This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 132
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 26
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 78
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7190.60 2254.85 5186.72 7177.20 2588.06 3685.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 74
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 92
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 86
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 84
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 89
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 75
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 80
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 150
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14060.76 1586.56 7667.86 8987.87 4186.06 94
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 147
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 103
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10290.26 3446.61 16186.55 7771.71 6885.66 6184.97 143
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 11886.34 11054.92 5088.90 2572.68 5884.55 6787.76 38
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 134
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 44
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 4988.81 5953.70 6784.68 12375.24 3888.33 3083.65 187
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7487.27 8455.06 4886.30 8671.78 6784.58 6689.25 5
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4590.35 3147.66 14186.52 7871.64 6982.99 8384.47 156
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12889.74 4945.43 17487.16 6072.01 6482.87 8885.14 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10250.94 10588.54 2870.79 7489.71 1787.79 37
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 72
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16589.24 5442.03 20689.38 1964.07 12286.50 5789.69 3
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 10
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 12053.83 6386.36 8467.74 9086.91 5088.19 24
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9256.89 3587.86 4566.36 10388.91 2583.64 188
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7090.14 3645.62 16785.99 9069.64 7882.85 8985.78 103
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6384.51 15155.94 4387.22 5767.11 9784.48 7185.52 115
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 20978.17 13585.06 3562.80 5874.40 6187.86 7357.88 2783.61 14369.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 7982.79 18059.58 2086.80 6967.24 9686.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9487.49 7747.18 15285.88 9369.47 8080.78 10783.66 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
baseline74.61 6174.70 5874.34 10575.70 23449.99 21777.54 15184.63 4262.73 5973.98 6687.79 7657.67 3083.82 13969.49 7982.74 9189.20 7
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3744.74 18185.84 9468.20 8581.76 10184.03 166
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9162.22 1377.75 25871.09 7382.02 9786.34 82
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9279.46 25453.65 7087.87 4467.45 9582.91 8685.89 100
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13686.10 11745.26 17887.21 5868.16 8780.58 11184.65 151
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11489.84 4641.09 22285.59 9967.61 9382.90 8785.77 106
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11385.97 12254.18 5884.00 13667.52 9482.98 8582.45 214
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22281.59 8581.29 12161.45 7871.05 11088.11 6651.77 9387.73 4761.05 15183.09 8185.05 139
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 20878.57 12782.43 9559.40 12476.57 3586.71 9656.42 4081.23 19665.84 11081.79 10088.62 12
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10586.83 9045.94 16583.65 14265.09 11585.22 6381.06 242
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16085.54 13445.46 17286.93 6667.04 9880.35 11584.32 158
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11581.04 22252.41 8287.12 6164.61 12182.49 9385.41 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10082.61 18556.44 3985.97 9163.99 12579.07 13687.25 56
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9389.42 5049.82 11483.29 14853.61 20983.14 8086.32 86
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21287.00 8750.40 11085.47 10562.48 13986.32 5885.94 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 30955.88 11778.21 13475.56 22354.31 22974.86 5387.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21080.02 10282.89 9158.36 14474.44 6086.73 9458.90 2480.83 20665.84 11074.46 18987.44 48
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33155.81 11878.22 13375.40 22754.17 23175.00 4888.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17188.08 6841.93 20881.85 18269.04 8380.01 11981.35 235
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5485.95 12345.54 17085.76 9670.41 7670.61 24583.86 175
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 10886.97 8839.94 22887.00 6567.02 10079.20 13288.89 9
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19385.90 12451.86 9186.06 8757.45 17680.62 10985.91 99
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22277.76 14677.63 19463.21 4773.21 7789.02 5642.14 20583.32 14761.72 14682.50 9288.25 21
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 20886.59 10142.38 20485.52 10159.59 16484.72 6582.85 207
MGCFI-Net72.45 8773.34 7369.81 22077.77 18643.21 29675.84 19481.18 12559.59 12275.45 4286.64 9757.74 2877.94 25363.92 12681.90 9988.30 19
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24076.28 18283.14 8659.40 12472.46 9584.68 14355.66 4481.12 19765.98 10979.66 12387.63 42
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10479.35 25852.75 7684.89 11866.46 10274.23 19385.83 102
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21686.18 11439.25 23886.03 8966.95 10176.79 17083.22 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12285.68 13047.05 15484.34 12965.27 11474.41 19285.67 110
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 13988.09 6744.36 18782.65 16757.68 17481.75 10385.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 34955.58 12678.06 13874.67 24154.19 23074.54 5988.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 14882.33 19449.64 11687.83 4651.87 22384.16 7578.30 279
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22082.10 7881.65 10660.40 9665.94 19885.84 12651.74 9486.37 8355.93 18579.55 12688.07 29
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18285.56 13144.50 18588.11 3851.77 22580.23 11883.10 202
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 10978.95 26352.19 8684.66 12565.47 11373.57 20485.32 128
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25278.74 12275.27 22959.59 12272.94 8689.40 5141.51 21683.91 13758.75 16982.99 8388.26 20
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 18879.39 25652.07 8886.69 7260.05 15879.14 13585.66 111
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26179.75 10971.08 27464.18 3272.80 8988.64 6242.58 20183.72 14057.41 17784.49 7086.86 64
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30577.22 3185.56 13153.10 7477.43 26274.86 4077.14 16586.55 76
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18184.61 14750.95 10486.06 8755.79 18879.20 13286.00 95
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27280.22 10078.69 16964.14 3566.46 18987.36 8149.30 12085.60 9850.26 23683.71 7988.59 13
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 21868.08 15778.70 26447.73 13985.51 10251.68 22784.17 7481.88 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26469.49 13183.22 17543.99 19083.24 14966.06 10579.37 12784.23 161
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 22876.60 17580.45 14061.25 8268.17 15384.78 14244.64 18384.90 11764.79 11777.88 15387.03 59
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20482.16 20049.17 12382.64 16860.34 15678.62 14482.50 213
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14386.45 10845.43 17480.60 21062.58 13777.73 15487.58 45
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18379.20 13944.13 28576.02 19082.60 9466.48 1168.20 15184.60 14856.82 3682.82 16354.62 19970.43 24787.36 54
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5481.95 20545.54 17082.90 15670.41 7666.83 29783.77 180
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 16883.87 16352.36 8382.72 16556.90 17975.79 18085.92 98
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18171.45 30254.40 14277.18 16270.46 28048.67 29675.17 4486.86 8953.77 6576.86 27476.33 3077.51 15883.17 201
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27569.66 12985.40 13752.51 7984.89 11851.82 22480.24 11785.45 121
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31055.39 13075.86 19272.21 26749.03 29273.28 7686.17 11551.83 9277.29 26675.80 3278.05 15083.98 169
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30363.01 25185.83 12740.92 22487.10 6257.91 17379.79 12082.18 219
FIs70.82 11671.43 9268.98 23378.33 16638.14 34076.96 16783.59 6861.02 8567.33 17386.73 9455.07 4781.64 18554.61 20179.22 13187.14 58
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17684.39 15338.51 24583.17 15160.65 15476.10 17780.30 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
diffmvspermissive70.69 11870.43 11371.46 18269.45 33748.95 23472.93 24778.46 17857.27 16271.69 10383.97 16251.48 9777.92 25570.70 7577.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27575.94 19182.92 8863.68 4068.16 15483.59 16953.89 6283.49 14653.97 20571.12 24086.89 63
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21769.96 12579.68 24947.00 15882.09 17861.60 14879.37 12780.81 247
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21569.88 12678.66 26647.05 15482.19 17661.61 14779.58 12480.83 246
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19371.30 30854.09 14576.89 17069.87 28447.90 30974.37 6286.49 10653.07 7576.69 27975.41 3577.11 16682.76 208
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21677.58 14880.51 13959.90 11269.52 13082.14 20147.53 14584.88 12065.07 11670.17 25586.09 93
v114470.42 12469.31 13273.76 12173.22 27050.64 20377.83 14481.43 11258.58 13969.40 13481.16 21947.53 14585.29 11064.01 12470.64 24385.34 127
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19478.64 15542.97 29976.53 17781.16 12766.95 668.53 14785.42 13651.61 9683.07 15252.32 21769.70 26787.46 47
v870.33 12669.28 13373.49 13773.15 27250.22 21178.62 12580.78 13560.79 8866.45 19082.11 20349.35 11984.98 11463.58 13168.71 28285.28 130
Fast-Effi-MVS+70.28 12769.12 13673.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14479.55 25253.97 6084.05 13253.34 21177.53 15785.65 112
X-MVStestdata70.21 12867.28 17779.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 986.49 42047.95 13688.01 4071.55 7086.74 5386.37 80
v1070.21 12869.02 13773.81 11873.51 26950.92 19878.74 12281.39 11360.05 11066.39 19181.83 20847.58 14385.41 10862.80 13668.86 28185.09 138
QAPM70.05 13068.81 14173.78 11976.54 22453.43 15883.23 5783.48 7052.89 24465.90 20086.29 11141.55 21586.49 8051.01 23078.40 14781.42 229
DU-MVS70.01 13169.53 12871.44 18378.05 17744.13 28575.01 21081.51 11064.37 2868.20 15184.52 14949.12 12682.82 16354.62 19970.43 24787.37 52
AdaColmapbinary69.99 13268.66 14573.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23084.14 15641.57 21387.06 6446.45 26878.88 13777.02 299
v119269.97 13368.68 14473.85 11673.19 27150.94 19677.68 14781.36 11557.51 16068.95 14280.85 22945.28 17785.33 10962.97 13570.37 24985.27 131
Anonymous2024052969.91 13469.02 13772.56 15780.19 11947.65 25077.56 15080.99 13155.45 20269.88 12686.76 9239.24 23982.18 17754.04 20477.10 16787.85 33
patch_mono-269.85 13571.09 10266.16 26979.11 14354.80 13871.97 26374.31 24653.50 23970.90 11184.17 15557.63 3163.31 35266.17 10482.02 9780.38 253
FA-MVS(test-final)69.82 13668.48 14873.84 11778.44 16050.04 21575.58 19978.99 16258.16 14667.59 16982.14 20142.66 19985.63 9756.60 18076.19 17685.84 101
FC-MVSNet-test69.80 13770.58 11267.46 24977.61 19834.73 37376.05 18883.19 8460.84 8765.88 20286.46 10754.52 5580.76 20952.52 21678.12 14986.91 62
v14419269.71 13868.51 14773.33 14473.10 27350.13 21377.54 15180.64 13656.65 17068.57 14680.55 23246.87 15984.96 11662.98 13469.66 26884.89 145
test_yl69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
DCV-MVSNet69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
VNet69.68 14170.19 11968.16 24379.73 12741.63 31270.53 28377.38 19960.37 9970.69 11286.63 9951.08 10277.09 26953.61 20981.69 10585.75 108
jason69.65 14268.39 15473.43 14178.27 16856.88 10177.12 16373.71 25546.53 32469.34 13583.22 17543.37 19479.18 23364.77 11879.20 13284.23 161
jason: jason.
Effi-MVS+-dtu69.64 14367.53 16775.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21577.09 29341.56 21484.02 13560.60 15571.09 24181.53 228
fmvsm_s_conf0.5_n69.58 14468.84 14071.79 17372.31 29252.90 16977.90 14062.43 34449.97 28072.85 8885.90 12452.21 8576.49 28275.75 3370.26 25485.97 96
lupinMVS69.57 14568.28 15573.44 14078.76 15157.15 9776.57 17673.29 25846.19 32769.49 13182.18 19743.99 19079.23 23264.66 11979.37 12783.93 170
fmvsm_s_conf0.5_n_a69.54 14668.74 14371.93 16872.47 28753.82 14978.25 13162.26 34649.78 28273.12 8286.21 11352.66 7776.79 27675.02 3968.88 27985.18 133
NR-MVSNet69.54 14668.85 13971.59 18078.05 17743.81 29074.20 22780.86 13465.18 1462.76 25484.52 14952.35 8483.59 14450.96 23270.78 24287.37 52
MVS_111021_LR69.50 14868.78 14271.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16484.68 14341.96 20776.34 28665.62 11277.54 15679.30 271
v192192069.47 14968.17 15673.36 14373.06 27450.10 21477.39 15480.56 13756.58 17768.59 14480.37 23444.72 18284.98 11462.47 14069.82 26385.00 140
test_djsdf69.45 15067.74 16074.58 9974.57 25754.92 13682.79 6478.48 17651.26 26465.41 20983.49 17238.37 24783.24 14966.06 10569.25 27485.56 114
fmvsm_s_conf0.1_n69.41 15168.60 14671.83 17171.07 31152.88 17177.85 14362.44 34349.58 28572.97 8586.22 11251.68 9576.48 28375.53 3470.10 25786.14 91
fmvsm_s_conf0.1_n_a69.32 15268.44 15271.96 16770.91 31353.78 15078.12 13662.30 34549.35 28873.20 7886.55 10551.99 8976.79 27674.83 4168.68 28485.32 128
Anonymous2023121169.28 15368.47 15071.73 17580.28 11447.18 25679.98 10382.37 9654.61 22267.24 17484.01 16039.43 23582.41 17455.45 19372.83 21885.62 113
EI-MVSNet69.27 15468.44 15271.73 17574.47 25849.39 22775.20 20578.45 17959.60 11969.16 14076.51 30551.29 9882.50 17159.86 16371.45 23783.30 193
v124069.24 15567.91 15973.25 14773.02 27649.82 21877.21 16180.54 13856.43 17968.34 15080.51 23343.33 19584.99 11262.03 14469.77 26684.95 144
IterMVS-LS69.22 15668.48 14871.43 18574.44 26049.40 22676.23 18377.55 19559.60 11965.85 20381.59 21451.28 9981.58 18859.87 16269.90 26283.30 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet69.02 15769.47 13067.69 24777.42 20341.00 31774.04 22979.68 14960.06 10969.26 13884.81 14151.06 10377.58 26054.44 20274.43 19184.48 155
v7n69.01 15867.36 17473.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25681.62 21143.61 19284.49 12657.01 17868.70 28384.79 148
OpenMVScopyleft61.03 968.85 15967.56 16472.70 15674.26 26453.99 14781.21 8981.34 11952.70 24562.75 25585.55 13338.86 24384.14 13148.41 25283.01 8279.97 259
XVG-OURS-SEG-HR68.81 16067.47 17072.82 15474.40 26156.87 10270.59 28279.04 16054.77 22066.99 17986.01 12139.57 23478.21 25062.54 13873.33 21083.37 192
BH-RMVSNet68.81 16067.42 17172.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 14984.20 15442.59 20083.83 13846.53 26775.91 17882.56 209
UGNet68.81 16067.39 17273.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24484.40 15232.71 31380.91 20551.71 22680.56 11383.81 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS68.76 16367.37 17372.90 15174.32 26357.22 9270.09 29078.81 16555.24 20667.79 16685.81 12936.54 27078.28 24962.04 14375.74 18183.19 198
V4268.65 16467.35 17572.56 15768.93 34350.18 21272.90 24879.47 15456.92 16769.45 13380.26 23846.29 16382.99 15364.07 12267.82 28984.53 153
PVSNet_Blended68.59 16567.72 16171.19 19277.03 21350.57 20472.51 25581.52 10851.91 25364.22 23677.77 28549.13 12482.87 15955.82 18679.58 12480.14 257
xiu_mvs_v1_base_debu68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base_debi68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
PVSNet_BlendedMVS68.56 16967.72 16171.07 19777.03 21350.57 20474.50 22281.52 10853.66 23864.22 23679.72 24849.13 12482.87 15955.82 18673.92 19779.77 266
WR-MVS68.47 17068.47 15068.44 24080.20 11839.84 32473.75 23976.07 21664.68 2268.11 15683.63 16850.39 11179.14 23849.78 23769.66 26886.34 82
mvsmamba68.47 17066.56 18874.21 11079.60 12952.95 16774.94 21375.48 22552.09 25260.10 28583.27 17436.54 27084.70 12259.32 16877.69 15584.99 142
AUN-MVS68.45 17266.41 19574.57 10079.53 13257.08 10073.93 23475.23 23154.44 22766.69 18581.85 20737.10 26582.89 15762.07 14266.84 29683.75 181
c3_l68.33 17367.56 16470.62 20470.87 31446.21 26474.47 22378.80 16656.22 18566.19 19478.53 27151.88 9081.40 19062.08 14169.04 27784.25 160
BH-untuned68.27 17467.29 17671.21 19179.74 12653.22 16276.06 18777.46 19857.19 16366.10 19581.61 21245.37 17683.50 14545.42 28376.68 17276.91 303
jajsoiax68.25 17566.45 19173.66 12975.62 23655.49 12880.82 9378.51 17552.33 24964.33 23184.11 15728.28 34781.81 18463.48 13270.62 24483.67 184
v14868.24 17667.19 18371.40 18670.43 32147.77 24975.76 19577.03 20458.91 13167.36 17280.10 24148.60 13181.89 18160.01 15966.52 30084.53 153
CANet_DTU68.18 17767.71 16369.59 22374.83 24946.24 26378.66 12476.85 20659.60 11963.45 24282.09 20435.25 27977.41 26359.88 16178.76 14185.14 134
mvs_tets68.18 17766.36 19773.63 13275.61 23755.35 13180.77 9478.56 17352.48 24864.27 23384.10 15827.45 35381.84 18363.45 13370.56 24683.69 183
SDMVSNet68.03 17968.10 15867.84 24577.13 20948.72 23865.32 32879.10 15958.02 15065.08 21982.55 18747.83 13873.40 29963.92 12673.92 19781.41 230
miper_ehance_all_eth68.03 17967.24 18170.40 20870.54 31846.21 26473.98 23078.68 17055.07 21366.05 19677.80 28252.16 8781.31 19361.53 15069.32 27183.67 184
mvs_anonymous68.03 17967.51 16869.59 22372.08 29444.57 28271.99 26275.23 23151.67 25467.06 17882.57 18654.68 5377.94 25356.56 18175.71 18286.26 90
ET-MVSNet_ETH3D67.96 18265.72 20974.68 9376.67 22055.62 12575.11 20774.74 23952.91 24360.03 28780.12 24033.68 29882.64 16861.86 14576.34 17485.78 103
thisisatest053067.92 18365.78 20874.33 10676.29 22751.03 19576.89 17074.25 24853.67 23765.59 20681.76 20935.15 28085.50 10355.94 18472.47 22386.47 77
PAPM67.92 18366.69 18771.63 17978.09 17549.02 23177.09 16481.24 12451.04 26760.91 28083.98 16147.71 14084.99 11240.81 31779.32 13080.90 245
tttt051767.83 18565.66 21074.33 10676.69 21850.82 20077.86 14273.99 25254.54 22564.64 22882.53 19035.06 28185.50 10355.71 18969.91 26186.67 71
tt080567.77 18667.24 18169.34 22874.87 24840.08 32177.36 15581.37 11455.31 20366.33 19284.65 14537.35 25982.55 17055.65 19172.28 22885.39 126
ECVR-MVScopyleft67.72 18767.51 16868.35 24179.46 13336.29 36374.79 21766.93 30958.72 13467.19 17588.05 6936.10 27281.38 19152.07 22084.25 7287.39 50
eth_miper_zixun_eth67.63 18866.28 20171.67 17771.60 30048.33 24273.68 24077.88 18855.80 19365.91 19978.62 26947.35 15182.88 15859.45 16566.25 30183.81 176
UniMVSNet_ETH3D67.60 18967.07 18569.18 23277.39 20442.29 30374.18 22875.59 22260.37 9966.77 18386.06 11937.64 25578.93 24552.16 21973.49 20686.32 86
VPNet67.52 19068.11 15765.74 27879.18 14036.80 35572.17 26072.83 26262.04 7267.79 16685.83 12748.88 12876.60 28151.30 22872.97 21783.81 176
cl2267.47 19166.45 19170.54 20669.85 33246.49 26073.85 23777.35 20055.07 21365.51 20777.92 27847.64 14281.10 19861.58 14969.32 27184.01 168
Fast-Effi-MVS+-dtu67.37 19265.33 21573.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26776.85 29739.31 23680.49 21454.72 19870.28 25382.17 221
MVS67.37 19266.33 19870.51 20775.46 24050.94 19673.95 23281.85 10341.57 36462.54 26078.57 27047.98 13585.47 10552.97 21482.05 9675.14 318
test111167.21 19467.14 18467.42 25079.24 13834.76 37273.89 23665.65 31858.71 13666.96 18087.95 7236.09 27380.53 21152.03 22183.79 7786.97 61
GBi-Net67.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
test167.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
cl____67.18 19766.26 20269.94 21570.20 32445.74 26873.30 24276.83 20755.10 20865.27 21279.57 25147.39 14980.53 21159.41 16769.22 27583.53 190
DIV-MVS_self_test67.18 19766.26 20269.94 21570.20 32445.74 26873.29 24376.83 20755.10 20865.27 21279.58 25047.38 15080.53 21159.43 16669.22 27583.54 189
MVSTER67.16 19965.58 21271.88 17070.37 32349.70 22070.25 28878.45 17951.52 25869.16 14080.37 23438.45 24682.50 17160.19 15771.46 23683.44 191
miper_enhance_ethall67.11 20066.09 20470.17 21269.21 34045.98 26672.85 24978.41 18251.38 26165.65 20575.98 31451.17 10181.25 19460.82 15369.32 27183.29 195
Baseline_NR-MVSNet67.05 20167.56 16465.50 28175.65 23537.70 34675.42 20074.65 24259.90 11268.14 15583.15 17849.12 12677.20 26752.23 21869.78 26481.60 227
WR-MVS_H67.02 20266.92 18667.33 25377.95 18137.75 34477.57 14982.11 10062.03 7362.65 25782.48 19150.57 10979.46 22842.91 30464.01 31884.79 148
anonymousdsp67.00 20364.82 22073.57 13570.09 32756.13 11076.35 18077.35 20048.43 30164.99 22480.84 23033.01 30680.34 21564.66 11967.64 29184.23 161
FMVSNet266.93 20466.31 20068.79 23677.63 19342.98 29876.11 18577.47 19656.62 17365.22 21882.17 19941.85 20980.18 22247.05 26572.72 22283.20 197
BH-w/o66.85 20565.83 20769.90 21879.29 13552.46 18074.66 22076.65 21054.51 22664.85 22578.12 27245.59 16982.95 15543.26 30075.54 18474.27 332
Anonymous20240521166.84 20665.99 20569.40 22780.19 11942.21 30571.11 27671.31 27358.80 13367.90 15886.39 10929.83 33579.65 22549.60 24378.78 14086.33 84
CDS-MVSNet66.80 20765.37 21371.10 19678.98 14553.13 16573.27 24471.07 27552.15 25164.72 22680.23 23943.56 19377.10 26845.48 28178.88 13783.05 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS66.78 20865.27 21671.33 19079.16 14253.67 15273.84 23869.59 28852.32 25065.28 21181.72 21044.49 18677.40 26442.32 30878.66 14382.92 204
FMVSNet166.70 20965.87 20669.19 22977.49 20143.33 29377.31 15677.83 19056.45 17864.60 22982.70 18138.08 25380.33 21646.08 27172.31 22783.92 171
ab-mvs66.65 21066.42 19467.37 25176.17 22941.73 30970.41 28676.14 21553.99 23365.98 19783.51 17149.48 11876.24 28748.60 25073.46 20884.14 164
PEN-MVS66.60 21166.45 19167.04 25477.11 21136.56 35777.03 16680.42 14162.95 5062.51 26284.03 15946.69 16079.07 23944.22 28763.08 32885.51 116
TAPA-MVS59.36 1066.60 21165.20 21770.81 20076.63 22148.75 23676.52 17880.04 14650.64 27265.24 21684.93 13939.15 24078.54 24636.77 34076.88 16985.14 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS66.59 21365.07 21871.17 19479.18 14049.63 22473.48 24175.20 23352.95 24267.90 15880.33 23739.81 23283.68 14143.20 30173.56 20580.20 255
CP-MVSNet66.49 21466.41 19566.72 25677.67 19136.33 36076.83 17379.52 15362.45 6362.54 26083.47 17346.32 16278.37 24745.47 28263.43 32585.45 121
PS-CasMVS66.42 21566.32 19966.70 25877.60 19936.30 36276.94 16879.61 15162.36 6562.43 26483.66 16745.69 16678.37 24745.35 28463.26 32685.42 124
FMVSNet366.32 21665.61 21168.46 23976.48 22542.34 30274.98 21277.15 20355.83 19165.04 22181.16 21939.91 22980.14 22347.18 26272.76 21982.90 206
ACMH+57.40 1166.12 21764.06 22472.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31682.55 18727.68 35184.17 13045.54 27869.78 26479.90 261
cascas65.98 21863.42 23573.64 13177.26 20752.58 17772.26 25977.21 20248.56 29761.21 27774.60 32932.57 31885.82 9550.38 23576.75 17182.52 212
FE-MVS65.91 21963.33 23773.63 13277.36 20551.95 19072.62 25275.81 21853.70 23665.31 21078.96 26228.81 34486.39 8243.93 29273.48 20782.55 210
thisisatest051565.83 22063.50 23472.82 15473.75 26749.50 22571.32 27073.12 26149.39 28763.82 23876.50 30734.95 28384.84 12153.20 21375.49 18584.13 165
DP-MVS65.68 22163.66 23271.75 17484.93 5556.87 10280.74 9573.16 25953.06 24159.09 30182.35 19336.79 26985.94 9232.82 36369.96 26072.45 346
HyFIR lowres test65.67 22263.01 24273.67 12879.97 12455.65 12269.07 29975.52 22442.68 35863.53 24177.95 27640.43 22681.64 18546.01 27271.91 23183.73 182
DTE-MVSNet65.58 22365.34 21466.31 26576.06 23134.79 37076.43 17979.38 15662.55 6161.66 27283.83 16445.60 16879.15 23741.64 31660.88 34385.00 140
GA-MVS65.53 22463.70 23171.02 19870.87 31448.10 24470.48 28474.40 24456.69 16964.70 22776.77 29833.66 29981.10 19855.42 19470.32 25283.87 174
CNLPA65.43 22564.02 22569.68 22178.73 15358.07 8177.82 14570.71 27851.49 25961.57 27483.58 17038.23 25170.82 31243.90 29370.10 25780.16 256
MVP-Stereo65.41 22663.80 22970.22 20977.62 19755.53 12776.30 18178.53 17450.59 27356.47 32678.65 26739.84 23182.68 16644.10 29172.12 23072.44 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS56.42 1265.40 22762.73 24673.40 14274.89 24652.78 17373.09 24675.13 23455.69 19558.48 30973.73 33532.86 30886.32 8550.63 23370.11 25681.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250665.33 22864.61 22167.50 24879.46 13334.19 37874.43 22551.92 38458.72 13466.75 18488.05 6925.99 36580.92 20451.94 22284.25 7287.39 50
pm-mvs165.24 22964.97 21966.04 27372.38 28939.40 33072.62 25275.63 22155.53 19962.35 26683.18 17747.45 14776.47 28449.06 24766.54 29982.24 218
ACMH55.70 1565.20 23063.57 23370.07 21378.07 17652.01 18979.48 11679.69 14855.75 19456.59 32380.98 22427.12 35680.94 20242.90 30571.58 23577.25 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft56.13 1465.09 23163.21 24070.72 20381.04 10354.87 13778.57 12777.47 19648.51 29955.71 32981.89 20633.71 29779.71 22441.66 31470.37 24977.58 290
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268865.08 23262.84 24471.82 17281.49 9356.26 10866.32 31674.20 25040.53 37063.16 24778.65 26741.30 21777.80 25745.80 27474.09 19481.40 232
TransMVSNet (Re)64.72 23364.33 22365.87 27775.22 24338.56 33674.66 22075.08 23858.90 13261.79 27082.63 18451.18 10078.07 25243.63 29755.87 36680.99 244
EG-PatchMatch MVS64.71 23462.87 24370.22 20977.68 19053.48 15777.99 13978.82 16453.37 24056.03 32877.41 29024.75 37384.04 13346.37 26973.42 20973.14 338
LS3D64.71 23462.50 24871.34 18979.72 12855.71 12079.82 10774.72 24048.50 30056.62 32284.62 14633.59 30082.34 17529.65 38475.23 18675.97 309
131464.61 23663.21 24068.80 23571.87 29847.46 25373.95 23278.39 18442.88 35759.97 28876.60 30438.11 25279.39 23054.84 19772.32 22679.55 267
HY-MVS56.14 1364.55 23763.89 22666.55 26174.73 25241.02 31469.96 29174.43 24349.29 28961.66 27280.92 22647.43 14876.68 28044.91 28671.69 23381.94 223
testing9164.46 23863.80 22966.47 26278.43 16140.06 32267.63 30769.59 28859.06 12963.18 24678.05 27434.05 29176.99 27148.30 25375.87 17982.37 216
sd_testset64.46 23864.45 22264.51 29177.13 20942.25 30462.67 34472.11 26858.02 15065.08 21982.55 18741.22 22169.88 32047.32 26073.92 19781.41 230
XVG-ACMP-BASELINE64.36 24062.23 25170.74 20272.35 29052.45 18170.80 28078.45 17953.84 23559.87 29081.10 22116.24 39279.32 23155.64 19271.76 23280.47 250
MonoMVSNet64.15 24163.31 23866.69 25970.51 31944.12 28774.47 22374.21 24957.81 15763.03 24976.62 30138.33 24877.31 26554.22 20360.59 34878.64 277
testing9964.05 24263.29 23966.34 26478.17 17339.76 32667.33 31268.00 30258.60 13863.03 24978.10 27332.57 31876.94 27348.22 25475.58 18382.34 217
CostFormer64.04 24362.51 24768.61 23871.88 29745.77 26771.30 27170.60 27947.55 31364.31 23276.61 30341.63 21279.62 22749.74 23969.00 27880.42 251
1112_ss64.00 24463.36 23665.93 27579.28 13642.58 30171.35 26972.36 26646.41 32560.55 28277.89 28046.27 16473.28 30046.18 27069.97 25981.92 224
baseline163.81 24563.87 22863.62 29676.29 22736.36 35871.78 26667.29 30656.05 18864.23 23582.95 17947.11 15374.41 29647.30 26161.85 33780.10 258
pmmvs663.69 24662.82 24566.27 26770.63 31639.27 33173.13 24575.47 22652.69 24659.75 29482.30 19539.71 23377.03 27047.40 25964.35 31782.53 211
Vis-MVSNet (Re-imp)63.69 24663.88 22763.14 30174.75 25131.04 39271.16 27463.64 33456.32 18159.80 29284.99 13844.51 18475.46 29139.12 32680.62 10982.92 204
baseline263.42 24861.26 26469.89 21972.55 28447.62 25171.54 26768.38 29950.11 27754.82 34075.55 31943.06 19780.96 20148.13 25567.16 29581.11 240
thres40063.31 24962.18 25266.72 25676.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21281.36 233
thres600view763.30 25062.27 25066.41 26377.18 20838.87 33372.35 25769.11 29556.98 16662.37 26580.96 22537.01 26779.00 24331.43 37673.05 21681.36 233
thres100view90063.28 25162.41 24965.89 27677.31 20638.66 33572.65 25069.11 29557.07 16462.45 26381.03 22337.01 26779.17 23431.84 36973.25 21279.83 263
test_040263.25 25261.01 26869.96 21480.00 12354.37 14376.86 17272.02 26954.58 22458.71 30480.79 23135.00 28284.36 12826.41 39664.71 31271.15 365
tfpn200view963.18 25362.18 25266.21 26876.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21279.83 263
LTVRE_ROB55.42 1663.15 25461.23 26568.92 23476.57 22347.80 24759.92 36076.39 21154.35 22858.67 30582.46 19229.44 33981.49 18942.12 30971.14 23977.46 291
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
F-COLMAP63.05 25560.87 27169.58 22576.99 21553.63 15478.12 13676.16 21347.97 30852.41 35981.61 21227.87 34978.11 25140.07 32066.66 29877.00 300
testing1162.81 25661.90 25565.54 28078.38 16240.76 31967.59 30966.78 31155.48 20060.13 28477.11 29231.67 32476.79 27645.53 27974.45 19079.06 272
IterMVS62.79 25761.27 26367.35 25269.37 33852.04 18871.17 27368.24 30152.63 24759.82 29176.91 29637.32 26072.36 30352.80 21563.19 32777.66 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
reproduce_monomvs62.56 25861.20 26666.62 26070.62 31744.30 28470.13 28973.13 26054.78 21961.13 27876.37 30825.63 36875.63 29058.75 16960.29 34979.93 260
IterMVS-SCA-FT62.49 25961.52 25965.40 28371.99 29650.80 20171.15 27569.63 28745.71 33360.61 28177.93 27737.45 25765.99 34455.67 19063.50 32479.42 269
tfpnnormal62.47 26061.63 25864.99 28874.81 25039.01 33271.22 27273.72 25455.22 20760.21 28380.09 24241.26 22076.98 27230.02 38268.09 28778.97 275
MS-PatchMatch62.42 26161.46 26065.31 28575.21 24452.10 18572.05 26174.05 25146.41 32557.42 31874.36 33034.35 28977.57 26145.62 27773.67 20166.26 384
Test_1112_low_res62.32 26261.77 25664.00 29579.08 14439.53 32968.17 30370.17 28143.25 35359.03 30279.90 24344.08 18871.24 31143.79 29568.42 28581.25 236
D2MVS62.30 26360.29 27468.34 24266.46 36048.42 24165.70 32073.42 25647.71 31158.16 31175.02 32530.51 32877.71 25953.96 20671.68 23478.90 276
testing22262.29 26461.31 26265.25 28677.87 18238.53 33768.34 30266.31 31556.37 18063.15 24877.58 28828.47 34576.18 28937.04 33876.65 17381.05 243
thres20062.20 26561.16 26765.34 28475.38 24239.99 32369.60 29469.29 29355.64 19861.87 26976.99 29437.07 26678.96 24431.28 37773.28 21177.06 298
tpm262.07 26660.10 27567.99 24472.79 27943.86 28971.05 27866.85 31043.14 35562.77 25375.39 32338.32 24980.80 20741.69 31368.88 27979.32 270
miper_lstm_enhance62.03 26760.88 27065.49 28266.71 35746.25 26256.29 37875.70 22050.68 27061.27 27675.48 32140.21 22768.03 32956.31 18365.25 30882.18 219
EPNet_dtu61.90 26861.97 25461.68 30972.89 27839.78 32575.85 19365.62 31955.09 21054.56 34479.36 25737.59 25667.02 33839.80 32376.95 16878.25 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re61.88 26961.35 26163.46 29774.58 25631.48 39161.42 35158.14 36258.71 13653.02 35879.55 25243.07 19676.80 27545.69 27577.96 15182.11 222
MSDG61.81 27059.23 28069.55 22672.64 28152.63 17670.45 28575.81 21851.38 26153.70 35176.11 31029.52 33781.08 20037.70 33365.79 30574.93 323
SixPastTwentyTwo61.65 27158.80 28670.20 21175.80 23347.22 25575.59 19769.68 28654.61 22254.11 34879.26 25927.07 35782.96 15443.27 29949.79 38480.41 252
CL-MVSNet_self_test61.53 27260.94 26963.30 29968.95 34236.93 35467.60 30872.80 26355.67 19659.95 28976.63 30045.01 18072.22 30639.74 32462.09 33680.74 248
RPMNet61.53 27258.42 28970.86 19969.96 32952.07 18665.31 32981.36 11543.20 35459.36 29770.15 36235.37 27885.47 10536.42 34764.65 31375.06 319
pmmvs461.48 27459.39 27967.76 24671.57 30153.86 14871.42 26865.34 32044.20 34459.46 29677.92 27835.90 27474.71 29443.87 29464.87 31174.71 328
OurMVSNet-221017-061.37 27558.63 28869.61 22272.05 29548.06 24573.93 23472.51 26447.23 31954.74 34180.92 22621.49 38381.24 19548.57 25156.22 36579.53 268
COLMAP_ROBcopyleft52.97 1761.27 27658.81 28468.64 23774.63 25552.51 17978.42 13073.30 25749.92 28150.96 36481.51 21523.06 37679.40 22931.63 37365.85 30374.01 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XXY-MVS60.68 27761.67 25757.70 33970.43 32138.45 33864.19 33766.47 31248.05 30763.22 24480.86 22849.28 12160.47 36145.25 28567.28 29474.19 333
WBMVS60.54 27860.61 27260.34 31978.00 17935.95 36564.55 33564.89 32349.63 28363.39 24378.70 26433.85 29667.65 33242.10 31070.35 25177.43 292
SCA60.49 27958.38 29066.80 25574.14 26648.06 24563.35 34163.23 33749.13 29159.33 30072.10 34537.45 25774.27 29744.17 28862.57 33178.05 283
K. test v360.47 28057.11 29870.56 20573.74 26848.22 24375.10 20962.55 34158.27 14553.62 35476.31 30927.81 35081.59 18747.42 25839.18 39981.88 225
mmtdpeth60.40 28159.12 28264.27 29469.59 33448.99 23270.67 28170.06 28354.96 21662.78 25273.26 33927.00 35867.66 33158.44 17245.29 39176.16 308
UWE-MVS60.18 28259.78 27661.39 31477.67 19133.92 38169.04 30063.82 33248.56 29764.27 23377.64 28727.20 35570.40 31733.56 36076.24 17579.83 263
OpenMVS_ROBcopyleft52.78 1860.03 28358.14 29365.69 27970.47 32044.82 27775.33 20170.86 27745.04 33656.06 32776.00 31126.89 36079.65 22535.36 35267.29 29372.60 343
CR-MVSNet59.91 28457.90 29665.96 27469.96 32952.07 18665.31 32963.15 33842.48 35959.36 29774.84 32635.83 27570.75 31345.50 28064.65 31375.06 319
PatchmatchNetpermissive59.84 28558.24 29164.65 29073.05 27546.70 25969.42 29662.18 34747.55 31358.88 30371.96 34734.49 28769.16 32242.99 30363.60 32278.07 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WTY-MVS59.75 28660.39 27357.85 33772.32 29137.83 34361.05 35664.18 33045.95 33261.91 26879.11 26147.01 15760.88 36042.50 30769.49 27074.83 324
WB-MVSnew59.66 28759.69 27759.56 32175.19 24535.78 36769.34 29764.28 32946.88 32261.76 27175.79 31540.61 22565.20 34732.16 36571.21 23877.70 288
CVMVSNet59.63 28859.14 28161.08 31774.47 25838.84 33475.20 20568.74 29731.15 39058.24 31076.51 30532.39 32068.58 32549.77 23865.84 30475.81 311
UBG59.62 28959.53 27859.89 32078.12 17435.92 36664.11 33960.81 35449.45 28661.34 27575.55 31933.05 30467.39 33638.68 32874.62 18876.35 307
ETVMVS59.51 29058.81 28461.58 31177.46 20234.87 36964.94 33359.35 35754.06 23261.08 27976.67 29929.54 33671.87 30832.16 36574.07 19578.01 287
tpm cat159.25 29156.95 30166.15 27072.19 29346.96 25768.09 30465.76 31740.03 37457.81 31470.56 35738.32 24974.51 29538.26 33161.50 34077.00 300
test_vis1_n_192058.86 29259.06 28358.25 33263.76 37243.14 29767.49 31066.36 31440.22 37265.89 20171.95 34831.04 32559.75 36659.94 16064.90 31071.85 355
pmmvs-eth3d58.81 29356.31 30866.30 26667.61 35152.42 18272.30 25864.76 32543.55 35054.94 33974.19 33228.95 34172.60 30243.31 29857.21 36073.88 336
tpmvs58.47 29456.95 30163.03 30370.20 32441.21 31367.90 30667.23 30749.62 28454.73 34270.84 35534.14 29076.24 28736.64 34461.29 34171.64 357
PVSNet50.76 1958.40 29557.39 29761.42 31275.53 23944.04 28861.43 35063.45 33547.04 32156.91 32073.61 33627.00 35864.76 34839.12 32672.40 22475.47 316
tpmrst58.24 29658.70 28756.84 34166.97 35434.32 37669.57 29561.14 35247.17 32058.58 30871.60 35041.28 21960.41 36249.20 24562.84 32975.78 312
Patchmatch-RL test58.16 29755.49 31466.15 27067.92 35048.89 23560.66 35851.07 38847.86 31059.36 29762.71 39234.02 29372.27 30556.41 18259.40 35277.30 294
test-LLR58.15 29858.13 29458.22 33368.57 34444.80 27865.46 32557.92 36350.08 27855.44 33269.82 36432.62 31557.44 37749.66 24173.62 20272.41 348
ppachtmachnet_test58.06 29955.38 31566.10 27269.51 33548.99 23268.01 30566.13 31644.50 34154.05 34970.74 35632.09 32272.34 30436.68 34356.71 36476.99 302
gg-mvs-nofinetune57.86 30056.43 30762.18 30772.62 28235.35 36866.57 31356.33 37250.65 27157.64 31557.10 39830.65 32776.36 28537.38 33578.88 13774.82 325
CMPMVSbinary42.80 2157.81 30155.97 31063.32 29860.98 38847.38 25464.66 33469.50 29032.06 38846.83 38177.80 28229.50 33871.36 31048.68 24973.75 20071.21 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet57.35 30257.07 29958.22 33374.21 26537.18 34962.46 34560.88 35348.88 29455.29 33575.99 31331.68 32362.04 35731.87 36872.35 22575.43 317
tpm57.34 30358.16 29254.86 35171.80 29934.77 37167.47 31156.04 37548.20 30460.10 28576.92 29537.17 26353.41 39440.76 31865.01 30976.40 306
Patchmtry57.16 30456.47 30659.23 32469.17 34134.58 37462.98 34263.15 33844.53 34056.83 32174.84 32635.83 27568.71 32440.03 32160.91 34274.39 331
AllTest57.08 30554.65 31964.39 29271.44 30349.03 22969.92 29267.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
test_cas_vis1_n_192056.91 30656.71 30457.51 34059.13 39445.40 27463.58 34061.29 35136.24 38267.14 17771.85 34929.89 33456.69 38157.65 17563.58 32370.46 369
mamv456.85 30758.00 29553.43 36172.46 28854.47 14057.56 37354.74 37638.81 37857.42 31879.45 25547.57 14438.70 41360.88 15253.07 37467.11 383
dmvs_re56.77 30856.83 30356.61 34269.23 33941.02 31458.37 36564.18 33050.59 27357.45 31771.42 35135.54 27758.94 37137.23 33667.45 29269.87 374
testing356.54 30955.92 31158.41 33177.52 20027.93 40169.72 29356.36 37154.75 22158.63 30777.80 28220.88 38471.75 30925.31 39862.25 33475.53 315
our_test_356.49 31054.42 32262.68 30569.51 33545.48 27366.08 31761.49 35044.11 34750.73 36869.60 36733.05 30468.15 32638.38 33056.86 36174.40 330
pmmvs556.47 31155.68 31358.86 32861.41 38436.71 35666.37 31562.75 34040.38 37153.70 35176.62 30134.56 28567.05 33740.02 32265.27 30772.83 341
test-mter56.42 31255.82 31258.22 33368.57 34444.80 27865.46 32557.92 36339.94 37555.44 33269.82 36421.92 37957.44 37749.66 24173.62 20272.41 348
USDC56.35 31354.24 32662.69 30464.74 36840.31 32065.05 33173.83 25343.93 34847.58 37777.71 28615.36 39575.05 29338.19 33261.81 33872.70 342
PatchMatch-RL56.25 31454.55 32161.32 31577.06 21256.07 11265.57 32254.10 38144.13 34653.49 35771.27 35425.20 37066.78 33936.52 34663.66 32161.12 388
sss56.17 31556.57 30554.96 35066.93 35536.32 36157.94 36861.69 34941.67 36258.64 30675.32 32438.72 24456.25 38442.04 31166.19 30272.31 351
Syy-MVS56.00 31656.23 30955.32 34874.69 25326.44 40765.52 32357.49 36650.97 26856.52 32472.18 34339.89 23068.09 32724.20 39964.59 31571.44 361
FMVSNet555.86 31754.93 31758.66 33071.05 31236.35 35964.18 33862.48 34246.76 32350.66 36974.73 32825.80 36664.04 35033.11 36165.57 30675.59 314
RPSCF55.80 31854.22 32760.53 31865.13 36742.91 30064.30 33657.62 36536.84 38158.05 31382.28 19628.01 34856.24 38537.14 33758.61 35582.44 215
mvs5depth55.64 31953.81 33061.11 31659.39 39340.98 31865.89 31868.28 30050.21 27658.11 31275.42 32217.03 38867.63 33343.79 29546.21 38874.73 327
EU-MVSNet55.61 32054.41 32359.19 32665.41 36633.42 38372.44 25671.91 27028.81 39251.27 36273.87 33424.76 37269.08 32343.04 30258.20 35675.06 319
Anonymous2024052155.30 32154.41 32357.96 33660.92 39041.73 30971.09 27771.06 27641.18 36548.65 37573.31 33716.93 38959.25 36842.54 30664.01 31872.90 340
TESTMET0.1,155.28 32254.90 31856.42 34366.56 35843.67 29165.46 32556.27 37339.18 37753.83 35067.44 37624.21 37455.46 38848.04 25673.11 21570.13 372
KD-MVS_self_test55.22 32353.89 32959.21 32557.80 39727.47 40357.75 37174.32 24547.38 31550.90 36570.00 36328.45 34670.30 31840.44 31957.92 35779.87 262
MIMVSNet155.17 32454.31 32557.77 33870.03 32832.01 38965.68 32164.81 32449.19 29046.75 38276.00 31125.53 36964.04 35028.65 38762.13 33577.26 296
Anonymous2023120655.10 32555.30 31654.48 35369.81 33333.94 38062.91 34362.13 34841.08 36655.18 33675.65 31732.75 31256.59 38330.32 38167.86 28872.91 339
myMVS_eth3d54.86 32654.61 32055.61 34774.69 25327.31 40465.52 32357.49 36650.97 26856.52 32472.18 34321.87 38268.09 32727.70 39064.59 31571.44 361
TinyColmap54.14 32751.72 33861.40 31366.84 35641.97 30666.52 31468.51 29844.81 33742.69 39375.77 31611.66 40272.94 30131.96 36756.77 36369.27 378
EPMVS53.96 32853.69 33154.79 35266.12 36331.96 39062.34 34749.05 39244.42 34355.54 33071.33 35330.22 33156.70 38041.65 31562.54 33275.71 313
PMMVS53.96 32853.26 33456.04 34462.60 37950.92 19861.17 35456.09 37432.81 38753.51 35666.84 38134.04 29259.93 36544.14 29068.18 28657.27 396
test20.0353.87 33054.02 32853.41 36261.47 38328.11 40061.30 35259.21 35851.34 26352.09 36077.43 28933.29 30358.55 37329.76 38360.27 35073.58 337
MDA-MVSNet-bldmvs53.87 33050.81 34263.05 30266.25 36148.58 23956.93 37663.82 33248.09 30641.22 39470.48 36030.34 33068.00 33034.24 35545.92 39072.57 344
KD-MVS_2432*160053.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
miper_refine_blended53.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
TDRefinement53.44 33450.72 34361.60 31064.31 37146.96 25770.89 27965.27 32241.78 36044.61 38877.98 27511.52 40466.36 34228.57 38851.59 37871.49 360
test0.0.03 153.32 33553.59 33252.50 36862.81 37829.45 39559.51 36154.11 38050.08 27854.40 34674.31 33132.62 31555.92 38630.50 38063.95 32072.15 353
PatchT53.17 33653.44 33352.33 36968.29 34825.34 41158.21 36654.41 37944.46 34254.56 34469.05 37033.32 30260.94 35936.93 33961.76 33970.73 368
UnsupCasMVSNet_eth53.16 33752.47 33555.23 34959.45 39233.39 38459.43 36269.13 29445.98 32950.35 37172.32 34229.30 34058.26 37542.02 31244.30 39274.05 334
PM-MVS52.33 33850.19 34658.75 32962.10 38145.14 27665.75 31940.38 40943.60 34953.52 35572.65 3409.16 41065.87 34550.41 23454.18 37165.24 386
testgi51.90 33952.37 33650.51 37460.39 39123.55 41458.42 36458.15 36149.03 29251.83 36179.21 26022.39 37755.59 38729.24 38662.64 33072.40 350
dp51.89 34051.60 33952.77 36668.44 34732.45 38862.36 34654.57 37844.16 34549.31 37467.91 37228.87 34356.61 38233.89 35654.89 36869.24 379
JIA-IIPM51.56 34147.68 35563.21 30064.61 36950.73 20247.71 39858.77 36042.90 35648.46 37651.72 40224.97 37170.24 31936.06 34953.89 37268.64 380
test_fmvs1_n51.37 34250.35 34554.42 35552.85 40137.71 34561.16 35551.93 38328.15 39463.81 23969.73 36613.72 39653.95 39251.16 22960.65 34671.59 358
ADS-MVSNet251.33 34348.76 35059.07 32766.02 36444.60 28150.90 39259.76 35636.90 37950.74 36666.18 38426.38 36163.11 35327.17 39254.76 36969.50 376
test_fmvs151.32 34450.48 34453.81 35753.57 39937.51 34760.63 35951.16 38628.02 39663.62 24069.23 36916.41 39153.93 39351.01 23060.70 34569.99 373
YYNet150.73 34548.96 34756.03 34561.10 38641.78 30851.94 38956.44 37040.94 36844.84 38667.80 37430.08 33255.08 39036.77 34050.71 38071.22 363
MDA-MVSNet_test_wron50.71 34648.95 34856.00 34661.17 38541.84 30751.90 39056.45 36940.96 36744.79 38767.84 37330.04 33355.07 39136.71 34250.69 38171.11 366
dmvs_testset50.16 34751.90 33744.94 38266.49 35911.78 42261.01 35751.50 38551.17 26650.30 37267.44 37639.28 23760.29 36322.38 40257.49 35962.76 387
UnsupCasMVSNet_bld50.07 34848.87 34953.66 35860.97 38933.67 38257.62 37264.56 32739.47 37647.38 37864.02 39027.47 35259.32 36734.69 35443.68 39367.98 382
test_vis1_n49.89 34948.69 35153.50 36053.97 39837.38 34861.53 34947.33 39928.54 39359.62 29567.10 38013.52 39752.27 39749.07 24657.52 35870.84 367
Patchmatch-test49.08 35048.28 35251.50 37264.40 37030.85 39345.68 40248.46 39535.60 38346.10 38572.10 34534.47 28846.37 40527.08 39460.65 34677.27 295
test_fmvs248.69 35147.49 35652.29 37048.63 40833.06 38657.76 37048.05 39725.71 40059.76 29369.60 36711.57 40352.23 39849.45 24456.86 36171.58 359
ADS-MVSNet48.48 35247.77 35350.63 37366.02 36429.92 39450.90 39250.87 39036.90 37950.74 36666.18 38426.38 36152.47 39627.17 39254.76 36969.50 376
CHOSEN 280x42047.83 35346.36 35752.24 37167.37 35349.78 21938.91 41043.11 40735.00 38443.27 39263.30 39128.95 34149.19 40136.53 34560.80 34457.76 395
new-patchmatchnet47.56 35447.73 35447.06 37758.81 3959.37 42548.78 39659.21 35843.28 35244.22 38968.66 37125.67 36757.20 37931.57 37549.35 38574.62 329
PVSNet_043.31 2047.46 35545.64 35852.92 36567.60 35244.65 28054.06 38454.64 37741.59 36346.15 38458.75 39530.99 32658.66 37232.18 36424.81 41055.46 398
ttmdpeth45.56 35642.95 36153.39 36352.33 40429.15 39657.77 36948.20 39631.81 38949.86 37377.21 2918.69 41159.16 36927.31 39133.40 40671.84 356
MVS-HIRNet45.52 35744.48 35948.65 37668.49 34634.05 37959.41 36344.50 40427.03 39737.96 40450.47 40626.16 36464.10 34926.74 39559.52 35147.82 405
pmmvs344.92 35841.95 36553.86 35652.58 40343.55 29262.11 34846.90 40126.05 39940.63 39560.19 39411.08 40757.91 37631.83 37246.15 38960.11 389
test_fmvs344.30 35942.55 36249.55 37542.83 41327.15 40653.03 38644.93 40322.03 40853.69 35364.94 3874.21 41849.63 40047.47 25749.82 38371.88 354
WB-MVS43.26 36043.41 36042.83 38663.32 37510.32 42458.17 36745.20 40245.42 33440.44 39767.26 37934.01 29458.98 37011.96 41524.88 40959.20 390
LF4IMVS42.95 36142.26 36345.04 38048.30 40932.50 38754.80 38148.49 39428.03 39540.51 39670.16 3619.24 40943.89 40831.63 37349.18 38658.72 392
MVStest142.65 36239.29 36952.71 36747.26 41134.58 37454.41 38350.84 39123.35 40239.31 40274.08 33312.57 39955.09 38923.32 40028.47 40868.47 381
EGC-MVSNET42.47 36338.48 37154.46 35474.33 26248.73 23770.33 28751.10 3870.03 4230.18 42467.78 37513.28 39866.49 34118.91 40650.36 38248.15 403
FPMVS42.18 36441.11 36645.39 37958.03 39641.01 31649.50 39453.81 38230.07 39133.71 40664.03 38811.69 40152.08 39914.01 41055.11 36743.09 407
SSC-MVS41.96 36541.99 36441.90 38762.46 3809.28 42657.41 37444.32 40543.38 35138.30 40366.45 38232.67 31458.42 37410.98 41621.91 41257.99 394
ANet_high41.38 36637.47 37353.11 36439.73 41924.45 41256.94 37569.69 28547.65 31226.04 41152.32 40112.44 40062.38 35621.80 40310.61 42072.49 345
test_vis1_rt41.35 36739.45 36847.03 37846.65 41237.86 34247.76 39738.65 41023.10 40444.21 39051.22 40411.20 40644.08 40739.27 32553.02 37559.14 391
LCM-MVSNet40.30 36835.88 37453.57 35942.24 41429.15 39645.21 40460.53 35522.23 40728.02 40950.98 4053.72 42061.78 35831.22 37838.76 40069.78 375
mvsany_test139.38 36938.16 37243.02 38549.05 40634.28 37744.16 40625.94 42022.74 40646.57 38362.21 39323.85 37541.16 41233.01 36235.91 40253.63 399
N_pmnet39.35 37040.28 36736.54 39363.76 3721.62 43049.37 3950.76 42934.62 38543.61 39166.38 38326.25 36342.57 40926.02 39751.77 37765.44 385
DSMNet-mixed39.30 37138.72 37041.03 38851.22 40519.66 41745.53 40331.35 41615.83 41539.80 39967.42 37822.19 37845.13 40622.43 40152.69 37658.31 393
APD_test137.39 37234.94 37544.72 38348.88 40733.19 38552.95 38744.00 40619.49 40927.28 41058.59 3963.18 42252.84 39518.92 40541.17 39748.14 404
PMVScopyleft28.69 2236.22 37333.29 37845.02 38136.82 42135.98 36454.68 38248.74 39326.31 39821.02 41451.61 4032.88 42360.10 3649.99 41947.58 38738.99 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft34.77 37431.91 37943.33 38462.05 38237.87 34120.39 41567.03 30823.23 40318.41 41625.84 4164.24 41762.73 35414.71 40951.32 37929.38 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dongtai34.52 37534.94 37533.26 39661.06 38716.00 42152.79 38823.78 42240.71 36939.33 40148.65 41016.91 39048.34 40212.18 41419.05 41435.44 413
new_pmnet34.13 37634.29 37733.64 39552.63 40218.23 41944.43 40533.90 41522.81 40530.89 40853.18 40010.48 40835.72 41720.77 40439.51 39846.98 406
mvsany_test332.62 37730.57 38238.77 39136.16 42224.20 41338.10 41120.63 42419.14 41040.36 39857.43 3975.06 41536.63 41629.59 38528.66 40755.49 397
test_vis3_rt32.09 37830.20 38337.76 39235.36 42327.48 40240.60 40928.29 41916.69 41332.52 40740.53 4121.96 42437.40 41533.64 35942.21 39648.39 402
test_f31.86 37931.05 38034.28 39432.33 42521.86 41532.34 41230.46 41716.02 41439.78 40055.45 3994.80 41632.36 41930.61 37937.66 40148.64 401
testf131.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
APD_test231.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
kuosan29.62 38230.82 38126.02 40152.99 40016.22 42051.09 39122.71 42333.91 38633.99 40540.85 41115.89 39333.11 4187.59 42218.37 41528.72 415
PMMVS227.40 38325.91 38631.87 39839.46 4206.57 42731.17 41328.52 41823.96 40120.45 41548.94 4094.20 41937.94 41416.51 40719.97 41351.09 400
E-PMN23.77 38422.73 38826.90 39942.02 41520.67 41642.66 40735.70 41317.43 41110.28 42125.05 4176.42 41342.39 41010.28 41814.71 41717.63 416
EMVS22.97 38521.84 38926.36 40040.20 41819.53 41841.95 40834.64 41417.09 4129.73 42222.83 4187.29 41242.22 4119.18 42013.66 41817.32 417
MVEpermissive17.77 2321.41 38617.77 39132.34 39734.34 42425.44 41016.11 41624.11 42111.19 41813.22 41831.92 4141.58 42530.95 42010.47 41717.03 41640.62 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 38718.10 39024.41 40213.68 4273.11 42912.06 41842.37 4082.00 42111.97 41936.38 4135.77 41429.35 42115.06 40823.65 41140.76 410
cdsmvs_eth3d_5k17.50 38823.34 3870.00 4080.00 4310.00 4320.00 41978.63 1710.00 4260.00 42782.18 19749.25 1220.00 4250.00 4260.00 4230.00 423
wuyk23d13.32 38912.52 39215.71 40347.54 41026.27 40831.06 4141.98 4284.93 4205.18 4231.94 4230.45 42818.54 4226.81 42312.83 4192.33 420
tmp_tt9.43 39011.14 3934.30 4052.38 4284.40 42813.62 41716.08 4260.39 42215.89 41713.06 41915.80 3945.54 42412.63 41310.46 4212.95 419
ab-mvs-re6.49 3918.65 3940.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 42777.89 2800.00 4300.00 4250.00 4260.00 4230.00 423
test1234.73 3926.30 3950.02 4060.01 4290.01 43156.36 3770.00 4300.01 4240.04 4250.21 4250.01 4290.00 4250.03 4250.00 4230.04 421
testmvs4.52 3936.03 3960.01 4070.01 4290.00 43253.86 3850.00 4300.01 4240.04 4250.27 4240.00 4300.00 4250.04 4240.00 4230.03 422
pcd_1.5k_mvsjas3.92 3945.23 3970.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 42647.05 1540.00 4250.00 4260.00 4230.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
WAC-MVS27.31 40427.77 389
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 16
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 431
eth-test0.00 431
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 166
IU-MVS87.77 459.15 6385.53 2653.93 23484.64 379.07 1190.87 588.37 18
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 22
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 283
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28478.05 283
sam_mvs33.43 301
ambc65.13 28763.72 37437.07 35247.66 39978.78 16754.37 34771.42 35111.24 40580.94 20245.64 27653.85 37377.38 293
MTGPAbinary80.97 132
test_post168.67 3013.64 42132.39 32069.49 32144.17 288
test_post3.55 42233.90 29566.52 340
patchmatchnet-post64.03 38834.50 28674.27 297
GG-mvs-BLEND62.34 30671.36 30737.04 35369.20 29857.33 36854.73 34265.48 38630.37 32977.82 25634.82 35374.93 18772.17 352
MTMP86.03 1917.08 425
gm-plane-assit71.40 30641.72 31148.85 29573.31 33782.48 17348.90 248
test9_res75.28 3788.31 3283.81 176
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 4988.81 5953.70 6784.68 123
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5488.80 6153.70 6784.45 127
agg_prior273.09 5587.93 4084.33 157
agg_prior85.04 5059.96 5081.04 13074.68 5784.04 133
TestCases64.39 29271.44 30349.03 22967.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
test_prior462.51 1482.08 79
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 78
旧先验276.08 18645.32 33576.55 3665.56 34658.75 169
新几何276.12 184
新几何170.76 20185.66 4161.13 3066.43 31344.68 33970.29 11686.64 9741.29 21875.23 29249.72 24081.75 10375.93 310
旧先验183.04 7353.15 16367.52 30387.85 7444.08 18880.76 10878.03 286
无先验79.66 11274.30 24748.40 30280.78 20853.62 20879.03 274
原ACMM279.02 119
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26070.27 11786.61 10048.61 13086.51 7953.85 20787.96 3978.16 281
test22283.14 7158.68 7672.57 25463.45 33541.78 36067.56 17086.12 11637.13 26478.73 14274.98 322
testdata272.18 30746.95 266
segment_acmp54.23 57
testdata64.66 28981.52 9152.93 16865.29 32146.09 32873.88 6887.46 7938.08 25366.26 34353.31 21278.48 14574.78 326
testdata172.65 25060.50 94
test1277.76 4584.52 5858.41 7883.36 7672.93 8754.61 5488.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior584.01 5287.21 5868.16 8780.58 11184.65 151
plane_prior486.10 117
plane_prior356.09 11163.92 3669.27 136
plane_prior284.22 4364.52 25
plane_prior181.27 99
plane_prior56.31 10583.58 5663.19 4880.48 114
n20.00 430
nn0.00 430
door-mid47.19 400
lessismore_v069.91 21771.42 30547.80 24750.90 38950.39 37075.56 31827.43 35481.33 19245.91 27334.10 40580.59 249
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
test1183.47 71
door47.60 398
HQP5-MVS54.94 134
HQP-NCC80.66 10882.31 7462.10 6867.85 160
ACMP_Plane80.66 10882.31 7462.10 6867.85 160
BP-MVS67.04 98
HQP4-MVS67.85 16086.93 6684.32 158
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 134
MDTV_nov1_ep13_2view25.89 40961.22 35340.10 37351.10 36332.97 30738.49 32978.61 278
MDTV_nov1_ep1357.00 30072.73 28038.26 33965.02 33264.73 32644.74 33855.46 33172.48 34132.61 31770.47 31437.47 33467.75 290
ACMMP++_ref74.07 195
ACMMP++72.16 229
Test By Simon48.33 133
ITE_SJBPF62.09 30866.16 36244.55 28364.32 32847.36 31655.31 33480.34 23619.27 38562.68 35536.29 34862.39 33379.04 273
DeepMVS_CXcopyleft12.03 40417.97 42610.91 42310.60 4277.46 41911.07 42028.36 4153.28 42111.29 4238.01 4219.74 42213.89 418