This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35098.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23297.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23099.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16998.52 3699.70 5499.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33798.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19598.83 2299.56 8699.20 139
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37498.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26399.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 208
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19898.71 2499.49 9699.09 157
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 28298.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18898.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
patch_mono-298.36 5098.87 696.82 21799.53 3690.68 32398.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17998.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18599.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25899.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24598.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19797.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21998.91 2099.50 9499.19 143
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23895.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
dcpmvs_298.08 6098.59 1496.56 24199.57 3390.34 33099.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26198.73 11192.98 26197.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17497.62 8898.89 13198.58 207
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19398.83 13699.65 69
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26398.67 12892.57 27698.77 6798.85 12295.93 3899.72 11395.56 17499.69 5699.68 61
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26799.00 11489.54 34297.43 30498.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35696.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 27398.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25997.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 28298.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19799.52 9299.67 65
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20899.50 91
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17697.38 10499.20 11899.05 163
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 31398.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 248
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18598.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28498.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18797.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29897.53 29895.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22699.08 161
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 30298.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 246
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 19298.10 5598.29 16599.39 112
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18598.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24798.37 19496.20 9998.74 6998.89 11891.31 14799.25 18298.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16298.79 6598.83 12592.34 11498.41 29596.91 11999.59 7699.34 116
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21299.19 143
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32898.35 19794.85 17197.93 12198.58 15395.07 7299.71 11892.60 26499.34 11399.43 109
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18898.88 13299.19 143
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 23298.87 13499.52 86
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23497.19 15199.07 9594.05 9499.23 18596.89 12398.43 15799.37 114
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22697.64 6999.35 1799.06 3497.02 6493.75 27999.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24698.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21599.31 11599.02 165
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28797.76 27894.50 18698.79 6598.61 14892.34 11499.30 17897.58 9199.59 7699.31 122
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22398.52 2899.37 1498.71 11697.09 6292.99 30699.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17496.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18398.11 10298.28 18794.50 8499.57 14294.12 22199.49 9697.37 250
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20598.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27799.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31899.26 1593.13 25597.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20399.48 98
jason97.32 10497.08 10098.06 13097.45 25795.59 16997.87 27197.91 27294.79 17298.55 8398.83 12591.12 15199.23 18597.58 9199.60 7499.34 116
jason: jason.
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 19398.44 9198.07 20492.48 11199.26 18196.43 14498.19 16699.16 149
EPNet97.28 10596.87 10998.51 8694.98 36496.14 14298.90 9997.02 33798.28 1095.99 20299.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 23194.60 20498.59 14799.47 100
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 28296.39 19298.31 18594.92 7699.78 10194.06 22498.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27595.78 37399.15 2895.25 14796.79 17398.11 20292.29 11699.07 20998.56 2999.85 599.25 133
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26895.99 20299.37 3892.12 12399.87 5893.67 23699.57 8098.97 170
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25298.89 5994.44 18996.83 16898.68 14290.69 16199.76 10794.36 21199.29 11698.98 169
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30998.43 18493.71 22397.65 13998.02 20892.20 12199.25 18296.87 12897.79 17999.19 143
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24899.71 193.57 23597.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 26096.17 19798.58 15394.01 9599.81 8193.95 22698.90 13099.14 152
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20697.05 15998.61 14893.49 10098.52 27595.33 18097.81 17899.29 127
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 23096.95 16198.49 16193.54 9998.42 28795.24 18697.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25698.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 19199.37 11298.66 199
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 38097.77 12699.11 8492.84 10699.66 12894.85 19499.77 3199.47 100
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 28397.07 15797.96 21591.54 14099.75 10993.68 23498.92 12998.69 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30799.65 292.34 28497.61 14298.20 19689.29 18599.10 20696.97 11697.60 18799.77 27
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16496.60 18098.87 12090.05 17098.59 26793.67 23698.60 14699.46 104
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20498.76 13685.88 26399.44 16797.93 6495.59 23998.60 203
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 31198.57 15193.33 24496.67 17597.57 25294.30 8999.56 14591.05 30498.59 14799.47 100
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20696.72 17497.99 21291.58 13699.76 10794.51 20896.54 21398.95 173
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12896.60 12397.12 19599.25 8195.35 18398.26 22199.26 1594.28 19297.94 11997.46 25892.74 10899.81 8196.88 12593.32 27996.20 343
test_vis1_n_192096.71 12996.84 11096.31 26699.11 10489.74 33799.05 6598.58 14998.08 1299.87 199.37 3878.48 34399.93 2599.29 1499.69 5699.27 129
mvs_anonymous96.70 13096.53 12797.18 18998.19 19293.78 25198.31 21398.19 22494.01 20294.47 23898.27 19092.08 12598.46 28297.39 10397.91 17499.31 122
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26494.84 22698.43 16892.14 12299.58 14194.35 21296.51 21499.56 85
PMMVS96.60 13296.33 13397.41 17597.90 22093.93 24797.35 31298.41 18692.84 26797.76 12797.45 26091.10 15399.20 18996.26 14897.91 17499.11 155
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 35294.52 23699.35 4491.85 13099.85 6392.89 26098.88 13299.68 61
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26399.06 3493.72 22296.92 16598.06 20588.50 21199.65 12991.77 28999.00 12798.66 199
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25696.09 19898.87 12089.71 17698.97 22192.95 25698.08 17099.43 109
mvsmamba96.57 13696.32 13497.32 18296.60 31196.43 12699.54 797.98 26396.49 8695.20 21998.64 14690.82 15698.55 27197.97 6193.65 26996.98 261
XVG-OURS96.55 13796.41 13096.99 20398.75 13793.76 25297.50 30198.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22797.69 239
FIs96.51 13896.12 14197.67 15997.13 28197.54 7499.36 1599.22 2395.89 11394.03 26598.35 17891.98 12798.44 28596.40 14592.76 28897.01 259
XVG-OURS-SEG-HR96.51 13896.34 13297.02 20298.77 13693.76 25297.79 28098.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23897.74 236
PS-MVSNAJss96.43 14096.26 13796.92 21295.84 34695.08 19799.16 4698.50 16995.87 11693.84 27598.34 18294.51 8198.61 26496.88 12593.45 27697.06 256
test_fmvs196.42 14196.67 12195.66 29298.82 13388.53 36098.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 21098.46 16687.72 22998.59 26797.84 7393.80 26496.87 277
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 29097.27 8399.36 1599.23 2095.83 11793.93 26998.37 17692.00 12698.32 30496.02 15792.72 28997.00 260
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 27098.74 10893.84 21296.54 18598.18 19885.34 27599.75 10995.93 15996.35 21899.15 150
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27897.58 28893.21 25097.36 14797.70 23889.47 18099.56 14594.12 22197.99 17198.71 193
PVSNet91.96 1896.35 14696.15 14096.96 20799.17 9492.05 29796.08 36698.68 12393.69 22697.75 12997.80 23288.86 20199.69 12494.26 21799.01 12699.15 150
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28598.07 25292.10 29394.79 23097.29 26991.75 13299.56 14594.17 21996.50 21599.58 83
Effi-MVS+-dtu96.29 14896.56 12495.51 29797.89 22190.22 33198.80 13598.10 24596.57 8596.45 19096.66 32190.81 15798.91 23495.72 16897.99 17197.40 247
QAPM96.29 14895.40 17198.96 6197.85 22297.60 7299.23 3198.93 5089.76 34693.11 30399.02 9889.11 19299.93 2591.99 28399.62 7199.34 116
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 30195.29 21897.23 27491.03 15599.15 19592.90 25897.96 17398.97 170
nrg03096.28 15095.72 15997.96 13696.90 29598.15 5299.39 1298.31 20395.47 13394.42 24498.35 17892.09 12498.69 25797.50 9989.05 33497.04 257
131496.25 15295.73 15897.79 14597.13 28195.55 17398.19 22998.59 14493.47 23992.03 33197.82 23091.33 14599.49 15894.62 20398.44 15598.32 220
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20498.76 13682.83 31599.32 17795.56 17495.59 23998.60 203
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37799.11 155
HQP_MVS96.14 15595.90 15196.85 21597.42 25994.60 22498.80 13598.56 15397.28 4595.34 21498.28 18787.09 24199.03 21496.07 15294.27 24796.92 266
iter_conf0596.13 15695.79 15497.15 19298.16 19895.99 14598.88 10897.98 26395.91 11295.58 21198.46 16685.53 27098.59 26797.88 6993.75 26596.86 280
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38594.26 19497.64 14098.64 14684.05 30499.47 16495.34 17997.60 18799.03 164
MVSTER96.06 15895.72 15997.08 19898.23 18695.93 15798.73 15098.27 21294.86 16995.07 22198.09 20388.21 21598.54 27396.59 13793.46 27496.79 286
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38794.04 19997.64 14098.31 18583.82 31199.46 16595.29 18397.70 18498.93 175
test_djsdf96.00 16095.69 16596.93 20995.72 34895.49 17599.47 998.40 18894.98 16294.58 23497.86 22389.16 19098.41 29596.91 11994.12 25596.88 275
RRT_MVS95.98 16195.78 15596.56 24196.48 31994.22 24199.57 697.92 27095.89 11393.95 26898.70 14089.27 18698.42 28797.23 10893.02 28397.04 257
EI-MVSNet95.96 16295.83 15396.36 26297.93 21893.70 25898.12 23998.27 21293.70 22595.07 22199.02 9892.23 11998.54 27394.68 19993.46 27496.84 282
ECVR-MVScopyleft95.95 16395.71 16296.65 22799.02 11190.86 31899.03 7191.80 39796.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
BH-untuned95.95 16395.72 15996.65 22798.55 15792.26 29298.23 22297.79 27793.73 22094.62 23398.01 21088.97 19999.00 22093.04 25398.51 15198.68 195
test111195.94 16595.78 15596.41 25998.99 11890.12 33299.04 6892.45 39696.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 35398.37 19491.32 31694.43 24398.73 13890.27 16899.60 13990.05 31898.82 13798.52 209
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30894.56 18196.03 20098.61 14885.02 28099.12 20090.68 30999.06 12299.30 125
test_fmvs1_n95.90 16895.99 14895.63 29398.67 14788.32 36499.26 2798.22 21996.40 9299.67 1499.26 5773.91 37499.70 11999.02 1899.50 9498.87 178
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 28297.74 23191.74 30398.69 16198.15 23595.56 12994.92 22497.68 24388.98 19898.79 25193.19 24897.78 18097.20 254
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36493.40 24298.62 7999.20 6774.99 36899.63 13497.72 8097.20 19499.46 104
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33595.37 14096.22 19598.19 19789.96 17299.16 19294.60 20487.48 35098.90 177
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27897.32 8199.21 3898.97 4289.96 34291.14 33999.05 9786.64 24999.92 3193.38 24299.47 9997.73 237
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31295.02 16097.95 11799.34 4874.37 37399.78 10198.64 2596.80 20499.08 161
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28897.47 7898.79 14099.18 2595.60 12793.92 27097.04 29491.68 13398.48 27895.80 16587.66 34996.79 286
VPA-MVSNet95.75 17595.11 19297.69 15697.24 27097.27 8398.94 9399.23 2095.13 15295.51 21297.32 26785.73 26698.91 23497.33 10689.55 32696.89 274
bld_raw_dy_0_6495.74 17695.31 18297.03 20196.35 32595.76 16599.12 5397.37 31595.97 10894.70 23298.48 16285.80 26598.49 27796.55 13993.48 27396.84 282
HQP-MVS95.72 17795.40 17196.69 22597.20 27494.25 23998.05 24898.46 17696.43 8994.45 23997.73 23586.75 24798.96 22595.30 18194.18 25196.86 280
hse-mvs295.71 17895.30 18396.93 20998.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21797.95 6280.91 38198.22 223
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29896.97 9798.74 14699.24 1795.16 15193.88 27297.72 23791.68 13398.31 30695.81 16387.25 35596.92 266
PatchmatchNetpermissive95.71 17895.52 16996.29 26897.58 24390.72 32296.84 35297.52 29994.06 19897.08 15596.96 30489.24 18898.90 23792.03 28298.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 18195.33 17996.76 22096.16 33494.63 21998.43 20198.39 19096.64 8195.02 22398.78 13085.15 27999.05 21095.21 18794.20 25096.60 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 18195.38 17596.61 23497.61 24193.84 25098.91 9898.44 18095.25 14794.28 25198.47 16486.04 26299.12 20095.50 17793.95 26096.87 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 18395.69 16595.44 30197.54 24888.54 35996.97 33897.56 29193.50 23797.52 14596.93 30889.49 17899.16 19295.25 18596.42 21798.64 201
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32897.38 31490.95 32797.73 13297.70 23885.32 27799.63 13491.18 29798.33 16298.79 184
LPG-MVS_test95.62 18495.34 17796.47 25397.46 25493.54 26198.99 8198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
CLD-MVS95.62 18495.34 17796.46 25697.52 25193.75 25497.27 31998.46 17695.53 13094.42 24498.00 21186.21 25798.97 22196.25 15094.37 24596.66 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35494.41 38392.95 26397.18 15297.43 26284.78 28699.45 16694.63 20197.73 18398.68 195
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34495.38 13896.63 17796.90 30984.29 29699.59 14088.65 34096.33 21998.40 214
test_vis1_n95.47 18995.13 18996.49 25097.77 22790.41 32899.27 2698.11 24296.58 8399.66 1599.18 7367.00 38799.62 13799.21 1599.40 10999.44 107
SCA95.46 19095.13 18996.46 25697.67 23691.29 31197.33 31497.60 28794.68 17696.92 16597.10 28083.97 30698.89 23892.59 26698.32 16499.20 139
IterMVS-LS95.46 19095.21 18696.22 27098.12 20093.72 25798.32 21298.13 23893.71 22394.26 25297.31 26892.24 11898.10 32294.63 20190.12 31796.84 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 19295.03 19596.73 22195.42 36094.63 21999.14 4998.52 16295.74 12093.22 29798.36 17783.87 30998.65 26296.95 11894.04 25696.91 271
CVMVSNet95.43 19396.04 14593.57 34397.93 21883.62 38198.12 23998.59 14495.68 12496.56 18199.02 9887.51 23497.51 35593.56 24097.44 19099.60 77
anonymousdsp95.42 19494.91 20196.94 20895.10 36395.90 16099.14 4998.41 18693.75 21793.16 29997.46 25887.50 23698.41 29595.63 17394.03 25796.50 328
DU-MVS95.42 19494.76 20797.40 17796.53 31596.97 9798.66 16798.99 4195.43 13593.88 27297.69 24088.57 20698.31 30695.81 16387.25 35596.92 266
mvs_tets95.41 19695.00 19696.65 22795.58 35294.42 23099.00 7898.55 15595.73 12293.21 29898.38 17583.45 31398.63 26397.09 11294.00 25896.91 271
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34495.38 13896.61 17996.88 31084.29 29699.56 14588.11 34396.29 22397.76 234
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22398.40 214
BH-w/o95.38 19795.08 19396.26 26998.34 17691.79 30097.70 28697.43 31092.87 26694.24 25497.22 27588.66 20498.84 24491.55 29397.70 18498.16 226
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 33398.36 9499.39 3273.27 37699.64 13197.98 6096.58 21198.81 183
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36896.29 19498.61 14894.00 9699.29 17980.00 38299.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 20294.98 19896.43 25897.67 23693.48 26598.73 15098.44 18094.94 16792.53 31998.53 15784.50 29599.14 19795.48 17894.00 25896.66 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 22299.29 7393.24 27898.58 17898.11 24289.92 34393.57 28399.10 8686.37 25599.79 9890.78 30798.10 16997.09 255
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22397.76 234
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33490.66 32996.49 18798.80 12878.13 34799.83 6996.21 15195.36 24399.44 107
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32795.24 14996.54 18596.22 33884.58 29399.53 15387.93 34796.50 21597.39 248
AllTest95.24 20794.65 21296.99 20399.25 8193.21 27998.59 17698.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
LCM-MVSNet-Re95.22 20895.32 18094.91 31698.18 19487.85 37098.75 14395.66 37195.11 15488.96 35796.85 31390.26 16997.65 34895.65 17298.44 15599.22 137
EPNet_dtu95.21 20994.95 20095.99 27796.17 33290.45 32798.16 23597.27 32096.77 7593.14 30298.33 18390.34 16698.42 28785.57 36098.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 21094.45 22497.46 17096.75 30496.56 11998.86 11698.65 13593.30 24793.27 29698.27 19084.85 28498.87 24194.82 19691.26 30596.96 263
D2MVS95.18 21195.08 19395.48 29897.10 28392.07 29698.30 21599.13 3094.02 20192.90 30796.73 31889.48 17998.73 25594.48 20993.60 27295.65 356
WR-MVS95.15 21294.46 22297.22 18596.67 30996.45 12498.21 22498.81 8694.15 19593.16 29997.69 24087.51 23498.30 30895.29 18388.62 34096.90 273
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19696.45 32196.36 13299.03 7199.03 3795.04 15993.58 28297.93 21788.27 21498.03 32894.13 22086.90 36096.95 265
baseline295.11 21494.52 21896.87 21496.65 31093.56 26098.27 22094.10 38993.45 24092.02 33297.43 26287.45 23899.19 19093.88 22997.41 19297.87 232
miper_enhance_ethall95.10 21594.75 20896.12 27497.53 25093.73 25696.61 36098.08 25092.20 29293.89 27196.65 32392.44 11298.30 30894.21 21891.16 30696.34 337
Anonymous2024052995.10 21594.22 23497.75 15099.01 11394.26 23898.87 11398.83 8085.79 37696.64 17698.97 10578.73 34099.85 6396.27 14794.89 24499.12 154
test-LLR95.10 21594.87 20495.80 28796.77 30189.70 33896.91 34395.21 37595.11 15494.83 22895.72 35487.71 23098.97 22193.06 25198.50 15298.72 190
WR-MVS_H95.05 21894.46 22296.81 21896.86 29795.82 16399.24 3099.24 1793.87 21192.53 31996.84 31490.37 16598.24 31493.24 24687.93 34696.38 336
miper_ehance_all_eth95.01 21994.69 21195.97 27997.70 23493.31 27497.02 33698.07 25292.23 28993.51 28796.96 30491.85 13098.15 31893.68 23491.16 30696.44 334
testing1195.00 22094.28 23197.16 19197.96 21593.36 27398.09 24497.06 33394.94 16795.33 21796.15 34076.89 35999.40 16995.77 16796.30 22298.72 190
ADS-MVSNet95.00 22094.45 22496.63 23198.00 20991.91 29996.04 36797.74 28090.15 33996.47 18896.64 32487.89 22598.96 22590.08 31697.06 19699.02 165
VPNet94.99 22294.19 23697.40 17797.16 27996.57 11898.71 15598.97 4295.67 12594.84 22698.24 19480.36 33198.67 26196.46 14287.32 35496.96 263
EPMVS94.99 22294.48 22096.52 24897.22 27291.75 30297.23 32091.66 39894.11 19697.28 14896.81 31585.70 26798.84 24493.04 25397.28 19398.97 170
testing9194.98 22494.25 23397.20 18697.94 21693.41 26898.00 25497.58 28894.99 16195.45 21396.04 34377.20 35699.42 16894.97 19296.02 23498.78 187
NR-MVSNet94.98 22494.16 23997.44 17296.53 31597.22 9098.74 14698.95 4694.96 16489.25 35697.69 24089.32 18498.18 31694.59 20687.40 35296.92 266
FMVSNet394.97 22694.26 23297.11 19698.18 19496.62 11298.56 18498.26 21693.67 23094.09 26197.10 28084.25 29898.01 32992.08 27892.14 29296.70 298
CostFormer94.95 22794.73 20995.60 29597.28 26889.06 34997.53 29896.89 34689.66 34896.82 17096.72 31986.05 26098.95 23095.53 17696.13 23298.79 184
PAPM94.95 22794.00 25197.78 14697.04 28595.65 16896.03 36998.25 21791.23 32194.19 25797.80 23291.27 14898.86 24382.61 37697.61 18698.84 181
CP-MVSNet94.94 22994.30 23096.83 21696.72 30695.56 17199.11 5598.95 4693.89 20992.42 32497.90 21987.19 24098.12 32194.32 21488.21 34396.82 285
TR-MVS94.94 22994.20 23597.17 19097.75 22894.14 24397.59 29597.02 33792.28 28895.75 20897.64 24683.88 30898.96 22589.77 32296.15 23198.40 214
RPSCF94.87 23195.40 17193.26 34998.89 12582.06 38798.33 20898.06 25790.30 33896.56 18199.26 5787.09 24199.49 15893.82 23196.32 22098.24 221
testing9994.83 23294.08 24497.07 19997.94 21693.13 28198.10 24397.17 32594.86 16995.34 21496.00 34676.31 36299.40 16995.08 18995.90 23598.68 195
GA-MVS94.81 23394.03 24797.14 19397.15 28093.86 24996.76 35597.58 28894.00 20394.76 23197.04 29480.91 32698.48 27891.79 28896.25 22899.09 157
c3_l94.79 23494.43 22695.89 28497.75 22893.12 28397.16 33098.03 26092.23 28993.46 29097.05 29391.39 14298.01 32993.58 23989.21 33296.53 320
V4294.78 23594.14 24196.70 22496.33 32795.22 19098.97 8498.09 24992.32 28694.31 25097.06 29188.39 21298.55 27192.90 25888.87 33896.34 337
CR-MVSNet94.76 23694.15 24096.59 23797.00 28693.43 26694.96 37997.56 29192.46 27796.93 16396.24 33488.15 21797.88 34287.38 34996.65 20998.46 212
v2v48294.69 23794.03 24796.65 22796.17 33294.79 21498.67 16598.08 25092.72 27094.00 26697.16 27887.69 23398.45 28392.91 25788.87 33896.72 294
pmmvs494.69 23793.99 25396.81 21895.74 34795.94 15497.40 30597.67 28290.42 33593.37 29397.59 25089.08 19398.20 31592.97 25591.67 29996.30 340
cl2294.68 23994.19 23696.13 27398.11 20193.60 25996.94 34098.31 20392.43 28193.32 29596.87 31286.51 25098.28 31294.10 22391.16 30696.51 326
eth_miper_zixun_eth94.68 23994.41 22795.47 29997.64 23991.71 30496.73 35798.07 25292.71 27193.64 28097.21 27690.54 16398.17 31793.38 24289.76 32196.54 318
PCF-MVS93.45 1194.68 23993.43 28998.42 9998.62 15296.77 10795.48 37798.20 22284.63 38193.34 29498.32 18488.55 20999.81 8184.80 36898.96 12898.68 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 24293.54 28498.08 12896.88 29696.56 11998.19 22998.50 16978.05 39092.69 31498.02 20891.07 15499.63 13490.09 31598.36 16198.04 228
PS-CasMVS94.67 24293.99 25396.71 22296.68 30895.26 18799.13 5299.03 3793.68 22892.33 32597.95 21685.35 27498.10 32293.59 23888.16 34596.79 286
cascas94.63 24493.86 26396.93 20996.91 29494.27 23796.00 37098.51 16485.55 37794.54 23596.23 33684.20 30298.87 24195.80 16596.98 20197.66 240
tpmvs94.60 24594.36 22995.33 30597.46 25488.60 35896.88 34997.68 28191.29 31893.80 27796.42 33188.58 20599.24 18491.06 30296.04 23398.17 225
LTVRE_ROB92.95 1594.60 24593.90 25996.68 22697.41 26294.42 23098.52 18798.59 14491.69 30491.21 33898.35 17884.87 28399.04 21391.06 30293.44 27796.60 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 24793.92 25696.60 23696.21 32994.78 21598.59 17698.14 23791.86 30094.21 25697.02 29787.97 22398.41 29591.72 29089.57 32496.61 308
ADS-MVSNet294.58 24894.40 22895.11 31198.00 20988.74 35696.04 36797.30 31790.15 33996.47 18896.64 32487.89 22597.56 35390.08 31697.06 19699.02 165
ACMH92.88 1694.55 24993.95 25596.34 26497.63 24093.26 27698.81 13498.49 17493.43 24189.74 35198.53 15781.91 31899.08 20893.69 23393.30 28096.70 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 25093.85 26496.63 23197.98 21393.06 28598.77 14297.84 27593.67 23093.80 27798.04 20776.88 36098.96 22594.79 19892.86 28697.86 233
XVG-ACMP-BASELINE94.54 25094.14 24195.75 29096.55 31491.65 30598.11 24198.44 18094.96 16494.22 25597.90 21979.18 33999.11 20294.05 22593.85 26296.48 331
AUN-MVS94.53 25293.73 27496.92 21298.50 16093.52 26498.34 20798.10 24593.83 21495.94 20697.98 21485.59 26999.03 21494.35 21280.94 38098.22 223
DIV-MVS_self_test94.52 25394.03 24795.99 27797.57 24793.38 27197.05 33497.94 26891.74 30192.81 30997.10 28089.12 19198.07 32692.60 26490.30 31496.53 320
cl____94.51 25494.01 25096.02 27697.58 24393.40 27097.05 33497.96 26791.73 30392.76 31197.08 28689.06 19498.13 32092.61 26390.29 31596.52 323
ETVMVS94.50 25593.44 28897.68 15898.18 19495.35 18398.19 22997.11 32793.73 22096.40 19195.39 35974.53 37098.84 24491.10 29996.31 22198.84 181
GBi-Net94.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
test194.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
dmvs_re94.48 25894.18 23895.37 30397.68 23590.11 33398.54 18697.08 32994.56 18194.42 24497.24 27384.25 29897.76 34691.02 30592.83 28798.24 221
v894.47 25993.77 27096.57 24096.36 32494.83 21199.05 6598.19 22491.92 29793.16 29996.97 30288.82 20398.48 27891.69 29187.79 34796.39 335
FMVSNet294.47 25993.61 28097.04 20098.21 18896.43 12698.79 14098.27 21292.46 27793.50 28897.09 28481.16 32398.00 33191.09 30091.93 29596.70 298
test250694.44 26193.91 25896.04 27599.02 11188.99 35299.06 6379.47 41096.96 6798.36 9499.26 5777.21 35599.52 15696.78 13499.04 12399.59 79
Patchmatch-test94.42 26293.68 27896.63 23197.60 24291.76 30194.83 38397.49 30389.45 35294.14 25997.10 28088.99 19598.83 24785.37 36398.13 16899.29 127
PEN-MVS94.42 26293.73 27496.49 25096.28 32894.84 20999.17 4599.00 3993.51 23692.23 32797.83 22986.10 25997.90 33892.55 26986.92 35996.74 291
v14419294.39 26493.70 27696.48 25296.06 33794.35 23498.58 17898.16 23491.45 30994.33 24997.02 29787.50 23698.45 28391.08 30189.11 33396.63 306
Baseline_NR-MVSNet94.35 26593.81 26695.96 28096.20 33094.05 24598.61 17596.67 35591.44 31093.85 27497.60 24988.57 20698.14 31994.39 21086.93 35895.68 355
miper_lstm_enhance94.33 26694.07 24595.11 31197.75 22890.97 31597.22 32198.03 26091.67 30592.76 31196.97 30290.03 17197.78 34592.51 27189.64 32396.56 315
v119294.32 26793.58 28196.53 24796.10 33594.45 22898.50 19298.17 23291.54 30794.19 25797.06 29186.95 24598.43 28690.14 31489.57 32496.70 298
UWE-MVS94.30 26893.89 26195.53 29697.83 22388.95 35397.52 30093.25 39194.44 18996.63 17797.07 28778.70 34199.28 18091.99 28397.56 18998.36 217
ACMH+92.99 1494.30 26893.77 27095.88 28597.81 22592.04 29898.71 15598.37 19493.99 20490.60 34598.47 16480.86 32899.05 21092.75 26292.40 29196.55 317
v14894.29 27093.76 27295.91 28296.10 33592.93 28698.58 17897.97 26592.59 27593.47 28996.95 30688.53 21098.32 30492.56 26887.06 35796.49 329
v1094.29 27093.55 28396.51 24996.39 32394.80 21398.99 8198.19 22491.35 31493.02 30596.99 30088.09 21998.41 29590.50 31188.41 34296.33 339
MVP-Stereo94.28 27293.92 25695.35 30494.95 36592.60 28997.97 25797.65 28391.61 30690.68 34497.09 28486.32 25698.42 28789.70 32599.34 11395.02 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 27393.33 29196.97 20697.19 27793.38 27198.74 14698.57 15191.21 32393.81 27698.58 15372.85 37798.77 25395.05 19093.93 26198.77 189
OurMVSNet-221017-094.21 27494.00 25194.85 32095.60 35189.22 34798.89 10397.43 31095.29 14492.18 32898.52 16082.86 31498.59 26793.46 24191.76 29796.74 291
v192192094.20 27593.47 28796.40 26195.98 34094.08 24498.52 18798.15 23591.33 31594.25 25397.20 27786.41 25498.42 28790.04 31989.39 33096.69 303
WB-MVSnew94.19 27694.04 24694.66 32796.82 30092.14 29397.86 27295.96 36793.50 23795.64 20996.77 31788.06 22197.99 33284.87 36596.86 20293.85 382
v7n94.19 27693.43 28996.47 25395.90 34394.38 23399.26 2798.34 19991.99 29592.76 31197.13 27988.31 21398.52 27589.48 33087.70 34896.52 323
tpm294.19 27693.76 27295.46 30097.23 27189.04 35097.31 31696.85 35087.08 36796.21 19696.79 31683.75 31298.74 25492.43 27496.23 22998.59 205
TESTMET0.1,194.18 27993.69 27795.63 29396.92 29289.12 34896.91 34394.78 38093.17 25294.88 22596.45 33078.52 34298.92 23293.09 25098.50 15298.85 179
dp94.15 28093.90 25994.90 31797.31 26786.82 37596.97 33897.19 32491.22 32296.02 20196.61 32685.51 27199.02 21790.00 32094.30 24698.85 179
ET-MVSNet_ETH3D94.13 28192.98 29897.58 16698.22 18796.20 13897.31 31695.37 37394.53 18379.56 38997.63 24886.51 25097.53 35496.91 11990.74 31099.02 165
tpm94.13 28193.80 26795.12 31096.50 31787.91 36997.44 30295.89 37092.62 27396.37 19396.30 33384.13 30398.30 30893.24 24691.66 30099.14 152
testing22294.12 28393.03 29797.37 18098.02 20894.66 21697.94 26096.65 35794.63 17995.78 20795.76 34971.49 37898.92 23291.17 29895.88 23698.52 209
IterMVS-SCA-FT94.11 28493.87 26294.85 32097.98 21390.56 32697.18 32698.11 24293.75 21792.58 31797.48 25783.97 30697.41 35792.48 27391.30 30396.58 311
Anonymous2023121194.10 28593.26 29496.61 23499.11 10494.28 23699.01 7698.88 6286.43 37092.81 30997.57 25281.66 32098.68 26094.83 19589.02 33696.88 275
IterMVS94.09 28693.85 26494.80 32397.99 21190.35 32997.18 32698.12 23993.68 22892.46 32397.34 26584.05 30497.41 35792.51 27191.33 30296.62 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 28793.51 28595.80 28796.77 30189.70 33896.91 34395.21 37592.89 26594.83 22895.72 35477.69 35098.97 22193.06 25198.50 15298.72 190
test0.0.03 194.08 28793.51 28595.80 28795.53 35492.89 28797.38 30795.97 36695.11 15492.51 32196.66 32187.71 23096.94 36487.03 35193.67 26797.57 244
v124094.06 28993.29 29396.34 26496.03 33993.90 24898.44 19998.17 23291.18 32494.13 26097.01 29986.05 26098.42 28789.13 33589.50 32896.70 298
X-MVStestdata94.06 28992.30 31299.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 40395.90 4199.89 4797.85 7199.74 4599.78 21
DTE-MVSNet93.98 29193.26 29496.14 27296.06 33794.39 23299.20 4098.86 7593.06 25891.78 33397.81 23185.87 26497.58 35290.53 31086.17 36496.46 333
pm-mvs193.94 29293.06 29696.59 23796.49 31895.16 19298.95 9098.03 26092.32 28691.08 34097.84 22684.54 29498.41 29592.16 27686.13 36696.19 344
MS-PatchMatch93.84 29393.63 27994.46 33596.18 33189.45 34397.76 28198.27 21292.23 28992.13 32997.49 25679.50 33698.69 25789.75 32399.38 11195.25 360
tfpnnormal93.66 29492.70 30496.55 24696.94 29195.94 15498.97 8499.19 2491.04 32591.38 33797.34 26584.94 28298.61 26485.45 36289.02 33695.11 364
EU-MVSNet93.66 29494.14 24192.25 35995.96 34283.38 38398.52 18798.12 23994.69 17592.61 31698.13 20187.36 23996.39 37591.82 28790.00 31996.98 261
our_test_393.65 29693.30 29294.69 32595.45 35889.68 34096.91 34397.65 28391.97 29691.66 33596.88 31089.67 17797.93 33788.02 34691.49 30196.48 331
pmmvs593.65 29692.97 29995.68 29195.49 35592.37 29098.20 22697.28 31989.66 34892.58 31797.26 27082.14 31798.09 32493.18 24990.95 30996.58 311
test_fmvs293.43 29893.58 28192.95 35396.97 28983.91 38099.19 4297.24 32295.74 12095.20 21998.27 19069.65 38098.72 25696.26 14893.73 26696.24 341
tpm cat193.36 29992.80 30195.07 31397.58 24387.97 36896.76 35597.86 27482.17 38693.53 28496.04 34386.13 25899.13 19889.24 33395.87 23798.10 227
JIA-IIPM93.35 30092.49 30895.92 28196.48 31990.65 32495.01 37896.96 34085.93 37496.08 19987.33 39387.70 23298.78 25291.35 29595.58 24198.34 218
SixPastTwentyTwo93.34 30192.86 30094.75 32495.67 34989.41 34598.75 14396.67 35593.89 20990.15 34998.25 19380.87 32798.27 31390.90 30690.64 31196.57 313
USDC93.33 30292.71 30395.21 30796.83 29990.83 32096.91 34397.50 30193.84 21290.72 34398.14 20077.69 35098.82 24889.51 32993.21 28295.97 349
IB-MVS91.98 1793.27 30391.97 31697.19 18897.47 25393.41 26897.09 33395.99 36593.32 24592.47 32295.73 35278.06 34899.53 15394.59 20682.98 37298.62 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 30492.21 31396.41 25997.73 23293.13 28195.65 37497.03 33591.27 32094.04 26496.06 34275.33 36697.19 36086.56 35396.23 22998.92 176
ppachtmachnet_test93.22 30592.63 30594.97 31595.45 35890.84 31996.88 34997.88 27390.60 33092.08 33097.26 27088.08 22097.86 34385.12 36490.33 31396.22 342
Patchmtry93.22 30592.35 31195.84 28696.77 30193.09 28494.66 38697.56 29187.37 36692.90 30796.24 33488.15 21797.90 33887.37 35090.10 31896.53 320
testing393.19 30792.48 30995.30 30698.07 20392.27 29198.64 16997.17 32593.94 20893.98 26797.04 29467.97 38496.01 37988.40 34197.14 19597.63 241
FMVSNet193.19 30792.07 31496.56 24197.54 24895.00 19998.82 12698.18 22790.38 33692.27 32697.07 28773.68 37597.95 33489.36 33291.30 30396.72 294
LF4IMVS93.14 30992.79 30294.20 33895.88 34488.67 35797.66 28997.07 33193.81 21591.71 33497.65 24477.96 34998.81 24991.47 29491.92 29695.12 363
testgi93.06 31092.45 31094.88 31996.43 32289.90 33498.75 14397.54 29795.60 12791.63 33697.91 21874.46 37297.02 36286.10 35693.67 26797.72 238
PatchT93.06 31091.97 31696.35 26396.69 30792.67 28894.48 38797.08 32986.62 36897.08 15592.23 38787.94 22497.90 33878.89 38696.69 20798.49 211
RPMNet92.81 31291.34 32197.24 18497.00 28693.43 26694.96 37998.80 9382.27 38596.93 16392.12 38886.98 24499.82 7676.32 39196.65 20998.46 212
myMVS_eth3d92.73 31392.01 31594.89 31897.39 26390.94 31697.91 26397.46 30493.16 25393.42 29195.37 36068.09 38396.12 37788.34 34296.99 19897.60 242
TransMVSNet (Re)92.67 31491.51 32096.15 27196.58 31394.65 21798.90 9996.73 35190.86 32889.46 35597.86 22385.62 26898.09 32486.45 35481.12 37895.71 354
Syy-MVS92.55 31592.61 30692.38 35697.39 26383.41 38297.91 26397.46 30493.16 25393.42 29195.37 36084.75 28796.12 37777.00 39096.99 19897.60 242
K. test v392.55 31591.91 31894.48 33395.64 35089.24 34699.07 6294.88 37994.04 19986.78 37097.59 25077.64 35397.64 34992.08 27889.43 32996.57 313
DSMNet-mixed92.52 31792.58 30792.33 35794.15 37382.65 38598.30 21594.26 38689.08 35792.65 31595.73 35285.01 28195.76 38186.24 35597.76 18198.59 205
TinyColmap92.31 31891.53 31994.65 32896.92 29289.75 33696.92 34196.68 35490.45 33489.62 35297.85 22576.06 36498.81 24986.74 35292.51 29095.41 358
gg-mvs-nofinetune92.21 31990.58 32797.13 19496.75 30495.09 19695.85 37189.40 40385.43 37894.50 23781.98 39680.80 32998.40 30192.16 27698.33 16297.88 231
FMVSNet591.81 32090.92 32394.49 33297.21 27392.09 29598.00 25497.55 29689.31 35590.86 34295.61 35774.48 37195.32 38585.57 36089.70 32296.07 347
pmmvs691.77 32190.63 32695.17 30994.69 37191.24 31298.67 16597.92 27086.14 37289.62 35297.56 25475.79 36598.34 30290.75 30884.56 36895.94 350
Anonymous2023120691.66 32291.10 32293.33 34794.02 37787.35 37298.58 17897.26 32190.48 33290.16 34896.31 33283.83 31096.53 37379.36 38489.90 32096.12 345
Patchmatch-RL test91.49 32390.85 32493.41 34591.37 38684.40 37892.81 39195.93 36991.87 29987.25 36794.87 36688.99 19596.53 37392.54 27082.00 37499.30 125
test_040291.32 32490.27 33094.48 33396.60 31191.12 31398.50 19297.22 32386.10 37388.30 36396.98 30177.65 35297.99 33278.13 38892.94 28594.34 371
test_vis1_rt91.29 32590.65 32593.19 35197.45 25786.25 37698.57 18390.90 40193.30 24786.94 36993.59 37862.07 39199.11 20297.48 10095.58 24194.22 374
PVSNet_088.72 1991.28 32690.03 33295.00 31497.99 21187.29 37394.84 38298.50 16992.06 29489.86 35095.19 36279.81 33599.39 17292.27 27569.79 39698.33 219
Anonymous2024052191.18 32790.44 32893.42 34493.70 37888.47 36198.94 9397.56 29188.46 36189.56 35495.08 36577.15 35896.97 36383.92 37189.55 32694.82 369
EG-PatchMatch MVS91.13 32890.12 33194.17 34094.73 37089.00 35198.13 23897.81 27689.22 35685.32 38096.46 32967.71 38598.42 28787.89 34893.82 26395.08 365
TDRefinement91.06 32989.68 33495.21 30785.35 40191.49 30898.51 19197.07 33191.47 30888.83 36197.84 22677.31 35499.09 20792.79 26177.98 38995.04 366
UnsupCasMVSNet_eth90.99 33089.92 33394.19 33994.08 37489.83 33597.13 33298.67 12893.69 22685.83 37696.19 33975.15 36796.74 36789.14 33479.41 38596.00 348
test20.0390.89 33190.38 32992.43 35593.48 37988.14 36798.33 20897.56 29193.40 24287.96 36496.71 32080.69 33094.13 39079.15 38586.17 36495.01 368
MDA-MVSNet_test_wron90.71 33289.38 33794.68 32694.83 36790.78 32197.19 32597.46 30487.60 36472.41 39695.72 35486.51 25096.71 37085.92 35886.80 36196.56 315
YYNet190.70 33389.39 33694.62 32994.79 36990.65 32497.20 32397.46 30487.54 36572.54 39595.74 35086.51 25096.66 37186.00 35786.76 36296.54 318
KD-MVS_self_test90.38 33489.38 33793.40 34692.85 38288.94 35497.95 25897.94 26890.35 33790.25 34793.96 37579.82 33495.94 38084.62 37076.69 39195.33 359
pmmvs-eth3d90.36 33589.05 34094.32 33791.10 38892.12 29497.63 29496.95 34188.86 35984.91 38193.13 38278.32 34496.74 36788.70 33881.81 37694.09 377
CL-MVSNet_self_test90.11 33689.14 33993.02 35291.86 38588.23 36696.51 36398.07 25290.49 33190.49 34694.41 37084.75 28795.34 38480.79 38074.95 39395.50 357
new_pmnet90.06 33789.00 34193.22 35094.18 37288.32 36496.42 36596.89 34686.19 37185.67 37793.62 37777.18 35797.10 36181.61 37889.29 33194.23 373
MDA-MVSNet-bldmvs89.97 33888.35 34494.83 32295.21 36291.34 30997.64 29197.51 30088.36 36271.17 39796.13 34179.22 33896.63 37283.65 37286.27 36396.52 323
CMPMVSbinary66.06 2189.70 33989.67 33589.78 36493.19 38076.56 39097.00 33798.35 19780.97 38781.57 38697.75 23474.75 36998.61 26489.85 32193.63 27094.17 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 34088.28 34593.82 34192.81 38391.08 31498.01 25297.45 30887.95 36387.90 36595.87 34867.63 38694.56 38978.73 38788.18 34495.83 352
KD-MVS_2432*160089.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
miper_refine_blended89.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
MVS-HIRNet89.46 34388.40 34392.64 35497.58 24382.15 38694.16 39093.05 39575.73 39290.90 34182.52 39579.42 33798.33 30383.53 37398.68 14097.43 245
OpenMVS_ROBcopyleft86.42 2089.00 34487.43 35293.69 34293.08 38189.42 34497.91 26396.89 34678.58 38985.86 37594.69 36769.48 38198.29 31177.13 38993.29 28193.36 384
mvsany_test388.80 34588.04 34691.09 36389.78 39181.57 38897.83 27795.49 37293.81 21587.53 36693.95 37656.14 39497.43 35694.68 19983.13 37194.26 372
new-patchmatchnet88.50 34687.45 35191.67 36190.31 39085.89 37797.16 33097.33 31689.47 35183.63 38392.77 38476.38 36195.06 38782.70 37577.29 39094.06 379
APD_test188.22 34788.01 34788.86 36695.98 34074.66 39697.21 32296.44 36083.96 38386.66 37297.90 21960.95 39297.84 34482.73 37490.23 31694.09 377
PM-MVS87.77 34886.55 35491.40 36291.03 38983.36 38496.92 34195.18 37791.28 31986.48 37493.42 37953.27 39596.74 36789.43 33181.97 37594.11 376
dmvs_testset87.64 34988.93 34283.79 37495.25 36163.36 40597.20 32391.17 39993.07 25785.64 37895.98 34785.30 27891.52 39769.42 39687.33 35396.49 329
test_fmvs387.17 35087.06 35387.50 36891.21 38775.66 39299.05 6596.61 35892.79 26988.85 36092.78 38343.72 39893.49 39193.95 22684.56 36893.34 385
UnsupCasMVSNet_bld87.17 35085.12 35793.31 34891.94 38488.77 35594.92 38198.30 20984.30 38282.30 38490.04 39063.96 39097.25 35985.85 35974.47 39593.93 381
N_pmnet87.12 35287.77 35085.17 37295.46 35761.92 40697.37 30970.66 41185.83 37588.73 36296.04 34385.33 27697.76 34680.02 38190.48 31295.84 351
pmmvs386.67 35384.86 35892.11 36088.16 39587.19 37496.63 35994.75 38179.88 38887.22 36892.75 38566.56 38895.20 38681.24 37976.56 39293.96 380
test_f86.07 35485.39 35588.10 36789.28 39375.57 39397.73 28496.33 36289.41 35485.35 37991.56 38943.31 40095.53 38291.32 29684.23 37093.21 386
WB-MVS84.86 35585.33 35683.46 37589.48 39269.56 40098.19 22996.42 36189.55 35081.79 38594.67 36884.80 28590.12 39852.44 40180.64 38290.69 389
SSC-MVS84.27 35684.71 35982.96 37989.19 39468.83 40198.08 24596.30 36389.04 35881.37 38794.47 36984.60 29289.89 39949.80 40379.52 38490.15 390
test_vis3_rt79.22 35777.40 36384.67 37386.44 39974.85 39597.66 28981.43 40884.98 37967.12 39981.91 39728.09 40897.60 35088.96 33680.04 38381.55 397
test_method79.03 35878.17 36081.63 38086.06 40054.40 41182.75 39996.89 34639.54 40380.98 38895.57 35858.37 39394.73 38884.74 36978.61 38695.75 353
testf179.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
APD_test279.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
LCM-MVSNet78.70 36176.24 36686.08 37077.26 40771.99 39894.34 38896.72 35261.62 39876.53 39089.33 39133.91 40692.78 39581.85 37774.60 39493.46 383
Gipumacopyleft78.40 36276.75 36583.38 37695.54 35380.43 38979.42 40097.40 31264.67 39773.46 39480.82 39845.65 39793.14 39466.32 39887.43 35176.56 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 36375.44 36785.46 37182.54 40274.95 39494.23 38993.08 39472.80 39374.68 39187.38 39236.36 40391.56 39673.95 39263.94 39989.87 391
FPMVS77.62 36477.14 36479.05 38279.25 40560.97 40795.79 37295.94 36865.96 39667.93 39894.40 37137.73 40288.88 40168.83 39788.46 34187.29 394
EGC-MVSNET75.22 36569.54 36892.28 35894.81 36889.58 34197.64 29196.50 3591.82 4085.57 40995.74 35068.21 38296.26 37673.80 39391.71 29890.99 388
ANet_high69.08 36665.37 37080.22 38165.99 40971.96 39990.91 39590.09 40282.62 38449.93 40478.39 39929.36 40781.75 40262.49 39938.52 40386.95 396
tmp_tt68.90 36766.97 36974.68 38450.78 41159.95 40887.13 39683.47 40738.80 40462.21 40096.23 33664.70 38976.91 40688.91 33730.49 40487.19 395
PMVScopyleft61.03 2365.95 36863.57 37273.09 38557.90 41051.22 41285.05 39893.93 39054.45 39944.32 40583.57 39413.22 40989.15 40058.68 40081.00 37978.91 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 36964.25 37167.02 38682.28 40359.36 40991.83 39485.63 40552.69 40060.22 40177.28 40041.06 40180.12 40446.15 40441.14 40161.57 402
EMVS64.07 37063.26 37366.53 38781.73 40458.81 41091.85 39384.75 40651.93 40259.09 40275.13 40143.32 39979.09 40542.03 40539.47 40261.69 401
MVEpermissive62.14 2263.28 37159.38 37474.99 38374.33 40865.47 40485.55 39780.50 40952.02 40151.10 40375.00 40210.91 41280.50 40351.60 40253.40 40078.99 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 37230.18 37630.16 38878.61 40643.29 41366.79 40114.21 41217.31 40514.82 40811.93 40811.55 41141.43 40737.08 40619.30 4055.76 405
cdsmvs_eth3d_5k23.98 37331.98 3750.00 3910.00 4140.00 4160.00 40298.59 1440.00 4090.00 41098.61 14890.60 1620.00 4100.00 4090.00 4080.00 406
testmvs21.48 37424.95 37711.09 39014.89 4126.47 41596.56 3619.87 4137.55 40617.93 40639.02 4049.43 4135.90 40916.56 40812.72 40620.91 404
test12320.95 37523.72 37812.64 38913.54 4138.19 41496.55 3626.13 4147.48 40716.74 40737.98 40512.97 4106.05 40816.69 4075.43 40723.68 403
ab-mvs-re8.20 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.43 1680.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.88 37710.50 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40994.51 810.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.94 31688.66 339
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28197.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.46 4998.70 2398.79 9893.21 25098.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17397.24 10799.73 4899.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
9.1498.06 5899.47 4798.71 15598.82 8194.36 19199.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
ambc89.49 36586.66 39875.78 39192.66 39296.72 35286.55 37392.50 38646.01 39697.90 33890.32 31282.09 37394.80 370
MTGPAbinary98.74 108
test_post196.68 35830.43 40787.85 22898.69 25792.59 266
test_post31.83 40688.83 20298.91 234
patchmatchnet-post95.10 36489.42 18298.89 238
GG-mvs-BLEND96.59 23796.34 32694.98 20296.51 36388.58 40493.10 30494.34 37480.34 33398.05 32789.53 32896.99 19896.74 291
MTMP98.89 10394.14 388
gm-plane-assit95.88 34487.47 37189.74 34796.94 30799.19 19093.32 245
test9_res96.39 14699.57 8099.69 56
TEST999.31 6498.50 2997.92 26198.73 11192.63 27297.74 13098.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 26998.72 11392.98 26197.70 13498.66 14596.20 2899.80 88
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
TestCases96.99 20399.25 8193.21 27998.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
test_prior498.01 5997.86 272
test_prior297.80 27896.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29791.30 31798.67 7399.80 8895.70 171
新几何297.64 291
新几何199.16 4599.34 5798.01 5998.69 12090.06 34198.13 10198.95 11294.60 7999.89 4791.97 28599.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
无先验97.58 29698.72 11391.38 31199.87 5893.36 24499.60 77
原ACMM297.67 288
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24997.81 12598.97 10595.18 6799.83 6993.84 23099.46 10299.50 91
test22299.23 8897.17 9297.40 30598.66 13188.68 36098.05 10698.96 11094.14 9399.53 9199.61 75
testdata299.89 4791.65 292
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29898.60 8199.10 8694.44 8699.82 7694.27 21699.44 10399.58 83
testdata197.32 31596.34 95
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25994.63 219
plane_prior697.35 26694.61 22287.09 241
plane_prior598.56 15399.03 21496.07 15294.27 24796.92 266
plane_prior498.28 187
plane_prior394.61 22297.02 6495.34 214
plane_prior298.80 13597.28 45
plane_prior197.37 265
plane_prior94.60 22498.44 19996.74 7794.22 249
n20.00 415
nn0.00 415
door-mid94.37 384
lessismore_v094.45 33694.93 36688.44 36291.03 40086.77 37197.64 24676.23 36398.42 28790.31 31385.64 36796.51 326
LGP-MVS_train96.47 25397.46 25493.54 26198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
test1198.66 131
door94.64 382
HQP5-MVS94.25 239
HQP-NCC97.20 27498.05 24896.43 8994.45 239
ACMP_Plane97.20 27498.05 24896.43 8994.45 239
BP-MVS95.30 181
HQP4-MVS94.45 23998.96 22596.87 277
HQP3-MVS98.46 17694.18 251
HQP2-MVS86.75 247
NP-MVS97.28 26894.51 22797.73 235
MDTV_nov1_ep13_2view84.26 37996.89 34890.97 32697.90 12389.89 17393.91 22899.18 148
MDTV_nov1_ep1395.40 17197.48 25288.34 36396.85 35197.29 31893.74 21997.48 14697.26 27089.18 18999.05 21091.92 28697.43 191
ACMMP++_ref92.97 284
ACMMP++93.61 271
Test By Simon94.64 78
ITE_SJBPF95.44 30197.42 25991.32 31097.50 30195.09 15793.59 28198.35 17881.70 31998.88 24089.71 32493.39 27896.12 345
DeepMVS_CXcopyleft86.78 36997.09 28472.30 39795.17 37875.92 39184.34 38295.19 36270.58 37995.35 38379.98 38389.04 33592.68 387