This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6797.65 2099.73 899.48 1897.53 799.94 698.43 4099.81 1299.70 51
DVP-MVS++99.08 298.89 399.64 399.17 9299.23 799.69 198.88 6097.32 4099.53 2199.47 2097.81 399.94 698.47 3699.72 4999.74 35
DVP-MVScopyleft99.03 398.83 799.63 499.72 1299.25 298.97 8498.58 14797.62 2299.45 2399.46 2497.42 999.94 698.47 3699.81 1299.69 54
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 498.84 699.55 999.57 3398.96 1699.39 1298.93 4897.38 3799.41 2699.54 896.66 1799.84 6598.86 1999.85 599.87 5
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmconf_n98.92 598.87 499.04 5398.88 12397.25 8698.82 12499.34 1098.75 399.80 399.61 495.16 6699.95 599.70 499.80 1999.93 1
DPE-MVScopyleft98.92 598.67 1099.65 299.58 3299.20 998.42 20198.91 5497.58 2599.54 2099.46 2497.10 1299.94 697.64 8599.84 1099.83 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 798.75 899.36 2199.22 8798.43 3399.10 5898.87 6797.38 3799.35 3099.40 2997.78 599.87 5697.77 7599.85 599.78 19
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 899.01 198.45 9199.42 5496.43 12498.96 8999.36 998.63 599.86 299.51 1395.91 3799.97 199.72 399.75 4098.94 172
TSAR-MVS + MP.98.78 998.62 1199.24 3699.69 2498.28 4599.14 4998.66 12996.84 6999.56 1899.31 4996.34 2399.70 11798.32 4699.73 4699.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 998.56 1499.45 1599.32 6098.87 1998.47 19398.81 8497.72 1598.76 6699.16 7597.05 1399.78 9998.06 5599.66 5999.69 54
MSP-MVS98.74 1198.55 1599.29 2999.75 398.23 4699.26 2798.88 6097.52 2799.41 2698.78 12896.00 3399.79 9697.79 7499.59 7499.85 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1298.49 1999.34 2399.70 2298.35 4199.29 2298.88 6097.40 3498.46 8499.20 6595.90 3999.89 4597.85 6999.74 4499.78 19
MCST-MVS98.65 1398.37 2799.48 1399.60 3198.87 1998.41 20298.68 12197.04 6198.52 8398.80 12696.78 1699.83 6797.93 6299.61 7099.74 35
SD-MVS98.64 1498.68 998.53 8399.33 5798.36 4098.90 9998.85 7697.28 4399.72 1099.39 3096.63 1997.60 34198.17 5099.85 599.64 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1598.40 2499.32 2899.72 1298.29 4499.23 3198.96 4396.10 10298.94 5199.17 7296.06 3099.92 2997.62 8699.78 2899.75 33
ACMMP_NAP98.61 1698.30 3999.55 999.62 3098.95 1798.82 12498.81 8495.80 11699.16 4299.47 2095.37 5499.92 2997.89 6699.75 4099.79 17
region2R98.61 1698.38 2699.29 2999.74 798.16 5199.23 3198.93 4896.15 9998.94 5199.17 7295.91 3799.94 697.55 9399.79 2499.78 19
NCCC98.61 1698.35 3099.38 1899.28 7598.61 2698.45 19498.76 10297.82 1498.45 8798.93 11296.65 1899.83 6797.38 10299.41 10499.71 47
SF-MVS98.59 1998.32 3899.41 1799.54 3598.71 2299.04 6898.81 8495.12 15199.32 3199.39 3096.22 2499.84 6597.72 7899.73 4699.67 63
ACMMPR98.59 1998.36 2899.29 2999.74 798.15 5299.23 3198.95 4496.10 10298.93 5599.19 7095.70 4399.94 697.62 8699.79 2499.78 19
test_fmvsmconf0.1_n98.58 2198.44 2298.99 5597.73 22397.15 9198.84 12098.97 4098.75 399.43 2599.54 893.29 10099.93 2399.64 799.79 2499.89 4
SMA-MVScopyleft98.58 2198.25 4299.56 899.51 3999.04 1598.95 9098.80 9193.67 22299.37 2999.52 1196.52 2199.89 4598.06 5599.81 1299.76 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2198.29 4099.46 1499.76 298.64 2598.90 9998.74 10697.27 4798.02 10999.39 3094.81 7599.96 497.91 6499.79 2499.77 25
HPM-MVS++copyleft98.58 2198.25 4299.55 999.50 4199.08 1198.72 15298.66 12997.51 2898.15 9898.83 12395.70 4399.92 2997.53 9599.67 5799.66 66
SR-MVS98.57 2598.35 3099.24 3699.53 3698.18 4999.09 5998.82 7996.58 8199.10 4499.32 4795.39 5299.82 7497.70 8299.63 6799.72 43
CP-MVS98.57 2598.36 2899.19 4099.66 2697.86 6299.34 1898.87 6795.96 10798.60 7999.13 8096.05 3199.94 697.77 7599.86 199.77 25
MSLP-MVS++98.56 2798.57 1398.55 7999.26 7896.80 10398.71 15399.05 3497.28 4398.84 6099.28 5296.47 2299.40 16698.52 3499.70 5299.47 98
DeepC-MVS_fast96.70 198.55 2898.34 3399.18 4299.25 7998.04 5798.50 19098.78 9897.72 1598.92 5799.28 5295.27 6099.82 7497.55 9399.77 3099.69 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 2998.35 3099.13 4799.49 4597.86 6299.11 5598.80 9196.49 8499.17 3999.35 4295.34 5699.82 7497.72 7899.65 6299.71 47
APD-MVS_3200maxsize98.53 3098.33 3799.15 4699.50 4197.92 6199.15 4798.81 8496.24 9599.20 3699.37 3695.30 5899.80 8697.73 7799.67 5799.72 43
mPP-MVS98.51 3198.26 4199.25 3599.75 398.04 5799.28 2498.81 8496.24 9598.35 9499.23 6095.46 4999.94 697.42 10099.81 1299.77 25
ZNCC-MVS98.49 3298.20 4999.35 2299.73 1198.39 3499.19 4298.86 7395.77 11798.31 9799.10 8495.46 4999.93 2397.57 9299.81 1299.74 35
CS-MVS-test98.49 3298.50 1898.46 9099.20 9097.05 9399.64 498.50 16797.45 3398.88 5899.14 7995.25 6299.15 18998.83 2099.56 8499.20 137
PGM-MVS98.49 3298.23 4599.27 3499.72 1298.08 5698.99 8199.49 595.43 13399.03 4599.32 4795.56 4699.94 696.80 13199.77 3099.78 19
MVS_030498.47 3598.22 4799.21 3999.00 11197.80 6798.88 10795.32 36698.86 298.53 8299.44 2794.38 8599.94 699.86 199.70 5299.90 3
EI-MVSNet-Vis-set98.47 3598.39 2598.69 7099.46 4996.49 12198.30 21398.69 11897.21 5098.84 6099.36 4095.41 5199.78 9998.62 2499.65 6299.80 16
MVS_111021_HR98.47 3598.34 3398.88 6499.22 8797.32 7997.91 25699.58 397.20 5198.33 9599.00 10195.99 3499.64 12998.05 5799.76 3699.69 54
test_fmvsmvis_n_192098.44 3898.51 1698.23 11198.33 17596.15 13998.97 8499.15 2698.55 798.45 8799.55 694.26 8999.97 199.65 599.66 5998.57 202
CS-MVS98.44 3898.49 1998.31 10399.08 10496.73 10799.67 398.47 17397.17 5398.94 5199.10 8495.73 4299.13 19298.71 2299.49 9499.09 155
GST-MVS98.43 4098.12 5299.34 2399.72 1298.38 3599.09 5998.82 7995.71 12198.73 6999.06 9495.27 6099.93 2397.07 11199.63 6799.72 43
fmvsm_s_conf0.5_n98.42 4198.51 1698.13 12099.30 6695.25 18598.85 11699.39 797.94 1299.74 799.62 392.59 10899.91 3799.65 599.52 9099.25 131
EI-MVSNet-UG-set98.41 4298.34 3398.61 7599.45 5296.32 13298.28 21698.68 12197.17 5398.74 6799.37 3695.25 6299.79 9698.57 2599.54 8799.73 40
DELS-MVS98.40 4398.20 4998.99 5599.00 11197.66 6897.75 27498.89 5797.71 1798.33 9598.97 10394.97 7299.88 5498.42 4299.76 3699.42 109
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 4498.42 2398.27 10599.09 10395.41 17698.86 11499.37 897.69 1999.78 499.61 492.38 11199.91 3799.58 899.43 10299.49 94
TSAR-MVS + GP.98.38 4498.24 4498.81 6699.22 8797.25 8698.11 23898.29 20997.19 5298.99 5099.02 9696.22 2499.67 12498.52 3498.56 14799.51 87
HPM-MVS_fast98.38 4498.13 5199.12 4999.75 397.86 6299.44 1198.82 7994.46 18298.94 5199.20 6595.16 6699.74 10997.58 8999.85 599.77 25
patch_mono-298.36 4798.87 496.82 21099.53 3690.68 31598.64 16799.29 1297.88 1399.19 3899.52 1196.80 1599.97 199.11 1499.86 199.82 14
HPM-MVScopyleft98.36 4798.10 5499.13 4799.74 797.82 6699.53 898.80 9194.63 17498.61 7898.97 10395.13 6899.77 10497.65 8499.83 1199.79 17
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 4998.00 5999.42 1699.51 3998.72 2198.80 13398.82 7994.52 17999.23 3599.25 5995.54 4899.80 8696.52 13999.77 3099.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5098.23 4598.67 7299.27 7696.90 9997.95 25299.58 397.14 5698.44 8999.01 10095.03 7199.62 13597.91 6499.75 4099.50 89
PHI-MVS98.34 5098.06 5599.18 4299.15 9898.12 5599.04 6899.09 2993.32 23698.83 6299.10 8496.54 2099.83 6797.70 8299.76 3699.59 77
MP-MVScopyleft98.33 5298.01 5899.28 3299.75 398.18 4999.22 3598.79 9696.13 10097.92 12099.23 6094.54 7899.94 696.74 13499.78 2899.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5397.92 6199.49 1299.72 1298.88 1898.43 19998.78 9894.10 19097.69 13399.42 2895.25 6299.92 2998.09 5499.80 1999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft98.23 5497.95 6099.09 5099.74 797.62 7199.03 7199.41 695.98 10597.60 14199.36 4094.45 8399.93 2397.14 10898.85 13399.70 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 5598.11 5398.49 8798.34 17397.26 8599.61 598.43 18296.78 7298.87 5998.84 12193.72 9699.01 21398.91 1899.50 9299.19 141
fmvsm_s_conf0.1_n98.18 5698.21 4898.11 12498.54 15595.24 18698.87 11199.24 1597.50 2999.70 1199.67 191.33 14399.89 4599.47 1099.54 8799.21 136
fmvsm_s_conf0.1_n_a98.08 5798.04 5798.21 11297.66 22995.39 17798.89 10399.17 2497.24 4899.76 699.67 191.13 14899.88 5499.39 1199.41 10499.35 113
dcpmvs_298.08 5798.59 1296.56 23499.57 3390.34 32299.15 4798.38 19196.82 7199.29 3299.49 1795.78 4199.57 14098.94 1799.86 199.77 25
CANet98.05 5997.76 6498.90 6398.73 13597.27 8198.35 20498.78 9897.37 3997.72 13198.96 10891.53 13999.92 2998.79 2199.65 6299.51 87
train_agg97.97 6097.52 7699.33 2699.31 6298.50 2997.92 25498.73 10992.98 25297.74 12898.68 14096.20 2699.80 8696.59 13599.57 7899.68 59
ETV-MVS97.96 6197.81 6298.40 9898.42 16297.27 8198.73 14898.55 15396.84 6998.38 9197.44 25995.39 5299.35 16997.62 8698.89 12998.58 201
UA-Net97.96 6197.62 6898.98 5798.86 12697.47 7698.89 10399.08 3096.67 7898.72 7099.54 893.15 10299.81 7994.87 18898.83 13499.65 67
CDPH-MVS97.94 6397.49 7799.28 3299.47 4798.44 3197.91 25698.67 12692.57 26798.77 6598.85 12095.93 3699.72 11195.56 17199.69 5499.68 59
DeepPCF-MVS96.37 297.93 6498.48 2196.30 26099.00 11189.54 33497.43 29598.87 6798.16 999.26 3499.38 3596.12 2999.64 12998.30 4799.77 3099.72 43
DeepC-MVS95.98 397.88 6597.58 7098.77 6799.25 7996.93 9798.83 12298.75 10496.96 6596.89 16599.50 1590.46 16299.87 5697.84 7199.76 3699.52 84
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 6697.54 7598.83 6595.48 34696.83 10298.95 9098.60 13998.58 698.93 5599.55 688.57 20499.91 3799.54 999.61 7099.77 25
DP-MVS Recon97.86 6697.46 8099.06 5299.53 3698.35 4198.33 20698.89 5792.62 26498.05 10498.94 11195.34 5699.65 12796.04 15499.42 10399.19 141
CSCG97.85 6897.74 6598.20 11499.67 2595.16 18999.22 3599.32 1193.04 25097.02 15898.92 11495.36 5599.91 3797.43 9999.64 6699.52 84
MG-MVS97.81 6997.60 6998.44 9399.12 10095.97 14997.75 27498.78 9896.89 6898.46 8499.22 6293.90 9599.68 12394.81 19299.52 9099.67 63
VNet97.79 7097.40 8498.96 5998.88 12397.55 7398.63 17098.93 4896.74 7599.02 4698.84 12190.33 16599.83 6798.53 2896.66 20499.50 89
EIA-MVS97.75 7197.58 7098.27 10598.38 16596.44 12399.01 7698.60 13995.88 11397.26 14797.53 25394.97 7299.33 17197.38 10299.20 11699.05 161
PS-MVSNAJ97.73 7297.77 6397.62 16198.68 14395.58 16897.34 30498.51 16297.29 4298.66 7597.88 22094.51 7999.90 4397.87 6899.17 11897.39 240
casdiffmvs_mvgpermissive97.72 7397.48 7998.44 9398.42 16296.59 11598.92 9798.44 17896.20 9797.76 12599.20 6591.66 13399.23 17998.27 4998.41 15699.49 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 7397.32 8898.92 6199.64 2897.10 9299.12 5398.81 8492.34 27598.09 10299.08 9293.01 10399.92 2996.06 15399.77 3099.75 33
PVSNet_Blended_VisFu97.70 7597.46 8098.44 9399.27 7695.91 15798.63 17099.16 2594.48 18197.67 13498.88 11792.80 10599.91 3797.11 10999.12 11999.50 89
mvsany_test197.69 7697.70 6697.66 15998.24 18194.18 23897.53 29097.53 29595.52 12999.66 1399.51 1394.30 8799.56 14398.38 4398.62 14399.23 133
canonicalmvs97.67 7797.23 9198.98 5798.70 14098.38 3599.34 1898.39 18896.76 7497.67 13497.40 26292.26 11599.49 15698.28 4896.28 22099.08 159
xiu_mvs_v2_base97.66 7897.70 6697.56 16598.61 15095.46 17497.44 29398.46 17497.15 5598.65 7698.15 19794.33 8699.80 8697.84 7198.66 14297.41 238
baseline97.64 7997.44 8298.25 10998.35 16896.20 13699.00 7898.32 19996.33 9498.03 10799.17 7291.35 14299.16 18698.10 5398.29 16399.39 110
casdiffmvspermissive97.63 8097.41 8398.28 10498.33 17596.14 14098.82 12498.32 19996.38 9297.95 11599.21 6391.23 14799.23 17998.12 5298.37 15799.48 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15098.35 16895.98 14497.86 26598.51 16297.13 5799.01 4798.40 17091.56 13599.80 8698.53 2898.68 13897.37 242
xiu_mvs_v1_base97.60 8197.56 7297.72 15098.35 16895.98 14497.86 26598.51 16297.13 5799.01 4798.40 17091.56 13599.80 8698.53 2898.68 13897.37 242
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15098.35 16895.98 14497.86 26598.51 16297.13 5799.01 4798.40 17091.56 13599.80 8698.53 2898.68 13897.37 242
diffmvspermissive97.58 8497.40 8498.13 12098.32 17895.81 16298.06 24298.37 19296.20 9798.74 6798.89 11691.31 14599.25 17698.16 5198.52 14899.34 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 8597.49 7797.84 13898.07 19995.76 16399.47 998.40 18694.98 15998.79 6398.83 12392.34 11298.41 28796.91 11799.59 7499.34 114
alignmvs97.56 8697.07 9899.01 5498.66 14598.37 3998.83 12298.06 25596.74 7598.00 11397.65 24290.80 15699.48 16098.37 4496.56 20899.19 141
DPM-MVS97.55 8796.99 10199.23 3899.04 10698.55 2797.17 31998.35 19594.85 16697.93 11998.58 15195.07 7099.71 11692.60 25999.34 11199.43 107
OMC-MVS97.55 8797.34 8798.20 11499.33 5795.92 15698.28 21698.59 14295.52 12997.97 11499.10 8493.28 10199.49 15695.09 18598.88 13099.19 141
PAPM_NR97.46 8997.11 9598.50 8599.50 4196.41 12798.63 17098.60 13995.18 14897.06 15698.06 20394.26 8999.57 14093.80 22798.87 13299.52 84
EPP-MVSNet97.46 8997.28 8997.99 13198.64 14795.38 17899.33 2198.31 20193.61 22697.19 14999.07 9394.05 9299.23 17996.89 12198.43 15599.37 112
3Dnovator94.51 597.46 8996.93 10399.07 5197.78 21797.64 6999.35 1799.06 3297.02 6293.75 27099.16 7589.25 18599.92 2997.22 10799.75 4099.64 69
CNLPA97.45 9297.03 9998.73 6899.05 10597.44 7898.07 24198.53 15795.32 14196.80 17098.53 15593.32 9999.72 11194.31 21099.31 11399.02 163
lupinMVS97.44 9397.22 9298.12 12398.07 19995.76 16397.68 27997.76 27694.50 18098.79 6398.61 14692.34 11299.30 17397.58 8999.59 7499.31 120
3Dnovator+94.38 697.43 9496.78 11199.38 1897.83 21598.52 2899.37 1498.71 11497.09 6092.99 29799.13 8089.36 18199.89 4596.97 11499.57 7899.71 47
Vis-MVSNetpermissive97.42 9597.11 9598.34 10198.66 14596.23 13599.22 3599.00 3796.63 8098.04 10699.21 6388.05 21999.35 16996.01 15699.21 11599.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9697.25 9097.91 13598.70 14096.80 10398.82 12498.69 11894.53 17798.11 10098.28 18594.50 8299.57 14094.12 21699.49 9497.37 242
sss97.39 9796.98 10298.61 7598.60 15196.61 11298.22 22198.93 4893.97 19898.01 11298.48 16091.98 12599.85 6196.45 14198.15 16599.39 110
test_cas_vis1_n_192097.38 9897.36 8697.45 16898.95 11893.25 27199.00 7898.53 15797.70 1899.77 599.35 4284.71 28699.85 6198.57 2599.66 5999.26 129
PVSNet_Blended97.38 9897.12 9498.14 11799.25 7995.35 18197.28 30999.26 1393.13 24697.94 11798.21 19392.74 10699.81 7996.88 12399.40 10799.27 127
WTY-MVS97.37 10096.92 10498.72 6998.86 12696.89 10198.31 21198.71 11495.26 14497.67 13498.56 15492.21 11899.78 9995.89 15896.85 19999.48 96
jason97.32 10197.08 9798.06 12897.45 24895.59 16797.87 26497.91 27094.79 16798.55 8198.83 12391.12 14999.23 17997.58 8999.60 7299.34 114
jason: jason.
MVS_Test97.28 10297.00 10098.13 12098.33 17595.97 14998.74 14498.07 25094.27 18698.44 8998.07 20292.48 10999.26 17596.43 14298.19 16499.16 147
EPNet97.28 10296.87 10698.51 8494.98 35496.14 14098.90 9997.02 33198.28 895.99 19899.11 8291.36 14199.89 4596.98 11399.19 11799.50 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10496.78 11198.54 8198.73 13596.60 11398.45 19498.31 20194.70 16898.02 10998.42 16890.80 15699.70 11796.81 12996.79 20199.34 114
DCV-MVSNet97.22 10496.78 11198.54 8198.73 13596.60 11398.45 19498.31 20194.70 16898.02 10998.42 16890.80 15699.70 11796.81 12996.79 20199.34 114
IS-MVSNet97.22 10496.88 10598.25 10998.85 12896.36 13099.19 4297.97 26395.39 13597.23 14898.99 10291.11 15098.93 22594.60 19998.59 14599.47 98
PLCcopyleft95.07 497.20 10796.78 11198.44 9399.29 7196.31 13498.14 23398.76 10292.41 27396.39 18898.31 18394.92 7499.78 9994.06 21998.77 13799.23 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 10897.18 9397.20 18298.81 13193.27 26995.78 36499.15 2695.25 14596.79 17198.11 20092.29 11499.07 20398.56 2799.85 599.25 131
LS3D97.16 10996.66 11998.68 7198.53 15697.19 8998.93 9598.90 5592.83 25995.99 19899.37 3692.12 12199.87 5693.67 23199.57 7898.97 168
AdaColmapbinary97.15 11096.70 11598.48 8899.16 9696.69 10998.01 24798.89 5794.44 18396.83 16698.68 14090.69 15999.76 10594.36 20699.29 11498.98 167
Effi-MVS+97.12 11196.69 11698.39 9998.19 18996.72 10897.37 30098.43 18293.71 21597.65 13798.02 20692.20 11999.25 17696.87 12697.79 17799.19 141
CHOSEN 1792x268897.12 11196.80 10898.08 12699.30 6694.56 22298.05 24399.71 193.57 22797.09 15298.91 11588.17 21499.89 4596.87 12699.56 8499.81 15
F-COLMAP97.09 11396.80 10897.97 13299.45 5294.95 20298.55 18398.62 13893.02 25196.17 19398.58 15194.01 9399.81 7993.95 22198.90 12899.14 150
TAMVS97.02 11496.79 11097.70 15398.06 20295.31 18398.52 18598.31 20193.95 19997.05 15798.61 14693.49 9898.52 26795.33 17797.81 17699.29 125
CDS-MVSNet96.99 11596.69 11697.90 13698.05 20395.98 14498.20 22498.33 19893.67 22296.95 15998.49 15993.54 9798.42 27995.24 18397.74 18099.31 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11696.55 12298.21 11298.17 19396.07 14297.98 25098.21 21897.24 4897.13 15198.93 11286.88 24399.91 3795.00 18799.37 11098.66 193
114514_t96.93 11796.27 13398.92 6199.50 4197.63 7098.85 11698.90 5584.80 37197.77 12499.11 8292.84 10499.66 12694.85 18999.77 3099.47 98
MAR-MVS96.91 11896.40 12898.45 9198.69 14296.90 9998.66 16598.68 12192.40 27497.07 15597.96 21391.54 13899.75 10793.68 22998.92 12798.69 189
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 11996.49 12598.14 11799.33 5795.56 16997.38 29899.65 292.34 27597.61 14098.20 19489.29 18399.10 20096.97 11497.60 18599.77 25
Vis-MVSNet (Re-imp)96.87 12096.55 12297.83 13998.73 13595.46 17499.20 4098.30 20794.96 16196.60 17798.87 11890.05 16898.59 25993.67 23198.60 14499.46 102
SDMVSNet96.85 12196.42 12698.14 11799.30 6696.38 12899.21 3899.23 1895.92 10895.96 20098.76 13485.88 26099.44 16597.93 6295.59 23098.60 197
PAPR96.84 12296.24 13598.65 7398.72 13996.92 9897.36 30298.57 14993.33 23596.67 17397.57 25094.30 8799.56 14391.05 29698.59 14599.47 98
HY-MVS93.96 896.82 12396.23 13698.57 7798.46 16097.00 9498.14 23398.21 21893.95 19996.72 17297.99 21091.58 13499.76 10594.51 20396.54 20998.95 171
UGNet96.78 12496.30 13298.19 11698.24 18195.89 15998.88 10798.93 4897.39 3696.81 16997.84 22482.60 31399.90 4396.53 13899.49 9498.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12596.60 12097.12 18999.25 7995.35 18198.26 21999.26 1394.28 18597.94 11797.46 25692.74 10699.81 7996.88 12393.32 27096.20 335
test_vis1_n_192096.71 12696.84 10796.31 25999.11 10189.74 32999.05 6598.58 14798.08 1099.87 199.37 3678.48 33999.93 2399.29 1299.69 5499.27 127
mvs_anonymous96.70 12796.53 12497.18 18498.19 18993.78 24798.31 21198.19 22294.01 19594.47 22998.27 18892.08 12398.46 27497.39 10197.91 17299.31 120
1112_ss96.63 12896.00 14498.50 8598.56 15296.37 12998.18 23198.10 24392.92 25594.84 21798.43 16692.14 12099.58 13994.35 20796.51 21099.56 83
PMMVS96.60 12996.33 13097.41 17297.90 21293.93 24397.35 30398.41 18492.84 25897.76 12597.45 25891.10 15199.20 18396.26 14697.91 17299.11 153
DP-MVS96.59 13095.93 14798.57 7799.34 5596.19 13898.70 15798.39 18889.45 34394.52 22799.35 4291.85 12899.85 6192.89 25598.88 13099.68 59
PatchMatch-RL96.59 13096.03 14398.27 10599.31 6296.51 12097.91 25699.06 3293.72 21496.92 16398.06 20388.50 20999.65 12791.77 28399.00 12598.66 193
GeoE96.58 13296.07 14098.10 12598.35 16895.89 15999.34 1898.12 23793.12 24796.09 19498.87 11889.71 17498.97 21592.95 25198.08 16899.43 107
mvsmamba96.57 13396.32 13197.32 17896.60 30196.43 12499.54 797.98 26196.49 8495.20 21098.64 14490.82 15498.55 26397.97 5993.65 26096.98 253
XVG-OURS96.55 13496.41 12796.99 19698.75 13493.76 24897.50 29298.52 16095.67 12396.83 16699.30 5088.95 19899.53 15195.88 15996.26 22197.69 231
FIs96.51 13596.12 13897.67 15697.13 27297.54 7499.36 1599.22 2195.89 11194.03 25698.35 17691.98 12598.44 27796.40 14392.76 27997.01 251
XVG-OURS-SEG-HR96.51 13596.34 12997.02 19598.77 13393.76 24897.79 27298.50 16795.45 13296.94 16099.09 9087.87 22499.55 15096.76 13395.83 22997.74 228
PS-MVSNAJss96.43 13796.26 13496.92 20595.84 33695.08 19499.16 4698.50 16795.87 11493.84 26698.34 18094.51 7998.61 25696.88 12393.45 26797.06 248
test_fmvs196.42 13896.67 11895.66 28598.82 13088.53 35198.80 13398.20 22096.39 9199.64 1599.20 6580.35 32999.67 12499.04 1599.57 7898.78 184
iter_conf_final96.42 13896.12 13897.34 17798.46 16096.55 11999.08 6198.06 25596.03 10495.63 20498.46 16487.72 22698.59 25997.84 7193.80 25596.87 269
FC-MVSNet-test96.42 13896.05 14197.53 16696.95 28197.27 8199.36 1599.23 1895.83 11593.93 26098.37 17492.00 12498.32 29696.02 15592.72 28097.00 252
ab-mvs96.42 13895.71 15998.55 7998.63 14896.75 10697.88 26398.74 10693.84 20596.54 18298.18 19685.34 27299.75 10795.93 15796.35 21499.15 148
FA-MVS(test-final)96.41 14295.94 14697.82 14198.21 18595.20 18897.80 27097.58 28693.21 24197.36 14597.70 23689.47 17899.56 14394.12 21697.99 16998.71 188
PVSNet91.96 1896.35 14396.15 13796.96 20099.17 9292.05 28996.08 35798.68 12193.69 21897.75 12797.80 23088.86 19999.69 12294.26 21299.01 12499.15 148
Test_1112_low_res96.34 14495.66 16498.36 10098.56 15295.94 15297.71 27798.07 25092.10 28494.79 22197.29 26791.75 13099.56 14394.17 21496.50 21199.58 81
Effi-MVS+-dtu96.29 14596.56 12195.51 28997.89 21390.22 32398.80 13398.10 24396.57 8396.45 18796.66 31790.81 15598.91 22795.72 16597.99 16997.40 239
QAPM96.29 14595.40 16898.96 5997.85 21497.60 7299.23 3198.93 4889.76 33793.11 29499.02 9689.11 19099.93 2391.99 27899.62 6999.34 114
Fast-Effi-MVS+96.28 14795.70 16198.03 12998.29 18095.97 14998.58 17698.25 21591.74 29295.29 20997.23 27291.03 15399.15 18992.90 25397.96 17198.97 168
nrg03096.28 14795.72 15697.96 13496.90 28698.15 5299.39 1298.31 20195.47 13194.42 23598.35 17692.09 12298.69 24997.50 9789.05 32597.04 249
131496.25 14995.73 15597.79 14397.13 27295.55 17198.19 22798.59 14293.47 23092.03 32297.82 22891.33 14399.49 15694.62 19898.44 15398.32 212
sd_testset96.17 15095.76 15497.42 17199.30 6694.34 23198.82 12499.08 3095.92 10895.96 20098.76 13482.83 31299.32 17295.56 17195.59 23098.60 197
h-mvs3396.17 15095.62 16597.81 14299.03 10794.45 22498.64 16798.75 10497.48 3098.67 7198.72 13789.76 17299.86 6097.95 6081.59 36899.11 153
HQP_MVS96.14 15295.90 14896.85 20897.42 25094.60 22098.80 13398.56 15197.28 4395.34 20798.28 18587.09 23899.03 20896.07 15094.27 23896.92 258
iter_conf0596.13 15395.79 15197.15 18698.16 19495.99 14398.88 10797.98 26195.91 11095.58 20598.46 16485.53 26798.59 25997.88 6793.75 25696.86 272
tttt051796.07 15495.51 16797.78 14498.41 16494.84 20699.28 2494.33 37794.26 18797.64 13898.64 14484.05 30199.47 16295.34 17697.60 18599.03 162
MVSTER96.06 15595.72 15697.08 19298.23 18395.93 15598.73 14898.27 21094.86 16595.07 21298.09 20188.21 21398.54 26596.59 13593.46 26596.79 278
thisisatest053096.01 15695.36 17397.97 13298.38 16595.52 17298.88 10794.19 37994.04 19297.64 13898.31 18383.82 30899.46 16395.29 18097.70 18298.93 173
test_djsdf96.00 15795.69 16296.93 20295.72 33895.49 17399.47 998.40 18694.98 15994.58 22597.86 22189.16 18898.41 28796.91 11794.12 24696.88 267
RRT_MVS95.98 15895.78 15296.56 23496.48 30994.22 23799.57 697.92 26895.89 11193.95 25998.70 13889.27 18498.42 27997.23 10693.02 27497.04 249
EI-MVSNet95.96 15995.83 15096.36 25597.93 21093.70 25498.12 23698.27 21093.70 21795.07 21299.02 9692.23 11798.54 26594.68 19493.46 26596.84 274
ECVR-MVScopyleft95.95 16095.71 15996.65 22099.02 10890.86 31099.03 7191.80 38896.96 6598.10 10199.26 5581.31 31999.51 15596.90 12099.04 12199.59 77
BH-untuned95.95 16095.72 15696.65 22098.55 15492.26 28598.23 22097.79 27593.73 21394.62 22498.01 20888.97 19799.00 21493.04 24898.51 14998.68 190
test111195.94 16295.78 15296.41 25298.99 11590.12 32499.04 6892.45 38796.99 6498.03 10799.27 5481.40 31899.48 16096.87 12699.04 12199.63 71
MSDG95.93 16395.30 18097.83 13998.90 12195.36 17996.83 34498.37 19291.32 30794.43 23498.73 13690.27 16699.60 13790.05 31098.82 13598.52 203
BH-RMVSNet95.92 16495.32 17797.69 15498.32 17894.64 21498.19 22797.45 30594.56 17596.03 19698.61 14685.02 27799.12 19490.68 30199.06 12099.30 123
test_fmvs1_n95.90 16595.99 14595.63 28698.67 14488.32 35599.26 2798.22 21796.40 9099.67 1299.26 5573.91 36699.70 11799.02 1699.50 9298.87 176
Fast-Effi-MVS+-dtu95.87 16695.85 14995.91 27597.74 22291.74 29598.69 15998.15 23395.56 12794.92 21597.68 24188.98 19698.79 24393.19 24397.78 17897.20 246
LFMVS95.86 16794.98 19598.47 8998.87 12596.32 13298.84 12096.02 35793.40 23398.62 7799.20 6574.99 36199.63 13297.72 7897.20 19199.46 102
baseline195.84 16895.12 18898.01 13098.49 15995.98 14498.73 14897.03 32995.37 13896.22 19198.19 19589.96 17099.16 18694.60 19987.48 34198.90 175
OpenMVScopyleft93.04 1395.83 16995.00 19398.32 10297.18 26997.32 7999.21 3898.97 4089.96 33391.14 33099.05 9586.64 24699.92 2993.38 23799.47 9797.73 229
VDD-MVS95.82 17095.23 18297.61 16298.84 12993.98 24298.68 16097.40 30995.02 15897.95 11599.34 4674.37 36599.78 9998.64 2396.80 20099.08 159
UniMVSNet (Re)95.78 17195.19 18497.58 16396.99 27997.47 7698.79 13899.18 2395.60 12593.92 26197.04 29191.68 13198.48 27095.80 16387.66 34096.79 278
VPA-MVSNet95.75 17295.11 18997.69 15497.24 26197.27 8198.94 9399.23 1895.13 15095.51 20697.32 26585.73 26398.91 22797.33 10489.55 31796.89 266
bld_raw_dy_0_6495.74 17395.31 17997.03 19496.35 31595.76 16399.12 5397.37 31295.97 10694.70 22398.48 16085.80 26298.49 26996.55 13793.48 26496.84 274
HQP-MVS95.72 17495.40 16896.69 21897.20 26594.25 23598.05 24398.46 17496.43 8794.45 23097.73 23386.75 24498.96 21995.30 17894.18 24296.86 272
hse-mvs295.71 17595.30 18096.93 20298.50 15793.53 25998.36 20398.10 24397.48 3098.67 7197.99 21089.76 17299.02 21197.95 6080.91 37298.22 215
UniMVSNet_NR-MVSNet95.71 17595.15 18597.40 17496.84 28996.97 9598.74 14499.24 1595.16 14993.88 26397.72 23591.68 13198.31 29895.81 16187.25 34696.92 258
PatchmatchNetpermissive95.71 17595.52 16696.29 26197.58 23490.72 31496.84 34397.52 29694.06 19197.08 15396.96 30189.24 18698.90 23092.03 27798.37 15799.26 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 17895.33 17696.76 21396.16 32494.63 21598.43 19998.39 18896.64 7995.02 21498.78 12885.15 27699.05 20495.21 18494.20 24196.60 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 17895.38 17296.61 22797.61 23293.84 24698.91 9898.44 17895.25 14594.28 24298.47 16286.04 25999.12 19495.50 17493.95 25196.87 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 18095.69 16295.44 29397.54 23988.54 35096.97 32997.56 28893.50 22997.52 14396.93 30589.49 17699.16 18695.25 18296.42 21398.64 195
FE-MVS95.62 18194.90 19997.78 14498.37 16794.92 20397.17 31997.38 31190.95 31897.73 13097.70 23685.32 27499.63 13291.18 29198.33 16098.79 181
LPG-MVS_test95.62 18195.34 17496.47 24697.46 24593.54 25798.99 8198.54 15594.67 17294.36 23898.77 13085.39 26999.11 19695.71 16694.15 24496.76 281
CLD-MVS95.62 18195.34 17496.46 24997.52 24293.75 25097.27 31098.46 17495.53 12894.42 23598.00 20986.21 25498.97 21596.25 14894.37 23696.66 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 18494.89 20097.76 14798.15 19595.15 19196.77 34594.41 37592.95 25497.18 15097.43 26084.78 28399.45 16494.63 19697.73 18198.68 190
thres600view795.49 18594.77 20397.67 15698.98 11695.02 19598.85 11696.90 33895.38 13696.63 17596.90 30684.29 29399.59 13888.65 33296.33 21598.40 207
test_vis1_n95.47 18695.13 18696.49 24397.77 21890.41 32099.27 2698.11 24096.58 8199.66 1399.18 7167.00 37899.62 13599.21 1399.40 10799.44 105
SCA95.46 18795.13 18696.46 24997.67 22791.29 30397.33 30597.60 28594.68 17196.92 16397.10 27883.97 30398.89 23192.59 26198.32 16299.20 137
IterMVS-LS95.46 18795.21 18396.22 26398.12 19693.72 25398.32 21098.13 23693.71 21594.26 24397.31 26692.24 11698.10 31494.63 19690.12 30896.84 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 18995.03 19296.73 21495.42 35094.63 21599.14 4998.52 16095.74 11893.22 28898.36 17583.87 30698.65 25496.95 11694.04 24796.91 263
CVMVSNet95.43 19096.04 14293.57 33497.93 21083.62 37298.12 23698.59 14295.68 12296.56 17899.02 9687.51 23197.51 34693.56 23597.44 18799.60 75
anonymousdsp95.42 19194.91 19896.94 20195.10 35395.90 15899.14 4998.41 18493.75 21093.16 29097.46 25687.50 23398.41 28795.63 17094.03 24896.50 320
DU-MVS95.42 19194.76 20497.40 17496.53 30596.97 9598.66 16598.99 3995.43 13393.88 26397.69 23888.57 20498.31 29895.81 16187.25 34696.92 258
mvs_tets95.41 19395.00 19396.65 22095.58 34294.42 22699.00 7898.55 15395.73 12093.21 28998.38 17383.45 31098.63 25597.09 11094.00 24996.91 263
thres100view90095.38 19494.70 20797.41 17298.98 11694.92 20398.87 11196.90 33895.38 13696.61 17696.88 30784.29 29399.56 14388.11 33596.29 21797.76 226
thres40095.38 19494.62 21097.65 16098.94 11994.98 19998.68 16096.93 33695.33 13996.55 18096.53 32384.23 29799.56 14388.11 33596.29 21798.40 207
BH-w/o95.38 19495.08 19096.26 26298.34 17391.79 29297.70 27897.43 30792.87 25794.24 24597.22 27388.66 20298.84 23791.55 28797.70 18298.16 218
VDDNet95.36 19794.53 21497.86 13798.10 19895.13 19298.85 11697.75 27790.46 32498.36 9299.39 3073.27 36899.64 12997.98 5896.58 20798.81 180
TAPA-MVS93.98 795.35 19894.56 21397.74 14999.13 9994.83 20898.33 20698.64 13486.62 35996.29 19098.61 14694.00 9499.29 17480.00 37399.41 10499.09 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 19994.98 19596.43 25197.67 22793.48 26198.73 14898.44 17894.94 16492.53 31098.53 15584.50 29299.14 19195.48 17594.00 24996.66 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 20094.87 20196.71 21599.29 7193.24 27298.58 17698.11 24089.92 33493.57 27499.10 8486.37 25299.79 9690.78 29998.10 16797.09 247
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 20194.62 21097.43 17098.94 11994.98 19998.68 16096.93 33695.33 13996.55 18096.53 32384.23 29799.56 14388.11 33596.29 21797.76 226
Anonymous20240521195.28 20294.49 21697.67 15699.00 11193.75 25098.70 15797.04 32890.66 32096.49 18498.80 12678.13 34399.83 6796.21 14995.36 23499.44 105
thres20095.25 20394.57 21297.28 17998.81 13194.92 20398.20 22497.11 32395.24 14796.54 18296.22 33484.58 29099.53 15187.93 33996.50 21197.39 240
AllTest95.24 20494.65 20996.99 19699.25 7993.21 27398.59 17498.18 22591.36 30393.52 27698.77 13084.67 28799.72 11189.70 31797.87 17498.02 221
LCM-MVSNet-Re95.22 20595.32 17794.91 30898.18 19187.85 36198.75 14195.66 36395.11 15288.96 34896.85 31090.26 16797.65 33995.65 16998.44 15399.22 135
EPNet_dtu95.21 20694.95 19795.99 27096.17 32290.45 31998.16 23297.27 31796.77 7393.14 29398.33 18190.34 16498.42 27985.57 35298.81 13699.09 155
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 20794.45 22197.46 16796.75 29496.56 11798.86 11498.65 13393.30 23893.27 28798.27 18884.85 28198.87 23494.82 19191.26 29696.96 255
D2MVS95.18 20895.08 19095.48 29097.10 27492.07 28898.30 21399.13 2894.02 19492.90 29896.73 31489.48 17798.73 24794.48 20493.60 26395.65 348
WR-MVS95.15 20994.46 21997.22 18196.67 29996.45 12298.21 22298.81 8494.15 18893.16 29097.69 23887.51 23198.30 30095.29 18088.62 33196.90 265
TranMVSNet+NR-MVSNet95.14 21094.48 21797.11 19096.45 31196.36 13099.03 7199.03 3595.04 15793.58 27397.93 21588.27 21298.03 32094.13 21586.90 35196.95 257
baseline295.11 21194.52 21596.87 20796.65 30093.56 25698.27 21894.10 38193.45 23192.02 32397.43 26087.45 23599.19 18493.88 22497.41 18997.87 224
miper_enhance_ethall95.10 21294.75 20596.12 26797.53 24193.73 25296.61 35198.08 24892.20 28393.89 26296.65 31992.44 11098.30 30094.21 21391.16 29796.34 329
Anonymous2024052995.10 21294.22 22997.75 14899.01 11094.26 23498.87 11198.83 7885.79 36796.64 17498.97 10378.73 33799.85 6196.27 14594.89 23599.12 152
test-LLR95.10 21294.87 20195.80 28096.77 29189.70 33096.91 33495.21 36795.11 15294.83 21995.72 34687.71 22798.97 21593.06 24698.50 15098.72 186
WR-MVS_H95.05 21594.46 21996.81 21196.86 28895.82 16199.24 3099.24 1593.87 20492.53 31096.84 31190.37 16398.24 30693.24 24187.93 33796.38 328
miper_ehance_all_eth95.01 21694.69 20895.97 27297.70 22593.31 26897.02 32798.07 25092.23 28093.51 27896.96 30191.85 12898.15 31093.68 22991.16 29796.44 326
ADS-MVSNet95.00 21794.45 22196.63 22498.00 20491.91 29196.04 35897.74 27890.15 33096.47 18596.64 32087.89 22298.96 21990.08 30897.06 19399.02 163
VPNet94.99 21894.19 23197.40 17497.16 27096.57 11698.71 15398.97 4095.67 12394.84 21798.24 19280.36 32898.67 25396.46 14087.32 34596.96 255
EPMVS94.99 21894.48 21796.52 24197.22 26391.75 29497.23 31191.66 38994.11 18997.28 14696.81 31285.70 26498.84 23793.04 24897.28 19098.97 168
NR-MVSNet94.98 22094.16 23497.44 16996.53 30597.22 8898.74 14498.95 4494.96 16189.25 34797.69 23889.32 18298.18 30894.59 20187.40 34396.92 258
FMVSNet394.97 22194.26 22897.11 19098.18 19196.62 11098.56 18298.26 21493.67 22294.09 25297.10 27884.25 29598.01 32192.08 27392.14 28396.70 290
CostFormer94.95 22294.73 20695.60 28897.28 25989.06 34197.53 29096.89 34089.66 33996.82 16896.72 31586.05 25798.95 22495.53 17396.13 22698.79 181
PAPM94.95 22294.00 24497.78 14497.04 27695.65 16696.03 36098.25 21591.23 31294.19 24897.80 23091.27 14698.86 23682.61 36797.61 18498.84 179
CP-MVSNet94.94 22494.30 22796.83 20996.72 29695.56 16999.11 5598.95 4493.89 20292.42 31597.90 21787.19 23798.12 31394.32 20988.21 33496.82 277
TR-MVS94.94 22494.20 23097.17 18597.75 21994.14 23997.59 28797.02 33192.28 27995.75 20397.64 24483.88 30598.96 21989.77 31496.15 22598.40 207
RPSCF94.87 22695.40 16893.26 34098.89 12282.06 37898.33 20698.06 25590.30 32996.56 17899.26 5587.09 23899.49 15693.82 22696.32 21698.24 213
GA-MVS94.81 22794.03 24097.14 18797.15 27193.86 24596.76 34697.58 28694.00 19694.76 22297.04 29180.91 32398.48 27091.79 28296.25 22299.09 155
c3_l94.79 22894.43 22395.89 27797.75 21993.12 27697.16 32198.03 25892.23 28093.46 28197.05 29091.39 14098.01 32193.58 23489.21 32396.53 312
V4294.78 22994.14 23696.70 21796.33 31795.22 18798.97 8498.09 24792.32 27794.31 24197.06 28888.39 21098.55 26392.90 25388.87 32996.34 329
CR-MVSNet94.76 23094.15 23596.59 23097.00 27793.43 26294.96 37097.56 28892.46 26896.93 16196.24 33088.15 21597.88 33387.38 34196.65 20598.46 205
v2v48294.69 23194.03 24096.65 22096.17 32294.79 21198.67 16398.08 24892.72 26194.00 25797.16 27687.69 23098.45 27592.91 25288.87 32996.72 286
pmmvs494.69 23193.99 24696.81 21195.74 33795.94 15297.40 29697.67 28090.42 32693.37 28497.59 24889.08 19198.20 30792.97 25091.67 29096.30 332
cl2294.68 23394.19 23196.13 26698.11 19793.60 25596.94 33198.31 20192.43 27293.32 28696.87 30986.51 24798.28 30494.10 21891.16 29796.51 318
eth_miper_zixun_eth94.68 23394.41 22495.47 29197.64 23091.71 29696.73 34898.07 25092.71 26293.64 27197.21 27490.54 16198.17 30993.38 23789.76 31296.54 310
PCF-MVS93.45 1194.68 23393.43 28098.42 9798.62 14996.77 10595.48 36898.20 22084.63 37293.34 28598.32 18288.55 20799.81 7984.80 35998.96 12698.68 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 23693.54 27698.08 12696.88 28796.56 11798.19 22798.50 16778.05 38192.69 30598.02 20691.07 15299.63 13290.09 30798.36 15998.04 220
PS-CasMVS94.67 23693.99 24696.71 21596.68 29895.26 18499.13 5299.03 3593.68 22092.33 31697.95 21485.35 27198.10 31493.59 23388.16 33696.79 278
cascas94.63 23893.86 25596.93 20296.91 28594.27 23396.00 36198.51 16285.55 36894.54 22696.23 33284.20 29998.87 23495.80 16396.98 19897.66 232
tpmvs94.60 23994.36 22695.33 29797.46 24588.60 34996.88 34097.68 27991.29 30993.80 26896.42 32788.58 20399.24 17891.06 29496.04 22798.17 217
LTVRE_ROB92.95 1594.60 23993.90 25296.68 21997.41 25394.42 22698.52 18598.59 14291.69 29591.21 32998.35 17684.87 28099.04 20791.06 29493.44 26896.60 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 24193.92 24996.60 22996.21 31994.78 21298.59 17498.14 23591.86 29194.21 24797.02 29487.97 22098.41 28791.72 28489.57 31596.61 300
ADS-MVSNet294.58 24294.40 22595.11 30398.00 20488.74 34796.04 35897.30 31490.15 33096.47 18596.64 32087.89 22297.56 34490.08 30897.06 19399.02 163
ACMH92.88 1694.55 24393.95 24896.34 25797.63 23193.26 27098.81 13298.49 17293.43 23289.74 34298.53 15581.91 31599.08 20293.69 22893.30 27196.70 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 24493.85 25696.63 22497.98 20893.06 27898.77 14097.84 27393.67 22293.80 26898.04 20576.88 35498.96 21994.79 19392.86 27797.86 225
XVG-ACMP-BASELINE94.54 24494.14 23695.75 28396.55 30491.65 29798.11 23898.44 17894.96 16194.22 24697.90 21779.18 33699.11 19694.05 22093.85 25396.48 323
AUN-MVS94.53 24693.73 26696.92 20598.50 15793.52 26098.34 20598.10 24393.83 20795.94 20297.98 21285.59 26699.03 20894.35 20780.94 37198.22 215
DIV-MVS_self_test94.52 24794.03 24095.99 27097.57 23893.38 26697.05 32597.94 26691.74 29292.81 30097.10 27889.12 18998.07 31892.60 25990.30 30596.53 312
cl____94.51 24894.01 24396.02 26997.58 23493.40 26597.05 32597.96 26591.73 29492.76 30297.08 28489.06 19298.13 31292.61 25890.29 30696.52 315
GBi-Net94.49 24993.80 25996.56 23498.21 18595.00 19698.82 12498.18 22592.46 26894.09 25297.07 28581.16 32097.95 32592.08 27392.14 28396.72 286
test194.49 24993.80 25996.56 23498.21 18595.00 19698.82 12498.18 22592.46 26894.09 25297.07 28581.16 32097.95 32592.08 27392.14 28396.72 286
dmvs_re94.48 25194.18 23395.37 29597.68 22690.11 32598.54 18497.08 32494.56 17594.42 23597.24 27184.25 29597.76 33791.02 29792.83 27898.24 213
v894.47 25293.77 26296.57 23396.36 31494.83 20899.05 6598.19 22291.92 28893.16 29096.97 29988.82 20198.48 27091.69 28587.79 33896.39 327
FMVSNet294.47 25293.61 27297.04 19398.21 18596.43 12498.79 13898.27 21092.46 26893.50 27997.09 28281.16 32098.00 32391.09 29291.93 28696.70 290
test250694.44 25493.91 25196.04 26899.02 10888.99 34499.06 6379.47 40196.96 6598.36 9299.26 5577.21 35199.52 15496.78 13299.04 12199.59 77
Patchmatch-test94.42 25593.68 27096.63 22497.60 23391.76 29394.83 37497.49 30089.45 34394.14 25097.10 27888.99 19398.83 23985.37 35598.13 16699.29 125
PEN-MVS94.42 25593.73 26696.49 24396.28 31894.84 20699.17 4599.00 3793.51 22892.23 31897.83 22786.10 25697.90 32992.55 26486.92 35096.74 283
v14419294.39 25793.70 26896.48 24596.06 32794.35 23098.58 17698.16 23291.45 30094.33 24097.02 29487.50 23398.45 27591.08 29389.11 32496.63 298
Baseline_NR-MVSNet94.35 25893.81 25895.96 27396.20 32094.05 24198.61 17396.67 34991.44 30193.85 26597.60 24788.57 20498.14 31194.39 20586.93 34995.68 347
miper_lstm_enhance94.33 25994.07 23995.11 30397.75 21990.97 30797.22 31298.03 25891.67 29692.76 30296.97 29990.03 16997.78 33692.51 26689.64 31496.56 307
v119294.32 26093.58 27396.53 24096.10 32594.45 22498.50 19098.17 23091.54 29894.19 24897.06 28886.95 24298.43 27890.14 30689.57 31596.70 290
ACMH+92.99 1494.30 26193.77 26295.88 27897.81 21692.04 29098.71 15398.37 19293.99 19790.60 33698.47 16280.86 32599.05 20492.75 25792.40 28296.55 309
v14894.29 26293.76 26495.91 27596.10 32592.93 27998.58 17697.97 26392.59 26693.47 28096.95 30388.53 20898.32 29692.56 26387.06 34896.49 321
v1094.29 26293.55 27596.51 24296.39 31394.80 21098.99 8198.19 22291.35 30593.02 29696.99 29788.09 21798.41 28790.50 30388.41 33396.33 331
MVP-Stereo94.28 26493.92 24995.35 29694.95 35592.60 28297.97 25197.65 28191.61 29790.68 33597.09 28286.32 25398.42 27989.70 31799.34 11195.02 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 26593.33 28296.97 19997.19 26893.38 26698.74 14498.57 14991.21 31493.81 26798.58 15172.85 36998.77 24595.05 18693.93 25298.77 185
OurMVSNet-221017-094.21 26694.00 24494.85 31295.60 34189.22 33998.89 10397.43 30795.29 14292.18 31998.52 15882.86 31198.59 25993.46 23691.76 28896.74 283
v192192094.20 26793.47 27996.40 25495.98 33094.08 24098.52 18598.15 23391.33 30694.25 24497.20 27586.41 25198.42 27990.04 31189.39 32196.69 295
v7n94.19 26893.43 28096.47 24695.90 33394.38 22999.26 2798.34 19791.99 28692.76 30297.13 27788.31 21198.52 26789.48 32287.70 33996.52 315
tpm294.19 26893.76 26495.46 29297.23 26289.04 34297.31 30796.85 34487.08 35896.21 19296.79 31383.75 30998.74 24692.43 26996.23 22398.59 199
TESTMET0.1,194.18 27093.69 26995.63 28696.92 28389.12 34096.91 33494.78 37293.17 24394.88 21696.45 32678.52 33898.92 22693.09 24598.50 15098.85 177
dp94.15 27193.90 25294.90 30997.31 25886.82 36696.97 32997.19 32191.22 31396.02 19796.61 32285.51 26899.02 21190.00 31294.30 23798.85 177
ET-MVSNet_ETH3D94.13 27292.98 28897.58 16398.22 18496.20 13697.31 30795.37 36594.53 17779.56 38097.63 24686.51 24797.53 34596.91 11790.74 30199.02 163
tpm94.13 27293.80 25995.12 30296.50 30787.91 36097.44 29395.89 36292.62 26496.37 18996.30 32984.13 30098.30 30093.24 24191.66 29199.14 150
IterMVS-SCA-FT94.11 27493.87 25494.85 31297.98 20890.56 31897.18 31798.11 24093.75 21092.58 30897.48 25583.97 30397.41 34892.48 26891.30 29496.58 303
Anonymous2023121194.10 27593.26 28596.61 22799.11 10194.28 23299.01 7698.88 6086.43 36192.81 30097.57 25081.66 31798.68 25294.83 19089.02 32796.88 267
IterMVS94.09 27693.85 25694.80 31597.99 20690.35 32197.18 31798.12 23793.68 22092.46 31497.34 26384.05 30197.41 34892.51 26691.33 29396.62 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 27793.51 27795.80 28096.77 29189.70 33096.91 33495.21 36792.89 25694.83 21995.72 34677.69 34698.97 21593.06 24698.50 15098.72 186
test0.0.03 194.08 27793.51 27795.80 28095.53 34492.89 28097.38 29895.97 35995.11 15292.51 31296.66 31787.71 22796.94 35587.03 34393.67 25897.57 236
v124094.06 27993.29 28496.34 25796.03 32993.90 24498.44 19798.17 23091.18 31594.13 25197.01 29686.05 25798.42 27989.13 32789.50 31996.70 290
X-MVStestdata94.06 27992.30 30299.34 2399.70 2298.35 4199.29 2298.88 6097.40 3498.46 8443.50 39495.90 3999.89 4597.85 6999.74 4499.78 19
DTE-MVSNet93.98 28193.26 28596.14 26596.06 32794.39 22899.20 4098.86 7393.06 24991.78 32497.81 22985.87 26197.58 34390.53 30286.17 35596.46 325
pm-mvs193.94 28293.06 28796.59 23096.49 30895.16 18998.95 9098.03 25892.32 27791.08 33197.84 22484.54 29198.41 28792.16 27186.13 35796.19 336
MS-PatchMatch93.84 28393.63 27194.46 32696.18 32189.45 33597.76 27398.27 21092.23 28092.13 32097.49 25479.50 33398.69 24989.75 31599.38 10995.25 352
tfpnnormal93.66 28492.70 29496.55 23996.94 28295.94 15298.97 8499.19 2291.04 31691.38 32897.34 26384.94 27998.61 25685.45 35489.02 32795.11 356
EU-MVSNet93.66 28494.14 23692.25 35095.96 33283.38 37498.52 18598.12 23794.69 17092.61 30798.13 19987.36 23696.39 36691.82 28190.00 31096.98 253
our_test_393.65 28693.30 28394.69 31795.45 34889.68 33296.91 33497.65 28191.97 28791.66 32696.88 30789.67 17597.93 32888.02 33891.49 29296.48 323
pmmvs593.65 28692.97 28995.68 28495.49 34592.37 28398.20 22497.28 31689.66 33992.58 30897.26 26882.14 31498.09 31693.18 24490.95 30096.58 303
test_fmvs293.43 28893.58 27392.95 34496.97 28083.91 37199.19 4297.24 31995.74 11895.20 21098.27 18869.65 37198.72 24896.26 14693.73 25796.24 333
tpm cat193.36 28992.80 29195.07 30597.58 23487.97 35996.76 34697.86 27282.17 37793.53 27596.04 33886.13 25599.13 19289.24 32595.87 22898.10 219
JIA-IIPM93.35 29092.49 29895.92 27496.48 30990.65 31695.01 36996.96 33485.93 36596.08 19587.33 38487.70 22998.78 24491.35 28995.58 23298.34 210
SixPastTwentyTwo93.34 29192.86 29094.75 31695.67 33989.41 33798.75 14196.67 34993.89 20290.15 34098.25 19180.87 32498.27 30590.90 29890.64 30296.57 305
USDC93.33 29292.71 29395.21 29996.83 29090.83 31296.91 33497.50 29893.84 20590.72 33498.14 19877.69 34698.82 24089.51 32193.21 27395.97 341
IB-MVS91.98 1793.27 29391.97 30697.19 18397.47 24493.41 26497.09 32495.99 35893.32 23692.47 31395.73 34478.06 34499.53 15194.59 20182.98 36398.62 196
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 29492.21 30396.41 25297.73 22393.13 27595.65 36597.03 32991.27 31194.04 25596.06 33775.33 35997.19 35186.56 34596.23 22398.92 174
ppachtmachnet_test93.22 29592.63 29594.97 30795.45 34890.84 31196.88 34097.88 27190.60 32192.08 32197.26 26888.08 21897.86 33485.12 35690.33 30496.22 334
Patchmtry93.22 29592.35 30195.84 27996.77 29193.09 27794.66 37797.56 28887.37 35792.90 29896.24 33088.15 21597.90 32987.37 34290.10 30996.53 312
testing393.19 29792.48 29995.30 29898.07 19992.27 28498.64 16797.17 32293.94 20193.98 25897.04 29167.97 37596.01 37088.40 33397.14 19297.63 233
FMVSNet193.19 29792.07 30496.56 23497.54 23995.00 19698.82 12498.18 22590.38 32792.27 31797.07 28573.68 36797.95 32589.36 32491.30 29496.72 286
LF4IMVS93.14 29992.79 29294.20 32995.88 33488.67 34897.66 28197.07 32693.81 20891.71 32597.65 24277.96 34598.81 24191.47 28891.92 28795.12 355
testgi93.06 30092.45 30094.88 31196.43 31289.90 32698.75 14197.54 29495.60 12591.63 32797.91 21674.46 36497.02 35386.10 34893.67 25897.72 230
PatchT93.06 30091.97 30696.35 25696.69 29792.67 28194.48 37897.08 32486.62 35997.08 15392.23 37887.94 22197.90 32978.89 37796.69 20398.49 204
RPMNet92.81 30291.34 31197.24 18097.00 27793.43 26294.96 37098.80 9182.27 37696.93 16192.12 37986.98 24199.82 7476.32 38296.65 20598.46 205
myMVS_eth3d92.73 30392.01 30594.89 31097.39 25490.94 30897.91 25697.46 30193.16 24493.42 28295.37 35168.09 37496.12 36888.34 33496.99 19597.60 234
TransMVSNet (Re)92.67 30491.51 31096.15 26496.58 30394.65 21398.90 9996.73 34590.86 31989.46 34697.86 22185.62 26598.09 31686.45 34681.12 36995.71 346
Syy-MVS92.55 30592.61 29692.38 34797.39 25483.41 37397.91 25697.46 30193.16 24493.42 28295.37 35184.75 28496.12 36877.00 38196.99 19597.60 234
K. test v392.55 30591.91 30894.48 32495.64 34089.24 33899.07 6294.88 37194.04 19286.78 36197.59 24877.64 34997.64 34092.08 27389.43 32096.57 305
DSMNet-mixed92.52 30792.58 29792.33 34894.15 36382.65 37698.30 21394.26 37889.08 34892.65 30695.73 34485.01 27895.76 37286.24 34797.76 17998.59 199
TinyColmap92.31 30891.53 30994.65 31996.92 28389.75 32896.92 33296.68 34890.45 32589.62 34397.85 22376.06 35798.81 24186.74 34492.51 28195.41 350
gg-mvs-nofinetune92.21 30990.58 31797.13 18896.75 29495.09 19395.85 36289.40 39485.43 36994.50 22881.98 38780.80 32698.40 29392.16 27198.33 16097.88 223
FMVSNet591.81 31090.92 31394.49 32397.21 26492.09 28798.00 24997.55 29389.31 34690.86 33395.61 34974.48 36395.32 37685.57 35289.70 31396.07 339
pmmvs691.77 31190.63 31695.17 30194.69 36191.24 30498.67 16397.92 26886.14 36389.62 34397.56 25275.79 35898.34 29490.75 30084.56 35995.94 342
Anonymous2023120691.66 31291.10 31293.33 33894.02 36787.35 36398.58 17697.26 31890.48 32390.16 33996.31 32883.83 30796.53 36479.36 37589.90 31196.12 337
Patchmatch-RL test91.49 31390.85 31493.41 33691.37 37684.40 36992.81 38295.93 36191.87 29087.25 35894.87 35788.99 19396.53 36492.54 26582.00 36599.30 123
test_040291.32 31490.27 32094.48 32496.60 30191.12 30598.50 19097.22 32086.10 36488.30 35496.98 29877.65 34897.99 32478.13 37992.94 27694.34 363
test_vis1_rt91.29 31590.65 31593.19 34297.45 24886.25 36798.57 18190.90 39293.30 23886.94 36093.59 36962.07 38299.11 19697.48 9895.58 23294.22 366
PVSNet_088.72 1991.28 31690.03 32295.00 30697.99 20687.29 36494.84 37398.50 16792.06 28589.86 34195.19 35379.81 33299.39 16792.27 27069.79 38798.33 211
Anonymous2024052191.18 31790.44 31893.42 33593.70 36888.47 35298.94 9397.56 28888.46 35289.56 34595.08 35677.15 35396.97 35483.92 36289.55 31794.82 361
EG-PatchMatch MVS91.13 31890.12 32194.17 33194.73 36089.00 34398.13 23597.81 27489.22 34785.32 37196.46 32567.71 37698.42 27987.89 34093.82 25495.08 357
TDRefinement91.06 31989.68 32495.21 29985.35 39191.49 30098.51 18997.07 32691.47 29988.83 35297.84 22477.31 35099.09 20192.79 25677.98 38095.04 358
UnsupCasMVSNet_eth90.99 32089.92 32394.19 33094.08 36489.83 32797.13 32398.67 12693.69 21885.83 36796.19 33575.15 36096.74 35889.14 32679.41 37696.00 340
test20.0390.89 32190.38 31992.43 34693.48 36988.14 35898.33 20697.56 28893.40 23387.96 35596.71 31680.69 32794.13 38179.15 37686.17 35595.01 360
MDA-MVSNet_test_wron90.71 32289.38 32794.68 31894.83 35790.78 31397.19 31697.46 30187.60 35572.41 38795.72 34686.51 24796.71 36185.92 35086.80 35296.56 307
YYNet190.70 32389.39 32694.62 32094.79 35990.65 31697.20 31497.46 30187.54 35672.54 38695.74 34286.51 24796.66 36286.00 34986.76 35396.54 310
KD-MVS_self_test90.38 32489.38 32793.40 33792.85 37288.94 34597.95 25297.94 26690.35 32890.25 33893.96 36679.82 33195.94 37184.62 36176.69 38295.33 351
pmmvs-eth3d90.36 32589.05 33094.32 32891.10 37892.12 28697.63 28696.95 33588.86 35084.91 37293.13 37378.32 34096.74 35888.70 33081.81 36794.09 369
CL-MVSNet_self_test90.11 32689.14 32993.02 34391.86 37588.23 35796.51 35498.07 25090.49 32290.49 33794.41 36184.75 28495.34 37580.79 37174.95 38495.50 349
new_pmnet90.06 32789.00 33193.22 34194.18 36288.32 35596.42 35696.89 34086.19 36285.67 36893.62 36877.18 35297.10 35281.61 36989.29 32294.23 365
MDA-MVSNet-bldmvs89.97 32888.35 33494.83 31495.21 35291.34 30197.64 28397.51 29788.36 35371.17 38896.13 33679.22 33596.63 36383.65 36386.27 35496.52 315
CMPMVSbinary66.06 2189.70 32989.67 32589.78 35593.19 37076.56 38197.00 32898.35 19580.97 37881.57 37797.75 23274.75 36298.61 25689.85 31393.63 26194.17 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 33088.28 33593.82 33292.81 37391.08 30698.01 24797.45 30587.95 35487.90 35695.87 34167.63 37794.56 38078.73 37888.18 33595.83 344
KD-MVS_2432*160089.61 33187.96 33894.54 32194.06 36591.59 29895.59 36697.63 28389.87 33588.95 34994.38 36378.28 34196.82 35684.83 35768.05 38895.21 353
miper_refine_blended89.61 33187.96 33894.54 32194.06 36591.59 29895.59 36697.63 28389.87 33588.95 34994.38 36378.28 34196.82 35684.83 35768.05 38895.21 353
MVS-HIRNet89.46 33388.40 33392.64 34597.58 23482.15 37794.16 38193.05 38675.73 38390.90 33282.52 38679.42 33498.33 29583.53 36498.68 13897.43 237
OpenMVS_ROBcopyleft86.42 2089.00 33487.43 34293.69 33393.08 37189.42 33697.91 25696.89 34078.58 38085.86 36694.69 35869.48 37298.29 30377.13 38093.29 27293.36 375
mvsany_test388.80 33588.04 33691.09 35489.78 38181.57 37997.83 26995.49 36493.81 20887.53 35793.95 36756.14 38597.43 34794.68 19483.13 36294.26 364
new-patchmatchnet88.50 33687.45 34191.67 35290.31 38085.89 36897.16 32197.33 31389.47 34283.63 37492.77 37576.38 35595.06 37882.70 36677.29 38194.06 371
APD_test188.22 33788.01 33788.86 35795.98 33074.66 38797.21 31396.44 35383.96 37486.66 36397.90 21760.95 38397.84 33582.73 36590.23 30794.09 369
PM-MVS87.77 33886.55 34491.40 35391.03 37983.36 37596.92 33295.18 36991.28 31086.48 36593.42 37053.27 38696.74 35889.43 32381.97 36694.11 368
dmvs_testset87.64 33988.93 33283.79 36595.25 35163.36 39697.20 31491.17 39093.07 24885.64 36995.98 34085.30 27591.52 38869.42 38787.33 34496.49 321
test_fmvs387.17 34087.06 34387.50 35991.21 37775.66 38399.05 6596.61 35192.79 26088.85 35192.78 37443.72 38993.49 38293.95 22184.56 35993.34 376
UnsupCasMVSNet_bld87.17 34085.12 34793.31 33991.94 37488.77 34694.92 37298.30 20784.30 37382.30 37590.04 38163.96 38197.25 35085.85 35174.47 38693.93 373
N_pmnet87.12 34287.77 34085.17 36395.46 34761.92 39797.37 30070.66 40285.83 36688.73 35396.04 33885.33 27397.76 33780.02 37290.48 30395.84 343
pmmvs386.67 34384.86 34892.11 35188.16 38587.19 36596.63 35094.75 37379.88 37987.22 35992.75 37666.56 37995.20 37781.24 37076.56 38393.96 372
test_f86.07 34485.39 34588.10 35889.28 38375.57 38497.73 27696.33 35589.41 34585.35 37091.56 38043.31 39195.53 37391.32 29084.23 36193.21 377
WB-MVS84.86 34585.33 34683.46 36689.48 38269.56 39198.19 22796.42 35489.55 34181.79 37694.67 35984.80 28290.12 38952.44 39280.64 37390.69 380
SSC-MVS84.27 34684.71 34982.96 37089.19 38468.83 39298.08 24096.30 35689.04 34981.37 37894.47 36084.60 28989.89 39049.80 39479.52 37590.15 381
test_vis3_rt79.22 34777.40 35384.67 36486.44 38974.85 38697.66 28181.43 39984.98 37067.12 39081.91 38828.09 39997.60 34188.96 32880.04 37481.55 388
test_method79.03 34878.17 35081.63 37186.06 39054.40 40282.75 39096.89 34039.54 39480.98 37995.57 35058.37 38494.73 37984.74 36078.61 37795.75 345
testf179.02 34977.70 35182.99 36888.10 38666.90 39394.67 37593.11 38371.08 38574.02 38393.41 37134.15 39593.25 38372.25 38578.50 37888.82 383
APD_test279.02 34977.70 35182.99 36888.10 38666.90 39394.67 37593.11 38371.08 38574.02 38393.41 37134.15 39593.25 38372.25 38578.50 37888.82 383
LCM-MVSNet78.70 35176.24 35686.08 36177.26 39771.99 38994.34 37996.72 34661.62 38976.53 38189.33 38233.91 39792.78 38681.85 36874.60 38593.46 374
Gipumacopyleft78.40 35276.75 35583.38 36795.54 34380.43 38079.42 39197.40 30964.67 38873.46 38580.82 38945.65 38893.14 38566.32 38987.43 34276.56 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 35375.44 35785.46 36282.54 39274.95 38594.23 38093.08 38572.80 38474.68 38287.38 38336.36 39491.56 38773.95 38363.94 39089.87 382
FPMVS77.62 35477.14 35479.05 37379.25 39560.97 39895.79 36395.94 36065.96 38767.93 38994.40 36237.73 39388.88 39268.83 38888.46 33287.29 385
EGC-MVSNET75.22 35569.54 35892.28 34994.81 35889.58 33397.64 28396.50 3521.82 3995.57 40095.74 34268.21 37396.26 36773.80 38491.71 28990.99 379
ANet_high69.08 35665.37 36080.22 37265.99 39971.96 39090.91 38690.09 39382.62 37549.93 39578.39 39029.36 39881.75 39362.49 39038.52 39486.95 387
tmp_tt68.90 35766.97 35974.68 37550.78 40159.95 39987.13 38783.47 39838.80 39562.21 39196.23 33264.70 38076.91 39788.91 32930.49 39587.19 386
PMVScopyleft61.03 2365.95 35863.57 36273.09 37657.90 40051.22 40385.05 38993.93 38254.45 39044.32 39683.57 38513.22 40089.15 39158.68 39181.00 37078.91 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 35964.25 36167.02 37782.28 39359.36 40091.83 38585.63 39652.69 39160.22 39277.28 39141.06 39280.12 39546.15 39541.14 39261.57 393
EMVS64.07 36063.26 36366.53 37881.73 39458.81 40191.85 38484.75 39751.93 39359.09 39375.13 39243.32 39079.09 39642.03 39639.47 39361.69 392
MVEpermissive62.14 2263.28 36159.38 36474.99 37474.33 39865.47 39585.55 38880.50 40052.02 39251.10 39475.00 39310.91 40380.50 39451.60 39353.40 39178.99 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 36230.18 36630.16 37978.61 39643.29 40466.79 39214.21 40317.31 39614.82 39911.93 39911.55 40241.43 39837.08 39719.30 3965.76 396
cdsmvs_eth3d_5k23.98 36331.98 3650.00 3820.00 4040.00 4070.00 39398.59 1420.00 4000.00 40198.61 14690.60 1600.00 4010.00 4000.00 3990.00 397
testmvs21.48 36424.95 36711.09 38114.89 4026.47 40696.56 3529.87 4047.55 39717.93 39739.02 3959.43 4045.90 40016.56 39912.72 39720.91 395
test12320.95 36523.72 36812.64 38013.54 4038.19 40596.55 3536.13 4057.48 39816.74 39837.98 39612.97 4016.05 39916.69 3985.43 39823.68 394
ab-mvs-re8.20 36610.94 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40198.43 1660.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.88 36710.50 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40094.51 790.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM99.33 2698.14 5498.93 9597.02 33198.96 199.17 3999.47 2091.97 12799.94 699.85 299.69 5499.91 2
WAC-MVS90.94 30888.66 331
FOURS199.82 198.66 2499.69 198.95 4497.46 3299.39 28
MSC_two_6792asdad99.62 699.17 9299.08 1198.63 13699.94 698.53 2899.80 1999.86 6
PC_three_145295.08 15699.60 1799.16 7597.86 298.47 27397.52 9699.72 4999.74 35
No_MVS99.62 699.17 9299.08 1198.63 13699.94 698.53 2899.80 1999.86 6
test_one_060199.66 2699.25 298.86 7397.55 2699.20 3699.47 2097.57 6
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.46 4998.70 2398.79 9693.21 24198.67 7198.97 10395.70 4399.83 6796.07 15099.58 77
RE-MVS-def98.34 3399.49 4597.86 6299.11 5598.80 9196.49 8499.17 3999.35 4295.29 5997.72 7899.65 6299.71 47
IU-MVS99.71 1999.23 798.64 13495.28 14399.63 1698.35 4599.81 1299.83 11
OPU-MVS99.37 2099.24 8599.05 1499.02 7499.16 7597.81 399.37 16897.24 10599.73 4699.70 51
test_241102_TWO98.87 6797.65 2099.53 2199.48 1897.34 1199.94 698.43 4099.80 1999.83 11
test_241102_ONE99.71 1999.24 598.87 6797.62 2299.73 899.39 3097.53 799.74 109
9.1498.06 5599.47 4798.71 15398.82 7994.36 18499.16 4299.29 5196.05 3199.81 7997.00 11299.71 51
save fliter99.46 4998.38 3598.21 22298.71 11497.95 11
test_0728_THIRD97.32 4099.45 2399.46 2497.88 199.94 698.47 3699.86 199.85 8
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6099.94 698.47 3699.81 1299.84 10
test072699.72 1299.25 299.06 6398.88 6097.62 2299.56 1899.50 1597.42 9
GSMVS99.20 137
test_part299.63 2999.18 1099.27 33
sam_mvs189.45 17999.20 137
sam_mvs88.99 193
ambc89.49 35686.66 38875.78 38292.66 38396.72 34686.55 36492.50 37746.01 38797.90 32990.32 30482.09 36494.80 362
MTGPAbinary98.74 106
test_post196.68 34930.43 39887.85 22598.69 24992.59 261
test_post31.83 39788.83 20098.91 227
patchmatchnet-post95.10 35589.42 18098.89 231
GG-mvs-BLEND96.59 23096.34 31694.98 19996.51 35488.58 39593.10 29594.34 36580.34 33098.05 31989.53 32096.99 19596.74 283
MTMP98.89 10394.14 380
gm-plane-assit95.88 33487.47 36289.74 33896.94 30499.19 18493.32 240
test9_res96.39 14499.57 7899.69 54
TEST999.31 6298.50 2997.92 25498.73 10992.63 26397.74 12898.68 14096.20 2699.80 86
test_899.29 7198.44 3197.89 26298.72 11192.98 25297.70 13298.66 14396.20 2699.80 86
agg_prior295.87 16099.57 7899.68 59
agg_prior99.30 6698.38 3598.72 11197.57 14299.81 79
TestCases96.99 19699.25 7993.21 27398.18 22591.36 30393.52 27698.77 13084.67 28799.72 11189.70 31797.87 17498.02 221
test_prior498.01 5997.86 265
test_prior297.80 27096.12 10197.89 12298.69 13995.96 3596.89 12199.60 72
test_prior99.19 4099.31 6298.22 4798.84 7799.70 11799.65 67
旧先验297.57 28991.30 30898.67 7199.80 8695.70 168
新几何297.64 283
新几何199.16 4599.34 5598.01 5998.69 11890.06 33298.13 9998.95 11094.60 7799.89 4591.97 27999.47 9799.59 77
旧先验199.29 7197.48 7598.70 11799.09 9095.56 4699.47 9799.61 73
无先验97.58 28898.72 11191.38 30299.87 5693.36 23999.60 75
原ACMM297.67 280
原ACMM198.65 7399.32 6096.62 11098.67 12693.27 24097.81 12398.97 10395.18 6599.83 6793.84 22599.46 10099.50 89
test22299.23 8697.17 9097.40 29698.66 12988.68 35198.05 10498.96 10894.14 9199.53 8999.61 73
testdata299.89 4591.65 286
segment_acmp96.85 14
testdata98.26 10899.20 9095.36 17998.68 12191.89 28998.60 7999.10 8494.44 8499.82 7494.27 21199.44 10199.58 81
testdata197.32 30696.34 93
test1299.18 4299.16 9698.19 4898.53 15798.07 10395.13 6899.72 11199.56 8499.63 71
plane_prior797.42 25094.63 215
plane_prior697.35 25794.61 21887.09 238
plane_prior598.56 15199.03 20896.07 15094.27 23896.92 258
plane_prior498.28 185
plane_prior394.61 21897.02 6295.34 207
plane_prior298.80 13397.28 43
plane_prior197.37 256
plane_prior94.60 22098.44 19796.74 7594.22 240
n20.00 406
nn0.00 406
door-mid94.37 376
lessismore_v094.45 32794.93 35688.44 35391.03 39186.77 36297.64 24476.23 35698.42 27990.31 30585.64 35896.51 318
LGP-MVS_train96.47 24697.46 24593.54 25798.54 15594.67 17294.36 23898.77 13085.39 26999.11 19695.71 16694.15 24496.76 281
test1198.66 129
door94.64 374
HQP5-MVS94.25 235
HQP-NCC97.20 26598.05 24396.43 8794.45 230
ACMP_Plane97.20 26598.05 24396.43 8794.45 230
BP-MVS95.30 178
HQP4-MVS94.45 23098.96 21996.87 269
HQP3-MVS98.46 17494.18 242
HQP2-MVS86.75 244
NP-MVS97.28 25994.51 22397.73 233
MDTV_nov1_ep13_2view84.26 37096.89 33990.97 31797.90 12189.89 17193.91 22399.18 146
MDTV_nov1_ep1395.40 16897.48 24388.34 35496.85 34297.29 31593.74 21297.48 14497.26 26889.18 18799.05 20491.92 28097.43 188
ACMMP++_ref92.97 275
ACMMP++93.61 262
Test By Simon94.64 76
ITE_SJBPF95.44 29397.42 25091.32 30297.50 29895.09 15593.59 27298.35 17681.70 31698.88 23389.71 31693.39 26996.12 337
DeepMVS_CXcopyleft86.78 36097.09 27572.30 38895.17 37075.92 38284.34 37395.19 35370.58 37095.35 37479.98 37489.04 32692.68 378