280.95 30082.42 35288.50 35263.67 38093.32 22191.33 31864.02 38180.57 31192.83 21861.21 32892.27 36176.34 28580.38 33391.32 337
test_040281.30 31379.17 32387.67 29193.19 22878.17 26292.98 23991.71 30675.25 33476.02 35190.31 29759.23 34096.37 28050.22 38583.63 28688.47 370
JIA-IIPM81.04 31478.98 32687.25 30288.64 34973.48 32481.75 38289.61 35373.19 35582.05 29273.71 38666.07 29595.87 30271.18 32084.60 27692.41 314
Anonymous2023120681.03 31579.77 31484.82 33787.85 36270.26 35891.42 28392.08 29673.67 35077.75 33889.25 31762.43 31793.08 35461.50 36982.00 30691.12 343
pmmvs-eth3d80.97 31678.72 32887.74 28984.99 37779.97 22190.11 31191.65 30975.36 33273.51 36386.03 35759.45 33993.96 34275.17 29572.21 36589.29 362
testgi80.94 31780.20 30883.18 34687.96 36066.29 37191.28 28590.70 33483.70 20278.12 33592.84 21751.37 36890.82 37363.34 36382.46 29992.43 313
CMPMVSbinary59.16 2180.52 31879.20 32284.48 33983.98 37867.63 36989.95 31593.84 25664.79 38066.81 37991.14 27857.93 34595.17 32376.25 28688.10 24090.65 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing380.46 31979.59 31783.06 34893.44 22364.64 37793.33 22085.47 37284.34 19079.93 32190.84 28644.35 38292.39 35957.06 38087.56 25192.16 322
Anonymous2024052180.44 32079.21 32184.11 34385.75 37367.89 36692.86 24493.23 26675.61 33175.59 35387.47 34550.03 37094.33 33471.14 32181.21 31490.12 355
LF4IMVS80.37 32179.07 32584.27 34286.64 36669.87 36189.39 32491.05 32576.38 32274.97 35690.00 30547.85 37694.25 33774.55 30380.82 32688.69 368
KD-MVS_self_test80.20 32279.24 32083.07 34785.64 37465.29 37591.01 29393.93 25078.71 29976.32 34786.40 35559.20 34192.93 35672.59 31269.35 37191.00 347
Syy-MVS80.07 32379.78 31280.94 35591.92 26659.93 38689.75 31787.40 36781.72 25378.82 33087.20 34866.29 29191.29 36947.06 38787.84 24791.60 331
UnsupCasMVSNet_eth80.07 32378.27 32985.46 33085.24 37672.63 33588.45 33994.87 21382.99 22371.64 37188.07 33756.34 34991.75 36673.48 30963.36 38392.01 324
test20.0379.95 32579.08 32482.55 35085.79 37267.74 36891.09 29191.08 32381.23 26774.48 36089.96 30761.63 32190.15 37560.08 37276.38 35689.76 356
TDRefinement79.81 32677.34 33187.22 30579.24 38975.48 30793.12 23292.03 29876.45 32175.01 35591.58 26449.19 37396.44 27670.22 32769.18 37389.75 357
TinyColmap79.76 32777.69 33085.97 32491.71 27773.12 32689.55 31990.36 33775.03 33672.03 36990.19 29946.22 37996.19 29063.11 36481.03 32088.59 369
myMVS_eth3d79.67 32878.79 32782.32 35391.92 26664.08 37889.75 31787.40 36781.72 25378.82 33087.20 34845.33 38091.29 36959.09 37687.84 24791.60 331
OpenMVS_ROBcopyleft74.94 1979.51 32977.03 33686.93 31187.00 36576.23 29992.33 26090.74 33368.93 37474.52 35988.23 33549.58 37296.62 25957.64 37884.29 27887.94 373
MIMVSNet179.38 33077.28 33285.69 32986.35 36773.67 32191.61 28192.75 27778.11 31072.64 36788.12 33648.16 37591.97 36560.32 37177.49 35091.43 336
YYNet179.22 33177.20 33385.28 33388.20 35872.66 33385.87 36190.05 34574.33 34462.70 38187.61 34366.09 29492.03 36266.94 34872.97 36391.15 341
MDA-MVSNet_test_wron79.21 33277.19 33485.29 33288.22 35772.77 33085.87 36190.06 34374.34 34362.62 38387.56 34466.14 29391.99 36466.90 35173.01 36291.10 345
MDA-MVSNet-bldmvs78.85 33376.31 33886.46 31989.76 33973.88 32088.79 33390.42 33579.16 28959.18 38588.33 33360.20 33494.04 33862.00 36768.96 37491.48 335
KD-MVS_2432*160078.50 33476.02 34185.93 32586.22 36874.47 31484.80 37092.33 28679.29 28676.98 34385.92 35853.81 36393.97 34067.39 34457.42 38889.36 359
miper_refine_blended78.50 33476.02 34185.93 32586.22 36874.47 31484.80 37092.33 28679.29 28676.98 34385.92 35853.81 36393.97 34067.39 34457.42 38889.36 359
PM-MVS78.11 33676.12 34084.09 34483.54 38070.08 35988.97 33285.27 37479.93 27974.73 35886.43 35434.70 38893.48 34879.43 25572.06 36688.72 367
test_vis1_rt77.96 33776.46 33782.48 35185.89 37171.74 34490.25 30478.89 38971.03 37071.30 37281.35 37842.49 38491.05 37284.55 17382.37 30084.65 376
test_fmvs377.67 33877.16 33579.22 35879.52 38861.14 38492.34 25991.64 31073.98 34778.86 32986.59 35227.38 39287.03 38388.12 12775.97 35889.50 358
PVSNet_073.20 2077.22 33974.83 34584.37 34090.70 32071.10 35083.09 37989.67 35272.81 36073.93 36283.13 37160.79 33193.70 34668.54 33650.84 39288.30 371
DSMNet-mixed76.94 34076.29 33978.89 35983.10 38156.11 39587.78 34579.77 38760.65 38475.64 35288.71 32761.56 32388.34 38260.07 37389.29 22092.21 321
new-patchmatchnet76.41 34175.17 34480.13 35682.65 38359.61 38787.66 34991.08 32378.23 30869.85 37583.22 37054.76 35791.63 36864.14 36264.89 38189.16 364
UnsupCasMVSNet_bld76.23 34273.27 34685.09 33683.79 37972.92 32785.65 36493.47 26371.52 36668.84 37779.08 38149.77 37193.21 35266.81 35260.52 38589.13 366
mvsany_test374.95 34373.26 34780.02 35774.61 39163.16 38285.53 36578.42 39074.16 34574.89 35786.46 35336.02 38789.09 38082.39 20466.91 37787.82 374
dmvs_testset74.57 34475.81 34370.86 36987.72 36340.47 40287.05 35577.90 39482.75 22871.15 37385.47 36267.98 27284.12 39145.26 38876.98 35588.00 372
MVS-HIRNet73.70 34572.20 34878.18 36291.81 27356.42 39482.94 38082.58 38155.24 38668.88 37666.48 39055.32 35595.13 32458.12 37788.42 23683.01 379
new_pmnet72.15 34670.13 35078.20 36182.95 38265.68 37283.91 37582.40 38262.94 38364.47 38079.82 38042.85 38386.26 38757.41 37974.44 36182.65 381
test_f71.95 34770.87 34975.21 36574.21 39359.37 38885.07 36985.82 37065.25 37970.42 37483.13 37123.62 39382.93 39378.32 26471.94 36783.33 378
pmmvs371.81 34868.71 35181.11 35475.86 39070.42 35786.74 35683.66 37858.95 38568.64 37880.89 37936.93 38689.52 37863.10 36563.59 38283.39 377
APD_test169.04 34966.26 35577.36 36480.51 38662.79 38385.46 36683.51 37954.11 38859.14 38684.79 36523.40 39589.61 37755.22 38170.24 36979.68 385
N_pmnet68.89 35068.44 35270.23 37089.07 34628.79 40788.06 34119.50 40769.47 37371.86 37084.93 36361.24 32791.75 36654.70 38277.15 35290.15 354
WB-MVS67.92 35167.49 35369.21 37381.09 38441.17 40188.03 34278.00 39373.50 35262.63 38283.11 37363.94 30686.52 38525.66 39851.45 39179.94 384
SSC-MVS67.06 35266.56 35468.56 37580.54 38540.06 40387.77 34677.37 39672.38 36261.75 38482.66 37563.37 31186.45 38624.48 39948.69 39479.16 386
LCM-MVSNet66.00 35362.16 35877.51 36364.51 40158.29 38983.87 37690.90 32948.17 39054.69 38773.31 38716.83 40186.75 38465.47 35461.67 38487.48 375
test_vis3_rt65.12 35462.60 35672.69 36771.44 39460.71 38587.17 35365.55 40063.80 38253.22 38865.65 39214.54 40289.44 37976.65 28165.38 37967.91 391
FPMVS64.63 35562.55 35770.88 36870.80 39556.71 39084.42 37384.42 37651.78 38949.57 38981.61 37723.49 39481.48 39440.61 39476.25 35774.46 387
EGC-MVSNET61.97 35656.37 36078.77 36089.63 34273.50 32389.12 32982.79 3800.21 4041.24 40584.80 36439.48 38590.04 37644.13 38975.94 35972.79 388
PMMVS259.60 35756.40 35969.21 37368.83 39846.58 39973.02 39277.48 39555.07 38749.21 39072.95 38817.43 40080.04 39549.32 38644.33 39580.99 383
testf159.54 35856.11 36169.85 37169.28 39656.61 39280.37 38576.55 39742.58 39345.68 39275.61 38211.26 40384.18 38943.20 39160.44 38668.75 389
APD_test259.54 35856.11 36169.85 37169.28 39656.61 39280.37 38576.55 39742.58 39345.68 39275.61 38211.26 40384.18 38943.20 39160.44 38668.75 389
ANet_high58.88 36054.22 36472.86 36656.50 40456.67 39180.75 38486.00 36973.09 35737.39 39664.63 39322.17 39679.49 39643.51 39023.96 39882.43 382
Gipumacopyleft57.99 36154.91 36367.24 37688.51 35065.59 37352.21 39590.33 33843.58 39242.84 39551.18 39620.29 39885.07 38834.77 39570.45 36851.05 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36248.46 36663.48 37745.72 40646.20 40073.41 39178.31 39141.03 39530.06 39865.68 3916.05 40583.43 39230.04 39665.86 37860.80 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method50.52 36348.47 36556.66 37952.26 40518.98 40941.51 39781.40 38410.10 39944.59 39475.01 38528.51 39068.16 39753.54 38349.31 39382.83 380
MVEpermissive39.65 2343.39 36438.59 37057.77 37856.52 40348.77 39855.38 39458.64 40429.33 39828.96 39952.65 3954.68 40664.62 40028.11 39733.07 39659.93 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 36542.29 36746.03 38165.58 40037.41 40473.51 39064.62 40133.99 39628.47 40047.87 39719.90 39967.91 39822.23 40024.45 39732.77 396
EMVS42.07 36641.12 36844.92 38263.45 40235.56 40673.65 38963.48 40233.05 39726.88 40145.45 39821.27 39767.14 39919.80 40123.02 39932.06 397
tmp_tt35.64 36739.24 36924.84 38314.87 40723.90 40862.71 39351.51 4066.58 40136.66 39762.08 39444.37 38130.34 40352.40 38422.00 40020.27 398
cdsmvs_eth3d_5k22.14 36829.52 3710.00 3870.00 4100.00 4120.00 39895.76 1520.00 4050.00 40694.29 16475.66 1700.00 4060.00 4050.00 4040.00 402
wuyk23d21.27 36920.48 37223.63 38468.59 39936.41 40549.57 3966.85 4089.37 4007.89 4024.46 4044.03 40731.37 40217.47 40216.07 4013.12 399
testmvs8.92 37011.52 3731.12 3861.06 4080.46 41186.02 3600.65 4090.62 4022.74 4039.52 4020.31 4090.45 4052.38 4030.39 4022.46 401
test1238.76 37111.22 3741.39 3850.85 4090.97 41085.76 3630.35 4100.54 4032.45 4048.14 4030.60 4080.48 4042.16 4040.17 4032.71 400
ab-mvs-re7.82 37210.43 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40693.88 1850.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas6.64 3738.86 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40579.70 1210.00 4060.00 4050.00 4040.00 402
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS64.08 37859.14 375
FOURS198.86 185.54 6598.29 197.49 689.79 4496.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23297.09 1097.07 5192.72 198.04 15992.70 5599.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 5997.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 410
eth-test0.00 410
ZD-MVS98.15 3486.62 3297.07 4583.63 20494.19 4296.91 5787.57 3199.26 4291.99 7498.44 51
RE-MVS-def93.68 5297.92 4384.57 8096.28 4596.76 7587.46 11693.75 4997.43 3182.94 8392.73 5197.80 7497.88 78
IU-MVS98.77 586.00 4996.84 6581.26 26597.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6398.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5197.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6197.44 1586.13 15195.10 3397.40 3388.34 2299.22 4493.25 4498.70 34
save fliter97.85 4685.63 6495.21 11196.82 6889.44 51
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3897.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5497.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 154
test_part298.55 1287.22 1896.40 17
sam_mvs171.70 22196.12 154
sam_mvs70.60 234
ambc83.06 34879.99 38763.51 38177.47 38892.86 27374.34 36184.45 36628.74 38995.06 32773.06 31168.89 37590.61 350
MTGPAbinary96.97 50
test_post188.00 3439.81 40169.31 25695.53 31476.65 281
test_post10.29 40070.57 23895.91 301
patchmatchnet-post83.76 36871.53 22296.48 272
GG-mvs-BLEND87.94 28889.73 34177.91 26787.80 34478.23 39280.58 31083.86 36759.88 33795.33 32271.20 31892.22 18190.60 352
MTMP96.16 5360.64 403
gm-plane-assit89.60 34368.00 36577.28 31688.99 32197.57 18979.44 254
test9_res91.91 7898.71 3298.07 66
TEST997.53 5886.49 3694.07 18696.78 7281.61 25892.77 7496.20 8787.71 2899.12 51
test_897.49 6086.30 4494.02 19196.76 7581.86 24992.70 7896.20 8787.63 2999.02 61
agg_prior290.54 10298.68 3798.27 52
agg_prior97.38 6385.92 5696.72 8192.16 8998.97 75
TestCases89.52 24695.01 14777.79 27490.89 33077.41 31376.12 34993.34 19854.08 36197.51 19568.31 33984.27 27993.26 283
test_prior485.96 5394.11 181
test_prior294.12 18087.67 11492.63 7996.39 8286.62 3891.50 8598.67 39
test_prior93.82 6097.29 6784.49 8496.88 6198.87 8298.11 65
旧先验293.36 21971.25 36894.37 3997.13 23486.74 146
新几何293.11 234
新几何193.10 7997.30 6684.35 9295.56 16871.09 36991.26 11396.24 8582.87 8598.86 8479.19 25898.10 6296.07 158
旧先验196.79 7681.81 16495.67 16096.81 6386.69 3797.66 7996.97 122
无先验93.28 22796.26 11073.95 34899.05 5580.56 23996.59 137
原ACMM292.94 241
原ACMM192.01 13097.34 6481.05 18596.81 7078.89 29390.45 12095.92 10082.65 8798.84 8880.68 23798.26 5796.14 152
test22296.55 8481.70 16692.22 26495.01 20168.36 37590.20 12496.14 9280.26 11497.80 7496.05 161
testdata298.75 9378.30 265
segment_acmp87.16 36
testdata90.49 20296.40 8977.89 26995.37 18672.51 36193.63 5296.69 6682.08 9997.65 18283.08 19097.39 8295.94 163
testdata192.15 26687.94 103
test1294.34 4997.13 7086.15 4796.29 10591.04 11585.08 5799.01 6398.13 6197.86 80
plane_prior794.70 16682.74 141
plane_prior694.52 17682.75 13974.23 187
plane_prior596.22 11598.12 14488.15 12489.99 20394.63 211
plane_prior494.86 140
plane_prior382.75 13990.26 3386.91 180
plane_prior295.85 7590.81 17
plane_prior194.59 171
plane_prior82.73 14295.21 11189.66 4889.88 208
n20.00 411
nn0.00 411
door-mid85.49 371
lessismore_v086.04 32388.46 35368.78 36480.59 38673.01 36690.11 30255.39 35396.43 27775.06 29765.06 38092.90 299
LGP-MVS_train91.12 17594.47 17881.49 17296.14 12086.73 13585.45 22095.16 13069.89 24598.10 14687.70 13289.23 22193.77 264
test1196.57 92
door85.33 373
HQP5-MVS81.56 168
HQP-NCC94.17 19194.39 16588.81 7285.43 223
ACMP_Plane94.17 19194.39 16588.81 7285.43 223
BP-MVS87.11 143
HQP4-MVS85.43 22397.96 16594.51 221
HQP3-MVS96.04 13189.77 212
HQP2-MVS73.83 197
NP-MVS94.37 18482.42 15193.98 178
MDTV_nov1_ep13_2view55.91 39687.62 35073.32 35484.59 24370.33 24174.65 30195.50 181
MDTV_nov1_ep1383.56 27791.69 27969.93 36087.75 34791.54 31378.60 30084.86 23788.90 32369.54 25096.03 29470.25 32588.93 227
ACMMP++_ref87.47 252
ACMMP++88.01 243
Test By Simon80.02 116
ITE_SJBPF88.24 28091.88 26977.05 28692.92 27185.54 16480.13 31793.30 20257.29 34796.20 28872.46 31384.71 27591.49 334
DeepMVS_CXcopyleft56.31 38074.23 39251.81 39756.67 40544.85 39148.54 39175.16 38427.87 39158.74 40140.92 39352.22 39058.39 394