This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 7198.87 5897.65 1099.73 199.48 897.53 799.94 498.43 2699.81 1299.70 54
DVP-MVS++99.08 298.89 299.64 399.17 10399.23 799.69 198.88 5197.32 3399.53 999.47 1097.81 399.94 498.47 2299.72 5499.74 37
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 8198.58 15397.62 1299.45 1199.46 1397.42 999.94 498.47 2299.81 1299.69 57
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 1298.93 3997.38 3099.41 1399.54 196.66 1799.84 5798.86 499.85 599.87 1
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18498.91 4597.58 1599.54 899.46 1397.10 1299.94 497.64 7399.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9898.43 3899.10 5598.87 5897.38 3099.35 1799.40 1797.78 599.87 4897.77 6299.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4598.66 13696.84 6299.56 699.31 3996.34 2399.70 11998.32 3399.73 4799.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS98.78 798.56 1299.45 1799.32 7298.87 1998.47 17698.81 8097.72 798.76 6199.16 6897.05 1399.78 10098.06 4199.66 6399.69 57
MSP-MVS98.74 998.55 1399.29 3499.75 498.23 5499.26 2698.88 5197.52 1799.41 1398.78 12496.00 3899.79 9697.79 6199.59 7799.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj98.70 1098.50 1799.30 3399.46 5598.38 4098.21 21098.52 16497.95 399.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
XVS98.70 1098.49 2099.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7999.20 5995.90 4499.89 3997.85 5699.74 4599.78 16
Regformer-298.69 1298.52 1599.19 4699.35 6498.01 6798.37 18898.81 8097.48 2099.21 2599.21 5596.13 3199.80 8498.40 3099.73 4799.75 32
Regformer-198.66 1398.51 1699.12 6099.35 6497.81 7998.37 18898.76 10397.49 1999.20 2699.21 5596.08 3399.79 9698.42 2899.73 4799.75 32
MCST-MVS98.65 1498.37 2699.48 1399.60 3398.87 1998.41 18598.68 12597.04 5498.52 7898.80 12296.78 1699.83 6097.93 4899.61 7399.74 37
Regformer-498.64 1598.53 1498.99 6699.43 6197.37 9298.40 18698.79 9697.46 2399.09 3699.31 3995.86 4699.80 8498.64 899.76 3699.79 13
SD-MVS98.64 1598.68 798.53 9499.33 6998.36 4798.90 9198.85 6897.28 3699.72 399.39 1896.63 1997.60 33598.17 3699.85 599.64 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.63 1798.40 2399.32 3199.72 1398.29 5199.23 2998.96 3396.10 9598.94 4599.17 6396.06 3499.92 2597.62 7499.78 2799.75 32
ACMMP_NAP98.61 1898.30 3999.55 999.62 3298.95 1798.82 11198.81 8095.80 10799.16 3299.47 1095.37 6399.92 2597.89 5299.75 4299.79 13
region2R98.61 1898.38 2599.29 3499.74 898.16 6099.23 2998.93 3996.15 9098.94 4599.17 6395.91 4399.94 497.55 8199.79 2399.78 16
NCCC98.61 1898.35 2999.38 2099.28 8698.61 2998.45 17798.76 10397.82 698.45 8298.93 10796.65 1899.83 6097.38 8999.41 10699.71 50
SF-MVS98.59 2198.32 3899.41 1999.54 3898.71 2299.04 6498.81 8095.12 14299.32 1899.39 1896.22 2499.84 5797.72 6599.73 4799.67 67
Regformer-398.59 2198.50 1798.86 7699.43 6197.05 10598.40 18698.68 12597.43 2699.06 3799.31 3995.80 4799.77 10598.62 1099.76 3699.78 16
ACMMPR98.59 2198.36 2799.29 3499.74 898.15 6199.23 2998.95 3596.10 9598.93 5099.19 6295.70 5099.94 497.62 7499.79 2399.78 16
SMA-MVScopyleft98.58 2498.25 4399.56 899.51 4399.04 1598.95 8598.80 9193.67 21199.37 1699.52 396.52 2199.89 3998.06 4199.81 1299.76 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA98.58 2498.29 4099.46 1599.76 298.64 2798.90 9198.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
HPM-MVS++copyleft98.58 2498.25 4399.55 999.50 4599.08 1198.72 13598.66 13697.51 1898.15 9398.83 11995.70 5099.92 2597.53 8399.67 6099.66 71
SR-MVS98.57 2798.35 2999.24 4399.53 3998.18 5899.09 5698.82 7496.58 7499.10 3599.32 3795.39 6199.82 6897.70 7099.63 7099.72 46
CP-MVS98.57 2798.36 2799.19 4699.66 2897.86 7399.34 1898.87 5895.96 10098.60 7599.13 7396.05 3699.94 497.77 6299.86 199.77 23
test117298.56 2998.35 2999.16 5399.53 3997.94 7199.09 5698.83 7296.52 7799.05 3899.34 3595.34 6599.82 6897.86 5599.64 6899.73 42
MSLP-MVS++98.56 2998.57 1198.55 9099.26 8996.80 11598.71 13699.05 2597.28 3698.84 5599.28 4496.47 2299.40 16598.52 2099.70 5799.47 107
zzz-MVS98.55 3198.25 4399.46 1599.76 298.64 2798.55 16698.74 10897.27 4098.02 10499.39 1894.81 8499.96 297.91 4999.79 2399.77 23
DeepC-MVS_fast96.70 198.55 3198.34 3399.18 5099.25 9098.04 6598.50 17398.78 9997.72 798.92 5199.28 4495.27 7099.82 6897.55 8199.77 3099.69 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post98.54 3398.35 2999.13 5799.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.34 6599.82 6897.72 6599.65 6499.71 50
#test#98.54 3398.27 4199.32 3199.72 1398.29 5198.98 8098.96 3395.65 11598.94 4599.17 6396.06 3499.92 2597.21 9599.78 2799.75 32
APD-MVS_3200maxsize98.53 3598.33 3799.15 5699.50 4597.92 7299.15 4398.81 8096.24 8799.20 2699.37 2695.30 6899.80 8497.73 6499.67 6099.72 46
mPP-MVS98.51 3698.26 4299.25 4299.75 498.04 6599.28 2498.81 8096.24 8798.35 8999.23 5295.46 5799.94 497.42 8799.81 1299.77 23
ZNCC-MVS98.49 3798.20 4999.35 2599.73 1298.39 3999.19 3998.86 6495.77 10898.31 9299.10 7895.46 5799.93 1997.57 8099.81 1299.74 37
CS-MVS-test98.49 3798.50 1798.46 10199.20 10197.05 10599.64 498.50 17297.45 2598.88 5399.14 7295.25 7299.15 18698.83 599.56 8699.20 139
PGM-MVS98.49 3798.23 4799.27 4199.72 1398.08 6498.99 7799.49 595.43 12499.03 3999.32 3795.56 5399.94 496.80 12199.77 3099.78 16
EI-MVSNet-Vis-set98.47 4098.39 2498.69 8199.46 5596.49 13298.30 20198.69 12297.21 4398.84 5599.36 3095.41 6099.78 10098.62 1099.65 6499.80 12
MVS_111021_HR98.47 4098.34 3398.88 7599.22 9897.32 9397.91 24699.58 397.20 4498.33 9099.00 9595.99 3999.64 13098.05 4399.76 3699.69 57
CS-MVS98.44 4298.49 2098.31 11299.08 11396.73 11999.67 398.47 17897.17 4698.94 4599.10 7895.73 4999.13 18998.71 799.49 9699.09 157
GST-MVS98.43 4398.12 5299.34 2699.72 1398.38 4099.09 5698.82 7495.71 11198.73 6499.06 8895.27 7099.93 1997.07 9999.63 7099.72 46
EI-MVSNet-UG-set98.41 4498.34 3398.61 8699.45 5996.32 14198.28 20498.68 12597.17 4698.74 6299.37 2695.25 7299.79 9698.57 1299.54 9199.73 42
DELS-MVS98.40 4598.20 4998.99 6699.00 12197.66 8197.75 26398.89 4897.71 998.33 9098.97 9794.97 8199.88 4798.42 2899.76 3699.42 117
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.98.38 4698.24 4698.81 7799.22 9897.25 10098.11 22998.29 21397.19 4598.99 4499.02 9096.22 2499.67 12698.52 2098.56 14699.51 98
HPM-MVS_fast98.38 4698.13 5199.12 6099.75 497.86 7399.44 1198.82 7494.46 17398.94 4599.20 5995.16 7699.74 11197.58 7799.85 599.77 23
patch_mono-298.36 4898.87 396.82 21199.53 3990.68 31498.64 15199.29 897.88 599.19 2999.52 396.80 1599.97 199.11 199.86 199.82 10
HPM-MVScopyleft98.36 4898.10 5499.13 5799.74 897.82 7799.53 898.80 9194.63 16698.61 7498.97 9795.13 7799.77 10597.65 7299.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D-3000-0.198.35 5098.00 5999.38 2099.47 5298.68 2598.67 14698.84 6994.66 16599.11 3499.25 5095.46 5799.81 7596.80 12199.73 4799.63 79
APD-MVScopyleft98.35 5098.00 5999.42 1899.51 4398.72 2198.80 11898.82 7494.52 17099.23 2499.25 5095.54 5599.80 8496.52 13199.77 3099.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.34 5298.23 4798.67 8399.27 8796.90 11297.95 24299.58 397.14 4998.44 8399.01 9495.03 8099.62 13697.91 4999.75 4299.50 100
PHI-MVS98.34 5298.06 5599.18 5099.15 10998.12 6399.04 6499.09 2193.32 22498.83 5799.10 7896.54 2099.83 6097.70 7099.76 3699.59 87
testtj98.33 5497.95 6199.47 1499.49 4998.70 2398.83 10898.86 6495.48 12198.91 5299.17 6395.48 5699.93 1995.80 15599.53 9299.76 30
MP-MVScopyleft98.33 5498.01 5899.28 3899.75 498.18 5899.22 3398.79 9696.13 9297.92 11799.23 5294.54 9099.94 496.74 12599.78 2799.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss98.31 5697.92 6399.49 1299.72 1398.88 1898.43 18298.78 9994.10 18197.69 13099.42 1695.25 7299.92 2598.09 4099.80 1999.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
abl_698.30 5798.03 5799.13 5799.56 3797.76 8099.13 4898.82 7496.14 9199.26 2299.37 2693.33 10999.93 1996.96 10499.67 6099.69 57
ACMMPcopyleft98.23 5897.95 6199.09 6299.74 897.62 8499.03 6799.41 695.98 9897.60 13899.36 3094.45 9599.93 1997.14 9698.85 13399.70 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior398.22 5997.90 6499.19 4699.31 7498.22 5597.80 25898.84 6996.12 9397.89 11998.69 13395.96 4099.70 11996.89 11099.60 7499.65 73
DROMVSNet98.21 6098.11 5398.49 9898.34 17797.26 9999.61 598.43 18696.78 6598.87 5498.84 11793.72 10699.01 20998.91 399.50 9599.19 143
dcpmvs_298.08 6198.59 1096.56 23499.57 3590.34 32099.15 4398.38 19596.82 6499.29 2099.49 795.78 4899.57 14098.94 299.86 199.77 23
CANet98.05 6297.76 6798.90 7498.73 14297.27 9598.35 19198.78 9997.37 3297.72 12898.96 10391.53 14599.92 2598.79 699.65 6499.51 98
train_agg97.97 6397.52 7799.33 3099.31 7498.50 3497.92 24498.73 11292.98 23897.74 12598.68 13596.20 2799.80 8496.59 12799.57 8199.68 63
ETH3D cwj APD-0.1697.96 6497.52 7799.29 3499.05 11498.52 3298.33 19398.68 12593.18 23098.68 6699.13 7394.62 8899.83 6096.45 13399.55 9099.52 94
ETV-MVS97.96 6497.81 6598.40 10798.42 16797.27 9598.73 13198.55 15896.84 6298.38 8697.44 25495.39 6199.35 16897.62 7498.89 12998.58 198
UA-Net97.96 6497.62 7098.98 6898.86 13397.47 8998.89 9599.08 2296.67 7198.72 6599.54 193.15 11299.81 7594.87 18198.83 13499.65 73
agg_prior197.95 6797.51 7999.28 3899.30 7998.38 4097.81 25798.72 11493.16 23297.57 13998.66 13896.14 3099.81 7596.63 12699.56 8699.66 71
CDPH-MVS97.94 6897.49 8099.28 3899.47 5298.44 3697.91 24698.67 13392.57 25298.77 6098.85 11595.93 4299.72 11395.56 16599.69 5899.68 63
DeepPCF-MVS96.37 297.93 6998.48 2296.30 25999.00 12189.54 33097.43 28198.87 5898.16 299.26 2299.38 2596.12 3299.64 13098.30 3499.77 3099.72 46
DeepC-MVS95.98 397.88 7097.58 7298.77 7899.25 9096.93 11098.83 10898.75 10696.96 5896.89 16399.50 590.46 16799.87 4897.84 5899.76 3699.52 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon97.86 7197.46 8299.06 6499.53 3998.35 4898.33 19398.89 4892.62 24998.05 9998.94 10695.34 6599.65 12896.04 14699.42 10599.19 143
CSCG97.85 7297.74 6898.20 12099.67 2795.16 19399.22 3399.32 793.04 23697.02 15698.92 10995.36 6499.91 3497.43 8699.64 6899.52 94
MG-MVS97.81 7397.60 7198.44 10399.12 11195.97 15797.75 26398.78 9996.89 6198.46 7999.22 5493.90 10599.68 12594.81 18599.52 9499.67 67
VNet97.79 7497.40 8698.96 7098.88 13197.55 8698.63 15398.93 3996.74 6899.02 4098.84 11790.33 17099.83 6098.53 1496.66 20099.50 100
EIA-MVS97.75 7597.58 7298.27 11498.38 16996.44 13499.01 7398.60 14695.88 10497.26 14597.53 24894.97 8199.33 17097.38 8999.20 11699.05 163
PS-MVSNAJ97.73 7697.77 6697.62 16498.68 15095.58 17697.34 29098.51 16797.29 3598.66 7197.88 21594.51 9199.90 3797.87 5499.17 11897.39 232
CPTT-MVS97.72 7797.32 8998.92 7299.64 3097.10 10499.12 5098.81 8092.34 26098.09 9799.08 8693.01 11399.92 2596.06 14599.77 3099.75 32
PVSNet_Blended_VisFu97.70 7897.46 8298.44 10399.27 8795.91 16598.63 15399.16 1894.48 17297.67 13198.88 11292.80 11599.91 3497.11 9799.12 11999.50 100
canonicalmvs97.67 7997.23 9298.98 6898.70 14798.38 4099.34 1898.39 19296.76 6797.67 13197.40 25792.26 12399.49 15598.28 3596.28 21699.08 161
xiu_mvs_v2_base97.66 8097.70 6997.56 16898.61 15695.46 18297.44 27998.46 17997.15 4898.65 7298.15 19294.33 9799.80 8497.84 5898.66 14297.41 230
baseline97.64 8197.44 8498.25 11798.35 17296.20 14599.00 7598.32 20396.33 8698.03 10299.17 6391.35 14899.16 18398.10 3998.29 16199.39 118
casdiffmvs97.63 8297.41 8598.28 11398.33 17996.14 14898.82 11198.32 20396.38 8497.95 11299.21 5591.23 15299.23 17798.12 3898.37 15599.48 105
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15498.35 17295.98 15297.86 25398.51 16797.13 5099.01 4198.40 16691.56 14199.80 8498.53 1498.68 13897.37 234
ETH3 D test640097.59 8697.01 10199.34 2699.40 6398.56 3098.20 21398.81 8091.63 28398.44 8398.85 11593.98 10499.82 6894.11 21099.69 5899.64 76
diffmvs97.58 8797.40 8698.13 12598.32 18195.81 17098.06 23298.37 19696.20 8998.74 6298.89 11191.31 15099.25 17498.16 3798.52 14799.34 121
MVSFormer97.57 8897.49 8097.84 14198.07 20195.76 17199.47 998.40 19094.98 15098.79 5898.83 11992.34 12098.41 28296.91 10699.59 7799.34 121
alignmvs97.56 8997.07 9999.01 6598.66 15198.37 4698.83 10898.06 25796.74 6898.00 11097.65 23790.80 16199.48 15998.37 3196.56 20499.19 143
DPM-MVS97.55 9096.99 10399.23 4599.04 11698.55 3197.17 30398.35 19994.85 15797.93 11698.58 14795.07 7999.71 11892.60 25299.34 11199.43 115
OMC-MVS97.55 9097.34 8898.20 12099.33 6995.92 16498.28 20498.59 14895.52 12097.97 11199.10 7893.28 11199.49 15595.09 17898.88 13099.19 143
PAPM_NR97.46 9297.11 9698.50 9699.50 4596.41 13798.63 15398.60 14695.18 13997.06 15498.06 19894.26 9999.57 14093.80 21998.87 13299.52 94
EPP-MVSNet97.46 9297.28 9097.99 13498.64 15395.38 18499.33 2198.31 20593.61 21497.19 14799.07 8794.05 10199.23 17796.89 11098.43 15499.37 120
3Dnovator94.51 597.46 9296.93 10599.07 6397.78 21897.64 8299.35 1799.06 2397.02 5593.75 26499.16 6889.25 19099.92 2597.22 9499.75 4299.64 76
CNLPA97.45 9597.03 10098.73 7999.05 11497.44 9198.07 23198.53 16295.32 13296.80 16898.53 15193.32 11099.72 11394.31 20299.31 11399.02 165
lupinMVS97.44 9697.22 9398.12 12798.07 20195.76 17197.68 26797.76 27794.50 17198.79 5898.61 14292.34 12099.30 17197.58 7799.59 7799.31 127
3Dnovator+94.38 697.43 9796.78 11299.38 2097.83 21698.52 3299.37 1498.71 11897.09 5392.99 28999.13 7389.36 18699.89 3996.97 10299.57 8199.71 50
Vis-MVSNetpermissive97.42 9897.11 9698.34 11098.66 15196.23 14499.22 3399.00 2896.63 7398.04 10199.21 5588.05 22399.35 16896.01 14899.21 11599.45 113
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
API-MVS97.41 9997.25 9197.91 13898.70 14796.80 11598.82 11198.69 12294.53 16898.11 9598.28 18194.50 9499.57 14094.12 20899.49 9697.37 234
sss97.39 10096.98 10498.61 8698.60 15796.61 12498.22 20998.93 3993.97 18998.01 10898.48 15691.98 13399.85 5496.45 13398.15 16399.39 118
PVSNet_Blended97.38 10197.12 9598.14 12399.25 9095.35 18797.28 29599.26 993.13 23397.94 11498.21 18892.74 11699.81 7596.88 11399.40 10899.27 134
112197.37 10296.77 11699.16 5399.34 6697.99 7098.19 21798.68 12590.14 32098.01 10898.97 9794.80 8699.87 4893.36 23199.46 10299.61 82
WTY-MVS97.37 10296.92 10698.72 8098.86 13396.89 11498.31 19998.71 11895.26 13597.67 13198.56 15092.21 12699.78 10095.89 15096.85 19599.48 105
jason97.32 10497.08 9898.06 13197.45 24695.59 17597.87 25297.91 27294.79 15898.55 7798.83 11991.12 15399.23 17797.58 7799.60 7499.34 121
jason: jason.
MVS_Test97.28 10597.00 10298.13 12598.33 17995.97 15798.74 12798.07 25294.27 17798.44 8398.07 19792.48 11899.26 17396.43 13598.19 16299.16 149
EPNet97.28 10596.87 10898.51 9594.98 34596.14 14898.90 9197.02 32698.28 195.99 19799.11 7691.36 14799.89 3996.98 10199.19 11799.50 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
DCV-MVSNet97.22 10796.78 11298.54 9298.73 14296.60 12598.45 17798.31 20594.70 15998.02 10498.42 16490.80 16199.70 11996.81 11996.79 19799.34 121
IS-MVSNet97.22 10796.88 10798.25 11798.85 13596.36 13999.19 3997.97 26595.39 12697.23 14698.99 9691.11 15498.93 22094.60 19198.59 14499.47 107
PLCcopyleft95.07 497.20 11096.78 11298.44 10399.29 8296.31 14398.14 22498.76 10392.41 25896.39 18798.31 17994.92 8399.78 10094.06 21298.77 13799.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42097.18 11197.18 9497.20 18398.81 13893.27 27195.78 34899.15 1995.25 13696.79 16998.11 19592.29 12299.07 19998.56 1399.85 599.25 136
LS3D97.16 11296.66 12198.68 8298.53 16197.19 10298.93 8998.90 4692.83 24595.99 19799.37 2692.12 12999.87 4893.67 22399.57 8198.97 170
AdaColmapbinary97.15 11396.70 11798.48 9999.16 10796.69 12198.01 23798.89 4894.44 17496.83 16498.68 13590.69 16499.76 10794.36 19899.29 11498.98 169
Effi-MVS+97.12 11496.69 11898.39 10898.19 19196.72 12097.37 28698.43 18693.71 20497.65 13498.02 20092.20 12799.25 17496.87 11697.79 17699.19 143
CHOSEN 1792x268897.12 11496.80 10998.08 12999.30 7994.56 22698.05 23399.71 193.57 21597.09 15098.91 11088.17 21899.89 3996.87 11699.56 8699.81 11
F-COLMAP97.09 11696.80 10997.97 13599.45 5994.95 20698.55 16698.62 14593.02 23796.17 19298.58 14794.01 10299.81 7593.95 21498.90 12899.14 152
TAMVS97.02 11796.79 11197.70 15798.06 20395.31 18998.52 16898.31 20593.95 19097.05 15598.61 14293.49 10898.52 26295.33 17097.81 17599.29 132
CDS-MVSNet96.99 11896.69 11897.90 13998.05 20495.98 15298.20 21398.33 20293.67 21196.95 15798.49 15593.54 10798.42 27495.24 17697.74 17999.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU96.96 11996.55 12498.21 11998.17 19596.07 15097.98 24098.21 22197.24 4297.13 14998.93 10786.88 24799.91 3495.00 18099.37 11098.66 192
114514_t96.93 12096.27 13498.92 7299.50 4597.63 8398.85 10498.90 4684.80 35697.77 12299.11 7692.84 11499.66 12794.85 18299.77 3099.47 107
MAR-MVS96.91 12196.40 12998.45 10298.69 14996.90 11298.66 14998.68 12592.40 25997.07 15397.96 20791.54 14499.75 10993.68 22198.92 12798.69 188
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HyFIR lowres test96.90 12296.49 12798.14 12399.33 6995.56 17797.38 28499.65 292.34 26097.61 13798.20 18989.29 18899.10 19696.97 10297.60 18499.77 23
Vis-MVSNet (Re-imp)96.87 12396.55 12497.83 14298.73 14295.46 18299.20 3798.30 21194.96 15296.60 17598.87 11390.05 17398.59 25493.67 22398.60 14399.46 111
PAPR96.84 12496.24 13698.65 8498.72 14696.92 11197.36 28898.57 15493.33 22396.67 17197.57 24594.30 9899.56 14391.05 28898.59 14499.47 107
HY-MVS93.96 896.82 12596.23 13798.57 8898.46 16597.00 10798.14 22498.21 22193.95 19096.72 17097.99 20491.58 14099.76 10794.51 19596.54 20598.95 173
UGNet96.78 12696.30 13398.19 12298.24 18495.89 16798.88 9898.93 3997.39 2996.81 16797.84 21982.60 30999.90 3796.53 13099.49 9698.79 181
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet_BlendedMVS96.73 12796.60 12297.12 19099.25 9095.35 18798.26 20799.26 994.28 17697.94 11497.46 25192.74 11699.81 7596.88 11393.32 26396.20 327
mvs_anonymous96.70 12896.53 12697.18 18598.19 19193.78 24998.31 19998.19 22494.01 18694.47 22598.27 18492.08 13198.46 26997.39 8897.91 17199.31 127
1112_ss96.63 12996.00 14598.50 9698.56 15896.37 13898.18 22198.10 24492.92 24194.84 21398.43 16292.14 12899.58 13994.35 19996.51 20699.56 93
mvs-test196.60 13096.68 12096.37 25497.89 21391.81 29198.56 16498.10 24496.57 7596.52 18297.94 20990.81 15999.45 16395.72 15898.01 16797.86 220
PMMVS96.60 13096.33 13197.41 17397.90 21293.93 24597.35 28998.41 18892.84 24497.76 12397.45 25391.10 15599.20 18096.26 13997.91 17199.11 155
DP-MVS96.59 13295.93 14798.57 8899.34 6696.19 14798.70 14098.39 19289.45 33194.52 22399.35 3291.85 13599.85 5492.89 24898.88 13099.68 63
PatchMatch-RL96.59 13296.03 14498.27 11499.31 7496.51 13197.91 24699.06 2393.72 20396.92 16198.06 19888.50 21399.65 12891.77 27699.00 12598.66 192
GeoE96.58 13496.07 14198.10 12898.35 17295.89 16799.34 1898.12 23993.12 23496.09 19398.87 11389.71 17998.97 21192.95 24498.08 16699.43 115
mvsmamba96.57 13596.32 13297.32 17996.60 29596.43 13599.54 797.98 26396.49 7895.20 20798.64 14090.82 15898.55 25897.97 4593.65 25396.98 245
XVG-OURS96.55 13696.41 12896.99 19798.75 14193.76 25097.50 27898.52 16495.67 11396.83 16499.30 4288.95 20399.53 15095.88 15196.26 21797.69 226
FIs96.51 13796.12 13997.67 16097.13 26797.54 8799.36 1599.22 1595.89 10294.03 25198.35 17291.98 13398.44 27296.40 13692.76 27097.01 243
XVG-OURS-SEG-HR96.51 13796.34 13097.02 19698.77 14093.76 25097.79 26198.50 17295.45 12396.94 15899.09 8487.87 22899.55 14996.76 12495.83 22697.74 223
PS-MVSNAJss96.43 13996.26 13596.92 20695.84 32995.08 19899.16 4298.50 17295.87 10593.84 26098.34 17694.51 9198.61 25196.88 11393.45 26097.06 240
iter_conf_final96.42 14096.12 13997.34 17898.46 16596.55 13099.08 5998.06 25796.03 9795.63 20198.46 16087.72 23098.59 25497.84 5893.80 24996.87 262
FC-MVSNet-test96.42 14096.05 14297.53 16996.95 27597.27 9599.36 1599.23 1395.83 10693.93 25498.37 17092.00 13298.32 29196.02 14792.72 27197.00 244
ab-mvs96.42 14095.71 15898.55 9098.63 15496.75 11897.88 25198.74 10893.84 19596.54 18098.18 19185.34 27599.75 10995.93 14996.35 21099.15 150
FA-MVS(test-final)96.41 14395.94 14697.82 14498.21 18795.20 19297.80 25897.58 28793.21 22897.36 14397.70 23189.47 18399.56 14394.12 20897.99 16898.71 187
PVSNet91.96 1896.35 14496.15 13896.96 20199.17 10392.05 28896.08 34198.68 12593.69 20797.75 12497.80 22588.86 20499.69 12494.26 20499.01 12499.15 150
Test_1112_low_res96.34 14595.66 16398.36 10998.56 15895.94 16097.71 26598.07 25292.10 27094.79 21797.29 26291.75 13799.56 14394.17 20696.50 20799.58 91
Effi-MVS+-dtu96.29 14696.56 12395.51 28697.89 21390.22 32198.80 11898.10 24496.57 7596.45 18696.66 31090.81 15998.91 22295.72 15897.99 16897.40 231
QAPM96.29 14695.40 16798.96 7097.85 21597.60 8599.23 2998.93 3989.76 32693.11 28699.02 9089.11 19599.93 1991.99 27199.62 7299.34 121
Fast-Effi-MVS+96.28 14895.70 16098.03 13298.29 18395.97 15798.58 15998.25 21991.74 27895.29 20697.23 26691.03 15799.15 18692.90 24697.96 17098.97 170
nrg03096.28 14895.72 15597.96 13796.90 28098.15 6199.39 1298.31 20595.47 12294.42 23198.35 17292.09 13098.69 24397.50 8589.05 31597.04 241
131496.25 15095.73 15497.79 14797.13 26795.55 17998.19 21798.59 14893.47 21892.03 31597.82 22391.33 14999.49 15594.62 19098.44 15298.32 208
h-mvs3396.17 15195.62 16497.81 14699.03 11794.45 22898.64 15198.75 10697.48 2098.67 6798.72 13189.76 17799.86 5397.95 4681.59 35599.11 155
HQP_MVS96.14 15295.90 14896.85 20997.42 24794.60 22498.80 11898.56 15697.28 3695.34 20498.28 18187.09 24299.03 20496.07 14294.27 23296.92 251
iter_conf0596.13 15395.79 15197.15 18798.16 19695.99 15198.88 9897.98 26395.91 10195.58 20298.46 16085.53 27098.59 25497.88 5393.75 25096.86 265
tttt051796.07 15495.51 16697.78 14898.41 16894.84 21099.28 2494.33 36494.26 17897.64 13598.64 14084.05 29899.47 16195.34 16997.60 18499.03 164
MVSTER96.06 15595.72 15597.08 19398.23 18595.93 16398.73 13198.27 21494.86 15695.07 20898.09 19688.21 21798.54 26096.59 12793.46 25896.79 271
thisisatest053096.01 15695.36 17297.97 13598.38 16995.52 18098.88 9894.19 36694.04 18397.64 13598.31 17983.82 30599.46 16295.29 17397.70 18198.93 174
test_djsdf96.00 15795.69 16196.93 20395.72 33195.49 18199.47 998.40 19094.98 15094.58 22197.86 21689.16 19398.41 28296.91 10694.12 24096.88 260
RRT_MVS95.98 15895.78 15296.56 23496.48 30394.22 24099.57 697.92 27095.89 10293.95 25398.70 13289.27 18998.42 27497.23 9393.02 26797.04 241
EI-MVSNet95.96 15995.83 15096.36 25597.93 21093.70 25698.12 22798.27 21493.70 20695.07 20899.02 9092.23 12598.54 26094.68 18793.46 25896.84 267
ECVR-MVScopyleft95.95 16095.71 15896.65 22199.02 11890.86 30999.03 6791.80 37396.96 5898.10 9699.26 4781.31 31699.51 15496.90 10999.04 12199.59 87
BH-untuned95.95 16095.72 15596.65 22198.55 16092.26 28498.23 20897.79 27693.73 20294.62 22098.01 20288.97 20299.00 21093.04 24198.51 14898.68 189
test111195.94 16295.78 15296.41 25198.99 12490.12 32299.04 6492.45 37296.99 5798.03 10299.27 4681.40 31599.48 15996.87 11699.04 12199.63 79
MSDG95.93 16395.30 17997.83 14298.90 12995.36 18596.83 32898.37 19691.32 29494.43 23098.73 13090.27 17199.60 13790.05 30298.82 13598.52 199
BH-RMVSNet95.92 16495.32 17697.69 15898.32 18194.64 21898.19 21797.45 30394.56 16796.03 19598.61 14285.02 27999.12 19190.68 29399.06 12099.30 130
Fast-Effi-MVS+-dtu95.87 16595.85 14995.91 27497.74 22291.74 29598.69 14298.15 23595.56 11894.92 21197.68 23688.98 20198.79 23893.19 23697.78 17797.20 238
LFMVS95.86 16694.98 19398.47 10098.87 13296.32 14198.84 10796.02 34693.40 22198.62 7399.20 5974.99 35599.63 13397.72 6597.20 19099.46 111
baseline195.84 16795.12 18698.01 13398.49 16495.98 15298.73 13197.03 32495.37 12996.22 19098.19 19089.96 17599.16 18394.60 19187.48 33298.90 176
OpenMVScopyleft93.04 1395.83 16895.00 19198.32 11197.18 26497.32 9399.21 3698.97 3189.96 32291.14 32399.05 8986.64 25099.92 2593.38 22999.47 9997.73 224
VDD-MVS95.82 16995.23 18197.61 16598.84 13693.98 24498.68 14397.40 30795.02 14997.95 11299.34 3574.37 35999.78 10098.64 896.80 19699.08 161
UniMVSNet (Re)95.78 17095.19 18397.58 16696.99 27497.47 8998.79 12299.18 1795.60 11693.92 25597.04 28591.68 13898.48 26595.80 15587.66 33196.79 271
VPA-MVSNet95.75 17195.11 18797.69 15897.24 25697.27 9598.94 8799.23 1395.13 14195.51 20397.32 26085.73 26698.91 22297.33 9189.55 30796.89 259
bld_raw_dy_0_6495.74 17295.31 17897.03 19596.35 30995.76 17199.12 5097.37 31095.97 9994.70 21998.48 15685.80 26598.49 26496.55 12993.48 25796.84 267
HQP-MVS95.72 17395.40 16796.69 21997.20 26094.25 23898.05 23398.46 17996.43 8194.45 22697.73 22886.75 24898.96 21595.30 17194.18 23696.86 265
hse-mvs295.71 17495.30 17996.93 20398.50 16293.53 26198.36 19098.10 24497.48 2098.67 6797.99 20489.76 17799.02 20797.95 4680.91 35998.22 210
UniMVSNet_NR-MVSNet95.71 17495.15 18497.40 17596.84 28396.97 10898.74 12799.24 1195.16 14093.88 25797.72 23091.68 13898.31 29395.81 15387.25 33696.92 251
PatchmatchNetpermissive95.71 17495.52 16596.29 26097.58 23190.72 31396.84 32797.52 29694.06 18297.08 15196.96 29489.24 19198.90 22592.03 27098.37 15599.26 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS95.69 17795.33 17596.76 21496.16 31894.63 21998.43 18298.39 19296.64 7295.02 21098.78 12485.15 27899.05 20095.21 17794.20 23596.60 294
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM93.85 995.69 17795.38 17196.61 22797.61 22993.84 24898.91 9098.44 18395.25 13694.28 23798.47 15886.04 26399.12 19195.50 16793.95 24596.87 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst95.63 17995.69 16195.44 29097.54 23688.54 34696.97 31397.56 28993.50 21797.52 14196.93 29889.49 18199.16 18395.25 17596.42 20998.64 194
FE-MVS95.62 18094.90 19797.78 14898.37 17194.92 20797.17 30397.38 30990.95 30697.73 12797.70 23185.32 27799.63 13391.18 28398.33 15898.79 181
LPG-MVS_test95.62 18095.34 17396.47 24597.46 24293.54 25998.99 7798.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
CLD-MVS95.62 18095.34 17396.46 24897.52 23993.75 25297.27 29698.46 17995.53 11994.42 23198.00 20386.21 25898.97 21196.25 14094.37 23096.66 289
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051595.61 18394.89 19897.76 15198.15 19795.15 19596.77 32994.41 36292.95 24097.18 14897.43 25584.78 28499.45 16394.63 18897.73 18098.68 189
thres600view795.49 18494.77 20197.67 16098.98 12595.02 19998.85 10496.90 33295.38 12796.63 17396.90 29984.29 29199.59 13888.65 32296.33 21198.40 203
SCA95.46 18595.13 18596.46 24897.67 22591.29 30497.33 29197.60 28694.68 16296.92 16197.10 27283.97 30098.89 22692.59 25498.32 16099.20 139
IterMVS-LS95.46 18595.21 18296.22 26298.12 19893.72 25598.32 19898.13 23893.71 20494.26 23897.31 26192.24 12498.10 30994.63 18890.12 29896.84 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax95.45 18795.03 19096.73 21595.42 34294.63 21999.14 4598.52 16495.74 10993.22 28098.36 17183.87 30398.65 24996.95 10594.04 24196.91 256
CVMVSNet95.43 18896.04 14393.57 32997.93 21083.62 36498.12 22798.59 14895.68 11296.56 17699.02 9087.51 23597.51 33993.56 22797.44 18699.60 85
anonymousdsp95.42 18994.91 19696.94 20295.10 34495.90 16699.14 4598.41 18893.75 19993.16 28297.46 25187.50 23798.41 28295.63 16494.03 24296.50 313
DU-MVS95.42 18994.76 20297.40 17596.53 29996.97 10898.66 14998.99 3095.43 12493.88 25797.69 23388.57 20998.31 29395.81 15387.25 33696.92 251
mvs_tets95.41 19195.00 19196.65 22195.58 33594.42 23099.00 7598.55 15895.73 11093.21 28198.38 16983.45 30798.63 25097.09 9894.00 24396.91 256
thres100view90095.38 19294.70 20597.41 17398.98 12594.92 20798.87 10196.90 33295.38 12796.61 17496.88 30084.29 29199.56 14388.11 32396.29 21397.76 221
thres40095.38 19294.62 20897.65 16398.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21398.40 203
BH-w/o95.38 19295.08 18896.26 26198.34 17791.79 29297.70 26697.43 30592.87 24394.24 24097.22 26788.66 20798.84 23291.55 28097.70 18198.16 213
VDDNet95.36 19594.53 21297.86 14098.10 20095.13 19698.85 10497.75 27890.46 31298.36 8799.39 1873.27 36199.64 13097.98 4496.58 20398.81 180
TAPA-MVS93.98 795.35 19694.56 21197.74 15399.13 11094.83 21298.33 19398.64 14186.62 34596.29 18998.61 14294.00 10399.29 17280.00 36099.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP93.49 1095.34 19794.98 19396.43 25097.67 22593.48 26398.73 13198.44 18394.94 15592.53 30298.53 15184.50 29099.14 18895.48 16894.00 24396.66 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
COLMAP_ROBcopyleft93.27 1295.33 19894.87 19996.71 21699.29 8293.24 27398.58 15998.11 24289.92 32393.57 26899.10 7886.37 25699.79 9690.78 29198.10 16597.09 239
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpn200view995.32 19994.62 20897.43 17298.94 12794.98 20398.68 14396.93 33095.33 13096.55 17896.53 31684.23 29499.56 14388.11 32396.29 21397.76 221
Anonymous20240521195.28 20094.49 21497.67 16099.00 12193.75 25298.70 14097.04 32390.66 30896.49 18398.80 12278.13 33899.83 6096.21 14195.36 22899.44 114
thres20095.25 20194.57 21097.28 18098.81 13894.92 20798.20 21397.11 31995.24 13896.54 18096.22 32784.58 28899.53 15087.93 32796.50 20797.39 232
AllTest95.24 20294.65 20796.99 19799.25 9093.21 27498.59 15798.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
LCM-MVSNet-Re95.22 20395.32 17694.91 30498.18 19387.85 35598.75 12495.66 35295.11 14388.96 34196.85 30390.26 17297.65 33395.65 16398.44 15299.22 138
EPNet_dtu95.21 20494.95 19595.99 26996.17 31690.45 31898.16 22397.27 31596.77 6693.14 28598.33 17790.34 16998.42 27485.57 34098.81 13699.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS95.20 20594.45 21997.46 17096.75 28896.56 12898.86 10398.65 14093.30 22693.27 27998.27 18484.85 28398.87 22994.82 18491.26 28796.96 248
D2MVS95.18 20695.08 18895.48 28797.10 26992.07 28798.30 20199.13 2094.02 18592.90 29096.73 30789.48 18298.73 24294.48 19693.60 25695.65 340
WR-MVS95.15 20794.46 21797.22 18296.67 29396.45 13398.21 21098.81 8094.15 17993.16 28297.69 23387.51 23598.30 29595.29 17388.62 32196.90 258
TranMVSNet+NR-MVSNet95.14 20894.48 21597.11 19196.45 30596.36 13999.03 6799.03 2695.04 14893.58 26797.93 21088.27 21698.03 31694.13 20786.90 34196.95 250
baseline295.11 20994.52 21396.87 20896.65 29493.56 25898.27 20694.10 36893.45 21992.02 31697.43 25587.45 23999.19 18193.88 21697.41 18897.87 219
miper_enhance_ethall95.10 21094.75 20396.12 26697.53 23893.73 25496.61 33598.08 25092.20 26993.89 25696.65 31292.44 11998.30 29594.21 20591.16 28896.34 321
Anonymous2024052995.10 21094.22 22797.75 15299.01 12094.26 23798.87 10198.83 7285.79 35396.64 17298.97 9778.73 33399.85 5496.27 13894.89 22999.12 154
test-LLR95.10 21094.87 19995.80 27996.77 28589.70 32696.91 31895.21 35495.11 14394.83 21595.72 33887.71 23198.97 21193.06 23998.50 14998.72 185
WR-MVS_H95.05 21394.46 21796.81 21296.86 28295.82 16999.24 2899.24 1193.87 19492.53 30296.84 30490.37 16898.24 30193.24 23487.93 32896.38 320
miper_ehance_all_eth95.01 21494.69 20695.97 27197.70 22493.31 27097.02 31198.07 25292.23 26693.51 27296.96 29491.85 13598.15 30593.68 22191.16 28896.44 318
ADS-MVSNet95.00 21594.45 21996.63 22598.00 20591.91 29096.04 34297.74 27990.15 31896.47 18496.64 31387.89 22698.96 21590.08 30097.06 19199.02 165
VPNet94.99 21694.19 22997.40 17597.16 26596.57 12798.71 13698.97 3195.67 11394.84 21398.24 18780.36 32598.67 24796.46 13287.32 33596.96 248
EPMVS94.99 21694.48 21596.52 24197.22 25891.75 29497.23 29791.66 37494.11 18097.28 14496.81 30585.70 26798.84 23293.04 24197.28 18998.97 170
NR-MVSNet94.98 21894.16 23197.44 17196.53 29997.22 10198.74 12798.95 3594.96 15289.25 34097.69 23389.32 18798.18 30394.59 19387.40 33496.92 251
FMVSNet394.97 21994.26 22697.11 19198.18 19396.62 12298.56 16498.26 21893.67 21194.09 24797.10 27284.25 29398.01 31792.08 26692.14 27496.70 283
CostFormer94.95 22094.73 20495.60 28597.28 25489.06 33797.53 27796.89 33489.66 32896.82 16696.72 30886.05 26198.95 21995.53 16696.13 22298.79 181
PAPM94.95 22094.00 24197.78 14897.04 27195.65 17496.03 34498.25 21991.23 29994.19 24397.80 22591.27 15198.86 23182.61 35497.61 18398.84 179
CP-MVSNet94.94 22294.30 22596.83 21096.72 29095.56 17799.11 5298.95 3593.89 19292.42 30897.90 21287.19 24198.12 30894.32 20188.21 32596.82 270
TR-MVS94.94 22294.20 22897.17 18697.75 21994.14 24197.59 27497.02 32692.28 26595.75 20097.64 23983.88 30298.96 21589.77 30696.15 22198.40 203
RPSCF94.87 22495.40 16793.26 33598.89 13082.06 36998.33 19398.06 25790.30 31796.56 17699.26 4787.09 24299.49 15593.82 21896.32 21298.24 209
test_part194.82 22593.82 25497.82 14498.84 13697.82 7799.03 6798.81 8092.31 26492.51 30497.89 21481.96 31198.67 24794.80 18688.24 32496.98 245
GA-MVS94.81 22694.03 23797.14 18897.15 26693.86 24796.76 33097.58 28794.00 18794.76 21897.04 28580.91 32098.48 26591.79 27596.25 21899.09 157
c3_l94.79 22794.43 22195.89 27697.75 21993.12 27797.16 30598.03 26092.23 26693.46 27597.05 28491.39 14698.01 31793.58 22689.21 31396.53 305
V4294.78 22894.14 23396.70 21896.33 31195.22 19198.97 8198.09 24992.32 26294.31 23697.06 28288.39 21498.55 25892.90 24688.87 31996.34 321
CR-MVSNet94.76 22994.15 23296.59 23097.00 27293.43 26494.96 35497.56 28992.46 25396.93 15996.24 32388.15 21997.88 32987.38 32996.65 20198.46 201
v2v48294.69 23094.03 23796.65 22196.17 31694.79 21598.67 14698.08 25092.72 24694.00 25297.16 27087.69 23498.45 27092.91 24588.87 31996.72 279
pmmvs494.69 23093.99 24396.81 21295.74 33095.94 16097.40 28297.67 28190.42 31493.37 27697.59 24389.08 19698.20 30292.97 24391.67 28196.30 325
cl2294.68 23294.19 22996.13 26598.11 19993.60 25796.94 31598.31 20592.43 25793.32 27896.87 30286.51 25198.28 29994.10 21191.16 28896.51 311
eth_miper_zixun_eth94.68 23294.41 22295.47 28897.64 22791.71 29696.73 33298.07 25292.71 24793.64 26597.21 26890.54 16698.17 30493.38 22989.76 30296.54 303
PCF-MVS93.45 1194.68 23293.43 27698.42 10698.62 15596.77 11795.48 35298.20 22384.63 35793.34 27798.32 17888.55 21199.81 7584.80 34798.96 12698.68 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS94.67 23593.54 27298.08 12996.88 28196.56 12898.19 21798.50 17278.05 36592.69 29798.02 20091.07 15699.63 13390.09 29998.36 15798.04 215
PS-CasMVS94.67 23593.99 24396.71 21696.68 29295.26 19099.13 4899.03 2693.68 20992.33 30997.95 20885.35 27498.10 30993.59 22588.16 32796.79 271
cascas94.63 23793.86 25296.93 20396.91 27994.27 23696.00 34598.51 16785.55 35494.54 22296.23 32584.20 29698.87 22995.80 15596.98 19497.66 227
tpmvs94.60 23894.36 22495.33 29397.46 24288.60 34596.88 32497.68 28091.29 29693.80 26296.42 32088.58 20899.24 17691.06 28696.04 22498.17 212
LTVRE_ROB92.95 1594.60 23893.90 24996.68 22097.41 25094.42 23098.52 16898.59 14891.69 28191.21 32298.35 17284.87 28299.04 20391.06 28693.44 26196.60 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114494.59 24093.92 24696.60 22996.21 31394.78 21698.59 15798.14 23791.86 27794.21 24297.02 28787.97 22498.41 28291.72 27789.57 30596.61 293
ADS-MVSNet294.58 24194.40 22395.11 29998.00 20588.74 34396.04 34297.30 31290.15 31896.47 18496.64 31387.89 22697.56 33790.08 30097.06 19199.02 165
ACMH92.88 1694.55 24293.95 24596.34 25797.63 22893.26 27298.81 11798.49 17793.43 22089.74 33598.53 15181.91 31299.08 19893.69 22093.30 26496.70 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE94.54 24394.14 23395.75 28296.55 29891.65 29798.11 22998.44 18394.96 15294.22 24197.90 21279.18 33299.11 19394.05 21393.85 24796.48 315
AUN-MVS94.53 24493.73 26396.92 20698.50 16293.52 26298.34 19298.10 24493.83 19795.94 19997.98 20685.59 26999.03 20494.35 19980.94 35898.22 210
DIV-MVS_self_test94.52 24594.03 23795.99 26997.57 23593.38 26897.05 30997.94 26891.74 27892.81 29297.10 27289.12 19498.07 31392.60 25290.30 29696.53 305
cl____94.51 24694.01 24096.02 26897.58 23193.40 26797.05 30997.96 26791.73 28092.76 29497.08 27889.06 19798.13 30792.61 25190.29 29796.52 308
GBi-Net94.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
test194.49 24793.80 25696.56 23498.21 18795.00 20098.82 11198.18 22792.46 25394.09 24797.07 27981.16 31797.95 32192.08 26692.14 27496.72 279
v894.47 24993.77 25996.57 23396.36 30894.83 21299.05 6398.19 22491.92 27493.16 28296.97 29288.82 20698.48 26591.69 27887.79 32996.39 319
FMVSNet294.47 24993.61 26997.04 19498.21 18796.43 13598.79 12298.27 21492.46 25393.50 27397.09 27681.16 31798.00 31991.09 28491.93 27796.70 283
test250694.44 25193.91 24896.04 26799.02 11888.99 34099.06 6179.47 38396.96 5898.36 8799.26 4777.21 34699.52 15396.78 12399.04 12199.59 87
Patchmatch-test94.42 25293.68 26796.63 22597.60 23091.76 29394.83 35897.49 30089.45 33194.14 24597.10 27288.99 19898.83 23485.37 34398.13 16499.29 132
PEN-MVS94.42 25293.73 26396.49 24396.28 31294.84 21099.17 4199.00 2893.51 21692.23 31197.83 22286.10 26097.90 32592.55 25786.92 34096.74 276
v14419294.39 25493.70 26596.48 24496.06 32194.35 23498.58 15998.16 23491.45 28794.33 23597.02 28787.50 23798.45 27091.08 28589.11 31496.63 291
Baseline_NR-MVSNet94.35 25593.81 25595.96 27296.20 31494.05 24398.61 15696.67 34391.44 28893.85 25997.60 24288.57 20998.14 30694.39 19786.93 33995.68 339
miper_lstm_enhance94.33 25694.07 23695.11 29997.75 21990.97 30897.22 29898.03 26091.67 28292.76 29496.97 29290.03 17497.78 33192.51 25989.64 30496.56 300
v119294.32 25793.58 27096.53 24096.10 31994.45 22898.50 17398.17 23291.54 28594.19 24397.06 28286.95 24698.43 27390.14 29889.57 30596.70 283
ACMH+92.99 1494.30 25893.77 25995.88 27797.81 21792.04 28998.71 13698.37 19693.99 18890.60 32998.47 15880.86 32299.05 20092.75 25092.40 27396.55 302
v14894.29 25993.76 26195.91 27496.10 31992.93 27998.58 15997.97 26592.59 25193.47 27496.95 29688.53 21298.32 29192.56 25687.06 33896.49 314
v1094.29 25993.55 27196.51 24296.39 30794.80 21498.99 7798.19 22491.35 29293.02 28896.99 29088.09 22198.41 28290.50 29588.41 32396.33 323
MVP-Stereo94.28 26193.92 24695.35 29294.95 34692.60 28297.97 24197.65 28291.61 28490.68 32897.09 27686.32 25798.42 27489.70 30999.34 11195.02 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UniMVSNet_ETH3D94.24 26293.33 27896.97 20097.19 26393.38 26898.74 12798.57 15491.21 30193.81 26198.58 14772.85 36298.77 24095.05 17993.93 24698.77 184
OurMVSNet-221017-094.21 26394.00 24194.85 30795.60 33489.22 33598.89 9597.43 30595.29 13392.18 31298.52 15482.86 30898.59 25493.46 22891.76 27996.74 276
v192192094.20 26493.47 27596.40 25395.98 32494.08 24298.52 16898.15 23591.33 29394.25 23997.20 26986.41 25598.42 27490.04 30389.39 31196.69 288
v7n94.19 26593.43 27696.47 24595.90 32694.38 23399.26 2698.34 20191.99 27292.76 29497.13 27188.31 21598.52 26289.48 31487.70 33096.52 308
tpm294.19 26593.76 26195.46 28997.23 25789.04 33897.31 29396.85 33887.08 34496.21 19196.79 30683.75 30698.74 24192.43 26296.23 21998.59 196
TESTMET0.1,194.18 26793.69 26695.63 28496.92 27789.12 33696.91 31894.78 35993.17 23194.88 21296.45 31978.52 33498.92 22193.09 23898.50 14998.85 177
dp94.15 26893.90 24994.90 30597.31 25386.82 36096.97 31397.19 31891.22 30096.02 19696.61 31585.51 27199.02 20790.00 30494.30 23198.85 177
ET-MVSNet_ETH3D94.13 26992.98 28497.58 16698.22 18696.20 14597.31 29395.37 35394.53 16879.56 36597.63 24186.51 25197.53 33896.91 10690.74 29299.02 165
tpm94.13 26993.80 25695.12 29896.50 30187.91 35497.44 27995.89 35192.62 24996.37 18896.30 32284.13 29798.30 29593.24 23491.66 28299.14 152
IterMVS-SCA-FT94.11 27193.87 25194.85 30797.98 20990.56 31797.18 30198.11 24293.75 19992.58 30097.48 25083.97 30097.41 34092.48 26191.30 28596.58 296
Anonymous2023121194.10 27293.26 28196.61 22799.11 11294.28 23599.01 7398.88 5186.43 34792.81 29297.57 24581.66 31498.68 24694.83 18389.02 31796.88 260
IterMVS94.09 27393.85 25394.80 31097.99 20790.35 31997.18 30198.12 23993.68 20992.46 30797.34 25884.05 29897.41 34092.51 25991.33 28496.62 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-mter94.08 27493.51 27395.80 27996.77 28589.70 32696.91 31895.21 35492.89 24294.83 21595.72 33877.69 34198.97 21193.06 23998.50 14998.72 185
test0.0.03 194.08 27493.51 27395.80 27995.53 33792.89 28097.38 28495.97 34895.11 14392.51 30496.66 31087.71 23196.94 34787.03 33193.67 25197.57 228
v124094.06 27693.29 28096.34 25796.03 32393.90 24698.44 18098.17 23291.18 30294.13 24697.01 28986.05 26198.42 27489.13 31989.50 30996.70 283
X-MVStestdata94.06 27692.30 29699.34 2699.70 2498.35 4899.29 2298.88 5197.40 2798.46 7943.50 37695.90 4499.89 3997.85 5699.74 4599.78 16
DTE-MVSNet93.98 27893.26 28196.14 26496.06 32194.39 23299.20 3798.86 6493.06 23591.78 31797.81 22485.87 26497.58 33690.53 29486.17 34596.46 317
pm-mvs193.94 27993.06 28396.59 23096.49 30295.16 19398.95 8598.03 26092.32 26291.08 32497.84 21984.54 28998.41 28292.16 26486.13 34796.19 328
MS-PatchMatch93.84 28093.63 26894.46 32196.18 31589.45 33197.76 26298.27 21492.23 26692.13 31397.49 24979.50 32998.69 24389.75 30799.38 10995.25 344
tfpnnormal93.66 28192.70 29096.55 23996.94 27695.94 16098.97 8199.19 1691.04 30491.38 32197.34 25884.94 28198.61 25185.45 34289.02 31795.11 348
EU-MVSNet93.66 28194.14 23392.25 34295.96 32583.38 36598.52 16898.12 23994.69 16192.61 29998.13 19487.36 24096.39 35891.82 27490.00 30096.98 245
our_test_393.65 28393.30 27994.69 31295.45 34089.68 32896.91 31897.65 28291.97 27391.66 31996.88 30089.67 18097.93 32488.02 32691.49 28396.48 315
pmmvs593.65 28392.97 28595.68 28395.49 33892.37 28398.20 21397.28 31489.66 32892.58 30097.26 26382.14 31098.09 31193.18 23790.95 29196.58 296
tpm cat193.36 28592.80 28795.07 30197.58 23187.97 35396.76 33097.86 27482.17 36193.53 26996.04 33186.13 25999.13 18989.24 31795.87 22598.10 214
JIA-IIPM93.35 28692.49 29395.92 27396.48 30390.65 31595.01 35396.96 32885.93 35196.08 19487.33 36787.70 23398.78 23991.35 28295.58 22798.34 206
SixPastTwentyTwo93.34 28792.86 28694.75 31195.67 33289.41 33398.75 12496.67 34393.89 19290.15 33398.25 18680.87 32198.27 30090.90 28990.64 29396.57 298
USDC93.33 28892.71 28995.21 29596.83 28490.83 31196.91 31897.50 29893.84 19590.72 32798.14 19377.69 34198.82 23589.51 31393.21 26695.97 333
IB-MVS91.98 1793.27 28991.97 30097.19 18497.47 24193.41 26697.09 30895.99 34793.32 22492.47 30695.73 33678.06 33999.53 15094.59 19382.98 35098.62 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet93.26 29092.21 29796.41 25197.73 22393.13 27695.65 34997.03 32491.27 29894.04 25096.06 33075.33 35397.19 34386.56 33396.23 21998.92 175
ppachtmachnet_test93.22 29192.63 29194.97 30395.45 34090.84 31096.88 32497.88 27390.60 30992.08 31497.26 26388.08 22297.86 33085.12 34490.33 29596.22 326
Patchmtry93.22 29192.35 29595.84 27896.77 28593.09 27894.66 35997.56 28987.37 34392.90 29096.24 32388.15 21997.90 32587.37 33090.10 29996.53 305
FMVSNet193.19 29392.07 29896.56 23497.54 23695.00 20098.82 11198.18 22790.38 31592.27 31097.07 27973.68 36097.95 32189.36 31691.30 28596.72 279
LF4IMVS93.14 29492.79 28894.20 32495.88 32788.67 34497.66 26997.07 32193.81 19891.71 31897.65 23777.96 34098.81 23691.47 28191.92 27895.12 347
testgi93.06 29592.45 29494.88 30696.43 30689.90 32398.75 12497.54 29595.60 11691.63 32097.91 21174.46 35897.02 34586.10 33693.67 25197.72 225
PatchT93.06 29591.97 30096.35 25696.69 29192.67 28194.48 36097.08 32086.62 34597.08 15192.23 36287.94 22597.90 32578.89 36496.69 19998.49 200
MVS_030492.81 29792.01 29995.23 29497.46 24291.33 30298.17 22298.81 8091.13 30393.80 26295.68 34166.08 36998.06 31490.79 29096.13 22296.32 324
RPMNet92.81 29791.34 30597.24 18197.00 27293.43 26494.96 35498.80 9182.27 36096.93 15992.12 36386.98 24599.82 6876.32 36896.65 20198.46 201
TransMVSNet (Re)92.67 29991.51 30496.15 26396.58 29794.65 21798.90 9196.73 33990.86 30789.46 33997.86 21685.62 26898.09 31186.45 33481.12 35695.71 338
K. test v392.55 30091.91 30294.48 31995.64 33389.24 33499.07 6094.88 35894.04 18386.78 35197.59 24377.64 34497.64 33492.08 26689.43 31096.57 298
DSMNet-mixed92.52 30192.58 29292.33 34094.15 35482.65 36798.30 20194.26 36589.08 33592.65 29895.73 33685.01 28095.76 36186.24 33597.76 17898.59 196
TinyColmap92.31 30291.53 30394.65 31496.92 27789.75 32596.92 31696.68 34290.45 31389.62 33697.85 21876.06 35198.81 23686.74 33292.51 27295.41 342
gg-mvs-nofinetune92.21 30390.58 31097.13 18996.75 28895.09 19795.85 34689.40 37785.43 35594.50 22481.98 37080.80 32398.40 28892.16 26498.33 15897.88 218
FMVSNet591.81 30490.92 30794.49 31897.21 25992.09 28698.00 23997.55 29489.31 33390.86 32695.61 34274.48 35795.32 36485.57 34089.70 30396.07 331
pmmvs691.77 30590.63 30995.17 29794.69 35291.24 30598.67 14697.92 27086.14 34989.62 33697.56 24775.79 35298.34 28990.75 29284.56 34995.94 334
Anonymous2023120691.66 30691.10 30693.33 33394.02 35887.35 35798.58 15997.26 31690.48 31190.16 33296.31 32183.83 30496.53 35679.36 36289.90 30196.12 329
Patchmatch-RL test91.49 30790.85 30893.41 33191.37 36784.40 36292.81 36495.93 35091.87 27687.25 34994.87 34888.99 19896.53 35692.54 25882.00 35299.30 130
test_040291.32 30890.27 31394.48 31996.60 29591.12 30698.50 17397.22 31786.10 35088.30 34696.98 29177.65 34397.99 32078.13 36692.94 26994.34 355
PVSNet_088.72 1991.28 30990.03 31595.00 30297.99 20787.29 35894.84 35798.50 17292.06 27189.86 33495.19 34479.81 32899.39 16692.27 26369.79 36998.33 207
Anonymous2024052191.18 31090.44 31193.42 33093.70 35988.47 34798.94 8797.56 28988.46 33889.56 33895.08 34777.15 34896.97 34683.92 35089.55 30794.82 353
EG-PatchMatch MVS91.13 31190.12 31494.17 32694.73 35189.00 33998.13 22697.81 27589.22 33485.32 35896.46 31867.71 36698.42 27487.89 32893.82 24895.08 349
TDRefinement91.06 31289.68 31795.21 29585.35 37491.49 30098.51 17297.07 32191.47 28688.83 34497.84 21977.31 34599.09 19792.79 24977.98 36295.04 350
UnsupCasMVSNet_eth90.99 31389.92 31694.19 32594.08 35589.83 32497.13 30798.67 13393.69 20785.83 35696.19 32875.15 35496.74 35089.14 31879.41 36096.00 332
test20.0390.89 31490.38 31292.43 33993.48 36088.14 35298.33 19397.56 28993.40 22187.96 34796.71 30980.69 32494.13 36979.15 36386.17 34595.01 352
MDA-MVSNet_test_wron90.71 31589.38 32094.68 31394.83 34890.78 31297.19 30097.46 30187.60 34172.41 37095.72 33886.51 25196.71 35385.92 33886.80 34296.56 300
YYNet190.70 31689.39 31994.62 31594.79 35090.65 31597.20 29997.46 30187.54 34272.54 36995.74 33486.51 25196.66 35486.00 33786.76 34396.54 303
KD-MVS_self_test90.38 31789.38 32093.40 33292.85 36388.94 34197.95 24297.94 26890.35 31690.25 33193.96 35579.82 32795.94 36084.62 34976.69 36495.33 343
pmmvs-eth3d90.36 31889.05 32394.32 32391.10 36892.12 28597.63 27396.95 32988.86 33684.91 35993.13 35878.32 33596.74 35088.70 32181.81 35494.09 359
CL-MVSNet_self_test90.11 31989.14 32293.02 33791.86 36688.23 35196.51 33898.07 25290.49 31090.49 33094.41 35084.75 28595.34 36380.79 35874.95 36695.50 341
new_pmnet90.06 32089.00 32493.22 33694.18 35388.32 35096.42 34096.89 33486.19 34885.67 35793.62 35677.18 34797.10 34481.61 35689.29 31294.23 356
MDA-MVSNet-bldmvs89.97 32188.35 32694.83 30995.21 34391.34 30197.64 27097.51 29788.36 33971.17 37196.13 32979.22 33196.63 35583.65 35186.27 34496.52 308
CMPMVSbinary66.06 2189.70 32289.67 31889.78 34693.19 36176.56 37197.00 31298.35 19980.97 36281.57 36397.75 22774.75 35698.61 25189.85 30593.63 25494.17 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet189.67 32388.28 32793.82 32792.81 36491.08 30798.01 23797.45 30387.95 34087.90 34895.87 33367.63 36794.56 36878.73 36588.18 32695.83 336
KD-MVS_2432*160089.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
miper_refine_blended89.61 32487.96 32894.54 31694.06 35691.59 29895.59 35097.63 28489.87 32488.95 34294.38 35278.28 33696.82 34884.83 34568.05 37095.21 345
MVS-HIRNet89.46 32688.40 32592.64 33897.58 23182.15 36894.16 36393.05 37175.73 36790.90 32582.52 36979.42 33098.33 29083.53 35298.68 13897.43 229
OpenMVS_ROBcopyleft86.42 2089.00 32787.43 33293.69 32893.08 36289.42 33297.91 24696.89 33478.58 36485.86 35594.69 34969.48 36498.29 29877.13 36793.29 26593.36 364
new-patchmatchnet88.50 32887.45 33191.67 34490.31 37085.89 36197.16 30597.33 31189.47 33083.63 36192.77 35976.38 34995.06 36682.70 35377.29 36394.06 360
PM-MVS87.77 32986.55 33391.40 34591.03 36983.36 36696.92 31695.18 35691.28 29786.48 35493.42 35753.27 37396.74 35089.43 31581.97 35394.11 358
UnsupCasMVSNet_bld87.17 33085.12 33493.31 33491.94 36588.77 34294.92 35698.30 21184.30 35882.30 36290.04 36463.96 37197.25 34285.85 33974.47 36893.93 362
N_pmnet87.12 33187.77 33085.17 35195.46 33961.92 37897.37 28670.66 38485.83 35288.73 34596.04 33185.33 27697.76 33280.02 35990.48 29495.84 335
pmmvs386.67 33284.86 33592.11 34388.16 37187.19 35996.63 33494.75 36079.88 36387.22 35092.75 36066.56 36895.20 36581.24 35776.56 36593.96 361
test_method79.03 33378.17 33681.63 35386.06 37354.40 38382.75 37296.89 33439.54 37680.98 36495.57 34358.37 37294.73 36784.74 34878.61 36195.75 337
LCM-MVSNet78.70 33476.24 33986.08 34977.26 38071.99 37594.34 36196.72 34061.62 37176.53 36689.33 36533.91 38092.78 37181.85 35574.60 36793.46 363
Gipumacopyleft78.40 33576.75 33883.38 35295.54 33680.43 37079.42 37397.40 30764.67 37073.46 36880.82 37145.65 37593.14 37066.32 37287.43 33376.56 373
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.95 33675.44 34085.46 35082.54 37574.95 37394.23 36293.08 37072.80 36874.68 36787.38 36636.36 37991.56 37273.95 36963.94 37289.87 367
FPMVS77.62 33777.14 33779.05 35579.25 37860.97 37995.79 34795.94 34965.96 36967.93 37294.40 35137.73 37888.88 37468.83 37188.46 32287.29 368
EGC-MVSNET75.22 33869.54 34192.28 34194.81 34989.58 32997.64 27096.50 3451.82 3815.57 38295.74 33468.21 36596.26 35973.80 37091.71 28090.99 366
ANet_high69.08 33965.37 34380.22 35465.99 38271.96 37690.91 36890.09 37682.62 35949.93 37778.39 37229.36 38181.75 37562.49 37338.52 37686.95 370
tmp_tt68.90 34066.97 34274.68 35750.78 38459.95 38087.13 36983.47 38138.80 37762.21 37396.23 32564.70 37076.91 37988.91 32030.49 37787.19 369
PMVScopyleft61.03 2365.95 34163.57 34573.09 35857.90 38351.22 38485.05 37193.93 36954.45 37244.32 37883.57 36813.22 38289.15 37358.68 37481.00 35778.91 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 34264.25 34467.02 35982.28 37659.36 38191.83 36785.63 37952.69 37360.22 37477.28 37341.06 37780.12 37746.15 37641.14 37461.57 375
EMVS64.07 34363.26 34666.53 36081.73 37758.81 38291.85 36684.75 38051.93 37559.09 37575.13 37443.32 37679.09 37842.03 37739.47 37561.69 374
MVEpermissive62.14 2263.28 34459.38 34774.99 35674.33 38165.47 37785.55 37080.50 38252.02 37451.10 37675.00 37510.91 38580.50 37651.60 37553.40 37378.99 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d30.17 34530.18 34930.16 36178.61 37943.29 38566.79 37414.21 38517.31 37814.82 38111.93 38111.55 38441.43 38037.08 37819.30 3785.76 378
cdsmvs_eth3d_5k23.98 34631.98 3480.00 3640.00 3870.00 3880.00 37598.59 1480.00 3820.00 38398.61 14290.60 1650.00 3830.00 3810.00 3810.00 379
testmvs21.48 34724.95 35011.09 36314.89 3856.47 38796.56 3369.87 3867.55 37917.93 37939.02 3779.43 3865.90 38216.56 38012.72 37920.91 377
test12320.95 34823.72 35112.64 36213.54 3868.19 38696.55 3376.13 3877.48 38016.74 38037.98 37812.97 3836.05 38116.69 3795.43 38023.68 376
ab-mvs-re8.20 34910.94 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38398.43 1620.00 3870.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.88 35010.50 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38294.51 910.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
MSC_two_6792asdad99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
PC_three_145295.08 14799.60 599.16 6897.86 298.47 26897.52 8499.72 5499.74 37
No_MVS99.62 699.17 10399.08 1198.63 14399.94 498.53 1499.80 1999.86 2
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2699.47 1097.57 6
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.46 5598.70 2398.79 9693.21 22898.67 6798.97 9795.70 5099.83 6096.07 14299.58 80
RE-MVS-def98.34 3399.49 4997.86 7399.11 5298.80 9196.49 7899.17 3099.35 3295.29 6997.72 6599.65 6499.71 50
IU-MVS99.71 2199.23 798.64 14195.28 13499.63 498.35 3299.81 1299.83 7
OPU-MVS99.37 2399.24 9699.05 1499.02 7199.16 6897.81 399.37 16797.24 9299.73 4799.70 54
test_241102_TWO98.87 5897.65 1099.53 999.48 897.34 1199.94 498.43 2699.80 1999.83 7
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1897.53 799.74 111
9.1498.06 5599.47 5298.71 13698.82 7494.36 17599.16 3299.29 4396.05 3699.81 7597.00 10099.71 56
save fliter99.46 5598.38 4098.21 21098.71 11897.95 3
test_0728_THIRD97.32 3399.45 1199.46 1397.88 199.94 498.47 2299.86 199.85 4
test_0728_SECOND99.71 199.72 1399.35 198.97 8198.88 5199.94 498.47 2299.81 1299.84 6
test072699.72 1399.25 299.06 6198.88 5197.62 1299.56 699.50 597.42 9
GSMVS99.20 139
test_part299.63 3199.18 1099.27 21
sam_mvs189.45 18499.20 139
sam_mvs88.99 198
ambc89.49 34786.66 37275.78 37292.66 36596.72 34086.55 35392.50 36146.01 37497.90 32590.32 29682.09 35194.80 354
MTGPAbinary98.74 108
test_post196.68 33330.43 38087.85 22998.69 24392.59 254
test_post31.83 37988.83 20598.91 222
patchmatchnet-post95.10 34689.42 18598.89 226
GG-mvs-BLEND96.59 23096.34 31094.98 20396.51 33888.58 37893.10 28794.34 35480.34 32698.05 31589.53 31296.99 19396.74 276
MTMP98.89 9594.14 367
gm-plane-assit95.88 32787.47 35689.74 32796.94 29799.19 18193.32 233
test9_res96.39 13799.57 8199.69 57
TEST999.31 7498.50 3497.92 24498.73 11292.63 24897.74 12598.68 13596.20 2799.80 84
test_899.29 8298.44 3697.89 25098.72 11492.98 23897.70 12998.66 13896.20 2799.80 84
agg_prior295.87 15299.57 8199.68 63
agg_prior99.30 7998.38 4098.72 11497.57 13999.81 75
TestCases96.99 19799.25 9093.21 27498.18 22791.36 29093.52 27098.77 12684.67 28699.72 11389.70 30997.87 17398.02 216
test_prior498.01 6797.86 253
test_prior297.80 25896.12 9397.89 11998.69 13395.96 4096.89 11099.60 74
test_prior99.19 4699.31 7498.22 5598.84 6999.70 11999.65 73
旧先验297.57 27691.30 29598.67 6799.80 8495.70 162
新几何297.64 270
新几何199.16 5399.34 6698.01 6798.69 12290.06 32198.13 9498.95 10594.60 8999.89 3991.97 27299.47 9999.59 87
旧先验199.29 8297.48 8898.70 12199.09 8495.56 5399.47 9999.61 82
无先验97.58 27598.72 11491.38 28999.87 4893.36 23199.60 85
原ACMM297.67 268
原ACMM198.65 8499.32 7296.62 12298.67 13393.27 22797.81 12198.97 9795.18 7599.83 6093.84 21799.46 10299.50 100
test22299.23 9797.17 10397.40 28298.66 13688.68 33798.05 9998.96 10394.14 10099.53 9299.61 82
testdata299.89 3991.65 279
segment_acmp96.85 14
testdata98.26 11699.20 10195.36 18598.68 12591.89 27598.60 7599.10 7894.44 9699.82 6894.27 20399.44 10499.58 91
testdata197.32 29296.34 85
test1299.18 5099.16 10798.19 5798.53 16298.07 9895.13 7799.72 11399.56 8699.63 79
plane_prior797.42 24794.63 219
plane_prior697.35 25294.61 22287.09 242
plane_prior598.56 15699.03 20496.07 14294.27 23296.92 251
plane_prior498.28 181
plane_prior394.61 22297.02 5595.34 204
plane_prior298.80 11897.28 36
plane_prior197.37 251
plane_prior94.60 22498.44 18096.74 6894.22 234
n20.00 388
nn0.00 388
door-mid94.37 363
lessismore_v094.45 32294.93 34788.44 34891.03 37586.77 35297.64 23976.23 35098.42 27490.31 29785.64 34896.51 311
LGP-MVS_train96.47 24597.46 24293.54 25998.54 16094.67 16394.36 23398.77 12685.39 27299.11 19395.71 16094.15 23896.76 274
test1198.66 136
door94.64 361
HQP5-MVS94.25 238
HQP-NCC97.20 26098.05 23396.43 8194.45 226
ACMP_Plane97.20 26098.05 23396.43 8194.45 226
BP-MVS95.30 171
HQP4-MVS94.45 22698.96 21596.87 262
HQP3-MVS98.46 17994.18 236
HQP2-MVS86.75 248
NP-MVS97.28 25494.51 22797.73 228
MDTV_nov1_ep13_2view84.26 36396.89 32390.97 30597.90 11889.89 17693.91 21599.18 148
MDTV_nov1_ep1395.40 16797.48 24088.34 34996.85 32697.29 31393.74 20197.48 14297.26 26389.18 19299.05 20091.92 27397.43 187
ACMMP++_ref92.97 268
ACMMP++93.61 255
Test By Simon94.64 87
ITE_SJBPF95.44 29097.42 24791.32 30397.50 29895.09 14693.59 26698.35 17281.70 31398.88 22889.71 30893.39 26296.12 329
DeepMVS_CXcopyleft86.78 34897.09 27072.30 37495.17 35775.92 36684.34 36095.19 34470.58 36395.35 36279.98 36189.04 31692.68 365