This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34698.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22897.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22699.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33498.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37198.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26099.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 205
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 27998.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18598.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
patch_mono-298.36 5098.87 696.82 21499.53 3690.68 32098.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18299.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25599.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24198.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19397.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23495.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
dcpmvs_298.08 6098.59 1496.56 23899.57 3390.34 32799.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 25898.73 11192.98 25797.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 204
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26098.67 12892.57 27298.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26499.00 11489.54 33997.43 30098.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35296.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 26998.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25597.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 27998.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20799.50 91
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 30998.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 244
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28098.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18497.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29597.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22499.08 161
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 29898.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 242
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 26998.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 246
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 26998.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 246
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 26998.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 246
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24598.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 29196.91 11999.59 7699.34 116
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21199.19 143
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32498.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23097.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22297.64 6999.35 1799.06 3497.02 6493.75 27599.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24498.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28497.76 27894.50 18398.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22098.52 2899.37 1498.71 11697.09 6292.99 30299.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18098.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 246
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20198.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27599.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31499.26 1593.13 25197.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20299.48 98
jason97.32 10497.08 10098.06 13097.45 25395.59 16997.87 26897.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 18998.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
EPNet97.28 10596.87 10998.51 8694.98 36096.14 14298.90 9997.02 33498.28 1095.99 20199.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20499.34 116
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20499.34 116
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 27896.39 19198.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27395.78 36999.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26495.99 20199.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25098.89 5994.44 18696.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30598.43 18493.71 21997.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24699.71 193.57 23197.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 25696.17 19698.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20297.05 15998.61 14893.49 10098.52 27195.33 17997.81 17899.29 127
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 22696.95 16198.49 16193.54 9998.42 28395.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25398.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 18999.37 11298.66 196
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 37697.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 27997.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30399.65 292.34 28097.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26393.67 23398.60 14699.46 104
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20398.76 13685.88 26399.44 16797.93 6495.59 23598.60 200
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 30798.57 15193.33 24096.67 17597.57 25294.30 8999.56 14591.05 30098.59 14799.47 100
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20296.72 17497.99 21291.58 13699.76 10794.51 20596.54 21298.95 173
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12896.60 12397.12 19399.25 8195.35 18398.26 22199.26 1594.28 18897.94 11997.46 25892.74 10899.81 8196.88 12593.32 27596.20 339
test_vis1_n_192096.71 12996.84 11096.31 26399.11 10489.74 33499.05 6598.58 14998.08 1299.87 199.37 3878.48 34299.93 2599.29 1499.69 5699.27 129
mvs_anonymous96.70 13096.53 12797.18 18898.19 19293.78 25198.31 21398.19 22494.01 19894.47 23498.27 19092.08 12598.46 27897.39 10397.91 17499.31 122
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26094.84 22298.43 16892.14 12299.58 14194.35 20996.51 21399.56 85
PMMVS96.60 13296.33 13397.41 17597.90 21793.93 24797.35 30898.41 18692.84 26397.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 34894.52 23299.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26099.06 3493.72 21896.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 196
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25296.09 19798.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
mvsmamba96.57 13696.32 13497.32 18296.60 30796.43 12699.54 797.98 26396.49 8695.20 21598.64 14690.82 15698.55 26797.97 6193.65 26596.98 257
XVG-OURS96.55 13796.41 13096.99 20098.75 13793.76 25297.50 29798.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22597.69 235
FIs96.51 13896.12 14197.67 15997.13 27797.54 7499.36 1599.22 2395.89 11394.03 26198.35 17891.98 12798.44 28196.40 14592.76 28497.01 255
XVG-OURS-SEG-HR96.51 13896.34 13297.02 19998.77 13693.76 25297.79 27798.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23497.74 232
PS-MVSNAJss96.43 14096.26 13796.92 20995.84 34295.08 19799.16 4698.50 16995.87 11693.84 27198.34 18294.51 8198.61 26096.88 12593.45 27297.06 252
test_fmvs196.42 14196.67 12195.66 28998.82 13388.53 35698.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 20998.46 16687.72 22998.59 26397.84 7393.80 26096.87 273
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 28697.27 8399.36 1599.23 2095.83 11793.93 26598.37 17692.00 12698.32 30096.02 15792.72 28597.00 256
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 26798.74 10893.84 20896.54 18498.18 19885.34 27599.75 10995.93 15996.35 21799.15 150
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27597.58 28893.21 24697.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 191
PVSNet91.96 1896.35 14696.15 14096.96 20499.17 9492.05 29496.08 36298.68 12393.69 22297.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28298.07 25292.10 28994.79 22697.29 26991.75 13299.56 14594.17 21696.50 21499.58 83
Effi-MVS+-dtu96.29 14896.56 12495.51 29397.89 21890.22 32898.80 13598.10 24596.57 8596.45 18996.66 32090.81 15798.91 23095.72 16797.99 17197.40 243
QAPM96.29 14895.40 17198.96 6197.85 21997.60 7299.23 3198.93 5089.76 34293.11 29999.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 29795.29 21497.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
nrg03096.28 15095.72 15997.96 13696.90 29198.15 5299.39 1298.31 20395.47 13394.42 24098.35 17892.09 12498.69 25397.50 9989.05 33097.04 253
131496.25 15295.73 15897.79 14597.13 27795.55 17398.19 22998.59 14493.47 23592.03 32797.82 23091.33 14599.49 15894.62 20098.44 15598.32 216
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20398.76 13682.83 31599.32 17495.56 17395.59 23598.60 200
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37399.11 155
HQP_MVS96.14 15595.90 15196.85 21297.42 25594.60 22498.80 13598.56 15397.28 4595.34 21298.28 18787.09 24199.03 21096.07 15294.27 24396.92 262
iter_conf0596.13 15695.79 15497.15 19098.16 19895.99 14598.88 10897.98 26395.91 11295.58 21098.46 16685.53 27098.59 26397.88 6993.75 26196.86 276
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38294.26 19097.64 14098.64 14684.05 30499.47 16495.34 17897.60 18799.03 164
MVSTER96.06 15895.72 15997.08 19698.23 18695.93 15798.73 15098.27 21294.86 16795.07 21798.09 20388.21 21598.54 26996.59 13793.46 27096.79 282
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38494.04 19597.64 14098.31 18583.82 31199.46 16595.29 18297.70 18498.93 175
test_djsdf96.00 16095.69 16596.93 20695.72 34495.49 17599.47 998.40 18894.98 16194.58 23097.86 22389.16 19098.41 29196.91 11994.12 25196.88 271
RRT_MVS95.98 16195.78 15596.56 23896.48 31594.22 24199.57 697.92 27095.89 11393.95 26498.70 14089.27 18698.42 28397.23 10893.02 27997.04 253
EI-MVSNet95.96 16295.83 15396.36 25997.93 21593.70 25898.12 23998.27 21293.70 22195.07 21799.02 9892.23 11998.54 26994.68 19693.46 27096.84 278
ECVR-MVScopyleft95.95 16395.71 16296.65 22499.02 11190.86 31599.03 7191.80 39396.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
BH-untuned95.95 16395.72 15996.65 22498.55 15792.26 28998.23 22297.79 27793.73 21694.62 22998.01 21088.97 19999.00 21693.04 25098.51 15198.68 193
test111195.94 16595.78 15596.41 25698.99 11890.12 32999.04 6892.45 39296.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 34998.37 19491.32 31294.43 23998.73 13890.27 16899.60 13990.05 31498.82 13798.52 206
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30794.56 17896.03 19998.61 14885.02 28099.12 19690.68 30599.06 12299.30 125
test_fmvs1_n95.90 16895.99 14895.63 29098.67 14788.32 36099.26 2798.22 21996.40 9299.67 1499.26 5773.91 37099.70 11999.02 1899.50 9498.87 178
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 27997.74 22791.74 30098.69 16198.15 23595.56 12994.92 22097.68 24388.98 19898.79 24793.19 24597.78 18097.20 250
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36193.40 23898.62 7999.20 6774.99 36499.63 13497.72 8097.20 19399.46 104
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33295.37 14096.22 19498.19 19789.96 17299.16 18894.60 20187.48 34698.90 177
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27497.32 8199.21 3898.97 4289.96 33891.14 33599.05 9786.64 24999.92 3193.38 23999.47 9997.73 233
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31195.02 16097.95 11799.34 4874.37 36999.78 10198.64 2596.80 20399.08 161
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28497.47 7898.79 14099.18 2595.60 12793.92 26697.04 29391.68 13398.48 27495.80 16587.66 34596.79 282
VPA-MVSNet95.75 17595.11 19297.69 15697.24 26697.27 8398.94 9399.23 2095.13 15295.51 21197.32 26785.73 26698.91 23097.33 10689.55 32296.89 270
bld_raw_dy_0_6495.74 17695.31 18297.03 19896.35 32195.76 16599.12 5397.37 31495.97 10894.70 22898.48 16285.80 26598.49 27396.55 13993.48 26996.84 278
HQP-MVS95.72 17795.40 17196.69 22297.20 27094.25 23998.05 24698.46 17696.43 8994.45 23597.73 23586.75 24798.96 22195.30 18094.18 24796.86 276
hse-mvs295.71 17895.30 18396.93 20698.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37798.22 219
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29496.97 9798.74 14699.24 1795.16 15193.88 26897.72 23791.68 13398.31 30295.81 16387.25 35196.92 262
PatchmatchNetpermissive95.71 17895.52 16996.29 26597.58 23990.72 31996.84 34897.52 29894.06 19497.08 15596.96 30389.24 18898.90 23392.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 18195.33 17996.76 21796.16 33094.63 21998.43 20198.39 19096.64 8195.02 21998.78 13085.15 27999.05 20695.21 18694.20 24696.60 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 18195.38 17596.61 23197.61 23793.84 25098.91 9898.44 18095.25 14794.28 24798.47 16486.04 26299.12 19695.50 17693.95 25696.87 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 18395.69 16595.44 29797.54 24488.54 35596.97 33497.56 29093.50 23397.52 14596.93 30789.49 17899.16 18895.25 18496.42 21698.64 198
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32497.38 31390.95 32397.73 13297.70 23885.32 27799.63 13491.18 29398.33 16298.79 184
LPG-MVS_test95.62 18495.34 17796.47 25097.46 25093.54 26198.99 8198.54 15794.67 17494.36 24398.77 13285.39 27299.11 19895.71 16894.15 24996.76 285
CLD-MVS95.62 18495.34 17796.46 25397.52 24793.75 25497.27 31598.46 17695.53 13094.42 24098.00 21186.21 25798.97 21796.25 15094.37 24196.66 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35094.41 38092.95 25997.18 15297.43 26284.78 28699.45 16694.63 19897.73 18398.68 193
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34195.38 13896.63 17796.90 30884.29 29699.59 14088.65 33696.33 21898.40 211
test_vis1_n95.47 18995.13 18996.49 24797.77 22390.41 32599.27 2698.11 24296.58 8399.66 1599.18 7367.00 38399.62 13799.21 1599.40 10999.44 107
SCA95.46 19095.13 18996.46 25397.67 23291.29 30897.33 31097.60 28794.68 17396.92 16597.10 28083.97 30698.89 23492.59 26398.32 16499.20 139
IterMVS-LS95.46 19095.21 18696.22 26798.12 20093.72 25798.32 21298.13 23893.71 21994.26 24897.31 26892.24 11898.10 31894.63 19890.12 31396.84 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 19295.03 19596.73 21895.42 35694.63 21999.14 4998.52 16295.74 12093.22 29398.36 17783.87 30998.65 25896.95 11894.04 25296.91 267
CVMVSNet95.43 19396.04 14593.57 33997.93 21583.62 37798.12 23998.59 14495.68 12496.56 18099.02 9887.51 23497.51 35193.56 23797.44 18999.60 77
anonymousdsp95.42 19494.91 20196.94 20595.10 35995.90 16099.14 4998.41 18693.75 21393.16 29597.46 25887.50 23698.41 29195.63 17294.03 25396.50 324
DU-MVS95.42 19494.76 20797.40 17796.53 31196.97 9798.66 16798.99 4195.43 13593.88 26897.69 24088.57 20698.31 30295.81 16387.25 35196.92 262
mvs_tets95.41 19695.00 19696.65 22495.58 34894.42 23099.00 7898.55 15595.73 12293.21 29498.38 17583.45 31398.63 25997.09 11294.00 25496.91 267
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34195.38 13896.61 17896.88 30984.29 29699.56 14588.11 33996.29 22197.76 230
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 33995.33 14196.55 18296.53 32684.23 30099.56 14588.11 33996.29 22198.40 211
BH-w/o95.38 19795.08 19396.26 26698.34 17691.79 29797.70 28397.43 30992.87 26294.24 25097.22 27588.66 20498.84 24091.55 28997.70 18498.16 222
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 32998.36 9499.39 3273.27 37299.64 13197.98 6096.58 21098.81 183
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36496.29 19398.61 14894.00 9699.29 17680.00 37899.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 20294.98 19896.43 25597.67 23293.48 26598.73 15098.44 18094.94 16692.53 31598.53 15784.50 29599.14 19395.48 17794.00 25496.66 300
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 21999.29 7393.24 27698.58 17898.11 24289.92 33993.57 27999.10 8686.37 25599.79 9890.78 30398.10 16997.09 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 33995.33 14196.55 18296.53 32684.23 30099.56 14588.11 33996.29 22197.76 230
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33190.66 32596.49 18698.80 12878.13 34699.83 6996.21 15195.36 23999.44 107
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32595.24 14996.54 18496.22 33784.58 29399.53 15387.93 34396.50 21497.39 244
AllTest95.24 20794.65 21296.99 20099.25 8193.21 27798.59 17698.18 22791.36 30893.52 28198.77 13284.67 29099.72 11389.70 32197.87 17698.02 225
LCM-MVSNet-Re95.22 20895.32 18094.91 31298.18 19487.85 36698.75 14395.66 36895.11 15488.96 35396.85 31290.26 16997.65 34495.65 17198.44 15599.22 137
EPNet_dtu95.21 20994.95 20095.99 27496.17 32890.45 32498.16 23597.27 31996.77 7593.14 29898.33 18390.34 16698.42 28385.57 35698.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 21094.45 22497.46 17096.75 30096.56 11998.86 11698.65 13593.30 24393.27 29298.27 19084.85 28498.87 23794.82 19391.26 30196.96 259
D2MVS95.18 21195.08 19395.48 29497.10 27992.07 29398.30 21599.13 3094.02 19792.90 30396.73 31789.48 17998.73 25194.48 20693.60 26895.65 352
WR-MVS95.15 21294.46 22297.22 18596.67 30596.45 12498.21 22498.81 8694.15 19193.16 29597.69 24087.51 23498.30 30495.29 18288.62 33696.90 269
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19496.45 31796.36 13299.03 7199.03 3795.04 15993.58 27897.93 21788.27 21498.03 32494.13 21786.90 35696.95 261
baseline295.11 21494.52 21896.87 21196.65 30693.56 26098.27 22094.10 38693.45 23692.02 32897.43 26287.45 23899.19 18693.88 22697.41 19197.87 228
miper_enhance_ethall95.10 21594.75 20896.12 27197.53 24693.73 25696.61 35698.08 25092.20 28893.89 26796.65 32292.44 11298.30 30494.21 21591.16 30296.34 333
Anonymous2024052995.10 21594.22 23297.75 15099.01 11394.26 23898.87 11398.83 8085.79 37296.64 17698.97 10578.73 34099.85 6396.27 14794.89 24099.12 154
test-LLR95.10 21594.87 20495.80 28496.77 29789.70 33596.91 33995.21 37295.11 15494.83 22495.72 35087.71 23098.97 21793.06 24898.50 15298.72 189
WR-MVS_H95.05 21894.46 22296.81 21596.86 29395.82 16399.24 3099.24 1793.87 20792.53 31596.84 31390.37 16598.24 31093.24 24387.93 34296.38 332
miper_ehance_all_eth95.01 21994.69 21195.97 27697.70 23093.31 27297.02 33298.07 25292.23 28593.51 28396.96 30391.85 13098.15 31493.68 23191.16 30296.44 330
ADS-MVSNet95.00 22094.45 22496.63 22898.00 20991.91 29696.04 36397.74 28090.15 33596.47 18796.64 32387.89 22598.96 22190.08 31297.06 19599.02 165
VPNet94.99 22194.19 23497.40 17797.16 27596.57 11898.71 15598.97 4295.67 12594.84 22298.24 19480.36 33198.67 25796.46 14287.32 35096.96 259
EPMVS94.99 22194.48 22096.52 24597.22 26891.75 29997.23 31691.66 39494.11 19297.28 14896.81 31485.70 26798.84 24093.04 25097.28 19298.97 170
NR-MVSNet94.98 22394.16 23797.44 17296.53 31197.22 9098.74 14698.95 4694.96 16389.25 35297.69 24089.32 18498.18 31294.59 20387.40 34896.92 262
FMVSNet394.97 22494.26 23197.11 19498.18 19496.62 11298.56 18498.26 21693.67 22694.09 25797.10 28084.25 29898.01 32592.08 27592.14 28896.70 294
CostFormer94.95 22594.73 20995.60 29297.28 26489.06 34697.53 29596.89 34389.66 34496.82 17096.72 31886.05 26098.95 22695.53 17596.13 23098.79 184
PAPM94.95 22594.00 24897.78 14697.04 28195.65 16896.03 36598.25 21791.23 31794.19 25397.80 23291.27 14898.86 23982.61 37297.61 18698.84 181
CP-MVSNet94.94 22794.30 23096.83 21396.72 30295.56 17199.11 5598.95 4693.89 20592.42 32097.90 21987.19 24098.12 31794.32 21188.21 33996.82 281
TR-MVS94.94 22794.20 23397.17 18997.75 22494.14 24397.59 29297.02 33492.28 28495.75 20797.64 24683.88 30898.96 22189.77 31896.15 22998.40 211
RPSCF94.87 22995.40 17193.26 34598.89 12582.06 38398.33 20898.06 25790.30 33496.56 18099.26 5787.09 24199.49 15893.82 22896.32 21998.24 217
GA-MVS94.81 23094.03 24497.14 19197.15 27693.86 24996.76 35197.58 28894.00 19994.76 22797.04 29380.91 32698.48 27491.79 28496.25 22699.09 157
c3_l94.79 23194.43 22695.89 28197.75 22493.12 28097.16 32698.03 26092.23 28593.46 28697.05 29291.39 14298.01 32593.58 23689.21 32896.53 316
V4294.78 23294.14 23996.70 22196.33 32395.22 19098.97 8498.09 24992.32 28294.31 24697.06 29088.39 21298.55 26792.90 25588.87 33496.34 333
CR-MVSNet94.76 23394.15 23896.59 23497.00 28293.43 26694.96 37597.56 29092.46 27396.93 16396.24 33388.15 21797.88 33887.38 34596.65 20898.46 209
v2v48294.69 23494.03 24496.65 22496.17 32894.79 21498.67 16598.08 25092.72 26694.00 26297.16 27887.69 23398.45 27992.91 25488.87 33496.72 290
pmmvs494.69 23493.99 25096.81 21595.74 34395.94 15497.40 30197.67 28290.42 33193.37 28997.59 25089.08 19398.20 31192.97 25291.67 29596.30 336
cl2294.68 23694.19 23496.13 27098.11 20193.60 25996.94 33698.31 20392.43 27793.32 29196.87 31186.51 25098.28 30894.10 22091.16 30296.51 322
eth_miper_zixun_eth94.68 23694.41 22795.47 29597.64 23591.71 30196.73 35398.07 25292.71 26793.64 27697.21 27690.54 16398.17 31393.38 23989.76 31796.54 314
PCF-MVS93.45 1194.68 23693.43 28598.42 9998.62 15296.77 10795.48 37398.20 22284.63 37793.34 29098.32 18488.55 20999.81 8184.80 36498.96 12898.68 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 23993.54 28098.08 12896.88 29296.56 11998.19 22998.50 16978.05 38692.69 31098.02 20891.07 15499.63 13490.09 31198.36 16198.04 224
PS-CasMVS94.67 23993.99 25096.71 21996.68 30495.26 18799.13 5299.03 3793.68 22492.33 32197.95 21685.35 27498.10 31893.59 23588.16 34196.79 282
cascas94.63 24193.86 25996.93 20696.91 29094.27 23796.00 36698.51 16485.55 37394.54 23196.23 33584.20 30298.87 23795.80 16596.98 20097.66 236
tpmvs94.60 24294.36 22995.33 30197.46 25088.60 35496.88 34597.68 28191.29 31493.80 27396.42 33088.58 20599.24 18091.06 29896.04 23198.17 221
LTVRE_ROB92.95 1594.60 24293.90 25696.68 22397.41 25894.42 23098.52 18798.59 14491.69 30091.21 33498.35 17884.87 28399.04 20991.06 29893.44 27396.60 305
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 24493.92 25396.60 23396.21 32594.78 21598.59 17698.14 23791.86 29694.21 25297.02 29687.97 22398.41 29191.72 28689.57 32096.61 304
ADS-MVSNet294.58 24594.40 22895.11 30798.00 20988.74 35296.04 36397.30 31690.15 33596.47 18796.64 32387.89 22597.56 34990.08 31297.06 19599.02 165
ACMH92.88 1694.55 24693.95 25296.34 26197.63 23693.26 27498.81 13498.49 17493.43 23789.74 34798.53 15781.91 31899.08 20493.69 23093.30 27696.70 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 24793.85 26096.63 22897.98 21393.06 28298.77 14297.84 27593.67 22693.80 27398.04 20776.88 35798.96 22194.79 19592.86 28297.86 229
XVG-ACMP-BASELINE94.54 24794.14 23995.75 28796.55 31091.65 30298.11 24198.44 18094.96 16394.22 25197.90 21979.18 33999.11 19894.05 22293.85 25896.48 327
AUN-MVS94.53 24993.73 27096.92 20998.50 16093.52 26498.34 20798.10 24593.83 21095.94 20597.98 21485.59 26999.03 21094.35 20980.94 37698.22 219
DIV-MVS_self_test94.52 25094.03 24495.99 27497.57 24393.38 27097.05 33097.94 26891.74 29792.81 30597.10 28089.12 19198.07 32292.60 26190.30 31096.53 316
cl____94.51 25194.01 24796.02 27397.58 23993.40 26997.05 33097.96 26791.73 29992.76 30797.08 28689.06 19498.13 31692.61 26090.29 31196.52 319
ETVMVS94.50 25293.44 28497.68 15898.18 19495.35 18398.19 22997.11 32593.73 21696.40 19095.39 35574.53 36698.84 24091.10 29596.31 22098.84 181
GBi-Net94.49 25393.80 26396.56 23898.21 18895.00 19998.82 12698.18 22792.46 27394.09 25797.07 28781.16 32397.95 33092.08 27592.14 28896.72 290
test194.49 25393.80 26396.56 23898.21 18895.00 19998.82 12698.18 22792.46 27394.09 25797.07 28781.16 32397.95 33092.08 27592.14 28896.72 290
dmvs_re94.48 25594.18 23695.37 29997.68 23190.11 33098.54 18697.08 32794.56 17894.42 24097.24 27384.25 29897.76 34291.02 30192.83 28398.24 217
v894.47 25693.77 26696.57 23796.36 32094.83 21199.05 6598.19 22491.92 29393.16 29596.97 30188.82 20398.48 27491.69 28787.79 34396.39 331
FMVSNet294.47 25693.61 27697.04 19798.21 18896.43 12698.79 14098.27 21292.46 27393.50 28497.09 28481.16 32398.00 32791.09 29691.93 29196.70 294
test250694.44 25893.91 25596.04 27299.02 11188.99 34999.06 6379.47 40696.96 6798.36 9499.26 5777.21 35499.52 15696.78 13499.04 12399.59 79
Patchmatch-test94.42 25993.68 27496.63 22897.60 23891.76 29894.83 37997.49 30289.45 34894.14 25597.10 28088.99 19598.83 24385.37 35998.13 16899.29 127
PEN-MVS94.42 25993.73 27096.49 24796.28 32494.84 20999.17 4599.00 3993.51 23292.23 32397.83 22986.10 25997.90 33492.55 26686.92 35596.74 287
v14419294.39 26193.70 27296.48 24996.06 33394.35 23498.58 17898.16 23491.45 30594.33 24597.02 29687.50 23698.45 27991.08 29789.11 32996.63 302
Baseline_NR-MVSNet94.35 26293.81 26295.96 27796.20 32694.05 24598.61 17596.67 35291.44 30693.85 27097.60 24988.57 20698.14 31594.39 20786.93 35495.68 351
miper_lstm_enhance94.33 26394.07 24295.11 30797.75 22490.97 31297.22 31798.03 26091.67 30192.76 30796.97 30190.03 17197.78 34192.51 26889.64 31996.56 311
v119294.32 26493.58 27796.53 24496.10 33194.45 22898.50 19298.17 23291.54 30394.19 25397.06 29086.95 24598.43 28290.14 31089.57 32096.70 294
ACMH+92.99 1494.30 26593.77 26695.88 28297.81 22192.04 29598.71 15598.37 19493.99 20090.60 34198.47 16480.86 32899.05 20692.75 25992.40 28796.55 313
v14894.29 26693.76 26895.91 27996.10 33192.93 28398.58 17897.97 26592.59 27193.47 28596.95 30588.53 21098.32 30092.56 26587.06 35396.49 325
v1094.29 26693.55 27996.51 24696.39 31994.80 21398.99 8198.19 22491.35 31093.02 30196.99 29988.09 21998.41 29190.50 30788.41 33896.33 335
MVP-Stereo94.28 26893.92 25395.35 30094.95 36192.60 28697.97 25497.65 28391.61 30290.68 34097.09 28486.32 25698.42 28389.70 32199.34 11395.02 363
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 26993.33 28796.97 20397.19 27393.38 27098.74 14698.57 15191.21 31993.81 27298.58 15372.85 37398.77 24995.05 18893.93 25798.77 188
OurMVSNet-221017-094.21 27094.00 24894.85 31695.60 34789.22 34498.89 10397.43 30995.29 14492.18 32498.52 16082.86 31498.59 26393.46 23891.76 29396.74 287
v192192094.20 27193.47 28396.40 25895.98 33694.08 24498.52 18798.15 23591.33 31194.25 24997.20 27786.41 25498.42 28390.04 31589.39 32696.69 299
WB-MVSnew94.19 27294.04 24394.66 32396.82 29692.14 29097.86 26995.96 36493.50 23395.64 20896.77 31688.06 22197.99 32884.87 36196.86 20193.85 378
v7n94.19 27293.43 28596.47 25095.90 33994.38 23399.26 2798.34 19991.99 29192.76 30797.13 27988.31 21398.52 27189.48 32687.70 34496.52 319
tpm294.19 27293.76 26895.46 29697.23 26789.04 34797.31 31296.85 34787.08 36396.21 19596.79 31583.75 31298.74 25092.43 27196.23 22798.59 202
TESTMET0.1,194.18 27593.69 27395.63 29096.92 28889.12 34596.91 33994.78 37793.17 24894.88 22196.45 32978.52 34198.92 22893.09 24798.50 15298.85 179
dp94.15 27693.90 25694.90 31397.31 26386.82 37196.97 33497.19 32391.22 31896.02 20096.61 32585.51 27199.02 21390.00 31694.30 24298.85 179
ET-MVSNet_ETH3D94.13 27792.98 29497.58 16698.22 18796.20 13897.31 31295.37 37094.53 18079.56 38597.63 24886.51 25097.53 35096.91 11990.74 30699.02 165
tpm94.13 27793.80 26395.12 30696.50 31387.91 36597.44 29895.89 36792.62 26996.37 19296.30 33284.13 30398.30 30493.24 24391.66 29699.14 152
testing22294.12 27993.03 29397.37 18098.02 20894.66 21697.94 25796.65 35494.63 17695.78 20695.76 34571.49 37498.92 22891.17 29495.88 23298.52 206
IterMVS-SCA-FT94.11 28093.87 25894.85 31697.98 21390.56 32397.18 32298.11 24293.75 21392.58 31397.48 25783.97 30697.41 35392.48 27091.30 29996.58 307
Anonymous2023121194.10 28193.26 29096.61 23199.11 10494.28 23699.01 7698.88 6286.43 36692.81 30597.57 25281.66 32098.68 25694.83 19289.02 33296.88 271
IterMVS94.09 28293.85 26094.80 31997.99 21190.35 32697.18 32298.12 23993.68 22492.46 31997.34 26584.05 30497.41 35392.51 26891.33 29896.62 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 28393.51 28195.80 28496.77 29789.70 33596.91 33995.21 37292.89 26194.83 22495.72 35077.69 34998.97 21793.06 24898.50 15298.72 189
test0.0.03 194.08 28393.51 28195.80 28495.53 35092.89 28497.38 30395.97 36395.11 15492.51 31796.66 32087.71 23096.94 36087.03 34793.67 26397.57 240
v124094.06 28593.29 28996.34 26196.03 33593.90 24898.44 19998.17 23291.18 32094.13 25697.01 29886.05 26098.42 28389.13 33189.50 32496.70 294
X-MVStestdata94.06 28592.30 30899.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39995.90 4199.89 4797.85 7199.74 4599.78 21
DTE-MVSNet93.98 28793.26 29096.14 26996.06 33394.39 23299.20 4098.86 7593.06 25491.78 32997.81 23185.87 26497.58 34890.53 30686.17 36096.46 329
pm-mvs193.94 28893.06 29296.59 23496.49 31495.16 19298.95 9098.03 26092.32 28291.08 33697.84 22684.54 29498.41 29192.16 27386.13 36296.19 340
MS-PatchMatch93.84 28993.63 27594.46 33196.18 32789.45 34097.76 27898.27 21292.23 28592.13 32597.49 25679.50 33698.69 25389.75 31999.38 11195.25 356
tfpnnormal93.66 29092.70 30096.55 24396.94 28795.94 15498.97 8499.19 2491.04 32191.38 33397.34 26584.94 28298.61 26085.45 35889.02 33295.11 360
EU-MVSNet93.66 29094.14 23992.25 35595.96 33883.38 37998.52 18798.12 23994.69 17292.61 31298.13 20187.36 23996.39 37191.82 28390.00 31596.98 257
our_test_393.65 29293.30 28894.69 32195.45 35489.68 33796.91 33997.65 28391.97 29291.66 33196.88 30989.67 17797.93 33388.02 34291.49 29796.48 327
pmmvs593.65 29292.97 29595.68 28895.49 35192.37 28798.20 22697.28 31889.66 34492.58 31397.26 27082.14 31798.09 32093.18 24690.95 30596.58 307
test_fmvs293.43 29493.58 27792.95 34996.97 28583.91 37699.19 4297.24 32195.74 12095.20 21598.27 19069.65 37698.72 25296.26 14893.73 26296.24 337
tpm cat193.36 29592.80 29795.07 30997.58 23987.97 36496.76 35197.86 27482.17 38293.53 28096.04 34186.13 25899.13 19489.24 32995.87 23398.10 223
JIA-IIPM93.35 29692.49 30495.92 27896.48 31590.65 32195.01 37496.96 33785.93 37096.08 19887.33 38987.70 23298.78 24891.35 29195.58 23798.34 214
SixPastTwentyTwo93.34 29792.86 29694.75 32095.67 34589.41 34298.75 14396.67 35293.89 20590.15 34598.25 19380.87 32798.27 30990.90 30290.64 30796.57 309
USDC93.33 29892.71 29995.21 30396.83 29590.83 31796.91 33997.50 30093.84 20890.72 33998.14 20077.69 34998.82 24489.51 32593.21 27895.97 345
IB-MVS91.98 1793.27 29991.97 31297.19 18797.47 24993.41 26897.09 32995.99 36293.32 24192.47 31895.73 34878.06 34799.53 15394.59 20382.98 36898.62 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 30092.21 30996.41 25697.73 22893.13 27995.65 37097.03 33291.27 31694.04 26096.06 34075.33 36297.19 35686.56 34996.23 22798.92 176
ppachtmachnet_test93.22 30192.63 30194.97 31195.45 35490.84 31696.88 34597.88 27390.60 32692.08 32697.26 27088.08 22097.86 33985.12 36090.33 30996.22 338
Patchmtry93.22 30192.35 30795.84 28396.77 29793.09 28194.66 38297.56 29087.37 36292.90 30396.24 33388.15 21797.90 33487.37 34690.10 31496.53 316
testing393.19 30392.48 30595.30 30298.07 20392.27 28898.64 16997.17 32493.94 20493.98 26397.04 29367.97 38096.01 37588.40 33797.14 19497.63 237
FMVSNet193.19 30392.07 31096.56 23897.54 24495.00 19998.82 12698.18 22790.38 33292.27 32297.07 28773.68 37197.95 33089.36 32891.30 29996.72 290
LF4IMVS93.14 30592.79 29894.20 33495.88 34088.67 35397.66 28697.07 32993.81 21191.71 33097.65 24477.96 34898.81 24591.47 29091.92 29295.12 359
testgi93.06 30692.45 30694.88 31596.43 31889.90 33198.75 14397.54 29695.60 12791.63 33297.91 21874.46 36897.02 35886.10 35293.67 26397.72 234
PatchT93.06 30691.97 31296.35 26096.69 30392.67 28594.48 38397.08 32786.62 36497.08 15592.23 38387.94 22497.90 33478.89 38296.69 20698.49 208
RPMNet92.81 30891.34 31797.24 18497.00 28293.43 26694.96 37598.80 9382.27 38196.93 16392.12 38486.98 24499.82 7676.32 38796.65 20898.46 209
myMVS_eth3d92.73 30992.01 31194.89 31497.39 25990.94 31397.91 26097.46 30393.16 24993.42 28795.37 35668.09 37996.12 37388.34 33896.99 19797.60 238
TransMVSNet (Re)92.67 31091.51 31696.15 26896.58 30994.65 21798.90 9996.73 34890.86 32489.46 35197.86 22385.62 26898.09 32086.45 35081.12 37495.71 350
Syy-MVS92.55 31192.61 30292.38 35297.39 25983.41 37897.91 26097.46 30393.16 24993.42 28795.37 35684.75 28796.12 37377.00 38696.99 19797.60 238
K. test v392.55 31191.91 31494.48 32995.64 34689.24 34399.07 6294.88 37694.04 19586.78 36697.59 25077.64 35297.64 34592.08 27589.43 32596.57 309
DSMNet-mixed92.52 31392.58 30392.33 35394.15 36982.65 38198.30 21594.26 38389.08 35392.65 31195.73 34885.01 28195.76 37786.24 35197.76 18198.59 202
TinyColmap92.31 31491.53 31594.65 32496.92 28889.75 33396.92 33796.68 35190.45 33089.62 34897.85 22576.06 36098.81 24586.74 34892.51 28695.41 354
gg-mvs-nofinetune92.21 31590.58 32397.13 19296.75 30095.09 19695.85 36789.40 39985.43 37494.50 23381.98 39280.80 32998.40 29792.16 27398.33 16297.88 227
FMVSNet591.81 31690.92 31994.49 32897.21 26992.09 29298.00 25297.55 29589.31 35190.86 33895.61 35374.48 36795.32 38185.57 35689.70 31896.07 343
pmmvs691.77 31790.63 32295.17 30594.69 36791.24 30998.67 16597.92 27086.14 36889.62 34897.56 25475.79 36198.34 29890.75 30484.56 36495.94 346
Anonymous2023120691.66 31891.10 31893.33 34394.02 37387.35 36898.58 17897.26 32090.48 32890.16 34496.31 33183.83 31096.53 36979.36 38089.90 31696.12 341
Patchmatch-RL test91.49 31990.85 32093.41 34191.37 38284.40 37492.81 38795.93 36691.87 29587.25 36394.87 36288.99 19596.53 36992.54 26782.00 37099.30 125
test_040291.32 32090.27 32694.48 32996.60 30791.12 31098.50 19297.22 32286.10 36988.30 35996.98 30077.65 35197.99 32878.13 38492.94 28194.34 367
test_vis1_rt91.29 32190.65 32193.19 34797.45 25386.25 37298.57 18390.90 39793.30 24386.94 36593.59 37462.07 38799.11 19897.48 10095.58 23794.22 370
PVSNet_088.72 1991.28 32290.03 32895.00 31097.99 21187.29 36994.84 37898.50 16992.06 29089.86 34695.19 35879.81 33599.39 16992.27 27269.79 39298.33 215
Anonymous2024052191.18 32390.44 32493.42 34093.70 37488.47 35798.94 9397.56 29088.46 35789.56 35095.08 36177.15 35696.97 35983.92 36789.55 32294.82 365
EG-PatchMatch MVS91.13 32490.12 32794.17 33694.73 36689.00 34898.13 23897.81 27689.22 35285.32 37696.46 32867.71 38198.42 28387.89 34493.82 25995.08 361
TDRefinement91.06 32589.68 33095.21 30385.35 39791.49 30598.51 19197.07 32991.47 30488.83 35797.84 22677.31 35399.09 20392.79 25877.98 38595.04 362
UnsupCasMVSNet_eth90.99 32689.92 32994.19 33594.08 37089.83 33297.13 32898.67 12893.69 22285.83 37296.19 33875.15 36396.74 36389.14 33079.41 38196.00 344
test20.0390.89 32790.38 32592.43 35193.48 37588.14 36398.33 20897.56 29093.40 23887.96 36096.71 31980.69 33094.13 38679.15 38186.17 36095.01 364
MDA-MVSNet_test_wron90.71 32889.38 33394.68 32294.83 36390.78 31897.19 32197.46 30387.60 36072.41 39295.72 35086.51 25096.71 36685.92 35486.80 35796.56 311
YYNet190.70 32989.39 33294.62 32594.79 36590.65 32197.20 31997.46 30387.54 36172.54 39195.74 34686.51 25096.66 36786.00 35386.76 35896.54 314
KD-MVS_self_test90.38 33089.38 33393.40 34292.85 37888.94 35097.95 25597.94 26890.35 33390.25 34393.96 37179.82 33495.94 37684.62 36676.69 38795.33 355
pmmvs-eth3d90.36 33189.05 33694.32 33391.10 38492.12 29197.63 29196.95 33888.86 35584.91 37793.13 37878.32 34396.74 36388.70 33481.81 37294.09 373
CL-MVSNet_self_test90.11 33289.14 33593.02 34891.86 38188.23 36296.51 35998.07 25290.49 32790.49 34294.41 36684.75 28795.34 38080.79 37674.95 38995.50 353
new_pmnet90.06 33389.00 33793.22 34694.18 36888.32 36096.42 36196.89 34386.19 36785.67 37393.62 37377.18 35597.10 35781.61 37489.29 32794.23 369
MDA-MVSNet-bldmvs89.97 33488.35 34094.83 31895.21 35891.34 30697.64 28897.51 29988.36 35871.17 39396.13 33979.22 33896.63 36883.65 36886.27 35996.52 319
CMPMVSbinary66.06 2189.70 33589.67 33189.78 36093.19 37676.56 38697.00 33398.35 19780.97 38381.57 38297.75 23474.75 36598.61 26089.85 31793.63 26694.17 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 33688.28 34193.82 33792.81 37991.08 31198.01 25097.45 30787.95 35987.90 36195.87 34467.63 38294.56 38578.73 38388.18 34095.83 348
KD-MVS_2432*160089.61 33787.96 34494.54 32694.06 37191.59 30395.59 37197.63 28589.87 34088.95 35494.38 36878.28 34496.82 36184.83 36268.05 39395.21 357
miper_refine_blended89.61 33787.96 34494.54 32694.06 37191.59 30395.59 37197.63 28589.87 34088.95 35494.38 36878.28 34496.82 36184.83 36268.05 39395.21 357
MVS-HIRNet89.46 33988.40 33992.64 35097.58 23982.15 38294.16 38693.05 39175.73 38890.90 33782.52 39179.42 33798.33 29983.53 36998.68 14097.43 241
OpenMVS_ROBcopyleft86.42 2089.00 34087.43 34893.69 33893.08 37789.42 34197.91 26096.89 34378.58 38585.86 37194.69 36369.48 37798.29 30777.13 38593.29 27793.36 380
mvsany_test388.80 34188.04 34291.09 35989.78 38781.57 38497.83 27495.49 36993.81 21187.53 36293.95 37256.14 39097.43 35294.68 19683.13 36794.26 368
new-patchmatchnet88.50 34287.45 34791.67 35790.31 38685.89 37397.16 32697.33 31589.47 34783.63 37992.77 38076.38 35895.06 38382.70 37177.29 38694.06 375
APD_test188.22 34388.01 34388.86 36295.98 33674.66 39297.21 31896.44 35783.96 37986.66 36897.90 21960.95 38897.84 34082.73 37090.23 31294.09 373
PM-MVS87.77 34486.55 35091.40 35891.03 38583.36 38096.92 33795.18 37491.28 31586.48 37093.42 37553.27 39196.74 36389.43 32781.97 37194.11 372
dmvs_testset87.64 34588.93 33883.79 37095.25 35763.36 40197.20 31991.17 39593.07 25385.64 37495.98 34385.30 27891.52 39369.42 39287.33 34996.49 325
test_fmvs387.17 34687.06 34987.50 36491.21 38375.66 38899.05 6596.61 35592.79 26588.85 35692.78 37943.72 39493.49 38793.95 22384.56 36493.34 381
UnsupCasMVSNet_bld87.17 34685.12 35393.31 34491.94 38088.77 35194.92 37798.30 20984.30 37882.30 38090.04 38663.96 38697.25 35585.85 35574.47 39193.93 377
N_pmnet87.12 34887.77 34685.17 36895.46 35361.92 40297.37 30570.66 40785.83 37188.73 35896.04 34185.33 27697.76 34280.02 37790.48 30895.84 347
pmmvs386.67 34984.86 35492.11 35688.16 39187.19 37096.63 35594.75 37879.88 38487.22 36492.75 38166.56 38495.20 38281.24 37576.56 38893.96 376
test_f86.07 35085.39 35188.10 36389.28 38975.57 38997.73 28196.33 35989.41 35085.35 37591.56 38543.31 39695.53 37891.32 29284.23 36693.21 382
WB-MVS84.86 35185.33 35283.46 37189.48 38869.56 39698.19 22996.42 35889.55 34681.79 38194.67 36484.80 28590.12 39452.44 39780.64 37890.69 385
SSC-MVS84.27 35284.71 35582.96 37589.19 39068.83 39798.08 24396.30 36089.04 35481.37 38394.47 36584.60 29289.89 39549.80 39979.52 38090.15 386
test_vis3_rt79.22 35377.40 35984.67 36986.44 39574.85 39197.66 28681.43 40484.98 37567.12 39581.91 39328.09 40497.60 34688.96 33280.04 37981.55 393
test_method79.03 35478.17 35681.63 37686.06 39654.40 40782.75 39596.89 34339.54 39980.98 38495.57 35458.37 38994.73 38484.74 36578.61 38295.75 349
testf179.02 35577.70 35782.99 37388.10 39266.90 39894.67 38093.11 38871.08 39074.02 38893.41 37634.15 40093.25 38872.25 39078.50 38388.82 388
APD_test279.02 35577.70 35782.99 37388.10 39266.90 39894.67 38093.11 38871.08 39074.02 38893.41 37634.15 40093.25 38872.25 39078.50 38388.82 388
LCM-MVSNet78.70 35776.24 36286.08 36677.26 40371.99 39494.34 38496.72 34961.62 39476.53 38689.33 38733.91 40292.78 39181.85 37374.60 39093.46 379
Gipumacopyleft78.40 35876.75 36183.38 37295.54 34980.43 38579.42 39697.40 31164.67 39373.46 39080.82 39445.65 39393.14 39066.32 39487.43 34776.56 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 35975.44 36385.46 36782.54 39874.95 39094.23 38593.08 39072.80 38974.68 38787.38 38836.36 39991.56 39273.95 38863.94 39589.87 387
FPMVS77.62 36077.14 36079.05 37879.25 40160.97 40395.79 36895.94 36565.96 39267.93 39494.40 36737.73 39888.88 39768.83 39388.46 33787.29 390
EGC-MVSNET75.22 36169.54 36492.28 35494.81 36489.58 33897.64 28896.50 3561.82 4045.57 40595.74 34668.21 37896.26 37273.80 38991.71 29490.99 384
ANet_high69.08 36265.37 36680.22 37765.99 40571.96 39590.91 39190.09 39882.62 38049.93 40078.39 39529.36 40381.75 39862.49 39538.52 39986.95 392
tmp_tt68.90 36366.97 36574.68 38050.78 40759.95 40487.13 39283.47 40338.80 40062.21 39696.23 33564.70 38576.91 40288.91 33330.49 40087.19 391
PMVScopyleft61.03 2365.95 36463.57 36873.09 38157.90 40651.22 40885.05 39493.93 38754.45 39544.32 40183.57 39013.22 40589.15 39658.68 39681.00 37578.91 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 36564.25 36767.02 38282.28 39959.36 40591.83 39085.63 40152.69 39660.22 39777.28 39641.06 39780.12 40046.15 40041.14 39761.57 398
EMVS64.07 36663.26 36966.53 38381.73 40058.81 40691.85 38984.75 40251.93 39859.09 39875.13 39743.32 39579.09 40142.03 40139.47 39861.69 397
MVEpermissive62.14 2263.28 36759.38 37074.99 37974.33 40465.47 40085.55 39380.50 40552.02 39751.10 39975.00 39810.91 40880.50 39951.60 39853.40 39678.99 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 36830.18 37230.16 38478.61 40243.29 40966.79 39714.21 40817.31 40114.82 40411.93 40411.55 40741.43 40337.08 40219.30 4015.76 401
cdsmvs_eth3d_5k23.98 36931.98 3710.00 3870.00 4100.00 4120.00 39898.59 1440.00 4050.00 40698.61 14890.60 1620.00 4060.00 4050.00 4040.00 402
testmvs21.48 37024.95 37311.09 38614.89 4086.47 41196.56 3579.87 4097.55 40217.93 40239.02 4009.43 4095.90 40516.56 40412.72 40220.91 400
test12320.95 37123.72 37412.64 38513.54 4098.19 41096.55 3586.13 4107.48 40316.74 40337.98 40112.97 4066.05 40416.69 4035.43 40323.68 399
ab-mvs-re8.20 37210.94 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40698.43 1680.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas7.88 37310.50 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40594.51 810.00 4060.00 4050.00 4040.00 402
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS90.94 31388.66 335
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27797.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 410
eth-test0.00 410
ZD-MVS99.46 4998.70 2398.79 9893.21 24698.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
9.1498.06 5899.47 4798.71 15598.82 8194.36 18799.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
ambc89.49 36186.66 39475.78 38792.66 38896.72 34986.55 36992.50 38246.01 39297.90 33490.32 30882.09 36994.80 366
MTGPAbinary98.74 108
test_post196.68 35430.43 40387.85 22898.69 25392.59 263
test_post31.83 40288.83 20298.91 230
patchmatchnet-post95.10 36089.42 18298.89 234
GG-mvs-BLEND96.59 23496.34 32294.98 20296.51 35988.58 40093.10 30094.34 37080.34 33398.05 32389.53 32496.99 19796.74 287
MTMP98.89 10394.14 385
gm-plane-assit95.88 34087.47 36789.74 34396.94 30699.19 18693.32 242
test9_res96.39 14699.57 8099.69 56
TEST999.31 6498.50 2997.92 25898.73 11192.63 26897.74 13098.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 26698.72 11392.98 25797.70 13498.66 14596.20 2899.80 88
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
TestCases96.99 20099.25 8193.21 27798.18 22791.36 30893.52 28198.77 13284.67 29099.72 11389.70 32197.87 17698.02 225
test_prior498.01 5997.86 269
test_prior297.80 27596.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29491.30 31398.67 7399.80 8895.70 170
新几何297.64 288
新几何199.16 4599.34 5798.01 5998.69 12090.06 33798.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
无先验97.58 29398.72 11391.38 30799.87 5893.36 24199.60 77
原ACMM297.67 285
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24597.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
test22299.23 8897.17 9297.40 30198.66 13188.68 35698.05 10698.96 11094.14 9399.53 9199.61 75
testdata299.89 4791.65 288
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29498.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
testdata197.32 31196.34 95
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25594.63 219
plane_prior697.35 26294.61 22287.09 241
plane_prior598.56 15399.03 21096.07 15294.27 24396.92 262
plane_prior498.28 187
plane_prior394.61 22297.02 6495.34 212
plane_prior298.80 13597.28 45
plane_prior197.37 261
plane_prior94.60 22498.44 19996.74 7794.22 245
n20.00 411
nn0.00 411
door-mid94.37 381
lessismore_v094.45 33294.93 36288.44 35891.03 39686.77 36797.64 24676.23 35998.42 28390.31 30985.64 36396.51 322
LGP-MVS_train96.47 25097.46 25093.54 26198.54 15794.67 17494.36 24398.77 13285.39 27299.11 19895.71 16894.15 24996.76 285
test1198.66 131
door94.64 379
HQP5-MVS94.25 239
HQP-NCC97.20 27098.05 24696.43 8994.45 235
ACMP_Plane97.20 27098.05 24696.43 8994.45 235
BP-MVS95.30 180
HQP4-MVS94.45 23598.96 22196.87 273
HQP3-MVS98.46 17694.18 247
HQP2-MVS86.75 247
NP-MVS97.28 26494.51 22797.73 235
MDTV_nov1_ep13_2view84.26 37596.89 34490.97 32297.90 12389.89 17393.91 22599.18 148
MDTV_nov1_ep1395.40 17197.48 24888.34 35996.85 34797.29 31793.74 21597.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
ACMMP++_ref92.97 280
ACMMP++93.61 267
Test By Simon94.64 78
ITE_SJBPF95.44 29797.42 25591.32 30797.50 30095.09 15793.59 27798.35 17881.70 31998.88 23689.71 32093.39 27496.12 341
DeepMVS_CXcopyleft86.78 36597.09 28072.30 39395.17 37575.92 38784.34 37895.19 35870.58 37595.35 37979.98 37989.04 33192.68 383