This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12599.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12599.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18099.64 3699.45 599.92 1799.92 1498.62 7099.99 499.96 699.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9899.58 11299.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 1899.90 16
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5499.18 1099.96 3199.22 7299.92 2999.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10499.58 11299.62 4199.41 999.87 2799.92 1498.81 44100.00 199.97 199.93 2799.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9899.48 15999.08 3399.91 1899.81 9399.20 799.96 3198.91 10399.85 7499.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 799.51 11798.99 4599.88 2299.81 9399.27 599.96 3198.85 11699.80 10299.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8699.39 22798.91 5899.78 5199.85 5499.36 299.94 6998.84 11999.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 8099.78 5699.14 13699.60 9899.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 1899.86 32
EI-MVSNet-Vis-set99.58 999.56 1099.64 8099.78 5699.15 13599.61 9799.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 1899.85 35
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11999.37 24399.10 2799.81 4199.80 10698.94 2999.96 3198.93 10099.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 15099.65 3399.10 2799.98 699.92 1497.35 12499.96 3199.94 999.92 2999.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16499.61 4899.45 599.87 2799.92 1497.31 12599.97 2199.95 799.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10499.51 11798.62 8599.79 4699.83 7099.28 499.97 2198.48 16999.90 4499.84 39
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12799.86 6799.84 39
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7299.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10699.90 4499.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 15199.96 3199.95 799.96 1299.95 9
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 19299.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 35
mvsany_test199.50 2099.46 2099.62 8699.61 14399.09 14198.94 34499.48 15999.10 2799.96 1499.91 2198.85 3999.96 3199.72 1899.58 14399.82 54
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 10099.90 199.55 7998.56 9099.78 5199.70 15998.65 6899.79 19499.65 2499.78 10999.41 205
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11599.89 299.58 6298.56 9099.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 183
HFP-MVS99.49 2299.37 3499.86 2199.87 1599.80 2799.66 7299.67 2398.15 13799.68 7899.69 16999.06 1699.96 3198.69 13999.87 5999.84 39
ACMMPR99.49 2299.36 3699.86 2199.87 1599.79 3099.66 7299.67 2398.15 13799.67 8299.69 16998.95 2799.96 3198.69 13999.87 5999.84 39
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13399.59 7199.36 23499.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14199.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3899.87 1199.88 1199.80 2799.65 7899.66 2898.13 14199.66 8799.68 17598.96 2499.96 3198.62 14799.87 5999.84 39
iter_conf0599.48 2699.40 2799.71 6799.68 10999.61 6799.49 17599.58 6298.27 11999.95 1599.92 1498.09 10199.94 6999.65 2499.96 1299.58 154
APD-MVS_3200maxsize99.48 2699.35 3899.85 2899.76 6599.83 1699.63 8699.54 8798.36 11099.79 4699.82 7998.86 3899.95 5998.62 14799.81 9899.78 80
DELS-MVS99.48 2699.42 2299.65 7599.72 9199.40 10399.05 31699.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 3099.33 4299.87 1199.87 1599.81 2599.64 8199.67 2398.08 15299.55 12499.64 19398.91 3499.96 3198.72 13499.90 4499.82 54
ACMMP_NAP99.47 3099.34 4099.88 599.87 1599.86 1399.47 18699.48 15998.05 15899.76 6099.86 4998.82 4399.93 8798.82 12699.91 3699.84 39
MVSMamba_PlusPlus99.46 3299.41 2699.64 8099.68 10999.50 8999.75 4099.50 13798.27 11999.87 2799.92 1498.09 10199.94 6999.65 2499.95 1899.47 189
balanced_conf0399.46 3299.39 3099.67 7099.55 16299.58 7699.74 4599.51 11798.42 10399.87 2799.84 6598.05 10599.91 10999.58 3099.94 2599.52 170
DPE-MVScopyleft99.46 3299.32 4499.91 299.78 5699.88 899.36 23499.51 11798.73 7799.88 2299.84 6598.72 6199.96 3198.16 19999.87 5999.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14899.16 13199.41 21099.71 1398.98 4899.45 14099.78 12499.19 999.54 26599.28 6699.84 8299.63 140
SR-MVS-dyc-post99.45 3699.31 5199.85 2899.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.53 7699.95 5998.61 15099.81 9899.77 82
PGM-MVS99.45 3699.31 5199.86 2199.87 1599.78 3699.58 11299.65 3397.84 17899.71 7299.80 10699.12 1399.97 2198.33 18599.87 5999.83 49
CP-MVS99.45 3699.32 4499.85 2899.83 3999.75 3999.69 5899.52 10398.07 15399.53 12799.63 19998.93 3399.97 2198.74 13199.91 3699.83 49
ACMMPcopyleft99.45 3699.32 4499.82 4199.89 899.67 5199.62 9199.69 1898.12 14399.63 10299.84 6598.73 6099.96 3198.55 16599.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 4099.30 5399.85 2899.73 8799.83 1699.56 12599.47 17997.45 22599.78 5199.82 7999.18 1099.91 10998.79 12799.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 4099.30 5399.86 2199.88 1199.79 3099.69 5899.48 15998.12 14399.50 13299.75 13998.78 4899.97 2198.57 15999.89 5399.83 49
EC-MVSNet99.44 4099.39 3099.58 9499.56 15899.49 9199.88 399.58 6298.38 10699.73 6699.69 16998.20 9699.70 23299.64 2799.82 9599.54 163
SR-MVS99.43 4399.29 5799.86 2199.75 7399.83 1699.59 10499.62 4198.21 13099.73 6699.79 11898.68 6499.96 3198.44 17599.77 11299.79 74
MCST-MVS99.43 4399.30 5399.82 4199.79 5499.74 4199.29 25599.40 22498.79 7099.52 12999.62 20498.91 3499.90 12198.64 14599.75 11799.82 54
MSP-MVS99.42 4599.27 6299.88 599.89 899.80 2799.67 6799.50 13798.70 7999.77 5599.49 24998.21 9599.95 5998.46 17399.77 11299.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4599.29 5799.80 4699.62 13999.55 7999.50 16499.70 1598.79 7099.77 5599.96 197.45 11999.96 3198.92 10299.90 4499.89 19
HPM-MVScopyleft99.42 4599.28 5999.83 4099.90 499.72 4299.81 1999.54 8797.59 20699.68 7899.63 19998.91 3499.94 6998.58 15699.91 3699.84 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4599.30 5399.78 5299.62 13999.71 4499.26 27499.52 10398.82 6599.39 16099.71 15598.96 2499.85 15298.59 15599.80 10299.77 82
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18999.52 10399.11 2699.88 2299.91 2199.43 197.70 39198.72 13499.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4999.33 4299.65 7599.77 6299.51 8898.94 34499.85 698.82 6599.65 9499.74 14498.51 7899.80 19198.83 12299.89 5399.64 136
MVS_111021_HR99.41 4999.32 4499.66 7199.72 9199.47 9598.95 34299.85 698.82 6599.54 12599.73 15098.51 7899.74 21098.91 10399.88 5699.77 82
MM99.40 5299.28 5999.74 6199.67 11299.31 11399.52 15098.87 34699.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 799.94 11
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9899.67 2397.97 16499.63 10299.68 17598.52 7799.95 5998.38 17899.86 6799.81 61
bld_raw_conf0399.39 5499.32 4499.62 8699.53 16699.50 8999.75 4099.50 13798.13 14199.87 2799.85 5497.89 10899.90 12199.39 5299.95 1899.47 189
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 20099.51 11798.68 8299.27 18899.53 23798.64 6999.96 3198.44 17599.80 10299.79 74
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11999.54 8797.82 18399.71 7299.80 10698.95 2799.93 8798.19 19599.84 8299.74 92
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 25099.52 10397.18 25199.60 11299.79 11898.79 4799.95 5998.83 12299.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 5899.36 3699.36 14199.67 11298.61 20399.07 31199.33 26299.00 4399.82 4099.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8899.86 2099.07 14699.47 18699.93 297.66 20199.71 7299.86 4997.73 11499.96 3199.47 4799.82 9599.79 74
NCCC99.34 6099.19 7299.79 4999.61 14399.65 5799.30 25099.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 19199.63 13899.80 70
mamv499.33 6199.42 2299.07 18399.67 11297.73 25899.42 20799.60 5498.15 13799.94 1699.91 2198.42 8599.94 6999.72 1899.96 1299.54 163
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7299.46 18898.09 14899.48 13699.74 14498.29 9299.96 3197.93 21799.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 6399.32 4499.30 15599.57 15498.94 16898.97 33899.46 18898.92 5799.71 7299.24 31599.01 1899.98 1399.35 5599.66 13398.97 253
CSCG99.32 6399.32 4499.32 14999.85 2698.29 22799.71 5399.66 2898.11 14599.41 15399.80 10698.37 8999.96 3198.99 9299.96 1299.72 103
PHI-MVS99.30 6599.17 7499.70 6899.56 15899.52 8799.58 11299.80 897.12 25799.62 10699.73 15098.58 7299.90 12198.61 15099.91 3699.68 119
DeepC-MVS98.35 299.30 6599.19 7299.64 8099.82 4299.23 12499.62 9199.55 7998.94 5499.63 10299.95 395.82 18299.94 6999.37 5499.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10199.65 5799.53 14999.62 4198.74 7699.99 299.95 394.53 23999.94 6999.89 1299.96 1299.97 4
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30199.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30199.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30199.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
APD-MVScopyleft99.27 7199.08 8499.84 3999.75 7399.79 3099.50 16499.50 13797.16 25399.77 5599.82 7998.78 4899.94 6997.56 25699.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 7199.12 7899.74 6199.18 27199.75 3999.56 12599.57 6698.45 9999.49 13599.85 5497.77 11399.94 6998.33 18599.84 8299.52 170
fmvsm_s_conf0.1_n_a99.26 7399.06 8699.85 2899.52 17199.62 6599.54 14199.62 4198.69 8099.99 299.96 194.47 24199.94 6999.88 1399.92 2999.98 2
patch_mono-299.26 7399.62 598.16 30299.81 4694.59 36599.52 15099.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 19
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11599.56 12599.52 10398.52 9499.44 14599.27 31198.41 8799.86 14699.10 8399.59 14299.04 245
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16698.91 17299.02 32499.45 19998.80 6999.71 7299.26 31398.94 2999.98 1399.34 5999.23 16798.98 252
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 23999.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
3Dnovator97.25 999.24 7899.05 8799.81 4499.12 28799.66 5399.84 1199.74 1099.09 3298.92 25599.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
dcpmvs_299.23 7999.58 798.16 30299.83 3994.68 36399.76 3699.52 10399.07 3599.98 699.88 3798.56 7499.93 8799.67 2299.98 499.87 30
test_fmvsmconf0.01_n99.22 8099.03 9199.79 4998.42 37199.48 9399.55 13799.51 11799.39 1099.78 5199.93 994.80 21799.95 5999.93 1099.95 1899.94 11
CHOSEN 1792x268899.19 8199.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7799.11 22199.89 3295.50 19299.94 6999.50 4099.97 799.89 19
F-COLMAP99.19 8199.04 8999.64 8099.78 5699.27 11999.42 20799.54 8797.29 24299.41 15399.59 21398.42 8599.93 8798.19 19599.69 12899.73 97
EIA-MVS99.18 8399.09 8399.45 12999.49 18599.18 12899.67 6799.53 9897.66 20199.40 15899.44 26398.10 10099.81 18498.94 9799.62 13999.35 214
3Dnovator+97.12 1399.18 8398.97 10599.82 4199.17 27999.68 4899.81 1999.51 11799.20 1898.72 28199.89 3295.68 18799.97 2198.86 11499.86 6799.81 61
MVSFormer99.17 8599.12 7899.29 15899.51 17498.94 16899.88 399.46 18897.55 21299.80 4499.65 18797.39 12099.28 30499.03 8899.85 7499.65 129
sss99.17 8599.05 8799.53 10999.62 13998.97 15899.36 23499.62 4197.83 17999.67 8299.65 18797.37 12399.95 5999.19 7499.19 17099.68 119
test_cas_vis1_n_192099.16 8799.01 9999.61 8899.81 4698.86 17899.65 7899.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
DP-MVS99.16 8798.95 11199.78 5299.77 6299.53 8499.41 21099.50 13797.03 26999.04 23799.88 3797.39 12099.92 9898.66 14399.90 4499.87 30
MVS_030499.15 8998.96 10999.73 6498.92 32199.37 10499.37 22996.92 39699.51 299.66 8799.78 12496.69 14899.97 2199.84 1599.97 799.84 39
casdiffmvs_mvgpermissive99.15 8999.02 9599.55 10099.66 12299.09 14199.64 8199.56 7198.26 12299.45 14099.87 4596.03 17199.81 18499.54 3499.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8999.02 9599.53 10999.66 12299.14 13699.72 5199.48 15998.35 11199.42 14999.84 6596.07 16999.79 19499.51 3999.14 17599.67 122
diffmvspermissive99.14 9299.02 9599.51 11799.61 14398.96 16299.28 26099.49 14798.46 9899.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9298.99 10199.59 9199.58 15299.41 10299.16 29299.44 20798.45 9999.19 20899.49 24998.08 10399.89 13397.73 23999.75 11799.48 183
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29599.41 21896.60 30099.60 11299.55 22898.83 4299.90 12197.48 26399.83 9199.78 80
casdiffmvspermissive99.13 9498.98 10499.56 9899.65 12899.16 13199.56 12599.50 13798.33 11499.41 15399.86 4995.92 17799.83 17299.45 4999.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9499.03 9199.45 12999.46 19598.87 17599.12 30199.26 28998.03 16199.79 4699.65 18797.02 13799.85 15299.02 9099.90 4499.65 129
jason: jason.
lupinMVS99.13 9499.01 9999.46 12899.51 17498.94 16899.05 31699.16 30597.86 17399.80 4499.56 22597.39 12099.86 14698.94 9799.85 7499.58 154
EPP-MVSNet99.13 9498.99 10199.53 10999.65 12899.06 14799.81 1999.33 26297.43 22999.60 11299.88 3797.14 13099.84 15999.13 8098.94 19199.69 115
MG-MVS99.13 9499.02 9599.45 12999.57 15498.63 20099.07 31199.34 25598.99 4599.61 10999.82 7997.98 10799.87 14397.00 29399.80 10299.85 35
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12297.89 25198.43 38499.71 1398.88 5999.62 10699.76 13696.63 15099.70 23299.46 4899.99 199.66 125
DP-MVS Recon99.12 10098.95 11199.65 7599.74 8099.70 4699.27 26599.57 6696.40 31699.42 14999.68 17598.75 5599.80 19197.98 21499.72 12399.44 200
Vis-MVSNetpermissive99.12 10098.97 10599.56 9899.78 5699.10 14099.68 6499.66 2898.49 9699.86 3299.87 4594.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 10099.08 8499.24 16799.46 19598.55 20699.51 15799.46 18898.09 14899.45 14099.82 7998.34 9099.51 26698.70 13698.93 19299.67 122
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9999.88 3794.56 23599.93 8799.67 2298.26 23399.72 103
VNet99.11 10498.90 11699.73 6499.52 17199.56 7799.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3898.18 24099.72 103
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9699.59 10499.49 14797.03 26999.63 10299.69 16997.27 12899.96 3197.82 22899.84 8299.81 61
HyFIR lowres test99.11 10498.92 11399.65 7599.90 499.37 10499.02 32499.91 397.67 20099.59 11599.75 13995.90 17999.73 21699.53 3699.02 18899.86 32
MVS_Test99.10 10898.97 10599.48 12399.49 18599.14 13699.67 6799.34 25597.31 24099.58 11699.76 13697.65 11699.82 17998.87 10999.07 18399.46 195
CDS-MVSNet99.09 10999.03 9199.25 16599.42 20498.73 19199.45 19099.46 18898.11 14599.46 13999.77 13298.01 10699.37 28798.70 13698.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 11098.97 10599.42 13499.76 6598.79 18798.78 36099.91 396.74 28699.67 8299.49 24997.53 11799.88 13898.98 9399.85 7499.60 146
OMC-MVS99.08 11099.04 8999.20 17199.67 11298.22 23199.28 26099.52 10398.07 15399.66 8799.81 9397.79 11299.78 19997.79 23099.81 9899.60 146
mvsmamba99.06 11298.96 10999.36 14199.47 19398.64 19999.70 5499.05 32097.61 20599.65 9499.83 7096.54 15499.92 9899.19 7499.62 13999.51 177
WTY-MVS99.06 11298.88 12099.61 8899.62 13999.16 13199.37 22999.56 7198.04 15999.53 12799.62 20496.84 14299.94 6998.85 11698.49 22199.72 103
IS-MVSNet99.05 11498.87 12199.57 9699.73 8799.32 10999.75 4099.20 30098.02 16299.56 12099.86 4996.54 15499.67 24098.09 20299.13 17699.73 97
PAPM_NR99.04 11598.84 12799.66 7199.74 8099.44 9899.39 22299.38 23597.70 19699.28 18399.28 30898.34 9099.85 15296.96 29799.45 15199.69 115
API-MVS99.04 11599.03 9199.06 18599.40 21499.31 11399.55 13799.56 7198.54 9299.33 17499.39 27998.76 5299.78 19996.98 29599.78 10998.07 369
mvs_anonymous99.03 11798.99 10199.16 17599.38 21998.52 21299.51 15799.38 23597.79 18499.38 16299.81 9397.30 12699.45 27099.35 5598.99 18999.51 177
sasdasda99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35797.09 13299.75 20899.27 6897.90 25199.47 189
train_agg99.02 11898.77 13499.77 5599.67 11299.65 5799.05 31699.41 21896.28 32098.95 25199.49 24998.76 5299.91 10997.63 24799.72 12399.75 88
canonicalmvs99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35797.09 13299.75 20899.27 6897.90 25199.47 189
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12299.01 15399.24 27899.52 10396.85 28199.27 18899.48 25498.25 9499.91 10997.76 23599.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12298.85 12599.50 12299.42 20499.26 12099.82 1599.48 15998.60 8799.28 18398.81 35797.04 13699.76 20599.29 6597.87 25499.47 189
AdaColmapbinary99.01 12298.80 13099.66 7199.56 15899.54 8199.18 29099.70 1598.18 13599.35 17099.63 19996.32 16399.90 12197.48 26399.77 11299.55 161
1112_ss98.98 12498.77 13499.59 9199.68 10999.02 15199.25 27699.48 15997.23 24899.13 21799.58 21796.93 14199.90 12198.87 10998.78 20599.84 39
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36399.55 7997.25 24599.47 13799.77 13297.82 11199.87 14396.93 30099.90 4499.54 163
CANet_DTU98.97 12698.87 12199.25 16599.33 23198.42 22499.08 31099.30 28099.16 1999.43 14699.75 13995.27 20099.97 2198.56 16299.95 1899.36 213
DPM-MVS98.95 12798.71 13999.66 7199.63 13399.55 7998.64 37399.10 31197.93 16799.42 14999.55 22898.67 6699.80 19195.80 33199.68 13199.61 144
114514_t98.93 12898.67 14399.72 6699.85 2699.53 8499.62 9199.59 5892.65 38499.71 7299.78 12498.06 10499.90 12198.84 11999.91 3699.74 92
PS-MVSNAJss98.92 12998.92 11398.90 21298.78 33998.53 20899.78 3199.54 8798.07 15399.00 24499.76 13699.01 1899.37 28799.13 8097.23 29298.81 262
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10598.95 16599.03 32199.47 17996.98 27199.15 21599.23 31696.77 14599.89 13398.83 12298.78 20599.86 32
test_fmvs198.88 13198.79 13399.16 17599.69 10597.61 26799.55 13799.49 14799.32 1499.98 699.91 2191.41 32499.96 3199.82 1699.92 2999.90 16
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12599.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
UGNet98.87 13298.69 14199.40 13699.22 26298.72 19299.44 19699.68 2099.24 1799.18 21299.42 26792.74 28699.96 3199.34 5999.94 2599.53 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9698.88 17499.80 2499.44 20797.91 16999.36 16799.78 12495.49 19399.43 27997.91 21899.11 17799.62 142
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16499.07 31798.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16499.07 31798.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
EPNet98.86 13598.71 13999.30 15597.20 39198.18 23299.62 9198.91 33999.28 1698.63 30099.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 26099.91 397.42 23199.67 8299.37 28497.53 11799.88 13898.98 9397.29 29098.42 349
ab-mvs98.86 13598.63 14899.54 10199.64 13099.19 12699.44 19699.54 8797.77 18799.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 182
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 19099.54 8796.61 29899.01 24099.40 27597.09 13299.86 14697.68 24699.53 14799.10 233
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24299.59 5897.55 21298.70 28899.89 3295.83 18199.90 12198.10 20199.90 4499.08 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14298.62 15399.53 10999.61 14399.08 14499.80 2499.51 11797.10 26199.31 17699.78 12495.23 20499.77 20198.21 19399.03 18699.75 88
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14499.62 9199.36 24497.39 23499.28 18399.68 17596.44 16099.92 9898.37 18098.22 23599.40 207
PVSNet96.02 1798.85 14298.84 12798.89 21599.73 8797.28 27698.32 39099.60 5497.86 17399.50 13299.57 22296.75 14699.86 14698.56 16299.70 12799.54 163
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9699.28 11799.06 31499.77 997.74 19199.50 13299.53 23795.41 19499.84 15997.17 28799.64 13699.44 200
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 13998.08 39799.50 13797.50 22099.38 16299.41 27196.37 16299.81 18499.11 8298.54 21899.51 177
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 10099.51 15798.96 33098.61 8699.35 17098.92 35294.78 21999.77 20199.35 5598.11 24599.54 163
DeepPCF-MVS98.18 398.81 14699.37 3497.12 34999.60 14891.75 38998.61 37499.44 20799.35 1299.83 3999.85 5498.70 6399.81 18499.02 9099.91 3699.81 61
PMMVS98.80 14998.62 15399.34 14399.27 24898.70 19398.76 36299.31 27697.34 23799.21 20299.07 33297.20 12999.82 17998.56 16298.87 19799.52 170
Effi-MVS+-dtu98.78 15098.89 11998.47 27199.33 23196.91 30599.57 11999.30 28098.47 9799.41 15398.99 34296.78 14499.74 21098.73 13399.38 15598.74 274
FIs98.78 15098.63 14899.23 16999.18 27199.54 8199.83 1499.59 5898.28 11798.79 27599.81 9396.75 14699.37 28799.08 8596.38 30898.78 264
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 25099.41 20996.99 29999.52 15099.49 14798.11 14599.24 19499.34 29496.96 14099.79 19497.95 21699.45 15199.02 248
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12599.62 4198.78 7399.64 9999.88 3792.02 30899.88 13899.54 3498.26 23399.72 103
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16299.05 14999.80 2499.01 32496.59 30299.58 11699.59 21395.39 19599.90 12197.78 23199.49 14999.28 222
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29899.45 9799.86 1099.60 5498.23 12798.70 28899.82 7996.80 14399.22 31699.07 8696.38 30898.79 263
XVG-OURS98.73 15698.68 14298.88 21799.70 10197.73 25898.92 34699.55 7998.52 9499.45 14099.84 6595.27 20099.91 10998.08 20698.84 20099.00 249
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11799.52 15099.47 17996.11 33699.01 24099.34 29496.20 16799.84 15997.88 22098.82 20299.39 208
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21599.71 9697.74 25799.12 30199.54 8798.44 10299.42 14999.71 15594.20 24999.92 9898.54 16698.90 19699.00 249
131498.68 15998.54 16399.11 18198.89 32498.65 19799.27 26599.49 14796.89 27997.99 33999.56 22597.72 11599.83 17297.74 23899.27 16698.84 261
EI-MVSNet98.67 16098.67 14398.68 24699.35 22697.97 24499.50 16499.38 23596.93 27899.20 20599.83 7097.87 10999.36 29198.38 17897.56 27098.71 278
test_djsdf98.67 16098.57 16098.98 19598.70 35398.91 17299.88 399.46 18897.55 21299.22 19999.88 3795.73 18599.28 30499.03 8897.62 26598.75 271
QAPM98.67 16098.30 17799.80 4699.20 26599.67 5199.77 3399.72 1194.74 36398.73 28099.90 2895.78 18399.98 1396.96 29799.88 5699.76 87
nrg03098.64 16398.42 16899.28 16299.05 30499.69 4799.81 1999.46 18898.04 15999.01 24099.82 7996.69 14899.38 28499.34 5994.59 35198.78 264
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6799.62 4199.43 799.99 299.91 2187.29 371100.00 199.92 1199.92 2999.98 2
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15098.80 35899.36 24496.33 31799.00 24499.12 33098.46 8199.84 15995.23 34699.37 16299.66 125
CVMVSNet98.57 16698.67 14398.30 29199.35 22695.59 34399.50 16499.55 7998.60 8799.39 16099.83 7094.48 24099.45 27098.75 13098.56 21699.85 35
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15199.54 14199.38 23597.41 23299.20 20599.73 15093.86 26399.36 29198.87 10997.56 27098.62 320
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16299.68 6498.81 35395.54 34799.62 10699.70 15993.82 26499.93 8797.35 27499.46 15099.32 219
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30599.53 8499.82 1599.72 1194.56 36698.08 33499.88 3794.73 22599.98 1397.47 26599.76 11599.06 244
IterMVS-LS98.46 17098.42 16898.58 25499.59 15098.00 24299.37 22999.43 21396.94 27799.07 22999.59 21397.87 10999.03 34498.32 18795.62 32998.71 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17198.28 17898.94 20298.50 36898.96 16299.77 3399.50 13797.07 26398.87 26499.77 13294.76 22399.28 30498.66 14397.60 26698.57 335
jajsoiax98.43 17298.28 17898.88 21798.60 36398.43 22299.82 1599.53 9898.19 13298.63 30099.80 10693.22 27599.44 27599.22 7297.50 27698.77 267
tttt051798.42 17398.14 18699.28 16299.66 12298.38 22599.74 4596.85 39797.68 19899.79 4699.74 14491.39 32599.89 13398.83 12299.56 14499.57 158
BH-untuned98.42 17398.36 17198.59 25199.49 18596.70 31399.27 26599.13 30997.24 24798.80 27399.38 28195.75 18499.74 21097.07 29199.16 17199.33 218
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 38099.97 2199.82 1699.84 8299.96 7
D2MVS98.41 17598.50 16598.15 30599.26 25096.62 31899.40 21899.61 4897.71 19398.98 24699.36 28796.04 17099.67 24098.70 13697.41 28698.15 365
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18399.30 25098.77 35697.70 19698.94 25399.65 18792.91 28299.74 21096.52 31699.55 14699.64 136
mvs_tets98.40 17898.23 18098.91 21098.67 35698.51 21499.66 7299.53 9898.19 13298.65 29799.81 9392.75 28499.44 27599.31 6297.48 28098.77 267
XXY-MVS98.38 17998.09 19499.24 16799.26 25099.32 10999.56 12599.55 7997.45 22598.71 28299.83 7093.23 27399.63 25698.88 10696.32 31098.76 269
ACMM97.58 598.37 18098.34 17398.48 26699.41 20997.10 28699.56 12599.45 19998.53 9399.04 23799.85 5493.00 27899.71 22698.74 13197.45 28198.64 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18198.03 20199.31 15099.63 13398.56 20599.54 14196.75 39997.53 21699.73 6699.65 18791.25 32899.89 13398.62 14799.56 14499.48 183
tpmrst98.33 18298.48 16697.90 32099.16 28194.78 36199.31 24899.11 31097.27 24399.45 14099.59 21395.33 19899.84 15998.48 16998.61 21099.09 237
baseline198.31 18397.95 21099.38 14099.50 18398.74 19099.59 10498.93 33298.41 10499.14 21699.60 21194.59 23399.79 19498.48 16993.29 36999.61 144
PatchmatchNetpermissive98.31 18398.36 17198.19 30099.16 28195.32 35299.27 26598.92 33597.37 23599.37 16499.58 21794.90 21299.70 23297.43 26999.21 16899.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18597.98 20699.26 16499.57 15498.16 23399.41 21098.55 37496.03 34199.19 20899.74 14491.87 31199.92 9899.16 7998.29 23299.70 113
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28199.54 8199.50 16499.58 6298.27 11999.35 17099.37 28492.53 29699.65 24899.35 5594.46 35298.72 276
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30999.36 10799.49 17599.51 11797.95 16598.97 24899.13 32796.30 16499.38 28498.36 18293.34 36898.66 307
HQP_MVS98.27 18898.22 18198.44 27799.29 24396.97 30199.39 22299.47 17998.97 5199.11 22199.61 20892.71 28999.69 23797.78 23197.63 26398.67 299
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32198.98 15599.48 18099.53 9897.76 18898.71 28299.46 26196.43 16199.22 31698.57 15992.87 37598.69 287
LPG-MVS_test98.22 18998.13 18898.49 26499.33 23197.05 29299.58 11299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
RPSCF98.22 18998.62 15396.99 35199.82 4291.58 39099.72 5199.44 20796.61 29899.66 8799.89 3295.92 17799.82 17997.46 26699.10 18099.57 158
ADS-MVSNet98.20 19298.08 19598.56 25899.33 23196.48 32399.23 28099.15 30696.24 32499.10 22499.67 18194.11 25399.71 22696.81 30599.05 18499.48 183
OPM-MVS98.19 19398.10 19198.45 27498.88 32597.07 29099.28 26099.38 23598.57 8999.22 19999.81 9392.12 30699.66 24398.08 20697.54 27298.61 329
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19398.16 18398.27 29799.30 23995.55 34499.07 31198.97 32897.57 20999.43 14699.57 22292.72 28799.74 21097.58 25199.20 16999.52 170
miper_ehance_all_eth98.18 19598.10 19198.41 28099.23 25897.72 26098.72 36699.31 27696.60 30098.88 26199.29 30697.29 12799.13 33097.60 24995.99 31898.38 354
CR-MVSNet98.17 19697.93 21398.87 22199.18 27198.49 21699.22 28499.33 26296.96 27399.56 12099.38 28194.33 24599.00 34994.83 35298.58 21399.14 230
miper_enhance_ethall98.16 19798.08 19598.41 28098.96 31897.72 26098.45 38399.32 27296.95 27598.97 24899.17 32297.06 13599.22 31697.86 22395.99 31898.29 358
CLD-MVS98.16 19798.10 19198.33 28799.29 24396.82 31098.75 36399.44 20797.83 17999.13 21799.55 22892.92 28099.67 24098.32 18797.69 26198.48 341
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19997.79 22499.19 17299.50 18398.50 21598.61 37496.82 39896.95 27599.54 12599.43 26591.66 32099.86 14698.08 20699.51 14899.22 227
pmmvs498.13 20097.90 21598.81 23398.61 36298.87 17598.99 33299.21 29996.44 31299.06 23499.58 21795.90 17999.11 33597.18 28696.11 31498.46 346
WR-MVS_H98.13 20097.87 22098.90 21299.02 30798.84 18099.70 5499.59 5897.27 24398.40 31699.19 32195.53 19199.23 31298.34 18493.78 36598.61 329
c3_l98.12 20298.04 20098.38 28499.30 23997.69 26498.81 35799.33 26296.67 29198.83 26999.34 29497.11 13198.99 35097.58 25195.34 33698.48 341
ACMH97.28 898.10 20397.99 20598.44 27799.41 20996.96 30399.60 9899.56 7198.09 14898.15 33299.91 2190.87 33299.70 23298.88 10697.45 28198.67 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20497.68 24099.34 14399.66 12298.44 22199.40 21899.43 21393.67 37399.22 19999.89 3290.23 34099.93 8799.26 7098.33 22799.66 125
CP-MVSNet98.09 20497.78 22799.01 19198.97 31799.24 12399.67 6799.46 18897.25 24598.48 31399.64 19393.79 26599.06 34098.63 14694.10 35998.74 274
dmvs_re98.08 20698.16 18397.85 32299.55 16294.67 36499.70 5498.92 33598.15 13799.06 23499.35 29093.67 26999.25 30997.77 23497.25 29199.64 136
DU-MVS98.08 20697.79 22498.96 19898.87 32898.98 15599.41 21099.45 19997.87 17298.71 28299.50 24694.82 21599.22 31698.57 15992.87 37598.68 292
v2v48298.06 20897.77 22998.92 20698.90 32398.82 18499.57 11999.36 24496.65 29399.19 20899.35 29094.20 24999.25 30997.72 24194.97 34498.69 287
V4298.06 20897.79 22498.86 22498.98 31598.84 18099.69 5899.34 25596.53 30499.30 17999.37 28494.67 23099.32 29997.57 25594.66 34998.42 349
test-LLR98.06 20897.90 21598.55 26098.79 33697.10 28698.67 36997.75 38997.34 23798.61 30398.85 35494.45 24299.45 27097.25 27899.38 15599.10 233
WR-MVS98.06 20897.73 23699.06 18598.86 33199.25 12299.19 28899.35 25197.30 24198.66 29199.43 26593.94 25999.21 32198.58 15694.28 35698.71 278
ACMP97.20 1198.06 20897.94 21298.45 27499.37 22297.01 29799.44 19699.49 14797.54 21598.45 31499.79 11891.95 31099.72 22097.91 21897.49 27998.62 320
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21397.96 20898.33 28799.26 25097.38 27398.56 37999.31 27696.65 29398.88 26199.52 24096.58 15299.12 33497.39 27195.53 33398.47 343
test111198.04 21498.11 19097.83 32599.74 8093.82 37399.58 11295.40 40699.12 2599.65 9499.93 990.73 33399.84 15999.43 5099.38 15599.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31499.74 8094.37 36899.59 10494.98 40799.13 2299.66 8799.93 990.67 33499.84 15999.40 5199.38 15599.80 70
EPNet_dtu98.03 21697.96 20898.23 29898.27 37395.54 34699.23 28098.75 35799.02 3897.82 34699.71 15596.11 16899.48 26793.04 37299.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21697.76 23398.84 22899.39 21798.98 15599.40 21899.38 23596.67 29199.07 22999.28 30892.93 27998.98 35197.10 28896.65 30198.56 336
ADS-MVSNet298.02 21898.07 19897.87 32199.33 23195.19 35599.23 28099.08 31496.24 32499.10 22499.67 18194.11 25398.93 36196.81 30599.05 18499.48 183
HQP-MVS98.02 21897.90 21598.37 28599.19 26896.83 30898.98 33599.39 22798.24 12498.66 29199.40 27592.47 29899.64 25197.19 28497.58 26898.64 311
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28299.23 25896.80 31199.70 5499.60 5497.12 25798.18 33199.70 15991.73 31699.72 22098.39 17797.45 28198.68 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22197.84 22298.55 26099.25 25497.97 24498.71 36799.34 25596.47 31198.59 30699.54 23395.65 18899.21 32197.21 28095.77 32498.46 346
DIV-MVS_self_test98.01 22197.85 22198.48 26699.24 25697.95 24898.71 36799.35 25196.50 30598.60 30599.54 23395.72 18699.03 34497.21 28095.77 32498.46 346
miper_lstm_enhance98.00 22397.91 21498.28 29699.34 23097.43 27198.88 35099.36 24496.48 30998.80 27399.55 22895.98 17298.91 36297.27 27795.50 33498.51 339
BH-w/o98.00 22397.89 21998.32 28999.35 22696.20 33399.01 32998.90 34196.42 31498.38 31799.00 34195.26 20299.72 22096.06 32498.61 21099.03 246
v114497.98 22597.69 23998.85 22798.87 32898.66 19699.54 14199.35 25196.27 32299.23 19899.35 29094.67 23099.23 31296.73 30895.16 34098.68 292
EU-MVSNet97.98 22598.03 20197.81 32898.72 35096.65 31799.66 7299.66 2898.09 14898.35 31999.82 7995.25 20398.01 38497.41 27095.30 33798.78 264
tpmvs97.98 22598.02 20397.84 32499.04 30594.73 36299.31 24899.20 30096.10 34098.76 27899.42 26794.94 20899.81 18496.97 29698.45 22298.97 253
tt080597.97 22897.77 22998.57 25599.59 15096.61 31999.45 19099.08 31498.21 13098.88 26199.80 10688.66 35699.70 23298.58 15697.72 26099.39 208
NR-MVSNet97.97 22897.61 24999.02 19098.87 32899.26 12099.47 18699.42 21597.63 20397.08 36499.50 24695.07 20799.13 33097.86 22393.59 36698.68 292
v897.95 23097.63 24798.93 20498.95 31998.81 18699.80 2499.41 21896.03 34199.10 22499.42 26794.92 21199.30 30296.94 29994.08 36098.66 307
Patchmatch-test97.93 23197.65 24398.77 23899.18 27197.07 29099.03 32199.14 30896.16 33198.74 27999.57 22294.56 23599.72 22093.36 36899.11 17799.52 170
PS-CasMVS97.93 23197.59 25198.95 20098.99 31299.06 14799.68 6499.52 10397.13 25598.31 32199.68 17592.44 30299.05 34198.51 16794.08 36098.75 271
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23998.78 33998.62 20199.65 7899.49 14797.76 18898.49 31299.60 21194.23 24898.97 35898.00 21392.90 37398.70 283
test_vis1_n97.92 23497.44 27299.34 14399.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39999.98 1399.88 1399.76 11599.97 4
v14419297.92 23497.60 25098.87 22198.83 33498.65 19799.55 13799.34 25596.20 32799.32 17599.40 27594.36 24499.26 30896.37 32195.03 34398.70 283
ACMH+97.24 1097.92 23497.78 22798.32 28999.46 19596.68 31699.56 12599.54 8798.41 10497.79 34899.87 4590.18 34199.66 24398.05 21097.18 29598.62 320
LFMVS97.90 23797.35 28499.54 10199.52 17199.01 15399.39 22298.24 38197.10 26199.65 9499.79 11884.79 38399.91 10999.28 6698.38 22499.69 115
Anonymous2023121197.88 23897.54 25598.90 21299.71 9698.53 20899.48 18099.57 6694.16 36998.81 27199.68 17593.23 27399.42 28098.84 11994.42 35498.76 269
OurMVSNet-221017-097.88 23897.77 22998.19 30098.71 35296.53 32199.88 399.00 32597.79 18498.78 27699.94 691.68 31799.35 29497.21 28096.99 29998.69 287
v7n97.87 24097.52 25698.92 20698.76 34698.58 20499.84 1199.46 18896.20 32798.91 25699.70 15994.89 21399.44 27596.03 32593.89 36398.75 271
baseline297.87 24097.55 25298.82 23099.18 27198.02 24199.41 21096.58 40396.97 27296.51 37099.17 32293.43 27099.57 26197.71 24299.03 18698.86 259
thres600view797.86 24297.51 25898.92 20699.72 9197.95 24899.59 10498.74 36097.94 16699.27 18898.62 36591.75 31499.86 14693.73 36498.19 23998.96 255
UBG97.85 24397.48 26198.95 20099.25 25497.64 26599.24 27898.74 36097.90 17098.64 29898.20 38088.65 35799.81 18498.27 19098.40 22399.42 202
cl2297.85 24397.64 24698.48 26699.09 29597.87 25298.60 37699.33 26297.11 26098.87 26499.22 31792.38 30399.17 32598.21 19395.99 31898.42 349
v1097.85 24397.52 25698.86 22498.99 31298.67 19599.75 4099.41 21895.70 34598.98 24699.41 27194.75 22499.23 31296.01 32794.63 35098.67 299
GA-MVS97.85 24397.47 26499.00 19399.38 21997.99 24398.57 37799.15 30697.04 26898.90 25899.30 30489.83 34399.38 28496.70 31098.33 22799.62 142
tfpnnormal97.84 24797.47 26498.98 19599.20 26599.22 12599.64 8199.61 4896.32 31898.27 32599.70 15993.35 27299.44 27595.69 33495.40 33598.27 359
VPNet97.84 24797.44 27299.01 19199.21 26398.94 16899.48 18099.57 6698.38 10699.28 18399.73 15088.89 35199.39 28299.19 7493.27 37098.71 278
LCM-MVSNet-Re97.83 24998.15 18596.87 35799.30 23992.25 38799.59 10498.26 37997.43 22996.20 37499.13 32796.27 16598.73 37098.17 19898.99 18999.64 136
XVG-ACMP-BASELINE97.83 24997.71 23898.20 29999.11 28996.33 32899.41 21099.52 10398.06 15799.05 23699.50 24689.64 34699.73 21697.73 23997.38 28898.53 337
IterMVS97.83 24997.77 22998.02 31199.58 15296.27 33099.02 32499.48 15997.22 24998.71 28299.70 15992.75 28499.13 33097.46 26696.00 31798.67 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 25297.75 23498.06 30899.57 15496.36 32799.02 32499.49 14797.18 25198.71 28299.72 15492.72 28799.14 32797.44 26895.86 32398.67 299
EPMVS97.82 25297.65 24398.35 28698.88 32595.98 33699.49 17594.71 40997.57 20999.26 19299.48 25492.46 30199.71 22697.87 22299.08 18299.35 214
MVP-Stereo97.81 25497.75 23497.99 31597.53 38496.60 32098.96 33998.85 34897.22 24997.23 35999.36 28795.28 19999.46 26995.51 33899.78 10997.92 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25497.44 27298.91 21098.88 32598.68 19499.51 15799.34 25596.18 32999.20 20599.34 29494.03 25699.36 29195.32 34495.18 33998.69 287
m2depth97.80 25697.63 24798.29 29298.77 34497.38 27399.64 8199.36 24498.78 7396.30 37399.58 21792.34 30599.39 28298.36 18295.58 33098.10 367
v192192097.80 25697.45 26798.84 22898.80 33598.53 20899.52 15099.34 25596.15 33399.24 19499.47 25793.98 25899.29 30395.40 34295.13 34198.69 287
v14897.79 25897.55 25298.50 26398.74 34797.72 26099.54 14199.33 26296.26 32398.90 25899.51 24394.68 22999.14 32797.83 22793.15 37298.63 318
thres40097.77 25997.38 28098.92 20699.69 10597.96 24699.50 16498.73 36697.83 17999.17 21398.45 37091.67 31899.83 17293.22 36998.18 24098.96 255
thres100view90097.76 26097.45 26798.69 24599.72 9197.86 25499.59 10498.74 36097.93 16799.26 19298.62 36591.75 31499.83 17293.22 36998.18 24098.37 355
PEN-MVS97.76 26097.44 27298.72 24198.77 34498.54 20799.78 3199.51 11797.06 26598.29 32499.64 19392.63 29398.89 36498.09 20293.16 37198.72 276
Baseline_NR-MVSNet97.76 26097.45 26798.68 24699.09 29598.29 22799.41 21098.85 34895.65 34698.63 30099.67 18194.82 21599.10 33798.07 20992.89 37498.64 311
TR-MVS97.76 26097.41 27898.82 23099.06 30197.87 25298.87 35298.56 37396.63 29798.68 29099.22 31792.49 29799.65 24895.40 34297.79 25898.95 257
Patchmtry97.75 26497.40 27998.81 23399.10 29298.87 17599.11 30799.33 26294.83 36198.81 27199.38 28194.33 24599.02 34696.10 32395.57 33198.53 337
dp97.75 26497.80 22397.59 33799.10 29293.71 37699.32 24598.88 34496.48 30999.08 22899.55 22892.67 29299.82 17996.52 31698.58 21399.24 226
WBMVS97.74 26697.50 25998.46 27299.24 25697.43 27199.21 28699.42 21597.45 22598.96 25099.41 27188.83 35299.23 31298.94 9796.02 31598.71 278
TAPA-MVS97.07 1597.74 26697.34 28798.94 20299.70 10197.53 26899.25 27699.51 11791.90 38699.30 17999.63 19998.78 4899.64 25188.09 39599.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26897.35 28498.88 21799.47 19397.12 28599.34 24298.85 34898.19 13299.67 8299.85 5482.98 39099.92 9899.49 4498.32 23199.60 146
MIMVSNet97.73 26897.45 26798.57 25599.45 20097.50 26999.02 32498.98 32796.11 33699.41 15399.14 32690.28 33698.74 36995.74 33298.93 19299.47 189
tfpn200view997.72 27097.38 28098.72 24199.69 10597.96 24699.50 16498.73 36697.83 17999.17 21398.45 37091.67 31899.83 17293.22 36998.18 24098.37 355
CostFormer97.72 27097.73 23697.71 33299.15 28594.02 37299.54 14199.02 32394.67 36499.04 23799.35 29092.35 30499.77 20198.50 16897.94 25099.34 217
FMVSNet297.72 27097.36 28298.80 23599.51 17498.84 18099.45 19099.42 21596.49 30698.86 26899.29 30690.26 33798.98 35196.44 31896.56 30498.58 334
test0.0.03 197.71 27397.42 27798.56 25898.41 37297.82 25598.78 36098.63 37197.34 23798.05 33898.98 34494.45 24298.98 35195.04 34997.15 29698.89 258
h-mvs3397.70 27497.28 29598.97 19799.70 10197.27 27799.36 23499.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39899.65 129
v124097.69 27597.32 29098.79 23698.85 33298.43 22299.48 18099.36 24496.11 33699.27 18899.36 28793.76 26799.24 31194.46 35595.23 33898.70 283
cascas97.69 27597.43 27698.48 26698.60 36397.30 27598.18 39599.39 22792.96 38198.41 31598.78 36193.77 26699.27 30798.16 19998.61 21098.86 259
pm-mvs197.68 27797.28 29598.88 21799.06 30198.62 20199.50 16499.45 19996.32 31897.87 34499.79 11892.47 29899.35 29497.54 25893.54 36798.67 299
GBi-Net97.68 27797.48 26198.29 29299.51 17497.26 27999.43 20099.48 15996.49 30699.07 22999.32 30190.26 33798.98 35197.10 28896.65 30198.62 320
test197.68 27797.48 26198.29 29299.51 17497.26 27999.43 20099.48 15996.49 30699.07 22999.32 30190.26 33798.98 35197.10 28896.65 30198.62 320
tpm97.67 28097.55 25298.03 30999.02 30795.01 35899.43 20098.54 37596.44 31299.12 21999.34 29491.83 31399.60 25997.75 23796.46 30699.48 183
PCF-MVS97.08 1497.66 28197.06 30699.47 12699.61 14399.09 14198.04 39899.25 29191.24 38998.51 31099.70 15994.55 23799.91 10992.76 37799.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 28297.65 24397.63 33498.78 33997.62 26699.13 29898.33 37897.36 23699.07 22998.94 34895.64 18999.15 32692.95 37398.68 20996.12 400
our_test_397.65 28297.68 24097.55 33898.62 36094.97 35998.84 35499.30 28096.83 28498.19 33099.34 29497.01 13899.02 34695.00 35096.01 31698.64 311
testgi97.65 28297.50 25998.13 30699.36 22596.45 32499.42 20799.48 15997.76 18897.87 34499.45 26291.09 32998.81 36694.53 35498.52 21999.13 232
thres20097.61 28597.28 29598.62 24999.64 13098.03 24099.26 27498.74 36097.68 19899.09 22798.32 37691.66 32099.81 18492.88 37498.22 23598.03 372
PAPM97.59 28697.09 30599.07 18399.06 30198.26 22998.30 39199.10 31194.88 35998.08 33499.34 29496.27 16599.64 25189.87 38898.92 19499.31 220
UWE-MVS97.58 28797.29 29498.48 26699.09 29596.25 33199.01 32996.61 40297.86 17399.19 20899.01 34088.72 35399.90 12197.38 27298.69 20899.28 222
VDDNet97.55 28897.02 30799.16 17599.49 18598.12 23799.38 22799.30 28095.35 34999.68 7899.90 2882.62 39299.93 8799.31 6298.13 24499.42 202
TESTMET0.1,197.55 28897.27 29898.40 28298.93 32096.53 32198.67 36997.61 39296.96 27398.64 29899.28 30888.63 35999.45 27097.30 27699.38 15599.21 228
pmmvs597.52 29097.30 29298.16 30298.57 36596.73 31299.27 26598.90 34196.14 33498.37 31899.53 23791.54 32399.14 32797.51 26095.87 32298.63 318
LF4IMVS97.52 29097.46 26697.70 33398.98 31595.55 34499.29 25598.82 35198.07 15398.66 29199.64 19389.97 34299.61 25897.01 29296.68 30097.94 379
DTE-MVSNet97.51 29297.19 30098.46 27298.63 35998.13 23699.84 1199.48 15996.68 29097.97 34199.67 18192.92 28098.56 37396.88 30492.60 37898.70 283
testing1197.50 29397.10 30498.71 24399.20 26596.91 30599.29 25598.82 35197.89 17198.21 32998.40 37285.63 37799.83 17298.45 17498.04 24799.37 212
ETVMVS97.50 29396.90 31199.29 15899.23 25898.78 18999.32 24598.90 34197.52 21898.56 30798.09 38684.72 38499.69 23797.86 22397.88 25399.39 208
hse-mvs297.50 29397.14 30198.59 25199.49 18597.05 29299.28 26099.22 29698.94 5499.66 8799.42 26794.93 20999.65 24899.48 4583.80 40099.08 238
SixPastTwentyTwo97.50 29397.33 28998.03 30998.65 35796.23 33299.77 3398.68 36997.14 25497.90 34299.93 990.45 33599.18 32497.00 29396.43 30798.67 299
JIA-IIPM97.50 29397.02 30798.93 20498.73 34897.80 25699.30 25098.97 32891.73 38798.91 25694.86 40295.10 20699.71 22697.58 25197.98 24899.28 222
ppachtmachnet_test97.49 29897.45 26797.61 33698.62 36095.24 35398.80 35899.46 18896.11 33698.22 32899.62 20496.45 15998.97 35893.77 36395.97 32198.61 329
test-mter97.49 29897.13 30398.55 26098.79 33697.10 28698.67 36997.75 38996.65 29398.61 30398.85 35488.23 36399.45 27097.25 27899.38 15599.10 233
testing9197.44 30097.02 30798.71 24399.18 27196.89 30799.19 28899.04 32197.78 18698.31 32198.29 37785.41 37999.85 15298.01 21297.95 24999.39 208
tpm297.44 30097.34 28797.74 33199.15 28594.36 36999.45 19098.94 33193.45 37898.90 25899.44 26391.35 32699.59 26097.31 27598.07 24699.29 221
tpm cat197.39 30297.36 28297.50 34099.17 27993.73 37599.43 20099.31 27691.27 38898.71 28299.08 33194.31 24799.77 20196.41 32098.50 22099.00 249
testing9997.36 30396.94 31098.63 24899.18 27196.70 31399.30 25098.93 33297.71 19398.23 32698.26 37884.92 38299.84 15998.04 21197.85 25699.35 214
USDC97.34 30497.20 29997.75 33099.07 29995.20 35498.51 38199.04 32197.99 16398.31 32199.86 4989.02 34999.55 26495.67 33697.36 28998.49 340
UniMVSNet_ETH3D97.32 30596.81 31398.87 22199.40 21497.46 27099.51 15799.53 9895.86 34498.54 30999.77 13282.44 39399.66 24398.68 14197.52 27399.50 181
testing397.28 30696.76 31598.82 23099.37 22298.07 23999.45 19099.36 24497.56 21197.89 34398.95 34783.70 38898.82 36596.03 32598.56 21699.58 154
MVS97.28 30696.55 31899.48 12398.78 33998.95 16599.27 26599.39 22783.53 40298.08 33499.54 23396.97 13999.87 14394.23 35999.16 17199.63 140
test_fmvs297.25 30897.30 29297.09 35099.43 20293.31 38199.73 4998.87 34698.83 6499.28 18399.80 10684.45 38599.66 24397.88 22097.45 28198.30 357
DSMNet-mixed97.25 30897.35 28496.95 35497.84 37993.61 37999.57 11996.63 40196.13 33598.87 26498.61 36794.59 23397.70 39195.08 34898.86 19899.55 161
MS-PatchMatch97.24 31097.32 29096.99 35198.45 37093.51 38098.82 35699.32 27297.41 23298.13 33399.30 30488.99 35099.56 26295.68 33599.80 10297.90 382
testing22297.16 31196.50 31999.16 17599.16 28198.47 22099.27 26598.66 37097.71 19398.23 32698.15 38182.28 39599.84 15997.36 27397.66 26299.18 229
TransMVSNet (Re)97.15 31296.58 31798.86 22499.12 28798.85 17999.49 17598.91 33995.48 34897.16 36299.80 10693.38 27199.11 33594.16 36191.73 38098.62 320
TinyColmap97.12 31396.89 31297.83 32599.07 29995.52 34798.57 37798.74 36097.58 20897.81 34799.79 11888.16 36499.56 26295.10 34797.21 29398.39 353
K. test v397.10 31496.79 31498.01 31298.72 35096.33 32899.87 797.05 39597.59 20696.16 37599.80 10688.71 35499.04 34296.69 31196.55 30598.65 309
Syy-MVS97.09 31597.14 30196.95 35499.00 30992.73 38599.29 25599.39 22797.06 26597.41 35398.15 38193.92 26198.68 37191.71 38198.34 22599.45 198
PatchT97.03 31696.44 32198.79 23698.99 31298.34 22699.16 29299.07 31792.13 38599.52 12997.31 39594.54 23898.98 35188.54 39398.73 20799.03 246
myMVS_eth3d96.89 31796.37 32298.43 27999.00 30997.16 28399.29 25599.39 22797.06 26597.41 35398.15 38183.46 38998.68 37195.27 34598.34 22599.45 198
AUN-MVS96.88 31896.31 32498.59 25199.48 19297.04 29599.27 26599.22 29697.44 22898.51 31099.41 27191.97 30999.66 24397.71 24283.83 39999.07 243
FMVSNet196.84 31996.36 32398.29 29299.32 23797.26 27999.43 20099.48 15995.11 35398.55 30899.32 30183.95 38798.98 35195.81 33096.26 31198.62 320
test250696.81 32096.65 31697.29 34599.74 8092.21 38899.60 9885.06 41999.13 2299.77 5599.93 987.82 36999.85 15299.38 5399.38 15599.80 70
RPMNet96.72 32195.90 33399.19 17299.18 27198.49 21699.22 28499.52 10388.72 39899.56 12097.38 39294.08 25599.95 5986.87 40098.58 21399.14 230
test_040296.64 32296.24 32597.85 32298.85 33296.43 32599.44 19699.26 28993.52 37596.98 36699.52 24088.52 36099.20 32392.58 37997.50 27697.93 380
X-MVStestdata96.55 32395.45 34199.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16464.01 41598.81 4499.94 6998.79 12799.86 6799.84 39
pmmvs696.53 32496.09 32997.82 32798.69 35495.47 34899.37 22999.47 17993.46 37797.41 35399.78 12487.06 37299.33 29796.92 30292.70 37798.65 309
ET-MVSNet_ETH3D96.49 32595.64 33999.05 18799.53 16698.82 18498.84 35497.51 39397.63 20384.77 40299.21 32092.09 30798.91 36298.98 9392.21 37999.41 205
UnsupCasMVSNet_eth96.44 32696.12 32797.40 34298.65 35795.65 34199.36 23499.51 11797.13 25596.04 37798.99 34288.40 36198.17 38096.71 30990.27 38898.40 352
FMVSNet596.43 32796.19 32697.15 34699.11 28995.89 33899.32 24599.52 10394.47 36898.34 32099.07 33287.54 37097.07 39692.61 37895.72 32798.47 343
new_pmnet96.38 32896.03 33097.41 34198.13 37695.16 35799.05 31699.20 30093.94 37097.39 35698.79 36091.61 32299.04 34290.43 38695.77 32498.05 371
Anonymous2023120696.22 32996.03 33096.79 35997.31 38994.14 37199.63 8699.08 31496.17 33097.04 36599.06 33493.94 25997.76 39086.96 39995.06 34298.47 343
IB-MVS95.67 1896.22 32995.44 34298.57 25599.21 26396.70 31398.65 37297.74 39196.71 28897.27 35898.54 36886.03 37499.92 9898.47 17286.30 39699.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 33195.89 33497.13 34897.72 38394.96 36099.79 3099.29 28493.01 38097.20 36199.03 33789.69 34598.36 37791.16 38496.13 31398.07 369
gg-mvs-nofinetune96.17 33295.32 34398.73 24098.79 33698.14 23599.38 22794.09 41091.07 39198.07 33791.04 40889.62 34799.35 29496.75 30799.09 18198.68 292
test20.0396.12 33395.96 33296.63 36097.44 38595.45 34999.51 15799.38 23596.55 30396.16 37599.25 31493.76 26796.17 40187.35 39894.22 35798.27 359
PVSNet_094.43 1996.09 33495.47 34097.94 31799.31 23894.34 37097.81 39999.70 1597.12 25797.46 35298.75 36289.71 34499.79 19497.69 24581.69 40299.68 119
EG-PatchMatch MVS95.97 33595.69 33796.81 35897.78 38092.79 38499.16 29298.93 33296.16 33194.08 38899.22 31782.72 39199.47 26895.67 33697.50 27698.17 364
APD_test195.87 33696.49 32094.00 37199.53 16684.01 40099.54 14199.32 27295.91 34397.99 33999.85 5485.49 37899.88 13891.96 38098.84 20098.12 366
Patchmatch-RL test95.84 33795.81 33695.95 36695.61 39990.57 39298.24 39298.39 37795.10 35595.20 38298.67 36494.78 21997.77 38996.28 32290.02 38999.51 177
test_vis1_rt95.81 33895.65 33896.32 36499.67 11291.35 39199.49 17596.74 40098.25 12395.24 38098.10 38574.96 40099.90 12199.53 3698.85 19997.70 385
MVS-HIRNet95.75 33995.16 34497.51 33999.30 23993.69 37798.88 35095.78 40485.09 40198.78 27692.65 40491.29 32799.37 28794.85 35199.85 7499.46 195
MIMVSNet195.51 34095.04 34596.92 35697.38 38695.60 34299.52 15099.50 13793.65 37496.97 36799.17 32285.28 38196.56 40088.36 39495.55 33298.60 332
MDA-MVSNet_test_wron95.45 34194.60 34898.01 31298.16 37597.21 28299.11 30799.24 29393.49 37680.73 40898.98 34493.02 27798.18 37994.22 36094.45 35398.64 311
TDRefinement95.42 34294.57 34997.97 31689.83 41296.11 33599.48 18098.75 35796.74 28696.68 36999.88 3788.65 35799.71 22698.37 18082.74 40198.09 368
YYNet195.36 34394.51 35097.92 31897.89 37897.10 28699.10 30999.23 29493.26 37980.77 40799.04 33692.81 28398.02 38394.30 35694.18 35898.64 311
pmmvs-eth3d95.34 34494.73 34797.15 34695.53 40195.94 33799.35 23999.10 31195.13 35193.55 39097.54 39088.15 36597.91 38694.58 35389.69 39197.61 386
dmvs_testset95.02 34596.12 32791.72 38099.10 29280.43 40899.58 11297.87 38897.47 22195.22 38198.82 35693.99 25795.18 40588.09 39594.91 34799.56 160
KD-MVS_self_test95.00 34694.34 35196.96 35397.07 39495.39 35199.56 12599.44 20795.11 35397.13 36397.32 39491.86 31297.27 39590.35 38781.23 40398.23 363
MDA-MVSNet-bldmvs94.96 34793.98 35497.92 31898.24 37497.27 27799.15 29599.33 26293.80 37280.09 40999.03 33788.31 36297.86 38893.49 36794.36 35598.62 320
N_pmnet94.95 34895.83 33592.31 37898.47 36979.33 41099.12 30192.81 41693.87 37197.68 34999.13 32793.87 26299.01 34891.38 38396.19 31298.59 333
KD-MVS_2432*160094.62 34993.72 35797.31 34397.19 39295.82 33998.34 38799.20 30095.00 35797.57 35098.35 37487.95 36698.10 38192.87 37577.00 40698.01 373
miper_refine_blended94.62 34993.72 35797.31 34397.19 39295.82 33998.34 38799.20 30095.00 35797.57 35098.35 37487.95 36698.10 38192.87 37577.00 40698.01 373
CL-MVSNet_self_test94.49 35193.97 35596.08 36596.16 39693.67 37898.33 38999.38 23595.13 35197.33 35798.15 38192.69 29196.57 39988.67 39279.87 40497.99 376
new-patchmatchnet94.48 35294.08 35395.67 36795.08 40492.41 38699.18 29099.28 28694.55 36793.49 39197.37 39387.86 36897.01 39791.57 38288.36 39297.61 386
OpenMVS_ROBcopyleft92.34 2094.38 35393.70 35996.41 36397.38 38693.17 38299.06 31498.75 35786.58 39994.84 38698.26 37881.53 39699.32 29989.01 39197.87 25496.76 393
CMPMVSbinary69.68 2394.13 35494.90 34691.84 37997.24 39080.01 40998.52 38099.48 15989.01 39691.99 39799.67 18185.67 37699.13 33095.44 34097.03 29896.39 397
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 35593.25 36196.60 36194.76 40694.49 36698.92 34698.18 38489.66 39296.48 37198.06 38786.28 37397.33 39489.68 38987.20 39597.97 378
mvsany_test393.77 35693.45 36094.74 36995.78 39888.01 39599.64 8198.25 38098.28 11794.31 38797.97 38868.89 40398.51 37597.50 26190.37 38797.71 383
UnsupCasMVSNet_bld93.53 35792.51 36396.58 36297.38 38693.82 37398.24 39299.48 15991.10 39093.10 39296.66 39774.89 40198.37 37694.03 36287.71 39497.56 388
dongtai93.26 35892.93 36294.25 37099.39 21785.68 39897.68 40193.27 41292.87 38296.85 36899.39 27982.33 39497.48 39376.78 40697.80 25799.58 154
WB-MVS93.10 35994.10 35290.12 38595.51 40381.88 40599.73 4999.27 28895.05 35693.09 39398.91 35394.70 22891.89 40976.62 40794.02 36296.58 395
PM-MVS92.96 36092.23 36495.14 36895.61 39989.98 39499.37 22998.21 38294.80 36295.04 38597.69 38965.06 40497.90 38794.30 35689.98 39097.54 389
SSC-MVS92.73 36193.73 35689.72 38695.02 40581.38 40699.76 3699.23 29494.87 36092.80 39498.93 34994.71 22791.37 41074.49 40993.80 36496.42 396
test_fmvs392.10 36291.77 36593.08 37696.19 39586.25 39699.82 1598.62 37296.65 29395.19 38396.90 39655.05 41195.93 40396.63 31590.92 38697.06 392
test_f91.90 36391.26 36793.84 37295.52 40285.92 39799.69 5898.53 37695.31 35093.87 38996.37 39955.33 41098.27 37895.70 33390.98 38597.32 391
test_method91.10 36491.36 36690.31 38495.85 39773.72 41794.89 40599.25 29168.39 40895.82 37899.02 33980.50 39898.95 36093.64 36594.89 34898.25 361
Gipumacopyleft90.99 36590.15 37093.51 37398.73 34890.12 39393.98 40699.45 19979.32 40492.28 39594.91 40169.61 40297.98 38587.42 39795.67 32892.45 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 36690.11 37193.34 37498.78 33985.59 39998.15 39693.16 41489.37 39592.07 39698.38 37381.48 39795.19 40462.54 41397.04 29799.25 225
testf190.42 36790.68 36889.65 38797.78 38073.97 41599.13 29898.81 35389.62 39391.80 39898.93 34962.23 40798.80 36786.61 40191.17 38296.19 398
APD_test290.42 36790.68 36889.65 38797.78 38073.97 41599.13 29898.81 35389.62 39391.80 39898.93 34962.23 40798.80 36786.61 40191.17 38296.19 398
test_vis3_rt87.04 36985.81 37290.73 38393.99 40781.96 40499.76 3690.23 41892.81 38381.35 40691.56 40640.06 41599.07 33994.27 35888.23 39391.15 406
PMMVS286.87 37085.37 37491.35 38290.21 41183.80 40198.89 34997.45 39483.13 40391.67 40095.03 40048.49 41394.70 40685.86 40377.62 40595.54 401
LCM-MVSNet86.80 37185.22 37591.53 38187.81 41380.96 40798.23 39498.99 32671.05 40690.13 40196.51 39848.45 41496.88 39890.51 38585.30 39796.76 393
FPMVS84.93 37285.65 37382.75 39386.77 41463.39 41998.35 38698.92 33574.11 40583.39 40498.98 34450.85 41292.40 40884.54 40494.97 34492.46 403
EGC-MVSNET82.80 37377.86 37997.62 33597.91 37796.12 33499.33 24499.28 2868.40 41625.05 41799.27 31184.11 38699.33 29789.20 39098.22 23597.42 390
tmp_tt82.80 37381.52 37686.66 38966.61 41968.44 41892.79 40897.92 38668.96 40780.04 41099.85 5485.77 37596.15 40297.86 22343.89 41295.39 402
E-PMN80.61 37579.88 37782.81 39290.75 41076.38 41397.69 40095.76 40566.44 41083.52 40392.25 40562.54 40687.16 41268.53 41161.40 40984.89 410
EMVS80.02 37679.22 37882.43 39491.19 40976.40 41297.55 40392.49 41766.36 41183.01 40591.27 40764.63 40585.79 41365.82 41260.65 41085.08 409
ANet_high77.30 37774.86 38184.62 39175.88 41777.61 41197.63 40293.15 41588.81 39764.27 41289.29 40936.51 41683.93 41475.89 40852.31 41192.33 405
MVEpermissive76.82 2176.91 37874.31 38284.70 39085.38 41676.05 41496.88 40493.17 41367.39 40971.28 41189.01 41021.66 42187.69 41171.74 41072.29 40890.35 407
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37974.97 38079.01 39570.98 41855.18 42093.37 40798.21 38265.08 41261.78 41393.83 40321.74 42092.53 40778.59 40591.12 38489.34 408
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 38041.29 38536.84 39686.18 41549.12 42179.73 40922.81 42127.64 41325.46 41628.45 41621.98 41948.89 41555.80 41423.56 41512.51 413
testmvs39.17 38143.78 38325.37 39836.04 42116.84 42398.36 38526.56 42020.06 41438.51 41567.32 41129.64 41815.30 41737.59 41539.90 41343.98 412
test12339.01 38242.50 38428.53 39739.17 42020.91 42298.75 36319.17 42219.83 41538.57 41466.67 41233.16 41715.42 41637.50 41629.66 41449.26 411
cdsmvs_eth3d_5k24.64 38332.85 3860.00 3990.00 4220.00 4240.00 41099.51 1170.00 4170.00 41899.56 22596.58 1520.00 4180.00 4170.00 4160.00 414
ab-mvs-re8.30 38411.06 3870.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 41899.58 2170.00 4220.00 4180.00 4170.00 4160.00 414
pcd_1.5k_mvsjas8.27 38511.03 3880.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 41899.01 180.00 4180.00 4170.00 4160.00 414
test_blank0.13 3860.17 3890.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4181.57 4170.00 4220.00 4180.00 4170.00 4160.00 414
uanet_test0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
DCPMVS0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
sosnet-low-res0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
sosnet0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
uncertanet0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
Regformer0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
uanet0.02 3870.03 3900.00 3990.00 4220.00 4240.00 4100.00 4230.00 4170.00 4180.27 4180.00 4220.00 4180.00 4170.00 4160.00 414
WAC-MVS97.16 28395.47 339
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26299.96 3198.87 10999.84 8299.89 19
PC_three_145298.18 13599.84 3499.70 15999.31 398.52 37498.30 18999.80 10299.81 61
No_MVS99.87 1199.51 17499.76 3799.33 26299.96 3198.87 10999.84 8299.89 19
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9499.81 9399.09 14
eth-test20.00 422
eth-test0.00 422
ZD-MVS99.71 9699.79 3099.61 4896.84 28299.56 12099.54 23398.58 7299.96 3196.93 30099.75 117
RE-MVS-def99.34 4099.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.75 5598.61 15099.81 9899.77 82
IU-MVS99.84 3299.88 899.32 27298.30 11699.84 3498.86 11499.85 7499.89 19
OPU-MVS99.64 8099.56 15899.72 4299.60 9899.70 15999.27 599.42 28098.24 19299.80 10299.79 74
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3198.91 10399.84 8299.88 25
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 205
9.1499.10 8099.72 9199.40 21899.51 11797.53 21699.64 9999.78 12498.84 4199.91 10997.63 24799.82 95
save fliter99.76 6599.59 7199.14 29799.40 22499.00 43
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3198.85 11699.90 4499.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 11999.51 11799.96 3198.93 10099.86 6799.88 25
test072699.85 2699.89 499.62 9199.50 13799.10 2799.86 3299.82 7998.94 29
GSMVS99.52 170
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 170
sam_mvs94.72 226
ambc93.06 37792.68 40882.36 40298.47 38298.73 36695.09 38497.41 39155.55 40999.10 33796.42 31991.32 38197.71 383
MTGPAbinary99.47 179
test_post199.23 28065.14 41494.18 25299.71 22697.58 251
test_post65.99 41394.65 23299.73 216
patchmatchnet-post98.70 36394.79 21899.74 210
GG-mvs-BLEND98.45 27498.55 36698.16 23399.43 20093.68 41197.23 35998.46 36989.30 34899.22 31695.43 34198.22 23597.98 377
MTMP99.54 14198.88 344
gm-plane-assit98.54 36792.96 38394.65 36599.15 32599.64 25197.56 256
test9_res97.49 26299.72 12399.75 88
TEST999.67 11299.65 5799.05 31699.41 21896.22 32698.95 25199.49 24998.77 5199.91 109
test_899.67 11299.61 6799.03 32199.41 21896.28 32098.93 25499.48 25498.76 5299.91 109
agg_prior297.21 28099.73 12299.75 88
agg_prior99.67 11299.62 6599.40 22498.87 26499.91 109
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
test_prior499.56 7798.99 332
test_prior298.96 33998.34 11299.01 24099.52 24098.68 6497.96 21599.74 120
test_prior99.68 6999.67 11299.48 9399.56 7199.83 17299.74 92
旧先验298.96 33996.70 28999.47 13799.94 6998.19 195
新几何299.01 329
新几何199.75 5899.75 7399.59 7199.54 8796.76 28599.29 18299.64 19398.43 8399.94 6996.92 30299.66 13399.72 103
旧先验199.74 8099.59 7199.54 8799.69 16998.47 8099.68 13199.73 97
无先验98.99 33299.51 11796.89 27999.93 8797.53 25999.72 103
原ACMM298.95 342
原ACMM199.65 7599.73 8799.33 10899.47 17997.46 22299.12 21999.66 18698.67 6699.91 10997.70 24499.69 12899.71 112
test22299.75 7399.49 9198.91 34899.49 14796.42 31499.34 17399.65 18798.28 9399.69 12899.72 103
testdata299.95 5996.67 312
segment_acmp98.96 24
testdata99.54 10199.75 7398.95 16599.51 11797.07 26399.43 14699.70 15998.87 3799.94 6997.76 23599.64 13699.72 103
testdata198.85 35398.32 115
test1299.75 5899.64 13099.61 6799.29 28499.21 20298.38 8899.89 13399.74 12099.74 92
plane_prior799.29 24397.03 296
plane_prior699.27 24896.98 30092.71 289
plane_prior599.47 17999.69 23797.78 23197.63 26398.67 299
plane_prior499.61 208
plane_prior397.00 29898.69 8099.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 250
plane_prior96.97 30199.21 28698.45 9997.60 266
n20.00 423
nn0.00 423
door-mid98.05 385
lessismore_v097.79 32998.69 35495.44 35094.75 40895.71 37999.87 4588.69 35599.32 29995.89 32894.93 34698.62 320
LGP-MVS_train98.49 26499.33 23197.05 29299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
test1199.35 251
door97.92 386
HQP5-MVS96.83 308
HQP-NCC99.19 26898.98 33598.24 12498.66 291
ACMP_Plane99.19 26898.98 33598.24 12498.66 291
BP-MVS97.19 284
HQP4-MVS98.66 29199.64 25198.64 311
HQP3-MVS99.39 22797.58 268
HQP2-MVS92.47 298
NP-MVS99.23 25896.92 30499.40 275
MDTV_nov1_ep13_2view95.18 35699.35 23996.84 28299.58 11695.19 20597.82 22899.46 195
MDTV_nov1_ep1398.32 17599.11 28994.44 36799.27 26598.74 36097.51 21999.40 15899.62 20494.78 21999.76 20597.59 25098.81 204
ACMMP++_ref97.19 294
ACMMP++97.43 285
Test By Simon98.75 55
ITE_SJBPF98.08 30799.29 24396.37 32698.92 33598.34 11298.83 26999.75 13991.09 32999.62 25795.82 32997.40 28798.25 361
DeepMVS_CXcopyleft93.34 37499.29 24382.27 40399.22 29685.15 40096.33 37299.05 33590.97 33199.73 21693.57 36697.77 25998.01 373