| SED-MVS |  |  | 99.09 1 | 98.91 2 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 74 | 98.87 67 | 97.65 20 | 99.73 8 | 99.48 18 | 97.53 7 | 99.94 6 | 98.43 40 | 99.81 12 | 99.70 51 | 
 | 
| DVP-MVS++ |  |  | 99.08 2 | 98.89 3 | 99.64 3 | 99.17 92 | 99.23 7 | 99.69 1 | 98.88 60 | 97.32 40 | 99.53 21 | 99.47 20 | 97.81 3 | 99.94 6 | 98.47 36 | 99.72 49 | 99.74 35 | 
 | 
| DVP-MVS |   |  | 99.03 3 | 98.83 7 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 84 | 98.58 147 | 97.62 22 | 99.45 23 | 99.46 24 | 97.42 9 | 99.94 6 | 98.47 36 | 99.81 12 | 99.69 54 | 
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 | 
| APDe-MVS |   |  | 99.02 4 | 98.84 6 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 48 | 97.38 37 | 99.41 26 | 99.54 8 | 96.66 17 | 99.84 65 | 98.86 19 | 99.85 5 | 99.87 5 | 
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition | 
| test_fmvsmconf_n |  |  | 98.92 5 | 98.87 4 | 99.04 53 | 98.88 123 | 97.25 86 | 98.82 124 | 99.34 10 | 98.75 3 | 99.80 3 | 99.61 4 | 95.16 66 | 99.95 5 | 99.70 4 | 99.80 19 | 99.93 1 | 
 | 
| DPE-MVS |   |  | 98.92 5 | 98.67 10 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 201 | 98.91 54 | 97.58 25 | 99.54 20 | 99.46 24 | 97.10 12 | 99.94 6 | 97.64 85 | 99.84 10 | 99.83 11 | 
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 | 
| SteuartSystems-ACMMP |  |  | 98.90 7 | 98.75 8 | 99.36 21 | 99.22 87 | 98.43 33 | 99.10 58 | 98.87 67 | 97.38 37 | 99.35 30 | 99.40 29 | 97.78 5 | 99.87 56 | 97.77 75 | 99.85 5 | 99.78 19 | 
| Skip Steuart: Steuart Systems R&D Blog. | 
| test_fmvsm_n_1920 |  |  | 98.87 8 | 99.01 1 | 98.45 91 | 99.42 54 | 96.43 124 | 98.96 89 | 99.36 9 | 98.63 5 | 99.86 2 | 99.51 13 | 95.91 37 | 99.97 1 | 99.72 3 | 99.75 40 | 98.94 172 | 
 | 
| TSAR-MVS + MP. |  |  | 98.78 9 | 98.62 11 | 99.24 36 | 99.69 24 | 98.28 45 | 99.14 49 | 98.66 129 | 96.84 69 | 99.56 18 | 99.31 49 | 96.34 23 | 99.70 117 | 98.32 46 | 99.73 46 | 99.73 40 | 
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition | 
| CNVR-MVS |  |  | 98.78 9 | 98.56 14 | 99.45 15 | 99.32 60 | 98.87 19 | 98.47 193 | 98.81 84 | 97.72 15 | 98.76 66 | 99.16 75 | 97.05 13 | 99.78 99 | 98.06 55 | 99.66 59 | 99.69 54 | 
 | 
| MSP-MVS |  |  | 98.74 11 | 98.55 15 | 99.29 29 | 99.75 3 | 98.23 46 | 99.26 27 | 98.88 60 | 97.52 27 | 99.41 26 | 98.78 128 | 96.00 33 | 99.79 96 | 97.79 74 | 99.59 74 | 99.85 8 | 
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 | 
| XVS |  |  | 98.70 12 | 98.49 19 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 60 | 97.40 34 | 98.46 84 | 99.20 65 | 95.90 39 | 99.89 45 | 97.85 69 | 99.74 44 | 99.78 19 | 
 | 
| MCST-MVS |  |  | 98.65 13 | 98.37 27 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 202 | 98.68 121 | 97.04 61 | 98.52 83 | 98.80 126 | 96.78 16 | 99.83 67 | 97.93 62 | 99.61 70 | 99.74 35 | 
 | 
| SD-MVS |  |  | 98.64 14 | 98.68 9 | 98.53 83 | 99.33 57 | 98.36 40 | 98.90 99 | 98.85 76 | 97.28 43 | 99.72 10 | 99.39 30 | 96.63 19 | 97.60 341 | 98.17 50 | 99.85 5 | 99.64 69 | 
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 | 
| HFP-MVS |  |  | 98.63 15 | 98.40 24 | 99.32 28 | 99.72 12 | 98.29 44 | 99.23 31 | 98.96 43 | 96.10 102 | 98.94 51 | 99.17 72 | 96.06 30 | 99.92 29 | 97.62 86 | 99.78 28 | 99.75 33 | 
 | 
| ACMMP_NAP |  |  | 98.61 16 | 98.30 39 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 124 | 98.81 84 | 95.80 116 | 99.16 42 | 99.47 20 | 95.37 54 | 99.92 29 | 97.89 66 | 99.75 40 | 99.79 17 | 
 | 
| region2R |  |  | 98.61 16 | 98.38 26 | 99.29 29 | 99.74 7 | 98.16 51 | 99.23 31 | 98.93 48 | 96.15 99 | 98.94 51 | 99.17 72 | 95.91 37 | 99.94 6 | 97.55 93 | 99.79 24 | 99.78 19 | 
 | 
| NCCC |  |  | 98.61 16 | 98.35 30 | 99.38 18 | 99.28 75 | 98.61 26 | 98.45 194 | 98.76 102 | 97.82 14 | 98.45 87 | 98.93 112 | 96.65 18 | 99.83 67 | 97.38 102 | 99.41 104 | 99.71 47 | 
 | 
| SF-MVS |  |  | 98.59 19 | 98.32 38 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 68 | 98.81 84 | 95.12 151 | 99.32 31 | 99.39 30 | 96.22 24 | 99.84 65 | 97.72 78 | 99.73 46 | 99.67 63 | 
 | 
| ACMMPR |  |  | 98.59 19 | 98.36 28 | 99.29 29 | 99.74 7 | 98.15 52 | 99.23 31 | 98.95 44 | 96.10 102 | 98.93 55 | 99.19 70 | 95.70 43 | 99.94 6 | 97.62 86 | 99.79 24 | 99.78 19 | 
 | 
| test_fmvsmconf0.1_n |  |  | 98.58 21 | 98.44 22 | 98.99 55 | 97.73 223 | 97.15 91 | 98.84 120 | 98.97 40 | 98.75 3 | 99.43 25 | 99.54 8 | 93.29 100 | 99.93 23 | 99.64 7 | 99.79 24 | 99.89 4 | 
 | 
| SMA-MVS |   |  | 98.58 21 | 98.25 42 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 90 | 98.80 91 | 93.67 222 | 99.37 29 | 99.52 11 | 96.52 21 | 99.89 45 | 98.06 55 | 99.81 12 | 99.76 32 | 
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology | 
| MTAPA |  |  | 98.58 21 | 98.29 40 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 99 | 98.74 106 | 97.27 47 | 98.02 109 | 99.39 30 | 94.81 75 | 99.96 4 | 97.91 64 | 99.79 24 | 99.77 25 | 
 | 
| HPM-MVS++ |   |  | 98.58 21 | 98.25 42 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 152 | 98.66 129 | 97.51 28 | 98.15 98 | 98.83 123 | 95.70 43 | 99.92 29 | 97.53 95 | 99.67 57 | 99.66 66 | 
 | 
| SR-MVS |  |  | 98.57 25 | 98.35 30 | 99.24 36 | 99.53 36 | 98.18 49 | 99.09 59 | 98.82 79 | 96.58 81 | 99.10 44 | 99.32 47 | 95.39 52 | 99.82 74 | 97.70 82 | 99.63 67 | 99.72 43 | 
 | 
| CP-MVS |  |  | 98.57 25 | 98.36 28 | 99.19 40 | 99.66 26 | 97.86 62 | 99.34 18 | 98.87 67 | 95.96 107 | 98.60 79 | 99.13 80 | 96.05 31 | 99.94 6 | 97.77 75 | 99.86 1 | 99.77 25 | 
 | 
| MSLP-MVS++ |  |  | 98.56 27 | 98.57 13 | 98.55 79 | 99.26 78 | 96.80 103 | 98.71 153 | 99.05 34 | 97.28 43 | 98.84 60 | 99.28 52 | 96.47 22 | 99.40 166 | 98.52 34 | 99.70 52 | 99.47 98 | 
 | 
| DeepC-MVS_fast |  | 96.70 1 | 98.55 28 | 98.34 33 | 99.18 42 | 99.25 79 | 98.04 57 | 98.50 190 | 98.78 98 | 97.72 15 | 98.92 57 | 99.28 52 | 95.27 60 | 99.82 74 | 97.55 93 | 99.77 30 | 99.69 54 | 
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 | 
| SR-MVS-dyc-post |  |  | 98.54 29 | 98.35 30 | 99.13 47 | 99.49 45 | 97.86 62 | 99.11 55 | 98.80 91 | 96.49 84 | 99.17 39 | 99.35 42 | 95.34 56 | 99.82 74 | 97.72 78 | 99.65 62 | 99.71 47 | 
 | 
| APD-MVS_3200maxsize |  |  | 98.53 30 | 98.33 37 | 99.15 46 | 99.50 41 | 97.92 61 | 99.15 47 | 98.81 84 | 96.24 95 | 99.20 36 | 99.37 36 | 95.30 58 | 99.80 86 | 97.73 77 | 99.67 57 | 99.72 43 | 
 | 
| mPP-MVS |  |  | 98.51 31 | 98.26 41 | 99.25 35 | 99.75 3 | 98.04 57 | 99.28 24 | 98.81 84 | 96.24 95 | 98.35 94 | 99.23 60 | 95.46 49 | 99.94 6 | 97.42 100 | 99.81 12 | 99.77 25 | 
 | 
| ZNCC-MVS |  |  | 98.49 32 | 98.20 49 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 42 | 98.86 73 | 95.77 117 | 98.31 97 | 99.10 84 | 95.46 49 | 99.93 23 | 97.57 92 | 99.81 12 | 99.74 35 | 
 | 
| CS-MVS-test |  |  | 98.49 32 | 98.50 18 | 98.46 90 | 99.20 90 | 97.05 93 | 99.64 4 | 98.50 167 | 97.45 33 | 98.88 58 | 99.14 79 | 95.25 62 | 99.15 189 | 98.83 20 | 99.56 84 | 99.20 137 | 
 | 
| PGM-MVS |  |  | 98.49 32 | 98.23 45 | 99.27 34 | 99.72 12 | 98.08 56 | 98.99 81 | 99.49 5 | 95.43 133 | 99.03 45 | 99.32 47 | 95.56 46 | 99.94 6 | 96.80 131 | 99.77 30 | 99.78 19 | 
 | 
| MVS_0304 |  |  | 98.47 35 | 98.22 47 | 99.21 39 | 99.00 111 | 97.80 67 | 98.88 107 | 95.32 366 | 98.86 2 | 98.53 82 | 99.44 27 | 94.38 85 | 99.94 6 | 99.86 1 | 99.70 52 | 99.90 3 | 
 | 
| EI-MVSNet-Vis-set |  |  | 98.47 35 | 98.39 25 | 98.69 70 | 99.46 49 | 96.49 121 | 98.30 213 | 98.69 118 | 97.21 50 | 98.84 60 | 99.36 40 | 95.41 51 | 99.78 99 | 98.62 24 | 99.65 62 | 99.80 16 | 
 | 
| MVS_111021_HR |  |  | 98.47 35 | 98.34 33 | 98.88 64 | 99.22 87 | 97.32 79 | 97.91 256 | 99.58 3 | 97.20 51 | 98.33 95 | 99.00 101 | 95.99 34 | 99.64 129 | 98.05 57 | 99.76 36 | 99.69 54 | 
 | 
| test_fmvsmvis_n_1920 |  |  | 98.44 38 | 98.51 16 | 98.23 111 | 98.33 175 | 96.15 139 | 98.97 84 | 99.15 26 | 98.55 7 | 98.45 87 | 99.55 6 | 94.26 89 | 99.97 1 | 99.65 5 | 99.66 59 | 98.57 202 | 
 | 
| CS-MVS |  |  | 98.44 38 | 98.49 19 | 98.31 103 | 99.08 104 | 96.73 107 | 99.67 3 | 98.47 173 | 97.17 53 | 98.94 51 | 99.10 84 | 95.73 42 | 99.13 192 | 98.71 22 | 99.49 94 | 99.09 155 | 
 | 
| GST-MVS |  |  | 98.43 40 | 98.12 52 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 59 | 98.82 79 | 95.71 121 | 98.73 69 | 99.06 94 | 95.27 60 | 99.93 23 | 97.07 111 | 99.63 67 | 99.72 43 | 
 | 
| fmvsm_s_conf0.5_n |  |  | 98.42 41 | 98.51 16 | 98.13 120 | 99.30 66 | 95.25 185 | 98.85 116 | 99.39 7 | 97.94 12 | 99.74 7 | 99.62 3 | 92.59 108 | 99.91 37 | 99.65 5 | 99.52 90 | 99.25 131 | 
 | 
| EI-MVSNet-UG-set |  |  | 98.41 42 | 98.34 33 | 98.61 75 | 99.45 52 | 96.32 132 | 98.28 216 | 98.68 121 | 97.17 53 | 98.74 67 | 99.37 36 | 95.25 62 | 99.79 96 | 98.57 25 | 99.54 87 | 99.73 40 | 
 | 
| DELS-MVS |  |  | 98.40 43 | 98.20 49 | 98.99 55 | 99.00 111 | 97.66 68 | 97.75 274 | 98.89 57 | 97.71 17 | 98.33 95 | 98.97 103 | 94.97 72 | 99.88 54 | 98.42 42 | 99.76 36 | 99.42 109 | 
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 | 
| fmvsm_s_conf0.5_n_a |  |  | 98.38 44 | 98.42 23 | 98.27 105 | 99.09 103 | 95.41 176 | 98.86 114 | 99.37 8 | 97.69 19 | 99.78 4 | 99.61 4 | 92.38 111 | 99.91 37 | 99.58 8 | 99.43 102 | 99.49 94 | 
 | 
| TSAR-MVS + GP. |  |  | 98.38 44 | 98.24 44 | 98.81 66 | 99.22 87 | 97.25 86 | 98.11 238 | 98.29 209 | 97.19 52 | 98.99 50 | 99.02 96 | 96.22 24 | 99.67 124 | 98.52 34 | 98.56 147 | 99.51 87 | 
 | 
| HPM-MVS_fast |  |  | 98.38 44 | 98.13 51 | 99.12 49 | 99.75 3 | 97.86 62 | 99.44 11 | 98.82 79 | 94.46 182 | 98.94 51 | 99.20 65 | 95.16 66 | 99.74 109 | 97.58 89 | 99.85 5 | 99.77 25 | 
 | 
| patch_mono-2 |  |  | 98.36 47 | 98.87 4 | 96.82 210 | 99.53 36 | 90.68 315 | 98.64 167 | 99.29 12 | 97.88 13 | 99.19 38 | 99.52 11 | 96.80 15 | 99.97 1 | 99.11 14 | 99.86 1 | 99.82 14 | 
 | 
| HPM-MVS |   |  | 98.36 47 | 98.10 54 | 99.13 47 | 99.74 7 | 97.82 66 | 99.53 8 | 98.80 91 | 94.63 174 | 98.61 78 | 98.97 103 | 95.13 68 | 99.77 104 | 97.65 84 | 99.83 11 | 99.79 17 | 
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 | 
| APD-MVS |   |  | 98.35 49 | 98.00 59 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 133 | 98.82 79 | 94.52 179 | 99.23 35 | 99.25 59 | 95.54 48 | 99.80 86 | 96.52 139 | 99.77 30 | 99.74 35 | 
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 | 
| MVS_111021_LR |  |  | 98.34 50 | 98.23 45 | 98.67 72 | 99.27 76 | 96.90 99 | 97.95 252 | 99.58 3 | 97.14 56 | 98.44 89 | 99.01 100 | 95.03 71 | 99.62 135 | 97.91 64 | 99.75 40 | 99.50 89 | 
 | 
| PHI-MVS |  |  | 98.34 50 | 98.06 55 | 99.18 42 | 99.15 98 | 98.12 55 | 99.04 68 | 99.09 29 | 93.32 236 | 98.83 62 | 99.10 84 | 96.54 20 | 99.83 67 | 97.70 82 | 99.76 36 | 99.59 77 | 
 | 
| MP-MVS |   |  | 98.33 52 | 98.01 58 | 99.28 32 | 99.75 3 | 98.18 49 | 99.22 35 | 98.79 96 | 96.13 100 | 97.92 120 | 99.23 60 | 94.54 78 | 99.94 6 | 96.74 134 | 99.78 28 | 99.73 40 | 
| Rongxuan Tan, Qing Wang,  et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. | 
| MP-MVS-pluss |  |  | 98.31 53 | 97.92 61 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 199 | 98.78 98 | 94.10 190 | 97.69 133 | 99.42 28 | 95.25 62 | 99.92 29 | 98.09 54 | 99.80 19 | 99.67 63 | 
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss | 
| ACMMP |   |  | 98.23 54 | 97.95 60 | 99.09 50 | 99.74 7 | 97.62 71 | 99.03 71 | 99.41 6 | 95.98 105 | 97.60 141 | 99.36 40 | 94.45 83 | 99.93 23 | 97.14 108 | 98.85 133 | 99.70 51 | 
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence | 
| EC-MVSNet |  |  | 98.21 55 | 98.11 53 | 98.49 87 | 98.34 173 | 97.26 85 | 99.61 5 | 98.43 182 | 96.78 72 | 98.87 59 | 98.84 121 | 93.72 96 | 99.01 213 | 98.91 18 | 99.50 92 | 99.19 141 | 
 | 
| fmvsm_s_conf0.1_n |  |  | 98.18 56 | 98.21 48 | 98.11 124 | 98.54 155 | 95.24 186 | 98.87 111 | 99.24 15 | 97.50 29 | 99.70 11 | 99.67 1 | 91.33 143 | 99.89 45 | 99.47 10 | 99.54 87 | 99.21 136 | 
 | 
| fmvsm_s_conf0.1_n_a |  |  | 98.08 57 | 98.04 57 | 98.21 112 | 97.66 229 | 95.39 177 | 98.89 103 | 99.17 24 | 97.24 48 | 99.76 6 | 99.67 1 | 91.13 148 | 99.88 54 | 99.39 11 | 99.41 104 | 99.35 113 | 
 | 
| dcpmvs_2 |  |  | 98.08 57 | 98.59 12 | 96.56 234 | 99.57 33 | 90.34 322 | 99.15 47 | 98.38 191 | 96.82 71 | 99.29 32 | 99.49 17 | 95.78 41 | 99.57 140 | 98.94 17 | 99.86 1 | 99.77 25 | 
 | 
| CANet |  |  | 98.05 59 | 97.76 64 | 98.90 63 | 98.73 135 | 97.27 81 | 98.35 204 | 98.78 98 | 97.37 39 | 97.72 131 | 98.96 108 | 91.53 139 | 99.92 29 | 98.79 21 | 99.65 62 | 99.51 87 | 
 | 
| train_agg |  |  | 97.97 60 | 97.52 76 | 99.33 26 | 99.31 62 | 98.50 29 | 97.92 254 | 98.73 109 | 92.98 252 | 97.74 128 | 98.68 140 | 96.20 26 | 99.80 86 | 96.59 135 | 99.57 78 | 99.68 59 | 
 | 
| ETV-MVS |  |  | 97.96 61 | 97.81 62 | 98.40 98 | 98.42 162 | 97.27 81 | 98.73 148 | 98.55 153 | 96.84 69 | 98.38 91 | 97.44 259 | 95.39 52 | 99.35 169 | 97.62 86 | 98.89 129 | 98.58 201 | 
 | 
| UA-Net |  |  | 97.96 61 | 97.62 68 | 98.98 57 | 98.86 126 | 97.47 76 | 98.89 103 | 99.08 30 | 96.67 78 | 98.72 70 | 99.54 8 | 93.15 102 | 99.81 79 | 94.87 188 | 98.83 134 | 99.65 67 | 
 | 
| CDPH-MVS |  |  | 97.94 63 | 97.49 77 | 99.28 32 | 99.47 47 | 98.44 31 | 97.91 256 | 98.67 126 | 92.57 267 | 98.77 65 | 98.85 120 | 95.93 36 | 99.72 111 | 95.56 171 | 99.69 54 | 99.68 59 | 
 | 
| DeepPCF-MVS |  | 96.37 2 | 97.93 64 | 98.48 21 | 96.30 260 | 99.00 111 | 89.54 334 | 97.43 295 | 98.87 67 | 98.16 9 | 99.26 34 | 99.38 35 | 96.12 29 | 99.64 129 | 98.30 47 | 99.77 30 | 99.72 43 | 
 | 
| DeepC-MVS |  | 95.98 3 | 97.88 65 | 97.58 70 | 98.77 67 | 99.25 79 | 96.93 97 | 98.83 122 | 98.75 104 | 96.96 65 | 96.89 165 | 99.50 15 | 90.46 162 | 99.87 56 | 97.84 71 | 99.76 36 | 99.52 84 | 
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 | 
| test_fmvsmconf0.01_n |  |  | 97.86 66 | 97.54 75 | 98.83 65 | 95.48 346 | 96.83 102 | 98.95 90 | 98.60 139 | 98.58 6 | 98.93 55 | 99.55 6 | 88.57 204 | 99.91 37 | 99.54 9 | 99.61 70 | 99.77 25 | 
 | 
| DP-MVS Recon |  |  | 97.86 66 | 97.46 80 | 99.06 52 | 99.53 36 | 98.35 41 | 98.33 206 | 98.89 57 | 92.62 264 | 98.05 104 | 98.94 111 | 95.34 56 | 99.65 127 | 96.04 154 | 99.42 103 | 99.19 141 | 
 | 
| CSCG |  |  | 97.85 68 | 97.74 65 | 98.20 114 | 99.67 25 | 95.16 189 | 99.22 35 | 99.32 11 | 93.04 250 | 97.02 158 | 98.92 114 | 95.36 55 | 99.91 37 | 97.43 99 | 99.64 66 | 99.52 84 | 
 | 
| MG-MVS |  |  | 97.81 69 | 97.60 69 | 98.44 93 | 99.12 100 | 95.97 149 | 97.75 274 | 98.78 98 | 96.89 68 | 98.46 84 | 99.22 62 | 93.90 95 | 99.68 123 | 94.81 192 | 99.52 90 | 99.67 63 | 
 | 
| VNet |  |  | 97.79 70 | 97.40 84 | 98.96 59 | 98.88 123 | 97.55 73 | 98.63 170 | 98.93 48 | 96.74 75 | 99.02 46 | 98.84 121 | 90.33 165 | 99.83 67 | 98.53 28 | 96.66 204 | 99.50 89 | 
 | 
| EIA-MVS |  |  | 97.75 71 | 97.58 70 | 98.27 105 | 98.38 165 | 96.44 123 | 99.01 76 | 98.60 139 | 95.88 113 | 97.26 147 | 97.53 253 | 94.97 72 | 99.33 171 | 97.38 102 | 99.20 116 | 99.05 161 | 
 | 
| PS-MVSNAJ |  |  | 97.73 72 | 97.77 63 | 97.62 161 | 98.68 143 | 95.58 168 | 97.34 304 | 98.51 162 | 97.29 42 | 98.66 75 | 97.88 220 | 94.51 79 | 99.90 43 | 97.87 68 | 99.17 118 | 97.39 240 | 
 | 
| casdiffmvs_mvg |   |  | 97.72 73 | 97.48 79 | 98.44 93 | 98.42 162 | 96.59 115 | 98.92 97 | 98.44 178 | 96.20 97 | 97.76 125 | 99.20 65 | 91.66 133 | 99.23 179 | 98.27 49 | 98.41 156 | 99.49 94 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| CPTT-MVS |  |  | 97.72 73 | 97.32 88 | 98.92 61 | 99.64 28 | 97.10 92 | 99.12 53 | 98.81 84 | 92.34 275 | 98.09 102 | 99.08 92 | 93.01 103 | 99.92 29 | 96.06 153 | 99.77 30 | 99.75 33 | 
 | 
| PVSNet_Blended_VisFu |  |  | 97.70 75 | 97.46 80 | 98.44 93 | 99.27 76 | 95.91 157 | 98.63 170 | 99.16 25 | 94.48 181 | 97.67 134 | 98.88 117 | 92.80 105 | 99.91 37 | 97.11 109 | 99.12 119 | 99.50 89 | 
 | 
| mvsany_test1 |  |  | 97.69 76 | 97.70 66 | 97.66 159 | 98.24 181 | 94.18 238 | 97.53 290 | 97.53 295 | 95.52 129 | 99.66 13 | 99.51 13 | 94.30 87 | 99.56 143 | 98.38 43 | 98.62 143 | 99.23 133 | 
 | 
| canonicalmvs |  |  | 97.67 77 | 97.23 91 | 98.98 57 | 98.70 140 | 98.38 35 | 99.34 18 | 98.39 188 | 96.76 74 | 97.67 134 | 97.40 262 | 92.26 115 | 99.49 156 | 98.28 48 | 96.28 220 | 99.08 159 | 
 | 
| xiu_mvs_v2_base |  |  | 97.66 78 | 97.70 66 | 97.56 165 | 98.61 150 | 95.46 174 | 97.44 293 | 98.46 174 | 97.15 55 | 98.65 76 | 98.15 197 | 94.33 86 | 99.80 86 | 97.84 71 | 98.66 142 | 97.41 238 | 
 | 
| baseline |  |  | 97.64 79 | 97.44 82 | 98.25 109 | 98.35 168 | 96.20 136 | 99.00 78 | 98.32 199 | 96.33 94 | 98.03 107 | 99.17 72 | 91.35 142 | 99.16 186 | 98.10 53 | 98.29 163 | 99.39 110 | 
 | 
| casdiffmvs |   |  | 97.63 80 | 97.41 83 | 98.28 104 | 98.33 175 | 96.14 140 | 98.82 124 | 98.32 199 | 96.38 92 | 97.95 115 | 99.21 63 | 91.23 147 | 99.23 179 | 98.12 52 | 98.37 157 | 99.48 96 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| xiu_mvs_v1_base_debu |  |  | 97.60 81 | 97.56 72 | 97.72 150 | 98.35 168 | 95.98 144 | 97.86 265 | 98.51 162 | 97.13 57 | 99.01 47 | 98.40 170 | 91.56 135 | 99.80 86 | 98.53 28 | 98.68 138 | 97.37 242 | 
 | 
| xiu_mvs_v1_base |  |  | 97.60 81 | 97.56 72 | 97.72 150 | 98.35 168 | 95.98 144 | 97.86 265 | 98.51 162 | 97.13 57 | 99.01 47 | 98.40 170 | 91.56 135 | 99.80 86 | 98.53 28 | 98.68 138 | 97.37 242 | 
 | 
| xiu_mvs_v1_base_debi |  |  | 97.60 81 | 97.56 72 | 97.72 150 | 98.35 168 | 95.98 144 | 97.86 265 | 98.51 162 | 97.13 57 | 99.01 47 | 98.40 170 | 91.56 135 | 99.80 86 | 98.53 28 | 98.68 138 | 97.37 242 | 
 | 
| diffmvs |   |  | 97.58 84 | 97.40 84 | 98.13 120 | 98.32 178 | 95.81 162 | 98.06 242 | 98.37 192 | 96.20 97 | 98.74 67 | 98.89 116 | 91.31 145 | 99.25 176 | 98.16 51 | 98.52 148 | 99.34 114 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| MVSFormer |  |  | 97.57 85 | 97.49 77 | 97.84 138 | 98.07 199 | 95.76 163 | 99.47 9 | 98.40 186 | 94.98 159 | 98.79 63 | 98.83 123 | 92.34 112 | 98.41 287 | 96.91 117 | 99.59 74 | 99.34 114 | 
 | 
| alignmvs |  |  | 97.56 86 | 97.07 98 | 99.01 54 | 98.66 145 | 98.37 39 | 98.83 122 | 98.06 255 | 96.74 75 | 98.00 113 | 97.65 242 | 90.80 156 | 99.48 160 | 98.37 44 | 96.56 208 | 99.19 141 | 
 | 
| DPM-MVS |  |  | 97.55 87 | 96.99 101 | 99.23 38 | 99.04 106 | 98.55 27 | 97.17 319 | 98.35 195 | 94.85 166 | 97.93 119 | 98.58 151 | 95.07 70 | 99.71 116 | 92.60 259 | 99.34 111 | 99.43 107 | 
 | 
| OMC-MVS |  |  | 97.55 87 | 97.34 87 | 98.20 114 | 99.33 57 | 95.92 156 | 98.28 216 | 98.59 142 | 95.52 129 | 97.97 114 | 99.10 84 | 93.28 101 | 99.49 156 | 95.09 185 | 98.88 130 | 99.19 141 | 
 | 
| PAPM_NR |  |  | 97.46 89 | 97.11 95 | 98.50 85 | 99.50 41 | 96.41 127 | 98.63 170 | 98.60 139 | 95.18 148 | 97.06 156 | 98.06 203 | 94.26 89 | 99.57 140 | 93.80 227 | 98.87 132 | 99.52 84 | 
 | 
| EPP-MVSNet |  |  | 97.46 89 | 97.28 89 | 97.99 131 | 98.64 147 | 95.38 178 | 99.33 21 | 98.31 201 | 93.61 226 | 97.19 149 | 99.07 93 | 94.05 92 | 99.23 179 | 96.89 121 | 98.43 155 | 99.37 112 | 
 | 
| 3Dnovator |  | 94.51 5 | 97.46 89 | 96.93 103 | 99.07 51 | 97.78 217 | 97.64 69 | 99.35 17 | 99.06 32 | 97.02 62 | 93.75 270 | 99.16 75 | 89.25 185 | 99.92 29 | 97.22 107 | 99.75 40 | 99.64 69 | 
 | 
| CNLPA |  |  | 97.45 92 | 97.03 99 | 98.73 68 | 99.05 105 | 97.44 78 | 98.07 241 | 98.53 157 | 95.32 141 | 96.80 170 | 98.53 155 | 93.32 99 | 99.72 111 | 94.31 210 | 99.31 113 | 99.02 163 | 
 | 
| lupinMVS |  |  | 97.44 93 | 97.22 92 | 98.12 123 | 98.07 199 | 95.76 163 | 97.68 279 | 97.76 276 | 94.50 180 | 98.79 63 | 98.61 146 | 92.34 112 | 99.30 173 | 97.58 89 | 99.59 74 | 99.31 120 | 
 | 
| 3Dnovator+ |  | 94.38 6 | 97.43 94 | 96.78 111 | 99.38 18 | 97.83 215 | 98.52 28 | 99.37 14 | 98.71 114 | 97.09 60 | 92.99 297 | 99.13 80 | 89.36 181 | 99.89 45 | 96.97 114 | 99.57 78 | 99.71 47 | 
 | 
| Vis-MVSNet |   |  | 97.42 95 | 97.11 95 | 98.34 101 | 98.66 145 | 96.23 135 | 99.22 35 | 99.00 37 | 96.63 80 | 98.04 106 | 99.21 63 | 88.05 219 | 99.35 169 | 96.01 156 | 99.21 115 | 99.45 104 | 
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 | 
| API-MVS |  |  | 97.41 96 | 97.25 90 | 97.91 135 | 98.70 140 | 96.80 103 | 98.82 124 | 98.69 118 | 94.53 177 | 98.11 100 | 98.28 185 | 94.50 82 | 99.57 140 | 94.12 216 | 99.49 94 | 97.37 242 | 
 | 
| sss |  |  | 97.39 97 | 96.98 102 | 98.61 75 | 98.60 151 | 96.61 112 | 98.22 221 | 98.93 48 | 93.97 198 | 98.01 112 | 98.48 160 | 91.98 125 | 99.85 61 | 96.45 141 | 98.15 165 | 99.39 110 | 
 | 
| test_cas_vis1_n_1920 |  |  | 97.38 98 | 97.36 86 | 97.45 168 | 98.95 118 | 93.25 271 | 99.00 78 | 98.53 157 | 97.70 18 | 99.77 5 | 99.35 42 | 84.71 286 | 99.85 61 | 98.57 25 | 99.66 59 | 99.26 129 | 
 | 
| PVSNet_Blended |  |  | 97.38 98 | 97.12 94 | 98.14 117 | 99.25 79 | 95.35 181 | 97.28 309 | 99.26 13 | 93.13 246 | 97.94 117 | 98.21 193 | 92.74 106 | 99.81 79 | 96.88 123 | 99.40 107 | 99.27 127 | 
 | 
| WTY-MVS |  |  | 97.37 100 | 96.92 104 | 98.72 69 | 98.86 126 | 96.89 101 | 98.31 211 | 98.71 114 | 95.26 144 | 97.67 134 | 98.56 154 | 92.21 118 | 99.78 99 | 95.89 158 | 96.85 199 | 99.48 96 | 
 | 
| jason |  |  | 97.32 101 | 97.08 97 | 98.06 128 | 97.45 248 | 95.59 167 | 97.87 264 | 97.91 270 | 94.79 167 | 98.55 81 | 98.83 123 | 91.12 149 | 99.23 179 | 97.58 89 | 99.60 72 | 99.34 114 | 
| jason: jason. | 
| MVS_Test |  |  | 97.28 102 | 97.00 100 | 98.13 120 | 98.33 175 | 95.97 149 | 98.74 144 | 98.07 250 | 94.27 186 | 98.44 89 | 98.07 202 | 92.48 109 | 99.26 175 | 96.43 142 | 98.19 164 | 99.16 147 | 
 | 
| EPNet |  |  | 97.28 102 | 96.87 106 | 98.51 84 | 94.98 354 | 96.14 140 | 98.90 99 | 97.02 331 | 98.28 8 | 95.99 198 | 99.11 82 | 91.36 141 | 99.89 45 | 96.98 113 | 99.19 117 | 99.50 89 | 
| Wanjuan Su,  Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 | 
| test_yl |  |  | 97.22 104 | 96.78 111 | 98.54 81 | 98.73 135 | 96.60 113 | 98.45 194 | 98.31 201 | 94.70 168 | 98.02 109 | 98.42 168 | 90.80 156 | 99.70 117 | 96.81 129 | 96.79 201 | 99.34 114 | 
 | 
| DCV-MVSNet |  |  | 97.22 104 | 96.78 111 | 98.54 81 | 98.73 135 | 96.60 113 | 98.45 194 | 98.31 201 | 94.70 168 | 98.02 109 | 98.42 168 | 90.80 156 | 99.70 117 | 96.81 129 | 96.79 201 | 99.34 114 | 
 | 
| IS-MVSNet |  |  | 97.22 104 | 96.88 105 | 98.25 109 | 98.85 128 | 96.36 130 | 99.19 42 | 97.97 263 | 95.39 135 | 97.23 148 | 98.99 102 | 91.11 150 | 98.93 225 | 94.60 199 | 98.59 145 | 99.47 98 | 
 | 
| PLC |   | 95.07 4 | 97.20 107 | 96.78 111 | 98.44 93 | 99.29 71 | 96.31 134 | 98.14 233 | 98.76 102 | 92.41 273 | 96.39 188 | 98.31 183 | 94.92 74 | 99.78 99 | 94.06 219 | 98.77 137 | 99.23 133 | 
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 | 
| CHOSEN 280x420 |  |  | 97.18 108 | 97.18 93 | 97.20 182 | 98.81 131 | 93.27 269 | 95.78 364 | 99.15 26 | 95.25 145 | 96.79 171 | 98.11 200 | 92.29 114 | 99.07 203 | 98.56 27 | 99.85 5 | 99.25 131 | 
 | 
| LS3D |  |  | 97.16 109 | 96.66 119 | 98.68 71 | 98.53 156 | 97.19 89 | 98.93 95 | 98.90 55 | 92.83 259 | 95.99 198 | 99.37 36 | 92.12 121 | 99.87 56 | 93.67 231 | 99.57 78 | 98.97 168 | 
 | 
| AdaColmap |   |  | 97.15 110 | 96.70 115 | 98.48 88 | 99.16 96 | 96.69 109 | 98.01 247 | 98.89 57 | 94.44 183 | 96.83 166 | 98.68 140 | 90.69 159 | 99.76 105 | 94.36 206 | 99.29 114 | 98.98 167 | 
 | 
| Effi-MVS+ |  |  | 97.12 111 | 96.69 116 | 98.39 99 | 98.19 189 | 96.72 108 | 97.37 300 | 98.43 182 | 93.71 215 | 97.65 137 | 98.02 206 | 92.20 119 | 99.25 176 | 96.87 126 | 97.79 177 | 99.19 141 | 
 | 
| CHOSEN 1792x2688 |  |  | 97.12 111 | 96.80 108 | 98.08 126 | 99.30 66 | 94.56 222 | 98.05 243 | 99.71 1 | 93.57 227 | 97.09 152 | 98.91 115 | 88.17 214 | 99.89 45 | 96.87 126 | 99.56 84 | 99.81 15 | 
 | 
| F-COLMAP |  |  | 97.09 113 | 96.80 108 | 97.97 132 | 99.45 52 | 94.95 202 | 98.55 183 | 98.62 138 | 93.02 251 | 96.17 193 | 98.58 151 | 94.01 93 | 99.81 79 | 93.95 221 | 98.90 128 | 99.14 150 | 
 | 
| TAMVS |  |  | 97.02 114 | 96.79 110 | 97.70 153 | 98.06 202 | 95.31 183 | 98.52 185 | 98.31 201 | 93.95 199 | 97.05 157 | 98.61 146 | 93.49 98 | 98.52 267 | 95.33 177 | 97.81 176 | 99.29 125 | 
 | 
| CDS-MVSNet |  |  | 96.99 115 | 96.69 116 | 97.90 136 | 98.05 203 | 95.98 144 | 98.20 224 | 98.33 198 | 93.67 222 | 96.95 159 | 98.49 159 | 93.54 97 | 98.42 279 | 95.24 183 | 97.74 180 | 99.31 120 | 
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 | 
| CANet_DTU |  |  | 96.96 116 | 96.55 122 | 98.21 112 | 98.17 193 | 96.07 142 | 97.98 250 | 98.21 218 | 97.24 48 | 97.13 151 | 98.93 112 | 86.88 243 | 99.91 37 | 95.00 187 | 99.37 110 | 98.66 193 | 
 | 
| 114514_t |  |  | 96.93 117 | 96.27 133 | 98.92 61 | 99.50 41 | 97.63 70 | 98.85 116 | 98.90 55 | 84.80 371 | 97.77 124 | 99.11 82 | 92.84 104 | 99.66 126 | 94.85 189 | 99.77 30 | 99.47 98 | 
 | 
| MAR-MVS |  |  | 96.91 118 | 96.40 128 | 98.45 91 | 98.69 142 | 96.90 99 | 98.66 165 | 98.68 121 | 92.40 274 | 97.07 155 | 97.96 213 | 91.54 138 | 99.75 107 | 93.68 229 | 98.92 127 | 98.69 189 | 
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 | 
| HyFIR lowres test |  |  | 96.90 119 | 96.49 125 | 98.14 117 | 99.33 57 | 95.56 169 | 97.38 298 | 99.65 2 | 92.34 275 | 97.61 140 | 98.20 194 | 89.29 183 | 99.10 200 | 96.97 114 | 97.60 185 | 99.77 25 | 
 | 
| Vis-MVSNet (Re-imp) |  |  | 96.87 120 | 96.55 122 | 97.83 139 | 98.73 135 | 95.46 174 | 99.20 40 | 98.30 207 | 94.96 161 | 96.60 177 | 98.87 118 | 90.05 168 | 98.59 259 | 93.67 231 | 98.60 144 | 99.46 102 | 
 | 
| SDMVSNet |  |  | 96.85 121 | 96.42 126 | 98.14 117 | 99.30 66 | 96.38 128 | 99.21 38 | 99.23 18 | 95.92 108 | 95.96 200 | 98.76 134 | 85.88 260 | 99.44 165 | 97.93 62 | 95.59 230 | 98.60 197 | 
 | 
| PAPR |  |  | 96.84 122 | 96.24 135 | 98.65 73 | 98.72 139 | 96.92 98 | 97.36 302 | 98.57 149 | 93.33 235 | 96.67 173 | 97.57 250 | 94.30 87 | 99.56 143 | 91.05 296 | 98.59 145 | 99.47 98 | 
 | 
| HY-MVS |  | 93.96 8 | 96.82 123 | 96.23 136 | 98.57 77 | 98.46 160 | 97.00 94 | 98.14 233 | 98.21 218 | 93.95 199 | 96.72 172 | 97.99 210 | 91.58 134 | 99.76 105 | 94.51 203 | 96.54 209 | 98.95 171 | 
 | 
| UGNet |  |  | 96.78 124 | 96.30 132 | 98.19 116 | 98.24 181 | 95.89 159 | 98.88 107 | 98.93 48 | 97.39 36 | 96.81 169 | 97.84 224 | 82.60 313 | 99.90 43 | 96.53 138 | 99.49 94 | 98.79 181 | 
| Wanjuan Su, Qingshan Xu,  Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 | 
| PVSNet_BlendedMVS |  |  | 96.73 125 | 96.60 120 | 97.12 189 | 99.25 79 | 95.35 181 | 98.26 219 | 99.26 13 | 94.28 185 | 97.94 117 | 97.46 256 | 92.74 106 | 99.81 79 | 96.88 123 | 93.32 270 | 96.20 335 | 
 | 
| test_vis1_n_1920 |  |  | 96.71 126 | 96.84 107 | 96.31 259 | 99.11 101 | 89.74 329 | 99.05 65 | 98.58 147 | 98.08 10 | 99.87 1 | 99.37 36 | 78.48 339 | 99.93 23 | 99.29 12 | 99.69 54 | 99.27 127 | 
 | 
| mvs_anonymous |  |  | 96.70 127 | 96.53 124 | 97.18 184 | 98.19 189 | 93.78 247 | 98.31 211 | 98.19 222 | 94.01 195 | 94.47 229 | 98.27 188 | 92.08 123 | 98.46 274 | 97.39 101 | 97.91 172 | 99.31 120 | 
 | 
| 1112_ss |  |  | 96.63 128 | 96.00 144 | 98.50 85 | 98.56 152 | 96.37 129 | 98.18 231 | 98.10 243 | 92.92 255 | 94.84 217 | 98.43 166 | 92.14 120 | 99.58 139 | 94.35 207 | 96.51 210 | 99.56 83 | 
 | 
| PMMVS |  |  | 96.60 129 | 96.33 130 | 97.41 172 | 97.90 212 | 93.93 243 | 97.35 303 | 98.41 184 | 92.84 258 | 97.76 125 | 97.45 258 | 91.10 151 | 99.20 183 | 96.26 146 | 97.91 172 | 99.11 153 | 
 | 
| DP-MVS |  |  | 96.59 130 | 95.93 147 | 98.57 77 | 99.34 55 | 96.19 138 | 98.70 157 | 98.39 188 | 89.45 343 | 94.52 227 | 99.35 42 | 91.85 128 | 99.85 61 | 92.89 255 | 98.88 130 | 99.68 59 | 
 | 
| PatchMatch-RL |  |  | 96.59 130 | 96.03 143 | 98.27 105 | 99.31 62 | 96.51 120 | 97.91 256 | 99.06 32 | 93.72 214 | 96.92 163 | 98.06 203 | 88.50 209 | 99.65 127 | 91.77 283 | 99.00 125 | 98.66 193 | 
 | 
| GeoE |  |  | 96.58 132 | 96.07 140 | 98.10 125 | 98.35 168 | 95.89 159 | 99.34 18 | 98.12 237 | 93.12 247 | 96.09 194 | 98.87 118 | 89.71 174 | 98.97 215 | 92.95 251 | 98.08 168 | 99.43 107 | 
 | 
| mvsmamba |  |  | 96.57 133 | 96.32 131 | 97.32 178 | 96.60 301 | 96.43 124 | 99.54 7 | 97.98 261 | 96.49 84 | 95.20 210 | 98.64 144 | 90.82 154 | 98.55 263 | 97.97 59 | 93.65 260 | 96.98 253 | 
 | 
| XVG-OURS |  |  | 96.55 134 | 96.41 127 | 96.99 196 | 98.75 134 | 93.76 248 | 97.50 292 | 98.52 160 | 95.67 123 | 96.83 166 | 99.30 50 | 88.95 198 | 99.53 151 | 95.88 159 | 96.26 221 | 97.69 231 | 
 | 
| FIs |  |  | 96.51 135 | 96.12 138 | 97.67 156 | 97.13 272 | 97.54 74 | 99.36 15 | 99.22 21 | 95.89 111 | 94.03 256 | 98.35 176 | 91.98 125 | 98.44 277 | 96.40 143 | 92.76 279 | 97.01 251 | 
 | 
| XVG-OURS-SEG-HR |  |  | 96.51 135 | 96.34 129 | 97.02 195 | 98.77 133 | 93.76 248 | 97.79 272 | 98.50 167 | 95.45 132 | 96.94 160 | 99.09 90 | 87.87 224 | 99.55 150 | 96.76 133 | 95.83 229 | 97.74 228 | 
 | 
| PS-MVSNAJss |  |  | 96.43 137 | 96.26 134 | 96.92 205 | 95.84 336 | 95.08 194 | 99.16 46 | 98.50 167 | 95.87 114 | 93.84 266 | 98.34 180 | 94.51 79 | 98.61 256 | 96.88 123 | 93.45 267 | 97.06 248 | 
 | 
| test_fmvs1 |  |  | 96.42 138 | 96.67 118 | 95.66 285 | 98.82 130 | 88.53 351 | 98.80 133 | 98.20 220 | 96.39 91 | 99.64 15 | 99.20 65 | 80.35 329 | 99.67 124 | 99.04 15 | 99.57 78 | 98.78 184 | 
 | 
| iter_conf_final |  |  | 96.42 138 | 96.12 138 | 97.34 177 | 98.46 160 | 96.55 119 | 99.08 61 | 98.06 255 | 96.03 104 | 95.63 204 | 98.46 164 | 87.72 226 | 98.59 259 | 97.84 71 | 93.80 255 | 96.87 269 | 
 | 
| FC-MVSNet-test |  |  | 96.42 138 | 96.05 141 | 97.53 166 | 96.95 281 | 97.27 81 | 99.36 15 | 99.23 18 | 95.83 115 | 93.93 260 | 98.37 174 | 92.00 124 | 98.32 296 | 96.02 155 | 92.72 280 | 97.00 252 | 
 | 
| ab-mvs |  |  | 96.42 138 | 95.71 159 | 98.55 79 | 98.63 148 | 96.75 106 | 97.88 263 | 98.74 106 | 93.84 205 | 96.54 182 | 98.18 196 | 85.34 272 | 99.75 107 | 95.93 157 | 96.35 214 | 99.15 148 | 
 | 
| FA-MVS(test-final) |  |  | 96.41 142 | 95.94 146 | 97.82 141 | 98.21 185 | 95.20 188 | 97.80 270 | 97.58 286 | 93.21 241 | 97.36 145 | 97.70 236 | 89.47 178 | 99.56 143 | 94.12 216 | 97.99 169 | 98.71 188 | 
 | 
| PVSNet |  | 91.96 18 | 96.35 143 | 96.15 137 | 96.96 200 | 99.17 92 | 92.05 289 | 96.08 357 | 98.68 121 | 93.69 218 | 97.75 127 | 97.80 230 | 88.86 199 | 99.69 122 | 94.26 212 | 99.01 124 | 99.15 148 | 
 | 
| Test_1112_low_res |  |  | 96.34 144 | 95.66 164 | 98.36 100 | 98.56 152 | 95.94 152 | 97.71 277 | 98.07 250 | 92.10 284 | 94.79 221 | 97.29 267 | 91.75 130 | 99.56 143 | 94.17 214 | 96.50 211 | 99.58 81 | 
 | 
| Effi-MVS+-dtu |  |  | 96.29 145 | 96.56 121 | 95.51 289 | 97.89 213 | 90.22 323 | 98.80 133 | 98.10 243 | 96.57 83 | 96.45 187 | 96.66 317 | 90.81 155 | 98.91 227 | 95.72 165 | 97.99 169 | 97.40 239 | 
 | 
| QAPM |  |  | 96.29 145 | 95.40 168 | 98.96 59 | 97.85 214 | 97.60 72 | 99.23 31 | 98.93 48 | 89.76 337 | 93.11 294 | 99.02 96 | 89.11 190 | 99.93 23 | 91.99 278 | 99.62 69 | 99.34 114 | 
 | 
| Fast-Effi-MVS+ |  |  | 96.28 147 | 95.70 161 | 98.03 129 | 98.29 180 | 95.97 149 | 98.58 176 | 98.25 215 | 91.74 292 | 95.29 209 | 97.23 272 | 91.03 153 | 99.15 189 | 92.90 253 | 97.96 171 | 98.97 168 | 
 | 
| nrg030 |  |  | 96.28 147 | 95.72 156 | 97.96 134 | 96.90 286 | 98.15 52 | 99.39 12 | 98.31 201 | 95.47 131 | 94.42 235 | 98.35 176 | 92.09 122 | 98.69 249 | 97.50 97 | 89.05 325 | 97.04 249 | 
 | 
| 1314 |  |  | 96.25 149 | 95.73 155 | 97.79 143 | 97.13 272 | 95.55 171 | 98.19 227 | 98.59 142 | 93.47 230 | 92.03 322 | 97.82 228 | 91.33 143 | 99.49 156 | 94.62 198 | 98.44 153 | 98.32 212 | 
 | 
| sd_testset |  |  | 96.17 150 | 95.76 154 | 97.42 171 | 99.30 66 | 94.34 231 | 98.82 124 | 99.08 30 | 95.92 108 | 95.96 200 | 98.76 134 | 82.83 312 | 99.32 172 | 95.56 171 | 95.59 230 | 98.60 197 | 
 | 
| h-mvs33 |  |  | 96.17 150 | 95.62 165 | 97.81 142 | 99.03 107 | 94.45 224 | 98.64 167 | 98.75 104 | 97.48 30 | 98.67 71 | 98.72 137 | 89.76 172 | 99.86 60 | 97.95 60 | 81.59 368 | 99.11 153 | 
 | 
| HQP_MVS |  |  | 96.14 152 | 95.90 148 | 96.85 208 | 97.42 250 | 94.60 220 | 98.80 133 | 98.56 151 | 97.28 43 | 95.34 207 | 98.28 185 | 87.09 238 | 99.03 208 | 96.07 150 | 94.27 238 | 96.92 258 | 
 | 
| iter_conf05 |  |  | 96.13 153 | 95.79 151 | 97.15 186 | 98.16 194 | 95.99 143 | 98.88 107 | 97.98 261 | 95.91 110 | 95.58 205 | 98.46 164 | 85.53 267 | 98.59 259 | 97.88 67 | 93.75 256 | 96.86 272 | 
 | 
| tttt0517 |  |  | 96.07 154 | 95.51 167 | 97.78 144 | 98.41 164 | 94.84 206 | 99.28 24 | 94.33 377 | 94.26 187 | 97.64 138 | 98.64 144 | 84.05 301 | 99.47 162 | 95.34 176 | 97.60 185 | 99.03 162 | 
 | 
| MVSTER |  |  | 96.06 155 | 95.72 156 | 97.08 192 | 98.23 183 | 95.93 155 | 98.73 148 | 98.27 210 | 94.86 165 | 95.07 212 | 98.09 201 | 88.21 213 | 98.54 265 | 96.59 135 | 93.46 265 | 96.79 278 | 
 | 
| thisisatest0530 |  |  | 96.01 156 | 95.36 173 | 97.97 132 | 98.38 165 | 95.52 172 | 98.88 107 | 94.19 379 | 94.04 192 | 97.64 138 | 98.31 183 | 83.82 308 | 99.46 163 | 95.29 180 | 97.70 182 | 98.93 173 | 
 | 
| test_djsdf |  |  | 96.00 157 | 95.69 162 | 96.93 202 | 95.72 338 | 95.49 173 | 99.47 9 | 98.40 186 | 94.98 159 | 94.58 225 | 97.86 221 | 89.16 188 | 98.41 287 | 96.91 117 | 94.12 246 | 96.88 267 | 
 | 
| RRT_MVS |  |  | 95.98 158 | 95.78 152 | 96.56 234 | 96.48 309 | 94.22 237 | 99.57 6 | 97.92 268 | 95.89 111 | 93.95 259 | 98.70 138 | 89.27 184 | 98.42 279 | 97.23 106 | 93.02 274 | 97.04 249 | 
 | 
| EI-MVSNet |  |  | 95.96 159 | 95.83 150 | 96.36 255 | 97.93 210 | 93.70 254 | 98.12 236 | 98.27 210 | 93.70 217 | 95.07 212 | 99.02 96 | 92.23 117 | 98.54 265 | 94.68 194 | 93.46 265 | 96.84 274 | 
 | 
| ECVR-MVS |   |  | 95.95 160 | 95.71 159 | 96.65 220 | 99.02 108 | 90.86 310 | 99.03 71 | 91.80 388 | 96.96 65 | 98.10 101 | 99.26 55 | 81.31 319 | 99.51 155 | 96.90 120 | 99.04 121 | 99.59 77 | 
 | 
| BH-untuned |  |  | 95.95 160 | 95.72 156 | 96.65 220 | 98.55 154 | 92.26 285 | 98.23 220 | 97.79 275 | 93.73 213 | 94.62 224 | 98.01 208 | 88.97 197 | 99.00 214 | 93.04 248 | 98.51 149 | 98.68 190 | 
 | 
| test1111 |  |  | 95.94 162 | 95.78 152 | 96.41 252 | 98.99 115 | 90.12 324 | 99.04 68 | 92.45 387 | 96.99 64 | 98.03 107 | 99.27 54 | 81.40 318 | 99.48 160 | 96.87 126 | 99.04 121 | 99.63 71 | 
 | 
| MSDG |  |  | 95.93 163 | 95.30 180 | 97.83 139 | 98.90 121 | 95.36 179 | 96.83 344 | 98.37 192 | 91.32 307 | 94.43 234 | 98.73 136 | 90.27 166 | 99.60 137 | 90.05 310 | 98.82 135 | 98.52 203 | 
 | 
| BH-RMVSNet |  |  | 95.92 164 | 95.32 177 | 97.69 154 | 98.32 178 | 94.64 214 | 98.19 227 | 97.45 305 | 94.56 175 | 96.03 196 | 98.61 146 | 85.02 277 | 99.12 194 | 90.68 301 | 99.06 120 | 99.30 123 | 
 | 
| test_fmvs1_n |  |  | 95.90 165 | 95.99 145 | 95.63 286 | 98.67 144 | 88.32 355 | 99.26 27 | 98.22 217 | 96.40 90 | 99.67 12 | 99.26 55 | 73.91 366 | 99.70 117 | 99.02 16 | 99.50 92 | 98.87 176 | 
 | 
| Fast-Effi-MVS+-dtu |  |  | 95.87 166 | 95.85 149 | 95.91 275 | 97.74 222 | 91.74 295 | 98.69 159 | 98.15 233 | 95.56 127 | 94.92 215 | 97.68 241 | 88.98 196 | 98.79 243 | 93.19 243 | 97.78 178 | 97.20 246 | 
 | 
| LFMVS |  |  | 95.86 167 | 94.98 195 | 98.47 89 | 98.87 125 | 96.32 132 | 98.84 120 | 96.02 357 | 93.40 233 | 98.62 77 | 99.20 65 | 74.99 361 | 99.63 132 | 97.72 78 | 97.20 191 | 99.46 102 | 
 | 
| baseline1 |  |  | 95.84 168 | 95.12 188 | 98.01 130 | 98.49 159 | 95.98 144 | 98.73 148 | 97.03 329 | 95.37 138 | 96.22 191 | 98.19 195 | 89.96 170 | 99.16 186 | 94.60 199 | 87.48 341 | 98.90 175 | 
 | 
| OpenMVS |   | 93.04 13 | 95.83 169 | 95.00 193 | 98.32 102 | 97.18 269 | 97.32 79 | 99.21 38 | 98.97 40 | 89.96 333 | 91.14 330 | 99.05 95 | 86.64 246 | 99.92 29 | 93.38 237 | 99.47 97 | 97.73 229 | 
 | 
| VDD-MVS |  |  | 95.82 170 | 95.23 182 | 97.61 162 | 98.84 129 | 93.98 242 | 98.68 160 | 97.40 309 | 95.02 158 | 97.95 115 | 99.34 46 | 74.37 365 | 99.78 99 | 98.64 23 | 96.80 200 | 99.08 159 | 
 | 
| UniMVSNet (Re) |  |  | 95.78 171 | 95.19 184 | 97.58 163 | 96.99 279 | 97.47 76 | 98.79 138 | 99.18 23 | 95.60 125 | 93.92 261 | 97.04 291 | 91.68 131 | 98.48 270 | 95.80 163 | 87.66 340 | 96.79 278 | 
 | 
| VPA-MVSNet |  |  | 95.75 172 | 95.11 189 | 97.69 154 | 97.24 261 | 97.27 81 | 98.94 93 | 99.23 18 | 95.13 150 | 95.51 206 | 97.32 265 | 85.73 263 | 98.91 227 | 97.33 104 | 89.55 317 | 96.89 266 | 
 | 
| bld_raw_dy_0_64 |  |  | 95.74 173 | 95.31 179 | 97.03 194 | 96.35 315 | 95.76 163 | 99.12 53 | 97.37 312 | 95.97 106 | 94.70 223 | 98.48 160 | 85.80 262 | 98.49 269 | 96.55 137 | 93.48 264 | 96.84 274 | 
 | 
| HQP-MVS |  |  | 95.72 174 | 95.40 168 | 96.69 218 | 97.20 265 | 94.25 235 | 98.05 243 | 98.46 174 | 96.43 87 | 94.45 230 | 97.73 233 | 86.75 244 | 98.96 219 | 95.30 178 | 94.18 242 | 96.86 272 | 
 | 
| hse-mvs2 |  |  | 95.71 175 | 95.30 180 | 96.93 202 | 98.50 157 | 93.53 259 | 98.36 203 | 98.10 243 | 97.48 30 | 98.67 71 | 97.99 210 | 89.76 172 | 99.02 211 | 97.95 60 | 80.91 372 | 98.22 215 | 
 | 
| UniMVSNet_NR-MVSNet |  |  | 95.71 175 | 95.15 185 | 97.40 174 | 96.84 289 | 96.97 95 | 98.74 144 | 99.24 15 | 95.16 149 | 93.88 263 | 97.72 235 | 91.68 131 | 98.31 298 | 95.81 161 | 87.25 346 | 96.92 258 | 
 | 
| PatchmatchNet |   |  | 95.71 175 | 95.52 166 | 96.29 261 | 97.58 234 | 90.72 314 | 96.84 343 | 97.52 296 | 94.06 191 | 97.08 153 | 96.96 301 | 89.24 186 | 98.90 230 | 92.03 277 | 98.37 157 | 99.26 129 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. | 
| OPM-MVS |  |  | 95.69 178 | 95.33 176 | 96.76 213 | 96.16 324 | 94.63 215 | 98.43 199 | 98.39 188 | 96.64 79 | 95.02 214 | 98.78 128 | 85.15 276 | 99.05 204 | 95.21 184 | 94.20 241 | 96.60 301 | 
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). | 
| ACMM |  | 93.85 9 | 95.69 178 | 95.38 172 | 96.61 227 | 97.61 232 | 93.84 246 | 98.91 98 | 98.44 178 | 95.25 145 | 94.28 242 | 98.47 162 | 86.04 259 | 99.12 194 | 95.50 174 | 93.95 251 | 96.87 269 | 
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 | 
| tpmrst |  |  | 95.63 180 | 95.69 162 | 95.44 293 | 97.54 239 | 88.54 350 | 96.97 329 | 97.56 288 | 93.50 229 | 97.52 143 | 96.93 305 | 89.49 176 | 99.16 186 | 95.25 182 | 96.42 213 | 98.64 195 | 
 | 
| FE-MVS |  |  | 95.62 181 | 94.90 199 | 97.78 144 | 98.37 167 | 94.92 203 | 97.17 319 | 97.38 311 | 90.95 318 | 97.73 130 | 97.70 236 | 85.32 274 | 99.63 132 | 91.18 291 | 98.33 160 | 98.79 181 | 
 | 
| LPG-MVS_test |  |  | 95.62 181 | 95.34 174 | 96.47 246 | 97.46 245 | 93.54 257 | 98.99 81 | 98.54 155 | 94.67 172 | 94.36 238 | 98.77 130 | 85.39 269 | 99.11 196 | 95.71 166 | 94.15 244 | 96.76 281 | 
 | 
| CLD-MVS |  |  | 95.62 181 | 95.34 174 | 96.46 249 | 97.52 242 | 93.75 250 | 97.27 310 | 98.46 174 | 95.53 128 | 94.42 235 | 98.00 209 | 86.21 254 | 98.97 215 | 96.25 148 | 94.37 236 | 96.66 296 | 
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 | 
| thisisatest0515 |  |  | 95.61 184 | 94.89 200 | 97.76 147 | 98.15 195 | 95.15 191 | 96.77 345 | 94.41 375 | 92.95 254 | 97.18 150 | 97.43 260 | 84.78 283 | 99.45 164 | 94.63 196 | 97.73 181 | 98.68 190 | 
 | 
| thres600view7 |  |  | 95.49 185 | 94.77 203 | 97.67 156 | 98.98 116 | 95.02 195 | 98.85 116 | 96.90 338 | 95.38 136 | 96.63 175 | 96.90 306 | 84.29 293 | 99.59 138 | 88.65 332 | 96.33 215 | 98.40 207 | 
 | 
| test_vis1_n |  |  | 95.47 186 | 95.13 186 | 96.49 243 | 97.77 218 | 90.41 320 | 99.27 26 | 98.11 240 | 96.58 81 | 99.66 13 | 99.18 71 | 67.00 378 | 99.62 135 | 99.21 13 | 99.40 107 | 99.44 105 | 
 | 
| SCA |  |  | 95.46 187 | 95.13 186 | 96.46 249 | 97.67 227 | 91.29 303 | 97.33 305 | 97.60 285 | 94.68 171 | 96.92 163 | 97.10 278 | 83.97 303 | 98.89 231 | 92.59 261 | 98.32 162 | 99.20 137 | 
 | 
| IterMVS-LS |  |  | 95.46 187 | 95.21 183 | 96.22 263 | 98.12 196 | 93.72 253 | 98.32 210 | 98.13 236 | 93.71 215 | 94.26 243 | 97.31 266 | 92.24 116 | 98.10 314 | 94.63 196 | 90.12 308 | 96.84 274 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. | 
| jajsoiax |  |  | 95.45 189 | 95.03 192 | 96.73 214 | 95.42 350 | 94.63 215 | 99.14 49 | 98.52 160 | 95.74 118 | 93.22 288 | 98.36 175 | 83.87 306 | 98.65 254 | 96.95 116 | 94.04 247 | 96.91 263 | 
 | 
| CVMVSNet |  |  | 95.43 190 | 96.04 142 | 93.57 334 | 97.93 210 | 83.62 372 | 98.12 236 | 98.59 142 | 95.68 122 | 96.56 178 | 99.02 96 | 87.51 231 | 97.51 346 | 93.56 235 | 97.44 187 | 99.60 75 | 
 | 
| anonymousdsp |  |  | 95.42 191 | 94.91 198 | 96.94 201 | 95.10 353 | 95.90 158 | 99.14 49 | 98.41 184 | 93.75 210 | 93.16 290 | 97.46 256 | 87.50 233 | 98.41 287 | 95.63 170 | 94.03 248 | 96.50 320 | 
 | 
| DU-MVS |  |  | 95.42 191 | 94.76 204 | 97.40 174 | 96.53 305 | 96.97 95 | 98.66 165 | 98.99 39 | 95.43 133 | 93.88 263 | 97.69 238 | 88.57 204 | 98.31 298 | 95.81 161 | 87.25 346 | 96.92 258 | 
 | 
| mvs_tets |  |  | 95.41 193 | 95.00 193 | 96.65 220 | 95.58 342 | 94.42 226 | 99.00 78 | 98.55 153 | 95.73 120 | 93.21 289 | 98.38 173 | 83.45 310 | 98.63 255 | 97.09 110 | 94.00 249 | 96.91 263 | 
 | 
| thres100view900 |  |  | 95.38 194 | 94.70 207 | 97.41 172 | 98.98 116 | 94.92 203 | 98.87 111 | 96.90 338 | 95.38 136 | 96.61 176 | 96.88 307 | 84.29 293 | 99.56 143 | 88.11 335 | 96.29 217 | 97.76 226 | 
 | 
| thres400 |  |  | 95.38 194 | 94.62 210 | 97.65 160 | 98.94 119 | 94.98 199 | 98.68 160 | 96.93 336 | 95.33 139 | 96.55 180 | 96.53 323 | 84.23 297 | 99.56 143 | 88.11 335 | 96.29 217 | 98.40 207 | 
 | 
| BH-w/o |  |  | 95.38 194 | 95.08 190 | 96.26 262 | 98.34 173 | 91.79 292 | 97.70 278 | 97.43 307 | 92.87 257 | 94.24 245 | 97.22 273 | 88.66 202 | 98.84 237 | 91.55 287 | 97.70 182 | 98.16 218 | 
 | 
| VDDNet |  |  | 95.36 197 | 94.53 214 | 97.86 137 | 98.10 198 | 95.13 192 | 98.85 116 | 97.75 277 | 90.46 324 | 98.36 92 | 99.39 30 | 73.27 368 | 99.64 129 | 97.98 58 | 96.58 207 | 98.81 180 | 
 | 
| TAPA-MVS |  | 93.98 7 | 95.35 198 | 94.56 213 | 97.74 149 | 99.13 99 | 94.83 208 | 98.33 206 | 98.64 134 | 86.62 359 | 96.29 190 | 98.61 146 | 94.00 94 | 99.29 174 | 80.00 373 | 99.41 104 | 99.09 155 | 
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 | 
| ACMP |  | 93.49 10 | 95.34 199 | 94.98 195 | 96.43 251 | 97.67 227 | 93.48 261 | 98.73 148 | 98.44 178 | 94.94 164 | 92.53 310 | 98.53 155 | 84.50 292 | 99.14 191 | 95.48 175 | 94.00 249 | 96.66 296 | 
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 | 
| COLMAP_ROB |   | 93.27 12 | 95.33 200 | 94.87 201 | 96.71 215 | 99.29 71 | 93.24 272 | 98.58 176 | 98.11 240 | 89.92 334 | 93.57 274 | 99.10 84 | 86.37 252 | 99.79 96 | 90.78 299 | 98.10 167 | 97.09 247 | 
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 | 
| tfpn200view9 |  |  | 95.32 201 | 94.62 210 | 97.43 170 | 98.94 119 | 94.98 199 | 98.68 160 | 96.93 336 | 95.33 139 | 96.55 180 | 96.53 323 | 84.23 297 | 99.56 143 | 88.11 335 | 96.29 217 | 97.76 226 | 
 | 
| Anonymous202405211 |  |  | 95.28 202 | 94.49 216 | 97.67 156 | 99.00 111 | 93.75 250 | 98.70 157 | 97.04 328 | 90.66 320 | 96.49 184 | 98.80 126 | 78.13 343 | 99.83 67 | 96.21 149 | 95.36 234 | 99.44 105 | 
 | 
| thres200 |  |  | 95.25 203 | 94.57 212 | 97.28 179 | 98.81 131 | 94.92 203 | 98.20 224 | 97.11 323 | 95.24 147 | 96.54 182 | 96.22 334 | 84.58 290 | 99.53 151 | 87.93 339 | 96.50 211 | 97.39 240 | 
 | 
| AllTest |  |  | 95.24 204 | 94.65 209 | 96.99 196 | 99.25 79 | 93.21 273 | 98.59 174 | 98.18 225 | 91.36 303 | 93.52 276 | 98.77 130 | 84.67 287 | 99.72 111 | 89.70 317 | 97.87 174 | 98.02 221 | 
 | 
| LCM-MVSNet-Re |  |  | 95.22 205 | 95.32 177 | 94.91 308 | 98.18 191 | 87.85 361 | 98.75 141 | 95.66 363 | 95.11 152 | 88.96 348 | 96.85 310 | 90.26 167 | 97.65 339 | 95.65 169 | 98.44 153 | 99.22 135 | 
 | 
| EPNet_dtu |  |  | 95.21 206 | 94.95 197 | 95.99 270 | 96.17 322 | 90.45 319 | 98.16 232 | 97.27 317 | 96.77 73 | 93.14 293 | 98.33 181 | 90.34 164 | 98.42 279 | 85.57 352 | 98.81 136 | 99.09 155 | 
| Wanjuan Su,  Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 | 
| XXY-MVS |  |  | 95.20 207 | 94.45 221 | 97.46 167 | 96.75 294 | 96.56 117 | 98.86 114 | 98.65 133 | 93.30 238 | 93.27 287 | 98.27 188 | 84.85 281 | 98.87 234 | 94.82 191 | 91.26 296 | 96.96 255 | 
 | 
| D2MVS |  |  | 95.18 208 | 95.08 190 | 95.48 290 | 97.10 274 | 92.07 288 | 98.30 213 | 99.13 28 | 94.02 194 | 92.90 298 | 96.73 314 | 89.48 177 | 98.73 247 | 94.48 204 | 93.60 263 | 95.65 348 | 
 | 
| WR-MVS |  |  | 95.15 209 | 94.46 219 | 97.22 181 | 96.67 299 | 96.45 122 | 98.21 222 | 98.81 84 | 94.15 188 | 93.16 290 | 97.69 238 | 87.51 231 | 98.30 300 | 95.29 180 | 88.62 331 | 96.90 265 | 
 | 
| TranMVSNet+NR-MVSNet |  |  | 95.14 210 | 94.48 217 | 97.11 190 | 96.45 311 | 96.36 130 | 99.03 71 | 99.03 35 | 95.04 157 | 93.58 273 | 97.93 215 | 88.27 212 | 98.03 320 | 94.13 215 | 86.90 351 | 96.95 257 | 
 | 
| baseline2 |  |  | 95.11 211 | 94.52 215 | 96.87 207 | 96.65 300 | 93.56 256 | 98.27 218 | 94.10 381 | 93.45 231 | 92.02 323 | 97.43 260 | 87.45 235 | 99.19 184 | 93.88 224 | 97.41 189 | 97.87 224 | 
 | 
| miper_enhance_ethall |  |  | 95.10 212 | 94.75 205 | 96.12 267 | 97.53 241 | 93.73 252 | 96.61 351 | 98.08 248 | 92.20 283 | 93.89 262 | 96.65 319 | 92.44 110 | 98.30 300 | 94.21 213 | 91.16 297 | 96.34 329 | 
 | 
| Anonymous20240529 |  |  | 95.10 212 | 94.22 229 | 97.75 148 | 99.01 110 | 94.26 234 | 98.87 111 | 98.83 78 | 85.79 367 | 96.64 174 | 98.97 103 | 78.73 337 | 99.85 61 | 96.27 145 | 94.89 235 | 99.12 152 | 
 | 
| test-LLR |  |  | 95.10 212 | 94.87 201 | 95.80 280 | 96.77 291 | 89.70 330 | 96.91 334 | 95.21 367 | 95.11 152 | 94.83 219 | 95.72 346 | 87.71 227 | 98.97 215 | 93.06 246 | 98.50 150 | 98.72 186 | 
 | 
| WR-MVS_H |  |  | 95.05 215 | 94.46 219 | 96.81 211 | 96.86 288 | 95.82 161 | 99.24 30 | 99.24 15 | 93.87 204 | 92.53 310 | 96.84 311 | 90.37 163 | 98.24 306 | 93.24 241 | 87.93 337 | 96.38 328 | 
 | 
| miper_ehance_all_eth |  |  | 95.01 216 | 94.69 208 | 95.97 272 | 97.70 225 | 93.31 268 | 97.02 327 | 98.07 250 | 92.23 280 | 93.51 278 | 96.96 301 | 91.85 128 | 98.15 310 | 93.68 229 | 91.16 297 | 96.44 326 | 
 | 
| ADS-MVSNet |  |  | 95.00 217 | 94.45 221 | 96.63 224 | 98.00 204 | 91.91 291 | 96.04 358 | 97.74 278 | 90.15 330 | 96.47 185 | 96.64 320 | 87.89 222 | 98.96 219 | 90.08 308 | 97.06 193 | 99.02 163 | 
 | 
| VPNet |  |  | 94.99 218 | 94.19 231 | 97.40 174 | 97.16 270 | 96.57 116 | 98.71 153 | 98.97 40 | 95.67 123 | 94.84 217 | 98.24 192 | 80.36 328 | 98.67 253 | 96.46 140 | 87.32 345 | 96.96 255 | 
 | 
| EPMVS |  |  | 94.99 218 | 94.48 217 | 96.52 241 | 97.22 263 | 91.75 294 | 97.23 311 | 91.66 389 | 94.11 189 | 97.28 146 | 96.81 312 | 85.70 264 | 98.84 237 | 93.04 248 | 97.28 190 | 98.97 168 | 
 | 
| NR-MVSNet |  |  | 94.98 220 | 94.16 234 | 97.44 169 | 96.53 305 | 97.22 88 | 98.74 144 | 98.95 44 | 94.96 161 | 89.25 347 | 97.69 238 | 89.32 182 | 98.18 308 | 94.59 201 | 87.40 343 | 96.92 258 | 
 | 
| FMVSNet3 |  |  | 94.97 221 | 94.26 228 | 97.11 190 | 98.18 191 | 96.62 110 | 98.56 182 | 98.26 214 | 93.67 222 | 94.09 252 | 97.10 278 | 84.25 295 | 98.01 321 | 92.08 273 | 92.14 283 | 96.70 290 | 
 | 
| CostFormer |  |  | 94.95 222 | 94.73 206 | 95.60 288 | 97.28 259 | 89.06 341 | 97.53 290 | 96.89 340 | 89.66 339 | 96.82 168 | 96.72 315 | 86.05 257 | 98.95 224 | 95.53 173 | 96.13 226 | 98.79 181 | 
 | 
| PAPM |  |  | 94.95 222 | 94.00 244 | 97.78 144 | 97.04 276 | 95.65 166 | 96.03 360 | 98.25 215 | 91.23 312 | 94.19 248 | 97.80 230 | 91.27 146 | 98.86 236 | 82.61 367 | 97.61 184 | 98.84 179 | 
 | 
| CP-MVSNet |  |  | 94.94 224 | 94.30 227 | 96.83 209 | 96.72 296 | 95.56 169 | 99.11 55 | 98.95 44 | 93.89 202 | 92.42 315 | 97.90 217 | 87.19 237 | 98.12 313 | 94.32 209 | 88.21 334 | 96.82 277 | 
 | 
| TR-MVS |  |  | 94.94 224 | 94.20 230 | 97.17 185 | 97.75 219 | 94.14 239 | 97.59 287 | 97.02 331 | 92.28 279 | 95.75 203 | 97.64 244 | 83.88 305 | 98.96 219 | 89.77 314 | 96.15 225 | 98.40 207 | 
 | 
| RPSCF |  |  | 94.87 226 | 95.40 168 | 93.26 340 | 98.89 122 | 82.06 378 | 98.33 206 | 98.06 255 | 90.30 329 | 96.56 178 | 99.26 55 | 87.09 238 | 99.49 156 | 93.82 226 | 96.32 216 | 98.24 213 | 
 | 
| GA-MVS |  |  | 94.81 227 | 94.03 240 | 97.14 187 | 97.15 271 | 93.86 245 | 96.76 346 | 97.58 286 | 94.00 196 | 94.76 222 | 97.04 291 | 80.91 323 | 98.48 270 | 91.79 282 | 96.25 222 | 99.09 155 | 
 | 
| c3_l |  |  | 94.79 228 | 94.43 223 | 95.89 277 | 97.75 219 | 93.12 276 | 97.16 321 | 98.03 258 | 92.23 280 | 93.46 281 | 97.05 290 | 91.39 140 | 98.01 321 | 93.58 234 | 89.21 323 | 96.53 312 | 
 | 
| V42 |  |  | 94.78 229 | 94.14 236 | 96.70 217 | 96.33 317 | 95.22 187 | 98.97 84 | 98.09 247 | 92.32 277 | 94.31 241 | 97.06 288 | 88.39 210 | 98.55 263 | 92.90 253 | 88.87 329 | 96.34 329 | 
 | 
| CR-MVSNet |  |  | 94.76 230 | 94.15 235 | 96.59 230 | 97.00 277 | 93.43 262 | 94.96 370 | 97.56 288 | 92.46 268 | 96.93 161 | 96.24 330 | 88.15 215 | 97.88 333 | 87.38 341 | 96.65 205 | 98.46 205 | 
 | 
| v2v482 |  |  | 94.69 231 | 94.03 240 | 96.65 220 | 96.17 322 | 94.79 211 | 98.67 163 | 98.08 248 | 92.72 261 | 94.00 257 | 97.16 276 | 87.69 230 | 98.45 275 | 92.91 252 | 88.87 329 | 96.72 286 | 
 | 
| pmmvs4 |  |  | 94.69 231 | 93.99 246 | 96.81 211 | 95.74 337 | 95.94 152 | 97.40 296 | 97.67 280 | 90.42 326 | 93.37 284 | 97.59 248 | 89.08 191 | 98.20 307 | 92.97 250 | 91.67 290 | 96.30 332 | 
 | 
| cl22 |  |  | 94.68 233 | 94.19 231 | 96.13 266 | 98.11 197 | 93.60 255 | 96.94 331 | 98.31 201 | 92.43 272 | 93.32 286 | 96.87 309 | 86.51 247 | 98.28 304 | 94.10 218 | 91.16 297 | 96.51 318 | 
 | 
| eth_miper_zixun_eth |  |  | 94.68 233 | 94.41 224 | 95.47 291 | 97.64 230 | 91.71 296 | 96.73 348 | 98.07 250 | 92.71 262 | 93.64 271 | 97.21 274 | 90.54 161 | 98.17 309 | 93.38 237 | 89.76 312 | 96.54 310 | 
 | 
| PCF-MVS |  | 93.45 11 | 94.68 233 | 93.43 280 | 98.42 97 | 98.62 149 | 96.77 105 | 95.48 368 | 98.20 220 | 84.63 372 | 93.34 285 | 98.32 182 | 88.55 207 | 99.81 79 | 84.80 359 | 98.96 126 | 98.68 190 | 
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 | 
| MVS |  |  | 94.67 236 | 93.54 276 | 98.08 126 | 96.88 287 | 96.56 117 | 98.19 227 | 98.50 167 | 78.05 381 | 92.69 305 | 98.02 206 | 91.07 152 | 99.63 132 | 90.09 307 | 98.36 159 | 98.04 220 | 
 | 
| PS-CasMVS |  |  | 94.67 236 | 93.99 246 | 96.71 215 | 96.68 298 | 95.26 184 | 99.13 52 | 99.03 35 | 93.68 220 | 92.33 316 | 97.95 214 | 85.35 271 | 98.10 314 | 93.59 233 | 88.16 336 | 96.79 278 | 
 | 
| cascas |  |  | 94.63 238 | 93.86 255 | 96.93 202 | 96.91 285 | 94.27 233 | 96.00 361 | 98.51 162 | 85.55 368 | 94.54 226 | 96.23 332 | 84.20 299 | 98.87 234 | 95.80 163 | 96.98 198 | 97.66 232 | 
 | 
| tpmvs |  |  | 94.60 239 | 94.36 226 | 95.33 297 | 97.46 245 | 88.60 349 | 96.88 340 | 97.68 279 | 91.29 309 | 93.80 268 | 96.42 327 | 88.58 203 | 99.24 178 | 91.06 294 | 96.04 227 | 98.17 217 | 
 | 
| LTVRE_ROB |  | 92.95 15 | 94.60 239 | 93.90 252 | 96.68 219 | 97.41 253 | 94.42 226 | 98.52 185 | 98.59 142 | 91.69 295 | 91.21 329 | 98.35 176 | 84.87 280 | 99.04 207 | 91.06 294 | 93.44 268 | 96.60 301 | 
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 | 
| v1144 |  |  | 94.59 241 | 93.92 249 | 96.60 229 | 96.21 319 | 94.78 212 | 98.59 174 | 98.14 235 | 91.86 291 | 94.21 247 | 97.02 294 | 87.97 220 | 98.41 287 | 91.72 284 | 89.57 315 | 96.61 300 | 
 | 
| ADS-MVSNet2 |  |  | 94.58 242 | 94.40 225 | 95.11 303 | 98.00 204 | 88.74 347 | 96.04 358 | 97.30 314 | 90.15 330 | 96.47 185 | 96.64 320 | 87.89 222 | 97.56 344 | 90.08 308 | 97.06 193 | 99.02 163 | 
 | 
| ACMH |  | 92.88 16 | 94.55 243 | 93.95 248 | 96.34 257 | 97.63 231 | 93.26 270 | 98.81 132 | 98.49 172 | 93.43 232 | 89.74 342 | 98.53 155 | 81.91 315 | 99.08 202 | 93.69 228 | 93.30 271 | 96.70 290 | 
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 | 
| tt0805 |  |  | 94.54 244 | 93.85 256 | 96.63 224 | 97.98 208 | 93.06 278 | 98.77 140 | 97.84 273 | 93.67 222 | 93.80 268 | 98.04 205 | 76.88 354 | 98.96 219 | 94.79 193 | 92.86 277 | 97.86 225 | 
 | 
| XVG-ACMP-BASELINE |  |  | 94.54 244 | 94.14 236 | 95.75 283 | 96.55 304 | 91.65 297 | 98.11 238 | 98.44 178 | 94.96 161 | 94.22 246 | 97.90 217 | 79.18 336 | 99.11 196 | 94.05 220 | 93.85 253 | 96.48 323 | 
 | 
| AUN-MVS |  |  | 94.53 246 | 93.73 266 | 96.92 205 | 98.50 157 | 93.52 260 | 98.34 205 | 98.10 243 | 93.83 207 | 95.94 202 | 97.98 212 | 85.59 266 | 99.03 208 | 94.35 207 | 80.94 371 | 98.22 215 | 
 | 
| DIV-MVS_self_test |  |  | 94.52 247 | 94.03 240 | 95.99 270 | 97.57 238 | 93.38 266 | 97.05 325 | 97.94 266 | 91.74 292 | 92.81 300 | 97.10 278 | 89.12 189 | 98.07 318 | 92.60 259 | 90.30 305 | 96.53 312 | 
 | 
| cl____ |  |  | 94.51 248 | 94.01 243 | 96.02 269 | 97.58 234 | 93.40 265 | 97.05 325 | 97.96 265 | 91.73 294 | 92.76 302 | 97.08 284 | 89.06 192 | 98.13 312 | 92.61 258 | 90.29 306 | 96.52 315 | 
 | 
| GBi-Net |  |  | 94.49 249 | 93.80 259 | 96.56 234 | 98.21 185 | 95.00 196 | 98.82 124 | 98.18 225 | 92.46 268 | 94.09 252 | 97.07 285 | 81.16 320 | 97.95 325 | 92.08 273 | 92.14 283 | 96.72 286 | 
 | 
| test1 |  |  | 94.49 249 | 93.80 259 | 96.56 234 | 98.21 185 | 95.00 196 | 98.82 124 | 98.18 225 | 92.46 268 | 94.09 252 | 97.07 285 | 81.16 320 | 97.95 325 | 92.08 273 | 92.14 283 | 96.72 286 | 
 | 
| dmvs_re |  |  | 94.48 251 | 94.18 233 | 95.37 295 | 97.68 226 | 90.11 325 | 98.54 184 | 97.08 324 | 94.56 175 | 94.42 235 | 97.24 271 | 84.25 295 | 97.76 337 | 91.02 297 | 92.83 278 | 98.24 213 | 
 | 
| v8 |  |  | 94.47 252 | 93.77 262 | 96.57 233 | 96.36 314 | 94.83 208 | 99.05 65 | 98.19 222 | 91.92 288 | 93.16 290 | 96.97 299 | 88.82 201 | 98.48 270 | 91.69 285 | 87.79 338 | 96.39 327 | 
 | 
| FMVSNet2 |  |  | 94.47 252 | 93.61 272 | 97.04 193 | 98.21 185 | 96.43 124 | 98.79 138 | 98.27 210 | 92.46 268 | 93.50 279 | 97.09 282 | 81.16 320 | 98.00 323 | 91.09 292 | 91.93 286 | 96.70 290 | 
 | 
| test2506 |  |  | 94.44 254 | 93.91 251 | 96.04 268 | 99.02 108 | 88.99 344 | 99.06 63 | 79.47 401 | 96.96 65 | 98.36 92 | 99.26 55 | 77.21 351 | 99.52 154 | 96.78 132 | 99.04 121 | 99.59 77 | 
 | 
| Patchmatch-test |  |  | 94.42 255 | 93.68 270 | 96.63 224 | 97.60 233 | 91.76 293 | 94.83 374 | 97.49 300 | 89.45 343 | 94.14 250 | 97.10 278 | 88.99 193 | 98.83 239 | 85.37 355 | 98.13 166 | 99.29 125 | 
 | 
| PEN-MVS |  |  | 94.42 255 | 93.73 266 | 96.49 243 | 96.28 318 | 94.84 206 | 99.17 45 | 99.00 37 | 93.51 228 | 92.23 318 | 97.83 227 | 86.10 256 | 97.90 329 | 92.55 264 | 86.92 350 | 96.74 283 | 
 | 
| v144192 |  |  | 94.39 257 | 93.70 268 | 96.48 245 | 96.06 327 | 94.35 230 | 98.58 176 | 98.16 232 | 91.45 300 | 94.33 240 | 97.02 294 | 87.50 233 | 98.45 275 | 91.08 293 | 89.11 324 | 96.63 298 | 
 | 
| Baseline_NR-MVSNet |  |  | 94.35 258 | 93.81 258 | 95.96 273 | 96.20 320 | 94.05 241 | 98.61 173 | 96.67 349 | 91.44 301 | 93.85 265 | 97.60 247 | 88.57 204 | 98.14 311 | 94.39 205 | 86.93 349 | 95.68 347 | 
 | 
| miper_lstm_enhance |  |  | 94.33 259 | 94.07 239 | 95.11 303 | 97.75 219 | 90.97 307 | 97.22 312 | 98.03 258 | 91.67 296 | 92.76 302 | 96.97 299 | 90.03 169 | 97.78 336 | 92.51 266 | 89.64 314 | 96.56 307 | 
 | 
| v1192 |  |  | 94.32 260 | 93.58 273 | 96.53 240 | 96.10 325 | 94.45 224 | 98.50 190 | 98.17 230 | 91.54 298 | 94.19 248 | 97.06 288 | 86.95 242 | 98.43 278 | 90.14 306 | 89.57 315 | 96.70 290 | 
 | 
| ACMH+ |  | 92.99 14 | 94.30 261 | 93.77 262 | 95.88 278 | 97.81 216 | 92.04 290 | 98.71 153 | 98.37 192 | 93.99 197 | 90.60 336 | 98.47 162 | 80.86 325 | 99.05 204 | 92.75 257 | 92.40 282 | 96.55 309 | 
 | 
| v148 |  |  | 94.29 262 | 93.76 264 | 95.91 275 | 96.10 325 | 92.93 279 | 98.58 176 | 97.97 263 | 92.59 266 | 93.47 280 | 96.95 303 | 88.53 208 | 98.32 296 | 92.56 263 | 87.06 348 | 96.49 321 | 
 | 
| v10 |  |  | 94.29 262 | 93.55 275 | 96.51 242 | 96.39 313 | 94.80 210 | 98.99 81 | 98.19 222 | 91.35 305 | 93.02 296 | 96.99 297 | 88.09 217 | 98.41 287 | 90.50 303 | 88.41 333 | 96.33 331 | 
 | 
| MVP-Stereo |  |  | 94.28 264 | 93.92 249 | 95.35 296 | 94.95 355 | 92.60 282 | 97.97 251 | 97.65 281 | 91.61 297 | 90.68 335 | 97.09 282 | 86.32 253 | 98.42 279 | 89.70 317 | 99.34 111 | 95.02 359 | 
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. | 
| UniMVSNet_ETH3D |  |  | 94.24 265 | 93.33 282 | 96.97 199 | 97.19 268 | 93.38 266 | 98.74 144 | 98.57 149 | 91.21 314 | 93.81 267 | 98.58 151 | 72.85 369 | 98.77 245 | 95.05 186 | 93.93 252 | 98.77 185 | 
 | 
| OurMVSNet-221017-0 |  |  | 94.21 266 | 94.00 244 | 94.85 312 | 95.60 341 | 89.22 339 | 98.89 103 | 97.43 307 | 95.29 142 | 92.18 319 | 98.52 158 | 82.86 311 | 98.59 259 | 93.46 236 | 91.76 288 | 96.74 283 | 
 | 
| v1921920 |  |  | 94.20 267 | 93.47 279 | 96.40 254 | 95.98 330 | 94.08 240 | 98.52 185 | 98.15 233 | 91.33 306 | 94.25 244 | 97.20 275 | 86.41 251 | 98.42 279 | 90.04 311 | 89.39 321 | 96.69 295 | 
 | 
| v7n |  |  | 94.19 268 | 93.43 280 | 96.47 246 | 95.90 333 | 94.38 229 | 99.26 27 | 98.34 197 | 91.99 286 | 92.76 302 | 97.13 277 | 88.31 211 | 98.52 267 | 89.48 322 | 87.70 339 | 96.52 315 | 
 | 
| tpm2 |  |  | 94.19 268 | 93.76 264 | 95.46 292 | 97.23 262 | 89.04 342 | 97.31 307 | 96.85 344 | 87.08 358 | 96.21 192 | 96.79 313 | 83.75 309 | 98.74 246 | 92.43 269 | 96.23 223 | 98.59 199 | 
 | 
| TESTMET0.1,1 |  |  | 94.18 270 | 93.69 269 | 95.63 286 | 96.92 283 | 89.12 340 | 96.91 334 | 94.78 372 | 93.17 243 | 94.88 216 | 96.45 326 | 78.52 338 | 98.92 226 | 93.09 245 | 98.50 150 | 98.85 177 | 
 | 
| dp |  |  | 94.15 271 | 93.90 252 | 94.90 309 | 97.31 258 | 86.82 366 | 96.97 329 | 97.19 321 | 91.22 313 | 96.02 197 | 96.61 322 | 85.51 268 | 99.02 211 | 90.00 312 | 94.30 237 | 98.85 177 | 
 | 
| ET-MVSNet_ETH3D |  |  | 94.13 272 | 92.98 288 | 97.58 163 | 98.22 184 | 96.20 136 | 97.31 307 | 95.37 365 | 94.53 177 | 79.56 380 | 97.63 246 | 86.51 247 | 97.53 345 | 96.91 117 | 90.74 301 | 99.02 163 | 
 | 
| tpm |  |  | 94.13 272 | 93.80 259 | 95.12 302 | 96.50 307 | 87.91 360 | 97.44 293 | 95.89 362 | 92.62 264 | 96.37 189 | 96.30 329 | 84.13 300 | 98.30 300 | 93.24 241 | 91.66 291 | 99.14 150 | 
 | 
| IterMVS-SCA-FT |  |  | 94.11 274 | 93.87 254 | 94.85 312 | 97.98 208 | 90.56 318 | 97.18 317 | 98.11 240 | 93.75 210 | 92.58 308 | 97.48 255 | 83.97 303 | 97.41 348 | 92.48 268 | 91.30 294 | 96.58 303 | 
 | 
| Anonymous20231211 |  |  | 94.10 275 | 93.26 285 | 96.61 227 | 99.11 101 | 94.28 232 | 99.01 76 | 98.88 60 | 86.43 361 | 92.81 300 | 97.57 250 | 81.66 317 | 98.68 252 | 94.83 190 | 89.02 327 | 96.88 267 | 
 | 
| IterMVS |  |  | 94.09 276 | 93.85 256 | 94.80 315 | 97.99 206 | 90.35 321 | 97.18 317 | 98.12 237 | 93.68 220 | 92.46 314 | 97.34 263 | 84.05 301 | 97.41 348 | 92.51 266 | 91.33 293 | 96.62 299 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. | 
| test-mter |  |  | 94.08 277 | 93.51 277 | 95.80 280 | 96.77 291 | 89.70 330 | 96.91 334 | 95.21 367 | 92.89 256 | 94.83 219 | 95.72 346 | 77.69 346 | 98.97 215 | 93.06 246 | 98.50 150 | 98.72 186 | 
 | 
| test0.0.03 1 |  |  | 94.08 277 | 93.51 277 | 95.80 280 | 95.53 344 | 92.89 280 | 97.38 298 | 95.97 359 | 95.11 152 | 92.51 312 | 96.66 317 | 87.71 227 | 96.94 355 | 87.03 343 | 93.67 258 | 97.57 236 | 
 | 
| v1240 |  |  | 94.06 279 | 93.29 284 | 96.34 257 | 96.03 329 | 93.90 244 | 98.44 197 | 98.17 230 | 91.18 315 | 94.13 251 | 97.01 296 | 86.05 257 | 98.42 279 | 89.13 327 | 89.50 319 | 96.70 290 | 
 | 
| X-MVStestdata |  |  | 94.06 279 | 92.30 302 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 60 | 97.40 34 | 98.46 84 | 43.50 394 | 95.90 39 | 99.89 45 | 97.85 69 | 99.74 44 | 99.78 19 | 
 | 
| DTE-MVSNet |  |  | 93.98 281 | 93.26 285 | 96.14 265 | 96.06 327 | 94.39 228 | 99.20 40 | 98.86 73 | 93.06 249 | 91.78 324 | 97.81 229 | 85.87 261 | 97.58 343 | 90.53 302 | 86.17 355 | 96.46 325 | 
 | 
| pm-mvs1 |  |  | 93.94 282 | 93.06 287 | 96.59 230 | 96.49 308 | 95.16 189 | 98.95 90 | 98.03 258 | 92.32 277 | 91.08 331 | 97.84 224 | 84.54 291 | 98.41 287 | 92.16 271 | 86.13 357 | 96.19 336 | 
 | 
| MS-PatchMatch |  |  | 93.84 283 | 93.63 271 | 94.46 326 | 96.18 321 | 89.45 335 | 97.76 273 | 98.27 210 | 92.23 280 | 92.13 320 | 97.49 254 | 79.50 333 | 98.69 249 | 89.75 315 | 99.38 109 | 95.25 352 | 
 | 
| tfpnnormal |  |  | 93.66 284 | 92.70 294 | 96.55 239 | 96.94 282 | 95.94 152 | 98.97 84 | 99.19 22 | 91.04 316 | 91.38 328 | 97.34 263 | 84.94 279 | 98.61 256 | 85.45 354 | 89.02 327 | 95.11 356 | 
 | 
| EU-MVSNet |  |  | 93.66 284 | 94.14 236 | 92.25 350 | 95.96 332 | 83.38 374 | 98.52 185 | 98.12 237 | 94.69 170 | 92.61 307 | 98.13 199 | 87.36 236 | 96.39 366 | 91.82 281 | 90.00 310 | 96.98 253 | 
 | 
| our_test_3 |  |  | 93.65 286 | 93.30 283 | 94.69 317 | 95.45 348 | 89.68 332 | 96.91 334 | 97.65 281 | 91.97 287 | 91.66 326 | 96.88 307 | 89.67 175 | 97.93 328 | 88.02 338 | 91.49 292 | 96.48 323 | 
 | 
| pmmvs5 |  |  | 93.65 286 | 92.97 289 | 95.68 284 | 95.49 345 | 92.37 283 | 98.20 224 | 97.28 316 | 89.66 339 | 92.58 308 | 97.26 268 | 82.14 314 | 98.09 316 | 93.18 244 | 90.95 300 | 96.58 303 | 
 | 
| test_fmvs2 |  |  | 93.43 288 | 93.58 273 | 92.95 344 | 96.97 280 | 83.91 371 | 99.19 42 | 97.24 319 | 95.74 118 | 95.20 210 | 98.27 188 | 69.65 371 | 98.72 248 | 96.26 146 | 93.73 257 | 96.24 333 | 
 | 
| tpm cat1 |  |  | 93.36 289 | 92.80 291 | 95.07 305 | 97.58 234 | 87.97 359 | 96.76 346 | 97.86 272 | 82.17 377 | 93.53 275 | 96.04 338 | 86.13 255 | 99.13 192 | 89.24 325 | 95.87 228 | 98.10 219 | 
 | 
| JIA-IIPM |  |  | 93.35 290 | 92.49 298 | 95.92 274 | 96.48 309 | 90.65 316 | 95.01 369 | 96.96 334 | 85.93 365 | 96.08 195 | 87.33 384 | 87.70 229 | 98.78 244 | 91.35 289 | 95.58 232 | 98.34 210 | 
 | 
| SixPastTwentyTwo |  |  | 93.34 291 | 92.86 290 | 94.75 316 | 95.67 339 | 89.41 337 | 98.75 141 | 96.67 349 | 93.89 202 | 90.15 340 | 98.25 191 | 80.87 324 | 98.27 305 | 90.90 298 | 90.64 302 | 96.57 305 | 
 | 
| USDC |  |  | 93.33 292 | 92.71 293 | 95.21 299 | 96.83 290 | 90.83 312 | 96.91 334 | 97.50 298 | 93.84 205 | 90.72 334 | 98.14 198 | 77.69 346 | 98.82 240 | 89.51 321 | 93.21 273 | 95.97 341 | 
 | 
| IB-MVS |  | 91.98 17 | 93.27 293 | 91.97 306 | 97.19 183 | 97.47 244 | 93.41 264 | 97.09 324 | 95.99 358 | 93.32 236 | 92.47 313 | 95.73 344 | 78.06 344 | 99.53 151 | 94.59 201 | 82.98 363 | 98.62 196 | 
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 | 
| MIMVSNet |  |  | 93.26 294 | 92.21 303 | 96.41 252 | 97.73 223 | 93.13 275 | 95.65 365 | 97.03 329 | 91.27 311 | 94.04 255 | 96.06 337 | 75.33 359 | 97.19 351 | 86.56 345 | 96.23 223 | 98.92 174 | 
 | 
| ppachtmachnet_test |  |  | 93.22 295 | 92.63 295 | 94.97 307 | 95.45 348 | 90.84 311 | 96.88 340 | 97.88 271 | 90.60 321 | 92.08 321 | 97.26 268 | 88.08 218 | 97.86 334 | 85.12 356 | 90.33 304 | 96.22 334 | 
 | 
| Patchmtry |  |  | 93.22 295 | 92.35 301 | 95.84 279 | 96.77 291 | 93.09 277 | 94.66 377 | 97.56 288 | 87.37 357 | 92.90 298 | 96.24 330 | 88.15 215 | 97.90 329 | 87.37 342 | 90.10 309 | 96.53 312 | 
 | 
| testing3 |  |  | 93.19 297 | 92.48 299 | 95.30 298 | 98.07 199 | 92.27 284 | 98.64 167 | 97.17 322 | 93.94 201 | 93.98 258 | 97.04 291 | 67.97 375 | 96.01 370 | 88.40 333 | 97.14 192 | 97.63 233 | 
 | 
| FMVSNet1 |  |  | 93.19 297 | 92.07 304 | 96.56 234 | 97.54 239 | 95.00 196 | 98.82 124 | 98.18 225 | 90.38 327 | 92.27 317 | 97.07 285 | 73.68 367 | 97.95 325 | 89.36 324 | 91.30 294 | 96.72 286 | 
 | 
| LF4IMVS |  |  | 93.14 299 | 92.79 292 | 94.20 329 | 95.88 334 | 88.67 348 | 97.66 281 | 97.07 326 | 93.81 208 | 91.71 325 | 97.65 242 | 77.96 345 | 98.81 241 | 91.47 288 | 91.92 287 | 95.12 355 | 
 | 
| testgi |  |  | 93.06 300 | 92.45 300 | 94.88 311 | 96.43 312 | 89.90 326 | 98.75 141 | 97.54 294 | 95.60 125 | 91.63 327 | 97.91 216 | 74.46 364 | 97.02 353 | 86.10 348 | 93.67 258 | 97.72 230 | 
 | 
| PatchT |  |  | 93.06 300 | 91.97 306 | 96.35 256 | 96.69 297 | 92.67 281 | 94.48 378 | 97.08 324 | 86.62 359 | 97.08 153 | 92.23 378 | 87.94 221 | 97.90 329 | 78.89 377 | 96.69 203 | 98.49 204 | 
 | 
| RPMNet |  |  | 92.81 302 | 91.34 311 | 97.24 180 | 97.00 277 | 93.43 262 | 94.96 370 | 98.80 91 | 82.27 376 | 96.93 161 | 92.12 379 | 86.98 241 | 99.82 74 | 76.32 382 | 96.65 205 | 98.46 205 | 
 | 
| myMVS_eth3d |  |  | 92.73 303 | 92.01 305 | 94.89 310 | 97.39 254 | 90.94 308 | 97.91 256 | 97.46 301 | 93.16 244 | 93.42 282 | 95.37 351 | 68.09 374 | 96.12 368 | 88.34 334 | 96.99 195 | 97.60 234 | 
 | 
| TransMVSNet (Re) |  |  | 92.67 304 | 91.51 310 | 96.15 264 | 96.58 303 | 94.65 213 | 98.90 99 | 96.73 345 | 90.86 319 | 89.46 346 | 97.86 221 | 85.62 265 | 98.09 316 | 86.45 346 | 81.12 369 | 95.71 346 | 
 | 
| Syy-MVS |  |  | 92.55 305 | 92.61 296 | 92.38 347 | 97.39 254 | 83.41 373 | 97.91 256 | 97.46 301 | 93.16 244 | 93.42 282 | 95.37 351 | 84.75 284 | 96.12 368 | 77.00 381 | 96.99 195 | 97.60 234 | 
 | 
| K. test v3 |  |  | 92.55 305 | 91.91 308 | 94.48 324 | 95.64 340 | 89.24 338 | 99.07 62 | 94.88 371 | 94.04 192 | 86.78 361 | 97.59 248 | 77.64 349 | 97.64 340 | 92.08 273 | 89.43 320 | 96.57 305 | 
 | 
| DSMNet-mixed |  |  | 92.52 307 | 92.58 297 | 92.33 348 | 94.15 363 | 82.65 376 | 98.30 213 | 94.26 378 | 89.08 348 | 92.65 306 | 95.73 344 | 85.01 278 | 95.76 372 | 86.24 347 | 97.76 179 | 98.59 199 | 
 | 
| TinyColmap |  |  | 92.31 308 | 91.53 309 | 94.65 319 | 96.92 283 | 89.75 328 | 96.92 332 | 96.68 348 | 90.45 325 | 89.62 343 | 97.85 223 | 76.06 357 | 98.81 241 | 86.74 344 | 92.51 281 | 95.41 350 | 
 | 
| gg-mvs-nofinetune |  |  | 92.21 309 | 90.58 317 | 97.13 188 | 96.75 294 | 95.09 193 | 95.85 362 | 89.40 394 | 85.43 369 | 94.50 228 | 81.98 387 | 80.80 326 | 98.40 293 | 92.16 271 | 98.33 160 | 97.88 223 | 
 | 
| FMVSNet5 |  |  | 91.81 310 | 90.92 313 | 94.49 323 | 97.21 264 | 92.09 287 | 98.00 249 | 97.55 293 | 89.31 346 | 90.86 333 | 95.61 349 | 74.48 363 | 95.32 376 | 85.57 352 | 89.70 313 | 96.07 339 | 
 | 
| pmmvs6 |  |  | 91.77 311 | 90.63 316 | 95.17 301 | 94.69 361 | 91.24 304 | 98.67 163 | 97.92 268 | 86.14 363 | 89.62 343 | 97.56 252 | 75.79 358 | 98.34 294 | 90.75 300 | 84.56 359 | 95.94 342 | 
 | 
| Anonymous20231206 |  |  | 91.66 312 | 91.10 312 | 93.33 338 | 94.02 367 | 87.35 363 | 98.58 176 | 97.26 318 | 90.48 323 | 90.16 339 | 96.31 328 | 83.83 307 | 96.53 364 | 79.36 375 | 89.90 311 | 96.12 337 | 
 | 
| Patchmatch-RL test |  |  | 91.49 313 | 90.85 314 | 93.41 336 | 91.37 376 | 84.40 369 | 92.81 382 | 95.93 361 | 91.87 290 | 87.25 358 | 94.87 357 | 88.99 193 | 96.53 364 | 92.54 265 | 82.00 365 | 99.30 123 | 
 | 
| test_0402 |  |  | 91.32 314 | 90.27 320 | 94.48 324 | 96.60 301 | 91.12 305 | 98.50 190 | 97.22 320 | 86.10 364 | 88.30 354 | 96.98 298 | 77.65 348 | 97.99 324 | 78.13 379 | 92.94 276 | 94.34 363 | 
 | 
| test_vis1_rt |  |  | 91.29 315 | 90.65 315 | 93.19 342 | 97.45 248 | 86.25 367 | 98.57 181 | 90.90 392 | 93.30 238 | 86.94 360 | 93.59 369 | 62.07 382 | 99.11 196 | 97.48 98 | 95.58 232 | 94.22 366 | 
 | 
| PVSNet_0 |  | 88.72 19 | 91.28 316 | 90.03 322 | 95.00 306 | 97.99 206 | 87.29 364 | 94.84 373 | 98.50 167 | 92.06 285 | 89.86 341 | 95.19 353 | 79.81 332 | 99.39 167 | 92.27 270 | 69.79 387 | 98.33 211 | 
 | 
| Anonymous20240521 |  |  | 91.18 317 | 90.44 318 | 93.42 335 | 93.70 368 | 88.47 352 | 98.94 93 | 97.56 288 | 88.46 352 | 89.56 345 | 95.08 356 | 77.15 353 | 96.97 354 | 83.92 362 | 89.55 317 | 94.82 361 | 
 | 
| EG-PatchMatch MVS |  |  | 91.13 318 | 90.12 321 | 94.17 331 | 94.73 360 | 89.00 343 | 98.13 235 | 97.81 274 | 89.22 347 | 85.32 371 | 96.46 325 | 67.71 376 | 98.42 279 | 87.89 340 | 93.82 254 | 95.08 357 | 
 | 
| TDRefinement |  |  | 91.06 319 | 89.68 324 | 95.21 299 | 85.35 391 | 91.49 300 | 98.51 189 | 97.07 326 | 91.47 299 | 88.83 352 | 97.84 224 | 77.31 350 | 99.09 201 | 92.79 256 | 77.98 380 | 95.04 358 | 
 | 
| UnsupCasMVSNet_eth |  |  | 90.99 320 | 89.92 323 | 94.19 330 | 94.08 364 | 89.83 327 | 97.13 323 | 98.67 126 | 93.69 218 | 85.83 367 | 96.19 335 | 75.15 360 | 96.74 358 | 89.14 326 | 79.41 376 | 96.00 340 | 
 | 
| test20.03 |  |  | 90.89 321 | 90.38 319 | 92.43 346 | 93.48 369 | 88.14 358 | 98.33 206 | 97.56 288 | 93.40 233 | 87.96 355 | 96.71 316 | 80.69 327 | 94.13 381 | 79.15 376 | 86.17 355 | 95.01 360 | 
 | 
| MDA-MVSNet_test_wron |  |  | 90.71 322 | 89.38 327 | 94.68 318 | 94.83 357 | 90.78 313 | 97.19 316 | 97.46 301 | 87.60 355 | 72.41 387 | 95.72 346 | 86.51 247 | 96.71 361 | 85.92 350 | 86.80 352 | 96.56 307 | 
 | 
| YYNet1 |  |  | 90.70 323 | 89.39 326 | 94.62 320 | 94.79 359 | 90.65 316 | 97.20 314 | 97.46 301 | 87.54 356 | 72.54 386 | 95.74 342 | 86.51 247 | 96.66 362 | 86.00 349 | 86.76 353 | 96.54 310 | 
 | 
| KD-MVS_self_test |  |  | 90.38 324 | 89.38 327 | 93.40 337 | 92.85 372 | 88.94 345 | 97.95 252 | 97.94 266 | 90.35 328 | 90.25 338 | 93.96 366 | 79.82 331 | 95.94 371 | 84.62 361 | 76.69 382 | 95.33 351 | 
 | 
| pmmvs-eth3d |  |  | 90.36 325 | 89.05 330 | 94.32 328 | 91.10 378 | 92.12 286 | 97.63 286 | 96.95 335 | 88.86 350 | 84.91 372 | 93.13 373 | 78.32 340 | 96.74 358 | 88.70 330 | 81.81 367 | 94.09 369 | 
 | 
| CL-MVSNet_self_test |  |  | 90.11 326 | 89.14 329 | 93.02 343 | 91.86 375 | 88.23 357 | 96.51 354 | 98.07 250 | 90.49 322 | 90.49 337 | 94.41 361 | 84.75 284 | 95.34 375 | 80.79 371 | 74.95 384 | 95.50 349 | 
 | 
| new_pmnet |  |  | 90.06 327 | 89.00 331 | 93.22 341 | 94.18 362 | 88.32 355 | 96.42 356 | 96.89 340 | 86.19 362 | 85.67 368 | 93.62 368 | 77.18 352 | 97.10 352 | 81.61 369 | 89.29 322 | 94.23 365 | 
 | 
| MDA-MVSNet-bldmvs |  |  | 89.97 328 | 88.35 334 | 94.83 314 | 95.21 352 | 91.34 301 | 97.64 283 | 97.51 297 | 88.36 353 | 71.17 388 | 96.13 336 | 79.22 335 | 96.63 363 | 83.65 363 | 86.27 354 | 96.52 315 | 
 | 
| CMPMVS |   | 66.06 21 | 89.70 329 | 89.67 325 | 89.78 355 | 93.19 370 | 76.56 381 | 97.00 328 | 98.35 195 | 80.97 378 | 81.57 377 | 97.75 232 | 74.75 362 | 98.61 256 | 89.85 313 | 93.63 261 | 94.17 367 | 
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 | 
| MIMVSNet1 |  |  | 89.67 330 | 88.28 335 | 93.82 332 | 92.81 373 | 91.08 306 | 98.01 247 | 97.45 305 | 87.95 354 | 87.90 356 | 95.87 341 | 67.63 377 | 94.56 380 | 78.73 378 | 88.18 335 | 95.83 344 | 
 | 
| KD-MVS_2432*1600 |  |  | 89.61 331 | 87.96 338 | 94.54 321 | 94.06 365 | 91.59 298 | 95.59 366 | 97.63 283 | 89.87 335 | 88.95 349 | 94.38 363 | 78.28 341 | 96.82 356 | 84.83 357 | 68.05 388 | 95.21 353 | 
 | 
| miper_refine_blended |  |  | 89.61 331 | 87.96 338 | 94.54 321 | 94.06 365 | 91.59 298 | 95.59 366 | 97.63 283 | 89.87 335 | 88.95 349 | 94.38 363 | 78.28 341 | 96.82 356 | 84.83 357 | 68.05 388 | 95.21 353 | 
 | 
| MVS-HIRNet |  |  | 89.46 333 | 88.40 333 | 92.64 345 | 97.58 234 | 82.15 377 | 94.16 381 | 93.05 386 | 75.73 383 | 90.90 332 | 82.52 386 | 79.42 334 | 98.33 295 | 83.53 364 | 98.68 138 | 97.43 237 | 
 | 
| OpenMVS_ROB |   | 86.42 20 | 89.00 334 | 87.43 342 | 93.69 333 | 93.08 371 | 89.42 336 | 97.91 256 | 96.89 340 | 78.58 380 | 85.86 366 | 94.69 358 | 69.48 372 | 98.29 303 | 77.13 380 | 93.29 272 | 93.36 375 | 
 | 
| mvsany_test3 |  |  | 88.80 335 | 88.04 336 | 91.09 354 | 89.78 381 | 81.57 379 | 97.83 269 | 95.49 364 | 93.81 208 | 87.53 357 | 93.95 367 | 56.14 385 | 97.43 347 | 94.68 194 | 83.13 362 | 94.26 364 | 
 | 
| new-patchmatchnet |  |  | 88.50 336 | 87.45 341 | 91.67 352 | 90.31 380 | 85.89 368 | 97.16 321 | 97.33 313 | 89.47 342 | 83.63 374 | 92.77 375 | 76.38 355 | 95.06 378 | 82.70 366 | 77.29 381 | 94.06 371 | 
 | 
| APD_test1 |  |  | 88.22 337 | 88.01 337 | 88.86 357 | 95.98 330 | 74.66 387 | 97.21 313 | 96.44 353 | 83.96 374 | 86.66 363 | 97.90 217 | 60.95 383 | 97.84 335 | 82.73 365 | 90.23 307 | 94.09 369 | 
 | 
| PM-MVS |  |  | 87.77 338 | 86.55 344 | 91.40 353 | 91.03 379 | 83.36 375 | 96.92 332 | 95.18 369 | 91.28 310 | 86.48 365 | 93.42 370 | 53.27 386 | 96.74 358 | 89.43 323 | 81.97 366 | 94.11 368 | 
 | 
| dmvs_testset |  |  | 87.64 339 | 88.93 332 | 83.79 365 | 95.25 351 | 63.36 396 | 97.20 314 | 91.17 390 | 93.07 248 | 85.64 369 | 95.98 340 | 85.30 275 | 91.52 388 | 69.42 387 | 87.33 344 | 96.49 321 | 
 | 
| test_fmvs3 |  |  | 87.17 340 | 87.06 343 | 87.50 359 | 91.21 377 | 75.66 383 | 99.05 65 | 96.61 351 | 92.79 260 | 88.85 351 | 92.78 374 | 43.72 389 | 93.49 382 | 93.95 221 | 84.56 359 | 93.34 376 | 
 | 
| UnsupCasMVSNet_bld |  |  | 87.17 340 | 85.12 347 | 93.31 339 | 91.94 374 | 88.77 346 | 94.92 372 | 98.30 207 | 84.30 373 | 82.30 375 | 90.04 381 | 63.96 381 | 97.25 350 | 85.85 351 | 74.47 386 | 93.93 373 | 
 | 
| N_pmnet |  |  | 87.12 342 | 87.77 340 | 85.17 363 | 95.46 347 | 61.92 397 | 97.37 300 | 70.66 402 | 85.83 366 | 88.73 353 | 96.04 338 | 85.33 273 | 97.76 337 | 80.02 372 | 90.48 303 | 95.84 343 | 
 | 
| pmmvs3 |  |  | 86.67 343 | 84.86 348 | 92.11 351 | 88.16 385 | 87.19 365 | 96.63 350 | 94.75 373 | 79.88 379 | 87.22 359 | 92.75 376 | 66.56 379 | 95.20 377 | 81.24 370 | 76.56 383 | 93.96 372 | 
 | 
| test_f |  |  | 86.07 344 | 85.39 345 | 88.10 358 | 89.28 383 | 75.57 384 | 97.73 276 | 96.33 355 | 89.41 345 | 85.35 370 | 91.56 380 | 43.31 391 | 95.53 373 | 91.32 290 | 84.23 361 | 93.21 377 | 
 | 
| WB-MVS |  |  | 84.86 345 | 85.33 346 | 83.46 366 | 89.48 382 | 69.56 391 | 98.19 227 | 96.42 354 | 89.55 341 | 81.79 376 | 94.67 359 | 84.80 282 | 90.12 389 | 52.44 392 | 80.64 373 | 90.69 380 | 
 | 
| SSC-MVS |  |  | 84.27 346 | 84.71 349 | 82.96 370 | 89.19 384 | 68.83 392 | 98.08 240 | 96.30 356 | 89.04 349 | 81.37 378 | 94.47 360 | 84.60 289 | 89.89 390 | 49.80 394 | 79.52 375 | 90.15 381 | 
 | 
| test_vis3_rt |  |  | 79.22 347 | 77.40 353 | 84.67 364 | 86.44 389 | 74.85 386 | 97.66 281 | 81.43 399 | 84.98 370 | 67.12 390 | 81.91 388 | 28.09 399 | 97.60 341 | 88.96 328 | 80.04 374 | 81.55 388 | 
 | 
| test_method |  |  | 79.03 348 | 78.17 350 | 81.63 371 | 86.06 390 | 54.40 402 | 82.75 390 | 96.89 340 | 39.54 394 | 80.98 379 | 95.57 350 | 58.37 384 | 94.73 379 | 84.74 360 | 78.61 377 | 95.75 345 | 
 | 
| testf1 |  |  | 79.02 349 | 77.70 351 | 82.99 368 | 88.10 386 | 66.90 393 | 94.67 375 | 93.11 383 | 71.08 385 | 74.02 383 | 93.41 371 | 34.15 395 | 93.25 383 | 72.25 385 | 78.50 378 | 88.82 383 | 
 | 
| APD_test2 |  |  | 79.02 349 | 77.70 351 | 82.99 368 | 88.10 386 | 66.90 393 | 94.67 375 | 93.11 383 | 71.08 385 | 74.02 383 | 93.41 371 | 34.15 395 | 93.25 383 | 72.25 385 | 78.50 378 | 88.82 383 | 
 | 
| LCM-MVSNet |  |  | 78.70 351 | 76.24 356 | 86.08 361 | 77.26 397 | 71.99 389 | 94.34 379 | 96.72 346 | 61.62 389 | 76.53 381 | 89.33 382 | 33.91 397 | 92.78 386 | 81.85 368 | 74.60 385 | 93.46 374 | 
 | 
| Gipuma |   |  | 78.40 352 | 76.75 355 | 83.38 367 | 95.54 343 | 80.43 380 | 79.42 391 | 97.40 309 | 64.67 388 | 73.46 385 | 80.82 389 | 45.65 388 | 93.14 385 | 66.32 389 | 87.43 342 | 76.56 391 | 
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 | 
| PMMVS2 |  |  | 77.95 353 | 75.44 357 | 85.46 362 | 82.54 392 | 74.95 385 | 94.23 380 | 93.08 385 | 72.80 384 | 74.68 382 | 87.38 383 | 36.36 394 | 91.56 387 | 73.95 383 | 63.94 390 | 89.87 382 | 
 | 
| FPMVS |  |  | 77.62 354 | 77.14 354 | 79.05 373 | 79.25 395 | 60.97 398 | 95.79 363 | 95.94 360 | 65.96 387 | 67.93 389 | 94.40 362 | 37.73 393 | 88.88 392 | 68.83 388 | 88.46 332 | 87.29 385 | 
 | 
| EGC-MVSNET |  |  | 75.22 355 | 69.54 358 | 92.28 349 | 94.81 358 | 89.58 333 | 97.64 283 | 96.50 352 | 1.82 399 | 5.57 400 | 95.74 342 | 68.21 373 | 96.26 367 | 73.80 384 | 91.71 289 | 90.99 379 | 
 | 
| ANet_high |  |  | 69.08 356 | 65.37 360 | 80.22 372 | 65.99 399 | 71.96 390 | 90.91 386 | 90.09 393 | 82.62 375 | 49.93 395 | 78.39 390 | 29.36 398 | 81.75 393 | 62.49 390 | 38.52 394 | 86.95 387 | 
 | 
| tmp_tt |  |  | 68.90 357 | 66.97 359 | 74.68 375 | 50.78 401 | 59.95 399 | 87.13 387 | 83.47 398 | 38.80 395 | 62.21 391 | 96.23 332 | 64.70 380 | 76.91 397 | 88.91 329 | 30.49 395 | 87.19 386 | 
 | 
| PMVS |   | 61.03 23 | 65.95 358 | 63.57 362 | 73.09 376 | 57.90 400 | 51.22 403 | 85.05 389 | 93.93 382 | 54.45 390 | 44.32 396 | 83.57 385 | 13.22 400 | 89.15 391 | 58.68 391 | 81.00 370 | 78.91 390 | 
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) | 
| E-PMN |  |  | 64.94 359 | 64.25 361 | 67.02 377 | 82.28 393 | 59.36 400 | 91.83 385 | 85.63 396 | 52.69 391 | 60.22 392 | 77.28 391 | 41.06 392 | 80.12 395 | 46.15 395 | 41.14 392 | 61.57 393 | 
 | 
| EMVS |  |  | 64.07 360 | 63.26 363 | 66.53 378 | 81.73 394 | 58.81 401 | 91.85 384 | 84.75 397 | 51.93 393 | 59.09 393 | 75.13 392 | 43.32 390 | 79.09 396 | 42.03 396 | 39.47 393 | 61.69 392 | 
 | 
| MVE |   | 62.14 22 | 63.28 361 | 59.38 364 | 74.99 374 | 74.33 398 | 65.47 395 | 85.55 388 | 80.50 400 | 52.02 392 | 51.10 394 | 75.00 393 | 10.91 403 | 80.50 394 | 51.60 393 | 53.40 391 | 78.99 389 | 
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) | 
| wuyk23d |  |  | 30.17 362 | 30.18 366 | 30.16 379 | 78.61 396 | 43.29 404 | 66.79 392 | 14.21 403 | 17.31 396 | 14.82 399 | 11.93 399 | 11.55 402 | 41.43 398 | 37.08 397 | 19.30 396 | 5.76 396 | 
 | 
| cdsmvs_eth3d_5k |  |  | 23.98 363 | 31.98 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 98.59 142 | 0.00 400 | 0.00 401 | 98.61 146 | 90.60 160 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| testmvs |  |  | 21.48 364 | 24.95 367 | 11.09 381 | 14.89 402 | 6.47 406 | 96.56 352 | 9.87 404 | 7.55 397 | 17.93 397 | 39.02 395 | 9.43 404 | 5.90 400 | 16.56 399 | 12.72 397 | 20.91 395 | 
 | 
| test123 |  |  | 20.95 365 | 23.72 368 | 12.64 380 | 13.54 403 | 8.19 405 | 96.55 353 | 6.13 405 | 7.48 398 | 16.74 398 | 37.98 396 | 12.97 401 | 6.05 399 | 16.69 398 | 5.43 398 | 23.68 394 | 
 | 
| ab-mvs-re |  |  | 8.20 366 | 10.94 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 98.43 166 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| pcd_1.5k_mvsjas |  |  | 7.88 367 | 10.50 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 94.51 79 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| test_blank |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uanet_test |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| DCPMVS |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| sosnet-low-res |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| sosnet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uncertanet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| Regformer |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uanet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| MM |  |  |  |  | 99.33 26 |  | 98.14 54 | 98.93 95 | 97.02 331 | 98.96 1 | 99.17 39 | 99.47 20 | 91.97 127 | 99.94 6 | 99.85 2 | 99.69 54 | 99.91 2 | 
 | 
| WAC-MVS |  |  |  |  |  |  | 90.94 308 |  |  |  |  |  |  |  | 88.66 331 |  |  | 
 | 
| FOURS1 |  |  |  |  |  | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 44 | 97.46 32 | 99.39 28 |  |  |  |  |  |  | 
 | 
| MSC_two_6792asdad |  |  |  |  | 99.62 6 | 99.17 92 | 99.08 11 |  | 98.63 136 |  |  |  |  | 99.94 6 | 98.53 28 | 99.80 19 | 99.86 6 | 
 | 
| PC_three_1452 |  |  |  |  |  |  |  |  |  | 95.08 156 | 99.60 17 | 99.16 75 | 97.86 2 | 98.47 273 | 97.52 96 | 99.72 49 | 99.74 35 | 
 | 
| No_MVS |  |  |  |  | 99.62 6 | 99.17 92 | 99.08 11 |  | 98.63 136 |  |  |  |  | 99.94 6 | 98.53 28 | 99.80 19 | 99.86 6 | 
 | 
| test_one_0601 |  |  |  |  |  | 99.66 26 | 99.25 2 |  | 98.86 73 | 97.55 26 | 99.20 36 | 99.47 20 | 97.57 6 |  |  |  |  | 
 | 
| eth-test2 |  |  |  |  |  | 0.00 404 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| eth-test |  |  |  |  |  | 0.00 404 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| ZD-MVS |  |  |  |  |  | 99.46 49 | 98.70 23 |  | 98.79 96 | 93.21 241 | 98.67 71 | 98.97 103 | 95.70 43 | 99.83 67 | 96.07 150 | 99.58 77 |  | 
 | 
| RE-MVS-def |  |  |  | 98.34 33 |  | 99.49 45 | 97.86 62 | 99.11 55 | 98.80 91 | 96.49 84 | 99.17 39 | 99.35 42 | 95.29 59 |  | 97.72 78 | 99.65 62 | 99.71 47 | 
 | 
| IU-MVS |  |  |  |  |  | 99.71 19 | 99.23 7 |  | 98.64 134 | 95.28 143 | 99.63 16 |  |  |  | 98.35 45 | 99.81 12 | 99.83 11 | 
 | 
| OPU-MVS |  |  |  |  | 99.37 20 | 99.24 85 | 99.05 14 | 99.02 74 |  |  |  | 99.16 75 | 97.81 3 | 99.37 168 | 97.24 105 | 99.73 46 | 99.70 51 | 
 | 
| test_241102_TWO |  |  |  |  |  |  |  |  | 98.87 67 | 97.65 20 | 99.53 21 | 99.48 18 | 97.34 11 | 99.94 6 | 98.43 40 | 99.80 19 | 99.83 11 | 
 | 
| test_241102_ONE |  |  |  |  |  | 99.71 19 | 99.24 5 |  | 98.87 67 | 97.62 22 | 99.73 8 | 99.39 30 | 97.53 7 | 99.74 109 |  |  |  | 
 | 
| 9.14 |  |  |  | 98.06 55 |  | 99.47 47 |  | 98.71 153 | 98.82 79 | 94.36 184 | 99.16 42 | 99.29 51 | 96.05 31 | 99.81 79 | 97.00 112 | 99.71 51 |  | 
 | 
| save fliter |  |  |  |  |  | 99.46 49 | 98.38 35 | 98.21 222 | 98.71 114 | 97.95 11 |  |  |  |  |  |  |  | 
 | 
| test_0728_THIRD |  |  |  |  |  |  |  |  |  | 97.32 40 | 99.45 23 | 99.46 24 | 97.88 1 | 99.94 6 | 98.47 36 | 99.86 1 | 99.85 8 | 
 | 
| test_0728_SECOND |  |  |  |  | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 84 | 98.88 60 |  |  |  |  | 99.94 6 | 98.47 36 | 99.81 12 | 99.84 10 | 
 | 
| test0726 |  |  |  |  |  | 99.72 12 | 99.25 2 | 99.06 63 | 98.88 60 | 97.62 22 | 99.56 18 | 99.50 15 | 97.42 9 |  |  |  |  | 
 | 
| GSMVS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 99.20 137 | 
 | 
| test_part2 |  |  |  |  |  | 99.63 29 | 99.18 10 |  |  |  | 99.27 33 |  |  |  |  |  |  | 
 | 
| sam_mvs1 |  |  |  |  |  |  |  |  |  |  |  |  | 89.45 179 |  |  |  | 99.20 137 | 
 | 
| sam_mvs |  |  |  |  |  |  |  |  |  |  |  |  | 88.99 193 |  |  |  |  | 
 | 
| ambc |  |  |  |  | 89.49 356 | 86.66 388 | 75.78 382 | 92.66 383 | 96.72 346 |  | 86.55 364 | 92.50 377 | 46.01 387 | 97.90 329 | 90.32 304 | 82.09 364 | 94.80 362 | 
 | 
| MTGPA |   |  |  |  |  |  |  |  | 98.74 106 |  |  |  |  |  |  |  |  | 
 | 
| test_post1 |  |  |  |  |  |  |  | 96.68 349 |  |  |  | 30.43 398 | 87.85 225 | 98.69 249 | 92.59 261 |  |  | 
 | 
| test_post |  |  |  |  |  |  |  |  |  |  |  | 31.83 397 | 88.83 200 | 98.91 227 |  |  |  | 
 | 
| patchmatchnet-post |  |  |  |  |  |  |  |  |  |  |  | 95.10 355 | 89.42 180 | 98.89 231 |  |  |  | 
 | 
| GG-mvs-BLEND |  |  |  |  | 96.59 230 | 96.34 316 | 94.98 199 | 96.51 354 | 88.58 395 |  | 93.10 295 | 94.34 365 | 80.34 330 | 98.05 319 | 89.53 320 | 96.99 195 | 96.74 283 | 
 | 
| MTMP |  |  |  |  |  |  |  | 98.89 103 | 94.14 380 |  |  |  |  |  |  |  |  | 
 | 
| gm-plane-assit |  |  |  |  |  | 95.88 334 | 87.47 362 |  |  | 89.74 338 |  | 96.94 304 |  | 99.19 184 | 93.32 240 |  |  | 
 | 
| test9_res |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 96.39 144 | 99.57 78 | 99.69 54 | 
 | 
| TEST9 |  |  |  |  |  | 99.31 62 | 98.50 29 | 97.92 254 | 98.73 109 | 92.63 263 | 97.74 128 | 98.68 140 | 96.20 26 | 99.80 86 |  |  |  | 
 | 
| test_8 |  |  |  |  |  | 99.29 71 | 98.44 31 | 97.89 262 | 98.72 111 | 92.98 252 | 97.70 132 | 98.66 143 | 96.20 26 | 99.80 86 |  |  |  | 
 | 
| agg_prior2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 95.87 160 | 99.57 78 | 99.68 59 | 
 | 
| agg_prior |  |  |  |  |  | 99.30 66 | 98.38 35 |  | 98.72 111 |  | 97.57 142 |  |  | 99.81 79 |  |  |  | 
 | 
| TestCases |  |  |  |  | 96.99 196 | 99.25 79 | 93.21 273 |  | 98.18 225 | 91.36 303 | 93.52 276 | 98.77 130 | 84.67 287 | 99.72 111 | 89.70 317 | 97.87 174 | 98.02 221 | 
 | 
| test_prior4 |  |  |  |  |  |  | 98.01 59 | 97.86 265 |  |  |  |  |  |  |  |  |  | 
 | 
| test_prior2 |  |  |  |  |  |  |  | 97.80 270 |  | 96.12 101 | 97.89 122 | 98.69 139 | 95.96 35 |  | 96.89 121 | 99.60 72 |  | 
 | 
| test_prior |  |  |  |  | 99.19 40 | 99.31 62 | 98.22 47 |  | 98.84 77 |  |  |  |  | 99.70 117 |  |  | 99.65 67 | 
 | 
| 旧先验2 |  |  |  |  |  |  |  | 97.57 289 |  | 91.30 308 | 98.67 71 |  |  | 99.80 86 | 95.70 168 |  |  | 
 | 
| 新几何2 |  |  |  |  |  |  |  | 97.64 283 |  |  |  |  |  |  |  |  |  | 
 | 
| 新几何1 |  |  |  |  | 99.16 45 | 99.34 55 | 98.01 59 |  | 98.69 118 | 90.06 332 | 98.13 99 | 98.95 110 | 94.60 77 | 99.89 45 | 91.97 279 | 99.47 97 | 99.59 77 | 
 | 
| 旧先验1 |  |  |  |  |  | 99.29 71 | 97.48 75 |  | 98.70 117 |  |  | 99.09 90 | 95.56 46 |  |  | 99.47 97 | 99.61 73 | 
 | 
| 无先验 |  |  |  |  |  |  |  | 97.58 288 | 98.72 111 | 91.38 302 |  |  |  | 99.87 56 | 93.36 239 |  | 99.60 75 | 
 | 
| 原ACMM2 |  |  |  |  |  |  |  | 97.67 280 |  |  |  |  |  |  |  |  |  | 
 | 
| 原ACMM1 |  |  |  |  | 98.65 73 | 99.32 60 | 96.62 110 |  | 98.67 126 | 93.27 240 | 97.81 123 | 98.97 103 | 95.18 65 | 99.83 67 | 93.84 225 | 99.46 100 | 99.50 89 | 
 | 
| test222 |  |  |  |  |  | 99.23 86 | 97.17 90 | 97.40 296 | 98.66 129 | 88.68 351 | 98.05 104 | 98.96 108 | 94.14 91 |  |  | 99.53 89 | 99.61 73 | 
 | 
| testdata2 |  |  |  |  |  |  |  |  |  |  |  |  |  | 99.89 45 | 91.65 286 |  |  | 
 | 
| segment_acmp |  |  |  |  |  |  |  |  |  |  |  |  | 96.85 14 |  |  |  |  | 
 | 
| testdata |  |  |  |  | 98.26 108 | 99.20 90 | 95.36 179 |  | 98.68 121 | 91.89 289 | 98.60 79 | 99.10 84 | 94.44 84 | 99.82 74 | 94.27 211 | 99.44 101 | 99.58 81 | 
 | 
| testdata1 |  |  |  |  |  |  |  | 97.32 306 |  | 96.34 93 |  |  |  |  |  |  |  | 
 | 
| test12 |  |  |  |  | 99.18 42 | 99.16 96 | 98.19 48 |  | 98.53 157 |  | 98.07 103 |  | 95.13 68 | 99.72 111 |  | 99.56 84 | 99.63 71 | 
 | 
| plane_prior7 |  |  |  |  |  | 97.42 250 | 94.63 215 |  |  |  |  |  |  |  |  |  |  | 
 | 
| plane_prior6 |  |  |  |  |  | 97.35 257 | 94.61 218 |  |  |  |  |  | 87.09 238 |  |  |  |  | 
 | 
| plane_prior5 |  |  |  |  |  |  |  |  | 98.56 151 |  |  |  |  | 99.03 208 | 96.07 150 | 94.27 238 | 96.92 258 | 
 | 
| plane_prior4 |  |  |  |  |  |  |  |  |  |  |  | 98.28 185 |  |  |  |  |  | 
 | 
| plane_prior3 |  |  |  |  |  |  | 94.61 218 |  |  | 97.02 62 | 95.34 207 |  |  |  |  |  |  | 
 | 
| plane_prior2 |  |  |  |  |  |  |  | 98.80 133 |  | 97.28 43 |  |  |  |  |  |  |  | 
 | 
| plane_prior1 |  |  |  |  |  | 97.37 256 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| plane_prior |  |  |  |  |  |  | 94.60 220 | 98.44 197 |  | 96.74 75 |  |  |  |  |  | 94.22 240 |  | 
 | 
| n2 |  |  |  |  |  |  |  |  | 0.00 406 |  |  |  |  |  |  |  |  | 
 | 
| nn |  |  |  |  |  |  |  |  | 0.00 406 |  |  |  |  |  |  |  |  | 
 | 
| door-mid |  |  |  |  |  |  |  |  | 94.37 376 |  |  |  |  |  |  |  |  | 
 | 
| lessismore_v0 |  |  |  |  | 94.45 327 | 94.93 356 | 88.44 353 |  | 91.03 391 |  | 86.77 362 | 97.64 244 | 76.23 356 | 98.42 279 | 90.31 305 | 85.64 358 | 96.51 318 | 
 | 
| LGP-MVS_train |  |  |  |  | 96.47 246 | 97.46 245 | 93.54 257 |  | 98.54 155 | 94.67 172 | 94.36 238 | 98.77 130 | 85.39 269 | 99.11 196 | 95.71 166 | 94.15 244 | 96.76 281 | 
 | 
| test11 |  |  |  |  |  |  |  |  | 98.66 129 |  |  |  |  |  |  |  |  | 
 | 
| door |  |  |  |  |  |  |  |  | 94.64 374 |  |  |  |  |  |  |  |  | 
 | 
| HQP5-MVS |  |  |  |  |  |  | 94.25 235 |  |  |  |  |  |  |  |  |  |  | 
 | 
| HQP-NCC |  |  |  |  |  | 97.20 265 |  | 98.05 243 |  | 96.43 87 | 94.45 230 |  |  |  |  |  |  | 
 | 
| ACMP_Plane |  |  |  |  |  | 97.20 265 |  | 98.05 243 |  | 96.43 87 | 94.45 230 |  |  |  |  |  |  | 
 | 
| BP-MVS |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 95.30 178 |  |  | 
 | 
| HQP4-MVS |  |  |  |  |  |  |  |  |  |  | 94.45 230 |  |  | 98.96 219 |  |  | 96.87 269 | 
 | 
| HQP3-MVS |  |  |  |  |  |  |  |  | 98.46 174 |  |  |  |  |  |  | 94.18 242 |  | 
 | 
| HQP2-MVS |  |  |  |  |  |  |  |  |  |  |  |  | 86.75 244 |  |  |  |  | 
 | 
| NP-MVS |  |  |  |  |  | 97.28 259 | 94.51 223 |  |  |  |  | 97.73 233 |  |  |  |  |  | 
 | 
| MDTV_nov1_ep13_2view |  |  |  |  |  |  | 84.26 370 | 96.89 339 |  | 90.97 317 | 97.90 121 |  | 89.89 171 |  | 93.91 223 |  | 99.18 146 | 
 | 
| MDTV_nov1_ep13 |  |  |  | 95.40 168 |  | 97.48 243 | 88.34 354 | 96.85 342 | 97.29 315 | 93.74 212 | 97.48 144 | 97.26 268 | 89.18 187 | 99.05 204 | 91.92 280 | 97.43 188 |  | 
 | 
| ACMMP++_ref |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 92.97 275 |  | 
 | 
| ACMMP++ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 93.61 262 |  | 
 | 
| Test By Simon |  |  |  |  |  |  |  |  |  |  |  |  | 94.64 76 |  |  |  |  | 
 | 
| ITE_SJBPF |  |  |  |  | 95.44 293 | 97.42 250 | 91.32 302 |  | 97.50 298 | 95.09 155 | 93.59 272 | 98.35 176 | 81.70 316 | 98.88 233 | 89.71 316 | 93.39 269 | 96.12 337 | 
 | 
| DeepMVS_CX |   |  |  |  | 86.78 360 | 97.09 275 | 72.30 388 |  | 95.17 370 | 75.92 382 | 84.34 373 | 95.19 353 | 70.58 370 | 95.35 374 | 79.98 374 | 89.04 326 | 92.68 378 | 
 |