This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 1199.85 499.43 3296.71 1799.96 499.86 199.80 2499.89 4
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 7097.65 2799.73 1299.48 2397.53 799.94 998.43 5299.81 1599.70 56
DVP-MVS++99.08 398.89 599.64 399.17 9899.23 799.69 198.88 6397.32 4899.53 2599.47 2597.81 399.94 998.47 4899.72 5799.74 39
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 1099.86 299.42 3396.45 2499.96 499.86 199.74 5199.90 3
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15797.62 2999.45 2799.46 2997.42 999.94 998.47 4899.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5197.38 4599.41 3099.54 1396.66 1899.84 7298.86 2799.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 8098.06 1599.35 3499.61 496.39 2799.94 998.77 3099.82 1499.83 12
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8298.06 1599.29 3899.58 996.40 2599.94 998.68 3299.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8298.06 1599.29 3899.58 996.40 2599.94 998.68 3299.81 1599.81 17
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13197.25 9798.82 13399.34 1098.75 499.80 599.61 495.16 7399.95 799.70 799.80 2499.93 1
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21698.91 5797.58 3299.54 2499.46 2997.10 1299.94 997.64 9999.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9398.43 3399.10 6398.87 7097.38 4599.35 3499.40 3597.78 599.87 6397.77 8799.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192098.87 1399.01 398.45 10499.42 5896.43 13698.96 9499.36 998.63 699.86 299.51 1895.91 4399.97 199.72 599.75 4798.94 186
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13796.84 7799.56 2299.31 5596.34 2899.70 12498.32 5899.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20898.81 9197.72 2298.76 7799.16 8297.05 1399.78 10698.06 6999.66 6799.69 59
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6397.52 3599.41 3098.78 13996.00 3999.79 10397.79 8699.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6397.40 4298.46 9599.20 7295.90 4599.89 5297.85 8299.74 5199.78 23
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21798.68 12997.04 6998.52 9398.80 13796.78 1699.83 7497.93 7699.61 7899.74 39
SD-MVS98.64 1998.68 1498.53 9599.33 6298.36 4398.90 10698.85 7997.28 5199.72 1499.39 3696.63 2097.60 36698.17 6499.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4696.10 11498.94 6099.17 7996.06 3699.92 3497.62 10099.78 3499.75 37
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 9195.80 12599.16 5099.47 2595.37 6099.92 3497.89 8099.75 4799.79 21
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5196.15 11198.94 6099.17 7995.91 4399.94 997.55 10799.79 3099.78 23
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20998.76 10997.82 2198.45 9898.93 12196.65 1999.83 7497.38 11699.41 11299.71 52
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 9195.12 16199.32 3799.39 3696.22 3099.84 7297.72 9099.73 5499.67 68
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4796.10 11498.93 6499.19 7795.70 4999.94 997.62 10099.79 3099.78 23
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24797.15 10298.84 12998.97 4398.75 499.43 2999.54 1393.29 10799.93 2899.64 1099.79 3099.89 4
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9893.67 24499.37 3399.52 1696.52 2299.89 5298.06 6999.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11397.27 5598.02 12299.39 3694.81 8399.96 497.91 7899.79 3099.77 29
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13797.51 3698.15 10998.83 13495.70 4999.92 3497.53 10999.67 6499.66 71
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8596.58 9399.10 5299.32 5395.39 5899.82 8197.70 9599.63 7599.72 48
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 7095.96 11798.60 9099.13 8796.05 3799.94 997.77 8799.86 299.77 29
MSLP-MVS++98.56 3298.57 1898.55 9199.26 8396.80 11698.71 16399.05 3797.28 5198.84 7099.28 5896.47 2399.40 18398.52 4699.70 6099.47 103
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20598.78 10597.72 2298.92 6699.28 5895.27 6699.82 8197.55 10799.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9896.49 9699.17 4799.35 4895.34 6299.82 8197.72 9099.65 7099.71 52
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 9196.24 10799.20 4499.37 4295.30 6499.80 9397.73 8999.67 6499.72 48
MM98.51 3698.24 5099.33 2999.12 10698.14 5998.93 10197.02 35298.96 199.17 4799.47 2591.97 13799.94 999.85 399.69 6199.91 2
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 9196.24 10798.35 10599.23 6795.46 5599.94 997.42 11499.81 1599.77 29
ZNCC-MVS98.49 3898.20 5699.35 2499.73 1198.39 3499.19 4498.86 7695.77 12798.31 10899.10 9195.46 5599.93 2897.57 10699.81 1599.74 39
SPE-MVS-test98.49 3898.50 2398.46 10399.20 9697.05 10699.64 498.50 17997.45 4198.88 6799.14 8695.25 6899.15 21198.83 2899.56 9299.20 147
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14399.03 5399.32 5395.56 5299.94 996.80 14599.77 3699.78 23
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13398.30 22898.69 12697.21 5898.84 7099.36 4695.41 5799.78 10698.62 3599.65 7099.80 20
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9397.32 9097.91 27799.58 397.20 5998.33 10699.00 11095.99 4099.64 13698.05 7199.76 4299.69 59
balanced_conf0398.45 4398.35 3598.74 7698.65 15897.55 7899.19 4498.60 14896.72 8799.35 3498.77 14195.06 7899.55 15998.95 2499.87 199.12 162
test_fmvsmvis_n_192098.44 4498.51 2198.23 12498.33 18896.15 15098.97 8999.15 2998.55 998.45 9899.55 1194.26 9699.97 199.65 899.66 6798.57 223
CS-MVS98.44 4498.49 2498.31 11699.08 11196.73 12099.67 398.47 18597.17 6198.94 6099.10 9195.73 4899.13 21498.71 3199.49 10299.09 166
GST-MVS98.43 4698.12 6099.34 2599.72 1298.38 3599.09 6498.82 8595.71 13198.73 8099.06 10295.27 6699.93 2897.07 12499.63 7599.72 48
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13399.30 7195.25 19698.85 12599.39 797.94 1999.74 1199.62 392.59 11699.91 4399.65 899.52 9899.25 140
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14398.28 23198.68 12997.17 6198.74 7899.37 4295.25 6899.79 10398.57 3799.54 9599.73 44
DELS-MVS98.40 4998.20 5698.99 6099.00 11897.66 7397.75 29898.89 6097.71 2498.33 10698.97 11294.97 8099.88 6198.42 5499.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11899.09 11095.41 18698.86 12199.37 897.69 2699.78 799.61 492.38 11999.91 4399.58 1299.43 11099.49 99
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9397.25 9798.11 25598.29 22497.19 6098.99 5899.02 10596.22 3099.67 13198.52 4698.56 16099.51 92
HPM-MVS_fast98.38 5098.13 5999.12 5399.75 397.86 6899.44 998.82 8594.46 20098.94 6099.20 7295.16 7399.74 11697.58 10399.85 699.77 29
patch_mono-298.36 5398.87 696.82 22799.53 3690.68 33498.64 18099.29 1497.88 2099.19 4699.52 1696.80 1599.97 199.11 2099.86 299.82 16
HPM-MVScopyleft98.36 5398.10 6399.13 5199.74 797.82 7299.53 698.80 9894.63 19098.61 8998.97 11295.13 7599.77 11197.65 9899.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.35 5598.00 6999.42 1699.51 4098.72 2198.80 14298.82 8594.52 19799.23 4399.25 6695.54 5499.80 9396.52 15299.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11297.95 27299.58 397.14 6498.44 10099.01 10995.03 7999.62 14397.91 7899.75 4799.50 94
PHI-MVS98.34 5698.06 6499.18 4599.15 10498.12 6099.04 7399.09 3293.32 25998.83 7299.10 9196.54 2199.83 7497.70 9599.76 4299.59 82
MP-MVScopyleft98.33 5898.01 6899.28 3599.75 398.18 5499.22 3698.79 10396.13 11297.92 13399.23 6794.54 8699.94 996.74 14899.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSMamba_PlusPlus98.31 5998.19 5898.67 8298.96 12597.36 8899.24 3098.57 15994.81 18298.99 5898.90 12595.22 7199.59 14699.15 1999.84 1199.07 174
MP-MVS-pluss98.31 5997.92 7199.49 1299.72 1298.88 1898.43 21498.78 10594.10 20997.69 14899.42 3395.25 6899.92 3498.09 6899.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
fmvsm_s_conf0.5_n_298.30 6198.21 5498.57 8899.25 8497.11 10398.66 17699.20 2498.82 299.79 699.60 889.38 19499.92 3499.80 499.38 11798.69 207
MVS_030498.23 6297.91 7299.21 4298.06 21797.96 6698.58 18995.51 38998.58 798.87 6899.26 6192.99 11199.95 799.62 1199.67 6499.73 44
ACMMPcopyleft98.23 6297.95 7099.09 5599.74 797.62 7699.03 7699.41 695.98 11697.60 15799.36 4694.45 9199.93 2897.14 12198.85 14699.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EC-MVSNet98.21 6498.11 6198.49 10098.34 18597.26 9699.61 598.43 19496.78 8098.87 6898.84 13293.72 10399.01 23598.91 2699.50 10099.19 151
fmvsm_s_conf0.1_n98.18 6598.21 5498.11 13798.54 16795.24 19798.87 11899.24 1797.50 3799.70 1599.67 191.33 15399.89 5299.47 1499.54 9599.21 146
fmvsm_s_conf0.1_n_298.14 6698.02 6798.53 9598.88 13197.07 10598.69 16998.82 8598.78 399.77 899.61 488.83 21399.91 4399.71 699.07 13098.61 217
fmvsm_s_conf0.1_n_a98.08 6798.04 6698.21 12597.66 25395.39 18798.89 11099.17 2797.24 5699.76 1099.67 191.13 15899.88 6199.39 1599.41 11299.35 119
dcpmvs_298.08 6798.59 1796.56 25199.57 3390.34 34399.15 5198.38 20496.82 7999.29 3899.49 2295.78 4799.57 14998.94 2599.86 299.77 29
CANet98.05 6997.76 7598.90 7098.73 14497.27 9298.35 21998.78 10597.37 4797.72 14598.96 11791.53 14999.92 3498.79 2999.65 7099.51 92
train_agg97.97 7097.52 8799.33 2999.31 6798.50 2997.92 27598.73 11692.98 27597.74 14298.68 15296.20 3299.80 9396.59 14999.57 8699.68 64
ETV-MVS97.96 7197.81 7398.40 11198.42 17397.27 9298.73 15898.55 16496.84 7798.38 10297.44 27095.39 5899.35 18897.62 10098.89 14198.58 222
UA-Net97.96 7197.62 7998.98 6298.86 13597.47 8498.89 11099.08 3396.67 9098.72 8199.54 1393.15 10999.81 8694.87 20698.83 14799.65 72
CDPH-MVS97.94 7397.49 8999.28 3599.47 5098.44 3197.91 27798.67 13492.57 29198.77 7698.85 13195.93 4299.72 11895.56 18699.69 6199.68 64
DeepPCF-MVS96.37 297.93 7498.48 2696.30 27699.00 11889.54 35797.43 32098.87 7098.16 1399.26 4299.38 4196.12 3599.64 13698.30 5999.77 3699.72 48
DeepC-MVS95.98 397.88 7597.58 8198.77 7499.25 8496.93 11098.83 13198.75 11196.96 7396.89 18299.50 2090.46 17199.87 6397.84 8499.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.01_n97.86 7697.54 8698.83 7295.48 37096.83 11598.95 9598.60 14898.58 798.93 6499.55 1188.57 21899.91 4399.54 1399.61 7899.77 29
DP-MVS Recon97.86 7697.46 9299.06 5799.53 3698.35 4498.33 22198.89 6092.62 28898.05 11798.94 12095.34 6299.65 13496.04 16899.42 11199.19 151
CSCG97.85 7897.74 7698.20 12799.67 2595.16 20099.22 3699.32 1193.04 27397.02 17598.92 12395.36 6199.91 4397.43 11399.64 7499.52 89
BP-MVS197.82 7997.51 8898.76 7598.25 19597.39 8799.15 5197.68 29196.69 8898.47 9499.10 9190.29 17599.51 16698.60 3699.35 12099.37 117
MG-MVS97.81 8097.60 8098.44 10699.12 10695.97 15997.75 29898.78 10596.89 7698.46 9599.22 6993.90 10299.68 13094.81 21099.52 9899.67 68
VNet97.79 8197.40 9698.96 6598.88 13197.55 7898.63 18398.93 5196.74 8499.02 5498.84 13290.33 17499.83 7498.53 4096.66 22199.50 94
EIA-MVS97.75 8297.58 8198.27 11898.38 17796.44 13599.01 8198.60 14895.88 12197.26 16497.53 26494.97 8099.33 19197.38 11699.20 12699.05 175
PS-MVSNAJ97.73 8397.77 7497.62 17798.68 15395.58 17797.34 32998.51 17497.29 5098.66 8697.88 23094.51 8799.90 5097.87 8199.17 12897.39 264
casdiffmvs_mvgpermissive97.72 8497.48 9198.44 10698.42 17396.59 12898.92 10398.44 19096.20 10997.76 13999.20 7291.66 14399.23 20198.27 6398.41 17099.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.72 8497.32 10098.92 6799.64 2897.10 10499.12 5898.81 9192.34 29998.09 11499.08 10093.01 11099.92 3496.06 16799.77 3699.75 37
PVSNet_Blended_VisFu97.70 8697.46 9298.44 10699.27 8195.91 16798.63 18399.16 2894.48 19997.67 14998.88 12892.80 11399.91 4397.11 12299.12 12999.50 94
mvsany_test197.69 8797.70 7797.66 17598.24 19694.18 25097.53 31497.53 30995.52 13999.66 1799.51 1894.30 9499.56 15298.38 5598.62 15699.23 142
sasdasda97.67 8897.23 10498.98 6298.70 14998.38 3599.34 1698.39 20096.76 8297.67 14997.40 27492.26 12399.49 17098.28 6096.28 23999.08 170
canonicalmvs97.67 8897.23 10498.98 6298.70 14998.38 3599.34 1698.39 20096.76 8297.67 14997.40 27492.26 12399.49 17098.28 6096.28 23999.08 170
xiu_mvs_v2_base97.66 9097.70 7797.56 18198.61 16295.46 18497.44 31898.46 18697.15 6398.65 8798.15 20694.33 9399.80 9397.84 8498.66 15597.41 262
GDP-MVS97.64 9197.28 10198.71 7998.30 19397.33 8999.05 6998.52 17196.34 10498.80 7399.05 10389.74 18499.51 16696.86 14298.86 14599.28 134
baseline97.64 9197.44 9498.25 12298.35 18096.20 14799.00 8398.32 21496.33 10698.03 12099.17 7991.35 15299.16 20898.10 6798.29 17799.39 115
casdiffmvspermissive97.63 9397.41 9598.28 11798.33 18896.14 15198.82 13398.32 21496.38 10397.95 12899.21 7091.23 15799.23 20198.12 6698.37 17199.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net97.62 9497.19 10798.92 6798.66 15598.20 5299.32 2198.38 20496.69 8897.58 15897.42 27392.10 13199.50 16998.28 6096.25 24299.08 170
xiu_mvs_v1_base_debu97.60 9597.56 8397.72 16598.35 18095.98 15497.86 28798.51 17497.13 6599.01 5598.40 17991.56 14599.80 9398.53 4098.68 15197.37 266
xiu_mvs_v1_base97.60 9597.56 8397.72 16598.35 18095.98 15497.86 28798.51 17497.13 6599.01 5598.40 17991.56 14599.80 9398.53 4098.68 15197.37 266
xiu_mvs_v1_base_debi97.60 9597.56 8397.72 16598.35 18095.98 15497.86 28798.51 17497.13 6599.01 5598.40 17991.56 14599.80 9398.53 4098.68 15197.37 266
diffmvspermissive97.58 9897.40 9698.13 13398.32 19195.81 17298.06 26198.37 20696.20 10998.74 7898.89 12791.31 15599.25 19898.16 6598.52 16299.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 9997.49 8997.84 15298.07 21495.76 17399.47 798.40 19894.98 17198.79 7498.83 13492.34 12098.41 30896.91 13099.59 8299.34 121
alignmvs97.56 10097.07 11399.01 5998.66 15598.37 4298.83 13198.06 27196.74 8498.00 12697.65 25290.80 16599.48 17598.37 5696.56 22599.19 151
DPM-MVS97.55 10196.99 11699.23 4199.04 11398.55 2797.17 34498.35 20994.85 18197.93 13298.58 16295.07 7799.71 12392.60 27899.34 12199.43 112
OMC-MVS97.55 10197.34 9998.20 12799.33 6295.92 16698.28 23198.59 15295.52 13997.97 12799.10 9193.28 10899.49 17095.09 20198.88 14299.19 151
PAPM_NR97.46 10397.11 11098.50 9899.50 4296.41 13898.63 18398.60 14895.18 15897.06 17398.06 21294.26 9699.57 14993.80 24698.87 14499.52 89
EPP-MVSNet97.46 10397.28 10197.99 14598.64 15995.38 18899.33 2098.31 21693.61 24897.19 16699.07 10194.05 9999.23 20196.89 13498.43 16999.37 117
3Dnovator94.51 597.46 10396.93 11999.07 5697.78 24197.64 7499.35 1599.06 3597.02 7093.75 29299.16 8289.25 19899.92 3497.22 12099.75 4799.64 74
CNLPA97.45 10697.03 11498.73 7799.05 11297.44 8698.07 26098.53 16895.32 15196.80 18798.53 16793.32 10699.72 11894.31 22999.31 12399.02 177
lupinMVS97.44 10797.22 10698.12 13698.07 21495.76 17397.68 30397.76 28894.50 19898.79 7498.61 15792.34 12099.30 19497.58 10399.59 8299.31 127
3Dnovator+94.38 697.43 10896.78 12799.38 1897.83 23898.52 2899.37 1298.71 12197.09 6892.99 32099.13 8789.36 19599.89 5296.97 12799.57 8699.71 52
Vis-MVSNetpermissive97.42 10997.11 11098.34 11498.66 15596.23 14699.22 3699.00 4096.63 9298.04 11999.21 7088.05 23499.35 18896.01 17099.21 12599.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 11097.25 10397.91 14998.70 14996.80 11698.82 13398.69 12694.53 19598.11 11298.28 19494.50 9099.57 14994.12 23599.49 10297.37 266
sss97.39 11196.98 11898.61 8698.60 16396.61 12598.22 23798.93 5193.97 21998.01 12598.48 17291.98 13599.85 6896.45 15498.15 17999.39 115
test_cas_vis1_n_192097.38 11297.36 9897.45 18498.95 12693.25 28699.00 8398.53 16897.70 2599.77 899.35 4884.71 29999.85 6898.57 3799.66 6799.26 138
PVSNet_Blended97.38 11297.12 10998.14 13099.25 8495.35 19197.28 33499.26 1593.13 26997.94 13098.21 20292.74 11499.81 8696.88 13699.40 11599.27 135
WTY-MVS97.37 11496.92 12098.72 7898.86 13596.89 11498.31 22698.71 12195.26 15497.67 14998.56 16692.21 12799.78 10695.89 17296.85 21699.48 101
jason97.32 11597.08 11298.06 14197.45 27395.59 17697.87 28597.91 28294.79 18398.55 9298.83 13491.12 15999.23 20197.58 10399.60 8099.34 121
jason: jason.
MVS_Test97.28 11697.00 11598.13 13398.33 18895.97 15998.74 15498.07 26694.27 20598.44 10098.07 21192.48 11799.26 19796.43 15598.19 17899.16 157
EPNet97.28 11696.87 12298.51 9794.98 37996.14 15198.90 10697.02 35298.28 1295.99 21899.11 8991.36 15199.89 5296.98 12699.19 12799.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsmamba97.25 11896.99 11698.02 14398.34 18595.54 18199.18 4897.47 31595.04 16798.15 10998.57 16589.46 19199.31 19397.68 9799.01 13599.22 144
test_yl97.22 11996.78 12798.54 9398.73 14496.60 12698.45 20998.31 21694.70 18498.02 12298.42 17790.80 16599.70 12496.81 14396.79 21899.34 121
DCV-MVSNet97.22 11996.78 12798.54 9398.73 14496.60 12698.45 20998.31 21694.70 18498.02 12298.42 17790.80 16599.70 12496.81 14396.79 21899.34 121
IS-MVSNet97.22 11996.88 12198.25 12298.85 13796.36 14199.19 4497.97 27695.39 14597.23 16598.99 11191.11 16098.93 24794.60 21798.59 15899.47 103
PLCcopyleft95.07 497.20 12296.78 12798.44 10699.29 7696.31 14598.14 25098.76 10992.41 29796.39 20798.31 19294.92 8299.78 10694.06 23898.77 15099.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 12397.18 10897.20 19798.81 14093.27 28395.78 38999.15 2995.25 15596.79 18898.11 20992.29 12299.07 22598.56 3999.85 699.25 140
LS3D97.16 12496.66 13698.68 8198.53 16897.19 10098.93 10198.90 5892.83 28295.99 21899.37 4292.12 13099.87 6393.67 25099.57 8698.97 182
AdaColmapbinary97.15 12596.70 13298.48 10199.16 10296.69 12298.01 26698.89 6094.44 20196.83 18398.68 15290.69 16899.76 11294.36 22599.29 12498.98 181
mamv497.13 12698.11 6194.17 35598.97 12483.70 39798.66 17698.71 12194.63 19097.83 13698.90 12596.25 2999.55 15999.27 1799.76 4299.27 135
Effi-MVS+97.12 12796.69 13398.39 11298.19 20496.72 12197.37 32598.43 19493.71 23797.65 15398.02 21592.20 12899.25 19896.87 13997.79 19199.19 151
CHOSEN 1792x268897.12 12796.80 12498.08 13999.30 7194.56 23498.05 26299.71 193.57 24997.09 16998.91 12488.17 22899.89 5296.87 13999.56 9299.81 17
F-COLMAP97.09 12996.80 12497.97 14699.45 5594.95 21398.55 19798.62 14793.02 27496.17 21398.58 16294.01 10099.81 8693.95 24098.90 14099.14 160
RRT-MVS97.03 13096.78 12797.77 16197.90 23494.34 24399.12 5898.35 20995.87 12298.06 11698.70 15086.45 26599.63 13998.04 7298.54 16199.35 119
TAMVS97.02 13196.79 12697.70 16898.06 21795.31 19498.52 19998.31 21693.95 22097.05 17498.61 15793.49 10598.52 29095.33 19397.81 19099.29 132
CDS-MVSNet96.99 13296.69 13397.90 15098.05 21995.98 15498.20 24098.33 21393.67 24496.95 17698.49 17193.54 10498.42 30195.24 19997.74 19499.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 13396.55 13998.21 12598.17 20996.07 15397.98 27098.21 23397.24 5697.13 16898.93 12186.88 25799.91 4395.00 20499.37 11998.66 213
114514_t96.93 13496.27 14998.92 6799.50 4297.63 7598.85 12598.90 5884.80 39697.77 13899.11 8992.84 11299.66 13394.85 20799.77 3699.47 103
MAR-MVS96.91 13596.40 14598.45 10498.69 15296.90 11298.66 17698.68 12992.40 29897.07 17297.96 22291.54 14899.75 11493.68 24898.92 13998.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 13696.49 14298.14 13099.33 6295.56 17897.38 32399.65 292.34 29997.61 15698.20 20389.29 19799.10 22296.97 12797.60 19999.77 29
Vis-MVSNet (Re-imp)96.87 13796.55 13997.83 15398.73 14495.46 18499.20 4298.30 22294.96 17396.60 19598.87 12990.05 17898.59 28593.67 25098.60 15799.46 107
SDMVSNet96.85 13896.42 14398.14 13099.30 7196.38 13999.21 3999.23 2095.92 11895.96 22098.76 14685.88 27599.44 18097.93 7695.59 25498.60 218
PAPR96.84 13996.24 15198.65 8498.72 14896.92 11197.36 32798.57 15993.33 25896.67 19097.57 26194.30 9499.56 15291.05 31998.59 15899.47 103
HY-MVS93.96 896.82 14096.23 15298.57 8898.46 17297.00 10798.14 25098.21 23393.95 22096.72 18997.99 21991.58 14499.76 11294.51 22196.54 22698.95 185
UGNet96.78 14196.30 14898.19 12998.24 19695.89 16998.88 11598.93 5197.39 4496.81 18697.84 23482.60 32699.90 5096.53 15199.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 14296.60 13797.12 20699.25 8495.35 19198.26 23499.26 1594.28 20497.94 13097.46 26792.74 11499.81 8696.88 13693.32 29096.20 356
test_vis1_n_192096.71 14396.84 12396.31 27599.11 10889.74 35199.05 6998.58 15798.08 1499.87 199.37 4278.48 35799.93 2899.29 1699.69 6199.27 135
mvs_anonymous96.70 14496.53 14197.18 20098.19 20493.78 25998.31 22698.19 23794.01 21694.47 25198.27 19792.08 13398.46 29697.39 11597.91 18699.31 127
1112_ss96.63 14596.00 15998.50 9898.56 16496.37 14098.18 24898.10 25992.92 27894.84 24098.43 17592.14 12999.58 14894.35 22696.51 22799.56 88
PMMVS96.60 14696.33 14797.41 18897.90 23493.93 25597.35 32898.41 19692.84 28197.76 13997.45 26991.10 16199.20 20596.26 16097.91 18699.11 164
DP-MVS96.59 14795.93 16298.57 8899.34 6096.19 14998.70 16798.39 20089.45 36894.52 24999.35 4891.85 13899.85 6892.89 27498.88 14299.68 64
PatchMatch-RL96.59 14796.03 15898.27 11899.31 6796.51 13297.91 27799.06 3593.72 23696.92 18098.06 21288.50 22399.65 13491.77 30399.00 13798.66 213
GeoE96.58 14996.07 15598.10 13898.35 18095.89 16999.34 1698.12 25393.12 27096.09 21498.87 12989.71 18598.97 23792.95 27098.08 18299.43 112
XVG-OURS96.55 15096.41 14496.99 21398.75 14393.76 26097.50 31798.52 17195.67 13396.83 18399.30 5688.95 21199.53 16295.88 17396.26 24197.69 255
FIs96.51 15196.12 15497.67 17297.13 29797.54 8099.36 1399.22 2395.89 12094.03 27898.35 18591.98 13598.44 29996.40 15692.76 29897.01 274
XVG-OURS-SEG-HR96.51 15196.34 14697.02 21298.77 14293.76 26097.79 29698.50 17995.45 14296.94 17799.09 9887.87 23999.55 15996.76 14795.83 25397.74 252
PS-MVSNAJss96.43 15396.26 15096.92 22295.84 35995.08 20599.16 5098.50 17995.87 12293.84 28798.34 18994.51 8798.61 28296.88 13693.45 28797.06 272
test_fmvs196.42 15496.67 13595.66 30398.82 13988.53 37698.80 14298.20 23596.39 10299.64 1999.20 7280.35 34599.67 13199.04 2299.57 8698.78 199
FC-MVSNet-test96.42 15496.05 15697.53 18296.95 30697.27 9299.36 1399.23 2095.83 12493.93 28198.37 18392.00 13498.32 31896.02 16992.72 29997.00 275
ab-mvs96.42 15495.71 17298.55 9198.63 16096.75 11997.88 28498.74 11393.84 22696.54 20098.18 20585.34 28599.75 11495.93 17196.35 23199.15 158
FA-MVS(test-final)96.41 15795.94 16197.82 15598.21 20095.20 19997.80 29497.58 29993.21 26497.36 16297.70 24689.47 19099.56 15294.12 23597.99 18398.71 206
PVSNet91.96 1896.35 15896.15 15396.96 21799.17 9892.05 30796.08 38298.68 12993.69 24097.75 14197.80 24088.86 21299.69 12994.26 23199.01 13599.15 158
Test_1112_low_res96.34 15995.66 17798.36 11398.56 16495.94 16297.71 30198.07 26692.10 30894.79 24497.29 28291.75 14099.56 15294.17 23396.50 22899.58 86
Effi-MVS+-dtu96.29 16096.56 13895.51 30897.89 23690.22 34498.80 14298.10 25996.57 9596.45 20596.66 33690.81 16498.91 25095.72 18097.99 18397.40 263
QAPM96.29 16095.40 18298.96 6597.85 23797.60 7799.23 3298.93 5189.76 36293.11 31799.02 10589.11 20399.93 2891.99 29799.62 7799.34 121
Fast-Effi-MVS+96.28 16295.70 17498.03 14298.29 19495.97 15998.58 18998.25 23091.74 31695.29 23397.23 28791.03 16399.15 21192.90 27297.96 18598.97 182
nrg03096.28 16295.72 16997.96 14896.90 31198.15 5799.39 1098.31 21695.47 14194.42 25798.35 18592.09 13298.69 27497.50 11189.05 34797.04 273
131496.25 16495.73 16897.79 15797.13 29795.55 18098.19 24398.59 15293.47 25392.03 34597.82 23891.33 15399.49 17094.62 21698.44 16798.32 236
sd_testset96.17 16595.76 16797.42 18799.30 7194.34 24398.82 13399.08 3395.92 11895.96 22098.76 14682.83 32599.32 19295.56 18695.59 25498.60 218
h-mvs3396.17 16595.62 17897.81 15699.03 11494.45 23698.64 18098.75 11197.48 3898.67 8298.72 14989.76 18299.86 6797.95 7481.59 39399.11 164
HQP_MVS96.14 16795.90 16396.85 22597.42 27594.60 23298.80 14298.56 16297.28 5195.34 22998.28 19487.09 25299.03 23096.07 16494.27 26296.92 281
tttt051796.07 16895.51 18097.78 15898.41 17594.84 21799.28 2494.33 40294.26 20697.64 15498.64 15684.05 31499.47 17795.34 19297.60 19999.03 176
MVSTER96.06 16995.72 16997.08 20998.23 19895.93 16598.73 15898.27 22594.86 17995.07 23598.09 21088.21 22798.54 28896.59 14993.46 28596.79 299
thisisatest053096.01 17095.36 18797.97 14698.38 17795.52 18298.88 11594.19 40494.04 21197.64 15498.31 19283.82 32199.46 17895.29 19697.70 19698.93 187
test_djsdf96.00 17195.69 17596.93 21995.72 36195.49 18399.47 798.40 19894.98 17194.58 24797.86 23189.16 20198.41 30896.91 13094.12 27096.88 290
EI-MVSNet95.96 17295.83 16596.36 27197.93 23293.70 26698.12 25398.27 22593.70 23995.07 23599.02 10592.23 12698.54 28894.68 21293.46 28596.84 296
ECVR-MVScopyleft95.95 17395.71 17296.65 23799.02 11590.86 32999.03 7691.80 41496.96 7398.10 11399.26 6181.31 33299.51 16696.90 13399.04 13299.59 82
BH-untuned95.95 17395.72 16996.65 23798.55 16692.26 30298.23 23697.79 28793.73 23494.62 24698.01 21788.97 21099.00 23693.04 26798.51 16398.68 209
test111195.94 17595.78 16696.41 26898.99 12190.12 34599.04 7392.45 41396.99 7298.03 12099.27 6081.40 33199.48 17596.87 13999.04 13299.63 76
MSDG95.93 17695.30 19397.83 15398.90 12995.36 18996.83 36998.37 20691.32 33194.43 25698.73 14890.27 17699.60 14590.05 33398.82 14898.52 224
BH-RMVSNet95.92 17795.32 19197.69 16998.32 19194.64 22698.19 24397.45 32094.56 19396.03 21698.61 15785.02 29099.12 21690.68 32499.06 13199.30 130
test_fmvs1_n95.90 17895.99 16095.63 30498.67 15488.32 38099.26 2798.22 23296.40 10199.67 1699.26 6173.91 39199.70 12499.02 2399.50 10098.87 190
Fast-Effi-MVS+-dtu95.87 17995.85 16495.91 29297.74 24691.74 31398.69 16998.15 24995.56 13794.92 23897.68 25188.98 20998.79 26893.19 26297.78 19297.20 270
LFMVS95.86 18094.98 20898.47 10298.87 13496.32 14398.84 12996.02 38193.40 25698.62 8899.20 7274.99 38599.63 13997.72 9097.20 20699.46 107
baseline195.84 18195.12 20198.01 14498.49 17195.98 15498.73 15897.03 35095.37 14896.22 21098.19 20489.96 18099.16 20894.60 21787.48 36398.90 189
OpenMVScopyleft93.04 1395.83 18295.00 20698.32 11597.18 29497.32 9099.21 3998.97 4389.96 35891.14 35499.05 10386.64 26099.92 3493.38 25699.47 10597.73 253
VDD-MVS95.82 18395.23 19597.61 17898.84 13893.98 25498.68 17197.40 32495.02 16997.95 12899.34 5274.37 39099.78 10698.64 3496.80 21799.08 170
UniMVSNet (Re)95.78 18495.19 19797.58 17996.99 30497.47 8498.79 14899.18 2695.60 13593.92 28297.04 30891.68 14198.48 29295.80 17787.66 36296.79 299
VPA-MVSNet95.75 18595.11 20297.69 16997.24 28697.27 9298.94 9899.23 2095.13 16095.51 22797.32 28085.73 27798.91 25097.33 11889.55 33896.89 289
HQP-MVS95.72 18695.40 18296.69 23597.20 29094.25 24898.05 26298.46 18696.43 9894.45 25297.73 24386.75 25898.96 24195.30 19494.18 26696.86 295
hse-mvs295.71 18795.30 19396.93 21998.50 16993.53 27198.36 21898.10 25997.48 3898.67 8297.99 21989.76 18299.02 23397.95 7480.91 39898.22 239
UniMVSNet_NR-MVSNet95.71 18795.15 19897.40 19096.84 31496.97 10898.74 15499.24 1795.16 15993.88 28497.72 24591.68 14198.31 32095.81 17587.25 36896.92 281
PatchmatchNetpermissive95.71 18795.52 17996.29 27797.58 25990.72 33396.84 36897.52 31094.06 21097.08 17096.96 31889.24 19998.90 25392.03 29698.37 17199.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 19095.33 19096.76 23096.16 34794.63 22798.43 21498.39 20096.64 9195.02 23798.78 13985.15 28999.05 22695.21 20094.20 26596.60 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 19095.38 18696.61 24497.61 25693.84 25898.91 10598.44 19095.25 15594.28 26498.47 17386.04 27499.12 21695.50 18993.95 27596.87 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 19295.69 17595.44 31297.54 26488.54 37596.97 35497.56 30293.50 25197.52 16096.93 32289.49 18899.16 20895.25 19896.42 23098.64 215
FE-MVS95.62 19394.90 21297.78 15898.37 17994.92 21497.17 34497.38 32690.95 34297.73 14497.70 24685.32 28799.63 13991.18 31198.33 17498.79 196
LPG-MVS_test95.62 19395.34 18896.47 26297.46 27093.54 26998.99 8698.54 16694.67 18894.36 26098.77 14185.39 28299.11 21895.71 18194.15 26896.76 302
CLD-MVS95.62 19395.34 18896.46 26597.52 26793.75 26297.27 33598.46 18695.53 13894.42 25798.00 21886.21 26998.97 23796.25 16294.37 26096.66 317
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 19694.89 21397.76 16298.15 21095.15 20296.77 37094.41 40092.95 27797.18 16797.43 27184.78 29699.45 17994.63 21497.73 19598.68 209
MonoMVSNet95.51 19795.45 18195.68 30195.54 36690.87 32898.92 10397.37 32795.79 12695.53 22697.38 27689.58 18797.68 36396.40 15692.59 30098.49 226
thres600view795.49 19894.77 21697.67 17298.98 12295.02 20698.85 12596.90 35995.38 14696.63 19296.90 32384.29 30699.59 14688.65 35596.33 23298.40 230
test_vis1_n95.47 19995.13 19996.49 25997.77 24290.41 34199.27 2698.11 25696.58 9399.66 1799.18 7867.00 40499.62 14399.21 1899.40 11599.44 110
SCA95.46 20095.13 19996.46 26597.67 25191.29 32197.33 33097.60 29894.68 18796.92 18097.10 29383.97 31698.89 25492.59 28098.32 17699.20 147
IterMVS-LS95.46 20095.21 19696.22 27998.12 21193.72 26598.32 22598.13 25293.71 23794.26 26597.31 28192.24 12598.10 33694.63 21490.12 32996.84 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 20295.03 20596.73 23195.42 37494.63 22799.14 5498.52 17195.74 12893.22 31098.36 18483.87 31998.65 27996.95 12994.04 27196.91 286
CVMVSNet95.43 20396.04 15793.57 36097.93 23283.62 39898.12 25398.59 15295.68 13296.56 19699.02 10587.51 24597.51 37193.56 25497.44 20299.60 80
anonymousdsp95.42 20494.91 21196.94 21895.10 37895.90 16899.14 5498.41 19693.75 23193.16 31397.46 26787.50 24798.41 30895.63 18594.03 27296.50 341
DU-MVS95.42 20494.76 21797.40 19096.53 33096.97 10898.66 17698.99 4295.43 14393.88 28497.69 24888.57 21898.31 32095.81 17587.25 36896.92 281
mvs_tets95.41 20695.00 20696.65 23795.58 36594.42 23899.00 8398.55 16495.73 13093.21 31198.38 18283.45 32398.63 28097.09 12394.00 27396.91 286
thres100view90095.38 20794.70 22197.41 18898.98 12294.92 21498.87 11896.90 35995.38 14696.61 19496.88 32484.29 30699.56 15288.11 35896.29 23697.76 250
thres40095.38 20794.62 22597.65 17698.94 12794.98 21098.68 17196.93 35795.33 14996.55 19896.53 34284.23 31099.56 15288.11 35896.29 23698.40 230
BH-w/o95.38 20795.08 20396.26 27898.34 18591.79 31097.70 30297.43 32292.87 28094.24 26797.22 28888.66 21698.84 26091.55 30797.70 19698.16 242
VDDNet95.36 21094.53 22997.86 15198.10 21395.13 20398.85 12597.75 28990.46 34998.36 10399.39 3673.27 39399.64 13697.98 7396.58 22498.81 195
TAPA-MVS93.98 795.35 21194.56 22897.74 16499.13 10594.83 21998.33 22198.64 14286.62 38496.29 20998.61 15794.00 10199.29 19580.00 39999.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 21294.98 20896.43 26797.67 25193.48 27398.73 15898.44 19094.94 17792.53 33398.53 16784.50 30599.14 21395.48 19094.00 27396.66 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 21394.87 21496.71 23299.29 7693.24 28798.58 18998.11 25689.92 35993.57 29699.10 9186.37 26799.79 10390.78 32298.10 18197.09 271
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UBG95.32 21494.72 22097.13 20498.05 21993.26 28497.87 28597.20 33894.96 17396.18 21295.66 37380.97 33799.35 18894.47 22397.08 20898.78 199
tfpn200view995.32 21494.62 22597.43 18698.94 12794.98 21098.68 17196.93 35795.33 14996.55 19896.53 34284.23 31099.56 15288.11 35896.29 23697.76 250
Anonymous20240521195.28 21694.49 23197.67 17299.00 11893.75 26298.70 16797.04 34990.66 34596.49 20298.80 13778.13 36199.83 7496.21 16395.36 25899.44 110
thres20095.25 21794.57 22797.28 19498.81 14094.92 21498.20 24097.11 34295.24 15796.54 20096.22 35384.58 30399.53 16287.93 36396.50 22897.39 264
AllTest95.24 21894.65 22496.99 21399.25 8493.21 28898.59 18798.18 24091.36 32793.52 29898.77 14184.67 30099.72 11889.70 34097.87 18898.02 245
LCM-MVSNet-Re95.22 21995.32 19194.91 32898.18 20687.85 38698.75 15195.66 38895.11 16288.96 37396.85 32790.26 17797.65 36495.65 18498.44 16799.22 144
EPNet_dtu95.21 22094.95 21095.99 28796.17 34590.45 33998.16 24997.27 33496.77 8193.14 31698.33 19090.34 17398.42 30185.57 37698.81 14999.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 22194.45 23697.46 18396.75 32096.56 13098.86 12198.65 14193.30 26193.27 30998.27 19784.85 29498.87 25794.82 20991.26 31696.96 277
D2MVS95.18 22295.08 20395.48 30997.10 29992.07 30698.30 22899.13 3194.02 21392.90 32196.73 33389.48 18998.73 27294.48 22293.60 28495.65 369
WR-MVS95.15 22394.46 23497.22 19696.67 32596.45 13498.21 23898.81 9194.15 20793.16 31397.69 24887.51 24598.30 32295.29 19688.62 35396.90 288
TranMVSNet+NR-MVSNet95.14 22494.48 23297.11 20796.45 33596.36 14199.03 7699.03 3895.04 16793.58 29597.93 22488.27 22698.03 34294.13 23486.90 37396.95 279
baseline295.11 22594.52 23096.87 22496.65 32693.56 26898.27 23394.10 40693.45 25492.02 34697.43 27187.45 24999.19 20693.88 24397.41 20497.87 248
miper_enhance_ethall95.10 22694.75 21896.12 28397.53 26693.73 26496.61 37698.08 26492.20 30793.89 28396.65 33892.44 11898.30 32294.21 23291.16 31796.34 350
Anonymous2024052995.10 22694.22 24697.75 16399.01 11794.26 24798.87 11898.83 8285.79 39296.64 19198.97 11278.73 35499.85 6896.27 15994.89 25999.12 162
test-LLR95.10 22694.87 21495.80 29796.77 31789.70 35296.91 35995.21 39295.11 16294.83 24295.72 37087.71 24198.97 23793.06 26598.50 16498.72 203
WR-MVS_H95.05 22994.46 23496.81 22896.86 31395.82 17199.24 3099.24 1793.87 22592.53 33396.84 32890.37 17298.24 32893.24 26087.93 35996.38 349
miper_ehance_all_eth95.01 23094.69 22295.97 28997.70 24993.31 28297.02 35298.07 26692.23 30493.51 30096.96 31891.85 13898.15 33293.68 24891.16 31796.44 347
testing1195.00 23194.28 24397.16 20297.96 22993.36 28198.09 25897.06 34894.94 17795.33 23296.15 35576.89 37599.40 18395.77 17996.30 23598.72 203
ADS-MVSNet95.00 23194.45 23696.63 24198.00 22391.91 30996.04 38397.74 29090.15 35596.47 20396.64 33987.89 23798.96 24190.08 33197.06 20999.02 177
VPNet94.99 23394.19 24897.40 19097.16 29596.57 12998.71 16398.97 4395.67 13394.84 24098.24 20180.36 34498.67 27896.46 15387.32 36796.96 277
EPMVS94.99 23394.48 23296.52 25797.22 28891.75 31297.23 33691.66 41594.11 20897.28 16396.81 33085.70 27898.84 26093.04 26797.28 20598.97 182
testing9194.98 23594.25 24597.20 19797.94 23093.41 27698.00 26897.58 29994.99 17095.45 22896.04 35977.20 37099.42 18294.97 20596.02 24998.78 199
NR-MVSNet94.98 23594.16 25197.44 18596.53 33097.22 9998.74 15498.95 4794.96 17389.25 37297.69 24889.32 19698.18 33094.59 21987.40 36596.92 281
FMVSNet394.97 23794.26 24497.11 20798.18 20696.62 12398.56 19698.26 22993.67 24494.09 27497.10 29384.25 30898.01 34392.08 29292.14 30396.70 311
CostFormer94.95 23894.73 21995.60 30697.28 28489.06 36597.53 31496.89 36189.66 36496.82 18596.72 33486.05 27298.95 24695.53 18896.13 24798.79 196
PAPM94.95 23894.00 26497.78 15897.04 30195.65 17596.03 38598.25 23091.23 33694.19 27097.80 24091.27 15698.86 25982.61 39397.61 19898.84 193
CP-MVSNet94.94 24094.30 24296.83 22696.72 32295.56 17899.11 6098.95 4793.89 22392.42 33897.90 22787.19 25198.12 33594.32 22888.21 35696.82 298
TR-MVS94.94 24094.20 24797.17 20197.75 24394.14 25197.59 31197.02 35292.28 30395.75 22497.64 25583.88 31898.96 24189.77 33796.15 24698.40 230
RPSCF94.87 24295.40 18293.26 36698.89 13082.06 40498.33 22198.06 27190.30 35496.56 19699.26 6187.09 25299.49 17093.82 24596.32 23398.24 237
testing9994.83 24394.08 25697.07 21097.94 23093.13 29098.10 25797.17 34094.86 17995.34 22996.00 36276.31 37899.40 18395.08 20295.90 25098.68 209
GA-MVS94.81 24494.03 26097.14 20397.15 29693.86 25796.76 37197.58 29994.00 21794.76 24597.04 30880.91 33898.48 29291.79 30296.25 24299.09 166
c3_l94.79 24594.43 23895.89 29497.75 24393.12 29297.16 34698.03 27392.23 30493.46 30397.05 30791.39 15098.01 34393.58 25389.21 34596.53 333
V4294.78 24694.14 25396.70 23496.33 34095.22 19898.97 8998.09 26392.32 30194.31 26397.06 30488.39 22498.55 28792.90 27288.87 35196.34 350
reproduce_monomvs94.77 24794.67 22395.08 32498.40 17689.48 35898.80 14298.64 14297.57 3393.21 31197.65 25280.57 34398.83 26397.72 9089.47 34196.93 280
CR-MVSNet94.76 24894.15 25296.59 24797.00 30293.43 27494.96 39697.56 30292.46 29296.93 17896.24 34988.15 22997.88 35687.38 36596.65 22298.46 228
v2v48294.69 24994.03 26096.65 23796.17 34594.79 22298.67 17498.08 26492.72 28494.00 27997.16 29187.69 24498.45 29792.91 27188.87 35196.72 307
pmmvs494.69 24993.99 26696.81 22895.74 36095.94 16297.40 32197.67 29390.42 35193.37 30697.59 25989.08 20498.20 32992.97 26991.67 31096.30 353
cl2294.68 25194.19 24896.13 28298.11 21293.60 26796.94 35698.31 21692.43 29693.32 30896.87 32686.51 26198.28 32694.10 23791.16 31796.51 339
eth_miper_zixun_eth94.68 25194.41 23995.47 31097.64 25491.71 31496.73 37398.07 26692.71 28593.64 29397.21 28990.54 17098.17 33193.38 25689.76 33396.54 331
PCF-MVS93.45 1194.68 25193.43 30298.42 11098.62 16196.77 11895.48 39398.20 23584.63 39793.34 30798.32 19188.55 22199.81 8684.80 38598.96 13898.68 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 25493.54 29798.08 13996.88 31296.56 13098.19 24398.50 17978.05 40892.69 32898.02 21591.07 16299.63 13990.09 33098.36 17398.04 244
PS-CasMVS94.67 25493.99 26696.71 23296.68 32495.26 19599.13 5799.03 3893.68 24292.33 33997.95 22385.35 28498.10 33693.59 25288.16 35896.79 299
cascas94.63 25693.86 27696.93 21996.91 31094.27 24696.00 38698.51 17485.55 39394.54 24896.23 35184.20 31298.87 25795.80 17796.98 21497.66 256
tpmvs94.60 25794.36 24195.33 31697.46 27088.60 37496.88 36597.68 29191.29 33393.80 28996.42 34688.58 21799.24 20091.06 31796.04 24898.17 241
LTVRE_ROB92.95 1594.60 25793.90 27296.68 23697.41 27894.42 23898.52 19998.59 15291.69 31991.21 35398.35 18584.87 29399.04 22991.06 31793.44 28896.60 322
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 25993.92 26996.60 24696.21 34294.78 22398.59 18798.14 25191.86 31594.21 26997.02 31187.97 23598.41 30891.72 30489.57 33696.61 321
ADS-MVSNet294.58 26094.40 24095.11 32298.00 22388.74 37296.04 38397.30 33090.15 35596.47 20396.64 33987.89 23797.56 36990.08 33197.06 20999.02 177
WBMVS94.56 26194.04 25896.10 28498.03 22193.08 29497.82 29398.18 24094.02 21393.77 29196.82 32981.28 33398.34 31595.47 19191.00 32096.88 290
ACMH92.88 1694.55 26293.95 26896.34 27397.63 25593.26 28498.81 14198.49 18493.43 25589.74 36798.53 16781.91 32899.08 22493.69 24793.30 29196.70 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tt080594.54 26393.85 27796.63 24197.98 22793.06 29598.77 15097.84 28593.67 24493.80 28998.04 21476.88 37698.96 24194.79 21192.86 29697.86 249
XVG-ACMP-BASELINE94.54 26394.14 25395.75 30096.55 32991.65 31598.11 25598.44 19094.96 17394.22 26897.90 22779.18 35399.11 21894.05 23993.85 27796.48 344
AUN-MVS94.53 26593.73 28796.92 22298.50 16993.52 27298.34 22098.10 25993.83 22895.94 22297.98 22185.59 28099.03 23094.35 22680.94 39798.22 239
DIV-MVS_self_test94.52 26694.03 26095.99 28797.57 26393.38 27997.05 35097.94 27991.74 31692.81 32397.10 29389.12 20298.07 34092.60 27890.30 32696.53 333
cl____94.51 26794.01 26396.02 28697.58 25993.40 27897.05 35097.96 27891.73 31892.76 32597.08 29989.06 20598.13 33492.61 27790.29 32796.52 336
ETVMVS94.50 26893.44 30197.68 17198.18 20695.35 19198.19 24397.11 34293.73 23496.40 20695.39 37674.53 38798.84 26091.10 31396.31 23498.84 193
GBi-Net94.49 26993.80 28096.56 25198.21 20095.00 20798.82 13398.18 24092.46 29294.09 27497.07 30081.16 33497.95 34892.08 29292.14 30396.72 307
test194.49 26993.80 28096.56 25198.21 20095.00 20798.82 13398.18 24092.46 29294.09 27497.07 30081.16 33497.95 34892.08 29292.14 30396.72 307
dmvs_re94.48 27194.18 25095.37 31497.68 25090.11 34698.54 19897.08 34494.56 19394.42 25797.24 28684.25 30897.76 36191.02 32092.83 29798.24 237
v894.47 27293.77 28396.57 25096.36 33894.83 21999.05 6998.19 23791.92 31293.16 31396.97 31688.82 21598.48 29291.69 30587.79 36096.39 348
FMVSNet294.47 27293.61 29397.04 21198.21 20096.43 13698.79 14898.27 22592.46 29293.50 30197.09 29781.16 33498.00 34591.09 31491.93 30696.70 311
test250694.44 27493.91 27196.04 28599.02 11588.99 36899.06 6779.47 42796.96 7398.36 10399.26 6177.21 36999.52 16596.78 14699.04 13299.59 82
Patchmatch-test94.42 27593.68 29196.63 24197.60 25791.76 31194.83 40097.49 31489.45 36894.14 27297.10 29388.99 20698.83 26385.37 37998.13 18099.29 132
PEN-MVS94.42 27593.73 28796.49 25996.28 34194.84 21799.17 4999.00 4093.51 25092.23 34197.83 23786.10 27197.90 35292.55 28386.92 37296.74 304
v14419294.39 27793.70 28996.48 26196.06 35094.35 24298.58 18998.16 24891.45 32494.33 26297.02 31187.50 24798.45 29791.08 31689.11 34696.63 319
Baseline_NR-MVSNet94.35 27893.81 27995.96 29096.20 34394.05 25398.61 18696.67 37191.44 32593.85 28697.60 25888.57 21898.14 33394.39 22486.93 37195.68 368
miper_lstm_enhance94.33 27994.07 25795.11 32297.75 24390.97 32597.22 33798.03 27391.67 32092.76 32596.97 31690.03 17997.78 36092.51 28589.64 33596.56 328
v119294.32 28093.58 29496.53 25696.10 34894.45 23698.50 20598.17 24691.54 32294.19 27097.06 30486.95 25698.43 30090.14 32989.57 33696.70 311
UWE-MVS94.30 28193.89 27495.53 30797.83 23888.95 36997.52 31693.25 40894.44 20196.63 19297.07 30078.70 35599.28 19691.99 29797.56 20198.36 233
ACMH+92.99 1494.30 28193.77 28395.88 29597.81 24092.04 30898.71 16398.37 20693.99 21890.60 36098.47 17380.86 34099.05 22692.75 27692.40 30296.55 330
v14894.29 28393.76 28595.91 29296.10 34892.93 29698.58 18997.97 27692.59 29093.47 30296.95 32088.53 22298.32 31892.56 28287.06 37096.49 342
v1094.29 28393.55 29696.51 25896.39 33794.80 22198.99 8698.19 23791.35 32993.02 31996.99 31488.09 23198.41 30890.50 32688.41 35596.33 352
MVP-Stereo94.28 28593.92 26995.35 31594.95 38092.60 29997.97 27197.65 29491.61 32190.68 35997.09 29786.32 26898.42 30189.70 34099.34 12195.02 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 28693.33 30496.97 21697.19 29393.38 27998.74 15498.57 15991.21 33893.81 28898.58 16272.85 39498.77 27095.05 20393.93 27698.77 202
OurMVSNet-221017-094.21 28794.00 26494.85 33295.60 36489.22 36398.89 11097.43 32295.29 15292.18 34298.52 17082.86 32498.59 28593.46 25591.76 30896.74 304
v192192094.20 28893.47 30096.40 27095.98 35394.08 25298.52 19998.15 24991.33 33094.25 26697.20 29086.41 26698.42 30190.04 33489.39 34396.69 316
WB-MVSnew94.19 28994.04 25894.66 33996.82 31692.14 30397.86 28795.96 38493.50 25195.64 22596.77 33288.06 23397.99 34684.87 38296.86 21593.85 399
v7n94.19 28993.43 30296.47 26295.90 35694.38 24199.26 2798.34 21291.99 31092.76 32597.13 29288.31 22598.52 29089.48 34587.70 36196.52 336
tpm294.19 28993.76 28595.46 31197.23 28789.04 36697.31 33296.85 36587.08 38396.21 21196.79 33183.75 32298.74 27192.43 28896.23 24498.59 220
TESTMET0.1,194.18 29293.69 29095.63 30496.92 30889.12 36496.91 35994.78 39793.17 26694.88 23996.45 34578.52 35698.92 24893.09 26498.50 16498.85 191
dp94.15 29393.90 27294.90 32997.31 28386.82 39196.97 35497.19 33991.22 33796.02 21796.61 34185.51 28199.02 23390.00 33594.30 26198.85 191
ET-MVSNet_ETH3D94.13 29492.98 31197.58 17998.22 19996.20 14797.31 33295.37 39194.53 19579.56 40897.63 25786.51 26197.53 37096.91 13090.74 32299.02 177
tpm94.13 29493.80 28095.12 32196.50 33287.91 38597.44 31895.89 38792.62 28896.37 20896.30 34884.13 31398.30 32293.24 26091.66 31199.14 160
testing22294.12 29693.03 31097.37 19398.02 22294.66 22497.94 27496.65 37394.63 19095.78 22395.76 36571.49 39598.92 24891.17 31295.88 25198.52 224
IterMVS-SCA-FT94.11 29793.87 27594.85 33297.98 22790.56 33897.18 34298.11 25693.75 23192.58 33197.48 26683.97 31697.41 37392.48 28791.30 31496.58 324
Anonymous2023121194.10 29893.26 30796.61 24499.11 10894.28 24599.01 8198.88 6386.43 38692.81 32397.57 26181.66 33098.68 27794.83 20889.02 34996.88 290
IterMVS94.09 29993.85 27794.80 33597.99 22590.35 34297.18 34298.12 25393.68 24292.46 33797.34 27784.05 31497.41 37392.51 28591.33 31396.62 320
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 30093.51 29895.80 29796.77 31789.70 35296.91 35995.21 39292.89 27994.83 24295.72 37077.69 36498.97 23793.06 26598.50 16498.72 203
test0.0.03 194.08 30093.51 29895.80 29795.53 36892.89 29797.38 32395.97 38395.11 16292.51 33596.66 33687.71 24196.94 38087.03 36793.67 28097.57 260
v124094.06 30293.29 30696.34 27396.03 35293.90 25698.44 21298.17 24691.18 33994.13 27397.01 31386.05 27298.42 30189.13 35089.50 34096.70 311
X-MVStestdata94.06 30292.30 32699.34 2599.70 2298.35 4499.29 2298.88 6397.40 4298.46 9543.50 42295.90 4599.89 5297.85 8299.74 5199.78 23
DTE-MVSNet93.98 30493.26 30796.14 28196.06 35094.39 24099.20 4298.86 7693.06 27291.78 34797.81 23985.87 27697.58 36890.53 32586.17 37796.46 346
pm-mvs193.94 30593.06 30996.59 24796.49 33395.16 20098.95 9598.03 27392.32 30191.08 35597.84 23484.54 30498.41 30892.16 29086.13 38096.19 357
MS-PatchMatch93.84 30693.63 29294.46 34996.18 34489.45 35997.76 29798.27 22592.23 30492.13 34397.49 26579.50 35098.69 27489.75 33899.38 11795.25 374
tfpnnormal93.66 30792.70 31796.55 25596.94 30795.94 16298.97 8999.19 2591.04 34091.38 35297.34 27784.94 29298.61 28285.45 37889.02 34995.11 378
EU-MVSNet93.66 30794.14 25392.25 37695.96 35583.38 40098.52 19998.12 25394.69 18692.61 33098.13 20887.36 25096.39 39291.82 30190.00 33196.98 276
our_test_393.65 30993.30 30594.69 33795.45 37289.68 35496.91 35997.65 29491.97 31191.66 35096.88 32489.67 18697.93 35188.02 36191.49 31296.48 344
pmmvs593.65 30992.97 31295.68 30195.49 36992.37 30098.20 24097.28 33389.66 36492.58 33197.26 28382.14 32798.09 33893.18 26390.95 32196.58 324
test_fmvs293.43 31193.58 29492.95 37096.97 30583.91 39699.19 4497.24 33695.74 12895.20 23498.27 19769.65 39798.72 27396.26 16093.73 27996.24 354
tpm cat193.36 31292.80 31495.07 32597.58 25987.97 38496.76 37197.86 28482.17 40493.53 29796.04 35986.13 27099.13 21489.24 34895.87 25298.10 243
JIA-IIPM93.35 31392.49 32295.92 29196.48 33490.65 33595.01 39596.96 35585.93 39096.08 21587.33 41287.70 24398.78 26991.35 30995.58 25698.34 234
SixPastTwentyTwo93.34 31492.86 31394.75 33695.67 36289.41 36198.75 15196.67 37193.89 22390.15 36598.25 20080.87 33998.27 32790.90 32190.64 32396.57 326
USDC93.33 31592.71 31695.21 31896.83 31590.83 33196.91 35997.50 31293.84 22690.72 35898.14 20777.69 36498.82 26589.51 34493.21 29395.97 362
IB-MVS91.98 1793.27 31691.97 33097.19 19997.47 26993.41 27697.09 34995.99 38293.32 25992.47 33695.73 36878.06 36299.53 16294.59 21982.98 38898.62 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 31792.21 32796.41 26897.73 24793.13 29095.65 39097.03 35091.27 33594.04 27796.06 35875.33 38397.19 37686.56 36996.23 24498.92 188
ppachtmachnet_test93.22 31892.63 31894.97 32795.45 37290.84 33096.88 36597.88 28390.60 34692.08 34497.26 28388.08 23297.86 35785.12 38190.33 32596.22 355
Patchmtry93.22 31892.35 32595.84 29696.77 31793.09 29394.66 40397.56 30287.37 38292.90 32196.24 34988.15 22997.90 35287.37 36690.10 33096.53 333
testing393.19 32092.48 32395.30 31798.07 21492.27 30198.64 18097.17 34093.94 22293.98 28097.04 30867.97 40196.01 39688.40 35697.14 20797.63 257
FMVSNet193.19 32092.07 32896.56 25197.54 26495.00 20798.82 13398.18 24090.38 35292.27 34097.07 30073.68 39297.95 34889.36 34791.30 31496.72 307
LF4IMVS93.14 32292.79 31594.20 35395.88 35788.67 37397.66 30597.07 34693.81 22991.71 34897.65 25277.96 36398.81 26691.47 30891.92 30795.12 377
mmtdpeth93.12 32392.61 31994.63 34197.60 25789.68 35499.21 3997.32 32994.02 21397.72 14594.42 38777.01 37499.44 18099.05 2177.18 40994.78 387
testgi93.06 32492.45 32494.88 33196.43 33689.90 34798.75 15197.54 30895.60 13591.63 35197.91 22674.46 38997.02 37886.10 37293.67 28097.72 254
PatchT93.06 32491.97 33096.35 27296.69 32392.67 29894.48 40697.08 34486.62 38497.08 17092.23 40687.94 23697.90 35278.89 40396.69 22098.49 226
RPMNet92.81 32691.34 33697.24 19597.00 30293.43 27494.96 39698.80 9882.27 40396.93 17892.12 40786.98 25599.82 8176.32 40896.65 22298.46 228
myMVS_eth3d92.73 32792.01 32994.89 33097.39 27990.94 32697.91 27797.46 31693.16 26793.42 30495.37 37768.09 40096.12 39488.34 35796.99 21197.60 258
TransMVSNet (Re)92.67 32891.51 33596.15 28096.58 32894.65 22598.90 10696.73 36790.86 34389.46 37197.86 23185.62 27998.09 33886.45 37081.12 39595.71 367
ttmdpeth92.61 32991.96 33294.55 34394.10 39090.60 33798.52 19997.29 33192.67 28690.18 36397.92 22579.75 34997.79 35991.09 31486.15 37995.26 373
Syy-MVS92.55 33092.61 31992.38 37397.39 27983.41 39997.91 27797.46 31693.16 26793.42 30495.37 37784.75 29796.12 39477.00 40796.99 21197.60 258
K. test v392.55 33091.91 33394.48 34795.64 36389.24 36299.07 6694.88 39694.04 21186.78 38797.59 25977.64 36797.64 36592.08 29289.43 34296.57 326
DSMNet-mixed92.52 33292.58 32192.33 37494.15 38982.65 40298.30 22894.26 40389.08 37392.65 32995.73 36885.01 29195.76 39886.24 37197.76 19398.59 220
TinyColmap92.31 33391.53 33494.65 34096.92 30889.75 35096.92 35796.68 37090.45 35089.62 36897.85 23376.06 38198.81 26686.74 36892.51 30195.41 371
gg-mvs-nofinetune92.21 33490.58 34297.13 20496.75 32095.09 20495.85 38789.40 42085.43 39494.50 25081.98 41580.80 34198.40 31492.16 29098.33 17497.88 247
FMVSNet591.81 33590.92 33894.49 34697.21 28992.09 30598.00 26897.55 30789.31 37190.86 35795.61 37474.48 38895.32 40285.57 37689.70 33496.07 360
pmmvs691.77 33690.63 34195.17 32094.69 38691.24 32298.67 17497.92 28186.14 38889.62 36897.56 26375.79 38298.34 31590.75 32384.56 38295.94 363
Anonymous2023120691.66 33791.10 33793.33 36494.02 39487.35 38898.58 18997.26 33590.48 34890.16 36496.31 34783.83 32096.53 39079.36 40189.90 33296.12 358
Patchmatch-RL test91.49 33890.85 33993.41 36291.37 40584.40 39492.81 41095.93 38691.87 31487.25 38394.87 38388.99 20696.53 39092.54 28482.00 39099.30 130
test_040291.32 33990.27 34594.48 34796.60 32791.12 32398.50 20597.22 33786.10 38988.30 37996.98 31577.65 36697.99 34678.13 40592.94 29594.34 388
test_vis1_rt91.29 34090.65 34093.19 36897.45 27386.25 39298.57 19590.90 41893.30 26186.94 38693.59 39662.07 41099.11 21897.48 11295.58 25694.22 391
PVSNet_088.72 1991.28 34190.03 34895.00 32697.99 22587.29 38994.84 39998.50 17992.06 30989.86 36695.19 37979.81 34899.39 18692.27 28969.79 41598.33 235
mvs5depth91.23 34290.17 34694.41 35192.09 40289.79 34995.26 39496.50 37590.73 34491.69 34997.06 30476.12 38098.62 28188.02 36184.11 38594.82 384
Anonymous2024052191.18 34390.44 34393.42 36193.70 39588.47 37798.94 9897.56 30288.46 37789.56 37095.08 38277.15 37296.97 37983.92 38889.55 33894.82 384
EG-PatchMatch MVS91.13 34490.12 34794.17 35594.73 38589.00 36798.13 25297.81 28689.22 37285.32 39796.46 34467.71 40298.42 30187.89 36493.82 27895.08 379
TDRefinement91.06 34589.68 35095.21 31885.35 42091.49 31898.51 20497.07 34691.47 32388.83 37797.84 23477.31 36899.09 22392.79 27577.98 40795.04 381
UnsupCasMVSNet_eth90.99 34689.92 34994.19 35494.08 39189.83 34897.13 34898.67 13493.69 24085.83 39396.19 35475.15 38496.74 38489.14 34979.41 40296.00 361
test20.0390.89 34790.38 34492.43 37293.48 39688.14 38398.33 22197.56 30293.40 25687.96 38096.71 33580.69 34294.13 40779.15 40286.17 37795.01 383
MDA-MVSNet_test_wron90.71 34889.38 35394.68 33894.83 38290.78 33297.19 34197.46 31687.60 38072.41 41595.72 37086.51 26196.71 38785.92 37486.80 37496.56 328
YYNet190.70 34989.39 35294.62 34294.79 38490.65 33597.20 33997.46 31687.54 38172.54 41495.74 36686.51 26196.66 38886.00 37386.76 37596.54 331
KD-MVS_self_test90.38 35089.38 35393.40 36392.85 39988.94 37097.95 27297.94 27990.35 35390.25 36293.96 39379.82 34795.94 39784.62 38776.69 41095.33 372
pmmvs-eth3d90.36 35189.05 35694.32 35291.10 40792.12 30497.63 31096.95 35688.86 37584.91 39893.13 40178.32 35896.74 38488.70 35381.81 39294.09 394
CL-MVSNet_self_test90.11 35289.14 35593.02 36991.86 40488.23 38296.51 37998.07 26690.49 34790.49 36194.41 38884.75 29795.34 40180.79 39774.95 41295.50 370
new_pmnet90.06 35389.00 35793.22 36794.18 38888.32 38096.42 38196.89 36186.19 38785.67 39493.62 39577.18 37197.10 37781.61 39589.29 34494.23 390
MDA-MVSNet-bldmvs89.97 35488.35 36094.83 33495.21 37691.34 31997.64 30797.51 31188.36 37871.17 41696.13 35679.22 35296.63 38983.65 38986.27 37696.52 336
CMPMVSbinary66.06 2189.70 35589.67 35189.78 38193.19 39776.56 40797.00 35398.35 20980.97 40581.57 40397.75 24274.75 38698.61 28289.85 33693.63 28294.17 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 35688.28 36193.82 35892.81 40091.08 32498.01 26697.45 32087.95 37987.90 38195.87 36467.63 40394.56 40678.73 40488.18 35795.83 365
KD-MVS_2432*160089.61 35787.96 36594.54 34494.06 39291.59 31695.59 39197.63 29689.87 36088.95 37494.38 39078.28 35996.82 38284.83 38368.05 41695.21 375
miper_refine_blended89.61 35787.96 36594.54 34494.06 39291.59 31695.59 39197.63 29689.87 36088.95 37494.38 39078.28 35996.82 38284.83 38368.05 41695.21 375
MVStest189.53 35987.99 36494.14 35794.39 38790.42 34098.25 23596.84 36682.81 40081.18 40597.33 27977.09 37396.94 38085.27 38078.79 40395.06 380
MVS-HIRNet89.46 36088.40 35992.64 37197.58 25982.15 40394.16 40993.05 41275.73 41190.90 35682.52 41479.42 35198.33 31783.53 39098.68 15197.43 261
OpenMVS_ROBcopyleft86.42 2089.00 36187.43 36993.69 35993.08 39889.42 36097.91 27796.89 36178.58 40785.86 39294.69 38469.48 39898.29 32577.13 40693.29 29293.36 401
mvsany_test388.80 36288.04 36291.09 38089.78 41081.57 40597.83 29295.49 39093.81 22987.53 38293.95 39456.14 41397.43 37294.68 21283.13 38794.26 389
new-patchmatchnet88.50 36387.45 36891.67 37890.31 40985.89 39397.16 34697.33 32889.47 36783.63 40092.77 40376.38 37795.06 40482.70 39277.29 40894.06 396
APD_test188.22 36488.01 36388.86 38395.98 35374.66 41597.21 33896.44 37783.96 39986.66 38997.90 22760.95 41197.84 35882.73 39190.23 32894.09 394
PM-MVS87.77 36586.55 37191.40 37991.03 40883.36 40196.92 35795.18 39491.28 33486.48 39193.42 39753.27 41496.74 38489.43 34681.97 39194.11 393
dmvs_testset87.64 36688.93 35883.79 39295.25 37563.36 42497.20 33991.17 41693.07 27185.64 39595.98 36385.30 28891.52 41469.42 41387.33 36696.49 342
test_fmvs387.17 36787.06 37087.50 38591.21 40675.66 41099.05 6996.61 37492.79 28388.85 37692.78 40243.72 41793.49 40893.95 24084.56 38293.34 402
UnsupCasMVSNet_bld87.17 36785.12 37493.31 36591.94 40388.77 37194.92 39898.30 22284.30 39882.30 40190.04 40963.96 40897.25 37585.85 37574.47 41493.93 398
N_pmnet87.12 36987.77 36785.17 38995.46 37161.92 42597.37 32570.66 43085.83 39188.73 37896.04 35985.33 28697.76 36180.02 39890.48 32495.84 364
pmmvs386.67 37084.86 37592.11 37788.16 41487.19 39096.63 37594.75 39879.88 40687.22 38492.75 40466.56 40595.20 40381.24 39676.56 41193.96 397
test_f86.07 37185.39 37288.10 38489.28 41275.57 41197.73 30096.33 37989.41 37085.35 39691.56 40843.31 41995.53 39991.32 31084.23 38493.21 403
WB-MVS84.86 37285.33 37383.46 39389.48 41169.56 41998.19 24396.42 37889.55 36681.79 40294.67 38584.80 29590.12 41552.44 41980.64 39990.69 406
SSC-MVS84.27 37384.71 37682.96 39789.19 41368.83 42098.08 25996.30 38089.04 37481.37 40494.47 38684.60 30289.89 41649.80 42179.52 40190.15 407
dongtai82.47 37481.88 37784.22 39195.19 37776.03 40894.59 40574.14 42982.63 40187.19 38596.09 35764.10 40787.85 41958.91 41784.11 38588.78 411
test_vis3_rt79.22 37577.40 38284.67 39086.44 41874.85 41497.66 30581.43 42584.98 39567.12 41881.91 41628.09 42797.60 36688.96 35180.04 40081.55 416
test_method79.03 37678.17 37881.63 39886.06 41954.40 43082.75 41896.89 36139.54 42280.98 40695.57 37558.37 41294.73 40584.74 38678.61 40495.75 366
testf179.02 37777.70 37982.99 39588.10 41566.90 42194.67 40193.11 40971.08 41374.02 41193.41 39834.15 42393.25 40972.25 41178.50 40588.82 409
APD_test279.02 37777.70 37982.99 39588.10 41566.90 42194.67 40193.11 40971.08 41374.02 41193.41 39834.15 42393.25 40972.25 41178.50 40588.82 409
LCM-MVSNet78.70 37976.24 38586.08 38777.26 42671.99 41794.34 40796.72 36861.62 41776.53 40989.33 41033.91 42592.78 41281.85 39474.60 41393.46 400
kuosan78.45 38077.69 38180.72 39992.73 40175.32 41294.63 40474.51 42875.96 40980.87 40793.19 40063.23 40979.99 42342.56 42381.56 39486.85 415
Gipumacopyleft78.40 38176.75 38483.38 39495.54 36680.43 40679.42 41997.40 32464.67 41673.46 41380.82 41745.65 41693.14 41166.32 41587.43 36476.56 419
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 38275.44 38685.46 38882.54 42174.95 41394.23 40893.08 41172.80 41274.68 41087.38 41136.36 42291.56 41373.95 40963.94 41889.87 408
FPMVS77.62 38377.14 38379.05 40179.25 42460.97 42695.79 38895.94 38565.96 41567.93 41794.40 38937.73 42188.88 41868.83 41488.46 35487.29 412
EGC-MVSNET75.22 38469.54 38792.28 37594.81 38389.58 35697.64 30796.50 3751.82 4275.57 42895.74 36668.21 39996.26 39373.80 41091.71 30990.99 405
ANet_high69.08 38565.37 38980.22 40065.99 42871.96 41890.91 41490.09 41982.62 40249.93 42378.39 41829.36 42681.75 42062.49 41638.52 42286.95 414
tmp_tt68.90 38666.97 38874.68 40350.78 43059.95 42787.13 41583.47 42438.80 42362.21 41996.23 35164.70 40676.91 42588.91 35230.49 42387.19 413
PMVScopyleft61.03 2365.95 38763.57 39173.09 40457.90 42951.22 43185.05 41793.93 40754.45 41844.32 42483.57 41313.22 42889.15 41758.68 41881.00 39678.91 418
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 38864.25 39067.02 40582.28 42259.36 42891.83 41385.63 42252.69 41960.22 42077.28 41941.06 42080.12 42246.15 42241.14 42061.57 421
EMVS64.07 38963.26 39266.53 40681.73 42358.81 42991.85 41284.75 42351.93 42159.09 42175.13 42043.32 41879.09 42442.03 42439.47 42161.69 420
MVEpermissive62.14 2263.28 39059.38 39374.99 40274.33 42765.47 42385.55 41680.50 42652.02 42051.10 42275.00 42110.91 43180.50 42151.60 42053.40 41978.99 417
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 39130.18 39530.16 40778.61 42543.29 43266.79 42014.21 43117.31 42414.82 42711.93 42711.55 43041.43 42637.08 42519.30 4245.76 424
cdsmvs_eth3d_5k23.98 39231.98 3940.00 4100.00 4330.00 4350.00 42198.59 1520.00 4280.00 42998.61 15790.60 1690.00 4290.00 4280.00 4270.00 425
testmvs21.48 39324.95 39611.09 40914.89 4316.47 43496.56 3779.87 4327.55 42517.93 42539.02 4239.43 4325.90 42816.56 42712.72 42520.91 423
test12320.95 39423.72 39712.64 40813.54 4328.19 43396.55 3786.13 4337.48 42616.74 42637.98 42412.97 4296.05 42716.69 4265.43 42623.68 422
ab-mvs-re8.20 39510.94 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42998.43 1750.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas7.88 39610.50 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42894.51 870.00 4290.00 4280.00 4270.00 425
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS90.94 32688.66 354
FOURS199.82 198.66 2499.69 198.95 4797.46 4099.39 32
MSC_two_6792asdad99.62 699.17 9899.08 1198.63 14599.94 998.53 4099.80 2499.86 7
PC_three_145295.08 16699.60 2199.16 8297.86 298.47 29597.52 11099.72 5799.74 39
No_MVS99.62 699.17 9899.08 1198.63 14599.94 998.53 4099.80 2499.86 7
test_one_060199.66 2699.25 298.86 7697.55 3499.20 4499.47 2597.57 6
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.46 5298.70 2398.79 10393.21 26498.67 8298.97 11295.70 4999.83 7496.07 16499.58 85
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9896.49 9699.17 4799.35 4895.29 6597.72 9099.65 7099.71 52
IU-MVS99.71 1999.23 798.64 14295.28 15399.63 2098.35 5799.81 1599.83 12
OPU-MVS99.37 2299.24 9199.05 1499.02 7999.16 8297.81 399.37 18797.24 11999.73 5499.70 56
test_241102_TWO98.87 7097.65 2799.53 2599.48 2397.34 1199.94 998.43 5299.80 2499.83 12
test_241102_ONE99.71 1999.24 598.87 7097.62 2999.73 1299.39 3697.53 799.74 116
9.1498.06 6499.47 5098.71 16398.82 8594.36 20399.16 5099.29 5796.05 3799.81 8697.00 12599.71 59
save fliter99.46 5298.38 3598.21 23898.71 12197.95 18
test_0728_THIRD97.32 4899.45 2799.46 2997.88 199.94 998.47 4899.86 299.85 9
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6399.94 998.47 4899.81 1599.84 11
test072699.72 1299.25 299.06 6798.88 6397.62 2999.56 2299.50 2097.42 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 41
sam_mvs189.45 19299.20 147
sam_mvs88.99 206
ambc89.49 38286.66 41775.78 40992.66 41196.72 36886.55 39092.50 40546.01 41597.90 35290.32 32782.09 38994.80 386
MTGPAbinary98.74 113
test_post196.68 37430.43 42687.85 24098.69 27492.59 280
test_post31.83 42588.83 21398.91 250
patchmatchnet-post95.10 38189.42 19398.89 254
GG-mvs-BLEND96.59 24796.34 33994.98 21096.51 37988.58 42193.10 31894.34 39280.34 34698.05 34189.53 34396.99 21196.74 304
MTMP98.89 11094.14 405
gm-plane-assit95.88 35787.47 38789.74 36396.94 32199.19 20693.32 259
test9_res96.39 15899.57 8699.69 59
TEST999.31 6798.50 2997.92 27598.73 11692.63 28797.74 14298.68 15296.20 3299.80 93
test_899.29 7698.44 3197.89 28398.72 11892.98 27597.70 14798.66 15596.20 3299.80 93
agg_prior295.87 17499.57 8699.68 64
agg_prior99.30 7198.38 3598.72 11897.57 15999.81 86
TestCases96.99 21399.25 8493.21 28898.18 24091.36 32793.52 29898.77 14184.67 30099.72 11889.70 34097.87 18898.02 245
test_prior498.01 6497.86 287
test_prior297.80 29496.12 11397.89 13598.69 15195.96 4196.89 13499.60 80
test_prior99.19 4399.31 6798.22 5198.84 8099.70 12499.65 72
旧先验297.57 31391.30 33298.67 8299.80 9395.70 183
新几何297.64 307
新几何199.16 4899.34 6098.01 6498.69 12690.06 35798.13 11198.95 11994.60 8599.89 5291.97 29999.47 10599.59 82
旧先验199.29 7697.48 8298.70 12599.09 9895.56 5299.47 10599.61 78
无先验97.58 31298.72 11891.38 32699.87 6393.36 25899.60 80
原ACMM297.67 304
原ACMM198.65 8499.32 6596.62 12398.67 13493.27 26397.81 13798.97 11295.18 7299.83 7493.84 24499.46 10899.50 94
test22299.23 9297.17 10197.40 32198.66 13788.68 37698.05 11798.96 11794.14 9899.53 9799.61 78
testdata299.89 5291.65 306
segment_acmp96.85 14
testdata98.26 12199.20 9695.36 18998.68 12991.89 31398.60 9099.10 9194.44 9299.82 8194.27 23099.44 10999.58 86
testdata197.32 33196.34 104
test1299.18 4599.16 10298.19 5398.53 16898.07 11595.13 7599.72 11899.56 9299.63 76
plane_prior797.42 27594.63 227
plane_prior697.35 28294.61 23087.09 252
plane_prior598.56 16299.03 23096.07 16494.27 26296.92 281
plane_prior498.28 194
plane_prior394.61 23097.02 7095.34 229
plane_prior298.80 14297.28 51
plane_prior197.37 281
plane_prior94.60 23298.44 21296.74 8494.22 264
n20.00 434
nn0.00 434
door-mid94.37 401
lessismore_v094.45 35094.93 38188.44 37891.03 41786.77 38897.64 25576.23 37998.42 30190.31 32885.64 38196.51 339
LGP-MVS_train96.47 26297.46 27093.54 26998.54 16694.67 18894.36 26098.77 14185.39 28299.11 21895.71 18194.15 26896.76 302
test1198.66 137
door94.64 399
HQP5-MVS94.25 248
HQP-NCC97.20 29098.05 26296.43 9894.45 252
ACMP_Plane97.20 29098.05 26296.43 9894.45 252
BP-MVS95.30 194
HQP4-MVS94.45 25298.96 24196.87 293
HQP3-MVS98.46 18694.18 266
HQP2-MVS86.75 258
NP-MVS97.28 28494.51 23597.73 243
MDTV_nov1_ep13_2view84.26 39596.89 36490.97 34197.90 13489.89 18193.91 24299.18 156
MDTV_nov1_ep1395.40 18297.48 26888.34 37996.85 36797.29 33193.74 23397.48 16197.26 28389.18 20099.05 22691.92 30097.43 203
ACMMP++_ref92.97 294
ACMMP++93.61 283
Test By Simon94.64 84
ITE_SJBPF95.44 31297.42 27591.32 32097.50 31295.09 16593.59 29498.35 18581.70 32998.88 25689.71 33993.39 28996.12 358
DeepMVS_CXcopyleft86.78 38697.09 30072.30 41695.17 39575.92 41084.34 39995.19 37970.58 39695.35 40079.98 40089.04 34892.68 404