This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33499.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18399.65 2399.78 10499.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16999.69 1999.85 6999.48 178
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30799.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25299.28 6399.84 7799.63 140
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21699.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21999.64 2499.82 9099.54 161
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25099.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38499.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19799.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 26899.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38198.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33499.85 698.82 6599.65 8999.74 14398.51 7899.80 18098.83 11899.89 4899.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33299.85 698.82 6599.54 11999.73 14998.51 7899.74 19798.91 9999.88 5199.77 82
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 33999.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24199.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30299.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19399.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 32899.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 238
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 24799.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24399.77 5199.82 7698.78 4899.94 6997.56 24799.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6799.12 7499.74 6199.18 26299.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
patch_mono-299.26 6999.62 598.16 29299.81 4694.59 35599.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 230
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31599.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 237
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27699.66 5399.84 1399.74 1099.09 3298.92 25099.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
dcpmvs_299.23 7599.58 798.16 29299.83 3994.68 35399.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 35999.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21699.89 3095.50 18799.94 6999.50 3699.97 799.89 20
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23299.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19399.40 15299.44 26198.10 9999.81 17498.94 9499.62 13499.35 202
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 26899.68 4899.81 2099.51 11599.20 1898.72 27699.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20399.80 4099.65 18697.39 11699.28 29499.03 8599.85 6999.65 129
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 25999.04 23299.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17499.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18399.51 3599.14 16999.67 122
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25499.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28399.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 23099.75 11299.48 178
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28699.41 21296.60 29099.60 10699.55 22698.83 4299.90 11697.48 25499.83 8699.78 80
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16399.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29299.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 30799.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 21999.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30299.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28399.80 9799.85 36
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37499.71 1398.88 5999.62 10099.76 13596.63 14599.70 21999.46 4499.99 199.66 125
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 25999.57 6496.40 30699.42 14399.68 17498.75 5599.80 18097.98 20599.72 11899.44 191
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25398.70 13298.93 18699.67 122
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22599.72 103
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23299.72 103
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 25999.63 9699.69 16897.27 12499.96 3097.82 21999.84 7799.81 61
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31599.91 397.67 19299.59 10999.75 13895.90 17399.73 20399.53 3299.02 18299.86 33
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23099.58 11099.76 13597.65 11299.82 16998.87 10599.07 17799.46 186
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27598.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35099.91 396.74 27699.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25499.52 10198.07 14899.66 8399.81 9097.79 10899.78 18897.79 22199.81 9399.60 146
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21499.72 103
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22798.09 19599.13 17099.73 97
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 18899.28 18099.28 30498.34 8999.85 14596.96 28799.45 14599.69 115
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18896.98 28599.78 10498.07 357
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25799.35 5198.99 18399.51 173
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 30799.41 21296.28 31098.95 24599.49 24798.76 5299.91 10597.63 23899.72 11899.75 88
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35297.09 12999.75 19699.27 6697.90 24199.47 184
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27299.52 10196.85 27199.27 18499.48 25298.25 9399.91 10597.76 22699.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28199.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25499.77 10799.55 159
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27099.48 15597.23 23899.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35399.55 7797.25 23599.47 13199.77 12997.82 10799.87 13696.93 29099.90 3999.54 161
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30199.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 201
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36399.10 30797.93 16299.42 14399.55 22698.67 6699.80 18095.80 32199.68 12699.61 144
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37399.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 32998.53 20599.78 3299.54 8598.07 14899.00 23999.76 13599.01 1899.37 27599.13 7697.23 28298.81 247
mvsmamba98.92 12198.87 11599.08 17599.07 28799.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28599.38 4897.40 27598.73 262
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31299.47 17396.98 26199.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20799.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26697.91 20999.11 17199.62 142
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
EPNet98.86 12898.71 13299.30 14897.20 37998.18 23099.62 8898.91 33299.28 1698.63 29499.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25499.91 397.42 22199.67 7899.37 28097.53 11399.88 13198.98 9097.29 27998.42 338
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 28899.01 23599.40 27297.09 12999.86 13997.68 23799.53 14199.10 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20398.70 28399.89 3095.83 17599.90 11698.10 19499.90 3999.08 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25199.31 17499.78 12195.23 19999.77 19098.21 18699.03 18099.75 88
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22499.28 18099.68 17496.44 15499.92 9598.37 17598.22 22799.40 197
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38099.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30599.77 997.74 18499.50 12699.53 23595.41 18999.84 15197.17 27799.64 13199.44 191
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 38699.50 13597.50 21199.38 15899.41 26996.37 15699.81 17499.11 7898.54 21199.51 173
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32498.61 8499.35 16798.92 34794.78 21599.77 19099.35 5198.11 23799.54 161
DeepPCF-MVS98.18 398.81 13999.37 3097.12 33999.60 14691.75 37998.61 36499.44 20199.35 1299.83 3499.85 5498.70 6399.81 17499.02 8799.91 3199.81 61
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35299.31 27197.34 22799.21 19899.07 32897.20 12599.82 16998.56 15898.87 19199.52 167
Effi-MVS+-dtu98.78 14398.89 11398.47 26399.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19798.73 12999.38 14998.74 260
FIs98.78 14398.63 14299.23 16299.18 26299.54 7999.83 1699.59 5798.28 11398.79 27099.81 9096.75 14299.37 27599.08 8296.38 29898.78 250
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24399.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18397.95 20799.45 14599.02 233
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13199.54 3098.26 22599.72 103
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31896.59 29299.58 11099.59 21295.39 19099.90 11697.78 22299.49 14399.28 209
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 28699.45 9399.86 1299.60 5498.23 12198.70 28399.82 7696.80 13999.22 30699.07 8396.38 29898.79 249
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 33699.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 234
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27099.30 6197.52 25998.64 298
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 32699.01 23599.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
RRT_MVS98.70 15198.66 13998.83 22598.90 31198.45 21899.89 299.28 28197.76 18098.94 24799.92 1496.98 13499.25 29999.28 6397.00 28898.80 248
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31498.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29199.09 8097.27 28098.71 265
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29299.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 234
131498.68 15598.54 15999.11 17498.89 31398.65 19499.27 25999.49 14396.89 26997.99 33099.56 22397.72 11199.83 16397.74 22999.27 16098.84 246
EI-MVSNet98.67 15698.67 13698.68 24099.35 21997.97 24299.50 16399.38 23196.93 26899.20 20199.83 6897.87 10599.36 27998.38 17397.56 25698.71 265
test_djsdf98.67 15698.57 15698.98 19098.70 34198.91 16999.88 499.46 18297.55 20399.22 19599.88 3695.73 17999.28 29499.03 8597.62 25198.75 257
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35398.73 27599.90 2695.78 17799.98 1396.96 28799.88 5199.76 87
nrg03098.64 15998.42 16599.28 15599.05 29399.69 4799.81 2099.46 18298.04 15499.01 23599.82 7696.69 14499.38 27099.34 5594.59 33998.78 250
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 364100.00 199.92 1299.92 2499.98 2
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 34899.36 24096.33 30799.00 23999.12 32698.46 8199.84 15195.23 33699.37 15699.66 125
CVMVSNet98.57 16298.67 13698.30 28299.35 21995.59 33399.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25798.75 12698.56 20999.85 36
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27099.30 6197.48 26798.63 306
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22299.20 20199.73 14993.86 25999.36 27998.87 10597.56 25698.62 309
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34595.54 33799.62 10099.70 15893.82 26099.93 8497.35 26499.46 14499.32 206
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29499.53 8299.82 1799.72 1194.56 35698.08 32599.88 3694.73 22199.98 1397.47 25699.76 11099.06 229
IterMVS-LS98.46 16798.42 16598.58 24799.59 14898.00 24099.37 22699.43 20796.94 26799.07 22499.59 21297.87 10599.03 33498.32 18195.62 31898.71 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 16898.28 17598.94 19698.50 35698.96 15799.77 3499.50 13597.07 25398.87 25999.77 12994.76 21999.28 29498.66 13997.60 25298.57 324
jajsoiax98.43 16998.28 17598.88 21198.60 35198.43 22099.82 1799.53 9698.19 12798.63 29499.80 10393.22 27299.44 26299.22 6997.50 26398.77 253
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 38897.68 19099.79 4299.74 14391.39 32199.89 12698.83 11899.56 13899.57 156
BH-untuned98.42 17098.36 16898.59 24499.49 18196.70 30599.27 25999.13 30597.24 23798.80 26899.38 27795.75 17899.74 19797.07 28199.16 16599.33 205
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37199.97 2199.82 1699.84 7799.96 7
D2MVS98.41 17298.50 16198.15 29599.26 24496.62 30999.40 21599.61 4897.71 18698.98 24199.36 28396.04 16499.67 22798.70 13297.41 27498.15 354
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 34897.70 18898.94 24799.65 18692.91 27999.74 19796.52 30699.55 14099.64 136
mvs_tets98.40 17598.23 17798.91 20498.67 34498.51 21199.66 6999.53 9698.19 12798.65 29299.81 9092.75 28199.44 26299.31 5897.48 26798.77 253
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 21698.71 27799.83 6893.23 27099.63 24398.88 10296.32 30098.76 255
ACMM97.58 598.37 17798.34 17098.48 25999.41 20397.10 28099.56 12299.45 19398.53 9099.04 23299.85 5493.00 27599.71 21398.74 12797.45 26998.64 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39097.53 20799.73 6299.65 18691.25 32499.89 12698.62 14399.56 13899.48 178
tpmrst98.33 17998.48 16297.90 31099.16 27094.78 35199.31 24499.11 30697.27 23399.45 13499.59 21295.33 19399.84 15198.48 16598.61 20399.09 222
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32698.41 10099.14 21199.60 21094.59 22999.79 18398.48 16593.29 35799.61 144
PatchmatchNetpermissive98.31 18098.36 16898.19 29099.16 27095.32 34299.27 25998.92 32897.37 22599.37 16099.58 21694.90 20799.70 21997.43 26099.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36596.03 33199.19 20499.74 14391.87 30799.92 9599.16 7598.29 22499.70 113
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27099.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23599.35 5194.46 34098.72 263
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 29899.36 10299.49 17499.51 11597.95 16098.97 24399.13 32396.30 15899.38 27098.36 17793.34 35698.66 294
HQP_MVS98.27 18598.22 17898.44 26899.29 23796.97 29599.39 21999.47 17398.97 5199.11 21699.61 20792.71 28699.69 22497.78 22297.63 24998.67 286
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31098.98 15099.48 17899.53 9697.76 18098.71 27799.46 25996.43 15599.22 30698.57 15592.87 36398.69 274
LPG-MVS_test98.22 18698.13 18598.49 25799.33 22597.05 28699.58 10999.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
RPSCF98.22 18698.62 14796.99 34199.82 4291.58 38099.72 4999.44 20196.61 28899.66 8399.89 3095.92 17199.82 16997.46 25799.10 17499.57 156
ADS-MVSNet98.20 18998.08 19298.56 25199.33 22596.48 31499.23 27399.15 30296.24 31499.10 21999.67 18094.11 24999.71 21396.81 29599.05 17899.48 178
OPM-MVS98.19 19098.10 18898.45 26598.88 31497.07 28499.28 25499.38 23198.57 8699.22 19599.81 9092.12 30299.66 23098.08 19997.54 25898.61 318
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19098.16 18098.27 28799.30 23395.55 33499.07 30298.97 32297.57 20099.43 14099.57 22092.72 28499.74 19797.58 24299.20 16399.52 167
miper_ehance_all_eth98.18 19298.10 18898.41 27199.23 25097.72 25798.72 35699.31 27196.60 29098.88 25699.29 30297.29 12399.13 32097.60 24095.99 30798.38 343
CR-MVSNet98.17 19397.93 21098.87 21599.18 26298.49 21399.22 27799.33 25796.96 26399.56 11499.38 27794.33 24199.00 33994.83 34298.58 20699.14 215
miper_enhance_ethall98.16 19498.08 19298.41 27198.96 30797.72 25798.45 37399.32 26796.95 26598.97 24399.17 31897.06 13199.22 30697.86 21495.99 30798.29 347
CLD-MVS98.16 19498.10 18898.33 27899.29 23796.82 30298.75 35399.44 20197.83 17299.13 21299.55 22692.92 27799.67 22798.32 18197.69 24798.48 330
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36496.82 38996.95 26599.54 11999.43 26391.66 31699.86 13998.08 19999.51 14299.22 212
pmmvs498.13 19797.90 21298.81 22998.61 35098.87 17298.99 32299.21 29596.44 30299.06 22999.58 21695.90 17399.11 32597.18 27696.11 30498.46 335
WR-MVS_H98.13 19797.87 21798.90 20699.02 29698.84 17799.70 5299.59 5797.27 23398.40 31099.19 31795.53 18699.23 30398.34 17893.78 35398.61 318
c3_l98.12 19998.04 19798.38 27599.30 23397.69 26198.81 34799.33 25796.67 28198.83 26499.34 29097.11 12898.99 34097.58 24295.34 32498.48 330
ACMH97.28 898.10 20097.99 20298.44 26899.41 20396.96 29799.60 9599.56 6998.09 14398.15 32399.91 2090.87 32899.70 21998.88 10297.45 26998.67 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36399.22 19599.89 3090.23 33699.93 8499.26 6798.33 21999.66 125
CP-MVSNet98.09 20197.78 22499.01 18498.97 30699.24 11799.67 6499.46 18297.25 23598.48 30799.64 19293.79 26199.06 33098.63 14294.10 34798.74 260
dmvs_re98.08 20398.16 18097.85 31299.55 16094.67 35499.70 5298.92 32898.15 13399.06 22999.35 28693.67 26599.25 29997.77 22597.25 28199.64 136
DU-MVS98.08 20397.79 22198.96 19398.87 31898.98 15099.41 20799.45 19397.87 16698.71 27799.50 24494.82 21099.22 30698.57 15592.87 36398.68 279
v2v48298.06 20597.77 22698.92 20098.90 31198.82 18199.57 11699.36 24096.65 28399.19 20499.35 28694.20 24599.25 29997.72 23294.97 33298.69 274
V4298.06 20597.79 22198.86 21998.98 30498.84 17799.69 5599.34 25096.53 29499.30 17699.37 28094.67 22699.32 28897.57 24694.66 33798.42 338
test-LLR98.06 20597.90 21298.55 25398.79 32697.10 28098.67 35997.75 38097.34 22798.61 29798.85 34994.45 23899.45 25797.25 26899.38 14999.10 218
WR-MVS98.06 20597.73 23399.06 17898.86 32199.25 11699.19 28099.35 24697.30 23198.66 28699.43 26393.94 25599.21 31198.58 15294.28 34498.71 265
ACMP97.20 1198.06 20597.94 20998.45 26599.37 21597.01 29199.44 19499.49 14397.54 20698.45 30899.79 11591.95 30699.72 20797.91 20997.49 26698.62 309
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21097.96 20598.33 27899.26 24497.38 26898.56 36999.31 27196.65 28398.88 25699.52 23896.58 14799.12 32497.39 26295.53 32198.47 332
test111198.04 21198.11 18797.83 31599.74 8093.82 36399.58 10995.40 39699.12 2599.65 8999.93 990.73 32999.84 15199.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30499.74 8094.37 35899.59 10194.98 39799.13 2299.66 8399.93 990.67 33099.84 15199.40 4799.38 14999.80 70
EPNet_dtu98.03 21397.96 20598.23 28898.27 36195.54 33699.23 27398.75 34999.02 3897.82 33799.71 15496.11 16299.48 25493.04 36299.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28199.07 22499.28 30492.93 27698.98 34197.10 27896.65 29198.56 325
ADS-MVSNet298.02 21598.07 19597.87 31199.33 22595.19 34599.23 27399.08 31096.24 31499.10 21999.67 18094.11 24998.93 35196.81 29599.05 17899.48 178
HQP-MVS98.02 21597.90 21298.37 27699.19 25996.83 30098.98 32599.39 22398.24 11898.66 28699.40 27292.47 29599.64 23897.19 27497.58 25498.64 298
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27399.23 25096.80 30399.70 5299.60 5497.12 24798.18 32299.70 15891.73 31299.72 20798.39 17297.45 26998.68 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 21897.84 21998.55 25399.25 24897.97 24298.71 35799.34 25096.47 30198.59 30099.54 23195.65 18399.21 31197.21 27095.77 31398.46 335
DIV-MVS_self_test98.01 21897.85 21898.48 25999.24 24997.95 24698.71 35799.35 24696.50 29598.60 29999.54 23195.72 18099.03 33497.21 27095.77 31398.46 335
miper_lstm_enhance98.00 22097.91 21198.28 28699.34 22397.43 26798.88 34099.36 24096.48 29998.80 26899.55 22695.98 16698.91 35297.27 26795.50 32298.51 328
BH-w/o98.00 22097.89 21698.32 28099.35 21996.20 32399.01 32098.90 33496.42 30498.38 31199.00 33695.26 19799.72 20796.06 31498.61 20399.03 231
v114497.98 22297.69 23698.85 22298.87 31898.66 19399.54 13999.35 24696.27 31299.23 19499.35 28694.67 22699.23 30396.73 29895.16 32898.68 279
EU-MVSNet97.98 22298.03 19897.81 31898.72 33896.65 30899.66 6999.66 2898.09 14398.35 31399.82 7695.25 19898.01 37497.41 26195.30 32598.78 250
tpmvs97.98 22298.02 20097.84 31499.04 29494.73 35299.31 24499.20 29696.10 33098.76 27399.42 26594.94 20399.81 17496.97 28698.45 21598.97 238
tt080597.97 22597.77 22698.57 24899.59 14896.61 31099.45 18899.08 31098.21 12498.88 25699.80 10388.66 35099.70 21998.58 15297.72 24699.39 198
NR-MVSNet97.97 22597.61 24599.02 18398.87 31899.26 11599.47 18499.42 20997.63 19597.08 35599.50 24495.07 20299.13 32097.86 21493.59 35498.68 279
v897.95 22797.63 24498.93 19898.95 30898.81 18399.80 2599.41 21296.03 33199.10 21999.42 26594.92 20699.30 29296.94 28994.08 34898.66 294
Patchmatch-test97.93 22897.65 24098.77 23499.18 26297.07 28499.03 31299.14 30496.16 32198.74 27499.57 22094.56 23199.72 20793.36 35899.11 17199.52 167
PS-CasMVS97.93 22897.59 24798.95 19598.99 30199.06 14299.68 6199.52 10197.13 24598.31 31599.68 17492.44 29999.05 33198.51 16394.08 34898.75 257
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 32998.62 19799.65 7599.49 14397.76 18098.49 30699.60 21094.23 24498.97 34898.00 20492.90 36198.70 270
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 38799.98 1399.88 1499.76 11099.97 4
v14419297.92 23197.60 24698.87 21598.83 32498.65 19499.55 13499.34 25096.20 31799.32 17299.40 27294.36 24099.26 29896.37 31195.03 33198.70 270
ACMH+97.24 1097.92 23197.78 22498.32 28099.46 19196.68 30799.56 12299.54 8598.41 10097.79 33999.87 4490.18 33799.66 23098.05 20397.18 28598.62 309
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37297.10 25199.65 8999.79 11584.79 37399.91 10599.28 6398.38 21699.69 115
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 35998.81 26699.68 17493.23 27099.42 26798.84 11594.42 34298.76 255
OurMVSNet-221017-097.88 23597.77 22698.19 29098.71 34096.53 31299.88 499.00 31997.79 17798.78 27199.94 691.68 31399.35 28297.21 27096.99 28998.69 274
v7n97.87 23797.52 25298.92 20098.76 33498.58 20199.84 1399.46 18296.20 31798.91 25199.70 15894.89 20899.44 26296.03 31593.89 35198.75 257
baseline297.87 23797.55 24898.82 22699.18 26298.02 23999.41 20796.58 39396.97 26296.51 36099.17 31893.43 26799.57 24897.71 23399.03 18098.86 244
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35297.94 16199.27 18498.62 35891.75 31099.86 13993.73 35498.19 23198.96 240
cl2297.85 24097.64 24398.48 25999.09 28497.87 25098.60 36699.33 25797.11 25098.87 25999.22 31392.38 30099.17 31598.21 18695.99 30798.42 338
v1097.85 24097.52 25298.86 21998.99 30198.67 19299.75 4199.41 21295.70 33598.98 24199.41 26994.75 22099.23 30396.01 31794.63 33898.67 286
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 36799.15 30297.04 25898.90 25399.30 30089.83 33999.38 27096.70 30098.33 21999.62 142
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 30898.27 31899.70 15893.35 26999.44 26295.69 32495.40 32398.27 348
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 26999.19 7193.27 35898.71 265
LCM-MVSNet-Re97.83 24598.15 18296.87 34799.30 23392.25 37799.59 10198.26 37097.43 21996.20 36399.13 32396.27 15998.73 36098.17 19198.99 18399.64 136
XVG-ACMP-BASELINE97.83 24597.71 23598.20 28999.11 27896.33 31999.41 20799.52 10198.06 15299.05 23199.50 24489.64 34299.73 20397.73 23097.38 27798.53 326
IterMVS97.83 24597.77 22698.02 30199.58 15096.27 32199.02 31599.48 15597.22 23998.71 27799.70 15892.75 28199.13 32097.46 25796.00 30698.67 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 24897.75 23198.06 29899.57 15296.36 31899.02 31599.49 14397.18 24198.71 27799.72 15392.72 28499.14 31797.44 25995.86 31298.67 286
EPMVS97.82 24897.65 24098.35 27798.88 31495.98 32699.49 17494.71 39997.57 20099.26 18899.48 25292.46 29899.71 21397.87 21399.08 17699.35 202
MVP-Stereo97.81 25097.75 23197.99 30597.53 37296.60 31198.96 32998.85 34197.22 23997.23 35099.36 28395.28 19499.46 25695.51 32899.78 10497.92 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25097.44 26698.91 20498.88 31498.68 19199.51 15699.34 25096.18 31999.20 20199.34 29094.03 25299.36 27995.32 33495.18 32798.69 274
v192192097.80 25297.45 26198.84 22398.80 32598.53 20599.52 14899.34 25096.15 32399.24 19099.47 25593.98 25499.29 29395.40 33295.13 32998.69 274
v14897.79 25397.55 24898.50 25698.74 33597.72 25799.54 13999.33 25796.26 31398.90 25399.51 24194.68 22599.14 31797.83 21893.15 36098.63 306
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.96 240
thres100view90097.76 25597.45 26198.69 23999.72 9197.86 25299.59 10198.74 35297.93 16299.26 18898.62 35891.75 31099.83 16393.22 35998.18 23298.37 344
PEN-MVS97.76 25597.44 26698.72 23798.77 33398.54 20499.78 3299.51 11597.06 25598.29 31799.64 19292.63 29098.89 35498.09 19593.16 35998.72 263
Baseline_NR-MVSNet97.76 25597.45 26198.68 24099.09 28498.29 22599.41 20798.85 34195.65 33698.63 29499.67 18094.82 21099.10 32798.07 20292.89 36298.64 298
TR-MVS97.76 25597.41 27298.82 22699.06 29097.87 25098.87 34298.56 36496.63 28798.68 28599.22 31392.49 29499.65 23595.40 33297.79 24498.95 242
Patchmtry97.75 25997.40 27398.81 22999.10 28198.87 17299.11 29899.33 25794.83 35198.81 26699.38 27794.33 24199.02 33696.10 31395.57 31998.53 326
dp97.75 25997.80 22097.59 32799.10 28193.71 36699.32 24198.88 33796.48 29999.08 22399.55 22692.67 28999.82 16996.52 30698.58 20699.24 211
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27099.51 11591.90 37599.30 17699.63 19898.78 4899.64 23888.09 38599.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34198.19 12799.67 7899.85 5482.98 38099.92 9599.49 4098.32 22399.60 146
MIMVSNet97.73 26297.45 26198.57 24899.45 19697.50 26599.02 31598.98 32196.11 32699.41 14799.14 32290.28 33298.74 35995.74 32298.93 18699.47 184
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.37 344
CostFormer97.72 26497.73 23397.71 32299.15 27494.02 36299.54 13999.02 31794.67 35499.04 23299.35 28692.35 30199.77 19098.50 16497.94 24099.34 204
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 29698.86 26399.29 30290.26 33398.98 34196.44 30896.56 29498.58 323
test0.0.03 197.71 26797.42 27198.56 25198.41 36097.82 25398.78 35098.63 36297.34 22798.05 32998.98 33994.45 23898.98 34195.04 33997.15 28698.89 243
h-mvs3397.70 26897.28 28898.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38699.65 129
v124097.69 26997.32 28498.79 23298.85 32298.43 22099.48 17899.36 24096.11 32699.27 18499.36 28393.76 26399.24 30294.46 34595.23 32698.70 270
cascas97.69 26997.43 27098.48 25998.60 35197.30 26998.18 38599.39 22392.96 37198.41 30998.78 35493.77 26299.27 29798.16 19298.61 20398.86 244
pm-mvs197.68 27197.28 28898.88 21199.06 29098.62 19799.50 16399.45 19396.32 30897.87 33599.79 11592.47 29599.35 28297.54 24993.54 35598.67 286
GBi-Net97.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
test197.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
tpm97.67 27497.55 24898.03 29999.02 29695.01 34899.43 19898.54 36696.44 30299.12 21499.34 29091.83 30999.60 24697.75 22896.46 29699.48 178
PCF-MVS97.08 1497.66 27597.06 29899.47 12099.61 14199.09 13698.04 38799.25 28791.24 37898.51 30499.70 15894.55 23399.91 10592.76 36799.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 27697.65 24097.63 32498.78 32997.62 26299.13 28998.33 36997.36 22699.07 22498.94 34395.64 18499.15 31692.95 36398.68 20296.12 388
our_test_397.65 27697.68 23797.55 32898.62 34894.97 34998.84 34499.30 27596.83 27498.19 32199.34 29097.01 13399.02 33695.00 34096.01 30598.64 298
testgi97.65 27697.50 25598.13 29699.36 21896.45 31599.42 20599.48 15597.76 18097.87 33599.45 26091.09 32598.81 35694.53 34498.52 21299.13 217
thres20097.61 27997.28 28898.62 24299.64 12898.03 23899.26 26898.74 35297.68 19099.09 22298.32 36791.66 31699.81 17492.88 36498.22 22798.03 360
PAPM97.59 28097.09 29799.07 17799.06 29098.26 22798.30 38199.10 30794.88 34998.08 32599.34 29096.27 15999.64 23889.87 37898.92 18899.31 207
VDDNet97.55 28197.02 29999.16 16899.49 18198.12 23599.38 22499.30 27595.35 33999.68 7499.90 2682.62 38299.93 8499.31 5898.13 23699.42 193
TESTMET0.1,197.55 28197.27 29198.40 27398.93 30996.53 31298.67 35997.61 38396.96 26398.64 29399.28 30488.63 35299.45 25797.30 26699.38 14999.21 213
pmmvs597.52 28397.30 28698.16 29298.57 35396.73 30499.27 25998.90 33496.14 32498.37 31299.53 23591.54 31999.14 31797.51 25195.87 31198.63 306
LF4IMVS97.52 28397.46 26097.70 32398.98 30495.55 33499.29 25098.82 34498.07 14898.66 28699.64 19289.97 33899.61 24597.01 28296.68 29097.94 367
DTE-MVSNet97.51 28597.19 29398.46 26498.63 34798.13 23499.84 1399.48 15596.68 28097.97 33299.67 18092.92 27798.56 36396.88 29492.60 36698.70 270
ETVMVS97.50 28696.90 30199.29 15199.23 25098.78 18699.32 24198.90 33497.52 20998.56 30198.09 37484.72 37499.69 22497.86 21497.88 24299.39 198
hse-mvs297.50 28697.14 29498.59 24499.49 18197.05 28699.28 25499.22 29298.94 5499.66 8399.42 26594.93 20499.65 23599.48 4183.80 38899.08 223
SixPastTwentyTwo97.50 28697.33 28398.03 29998.65 34596.23 32299.77 3498.68 36097.14 24497.90 33399.93 990.45 33199.18 31497.00 28396.43 29798.67 286
JIA-IIPM97.50 28697.02 29998.93 19898.73 33697.80 25499.30 24698.97 32291.73 37698.91 25194.86 39095.10 20199.71 21397.58 24297.98 23999.28 209
ppachtmachnet_test97.49 29097.45 26197.61 32698.62 34895.24 34398.80 34899.46 18296.11 32698.22 32099.62 20396.45 15398.97 34893.77 35395.97 31098.61 318
test-mter97.49 29097.13 29698.55 25398.79 32697.10 28098.67 35997.75 38096.65 28398.61 29798.85 34988.23 35699.45 25797.25 26899.38 14999.10 218
tpm297.44 29297.34 28197.74 32199.15 27494.36 35999.45 18898.94 32593.45 36898.90 25399.44 26191.35 32299.59 24797.31 26598.07 23899.29 208
tpm cat197.39 29397.36 27697.50 33099.17 26893.73 36599.43 19899.31 27191.27 37798.71 27799.08 32794.31 24399.77 19096.41 31098.50 21399.00 234
USDC97.34 29497.20 29297.75 32099.07 28795.20 34498.51 37199.04 31697.99 15898.31 31599.86 4989.02 34599.55 25195.67 32697.36 27898.49 329
UniMVSNet_ETH3D97.32 29596.81 30398.87 21599.40 20897.46 26699.51 15699.53 9695.86 33498.54 30399.77 12982.44 38399.66 23098.68 13797.52 25999.50 176
testing397.28 29696.76 30598.82 22699.37 21598.07 23799.45 18899.36 24097.56 20297.89 33498.95 34283.70 37898.82 35596.03 31598.56 20999.58 154
MVS97.28 29696.55 30899.48 11798.78 32998.95 16299.27 25999.39 22383.53 39098.08 32599.54 23196.97 13599.87 13694.23 34999.16 16599.63 140
test_fmvs297.25 29897.30 28697.09 34099.43 19893.31 37199.73 4798.87 33998.83 6499.28 18099.80 10384.45 37599.66 23097.88 21197.45 26998.30 346
DSMNet-mixed97.25 29897.35 27896.95 34497.84 36793.61 36999.57 11696.63 39296.13 32598.87 25998.61 36094.59 22997.70 38195.08 33898.86 19299.55 159
MS-PatchMatch97.24 30097.32 28496.99 34198.45 35893.51 37098.82 34699.32 26797.41 22298.13 32499.30 30088.99 34699.56 24995.68 32599.80 9797.90 370
testing22297.16 30196.50 30999.16 16899.16 27098.47 21799.27 25998.66 36197.71 18698.23 31998.15 36982.28 38499.84 15197.36 26397.66 24899.18 214
TransMVSNet (Re)97.15 30296.58 30798.86 21999.12 27698.85 17699.49 17498.91 33295.48 33897.16 35399.80 10393.38 26899.11 32594.16 35191.73 36898.62 309
TinyColmap97.12 30396.89 30297.83 31599.07 28795.52 33798.57 36798.74 35297.58 19997.81 33899.79 11588.16 35799.56 24995.10 33797.21 28398.39 342
K. test v397.10 30496.79 30498.01 30298.72 33896.33 31999.87 997.05 38797.59 19796.16 36499.80 10388.71 34899.04 33296.69 30196.55 29598.65 296
Syy-MVS97.09 30597.14 29496.95 34499.00 29892.73 37599.29 25099.39 22397.06 25597.41 34498.15 36993.92 25798.68 36191.71 37198.34 21799.45 189
PatchT97.03 30696.44 31198.79 23298.99 30198.34 22499.16 28399.07 31392.13 37499.52 12397.31 38394.54 23498.98 34188.54 38398.73 20199.03 231
myMVS_eth3d96.89 30796.37 31298.43 27099.00 29897.16 27799.29 25099.39 22397.06 25597.41 34498.15 36983.46 37998.68 36195.27 33598.34 21799.45 189
AUN-MVS96.88 30896.31 31498.59 24499.48 18997.04 28999.27 25999.22 29297.44 21898.51 30499.41 26991.97 30599.66 23097.71 23383.83 38799.07 228
FMVSNet196.84 30996.36 31398.29 28399.32 23197.26 27399.43 19899.48 15595.11 34398.55 30299.32 29783.95 37798.98 34195.81 32096.26 30198.62 309
test250696.81 31096.65 30697.29 33599.74 8092.21 37899.60 9585.06 40799.13 2299.77 5199.93 987.82 36299.85 14599.38 4899.38 14999.80 70
RPMNet96.72 31195.90 32399.19 16599.18 26298.49 21399.22 27799.52 10188.72 38699.56 11497.38 38094.08 25199.95 5986.87 39098.58 20699.14 215
test_040296.64 31296.24 31597.85 31298.85 32296.43 31699.44 19499.26 28593.52 36596.98 35799.52 23888.52 35399.20 31392.58 36997.50 26397.93 368
X-MVStestdata96.55 31395.45 33199.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40398.81 4499.94 6998.79 12399.86 6299.84 40
pmmvs696.53 31496.09 31997.82 31798.69 34295.47 33899.37 22699.47 17393.46 36797.41 34499.78 12187.06 36599.33 28596.92 29292.70 36598.65 296
ET-MVSNet_ETH3D96.49 31595.64 32999.05 18099.53 16398.82 18198.84 34497.51 38597.63 19584.77 39099.21 31692.09 30398.91 35298.98 9092.21 36799.41 195
UnsupCasMVSNet_eth96.44 31696.12 31797.40 33298.65 34595.65 33199.36 23099.51 11597.13 24596.04 36698.99 33788.40 35498.17 37096.71 29990.27 37698.40 341
FMVSNet596.43 31796.19 31697.15 33699.11 27895.89 32899.32 24199.52 10194.47 35898.34 31499.07 32887.54 36397.07 38592.61 36895.72 31698.47 332
new_pmnet96.38 31896.03 32097.41 33198.13 36495.16 34799.05 30799.20 29693.94 36097.39 34798.79 35391.61 31899.04 33290.43 37695.77 31398.05 359
Anonymous2023120696.22 31996.03 32096.79 34997.31 37794.14 36199.63 8299.08 31096.17 32097.04 35699.06 33093.94 25597.76 38086.96 38995.06 33098.47 332
IB-MVS95.67 1896.22 31995.44 33298.57 24899.21 25596.70 30598.65 36297.74 38296.71 27897.27 34998.54 36186.03 36799.92 9598.47 16886.30 38499.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 32195.89 32497.13 33897.72 37194.96 35099.79 3199.29 27993.01 37097.20 35299.03 33389.69 34198.36 36791.16 37496.13 30398.07 357
gg-mvs-nofinetune96.17 32295.32 33398.73 23698.79 32698.14 23399.38 22494.09 40091.07 38098.07 32891.04 39689.62 34399.35 28296.75 29799.09 17598.68 279
test20.0396.12 32395.96 32296.63 35097.44 37395.45 33999.51 15699.38 23196.55 29396.16 36499.25 31093.76 26396.17 39087.35 38894.22 34598.27 348
PVSNet_094.43 1996.09 32495.47 33097.94 30799.31 23294.34 36097.81 38899.70 1597.12 24797.46 34398.75 35589.71 34099.79 18397.69 23681.69 39099.68 119
EG-PatchMatch MVS95.97 32595.69 32796.81 34897.78 36892.79 37499.16 28398.93 32696.16 32194.08 37799.22 31382.72 38199.47 25595.67 32697.50 26398.17 353
APD_test195.87 32696.49 31094.00 36099.53 16384.01 38899.54 13999.32 26795.91 33397.99 33099.85 5485.49 37099.88 13191.96 37098.84 19498.12 355
Patchmatch-RL test95.84 32795.81 32695.95 35695.61 38790.57 38298.24 38298.39 36895.10 34595.20 37198.67 35794.78 21597.77 37996.28 31290.02 37799.51 173
test_vis1_rt95.81 32895.65 32896.32 35499.67 11191.35 38199.49 17496.74 39198.25 11795.24 36998.10 37374.96 38899.90 11699.53 3298.85 19397.70 373
MVS-HIRNet95.75 32995.16 33497.51 32999.30 23393.69 36798.88 34095.78 39485.09 38998.78 27192.65 39291.29 32399.37 27594.85 34199.85 6999.46 186
MIMVSNet195.51 33095.04 33596.92 34697.38 37495.60 33299.52 14899.50 13593.65 36496.97 35899.17 31885.28 37296.56 38988.36 38495.55 32098.60 321
MDA-MVSNet_test_wron95.45 33194.60 33898.01 30298.16 36397.21 27699.11 29899.24 28993.49 36680.73 39698.98 33993.02 27498.18 36994.22 35094.45 34198.64 298
TDRefinement95.42 33294.57 33997.97 30689.83 40096.11 32599.48 17898.75 34996.74 27696.68 35999.88 3688.65 35199.71 21398.37 17582.74 38998.09 356
YYNet195.36 33394.51 34097.92 30897.89 36697.10 28099.10 30099.23 29093.26 36980.77 39599.04 33292.81 28098.02 37394.30 34694.18 34698.64 298
pmmvs-eth3d95.34 33494.73 33797.15 33695.53 38995.94 32799.35 23599.10 30795.13 34193.55 37997.54 37888.15 35897.91 37694.58 34389.69 37997.61 374
dmvs_testset95.02 33596.12 31791.72 36899.10 28180.43 39699.58 10997.87 37997.47 21295.22 37098.82 35193.99 25395.18 39388.09 38594.91 33599.56 158
KD-MVS_self_test95.00 33694.34 34196.96 34397.07 38295.39 34199.56 12299.44 20195.11 34397.13 35497.32 38291.86 30897.27 38490.35 37781.23 39198.23 352
MDA-MVSNet-bldmvs94.96 33793.98 34497.92 30898.24 36297.27 27199.15 28699.33 25793.80 36280.09 39799.03 33388.31 35597.86 37893.49 35794.36 34398.62 309
N_pmnet94.95 33895.83 32592.31 36698.47 35779.33 39899.12 29292.81 40493.87 36197.68 34099.13 32393.87 25899.01 33891.38 37396.19 30298.59 322
KD-MVS_2432*160094.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
miper_refine_blended94.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
CL-MVSNet_self_test94.49 34193.97 34596.08 35596.16 38493.67 36898.33 37999.38 23195.13 34197.33 34898.15 36992.69 28896.57 38888.67 38279.87 39297.99 364
new-patchmatchnet94.48 34294.08 34395.67 35795.08 39292.41 37699.18 28199.28 28194.55 35793.49 38097.37 38187.86 36197.01 38691.57 37288.36 38097.61 374
OpenMVS_ROBcopyleft92.34 2094.38 34393.70 34996.41 35397.38 37493.17 37299.06 30598.75 34986.58 38794.84 37598.26 36881.53 38599.32 28889.01 38197.87 24396.76 381
CMPMVSbinary69.68 2394.13 34494.90 33691.84 36797.24 37880.01 39798.52 37099.48 15589.01 38491.99 38599.67 18085.67 36999.13 32095.44 33097.03 28796.39 385
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 34593.25 35196.60 35194.76 39494.49 35698.92 33698.18 37589.66 38196.48 36198.06 37586.28 36697.33 38389.68 37987.20 38397.97 366
mvsany_test393.77 34693.45 35094.74 35995.78 38688.01 38599.64 7898.25 37198.28 11394.31 37697.97 37668.89 39198.51 36597.50 25290.37 37597.71 371
UnsupCasMVSNet_bld93.53 34792.51 35296.58 35297.38 37493.82 36398.24 38299.48 15591.10 37993.10 38196.66 38574.89 38998.37 36694.03 35287.71 38297.56 376
WB-MVS93.10 34894.10 34290.12 37395.51 39181.88 39399.73 4799.27 28495.05 34693.09 38298.91 34894.70 22491.89 39776.62 39694.02 35096.58 383
PM-MVS92.96 34992.23 35395.14 35895.61 38789.98 38499.37 22698.21 37394.80 35295.04 37497.69 37765.06 39297.90 37794.30 34689.98 37897.54 377
SSC-MVS92.73 35093.73 34689.72 37495.02 39381.38 39499.76 3799.23 29094.87 35092.80 38398.93 34494.71 22391.37 39874.49 39893.80 35296.42 384
test_fmvs392.10 35191.77 35493.08 36496.19 38386.25 38699.82 1798.62 36396.65 28395.19 37296.90 38455.05 39995.93 39296.63 30590.92 37497.06 380
test_f91.90 35291.26 35693.84 36195.52 39085.92 38799.69 5598.53 36795.31 34093.87 37896.37 38755.33 39898.27 36895.70 32390.98 37397.32 379
test_method91.10 35391.36 35590.31 37295.85 38573.72 40594.89 39399.25 28768.39 39695.82 36799.02 33580.50 38698.95 35093.64 35594.89 33698.25 350
Gipumacopyleft90.99 35490.15 35993.51 36298.73 33690.12 38393.98 39499.45 19379.32 39292.28 38494.91 38969.61 39097.98 37587.42 38795.67 31792.45 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf190.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
APD_test290.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
test_vis3_rt87.04 35785.81 36090.73 37193.99 39581.96 39299.76 3790.23 40692.81 37281.35 39491.56 39440.06 40399.07 32994.27 34888.23 38191.15 394
PMMVS286.87 35885.37 36291.35 37090.21 39983.80 38998.89 33997.45 38683.13 39191.67 38895.03 38848.49 40194.70 39485.86 39377.62 39395.54 389
LCM-MVSNet86.80 35985.22 36391.53 36987.81 40180.96 39598.23 38498.99 32071.05 39490.13 38996.51 38648.45 40296.88 38790.51 37585.30 38596.76 381
FPMVS84.93 36085.65 36182.75 38186.77 40263.39 40798.35 37698.92 32874.11 39383.39 39298.98 33950.85 40092.40 39684.54 39494.97 33292.46 391
EGC-MVSNET82.80 36177.86 36797.62 32597.91 36596.12 32499.33 24099.28 2818.40 40425.05 40599.27 30784.11 37699.33 28589.20 38098.22 22797.42 378
tmp_tt82.80 36181.52 36486.66 37766.61 40768.44 40692.79 39697.92 37768.96 39580.04 39899.85 5485.77 36896.15 39197.86 21443.89 40095.39 390
E-PMN80.61 36379.88 36582.81 38090.75 39876.38 40197.69 38995.76 39566.44 39883.52 39192.25 39362.54 39487.16 40068.53 40061.40 39784.89 398
EMVS80.02 36479.22 36682.43 38291.19 39776.40 40097.55 39192.49 40566.36 39983.01 39391.27 39564.63 39385.79 40165.82 40160.65 39885.08 397
ANet_high77.30 36574.86 36984.62 37975.88 40577.61 39997.63 39093.15 40388.81 38564.27 40089.29 39736.51 40483.93 40275.89 39752.31 39992.33 393
MVEpermissive76.82 2176.91 36674.31 37084.70 37885.38 40476.05 40296.88 39293.17 40267.39 39771.28 39989.01 39821.66 40987.69 39971.74 39972.29 39690.35 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 36774.97 36879.01 38370.98 40655.18 40893.37 39598.21 37365.08 40061.78 40193.83 39121.74 40892.53 39578.59 39591.12 37289.34 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 36841.29 37336.84 38486.18 40349.12 40979.73 39722.81 40927.64 40125.46 40428.45 40421.98 40748.89 40355.80 40223.56 40312.51 401
testmvs39.17 36943.78 37125.37 38636.04 40916.84 41198.36 37526.56 40820.06 40238.51 40367.32 39929.64 40615.30 40537.59 40339.90 40143.98 400
test12339.01 37042.50 37228.53 38539.17 40820.91 41098.75 35319.17 41019.83 40338.57 40266.67 40033.16 40515.42 40437.50 40429.66 40249.26 399
cdsmvs_eth3d_5k24.64 37132.85 3740.00 3870.00 4100.00 4120.00 39899.51 1150.00 4050.00 40699.56 22396.58 1470.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.30 37211.06 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40699.58 2160.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.27 37311.03 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 40699.01 180.00 4060.00 4050.00 4040.00 402
test_blank0.13 3740.17 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4061.57 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS97.16 27795.47 329
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36498.30 18399.80 9799.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 410
eth-test0.00 410
ZD-MVS99.71 9699.79 3099.61 4896.84 27299.56 11499.54 23198.58 7299.96 3096.93 29099.75 112
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 26798.24 18599.80 9799.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 194
9.1499.10 7699.72 9199.40 21599.51 11597.53 20799.64 9399.78 12198.84 4199.91 10597.63 23899.82 90
save fliter99.76 6599.59 7099.14 28899.40 22099.00 43
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
ambc93.06 36592.68 39682.36 39098.47 37298.73 35795.09 37397.41 37955.55 39799.10 32796.42 30991.32 36997.71 371
MTGPAbinary99.47 173
test_post199.23 27365.14 40294.18 24899.71 21397.58 242
test_post65.99 40194.65 22899.73 203
patchmatchnet-post98.70 35694.79 21499.74 197
GG-mvs-BLEND98.45 26598.55 35498.16 23199.43 19893.68 40197.23 35098.46 36289.30 34499.22 30695.43 33198.22 22797.98 365
MTMP99.54 13998.88 337
gm-plane-assit98.54 35592.96 37394.65 35599.15 32199.64 23897.56 247
test9_res97.49 25399.72 11899.75 88
TEST999.67 11199.65 5799.05 30799.41 21296.22 31698.95 24599.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 31299.41 21296.28 31098.93 24999.48 25298.76 5299.91 105
agg_prior297.21 27099.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 25999.91 105
TestCases99.31 14399.86 2098.48 21599.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
test_prior499.56 7598.99 322
test_prior298.96 32998.34 10899.01 23599.52 23898.68 6497.96 20699.74 115
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16399.74 92
旧先验298.96 32996.70 27999.47 13199.94 6998.19 188
新几何299.01 320
新几何199.75 5899.75 7399.59 7099.54 8596.76 27599.29 17999.64 19298.43 8399.94 6996.92 29299.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
无先验98.99 32299.51 11596.89 26999.93 8497.53 25099.72 103
原ACMM298.95 332
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21399.12 21499.66 18598.67 6699.91 10597.70 23599.69 12399.71 112
test22299.75 7399.49 8798.91 33899.49 14396.42 30499.34 17099.65 18698.28 9299.69 12399.72 103
testdata299.95 5996.67 302
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25399.43 14099.70 15898.87 3799.94 6997.76 22699.64 13199.72 103
testdata198.85 34398.32 111
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior599.47 17399.69 22497.78 22297.63 24998.67 286
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 27998.45 9697.60 252
n20.00 411
nn0.00 411
door-mid98.05 376
lessismore_v097.79 31998.69 34295.44 34094.75 39895.71 36899.87 4488.69 34999.32 28895.89 31894.93 33498.62 309
LGP-MVS_train98.49 25799.33 22597.05 28699.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
test1199.35 246
door97.92 377
HQP5-MVS96.83 300
HQP-NCC99.19 25998.98 32598.24 11898.66 286
ACMP_Plane99.19 25998.98 32598.24 11898.66 286
BP-MVS97.19 274
HQP4-MVS98.66 28699.64 23898.64 298
HQP3-MVS99.39 22397.58 254
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
MDTV_nov1_ep13_2view95.18 34699.35 23596.84 27299.58 11095.19 20097.82 21999.46 186
MDTV_nov1_ep1398.32 17299.11 27894.44 35799.27 25998.74 35297.51 21099.40 15299.62 20394.78 21599.76 19497.59 24198.81 198
ACMMP++_ref97.19 284
ACMMP++97.43 273
Test By Simon98.75 55
ITE_SJBPF98.08 29799.29 23796.37 31798.92 32898.34 10898.83 26499.75 13891.09 32599.62 24495.82 31997.40 27598.25 350
DeepMVS_CXcopyleft93.34 36399.29 23782.27 39199.22 29285.15 38896.33 36299.05 33190.97 32799.73 20393.57 35697.77 24598.01 361