DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 68 | 88.18 1 | 87.15 6 | 65.04 20 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 9 |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 77 | 87.82 7 | 86.78 14 | 64.18 35 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 14 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 34 | 62.73 12 | 86.09 17 | 86.83 12 | 65.51 14 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 1 | 88.44 32 | 88.09 19 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 36 | 87.75 7 | 59.07 72 | 87.85 5 | 85.03 38 | 64.26 32 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 115 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 48 | 85.71 26 | 86.42 18 | 63.28 48 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 27 | 89.67 22 | 86.84 63 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 25 | 61.95 22 | 86.33 13 | 85.75 26 | 62.49 66 | 82.20 15 | 92.28 1 | 56.53 36 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 23 | 60.02 53 | 88.12 3 | 86.42 18 | 62.94 55 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 14 | 78.70 11 | 88.32 36 | 86.79 66 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 66 | 65.37 15 | 78.78 25 | 90.64 19 | 58.63 24 | 87.24 53 | 79.00 10 | 90.37 14 | 85.26 124 |
|
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 20 | 84.37 37 | 85.03 38 | 66.96 5 | 77.58 32 | 90.06 40 | 59.47 21 | 89.13 22 | 78.67 12 | 89.73 20 | 87.03 58 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 11 | 79.98 2 | 83.01 82 | 62.18 19 | 87.60 9 | 85.83 24 | 66.69 10 | 78.03 31 | 90.98 14 | 54.26 59 | 90.06 12 | 78.42 17 | 89.02 27 | 87.69 34 |
Skip Steuart: Steuart Systems R&D Blog. |
ETH3 D test6400 | | | 79.14 11 | 79.32 10 | 78.61 32 | 86.34 31 | 58.11 89 | 84.65 34 | 87.66 4 | 58.56 141 | 78.87 24 | 89.54 53 | 63.67 13 | 89.57 16 | 74.60 36 | 89.98 17 | 88.14 17 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 18 | 84.92 64 | 60.32 51 | 83.03 63 | 85.33 33 | 62.86 58 | 80.17 17 | 90.03 43 | 61.76 15 | 88.95 24 | 74.21 38 | 88.67 31 | 88.12 18 |
|
SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 49 | 82.88 84 | 57.83 93 | 84.99 32 | 88.13 3 | 61.86 79 | 79.16 20 | 90.75 17 | 57.96 26 | 87.09 60 | 77.08 23 | 90.18 15 | 87.87 25 |
|
ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 13 | 86.43 30 | 62.05 21 | 86.62 11 | 86.01 23 | 63.32 47 | 75.08 44 | 90.47 27 | 53.96 63 | 88.68 27 | 76.48 26 | 89.63 24 | 87.16 55 |
|
ACMMP_NAP | | | 78.77 15 | 78.78 15 | 78.74 30 | 85.44 52 | 61.04 36 | 83.84 53 | 85.16 35 | 62.88 57 | 78.10 28 | 91.26 13 | 52.51 79 | 88.39 30 | 79.34 6 | 90.52 13 | 86.78 67 |
|
ETH3D-3000-0.1 | | | 78.58 16 | 78.91 14 | 77.61 48 | 83.06 79 | 57.86 92 | 84.14 46 | 88.31 1 | 60.37 101 | 79.14 22 | 90.35 29 | 57.76 29 | 87.00 63 | 77.16 22 | 89.90 18 | 87.97 22 |
|
NCCC | | | 78.58 16 | 78.31 20 | 79.39 11 | 87.51 12 | 62.61 16 | 85.20 31 | 84.42 47 | 66.73 9 | 74.67 55 | 89.38 56 | 55.30 48 | 89.18 21 | 74.19 39 | 87.34 48 | 86.38 73 |
|
DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 24 | 79.83 6 | 83.60 72 | 61.62 26 | 84.17 43 | 86.85 10 | 63.23 50 | 73.84 68 | 90.25 35 | 57.68 30 | 89.96 13 | 74.62 35 | 89.03 26 | 87.89 23 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 78.47 19 | 78.43 19 | 78.61 32 | 86.82 17 | 60.67 46 | 86.07 18 | 85.38 32 | 62.12 72 | 78.65 26 | 90.29 33 | 55.76 44 | 89.31 19 | 73.55 47 | 87.22 49 | 85.84 96 |
|
TSAR-MVS + MP. | | | 78.44 20 | 78.28 21 | 78.90 26 | 84.96 60 | 61.41 29 | 84.03 47 | 83.82 64 | 59.34 126 | 79.37 19 | 89.76 51 | 59.84 17 | 87.62 50 | 76.69 25 | 86.74 58 | 87.68 35 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 78.37 21 | 78.25 23 | 78.76 29 | 86.17 36 | 61.30 31 | 83.98 49 | 79.95 148 | 59.00 129 | 79.16 20 | 90.75 17 | 57.96 26 | 87.09 60 | 77.08 23 | 90.18 15 | 87.87 25 |
|
MP-MVS-pluss | | | 78.35 22 | 78.46 18 | 78.03 43 | 84.96 60 | 59.52 61 | 82.93 66 | 85.39 31 | 62.15 71 | 76.41 36 | 91.51 11 | 52.47 81 | 86.78 69 | 80.66 2 | 89.64 23 | 87.80 30 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 78.35 22 | 78.26 22 | 78.64 31 | 86.54 27 | 63.47 5 | 86.02 20 | 83.55 70 | 63.89 40 | 73.60 71 | 90.60 20 | 54.85 55 | 86.72 70 | 77.20 21 | 88.06 41 | 85.74 104 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 78.14 24 | 77.85 27 | 78.99 25 | 86.05 43 | 61.82 25 | 85.84 21 | 85.21 34 | 63.56 44 | 74.29 60 | 90.03 43 | 52.56 78 | 88.53 29 | 74.79 34 | 88.34 34 | 86.63 70 |
|
ETH3D cwj APD-0.16 | | | 78.02 25 | 78.13 25 | 77.71 47 | 82.10 90 | 58.65 82 | 82.72 71 | 87.55 5 | 58.33 146 | 78.05 30 | 90.06 40 | 58.35 25 | 87.65 49 | 76.15 28 | 89.86 19 | 86.82 64 |
|
APD-MVS |  | | 78.02 25 | 78.04 26 | 77.98 44 | 86.44 29 | 60.81 43 | 85.52 28 | 84.36 48 | 60.61 94 | 79.05 23 | 90.30 32 | 55.54 47 | 88.32 33 | 73.48 48 | 87.03 52 | 84.83 135 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 78.01 27 | 77.65 28 | 79.10 20 | 86.71 20 | 62.81 10 | 86.29 14 | 84.32 49 | 62.82 59 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 31 | 74.02 41 | 87.05 50 | 86.13 87 |
|
#test# | | | 77.83 28 | 77.41 31 | 79.10 20 | 86.71 20 | 62.81 10 | 85.69 27 | 84.32 49 | 61.61 82 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 31 | 73.68 44 | 87.05 50 | 86.13 87 |
|
ACMMPR | | | 77.71 29 | 77.23 33 | 79.16 16 | 86.75 19 | 62.93 9 | 86.29 14 | 84.24 51 | 62.82 59 | 73.55 72 | 90.56 22 | 49.80 108 | 88.24 34 | 74.02 41 | 87.03 52 | 86.32 82 |
|
SD-MVS | | | 77.70 30 | 77.62 29 | 77.93 45 | 84.47 67 | 61.88 24 | 84.55 35 | 83.87 62 | 60.37 101 | 79.89 18 | 89.38 56 | 54.97 52 | 85.58 103 | 76.12 29 | 84.94 68 | 86.33 80 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
region2R | | | 77.67 31 | 77.18 34 | 79.15 17 | 86.76 18 | 62.95 8 | 86.29 14 | 84.16 53 | 62.81 61 | 73.30 75 | 90.58 21 | 49.90 106 | 88.21 35 | 73.78 43 | 87.03 52 | 86.29 85 |
|
zzz-MVS | | | 77.61 32 | 77.36 32 | 78.35 37 | 86.08 41 | 63.57 2 | 83.37 59 | 80.97 133 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 121 | 86.66 72 | 77.23 19 | 88.17 38 | 84.81 136 |
|
MCST-MVS | | | 77.48 33 | 77.45 30 | 77.54 50 | 86.67 22 | 58.36 86 | 83.22 61 | 86.93 9 | 56.91 166 | 74.91 49 | 88.19 69 | 59.15 22 | 87.68 48 | 73.67 45 | 87.45 47 | 86.57 71 |
|
HPM-MVS |  | | 77.28 34 | 76.85 36 | 78.54 34 | 85.00 59 | 60.81 43 | 82.91 67 | 85.08 36 | 62.57 64 | 73.09 82 | 89.97 46 | 50.90 102 | 87.48 51 | 75.30 30 | 86.85 56 | 87.33 52 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DeepC-MVS_fast | | 68.24 3 | 77.25 35 | 76.63 39 | 79.12 19 | 86.15 38 | 60.86 41 | 84.71 33 | 84.85 43 | 61.98 78 | 73.06 83 | 88.88 64 | 53.72 68 | 89.06 23 | 68.27 79 | 88.04 42 | 87.42 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVS | | | 77.17 36 | 76.56 40 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 95 | 90.01 45 | 47.95 129 | 88.01 40 | 71.55 61 | 86.74 58 | 86.37 76 |
|
CP-MVS | | | 77.12 37 | 76.68 38 | 78.43 35 | 86.05 43 | 63.18 7 | 87.55 10 | 83.45 73 | 62.44 68 | 72.68 88 | 90.50 24 | 48.18 127 | 87.34 52 | 73.59 46 | 85.71 64 | 84.76 140 |
|
CSCG | | | 76.92 38 | 76.75 37 | 77.41 52 | 83.96 71 | 59.60 59 | 82.95 64 | 86.50 17 | 60.78 92 | 75.27 42 | 84.83 129 | 60.76 16 | 86.56 77 | 67.86 85 | 87.87 46 | 86.06 90 |
|
MTAPA | | | 76.90 39 | 76.42 41 | 78.35 37 | 86.08 41 | 63.57 2 | 74.92 206 | 80.97 133 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 121 | 86.66 72 | 77.23 19 | 88.17 38 | 84.81 136 |
|
test_prior3 | | | 76.89 40 | 76.96 35 | 76.69 63 | 84.20 69 | 57.27 101 | 81.75 86 | 84.88 41 | 60.37 101 | 75.01 45 | 89.06 59 | 56.22 40 | 86.43 83 | 72.19 53 | 88.96 28 | 86.38 73 |
|
PGM-MVS | | | 76.77 41 | 76.06 43 | 78.88 27 | 86.14 39 | 62.73 12 | 82.55 75 | 83.74 65 | 61.71 80 | 72.45 94 | 90.34 31 | 48.48 125 | 88.13 36 | 72.32 52 | 86.85 56 | 85.78 98 |
|
mPP-MVS | | | 76.54 42 | 75.93 46 | 78.34 39 | 86.47 28 | 63.50 4 | 85.74 25 | 82.28 96 | 62.90 56 | 71.77 98 | 90.26 34 | 46.61 152 | 86.55 78 | 71.71 59 | 85.66 65 | 84.97 132 |
|
CANet | | | 76.46 43 | 75.93 46 | 78.06 42 | 81.29 105 | 57.53 98 | 82.35 77 | 83.31 79 | 67.78 3 | 70.09 112 | 86.34 104 | 54.92 53 | 88.90 25 | 72.68 51 | 84.55 72 | 87.76 33 |
|
CDPH-MVS | | | 76.31 44 | 75.67 51 | 78.22 40 | 85.35 55 | 59.14 70 | 81.31 95 | 84.02 54 | 56.32 179 | 74.05 61 | 88.98 62 | 53.34 73 | 87.92 43 | 69.23 76 | 88.42 33 | 87.59 39 |
|
train_agg | | | 76.27 45 | 76.15 42 | 76.64 66 | 85.58 49 | 61.59 27 | 81.62 89 | 81.26 124 | 55.86 189 | 74.93 47 | 88.81 65 | 53.70 69 | 84.68 124 | 75.24 32 | 88.33 35 | 83.65 178 |
|
CS-MVS | | | 76.16 46 | 76.00 45 | 76.62 67 | 80.18 129 | 54.35 149 | 84.52 36 | 83.98 57 | 63.24 49 | 73.29 76 | 87.26 84 | 55.11 50 | 86.25 87 | 71.80 58 | 84.65 70 | 89.26 4 |
|
SR-MVS | | | 76.13 47 | 75.70 50 | 77.40 54 | 85.87 45 | 61.20 33 | 85.52 28 | 82.19 97 | 59.99 112 | 75.10 43 | 90.35 29 | 47.66 133 | 86.52 79 | 71.64 60 | 82.99 84 | 84.47 146 |
|
CS-MVS-test | | | 76.07 48 | 75.85 49 | 76.73 62 | 80.33 121 | 54.44 147 | 82.95 64 | 86.18 21 | 63.54 45 | 73.32 74 | 84.50 139 | 55.21 49 | 86.44 82 | 71.92 57 | 84.65 70 | 89.32 3 |
|
ACMMP |  | | 76.02 49 | 75.33 53 | 78.07 41 | 85.20 56 | 61.91 23 | 85.49 30 | 84.44 46 | 63.04 53 | 69.80 122 | 89.74 52 | 45.43 165 | 87.16 57 | 72.01 55 | 82.87 89 | 85.14 125 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 50 | 76.01 44 | 75.72 81 | 85.04 57 | 59.96 54 | 81.44 93 | 81.04 130 | 56.14 185 | 74.68 53 | 88.90 63 | 53.91 65 | 84.04 136 | 75.01 33 | 87.92 45 | 83.16 193 |
|
PHI-MVS | | | 75.87 51 | 75.36 52 | 77.41 52 | 80.62 117 | 55.91 127 | 84.28 40 | 85.78 25 | 56.08 187 | 73.41 73 | 86.58 99 | 50.94 101 | 88.54 28 | 70.79 66 | 89.71 21 | 87.79 31 |
|
DROMVSNet | | | 75.84 52 | 75.87 48 | 75.74 80 | 78.86 156 | 52.65 170 | 83.73 54 | 86.08 22 | 63.47 46 | 72.77 87 | 87.25 85 | 53.13 76 | 87.93 42 | 71.97 56 | 85.57 66 | 86.66 69 |
|
3Dnovator+ | | 66.72 4 | 75.84 52 | 74.57 62 | 79.66 8 | 82.40 87 | 59.92 56 | 85.83 22 | 86.32 20 | 66.92 8 | 67.80 159 | 89.24 58 | 42.03 196 | 89.38 18 | 64.07 117 | 86.50 61 | 89.69 1 |
|
Regformer-2 | | | 75.63 54 | 74.99 56 | 77.54 50 | 80.43 119 | 58.32 87 | 79.50 121 | 82.92 87 | 67.84 1 | 75.94 37 | 80.75 218 | 55.73 45 | 86.80 67 | 71.44 63 | 80.38 116 | 87.50 42 |
|
DPM-MVS | | | 75.47 55 | 75.00 55 | 76.88 59 | 81.38 104 | 59.16 67 | 79.94 111 | 85.71 27 | 56.59 174 | 72.46 92 | 86.76 89 | 56.89 34 | 87.86 45 | 66.36 97 | 88.91 30 | 83.64 179 |
|
Regformer-1 | | | 75.47 55 | 74.93 58 | 77.09 57 | 80.43 119 | 57.70 96 | 79.50 121 | 82.13 98 | 67.84 1 | 75.73 40 | 80.75 218 | 56.50 37 | 86.07 88 | 71.07 65 | 80.38 116 | 87.50 42 |
|
test1172 | | | 75.36 57 | 74.81 60 | 77.02 58 | 85.47 51 | 60.79 45 | 83.94 52 | 81.63 109 | 59.52 123 | 74.66 56 | 90.18 36 | 44.74 172 | 85.84 97 | 70.63 68 | 82.52 93 | 84.42 147 |
|
APD-MVS_3200maxsize | | | 74.96 58 | 74.39 65 | 76.67 65 | 82.20 89 | 58.24 88 | 83.67 55 | 83.29 80 | 58.41 143 | 73.71 69 | 90.14 37 | 45.62 158 | 85.99 92 | 69.64 72 | 82.85 90 | 85.78 98 |
|
TSAR-MVS + GP. | | | 74.90 59 | 74.15 67 | 77.17 56 | 82.00 92 | 58.77 80 | 81.80 85 | 78.57 173 | 58.58 139 | 74.32 59 | 84.51 138 | 55.94 43 | 87.22 54 | 67.11 92 | 84.48 74 | 85.52 111 |
|
casdiffmvs | | | 74.80 60 | 74.89 59 | 74.53 109 | 75.59 231 | 50.37 204 | 78.17 139 | 85.06 37 | 62.80 62 | 74.40 58 | 87.86 76 | 57.88 28 | 83.61 147 | 69.46 75 | 82.79 91 | 89.59 2 |
|
DELS-MVS | | | 74.76 61 | 74.46 63 | 75.65 85 | 77.84 185 | 52.25 179 | 75.59 191 | 84.17 52 | 63.76 41 | 73.15 78 | 82.79 168 | 59.58 20 | 86.80 67 | 67.24 91 | 86.04 63 | 87.89 23 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test_part1 | | | 74.74 62 | 74.42 64 | 75.70 83 | 81.69 97 | 51.26 189 | 83.98 49 | 87.05 8 | 65.31 16 | 73.10 81 | 86.20 106 | 53.94 64 | 88.06 38 | 65.32 108 | 73.17 199 | 87.77 32 |
|
OPM-MVS | | | 74.73 63 | 74.25 66 | 76.19 73 | 80.81 113 | 59.01 75 | 82.60 74 | 83.64 67 | 63.74 42 | 72.52 91 | 87.49 79 | 47.18 143 | 85.88 96 | 69.47 74 | 80.78 108 | 83.66 177 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
canonicalmvs | | | 74.67 64 | 74.98 57 | 73.71 128 | 78.94 155 | 50.56 202 | 80.23 106 | 83.87 62 | 60.30 107 | 77.15 33 | 86.56 100 | 59.65 18 | 82.00 183 | 66.01 101 | 82.12 96 | 88.58 8 |
|
baseline | | | 74.61 65 | 74.70 61 | 74.34 113 | 75.70 227 | 49.99 211 | 77.54 151 | 84.63 45 | 62.73 63 | 73.98 62 | 87.79 78 | 57.67 31 | 83.82 143 | 69.49 73 | 82.74 92 | 89.20 5 |
|
SR-MVS-dyc-post | | | 74.57 66 | 73.90 69 | 76.58 68 | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 117 | 58.07 149 | 73.14 79 | 90.07 38 | 44.74 172 | 85.84 97 | 68.20 80 | 81.76 102 | 84.03 157 |
|
dcpmvs_2 | | | 74.55 67 | 75.23 54 | 72.48 159 | 82.34 88 | 53.34 161 | 77.87 142 | 81.46 114 | 57.80 156 | 75.49 41 | 86.81 88 | 62.22 14 | 77.75 259 | 71.09 64 | 82.02 98 | 86.34 78 |
|
ETV-MVS | | | 74.46 68 | 73.84 71 | 76.33 72 | 79.27 146 | 55.24 139 | 79.22 124 | 85.00 40 | 64.97 24 | 72.65 89 | 79.46 245 | 53.65 72 | 87.87 44 | 67.45 90 | 82.91 87 | 85.89 95 |
|
abl_6 | | | 74.34 69 | 73.50 74 | 76.86 60 | 82.43 86 | 60.16 52 | 83.48 58 | 81.86 103 | 58.81 133 | 73.95 65 | 89.86 48 | 41.87 199 | 86.62 74 | 67.98 84 | 81.23 107 | 83.80 170 |
|
HQP_MVS | | | 74.31 70 | 73.73 72 | 76.06 74 | 81.41 102 | 56.31 116 | 84.22 41 | 84.01 55 | 64.52 28 | 69.27 130 | 86.10 109 | 45.26 169 | 87.21 55 | 68.16 82 | 80.58 112 | 84.65 141 |
|
HPM-MVS_fast | | | 74.30 71 | 73.46 77 | 76.80 61 | 84.45 68 | 59.04 74 | 83.65 56 | 81.05 129 | 60.15 109 | 70.43 107 | 89.84 49 | 41.09 214 | 85.59 102 | 67.61 88 | 82.90 88 | 85.77 101 |
|
Regformer-4 | | | 74.25 72 | 73.48 75 | 76.57 69 | 79.75 134 | 56.54 115 | 78.54 134 | 81.49 113 | 66.93 7 | 73.90 66 | 80.30 226 | 53.84 67 | 85.98 93 | 69.76 71 | 76.84 163 | 87.17 54 |
|
MVS_111021_HR | | | 74.02 73 | 73.46 77 | 75.69 84 | 83.01 82 | 60.63 47 | 77.29 158 | 78.40 184 | 61.18 87 | 70.58 106 | 85.97 113 | 54.18 61 | 84.00 140 | 67.52 89 | 82.98 86 | 82.45 205 |
|
MG-MVS | | | 73.96 74 | 73.89 70 | 74.16 116 | 85.65 47 | 49.69 216 | 81.59 91 | 81.29 123 | 61.45 83 | 71.05 103 | 88.11 70 | 51.77 90 | 87.73 47 | 61.05 145 | 83.09 82 | 85.05 129 |
|
Regformer-3 | | | 73.89 75 | 73.28 79 | 75.71 82 | 79.75 134 | 55.48 136 | 78.54 134 | 79.93 149 | 66.58 11 | 73.62 70 | 80.30 226 | 54.87 54 | 84.54 127 | 69.09 77 | 76.84 163 | 87.10 57 |
|
alignmvs | | | 73.86 76 | 73.99 68 | 73.45 138 | 78.20 174 | 50.50 203 | 78.57 132 | 82.43 94 | 59.40 124 | 76.57 34 | 86.71 93 | 56.42 39 | 81.23 200 | 65.84 103 | 81.79 100 | 88.62 6 |
|
MSLP-MVS++ | | | 73.77 77 | 73.47 76 | 74.66 102 | 83.02 81 | 59.29 66 | 82.30 82 | 81.88 102 | 59.34 126 | 71.59 101 | 86.83 87 | 45.94 156 | 83.65 146 | 65.09 111 | 85.22 67 | 81.06 229 |
|
HQP-MVS | | | 73.45 78 | 72.80 82 | 75.40 89 | 80.66 114 | 54.94 140 | 82.31 79 | 83.90 60 | 62.10 73 | 67.85 154 | 85.54 123 | 45.46 163 | 86.93 64 | 67.04 93 | 80.35 118 | 84.32 149 |
|
CLD-MVS | | | 73.33 79 | 72.68 83 | 75.29 93 | 78.82 158 | 53.33 162 | 78.23 138 | 84.79 44 | 61.30 86 | 70.41 108 | 81.04 208 | 52.41 82 | 87.12 58 | 64.61 116 | 82.49 95 | 85.41 119 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 73.31 80 | 72.54 84 | 75.62 86 | 77.87 184 | 53.64 154 | 79.62 119 | 79.61 154 | 61.63 81 | 72.02 97 | 82.61 173 | 56.44 38 | 85.97 94 | 63.99 120 | 79.07 138 | 87.25 53 |
|
UA-Net | | | 73.13 81 | 72.93 81 | 73.76 124 | 83.58 73 | 51.66 187 | 78.75 127 | 77.66 194 | 67.75 4 | 72.61 90 | 89.42 54 | 49.82 107 | 83.29 152 | 53.61 196 | 83.14 81 | 86.32 82 |
|
EPNet | | | 73.09 82 | 72.16 86 | 75.90 76 | 75.95 223 | 56.28 118 | 83.05 62 | 72.39 260 | 66.53 12 | 65.27 203 | 87.00 86 | 50.40 104 | 85.47 109 | 62.48 133 | 86.32 62 | 85.94 92 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
nrg030 | | | 72.96 83 | 73.01 80 | 72.84 151 | 75.41 234 | 50.24 205 | 80.02 109 | 82.89 90 | 58.36 145 | 74.44 57 | 86.73 91 | 58.90 23 | 80.83 210 | 65.84 103 | 74.46 178 | 87.44 45 |
|
CPTT-MVS | | | 72.78 84 | 72.08 88 | 74.87 98 | 84.88 65 | 61.41 29 | 84.15 44 | 77.86 190 | 55.27 202 | 67.51 164 | 88.08 72 | 41.93 198 | 81.85 185 | 69.04 78 | 80.01 122 | 81.35 222 |
|
LPG-MVS_test | | | 72.74 85 | 71.74 90 | 75.76 78 | 80.22 124 | 57.51 99 | 82.55 75 | 83.40 75 | 61.32 84 | 66.67 178 | 87.33 82 | 39.15 227 | 86.59 75 | 67.70 86 | 77.30 158 | 83.19 190 |
|
h-mvs33 | | | 72.71 86 | 71.49 93 | 76.40 70 | 81.99 93 | 59.58 60 | 76.92 167 | 76.74 210 | 60.40 98 | 74.81 50 | 85.95 114 | 45.54 161 | 85.76 100 | 70.41 69 | 70.61 229 | 83.86 165 |
|
PAPM_NR | | | 72.63 87 | 71.80 89 | 75.13 94 | 81.72 96 | 53.42 160 | 79.91 113 | 83.28 81 | 59.14 128 | 66.31 186 | 85.90 115 | 51.86 89 | 86.06 89 | 57.45 165 | 80.62 110 | 85.91 94 |
|
VDD-MVS | | | 72.50 88 | 72.09 87 | 73.75 126 | 81.58 98 | 49.69 216 | 77.76 146 | 77.63 195 | 63.21 51 | 73.21 77 | 89.02 61 | 42.14 195 | 83.32 151 | 61.72 140 | 82.50 94 | 88.25 13 |
|
3Dnovator | | 64.47 5 | 72.49 89 | 71.39 96 | 75.79 77 | 77.70 187 | 58.99 76 | 80.66 102 | 83.15 84 | 62.24 70 | 65.46 200 | 86.59 98 | 42.38 194 | 85.52 105 | 59.59 157 | 84.72 69 | 82.85 199 |
|
MVS_Test | | | 72.45 90 | 72.46 85 | 72.42 163 | 74.88 239 | 48.50 231 | 76.28 179 | 83.14 85 | 59.40 124 | 72.46 92 | 84.68 131 | 55.66 46 | 81.12 201 | 65.98 102 | 79.66 126 | 87.63 37 |
|
EI-MVSNet-Vis-set | | | 72.42 91 | 71.59 91 | 74.91 96 | 78.47 167 | 54.02 150 | 77.05 163 | 79.33 160 | 65.03 22 | 71.68 100 | 79.35 248 | 52.75 77 | 84.89 120 | 66.46 96 | 74.23 181 | 85.83 97 |
|
ACMP | | 63.53 6 | 72.30 92 | 71.20 101 | 75.59 88 | 80.28 122 | 57.54 97 | 82.74 70 | 82.84 91 | 60.58 95 | 65.24 207 | 86.18 107 | 39.25 225 | 86.03 91 | 66.95 95 | 76.79 165 | 83.22 188 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PS-MVSNAJss | | | 72.24 93 | 71.21 100 | 75.31 91 | 78.50 165 | 55.93 126 | 81.63 88 | 82.12 99 | 56.24 182 | 70.02 116 | 85.68 120 | 47.05 145 | 84.34 131 | 65.27 109 | 74.41 180 | 85.67 105 |
|
Vis-MVSNet |  | | 72.18 94 | 71.37 97 | 74.61 105 | 81.29 105 | 55.41 137 | 80.90 98 | 78.28 186 | 60.73 93 | 69.23 133 | 88.09 71 | 44.36 178 | 82.65 172 | 57.68 164 | 81.75 104 | 85.77 101 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
API-MVS | | | 72.17 95 | 71.41 95 | 74.45 111 | 81.95 94 | 57.22 103 | 84.03 47 | 80.38 143 | 59.89 116 | 68.40 142 | 82.33 180 | 49.64 109 | 87.83 46 | 51.87 210 | 84.16 78 | 78.30 263 |
|
EPP-MVSNet | | | 72.16 96 | 71.31 99 | 74.71 99 | 78.68 162 | 49.70 214 | 82.10 83 | 81.65 108 | 60.40 98 | 65.94 191 | 85.84 116 | 51.74 91 | 86.37 85 | 55.93 173 | 79.55 129 | 88.07 21 |
|
DP-MVS Recon | | | 72.15 97 | 70.73 107 | 76.40 70 | 86.57 26 | 57.99 91 | 81.15 97 | 82.96 86 | 57.03 163 | 66.78 174 | 85.56 121 | 44.50 176 | 88.11 37 | 51.77 212 | 80.23 121 | 83.10 194 |
|
EI-MVSNet-UG-set | | | 71.92 98 | 71.06 103 | 74.52 110 | 77.98 182 | 53.56 156 | 76.62 171 | 79.16 161 | 64.40 30 | 71.18 102 | 78.95 252 | 52.19 85 | 84.66 126 | 65.47 107 | 73.57 189 | 85.32 121 |
|
VDDNet | | | 71.81 99 | 71.33 98 | 73.26 145 | 82.80 85 | 47.60 243 | 78.74 128 | 75.27 227 | 59.59 122 | 72.94 84 | 89.40 55 | 41.51 208 | 83.91 141 | 58.75 161 | 82.99 84 | 88.26 12 |
|
EIA-MVS | | | 71.78 100 | 70.60 108 | 75.30 92 | 79.85 133 | 53.54 157 | 77.27 159 | 83.26 82 | 57.92 153 | 66.49 181 | 79.39 246 | 52.07 87 | 86.69 71 | 60.05 152 | 79.14 137 | 85.66 106 |
|
LFMVS | | | 71.78 100 | 71.59 91 | 72.32 164 | 83.40 76 | 46.38 252 | 79.75 116 | 71.08 267 | 64.18 35 | 72.80 86 | 88.64 68 | 42.58 191 | 83.72 144 | 57.41 166 | 84.49 73 | 86.86 62 |
|
PAPR | | | 71.72 102 | 70.82 106 | 74.41 112 | 81.20 109 | 51.17 190 | 79.55 120 | 83.33 78 | 55.81 192 | 66.93 173 | 84.61 134 | 50.95 100 | 86.06 89 | 55.79 176 | 79.20 135 | 86.00 91 |
|
IS-MVSNet | | | 71.57 103 | 71.00 104 | 73.27 144 | 78.86 156 | 45.63 265 | 80.22 107 | 78.69 170 | 64.14 38 | 66.46 182 | 87.36 81 | 49.30 112 | 85.60 101 | 50.26 221 | 83.71 80 | 88.59 7 |
|
MAR-MVS | | | 71.51 104 | 70.15 116 | 75.60 87 | 81.84 95 | 59.39 63 | 81.38 94 | 82.90 89 | 54.90 214 | 68.08 151 | 78.70 253 | 47.73 131 | 85.51 106 | 51.68 214 | 84.17 77 | 81.88 214 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSFormer | | | 71.50 105 | 70.38 113 | 74.88 97 | 78.76 159 | 57.15 108 | 82.79 68 | 78.48 177 | 51.26 253 | 69.49 125 | 83.22 163 | 43.99 181 | 83.24 153 | 66.06 99 | 79.37 130 | 84.23 152 |
|
PVSNet_Blended_VisFu | | | 71.45 106 | 70.39 112 | 74.65 103 | 82.01 91 | 58.82 79 | 79.93 112 | 80.35 144 | 55.09 207 | 65.82 196 | 82.16 186 | 49.17 115 | 82.64 173 | 60.34 150 | 78.62 146 | 82.50 204 |
|
OMC-MVS | | | 71.40 107 | 70.60 108 | 73.78 122 | 76.60 213 | 53.15 164 | 79.74 117 | 79.78 150 | 58.37 144 | 68.75 137 | 86.45 102 | 45.43 165 | 80.60 215 | 62.58 131 | 77.73 152 | 87.58 40 |
|
UniMVSNet_NR-MVSNet | | | 71.11 108 | 71.00 104 | 71.44 178 | 79.20 148 | 44.13 276 | 76.02 187 | 82.60 93 | 66.48 13 | 68.20 145 | 84.60 135 | 56.82 35 | 82.82 168 | 54.62 186 | 70.43 231 | 87.36 51 |
|
hse-mvs2 | | | 71.04 109 | 69.86 119 | 74.60 106 | 79.58 139 | 57.12 110 | 73.96 222 | 75.25 228 | 60.40 98 | 74.81 50 | 81.95 190 | 45.54 161 | 82.90 161 | 70.41 69 | 66.83 279 | 83.77 171 |
|
GeoE | | | 71.01 110 | 70.15 116 | 73.60 134 | 79.57 140 | 52.17 180 | 78.93 126 | 78.12 187 | 58.02 151 | 67.76 162 | 83.87 151 | 52.36 83 | 82.72 170 | 56.90 168 | 75.79 171 | 85.92 93 |
|
PCF-MVS | | 61.88 8 | 70.95 111 | 69.49 125 | 75.35 90 | 77.63 190 | 55.71 129 | 76.04 186 | 81.81 105 | 50.30 261 | 69.66 123 | 85.40 126 | 52.51 79 | 84.89 120 | 51.82 211 | 80.24 120 | 85.45 115 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 70.83 112 | 69.56 123 | 74.64 104 | 86.21 34 | 54.63 145 | 82.34 78 | 81.81 105 | 48.22 280 | 63.01 233 | 85.83 117 | 40.92 215 | 87.10 59 | 57.91 163 | 79.79 123 | 82.18 208 |
|
FIs | | | 70.82 113 | 71.43 94 | 68.98 226 | 78.33 171 | 38.14 321 | 76.96 165 | 83.59 69 | 61.02 88 | 67.33 166 | 86.73 91 | 55.07 51 | 81.64 189 | 54.61 188 | 79.22 134 | 87.14 56 |
|
ACMM | | 61.98 7 | 70.80 114 | 69.73 121 | 74.02 117 | 80.59 118 | 58.59 83 | 82.68 72 | 82.02 101 | 55.46 200 | 67.18 169 | 84.39 141 | 38.51 232 | 83.17 155 | 60.65 147 | 76.10 169 | 80.30 240 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
diffmvs | | | 70.69 115 | 70.43 111 | 71.46 177 | 69.45 315 | 48.95 226 | 72.93 239 | 78.46 179 | 57.27 160 | 71.69 99 | 83.97 150 | 51.48 93 | 77.92 256 | 70.70 67 | 77.95 151 | 87.53 41 |
|
UniMVSNet (Re) | | | 70.63 116 | 70.20 114 | 71.89 167 | 78.55 164 | 45.29 267 | 75.94 188 | 82.92 87 | 63.68 43 | 68.16 148 | 83.59 158 | 53.89 66 | 83.49 150 | 53.97 191 | 71.12 224 | 86.89 61 |
|
xiu_mvs_v2_base | | | 70.52 117 | 69.75 120 | 72.84 151 | 81.21 108 | 55.63 132 | 75.11 200 | 78.92 164 | 54.92 213 | 69.96 119 | 79.68 240 | 47.00 149 | 82.09 182 | 61.60 142 | 79.37 130 | 80.81 233 |
|
PS-MVSNAJ | | | 70.51 118 | 69.70 122 | 72.93 149 | 81.52 99 | 55.79 128 | 74.92 206 | 79.00 163 | 55.04 212 | 69.88 120 | 78.66 254 | 47.05 145 | 82.19 180 | 61.61 141 | 79.58 127 | 80.83 232 |
|
v2v482 | | | 70.50 119 | 69.45 127 | 73.66 130 | 72.62 271 | 50.03 210 | 77.58 148 | 80.51 141 | 59.90 113 | 69.52 124 | 82.14 187 | 47.53 136 | 84.88 122 | 65.07 112 | 70.17 237 | 86.09 89 |
|
mvs-test1 | | | 70.44 120 | 68.19 147 | 77.18 55 | 76.10 220 | 63.22 6 | 80.59 103 | 76.06 217 | 59.83 117 | 66.32 185 | 79.87 234 | 41.56 205 | 85.53 104 | 60.60 148 | 72.77 204 | 82.80 200 |
|
v1144 | | | 70.42 121 | 69.31 128 | 73.76 124 | 73.22 259 | 50.64 199 | 77.83 144 | 81.43 115 | 58.58 139 | 69.40 128 | 81.16 205 | 47.53 136 | 85.29 114 | 64.01 119 | 70.64 227 | 85.34 120 |
|
TranMVSNet+NR-MVSNet | | | 70.36 122 | 70.10 118 | 71.17 189 | 78.64 163 | 42.97 287 | 76.53 173 | 81.16 128 | 66.95 6 | 68.53 141 | 85.42 125 | 51.61 92 | 83.07 156 | 52.32 204 | 69.70 248 | 87.46 44 |
|
v8 | | | 70.33 123 | 69.28 129 | 73.49 136 | 73.15 261 | 50.22 206 | 78.62 131 | 80.78 137 | 60.79 91 | 66.45 183 | 82.11 188 | 49.35 111 | 84.98 117 | 63.58 125 | 68.71 263 | 85.28 122 |
|
Fast-Effi-MVS+ | | | 70.28 124 | 69.12 132 | 73.73 127 | 78.50 165 | 51.50 188 | 75.01 203 | 79.46 158 | 56.16 184 | 68.59 138 | 79.55 243 | 53.97 62 | 84.05 135 | 53.34 198 | 77.53 154 | 85.65 107 |
|
X-MVStestdata | | | 70.21 125 | 67.28 168 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 95 | 6.49 373 | 47.95 129 | 88.01 40 | 71.55 61 | 86.74 58 | 86.37 76 |
|
v10 | | | 70.21 125 | 69.02 133 | 73.81 121 | 73.51 258 | 50.92 194 | 78.74 128 | 81.39 116 | 60.05 111 | 66.39 184 | 81.83 193 | 47.58 135 | 85.41 112 | 62.80 130 | 68.86 262 | 85.09 128 |
|
QAPM | | | 70.05 127 | 68.81 136 | 73.78 122 | 76.54 215 | 53.43 159 | 83.23 60 | 83.48 71 | 52.89 234 | 65.90 193 | 86.29 105 | 41.55 207 | 86.49 81 | 51.01 216 | 78.40 148 | 81.42 218 |
|
DU-MVS | | | 70.01 128 | 69.53 124 | 71.44 178 | 78.05 180 | 44.13 276 | 75.01 203 | 81.51 112 | 64.37 31 | 68.20 145 | 84.52 136 | 49.12 118 | 82.82 168 | 54.62 186 | 70.43 231 | 87.37 49 |
|
AdaColmap |  | | 69.99 129 | 68.66 139 | 73.97 119 | 84.94 62 | 57.83 93 | 82.63 73 | 78.71 169 | 56.28 181 | 64.34 220 | 84.14 144 | 41.57 204 | 87.06 62 | 46.45 248 | 78.88 139 | 77.02 280 |
|
v1192 | | | 69.97 130 | 68.68 138 | 73.85 120 | 73.19 260 | 50.94 192 | 77.68 147 | 81.36 117 | 57.51 158 | 68.95 136 | 80.85 215 | 45.28 168 | 85.33 113 | 62.97 129 | 70.37 233 | 85.27 123 |
|
Anonymous20240529 | | | 69.91 131 | 69.02 133 | 72.56 157 | 80.19 127 | 47.65 241 | 77.56 150 | 80.99 132 | 55.45 201 | 69.88 120 | 86.76 89 | 39.24 226 | 82.18 181 | 54.04 190 | 77.10 160 | 87.85 27 |
|
patch_mono-2 | | | 69.85 132 | 71.09 102 | 66.16 258 | 79.11 152 | 54.80 144 | 71.97 254 | 74.31 243 | 53.50 228 | 70.90 104 | 84.17 143 | 57.63 32 | 63.31 329 | 66.17 98 | 82.02 98 | 80.38 239 |
|
FC-MVSNet-test | | | 69.80 133 | 70.58 110 | 67.46 242 | 77.61 195 | 34.73 346 | 76.05 185 | 83.19 83 | 60.84 90 | 65.88 194 | 86.46 101 | 54.52 58 | 80.76 214 | 52.52 203 | 78.12 149 | 86.91 60 |
|
v144192 | | | 69.71 134 | 68.51 140 | 73.33 143 | 73.10 262 | 50.13 208 | 77.54 151 | 80.64 138 | 56.65 168 | 68.57 140 | 80.55 220 | 46.87 150 | 84.96 119 | 62.98 128 | 69.66 249 | 84.89 134 |
|
test_yl | | | 69.69 135 | 69.13 130 | 71.36 182 | 78.37 169 | 45.74 261 | 74.71 210 | 80.20 145 | 57.91 154 | 70.01 117 | 83.83 152 | 42.44 192 | 82.87 164 | 54.97 182 | 79.72 124 | 85.48 113 |
|
DCV-MVSNet | | | 69.69 135 | 69.13 130 | 71.36 182 | 78.37 169 | 45.74 261 | 74.71 210 | 80.20 145 | 57.91 154 | 70.01 117 | 83.83 152 | 42.44 192 | 82.87 164 | 54.97 182 | 79.72 124 | 85.48 113 |
|
VNet | | | 69.68 137 | 70.19 115 | 68.16 236 | 79.73 137 | 41.63 300 | 70.53 275 | 77.38 200 | 60.37 101 | 70.69 105 | 86.63 96 | 51.08 98 | 77.09 268 | 53.61 196 | 81.69 106 | 85.75 103 |
|
jason | | | 69.65 138 | 68.39 145 | 73.43 140 | 78.27 173 | 56.88 112 | 77.12 161 | 73.71 251 | 46.53 298 | 69.34 129 | 83.22 163 | 43.37 185 | 79.18 235 | 64.77 113 | 79.20 135 | 84.23 152 |
jason: jason. |
Effi-MVS+-dtu | | | 69.64 139 | 67.53 158 | 75.95 75 | 76.10 220 | 62.29 18 | 80.20 108 | 76.06 217 | 59.83 117 | 65.26 206 | 77.09 274 | 41.56 205 | 84.02 139 | 60.60 148 | 71.09 225 | 81.53 217 |
|
lupinMVS | | | 69.57 140 | 68.28 146 | 73.44 139 | 78.76 159 | 57.15 108 | 76.57 172 | 73.29 254 | 46.19 301 | 69.49 125 | 82.18 183 | 43.99 181 | 79.23 234 | 64.66 114 | 79.37 130 | 83.93 160 |
|
NR-MVSNet | | | 69.54 141 | 68.85 135 | 71.59 176 | 78.05 180 | 43.81 280 | 74.20 218 | 80.86 136 | 65.18 17 | 62.76 235 | 84.52 136 | 52.35 84 | 83.59 148 | 50.96 217 | 70.78 226 | 87.37 49 |
|
MVS_111021_LR | | | 69.50 142 | 68.78 137 | 71.65 174 | 78.38 168 | 59.33 64 | 74.82 208 | 70.11 275 | 58.08 148 | 67.83 158 | 84.68 131 | 41.96 197 | 76.34 276 | 65.62 106 | 77.54 153 | 79.30 257 |
|
v1921920 | | | 69.47 143 | 68.17 148 | 73.36 142 | 73.06 263 | 50.10 209 | 77.39 154 | 80.56 139 | 56.58 175 | 68.59 138 | 80.37 222 | 44.72 174 | 84.98 117 | 62.47 134 | 69.82 244 | 85.00 130 |
|
test_djsdf | | | 69.45 144 | 67.74 151 | 74.58 107 | 74.57 246 | 54.92 142 | 82.79 68 | 78.48 177 | 51.26 253 | 65.41 201 | 83.49 161 | 38.37 234 | 83.24 153 | 66.06 99 | 69.25 255 | 85.56 110 |
|
Anonymous20231211 | | | 69.28 145 | 68.47 142 | 71.73 171 | 80.28 122 | 47.18 247 | 79.98 110 | 82.37 95 | 54.61 216 | 67.24 167 | 84.01 148 | 39.43 223 | 82.41 178 | 55.45 180 | 72.83 203 | 85.62 109 |
|
EI-MVSNet | | | 69.27 146 | 68.44 144 | 71.73 171 | 74.47 247 | 49.39 221 | 75.20 198 | 78.45 180 | 59.60 119 | 69.16 134 | 76.51 284 | 51.29 94 | 82.50 175 | 59.86 156 | 71.45 222 | 83.30 185 |
|
v1240 | | | 69.24 147 | 67.91 150 | 73.25 146 | 73.02 265 | 49.82 212 | 77.21 160 | 80.54 140 | 56.43 177 | 68.34 144 | 80.51 221 | 43.33 186 | 84.99 115 | 62.03 138 | 69.77 247 | 84.95 133 |
|
IterMVS-LS | | | 69.22 148 | 68.48 141 | 71.43 180 | 74.44 249 | 49.40 220 | 76.23 180 | 77.55 196 | 59.60 119 | 65.85 195 | 81.59 199 | 51.28 95 | 81.58 192 | 59.87 155 | 69.90 243 | 83.30 185 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VPA-MVSNet | | | 69.02 149 | 69.47 126 | 67.69 240 | 77.42 198 | 41.00 304 | 74.04 220 | 79.68 152 | 60.06 110 | 69.26 132 | 84.81 130 | 51.06 99 | 77.58 262 | 54.44 189 | 74.43 179 | 84.48 145 |
|
v7n | | | 69.01 150 | 67.36 165 | 73.98 118 | 72.51 274 | 52.65 170 | 78.54 134 | 81.30 122 | 60.26 108 | 62.67 237 | 81.62 196 | 43.61 183 | 84.49 128 | 57.01 167 | 68.70 264 | 84.79 138 |
|
OpenMVS |  | 61.03 9 | 68.85 151 | 67.56 155 | 72.70 155 | 74.26 253 | 53.99 151 | 81.21 96 | 81.34 121 | 52.70 235 | 62.75 236 | 85.55 122 | 38.86 230 | 84.14 134 | 48.41 236 | 83.01 83 | 79.97 246 |
|
XVG-OURS-SEG-HR | | | 68.81 152 | 67.47 161 | 72.82 153 | 74.40 250 | 56.87 113 | 70.59 274 | 79.04 162 | 54.77 215 | 66.99 171 | 86.01 112 | 39.57 222 | 78.21 252 | 62.54 132 | 73.33 194 | 83.37 183 |
|
BH-RMVSNet | | | 68.81 152 | 67.42 162 | 72.97 148 | 80.11 130 | 52.53 174 | 74.26 217 | 76.29 213 | 58.48 142 | 68.38 143 | 84.20 142 | 42.59 190 | 83.83 142 | 46.53 247 | 75.91 170 | 82.56 201 |
|
UGNet | | | 68.81 152 | 67.39 163 | 73.06 147 | 78.33 171 | 54.47 146 | 79.77 115 | 75.40 226 | 60.45 97 | 63.22 230 | 84.40 140 | 32.71 292 | 80.91 209 | 51.71 213 | 80.56 114 | 83.81 166 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RRT_MVS | | | 68.77 155 | 66.71 179 | 74.95 95 | 75.93 224 | 58.55 84 | 80.50 104 | 75.84 219 | 56.09 186 | 68.17 147 | 83.74 155 | 28.50 320 | 82.98 158 | 65.67 105 | 65.91 285 | 83.33 184 |
|
XVG-OURS | | | 68.76 156 | 67.37 164 | 72.90 150 | 74.32 252 | 57.22 103 | 70.09 281 | 78.81 166 | 55.24 203 | 67.79 160 | 85.81 119 | 36.54 255 | 78.28 251 | 62.04 137 | 75.74 172 | 83.19 190 |
|
V42 | | | 68.65 157 | 67.35 166 | 72.56 157 | 68.93 320 | 50.18 207 | 72.90 240 | 79.47 157 | 56.92 165 | 69.45 127 | 80.26 228 | 46.29 154 | 82.99 157 | 64.07 117 | 67.82 272 | 84.53 143 |
|
PVSNet_Blended | | | 68.59 158 | 67.72 152 | 71.19 187 | 77.03 205 | 50.57 200 | 72.51 246 | 81.52 110 | 51.91 242 | 64.22 225 | 77.77 270 | 49.13 116 | 82.87 164 | 55.82 174 | 79.58 127 | 80.14 243 |
|
xiu_mvs_v1_base_debu | | | 68.58 159 | 67.28 168 | 72.48 159 | 78.19 175 | 57.19 105 | 75.28 195 | 75.09 233 | 51.61 244 | 70.04 113 | 81.41 201 | 32.79 288 | 79.02 242 | 63.81 121 | 77.31 155 | 81.22 224 |
|
xiu_mvs_v1_base | | | 68.58 159 | 67.28 168 | 72.48 159 | 78.19 175 | 57.19 105 | 75.28 195 | 75.09 233 | 51.61 244 | 70.04 113 | 81.41 201 | 32.79 288 | 79.02 242 | 63.81 121 | 77.31 155 | 81.22 224 |
|
xiu_mvs_v1_base_debi | | | 68.58 159 | 67.28 168 | 72.48 159 | 78.19 175 | 57.19 105 | 75.28 195 | 75.09 233 | 51.61 244 | 70.04 113 | 81.41 201 | 32.79 288 | 79.02 242 | 63.81 121 | 77.31 155 | 81.22 224 |
|
PVSNet_BlendedMVS | | | 68.56 162 | 67.72 152 | 71.07 192 | 77.03 205 | 50.57 200 | 74.50 214 | 81.52 110 | 53.66 227 | 64.22 225 | 79.72 239 | 49.13 116 | 82.87 164 | 55.82 174 | 73.92 184 | 79.77 252 |
|
1121 | | | 68.53 163 | 67.16 174 | 72.63 156 | 85.64 48 | 61.14 34 | 73.95 223 | 66.46 301 | 44.61 313 | 70.28 110 | 86.68 94 | 41.42 209 | 80.78 212 | 53.62 194 | 81.79 100 | 75.97 288 |
|
WR-MVS | | | 68.47 164 | 68.47 142 | 68.44 233 | 80.20 126 | 39.84 307 | 73.75 231 | 76.07 216 | 64.68 25 | 68.11 150 | 83.63 157 | 50.39 105 | 79.14 240 | 49.78 222 | 69.66 249 | 86.34 78 |
|
AUN-MVS | | | 68.45 165 | 66.41 187 | 74.57 108 | 79.53 141 | 57.08 111 | 73.93 226 | 75.23 229 | 54.44 221 | 66.69 177 | 81.85 192 | 37.10 250 | 82.89 162 | 62.07 136 | 66.84 278 | 83.75 172 |
|
c3_l | | | 68.33 166 | 67.56 155 | 70.62 199 | 70.87 294 | 46.21 256 | 74.47 215 | 78.80 167 | 56.22 183 | 66.19 187 | 78.53 259 | 51.88 88 | 81.40 194 | 62.08 135 | 69.04 258 | 84.25 151 |
|
BH-untuned | | | 68.27 167 | 67.29 167 | 71.21 186 | 79.74 136 | 53.22 163 | 76.06 184 | 77.46 199 | 57.19 161 | 66.10 188 | 81.61 197 | 45.37 167 | 83.50 149 | 45.42 262 | 76.68 167 | 76.91 284 |
|
jajsoiax | | | 68.25 168 | 66.45 183 | 73.66 130 | 75.62 229 | 55.49 135 | 80.82 99 | 78.51 176 | 52.33 239 | 64.33 221 | 84.11 145 | 28.28 322 | 81.81 187 | 63.48 126 | 70.62 228 | 83.67 175 |
|
v148 | | | 68.24 169 | 67.19 173 | 71.40 181 | 70.43 300 | 47.77 240 | 75.76 190 | 77.03 205 | 58.91 131 | 67.36 165 | 80.10 231 | 48.60 124 | 81.89 184 | 60.01 153 | 66.52 282 | 84.53 143 |
|
CANet_DTU | | | 68.18 170 | 67.71 154 | 69.59 217 | 74.83 240 | 46.24 255 | 78.66 130 | 76.85 207 | 59.60 119 | 63.45 229 | 82.09 189 | 35.25 262 | 77.41 264 | 59.88 154 | 78.76 143 | 85.14 125 |
|
mvs_tets | | | 68.18 170 | 66.36 189 | 73.63 133 | 75.61 230 | 55.35 138 | 80.77 100 | 78.56 174 | 52.48 238 | 64.27 223 | 84.10 146 | 27.45 328 | 81.84 186 | 63.45 127 | 70.56 230 | 83.69 174 |
|
RRT_test8_iter05 | | | 68.17 172 | 66.86 178 | 72.07 166 | 75.81 225 | 46.33 253 | 76.41 176 | 81.81 105 | 56.43 177 | 66.52 180 | 81.30 204 | 31.90 300 | 84.25 132 | 63.77 124 | 67.83 271 | 85.64 108 |
|
miper_ehance_all_eth | | | 68.03 173 | 67.24 172 | 70.40 203 | 70.54 298 | 46.21 256 | 73.98 221 | 78.68 171 | 55.07 210 | 66.05 189 | 77.80 268 | 52.16 86 | 81.31 197 | 61.53 144 | 69.32 252 | 83.67 175 |
|
mvs_anonymous | | | 68.03 173 | 67.51 159 | 69.59 217 | 72.08 279 | 44.57 274 | 71.99 253 | 75.23 229 | 51.67 243 | 67.06 170 | 82.57 174 | 54.68 56 | 77.94 255 | 56.56 169 | 75.71 173 | 86.26 86 |
|
ET-MVSNet_ETH3D | | | 67.96 175 | 65.72 201 | 74.68 101 | 76.67 211 | 55.62 133 | 75.11 200 | 74.74 237 | 52.91 233 | 60.03 262 | 80.12 230 | 33.68 278 | 82.64 173 | 61.86 139 | 76.34 168 | 85.78 98 |
|
thisisatest0530 | | | 67.92 176 | 65.78 200 | 74.33 114 | 76.29 217 | 51.03 191 | 76.89 168 | 74.25 245 | 53.67 226 | 65.59 198 | 81.76 194 | 35.15 263 | 85.50 107 | 55.94 172 | 72.47 209 | 86.47 72 |
|
PAPM | | | 67.92 176 | 66.69 180 | 71.63 175 | 78.09 178 | 49.02 224 | 77.09 162 | 81.24 126 | 51.04 255 | 60.91 257 | 83.98 149 | 47.71 132 | 84.99 115 | 40.81 294 | 79.32 133 | 80.90 231 |
|
tttt0517 | | | 67.83 178 | 65.66 202 | 74.33 114 | 76.69 210 | 50.82 196 | 77.86 143 | 73.99 248 | 54.54 219 | 64.64 218 | 82.53 176 | 35.06 264 | 85.50 107 | 55.71 177 | 69.91 242 | 86.67 68 |
|
ECVR-MVS |  | | 67.72 179 | 67.51 159 | 68.35 234 | 79.46 142 | 36.29 340 | 74.79 209 | 66.93 298 | 58.72 135 | 67.19 168 | 88.05 73 | 36.10 256 | 81.38 195 | 52.07 207 | 84.25 75 | 87.39 47 |
|
eth_miper_zixun_eth | | | 67.63 180 | 66.28 193 | 71.67 173 | 71.60 286 | 48.33 233 | 73.68 232 | 77.88 189 | 55.80 193 | 65.91 192 | 78.62 257 | 47.35 142 | 82.88 163 | 59.45 158 | 66.25 283 | 83.81 166 |
|
UniMVSNet_ETH3D | | | 67.60 181 | 67.07 176 | 69.18 225 | 77.39 199 | 42.29 291 | 74.18 219 | 75.59 223 | 60.37 101 | 66.77 175 | 86.06 111 | 37.64 241 | 78.93 247 | 52.16 206 | 73.49 191 | 86.32 82 |
|
VPNet | | | 67.52 182 | 68.11 149 | 65.74 267 | 79.18 149 | 36.80 332 | 72.17 251 | 72.83 257 | 62.04 76 | 67.79 160 | 85.83 117 | 48.88 120 | 76.60 273 | 51.30 215 | 72.97 202 | 83.81 166 |
|
cl22 | | | 67.47 183 | 66.45 183 | 70.54 201 | 69.85 311 | 46.49 251 | 73.85 229 | 77.35 201 | 55.07 210 | 65.51 199 | 77.92 264 | 47.64 134 | 81.10 202 | 61.58 143 | 69.32 252 | 84.01 159 |
|
Fast-Effi-MVS+-dtu | | | 67.37 184 | 65.33 207 | 73.48 137 | 72.94 266 | 57.78 95 | 77.47 153 | 76.88 206 | 57.60 157 | 61.97 248 | 76.85 278 | 39.31 224 | 80.49 219 | 54.72 185 | 70.28 236 | 82.17 210 |
|
MVS | | | 67.37 184 | 66.33 190 | 70.51 202 | 75.46 233 | 50.94 192 | 73.95 223 | 81.85 104 | 41.57 337 | 62.54 241 | 78.57 258 | 47.98 128 | 85.47 109 | 52.97 201 | 82.05 97 | 75.14 297 |
|
test1111 | | | 67.21 186 | 67.14 175 | 67.42 243 | 79.24 147 | 34.76 345 | 73.89 228 | 65.65 305 | 58.71 137 | 66.96 172 | 87.95 75 | 36.09 257 | 80.53 216 | 52.03 208 | 83.79 79 | 86.97 59 |
|
GBi-Net | | | 67.21 186 | 66.55 181 | 69.19 222 | 77.63 190 | 43.33 283 | 77.31 155 | 77.83 191 | 56.62 171 | 65.04 211 | 82.70 169 | 41.85 200 | 80.33 221 | 47.18 242 | 72.76 205 | 83.92 161 |
|
test1 | | | 67.21 186 | 66.55 181 | 69.19 222 | 77.63 190 | 43.33 283 | 77.31 155 | 77.83 191 | 56.62 171 | 65.04 211 | 82.70 169 | 41.85 200 | 80.33 221 | 47.18 242 | 72.76 205 | 83.92 161 |
|
cl____ | | | 67.18 189 | 66.26 194 | 69.94 210 | 70.20 303 | 45.74 261 | 73.30 234 | 76.83 208 | 55.10 205 | 65.27 203 | 79.57 242 | 47.39 140 | 80.53 216 | 59.41 160 | 69.22 256 | 83.53 181 |
|
DIV-MVS_self_test | | | 67.18 189 | 66.26 194 | 69.94 210 | 70.20 303 | 45.74 261 | 73.29 235 | 76.83 208 | 55.10 205 | 65.27 203 | 79.58 241 | 47.38 141 | 80.53 216 | 59.43 159 | 69.22 256 | 83.54 180 |
|
MVSTER | | | 67.16 191 | 65.58 204 | 71.88 168 | 70.37 302 | 49.70 214 | 70.25 280 | 78.45 180 | 51.52 247 | 69.16 134 | 80.37 222 | 38.45 233 | 82.50 175 | 60.19 151 | 71.46 221 | 83.44 182 |
|
miper_enhance_ethall | | | 67.11 192 | 66.09 196 | 70.17 207 | 69.21 317 | 45.98 259 | 72.85 241 | 78.41 183 | 51.38 250 | 65.65 197 | 75.98 293 | 51.17 97 | 81.25 198 | 60.82 146 | 69.32 252 | 83.29 187 |
|
Baseline_NR-MVSNet | | | 67.05 193 | 67.56 155 | 65.50 269 | 75.65 228 | 37.70 325 | 75.42 193 | 74.65 239 | 59.90 113 | 68.14 149 | 83.15 166 | 49.12 118 | 77.20 266 | 52.23 205 | 69.78 245 | 81.60 216 |
|
WR-MVS_H | | | 67.02 194 | 66.92 177 | 67.33 246 | 77.95 183 | 37.75 324 | 77.57 149 | 82.11 100 | 62.03 77 | 62.65 238 | 82.48 177 | 50.57 103 | 79.46 230 | 42.91 281 | 64.01 298 | 84.79 138 |
|
anonymousdsp | | | 67.00 195 | 64.82 212 | 73.57 135 | 70.09 306 | 56.13 121 | 76.35 177 | 77.35 201 | 48.43 278 | 64.99 214 | 80.84 216 | 33.01 285 | 80.34 220 | 64.66 114 | 67.64 274 | 84.23 152 |
|
FMVSNet2 | | | 66.93 196 | 66.31 192 | 68.79 229 | 77.63 190 | 42.98 286 | 76.11 182 | 77.47 197 | 56.62 171 | 65.22 209 | 82.17 185 | 41.85 200 | 80.18 224 | 47.05 245 | 72.72 208 | 83.20 189 |
|
BH-w/o | | | 66.85 197 | 65.83 199 | 69.90 213 | 79.29 144 | 52.46 176 | 74.66 212 | 76.65 211 | 54.51 220 | 64.85 215 | 78.12 260 | 45.59 160 | 82.95 160 | 43.26 277 | 75.54 174 | 74.27 310 |
|
Anonymous202405211 | | | 66.84 198 | 65.99 197 | 69.40 221 | 80.19 127 | 42.21 292 | 71.11 268 | 71.31 266 | 58.80 134 | 67.90 152 | 86.39 103 | 29.83 312 | 79.65 227 | 49.60 228 | 78.78 142 | 86.33 80 |
|
CDS-MVSNet | | | 66.80 199 | 65.37 205 | 71.10 191 | 78.98 154 | 53.13 166 | 73.27 236 | 71.07 268 | 52.15 241 | 64.72 216 | 80.23 229 | 43.56 184 | 77.10 267 | 45.48 260 | 78.88 139 | 83.05 195 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 66.78 200 | 65.27 208 | 71.33 185 | 79.16 151 | 53.67 153 | 73.84 230 | 69.59 280 | 52.32 240 | 65.28 202 | 81.72 195 | 44.49 177 | 77.40 265 | 42.32 285 | 78.66 145 | 82.92 196 |
|
FMVSNet1 | | | 66.70 201 | 65.87 198 | 69.19 222 | 77.49 197 | 43.33 283 | 77.31 155 | 77.83 191 | 56.45 176 | 64.60 219 | 82.70 169 | 38.08 239 | 80.33 221 | 46.08 251 | 72.31 213 | 83.92 161 |
|
ab-mvs | | | 66.65 202 | 66.42 186 | 67.37 244 | 76.17 219 | 41.73 297 | 70.41 278 | 76.14 215 | 53.99 223 | 65.98 190 | 83.51 160 | 49.48 110 | 76.24 277 | 48.60 234 | 73.46 192 | 84.14 155 |
|
PEN-MVS | | | 66.60 203 | 66.45 183 | 67.04 247 | 77.11 203 | 36.56 334 | 77.03 164 | 80.42 142 | 62.95 54 | 62.51 243 | 84.03 147 | 46.69 151 | 79.07 241 | 44.22 266 | 63.08 307 | 85.51 112 |
|
TAPA-MVS | | 59.36 10 | 66.60 203 | 65.20 209 | 70.81 195 | 76.63 212 | 48.75 228 | 76.52 174 | 80.04 147 | 50.64 259 | 65.24 207 | 84.93 128 | 39.15 227 | 78.54 248 | 36.77 313 | 76.88 162 | 85.14 125 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 66.59 205 | 65.07 210 | 71.17 189 | 79.18 149 | 49.63 218 | 73.48 233 | 75.20 231 | 52.95 232 | 67.90 152 | 80.33 225 | 39.81 220 | 83.68 145 | 43.20 278 | 73.56 190 | 80.20 241 |
|
CP-MVSNet | | | 66.49 206 | 66.41 187 | 66.72 249 | 77.67 189 | 36.33 337 | 76.83 170 | 79.52 156 | 62.45 67 | 62.54 241 | 83.47 162 | 46.32 153 | 78.37 249 | 45.47 261 | 63.43 304 | 85.45 115 |
|
PS-CasMVS | | | 66.42 207 | 66.32 191 | 66.70 251 | 77.60 196 | 36.30 339 | 76.94 166 | 79.61 154 | 62.36 69 | 62.43 245 | 83.66 156 | 45.69 157 | 78.37 249 | 45.35 263 | 63.26 305 | 85.42 118 |
|
FMVSNet3 | | | 66.32 208 | 65.61 203 | 68.46 232 | 76.48 216 | 42.34 290 | 74.98 205 | 77.15 204 | 55.83 191 | 65.04 211 | 81.16 205 | 39.91 218 | 80.14 225 | 47.18 242 | 72.76 205 | 82.90 198 |
|
ACMH+ | | 57.40 11 | 66.12 209 | 64.06 215 | 72.30 165 | 77.79 186 | 52.83 168 | 80.39 105 | 78.03 188 | 57.30 159 | 57.47 288 | 82.55 175 | 27.68 326 | 84.17 133 | 45.54 258 | 69.78 245 | 79.90 247 |
|
cascas | | | 65.98 210 | 63.42 226 | 73.64 132 | 77.26 201 | 52.58 173 | 72.26 250 | 77.21 203 | 48.56 275 | 61.21 256 | 74.60 305 | 32.57 296 | 85.82 99 | 50.38 220 | 76.75 166 | 82.52 203 |
|
thisisatest0515 | | | 65.83 211 | 63.50 225 | 72.82 153 | 73.75 256 | 49.50 219 | 71.32 262 | 73.12 256 | 49.39 268 | 63.82 227 | 76.50 286 | 34.95 266 | 84.84 123 | 53.20 200 | 75.49 175 | 84.13 156 |
|
DP-MVS | | | 65.68 212 | 63.66 223 | 71.75 170 | 84.93 63 | 56.87 113 | 80.74 101 | 73.16 255 | 53.06 231 | 59.09 274 | 82.35 179 | 36.79 254 | 85.94 95 | 32.82 333 | 69.96 241 | 72.45 325 |
|
HyFIR lowres test | | | 65.67 213 | 63.01 230 | 73.67 129 | 79.97 132 | 55.65 131 | 69.07 289 | 75.52 224 | 42.68 331 | 63.53 228 | 77.95 262 | 40.43 216 | 81.64 189 | 46.01 252 | 71.91 216 | 83.73 173 |
|
DTE-MVSNet | | | 65.58 214 | 65.34 206 | 66.31 254 | 76.06 222 | 34.79 343 | 76.43 175 | 79.38 159 | 62.55 65 | 61.66 252 | 83.83 152 | 45.60 159 | 79.15 239 | 41.64 293 | 60.88 321 | 85.00 130 |
|
bset_n11_16_dypcd | | | 65.57 215 | 63.69 222 | 71.19 187 | 70.84 296 | 51.79 186 | 71.37 260 | 70.48 273 | 53.33 230 | 65.19 210 | 76.41 287 | 31.46 302 | 81.76 188 | 65.12 110 | 69.04 258 | 80.01 245 |
|
GA-MVS | | | 65.53 216 | 63.70 221 | 71.02 193 | 70.87 294 | 48.10 235 | 70.48 276 | 74.40 241 | 56.69 167 | 64.70 217 | 76.77 279 | 33.66 279 | 81.10 202 | 55.42 181 | 70.32 235 | 83.87 164 |
|
CNLPA | | | 65.43 217 | 64.02 216 | 69.68 215 | 78.73 161 | 58.07 90 | 77.82 145 | 70.71 271 | 51.49 248 | 61.57 254 | 83.58 159 | 38.23 237 | 70.82 297 | 43.90 271 | 70.10 239 | 80.16 242 |
|
MVP-Stereo | | | 65.41 218 | 63.80 220 | 70.22 204 | 77.62 194 | 55.53 134 | 76.30 178 | 78.53 175 | 50.59 260 | 56.47 294 | 78.65 255 | 39.84 219 | 82.68 171 | 44.10 270 | 72.12 215 | 72.44 326 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 56.42 12 | 65.40 219 | 62.73 234 | 73.40 141 | 74.89 238 | 52.78 169 | 73.09 238 | 75.13 232 | 55.69 195 | 58.48 282 | 73.73 311 | 32.86 287 | 86.32 86 | 50.63 218 | 70.11 238 | 81.10 228 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test2506 | | | 65.33 220 | 64.61 213 | 67.50 241 | 79.46 142 | 34.19 349 | 74.43 216 | 51.92 356 | 58.72 135 | 66.75 176 | 88.05 73 | 25.99 338 | 80.92 208 | 51.94 209 | 84.25 75 | 87.39 47 |
|
pm-mvs1 | | | 65.24 221 | 64.97 211 | 66.04 262 | 72.38 275 | 39.40 312 | 72.62 244 | 75.63 222 | 55.53 199 | 62.35 247 | 83.18 165 | 47.45 138 | 76.47 274 | 49.06 231 | 66.54 281 | 82.24 207 |
|
ACMH | | 55.70 15 | 65.20 222 | 63.57 224 | 70.07 208 | 78.07 179 | 52.01 185 | 79.48 123 | 79.69 151 | 55.75 194 | 56.59 293 | 80.98 210 | 27.12 330 | 80.94 206 | 42.90 282 | 71.58 220 | 77.25 278 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PLC |  | 56.13 14 | 65.09 223 | 63.21 228 | 70.72 198 | 81.04 111 | 54.87 143 | 78.57 132 | 77.47 197 | 48.51 276 | 55.71 297 | 81.89 191 | 33.71 277 | 79.71 226 | 41.66 291 | 70.37 233 | 77.58 272 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 1792x2688 | | | 65.08 224 | 62.84 232 | 71.82 169 | 81.49 101 | 56.26 119 | 66.32 300 | 74.20 246 | 40.53 342 | 63.16 232 | 78.65 255 | 41.30 210 | 77.80 258 | 45.80 254 | 74.09 182 | 81.40 219 |
|
TransMVSNet (Re) | | | 64.72 225 | 64.33 214 | 65.87 266 | 75.22 236 | 38.56 318 | 74.66 212 | 75.08 236 | 58.90 132 | 61.79 251 | 82.63 172 | 51.18 96 | 78.07 254 | 43.63 274 | 55.87 337 | 80.99 230 |
|
EG-PatchMatch MVS | | | 64.71 226 | 62.87 231 | 70.22 204 | 77.68 188 | 53.48 158 | 77.99 141 | 78.82 165 | 53.37 229 | 56.03 296 | 77.41 273 | 24.75 345 | 84.04 136 | 46.37 249 | 73.42 193 | 73.14 317 |
|
LS3D | | | 64.71 226 | 62.50 236 | 71.34 184 | 79.72 138 | 55.71 129 | 79.82 114 | 74.72 238 | 48.50 277 | 56.62 292 | 84.62 133 | 33.59 280 | 82.34 179 | 29.65 351 | 75.23 176 | 75.97 288 |
|
1314 | | | 64.61 228 | 63.21 228 | 68.80 228 | 71.87 284 | 47.46 244 | 73.95 223 | 78.39 185 | 42.88 330 | 59.97 263 | 76.60 283 | 38.11 238 | 79.39 232 | 54.84 184 | 72.32 212 | 79.55 253 |
|
HY-MVS | | 56.14 13 | 64.55 229 | 63.89 217 | 66.55 252 | 74.73 243 | 41.02 302 | 69.96 282 | 74.43 240 | 49.29 269 | 61.66 252 | 80.92 212 | 47.43 139 | 76.68 272 | 44.91 265 | 71.69 218 | 81.94 212 |
|
XVG-ACMP-BASELINE | | | 64.36 230 | 62.23 239 | 70.74 197 | 72.35 276 | 52.45 177 | 70.80 273 | 78.45 180 | 53.84 225 | 59.87 265 | 81.10 207 | 16.24 359 | 79.32 233 | 55.64 179 | 71.76 217 | 80.47 236 |
|
CostFormer | | | 64.04 231 | 62.51 235 | 68.61 231 | 71.88 283 | 45.77 260 | 71.30 263 | 70.60 272 | 47.55 288 | 64.31 222 | 76.61 282 | 41.63 203 | 79.62 229 | 49.74 224 | 69.00 260 | 80.42 237 |
|
1112_ss | | | 64.00 232 | 63.36 227 | 65.93 264 | 79.28 145 | 42.58 289 | 71.35 261 | 72.36 261 | 46.41 299 | 60.55 259 | 77.89 266 | 46.27 155 | 73.28 287 | 46.18 250 | 69.97 240 | 81.92 213 |
|
baseline1 | | | 63.81 233 | 63.87 219 | 63.62 281 | 76.29 217 | 36.36 335 | 71.78 257 | 67.29 295 | 56.05 188 | 64.23 224 | 82.95 167 | 47.11 144 | 74.41 284 | 47.30 241 | 61.85 315 | 80.10 244 |
|
pmmvs6 | | | 63.69 234 | 62.82 233 | 66.27 256 | 70.63 297 | 39.27 313 | 73.13 237 | 75.47 225 | 52.69 236 | 59.75 268 | 82.30 181 | 39.71 221 | 77.03 269 | 47.40 240 | 64.35 297 | 82.53 202 |
|
Vis-MVSNet (Re-imp) | | | 63.69 234 | 63.88 218 | 63.14 286 | 74.75 242 | 31.04 360 | 71.16 266 | 63.64 318 | 56.32 179 | 59.80 267 | 84.99 127 | 44.51 175 | 75.46 279 | 39.12 302 | 80.62 110 | 82.92 196 |
|
baseline2 | | | 63.42 236 | 61.26 250 | 69.89 214 | 72.55 273 | 47.62 242 | 71.54 258 | 68.38 290 | 50.11 262 | 54.82 308 | 75.55 297 | 43.06 188 | 80.96 205 | 48.13 237 | 67.16 277 | 81.11 227 |
|
thres400 | | | 63.31 237 | 62.18 240 | 66.72 249 | 76.85 208 | 39.62 309 | 71.96 255 | 69.44 282 | 56.63 169 | 62.61 239 | 79.83 235 | 37.18 246 | 79.17 236 | 31.84 337 | 73.25 196 | 81.36 220 |
|
thres600view7 | | | 63.30 238 | 62.27 238 | 66.41 253 | 77.18 202 | 38.87 315 | 72.35 248 | 69.11 286 | 56.98 164 | 62.37 246 | 80.96 211 | 37.01 252 | 79.00 245 | 31.43 344 | 73.05 201 | 81.36 220 |
|
thres100view900 | | | 63.28 239 | 62.41 237 | 65.89 265 | 77.31 200 | 38.66 317 | 72.65 242 | 69.11 286 | 57.07 162 | 62.45 244 | 81.03 209 | 37.01 252 | 79.17 236 | 31.84 337 | 73.25 196 | 79.83 249 |
|
test_0402 | | | 63.25 240 | 61.01 253 | 69.96 209 | 80.00 131 | 54.37 148 | 76.86 169 | 72.02 262 | 54.58 218 | 58.71 277 | 80.79 217 | 35.00 265 | 84.36 130 | 26.41 359 | 64.71 294 | 71.15 337 |
|
tfpn200view9 | | | 63.18 241 | 62.18 240 | 66.21 257 | 76.85 208 | 39.62 309 | 71.96 255 | 69.44 282 | 56.63 169 | 62.61 239 | 79.83 235 | 37.18 246 | 79.17 236 | 31.84 337 | 73.25 196 | 79.83 249 |
|
LTVRE_ROB | | 55.42 16 | 63.15 242 | 61.23 251 | 68.92 227 | 76.57 214 | 47.80 238 | 59.92 331 | 76.39 212 | 54.35 222 | 58.67 278 | 82.46 178 | 29.44 315 | 81.49 193 | 42.12 287 | 71.14 223 | 77.46 273 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
F-COLMAP | | | 63.05 243 | 60.87 256 | 69.58 219 | 76.99 207 | 53.63 155 | 78.12 140 | 76.16 214 | 47.97 284 | 52.41 327 | 81.61 197 | 27.87 324 | 78.11 253 | 40.07 297 | 66.66 280 | 77.00 281 |
|
IterMVS | | | 62.79 244 | 61.27 249 | 67.35 245 | 69.37 316 | 52.04 184 | 71.17 265 | 68.24 291 | 52.63 237 | 59.82 266 | 76.91 277 | 37.32 245 | 72.36 290 | 52.80 202 | 63.19 306 | 77.66 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 62.49 245 | 61.52 246 | 65.40 271 | 71.99 281 | 50.80 197 | 71.15 267 | 69.63 279 | 45.71 307 | 60.61 258 | 77.93 263 | 37.45 243 | 65.99 322 | 55.67 178 | 63.50 303 | 79.42 255 |
|
tfpnnormal | | | 62.47 246 | 61.63 245 | 64.99 275 | 74.81 241 | 39.01 314 | 71.22 264 | 73.72 250 | 55.22 204 | 60.21 260 | 80.09 232 | 41.26 213 | 76.98 270 | 30.02 349 | 68.09 268 | 78.97 260 |
|
MS-PatchMatch | | | 62.42 247 | 61.46 247 | 65.31 273 | 75.21 237 | 52.10 181 | 72.05 252 | 74.05 247 | 46.41 299 | 57.42 289 | 74.36 306 | 34.35 272 | 77.57 263 | 45.62 257 | 73.67 186 | 66.26 350 |
|
Test_1112_low_res | | | 62.32 248 | 61.77 243 | 64.00 280 | 79.08 153 | 39.53 311 | 68.17 291 | 70.17 274 | 43.25 326 | 59.03 275 | 79.90 233 | 44.08 179 | 71.24 296 | 43.79 273 | 68.42 266 | 81.25 223 |
|
D2MVS | | | 62.30 249 | 60.29 258 | 68.34 235 | 66.46 335 | 48.42 232 | 65.70 303 | 73.42 252 | 47.71 286 | 58.16 284 | 75.02 301 | 30.51 305 | 77.71 260 | 53.96 192 | 71.68 219 | 78.90 261 |
|
thres200 | | | 62.20 250 | 61.16 252 | 65.34 272 | 75.38 235 | 39.99 306 | 69.60 284 | 69.29 284 | 55.64 198 | 61.87 250 | 76.99 275 | 37.07 251 | 78.96 246 | 31.28 345 | 73.28 195 | 77.06 279 |
|
tpm2 | | | 62.07 251 | 60.10 259 | 67.99 237 | 72.79 268 | 43.86 279 | 71.05 270 | 66.85 299 | 43.14 328 | 62.77 234 | 75.39 299 | 38.32 235 | 80.80 211 | 41.69 290 | 68.88 261 | 79.32 256 |
|
miper_lstm_enhance | | | 62.03 252 | 60.88 255 | 65.49 270 | 66.71 333 | 46.25 254 | 56.29 343 | 75.70 221 | 50.68 257 | 61.27 255 | 75.48 298 | 40.21 217 | 68.03 311 | 56.31 171 | 65.25 291 | 82.18 208 |
|
DWT-MVSNet_test | | | 61.90 253 | 59.93 260 | 67.83 238 | 71.98 282 | 46.09 258 | 71.03 271 | 69.71 276 | 50.09 263 | 58.51 281 | 70.62 327 | 30.21 309 | 77.63 261 | 49.28 229 | 67.91 269 | 79.78 251 |
|
EPNet_dtu | | | 61.90 253 | 61.97 242 | 61.68 295 | 72.89 267 | 39.78 308 | 75.85 189 | 65.62 306 | 55.09 207 | 54.56 312 | 79.36 247 | 37.59 242 | 67.02 316 | 39.80 300 | 76.95 161 | 78.25 264 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LCM-MVSNet-Re | | | 61.88 255 | 61.35 248 | 63.46 282 | 74.58 245 | 31.48 359 | 61.42 325 | 58.14 339 | 58.71 137 | 53.02 326 | 79.55 243 | 43.07 187 | 76.80 271 | 45.69 255 | 77.96 150 | 82.11 211 |
|
MSDG | | | 61.81 256 | 59.23 262 | 69.55 220 | 72.64 270 | 52.63 172 | 70.45 277 | 75.81 220 | 51.38 250 | 53.70 319 | 76.11 289 | 29.52 313 | 81.08 204 | 37.70 308 | 65.79 288 | 74.93 302 |
|
SixPastTwentyTwo | | | 61.65 257 | 58.80 265 | 70.20 206 | 75.80 226 | 47.22 246 | 75.59 191 | 69.68 278 | 54.61 216 | 54.11 316 | 79.26 249 | 27.07 331 | 82.96 159 | 43.27 276 | 49.79 352 | 80.41 238 |
|
CL-MVSNet_self_test | | | 61.53 258 | 60.94 254 | 63.30 284 | 68.95 319 | 36.93 331 | 67.60 295 | 72.80 258 | 55.67 196 | 59.95 264 | 76.63 280 | 45.01 171 | 72.22 293 | 39.74 301 | 62.09 314 | 80.74 234 |
|
RPMNet | | | 61.53 258 | 58.42 268 | 70.86 194 | 69.96 309 | 52.07 182 | 65.31 309 | 81.36 117 | 43.20 327 | 59.36 270 | 70.15 333 | 35.37 261 | 85.47 109 | 36.42 320 | 64.65 295 | 75.06 298 |
|
pmmvs4 | | | 61.48 260 | 59.39 261 | 67.76 239 | 71.57 287 | 53.86 152 | 71.42 259 | 65.34 308 | 44.20 318 | 59.46 269 | 77.92 264 | 35.90 258 | 74.71 282 | 43.87 272 | 64.87 293 | 74.71 306 |
|
OurMVSNet-221017-0 | | | 61.37 261 | 58.63 267 | 69.61 216 | 72.05 280 | 48.06 236 | 73.93 226 | 72.51 259 | 47.23 294 | 54.74 309 | 80.92 212 | 21.49 354 | 81.24 199 | 48.57 235 | 56.22 336 | 79.53 254 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 262 | 58.81 264 | 68.64 230 | 74.63 244 | 52.51 175 | 78.42 137 | 73.30 253 | 49.92 266 | 50.96 332 | 81.51 200 | 23.06 347 | 79.40 231 | 31.63 341 | 65.85 286 | 74.01 313 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XXY-MVS | | | 60.68 263 | 61.67 244 | 57.70 317 | 70.43 300 | 38.45 319 | 64.19 315 | 66.47 300 | 48.05 283 | 63.22 230 | 80.86 214 | 49.28 113 | 60.47 338 | 45.25 264 | 67.28 276 | 74.19 311 |
|
SCA | | | 60.49 264 | 58.38 269 | 66.80 248 | 74.14 255 | 48.06 236 | 63.35 317 | 63.23 321 | 49.13 271 | 59.33 273 | 72.10 318 | 37.45 243 | 74.27 285 | 44.17 267 | 62.57 310 | 78.05 267 |
|
K. test v3 | | | 60.47 265 | 57.11 277 | 70.56 200 | 73.74 257 | 48.22 234 | 75.10 202 | 62.55 325 | 58.27 147 | 53.62 321 | 76.31 288 | 27.81 325 | 81.59 191 | 47.42 239 | 39.18 363 | 81.88 214 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 266 | 58.14 272 | 65.69 268 | 70.47 299 | 44.82 269 | 75.33 194 | 70.86 270 | 45.04 309 | 56.06 295 | 76.00 290 | 26.89 333 | 79.65 227 | 35.36 325 | 67.29 275 | 72.60 322 |
|
CR-MVSNet | | | 59.91 267 | 57.90 274 | 65.96 263 | 69.96 309 | 52.07 182 | 65.31 309 | 63.15 322 | 42.48 332 | 59.36 270 | 74.84 302 | 35.83 259 | 70.75 298 | 45.50 259 | 64.65 295 | 75.06 298 |
|
PatchmatchNet |  | | 59.84 268 | 58.24 270 | 64.65 277 | 73.05 264 | 46.70 250 | 69.42 286 | 62.18 327 | 47.55 288 | 58.88 276 | 71.96 320 | 34.49 270 | 69.16 306 | 42.99 280 | 63.60 302 | 78.07 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WTY-MVS | | | 59.75 269 | 60.39 257 | 57.85 315 | 72.32 277 | 37.83 323 | 61.05 329 | 64.18 316 | 45.95 306 | 61.91 249 | 79.11 251 | 47.01 148 | 60.88 337 | 42.50 284 | 69.49 251 | 74.83 303 |
|
CVMVSNet | | | 59.63 270 | 59.14 263 | 61.08 300 | 74.47 247 | 38.84 316 | 75.20 198 | 68.74 288 | 31.15 357 | 58.24 283 | 76.51 284 | 32.39 297 | 68.58 309 | 49.77 223 | 65.84 287 | 75.81 291 |
|
tpm cat1 | | | 59.25 271 | 56.95 280 | 66.15 259 | 72.19 278 | 46.96 248 | 68.09 292 | 65.76 304 | 40.03 345 | 57.81 286 | 70.56 328 | 38.32 235 | 74.51 283 | 38.26 306 | 61.50 318 | 77.00 281 |
|
pmmvs-eth3d | | | 58.81 272 | 56.31 285 | 66.30 255 | 67.61 327 | 52.42 178 | 72.30 249 | 64.76 312 | 43.55 324 | 54.94 307 | 74.19 308 | 28.95 317 | 72.60 289 | 43.31 275 | 57.21 332 | 73.88 314 |
|
MVS_0304 | | | 58.51 273 | 57.36 276 | 61.96 294 | 70.04 307 | 41.83 295 | 69.40 287 | 65.46 307 | 50.73 256 | 53.30 325 | 74.06 309 | 22.65 348 | 70.18 304 | 42.16 286 | 68.44 265 | 73.86 315 |
|
tpmvs | | | 58.47 274 | 56.95 280 | 63.03 288 | 70.20 303 | 41.21 301 | 67.90 294 | 67.23 296 | 49.62 267 | 54.73 310 | 70.84 325 | 34.14 273 | 76.24 277 | 36.64 317 | 61.29 319 | 71.64 333 |
|
PVSNet | | 50.76 19 | 58.40 275 | 57.39 275 | 61.42 297 | 75.53 232 | 44.04 278 | 61.43 324 | 63.45 319 | 47.04 296 | 56.91 290 | 73.61 312 | 27.00 332 | 64.76 325 | 39.12 302 | 72.40 210 | 75.47 295 |
|
tpmrst | | | 58.24 276 | 58.70 266 | 56.84 318 | 66.97 330 | 34.32 348 | 69.57 285 | 61.14 331 | 47.17 295 | 58.58 280 | 71.60 321 | 41.28 212 | 60.41 339 | 49.20 230 | 62.84 308 | 75.78 292 |
|
Patchmatch-RL test | | | 58.16 277 | 55.49 289 | 66.15 259 | 67.92 326 | 48.89 227 | 60.66 330 | 51.07 358 | 47.86 285 | 59.36 270 | 62.71 355 | 34.02 275 | 72.27 292 | 56.41 170 | 59.40 326 | 77.30 275 |
|
test-LLR | | | 58.15 278 | 58.13 273 | 58.22 311 | 68.57 321 | 44.80 270 | 65.46 306 | 57.92 340 | 50.08 264 | 55.44 300 | 69.82 335 | 32.62 293 | 57.44 348 | 49.66 226 | 73.62 187 | 72.41 327 |
|
ppachtmachnet_test | | | 58.06 279 | 55.38 290 | 66.10 261 | 69.51 313 | 48.99 225 | 68.01 293 | 66.13 303 | 44.50 315 | 54.05 317 | 70.74 326 | 32.09 299 | 72.34 291 | 36.68 316 | 56.71 335 | 76.99 283 |
|
gg-mvs-nofinetune | | | 57.86 280 | 56.43 284 | 62.18 292 | 72.62 271 | 35.35 342 | 66.57 297 | 56.33 346 | 50.65 258 | 57.64 287 | 57.10 358 | 30.65 304 | 76.36 275 | 37.38 310 | 78.88 139 | 74.82 304 |
|
CMPMVS |  | 42.80 21 | 57.81 281 | 55.97 286 | 63.32 283 | 60.98 359 | 47.38 245 | 64.66 313 | 69.50 281 | 32.06 356 | 46.83 347 | 77.80 268 | 29.50 314 | 71.36 295 | 48.68 233 | 73.75 185 | 71.21 336 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet | | | 57.35 282 | 57.07 278 | 58.22 311 | 74.21 254 | 37.18 326 | 62.46 320 | 60.88 332 | 48.88 273 | 55.29 303 | 75.99 292 | 31.68 301 | 62.04 334 | 31.87 336 | 72.35 211 | 75.43 296 |
|
tpm | | | 57.34 283 | 58.16 271 | 54.86 325 | 71.80 285 | 34.77 344 | 67.47 296 | 56.04 349 | 48.20 281 | 60.10 261 | 76.92 276 | 37.17 248 | 53.41 361 | 40.76 295 | 65.01 292 | 76.40 287 |
|
Patchmtry | | | 57.16 284 | 56.47 283 | 59.23 304 | 69.17 318 | 34.58 347 | 62.98 318 | 63.15 322 | 44.53 314 | 56.83 291 | 74.84 302 | 35.83 259 | 68.71 308 | 40.03 298 | 60.91 320 | 74.39 309 |
|
AllTest | | | 57.08 285 | 54.65 294 | 64.39 278 | 71.44 288 | 49.03 222 | 69.92 283 | 67.30 293 | 45.97 304 | 47.16 345 | 79.77 237 | 17.47 356 | 67.56 313 | 33.65 330 | 59.16 327 | 76.57 285 |
|
our_test_3 | | | 56.49 286 | 54.42 296 | 62.68 290 | 69.51 313 | 45.48 266 | 66.08 301 | 61.49 330 | 44.11 321 | 50.73 336 | 69.60 337 | 33.05 284 | 68.15 310 | 38.38 305 | 56.86 333 | 74.40 308 |
|
pmmvs5 | | | 56.47 287 | 55.68 288 | 58.86 308 | 61.41 356 | 36.71 333 | 66.37 299 | 62.75 324 | 40.38 343 | 53.70 319 | 76.62 281 | 34.56 268 | 67.05 315 | 40.02 299 | 65.27 290 | 72.83 320 |
|
test-mter | | | 56.42 288 | 55.82 287 | 58.22 311 | 68.57 321 | 44.80 270 | 65.46 306 | 57.92 340 | 39.94 346 | 55.44 300 | 69.82 335 | 21.92 351 | 57.44 348 | 49.66 226 | 73.62 187 | 72.41 327 |
|
USDC | | | 56.35 289 | 54.24 300 | 62.69 289 | 64.74 343 | 40.31 305 | 65.05 311 | 73.83 249 | 43.93 322 | 47.58 343 | 77.71 271 | 15.36 361 | 75.05 281 | 38.19 307 | 61.81 316 | 72.70 321 |
|
PatchMatch-RL | | | 56.25 290 | 54.55 295 | 61.32 299 | 77.06 204 | 56.07 123 | 65.57 305 | 54.10 354 | 44.13 320 | 53.49 324 | 71.27 324 | 25.20 342 | 66.78 317 | 36.52 319 | 63.66 301 | 61.12 353 |
|
sss | | | 56.17 291 | 56.57 282 | 54.96 324 | 66.93 331 | 36.32 338 | 57.94 337 | 61.69 329 | 41.67 335 | 58.64 279 | 75.32 300 | 38.72 231 | 56.25 354 | 42.04 288 | 66.19 284 | 72.31 330 |
|
FMVSNet5 | | | 55.86 292 | 54.93 292 | 58.66 310 | 71.05 293 | 36.35 336 | 64.18 316 | 62.48 326 | 46.76 297 | 50.66 337 | 74.73 304 | 25.80 339 | 64.04 327 | 33.11 332 | 65.57 289 | 75.59 294 |
|
RPSCF | | | 55.80 293 | 54.22 301 | 60.53 301 | 65.13 342 | 42.91 288 | 64.30 314 | 57.62 342 | 36.84 351 | 58.05 285 | 82.28 182 | 28.01 323 | 56.24 355 | 37.14 311 | 58.61 329 | 82.44 206 |
|
EU-MVSNet | | | 55.61 294 | 54.41 297 | 59.19 306 | 65.41 341 | 33.42 353 | 72.44 247 | 71.91 263 | 28.81 359 | 51.27 330 | 73.87 310 | 24.76 344 | 69.08 307 | 43.04 279 | 58.20 330 | 75.06 298 |
|
Anonymous20240521 | | | 55.30 295 | 54.41 297 | 57.96 314 | 60.92 361 | 41.73 297 | 71.09 269 | 71.06 269 | 41.18 338 | 48.65 341 | 73.31 313 | 16.93 358 | 59.25 343 | 42.54 283 | 64.01 298 | 72.90 319 |
|
TESTMET0.1,1 | | | 55.28 296 | 54.90 293 | 56.42 319 | 66.56 334 | 43.67 281 | 65.46 306 | 56.27 347 | 39.18 348 | 53.83 318 | 67.44 344 | 24.21 346 | 55.46 358 | 48.04 238 | 73.11 200 | 70.13 342 |
|
KD-MVS_self_test | | | 55.22 297 | 53.89 303 | 59.21 305 | 57.80 366 | 27.47 366 | 57.75 338 | 74.32 242 | 47.38 290 | 50.90 333 | 70.00 334 | 28.45 321 | 70.30 302 | 40.44 296 | 57.92 331 | 79.87 248 |
|
MIMVSNet1 | | | 55.17 298 | 54.31 299 | 57.77 316 | 70.03 308 | 32.01 357 | 65.68 304 | 64.81 311 | 49.19 270 | 46.75 348 | 76.00 290 | 25.53 341 | 64.04 327 | 28.65 353 | 62.13 313 | 77.26 277 |
|
Anonymous20231206 | | | 55.10 299 | 55.30 291 | 54.48 327 | 69.81 312 | 33.94 351 | 62.91 319 | 62.13 328 | 41.08 339 | 55.18 304 | 75.65 295 | 32.75 291 | 56.59 353 | 30.32 348 | 67.86 270 | 72.91 318 |
|
TinyColmap | | | 54.14 300 | 51.72 310 | 61.40 298 | 66.84 332 | 41.97 293 | 66.52 298 | 68.51 289 | 44.81 310 | 42.69 357 | 75.77 294 | 11.66 365 | 72.94 288 | 31.96 335 | 56.77 334 | 69.27 346 |
|
EPMVS | | | 53.96 301 | 53.69 304 | 54.79 326 | 66.12 338 | 31.96 358 | 62.34 322 | 49.05 361 | 44.42 317 | 55.54 298 | 71.33 323 | 30.22 308 | 56.70 351 | 41.65 292 | 62.54 311 | 75.71 293 |
|
PMMVS | | | 53.96 301 | 53.26 307 | 56.04 320 | 62.60 352 | 50.92 194 | 61.17 328 | 56.09 348 | 32.81 355 | 53.51 323 | 66.84 346 | 34.04 274 | 59.93 341 | 44.14 269 | 68.18 267 | 57.27 358 |
|
test20.03 | | | 53.87 303 | 54.02 302 | 53.41 332 | 61.47 355 | 28.11 365 | 61.30 326 | 59.21 335 | 51.34 252 | 52.09 328 | 77.43 272 | 33.29 283 | 58.55 345 | 29.76 350 | 60.27 324 | 73.58 316 |
|
MDA-MVSNet-bldmvs | | | 53.87 303 | 50.81 314 | 63.05 287 | 66.25 336 | 48.58 230 | 56.93 341 | 63.82 317 | 48.09 282 | 41.22 358 | 70.48 331 | 30.34 307 | 68.00 312 | 34.24 328 | 45.92 357 | 72.57 323 |
|
KD-MVS_2432*1600 | | | 53.45 305 | 51.50 312 | 59.30 302 | 62.82 349 | 37.14 327 | 55.33 344 | 71.79 264 | 47.34 292 | 55.09 305 | 70.52 329 | 21.91 352 | 70.45 300 | 35.72 323 | 42.97 360 | 70.31 340 |
|
miper_refine_blended | | | 53.45 305 | 51.50 312 | 59.30 302 | 62.82 349 | 37.14 327 | 55.33 344 | 71.79 264 | 47.34 292 | 55.09 305 | 70.52 329 | 21.91 352 | 70.45 300 | 35.72 323 | 42.97 360 | 70.31 340 |
|
TDRefinement | | | 53.44 307 | 50.72 315 | 61.60 296 | 64.31 346 | 46.96 248 | 70.89 272 | 65.27 310 | 41.78 333 | 44.61 353 | 77.98 261 | 11.52 366 | 66.36 320 | 28.57 354 | 51.59 347 | 71.49 334 |
|
test0.0.03 1 | | | 53.32 308 | 53.59 305 | 52.50 336 | 62.81 351 | 29.45 363 | 59.51 332 | 54.11 353 | 50.08 264 | 54.40 314 | 74.31 307 | 32.62 293 | 55.92 356 | 30.50 347 | 63.95 300 | 72.15 332 |
|
PatchT | | | 53.17 309 | 53.44 306 | 52.33 337 | 68.29 325 | 25.34 370 | 58.21 336 | 54.41 352 | 44.46 316 | 54.56 312 | 69.05 338 | 33.32 282 | 60.94 336 | 36.93 312 | 61.76 317 | 70.73 339 |
|
UnsupCasMVSNet_eth | | | 53.16 310 | 52.47 308 | 55.23 323 | 59.45 363 | 33.39 354 | 59.43 333 | 69.13 285 | 45.98 303 | 50.35 339 | 72.32 317 | 29.30 316 | 58.26 346 | 42.02 289 | 44.30 358 | 74.05 312 |
|
PM-MVS | | | 52.33 311 | 50.19 316 | 58.75 309 | 62.10 353 | 45.14 268 | 65.75 302 | 40.38 371 | 43.60 323 | 53.52 322 | 72.65 315 | 9.16 371 | 65.87 323 | 50.41 219 | 54.18 342 | 65.24 352 |
|
testgi | | | 51.90 312 | 52.37 309 | 50.51 341 | 60.39 362 | 23.55 372 | 58.42 335 | 58.15 338 | 49.03 272 | 51.83 329 | 79.21 250 | 22.39 349 | 55.59 357 | 29.24 352 | 62.64 309 | 72.40 329 |
|
dp | | | 51.89 313 | 51.60 311 | 52.77 335 | 68.44 324 | 32.45 356 | 62.36 321 | 54.57 351 | 44.16 319 | 49.31 340 | 67.91 340 | 28.87 319 | 56.61 352 | 33.89 329 | 54.89 339 | 69.24 347 |
|
JIA-IIPM | | | 51.56 314 | 47.68 324 | 63.21 285 | 64.61 344 | 50.73 198 | 47.71 357 | 58.77 337 | 42.90 329 | 48.46 342 | 51.72 361 | 24.97 343 | 70.24 303 | 36.06 322 | 53.89 343 | 68.64 348 |
|
ADS-MVSNet2 | | | 51.33 315 | 48.76 320 | 59.07 307 | 66.02 339 | 44.60 273 | 50.90 352 | 59.76 334 | 36.90 349 | 50.74 334 | 66.18 348 | 26.38 334 | 63.11 330 | 27.17 355 | 54.76 340 | 69.50 344 |
|
YYNet1 | | | 50.73 316 | 48.96 317 | 56.03 321 | 61.10 358 | 41.78 296 | 51.94 350 | 56.44 345 | 40.94 341 | 44.84 351 | 67.80 342 | 30.08 310 | 55.08 359 | 36.77 313 | 50.71 349 | 71.22 335 |
|
MDA-MVSNet_test_wron | | | 50.71 317 | 48.95 318 | 56.00 322 | 61.17 357 | 41.84 294 | 51.90 351 | 56.45 344 | 40.96 340 | 44.79 352 | 67.84 341 | 30.04 311 | 55.07 360 | 36.71 315 | 50.69 350 | 71.11 338 |
|
UnsupCasMVSNet_bld | | | 50.07 318 | 48.87 319 | 53.66 330 | 60.97 360 | 33.67 352 | 57.62 339 | 64.56 314 | 39.47 347 | 47.38 344 | 64.02 353 | 27.47 327 | 59.32 342 | 34.69 327 | 43.68 359 | 67.98 349 |
|
Patchmatch-test | | | 49.08 319 | 48.28 321 | 51.50 339 | 64.40 345 | 30.85 361 | 45.68 359 | 48.46 364 | 35.60 352 | 46.10 350 | 72.10 318 | 34.47 271 | 46.37 365 | 27.08 357 | 60.65 323 | 77.27 276 |
|
ADS-MVSNet | | | 48.48 320 | 47.77 322 | 50.63 340 | 66.02 339 | 29.92 362 | 50.90 352 | 50.87 360 | 36.90 349 | 50.74 334 | 66.18 348 | 26.38 334 | 52.47 362 | 27.17 355 | 54.76 340 | 69.50 344 |
|
CHOSEN 280x420 | | | 47.83 321 | 46.36 325 | 52.24 338 | 67.37 329 | 49.78 213 | 38.91 365 | 43.11 369 | 35.00 353 | 43.27 356 | 63.30 354 | 28.95 317 | 49.19 364 | 36.53 318 | 60.80 322 | 57.76 357 |
|
new-patchmatchnet | | | 47.56 322 | 47.73 323 | 47.06 343 | 58.81 364 | 9.37 378 | 48.78 356 | 59.21 335 | 43.28 325 | 44.22 354 | 68.66 339 | 25.67 340 | 57.20 350 | 31.57 343 | 49.35 353 | 74.62 307 |
|
PVSNet_0 | | 43.31 20 | 47.46 323 | 45.64 326 | 52.92 334 | 67.60 328 | 44.65 272 | 54.06 348 | 54.64 350 | 41.59 336 | 46.15 349 | 58.75 357 | 30.99 303 | 58.66 344 | 32.18 334 | 24.81 366 | 55.46 359 |
|
MVS-HIRNet | | | 45.52 324 | 44.48 327 | 48.65 342 | 68.49 323 | 34.05 350 | 59.41 334 | 44.50 368 | 27.03 361 | 37.96 362 | 50.47 364 | 26.16 337 | 64.10 326 | 26.74 358 | 59.52 325 | 47.82 362 |
|
pmmvs3 | | | 44.92 325 | 41.95 329 | 53.86 329 | 52.58 368 | 43.55 282 | 62.11 323 | 46.90 367 | 26.05 363 | 40.63 359 | 60.19 356 | 11.08 368 | 57.91 347 | 31.83 340 | 46.15 356 | 60.11 354 |
|
LF4IMVS | | | 42.95 326 | 42.26 328 | 45.04 345 | 48.30 370 | 32.50 355 | 54.80 346 | 48.49 363 | 28.03 360 | 40.51 360 | 70.16 332 | 9.24 370 | 43.89 367 | 31.63 341 | 49.18 354 | 58.72 355 |
|
EGC-MVSNET | | | 42.47 327 | 38.48 333 | 54.46 328 | 74.33 251 | 48.73 229 | 70.33 279 | 51.10 357 | 0.03 376 | 0.18 377 | 67.78 343 | 13.28 362 | 66.49 319 | 18.91 364 | 50.36 351 | 48.15 361 |
|
FPMVS | | | 42.18 328 | 41.11 330 | 45.39 344 | 58.03 365 | 41.01 303 | 49.50 354 | 53.81 355 | 30.07 358 | 33.71 363 | 64.03 351 | 11.69 364 | 52.08 363 | 14.01 368 | 55.11 338 | 43.09 364 |
|
ANet_high | | | 41.38 329 | 37.47 334 | 53.11 333 | 39.73 375 | 24.45 371 | 56.94 340 | 69.69 277 | 47.65 287 | 26.04 366 | 52.32 360 | 12.44 363 | 62.38 333 | 21.80 362 | 10.61 373 | 72.49 324 |
|
LCM-MVSNet | | | 40.30 330 | 35.88 335 | 53.57 331 | 42.24 372 | 29.15 364 | 45.21 361 | 60.53 333 | 22.23 367 | 28.02 365 | 50.98 363 | 3.72 377 | 61.78 335 | 31.22 346 | 38.76 364 | 69.78 343 |
|
N_pmnet | | | 39.35 331 | 40.28 331 | 36.54 349 | 63.76 347 | 1.62 382 | 49.37 355 | 0.76 382 | 34.62 354 | 43.61 355 | 66.38 347 | 26.25 336 | 42.57 368 | 26.02 360 | 51.77 346 | 65.44 351 |
|
DSMNet-mixed | | | 39.30 332 | 38.72 332 | 41.03 348 | 51.22 369 | 19.66 374 | 45.53 360 | 31.35 375 | 15.83 370 | 39.80 361 | 67.42 345 | 22.19 350 | 45.13 366 | 22.43 361 | 52.69 345 | 58.31 356 |
|
PMVS |  | 28.69 22 | 36.22 333 | 33.29 337 | 45.02 346 | 36.82 377 | 35.98 341 | 54.68 347 | 48.74 362 | 26.31 362 | 21.02 367 | 51.61 362 | 2.88 379 | 60.10 340 | 9.99 372 | 47.58 355 | 38.99 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 34.77 334 | 31.91 338 | 43.33 347 | 62.05 354 | 37.87 322 | 20.39 368 | 67.03 297 | 23.23 365 | 18.41 369 | 25.84 369 | 4.24 375 | 62.73 331 | 14.71 367 | 51.32 348 | 29.38 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
new_pmnet | | | 34.13 335 | 34.29 336 | 33.64 350 | 52.63 367 | 18.23 376 | 44.43 362 | 33.90 374 | 22.81 366 | 30.89 364 | 53.18 359 | 10.48 369 | 35.72 372 | 20.77 363 | 39.51 362 | 46.98 363 |
|
PMMVS2 | | | 27.40 336 | 25.91 339 | 31.87 352 | 39.46 376 | 6.57 379 | 31.17 366 | 28.52 376 | 23.96 364 | 20.45 368 | 48.94 365 | 4.20 376 | 37.94 371 | 16.51 365 | 19.97 368 | 51.09 360 |
|
E-PMN | | | 23.77 337 | 22.73 341 | 26.90 353 | 42.02 373 | 20.67 373 | 42.66 363 | 35.70 372 | 17.43 368 | 10.28 374 | 25.05 370 | 6.42 373 | 42.39 369 | 10.28 371 | 14.71 370 | 17.63 369 |
|
EMVS | | | 22.97 338 | 21.84 342 | 26.36 354 | 40.20 374 | 19.53 375 | 41.95 364 | 34.64 373 | 17.09 369 | 9.73 375 | 22.83 371 | 7.29 372 | 42.22 370 | 9.18 373 | 13.66 371 | 17.32 370 |
|
MVE |  | 17.77 23 | 21.41 339 | 17.77 344 | 32.34 351 | 34.34 378 | 25.44 369 | 16.11 369 | 24.11 377 | 11.19 371 | 13.22 371 | 31.92 367 | 1.58 380 | 30.95 373 | 10.47 370 | 17.03 369 | 40.62 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 19.68 340 | 18.10 343 | 24.41 355 | 13.68 380 | 3.11 381 | 12.06 371 | 42.37 370 | 2.00 374 | 11.97 372 | 36.38 366 | 5.77 374 | 29.35 374 | 15.06 366 | 23.65 367 | 40.76 365 |
|
cdsmvs_eth3d_5k | | | 17.50 341 | 23.34 340 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 78.63 172 | 0.00 379 | 0.00 380 | 82.18 183 | 49.25 114 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
wuyk23d | | | 13.32 342 | 12.52 345 | 15.71 356 | 47.54 371 | 26.27 367 | 31.06 367 | 1.98 381 | 4.93 373 | 5.18 376 | 1.94 376 | 0.45 381 | 18.54 375 | 6.81 375 | 12.83 372 | 2.33 373 |
|
tmp_tt | | | 9.43 343 | 11.14 346 | 4.30 358 | 2.38 381 | 4.40 380 | 13.62 370 | 16.08 379 | 0.39 375 | 15.89 370 | 13.06 372 | 15.80 360 | 5.54 377 | 12.63 369 | 10.46 374 | 2.95 372 |
|
ab-mvs-re | | | 6.49 344 | 8.65 347 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 77.89 266 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
test123 | | | 4.73 345 | 6.30 348 | 0.02 359 | 0.01 382 | 0.01 383 | 56.36 342 | 0.00 383 | 0.01 377 | 0.04 378 | 0.21 378 | 0.01 382 | 0.00 378 | 0.03 377 | 0.00 376 | 0.04 374 |
|
testmvs | | | 4.52 346 | 6.03 349 | 0.01 360 | 0.01 382 | 0.00 384 | 53.86 349 | 0.00 383 | 0.01 377 | 0.04 378 | 0.27 377 | 0.00 383 | 0.00 378 | 0.04 376 | 0.00 376 | 0.03 375 |
|
pcd_1.5k_mvsjas | | | 3.92 347 | 5.23 350 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 47.05 145 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 384 | 0.00 372 | 0.00 383 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 383 | 0.00 378 | 0.00 378 | 0.00 376 | 0.00 376 |
|
FOURS1 | | | | | | 86.12 40 | 60.82 42 | 88.18 1 | 83.61 68 | 60.87 89 | 81.50 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 28 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
PC_three_1452 | | | | | | | | | | 55.09 207 | 84.46 4 | 89.84 49 | 66.68 5 | 89.41 17 | 74.24 37 | 91.38 2 | 88.42 9 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 28 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 27 |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 65 | | 86.84 11 | 65.01 23 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 86.64 23 | 60.38 50 | | 82.70 92 | 57.95 152 | 78.10 28 | 90.06 40 | 56.12 42 | 88.84 26 | 74.05 40 | 87.00 55 | |
|
RE-MVS-def | | | | 73.71 73 | | 83.49 74 | 59.87 57 | 84.29 38 | 81.36 117 | 58.07 149 | 73.14 79 | 90.07 38 | 43.06 188 | | 68.20 80 | 81.76 102 | 84.03 157 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 68 | | 85.53 30 | 53.93 224 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 11 |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 40 | 87.82 7 | | | | 89.89 47 | 67.01 1 | 90.33 11 | 73.16 49 | 91.15 4 | 88.23 14 |
|
test_241102_TWO | | | | | | | | | 86.73 16 | 64.18 35 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 36 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 77 | | 86.78 14 | 64.20 34 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
9.14 | | | | 78.75 16 | | 83.10 78 | | 84.15 44 | 88.26 2 | 59.90 113 | 78.57 27 | 90.36 28 | 57.51 33 | 86.86 66 | 77.39 18 | 89.52 25 | |
|
save fliter | | | | | | 86.17 36 | 61.30 31 | 83.98 49 | 79.66 153 | 59.00 129 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 19 |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 71 | 87.85 5 | 87.15 6 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 38 |
|
test0726 | | | | | | 87.75 7 | 59.07 72 | 87.86 4 | 86.83 12 | 64.26 32 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 267 |
|
test_part2 | | | | | | 87.58 9 | 60.47 49 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 267 | | | | 78.05 267 |
|
sam_mvs | | | | | | | | | | | | | 33.43 281 | | | | |
|
ambc | | | | | 65.13 274 | 63.72 348 | 37.07 329 | 47.66 358 | 78.78 168 | | 54.37 315 | 71.42 322 | 11.24 367 | 80.94 206 | 45.64 256 | 53.85 344 | 77.38 274 |
|
MTGPA |  | | | | | | | | 80.97 133 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 290 | | | | 3.64 374 | 32.39 297 | 69.49 305 | 44.17 267 | | |
|
test_post | | | | | | | | | | | | 3.55 375 | 33.90 276 | 66.52 318 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 351 | 34.50 269 | 74.27 285 | | | |
|
GG-mvs-BLEND | | | | | 62.34 291 | 71.36 292 | 37.04 330 | 69.20 288 | 57.33 343 | | 54.73 310 | 65.48 350 | 30.37 306 | 77.82 257 | 34.82 326 | 74.93 177 | 72.17 331 |
|
MTMP | | | | | | | | 86.03 19 | 17.08 378 | | | | | | | | |
|
gm-plane-assit | | | | | | 71.40 291 | 41.72 299 | | | 48.85 274 | | 73.31 313 | | 82.48 177 | 48.90 232 | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 31 | 88.31 37 | 83.81 166 |
|
TEST9 | | | | | | 85.58 49 | 61.59 27 | 81.62 89 | 81.26 124 | 55.65 197 | 74.93 47 | 88.81 65 | 53.70 69 | 84.68 124 | | | |
|
test_8 | | | | | | 85.40 53 | 60.96 39 | 81.54 92 | 81.18 127 | 55.86 189 | 74.81 50 | 88.80 67 | 53.70 69 | 84.45 129 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 50 | 87.93 44 | 84.33 148 |
|
agg_prior | | | | | | 85.04 57 | 59.96 54 | | 81.04 130 | | 74.68 53 | | | 84.04 136 | | | |
|
TestCases | | | | | 64.39 278 | 71.44 288 | 49.03 222 | | 67.30 293 | 45.97 304 | 47.16 345 | 79.77 237 | 17.47 356 | 67.56 313 | 33.65 330 | 59.16 327 | 76.57 285 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 84 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 86 | | 60.37 101 | 75.01 45 | 89.06 59 | 56.22 40 | | 72.19 53 | 88.96 28 | |
|
test_prior | | | | | 76.69 63 | 84.20 69 | 57.27 101 | | 84.88 41 | | | | | 86.43 83 | | | 86.38 73 |
|
旧先验2 | | | | | | | | 76.08 183 | | 45.32 308 | 76.55 35 | | | 65.56 324 | 58.75 161 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 181 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 70.76 196 | 85.66 46 | 61.13 35 | | 66.43 302 | 44.68 312 | 70.29 109 | 86.64 95 | 41.29 211 | 75.23 280 | 49.72 225 | 81.75 104 | 75.93 290 |
|
旧先验1 | | | | | | 83.04 80 | 53.15 164 | | 67.52 292 | | | 87.85 77 | 44.08 179 | | | 80.76 109 | 78.03 270 |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 118 | 74.30 244 | 48.40 279 | | | | 80.78 212 | 53.62 194 | | 79.03 259 |
|
原ACMM2 | | | | | | | | 79.02 125 | | | | | | | | | |
|
原ACMM1 | | | | | 74.69 100 | 85.39 54 | 59.40 62 | | 83.42 74 | 51.47 249 | 70.27 111 | 86.61 97 | 48.61 123 | 86.51 80 | 53.85 193 | 87.96 43 | 78.16 265 |
|
test222 | | | | | | 83.14 77 | 58.68 81 | 72.57 245 | 63.45 319 | 41.78 333 | 67.56 163 | 86.12 108 | 37.13 249 | | | 78.73 144 | 74.98 301 |
|
testdata2 | | | | | | | | | | | | | | 72.18 294 | 46.95 246 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 60 | | | | |
|
testdata | | | | | 64.66 276 | 81.52 99 | 52.93 167 | | 65.29 309 | 46.09 302 | 73.88 67 | 87.46 80 | 38.08 239 | 66.26 321 | 53.31 199 | 78.48 147 | 74.78 305 |
|
testdata1 | | | | | | | | 72.65 242 | | 60.50 96 | | | | | | | |
|
test12 | | | | | 77.76 46 | 84.52 66 | 58.41 85 | | 83.36 77 | | 72.93 85 | | 54.61 57 | 88.05 39 | | 88.12 40 | 86.81 65 |
|
plane_prior7 | | | | | | 81.41 102 | 55.96 125 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 109 | 56.24 120 | | | | | | 45.26 169 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 55 | | | | | 87.21 55 | 68.16 82 | 80.58 112 | 84.65 141 |
|
plane_prior4 | | | | | | | | | | | | 86.10 109 | | | | | |
|
plane_prior3 | | | | | | | 56.09 122 | | | 63.92 39 | 69.27 130 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 41 | | 64.52 28 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 107 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 116 | 83.58 57 | | 63.19 52 | | | | | | 80.48 115 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 366 | | | | | | | | |
|
lessismore_v0 | | | | | 69.91 212 | 71.42 290 | 47.80 238 | | 50.90 359 | | 50.39 338 | 75.56 296 | 27.43 329 | 81.33 196 | 45.91 253 | 34.10 365 | 80.59 235 |
|
LGP-MVS_train | | | | | 75.76 78 | 80.22 124 | 57.51 99 | | 83.40 75 | 61.32 84 | 66.67 178 | 87.33 82 | 39.15 227 | 86.59 75 | 67.70 86 | 77.30 158 | 83.19 190 |
|
test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
door | | | | | | | | | 47.60 365 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 140 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 114 | | 82.31 79 | | 62.10 73 | 67.85 154 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 114 | | 82.31 79 | | 62.10 73 | 67.85 154 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 93 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 154 | | | 86.93 64 | | | 84.32 149 |
|
HQP3-MVS | | | | | | | | | 83.90 60 | | | | | | | 80.35 118 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 163 | | | | |
|
NP-MVS | | | | | | 80.98 112 | 56.05 124 | | | | | 85.54 123 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 368 | 61.22 327 | | 40.10 344 | 51.10 331 | | 32.97 286 | | 38.49 304 | | 78.61 262 |
|
MDTV_nov1_ep13 | | | | 57.00 279 | | 72.73 269 | 38.26 320 | 65.02 312 | 64.73 313 | 44.74 311 | 55.46 299 | 72.48 316 | 32.61 295 | 70.47 299 | 37.47 309 | 67.75 273 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 183 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 214 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 126 | | | | |
|
ITE_SJBPF | | | | | 62.09 293 | 66.16 337 | 44.55 275 | | 64.32 315 | 47.36 291 | 55.31 302 | 80.34 224 | 19.27 355 | 62.68 332 | 36.29 321 | 62.39 312 | 79.04 258 |
|
DeepMVS_CX |  | | | | 12.03 357 | 17.97 379 | 10.91 377 | | 10.60 380 | 7.46 372 | 11.07 373 | 28.36 368 | 3.28 378 | 11.29 376 | 8.01 374 | 9.74 375 | 13.89 371 |
|