This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.02 198.84 199.55 199.57 1798.96 299.39 598.93 3397.38 1599.41 299.54 196.66 599.84 3398.86 199.85 399.87 1
SteuartSystems-ACMMP98.90 298.75 299.36 899.22 6398.43 1299.10 4098.87 4697.38 1599.35 399.40 497.78 199.87 2697.77 2699.85 399.78 5
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS98.78 398.56 599.45 499.32 3898.87 398.47 13198.81 5697.72 498.76 2799.16 3797.05 299.78 6098.06 1799.66 3699.69 29
XVS98.70 498.49 1099.34 999.70 1198.35 1899.29 1498.88 4497.40 1298.46 3899.20 3095.90 2799.89 1997.85 2399.74 2899.78 5
Regformer-298.69 598.52 799.19 2299.35 3198.01 3598.37 13898.81 5697.48 999.21 799.21 2796.13 1599.80 4898.40 1299.73 3099.75 15
Regformer-198.66 698.51 899.12 3399.35 3197.81 4398.37 13898.76 6797.49 899.20 899.21 2796.08 1899.79 5698.42 1099.73 3099.75 15
MCST-MVS98.65 798.37 1599.48 399.60 1698.87 398.41 13598.68 8597.04 2898.52 3798.80 7596.78 499.83 3497.93 2099.61 4099.74 20
Regformer-498.64 898.53 698.99 3999.43 2997.37 5698.40 13698.79 6397.46 1099.09 1099.31 1795.86 2999.80 4898.64 299.76 2099.79 3
SD-MVS98.64 898.68 398.53 6499.33 3698.36 1798.90 5598.85 5097.28 1899.72 199.39 596.63 797.60 24198.17 1699.85 399.64 45
HFP-MVS98.63 1098.40 1299.32 1299.72 898.29 2199.23 2098.96 2896.10 5098.94 1599.17 3496.06 1999.92 997.62 3299.78 1199.75 15
region2R98.61 1198.38 1499.29 1499.74 498.16 2899.23 2098.93 3396.15 4698.94 1599.17 3495.91 2699.94 197.55 3799.79 999.78 5
NCCC98.61 1198.35 1899.38 699.28 5298.61 698.45 13298.76 6797.82 398.45 4198.93 6696.65 699.83 3497.38 4499.41 6699.71 26
Regformer-398.59 1398.50 998.86 4899.43 2997.05 6698.40 13698.68 8597.43 1199.06 1199.31 1795.80 3099.77 6598.62 499.76 2099.78 5
ACMMPR98.59 1398.36 1699.29 1499.74 498.15 2999.23 2098.95 3096.10 5098.93 1999.19 3395.70 3199.94 197.62 3299.79 999.78 5
HPM-MVS++98.58 1598.25 2599.55 199.50 2199.08 198.72 9898.66 9597.51 798.15 4898.83 7295.70 3199.92 997.53 3999.67 3499.66 40
CP-MVS98.57 1698.36 1699.19 2299.66 1497.86 4099.34 1198.87 4695.96 5398.60 3499.13 3996.05 2199.94 197.77 2699.86 299.77 12
MSLP-MVS98.56 1798.57 498.55 6299.26 5596.80 7598.71 9999.05 2097.28 1898.84 2199.28 2096.47 999.40 10698.52 899.70 3299.47 69
DeepC-MVS_fast96.70 198.55 1898.34 1999.18 2699.25 5698.04 3398.50 12898.78 6597.72 498.92 2099.28 2095.27 4199.82 3997.55 3799.77 1499.69 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
#test#98.54 1998.27 2399.32 1299.72 898.29 2198.98 5098.96 2895.65 6298.94 1599.17 3496.06 1999.92 997.21 4799.78 1199.75 15
APD-MVS_3200maxsize98.53 2098.33 2299.15 3199.50 2197.92 3999.15 3598.81 5696.24 4499.20 899.37 895.30 4099.80 4897.73 2899.67 3499.72 24
mPP-MVS98.51 2198.26 2499.25 2099.75 198.04 3399.28 1698.81 5696.24 4498.35 4599.23 2495.46 3699.94 197.42 4299.81 899.77 12
PGM-MVS98.49 2298.23 2799.27 1999.72 898.08 3298.99 4799.49 395.43 6999.03 1299.32 1695.56 3399.94 196.80 6299.77 1499.78 5
EI-MVSNet-Vis-set98.47 2398.39 1398.69 5399.46 2696.49 8798.30 14898.69 8297.21 2298.84 2199.36 1295.41 3799.78 6098.62 499.65 3799.80 2
MVS_111021_HR98.47 2398.34 1998.88 4799.22 6397.32 5797.91 18699.58 197.20 2398.33 4699.00 5795.99 2299.64 8598.05 1899.76 2099.69 29
EI-MVSNet-UG-set98.41 2598.34 1998.61 5899.45 2796.32 9498.28 15098.68 8597.17 2598.74 2899.37 895.25 4299.79 5698.57 699.54 5499.73 22
DELS-MVS98.40 2698.20 2998.99 3999.00 7497.66 4597.75 20098.89 4197.71 698.33 4698.97 5994.97 4899.88 2598.42 1099.76 2099.42 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS98.38 2798.24 2698.81 4999.22 6397.25 6198.11 16898.29 14697.19 2498.99 1499.02 5296.22 1099.67 8198.52 898.56 9599.51 62
HPM-MVS_fast98.38 2798.13 3099.12 3399.75 197.86 4099.44 498.82 5394.46 10598.94 1599.20 3095.16 4499.74 7197.58 3499.85 399.77 12
HPM-MVS98.36 2998.10 3199.13 3299.74 497.82 4299.53 198.80 6294.63 9898.61 3398.97 5995.13 4599.77 6597.65 3199.83 799.79 3
APD-MVScopyleft98.35 3098.00 3499.42 599.51 2098.72 598.80 7898.82 5394.52 10199.23 699.25 2395.54 3599.80 4896.52 7299.77 1499.74 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 3198.23 2798.67 5599.27 5396.90 7297.95 18099.58 197.14 2698.44 4299.01 5695.03 4799.62 9097.91 2199.75 2699.50 63
PHI-MVS98.34 3198.06 3299.18 2699.15 7098.12 3199.04 4399.09 1693.32 14698.83 2399.10 4396.54 899.83 3497.70 3099.76 2099.59 53
MP-MVScopyleft98.33 3398.01 3399.28 1699.75 198.18 2799.22 2698.79 6396.13 4797.92 6399.23 2494.54 5399.94 196.74 6499.78 1199.73 22
ACMMPcopyleft98.23 3497.95 3599.09 3599.74 497.62 4899.03 4499.41 495.98 5297.60 7799.36 1294.45 5899.93 797.14 4898.85 8699.70 28
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior398.22 3597.90 3699.19 2299.31 4098.22 2497.80 19698.84 5196.12 4897.89 6598.69 8295.96 2399.70 7796.89 5699.60 4199.65 42
train_agg97.97 3697.52 4299.33 1199.31 4098.50 897.92 18298.73 7292.98 15797.74 7198.68 8496.20 1199.80 4896.59 6899.57 4699.68 34
UA-Net97.96 3797.62 3998.98 4198.86 8097.47 5398.89 5899.08 1796.67 3898.72 2999.54 193.15 7299.81 4194.87 11398.83 8799.65 42
agg_prior197.95 3897.51 4399.28 1699.30 4598.38 1397.81 19598.72 7493.16 15197.57 7998.66 8796.14 1499.81 4196.63 6799.56 5299.66 40
CDPH-MVS97.94 3997.49 4499.28 1699.47 2598.44 1097.91 18698.67 9292.57 17098.77 2698.85 7095.93 2599.72 7295.56 9999.69 3399.68 34
DeepPCF-MVS96.37 297.93 4098.48 1196.30 18499.00 7489.54 24297.43 21898.87 4698.16 299.26 499.38 796.12 1699.64 8598.30 1499.77 1499.72 24
DeepC-MVS95.98 397.88 4197.58 4198.77 5099.25 5696.93 7098.83 6898.75 7096.96 3196.89 9799.50 390.46 10999.87 2697.84 2599.76 2099.52 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior397.87 4297.42 4899.23 2199.29 4798.23 2397.92 18298.72 7492.38 18397.59 7898.64 8996.09 1799.79 5696.59 6899.57 4699.68 34
DP-MVS Recon97.86 4397.46 4699.06 3799.53 1998.35 1898.33 14198.89 4192.62 16798.05 5398.94 6595.34 3999.65 8396.04 8399.42 6599.19 91
CSCG97.85 4497.74 3898.20 8199.67 1395.16 13199.22 2699.32 593.04 15497.02 9198.92 6795.36 3899.91 1597.43 4199.64 3899.52 58
MG-MVS97.81 4597.60 4098.44 7199.12 7295.97 10297.75 20098.78 6596.89 3298.46 3899.22 2693.90 6699.68 8094.81 11699.52 5699.67 39
VNet97.79 4697.40 4998.96 4398.88 7897.55 5098.63 11098.93 3396.74 3599.02 1398.84 7190.33 11299.83 3498.53 796.66 13299.50 63
PS-MVSNAJ97.73 4797.77 3797.62 11098.68 9295.58 11797.34 22498.51 11897.29 1798.66 3197.88 14394.51 5499.90 1797.87 2299.17 7597.39 161
CPTT-MVS97.72 4897.32 5198.92 4599.64 1597.10 6599.12 3898.81 5692.34 18498.09 5199.08 4993.01 7399.92 996.06 8299.77 1499.75 15
PVSNet_Blended_VisFu97.70 4997.46 4698.44 7199.27 5395.91 10998.63 11099.16 1594.48 10497.67 7498.88 6892.80 7599.91 1597.11 4999.12 7699.50 63
canonicalmvs97.67 5097.23 5498.98 4198.70 8998.38 1399.34 1198.39 13496.76 3497.67 7497.40 17292.26 8199.49 10198.28 1596.28 14499.08 104
MVSFormer97.57 5197.49 4497.84 9898.07 11895.76 11399.47 298.40 13294.98 8598.79 2498.83 7292.34 7998.41 20396.91 5499.59 4499.34 79
alignmvs97.56 5297.07 6099.01 3898.66 9398.37 1698.83 6898.06 18896.74 3598.00 5897.65 16290.80 10699.48 10598.37 1396.56 13699.19 91
OMC-MVS97.55 5397.34 5098.20 8199.33 3695.92 10798.28 15098.59 10295.52 6697.97 5999.10 4393.28 7199.49 10195.09 11298.88 8399.19 91
PAPM_NR97.46 5497.11 5798.50 6699.50 2196.41 9098.63 11098.60 10195.18 7697.06 8998.06 13194.26 6199.57 9393.80 14298.87 8599.52 58
EPP-MVSNet97.46 5497.28 5297.99 9298.64 9595.38 12399.33 1398.31 14193.61 13897.19 8599.07 5094.05 6399.23 11596.89 5698.43 10299.37 78
3Dnovator94.51 597.46 5496.93 6499.07 3697.78 13297.64 4699.35 1099.06 1897.02 2993.75 18599.16 3789.25 12199.92 997.22 4699.75 2699.64 45
CNLPA97.45 5797.03 6198.73 5199.05 7397.44 5598.07 17298.53 11495.32 7296.80 10398.53 9793.32 7099.72 7294.31 12999.31 7199.02 107
lupinMVS97.44 5897.22 5598.12 8698.07 11895.76 11397.68 20597.76 19894.50 10298.79 2498.61 9092.34 7999.30 11197.58 3499.59 4499.31 82
3Dnovator+94.38 697.43 5996.78 7199.38 697.83 13098.52 799.37 798.71 7997.09 2792.99 20399.13 3989.36 11999.89 1996.97 5299.57 4699.71 26
Vis-MVSNetpermissive97.42 6097.11 5798.34 7698.66 9396.23 9799.22 2699.00 2396.63 3998.04 5599.21 2788.05 16099.35 11096.01 8599.21 7399.45 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 6197.25 5397.91 9598.70 8996.80 7598.82 7098.69 8294.53 10098.11 5098.28 11894.50 5799.57 9394.12 13499.49 5797.37 162
sss97.39 6296.98 6398.61 5898.60 9896.61 8298.22 15498.93 3393.97 11798.01 5698.48 10291.98 9099.85 3196.45 7498.15 11099.39 77
PVSNet_Blended97.38 6397.12 5698.14 8499.25 5695.35 12697.28 22799.26 693.13 15297.94 6198.21 12592.74 7699.81 4196.88 5999.40 6899.27 87
liao97.37 6496.77 7399.16 2999.34 3397.99 3898.19 15798.68 8590.14 22798.01 5698.97 5994.80 5099.87 2693.36 15199.46 6299.61 48
WTY-MVS97.37 6496.92 6598.72 5298.86 8096.89 7498.31 14698.71 7995.26 7497.67 7498.56 9692.21 8499.78 6095.89 8896.85 12999.48 68
jason97.32 6697.08 5998.06 9197.45 15195.59 11697.87 19397.91 19494.79 9298.55 3698.83 7291.12 10299.23 11597.58 3499.60 4199.34 79
jason: jason.
MVS_Test97.28 6797.00 6298.13 8598.33 10595.97 10298.74 9398.07 18694.27 10898.44 4298.07 13092.48 7899.26 11396.43 7598.19 10999.16 95
EPNet97.28 6796.87 6898.51 6594.98 26296.14 9998.90 5597.02 24898.28 195.99 12299.11 4191.36 9999.89 1996.98 5199.19 7499.50 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet97.22 6996.88 6798.25 8098.85 8396.36 9299.19 3297.97 19295.39 7197.23 8498.99 5891.11 10398.93 14794.60 12098.59 9399.47 69
PLCcopyleft95.07 497.20 7096.78 7198.44 7199.29 4796.31 9698.14 16398.76 6792.41 18196.39 11398.31 11794.92 4999.78 6094.06 13598.77 9099.23 89
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D97.16 7196.66 7698.68 5498.53 10297.19 6398.93 5398.90 3992.83 16495.99 12299.37 892.12 8699.87 2693.67 14599.57 4698.97 112
AdaColmapbinary97.15 7296.70 7498.48 6899.16 6896.69 7998.01 17698.89 4194.44 10696.83 9998.68 8490.69 10799.76 6794.36 12699.29 7298.98 111
HyFIR97.09 7396.89 6697.69 10698.86 8094.03 18497.52 21499.21 1393.65 13796.71 10598.80 7591.46 9899.52 10095.90 8799.94 199.52 58
F-COLMAP97.09 7396.80 6997.97 9399.45 2794.95 13898.55 12198.62 10093.02 15596.17 11798.58 9594.01 6499.81 4193.95 13798.90 8299.14 98
TAMVS97.02 7596.79 7097.70 10598.06 12095.31 12898.52 12398.31 14193.95 11897.05 9098.61 9093.49 6898.52 18095.33 10597.81 11799.29 86
CDS-MVSNet96.99 7696.69 7597.90 9698.05 12195.98 10198.20 15698.33 14093.67 13596.95 9298.49 10193.54 6798.42 19695.24 11197.74 11999.31 82
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
114514_t96.93 7796.27 8598.92 4599.50 2197.63 4798.85 6598.90 3984.80 26997.77 6899.11 4192.84 7499.66 8294.85 11499.77 1499.47 69
MAR-MVS96.91 7896.40 8198.45 7098.69 9196.90 7298.66 10898.68 8592.40 18297.07 8897.96 13791.54 9799.75 6993.68 14498.92 8198.69 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 7996.55 7897.83 9998.73 8795.46 12299.20 3098.30 14494.96 8796.60 10798.87 6990.05 11698.59 16993.67 14598.60 9299.46 73
PAPR96.84 8096.24 8798.65 5698.72 8896.92 7197.36 22298.57 10793.33 14596.67 10697.57 16894.30 6099.56 9591.05 20298.59 9399.47 69
HY-MVS93.96 896.82 8196.23 8898.57 6098.46 10397.00 6798.14 16398.21 15693.95 11896.72 10497.99 13691.58 9699.76 6794.51 12496.54 13798.95 115
UGNet96.78 8296.30 8498.19 8398.24 10895.89 11098.88 6098.93 3397.39 1496.81 10297.84 14782.60 22999.90 1796.53 7199.49 5798.79 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 8396.60 7797.12 12699.25 5695.35 12698.26 15299.26 694.28 10797.94 6197.46 17092.74 7699.81 4196.88 5993.32 18696.20 238
mvs_anonymous96.70 8496.53 7997.18 12298.19 11393.78 19098.31 14698.19 15994.01 11394.47 14398.27 12192.08 8898.46 18897.39 4397.91 11299.31 82
1112_ss96.63 8596.00 9498.50 6698.56 9996.37 9198.18 16198.10 18392.92 15994.84 13298.43 10592.14 8599.58 9294.35 12796.51 13899.56 57
PMMVS96.60 8696.33 8397.41 11697.90 12893.93 18697.35 22398.41 13192.84 16397.76 6997.45 17191.10 10499.20 11796.26 7897.91 11299.11 100
DP-MVS96.59 8795.93 9598.57 6099.34 3396.19 9898.70 10298.39 13489.45 24494.52 14199.35 1491.85 9299.85 3192.89 16598.88 8399.68 34
PatchMatch-RL96.59 8796.03 9398.27 7899.31 4096.51 8697.91 18699.06 1893.72 12896.92 9698.06 13188.50 15199.65 8391.77 18999.00 7998.66 130
XVG-OURS96.55 8996.41 8096.99 13298.75 8693.76 19197.50 21698.52 11695.67 6096.83 9999.30 1988.95 12799.53 9895.88 8996.26 14597.69 156
FIs96.51 9096.12 9097.67 10997.13 17397.54 5199.36 899.22 1295.89 5494.03 17698.35 11091.98 9098.44 19396.40 7692.76 19397.01 167
XVG-OURS-SEG-HR96.51 9096.34 8297.02 13198.77 8593.76 19197.79 19898.50 12095.45 6896.94 9399.09 4787.87 16699.55 9796.76 6395.83 15497.74 153
PS-MVSNAJss96.43 9296.26 8696.92 13995.84 24695.08 13499.16 3498.50 12095.87 5593.84 18398.34 11494.51 5498.61 16796.88 5993.45 18397.06 164
FC-MVSNet-test96.42 9396.05 9197.53 11396.95 18097.27 5999.36 899.23 1095.83 5693.93 17898.37 10892.00 8998.32 20996.02 8492.72 19497.00 168
ab-mvs96.42 9395.71 10398.55 6298.63 9696.75 7897.88 19298.74 7193.84 12396.54 11098.18 12685.34 20899.75 6995.93 8696.35 14299.15 96
PVSNet91.96 1896.35 9596.15 8996.96 13599.17 6792.05 21696.08 25998.68 8593.69 13197.75 7097.80 15288.86 13099.69 7994.26 13199.01 7899.15 96
Test_1112_low_res96.34 9695.66 10698.36 7598.56 9995.94 10597.71 20298.07 18692.10 18894.79 13697.29 17691.75 9399.56 9594.17 13296.50 13999.58 55
diffmvs96.32 9795.74 9898.07 9098.26 10796.14 9998.53 12298.23 15490.10 22896.88 9897.73 15590.16 11599.15 11993.90 13997.85 11698.91 117
QAPM96.29 9895.40 10898.96 4397.85 12997.60 4999.23 2098.93 3389.76 23993.11 20199.02 5289.11 12599.93 791.99 18399.62 3999.34 79
nrg03096.28 9995.72 10097.96 9496.90 18498.15 2999.39 598.31 14195.47 6794.42 15298.35 11092.09 8798.69 16297.50 4089.05 22697.04 166
liao196.25 10095.73 9997.79 10297.13 17395.55 12098.19 15798.59 10293.47 14192.03 22497.82 15091.33 10099.49 10194.62 11998.44 10098.32 144
HQP_MVS96.14 10195.90 9696.85 14097.42 15294.60 16798.80 7898.56 10897.28 1895.34 12698.28 11887.09 18099.03 13596.07 8094.27 16296.92 173
MVSTER96.06 10295.72 10097.08 12998.23 10995.93 10698.73 9698.27 14794.86 9195.07 12998.09 12988.21 15598.54 17396.59 6893.46 18196.79 190
test_djsdf96.00 10395.69 10496.93 13795.72 24995.49 12199.47 298.40 13294.98 8594.58 13997.86 14489.16 12498.41 20396.91 5494.12 16996.88 182
EI-MVSNet95.96 10495.83 9796.36 18097.93 12693.70 19598.12 16698.27 14793.70 13095.07 12999.02 5292.23 8398.54 17394.68 11793.46 18196.84 186
BH-untuned95.95 10595.72 10096.65 15598.55 10192.26 21498.23 15397.79 19793.73 12794.62 13898.01 13488.97 12699.00 13893.04 15898.51 9698.68 128
MSDG95.93 10695.30 11797.83 9998.90 7695.36 12496.83 24898.37 13691.32 21094.43 15198.73 8190.27 11399.60 9190.05 21698.82 8898.52 135
BH-RMVSNet95.92 10795.32 11597.69 10698.32 10694.64 16298.19 15797.45 22594.56 9996.03 12098.61 9085.02 21099.12 12290.68 20599.06 7799.30 85
LFMVS95.86 10894.98 12898.47 6998.87 7996.32 9498.84 6796.02 26893.40 14398.62 3299.20 3074.99 26299.63 8897.72 2997.20 12599.46 73
OpenMVScopyleft93.04 1395.83 10995.00 12698.32 7797.18 17097.32 5799.21 2998.97 2689.96 23291.14 22999.05 5186.64 18799.92 993.38 15099.47 5997.73 154
VDD-MVS95.82 11095.23 11997.61 11198.84 8493.98 18598.68 10697.40 23095.02 8497.95 6099.34 1574.37 26799.78 6098.64 296.80 13099.08 104
UniMVSNet (Re)95.78 11195.19 12197.58 11296.99 17997.47 5398.79 8299.18 1495.60 6393.92 17997.04 19491.68 9498.48 18395.80 9387.66 24796.79 190
VPA-MVSNet95.75 11295.11 12397.69 10697.24 16397.27 5998.94 5299.23 1095.13 7895.51 12597.32 17485.73 20198.91 14997.33 4589.55 22096.89 181
HQP-MVS95.72 11395.40 10896.69 14797.20 16794.25 17998.05 17398.46 12596.43 4094.45 14497.73 15586.75 18598.96 14295.30 10694.18 16596.86 185
UniMVSNet_NR-MVSNet95.71 11495.15 12297.40 11796.84 18796.97 6898.74 9399.24 895.16 7793.88 18097.72 15891.68 9498.31 21195.81 9187.25 25296.92 173
PatchmatchNetpermissive95.71 11495.52 10796.29 18597.58 14090.72 23096.84 24797.52 21194.06 11197.08 8696.96 20389.24 12298.90 15092.03 18298.37 10399.26 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMM93.85 995.69 11695.38 11296.61 16097.61 13893.84 18998.91 5498.44 12895.25 7594.28 16298.47 10386.04 19999.12 12295.50 10193.95 17396.87 183
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 11795.69 10495.44 21397.54 14388.54 25896.97 23697.56 20593.50 14097.52 8196.93 20889.49 11899.16 11895.25 11096.42 14198.64 131
LPG-MVS_test95.62 11895.34 11396.47 17397.46 14893.54 19698.99 4798.54 11194.67 9494.36 15498.77 7785.39 20599.11 12695.71 9594.15 16796.76 193
CLD-MVS95.62 11895.34 11396.46 17697.52 14593.75 19397.27 22898.46 12595.53 6594.42 15298.00 13586.21 19498.97 13996.25 7994.37 16096.66 210
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchFormer-LS_test95.47 12095.27 11896.08 19397.59 13990.66 23198.10 17097.34 23493.98 11696.08 11896.15 23487.65 17399.12 12295.27 10995.24 15898.44 140
IterMVS-LS95.46 12195.21 12096.22 18798.12 11693.72 19498.32 14598.13 17293.71 12994.26 16397.31 17592.24 8298.10 22194.63 11890.12 21296.84 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 12295.03 12596.73 14395.42 25894.63 16399.14 3698.52 11695.74 5793.22 19698.36 10983.87 22398.65 16596.95 5394.04 17096.91 178
CVMVSNet95.43 12396.04 9293.57 25097.93 12683.62 27498.12 16698.59 10295.68 5996.56 10899.02 5287.51 17597.51 24493.56 14897.44 12299.60 51
DU-MVS95.42 12494.76 13397.40 11796.53 20296.97 6898.66 10898.99 2595.43 6993.88 18097.69 15988.57 14698.31 21195.81 9187.25 25296.92 173
mvs_tets95.41 12595.00 12696.65 15595.58 25394.42 17199.00 4698.55 11095.73 5893.21 19798.38 10783.45 22698.63 16697.09 5094.00 17196.91 178
BH-w/o95.38 12695.08 12496.26 18698.34 10491.79 21997.70 20397.43 22792.87 16294.24 16597.22 17888.66 14498.84 15591.55 19397.70 12098.16 147
VDDNet95.36 12794.53 13797.86 9798.10 11795.13 13298.85 6597.75 19990.46 22198.36 4499.39 573.27 26999.64 8597.98 1996.58 13598.81 121
TAPA-MVS93.98 795.35 12894.56 13697.74 10499.13 7194.83 14898.33 14198.64 9986.62 25896.29 11598.61 9094.00 6599.29 11280.00 26799.41 6699.09 101
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 12994.98 12896.43 17797.67 13593.48 19898.73 9698.44 12894.94 9092.53 21198.53 9784.50 21699.14 12095.48 10294.00 17196.66 210
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 13094.87 13196.71 14499.29 4793.24 20498.58 11698.11 17989.92 23593.57 18899.10 4386.37 19299.79 5690.78 20498.10 11197.09 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 13194.65 13596.99 13299.25 5693.21 20598.59 11498.18 16291.36 20693.52 19098.77 7784.67 21499.72 7289.70 22497.87 11498.02 150
LCM-MVSNet-Re95.22 13295.32 11594.91 22998.18 11487.85 26598.75 8995.66 27495.11 7988.96 24696.85 21190.26 11497.65 23995.65 9898.44 10099.22 90
EPNet_dtu95.21 13394.95 13095.99 19496.17 23290.45 23498.16 16297.27 23996.77 3393.14 20098.33 11590.34 11198.42 19685.57 25698.81 8999.09 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 13494.45 14297.46 11496.75 19296.56 8498.86 6498.65 9893.30 14893.27 19598.27 12184.85 21398.87 15294.82 11591.26 20896.96 170
WR-MVS95.15 13594.46 14097.22 12096.67 19796.45 8898.21 15598.81 5694.15 10993.16 19897.69 15987.51 17598.30 21395.29 10888.62 23696.90 180
TranMVSNet+NR-MVSNet95.14 13694.48 13897.11 12796.45 20696.36 9299.03 4499.03 2195.04 8393.58 18797.93 13988.27 15498.03 22594.13 13386.90 25796.95 172
test-LLR95.10 13794.87 13195.80 20296.77 18989.70 24096.91 24095.21 27695.11 7994.83 13495.72 24587.71 16998.97 13993.06 15698.50 9798.72 124
WR-MVS_H95.05 13894.46 14096.81 14296.86 18695.82 11299.24 1999.24 893.87 12292.53 21196.84 21290.37 11098.24 21793.24 15387.93 24296.38 234
ADS-MVSNet95.00 13994.45 14296.63 15898.00 12291.91 21896.04 26097.74 20090.15 22596.47 11196.64 21987.89 16498.96 14290.08 21497.06 12699.02 107
VPNet94.99 14094.19 15397.40 11797.16 17196.57 8398.71 9998.97 2695.67 6094.84 13298.24 12480.36 24398.67 16496.46 7387.32 25096.96 170
EPMVS94.99 14094.48 13896.52 16997.22 16591.75 22097.23 22991.66 29294.11 11097.28 8396.81 21385.70 20298.84 15593.04 15897.28 12498.97 112
NR-MVSNet94.98 14294.16 15497.44 11596.53 20297.22 6298.74 9398.95 3094.96 8789.25 24497.69 15989.32 12098.18 21894.59 12187.40 24996.92 173
FMVSNet394.97 14394.26 14897.11 12798.18 11496.62 8098.56 12098.26 15193.67 13594.09 17297.10 18384.25 21898.01 22692.08 17892.14 19796.70 201
CostFormer94.95 14494.73 13495.60 20797.28 16189.06 24997.53 21396.89 25189.66 24296.82 10196.72 21686.05 19798.95 14695.53 10096.13 15098.79 122
PAPM94.95 14494.00 16597.78 10397.04 17695.65 11596.03 26298.25 15291.23 21594.19 16897.80 15291.27 10198.86 15482.61 26197.61 12198.84 120
CP-MVSNet94.94 14694.30 14796.83 14196.72 19495.56 11999.11 3998.95 3093.89 12092.42 21697.90 14187.19 17998.12 22094.32 12888.21 23996.82 189
TR-MVS94.94 14694.20 15297.17 12397.75 13394.14 18197.59 21097.02 24892.28 18695.75 12497.64 16483.88 22298.96 14289.77 22096.15 14998.40 141
RPSCF94.87 14895.40 10893.26 25398.89 7782.06 28098.33 14198.06 18890.30 22496.56 10899.26 2287.09 18099.49 10193.82 14196.32 14398.24 145
v1neww94.83 14994.22 14996.68 15096.39 20994.85 14198.87 6198.11 17992.45 17694.45 14497.06 18988.82 13498.54 17392.93 16188.91 22996.65 212
v7new94.83 14994.22 14996.68 15096.39 20994.85 14198.87 6198.11 17992.45 17694.45 14497.06 18988.82 13498.54 17392.93 16188.91 22996.65 212
v694.83 14994.21 15196.69 14796.36 21394.85 14198.87 6198.11 17992.46 17194.44 15097.05 19388.76 14098.57 17192.95 16088.92 22896.65 212
DWT-MVSNet_test94.82 15294.36 14596.20 18897.35 15890.79 22898.34 14096.57 26192.91 16095.33 12896.44 22582.00 23099.12 12294.52 12395.78 15598.70 126
GA-MVS94.81 15394.03 16397.14 12497.15 17293.86 18896.76 24997.58 20494.00 11494.76 13797.04 19480.91 23698.48 18391.79 18896.25 14699.09 101
V4294.78 15494.14 15696.70 14696.33 21995.22 13098.97 5198.09 18492.32 18594.31 15897.06 18988.39 15298.55 17292.90 16488.87 23196.34 236
divwei89l23v2f11294.76 15594.12 15996.67 15396.28 22594.85 14198.69 10398.12 17492.44 17894.29 16196.94 20588.85 13298.48 18392.67 16888.79 23596.67 207
CR-MVSNet94.76 15594.15 15596.59 16297.00 17793.43 19994.96 27297.56 20592.46 17196.93 9496.24 22988.15 15697.88 23687.38 24496.65 13398.46 138
v114194.75 15794.11 16096.67 15396.27 22794.86 14098.69 10398.12 17492.43 17994.31 15896.94 20588.78 13998.48 18392.63 17088.85 23396.67 207
v194.75 15794.11 16096.69 14796.27 22794.87 13998.69 10398.12 17492.43 17994.32 15796.94 20588.71 14398.54 17392.66 16988.84 23496.67 207
DI_MVS_test_dynamic94.74 15993.62 18798.09 8895.34 25995.92 10798.09 17197.34 23494.66 9685.89 25995.91 23980.49 24299.38 10896.66 6698.22 10798.97 112
DI_MVS_test_normal94.72 16093.59 18998.11 8795.30 26095.95 10497.91 18697.39 23294.64 9785.70 26295.88 24080.52 24199.36 10996.69 6598.30 10699.01 110
v794.69 16194.04 16296.62 15996.41 20894.79 15698.78 8498.13 17291.89 19294.30 16097.16 18088.13 15898.45 19091.96 18589.65 21796.61 217
v2v48294.69 16194.03 16396.65 15596.17 23294.79 15698.67 10798.08 18592.72 16594.00 17797.16 18087.69 17298.45 19092.91 16388.87 23196.72 197
PCF-MVS93.45 1194.68 16393.43 19898.42 7498.62 9796.77 7795.48 26898.20 15884.63 27093.34 19498.32 11688.55 14899.81 4184.80 25898.96 8098.68 128
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HC-MVS94.67 16493.54 19298.08 8996.88 18596.56 8498.19 15798.50 12078.05 28492.69 20898.02 13391.07 10599.63 8890.09 21398.36 10498.04 149
PS-CasMVS94.67 16493.99 16796.71 14496.68 19695.26 12999.13 3799.03 2193.68 13392.33 21897.95 13885.35 20798.10 22193.59 14788.16 24196.79 190
cascas94.63 16693.86 17396.93 13796.91 18394.27 17896.00 26398.51 11885.55 26594.54 14096.23 23184.20 21998.87 15295.80 9396.98 12897.66 157
tpmvs94.60 16794.36 14595.33 22297.46 14888.60 25696.88 24597.68 20191.29 21293.80 18496.42 22688.58 14599.24 11491.06 20096.04 15198.17 146
LTVRE_ROB92.95 1594.60 16793.90 17196.68 15097.41 15594.42 17198.52 12398.59 10291.69 19691.21 22898.35 11084.87 21299.04 13491.06 20093.44 18496.60 219
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 16993.92 16996.60 16196.21 22994.78 15898.59 11498.14 17191.86 19594.21 16797.02 19787.97 16198.41 20391.72 19089.57 21896.61 217
ADS-MVSNet294.58 17094.40 14495.11 22698.00 12288.74 25396.04 26097.30 23790.15 22596.47 11196.64 21987.89 16497.56 24390.08 21497.06 12699.02 107
ACMH92.88 1694.55 17193.95 16896.34 18297.63 13693.26 20398.81 7598.49 12493.43 14289.74 24098.53 9781.91 23199.08 13093.69 14393.30 18796.70 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 17294.14 15695.75 20596.55 20191.65 22198.11 16898.44 12894.96 8794.22 16697.90 14179.18 24899.11 12694.05 13693.85 17496.48 231
GBi-Net94.49 17393.80 17696.56 16598.21 11095.00 13598.82 7098.18 16292.46 17194.09 17297.07 18681.16 23397.95 22992.08 17892.14 19796.72 197
test194.49 17393.80 17696.56 16598.21 11095.00 13598.82 7098.18 16292.46 17194.09 17297.07 18681.16 23397.95 22992.08 17892.14 19796.72 197
v894.47 17593.77 17996.57 16496.36 21394.83 14899.05 4298.19 15991.92 19193.16 19896.97 20288.82 13498.48 18391.69 19187.79 24596.39 233
FMVSNet294.47 17593.61 18897.04 13098.21 11096.43 8998.79 8298.27 14792.46 17193.50 19297.09 18481.16 23398.00 22791.09 19891.93 20196.70 201
PEN-MVS94.42 17793.73 18396.49 17196.28 22594.84 14699.17 3399.00 2393.51 13992.23 22097.83 14986.10 19697.90 23392.55 17286.92 25696.74 195
v14419294.39 17893.70 18496.48 17296.06 23794.35 17598.58 11698.16 16991.45 20194.33 15697.02 19787.50 17798.45 19091.08 19989.11 22596.63 215
Baseline_NR-MVSNet94.35 17993.81 17595.96 19596.20 23094.05 18398.61 11396.67 25891.44 20293.85 18297.60 16688.57 14698.14 21994.39 12586.93 25595.68 250
v119294.32 18093.58 19096.53 16896.10 23594.45 17098.50 12898.17 16791.54 19994.19 16897.06 18986.95 18498.43 19590.14 21289.57 21896.70 201
ACMH+92.99 1494.30 18193.77 17995.88 19997.81 13192.04 21798.71 9998.37 13693.99 11590.60 23598.47 10380.86 23899.05 13192.75 16792.40 19696.55 223
v14894.29 18293.76 18195.91 19896.10 23592.93 20998.58 11697.97 19292.59 16993.47 19396.95 20488.53 14998.32 20992.56 17187.06 25496.49 230
v1094.29 18293.55 19196.51 17096.39 20994.80 15398.99 4798.19 15991.35 20893.02 20296.99 20088.09 15998.41 20390.50 20988.41 23896.33 237
MVP-PatchMatch94.28 18493.92 16995.35 22194.95 26392.60 21397.97 17997.65 20291.61 19790.68 23497.09 18486.32 19398.42 19689.70 22499.34 7095.02 259
OurMVSNet-221017-094.21 18594.00 16594.85 23295.60 25289.22 24798.89 5897.43 22795.29 7392.18 22298.52 10082.86 22898.59 16993.46 14991.76 20496.74 195
v192192094.20 18693.47 19796.40 17995.98 24094.08 18298.52 12398.15 17091.33 20994.25 16497.20 17986.41 19098.42 19690.04 21789.39 22396.69 206
v7n94.19 18793.43 19896.47 17395.90 24394.38 17499.26 1798.34 13991.99 19092.76 20797.13 18288.31 15398.52 18089.48 22887.70 24696.52 226
tpm294.19 18793.76 18195.46 21197.23 16489.04 25097.31 22696.85 25487.08 25796.21 11696.79 21483.75 22598.74 16192.43 17596.23 14798.59 133
v5294.18 18993.52 19396.13 19195.95 24294.29 17799.23 2098.21 15691.42 20392.84 20596.89 20987.85 16798.53 17991.51 19487.81 24395.57 253
V494.18 18993.52 19396.13 19195.89 24494.31 17699.23 2098.22 15591.42 20392.82 20696.89 20987.93 16398.52 18091.51 19487.81 24395.58 252
TESTMET0.1,194.18 18993.69 18595.63 20696.92 18189.12 24896.91 24094.78 28193.17 15094.88 13196.45 22478.52 24998.92 14893.09 15598.50 9798.85 118
dp94.15 19293.90 17194.90 23097.31 16086.82 26996.97 23697.19 24391.22 21696.02 12196.61 22185.51 20499.02 13790.00 21894.30 16198.85 118
tpm94.13 19393.80 17695.12 22596.50 20487.91 26497.44 21795.89 27392.62 16796.37 11496.30 22884.13 22098.30 21393.24 15391.66 20599.14 98
IterMVS94.09 19493.85 17494.80 23497.99 12490.35 23597.18 23298.12 17493.68 13392.46 21597.34 17384.05 22197.41 24692.51 17491.33 20696.62 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 19593.51 19595.80 20296.77 18989.70 24096.91 24095.21 27692.89 16194.83 13495.72 24577.69 25298.97 13993.06 15698.50 9798.72 124
test0.0.03 194.08 19593.51 19595.80 20295.53 25592.89 21097.38 22095.97 27095.11 7992.51 21396.66 21887.71 16996.94 25187.03 24793.67 17697.57 158
v124094.06 19793.29 20196.34 18296.03 23993.90 18798.44 13398.17 16791.18 21794.13 17197.01 19986.05 19798.42 19689.13 23389.50 22196.70 201
X-MVStestdata94.06 19792.30 21399.34 999.70 1198.35 1899.29 1498.88 4497.40 1298.46 3843.50 29795.90 2799.89 1997.85 2399.74 2899.78 5
DTE-MVSNet93.98 19993.26 20296.14 19096.06 23794.39 17399.20 3098.86 4993.06 15391.78 22597.81 15185.87 20097.58 24290.53 20886.17 26196.46 232
tpmp4_e2393.91 20093.42 20095.38 21997.62 13788.59 25797.52 21497.34 23487.94 25394.17 17096.79 21482.91 22799.05 13190.62 20795.91 15298.50 136
MS-PatchMatch93.84 20193.63 18694.46 24396.18 23189.45 24397.76 19998.27 14792.23 18792.13 22397.49 16979.50 24598.69 16289.75 22299.38 6995.25 255
pm-mvs193.78 20293.06 20395.96 19595.53 25593.28 20297.92 18297.59 20389.99 23092.35 21797.03 19686.39 19198.08 22490.28 21190.43 21196.52 226
v74893.75 20393.06 20395.82 20195.73 24892.64 21299.25 1898.24 15391.60 19892.22 22196.52 22287.60 17498.46 18890.64 20685.72 26396.36 235
EU-MVSNet93.66 20494.14 15692.25 25995.96 24183.38 27598.52 12398.12 17494.69 9392.61 21098.13 12887.36 17896.39 26891.82 18790.00 21496.98 169
tpm cat193.36 20592.80 20695.07 22797.58 14087.97 26396.76 24997.86 19582.17 27793.53 18996.04 23786.13 19599.13 12189.24 23195.87 15398.10 148
JIA-IIPM93.35 20692.49 21095.92 19796.48 20590.65 23295.01 27196.96 25085.93 26396.08 11887.33 28487.70 17198.78 16091.35 19795.58 15698.34 142
SixPastTwentyTwo93.34 20792.86 20594.75 23595.67 25089.41 24598.75 8996.67 25893.89 12090.15 23898.25 12380.87 23798.27 21690.90 20390.64 20996.57 220
USDC93.33 20892.71 20895.21 22396.83 18890.83 22796.91 24097.50 21793.84 12390.72 23398.14 12777.69 25298.82 15789.51 22793.21 19095.97 243
IB-MVS91.98 1793.27 20991.97 21697.19 12197.47 14793.41 20197.09 23495.99 26993.32 14692.47 21495.73 24378.06 25099.53 9894.59 12182.98 26798.62 132
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 21092.21 21496.41 17897.73 13493.13 20795.65 26797.03 24791.27 21494.04 17596.06 23675.33 26097.19 24886.56 24996.23 14798.92 116
Patchmtry93.22 21192.35 21295.84 20096.77 18993.09 20894.66 27797.56 20587.37 25692.90 20496.24 22988.15 15697.90 23387.37 24590.10 21396.53 225
FMVSNet193.19 21292.07 21596.56 16597.54 14395.00 13598.82 7098.18 16290.38 22392.27 21997.07 18673.68 26897.95 22989.36 23091.30 20796.72 197
LF4IMVS93.14 21392.79 20794.20 24595.88 24588.67 25597.66 20797.07 24593.81 12591.71 22697.65 16277.96 25198.81 15891.47 19691.92 20295.12 256
testgi93.06 21492.45 21194.88 23196.43 20789.90 23798.75 8997.54 21095.60 6391.63 22797.91 14074.46 26697.02 25086.10 25293.67 17697.72 155
PatchT93.06 21491.97 21696.35 18196.69 19592.67 21194.48 27897.08 24486.62 25897.08 8692.23 27887.94 16297.90 23378.89 27196.69 13198.49 137
TransMVSNet (Re)92.67 21691.51 22096.15 18996.58 19994.65 16198.90 5596.73 25590.86 21989.46 24297.86 14485.62 20398.09 22386.45 25081.12 27195.71 249
K. test v392.55 21791.91 21894.48 24195.64 25189.24 24699.07 4194.88 28094.04 11286.78 25697.59 16777.64 25597.64 24092.08 17889.43 22296.57 220
DSMNet-mixed92.52 21892.58 20992.33 25894.15 26982.65 27898.30 14894.26 28689.08 24892.65 20995.73 24385.01 21195.76 27086.24 25197.76 11898.59 133
RPMNet92.52 21891.17 22196.59 16297.00 17793.43 19994.96 27297.26 24082.27 27696.93 9492.12 27986.98 18397.88 23676.32 27696.65 13398.46 138
TinyColmap92.31 22091.53 21994.65 23796.92 18189.75 23996.92 23896.68 25790.45 22289.62 24197.85 14676.06 25998.81 15886.74 24892.51 19595.41 254
gg-mvs-nofinetune92.21 22190.58 23397.13 12596.75 19295.09 13395.85 26589.40 29585.43 26694.50 14281.98 28880.80 23998.40 20792.16 17798.33 10597.88 152
Test492.21 22190.34 23597.82 10192.83 27595.87 11197.94 18198.05 19194.50 10282.12 27694.48 25559.54 28498.54 17395.39 10498.22 10799.06 106
v1892.10 22390.97 22395.50 20896.34 21694.85 14198.82 7097.52 21189.99 23085.31 26693.26 26388.90 12996.92 25288.82 23579.77 27594.73 261
v1792.08 22490.94 22495.48 21096.34 21694.83 14898.81 7597.52 21189.95 23385.32 26493.24 26488.91 12896.91 25388.76 23679.63 27694.71 263
v1692.08 22490.94 22495.49 20996.38 21294.84 14698.81 7597.51 21489.94 23485.25 26793.28 26288.86 13096.91 25388.70 23779.78 27494.72 262
v1591.94 22690.77 22795.43 21596.31 22394.83 14898.77 8597.50 21789.92 23585.13 26893.08 26688.76 14096.86 25588.40 23879.10 27894.61 267
V1491.93 22790.76 22895.42 21896.33 21994.81 15298.77 8597.51 21489.86 23785.09 26993.13 26588.80 13896.83 25788.32 23979.06 28094.60 268
V991.91 22890.73 22995.45 21296.32 22294.80 15398.77 8597.50 21789.81 23885.03 27193.08 26688.76 14096.86 25588.24 24079.03 28194.69 264
v1291.89 22990.70 23095.43 21596.31 22394.80 15398.76 8897.50 21789.76 23984.95 27293.00 26988.82 13496.82 25988.23 24179.00 28294.68 266
v1391.88 23090.69 23195.43 21596.33 21994.78 15898.75 8997.50 21789.68 24184.93 27392.98 27088.84 13396.83 25788.14 24279.09 27994.69 264
v1191.85 23190.68 23295.36 22096.34 21694.74 16098.80 7897.43 22789.60 24385.09 26993.03 26888.53 14996.75 26087.37 24579.96 27394.58 269
FMVSNet591.81 23290.92 22694.49 24097.21 16692.09 21598.00 17897.55 20989.31 24690.86 23295.61 24874.48 26595.32 27285.57 25689.70 21696.07 241
Anonymous2023120691.66 23391.10 22293.33 25194.02 27187.35 26698.58 11697.26 24090.48 22090.16 23796.31 22783.83 22496.53 26679.36 26989.90 21596.12 239
test_040291.32 23490.27 23694.48 24196.60 19891.12 22598.50 12897.22 24286.10 26188.30 24996.98 20177.65 25497.99 22878.13 27392.94 19294.34 271
PVSNet_088.72 1991.28 23590.03 23895.00 22897.99 12487.29 26794.84 27598.50 12092.06 18989.86 23995.19 24979.81 24499.39 10792.27 17669.79 28898.33 143
EG-PatchMatch MVS91.13 23690.12 23794.17 24794.73 26789.00 25198.13 16597.81 19689.22 24785.32 26496.46 22367.71 27798.42 19687.89 24393.82 17595.08 257
LP91.12 23789.99 23994.53 23996.35 21588.70 25493.86 28297.35 23384.88 26890.98 23094.77 25384.40 21797.43 24575.41 27891.89 20397.47 159
TDRefinement91.06 23889.68 24195.21 22385.35 28891.49 22298.51 12797.07 24591.47 20088.83 24797.84 14777.31 25699.09 12992.79 16677.98 28395.04 258
UnsupCasMVSNet_eth90.99 23989.92 24094.19 24694.08 27089.83 23897.13 23398.67 9293.69 13185.83 26196.19 23375.15 26196.74 26189.14 23279.41 27796.00 242
test20.0390.89 24090.38 23492.43 25793.48 27288.14 26298.33 14197.56 20593.40 14387.96 25196.71 21780.69 24094.13 27579.15 27086.17 26195.01 260
MDA-MVSNet_test_wron90.71 24189.38 24494.68 23694.83 26590.78 22997.19 23197.46 22387.60 25472.41 28795.72 24586.51 18896.71 26385.92 25486.80 25896.56 222
YYNet190.70 24289.39 24394.62 23894.79 26690.65 23297.20 23097.46 22387.54 25572.54 28695.74 24286.51 18896.66 26486.00 25386.76 25996.54 224
testing_290.61 24388.50 24996.95 13690.08 28295.57 11897.69 20498.06 18893.02 15576.55 28292.48 27661.18 28398.44 19395.45 10391.98 20096.84 186
new_pmnet90.06 24489.00 24793.22 25494.18 26888.32 26196.42 25896.89 25186.19 26085.67 26393.62 25977.18 25797.10 24981.61 26489.29 22494.23 272
MDA-MVSNet-bldmvs89.97 24588.35 25194.83 23395.21 26191.34 22397.64 20897.51 21488.36 25171.17 28896.13 23579.22 24796.63 26583.65 25986.27 26096.52 226
CMPMVSbinary66.06 2189.70 24689.67 24289.78 26393.19 27376.56 28497.00 23598.35 13880.97 27981.57 27797.75 15474.75 26498.61 16789.85 21993.63 17894.17 273
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 24788.28 25293.82 24892.81 27691.08 22698.01 17697.45 22587.95 25287.90 25295.87 24167.63 27894.56 27478.73 27288.18 24095.83 246
MVS-HIRNet89.46 24888.40 25092.64 25597.58 14082.15 27994.16 28193.05 29175.73 28690.90 23182.52 28779.42 24698.33 20883.53 26098.68 9197.43 160
OpenMVS_ROBcopyleft86.42 2089.00 24987.43 25493.69 24993.08 27489.42 24497.91 18696.89 25178.58 28385.86 26094.69 25469.48 27498.29 21577.13 27493.29 18893.36 278
testus88.91 25089.08 24688.40 26591.39 27976.05 28596.56 25496.48 26289.38 24589.39 24395.17 25170.94 27293.56 27877.04 27595.41 15795.61 251
testpf88.74 25189.09 24587.69 26695.78 24783.16 27784.05 29394.13 28885.22 26790.30 23694.39 25774.92 26395.80 26989.77 22093.28 18984.10 288
test235688.68 25288.61 24888.87 26489.90 28378.23 28295.11 27096.66 26088.66 25089.06 24594.33 25873.14 27092.56 28275.56 27795.11 15995.81 247
Patchmatch-RL test88.36 25387.20 25591.83 26191.37 28084.40 27192.81 28395.93 27291.87 19487.25 25493.38 26157.63 28696.53 26692.54 17382.00 26994.57 270
HyFIR lowres test87.96 25486.43 25792.55 25696.56 20083.82 27392.80 28496.03 26779.62 28288.30 24992.88 27452.77 28897.95 22982.45 26296.43 14095.89 244
PM-MVS87.77 25586.55 25691.40 26291.03 28183.36 27696.92 23895.18 27891.28 21386.48 25893.42 26053.27 28796.74 26189.43 22981.97 27094.11 274
UnsupCasMVSNet_bld87.17 25685.12 25993.31 25291.94 27788.77 25294.92 27498.30 14484.30 27182.30 27590.04 28163.96 28297.25 24785.85 25574.47 28793.93 276
N_pmnet87.12 25787.77 25385.17 27395.46 25761.92 29797.37 22170.66 30285.83 26488.73 24896.04 23785.33 20997.76 23880.02 26690.48 21095.84 245
pmmvs386.67 25884.86 26092.11 26088.16 28487.19 26896.63 25194.75 28279.88 28187.22 25592.75 27566.56 27995.20 27381.24 26576.56 28593.96 275
test123567886.26 25985.81 25887.62 26786.97 28775.00 28896.55 25696.32 26586.08 26281.32 27892.98 27073.10 27192.05 28371.64 28187.32 25095.81 247
111184.94 26084.30 26186.86 26887.59 28575.10 28696.63 25196.43 26382.53 27480.75 27992.91 27268.94 27593.79 27668.24 28484.66 26691.70 280
test1235683.47 26183.37 26283.78 27484.43 28970.09 29395.12 26995.60 27582.98 27278.89 28192.43 27764.99 28091.41 28570.36 28285.55 26589.82 282
testmv78.74 26277.35 26382.89 27678.16 29769.30 29495.87 26494.65 28381.11 27870.98 28987.11 28546.31 28990.42 28665.28 28776.72 28488.95 283
LCM-MVSNet78.70 26376.24 26786.08 27077.26 29871.99 29194.34 27996.72 25661.62 29176.53 28389.33 28233.91 29692.78 28181.85 26374.60 28693.46 277
Gipumacopyleft78.40 26476.75 26583.38 27595.54 25480.43 28179.42 29597.40 23064.67 28973.46 28580.82 29045.65 29093.14 28066.32 28687.43 24876.56 293
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 26575.44 26885.46 27182.54 29074.95 28994.23 28093.08 29072.80 28774.68 28487.38 28336.36 29491.56 28473.95 27963.94 28989.87 281
FPMVS77.62 26677.14 26479.05 27879.25 29460.97 29895.79 26695.94 27165.96 28867.93 29094.40 25637.73 29388.88 28868.83 28388.46 23787.29 284
no-one74.41 26770.76 26985.35 27279.88 29376.83 28394.68 27694.22 28780.33 28063.81 29179.73 29135.45 29593.36 27971.78 28036.99 29685.86 287
.test124573.05 26876.31 26663.27 28687.59 28575.10 28696.63 25196.43 26382.53 27480.75 27992.91 27268.94 27593.79 27668.24 28412.72 29920.91 297
ANet_high69.08 26965.37 27180.22 27765.99 30171.96 29290.91 28790.09 29482.62 27349.93 29778.39 29229.36 29781.75 29162.49 29038.52 29586.95 286
DUST3R68.90 27066.97 27074.68 28250.78 30359.95 29987.13 28983.47 30038.80 29762.21 29296.23 23164.70 28176.91 29588.91 23430.49 29787.19 285
PNet_i23d67.70 27165.07 27275.60 28078.61 29559.61 30089.14 28888.24 29661.83 29052.37 29580.89 28918.91 29884.91 29062.70 28952.93 29182.28 289
PMVScopyleft61.03 2365.95 27263.57 27473.09 28357.90 30251.22 30385.05 29293.93 28954.45 29344.32 29883.57 28613.22 29989.15 28758.68 29181.00 27278.91 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 27364.25 27367.02 28482.28 29159.36 30191.83 28685.63 29852.69 29460.22 29377.28 29341.06 29280.12 29346.15 29341.14 29361.57 295
EMVS64.07 27463.26 27566.53 28581.73 29258.81 30291.85 28584.75 29951.93 29659.09 29475.13 29443.32 29179.09 29442.03 29439.47 29461.69 294
wuykxyi23d63.73 27558.86 27778.35 27967.62 30067.90 29586.56 29087.81 29758.26 29242.49 29970.28 29611.55 30185.05 28963.66 28841.50 29282.11 290
MVEpermissive62.14 2263.28 27659.38 27674.99 28174.33 29965.47 29685.55 29180.50 30152.02 29551.10 29675.00 29510.91 30380.50 29251.60 29253.40 29078.99 291
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pcd1.5k->3k39.42 27741.78 27832.35 28796.17 2320.00 3070.00 29798.54 1110.00 3010.00 3030.00 30187.78 1680.00 2990.00 29893.56 18097.06 164
wuyk23d30.17 27830.18 28030.16 28878.61 29543.29 30466.79 29614.21 30317.31 29814.82 30211.93 30011.55 30141.43 29637.08 29519.30 2985.76 299
cdsmvs_eth3d_5k23.98 27931.98 2790.00 2910.00 3060.00 3070.00 29798.59 1020.00 3010.00 30398.61 9090.60 1080.00 2990.00 2980.00 3020.00 300
testmvs21.48 28024.95 28111.09 29014.89 3046.47 30696.56 2549.87 3047.55 29917.93 30039.02 2989.43 3045.90 29816.56 29712.72 29920.91 297
test12320.95 28123.72 28212.64 28913.54 3058.19 30596.55 2566.13 3057.48 30016.74 30137.98 29912.97 3006.05 29716.69 2965.43 30123.68 296
ab-mvs-re8.20 28210.94 2830.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 30398.43 1050.00 3050.00 2990.00 2980.00 3020.00 300
pcd_1.5k_mvsjas7.88 28310.50 2840.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 30194.51 540.00 2990.00 2980.00 3020.00 300
sosnet-low-res0.00 2840.00 2850.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 3010.00 3050.00 2990.00 2980.00 3020.00 300
sosnet0.00 2840.00 2850.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 3010.00 3050.00 2990.00 2980.00 3020.00 300
uncertanet0.00 2840.00 2850.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 3010.00 3050.00 2990.00 2980.00 3020.00 300
Regformer0.00 2840.00 2850.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 3010.00 3050.00 2990.00 2980.00 3020.00 300
uanet0.00 2840.00 2850.00 2910.00 3060.00 3070.00 2970.00 3060.00 3010.00 3030.00 3010.00 3050.00 2990.00 2980.00 3020.00 300
test9_res96.39 7799.57 4699.69 29
TEST999.31 4098.50 897.92 18298.73 7292.63 16697.74 7198.68 8496.20 1199.80 48
Patchmatch-test191.45 27884.69 27083.85 29496.06 26687.35 25391.74 28058.00 28582.27 268
Patchmatch-test97.41 15590.19 23694.89 252
test_899.29 4798.44 1097.89 19198.72 7492.98 15797.70 7398.66 8796.20 1199.80 48
agg_prior295.87 9099.57 4699.68 34
agg_prior99.30 4598.38 1398.72 7497.57 7999.81 41
TestCases96.99 13299.25 5693.21 20598.18 16291.36 20693.52 19098.77 7784.67 21499.72 7289.70 22497.87 11498.02 150
test_prior498.01 3597.86 194
test_prior297.80 19696.12 4897.89 6598.69 8295.96 2396.89 5699.60 41
test_prior99.19 2299.31 4098.22 2498.84 5199.70 7799.65 42
旧先验297.57 21291.30 21198.67 3099.80 4895.70 97
新几何297.64 208
新几何199.16 2999.34 3398.01 3598.69 8290.06 22998.13 4998.95 6494.60 5299.89 1991.97 18499.47 5999.59 53
旧先验199.29 4797.48 5298.70 8199.09 4795.56 3399.47 5999.61 48
无先验97.58 21198.72 7491.38 20599.87 2693.36 15199.60 51
原ACMM297.67 206
原ACMM198.65 5699.32 3896.62 8098.67 9293.27 14997.81 6798.97 5995.18 4399.83 3493.84 14099.46 6299.50 63
test22299.23 6297.17 6497.40 21998.66 9588.68 24998.05 5398.96 6394.14 6299.53 5599.61 48
testdata299.89 1991.65 192
segment_acmp96.85 3
testdata98.26 7999.20 6695.36 12498.68 8591.89 19298.60 3499.10 4394.44 5999.82 3994.27 13099.44 6499.58 55
testdata197.32 22596.34 43
test1299.18 2699.16 6898.19 2698.53 11498.07 5295.13 4599.72 7299.56 5299.63 47
plane_prior797.42 15294.63 163
plane_prior697.35 15894.61 16587.09 180
plane_prior598.56 10899.03 13596.07 8094.27 16296.92 173
plane_prior498.28 118
plane_prior394.61 16597.02 2995.34 126
plane_prior298.80 7897.28 18
plane_prior197.37 157
plane_prior94.60 16798.44 13396.74 3594.22 164
abl_699.56 1897.76 4498.82 5399.26 499.37 893.33 6999.69 29
n20.00 306
nn0.00 306
door-mid94.37 285
lessismore_v094.45 24494.93 26488.44 25991.03 29386.77 25797.64 16476.23 25898.42 19690.31 21085.64 26496.51 229
LGP-MVS_train96.47 17397.46 14893.54 19698.54 11194.67 9494.36 15498.77 7785.39 20599.11 12695.71 9594.15 16796.76 193
test1198.66 95
door94.64 284
HQP5-MVS94.25 179
HQP-NCC97.20 16798.05 17396.43 4094.45 144
ACMP_Plane97.20 16798.05 17396.43 4094.45 144
BP-MVS95.30 106
HQP4-MVS94.45 14498.96 14296.87 183
HQP3-MVS98.46 12594.18 165
HQP2-MVS86.75 185