| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 54 | 99.43 57 | 97.48 82 | 98.88 115 | 99.30 13 | 98.47 9 | 99.85 4 | 99.43 30 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 24 | 99.89 4 |
|
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 79 | 98.87 69 | 97.65 25 | 99.73 10 | 99.48 21 | 97.53 7 | 99.94 9 | 98.43 50 | 99.81 15 | 99.70 56 |
|
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 97 | 99.23 7 | 99.69 1 | 98.88 62 | 97.32 46 | 99.53 23 | 99.47 23 | 97.81 3 | 99.94 9 | 98.47 46 | 99.72 57 | 99.74 39 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 50 | 99.41 59 | 97.54 80 | 98.89 110 | 99.31 12 | 98.49 8 | 99.86 2 | 99.42 31 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 51 | 99.90 3 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 89 | 98.58 155 | 97.62 27 | 99.45 25 | 99.46 27 | 97.42 9 | 99.94 9 | 98.47 46 | 99.81 15 | 99.69 59 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 10 | 98.93 50 | 97.38 43 | 99.41 28 | 99.54 11 | 96.66 18 | 99.84 70 | 98.86 25 | 99.85 6 | 99.87 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| reproduce_model | | | 98.94 7 | 98.81 10 | 99.34 25 | 99.52 39 | 98.26 49 | 98.94 98 | 98.84 79 | 98.06 13 | 99.35 32 | 99.61 4 | 96.39 27 | 99.94 9 | 98.77 28 | 99.82 14 | 99.83 12 |
|
| reproduce-ours | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 81 | 98.06 13 | 99.29 36 | 99.58 7 | 96.40 25 | 99.94 9 | 98.68 30 | 99.81 15 | 99.81 17 |
|
| our_new_method | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 81 | 98.06 13 | 99.29 36 | 99.58 7 | 96.40 25 | 99.94 9 | 98.68 30 | 99.81 15 | 99.81 17 |
|
| test_fmvsmconf_n | | | 98.92 10 | 98.87 6 | 99.04 58 | 98.88 130 | 97.25 97 | 98.82 133 | 99.34 10 | 98.75 2 | 99.80 5 | 99.61 4 | 95.16 73 | 99.95 7 | 99.70 5 | 99.80 24 | 99.93 1 |
|
| DPE-MVS |  | | 98.92 10 | 98.67 15 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 214 | 98.91 56 | 97.58 30 | 99.54 22 | 99.46 27 | 97.10 12 | 99.94 9 | 97.64 97 | 99.84 11 | 99.83 12 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SteuartSystems-ACMMP | | | 98.90 12 | 98.75 13 | 99.36 23 | 99.22 92 | 98.43 33 | 99.10 63 | 98.87 69 | 97.38 43 | 99.35 32 | 99.40 33 | 97.78 5 | 99.87 61 | 97.77 85 | 99.85 6 | 99.78 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_fmvsm_n_1920 | | | 98.87 13 | 99.01 3 | 98.45 102 | 99.42 58 | 96.43 134 | 98.96 94 | 99.36 9 | 98.63 4 | 99.86 2 | 99.51 16 | 95.91 43 | 99.97 1 | 99.72 4 | 99.75 47 | 98.94 186 |
|
| TSAR-MVS + MP. | | | 98.78 14 | 98.62 16 | 99.24 39 | 99.69 24 | 98.28 48 | 99.14 54 | 98.66 135 | 96.84 75 | 99.56 20 | 99.31 53 | 96.34 28 | 99.70 122 | 98.32 56 | 99.73 54 | 99.73 44 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CNVR-MVS | | | 98.78 14 | 98.56 19 | 99.45 15 | 99.32 65 | 98.87 19 | 98.47 206 | 98.81 89 | 97.72 20 | 98.76 75 | 99.16 80 | 97.05 13 | 99.78 104 | 98.06 67 | 99.66 67 | 99.69 59 |
|
| MSP-MVS | | | 98.74 16 | 98.55 20 | 99.29 32 | 99.75 3 | 98.23 50 | 99.26 27 | 98.88 62 | 97.52 33 | 99.41 28 | 98.78 137 | 96.00 39 | 99.79 101 | 97.79 84 | 99.59 82 | 99.85 9 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVS | | | 98.70 17 | 98.49 24 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 62 | 97.40 40 | 98.46 93 | 99.20 70 | 95.90 45 | 99.89 50 | 97.85 80 | 99.74 51 | 99.78 23 |
|
| MCST-MVS | | | 98.65 18 | 98.37 32 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 215 | 98.68 127 | 97.04 67 | 98.52 91 | 98.80 135 | 96.78 16 | 99.83 72 | 97.93 74 | 99.61 78 | 99.74 39 |
|
| SD-MVS | | | 98.64 19 | 98.68 14 | 98.53 94 | 99.33 62 | 98.36 43 | 98.90 106 | 98.85 78 | 97.28 49 | 99.72 12 | 99.39 34 | 96.63 20 | 97.60 364 | 98.17 62 | 99.85 6 | 99.64 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HFP-MVS | | | 98.63 20 | 98.40 29 | 99.32 31 | 99.72 12 | 98.29 47 | 99.23 32 | 98.96 45 | 96.10 112 | 98.94 58 | 99.17 77 | 96.06 36 | 99.92 34 | 97.62 98 | 99.78 34 | 99.75 37 |
|
| ACMMP_NAP | | | 98.61 21 | 98.30 45 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 133 | 98.81 89 | 95.80 123 | 99.16 48 | 99.47 23 | 95.37 60 | 99.92 34 | 97.89 78 | 99.75 47 | 99.79 21 |
|
| region2R | | | 98.61 21 | 98.38 31 | 99.29 32 | 99.74 7 | 98.16 56 | 99.23 32 | 98.93 50 | 96.15 109 | 98.94 58 | 99.17 77 | 95.91 43 | 99.94 9 | 97.55 105 | 99.79 30 | 99.78 23 |
|
| NCCC | | | 98.61 21 | 98.35 35 | 99.38 18 | 99.28 80 | 98.61 26 | 98.45 207 | 98.76 107 | 97.82 19 | 98.45 96 | 98.93 119 | 96.65 19 | 99.83 72 | 97.38 114 | 99.41 112 | 99.71 52 |
|
| SF-MVS | | | 98.59 24 | 98.32 44 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 73 | 98.81 89 | 95.12 159 | 99.32 35 | 99.39 34 | 96.22 30 | 99.84 70 | 97.72 88 | 99.73 54 | 99.67 68 |
|
| ACMMPR | | | 98.59 24 | 98.36 33 | 99.29 32 | 99.74 7 | 98.15 57 | 99.23 32 | 98.95 46 | 96.10 112 | 98.93 62 | 99.19 75 | 95.70 49 | 99.94 9 | 97.62 98 | 99.79 30 | 99.78 23 |
|
| test_fmvsmconf0.1_n | | | 98.58 26 | 98.44 27 | 98.99 60 | 97.73 245 | 97.15 102 | 98.84 129 | 98.97 42 | 98.75 2 | 99.43 27 | 99.54 11 | 93.29 107 | 99.93 28 | 99.64 8 | 99.79 30 | 99.89 4 |
|
| SMA-MVS |  | | 98.58 26 | 98.25 48 | 99.56 8 | 99.51 40 | 99.04 15 | 98.95 95 | 98.80 96 | 93.67 242 | 99.37 31 | 99.52 14 | 96.52 22 | 99.89 50 | 98.06 67 | 99.81 15 | 99.76 36 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 98.58 26 | 98.29 46 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 106 | 98.74 111 | 97.27 53 | 98.02 120 | 99.39 34 | 94.81 83 | 99.96 4 | 97.91 76 | 99.79 30 | 99.77 29 |
|
| HPM-MVS++ |  | | 98.58 26 | 98.25 48 | 99.55 9 | 99.50 42 | 99.08 11 | 98.72 162 | 98.66 135 | 97.51 34 | 98.15 107 | 98.83 132 | 95.70 49 | 99.92 34 | 97.53 107 | 99.67 64 | 99.66 71 |
|
| SR-MVS | | | 98.57 30 | 98.35 35 | 99.24 39 | 99.53 36 | 98.18 54 | 99.09 64 | 98.82 84 | 96.58 91 | 99.10 50 | 99.32 51 | 95.39 58 | 99.82 79 | 97.70 93 | 99.63 75 | 99.72 48 |
|
| CP-MVS | | | 98.57 30 | 98.36 33 | 99.19 43 | 99.66 26 | 97.86 68 | 99.34 16 | 98.87 69 | 95.96 115 | 98.60 88 | 99.13 85 | 96.05 37 | 99.94 9 | 97.77 85 | 99.86 2 | 99.77 29 |
|
| MSLP-MVS++ | | | 98.56 32 | 98.57 18 | 98.55 90 | 99.26 83 | 96.80 114 | 98.71 163 | 99.05 36 | 97.28 49 | 98.84 68 | 99.28 56 | 96.47 23 | 99.40 181 | 98.52 44 | 99.70 60 | 99.47 103 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 33 | 98.34 39 | 99.18 45 | 99.25 84 | 98.04 62 | 98.50 203 | 98.78 103 | 97.72 20 | 98.92 64 | 99.28 56 | 95.27 66 | 99.82 79 | 97.55 105 | 99.77 36 | 99.69 59 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 98.54 34 | 98.35 35 | 99.13 51 | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 96 | 96.49 94 | 99.17 45 | 99.35 46 | 95.34 62 | 99.82 79 | 97.72 88 | 99.65 70 | 99.71 52 |
|
| APD-MVS_3200maxsize | | | 98.53 35 | 98.33 43 | 99.15 49 | 99.50 42 | 97.92 67 | 99.15 51 | 98.81 89 | 96.24 105 | 99.20 42 | 99.37 40 | 95.30 64 | 99.80 91 | 97.73 87 | 99.67 64 | 99.72 48 |
|
| MM | | | 98.51 36 | 98.24 50 | 99.33 29 | 99.12 105 | 98.14 59 | 98.93 101 | 97.02 350 | 98.96 1 | 99.17 45 | 99.47 23 | 91.97 137 | 99.94 9 | 99.85 3 | 99.69 61 | 99.91 2 |
|
| mPP-MVS | | | 98.51 36 | 98.26 47 | 99.25 38 | 99.75 3 | 98.04 62 | 99.28 24 | 98.81 89 | 96.24 105 | 98.35 103 | 99.23 65 | 95.46 55 | 99.94 9 | 97.42 112 | 99.81 15 | 99.77 29 |
|
| ZNCC-MVS | | | 98.49 38 | 98.20 55 | 99.35 24 | 99.73 11 | 98.39 34 | 99.19 44 | 98.86 75 | 95.77 125 | 98.31 106 | 99.10 89 | 95.46 55 | 99.93 28 | 97.57 104 | 99.81 15 | 99.74 39 |
|
| SPE-MVS-test | | | 98.49 38 | 98.50 23 | 98.46 101 | 99.20 95 | 97.05 104 | 99.64 4 | 98.50 177 | 97.45 39 | 98.88 65 | 99.14 84 | 95.25 68 | 99.15 209 | 98.83 26 | 99.56 92 | 99.20 147 |
|
| PGM-MVS | | | 98.49 38 | 98.23 52 | 99.27 37 | 99.72 12 | 98.08 61 | 98.99 86 | 99.49 5 | 95.43 141 | 99.03 51 | 99.32 51 | 95.56 52 | 99.94 9 | 96.80 143 | 99.77 36 | 99.78 23 |
|
| EI-MVSNet-Vis-set | | | 98.47 41 | 98.39 30 | 98.69 80 | 99.46 52 | 96.49 131 | 98.30 226 | 98.69 124 | 97.21 56 | 98.84 68 | 99.36 44 | 95.41 57 | 99.78 104 | 98.62 33 | 99.65 70 | 99.80 20 |
|
| MVS_111021_HR | | | 98.47 41 | 98.34 39 | 98.88 71 | 99.22 92 | 97.32 90 | 97.91 275 | 99.58 3 | 97.20 57 | 98.33 104 | 99.00 108 | 95.99 40 | 99.64 134 | 98.05 69 | 99.76 42 | 99.69 59 |
|
| balanced_conf03 | | | 98.45 43 | 98.35 35 | 98.74 76 | 98.65 156 | 97.55 78 | 99.19 44 | 98.60 146 | 96.72 85 | 99.35 32 | 98.77 139 | 95.06 78 | 99.55 157 | 98.95 22 | 99.87 1 | 99.12 162 |
|
| test_fmvsmvis_n_1920 | | | 98.44 44 | 98.51 21 | 98.23 122 | 98.33 186 | 96.15 148 | 98.97 89 | 99.15 28 | 98.55 7 | 98.45 96 | 99.55 9 | 94.26 96 | 99.97 1 | 99.65 6 | 99.66 67 | 98.57 221 |
|
| CS-MVS | | | 98.44 44 | 98.49 24 | 98.31 114 | 99.08 110 | 96.73 118 | 99.67 3 | 98.47 183 | 97.17 59 | 98.94 58 | 99.10 89 | 95.73 48 | 99.13 212 | 98.71 29 | 99.49 102 | 99.09 166 |
|
| GST-MVS | | | 98.43 46 | 98.12 59 | 99.34 25 | 99.72 12 | 98.38 35 | 99.09 64 | 98.82 84 | 95.71 129 | 98.73 78 | 99.06 100 | 95.27 66 | 99.93 28 | 97.07 122 | 99.63 75 | 99.72 48 |
|
| fmvsm_s_conf0.5_n | | | 98.42 47 | 98.51 21 | 98.13 131 | 99.30 71 | 95.25 194 | 98.85 125 | 99.39 7 | 97.94 17 | 99.74 9 | 99.62 3 | 92.59 116 | 99.91 42 | 99.65 6 | 99.52 98 | 99.25 140 |
|
| EI-MVSNet-UG-set | | | 98.41 48 | 98.34 39 | 98.61 86 | 99.45 55 | 96.32 141 | 98.28 229 | 98.68 127 | 97.17 59 | 98.74 76 | 99.37 40 | 95.25 68 | 99.79 101 | 98.57 35 | 99.54 95 | 99.73 44 |
|
| DELS-MVS | | | 98.40 49 | 98.20 55 | 98.99 60 | 99.00 117 | 97.66 73 | 97.75 296 | 98.89 59 | 97.71 22 | 98.33 104 | 98.97 110 | 94.97 80 | 99.88 59 | 98.42 52 | 99.76 42 | 99.42 114 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| fmvsm_s_conf0.5_n_a | | | 98.38 50 | 98.42 28 | 98.27 116 | 99.09 109 | 95.41 184 | 98.86 121 | 99.37 8 | 97.69 24 | 99.78 6 | 99.61 4 | 92.38 119 | 99.91 42 | 99.58 10 | 99.43 110 | 99.49 99 |
|
| TSAR-MVS + GP. | | | 98.38 50 | 98.24 50 | 98.81 73 | 99.22 92 | 97.25 97 | 98.11 253 | 98.29 222 | 97.19 58 | 98.99 56 | 99.02 103 | 96.22 30 | 99.67 129 | 98.52 44 | 98.56 158 | 99.51 92 |
|
| HPM-MVS_fast | | | 98.38 50 | 98.13 58 | 99.12 53 | 99.75 3 | 97.86 68 | 99.44 9 | 98.82 84 | 94.46 198 | 98.94 58 | 99.20 70 | 95.16 73 | 99.74 114 | 97.58 101 | 99.85 6 | 99.77 29 |
|
| patch_mono-2 | | | 98.36 53 | 98.87 6 | 96.82 225 | 99.53 36 | 90.68 332 | 98.64 178 | 99.29 14 | 97.88 18 | 99.19 44 | 99.52 14 | 96.80 15 | 99.97 1 | 99.11 18 | 99.86 2 | 99.82 16 |
|
| HPM-MVS |  | | 98.36 53 | 98.10 62 | 99.13 51 | 99.74 7 | 97.82 72 | 99.53 6 | 98.80 96 | 94.63 188 | 98.61 87 | 98.97 110 | 95.13 75 | 99.77 109 | 97.65 96 | 99.83 13 | 99.79 21 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS |  | | 98.35 55 | 98.00 67 | 99.42 16 | 99.51 40 | 98.72 21 | 98.80 142 | 98.82 84 | 94.52 195 | 99.23 41 | 99.25 64 | 95.54 54 | 99.80 91 | 96.52 150 | 99.77 36 | 99.74 39 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_LR | | | 98.34 56 | 98.23 52 | 98.67 82 | 99.27 81 | 96.90 110 | 97.95 270 | 99.58 3 | 97.14 62 | 98.44 98 | 99.01 107 | 95.03 79 | 99.62 141 | 97.91 76 | 99.75 47 | 99.50 94 |
|
| PHI-MVS | | | 98.34 56 | 98.06 63 | 99.18 45 | 99.15 103 | 98.12 60 | 99.04 73 | 99.09 31 | 93.32 257 | 98.83 70 | 99.10 89 | 96.54 21 | 99.83 72 | 97.70 93 | 99.76 42 | 99.59 82 |
|
| MP-MVS |  | | 98.33 58 | 98.01 66 | 99.28 35 | 99.75 3 | 98.18 54 | 99.22 36 | 98.79 101 | 96.13 110 | 97.92 131 | 99.23 65 | 94.54 86 | 99.94 9 | 96.74 146 | 99.78 34 | 99.73 44 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVSMamba_PlusPlus | | | 98.31 59 | 98.19 57 | 98.67 82 | 98.96 124 | 97.36 88 | 99.24 30 | 98.57 157 | 94.81 180 | 98.99 56 | 98.90 123 | 95.22 71 | 99.59 144 | 99.15 17 | 99.84 11 | 99.07 174 |
|
| MP-MVS-pluss | | | 98.31 59 | 97.92 69 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 212 | 98.78 103 | 94.10 207 | 97.69 146 | 99.42 31 | 95.25 68 | 99.92 34 | 98.09 66 | 99.80 24 | 99.67 68 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MVS_0304 | | | 98.23 61 | 97.91 70 | 99.21 42 | 98.06 215 | 97.96 66 | 98.58 187 | 95.51 387 | 98.58 5 | 98.87 66 | 99.26 59 | 92.99 111 | 99.95 7 | 99.62 9 | 99.67 64 | 99.73 44 |
|
| ACMMP |  | | 98.23 61 | 97.95 68 | 99.09 55 | 99.74 7 | 97.62 76 | 99.03 76 | 99.41 6 | 95.98 114 | 97.60 155 | 99.36 44 | 94.45 91 | 99.93 28 | 97.14 119 | 98.85 144 | 99.70 56 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| EC-MVSNet | | | 98.21 63 | 98.11 60 | 98.49 98 | 98.34 183 | 97.26 96 | 99.61 5 | 98.43 192 | 96.78 78 | 98.87 66 | 98.84 130 | 93.72 103 | 99.01 233 | 98.91 24 | 99.50 100 | 99.19 151 |
|
| fmvsm_s_conf0.1_n | | | 98.18 64 | 98.21 54 | 98.11 135 | 98.54 165 | 95.24 195 | 98.87 118 | 99.24 17 | 97.50 35 | 99.70 13 | 99.67 1 | 91.33 153 | 99.89 50 | 99.47 12 | 99.54 95 | 99.21 146 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 65 | 98.04 65 | 98.21 123 | 97.66 251 | 95.39 185 | 98.89 110 | 99.17 26 | 97.24 54 | 99.76 8 | 99.67 1 | 91.13 158 | 99.88 59 | 99.39 13 | 99.41 112 | 99.35 119 |
|
| dcpmvs_2 | | | 98.08 65 | 98.59 17 | 96.56 249 | 99.57 33 | 90.34 341 | 99.15 51 | 98.38 202 | 96.82 77 | 99.29 36 | 99.49 20 | 95.78 47 | 99.57 147 | 98.94 23 | 99.86 2 | 99.77 29 |
|
| CANet | | | 98.05 67 | 97.76 73 | 98.90 70 | 98.73 142 | 97.27 92 | 98.35 217 | 98.78 103 | 97.37 45 | 97.72 143 | 98.96 115 | 91.53 149 | 99.92 34 | 98.79 27 | 99.65 70 | 99.51 92 |
|
| train_agg | | | 97.97 68 | 97.52 85 | 99.33 29 | 99.31 67 | 98.50 29 | 97.92 273 | 98.73 114 | 92.98 273 | 97.74 140 | 98.68 150 | 96.20 32 | 99.80 91 | 96.59 147 | 99.57 86 | 99.68 64 |
|
| ETV-MVS | | | 97.96 69 | 97.81 71 | 98.40 109 | 98.42 171 | 97.27 92 | 98.73 158 | 98.55 162 | 96.84 75 | 98.38 100 | 97.44 268 | 95.39 58 | 99.35 186 | 97.62 98 | 98.89 139 | 98.58 220 |
|
| UA-Net | | | 97.96 69 | 97.62 77 | 98.98 62 | 98.86 133 | 97.47 84 | 98.89 110 | 99.08 32 | 96.67 88 | 98.72 79 | 99.54 11 | 93.15 109 | 99.81 84 | 94.87 204 | 98.83 145 | 99.65 72 |
|
| CDPH-MVS | | | 97.94 71 | 97.49 87 | 99.28 35 | 99.47 50 | 98.44 31 | 97.91 275 | 98.67 132 | 92.57 289 | 98.77 74 | 98.85 129 | 95.93 42 | 99.72 116 | 95.56 184 | 99.69 61 | 99.68 64 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 72 | 98.48 26 | 96.30 274 | 99.00 117 | 89.54 355 | 97.43 318 | 98.87 69 | 98.16 11 | 99.26 40 | 99.38 39 | 96.12 35 | 99.64 134 | 98.30 57 | 99.77 36 | 99.72 48 |
|
| DeepC-MVS | | 95.98 3 | 97.88 73 | 97.58 79 | 98.77 74 | 99.25 84 | 96.93 108 | 98.83 131 | 98.75 109 | 96.96 71 | 96.89 180 | 99.50 18 | 90.46 171 | 99.87 61 | 97.84 82 | 99.76 42 | 99.52 89 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf0.01_n | | | 97.86 74 | 97.54 84 | 98.83 72 | 95.48 368 | 96.83 113 | 98.95 95 | 98.60 146 | 98.58 5 | 98.93 62 | 99.55 9 | 88.57 216 | 99.91 42 | 99.54 11 | 99.61 78 | 99.77 29 |
|
| DP-MVS Recon | | | 97.86 74 | 97.46 90 | 99.06 57 | 99.53 36 | 98.35 44 | 98.33 219 | 98.89 59 | 92.62 286 | 98.05 115 | 98.94 118 | 95.34 62 | 99.65 132 | 96.04 166 | 99.42 111 | 99.19 151 |
|
| CSCG | | | 97.85 76 | 97.74 74 | 98.20 125 | 99.67 25 | 95.16 198 | 99.22 36 | 99.32 11 | 93.04 271 | 97.02 173 | 98.92 121 | 95.36 61 | 99.91 42 | 97.43 111 | 99.64 74 | 99.52 89 |
|
| BP-MVS1 | | | 97.82 77 | 97.51 86 | 98.76 75 | 98.25 193 | 97.39 87 | 99.15 51 | 97.68 289 | 96.69 86 | 98.47 92 | 99.10 89 | 90.29 175 | 99.51 164 | 98.60 34 | 99.35 119 | 99.37 117 |
|
| MG-MVS | | | 97.81 78 | 97.60 78 | 98.44 104 | 99.12 105 | 95.97 157 | 97.75 296 | 98.78 103 | 96.89 74 | 98.46 93 | 99.22 67 | 93.90 102 | 99.68 128 | 94.81 208 | 99.52 98 | 99.67 68 |
|
| VNet | | | 97.79 79 | 97.40 94 | 98.96 65 | 98.88 130 | 97.55 78 | 98.63 181 | 98.93 50 | 96.74 82 | 99.02 52 | 98.84 130 | 90.33 174 | 99.83 72 | 98.53 38 | 96.66 219 | 99.50 94 |
|
| EIA-MVS | | | 97.75 80 | 97.58 79 | 98.27 116 | 98.38 175 | 96.44 133 | 99.01 81 | 98.60 146 | 95.88 119 | 97.26 162 | 97.53 262 | 94.97 80 | 99.33 189 | 97.38 114 | 99.20 125 | 99.05 175 |
|
| PS-MVSNAJ | | | 97.73 81 | 97.77 72 | 97.62 175 | 98.68 151 | 95.58 175 | 97.34 327 | 98.51 172 | 97.29 48 | 98.66 84 | 97.88 228 | 94.51 87 | 99.90 48 | 97.87 79 | 99.17 127 | 97.39 262 |
|
| casdiffmvs_mvg |  | | 97.72 82 | 97.48 89 | 98.44 104 | 98.42 171 | 96.59 126 | 98.92 103 | 98.44 188 | 96.20 107 | 97.76 137 | 99.20 70 | 91.66 143 | 99.23 199 | 98.27 61 | 98.41 168 | 99.49 99 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CPTT-MVS | | | 97.72 82 | 97.32 98 | 98.92 67 | 99.64 28 | 97.10 103 | 99.12 58 | 98.81 89 | 92.34 297 | 98.09 112 | 99.08 98 | 93.01 110 | 99.92 34 | 96.06 165 | 99.77 36 | 99.75 37 |
|
| PVSNet_Blended_VisFu | | | 97.70 84 | 97.46 90 | 98.44 104 | 99.27 81 | 95.91 165 | 98.63 181 | 99.16 27 | 94.48 197 | 97.67 147 | 98.88 126 | 92.80 113 | 99.91 42 | 97.11 120 | 99.12 128 | 99.50 94 |
|
| mvsany_test1 | | | 97.69 85 | 97.70 75 | 97.66 173 | 98.24 194 | 94.18 248 | 97.53 312 | 97.53 307 | 95.52 137 | 99.66 15 | 99.51 16 | 94.30 94 | 99.56 150 | 98.38 53 | 98.62 154 | 99.23 142 |
|
| sasdasda | | | 97.67 86 | 97.23 102 | 98.98 62 | 98.70 147 | 98.38 35 | 99.34 16 | 98.39 198 | 96.76 80 | 97.67 147 | 97.40 272 | 92.26 123 | 99.49 168 | 98.28 58 | 96.28 237 | 99.08 170 |
|
| canonicalmvs | | | 97.67 86 | 97.23 102 | 98.98 62 | 98.70 147 | 98.38 35 | 99.34 16 | 98.39 198 | 96.76 80 | 97.67 147 | 97.40 272 | 92.26 123 | 99.49 168 | 98.28 58 | 96.28 237 | 99.08 170 |
|
| xiu_mvs_v2_base | | | 97.66 88 | 97.70 75 | 97.56 179 | 98.61 160 | 95.46 182 | 97.44 316 | 98.46 184 | 97.15 61 | 98.65 85 | 98.15 204 | 94.33 93 | 99.80 91 | 97.84 82 | 98.66 153 | 97.41 260 |
|
| GDP-MVS | | | 97.64 89 | 97.28 99 | 98.71 79 | 98.30 191 | 97.33 89 | 99.05 69 | 98.52 169 | 96.34 102 | 98.80 71 | 99.05 101 | 89.74 184 | 99.51 164 | 96.86 140 | 98.86 143 | 99.28 134 |
|
| baseline | | | 97.64 89 | 97.44 92 | 98.25 120 | 98.35 178 | 96.20 145 | 99.00 83 | 98.32 212 | 96.33 104 | 98.03 118 | 99.17 77 | 91.35 152 | 99.16 206 | 98.10 65 | 98.29 175 | 99.39 115 |
|
| casdiffmvs |  | | 97.63 91 | 97.41 93 | 98.28 115 | 98.33 186 | 96.14 149 | 98.82 133 | 98.32 212 | 96.38 101 | 97.95 126 | 99.21 68 | 91.23 157 | 99.23 199 | 98.12 64 | 98.37 169 | 99.48 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MGCFI-Net | | | 97.62 92 | 97.19 105 | 98.92 67 | 98.66 153 | 98.20 52 | 99.32 21 | 98.38 202 | 96.69 86 | 97.58 156 | 97.42 271 | 92.10 131 | 99.50 167 | 98.28 58 | 96.25 240 | 99.08 170 |
|
| xiu_mvs_v1_base_debu | | | 97.60 93 | 97.56 81 | 97.72 163 | 98.35 178 | 95.98 152 | 97.86 285 | 98.51 172 | 97.13 63 | 99.01 53 | 98.40 177 | 91.56 145 | 99.80 91 | 98.53 38 | 98.68 149 | 97.37 264 |
|
| xiu_mvs_v1_base | | | 97.60 93 | 97.56 81 | 97.72 163 | 98.35 178 | 95.98 152 | 97.86 285 | 98.51 172 | 97.13 63 | 99.01 53 | 98.40 177 | 91.56 145 | 99.80 91 | 98.53 38 | 98.68 149 | 97.37 264 |
|
| xiu_mvs_v1_base_debi | | | 97.60 93 | 97.56 81 | 97.72 163 | 98.35 178 | 95.98 152 | 97.86 285 | 98.51 172 | 97.13 63 | 99.01 53 | 98.40 177 | 91.56 145 | 99.80 91 | 98.53 38 | 98.68 149 | 97.37 264 |
|
| diffmvs |  | | 97.58 96 | 97.40 94 | 98.13 131 | 98.32 189 | 95.81 170 | 98.06 259 | 98.37 204 | 96.20 107 | 98.74 76 | 98.89 125 | 91.31 155 | 99.25 196 | 98.16 63 | 98.52 160 | 99.34 121 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 97.57 97 | 97.49 87 | 97.84 150 | 98.07 212 | 95.76 171 | 99.47 7 | 98.40 196 | 94.98 169 | 98.79 72 | 98.83 132 | 92.34 120 | 98.41 306 | 96.91 128 | 99.59 82 | 99.34 121 |
|
| alignmvs | | | 97.56 98 | 97.07 111 | 99.01 59 | 98.66 153 | 98.37 42 | 98.83 131 | 98.06 269 | 96.74 82 | 98.00 124 | 97.65 250 | 90.80 165 | 99.48 173 | 98.37 54 | 96.56 223 | 99.19 151 |
|
| DPM-MVS | | | 97.55 99 | 96.99 114 | 99.23 41 | 99.04 112 | 98.55 27 | 97.17 342 | 98.35 207 | 94.85 179 | 97.93 130 | 98.58 160 | 95.07 77 | 99.71 121 | 92.60 276 | 99.34 120 | 99.43 112 |
|
| OMC-MVS | | | 97.55 99 | 97.34 97 | 98.20 125 | 99.33 62 | 95.92 164 | 98.28 229 | 98.59 150 | 95.52 137 | 97.97 125 | 99.10 89 | 93.28 108 | 99.49 168 | 95.09 199 | 98.88 140 | 99.19 151 |
|
| PAPM_NR | | | 97.46 101 | 97.11 108 | 98.50 96 | 99.50 42 | 96.41 136 | 98.63 181 | 98.60 146 | 95.18 156 | 97.06 171 | 98.06 210 | 94.26 96 | 99.57 147 | 93.80 244 | 98.87 142 | 99.52 89 |
|
| EPP-MVSNet | | | 97.46 101 | 97.28 99 | 97.99 143 | 98.64 157 | 95.38 186 | 99.33 20 | 98.31 214 | 93.61 246 | 97.19 164 | 99.07 99 | 94.05 99 | 99.23 199 | 96.89 132 | 98.43 167 | 99.37 117 |
|
| 3Dnovator | | 94.51 5 | 97.46 101 | 96.93 117 | 99.07 56 | 97.78 239 | 97.64 74 | 99.35 15 | 99.06 34 | 97.02 68 | 93.75 290 | 99.16 80 | 89.25 197 | 99.92 34 | 97.22 118 | 99.75 47 | 99.64 74 |
|
| CNLPA | | | 97.45 104 | 97.03 112 | 98.73 77 | 99.05 111 | 97.44 86 | 98.07 258 | 98.53 166 | 95.32 149 | 96.80 185 | 98.53 165 | 93.32 106 | 99.72 116 | 94.31 227 | 99.31 122 | 99.02 177 |
|
| lupinMVS | | | 97.44 105 | 97.22 104 | 98.12 134 | 98.07 212 | 95.76 171 | 97.68 301 | 97.76 286 | 94.50 196 | 98.79 72 | 98.61 155 | 92.34 120 | 99.30 192 | 97.58 101 | 99.59 82 | 99.31 127 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 106 | 96.78 125 | 99.38 18 | 97.83 236 | 98.52 28 | 99.37 12 | 98.71 119 | 97.09 66 | 92.99 318 | 99.13 85 | 89.36 194 | 99.89 50 | 96.97 125 | 99.57 86 | 99.71 52 |
|
| Vis-MVSNet |  | | 97.42 107 | 97.11 108 | 98.34 112 | 98.66 153 | 96.23 144 | 99.22 36 | 99.00 39 | 96.63 90 | 98.04 117 | 99.21 68 | 88.05 232 | 99.35 186 | 96.01 168 | 99.21 124 | 99.45 109 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| API-MVS | | | 97.41 108 | 97.25 101 | 97.91 147 | 98.70 147 | 96.80 114 | 98.82 133 | 98.69 124 | 94.53 193 | 98.11 110 | 98.28 192 | 94.50 90 | 99.57 147 | 94.12 233 | 99.49 102 | 97.37 264 |
|
| sss | | | 97.39 109 | 96.98 116 | 98.61 86 | 98.60 161 | 96.61 123 | 98.22 235 | 98.93 50 | 93.97 217 | 98.01 123 | 98.48 170 | 91.98 135 | 99.85 66 | 96.45 152 | 98.15 177 | 99.39 115 |
|
| test_cas_vis1_n_1920 | | | 97.38 110 | 97.36 96 | 97.45 182 | 98.95 125 | 93.25 284 | 99.00 83 | 98.53 166 | 97.70 23 | 99.77 7 | 99.35 46 | 84.71 297 | 99.85 66 | 98.57 35 | 99.66 67 | 99.26 138 |
|
| PVSNet_Blended | | | 97.38 110 | 97.12 107 | 98.14 128 | 99.25 84 | 95.35 189 | 97.28 332 | 99.26 15 | 93.13 267 | 97.94 128 | 98.21 200 | 92.74 114 | 99.81 84 | 96.88 134 | 99.40 115 | 99.27 135 |
|
| WTY-MVS | | | 97.37 112 | 96.92 118 | 98.72 78 | 98.86 133 | 96.89 112 | 98.31 224 | 98.71 119 | 95.26 152 | 97.67 147 | 98.56 164 | 92.21 127 | 99.78 104 | 95.89 170 | 96.85 214 | 99.48 101 |
|
| jason | | | 97.32 113 | 97.08 110 | 98.06 139 | 97.45 271 | 95.59 174 | 97.87 283 | 97.91 280 | 94.79 181 | 98.55 90 | 98.83 132 | 91.12 159 | 99.23 199 | 97.58 101 | 99.60 80 | 99.34 121 |
| jason: jason. |
| MVS_Test | | | 97.28 114 | 97.00 113 | 98.13 131 | 98.33 186 | 95.97 157 | 98.74 154 | 98.07 264 | 94.27 203 | 98.44 98 | 98.07 209 | 92.48 117 | 99.26 195 | 96.43 153 | 98.19 176 | 99.16 157 |
|
| EPNet | | | 97.28 114 | 96.87 120 | 98.51 95 | 94.98 377 | 96.14 149 | 98.90 106 | 97.02 350 | 98.28 10 | 95.99 216 | 99.11 87 | 91.36 151 | 99.89 50 | 96.98 124 | 99.19 126 | 99.50 94 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsmamba | | | 97.25 116 | 96.99 114 | 98.02 141 | 98.34 183 | 95.54 179 | 99.18 48 | 97.47 313 | 95.04 165 | 98.15 107 | 98.57 163 | 89.46 191 | 99.31 191 | 97.68 95 | 99.01 133 | 99.22 144 |
|
| test_yl | | | 97.22 117 | 96.78 125 | 98.54 92 | 98.73 142 | 96.60 124 | 98.45 207 | 98.31 214 | 94.70 182 | 98.02 120 | 98.42 175 | 90.80 165 | 99.70 122 | 96.81 141 | 96.79 216 | 99.34 121 |
|
| DCV-MVSNet | | | 97.22 117 | 96.78 125 | 98.54 92 | 98.73 142 | 96.60 124 | 98.45 207 | 98.31 214 | 94.70 182 | 98.02 120 | 98.42 175 | 90.80 165 | 99.70 122 | 96.81 141 | 96.79 216 | 99.34 121 |
|
| IS-MVSNet | | | 97.22 117 | 96.88 119 | 98.25 120 | 98.85 135 | 96.36 139 | 99.19 44 | 97.97 274 | 95.39 143 | 97.23 163 | 98.99 109 | 91.11 160 | 98.93 245 | 94.60 215 | 98.59 156 | 99.47 103 |
|
| PLC |  | 95.07 4 | 97.20 120 | 96.78 125 | 98.44 104 | 99.29 76 | 96.31 143 | 98.14 248 | 98.76 107 | 92.41 295 | 96.39 205 | 98.31 190 | 94.92 82 | 99.78 104 | 94.06 236 | 98.77 148 | 99.23 142 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 280x420 | | | 97.18 121 | 97.18 106 | 97.20 195 | 98.81 138 | 93.27 281 | 95.78 387 | 99.15 28 | 95.25 153 | 96.79 186 | 98.11 207 | 92.29 122 | 99.07 223 | 98.56 37 | 99.85 6 | 99.25 140 |
|
| LS3D | | | 97.16 122 | 96.66 134 | 98.68 81 | 98.53 166 | 97.19 100 | 98.93 101 | 98.90 57 | 92.83 280 | 95.99 216 | 99.37 40 | 92.12 130 | 99.87 61 | 93.67 248 | 99.57 86 | 98.97 182 |
|
| AdaColmap |  | | 97.15 123 | 96.70 130 | 98.48 99 | 99.16 101 | 96.69 120 | 98.01 264 | 98.89 59 | 94.44 199 | 96.83 181 | 98.68 150 | 90.69 168 | 99.76 110 | 94.36 223 | 99.29 123 | 98.98 181 |
|
| mamv4 | | | 97.13 124 | 98.11 60 | 94.17 353 | 98.97 123 | 83.70 395 | 98.66 175 | 98.71 119 | 94.63 188 | 97.83 134 | 98.90 123 | 96.25 29 | 99.55 157 | 99.27 15 | 99.76 42 | 99.27 135 |
|
| Effi-MVS+ | | | 97.12 125 | 96.69 131 | 98.39 110 | 98.19 202 | 96.72 119 | 97.37 323 | 98.43 192 | 93.71 235 | 97.65 151 | 98.02 213 | 92.20 128 | 99.25 196 | 96.87 137 | 97.79 189 | 99.19 151 |
|
| CHOSEN 1792x2688 | | | 97.12 125 | 96.80 122 | 98.08 137 | 99.30 71 | 94.56 232 | 98.05 260 | 99.71 1 | 93.57 247 | 97.09 167 | 98.91 122 | 88.17 226 | 99.89 50 | 96.87 137 | 99.56 92 | 99.81 17 |
|
| F-COLMAP | | | 97.09 127 | 96.80 122 | 97.97 144 | 99.45 55 | 94.95 211 | 98.55 195 | 98.62 145 | 93.02 272 | 96.17 211 | 98.58 160 | 94.01 100 | 99.81 84 | 93.95 238 | 98.90 138 | 99.14 160 |
|
| RRT-MVS | | | 97.03 128 | 96.78 125 | 97.77 159 | 97.90 232 | 94.34 241 | 99.12 58 | 98.35 207 | 95.87 120 | 98.06 114 | 98.70 148 | 86.45 263 | 99.63 137 | 98.04 70 | 98.54 159 | 99.35 119 |
|
| TAMVS | | | 97.02 129 | 96.79 124 | 97.70 166 | 98.06 215 | 95.31 192 | 98.52 197 | 98.31 214 | 93.95 218 | 97.05 172 | 98.61 155 | 93.49 105 | 98.52 288 | 95.33 191 | 97.81 188 | 99.29 132 |
|
| CDS-MVSNet | | | 96.99 130 | 96.69 131 | 97.90 148 | 98.05 217 | 95.98 152 | 98.20 238 | 98.33 211 | 93.67 242 | 96.95 174 | 98.49 169 | 93.54 104 | 98.42 299 | 95.24 197 | 97.74 192 | 99.31 127 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 96.96 131 | 96.55 137 | 98.21 123 | 98.17 207 | 96.07 151 | 97.98 268 | 98.21 231 | 97.24 54 | 97.13 166 | 98.93 119 | 86.88 255 | 99.91 42 | 95.00 202 | 99.37 118 | 98.66 212 |
|
| 114514_t | | | 96.93 132 | 96.27 147 | 98.92 67 | 99.50 42 | 97.63 75 | 98.85 125 | 98.90 57 | 84.80 394 | 97.77 136 | 99.11 87 | 92.84 112 | 99.66 131 | 94.85 205 | 99.77 36 | 99.47 103 |
|
| MAR-MVS | | | 96.91 133 | 96.40 143 | 98.45 102 | 98.69 150 | 96.90 110 | 98.66 175 | 98.68 127 | 92.40 296 | 97.07 170 | 97.96 220 | 91.54 148 | 99.75 112 | 93.68 246 | 98.92 137 | 98.69 207 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HyFIR lowres test | | | 96.90 134 | 96.49 140 | 98.14 128 | 99.33 62 | 95.56 176 | 97.38 321 | 99.65 2 | 92.34 297 | 97.61 154 | 98.20 201 | 89.29 196 | 99.10 220 | 96.97 125 | 97.60 197 | 99.77 29 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 135 | 96.55 137 | 97.83 151 | 98.73 142 | 95.46 182 | 99.20 42 | 98.30 220 | 94.96 171 | 96.60 193 | 98.87 127 | 90.05 178 | 98.59 283 | 93.67 248 | 98.60 155 | 99.46 107 |
|
| SDMVSNet | | | 96.85 136 | 96.42 141 | 98.14 128 | 99.30 71 | 96.38 137 | 99.21 39 | 99.23 20 | 95.92 116 | 95.96 218 | 98.76 144 | 85.88 273 | 99.44 178 | 97.93 74 | 95.59 252 | 98.60 216 |
|
| PAPR | | | 96.84 137 | 96.24 149 | 98.65 84 | 98.72 146 | 96.92 109 | 97.36 325 | 98.57 157 | 93.33 256 | 96.67 188 | 97.57 259 | 94.30 94 | 99.56 150 | 91.05 317 | 98.59 156 | 99.47 103 |
|
| HY-MVS | | 93.96 8 | 96.82 138 | 96.23 150 | 98.57 88 | 98.46 170 | 97.00 105 | 98.14 248 | 98.21 231 | 93.95 218 | 96.72 187 | 97.99 217 | 91.58 144 | 99.76 110 | 94.51 219 | 96.54 224 | 98.95 185 |
|
| UGNet | | | 96.78 139 | 96.30 146 | 98.19 127 | 98.24 194 | 95.89 167 | 98.88 115 | 98.93 50 | 97.39 42 | 96.81 184 | 97.84 232 | 82.60 324 | 99.90 48 | 96.53 149 | 99.49 102 | 98.79 196 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet_BlendedMVS | | | 96.73 140 | 96.60 135 | 97.12 204 | 99.25 84 | 95.35 189 | 98.26 232 | 99.26 15 | 94.28 202 | 97.94 128 | 97.46 265 | 92.74 114 | 99.81 84 | 96.88 134 | 93.32 288 | 96.20 354 |
|
| test_vis1_n_1920 | | | 96.71 141 | 96.84 121 | 96.31 273 | 99.11 107 | 89.74 349 | 99.05 69 | 98.58 155 | 98.08 12 | 99.87 1 | 99.37 40 | 78.48 355 | 99.93 28 | 99.29 14 | 99.69 61 | 99.27 135 |
|
| mvs_anonymous | | | 96.70 142 | 96.53 139 | 97.18 198 | 98.19 202 | 93.78 257 | 98.31 224 | 98.19 235 | 94.01 214 | 94.47 249 | 98.27 195 | 92.08 133 | 98.46 294 | 97.39 113 | 97.91 184 | 99.31 127 |
|
| 1112_ss | | | 96.63 143 | 96.00 157 | 98.50 96 | 98.56 162 | 96.37 138 | 98.18 246 | 98.10 257 | 92.92 276 | 94.84 238 | 98.43 173 | 92.14 129 | 99.58 146 | 94.35 224 | 96.51 225 | 99.56 88 |
|
| PMMVS | | | 96.60 144 | 96.33 145 | 97.41 186 | 97.90 232 | 93.93 253 | 97.35 326 | 98.41 194 | 92.84 279 | 97.76 137 | 97.45 267 | 91.10 161 | 99.20 203 | 96.26 158 | 97.91 184 | 99.11 164 |
|
| DP-MVS | | | 96.59 145 | 95.93 160 | 98.57 88 | 99.34 60 | 96.19 147 | 98.70 167 | 98.39 198 | 89.45 366 | 94.52 247 | 99.35 46 | 91.85 138 | 99.85 66 | 92.89 272 | 98.88 140 | 99.68 64 |
|
| PatchMatch-RL | | | 96.59 145 | 96.03 156 | 98.27 116 | 99.31 67 | 96.51 130 | 97.91 275 | 99.06 34 | 93.72 234 | 96.92 178 | 98.06 210 | 88.50 221 | 99.65 132 | 91.77 301 | 99.00 135 | 98.66 212 |
|
| GeoE | | | 96.58 147 | 96.07 153 | 98.10 136 | 98.35 178 | 95.89 167 | 99.34 16 | 98.12 251 | 93.12 268 | 96.09 212 | 98.87 127 | 89.71 185 | 98.97 235 | 92.95 268 | 98.08 180 | 99.43 112 |
|
| XVG-OURS | | | 96.55 148 | 96.41 142 | 96.99 211 | 98.75 141 | 93.76 258 | 97.50 315 | 98.52 169 | 95.67 131 | 96.83 181 | 99.30 54 | 88.95 210 | 99.53 160 | 95.88 171 | 96.26 239 | 97.69 253 |
|
| FIs | | | 96.51 149 | 96.12 152 | 97.67 170 | 97.13 295 | 97.54 80 | 99.36 13 | 99.22 23 | 95.89 118 | 94.03 276 | 98.35 183 | 91.98 135 | 98.44 297 | 96.40 154 | 92.76 296 | 97.01 272 |
|
| XVG-OURS-SEG-HR | | | 96.51 149 | 96.34 144 | 97.02 210 | 98.77 140 | 93.76 258 | 97.79 294 | 98.50 177 | 95.45 140 | 96.94 175 | 99.09 96 | 87.87 237 | 99.55 157 | 96.76 145 | 95.83 251 | 97.74 250 |
|
| PS-MVSNAJss | | | 96.43 151 | 96.26 148 | 96.92 220 | 95.84 357 | 95.08 203 | 99.16 50 | 98.50 177 | 95.87 120 | 93.84 285 | 98.34 187 | 94.51 87 | 98.61 280 | 96.88 134 | 93.45 285 | 97.06 270 |
|
| test_fmvs1 | | | 96.42 152 | 96.67 133 | 95.66 301 | 98.82 137 | 88.53 374 | 98.80 142 | 98.20 233 | 96.39 100 | 99.64 17 | 99.20 70 | 80.35 343 | 99.67 129 | 99.04 20 | 99.57 86 | 98.78 199 |
|
| FC-MVSNet-test | | | 96.42 152 | 96.05 154 | 97.53 180 | 96.95 304 | 97.27 92 | 99.36 13 | 99.23 20 | 95.83 122 | 93.93 279 | 98.37 181 | 92.00 134 | 98.32 316 | 96.02 167 | 92.72 297 | 97.00 273 |
|
| ab-mvs | | | 96.42 152 | 95.71 170 | 98.55 90 | 98.63 158 | 96.75 117 | 97.88 282 | 98.74 111 | 93.84 224 | 96.54 198 | 98.18 203 | 85.34 283 | 99.75 112 | 95.93 169 | 96.35 229 | 99.15 158 |
|
| FA-MVS(test-final) | | | 96.41 155 | 95.94 159 | 97.82 153 | 98.21 198 | 95.20 197 | 97.80 292 | 97.58 297 | 93.21 262 | 97.36 160 | 97.70 244 | 89.47 190 | 99.56 150 | 94.12 233 | 97.99 181 | 98.71 206 |
|
| PVSNet | | 91.96 18 | 96.35 156 | 96.15 151 | 96.96 215 | 99.17 97 | 92.05 305 | 96.08 380 | 98.68 127 | 93.69 238 | 97.75 139 | 97.80 238 | 88.86 211 | 99.69 127 | 94.26 229 | 99.01 133 | 99.15 158 |
|
| Test_1112_low_res | | | 96.34 157 | 95.66 175 | 98.36 111 | 98.56 162 | 95.94 160 | 97.71 299 | 98.07 264 | 92.10 306 | 94.79 242 | 97.29 280 | 91.75 140 | 99.56 150 | 94.17 231 | 96.50 226 | 99.58 86 |
|
| Effi-MVS+-dtu | | | 96.29 158 | 96.56 136 | 95.51 306 | 97.89 234 | 90.22 342 | 98.80 142 | 98.10 257 | 96.57 93 | 96.45 203 | 96.66 334 | 90.81 164 | 98.91 248 | 95.72 178 | 97.99 181 | 97.40 261 |
|
| QAPM | | | 96.29 158 | 95.40 180 | 98.96 65 | 97.85 235 | 97.60 77 | 99.23 32 | 98.93 50 | 89.76 360 | 93.11 315 | 99.02 103 | 89.11 202 | 99.93 28 | 91.99 295 | 99.62 77 | 99.34 121 |
|
| Fast-Effi-MVS+ | | | 96.28 160 | 95.70 172 | 98.03 140 | 98.29 192 | 95.97 157 | 98.58 187 | 98.25 228 | 91.74 314 | 95.29 231 | 97.23 285 | 91.03 163 | 99.15 209 | 92.90 270 | 97.96 183 | 98.97 182 |
|
| nrg030 | | | 96.28 160 | 95.72 167 | 97.96 146 | 96.90 309 | 98.15 57 | 99.39 10 | 98.31 214 | 95.47 139 | 94.42 255 | 98.35 183 | 92.09 132 | 98.69 272 | 97.50 109 | 89.05 345 | 97.04 271 |
|
| 1314 | | | 96.25 162 | 95.73 166 | 97.79 155 | 97.13 295 | 95.55 178 | 98.19 241 | 98.59 150 | 93.47 251 | 92.03 343 | 97.82 236 | 91.33 153 | 99.49 168 | 94.62 214 | 98.44 165 | 98.32 234 |
|
| sd_testset | | | 96.17 163 | 95.76 165 | 97.42 185 | 99.30 71 | 94.34 241 | 98.82 133 | 99.08 32 | 95.92 116 | 95.96 218 | 98.76 144 | 82.83 323 | 99.32 190 | 95.56 184 | 95.59 252 | 98.60 216 |
|
| h-mvs33 | | | 96.17 163 | 95.62 176 | 97.81 154 | 99.03 113 | 94.45 234 | 98.64 178 | 98.75 109 | 97.48 36 | 98.67 80 | 98.72 147 | 89.76 182 | 99.86 65 | 97.95 72 | 81.59 391 | 99.11 164 |
|
| HQP_MVS | | | 96.14 165 | 95.90 161 | 96.85 223 | 97.42 273 | 94.60 230 | 98.80 142 | 98.56 160 | 97.28 49 | 95.34 227 | 98.28 192 | 87.09 250 | 99.03 228 | 96.07 162 | 94.27 260 | 96.92 279 |
|
| tttt0517 | | | 96.07 166 | 95.51 178 | 97.78 156 | 98.41 173 | 94.84 215 | 99.28 24 | 94.33 400 | 94.26 204 | 97.64 152 | 98.64 154 | 84.05 312 | 99.47 175 | 95.34 190 | 97.60 197 | 99.03 176 |
|
| MVSTER | | | 96.06 167 | 95.72 167 | 97.08 207 | 98.23 196 | 95.93 163 | 98.73 158 | 98.27 223 | 94.86 177 | 95.07 233 | 98.09 208 | 88.21 225 | 98.54 286 | 96.59 147 | 93.46 283 | 96.79 297 |
|
| thisisatest0530 | | | 96.01 168 | 95.36 185 | 97.97 144 | 98.38 175 | 95.52 180 | 98.88 115 | 94.19 402 | 94.04 209 | 97.64 152 | 98.31 190 | 83.82 319 | 99.46 176 | 95.29 194 | 97.70 194 | 98.93 187 |
|
| test_djsdf | | | 96.00 169 | 95.69 173 | 96.93 217 | 95.72 359 | 95.49 181 | 99.47 7 | 98.40 196 | 94.98 169 | 94.58 245 | 97.86 229 | 89.16 200 | 98.41 306 | 96.91 128 | 94.12 268 | 96.88 288 |
|
| EI-MVSNet | | | 95.96 170 | 95.83 163 | 96.36 269 | 97.93 230 | 93.70 264 | 98.12 251 | 98.27 223 | 93.70 237 | 95.07 233 | 99.02 103 | 92.23 126 | 98.54 286 | 94.68 210 | 93.46 283 | 96.84 294 |
|
| ECVR-MVS |  | | 95.95 171 | 95.71 170 | 96.65 235 | 99.02 114 | 90.86 327 | 99.03 76 | 91.80 412 | 96.96 71 | 98.10 111 | 99.26 59 | 81.31 330 | 99.51 164 | 96.90 131 | 99.04 130 | 99.59 82 |
|
| BH-untuned | | | 95.95 171 | 95.72 167 | 96.65 235 | 98.55 164 | 92.26 300 | 98.23 234 | 97.79 285 | 93.73 232 | 94.62 244 | 98.01 215 | 88.97 209 | 99.00 234 | 93.04 265 | 98.51 161 | 98.68 208 |
|
| test1111 | | | 95.94 173 | 95.78 164 | 96.41 266 | 98.99 120 | 90.12 343 | 99.04 73 | 92.45 411 | 96.99 70 | 98.03 118 | 99.27 58 | 81.40 329 | 99.48 173 | 96.87 137 | 99.04 130 | 99.63 76 |
|
| MSDG | | | 95.93 174 | 95.30 191 | 97.83 151 | 98.90 128 | 95.36 187 | 96.83 367 | 98.37 204 | 91.32 329 | 94.43 254 | 98.73 146 | 90.27 176 | 99.60 143 | 90.05 331 | 98.82 146 | 98.52 222 |
|
| BH-RMVSNet | | | 95.92 175 | 95.32 189 | 97.69 167 | 98.32 189 | 94.64 224 | 98.19 241 | 97.45 318 | 94.56 191 | 96.03 214 | 98.61 155 | 85.02 288 | 99.12 214 | 90.68 322 | 99.06 129 | 99.30 130 |
|
| test_fmvs1_n | | | 95.90 176 | 95.99 158 | 95.63 302 | 98.67 152 | 88.32 378 | 99.26 27 | 98.22 230 | 96.40 99 | 99.67 14 | 99.26 59 | 73.91 389 | 99.70 122 | 99.02 21 | 99.50 100 | 98.87 190 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 177 | 95.85 162 | 95.91 290 | 97.74 244 | 91.74 311 | 98.69 169 | 98.15 247 | 95.56 135 | 94.92 236 | 97.68 249 | 88.98 208 | 98.79 266 | 93.19 260 | 97.78 190 | 97.20 268 |
|
| LFMVS | | | 95.86 178 | 94.98 206 | 98.47 100 | 98.87 132 | 96.32 141 | 98.84 129 | 96.02 379 | 93.40 254 | 98.62 86 | 99.20 70 | 74.99 383 | 99.63 137 | 97.72 88 | 97.20 204 | 99.46 107 |
|
| baseline1 | | | 95.84 179 | 95.12 199 | 98.01 142 | 98.49 169 | 95.98 152 | 98.73 158 | 97.03 348 | 95.37 146 | 96.22 208 | 98.19 202 | 89.96 180 | 99.16 206 | 94.60 215 | 87.48 361 | 98.90 189 |
|
| OpenMVS |  | 93.04 13 | 95.83 180 | 95.00 204 | 98.32 113 | 97.18 292 | 97.32 90 | 99.21 39 | 98.97 42 | 89.96 356 | 91.14 352 | 99.05 101 | 86.64 258 | 99.92 34 | 93.38 254 | 99.47 105 | 97.73 251 |
|
| VDD-MVS | | | 95.82 181 | 95.23 193 | 97.61 176 | 98.84 136 | 93.98 252 | 98.68 170 | 97.40 322 | 95.02 167 | 97.95 126 | 99.34 50 | 74.37 388 | 99.78 104 | 98.64 32 | 96.80 215 | 99.08 170 |
|
| UniMVSNet (Re) | | | 95.78 182 | 95.19 195 | 97.58 177 | 96.99 302 | 97.47 84 | 98.79 148 | 99.18 25 | 95.60 133 | 93.92 280 | 97.04 306 | 91.68 141 | 98.48 290 | 95.80 175 | 87.66 360 | 96.79 297 |
|
| VPA-MVSNet | | | 95.75 183 | 95.11 200 | 97.69 167 | 97.24 284 | 97.27 92 | 98.94 98 | 99.23 20 | 95.13 158 | 95.51 225 | 97.32 278 | 85.73 275 | 98.91 248 | 97.33 116 | 89.55 336 | 96.89 287 |
|
| HQP-MVS | | | 95.72 184 | 95.40 180 | 96.69 233 | 97.20 288 | 94.25 246 | 98.05 260 | 98.46 184 | 96.43 96 | 94.45 250 | 97.73 241 | 86.75 256 | 98.96 239 | 95.30 192 | 94.18 264 | 96.86 293 |
|
| hse-mvs2 | | | 95.71 185 | 95.30 191 | 96.93 217 | 98.50 167 | 93.53 269 | 98.36 216 | 98.10 257 | 97.48 36 | 98.67 80 | 97.99 217 | 89.76 182 | 99.02 231 | 97.95 72 | 80.91 396 | 98.22 237 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 185 | 95.15 196 | 97.40 188 | 96.84 312 | 96.97 106 | 98.74 154 | 99.24 17 | 95.16 157 | 93.88 282 | 97.72 243 | 91.68 141 | 98.31 318 | 95.81 173 | 87.25 366 | 96.92 279 |
|
| PatchmatchNet |  | | 95.71 185 | 95.52 177 | 96.29 275 | 97.58 257 | 90.72 331 | 96.84 366 | 97.52 308 | 94.06 208 | 97.08 168 | 96.96 316 | 89.24 198 | 98.90 251 | 92.03 294 | 98.37 169 | 99.26 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| OPM-MVS | | | 95.69 188 | 95.33 188 | 96.76 228 | 96.16 345 | 94.63 225 | 98.43 212 | 98.39 198 | 96.64 89 | 95.02 235 | 98.78 137 | 85.15 287 | 99.05 224 | 95.21 198 | 94.20 263 | 96.60 320 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMM | | 93.85 9 | 95.69 188 | 95.38 184 | 96.61 242 | 97.61 254 | 93.84 256 | 98.91 105 | 98.44 188 | 95.25 153 | 94.28 262 | 98.47 171 | 86.04 272 | 99.12 214 | 95.50 187 | 93.95 273 | 96.87 291 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tpmrst | | | 95.63 190 | 95.69 173 | 95.44 310 | 97.54 262 | 88.54 373 | 96.97 352 | 97.56 300 | 93.50 249 | 97.52 158 | 96.93 320 | 89.49 188 | 99.16 206 | 95.25 196 | 96.42 228 | 98.64 214 |
|
| FE-MVS | | | 95.62 191 | 94.90 210 | 97.78 156 | 98.37 177 | 94.92 212 | 97.17 342 | 97.38 324 | 90.95 340 | 97.73 142 | 97.70 244 | 85.32 285 | 99.63 137 | 91.18 309 | 98.33 172 | 98.79 196 |
|
| LPG-MVS_test | | | 95.62 191 | 95.34 186 | 96.47 260 | 97.46 268 | 93.54 267 | 98.99 86 | 98.54 164 | 94.67 186 | 94.36 258 | 98.77 139 | 85.39 280 | 99.11 216 | 95.71 179 | 94.15 266 | 96.76 300 |
|
| CLD-MVS | | | 95.62 191 | 95.34 186 | 96.46 263 | 97.52 265 | 93.75 260 | 97.27 333 | 98.46 184 | 95.53 136 | 94.42 255 | 98.00 216 | 86.21 267 | 98.97 235 | 96.25 160 | 94.37 258 | 96.66 315 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thisisatest0515 | | | 95.61 194 | 94.89 211 | 97.76 160 | 98.15 208 | 95.15 200 | 96.77 368 | 94.41 398 | 92.95 275 | 97.18 165 | 97.43 269 | 84.78 294 | 99.45 177 | 94.63 212 | 97.73 193 | 98.68 208 |
|
| MonoMVSNet | | | 95.51 195 | 95.45 179 | 95.68 299 | 95.54 364 | 90.87 326 | 98.92 103 | 97.37 325 | 95.79 124 | 95.53 224 | 97.38 274 | 89.58 187 | 97.68 361 | 96.40 154 | 92.59 298 | 98.49 224 |
|
| thres600view7 | | | 95.49 196 | 94.77 214 | 97.67 170 | 98.98 121 | 95.02 204 | 98.85 125 | 96.90 357 | 95.38 144 | 96.63 190 | 96.90 321 | 84.29 304 | 99.59 144 | 88.65 353 | 96.33 230 | 98.40 228 |
|
| test_vis1_n | | | 95.47 197 | 95.13 197 | 96.49 257 | 97.77 240 | 90.41 339 | 99.27 26 | 98.11 254 | 96.58 91 | 99.66 15 | 99.18 76 | 67.00 402 | 99.62 141 | 99.21 16 | 99.40 115 | 99.44 110 |
|
| SCA | | | 95.46 198 | 95.13 197 | 96.46 263 | 97.67 249 | 91.29 319 | 97.33 328 | 97.60 296 | 94.68 185 | 96.92 178 | 97.10 291 | 83.97 314 | 98.89 252 | 92.59 278 | 98.32 174 | 99.20 147 |
|
| IterMVS-LS | | | 95.46 198 | 95.21 194 | 96.22 277 | 98.12 209 | 93.72 263 | 98.32 223 | 98.13 250 | 93.71 235 | 94.26 263 | 97.31 279 | 92.24 125 | 98.10 334 | 94.63 212 | 90.12 327 | 96.84 294 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| jajsoiax | | | 95.45 200 | 95.03 203 | 96.73 229 | 95.42 372 | 94.63 225 | 99.14 54 | 98.52 169 | 95.74 126 | 93.22 308 | 98.36 182 | 83.87 317 | 98.65 277 | 96.95 127 | 94.04 269 | 96.91 284 |
|
| CVMVSNet | | | 95.43 201 | 96.04 155 | 93.57 358 | 97.93 230 | 83.62 396 | 98.12 251 | 98.59 150 | 95.68 130 | 96.56 194 | 99.02 103 | 87.51 243 | 97.51 369 | 93.56 252 | 97.44 200 | 99.60 80 |
|
| anonymousdsp | | | 95.42 202 | 94.91 209 | 96.94 216 | 95.10 376 | 95.90 166 | 99.14 54 | 98.41 194 | 93.75 229 | 93.16 311 | 97.46 265 | 87.50 245 | 98.41 306 | 95.63 183 | 94.03 270 | 96.50 339 |
|
| DU-MVS | | | 95.42 202 | 94.76 215 | 97.40 188 | 96.53 328 | 96.97 106 | 98.66 175 | 98.99 41 | 95.43 141 | 93.88 282 | 97.69 246 | 88.57 216 | 98.31 318 | 95.81 173 | 87.25 366 | 96.92 279 |
|
| mvs_tets | | | 95.41 204 | 95.00 204 | 96.65 235 | 95.58 363 | 94.42 236 | 99.00 83 | 98.55 162 | 95.73 128 | 93.21 309 | 98.38 180 | 83.45 321 | 98.63 278 | 97.09 121 | 94.00 271 | 96.91 284 |
|
| thres100view900 | | | 95.38 205 | 94.70 219 | 97.41 186 | 98.98 121 | 94.92 212 | 98.87 118 | 96.90 357 | 95.38 144 | 96.61 192 | 96.88 322 | 84.29 304 | 99.56 150 | 88.11 356 | 96.29 234 | 97.76 248 |
|
| thres400 | | | 95.38 205 | 94.62 223 | 97.65 174 | 98.94 126 | 94.98 208 | 98.68 170 | 96.93 355 | 95.33 147 | 96.55 196 | 96.53 340 | 84.23 308 | 99.56 150 | 88.11 356 | 96.29 234 | 98.40 228 |
|
| BH-w/o | | | 95.38 205 | 95.08 201 | 96.26 276 | 98.34 183 | 91.79 308 | 97.70 300 | 97.43 320 | 92.87 278 | 94.24 265 | 97.22 286 | 88.66 214 | 98.84 258 | 91.55 305 | 97.70 194 | 98.16 240 |
|
| VDDNet | | | 95.36 208 | 94.53 227 | 97.86 149 | 98.10 211 | 95.13 201 | 98.85 125 | 97.75 287 | 90.46 347 | 98.36 101 | 99.39 34 | 73.27 391 | 99.64 134 | 97.98 71 | 96.58 222 | 98.81 195 |
|
| TAPA-MVS | | 93.98 7 | 95.35 209 | 94.56 226 | 97.74 162 | 99.13 104 | 94.83 217 | 98.33 219 | 98.64 140 | 86.62 382 | 96.29 207 | 98.61 155 | 94.00 101 | 99.29 193 | 80.00 397 | 99.41 112 | 99.09 166 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 93.49 10 | 95.34 210 | 94.98 206 | 96.43 265 | 97.67 249 | 93.48 271 | 98.73 158 | 98.44 188 | 94.94 175 | 92.53 331 | 98.53 165 | 84.50 303 | 99.14 211 | 95.48 188 | 94.00 271 | 96.66 315 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| COLMAP_ROB |  | 93.27 12 | 95.33 211 | 94.87 212 | 96.71 230 | 99.29 76 | 93.24 285 | 98.58 187 | 98.11 254 | 89.92 357 | 93.57 294 | 99.10 89 | 86.37 265 | 99.79 101 | 90.78 320 | 98.10 179 | 97.09 269 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UBG | | | 95.32 212 | 94.72 218 | 97.13 202 | 98.05 217 | 93.26 282 | 97.87 283 | 97.20 336 | 94.96 171 | 96.18 210 | 95.66 371 | 80.97 335 | 99.35 186 | 94.47 221 | 97.08 206 | 98.78 199 |
|
| tfpn200view9 | | | 95.32 212 | 94.62 223 | 97.43 184 | 98.94 126 | 94.98 208 | 98.68 170 | 96.93 355 | 95.33 147 | 96.55 196 | 96.53 340 | 84.23 308 | 99.56 150 | 88.11 356 | 96.29 234 | 97.76 248 |
|
| Anonymous202405211 | | | 95.28 214 | 94.49 229 | 97.67 170 | 99.00 117 | 93.75 260 | 98.70 167 | 97.04 347 | 90.66 343 | 96.49 200 | 98.80 135 | 78.13 359 | 99.83 72 | 96.21 161 | 95.36 256 | 99.44 110 |
|
| thres200 | | | 95.25 215 | 94.57 225 | 97.28 192 | 98.81 138 | 94.92 212 | 98.20 238 | 97.11 340 | 95.24 155 | 96.54 198 | 96.22 351 | 84.58 301 | 99.53 160 | 87.93 361 | 96.50 226 | 97.39 262 |
|
| AllTest | | | 95.24 216 | 94.65 222 | 96.99 211 | 99.25 84 | 93.21 286 | 98.59 185 | 98.18 238 | 91.36 325 | 93.52 296 | 98.77 139 | 84.67 298 | 99.72 116 | 89.70 338 | 97.87 186 | 98.02 243 |
|
| LCM-MVSNet-Re | | | 95.22 217 | 95.32 189 | 94.91 326 | 98.18 204 | 87.85 384 | 98.75 151 | 95.66 386 | 95.11 160 | 88.96 371 | 96.85 325 | 90.26 177 | 97.65 362 | 95.65 182 | 98.44 165 | 99.22 144 |
|
| EPNet_dtu | | | 95.21 218 | 94.95 208 | 95.99 285 | 96.17 343 | 90.45 337 | 98.16 247 | 97.27 332 | 96.77 79 | 93.14 314 | 98.33 188 | 90.34 173 | 98.42 299 | 85.57 374 | 98.81 147 | 99.09 166 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| XXY-MVS | | | 95.20 219 | 94.45 234 | 97.46 181 | 96.75 318 | 96.56 128 | 98.86 121 | 98.65 139 | 93.30 259 | 93.27 307 | 98.27 195 | 84.85 292 | 98.87 255 | 94.82 207 | 91.26 314 | 96.96 275 |
|
| D2MVS | | | 95.18 220 | 95.08 201 | 95.48 307 | 97.10 297 | 92.07 304 | 98.30 226 | 99.13 30 | 94.02 211 | 92.90 319 | 96.73 331 | 89.48 189 | 98.73 270 | 94.48 220 | 93.60 282 | 95.65 367 |
|
| WR-MVS | | | 95.15 221 | 94.46 232 | 97.22 194 | 96.67 323 | 96.45 132 | 98.21 236 | 98.81 89 | 94.15 205 | 93.16 311 | 97.69 246 | 87.51 243 | 98.30 320 | 95.29 194 | 88.62 351 | 96.90 286 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 222 | 94.48 230 | 97.11 205 | 96.45 333 | 96.36 139 | 99.03 76 | 99.03 37 | 95.04 165 | 93.58 293 | 97.93 222 | 88.27 224 | 98.03 340 | 94.13 232 | 86.90 371 | 96.95 277 |
|
| baseline2 | | | 95.11 223 | 94.52 228 | 96.87 222 | 96.65 324 | 93.56 266 | 98.27 231 | 94.10 404 | 93.45 252 | 92.02 344 | 97.43 269 | 87.45 247 | 99.19 204 | 93.88 241 | 97.41 202 | 97.87 246 |
|
| miper_enhance_ethall | | | 95.10 224 | 94.75 216 | 96.12 281 | 97.53 264 | 93.73 262 | 96.61 374 | 98.08 262 | 92.20 305 | 93.89 281 | 96.65 336 | 92.44 118 | 98.30 320 | 94.21 230 | 91.16 315 | 96.34 348 |
|
| Anonymous20240529 | | | 95.10 224 | 94.22 244 | 97.75 161 | 99.01 116 | 94.26 245 | 98.87 118 | 98.83 81 | 85.79 390 | 96.64 189 | 98.97 110 | 78.73 352 | 99.85 66 | 96.27 157 | 94.89 257 | 99.12 162 |
|
| test-LLR | | | 95.10 224 | 94.87 212 | 95.80 295 | 96.77 315 | 89.70 350 | 96.91 357 | 95.21 390 | 95.11 160 | 94.83 240 | 95.72 368 | 87.71 239 | 98.97 235 | 93.06 263 | 98.50 162 | 98.72 203 |
|
| WR-MVS_H | | | 95.05 227 | 94.46 232 | 96.81 226 | 96.86 311 | 95.82 169 | 99.24 30 | 99.24 17 | 93.87 223 | 92.53 331 | 96.84 326 | 90.37 172 | 98.24 326 | 93.24 258 | 87.93 357 | 96.38 347 |
|
| miper_ehance_all_eth | | | 95.01 228 | 94.69 220 | 95.97 287 | 97.70 247 | 93.31 280 | 97.02 350 | 98.07 264 | 92.23 302 | 93.51 298 | 96.96 316 | 91.85 138 | 98.15 330 | 93.68 246 | 91.16 315 | 96.44 345 |
|
| testing11 | | | 95.00 229 | 94.28 241 | 97.16 200 | 97.96 227 | 93.36 279 | 98.09 256 | 97.06 346 | 94.94 175 | 95.33 230 | 96.15 353 | 76.89 373 | 99.40 181 | 95.77 177 | 96.30 233 | 98.72 203 |
|
| ADS-MVSNet | | | 95.00 229 | 94.45 234 | 96.63 239 | 98.00 221 | 91.91 307 | 96.04 381 | 97.74 288 | 90.15 353 | 96.47 201 | 96.64 337 | 87.89 235 | 98.96 239 | 90.08 329 | 97.06 207 | 99.02 177 |
|
| VPNet | | | 94.99 231 | 94.19 246 | 97.40 188 | 97.16 293 | 96.57 127 | 98.71 163 | 98.97 42 | 95.67 131 | 94.84 238 | 98.24 199 | 80.36 342 | 98.67 276 | 96.46 151 | 87.32 365 | 96.96 275 |
|
| EPMVS | | | 94.99 231 | 94.48 230 | 96.52 255 | 97.22 286 | 91.75 310 | 97.23 334 | 91.66 413 | 94.11 206 | 97.28 161 | 96.81 328 | 85.70 276 | 98.84 258 | 93.04 265 | 97.28 203 | 98.97 182 |
|
| testing91 | | | 94.98 233 | 94.25 243 | 97.20 195 | 97.94 228 | 93.41 274 | 98.00 266 | 97.58 297 | 94.99 168 | 95.45 226 | 96.04 357 | 77.20 368 | 99.42 180 | 94.97 203 | 96.02 247 | 98.78 199 |
|
| NR-MVSNet | | | 94.98 233 | 94.16 249 | 97.44 183 | 96.53 328 | 97.22 99 | 98.74 154 | 98.95 46 | 94.96 171 | 89.25 370 | 97.69 246 | 89.32 195 | 98.18 328 | 94.59 217 | 87.40 363 | 96.92 279 |
|
| FMVSNet3 | | | 94.97 235 | 94.26 242 | 97.11 205 | 98.18 204 | 96.62 121 | 98.56 194 | 98.26 227 | 93.67 242 | 94.09 272 | 97.10 291 | 84.25 306 | 98.01 341 | 92.08 290 | 92.14 301 | 96.70 309 |
|
| CostFormer | | | 94.95 236 | 94.73 217 | 95.60 304 | 97.28 282 | 89.06 363 | 97.53 312 | 96.89 359 | 89.66 362 | 96.82 183 | 96.72 332 | 86.05 270 | 98.95 244 | 95.53 186 | 96.13 245 | 98.79 196 |
|
| PAPM | | | 94.95 236 | 94.00 262 | 97.78 156 | 97.04 299 | 95.65 173 | 96.03 383 | 98.25 228 | 91.23 334 | 94.19 268 | 97.80 238 | 91.27 156 | 98.86 257 | 82.61 391 | 97.61 196 | 98.84 193 |
|
| CP-MVSNet | | | 94.94 238 | 94.30 240 | 96.83 224 | 96.72 320 | 95.56 176 | 99.11 60 | 98.95 46 | 93.89 221 | 92.42 336 | 97.90 225 | 87.19 249 | 98.12 333 | 94.32 226 | 88.21 354 | 96.82 296 |
|
| TR-MVS | | | 94.94 238 | 94.20 245 | 97.17 199 | 97.75 241 | 94.14 249 | 97.59 309 | 97.02 350 | 92.28 301 | 95.75 222 | 97.64 253 | 83.88 316 | 98.96 239 | 89.77 335 | 96.15 244 | 98.40 228 |
|
| RPSCF | | | 94.87 240 | 95.40 180 | 93.26 364 | 98.89 129 | 82.06 402 | 98.33 219 | 98.06 269 | 90.30 352 | 96.56 194 | 99.26 59 | 87.09 250 | 99.49 168 | 93.82 243 | 96.32 231 | 98.24 235 |
|
| testing99 | | | 94.83 241 | 94.08 254 | 97.07 208 | 97.94 228 | 93.13 288 | 98.10 255 | 97.17 338 | 94.86 177 | 95.34 227 | 96.00 360 | 76.31 376 | 99.40 181 | 95.08 200 | 95.90 248 | 98.68 208 |
|
| GA-MVS | | | 94.81 242 | 94.03 258 | 97.14 201 | 97.15 294 | 93.86 255 | 96.76 369 | 97.58 297 | 94.00 215 | 94.76 243 | 97.04 306 | 80.91 336 | 98.48 290 | 91.79 300 | 96.25 240 | 99.09 166 |
|
| c3_l | | | 94.79 243 | 94.43 236 | 95.89 292 | 97.75 241 | 93.12 290 | 97.16 344 | 98.03 271 | 92.23 302 | 93.46 301 | 97.05 305 | 91.39 150 | 98.01 341 | 93.58 251 | 89.21 343 | 96.53 331 |
|
| V42 | | | 94.78 244 | 94.14 251 | 96.70 232 | 96.33 338 | 95.22 196 | 98.97 89 | 98.09 261 | 92.32 299 | 94.31 261 | 97.06 302 | 88.39 222 | 98.55 285 | 92.90 270 | 88.87 349 | 96.34 348 |
|
| reproduce_monomvs | | | 94.77 245 | 94.67 221 | 95.08 322 | 98.40 174 | 89.48 356 | 98.80 142 | 98.64 140 | 97.57 31 | 93.21 309 | 97.65 250 | 80.57 341 | 98.83 261 | 97.72 88 | 89.47 339 | 96.93 278 |
|
| CR-MVSNet | | | 94.76 246 | 94.15 250 | 96.59 245 | 97.00 300 | 93.43 272 | 94.96 394 | 97.56 300 | 92.46 290 | 96.93 176 | 96.24 347 | 88.15 227 | 97.88 354 | 87.38 363 | 96.65 220 | 98.46 226 |
|
| v2v482 | | | 94.69 247 | 94.03 258 | 96.65 235 | 96.17 343 | 94.79 220 | 98.67 173 | 98.08 262 | 92.72 282 | 94.00 277 | 97.16 289 | 87.69 242 | 98.45 295 | 92.91 269 | 88.87 349 | 96.72 305 |
|
| pmmvs4 | | | 94.69 247 | 93.99 264 | 96.81 226 | 95.74 358 | 95.94 160 | 97.40 319 | 97.67 291 | 90.42 349 | 93.37 304 | 97.59 257 | 89.08 203 | 98.20 327 | 92.97 267 | 91.67 308 | 96.30 351 |
|
| cl22 | | | 94.68 249 | 94.19 246 | 96.13 280 | 98.11 210 | 93.60 265 | 96.94 354 | 98.31 214 | 92.43 294 | 93.32 306 | 96.87 324 | 86.51 259 | 98.28 324 | 94.10 235 | 91.16 315 | 96.51 337 |
|
| eth_miper_zixun_eth | | | 94.68 249 | 94.41 237 | 95.47 308 | 97.64 252 | 91.71 312 | 96.73 371 | 98.07 264 | 92.71 283 | 93.64 291 | 97.21 287 | 90.54 170 | 98.17 329 | 93.38 254 | 89.76 331 | 96.54 329 |
|
| PCF-MVS | | 93.45 11 | 94.68 249 | 93.43 300 | 98.42 108 | 98.62 159 | 96.77 116 | 95.48 391 | 98.20 233 | 84.63 395 | 93.34 305 | 98.32 189 | 88.55 219 | 99.81 84 | 84.80 383 | 98.96 136 | 98.68 208 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS | | | 94.67 252 | 93.54 295 | 98.08 137 | 96.88 310 | 96.56 128 | 98.19 241 | 98.50 177 | 78.05 406 | 92.69 326 | 98.02 213 | 91.07 162 | 99.63 137 | 90.09 328 | 98.36 171 | 98.04 242 |
|
| PS-CasMVS | | | 94.67 252 | 93.99 264 | 96.71 230 | 96.68 322 | 95.26 193 | 99.13 57 | 99.03 37 | 93.68 240 | 92.33 337 | 97.95 221 | 85.35 282 | 98.10 334 | 93.59 250 | 88.16 356 | 96.79 297 |
|
| cascas | | | 94.63 254 | 93.86 274 | 96.93 217 | 96.91 308 | 94.27 244 | 96.00 384 | 98.51 172 | 85.55 391 | 94.54 246 | 96.23 349 | 84.20 310 | 98.87 255 | 95.80 175 | 96.98 212 | 97.66 254 |
|
| tpmvs | | | 94.60 255 | 94.36 239 | 95.33 314 | 97.46 268 | 88.60 372 | 96.88 363 | 97.68 289 | 91.29 331 | 93.80 287 | 96.42 344 | 88.58 215 | 99.24 198 | 91.06 315 | 96.04 246 | 98.17 239 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 255 | 93.90 270 | 96.68 234 | 97.41 276 | 94.42 236 | 98.52 197 | 98.59 150 | 91.69 317 | 91.21 351 | 98.35 183 | 84.87 291 | 99.04 227 | 91.06 315 | 93.44 286 | 96.60 320 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v1144 | | | 94.59 257 | 93.92 267 | 96.60 244 | 96.21 340 | 94.78 221 | 98.59 185 | 98.14 249 | 91.86 313 | 94.21 267 | 97.02 309 | 87.97 233 | 98.41 306 | 91.72 302 | 89.57 334 | 96.61 319 |
|
| ADS-MVSNet2 | | | 94.58 258 | 94.40 238 | 95.11 320 | 98.00 221 | 88.74 370 | 96.04 381 | 97.30 328 | 90.15 353 | 96.47 201 | 96.64 337 | 87.89 235 | 97.56 367 | 90.08 329 | 97.06 207 | 99.02 177 |
|
| WBMVS | | | 94.56 259 | 94.04 256 | 96.10 282 | 98.03 219 | 93.08 292 | 97.82 291 | 98.18 238 | 94.02 211 | 93.77 289 | 96.82 327 | 81.28 331 | 98.34 313 | 95.47 189 | 91.00 318 | 96.88 288 |
|
| ACMH | | 92.88 16 | 94.55 260 | 93.95 266 | 96.34 271 | 97.63 253 | 93.26 282 | 98.81 141 | 98.49 182 | 93.43 253 | 89.74 365 | 98.53 165 | 81.91 326 | 99.08 222 | 93.69 245 | 93.30 289 | 96.70 309 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tt0805 | | | 94.54 261 | 93.85 275 | 96.63 239 | 97.98 225 | 93.06 293 | 98.77 150 | 97.84 283 | 93.67 242 | 93.80 287 | 98.04 212 | 76.88 374 | 98.96 239 | 94.79 209 | 92.86 294 | 97.86 247 |
|
| XVG-ACMP-BASELINE | | | 94.54 261 | 94.14 251 | 95.75 298 | 96.55 327 | 91.65 313 | 98.11 253 | 98.44 188 | 94.96 171 | 94.22 266 | 97.90 225 | 79.18 351 | 99.11 216 | 94.05 237 | 93.85 275 | 96.48 342 |
|
| AUN-MVS | | | 94.53 263 | 93.73 285 | 96.92 220 | 98.50 167 | 93.52 270 | 98.34 218 | 98.10 257 | 93.83 226 | 95.94 220 | 97.98 219 | 85.59 278 | 99.03 228 | 94.35 224 | 80.94 395 | 98.22 237 |
|
| DIV-MVS_self_test | | | 94.52 264 | 94.03 258 | 95.99 285 | 97.57 261 | 93.38 277 | 97.05 348 | 97.94 277 | 91.74 314 | 92.81 321 | 97.10 291 | 89.12 201 | 98.07 338 | 92.60 276 | 90.30 324 | 96.53 331 |
|
| cl____ | | | 94.51 265 | 94.01 261 | 96.02 284 | 97.58 257 | 93.40 276 | 97.05 348 | 97.96 276 | 91.73 316 | 92.76 323 | 97.08 297 | 89.06 204 | 98.13 332 | 92.61 275 | 90.29 325 | 96.52 334 |
|
| ETVMVS | | | 94.50 266 | 93.44 299 | 97.68 169 | 98.18 204 | 95.35 189 | 98.19 241 | 97.11 340 | 93.73 232 | 96.40 204 | 95.39 374 | 74.53 385 | 98.84 258 | 91.10 311 | 96.31 232 | 98.84 193 |
|
| GBi-Net | | | 94.49 267 | 93.80 278 | 96.56 249 | 98.21 198 | 95.00 205 | 98.82 133 | 98.18 238 | 92.46 290 | 94.09 272 | 97.07 298 | 81.16 332 | 97.95 346 | 92.08 290 | 92.14 301 | 96.72 305 |
|
| test1 | | | 94.49 267 | 93.80 278 | 96.56 249 | 98.21 198 | 95.00 205 | 98.82 133 | 98.18 238 | 92.46 290 | 94.09 272 | 97.07 298 | 81.16 332 | 97.95 346 | 92.08 290 | 92.14 301 | 96.72 305 |
|
| dmvs_re | | | 94.48 269 | 94.18 248 | 95.37 312 | 97.68 248 | 90.11 344 | 98.54 196 | 97.08 342 | 94.56 191 | 94.42 255 | 97.24 284 | 84.25 306 | 97.76 359 | 91.02 318 | 92.83 295 | 98.24 235 |
|
| v8 | | | 94.47 270 | 93.77 281 | 96.57 248 | 96.36 336 | 94.83 217 | 99.05 69 | 98.19 235 | 91.92 310 | 93.16 311 | 96.97 314 | 88.82 213 | 98.48 290 | 91.69 303 | 87.79 358 | 96.39 346 |
|
| FMVSNet2 | | | 94.47 270 | 93.61 291 | 97.04 209 | 98.21 198 | 96.43 134 | 98.79 148 | 98.27 223 | 92.46 290 | 93.50 299 | 97.09 295 | 81.16 332 | 98.00 343 | 91.09 312 | 91.93 304 | 96.70 309 |
|
| test2506 | | | 94.44 272 | 93.91 269 | 96.04 283 | 99.02 114 | 88.99 366 | 99.06 67 | 79.47 425 | 96.96 71 | 98.36 101 | 99.26 59 | 77.21 367 | 99.52 163 | 96.78 144 | 99.04 130 | 99.59 82 |
|
| Patchmatch-test | | | 94.42 273 | 93.68 289 | 96.63 239 | 97.60 255 | 91.76 309 | 94.83 398 | 97.49 312 | 89.45 366 | 94.14 270 | 97.10 291 | 88.99 205 | 98.83 261 | 85.37 377 | 98.13 178 | 99.29 132 |
|
| PEN-MVS | | | 94.42 273 | 93.73 285 | 96.49 257 | 96.28 339 | 94.84 215 | 99.17 49 | 99.00 39 | 93.51 248 | 92.23 339 | 97.83 235 | 86.10 269 | 97.90 350 | 92.55 281 | 86.92 370 | 96.74 302 |
|
| v144192 | | | 94.39 275 | 93.70 287 | 96.48 259 | 96.06 348 | 94.35 240 | 98.58 187 | 98.16 246 | 91.45 322 | 94.33 260 | 97.02 309 | 87.50 245 | 98.45 295 | 91.08 314 | 89.11 344 | 96.63 317 |
|
| Baseline_NR-MVSNet | | | 94.35 276 | 93.81 277 | 95.96 288 | 96.20 341 | 94.05 251 | 98.61 184 | 96.67 369 | 91.44 323 | 93.85 284 | 97.60 256 | 88.57 216 | 98.14 331 | 94.39 222 | 86.93 369 | 95.68 366 |
|
| miper_lstm_enhance | | | 94.33 277 | 94.07 255 | 95.11 320 | 97.75 241 | 90.97 323 | 97.22 335 | 98.03 271 | 91.67 318 | 92.76 323 | 96.97 314 | 90.03 179 | 97.78 358 | 92.51 283 | 89.64 333 | 96.56 326 |
|
| v1192 | | | 94.32 278 | 93.58 292 | 96.53 254 | 96.10 346 | 94.45 234 | 98.50 203 | 98.17 244 | 91.54 320 | 94.19 268 | 97.06 302 | 86.95 254 | 98.43 298 | 90.14 327 | 89.57 334 | 96.70 309 |
|
| UWE-MVS | | | 94.30 279 | 93.89 272 | 95.53 305 | 97.83 236 | 88.95 367 | 97.52 314 | 93.25 406 | 94.44 199 | 96.63 190 | 97.07 298 | 78.70 353 | 99.28 194 | 91.99 295 | 97.56 199 | 98.36 231 |
|
| ACMH+ | | 92.99 14 | 94.30 279 | 93.77 281 | 95.88 293 | 97.81 238 | 92.04 306 | 98.71 163 | 98.37 204 | 93.99 216 | 90.60 358 | 98.47 171 | 80.86 338 | 99.05 224 | 92.75 274 | 92.40 300 | 96.55 328 |
|
| v148 | | | 94.29 281 | 93.76 283 | 95.91 290 | 96.10 346 | 92.93 294 | 98.58 187 | 97.97 274 | 92.59 288 | 93.47 300 | 96.95 318 | 88.53 220 | 98.32 316 | 92.56 280 | 87.06 368 | 96.49 340 |
|
| v10 | | | 94.29 281 | 93.55 294 | 96.51 256 | 96.39 335 | 94.80 219 | 98.99 86 | 98.19 235 | 91.35 327 | 93.02 317 | 96.99 312 | 88.09 229 | 98.41 306 | 90.50 324 | 88.41 353 | 96.33 350 |
|
| MVP-Stereo | | | 94.28 283 | 93.92 267 | 95.35 313 | 94.95 378 | 92.60 297 | 97.97 269 | 97.65 292 | 91.61 319 | 90.68 357 | 97.09 295 | 86.32 266 | 98.42 299 | 89.70 338 | 99.34 120 | 95.02 380 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UniMVSNet_ETH3D | | | 94.24 284 | 93.33 302 | 96.97 214 | 97.19 291 | 93.38 277 | 98.74 154 | 98.57 157 | 91.21 336 | 93.81 286 | 98.58 160 | 72.85 392 | 98.77 268 | 95.05 201 | 93.93 274 | 98.77 202 |
|
| OurMVSNet-221017-0 | | | 94.21 285 | 94.00 262 | 94.85 330 | 95.60 362 | 89.22 361 | 98.89 110 | 97.43 320 | 95.29 150 | 92.18 340 | 98.52 168 | 82.86 322 | 98.59 283 | 93.46 253 | 91.76 306 | 96.74 302 |
|
| v1921920 | | | 94.20 286 | 93.47 298 | 96.40 268 | 95.98 351 | 94.08 250 | 98.52 197 | 98.15 247 | 91.33 328 | 94.25 264 | 97.20 288 | 86.41 264 | 98.42 299 | 90.04 332 | 89.39 341 | 96.69 314 |
|
| WB-MVSnew | | | 94.19 287 | 94.04 256 | 94.66 337 | 96.82 314 | 92.14 301 | 97.86 285 | 95.96 382 | 93.50 249 | 95.64 223 | 96.77 330 | 88.06 231 | 97.99 344 | 84.87 380 | 96.86 213 | 93.85 397 |
|
| v7n | | | 94.19 287 | 93.43 300 | 96.47 260 | 95.90 354 | 94.38 239 | 99.26 27 | 98.34 210 | 91.99 308 | 92.76 323 | 97.13 290 | 88.31 223 | 98.52 288 | 89.48 343 | 87.70 359 | 96.52 334 |
|
| tpm2 | | | 94.19 287 | 93.76 283 | 95.46 309 | 97.23 285 | 89.04 364 | 97.31 330 | 96.85 363 | 87.08 381 | 96.21 209 | 96.79 329 | 83.75 320 | 98.74 269 | 92.43 286 | 96.23 242 | 98.59 218 |
|
| TESTMET0.1,1 | | | 94.18 290 | 93.69 288 | 95.63 302 | 96.92 306 | 89.12 362 | 96.91 357 | 94.78 395 | 93.17 264 | 94.88 237 | 96.45 343 | 78.52 354 | 98.92 246 | 93.09 262 | 98.50 162 | 98.85 191 |
|
| dp | | | 94.15 291 | 93.90 270 | 94.90 327 | 97.31 281 | 86.82 389 | 96.97 352 | 97.19 337 | 91.22 335 | 96.02 215 | 96.61 339 | 85.51 279 | 99.02 231 | 90.00 333 | 94.30 259 | 98.85 191 |
|
| ET-MVSNet_ETH3D | | | 94.13 292 | 92.98 309 | 97.58 177 | 98.22 197 | 96.20 145 | 97.31 330 | 95.37 389 | 94.53 193 | 79.56 406 | 97.63 255 | 86.51 259 | 97.53 368 | 96.91 128 | 90.74 320 | 99.02 177 |
|
| tpm | | | 94.13 292 | 93.80 278 | 95.12 319 | 96.50 330 | 87.91 383 | 97.44 316 | 95.89 385 | 92.62 286 | 96.37 206 | 96.30 346 | 84.13 311 | 98.30 320 | 93.24 258 | 91.66 309 | 99.14 160 |
|
| testing222 | | | 94.12 294 | 93.03 308 | 97.37 191 | 98.02 220 | 94.66 222 | 97.94 272 | 96.65 371 | 94.63 188 | 95.78 221 | 95.76 363 | 71.49 393 | 98.92 246 | 91.17 310 | 95.88 249 | 98.52 222 |
|
| IterMVS-SCA-FT | | | 94.11 295 | 93.87 273 | 94.85 330 | 97.98 225 | 90.56 336 | 97.18 340 | 98.11 254 | 93.75 229 | 92.58 329 | 97.48 264 | 83.97 314 | 97.41 371 | 92.48 285 | 91.30 312 | 96.58 322 |
|
| Anonymous20231211 | | | 94.10 296 | 93.26 305 | 96.61 242 | 99.11 107 | 94.28 243 | 99.01 81 | 98.88 62 | 86.43 384 | 92.81 321 | 97.57 259 | 81.66 328 | 98.68 275 | 94.83 206 | 89.02 347 | 96.88 288 |
|
| IterMVS | | | 94.09 297 | 93.85 275 | 94.80 333 | 97.99 223 | 90.35 340 | 97.18 340 | 98.12 251 | 93.68 240 | 92.46 335 | 97.34 275 | 84.05 312 | 97.41 371 | 92.51 283 | 91.33 311 | 96.62 318 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test-mter | | | 94.08 298 | 93.51 296 | 95.80 295 | 96.77 315 | 89.70 350 | 96.91 357 | 95.21 390 | 92.89 277 | 94.83 240 | 95.72 368 | 77.69 362 | 98.97 235 | 93.06 263 | 98.50 162 | 98.72 203 |
|
| test0.0.03 1 | | | 94.08 298 | 93.51 296 | 95.80 295 | 95.53 366 | 92.89 295 | 97.38 321 | 95.97 381 | 95.11 160 | 92.51 333 | 96.66 334 | 87.71 239 | 96.94 378 | 87.03 365 | 93.67 278 | 97.57 258 |
|
| v1240 | | | 94.06 300 | 93.29 304 | 96.34 271 | 96.03 350 | 93.90 254 | 98.44 210 | 98.17 244 | 91.18 337 | 94.13 271 | 97.01 311 | 86.05 270 | 98.42 299 | 89.13 348 | 89.50 338 | 96.70 309 |
|
| X-MVStestdata | | | 94.06 300 | 92.30 324 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 62 | 97.40 40 | 98.46 93 | 43.50 420 | 95.90 45 | 99.89 50 | 97.85 80 | 99.74 51 | 99.78 23 |
|
| DTE-MVSNet | | | 93.98 302 | 93.26 305 | 96.14 279 | 96.06 348 | 94.39 238 | 99.20 42 | 98.86 75 | 93.06 270 | 91.78 345 | 97.81 237 | 85.87 274 | 97.58 366 | 90.53 323 | 86.17 375 | 96.46 344 |
|
| pm-mvs1 | | | 93.94 303 | 93.06 307 | 96.59 245 | 96.49 331 | 95.16 198 | 98.95 95 | 98.03 271 | 92.32 299 | 91.08 353 | 97.84 232 | 84.54 302 | 98.41 306 | 92.16 288 | 86.13 378 | 96.19 355 |
|
| MS-PatchMatch | | | 93.84 304 | 93.63 290 | 94.46 347 | 96.18 342 | 89.45 357 | 97.76 295 | 98.27 223 | 92.23 302 | 92.13 341 | 97.49 263 | 79.50 348 | 98.69 272 | 89.75 336 | 99.38 117 | 95.25 372 |
|
| tfpnnormal | | | 93.66 305 | 92.70 315 | 96.55 253 | 96.94 305 | 95.94 160 | 98.97 89 | 99.19 24 | 91.04 338 | 91.38 350 | 97.34 275 | 84.94 290 | 98.61 280 | 85.45 376 | 89.02 347 | 95.11 376 |
|
| EU-MVSNet | | | 93.66 305 | 94.14 251 | 92.25 374 | 95.96 353 | 83.38 398 | 98.52 197 | 98.12 251 | 94.69 184 | 92.61 328 | 98.13 206 | 87.36 248 | 96.39 390 | 91.82 299 | 90.00 329 | 96.98 274 |
|
| our_test_3 | | | 93.65 307 | 93.30 303 | 94.69 335 | 95.45 370 | 89.68 352 | 96.91 357 | 97.65 292 | 91.97 309 | 91.66 348 | 96.88 322 | 89.67 186 | 97.93 349 | 88.02 359 | 91.49 310 | 96.48 342 |
|
| pmmvs5 | | | 93.65 307 | 92.97 310 | 95.68 299 | 95.49 367 | 92.37 298 | 98.20 238 | 97.28 331 | 89.66 362 | 92.58 329 | 97.26 281 | 82.14 325 | 98.09 336 | 93.18 261 | 90.95 319 | 96.58 322 |
|
| test_fmvs2 | | | 93.43 309 | 93.58 292 | 92.95 368 | 96.97 303 | 83.91 394 | 99.19 44 | 97.24 334 | 95.74 126 | 95.20 232 | 98.27 195 | 69.65 395 | 98.72 271 | 96.26 158 | 93.73 277 | 96.24 352 |
|
| tpm cat1 | | | 93.36 310 | 92.80 312 | 95.07 323 | 97.58 257 | 87.97 382 | 96.76 369 | 97.86 282 | 82.17 402 | 93.53 295 | 96.04 357 | 86.13 268 | 99.13 212 | 89.24 346 | 95.87 250 | 98.10 241 |
|
| JIA-IIPM | | | 93.35 311 | 92.49 320 | 95.92 289 | 96.48 332 | 90.65 333 | 95.01 393 | 96.96 353 | 85.93 388 | 96.08 213 | 87.33 410 | 87.70 241 | 98.78 267 | 91.35 307 | 95.58 254 | 98.34 232 |
|
| SixPastTwentyTwo | | | 93.34 312 | 92.86 311 | 94.75 334 | 95.67 360 | 89.41 359 | 98.75 151 | 96.67 369 | 93.89 221 | 90.15 363 | 98.25 198 | 80.87 337 | 98.27 325 | 90.90 319 | 90.64 321 | 96.57 324 |
|
| USDC | | | 93.33 313 | 92.71 314 | 95.21 316 | 96.83 313 | 90.83 329 | 96.91 357 | 97.50 310 | 93.84 224 | 90.72 356 | 98.14 205 | 77.69 362 | 98.82 263 | 89.51 342 | 93.21 291 | 95.97 360 |
|
| IB-MVS | | 91.98 17 | 93.27 314 | 91.97 328 | 97.19 197 | 97.47 267 | 93.41 274 | 97.09 347 | 95.99 380 | 93.32 257 | 92.47 334 | 95.73 366 | 78.06 360 | 99.53 160 | 94.59 217 | 82.98 386 | 98.62 215 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MIMVSNet | | | 93.26 315 | 92.21 325 | 96.41 266 | 97.73 245 | 93.13 288 | 95.65 388 | 97.03 348 | 91.27 333 | 94.04 275 | 96.06 356 | 75.33 381 | 97.19 374 | 86.56 367 | 96.23 242 | 98.92 188 |
|
| ppachtmachnet_test | | | 93.22 316 | 92.63 316 | 94.97 325 | 95.45 370 | 90.84 328 | 96.88 363 | 97.88 281 | 90.60 344 | 92.08 342 | 97.26 281 | 88.08 230 | 97.86 355 | 85.12 379 | 90.33 323 | 96.22 353 |
|
| Patchmtry | | | 93.22 316 | 92.35 323 | 95.84 294 | 96.77 315 | 93.09 291 | 94.66 401 | 97.56 300 | 87.37 380 | 92.90 319 | 96.24 347 | 88.15 227 | 97.90 350 | 87.37 364 | 90.10 328 | 96.53 331 |
|
| testing3 | | | 93.19 318 | 92.48 321 | 95.30 315 | 98.07 212 | 92.27 299 | 98.64 178 | 97.17 338 | 93.94 220 | 93.98 278 | 97.04 306 | 67.97 399 | 96.01 394 | 88.40 354 | 97.14 205 | 97.63 255 |
|
| FMVSNet1 | | | 93.19 318 | 92.07 326 | 96.56 249 | 97.54 262 | 95.00 205 | 98.82 133 | 98.18 238 | 90.38 350 | 92.27 338 | 97.07 298 | 73.68 390 | 97.95 346 | 89.36 345 | 91.30 312 | 96.72 305 |
|
| LF4IMVS | | | 93.14 320 | 92.79 313 | 94.20 351 | 95.88 355 | 88.67 371 | 97.66 303 | 97.07 344 | 93.81 227 | 91.71 346 | 97.65 250 | 77.96 361 | 98.81 264 | 91.47 306 | 91.92 305 | 95.12 375 |
|
| mmtdpeth | | | 93.12 321 | 92.61 317 | 94.63 339 | 97.60 255 | 89.68 352 | 99.21 39 | 97.32 327 | 94.02 211 | 97.72 143 | 94.42 385 | 77.01 372 | 99.44 178 | 99.05 19 | 77.18 407 | 94.78 385 |
|
| testgi | | | 93.06 322 | 92.45 322 | 94.88 329 | 96.43 334 | 89.90 345 | 98.75 151 | 97.54 306 | 95.60 133 | 91.63 349 | 97.91 224 | 74.46 387 | 97.02 376 | 86.10 370 | 93.67 278 | 97.72 252 |
|
| PatchT | | | 93.06 322 | 91.97 328 | 96.35 270 | 96.69 321 | 92.67 296 | 94.48 404 | 97.08 342 | 86.62 382 | 97.08 168 | 92.23 404 | 87.94 234 | 97.90 350 | 78.89 401 | 96.69 218 | 98.49 224 |
|
| RPMNet | | | 92.81 324 | 91.34 334 | 97.24 193 | 97.00 300 | 93.43 272 | 94.96 394 | 98.80 96 | 82.27 401 | 96.93 176 | 92.12 405 | 86.98 253 | 99.82 79 | 76.32 406 | 96.65 220 | 98.46 226 |
|
| myMVS_eth3d | | | 92.73 325 | 92.01 327 | 94.89 328 | 97.39 277 | 90.94 324 | 97.91 275 | 97.46 314 | 93.16 265 | 93.42 302 | 95.37 375 | 68.09 398 | 96.12 392 | 88.34 355 | 96.99 209 | 97.60 256 |
|
| TransMVSNet (Re) | | | 92.67 326 | 91.51 333 | 96.15 278 | 96.58 326 | 94.65 223 | 98.90 106 | 96.73 365 | 90.86 341 | 89.46 369 | 97.86 229 | 85.62 277 | 98.09 336 | 86.45 368 | 81.12 393 | 95.71 365 |
|
| ttmdpeth | | | 92.61 327 | 91.96 330 | 94.55 341 | 94.10 388 | 90.60 335 | 98.52 197 | 97.29 329 | 92.67 284 | 90.18 361 | 97.92 223 | 79.75 347 | 97.79 357 | 91.09 312 | 86.15 377 | 95.26 371 |
|
| Syy-MVS | | | 92.55 328 | 92.61 317 | 92.38 371 | 97.39 277 | 83.41 397 | 97.91 275 | 97.46 314 | 93.16 265 | 93.42 302 | 95.37 375 | 84.75 295 | 96.12 392 | 77.00 405 | 96.99 209 | 97.60 256 |
|
| K. test v3 | | | 92.55 328 | 91.91 331 | 94.48 345 | 95.64 361 | 89.24 360 | 99.07 66 | 94.88 394 | 94.04 209 | 86.78 385 | 97.59 257 | 77.64 365 | 97.64 363 | 92.08 290 | 89.43 340 | 96.57 324 |
|
| DSMNet-mixed | | | 92.52 330 | 92.58 319 | 92.33 372 | 94.15 387 | 82.65 400 | 98.30 226 | 94.26 401 | 89.08 371 | 92.65 327 | 95.73 366 | 85.01 289 | 95.76 396 | 86.24 369 | 97.76 191 | 98.59 218 |
|
| TinyColmap | | | 92.31 331 | 91.53 332 | 94.65 338 | 96.92 306 | 89.75 348 | 96.92 355 | 96.68 368 | 90.45 348 | 89.62 366 | 97.85 231 | 76.06 379 | 98.81 264 | 86.74 366 | 92.51 299 | 95.41 369 |
|
| gg-mvs-nofinetune | | | 92.21 332 | 90.58 340 | 97.13 202 | 96.75 318 | 95.09 202 | 95.85 385 | 89.40 418 | 85.43 392 | 94.50 248 | 81.98 413 | 80.80 339 | 98.40 312 | 92.16 288 | 98.33 172 | 97.88 245 |
|
| FMVSNet5 | | | 91.81 333 | 90.92 336 | 94.49 344 | 97.21 287 | 92.09 303 | 98.00 266 | 97.55 305 | 89.31 369 | 90.86 355 | 95.61 372 | 74.48 386 | 95.32 400 | 85.57 374 | 89.70 332 | 96.07 358 |
|
| pmmvs6 | | | 91.77 334 | 90.63 339 | 95.17 318 | 94.69 384 | 91.24 320 | 98.67 173 | 97.92 279 | 86.14 386 | 89.62 366 | 97.56 261 | 75.79 380 | 98.34 313 | 90.75 321 | 84.56 380 | 95.94 361 |
|
| Anonymous20231206 | | | 91.66 335 | 91.10 335 | 93.33 362 | 94.02 392 | 87.35 386 | 98.58 187 | 97.26 333 | 90.48 346 | 90.16 362 | 96.31 345 | 83.83 318 | 96.53 388 | 79.36 399 | 89.90 330 | 96.12 356 |
|
| Patchmatch-RL test | | | 91.49 336 | 90.85 337 | 93.41 360 | 91.37 403 | 84.40 392 | 92.81 408 | 95.93 384 | 91.87 312 | 87.25 381 | 94.87 381 | 88.99 205 | 96.53 388 | 92.54 282 | 82.00 388 | 99.30 130 |
|
| test_0402 | | | 91.32 337 | 90.27 343 | 94.48 345 | 96.60 325 | 91.12 321 | 98.50 203 | 97.22 335 | 86.10 387 | 88.30 377 | 96.98 313 | 77.65 364 | 97.99 344 | 78.13 403 | 92.94 293 | 94.34 386 |
|
| test_vis1_rt | | | 91.29 338 | 90.65 338 | 93.19 366 | 97.45 271 | 86.25 390 | 98.57 193 | 90.90 416 | 93.30 259 | 86.94 384 | 93.59 394 | 62.07 408 | 99.11 216 | 97.48 110 | 95.58 254 | 94.22 389 |
|
| PVSNet_0 | | 88.72 19 | 91.28 339 | 90.03 346 | 95.00 324 | 97.99 223 | 87.29 387 | 94.84 397 | 98.50 177 | 92.06 307 | 89.86 364 | 95.19 377 | 79.81 346 | 99.39 184 | 92.27 287 | 69.79 413 | 98.33 233 |
|
| mvs5depth | | | 91.23 340 | 90.17 344 | 94.41 349 | 92.09 400 | 89.79 347 | 95.26 392 | 96.50 373 | 90.73 342 | 91.69 347 | 97.06 302 | 76.12 378 | 98.62 279 | 88.02 359 | 84.11 383 | 94.82 382 |
|
| Anonymous20240521 | | | 91.18 341 | 90.44 341 | 93.42 359 | 93.70 393 | 88.47 375 | 98.94 98 | 97.56 300 | 88.46 375 | 89.56 368 | 95.08 380 | 77.15 370 | 96.97 377 | 83.92 386 | 89.55 336 | 94.82 382 |
|
| EG-PatchMatch MVS | | | 91.13 342 | 90.12 345 | 94.17 353 | 94.73 383 | 89.00 365 | 98.13 250 | 97.81 284 | 89.22 370 | 85.32 395 | 96.46 342 | 67.71 400 | 98.42 299 | 87.89 362 | 93.82 276 | 95.08 377 |
|
| TDRefinement | | | 91.06 343 | 89.68 348 | 95.21 316 | 85.35 418 | 91.49 316 | 98.51 202 | 97.07 344 | 91.47 321 | 88.83 375 | 97.84 232 | 77.31 366 | 99.09 221 | 92.79 273 | 77.98 405 | 95.04 379 |
|
| UnsupCasMVSNet_eth | | | 90.99 344 | 89.92 347 | 94.19 352 | 94.08 389 | 89.83 346 | 97.13 346 | 98.67 132 | 93.69 238 | 85.83 391 | 96.19 352 | 75.15 382 | 96.74 382 | 89.14 347 | 79.41 400 | 96.00 359 |
|
| test20.03 | | | 90.89 345 | 90.38 342 | 92.43 370 | 93.48 394 | 88.14 381 | 98.33 219 | 97.56 300 | 93.40 254 | 87.96 378 | 96.71 333 | 80.69 340 | 94.13 405 | 79.15 400 | 86.17 375 | 95.01 381 |
|
| MDA-MVSNet_test_wron | | | 90.71 346 | 89.38 351 | 94.68 336 | 94.83 380 | 90.78 330 | 97.19 339 | 97.46 314 | 87.60 378 | 72.41 413 | 95.72 368 | 86.51 259 | 96.71 385 | 85.92 372 | 86.80 372 | 96.56 326 |
|
| YYNet1 | | | 90.70 347 | 89.39 350 | 94.62 340 | 94.79 382 | 90.65 333 | 97.20 337 | 97.46 314 | 87.54 379 | 72.54 412 | 95.74 364 | 86.51 259 | 96.66 386 | 86.00 371 | 86.76 373 | 96.54 329 |
|
| KD-MVS_self_test | | | 90.38 348 | 89.38 351 | 93.40 361 | 92.85 397 | 88.94 368 | 97.95 270 | 97.94 277 | 90.35 351 | 90.25 360 | 93.96 391 | 79.82 345 | 95.94 395 | 84.62 385 | 76.69 408 | 95.33 370 |
|
| pmmvs-eth3d | | | 90.36 349 | 89.05 354 | 94.32 350 | 91.10 405 | 92.12 302 | 97.63 308 | 96.95 354 | 88.86 373 | 84.91 396 | 93.13 399 | 78.32 356 | 96.74 382 | 88.70 351 | 81.81 390 | 94.09 392 |
|
| CL-MVSNet_self_test | | | 90.11 350 | 89.14 353 | 93.02 367 | 91.86 402 | 88.23 380 | 96.51 377 | 98.07 264 | 90.49 345 | 90.49 359 | 94.41 386 | 84.75 295 | 95.34 399 | 80.79 395 | 74.95 410 | 95.50 368 |
|
| new_pmnet | | | 90.06 351 | 89.00 355 | 93.22 365 | 94.18 386 | 88.32 378 | 96.42 379 | 96.89 359 | 86.19 385 | 85.67 392 | 93.62 393 | 77.18 369 | 97.10 375 | 81.61 393 | 89.29 342 | 94.23 388 |
|
| MDA-MVSNet-bldmvs | | | 89.97 352 | 88.35 358 | 94.83 332 | 95.21 374 | 91.34 317 | 97.64 305 | 97.51 309 | 88.36 376 | 71.17 414 | 96.13 354 | 79.22 350 | 96.63 387 | 83.65 387 | 86.27 374 | 96.52 334 |
|
| CMPMVS |  | 66.06 21 | 89.70 353 | 89.67 349 | 89.78 379 | 93.19 395 | 76.56 405 | 97.00 351 | 98.35 207 | 80.97 403 | 81.57 401 | 97.75 240 | 74.75 384 | 98.61 280 | 89.85 334 | 93.63 280 | 94.17 390 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet1 | | | 89.67 354 | 88.28 359 | 93.82 356 | 92.81 398 | 91.08 322 | 98.01 264 | 97.45 318 | 87.95 377 | 87.90 379 | 95.87 362 | 67.63 401 | 94.56 404 | 78.73 402 | 88.18 355 | 95.83 363 |
|
| KD-MVS_2432*1600 | | | 89.61 355 | 87.96 363 | 94.54 342 | 94.06 390 | 91.59 314 | 95.59 389 | 97.63 294 | 89.87 358 | 88.95 372 | 94.38 388 | 78.28 357 | 96.82 380 | 84.83 381 | 68.05 414 | 95.21 373 |
|
| miper_refine_blended | | | 89.61 355 | 87.96 363 | 94.54 342 | 94.06 390 | 91.59 314 | 95.59 389 | 97.63 294 | 89.87 358 | 88.95 372 | 94.38 388 | 78.28 357 | 96.82 380 | 84.83 381 | 68.05 414 | 95.21 373 |
|
| MVStest1 | | | 89.53 357 | 87.99 362 | 94.14 355 | 94.39 385 | 90.42 338 | 98.25 233 | 96.84 364 | 82.81 398 | 81.18 403 | 97.33 277 | 77.09 371 | 96.94 378 | 85.27 378 | 78.79 401 | 95.06 378 |
|
| MVS-HIRNet | | | 89.46 358 | 88.40 357 | 92.64 369 | 97.58 257 | 82.15 401 | 94.16 407 | 93.05 410 | 75.73 409 | 90.90 354 | 82.52 412 | 79.42 349 | 98.33 315 | 83.53 388 | 98.68 149 | 97.43 259 |
|
| OpenMVS_ROB |  | 86.42 20 | 89.00 359 | 87.43 367 | 93.69 357 | 93.08 396 | 89.42 358 | 97.91 275 | 96.89 359 | 78.58 405 | 85.86 390 | 94.69 382 | 69.48 396 | 98.29 323 | 77.13 404 | 93.29 290 | 93.36 399 |
|
| mvsany_test3 | | | 88.80 360 | 88.04 360 | 91.09 378 | 89.78 408 | 81.57 403 | 97.83 290 | 95.49 388 | 93.81 227 | 87.53 380 | 93.95 392 | 56.14 411 | 97.43 370 | 94.68 210 | 83.13 385 | 94.26 387 |
|
| new-patchmatchnet | | | 88.50 361 | 87.45 366 | 91.67 376 | 90.31 407 | 85.89 391 | 97.16 344 | 97.33 326 | 89.47 365 | 83.63 398 | 92.77 401 | 76.38 375 | 95.06 402 | 82.70 390 | 77.29 406 | 94.06 394 |
|
| APD_test1 | | | 88.22 362 | 88.01 361 | 88.86 381 | 95.98 351 | 74.66 413 | 97.21 336 | 96.44 375 | 83.96 397 | 86.66 387 | 97.90 225 | 60.95 409 | 97.84 356 | 82.73 389 | 90.23 326 | 94.09 392 |
|
| PM-MVS | | | 87.77 363 | 86.55 369 | 91.40 377 | 91.03 406 | 83.36 399 | 96.92 355 | 95.18 392 | 91.28 332 | 86.48 389 | 93.42 395 | 53.27 412 | 96.74 382 | 89.43 344 | 81.97 389 | 94.11 391 |
|
| dmvs_testset | | | 87.64 364 | 88.93 356 | 83.79 390 | 95.25 373 | 63.36 422 | 97.20 337 | 91.17 414 | 93.07 269 | 85.64 393 | 95.98 361 | 85.30 286 | 91.52 412 | 69.42 411 | 87.33 364 | 96.49 340 |
|
| test_fmvs3 | | | 87.17 365 | 87.06 368 | 87.50 383 | 91.21 404 | 75.66 408 | 99.05 69 | 96.61 372 | 92.79 281 | 88.85 374 | 92.78 400 | 43.72 415 | 93.49 406 | 93.95 238 | 84.56 380 | 93.34 400 |
|
| UnsupCasMVSNet_bld | | | 87.17 365 | 85.12 372 | 93.31 363 | 91.94 401 | 88.77 369 | 94.92 396 | 98.30 220 | 84.30 396 | 82.30 399 | 90.04 407 | 63.96 406 | 97.25 373 | 85.85 373 | 74.47 412 | 93.93 396 |
|
| N_pmnet | | | 87.12 367 | 87.77 365 | 85.17 387 | 95.46 369 | 61.92 423 | 97.37 323 | 70.66 428 | 85.83 389 | 88.73 376 | 96.04 357 | 85.33 284 | 97.76 359 | 80.02 396 | 90.48 322 | 95.84 362 |
|
| pmmvs3 | | | 86.67 368 | 84.86 373 | 92.11 375 | 88.16 412 | 87.19 388 | 96.63 373 | 94.75 396 | 79.88 404 | 87.22 382 | 92.75 402 | 66.56 403 | 95.20 401 | 81.24 394 | 76.56 409 | 93.96 395 |
|
| test_f | | | 86.07 369 | 85.39 370 | 88.10 382 | 89.28 410 | 75.57 409 | 97.73 298 | 96.33 377 | 89.41 368 | 85.35 394 | 91.56 406 | 43.31 417 | 95.53 397 | 91.32 308 | 84.23 382 | 93.21 401 |
|
| WB-MVS | | | 84.86 370 | 85.33 371 | 83.46 391 | 89.48 409 | 69.56 417 | 98.19 241 | 96.42 376 | 89.55 364 | 81.79 400 | 94.67 383 | 84.80 293 | 90.12 413 | 52.44 417 | 80.64 397 | 90.69 404 |
|
| SSC-MVS | | | 84.27 371 | 84.71 374 | 82.96 395 | 89.19 411 | 68.83 418 | 98.08 257 | 96.30 378 | 89.04 372 | 81.37 402 | 94.47 384 | 84.60 300 | 89.89 414 | 49.80 419 | 79.52 399 | 90.15 405 |
|
| dongtai | | | 82.47 372 | 81.88 375 | 84.22 389 | 95.19 375 | 76.03 406 | 94.59 403 | 74.14 427 | 82.63 399 | 87.19 383 | 96.09 355 | 64.10 405 | 87.85 417 | 58.91 415 | 84.11 383 | 88.78 409 |
|
| test_vis3_rt | | | 79.22 373 | 77.40 380 | 84.67 388 | 86.44 416 | 74.85 412 | 97.66 303 | 81.43 423 | 84.98 393 | 67.12 416 | 81.91 414 | 28.09 425 | 97.60 364 | 88.96 349 | 80.04 398 | 81.55 414 |
|
| test_method | | | 79.03 374 | 78.17 376 | 81.63 396 | 86.06 417 | 54.40 428 | 82.75 416 | 96.89 359 | 39.54 420 | 80.98 404 | 95.57 373 | 58.37 410 | 94.73 403 | 84.74 384 | 78.61 402 | 95.75 364 |
|
| testf1 | | | 79.02 375 | 77.70 377 | 82.99 393 | 88.10 413 | 66.90 419 | 94.67 399 | 93.11 407 | 71.08 411 | 74.02 409 | 93.41 396 | 34.15 421 | 93.25 407 | 72.25 409 | 78.50 403 | 88.82 407 |
|
| APD_test2 | | | 79.02 375 | 77.70 377 | 82.99 393 | 88.10 413 | 66.90 419 | 94.67 399 | 93.11 407 | 71.08 411 | 74.02 409 | 93.41 396 | 34.15 421 | 93.25 407 | 72.25 409 | 78.50 403 | 88.82 407 |
|
| LCM-MVSNet | | | 78.70 377 | 76.24 383 | 86.08 385 | 77.26 424 | 71.99 415 | 94.34 405 | 96.72 366 | 61.62 415 | 76.53 407 | 89.33 408 | 33.91 423 | 92.78 410 | 81.85 392 | 74.60 411 | 93.46 398 |
|
| kuosan | | | 78.45 378 | 77.69 379 | 80.72 397 | 92.73 399 | 75.32 410 | 94.63 402 | 74.51 426 | 75.96 407 | 80.87 405 | 93.19 398 | 63.23 407 | 79.99 421 | 42.56 421 | 81.56 392 | 86.85 413 |
|
| Gipuma |  | | 78.40 379 | 76.75 382 | 83.38 392 | 95.54 364 | 80.43 404 | 79.42 417 | 97.40 322 | 64.67 414 | 73.46 411 | 80.82 415 | 45.65 414 | 93.14 409 | 66.32 413 | 87.43 362 | 76.56 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 77.95 380 | 75.44 384 | 85.46 386 | 82.54 419 | 74.95 411 | 94.23 406 | 93.08 409 | 72.80 410 | 74.68 408 | 87.38 409 | 36.36 420 | 91.56 411 | 73.95 407 | 63.94 416 | 89.87 406 |
|
| FPMVS | | | 77.62 381 | 77.14 381 | 79.05 399 | 79.25 422 | 60.97 424 | 95.79 386 | 95.94 383 | 65.96 413 | 67.93 415 | 94.40 387 | 37.73 419 | 88.88 416 | 68.83 412 | 88.46 352 | 87.29 410 |
|
| EGC-MVSNET | | | 75.22 382 | 69.54 385 | 92.28 373 | 94.81 381 | 89.58 354 | 97.64 305 | 96.50 373 | 1.82 425 | 5.57 426 | 95.74 364 | 68.21 397 | 96.26 391 | 73.80 408 | 91.71 307 | 90.99 403 |
|
| ANet_high | | | 69.08 383 | 65.37 387 | 80.22 398 | 65.99 426 | 71.96 416 | 90.91 412 | 90.09 417 | 82.62 400 | 49.93 421 | 78.39 416 | 29.36 424 | 81.75 418 | 62.49 414 | 38.52 420 | 86.95 412 |
|
| tmp_tt | | | 68.90 384 | 66.97 386 | 74.68 401 | 50.78 428 | 59.95 425 | 87.13 413 | 83.47 422 | 38.80 421 | 62.21 417 | 96.23 349 | 64.70 404 | 76.91 423 | 88.91 350 | 30.49 421 | 87.19 411 |
|
| PMVS |  | 61.03 23 | 65.95 385 | 63.57 389 | 73.09 402 | 57.90 427 | 51.22 429 | 85.05 415 | 93.93 405 | 54.45 416 | 44.32 422 | 83.57 411 | 13.22 426 | 89.15 415 | 58.68 416 | 81.00 394 | 78.91 416 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 64.94 386 | 64.25 388 | 67.02 403 | 82.28 420 | 59.36 426 | 91.83 411 | 85.63 420 | 52.69 417 | 60.22 418 | 77.28 417 | 41.06 418 | 80.12 420 | 46.15 420 | 41.14 418 | 61.57 419 |
|
| EMVS | | | 64.07 387 | 63.26 390 | 66.53 404 | 81.73 421 | 58.81 427 | 91.85 410 | 84.75 421 | 51.93 419 | 59.09 419 | 75.13 418 | 43.32 416 | 79.09 422 | 42.03 422 | 39.47 419 | 61.69 418 |
|
| MVE |  | 62.14 22 | 63.28 388 | 59.38 391 | 74.99 400 | 74.33 425 | 65.47 421 | 85.55 414 | 80.50 424 | 52.02 418 | 51.10 420 | 75.00 419 | 10.91 429 | 80.50 419 | 51.60 418 | 53.40 417 | 78.99 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 30.17 389 | 30.18 393 | 30.16 405 | 78.61 423 | 43.29 430 | 66.79 418 | 14.21 429 | 17.31 422 | 14.82 425 | 11.93 425 | 11.55 428 | 41.43 424 | 37.08 423 | 19.30 422 | 5.76 422 |
|
| cdsmvs_eth3d_5k | | | 23.98 390 | 31.98 392 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 98.59 150 | 0.00 426 | 0.00 427 | 98.61 155 | 90.60 169 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| testmvs | | | 21.48 391 | 24.95 394 | 11.09 407 | 14.89 429 | 6.47 432 | 96.56 375 | 9.87 430 | 7.55 423 | 17.93 423 | 39.02 421 | 9.43 430 | 5.90 426 | 16.56 425 | 12.72 423 | 20.91 421 |
|
| test123 | | | 20.95 392 | 23.72 395 | 12.64 406 | 13.54 430 | 8.19 431 | 96.55 376 | 6.13 431 | 7.48 424 | 16.74 424 | 37.98 422 | 12.97 427 | 6.05 425 | 16.69 424 | 5.43 424 | 23.68 420 |
|
| ab-mvs-re | | | 8.20 393 | 10.94 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 98.43 173 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 7.88 394 | 10.50 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 94.51 87 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 90.94 324 | | | | | | | | 88.66 352 | | |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 46 | 97.46 38 | 99.39 30 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 97 | 99.08 11 | | 98.63 143 | | | | | 99.94 9 | 98.53 38 | 99.80 24 | 99.86 7 |
|
| PC_three_1452 | | | | | | | | | | 95.08 164 | 99.60 19 | 99.16 80 | 97.86 2 | 98.47 293 | 97.52 108 | 99.72 57 | 99.74 39 |
|
| No_MVS | | | | | 99.62 6 | 99.17 97 | 99.08 11 | | 98.63 143 | | | | | 99.94 9 | 98.53 38 | 99.80 24 | 99.86 7 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 75 | 97.55 32 | 99.20 42 | 99.47 23 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.46 52 | 98.70 23 | | 98.79 101 | 93.21 262 | 98.67 80 | 98.97 110 | 95.70 49 | 99.83 72 | 96.07 162 | 99.58 85 | |
|
| RE-MVS-def | | | | 98.34 39 | | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 96 | 96.49 94 | 99.17 45 | 99.35 46 | 95.29 65 | | 97.72 88 | 99.65 70 | 99.71 52 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 140 | 95.28 151 | 99.63 18 | | | | 98.35 55 | 99.81 15 | 99.83 12 |
|
| OPU-MVS | | | | | 99.37 22 | 99.24 90 | 99.05 14 | 99.02 79 | | | | 99.16 80 | 97.81 3 | 99.37 185 | 97.24 117 | 99.73 54 | 99.70 56 |
|
| test_241102_TWO | | | | | | | | | 98.87 69 | 97.65 25 | 99.53 23 | 99.48 21 | 97.34 11 | 99.94 9 | 98.43 50 | 99.80 24 | 99.83 12 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 69 | 97.62 27 | 99.73 10 | 99.39 34 | 97.53 7 | 99.74 114 | | | |
|
| 9.14 | | | | 98.06 63 | | 99.47 50 | | 98.71 163 | 98.82 84 | 94.36 201 | 99.16 48 | 99.29 55 | 96.05 37 | 99.81 84 | 97.00 123 | 99.71 59 | |
|
| save fliter | | | | | | 99.46 52 | 98.38 35 | 98.21 236 | 98.71 119 | 97.95 16 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 97.32 46 | 99.45 25 | 99.46 27 | 97.88 1 | 99.94 9 | 98.47 46 | 99.86 2 | 99.85 9 |
|
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 89 | 98.88 62 | | | | | 99.94 9 | 98.47 46 | 99.81 15 | 99.84 11 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 67 | 98.88 62 | 97.62 27 | 99.56 20 | 99.50 18 | 97.42 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 147 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 39 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 192 | | | | 99.20 147 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 205 | | | | |
|
| ambc | | | | | 89.49 380 | 86.66 415 | 75.78 407 | 92.66 409 | 96.72 366 | | 86.55 388 | 92.50 403 | 46.01 413 | 97.90 350 | 90.32 325 | 82.09 387 | 94.80 384 |
|
| MTGPA |  | | | | | | | | 98.74 111 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 372 | | | | 30.43 424 | 87.85 238 | 98.69 272 | 92.59 278 | | |
|
| test_post | | | | | | | | | | | | 31.83 423 | 88.83 212 | 98.91 248 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 379 | 89.42 193 | 98.89 252 | | | |
|
| GG-mvs-BLEND | | | | | 96.59 245 | 96.34 337 | 94.98 208 | 96.51 377 | 88.58 419 | | 93.10 316 | 94.34 390 | 80.34 344 | 98.05 339 | 89.53 341 | 96.99 209 | 96.74 302 |
|
| MTMP | | | | | | | | 98.89 110 | 94.14 403 | | | | | | | | |
|
| gm-plane-assit | | | | | | 95.88 355 | 87.47 385 | | | 89.74 361 | | 96.94 319 | | 99.19 204 | 93.32 257 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 156 | 99.57 86 | 99.69 59 |
|
| TEST9 | | | | | | 99.31 67 | 98.50 29 | 97.92 273 | 98.73 114 | 92.63 285 | 97.74 140 | 98.68 150 | 96.20 32 | 99.80 91 | | | |
|
| test_8 | | | | | | 99.29 76 | 98.44 31 | 97.89 281 | 98.72 116 | 92.98 273 | 97.70 145 | 98.66 153 | 96.20 32 | 99.80 91 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 172 | 99.57 86 | 99.68 64 |
|
| agg_prior | | | | | | 99.30 71 | 98.38 35 | | 98.72 116 | | 97.57 157 | | | 99.81 84 | | | |
|
| TestCases | | | | | 96.99 211 | 99.25 84 | 93.21 286 | | 98.18 238 | 91.36 325 | 93.52 296 | 98.77 139 | 84.67 298 | 99.72 116 | 89.70 338 | 97.87 186 | 98.02 243 |
|
| test_prior4 | | | | | | | 98.01 64 | 97.86 285 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 97.80 292 | | 96.12 111 | 97.89 133 | 98.69 149 | 95.96 41 | | 96.89 132 | 99.60 80 | |
|
| test_prior | | | | | 99.19 43 | 99.31 67 | 98.22 51 | | 98.84 79 | | | | | 99.70 122 | | | 99.65 72 |
|
| 旧先验2 | | | | | | | | 97.57 311 | | 91.30 330 | 98.67 80 | | | 99.80 91 | 95.70 181 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 97.64 305 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 99.16 48 | 99.34 60 | 98.01 64 | | 98.69 124 | 90.06 355 | 98.13 109 | 98.95 117 | 94.60 85 | 99.89 50 | 91.97 297 | 99.47 105 | 99.59 82 |
|
| 旧先验1 | | | | | | 99.29 76 | 97.48 82 | | 98.70 123 | | | 99.09 96 | 95.56 52 | | | 99.47 105 | 99.61 78 |
|
| æ— å…ˆéªŒ | | | | | | | | 97.58 310 | 98.72 116 | 91.38 324 | | | | 99.87 61 | 93.36 256 | | 99.60 80 |
|
| 原ACMM2 | | | | | | | | 97.67 302 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.65 84 | 99.32 65 | 96.62 121 | | 98.67 132 | 93.27 261 | 97.81 135 | 98.97 110 | 95.18 72 | 99.83 72 | 93.84 242 | 99.46 108 | 99.50 94 |
|
| test222 | | | | | | 99.23 91 | 97.17 101 | 97.40 319 | 98.66 135 | 88.68 374 | 98.05 115 | 98.96 115 | 94.14 98 | | | 99.53 97 | 99.61 78 |
|
| testdata2 | | | | | | | | | | | | | | 99.89 50 | 91.65 304 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata | | | | | 98.26 119 | 99.20 95 | 95.36 187 | | 98.68 127 | 91.89 311 | 98.60 88 | 99.10 89 | 94.44 92 | 99.82 79 | 94.27 228 | 99.44 109 | 99.58 86 |
|
| testdata1 | | | | | | | | 97.32 329 | | 96.34 102 | | | | | | | |
|
| test12 | | | | | 99.18 45 | 99.16 101 | 98.19 53 | | 98.53 166 | | 98.07 113 | | 95.13 75 | 99.72 116 | | 99.56 92 | 99.63 76 |
|
| plane_prior7 | | | | | | 97.42 273 | 94.63 225 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 280 | 94.61 228 | | | | | | 87.09 250 | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 160 | | | | | 99.03 228 | 96.07 162 | 94.27 260 | 96.92 279 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 192 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 228 | | | 97.02 68 | 95.34 227 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 142 | | 97.28 49 | | | | | | | |
|
| plane_prior1 | | | | | | 97.37 279 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.60 230 | 98.44 210 | | 96.74 82 | | | | | | 94.22 262 | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 399 | | | | | | | | |
|
| lessismore_v0 | | | | | 94.45 348 | 94.93 379 | 88.44 376 | | 91.03 415 | | 86.77 386 | 97.64 253 | 76.23 377 | 98.42 299 | 90.31 326 | 85.64 379 | 96.51 337 |
|
| LGP-MVS_train | | | | | 96.47 260 | 97.46 268 | 93.54 267 | | 98.54 164 | 94.67 186 | 94.36 258 | 98.77 139 | 85.39 280 | 99.11 216 | 95.71 179 | 94.15 266 | 96.76 300 |
|
| test11 | | | | | | | | | 98.66 135 | | | | | | | | |
|
| door | | | | | | | | | 94.64 397 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 246 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.20 288 | | 98.05 260 | | 96.43 96 | 94.45 250 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 288 | | 98.05 260 | | 96.43 96 | 94.45 250 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 192 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 250 | | | 98.96 239 | | | 96.87 291 |
|
| HQP3-MVS | | | | | | | | | 98.46 184 | | | | | | | 94.18 264 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 256 | | | | |
|
| NP-MVS | | | | | | 97.28 282 | 94.51 233 | | | | | 97.73 241 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 393 | 96.89 362 | | 90.97 339 | 97.90 132 | | 89.89 181 | | 93.91 240 | | 99.18 156 |
|
| MDTV_nov1_ep13 | | | | 95.40 180 | | 97.48 266 | 88.34 377 | 96.85 365 | 97.29 329 | 93.74 231 | 97.48 159 | 97.26 281 | 89.18 199 | 99.05 224 | 91.92 298 | 97.43 201 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 292 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 281 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 84 | | | | |
|
| ITE_SJBPF | | | | | 95.44 310 | 97.42 273 | 91.32 318 | | 97.50 310 | 95.09 163 | 93.59 292 | 98.35 183 | 81.70 327 | 98.88 254 | 89.71 337 | 93.39 287 | 96.12 356 |
|
| DeepMVS_CX |  | | | | 86.78 384 | 97.09 298 | 72.30 414 | | 95.17 393 | 75.92 408 | 84.34 397 | 95.19 377 | 70.58 394 | 95.35 398 | 79.98 398 | 89.04 346 | 92.68 402 |
|