This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 999.85 499.43 3096.71 1799.96 499.86 199.80 2499.89 4
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 6997.65 2599.73 1099.48 2197.53 799.94 998.43 5099.81 1599.70 56
DVP-MVS++99.08 398.89 599.64 399.17 9799.23 799.69 198.88 6297.32 4699.53 2399.47 2397.81 399.94 998.47 4699.72 5799.74 39
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 899.86 299.42 3196.45 2499.96 499.86 199.74 5199.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15597.62 2799.45 2599.46 2797.42 999.94 998.47 4699.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 4399.41 2899.54 1196.66 1899.84 7098.86 2599.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 7998.06 1399.35 3299.61 496.39 2799.94 998.77 2899.82 1499.83 12
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13097.25 9798.82 13399.34 1098.75 299.80 599.61 495.16 7399.95 799.70 599.80 2499.93 1
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21498.91 5697.58 3099.54 2299.46 2797.10 1299.94 997.64 9799.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9298.43 3399.10 6398.87 6997.38 4399.35 3299.40 3397.78 599.87 6197.77 8599.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1399.01 398.45 10299.42 5896.43 13498.96 9499.36 998.63 499.86 299.51 1695.91 4399.97 199.72 499.75 4798.94 186
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13596.84 7599.56 2099.31 5396.34 2899.70 12298.32 5699.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20698.81 8997.72 2098.76 7599.16 8097.05 1399.78 10498.06 6799.66 6799.69 59
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6297.52 3399.41 2898.78 13796.00 3999.79 10197.79 8499.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9399.20 7095.90 4599.89 5097.85 8099.74 5199.78 23
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21598.68 12797.04 6798.52 9198.80 13596.78 1699.83 7297.93 7499.61 7899.74 39
SD-MVS98.64 1998.68 1498.53 9499.33 6298.36 4398.90 10698.85 7897.28 4999.72 1299.39 3496.63 2097.60 36498.17 6299.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4596.10 11298.94 5899.17 7796.06 3699.92 3497.62 9899.78 3499.75 37
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 8995.80 12399.16 4899.47 2395.37 6099.92 3497.89 7899.75 4799.79 21
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5096.15 10998.94 5899.17 7795.91 4399.94 997.55 10599.79 3099.78 23
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20798.76 10797.82 1998.45 9698.93 11996.65 1999.83 7297.38 11499.41 11299.71 52
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 8995.12 15999.32 3599.39 3496.22 3099.84 7097.72 8899.73 5499.67 68
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4696.10 11298.93 6299.19 7595.70 4999.94 997.62 9899.79 3099.78 23
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24597.15 10298.84 12998.97 4298.75 299.43 2799.54 1193.29 10799.93 2899.64 899.79 3099.89 4
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9693.67 24299.37 3199.52 1496.52 2299.89 5098.06 6799.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11197.27 5398.02 12099.39 3494.81 8399.96 497.91 7699.79 3099.77 29
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13597.51 3498.15 10798.83 13295.70 4999.92 3497.53 10799.67 6499.66 71
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8496.58 9199.10 5099.32 5195.39 5899.82 7997.70 9399.63 7599.72 48
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 6995.96 11598.60 8899.13 8596.05 3799.94 997.77 8599.86 299.77 29
MSLP-MVS++98.56 3298.57 1898.55 9099.26 8396.80 11498.71 16399.05 3697.28 4998.84 6899.28 5696.47 2399.40 18198.52 4499.70 6099.47 103
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20398.78 10397.72 2098.92 6499.28 5695.27 6699.82 7997.55 10599.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.34 6299.82 7997.72 8899.65 7099.71 52
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 8996.24 10599.20 4299.37 4095.30 6499.80 9197.73 8799.67 6499.72 48
MM98.51 3698.24 5099.33 2999.12 10598.14 5998.93 10197.02 35098.96 199.17 4599.47 2391.97 13799.94 999.85 399.69 6199.91 2
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 8996.24 10598.35 10399.23 6595.46 5599.94 997.42 11299.81 1599.77 29
ZNCC-MVS98.49 3898.20 5599.35 2499.73 1198.39 3499.19 4498.86 7595.77 12598.31 10699.10 8995.46 5599.93 2897.57 10499.81 1599.74 39
SPE-MVS-test98.49 3898.50 2398.46 10199.20 9597.05 10499.64 498.50 17797.45 3998.88 6599.14 8495.25 6899.15 20998.83 2699.56 9299.20 147
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14199.03 5199.32 5195.56 5299.94 996.80 14399.77 3699.78 23
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13198.30 22698.69 12497.21 5698.84 6899.36 4495.41 5799.78 10498.62 3399.65 7099.80 20
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9297.32 9097.91 27599.58 397.20 5798.33 10499.00 10895.99 4099.64 13498.05 6999.76 4299.69 59
balanced_conf0398.45 4398.35 3598.74 7698.65 15697.55 7899.19 4498.60 14696.72 8599.35 3298.77 13995.06 7899.55 15798.95 2299.87 199.12 162
test_fmvsmvis_n_192098.44 4498.51 2198.23 12298.33 18696.15 14898.97 8999.15 2898.55 798.45 9699.55 994.26 9699.97 199.65 699.66 6798.57 221
CS-MVS98.44 4498.49 2498.31 11499.08 11096.73 11899.67 398.47 18397.17 5998.94 5899.10 8995.73 4899.13 21298.71 2999.49 10299.09 166
GST-MVS98.43 4698.12 5999.34 2599.72 1298.38 3599.09 6498.82 8495.71 12998.73 7899.06 10095.27 6699.93 2897.07 12299.63 7599.72 48
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13199.30 7195.25 19498.85 12599.39 797.94 1799.74 999.62 392.59 11699.91 4299.65 699.52 9899.25 140
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14198.28 22998.68 12797.17 5998.74 7699.37 4095.25 6899.79 10198.57 3599.54 9599.73 44
DELS-MVS98.40 4998.20 5598.99 6099.00 11797.66 7397.75 29698.89 5997.71 2298.33 10498.97 11094.97 8099.88 5998.42 5299.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11699.09 10995.41 18498.86 12199.37 897.69 2499.78 699.61 492.38 11999.91 4299.58 1099.43 11099.49 99
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9297.25 9798.11 25398.29 22297.19 5898.99 5699.02 10396.22 3099.67 12998.52 4498.56 15899.51 92
HPM-MVS_fast98.38 5098.13 5899.12 5399.75 397.86 6899.44 998.82 8494.46 19898.94 5899.20 7095.16 7399.74 11497.58 10199.85 699.77 29
patch_mono-298.36 5398.87 696.82 22599.53 3690.68 33298.64 17899.29 1497.88 1899.19 4499.52 1496.80 1599.97 199.11 1899.86 299.82 16
HPM-MVScopyleft98.36 5398.10 6299.13 5199.74 797.82 7299.53 698.80 9694.63 18898.61 8798.97 11095.13 7599.77 10997.65 9699.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5598.00 6799.42 1699.51 4098.72 2198.80 14298.82 8494.52 19599.23 4199.25 6495.54 5499.80 9196.52 15099.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11097.95 27099.58 397.14 6298.44 9899.01 10795.03 7999.62 14197.91 7699.75 4799.50 94
PHI-MVS98.34 5698.06 6399.18 4599.15 10398.12 6099.04 7399.09 3193.32 25798.83 7099.10 8996.54 2199.83 7297.70 9399.76 4299.59 82
MP-MVScopyleft98.33 5898.01 6699.28 3599.75 398.18 5499.22 3698.79 10196.13 11097.92 13199.23 6594.54 8699.94 996.74 14699.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSMamba_PlusPlus98.31 5998.19 5798.67 8298.96 12497.36 8899.24 3098.57 15794.81 18098.99 5698.90 12395.22 7199.59 14499.15 1799.84 1199.07 174
MP-MVS-pluss98.31 5997.92 6999.49 1299.72 1298.88 1898.43 21298.78 10394.10 20797.69 14699.42 3195.25 6899.92 3498.09 6699.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_030498.23 6197.91 7099.21 4298.06 21597.96 6698.58 18795.51 38798.58 598.87 6699.26 5992.99 11199.95 799.62 999.67 6499.73 44
ACMMPcopyleft98.23 6197.95 6899.09 5599.74 797.62 7699.03 7699.41 695.98 11497.60 15599.36 4494.45 9199.93 2897.14 11998.85 14499.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 6398.11 6098.49 9898.34 18397.26 9699.61 598.43 19296.78 7898.87 6698.84 13093.72 10399.01 23398.91 2499.50 10099.19 151
fmvsm_s_conf0.1_n98.18 6498.21 5498.11 13598.54 16595.24 19598.87 11899.24 1797.50 3599.70 1399.67 191.33 15399.89 5099.47 1299.54 9599.21 146
fmvsm_s_conf0.1_n_a98.08 6598.04 6598.21 12397.66 25195.39 18598.89 11099.17 2697.24 5499.76 899.67 191.13 15899.88 5999.39 1399.41 11299.35 119
dcpmvs_298.08 6598.59 1796.56 24999.57 3390.34 34199.15 5198.38 20296.82 7799.29 3699.49 2095.78 4799.57 14798.94 2399.86 299.77 29
CANet98.05 6797.76 7398.90 7098.73 14297.27 9298.35 21798.78 10397.37 4597.72 14398.96 11591.53 14999.92 3498.79 2799.65 7099.51 92
train_agg97.97 6897.52 8599.33 2999.31 6798.50 2997.92 27398.73 11492.98 27397.74 14098.68 15096.20 3299.80 9196.59 14799.57 8699.68 64
ETV-MVS97.96 6997.81 7198.40 10998.42 17197.27 9298.73 15898.55 16296.84 7598.38 10097.44 26895.39 5899.35 18697.62 9898.89 13998.58 220
UA-Net97.96 6997.62 7798.98 6298.86 13397.47 8498.89 11099.08 3296.67 8898.72 7999.54 1193.15 10999.81 8494.87 20498.83 14599.65 72
CDPH-MVS97.94 7197.49 8799.28 3599.47 5098.44 3197.91 27598.67 13292.57 28998.77 7498.85 12995.93 4299.72 11695.56 18499.69 6199.68 64
DeepPCF-MVS96.37 297.93 7298.48 2696.30 27499.00 11789.54 35597.43 31898.87 6998.16 1199.26 4099.38 3996.12 3599.64 13498.30 5799.77 3699.72 48
DeepC-MVS95.98 397.88 7397.58 7998.77 7499.25 8496.93 10898.83 13198.75 10996.96 7196.89 18099.50 1890.46 17199.87 6197.84 8299.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 7497.54 8498.83 7295.48 36896.83 11398.95 9598.60 14698.58 598.93 6299.55 988.57 21699.91 4299.54 1199.61 7899.77 29
DP-MVS Recon97.86 7497.46 9099.06 5799.53 3698.35 4498.33 21998.89 5992.62 28698.05 11598.94 11895.34 6299.65 13296.04 16699.42 11199.19 151
CSCG97.85 7697.74 7498.20 12599.67 2595.16 19899.22 3699.32 1193.04 27197.02 17398.92 12195.36 6199.91 4297.43 11199.64 7499.52 89
BP-MVS197.82 7797.51 8698.76 7598.25 19397.39 8799.15 5197.68 28996.69 8698.47 9299.10 8990.29 17599.51 16498.60 3499.35 11999.37 117
MG-MVS97.81 7897.60 7898.44 10499.12 10595.97 15797.75 29698.78 10396.89 7498.46 9399.22 6793.90 10299.68 12894.81 20899.52 9899.67 68
VNet97.79 7997.40 9498.96 6598.88 13097.55 7898.63 18198.93 5096.74 8299.02 5298.84 13090.33 17499.83 7298.53 3896.66 21999.50 94
EIA-MVS97.75 8097.58 7998.27 11698.38 17596.44 13399.01 8198.60 14695.88 11997.26 16297.53 26294.97 8099.33 18997.38 11499.20 12599.05 175
PS-MVSNAJ97.73 8197.77 7297.62 17598.68 15195.58 17597.34 32798.51 17297.29 4898.66 8497.88 22894.51 8799.90 4897.87 7999.17 12797.39 262
casdiffmvs_mvgpermissive97.72 8297.48 8998.44 10498.42 17196.59 12698.92 10398.44 18896.20 10797.76 13799.20 7091.66 14399.23 19998.27 6198.41 16899.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 8297.32 9898.92 6799.64 2897.10 10399.12 5898.81 8992.34 29798.09 11299.08 9893.01 11099.92 3496.06 16599.77 3699.75 37
PVSNet_Blended_VisFu97.70 8497.46 9098.44 10499.27 8195.91 16598.63 18199.16 2794.48 19797.67 14798.88 12692.80 11399.91 4297.11 12099.12 12899.50 94
mvsany_test197.69 8597.70 7597.66 17398.24 19494.18 24897.53 31297.53 30795.52 13799.66 1599.51 1694.30 9499.56 15098.38 5398.62 15499.23 142
sasdasda97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
canonicalmvs97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
xiu_mvs_v2_base97.66 8897.70 7597.56 17998.61 16095.46 18297.44 31698.46 18497.15 6198.65 8598.15 20494.33 9399.80 9197.84 8298.66 15397.41 260
GDP-MVS97.64 8997.28 9998.71 7998.30 19197.33 8999.05 6998.52 16996.34 10298.80 7199.05 10189.74 18499.51 16496.86 14098.86 14399.28 134
baseline97.64 8997.44 9298.25 12098.35 17896.20 14599.00 8398.32 21296.33 10498.03 11899.17 7791.35 15299.16 20698.10 6598.29 17599.39 115
casdiffmvspermissive97.63 9197.41 9398.28 11598.33 18696.14 14998.82 13398.32 21296.38 10197.95 12699.21 6891.23 15799.23 19998.12 6498.37 16999.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net97.62 9297.19 10598.92 6798.66 15398.20 5299.32 2198.38 20296.69 8697.58 15697.42 27192.10 13199.50 16798.28 5896.25 24099.08 170
xiu_mvs_v1_base_debu97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base_debi97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
diffmvspermissive97.58 9697.40 9498.13 13198.32 18995.81 17098.06 25998.37 20496.20 10798.74 7698.89 12591.31 15599.25 19698.16 6398.52 16099.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 9797.49 8797.84 15098.07 21295.76 17199.47 798.40 19694.98 16998.79 7298.83 13292.34 12098.41 30696.91 12899.59 8299.34 121
alignmvs97.56 9897.07 11199.01 5998.66 15398.37 4298.83 13198.06 26996.74 8298.00 12497.65 25090.80 16599.48 17398.37 5496.56 22399.19 151
DPM-MVS97.55 9996.99 11499.23 4199.04 11298.55 2797.17 34298.35 20794.85 17997.93 13098.58 16095.07 7799.71 12192.60 27699.34 12099.43 112
OMC-MVS97.55 9997.34 9798.20 12599.33 6295.92 16498.28 22998.59 15095.52 13797.97 12599.10 8993.28 10899.49 16895.09 19998.88 14099.19 151
PAPM_NR97.46 10197.11 10898.50 9699.50 4296.41 13698.63 18198.60 14695.18 15697.06 17198.06 21094.26 9699.57 14793.80 24498.87 14299.52 89
EPP-MVSNet97.46 10197.28 9997.99 14398.64 15795.38 18699.33 2098.31 21493.61 24697.19 16499.07 9994.05 9999.23 19996.89 13298.43 16799.37 117
3Dnovator94.51 597.46 10196.93 11799.07 5697.78 23997.64 7499.35 1599.06 3497.02 6893.75 29099.16 8089.25 19799.92 3497.22 11899.75 4799.64 74
CNLPA97.45 10497.03 11298.73 7799.05 11197.44 8698.07 25898.53 16695.32 14996.80 18598.53 16593.32 10699.72 11694.31 22799.31 12299.02 177
lupinMVS97.44 10597.22 10498.12 13498.07 21295.76 17197.68 30197.76 28694.50 19698.79 7298.61 15592.34 12099.30 19297.58 10199.59 8299.31 127
3Dnovator+94.38 697.43 10696.78 12599.38 1897.83 23698.52 2899.37 1298.71 11997.09 6692.99 31899.13 8589.36 19499.89 5096.97 12599.57 8699.71 52
Vis-MVSNetpermissive97.42 10797.11 10898.34 11298.66 15396.23 14499.22 3699.00 3996.63 9098.04 11799.21 6888.05 23299.35 18696.01 16899.21 12499.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 10897.25 10197.91 14798.70 14796.80 11498.82 13398.69 12494.53 19398.11 11098.28 19294.50 9099.57 14794.12 23399.49 10297.37 264
sss97.39 10996.98 11698.61 8698.60 16196.61 12398.22 23598.93 5093.97 21798.01 12398.48 17091.98 13599.85 6696.45 15298.15 17799.39 115
test_cas_vis1_n_192097.38 11097.36 9697.45 18298.95 12593.25 28499.00 8398.53 16697.70 2399.77 799.35 4684.71 29799.85 6698.57 3599.66 6799.26 138
PVSNet_Blended97.38 11097.12 10798.14 12899.25 8495.35 18997.28 33299.26 1593.13 26797.94 12898.21 20092.74 11499.81 8496.88 13499.40 11599.27 135
WTY-MVS97.37 11296.92 11898.72 7898.86 13396.89 11298.31 22498.71 11995.26 15297.67 14798.56 16492.21 12799.78 10495.89 17096.85 21499.48 101
jason97.32 11397.08 11098.06 13997.45 27195.59 17497.87 28397.91 28094.79 18198.55 9098.83 13291.12 15999.23 19997.58 10199.60 8099.34 121
jason: jason.
MVS_Test97.28 11497.00 11398.13 13198.33 18695.97 15798.74 15498.07 26494.27 20398.44 9898.07 20992.48 11799.26 19596.43 15398.19 17699.16 157
EPNet97.28 11496.87 12098.51 9594.98 37796.14 14998.90 10697.02 35098.28 1095.99 21699.11 8791.36 15199.89 5096.98 12499.19 12699.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsmamba97.25 11696.99 11498.02 14198.34 18395.54 17999.18 4897.47 31395.04 16598.15 10798.57 16389.46 19199.31 19197.68 9599.01 13399.22 144
test_yl97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
DCV-MVSNet97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
IS-MVSNet97.22 11796.88 11998.25 12098.85 13596.36 13999.19 4497.97 27495.39 14397.23 16398.99 10991.11 16098.93 24594.60 21598.59 15699.47 103
PLCcopyleft95.07 497.20 12096.78 12598.44 10499.29 7696.31 14398.14 24898.76 10792.41 29596.39 20598.31 19094.92 8299.78 10494.06 23698.77 14899.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 12197.18 10697.20 19598.81 13893.27 28195.78 38799.15 2895.25 15396.79 18698.11 20792.29 12299.07 22398.56 3799.85 699.25 140
LS3D97.16 12296.66 13498.68 8198.53 16697.19 10098.93 10198.90 5792.83 28095.99 21699.37 4092.12 13099.87 6193.67 24899.57 8698.97 182
AdaColmapbinary97.15 12396.70 13098.48 9999.16 10196.69 12098.01 26498.89 5994.44 19996.83 18198.68 15090.69 16899.76 11094.36 22399.29 12398.98 181
mamv497.13 12498.11 6094.17 35398.97 12383.70 39598.66 17598.71 11994.63 18897.83 13498.90 12396.25 2999.55 15799.27 1599.76 4299.27 135
Effi-MVS+97.12 12596.69 13198.39 11098.19 20296.72 11997.37 32398.43 19293.71 23597.65 15198.02 21392.20 12899.25 19696.87 13797.79 18999.19 151
CHOSEN 1792x268897.12 12596.80 12298.08 13799.30 7194.56 23298.05 26099.71 193.57 24797.09 16798.91 12288.17 22699.89 5096.87 13799.56 9299.81 17
F-COLMAP97.09 12796.80 12297.97 14499.45 5594.95 21198.55 19598.62 14593.02 27296.17 21198.58 16094.01 10099.81 8493.95 23898.90 13899.14 160
RRT-MVS97.03 12896.78 12597.77 15997.90 23294.34 24199.12 5898.35 20795.87 12098.06 11498.70 14886.45 26399.63 13798.04 7098.54 15999.35 119
TAMVS97.02 12996.79 12497.70 16698.06 21595.31 19298.52 19798.31 21493.95 21897.05 17298.61 15593.49 10598.52 28895.33 19197.81 18899.29 132
CDS-MVSNet96.99 13096.69 13197.90 14898.05 21795.98 15298.20 23898.33 21193.67 24296.95 17498.49 16993.54 10498.42 29995.24 19797.74 19299.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 13196.55 13798.21 12398.17 20796.07 15197.98 26898.21 23197.24 5497.13 16698.93 11986.88 25599.91 4295.00 20299.37 11898.66 212
114514_t96.93 13296.27 14798.92 6799.50 4297.63 7598.85 12598.90 5784.80 39497.77 13699.11 8792.84 11299.66 13194.85 20599.77 3699.47 103
MAR-MVS96.91 13396.40 14398.45 10298.69 15096.90 11098.66 17598.68 12792.40 29697.07 17097.96 22091.54 14899.75 11293.68 24698.92 13798.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 13496.49 14098.14 12899.33 6295.56 17697.38 32199.65 292.34 29797.61 15498.20 20189.29 19699.10 22096.97 12597.60 19799.77 29
Vis-MVSNet (Re-imp)96.87 13596.55 13797.83 15198.73 14295.46 18299.20 4298.30 22094.96 17196.60 19398.87 12790.05 17898.59 28393.67 24898.60 15599.46 107
SDMVSNet96.85 13696.42 14198.14 12899.30 7196.38 13799.21 3999.23 2095.92 11695.96 21898.76 14485.88 27399.44 17897.93 7495.59 25298.60 216
PAPR96.84 13796.24 14998.65 8498.72 14696.92 10997.36 32598.57 15793.33 25696.67 18897.57 25994.30 9499.56 15091.05 31798.59 15699.47 103
HY-MVS93.96 896.82 13896.23 15098.57 8898.46 17097.00 10598.14 24898.21 23193.95 21896.72 18797.99 21791.58 14499.76 11094.51 21996.54 22498.95 185
UGNet96.78 13996.30 14698.19 12798.24 19495.89 16798.88 11598.93 5097.39 4296.81 18497.84 23282.60 32499.90 4896.53 14999.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 14096.60 13597.12 20499.25 8495.35 18998.26 23299.26 1594.28 20297.94 12897.46 26592.74 11499.81 8496.88 13493.32 28896.20 354
test_vis1_n_192096.71 14196.84 12196.31 27399.11 10789.74 34999.05 6998.58 15598.08 1299.87 199.37 4078.48 35599.93 2899.29 1499.69 6199.27 135
mvs_anonymous96.70 14296.53 13997.18 19898.19 20293.78 25798.31 22498.19 23594.01 21494.47 24998.27 19592.08 13398.46 29497.39 11397.91 18499.31 127
1112_ss96.63 14396.00 15798.50 9698.56 16296.37 13898.18 24698.10 25792.92 27694.84 23898.43 17392.14 12999.58 14694.35 22496.51 22599.56 88
PMMVS96.60 14496.33 14597.41 18697.90 23293.93 25397.35 32698.41 19492.84 27997.76 13797.45 26791.10 16199.20 20396.26 15897.91 18499.11 164
DP-MVS96.59 14595.93 16098.57 8899.34 6096.19 14798.70 16798.39 19889.45 36694.52 24799.35 4691.85 13899.85 6692.89 27298.88 14099.68 64
PatchMatch-RL96.59 14596.03 15698.27 11699.31 6796.51 13097.91 27599.06 3493.72 23496.92 17898.06 21088.50 22199.65 13291.77 30199.00 13598.66 212
GeoE96.58 14796.07 15398.10 13698.35 17895.89 16799.34 1698.12 25193.12 26896.09 21298.87 12789.71 18598.97 23592.95 26898.08 18099.43 112
XVG-OURS96.55 14896.41 14296.99 21198.75 14193.76 25897.50 31598.52 16995.67 13196.83 18199.30 5488.95 21099.53 16095.88 17196.26 23997.69 253
FIs96.51 14996.12 15297.67 17097.13 29597.54 8099.36 1399.22 2395.89 11894.03 27698.35 18391.98 13598.44 29796.40 15492.76 29697.01 272
XVG-OURS-SEG-HR96.51 14996.34 14497.02 21098.77 14093.76 25897.79 29498.50 17795.45 14096.94 17599.09 9687.87 23799.55 15796.76 14595.83 25197.74 250
PS-MVSNAJss96.43 15196.26 14896.92 22095.84 35795.08 20399.16 5098.50 17795.87 12093.84 28598.34 18794.51 8798.61 28096.88 13493.45 28597.06 270
test_fmvs196.42 15296.67 13395.66 30198.82 13788.53 37498.80 14298.20 23396.39 10099.64 1799.20 7080.35 34399.67 12999.04 2099.57 8698.78 199
FC-MVSNet-test96.42 15296.05 15497.53 18096.95 30497.27 9299.36 1399.23 2095.83 12293.93 27998.37 18192.00 13498.32 31696.02 16792.72 29797.00 273
ab-mvs96.42 15295.71 17098.55 9098.63 15896.75 11797.88 28298.74 11193.84 22496.54 19898.18 20385.34 28399.75 11295.93 16996.35 22999.15 158
FA-MVS(test-final)96.41 15595.94 15997.82 15398.21 19895.20 19797.80 29297.58 29793.21 26297.36 16097.70 24489.47 19099.56 15094.12 23397.99 18198.71 206
PVSNet91.96 1896.35 15696.15 15196.96 21599.17 9792.05 30596.08 38098.68 12793.69 23897.75 13997.80 23888.86 21199.69 12794.26 22999.01 13399.15 158
Test_1112_low_res96.34 15795.66 17598.36 11198.56 16295.94 16097.71 29998.07 26492.10 30694.79 24297.29 28091.75 14099.56 15094.17 23196.50 22699.58 86
Effi-MVS+-dtu96.29 15896.56 13695.51 30697.89 23490.22 34298.80 14298.10 25796.57 9396.45 20396.66 33490.81 16498.91 24895.72 17897.99 18197.40 261
QAPM96.29 15895.40 18098.96 6597.85 23597.60 7799.23 3298.93 5089.76 36093.11 31599.02 10389.11 20299.93 2891.99 29599.62 7799.34 121
Fast-Effi-MVS+96.28 16095.70 17298.03 14098.29 19295.97 15798.58 18798.25 22891.74 31495.29 23197.23 28591.03 16399.15 20992.90 27097.96 18398.97 182
nrg03096.28 16095.72 16797.96 14696.90 30998.15 5799.39 1098.31 21495.47 13994.42 25598.35 18392.09 13298.69 27297.50 10989.05 34597.04 271
131496.25 16295.73 16697.79 15597.13 29595.55 17898.19 24198.59 15093.47 25192.03 34397.82 23691.33 15399.49 16894.62 21498.44 16598.32 234
sd_testset96.17 16395.76 16597.42 18599.30 7194.34 24198.82 13399.08 3295.92 11695.96 21898.76 14482.83 32399.32 19095.56 18495.59 25298.60 216
h-mvs3396.17 16395.62 17697.81 15499.03 11394.45 23498.64 17898.75 10997.48 3698.67 8098.72 14789.76 18299.86 6597.95 7281.59 39199.11 164
HQP_MVS96.14 16595.90 16196.85 22397.42 27394.60 23098.80 14298.56 16097.28 4995.34 22798.28 19287.09 25099.03 22896.07 16294.27 26096.92 279
tttt051796.07 16695.51 17897.78 15698.41 17394.84 21599.28 2494.33 40094.26 20497.64 15298.64 15484.05 31299.47 17595.34 19097.60 19799.03 176
MVSTER96.06 16795.72 16797.08 20798.23 19695.93 16398.73 15898.27 22394.86 17795.07 23398.09 20888.21 22598.54 28696.59 14793.46 28396.79 297
thisisatest053096.01 16895.36 18597.97 14498.38 17595.52 18098.88 11594.19 40294.04 20997.64 15298.31 19083.82 31999.46 17695.29 19497.70 19498.93 187
test_djsdf96.00 16995.69 17396.93 21795.72 35995.49 18199.47 798.40 19694.98 16994.58 24597.86 22989.16 20098.41 30696.91 12894.12 26896.88 288
EI-MVSNet95.96 17095.83 16396.36 26997.93 23093.70 26498.12 25198.27 22393.70 23795.07 23399.02 10392.23 12698.54 28694.68 21093.46 28396.84 294
ECVR-MVScopyleft95.95 17195.71 17096.65 23599.02 11490.86 32799.03 7691.80 41296.96 7198.10 11199.26 5981.31 33099.51 16496.90 13199.04 13099.59 82
BH-untuned95.95 17195.72 16796.65 23598.55 16492.26 30098.23 23497.79 28593.73 23294.62 24498.01 21588.97 20999.00 23493.04 26598.51 16198.68 208
test111195.94 17395.78 16496.41 26698.99 12090.12 34399.04 7392.45 41196.99 7098.03 11899.27 5881.40 32999.48 17396.87 13799.04 13099.63 76
MSDG95.93 17495.30 19197.83 15198.90 12895.36 18796.83 36798.37 20491.32 32994.43 25498.73 14690.27 17699.60 14390.05 33198.82 14698.52 222
BH-RMVSNet95.92 17595.32 18997.69 16798.32 18994.64 22498.19 24197.45 31894.56 19196.03 21498.61 15585.02 28899.12 21490.68 32299.06 12999.30 130
test_fmvs1_n95.90 17695.99 15895.63 30298.67 15288.32 37899.26 2798.22 23096.40 9999.67 1499.26 5973.91 38999.70 12299.02 2199.50 10098.87 190
Fast-Effi-MVS+-dtu95.87 17795.85 16295.91 29097.74 24491.74 31198.69 16998.15 24795.56 13594.92 23697.68 24988.98 20898.79 26693.19 26097.78 19097.20 268
LFMVS95.86 17894.98 20698.47 10098.87 13296.32 14198.84 12996.02 37993.40 25498.62 8699.20 7074.99 38399.63 13797.72 8897.20 20499.46 107
baseline195.84 17995.12 19998.01 14298.49 16995.98 15298.73 15897.03 34895.37 14696.22 20898.19 20289.96 18099.16 20694.60 21587.48 36198.90 189
OpenMVScopyleft93.04 1395.83 18095.00 20498.32 11397.18 29297.32 9099.21 3998.97 4289.96 35691.14 35299.05 10186.64 25899.92 3493.38 25499.47 10597.73 251
VDD-MVS95.82 18195.23 19397.61 17698.84 13693.98 25298.68 17097.40 32295.02 16797.95 12699.34 5074.37 38899.78 10498.64 3296.80 21599.08 170
UniMVSNet (Re)95.78 18295.19 19597.58 17796.99 30297.47 8498.79 14899.18 2595.60 13393.92 28097.04 30691.68 14198.48 29095.80 17587.66 36096.79 297
VPA-MVSNet95.75 18395.11 20097.69 16797.24 28497.27 9298.94 9899.23 2095.13 15895.51 22597.32 27885.73 27598.91 24897.33 11689.55 33696.89 287
HQP-MVS95.72 18495.40 18096.69 23397.20 28894.25 24698.05 26098.46 18496.43 9694.45 25097.73 24186.75 25698.96 23995.30 19294.18 26496.86 293
hse-mvs295.71 18595.30 19196.93 21798.50 16793.53 26998.36 21698.10 25797.48 3698.67 8097.99 21789.76 18299.02 23197.95 7280.91 39698.22 237
UniMVSNet_NR-MVSNet95.71 18595.15 19697.40 18896.84 31296.97 10698.74 15499.24 1795.16 15793.88 28297.72 24391.68 14198.31 31895.81 17387.25 36696.92 279
PatchmatchNetpermissive95.71 18595.52 17796.29 27597.58 25790.72 33196.84 36697.52 30894.06 20897.08 16896.96 31689.24 19898.90 25192.03 29498.37 16999.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 18895.33 18896.76 22896.16 34594.63 22598.43 21298.39 19896.64 8995.02 23598.78 13785.15 28799.05 22495.21 19894.20 26396.60 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 18895.38 18496.61 24297.61 25493.84 25698.91 10598.44 18895.25 15394.28 26298.47 17186.04 27299.12 21495.50 18793.95 27396.87 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 19095.69 17395.44 31097.54 26288.54 37396.97 35297.56 30093.50 24997.52 15896.93 32089.49 18899.16 20695.25 19696.42 22898.64 214
FE-MVS95.62 19194.90 21097.78 15698.37 17794.92 21297.17 34297.38 32490.95 34097.73 14297.70 24485.32 28599.63 13791.18 30998.33 17298.79 196
LPG-MVS_test95.62 19195.34 18696.47 26097.46 26893.54 26798.99 8698.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
CLD-MVS95.62 19195.34 18696.46 26397.52 26593.75 26097.27 33398.46 18495.53 13694.42 25598.00 21686.21 26798.97 23596.25 16094.37 25896.66 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 19494.89 21197.76 16098.15 20895.15 20096.77 36894.41 39892.95 27597.18 16597.43 26984.78 29499.45 17794.63 21297.73 19398.68 208
MonoMVSNet95.51 19595.45 17995.68 29995.54 36490.87 32698.92 10397.37 32595.79 12495.53 22497.38 27489.58 18797.68 36196.40 15492.59 29898.49 224
thres600view795.49 19694.77 21497.67 17098.98 12195.02 20498.85 12596.90 35795.38 14496.63 19096.90 32184.29 30499.59 14488.65 35396.33 23098.40 228
test_vis1_n95.47 19795.13 19796.49 25797.77 24090.41 33999.27 2698.11 25496.58 9199.66 1599.18 7667.00 40299.62 14199.21 1699.40 11599.44 110
SCA95.46 19895.13 19796.46 26397.67 24991.29 31997.33 32897.60 29694.68 18596.92 17897.10 29183.97 31498.89 25292.59 27898.32 17499.20 147
IterMVS-LS95.46 19895.21 19496.22 27798.12 20993.72 26398.32 22398.13 25093.71 23594.26 26397.31 27992.24 12598.10 33494.63 21290.12 32796.84 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 20095.03 20396.73 22995.42 37294.63 22599.14 5498.52 16995.74 12693.22 30898.36 18283.87 31798.65 27796.95 12794.04 26996.91 284
CVMVSNet95.43 20196.04 15593.57 35897.93 23083.62 39698.12 25198.59 15095.68 13096.56 19499.02 10387.51 24397.51 36993.56 25297.44 20099.60 80
anonymousdsp95.42 20294.91 20996.94 21695.10 37695.90 16699.14 5498.41 19493.75 22993.16 31197.46 26587.50 24598.41 30695.63 18394.03 27096.50 339
DU-MVS95.42 20294.76 21597.40 18896.53 32896.97 10698.66 17598.99 4195.43 14193.88 28297.69 24688.57 21698.31 31895.81 17387.25 36696.92 279
mvs_tets95.41 20495.00 20496.65 23595.58 36394.42 23699.00 8398.55 16295.73 12893.21 30998.38 18083.45 32198.63 27897.09 12194.00 27196.91 284
thres100view90095.38 20594.70 21997.41 18698.98 12194.92 21298.87 11896.90 35795.38 14496.61 19296.88 32284.29 30499.56 15088.11 35696.29 23497.76 248
thres40095.38 20594.62 22397.65 17498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23498.40 228
BH-w/o95.38 20595.08 20196.26 27698.34 18391.79 30897.70 30097.43 32092.87 27894.24 26597.22 28688.66 21498.84 25891.55 30597.70 19498.16 240
VDDNet95.36 20894.53 22797.86 14998.10 21195.13 20198.85 12597.75 28790.46 34798.36 10199.39 3473.27 39199.64 13497.98 7196.58 22298.81 195
TAPA-MVS93.98 795.35 20994.56 22697.74 16299.13 10494.83 21798.33 21998.64 14086.62 38296.29 20798.61 15594.00 10199.29 19380.00 39799.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 21094.98 20696.43 26597.67 24993.48 27198.73 15898.44 18894.94 17592.53 33198.53 16584.50 30399.14 21195.48 18894.00 27196.66 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 21194.87 21296.71 23099.29 7693.24 28598.58 18798.11 25489.92 35793.57 29499.10 8986.37 26599.79 10190.78 32098.10 17997.09 269
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UBG95.32 21294.72 21897.13 20298.05 21793.26 28297.87 28397.20 33694.96 17196.18 21095.66 37180.97 33599.35 18694.47 22197.08 20698.78 199
tfpn200view995.32 21294.62 22397.43 18498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23497.76 248
Anonymous20240521195.28 21494.49 22997.67 17099.00 11793.75 26098.70 16797.04 34790.66 34396.49 20098.80 13578.13 35999.83 7296.21 16195.36 25699.44 110
thres20095.25 21594.57 22597.28 19298.81 13894.92 21298.20 23897.11 34095.24 15596.54 19896.22 35184.58 30199.53 16087.93 36196.50 22697.39 262
AllTest95.24 21694.65 22296.99 21199.25 8493.21 28698.59 18598.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
LCM-MVSNet-Re95.22 21795.32 18994.91 32698.18 20487.85 38498.75 15195.66 38695.11 16088.96 37196.85 32590.26 17797.65 36295.65 18298.44 16599.22 144
EPNet_dtu95.21 21894.95 20895.99 28596.17 34390.45 33798.16 24797.27 33296.77 7993.14 31498.33 18890.34 17398.42 29985.57 37498.81 14799.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 21994.45 23497.46 18196.75 31896.56 12898.86 12198.65 13993.30 25993.27 30798.27 19584.85 29298.87 25594.82 20791.26 31496.96 275
D2MVS95.18 22095.08 20195.48 30797.10 29792.07 30498.30 22699.13 3094.02 21192.90 31996.73 33189.48 18998.73 27094.48 22093.60 28295.65 367
WR-MVS95.15 22194.46 23297.22 19496.67 32396.45 13298.21 23698.81 8994.15 20593.16 31197.69 24687.51 24398.30 32095.29 19488.62 35196.90 286
TranMVSNet+NR-MVSNet95.14 22294.48 23097.11 20596.45 33396.36 13999.03 7699.03 3795.04 16593.58 29397.93 22288.27 22498.03 34094.13 23286.90 37196.95 277
baseline295.11 22394.52 22896.87 22296.65 32493.56 26698.27 23194.10 40493.45 25292.02 34497.43 26987.45 24799.19 20493.88 24197.41 20297.87 246
miper_enhance_ethall95.10 22494.75 21696.12 28197.53 26493.73 26296.61 37498.08 26292.20 30593.89 28196.65 33692.44 11898.30 32094.21 23091.16 31596.34 348
Anonymous2024052995.10 22494.22 24497.75 16199.01 11694.26 24598.87 11898.83 8185.79 39096.64 18998.97 11078.73 35299.85 6696.27 15794.89 25799.12 162
test-LLR95.10 22494.87 21295.80 29596.77 31589.70 35096.91 35795.21 39095.11 16094.83 24095.72 36887.71 23998.97 23593.06 26398.50 16298.72 203
WR-MVS_H95.05 22794.46 23296.81 22696.86 31195.82 16999.24 3099.24 1793.87 22392.53 33196.84 32690.37 17298.24 32693.24 25887.93 35796.38 347
miper_ehance_all_eth95.01 22894.69 22095.97 28797.70 24793.31 28097.02 35098.07 26492.23 30293.51 29896.96 31691.85 13898.15 33093.68 24691.16 31596.44 345
testing1195.00 22994.28 24197.16 20097.96 22793.36 27998.09 25697.06 34694.94 17595.33 23096.15 35376.89 37399.40 18195.77 17796.30 23398.72 203
ADS-MVSNet95.00 22994.45 23496.63 23998.00 22191.91 30796.04 38197.74 28890.15 35396.47 20196.64 33787.89 23598.96 23990.08 32997.06 20799.02 177
VPNet94.99 23194.19 24697.40 18897.16 29396.57 12798.71 16398.97 4295.67 13194.84 23898.24 19980.36 34298.67 27696.46 15187.32 36596.96 275
EPMVS94.99 23194.48 23096.52 25597.22 28691.75 31097.23 33491.66 41394.11 20697.28 16196.81 32885.70 27698.84 25893.04 26597.28 20398.97 182
testing9194.98 23394.25 24397.20 19597.94 22893.41 27498.00 26697.58 29794.99 16895.45 22696.04 35777.20 36899.42 18094.97 20396.02 24798.78 199
NR-MVSNet94.98 23394.16 24997.44 18396.53 32897.22 9998.74 15498.95 4694.96 17189.25 37097.69 24689.32 19598.18 32894.59 21787.40 36396.92 279
FMVSNet394.97 23594.26 24297.11 20598.18 20496.62 12198.56 19498.26 22793.67 24294.09 27297.10 29184.25 30698.01 34192.08 29092.14 30196.70 309
CostFormer94.95 23694.73 21795.60 30497.28 28289.06 36397.53 31296.89 35989.66 36296.82 18396.72 33286.05 27098.95 24495.53 18696.13 24598.79 196
PAPM94.95 23694.00 26297.78 15697.04 29995.65 17396.03 38398.25 22891.23 33494.19 26897.80 23891.27 15698.86 25782.61 39197.61 19698.84 193
CP-MVSNet94.94 23894.30 24096.83 22496.72 32095.56 17699.11 6098.95 4693.89 22192.42 33697.90 22587.19 24998.12 33394.32 22688.21 35496.82 296
TR-MVS94.94 23894.20 24597.17 19997.75 24194.14 24997.59 30997.02 35092.28 30195.75 22297.64 25383.88 31698.96 23989.77 33596.15 24498.40 228
RPSCF94.87 24095.40 18093.26 36498.89 12982.06 40298.33 21998.06 26990.30 35296.56 19499.26 5987.09 25099.49 16893.82 24396.32 23198.24 235
testing9994.83 24194.08 25497.07 20897.94 22893.13 28898.10 25597.17 33894.86 17795.34 22796.00 36076.31 37699.40 18195.08 20095.90 24898.68 208
GA-MVS94.81 24294.03 25897.14 20197.15 29493.86 25596.76 36997.58 29794.00 21594.76 24397.04 30680.91 33698.48 29091.79 30096.25 24099.09 166
c3_l94.79 24394.43 23695.89 29297.75 24193.12 29097.16 34498.03 27192.23 30293.46 30197.05 30591.39 15098.01 34193.58 25189.21 34396.53 331
V4294.78 24494.14 25196.70 23296.33 33895.22 19698.97 8998.09 26192.32 29994.31 26197.06 30288.39 22298.55 28592.90 27088.87 34996.34 348
reproduce_monomvs94.77 24594.67 22195.08 32298.40 17489.48 35698.80 14298.64 14097.57 3193.21 30997.65 25080.57 34198.83 26197.72 8889.47 33996.93 278
CR-MVSNet94.76 24694.15 25096.59 24597.00 30093.43 27294.96 39497.56 30092.46 29096.93 17696.24 34788.15 22797.88 35487.38 36396.65 22098.46 226
v2v48294.69 24794.03 25896.65 23596.17 34394.79 22098.67 17398.08 26292.72 28294.00 27797.16 28987.69 24298.45 29592.91 26988.87 34996.72 305
pmmvs494.69 24793.99 26496.81 22695.74 35895.94 16097.40 31997.67 29190.42 34993.37 30497.59 25789.08 20398.20 32792.97 26791.67 30896.30 351
cl2294.68 24994.19 24696.13 28098.11 21093.60 26596.94 35498.31 21492.43 29493.32 30696.87 32486.51 25998.28 32494.10 23591.16 31596.51 337
eth_miper_zixun_eth94.68 24994.41 23795.47 30897.64 25291.71 31296.73 37198.07 26492.71 28393.64 29197.21 28790.54 17098.17 32993.38 25489.76 33196.54 329
PCF-MVS93.45 1194.68 24993.43 30098.42 10898.62 15996.77 11695.48 39198.20 23384.63 39593.34 30598.32 18988.55 21999.81 8484.80 38398.96 13698.68 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 25293.54 29598.08 13796.88 31096.56 12898.19 24198.50 17778.05 40692.69 32698.02 21391.07 16299.63 13790.09 32898.36 17198.04 242
PS-CasMVS94.67 25293.99 26496.71 23096.68 32295.26 19399.13 5799.03 3793.68 24092.33 33797.95 22185.35 28298.10 33493.59 25088.16 35696.79 297
cascas94.63 25493.86 27496.93 21796.91 30894.27 24496.00 38498.51 17285.55 39194.54 24696.23 34984.20 31098.87 25595.80 17596.98 21297.66 254
tpmvs94.60 25594.36 23995.33 31497.46 26888.60 37296.88 36397.68 28991.29 33193.80 28796.42 34488.58 21599.24 19891.06 31596.04 24698.17 239
LTVRE_ROB92.95 1594.60 25593.90 27096.68 23497.41 27694.42 23698.52 19798.59 15091.69 31791.21 35198.35 18384.87 29199.04 22791.06 31593.44 28696.60 320
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 25793.92 26796.60 24496.21 34094.78 22198.59 18598.14 24991.86 31394.21 26797.02 30987.97 23398.41 30691.72 30289.57 33496.61 319
ADS-MVSNet294.58 25894.40 23895.11 32098.00 22188.74 37096.04 38197.30 32890.15 35396.47 20196.64 33787.89 23597.56 36790.08 32997.06 20799.02 177
WBMVS94.56 25994.04 25696.10 28298.03 21993.08 29297.82 29198.18 23894.02 21193.77 28996.82 32781.28 33198.34 31395.47 18991.00 31896.88 288
ACMH92.88 1694.55 26093.95 26696.34 27197.63 25393.26 28298.81 14198.49 18293.43 25389.74 36598.53 16581.91 32699.08 22293.69 24593.30 28996.70 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 26193.85 27596.63 23997.98 22593.06 29398.77 15097.84 28393.67 24293.80 28798.04 21276.88 37498.96 23994.79 20992.86 29497.86 247
XVG-ACMP-BASELINE94.54 26194.14 25195.75 29896.55 32791.65 31398.11 25398.44 18894.96 17194.22 26697.90 22579.18 35199.11 21694.05 23793.85 27596.48 342
AUN-MVS94.53 26393.73 28596.92 22098.50 16793.52 27098.34 21898.10 25793.83 22695.94 22097.98 21985.59 27899.03 22894.35 22480.94 39598.22 237
DIV-MVS_self_test94.52 26494.03 25895.99 28597.57 26193.38 27797.05 34897.94 27791.74 31492.81 32197.10 29189.12 20198.07 33892.60 27690.30 32496.53 331
cl____94.51 26594.01 26196.02 28497.58 25793.40 27697.05 34897.96 27691.73 31692.76 32397.08 29789.06 20498.13 33292.61 27590.29 32596.52 334
ETVMVS94.50 26693.44 29997.68 16998.18 20495.35 18998.19 24197.11 34093.73 23296.40 20495.39 37474.53 38598.84 25891.10 31196.31 23298.84 193
GBi-Net94.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
test194.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
dmvs_re94.48 26994.18 24895.37 31297.68 24890.11 34498.54 19697.08 34294.56 19194.42 25597.24 28484.25 30697.76 35991.02 31892.83 29598.24 235
v894.47 27093.77 28196.57 24896.36 33694.83 21799.05 6998.19 23591.92 31093.16 31196.97 31488.82 21398.48 29091.69 30387.79 35896.39 346
FMVSNet294.47 27093.61 29197.04 20998.21 19896.43 13498.79 14898.27 22392.46 29093.50 29997.09 29581.16 33298.00 34391.09 31291.93 30496.70 309
test250694.44 27293.91 26996.04 28399.02 11488.99 36699.06 6779.47 42596.96 7198.36 10199.26 5977.21 36799.52 16396.78 14499.04 13099.59 82
Patchmatch-test94.42 27393.68 28996.63 23997.60 25591.76 30994.83 39897.49 31289.45 36694.14 27097.10 29188.99 20598.83 26185.37 37798.13 17899.29 132
PEN-MVS94.42 27393.73 28596.49 25796.28 33994.84 21599.17 4999.00 3993.51 24892.23 33997.83 23586.10 26997.90 35092.55 28186.92 37096.74 302
v14419294.39 27593.70 28796.48 25996.06 34894.35 24098.58 18798.16 24691.45 32294.33 26097.02 30987.50 24598.45 29591.08 31489.11 34496.63 317
Baseline_NR-MVSNet94.35 27693.81 27795.96 28896.20 34194.05 25198.61 18496.67 36991.44 32393.85 28497.60 25688.57 21698.14 33194.39 22286.93 36995.68 366
miper_lstm_enhance94.33 27794.07 25595.11 32097.75 24190.97 32397.22 33598.03 27191.67 31892.76 32396.97 31490.03 17997.78 35892.51 28389.64 33396.56 326
v119294.32 27893.58 29296.53 25496.10 34694.45 23498.50 20398.17 24491.54 32094.19 26897.06 30286.95 25498.43 29890.14 32789.57 33496.70 309
UWE-MVS94.30 27993.89 27295.53 30597.83 23688.95 36797.52 31493.25 40694.44 19996.63 19097.07 29878.70 35399.28 19491.99 29597.56 19998.36 231
ACMH+92.99 1494.30 27993.77 28195.88 29397.81 23892.04 30698.71 16398.37 20493.99 21690.60 35898.47 17180.86 33899.05 22492.75 27492.40 30096.55 328
v14894.29 28193.76 28395.91 29096.10 34692.93 29498.58 18797.97 27492.59 28893.47 30096.95 31888.53 22098.32 31692.56 28087.06 36896.49 340
v1094.29 28193.55 29496.51 25696.39 33594.80 21998.99 8698.19 23591.35 32793.02 31796.99 31288.09 22998.41 30690.50 32488.41 35396.33 350
MVP-Stereo94.28 28393.92 26795.35 31394.95 37892.60 29797.97 26997.65 29291.61 31990.68 35797.09 29586.32 26698.42 29989.70 33899.34 12095.02 380
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 28493.33 30296.97 21497.19 29193.38 27798.74 15498.57 15791.21 33693.81 28698.58 16072.85 39298.77 26895.05 20193.93 27498.77 202
OurMVSNet-221017-094.21 28594.00 26294.85 33095.60 36289.22 36198.89 11097.43 32095.29 15092.18 34098.52 16882.86 32298.59 28393.46 25391.76 30696.74 302
v192192094.20 28693.47 29896.40 26895.98 35194.08 25098.52 19798.15 24791.33 32894.25 26497.20 28886.41 26498.42 29990.04 33289.39 34196.69 314
WB-MVSnew94.19 28794.04 25694.66 33796.82 31492.14 30197.86 28595.96 38293.50 24995.64 22396.77 33088.06 23197.99 34484.87 38096.86 21393.85 397
v7n94.19 28793.43 30096.47 26095.90 35494.38 23999.26 2798.34 21091.99 30892.76 32397.13 29088.31 22398.52 28889.48 34387.70 35996.52 334
tpm294.19 28793.76 28395.46 30997.23 28589.04 36497.31 33096.85 36387.08 38196.21 20996.79 32983.75 32098.74 26992.43 28696.23 24298.59 218
TESTMET0.1,194.18 29093.69 28895.63 30296.92 30689.12 36296.91 35794.78 39593.17 26494.88 23796.45 34378.52 35498.92 24693.09 26298.50 16298.85 191
dp94.15 29193.90 27094.90 32797.31 28186.82 38996.97 35297.19 33791.22 33596.02 21596.61 33985.51 27999.02 23190.00 33394.30 25998.85 191
ET-MVSNet_ETH3D94.13 29292.98 30997.58 17798.22 19796.20 14597.31 33095.37 38994.53 19379.56 40697.63 25586.51 25997.53 36896.91 12890.74 32099.02 177
tpm94.13 29293.80 27895.12 31996.50 33087.91 38397.44 31695.89 38592.62 28696.37 20696.30 34684.13 31198.30 32093.24 25891.66 30999.14 160
testing22294.12 29493.03 30897.37 19198.02 22094.66 22297.94 27296.65 37194.63 18895.78 22195.76 36371.49 39398.92 24691.17 31095.88 24998.52 222
IterMVS-SCA-FT94.11 29593.87 27394.85 33097.98 22590.56 33697.18 34098.11 25493.75 22992.58 32997.48 26483.97 31497.41 37192.48 28591.30 31296.58 322
Anonymous2023121194.10 29693.26 30596.61 24299.11 10794.28 24399.01 8198.88 6286.43 38492.81 32197.57 25981.66 32898.68 27594.83 20689.02 34796.88 288
IterMVS94.09 29793.85 27594.80 33397.99 22390.35 34097.18 34098.12 25193.68 24092.46 33597.34 27584.05 31297.41 37192.51 28391.33 31196.62 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 29893.51 29695.80 29596.77 31589.70 35096.91 35795.21 39092.89 27794.83 24095.72 36877.69 36298.97 23593.06 26398.50 16298.72 203
test0.0.03 194.08 29893.51 29695.80 29595.53 36692.89 29597.38 32195.97 38195.11 16092.51 33396.66 33487.71 23996.94 37887.03 36593.67 27897.57 258
v124094.06 30093.29 30496.34 27196.03 35093.90 25498.44 21098.17 24491.18 33794.13 27197.01 31186.05 27098.42 29989.13 34889.50 33896.70 309
X-MVStestdata94.06 30092.30 32499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9343.50 42095.90 4599.89 5097.85 8099.74 5199.78 23
DTE-MVSNet93.98 30293.26 30596.14 27996.06 34894.39 23899.20 4298.86 7593.06 27091.78 34597.81 23785.87 27497.58 36690.53 32386.17 37596.46 344
pm-mvs193.94 30393.06 30796.59 24596.49 33195.16 19898.95 9598.03 27192.32 29991.08 35397.84 23284.54 30298.41 30692.16 28886.13 37896.19 355
MS-PatchMatch93.84 30493.63 29094.46 34796.18 34289.45 35797.76 29598.27 22392.23 30292.13 34197.49 26379.50 34898.69 27289.75 33699.38 11795.25 372
tfpnnormal93.66 30592.70 31596.55 25396.94 30595.94 16098.97 8999.19 2491.04 33891.38 35097.34 27584.94 29098.61 28085.45 37689.02 34795.11 376
EU-MVSNet93.66 30594.14 25192.25 37495.96 35383.38 39898.52 19798.12 25194.69 18492.61 32898.13 20687.36 24896.39 39091.82 29990.00 32996.98 274
our_test_393.65 30793.30 30394.69 33595.45 37089.68 35296.91 35797.65 29291.97 30991.66 34896.88 32289.67 18697.93 34988.02 35991.49 31096.48 342
pmmvs593.65 30792.97 31095.68 29995.49 36792.37 29898.20 23897.28 33189.66 36292.58 32997.26 28182.14 32598.09 33693.18 26190.95 31996.58 322
test_fmvs293.43 30993.58 29292.95 36896.97 30383.91 39499.19 4497.24 33495.74 12695.20 23298.27 19569.65 39598.72 27196.26 15893.73 27796.24 352
tpm cat193.36 31092.80 31295.07 32397.58 25787.97 38296.76 36997.86 28282.17 40293.53 29596.04 35786.13 26899.13 21289.24 34695.87 25098.10 241
JIA-IIPM93.35 31192.49 32095.92 28996.48 33290.65 33395.01 39396.96 35385.93 38896.08 21387.33 41087.70 24198.78 26791.35 30795.58 25498.34 232
SixPastTwentyTwo93.34 31292.86 31194.75 33495.67 36089.41 35998.75 15196.67 36993.89 22190.15 36398.25 19880.87 33798.27 32590.90 31990.64 32196.57 324
USDC93.33 31392.71 31495.21 31696.83 31390.83 32996.91 35797.50 31093.84 22490.72 35698.14 20577.69 36298.82 26389.51 34293.21 29195.97 360
IB-MVS91.98 1793.27 31491.97 32897.19 19797.47 26793.41 27497.09 34795.99 38093.32 25792.47 33495.73 36678.06 36099.53 16094.59 21782.98 38698.62 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 31592.21 32596.41 26697.73 24593.13 28895.65 38897.03 34891.27 33394.04 27596.06 35675.33 38197.19 37486.56 36796.23 24298.92 188
ppachtmachnet_test93.22 31692.63 31694.97 32595.45 37090.84 32896.88 36397.88 28190.60 34492.08 34297.26 28188.08 23097.86 35585.12 37990.33 32396.22 353
Patchmtry93.22 31692.35 32395.84 29496.77 31593.09 29194.66 40197.56 30087.37 38092.90 31996.24 34788.15 22797.90 35087.37 36490.10 32896.53 331
testing393.19 31892.48 32195.30 31598.07 21292.27 29998.64 17897.17 33893.94 22093.98 27897.04 30667.97 39996.01 39488.40 35497.14 20597.63 255
FMVSNet193.19 31892.07 32696.56 24997.54 26295.00 20598.82 13398.18 23890.38 35092.27 33897.07 29873.68 39097.95 34689.36 34591.30 31296.72 305
LF4IMVS93.14 32092.79 31394.20 35195.88 35588.67 37197.66 30397.07 34493.81 22791.71 34697.65 25077.96 36198.81 26491.47 30691.92 30595.12 375
mmtdpeth93.12 32192.61 31794.63 33997.60 25589.68 35299.21 3997.32 32794.02 21197.72 14394.42 38577.01 37299.44 17899.05 1977.18 40794.78 385
testgi93.06 32292.45 32294.88 32996.43 33489.90 34598.75 15197.54 30695.60 13391.63 34997.91 22474.46 38797.02 37686.10 37093.67 27897.72 252
PatchT93.06 32291.97 32896.35 27096.69 32192.67 29694.48 40497.08 34286.62 38297.08 16892.23 40487.94 23497.90 35078.89 40196.69 21898.49 224
RPMNet92.81 32491.34 33497.24 19397.00 30093.43 27294.96 39498.80 9682.27 40196.93 17692.12 40586.98 25399.82 7976.32 40696.65 22098.46 226
myMVS_eth3d92.73 32592.01 32794.89 32897.39 27790.94 32497.91 27597.46 31493.16 26593.42 30295.37 37568.09 39896.12 39288.34 35596.99 20997.60 256
TransMVSNet (Re)92.67 32691.51 33396.15 27896.58 32694.65 22398.90 10696.73 36590.86 34189.46 36997.86 22985.62 27798.09 33686.45 36881.12 39395.71 365
ttmdpeth92.61 32791.96 33094.55 34194.10 38890.60 33598.52 19797.29 32992.67 28490.18 36197.92 22379.75 34797.79 35791.09 31286.15 37795.26 371
Syy-MVS92.55 32892.61 31792.38 37197.39 27783.41 39797.91 27597.46 31493.16 26593.42 30295.37 37584.75 29596.12 39277.00 40596.99 20997.60 256
K. test v392.55 32891.91 33194.48 34595.64 36189.24 36099.07 6694.88 39494.04 20986.78 38597.59 25777.64 36597.64 36392.08 29089.43 34096.57 324
DSMNet-mixed92.52 33092.58 31992.33 37294.15 38782.65 40098.30 22694.26 40189.08 37192.65 32795.73 36685.01 28995.76 39686.24 36997.76 19198.59 218
TinyColmap92.31 33191.53 33294.65 33896.92 30689.75 34896.92 35596.68 36890.45 34889.62 36697.85 23176.06 37998.81 26486.74 36692.51 29995.41 369
gg-mvs-nofinetune92.21 33290.58 34097.13 20296.75 31895.09 20295.85 38589.40 41885.43 39294.50 24881.98 41380.80 33998.40 31292.16 28898.33 17297.88 245
FMVSNet591.81 33390.92 33694.49 34497.21 28792.09 30398.00 26697.55 30589.31 36990.86 35595.61 37274.48 38695.32 40085.57 37489.70 33296.07 358
pmmvs691.77 33490.63 33995.17 31894.69 38491.24 32098.67 17397.92 27986.14 38689.62 36697.56 26175.79 38098.34 31390.75 32184.56 38095.94 361
Anonymous2023120691.66 33591.10 33593.33 36294.02 39287.35 38698.58 18797.26 33390.48 34690.16 36296.31 34583.83 31896.53 38879.36 39989.90 33096.12 356
Patchmatch-RL test91.49 33690.85 33793.41 36091.37 40384.40 39292.81 40895.93 38491.87 31287.25 38194.87 38188.99 20596.53 38892.54 28282.00 38899.30 130
test_040291.32 33790.27 34394.48 34596.60 32591.12 32198.50 20397.22 33586.10 38788.30 37796.98 31377.65 36497.99 34478.13 40392.94 29394.34 386
test_vis1_rt91.29 33890.65 33893.19 36697.45 27186.25 39098.57 19390.90 41693.30 25986.94 38493.59 39462.07 40899.11 21697.48 11095.58 25494.22 389
PVSNet_088.72 1991.28 33990.03 34695.00 32497.99 22387.29 38794.84 39798.50 17792.06 30789.86 36495.19 37779.81 34699.39 18492.27 28769.79 41398.33 233
mvs5depth91.23 34090.17 34494.41 34992.09 40089.79 34795.26 39296.50 37390.73 34291.69 34797.06 30276.12 37898.62 27988.02 35984.11 38394.82 382
Anonymous2024052191.18 34190.44 34193.42 35993.70 39388.47 37598.94 9897.56 30088.46 37589.56 36895.08 38077.15 37096.97 37783.92 38689.55 33694.82 382
EG-PatchMatch MVS91.13 34290.12 34594.17 35394.73 38389.00 36598.13 25097.81 28489.22 37085.32 39596.46 34267.71 40098.42 29987.89 36293.82 27695.08 377
TDRefinement91.06 34389.68 34895.21 31685.35 41891.49 31698.51 20297.07 34491.47 32188.83 37597.84 23277.31 36699.09 22192.79 27377.98 40595.04 379
UnsupCasMVSNet_eth90.99 34489.92 34794.19 35294.08 38989.83 34697.13 34698.67 13293.69 23885.83 39196.19 35275.15 38296.74 38289.14 34779.41 40096.00 359
test20.0390.89 34590.38 34292.43 37093.48 39488.14 38198.33 21997.56 30093.40 25487.96 37896.71 33380.69 34094.13 40579.15 40086.17 37595.01 381
MDA-MVSNet_test_wron90.71 34689.38 35194.68 33694.83 38090.78 33097.19 33997.46 31487.60 37872.41 41395.72 36886.51 25996.71 38585.92 37286.80 37296.56 326
YYNet190.70 34789.39 35094.62 34094.79 38290.65 33397.20 33797.46 31487.54 37972.54 41295.74 36486.51 25996.66 38686.00 37186.76 37396.54 329
KD-MVS_self_test90.38 34889.38 35193.40 36192.85 39788.94 36897.95 27097.94 27790.35 35190.25 36093.96 39179.82 34595.94 39584.62 38576.69 40895.33 370
pmmvs-eth3d90.36 34989.05 35494.32 35091.10 40592.12 30297.63 30896.95 35488.86 37384.91 39693.13 39978.32 35696.74 38288.70 35181.81 39094.09 392
CL-MVSNet_self_test90.11 35089.14 35393.02 36791.86 40288.23 38096.51 37798.07 26490.49 34590.49 35994.41 38684.75 29595.34 39980.79 39574.95 41095.50 368
new_pmnet90.06 35189.00 35593.22 36594.18 38688.32 37896.42 37996.89 35986.19 38585.67 39293.62 39377.18 36997.10 37581.61 39389.29 34294.23 388
MDA-MVSNet-bldmvs89.97 35288.35 35894.83 33295.21 37491.34 31797.64 30597.51 30988.36 37671.17 41496.13 35479.22 35096.63 38783.65 38786.27 37496.52 334
CMPMVSbinary66.06 2189.70 35389.67 34989.78 37993.19 39576.56 40597.00 35198.35 20780.97 40381.57 40197.75 24074.75 38498.61 28089.85 33493.63 28094.17 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 35488.28 35993.82 35692.81 39891.08 32298.01 26497.45 31887.95 37787.90 37995.87 36267.63 40194.56 40478.73 40288.18 35595.83 363
KD-MVS_2432*160089.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
miper_refine_blended89.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
MVStest189.53 35787.99 36294.14 35594.39 38590.42 33898.25 23396.84 36482.81 39881.18 40397.33 27777.09 37196.94 37885.27 37878.79 40195.06 378
MVS-HIRNet89.46 35888.40 35792.64 36997.58 25782.15 40194.16 40793.05 41075.73 40990.90 35482.52 41279.42 34998.33 31583.53 38898.68 14997.43 259
OpenMVS_ROBcopyleft86.42 2089.00 35987.43 36793.69 35793.08 39689.42 35897.91 27596.89 35978.58 40585.86 39094.69 38269.48 39698.29 32377.13 40493.29 29093.36 399
mvsany_test388.80 36088.04 36091.09 37889.78 40881.57 40397.83 29095.49 38893.81 22787.53 38093.95 39256.14 41197.43 37094.68 21083.13 38594.26 387
new-patchmatchnet88.50 36187.45 36691.67 37690.31 40785.89 39197.16 34497.33 32689.47 36583.63 39892.77 40176.38 37595.06 40282.70 39077.29 40694.06 394
APD_test188.22 36288.01 36188.86 38195.98 35174.66 41397.21 33696.44 37583.96 39786.66 38797.90 22560.95 40997.84 35682.73 38990.23 32694.09 392
PM-MVS87.77 36386.55 36991.40 37791.03 40683.36 39996.92 35595.18 39291.28 33286.48 38993.42 39553.27 41296.74 38289.43 34481.97 38994.11 391
dmvs_testset87.64 36488.93 35683.79 39095.25 37363.36 42297.20 33791.17 41493.07 26985.64 39395.98 36185.30 28691.52 41269.42 41187.33 36496.49 340
test_fmvs387.17 36587.06 36887.50 38391.21 40475.66 40899.05 6996.61 37292.79 28188.85 37492.78 40043.72 41593.49 40693.95 23884.56 38093.34 400
UnsupCasMVSNet_bld87.17 36585.12 37293.31 36391.94 40188.77 36994.92 39698.30 22084.30 39682.30 39990.04 40763.96 40697.25 37385.85 37374.47 41293.93 396
N_pmnet87.12 36787.77 36585.17 38795.46 36961.92 42397.37 32370.66 42885.83 38988.73 37696.04 35785.33 28497.76 35980.02 39690.48 32295.84 362
pmmvs386.67 36884.86 37392.11 37588.16 41287.19 38896.63 37394.75 39679.88 40487.22 38292.75 40266.56 40395.20 40181.24 39476.56 40993.96 395
test_f86.07 36985.39 37088.10 38289.28 41075.57 40997.73 29896.33 37789.41 36885.35 39491.56 40643.31 41795.53 39791.32 30884.23 38293.21 401
WB-MVS84.86 37085.33 37183.46 39189.48 40969.56 41798.19 24196.42 37689.55 36481.79 40094.67 38384.80 29390.12 41352.44 41780.64 39790.69 404
SSC-MVS84.27 37184.71 37482.96 39589.19 41168.83 41898.08 25796.30 37889.04 37281.37 40294.47 38484.60 30089.89 41449.80 41979.52 39990.15 405
dongtai82.47 37281.88 37584.22 38995.19 37576.03 40694.59 40374.14 42782.63 39987.19 38396.09 35564.10 40587.85 41758.91 41584.11 38388.78 409
test_vis3_rt79.22 37377.40 38084.67 38886.44 41674.85 41297.66 30381.43 42384.98 39367.12 41681.91 41428.09 42597.60 36488.96 34980.04 39881.55 414
test_method79.03 37478.17 37681.63 39686.06 41754.40 42882.75 41696.89 35939.54 42080.98 40495.57 37358.37 41094.73 40384.74 38478.61 40295.75 364
testf179.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
APD_test279.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
LCM-MVSNet78.70 37776.24 38386.08 38577.26 42471.99 41594.34 40596.72 36661.62 41576.53 40789.33 40833.91 42392.78 41081.85 39274.60 41193.46 398
kuosan78.45 37877.69 37980.72 39792.73 39975.32 41094.63 40274.51 42675.96 40780.87 40593.19 39863.23 40779.99 42142.56 42181.56 39286.85 413
Gipumacopyleft78.40 37976.75 38283.38 39295.54 36480.43 40479.42 41797.40 32264.67 41473.46 41180.82 41545.65 41493.14 40966.32 41387.43 36276.56 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 38075.44 38485.46 38682.54 41974.95 41194.23 40693.08 40972.80 41074.68 40887.38 40936.36 42091.56 41173.95 40763.94 41689.87 406
FPMVS77.62 38177.14 38179.05 39979.25 42260.97 42495.79 38695.94 38365.96 41367.93 41594.40 38737.73 41988.88 41668.83 41288.46 35287.29 410
EGC-MVSNET75.22 38269.54 38592.28 37394.81 38189.58 35497.64 30596.50 3731.82 4255.57 42695.74 36468.21 39796.26 39173.80 40891.71 30790.99 403
ANet_high69.08 38365.37 38780.22 39865.99 42671.96 41690.91 41290.09 41782.62 40049.93 42178.39 41629.36 42481.75 41862.49 41438.52 42086.95 412
tmp_tt68.90 38466.97 38674.68 40150.78 42859.95 42587.13 41383.47 42238.80 42162.21 41796.23 34964.70 40476.91 42388.91 35030.49 42187.19 411
PMVScopyleft61.03 2365.95 38563.57 38973.09 40257.90 42751.22 42985.05 41593.93 40554.45 41644.32 42283.57 41113.22 42689.15 41558.68 41681.00 39478.91 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 38664.25 38867.02 40382.28 42059.36 42691.83 41185.63 42052.69 41760.22 41877.28 41741.06 41880.12 42046.15 42041.14 41861.57 419
EMVS64.07 38763.26 39066.53 40481.73 42158.81 42791.85 41084.75 42151.93 41959.09 41975.13 41843.32 41679.09 42242.03 42239.47 41961.69 418
MVEpermissive62.14 2263.28 38859.38 39174.99 40074.33 42565.47 42185.55 41480.50 42452.02 41851.10 42075.00 41910.91 42980.50 41951.60 41853.40 41778.99 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 38930.18 39330.16 40578.61 42343.29 43066.79 41814.21 42917.31 42214.82 42511.93 42511.55 42841.43 42437.08 42319.30 4225.76 422
cdsmvs_eth3d_5k23.98 39031.98 3920.00 4080.00 4310.00 4330.00 41998.59 1500.00 4260.00 42798.61 15590.60 1690.00 4270.00 4260.00 4250.00 423
testmvs21.48 39124.95 39411.09 40714.89 4296.47 43296.56 3759.87 4307.55 42317.93 42339.02 4219.43 4305.90 42616.56 42512.72 42320.91 421
test12320.95 39223.72 39512.64 40613.54 4308.19 43196.55 3766.13 4317.48 42416.74 42437.98 42212.97 4276.05 42516.69 4245.43 42423.68 420
ab-mvs-re8.20 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.43 1730.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.88 39410.50 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42694.51 870.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.94 32488.66 352
FOURS199.82 198.66 2499.69 198.95 4697.46 3899.39 30
MSC_two_6792asdad99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
PC_three_145295.08 16499.60 1999.16 8097.86 298.47 29397.52 10899.72 5799.74 39
No_MVS99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
test_one_060199.66 2699.25 298.86 7597.55 3299.20 4299.47 2397.57 6
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.46 5298.70 2398.79 10193.21 26298.67 8098.97 11095.70 4999.83 7296.07 16299.58 85
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.29 6597.72 8899.65 7099.71 52
IU-MVS99.71 1999.23 798.64 14095.28 15199.63 1898.35 5599.81 1599.83 12
OPU-MVS99.37 2299.24 9099.05 1499.02 7999.16 8097.81 399.37 18597.24 11799.73 5499.70 56
test_241102_TWO98.87 6997.65 2599.53 2399.48 2197.34 1199.94 998.43 5099.80 2499.83 12
test_241102_ONE99.71 1999.24 598.87 6997.62 2799.73 1099.39 3497.53 799.74 114
9.1498.06 6399.47 5098.71 16398.82 8494.36 20199.16 4899.29 5596.05 3799.81 8497.00 12399.71 59
save fliter99.46 5298.38 3598.21 23698.71 11997.95 16
test_0728_THIRD97.32 4699.45 2599.46 2797.88 199.94 998.47 4699.86 299.85 9
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6299.94 998.47 4699.81 1599.84 11
test072699.72 1299.25 299.06 6798.88 6297.62 2799.56 2099.50 1897.42 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 39
sam_mvs189.45 19299.20 147
sam_mvs88.99 205
ambc89.49 38086.66 41575.78 40792.66 40996.72 36686.55 38892.50 40346.01 41397.90 35090.32 32582.09 38794.80 384
MTGPAbinary98.74 111
test_post196.68 37230.43 42487.85 23898.69 27292.59 278
test_post31.83 42388.83 21298.91 248
patchmatchnet-post95.10 37989.42 19398.89 252
GG-mvs-BLEND96.59 24596.34 33794.98 20896.51 37788.58 41993.10 31694.34 39080.34 34498.05 33989.53 34196.99 20996.74 302
MTMP98.89 11094.14 403
gm-plane-assit95.88 35587.47 38589.74 36196.94 31999.19 20493.32 257
test9_res96.39 15699.57 8699.69 59
TEST999.31 6798.50 2997.92 27398.73 11492.63 28597.74 14098.68 15096.20 3299.80 91
test_899.29 7698.44 3197.89 28198.72 11692.98 27397.70 14598.66 15396.20 3299.80 91
agg_prior295.87 17299.57 8699.68 64
agg_prior99.30 7198.38 3598.72 11697.57 15799.81 84
TestCases96.99 21199.25 8493.21 28698.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
test_prior498.01 6497.86 285
test_prior297.80 29296.12 11197.89 13398.69 14995.96 4196.89 13299.60 80
test_prior99.19 4399.31 6798.22 5198.84 7999.70 12299.65 72
旧先验297.57 31191.30 33098.67 8099.80 9195.70 181
新几何297.64 305
新几何199.16 4899.34 6098.01 6498.69 12490.06 35598.13 10998.95 11794.60 8599.89 5091.97 29799.47 10599.59 82
旧先验199.29 7697.48 8298.70 12399.09 9695.56 5299.47 10599.61 78
无先验97.58 31098.72 11691.38 32499.87 6193.36 25699.60 80
原ACMM297.67 302
原ACMM198.65 8499.32 6596.62 12198.67 13293.27 26197.81 13598.97 11095.18 7299.83 7293.84 24299.46 10899.50 94
test22299.23 9197.17 10197.40 31998.66 13588.68 37498.05 11598.96 11594.14 9899.53 9799.61 78
testdata299.89 5091.65 304
segment_acmp96.85 14
testdata98.26 11999.20 9595.36 18798.68 12791.89 31198.60 8899.10 8994.44 9299.82 7994.27 22899.44 10999.58 86
testdata197.32 32996.34 102
test1299.18 4599.16 10198.19 5398.53 16698.07 11395.13 7599.72 11699.56 9299.63 76
plane_prior797.42 27394.63 225
plane_prior697.35 28094.61 22887.09 250
plane_prior598.56 16099.03 22896.07 16294.27 26096.92 279
plane_prior498.28 192
plane_prior394.61 22897.02 6895.34 227
plane_prior298.80 14297.28 49
plane_prior197.37 279
plane_prior94.60 23098.44 21096.74 8294.22 262
n20.00 432
nn0.00 432
door-mid94.37 399
lessismore_v094.45 34894.93 37988.44 37691.03 41586.77 38697.64 25376.23 37798.42 29990.31 32685.64 37996.51 337
LGP-MVS_train96.47 26097.46 26893.54 26798.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
test1198.66 135
door94.64 397
HQP5-MVS94.25 246
HQP-NCC97.20 28898.05 26096.43 9694.45 250
ACMP_Plane97.20 28898.05 26096.43 9694.45 250
BP-MVS95.30 192
HQP4-MVS94.45 25098.96 23996.87 291
HQP3-MVS98.46 18494.18 264
HQP2-MVS86.75 256
NP-MVS97.28 28294.51 23397.73 241
MDTV_nov1_ep13_2view84.26 39396.89 36290.97 33997.90 13289.89 18193.91 24099.18 156
MDTV_nov1_ep1395.40 18097.48 26688.34 37796.85 36597.29 32993.74 23197.48 15997.26 28189.18 19999.05 22491.92 29897.43 201
ACMMP++_ref92.97 292
ACMMP++93.61 281
Test By Simon94.64 84
ITE_SJBPF95.44 31097.42 27391.32 31897.50 31095.09 16393.59 29298.35 18381.70 32798.88 25489.71 33793.39 28796.12 356
DeepMVS_CXcopyleft86.78 38497.09 29872.30 41495.17 39375.92 40884.34 39795.19 37770.58 39495.35 39879.98 39889.04 34692.68 402