| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 51 | 99.43 54 | 97.48 76 | 98.88 108 | 99.30 13 | 98.47 9 | 99.85 4 | 99.43 28 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 19 | 99.89 5 |
|
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 74 | 98.87 69 | 97.65 22 | 99.73 10 | 99.48 18 | 97.53 7 | 99.94 8 | 98.43 42 | 99.81 12 | 99.70 53 |
|
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 94 | 99.23 7 | 99.69 1 | 98.88 62 | 97.32 42 | 99.53 23 | 99.47 20 | 97.81 3 | 99.94 8 | 98.47 38 | 99.72 51 | 99.74 37 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 47 | 99.41 56 | 97.54 74 | 98.89 103 | 99.31 12 | 98.49 8 | 99.86 2 | 99.42 29 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 45 | 99.90 3 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 84 | 98.58 149 | 97.62 24 | 99.45 25 | 99.46 24 | 97.42 9 | 99.94 8 | 98.47 38 | 99.81 12 | 99.69 56 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 50 | 97.38 39 | 99.41 28 | 99.54 8 | 96.66 18 | 99.84 67 | 98.86 21 | 99.85 5 | 99.87 7 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_fmvsmconf_n | | | 98.92 7 | 98.87 6 | 99.04 55 | 98.88 126 | 97.25 88 | 98.82 126 | 99.34 10 | 98.75 3 | 99.80 5 | 99.61 4 | 95.16 68 | 99.95 7 | 99.70 6 | 99.80 19 | 99.93 1 |
|
| DPE-MVS |  | | 98.92 7 | 98.67 12 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 203 | 98.91 56 | 97.58 27 | 99.54 22 | 99.46 24 | 97.10 12 | 99.94 8 | 97.64 87 | 99.84 10 | 99.83 13 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SteuartSystems-ACMMP | | | 98.90 9 | 98.75 10 | 99.36 21 | 99.22 89 | 98.43 33 | 99.10 58 | 98.87 69 | 97.38 39 | 99.35 32 | 99.40 31 | 97.78 5 | 99.87 58 | 97.77 77 | 99.85 5 | 99.78 21 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_fmvsm_n_1920 | | | 98.87 10 | 99.01 3 | 98.45 93 | 99.42 55 | 96.43 126 | 98.96 89 | 99.36 9 | 98.63 5 | 99.86 2 | 99.51 13 | 95.91 39 | 99.97 1 | 99.72 5 | 99.75 41 | 98.94 174 |
|
| TSAR-MVS + MP. | | | 98.78 11 | 98.62 13 | 99.24 36 | 99.69 24 | 98.28 45 | 99.14 49 | 98.66 131 | 96.84 71 | 99.56 20 | 99.31 51 | 96.34 25 | 99.70 119 | 98.32 48 | 99.73 48 | 99.73 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CNVR-MVS | | | 98.78 11 | 98.56 16 | 99.45 15 | 99.32 62 | 98.87 19 | 98.47 195 | 98.81 86 | 97.72 17 | 98.76 68 | 99.16 77 | 97.05 13 | 99.78 101 | 98.06 57 | 99.66 61 | 99.69 56 |
|
| MSP-MVS | | | 98.74 13 | 98.55 17 | 99.29 29 | 99.75 3 | 98.23 46 | 99.26 27 | 98.88 62 | 97.52 29 | 99.41 28 | 98.78 130 | 96.00 35 | 99.79 98 | 97.79 76 | 99.59 76 | 99.85 10 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVS | | | 98.70 14 | 98.49 21 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 62 | 97.40 36 | 98.46 86 | 99.20 67 | 95.90 41 | 99.89 47 | 97.85 71 | 99.74 45 | 99.78 21 |
|
| MCST-MVS | | | 98.65 15 | 98.37 29 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 204 | 98.68 123 | 97.04 63 | 98.52 85 | 98.80 128 | 96.78 16 | 99.83 69 | 97.93 64 | 99.61 72 | 99.74 37 |
|
| SD-MVS | | | 98.64 16 | 98.68 11 | 98.53 85 | 99.33 59 | 98.36 40 | 98.90 99 | 98.85 78 | 97.28 45 | 99.72 12 | 99.39 32 | 96.63 20 | 97.60 346 | 98.17 52 | 99.85 5 | 99.64 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HFP-MVS | | | 98.63 17 | 98.40 26 | 99.32 28 | 99.72 12 | 98.29 44 | 99.23 31 | 98.96 45 | 96.10 104 | 98.94 53 | 99.17 74 | 96.06 32 | 99.92 31 | 97.62 88 | 99.78 29 | 99.75 35 |
|
| ACMMP_NAP | | | 98.61 18 | 98.30 41 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 126 | 98.81 86 | 95.80 118 | 99.16 44 | 99.47 20 | 95.37 56 | 99.92 31 | 97.89 68 | 99.75 41 | 99.79 19 |
|
| region2R | | | 98.61 18 | 98.38 28 | 99.29 29 | 99.74 7 | 98.16 51 | 99.23 31 | 98.93 50 | 96.15 101 | 98.94 53 | 99.17 74 | 95.91 39 | 99.94 8 | 97.55 95 | 99.79 25 | 99.78 21 |
|
| NCCC | | | 98.61 18 | 98.35 32 | 99.38 18 | 99.28 77 | 98.61 26 | 98.45 196 | 98.76 104 | 97.82 16 | 98.45 89 | 98.93 114 | 96.65 19 | 99.83 69 | 97.38 104 | 99.41 106 | 99.71 49 |
|
| SF-MVS | | | 98.59 21 | 98.32 40 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 68 | 98.81 86 | 95.12 153 | 99.32 33 | 99.39 32 | 96.22 26 | 99.84 67 | 97.72 80 | 99.73 48 | 99.67 65 |
|
| ACMMPR | | | 98.59 21 | 98.36 30 | 99.29 29 | 99.74 7 | 98.15 52 | 99.23 31 | 98.95 46 | 96.10 104 | 98.93 57 | 99.19 72 | 95.70 45 | 99.94 8 | 97.62 88 | 99.79 25 | 99.78 21 |
|
| test_fmvsmconf0.1_n | | | 98.58 23 | 98.44 24 | 98.99 57 | 97.73 228 | 97.15 93 | 98.84 122 | 98.97 42 | 98.75 3 | 99.43 27 | 99.54 8 | 93.29 102 | 99.93 25 | 99.64 9 | 99.79 25 | 99.89 5 |
|
| SMA-MVS |  | | 98.58 23 | 98.25 44 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 90 | 98.80 93 | 93.67 226 | 99.37 31 | 99.52 11 | 96.52 22 | 99.89 47 | 98.06 57 | 99.81 12 | 99.76 34 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 98.58 23 | 98.29 42 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 99 | 98.74 108 | 97.27 49 | 98.02 111 | 99.39 32 | 94.81 77 | 99.96 4 | 97.91 66 | 99.79 25 | 99.77 27 |
|
| HPM-MVS++ |  | | 98.58 23 | 98.25 44 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 154 | 98.66 131 | 97.51 30 | 98.15 100 | 98.83 125 | 95.70 45 | 99.92 31 | 97.53 97 | 99.67 59 | 99.66 68 |
|
| SR-MVS | | | 98.57 27 | 98.35 32 | 99.24 36 | 99.53 36 | 98.18 49 | 99.09 59 | 98.82 81 | 96.58 83 | 99.10 46 | 99.32 49 | 95.39 54 | 99.82 76 | 97.70 84 | 99.63 69 | 99.72 45 |
|
| CP-MVS | | | 98.57 27 | 98.36 30 | 99.19 40 | 99.66 26 | 97.86 62 | 99.34 18 | 98.87 69 | 95.96 109 | 98.60 81 | 99.13 82 | 96.05 33 | 99.94 8 | 97.77 77 | 99.86 1 | 99.77 27 |
|
| MSLP-MVS++ | | | 98.56 29 | 98.57 15 | 98.55 81 | 99.26 80 | 96.80 105 | 98.71 155 | 99.05 36 | 97.28 45 | 98.84 62 | 99.28 54 | 96.47 23 | 99.40 168 | 98.52 36 | 99.70 54 | 99.47 100 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 35 | 99.18 42 | 99.25 81 | 98.04 57 | 98.50 192 | 98.78 100 | 97.72 17 | 98.92 59 | 99.28 54 | 95.27 62 | 99.82 76 | 97.55 95 | 99.77 31 | 99.69 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 98.54 31 | 98.35 32 | 99.13 48 | 99.49 45 | 97.86 62 | 99.11 55 | 98.80 93 | 96.49 86 | 99.17 41 | 99.35 44 | 95.34 58 | 99.82 76 | 97.72 80 | 99.65 64 | 99.71 49 |
|
| APD-MVS_3200maxsize | | | 98.53 32 | 98.33 39 | 99.15 46 | 99.50 41 | 97.92 61 | 99.15 47 | 98.81 86 | 96.24 97 | 99.20 38 | 99.37 38 | 95.30 60 | 99.80 88 | 97.73 79 | 99.67 59 | 99.72 45 |
|
| MM | | | 98.51 33 | 98.24 46 | 99.33 26 | 99.12 102 | 98.14 54 | 98.93 95 | 97.02 334 | 98.96 1 | 99.17 41 | 99.47 20 | 91.97 129 | 99.94 8 | 99.85 4 | 99.69 56 | 99.91 2 |
|
| mPP-MVS | | | 98.51 33 | 98.26 43 | 99.25 35 | 99.75 3 | 98.04 57 | 99.28 24 | 98.81 86 | 96.24 97 | 98.35 96 | 99.23 62 | 95.46 51 | 99.94 8 | 97.42 102 | 99.81 12 | 99.77 27 |
|
| ZNCC-MVS | | | 98.49 35 | 98.20 52 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 42 | 98.86 75 | 95.77 119 | 98.31 99 | 99.10 86 | 95.46 51 | 99.93 25 | 97.57 94 | 99.81 12 | 99.74 37 |
|
| CS-MVS-test | | | 98.49 35 | 98.50 20 | 98.46 92 | 99.20 92 | 97.05 95 | 99.64 4 | 98.50 169 | 97.45 35 | 98.88 60 | 99.14 81 | 95.25 64 | 99.15 191 | 98.83 22 | 99.56 86 | 99.20 139 |
|
| PGM-MVS | | | 98.49 35 | 98.23 48 | 99.27 34 | 99.72 12 | 98.08 56 | 98.99 81 | 99.49 5 | 95.43 135 | 99.03 47 | 99.32 49 | 95.56 48 | 99.94 8 | 96.80 133 | 99.77 31 | 99.78 21 |
|
| MVS_0304 | | | 98.47 38 | 98.22 50 | 99.21 39 | 99.00 114 | 97.80 67 | 98.88 108 | 95.32 371 | 98.86 2 | 98.53 84 | 99.44 27 | 94.38 87 | 99.94 8 | 99.86 1 | 99.70 54 | 99.90 3 |
|
| EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 27 | 98.69 72 | 99.46 49 | 96.49 123 | 98.30 215 | 98.69 120 | 97.21 52 | 98.84 62 | 99.36 42 | 95.41 53 | 99.78 101 | 98.62 26 | 99.65 64 | 99.80 18 |
|
| MVS_111021_HR | | | 98.47 38 | 98.34 35 | 98.88 66 | 99.22 89 | 97.32 81 | 97.91 260 | 99.58 3 | 97.20 53 | 98.33 97 | 99.00 103 | 95.99 36 | 99.64 131 | 98.05 59 | 99.76 37 | 99.69 56 |
|
| test_fmvsmvis_n_1920 | | | 98.44 41 | 98.51 18 | 98.23 113 | 98.33 178 | 96.15 141 | 98.97 84 | 99.15 28 | 98.55 7 | 98.45 89 | 99.55 6 | 94.26 91 | 99.97 1 | 99.65 7 | 99.66 61 | 98.57 205 |
|
| CS-MVS | | | 98.44 41 | 98.49 21 | 98.31 105 | 99.08 107 | 96.73 109 | 99.67 3 | 98.47 175 | 97.17 55 | 98.94 53 | 99.10 86 | 95.73 44 | 99.13 194 | 98.71 24 | 99.49 96 | 99.09 157 |
|
| GST-MVS | | | 98.43 43 | 98.12 55 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 59 | 98.82 81 | 95.71 123 | 98.73 71 | 99.06 96 | 95.27 62 | 99.93 25 | 97.07 113 | 99.63 69 | 99.72 45 |
|
| fmvsm_s_conf0.5_n | | | 98.42 44 | 98.51 18 | 98.13 122 | 99.30 68 | 95.25 188 | 98.85 118 | 99.39 7 | 97.94 14 | 99.74 9 | 99.62 3 | 92.59 110 | 99.91 39 | 99.65 7 | 99.52 92 | 99.25 133 |
|
| EI-MVSNet-UG-set | | | 98.41 45 | 98.34 35 | 98.61 77 | 99.45 52 | 96.32 134 | 98.28 218 | 98.68 123 | 97.17 55 | 98.74 69 | 99.37 38 | 95.25 64 | 99.79 98 | 98.57 27 | 99.54 89 | 99.73 42 |
|
| DELS-MVS | | | 98.40 46 | 98.20 52 | 98.99 57 | 99.00 114 | 97.66 68 | 97.75 279 | 98.89 59 | 97.71 19 | 98.33 97 | 98.97 105 | 94.97 74 | 99.88 56 | 98.42 44 | 99.76 37 | 99.42 111 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| fmvsm_s_conf0.5_n_a | | | 98.38 47 | 98.42 25 | 98.27 107 | 99.09 106 | 95.41 178 | 98.86 116 | 99.37 8 | 97.69 21 | 99.78 6 | 99.61 4 | 92.38 113 | 99.91 39 | 99.58 10 | 99.43 104 | 99.49 96 |
|
| TSAR-MVS + GP. | | | 98.38 47 | 98.24 46 | 98.81 68 | 99.22 89 | 97.25 88 | 98.11 241 | 98.29 211 | 97.19 54 | 98.99 52 | 99.02 98 | 96.22 26 | 99.67 126 | 98.52 36 | 98.56 149 | 99.51 89 |
|
| HPM-MVS_fast | | | 98.38 47 | 98.13 54 | 99.12 50 | 99.75 3 | 97.86 62 | 99.44 11 | 98.82 81 | 94.46 185 | 98.94 53 | 99.20 67 | 95.16 68 | 99.74 111 | 97.58 91 | 99.85 5 | 99.77 27 |
|
| patch_mono-2 | | | 98.36 50 | 98.87 6 | 96.82 214 | 99.53 36 | 90.68 320 | 98.64 169 | 99.29 14 | 97.88 15 | 99.19 40 | 99.52 11 | 96.80 15 | 99.97 1 | 99.11 16 | 99.86 1 | 99.82 16 |
|
| HPM-MVS |  | | 98.36 50 | 98.10 57 | 99.13 48 | 99.74 7 | 97.82 66 | 99.53 8 | 98.80 93 | 94.63 176 | 98.61 80 | 98.97 105 | 95.13 70 | 99.77 106 | 97.65 86 | 99.83 11 | 99.79 19 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS |  | | 98.35 52 | 98.00 62 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 135 | 98.82 81 | 94.52 182 | 99.23 37 | 99.25 61 | 95.54 50 | 99.80 88 | 96.52 141 | 99.77 31 | 99.74 37 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_LR | | | 98.34 53 | 98.23 48 | 98.67 74 | 99.27 78 | 96.90 101 | 97.95 255 | 99.58 3 | 97.14 58 | 98.44 91 | 99.01 102 | 95.03 73 | 99.62 137 | 97.91 66 | 99.75 41 | 99.50 91 |
|
| PHI-MVS | | | 98.34 53 | 98.06 58 | 99.18 42 | 99.15 100 | 98.12 55 | 99.04 68 | 99.09 31 | 93.32 241 | 98.83 64 | 99.10 86 | 96.54 21 | 99.83 69 | 97.70 84 | 99.76 37 | 99.59 79 |
|
| MP-MVS |  | | 98.33 55 | 98.01 61 | 99.28 32 | 99.75 3 | 98.18 49 | 99.22 35 | 98.79 98 | 96.13 102 | 97.92 122 | 99.23 62 | 94.54 80 | 99.94 8 | 96.74 136 | 99.78 29 | 99.73 42 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 98.31 56 | 97.92 64 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 201 | 98.78 100 | 94.10 193 | 97.69 135 | 99.42 29 | 95.25 64 | 99.92 31 | 98.09 56 | 99.80 19 | 99.67 65 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMMP |  | | 98.23 57 | 97.95 63 | 99.09 52 | 99.74 7 | 97.62 71 | 99.03 71 | 99.41 6 | 95.98 107 | 97.60 143 | 99.36 42 | 94.45 85 | 99.93 25 | 97.14 110 | 98.85 135 | 99.70 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| EC-MVSNet | | | 98.21 58 | 98.11 56 | 98.49 89 | 98.34 176 | 97.26 87 | 99.61 5 | 98.43 184 | 96.78 74 | 98.87 61 | 98.84 123 | 93.72 98 | 99.01 215 | 98.91 20 | 99.50 94 | 99.19 143 |
|
| fmvsm_s_conf0.1_n | | | 98.18 59 | 98.21 51 | 98.11 126 | 98.54 158 | 95.24 189 | 98.87 113 | 99.24 17 | 97.50 31 | 99.70 13 | 99.67 1 | 91.33 145 | 99.89 47 | 99.47 12 | 99.54 89 | 99.21 138 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 60 | 98.04 60 | 98.21 114 | 97.66 234 | 95.39 179 | 98.89 103 | 99.17 26 | 97.24 50 | 99.76 8 | 99.67 1 | 91.13 150 | 99.88 56 | 99.39 13 | 99.41 106 | 99.35 115 |
|
| dcpmvs_2 | | | 98.08 60 | 98.59 14 | 96.56 238 | 99.57 33 | 90.34 327 | 99.15 47 | 98.38 193 | 96.82 73 | 99.29 34 | 99.49 17 | 95.78 43 | 99.57 142 | 98.94 19 | 99.86 1 | 99.77 27 |
|
| CANet | | | 98.05 62 | 97.76 67 | 98.90 65 | 98.73 138 | 97.27 83 | 98.35 206 | 98.78 100 | 97.37 41 | 97.72 133 | 98.96 110 | 91.53 141 | 99.92 31 | 98.79 23 | 99.65 64 | 99.51 89 |
|
| train_agg | | | 97.97 63 | 97.52 79 | 99.33 26 | 99.31 64 | 98.50 29 | 97.92 258 | 98.73 111 | 92.98 257 | 97.74 130 | 98.68 142 | 96.20 28 | 99.80 88 | 96.59 137 | 99.57 80 | 99.68 61 |
|
| ETV-MVS | | | 97.96 64 | 97.81 65 | 98.40 100 | 98.42 165 | 97.27 83 | 98.73 150 | 98.55 155 | 96.84 71 | 98.38 93 | 97.44 261 | 95.39 54 | 99.35 171 | 97.62 88 | 98.89 131 | 98.58 204 |
|
| UA-Net | | | 97.96 64 | 97.62 71 | 98.98 59 | 98.86 129 | 97.47 78 | 98.89 103 | 99.08 32 | 96.67 80 | 98.72 72 | 99.54 8 | 93.15 104 | 99.81 81 | 94.87 190 | 98.83 136 | 99.65 69 |
|
| CDPH-MVS | | | 97.94 66 | 97.49 80 | 99.28 32 | 99.47 47 | 98.44 31 | 97.91 260 | 98.67 128 | 92.57 272 | 98.77 67 | 98.85 122 | 95.93 38 | 99.72 113 | 95.56 173 | 99.69 56 | 99.68 61 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 67 | 98.48 23 | 96.30 264 | 99.00 114 | 89.54 339 | 97.43 300 | 98.87 69 | 98.16 11 | 99.26 36 | 99.38 37 | 96.12 31 | 99.64 131 | 98.30 49 | 99.77 31 | 99.72 45 |
|
| DeepC-MVS | | 95.98 3 | 97.88 68 | 97.58 73 | 98.77 69 | 99.25 81 | 96.93 99 | 98.83 124 | 98.75 106 | 96.96 67 | 96.89 167 | 99.50 15 | 90.46 164 | 99.87 58 | 97.84 73 | 99.76 37 | 99.52 86 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf0.01_n | | | 97.86 69 | 97.54 78 | 98.83 67 | 95.48 352 | 96.83 104 | 98.95 90 | 98.60 141 | 98.58 6 | 98.93 57 | 99.55 6 | 88.57 206 | 99.91 39 | 99.54 11 | 99.61 72 | 99.77 27 |
|
| DP-MVS Recon | | | 97.86 69 | 97.46 83 | 99.06 54 | 99.53 36 | 98.35 41 | 98.33 208 | 98.89 59 | 92.62 269 | 98.05 106 | 98.94 113 | 95.34 58 | 99.65 129 | 96.04 156 | 99.42 105 | 99.19 143 |
|
| CSCG | | | 97.85 71 | 97.74 68 | 98.20 116 | 99.67 25 | 95.16 192 | 99.22 35 | 99.32 11 | 93.04 255 | 97.02 160 | 98.92 116 | 95.36 57 | 99.91 39 | 97.43 101 | 99.64 68 | 99.52 86 |
|
| MG-MVS | | | 97.81 72 | 97.60 72 | 98.44 95 | 99.12 102 | 95.97 151 | 97.75 279 | 98.78 100 | 96.89 70 | 98.46 86 | 99.22 64 | 93.90 97 | 99.68 125 | 94.81 194 | 99.52 92 | 99.67 65 |
|
| VNet | | | 97.79 73 | 97.40 87 | 98.96 61 | 98.88 126 | 97.55 73 | 98.63 172 | 98.93 50 | 96.74 77 | 99.02 48 | 98.84 123 | 90.33 167 | 99.83 69 | 98.53 30 | 96.66 207 | 99.50 91 |
|
| EIA-MVS | | | 97.75 74 | 97.58 73 | 98.27 107 | 98.38 168 | 96.44 125 | 99.01 76 | 98.60 141 | 95.88 115 | 97.26 149 | 97.53 255 | 94.97 74 | 99.33 173 | 97.38 104 | 99.20 118 | 99.05 163 |
|
| PS-MVSNAJ | | | 97.73 75 | 97.77 66 | 97.62 164 | 98.68 146 | 95.58 170 | 97.34 309 | 98.51 164 | 97.29 44 | 98.66 77 | 97.88 222 | 94.51 81 | 99.90 45 | 97.87 70 | 99.17 120 | 97.39 244 |
|
| casdiffmvs_mvg |  | | 97.72 76 | 97.48 82 | 98.44 95 | 98.42 165 | 96.59 117 | 98.92 97 | 98.44 180 | 96.20 99 | 97.76 127 | 99.20 67 | 91.66 135 | 99.23 181 | 98.27 51 | 98.41 158 | 99.49 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CPTT-MVS | | | 97.72 76 | 97.32 91 | 98.92 63 | 99.64 28 | 97.10 94 | 99.12 53 | 98.81 86 | 92.34 280 | 98.09 104 | 99.08 94 | 93.01 105 | 99.92 31 | 96.06 155 | 99.77 31 | 99.75 35 |
|
| PVSNet_Blended_VisFu | | | 97.70 78 | 97.46 83 | 98.44 95 | 99.27 78 | 95.91 159 | 98.63 172 | 99.16 27 | 94.48 184 | 97.67 136 | 98.88 119 | 92.80 107 | 99.91 39 | 97.11 111 | 99.12 121 | 99.50 91 |
|
| mvsany_test1 | | | 97.69 79 | 97.70 69 | 97.66 162 | 98.24 184 | 94.18 242 | 97.53 295 | 97.53 297 | 95.52 131 | 99.66 15 | 99.51 13 | 94.30 89 | 99.56 145 | 98.38 45 | 98.62 145 | 99.23 135 |
|
| canonicalmvs | | | 97.67 80 | 97.23 94 | 98.98 59 | 98.70 143 | 98.38 35 | 99.34 18 | 98.39 190 | 96.76 76 | 97.67 136 | 97.40 264 | 92.26 117 | 99.49 158 | 98.28 50 | 96.28 224 | 99.08 161 |
|
| xiu_mvs_v2_base | | | 97.66 81 | 97.70 69 | 97.56 168 | 98.61 153 | 95.46 176 | 97.44 298 | 98.46 176 | 97.15 57 | 98.65 78 | 98.15 199 | 94.33 88 | 99.80 88 | 97.84 73 | 98.66 144 | 97.41 242 |
|
| baseline | | | 97.64 82 | 97.44 85 | 98.25 111 | 98.35 171 | 96.20 138 | 99.00 78 | 98.32 201 | 96.33 96 | 98.03 109 | 99.17 74 | 91.35 144 | 99.16 188 | 98.10 55 | 98.29 165 | 99.39 112 |
|
| casdiffmvs |  | | 97.63 83 | 97.41 86 | 98.28 106 | 98.33 178 | 96.14 142 | 98.82 126 | 98.32 201 | 96.38 94 | 97.95 117 | 99.21 65 | 91.23 149 | 99.23 181 | 98.12 54 | 98.37 159 | 99.48 98 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| xiu_mvs_v1_base_debu | | | 97.60 84 | 97.56 75 | 97.72 152 | 98.35 171 | 95.98 146 | 97.86 269 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 172 | 91.56 137 | 99.80 88 | 98.53 30 | 98.68 140 | 97.37 246 |
|
| xiu_mvs_v1_base | | | 97.60 84 | 97.56 75 | 97.72 152 | 98.35 171 | 95.98 146 | 97.86 269 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 172 | 91.56 137 | 99.80 88 | 98.53 30 | 98.68 140 | 97.37 246 |
|
| xiu_mvs_v1_base_debi | | | 97.60 84 | 97.56 75 | 97.72 152 | 98.35 171 | 95.98 146 | 97.86 269 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 172 | 91.56 137 | 99.80 88 | 98.53 30 | 98.68 140 | 97.37 246 |
|
| diffmvs |  | | 97.58 87 | 97.40 87 | 98.13 122 | 98.32 181 | 95.81 164 | 98.06 245 | 98.37 194 | 96.20 99 | 98.74 69 | 98.89 118 | 91.31 147 | 99.25 178 | 98.16 53 | 98.52 150 | 99.34 116 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 97.57 88 | 97.49 80 | 97.84 140 | 98.07 203 | 95.76 165 | 99.47 9 | 98.40 188 | 94.98 161 | 98.79 65 | 98.83 125 | 92.34 114 | 98.41 291 | 96.91 119 | 99.59 76 | 99.34 116 |
|
| alignmvs | | | 97.56 89 | 97.07 101 | 99.01 56 | 98.66 148 | 98.37 39 | 98.83 124 | 98.06 257 | 96.74 77 | 98.00 115 | 97.65 244 | 90.80 158 | 99.48 162 | 98.37 46 | 96.56 211 | 99.19 143 |
|
| DPM-MVS | | | 97.55 90 | 96.99 104 | 99.23 38 | 99.04 109 | 98.55 27 | 97.17 324 | 98.35 197 | 94.85 168 | 97.93 121 | 98.58 153 | 95.07 72 | 99.71 118 | 92.60 261 | 99.34 113 | 99.43 109 |
|
| OMC-MVS | | | 97.55 90 | 97.34 90 | 98.20 116 | 99.33 59 | 95.92 158 | 98.28 218 | 98.59 144 | 95.52 131 | 97.97 116 | 99.10 86 | 93.28 103 | 99.49 158 | 95.09 187 | 98.88 132 | 99.19 143 |
|
| PAPM_NR | | | 97.46 92 | 97.11 98 | 98.50 87 | 99.50 41 | 96.41 129 | 98.63 172 | 98.60 141 | 95.18 150 | 97.06 158 | 98.06 205 | 94.26 91 | 99.57 142 | 93.80 229 | 98.87 134 | 99.52 86 |
|
| EPP-MVSNet | | | 97.46 92 | 97.28 92 | 97.99 133 | 98.64 150 | 95.38 180 | 99.33 21 | 98.31 203 | 93.61 230 | 97.19 151 | 99.07 95 | 94.05 94 | 99.23 181 | 96.89 123 | 98.43 157 | 99.37 114 |
|
| 3Dnovator | | 94.51 5 | 97.46 92 | 96.93 106 | 99.07 53 | 97.78 222 | 97.64 69 | 99.35 17 | 99.06 34 | 97.02 64 | 93.75 275 | 99.16 77 | 89.25 187 | 99.92 31 | 97.22 109 | 99.75 41 | 99.64 71 |
|
| CNLPA | | | 97.45 95 | 97.03 102 | 98.73 70 | 99.05 108 | 97.44 80 | 98.07 244 | 98.53 159 | 95.32 143 | 96.80 172 | 98.53 157 | 93.32 101 | 99.72 113 | 94.31 212 | 99.31 115 | 99.02 165 |
|
| lupinMVS | | | 97.44 96 | 97.22 95 | 98.12 125 | 98.07 203 | 95.76 165 | 97.68 284 | 97.76 278 | 94.50 183 | 98.79 65 | 98.61 148 | 92.34 114 | 99.30 175 | 97.58 91 | 99.59 76 | 99.31 122 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 97 | 96.78 114 | 99.38 18 | 97.83 220 | 98.52 28 | 99.37 14 | 98.71 116 | 97.09 62 | 92.99 302 | 99.13 82 | 89.36 183 | 99.89 47 | 96.97 116 | 99.57 80 | 99.71 49 |
|
| Vis-MVSNet |  | | 97.42 98 | 97.11 98 | 98.34 103 | 98.66 148 | 96.23 137 | 99.22 35 | 99.00 39 | 96.63 82 | 98.04 108 | 99.21 65 | 88.05 222 | 99.35 171 | 96.01 158 | 99.21 117 | 99.45 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| API-MVS | | | 97.41 99 | 97.25 93 | 97.91 137 | 98.70 143 | 96.80 105 | 98.82 126 | 98.69 120 | 94.53 180 | 98.11 102 | 98.28 187 | 94.50 84 | 99.57 142 | 94.12 218 | 99.49 96 | 97.37 246 |
|
| sss | | | 97.39 100 | 96.98 105 | 98.61 77 | 98.60 154 | 96.61 114 | 98.22 223 | 98.93 50 | 93.97 201 | 98.01 114 | 98.48 162 | 91.98 127 | 99.85 63 | 96.45 143 | 98.15 167 | 99.39 112 |
|
| test_cas_vis1_n_1920 | | | 97.38 101 | 97.36 89 | 97.45 171 | 98.95 121 | 93.25 275 | 99.00 78 | 98.53 159 | 97.70 20 | 99.77 7 | 99.35 44 | 84.71 289 | 99.85 63 | 98.57 27 | 99.66 61 | 99.26 131 |
|
| PVSNet_Blended | | | 97.38 101 | 97.12 97 | 98.14 119 | 99.25 81 | 95.35 183 | 97.28 314 | 99.26 15 | 93.13 251 | 97.94 119 | 98.21 195 | 92.74 108 | 99.81 81 | 96.88 125 | 99.40 109 | 99.27 129 |
|
| WTY-MVS | | | 97.37 103 | 96.92 107 | 98.72 71 | 98.86 129 | 96.89 103 | 98.31 213 | 98.71 116 | 95.26 146 | 97.67 136 | 98.56 156 | 92.21 120 | 99.78 101 | 95.89 160 | 96.85 202 | 99.48 98 |
|
| jason | | | 97.32 104 | 97.08 100 | 98.06 130 | 97.45 253 | 95.59 169 | 97.87 268 | 97.91 272 | 94.79 169 | 98.55 83 | 98.83 125 | 91.12 151 | 99.23 181 | 97.58 91 | 99.60 74 | 99.34 116 |
| jason: jason. |
| MVS_Test | | | 97.28 105 | 97.00 103 | 98.13 122 | 98.33 178 | 95.97 151 | 98.74 146 | 98.07 252 | 94.27 189 | 98.44 91 | 98.07 204 | 92.48 111 | 99.26 177 | 96.43 144 | 98.19 166 | 99.16 149 |
|
| EPNet | | | 97.28 105 | 96.87 109 | 98.51 86 | 94.98 360 | 96.14 142 | 98.90 99 | 97.02 334 | 98.28 10 | 95.99 201 | 99.11 84 | 91.36 143 | 99.89 47 | 96.98 115 | 99.19 119 | 99.50 91 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_yl | | | 97.22 107 | 96.78 114 | 98.54 83 | 98.73 138 | 96.60 115 | 98.45 196 | 98.31 203 | 94.70 170 | 98.02 111 | 98.42 170 | 90.80 158 | 99.70 119 | 96.81 131 | 96.79 204 | 99.34 116 |
|
| DCV-MVSNet | | | 97.22 107 | 96.78 114 | 98.54 83 | 98.73 138 | 96.60 115 | 98.45 196 | 98.31 203 | 94.70 170 | 98.02 111 | 98.42 170 | 90.80 158 | 99.70 119 | 96.81 131 | 96.79 204 | 99.34 116 |
|
| IS-MVSNet | | | 97.22 107 | 96.88 108 | 98.25 111 | 98.85 131 | 96.36 132 | 99.19 42 | 97.97 265 | 95.39 137 | 97.23 150 | 98.99 104 | 91.11 152 | 98.93 227 | 94.60 201 | 98.59 147 | 99.47 100 |
|
| PLC |  | 95.07 4 | 97.20 110 | 96.78 114 | 98.44 95 | 99.29 73 | 96.31 136 | 98.14 236 | 98.76 104 | 92.41 278 | 96.39 191 | 98.31 185 | 94.92 76 | 99.78 101 | 94.06 221 | 98.77 139 | 99.23 135 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 280x420 | | | 97.18 111 | 97.18 96 | 97.20 186 | 98.81 134 | 93.27 273 | 95.78 369 | 99.15 28 | 95.25 147 | 96.79 173 | 98.11 202 | 92.29 116 | 99.07 205 | 98.56 29 | 99.85 5 | 99.25 133 |
|
| LS3D | | | 97.16 112 | 96.66 122 | 98.68 73 | 98.53 159 | 97.19 91 | 98.93 95 | 98.90 57 | 92.83 264 | 95.99 201 | 99.37 38 | 92.12 123 | 99.87 58 | 93.67 233 | 99.57 80 | 98.97 170 |
|
| AdaColmap |  | | 97.15 113 | 96.70 118 | 98.48 90 | 99.16 98 | 96.69 111 | 98.01 250 | 98.89 59 | 94.44 186 | 96.83 168 | 98.68 142 | 90.69 161 | 99.76 107 | 94.36 208 | 99.29 116 | 98.98 169 |
|
| Effi-MVS+ | | | 97.12 114 | 96.69 119 | 98.39 101 | 98.19 192 | 96.72 110 | 97.37 305 | 98.43 184 | 93.71 219 | 97.65 139 | 98.02 208 | 92.20 121 | 99.25 178 | 96.87 128 | 97.79 179 | 99.19 143 |
|
| CHOSEN 1792x2688 | | | 97.12 114 | 96.80 111 | 98.08 128 | 99.30 68 | 94.56 226 | 98.05 246 | 99.71 1 | 93.57 231 | 97.09 154 | 98.91 117 | 88.17 216 | 99.89 47 | 96.87 128 | 99.56 86 | 99.81 17 |
|
| F-COLMAP | | | 97.09 116 | 96.80 111 | 97.97 134 | 99.45 52 | 94.95 205 | 98.55 185 | 98.62 140 | 93.02 256 | 96.17 196 | 98.58 153 | 94.01 95 | 99.81 81 | 93.95 223 | 98.90 130 | 99.14 152 |
|
| TAMVS | | | 97.02 117 | 96.79 113 | 97.70 155 | 98.06 206 | 95.31 186 | 98.52 187 | 98.31 203 | 93.95 202 | 97.05 159 | 98.61 148 | 93.49 100 | 98.52 271 | 95.33 179 | 97.81 178 | 99.29 127 |
|
| CDS-MVSNet | | | 96.99 118 | 96.69 119 | 97.90 138 | 98.05 207 | 95.98 146 | 98.20 226 | 98.33 200 | 93.67 226 | 96.95 161 | 98.49 161 | 93.54 99 | 98.42 283 | 95.24 185 | 97.74 182 | 99.31 122 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 96.96 119 | 96.55 125 | 98.21 114 | 98.17 197 | 96.07 144 | 97.98 253 | 98.21 220 | 97.24 50 | 97.13 153 | 98.93 114 | 86.88 246 | 99.91 39 | 95.00 189 | 99.37 112 | 98.66 196 |
|
| 114514_t | | | 96.93 120 | 96.27 136 | 98.92 63 | 99.50 41 | 97.63 70 | 98.85 118 | 98.90 57 | 84.80 376 | 97.77 126 | 99.11 84 | 92.84 106 | 99.66 128 | 94.85 191 | 99.77 31 | 99.47 100 |
|
| MAR-MVS | | | 96.91 121 | 96.40 131 | 98.45 93 | 98.69 145 | 96.90 101 | 98.66 167 | 98.68 123 | 92.40 279 | 97.07 157 | 97.96 215 | 91.54 140 | 99.75 109 | 93.68 231 | 98.92 129 | 98.69 192 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HyFIR lowres test | | | 96.90 122 | 96.49 128 | 98.14 119 | 99.33 59 | 95.56 171 | 97.38 303 | 99.65 2 | 92.34 280 | 97.61 142 | 98.20 196 | 89.29 185 | 99.10 202 | 96.97 116 | 97.60 187 | 99.77 27 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 123 | 96.55 125 | 97.83 141 | 98.73 138 | 95.46 176 | 99.20 40 | 98.30 209 | 94.96 163 | 96.60 179 | 98.87 120 | 90.05 170 | 98.59 263 | 93.67 233 | 98.60 146 | 99.46 104 |
|
| SDMVSNet | | | 96.85 124 | 96.42 129 | 98.14 119 | 99.30 68 | 96.38 130 | 99.21 38 | 99.23 20 | 95.92 110 | 95.96 203 | 98.76 136 | 85.88 263 | 99.44 167 | 97.93 64 | 95.59 235 | 98.60 200 |
|
| PAPR | | | 96.84 125 | 96.24 138 | 98.65 75 | 98.72 142 | 96.92 100 | 97.36 307 | 98.57 151 | 93.33 240 | 96.67 175 | 97.57 252 | 94.30 89 | 99.56 145 | 91.05 300 | 98.59 147 | 99.47 100 |
|
| HY-MVS | | 93.96 8 | 96.82 126 | 96.23 139 | 98.57 79 | 98.46 163 | 97.00 96 | 98.14 236 | 98.21 220 | 93.95 202 | 96.72 174 | 97.99 212 | 91.58 136 | 99.76 107 | 94.51 205 | 96.54 212 | 98.95 173 |
|
| UGNet | | | 96.78 127 | 96.30 135 | 98.19 118 | 98.24 184 | 95.89 161 | 98.88 108 | 98.93 50 | 97.39 38 | 96.81 171 | 97.84 226 | 82.60 316 | 99.90 45 | 96.53 140 | 99.49 96 | 98.79 184 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet_BlendedMVS | | | 96.73 128 | 96.60 123 | 97.12 193 | 99.25 81 | 95.35 183 | 98.26 221 | 99.26 15 | 94.28 188 | 97.94 119 | 97.46 258 | 92.74 108 | 99.81 81 | 96.88 125 | 93.32 275 | 96.20 339 |
|
| test_vis1_n_1920 | | | 96.71 129 | 96.84 110 | 96.31 263 | 99.11 104 | 89.74 334 | 99.05 65 | 98.58 149 | 98.08 12 | 99.87 1 | 99.37 38 | 78.48 342 | 99.93 25 | 99.29 14 | 99.69 56 | 99.27 129 |
|
| mvs_anonymous | | | 96.70 130 | 96.53 127 | 97.18 188 | 98.19 192 | 93.78 251 | 98.31 213 | 98.19 224 | 94.01 198 | 94.47 234 | 98.27 190 | 92.08 125 | 98.46 278 | 97.39 103 | 97.91 174 | 99.31 122 |
|
| 1112_ss | | | 96.63 131 | 96.00 147 | 98.50 87 | 98.56 155 | 96.37 131 | 98.18 234 | 98.10 245 | 92.92 260 | 94.84 222 | 98.43 168 | 92.14 122 | 99.58 141 | 94.35 209 | 96.51 213 | 99.56 85 |
|
| PMMVS | | | 96.60 132 | 96.33 133 | 97.41 175 | 97.90 217 | 93.93 247 | 97.35 308 | 98.41 186 | 92.84 263 | 97.76 127 | 97.45 260 | 91.10 153 | 99.20 185 | 96.26 148 | 97.91 174 | 99.11 155 |
|
| DP-MVS | | | 96.59 133 | 95.93 150 | 98.57 79 | 99.34 57 | 96.19 140 | 98.70 159 | 98.39 190 | 89.45 348 | 94.52 232 | 99.35 44 | 91.85 130 | 99.85 63 | 92.89 257 | 98.88 132 | 99.68 61 |
|
| PatchMatch-RL | | | 96.59 133 | 96.03 146 | 98.27 107 | 99.31 64 | 96.51 122 | 97.91 260 | 99.06 34 | 93.72 218 | 96.92 165 | 98.06 205 | 88.50 211 | 99.65 129 | 91.77 285 | 99.00 127 | 98.66 196 |
|
| GeoE | | | 96.58 135 | 96.07 143 | 98.10 127 | 98.35 171 | 95.89 161 | 99.34 18 | 98.12 239 | 93.12 252 | 96.09 197 | 98.87 120 | 89.71 176 | 98.97 217 | 92.95 253 | 98.08 170 | 99.43 109 |
|
| mvsmamba | | | 96.57 136 | 96.32 134 | 97.32 182 | 96.60 307 | 96.43 126 | 99.54 7 | 97.98 263 | 96.49 86 | 95.20 215 | 98.64 146 | 90.82 156 | 98.55 267 | 97.97 61 | 93.65 265 | 96.98 257 |
|
| XVG-OURS | | | 96.55 137 | 96.41 130 | 96.99 200 | 98.75 137 | 93.76 252 | 97.50 297 | 98.52 162 | 95.67 125 | 96.83 168 | 99.30 52 | 88.95 200 | 99.53 153 | 95.88 161 | 96.26 225 | 97.69 235 |
|
| FIs | | | 96.51 138 | 96.12 141 | 97.67 159 | 97.13 277 | 97.54 74 | 99.36 15 | 99.22 23 | 95.89 113 | 94.03 261 | 98.35 178 | 91.98 127 | 98.44 281 | 96.40 145 | 92.76 284 | 97.01 255 |
|
| XVG-OURS-SEG-HR | | | 96.51 138 | 96.34 132 | 97.02 199 | 98.77 136 | 93.76 252 | 97.79 277 | 98.50 169 | 95.45 134 | 96.94 162 | 99.09 92 | 87.87 227 | 99.55 152 | 96.76 135 | 95.83 234 | 97.74 232 |
|
| PS-MVSNAJss | | | 96.43 140 | 96.26 137 | 96.92 209 | 95.84 342 | 95.08 197 | 99.16 46 | 98.50 169 | 95.87 116 | 93.84 271 | 98.34 182 | 94.51 81 | 98.61 260 | 96.88 125 | 93.45 272 | 97.06 252 |
|
| test_fmvs1 | | | 96.42 141 | 96.67 121 | 95.66 289 | 98.82 133 | 88.53 356 | 98.80 135 | 98.20 222 | 96.39 93 | 99.64 17 | 99.20 67 | 80.35 332 | 99.67 126 | 99.04 17 | 99.57 80 | 98.78 187 |
|
| iter_conf_final | | | 96.42 141 | 96.12 141 | 97.34 181 | 98.46 163 | 96.55 121 | 99.08 61 | 98.06 257 | 96.03 106 | 95.63 209 | 98.46 166 | 87.72 229 | 98.59 263 | 97.84 73 | 93.80 260 | 96.87 273 |
|
| FC-MVSNet-test | | | 96.42 141 | 96.05 144 | 97.53 169 | 96.95 286 | 97.27 83 | 99.36 15 | 99.23 20 | 95.83 117 | 93.93 265 | 98.37 176 | 92.00 126 | 98.32 300 | 96.02 157 | 92.72 285 | 97.00 256 |
|
| ab-mvs | | | 96.42 141 | 95.71 162 | 98.55 81 | 98.63 151 | 96.75 108 | 97.88 267 | 98.74 108 | 93.84 208 | 96.54 184 | 98.18 198 | 85.34 275 | 99.75 109 | 95.93 159 | 96.35 217 | 99.15 150 |
|
| FA-MVS(test-final) | | | 96.41 145 | 95.94 149 | 97.82 143 | 98.21 188 | 95.20 191 | 97.80 275 | 97.58 288 | 93.21 246 | 97.36 147 | 97.70 238 | 89.47 180 | 99.56 145 | 94.12 218 | 97.99 171 | 98.71 191 |
|
| PVSNet | | 91.96 18 | 96.35 146 | 96.15 140 | 96.96 204 | 99.17 94 | 92.05 294 | 96.08 362 | 98.68 123 | 93.69 222 | 97.75 129 | 97.80 232 | 88.86 201 | 99.69 124 | 94.26 214 | 99.01 126 | 99.15 150 |
|
| Test_1112_low_res | | | 96.34 147 | 95.66 167 | 98.36 102 | 98.56 155 | 95.94 154 | 97.71 282 | 98.07 252 | 92.10 289 | 94.79 226 | 97.29 269 | 91.75 132 | 99.56 145 | 94.17 216 | 96.50 214 | 99.58 83 |
|
| Effi-MVS+-dtu | | | 96.29 148 | 96.56 124 | 95.51 293 | 97.89 218 | 90.22 328 | 98.80 135 | 98.10 245 | 96.57 85 | 96.45 189 | 96.66 320 | 90.81 157 | 98.91 230 | 95.72 167 | 97.99 171 | 97.40 243 |
|
| QAPM | | | 96.29 148 | 95.40 171 | 98.96 61 | 97.85 219 | 97.60 72 | 99.23 31 | 98.93 50 | 89.76 342 | 93.11 299 | 99.02 98 | 89.11 192 | 99.93 25 | 91.99 280 | 99.62 71 | 99.34 116 |
|
| Fast-Effi-MVS+ | | | 96.28 150 | 95.70 164 | 98.03 131 | 98.29 183 | 95.97 151 | 98.58 178 | 98.25 217 | 91.74 297 | 95.29 214 | 97.23 274 | 91.03 155 | 99.15 191 | 92.90 255 | 97.96 173 | 98.97 170 |
|
| nrg030 | | | 96.28 150 | 95.72 159 | 97.96 136 | 96.90 291 | 98.15 52 | 99.39 12 | 98.31 203 | 95.47 133 | 94.42 240 | 98.35 178 | 92.09 124 | 98.69 253 | 97.50 99 | 89.05 330 | 97.04 253 |
|
| 1314 | | | 96.25 152 | 95.73 158 | 97.79 145 | 97.13 277 | 95.55 173 | 98.19 229 | 98.59 144 | 93.47 235 | 92.03 327 | 97.82 230 | 91.33 145 | 99.49 158 | 94.62 200 | 98.44 155 | 98.32 216 |
|
| sd_testset | | | 96.17 153 | 95.76 157 | 97.42 174 | 99.30 68 | 94.34 235 | 98.82 126 | 99.08 32 | 95.92 110 | 95.96 203 | 98.76 136 | 82.83 315 | 99.32 174 | 95.56 173 | 95.59 235 | 98.60 200 |
|
| h-mvs33 | | | 96.17 153 | 95.62 168 | 97.81 144 | 99.03 110 | 94.45 228 | 98.64 169 | 98.75 106 | 97.48 32 | 98.67 73 | 98.72 139 | 89.76 174 | 99.86 62 | 97.95 62 | 81.59 373 | 99.11 155 |
|
| HQP_MVS | | | 96.14 155 | 95.90 151 | 96.85 212 | 97.42 255 | 94.60 224 | 98.80 135 | 98.56 153 | 97.28 45 | 95.34 212 | 98.28 187 | 87.09 241 | 99.03 210 | 96.07 152 | 94.27 243 | 96.92 262 |
|
| iter_conf05 | | | 96.13 156 | 95.79 154 | 97.15 190 | 98.16 198 | 95.99 145 | 98.88 108 | 97.98 263 | 95.91 112 | 95.58 210 | 98.46 166 | 85.53 270 | 98.59 263 | 97.88 69 | 93.75 261 | 96.86 276 |
|
| tttt0517 | | | 96.07 157 | 95.51 170 | 97.78 146 | 98.41 167 | 94.84 209 | 99.28 24 | 94.33 382 | 94.26 190 | 97.64 140 | 98.64 146 | 84.05 304 | 99.47 164 | 95.34 178 | 97.60 187 | 99.03 164 |
|
| MVSTER | | | 96.06 158 | 95.72 159 | 97.08 196 | 98.23 186 | 95.93 157 | 98.73 150 | 98.27 212 | 94.86 167 | 95.07 217 | 98.09 203 | 88.21 215 | 98.54 269 | 96.59 137 | 93.46 270 | 96.79 282 |
|
| thisisatest0530 | | | 96.01 159 | 95.36 176 | 97.97 134 | 98.38 168 | 95.52 174 | 98.88 108 | 94.19 384 | 94.04 195 | 97.64 140 | 98.31 185 | 83.82 311 | 99.46 165 | 95.29 182 | 97.70 184 | 98.93 175 |
|
| test_djsdf | | | 96.00 160 | 95.69 165 | 96.93 206 | 95.72 344 | 95.49 175 | 99.47 9 | 98.40 188 | 94.98 161 | 94.58 230 | 97.86 223 | 89.16 190 | 98.41 291 | 96.91 119 | 94.12 251 | 96.88 271 |
|
| RRT_MVS | | | 95.98 161 | 95.78 155 | 96.56 238 | 96.48 315 | 94.22 241 | 99.57 6 | 97.92 270 | 95.89 113 | 93.95 264 | 98.70 140 | 89.27 186 | 98.42 283 | 97.23 108 | 93.02 279 | 97.04 253 |
|
| EI-MVSNet | | | 95.96 162 | 95.83 153 | 96.36 259 | 97.93 215 | 93.70 258 | 98.12 239 | 98.27 212 | 93.70 221 | 95.07 217 | 99.02 98 | 92.23 119 | 98.54 269 | 94.68 196 | 93.46 270 | 96.84 278 |
|
| ECVR-MVS |  | | 95.95 163 | 95.71 162 | 96.65 224 | 99.02 111 | 90.86 315 | 99.03 71 | 91.80 393 | 96.96 67 | 98.10 103 | 99.26 57 | 81.31 322 | 99.51 157 | 96.90 122 | 99.04 123 | 99.59 79 |
|
| BH-untuned | | | 95.95 163 | 95.72 159 | 96.65 224 | 98.55 157 | 92.26 289 | 98.23 222 | 97.79 277 | 93.73 216 | 94.62 229 | 98.01 210 | 88.97 199 | 99.00 216 | 93.04 250 | 98.51 151 | 98.68 193 |
|
| test1111 | | | 95.94 165 | 95.78 155 | 96.41 256 | 98.99 118 | 90.12 329 | 99.04 68 | 92.45 392 | 96.99 66 | 98.03 109 | 99.27 56 | 81.40 321 | 99.48 162 | 96.87 128 | 99.04 123 | 99.63 73 |
|
| MSDG | | | 95.93 166 | 95.30 183 | 97.83 141 | 98.90 124 | 95.36 181 | 96.83 349 | 98.37 194 | 91.32 312 | 94.43 239 | 98.73 138 | 90.27 168 | 99.60 139 | 90.05 314 | 98.82 137 | 98.52 206 |
|
| BH-RMVSNet | | | 95.92 167 | 95.32 180 | 97.69 156 | 98.32 181 | 94.64 218 | 98.19 229 | 97.45 307 | 94.56 178 | 96.03 199 | 98.61 148 | 85.02 280 | 99.12 196 | 90.68 305 | 99.06 122 | 99.30 125 |
|
| test_fmvs1_n | | | 95.90 168 | 95.99 148 | 95.63 290 | 98.67 147 | 88.32 360 | 99.26 27 | 98.22 219 | 96.40 92 | 99.67 14 | 99.26 57 | 73.91 370 | 99.70 119 | 99.02 18 | 99.50 94 | 98.87 178 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 169 | 95.85 152 | 95.91 279 | 97.74 227 | 91.74 300 | 98.69 161 | 98.15 235 | 95.56 129 | 94.92 220 | 97.68 243 | 88.98 198 | 98.79 247 | 93.19 245 | 97.78 180 | 97.20 250 |
|
| LFMVS | | | 95.86 170 | 94.98 198 | 98.47 91 | 98.87 128 | 96.32 134 | 98.84 122 | 96.02 361 | 93.40 238 | 98.62 79 | 99.20 67 | 74.99 364 | 99.63 134 | 97.72 80 | 97.20 193 | 99.46 104 |
|
| baseline1 | | | 95.84 171 | 95.12 191 | 98.01 132 | 98.49 162 | 95.98 146 | 98.73 150 | 97.03 332 | 95.37 140 | 96.22 194 | 98.19 197 | 89.96 172 | 99.16 188 | 94.60 201 | 87.48 346 | 98.90 177 |
|
| OpenMVS |  | 93.04 13 | 95.83 172 | 95.00 196 | 98.32 104 | 97.18 274 | 97.32 81 | 99.21 38 | 98.97 42 | 89.96 338 | 91.14 335 | 99.05 97 | 86.64 249 | 99.92 31 | 93.38 239 | 99.47 99 | 97.73 233 |
|
| VDD-MVS | | | 95.82 173 | 95.23 185 | 97.61 165 | 98.84 132 | 93.98 246 | 98.68 162 | 97.40 311 | 95.02 160 | 97.95 117 | 99.34 48 | 74.37 369 | 99.78 101 | 98.64 25 | 96.80 203 | 99.08 161 |
|
| UniMVSNet (Re) | | | 95.78 174 | 95.19 187 | 97.58 166 | 96.99 284 | 97.47 78 | 98.79 140 | 99.18 25 | 95.60 127 | 93.92 266 | 97.04 293 | 91.68 133 | 98.48 274 | 95.80 165 | 87.66 345 | 96.79 282 |
|
| VPA-MVSNet | | | 95.75 175 | 95.11 192 | 97.69 156 | 97.24 266 | 97.27 83 | 98.94 93 | 99.23 20 | 95.13 152 | 95.51 211 | 97.32 267 | 85.73 266 | 98.91 230 | 97.33 106 | 89.55 322 | 96.89 270 |
|
| bld_raw_dy_0_64 | | | 95.74 176 | 95.31 182 | 97.03 198 | 96.35 321 | 95.76 165 | 99.12 53 | 97.37 314 | 95.97 108 | 94.70 228 | 98.48 162 | 85.80 265 | 98.49 273 | 96.55 139 | 93.48 269 | 96.84 278 |
|
| HQP-MVS | | | 95.72 177 | 95.40 171 | 96.69 222 | 97.20 270 | 94.25 239 | 98.05 246 | 98.46 176 | 96.43 89 | 94.45 235 | 97.73 235 | 86.75 247 | 98.96 221 | 95.30 180 | 94.18 247 | 96.86 276 |
|
| hse-mvs2 | | | 95.71 178 | 95.30 183 | 96.93 206 | 98.50 160 | 93.53 263 | 98.36 205 | 98.10 245 | 97.48 32 | 98.67 73 | 97.99 212 | 89.76 174 | 99.02 213 | 97.95 62 | 80.91 377 | 98.22 219 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 178 | 95.15 188 | 97.40 177 | 96.84 294 | 96.97 97 | 98.74 146 | 99.24 17 | 95.16 151 | 93.88 268 | 97.72 237 | 91.68 133 | 98.31 302 | 95.81 163 | 87.25 351 | 96.92 262 |
|
| PatchmatchNet |  | | 95.71 178 | 95.52 169 | 96.29 265 | 97.58 239 | 90.72 319 | 96.84 348 | 97.52 298 | 94.06 194 | 97.08 155 | 96.96 303 | 89.24 188 | 98.90 233 | 92.03 279 | 98.37 159 | 99.26 131 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| OPM-MVS | | | 95.69 181 | 95.33 179 | 96.76 217 | 96.16 330 | 94.63 219 | 98.43 201 | 98.39 190 | 96.64 81 | 95.02 219 | 98.78 130 | 85.15 279 | 99.05 206 | 95.21 186 | 94.20 246 | 96.60 305 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMM | | 93.85 9 | 95.69 181 | 95.38 175 | 96.61 231 | 97.61 237 | 93.84 250 | 98.91 98 | 98.44 180 | 95.25 147 | 94.28 247 | 98.47 164 | 86.04 262 | 99.12 196 | 95.50 176 | 93.95 256 | 96.87 273 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tpmrst | | | 95.63 183 | 95.69 165 | 95.44 297 | 97.54 244 | 88.54 355 | 96.97 334 | 97.56 290 | 93.50 233 | 97.52 145 | 96.93 307 | 89.49 178 | 99.16 188 | 95.25 184 | 96.42 216 | 98.64 198 |
|
| FE-MVS | | | 95.62 184 | 94.90 202 | 97.78 146 | 98.37 170 | 94.92 206 | 97.17 324 | 97.38 313 | 90.95 323 | 97.73 132 | 97.70 238 | 85.32 277 | 99.63 134 | 91.18 293 | 98.33 162 | 98.79 184 |
|
| LPG-MVS_test | | | 95.62 184 | 95.34 177 | 96.47 250 | 97.46 250 | 93.54 261 | 98.99 81 | 98.54 157 | 94.67 174 | 94.36 243 | 98.77 132 | 85.39 272 | 99.11 198 | 95.71 168 | 94.15 249 | 96.76 285 |
|
| CLD-MVS | | | 95.62 184 | 95.34 177 | 96.46 253 | 97.52 247 | 93.75 254 | 97.27 315 | 98.46 176 | 95.53 130 | 94.42 240 | 98.00 211 | 86.21 257 | 98.97 217 | 96.25 150 | 94.37 241 | 96.66 300 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thisisatest0515 | | | 95.61 187 | 94.89 203 | 97.76 149 | 98.15 199 | 95.15 194 | 96.77 350 | 94.41 380 | 92.95 259 | 97.18 152 | 97.43 262 | 84.78 286 | 99.45 166 | 94.63 198 | 97.73 183 | 98.68 193 |
|
| thres600view7 | | | 95.49 188 | 94.77 206 | 97.67 159 | 98.98 119 | 95.02 198 | 98.85 118 | 96.90 341 | 95.38 138 | 96.63 177 | 96.90 308 | 84.29 296 | 99.59 140 | 88.65 336 | 96.33 218 | 98.40 211 |
|
| test_vis1_n | | | 95.47 189 | 95.13 189 | 96.49 247 | 97.77 223 | 90.41 325 | 99.27 26 | 98.11 242 | 96.58 83 | 99.66 15 | 99.18 73 | 67.00 383 | 99.62 137 | 99.21 15 | 99.40 109 | 99.44 107 |
|
| SCA | | | 95.46 190 | 95.13 189 | 96.46 253 | 97.67 232 | 91.29 308 | 97.33 310 | 97.60 287 | 94.68 173 | 96.92 165 | 97.10 280 | 83.97 306 | 98.89 234 | 92.59 263 | 98.32 164 | 99.20 139 |
|
| IterMVS-LS | | | 95.46 190 | 95.21 186 | 96.22 267 | 98.12 200 | 93.72 257 | 98.32 212 | 98.13 238 | 93.71 219 | 94.26 248 | 97.31 268 | 92.24 118 | 98.10 318 | 94.63 198 | 90.12 313 | 96.84 278 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| jajsoiax | | | 95.45 192 | 95.03 195 | 96.73 218 | 95.42 356 | 94.63 219 | 99.14 49 | 98.52 162 | 95.74 120 | 93.22 293 | 98.36 177 | 83.87 309 | 98.65 258 | 96.95 118 | 94.04 252 | 96.91 267 |
|
| CVMVSNet | | | 95.43 193 | 96.04 145 | 93.57 339 | 97.93 215 | 83.62 377 | 98.12 239 | 98.59 144 | 95.68 124 | 96.56 180 | 99.02 98 | 87.51 234 | 97.51 351 | 93.56 237 | 97.44 189 | 99.60 77 |
|
| anonymousdsp | | | 95.42 194 | 94.91 201 | 96.94 205 | 95.10 359 | 95.90 160 | 99.14 49 | 98.41 186 | 93.75 213 | 93.16 295 | 97.46 258 | 87.50 236 | 98.41 291 | 95.63 172 | 94.03 253 | 96.50 324 |
|
| DU-MVS | | | 95.42 194 | 94.76 207 | 97.40 177 | 96.53 311 | 96.97 97 | 98.66 167 | 98.99 41 | 95.43 135 | 93.88 268 | 97.69 240 | 88.57 206 | 98.31 302 | 95.81 163 | 87.25 351 | 96.92 262 |
|
| mvs_tets | | | 95.41 196 | 95.00 196 | 96.65 224 | 95.58 348 | 94.42 230 | 99.00 78 | 98.55 155 | 95.73 122 | 93.21 294 | 98.38 175 | 83.45 313 | 98.63 259 | 97.09 112 | 94.00 254 | 96.91 267 |
|
| thres100view900 | | | 95.38 197 | 94.70 210 | 97.41 175 | 98.98 119 | 94.92 206 | 98.87 113 | 96.90 341 | 95.38 138 | 96.61 178 | 96.88 309 | 84.29 296 | 99.56 145 | 88.11 339 | 96.29 221 | 97.76 230 |
|
| thres400 | | | 95.38 197 | 94.62 213 | 97.65 163 | 98.94 122 | 94.98 202 | 98.68 162 | 96.93 339 | 95.33 141 | 96.55 182 | 96.53 326 | 84.23 300 | 99.56 145 | 88.11 339 | 96.29 221 | 98.40 211 |
|
| BH-w/o | | | 95.38 197 | 95.08 193 | 96.26 266 | 98.34 176 | 91.79 297 | 97.70 283 | 97.43 309 | 92.87 262 | 94.24 250 | 97.22 275 | 88.66 204 | 98.84 240 | 91.55 289 | 97.70 184 | 98.16 222 |
|
| VDDNet | | | 95.36 200 | 94.53 217 | 97.86 139 | 98.10 202 | 95.13 195 | 98.85 118 | 97.75 279 | 90.46 329 | 98.36 94 | 99.39 32 | 73.27 372 | 99.64 131 | 97.98 60 | 96.58 210 | 98.81 183 |
|
| TAPA-MVS | | 93.98 7 | 95.35 201 | 94.56 216 | 97.74 151 | 99.13 101 | 94.83 211 | 98.33 208 | 98.64 136 | 86.62 364 | 96.29 193 | 98.61 148 | 94.00 96 | 99.29 176 | 80.00 378 | 99.41 106 | 99.09 157 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 93.49 10 | 95.34 202 | 94.98 198 | 96.43 255 | 97.67 232 | 93.48 265 | 98.73 150 | 98.44 180 | 94.94 166 | 92.53 315 | 98.53 157 | 84.50 295 | 99.14 193 | 95.48 177 | 94.00 254 | 96.66 300 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| COLMAP_ROB |  | 93.27 12 | 95.33 203 | 94.87 204 | 96.71 219 | 99.29 73 | 93.24 276 | 98.58 178 | 98.11 242 | 89.92 339 | 93.57 279 | 99.10 86 | 86.37 255 | 99.79 98 | 90.78 303 | 98.10 169 | 97.09 251 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| tfpn200view9 | | | 95.32 204 | 94.62 213 | 97.43 173 | 98.94 122 | 94.98 202 | 98.68 162 | 96.93 339 | 95.33 141 | 96.55 182 | 96.53 326 | 84.23 300 | 99.56 145 | 88.11 339 | 96.29 221 | 97.76 230 |
|
| Anonymous202405211 | | | 95.28 205 | 94.49 219 | 97.67 159 | 99.00 114 | 93.75 254 | 98.70 159 | 97.04 331 | 90.66 325 | 96.49 186 | 98.80 128 | 78.13 346 | 99.83 69 | 96.21 151 | 95.36 239 | 99.44 107 |
|
| thres200 | | | 95.25 206 | 94.57 215 | 97.28 183 | 98.81 134 | 94.92 206 | 98.20 226 | 97.11 325 | 95.24 149 | 96.54 184 | 96.22 337 | 84.58 293 | 99.53 153 | 87.93 343 | 96.50 214 | 97.39 244 |
|
| AllTest | | | 95.24 207 | 94.65 212 | 96.99 200 | 99.25 81 | 93.21 277 | 98.59 176 | 98.18 227 | 91.36 308 | 93.52 281 | 98.77 132 | 84.67 290 | 99.72 113 | 89.70 321 | 97.87 176 | 98.02 225 |
|
| LCM-MVSNet-Re | | | 95.22 208 | 95.32 180 | 94.91 312 | 98.18 194 | 87.85 366 | 98.75 143 | 95.66 368 | 95.11 154 | 88.96 353 | 96.85 312 | 90.26 169 | 97.65 344 | 95.65 171 | 98.44 155 | 99.22 137 |
|
| EPNet_dtu | | | 95.21 209 | 94.95 200 | 95.99 274 | 96.17 328 | 90.45 324 | 98.16 235 | 97.27 319 | 96.77 75 | 93.14 298 | 98.33 183 | 90.34 166 | 98.42 283 | 85.57 356 | 98.81 138 | 99.09 157 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| XXY-MVS | | | 95.20 210 | 94.45 224 | 97.46 170 | 96.75 300 | 96.56 119 | 98.86 116 | 98.65 135 | 93.30 243 | 93.27 292 | 98.27 190 | 84.85 284 | 98.87 237 | 94.82 193 | 91.26 301 | 96.96 259 |
|
| D2MVS | | | 95.18 211 | 95.08 193 | 95.48 294 | 97.10 279 | 92.07 293 | 98.30 215 | 99.13 30 | 94.02 197 | 92.90 303 | 96.73 317 | 89.48 179 | 98.73 251 | 94.48 206 | 93.60 268 | 95.65 352 |
|
| WR-MVS | | | 95.15 212 | 94.46 222 | 97.22 185 | 96.67 305 | 96.45 124 | 98.21 224 | 98.81 86 | 94.15 191 | 93.16 295 | 97.69 240 | 87.51 234 | 98.30 304 | 95.29 182 | 88.62 336 | 96.90 269 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 213 | 94.48 220 | 97.11 194 | 96.45 317 | 96.36 132 | 99.03 71 | 99.03 37 | 95.04 159 | 93.58 278 | 97.93 217 | 88.27 214 | 98.03 324 | 94.13 217 | 86.90 356 | 96.95 261 |
|
| baseline2 | | | 95.11 214 | 94.52 218 | 96.87 211 | 96.65 306 | 93.56 260 | 98.27 220 | 94.10 386 | 93.45 236 | 92.02 328 | 97.43 262 | 87.45 238 | 99.19 186 | 93.88 226 | 97.41 191 | 97.87 228 |
|
| miper_enhance_ethall | | | 95.10 215 | 94.75 208 | 96.12 271 | 97.53 246 | 93.73 256 | 96.61 356 | 98.08 250 | 92.20 288 | 93.89 267 | 96.65 322 | 92.44 112 | 98.30 304 | 94.21 215 | 91.16 302 | 96.34 333 |
|
| Anonymous20240529 | | | 95.10 215 | 94.22 232 | 97.75 150 | 99.01 113 | 94.26 238 | 98.87 113 | 98.83 80 | 85.79 372 | 96.64 176 | 98.97 105 | 78.73 340 | 99.85 63 | 96.27 147 | 94.89 240 | 99.12 154 |
|
| test-LLR | | | 95.10 215 | 94.87 204 | 95.80 284 | 96.77 297 | 89.70 335 | 96.91 339 | 95.21 372 | 95.11 154 | 94.83 224 | 95.72 350 | 87.71 230 | 98.97 217 | 93.06 248 | 98.50 152 | 98.72 189 |
|
| WR-MVS_H | | | 95.05 218 | 94.46 222 | 96.81 215 | 96.86 293 | 95.82 163 | 99.24 30 | 99.24 17 | 93.87 207 | 92.53 315 | 96.84 313 | 90.37 165 | 98.24 310 | 93.24 243 | 87.93 342 | 96.38 332 |
|
| miper_ehance_all_eth | | | 95.01 219 | 94.69 211 | 95.97 276 | 97.70 230 | 93.31 272 | 97.02 332 | 98.07 252 | 92.23 285 | 93.51 283 | 96.96 303 | 91.85 130 | 98.15 314 | 93.68 231 | 91.16 302 | 96.44 330 |
|
| ADS-MVSNet | | | 95.00 220 | 94.45 224 | 96.63 228 | 98.00 209 | 91.91 296 | 96.04 363 | 97.74 280 | 90.15 335 | 96.47 187 | 96.64 323 | 87.89 225 | 98.96 221 | 90.08 312 | 97.06 195 | 99.02 165 |
|
| VPNet | | | 94.99 221 | 94.19 234 | 97.40 177 | 97.16 275 | 96.57 118 | 98.71 155 | 98.97 42 | 95.67 125 | 94.84 222 | 98.24 194 | 80.36 331 | 98.67 257 | 96.46 142 | 87.32 350 | 96.96 259 |
|
| EPMVS | | | 94.99 221 | 94.48 220 | 96.52 245 | 97.22 268 | 91.75 299 | 97.23 316 | 91.66 394 | 94.11 192 | 97.28 148 | 96.81 314 | 85.70 267 | 98.84 240 | 93.04 250 | 97.28 192 | 98.97 170 |
|
| NR-MVSNet | | | 94.98 223 | 94.16 237 | 97.44 172 | 96.53 311 | 97.22 90 | 98.74 146 | 98.95 46 | 94.96 163 | 89.25 352 | 97.69 240 | 89.32 184 | 98.18 312 | 94.59 203 | 87.40 348 | 96.92 262 |
|
| FMVSNet3 | | | 94.97 224 | 94.26 231 | 97.11 194 | 98.18 194 | 96.62 112 | 98.56 184 | 98.26 216 | 93.67 226 | 94.09 257 | 97.10 280 | 84.25 298 | 98.01 325 | 92.08 275 | 92.14 288 | 96.70 294 |
|
| CostFormer | | | 94.95 225 | 94.73 209 | 95.60 292 | 97.28 264 | 89.06 346 | 97.53 295 | 96.89 343 | 89.66 344 | 96.82 170 | 96.72 318 | 86.05 260 | 98.95 226 | 95.53 175 | 96.13 230 | 98.79 184 |
|
| PAPM | | | 94.95 225 | 94.00 248 | 97.78 146 | 97.04 281 | 95.65 168 | 96.03 365 | 98.25 217 | 91.23 317 | 94.19 253 | 97.80 232 | 91.27 148 | 98.86 239 | 82.61 372 | 97.61 186 | 98.84 181 |
|
| CP-MVSNet | | | 94.94 227 | 94.30 230 | 96.83 213 | 96.72 302 | 95.56 171 | 99.11 55 | 98.95 46 | 93.89 205 | 92.42 320 | 97.90 219 | 87.19 240 | 98.12 317 | 94.32 211 | 88.21 339 | 96.82 281 |
|
| TR-MVS | | | 94.94 227 | 94.20 233 | 97.17 189 | 97.75 224 | 94.14 243 | 97.59 292 | 97.02 334 | 92.28 284 | 95.75 207 | 97.64 246 | 83.88 308 | 98.96 221 | 89.77 318 | 96.15 229 | 98.40 211 |
|
| RPSCF | | | 94.87 229 | 95.40 171 | 93.26 345 | 98.89 125 | 82.06 383 | 98.33 208 | 98.06 257 | 90.30 334 | 96.56 180 | 99.26 57 | 87.09 241 | 99.49 158 | 93.82 228 | 96.32 219 | 98.24 217 |
|
| GA-MVS | | | 94.81 230 | 94.03 244 | 97.14 191 | 97.15 276 | 93.86 249 | 96.76 351 | 97.58 288 | 94.00 199 | 94.76 227 | 97.04 293 | 80.91 326 | 98.48 274 | 91.79 284 | 96.25 226 | 99.09 157 |
|
| c3_l | | | 94.79 231 | 94.43 226 | 95.89 281 | 97.75 224 | 93.12 280 | 97.16 326 | 98.03 260 | 92.23 285 | 93.46 286 | 97.05 292 | 91.39 142 | 98.01 325 | 93.58 236 | 89.21 328 | 96.53 316 |
|
| V42 | | | 94.78 232 | 94.14 239 | 96.70 221 | 96.33 323 | 95.22 190 | 98.97 84 | 98.09 249 | 92.32 282 | 94.31 246 | 97.06 290 | 88.39 212 | 98.55 267 | 92.90 255 | 88.87 334 | 96.34 333 |
|
| CR-MVSNet | | | 94.76 233 | 94.15 238 | 96.59 234 | 97.00 282 | 93.43 266 | 94.96 375 | 97.56 290 | 92.46 273 | 96.93 163 | 96.24 333 | 88.15 217 | 97.88 338 | 87.38 345 | 96.65 208 | 98.46 209 |
|
| v2v482 | | | 94.69 234 | 94.03 244 | 96.65 224 | 96.17 328 | 94.79 214 | 98.67 165 | 98.08 250 | 92.72 266 | 94.00 262 | 97.16 278 | 87.69 233 | 98.45 279 | 92.91 254 | 88.87 334 | 96.72 290 |
|
| pmmvs4 | | | 94.69 234 | 93.99 250 | 96.81 215 | 95.74 343 | 95.94 154 | 97.40 301 | 97.67 282 | 90.42 331 | 93.37 289 | 97.59 250 | 89.08 193 | 98.20 311 | 92.97 252 | 91.67 295 | 96.30 336 |
|
| cl22 | | | 94.68 236 | 94.19 234 | 96.13 270 | 98.11 201 | 93.60 259 | 96.94 336 | 98.31 203 | 92.43 277 | 93.32 291 | 96.87 311 | 86.51 250 | 98.28 308 | 94.10 220 | 91.16 302 | 96.51 322 |
|
| eth_miper_zixun_eth | | | 94.68 236 | 94.41 227 | 95.47 295 | 97.64 235 | 91.71 301 | 96.73 353 | 98.07 252 | 92.71 267 | 93.64 276 | 97.21 276 | 90.54 163 | 98.17 313 | 93.38 239 | 89.76 317 | 96.54 314 |
|
| PCF-MVS | | 93.45 11 | 94.68 236 | 93.43 285 | 98.42 99 | 98.62 152 | 96.77 107 | 95.48 373 | 98.20 222 | 84.63 377 | 93.34 290 | 98.32 184 | 88.55 209 | 99.81 81 | 84.80 364 | 98.96 128 | 98.68 193 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS | | | 94.67 239 | 93.54 280 | 98.08 128 | 96.88 292 | 96.56 119 | 98.19 229 | 98.50 169 | 78.05 386 | 92.69 310 | 98.02 208 | 91.07 154 | 99.63 134 | 90.09 311 | 98.36 161 | 98.04 224 |
|
| PS-CasMVS | | | 94.67 239 | 93.99 250 | 96.71 219 | 96.68 304 | 95.26 187 | 99.13 52 | 99.03 37 | 93.68 224 | 92.33 321 | 97.95 216 | 85.35 274 | 98.10 318 | 93.59 235 | 88.16 341 | 96.79 282 |
|
| cascas | | | 94.63 241 | 93.86 259 | 96.93 206 | 96.91 290 | 94.27 237 | 96.00 366 | 98.51 164 | 85.55 373 | 94.54 231 | 96.23 335 | 84.20 302 | 98.87 237 | 95.80 165 | 96.98 200 | 97.66 236 |
|
| tpmvs | | | 94.60 242 | 94.36 229 | 95.33 301 | 97.46 250 | 88.60 354 | 96.88 345 | 97.68 281 | 91.29 314 | 93.80 273 | 96.42 330 | 88.58 205 | 99.24 180 | 91.06 298 | 96.04 231 | 98.17 221 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 242 | 93.90 256 | 96.68 223 | 97.41 258 | 94.42 230 | 98.52 187 | 98.59 144 | 91.69 300 | 91.21 334 | 98.35 178 | 84.87 283 | 99.04 209 | 91.06 298 | 93.44 273 | 96.60 305 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v1144 | | | 94.59 244 | 93.92 253 | 96.60 233 | 96.21 325 | 94.78 215 | 98.59 176 | 98.14 237 | 91.86 296 | 94.21 252 | 97.02 296 | 87.97 223 | 98.41 291 | 91.72 286 | 89.57 320 | 96.61 304 |
|
| ADS-MVSNet2 | | | 94.58 245 | 94.40 228 | 95.11 307 | 98.00 209 | 88.74 352 | 96.04 363 | 97.30 316 | 90.15 335 | 96.47 187 | 96.64 323 | 87.89 225 | 97.56 349 | 90.08 312 | 97.06 195 | 99.02 165 |
|
| ACMH | | 92.88 16 | 94.55 246 | 93.95 252 | 96.34 261 | 97.63 236 | 93.26 274 | 98.81 134 | 98.49 174 | 93.43 237 | 89.74 347 | 98.53 157 | 81.91 318 | 99.08 204 | 93.69 230 | 93.30 276 | 96.70 294 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tt0805 | | | 94.54 247 | 93.85 260 | 96.63 228 | 97.98 213 | 93.06 282 | 98.77 142 | 97.84 275 | 93.67 226 | 93.80 273 | 98.04 207 | 76.88 357 | 98.96 221 | 94.79 195 | 92.86 282 | 97.86 229 |
|
| XVG-ACMP-BASELINE | | | 94.54 247 | 94.14 239 | 95.75 287 | 96.55 310 | 91.65 302 | 98.11 241 | 98.44 180 | 94.96 163 | 94.22 251 | 97.90 219 | 79.18 339 | 99.11 198 | 94.05 222 | 93.85 258 | 96.48 327 |
|
| AUN-MVS | | | 94.53 249 | 93.73 270 | 96.92 209 | 98.50 160 | 93.52 264 | 98.34 207 | 98.10 245 | 93.83 210 | 95.94 205 | 97.98 214 | 85.59 269 | 99.03 210 | 94.35 209 | 80.94 376 | 98.22 219 |
|
| DIV-MVS_self_test | | | 94.52 250 | 94.03 244 | 95.99 274 | 97.57 243 | 93.38 270 | 97.05 330 | 97.94 268 | 91.74 297 | 92.81 305 | 97.10 280 | 89.12 191 | 98.07 322 | 92.60 261 | 90.30 310 | 96.53 316 |
|
| cl____ | | | 94.51 251 | 94.01 247 | 96.02 273 | 97.58 239 | 93.40 269 | 97.05 330 | 97.96 267 | 91.73 299 | 92.76 307 | 97.08 286 | 89.06 194 | 98.13 316 | 92.61 260 | 90.29 311 | 96.52 319 |
|
| ETVMVS | | | 94.50 252 | 93.44 284 | 97.68 158 | 98.18 194 | 95.35 183 | 98.19 229 | 97.11 325 | 93.73 216 | 96.40 190 | 95.39 355 | 74.53 366 | 98.84 240 | 91.10 295 | 96.31 220 | 98.84 181 |
|
| GBi-Net | | | 94.49 253 | 93.80 263 | 96.56 238 | 98.21 188 | 95.00 199 | 98.82 126 | 98.18 227 | 92.46 273 | 94.09 257 | 97.07 287 | 81.16 323 | 97.95 330 | 92.08 275 | 92.14 288 | 96.72 290 |
|
| test1 | | | 94.49 253 | 93.80 263 | 96.56 238 | 98.21 188 | 95.00 199 | 98.82 126 | 98.18 227 | 92.46 273 | 94.09 257 | 97.07 287 | 81.16 323 | 97.95 330 | 92.08 275 | 92.14 288 | 96.72 290 |
|
| dmvs_re | | | 94.48 255 | 94.18 236 | 95.37 299 | 97.68 231 | 90.11 330 | 98.54 186 | 97.08 327 | 94.56 178 | 94.42 240 | 97.24 273 | 84.25 298 | 97.76 342 | 91.02 301 | 92.83 283 | 98.24 217 |
|
| v8 | | | 94.47 256 | 93.77 266 | 96.57 237 | 96.36 320 | 94.83 211 | 99.05 65 | 98.19 224 | 91.92 293 | 93.16 295 | 96.97 301 | 88.82 203 | 98.48 274 | 91.69 287 | 87.79 343 | 96.39 331 |
|
| FMVSNet2 | | | 94.47 256 | 93.61 276 | 97.04 197 | 98.21 188 | 96.43 126 | 98.79 140 | 98.27 212 | 92.46 273 | 93.50 284 | 97.09 284 | 81.16 323 | 98.00 327 | 91.09 296 | 91.93 291 | 96.70 294 |
|
| test2506 | | | 94.44 258 | 93.91 255 | 96.04 272 | 99.02 111 | 88.99 349 | 99.06 63 | 79.47 406 | 96.96 67 | 98.36 94 | 99.26 57 | 77.21 354 | 99.52 156 | 96.78 134 | 99.04 123 | 99.59 79 |
|
| Patchmatch-test | | | 94.42 259 | 93.68 274 | 96.63 228 | 97.60 238 | 91.76 298 | 94.83 379 | 97.49 302 | 89.45 348 | 94.14 255 | 97.10 280 | 88.99 195 | 98.83 243 | 85.37 359 | 98.13 168 | 99.29 127 |
|
| PEN-MVS | | | 94.42 259 | 93.73 270 | 96.49 247 | 96.28 324 | 94.84 209 | 99.17 45 | 99.00 39 | 93.51 232 | 92.23 323 | 97.83 229 | 86.10 259 | 97.90 334 | 92.55 266 | 86.92 355 | 96.74 287 |
|
| v144192 | | | 94.39 261 | 93.70 272 | 96.48 249 | 96.06 333 | 94.35 234 | 98.58 178 | 98.16 234 | 91.45 305 | 94.33 245 | 97.02 296 | 87.50 236 | 98.45 279 | 91.08 297 | 89.11 329 | 96.63 302 |
|
| Baseline_NR-MVSNet | | | 94.35 262 | 93.81 262 | 95.96 277 | 96.20 326 | 94.05 245 | 98.61 175 | 96.67 352 | 91.44 306 | 93.85 270 | 97.60 249 | 88.57 206 | 98.14 315 | 94.39 207 | 86.93 354 | 95.68 351 |
|
| miper_lstm_enhance | | | 94.33 263 | 94.07 242 | 95.11 307 | 97.75 224 | 90.97 312 | 97.22 317 | 98.03 260 | 91.67 301 | 92.76 307 | 96.97 301 | 90.03 171 | 97.78 341 | 92.51 268 | 89.64 319 | 96.56 311 |
|
| v1192 | | | 94.32 264 | 93.58 277 | 96.53 244 | 96.10 331 | 94.45 228 | 98.50 192 | 98.17 232 | 91.54 303 | 94.19 253 | 97.06 290 | 86.95 245 | 98.43 282 | 90.14 310 | 89.57 320 | 96.70 294 |
|
| ACMH+ | | 92.99 14 | 94.30 265 | 93.77 266 | 95.88 282 | 97.81 221 | 92.04 295 | 98.71 155 | 98.37 194 | 93.99 200 | 90.60 341 | 98.47 164 | 80.86 328 | 99.05 206 | 92.75 259 | 92.40 287 | 96.55 313 |
|
| v148 | | | 94.29 266 | 93.76 268 | 95.91 279 | 96.10 331 | 92.93 283 | 98.58 178 | 97.97 265 | 92.59 271 | 93.47 285 | 96.95 305 | 88.53 210 | 98.32 300 | 92.56 265 | 87.06 353 | 96.49 325 |
|
| v10 | | | 94.29 266 | 93.55 279 | 96.51 246 | 96.39 319 | 94.80 213 | 98.99 81 | 98.19 224 | 91.35 310 | 93.02 301 | 96.99 299 | 88.09 219 | 98.41 291 | 90.50 307 | 88.41 338 | 96.33 335 |
|
| MVP-Stereo | | | 94.28 268 | 93.92 253 | 95.35 300 | 94.95 361 | 92.60 286 | 97.97 254 | 97.65 283 | 91.61 302 | 90.68 340 | 97.09 284 | 86.32 256 | 98.42 283 | 89.70 321 | 99.34 113 | 95.02 363 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UniMVSNet_ETH3D | | | 94.24 269 | 93.33 287 | 96.97 203 | 97.19 273 | 93.38 270 | 98.74 146 | 98.57 151 | 91.21 319 | 93.81 272 | 98.58 153 | 72.85 373 | 98.77 249 | 95.05 188 | 93.93 257 | 98.77 188 |
|
| OurMVSNet-221017-0 | | | 94.21 270 | 94.00 248 | 94.85 316 | 95.60 347 | 89.22 344 | 98.89 103 | 97.43 309 | 95.29 144 | 92.18 324 | 98.52 160 | 82.86 314 | 98.59 263 | 93.46 238 | 91.76 293 | 96.74 287 |
|
| v1921920 | | | 94.20 271 | 93.47 283 | 96.40 258 | 95.98 336 | 94.08 244 | 98.52 187 | 98.15 235 | 91.33 311 | 94.25 249 | 97.20 277 | 86.41 254 | 98.42 283 | 90.04 315 | 89.39 326 | 96.69 299 |
|
| WB-MVSnew | | | 94.19 272 | 94.04 243 | 94.66 323 | 96.82 296 | 92.14 290 | 97.86 269 | 95.96 364 | 93.50 233 | 95.64 208 | 96.77 316 | 88.06 221 | 97.99 328 | 84.87 361 | 96.86 201 | 93.85 378 |
|
| v7n | | | 94.19 272 | 93.43 285 | 96.47 250 | 95.90 339 | 94.38 233 | 99.26 27 | 98.34 199 | 91.99 291 | 92.76 307 | 97.13 279 | 88.31 213 | 98.52 271 | 89.48 326 | 87.70 344 | 96.52 319 |
|
| tpm2 | | | 94.19 272 | 93.76 268 | 95.46 296 | 97.23 267 | 89.04 347 | 97.31 312 | 96.85 347 | 87.08 363 | 96.21 195 | 96.79 315 | 83.75 312 | 98.74 250 | 92.43 271 | 96.23 227 | 98.59 202 |
|
| TESTMET0.1,1 | | | 94.18 275 | 93.69 273 | 95.63 290 | 96.92 288 | 89.12 345 | 96.91 339 | 94.78 377 | 93.17 248 | 94.88 221 | 96.45 329 | 78.52 341 | 98.92 228 | 93.09 247 | 98.50 152 | 98.85 179 |
|
| dp | | | 94.15 276 | 93.90 256 | 94.90 313 | 97.31 263 | 86.82 371 | 96.97 334 | 97.19 323 | 91.22 318 | 96.02 200 | 96.61 325 | 85.51 271 | 99.02 213 | 90.00 316 | 94.30 242 | 98.85 179 |
|
| ET-MVSNet_ETH3D | | | 94.13 277 | 92.98 294 | 97.58 166 | 98.22 187 | 96.20 138 | 97.31 312 | 95.37 370 | 94.53 180 | 79.56 385 | 97.63 248 | 86.51 250 | 97.53 350 | 96.91 119 | 90.74 306 | 99.02 165 |
|
| tpm | | | 94.13 277 | 93.80 263 | 95.12 306 | 96.50 313 | 87.91 365 | 97.44 298 | 95.89 367 | 92.62 269 | 96.37 192 | 96.30 332 | 84.13 303 | 98.30 304 | 93.24 243 | 91.66 296 | 99.14 152 |
|
| testing222 | | | 94.12 279 | 93.03 293 | 97.37 180 | 98.02 208 | 94.66 216 | 97.94 257 | 96.65 354 | 94.63 176 | 95.78 206 | 95.76 345 | 71.49 374 | 98.92 228 | 91.17 294 | 95.88 232 | 98.52 206 |
|
| IterMVS-SCA-FT | | | 94.11 280 | 93.87 258 | 94.85 316 | 97.98 213 | 90.56 323 | 97.18 322 | 98.11 242 | 93.75 213 | 92.58 313 | 97.48 257 | 83.97 306 | 97.41 353 | 92.48 270 | 91.30 299 | 96.58 307 |
|
| Anonymous20231211 | | | 94.10 281 | 93.26 290 | 96.61 231 | 99.11 104 | 94.28 236 | 99.01 76 | 98.88 62 | 86.43 366 | 92.81 305 | 97.57 252 | 81.66 320 | 98.68 256 | 94.83 192 | 89.02 332 | 96.88 271 |
|
| IterMVS | | | 94.09 282 | 93.85 260 | 94.80 319 | 97.99 211 | 90.35 326 | 97.18 322 | 98.12 239 | 93.68 224 | 92.46 319 | 97.34 265 | 84.05 304 | 97.41 353 | 92.51 268 | 91.33 298 | 96.62 303 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test-mter | | | 94.08 283 | 93.51 281 | 95.80 284 | 96.77 297 | 89.70 335 | 96.91 339 | 95.21 372 | 92.89 261 | 94.83 224 | 95.72 350 | 77.69 349 | 98.97 217 | 93.06 248 | 98.50 152 | 98.72 189 |
|
| test0.0.03 1 | | | 94.08 283 | 93.51 281 | 95.80 284 | 95.53 350 | 92.89 284 | 97.38 303 | 95.97 363 | 95.11 154 | 92.51 317 | 96.66 320 | 87.71 230 | 96.94 360 | 87.03 347 | 93.67 263 | 97.57 240 |
|
| v1240 | | | 94.06 285 | 93.29 289 | 96.34 261 | 96.03 335 | 93.90 248 | 98.44 199 | 98.17 232 | 91.18 320 | 94.13 256 | 97.01 298 | 86.05 260 | 98.42 283 | 89.13 331 | 89.50 324 | 96.70 294 |
|
| X-MVStestdata | | | 94.06 285 | 92.30 308 | 99.34 23 | 99.70 22 | 98.35 41 | 99.29 22 | 98.88 62 | 97.40 36 | 98.46 86 | 43.50 399 | 95.90 41 | 99.89 47 | 97.85 71 | 99.74 45 | 99.78 21 |
|
| DTE-MVSNet | | | 93.98 287 | 93.26 290 | 96.14 269 | 96.06 333 | 94.39 232 | 99.20 40 | 98.86 75 | 93.06 254 | 91.78 329 | 97.81 231 | 85.87 264 | 97.58 348 | 90.53 306 | 86.17 360 | 96.46 329 |
|
| pm-mvs1 | | | 93.94 288 | 93.06 292 | 96.59 234 | 96.49 314 | 95.16 192 | 98.95 90 | 98.03 260 | 92.32 282 | 91.08 336 | 97.84 226 | 84.54 294 | 98.41 291 | 92.16 273 | 86.13 362 | 96.19 340 |
|
| MS-PatchMatch | | | 93.84 289 | 93.63 275 | 94.46 331 | 96.18 327 | 89.45 340 | 97.76 278 | 98.27 212 | 92.23 285 | 92.13 325 | 97.49 256 | 79.50 336 | 98.69 253 | 89.75 319 | 99.38 111 | 95.25 356 |
|
| tfpnnormal | | | 93.66 290 | 92.70 300 | 96.55 243 | 96.94 287 | 95.94 154 | 98.97 84 | 99.19 24 | 91.04 321 | 91.38 333 | 97.34 265 | 84.94 282 | 98.61 260 | 85.45 358 | 89.02 332 | 95.11 360 |
|
| EU-MVSNet | | | 93.66 290 | 94.14 239 | 92.25 355 | 95.96 338 | 83.38 379 | 98.52 187 | 98.12 239 | 94.69 172 | 92.61 312 | 98.13 201 | 87.36 239 | 96.39 371 | 91.82 283 | 90.00 315 | 96.98 257 |
|
| our_test_3 | | | 93.65 292 | 93.30 288 | 94.69 321 | 95.45 354 | 89.68 337 | 96.91 339 | 97.65 283 | 91.97 292 | 91.66 331 | 96.88 309 | 89.67 177 | 97.93 333 | 88.02 342 | 91.49 297 | 96.48 327 |
|
| pmmvs5 | | | 93.65 292 | 92.97 295 | 95.68 288 | 95.49 351 | 92.37 287 | 98.20 226 | 97.28 318 | 89.66 344 | 92.58 313 | 97.26 270 | 82.14 317 | 98.09 320 | 93.18 246 | 90.95 305 | 96.58 307 |
|
| test_fmvs2 | | | 93.43 294 | 93.58 277 | 92.95 349 | 96.97 285 | 83.91 376 | 99.19 42 | 97.24 321 | 95.74 120 | 95.20 215 | 98.27 190 | 69.65 376 | 98.72 252 | 96.26 148 | 93.73 262 | 96.24 337 |
|
| tpm cat1 | | | 93.36 295 | 92.80 297 | 95.07 309 | 97.58 239 | 87.97 364 | 96.76 351 | 97.86 274 | 82.17 382 | 93.53 280 | 96.04 341 | 86.13 258 | 99.13 194 | 89.24 329 | 95.87 233 | 98.10 223 |
|
| JIA-IIPM | | | 93.35 296 | 92.49 304 | 95.92 278 | 96.48 315 | 90.65 321 | 95.01 374 | 96.96 337 | 85.93 370 | 96.08 198 | 87.33 389 | 87.70 232 | 98.78 248 | 91.35 291 | 95.58 237 | 98.34 214 |
|
| SixPastTwentyTwo | | | 93.34 297 | 92.86 296 | 94.75 320 | 95.67 345 | 89.41 342 | 98.75 143 | 96.67 352 | 93.89 205 | 90.15 345 | 98.25 193 | 80.87 327 | 98.27 309 | 90.90 302 | 90.64 307 | 96.57 309 |
|
| USDC | | | 93.33 298 | 92.71 299 | 95.21 303 | 96.83 295 | 90.83 317 | 96.91 339 | 97.50 300 | 93.84 208 | 90.72 339 | 98.14 200 | 77.69 349 | 98.82 244 | 89.51 325 | 93.21 278 | 95.97 345 |
|
| IB-MVS | | 91.98 17 | 93.27 299 | 91.97 312 | 97.19 187 | 97.47 249 | 93.41 268 | 97.09 329 | 95.99 362 | 93.32 241 | 92.47 318 | 95.73 348 | 78.06 347 | 99.53 153 | 94.59 203 | 82.98 368 | 98.62 199 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MIMVSNet | | | 93.26 300 | 92.21 309 | 96.41 256 | 97.73 228 | 93.13 279 | 95.65 370 | 97.03 332 | 91.27 316 | 94.04 260 | 96.06 340 | 75.33 362 | 97.19 356 | 86.56 349 | 96.23 227 | 98.92 176 |
|
| ppachtmachnet_test | | | 93.22 301 | 92.63 301 | 94.97 311 | 95.45 354 | 90.84 316 | 96.88 345 | 97.88 273 | 90.60 326 | 92.08 326 | 97.26 270 | 88.08 220 | 97.86 339 | 85.12 360 | 90.33 309 | 96.22 338 |
|
| Patchmtry | | | 93.22 301 | 92.35 307 | 95.84 283 | 96.77 297 | 93.09 281 | 94.66 382 | 97.56 290 | 87.37 362 | 92.90 303 | 96.24 333 | 88.15 217 | 97.90 334 | 87.37 346 | 90.10 314 | 96.53 316 |
|
| testing3 | | | 93.19 303 | 92.48 305 | 95.30 302 | 98.07 203 | 92.27 288 | 98.64 169 | 97.17 324 | 93.94 204 | 93.98 263 | 97.04 293 | 67.97 380 | 96.01 375 | 88.40 337 | 97.14 194 | 97.63 237 |
|
| FMVSNet1 | | | 93.19 303 | 92.07 310 | 96.56 238 | 97.54 244 | 95.00 199 | 98.82 126 | 98.18 227 | 90.38 332 | 92.27 322 | 97.07 287 | 73.68 371 | 97.95 330 | 89.36 328 | 91.30 299 | 96.72 290 |
|
| LF4IMVS | | | 93.14 305 | 92.79 298 | 94.20 334 | 95.88 340 | 88.67 353 | 97.66 286 | 97.07 329 | 93.81 211 | 91.71 330 | 97.65 244 | 77.96 348 | 98.81 245 | 91.47 290 | 91.92 292 | 95.12 359 |
|
| testgi | | | 93.06 306 | 92.45 306 | 94.88 315 | 96.43 318 | 89.90 331 | 98.75 143 | 97.54 296 | 95.60 127 | 91.63 332 | 97.91 218 | 74.46 368 | 97.02 358 | 86.10 352 | 93.67 263 | 97.72 234 |
|
| PatchT | | | 93.06 306 | 91.97 312 | 96.35 260 | 96.69 303 | 92.67 285 | 94.48 383 | 97.08 327 | 86.62 364 | 97.08 155 | 92.23 383 | 87.94 224 | 97.90 334 | 78.89 382 | 96.69 206 | 98.49 208 |
|
| RPMNet | | | 92.81 308 | 91.34 317 | 97.24 184 | 97.00 282 | 93.43 266 | 94.96 375 | 98.80 93 | 82.27 381 | 96.93 163 | 92.12 384 | 86.98 244 | 99.82 76 | 76.32 387 | 96.65 208 | 98.46 209 |
|
| myMVS_eth3d | | | 92.73 309 | 92.01 311 | 94.89 314 | 97.39 259 | 90.94 313 | 97.91 260 | 97.46 303 | 93.16 249 | 93.42 287 | 95.37 356 | 68.09 379 | 96.12 373 | 88.34 338 | 96.99 197 | 97.60 238 |
|
| TransMVSNet (Re) | | | 92.67 310 | 91.51 316 | 96.15 268 | 96.58 309 | 94.65 217 | 98.90 99 | 96.73 348 | 90.86 324 | 89.46 351 | 97.86 223 | 85.62 268 | 98.09 320 | 86.45 350 | 81.12 374 | 95.71 350 |
|
| Syy-MVS | | | 92.55 311 | 92.61 302 | 92.38 352 | 97.39 259 | 83.41 378 | 97.91 260 | 97.46 303 | 93.16 249 | 93.42 287 | 95.37 356 | 84.75 287 | 96.12 373 | 77.00 386 | 96.99 197 | 97.60 238 |
|
| K. test v3 | | | 92.55 311 | 91.91 314 | 94.48 329 | 95.64 346 | 89.24 343 | 99.07 62 | 94.88 376 | 94.04 195 | 86.78 366 | 97.59 250 | 77.64 352 | 97.64 345 | 92.08 275 | 89.43 325 | 96.57 309 |
|
| DSMNet-mixed | | | 92.52 313 | 92.58 303 | 92.33 353 | 94.15 369 | 82.65 381 | 98.30 215 | 94.26 383 | 89.08 353 | 92.65 311 | 95.73 348 | 85.01 281 | 95.76 377 | 86.24 351 | 97.76 181 | 98.59 202 |
|
| TinyColmap | | | 92.31 314 | 91.53 315 | 94.65 324 | 96.92 288 | 89.75 333 | 96.92 337 | 96.68 351 | 90.45 330 | 89.62 348 | 97.85 225 | 76.06 360 | 98.81 245 | 86.74 348 | 92.51 286 | 95.41 354 |
|
| gg-mvs-nofinetune | | | 92.21 315 | 90.58 323 | 97.13 192 | 96.75 300 | 95.09 196 | 95.85 367 | 89.40 399 | 85.43 374 | 94.50 233 | 81.98 392 | 80.80 329 | 98.40 297 | 92.16 273 | 98.33 162 | 97.88 227 |
|
| FMVSNet5 | | | 91.81 316 | 90.92 319 | 94.49 328 | 97.21 269 | 92.09 292 | 98.00 252 | 97.55 295 | 89.31 351 | 90.86 338 | 95.61 353 | 74.48 367 | 95.32 381 | 85.57 356 | 89.70 318 | 96.07 343 |
|
| pmmvs6 | | | 91.77 317 | 90.63 322 | 95.17 305 | 94.69 367 | 91.24 309 | 98.67 165 | 97.92 270 | 86.14 368 | 89.62 348 | 97.56 254 | 75.79 361 | 98.34 298 | 90.75 304 | 84.56 364 | 95.94 346 |
|
| Anonymous20231206 | | | 91.66 318 | 91.10 318 | 93.33 343 | 94.02 373 | 87.35 368 | 98.58 178 | 97.26 320 | 90.48 328 | 90.16 344 | 96.31 331 | 83.83 310 | 96.53 369 | 79.36 380 | 89.90 316 | 96.12 341 |
|
| Patchmatch-RL test | | | 91.49 319 | 90.85 320 | 93.41 341 | 91.37 382 | 84.40 374 | 92.81 387 | 95.93 366 | 91.87 295 | 87.25 363 | 94.87 362 | 88.99 195 | 96.53 369 | 92.54 267 | 82.00 370 | 99.30 125 |
|
| test_0402 | | | 91.32 320 | 90.27 326 | 94.48 329 | 96.60 307 | 91.12 310 | 98.50 192 | 97.22 322 | 86.10 369 | 88.30 359 | 96.98 300 | 77.65 351 | 97.99 328 | 78.13 384 | 92.94 281 | 94.34 367 |
|
| test_vis1_rt | | | 91.29 321 | 90.65 321 | 93.19 347 | 97.45 253 | 86.25 372 | 98.57 183 | 90.90 397 | 93.30 243 | 86.94 365 | 93.59 374 | 62.07 387 | 99.11 198 | 97.48 100 | 95.58 237 | 94.22 370 |
|
| PVSNet_0 | | 88.72 19 | 91.28 322 | 90.03 328 | 95.00 310 | 97.99 211 | 87.29 369 | 94.84 378 | 98.50 169 | 92.06 290 | 89.86 346 | 95.19 358 | 79.81 335 | 99.39 169 | 92.27 272 | 69.79 392 | 98.33 215 |
|
| Anonymous20240521 | | | 91.18 323 | 90.44 324 | 93.42 340 | 93.70 374 | 88.47 357 | 98.94 93 | 97.56 290 | 88.46 357 | 89.56 350 | 95.08 361 | 77.15 356 | 96.97 359 | 83.92 367 | 89.55 322 | 94.82 365 |
|
| EG-PatchMatch MVS | | | 91.13 324 | 90.12 327 | 94.17 336 | 94.73 366 | 89.00 348 | 98.13 238 | 97.81 276 | 89.22 352 | 85.32 376 | 96.46 328 | 67.71 381 | 98.42 283 | 87.89 344 | 93.82 259 | 95.08 361 |
|
| TDRefinement | | | 91.06 325 | 89.68 330 | 95.21 303 | 85.35 397 | 91.49 305 | 98.51 191 | 97.07 329 | 91.47 304 | 88.83 357 | 97.84 226 | 77.31 353 | 99.09 203 | 92.79 258 | 77.98 385 | 95.04 362 |
|
| UnsupCasMVSNet_eth | | | 90.99 326 | 89.92 329 | 94.19 335 | 94.08 370 | 89.83 332 | 97.13 328 | 98.67 128 | 93.69 222 | 85.83 372 | 96.19 338 | 75.15 363 | 96.74 363 | 89.14 330 | 79.41 381 | 96.00 344 |
|
| test20.03 | | | 90.89 327 | 90.38 325 | 92.43 351 | 93.48 375 | 88.14 363 | 98.33 208 | 97.56 290 | 93.40 238 | 87.96 360 | 96.71 319 | 80.69 330 | 94.13 386 | 79.15 381 | 86.17 360 | 95.01 364 |
|
| MDA-MVSNet_test_wron | | | 90.71 328 | 89.38 333 | 94.68 322 | 94.83 363 | 90.78 318 | 97.19 321 | 97.46 303 | 87.60 360 | 72.41 392 | 95.72 350 | 86.51 250 | 96.71 366 | 85.92 354 | 86.80 357 | 96.56 311 |
|
| YYNet1 | | | 90.70 329 | 89.39 332 | 94.62 325 | 94.79 365 | 90.65 321 | 97.20 319 | 97.46 303 | 87.54 361 | 72.54 391 | 95.74 346 | 86.51 250 | 96.66 367 | 86.00 353 | 86.76 358 | 96.54 314 |
|
| KD-MVS_self_test | | | 90.38 330 | 89.38 333 | 93.40 342 | 92.85 378 | 88.94 350 | 97.95 255 | 97.94 268 | 90.35 333 | 90.25 343 | 93.96 371 | 79.82 334 | 95.94 376 | 84.62 366 | 76.69 387 | 95.33 355 |
|
| pmmvs-eth3d | | | 90.36 331 | 89.05 336 | 94.32 333 | 91.10 384 | 92.12 291 | 97.63 291 | 96.95 338 | 88.86 355 | 84.91 377 | 93.13 378 | 78.32 343 | 96.74 363 | 88.70 334 | 81.81 372 | 94.09 373 |
|
| CL-MVSNet_self_test | | | 90.11 332 | 89.14 335 | 93.02 348 | 91.86 381 | 88.23 362 | 96.51 359 | 98.07 252 | 90.49 327 | 90.49 342 | 94.41 366 | 84.75 287 | 95.34 380 | 80.79 376 | 74.95 389 | 95.50 353 |
|
| new_pmnet | | | 90.06 333 | 89.00 337 | 93.22 346 | 94.18 368 | 88.32 360 | 96.42 361 | 96.89 343 | 86.19 367 | 85.67 373 | 93.62 373 | 77.18 355 | 97.10 357 | 81.61 374 | 89.29 327 | 94.23 369 |
|
| MDA-MVSNet-bldmvs | | | 89.97 334 | 88.35 340 | 94.83 318 | 95.21 358 | 91.34 306 | 97.64 288 | 97.51 299 | 88.36 358 | 71.17 393 | 96.13 339 | 79.22 338 | 96.63 368 | 83.65 368 | 86.27 359 | 96.52 319 |
|
| CMPMVS |  | 66.06 21 | 89.70 335 | 89.67 331 | 89.78 360 | 93.19 376 | 76.56 386 | 97.00 333 | 98.35 197 | 80.97 383 | 81.57 382 | 97.75 234 | 74.75 365 | 98.61 260 | 89.85 317 | 93.63 266 | 94.17 371 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet1 | | | 89.67 336 | 88.28 341 | 93.82 337 | 92.81 379 | 91.08 311 | 98.01 250 | 97.45 307 | 87.95 359 | 87.90 361 | 95.87 344 | 67.63 382 | 94.56 385 | 78.73 383 | 88.18 340 | 95.83 348 |
|
| KD-MVS_2432*1600 | | | 89.61 337 | 87.96 344 | 94.54 326 | 94.06 371 | 91.59 303 | 95.59 371 | 97.63 285 | 89.87 340 | 88.95 354 | 94.38 368 | 78.28 344 | 96.82 361 | 84.83 362 | 68.05 393 | 95.21 357 |
|
| miper_refine_blended | | | 89.61 337 | 87.96 344 | 94.54 326 | 94.06 371 | 91.59 303 | 95.59 371 | 97.63 285 | 89.87 340 | 88.95 354 | 94.38 368 | 78.28 344 | 96.82 361 | 84.83 362 | 68.05 393 | 95.21 357 |
|
| MVS-HIRNet | | | 89.46 339 | 88.40 339 | 92.64 350 | 97.58 239 | 82.15 382 | 94.16 386 | 93.05 391 | 75.73 388 | 90.90 337 | 82.52 391 | 79.42 337 | 98.33 299 | 83.53 369 | 98.68 140 | 97.43 241 |
|
| OpenMVS_ROB |  | 86.42 20 | 89.00 340 | 87.43 348 | 93.69 338 | 93.08 377 | 89.42 341 | 97.91 260 | 96.89 343 | 78.58 385 | 85.86 371 | 94.69 363 | 69.48 377 | 98.29 307 | 77.13 385 | 93.29 277 | 93.36 380 |
|
| mvsany_test3 | | | 88.80 341 | 88.04 342 | 91.09 359 | 89.78 387 | 81.57 384 | 97.83 274 | 95.49 369 | 93.81 211 | 87.53 362 | 93.95 372 | 56.14 390 | 97.43 352 | 94.68 196 | 83.13 367 | 94.26 368 |
|
| new-patchmatchnet | | | 88.50 342 | 87.45 347 | 91.67 357 | 90.31 386 | 85.89 373 | 97.16 326 | 97.33 315 | 89.47 347 | 83.63 379 | 92.77 380 | 76.38 358 | 95.06 383 | 82.70 371 | 77.29 386 | 94.06 375 |
|
| APD_test1 | | | 88.22 343 | 88.01 343 | 88.86 362 | 95.98 336 | 74.66 392 | 97.21 318 | 96.44 357 | 83.96 379 | 86.66 368 | 97.90 219 | 60.95 388 | 97.84 340 | 82.73 370 | 90.23 312 | 94.09 373 |
|
| PM-MVS | | | 87.77 344 | 86.55 350 | 91.40 358 | 91.03 385 | 83.36 380 | 96.92 337 | 95.18 374 | 91.28 315 | 86.48 370 | 93.42 375 | 53.27 391 | 96.74 363 | 89.43 327 | 81.97 371 | 94.11 372 |
|
| dmvs_testset | | | 87.64 345 | 88.93 338 | 83.79 370 | 95.25 357 | 63.36 401 | 97.20 319 | 91.17 395 | 93.07 253 | 85.64 374 | 95.98 343 | 85.30 278 | 91.52 393 | 69.42 392 | 87.33 349 | 96.49 325 |
|
| test_fmvs3 | | | 87.17 346 | 87.06 349 | 87.50 364 | 91.21 383 | 75.66 388 | 99.05 65 | 96.61 355 | 92.79 265 | 88.85 356 | 92.78 379 | 43.72 394 | 93.49 387 | 93.95 223 | 84.56 364 | 93.34 381 |
|
| UnsupCasMVSNet_bld | | | 87.17 346 | 85.12 353 | 93.31 344 | 91.94 380 | 88.77 351 | 94.92 377 | 98.30 209 | 84.30 378 | 82.30 380 | 90.04 386 | 63.96 386 | 97.25 355 | 85.85 355 | 74.47 391 | 93.93 377 |
|
| N_pmnet | | | 87.12 348 | 87.77 346 | 85.17 368 | 95.46 353 | 61.92 402 | 97.37 305 | 70.66 407 | 85.83 371 | 88.73 358 | 96.04 341 | 85.33 276 | 97.76 342 | 80.02 377 | 90.48 308 | 95.84 347 |
|
| pmmvs3 | | | 86.67 349 | 84.86 354 | 92.11 356 | 88.16 391 | 87.19 370 | 96.63 355 | 94.75 378 | 79.88 384 | 87.22 364 | 92.75 381 | 66.56 384 | 95.20 382 | 81.24 375 | 76.56 388 | 93.96 376 |
|
| test_f | | | 86.07 350 | 85.39 351 | 88.10 363 | 89.28 389 | 75.57 389 | 97.73 281 | 96.33 359 | 89.41 350 | 85.35 375 | 91.56 385 | 43.31 396 | 95.53 378 | 91.32 292 | 84.23 366 | 93.21 382 |
|
| WB-MVS | | | 84.86 351 | 85.33 352 | 83.46 371 | 89.48 388 | 69.56 396 | 98.19 229 | 96.42 358 | 89.55 346 | 81.79 381 | 94.67 364 | 84.80 285 | 90.12 394 | 52.44 397 | 80.64 378 | 90.69 385 |
|
| SSC-MVS | | | 84.27 352 | 84.71 355 | 82.96 375 | 89.19 390 | 68.83 397 | 98.08 243 | 96.30 360 | 89.04 354 | 81.37 383 | 94.47 365 | 84.60 292 | 89.89 395 | 49.80 399 | 79.52 380 | 90.15 386 |
|
| test_vis3_rt | | | 79.22 353 | 77.40 359 | 84.67 369 | 86.44 395 | 74.85 391 | 97.66 286 | 81.43 404 | 84.98 375 | 67.12 395 | 81.91 393 | 28.09 404 | 97.60 346 | 88.96 332 | 80.04 379 | 81.55 393 |
|
| test_method | | | 79.03 354 | 78.17 356 | 81.63 376 | 86.06 396 | 54.40 407 | 82.75 395 | 96.89 343 | 39.54 399 | 80.98 384 | 95.57 354 | 58.37 389 | 94.73 384 | 84.74 365 | 78.61 382 | 95.75 349 |
|
| testf1 | | | 79.02 355 | 77.70 357 | 82.99 373 | 88.10 392 | 66.90 398 | 94.67 380 | 93.11 388 | 71.08 390 | 74.02 388 | 93.41 376 | 34.15 400 | 93.25 388 | 72.25 390 | 78.50 383 | 88.82 388 |
|
| APD_test2 | | | 79.02 355 | 77.70 357 | 82.99 373 | 88.10 392 | 66.90 398 | 94.67 380 | 93.11 388 | 71.08 390 | 74.02 388 | 93.41 376 | 34.15 400 | 93.25 388 | 72.25 390 | 78.50 383 | 88.82 388 |
|
| LCM-MVSNet | | | 78.70 357 | 76.24 362 | 86.08 366 | 77.26 403 | 71.99 394 | 94.34 384 | 96.72 349 | 61.62 394 | 76.53 386 | 89.33 387 | 33.91 402 | 92.78 391 | 81.85 373 | 74.60 390 | 93.46 379 |
|
| Gipuma |  | | 78.40 358 | 76.75 361 | 83.38 372 | 95.54 349 | 80.43 385 | 79.42 396 | 97.40 311 | 64.67 393 | 73.46 390 | 80.82 394 | 45.65 393 | 93.14 390 | 66.32 394 | 87.43 347 | 76.56 396 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 77.95 359 | 75.44 363 | 85.46 367 | 82.54 398 | 74.95 390 | 94.23 385 | 93.08 390 | 72.80 389 | 74.68 387 | 87.38 388 | 36.36 399 | 91.56 392 | 73.95 388 | 63.94 395 | 89.87 387 |
|
| FPMVS | | | 77.62 360 | 77.14 360 | 79.05 378 | 79.25 401 | 60.97 403 | 95.79 368 | 95.94 365 | 65.96 392 | 67.93 394 | 94.40 367 | 37.73 398 | 88.88 397 | 68.83 393 | 88.46 337 | 87.29 390 |
|
| EGC-MVSNET | | | 75.22 361 | 69.54 364 | 92.28 354 | 94.81 364 | 89.58 338 | 97.64 288 | 96.50 356 | 1.82 404 | 5.57 405 | 95.74 346 | 68.21 378 | 96.26 372 | 73.80 389 | 91.71 294 | 90.99 384 |
|
| ANet_high | | | 69.08 362 | 65.37 366 | 80.22 377 | 65.99 405 | 71.96 395 | 90.91 391 | 90.09 398 | 82.62 380 | 49.93 400 | 78.39 395 | 29.36 403 | 81.75 398 | 62.49 395 | 38.52 399 | 86.95 392 |
|
| tmp_tt | | | 68.90 363 | 66.97 365 | 74.68 380 | 50.78 407 | 59.95 404 | 87.13 392 | 83.47 403 | 38.80 400 | 62.21 396 | 96.23 335 | 64.70 385 | 76.91 402 | 88.91 333 | 30.49 400 | 87.19 391 |
|
| PMVS |  | 61.03 23 | 65.95 364 | 63.57 368 | 73.09 381 | 57.90 406 | 51.22 408 | 85.05 394 | 93.93 387 | 54.45 395 | 44.32 401 | 83.57 390 | 13.22 405 | 89.15 396 | 58.68 396 | 81.00 375 | 78.91 395 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 64.94 365 | 64.25 367 | 67.02 382 | 82.28 399 | 59.36 405 | 91.83 390 | 85.63 401 | 52.69 396 | 60.22 397 | 77.28 396 | 41.06 397 | 80.12 400 | 46.15 400 | 41.14 397 | 61.57 398 |
|
| EMVS | | | 64.07 366 | 63.26 369 | 66.53 383 | 81.73 400 | 58.81 406 | 91.85 389 | 84.75 402 | 51.93 398 | 59.09 398 | 75.13 397 | 43.32 395 | 79.09 401 | 42.03 401 | 39.47 398 | 61.69 397 |
|
| MVE |  | 62.14 22 | 63.28 367 | 59.38 370 | 74.99 379 | 74.33 404 | 65.47 400 | 85.55 393 | 80.50 405 | 52.02 397 | 51.10 399 | 75.00 398 | 10.91 408 | 80.50 399 | 51.60 398 | 53.40 396 | 78.99 394 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 30.17 368 | 30.18 372 | 30.16 384 | 78.61 402 | 43.29 409 | 66.79 397 | 14.21 408 | 17.31 401 | 14.82 404 | 11.93 404 | 11.55 407 | 41.43 403 | 37.08 402 | 19.30 401 | 5.76 401 |
|
| cdsmvs_eth3d_5k | | | 23.98 369 | 31.98 371 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 98.59 144 | 0.00 405 | 0.00 406 | 98.61 148 | 90.60 162 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| testmvs | | | 21.48 370 | 24.95 373 | 11.09 386 | 14.89 408 | 6.47 411 | 96.56 357 | 9.87 409 | 7.55 402 | 17.93 402 | 39.02 400 | 9.43 409 | 5.90 405 | 16.56 404 | 12.72 402 | 20.91 400 |
|
| test123 | | | 20.95 371 | 23.72 374 | 12.64 385 | 13.54 409 | 8.19 410 | 96.55 358 | 6.13 410 | 7.48 403 | 16.74 403 | 37.98 401 | 12.97 406 | 6.05 404 | 16.69 403 | 5.43 403 | 23.68 399 |
|
| ab-mvs-re | | | 8.20 372 | 10.94 375 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 98.43 168 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| pcd_1.5k_mvsjas | | | 7.88 373 | 10.50 376 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 94.51 81 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| test_blank | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| uanet_test | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| DCPMVS | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| sosnet-low-res | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| sosnet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| uncertanet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| Regformer | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| uanet | | | 0.00 374 | 0.00 377 | 0.00 387 | 0.00 410 | 0.00 412 | 0.00 398 | 0.00 411 | 0.00 405 | 0.00 406 | 0.00 405 | 0.00 410 | 0.00 406 | 0.00 405 | 0.00 404 | 0.00 402 |
|
| WAC-MVS | | | | | | | 90.94 313 | | | | | | | | 88.66 335 | | |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 46 | 97.46 34 | 99.39 30 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 30 | 99.80 19 | 99.86 8 |
|
| PC_three_1452 | | | | | | | | | | 95.08 158 | 99.60 19 | 99.16 77 | 97.86 2 | 98.47 277 | 97.52 98 | 99.72 51 | 99.74 37 |
|
| No_MVS | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 30 | 99.80 19 | 99.86 8 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 75 | 97.55 28 | 99.20 38 | 99.47 20 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 410 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 410 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 98 | 93.21 246 | 98.67 73 | 98.97 105 | 95.70 45 | 99.83 69 | 96.07 152 | 99.58 79 | |
|
| RE-MVS-def | | | | 98.34 35 | | 99.49 45 | 97.86 62 | 99.11 55 | 98.80 93 | 96.49 86 | 99.17 41 | 99.35 44 | 95.29 61 | | 97.72 80 | 99.65 64 | 99.71 49 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 136 | 95.28 145 | 99.63 18 | | | | 98.35 47 | 99.81 12 | 99.83 13 |
|
| OPU-MVS | | | | | 99.37 20 | 99.24 87 | 99.05 14 | 99.02 74 | | | | 99.16 77 | 97.81 3 | 99.37 170 | 97.24 107 | 99.73 48 | 99.70 53 |
|
| test_241102_TWO | | | | | | | | | 98.87 69 | 97.65 22 | 99.53 23 | 99.48 18 | 97.34 11 | 99.94 8 | 98.43 42 | 99.80 19 | 99.83 13 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 69 | 97.62 24 | 99.73 10 | 99.39 32 | 97.53 7 | 99.74 111 | | | |
|
| 9.14 | | | | 98.06 58 | | 99.47 47 | | 98.71 155 | 98.82 81 | 94.36 187 | 99.16 44 | 99.29 53 | 96.05 33 | 99.81 81 | 97.00 114 | 99.71 53 | |
|
| save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 224 | 98.71 116 | 97.95 13 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 97.32 42 | 99.45 25 | 99.46 24 | 97.88 1 | 99.94 8 | 98.47 38 | 99.86 1 | 99.85 10 |
|
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 84 | 98.88 62 | | | | | 99.94 8 | 98.47 38 | 99.81 12 | 99.84 12 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 63 | 98.88 62 | 97.62 24 | 99.56 20 | 99.50 15 | 97.42 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 139 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 35 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 181 | | | | 99.20 139 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 195 | | | | |
|
| ambc | | | | | 89.49 361 | 86.66 394 | 75.78 387 | 92.66 388 | 96.72 349 | | 86.55 369 | 92.50 382 | 46.01 392 | 97.90 334 | 90.32 308 | 82.09 369 | 94.80 366 |
|
| MTGPA |  | | | | | | | | 98.74 108 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 354 | | | | 30.43 403 | 87.85 228 | 98.69 253 | 92.59 263 | | |
|
| test_post | | | | | | | | | | | | 31.83 402 | 88.83 202 | 98.91 230 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 360 | 89.42 182 | 98.89 234 | | | |
|
| GG-mvs-BLEND | | | | | 96.59 234 | 96.34 322 | 94.98 202 | 96.51 359 | 88.58 400 | | 93.10 300 | 94.34 370 | 80.34 333 | 98.05 323 | 89.53 324 | 96.99 197 | 96.74 287 |
|
| MTMP | | | | | | | | 98.89 103 | 94.14 385 | | | | | | | | |
|
| gm-plane-assit | | | | | | 95.88 340 | 87.47 367 | | | 89.74 343 | | 96.94 306 | | 99.19 186 | 93.32 242 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 146 | 99.57 80 | 99.69 56 |
|
| TEST9 | | | | | | 99.31 64 | 98.50 29 | 97.92 258 | 98.73 111 | 92.63 268 | 97.74 130 | 98.68 142 | 96.20 28 | 99.80 88 | | | |
|
| test_8 | | | | | | 99.29 73 | 98.44 31 | 97.89 266 | 98.72 113 | 92.98 257 | 97.70 134 | 98.66 145 | 96.20 28 | 99.80 88 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 162 | 99.57 80 | 99.68 61 |
|
| agg_prior | | | | | | 99.30 68 | 98.38 35 | | 98.72 113 | | 97.57 144 | | | 99.81 81 | | | |
|
| TestCases | | | | | 96.99 200 | 99.25 81 | 93.21 277 | | 98.18 227 | 91.36 308 | 93.52 281 | 98.77 132 | 84.67 290 | 99.72 113 | 89.70 321 | 97.87 176 | 98.02 225 |
|
| test_prior4 | | | | | | | 98.01 59 | 97.86 269 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 97.80 275 | | 96.12 103 | 97.89 124 | 98.69 141 | 95.96 37 | | 96.89 123 | 99.60 74 | |
|
| test_prior | | | | | 99.19 40 | 99.31 64 | 98.22 47 | | 98.84 79 | | | | | 99.70 119 | | | 99.65 69 |
|
| 旧先验2 | | | | | | | | 97.57 294 | | 91.30 313 | 98.67 73 | | | 99.80 88 | 95.70 170 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 97.64 288 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 99.16 45 | 99.34 57 | 98.01 59 | | 98.69 120 | 90.06 337 | 98.13 101 | 98.95 112 | 94.60 79 | 99.89 47 | 91.97 281 | 99.47 99 | 99.59 79 |
|
| 旧先验1 | | | | | | 99.29 73 | 97.48 76 | | 98.70 119 | | | 99.09 92 | 95.56 48 | | | 99.47 99 | 99.61 75 |
|
| æ— å…ˆéªŒ | | | | | | | | 97.58 293 | 98.72 113 | 91.38 307 | | | | 99.87 58 | 93.36 241 | | 99.60 77 |
|
| 原ACMM2 | | | | | | | | 97.67 285 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.65 75 | 99.32 62 | 96.62 112 | | 98.67 128 | 93.27 245 | 97.81 125 | 98.97 105 | 95.18 67 | 99.83 69 | 93.84 227 | 99.46 102 | 99.50 91 |
|
| test222 | | | | | | 99.23 88 | 97.17 92 | 97.40 301 | 98.66 131 | 88.68 356 | 98.05 106 | 98.96 110 | 94.14 93 | | | 99.53 91 | 99.61 75 |
|
| testdata2 | | | | | | | | | | | | | | 99.89 47 | 91.65 288 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata | | | | | 98.26 110 | 99.20 92 | 95.36 181 | | 98.68 123 | 91.89 294 | 98.60 81 | 99.10 86 | 94.44 86 | 99.82 76 | 94.27 213 | 99.44 103 | 99.58 83 |
|
| testdata1 | | | | | | | | 97.32 311 | | 96.34 95 | | | | | | | |
|
| test12 | | | | | 99.18 42 | 99.16 98 | 98.19 48 | | 98.53 159 | | 98.07 105 | | 95.13 70 | 99.72 113 | | 99.56 86 | 99.63 73 |
|
| plane_prior7 | | | | | | 97.42 255 | 94.63 219 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 262 | 94.61 222 | | | | | | 87.09 241 | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 153 | | | | | 99.03 210 | 96.07 152 | 94.27 243 | 96.92 262 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 187 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 222 | | | 97.02 64 | 95.34 212 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 135 | | 97.28 45 | | | | | | | |
|
| plane_prior1 | | | | | | 97.37 261 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.60 224 | 98.44 199 | | 96.74 77 | | | | | | 94.22 245 | |
|
| n2 | | | | | | | | | 0.00 411 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 411 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 381 | | | | | | | | |
|
| lessismore_v0 | | | | | 94.45 332 | 94.93 362 | 88.44 358 | | 91.03 396 | | 86.77 367 | 97.64 246 | 76.23 359 | 98.42 283 | 90.31 309 | 85.64 363 | 96.51 322 |
|
| LGP-MVS_train | | | | | 96.47 250 | 97.46 250 | 93.54 261 | | 98.54 157 | 94.67 174 | 94.36 243 | 98.77 132 | 85.39 272 | 99.11 198 | 95.71 168 | 94.15 249 | 96.76 285 |
|
| test11 | | | | | | | | | 98.66 131 | | | | | | | | |
|
| door | | | | | | | | | 94.64 379 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 239 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.20 270 | | 98.05 246 | | 96.43 89 | 94.45 235 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 270 | | 98.05 246 | | 96.43 89 | 94.45 235 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 180 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 235 | | | 98.96 221 | | | 96.87 273 |
|
| HQP3-MVS | | | | | | | | | 98.46 176 | | | | | | | 94.18 247 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 247 | | | | |
|
| NP-MVS | | | | | | 97.28 264 | 94.51 227 | | | | | 97.73 235 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 375 | 96.89 344 | | 90.97 322 | 97.90 123 | | 89.89 173 | | 93.91 225 | | 99.18 148 |
|
| MDTV_nov1_ep13 | | | | 95.40 171 | | 97.48 248 | 88.34 359 | 96.85 347 | 97.29 317 | 93.74 215 | 97.48 146 | 97.26 270 | 89.18 189 | 99.05 206 | 91.92 282 | 97.43 190 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 280 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 267 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 78 | | | | |
|
| ITE_SJBPF | | | | | 95.44 297 | 97.42 255 | 91.32 307 | | 97.50 300 | 95.09 157 | 93.59 277 | 98.35 178 | 81.70 319 | 98.88 236 | 89.71 320 | 93.39 274 | 96.12 341 |
|
| DeepMVS_CX |  | | | | 86.78 365 | 97.09 280 | 72.30 393 | | 95.17 375 | 75.92 387 | 84.34 378 | 95.19 358 | 70.58 375 | 95.35 379 | 79.98 379 | 89.04 331 | 92.68 383 |
|