This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6698.75 5599.99 499.97 199.96 1399.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7498.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 10899.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1899.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7299.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21699.37 10399.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15799.08 3399.91 1699.81 8999.20 799.96 3098.91 10299.85 7399.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 899.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11599.80 10199.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22598.91 5899.78 4799.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9499.45 19899.01 4099.90 1899.83 6698.98 2399.93 8499.59 2599.95 1899.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9399.45 19899.01 4099.89 1999.82 7499.01 1899.92 9599.56 2899.95 1899.85 36
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 24299.10 2799.81 3799.80 10398.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14699.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16199.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8499.79 4299.83 6699.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16499.74 14298.81 4499.94 6998.79 12699.86 6699.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17798.79 7099.68 7899.81 8998.43 8399.97 2198.88 10599.90 4399.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15499.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1399.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5799.75 13799.13 1299.92 9599.07 8699.92 2899.85 36
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 14198.94 34199.48 15799.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9999.90 199.55 7798.56 8999.78 4799.70 15798.65 6899.79 19199.65 2399.78 10899.41 200
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6198.56 8999.73 6599.69 16798.55 7599.82 17799.69 1999.85 7399.48 180
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7899.69 16799.06 1699.96 3098.69 13899.87 5899.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 8299.69 16798.95 2799.96 3098.69 13899.87 5899.84 40
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18799.07 3599.79 4299.82 7498.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 14099.66 8799.68 17398.96 2499.96 3098.62 14699.87 5899.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 11099.79 4299.82 7498.86 3899.95 5998.62 14699.81 9799.78 80
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31199.66 2899.14 2199.57 11799.80 10398.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 15299.55 12299.64 19198.91 3499.96 3098.72 13399.90 4399.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15798.05 15899.76 5799.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6298.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20899.71 1398.98 4899.45 13999.78 12299.19 999.54 26299.28 6599.84 8199.63 140
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.53 7699.95 5998.61 14999.81 9799.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17799.71 7199.80 10399.12 1399.97 2198.33 18399.87 5899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15399.53 12599.63 19798.93 3399.97 2198.74 13099.91 3599.83 49
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14399.63 10099.84 6298.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17797.45 22399.78 4799.82 7499.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15798.12 14399.50 13099.75 13798.78 4899.97 2198.57 15899.89 5299.83 49
EC-MVSNet99.44 3799.39 2799.58 9299.56 15699.49 8999.88 399.58 6198.38 10699.73 6599.69 16798.20 9599.70 22999.64 2499.82 9499.54 162
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12899.73 6599.79 11698.68 6499.96 3098.44 17499.77 11199.79 74
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22298.79 7099.52 12799.62 20298.91 3499.90 11698.64 14499.75 11699.82 54
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14697.57 39099.51 299.82 3599.78 12298.09 10099.96 3099.97 199.97 799.94 11
MSP-MVS99.42 4299.27 5999.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16199.70 1598.79 7099.77 5199.96 197.45 12099.96 3098.92 10199.90 4399.89 20
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19798.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 16099.71 15398.96 2499.85 15098.59 15499.80 10199.77 82
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14298.51 7899.80 18898.83 12199.89 5299.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33899.85 698.82 6599.54 12399.73 14898.51 7899.74 20798.91 10299.88 5599.77 82
MM99.40 5099.28 5599.74 6199.67 11199.31 11199.52 14698.87 34499.55 199.74 6399.80 10396.47 15799.98 1399.97 199.97 799.94 11
GST-MVS99.40 5099.24 6499.85 2899.86 2099.79 3099.60 9499.67 2397.97 16499.63 10099.68 17398.52 7799.95 5998.38 17799.86 6699.81 61
HPM-MVS++copyleft99.39 5299.23 6699.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18899.53 23598.64 6999.96 3098.44 17499.80 10199.79 74
SF-MVS99.38 5399.24 6499.79 4999.79 5499.68 4899.57 11599.54 8597.82 18299.71 7199.80 10398.95 2799.93 8498.19 19299.84 8199.74 92
MP-MVS-pluss99.37 5499.20 6999.88 599.90 499.87 1299.30 24799.52 10197.18 24899.60 11099.79 11698.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSMamba_pp99.36 5599.28 5599.62 8399.38 21699.50 8799.50 16199.49 14498.55 9199.77 5199.82 7497.62 11699.88 13299.39 4899.96 1399.47 186
TSAR-MVS + GP.99.36 5599.36 3299.36 14099.67 11198.61 20299.07 30699.33 26099.00 4399.82 3599.81 8999.06 1699.84 15799.09 8499.42 15199.65 129
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8699.86 2099.07 14699.47 18599.93 297.66 20099.71 7199.86 4797.73 11199.96 3099.47 4399.82 9499.79 74
NCCC99.34 5899.19 7099.79 4999.61 14199.65 5799.30 24799.48 15798.86 6099.21 20299.63 19798.72 6199.90 11698.25 18899.63 13799.80 70
mamv499.33 5999.23 6699.62 8399.39 21399.50 8799.50 16199.50 13598.13 14099.76 5799.81 8997.69 11399.88 13299.35 5299.95 1899.49 178
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 6999.46 18798.09 14899.48 13499.74 14298.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 6199.32 4099.30 15399.57 15298.94 16898.97 33499.46 18798.92 5799.71 7199.24 31399.01 1899.98 1399.35 5299.66 13298.97 250
CSCG99.32 6199.32 4099.32 14799.85 2698.29 22699.71 5199.66 2898.11 14599.41 15299.80 10398.37 8899.96 3098.99 9299.96 1399.72 103
PHI-MVS99.30 6399.17 7299.70 6799.56 15699.52 8599.58 10899.80 897.12 25499.62 10499.73 14898.58 7299.90 11698.61 14999.91 3599.68 119
DeepC-MVS98.35 299.30 6399.19 7099.64 7899.82 4299.23 12399.62 8799.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5199.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6599.10 8099.86 2199.70 10199.65 5799.53 14599.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1399.97 4
xiu_mvs_v1_base_debu99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
xiu_mvs_v1_base99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 235
APD-MVScopyleft99.27 6999.08 8499.84 3999.75 7399.79 3099.50 16199.50 13597.16 25099.77 5199.82 7498.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6999.12 7899.74 6199.18 26899.75 3999.56 12199.57 6498.45 10099.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 168
fmvsm_s_conf0.1_n_a99.26 7199.06 8699.85 2899.52 16799.62 6599.54 13799.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
patch_mono-299.26 7199.62 598.16 29999.81 4694.59 36299.52 14699.64 3699.33 1399.73 6599.90 2599.00 2299.99 499.69 1999.98 499.89 20
ETV-MVS99.26 7199.21 6899.40 13599.46 19099.30 11399.56 12199.52 10198.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
xiu_mvs_v2_base99.26 7199.25 6399.29 15699.53 16398.91 17299.02 31999.45 19898.80 6999.71 7199.26 31198.94 2999.98 1399.34 5899.23 16598.98 249
CANet99.25 7599.14 7599.59 8999.41 20599.16 13099.35 23699.57 6498.82 6599.51 12999.61 20696.46 15899.95 5999.59 2599.98 499.65 129
3Dnovator97.25 999.24 7699.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
dcpmvs_299.23 7799.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
test_fmvsmconf0.01_n99.22 7899.03 9199.79 4998.42 36899.48 9199.55 13399.51 11599.39 1099.78 4799.93 994.80 21799.95 5999.93 1199.95 1899.94 11
iter_conf05_1199.22 7899.13 7699.49 12199.37 22099.43 9898.95 33899.38 23398.52 9499.70 7799.49 24797.62 11699.87 14099.20 7499.94 2499.16 226
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22099.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3699.97 799.89 20
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20699.54 8597.29 23999.41 15299.59 21198.42 8599.93 8498.19 19299.69 12799.73 97
EIA-MVS99.18 8299.09 8399.45 12899.49 18199.18 12799.67 6499.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 210
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27699.68 4899.81 2099.51 11599.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
MVSFormer99.17 8499.12 7899.29 15699.51 17098.94 16899.88 399.46 18797.55 21099.80 4099.65 18597.39 12199.28 30299.03 8899.85 7399.65 129
sss99.17 8499.05 8799.53 10799.62 13798.97 15899.36 23199.62 4197.83 17899.67 8299.65 18597.37 12499.95 5999.19 7599.19 16899.68 119
test_cas_vis1_n_192099.16 8699.01 9999.61 8699.81 4698.86 17899.65 7599.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 2999.91 3599.99 1
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20899.50 13597.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9899.66 12099.09 14199.64 7899.56 6998.26 12099.45 13999.87 4396.03 17199.81 18299.54 3099.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8899.02 9599.53 10799.66 12099.14 13699.72 4999.48 15798.35 11199.42 14899.84 6296.07 16999.79 19199.51 3599.14 17399.67 122
diffmvspermissive99.14 9099.02 9599.51 11599.61 14198.96 16299.28 25799.49 14498.46 9999.72 7099.71 15396.50 15699.88 13299.31 6199.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9098.99 10199.59 8999.58 15099.41 10199.16 28799.44 20698.45 10099.19 20899.49 24798.08 10199.89 12797.73 23699.75 11699.48 180
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29099.41 21696.60 29799.60 11099.55 22698.83 4299.90 11697.48 26099.83 9099.78 80
casdiffmvspermissive99.13 9298.98 10499.56 9699.65 12699.16 13099.56 12199.50 13598.33 11499.41 15299.86 4795.92 17799.83 17099.45 4599.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9299.03 9199.45 12899.46 19098.87 17599.12 29699.26 28898.03 16199.79 4299.65 18597.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
lupinMVS99.13 9299.01 9999.46 12799.51 17098.94 16899.05 31199.16 30497.86 17299.80 4099.56 22297.39 12199.86 14498.94 9799.85 7399.58 154
EPP-MVSNet99.13 9298.99 10199.53 10799.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30699.34 25398.99 4599.61 10799.82 7497.98 10499.87 14097.00 29099.80 10199.85 36
CHOSEN 280x42099.12 9899.13 7699.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13496.63 15199.70 22999.46 4499.99 199.66 125
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26299.57 6496.40 31399.42 14899.68 17398.75 5599.80 18897.98 21199.72 12299.44 196
Vis-MVSNetpermissive99.12 9898.97 10599.56 9699.78 5699.10 14099.68 6199.66 2898.49 9799.86 2799.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 9899.08 8499.24 16599.46 19098.55 20599.51 15499.46 18798.09 14899.45 13999.82 7498.34 8999.51 26398.70 13598.93 19099.67 122
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
VNet99.11 10298.90 11499.73 6499.52 16799.56 7599.41 20899.39 22599.01 4099.74 6399.78 12295.56 19099.92 9599.52 3498.18 23799.72 103
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10099.49 14497.03 26699.63 10099.69 16797.27 12999.96 3097.82 22599.84 8199.81 61
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 31999.91 397.67 19999.59 11399.75 13795.90 17999.73 21399.53 3299.02 18699.86 33
MVS_Test99.10 10698.97 10599.48 12299.49 18199.14 13699.67 6499.34 25397.31 23799.58 11499.76 13497.65 11499.82 17798.87 10899.07 18199.46 191
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20098.73 19199.45 18999.46 18798.11 14599.46 13899.77 13098.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24797.53 11899.88 13298.98 9399.85 7399.60 146
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25799.52 10198.07 15399.66 8799.81 8997.79 10999.78 19697.79 22799.81 9799.60 146
WTY-MVS99.06 11098.88 11999.61 8699.62 13799.16 13099.37 22799.56 6998.04 15999.53 12599.62 20296.84 14499.94 6998.85 11598.49 21999.72 103
bld_raw_dy_0_6499.05 11199.15 7398.74 23799.46 19096.95 30099.02 31999.47 17798.15 13599.75 6299.56 22297.63 11599.88 13299.35 5299.97 799.40 202
IS-MVSNet99.05 11198.87 12099.57 9499.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9699.39 22099.38 23397.70 19599.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
API-MVS99.04 11399.03 9199.06 18399.40 21099.31 11199.55 13399.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
mvs_anonymous99.03 11598.99 10199.16 17399.38 21698.52 21199.51 15499.38 23397.79 18399.38 16299.81 8997.30 12799.45 26899.35 5298.99 18799.51 174
sasdasda99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35597.09 13499.75 20599.27 6797.90 24899.47 186
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31199.41 21696.28 31798.95 25099.49 24798.76 5299.91 10597.63 24499.72 12299.75 88
canonicalmvs99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35597.09 13499.75 20599.27 6797.90 24899.47 186
PLCcopyleft97.94 499.02 11698.85 12599.53 10799.66 12099.01 15399.24 27599.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12098.85 12599.50 12099.42 20099.26 11999.82 1699.48 15798.60 8699.28 18398.81 35597.04 13899.76 20299.29 6497.87 25199.47 186
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28599.70 1598.18 13399.35 17099.63 19796.32 16399.90 11697.48 26099.77 11199.55 160
1112_ss98.98 12298.77 13499.59 8999.68 11099.02 15199.25 27399.48 15797.23 24599.13 21799.58 21596.93 14399.90 11698.87 10898.78 20399.84 40
MSDG98.98 12298.80 13099.53 10799.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13097.82 10899.87 14096.93 29799.90 4399.54 162
CANet_DTU98.97 12498.87 12099.25 16399.33 23098.42 22399.08 30599.30 27999.16 1999.43 14599.75 13795.27 20099.97 2198.56 16199.95 1899.36 209
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22698.67 6699.80 18895.80 32899.68 13099.61 144
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8799.59 5792.65 38199.71 7199.78 12298.06 10299.90 11698.84 11899.91 3599.74 92
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33798.53 20799.78 3299.54 8598.07 15399.00 24499.76 13499.01 1899.37 28499.13 8097.23 29198.81 259
mvsmamba98.92 12798.87 12099.08 18099.07 29699.16 13099.88 399.51 11598.15 13599.40 15799.89 2997.12 13299.33 29499.38 4997.40 28598.73 273
Test_1112_low_res98.89 12998.66 14699.57 9499.69 10698.95 16599.03 31699.47 17796.98 26899.15 21599.23 31496.77 14799.89 12798.83 12198.78 20399.86 33
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13399.49 14499.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12199.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
UGNet98.87 13198.69 14199.40 13599.22 25998.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5899.94 2499.53 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20697.91 16999.36 16799.78 12295.49 19399.43 27797.91 21599.11 17599.62 142
test_yl98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
EPNet98.86 13498.71 13999.30 15397.20 38898.18 23199.62 8798.91 33799.28 1698.63 29899.81 8995.96 17399.99 499.24 7199.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25799.91 397.42 22899.67 8299.37 28297.53 11899.88 13298.98 9397.29 28998.42 347
ab-mvs98.86 13498.63 14899.54 9999.64 12899.19 12599.44 19599.54 8597.77 18699.30 17999.81 8994.20 24999.93 8499.17 7898.82 20099.49 178
MAR-MVS98.86 13498.63 14899.54 9999.37 22099.66 5399.45 18999.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 23999.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14198.62 15399.53 10799.61 14199.08 14499.80 2599.51 11597.10 25899.31 17699.78 12295.23 20499.77 19898.21 19099.03 18499.75 88
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20099.08 14499.62 8799.36 24397.39 23199.28 18399.68 17396.44 16099.92 9598.37 17998.22 23299.40 202
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 21996.75 14899.86 14498.56 16199.70 12699.54 162
PatchMatch-RL98.84 14498.62 15399.52 11399.71 9699.28 11599.06 30999.77 997.74 19099.50 13099.53 23595.41 19499.84 15797.17 28499.64 13599.44 196
Effi-MVS+98.81 14598.59 15999.48 12299.46 19099.12 13998.08 39499.50 13597.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 174
alignmvs98.81 14598.56 16299.58 9299.43 19899.42 9999.51 15498.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5298.11 24299.54 162
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20699.35 1299.83 3499.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
PMMVS98.80 14898.62 15399.34 14199.27 24798.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 168
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11599.30 27998.47 9899.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
FIs98.78 14998.63 14899.23 16799.18 26899.54 7999.83 1599.59 5798.28 11798.79 27499.81 8996.75 14899.37 28499.08 8596.38 30798.78 261
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20596.99 29499.52 14699.49 14498.11 14599.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29699.50 16199.31 27498.13 14099.48 13499.80 10397.89 10599.46 26699.25 7097.68 25998.56 333
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12199.62 4198.78 7399.64 9799.88 3592.02 30799.88 13299.54 3098.26 23099.72 103
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21195.39 19599.90 11697.78 22899.49 14799.28 218
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29599.45 9599.86 1199.60 5498.23 12598.70 28799.82 7496.80 14599.22 31399.07 8696.38 30798.79 260
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6295.27 20099.91 10598.08 20398.84 19899.00 246
Fast-Effi-MVS+98.70 15798.43 16799.51 11599.51 17099.28 11599.52 14699.47 17796.11 33399.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 204
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29699.54 8598.44 10399.42 14899.71 15394.20 24999.92 9598.54 16598.90 19499.00 246
131498.68 15998.54 16399.11 17998.89 32298.65 19799.27 26299.49 14496.89 27697.99 33799.56 22297.72 11299.83 17097.74 23599.27 16498.84 258
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24399.50 16199.38 23396.93 27599.20 20599.83 6697.87 10699.36 28898.38 17797.56 26898.71 276
test_djsdf98.67 16098.57 16098.98 19398.70 35098.91 17299.88 399.46 18797.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26398.75 268
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
nrg03098.64 16398.42 16899.28 16099.05 30399.69 4799.81 2099.46 18798.04 15999.01 24099.82 7496.69 15099.38 28199.34 5894.59 34898.78 261
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
PAPR98.63 16498.34 17399.51 11599.40 21099.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16199.55 7798.60 8699.39 16099.83 6694.48 24099.45 26898.75 12998.56 21499.85 36
MVSTER98.49 16798.32 17599.00 19199.35 22599.02 15199.54 13799.38 23397.41 22999.20 20599.73 14893.86 26399.36 28898.87 10897.56 26898.62 317
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6198.81 35195.54 34499.62 10499.70 15793.82 26499.93 8497.35 27199.46 14899.32 215
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11399.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 241
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22799.43 21296.94 27499.07 22999.59 21197.87 10699.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17198.28 17898.94 19998.50 36598.96 16299.77 3499.50 13597.07 26098.87 26399.77 13094.76 22399.28 30298.66 14297.60 26498.57 332
jajsoiax98.43 17298.28 17898.88 21498.60 36098.43 22199.82 1699.53 9698.19 13098.63 29899.80 10393.22 27599.44 27399.22 7297.50 27498.77 264
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4496.85 39497.68 19799.79 4299.74 14291.39 32499.89 12798.83 12199.56 14299.57 157
BH-untuned98.42 17398.36 17198.59 24999.49 18196.70 31099.27 26299.13 30897.24 24498.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 214
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4499.49 14499.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21699.61 4897.71 19298.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20598.83 18399.30 24798.77 35497.70 19598.94 25299.65 18592.91 28299.74 20796.52 31399.55 14499.64 136
mvs_tets98.40 17898.23 18098.91 20798.67 35398.51 21399.66 6999.53 9698.19 13098.65 29699.81 8992.75 28499.44 27399.31 6197.48 27898.77 264
XXY-MVS98.38 17998.09 19499.24 16599.26 24999.32 10799.56 12199.55 7797.45 22398.71 28199.83 6693.23 27399.63 25398.88 10596.32 30998.76 266
ACMM97.58 598.37 18098.34 17398.48 26499.41 20597.10 28199.56 12199.45 19898.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13796.75 39697.53 21499.73 6599.65 18591.25 32799.89 12798.62 14699.56 14299.48 180
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24599.11 30997.27 24099.45 13999.59 21195.33 19899.84 15798.48 16898.61 20899.09 234
baseline198.31 18397.95 21099.38 13999.50 17998.74 19099.59 10098.93 33098.41 10499.14 21699.60 20994.59 23399.79 19198.48 16893.29 36699.61 144
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26298.92 33397.37 23299.37 16499.58 21594.90 21299.70 22997.43 26699.21 16699.54 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20898.55 37196.03 33899.19 20899.74 14291.87 31099.92 9599.16 7998.29 22999.70 113
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27899.54 7999.50 16199.58 6198.27 11999.35 17099.37 28292.53 29699.65 24599.35 5294.46 34998.72 274
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30899.36 10599.49 17599.51 11597.95 16598.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29699.39 22099.47 17798.97 5199.11 22199.61 20692.71 28999.69 23497.78 22897.63 26198.67 296
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 32098.98 15599.48 17999.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28799.58 10899.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27298.68 289
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 4999.44 20696.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 157
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27699.15 30596.24 32199.10 22499.67 17994.11 25399.71 22396.81 30299.05 18299.48 180
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28599.28 25799.38 23398.57 8899.22 19999.81 8992.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30698.97 32697.57 20799.43 14599.57 21992.72 28799.74 20797.58 24899.20 16799.52 168
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25898.72 36399.31 27496.60 29798.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
CR-MVSNet98.17 19697.93 21398.87 21899.18 26898.49 21599.22 28099.33 26096.96 27099.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25898.45 38099.32 27096.95 27298.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20697.83 17899.13 21799.55 22692.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19997.79 22499.19 17099.50 17998.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 223
pmmvs498.13 20097.90 21598.81 23098.61 35998.87 17598.99 32899.21 29896.44 30999.06 23499.58 21595.90 17999.11 33297.18 28396.11 31398.46 344
WR-MVS_H98.13 20097.87 22098.90 20999.02 30698.84 18099.70 5299.59 5797.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26298.81 35499.33 26096.67 28898.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
ACMH97.28 898.10 20397.99 20598.44 27499.41 20596.96 29999.60 9499.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21699.43 21293.67 37099.22 19999.89 2990.23 33999.93 8499.26 6998.33 22499.66 125
CP-MVSNet98.09 20497.78 22799.01 18998.97 31699.24 12299.67 6499.46 18797.25 24298.48 31199.64 19193.79 26599.06 33798.63 14594.10 35698.74 271
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5298.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
DU-MVS98.08 20697.79 22498.96 19698.87 32698.98 15599.41 20899.45 19897.87 17198.71 28199.50 24494.82 21599.22 31398.57 15892.87 37298.68 289
v2v48298.06 20897.77 22998.92 20398.90 32198.82 18499.57 11599.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
V4298.06 20897.79 22498.86 22198.98 31498.84 18099.69 5599.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28198.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
WR-MVS98.06 20897.73 23699.06 18398.86 32999.25 12199.19 28399.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22097.01 29299.44 19599.49 14497.54 21398.45 31299.79 11691.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 26998.56 37699.31 27496.65 29098.88 26099.52 23896.58 15399.12 33197.39 26895.53 33098.47 341
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10895.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4699.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10094.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4799.38 15399.80 70
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27698.75 35599.02 3897.82 34499.71 15396.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21697.76 23398.84 22599.39 21398.98 15599.40 21699.38 23396.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27699.08 31396.24 32199.10 22499.67 17994.11 25398.93 35896.81 30299.05 18299.48 180
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33199.39 22598.24 12298.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5299.60 5497.12 25498.18 32999.70 15791.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22197.84 22298.55 25899.25 25397.97 24398.71 36499.34 25396.47 30898.59 30499.54 23195.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24798.71 36499.35 24996.50 30298.60 30399.54 23195.72 18699.03 34197.21 27795.77 32298.46 344
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26898.88 34799.36 24396.48 30698.80 27299.55 22695.98 17298.91 35997.27 27495.50 33198.51 337
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32598.90 33996.42 31198.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
v114497.98 22597.69 23998.85 22498.87 32698.66 19699.54 13799.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 6999.66 2898.09 14898.35 31799.82 7495.25 20398.01 38197.41 26795.30 33498.78 261
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24599.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 18999.08 31398.21 12898.88 26099.80 10388.66 35499.70 22998.58 15597.72 25799.39 204
NR-MVSNet97.97 22897.61 24899.02 18898.87 32699.26 11999.47 18599.42 21497.63 20297.08 36299.50 24495.07 20799.13 32797.86 22093.59 36398.68 289
v897.95 23097.63 24798.93 20198.95 31898.81 18699.80 2599.41 21696.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
Patchmatch-test97.93 23197.65 24398.77 23599.18 26897.07 28599.03 31699.14 30796.16 32898.74 27899.57 21994.56 23599.72 21793.36 36599.11 17599.52 168
PS-CasMVS97.93 23197.59 25098.95 19898.99 31199.06 14799.68 6199.52 10197.13 25298.31 31999.68 17392.44 30299.05 33898.51 16694.08 35798.75 268
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33798.62 20099.65 7599.49 14497.76 18798.49 31099.60 20994.23 24898.97 35598.00 21092.90 37098.70 280
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4499.49 14499.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
v14419297.92 23497.60 24998.87 21898.83 33298.65 19799.55 13399.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19096.68 31399.56 12199.54 8598.41 10497.79 34699.87 4390.18 34099.66 24098.05 20797.18 29498.62 317
LFMVS97.90 23797.35 28199.54 9999.52 16799.01 15399.39 22098.24 37897.10 25899.65 9399.79 11684.79 38099.91 10599.28 6598.38 22199.69 115
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 17999.57 6494.16 36698.81 27099.68 17393.23 27399.42 27898.84 11894.42 35198.76 266
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
v7n97.87 24097.52 25598.92 20398.76 34398.58 20399.84 1299.46 18796.20 32498.91 25599.70 15794.89 21399.44 27396.03 32293.89 36098.75 268
baseline297.87 24097.55 25198.82 22799.18 26898.02 24099.41 20896.58 40096.97 26996.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10098.74 35897.94 16699.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
cl2297.85 24397.64 24698.48 26499.09 29297.87 25198.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
v1097.85 24397.52 25598.86 22198.99 31198.67 19599.75 4199.41 21695.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
GA-MVS97.85 24397.47 26199.00 19199.38 21697.99 24298.57 37499.15 30597.04 26598.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
tfpnnormal97.84 24697.47 26198.98 19399.20 26299.22 12499.64 7899.61 4896.32 31598.27 32399.70 15793.35 27299.44 27395.69 33195.40 33298.27 357
VPNet97.84 24697.44 26999.01 18999.21 26098.94 16899.48 17999.57 6498.38 10699.28 18399.73 14888.89 35099.39 28099.19 7593.27 36798.71 276
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10098.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 20899.52 10198.06 15799.05 23699.50 24489.64 34599.73 21397.73 23697.38 28798.53 335
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 31999.48 15797.22 24698.71 28199.70 15792.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 31999.49 14497.18 24898.71 28199.72 15292.72 28799.14 32497.44 26595.86 32198.67 296
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17594.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 210
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33598.85 34697.22 24697.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25397.44 26998.91 20798.88 32398.68 19499.51 15499.34 25396.18 32699.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
v192192097.80 25597.45 26498.84 22598.80 33398.53 20799.52 14699.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
v14897.79 25697.55 25198.50 26198.74 34497.72 25899.54 13799.33 26096.26 32098.90 25799.51 24194.68 22999.14 32497.83 22493.15 36998.63 315
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10098.74 35897.93 16799.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20699.78 3299.51 11597.06 26298.29 32299.64 19192.63 29398.89 36198.09 19993.16 36898.72 274
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22699.41 20898.85 34695.65 34398.63 29899.67 17994.82 21599.10 33498.07 20692.89 37198.64 308
TR-MVS97.76 25897.41 27598.82 22799.06 30097.87 25198.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
Patchmtry97.75 26297.40 27698.81 23099.10 28998.87 17599.11 30299.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24298.88 34296.48 30699.08 22899.55 22692.67 29299.82 17796.52 31398.58 21199.24 222
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27399.51 11591.90 38399.30 17999.63 19798.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26597.35 28198.88 21499.47 18997.12 28099.34 23998.85 34698.19 13099.67 8299.85 5282.98 38799.92 9599.49 4098.32 22899.60 146
MIMVSNet97.73 26597.45 26498.57 25399.45 19697.50 26699.02 31998.98 32596.11 33399.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 186
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13799.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 213
FMVSNet297.72 26797.36 27998.80 23299.51 17098.84 18099.45 18999.42 21496.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25498.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23199.45 19898.94 5499.66 8799.64 19194.93 20999.99 499.48 4184.36 39599.65 129
v124097.69 27297.32 28798.79 23398.85 33098.43 22199.48 17999.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
cascas97.69 27297.43 27398.48 26498.60 36097.30 27098.18 39299.39 22592.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
pm-mvs197.68 27497.28 29298.88 21499.06 30098.62 20099.50 16199.45 19896.32 31597.87 34299.79 11692.47 29899.35 29197.54 25593.54 36498.67 296
GBi-Net97.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
test197.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30999.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 180
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39599.25 29091.24 38698.51 30899.70 15794.55 23799.91 10592.76 37499.85 7399.42 198
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26399.13 29398.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28198.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20699.48 15797.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27198.74 35897.68 19799.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
PAPM97.59 28397.09 30299.07 18299.06 30098.26 22898.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 216
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32596.61 39997.86 17299.19 20899.01 33888.72 35199.90 11697.38 26998.69 20699.28 218
VDDNet97.55 28597.02 30499.16 17399.49 18198.12 23699.38 22599.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6198.13 24199.42 198
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 224
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26298.90 33996.14 33198.37 31699.53 23591.54 32299.14 32497.51 25795.87 32098.63 315
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25298.82 34998.07 15398.66 29099.64 19189.97 34199.61 25597.01 28996.68 29997.94 376
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23599.84 1299.48 15796.68 28797.97 33999.67 17992.92 28098.56 37096.88 30192.60 37598.70 280
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25298.82 34997.89 17098.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 208
ETVMVS97.50 29096.90 30899.29 15699.23 25598.78 18999.32 24298.90 33997.52 21698.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 204
hse-mvs297.50 29097.14 29898.59 24999.49 18197.05 28799.28 25799.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4183.80 39799.08 235
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 296
JIA-IIPM97.50 29097.02 30498.93 20198.73 34597.80 25599.30 24798.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 218
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18796.11 33398.22 32699.62 20296.45 15998.97 35593.77 36095.97 31998.61 326
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28198.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28399.04 31997.78 18598.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 204
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 217
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 19999.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24798.93 33097.71 19298.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 210
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28898.49 338
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21097.46 26799.51 15499.53 9695.86 34198.54 30799.77 13082.44 39099.66 24098.68 14097.52 27199.50 177
testing397.28 30396.76 31298.82 22799.37 22098.07 23899.45 18999.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
MVS97.28 30396.55 31599.48 12298.78 33798.95 16599.27 26299.39 22583.53 39998.08 33299.54 23196.97 14199.87 14094.23 35699.16 16999.63 140
test_fmvs297.25 30597.30 28997.09 34799.43 19893.31 37899.73 4798.87 34498.83 6499.28 18399.80 10384.45 38299.66 24097.88 21797.45 27998.30 355
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11596.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 160
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
testing22297.16 30896.50 31699.16 17399.16 27898.47 21999.27 26298.66 36797.71 19298.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 225
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28498.85 17999.49 17598.91 33795.48 34597.16 36099.80 10393.38 27199.11 33294.16 35891.73 37798.62 317
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20697.81 34599.79 11688.16 36199.56 25995.10 34497.21 29298.39 351
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20496.16 37299.80 10388.71 35299.04 33996.69 30896.55 30498.65 306
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25299.39 22597.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 194
PatchT97.03 31396.44 31898.79 23398.99 31198.34 22599.16 28799.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27899.29 25299.39 22597.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 194
AUN-MVS96.88 31596.31 32198.59 24999.48 18897.04 29099.27 26299.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27499.43 19999.48 15795.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9485.06 41699.13 2299.77 5199.93 987.82 36699.85 15099.38 4999.38 15399.80 70
RPMNet96.72 31895.90 33099.19 17099.18 26898.49 21599.22 28099.52 10188.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23888.52 35799.20 32092.58 37697.50 27497.93 377
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22799.47 17793.46 37497.41 35199.78 12287.06 36999.33 29496.92 29992.70 37498.65 306
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 200
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23199.51 11597.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24299.52 10194.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31199.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8299.08 31396.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23499.38 22594.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15499.38 23396.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28798.93 33096.16 32894.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
APD_test195.87 33396.49 31794.00 36899.53 16384.01 39799.54 13799.32 27095.91 34097.99 33799.85 5285.49 37599.88 13291.96 37798.84 19898.12 364
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 174
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17596.74 39798.25 12195.24 37798.10 38274.96 39799.90 11699.53 3298.85 19797.70 382
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 191
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14699.50 13593.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27799.11 30299.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28396.68 36799.88 3588.65 35599.71 22398.37 17982.74 39898.09 365
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28199.10 30499.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23699.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10897.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12199.44 20695.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27299.15 29099.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29692.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23395.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28599.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 30998.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15789.01 39391.99 39499.67 17985.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7898.25 37798.28 11794.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15791.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
dongtai93.26 35592.93 35994.25 36799.39 21385.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4799.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22798.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5598.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19879.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 221
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29398.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29398.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24199.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5285.77 37296.15 39997.86 22043.89 40995.39 399
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1150.00 4140.00 41599.56 22296.58 1530.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2150.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27895.47 336
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
PC_three_145298.18 13399.84 2999.70 15799.31 398.52 37198.30 18799.80 10199.81 61
No_MVS99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
test_one_060199.81 4699.88 899.49 14498.97 5199.65 9399.81 8999.09 14
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23198.58 7299.96 3096.93 29799.75 116
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.75 5598.61 14999.81 9799.77 82
IU-MVS99.84 3299.88 899.32 27098.30 11699.84 2998.86 11399.85 7399.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15799.27 599.42 27898.24 18999.80 10199.79 74
test_241102_TWO99.48 15799.08 3399.88 2099.81 8998.94 2999.96 3098.91 10299.84 8199.88 26
test_241102_ONE99.84 3299.90 299.48 15799.07 3599.91 1699.74 14299.20 799.76 202
9.1499.10 8099.72 9199.40 21699.51 11597.53 21499.64 9799.78 12298.84 4199.91 10597.63 24499.82 94
save fliter99.76 6599.59 7099.14 29299.40 22299.00 43
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11599.90 4399.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9999.86 6699.88 26
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7498.94 29
GSMVS99.52 168
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21499.52 168
sam_mvs94.72 226
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
MTGPAbinary99.47 177
test_post199.23 27665.14 41194.18 25299.71 22397.58 248
test_post65.99 41094.65 23299.73 213
patchmatchnet-post98.70 36194.79 21899.74 207
GG-mvs-BLEND98.45 27198.55 36398.16 23299.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
MTMP99.54 13798.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
test9_res97.49 25999.72 12299.75 88
TEST999.67 11199.65 5799.05 31199.41 21696.22 32398.95 25099.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 31699.41 21696.28 31798.93 25399.48 25398.76 5299.91 105
agg_prior297.21 27799.73 12199.75 88
agg_prior99.67 11199.62 6599.40 22298.87 26399.91 105
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
test_prior499.56 7598.99 328
test_prior298.96 33598.34 11299.01 24099.52 23898.68 6497.96 21299.74 119
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
旧先验298.96 33596.70 28699.47 13699.94 6998.19 192
新几何299.01 325
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19198.43 8399.94 6996.92 29999.66 13299.72 103
旧先验199.74 8099.59 7099.54 8599.69 16798.47 8099.68 13099.73 97
无先验98.99 32899.51 11596.89 27699.93 8497.53 25699.72 103
原ACMM298.95 338
原ACMM199.65 7399.73 8799.33 10699.47 17797.46 22099.12 21999.66 18498.67 6699.91 10597.70 24199.69 12799.71 112
test22299.75 7399.49 8998.91 34599.49 14496.42 31199.34 17399.65 18598.28 9299.69 12799.72 103
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 9999.75 7398.95 16599.51 11597.07 26099.43 14599.70 15798.87 3799.94 6997.76 23299.64 13599.72 103
testdata198.85 35098.32 115
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
plane_prior799.29 24297.03 291
plane_prior699.27 24796.98 29592.71 289
plane_prior599.47 17799.69 23497.78 22897.63 26198.67 296
plane_prior499.61 206
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22098.97 51
plane_prior199.26 249
plane_prior96.97 29699.21 28298.45 10097.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4388.69 35399.32 29795.89 32594.93 34398.62 317
LGP-MVS_train98.49 26299.33 23097.05 28799.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27298.68 289
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26598.98 33198.24 12298.66 290
ACMP_Plane99.19 26598.98 33198.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 308
HQP3-MVS99.39 22597.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25596.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23696.84 27999.58 11495.19 20597.82 22599.46 191
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26298.74 35897.51 21799.40 15799.62 20294.78 21999.76 20297.59 24798.81 202
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11298.83 26899.75 13791.09 32899.62 25495.82 32697.40 28598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370