This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 1299.85 599.43 3396.71 1799.96 499.86 199.80 2499.89 4
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 7197.65 2899.73 1399.48 2497.53 799.94 998.43 5399.81 1599.70 56
DVP-MVS++99.08 398.89 599.64 399.17 9999.23 799.69 198.88 6497.32 4999.53 2699.47 2697.81 399.94 998.47 4999.72 5899.74 39
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 1199.86 399.42 3496.45 2499.96 499.86 199.74 5199.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15897.62 3099.45 2899.46 3097.42 999.94 998.47 4999.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5297.38 4699.41 3199.54 1496.66 1899.84 7398.86 2899.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 8198.06 1699.35 3599.61 496.39 2799.94 998.77 3199.82 1499.83 12
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8398.06 1699.29 3999.58 1096.40 2599.94 998.68 3399.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8398.06 1699.29 3999.58 1096.40 2599.94 998.68 3399.81 1599.81 17
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13297.25 9898.82 13399.34 1098.75 599.80 699.61 495.16 7399.95 799.70 899.80 2499.93 1
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21798.91 5897.58 3399.54 2599.46 3097.10 1299.94 997.64 10099.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9498.43 3399.10 6398.87 7197.38 4699.35 3599.40 3697.78 599.87 6497.77 8899.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1399.01 398.45 10599.42 5896.43 13798.96 9499.36 998.63 799.86 399.51 1995.91 4399.97 199.72 699.75 4798.94 187
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13896.84 7899.56 2399.31 5696.34 2899.70 12598.32 5999.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20998.81 9297.72 2398.76 7899.16 8397.05 1399.78 10798.06 7099.66 6899.69 59
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6497.52 3699.41 3198.78 14096.00 3999.79 10497.79 8799.59 8399.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6497.40 4398.46 9699.20 7395.90 4599.89 5397.85 8399.74 5199.78 23
MCST-MVS98.65 1898.37 3399.48 1399.60 3198.87 1998.41 21898.68 13097.04 7098.52 9498.80 13896.78 1699.83 7597.93 7799.61 7999.74 39
SD-MVS98.64 1998.68 1498.53 9699.33 6298.36 4398.90 10698.85 8097.28 5299.72 1599.39 3796.63 2097.60 36798.17 6599.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 2098.40 3099.32 3199.72 1298.29 4799.23 3298.96 4796.10 11598.94 6199.17 8096.06 3699.92 3597.62 10199.78 3499.75 37
ACMMP_NAP98.61 2198.30 4699.55 999.62 3098.95 1798.82 13398.81 9295.80 12699.16 5199.47 2695.37 6099.92 3597.89 8199.75 4799.79 21
region2R98.61 2198.38 3299.29 3299.74 798.16 5699.23 3298.93 5296.15 11298.94 6199.17 8095.91 4399.94 997.55 10899.79 3099.78 23
NCCC98.61 2198.35 3699.38 1899.28 8098.61 2698.45 21098.76 11097.82 2298.45 9998.93 12296.65 1999.83 7597.38 11799.41 11399.71 52
SF-MVS98.59 2498.32 4599.41 1799.54 3598.71 2299.04 7398.81 9295.12 16299.32 3899.39 3796.22 3099.84 7397.72 9199.73 5499.67 68
ACMMPR98.59 2498.36 3499.29 3299.74 798.15 5799.23 3298.95 4896.10 11598.93 6599.19 7895.70 4999.94 997.62 10199.79 3099.78 23
test_fmvsmconf0.1_n98.58 2698.44 2898.99 6097.73 24897.15 10398.84 12998.97 4498.75 599.43 3099.54 1493.29 10799.93 2899.64 1199.79 3099.89 4
SMA-MVScopyleft98.58 2698.25 4999.56 899.51 4099.04 1598.95 9598.80 9993.67 24599.37 3499.52 1796.52 2299.89 5398.06 7099.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2698.29 4799.46 1499.76 298.64 2598.90 10698.74 11497.27 5698.02 12399.39 3794.81 8399.96 497.91 7999.79 3099.77 29
HPM-MVS++copyleft98.58 2698.25 4999.55 999.50 4299.08 1198.72 16398.66 13897.51 3798.15 11098.83 13595.70 4999.92 3597.53 11099.67 6599.66 71
SR-MVS98.57 3098.35 3699.24 3999.53 3698.18 5499.09 6498.82 8696.58 9499.10 5399.32 5495.39 5899.82 8297.70 9699.63 7699.72 48
CP-MVS98.57 3098.36 3499.19 4399.66 2697.86 6899.34 1698.87 7195.96 11898.60 9199.13 8896.05 3799.94 997.77 8899.86 299.77 29
MSLP-MVS++98.56 3298.57 1898.55 9299.26 8396.80 11798.71 16499.05 3897.28 5298.84 7199.28 5996.47 2399.40 18498.52 4799.70 6199.47 103
DeepC-MVS_fast96.70 198.55 3398.34 4099.18 4599.25 8498.04 6298.50 20698.78 10697.72 2398.92 6799.28 5995.27 6699.82 8297.55 10899.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3498.35 3699.13 5199.49 4697.86 6899.11 6098.80 9996.49 9799.17 4899.35 4995.34 6299.82 8297.72 9199.65 7199.71 52
fmvsm_s_conf0.5_n_398.53 3598.45 2798.79 7499.23 9297.32 9098.80 14299.26 1598.82 299.87 199.60 890.95 16499.93 2899.76 599.73 5499.12 162
APD-MVS_3200maxsize98.53 3598.33 4499.15 4999.50 4297.92 6799.15 5198.81 9296.24 10899.20 4599.37 4395.30 6499.80 9497.73 9099.67 6599.72 48
MM98.51 3798.24 5199.33 2999.12 10798.14 5998.93 10197.02 35398.96 199.17 4899.47 2691.97 13799.94 999.85 399.69 6299.91 2
mPP-MVS98.51 3798.26 4899.25 3899.75 398.04 6299.28 2498.81 9296.24 10898.35 10699.23 6895.46 5599.94 997.42 11599.81 1599.77 29
ZNCC-MVS98.49 3998.20 5799.35 2499.73 1198.39 3499.19 4498.86 7795.77 12898.31 10999.10 9295.46 5599.93 2897.57 10799.81 1599.74 39
SPE-MVS-test98.49 3998.50 2398.46 10499.20 9797.05 10799.64 498.50 18097.45 4298.88 6899.14 8795.25 6899.15 21298.83 2999.56 9399.20 147
PGM-MVS98.49 3998.23 5399.27 3799.72 1298.08 6198.99 8699.49 595.43 14499.03 5499.32 5495.56 5299.94 996.80 14699.77 3699.78 23
EI-MVSNet-Vis-set98.47 4298.39 3198.69 8199.46 5296.49 13498.30 22998.69 12797.21 5998.84 7199.36 4795.41 5799.78 10798.62 3699.65 7199.80 20
MVS_111021_HR98.47 4298.34 4098.88 7199.22 9497.32 9097.91 27899.58 397.20 6098.33 10799.00 11195.99 4099.64 13798.05 7299.76 4299.69 59
balanced_conf0398.45 4498.35 3698.74 7798.65 15997.55 7899.19 4498.60 14996.72 8899.35 3598.77 14295.06 7899.55 16098.95 2599.87 199.12 162
test_fmvsmvis_n_192098.44 4598.51 2198.23 12598.33 18996.15 15198.97 8999.15 3098.55 1098.45 9999.55 1294.26 9699.97 199.65 999.66 6898.57 224
CS-MVS98.44 4598.49 2498.31 11799.08 11296.73 12199.67 398.47 18697.17 6298.94 6199.10 9295.73 4899.13 21598.71 3299.49 10399.09 167
GST-MVS98.43 4798.12 6199.34 2599.72 1298.38 3599.09 6498.82 8695.71 13298.73 8199.06 10395.27 6699.93 2897.07 12599.63 7699.72 48
fmvsm_s_conf0.5_n98.42 4898.51 2198.13 13499.30 7195.25 19798.85 12599.39 797.94 2099.74 1299.62 392.59 11699.91 4499.65 999.52 9999.25 140
EI-MVSNet-UG-set98.41 4998.34 4098.61 8799.45 5596.32 14498.28 23298.68 13097.17 6298.74 7999.37 4395.25 6899.79 10498.57 3899.54 9699.73 44
DELS-MVS98.40 5098.20 5798.99 6099.00 11997.66 7397.75 29998.89 6197.71 2598.33 10798.97 11394.97 8099.88 6298.42 5599.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 5198.42 2998.27 11999.09 11195.41 18798.86 12199.37 897.69 2799.78 899.61 492.38 11999.91 4499.58 1399.43 11199.49 99
TSAR-MVS + GP.98.38 5198.24 5198.81 7399.22 9497.25 9898.11 25698.29 22597.19 6198.99 5999.02 10696.22 3099.67 13298.52 4798.56 16199.51 92
HPM-MVS_fast98.38 5198.13 6099.12 5399.75 397.86 6899.44 998.82 8694.46 20198.94 6199.20 7395.16 7399.74 11797.58 10499.85 699.77 29
patch_mono-298.36 5498.87 696.82 22899.53 3690.68 33598.64 18199.29 1497.88 2199.19 4799.52 1796.80 1599.97 199.11 2199.86 299.82 16
HPM-MVScopyleft98.36 5498.10 6499.13 5199.74 797.82 7299.53 698.80 9994.63 19198.61 9098.97 11395.13 7599.77 11297.65 9999.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5698.00 7099.42 1699.51 4098.72 2198.80 14298.82 8694.52 19899.23 4499.25 6795.54 5499.80 9496.52 15399.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5798.23 5398.67 8399.27 8196.90 11397.95 27399.58 397.14 6598.44 10199.01 11095.03 7999.62 14497.91 7999.75 4799.50 94
PHI-MVS98.34 5798.06 6599.18 4599.15 10598.12 6099.04 7399.09 3393.32 26098.83 7399.10 9296.54 2199.83 7597.70 9699.76 4299.59 82
MP-MVScopyleft98.33 5998.01 6999.28 3599.75 398.18 5499.22 3698.79 10496.13 11397.92 13499.23 6894.54 8699.94 996.74 14999.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSMamba_PlusPlus98.31 6098.19 5998.67 8398.96 12697.36 8899.24 3098.57 16094.81 18398.99 5998.90 12695.22 7199.59 14799.15 2099.84 1199.07 175
MP-MVS-pluss98.31 6097.92 7299.49 1299.72 1298.88 1898.43 21598.78 10694.10 21097.69 14999.42 3495.25 6899.92 3598.09 6999.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_s_conf0.5_n_298.30 6298.21 5598.57 8999.25 8497.11 10498.66 17799.20 2598.82 299.79 799.60 889.38 19599.92 3599.80 499.38 11898.69 208
MVS_030498.23 6397.91 7399.21 4298.06 21897.96 6698.58 19095.51 39098.58 898.87 6999.26 6292.99 11199.95 799.62 1299.67 6599.73 44
ACMMPcopyleft98.23 6397.95 7199.09 5599.74 797.62 7699.03 7699.41 695.98 11797.60 15899.36 4794.45 9199.93 2897.14 12298.85 14799.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 6598.11 6298.49 10198.34 18697.26 9799.61 598.43 19596.78 8198.87 6998.84 13393.72 10399.01 23698.91 2799.50 10199.19 151
fmvsm_s_conf0.1_n98.18 6698.21 5598.11 13898.54 16895.24 19898.87 11899.24 1897.50 3899.70 1699.67 191.33 15399.89 5399.47 1599.54 9699.21 146
fmvsm_s_conf0.1_n_298.14 6798.02 6898.53 9698.88 13297.07 10698.69 17098.82 8698.78 499.77 999.61 488.83 21499.91 4499.71 799.07 13198.61 218
fmvsm_s_conf0.1_n_a98.08 6898.04 6798.21 12697.66 25495.39 18898.89 11099.17 2897.24 5799.76 1199.67 191.13 15899.88 6299.39 1699.41 11399.35 119
dcpmvs_298.08 6898.59 1796.56 25299.57 3390.34 34499.15 5198.38 20596.82 8099.29 3999.49 2395.78 4799.57 15098.94 2699.86 299.77 29
CANet98.05 7097.76 7698.90 7098.73 14597.27 9398.35 22098.78 10697.37 4897.72 14698.96 11891.53 14999.92 3598.79 3099.65 7199.51 92
train_agg97.97 7197.52 8899.33 2999.31 6798.50 2997.92 27698.73 11792.98 27697.74 14398.68 15396.20 3299.80 9496.59 15099.57 8799.68 64
ETV-MVS97.96 7297.81 7498.40 11298.42 17497.27 9398.73 15998.55 16596.84 7898.38 10397.44 27195.39 5899.35 18997.62 10198.89 14298.58 223
UA-Net97.96 7297.62 8098.98 6298.86 13697.47 8498.89 11099.08 3496.67 9198.72 8299.54 1493.15 10999.81 8794.87 20798.83 14899.65 72
CDPH-MVS97.94 7497.49 9099.28 3599.47 5098.44 3197.91 27898.67 13592.57 29298.77 7798.85 13295.93 4299.72 11995.56 18799.69 6299.68 64
DeepPCF-MVS96.37 297.93 7598.48 2696.30 27799.00 11989.54 35897.43 32198.87 7198.16 1499.26 4399.38 4296.12 3599.64 13798.30 6099.77 3699.72 48
DeepC-MVS95.98 397.88 7697.58 8298.77 7599.25 8496.93 11198.83 13198.75 11296.96 7496.89 18399.50 2190.46 17299.87 6497.84 8599.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 7797.54 8798.83 7295.48 37196.83 11698.95 9598.60 14998.58 898.93 6599.55 1288.57 21999.91 4499.54 1499.61 7999.77 29
DP-MVS Recon97.86 7797.46 9399.06 5799.53 3698.35 4498.33 22298.89 6192.62 28998.05 11898.94 12195.34 6299.65 13596.04 16999.42 11299.19 151
CSCG97.85 7997.74 7798.20 12899.67 2595.16 20199.22 3699.32 1193.04 27497.02 17698.92 12495.36 6199.91 4497.43 11499.64 7599.52 89
BP-MVS197.82 8097.51 8998.76 7698.25 19697.39 8799.15 5197.68 29296.69 8998.47 9599.10 9290.29 17699.51 16798.60 3799.35 12199.37 117
MG-MVS97.81 8197.60 8198.44 10799.12 10795.97 16097.75 29998.78 10696.89 7798.46 9699.22 7093.90 10299.68 13194.81 21199.52 9999.67 68
VNet97.79 8297.40 9798.96 6598.88 13297.55 7898.63 18498.93 5296.74 8599.02 5598.84 13390.33 17599.83 7598.53 4196.66 22299.50 94
EIA-MVS97.75 8397.58 8298.27 11998.38 17896.44 13699.01 8198.60 14995.88 12297.26 16597.53 26594.97 8099.33 19297.38 11799.20 12799.05 176
PS-MVSNAJ97.73 8497.77 7597.62 17898.68 15495.58 17897.34 33098.51 17597.29 5198.66 8797.88 23194.51 8799.90 5197.87 8299.17 12997.39 265
casdiffmvs_mvgpermissive97.72 8597.48 9298.44 10798.42 17496.59 12998.92 10398.44 19196.20 11097.76 14099.20 7391.66 14399.23 20298.27 6498.41 17199.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 8597.32 10198.92 6799.64 2897.10 10599.12 5898.81 9292.34 30098.09 11599.08 10193.01 11099.92 3596.06 16899.77 3699.75 37
PVSNet_Blended_VisFu97.70 8797.46 9398.44 10799.27 8195.91 16898.63 18499.16 2994.48 20097.67 15098.88 12992.80 11399.91 4497.11 12399.12 13099.50 94
mvsany_test197.69 8897.70 7897.66 17698.24 19794.18 25197.53 31597.53 31095.52 14099.66 1899.51 1994.30 9499.56 15398.38 5698.62 15799.23 142
sasdasda97.67 8997.23 10598.98 6298.70 15098.38 3599.34 1698.39 20196.76 8397.67 15097.40 27592.26 12399.49 17198.28 6196.28 24099.08 171
canonicalmvs97.67 8997.23 10598.98 6298.70 15098.38 3599.34 1698.39 20196.76 8397.67 15097.40 27592.26 12399.49 17198.28 6196.28 24099.08 171
xiu_mvs_v2_base97.66 9197.70 7897.56 18298.61 16395.46 18597.44 31998.46 18797.15 6498.65 8898.15 20794.33 9399.80 9497.84 8598.66 15697.41 263
GDP-MVS97.64 9297.28 10298.71 8098.30 19497.33 8999.05 6998.52 17296.34 10598.80 7499.05 10489.74 18599.51 16796.86 14398.86 14699.28 134
baseline97.64 9297.44 9598.25 12398.35 18196.20 14899.00 8398.32 21596.33 10798.03 12199.17 8091.35 15299.16 20998.10 6898.29 17899.39 115
casdiffmvspermissive97.63 9497.41 9698.28 11898.33 18996.14 15298.82 13398.32 21596.38 10497.95 12999.21 7191.23 15799.23 20298.12 6798.37 17299.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net97.62 9597.19 10898.92 6798.66 15698.20 5299.32 2198.38 20596.69 8997.58 15997.42 27492.10 13199.50 17098.28 6196.25 24399.08 171
xiu_mvs_v1_base_debu97.60 9697.56 8497.72 16698.35 18195.98 15597.86 28898.51 17597.13 6699.01 5698.40 18091.56 14599.80 9498.53 4198.68 15297.37 267
xiu_mvs_v1_base97.60 9697.56 8497.72 16698.35 18195.98 15597.86 28898.51 17597.13 6699.01 5698.40 18091.56 14599.80 9498.53 4198.68 15297.37 267
xiu_mvs_v1_base_debi97.60 9697.56 8497.72 16698.35 18195.98 15597.86 28898.51 17597.13 6699.01 5698.40 18091.56 14599.80 9498.53 4198.68 15297.37 267
diffmvspermissive97.58 9997.40 9798.13 13498.32 19295.81 17398.06 26298.37 20796.20 11098.74 7998.89 12891.31 15599.25 19998.16 6698.52 16399.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 10097.49 9097.84 15398.07 21595.76 17499.47 798.40 19994.98 17298.79 7598.83 13592.34 12098.41 30996.91 13199.59 8399.34 121
alignmvs97.56 10197.07 11499.01 5998.66 15698.37 4298.83 13198.06 27296.74 8598.00 12797.65 25390.80 16699.48 17698.37 5796.56 22699.19 151
DPM-MVS97.55 10296.99 11799.23 4199.04 11498.55 2797.17 34598.35 21094.85 18297.93 13398.58 16395.07 7799.71 12492.60 27999.34 12299.43 112
OMC-MVS97.55 10297.34 10098.20 12899.33 6295.92 16798.28 23298.59 15395.52 14097.97 12899.10 9293.28 10899.49 17195.09 20298.88 14399.19 151
PAPM_NR97.46 10497.11 11198.50 9999.50 4296.41 13998.63 18498.60 14995.18 15997.06 17498.06 21394.26 9699.57 15093.80 24798.87 14599.52 89
EPP-MVSNet97.46 10497.28 10297.99 14698.64 16095.38 18999.33 2098.31 21793.61 24997.19 16799.07 10294.05 9999.23 20296.89 13598.43 17099.37 117
3Dnovator94.51 597.46 10496.93 12099.07 5697.78 24297.64 7499.35 1599.06 3697.02 7193.75 29399.16 8389.25 19999.92 3597.22 12199.75 4799.64 74
CNLPA97.45 10797.03 11598.73 7899.05 11397.44 8698.07 26198.53 16995.32 15296.80 18898.53 16893.32 10699.72 11994.31 23099.31 12499.02 178
lupinMVS97.44 10897.22 10798.12 13798.07 21595.76 17497.68 30497.76 28994.50 19998.79 7598.61 15892.34 12099.30 19597.58 10499.59 8399.31 127
3Dnovator+94.38 697.43 10996.78 12899.38 1897.83 23998.52 2899.37 1298.71 12297.09 6992.99 32199.13 8889.36 19699.89 5396.97 12899.57 8799.71 52
Vis-MVSNetpermissive97.42 11097.11 11198.34 11598.66 15696.23 14799.22 3699.00 4196.63 9398.04 12099.21 7188.05 23599.35 18996.01 17199.21 12699.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 11197.25 10497.91 15098.70 15096.80 11798.82 13398.69 12794.53 19698.11 11398.28 19594.50 9099.57 15094.12 23699.49 10397.37 267
sss97.39 11296.98 11998.61 8798.60 16496.61 12698.22 23898.93 5293.97 22098.01 12698.48 17391.98 13599.85 6996.45 15598.15 18099.39 115
test_cas_vis1_n_192097.38 11397.36 9997.45 18598.95 12793.25 28799.00 8398.53 16997.70 2699.77 999.35 4984.71 30099.85 6998.57 3899.66 6899.26 138
PVSNet_Blended97.38 11397.12 11098.14 13199.25 8495.35 19297.28 33599.26 1593.13 27097.94 13198.21 20392.74 11499.81 8796.88 13799.40 11699.27 135
WTY-MVS97.37 11596.92 12198.72 7998.86 13696.89 11598.31 22798.71 12295.26 15597.67 15098.56 16792.21 12799.78 10795.89 17396.85 21799.48 101
jason97.32 11697.08 11398.06 14297.45 27495.59 17797.87 28697.91 28394.79 18498.55 9398.83 13591.12 15999.23 20297.58 10499.60 8199.34 121
jason: jason.
MVS_Test97.28 11797.00 11698.13 13498.33 18995.97 16098.74 15598.07 26794.27 20698.44 10198.07 21292.48 11799.26 19896.43 15698.19 17999.16 157
EPNet97.28 11796.87 12398.51 9894.98 38096.14 15298.90 10697.02 35398.28 1395.99 21999.11 9091.36 15199.89 5396.98 12799.19 12899.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsmamba97.25 11996.99 11798.02 14498.34 18695.54 18299.18 4897.47 31695.04 16898.15 11098.57 16689.46 19299.31 19497.68 9899.01 13699.22 144
test_yl97.22 12096.78 12898.54 9498.73 14596.60 12798.45 21098.31 21794.70 18598.02 12398.42 17890.80 16699.70 12596.81 14496.79 21999.34 121
DCV-MVSNet97.22 12096.78 12898.54 9498.73 14596.60 12798.45 21098.31 21794.70 18598.02 12398.42 17890.80 16699.70 12596.81 14496.79 21999.34 121
IS-MVSNet97.22 12096.88 12298.25 12398.85 13896.36 14299.19 4497.97 27795.39 14697.23 16698.99 11291.11 16098.93 24894.60 21898.59 15999.47 103
PLCcopyleft95.07 497.20 12396.78 12898.44 10799.29 7696.31 14698.14 25198.76 11092.41 29896.39 20898.31 19394.92 8299.78 10794.06 23998.77 15199.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 12497.18 10997.20 19898.81 14193.27 28495.78 39099.15 3095.25 15696.79 18998.11 21092.29 12299.07 22698.56 4099.85 699.25 140
LS3D97.16 12596.66 13798.68 8298.53 16997.19 10198.93 10198.90 5992.83 28395.99 21999.37 4392.12 13099.87 6493.67 25199.57 8798.97 183
AdaColmapbinary97.15 12696.70 13398.48 10299.16 10396.69 12398.01 26798.89 6194.44 20296.83 18498.68 15390.69 16999.76 11394.36 22699.29 12598.98 182
mamv497.13 12798.11 6294.17 35698.97 12583.70 39898.66 17798.71 12294.63 19197.83 13798.90 12696.25 2999.55 16099.27 1899.76 4299.27 135
Effi-MVS+97.12 12896.69 13498.39 11398.19 20596.72 12297.37 32698.43 19593.71 23897.65 15498.02 21692.20 12899.25 19996.87 14097.79 19299.19 151
CHOSEN 1792x268897.12 12896.80 12598.08 14099.30 7194.56 23598.05 26399.71 193.57 25097.09 17098.91 12588.17 22999.89 5396.87 14099.56 9399.81 17
F-COLMAP97.09 13096.80 12597.97 14799.45 5594.95 21498.55 19898.62 14893.02 27596.17 21498.58 16394.01 10099.81 8793.95 24198.90 14199.14 160
RRT-MVS97.03 13196.78 12897.77 16297.90 23594.34 24499.12 5898.35 21095.87 12398.06 11798.70 15186.45 26699.63 14098.04 7398.54 16299.35 119
TAMVS97.02 13296.79 12797.70 16998.06 21895.31 19598.52 20098.31 21793.95 22197.05 17598.61 15893.49 10598.52 29195.33 19497.81 19199.29 132
CDS-MVSNet96.99 13396.69 13497.90 15198.05 22095.98 15598.20 24198.33 21493.67 24596.95 17798.49 17293.54 10498.42 30295.24 20097.74 19599.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 13496.55 14098.21 12698.17 21096.07 15497.98 27198.21 23497.24 5797.13 16998.93 12286.88 25899.91 4495.00 20599.37 12098.66 214
114514_t96.93 13596.27 15098.92 6799.50 4297.63 7598.85 12598.90 5984.80 39797.77 13999.11 9092.84 11299.66 13494.85 20899.77 3699.47 103
MAR-MVS96.91 13696.40 14698.45 10598.69 15396.90 11398.66 17798.68 13092.40 29997.07 17397.96 22391.54 14899.75 11593.68 24998.92 14098.69 208
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 13796.49 14398.14 13199.33 6295.56 17997.38 32499.65 292.34 30097.61 15798.20 20489.29 19899.10 22396.97 12897.60 20099.77 29
Vis-MVSNet (Re-imp)96.87 13896.55 14097.83 15498.73 14595.46 18599.20 4298.30 22394.96 17496.60 19698.87 13090.05 17998.59 28693.67 25198.60 15899.46 107
SDMVSNet96.85 13996.42 14498.14 13199.30 7196.38 14099.21 3999.23 2195.92 11995.96 22198.76 14785.88 27699.44 18197.93 7795.59 25598.60 219
PAPR96.84 14096.24 15298.65 8598.72 14996.92 11297.36 32898.57 16093.33 25996.67 19197.57 26294.30 9499.56 15391.05 32098.59 15999.47 103
HY-MVS93.96 896.82 14196.23 15398.57 8998.46 17397.00 10898.14 25198.21 23493.95 22196.72 19097.99 22091.58 14499.76 11394.51 22296.54 22798.95 186
UGNet96.78 14296.30 14998.19 13098.24 19795.89 17098.88 11598.93 5297.39 4596.81 18797.84 23582.60 32799.90 5196.53 15299.49 10398.79 197
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 14396.60 13897.12 20799.25 8495.35 19298.26 23599.26 1594.28 20597.94 13197.46 26892.74 11499.81 8796.88 13793.32 29196.20 357
test_vis1_n_192096.71 14496.84 12496.31 27699.11 10989.74 35299.05 6998.58 15898.08 1599.87 199.37 4378.48 35899.93 2899.29 1799.69 6299.27 135
mvs_anonymous96.70 14596.53 14297.18 20198.19 20593.78 26098.31 22798.19 23894.01 21794.47 25298.27 19892.08 13398.46 29797.39 11697.91 18799.31 127
1112_ss96.63 14696.00 16098.50 9998.56 16596.37 14198.18 24998.10 26092.92 27994.84 24198.43 17692.14 12999.58 14994.35 22796.51 22899.56 88
PMMVS96.60 14796.33 14897.41 18997.90 23593.93 25697.35 32998.41 19792.84 28297.76 14097.45 27091.10 16199.20 20696.26 16197.91 18799.11 165
DP-MVS96.59 14895.93 16398.57 8999.34 6096.19 15098.70 16898.39 20189.45 36994.52 25099.35 4991.85 13899.85 6992.89 27598.88 14399.68 64
PatchMatch-RL96.59 14896.03 15998.27 11999.31 6796.51 13397.91 27899.06 3693.72 23796.92 18198.06 21388.50 22499.65 13591.77 30499.00 13898.66 214
GeoE96.58 15096.07 15698.10 13998.35 18195.89 17099.34 1698.12 25493.12 27196.09 21598.87 13089.71 18698.97 23892.95 27198.08 18399.43 112
XVG-OURS96.55 15196.41 14596.99 21498.75 14493.76 26197.50 31898.52 17295.67 13496.83 18499.30 5788.95 21299.53 16395.88 17496.26 24297.69 256
FIs96.51 15296.12 15597.67 17397.13 29897.54 8099.36 1399.22 2495.89 12194.03 27998.35 18691.98 13598.44 30096.40 15792.76 29997.01 275
XVG-OURS-SEG-HR96.51 15296.34 14797.02 21398.77 14393.76 26197.79 29798.50 18095.45 14396.94 17899.09 9987.87 24099.55 16096.76 14895.83 25497.74 253
PS-MVSNAJss96.43 15496.26 15196.92 22395.84 36095.08 20699.16 5098.50 18095.87 12393.84 28898.34 19094.51 8798.61 28396.88 13793.45 28897.06 273
test_fmvs196.42 15596.67 13695.66 30498.82 14088.53 37798.80 14298.20 23696.39 10399.64 2099.20 7380.35 34699.67 13299.04 2399.57 8798.78 200
FC-MVSNet-test96.42 15596.05 15797.53 18396.95 30797.27 9399.36 1399.23 2195.83 12593.93 28298.37 18492.00 13498.32 31996.02 17092.72 30097.00 276
ab-mvs96.42 15595.71 17398.55 9298.63 16196.75 12097.88 28598.74 11493.84 22796.54 20198.18 20685.34 28699.75 11595.93 17296.35 23299.15 158
FA-MVS(test-final)96.41 15895.94 16297.82 15698.21 20195.20 20097.80 29597.58 30093.21 26597.36 16397.70 24789.47 19199.56 15394.12 23697.99 18498.71 207
PVSNet91.96 1896.35 15996.15 15496.96 21899.17 9992.05 30896.08 38398.68 13093.69 24197.75 14297.80 24188.86 21399.69 13094.26 23299.01 13699.15 158
Test_1112_low_res96.34 16095.66 17898.36 11498.56 16595.94 16397.71 30298.07 26792.10 30994.79 24597.29 28391.75 14099.56 15394.17 23496.50 22999.58 86
Effi-MVS+-dtu96.29 16196.56 13995.51 30997.89 23790.22 34598.80 14298.10 26096.57 9696.45 20696.66 33790.81 16598.91 25195.72 18197.99 18497.40 264
QAPM96.29 16195.40 18398.96 6597.85 23897.60 7799.23 3298.93 5289.76 36393.11 31899.02 10689.11 20499.93 2891.99 29899.62 7899.34 121
Fast-Effi-MVS+96.28 16395.70 17598.03 14398.29 19595.97 16098.58 19098.25 23191.74 31795.29 23497.23 28891.03 16399.15 21292.90 27397.96 18698.97 183
nrg03096.28 16395.72 17097.96 14996.90 31298.15 5799.39 1098.31 21795.47 14294.42 25898.35 18692.09 13298.69 27597.50 11289.05 34897.04 274
131496.25 16595.73 16997.79 15897.13 29895.55 18198.19 24498.59 15393.47 25492.03 34697.82 23991.33 15399.49 17194.62 21798.44 16898.32 237
sd_testset96.17 16695.76 16897.42 18899.30 7194.34 24498.82 13399.08 3495.92 11995.96 22198.76 14782.83 32699.32 19395.56 18795.59 25598.60 219
h-mvs3396.17 16695.62 17997.81 15799.03 11594.45 23798.64 18198.75 11297.48 3998.67 8398.72 15089.76 18399.86 6897.95 7581.59 39499.11 165
HQP_MVS96.14 16895.90 16496.85 22697.42 27694.60 23398.80 14298.56 16397.28 5295.34 23098.28 19587.09 25399.03 23196.07 16594.27 26396.92 282
tttt051796.07 16995.51 18197.78 15998.41 17694.84 21899.28 2494.33 40394.26 20797.64 15598.64 15784.05 31599.47 17895.34 19397.60 20099.03 177
MVSTER96.06 17095.72 17097.08 21098.23 19995.93 16698.73 15998.27 22694.86 18095.07 23698.09 21188.21 22898.54 28996.59 15093.46 28696.79 300
thisisatest053096.01 17195.36 18897.97 14798.38 17895.52 18398.88 11594.19 40594.04 21297.64 15598.31 19383.82 32299.46 17995.29 19797.70 19798.93 188
test_djsdf96.00 17295.69 17696.93 22095.72 36295.49 18499.47 798.40 19994.98 17294.58 24897.86 23289.16 20298.41 30996.91 13194.12 27196.88 291
EI-MVSNet95.96 17395.83 16696.36 27297.93 23393.70 26798.12 25498.27 22693.70 24095.07 23699.02 10692.23 12698.54 28994.68 21393.46 28696.84 297
ECVR-MVScopyleft95.95 17495.71 17396.65 23899.02 11690.86 33099.03 7691.80 41596.96 7498.10 11499.26 6281.31 33399.51 16796.90 13499.04 13399.59 82
BH-untuned95.95 17495.72 17096.65 23898.55 16792.26 30398.23 23797.79 28893.73 23594.62 24798.01 21888.97 21199.00 23793.04 26898.51 16498.68 210
test111195.94 17695.78 16796.41 26998.99 12290.12 34699.04 7392.45 41496.99 7398.03 12199.27 6181.40 33299.48 17696.87 14099.04 13399.63 76
MSDG95.93 17795.30 19497.83 15498.90 13095.36 19096.83 37098.37 20791.32 33294.43 25798.73 14990.27 17799.60 14690.05 33498.82 14998.52 225
BH-RMVSNet95.92 17895.32 19297.69 17098.32 19294.64 22798.19 24497.45 32194.56 19496.03 21798.61 15885.02 29199.12 21790.68 32599.06 13299.30 130
test_fmvs1_n95.90 17995.99 16195.63 30598.67 15588.32 38199.26 2798.22 23396.40 10299.67 1799.26 6273.91 39299.70 12599.02 2499.50 10198.87 191
Fast-Effi-MVS+-dtu95.87 18095.85 16595.91 29397.74 24791.74 31498.69 17098.15 25095.56 13894.92 23997.68 25288.98 21098.79 26993.19 26397.78 19397.20 271
LFMVS95.86 18194.98 20998.47 10398.87 13596.32 14498.84 12996.02 38293.40 25798.62 8999.20 7374.99 38699.63 14097.72 9197.20 20799.46 107
baseline195.84 18295.12 20298.01 14598.49 17295.98 15598.73 15997.03 35195.37 14996.22 21198.19 20589.96 18199.16 20994.60 21887.48 36498.90 190
OpenMVScopyleft93.04 1395.83 18395.00 20798.32 11697.18 29597.32 9099.21 3998.97 4489.96 35991.14 35599.05 10486.64 26199.92 3593.38 25799.47 10697.73 254
VDD-MVS95.82 18495.23 19697.61 17998.84 13993.98 25598.68 17297.40 32595.02 17097.95 12999.34 5374.37 39199.78 10798.64 3596.80 21899.08 171
UniMVSNet (Re)95.78 18595.19 19897.58 18096.99 30597.47 8498.79 14999.18 2795.60 13693.92 28397.04 30991.68 14198.48 29395.80 17887.66 36396.79 300
VPA-MVSNet95.75 18695.11 20397.69 17097.24 28797.27 9398.94 9899.23 2195.13 16195.51 22897.32 28185.73 27898.91 25197.33 11989.55 33996.89 290
HQP-MVS95.72 18795.40 18396.69 23697.20 29194.25 24998.05 26398.46 18796.43 9994.45 25397.73 24486.75 25998.96 24295.30 19594.18 26796.86 296
hse-mvs295.71 18895.30 19496.93 22098.50 17093.53 27298.36 21998.10 26097.48 3998.67 8397.99 22089.76 18399.02 23497.95 7580.91 39998.22 240
UniMVSNet_NR-MVSNet95.71 18895.15 19997.40 19196.84 31596.97 10998.74 15599.24 1895.16 16093.88 28597.72 24691.68 14198.31 32195.81 17687.25 36996.92 282
PatchmatchNetpermissive95.71 18895.52 18096.29 27897.58 26090.72 33496.84 36997.52 31194.06 21197.08 17196.96 31989.24 20098.90 25492.03 29798.37 17299.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 19195.33 19196.76 23196.16 34894.63 22898.43 21598.39 20196.64 9295.02 23898.78 14085.15 29099.05 22795.21 20194.20 26696.60 323
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 19195.38 18796.61 24597.61 25793.84 25998.91 10598.44 19195.25 15694.28 26598.47 17486.04 27599.12 21795.50 19093.95 27696.87 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 19395.69 17695.44 31397.54 26588.54 37696.97 35597.56 30393.50 25297.52 16196.93 32389.49 18999.16 20995.25 19996.42 23198.64 216
FE-MVS95.62 19494.90 21397.78 15998.37 18094.92 21597.17 34597.38 32790.95 34397.73 14597.70 24785.32 28899.63 14091.18 31298.33 17598.79 197
LPG-MVS_test95.62 19495.34 18996.47 26397.46 27193.54 27098.99 8698.54 16794.67 18994.36 26198.77 14285.39 28399.11 21995.71 18294.15 26996.76 303
CLD-MVS95.62 19495.34 18996.46 26697.52 26893.75 26397.27 33698.46 18795.53 13994.42 25898.00 21986.21 27098.97 23896.25 16394.37 26196.66 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 19794.89 21497.76 16398.15 21195.15 20396.77 37194.41 40192.95 27897.18 16897.43 27284.78 29799.45 18094.63 21597.73 19698.68 210
MonoMVSNet95.51 19895.45 18295.68 30295.54 36790.87 32998.92 10397.37 32895.79 12795.53 22797.38 27789.58 18897.68 36496.40 15792.59 30198.49 227
thres600view795.49 19994.77 21797.67 17398.98 12395.02 20798.85 12596.90 36095.38 14796.63 19396.90 32484.29 30799.59 14788.65 35696.33 23398.40 231
test_vis1_n95.47 20095.13 20096.49 26097.77 24390.41 34299.27 2698.11 25796.58 9499.66 1899.18 7967.00 40599.62 14499.21 1999.40 11699.44 110
SCA95.46 20195.13 20096.46 26697.67 25291.29 32297.33 33197.60 29994.68 18896.92 18197.10 29483.97 31798.89 25592.59 28198.32 17799.20 147
IterMVS-LS95.46 20195.21 19796.22 28098.12 21293.72 26698.32 22698.13 25393.71 23894.26 26697.31 28292.24 12598.10 33794.63 21590.12 33096.84 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 20395.03 20696.73 23295.42 37594.63 22899.14 5498.52 17295.74 12993.22 31198.36 18583.87 32098.65 28096.95 13094.04 27296.91 287
CVMVSNet95.43 20496.04 15893.57 36197.93 23383.62 39998.12 25498.59 15395.68 13396.56 19799.02 10687.51 24697.51 37293.56 25597.44 20399.60 80
anonymousdsp95.42 20594.91 21296.94 21995.10 37995.90 16999.14 5498.41 19793.75 23293.16 31497.46 26887.50 24898.41 30995.63 18694.03 27396.50 342
DU-MVS95.42 20594.76 21897.40 19196.53 33196.97 10998.66 17798.99 4395.43 14493.88 28597.69 24988.57 21998.31 32195.81 17687.25 36996.92 282
mvs_tets95.41 20795.00 20796.65 23895.58 36694.42 23999.00 8398.55 16595.73 13193.21 31298.38 18383.45 32498.63 28197.09 12494.00 27496.91 287
thres100view90095.38 20894.70 22297.41 18998.98 12394.92 21598.87 11896.90 36095.38 14796.61 19596.88 32584.29 30799.56 15388.11 35996.29 23797.76 251
thres40095.38 20894.62 22697.65 17798.94 12894.98 21198.68 17296.93 35895.33 15096.55 19996.53 34384.23 31199.56 15388.11 35996.29 23798.40 231
BH-w/o95.38 20895.08 20496.26 27998.34 18691.79 31197.70 30397.43 32392.87 28194.24 26897.22 28988.66 21798.84 26191.55 30897.70 19798.16 243
VDDNet95.36 21194.53 23097.86 15298.10 21495.13 20498.85 12597.75 29090.46 35098.36 10499.39 3773.27 39499.64 13797.98 7496.58 22598.81 196
TAPA-MVS93.98 795.35 21294.56 22997.74 16599.13 10694.83 22098.33 22298.64 14386.62 38596.29 21098.61 15894.00 10199.29 19680.00 40099.41 11399.09 167
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 21394.98 20996.43 26897.67 25293.48 27498.73 15998.44 19194.94 17892.53 33498.53 16884.50 30699.14 21495.48 19194.00 27496.66 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 21494.87 21596.71 23399.29 7693.24 28898.58 19098.11 25789.92 36093.57 29799.10 9286.37 26899.79 10490.78 32398.10 18297.09 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UBG95.32 21594.72 22197.13 20598.05 22093.26 28597.87 28697.20 33994.96 17496.18 21395.66 37480.97 33899.35 18994.47 22497.08 20998.78 200
tfpn200view995.32 21594.62 22697.43 18798.94 12894.98 21198.68 17296.93 35895.33 15096.55 19996.53 34384.23 31199.56 15388.11 35996.29 23797.76 251
Anonymous20240521195.28 21794.49 23297.67 17399.00 11993.75 26398.70 16897.04 35090.66 34696.49 20398.80 13878.13 36299.83 7596.21 16495.36 25999.44 110
thres20095.25 21894.57 22897.28 19598.81 14194.92 21598.20 24197.11 34395.24 15896.54 20196.22 35484.58 30499.53 16387.93 36496.50 22997.39 265
AllTest95.24 21994.65 22596.99 21499.25 8493.21 28998.59 18898.18 24191.36 32893.52 29998.77 14284.67 30199.72 11989.70 34197.87 18998.02 246
LCM-MVSNet-Re95.22 22095.32 19294.91 32998.18 20787.85 38798.75 15295.66 38995.11 16388.96 37496.85 32890.26 17897.65 36595.65 18598.44 16899.22 144
EPNet_dtu95.21 22194.95 21195.99 28896.17 34690.45 34098.16 25097.27 33596.77 8293.14 31798.33 19190.34 17498.42 30285.57 37798.81 15099.09 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 22294.45 23797.46 18496.75 32196.56 13198.86 12198.65 14293.30 26293.27 31098.27 19884.85 29598.87 25894.82 21091.26 31796.96 278
D2MVS95.18 22395.08 20495.48 31097.10 30092.07 30798.30 22999.13 3294.02 21492.90 32296.73 33489.48 19098.73 27394.48 22393.60 28595.65 370
WR-MVS95.15 22494.46 23597.22 19796.67 32696.45 13598.21 23998.81 9294.15 20893.16 31497.69 24987.51 24698.30 32395.29 19788.62 35496.90 289
TranMVSNet+NR-MVSNet95.14 22594.48 23397.11 20896.45 33696.36 14299.03 7699.03 3995.04 16893.58 29697.93 22588.27 22798.03 34394.13 23586.90 37496.95 280
baseline295.11 22694.52 23196.87 22596.65 32793.56 26998.27 23494.10 40793.45 25592.02 34797.43 27287.45 25099.19 20793.88 24497.41 20597.87 249
miper_enhance_ethall95.10 22794.75 21996.12 28497.53 26793.73 26596.61 37798.08 26592.20 30893.89 28496.65 33992.44 11898.30 32394.21 23391.16 31896.34 351
Anonymous2024052995.10 22794.22 24797.75 16499.01 11894.26 24898.87 11898.83 8385.79 39396.64 19298.97 11378.73 35599.85 6996.27 16094.89 26099.12 162
test-LLR95.10 22794.87 21595.80 29896.77 31889.70 35396.91 36095.21 39395.11 16394.83 24395.72 37187.71 24298.97 23893.06 26698.50 16598.72 204
WR-MVS_H95.05 23094.46 23596.81 22996.86 31495.82 17299.24 3099.24 1893.87 22692.53 33496.84 32990.37 17398.24 32993.24 26187.93 36096.38 350
miper_ehance_all_eth95.01 23194.69 22395.97 29097.70 25093.31 28397.02 35398.07 26792.23 30593.51 30196.96 31991.85 13898.15 33393.68 24991.16 31896.44 348
testing1195.00 23294.28 24497.16 20397.96 23093.36 28298.09 25997.06 34994.94 17895.33 23396.15 35676.89 37699.40 18495.77 18096.30 23698.72 204
ADS-MVSNet95.00 23294.45 23796.63 24298.00 22491.91 31096.04 38497.74 29190.15 35696.47 20496.64 34087.89 23898.96 24290.08 33297.06 21099.02 178
VPNet94.99 23494.19 24997.40 19197.16 29696.57 13098.71 16498.97 4495.67 13494.84 24198.24 20280.36 34598.67 27996.46 15487.32 36896.96 278
EPMVS94.99 23494.48 23396.52 25897.22 28991.75 31397.23 33791.66 41694.11 20997.28 16496.81 33185.70 27998.84 26193.04 26897.28 20698.97 183
testing9194.98 23694.25 24697.20 19897.94 23193.41 27798.00 26997.58 30094.99 17195.45 22996.04 36077.20 37199.42 18394.97 20696.02 25098.78 200
NR-MVSNet94.98 23694.16 25297.44 18696.53 33197.22 10098.74 15598.95 4894.96 17489.25 37397.69 24989.32 19798.18 33194.59 22087.40 36696.92 282
FMVSNet394.97 23894.26 24597.11 20898.18 20796.62 12498.56 19798.26 23093.67 24594.09 27597.10 29484.25 30998.01 34492.08 29392.14 30496.70 312
CostFormer94.95 23994.73 22095.60 30797.28 28589.06 36697.53 31596.89 36289.66 36596.82 18696.72 33586.05 27398.95 24795.53 18996.13 24898.79 197
PAPM94.95 23994.00 26597.78 15997.04 30295.65 17696.03 38698.25 23191.23 33794.19 27197.80 24191.27 15698.86 26082.61 39497.61 19998.84 194
CP-MVSNet94.94 24194.30 24396.83 22796.72 32395.56 17999.11 6098.95 4893.89 22492.42 33997.90 22887.19 25298.12 33694.32 22988.21 35796.82 299
TR-MVS94.94 24194.20 24897.17 20297.75 24494.14 25297.59 31297.02 35392.28 30495.75 22597.64 25683.88 31998.96 24289.77 33896.15 24798.40 231
RPSCF94.87 24395.40 18393.26 36798.89 13182.06 40598.33 22298.06 27290.30 35596.56 19799.26 6287.09 25399.49 17193.82 24696.32 23498.24 238
testing9994.83 24494.08 25797.07 21197.94 23193.13 29198.10 25897.17 34194.86 18095.34 23096.00 36376.31 37999.40 18495.08 20395.90 25198.68 210
GA-MVS94.81 24594.03 26197.14 20497.15 29793.86 25896.76 37297.58 30094.00 21894.76 24697.04 30980.91 33998.48 29391.79 30396.25 24399.09 167
c3_l94.79 24694.43 23995.89 29597.75 24493.12 29397.16 34798.03 27492.23 30593.46 30497.05 30891.39 15098.01 34493.58 25489.21 34696.53 334
V4294.78 24794.14 25496.70 23596.33 34195.22 19998.97 8998.09 26492.32 30294.31 26497.06 30588.39 22598.55 28892.90 27388.87 35296.34 351
reproduce_monomvs94.77 24894.67 22495.08 32598.40 17789.48 35998.80 14298.64 14397.57 3493.21 31297.65 25380.57 34498.83 26497.72 9189.47 34296.93 281
CR-MVSNet94.76 24994.15 25396.59 24897.00 30393.43 27594.96 39797.56 30392.46 29396.93 17996.24 35088.15 23097.88 35787.38 36696.65 22398.46 229
v2v48294.69 25094.03 26196.65 23896.17 34694.79 22398.67 17598.08 26592.72 28594.00 28097.16 29287.69 24598.45 29892.91 27288.87 35296.72 308
pmmvs494.69 25093.99 26796.81 22995.74 36195.94 16397.40 32297.67 29490.42 35293.37 30797.59 26089.08 20598.20 33092.97 27091.67 31196.30 354
cl2294.68 25294.19 24996.13 28398.11 21393.60 26896.94 35798.31 21792.43 29793.32 30996.87 32786.51 26298.28 32794.10 23891.16 31896.51 340
eth_miper_zixun_eth94.68 25294.41 24095.47 31197.64 25591.71 31596.73 37498.07 26792.71 28693.64 29497.21 29090.54 17198.17 33293.38 25789.76 33496.54 332
PCF-MVS93.45 1194.68 25293.43 30398.42 11198.62 16296.77 11995.48 39498.20 23684.63 39893.34 30898.32 19288.55 22299.81 8784.80 38698.96 13998.68 210
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 25593.54 29898.08 14096.88 31396.56 13198.19 24498.50 18078.05 40992.69 32998.02 21691.07 16299.63 14090.09 33198.36 17498.04 245
PS-CasMVS94.67 25593.99 26796.71 23396.68 32595.26 19699.13 5799.03 3993.68 24392.33 34097.95 22485.35 28598.10 33793.59 25388.16 35996.79 300
cascas94.63 25793.86 27796.93 22096.91 31194.27 24796.00 38798.51 17585.55 39494.54 24996.23 35284.20 31398.87 25895.80 17896.98 21597.66 257
tpmvs94.60 25894.36 24295.33 31797.46 27188.60 37596.88 36697.68 29291.29 33493.80 29096.42 34788.58 21899.24 20191.06 31896.04 24998.17 242
LTVRE_ROB92.95 1594.60 25893.90 27396.68 23797.41 27994.42 23998.52 20098.59 15391.69 32091.21 35498.35 18684.87 29499.04 23091.06 31893.44 28996.60 323
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 26093.92 27096.60 24796.21 34394.78 22498.59 18898.14 25291.86 31694.21 27097.02 31287.97 23698.41 30991.72 30589.57 33796.61 322
ADS-MVSNet294.58 26194.40 24195.11 32398.00 22488.74 37396.04 38497.30 33190.15 35696.47 20496.64 34087.89 23897.56 37090.08 33297.06 21099.02 178
WBMVS94.56 26294.04 25996.10 28598.03 22293.08 29597.82 29498.18 24194.02 21493.77 29296.82 33081.28 33498.34 31695.47 19291.00 32196.88 291
ACMH92.88 1694.55 26393.95 26996.34 27497.63 25693.26 28598.81 14198.49 18593.43 25689.74 36898.53 16881.91 32999.08 22593.69 24893.30 29296.70 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 26493.85 27896.63 24297.98 22893.06 29698.77 15197.84 28693.67 24593.80 29098.04 21576.88 37798.96 24294.79 21292.86 29797.86 250
XVG-ACMP-BASELINE94.54 26494.14 25495.75 30196.55 33091.65 31698.11 25698.44 19194.96 17494.22 26997.90 22879.18 35499.11 21994.05 24093.85 27896.48 345
AUN-MVS94.53 26693.73 28896.92 22398.50 17093.52 27398.34 22198.10 26093.83 22995.94 22397.98 22285.59 28199.03 23194.35 22780.94 39898.22 240
DIV-MVS_self_test94.52 26794.03 26195.99 28897.57 26493.38 28097.05 35197.94 28091.74 31792.81 32497.10 29489.12 20398.07 34192.60 27990.30 32796.53 334
cl____94.51 26894.01 26496.02 28797.58 26093.40 27997.05 35197.96 27991.73 31992.76 32697.08 30089.06 20698.13 33592.61 27890.29 32896.52 337
ETVMVS94.50 26993.44 30297.68 17298.18 20795.35 19298.19 24497.11 34393.73 23596.40 20795.39 37774.53 38898.84 26191.10 31496.31 23598.84 194
GBi-Net94.49 27093.80 28196.56 25298.21 20195.00 20898.82 13398.18 24192.46 29394.09 27597.07 30181.16 33597.95 34992.08 29392.14 30496.72 308
test194.49 27093.80 28196.56 25298.21 20195.00 20898.82 13398.18 24192.46 29394.09 27597.07 30181.16 33597.95 34992.08 29392.14 30496.72 308
dmvs_re94.48 27294.18 25195.37 31597.68 25190.11 34798.54 19997.08 34594.56 19494.42 25897.24 28784.25 30997.76 36291.02 32192.83 29898.24 238
v894.47 27393.77 28496.57 25196.36 33994.83 22099.05 6998.19 23891.92 31393.16 31496.97 31788.82 21698.48 29391.69 30687.79 36196.39 349
FMVSNet294.47 27393.61 29497.04 21298.21 20196.43 13798.79 14998.27 22692.46 29393.50 30297.09 29881.16 33598.00 34691.09 31591.93 30796.70 312
test250694.44 27593.91 27296.04 28699.02 11688.99 36999.06 6779.47 42896.96 7498.36 10499.26 6277.21 37099.52 16696.78 14799.04 13399.59 82
Patchmatch-test94.42 27693.68 29296.63 24297.60 25891.76 31294.83 40197.49 31589.45 36994.14 27397.10 29488.99 20798.83 26485.37 38098.13 18199.29 132
PEN-MVS94.42 27693.73 28896.49 26096.28 34294.84 21899.17 4999.00 4193.51 25192.23 34297.83 23886.10 27297.90 35392.55 28486.92 37396.74 305
v14419294.39 27893.70 29096.48 26296.06 35194.35 24398.58 19098.16 24991.45 32594.33 26397.02 31287.50 24898.45 29891.08 31789.11 34796.63 320
Baseline_NR-MVSNet94.35 27993.81 28095.96 29196.20 34494.05 25498.61 18796.67 37291.44 32693.85 28797.60 25988.57 21998.14 33494.39 22586.93 37295.68 369
miper_lstm_enhance94.33 28094.07 25895.11 32397.75 24490.97 32697.22 33898.03 27491.67 32192.76 32696.97 31790.03 18097.78 36192.51 28689.64 33696.56 329
v119294.32 28193.58 29596.53 25796.10 34994.45 23798.50 20698.17 24791.54 32394.19 27197.06 30586.95 25798.43 30190.14 33089.57 33796.70 312
UWE-MVS94.30 28293.89 27595.53 30897.83 23988.95 37097.52 31793.25 40994.44 20296.63 19397.07 30178.70 35699.28 19791.99 29897.56 20298.36 234
ACMH+92.99 1494.30 28293.77 28495.88 29697.81 24192.04 30998.71 16498.37 20793.99 21990.60 36198.47 17480.86 34199.05 22792.75 27792.40 30396.55 331
v14894.29 28493.76 28695.91 29396.10 34992.93 29798.58 19097.97 27792.59 29193.47 30396.95 32188.53 22398.32 31992.56 28387.06 37196.49 343
v1094.29 28493.55 29796.51 25996.39 33894.80 22298.99 8698.19 23891.35 33093.02 32096.99 31588.09 23298.41 30990.50 32788.41 35696.33 353
MVP-Stereo94.28 28693.92 27095.35 31694.95 38192.60 30097.97 27297.65 29591.61 32290.68 36097.09 29886.32 26998.42 30289.70 34199.34 12295.02 383
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 28793.33 30596.97 21797.19 29493.38 28098.74 15598.57 16091.21 33993.81 28998.58 16372.85 39598.77 27195.05 20493.93 27798.77 203
OurMVSNet-221017-094.21 28894.00 26594.85 33395.60 36589.22 36498.89 11097.43 32395.29 15392.18 34398.52 17182.86 32598.59 28693.46 25691.76 30996.74 305
v192192094.20 28993.47 30196.40 27195.98 35494.08 25398.52 20098.15 25091.33 33194.25 26797.20 29186.41 26798.42 30290.04 33589.39 34496.69 317
WB-MVSnew94.19 29094.04 25994.66 34096.82 31792.14 30497.86 28895.96 38593.50 25295.64 22696.77 33388.06 23497.99 34784.87 38396.86 21693.85 400
v7n94.19 29093.43 30396.47 26395.90 35794.38 24299.26 2798.34 21391.99 31192.76 32697.13 29388.31 22698.52 29189.48 34687.70 36296.52 337
tpm294.19 29093.76 28695.46 31297.23 28889.04 36797.31 33396.85 36687.08 38496.21 21296.79 33283.75 32398.74 27292.43 28996.23 24598.59 221
TESTMET0.1,194.18 29393.69 29195.63 30596.92 30989.12 36596.91 36094.78 39893.17 26794.88 24096.45 34678.52 35798.92 24993.09 26598.50 16598.85 192
dp94.15 29493.90 27394.90 33097.31 28486.82 39296.97 35597.19 34091.22 33896.02 21896.61 34285.51 28299.02 23490.00 33694.30 26298.85 192
ET-MVSNet_ETH3D94.13 29592.98 31297.58 18098.22 20096.20 14897.31 33395.37 39294.53 19679.56 40997.63 25886.51 26297.53 37196.91 13190.74 32399.02 178
tpm94.13 29593.80 28195.12 32296.50 33387.91 38697.44 31995.89 38892.62 28996.37 20996.30 34984.13 31498.30 32393.24 26191.66 31299.14 160
testing22294.12 29793.03 31197.37 19498.02 22394.66 22597.94 27596.65 37494.63 19195.78 22495.76 36671.49 39698.92 24991.17 31395.88 25298.52 225
IterMVS-SCA-FT94.11 29893.87 27694.85 33397.98 22890.56 33997.18 34398.11 25793.75 23292.58 33297.48 26783.97 31797.41 37492.48 28891.30 31596.58 325
Anonymous2023121194.10 29993.26 30896.61 24599.11 10994.28 24699.01 8198.88 6486.43 38792.81 32497.57 26281.66 33198.68 27894.83 20989.02 35096.88 291
IterMVS94.09 30093.85 27894.80 33697.99 22690.35 34397.18 34398.12 25493.68 24392.46 33897.34 27884.05 31597.41 37492.51 28691.33 31496.62 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 30193.51 29995.80 29896.77 31889.70 35396.91 36095.21 39392.89 28094.83 24395.72 37177.69 36598.97 23893.06 26698.50 16598.72 204
test0.0.03 194.08 30193.51 29995.80 29895.53 36992.89 29897.38 32495.97 38495.11 16392.51 33696.66 33787.71 24296.94 38187.03 36893.67 28197.57 261
v124094.06 30393.29 30796.34 27496.03 35393.90 25798.44 21398.17 24791.18 34094.13 27497.01 31486.05 27398.42 30289.13 35189.50 34196.70 312
X-MVStestdata94.06 30392.30 32799.34 2599.70 2298.35 4499.29 2298.88 6497.40 4398.46 9643.50 42395.90 4599.89 5397.85 8399.74 5199.78 23
DTE-MVSNet93.98 30593.26 30896.14 28296.06 35194.39 24199.20 4298.86 7793.06 27391.78 34897.81 24085.87 27797.58 36990.53 32686.17 37896.46 347
pm-mvs193.94 30693.06 31096.59 24896.49 33495.16 20198.95 9598.03 27492.32 30291.08 35697.84 23584.54 30598.41 30992.16 29186.13 38196.19 358
MS-PatchMatch93.84 30793.63 29394.46 35096.18 34589.45 36097.76 29898.27 22692.23 30592.13 34497.49 26679.50 35198.69 27589.75 33999.38 11895.25 375
tfpnnormal93.66 30892.70 31896.55 25696.94 30895.94 16398.97 8999.19 2691.04 34191.38 35397.34 27884.94 29398.61 28385.45 37989.02 35095.11 379
EU-MVSNet93.66 30894.14 25492.25 37795.96 35683.38 40198.52 20098.12 25494.69 18792.61 33198.13 20987.36 25196.39 39391.82 30290.00 33296.98 277
our_test_393.65 31093.30 30694.69 33895.45 37389.68 35596.91 36097.65 29591.97 31291.66 35196.88 32589.67 18797.93 35288.02 36291.49 31396.48 345
pmmvs593.65 31092.97 31395.68 30295.49 37092.37 30198.20 24197.28 33489.66 36592.58 33297.26 28482.14 32898.09 33993.18 26490.95 32296.58 325
test_fmvs293.43 31293.58 29592.95 37196.97 30683.91 39799.19 4497.24 33795.74 12995.20 23598.27 19869.65 39898.72 27496.26 16193.73 28096.24 355
tpm cat193.36 31392.80 31595.07 32697.58 26087.97 38596.76 37297.86 28582.17 40593.53 29896.04 36086.13 27199.13 21589.24 34995.87 25398.10 244
JIA-IIPM93.35 31492.49 32395.92 29296.48 33590.65 33695.01 39696.96 35685.93 39196.08 21687.33 41387.70 24498.78 27091.35 31095.58 25798.34 235
SixPastTwentyTwo93.34 31592.86 31494.75 33795.67 36389.41 36298.75 15296.67 37293.89 22490.15 36698.25 20180.87 34098.27 32890.90 32290.64 32496.57 327
USDC93.33 31692.71 31795.21 31996.83 31690.83 33296.91 36097.50 31393.84 22790.72 35998.14 20877.69 36598.82 26689.51 34593.21 29495.97 363
IB-MVS91.98 1793.27 31791.97 33197.19 20097.47 27093.41 27797.09 35095.99 38393.32 26092.47 33795.73 36978.06 36399.53 16394.59 22082.98 38998.62 217
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 31892.21 32896.41 26997.73 24893.13 29195.65 39197.03 35191.27 33694.04 27896.06 35975.33 38497.19 37786.56 37096.23 24598.92 189
ppachtmachnet_test93.22 31992.63 31994.97 32895.45 37390.84 33196.88 36697.88 28490.60 34792.08 34597.26 28488.08 23397.86 35885.12 38290.33 32696.22 356
Patchmtry93.22 31992.35 32695.84 29796.77 31893.09 29494.66 40497.56 30387.37 38392.90 32296.24 35088.15 23097.90 35387.37 36790.10 33196.53 334
testing393.19 32192.48 32495.30 31898.07 21592.27 30298.64 18197.17 34193.94 22393.98 28197.04 30967.97 40296.01 39788.40 35797.14 20897.63 258
FMVSNet193.19 32192.07 32996.56 25297.54 26595.00 20898.82 13398.18 24190.38 35392.27 34197.07 30173.68 39397.95 34989.36 34891.30 31596.72 308
LF4IMVS93.14 32392.79 31694.20 35495.88 35888.67 37497.66 30697.07 34793.81 23091.71 34997.65 25377.96 36498.81 26791.47 30991.92 30895.12 378
mmtdpeth93.12 32492.61 32094.63 34297.60 25889.68 35599.21 3997.32 33094.02 21497.72 14694.42 38877.01 37599.44 18199.05 2277.18 41094.78 388
testgi93.06 32592.45 32594.88 33296.43 33789.90 34898.75 15297.54 30995.60 13691.63 35297.91 22774.46 39097.02 37986.10 37393.67 28197.72 255
PatchT93.06 32591.97 33196.35 27396.69 32492.67 29994.48 40797.08 34586.62 38597.08 17192.23 40787.94 23797.90 35378.89 40496.69 22198.49 227
RPMNet92.81 32791.34 33797.24 19697.00 30393.43 27594.96 39798.80 9982.27 40496.93 17992.12 40886.98 25699.82 8276.32 40996.65 22398.46 229
myMVS_eth3d92.73 32892.01 33094.89 33197.39 28090.94 32797.91 27897.46 31793.16 26893.42 30595.37 37868.09 40196.12 39588.34 35896.99 21297.60 259
TransMVSNet (Re)92.67 32991.51 33696.15 28196.58 32994.65 22698.90 10696.73 36890.86 34489.46 37297.86 23285.62 28098.09 33986.45 37181.12 39695.71 368
ttmdpeth92.61 33091.96 33394.55 34494.10 39190.60 33898.52 20097.29 33292.67 28790.18 36497.92 22679.75 35097.79 36091.09 31586.15 38095.26 374
Syy-MVS92.55 33192.61 32092.38 37497.39 28083.41 40097.91 27897.46 31793.16 26893.42 30595.37 37884.75 29896.12 39577.00 40896.99 21297.60 259
K. test v392.55 33191.91 33494.48 34895.64 36489.24 36399.07 6694.88 39794.04 21286.78 38897.59 26077.64 36897.64 36692.08 29389.43 34396.57 327
DSMNet-mixed92.52 33392.58 32292.33 37594.15 39082.65 40398.30 22994.26 40489.08 37492.65 33095.73 36985.01 29295.76 39986.24 37297.76 19498.59 221
TinyColmap92.31 33491.53 33594.65 34196.92 30989.75 35196.92 35896.68 37190.45 35189.62 36997.85 23476.06 38298.81 26786.74 36992.51 30295.41 372
gg-mvs-nofinetune92.21 33590.58 34397.13 20596.75 32195.09 20595.85 38889.40 42185.43 39594.50 25181.98 41680.80 34298.40 31592.16 29198.33 17597.88 248
FMVSNet591.81 33690.92 33994.49 34797.21 29092.09 30698.00 26997.55 30889.31 37290.86 35895.61 37574.48 38995.32 40385.57 37789.70 33596.07 361
pmmvs691.77 33790.63 34295.17 32194.69 38791.24 32398.67 17597.92 28286.14 38989.62 36997.56 26475.79 38398.34 31690.75 32484.56 38395.94 364
Anonymous2023120691.66 33891.10 33893.33 36594.02 39587.35 38998.58 19097.26 33690.48 34990.16 36596.31 34883.83 32196.53 39179.36 40289.90 33396.12 359
Patchmatch-RL test91.49 33990.85 34093.41 36391.37 40684.40 39592.81 41195.93 38791.87 31587.25 38494.87 38488.99 20796.53 39192.54 28582.00 39199.30 130
test_040291.32 34090.27 34694.48 34896.60 32891.12 32498.50 20697.22 33886.10 39088.30 38096.98 31677.65 36797.99 34778.13 40692.94 29694.34 389
test_vis1_rt91.29 34190.65 34193.19 36997.45 27486.25 39398.57 19690.90 41993.30 26286.94 38793.59 39762.07 41199.11 21997.48 11395.58 25794.22 392
PVSNet_088.72 1991.28 34290.03 34995.00 32797.99 22687.29 39094.84 40098.50 18092.06 31089.86 36795.19 38079.81 34999.39 18792.27 29069.79 41698.33 236
mvs5depth91.23 34390.17 34794.41 35292.09 40389.79 35095.26 39596.50 37690.73 34591.69 35097.06 30576.12 38198.62 28288.02 36284.11 38694.82 385
Anonymous2024052191.18 34490.44 34493.42 36293.70 39688.47 37898.94 9897.56 30388.46 37889.56 37195.08 38377.15 37396.97 38083.92 38989.55 33994.82 385
EG-PatchMatch MVS91.13 34590.12 34894.17 35694.73 38689.00 36898.13 25397.81 28789.22 37385.32 39896.46 34567.71 40398.42 30287.89 36593.82 27995.08 380
TDRefinement91.06 34689.68 35195.21 31985.35 42191.49 31998.51 20597.07 34791.47 32488.83 37897.84 23577.31 36999.09 22492.79 27677.98 40895.04 382
UnsupCasMVSNet_eth90.99 34789.92 35094.19 35594.08 39289.83 34997.13 34998.67 13593.69 24185.83 39496.19 35575.15 38596.74 38589.14 35079.41 40396.00 362
test20.0390.89 34890.38 34592.43 37393.48 39788.14 38498.33 22297.56 30393.40 25787.96 38196.71 33680.69 34394.13 40879.15 40386.17 37895.01 384
MDA-MVSNet_test_wron90.71 34989.38 35494.68 33994.83 38390.78 33397.19 34297.46 31787.60 38172.41 41695.72 37186.51 26296.71 38885.92 37586.80 37596.56 329
YYNet190.70 35089.39 35394.62 34394.79 38590.65 33697.20 34097.46 31787.54 38272.54 41595.74 36786.51 26296.66 38986.00 37486.76 37696.54 332
KD-MVS_self_test90.38 35189.38 35493.40 36492.85 40088.94 37197.95 27397.94 28090.35 35490.25 36393.96 39479.82 34895.94 39884.62 38876.69 41195.33 373
pmmvs-eth3d90.36 35289.05 35794.32 35391.10 40892.12 30597.63 31196.95 35788.86 37684.91 39993.13 40278.32 35996.74 38588.70 35481.81 39394.09 395
CL-MVSNet_self_test90.11 35389.14 35693.02 37091.86 40588.23 38396.51 38098.07 26790.49 34890.49 36294.41 38984.75 29895.34 40280.79 39874.95 41395.50 371
new_pmnet90.06 35489.00 35893.22 36894.18 38988.32 38196.42 38296.89 36286.19 38885.67 39593.62 39677.18 37297.10 37881.61 39689.29 34594.23 391
MDA-MVSNet-bldmvs89.97 35588.35 36194.83 33595.21 37791.34 32097.64 30897.51 31288.36 37971.17 41796.13 35779.22 35396.63 39083.65 39086.27 37796.52 337
CMPMVSbinary66.06 2189.70 35689.67 35289.78 38293.19 39876.56 40897.00 35498.35 21080.97 40681.57 40497.75 24374.75 38798.61 28389.85 33793.63 28394.17 393
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 35788.28 36293.82 35992.81 40191.08 32598.01 26797.45 32187.95 38087.90 38295.87 36567.63 40494.56 40778.73 40588.18 35895.83 366
KD-MVS_2432*160089.61 35887.96 36694.54 34594.06 39391.59 31795.59 39297.63 29789.87 36188.95 37594.38 39178.28 36096.82 38384.83 38468.05 41795.21 376
miper_refine_blended89.61 35887.96 36694.54 34594.06 39391.59 31795.59 39297.63 29789.87 36188.95 37594.38 39178.28 36096.82 38384.83 38468.05 41795.21 376
MVStest189.53 36087.99 36594.14 35894.39 38890.42 34198.25 23696.84 36782.81 40181.18 40697.33 28077.09 37496.94 38185.27 38178.79 40495.06 381
MVS-HIRNet89.46 36188.40 36092.64 37297.58 26082.15 40494.16 41093.05 41375.73 41290.90 35782.52 41579.42 35298.33 31883.53 39198.68 15297.43 262
OpenMVS_ROBcopyleft86.42 2089.00 36287.43 37093.69 36093.08 39989.42 36197.91 27896.89 36278.58 40885.86 39394.69 38569.48 39998.29 32677.13 40793.29 29393.36 402
mvsany_test388.80 36388.04 36391.09 38189.78 41181.57 40697.83 29395.49 39193.81 23087.53 38393.95 39556.14 41497.43 37394.68 21383.13 38894.26 390
new-patchmatchnet88.50 36487.45 36991.67 37990.31 41085.89 39497.16 34797.33 32989.47 36883.63 40192.77 40476.38 37895.06 40582.70 39377.29 40994.06 397
APD_test188.22 36588.01 36488.86 38495.98 35474.66 41697.21 33996.44 37883.96 40086.66 39097.90 22860.95 41297.84 35982.73 39290.23 32994.09 395
PM-MVS87.77 36686.55 37291.40 38091.03 40983.36 40296.92 35895.18 39591.28 33586.48 39293.42 39853.27 41596.74 38589.43 34781.97 39294.11 394
dmvs_testset87.64 36788.93 35983.79 39395.25 37663.36 42597.20 34091.17 41793.07 27285.64 39695.98 36485.30 28991.52 41569.42 41487.33 36796.49 343
test_fmvs387.17 36887.06 37187.50 38691.21 40775.66 41199.05 6996.61 37592.79 28488.85 37792.78 40343.72 41893.49 40993.95 24184.56 38393.34 403
UnsupCasMVSNet_bld87.17 36885.12 37593.31 36691.94 40488.77 37294.92 39998.30 22384.30 39982.30 40290.04 41063.96 40997.25 37685.85 37674.47 41593.93 399
N_pmnet87.12 37087.77 36885.17 39095.46 37261.92 42697.37 32670.66 43185.83 39288.73 37996.04 36085.33 28797.76 36280.02 39990.48 32595.84 365
pmmvs386.67 37184.86 37692.11 37888.16 41587.19 39196.63 37694.75 39979.88 40787.22 38592.75 40566.56 40695.20 40481.24 39776.56 41293.96 398
test_f86.07 37285.39 37388.10 38589.28 41375.57 41297.73 30196.33 38089.41 37185.35 39791.56 40943.31 42095.53 40091.32 31184.23 38593.21 404
WB-MVS84.86 37385.33 37483.46 39489.48 41269.56 42098.19 24496.42 37989.55 36781.79 40394.67 38684.80 29690.12 41652.44 42080.64 40090.69 407
SSC-MVS84.27 37484.71 37782.96 39889.19 41468.83 42198.08 26096.30 38189.04 37581.37 40594.47 38784.60 30389.89 41749.80 42279.52 40290.15 408
dongtai82.47 37581.88 37884.22 39295.19 37876.03 40994.59 40674.14 43082.63 40287.19 38696.09 35864.10 40887.85 42058.91 41884.11 38688.78 412
test_vis3_rt79.22 37677.40 38384.67 39186.44 41974.85 41597.66 30681.43 42684.98 39667.12 41981.91 41728.09 42897.60 36788.96 35280.04 40181.55 417
test_method79.03 37778.17 37981.63 39986.06 42054.40 43182.75 41996.89 36239.54 42380.98 40795.57 37658.37 41394.73 40684.74 38778.61 40595.75 367
testf179.02 37877.70 38082.99 39688.10 41666.90 42294.67 40293.11 41071.08 41474.02 41293.41 39934.15 42493.25 41072.25 41278.50 40688.82 410
APD_test279.02 37877.70 38082.99 39688.10 41666.90 42294.67 40293.11 41071.08 41474.02 41293.41 39934.15 42493.25 41072.25 41278.50 40688.82 410
LCM-MVSNet78.70 38076.24 38686.08 38877.26 42771.99 41894.34 40896.72 36961.62 41876.53 41089.33 41133.91 42692.78 41381.85 39574.60 41493.46 401
kuosan78.45 38177.69 38280.72 40092.73 40275.32 41394.63 40574.51 42975.96 41080.87 40893.19 40163.23 41079.99 42442.56 42481.56 39586.85 416
Gipumacopyleft78.40 38276.75 38583.38 39595.54 36780.43 40779.42 42097.40 32564.67 41773.46 41480.82 41845.65 41793.14 41266.32 41687.43 36576.56 420
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 38375.44 38785.46 38982.54 42274.95 41494.23 40993.08 41272.80 41374.68 41187.38 41236.36 42391.56 41473.95 41063.94 41989.87 409
FPMVS77.62 38477.14 38479.05 40279.25 42560.97 42795.79 38995.94 38665.96 41667.93 41894.40 39037.73 42288.88 41968.83 41588.46 35587.29 413
EGC-MVSNET75.22 38569.54 38892.28 37694.81 38489.58 35797.64 30896.50 3761.82 4285.57 42995.74 36768.21 40096.26 39473.80 41191.71 31090.99 406
ANet_high69.08 38665.37 39080.22 40165.99 42971.96 41990.91 41590.09 42082.62 40349.93 42478.39 41929.36 42781.75 42162.49 41738.52 42386.95 415
tmp_tt68.90 38766.97 38974.68 40450.78 43159.95 42887.13 41683.47 42538.80 42462.21 42096.23 35264.70 40776.91 42688.91 35330.49 42487.19 414
PMVScopyleft61.03 2365.95 38863.57 39273.09 40557.90 43051.22 43285.05 41893.93 40854.45 41944.32 42583.57 41413.22 42989.15 41858.68 41981.00 39778.91 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 38964.25 39167.02 40682.28 42359.36 42991.83 41485.63 42352.69 42060.22 42177.28 42041.06 42180.12 42346.15 42341.14 42161.57 422
EMVS64.07 39063.26 39366.53 40781.73 42458.81 43091.85 41384.75 42451.93 42259.09 42275.13 42143.32 41979.09 42542.03 42539.47 42261.69 421
MVEpermissive62.14 2263.28 39159.38 39474.99 40374.33 42865.47 42485.55 41780.50 42752.02 42151.10 42375.00 42210.91 43280.50 42251.60 42153.40 42078.99 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 39230.18 39630.16 40878.61 42643.29 43366.79 42114.21 43217.31 42514.82 42811.93 42811.55 43141.43 42737.08 42619.30 4255.76 425
cdsmvs_eth3d_5k23.98 39331.98 3950.00 4110.00 4340.00 4360.00 42298.59 1530.00 4290.00 43098.61 15890.60 1700.00 4300.00 4290.00 4280.00 426
testmvs21.48 39424.95 39711.09 41014.89 4326.47 43596.56 3789.87 4337.55 42617.93 42639.02 4249.43 4335.90 42916.56 42812.72 42620.91 424
test12320.95 39523.72 39812.64 40913.54 4338.19 43496.55 3796.13 4347.48 42716.74 42737.98 42512.97 4306.05 42816.69 4275.43 42723.68 423
ab-mvs-re8.20 39610.94 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43098.43 1760.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas7.88 39710.50 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42994.51 870.00 4300.00 4290.00 4280.00 426
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS90.94 32788.66 355
FOURS199.82 198.66 2499.69 198.95 4897.46 4199.39 33
MSC_two_6792asdad99.62 699.17 9999.08 1198.63 14699.94 998.53 4199.80 2499.86 7
PC_three_145295.08 16799.60 2299.16 8397.86 298.47 29697.52 11199.72 5899.74 39
No_MVS99.62 699.17 9999.08 1198.63 14699.94 998.53 4199.80 2499.86 7
test_one_060199.66 2699.25 298.86 7797.55 3599.20 4599.47 2697.57 6
eth-test20.00 434
eth-test0.00 434
ZD-MVS99.46 5298.70 2398.79 10493.21 26598.67 8398.97 11395.70 4999.83 7596.07 16599.58 86
RE-MVS-def98.34 4099.49 4697.86 6899.11 6098.80 9996.49 9799.17 4899.35 4995.29 6597.72 9199.65 7199.71 52
IU-MVS99.71 1999.23 798.64 14395.28 15499.63 2198.35 5899.81 1599.83 12
OPU-MVS99.37 2299.24 9199.05 1499.02 7999.16 8397.81 399.37 18897.24 12099.73 5499.70 56
test_241102_TWO98.87 7197.65 2899.53 2699.48 2497.34 1199.94 998.43 5399.80 2499.83 12
test_241102_ONE99.71 1999.24 598.87 7197.62 3099.73 1399.39 3797.53 799.74 117
9.1498.06 6599.47 5098.71 16498.82 8694.36 20499.16 5199.29 5896.05 3799.81 8797.00 12699.71 60
save fliter99.46 5298.38 3598.21 23998.71 12297.95 19
test_0728_THIRD97.32 4999.45 2899.46 3097.88 199.94 998.47 4999.86 299.85 9
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6499.94 998.47 4999.81 1599.84 11
test072699.72 1299.25 299.06 6798.88 6497.62 3099.56 2399.50 2197.42 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 42
sam_mvs189.45 19399.20 147
sam_mvs88.99 207
ambc89.49 38386.66 41875.78 41092.66 41296.72 36986.55 39192.50 40646.01 41697.90 35390.32 32882.09 39094.80 387
MTGPAbinary98.74 114
test_post196.68 37530.43 42787.85 24198.69 27592.59 281
test_post31.83 42688.83 21498.91 251
patchmatchnet-post95.10 38289.42 19498.89 255
GG-mvs-BLEND96.59 24896.34 34094.98 21196.51 38088.58 42293.10 31994.34 39380.34 34798.05 34289.53 34496.99 21296.74 305
MTMP98.89 11094.14 406
gm-plane-assit95.88 35887.47 38889.74 36496.94 32299.19 20793.32 260
test9_res96.39 15999.57 8799.69 59
TEST999.31 6798.50 2997.92 27698.73 11792.63 28897.74 14398.68 15396.20 3299.80 94
test_899.29 7698.44 3197.89 28498.72 11992.98 27697.70 14898.66 15696.20 3299.80 94
agg_prior295.87 17599.57 8799.68 64
agg_prior99.30 7198.38 3598.72 11997.57 16099.81 87
TestCases96.99 21499.25 8493.21 28998.18 24191.36 32893.52 29998.77 14284.67 30199.72 11989.70 34197.87 18998.02 246
test_prior498.01 6497.86 288
test_prior297.80 29596.12 11497.89 13698.69 15295.96 4196.89 13599.60 81
test_prior99.19 4399.31 6798.22 5198.84 8199.70 12599.65 72
旧先验297.57 31491.30 33398.67 8399.80 9495.70 184
新几何297.64 308
新几何199.16 4899.34 6098.01 6498.69 12790.06 35898.13 11298.95 12094.60 8599.89 5391.97 30099.47 10699.59 82
旧先验199.29 7697.48 8298.70 12699.09 9995.56 5299.47 10699.61 78
无先验97.58 31398.72 11991.38 32799.87 6493.36 25999.60 80
原ACMM297.67 305
原ACMM198.65 8599.32 6596.62 12498.67 13593.27 26497.81 13898.97 11395.18 7299.83 7593.84 24599.46 10999.50 94
test22299.23 9297.17 10297.40 32298.66 13888.68 37798.05 11898.96 11894.14 9899.53 9899.61 78
testdata299.89 5391.65 307
segment_acmp96.85 14
testdata98.26 12299.20 9795.36 19098.68 13091.89 31498.60 9199.10 9294.44 9299.82 8294.27 23199.44 11099.58 86
testdata197.32 33296.34 105
test1299.18 4599.16 10398.19 5398.53 16998.07 11695.13 7599.72 11999.56 9399.63 76
plane_prior797.42 27694.63 228
plane_prior697.35 28394.61 23187.09 253
plane_prior598.56 16399.03 23196.07 16594.27 26396.92 282
plane_prior498.28 195
plane_prior394.61 23197.02 7195.34 230
plane_prior298.80 14297.28 52
plane_prior197.37 282
plane_prior94.60 23398.44 21396.74 8594.22 265
n20.00 435
nn0.00 435
door-mid94.37 402
lessismore_v094.45 35194.93 38288.44 37991.03 41886.77 38997.64 25676.23 38098.42 30290.31 32985.64 38296.51 340
LGP-MVS_train96.47 26397.46 27193.54 27098.54 16794.67 18994.36 26198.77 14285.39 28399.11 21995.71 18294.15 26996.76 303
test1198.66 138
door94.64 400
HQP5-MVS94.25 249
HQP-NCC97.20 29198.05 26396.43 9994.45 253
ACMP_Plane97.20 29198.05 26396.43 9994.45 253
BP-MVS95.30 195
HQP4-MVS94.45 25398.96 24296.87 294
HQP3-MVS98.46 18794.18 267
HQP2-MVS86.75 259
NP-MVS97.28 28594.51 23697.73 244
MDTV_nov1_ep13_2view84.26 39696.89 36590.97 34297.90 13589.89 18293.91 24399.18 156
MDTV_nov1_ep1395.40 18397.48 26988.34 38096.85 36897.29 33293.74 23497.48 16297.26 28489.18 20199.05 22791.92 30197.43 204
ACMMP++_ref92.97 295
ACMMP++93.61 284
Test By Simon94.64 84
ITE_SJBPF95.44 31397.42 27691.32 32197.50 31395.09 16693.59 29598.35 18681.70 33098.88 25789.71 34093.39 29096.12 359
DeepMVS_CXcopyleft86.78 38797.09 30172.30 41795.17 39675.92 41184.34 40095.19 38070.58 39795.35 40179.98 40189.04 34992.68 405