| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 63 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 16 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 72 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 22 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 25 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 27 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 67 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 121 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 65 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 24 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 82 | 60.01 49 | 86.19 17 | 83.93 54 | 73.19 1 | 77.08 34 | 91.21 17 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 6 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 48 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 67 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 65 | 65.37 13 | 78.78 22 | 90.64 21 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 132 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 39 | 85.03 36 | 66.96 5 | 77.58 29 | 90.06 39 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 59 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 75 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 18 | 54.26 56 | 90.06 14 | 78.42 19 | 89.02 23 | 87.69 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 46 | 83.03 60 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 41 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 26 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 46 | 82.88 77 | 57.83 84 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 20 | 57.96 26 | 87.09 63 | 77.08 26 | 90.18 15 | 87.87 32 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 46 | 90.47 28 | 53.96 61 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 57 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 52 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 16 | 52.51 79 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 68 |
|
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 45 | 66.73 8 | 74.67 58 | 89.38 52 | 55.30 46 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 78 |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 65 | 61.62 23 | 84.17 45 | 86.85 6 | 63.23 46 | 73.84 69 | 90.25 35 | 57.68 29 | 89.96 15 | 74.62 43 | 89.03 22 | 87.89 30 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 107 | 57.91 83 | 84.68 35 | 81.64 107 | 68.35 2 | 75.77 39 | 90.38 29 | 53.98 59 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 11 |
|
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 48 | 83.82 63 | 59.34 126 | 79.37 19 | 89.76 48 | 59.84 16 | 87.62 51 | 76.69 27 | 86.74 53 | 87.68 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 56 | 82.93 62 | 85.39 27 | 62.15 67 | 76.41 37 | 91.51 11 | 52.47 81 | 86.78 70 | 80.66 4 | 89.64 19 | 87.80 36 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 69 | 63.89 37 | 73.60 71 | 90.60 22 | 54.85 51 | 86.72 71 | 77.20 25 | 88.06 36 | 85.74 109 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 64 | 90.03 41 | 52.56 78 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 74 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 46 | 60.61 92 | 79.05 21 | 90.30 33 | 55.54 45 | 88.32 32 | 73.48 53 | 87.03 46 | 84.83 146 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 47 | 62.82 55 | 73.96 67 | 90.50 26 | 53.20 72 | 88.35 31 | 74.02 48 | 87.05 45 | 86.13 92 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 48 | 62.82 55 | 73.55 72 | 90.56 24 | 49.80 115 | 88.24 33 | 74.02 48 | 87.03 46 | 86.32 86 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 37 | 83.87 60 | 60.37 99 | 79.89 18 | 89.38 52 | 54.97 49 | 85.58 100 | 76.12 31 | 84.94 64 | 86.33 84 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 50 | 62.81 57 | 73.30 74 | 90.58 23 | 49.90 113 | 88.21 34 | 73.78 50 | 87.03 46 | 86.29 89 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 47 | 86.67 20 | 58.36 79 | 83.22 58 | 86.93 5 | 56.91 168 | 74.91 51 | 88.19 65 | 59.15 23 | 87.68 50 | 73.67 51 | 87.45 43 | 86.57 75 |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 63 | 85.08 33 | 62.57 60 | 73.09 83 | 89.97 44 | 50.90 106 | 87.48 52 | 75.30 36 | 86.85 51 | 87.33 55 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 34 | 84.85 40 | 61.98 74 | 73.06 84 | 88.88 58 | 53.72 66 | 89.06 23 | 68.27 84 | 88.04 37 | 87.42 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| XVS | | | 77.17 31 | 76.56 36 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 98 | 90.01 43 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 80 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 72 | 62.44 64 | 72.68 91 | 90.50 26 | 48.18 134 | 87.34 53 | 73.59 52 | 85.71 60 | 84.76 150 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 49 | 83.96 64 | 59.60 54 | 82.95 61 | 86.50 13 | 60.78 89 | 75.27 43 | 84.83 140 | 60.76 15 | 86.56 76 | 67.86 89 | 87.87 41 | 86.06 94 |
|
| reproduce-ours | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 119 |
|
| our_new_method | | | 76.90 34 | 76.58 34 | 77.87 43 | 83.99 62 | 60.46 43 | 84.75 32 | 83.34 77 | 60.22 106 | 77.85 27 | 91.42 13 | 50.67 107 | 87.69 48 | 72.46 59 | 84.53 68 | 85.46 119 |
|
| MTAPA | | | 76.90 34 | 76.42 38 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 214 | 80.97 132 | 65.13 15 | 75.77 39 | 90.88 19 | 48.63 129 | 86.66 73 | 77.23 24 | 88.17 33 | 84.81 147 |
|
| PGM-MVS | | | 76.77 37 | 76.06 42 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 70 | 83.74 64 | 61.71 76 | 72.45 97 | 90.34 32 | 48.48 132 | 88.13 37 | 72.32 61 | 86.85 51 | 85.78 103 |
|
| balanced_conf03 | | | 76.58 38 | 76.55 37 | 76.68 59 | 81.73 88 | 52.90 169 | 80.94 91 | 85.70 23 | 61.12 84 | 74.90 52 | 87.17 86 | 56.46 38 | 88.14 36 | 72.87 56 | 88.03 38 | 89.00 8 |
|
| mPP-MVS | | | 76.54 39 | 75.93 44 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 97 | 62.90 52 | 71.77 102 | 90.26 34 | 46.61 161 | 86.55 77 | 71.71 68 | 85.66 61 | 84.97 143 |
|
| CANet | | | 76.46 40 | 75.93 44 | 78.06 39 | 81.29 97 | 57.53 88 | 82.35 72 | 83.31 80 | 67.78 3 | 70.09 118 | 86.34 110 | 54.92 50 | 88.90 25 | 72.68 58 | 84.55 67 | 87.76 38 |
|
| reproduce_model | | | 76.43 41 | 76.08 41 | 77.49 48 | 83.47 69 | 60.09 47 | 84.60 36 | 82.90 89 | 59.65 117 | 77.31 30 | 91.43 12 | 49.62 117 | 87.24 54 | 71.99 65 | 83.75 78 | 85.14 134 |
|
| CDPH-MVS | | | 76.31 42 | 75.67 48 | 78.22 37 | 85.35 48 | 59.14 65 | 81.31 88 | 84.02 51 | 56.32 181 | 74.05 65 | 88.98 57 | 53.34 71 | 87.92 43 | 69.23 82 | 88.42 28 | 87.59 44 |
|
| train_agg | | | 76.27 43 | 76.15 40 | 76.64 62 | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.86 189 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 123 | 75.24 38 | 88.33 30 | 83.65 187 |
|
| CS-MVS | | | 76.25 44 | 75.98 43 | 77.06 53 | 80.15 121 | 55.63 123 | 84.51 38 | 83.90 57 | 63.24 45 | 73.30 74 | 87.27 84 | 55.06 48 | 86.30 86 | 71.78 67 | 84.58 66 | 89.25 5 |
|
| casdiffmvs_mvg |  | | 76.14 45 | 76.30 39 | 75.66 77 | 76.46 226 | 51.83 191 | 79.67 111 | 85.08 33 | 65.02 19 | 75.84 38 | 88.58 63 | 59.42 22 | 85.08 111 | 72.75 57 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| SR-MVS | | | 76.13 46 | 75.70 47 | 77.40 51 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 98 | 59.99 111 | 75.10 45 | 90.35 31 | 47.66 141 | 86.52 78 | 71.64 69 | 82.99 83 | 84.47 156 |
|
| ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 44 | 63.04 49 | 69.80 128 | 89.74 49 | 45.43 174 | 87.16 60 | 72.01 64 | 82.87 88 | 85.14 134 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PHI-MVS | | | 75.87 48 | 75.36 50 | 77.41 49 | 80.62 112 | 55.91 116 | 84.28 42 | 85.78 20 | 56.08 187 | 73.41 73 | 86.58 102 | 50.94 105 | 88.54 28 | 70.79 74 | 89.71 17 | 87.79 37 |
|
| EC-MVSNet | | | 75.84 49 | 75.87 46 | 75.74 75 | 78.86 148 | 52.65 174 | 83.73 53 | 86.08 17 | 63.47 42 | 72.77 90 | 87.25 85 | 53.13 73 | 87.93 42 | 71.97 66 | 85.57 62 | 86.66 72 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 59 | 79.66 9 | 82.40 79 | 59.92 51 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 165 | 89.24 54 | 42.03 206 | 89.38 19 | 64.07 122 | 86.50 57 | 89.69 3 |
|
| MVSMamba_PlusPlus | | | 75.75 51 | 75.44 49 | 76.67 60 | 80.84 105 | 53.06 166 | 78.62 125 | 85.13 32 | 59.65 117 | 71.53 106 | 87.47 78 | 56.92 34 | 88.17 35 | 72.18 63 | 86.63 56 | 88.80 10 |
|
| SPE-MVS-test | | | 75.62 52 | 75.31 52 | 76.56 64 | 80.63 111 | 55.13 133 | 83.88 51 | 85.22 29 | 62.05 71 | 71.49 107 | 86.03 120 | 53.83 63 | 86.36 84 | 67.74 90 | 86.91 50 | 88.19 24 |
|
| DPM-MVS | | | 75.47 53 | 75.00 54 | 76.88 54 | 81.38 96 | 59.16 62 | 79.94 104 | 85.71 22 | 56.59 176 | 72.46 95 | 86.76 92 | 56.89 35 | 87.86 45 | 66.36 103 | 88.91 25 | 83.64 188 |
|
| APD-MVS_3200maxsize | | | 74.96 54 | 74.39 61 | 76.67 60 | 82.20 81 | 58.24 80 | 83.67 54 | 83.29 81 | 58.41 142 | 73.71 70 | 90.14 36 | 45.62 167 | 85.99 90 | 69.64 78 | 82.85 89 | 85.78 103 |
|
| TSAR-MVS + GP. | | | 74.90 55 | 74.15 63 | 77.17 52 | 82.00 84 | 58.77 75 | 81.80 80 | 78.57 172 | 58.58 139 | 74.32 63 | 84.51 151 | 55.94 43 | 87.22 57 | 67.11 97 | 84.48 71 | 85.52 115 |
|
| casdiffmvs |  | | 74.80 56 | 74.89 57 | 74.53 101 | 75.59 238 | 50.37 209 | 78.17 135 | 85.06 35 | 62.80 58 | 74.40 61 | 87.86 73 | 57.88 27 | 83.61 143 | 69.46 81 | 82.79 90 | 89.59 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DELS-MVS | | | 74.76 57 | 74.46 60 | 75.65 78 | 77.84 184 | 52.25 183 | 75.59 197 | 84.17 49 | 63.76 38 | 73.15 79 | 82.79 180 | 59.58 20 | 86.80 69 | 67.24 96 | 86.04 59 | 87.89 30 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| OPM-MVS | | | 74.73 58 | 74.25 62 | 76.19 68 | 80.81 106 | 59.01 70 | 82.60 69 | 83.64 66 | 63.74 39 | 72.52 94 | 87.49 77 | 47.18 152 | 85.88 93 | 69.47 80 | 80.78 107 | 83.66 186 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| sasdasda | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 206 | 80.23 98 | 83.87 60 | 60.30 103 | 77.15 32 | 86.56 103 | 59.65 17 | 82.00 179 | 66.01 107 | 82.12 94 | 88.58 14 |
|
| canonicalmvs | | | 74.67 59 | 74.98 55 | 73.71 126 | 78.94 146 | 50.56 206 | 80.23 98 | 83.87 60 | 60.30 103 | 77.15 32 | 86.56 103 | 59.65 17 | 82.00 179 | 66.01 107 | 82.12 94 | 88.58 14 |
|
| baseline | | | 74.61 61 | 74.70 58 | 74.34 105 | 75.70 234 | 49.99 217 | 77.54 151 | 84.63 42 | 62.73 59 | 73.98 66 | 87.79 76 | 57.67 30 | 83.82 139 | 69.49 79 | 82.74 91 | 89.20 7 |
|
| SR-MVS-dyc-post | | | 74.57 62 | 73.90 65 | 76.58 63 | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 148 | 73.14 80 | 90.07 37 | 44.74 181 | 85.84 94 | 68.20 85 | 81.76 101 | 84.03 166 |
|
| dcpmvs_2 | | | 74.55 63 | 75.23 53 | 72.48 159 | 82.34 80 | 53.34 160 | 77.87 141 | 81.46 111 | 57.80 158 | 75.49 41 | 86.81 91 | 62.22 13 | 77.75 258 | 71.09 73 | 82.02 97 | 86.34 82 |
|
| ETV-MVS | | | 74.46 64 | 73.84 67 | 76.33 67 | 79.27 137 | 55.24 132 | 79.22 117 | 85.00 38 | 64.97 21 | 72.65 92 | 79.46 254 | 53.65 70 | 87.87 44 | 67.45 95 | 82.91 86 | 85.89 100 |
|
| HQP_MVS | | | 74.31 65 | 73.73 68 | 76.06 69 | 81.41 94 | 56.31 105 | 84.22 43 | 84.01 52 | 64.52 25 | 69.27 136 | 86.10 117 | 45.26 178 | 87.21 58 | 68.16 87 | 80.58 111 | 84.65 151 |
|
| HPM-MVS_fast | | | 74.30 66 | 73.46 71 | 76.80 56 | 84.45 60 | 59.04 69 | 83.65 55 | 81.05 129 | 60.15 108 | 70.43 114 | 89.84 46 | 41.09 222 | 85.59 99 | 67.61 93 | 82.90 87 | 85.77 106 |
|
| MVS_111021_HR | | | 74.02 67 | 73.46 71 | 75.69 76 | 83.01 75 | 60.63 40 | 77.29 159 | 78.40 183 | 61.18 83 | 70.58 113 | 85.97 122 | 54.18 58 | 84.00 136 | 67.52 94 | 82.98 85 | 82.45 214 |
|
| MG-MVS | | | 73.96 68 | 73.89 66 | 74.16 111 | 85.65 42 | 49.69 222 | 81.59 85 | 81.29 121 | 61.45 78 | 71.05 110 | 88.11 66 | 51.77 93 | 87.73 47 | 61.05 151 | 83.09 81 | 85.05 139 |
|
| alignmvs | | | 73.86 69 | 73.99 64 | 73.45 139 | 78.20 169 | 50.50 208 | 78.57 127 | 82.43 95 | 59.40 124 | 76.57 35 | 86.71 96 | 56.42 40 | 81.23 196 | 65.84 110 | 81.79 100 | 88.62 12 |
|
| MSLP-MVS++ | | | 73.77 70 | 73.47 70 | 74.66 94 | 83.02 74 | 59.29 61 | 82.30 77 | 81.88 102 | 59.34 126 | 71.59 105 | 86.83 90 | 45.94 165 | 83.65 142 | 65.09 115 | 85.22 63 | 81.06 242 |
|
| HQP-MVS | | | 73.45 71 | 72.80 76 | 75.40 82 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 57 | 62.10 68 | 67.85 160 | 85.54 134 | 45.46 172 | 86.93 66 | 67.04 98 | 80.35 115 | 84.32 158 |
|
| BP-MVS1 | | | 73.41 72 | 72.25 82 | 76.88 54 | 76.68 219 | 53.70 151 | 79.15 118 | 81.07 128 | 60.66 91 | 71.81 101 | 87.39 80 | 40.93 223 | 87.24 54 | 71.23 72 | 81.29 106 | 89.71 2 |
|
| CLD-MVS | | | 73.33 73 | 72.68 77 | 75.29 86 | 78.82 150 | 53.33 161 | 78.23 132 | 84.79 41 | 61.30 81 | 70.41 115 | 81.04 222 | 52.41 82 | 87.12 61 | 64.61 121 | 82.49 93 | 85.41 125 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Effi-MVS+ | | | 73.31 74 | 72.54 79 | 75.62 79 | 77.87 182 | 53.64 153 | 79.62 113 | 79.61 151 | 61.63 77 | 72.02 100 | 82.61 185 | 56.44 39 | 85.97 91 | 63.99 125 | 79.07 136 | 87.25 56 |
|
| UA-Net | | | 73.13 75 | 72.93 75 | 73.76 121 | 83.58 66 | 51.66 192 | 78.75 121 | 77.66 193 | 67.75 4 | 72.61 93 | 89.42 50 | 49.82 114 | 83.29 148 | 53.61 209 | 83.14 80 | 86.32 86 |
|
| EPNet | | | 73.09 76 | 72.16 83 | 75.90 71 | 75.95 232 | 56.28 107 | 83.05 59 | 72.39 265 | 66.53 10 | 65.27 212 | 87.00 87 | 50.40 110 | 85.47 105 | 62.48 139 | 86.32 58 | 85.94 97 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmconf_n | | | 73.01 77 | 72.59 78 | 74.27 108 | 71.28 309 | 55.88 117 | 78.21 134 | 75.56 223 | 54.31 229 | 74.86 53 | 87.80 75 | 54.72 52 | 80.23 220 | 78.07 21 | 78.48 145 | 86.70 69 |
|
| nrg030 | | | 72.96 78 | 73.01 74 | 72.84 152 | 75.41 241 | 50.24 210 | 80.02 102 | 82.89 91 | 58.36 144 | 74.44 60 | 86.73 94 | 58.90 24 | 80.83 206 | 65.84 110 | 74.46 189 | 87.44 48 |
|
| test_fmvsmconf0.1_n | | | 72.81 79 | 72.33 81 | 74.24 109 | 69.89 331 | 55.81 118 | 78.22 133 | 75.40 227 | 54.17 231 | 75.00 48 | 88.03 71 | 53.82 64 | 80.23 220 | 78.08 20 | 78.34 148 | 86.69 70 |
|
| CPTT-MVS | | | 72.78 80 | 72.08 85 | 74.87 90 | 84.88 57 | 61.41 26 | 84.15 46 | 77.86 189 | 55.27 205 | 67.51 171 | 88.08 68 | 41.93 208 | 81.85 182 | 69.04 83 | 80.01 119 | 81.35 235 |
|
| LPG-MVS_test | | | 72.74 81 | 71.74 87 | 75.76 73 | 80.22 116 | 57.51 89 | 82.55 70 | 83.40 74 | 61.32 79 | 66.67 186 | 87.33 82 | 39.15 240 | 86.59 74 | 67.70 91 | 77.30 163 | 83.19 198 |
|
| h-mvs33 | | | 72.71 82 | 71.49 91 | 76.40 65 | 81.99 85 | 59.58 55 | 76.92 169 | 76.74 209 | 60.40 96 | 74.81 54 | 85.95 123 | 45.54 170 | 85.76 96 | 70.41 76 | 70.61 245 | 83.86 175 |
|
| GDP-MVS | | | 72.64 83 | 71.28 98 | 76.70 57 | 77.72 188 | 54.22 144 | 79.57 114 | 84.45 43 | 55.30 204 | 71.38 108 | 86.97 88 | 39.94 228 | 87.00 65 | 67.02 100 | 79.20 132 | 88.89 9 |
|
| PAPM_NR | | | 72.63 84 | 71.80 86 | 75.13 87 | 81.72 89 | 53.42 159 | 79.91 106 | 83.28 82 | 59.14 128 | 66.31 193 | 85.90 124 | 51.86 91 | 86.06 87 | 57.45 176 | 80.62 109 | 85.91 99 |
|
| VDD-MVS | | | 72.50 85 | 72.09 84 | 73.75 123 | 81.58 90 | 49.69 222 | 77.76 146 | 77.63 194 | 63.21 47 | 73.21 77 | 89.02 56 | 42.14 205 | 83.32 147 | 61.72 146 | 82.50 92 | 88.25 21 |
|
| 3Dnovator | | 64.47 5 | 72.49 86 | 71.39 94 | 75.79 72 | 77.70 189 | 58.99 71 | 80.66 96 | 83.15 85 | 62.24 66 | 65.46 208 | 86.59 101 | 42.38 204 | 85.52 101 | 59.59 164 | 84.72 65 | 82.85 207 |
|
| MGCFI-Net | | | 72.45 87 | 73.34 73 | 69.81 220 | 77.77 186 | 43.21 296 | 75.84 194 | 81.18 125 | 59.59 122 | 75.45 42 | 86.64 97 | 57.74 28 | 77.94 253 | 63.92 126 | 81.90 99 | 88.30 19 |
|
| MVS_Test | | | 72.45 87 | 72.46 80 | 72.42 163 | 74.88 247 | 48.50 240 | 76.28 182 | 83.14 86 | 59.40 124 | 72.46 95 | 84.68 143 | 55.66 44 | 81.12 197 | 65.98 109 | 79.66 123 | 87.63 42 |
|
| EI-MVSNet-Vis-set | | | 72.42 89 | 71.59 88 | 74.91 88 | 78.47 159 | 54.02 146 | 77.05 165 | 79.33 157 | 65.03 18 | 71.68 104 | 79.35 258 | 52.75 76 | 84.89 118 | 66.46 102 | 74.23 193 | 85.83 102 |
|
| ACMP | | 63.53 6 | 72.30 90 | 71.20 100 | 75.59 81 | 80.28 114 | 57.54 87 | 82.74 66 | 82.84 92 | 60.58 93 | 65.24 216 | 86.18 114 | 39.25 238 | 86.03 89 | 66.95 101 | 76.79 170 | 83.22 196 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PS-MVSNAJss | | | 72.24 91 | 71.21 99 | 75.31 84 | 78.50 157 | 55.93 115 | 81.63 82 | 82.12 99 | 56.24 184 | 70.02 122 | 85.68 130 | 47.05 154 | 84.34 129 | 65.27 114 | 74.41 192 | 85.67 110 |
|
| Vis-MVSNet |  | | 72.18 92 | 71.37 95 | 74.61 97 | 81.29 97 | 55.41 129 | 80.90 92 | 78.28 185 | 60.73 90 | 69.23 139 | 88.09 67 | 44.36 187 | 82.65 167 | 57.68 174 | 81.75 103 | 85.77 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_fmvsmconf0.01_n | | | 72.17 93 | 71.50 90 | 74.16 111 | 67.96 349 | 55.58 126 | 78.06 138 | 74.67 241 | 54.19 230 | 74.54 59 | 88.23 64 | 50.35 112 | 80.24 219 | 78.07 21 | 77.46 159 | 86.65 73 |
|
| API-MVS | | | 72.17 93 | 71.41 93 | 74.45 103 | 81.95 86 | 57.22 92 | 84.03 48 | 80.38 142 | 59.89 115 | 68.40 148 | 82.33 194 | 49.64 116 | 87.83 46 | 51.87 223 | 84.16 75 | 78.30 279 |
|
| EPP-MVSNet | | | 72.16 95 | 71.31 97 | 74.71 91 | 78.68 154 | 49.70 220 | 82.10 78 | 81.65 106 | 60.40 96 | 65.94 198 | 85.84 126 | 51.74 94 | 86.37 83 | 55.93 185 | 79.55 126 | 88.07 29 |
|
| DP-MVS Recon | | | 72.15 96 | 70.73 108 | 76.40 65 | 86.57 24 | 57.99 82 | 81.15 90 | 82.96 87 | 57.03 165 | 66.78 182 | 85.56 131 | 44.50 185 | 88.11 38 | 51.77 225 | 80.23 118 | 83.10 202 |
|
| EI-MVSNet-UG-set | | | 71.92 97 | 71.06 103 | 74.52 102 | 77.98 180 | 53.56 155 | 76.62 174 | 79.16 158 | 64.40 27 | 71.18 109 | 78.95 263 | 52.19 86 | 84.66 125 | 65.47 113 | 73.57 204 | 85.32 128 |
|
| VDDNet | | | 71.81 98 | 71.33 96 | 73.26 146 | 82.80 78 | 47.60 252 | 78.74 122 | 75.27 229 | 59.59 122 | 72.94 86 | 89.40 51 | 41.51 216 | 83.91 137 | 58.75 169 | 82.99 83 | 88.26 20 |
|
| EIA-MVS | | | 71.78 99 | 70.60 110 | 75.30 85 | 79.85 125 | 53.54 156 | 77.27 160 | 83.26 83 | 57.92 154 | 66.49 188 | 79.39 256 | 52.07 88 | 86.69 72 | 60.05 158 | 79.14 135 | 85.66 111 |
|
| LFMVS | | | 71.78 99 | 71.59 88 | 72.32 164 | 83.40 70 | 46.38 261 | 79.75 109 | 71.08 274 | 64.18 32 | 72.80 89 | 88.64 62 | 42.58 201 | 83.72 140 | 57.41 177 | 84.49 70 | 86.86 64 |
|
| test_fmvsm_n_1920 | | | 71.73 101 | 71.14 101 | 73.50 136 | 72.52 285 | 56.53 104 | 75.60 196 | 76.16 213 | 48.11 305 | 77.22 31 | 85.56 131 | 53.10 74 | 77.43 262 | 74.86 40 | 77.14 165 | 86.55 76 |
|
| PAPR | | | 71.72 102 | 70.82 106 | 74.41 104 | 81.20 101 | 51.17 194 | 79.55 115 | 83.33 79 | 55.81 192 | 66.93 181 | 84.61 147 | 50.95 104 | 86.06 87 | 55.79 188 | 79.20 132 | 86.00 95 |
|
| IS-MVSNet | | | 71.57 103 | 71.00 104 | 73.27 145 | 78.86 148 | 45.63 272 | 80.22 100 | 78.69 169 | 64.14 35 | 66.46 189 | 87.36 81 | 49.30 120 | 85.60 98 | 50.26 236 | 83.71 79 | 88.59 13 |
|
| MAR-MVS | | | 71.51 104 | 70.15 120 | 75.60 80 | 81.84 87 | 59.39 58 | 81.38 87 | 82.90 89 | 54.90 218 | 68.08 157 | 78.70 264 | 47.73 139 | 85.51 102 | 51.68 227 | 84.17 74 | 81.88 225 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVSFormer | | | 71.50 105 | 70.38 115 | 74.88 89 | 78.76 151 | 57.15 97 | 82.79 64 | 78.48 176 | 51.26 264 | 69.49 131 | 83.22 175 | 43.99 190 | 83.24 149 | 66.06 105 | 79.37 127 | 84.23 161 |
|
| RRT-MVS | | | 71.46 106 | 70.70 109 | 73.74 124 | 77.76 187 | 49.30 228 | 76.60 175 | 80.45 140 | 61.25 82 | 68.17 153 | 84.78 142 | 44.64 183 | 84.90 117 | 64.79 117 | 77.88 153 | 87.03 59 |
|
| PVSNet_Blended_VisFu | | | 71.45 107 | 70.39 114 | 74.65 95 | 82.01 83 | 58.82 74 | 79.93 105 | 80.35 143 | 55.09 210 | 65.82 204 | 82.16 200 | 49.17 123 | 82.64 168 | 60.34 156 | 78.62 144 | 82.50 213 |
|
| OMC-MVS | | | 71.40 108 | 70.60 110 | 73.78 119 | 76.60 222 | 53.15 163 | 79.74 110 | 79.78 147 | 58.37 143 | 68.75 143 | 86.45 108 | 45.43 174 | 80.60 210 | 62.58 137 | 77.73 154 | 87.58 45 |
|
| UniMVSNet_NR-MVSNet | | | 71.11 109 | 71.00 104 | 71.44 183 | 79.20 139 | 44.13 285 | 76.02 190 | 82.60 94 | 66.48 11 | 68.20 151 | 84.60 148 | 56.82 36 | 82.82 163 | 54.62 199 | 70.43 247 | 87.36 54 |
|
| hse-mvs2 | | | 71.04 110 | 69.86 123 | 74.60 98 | 79.58 130 | 57.12 99 | 73.96 231 | 75.25 230 | 60.40 96 | 74.81 54 | 81.95 205 | 45.54 170 | 82.90 156 | 70.41 76 | 66.83 297 | 83.77 180 |
|
| GeoE | | | 71.01 111 | 70.15 120 | 73.60 134 | 79.57 131 | 52.17 184 | 78.93 120 | 78.12 186 | 58.02 150 | 67.76 168 | 83.87 163 | 52.36 83 | 82.72 165 | 56.90 179 | 75.79 180 | 85.92 98 |
|
| fmvsm_l_conf0.5_n | | | 70.99 112 | 70.82 106 | 71.48 181 | 71.45 302 | 54.40 142 | 77.18 162 | 70.46 280 | 48.67 296 | 75.17 44 | 86.86 89 | 53.77 65 | 76.86 274 | 76.33 30 | 77.51 158 | 83.17 201 |
|
| PCF-MVS | | 61.88 8 | 70.95 113 | 69.49 129 | 75.35 83 | 77.63 193 | 55.71 120 | 76.04 189 | 81.81 104 | 50.30 275 | 69.66 129 | 85.40 137 | 52.51 79 | 84.89 118 | 51.82 224 | 80.24 117 | 85.45 121 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| test_fmvsmvis_n_1920 | | | 70.84 114 | 70.38 115 | 72.22 166 | 71.16 310 | 55.39 130 | 75.86 192 | 72.21 267 | 49.03 292 | 73.28 76 | 86.17 115 | 51.83 92 | 77.29 266 | 75.80 32 | 78.05 150 | 83.98 169 |
|
| 114514_t | | | 70.83 115 | 69.56 127 | 74.64 96 | 86.21 31 | 54.63 139 | 82.34 73 | 81.81 104 | 48.22 303 | 63.01 251 | 85.83 127 | 40.92 224 | 87.10 62 | 57.91 173 | 79.79 120 | 82.18 219 |
|
| FIs | | | 70.82 116 | 71.43 92 | 68.98 233 | 78.33 166 | 38.14 340 | 76.96 167 | 83.59 68 | 61.02 85 | 67.33 173 | 86.73 94 | 55.07 47 | 81.64 185 | 54.61 201 | 79.22 131 | 87.14 58 |
|
| ACMM | | 61.98 7 | 70.80 117 | 69.73 125 | 74.02 113 | 80.59 113 | 58.59 77 | 82.68 67 | 82.02 101 | 55.46 201 | 67.18 176 | 84.39 153 | 38.51 245 | 83.17 151 | 60.65 154 | 76.10 177 | 80.30 254 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| diffmvs |  | | 70.69 118 | 70.43 113 | 71.46 182 | 69.45 337 | 48.95 234 | 72.93 247 | 78.46 178 | 57.27 162 | 71.69 103 | 83.97 162 | 51.48 97 | 77.92 255 | 70.70 75 | 77.95 152 | 87.53 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UniMVSNet (Re) | | | 70.63 119 | 70.20 118 | 71.89 169 | 78.55 156 | 45.29 275 | 75.94 191 | 82.92 88 | 63.68 40 | 68.16 154 | 83.59 169 | 53.89 62 | 83.49 146 | 53.97 205 | 71.12 240 | 86.89 63 |
|
| xiu_mvs_v2_base | | | 70.52 120 | 69.75 124 | 72.84 152 | 81.21 100 | 55.63 123 | 75.11 207 | 78.92 163 | 54.92 217 | 69.96 125 | 79.68 249 | 47.00 158 | 82.09 178 | 61.60 148 | 79.37 127 | 80.81 247 |
|
| PS-MVSNAJ | | | 70.51 121 | 69.70 126 | 72.93 150 | 81.52 91 | 55.79 119 | 74.92 214 | 79.00 161 | 55.04 215 | 69.88 126 | 78.66 266 | 47.05 154 | 82.19 176 | 61.61 147 | 79.58 124 | 80.83 246 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 122 | 70.27 117 | 71.18 193 | 71.30 308 | 54.09 145 | 76.89 170 | 69.87 284 | 47.90 309 | 74.37 62 | 86.49 106 | 53.07 75 | 76.69 279 | 75.41 35 | 77.11 166 | 82.76 208 |
|
| v2v482 | | | 70.50 122 | 69.45 131 | 73.66 129 | 72.62 282 | 50.03 216 | 77.58 148 | 80.51 139 | 59.90 112 | 69.52 130 | 82.14 201 | 47.53 145 | 84.88 120 | 65.07 116 | 70.17 255 | 86.09 93 |
|
| v1144 | | | 70.42 124 | 69.31 132 | 73.76 121 | 73.22 270 | 50.64 203 | 77.83 144 | 81.43 112 | 58.58 139 | 69.40 134 | 81.16 219 | 47.53 145 | 85.29 110 | 64.01 124 | 70.64 243 | 85.34 127 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 125 | 70.10 122 | 71.17 194 | 78.64 155 | 42.97 299 | 76.53 177 | 81.16 127 | 66.95 6 | 68.53 147 | 85.42 136 | 51.61 96 | 83.07 152 | 52.32 217 | 69.70 267 | 87.46 47 |
|
| v8 | | | 70.33 126 | 69.28 133 | 73.49 137 | 73.15 272 | 50.22 211 | 78.62 125 | 80.78 135 | 60.79 88 | 66.45 190 | 82.11 203 | 49.35 119 | 84.98 114 | 63.58 131 | 68.71 282 | 85.28 130 |
|
| Fast-Effi-MVS+ | | | 70.28 127 | 69.12 136 | 73.73 125 | 78.50 157 | 51.50 193 | 75.01 210 | 79.46 155 | 56.16 186 | 68.59 144 | 79.55 252 | 53.97 60 | 84.05 132 | 53.34 211 | 77.53 157 | 85.65 112 |
|
| X-MVStestdata | | | 70.21 128 | 67.28 177 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 98 | 6.49 420 | 47.95 136 | 88.01 40 | 71.55 70 | 86.74 53 | 86.37 80 |
|
| v10 | | | 70.21 128 | 69.02 137 | 73.81 118 | 73.51 269 | 50.92 198 | 78.74 122 | 81.39 113 | 60.05 110 | 66.39 191 | 81.83 208 | 47.58 143 | 85.41 108 | 62.80 136 | 68.86 281 | 85.09 138 |
|
| QAPM | | | 70.05 130 | 68.81 141 | 73.78 119 | 76.54 224 | 53.43 158 | 83.23 57 | 83.48 70 | 52.89 244 | 65.90 200 | 86.29 111 | 41.55 215 | 86.49 80 | 51.01 230 | 78.40 147 | 81.42 229 |
|
| DU-MVS | | | 70.01 131 | 69.53 128 | 71.44 183 | 78.05 177 | 44.13 285 | 75.01 210 | 81.51 110 | 64.37 28 | 68.20 151 | 84.52 149 | 49.12 126 | 82.82 163 | 54.62 199 | 70.43 247 | 87.37 52 |
|
| AdaColmap |  | | 69.99 132 | 68.66 145 | 73.97 115 | 84.94 54 | 57.83 84 | 82.63 68 | 78.71 168 | 56.28 183 | 64.34 230 | 84.14 156 | 41.57 213 | 87.06 64 | 46.45 268 | 78.88 137 | 77.02 299 |
|
| v1192 | | | 69.97 133 | 68.68 144 | 73.85 116 | 73.19 271 | 50.94 196 | 77.68 147 | 81.36 115 | 57.51 160 | 68.95 142 | 80.85 229 | 45.28 177 | 85.33 109 | 62.97 135 | 70.37 249 | 85.27 131 |
|
| Anonymous20240529 | | | 69.91 134 | 69.02 137 | 72.56 157 | 80.19 119 | 47.65 250 | 77.56 150 | 80.99 131 | 55.45 202 | 69.88 126 | 86.76 92 | 39.24 239 | 82.18 177 | 54.04 204 | 77.10 167 | 87.85 33 |
|
| patch_mono-2 | | | 69.85 135 | 71.09 102 | 66.16 269 | 79.11 143 | 54.80 138 | 71.97 263 | 74.31 246 | 53.50 239 | 70.90 111 | 84.17 155 | 57.63 31 | 63.31 352 | 66.17 104 | 82.02 97 | 80.38 253 |
|
| FA-MVS(test-final) | | | 69.82 136 | 68.48 148 | 73.84 117 | 78.44 160 | 50.04 215 | 75.58 199 | 78.99 162 | 58.16 146 | 67.59 169 | 82.14 201 | 42.66 199 | 85.63 97 | 56.60 180 | 76.19 176 | 85.84 101 |
|
| FC-MVSNet-test | | | 69.80 137 | 70.58 112 | 67.46 249 | 77.61 198 | 34.73 373 | 76.05 188 | 83.19 84 | 60.84 87 | 65.88 202 | 86.46 107 | 54.52 55 | 80.76 209 | 52.52 216 | 78.12 149 | 86.91 62 |
|
| v144192 | | | 69.71 138 | 68.51 147 | 73.33 144 | 73.10 273 | 50.13 213 | 77.54 151 | 80.64 136 | 56.65 170 | 68.57 146 | 80.55 232 | 46.87 159 | 84.96 116 | 62.98 134 | 69.66 268 | 84.89 145 |
|
| test_yl | | | 69.69 139 | 69.13 134 | 71.36 187 | 78.37 164 | 45.74 268 | 74.71 218 | 80.20 144 | 57.91 155 | 70.01 123 | 83.83 164 | 42.44 202 | 82.87 159 | 54.97 195 | 79.72 121 | 85.48 117 |
|
| DCV-MVSNet | | | 69.69 139 | 69.13 134 | 71.36 187 | 78.37 164 | 45.74 268 | 74.71 218 | 80.20 144 | 57.91 155 | 70.01 123 | 83.83 164 | 42.44 202 | 82.87 159 | 54.97 195 | 79.72 121 | 85.48 117 |
|
| VNet | | | 69.68 141 | 70.19 119 | 68.16 243 | 79.73 127 | 41.63 312 | 70.53 283 | 77.38 199 | 60.37 99 | 70.69 112 | 86.63 99 | 51.08 102 | 77.09 269 | 53.61 209 | 81.69 105 | 85.75 108 |
|
| jason | | | 69.65 142 | 68.39 154 | 73.43 141 | 78.27 168 | 56.88 101 | 77.12 163 | 73.71 255 | 46.53 324 | 69.34 135 | 83.22 175 | 43.37 194 | 79.18 233 | 64.77 118 | 79.20 132 | 84.23 161 |
| jason: jason. |
| Effi-MVS+-dtu | | | 69.64 143 | 67.53 167 | 75.95 70 | 76.10 230 | 62.29 15 | 80.20 101 | 76.06 217 | 59.83 116 | 65.26 215 | 77.09 293 | 41.56 214 | 84.02 135 | 60.60 155 | 71.09 241 | 81.53 228 |
|
| fmvsm_s_conf0.5_n | | | 69.58 144 | 68.84 140 | 71.79 173 | 72.31 292 | 52.90 169 | 77.90 140 | 62.43 344 | 49.97 280 | 72.85 88 | 85.90 124 | 52.21 85 | 76.49 282 | 75.75 33 | 70.26 254 | 85.97 96 |
|
| lupinMVS | | | 69.57 145 | 68.28 155 | 73.44 140 | 78.76 151 | 57.15 97 | 76.57 176 | 73.29 258 | 46.19 327 | 69.49 131 | 82.18 197 | 43.99 190 | 79.23 232 | 64.66 119 | 79.37 127 | 83.93 170 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 146 | 68.74 143 | 71.93 168 | 72.47 287 | 53.82 149 | 78.25 131 | 62.26 346 | 49.78 282 | 73.12 82 | 86.21 113 | 52.66 77 | 76.79 276 | 75.02 39 | 68.88 279 | 85.18 133 |
|
| NR-MVSNet | | | 69.54 146 | 68.85 139 | 71.59 180 | 78.05 177 | 43.81 290 | 74.20 227 | 80.86 134 | 65.18 14 | 62.76 254 | 84.52 149 | 52.35 84 | 83.59 144 | 50.96 232 | 70.78 242 | 87.37 52 |
|
| MVS_111021_LR | | | 69.50 148 | 68.78 142 | 71.65 178 | 78.38 162 | 59.33 59 | 74.82 216 | 70.11 282 | 58.08 147 | 67.83 164 | 84.68 143 | 41.96 207 | 76.34 286 | 65.62 112 | 77.54 156 | 79.30 271 |
|
| v1921920 | | | 69.47 149 | 68.17 156 | 73.36 143 | 73.06 274 | 50.10 214 | 77.39 154 | 80.56 137 | 56.58 177 | 68.59 144 | 80.37 234 | 44.72 182 | 84.98 114 | 62.47 140 | 69.82 263 | 85.00 140 |
|
| test_djsdf | | | 69.45 150 | 67.74 160 | 74.58 99 | 74.57 257 | 54.92 136 | 82.79 64 | 78.48 176 | 51.26 264 | 65.41 209 | 83.49 172 | 38.37 247 | 83.24 149 | 66.06 105 | 69.25 274 | 85.56 114 |
|
| fmvsm_s_conf0.1_n | | | 69.41 151 | 68.60 146 | 71.83 171 | 71.07 311 | 52.88 171 | 77.85 143 | 62.44 343 | 49.58 285 | 72.97 85 | 86.22 112 | 51.68 95 | 76.48 283 | 75.53 34 | 70.10 257 | 86.14 91 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 152 | 68.44 152 | 71.96 167 | 70.91 313 | 53.78 150 | 78.12 136 | 62.30 345 | 49.35 288 | 73.20 78 | 86.55 105 | 51.99 89 | 76.79 276 | 74.83 41 | 68.68 284 | 85.32 128 |
|
| Anonymous20231211 | | | 69.28 153 | 68.47 150 | 71.73 175 | 80.28 114 | 47.18 256 | 79.98 103 | 82.37 96 | 54.61 222 | 67.24 174 | 84.01 160 | 39.43 235 | 82.41 174 | 55.45 193 | 72.83 218 | 85.62 113 |
|
| EI-MVSNet | | | 69.27 154 | 68.44 152 | 71.73 175 | 74.47 258 | 49.39 227 | 75.20 205 | 78.45 179 | 59.60 119 | 69.16 140 | 76.51 305 | 51.29 98 | 82.50 171 | 59.86 163 | 71.45 237 | 83.30 193 |
|
| v1240 | | | 69.24 155 | 67.91 159 | 73.25 147 | 73.02 276 | 49.82 218 | 77.21 161 | 80.54 138 | 56.43 179 | 68.34 150 | 80.51 233 | 43.33 195 | 84.99 112 | 62.03 144 | 69.77 266 | 84.95 144 |
|
| IterMVS-LS | | | 69.22 156 | 68.48 148 | 71.43 185 | 74.44 260 | 49.40 226 | 76.23 183 | 77.55 195 | 59.60 119 | 65.85 203 | 81.59 214 | 51.28 99 | 81.58 188 | 59.87 162 | 69.90 262 | 83.30 193 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| VPA-MVSNet | | | 69.02 157 | 69.47 130 | 67.69 247 | 77.42 203 | 41.00 317 | 74.04 229 | 79.68 149 | 60.06 109 | 69.26 138 | 84.81 141 | 51.06 103 | 77.58 260 | 54.44 202 | 74.43 191 | 84.48 155 |
|
| v7n | | | 69.01 158 | 67.36 174 | 73.98 114 | 72.51 286 | 52.65 174 | 78.54 129 | 81.30 120 | 60.26 105 | 62.67 256 | 81.62 211 | 43.61 192 | 84.49 126 | 57.01 178 | 68.70 283 | 84.79 148 |
|
| OpenMVS |  | 61.03 9 | 68.85 159 | 67.56 164 | 72.70 156 | 74.26 264 | 53.99 147 | 81.21 89 | 81.34 119 | 52.70 245 | 62.75 255 | 85.55 133 | 38.86 243 | 84.14 131 | 48.41 252 | 83.01 82 | 79.97 259 |
|
| XVG-OURS-SEG-HR | | | 68.81 160 | 67.47 170 | 72.82 154 | 74.40 261 | 56.87 102 | 70.59 282 | 79.04 160 | 54.77 220 | 66.99 179 | 86.01 121 | 39.57 234 | 78.21 250 | 62.54 138 | 73.33 210 | 83.37 192 |
|
| BH-RMVSNet | | | 68.81 160 | 67.42 171 | 72.97 149 | 80.11 122 | 52.53 178 | 74.26 226 | 76.29 212 | 58.48 141 | 68.38 149 | 84.20 154 | 42.59 200 | 83.83 138 | 46.53 267 | 75.91 178 | 82.56 209 |
|
| UGNet | | | 68.81 160 | 67.39 172 | 73.06 148 | 78.33 166 | 54.47 140 | 79.77 108 | 75.40 227 | 60.45 95 | 63.22 244 | 84.40 152 | 32.71 313 | 80.91 205 | 51.71 226 | 80.56 113 | 83.81 176 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| XVG-OURS | | | 68.76 163 | 67.37 173 | 72.90 151 | 74.32 263 | 57.22 92 | 70.09 290 | 78.81 165 | 55.24 206 | 67.79 166 | 85.81 129 | 36.54 270 | 78.28 249 | 62.04 143 | 75.74 181 | 83.19 198 |
|
| V42 | | | 68.65 164 | 67.35 175 | 72.56 157 | 68.93 343 | 50.18 212 | 72.90 248 | 79.47 154 | 56.92 167 | 69.45 133 | 80.26 238 | 46.29 163 | 82.99 153 | 64.07 122 | 67.82 289 | 84.53 153 |
|
| PVSNet_Blended | | | 68.59 165 | 67.72 161 | 71.19 192 | 77.03 213 | 50.57 204 | 72.51 255 | 81.52 108 | 51.91 253 | 64.22 236 | 77.77 285 | 49.13 124 | 82.87 159 | 55.82 186 | 79.58 124 | 80.14 257 |
|
| xiu_mvs_v1_base_debu | | | 68.58 166 | 67.28 177 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 255 | 70.04 119 | 81.41 216 | 32.79 309 | 79.02 240 | 63.81 128 | 77.31 160 | 81.22 237 |
|
| xiu_mvs_v1_base | | | 68.58 166 | 67.28 177 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 255 | 70.04 119 | 81.41 216 | 32.79 309 | 79.02 240 | 63.81 128 | 77.31 160 | 81.22 237 |
|
| xiu_mvs_v1_base_debi | | | 68.58 166 | 67.28 177 | 72.48 159 | 78.19 170 | 57.19 94 | 75.28 202 | 75.09 235 | 51.61 255 | 70.04 119 | 81.41 216 | 32.79 309 | 79.02 240 | 63.81 128 | 77.31 160 | 81.22 237 |
|
| PVSNet_BlendedMVS | | | 68.56 169 | 67.72 161 | 71.07 197 | 77.03 213 | 50.57 204 | 74.50 222 | 81.52 108 | 53.66 238 | 64.22 236 | 79.72 248 | 49.13 124 | 82.87 159 | 55.82 186 | 73.92 197 | 79.77 266 |
|
| WR-MVS | | | 68.47 170 | 68.47 150 | 68.44 240 | 80.20 118 | 39.84 324 | 73.75 239 | 76.07 216 | 64.68 22 | 68.11 156 | 83.63 168 | 50.39 111 | 79.14 238 | 49.78 237 | 69.66 268 | 86.34 82 |
|
| mvsmamba | | | 68.47 170 | 66.56 188 | 74.21 110 | 79.60 129 | 52.95 167 | 74.94 213 | 75.48 225 | 52.09 252 | 60.10 285 | 83.27 174 | 36.54 270 | 84.70 122 | 59.32 168 | 77.69 155 | 84.99 142 |
|
| AUN-MVS | | | 68.45 172 | 66.41 195 | 74.57 100 | 79.53 132 | 57.08 100 | 73.93 234 | 75.23 231 | 54.44 227 | 66.69 185 | 81.85 207 | 37.10 265 | 82.89 157 | 62.07 142 | 66.84 296 | 83.75 181 |
|
| c3_l | | | 68.33 173 | 67.56 164 | 70.62 204 | 70.87 314 | 46.21 264 | 74.47 223 | 78.80 166 | 56.22 185 | 66.19 194 | 78.53 271 | 51.88 90 | 81.40 190 | 62.08 141 | 69.04 277 | 84.25 160 |
|
| BH-untuned | | | 68.27 174 | 67.29 176 | 71.21 191 | 79.74 126 | 53.22 162 | 76.06 187 | 77.46 198 | 57.19 163 | 66.10 195 | 81.61 212 | 45.37 176 | 83.50 145 | 45.42 283 | 76.68 172 | 76.91 303 |
|
| jajsoiax | | | 68.25 175 | 66.45 191 | 73.66 129 | 75.62 236 | 55.49 128 | 80.82 93 | 78.51 175 | 52.33 249 | 64.33 231 | 84.11 157 | 28.28 347 | 81.81 184 | 63.48 132 | 70.62 244 | 83.67 184 |
|
| v148 | | | 68.24 176 | 67.19 183 | 71.40 186 | 70.43 321 | 47.77 249 | 75.76 195 | 77.03 204 | 58.91 131 | 67.36 172 | 80.10 241 | 48.60 131 | 81.89 181 | 60.01 159 | 66.52 300 | 84.53 153 |
|
| CANet_DTU | | | 68.18 177 | 67.71 163 | 69.59 223 | 74.83 249 | 46.24 263 | 78.66 124 | 76.85 206 | 59.60 119 | 63.45 242 | 82.09 204 | 35.25 279 | 77.41 263 | 59.88 161 | 78.76 141 | 85.14 134 |
|
| mvs_tets | | | 68.18 177 | 66.36 197 | 73.63 132 | 75.61 237 | 55.35 131 | 80.77 94 | 78.56 173 | 52.48 248 | 64.27 233 | 84.10 158 | 27.45 353 | 81.84 183 | 63.45 133 | 70.56 246 | 83.69 183 |
|
| SDMVSNet | | | 68.03 179 | 68.10 158 | 67.84 245 | 77.13 209 | 48.72 238 | 65.32 328 | 79.10 159 | 58.02 150 | 65.08 219 | 82.55 187 | 47.83 138 | 73.40 299 | 63.92 126 | 73.92 197 | 81.41 230 |
|
| miper_ehance_all_eth | | | 68.03 179 | 67.24 181 | 70.40 208 | 70.54 318 | 46.21 264 | 73.98 230 | 78.68 170 | 55.07 213 | 66.05 196 | 77.80 282 | 52.16 87 | 81.31 193 | 61.53 150 | 69.32 271 | 83.67 184 |
|
| mvs_anonymous | | | 68.03 179 | 67.51 168 | 69.59 223 | 72.08 294 | 44.57 282 | 71.99 262 | 75.23 231 | 51.67 254 | 67.06 178 | 82.57 186 | 54.68 53 | 77.94 253 | 56.56 181 | 75.71 182 | 86.26 90 |
|
| ET-MVSNet_ETH3D | | | 67.96 182 | 65.72 209 | 74.68 93 | 76.67 220 | 55.62 125 | 75.11 207 | 74.74 239 | 52.91 243 | 60.03 287 | 80.12 240 | 33.68 298 | 82.64 168 | 61.86 145 | 76.34 174 | 85.78 103 |
|
| thisisatest0530 | | | 67.92 183 | 65.78 208 | 74.33 106 | 76.29 227 | 51.03 195 | 76.89 170 | 74.25 248 | 53.67 237 | 65.59 206 | 81.76 209 | 35.15 280 | 85.50 103 | 55.94 184 | 72.47 223 | 86.47 77 |
|
| PAPM | | | 67.92 183 | 66.69 187 | 71.63 179 | 78.09 175 | 49.02 231 | 77.09 164 | 81.24 124 | 51.04 267 | 60.91 280 | 83.98 161 | 47.71 140 | 84.99 112 | 40.81 317 | 79.32 130 | 80.90 245 |
|
| tttt0517 | | | 67.83 185 | 65.66 210 | 74.33 106 | 76.69 218 | 50.82 200 | 77.86 142 | 73.99 252 | 54.54 225 | 64.64 228 | 82.53 190 | 35.06 281 | 85.50 103 | 55.71 189 | 69.91 261 | 86.67 71 |
|
| tt0805 | | | 67.77 186 | 67.24 181 | 69.34 228 | 74.87 248 | 40.08 321 | 77.36 155 | 81.37 114 | 55.31 203 | 66.33 192 | 84.65 145 | 37.35 259 | 82.55 170 | 55.65 191 | 72.28 228 | 85.39 126 |
|
| ECVR-MVS |  | | 67.72 187 | 67.51 168 | 68.35 241 | 79.46 133 | 36.29 363 | 74.79 217 | 66.93 309 | 58.72 134 | 67.19 175 | 88.05 69 | 36.10 272 | 81.38 191 | 52.07 220 | 84.25 72 | 87.39 50 |
|
| eth_miper_zixun_eth | | | 67.63 188 | 66.28 201 | 71.67 177 | 71.60 300 | 48.33 242 | 73.68 240 | 77.88 188 | 55.80 193 | 65.91 199 | 78.62 269 | 47.35 151 | 82.88 158 | 59.45 165 | 66.25 301 | 83.81 176 |
|
| UniMVSNet_ETH3D | | | 67.60 189 | 67.07 185 | 69.18 232 | 77.39 204 | 42.29 303 | 74.18 228 | 75.59 222 | 60.37 99 | 66.77 183 | 86.06 119 | 37.64 255 | 78.93 245 | 52.16 219 | 73.49 206 | 86.32 86 |
|
| VPNet | | | 67.52 190 | 68.11 157 | 65.74 278 | 79.18 140 | 36.80 355 | 72.17 260 | 72.83 262 | 62.04 72 | 67.79 166 | 85.83 127 | 48.88 128 | 76.60 281 | 51.30 228 | 72.97 217 | 83.81 176 |
|
| cl22 | | | 67.47 191 | 66.45 191 | 70.54 206 | 69.85 332 | 46.49 260 | 73.85 237 | 77.35 200 | 55.07 213 | 65.51 207 | 77.92 278 | 47.64 142 | 81.10 198 | 61.58 149 | 69.32 271 | 84.01 168 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 192 | 65.33 215 | 73.48 138 | 72.94 277 | 57.78 86 | 77.47 153 | 76.88 205 | 57.60 159 | 61.97 267 | 76.85 297 | 39.31 236 | 80.49 214 | 54.72 198 | 70.28 253 | 82.17 221 |
|
| MVS | | | 67.37 192 | 66.33 198 | 70.51 207 | 75.46 240 | 50.94 196 | 73.95 232 | 81.85 103 | 41.57 364 | 62.54 260 | 78.57 270 | 47.98 135 | 85.47 105 | 52.97 214 | 82.05 96 | 75.14 318 |
|
| test1111 | | | 67.21 194 | 67.14 184 | 67.42 250 | 79.24 138 | 34.76 372 | 73.89 236 | 65.65 318 | 58.71 136 | 66.96 180 | 87.95 72 | 36.09 273 | 80.53 211 | 52.03 221 | 83.79 77 | 86.97 61 |
|
| GBi-Net | | | 67.21 194 | 66.55 189 | 69.19 229 | 77.63 193 | 43.33 293 | 77.31 156 | 77.83 190 | 56.62 173 | 65.04 221 | 82.70 181 | 41.85 209 | 80.33 216 | 47.18 262 | 72.76 219 | 83.92 171 |
|
| test1 | | | 67.21 194 | 66.55 189 | 69.19 229 | 77.63 193 | 43.33 293 | 77.31 156 | 77.83 190 | 56.62 173 | 65.04 221 | 82.70 181 | 41.85 209 | 80.33 216 | 47.18 262 | 72.76 219 | 83.92 171 |
|
| cl____ | | | 67.18 197 | 66.26 202 | 69.94 215 | 70.20 324 | 45.74 268 | 73.30 242 | 76.83 207 | 55.10 208 | 65.27 212 | 79.57 251 | 47.39 149 | 80.53 211 | 59.41 167 | 69.22 275 | 83.53 190 |
|
| DIV-MVS_self_test | | | 67.18 197 | 66.26 202 | 69.94 215 | 70.20 324 | 45.74 268 | 73.29 243 | 76.83 207 | 55.10 208 | 65.27 212 | 79.58 250 | 47.38 150 | 80.53 211 | 59.43 166 | 69.22 275 | 83.54 189 |
|
| MVSTER | | | 67.16 199 | 65.58 212 | 71.88 170 | 70.37 323 | 49.70 220 | 70.25 288 | 78.45 179 | 51.52 258 | 69.16 140 | 80.37 234 | 38.45 246 | 82.50 171 | 60.19 157 | 71.46 236 | 83.44 191 |
|
| miper_enhance_ethall | | | 67.11 200 | 66.09 204 | 70.17 212 | 69.21 340 | 45.98 266 | 72.85 249 | 78.41 182 | 51.38 261 | 65.65 205 | 75.98 314 | 51.17 101 | 81.25 194 | 60.82 153 | 69.32 271 | 83.29 195 |
|
| Baseline_NR-MVSNet | | | 67.05 201 | 67.56 164 | 65.50 281 | 75.65 235 | 37.70 346 | 75.42 200 | 74.65 242 | 59.90 112 | 68.14 155 | 83.15 178 | 49.12 126 | 77.20 267 | 52.23 218 | 69.78 264 | 81.60 227 |
|
| WR-MVS_H | | | 67.02 202 | 66.92 186 | 67.33 253 | 77.95 181 | 37.75 344 | 77.57 149 | 82.11 100 | 62.03 73 | 62.65 257 | 82.48 191 | 50.57 109 | 79.46 228 | 42.91 304 | 64.01 318 | 84.79 148 |
|
| anonymousdsp | | | 67.00 203 | 64.82 220 | 73.57 135 | 70.09 327 | 56.13 110 | 76.35 180 | 77.35 200 | 48.43 301 | 64.99 224 | 80.84 230 | 33.01 306 | 80.34 215 | 64.66 119 | 67.64 291 | 84.23 161 |
|
| FMVSNet2 | | | 66.93 204 | 66.31 200 | 68.79 236 | 77.63 193 | 42.98 298 | 76.11 185 | 77.47 196 | 56.62 173 | 65.22 218 | 82.17 199 | 41.85 209 | 80.18 222 | 47.05 265 | 72.72 222 | 83.20 197 |
|
| BH-w/o | | | 66.85 205 | 65.83 207 | 69.90 218 | 79.29 135 | 52.46 180 | 74.66 220 | 76.65 210 | 54.51 226 | 64.85 225 | 78.12 272 | 45.59 169 | 82.95 155 | 43.26 300 | 75.54 184 | 74.27 332 |
|
| Anonymous202405211 | | | 66.84 206 | 65.99 205 | 69.40 227 | 80.19 119 | 42.21 305 | 71.11 276 | 71.31 273 | 58.80 133 | 67.90 158 | 86.39 109 | 29.83 335 | 79.65 225 | 49.60 243 | 78.78 140 | 86.33 84 |
|
| CDS-MVSNet | | | 66.80 207 | 65.37 213 | 71.10 196 | 78.98 145 | 53.13 165 | 73.27 244 | 71.07 275 | 52.15 251 | 64.72 226 | 80.23 239 | 43.56 193 | 77.10 268 | 45.48 281 | 78.88 137 | 83.05 203 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 66.78 208 | 65.27 216 | 71.33 190 | 79.16 142 | 53.67 152 | 73.84 238 | 69.59 288 | 52.32 250 | 65.28 211 | 81.72 210 | 44.49 186 | 77.40 264 | 42.32 308 | 78.66 143 | 82.92 204 |
|
| FMVSNet1 | | | 66.70 209 | 65.87 206 | 69.19 229 | 77.49 201 | 43.33 293 | 77.31 156 | 77.83 190 | 56.45 178 | 64.60 229 | 82.70 181 | 38.08 253 | 80.33 216 | 46.08 271 | 72.31 227 | 83.92 171 |
|
| ab-mvs | | | 66.65 210 | 66.42 194 | 67.37 251 | 76.17 229 | 41.73 309 | 70.41 286 | 76.14 215 | 53.99 233 | 65.98 197 | 83.51 171 | 49.48 118 | 76.24 287 | 48.60 250 | 73.46 208 | 84.14 164 |
|
| PEN-MVS | | | 66.60 211 | 66.45 191 | 67.04 254 | 77.11 211 | 36.56 357 | 77.03 166 | 80.42 141 | 62.95 50 | 62.51 262 | 84.03 159 | 46.69 160 | 79.07 239 | 44.22 287 | 63.08 328 | 85.51 116 |
|
| TAPA-MVS | | 59.36 10 | 66.60 211 | 65.20 217 | 70.81 200 | 76.63 221 | 48.75 236 | 76.52 178 | 80.04 146 | 50.64 272 | 65.24 216 | 84.93 139 | 39.15 240 | 78.54 246 | 36.77 340 | 76.88 169 | 85.14 134 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| TR-MVS | | | 66.59 213 | 65.07 218 | 71.17 194 | 79.18 140 | 49.63 224 | 73.48 241 | 75.20 233 | 52.95 242 | 67.90 158 | 80.33 237 | 39.81 232 | 83.68 141 | 43.20 301 | 73.56 205 | 80.20 255 |
|
| CP-MVSNet | | | 66.49 214 | 66.41 195 | 66.72 256 | 77.67 191 | 36.33 360 | 76.83 173 | 79.52 153 | 62.45 63 | 62.54 260 | 83.47 173 | 46.32 162 | 78.37 247 | 45.47 282 | 63.43 325 | 85.45 121 |
|
| PS-CasMVS | | | 66.42 215 | 66.32 199 | 66.70 258 | 77.60 199 | 36.30 362 | 76.94 168 | 79.61 151 | 62.36 65 | 62.43 264 | 83.66 167 | 45.69 166 | 78.37 247 | 45.35 284 | 63.26 326 | 85.42 124 |
|
| FMVSNet3 | | | 66.32 216 | 65.61 211 | 68.46 239 | 76.48 225 | 42.34 302 | 74.98 212 | 77.15 203 | 55.83 191 | 65.04 221 | 81.16 219 | 39.91 229 | 80.14 223 | 47.18 262 | 72.76 219 | 82.90 206 |
|
| ACMH+ | | 57.40 11 | 66.12 217 | 64.06 224 | 72.30 165 | 77.79 185 | 52.83 172 | 80.39 97 | 78.03 187 | 57.30 161 | 57.47 316 | 82.55 187 | 27.68 351 | 84.17 130 | 45.54 278 | 69.78 264 | 79.90 261 |
|
| cascas | | | 65.98 218 | 63.42 235 | 73.64 131 | 77.26 207 | 52.58 177 | 72.26 259 | 77.21 202 | 48.56 297 | 61.21 277 | 74.60 329 | 32.57 318 | 85.82 95 | 50.38 235 | 76.75 171 | 82.52 212 |
|
| FE-MVS | | | 65.91 219 | 63.33 237 | 73.63 132 | 77.36 205 | 51.95 190 | 72.62 252 | 75.81 218 | 53.70 236 | 65.31 210 | 78.96 262 | 28.81 344 | 86.39 82 | 43.93 292 | 73.48 207 | 82.55 210 |
|
| thisisatest0515 | | | 65.83 220 | 63.50 234 | 72.82 154 | 73.75 267 | 49.50 225 | 71.32 270 | 73.12 261 | 49.39 287 | 63.82 238 | 76.50 307 | 34.95 283 | 84.84 121 | 53.20 213 | 75.49 185 | 84.13 165 |
|
| DP-MVS | | | 65.68 221 | 63.66 232 | 71.75 174 | 84.93 55 | 56.87 102 | 80.74 95 | 73.16 259 | 53.06 241 | 59.09 301 | 82.35 193 | 36.79 269 | 85.94 92 | 32.82 363 | 69.96 260 | 72.45 346 |
|
| HyFIR lowres test | | | 65.67 222 | 63.01 242 | 73.67 128 | 79.97 124 | 55.65 122 | 69.07 299 | 75.52 224 | 42.68 358 | 63.53 241 | 77.95 276 | 40.43 226 | 81.64 185 | 46.01 272 | 71.91 231 | 83.73 182 |
|
| DTE-MVSNet | | | 65.58 223 | 65.34 214 | 66.31 265 | 76.06 231 | 34.79 370 | 76.43 179 | 79.38 156 | 62.55 61 | 61.66 272 | 83.83 164 | 45.60 168 | 79.15 237 | 41.64 316 | 60.88 343 | 85.00 140 |
|
| GA-MVS | | | 65.53 224 | 63.70 231 | 71.02 198 | 70.87 314 | 48.10 244 | 70.48 284 | 74.40 244 | 56.69 169 | 64.70 227 | 76.77 298 | 33.66 299 | 81.10 198 | 55.42 194 | 70.32 252 | 83.87 174 |
|
| CNLPA | | | 65.43 225 | 64.02 225 | 69.68 221 | 78.73 153 | 58.07 81 | 77.82 145 | 70.71 278 | 51.49 259 | 61.57 274 | 83.58 170 | 38.23 251 | 70.82 312 | 43.90 293 | 70.10 257 | 80.16 256 |
|
| MVP-Stereo | | | 65.41 226 | 63.80 229 | 70.22 209 | 77.62 197 | 55.53 127 | 76.30 181 | 78.53 174 | 50.59 273 | 56.47 326 | 78.65 267 | 39.84 231 | 82.68 166 | 44.10 291 | 72.12 230 | 72.44 347 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| IB-MVS | | 56.42 12 | 65.40 227 | 62.73 246 | 73.40 142 | 74.89 246 | 52.78 173 | 73.09 246 | 75.13 234 | 55.69 195 | 58.48 309 | 73.73 335 | 32.86 308 | 86.32 85 | 50.63 233 | 70.11 256 | 81.10 241 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test2506 | | | 65.33 228 | 64.61 221 | 67.50 248 | 79.46 133 | 34.19 378 | 74.43 225 | 51.92 384 | 58.72 134 | 66.75 184 | 88.05 69 | 25.99 365 | 80.92 204 | 51.94 222 | 84.25 72 | 87.39 50 |
|
| pm-mvs1 | | | 65.24 229 | 64.97 219 | 66.04 273 | 72.38 289 | 39.40 330 | 72.62 252 | 75.63 221 | 55.53 199 | 62.35 266 | 83.18 177 | 47.45 147 | 76.47 284 | 49.06 247 | 66.54 299 | 82.24 218 |
|
| ACMH | | 55.70 15 | 65.20 230 | 63.57 233 | 70.07 213 | 78.07 176 | 52.01 189 | 79.48 116 | 79.69 148 | 55.75 194 | 56.59 323 | 80.98 224 | 27.12 356 | 80.94 202 | 42.90 305 | 71.58 235 | 77.25 297 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PLC |  | 56.13 14 | 65.09 231 | 63.21 240 | 70.72 203 | 81.04 103 | 54.87 137 | 78.57 127 | 77.47 196 | 48.51 299 | 55.71 329 | 81.89 206 | 33.71 297 | 79.71 224 | 41.66 314 | 70.37 249 | 77.58 290 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 1792x2688 | | | 65.08 232 | 62.84 244 | 71.82 172 | 81.49 93 | 56.26 108 | 66.32 316 | 74.20 250 | 40.53 370 | 63.16 247 | 78.65 267 | 41.30 217 | 77.80 257 | 45.80 274 | 74.09 194 | 81.40 232 |
|
| TransMVSNet (Re) | | | 64.72 233 | 64.33 223 | 65.87 277 | 75.22 243 | 38.56 336 | 74.66 220 | 75.08 238 | 58.90 132 | 61.79 270 | 82.63 184 | 51.18 100 | 78.07 252 | 43.63 297 | 55.87 366 | 80.99 244 |
|
| EG-PatchMatch MVS | | | 64.71 234 | 62.87 243 | 70.22 209 | 77.68 190 | 53.48 157 | 77.99 139 | 78.82 164 | 53.37 240 | 56.03 328 | 77.41 290 | 24.75 373 | 84.04 133 | 46.37 269 | 73.42 209 | 73.14 338 |
|
| LS3D | | | 64.71 234 | 62.50 248 | 71.34 189 | 79.72 128 | 55.71 120 | 79.82 107 | 74.72 240 | 48.50 300 | 56.62 322 | 84.62 146 | 33.59 300 | 82.34 175 | 29.65 384 | 75.23 186 | 75.97 309 |
|
| 1314 | | | 64.61 236 | 63.21 240 | 68.80 235 | 71.87 298 | 47.46 253 | 73.95 232 | 78.39 184 | 42.88 357 | 59.97 288 | 76.60 304 | 38.11 252 | 79.39 230 | 54.84 197 | 72.32 226 | 79.55 267 |
|
| HY-MVS | | 56.14 13 | 64.55 237 | 63.89 226 | 66.55 261 | 74.73 252 | 41.02 314 | 69.96 291 | 74.43 243 | 49.29 289 | 61.66 272 | 80.92 226 | 47.43 148 | 76.68 280 | 44.91 286 | 71.69 233 | 81.94 223 |
|
| testing91 | | | 64.46 238 | 63.80 229 | 66.47 262 | 78.43 161 | 40.06 322 | 67.63 307 | 69.59 288 | 59.06 129 | 63.18 246 | 78.05 274 | 34.05 291 | 76.99 271 | 48.30 253 | 75.87 179 | 82.37 216 |
|
| sd_testset | | | 64.46 238 | 64.45 222 | 64.51 291 | 77.13 209 | 42.25 304 | 62.67 344 | 72.11 268 | 58.02 150 | 65.08 219 | 82.55 187 | 41.22 221 | 69.88 320 | 47.32 260 | 73.92 197 | 81.41 230 |
|
| XVG-ACMP-BASELINE | | | 64.36 240 | 62.23 251 | 70.74 202 | 72.35 290 | 52.45 181 | 70.80 280 | 78.45 179 | 53.84 235 | 59.87 290 | 81.10 221 | 16.24 392 | 79.32 231 | 55.64 192 | 71.76 232 | 80.47 250 |
|
| MonoMVSNet | | | 64.15 241 | 63.31 238 | 66.69 259 | 70.51 319 | 44.12 287 | 74.47 223 | 74.21 249 | 57.81 157 | 63.03 249 | 76.62 301 | 38.33 248 | 77.31 265 | 54.22 203 | 60.59 348 | 78.64 277 |
|
| testing99 | | | 64.05 242 | 63.29 239 | 66.34 264 | 78.17 173 | 39.76 326 | 67.33 312 | 68.00 302 | 58.60 138 | 63.03 249 | 78.10 273 | 32.57 318 | 76.94 273 | 48.22 254 | 75.58 183 | 82.34 217 |
|
| CostFormer | | | 64.04 243 | 62.51 247 | 68.61 238 | 71.88 297 | 45.77 267 | 71.30 271 | 70.60 279 | 47.55 313 | 64.31 232 | 76.61 303 | 41.63 212 | 79.62 227 | 49.74 239 | 69.00 278 | 80.42 251 |
|
| 1112_ss | | | 64.00 244 | 63.36 236 | 65.93 275 | 79.28 136 | 42.58 301 | 71.35 269 | 72.36 266 | 46.41 325 | 60.55 282 | 77.89 280 | 46.27 164 | 73.28 300 | 46.18 270 | 69.97 259 | 81.92 224 |
|
| baseline1 | | | 63.81 245 | 63.87 228 | 63.62 296 | 76.29 227 | 36.36 358 | 71.78 266 | 67.29 306 | 56.05 188 | 64.23 235 | 82.95 179 | 47.11 153 | 74.41 296 | 47.30 261 | 61.85 337 | 80.10 258 |
|
| pmmvs6 | | | 63.69 246 | 62.82 245 | 66.27 267 | 70.63 316 | 39.27 331 | 73.13 245 | 75.47 226 | 52.69 246 | 59.75 294 | 82.30 195 | 39.71 233 | 77.03 270 | 47.40 259 | 64.35 317 | 82.53 211 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 246 | 63.88 227 | 63.14 301 | 74.75 251 | 31.04 392 | 71.16 274 | 63.64 334 | 56.32 181 | 59.80 292 | 84.99 138 | 44.51 184 | 75.46 291 | 39.12 326 | 80.62 109 | 82.92 204 |
|
| baseline2 | | | 63.42 248 | 61.26 264 | 69.89 219 | 72.55 284 | 47.62 251 | 71.54 267 | 68.38 299 | 50.11 277 | 54.82 340 | 75.55 319 | 43.06 197 | 80.96 201 | 48.13 255 | 67.16 295 | 81.11 240 |
|
| thres400 | | | 63.31 249 | 62.18 252 | 66.72 256 | 76.85 216 | 39.62 327 | 71.96 264 | 69.44 291 | 56.63 171 | 62.61 258 | 79.83 244 | 37.18 261 | 79.17 234 | 31.84 369 | 73.25 212 | 81.36 233 |
|
| thres600view7 | | | 63.30 250 | 62.27 250 | 66.41 263 | 77.18 208 | 38.87 333 | 72.35 257 | 69.11 295 | 56.98 166 | 62.37 265 | 80.96 225 | 37.01 267 | 79.00 243 | 31.43 376 | 73.05 216 | 81.36 233 |
|
| thres100view900 | | | 63.28 251 | 62.41 249 | 65.89 276 | 77.31 206 | 38.66 335 | 72.65 250 | 69.11 295 | 57.07 164 | 62.45 263 | 81.03 223 | 37.01 267 | 79.17 234 | 31.84 369 | 73.25 212 | 79.83 263 |
|
| test_0402 | | | 63.25 252 | 61.01 268 | 69.96 214 | 80.00 123 | 54.37 143 | 76.86 172 | 72.02 269 | 54.58 224 | 58.71 304 | 80.79 231 | 35.00 282 | 84.36 128 | 26.41 396 | 64.71 312 | 71.15 365 |
|
| tfpn200view9 | | | 63.18 253 | 62.18 252 | 66.21 268 | 76.85 216 | 39.62 327 | 71.96 264 | 69.44 291 | 56.63 171 | 62.61 258 | 79.83 244 | 37.18 261 | 79.17 234 | 31.84 369 | 73.25 212 | 79.83 263 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 254 | 61.23 265 | 68.92 234 | 76.57 223 | 47.80 247 | 59.92 360 | 76.39 211 | 54.35 228 | 58.67 305 | 82.46 192 | 29.44 339 | 81.49 189 | 42.12 309 | 71.14 239 | 77.46 291 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| F-COLMAP | | | 63.05 255 | 60.87 271 | 69.58 225 | 76.99 215 | 53.63 154 | 78.12 136 | 76.16 213 | 47.97 308 | 52.41 359 | 81.61 212 | 27.87 349 | 78.11 251 | 40.07 320 | 66.66 298 | 77.00 300 |
|
| testing11 | | | 62.81 256 | 61.90 255 | 65.54 280 | 78.38 162 | 40.76 319 | 67.59 309 | 66.78 311 | 55.48 200 | 60.13 284 | 77.11 292 | 31.67 324 | 76.79 276 | 45.53 279 | 74.45 190 | 79.06 272 |
|
| IterMVS | | | 62.79 257 | 61.27 263 | 67.35 252 | 69.37 338 | 52.04 188 | 71.17 273 | 68.24 301 | 52.63 247 | 59.82 291 | 76.91 296 | 37.32 260 | 72.36 303 | 52.80 215 | 63.19 327 | 77.66 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| reproduce_monomvs | | | 62.56 258 | 61.20 266 | 66.62 260 | 70.62 317 | 44.30 284 | 70.13 289 | 73.13 260 | 54.78 219 | 61.13 278 | 76.37 308 | 25.63 368 | 75.63 290 | 58.75 169 | 60.29 349 | 79.93 260 |
|
| IterMVS-SCA-FT | | | 62.49 259 | 61.52 259 | 65.40 283 | 71.99 296 | 50.80 201 | 71.15 275 | 69.63 287 | 45.71 333 | 60.61 281 | 77.93 277 | 37.45 257 | 65.99 344 | 55.67 190 | 63.50 324 | 79.42 269 |
|
| tfpnnormal | | | 62.47 260 | 61.63 258 | 64.99 288 | 74.81 250 | 39.01 332 | 71.22 272 | 73.72 254 | 55.22 207 | 60.21 283 | 80.09 242 | 41.26 220 | 76.98 272 | 30.02 382 | 68.09 287 | 78.97 275 |
|
| MS-PatchMatch | | | 62.42 261 | 61.46 260 | 65.31 285 | 75.21 244 | 52.10 185 | 72.05 261 | 74.05 251 | 46.41 325 | 57.42 318 | 74.36 330 | 34.35 289 | 77.57 261 | 45.62 277 | 73.67 201 | 66.26 384 |
|
| Test_1112_low_res | | | 62.32 262 | 61.77 256 | 64.00 295 | 79.08 144 | 39.53 329 | 68.17 303 | 70.17 281 | 43.25 353 | 59.03 302 | 79.90 243 | 44.08 188 | 71.24 311 | 43.79 295 | 68.42 285 | 81.25 236 |
|
| D2MVS | | | 62.30 263 | 60.29 274 | 68.34 242 | 66.46 360 | 48.42 241 | 65.70 320 | 73.42 256 | 47.71 311 | 58.16 311 | 75.02 325 | 30.51 328 | 77.71 259 | 53.96 206 | 71.68 234 | 78.90 276 |
|
| testing222 | | | 62.29 264 | 61.31 262 | 65.25 286 | 77.87 182 | 38.53 337 | 68.34 302 | 66.31 315 | 56.37 180 | 63.15 248 | 77.58 288 | 28.47 345 | 76.18 289 | 37.04 338 | 76.65 173 | 81.05 243 |
|
| thres200 | | | 62.20 265 | 61.16 267 | 65.34 284 | 75.38 242 | 39.99 323 | 69.60 294 | 69.29 293 | 55.64 198 | 61.87 269 | 76.99 294 | 37.07 266 | 78.96 244 | 31.28 377 | 73.28 211 | 77.06 298 |
|
| tpm2 | | | 62.07 266 | 60.10 275 | 67.99 244 | 72.79 279 | 43.86 289 | 71.05 278 | 66.85 310 | 43.14 355 | 62.77 253 | 75.39 323 | 38.32 249 | 80.80 207 | 41.69 313 | 68.88 279 | 79.32 270 |
|
| miper_lstm_enhance | | | 62.03 267 | 60.88 270 | 65.49 282 | 66.71 357 | 46.25 262 | 56.29 378 | 75.70 220 | 50.68 270 | 61.27 276 | 75.48 321 | 40.21 227 | 68.03 329 | 56.31 183 | 65.25 308 | 82.18 219 |
|
| EPNet_dtu | | | 61.90 268 | 61.97 254 | 61.68 309 | 72.89 278 | 39.78 325 | 75.85 193 | 65.62 319 | 55.09 210 | 54.56 344 | 79.36 257 | 37.59 256 | 67.02 338 | 39.80 323 | 76.95 168 | 78.25 280 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| LCM-MVSNet-Re | | | 61.88 269 | 61.35 261 | 63.46 297 | 74.58 256 | 31.48 391 | 61.42 351 | 58.14 362 | 58.71 136 | 53.02 358 | 79.55 252 | 43.07 196 | 76.80 275 | 45.69 275 | 77.96 151 | 82.11 222 |
|
| MSDG | | | 61.81 270 | 59.23 280 | 69.55 226 | 72.64 281 | 52.63 176 | 70.45 285 | 75.81 218 | 51.38 261 | 53.70 351 | 76.11 310 | 29.52 337 | 81.08 200 | 37.70 333 | 65.79 305 | 74.93 323 |
|
| SixPastTwentyTwo | | | 61.65 271 | 58.80 286 | 70.20 211 | 75.80 233 | 47.22 255 | 75.59 197 | 69.68 286 | 54.61 222 | 54.11 348 | 79.26 259 | 27.07 357 | 82.96 154 | 43.27 299 | 49.79 384 | 80.41 252 |
|
| CL-MVSNet_self_test | | | 61.53 272 | 60.94 269 | 63.30 299 | 68.95 342 | 36.93 354 | 67.60 308 | 72.80 263 | 55.67 196 | 59.95 289 | 76.63 300 | 45.01 180 | 72.22 306 | 39.74 324 | 62.09 336 | 80.74 248 |
|
| RPMNet | | | 61.53 272 | 58.42 289 | 70.86 199 | 69.96 329 | 52.07 186 | 65.31 329 | 81.36 115 | 43.20 354 | 59.36 297 | 70.15 362 | 35.37 278 | 85.47 105 | 36.42 347 | 64.65 313 | 75.06 319 |
|
| pmmvs4 | | | 61.48 274 | 59.39 279 | 67.76 246 | 71.57 301 | 53.86 148 | 71.42 268 | 65.34 320 | 44.20 344 | 59.46 296 | 77.92 278 | 35.90 274 | 74.71 294 | 43.87 294 | 64.87 311 | 74.71 328 |
|
| OurMVSNet-221017-0 | | | 61.37 275 | 58.63 288 | 69.61 222 | 72.05 295 | 48.06 245 | 73.93 234 | 72.51 264 | 47.23 319 | 54.74 341 | 80.92 226 | 21.49 383 | 81.24 195 | 48.57 251 | 56.22 365 | 79.53 268 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 276 | 58.81 284 | 68.64 237 | 74.63 255 | 52.51 179 | 78.42 130 | 73.30 257 | 49.92 281 | 50.96 364 | 81.51 215 | 23.06 376 | 79.40 229 | 31.63 373 | 65.85 303 | 74.01 335 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| XXY-MVS | | | 60.68 277 | 61.67 257 | 57.70 339 | 70.43 321 | 38.45 338 | 64.19 337 | 66.47 312 | 48.05 307 | 63.22 244 | 80.86 228 | 49.28 121 | 60.47 361 | 45.25 285 | 67.28 294 | 74.19 333 |
|
| WBMVS | | | 60.54 278 | 60.61 272 | 60.34 319 | 78.00 179 | 35.95 365 | 64.55 335 | 64.89 323 | 49.63 283 | 63.39 243 | 78.70 264 | 33.85 296 | 67.65 332 | 42.10 310 | 70.35 251 | 77.43 292 |
|
| SCA | | | 60.49 279 | 58.38 290 | 66.80 255 | 74.14 266 | 48.06 245 | 63.35 341 | 63.23 337 | 49.13 291 | 59.33 300 | 72.10 345 | 37.45 257 | 74.27 297 | 44.17 288 | 62.57 331 | 78.05 283 |
|
| K. test v3 | | | 60.47 280 | 57.11 298 | 70.56 205 | 73.74 268 | 48.22 243 | 75.10 209 | 62.55 341 | 58.27 145 | 53.62 354 | 76.31 309 | 27.81 350 | 81.59 187 | 47.42 258 | 39.18 399 | 81.88 225 |
|
| mmtdpeth | | | 60.40 281 | 59.12 282 | 64.27 294 | 69.59 334 | 48.99 232 | 70.67 281 | 70.06 283 | 54.96 216 | 62.78 252 | 73.26 339 | 27.00 358 | 67.66 331 | 58.44 172 | 45.29 391 | 76.16 308 |
|
| UWE-MVS | | | 60.18 282 | 59.78 276 | 61.39 314 | 77.67 191 | 33.92 381 | 69.04 300 | 63.82 332 | 48.56 297 | 64.27 233 | 77.64 287 | 27.20 355 | 70.40 317 | 33.56 360 | 76.24 175 | 79.83 263 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 283 | 58.14 293 | 65.69 279 | 70.47 320 | 44.82 277 | 75.33 201 | 70.86 277 | 45.04 336 | 56.06 327 | 76.00 311 | 26.89 360 | 79.65 225 | 35.36 352 | 67.29 293 | 72.60 343 |
|
| CR-MVSNet | | | 59.91 284 | 57.90 296 | 65.96 274 | 69.96 329 | 52.07 186 | 65.31 329 | 63.15 338 | 42.48 359 | 59.36 297 | 74.84 326 | 35.83 275 | 70.75 313 | 45.50 280 | 64.65 313 | 75.06 319 |
|
| PatchmatchNet |  | | 59.84 285 | 58.24 291 | 64.65 290 | 73.05 275 | 46.70 259 | 69.42 296 | 62.18 347 | 47.55 313 | 58.88 303 | 71.96 347 | 34.49 287 | 69.16 322 | 42.99 303 | 63.60 322 | 78.07 282 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| WTY-MVS | | | 59.75 286 | 60.39 273 | 57.85 337 | 72.32 291 | 37.83 343 | 61.05 356 | 64.18 330 | 45.95 332 | 61.91 268 | 79.11 261 | 47.01 157 | 60.88 360 | 42.50 307 | 69.49 270 | 74.83 324 |
|
| WB-MVSnew | | | 59.66 287 | 59.69 277 | 59.56 321 | 75.19 245 | 35.78 367 | 69.34 297 | 64.28 329 | 46.88 322 | 61.76 271 | 75.79 315 | 40.61 225 | 65.20 347 | 32.16 365 | 71.21 238 | 77.70 288 |
|
| CVMVSNet | | | 59.63 288 | 59.14 281 | 61.08 317 | 74.47 258 | 38.84 334 | 75.20 205 | 68.74 297 | 31.15 390 | 58.24 310 | 76.51 305 | 32.39 320 | 68.58 325 | 49.77 238 | 65.84 304 | 75.81 311 |
|
| UBG | | | 59.62 289 | 59.53 278 | 59.89 320 | 78.12 174 | 35.92 366 | 64.11 339 | 60.81 354 | 49.45 286 | 61.34 275 | 75.55 319 | 33.05 304 | 67.39 336 | 38.68 328 | 74.62 188 | 76.35 307 |
|
| ETVMVS | | | 59.51 290 | 58.81 284 | 61.58 311 | 77.46 202 | 34.87 369 | 64.94 333 | 59.35 357 | 54.06 232 | 61.08 279 | 76.67 299 | 29.54 336 | 71.87 308 | 32.16 365 | 74.07 195 | 78.01 287 |
|
| tpm cat1 | | | 59.25 291 | 56.95 301 | 66.15 270 | 72.19 293 | 46.96 257 | 68.09 304 | 65.76 317 | 40.03 374 | 57.81 314 | 70.56 357 | 38.32 249 | 74.51 295 | 38.26 331 | 61.50 340 | 77.00 300 |
|
| test_vis1_n_1920 | | | 58.86 292 | 59.06 283 | 58.25 332 | 63.76 372 | 43.14 297 | 67.49 310 | 66.36 314 | 40.22 372 | 65.89 201 | 71.95 348 | 31.04 325 | 59.75 366 | 59.94 160 | 64.90 310 | 71.85 355 |
|
| pmmvs-eth3d | | | 58.81 293 | 56.31 308 | 66.30 266 | 67.61 351 | 52.42 182 | 72.30 258 | 64.76 325 | 43.55 350 | 54.94 339 | 74.19 332 | 28.95 341 | 72.60 302 | 43.31 298 | 57.21 360 | 73.88 336 |
|
| tpmvs | | | 58.47 294 | 56.95 301 | 63.03 303 | 70.20 324 | 41.21 313 | 67.90 306 | 67.23 307 | 49.62 284 | 54.73 342 | 70.84 355 | 34.14 290 | 76.24 287 | 36.64 344 | 61.29 341 | 71.64 357 |
|
| PVSNet | | 50.76 19 | 58.40 295 | 57.39 297 | 61.42 312 | 75.53 239 | 44.04 288 | 61.43 350 | 63.45 335 | 47.04 321 | 56.91 320 | 73.61 336 | 27.00 358 | 64.76 348 | 39.12 326 | 72.40 224 | 75.47 316 |
|
| tpmrst | | | 58.24 296 | 58.70 287 | 56.84 341 | 66.97 354 | 34.32 376 | 69.57 295 | 61.14 352 | 47.17 320 | 58.58 308 | 71.60 350 | 41.28 219 | 60.41 362 | 49.20 245 | 62.84 329 | 75.78 312 |
|
| Patchmatch-RL test | | | 58.16 297 | 55.49 314 | 66.15 270 | 67.92 350 | 48.89 235 | 60.66 358 | 51.07 388 | 47.86 310 | 59.36 297 | 62.71 392 | 34.02 293 | 72.27 305 | 56.41 182 | 59.40 352 | 77.30 294 |
|
| test-LLR | | | 58.15 298 | 58.13 294 | 58.22 333 | 68.57 344 | 44.80 278 | 65.46 325 | 57.92 363 | 50.08 278 | 55.44 332 | 69.82 364 | 32.62 315 | 57.44 377 | 49.66 241 | 73.62 202 | 72.41 348 |
|
| ppachtmachnet_test | | | 58.06 299 | 55.38 315 | 66.10 272 | 69.51 335 | 48.99 232 | 68.01 305 | 66.13 316 | 44.50 341 | 54.05 349 | 70.74 356 | 32.09 322 | 72.34 304 | 36.68 343 | 56.71 364 | 76.99 302 |
|
| gg-mvs-nofinetune | | | 57.86 300 | 56.43 307 | 62.18 307 | 72.62 282 | 35.35 368 | 66.57 313 | 56.33 372 | 50.65 271 | 57.64 315 | 57.10 398 | 30.65 327 | 76.36 285 | 37.38 335 | 78.88 137 | 74.82 325 |
|
| CMPMVS |  | 42.80 21 | 57.81 301 | 55.97 310 | 63.32 298 | 60.98 388 | 47.38 254 | 64.66 334 | 69.50 290 | 32.06 388 | 46.83 381 | 77.80 282 | 29.50 338 | 71.36 310 | 48.68 249 | 73.75 200 | 71.21 364 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet | | | 57.35 302 | 57.07 299 | 58.22 333 | 74.21 265 | 37.18 349 | 62.46 345 | 60.88 353 | 48.88 294 | 55.29 335 | 75.99 313 | 31.68 323 | 62.04 357 | 31.87 368 | 72.35 225 | 75.43 317 |
|
| tpm | | | 57.34 303 | 58.16 292 | 54.86 351 | 71.80 299 | 34.77 371 | 67.47 311 | 56.04 375 | 48.20 304 | 60.10 285 | 76.92 295 | 37.17 263 | 53.41 394 | 40.76 318 | 65.01 309 | 76.40 306 |
|
| Patchmtry | | | 57.16 304 | 56.47 306 | 59.23 324 | 69.17 341 | 34.58 374 | 62.98 342 | 63.15 338 | 44.53 340 | 56.83 321 | 74.84 326 | 35.83 275 | 68.71 324 | 40.03 321 | 60.91 342 | 74.39 331 |
|
| AllTest | | | 57.08 305 | 54.65 319 | 64.39 292 | 71.44 303 | 49.03 229 | 69.92 292 | 67.30 304 | 45.97 330 | 47.16 379 | 79.77 246 | 17.47 386 | 67.56 334 | 33.65 357 | 59.16 353 | 76.57 304 |
|
| test_cas_vis1_n_1920 | | | 56.91 306 | 56.71 304 | 57.51 340 | 59.13 394 | 45.40 274 | 63.58 340 | 61.29 351 | 36.24 382 | 67.14 177 | 71.85 349 | 29.89 334 | 56.69 381 | 57.65 175 | 63.58 323 | 70.46 369 |
|
| mamv4 | | | 56.85 307 | 58.00 295 | 53.43 361 | 72.46 288 | 54.47 140 | 57.56 373 | 54.74 376 | 38.81 378 | 57.42 318 | 79.45 255 | 47.57 144 | 38.70 413 | 60.88 152 | 53.07 374 | 67.11 383 |
|
| dmvs_re | | | 56.77 308 | 56.83 303 | 56.61 342 | 69.23 339 | 41.02 314 | 58.37 365 | 64.18 330 | 50.59 273 | 57.45 317 | 71.42 351 | 35.54 277 | 58.94 371 | 37.23 336 | 67.45 292 | 69.87 374 |
|
| testing3 | | | 56.54 309 | 55.92 311 | 58.41 331 | 77.52 200 | 27.93 401 | 69.72 293 | 56.36 371 | 54.75 221 | 58.63 307 | 77.80 282 | 20.88 384 | 71.75 309 | 25.31 398 | 62.25 334 | 75.53 315 |
|
| our_test_3 | | | 56.49 310 | 54.42 322 | 62.68 305 | 69.51 335 | 45.48 273 | 66.08 317 | 61.49 350 | 44.11 347 | 50.73 368 | 69.60 367 | 33.05 304 | 68.15 326 | 38.38 330 | 56.86 361 | 74.40 330 |
|
| pmmvs5 | | | 56.47 311 | 55.68 313 | 58.86 328 | 61.41 384 | 36.71 356 | 66.37 315 | 62.75 340 | 40.38 371 | 53.70 351 | 76.62 301 | 34.56 285 | 67.05 337 | 40.02 322 | 65.27 307 | 72.83 341 |
|
| test-mter | | | 56.42 312 | 55.82 312 | 58.22 333 | 68.57 344 | 44.80 278 | 65.46 325 | 57.92 363 | 39.94 375 | 55.44 332 | 69.82 364 | 21.92 379 | 57.44 377 | 49.66 241 | 73.62 202 | 72.41 348 |
|
| USDC | | | 56.35 313 | 54.24 326 | 62.69 304 | 64.74 368 | 40.31 320 | 65.05 331 | 73.83 253 | 43.93 348 | 47.58 377 | 77.71 286 | 15.36 395 | 75.05 293 | 38.19 332 | 61.81 338 | 72.70 342 |
|
| PatchMatch-RL | | | 56.25 314 | 54.55 321 | 61.32 315 | 77.06 212 | 56.07 112 | 65.57 322 | 54.10 381 | 44.13 346 | 53.49 357 | 71.27 354 | 25.20 370 | 66.78 339 | 36.52 346 | 63.66 321 | 61.12 388 |
|
| sss | | | 56.17 315 | 56.57 305 | 54.96 350 | 66.93 355 | 36.32 361 | 57.94 368 | 61.69 349 | 41.67 362 | 58.64 306 | 75.32 324 | 38.72 244 | 56.25 384 | 42.04 311 | 66.19 302 | 72.31 351 |
|
| Syy-MVS | | | 56.00 316 | 56.23 309 | 55.32 348 | 74.69 253 | 26.44 407 | 65.52 323 | 57.49 366 | 50.97 268 | 56.52 324 | 72.18 343 | 39.89 230 | 68.09 327 | 24.20 399 | 64.59 315 | 71.44 361 |
|
| FMVSNet5 | | | 55.86 317 | 54.93 317 | 58.66 330 | 71.05 312 | 36.35 359 | 64.18 338 | 62.48 342 | 46.76 323 | 50.66 369 | 74.73 328 | 25.80 366 | 64.04 350 | 33.11 361 | 65.57 306 | 75.59 314 |
|
| RPSCF | | | 55.80 318 | 54.22 327 | 60.53 318 | 65.13 367 | 42.91 300 | 64.30 336 | 57.62 365 | 36.84 381 | 58.05 313 | 82.28 196 | 28.01 348 | 56.24 385 | 37.14 337 | 58.61 355 | 82.44 215 |
|
| mvs5depth | | | 55.64 319 | 53.81 330 | 61.11 316 | 59.39 393 | 40.98 318 | 65.89 318 | 68.28 300 | 50.21 276 | 58.11 312 | 75.42 322 | 17.03 388 | 67.63 333 | 43.79 295 | 46.21 388 | 74.73 327 |
|
| EU-MVSNet | | | 55.61 320 | 54.41 323 | 59.19 326 | 65.41 366 | 33.42 383 | 72.44 256 | 71.91 270 | 28.81 392 | 51.27 362 | 73.87 334 | 24.76 372 | 69.08 323 | 43.04 302 | 58.20 356 | 75.06 319 |
|
| Anonymous20240521 | | | 55.30 321 | 54.41 323 | 57.96 336 | 60.92 390 | 41.73 309 | 71.09 277 | 71.06 276 | 41.18 365 | 48.65 375 | 73.31 337 | 16.93 389 | 59.25 368 | 42.54 306 | 64.01 318 | 72.90 340 |
|
| TESTMET0.1,1 | | | 55.28 322 | 54.90 318 | 56.42 343 | 66.56 358 | 43.67 291 | 65.46 325 | 56.27 373 | 39.18 377 | 53.83 350 | 67.44 376 | 24.21 374 | 55.46 388 | 48.04 256 | 73.11 215 | 70.13 372 |
|
| KD-MVS_self_test | | | 55.22 323 | 53.89 329 | 59.21 325 | 57.80 397 | 27.47 403 | 57.75 371 | 74.32 245 | 47.38 315 | 50.90 365 | 70.00 363 | 28.45 346 | 70.30 318 | 40.44 319 | 57.92 357 | 79.87 262 |
|
| MIMVSNet1 | | | 55.17 324 | 54.31 325 | 57.77 338 | 70.03 328 | 32.01 389 | 65.68 321 | 64.81 324 | 49.19 290 | 46.75 382 | 76.00 311 | 25.53 369 | 64.04 350 | 28.65 387 | 62.13 335 | 77.26 296 |
|
| Anonymous20231206 | | | 55.10 325 | 55.30 316 | 54.48 353 | 69.81 333 | 33.94 380 | 62.91 343 | 62.13 348 | 41.08 366 | 55.18 336 | 75.65 317 | 32.75 312 | 56.59 383 | 30.32 381 | 67.86 288 | 72.91 339 |
|
| myMVS_eth3d | | | 54.86 326 | 54.61 320 | 55.61 347 | 74.69 253 | 27.31 404 | 65.52 323 | 57.49 366 | 50.97 268 | 56.52 324 | 72.18 343 | 21.87 382 | 68.09 327 | 27.70 390 | 64.59 315 | 71.44 361 |
|
| TinyColmap | | | 54.14 327 | 51.72 338 | 61.40 313 | 66.84 356 | 41.97 306 | 66.52 314 | 68.51 298 | 44.81 337 | 42.69 393 | 75.77 316 | 11.66 402 | 72.94 301 | 31.96 367 | 56.77 363 | 69.27 378 |
|
| EPMVS | | | 53.96 328 | 53.69 331 | 54.79 352 | 66.12 363 | 31.96 390 | 62.34 347 | 49.05 392 | 44.42 343 | 55.54 330 | 71.33 353 | 30.22 331 | 56.70 380 | 41.65 315 | 62.54 332 | 75.71 313 |
|
| PMMVS | | | 53.96 328 | 53.26 334 | 56.04 344 | 62.60 379 | 50.92 198 | 61.17 354 | 56.09 374 | 32.81 387 | 53.51 356 | 66.84 381 | 34.04 292 | 59.93 365 | 44.14 290 | 68.18 286 | 57.27 396 |
|
| test20.03 | | | 53.87 330 | 54.02 328 | 53.41 362 | 61.47 383 | 28.11 400 | 61.30 352 | 59.21 358 | 51.34 263 | 52.09 360 | 77.43 289 | 33.29 303 | 58.55 373 | 29.76 383 | 60.27 350 | 73.58 337 |
|
| MDA-MVSNet-bldmvs | | | 53.87 330 | 50.81 342 | 63.05 302 | 66.25 361 | 48.58 239 | 56.93 376 | 63.82 332 | 48.09 306 | 41.22 394 | 70.48 360 | 30.34 330 | 68.00 330 | 34.24 355 | 45.92 390 | 72.57 344 |
|
| KD-MVS_2432*1600 | | | 53.45 332 | 51.50 340 | 59.30 322 | 62.82 376 | 37.14 350 | 55.33 379 | 71.79 271 | 47.34 317 | 55.09 337 | 70.52 358 | 21.91 380 | 70.45 315 | 35.72 350 | 42.97 394 | 70.31 370 |
|
| miper_refine_blended | | | 53.45 332 | 51.50 340 | 59.30 322 | 62.82 376 | 37.14 350 | 55.33 379 | 71.79 271 | 47.34 317 | 55.09 337 | 70.52 358 | 21.91 380 | 70.45 315 | 35.72 350 | 42.97 394 | 70.31 370 |
|
| TDRefinement | | | 53.44 334 | 50.72 343 | 61.60 310 | 64.31 371 | 46.96 257 | 70.89 279 | 65.27 322 | 41.78 360 | 44.61 388 | 77.98 275 | 11.52 404 | 66.36 342 | 28.57 388 | 51.59 378 | 71.49 360 |
|
| test0.0.03 1 | | | 53.32 335 | 53.59 332 | 52.50 368 | 62.81 378 | 29.45 395 | 59.51 361 | 54.11 380 | 50.08 278 | 54.40 346 | 74.31 331 | 32.62 315 | 55.92 386 | 30.50 380 | 63.95 320 | 72.15 353 |
|
| PatchT | | | 53.17 336 | 53.44 333 | 52.33 369 | 68.29 348 | 25.34 411 | 58.21 366 | 54.41 379 | 44.46 342 | 54.56 344 | 69.05 370 | 33.32 302 | 60.94 359 | 36.93 339 | 61.76 339 | 70.73 368 |
|
| UnsupCasMVSNet_eth | | | 53.16 337 | 52.47 335 | 55.23 349 | 59.45 392 | 33.39 384 | 59.43 362 | 69.13 294 | 45.98 329 | 50.35 371 | 72.32 342 | 29.30 340 | 58.26 375 | 42.02 312 | 44.30 392 | 74.05 334 |
|
| PM-MVS | | | 52.33 338 | 50.19 346 | 58.75 329 | 62.10 381 | 45.14 276 | 65.75 319 | 40.38 409 | 43.60 349 | 53.52 355 | 72.65 340 | 9.16 410 | 65.87 345 | 50.41 234 | 54.18 371 | 65.24 386 |
|
| testgi | | | 51.90 339 | 52.37 336 | 50.51 374 | 60.39 391 | 23.55 414 | 58.42 364 | 58.15 361 | 49.03 292 | 51.83 361 | 79.21 260 | 22.39 377 | 55.59 387 | 29.24 386 | 62.64 330 | 72.40 350 |
|
| dp | | | 51.89 340 | 51.60 339 | 52.77 366 | 68.44 347 | 32.45 388 | 62.36 346 | 54.57 378 | 44.16 345 | 49.31 374 | 67.91 372 | 28.87 343 | 56.61 382 | 33.89 356 | 54.89 368 | 69.24 379 |
|
| JIA-IIPM | | | 51.56 341 | 47.68 355 | 63.21 300 | 64.61 369 | 50.73 202 | 47.71 398 | 58.77 360 | 42.90 356 | 48.46 376 | 51.72 402 | 24.97 371 | 70.24 319 | 36.06 349 | 53.89 372 | 68.64 380 |
|
| test_fmvs1_n | | | 51.37 342 | 50.35 345 | 54.42 355 | 52.85 401 | 37.71 345 | 61.16 355 | 51.93 383 | 28.15 394 | 63.81 239 | 69.73 366 | 13.72 396 | 53.95 392 | 51.16 229 | 60.65 346 | 71.59 358 |
|
| ADS-MVSNet2 | | | 51.33 343 | 48.76 350 | 59.07 327 | 66.02 364 | 44.60 281 | 50.90 392 | 59.76 356 | 36.90 379 | 50.74 366 | 66.18 384 | 26.38 361 | 63.11 353 | 27.17 392 | 54.76 369 | 69.50 376 |
|
| test_fmvs1 | | | 51.32 344 | 50.48 344 | 53.81 357 | 53.57 399 | 37.51 347 | 60.63 359 | 51.16 386 | 28.02 396 | 63.62 240 | 69.23 369 | 16.41 391 | 53.93 393 | 51.01 230 | 60.70 345 | 69.99 373 |
|
| YYNet1 | | | 50.73 345 | 48.96 347 | 56.03 345 | 61.10 386 | 41.78 308 | 51.94 389 | 56.44 370 | 40.94 368 | 44.84 386 | 67.80 374 | 30.08 332 | 55.08 390 | 36.77 340 | 50.71 380 | 71.22 363 |
|
| MDA-MVSNet_test_wron | | | 50.71 346 | 48.95 348 | 56.00 346 | 61.17 385 | 41.84 307 | 51.90 390 | 56.45 369 | 40.96 367 | 44.79 387 | 67.84 373 | 30.04 333 | 55.07 391 | 36.71 342 | 50.69 381 | 71.11 366 |
|
| dmvs_testset | | | 50.16 347 | 51.90 337 | 44.94 382 | 66.49 359 | 11.78 422 | 61.01 357 | 51.50 385 | 51.17 266 | 50.30 372 | 67.44 376 | 39.28 237 | 60.29 363 | 22.38 402 | 57.49 359 | 62.76 387 |
|
| UnsupCasMVSNet_bld | | | 50.07 348 | 48.87 349 | 53.66 358 | 60.97 389 | 33.67 382 | 57.62 372 | 64.56 327 | 39.47 376 | 47.38 378 | 64.02 390 | 27.47 352 | 59.32 367 | 34.69 354 | 43.68 393 | 67.98 382 |
|
| test_vis1_n | | | 49.89 349 | 48.69 351 | 53.50 360 | 53.97 398 | 37.38 348 | 61.53 349 | 47.33 399 | 28.54 393 | 59.62 295 | 67.10 380 | 13.52 397 | 52.27 397 | 49.07 246 | 57.52 358 | 70.84 367 |
|
| Patchmatch-test | | | 49.08 350 | 48.28 352 | 51.50 372 | 64.40 370 | 30.85 393 | 45.68 402 | 48.46 395 | 35.60 383 | 46.10 385 | 72.10 345 | 34.47 288 | 46.37 405 | 27.08 394 | 60.65 346 | 77.27 295 |
|
| test_fmvs2 | | | 48.69 351 | 47.49 356 | 52.29 370 | 48.63 408 | 33.06 386 | 57.76 370 | 48.05 397 | 25.71 400 | 59.76 293 | 69.60 367 | 11.57 403 | 52.23 398 | 49.45 244 | 56.86 361 | 71.58 359 |
|
| ADS-MVSNet | | | 48.48 352 | 47.77 353 | 50.63 373 | 66.02 364 | 29.92 394 | 50.90 392 | 50.87 390 | 36.90 379 | 50.74 366 | 66.18 384 | 26.38 361 | 52.47 396 | 27.17 392 | 54.76 369 | 69.50 376 |
|
| CHOSEN 280x420 | | | 47.83 353 | 46.36 357 | 52.24 371 | 67.37 353 | 49.78 219 | 38.91 410 | 43.11 407 | 35.00 384 | 43.27 392 | 63.30 391 | 28.95 341 | 49.19 401 | 36.53 345 | 60.80 344 | 57.76 395 |
|
| new-patchmatchnet | | | 47.56 354 | 47.73 354 | 47.06 377 | 58.81 395 | 9.37 425 | 48.78 396 | 59.21 358 | 43.28 352 | 44.22 389 | 68.66 371 | 25.67 367 | 57.20 379 | 31.57 375 | 49.35 385 | 74.62 329 |
|
| PVSNet_0 | | 43.31 20 | 47.46 355 | 45.64 358 | 52.92 365 | 67.60 352 | 44.65 280 | 54.06 384 | 54.64 377 | 41.59 363 | 46.15 384 | 58.75 395 | 30.99 326 | 58.66 372 | 32.18 364 | 24.81 410 | 55.46 398 |
|
| ttmdpeth | | | 45.56 356 | 42.95 361 | 53.39 363 | 52.33 404 | 29.15 396 | 57.77 369 | 48.20 396 | 31.81 389 | 49.86 373 | 77.21 291 | 8.69 411 | 59.16 369 | 27.31 391 | 33.40 406 | 71.84 356 |
|
| MVS-HIRNet | | | 45.52 357 | 44.48 359 | 48.65 376 | 68.49 346 | 34.05 379 | 59.41 363 | 44.50 404 | 27.03 397 | 37.96 404 | 50.47 406 | 26.16 364 | 64.10 349 | 26.74 395 | 59.52 351 | 47.82 405 |
|
| pmmvs3 | | | 44.92 358 | 41.95 365 | 53.86 356 | 52.58 403 | 43.55 292 | 62.11 348 | 46.90 401 | 26.05 399 | 40.63 395 | 60.19 394 | 11.08 407 | 57.91 376 | 31.83 372 | 46.15 389 | 60.11 389 |
|
| test_fmvs3 | | | 44.30 359 | 42.55 362 | 49.55 375 | 42.83 413 | 27.15 406 | 53.03 386 | 44.93 403 | 22.03 408 | 53.69 353 | 64.94 387 | 4.21 418 | 49.63 400 | 47.47 257 | 49.82 383 | 71.88 354 |
|
| WB-MVS | | | 43.26 360 | 43.41 360 | 42.83 386 | 63.32 375 | 10.32 424 | 58.17 367 | 45.20 402 | 45.42 334 | 40.44 397 | 67.26 379 | 34.01 294 | 58.98 370 | 11.96 415 | 24.88 409 | 59.20 390 |
|
| LF4IMVS | | | 42.95 361 | 42.26 363 | 45.04 380 | 48.30 409 | 32.50 387 | 54.80 381 | 48.49 394 | 28.03 395 | 40.51 396 | 70.16 361 | 9.24 409 | 43.89 408 | 31.63 373 | 49.18 386 | 58.72 392 |
|
| MVStest1 | | | 42.65 362 | 39.29 369 | 52.71 367 | 47.26 411 | 34.58 374 | 54.41 383 | 50.84 391 | 23.35 402 | 39.31 402 | 74.08 333 | 12.57 399 | 55.09 389 | 23.32 400 | 28.47 408 | 68.47 381 |
|
| EGC-MVSNET | | | 42.47 363 | 38.48 371 | 54.46 354 | 74.33 262 | 48.73 237 | 70.33 287 | 51.10 387 | 0.03 423 | 0.18 424 | 67.78 375 | 13.28 398 | 66.49 341 | 18.91 406 | 50.36 382 | 48.15 403 |
|
| FPMVS | | | 42.18 364 | 41.11 366 | 45.39 379 | 58.03 396 | 41.01 316 | 49.50 394 | 53.81 382 | 30.07 391 | 33.71 406 | 64.03 388 | 11.69 401 | 52.08 399 | 14.01 410 | 55.11 367 | 43.09 407 |
|
| SSC-MVS | | | 41.96 365 | 41.99 364 | 41.90 387 | 62.46 380 | 9.28 426 | 57.41 374 | 44.32 405 | 43.38 351 | 38.30 403 | 66.45 382 | 32.67 314 | 58.42 374 | 10.98 416 | 21.91 412 | 57.99 394 |
|
| ANet_high | | | 41.38 366 | 37.47 373 | 53.11 364 | 39.73 419 | 24.45 412 | 56.94 375 | 69.69 285 | 47.65 312 | 26.04 411 | 52.32 401 | 12.44 400 | 62.38 356 | 21.80 403 | 10.61 420 | 72.49 345 |
|
| test_vis1_rt | | | 41.35 367 | 39.45 368 | 47.03 378 | 46.65 412 | 37.86 342 | 47.76 397 | 38.65 410 | 23.10 404 | 44.21 390 | 51.22 404 | 11.20 406 | 44.08 407 | 39.27 325 | 53.02 375 | 59.14 391 |
|
| LCM-MVSNet | | | 40.30 368 | 35.88 374 | 53.57 359 | 42.24 414 | 29.15 396 | 45.21 404 | 60.53 355 | 22.23 407 | 28.02 409 | 50.98 405 | 3.72 420 | 61.78 358 | 31.22 378 | 38.76 400 | 69.78 375 |
|
| mvsany_test1 | | | 39.38 369 | 38.16 372 | 43.02 385 | 49.05 406 | 34.28 377 | 44.16 406 | 25.94 420 | 22.74 406 | 46.57 383 | 62.21 393 | 23.85 375 | 41.16 412 | 33.01 362 | 35.91 402 | 53.63 399 |
|
| N_pmnet | | | 39.35 370 | 40.28 367 | 36.54 393 | 63.76 372 | 1.62 430 | 49.37 395 | 0.76 429 | 34.62 385 | 43.61 391 | 66.38 383 | 26.25 363 | 42.57 409 | 26.02 397 | 51.77 377 | 65.44 385 |
|
| DSMNet-mixed | | | 39.30 371 | 38.72 370 | 41.03 388 | 51.22 405 | 19.66 417 | 45.53 403 | 31.35 416 | 15.83 415 | 39.80 399 | 67.42 378 | 22.19 378 | 45.13 406 | 22.43 401 | 52.69 376 | 58.31 393 |
|
| APD_test1 | | | 37.39 372 | 34.94 375 | 44.72 383 | 48.88 407 | 33.19 385 | 52.95 387 | 44.00 406 | 19.49 409 | 27.28 410 | 58.59 396 | 3.18 422 | 52.84 395 | 18.92 405 | 41.17 397 | 48.14 404 |
|
| PMVS |  | 28.69 22 | 36.22 373 | 33.29 378 | 45.02 381 | 36.82 421 | 35.98 364 | 54.68 382 | 48.74 393 | 26.31 398 | 21.02 414 | 51.61 403 | 2.88 423 | 60.10 364 | 9.99 419 | 47.58 387 | 38.99 412 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 34.77 374 | 31.91 379 | 43.33 384 | 62.05 382 | 37.87 341 | 20.39 415 | 67.03 308 | 23.23 403 | 18.41 416 | 25.84 416 | 4.24 417 | 62.73 354 | 14.71 409 | 51.32 379 | 29.38 414 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| dongtai | | | 34.52 375 | 34.94 375 | 33.26 396 | 61.06 387 | 16.00 421 | 52.79 388 | 23.78 422 | 40.71 369 | 39.33 401 | 48.65 410 | 16.91 390 | 48.34 402 | 12.18 414 | 19.05 414 | 35.44 413 |
|
| new_pmnet | | | 34.13 376 | 34.29 377 | 33.64 395 | 52.63 402 | 18.23 419 | 44.43 405 | 33.90 415 | 22.81 405 | 30.89 408 | 53.18 400 | 10.48 408 | 35.72 417 | 20.77 404 | 39.51 398 | 46.98 406 |
|
| mvsany_test3 | | | 32.62 377 | 30.57 382 | 38.77 391 | 36.16 422 | 24.20 413 | 38.10 411 | 20.63 424 | 19.14 410 | 40.36 398 | 57.43 397 | 5.06 415 | 36.63 416 | 29.59 385 | 28.66 407 | 55.49 397 |
|
| test_vis3_rt | | | 32.09 378 | 30.20 383 | 37.76 392 | 35.36 423 | 27.48 402 | 40.60 409 | 28.29 419 | 16.69 413 | 32.52 407 | 40.53 412 | 1.96 424 | 37.40 415 | 33.64 359 | 42.21 396 | 48.39 402 |
|
| test_f | | | 31.86 379 | 31.05 380 | 34.28 394 | 32.33 425 | 21.86 415 | 32.34 412 | 30.46 417 | 16.02 414 | 39.78 400 | 55.45 399 | 4.80 416 | 32.36 419 | 30.61 379 | 37.66 401 | 48.64 401 |
|
| testf1 | | | 31.46 380 | 28.89 384 | 39.16 389 | 41.99 416 | 28.78 398 | 46.45 400 | 37.56 411 | 14.28 416 | 21.10 412 | 48.96 407 | 1.48 426 | 47.11 403 | 13.63 411 | 34.56 403 | 41.60 408 |
|
| APD_test2 | | | 31.46 380 | 28.89 384 | 39.16 389 | 41.99 416 | 28.78 398 | 46.45 400 | 37.56 411 | 14.28 416 | 21.10 412 | 48.96 407 | 1.48 426 | 47.11 403 | 13.63 411 | 34.56 403 | 41.60 408 |
|
| kuosan | | | 29.62 382 | 30.82 381 | 26.02 401 | 52.99 400 | 16.22 420 | 51.09 391 | 22.71 423 | 33.91 386 | 33.99 405 | 40.85 411 | 15.89 393 | 33.11 418 | 7.59 422 | 18.37 415 | 28.72 415 |
|
| PMMVS2 | | | 27.40 383 | 25.91 386 | 31.87 398 | 39.46 420 | 6.57 427 | 31.17 413 | 28.52 418 | 23.96 401 | 20.45 415 | 48.94 409 | 4.20 419 | 37.94 414 | 16.51 407 | 19.97 413 | 51.09 400 |
|
| E-PMN | | | 23.77 384 | 22.73 388 | 26.90 399 | 42.02 415 | 20.67 416 | 42.66 407 | 35.70 413 | 17.43 411 | 10.28 421 | 25.05 417 | 6.42 413 | 42.39 410 | 10.28 418 | 14.71 417 | 17.63 416 |
|
| EMVS | | | 22.97 385 | 21.84 389 | 26.36 400 | 40.20 418 | 19.53 418 | 41.95 408 | 34.64 414 | 17.09 412 | 9.73 422 | 22.83 418 | 7.29 412 | 42.22 411 | 9.18 420 | 13.66 418 | 17.32 417 |
|
| MVE |  | 17.77 23 | 21.41 386 | 17.77 391 | 32.34 397 | 34.34 424 | 25.44 410 | 16.11 416 | 24.11 421 | 11.19 418 | 13.22 418 | 31.92 414 | 1.58 425 | 30.95 420 | 10.47 417 | 17.03 416 | 40.62 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 19.68 387 | 18.10 390 | 24.41 402 | 13.68 427 | 3.11 429 | 12.06 418 | 42.37 408 | 2.00 421 | 11.97 419 | 36.38 413 | 5.77 414 | 29.35 421 | 15.06 408 | 23.65 411 | 40.76 410 |
|
| cdsmvs_eth3d_5k | | | 17.50 388 | 23.34 387 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 78.63 171 | 0.00 426 | 0.00 427 | 82.18 197 | 49.25 122 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| wuyk23d | | | 13.32 389 | 12.52 392 | 15.71 403 | 47.54 410 | 26.27 408 | 31.06 414 | 1.98 428 | 4.93 420 | 5.18 423 | 1.94 423 | 0.45 428 | 18.54 422 | 6.81 423 | 12.83 419 | 2.33 420 |
|
| tmp_tt | | | 9.43 390 | 11.14 393 | 4.30 405 | 2.38 428 | 4.40 428 | 13.62 417 | 16.08 426 | 0.39 422 | 15.89 417 | 13.06 419 | 15.80 394 | 5.54 424 | 12.63 413 | 10.46 421 | 2.95 419 |
|
| ab-mvs-re | | | 6.49 391 | 8.65 394 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 77.89 280 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| test123 | | | 4.73 392 | 6.30 395 | 0.02 406 | 0.01 429 | 0.01 431 | 56.36 377 | 0.00 430 | 0.01 424 | 0.04 425 | 0.21 425 | 0.01 429 | 0.00 425 | 0.03 425 | 0.00 423 | 0.04 421 |
|
| testmvs | | | 4.52 393 | 6.03 396 | 0.01 407 | 0.01 429 | 0.00 432 | 53.86 385 | 0.00 430 | 0.01 424 | 0.04 425 | 0.27 424 | 0.00 430 | 0.00 425 | 0.04 424 | 0.00 423 | 0.03 422 |
|
| pcd_1.5k_mvsjas | | | 3.92 394 | 5.23 397 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 47.05 154 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 430 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| WAC-MVS | | | | | | | 27.31 404 | | | | | | | | 27.77 389 | | |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 67 | 60.87 86 | 81.50 16 | | | | | | |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| PC_three_1452 | | | | | | | | | | 55.09 210 | 84.46 4 | 89.84 46 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 16 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 33 |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 60 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 45 | | 82.70 93 | 57.95 153 | 78.10 24 | 90.06 39 | 56.12 42 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| RE-MVS-def | | | | 73.71 69 | | 83.49 67 | 59.87 52 | 84.29 40 | 81.36 115 | 58.07 148 | 73.14 80 | 90.07 37 | 43.06 197 | | 68.20 85 | 81.76 101 | 84.03 166 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 63 | | 85.53 26 | 53.93 234 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 18 |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 45 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 22 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 41 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 15 | 66.87 3 | 90.78 7 | | | |
|
| 9.14 | | | | 78.75 15 | | 83.10 72 | | 84.15 46 | 88.26 1 | 59.90 112 | 78.57 23 | 90.36 30 | 57.51 32 | 86.86 68 | 77.39 23 | 89.52 21 | |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 50 | 79.66 150 | 59.00 130 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 27 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 66 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 43 |
|
| test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 283 |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 284 | | | | 78.05 283 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 301 | | | | |
|
| ambc | | | | | 65.13 287 | 63.72 374 | 37.07 352 | 47.66 399 | 78.78 167 | | 54.37 347 | 71.42 351 | 11.24 405 | 80.94 202 | 45.64 276 | 53.85 373 | 77.38 293 |
|
| MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 301 | | | | 3.64 421 | 32.39 320 | 69.49 321 | 44.17 288 | | |
|
| test_post | | | | | | | | | | | | 3.55 422 | 33.90 295 | 66.52 340 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 388 | 34.50 286 | 74.27 297 | | | |
|
| GG-mvs-BLEND | | | | | 62.34 306 | 71.36 307 | 37.04 353 | 69.20 298 | 57.33 368 | | 54.73 342 | 65.48 386 | 30.37 329 | 77.82 256 | 34.82 353 | 74.93 187 | 72.17 352 |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 425 | | | | | | | | |
|
| gm-plane-assit | | | | | | 71.40 306 | 41.72 311 | | | 48.85 295 | | 73.31 337 | | 82.48 173 | 48.90 248 | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 176 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 83 | 81.26 122 | 55.65 197 | 74.93 49 | 88.81 59 | 53.70 67 | 84.68 123 | | | |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 86 | 81.18 125 | 55.86 189 | 74.81 54 | 88.80 61 | 53.70 67 | 84.45 127 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 157 |
|
| agg_prior | | | | | | 85.04 50 | 59.96 50 | | 81.04 130 | | 74.68 57 | | | 84.04 133 | | | |
|
| TestCases | | | | | 64.39 292 | 71.44 303 | 49.03 229 | | 67.30 304 | 45.97 330 | 47.16 379 | 79.77 246 | 17.47 386 | 67.56 334 | 33.65 357 | 59.16 353 | 76.57 304 |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 79 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 81 | | 60.37 99 | 75.01 47 | 89.06 55 | 56.22 41 | | 72.19 62 | 88.96 24 | |
|
| test_prior | | | | | 76.69 58 | 84.20 61 | 57.27 91 | | 84.88 39 | | | | | 86.43 81 | | | 86.38 78 |
|
| 旧先验2 | | | | | | | | 76.08 186 | | 45.32 335 | 76.55 36 | | | 65.56 346 | 58.75 169 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 76.12 184 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 70.76 201 | 85.66 41 | 61.13 30 | | 66.43 313 | 44.68 339 | 70.29 116 | 86.64 97 | 41.29 218 | 75.23 292 | 49.72 240 | 81.75 103 | 75.93 310 |
|
| 旧先验1 | | | | | | 83.04 73 | 53.15 163 | | 67.52 303 | | | 87.85 74 | 44.08 188 | | | 80.76 108 | 78.03 286 |
|
| æ— å…ˆéªŒ | | | | | | | | 79.66 112 | 74.30 247 | 48.40 302 | | | | 80.78 208 | 53.62 208 | | 79.03 274 |
|
| 原ACMM2 | | | | | | | | 79.02 119 | | | | | | | | | |
|
| 原ACMM1 | | | | | 74.69 92 | 85.39 47 | 59.40 57 | | 83.42 73 | 51.47 260 | 70.27 117 | 86.61 100 | 48.61 130 | 86.51 79 | 53.85 207 | 87.96 39 | 78.16 281 |
|
| test222 | | | | | | 83.14 71 | 58.68 76 | 72.57 254 | 63.45 335 | 41.78 360 | 67.56 170 | 86.12 116 | 37.13 264 | | | 78.73 142 | 74.98 322 |
|
| testdata2 | | | | | | | | | | | | | | 72.18 307 | 46.95 266 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 57 | | | | |
|
| testdata | | | | | 64.66 289 | 81.52 91 | 52.93 168 | | 65.29 321 | 46.09 328 | 73.88 68 | 87.46 79 | 38.08 253 | 66.26 343 | 53.31 212 | 78.48 145 | 74.78 326 |
|
| testdata1 | | | | | | | | 72.65 250 | | 60.50 94 | | | | | | | |
|
| test12 | | | | | 77.76 45 | 84.52 58 | 58.41 78 | | 83.36 76 | | 72.93 87 | | 54.61 54 | 88.05 39 | | 88.12 34 | 86.81 66 |
|
| plane_prior7 | | | | | | 81.41 94 | 55.96 114 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 101 | 56.24 109 | | | | | | 45.26 178 | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 52 | | | | | 87.21 58 | 68.16 87 | 80.58 111 | 84.65 151 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 117 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 111 | | | 63.92 36 | 69.27 136 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 43 | | 64.52 25 | | | | | | | |
|
| plane_prior1 | | | | | | 81.27 99 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 56.31 105 | 83.58 56 | | 63.19 48 | | | | | | 80.48 114 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 400 | | | | | | | | |
|
| lessismore_v0 | | | | | 69.91 217 | 71.42 305 | 47.80 247 | | 50.90 389 | | 50.39 370 | 75.56 318 | 27.43 354 | 81.33 192 | 45.91 273 | 34.10 405 | 80.59 249 |
|
| LGP-MVS_train | | | | | 75.76 73 | 80.22 116 | 57.51 89 | | 83.40 74 | 61.32 79 | 66.67 186 | 87.33 82 | 39.15 240 | 86.59 74 | 67.70 91 | 77.30 163 | 83.19 198 |
|
| test11 | | | | | | | | | 83.47 71 | | | | | | | | |
|
| door | | | | | | | | | 47.60 398 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 160 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 160 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 98 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 160 | | | 86.93 66 | | | 84.32 158 |
|
| HQP3-MVS | | | | | | | | | 83.90 57 | | | | | | | 80.35 115 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 172 | | | | |
|
| NP-MVS | | | | | | 80.98 104 | 56.05 113 | | | | | 85.54 134 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 409 | 61.22 353 | | 40.10 373 | 51.10 363 | | 32.97 307 | | 38.49 329 | | 78.61 278 |
|
| MDTV_nov1_ep13 | | | | 57.00 300 | | 72.73 280 | 38.26 339 | 65.02 332 | 64.73 326 | 44.74 338 | 55.46 331 | 72.48 341 | 32.61 317 | 70.47 314 | 37.47 334 | 67.75 290 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 195 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 229 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 133 | | | | |
|
| ITE_SJBPF | | | | | 62.09 308 | 66.16 362 | 44.55 283 | | 64.32 328 | 47.36 316 | 55.31 334 | 80.34 236 | 19.27 385 | 62.68 355 | 36.29 348 | 62.39 333 | 79.04 273 |
|
| DeepMVS_CX |  | | | | 12.03 404 | 17.97 426 | 10.91 423 | | 10.60 427 | 7.46 419 | 11.07 420 | 28.36 415 | 3.28 421 | 11.29 423 | 8.01 421 | 9.74 422 | 13.89 418 |
|