| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 54 | 99.43 57 | 97.48 82 | 98.88 115 | 99.30 13 | 98.47 11 | 99.85 4 | 99.43 32 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 24 | 99.89 4 |
|
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 79 | 98.87 70 | 97.65 27 | 99.73 12 | 99.48 23 | 97.53 7 | 99.94 9 | 98.43 52 | 99.81 15 | 99.70 56 |
|
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 98 | 99.23 7 | 99.69 1 | 98.88 63 | 97.32 48 | 99.53 25 | 99.47 25 | 97.81 3 | 99.94 9 | 98.47 48 | 99.72 57 | 99.74 39 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 50 | 99.41 59 | 97.54 80 | 98.89 110 | 99.31 12 | 98.49 10 | 99.86 2 | 99.42 33 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 51 | 99.90 3 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 89 | 98.58 157 | 97.62 29 | 99.45 27 | 99.46 29 | 97.42 9 | 99.94 9 | 98.47 48 | 99.81 15 | 99.69 59 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 10 | 98.93 51 | 97.38 45 | 99.41 30 | 99.54 13 | 96.66 18 | 99.84 72 | 98.86 27 | 99.85 6 | 99.87 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| reproduce_model | | | 98.94 7 | 98.81 10 | 99.34 25 | 99.52 39 | 98.26 49 | 98.94 98 | 98.84 80 | 98.06 15 | 99.35 34 | 99.61 4 | 96.39 27 | 99.94 9 | 98.77 30 | 99.82 14 | 99.83 12 |
|
| reproduce-ours | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 82 | 98.06 15 | 99.29 38 | 99.58 9 | 96.40 25 | 99.94 9 | 98.68 32 | 99.81 15 | 99.81 17 |
|
| our_new_method | | | 98.93 8 | 98.78 11 | 99.38 18 | 99.49 46 | 98.38 35 | 98.86 121 | 98.83 82 | 98.06 15 | 99.29 38 | 99.58 9 | 96.40 25 | 99.94 9 | 98.68 32 | 99.81 15 | 99.81 17 |
|
| test_fmvsmconf_n | | | 98.92 10 | 98.87 6 | 99.04 58 | 98.88 131 | 97.25 97 | 98.82 133 | 99.34 10 | 98.75 4 | 99.80 5 | 99.61 4 | 95.16 73 | 99.95 7 | 99.70 7 | 99.80 24 | 99.93 1 |
|
| DPE-MVS |  | | 98.92 10 | 98.67 15 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 216 | 98.91 57 | 97.58 32 | 99.54 24 | 99.46 29 | 97.10 12 | 99.94 9 | 97.64 99 | 99.84 11 | 99.83 12 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SteuartSystems-ACMMP | | | 98.90 12 | 98.75 13 | 99.36 23 | 99.22 93 | 98.43 33 | 99.10 63 | 98.87 70 | 97.38 45 | 99.35 34 | 99.40 35 | 97.78 5 | 99.87 63 | 97.77 87 | 99.85 6 | 99.78 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_fmvsm_n_1920 | | | 98.87 13 | 99.01 3 | 98.45 104 | 99.42 58 | 96.43 136 | 98.96 94 | 99.36 9 | 98.63 6 | 99.86 2 | 99.51 18 | 95.91 43 | 99.97 1 | 99.72 5 | 99.75 47 | 98.94 186 |
|
| TSAR-MVS + MP. | | | 98.78 14 | 98.62 16 | 99.24 39 | 99.69 24 | 98.28 48 | 99.14 54 | 98.66 137 | 96.84 77 | 99.56 22 | 99.31 55 | 96.34 28 | 99.70 124 | 98.32 58 | 99.73 54 | 99.73 44 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CNVR-MVS | | | 98.78 14 | 98.56 19 | 99.45 15 | 99.32 65 | 98.87 19 | 98.47 208 | 98.81 91 | 97.72 22 | 98.76 77 | 99.16 82 | 97.05 13 | 99.78 106 | 98.06 69 | 99.66 67 | 99.69 59 |
|
| MSP-MVS | | | 98.74 16 | 98.55 20 | 99.29 32 | 99.75 3 | 98.23 50 | 99.26 27 | 98.88 63 | 97.52 35 | 99.41 30 | 98.78 139 | 96.00 39 | 99.79 103 | 97.79 86 | 99.59 82 | 99.85 9 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVS | | | 98.70 17 | 98.49 24 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 63 | 97.40 42 | 98.46 95 | 99.20 72 | 95.90 45 | 99.89 52 | 97.85 82 | 99.74 51 | 99.78 23 |
|
| MCST-MVS | | | 98.65 18 | 98.37 32 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 217 | 98.68 129 | 97.04 69 | 98.52 93 | 98.80 137 | 96.78 16 | 99.83 74 | 97.93 76 | 99.61 78 | 99.74 39 |
|
| SD-MVS | | | 98.64 19 | 98.68 14 | 98.53 95 | 99.33 62 | 98.36 43 | 98.90 106 | 98.85 79 | 97.28 51 | 99.72 14 | 99.39 36 | 96.63 20 | 97.60 366 | 98.17 64 | 99.85 6 | 99.64 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HFP-MVS | | | 98.63 20 | 98.40 29 | 99.32 31 | 99.72 12 | 98.29 47 | 99.23 32 | 98.96 46 | 96.10 114 | 98.94 60 | 99.17 79 | 96.06 36 | 99.92 34 | 97.62 100 | 99.78 34 | 99.75 37 |
|
| ACMMP_NAP | | | 98.61 21 | 98.30 45 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 133 | 98.81 91 | 95.80 125 | 99.16 50 | 99.47 25 | 95.37 60 | 99.92 34 | 97.89 80 | 99.75 47 | 99.79 21 |
|
| region2R | | | 98.61 21 | 98.38 31 | 99.29 32 | 99.74 7 | 98.16 56 | 99.23 32 | 98.93 51 | 96.15 111 | 98.94 60 | 99.17 79 | 95.91 43 | 99.94 9 | 97.55 107 | 99.79 30 | 99.78 23 |
|
| NCCC | | | 98.61 21 | 98.35 35 | 99.38 18 | 99.28 80 | 98.61 26 | 98.45 209 | 98.76 109 | 97.82 21 | 98.45 98 | 98.93 121 | 96.65 19 | 99.83 74 | 97.38 116 | 99.41 112 | 99.71 52 |
|
| SF-MVS | | | 98.59 24 | 98.32 44 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 73 | 98.81 91 | 95.12 161 | 99.32 37 | 99.39 36 | 96.22 30 | 99.84 72 | 97.72 90 | 99.73 54 | 99.67 68 |
|
| ACMMPR | | | 98.59 24 | 98.36 33 | 99.29 32 | 99.74 7 | 98.15 57 | 99.23 32 | 98.95 47 | 96.10 114 | 98.93 64 | 99.19 77 | 95.70 49 | 99.94 9 | 97.62 100 | 99.79 30 | 99.78 23 |
|
| test_fmvsmconf0.1_n | | | 98.58 26 | 98.44 27 | 98.99 60 | 97.73 247 | 97.15 102 | 98.84 129 | 98.97 43 | 98.75 4 | 99.43 29 | 99.54 13 | 93.29 107 | 99.93 28 | 99.64 10 | 99.79 30 | 99.89 4 |
|
| SMA-MVS |  | | 98.58 26 | 98.25 48 | 99.56 8 | 99.51 40 | 99.04 15 | 98.95 95 | 98.80 98 | 93.67 244 | 99.37 33 | 99.52 16 | 96.52 22 | 99.89 52 | 98.06 69 | 99.81 15 | 99.76 36 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 98.58 26 | 98.29 46 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 106 | 98.74 113 | 97.27 55 | 98.02 122 | 99.39 36 | 94.81 83 | 99.96 4 | 97.91 78 | 99.79 30 | 99.77 29 |
|
| HPM-MVS++ |  | | 98.58 26 | 98.25 48 | 99.55 9 | 99.50 42 | 99.08 11 | 98.72 162 | 98.66 137 | 97.51 36 | 98.15 109 | 98.83 134 | 95.70 49 | 99.92 34 | 97.53 109 | 99.67 64 | 99.66 71 |
|
| SR-MVS | | | 98.57 30 | 98.35 35 | 99.24 39 | 99.53 36 | 98.18 54 | 99.09 64 | 98.82 85 | 96.58 93 | 99.10 52 | 99.32 53 | 95.39 58 | 99.82 81 | 97.70 95 | 99.63 75 | 99.72 48 |
|
| CP-MVS | | | 98.57 30 | 98.36 33 | 99.19 43 | 99.66 26 | 97.86 68 | 99.34 16 | 98.87 70 | 95.96 117 | 98.60 90 | 99.13 87 | 96.05 37 | 99.94 9 | 97.77 87 | 99.86 2 | 99.77 29 |
|
| MSLP-MVS++ | | | 98.56 32 | 98.57 18 | 98.55 91 | 99.26 83 | 96.80 116 | 98.71 163 | 99.05 37 | 97.28 51 | 98.84 70 | 99.28 58 | 96.47 23 | 99.40 183 | 98.52 46 | 99.70 60 | 99.47 103 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 33 | 98.34 39 | 99.18 45 | 99.25 84 | 98.04 62 | 98.50 205 | 98.78 105 | 97.72 22 | 98.92 66 | 99.28 58 | 95.27 66 | 99.82 81 | 97.55 107 | 99.77 36 | 99.69 59 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 98.54 34 | 98.35 35 | 99.13 51 | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 98 | 96.49 96 | 99.17 47 | 99.35 48 | 95.34 62 | 99.82 81 | 97.72 90 | 99.65 70 | 99.71 52 |
|
| APD-MVS_3200maxsize | | | 98.53 35 | 98.33 43 | 99.15 49 | 99.50 42 | 97.92 67 | 99.15 51 | 98.81 91 | 96.24 107 | 99.20 44 | 99.37 42 | 95.30 64 | 99.80 93 | 97.73 89 | 99.67 64 | 99.72 48 |
|
| MM | | | 98.51 36 | 98.24 50 | 99.33 29 | 99.12 106 | 98.14 59 | 98.93 101 | 97.02 352 | 98.96 1 | 99.17 47 | 99.47 25 | 91.97 137 | 99.94 9 | 99.85 3 | 99.69 61 | 99.91 2 |
|
| mPP-MVS | | | 98.51 36 | 98.26 47 | 99.25 38 | 99.75 3 | 98.04 62 | 99.28 24 | 98.81 91 | 96.24 107 | 98.35 105 | 99.23 67 | 95.46 55 | 99.94 9 | 97.42 114 | 99.81 15 | 99.77 29 |
|
| ZNCC-MVS | | | 98.49 38 | 98.20 56 | 99.35 24 | 99.73 11 | 98.39 34 | 99.19 44 | 98.86 76 | 95.77 127 | 98.31 108 | 99.10 91 | 95.46 55 | 99.93 28 | 97.57 106 | 99.81 15 | 99.74 39 |
|
| SPE-MVS-test | | | 98.49 38 | 98.50 23 | 98.46 103 | 99.20 96 | 97.05 106 | 99.64 4 | 98.50 179 | 97.45 41 | 98.88 67 | 99.14 86 | 95.25 68 | 99.15 211 | 98.83 28 | 99.56 92 | 99.20 147 |
|
| PGM-MVS | | | 98.49 38 | 98.23 52 | 99.27 37 | 99.72 12 | 98.08 61 | 98.99 86 | 99.49 5 | 95.43 143 | 99.03 53 | 99.32 53 | 95.56 52 | 99.94 9 | 96.80 145 | 99.77 36 | 99.78 23 |
|
| EI-MVSNet-Vis-set | | | 98.47 41 | 98.39 30 | 98.69 80 | 99.46 52 | 96.49 133 | 98.30 228 | 98.69 126 | 97.21 58 | 98.84 70 | 99.36 46 | 95.41 57 | 99.78 106 | 98.62 35 | 99.65 70 | 99.80 20 |
|
| MVS_111021_HR | | | 98.47 41 | 98.34 39 | 98.88 71 | 99.22 93 | 97.32 90 | 97.91 277 | 99.58 3 | 97.20 59 | 98.33 106 | 99.00 110 | 95.99 40 | 99.64 136 | 98.05 71 | 99.76 42 | 99.69 59 |
|
| balanced_conf03 | | | 98.45 43 | 98.35 35 | 98.74 76 | 98.65 158 | 97.55 78 | 99.19 44 | 98.60 148 | 96.72 87 | 99.35 34 | 98.77 141 | 95.06 78 | 99.55 159 | 98.95 24 | 99.87 1 | 99.12 162 |
|
| test_fmvsmvis_n_1920 | | | 98.44 44 | 98.51 21 | 98.23 124 | 98.33 188 | 96.15 150 | 98.97 89 | 99.15 29 | 98.55 9 | 98.45 98 | 99.55 11 | 94.26 96 | 99.97 1 | 99.65 8 | 99.66 67 | 98.57 223 |
|
| CS-MVS | | | 98.44 44 | 98.49 24 | 98.31 116 | 99.08 111 | 96.73 120 | 99.67 3 | 98.47 185 | 97.17 61 | 98.94 60 | 99.10 91 | 95.73 48 | 99.13 214 | 98.71 31 | 99.49 102 | 99.09 166 |
|
| GST-MVS | | | 98.43 46 | 98.12 60 | 99.34 25 | 99.72 12 | 98.38 35 | 99.09 64 | 98.82 85 | 95.71 131 | 98.73 80 | 99.06 102 | 95.27 66 | 99.93 28 | 97.07 124 | 99.63 75 | 99.72 48 |
|
| fmvsm_s_conf0.5_n | | | 98.42 47 | 98.51 21 | 98.13 133 | 99.30 71 | 95.25 196 | 98.85 125 | 99.39 7 | 97.94 19 | 99.74 11 | 99.62 3 | 92.59 116 | 99.91 43 | 99.65 8 | 99.52 98 | 99.25 140 |
|
| EI-MVSNet-UG-set | | | 98.41 48 | 98.34 39 | 98.61 86 | 99.45 55 | 96.32 143 | 98.28 231 | 98.68 129 | 97.17 61 | 98.74 78 | 99.37 42 | 95.25 68 | 99.79 103 | 98.57 37 | 99.54 95 | 99.73 44 |
|
| DELS-MVS | | | 98.40 49 | 98.20 56 | 98.99 60 | 99.00 118 | 97.66 73 | 97.75 298 | 98.89 60 | 97.71 24 | 98.33 106 | 98.97 112 | 94.97 80 | 99.88 61 | 98.42 54 | 99.76 42 | 99.42 114 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| fmvsm_s_conf0.5_n_a | | | 98.38 50 | 98.42 28 | 98.27 118 | 99.09 110 | 95.41 186 | 98.86 121 | 99.37 8 | 97.69 26 | 99.78 7 | 99.61 4 | 92.38 119 | 99.91 43 | 99.58 12 | 99.43 110 | 99.49 99 |
|
| TSAR-MVS + GP. | | | 98.38 50 | 98.24 50 | 98.81 73 | 99.22 93 | 97.25 97 | 98.11 255 | 98.29 224 | 97.19 60 | 98.99 58 | 99.02 105 | 96.22 30 | 99.67 131 | 98.52 46 | 98.56 160 | 99.51 92 |
|
| HPM-MVS_fast | | | 98.38 50 | 98.13 59 | 99.12 53 | 99.75 3 | 97.86 68 | 99.44 9 | 98.82 85 | 94.46 200 | 98.94 60 | 99.20 72 | 95.16 73 | 99.74 116 | 97.58 103 | 99.85 6 | 99.77 29 |
|
| patch_mono-2 | | | 98.36 53 | 98.87 6 | 96.82 227 | 99.53 36 | 90.68 334 | 98.64 180 | 99.29 14 | 97.88 20 | 99.19 46 | 99.52 16 | 96.80 15 | 99.97 1 | 99.11 20 | 99.86 2 | 99.82 16 |
|
| HPM-MVS |  | | 98.36 53 | 98.10 63 | 99.13 51 | 99.74 7 | 97.82 72 | 99.53 6 | 98.80 98 | 94.63 190 | 98.61 89 | 98.97 112 | 95.13 75 | 99.77 111 | 97.65 98 | 99.83 13 | 99.79 21 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS |  | | 98.35 55 | 98.00 69 | 99.42 16 | 99.51 40 | 98.72 21 | 98.80 142 | 98.82 85 | 94.52 197 | 99.23 43 | 99.25 66 | 95.54 54 | 99.80 93 | 96.52 152 | 99.77 36 | 99.74 39 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_LR | | | 98.34 56 | 98.23 52 | 98.67 82 | 99.27 81 | 96.90 112 | 97.95 272 | 99.58 3 | 97.14 64 | 98.44 100 | 99.01 109 | 95.03 79 | 99.62 143 | 97.91 78 | 99.75 47 | 99.50 94 |
|
| PHI-MVS | | | 98.34 56 | 98.06 64 | 99.18 45 | 99.15 104 | 98.12 60 | 99.04 73 | 99.09 32 | 93.32 259 | 98.83 72 | 99.10 91 | 96.54 21 | 99.83 74 | 97.70 95 | 99.76 42 | 99.59 82 |
|
| MP-MVS |  | | 98.33 58 | 98.01 68 | 99.28 35 | 99.75 3 | 98.18 54 | 99.22 36 | 98.79 103 | 96.13 112 | 97.92 133 | 99.23 67 | 94.54 86 | 99.94 9 | 96.74 148 | 99.78 34 | 99.73 44 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVSMamba_PlusPlus | | | 98.31 59 | 98.19 58 | 98.67 82 | 98.96 125 | 97.36 88 | 99.24 30 | 98.57 159 | 94.81 182 | 98.99 58 | 98.90 125 | 95.22 71 | 99.59 146 | 99.15 19 | 99.84 11 | 99.07 174 |
|
| MP-MVS-pluss | | | 98.31 59 | 97.92 71 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 214 | 98.78 105 | 94.10 209 | 97.69 148 | 99.42 33 | 95.25 68 | 99.92 34 | 98.09 68 | 99.80 24 | 99.67 68 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| fmvsm_s_conf0.5_n_2 | | | 98.30 61 | 98.21 54 | 98.57 88 | 99.25 84 | 97.11 103 | 98.66 176 | 99.20 24 | 98.82 2 | 99.79 6 | 99.60 8 | 89.38 194 | 99.92 34 | 99.80 4 | 99.38 117 | 98.69 207 |
|
| MVS_0304 | | | 98.23 62 | 97.91 72 | 99.21 42 | 98.06 217 | 97.96 66 | 98.58 189 | 95.51 389 | 98.58 7 | 98.87 68 | 99.26 61 | 92.99 111 | 99.95 7 | 99.62 11 | 99.67 64 | 99.73 44 |
|
| ACMMP |  | | 98.23 62 | 97.95 70 | 99.09 55 | 99.74 7 | 97.62 76 | 99.03 76 | 99.41 6 | 95.98 116 | 97.60 157 | 99.36 46 | 94.45 91 | 99.93 28 | 97.14 121 | 98.85 146 | 99.70 56 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| EC-MVSNet | | | 98.21 64 | 98.11 61 | 98.49 100 | 98.34 185 | 97.26 96 | 99.61 5 | 98.43 194 | 96.78 80 | 98.87 68 | 98.84 132 | 93.72 103 | 99.01 235 | 98.91 26 | 99.50 100 | 99.19 151 |
|
| fmvsm_s_conf0.1_n | | | 98.18 65 | 98.21 54 | 98.11 137 | 98.54 167 | 95.24 197 | 98.87 118 | 99.24 17 | 97.50 37 | 99.70 15 | 99.67 1 | 91.33 153 | 99.89 52 | 99.47 14 | 99.54 95 | 99.21 146 |
|
| fmvsm_s_conf0.1_n_2 | | | 98.14 66 | 98.02 67 | 98.53 95 | 98.88 131 | 97.07 105 | 98.69 169 | 98.82 85 | 98.78 3 | 99.77 8 | 99.61 4 | 88.83 213 | 99.91 43 | 99.71 6 | 99.07 130 | 98.61 217 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 67 | 98.04 66 | 98.21 125 | 97.66 253 | 95.39 187 | 98.89 110 | 99.17 27 | 97.24 56 | 99.76 10 | 99.67 1 | 91.13 158 | 99.88 61 | 99.39 15 | 99.41 112 | 99.35 119 |
|
| dcpmvs_2 | | | 98.08 67 | 98.59 17 | 96.56 251 | 99.57 33 | 90.34 343 | 99.15 51 | 98.38 204 | 96.82 79 | 99.29 38 | 99.49 22 | 95.78 47 | 99.57 149 | 98.94 25 | 99.86 2 | 99.77 29 |
|
| CANet | | | 98.05 69 | 97.76 75 | 98.90 70 | 98.73 144 | 97.27 92 | 98.35 219 | 98.78 105 | 97.37 47 | 97.72 145 | 98.96 117 | 91.53 149 | 99.92 34 | 98.79 29 | 99.65 70 | 99.51 92 |
|
| train_agg | | | 97.97 70 | 97.52 87 | 99.33 29 | 99.31 67 | 98.50 29 | 97.92 275 | 98.73 116 | 92.98 275 | 97.74 142 | 98.68 152 | 96.20 32 | 99.80 93 | 96.59 149 | 99.57 86 | 99.68 64 |
|
| ETV-MVS | | | 97.96 71 | 97.81 73 | 98.40 111 | 98.42 173 | 97.27 92 | 98.73 158 | 98.55 164 | 96.84 77 | 98.38 102 | 97.44 270 | 95.39 58 | 99.35 188 | 97.62 100 | 98.89 141 | 98.58 222 |
|
| UA-Net | | | 97.96 71 | 97.62 79 | 98.98 62 | 98.86 135 | 97.47 84 | 98.89 110 | 99.08 33 | 96.67 90 | 98.72 81 | 99.54 13 | 93.15 109 | 99.81 86 | 94.87 206 | 98.83 147 | 99.65 72 |
|
| CDPH-MVS | | | 97.94 73 | 97.49 89 | 99.28 35 | 99.47 50 | 98.44 31 | 97.91 277 | 98.67 134 | 92.57 291 | 98.77 76 | 98.85 131 | 95.93 42 | 99.72 118 | 95.56 186 | 99.69 61 | 99.68 64 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 74 | 98.48 26 | 96.30 276 | 99.00 118 | 89.54 357 | 97.43 320 | 98.87 70 | 98.16 13 | 99.26 42 | 99.38 41 | 96.12 35 | 99.64 136 | 98.30 59 | 99.77 36 | 99.72 48 |
|
| DeepC-MVS | | 95.98 3 | 97.88 75 | 97.58 81 | 98.77 74 | 99.25 84 | 96.93 110 | 98.83 131 | 98.75 111 | 96.96 73 | 96.89 182 | 99.50 20 | 90.46 171 | 99.87 63 | 97.84 84 | 99.76 42 | 99.52 89 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf0.01_n | | | 97.86 76 | 97.54 86 | 98.83 72 | 95.48 370 | 96.83 115 | 98.95 95 | 98.60 148 | 98.58 7 | 98.93 64 | 99.55 11 | 88.57 218 | 99.91 43 | 99.54 13 | 99.61 78 | 99.77 29 |
|
| DP-MVS Recon | | | 97.86 76 | 97.46 92 | 99.06 57 | 99.53 36 | 98.35 44 | 98.33 221 | 98.89 60 | 92.62 288 | 98.05 117 | 98.94 120 | 95.34 62 | 99.65 134 | 96.04 168 | 99.42 111 | 99.19 151 |
|
| CSCG | | | 97.85 78 | 97.74 76 | 98.20 127 | 99.67 25 | 95.16 200 | 99.22 36 | 99.32 11 | 93.04 273 | 97.02 175 | 98.92 123 | 95.36 61 | 99.91 43 | 97.43 113 | 99.64 74 | 99.52 89 |
|
| BP-MVS1 | | | 97.82 79 | 97.51 88 | 98.76 75 | 98.25 195 | 97.39 87 | 99.15 51 | 97.68 291 | 96.69 88 | 98.47 94 | 99.10 91 | 90.29 175 | 99.51 166 | 98.60 36 | 99.35 120 | 99.37 117 |
|
| MG-MVS | | | 97.81 80 | 97.60 80 | 98.44 106 | 99.12 106 | 95.97 159 | 97.75 298 | 98.78 105 | 96.89 76 | 98.46 95 | 99.22 69 | 93.90 102 | 99.68 130 | 94.81 210 | 99.52 98 | 99.67 68 |
|
| VNet | | | 97.79 81 | 97.40 96 | 98.96 65 | 98.88 131 | 97.55 78 | 98.63 183 | 98.93 51 | 96.74 84 | 99.02 54 | 98.84 132 | 90.33 174 | 99.83 74 | 98.53 40 | 96.66 221 | 99.50 94 |
|
| EIA-MVS | | | 97.75 82 | 97.58 81 | 98.27 118 | 98.38 177 | 96.44 135 | 99.01 81 | 98.60 148 | 95.88 121 | 97.26 164 | 97.53 264 | 94.97 80 | 99.33 191 | 97.38 116 | 99.20 126 | 99.05 175 |
|
| PS-MVSNAJ | | | 97.73 83 | 97.77 74 | 97.62 177 | 98.68 153 | 95.58 177 | 97.34 329 | 98.51 174 | 97.29 50 | 98.66 86 | 97.88 230 | 94.51 87 | 99.90 50 | 97.87 81 | 99.17 128 | 97.39 264 |
|
| casdiffmvs_mvg |  | | 97.72 84 | 97.48 91 | 98.44 106 | 98.42 173 | 96.59 128 | 98.92 103 | 98.44 190 | 96.20 109 | 97.76 139 | 99.20 72 | 91.66 143 | 99.23 201 | 98.27 63 | 98.41 170 | 99.49 99 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CPTT-MVS | | | 97.72 84 | 97.32 100 | 98.92 67 | 99.64 28 | 97.10 104 | 99.12 58 | 98.81 91 | 92.34 299 | 98.09 114 | 99.08 100 | 93.01 110 | 99.92 34 | 96.06 167 | 99.77 36 | 99.75 37 |
|
| PVSNet_Blended_VisFu | | | 97.70 86 | 97.46 92 | 98.44 106 | 99.27 81 | 95.91 167 | 98.63 183 | 99.16 28 | 94.48 199 | 97.67 149 | 98.88 128 | 92.80 113 | 99.91 43 | 97.11 122 | 99.12 129 | 99.50 94 |
|
| mvsany_test1 | | | 97.69 87 | 97.70 77 | 97.66 175 | 98.24 196 | 94.18 250 | 97.53 314 | 97.53 309 | 95.52 139 | 99.66 17 | 99.51 18 | 94.30 94 | 99.56 152 | 98.38 55 | 98.62 156 | 99.23 142 |
|
| sasdasda | | | 97.67 88 | 97.23 104 | 98.98 62 | 98.70 149 | 98.38 35 | 99.34 16 | 98.39 200 | 96.76 82 | 97.67 149 | 97.40 274 | 92.26 123 | 99.49 170 | 98.28 60 | 96.28 239 | 99.08 170 |
|
| canonicalmvs | | | 97.67 88 | 97.23 104 | 98.98 62 | 98.70 149 | 98.38 35 | 99.34 16 | 98.39 200 | 96.76 82 | 97.67 149 | 97.40 274 | 92.26 123 | 99.49 170 | 98.28 60 | 96.28 239 | 99.08 170 |
|
| xiu_mvs_v2_base | | | 97.66 90 | 97.70 77 | 97.56 181 | 98.61 162 | 95.46 184 | 97.44 318 | 98.46 186 | 97.15 63 | 98.65 87 | 98.15 206 | 94.33 93 | 99.80 93 | 97.84 84 | 98.66 155 | 97.41 262 |
|
| GDP-MVS | | | 97.64 91 | 97.28 101 | 98.71 79 | 98.30 193 | 97.33 89 | 99.05 69 | 98.52 171 | 96.34 104 | 98.80 73 | 99.05 103 | 89.74 184 | 99.51 166 | 96.86 142 | 98.86 145 | 99.28 134 |
|
| baseline | | | 97.64 91 | 97.44 94 | 98.25 122 | 98.35 180 | 96.20 147 | 99.00 83 | 98.32 214 | 96.33 106 | 98.03 120 | 99.17 79 | 91.35 152 | 99.16 208 | 98.10 67 | 98.29 177 | 99.39 115 |
|
| casdiffmvs |  | | 97.63 93 | 97.41 95 | 98.28 117 | 98.33 188 | 96.14 151 | 98.82 133 | 98.32 214 | 96.38 103 | 97.95 128 | 99.21 70 | 91.23 157 | 99.23 201 | 98.12 66 | 98.37 171 | 99.48 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MGCFI-Net | | | 97.62 94 | 97.19 107 | 98.92 67 | 98.66 155 | 98.20 52 | 99.32 21 | 98.38 204 | 96.69 88 | 97.58 158 | 97.42 273 | 92.10 131 | 99.50 169 | 98.28 60 | 96.25 242 | 99.08 170 |
|
| xiu_mvs_v1_base_debu | | | 97.60 95 | 97.56 83 | 97.72 165 | 98.35 180 | 95.98 154 | 97.86 287 | 98.51 174 | 97.13 65 | 99.01 55 | 98.40 179 | 91.56 145 | 99.80 93 | 98.53 40 | 98.68 151 | 97.37 266 |
|
| xiu_mvs_v1_base | | | 97.60 95 | 97.56 83 | 97.72 165 | 98.35 180 | 95.98 154 | 97.86 287 | 98.51 174 | 97.13 65 | 99.01 55 | 98.40 179 | 91.56 145 | 99.80 93 | 98.53 40 | 98.68 151 | 97.37 266 |
|
| xiu_mvs_v1_base_debi | | | 97.60 95 | 97.56 83 | 97.72 165 | 98.35 180 | 95.98 154 | 97.86 287 | 98.51 174 | 97.13 65 | 99.01 55 | 98.40 179 | 91.56 145 | 99.80 93 | 98.53 40 | 98.68 151 | 97.37 266 |
|
| diffmvs |  | | 97.58 98 | 97.40 96 | 98.13 133 | 98.32 191 | 95.81 172 | 98.06 261 | 98.37 206 | 96.20 109 | 98.74 78 | 98.89 127 | 91.31 155 | 99.25 198 | 98.16 65 | 98.52 162 | 99.34 121 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSFormer | | | 97.57 99 | 97.49 89 | 97.84 152 | 98.07 214 | 95.76 173 | 99.47 7 | 98.40 198 | 94.98 171 | 98.79 74 | 98.83 134 | 92.34 120 | 98.41 308 | 96.91 130 | 99.59 82 | 99.34 121 |
|
| alignmvs | | | 97.56 100 | 97.07 113 | 99.01 59 | 98.66 155 | 98.37 42 | 98.83 131 | 98.06 271 | 96.74 84 | 98.00 126 | 97.65 252 | 90.80 165 | 99.48 175 | 98.37 56 | 96.56 225 | 99.19 151 |
|
| DPM-MVS | | | 97.55 101 | 96.99 116 | 99.23 41 | 99.04 113 | 98.55 27 | 97.17 344 | 98.35 209 | 94.85 181 | 97.93 132 | 98.58 162 | 95.07 77 | 99.71 123 | 92.60 278 | 99.34 121 | 99.43 112 |
|
| OMC-MVS | | | 97.55 101 | 97.34 99 | 98.20 127 | 99.33 62 | 95.92 166 | 98.28 231 | 98.59 152 | 95.52 139 | 97.97 127 | 99.10 91 | 93.28 108 | 99.49 170 | 95.09 201 | 98.88 142 | 99.19 151 |
|
| PAPM_NR | | | 97.46 103 | 97.11 110 | 98.50 98 | 99.50 42 | 96.41 138 | 98.63 183 | 98.60 148 | 95.18 158 | 97.06 173 | 98.06 212 | 94.26 96 | 99.57 149 | 93.80 246 | 98.87 144 | 99.52 89 |
|
| EPP-MVSNet | | | 97.46 103 | 97.28 101 | 97.99 145 | 98.64 159 | 95.38 188 | 99.33 20 | 98.31 216 | 93.61 248 | 97.19 166 | 99.07 101 | 94.05 99 | 99.23 201 | 96.89 134 | 98.43 169 | 99.37 117 |
|
| 3Dnovator | | 94.51 5 | 97.46 103 | 96.93 119 | 99.07 56 | 97.78 241 | 97.64 74 | 99.35 15 | 99.06 35 | 97.02 70 | 93.75 292 | 99.16 82 | 89.25 198 | 99.92 34 | 97.22 120 | 99.75 47 | 99.64 74 |
|
| CNLPA | | | 97.45 106 | 97.03 114 | 98.73 77 | 99.05 112 | 97.44 86 | 98.07 260 | 98.53 168 | 95.32 151 | 96.80 187 | 98.53 167 | 93.32 106 | 99.72 118 | 94.31 229 | 99.31 123 | 99.02 177 |
|
| lupinMVS | | | 97.44 107 | 97.22 106 | 98.12 136 | 98.07 214 | 95.76 173 | 97.68 303 | 97.76 288 | 94.50 198 | 98.79 74 | 98.61 157 | 92.34 120 | 99.30 194 | 97.58 103 | 99.59 82 | 99.31 127 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 108 | 96.78 127 | 99.38 18 | 97.83 238 | 98.52 28 | 99.37 12 | 98.71 121 | 97.09 68 | 92.99 320 | 99.13 87 | 89.36 195 | 99.89 52 | 96.97 127 | 99.57 86 | 99.71 52 |
|
| Vis-MVSNet |  | | 97.42 109 | 97.11 110 | 98.34 114 | 98.66 155 | 96.23 146 | 99.22 36 | 99.00 40 | 96.63 92 | 98.04 119 | 99.21 70 | 88.05 234 | 99.35 188 | 96.01 170 | 99.21 125 | 99.45 109 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| API-MVS | | | 97.41 110 | 97.25 103 | 97.91 149 | 98.70 149 | 96.80 116 | 98.82 133 | 98.69 126 | 94.53 195 | 98.11 112 | 98.28 194 | 94.50 90 | 99.57 149 | 94.12 235 | 99.49 102 | 97.37 266 |
|
| sss | | | 97.39 111 | 96.98 118 | 98.61 86 | 98.60 163 | 96.61 125 | 98.22 237 | 98.93 51 | 93.97 219 | 98.01 125 | 98.48 172 | 91.98 135 | 99.85 68 | 96.45 154 | 98.15 179 | 99.39 115 |
|
| test_cas_vis1_n_1920 | | | 97.38 112 | 97.36 98 | 97.45 184 | 98.95 126 | 93.25 286 | 99.00 83 | 98.53 168 | 97.70 25 | 99.77 8 | 99.35 48 | 84.71 299 | 99.85 68 | 98.57 37 | 99.66 67 | 99.26 138 |
|
| PVSNet_Blended | | | 97.38 112 | 97.12 109 | 98.14 130 | 99.25 84 | 95.35 191 | 97.28 334 | 99.26 15 | 93.13 269 | 97.94 130 | 98.21 202 | 92.74 114 | 99.81 86 | 96.88 136 | 99.40 115 | 99.27 135 |
|
| WTY-MVS | | | 97.37 114 | 96.92 120 | 98.72 78 | 98.86 135 | 96.89 114 | 98.31 226 | 98.71 121 | 95.26 154 | 97.67 149 | 98.56 166 | 92.21 127 | 99.78 106 | 95.89 172 | 96.85 216 | 99.48 101 |
|
| jason | | | 97.32 115 | 97.08 112 | 98.06 141 | 97.45 273 | 95.59 176 | 97.87 285 | 97.91 282 | 94.79 183 | 98.55 92 | 98.83 134 | 91.12 159 | 99.23 201 | 97.58 103 | 99.60 80 | 99.34 121 |
| jason: jason. |
| MVS_Test | | | 97.28 116 | 97.00 115 | 98.13 133 | 98.33 188 | 95.97 159 | 98.74 154 | 98.07 266 | 94.27 205 | 98.44 100 | 98.07 211 | 92.48 117 | 99.26 197 | 96.43 155 | 98.19 178 | 99.16 157 |
|
| EPNet | | | 97.28 116 | 96.87 122 | 98.51 97 | 94.98 379 | 96.14 151 | 98.90 106 | 97.02 352 | 98.28 12 | 95.99 218 | 99.11 89 | 91.36 151 | 99.89 52 | 96.98 126 | 99.19 127 | 99.50 94 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsmamba | | | 97.25 118 | 96.99 116 | 98.02 143 | 98.34 185 | 95.54 181 | 99.18 48 | 97.47 315 | 95.04 167 | 98.15 109 | 98.57 165 | 89.46 191 | 99.31 193 | 97.68 97 | 99.01 135 | 99.22 144 |
|
| test_yl | | | 97.22 119 | 96.78 127 | 98.54 93 | 98.73 144 | 96.60 126 | 98.45 209 | 98.31 216 | 94.70 184 | 98.02 122 | 98.42 177 | 90.80 165 | 99.70 124 | 96.81 143 | 96.79 218 | 99.34 121 |
|
| DCV-MVSNet | | | 97.22 119 | 96.78 127 | 98.54 93 | 98.73 144 | 96.60 126 | 98.45 209 | 98.31 216 | 94.70 184 | 98.02 122 | 98.42 177 | 90.80 165 | 99.70 124 | 96.81 143 | 96.79 218 | 99.34 121 |
|
| IS-MVSNet | | | 97.22 119 | 96.88 121 | 98.25 122 | 98.85 137 | 96.36 141 | 99.19 44 | 97.97 276 | 95.39 145 | 97.23 165 | 98.99 111 | 91.11 160 | 98.93 247 | 94.60 217 | 98.59 158 | 99.47 103 |
|
| PLC |  | 95.07 4 | 97.20 122 | 96.78 127 | 98.44 106 | 99.29 76 | 96.31 145 | 98.14 250 | 98.76 109 | 92.41 297 | 96.39 207 | 98.31 192 | 94.92 82 | 99.78 106 | 94.06 238 | 98.77 150 | 99.23 142 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| CHOSEN 280x420 | | | 97.18 123 | 97.18 108 | 97.20 197 | 98.81 140 | 93.27 283 | 95.78 389 | 99.15 29 | 95.25 155 | 96.79 188 | 98.11 209 | 92.29 122 | 99.07 225 | 98.56 39 | 99.85 6 | 99.25 140 |
|
| LS3D | | | 97.16 124 | 96.66 136 | 98.68 81 | 98.53 168 | 97.19 100 | 98.93 101 | 98.90 58 | 92.83 282 | 95.99 218 | 99.37 42 | 92.12 130 | 99.87 63 | 93.67 250 | 99.57 86 | 98.97 182 |
|
| AdaColmap |  | | 97.15 125 | 96.70 132 | 98.48 101 | 99.16 102 | 96.69 122 | 98.01 266 | 98.89 60 | 94.44 201 | 96.83 183 | 98.68 152 | 90.69 168 | 99.76 112 | 94.36 225 | 99.29 124 | 98.98 181 |
|
| mamv4 | | | 97.13 126 | 98.11 61 | 94.17 355 | 98.97 124 | 83.70 397 | 98.66 176 | 98.71 121 | 94.63 190 | 97.83 136 | 98.90 125 | 96.25 29 | 99.55 159 | 99.27 17 | 99.76 42 | 99.27 135 |
|
| Effi-MVS+ | | | 97.12 127 | 96.69 133 | 98.39 112 | 98.19 204 | 96.72 121 | 97.37 325 | 98.43 194 | 93.71 237 | 97.65 153 | 98.02 215 | 92.20 128 | 99.25 198 | 96.87 139 | 97.79 191 | 99.19 151 |
|
| CHOSEN 1792x2688 | | | 97.12 127 | 96.80 124 | 98.08 139 | 99.30 71 | 94.56 234 | 98.05 262 | 99.71 1 | 93.57 249 | 97.09 169 | 98.91 124 | 88.17 228 | 99.89 52 | 96.87 139 | 99.56 92 | 99.81 17 |
|
| F-COLMAP | | | 97.09 129 | 96.80 124 | 97.97 146 | 99.45 55 | 94.95 213 | 98.55 197 | 98.62 147 | 93.02 274 | 96.17 213 | 98.58 162 | 94.01 100 | 99.81 86 | 93.95 240 | 98.90 140 | 99.14 160 |
|
| RRT-MVS | | | 97.03 130 | 96.78 127 | 97.77 161 | 97.90 234 | 94.34 243 | 99.12 58 | 98.35 209 | 95.87 122 | 98.06 116 | 98.70 150 | 86.45 265 | 99.63 139 | 98.04 72 | 98.54 161 | 99.35 119 |
|
| TAMVS | | | 97.02 131 | 96.79 126 | 97.70 168 | 98.06 217 | 95.31 194 | 98.52 199 | 98.31 216 | 93.95 220 | 97.05 174 | 98.61 157 | 93.49 105 | 98.52 290 | 95.33 193 | 97.81 190 | 99.29 132 |
|
| CDS-MVSNet | | | 96.99 132 | 96.69 133 | 97.90 150 | 98.05 219 | 95.98 154 | 98.20 240 | 98.33 213 | 93.67 244 | 96.95 176 | 98.49 171 | 93.54 104 | 98.42 301 | 95.24 199 | 97.74 194 | 99.31 127 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| CANet_DTU | | | 96.96 133 | 96.55 139 | 98.21 125 | 98.17 209 | 96.07 153 | 97.98 270 | 98.21 233 | 97.24 56 | 97.13 168 | 98.93 121 | 86.88 257 | 99.91 43 | 95.00 204 | 99.37 119 | 98.66 213 |
|
| 114514_t | | | 96.93 134 | 96.27 149 | 98.92 67 | 99.50 42 | 97.63 75 | 98.85 125 | 98.90 58 | 84.80 396 | 97.77 138 | 99.11 89 | 92.84 112 | 99.66 133 | 94.85 207 | 99.77 36 | 99.47 103 |
|
| MAR-MVS | | | 96.91 135 | 96.40 145 | 98.45 104 | 98.69 152 | 96.90 112 | 98.66 176 | 98.68 129 | 92.40 298 | 97.07 172 | 97.96 222 | 91.54 148 | 99.75 114 | 93.68 248 | 98.92 139 | 98.69 207 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| HyFIR lowres test | | | 96.90 136 | 96.49 142 | 98.14 130 | 99.33 62 | 95.56 178 | 97.38 323 | 99.65 2 | 92.34 299 | 97.61 156 | 98.20 203 | 89.29 197 | 99.10 222 | 96.97 127 | 97.60 199 | 99.77 29 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 137 | 96.55 139 | 97.83 153 | 98.73 144 | 95.46 184 | 99.20 42 | 98.30 222 | 94.96 173 | 96.60 195 | 98.87 129 | 90.05 178 | 98.59 285 | 93.67 250 | 98.60 157 | 99.46 107 |
|
| SDMVSNet | | | 96.85 138 | 96.42 143 | 98.14 130 | 99.30 71 | 96.38 139 | 99.21 39 | 99.23 20 | 95.92 118 | 95.96 220 | 98.76 146 | 85.88 275 | 99.44 180 | 97.93 76 | 95.59 254 | 98.60 218 |
|
| PAPR | | | 96.84 139 | 96.24 151 | 98.65 84 | 98.72 148 | 96.92 111 | 97.36 327 | 98.57 159 | 93.33 258 | 96.67 190 | 97.57 261 | 94.30 94 | 99.56 152 | 91.05 319 | 98.59 158 | 99.47 103 |
|
| HY-MVS | | 93.96 8 | 96.82 140 | 96.23 152 | 98.57 88 | 98.46 172 | 97.00 107 | 98.14 250 | 98.21 233 | 93.95 220 | 96.72 189 | 97.99 219 | 91.58 144 | 99.76 112 | 94.51 221 | 96.54 226 | 98.95 185 |
|
| UGNet | | | 96.78 141 | 96.30 148 | 98.19 129 | 98.24 196 | 95.89 169 | 98.88 115 | 98.93 51 | 97.39 44 | 96.81 186 | 97.84 234 | 82.60 326 | 99.90 50 | 96.53 151 | 99.49 102 | 98.79 196 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PVSNet_BlendedMVS | | | 96.73 142 | 96.60 137 | 97.12 206 | 99.25 84 | 95.35 191 | 98.26 234 | 99.26 15 | 94.28 204 | 97.94 130 | 97.46 267 | 92.74 114 | 99.81 86 | 96.88 136 | 93.32 290 | 96.20 356 |
|
| test_vis1_n_1920 | | | 96.71 143 | 96.84 123 | 96.31 275 | 99.11 108 | 89.74 351 | 99.05 69 | 98.58 157 | 98.08 14 | 99.87 1 | 99.37 42 | 78.48 357 | 99.93 28 | 99.29 16 | 99.69 61 | 99.27 135 |
|
| mvs_anonymous | | | 96.70 144 | 96.53 141 | 97.18 200 | 98.19 204 | 93.78 259 | 98.31 226 | 98.19 237 | 94.01 216 | 94.47 251 | 98.27 197 | 92.08 133 | 98.46 296 | 97.39 115 | 97.91 186 | 99.31 127 |
|
| 1112_ss | | | 96.63 145 | 96.00 159 | 98.50 98 | 98.56 164 | 96.37 140 | 98.18 248 | 98.10 259 | 92.92 278 | 94.84 240 | 98.43 175 | 92.14 129 | 99.58 148 | 94.35 226 | 96.51 227 | 99.56 88 |
|
| PMMVS | | | 96.60 146 | 96.33 147 | 97.41 188 | 97.90 234 | 93.93 255 | 97.35 328 | 98.41 196 | 92.84 281 | 97.76 139 | 97.45 269 | 91.10 161 | 99.20 205 | 96.26 160 | 97.91 186 | 99.11 164 |
|
| DP-MVS | | | 96.59 147 | 95.93 162 | 98.57 88 | 99.34 60 | 96.19 149 | 98.70 167 | 98.39 200 | 89.45 368 | 94.52 249 | 99.35 48 | 91.85 138 | 99.85 68 | 92.89 274 | 98.88 142 | 99.68 64 |
|
| PatchMatch-RL | | | 96.59 147 | 96.03 158 | 98.27 118 | 99.31 67 | 96.51 132 | 97.91 277 | 99.06 35 | 93.72 236 | 96.92 180 | 98.06 212 | 88.50 223 | 99.65 134 | 91.77 303 | 99.00 137 | 98.66 213 |
|
| GeoE | | | 96.58 149 | 96.07 155 | 98.10 138 | 98.35 180 | 95.89 169 | 99.34 16 | 98.12 253 | 93.12 270 | 96.09 214 | 98.87 129 | 89.71 185 | 98.97 237 | 92.95 270 | 98.08 182 | 99.43 112 |
|
| XVG-OURS | | | 96.55 150 | 96.41 144 | 96.99 213 | 98.75 143 | 93.76 260 | 97.50 317 | 98.52 171 | 95.67 133 | 96.83 183 | 99.30 56 | 88.95 211 | 99.53 162 | 95.88 173 | 96.26 241 | 97.69 255 |
|
| FIs | | | 96.51 151 | 96.12 154 | 97.67 172 | 97.13 297 | 97.54 80 | 99.36 13 | 99.22 23 | 95.89 120 | 94.03 278 | 98.35 185 | 91.98 135 | 98.44 299 | 96.40 156 | 92.76 298 | 97.01 274 |
|
| XVG-OURS-SEG-HR | | | 96.51 151 | 96.34 146 | 97.02 212 | 98.77 142 | 93.76 260 | 97.79 296 | 98.50 179 | 95.45 142 | 96.94 177 | 99.09 98 | 87.87 239 | 99.55 159 | 96.76 147 | 95.83 253 | 97.74 252 |
|
| PS-MVSNAJss | | | 96.43 153 | 96.26 150 | 96.92 222 | 95.84 359 | 95.08 205 | 99.16 50 | 98.50 179 | 95.87 122 | 93.84 287 | 98.34 189 | 94.51 87 | 98.61 282 | 96.88 136 | 93.45 287 | 97.06 272 |
|
| test_fmvs1 | | | 96.42 154 | 96.67 135 | 95.66 303 | 98.82 139 | 88.53 376 | 98.80 142 | 98.20 235 | 96.39 102 | 99.64 19 | 99.20 72 | 80.35 345 | 99.67 131 | 99.04 22 | 99.57 86 | 98.78 199 |
|
| FC-MVSNet-test | | | 96.42 154 | 96.05 156 | 97.53 182 | 96.95 306 | 97.27 92 | 99.36 13 | 99.23 20 | 95.83 124 | 93.93 281 | 98.37 183 | 92.00 134 | 98.32 318 | 96.02 169 | 92.72 299 | 97.00 275 |
|
| ab-mvs | | | 96.42 154 | 95.71 172 | 98.55 91 | 98.63 160 | 96.75 119 | 97.88 284 | 98.74 113 | 93.84 226 | 96.54 200 | 98.18 205 | 85.34 285 | 99.75 114 | 95.93 171 | 96.35 231 | 99.15 158 |
|
| FA-MVS(test-final) | | | 96.41 157 | 95.94 161 | 97.82 155 | 98.21 200 | 95.20 199 | 97.80 294 | 97.58 299 | 93.21 264 | 97.36 162 | 97.70 246 | 89.47 190 | 99.56 152 | 94.12 235 | 97.99 183 | 98.71 206 |
|
| PVSNet | | 91.96 18 | 96.35 158 | 96.15 153 | 96.96 217 | 99.17 98 | 92.05 307 | 96.08 382 | 98.68 129 | 93.69 240 | 97.75 141 | 97.80 240 | 88.86 212 | 99.69 129 | 94.26 231 | 99.01 135 | 99.15 158 |
|
| Test_1112_low_res | | | 96.34 159 | 95.66 177 | 98.36 113 | 98.56 164 | 95.94 162 | 97.71 301 | 98.07 266 | 92.10 308 | 94.79 244 | 97.29 282 | 91.75 140 | 99.56 152 | 94.17 233 | 96.50 228 | 99.58 86 |
|
| Effi-MVS+-dtu | | | 96.29 160 | 96.56 138 | 95.51 308 | 97.89 236 | 90.22 344 | 98.80 142 | 98.10 259 | 96.57 95 | 96.45 205 | 96.66 336 | 90.81 164 | 98.91 250 | 95.72 180 | 97.99 183 | 97.40 263 |
|
| QAPM | | | 96.29 160 | 95.40 182 | 98.96 65 | 97.85 237 | 97.60 77 | 99.23 32 | 98.93 51 | 89.76 362 | 93.11 317 | 99.02 105 | 89.11 203 | 99.93 28 | 91.99 297 | 99.62 77 | 99.34 121 |
|
| Fast-Effi-MVS+ | | | 96.28 162 | 95.70 174 | 98.03 142 | 98.29 194 | 95.97 159 | 98.58 189 | 98.25 230 | 91.74 316 | 95.29 233 | 97.23 287 | 91.03 163 | 99.15 211 | 92.90 272 | 97.96 185 | 98.97 182 |
|
| nrg030 | | | 96.28 162 | 95.72 169 | 97.96 148 | 96.90 311 | 98.15 57 | 99.39 10 | 98.31 216 | 95.47 141 | 94.42 257 | 98.35 185 | 92.09 132 | 98.69 274 | 97.50 111 | 89.05 347 | 97.04 273 |
|
| 1314 | | | 96.25 164 | 95.73 168 | 97.79 157 | 97.13 297 | 95.55 180 | 98.19 243 | 98.59 152 | 93.47 253 | 92.03 345 | 97.82 238 | 91.33 153 | 99.49 170 | 94.62 216 | 98.44 167 | 98.32 236 |
|
| sd_testset | | | 96.17 165 | 95.76 167 | 97.42 187 | 99.30 71 | 94.34 243 | 98.82 133 | 99.08 33 | 95.92 118 | 95.96 220 | 98.76 146 | 82.83 325 | 99.32 192 | 95.56 186 | 95.59 254 | 98.60 218 |
|
| h-mvs33 | | | 96.17 165 | 95.62 178 | 97.81 156 | 99.03 114 | 94.45 236 | 98.64 180 | 98.75 111 | 97.48 38 | 98.67 82 | 98.72 149 | 89.76 182 | 99.86 67 | 97.95 74 | 81.59 393 | 99.11 164 |
|
| HQP_MVS | | | 96.14 167 | 95.90 163 | 96.85 225 | 97.42 275 | 94.60 232 | 98.80 142 | 98.56 162 | 97.28 51 | 95.34 229 | 98.28 194 | 87.09 252 | 99.03 230 | 96.07 164 | 94.27 262 | 96.92 281 |
|
| tttt0517 | | | 96.07 168 | 95.51 180 | 97.78 158 | 98.41 175 | 94.84 217 | 99.28 24 | 94.33 402 | 94.26 206 | 97.64 154 | 98.64 156 | 84.05 314 | 99.47 177 | 95.34 192 | 97.60 199 | 99.03 176 |
|
| MVSTER | | | 96.06 169 | 95.72 169 | 97.08 209 | 98.23 198 | 95.93 165 | 98.73 158 | 98.27 225 | 94.86 179 | 95.07 235 | 98.09 210 | 88.21 227 | 98.54 288 | 96.59 149 | 93.46 285 | 96.79 299 |
|
| thisisatest0530 | | | 96.01 170 | 95.36 187 | 97.97 146 | 98.38 177 | 95.52 182 | 98.88 115 | 94.19 404 | 94.04 211 | 97.64 154 | 98.31 192 | 83.82 321 | 99.46 178 | 95.29 196 | 97.70 196 | 98.93 187 |
|
| test_djsdf | | | 96.00 171 | 95.69 175 | 96.93 219 | 95.72 361 | 95.49 183 | 99.47 7 | 98.40 198 | 94.98 171 | 94.58 247 | 97.86 231 | 89.16 201 | 98.41 308 | 96.91 130 | 94.12 270 | 96.88 290 |
|
| EI-MVSNet | | | 95.96 172 | 95.83 165 | 96.36 271 | 97.93 232 | 93.70 266 | 98.12 253 | 98.27 225 | 93.70 239 | 95.07 235 | 99.02 105 | 92.23 126 | 98.54 288 | 94.68 212 | 93.46 285 | 96.84 296 |
|
| ECVR-MVS |  | | 95.95 173 | 95.71 172 | 96.65 237 | 99.02 115 | 90.86 329 | 99.03 76 | 91.80 414 | 96.96 73 | 98.10 113 | 99.26 61 | 81.31 332 | 99.51 166 | 96.90 133 | 99.04 132 | 99.59 82 |
|
| BH-untuned | | | 95.95 173 | 95.72 169 | 96.65 237 | 98.55 166 | 92.26 302 | 98.23 236 | 97.79 287 | 93.73 234 | 94.62 246 | 98.01 217 | 88.97 210 | 99.00 236 | 93.04 267 | 98.51 163 | 98.68 209 |
|
| test1111 | | | 95.94 175 | 95.78 166 | 96.41 268 | 98.99 121 | 90.12 345 | 99.04 73 | 92.45 413 | 96.99 72 | 98.03 120 | 99.27 60 | 81.40 331 | 99.48 175 | 96.87 139 | 99.04 132 | 99.63 76 |
|
| MSDG | | | 95.93 176 | 95.30 193 | 97.83 153 | 98.90 129 | 95.36 189 | 96.83 369 | 98.37 206 | 91.32 331 | 94.43 256 | 98.73 148 | 90.27 176 | 99.60 145 | 90.05 333 | 98.82 148 | 98.52 224 |
|
| BH-RMVSNet | | | 95.92 177 | 95.32 191 | 97.69 169 | 98.32 191 | 94.64 226 | 98.19 243 | 97.45 320 | 94.56 193 | 96.03 216 | 98.61 157 | 85.02 290 | 99.12 216 | 90.68 324 | 99.06 131 | 99.30 130 |
|
| test_fmvs1_n | | | 95.90 178 | 95.99 160 | 95.63 304 | 98.67 154 | 88.32 380 | 99.26 27 | 98.22 232 | 96.40 101 | 99.67 16 | 99.26 61 | 73.91 391 | 99.70 124 | 99.02 23 | 99.50 100 | 98.87 190 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 179 | 95.85 164 | 95.91 292 | 97.74 246 | 91.74 313 | 98.69 169 | 98.15 249 | 95.56 137 | 94.92 238 | 97.68 251 | 88.98 209 | 98.79 268 | 93.19 262 | 97.78 192 | 97.20 270 |
|
| LFMVS | | | 95.86 180 | 94.98 208 | 98.47 102 | 98.87 134 | 96.32 143 | 98.84 129 | 96.02 381 | 93.40 256 | 98.62 88 | 99.20 72 | 74.99 385 | 99.63 139 | 97.72 90 | 97.20 206 | 99.46 107 |
|
| baseline1 | | | 95.84 181 | 95.12 201 | 98.01 144 | 98.49 171 | 95.98 154 | 98.73 158 | 97.03 350 | 95.37 148 | 96.22 210 | 98.19 204 | 89.96 180 | 99.16 208 | 94.60 217 | 87.48 363 | 98.90 189 |
|
| OpenMVS |  | 93.04 13 | 95.83 182 | 95.00 206 | 98.32 115 | 97.18 294 | 97.32 90 | 99.21 39 | 98.97 43 | 89.96 358 | 91.14 354 | 99.05 103 | 86.64 260 | 99.92 34 | 93.38 256 | 99.47 105 | 97.73 253 |
|
| VDD-MVS | | | 95.82 183 | 95.23 195 | 97.61 178 | 98.84 138 | 93.98 254 | 98.68 171 | 97.40 324 | 95.02 169 | 97.95 128 | 99.34 52 | 74.37 390 | 99.78 106 | 98.64 34 | 96.80 217 | 99.08 170 |
|
| UniMVSNet (Re) | | | 95.78 184 | 95.19 197 | 97.58 179 | 96.99 304 | 97.47 84 | 98.79 148 | 99.18 26 | 95.60 135 | 93.92 282 | 97.04 308 | 91.68 141 | 98.48 292 | 95.80 177 | 87.66 362 | 96.79 299 |
|
| VPA-MVSNet | | | 95.75 185 | 95.11 202 | 97.69 169 | 97.24 286 | 97.27 92 | 98.94 98 | 99.23 20 | 95.13 160 | 95.51 227 | 97.32 280 | 85.73 277 | 98.91 250 | 97.33 118 | 89.55 338 | 96.89 289 |
|
| HQP-MVS | | | 95.72 186 | 95.40 182 | 96.69 235 | 97.20 290 | 94.25 248 | 98.05 262 | 98.46 186 | 96.43 98 | 94.45 252 | 97.73 243 | 86.75 258 | 98.96 241 | 95.30 194 | 94.18 266 | 96.86 295 |
|
| hse-mvs2 | | | 95.71 187 | 95.30 193 | 96.93 219 | 98.50 169 | 93.53 271 | 98.36 218 | 98.10 259 | 97.48 38 | 98.67 82 | 97.99 219 | 89.76 182 | 99.02 233 | 97.95 74 | 80.91 398 | 98.22 239 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 187 | 95.15 198 | 97.40 190 | 96.84 314 | 96.97 108 | 98.74 154 | 99.24 17 | 95.16 159 | 93.88 284 | 97.72 245 | 91.68 141 | 98.31 320 | 95.81 175 | 87.25 368 | 96.92 281 |
|
| PatchmatchNet |  | | 95.71 187 | 95.52 179 | 96.29 277 | 97.58 259 | 90.72 333 | 96.84 368 | 97.52 310 | 94.06 210 | 97.08 170 | 96.96 318 | 89.24 199 | 98.90 253 | 92.03 296 | 98.37 171 | 99.26 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| OPM-MVS | | | 95.69 190 | 95.33 190 | 96.76 230 | 96.16 347 | 94.63 227 | 98.43 214 | 98.39 200 | 96.64 91 | 95.02 237 | 98.78 139 | 85.15 289 | 99.05 226 | 95.21 200 | 94.20 265 | 96.60 322 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMM | | 93.85 9 | 95.69 190 | 95.38 186 | 96.61 244 | 97.61 256 | 93.84 258 | 98.91 105 | 98.44 190 | 95.25 155 | 94.28 264 | 98.47 173 | 86.04 274 | 99.12 216 | 95.50 189 | 93.95 275 | 96.87 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tpmrst | | | 95.63 192 | 95.69 175 | 95.44 312 | 97.54 264 | 88.54 375 | 96.97 354 | 97.56 302 | 93.50 251 | 97.52 160 | 96.93 322 | 89.49 188 | 99.16 208 | 95.25 198 | 96.42 230 | 98.64 215 |
|
| FE-MVS | | | 95.62 193 | 94.90 212 | 97.78 158 | 98.37 179 | 94.92 214 | 97.17 344 | 97.38 326 | 90.95 342 | 97.73 144 | 97.70 246 | 85.32 287 | 99.63 139 | 91.18 311 | 98.33 174 | 98.79 196 |
|
| LPG-MVS_test | | | 95.62 193 | 95.34 188 | 96.47 262 | 97.46 270 | 93.54 269 | 98.99 86 | 98.54 166 | 94.67 188 | 94.36 260 | 98.77 141 | 85.39 282 | 99.11 218 | 95.71 181 | 94.15 268 | 96.76 302 |
|
| CLD-MVS | | | 95.62 193 | 95.34 188 | 96.46 265 | 97.52 267 | 93.75 262 | 97.27 335 | 98.46 186 | 95.53 138 | 94.42 257 | 98.00 218 | 86.21 269 | 98.97 237 | 96.25 162 | 94.37 260 | 96.66 317 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thisisatest0515 | | | 95.61 196 | 94.89 213 | 97.76 162 | 98.15 210 | 95.15 202 | 96.77 370 | 94.41 400 | 92.95 277 | 97.18 167 | 97.43 271 | 84.78 296 | 99.45 179 | 94.63 214 | 97.73 195 | 98.68 209 |
|
| MonoMVSNet | | | 95.51 197 | 95.45 181 | 95.68 301 | 95.54 366 | 90.87 328 | 98.92 103 | 97.37 327 | 95.79 126 | 95.53 226 | 97.38 276 | 89.58 187 | 97.68 363 | 96.40 156 | 92.59 300 | 98.49 226 |
|
| thres600view7 | | | 95.49 198 | 94.77 216 | 97.67 172 | 98.98 122 | 95.02 206 | 98.85 125 | 96.90 359 | 95.38 146 | 96.63 192 | 96.90 323 | 84.29 306 | 99.59 146 | 88.65 355 | 96.33 232 | 98.40 230 |
|
| test_vis1_n | | | 95.47 199 | 95.13 199 | 96.49 259 | 97.77 242 | 90.41 341 | 99.27 26 | 98.11 256 | 96.58 93 | 99.66 17 | 99.18 78 | 67.00 404 | 99.62 143 | 99.21 18 | 99.40 115 | 99.44 110 |
|
| SCA | | | 95.46 200 | 95.13 199 | 96.46 265 | 97.67 251 | 91.29 321 | 97.33 330 | 97.60 298 | 94.68 187 | 96.92 180 | 97.10 293 | 83.97 316 | 98.89 254 | 92.59 280 | 98.32 176 | 99.20 147 |
|
| IterMVS-LS | | | 95.46 200 | 95.21 196 | 96.22 279 | 98.12 211 | 93.72 265 | 98.32 225 | 98.13 252 | 93.71 237 | 94.26 265 | 97.31 281 | 92.24 125 | 98.10 336 | 94.63 214 | 90.12 329 | 96.84 296 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| jajsoiax | | | 95.45 202 | 95.03 205 | 96.73 231 | 95.42 374 | 94.63 227 | 99.14 54 | 98.52 171 | 95.74 128 | 93.22 310 | 98.36 184 | 83.87 319 | 98.65 279 | 96.95 129 | 94.04 271 | 96.91 286 |
|
| CVMVSNet | | | 95.43 203 | 96.04 157 | 93.57 360 | 97.93 232 | 83.62 398 | 98.12 253 | 98.59 152 | 95.68 132 | 96.56 196 | 99.02 105 | 87.51 245 | 97.51 371 | 93.56 254 | 97.44 202 | 99.60 80 |
|
| anonymousdsp | | | 95.42 204 | 94.91 211 | 96.94 218 | 95.10 378 | 95.90 168 | 99.14 54 | 98.41 196 | 93.75 231 | 93.16 313 | 97.46 267 | 87.50 247 | 98.41 308 | 95.63 185 | 94.03 272 | 96.50 341 |
|
| DU-MVS | | | 95.42 204 | 94.76 217 | 97.40 190 | 96.53 330 | 96.97 108 | 98.66 176 | 98.99 42 | 95.43 143 | 93.88 284 | 97.69 248 | 88.57 218 | 98.31 320 | 95.81 175 | 87.25 368 | 96.92 281 |
|
| mvs_tets | | | 95.41 206 | 95.00 206 | 96.65 237 | 95.58 365 | 94.42 238 | 99.00 83 | 98.55 164 | 95.73 130 | 93.21 311 | 98.38 182 | 83.45 323 | 98.63 280 | 97.09 123 | 94.00 273 | 96.91 286 |
|
| thres100view900 | | | 95.38 207 | 94.70 221 | 97.41 188 | 98.98 122 | 94.92 214 | 98.87 118 | 96.90 359 | 95.38 146 | 96.61 194 | 96.88 324 | 84.29 306 | 99.56 152 | 88.11 358 | 96.29 236 | 97.76 250 |
|
| thres400 | | | 95.38 207 | 94.62 225 | 97.65 176 | 98.94 127 | 94.98 210 | 98.68 171 | 96.93 357 | 95.33 149 | 96.55 198 | 96.53 342 | 84.23 310 | 99.56 152 | 88.11 358 | 96.29 236 | 98.40 230 |
|
| BH-w/o | | | 95.38 207 | 95.08 203 | 96.26 278 | 98.34 185 | 91.79 310 | 97.70 302 | 97.43 322 | 92.87 280 | 94.24 267 | 97.22 288 | 88.66 216 | 98.84 260 | 91.55 307 | 97.70 196 | 98.16 242 |
|
| VDDNet | | | 95.36 210 | 94.53 229 | 97.86 151 | 98.10 213 | 95.13 203 | 98.85 125 | 97.75 289 | 90.46 349 | 98.36 103 | 99.39 36 | 73.27 393 | 99.64 136 | 97.98 73 | 96.58 224 | 98.81 195 |
|
| TAPA-MVS | | 93.98 7 | 95.35 211 | 94.56 228 | 97.74 164 | 99.13 105 | 94.83 219 | 98.33 221 | 98.64 142 | 86.62 384 | 96.29 209 | 98.61 157 | 94.00 101 | 99.29 195 | 80.00 399 | 99.41 112 | 99.09 166 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 93.49 10 | 95.34 212 | 94.98 208 | 96.43 267 | 97.67 251 | 93.48 273 | 98.73 158 | 98.44 190 | 94.94 177 | 92.53 333 | 98.53 167 | 84.50 305 | 99.14 213 | 95.48 190 | 94.00 273 | 96.66 317 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| COLMAP_ROB |  | 93.27 12 | 95.33 213 | 94.87 214 | 96.71 232 | 99.29 76 | 93.24 287 | 98.58 189 | 98.11 256 | 89.92 359 | 93.57 296 | 99.10 91 | 86.37 267 | 99.79 103 | 90.78 322 | 98.10 181 | 97.09 271 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UBG | | | 95.32 214 | 94.72 220 | 97.13 204 | 98.05 219 | 93.26 284 | 97.87 285 | 97.20 338 | 94.96 173 | 96.18 212 | 95.66 373 | 80.97 337 | 99.35 188 | 94.47 223 | 97.08 208 | 98.78 199 |
|
| tfpn200view9 | | | 95.32 214 | 94.62 225 | 97.43 186 | 98.94 127 | 94.98 210 | 98.68 171 | 96.93 357 | 95.33 149 | 96.55 198 | 96.53 342 | 84.23 310 | 99.56 152 | 88.11 358 | 96.29 236 | 97.76 250 |
|
| Anonymous202405211 | | | 95.28 216 | 94.49 231 | 97.67 172 | 99.00 118 | 93.75 262 | 98.70 167 | 97.04 349 | 90.66 345 | 96.49 202 | 98.80 137 | 78.13 361 | 99.83 74 | 96.21 163 | 95.36 258 | 99.44 110 |
|
| thres200 | | | 95.25 217 | 94.57 227 | 97.28 194 | 98.81 140 | 94.92 214 | 98.20 240 | 97.11 342 | 95.24 157 | 96.54 200 | 96.22 353 | 84.58 303 | 99.53 162 | 87.93 363 | 96.50 228 | 97.39 264 |
|
| AllTest | | | 95.24 218 | 94.65 224 | 96.99 213 | 99.25 84 | 93.21 288 | 98.59 187 | 98.18 240 | 91.36 327 | 93.52 298 | 98.77 141 | 84.67 300 | 99.72 118 | 89.70 340 | 97.87 188 | 98.02 245 |
|
| LCM-MVSNet-Re | | | 95.22 219 | 95.32 191 | 94.91 328 | 98.18 206 | 87.85 386 | 98.75 151 | 95.66 388 | 95.11 162 | 88.96 373 | 96.85 327 | 90.26 177 | 97.65 364 | 95.65 184 | 98.44 167 | 99.22 144 |
|
| EPNet_dtu | | | 95.21 220 | 94.95 210 | 95.99 287 | 96.17 345 | 90.45 339 | 98.16 249 | 97.27 334 | 96.77 81 | 93.14 316 | 98.33 190 | 90.34 173 | 98.42 301 | 85.57 376 | 98.81 149 | 99.09 166 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| XXY-MVS | | | 95.20 221 | 94.45 236 | 97.46 183 | 96.75 320 | 96.56 130 | 98.86 121 | 98.65 141 | 93.30 261 | 93.27 309 | 98.27 197 | 84.85 294 | 98.87 257 | 94.82 209 | 91.26 316 | 96.96 277 |
|
| D2MVS | | | 95.18 222 | 95.08 203 | 95.48 309 | 97.10 299 | 92.07 306 | 98.30 228 | 99.13 31 | 94.02 213 | 92.90 321 | 96.73 333 | 89.48 189 | 98.73 272 | 94.48 222 | 93.60 284 | 95.65 369 |
|
| WR-MVS | | | 95.15 223 | 94.46 234 | 97.22 196 | 96.67 325 | 96.45 134 | 98.21 238 | 98.81 91 | 94.15 207 | 93.16 313 | 97.69 248 | 87.51 245 | 98.30 322 | 95.29 196 | 88.62 353 | 96.90 288 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 224 | 94.48 232 | 97.11 207 | 96.45 335 | 96.36 141 | 99.03 76 | 99.03 38 | 95.04 167 | 93.58 295 | 97.93 224 | 88.27 226 | 98.03 342 | 94.13 234 | 86.90 373 | 96.95 279 |
|
| baseline2 | | | 95.11 225 | 94.52 230 | 96.87 224 | 96.65 326 | 93.56 268 | 98.27 233 | 94.10 406 | 93.45 254 | 92.02 346 | 97.43 271 | 87.45 249 | 99.19 206 | 93.88 243 | 97.41 204 | 97.87 248 |
|
| miper_enhance_ethall | | | 95.10 226 | 94.75 218 | 96.12 283 | 97.53 266 | 93.73 264 | 96.61 376 | 98.08 264 | 92.20 307 | 93.89 283 | 96.65 338 | 92.44 118 | 98.30 322 | 94.21 232 | 91.16 317 | 96.34 350 |
|
| Anonymous20240529 | | | 95.10 226 | 94.22 246 | 97.75 163 | 99.01 117 | 94.26 247 | 98.87 118 | 98.83 82 | 85.79 392 | 96.64 191 | 98.97 112 | 78.73 354 | 99.85 68 | 96.27 159 | 94.89 259 | 99.12 162 |
|
| test-LLR | | | 95.10 226 | 94.87 214 | 95.80 297 | 96.77 317 | 89.70 352 | 96.91 359 | 95.21 392 | 95.11 162 | 94.83 242 | 95.72 370 | 87.71 241 | 98.97 237 | 93.06 265 | 98.50 164 | 98.72 203 |
|
| WR-MVS_H | | | 95.05 229 | 94.46 234 | 96.81 228 | 96.86 313 | 95.82 171 | 99.24 30 | 99.24 17 | 93.87 225 | 92.53 333 | 96.84 328 | 90.37 172 | 98.24 328 | 93.24 260 | 87.93 359 | 96.38 349 |
|
| miper_ehance_all_eth | | | 95.01 230 | 94.69 222 | 95.97 289 | 97.70 249 | 93.31 282 | 97.02 352 | 98.07 266 | 92.23 304 | 93.51 300 | 96.96 318 | 91.85 138 | 98.15 332 | 93.68 248 | 91.16 317 | 96.44 347 |
|
| testing11 | | | 95.00 231 | 94.28 243 | 97.16 202 | 97.96 229 | 93.36 281 | 98.09 258 | 97.06 348 | 94.94 177 | 95.33 232 | 96.15 355 | 76.89 375 | 99.40 183 | 95.77 179 | 96.30 235 | 98.72 203 |
|
| ADS-MVSNet | | | 95.00 231 | 94.45 236 | 96.63 241 | 98.00 223 | 91.91 309 | 96.04 383 | 97.74 290 | 90.15 355 | 96.47 203 | 96.64 339 | 87.89 237 | 98.96 241 | 90.08 331 | 97.06 209 | 99.02 177 |
|
| VPNet | | | 94.99 233 | 94.19 248 | 97.40 190 | 97.16 295 | 96.57 129 | 98.71 163 | 98.97 43 | 95.67 133 | 94.84 240 | 98.24 201 | 80.36 344 | 98.67 278 | 96.46 153 | 87.32 367 | 96.96 277 |
|
| EPMVS | | | 94.99 233 | 94.48 232 | 96.52 257 | 97.22 288 | 91.75 312 | 97.23 336 | 91.66 415 | 94.11 208 | 97.28 163 | 96.81 330 | 85.70 278 | 98.84 260 | 93.04 267 | 97.28 205 | 98.97 182 |
|
| testing91 | | | 94.98 235 | 94.25 245 | 97.20 197 | 97.94 230 | 93.41 276 | 98.00 268 | 97.58 299 | 94.99 170 | 95.45 228 | 96.04 359 | 77.20 370 | 99.42 182 | 94.97 205 | 96.02 249 | 98.78 199 |
|
| NR-MVSNet | | | 94.98 235 | 94.16 251 | 97.44 185 | 96.53 330 | 97.22 99 | 98.74 154 | 98.95 47 | 94.96 173 | 89.25 372 | 97.69 248 | 89.32 196 | 98.18 330 | 94.59 219 | 87.40 365 | 96.92 281 |
|
| FMVSNet3 | | | 94.97 237 | 94.26 244 | 97.11 207 | 98.18 206 | 96.62 123 | 98.56 196 | 98.26 229 | 93.67 244 | 94.09 274 | 97.10 293 | 84.25 308 | 98.01 343 | 92.08 292 | 92.14 303 | 96.70 311 |
|
| CostFormer | | | 94.95 238 | 94.73 219 | 95.60 306 | 97.28 284 | 89.06 365 | 97.53 314 | 96.89 361 | 89.66 364 | 96.82 185 | 96.72 334 | 86.05 272 | 98.95 246 | 95.53 188 | 96.13 247 | 98.79 196 |
|
| PAPM | | | 94.95 238 | 94.00 264 | 97.78 158 | 97.04 301 | 95.65 175 | 96.03 385 | 98.25 230 | 91.23 336 | 94.19 270 | 97.80 240 | 91.27 156 | 98.86 259 | 82.61 393 | 97.61 198 | 98.84 193 |
|
| CP-MVSNet | | | 94.94 240 | 94.30 242 | 96.83 226 | 96.72 322 | 95.56 178 | 99.11 60 | 98.95 47 | 93.89 223 | 92.42 338 | 97.90 227 | 87.19 251 | 98.12 335 | 94.32 228 | 88.21 356 | 96.82 298 |
|
| TR-MVS | | | 94.94 240 | 94.20 247 | 97.17 201 | 97.75 243 | 94.14 251 | 97.59 311 | 97.02 352 | 92.28 303 | 95.75 224 | 97.64 255 | 83.88 318 | 98.96 241 | 89.77 337 | 96.15 246 | 98.40 230 |
|
| RPSCF | | | 94.87 242 | 95.40 182 | 93.26 366 | 98.89 130 | 82.06 404 | 98.33 221 | 98.06 271 | 90.30 354 | 96.56 196 | 99.26 61 | 87.09 252 | 99.49 170 | 93.82 245 | 96.32 233 | 98.24 237 |
|
| testing99 | | | 94.83 243 | 94.08 256 | 97.07 210 | 97.94 230 | 93.13 290 | 98.10 257 | 97.17 340 | 94.86 179 | 95.34 229 | 96.00 362 | 76.31 378 | 99.40 183 | 95.08 202 | 95.90 250 | 98.68 209 |
|
| GA-MVS | | | 94.81 244 | 94.03 260 | 97.14 203 | 97.15 296 | 93.86 257 | 96.76 371 | 97.58 299 | 94.00 217 | 94.76 245 | 97.04 308 | 80.91 338 | 98.48 292 | 91.79 302 | 96.25 242 | 99.09 166 |
|
| c3_l | | | 94.79 245 | 94.43 238 | 95.89 294 | 97.75 243 | 93.12 292 | 97.16 346 | 98.03 273 | 92.23 304 | 93.46 303 | 97.05 307 | 91.39 150 | 98.01 343 | 93.58 253 | 89.21 345 | 96.53 333 |
|
| V42 | | | 94.78 246 | 94.14 253 | 96.70 234 | 96.33 340 | 95.22 198 | 98.97 89 | 98.09 263 | 92.32 301 | 94.31 263 | 97.06 304 | 88.39 224 | 98.55 287 | 92.90 272 | 88.87 351 | 96.34 350 |
|
| reproduce_monomvs | | | 94.77 247 | 94.67 223 | 95.08 324 | 98.40 176 | 89.48 358 | 98.80 142 | 98.64 142 | 97.57 33 | 93.21 311 | 97.65 252 | 80.57 343 | 98.83 263 | 97.72 90 | 89.47 341 | 96.93 280 |
|
| CR-MVSNet | | | 94.76 248 | 94.15 252 | 96.59 247 | 97.00 302 | 93.43 274 | 94.96 396 | 97.56 302 | 92.46 292 | 96.93 178 | 96.24 349 | 88.15 229 | 97.88 356 | 87.38 365 | 96.65 222 | 98.46 228 |
|
| v2v482 | | | 94.69 249 | 94.03 260 | 96.65 237 | 96.17 345 | 94.79 222 | 98.67 174 | 98.08 264 | 92.72 284 | 94.00 279 | 97.16 291 | 87.69 244 | 98.45 297 | 92.91 271 | 88.87 351 | 96.72 307 |
|
| pmmvs4 | | | 94.69 249 | 93.99 266 | 96.81 228 | 95.74 360 | 95.94 162 | 97.40 321 | 97.67 293 | 90.42 351 | 93.37 306 | 97.59 259 | 89.08 204 | 98.20 329 | 92.97 269 | 91.67 310 | 96.30 353 |
|
| cl22 | | | 94.68 251 | 94.19 248 | 96.13 282 | 98.11 212 | 93.60 267 | 96.94 356 | 98.31 216 | 92.43 296 | 93.32 308 | 96.87 326 | 86.51 261 | 98.28 326 | 94.10 237 | 91.16 317 | 96.51 339 |
|
| eth_miper_zixun_eth | | | 94.68 251 | 94.41 239 | 95.47 310 | 97.64 254 | 91.71 314 | 96.73 373 | 98.07 266 | 92.71 285 | 93.64 293 | 97.21 289 | 90.54 170 | 98.17 331 | 93.38 256 | 89.76 333 | 96.54 331 |
|
| PCF-MVS | | 93.45 11 | 94.68 251 | 93.43 302 | 98.42 110 | 98.62 161 | 96.77 118 | 95.48 393 | 98.20 235 | 84.63 397 | 93.34 307 | 98.32 191 | 88.55 221 | 99.81 86 | 84.80 385 | 98.96 138 | 98.68 209 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVS | | | 94.67 254 | 93.54 297 | 98.08 139 | 96.88 312 | 96.56 130 | 98.19 243 | 98.50 179 | 78.05 408 | 92.69 328 | 98.02 215 | 91.07 162 | 99.63 139 | 90.09 330 | 98.36 173 | 98.04 244 |
|
| PS-CasMVS | | | 94.67 254 | 93.99 266 | 96.71 232 | 96.68 324 | 95.26 195 | 99.13 57 | 99.03 38 | 93.68 242 | 92.33 339 | 97.95 223 | 85.35 284 | 98.10 336 | 93.59 252 | 88.16 358 | 96.79 299 |
|
| cascas | | | 94.63 256 | 93.86 276 | 96.93 219 | 96.91 310 | 94.27 246 | 96.00 386 | 98.51 174 | 85.55 393 | 94.54 248 | 96.23 351 | 84.20 312 | 98.87 257 | 95.80 177 | 96.98 214 | 97.66 256 |
|
| tpmvs | | | 94.60 257 | 94.36 241 | 95.33 316 | 97.46 270 | 88.60 374 | 96.88 365 | 97.68 291 | 91.29 333 | 93.80 289 | 96.42 346 | 88.58 217 | 99.24 200 | 91.06 317 | 96.04 248 | 98.17 241 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 257 | 93.90 272 | 96.68 236 | 97.41 278 | 94.42 238 | 98.52 199 | 98.59 152 | 91.69 319 | 91.21 353 | 98.35 185 | 84.87 293 | 99.04 229 | 91.06 317 | 93.44 288 | 96.60 322 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v1144 | | | 94.59 259 | 93.92 269 | 96.60 246 | 96.21 342 | 94.78 223 | 98.59 187 | 98.14 251 | 91.86 315 | 94.21 269 | 97.02 311 | 87.97 235 | 98.41 308 | 91.72 304 | 89.57 336 | 96.61 321 |
|
| ADS-MVSNet2 | | | 94.58 260 | 94.40 240 | 95.11 322 | 98.00 223 | 88.74 372 | 96.04 383 | 97.30 330 | 90.15 355 | 96.47 203 | 96.64 339 | 87.89 237 | 97.56 369 | 90.08 331 | 97.06 209 | 99.02 177 |
|
| WBMVS | | | 94.56 261 | 94.04 258 | 96.10 284 | 98.03 221 | 93.08 294 | 97.82 293 | 98.18 240 | 94.02 213 | 93.77 291 | 96.82 329 | 81.28 333 | 98.34 315 | 95.47 191 | 91.00 320 | 96.88 290 |
|
| ACMH | | 92.88 16 | 94.55 262 | 93.95 268 | 96.34 273 | 97.63 255 | 93.26 284 | 98.81 141 | 98.49 184 | 93.43 255 | 89.74 367 | 98.53 167 | 81.91 328 | 99.08 224 | 93.69 247 | 93.30 291 | 96.70 311 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| tt0805 | | | 94.54 263 | 93.85 277 | 96.63 241 | 97.98 227 | 93.06 295 | 98.77 150 | 97.84 285 | 93.67 244 | 93.80 289 | 98.04 214 | 76.88 376 | 98.96 241 | 94.79 211 | 92.86 296 | 97.86 249 |
|
| XVG-ACMP-BASELINE | | | 94.54 263 | 94.14 253 | 95.75 300 | 96.55 329 | 91.65 315 | 98.11 255 | 98.44 190 | 94.96 173 | 94.22 268 | 97.90 227 | 79.18 353 | 99.11 218 | 94.05 239 | 93.85 277 | 96.48 344 |
|
| AUN-MVS | | | 94.53 265 | 93.73 287 | 96.92 222 | 98.50 169 | 93.52 272 | 98.34 220 | 98.10 259 | 93.83 228 | 95.94 222 | 97.98 221 | 85.59 280 | 99.03 230 | 94.35 226 | 80.94 397 | 98.22 239 |
|
| DIV-MVS_self_test | | | 94.52 266 | 94.03 260 | 95.99 287 | 97.57 263 | 93.38 279 | 97.05 350 | 97.94 279 | 91.74 316 | 92.81 323 | 97.10 293 | 89.12 202 | 98.07 340 | 92.60 278 | 90.30 326 | 96.53 333 |
|
| cl____ | | | 94.51 267 | 94.01 263 | 96.02 286 | 97.58 259 | 93.40 278 | 97.05 350 | 97.96 278 | 91.73 318 | 92.76 325 | 97.08 299 | 89.06 205 | 98.13 334 | 92.61 277 | 90.29 327 | 96.52 336 |
|
| ETVMVS | | | 94.50 268 | 93.44 301 | 97.68 171 | 98.18 206 | 95.35 191 | 98.19 243 | 97.11 342 | 93.73 234 | 96.40 206 | 95.39 376 | 74.53 387 | 98.84 260 | 91.10 313 | 96.31 234 | 98.84 193 |
|
| GBi-Net | | | 94.49 269 | 93.80 280 | 96.56 251 | 98.21 200 | 95.00 207 | 98.82 133 | 98.18 240 | 92.46 292 | 94.09 274 | 97.07 300 | 81.16 334 | 97.95 348 | 92.08 292 | 92.14 303 | 96.72 307 |
|
| test1 | | | 94.49 269 | 93.80 280 | 96.56 251 | 98.21 200 | 95.00 207 | 98.82 133 | 98.18 240 | 92.46 292 | 94.09 274 | 97.07 300 | 81.16 334 | 97.95 348 | 92.08 292 | 92.14 303 | 96.72 307 |
|
| dmvs_re | | | 94.48 271 | 94.18 250 | 95.37 314 | 97.68 250 | 90.11 346 | 98.54 198 | 97.08 344 | 94.56 193 | 94.42 257 | 97.24 286 | 84.25 308 | 97.76 361 | 91.02 320 | 92.83 297 | 98.24 237 |
|
| v8 | | | 94.47 272 | 93.77 283 | 96.57 250 | 96.36 338 | 94.83 219 | 99.05 69 | 98.19 237 | 91.92 312 | 93.16 313 | 96.97 316 | 88.82 215 | 98.48 292 | 91.69 305 | 87.79 360 | 96.39 348 |
|
| FMVSNet2 | | | 94.47 272 | 93.61 293 | 97.04 211 | 98.21 200 | 96.43 136 | 98.79 148 | 98.27 225 | 92.46 292 | 93.50 301 | 97.09 297 | 81.16 334 | 98.00 345 | 91.09 314 | 91.93 306 | 96.70 311 |
|
| test2506 | | | 94.44 274 | 93.91 271 | 96.04 285 | 99.02 115 | 88.99 368 | 99.06 67 | 79.47 427 | 96.96 73 | 98.36 103 | 99.26 61 | 77.21 369 | 99.52 165 | 96.78 146 | 99.04 132 | 99.59 82 |
|
| Patchmatch-test | | | 94.42 275 | 93.68 291 | 96.63 241 | 97.60 257 | 91.76 311 | 94.83 400 | 97.49 314 | 89.45 368 | 94.14 272 | 97.10 293 | 88.99 206 | 98.83 263 | 85.37 379 | 98.13 180 | 99.29 132 |
|
| PEN-MVS | | | 94.42 275 | 93.73 287 | 96.49 259 | 96.28 341 | 94.84 217 | 99.17 49 | 99.00 40 | 93.51 250 | 92.23 341 | 97.83 237 | 86.10 271 | 97.90 352 | 92.55 283 | 86.92 372 | 96.74 304 |
|
| v144192 | | | 94.39 277 | 93.70 289 | 96.48 261 | 96.06 350 | 94.35 242 | 98.58 189 | 98.16 248 | 91.45 324 | 94.33 262 | 97.02 311 | 87.50 247 | 98.45 297 | 91.08 316 | 89.11 346 | 96.63 319 |
|
| Baseline_NR-MVSNet | | | 94.35 278 | 93.81 279 | 95.96 290 | 96.20 343 | 94.05 253 | 98.61 186 | 96.67 371 | 91.44 325 | 93.85 286 | 97.60 258 | 88.57 218 | 98.14 333 | 94.39 224 | 86.93 371 | 95.68 368 |
|
| miper_lstm_enhance | | | 94.33 279 | 94.07 257 | 95.11 322 | 97.75 243 | 90.97 325 | 97.22 337 | 98.03 273 | 91.67 320 | 92.76 325 | 96.97 316 | 90.03 179 | 97.78 360 | 92.51 285 | 89.64 335 | 96.56 328 |
|
| v1192 | | | 94.32 280 | 93.58 294 | 96.53 256 | 96.10 348 | 94.45 236 | 98.50 205 | 98.17 246 | 91.54 322 | 94.19 270 | 97.06 304 | 86.95 256 | 98.43 300 | 90.14 329 | 89.57 336 | 96.70 311 |
|
| UWE-MVS | | | 94.30 281 | 93.89 274 | 95.53 307 | 97.83 238 | 88.95 369 | 97.52 316 | 93.25 408 | 94.44 201 | 96.63 192 | 97.07 300 | 78.70 355 | 99.28 196 | 91.99 297 | 97.56 201 | 98.36 233 |
|
| ACMH+ | | 92.99 14 | 94.30 281 | 93.77 283 | 95.88 295 | 97.81 240 | 92.04 308 | 98.71 163 | 98.37 206 | 93.99 218 | 90.60 360 | 98.47 173 | 80.86 340 | 99.05 226 | 92.75 276 | 92.40 302 | 96.55 330 |
|
| v148 | | | 94.29 283 | 93.76 285 | 95.91 292 | 96.10 348 | 92.93 296 | 98.58 189 | 97.97 276 | 92.59 290 | 93.47 302 | 96.95 320 | 88.53 222 | 98.32 318 | 92.56 282 | 87.06 370 | 96.49 342 |
|
| v10 | | | 94.29 283 | 93.55 296 | 96.51 258 | 96.39 337 | 94.80 221 | 98.99 86 | 98.19 237 | 91.35 329 | 93.02 319 | 96.99 314 | 88.09 231 | 98.41 308 | 90.50 326 | 88.41 355 | 96.33 352 |
|
| MVP-Stereo | | | 94.28 285 | 93.92 269 | 95.35 315 | 94.95 380 | 92.60 299 | 97.97 271 | 97.65 294 | 91.61 321 | 90.68 359 | 97.09 297 | 86.32 268 | 98.42 301 | 89.70 340 | 99.34 121 | 95.02 382 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UniMVSNet_ETH3D | | | 94.24 286 | 93.33 304 | 96.97 216 | 97.19 293 | 93.38 279 | 98.74 154 | 98.57 159 | 91.21 338 | 93.81 288 | 98.58 162 | 72.85 394 | 98.77 270 | 95.05 203 | 93.93 276 | 98.77 202 |
|
| OurMVSNet-221017-0 | | | 94.21 287 | 94.00 264 | 94.85 332 | 95.60 364 | 89.22 363 | 98.89 110 | 97.43 322 | 95.29 152 | 92.18 342 | 98.52 170 | 82.86 324 | 98.59 285 | 93.46 255 | 91.76 308 | 96.74 304 |
|
| v1921920 | | | 94.20 288 | 93.47 300 | 96.40 270 | 95.98 353 | 94.08 252 | 98.52 199 | 98.15 249 | 91.33 330 | 94.25 266 | 97.20 290 | 86.41 266 | 98.42 301 | 90.04 334 | 89.39 343 | 96.69 316 |
|
| WB-MVSnew | | | 94.19 289 | 94.04 258 | 94.66 339 | 96.82 316 | 92.14 303 | 97.86 287 | 95.96 384 | 93.50 251 | 95.64 225 | 96.77 332 | 88.06 233 | 97.99 346 | 84.87 382 | 96.86 215 | 93.85 399 |
|
| v7n | | | 94.19 289 | 93.43 302 | 96.47 262 | 95.90 356 | 94.38 241 | 99.26 27 | 98.34 212 | 91.99 310 | 92.76 325 | 97.13 292 | 88.31 225 | 98.52 290 | 89.48 345 | 87.70 361 | 96.52 336 |
|
| tpm2 | | | 94.19 289 | 93.76 285 | 95.46 311 | 97.23 287 | 89.04 366 | 97.31 332 | 96.85 365 | 87.08 383 | 96.21 211 | 96.79 331 | 83.75 322 | 98.74 271 | 92.43 288 | 96.23 244 | 98.59 220 |
|
| TESTMET0.1,1 | | | 94.18 292 | 93.69 290 | 95.63 304 | 96.92 308 | 89.12 364 | 96.91 359 | 94.78 397 | 93.17 266 | 94.88 239 | 96.45 345 | 78.52 356 | 98.92 248 | 93.09 264 | 98.50 164 | 98.85 191 |
|
| dp | | | 94.15 293 | 93.90 272 | 94.90 329 | 97.31 283 | 86.82 391 | 96.97 354 | 97.19 339 | 91.22 337 | 96.02 217 | 96.61 341 | 85.51 281 | 99.02 233 | 90.00 335 | 94.30 261 | 98.85 191 |
|
| ET-MVSNet_ETH3D | | | 94.13 294 | 92.98 311 | 97.58 179 | 98.22 199 | 96.20 147 | 97.31 332 | 95.37 391 | 94.53 195 | 79.56 408 | 97.63 257 | 86.51 261 | 97.53 370 | 96.91 130 | 90.74 322 | 99.02 177 |
|
| tpm | | | 94.13 294 | 93.80 280 | 95.12 321 | 96.50 332 | 87.91 385 | 97.44 318 | 95.89 387 | 92.62 288 | 96.37 208 | 96.30 348 | 84.13 313 | 98.30 322 | 93.24 260 | 91.66 311 | 99.14 160 |
|
| testing222 | | | 94.12 296 | 93.03 310 | 97.37 193 | 98.02 222 | 94.66 224 | 97.94 274 | 96.65 373 | 94.63 190 | 95.78 223 | 95.76 365 | 71.49 395 | 98.92 248 | 91.17 312 | 95.88 251 | 98.52 224 |
|
| IterMVS-SCA-FT | | | 94.11 297 | 93.87 275 | 94.85 332 | 97.98 227 | 90.56 338 | 97.18 342 | 98.11 256 | 93.75 231 | 92.58 331 | 97.48 266 | 83.97 316 | 97.41 373 | 92.48 287 | 91.30 314 | 96.58 324 |
|
| Anonymous20231211 | | | 94.10 298 | 93.26 307 | 96.61 244 | 99.11 108 | 94.28 245 | 99.01 81 | 98.88 63 | 86.43 386 | 92.81 323 | 97.57 261 | 81.66 330 | 98.68 277 | 94.83 208 | 89.02 349 | 96.88 290 |
|
| IterMVS | | | 94.09 299 | 93.85 277 | 94.80 335 | 97.99 225 | 90.35 342 | 97.18 342 | 98.12 253 | 93.68 242 | 92.46 337 | 97.34 277 | 84.05 314 | 97.41 373 | 92.51 285 | 91.33 313 | 96.62 320 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| test-mter | | | 94.08 300 | 93.51 298 | 95.80 297 | 96.77 317 | 89.70 352 | 96.91 359 | 95.21 392 | 92.89 279 | 94.83 242 | 95.72 370 | 77.69 364 | 98.97 237 | 93.06 265 | 98.50 164 | 98.72 203 |
|
| test0.0.03 1 | | | 94.08 300 | 93.51 298 | 95.80 297 | 95.53 368 | 92.89 297 | 97.38 323 | 95.97 383 | 95.11 162 | 92.51 335 | 96.66 336 | 87.71 241 | 96.94 380 | 87.03 367 | 93.67 280 | 97.57 260 |
|
| v1240 | | | 94.06 302 | 93.29 306 | 96.34 273 | 96.03 352 | 93.90 256 | 98.44 212 | 98.17 246 | 91.18 339 | 94.13 273 | 97.01 313 | 86.05 272 | 98.42 301 | 89.13 350 | 89.50 340 | 96.70 311 |
|
| X-MVStestdata | | | 94.06 302 | 92.30 326 | 99.34 25 | 99.70 22 | 98.35 44 | 99.29 22 | 98.88 63 | 97.40 42 | 98.46 95 | 43.50 422 | 95.90 45 | 99.89 52 | 97.85 82 | 99.74 51 | 99.78 23 |
|
| DTE-MVSNet | | | 93.98 304 | 93.26 307 | 96.14 281 | 96.06 350 | 94.39 240 | 99.20 42 | 98.86 76 | 93.06 272 | 91.78 347 | 97.81 239 | 85.87 276 | 97.58 368 | 90.53 325 | 86.17 377 | 96.46 346 |
|
| pm-mvs1 | | | 93.94 305 | 93.06 309 | 96.59 247 | 96.49 333 | 95.16 200 | 98.95 95 | 98.03 273 | 92.32 301 | 91.08 355 | 97.84 234 | 84.54 304 | 98.41 308 | 92.16 290 | 86.13 380 | 96.19 357 |
|
| MS-PatchMatch | | | 93.84 306 | 93.63 292 | 94.46 349 | 96.18 344 | 89.45 359 | 97.76 297 | 98.27 225 | 92.23 304 | 92.13 343 | 97.49 265 | 79.50 350 | 98.69 274 | 89.75 338 | 99.38 117 | 95.25 374 |
|
| tfpnnormal | | | 93.66 307 | 92.70 317 | 96.55 255 | 96.94 307 | 95.94 162 | 98.97 89 | 99.19 25 | 91.04 340 | 91.38 352 | 97.34 277 | 84.94 292 | 98.61 282 | 85.45 378 | 89.02 349 | 95.11 378 |
|
| EU-MVSNet | | | 93.66 307 | 94.14 253 | 92.25 376 | 95.96 355 | 83.38 400 | 98.52 199 | 98.12 253 | 94.69 186 | 92.61 330 | 98.13 208 | 87.36 250 | 96.39 392 | 91.82 301 | 90.00 331 | 96.98 276 |
|
| our_test_3 | | | 93.65 309 | 93.30 305 | 94.69 337 | 95.45 372 | 89.68 354 | 96.91 359 | 97.65 294 | 91.97 311 | 91.66 350 | 96.88 324 | 89.67 186 | 97.93 351 | 88.02 361 | 91.49 312 | 96.48 344 |
|
| pmmvs5 | | | 93.65 309 | 92.97 312 | 95.68 301 | 95.49 369 | 92.37 300 | 98.20 240 | 97.28 333 | 89.66 364 | 92.58 331 | 97.26 283 | 82.14 327 | 98.09 338 | 93.18 263 | 90.95 321 | 96.58 324 |
|
| test_fmvs2 | | | 93.43 311 | 93.58 294 | 92.95 370 | 96.97 305 | 83.91 396 | 99.19 44 | 97.24 336 | 95.74 128 | 95.20 234 | 98.27 197 | 69.65 397 | 98.72 273 | 96.26 160 | 93.73 279 | 96.24 354 |
|
| tpm cat1 | | | 93.36 312 | 92.80 314 | 95.07 325 | 97.58 259 | 87.97 384 | 96.76 371 | 97.86 284 | 82.17 404 | 93.53 297 | 96.04 359 | 86.13 270 | 99.13 214 | 89.24 348 | 95.87 252 | 98.10 243 |
|
| JIA-IIPM | | | 93.35 313 | 92.49 322 | 95.92 291 | 96.48 334 | 90.65 335 | 95.01 395 | 96.96 355 | 85.93 390 | 96.08 215 | 87.33 412 | 87.70 243 | 98.78 269 | 91.35 309 | 95.58 256 | 98.34 234 |
|
| SixPastTwentyTwo | | | 93.34 314 | 92.86 313 | 94.75 336 | 95.67 362 | 89.41 361 | 98.75 151 | 96.67 371 | 93.89 223 | 90.15 365 | 98.25 200 | 80.87 339 | 98.27 327 | 90.90 321 | 90.64 323 | 96.57 326 |
|
| USDC | | | 93.33 315 | 92.71 316 | 95.21 318 | 96.83 315 | 90.83 331 | 96.91 359 | 97.50 312 | 93.84 226 | 90.72 358 | 98.14 207 | 77.69 364 | 98.82 265 | 89.51 344 | 93.21 293 | 95.97 362 |
|
| IB-MVS | | 91.98 17 | 93.27 316 | 91.97 330 | 97.19 199 | 97.47 269 | 93.41 276 | 97.09 349 | 95.99 382 | 93.32 259 | 92.47 336 | 95.73 368 | 78.06 362 | 99.53 162 | 94.59 219 | 82.98 388 | 98.62 216 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MIMVSNet | | | 93.26 317 | 92.21 327 | 96.41 268 | 97.73 247 | 93.13 290 | 95.65 390 | 97.03 350 | 91.27 335 | 94.04 277 | 96.06 358 | 75.33 383 | 97.19 376 | 86.56 369 | 96.23 244 | 98.92 188 |
|
| ppachtmachnet_test | | | 93.22 318 | 92.63 318 | 94.97 327 | 95.45 372 | 90.84 330 | 96.88 365 | 97.88 283 | 90.60 346 | 92.08 344 | 97.26 283 | 88.08 232 | 97.86 357 | 85.12 381 | 90.33 325 | 96.22 355 |
|
| Patchmtry | | | 93.22 318 | 92.35 325 | 95.84 296 | 96.77 317 | 93.09 293 | 94.66 403 | 97.56 302 | 87.37 382 | 92.90 321 | 96.24 349 | 88.15 229 | 97.90 352 | 87.37 366 | 90.10 330 | 96.53 333 |
|
| testing3 | | | 93.19 320 | 92.48 323 | 95.30 317 | 98.07 214 | 92.27 301 | 98.64 180 | 97.17 340 | 93.94 222 | 93.98 280 | 97.04 308 | 67.97 401 | 96.01 396 | 88.40 356 | 97.14 207 | 97.63 257 |
|
| FMVSNet1 | | | 93.19 320 | 92.07 328 | 96.56 251 | 97.54 264 | 95.00 207 | 98.82 133 | 98.18 240 | 90.38 352 | 92.27 340 | 97.07 300 | 73.68 392 | 97.95 348 | 89.36 347 | 91.30 314 | 96.72 307 |
|
| LF4IMVS | | | 93.14 322 | 92.79 315 | 94.20 353 | 95.88 357 | 88.67 373 | 97.66 305 | 97.07 346 | 93.81 229 | 91.71 348 | 97.65 252 | 77.96 363 | 98.81 266 | 91.47 308 | 91.92 307 | 95.12 377 |
|
| mmtdpeth | | | 93.12 323 | 92.61 319 | 94.63 341 | 97.60 257 | 89.68 354 | 99.21 39 | 97.32 329 | 94.02 213 | 97.72 145 | 94.42 387 | 77.01 374 | 99.44 180 | 99.05 21 | 77.18 409 | 94.78 387 |
|
| testgi | | | 93.06 324 | 92.45 324 | 94.88 331 | 96.43 336 | 89.90 347 | 98.75 151 | 97.54 308 | 95.60 135 | 91.63 351 | 97.91 226 | 74.46 389 | 97.02 378 | 86.10 372 | 93.67 280 | 97.72 254 |
|
| PatchT | | | 93.06 324 | 91.97 330 | 96.35 272 | 96.69 323 | 92.67 298 | 94.48 406 | 97.08 344 | 86.62 384 | 97.08 170 | 92.23 406 | 87.94 236 | 97.90 352 | 78.89 403 | 96.69 220 | 98.49 226 |
|
| RPMNet | | | 92.81 326 | 91.34 336 | 97.24 195 | 97.00 302 | 93.43 274 | 94.96 396 | 98.80 98 | 82.27 403 | 96.93 178 | 92.12 407 | 86.98 255 | 99.82 81 | 76.32 408 | 96.65 222 | 98.46 228 |
|
| myMVS_eth3d | | | 92.73 327 | 92.01 329 | 94.89 330 | 97.39 279 | 90.94 326 | 97.91 277 | 97.46 316 | 93.16 267 | 93.42 304 | 95.37 377 | 68.09 400 | 96.12 394 | 88.34 357 | 96.99 211 | 97.60 258 |
|
| TransMVSNet (Re) | | | 92.67 328 | 91.51 335 | 96.15 280 | 96.58 328 | 94.65 225 | 98.90 106 | 96.73 367 | 90.86 343 | 89.46 371 | 97.86 231 | 85.62 279 | 98.09 338 | 86.45 370 | 81.12 395 | 95.71 367 |
|
| ttmdpeth | | | 92.61 329 | 91.96 332 | 94.55 343 | 94.10 390 | 90.60 337 | 98.52 199 | 97.29 331 | 92.67 286 | 90.18 363 | 97.92 225 | 79.75 349 | 97.79 359 | 91.09 314 | 86.15 379 | 95.26 373 |
|
| Syy-MVS | | | 92.55 330 | 92.61 319 | 92.38 373 | 97.39 279 | 83.41 399 | 97.91 277 | 97.46 316 | 93.16 267 | 93.42 304 | 95.37 377 | 84.75 297 | 96.12 394 | 77.00 407 | 96.99 211 | 97.60 258 |
|
| K. test v3 | | | 92.55 330 | 91.91 333 | 94.48 347 | 95.64 363 | 89.24 362 | 99.07 66 | 94.88 396 | 94.04 211 | 86.78 387 | 97.59 259 | 77.64 367 | 97.64 365 | 92.08 292 | 89.43 342 | 96.57 326 |
|
| DSMNet-mixed | | | 92.52 332 | 92.58 321 | 92.33 374 | 94.15 389 | 82.65 402 | 98.30 228 | 94.26 403 | 89.08 373 | 92.65 329 | 95.73 368 | 85.01 291 | 95.76 398 | 86.24 371 | 97.76 193 | 98.59 220 |
|
| TinyColmap | | | 92.31 333 | 91.53 334 | 94.65 340 | 96.92 308 | 89.75 350 | 96.92 357 | 96.68 370 | 90.45 350 | 89.62 368 | 97.85 233 | 76.06 381 | 98.81 266 | 86.74 368 | 92.51 301 | 95.41 371 |
|
| gg-mvs-nofinetune | | | 92.21 334 | 90.58 342 | 97.13 204 | 96.75 320 | 95.09 204 | 95.85 387 | 89.40 420 | 85.43 394 | 94.50 250 | 81.98 415 | 80.80 341 | 98.40 314 | 92.16 290 | 98.33 174 | 97.88 247 |
|
| FMVSNet5 | | | 91.81 335 | 90.92 338 | 94.49 346 | 97.21 289 | 92.09 305 | 98.00 268 | 97.55 307 | 89.31 371 | 90.86 357 | 95.61 374 | 74.48 388 | 95.32 402 | 85.57 376 | 89.70 334 | 96.07 360 |
|
| pmmvs6 | | | 91.77 336 | 90.63 341 | 95.17 320 | 94.69 386 | 91.24 322 | 98.67 174 | 97.92 281 | 86.14 388 | 89.62 368 | 97.56 263 | 75.79 382 | 98.34 315 | 90.75 323 | 84.56 382 | 95.94 363 |
|
| Anonymous20231206 | | | 91.66 337 | 91.10 337 | 93.33 364 | 94.02 394 | 87.35 388 | 98.58 189 | 97.26 335 | 90.48 348 | 90.16 364 | 96.31 347 | 83.83 320 | 96.53 390 | 79.36 401 | 89.90 332 | 96.12 358 |
|
| Patchmatch-RL test | | | 91.49 338 | 90.85 339 | 93.41 362 | 91.37 405 | 84.40 394 | 92.81 410 | 95.93 386 | 91.87 314 | 87.25 383 | 94.87 383 | 88.99 206 | 96.53 390 | 92.54 284 | 82.00 390 | 99.30 130 |
|
| test_0402 | | | 91.32 339 | 90.27 345 | 94.48 347 | 96.60 327 | 91.12 323 | 98.50 205 | 97.22 337 | 86.10 389 | 88.30 379 | 96.98 315 | 77.65 366 | 97.99 346 | 78.13 405 | 92.94 295 | 94.34 388 |
|
| test_vis1_rt | | | 91.29 340 | 90.65 340 | 93.19 368 | 97.45 273 | 86.25 392 | 98.57 195 | 90.90 418 | 93.30 261 | 86.94 386 | 93.59 396 | 62.07 410 | 99.11 218 | 97.48 112 | 95.58 256 | 94.22 391 |
|
| PVSNet_0 | | 88.72 19 | 91.28 341 | 90.03 348 | 95.00 326 | 97.99 225 | 87.29 389 | 94.84 399 | 98.50 179 | 92.06 309 | 89.86 366 | 95.19 379 | 79.81 348 | 99.39 186 | 92.27 289 | 69.79 415 | 98.33 235 |
|
| mvs5depth | | | 91.23 342 | 90.17 346 | 94.41 351 | 92.09 402 | 89.79 349 | 95.26 394 | 96.50 375 | 90.73 344 | 91.69 349 | 97.06 304 | 76.12 380 | 98.62 281 | 88.02 361 | 84.11 385 | 94.82 384 |
|
| Anonymous20240521 | | | 91.18 343 | 90.44 343 | 93.42 361 | 93.70 395 | 88.47 377 | 98.94 98 | 97.56 302 | 88.46 377 | 89.56 370 | 95.08 382 | 77.15 372 | 96.97 379 | 83.92 388 | 89.55 338 | 94.82 384 |
|
| EG-PatchMatch MVS | | | 91.13 344 | 90.12 347 | 94.17 355 | 94.73 385 | 89.00 367 | 98.13 252 | 97.81 286 | 89.22 372 | 85.32 397 | 96.46 344 | 67.71 402 | 98.42 301 | 87.89 364 | 93.82 278 | 95.08 379 |
|
| TDRefinement | | | 91.06 345 | 89.68 350 | 95.21 318 | 85.35 420 | 91.49 318 | 98.51 204 | 97.07 346 | 91.47 323 | 88.83 377 | 97.84 234 | 77.31 368 | 99.09 223 | 92.79 275 | 77.98 407 | 95.04 381 |
|
| UnsupCasMVSNet_eth | | | 90.99 346 | 89.92 349 | 94.19 354 | 94.08 391 | 89.83 348 | 97.13 348 | 98.67 134 | 93.69 240 | 85.83 393 | 96.19 354 | 75.15 384 | 96.74 384 | 89.14 349 | 79.41 402 | 96.00 361 |
|
| test20.03 | | | 90.89 347 | 90.38 344 | 92.43 372 | 93.48 396 | 88.14 383 | 98.33 221 | 97.56 302 | 93.40 256 | 87.96 380 | 96.71 335 | 80.69 342 | 94.13 407 | 79.15 402 | 86.17 377 | 95.01 383 |
|
| MDA-MVSNet_test_wron | | | 90.71 348 | 89.38 353 | 94.68 338 | 94.83 382 | 90.78 332 | 97.19 341 | 97.46 316 | 87.60 380 | 72.41 415 | 95.72 370 | 86.51 261 | 96.71 387 | 85.92 374 | 86.80 374 | 96.56 328 |
|
| YYNet1 | | | 90.70 349 | 89.39 352 | 94.62 342 | 94.79 384 | 90.65 335 | 97.20 339 | 97.46 316 | 87.54 381 | 72.54 414 | 95.74 366 | 86.51 261 | 96.66 388 | 86.00 373 | 86.76 375 | 96.54 331 |
|
| KD-MVS_self_test | | | 90.38 350 | 89.38 353 | 93.40 363 | 92.85 399 | 88.94 370 | 97.95 272 | 97.94 279 | 90.35 353 | 90.25 362 | 93.96 393 | 79.82 347 | 95.94 397 | 84.62 387 | 76.69 410 | 95.33 372 |
|
| pmmvs-eth3d | | | 90.36 351 | 89.05 356 | 94.32 352 | 91.10 407 | 92.12 304 | 97.63 310 | 96.95 356 | 88.86 375 | 84.91 398 | 93.13 401 | 78.32 358 | 96.74 384 | 88.70 353 | 81.81 392 | 94.09 394 |
|
| CL-MVSNet_self_test | | | 90.11 352 | 89.14 355 | 93.02 369 | 91.86 404 | 88.23 382 | 96.51 379 | 98.07 266 | 90.49 347 | 90.49 361 | 94.41 388 | 84.75 297 | 95.34 401 | 80.79 397 | 74.95 412 | 95.50 370 |
|
| new_pmnet | | | 90.06 353 | 89.00 357 | 93.22 367 | 94.18 388 | 88.32 380 | 96.42 381 | 96.89 361 | 86.19 387 | 85.67 394 | 93.62 395 | 77.18 371 | 97.10 377 | 81.61 395 | 89.29 344 | 94.23 390 |
|
| MDA-MVSNet-bldmvs | | | 89.97 354 | 88.35 360 | 94.83 334 | 95.21 376 | 91.34 319 | 97.64 307 | 97.51 311 | 88.36 378 | 71.17 416 | 96.13 356 | 79.22 352 | 96.63 389 | 83.65 389 | 86.27 376 | 96.52 336 |
|
| CMPMVS |  | 66.06 21 | 89.70 355 | 89.67 351 | 89.78 381 | 93.19 397 | 76.56 407 | 97.00 353 | 98.35 209 | 80.97 405 | 81.57 403 | 97.75 242 | 74.75 386 | 98.61 282 | 89.85 336 | 93.63 282 | 94.17 392 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MIMVSNet1 | | | 89.67 356 | 88.28 361 | 93.82 358 | 92.81 400 | 91.08 324 | 98.01 266 | 97.45 320 | 87.95 379 | 87.90 381 | 95.87 364 | 67.63 403 | 94.56 406 | 78.73 404 | 88.18 357 | 95.83 365 |
|
| KD-MVS_2432*1600 | | | 89.61 357 | 87.96 365 | 94.54 344 | 94.06 392 | 91.59 316 | 95.59 391 | 97.63 296 | 89.87 360 | 88.95 374 | 94.38 390 | 78.28 359 | 96.82 382 | 84.83 383 | 68.05 416 | 95.21 375 |
|
| miper_refine_blended | | | 89.61 357 | 87.96 365 | 94.54 344 | 94.06 392 | 91.59 316 | 95.59 391 | 97.63 296 | 89.87 360 | 88.95 374 | 94.38 390 | 78.28 359 | 96.82 382 | 84.83 383 | 68.05 416 | 95.21 375 |
|
| MVStest1 | | | 89.53 359 | 87.99 364 | 94.14 357 | 94.39 387 | 90.42 340 | 98.25 235 | 96.84 366 | 82.81 400 | 81.18 405 | 97.33 279 | 77.09 373 | 96.94 380 | 85.27 380 | 78.79 403 | 95.06 380 |
|
| MVS-HIRNet | | | 89.46 360 | 88.40 359 | 92.64 371 | 97.58 259 | 82.15 403 | 94.16 409 | 93.05 412 | 75.73 411 | 90.90 356 | 82.52 414 | 79.42 351 | 98.33 317 | 83.53 390 | 98.68 151 | 97.43 261 |
|
| OpenMVS_ROB |  | 86.42 20 | 89.00 361 | 87.43 369 | 93.69 359 | 93.08 398 | 89.42 360 | 97.91 277 | 96.89 361 | 78.58 407 | 85.86 392 | 94.69 384 | 69.48 398 | 98.29 325 | 77.13 406 | 93.29 292 | 93.36 401 |
|
| mvsany_test3 | | | 88.80 362 | 88.04 362 | 91.09 380 | 89.78 410 | 81.57 405 | 97.83 292 | 95.49 390 | 93.81 229 | 87.53 382 | 93.95 394 | 56.14 413 | 97.43 372 | 94.68 212 | 83.13 387 | 94.26 389 |
|
| new-patchmatchnet | | | 88.50 363 | 87.45 368 | 91.67 378 | 90.31 409 | 85.89 393 | 97.16 346 | 97.33 328 | 89.47 367 | 83.63 400 | 92.77 403 | 76.38 377 | 95.06 404 | 82.70 392 | 77.29 408 | 94.06 396 |
|
| APD_test1 | | | 88.22 364 | 88.01 363 | 88.86 383 | 95.98 353 | 74.66 415 | 97.21 338 | 96.44 377 | 83.96 399 | 86.66 389 | 97.90 227 | 60.95 411 | 97.84 358 | 82.73 391 | 90.23 328 | 94.09 394 |
|
| PM-MVS | | | 87.77 365 | 86.55 371 | 91.40 379 | 91.03 408 | 83.36 401 | 96.92 357 | 95.18 394 | 91.28 334 | 86.48 391 | 93.42 397 | 53.27 414 | 96.74 384 | 89.43 346 | 81.97 391 | 94.11 393 |
|
| dmvs_testset | | | 87.64 366 | 88.93 358 | 83.79 392 | 95.25 375 | 63.36 424 | 97.20 339 | 91.17 416 | 93.07 271 | 85.64 395 | 95.98 363 | 85.30 288 | 91.52 414 | 69.42 413 | 87.33 366 | 96.49 342 |
|
| test_fmvs3 | | | 87.17 367 | 87.06 370 | 87.50 385 | 91.21 406 | 75.66 410 | 99.05 69 | 96.61 374 | 92.79 283 | 88.85 376 | 92.78 402 | 43.72 417 | 93.49 408 | 93.95 240 | 84.56 382 | 93.34 402 |
|
| UnsupCasMVSNet_bld | | | 87.17 367 | 85.12 374 | 93.31 365 | 91.94 403 | 88.77 371 | 94.92 398 | 98.30 222 | 84.30 398 | 82.30 401 | 90.04 409 | 63.96 408 | 97.25 375 | 85.85 375 | 74.47 414 | 93.93 398 |
|
| N_pmnet | | | 87.12 369 | 87.77 367 | 85.17 389 | 95.46 371 | 61.92 425 | 97.37 325 | 70.66 430 | 85.83 391 | 88.73 378 | 96.04 359 | 85.33 286 | 97.76 361 | 80.02 398 | 90.48 324 | 95.84 364 |
|
| pmmvs3 | | | 86.67 370 | 84.86 375 | 92.11 377 | 88.16 414 | 87.19 390 | 96.63 375 | 94.75 398 | 79.88 406 | 87.22 384 | 92.75 404 | 66.56 405 | 95.20 403 | 81.24 396 | 76.56 411 | 93.96 397 |
|
| test_f | | | 86.07 371 | 85.39 372 | 88.10 384 | 89.28 412 | 75.57 411 | 97.73 300 | 96.33 379 | 89.41 370 | 85.35 396 | 91.56 408 | 43.31 419 | 95.53 399 | 91.32 310 | 84.23 384 | 93.21 403 |
|
| WB-MVS | | | 84.86 372 | 85.33 373 | 83.46 393 | 89.48 411 | 69.56 419 | 98.19 243 | 96.42 378 | 89.55 366 | 81.79 402 | 94.67 385 | 84.80 295 | 90.12 415 | 52.44 419 | 80.64 399 | 90.69 406 |
|
| SSC-MVS | | | 84.27 373 | 84.71 376 | 82.96 397 | 89.19 413 | 68.83 420 | 98.08 259 | 96.30 380 | 89.04 374 | 81.37 404 | 94.47 386 | 84.60 302 | 89.89 416 | 49.80 421 | 79.52 401 | 90.15 407 |
|
| dongtai | | | 82.47 374 | 81.88 377 | 84.22 391 | 95.19 377 | 76.03 408 | 94.59 405 | 74.14 429 | 82.63 401 | 87.19 385 | 96.09 357 | 64.10 407 | 87.85 419 | 58.91 417 | 84.11 385 | 88.78 411 |
|
| test_vis3_rt | | | 79.22 375 | 77.40 382 | 84.67 390 | 86.44 418 | 74.85 414 | 97.66 305 | 81.43 425 | 84.98 395 | 67.12 418 | 81.91 416 | 28.09 427 | 97.60 366 | 88.96 351 | 80.04 400 | 81.55 416 |
|
| test_method | | | 79.03 376 | 78.17 378 | 81.63 398 | 86.06 419 | 54.40 430 | 82.75 418 | 96.89 361 | 39.54 422 | 80.98 406 | 95.57 375 | 58.37 412 | 94.73 405 | 84.74 386 | 78.61 404 | 95.75 366 |
|
| testf1 | | | 79.02 377 | 77.70 379 | 82.99 395 | 88.10 415 | 66.90 421 | 94.67 401 | 93.11 409 | 71.08 413 | 74.02 411 | 93.41 398 | 34.15 423 | 93.25 409 | 72.25 411 | 78.50 405 | 88.82 409 |
|
| APD_test2 | | | 79.02 377 | 77.70 379 | 82.99 395 | 88.10 415 | 66.90 421 | 94.67 401 | 93.11 409 | 71.08 413 | 74.02 411 | 93.41 398 | 34.15 423 | 93.25 409 | 72.25 411 | 78.50 405 | 88.82 409 |
|
| LCM-MVSNet | | | 78.70 379 | 76.24 385 | 86.08 387 | 77.26 426 | 71.99 417 | 94.34 407 | 96.72 368 | 61.62 417 | 76.53 409 | 89.33 410 | 33.91 425 | 92.78 412 | 81.85 394 | 74.60 413 | 93.46 400 |
|
| kuosan | | | 78.45 380 | 77.69 381 | 80.72 399 | 92.73 401 | 75.32 412 | 94.63 404 | 74.51 428 | 75.96 409 | 80.87 407 | 93.19 400 | 63.23 409 | 79.99 423 | 42.56 423 | 81.56 394 | 86.85 415 |
|
| Gipuma |  | | 78.40 381 | 76.75 384 | 83.38 394 | 95.54 366 | 80.43 406 | 79.42 419 | 97.40 324 | 64.67 416 | 73.46 413 | 80.82 417 | 45.65 416 | 93.14 411 | 66.32 415 | 87.43 364 | 76.56 419 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMMVS2 | | | 77.95 382 | 75.44 386 | 85.46 388 | 82.54 421 | 74.95 413 | 94.23 408 | 93.08 411 | 72.80 412 | 74.68 410 | 87.38 411 | 36.36 422 | 91.56 413 | 73.95 409 | 63.94 418 | 89.87 408 |
|
| FPMVS | | | 77.62 383 | 77.14 383 | 79.05 401 | 79.25 424 | 60.97 426 | 95.79 388 | 95.94 385 | 65.96 415 | 67.93 417 | 94.40 389 | 37.73 421 | 88.88 418 | 68.83 414 | 88.46 354 | 87.29 412 |
|
| EGC-MVSNET | | | 75.22 384 | 69.54 387 | 92.28 375 | 94.81 383 | 89.58 356 | 97.64 307 | 96.50 375 | 1.82 427 | 5.57 428 | 95.74 366 | 68.21 399 | 96.26 393 | 73.80 410 | 91.71 309 | 90.99 405 |
|
| ANet_high | | | 69.08 385 | 65.37 389 | 80.22 400 | 65.99 428 | 71.96 418 | 90.91 414 | 90.09 419 | 82.62 402 | 49.93 423 | 78.39 418 | 29.36 426 | 81.75 420 | 62.49 416 | 38.52 422 | 86.95 414 |
|
| tmp_tt | | | 68.90 386 | 66.97 388 | 74.68 403 | 50.78 430 | 59.95 427 | 87.13 415 | 83.47 424 | 38.80 423 | 62.21 419 | 96.23 351 | 64.70 406 | 76.91 425 | 88.91 352 | 30.49 423 | 87.19 413 |
|
| PMVS |  | 61.03 23 | 65.95 387 | 63.57 391 | 73.09 404 | 57.90 429 | 51.22 431 | 85.05 417 | 93.93 407 | 54.45 418 | 44.32 424 | 83.57 413 | 13.22 428 | 89.15 417 | 58.68 418 | 81.00 396 | 78.91 418 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 64.94 388 | 64.25 390 | 67.02 405 | 82.28 422 | 59.36 428 | 91.83 413 | 85.63 422 | 52.69 419 | 60.22 420 | 77.28 419 | 41.06 420 | 80.12 422 | 46.15 422 | 41.14 420 | 61.57 421 |
|
| EMVS | | | 64.07 389 | 63.26 392 | 66.53 406 | 81.73 423 | 58.81 429 | 91.85 412 | 84.75 423 | 51.93 421 | 59.09 421 | 75.13 420 | 43.32 418 | 79.09 424 | 42.03 424 | 39.47 421 | 61.69 420 |
|
| MVE |  | 62.14 22 | 63.28 390 | 59.38 393 | 74.99 402 | 74.33 427 | 65.47 423 | 85.55 416 | 80.50 426 | 52.02 420 | 51.10 422 | 75.00 421 | 10.91 431 | 80.50 421 | 51.60 420 | 53.40 419 | 78.99 417 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| wuyk23d | | | 30.17 391 | 30.18 395 | 30.16 407 | 78.61 425 | 43.29 432 | 66.79 420 | 14.21 431 | 17.31 424 | 14.82 427 | 11.93 427 | 11.55 430 | 41.43 426 | 37.08 425 | 19.30 424 | 5.76 424 |
|
| cdsmvs_eth3d_5k | | | 23.98 392 | 31.98 394 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 98.59 152 | 0.00 428 | 0.00 429 | 98.61 157 | 90.60 169 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| testmvs | | | 21.48 393 | 24.95 396 | 11.09 409 | 14.89 431 | 6.47 434 | 96.56 377 | 9.87 432 | 7.55 425 | 17.93 425 | 39.02 423 | 9.43 432 | 5.90 428 | 16.56 427 | 12.72 425 | 20.91 423 |
|
| test123 | | | 20.95 394 | 23.72 397 | 12.64 408 | 13.54 432 | 8.19 433 | 96.55 378 | 6.13 433 | 7.48 426 | 16.74 426 | 37.98 424 | 12.97 429 | 6.05 427 | 16.69 426 | 5.43 426 | 23.68 422 |
|
| ab-mvs-re | | | 8.20 395 | 10.94 398 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 98.43 175 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| pcd_1.5k_mvsjas | | | 7.88 396 | 10.50 399 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 94.51 87 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| mmdepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| monomultidepth | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| test_blank | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet_test | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| DCPMVS | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet-low-res | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| sosnet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uncertanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| Regformer | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| uanet | | | 0.00 397 | 0.00 400 | 0.00 410 | 0.00 433 | 0.00 435 | 0.00 421 | 0.00 434 | 0.00 428 | 0.00 429 | 0.00 428 | 0.00 433 | 0.00 429 | 0.00 428 | 0.00 427 | 0.00 425 |
|
| WAC-MVS | | | | | | | 90.94 326 | | | | | | | | 88.66 354 | | |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 47 | 97.46 40 | 99.39 32 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 98 | 99.08 11 | | 98.63 145 | | | | | 99.94 9 | 98.53 40 | 99.80 24 | 99.86 7 |
|
| PC_three_1452 | | | | | | | | | | 95.08 166 | 99.60 21 | 99.16 82 | 97.86 2 | 98.47 295 | 97.52 110 | 99.72 57 | 99.74 39 |
|
| No_MVS | | | | | 99.62 6 | 99.17 98 | 99.08 11 | | 98.63 145 | | | | | 99.94 9 | 98.53 40 | 99.80 24 | 99.86 7 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 76 | 97.55 34 | 99.20 44 | 99.47 25 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 433 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 433 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.46 52 | 98.70 23 | | 98.79 103 | 93.21 264 | 98.67 82 | 98.97 112 | 95.70 49 | 99.83 74 | 96.07 164 | 99.58 85 | |
|
| RE-MVS-def | | | | 98.34 39 | | 99.49 46 | 97.86 68 | 99.11 60 | 98.80 98 | 96.49 96 | 99.17 47 | 99.35 48 | 95.29 65 | | 97.72 90 | 99.65 70 | 99.71 52 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 142 | 95.28 153 | 99.63 20 | | | | 98.35 57 | 99.81 15 | 99.83 12 |
|
| OPU-MVS | | | | | 99.37 22 | 99.24 91 | 99.05 14 | 99.02 79 | | | | 99.16 82 | 97.81 3 | 99.37 187 | 97.24 119 | 99.73 54 | 99.70 56 |
|
| test_241102_TWO | | | | | | | | | 98.87 70 | 97.65 27 | 99.53 25 | 99.48 23 | 97.34 11 | 99.94 9 | 98.43 52 | 99.80 24 | 99.83 12 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 70 | 97.62 29 | 99.73 12 | 99.39 36 | 97.53 7 | 99.74 116 | | | |
|
| 9.14 | | | | 98.06 64 | | 99.47 50 | | 98.71 163 | 98.82 85 | 94.36 203 | 99.16 50 | 99.29 57 | 96.05 37 | 99.81 86 | 97.00 125 | 99.71 59 | |
|
| save fliter | | | | | | 99.46 52 | 98.38 35 | 98.21 238 | 98.71 121 | 97.95 18 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 97.32 48 | 99.45 27 | 99.46 29 | 97.88 1 | 99.94 9 | 98.47 48 | 99.86 2 | 99.85 9 |
|
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 89 | 98.88 63 | | | | | 99.94 9 | 98.47 48 | 99.81 15 | 99.84 11 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 67 | 98.88 63 | 97.62 29 | 99.56 22 | 99.50 20 | 97.42 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 147 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 41 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 192 | | | | 99.20 147 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 206 | | | | |
|
| ambc | | | | | 89.49 382 | 86.66 417 | 75.78 409 | 92.66 411 | 96.72 368 | | 86.55 390 | 92.50 405 | 46.01 415 | 97.90 352 | 90.32 327 | 82.09 389 | 94.80 386 |
|
| MTGPA |  | | | | | | | | 98.74 113 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 374 | | | | 30.43 426 | 87.85 240 | 98.69 274 | 92.59 280 | | |
|
| test_post | | | | | | | | | | | | 31.83 425 | 88.83 213 | 98.91 250 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 381 | 89.42 193 | 98.89 254 | | | |
|
| GG-mvs-BLEND | | | | | 96.59 247 | 96.34 339 | 94.98 210 | 96.51 379 | 88.58 421 | | 93.10 318 | 94.34 392 | 80.34 346 | 98.05 341 | 89.53 343 | 96.99 211 | 96.74 304 |
|
| MTMP | | | | | | | | 98.89 110 | 94.14 405 | | | | | | | | |
|
| gm-plane-assit | | | | | | 95.88 357 | 87.47 387 | | | 89.74 363 | | 96.94 321 | | 99.19 206 | 93.32 259 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 158 | 99.57 86 | 99.69 59 |
|
| TEST9 | | | | | | 99.31 67 | 98.50 29 | 97.92 275 | 98.73 116 | 92.63 287 | 97.74 142 | 98.68 152 | 96.20 32 | 99.80 93 | | | |
|
| test_8 | | | | | | 99.29 76 | 98.44 31 | 97.89 283 | 98.72 118 | 92.98 275 | 97.70 147 | 98.66 155 | 96.20 32 | 99.80 93 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 174 | 99.57 86 | 99.68 64 |
|
| agg_prior | | | | | | 99.30 71 | 98.38 35 | | 98.72 118 | | 97.57 159 | | | 99.81 86 | | | |
|
| TestCases | | | | | 96.99 213 | 99.25 84 | 93.21 288 | | 98.18 240 | 91.36 327 | 93.52 298 | 98.77 141 | 84.67 300 | 99.72 118 | 89.70 340 | 97.87 188 | 98.02 245 |
|
| test_prior4 | | | | | | | 98.01 64 | 97.86 287 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 97.80 294 | | 96.12 113 | 97.89 135 | 98.69 151 | 95.96 41 | | 96.89 134 | 99.60 80 | |
|
| test_prior | | | | | 99.19 43 | 99.31 67 | 98.22 51 | | 98.84 80 | | | | | 99.70 124 | | | 99.65 72 |
|
| 旧先验2 | | | | | | | | 97.57 313 | | 91.30 332 | 98.67 82 | | | 99.80 93 | 95.70 183 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 97.64 307 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 99.16 48 | 99.34 60 | 98.01 64 | | 98.69 126 | 90.06 357 | 98.13 111 | 98.95 119 | 94.60 85 | 99.89 52 | 91.97 299 | 99.47 105 | 99.59 82 |
|
| 旧先验1 | | | | | | 99.29 76 | 97.48 82 | | 98.70 125 | | | 99.09 98 | 95.56 52 | | | 99.47 105 | 99.61 78 |
|
| æ— å…ˆéªŒ | | | | | | | | 97.58 312 | 98.72 118 | 91.38 326 | | | | 99.87 63 | 93.36 258 | | 99.60 80 |
|
| 原ACMM2 | | | | | | | | 97.67 304 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.65 84 | 99.32 65 | 96.62 123 | | 98.67 134 | 93.27 263 | 97.81 137 | 98.97 112 | 95.18 72 | 99.83 74 | 93.84 244 | 99.46 108 | 99.50 94 |
|
| test222 | | | | | | 99.23 92 | 97.17 101 | 97.40 321 | 98.66 137 | 88.68 376 | 98.05 117 | 98.96 117 | 94.14 98 | | | 99.53 97 | 99.61 78 |
|
| testdata2 | | | | | | | | | | | | | | 99.89 52 | 91.65 306 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata | | | | | 98.26 121 | 99.20 96 | 95.36 189 | | 98.68 129 | 91.89 313 | 98.60 90 | 99.10 91 | 94.44 92 | 99.82 81 | 94.27 230 | 99.44 109 | 99.58 86 |
|
| testdata1 | | | | | | | | 97.32 331 | | 96.34 104 | | | | | | | |
|
| test12 | | | | | 99.18 45 | 99.16 102 | 98.19 53 | | 98.53 168 | | 98.07 115 | | 95.13 75 | 99.72 118 | | 99.56 92 | 99.63 76 |
|
| plane_prior7 | | | | | | 97.42 275 | 94.63 227 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 282 | 94.61 230 | | | | | | 87.09 252 | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 162 | | | | | 99.03 230 | 96.07 164 | 94.27 262 | 96.92 281 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 194 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 230 | | | 97.02 70 | 95.34 229 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 142 | | 97.28 51 | | | | | | | |
|
| plane_prior1 | | | | | | 97.37 281 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.60 232 | 98.44 212 | | 96.74 84 | | | | | | 94.22 264 | |
|
| n2 | | | | | | | | | 0.00 434 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 434 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 401 | | | | | | | | |
|
| lessismore_v0 | | | | | 94.45 350 | 94.93 381 | 88.44 378 | | 91.03 417 | | 86.77 388 | 97.64 255 | 76.23 379 | 98.42 301 | 90.31 328 | 85.64 381 | 96.51 339 |
|
| LGP-MVS_train | | | | | 96.47 262 | 97.46 270 | 93.54 269 | | 98.54 166 | 94.67 188 | 94.36 260 | 98.77 141 | 85.39 282 | 99.11 218 | 95.71 181 | 94.15 268 | 96.76 302 |
|
| test11 | | | | | | | | | 98.66 137 | | | | | | | | |
|
| door | | | | | | | | | 94.64 399 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 248 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.20 290 | | 98.05 262 | | 96.43 98 | 94.45 252 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 290 | | 98.05 262 | | 96.43 98 | 94.45 252 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 194 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 252 | | | 98.96 241 | | | 96.87 293 |
|
| HQP3-MVS | | | | | | | | | 98.46 186 | | | | | | | 94.18 266 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 258 | | | | |
|
| NP-MVS | | | | | | 97.28 284 | 94.51 235 | | | | | 97.73 243 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 395 | 96.89 364 | | 90.97 341 | 97.90 134 | | 89.89 181 | | 93.91 242 | | 99.18 156 |
|
| MDTV_nov1_ep13 | | | | 95.40 182 | | 97.48 268 | 88.34 379 | 96.85 367 | 97.29 331 | 93.74 233 | 97.48 161 | 97.26 283 | 89.18 200 | 99.05 226 | 91.92 300 | 97.43 203 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 294 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 283 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 84 | | | | |
|
| ITE_SJBPF | | | | | 95.44 312 | 97.42 275 | 91.32 320 | | 97.50 312 | 95.09 165 | 93.59 294 | 98.35 185 | 81.70 329 | 98.88 256 | 89.71 339 | 93.39 289 | 96.12 358 |
|
| DeepMVS_CX |  | | | | 86.78 386 | 97.09 300 | 72.30 416 | | 95.17 395 | 75.92 410 | 84.34 399 | 95.19 379 | 70.58 396 | 95.35 400 | 79.98 400 | 89.04 348 | 92.68 404 |
|