| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 54 | 99.43 57 | 97.48 82 | 98.88 115 | 99.30 13 | 98.47 12 | 99.85 5 | 99.43 33 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 24 | 99.89 4 |
|
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 79 | 98.87 71 | 97.65 28 | 99.73 13 | 99.48 24 | 97.53 7 | 99.94 9 | 98.43 53 | 99.81 15 | 99.70 56 |
|
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 99 | 99.23 7 | 99.69 1 | 98.88 64 | 97.32 49 | 99.53 26 | 99.47 26 | 97.81 3 | 99.94 9 | 98.47 49 | 99.72 58 | 99.74 39 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 50 | 99.41 59 | 97.54 80 | 98.89 110 | 99.31 12 | 98.49 11 | 99.86 3 | 99.42 34 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 51 | 99.90 3 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 89 | 98.58 158 | 97.62 30 | 99.45 28 | 99.46 30 | 97.42 9 | 99.94 9 | 98.47 49 | 99.81 15 | 99.69 59 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 10 | 98.93 52 | 97.38 46 | 99.41 31 | 99.54 14 | 96.66 18 | 99.84 73 | 98.86 28 | 99.85 6 | 99.87 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| reproduce_model | | | 98.94 7 | 98.81 10 | 99.34 25 | 99.52 39 | 98.26 49 | 98.94 98 | 98.84 81 | 98.06 16 | 99.35 35 | 99.61 4 | 96.39 27 | 99.94 9 | 98.77 31 | 99.82 14 | 99.83 12 |
|
| reproduce-ours | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 83 | 98.06 16 | 99.29 39 | 99.58 10 | 96.40 25 | 99.94 9 | 98.68 33 | 99.81 15 | 99.81 17 |
|
| our_new_method | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 83 | 98.06 16 | 99.29 39 | 99.58 10 | 96.40 25 | 99.94 9 | 98.68 33 | 99.81 15 | 99.81 17 |
|
| test_fmvsmconf_n | | | 98.92 10 | 98.87 6 | 99.04 58 | 98.88 132 | 97.25 98 | 98.82 133 | 99.34 10 | 98.75 5 | 99.80 6 | 99.61 4 | 95.16 73 | 99.95 7 | 99.70 8 | 99.80 24 | 99.93 1 |
|
| DPE-MVS |  | | 98.92 10 | 98.67 15 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 217 | 98.91 58 | 97.58 33 | 99.54 25 | 99.46 30 | 97.10 12 | 99.94 9 | 97.64 100 | 99.84 11 | 99.83 12 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SteuartSystems-ACMMP | | | 98.90 12 | 98.75 13 | 99.36 23 | 99.22 94 | 98.43 33 | 99.10 63 | 98.87 71 | 97.38 46 | 99.35 35 | 99.40 36 | 97.78 5 | 99.87 64 | 97.77 88 | 99.85 6 | 99.78 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_fmvsm_n_1920 | | | 98.87 13 | 99.01 3 | 98.45 105 | 99.42 58 | 96.43 137 | 98.96 94 | 99.36 9 | 98.63 7 | 99.86 3 | 99.51 19 | 95.91 43 | 99.97 1 | 99.72 6 | 99.75 47 | 98.94 187 |
|
| TSAR-MVS + MP. | | | 98.78 14 | 98.62 16 | 99.24 39 | 99.69 24 | 98.28 48 | 99.14 54 | 98.66 138 | 96.84 78 | 99.56 23 | 99.31 56 | 96.34 28 | 99.70 125 | 98.32 59 | 99.73 54 | 99.73 44 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CNVR-MVS | | | 98.78 14 | 98.56 19 | 99.45 15 | 99.32 65 | 98.87 19 | 98.47 209 | 98.81 92 | 97.72 23 | 98.76 78 | 99.16 83 | 97.05 13 | 99.78 107 | 98.06 70 | 99.66 68 | 99.69 59 |
|
| MSP-MVS | | | 98.74 16 | 98.55 20 | 99.29 32 | 99.75 3 | 98.23 50 | 99.26 27 | 98.88 64 | 97.52 36 | 99.41 31 | 98.78 140 | 96.00 39 | 99.79 104 | 97.79 87 | 99.59 83 | 99.85 9 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVS | | | 98.70 17 | 98.49 24 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 64 | 97.40 43 | 98.46 96 | 99.20 73 | 95.90 45 | 99.89 53 | 97.85 83 | 99.74 51 | 99.78 23 |
|
| MCST-MVS | | | 98.65 18 | 98.37 33 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 218 | 98.68 130 | 97.04 70 | 98.52 94 | 98.80 138 | 96.78 16 | 99.83 75 | 97.93 77 | 99.61 79 | 99.74 39 |
|
| SD-MVS | | | 98.64 19 | 98.68 14 | 98.53 96 | 99.33 62 | 98.36 43 | 98.90 106 | 98.85 80 | 97.28 52 | 99.72 15 | 99.39 37 | 96.63 20 | 97.60 367 | 98.17 65 | 99.85 6 | 99.64 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HFP-MVS | | | 98.63 20 | 98.40 30 | 99.32 31 | 99.72 12 | 98.29 47 | 99.23 32 | 98.96 47 | 96.10 115 | 98.94 61 | 99.17 80 | 96.06 36 | 99.92 35 | 97.62 101 | 99.78 34 | 99.75 37 |
|
| ACMMP_NAP | | | 98.61 21 | 98.30 46 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 133 | 98.81 92 | 95.80 126 | 99.16 51 | 99.47 26 | 95.37 60 | 99.92 35 | 97.89 81 | 99.75 47 | 99.79 21 |
|
| region2R | | | 98.61 21 | 98.38 32 | 99.29 32 | 99.74 7 | 98.16 56 | 99.23 32 | 98.93 52 | 96.15 112 | 98.94 61 | 99.17 80 | 95.91 43 | 99.94 9 | 97.55 108 | 99.79 30 | 99.78 23 |
|
| NCCC | | | 98.61 21 | 98.35 36 | 99.38 18 | 99.28 80 | 98.61 26 | 98.45 210 | 98.76 110 | 97.82 22 | 98.45 99 | 98.93 122 | 96.65 19 | 99.83 75 | 97.38 117 | 99.41 113 | 99.71 52 |
|
| SF-MVS | | | 98.59 24 | 98.32 45 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 73 | 98.81 92 | 95.12 162 | 99.32 38 | 99.39 37 | 96.22 30 | 99.84 73 | 97.72 91 | 99.73 54 | 99.67 68 |
|
| ACMMPR | | | 98.59 24 | 98.36 34 | 99.29 32 | 99.74 7 | 98.15 57 | 99.23 32 | 98.95 48 | 96.10 115 | 98.93 65 | 99.19 78 | 95.70 49 | 99.94 9 | 97.62 101 | 99.79 30 | 99.78 23 |
|
| test_fmvsmconf0.1_n | | | 98.58 26 | 98.44 28 | 98.99 60 | 97.73 248 | 97.15 103 | 98.84 129 | 98.97 44 | 98.75 5 | 99.43 30 | 99.54 14 | 93.29 107 | 99.93 28 | 99.64 11 | 99.79 30 | 99.89 4 |
|
| SMA-MVS |  | | 98.58 26 | 98.25 49 | 99.56 8 | 99.51 40 | 99.04 15 | 98.95 95 | 98.80 99 | 93.67 245 | 99.37 34 | 99.52 17 | 96.52 22 | 99.89 53 | 98.06 70 | 99.81 15 | 99.76 36 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 98.58 26 | 98.29 47 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 106 | 98.74 114 | 97.27 56 | 98.02 123 | 99.39 37 | 94.81 83 | 99.96 4 | 97.91 79 | 99.79 30 | 99.77 29 |
|
| HPM-MVS++ |  | | 98.58 26 | 98.25 49 | 99.55 9 | 99.50 42 | 99.08 11 | 98.72 163 | 98.66 138 | 97.51 37 | 98.15 110 | 98.83 135 | 95.70 49 | 99.92 35 | 97.53 110 | 99.67 65 | 99.66 71 |
|
| SR-MVS | | | 98.57 30 | 98.35 36 | 99.24 39 | 99.53 36 | 98.18 54 | 99.09 64 | 98.82 86 | 96.58 94 | 99.10 53 | 99.32 54 | 95.39 58 | 99.82 82 | 97.70 96 | 99.63 76 | 99.72 48 |
|
| CP-MVS | | | 98.57 30 | 98.36 34 | 99.19 43 | 99.66 26 | 97.86 68 | 99.34 16 | 98.87 71 | 95.96 118 | 98.60 91 | 99.13 88 | 96.05 37 | 99.94 9 | 97.77 88 | 99.86 2 | 99.77 29 |
|
| MSLP-MVS++ | | | 98.56 32 | 98.57 18 | 98.55 92 | 99.26 83 | 96.80 117 | 98.71 164 | 99.05 38 | 97.28 52 | 98.84 71 | 99.28 59 | 96.47 23 | 99.40 184 | 98.52 47 | 99.70 61 | 99.47 103 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 33 | 98.34 40 | 99.18 45 | 99.25 84 | 98.04 62 | 98.50 206 | 98.78 106 | 97.72 23 | 98.92 67 | 99.28 59 | 95.27 66 | 99.82 82 | 97.55 108 | 99.77 36 | 99.69 59 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 98.54 34 | 98.35 36 | 99.13 51 | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 99 | 96.49 97 | 99.17 48 | 99.35 49 | 95.34 62 | 99.82 82 | 97.72 91 | 99.65 71 | 99.71 52 |
|
| fmvsm_s_conf0.5_n_3 | | | 98.53 35 | 98.45 27 | 98.79 74 | 99.23 92 | 97.32 90 | 98.80 142 | 99.26 15 | 98.82 2 | 99.87 1 | 99.60 8 | 90.95 164 | 99.93 28 | 99.76 5 | 99.73 54 | 99.12 162 |
|
| APD-MVS_3200maxsize | | | 98.53 35 | 98.33 44 | 99.15 49 | 99.50 42 | 97.92 67 | 99.15 51 | 98.81 92 | 96.24 108 | 99.20 45 | 99.37 43 | 95.30 64 | 99.80 94 | 97.73 90 | 99.67 65 | 99.72 48 |
|
| MM | | | 98.51 37 | 98.24 51 | 99.33 29 | 99.12 107 | 98.14 59 | 98.93 101 | 97.02 353 | 98.96 1 | 99.17 48 | 99.47 26 | 91.97 137 | 99.94 9 | 99.85 3 | 99.69 62 | 99.91 2 |
|
| mPP-MVS | | | 98.51 37 | 98.26 48 | 99.25 38 | 99.75 3 | 98.04 62 | 99.28 24 | 98.81 92 | 96.24 108 | 98.35 106 | 99.23 68 | 95.46 55 | 99.94 9 | 97.42 115 | 99.81 15 | 99.77 29 |
|
| ZNCC-MVS | | | 98.49 39 | 98.20 57 | 99.35 24 | 99.73 11 | 98.39 34 | 99.19 44 | 98.86 77 | 95.77 128 | 98.31 109 | 99.10 92 | 95.46 55 | 99.93 28 | 97.57 107 | 99.81 15 | 99.74 39 |
|
| SPE-MVS-test | | | 98.49 39 | 98.50 23 | 98.46 104 | 99.20 97 | 97.05 107 | 99.64 4 | 98.50 180 | 97.45 42 | 98.88 68 | 99.14 87 | 95.25 68 | 99.15 212 | 98.83 29 | 99.56 93 | 99.20 147 |
|
| PGM-MVS | | | 98.49 39 | 98.23 53 | 99.27 37 | 99.72 12 | 98.08 61 | 98.99 86 | 99.49 5 | 95.43 144 | 99.03 54 | 99.32 54 | 95.56 52 | 99.94 9 | 96.80 146 | 99.77 36 | 99.78 23 |
|
| EI-MVSNet-Vis-set | | | 98.47 42 | 98.39 31 | 98.69 81 | 99.46 52 | 96.49 134 | 98.30 229 | 98.69 127 | 97.21 59 | 98.84 71 | 99.36 47 | 95.41 57 | 99.78 107 | 98.62 36 | 99.65 71 | 99.80 20 |
|
| MVS_111021_HR | | | 98.47 42 | 98.34 40 | 98.88 71 | 99.22 94 | 97.32 90 | 97.91 278 | 99.58 3 | 97.20 60 | 98.33 107 | 99.00 111 | 95.99 40 | 99.64 137 | 98.05 72 | 99.76 42 | 99.69 59 |
|
| balanced_conf03 | | | 98.45 44 | 98.35 36 | 98.74 77 | 98.65 159 | 97.55 78 | 99.19 44 | 98.60 149 | 96.72 88 | 99.35 35 | 98.77 142 | 95.06 78 | 99.55 160 | 98.95 25 | 99.87 1 | 99.12 162 |
|
| test_fmvsmvis_n_1920 | | | 98.44 45 | 98.51 21 | 98.23 125 | 98.33 189 | 96.15 151 | 98.97 89 | 99.15 30 | 98.55 10 | 98.45 99 | 99.55 12 | 94.26 96 | 99.97 1 | 99.65 9 | 99.66 68 | 98.57 224 |
|
| CS-MVS | | | 98.44 45 | 98.49 24 | 98.31 117 | 99.08 112 | 96.73 121 | 99.67 3 | 98.47 186 | 97.17 62 | 98.94 61 | 99.10 92 | 95.73 48 | 99.13 215 | 98.71 32 | 99.49 103 | 99.09 167 |
|
| GST-MVS | | | 98.43 47 | 98.12 61 | 99.34 25 | 99.72 12 | 98.38 35 | 99.09 64 | 98.82 86 | 95.71 132 | 98.73 81 | 99.06 103 | 95.27 66 | 99.93 28 | 97.07 125 | 99.63 76 | 99.72 48 |
|
| fmvsm_s_conf0.5_n | | | 98.42 48 | 98.51 21 | 98.13 134 | 99.30 71 | 95.25 197 | 98.85 125 | 99.39 7 | 97.94 20 | 99.74 12 | 99.62 3 | 92.59 116 | 99.91 44 | 99.65 9 | 99.52 99 | 99.25 140 |
|
| EI-MVSNet-UG-set | | | 98.41 49 | 98.34 40 | 98.61 87 | 99.45 55 | 96.32 144 | 98.28 232 | 98.68 130 | 97.17 62 | 98.74 79 | 99.37 43 | 95.25 68 | 99.79 104 | 98.57 38 | 99.54 96 | 99.73 44 |
|
| DELS-MVS | | | 98.40 50 | 98.20 57 | 98.99 60 | 99.00 119 | 97.66 73 | 97.75 299 | 98.89 61 | 97.71 25 | 98.33 107 | 98.97 113 | 94.97 80 | 99.88 62 | 98.42 55 | 99.76 42 | 99.42 114 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| fmvsm_s_conf0.5_n_a | | | 98.38 51 | 98.42 29 | 98.27 119 | 99.09 111 | 95.41 187 | 98.86 121 | 99.37 8 | 97.69 27 | 99.78 8 | 99.61 4 | 92.38 119 | 99.91 44 | 99.58 13 | 99.43 111 | 99.49 99 |
|
| TSAR-MVS + GP. | | | 98.38 51 | 98.24 51 | 98.81 73 | 99.22 94 | 97.25 98 | 98.11 256 | 98.29 225 | 97.19 61 | 98.99 59 | 99.02 106 | 96.22 30 | 99.67 132 | 98.52 47 | 98.56 161 | 99.51 92 |
|
| HPM-MVS_fast | | | 98.38 51 | 98.13 60 | 99.12 53 | 99.75 3 | 97.86 68 | 99.44 9 | 98.82 86 | 94.46 201 | 98.94 61 | 99.20 73 | 95.16 73 | 99.74 117 | 97.58 104 | 99.85 6 | 99.77 29 |
|
| patch_mono-2 | | | 98.36 54 | 98.87 6 | 96.82 228 | 99.53 36 | 90.68 335 | 98.64 181 | 99.29 14 | 97.88 21 | 99.19 47 | 99.52 17 | 96.80 15 | 99.97 1 | 99.11 21 | 99.86 2 | 99.82 16 |
|
| HPM-MVS |  | | 98.36 54 | 98.10 64 | 99.13 51 | 99.74 7 | 97.82 72 | 99.53 6 | 98.80 99 | 94.63 191 | 98.61 90 | 98.97 113 | 95.13 75 | 99.77 112 | 97.65 99 | 99.83 13 | 99.79 21 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS |  | | 98.35 56 | 98.00 70 | 99.42 16 | 99.51 40 | 98.72 21 | 98.80 142 | 98.82 86 | 94.52 198 | 99.23 44 | 99.25 67 | 95.54 54 | 99.80 94 | 96.52 153 | 99.77 36 | 99.74 39 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_LR | | | 98.34 57 | 98.23 53 | 98.67 83 | 99.27 81 | 96.90 113 | 97.95 273 | 99.58 3 | 97.14 65 | 98.44 101 | 99.01 110 | 95.03 79 | 99.62 144 | 97.91 79 | 99.75 47 | 99.50 94 |
|
| PHI-MVS | | | 98.34 57 | 98.06 65 | 99.18 45 | 99.15 105 | 98.12 60 | 99.04 73 | 99.09 33 | 93.32 260 | 98.83 73 | 99.10 92 | 96.54 21 | 99.83 75 | 97.70 96 | 99.76 42 | 99.59 82 |
|
| MP-MVS |  | | 98.33 59 | 98.01 69 | 99.28 35 | 99.75 3 | 98.18 54 | 99.22 36 | 98.79 104 | 96.13 113 | 97.92 134 | 99.23 68 | 94.54 86 | 99.94 9 | 96.74 149 | 99.78 34 | 99.73 44 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVSMamba_PlusPlus | | | 98.31 60 | 98.19 59 | 98.67 83 | 98.96 126 | 97.36 88 | 99.24 30 | 98.57 160 | 94.81 183 | 98.99 59 | 98.90 126 | 95.22 71 | 99.59 147 | 99.15 20 | 99.84 11 | 99.07 175 |
|
| MP-MVS-pluss | | | 98.31 60 | 97.92 72 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 215 | 98.78 106 | 94.10 210 | 97.69 149 | 99.42 34 | 95.25 68 | 99.92 35 | 98.09 69 | 99.80 24 | 99.67 68 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| fmvsm_s_conf0.5_n_2 | | | 98.30 62 | 98.21 55 | 98.57 89 | 99.25 84 | 97.11 104 | 98.66 177 | 99.20 25 | 98.82 2 | 99.79 7 | 99.60 8 | 89.38 195 | 99.92 35 | 99.80 4 | 99.38 118 | 98.69 208 |
|
| MVS_0304 | | | 98.23 63 | 97.91 73 | 99.21 42 | 98.06 218 | 97.96 66 | 98.58 190 | 95.51 390 | 98.58 8 | 98.87 69 | 99.26 62 | 92.99 111 | 99.95 7 | 99.62 12 | 99.67 65 | 99.73 44 |
|
| ACMMP |  | | 98.23 63 | 97.95 71 | 99.09 55 | 99.74 7 | 97.62 76 | 99.03 76 | 99.41 6 | 95.98 117 | 97.60 158 | 99.36 47 | 94.45 91 | 99.93 28 | 97.14 122 | 98.85 147 | 99.70 56 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| EC-MVSNet | | | 98.21 65 | 98.11 62 | 98.49 101 | 98.34 186 | 97.26 97 | 99.61 5 | 98.43 195 | 96.78 81 | 98.87 69 | 98.84 133 | 93.72 103 | 99.01 236 | 98.91 27 | 99.50 101 | 99.19 151 |
|
| fmvsm_s_conf0.1_n | | | 98.18 66 | 98.21 55 | 98.11 138 | 98.54 168 | 95.24 198 | 98.87 118 | 99.24 18 | 97.50 38 | 99.70 16 | 99.67 1 | 91.33 153 | 99.89 53 | 99.47 15 | 99.54 96 | 99.21 146 |
|
| fmvsm_s_conf0.1_n_2 | | | 98.14 67 | 98.02 68 | 98.53 96 | 98.88 132 | 97.07 106 | 98.69 170 | 98.82 86 | 98.78 4 | 99.77 9 | 99.61 4 | 88.83 214 | 99.91 44 | 99.71 7 | 99.07 131 | 98.61 218 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 68 | 98.04 67 | 98.21 126 | 97.66 254 | 95.39 188 | 98.89 110 | 99.17 28 | 97.24 57 | 99.76 11 | 99.67 1 | 91.13 158 | 99.88 62 | 99.39 16 | 99.41 113 | 99.35 119 |
|
| dcpmvs_2 | | | 98.08 68 | 98.59 17 | 96.56 252 | 99.57 33 | 90.34 344 | 99.15 51 | 98.38 205 | 96.82 80 | 99.29 39 | 99.49 23 | 95.78 47 | 99.57 150 | 98.94 26 | 99.86 2 | 99.77 29 |
|
| CANet | | | 98.05 70 | 97.76 76 | 98.90 70 | 98.73 145 | 97.27 93 | 98.35 220 | 98.78 106 | 97.37 48 | 97.72 146 | 98.96 118 | 91.53 149 | 99.92 35 | 98.79 30 | 99.65 71 | 99.51 92 |
|
| train_agg | | | 97.97 71 | 97.52 88 | 99.33 29 | 99.31 67 | 98.50 29 | 97.92 276 | 98.73 117 | 92.98 276 | 97.74 143 | 98.68 153 | 96.20 32 | 99.80 94 | 96.59 150 | 99.57 87 | 99.68 64 |
|
| ETV-MVS | | | 97.96 72 | 97.81 74 | 98.40 112 | 98.42 174 | 97.27 93 | 98.73 159 | 98.55 165 | 96.84 78 | 98.38 103 | 97.44 271 | 95.39 58 | 99.35 189 | 97.62 101 | 98.89 142 | 98.58 223 |
|
| UA-Net | | | 97.96 72 | 97.62 80 | 98.98 62 | 98.86 136 | 97.47 84 | 98.89 110 | 99.08 34 | 96.67 91 | 98.72 82 | 99.54 14 | 93.15 109 | 99.81 87 | 94.87 207 | 98.83 148 | 99.65 72 |
|
| CDPH-MVS | | | 97.94 74 | 97.49 90 | 99.28 35 | 99.47 50 | 98.44 31 | 97.91 278 | 98.67 135 | 92.57 292 | 98.77 77 | 98.85 132 | 95.93 42 | 99.72 119 | 95.56 187 | 99.69 62 | 99.68 64 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 75 | 98.48 26 | 96.30 277 | 99.00 119 | 89.54 358 | 97.43 321 | 98.87 71 | 98.16 14 | 99.26 43 | 99.38 42 | 96.12 35 | 99.64 137 | 98.30 60 | 99.77 36 | 99.72 48 |
|
| DeepC-MVS | | 95.98 3 | 97.88 76 | 97.58 82 | 98.77 75 | 99.25 84 | 96.93 111 | 98.83 131 | 98.75 112 | 96.96 74 | 96.89 183 | 99.50 21 | 90.46 172 | 99.87 64 | 97.84 85 | 99.76 42 | 99.52 89 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf0.01_n | | | 97.86 77 | 97.54 87 | 98.83 72 | 95.48 371 | 96.83 116 | 98.95 95 | 98.60 149 | 98.58 8 | 98.93 65 | 99.55 12 | 88.57 219 | 99.91 44 | 99.54 14 | 99.61 79 | 99.77 29 |
|
| DP-MVS Recon | | | 97.86 77 | 97.46 93 | 99.06 57 | 99.53 36 | 98.35 44 | 98.33 222 | 98.89 61 | 92.62 289 | 98.05 118 | 98.94 121 | 95.34 62 | 99.65 135 | 96.04 169 | 99.42 112 | 99.19 151 |
|
| CSCG | | | 97.85 79 | 97.74 77 | 98.20 128 | 99.67 25 | 95.16 201 | 99.22 36 | 99.32 11 | 93.04 274 | 97.02 176 | 98.92 124 | 95.36 61 | 99.91 44 | 97.43 114 | 99.64 75 | 99.52 89 |
|
| BP-MVS1 | | | 97.82 80 | 97.51 89 | 98.76 76 | 98.25 196 | 97.39 87 | 99.15 51 | 97.68 292 | 96.69 89 | 98.47 95 | 99.10 92 | 90.29 176 | 99.51 167 | 98.60 37 | 99.35 121 | 99.37 117 |
|
| MG-MVS | | | 97.81 81 | 97.60 81 | 98.44 107 | 99.12 107 | 95.97 160 | 97.75 299 | 98.78 106 | 96.89 77 | 98.46 96 | 99.22 70 | 93.90 102 | 99.68 131 | 94.81 211 | 99.52 99 | 99.67 68 |
|
| VNet | | | 97.79 82 | 97.40 97 | 98.96 65 | 98.88 132 | 97.55 78 | 98.63 184 | 98.93 52 | 96.74 85 | 99.02 55 | 98.84 133 | 90.33 175 | 99.83 75 | 98.53 41 | 96.66 222 | 99.50 94 |
|
| EIA-MVS | | | 97.75 83 | 97.58 82 | 98.27 119 | 98.38 178 | 96.44 136 | 99.01 81 | 98.60 149 | 95.88 122 | 97.26 165 | 97.53 265 | 94.97 80 | 99.33 192 | 97.38 117 | 99.20 127 | 99.05 176 |
|
| PS-MVSNAJ | | | 97.73 84 | 97.77 75 | 97.62 178 | 98.68 154 | 95.58 178 | 97.34 330 | 98.51 175 | 97.29 51 | 98.66 87 | 97.88 231 | 94.51 87 | 99.90 51 | 97.87 82 | 99.17 129 | 97.39 265 |
|
| casdiffmvs_mvg |  | | 97.72 85 | 97.48 92 | 98.44 107 | 98.42 174 | 96.59 129 | 98.92 103 | 98.44 191 | 96.20 110 | 97.76 140 | 99.20 73 | 91.66 143 | 99.23 202 | 98.27 64 | 98.41 171 | 99.49 99 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CPTT-MVS | | | 97.72 85 | 97.32 101 | 98.92 67 | 99.64 28 | 97.10 105 | 99.12 58 | 98.81 92 | 92.34 300 | 98.09 115 | 99.08 101 | 93.01 110 | 99.92 35 | 96.06 168 | 99.77 36 | 99.75 37 |
|
| PVSNet_Blended_VisFu | | | 97.70 87 | 97.46 93 | 98.44 107 | 99.27 81 | 95.91 168 | 98.63 184 | 99.16 29 | 94.48 200 | 97.67 150 | 98.88 129 | 92.80 113 | 99.91 44 | 97.11 123 | 99.12 130 | 99.50 94 |
|
| mvsany_test1 | | | 97.69 88 | 97.70 78 | 97.66 176 | 98.24 197 | 94.18 251 | 97.53 315 | 97.53 310 | 95.52 140 | 99.66 18 | 99.51 19 | 94.30 94 | 99.56 153 | 98.38 56 | 98.62 157 | 99.23 142 |
|
| sasdasda | | | 97.67 89 | 97.23 105 | 98.98 62 | 98.70 150 | 98.38 35 | 99.34 16 | 98.39 201 | 96.76 83 | 97.67 150 | 97.40 275 | 92.26 123 | 99.49 171 | 98.28 61 | 96.28 240 | 99.08 171 |
|
| canonicalmvs | | | 97.67 89 | 97.23 105 | 98.98 62 | 98.70 150 | 98.38 35 | 99.34 16 | 98.39 201 | 96.76 83 | 97.67 150 | 97.40 275 | 92.26 123 | 99.49 171 | 98.28 61 | 96.28 240 | 99.08 171 |
|
| xiu_mvs_v2_base | | | 97.66 91 | 97.70 78 | 97.56 182 | 98.61 163 | 95.46 185 | 97.44 319 | 98.46 187 | 97.15 64 | 98.65 88 | 98.15 207 | 94.33 93 | 99.80 94 | 97.84 85 | 98.66 156 | 97.41 263 |
|
| GDP-MVS | | | 97.64 92 | 97.28 102 | 98.71 80 | 98.30 194 | 97.33 89 | 99.05 69 | 98.52 172 | 96.34 105 | 98.80 74 | 99.05 104 | 89.74 185 | 99.51 167 | 96.86 143 | 98.86 146 | 99.28 134 |
|
| baseline | | | 97.64 92 | 97.44 95 | 98.25 123 | 98.35 181 | 96.20 148 | 99.00 83 | 98.32 215 | 96.33 107 | 98.03 121 | 99.17 80 | 91.35 152 | 99.16 209 | 98.10 68 | 98.29 178 | 99.39 115 |
|
| casdiffmvs |  | | 97.63 94 | 97.41 96 | 98.28 118 | 98.33 189 | 96.14 152 | 98.82 133 | 98.32 215 | 96.38 104 | 97.95 129 | 99.21 71 | 91.23 157 | 99.23 202 | 98.12 67 | 98.37 172 | 99.48 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MGCFI-Net | | | 97.62 95 | 97.19 108 | 98.92 67 | 98.66 156 | 98.20 52 | 99.32 21 | 98.38 205 | 96.69 89 | 97.58 159 | 97.42 274 | 92.10 131 | 99.50 170 | 98.28 61 | 96.25 243 | 99.08 171 |
|
| xiu_mvs_v1_base_debu | | | 97.60 96 | 97.56 84 | 97.72 166 | 98.35 181 | 95.98 155 | 97.86 288 | 98.51 175 | 97.13 66 | 99.01 56 | 98.40 180 | 91.56 145 | 99.80 94 | 98.53 41 | 98.68 152 | 97.37 267 |
|
| xiu_mvs_v1_base | | | 97.60 96 | 97.56 84 | 97.72 166 | 98.35 181 | 95.98 155 | 97.86 288 | 98.51 175 | 97.13 66 | 99.01 56 | 98.40 180 | 91.56 145 | 99.80 94 | 98.53 41 | 98.68 152 | 97.37 267 |
|
| xiu_mvs_v1_base_debi | | | 97.60 96 | 97.56 84 | 97.72 166 | 98.35 181 | 95.98 155 | 97.86 288 | 98.51 175 | 97.13 66 | 99.01 56 | 98.40 180 | 91.56 145 | 99.80 94 | 98.53 41 | 98.68 152 | 97.37 267 |
|
| diffmvs |  | | 97.58 99 | 97.40 97 | 98.13 134 | 98.32 192 | 95.81 173 | 98.06 262 | 98.37 207 | 96.20 110 | 98.74 79 | 98.89 128 | 91.31 155 | 99.25 199 | 98.16 66 | 98.52 163 | 99.34 121 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 97.57 100 | 97.49 90 | 97.84 153 | 98.07 215 | 95.76 174 | 99.47 7 | 98.40 199 | 94.98 172 | 98.79 75 | 98.83 135 | 92.34 120 | 98.41 309 | 96.91 131 | 99.59 83 | 99.34 121 |
|
| alignmvs | | | 97.56 101 | 97.07 114 | 99.01 59 | 98.66 156 | 98.37 42 | 98.83 131 | 98.06 272 | 96.74 85 | 98.00 127 | 97.65 253 | 90.80 166 | 99.48 176 | 98.37 57 | 96.56 226 | 99.19 151 |
|
| DPM-MVS | | | 97.55 102 | 96.99 117 | 99.23 41 | 99.04 114 | 98.55 27 | 97.17 345 | 98.35 210 | 94.85 182 | 97.93 133 | 98.58 163 | 95.07 77 | 99.71 124 | 92.60 279 | 99.34 122 | 99.43 112 |
|
| OMC-MVS | | | 97.55 102 | 97.34 100 | 98.20 128 | 99.33 62 | 95.92 167 | 98.28 232 | 98.59 153 | 95.52 140 | 97.97 128 | 99.10 92 | 93.28 108 | 99.49 171 | 95.09 202 | 98.88 143 | 99.19 151 |
|
| PAPM_NR | | | 97.46 104 | 97.11 111 | 98.50 99 | 99.50 42 | 96.41 139 | 98.63 184 | 98.60 149 | 95.18 159 | 97.06 174 | 98.06 213 | 94.26 96 | 99.57 150 | 93.80 247 | 98.87 145 | 99.52 89 |
|
| EPP-MVSNet | | | 97.46 104 | 97.28 102 | 97.99 146 | 98.64 160 | 95.38 189 | 99.33 20 | 98.31 217 | 93.61 249 | 97.19 167 | 99.07 102 | 94.05 99 | 99.23 202 | 96.89 135 | 98.43 170 | 99.37 117 |
|
| 3Dnovator | | 94.51 5 | 97.46 104 | 96.93 120 | 99.07 56 | 97.78 242 | 97.64 74 | 99.35 15 | 99.06 36 | 97.02 71 | 93.75 293 | 99.16 83 | 89.25 199 | 99.92 35 | 97.22 121 | 99.75 47 | 99.64 74 |
|
| CNLPA | | | 97.45 107 | 97.03 115 | 98.73 78 | 99.05 113 | 97.44 86 | 98.07 261 | 98.53 169 | 95.32 152 | 96.80 188 | 98.53 168 | 93.32 106 | 99.72 119 | 94.31 230 | 99.31 124 | 99.02 178 |
|
| lupinMVS | | | 97.44 108 | 97.22 107 | 98.12 137 | 98.07 215 | 95.76 174 | 97.68 304 | 97.76 289 | 94.50 199 | 98.79 75 | 98.61 158 | 92.34 120 | 99.30 195 | 97.58 104 | 99.59 83 | 99.31 127 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 109 | 96.78 128 | 99.38 18 | 97.83 239 | 98.52 28 | 99.37 12 | 98.71 122 | 97.09 69 | 92.99 321 | 99.13 88 | 89.36 196 | 99.89 53 | 96.97 128 | 99.57 87 | 99.71 52 |
|
| Vis-MVSNet |  | | 97.42 110 | 97.11 111 | 98.34 115 | 98.66 156 | 96.23 147 | 99.22 36 | 99.00 41 | 96.63 93 | 98.04 120 | 99.21 71 | 88.05 235 | 99.35 189 | 96.01 171 | 99.21 126 | 99.45 109 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| API-MVS | | | 97.41 111 | 97.25 104 | 97.91 150 | 98.70 150 | 96.80 117 | 98.82 133 | 98.69 127 | 94.53 196 | 98.11 113 | 98.28 195 | 94.50 90 | 99.57 150 | 94.12 236 | 99.49 103 | 97.37 267 |
|
| sss | | | 97.39 112 | 96.98 119 | 98.61 87 | 98.60 164 | 96.61 126 | 98.22 238 | 98.93 52 | 93.97 220 | 98.01 126 | 98.48 173 | 91.98 135 | 99.85 69 | 96.45 155 | 98.15 180 | 99.39 115 |
|
| test_cas_vis1_n_1920 | | | 97.38 113 | 97.36 99 | 97.45 185 | 98.95 127 | 93.25 287 | 99.00 83 | 98.53 169 | 97.70 26 | 99.77 9 | 99.35 49 | 84.71 300 | 99.85 69 | 98.57 38 | 99.66 68 | 99.26 138 |
|
| PVSNet_Blended | | | 97.38 113 | 97.12 110 | 98.14 131 | 99.25 84 | 95.35 192 | 97.28 335 | 99.26 15 | 93.13 270 | 97.94 131 | 98.21 203 | 92.74 114 | 99.81 87 | 96.88 137 | 99.40 116 | 99.27 135 |
|
| WTY-MVS | | | 97.37 115 | 96.92 121 | 98.72 79 | 98.86 136 | 96.89 115 | 98.31 227 | 98.71 122 | 95.26 155 | 97.67 150 | 98.56 167 | 92.21 127 | 99.78 107 | 95.89 173 | 96.85 217 | 99.48 101 |
|
| jason | | | 97.32 116 | 97.08 113 | 98.06 142 | 97.45 274 | 95.59 177 | 97.87 286 | 97.91 283 | 94.79 184 | 98.55 93 | 98.83 135 | 91.12 159 | 99.23 202 | 97.58 104 | 99.60 81 | 99.34 121 |
| jason: jason. |
| MVS_Test | | | 97.28 117 | 97.00 116 | 98.13 134 | 98.33 189 | 95.97 160 | 98.74 155 | 98.07 267 | 94.27 206 | 98.44 101 | 98.07 212 | 92.48 117 | 99.26 198 | 96.43 156 | 98.19 179 | 99.16 157 |
|
| EPNet | | | 97.28 117 | 96.87 123 | 98.51 98 | 94.98 380 | 96.14 152 | 98.90 106 | 97.02 353 | 98.28 13 | 95.99 219 | 99.11 90 | 91.36 151 | 99.89 53 | 96.98 127 | 99.19 128 | 99.50 94 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsmamba | | | 97.25 119 | 96.99 117 | 98.02 144 | 98.34 186 | 95.54 182 | 99.18 48 | 97.47 316 | 95.04 168 | 98.15 110 | 98.57 166 | 89.46 192 | 99.31 194 | 97.68 98 | 99.01 136 | 99.22 144 |
|
| test_yl | | | 97.22 120 | 96.78 128 | 98.54 94 | 98.73 145 | 96.60 127 | 98.45 210 | 98.31 217 | 94.70 185 | 98.02 123 | 98.42 178 | 90.80 166 | 99.70 125 | 96.81 144 | 96.79 219 | 99.34 121 |
|
| DCV-MVSNet | | | 97.22 120 | 96.78 128 | 98.54 94 | 98.73 145 | 96.60 127 | 98.45 210 | 98.31 217 | 94.70 185 | 98.02 123 | 98.42 178 | 90.80 166 | 99.70 125 | 96.81 144 | 96.79 219 | 99.34 121 |
|
| IS-MVSNet | | | 97.22 120 | 96.88 122 | 98.25 123 | 98.85 138 | 96.36 142 | 99.19 44 | 97.97 277 | 95.39 146 | 97.23 166 | 98.99 112 | 91.11 160 | 98.93 248 | 94.60 218 | 98.59 159 | 99.47 103 |
|
| PLC |  | 95.07 4 | 97.20 123 | 96.78 128 | 98.44 107 | 99.29 76 | 96.31 146 | 98.14 251 | 98.76 110 | 92.41 298 | 96.39 208 | 98.31 193 | 94.92 82 | 99.78 107 | 94.06 239 | 98.77 151 | 99.23 142 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 280x420 | | | 97.18 124 | 97.18 109 | 97.20 198 | 98.81 141 | 93.27 284 | 95.78 390 | 99.15 30 | 95.25 156 | 96.79 189 | 98.11 210 | 92.29 122 | 99.07 226 | 98.56 40 | 99.85 6 | 99.25 140 |
|
| LS3D | | | 97.16 125 | 96.66 137 | 98.68 82 | 98.53 169 | 97.19 101 | 98.93 101 | 98.90 59 | 92.83 283 | 95.99 219 | 99.37 43 | 92.12 130 | 99.87 64 | 93.67 251 | 99.57 87 | 98.97 183 |
|
| AdaColmap |  | | 97.15 126 | 96.70 133 | 98.48 102 | 99.16 103 | 96.69 123 | 98.01 267 | 98.89 61 | 94.44 202 | 96.83 184 | 98.68 153 | 90.69 169 | 99.76 113 | 94.36 226 | 99.29 125 | 98.98 182 |
|
| mamv4 | | | 97.13 127 | 98.11 62 | 94.17 356 | 98.97 125 | 83.70 398 | 98.66 177 | 98.71 122 | 94.63 191 | 97.83 137 | 98.90 126 | 96.25 29 | 99.55 160 | 99.27 18 | 99.76 42 | 99.27 135 |
|
| Effi-MVS+ | | | 97.12 128 | 96.69 134 | 98.39 113 | 98.19 205 | 96.72 122 | 97.37 326 | 98.43 195 | 93.71 238 | 97.65 154 | 98.02 216 | 92.20 128 | 99.25 199 | 96.87 140 | 97.79 192 | 99.19 151 |
|
| CHOSEN 1792x2688 | | | 97.12 128 | 96.80 125 | 98.08 140 | 99.30 71 | 94.56 235 | 98.05 263 | 99.71 1 | 93.57 250 | 97.09 170 | 98.91 125 | 88.17 229 | 99.89 53 | 96.87 140 | 99.56 93 | 99.81 17 |
|
| F-COLMAP | | | 97.09 130 | 96.80 125 | 97.97 147 | 99.45 55 | 94.95 214 | 98.55 198 | 98.62 148 | 93.02 275 | 96.17 214 | 98.58 163 | 94.01 100 | 99.81 87 | 93.95 241 | 98.90 141 | 99.14 160 |
|
| RRT-MVS | | | 97.03 131 | 96.78 128 | 97.77 162 | 97.90 235 | 94.34 244 | 99.12 58 | 98.35 210 | 95.87 123 | 98.06 117 | 98.70 151 | 86.45 266 | 99.63 140 | 98.04 73 | 98.54 162 | 99.35 119 |
|
| TAMVS | | | 97.02 132 | 96.79 127 | 97.70 169 | 98.06 218 | 95.31 195 | 98.52 200 | 98.31 217 | 93.95 221 | 97.05 175 | 98.61 158 | 93.49 105 | 98.52 291 | 95.33 194 | 97.81 191 | 99.29 132 |
|
| CDS-MVSNet | | | 96.99 133 | 96.69 134 | 97.90 151 | 98.05 220 | 95.98 155 | 98.20 241 | 98.33 214 | 93.67 245 | 96.95 177 | 98.49 172 | 93.54 104 | 98.42 302 | 95.24 200 | 97.74 195 | 99.31 127 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 96.96 134 | 96.55 140 | 98.21 126 | 98.17 210 | 96.07 154 | 97.98 271 | 98.21 234 | 97.24 57 | 97.13 169 | 98.93 122 | 86.88 258 | 99.91 44 | 95.00 205 | 99.37 120 | 98.66 214 |
|
| 114514_t | | | 96.93 135 | 96.27 150 | 98.92 67 | 99.50 42 | 97.63 75 | 98.85 125 | 98.90 59 | 84.80 397 | 97.77 139 | 99.11 90 | 92.84 112 | 99.66 134 | 94.85 208 | 99.77 36 | 99.47 103 |
|
| MAR-MVS | | | 96.91 136 | 96.40 146 | 98.45 105 | 98.69 153 | 96.90 113 | 98.66 177 | 98.68 130 | 92.40 299 | 97.07 173 | 97.96 223 | 91.54 148 | 99.75 115 | 93.68 249 | 98.92 140 | 98.69 208 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HyFIR lowres test | | | 96.90 137 | 96.49 143 | 98.14 131 | 99.33 62 | 95.56 179 | 97.38 324 | 99.65 2 | 92.34 300 | 97.61 157 | 98.20 204 | 89.29 198 | 99.10 223 | 96.97 128 | 97.60 200 | 99.77 29 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 138 | 96.55 140 | 97.83 154 | 98.73 145 | 95.46 185 | 99.20 42 | 98.30 223 | 94.96 174 | 96.60 196 | 98.87 130 | 90.05 179 | 98.59 286 | 93.67 251 | 98.60 158 | 99.46 107 |
|
| SDMVSNet | | | 96.85 139 | 96.42 144 | 98.14 131 | 99.30 71 | 96.38 140 | 99.21 39 | 99.23 21 | 95.92 119 | 95.96 221 | 98.76 147 | 85.88 276 | 99.44 181 | 97.93 77 | 95.59 255 | 98.60 219 |
|
| PAPR | | | 96.84 140 | 96.24 152 | 98.65 85 | 98.72 149 | 96.92 112 | 97.36 328 | 98.57 160 | 93.33 259 | 96.67 191 | 97.57 262 | 94.30 94 | 99.56 153 | 91.05 320 | 98.59 159 | 99.47 103 |
|
| HY-MVS | | 93.96 8 | 96.82 141 | 96.23 153 | 98.57 89 | 98.46 173 | 97.00 108 | 98.14 251 | 98.21 234 | 93.95 221 | 96.72 190 | 97.99 220 | 91.58 144 | 99.76 113 | 94.51 222 | 96.54 227 | 98.95 186 |
|
| UGNet | | | 96.78 142 | 96.30 149 | 98.19 130 | 98.24 197 | 95.89 170 | 98.88 115 | 98.93 52 | 97.39 45 | 96.81 187 | 97.84 235 | 82.60 327 | 99.90 51 | 96.53 152 | 99.49 103 | 98.79 197 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet_BlendedMVS | | | 96.73 143 | 96.60 138 | 97.12 207 | 99.25 84 | 95.35 192 | 98.26 235 | 99.26 15 | 94.28 205 | 97.94 131 | 97.46 268 | 92.74 114 | 99.81 87 | 96.88 137 | 93.32 291 | 96.20 357 |
|
| test_vis1_n_1920 | | | 96.71 144 | 96.84 124 | 96.31 276 | 99.11 109 | 89.74 352 | 99.05 69 | 98.58 158 | 98.08 15 | 99.87 1 | 99.37 43 | 78.48 358 | 99.93 28 | 99.29 17 | 99.69 62 | 99.27 135 |
|
| mvs_anonymous | | | 96.70 145 | 96.53 142 | 97.18 201 | 98.19 205 | 93.78 260 | 98.31 227 | 98.19 238 | 94.01 217 | 94.47 252 | 98.27 198 | 92.08 133 | 98.46 297 | 97.39 116 | 97.91 187 | 99.31 127 |
|
| 1112_ss | | | 96.63 146 | 96.00 160 | 98.50 99 | 98.56 165 | 96.37 141 | 98.18 249 | 98.10 260 | 92.92 279 | 94.84 241 | 98.43 176 | 92.14 129 | 99.58 149 | 94.35 227 | 96.51 228 | 99.56 88 |
|
| PMMVS | | | 96.60 147 | 96.33 148 | 97.41 189 | 97.90 235 | 93.93 256 | 97.35 329 | 98.41 197 | 92.84 282 | 97.76 140 | 97.45 270 | 91.10 161 | 99.20 206 | 96.26 161 | 97.91 187 | 99.11 165 |
|
| DP-MVS | | | 96.59 148 | 95.93 163 | 98.57 89 | 99.34 60 | 96.19 150 | 98.70 168 | 98.39 201 | 89.45 369 | 94.52 250 | 99.35 49 | 91.85 138 | 99.85 69 | 92.89 275 | 98.88 143 | 99.68 64 |
|
| PatchMatch-RL | | | 96.59 148 | 96.03 159 | 98.27 119 | 99.31 67 | 96.51 133 | 97.91 278 | 99.06 36 | 93.72 237 | 96.92 181 | 98.06 213 | 88.50 224 | 99.65 135 | 91.77 304 | 99.00 138 | 98.66 214 |
|
| GeoE | | | 96.58 150 | 96.07 156 | 98.10 139 | 98.35 181 | 95.89 170 | 99.34 16 | 98.12 254 | 93.12 271 | 96.09 215 | 98.87 130 | 89.71 186 | 98.97 238 | 92.95 271 | 98.08 183 | 99.43 112 |
|
| XVG-OURS | | | 96.55 151 | 96.41 145 | 96.99 214 | 98.75 144 | 93.76 261 | 97.50 318 | 98.52 172 | 95.67 134 | 96.83 184 | 99.30 57 | 88.95 212 | 99.53 163 | 95.88 174 | 96.26 242 | 97.69 256 |
|
| FIs | | | 96.51 152 | 96.12 155 | 97.67 173 | 97.13 298 | 97.54 80 | 99.36 13 | 99.22 24 | 95.89 121 | 94.03 279 | 98.35 186 | 91.98 135 | 98.44 300 | 96.40 157 | 92.76 299 | 97.01 275 |
|
| XVG-OURS-SEG-HR | | | 96.51 152 | 96.34 147 | 97.02 213 | 98.77 143 | 93.76 261 | 97.79 297 | 98.50 180 | 95.45 143 | 96.94 178 | 99.09 99 | 87.87 240 | 99.55 160 | 96.76 148 | 95.83 254 | 97.74 253 |
|
| PS-MVSNAJss | | | 96.43 154 | 96.26 151 | 96.92 223 | 95.84 360 | 95.08 206 | 99.16 50 | 98.50 180 | 95.87 123 | 93.84 288 | 98.34 190 | 94.51 87 | 98.61 283 | 96.88 137 | 93.45 288 | 97.06 273 |
|
| test_fmvs1 | | | 96.42 155 | 96.67 136 | 95.66 304 | 98.82 140 | 88.53 377 | 98.80 142 | 98.20 236 | 96.39 103 | 99.64 20 | 99.20 73 | 80.35 346 | 99.67 132 | 99.04 23 | 99.57 87 | 98.78 200 |
|
| FC-MVSNet-test | | | 96.42 155 | 96.05 157 | 97.53 183 | 96.95 307 | 97.27 93 | 99.36 13 | 99.23 21 | 95.83 125 | 93.93 282 | 98.37 184 | 92.00 134 | 98.32 319 | 96.02 170 | 92.72 300 | 97.00 276 |
|
| ab-mvs | | | 96.42 155 | 95.71 173 | 98.55 92 | 98.63 161 | 96.75 120 | 97.88 285 | 98.74 114 | 93.84 227 | 96.54 201 | 98.18 206 | 85.34 286 | 99.75 115 | 95.93 172 | 96.35 232 | 99.15 158 |
|
| FA-MVS(test-final) | | | 96.41 158 | 95.94 162 | 97.82 156 | 98.21 201 | 95.20 200 | 97.80 295 | 97.58 300 | 93.21 265 | 97.36 163 | 97.70 247 | 89.47 191 | 99.56 153 | 94.12 236 | 97.99 184 | 98.71 207 |
|
| PVSNet | | 91.96 18 | 96.35 159 | 96.15 154 | 96.96 218 | 99.17 99 | 92.05 308 | 96.08 383 | 98.68 130 | 93.69 241 | 97.75 142 | 97.80 241 | 88.86 213 | 99.69 130 | 94.26 232 | 99.01 136 | 99.15 158 |
|
| Test_1112_low_res | | | 96.34 160 | 95.66 178 | 98.36 114 | 98.56 165 | 95.94 163 | 97.71 302 | 98.07 267 | 92.10 309 | 94.79 245 | 97.29 283 | 91.75 140 | 99.56 153 | 94.17 234 | 96.50 229 | 99.58 86 |
|
| Effi-MVS+-dtu | | | 96.29 161 | 96.56 139 | 95.51 309 | 97.89 237 | 90.22 345 | 98.80 142 | 98.10 260 | 96.57 96 | 96.45 206 | 96.66 337 | 90.81 165 | 98.91 251 | 95.72 181 | 97.99 184 | 97.40 264 |
|
| QAPM | | | 96.29 161 | 95.40 183 | 98.96 65 | 97.85 238 | 97.60 77 | 99.23 32 | 98.93 52 | 89.76 363 | 93.11 318 | 99.02 106 | 89.11 204 | 99.93 28 | 91.99 298 | 99.62 78 | 99.34 121 |
|
| Fast-Effi-MVS+ | | | 96.28 163 | 95.70 175 | 98.03 143 | 98.29 195 | 95.97 160 | 98.58 190 | 98.25 231 | 91.74 317 | 95.29 234 | 97.23 288 | 91.03 163 | 99.15 212 | 92.90 273 | 97.96 186 | 98.97 183 |
|
| nrg030 | | | 96.28 163 | 95.72 170 | 97.96 149 | 96.90 312 | 98.15 57 | 99.39 10 | 98.31 217 | 95.47 142 | 94.42 258 | 98.35 186 | 92.09 132 | 98.69 275 | 97.50 112 | 89.05 348 | 97.04 274 |
|
| 1314 | | | 96.25 165 | 95.73 169 | 97.79 158 | 97.13 298 | 95.55 181 | 98.19 244 | 98.59 153 | 93.47 254 | 92.03 346 | 97.82 239 | 91.33 153 | 99.49 171 | 94.62 217 | 98.44 168 | 98.32 237 |
|
| sd_testset | | | 96.17 166 | 95.76 168 | 97.42 188 | 99.30 71 | 94.34 244 | 98.82 133 | 99.08 34 | 95.92 119 | 95.96 221 | 98.76 147 | 82.83 326 | 99.32 193 | 95.56 187 | 95.59 255 | 98.60 219 |
|
| h-mvs33 | | | 96.17 166 | 95.62 179 | 97.81 157 | 99.03 115 | 94.45 237 | 98.64 181 | 98.75 112 | 97.48 39 | 98.67 83 | 98.72 150 | 89.76 183 | 99.86 68 | 97.95 75 | 81.59 394 | 99.11 165 |
|
| HQP_MVS | | | 96.14 168 | 95.90 164 | 96.85 226 | 97.42 276 | 94.60 233 | 98.80 142 | 98.56 163 | 97.28 52 | 95.34 230 | 98.28 195 | 87.09 253 | 99.03 231 | 96.07 165 | 94.27 263 | 96.92 282 |
|
| tttt0517 | | | 96.07 169 | 95.51 181 | 97.78 159 | 98.41 176 | 94.84 218 | 99.28 24 | 94.33 403 | 94.26 207 | 97.64 155 | 98.64 157 | 84.05 315 | 99.47 178 | 95.34 193 | 97.60 200 | 99.03 177 |
|
| MVSTER | | | 96.06 170 | 95.72 170 | 97.08 210 | 98.23 199 | 95.93 166 | 98.73 159 | 98.27 226 | 94.86 180 | 95.07 236 | 98.09 211 | 88.21 228 | 98.54 289 | 96.59 150 | 93.46 286 | 96.79 300 |
|
| thisisatest0530 | | | 96.01 171 | 95.36 188 | 97.97 147 | 98.38 178 | 95.52 183 | 98.88 115 | 94.19 405 | 94.04 212 | 97.64 155 | 98.31 193 | 83.82 322 | 99.46 179 | 95.29 197 | 97.70 197 | 98.93 188 |
|
| test_djsdf | | | 96.00 172 | 95.69 176 | 96.93 220 | 95.72 362 | 95.49 184 | 99.47 7 | 98.40 199 | 94.98 172 | 94.58 248 | 97.86 232 | 89.16 202 | 98.41 309 | 96.91 131 | 94.12 271 | 96.88 291 |
|
| EI-MVSNet | | | 95.96 173 | 95.83 166 | 96.36 272 | 97.93 233 | 93.70 267 | 98.12 254 | 98.27 226 | 93.70 240 | 95.07 236 | 99.02 106 | 92.23 126 | 98.54 289 | 94.68 213 | 93.46 286 | 96.84 297 |
|
| ECVR-MVS |  | | 95.95 174 | 95.71 173 | 96.65 238 | 99.02 116 | 90.86 330 | 99.03 76 | 91.80 415 | 96.96 74 | 98.10 114 | 99.26 62 | 81.31 333 | 99.51 167 | 96.90 134 | 99.04 133 | 99.59 82 |
|
| BH-untuned | | | 95.95 174 | 95.72 170 | 96.65 238 | 98.55 167 | 92.26 303 | 98.23 237 | 97.79 288 | 93.73 235 | 94.62 247 | 98.01 218 | 88.97 211 | 99.00 237 | 93.04 268 | 98.51 164 | 98.68 210 |
|
| test1111 | | | 95.94 176 | 95.78 167 | 96.41 269 | 98.99 122 | 90.12 346 | 99.04 73 | 92.45 414 | 96.99 73 | 98.03 121 | 99.27 61 | 81.40 332 | 99.48 176 | 96.87 140 | 99.04 133 | 99.63 76 |
|
| MSDG | | | 95.93 177 | 95.30 194 | 97.83 154 | 98.90 130 | 95.36 190 | 96.83 370 | 98.37 207 | 91.32 332 | 94.43 257 | 98.73 149 | 90.27 177 | 99.60 146 | 90.05 334 | 98.82 149 | 98.52 225 |
|
| BH-RMVSNet | | | 95.92 178 | 95.32 192 | 97.69 170 | 98.32 192 | 94.64 227 | 98.19 244 | 97.45 321 | 94.56 194 | 96.03 217 | 98.61 158 | 85.02 291 | 99.12 217 | 90.68 325 | 99.06 132 | 99.30 130 |
|
| test_fmvs1_n | | | 95.90 179 | 95.99 161 | 95.63 305 | 98.67 155 | 88.32 381 | 99.26 27 | 98.22 233 | 96.40 102 | 99.67 17 | 99.26 62 | 73.91 392 | 99.70 125 | 99.02 24 | 99.50 101 | 98.87 191 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 180 | 95.85 165 | 95.91 293 | 97.74 247 | 91.74 314 | 98.69 170 | 98.15 250 | 95.56 138 | 94.92 239 | 97.68 252 | 88.98 210 | 98.79 269 | 93.19 263 | 97.78 193 | 97.20 271 |
|
| LFMVS | | | 95.86 181 | 94.98 209 | 98.47 103 | 98.87 135 | 96.32 144 | 98.84 129 | 96.02 382 | 93.40 257 | 98.62 89 | 99.20 73 | 74.99 386 | 99.63 140 | 97.72 91 | 97.20 207 | 99.46 107 |
|
| baseline1 | | | 95.84 182 | 95.12 202 | 98.01 145 | 98.49 172 | 95.98 155 | 98.73 159 | 97.03 351 | 95.37 149 | 96.22 211 | 98.19 205 | 89.96 181 | 99.16 209 | 94.60 218 | 87.48 364 | 98.90 190 |
|
| OpenMVS |  | 93.04 13 | 95.83 183 | 95.00 207 | 98.32 116 | 97.18 295 | 97.32 90 | 99.21 39 | 98.97 44 | 89.96 359 | 91.14 355 | 99.05 104 | 86.64 261 | 99.92 35 | 93.38 257 | 99.47 106 | 97.73 254 |
|
| VDD-MVS | | | 95.82 184 | 95.23 196 | 97.61 179 | 98.84 139 | 93.98 255 | 98.68 172 | 97.40 325 | 95.02 170 | 97.95 129 | 99.34 53 | 74.37 391 | 99.78 107 | 98.64 35 | 96.80 218 | 99.08 171 |
|
| UniMVSNet (Re) | | | 95.78 185 | 95.19 198 | 97.58 180 | 96.99 305 | 97.47 84 | 98.79 149 | 99.18 27 | 95.60 136 | 93.92 283 | 97.04 309 | 91.68 141 | 98.48 293 | 95.80 178 | 87.66 363 | 96.79 300 |
|
| VPA-MVSNet | | | 95.75 186 | 95.11 203 | 97.69 170 | 97.24 287 | 97.27 93 | 98.94 98 | 99.23 21 | 95.13 161 | 95.51 228 | 97.32 281 | 85.73 278 | 98.91 251 | 97.33 119 | 89.55 339 | 96.89 290 |
|
| HQP-MVS | | | 95.72 187 | 95.40 183 | 96.69 236 | 97.20 291 | 94.25 249 | 98.05 263 | 98.46 187 | 96.43 99 | 94.45 253 | 97.73 244 | 86.75 259 | 98.96 242 | 95.30 195 | 94.18 267 | 96.86 296 |
|
| hse-mvs2 | | | 95.71 188 | 95.30 194 | 96.93 220 | 98.50 170 | 93.53 272 | 98.36 219 | 98.10 260 | 97.48 39 | 98.67 83 | 97.99 220 | 89.76 183 | 99.02 234 | 97.95 75 | 80.91 399 | 98.22 240 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 188 | 95.15 199 | 97.40 191 | 96.84 315 | 96.97 109 | 98.74 155 | 99.24 18 | 95.16 160 | 93.88 285 | 97.72 246 | 91.68 141 | 98.31 321 | 95.81 176 | 87.25 369 | 96.92 282 |
|
| PatchmatchNet |  | | 95.71 188 | 95.52 180 | 96.29 278 | 97.58 260 | 90.72 334 | 96.84 369 | 97.52 311 | 94.06 211 | 97.08 171 | 96.96 319 | 89.24 200 | 98.90 254 | 92.03 297 | 98.37 172 | 99.26 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| OPM-MVS | | | 95.69 191 | 95.33 191 | 96.76 231 | 96.16 348 | 94.63 228 | 98.43 215 | 98.39 201 | 96.64 92 | 95.02 238 | 98.78 140 | 85.15 290 | 99.05 227 | 95.21 201 | 94.20 266 | 96.60 323 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMM | | 93.85 9 | 95.69 191 | 95.38 187 | 96.61 245 | 97.61 257 | 93.84 259 | 98.91 105 | 98.44 191 | 95.25 156 | 94.28 265 | 98.47 174 | 86.04 275 | 99.12 217 | 95.50 190 | 93.95 276 | 96.87 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tpmrst | | | 95.63 193 | 95.69 176 | 95.44 313 | 97.54 265 | 88.54 376 | 96.97 355 | 97.56 303 | 93.50 252 | 97.52 161 | 96.93 323 | 89.49 189 | 99.16 209 | 95.25 199 | 96.42 231 | 98.64 216 |
|
| FE-MVS | | | 95.62 194 | 94.90 213 | 97.78 159 | 98.37 180 | 94.92 215 | 97.17 345 | 97.38 327 | 90.95 343 | 97.73 145 | 97.70 247 | 85.32 288 | 99.63 140 | 91.18 312 | 98.33 175 | 98.79 197 |
|
| LPG-MVS_test | | | 95.62 194 | 95.34 189 | 96.47 263 | 97.46 271 | 93.54 270 | 98.99 86 | 98.54 167 | 94.67 189 | 94.36 261 | 98.77 142 | 85.39 283 | 99.11 219 | 95.71 182 | 94.15 269 | 96.76 303 |
|
| CLD-MVS | | | 95.62 194 | 95.34 189 | 96.46 266 | 97.52 268 | 93.75 263 | 97.27 336 | 98.46 187 | 95.53 139 | 94.42 258 | 98.00 219 | 86.21 270 | 98.97 238 | 96.25 163 | 94.37 261 | 96.66 318 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thisisatest0515 | | | 95.61 197 | 94.89 214 | 97.76 163 | 98.15 211 | 95.15 203 | 96.77 371 | 94.41 401 | 92.95 278 | 97.18 168 | 97.43 272 | 84.78 297 | 99.45 180 | 94.63 215 | 97.73 196 | 98.68 210 |
|
| MonoMVSNet | | | 95.51 198 | 95.45 182 | 95.68 302 | 95.54 367 | 90.87 329 | 98.92 103 | 97.37 328 | 95.79 127 | 95.53 227 | 97.38 277 | 89.58 188 | 97.68 364 | 96.40 157 | 92.59 301 | 98.49 227 |
|
| thres600view7 | | | 95.49 199 | 94.77 217 | 97.67 173 | 98.98 123 | 95.02 207 | 98.85 125 | 96.90 360 | 95.38 147 | 96.63 193 | 96.90 324 | 84.29 307 | 99.59 147 | 88.65 356 | 96.33 233 | 98.40 231 |
|
| test_vis1_n | | | 95.47 200 | 95.13 200 | 96.49 260 | 97.77 243 | 90.41 342 | 99.27 26 | 98.11 257 | 96.58 94 | 99.66 18 | 99.18 79 | 67.00 405 | 99.62 144 | 99.21 19 | 99.40 116 | 99.44 110 |
|
| SCA | | | 95.46 201 | 95.13 200 | 96.46 266 | 97.67 252 | 91.29 322 | 97.33 331 | 97.60 299 | 94.68 188 | 96.92 181 | 97.10 294 | 83.97 317 | 98.89 255 | 92.59 281 | 98.32 177 | 99.20 147 |
|
| IterMVS-LS | | | 95.46 201 | 95.21 197 | 96.22 280 | 98.12 212 | 93.72 266 | 98.32 226 | 98.13 253 | 93.71 238 | 94.26 266 | 97.31 282 | 92.24 125 | 98.10 337 | 94.63 215 | 90.12 330 | 96.84 297 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| jajsoiax | | | 95.45 203 | 95.03 206 | 96.73 232 | 95.42 375 | 94.63 228 | 99.14 54 | 98.52 172 | 95.74 129 | 93.22 311 | 98.36 185 | 83.87 320 | 98.65 280 | 96.95 130 | 94.04 272 | 96.91 287 |
|
| CVMVSNet | | | 95.43 204 | 96.04 158 | 93.57 361 | 97.93 233 | 83.62 399 | 98.12 254 | 98.59 153 | 95.68 133 | 96.56 197 | 99.02 106 | 87.51 246 | 97.51 372 | 93.56 255 | 97.44 203 | 99.60 80 |
|
| anonymousdsp | | | 95.42 205 | 94.91 212 | 96.94 219 | 95.10 379 | 95.90 169 | 99.14 54 | 98.41 197 | 93.75 232 | 93.16 314 | 97.46 268 | 87.50 248 | 98.41 309 | 95.63 186 | 94.03 273 | 96.50 342 |
|
| DU-MVS | | | 95.42 205 | 94.76 218 | 97.40 191 | 96.53 331 | 96.97 109 | 98.66 177 | 98.99 43 | 95.43 144 | 93.88 285 | 97.69 249 | 88.57 219 | 98.31 321 | 95.81 176 | 87.25 369 | 96.92 282 |
|
| mvs_tets | | | 95.41 207 | 95.00 207 | 96.65 238 | 95.58 366 | 94.42 239 | 99.00 83 | 98.55 165 | 95.73 131 | 93.21 312 | 98.38 183 | 83.45 324 | 98.63 281 | 97.09 124 | 94.00 274 | 96.91 287 |
|
| thres100view900 | | | 95.38 208 | 94.70 222 | 97.41 189 | 98.98 123 | 94.92 215 | 98.87 118 | 96.90 360 | 95.38 147 | 96.61 195 | 96.88 325 | 84.29 307 | 99.56 153 | 88.11 359 | 96.29 237 | 97.76 251 |
|
| thres400 | | | 95.38 208 | 94.62 226 | 97.65 177 | 98.94 128 | 94.98 211 | 98.68 172 | 96.93 358 | 95.33 150 | 96.55 199 | 96.53 343 | 84.23 311 | 99.56 153 | 88.11 359 | 96.29 237 | 98.40 231 |
|
| BH-w/o | | | 95.38 208 | 95.08 204 | 96.26 279 | 98.34 186 | 91.79 311 | 97.70 303 | 97.43 323 | 92.87 281 | 94.24 268 | 97.22 289 | 88.66 217 | 98.84 261 | 91.55 308 | 97.70 197 | 98.16 243 |
|
| VDDNet | | | 95.36 211 | 94.53 230 | 97.86 152 | 98.10 214 | 95.13 204 | 98.85 125 | 97.75 290 | 90.46 350 | 98.36 104 | 99.39 37 | 73.27 394 | 99.64 137 | 97.98 74 | 96.58 225 | 98.81 196 |
|
| TAPA-MVS | | 93.98 7 | 95.35 212 | 94.56 229 | 97.74 165 | 99.13 106 | 94.83 220 | 98.33 222 | 98.64 143 | 86.62 385 | 96.29 210 | 98.61 158 | 94.00 101 | 99.29 196 | 80.00 400 | 99.41 113 | 99.09 167 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 93.49 10 | 95.34 213 | 94.98 209 | 96.43 268 | 97.67 252 | 93.48 274 | 98.73 159 | 98.44 191 | 94.94 178 | 92.53 334 | 98.53 168 | 84.50 306 | 99.14 214 | 95.48 191 | 94.00 274 | 96.66 318 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| COLMAP_ROB |  | 93.27 12 | 95.33 214 | 94.87 215 | 96.71 233 | 99.29 76 | 93.24 288 | 98.58 190 | 98.11 257 | 89.92 360 | 93.57 297 | 99.10 92 | 86.37 268 | 99.79 104 | 90.78 323 | 98.10 182 | 97.09 272 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UBG | | | 95.32 215 | 94.72 221 | 97.13 205 | 98.05 220 | 93.26 285 | 97.87 286 | 97.20 339 | 94.96 174 | 96.18 213 | 95.66 374 | 80.97 338 | 99.35 189 | 94.47 224 | 97.08 209 | 98.78 200 |
|
| tfpn200view9 | | | 95.32 215 | 94.62 226 | 97.43 187 | 98.94 128 | 94.98 211 | 98.68 172 | 96.93 358 | 95.33 150 | 96.55 199 | 96.53 343 | 84.23 311 | 99.56 153 | 88.11 359 | 96.29 237 | 97.76 251 |
|
| Anonymous202405211 | | | 95.28 217 | 94.49 232 | 97.67 173 | 99.00 119 | 93.75 263 | 98.70 168 | 97.04 350 | 90.66 346 | 96.49 203 | 98.80 138 | 78.13 362 | 99.83 75 | 96.21 164 | 95.36 259 | 99.44 110 |
|
| thres200 | | | 95.25 218 | 94.57 228 | 97.28 195 | 98.81 141 | 94.92 215 | 98.20 241 | 97.11 343 | 95.24 158 | 96.54 201 | 96.22 354 | 84.58 304 | 99.53 163 | 87.93 364 | 96.50 229 | 97.39 265 |
|
| AllTest | | | 95.24 219 | 94.65 225 | 96.99 214 | 99.25 84 | 93.21 289 | 98.59 188 | 98.18 241 | 91.36 328 | 93.52 299 | 98.77 142 | 84.67 301 | 99.72 119 | 89.70 341 | 97.87 189 | 98.02 246 |
|
| LCM-MVSNet-Re | | | 95.22 220 | 95.32 192 | 94.91 329 | 98.18 207 | 87.85 387 | 98.75 152 | 95.66 389 | 95.11 163 | 88.96 374 | 96.85 328 | 90.26 178 | 97.65 365 | 95.65 185 | 98.44 168 | 99.22 144 |
|
| EPNet_dtu | | | 95.21 221 | 94.95 211 | 95.99 288 | 96.17 346 | 90.45 340 | 98.16 250 | 97.27 335 | 96.77 82 | 93.14 317 | 98.33 191 | 90.34 174 | 98.42 302 | 85.57 377 | 98.81 150 | 99.09 167 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| XXY-MVS | | | 95.20 222 | 94.45 237 | 97.46 184 | 96.75 321 | 96.56 131 | 98.86 121 | 98.65 142 | 93.30 262 | 93.27 310 | 98.27 198 | 84.85 295 | 98.87 258 | 94.82 210 | 91.26 317 | 96.96 278 |
|
| D2MVS | | | 95.18 223 | 95.08 204 | 95.48 310 | 97.10 300 | 92.07 307 | 98.30 229 | 99.13 32 | 94.02 214 | 92.90 322 | 96.73 334 | 89.48 190 | 98.73 273 | 94.48 223 | 93.60 285 | 95.65 370 |
|
| WR-MVS | | | 95.15 224 | 94.46 235 | 97.22 197 | 96.67 326 | 96.45 135 | 98.21 239 | 98.81 92 | 94.15 208 | 93.16 314 | 97.69 249 | 87.51 246 | 98.30 323 | 95.29 197 | 88.62 354 | 96.90 289 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 225 | 94.48 233 | 97.11 208 | 96.45 336 | 96.36 142 | 99.03 76 | 99.03 39 | 95.04 168 | 93.58 296 | 97.93 225 | 88.27 227 | 98.03 343 | 94.13 235 | 86.90 374 | 96.95 280 |
|
| baseline2 | | | 95.11 226 | 94.52 231 | 96.87 225 | 96.65 327 | 93.56 269 | 98.27 234 | 94.10 407 | 93.45 255 | 92.02 347 | 97.43 272 | 87.45 250 | 99.19 207 | 93.88 244 | 97.41 205 | 97.87 249 |
|
| miper_enhance_ethall | | | 95.10 227 | 94.75 219 | 96.12 284 | 97.53 267 | 93.73 265 | 96.61 377 | 98.08 265 | 92.20 308 | 93.89 284 | 96.65 339 | 92.44 118 | 98.30 323 | 94.21 233 | 91.16 318 | 96.34 351 |
|
| Anonymous20240529 | | | 95.10 227 | 94.22 247 | 97.75 164 | 99.01 118 | 94.26 248 | 98.87 118 | 98.83 83 | 85.79 393 | 96.64 192 | 98.97 113 | 78.73 355 | 99.85 69 | 96.27 160 | 94.89 260 | 99.12 162 |
|
| test-LLR | | | 95.10 227 | 94.87 215 | 95.80 298 | 96.77 318 | 89.70 353 | 96.91 360 | 95.21 393 | 95.11 163 | 94.83 243 | 95.72 371 | 87.71 242 | 98.97 238 | 93.06 266 | 98.50 165 | 98.72 204 |
|
| WR-MVS_H | | | 95.05 230 | 94.46 235 | 96.81 229 | 96.86 314 | 95.82 172 | 99.24 30 | 99.24 18 | 93.87 226 | 92.53 334 | 96.84 329 | 90.37 173 | 98.24 329 | 93.24 261 | 87.93 360 | 96.38 350 |
|
| miper_ehance_all_eth | | | 95.01 231 | 94.69 223 | 95.97 290 | 97.70 250 | 93.31 283 | 97.02 353 | 98.07 267 | 92.23 305 | 93.51 301 | 96.96 319 | 91.85 138 | 98.15 333 | 93.68 249 | 91.16 318 | 96.44 348 |
|
| testing11 | | | 95.00 232 | 94.28 244 | 97.16 203 | 97.96 230 | 93.36 282 | 98.09 259 | 97.06 349 | 94.94 178 | 95.33 233 | 96.15 356 | 76.89 376 | 99.40 184 | 95.77 180 | 96.30 236 | 98.72 204 |
|
| ADS-MVSNet | | | 95.00 232 | 94.45 237 | 96.63 242 | 98.00 224 | 91.91 310 | 96.04 384 | 97.74 291 | 90.15 356 | 96.47 204 | 96.64 340 | 87.89 238 | 98.96 242 | 90.08 332 | 97.06 210 | 99.02 178 |
|
| VPNet | | | 94.99 234 | 94.19 249 | 97.40 191 | 97.16 296 | 96.57 130 | 98.71 164 | 98.97 44 | 95.67 134 | 94.84 241 | 98.24 202 | 80.36 345 | 98.67 279 | 96.46 154 | 87.32 368 | 96.96 278 |
|
| EPMVS | | | 94.99 234 | 94.48 233 | 96.52 258 | 97.22 289 | 91.75 313 | 97.23 337 | 91.66 416 | 94.11 209 | 97.28 164 | 96.81 331 | 85.70 279 | 98.84 261 | 93.04 268 | 97.28 206 | 98.97 183 |
|
| testing91 | | | 94.98 236 | 94.25 246 | 97.20 198 | 97.94 231 | 93.41 277 | 98.00 269 | 97.58 300 | 94.99 171 | 95.45 229 | 96.04 360 | 77.20 371 | 99.42 183 | 94.97 206 | 96.02 250 | 98.78 200 |
|
| NR-MVSNet | | | 94.98 236 | 94.16 252 | 97.44 186 | 96.53 331 | 97.22 100 | 98.74 155 | 98.95 48 | 94.96 174 | 89.25 373 | 97.69 249 | 89.32 197 | 98.18 331 | 94.59 220 | 87.40 366 | 96.92 282 |
|
| FMVSNet3 | | | 94.97 238 | 94.26 245 | 97.11 208 | 98.18 207 | 96.62 124 | 98.56 197 | 98.26 230 | 93.67 245 | 94.09 275 | 97.10 294 | 84.25 309 | 98.01 344 | 92.08 293 | 92.14 304 | 96.70 312 |
|
| CostFormer | | | 94.95 239 | 94.73 220 | 95.60 307 | 97.28 285 | 89.06 366 | 97.53 315 | 96.89 362 | 89.66 365 | 96.82 186 | 96.72 335 | 86.05 273 | 98.95 247 | 95.53 189 | 96.13 248 | 98.79 197 |
|
| PAPM | | | 94.95 239 | 94.00 265 | 97.78 159 | 97.04 302 | 95.65 176 | 96.03 386 | 98.25 231 | 91.23 337 | 94.19 271 | 97.80 241 | 91.27 156 | 98.86 260 | 82.61 394 | 97.61 199 | 98.84 194 |
|
| CP-MVSNet | | | 94.94 241 | 94.30 243 | 96.83 227 | 96.72 323 | 95.56 179 | 99.11 60 | 98.95 48 | 93.89 224 | 92.42 339 | 97.90 228 | 87.19 252 | 98.12 336 | 94.32 229 | 88.21 357 | 96.82 299 |
|
| TR-MVS | | | 94.94 241 | 94.20 248 | 97.17 202 | 97.75 244 | 94.14 252 | 97.59 312 | 97.02 353 | 92.28 304 | 95.75 225 | 97.64 256 | 83.88 319 | 98.96 242 | 89.77 338 | 96.15 247 | 98.40 231 |
|
| RPSCF | | | 94.87 243 | 95.40 183 | 93.26 367 | 98.89 131 | 82.06 405 | 98.33 222 | 98.06 272 | 90.30 355 | 96.56 197 | 99.26 62 | 87.09 253 | 99.49 171 | 93.82 246 | 96.32 234 | 98.24 238 |
|
| testing99 | | | 94.83 244 | 94.08 257 | 97.07 211 | 97.94 231 | 93.13 291 | 98.10 258 | 97.17 341 | 94.86 180 | 95.34 230 | 96.00 363 | 76.31 379 | 99.40 184 | 95.08 203 | 95.90 251 | 98.68 210 |
|
| GA-MVS | | | 94.81 245 | 94.03 261 | 97.14 204 | 97.15 297 | 93.86 258 | 96.76 372 | 97.58 300 | 94.00 218 | 94.76 246 | 97.04 309 | 80.91 339 | 98.48 293 | 91.79 303 | 96.25 243 | 99.09 167 |
|
| c3_l | | | 94.79 246 | 94.43 239 | 95.89 295 | 97.75 244 | 93.12 293 | 97.16 347 | 98.03 274 | 92.23 305 | 93.46 304 | 97.05 308 | 91.39 150 | 98.01 344 | 93.58 254 | 89.21 346 | 96.53 334 |
|
| V42 | | | 94.78 247 | 94.14 254 | 96.70 235 | 96.33 341 | 95.22 199 | 98.97 89 | 98.09 264 | 92.32 302 | 94.31 264 | 97.06 305 | 88.39 225 | 98.55 288 | 92.90 273 | 88.87 352 | 96.34 351 |
|
| reproduce_monomvs | | | 94.77 248 | 94.67 224 | 95.08 325 | 98.40 177 | 89.48 359 | 98.80 142 | 98.64 143 | 97.57 34 | 93.21 312 | 97.65 253 | 80.57 344 | 98.83 264 | 97.72 91 | 89.47 342 | 96.93 281 |
|
| CR-MVSNet | | | 94.76 249 | 94.15 253 | 96.59 248 | 97.00 303 | 93.43 275 | 94.96 397 | 97.56 303 | 92.46 293 | 96.93 179 | 96.24 350 | 88.15 230 | 97.88 357 | 87.38 366 | 96.65 223 | 98.46 229 |
|
| v2v482 | | | 94.69 250 | 94.03 261 | 96.65 238 | 96.17 346 | 94.79 223 | 98.67 175 | 98.08 265 | 92.72 285 | 94.00 280 | 97.16 292 | 87.69 245 | 98.45 298 | 92.91 272 | 88.87 352 | 96.72 308 |
|
| pmmvs4 | | | 94.69 250 | 93.99 267 | 96.81 229 | 95.74 361 | 95.94 163 | 97.40 322 | 97.67 294 | 90.42 352 | 93.37 307 | 97.59 260 | 89.08 205 | 98.20 330 | 92.97 270 | 91.67 311 | 96.30 354 |
|
| cl22 | | | 94.68 252 | 94.19 249 | 96.13 283 | 98.11 213 | 93.60 268 | 96.94 357 | 98.31 217 | 92.43 297 | 93.32 309 | 96.87 327 | 86.51 262 | 98.28 327 | 94.10 238 | 91.16 318 | 96.51 340 |
|
| eth_miper_zixun_eth | | | 94.68 252 | 94.41 240 | 95.47 311 | 97.64 255 | 91.71 315 | 96.73 374 | 98.07 267 | 92.71 286 | 93.64 294 | 97.21 290 | 90.54 171 | 98.17 332 | 93.38 257 | 89.76 334 | 96.54 332 |
|
| PCF-MVS | | 93.45 11 | 94.68 252 | 93.43 303 | 98.42 111 | 98.62 162 | 96.77 119 | 95.48 394 | 98.20 236 | 84.63 398 | 93.34 308 | 98.32 192 | 88.55 222 | 99.81 87 | 84.80 386 | 98.96 139 | 98.68 210 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS | | | 94.67 255 | 93.54 298 | 98.08 140 | 96.88 313 | 96.56 131 | 98.19 244 | 98.50 180 | 78.05 409 | 92.69 329 | 98.02 216 | 91.07 162 | 99.63 140 | 90.09 331 | 98.36 174 | 98.04 245 |
|
| PS-CasMVS | | | 94.67 255 | 93.99 267 | 96.71 233 | 96.68 325 | 95.26 196 | 99.13 57 | 99.03 39 | 93.68 243 | 92.33 340 | 97.95 224 | 85.35 285 | 98.10 337 | 93.59 253 | 88.16 359 | 96.79 300 |
|
| cascas | | | 94.63 257 | 93.86 277 | 96.93 220 | 96.91 311 | 94.27 247 | 96.00 387 | 98.51 175 | 85.55 394 | 94.54 249 | 96.23 352 | 84.20 313 | 98.87 258 | 95.80 178 | 96.98 215 | 97.66 257 |
|
| tpmvs | | | 94.60 258 | 94.36 242 | 95.33 317 | 97.46 271 | 88.60 375 | 96.88 366 | 97.68 292 | 91.29 334 | 93.80 290 | 96.42 347 | 88.58 218 | 99.24 201 | 91.06 318 | 96.04 249 | 98.17 242 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 258 | 93.90 273 | 96.68 237 | 97.41 279 | 94.42 239 | 98.52 200 | 98.59 153 | 91.69 320 | 91.21 354 | 98.35 186 | 84.87 294 | 99.04 230 | 91.06 318 | 93.44 289 | 96.60 323 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v1144 | | | 94.59 260 | 93.92 270 | 96.60 247 | 96.21 343 | 94.78 224 | 98.59 188 | 98.14 252 | 91.86 316 | 94.21 270 | 97.02 312 | 87.97 236 | 98.41 309 | 91.72 305 | 89.57 337 | 96.61 322 |
|
| ADS-MVSNet2 | | | 94.58 261 | 94.40 241 | 95.11 323 | 98.00 224 | 88.74 373 | 96.04 384 | 97.30 331 | 90.15 356 | 96.47 204 | 96.64 340 | 87.89 238 | 97.56 370 | 90.08 332 | 97.06 210 | 99.02 178 |
|
| WBMVS | | | 94.56 262 | 94.04 259 | 96.10 285 | 98.03 222 | 93.08 295 | 97.82 294 | 98.18 241 | 94.02 214 | 93.77 292 | 96.82 330 | 81.28 334 | 98.34 316 | 95.47 192 | 91.00 321 | 96.88 291 |
|
| ACMH | | 92.88 16 | 94.55 263 | 93.95 269 | 96.34 274 | 97.63 256 | 93.26 285 | 98.81 141 | 98.49 185 | 93.43 256 | 89.74 368 | 98.53 168 | 81.91 329 | 99.08 225 | 93.69 248 | 93.30 292 | 96.70 312 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tt0805 | | | 94.54 264 | 93.85 278 | 96.63 242 | 97.98 228 | 93.06 296 | 98.77 151 | 97.84 286 | 93.67 245 | 93.80 290 | 98.04 215 | 76.88 377 | 98.96 242 | 94.79 212 | 92.86 297 | 97.86 250 |
|
| XVG-ACMP-BASELINE | | | 94.54 264 | 94.14 254 | 95.75 301 | 96.55 330 | 91.65 316 | 98.11 256 | 98.44 191 | 94.96 174 | 94.22 269 | 97.90 228 | 79.18 354 | 99.11 219 | 94.05 240 | 93.85 278 | 96.48 345 |
|
| AUN-MVS | | | 94.53 266 | 93.73 288 | 96.92 223 | 98.50 170 | 93.52 273 | 98.34 221 | 98.10 260 | 93.83 229 | 95.94 223 | 97.98 222 | 85.59 281 | 99.03 231 | 94.35 227 | 80.94 398 | 98.22 240 |
|
| DIV-MVS_self_test | | | 94.52 267 | 94.03 261 | 95.99 288 | 97.57 264 | 93.38 280 | 97.05 351 | 97.94 280 | 91.74 317 | 92.81 324 | 97.10 294 | 89.12 203 | 98.07 341 | 92.60 279 | 90.30 327 | 96.53 334 |
|
| cl____ | | | 94.51 268 | 94.01 264 | 96.02 287 | 97.58 260 | 93.40 279 | 97.05 351 | 97.96 279 | 91.73 319 | 92.76 326 | 97.08 300 | 89.06 206 | 98.13 335 | 92.61 278 | 90.29 328 | 96.52 337 |
|
| ETVMVS | | | 94.50 269 | 93.44 302 | 97.68 172 | 98.18 207 | 95.35 192 | 98.19 244 | 97.11 343 | 93.73 235 | 96.40 207 | 95.39 377 | 74.53 388 | 98.84 261 | 91.10 314 | 96.31 235 | 98.84 194 |
|
| GBi-Net | | | 94.49 270 | 93.80 281 | 96.56 252 | 98.21 201 | 95.00 208 | 98.82 133 | 98.18 241 | 92.46 293 | 94.09 275 | 97.07 301 | 81.16 335 | 97.95 349 | 92.08 293 | 92.14 304 | 96.72 308 |
|
| test1 | | | 94.49 270 | 93.80 281 | 96.56 252 | 98.21 201 | 95.00 208 | 98.82 133 | 98.18 241 | 92.46 293 | 94.09 275 | 97.07 301 | 81.16 335 | 97.95 349 | 92.08 293 | 92.14 304 | 96.72 308 |
|
| dmvs_re | | | 94.48 272 | 94.18 251 | 95.37 315 | 97.68 251 | 90.11 347 | 98.54 199 | 97.08 345 | 94.56 194 | 94.42 258 | 97.24 287 | 84.25 309 | 97.76 362 | 91.02 321 | 92.83 298 | 98.24 238 |
|
| v8 | | | 94.47 273 | 93.77 284 | 96.57 251 | 96.36 339 | 94.83 220 | 99.05 69 | 98.19 238 | 91.92 313 | 93.16 314 | 96.97 317 | 88.82 216 | 98.48 293 | 91.69 306 | 87.79 361 | 96.39 349 |
|
| FMVSNet2 | | | 94.47 273 | 93.61 294 | 97.04 212 | 98.21 201 | 96.43 137 | 98.79 149 | 98.27 226 | 92.46 293 | 93.50 302 | 97.09 298 | 81.16 335 | 98.00 346 | 91.09 315 | 91.93 307 | 96.70 312 |
|
| test2506 | | | 94.44 275 | 93.91 272 | 96.04 286 | 99.02 116 | 88.99 369 | 99.06 67 | 79.47 428 | 96.96 74 | 98.36 104 | 99.26 62 | 77.21 370 | 99.52 166 | 96.78 147 | 99.04 133 | 99.59 82 |
|
| Patchmatch-test | | | 94.42 276 | 93.68 292 | 96.63 242 | 97.60 258 | 91.76 312 | 94.83 401 | 97.49 315 | 89.45 369 | 94.14 273 | 97.10 294 | 88.99 207 | 98.83 264 | 85.37 380 | 98.13 181 | 99.29 132 |
|
| PEN-MVS | | | 94.42 276 | 93.73 288 | 96.49 260 | 96.28 342 | 94.84 218 | 99.17 49 | 99.00 41 | 93.51 251 | 92.23 342 | 97.83 238 | 86.10 272 | 97.90 353 | 92.55 284 | 86.92 373 | 96.74 305 |
|
| v144192 | | | 94.39 278 | 93.70 290 | 96.48 262 | 96.06 351 | 94.35 243 | 98.58 190 | 98.16 249 | 91.45 325 | 94.33 263 | 97.02 312 | 87.50 248 | 98.45 298 | 91.08 317 | 89.11 347 | 96.63 320 |
|
| Baseline_NR-MVSNet | | | 94.35 279 | 93.81 280 | 95.96 291 | 96.20 344 | 94.05 254 | 98.61 187 | 96.67 372 | 91.44 326 | 93.85 287 | 97.60 259 | 88.57 219 | 98.14 334 | 94.39 225 | 86.93 372 | 95.68 369 |
|
| miper_lstm_enhance | | | 94.33 280 | 94.07 258 | 95.11 323 | 97.75 244 | 90.97 326 | 97.22 338 | 98.03 274 | 91.67 321 | 92.76 326 | 96.97 317 | 90.03 180 | 97.78 361 | 92.51 286 | 89.64 336 | 96.56 329 |
|
| v1192 | | | 94.32 281 | 93.58 295 | 96.53 257 | 96.10 349 | 94.45 237 | 98.50 206 | 98.17 247 | 91.54 323 | 94.19 271 | 97.06 305 | 86.95 257 | 98.43 301 | 90.14 330 | 89.57 337 | 96.70 312 |
|
| UWE-MVS | | | 94.30 282 | 93.89 275 | 95.53 308 | 97.83 239 | 88.95 370 | 97.52 317 | 93.25 409 | 94.44 202 | 96.63 193 | 97.07 301 | 78.70 356 | 99.28 197 | 91.99 298 | 97.56 202 | 98.36 234 |
|
| ACMH+ | | 92.99 14 | 94.30 282 | 93.77 284 | 95.88 296 | 97.81 241 | 92.04 309 | 98.71 164 | 98.37 207 | 93.99 219 | 90.60 361 | 98.47 174 | 80.86 341 | 99.05 227 | 92.75 277 | 92.40 303 | 96.55 331 |
|
| v148 | | | 94.29 284 | 93.76 286 | 95.91 293 | 96.10 349 | 92.93 297 | 98.58 190 | 97.97 277 | 92.59 291 | 93.47 303 | 96.95 321 | 88.53 223 | 98.32 319 | 92.56 283 | 87.06 371 | 96.49 343 |
|
| v10 | | | 94.29 284 | 93.55 297 | 96.51 259 | 96.39 338 | 94.80 222 | 98.99 86 | 98.19 238 | 91.35 330 | 93.02 320 | 96.99 315 | 88.09 232 | 98.41 309 | 90.50 327 | 88.41 356 | 96.33 353 |
|
| MVP-Stereo | | | 94.28 286 | 93.92 270 | 95.35 316 | 94.95 381 | 92.60 300 | 97.97 272 | 97.65 295 | 91.61 322 | 90.68 360 | 97.09 298 | 86.32 269 | 98.42 302 | 89.70 341 | 99.34 122 | 95.02 383 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UniMVSNet_ETH3D | | | 94.24 287 | 93.33 305 | 96.97 217 | 97.19 294 | 93.38 280 | 98.74 155 | 98.57 160 | 91.21 339 | 93.81 289 | 98.58 163 | 72.85 395 | 98.77 271 | 95.05 204 | 93.93 277 | 98.77 203 |
|
| OurMVSNet-221017-0 | | | 94.21 288 | 94.00 265 | 94.85 333 | 95.60 365 | 89.22 364 | 98.89 110 | 97.43 323 | 95.29 153 | 92.18 343 | 98.52 171 | 82.86 325 | 98.59 286 | 93.46 256 | 91.76 309 | 96.74 305 |
|
| v1921920 | | | 94.20 289 | 93.47 301 | 96.40 271 | 95.98 354 | 94.08 253 | 98.52 200 | 98.15 250 | 91.33 331 | 94.25 267 | 97.20 291 | 86.41 267 | 98.42 302 | 90.04 335 | 89.39 344 | 96.69 317 |
|
| WB-MVSnew | | | 94.19 290 | 94.04 259 | 94.66 340 | 96.82 317 | 92.14 304 | 97.86 288 | 95.96 385 | 93.50 252 | 95.64 226 | 96.77 333 | 88.06 234 | 97.99 347 | 84.87 383 | 96.86 216 | 93.85 400 |
|
| v7n | | | 94.19 290 | 93.43 303 | 96.47 263 | 95.90 357 | 94.38 242 | 99.26 27 | 98.34 213 | 91.99 311 | 92.76 326 | 97.13 293 | 88.31 226 | 98.52 291 | 89.48 346 | 87.70 362 | 96.52 337 |
|
| tpm2 | | | 94.19 290 | 93.76 286 | 95.46 312 | 97.23 288 | 89.04 367 | 97.31 333 | 96.85 366 | 87.08 384 | 96.21 212 | 96.79 332 | 83.75 323 | 98.74 272 | 92.43 289 | 96.23 245 | 98.59 221 |
|
| TESTMET0.1,1 | | | 94.18 293 | 93.69 291 | 95.63 305 | 96.92 309 | 89.12 365 | 96.91 360 | 94.78 398 | 93.17 267 | 94.88 240 | 96.45 346 | 78.52 357 | 98.92 249 | 93.09 265 | 98.50 165 | 98.85 192 |
|
| dp | | | 94.15 294 | 93.90 273 | 94.90 330 | 97.31 284 | 86.82 392 | 96.97 355 | 97.19 340 | 91.22 338 | 96.02 218 | 96.61 342 | 85.51 282 | 99.02 234 | 90.00 336 | 94.30 262 | 98.85 192 |
|
| ET-MVSNet_ETH3D | | | 94.13 295 | 92.98 312 | 97.58 180 | 98.22 200 | 96.20 148 | 97.31 333 | 95.37 392 | 94.53 196 | 79.56 409 | 97.63 258 | 86.51 262 | 97.53 371 | 96.91 131 | 90.74 323 | 99.02 178 |
|
| tpm | | | 94.13 295 | 93.80 281 | 95.12 322 | 96.50 333 | 87.91 386 | 97.44 319 | 95.89 388 | 92.62 289 | 96.37 209 | 96.30 349 | 84.13 314 | 98.30 323 | 93.24 261 | 91.66 312 | 99.14 160 |
|
| testing222 | | | 94.12 297 | 93.03 311 | 97.37 194 | 98.02 223 | 94.66 225 | 97.94 275 | 96.65 374 | 94.63 191 | 95.78 224 | 95.76 366 | 71.49 396 | 98.92 249 | 91.17 313 | 95.88 252 | 98.52 225 |
|
| IterMVS-SCA-FT | | | 94.11 298 | 93.87 276 | 94.85 333 | 97.98 228 | 90.56 339 | 97.18 343 | 98.11 257 | 93.75 232 | 92.58 332 | 97.48 267 | 83.97 317 | 97.41 374 | 92.48 288 | 91.30 315 | 96.58 325 |
|
| Anonymous20231211 | | | 94.10 299 | 93.26 308 | 96.61 245 | 99.11 109 | 94.28 246 | 99.01 81 | 98.88 64 | 86.43 387 | 92.81 324 | 97.57 262 | 81.66 331 | 98.68 278 | 94.83 209 | 89.02 350 | 96.88 291 |
|
| IterMVS | | | 94.09 300 | 93.85 278 | 94.80 336 | 97.99 226 | 90.35 343 | 97.18 343 | 98.12 254 | 93.68 243 | 92.46 338 | 97.34 278 | 84.05 315 | 97.41 374 | 92.51 286 | 91.33 314 | 96.62 321 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test-mter | | | 94.08 301 | 93.51 299 | 95.80 298 | 96.77 318 | 89.70 353 | 96.91 360 | 95.21 393 | 92.89 280 | 94.83 243 | 95.72 371 | 77.69 365 | 98.97 238 | 93.06 266 | 98.50 165 | 98.72 204 |
|
| test0.0.03 1 | | | 94.08 301 | 93.51 299 | 95.80 298 | 95.53 369 | 92.89 298 | 97.38 324 | 95.97 384 | 95.11 163 | 92.51 336 | 96.66 337 | 87.71 242 | 96.94 381 | 87.03 368 | 93.67 281 | 97.57 261 |
|
| v1240 | | | 94.06 303 | 93.29 307 | 96.34 274 | 96.03 353 | 93.90 257 | 98.44 213 | 98.17 247 | 91.18 340 | 94.13 274 | 97.01 314 | 86.05 273 | 98.42 302 | 89.13 351 | 89.50 341 | 96.70 312 |
|
| X-MVStestdata | | | 94.06 303 | 92.30 327 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 64 | 97.40 43 | 98.46 96 | 43.50 423 | 95.90 45 | 99.89 53 | 97.85 83 | 99.74 51 | 99.78 23 |
|
| DTE-MVSNet | | | 93.98 305 | 93.26 308 | 96.14 282 | 96.06 351 | 94.39 241 | 99.20 42 | 98.86 77 | 93.06 273 | 91.78 348 | 97.81 240 | 85.87 277 | 97.58 369 | 90.53 326 | 86.17 378 | 96.46 347 |
|
| pm-mvs1 | | | 93.94 306 | 93.06 310 | 96.59 248 | 96.49 334 | 95.16 201 | 98.95 95 | 98.03 274 | 92.32 302 | 91.08 356 | 97.84 235 | 84.54 305 | 98.41 309 | 92.16 291 | 86.13 381 | 96.19 358 |
|
| MS-PatchMatch | | | 93.84 307 | 93.63 293 | 94.46 350 | 96.18 345 | 89.45 360 | 97.76 298 | 98.27 226 | 92.23 305 | 92.13 344 | 97.49 266 | 79.50 351 | 98.69 275 | 89.75 339 | 99.38 118 | 95.25 375 |
|
| tfpnnormal | | | 93.66 308 | 92.70 318 | 96.55 256 | 96.94 308 | 95.94 163 | 98.97 89 | 99.19 26 | 91.04 341 | 91.38 353 | 97.34 278 | 84.94 293 | 98.61 283 | 85.45 379 | 89.02 350 | 95.11 379 |
|
| EU-MVSNet | | | 93.66 308 | 94.14 254 | 92.25 377 | 95.96 356 | 83.38 401 | 98.52 200 | 98.12 254 | 94.69 187 | 92.61 331 | 98.13 209 | 87.36 251 | 96.39 393 | 91.82 302 | 90.00 332 | 96.98 277 |
|
| our_test_3 | | | 93.65 310 | 93.30 306 | 94.69 338 | 95.45 373 | 89.68 355 | 96.91 360 | 97.65 295 | 91.97 312 | 91.66 351 | 96.88 325 | 89.67 187 | 97.93 352 | 88.02 362 | 91.49 313 | 96.48 345 |
|
| pmmvs5 | | | 93.65 310 | 92.97 313 | 95.68 302 | 95.49 370 | 92.37 301 | 98.20 241 | 97.28 334 | 89.66 365 | 92.58 332 | 97.26 284 | 82.14 328 | 98.09 339 | 93.18 264 | 90.95 322 | 96.58 325 |
|
| test_fmvs2 | | | 93.43 312 | 93.58 295 | 92.95 371 | 96.97 306 | 83.91 397 | 99.19 44 | 97.24 337 | 95.74 129 | 95.20 235 | 98.27 198 | 69.65 398 | 98.72 274 | 96.26 161 | 93.73 280 | 96.24 355 |
|
| tpm cat1 | | | 93.36 313 | 92.80 315 | 95.07 326 | 97.58 260 | 87.97 385 | 96.76 372 | 97.86 285 | 82.17 405 | 93.53 298 | 96.04 360 | 86.13 271 | 99.13 215 | 89.24 349 | 95.87 253 | 98.10 244 |
|
| JIA-IIPM | | | 93.35 314 | 92.49 323 | 95.92 292 | 96.48 335 | 90.65 336 | 95.01 396 | 96.96 356 | 85.93 391 | 96.08 216 | 87.33 413 | 87.70 244 | 98.78 270 | 91.35 310 | 95.58 257 | 98.34 235 |
|
| SixPastTwentyTwo | | | 93.34 315 | 92.86 314 | 94.75 337 | 95.67 363 | 89.41 362 | 98.75 152 | 96.67 372 | 93.89 224 | 90.15 366 | 98.25 201 | 80.87 340 | 98.27 328 | 90.90 322 | 90.64 324 | 96.57 327 |
|
| USDC | | | 93.33 316 | 92.71 317 | 95.21 319 | 96.83 316 | 90.83 332 | 96.91 360 | 97.50 313 | 93.84 227 | 90.72 359 | 98.14 208 | 77.69 365 | 98.82 266 | 89.51 345 | 93.21 294 | 95.97 363 |
|
| IB-MVS | | 91.98 17 | 93.27 317 | 91.97 331 | 97.19 200 | 97.47 270 | 93.41 277 | 97.09 350 | 95.99 383 | 93.32 260 | 92.47 337 | 95.73 369 | 78.06 363 | 99.53 163 | 94.59 220 | 82.98 389 | 98.62 217 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MIMVSNet | | | 93.26 318 | 92.21 328 | 96.41 269 | 97.73 248 | 93.13 291 | 95.65 391 | 97.03 351 | 91.27 336 | 94.04 278 | 96.06 359 | 75.33 384 | 97.19 377 | 86.56 370 | 96.23 245 | 98.92 189 |
|
| ppachtmachnet_test | | | 93.22 319 | 92.63 319 | 94.97 328 | 95.45 373 | 90.84 331 | 96.88 366 | 97.88 284 | 90.60 347 | 92.08 345 | 97.26 284 | 88.08 233 | 97.86 358 | 85.12 382 | 90.33 326 | 96.22 356 |
|
| Patchmtry | | | 93.22 319 | 92.35 326 | 95.84 297 | 96.77 318 | 93.09 294 | 94.66 404 | 97.56 303 | 87.37 383 | 92.90 322 | 96.24 350 | 88.15 230 | 97.90 353 | 87.37 367 | 90.10 331 | 96.53 334 |
|
| testing3 | | | 93.19 321 | 92.48 324 | 95.30 318 | 98.07 215 | 92.27 302 | 98.64 181 | 97.17 341 | 93.94 223 | 93.98 281 | 97.04 309 | 67.97 402 | 96.01 397 | 88.40 357 | 97.14 208 | 97.63 258 |
|
| FMVSNet1 | | | 93.19 321 | 92.07 329 | 96.56 252 | 97.54 265 | 95.00 208 | 98.82 133 | 98.18 241 | 90.38 353 | 92.27 341 | 97.07 301 | 73.68 393 | 97.95 349 | 89.36 348 | 91.30 315 | 96.72 308 |
|
| LF4IMVS | | | 93.14 323 | 92.79 316 | 94.20 354 | 95.88 358 | 88.67 374 | 97.66 306 | 97.07 347 | 93.81 230 | 91.71 349 | 97.65 253 | 77.96 364 | 98.81 267 | 91.47 309 | 91.92 308 | 95.12 378 |
|
| mmtdpeth | | | 93.12 324 | 92.61 320 | 94.63 342 | 97.60 258 | 89.68 355 | 99.21 39 | 97.32 330 | 94.02 214 | 97.72 146 | 94.42 388 | 77.01 375 | 99.44 181 | 99.05 22 | 77.18 410 | 94.78 388 |
|
| testgi | | | 93.06 325 | 92.45 325 | 94.88 332 | 96.43 337 | 89.90 348 | 98.75 152 | 97.54 309 | 95.60 136 | 91.63 352 | 97.91 227 | 74.46 390 | 97.02 379 | 86.10 373 | 93.67 281 | 97.72 255 |
|
| PatchT | | | 93.06 325 | 91.97 331 | 96.35 273 | 96.69 324 | 92.67 299 | 94.48 407 | 97.08 345 | 86.62 385 | 97.08 171 | 92.23 407 | 87.94 237 | 97.90 353 | 78.89 404 | 96.69 221 | 98.49 227 |
|
| RPMNet | | | 92.81 327 | 91.34 337 | 97.24 196 | 97.00 303 | 93.43 275 | 94.96 397 | 98.80 99 | 82.27 404 | 96.93 179 | 92.12 408 | 86.98 256 | 99.82 82 | 76.32 409 | 96.65 223 | 98.46 229 |
|
| myMVS_eth3d | | | 92.73 328 | 92.01 330 | 94.89 331 | 97.39 280 | 90.94 327 | 97.91 278 | 97.46 317 | 93.16 268 | 93.42 305 | 95.37 378 | 68.09 401 | 96.12 395 | 88.34 358 | 96.99 212 | 97.60 259 |
|
| TransMVSNet (Re) | | | 92.67 329 | 91.51 336 | 96.15 281 | 96.58 329 | 94.65 226 | 98.90 106 | 96.73 368 | 90.86 344 | 89.46 372 | 97.86 232 | 85.62 280 | 98.09 339 | 86.45 371 | 81.12 396 | 95.71 368 |
|
| ttmdpeth | | | 92.61 330 | 91.96 333 | 94.55 344 | 94.10 391 | 90.60 338 | 98.52 200 | 97.29 332 | 92.67 287 | 90.18 364 | 97.92 226 | 79.75 350 | 97.79 360 | 91.09 315 | 86.15 380 | 95.26 374 |
|
| Syy-MVS | | | 92.55 331 | 92.61 320 | 92.38 374 | 97.39 280 | 83.41 400 | 97.91 278 | 97.46 317 | 93.16 268 | 93.42 305 | 95.37 378 | 84.75 298 | 96.12 395 | 77.00 408 | 96.99 212 | 97.60 259 |
|
| K. test v3 | | | 92.55 331 | 91.91 334 | 94.48 348 | 95.64 364 | 89.24 363 | 99.07 66 | 94.88 397 | 94.04 212 | 86.78 388 | 97.59 260 | 77.64 368 | 97.64 366 | 92.08 293 | 89.43 343 | 96.57 327 |
|
| DSMNet-mixed | | | 92.52 333 | 92.58 322 | 92.33 375 | 94.15 390 | 82.65 403 | 98.30 229 | 94.26 404 | 89.08 374 | 92.65 330 | 95.73 369 | 85.01 292 | 95.76 399 | 86.24 372 | 97.76 194 | 98.59 221 |
|
| TinyColmap | | | 92.31 334 | 91.53 335 | 94.65 341 | 96.92 309 | 89.75 351 | 96.92 358 | 96.68 371 | 90.45 351 | 89.62 369 | 97.85 234 | 76.06 382 | 98.81 267 | 86.74 369 | 92.51 302 | 95.41 372 |
|
| gg-mvs-nofinetune | | | 92.21 335 | 90.58 343 | 97.13 205 | 96.75 321 | 95.09 205 | 95.85 388 | 89.40 421 | 85.43 395 | 94.50 251 | 81.98 416 | 80.80 342 | 98.40 315 | 92.16 291 | 98.33 175 | 97.88 248 |
|
| FMVSNet5 | | | 91.81 336 | 90.92 339 | 94.49 347 | 97.21 290 | 92.09 306 | 98.00 269 | 97.55 308 | 89.31 372 | 90.86 358 | 95.61 375 | 74.48 389 | 95.32 403 | 85.57 377 | 89.70 335 | 96.07 361 |
|
| pmmvs6 | | | 91.77 337 | 90.63 342 | 95.17 321 | 94.69 387 | 91.24 323 | 98.67 175 | 97.92 282 | 86.14 389 | 89.62 369 | 97.56 264 | 75.79 383 | 98.34 316 | 90.75 324 | 84.56 383 | 95.94 364 |
|
| Anonymous20231206 | | | 91.66 338 | 91.10 338 | 93.33 365 | 94.02 395 | 87.35 389 | 98.58 190 | 97.26 336 | 90.48 349 | 90.16 365 | 96.31 348 | 83.83 321 | 96.53 391 | 79.36 402 | 89.90 333 | 96.12 359 |
|
| Patchmatch-RL test | | | 91.49 339 | 90.85 340 | 93.41 363 | 91.37 406 | 84.40 395 | 92.81 411 | 95.93 387 | 91.87 315 | 87.25 384 | 94.87 384 | 88.99 207 | 96.53 391 | 92.54 285 | 82.00 391 | 99.30 130 |
|
| test_0402 | | | 91.32 340 | 90.27 346 | 94.48 348 | 96.60 328 | 91.12 324 | 98.50 206 | 97.22 338 | 86.10 390 | 88.30 380 | 96.98 316 | 77.65 367 | 97.99 347 | 78.13 406 | 92.94 296 | 94.34 389 |
|
| test_vis1_rt | | | 91.29 341 | 90.65 341 | 93.19 369 | 97.45 274 | 86.25 393 | 98.57 196 | 90.90 419 | 93.30 262 | 86.94 387 | 93.59 397 | 62.07 411 | 99.11 219 | 97.48 113 | 95.58 257 | 94.22 392 |
|
| PVSNet_0 | | 88.72 19 | 91.28 342 | 90.03 349 | 95.00 327 | 97.99 226 | 87.29 390 | 94.84 400 | 98.50 180 | 92.06 310 | 89.86 367 | 95.19 380 | 79.81 349 | 99.39 187 | 92.27 290 | 69.79 416 | 98.33 236 |
|
| mvs5depth | | | 91.23 343 | 90.17 347 | 94.41 352 | 92.09 403 | 89.79 350 | 95.26 395 | 96.50 376 | 90.73 345 | 91.69 350 | 97.06 305 | 76.12 381 | 98.62 282 | 88.02 362 | 84.11 386 | 94.82 385 |
|
| Anonymous20240521 | | | 91.18 344 | 90.44 344 | 93.42 362 | 93.70 396 | 88.47 378 | 98.94 98 | 97.56 303 | 88.46 378 | 89.56 371 | 95.08 383 | 77.15 373 | 96.97 380 | 83.92 389 | 89.55 339 | 94.82 385 |
|
| EG-PatchMatch MVS | | | 91.13 345 | 90.12 348 | 94.17 356 | 94.73 386 | 89.00 368 | 98.13 253 | 97.81 287 | 89.22 373 | 85.32 398 | 96.46 345 | 67.71 403 | 98.42 302 | 87.89 365 | 93.82 279 | 95.08 380 |
|
| TDRefinement | | | 91.06 346 | 89.68 351 | 95.21 319 | 85.35 421 | 91.49 319 | 98.51 205 | 97.07 347 | 91.47 324 | 88.83 378 | 97.84 235 | 77.31 369 | 99.09 224 | 92.79 276 | 77.98 408 | 95.04 382 |
|
| UnsupCasMVSNet_eth | | | 90.99 347 | 89.92 350 | 94.19 355 | 94.08 392 | 89.83 349 | 97.13 349 | 98.67 135 | 93.69 241 | 85.83 394 | 96.19 355 | 75.15 385 | 96.74 385 | 89.14 350 | 79.41 403 | 96.00 362 |
|
| test20.03 | | | 90.89 348 | 90.38 345 | 92.43 373 | 93.48 397 | 88.14 384 | 98.33 222 | 97.56 303 | 93.40 257 | 87.96 381 | 96.71 336 | 80.69 343 | 94.13 408 | 79.15 403 | 86.17 378 | 95.01 384 |
|
| MDA-MVSNet_test_wron | | | 90.71 349 | 89.38 354 | 94.68 339 | 94.83 383 | 90.78 333 | 97.19 342 | 97.46 317 | 87.60 381 | 72.41 416 | 95.72 371 | 86.51 262 | 96.71 388 | 85.92 375 | 86.80 375 | 96.56 329 |
|
| YYNet1 | | | 90.70 350 | 89.39 353 | 94.62 343 | 94.79 385 | 90.65 336 | 97.20 340 | 97.46 317 | 87.54 382 | 72.54 415 | 95.74 367 | 86.51 262 | 96.66 389 | 86.00 374 | 86.76 376 | 96.54 332 |
|
| KD-MVS_self_test | | | 90.38 351 | 89.38 354 | 93.40 364 | 92.85 400 | 88.94 371 | 97.95 273 | 97.94 280 | 90.35 354 | 90.25 363 | 93.96 394 | 79.82 348 | 95.94 398 | 84.62 388 | 76.69 411 | 95.33 373 |
|
| pmmvs-eth3d | | | 90.36 352 | 89.05 357 | 94.32 353 | 91.10 408 | 92.12 305 | 97.63 311 | 96.95 357 | 88.86 376 | 84.91 399 | 93.13 402 | 78.32 359 | 96.74 385 | 88.70 354 | 81.81 393 | 94.09 395 |
|
| CL-MVSNet_self_test | | | 90.11 353 | 89.14 356 | 93.02 370 | 91.86 405 | 88.23 383 | 96.51 380 | 98.07 267 | 90.49 348 | 90.49 362 | 94.41 389 | 84.75 298 | 95.34 402 | 80.79 398 | 74.95 413 | 95.50 371 |
|
| new_pmnet | | | 90.06 354 | 89.00 358 | 93.22 368 | 94.18 389 | 88.32 381 | 96.42 382 | 96.89 362 | 86.19 388 | 85.67 395 | 93.62 396 | 77.18 372 | 97.10 378 | 81.61 396 | 89.29 345 | 94.23 391 |
|
| MDA-MVSNet-bldmvs | | | 89.97 355 | 88.35 361 | 94.83 335 | 95.21 377 | 91.34 320 | 97.64 308 | 97.51 312 | 88.36 379 | 71.17 417 | 96.13 357 | 79.22 353 | 96.63 390 | 83.65 390 | 86.27 377 | 96.52 337 |
|
| CMPMVS |  | 66.06 21 | 89.70 356 | 89.67 352 | 89.78 382 | 93.19 398 | 76.56 408 | 97.00 354 | 98.35 210 | 80.97 406 | 81.57 404 | 97.75 243 | 74.75 387 | 98.61 283 | 89.85 337 | 93.63 283 | 94.17 393 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet1 | | | 89.67 357 | 88.28 362 | 93.82 359 | 92.81 401 | 91.08 325 | 98.01 267 | 97.45 321 | 87.95 380 | 87.90 382 | 95.87 365 | 67.63 404 | 94.56 407 | 78.73 405 | 88.18 358 | 95.83 366 |
|
| KD-MVS_2432*1600 | | | 89.61 358 | 87.96 366 | 94.54 345 | 94.06 393 | 91.59 317 | 95.59 392 | 97.63 297 | 89.87 361 | 88.95 375 | 94.38 391 | 78.28 360 | 96.82 383 | 84.83 384 | 68.05 417 | 95.21 376 |
|
| miper_refine_blended | | | 89.61 358 | 87.96 366 | 94.54 345 | 94.06 393 | 91.59 317 | 95.59 392 | 97.63 297 | 89.87 361 | 88.95 375 | 94.38 391 | 78.28 360 | 96.82 383 | 84.83 384 | 68.05 417 | 95.21 376 |
|
| MVStest1 | | | 89.53 360 | 87.99 365 | 94.14 358 | 94.39 388 | 90.42 341 | 98.25 236 | 96.84 367 | 82.81 401 | 81.18 406 | 97.33 280 | 77.09 374 | 96.94 381 | 85.27 381 | 78.79 404 | 95.06 381 |
|
| MVS-HIRNet | | | 89.46 361 | 88.40 360 | 92.64 372 | 97.58 260 | 82.15 404 | 94.16 410 | 93.05 413 | 75.73 412 | 90.90 357 | 82.52 415 | 79.42 352 | 98.33 318 | 83.53 391 | 98.68 152 | 97.43 262 |
|
| OpenMVS_ROB |  | 86.42 20 | 89.00 362 | 87.43 370 | 93.69 360 | 93.08 399 | 89.42 361 | 97.91 278 | 96.89 362 | 78.58 408 | 85.86 393 | 94.69 385 | 69.48 399 | 98.29 326 | 77.13 407 | 93.29 293 | 93.36 402 |
|
| mvsany_test3 | | | 88.80 363 | 88.04 363 | 91.09 381 | 89.78 411 | 81.57 406 | 97.83 293 | 95.49 391 | 93.81 230 | 87.53 383 | 93.95 395 | 56.14 414 | 97.43 373 | 94.68 213 | 83.13 388 | 94.26 390 |
|
| new-patchmatchnet | | | 88.50 364 | 87.45 369 | 91.67 379 | 90.31 410 | 85.89 394 | 97.16 347 | 97.33 329 | 89.47 368 | 83.63 401 | 92.77 404 | 76.38 378 | 95.06 405 | 82.70 393 | 77.29 409 | 94.06 397 |
|
| APD_test1 | | | 88.22 365 | 88.01 364 | 88.86 384 | 95.98 354 | 74.66 416 | 97.21 339 | 96.44 378 | 83.96 400 | 86.66 390 | 97.90 228 | 60.95 412 | 97.84 359 | 82.73 392 | 90.23 329 | 94.09 395 |
|
| PM-MVS | | | 87.77 366 | 86.55 372 | 91.40 380 | 91.03 409 | 83.36 402 | 96.92 358 | 95.18 395 | 91.28 335 | 86.48 392 | 93.42 398 | 53.27 415 | 96.74 385 | 89.43 347 | 81.97 392 | 94.11 394 |
|
| dmvs_testset | | | 87.64 367 | 88.93 359 | 83.79 393 | 95.25 376 | 63.36 425 | 97.20 340 | 91.17 417 | 93.07 272 | 85.64 396 | 95.98 364 | 85.30 289 | 91.52 415 | 69.42 414 | 87.33 367 | 96.49 343 |
|
| test_fmvs3 | | | 87.17 368 | 87.06 371 | 87.50 386 | 91.21 407 | 75.66 411 | 99.05 69 | 96.61 375 | 92.79 284 | 88.85 377 | 92.78 403 | 43.72 418 | 93.49 409 | 93.95 241 | 84.56 383 | 93.34 403 |
|
| UnsupCasMVSNet_bld | | | 87.17 368 | 85.12 375 | 93.31 366 | 91.94 404 | 88.77 372 | 94.92 399 | 98.30 223 | 84.30 399 | 82.30 402 | 90.04 410 | 63.96 409 | 97.25 376 | 85.85 376 | 74.47 415 | 93.93 399 |
|
| N_pmnet | | | 87.12 370 | 87.77 368 | 85.17 390 | 95.46 372 | 61.92 426 | 97.37 326 | 70.66 431 | 85.83 392 | 88.73 379 | 96.04 360 | 85.33 287 | 97.76 362 | 80.02 399 | 90.48 325 | 95.84 365 |
|
| pmmvs3 | | | 86.67 371 | 84.86 376 | 92.11 378 | 88.16 415 | 87.19 391 | 96.63 376 | 94.75 399 | 79.88 407 | 87.22 385 | 92.75 405 | 66.56 406 | 95.20 404 | 81.24 397 | 76.56 412 | 93.96 398 |
|
| test_f | | | 86.07 372 | 85.39 373 | 88.10 385 | 89.28 413 | 75.57 412 | 97.73 301 | 96.33 380 | 89.41 371 | 85.35 397 | 91.56 409 | 43.31 420 | 95.53 400 | 91.32 311 | 84.23 385 | 93.21 404 |
|
| WB-MVS | | | 84.86 373 | 85.33 374 | 83.46 394 | 89.48 412 | 69.56 420 | 98.19 244 | 96.42 379 | 89.55 367 | 81.79 403 | 94.67 386 | 84.80 296 | 90.12 416 | 52.44 420 | 80.64 400 | 90.69 407 |
|
| SSC-MVS | | | 84.27 374 | 84.71 377 | 82.96 398 | 89.19 414 | 68.83 421 | 98.08 260 | 96.30 381 | 89.04 375 | 81.37 405 | 94.47 387 | 84.60 303 | 89.89 417 | 49.80 422 | 79.52 402 | 90.15 408 |
|
| dongtai | | | 82.47 375 | 81.88 378 | 84.22 392 | 95.19 378 | 76.03 409 | 94.59 406 | 74.14 430 | 82.63 402 | 87.19 386 | 96.09 358 | 64.10 408 | 87.85 420 | 58.91 418 | 84.11 386 | 88.78 412 |
|
| test_vis3_rt | | | 79.22 376 | 77.40 383 | 84.67 391 | 86.44 419 | 74.85 415 | 97.66 306 | 81.43 426 | 84.98 396 | 67.12 419 | 81.91 417 | 28.09 428 | 97.60 367 | 88.96 352 | 80.04 401 | 81.55 417 |
|
| test_method | | | 79.03 377 | 78.17 379 | 81.63 399 | 86.06 420 | 54.40 431 | 82.75 419 | 96.89 362 | 39.54 423 | 80.98 407 | 95.57 376 | 58.37 413 | 94.73 406 | 84.74 387 | 78.61 405 | 95.75 367 |
|
| testf1 | | | 79.02 378 | 77.70 380 | 82.99 396 | 88.10 416 | 66.90 422 | 94.67 402 | 93.11 410 | 71.08 414 | 74.02 412 | 93.41 399 | 34.15 424 | 93.25 410 | 72.25 412 | 78.50 406 | 88.82 410 |
|
| APD_test2 | | | 79.02 378 | 77.70 380 | 82.99 396 | 88.10 416 | 66.90 422 | 94.67 402 | 93.11 410 | 71.08 414 | 74.02 412 | 93.41 399 | 34.15 424 | 93.25 410 | 72.25 412 | 78.50 406 | 88.82 410 |
|
| LCM-MVSNet | | | 78.70 380 | 76.24 386 | 86.08 388 | 77.26 427 | 71.99 418 | 94.34 408 | 96.72 369 | 61.62 418 | 76.53 410 | 89.33 411 | 33.91 426 | 92.78 413 | 81.85 395 | 74.60 414 | 93.46 401 |
|
| kuosan | | | 78.45 381 | 77.69 382 | 80.72 400 | 92.73 402 | 75.32 413 | 94.63 405 | 74.51 429 | 75.96 410 | 80.87 408 | 93.19 401 | 63.23 410 | 79.99 424 | 42.56 424 | 81.56 395 | 86.85 416 |
|
| Gipuma |  | | 78.40 382 | 76.75 385 | 83.38 395 | 95.54 367 | 80.43 407 | 79.42 420 | 97.40 325 | 64.67 417 | 73.46 414 | 80.82 418 | 45.65 417 | 93.14 412 | 66.32 416 | 87.43 365 | 76.56 420 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 77.95 383 | 75.44 387 | 85.46 389 | 82.54 422 | 74.95 414 | 94.23 409 | 93.08 412 | 72.80 413 | 74.68 411 | 87.38 412 | 36.36 423 | 91.56 414 | 73.95 410 | 63.94 419 | 89.87 409 |
|
| FPMVS | | | 77.62 384 | 77.14 384 | 79.05 402 | 79.25 425 | 60.97 427 | 95.79 389 | 95.94 386 | 65.96 416 | 67.93 418 | 94.40 390 | 37.73 422 | 88.88 419 | 68.83 415 | 88.46 355 | 87.29 413 |
|
| EGC-MVSNET | | | 75.22 385 | 69.54 388 | 92.28 376 | 94.81 384 | 89.58 357 | 97.64 308 | 96.50 376 | 1.82 428 | 5.57 429 | 95.74 367 | 68.21 400 | 96.26 394 | 73.80 411 | 91.71 310 | 90.99 406 |
|
| ANet_high | | | 69.08 386 | 65.37 390 | 80.22 401 | 65.99 429 | 71.96 419 | 90.91 415 | 90.09 420 | 82.62 403 | 49.93 424 | 78.39 419 | 29.36 427 | 81.75 421 | 62.49 417 | 38.52 423 | 86.95 415 |
|
| tmp_tt | | | 68.90 387 | 66.97 389 | 74.68 404 | 50.78 431 | 59.95 428 | 87.13 416 | 83.47 425 | 38.80 424 | 62.21 420 | 96.23 352 | 64.70 407 | 76.91 426 | 88.91 353 | 30.49 424 | 87.19 414 |
|
| PMVS |  | 61.03 23 | 65.95 388 | 63.57 392 | 73.09 405 | 57.90 430 | 51.22 432 | 85.05 418 | 93.93 408 | 54.45 419 | 44.32 425 | 83.57 414 | 13.22 429 | 89.15 418 | 58.68 419 | 81.00 397 | 78.91 419 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 64.94 389 | 64.25 391 | 67.02 406 | 82.28 423 | 59.36 429 | 91.83 414 | 85.63 423 | 52.69 420 | 60.22 421 | 77.28 420 | 41.06 421 | 80.12 423 | 46.15 423 | 41.14 421 | 61.57 422 |
|
| EMVS | | | 64.07 390 | 63.26 393 | 66.53 407 | 81.73 424 | 58.81 430 | 91.85 413 | 84.75 424 | 51.93 422 | 59.09 422 | 75.13 421 | 43.32 419 | 79.09 425 | 42.03 425 | 39.47 422 | 61.69 421 |
|
| MVE |  | 62.14 22 | 63.28 391 | 59.38 394 | 74.99 403 | 74.33 428 | 65.47 424 | 85.55 417 | 80.50 427 | 52.02 421 | 51.10 423 | 75.00 422 | 10.91 432 | 80.50 422 | 51.60 421 | 53.40 420 | 78.99 418 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 30.17 392 | 30.18 396 | 30.16 408 | 78.61 426 | 43.29 433 | 66.79 421 | 14.21 432 | 17.31 425 | 14.82 428 | 11.93 428 | 11.55 431 | 41.43 427 | 37.08 426 | 19.30 425 | 5.76 425 |
|
| cdsmvs_eth3d_5k | | | 23.98 393 | 31.98 395 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 98.59 153 | 0.00 429 | 0.00 430 | 98.61 158 | 90.60 170 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| testmvs | | | 21.48 394 | 24.95 397 | 11.09 410 | 14.89 432 | 6.47 435 | 96.56 378 | 9.87 433 | 7.55 426 | 17.93 426 | 39.02 424 | 9.43 433 | 5.90 429 | 16.56 428 | 12.72 426 | 20.91 424 |
|
| test123 | | | 20.95 395 | 23.72 398 | 12.64 409 | 13.54 433 | 8.19 434 | 96.55 379 | 6.13 434 | 7.48 427 | 16.74 427 | 37.98 425 | 12.97 430 | 6.05 428 | 16.69 427 | 5.43 427 | 23.68 423 |
|
| ab-mvs-re | | | 8.20 396 | 10.94 399 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 98.43 176 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 7.88 397 | 10.50 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 94.51 87 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| WAC-MVS | | | | | | | 90.94 327 | | | | | | | | 88.66 355 | | |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 48 | 97.46 41 | 99.39 33 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 99 | 99.08 11 | | 98.63 146 | | | | | 99.94 9 | 98.53 41 | 99.80 24 | 99.86 7 |
|
| PC_three_1452 | | | | | | | | | | 95.08 167 | 99.60 22 | 99.16 83 | 97.86 2 | 98.47 296 | 97.52 111 | 99.72 58 | 99.74 39 |
|
| No_MVS | | | | | 99.62 6 | 99.17 99 | 99.08 11 | | 98.63 146 | | | | | 99.94 9 | 98.53 41 | 99.80 24 | 99.86 7 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 77 | 97.55 35 | 99.20 45 | 99.47 26 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.46 52 | 98.70 23 | | 98.79 104 | 93.21 265 | 98.67 83 | 98.97 113 | 95.70 49 | 99.83 75 | 96.07 165 | 99.58 86 | |
|
| RE-MVS-def | | | | 98.34 40 | | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 99 | 96.49 97 | 99.17 48 | 99.35 49 | 95.29 65 | | 97.72 91 | 99.65 71 | 99.71 52 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 143 | 95.28 154 | 99.63 21 | | | | 98.35 58 | 99.81 15 | 99.83 12 |
|
| OPU-MVS | | | | | 99.37 22 | 99.24 91 | 99.05 14 | 99.02 79 | | | | 99.16 83 | 97.81 3 | 99.37 188 | 97.24 120 | 99.73 54 | 99.70 56 |
|
| test_241102_TWO | | | | | | | | | 98.87 71 | 97.65 28 | 99.53 26 | 99.48 24 | 97.34 11 | 99.94 9 | 98.43 53 | 99.80 24 | 99.83 12 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 71 | 97.62 30 | 99.73 13 | 99.39 37 | 97.53 7 | 99.74 117 | | | |
|
| 9.14 | | | | 98.06 65 | | 99.47 50 | | 98.71 164 | 98.82 86 | 94.36 204 | 99.16 51 | 99.29 58 | 96.05 37 | 99.81 87 | 97.00 126 | 99.71 60 | |
|
| save fliter | | | | | | 99.46 52 | 98.38 35 | 98.21 239 | 98.71 122 | 97.95 19 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 97.32 49 | 99.45 28 | 99.46 30 | 97.88 1 | 99.94 9 | 98.47 49 | 99.86 2 | 99.85 9 |
|
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 89 | 98.88 64 | | | | | 99.94 9 | 98.47 49 | 99.81 15 | 99.84 11 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 67 | 98.88 64 | 97.62 30 | 99.56 23 | 99.50 21 | 97.42 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 147 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 42 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 193 | | | | 99.20 147 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 207 | | | | |
|
| ambc | | | | | 89.49 383 | 86.66 418 | 75.78 410 | 92.66 412 | 96.72 369 | | 86.55 391 | 92.50 406 | 46.01 416 | 97.90 353 | 90.32 328 | 82.09 390 | 94.80 387 |
|
| MTGPA |  | | | | | | | | 98.74 114 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 375 | | | | 30.43 427 | 87.85 241 | 98.69 275 | 92.59 281 | | |
|
| test_post | | | | | | | | | | | | 31.83 426 | 88.83 214 | 98.91 251 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 382 | 89.42 194 | 98.89 255 | | | |
|
| GG-mvs-BLEND | | | | | 96.59 248 | 96.34 340 | 94.98 211 | 96.51 380 | 88.58 422 | | 93.10 319 | 94.34 393 | 80.34 347 | 98.05 342 | 89.53 344 | 96.99 212 | 96.74 305 |
|
| MTMP | | | | | | | | 98.89 110 | 94.14 406 | | | | | | | | |
|
| gm-plane-assit | | | | | | 95.88 358 | 87.47 388 | | | 89.74 364 | | 96.94 322 | | 99.19 207 | 93.32 260 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 159 | 99.57 87 | 99.69 59 |
|
| TEST9 | | | | | | 99.31 67 | 98.50 29 | 97.92 276 | 98.73 117 | 92.63 288 | 97.74 143 | 98.68 153 | 96.20 32 | 99.80 94 | | | |
|
| test_8 | | | | | | 99.29 76 | 98.44 31 | 97.89 284 | 98.72 119 | 92.98 276 | 97.70 148 | 98.66 156 | 96.20 32 | 99.80 94 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 175 | 99.57 87 | 99.68 64 |
|
| agg_prior | | | | | | 99.30 71 | 98.38 35 | | 98.72 119 | | 97.57 160 | | | 99.81 87 | | | |
|
| TestCases | | | | | 96.99 214 | 99.25 84 | 93.21 289 | | 98.18 241 | 91.36 328 | 93.52 299 | 98.77 142 | 84.67 301 | 99.72 119 | 89.70 341 | 97.87 189 | 98.02 246 |
|
| test_prior4 | | | | | | | 98.01 64 | 97.86 288 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 97.80 295 | | 96.12 114 | 97.89 136 | 98.69 152 | 95.96 41 | | 96.89 135 | 99.60 81 | |
|
| test_prior | | | | | 99.19 43 | 99.31 67 | 98.22 51 | | 98.84 81 | | | | | 99.70 125 | | | 99.65 72 |
|
| 旧先验2 | | | | | | | | 97.57 314 | | 91.30 333 | 98.67 83 | | | 99.80 94 | 95.70 184 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 97.64 308 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 99.16 48 | 99.34 60 | 98.01 64 | | 98.69 127 | 90.06 358 | 98.13 112 | 98.95 120 | 94.60 85 | 99.89 53 | 91.97 300 | 99.47 106 | 99.59 82 |
|
| 旧先验1 | | | | | | 99.29 76 | 97.48 82 | | 98.70 126 | | | 99.09 99 | 95.56 52 | | | 99.47 106 | 99.61 78 |
|
| æ— å…ˆéªŒ | | | | | | | | 97.58 313 | 98.72 119 | 91.38 327 | | | | 99.87 64 | 93.36 259 | | 99.60 80 |
|
| 原ACMM2 | | | | | | | | 97.67 305 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.65 85 | 99.32 65 | 96.62 124 | | 98.67 135 | 93.27 264 | 97.81 138 | 98.97 113 | 95.18 72 | 99.83 75 | 93.84 245 | 99.46 109 | 99.50 94 |
|
| test222 | | | | | | 99.23 92 | 97.17 102 | 97.40 322 | 98.66 138 | 88.68 377 | 98.05 118 | 98.96 118 | 94.14 98 | | | 99.53 98 | 99.61 78 |
|
| testdata2 | | | | | | | | | | | | | | 99.89 53 | 91.65 307 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata | | | | | 98.26 122 | 99.20 97 | 95.36 190 | | 98.68 130 | 91.89 314 | 98.60 91 | 99.10 92 | 94.44 92 | 99.82 82 | 94.27 231 | 99.44 110 | 99.58 86 |
|
| testdata1 | | | | | | | | 97.32 332 | | 96.34 105 | | | | | | | |
|
| test12 | | | | | 99.18 45 | 99.16 103 | 98.19 53 | | 98.53 169 | | 98.07 116 | | 95.13 75 | 99.72 119 | | 99.56 93 | 99.63 76 |
|
| plane_prior7 | | | | | | 97.42 276 | 94.63 228 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 283 | 94.61 231 | | | | | | 87.09 253 | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 163 | | | | | 99.03 231 | 96.07 165 | 94.27 263 | 96.92 282 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 195 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 231 | | | 97.02 71 | 95.34 230 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 142 | | 97.28 52 | | | | | | | |
|
| plane_prior1 | | | | | | 97.37 282 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.60 233 | 98.44 213 | | 96.74 85 | | | | | | 94.22 265 | |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 402 | | | | | | | | |
|
| lessismore_v0 | | | | | 94.45 351 | 94.93 382 | 88.44 379 | | 91.03 418 | | 86.77 389 | 97.64 256 | 76.23 380 | 98.42 302 | 90.31 329 | 85.64 382 | 96.51 340 |
|
| LGP-MVS_train | | | | | 96.47 263 | 97.46 271 | 93.54 270 | | 98.54 167 | 94.67 189 | 94.36 261 | 98.77 142 | 85.39 283 | 99.11 219 | 95.71 182 | 94.15 269 | 96.76 303 |
|
| test11 | | | | | | | | | 98.66 138 | | | | | | | | |
|
| door | | | | | | | | | 94.64 400 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 249 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.20 291 | | 98.05 263 | | 96.43 99 | 94.45 253 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 291 | | 98.05 263 | | 96.43 99 | 94.45 253 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 195 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 253 | | | 98.96 242 | | | 96.87 294 |
|
| HQP3-MVS | | | | | | | | | 98.46 187 | | | | | | | 94.18 267 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 259 | | | | |
|
| NP-MVS | | | | | | 97.28 285 | 94.51 236 | | | | | 97.73 244 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 396 | 96.89 365 | | 90.97 342 | 97.90 135 | | 89.89 182 | | 93.91 243 | | 99.18 156 |
|
| MDTV_nov1_ep13 | | | | 95.40 183 | | 97.48 269 | 88.34 380 | 96.85 368 | 97.29 332 | 93.74 234 | 97.48 162 | 97.26 284 | 89.18 201 | 99.05 227 | 91.92 301 | 97.43 204 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 295 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 284 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 84 | | | | |
|
| ITE_SJBPF | | | | | 95.44 313 | 97.42 276 | 91.32 321 | | 97.50 313 | 95.09 166 | 93.59 295 | 98.35 186 | 81.70 330 | 98.88 257 | 89.71 340 | 93.39 290 | 96.12 359 |
|
| DeepMVS_CX |  | | | | 86.78 387 | 97.09 301 | 72.30 417 | | 95.17 396 | 75.92 411 | 84.34 400 | 95.19 380 | 70.58 397 | 95.35 401 | 79.98 401 | 89.04 349 | 92.68 405 |
|