This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3299.86 2099.61 7299.56 13099.63 3999.48 399.98 799.83 7498.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3299.84 3299.63 6999.56 13099.63 3999.47 499.98 799.82 8398.75 5899.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5899.48 18899.64 3699.45 799.92 1899.92 1698.62 7399.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5799.84 3299.44 10199.58 11799.69 1899.43 999.98 799.91 2298.62 73100.00 199.97 199.95 1799.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7299.02 4499.88 2699.85 5999.18 1099.96 3299.22 7599.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 6099.38 22699.37 10799.58 11799.62 4199.41 1199.87 3199.92 1698.81 47100.00 199.97 199.93 2599.94 11
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8099.15 2399.90 2199.90 2999.00 2299.97 2199.11 8599.91 3599.86 33
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16399.08 3999.91 1999.81 9799.20 799.96 3298.91 11199.85 7699.79 78
DVP-MVS++99.59 1199.50 1699.88 999.51 17899.88 899.87 899.51 12198.99 5199.88 2699.81 9799.27 599.96 3298.85 12499.80 10499.81 65
TSAR-MVS + MP.99.58 1299.50 1699.81 4899.91 199.66 5899.63 9099.39 23298.91 6499.78 5699.85 5999.36 299.94 7498.84 12799.88 5899.82 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 1299.57 899.64 8599.78 5799.14 14199.60 10299.45 20499.01 4699.90 2199.83 7498.98 2499.93 9299.59 3199.95 1799.86 33
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8599.78 5799.15 14099.61 10199.45 20499.01 4699.89 2399.82 8399.01 1899.92 10499.56 3599.95 1799.85 37
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24899.10 3399.81 4599.80 11098.94 3299.96 3298.93 10899.86 6999.81 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3299.83 3999.64 6899.52 15799.65 3399.10 3399.98 799.92 1697.35 12599.96 3299.94 1199.92 2899.95 9
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2599.44 20899.65 6299.50 17399.61 4899.45 799.87 3199.92 1697.31 12699.97 2199.95 999.99 199.97 4
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12198.62 9199.79 5199.83 7499.28 499.97 2198.48 17899.90 4499.84 43
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17299.74 14998.81 4799.94 7498.79 13599.86 6999.84 43
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18498.79 7699.68 8599.81 9798.43 8699.97 2198.88 11499.90 4499.83 53
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3299.84 3299.65 6299.51 16699.67 2399.13 2699.98 799.92 1696.60 15299.96 3299.95 999.96 1299.95 9
HPM-MVS_fast99.51 2199.40 3099.85 3299.91 199.79 3399.76 3799.56 7297.72 20199.76 6699.75 14499.13 1299.92 10499.07 9199.92 2899.85 37
mvsany_test199.50 2399.46 2399.62 9299.61 14799.09 14698.94 35499.48 16399.10 3399.96 1699.91 2298.85 4299.96 3299.72 2199.58 14799.82 58
CS-MVS99.50 2399.48 1899.54 10699.76 6899.42 10399.90 199.55 8098.56 9699.78 5699.70 16498.65 7199.79 20199.65 2799.78 11399.41 211
SPE-MVS-test99.49 2599.48 1899.54 10699.78 5799.30 11999.89 299.58 6398.56 9699.73 7299.69 17498.55 7899.82 18699.69 2399.85 7699.48 190
HFP-MVS99.49 2599.37 3699.86 2599.87 1599.80 3099.66 7599.67 2398.15 14499.68 8599.69 17499.06 1699.96 3298.69 14799.87 6199.84 43
ACMMPR99.49 2599.36 3899.86 2599.87 1599.79 3399.66 7599.67 2398.15 14499.67 8999.69 17498.95 3099.96 3298.69 14799.87 6199.84 43
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6099.63 13799.59 7599.36 24499.46 19399.07 4199.79 5199.82 8398.85 4299.92 10498.68 14999.87 6199.82 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 14999.66 9499.68 18198.96 2599.96 3298.62 15699.87 6199.84 43
APD-MVS_3200maxsize99.48 2999.35 4099.85 3299.76 6899.83 1999.63 9099.54 8998.36 11799.79 5199.82 8398.86 4199.95 6398.62 15699.81 10099.78 84
DELS-MVS99.48 2999.42 2599.65 7999.72 9699.40 10699.05 32699.66 2899.14 2599.57 12699.80 11098.46 8499.94 7499.57 3499.84 8499.60 154
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 15999.55 13199.64 20098.91 3799.96 3298.72 14299.90 4499.82 58
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19499.48 16398.05 16699.76 6699.86 5498.82 4699.93 9298.82 13499.91 3599.84 43
MVSMamba_PlusPlus99.46 3499.41 2999.64 8599.68 11499.50 9399.75 4299.50 14198.27 12799.87 3199.92 1698.09 10499.94 7499.65 2799.95 1799.47 196
balanced_conf0399.46 3499.39 3299.67 7499.55 16699.58 8099.74 4699.51 12198.42 11099.87 3199.84 6998.05 10799.91 11699.58 3399.94 2399.52 177
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24499.51 12198.73 8399.88 2699.84 6998.72 6499.96 3298.16 20899.87 6199.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3499.47 2099.44 13899.60 15299.16 13699.41 22099.71 1398.98 5499.45 14799.78 12999.19 999.54 27399.28 6999.84 8499.63 147
SR-MVS-dyc-post99.45 3899.31 5299.85 3299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.53 7999.95 6398.61 15999.81 10099.77 86
PGM-MVS99.45 3899.31 5299.86 2599.87 1599.78 3999.58 11799.65 3397.84 18799.71 7999.80 11099.12 1399.97 2198.33 19499.87 6199.83 53
CP-MVS99.45 3899.32 4699.85 3299.83 3999.75 4399.69 6099.52 10798.07 16099.53 13499.63 20698.93 3699.97 2198.74 13999.91 3599.83 53
ACMMPcopyleft99.45 3899.32 4699.82 4599.89 899.67 5699.62 9599.69 1898.12 15099.63 10999.84 6998.73 6399.96 3298.55 17499.83 9399.81 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 4299.30 5499.85 3299.73 9299.83 1999.56 13099.47 18497.45 23499.78 5699.82 8399.18 1099.91 11698.79 13599.89 5599.81 65
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 4299.30 5499.86 2599.88 1199.79 3399.69 6099.48 16398.12 15099.50 13999.75 14498.78 5199.97 2198.57 16899.89 5599.83 53
EC-MVSNet99.44 4299.39 3299.58 9999.56 16299.49 9499.88 499.58 6398.38 11399.73 7299.69 17498.20 9999.70 23999.64 2999.82 9799.54 170
SR-MVS99.43 4599.29 5899.86 2599.75 7899.83 1999.59 10999.62 4198.21 13799.73 7299.79 12298.68 6799.96 3298.44 18499.77 11699.79 78
MCST-MVS99.43 4599.30 5499.82 4599.79 5599.74 4699.29 26599.40 22998.79 7699.52 13699.62 21198.91 3799.90 12898.64 15399.75 12199.82 58
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14198.70 8599.77 6099.49 25798.21 9899.95 6398.46 18299.77 11699.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4799.29 5899.80 5199.62 14399.55 8399.50 17399.70 1598.79 7699.77 6099.96 197.45 12099.96 3298.92 11099.90 4499.89 20
HPM-MVScopyleft99.42 4799.28 6099.83 4499.90 499.72 4799.81 2099.54 8997.59 21599.68 8599.63 20698.91 3799.94 7498.58 16599.91 3599.84 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4799.30 5499.78 5799.62 14399.71 4999.26 28499.52 10798.82 7199.39 16899.71 16098.96 2599.85 15998.59 16499.80 10499.77 86
SD-MVS99.41 5199.52 1299.05 19399.74 8599.68 5399.46 19799.52 10799.11 3299.88 2699.91 2299.43 197.70 40298.72 14299.93 2599.77 86
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 5199.33 4499.65 7999.77 6499.51 9298.94 35499.85 698.82 7199.65 10199.74 14998.51 8199.80 19898.83 13099.89 5599.64 142
MVS_111021_HR99.41 5199.32 4699.66 7599.72 9699.47 9898.95 35299.85 698.82 7199.54 13299.73 15598.51 8199.74 21798.91 11199.88 5899.77 86
MM99.40 5499.28 6099.74 6699.67 11699.31 11799.52 15798.87 35699.55 199.74 7099.80 11096.47 15899.98 1399.97 199.97 799.94 11
GST-MVS99.40 5499.24 6899.85 3299.86 2099.79 3399.60 10299.67 2397.97 17299.63 10999.68 18198.52 8099.95 6398.38 18799.86 6999.81 65
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21099.51 12198.68 8899.27 19699.53 24498.64 7299.96 3298.44 18499.80 10499.79 78
SF-MVS99.38 5799.24 6899.79 5499.79 5599.68 5399.57 12499.54 8997.82 19299.71 7999.80 11098.95 3099.93 9298.19 20499.84 8499.74 96
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4899.77 6499.75 4399.46 19799.60 5499.47 499.98 799.94 694.98 21199.95 6399.97 199.79 11199.73 101
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26099.52 10797.18 26099.60 11999.79 12298.79 5099.95 6398.83 13099.91 3599.83 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 6099.36 3899.36 14799.67 11698.61 20899.07 32199.33 26899.00 4999.82 4499.81 9799.06 1699.84 16699.09 8999.42 15899.65 135
PVSNet_Blended_VisFu99.36 6099.28 6099.61 9399.86 2099.07 15199.47 19499.93 297.66 21099.71 7999.86 5497.73 11599.96 3299.47 5099.82 9799.79 78
NCCC99.34 6299.19 7499.79 5499.61 14799.65 6299.30 26099.48 16398.86 6699.21 21099.63 20698.72 6499.90 12898.25 20099.63 14299.80 74
mamv499.33 6399.42 2599.07 18999.67 11697.73 26499.42 21799.60 5498.15 14499.94 1799.91 2298.42 8899.94 7499.72 2199.96 1299.54 170
MP-MVScopyleft99.33 6399.15 7799.87 1599.88 1199.82 2599.66 7599.46 19398.09 15599.48 14399.74 14998.29 9599.96 3297.93 22699.87 6199.82 58
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n_299.32 6599.13 7999.89 799.80 5299.77 4099.44 20599.58 6399.47 499.99 299.93 1094.04 26199.96 3299.96 799.93 2599.93 16
PS-MVSNAJ99.32 6599.32 4699.30 16199.57 15898.94 17398.97 34899.46 19398.92 6399.71 7999.24 32599.01 1899.98 1399.35 5799.66 13798.97 260
CSCG99.32 6599.32 4699.32 15599.85 2698.29 23399.71 5599.66 2898.11 15299.41 16199.80 11098.37 9299.96 3298.99 9999.96 1299.72 108
PHI-MVS99.30 6899.17 7699.70 7299.56 16299.52 9199.58 11799.80 897.12 26699.62 11399.73 15598.58 7599.90 12898.61 15999.91 3599.68 125
DeepC-MVS98.35 299.30 6899.19 7499.64 8599.82 4299.23 12999.62 9599.55 8098.94 6099.63 10999.95 395.82 18499.94 7499.37 5699.97 799.73 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 7099.10 8399.86 2599.70 10699.65 6299.53 15699.62 4198.74 8299.99 299.95 394.53 24499.94 7499.89 1499.96 1299.97 4
xiu_mvs_v1_base_debu99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base_debi99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
APD-MVScopyleft99.27 7499.08 8799.84 4399.75 7899.79 3399.50 17399.50 14197.16 26299.77 6099.82 8398.78 5199.94 7497.56 26599.86 6999.80 74
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 7499.12 8199.74 6699.18 27999.75 4399.56 13099.57 6798.45 10699.49 14299.85 5997.77 11499.94 7498.33 19499.84 8499.52 177
fmvsm_s_conf0.1_n_a99.26 7699.06 8999.85 3299.52 17599.62 7099.54 14899.62 4198.69 8699.99 299.96 194.47 24699.94 7499.88 1599.92 2899.98 2
patch_mono-299.26 7699.62 598.16 30899.81 4694.59 37699.52 15799.64 3699.33 1599.73 7299.90 2999.00 2299.99 499.69 2399.98 499.89 20
ETV-MVS99.26 7699.21 7299.40 14199.46 20199.30 11999.56 13099.52 10798.52 10099.44 15299.27 32198.41 9099.86 15399.10 8899.59 14699.04 252
xiu_mvs_v2_base99.26 7699.25 6799.29 16499.53 17098.91 17799.02 33499.45 20498.80 7599.71 7999.26 32398.94 3299.98 1399.34 6299.23 17398.98 259
CANet99.25 8099.14 7899.59 9699.41 21699.16 13699.35 24999.57 6798.82 7199.51 13899.61 21596.46 15999.95 6399.59 3199.98 499.65 135
3Dnovator97.25 999.24 8199.05 9099.81 4899.12 29599.66 5899.84 1299.74 1099.09 3898.92 26399.90 2995.94 17899.98 1398.95 10499.92 2899.79 78
dcpmvs_299.23 8299.58 798.16 30899.83 3994.68 37499.76 3799.52 10799.07 4199.98 799.88 4198.56 7799.93 9299.67 2599.98 499.87 31
test_fmvsmconf0.01_n99.22 8399.03 9499.79 5498.42 38199.48 9699.55 14499.51 12199.39 1299.78 5699.93 1094.80 22299.95 6399.93 1299.95 1799.94 11
CHOSEN 1792x268899.19 8499.10 8399.45 13499.89 898.52 21899.39 23299.94 198.73 8399.11 22999.89 3495.50 19499.94 7499.50 4399.97 799.89 20
F-COLMAP99.19 8499.04 9299.64 8599.78 5799.27 12499.42 21799.54 8997.29 25199.41 16199.59 22098.42 8899.93 9298.19 20499.69 13299.73 101
EIA-MVS99.18 8699.09 8699.45 13499.49 19199.18 13399.67 6999.53 10297.66 21099.40 16699.44 27398.10 10399.81 19198.94 10599.62 14399.35 220
3Dnovator+97.12 1399.18 8698.97 10899.82 4599.17 28799.68 5399.81 2099.51 12199.20 2098.72 29099.89 3495.68 18999.97 2198.86 12299.86 6999.81 65
MVSFormer99.17 8899.12 8199.29 16499.51 17898.94 17399.88 499.46 19397.55 22199.80 4999.65 19497.39 12199.28 31399.03 9599.85 7699.65 135
sss99.17 8899.05 9099.53 11499.62 14398.97 16399.36 24499.62 4197.83 18899.67 8999.65 19497.37 12499.95 6399.19 7799.19 17699.68 125
test_cas_vis1_n_192099.16 9099.01 10299.61 9399.81 4698.86 18399.65 8199.64 3699.39 1299.97 1599.94 693.20 28399.98 1399.55 3699.91 3599.99 1
DP-MVS99.16 9098.95 11499.78 5799.77 6499.53 8899.41 22099.50 14197.03 27899.04 24599.88 4197.39 12199.92 10498.66 15199.90 4499.87 31
MVS_030499.15 9298.96 11299.73 6998.92 33099.37 10799.37 23996.92 40799.51 299.66 9499.78 12996.69 14999.97 2199.84 1799.97 799.84 43
casdiffmvs_mvgpermissive99.15 9299.02 9899.55 10599.66 12699.09 14699.64 8499.56 7298.26 12999.45 14799.87 5096.03 17399.81 19199.54 3799.15 18099.73 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9299.02 9899.53 11499.66 12699.14 14199.72 5299.48 16398.35 11899.42 15799.84 6996.07 17199.79 20199.51 4299.14 18199.67 128
diffmvspermissive99.14 9599.02 9899.51 12299.61 14798.96 16799.28 27099.49 15198.46 10599.72 7799.71 16096.50 15799.88 14599.31 6599.11 18399.67 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9598.99 10499.59 9699.58 15699.41 10599.16 30299.44 21298.45 10699.19 21699.49 25798.08 10599.89 14097.73 24899.75 12199.48 190
CDPH-MVS99.13 9798.91 11999.80 5199.75 7899.71 4999.15 30599.41 22396.60 31099.60 11999.55 23598.83 4599.90 12897.48 27299.83 9399.78 84
casdiffmvspermissive99.13 9798.98 10799.56 10399.65 13299.16 13699.56 13099.50 14198.33 12199.41 16199.86 5495.92 17999.83 17999.45 5299.16 17799.70 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9799.03 9499.45 13499.46 20198.87 18099.12 31199.26 29698.03 16999.79 5199.65 19497.02 13899.85 15999.02 9799.90 4499.65 135
jason: jason.
lupinMVS99.13 9799.01 10299.46 13399.51 17898.94 17399.05 32699.16 31397.86 18299.80 4999.56 23297.39 12199.86 15398.94 10599.85 7699.58 162
EPP-MVSNet99.13 9798.99 10499.53 11499.65 13299.06 15299.81 2099.33 26897.43 23899.60 11999.88 4197.14 13199.84 16699.13 8398.94 19799.69 121
MG-MVS99.13 9799.02 9899.45 13499.57 15898.63 20599.07 32199.34 26198.99 5199.61 11699.82 8397.98 10999.87 15097.00 30299.80 10499.85 37
BP-MVS199.12 10398.94 11699.65 7999.51 17899.30 11999.67 6998.92 34498.48 10399.84 3799.69 17494.96 21299.92 10499.62 3099.79 11199.71 117
CHOSEN 280x42099.12 10399.13 7999.08 18899.66 12697.89 25798.43 39599.71 1398.88 6599.62 11399.76 14196.63 15199.70 23999.46 5199.99 199.66 131
DP-MVS Recon99.12 10398.95 11499.65 7999.74 8599.70 5199.27 27599.57 6796.40 32699.42 15799.68 18198.75 5899.80 19897.98 22399.72 12799.44 206
Vis-MVSNetpermissive99.12 10398.97 10899.56 10399.78 5799.10 14599.68 6699.66 2898.49 10299.86 3599.87 5094.77 22799.84 16699.19 7799.41 15999.74 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 10399.08 8799.24 17399.46 20198.55 21299.51 16699.46 19398.09 15599.45 14799.82 8398.34 9399.51 27498.70 14498.93 19899.67 128
SDMVSNet99.11 10898.90 12099.75 6399.81 4699.59 7599.81 2099.65 3398.78 7999.64 10699.88 4194.56 24099.93 9299.67 2598.26 23999.72 108
VNet99.11 10898.90 12099.73 6999.52 17599.56 8199.41 22099.39 23299.01 4699.74 7099.78 12995.56 19299.92 10499.52 4198.18 24699.72 108
CPTT-MVS99.11 10898.90 12099.74 6699.80 5299.46 9999.59 10999.49 15197.03 27899.63 10999.69 17497.27 12999.96 3297.82 23799.84 8499.81 65
HyFIR lowres test99.11 10898.92 11799.65 7999.90 499.37 10799.02 33499.91 397.67 20999.59 12299.75 14495.90 18199.73 22399.53 3999.02 19499.86 33
MVS_Test99.10 11298.97 10899.48 12899.49 19199.14 14199.67 6999.34 26197.31 24999.58 12399.76 14197.65 11799.82 18698.87 11799.07 18999.46 201
CDS-MVSNet99.09 11399.03 9499.25 17199.42 21198.73 19699.45 19999.46 19398.11 15299.46 14699.77 13798.01 10899.37 29698.70 14498.92 20099.66 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GDP-MVS99.08 11498.89 12399.64 8599.53 17099.34 11199.64 8499.48 16398.32 12299.77 6099.66 19295.14 20899.93 9298.97 10399.50 15399.64 142
PVSNet_Blended99.08 11498.97 10899.42 13999.76 6898.79 19298.78 37099.91 396.74 29599.67 8999.49 25797.53 11899.88 14598.98 10099.85 7699.60 154
OMC-MVS99.08 11499.04 9299.20 17799.67 11698.22 23799.28 27099.52 10798.07 16099.66 9499.81 9797.79 11399.78 20697.79 23999.81 10099.60 154
mvsmamba99.06 11798.96 11299.36 14799.47 19998.64 20499.70 5699.05 32897.61 21499.65 10199.83 7496.54 15599.92 10499.19 7799.62 14399.51 184
WTY-MVS99.06 11798.88 12599.61 9399.62 14399.16 13699.37 23999.56 7298.04 16799.53 13499.62 21196.84 14399.94 7498.85 12498.49 22799.72 108
IS-MVSNet99.05 11998.87 12699.57 10199.73 9299.32 11399.75 4299.20 30898.02 17099.56 12799.86 5496.54 15599.67 24798.09 21199.13 18299.73 101
PAPM_NR99.04 12098.84 13299.66 7599.74 8599.44 10199.39 23299.38 24097.70 20599.28 19199.28 31898.34 9399.85 15996.96 30699.45 15699.69 121
API-MVS99.04 12099.03 9499.06 19199.40 22199.31 11799.55 14499.56 7298.54 9899.33 18299.39 28998.76 5599.78 20696.98 30499.78 11398.07 379
mvs_anonymous99.03 12298.99 10499.16 18199.38 22698.52 21899.51 16699.38 24097.79 19399.38 17099.81 9797.30 12799.45 27999.35 5798.99 19599.51 184
sasdasda99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
train_agg99.02 12398.77 13999.77 6099.67 11699.65 6299.05 32699.41 22396.28 33098.95 25999.49 25798.76 5599.91 11697.63 25699.72 12799.75 92
canonicalmvs99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
PLCcopyleft97.94 499.02 12398.85 13099.53 11499.66 12699.01 15899.24 28899.52 10796.85 29099.27 19699.48 26398.25 9799.91 11697.76 24499.62 14399.65 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12798.85 13099.50 12799.42 21199.26 12599.82 1699.48 16398.60 9399.28 19198.81 36797.04 13799.76 21299.29 6897.87 26099.47 196
AdaColmapbinary99.01 12798.80 13599.66 7599.56 16299.54 8599.18 30099.70 1598.18 14299.35 17899.63 20696.32 16499.90 12897.48 27299.77 11699.55 168
1112_ss98.98 12998.77 13999.59 9699.68 11499.02 15699.25 28699.48 16397.23 25799.13 22599.58 22496.93 14299.90 12898.87 11798.78 21199.84 43
MSDG98.98 12998.80 13599.53 11499.76 6899.19 13198.75 37399.55 8097.25 25499.47 14499.77 13797.82 11299.87 15096.93 30999.90 4499.54 170
CANet_DTU98.97 13198.87 12699.25 17199.33 23898.42 23099.08 32099.30 28699.16 2299.43 15499.75 14495.27 20299.97 2198.56 17199.95 1799.36 219
DPM-MVS98.95 13298.71 14599.66 7599.63 13799.55 8398.64 38499.10 31997.93 17599.42 15799.55 23598.67 6999.80 19895.80 34199.68 13599.61 151
114514_t98.93 13398.67 14999.72 7199.85 2699.53 8899.62 9599.59 5992.65 39599.71 7999.78 12998.06 10699.90 12898.84 12799.91 3599.74 96
PS-MVSNAJss98.92 13498.92 11798.90 21898.78 34898.53 21499.78 3299.54 8998.07 16099.00 25299.76 14199.01 1899.37 29699.13 8397.23 29998.81 269
RRT-MVS98.91 13598.75 14199.39 14599.46 20198.61 20899.76 3799.50 14198.06 16499.81 4599.88 4193.91 26899.94 7499.11 8599.27 17199.61 151
Test_1112_low_res98.89 13698.66 15299.57 10199.69 11098.95 17099.03 33199.47 18496.98 28099.15 22399.23 32696.77 14699.89 14098.83 13098.78 21199.86 33
test_fmvs198.88 13798.79 13899.16 18199.69 11097.61 27399.55 14499.49 15199.32 1699.98 799.91 2291.41 33199.96 3299.82 1899.92 2899.90 17
AllTest98.87 13898.72 14399.31 15699.86 2098.48 22499.56 13099.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
UGNet98.87 13898.69 14799.40 14199.22 27098.72 19799.44 20599.68 2099.24 1999.18 22099.42 27792.74 29399.96 3299.34 6299.94 2399.53 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13898.72 14399.31 15699.71 10198.88 17999.80 2599.44 21297.91 17799.36 17599.78 12995.49 19599.43 28897.91 22799.11 18399.62 149
test_yl98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
DCV-MVSNet98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
EPNet98.86 14198.71 14599.30 16197.20 40198.18 23899.62 9598.91 34999.28 1898.63 30999.81 9795.96 17599.99 499.24 7499.72 12799.73 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 14198.80 13599.03 19599.76 6898.79 19299.28 27099.91 397.42 24099.67 8999.37 29497.53 11899.88 14598.98 10097.29 29798.42 357
ab-mvs98.86 14198.63 15499.54 10699.64 13499.19 13199.44 20599.54 8997.77 19699.30 18799.81 9794.20 25499.93 9299.17 8198.82 20899.49 189
MAR-MVS98.86 14198.63 15499.54 10699.37 22999.66 5899.45 19999.54 8996.61 30799.01 24899.40 28597.09 13399.86 15397.68 25599.53 15199.10 240
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 14198.75 14199.17 18099.88 1198.53 21499.34 25299.59 5997.55 22198.70 29799.89 3495.83 18399.90 12898.10 21099.90 4499.08 245
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14898.62 15999.53 11499.61 14799.08 14999.80 2599.51 12197.10 27099.31 18499.78 12995.23 20699.77 20898.21 20299.03 19299.75 92
HY-MVS97.30 798.85 14898.64 15399.47 13199.42 21199.08 14999.62 9599.36 24997.39 24399.28 19199.68 18196.44 16199.92 10498.37 18998.22 24199.40 213
PVSNet96.02 1798.85 14898.84 13298.89 22199.73 9297.28 28298.32 40199.60 5497.86 18299.50 13999.57 22996.75 14799.86 15398.56 17199.70 13199.54 170
PatchMatch-RL98.84 15198.62 15999.52 12099.71 10199.28 12299.06 32499.77 997.74 20099.50 13999.53 24495.41 19699.84 16697.17 29699.64 14099.44 206
Effi-MVS+98.81 15298.59 16599.48 12899.46 20199.12 14498.08 40899.50 14197.50 22999.38 17099.41 28196.37 16399.81 19199.11 8598.54 22499.51 184
alignmvs98.81 15298.56 16899.58 9999.43 20999.42 10399.51 16698.96 33998.61 9299.35 17898.92 36294.78 22499.77 20899.35 5798.11 25199.54 170
DeepPCF-MVS98.18 398.81 15299.37 3697.12 36099.60 15291.75 40098.61 38599.44 21299.35 1499.83 4399.85 5998.70 6699.81 19199.02 9799.91 3599.81 65
PMMVS98.80 15598.62 15999.34 14999.27 25698.70 19898.76 37299.31 28297.34 24699.21 21099.07 34297.20 13099.82 18698.56 17198.87 20399.52 177
Effi-MVS+-dtu98.78 15698.89 12398.47 27799.33 23896.91 31199.57 12499.30 28698.47 10499.41 16198.99 35296.78 14599.74 21798.73 14199.38 16098.74 282
FIs98.78 15698.63 15499.23 17599.18 27999.54 8599.83 1599.59 5998.28 12598.79 28499.81 9796.75 14799.37 29699.08 9096.38 31598.78 271
Fast-Effi-MVS+-dtu98.77 15898.83 13498.60 25699.41 21696.99 30599.52 15799.49 15198.11 15299.24 20299.34 30496.96 14199.79 20197.95 22599.45 15699.02 255
sd_testset98.75 15998.57 16699.29 16499.81 4698.26 23599.56 13099.62 4198.78 7999.64 10699.88 4192.02 31599.88 14599.54 3798.26 23999.72 108
FA-MVS(test-final)98.75 15998.53 17099.41 14099.55 16699.05 15499.80 2599.01 33396.59 31299.58 12399.59 22095.39 19799.90 12897.78 24099.49 15499.28 228
FC-MVSNet-test98.75 15998.62 15999.15 18599.08 30699.45 10099.86 1199.60 5498.23 13498.70 29799.82 8396.80 14499.22 32599.07 9196.38 31598.79 270
XVG-OURS98.73 16298.68 14898.88 22399.70 10697.73 26498.92 35699.55 8098.52 10099.45 14799.84 6995.27 20299.91 11698.08 21598.84 20699.00 256
Fast-Effi-MVS+98.70 16398.43 17499.51 12299.51 17899.28 12299.52 15799.47 18496.11 34699.01 24899.34 30496.20 16899.84 16697.88 22998.82 20899.39 214
XVG-OURS-SEG-HR98.69 16498.62 15998.89 22199.71 10197.74 26399.12 31199.54 8998.44 10999.42 15799.71 16094.20 25499.92 10498.54 17598.90 20299.00 256
131498.68 16598.54 16999.11 18798.89 33398.65 20299.27 27599.49 15196.89 28897.99 34899.56 23297.72 11699.83 17997.74 24799.27 17198.84 268
EI-MVSNet98.67 16698.67 14998.68 25299.35 23397.97 25099.50 17399.38 24096.93 28799.20 21399.83 7497.87 11099.36 30098.38 18797.56 27698.71 286
test_djsdf98.67 16698.57 16698.98 20198.70 36298.91 17799.88 499.46 19397.55 22199.22 20799.88 4195.73 18799.28 31399.03 9597.62 27198.75 279
QAPM98.67 16698.30 18499.80 5199.20 27399.67 5699.77 3499.72 1194.74 37398.73 28999.90 2995.78 18599.98 1396.96 30699.88 5899.76 91
nrg03098.64 16998.42 17599.28 16899.05 31299.69 5299.81 2099.46 19398.04 16799.01 24899.82 8396.69 14999.38 29399.34 6294.59 35998.78 271
test_vis1_n_192098.63 17098.40 17799.31 15699.86 2097.94 25699.67 6999.62 4199.43 999.99 299.91 2287.29 380100.00 199.92 1399.92 2899.98 2
PAPR98.63 17098.34 18099.51 12299.40 22199.03 15598.80 36899.36 24996.33 32799.00 25299.12 34098.46 8499.84 16695.23 35699.37 16799.66 131
CVMVSNet98.57 17298.67 14998.30 29799.35 23395.59 35299.50 17399.55 8098.60 9399.39 16899.83 7494.48 24599.45 27998.75 13898.56 22299.85 37
MVSTER98.49 17398.32 18299.00 19999.35 23399.02 15699.54 14899.38 24097.41 24199.20 21399.73 15593.86 27099.36 30098.87 11797.56 27698.62 328
FE-MVS98.48 17498.17 18999.40 14199.54 16998.96 16799.68 6698.81 36395.54 35799.62 11399.70 16493.82 27199.93 9297.35 28399.46 15599.32 225
OpenMVScopyleft96.50 1698.47 17598.12 19699.52 12099.04 31399.53 8899.82 1699.72 1194.56 37698.08 34399.88 4194.73 23099.98 1397.47 27499.76 11999.06 251
IterMVS-LS98.46 17698.42 17598.58 26099.59 15498.00 24899.37 23999.43 21896.94 28699.07 23799.59 22097.87 11099.03 35398.32 19695.62 33798.71 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17798.28 18598.94 20898.50 37898.96 16799.77 3499.50 14197.07 27298.87 27299.77 13794.76 22899.28 31398.66 15197.60 27298.57 343
jajsoiax98.43 17898.28 18598.88 22398.60 37298.43 22899.82 1699.53 10298.19 13998.63 30999.80 11093.22 28299.44 28499.22 7597.50 28398.77 275
tttt051798.42 17998.14 19399.28 16899.66 12698.38 23199.74 4696.85 40897.68 20799.79 5199.74 14991.39 33299.89 14098.83 13099.56 14899.57 165
BH-untuned98.42 17998.36 17898.59 25799.49 19196.70 31999.27 27599.13 31797.24 25698.80 28299.38 29195.75 18699.74 21797.07 30099.16 17799.33 224
test_fmvs1_n98.41 18198.14 19399.21 17699.82 4297.71 26999.74 4699.49 15199.32 1699.99 299.95 385.32 39199.97 2199.82 1899.84 8499.96 7
D2MVS98.41 18198.50 17198.15 31199.26 25896.62 32599.40 22899.61 4897.71 20298.98 25499.36 29796.04 17299.67 24798.70 14497.41 29398.15 375
BH-RMVSNet98.41 18198.08 20299.40 14199.41 21698.83 18899.30 26098.77 36797.70 20598.94 26199.65 19492.91 28999.74 21796.52 32699.55 15099.64 142
mvs_tets98.40 18498.23 18798.91 21698.67 36598.51 22099.66 7599.53 10298.19 13998.65 30699.81 9792.75 29199.44 28499.31 6597.48 28798.77 275
MonoMVSNet98.38 18598.47 17398.12 31398.59 37496.19 34299.72 5298.79 36697.89 17999.44 15299.52 24796.13 16998.90 37498.64 15397.54 27899.28 228
XXY-MVS98.38 18598.09 20199.24 17399.26 25899.32 11399.56 13099.55 8097.45 23498.71 29199.83 7493.23 28099.63 26498.88 11496.32 31798.76 277
ACMM97.58 598.37 18798.34 18098.48 27299.41 21697.10 29299.56 13099.45 20498.53 9999.04 24599.85 5993.00 28599.71 23398.74 13997.45 28898.64 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18898.03 20899.31 15699.63 13798.56 21199.54 14896.75 41097.53 22599.73 7299.65 19491.25 33599.89 14098.62 15699.56 14899.48 190
tpmrst98.33 18998.48 17297.90 32999.16 28994.78 37299.31 25899.11 31897.27 25299.45 14799.59 22095.33 20099.84 16698.48 17898.61 21699.09 244
baseline198.31 19097.95 21799.38 14699.50 18998.74 19599.59 10998.93 34198.41 11199.14 22499.60 21894.59 23899.79 20198.48 17893.29 37899.61 151
PatchmatchNetpermissive98.31 19098.36 17898.19 30699.16 28995.32 36299.27 27598.92 34497.37 24499.37 17299.58 22494.90 21799.70 23997.43 27899.21 17499.54 170
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 19297.98 21399.26 17099.57 15898.16 23999.41 22098.55 38596.03 35199.19 21699.74 14991.87 31899.92 10499.16 8298.29 23899.70 119
VPA-MVSNet98.29 19397.95 21799.30 16199.16 28999.54 8599.50 17399.58 6398.27 12799.35 17899.37 29492.53 30399.65 25599.35 5794.46 36098.72 284
UniMVSNet (Re)98.29 19398.00 21199.13 18699.00 31799.36 11099.49 18499.51 12197.95 17398.97 25699.13 33796.30 16599.38 29398.36 19193.34 37798.66 315
HQP_MVS98.27 19598.22 18898.44 28399.29 25196.97 30799.39 23299.47 18498.97 5799.11 22999.61 21592.71 29699.69 24497.78 24097.63 26998.67 307
UniMVSNet_NR-MVSNet98.22 19697.97 21498.96 20498.92 33098.98 16099.48 18899.53 10297.76 19798.71 29199.46 27096.43 16299.22 32598.57 16892.87 38498.69 295
LPG-MVS_test98.22 19698.13 19598.49 27099.33 23897.05 29899.58 11799.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
RPSCF98.22 19698.62 15996.99 36299.82 4291.58 40199.72 5299.44 21296.61 30799.66 9499.89 3495.92 17999.82 18697.46 27599.10 18699.57 165
ADS-MVSNet98.20 19998.08 20298.56 26499.33 23896.48 33099.23 29099.15 31496.24 33499.10 23299.67 18794.11 25899.71 23396.81 31499.05 19099.48 190
OPM-MVS98.19 20098.10 19898.45 28098.88 33497.07 29699.28 27099.38 24098.57 9599.22 20799.81 9792.12 31399.66 25098.08 21597.54 27898.61 337
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 20098.16 19098.27 30399.30 24795.55 35399.07 32198.97 33797.57 21899.43 15499.57 22992.72 29499.74 21797.58 26099.20 17599.52 177
miper_ehance_all_eth98.18 20298.10 19898.41 28699.23 26697.72 26698.72 37699.31 28296.60 31098.88 26999.29 31697.29 12899.13 33997.60 25895.99 32698.38 362
CR-MVSNet98.17 20397.93 22098.87 22799.18 27998.49 22299.22 29499.33 26896.96 28299.56 12799.38 29194.33 25099.00 35894.83 36398.58 21999.14 237
miper_enhance_ethall98.16 20498.08 20298.41 28698.96 32697.72 26698.45 39499.32 27896.95 28498.97 25699.17 33297.06 13699.22 32597.86 23295.99 32698.29 366
CLD-MVS98.16 20498.10 19898.33 29399.29 25196.82 31698.75 37399.44 21297.83 18899.13 22599.55 23592.92 28799.67 24798.32 19697.69 26798.48 349
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 20697.79 23299.19 17899.50 18998.50 22198.61 38596.82 40996.95 28499.54 13299.43 27591.66 32799.86 15398.08 21599.51 15299.22 234
pmmvs498.13 20797.90 22298.81 23998.61 37198.87 18098.99 34299.21 30796.44 32299.06 24299.58 22495.90 18199.11 34497.18 29596.11 32298.46 354
WR-MVS_H98.13 20797.87 22798.90 21899.02 31598.84 18599.70 5699.59 5997.27 25298.40 32599.19 33195.53 19399.23 32198.34 19393.78 37498.61 337
c3_l98.12 20998.04 20798.38 29099.30 24797.69 27098.81 36799.33 26896.67 30098.83 27899.34 30497.11 13298.99 35997.58 26095.34 34498.48 349
ACMH97.28 898.10 21097.99 21298.44 28399.41 21696.96 30999.60 10299.56 7298.09 15598.15 34199.91 2290.87 33999.70 23998.88 11497.45 28898.67 307
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 21197.68 24899.34 14999.66 12698.44 22799.40 22899.43 21893.67 38399.22 20799.89 3490.23 34799.93 9299.26 7398.33 23399.66 131
CP-MVSNet98.09 21197.78 23599.01 19798.97 32599.24 12899.67 6999.46 19397.25 25498.48 32299.64 20093.79 27299.06 34998.63 15594.10 36898.74 282
dmvs_re98.08 21398.16 19097.85 33299.55 16694.67 37599.70 5698.92 34498.15 14499.06 24299.35 30093.67 27699.25 31897.77 24397.25 29899.64 142
DU-MVS98.08 21397.79 23298.96 20498.87 33798.98 16099.41 22099.45 20497.87 18198.71 29199.50 25494.82 22099.22 32598.57 16892.87 38498.68 300
v2v48298.06 21597.77 23798.92 21298.90 33298.82 18999.57 12499.36 24996.65 30299.19 21699.35 30094.20 25499.25 31897.72 25094.97 35298.69 295
V4298.06 21597.79 23298.86 23098.98 32398.84 18599.69 6099.34 26196.53 31499.30 18799.37 29494.67 23599.32 30897.57 26494.66 35798.42 357
test-LLR98.06 21597.90 22298.55 26698.79 34597.10 29298.67 37997.75 40097.34 24698.61 31298.85 36494.45 24799.45 27997.25 28799.38 16099.10 240
WR-MVS98.06 21597.73 24499.06 19198.86 34099.25 12799.19 29899.35 25697.30 25098.66 30099.43 27593.94 26599.21 33098.58 16594.28 36498.71 286
ACMP97.20 1198.06 21597.94 21998.45 28099.37 22997.01 30399.44 20599.49 15197.54 22498.45 32399.79 12291.95 31799.72 22797.91 22797.49 28698.62 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 22097.96 21598.33 29399.26 25897.38 27998.56 39099.31 28296.65 30298.88 26999.52 24796.58 15399.12 34397.39 28095.53 34198.47 351
test111198.04 22198.11 19797.83 33599.74 8593.82 38499.58 11795.40 41799.12 3199.65 10199.93 1090.73 34099.84 16699.43 5399.38 16099.82 58
ECVR-MVScopyleft98.04 22198.05 20698.00 32199.74 8594.37 37999.59 10994.98 41899.13 2699.66 9499.93 1090.67 34199.84 16699.40 5499.38 16099.80 74
EPNet_dtu98.03 22397.96 21598.23 30498.27 38395.54 35599.23 29098.75 36899.02 4497.82 35599.71 16096.11 17099.48 27593.04 38399.65 13999.69 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 22397.76 24198.84 23499.39 22498.98 16099.40 22899.38 24096.67 30099.07 23799.28 31892.93 28698.98 36097.10 29796.65 30898.56 344
ADS-MVSNet298.02 22598.07 20597.87 33199.33 23895.19 36599.23 29099.08 32296.24 33499.10 23299.67 18794.11 25898.93 37196.81 31499.05 19099.48 190
HQP-MVS98.02 22597.90 22298.37 29199.19 27696.83 31498.98 34599.39 23298.24 13198.66 30099.40 28592.47 30599.64 25897.19 29397.58 27498.64 319
LTVRE_ROB97.16 1298.02 22597.90 22298.40 28899.23 26696.80 31799.70 5699.60 5497.12 26698.18 34099.70 16491.73 32399.72 22798.39 18697.45 28898.68 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22897.84 23098.55 26699.25 26297.97 25098.71 37799.34 26196.47 32198.59 31599.54 24095.65 19099.21 33097.21 28995.77 33298.46 354
DIV-MVS_self_test98.01 22897.85 22998.48 27299.24 26497.95 25498.71 37799.35 25696.50 31598.60 31499.54 24095.72 18899.03 35397.21 28995.77 33298.46 354
miper_lstm_enhance98.00 23097.91 22198.28 30299.34 23797.43 27798.88 36099.36 24996.48 31998.80 28299.55 23595.98 17498.91 37297.27 28695.50 34298.51 347
BH-w/o98.00 23097.89 22698.32 29599.35 23396.20 34199.01 33998.90 35196.42 32498.38 32699.00 35195.26 20499.72 22796.06 33498.61 21699.03 253
v114497.98 23297.69 24798.85 23398.87 33798.66 20199.54 14899.35 25696.27 33299.23 20699.35 30094.67 23599.23 32196.73 31795.16 34898.68 300
EU-MVSNet97.98 23298.03 20897.81 33898.72 35996.65 32499.66 7599.66 2898.09 15598.35 32899.82 8395.25 20598.01 39597.41 27995.30 34598.78 271
tpmvs97.98 23298.02 21097.84 33499.04 31394.73 37399.31 25899.20 30896.10 35098.76 28799.42 27794.94 21399.81 19196.97 30598.45 22898.97 260
tt080597.97 23597.77 23798.57 26199.59 15496.61 32699.45 19999.08 32298.21 13798.88 26999.80 11088.66 36599.70 23998.58 16597.72 26699.39 214
NR-MVSNet97.97 23597.61 25799.02 19698.87 33799.26 12599.47 19499.42 22097.63 21297.08 37399.50 25495.07 21099.13 33997.86 23293.59 37598.68 300
v897.95 23797.63 25598.93 21098.95 32798.81 19199.80 2599.41 22396.03 35199.10 23299.42 27794.92 21699.30 31196.94 30894.08 36998.66 315
Patchmatch-test97.93 23897.65 25198.77 24499.18 27997.07 29699.03 33199.14 31696.16 34198.74 28899.57 22994.56 24099.72 22793.36 37999.11 18399.52 177
PS-CasMVS97.93 23897.59 25998.95 20698.99 32099.06 15299.68 6699.52 10797.13 26498.31 33099.68 18192.44 30999.05 35098.51 17694.08 36998.75 279
TranMVSNet+NR-MVSNet97.93 23897.66 25098.76 24598.78 34898.62 20699.65 8199.49 15197.76 19798.49 32199.60 21894.23 25398.97 36798.00 22292.90 38298.70 291
test_vis1_n97.92 24197.44 28099.34 14999.53 17098.08 24499.74 4699.49 15199.15 23100.00 199.94 679.51 41099.98 1399.88 1599.76 11999.97 4
v14419297.92 24197.60 25898.87 22798.83 34398.65 20299.55 14499.34 26196.20 33799.32 18399.40 28594.36 24999.26 31796.37 33195.03 35198.70 291
ACMH+97.24 1097.92 24197.78 23598.32 29599.46 20196.68 32399.56 13099.54 8998.41 11197.79 35799.87 5090.18 34899.66 25098.05 21997.18 30298.62 328
LFMVS97.90 24497.35 29299.54 10699.52 17599.01 15899.39 23298.24 39297.10 27099.65 10199.79 12284.79 39499.91 11699.28 6998.38 23099.69 121
reproduce_monomvs97.89 24597.87 22797.96 32599.51 17895.45 35899.60 10299.25 29899.17 2198.85 27799.49 25789.29 35799.64 25899.35 5796.31 31898.78 271
Anonymous2023121197.88 24697.54 26398.90 21899.71 10198.53 21499.48 18899.57 6794.16 37998.81 28099.68 18193.23 28099.42 28998.84 12794.42 36298.76 277
OurMVSNet-221017-097.88 24697.77 23798.19 30698.71 36196.53 32899.88 499.00 33497.79 19398.78 28599.94 691.68 32499.35 30397.21 28996.99 30698.69 295
v7n97.87 24897.52 26498.92 21298.76 35598.58 21099.84 1299.46 19396.20 33798.91 26499.70 16494.89 21899.44 28496.03 33593.89 37298.75 279
baseline297.87 24897.55 26098.82 23699.18 27998.02 24799.41 22096.58 41496.97 28196.51 38099.17 33293.43 27799.57 26997.71 25199.03 19298.86 266
thres600view797.86 25097.51 26698.92 21299.72 9697.95 25499.59 10998.74 37197.94 17499.27 19698.62 37591.75 32199.86 15393.73 37598.19 24598.96 262
UBG97.85 25197.48 26998.95 20699.25 26297.64 27199.24 28898.74 37197.90 17898.64 30798.20 39188.65 36699.81 19198.27 19998.40 22999.42 208
cl2297.85 25197.64 25498.48 27299.09 30397.87 25898.60 38799.33 26897.11 26998.87 27299.22 32792.38 31099.17 33498.21 20295.99 32698.42 357
v1097.85 25197.52 26498.86 23098.99 32098.67 20099.75 4299.41 22395.70 35598.98 25499.41 28194.75 22999.23 32196.01 33794.63 35898.67 307
GA-MVS97.85 25197.47 27299.00 19999.38 22697.99 24998.57 38899.15 31497.04 27798.90 26699.30 31489.83 35199.38 29396.70 31998.33 23399.62 149
tfpnnormal97.84 25597.47 27298.98 20199.20 27399.22 13099.64 8499.61 4896.32 32898.27 33499.70 16493.35 27999.44 28495.69 34495.40 34398.27 367
VPNet97.84 25597.44 28099.01 19799.21 27198.94 17399.48 18899.57 6798.38 11399.28 19199.73 15588.89 36099.39 29199.19 7793.27 37998.71 286
LCM-MVSNet-Re97.83 25798.15 19296.87 36899.30 24792.25 39899.59 10998.26 39097.43 23896.20 38499.13 33796.27 16698.73 38198.17 20798.99 19599.64 142
XVG-ACMP-BASELINE97.83 25797.71 24698.20 30599.11 29796.33 33599.41 22099.52 10798.06 16499.05 24499.50 25489.64 35499.73 22397.73 24897.38 29598.53 345
IterMVS97.83 25797.77 23798.02 31899.58 15696.27 33899.02 33499.48 16397.22 25898.71 29199.70 16492.75 29199.13 33997.46 27596.00 32598.67 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 26097.75 24298.06 31599.57 15896.36 33499.02 33499.49 15197.18 26098.71 29199.72 15992.72 29499.14 33697.44 27795.86 33198.67 307
EPMVS97.82 26097.65 25198.35 29298.88 33495.98 34599.49 18494.71 42097.57 21899.26 20099.48 26392.46 30899.71 23397.87 23199.08 18899.35 220
MVP-Stereo97.81 26297.75 24297.99 32297.53 39496.60 32798.96 34998.85 35897.22 25897.23 36899.36 29795.28 20199.46 27895.51 34899.78 11397.92 392
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 26297.44 28098.91 21698.88 33498.68 19999.51 16699.34 26196.18 33999.20 21399.34 30494.03 26299.36 30095.32 35495.18 34798.69 295
ttmdpeth97.80 26497.63 25598.29 29898.77 35397.38 27999.64 8499.36 24998.78 7996.30 38399.58 22492.34 31299.39 29198.36 19195.58 33898.10 377
v192192097.80 26497.45 27598.84 23498.80 34498.53 21499.52 15799.34 26196.15 34399.24 20299.47 26693.98 26499.29 31295.40 35295.13 34998.69 295
v14897.79 26697.55 26098.50 26998.74 35697.72 26699.54 14899.33 26896.26 33398.90 26699.51 25194.68 23499.14 33697.83 23693.15 38198.63 326
thres40097.77 26797.38 28898.92 21299.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.96 262
thres100view90097.76 26897.45 27598.69 25199.72 9697.86 26099.59 10998.74 37197.93 17599.26 20098.62 37591.75 32199.83 17993.22 38098.18 24698.37 363
PEN-MVS97.76 26897.44 28098.72 24798.77 35398.54 21399.78 3299.51 12197.06 27498.29 33399.64 20092.63 30098.89 37598.09 21193.16 38098.72 284
Baseline_NR-MVSNet97.76 26897.45 27598.68 25299.09 30398.29 23399.41 22098.85 35895.65 35698.63 30999.67 18794.82 22099.10 34698.07 21892.89 38398.64 319
TR-MVS97.76 26897.41 28698.82 23699.06 30997.87 25898.87 36298.56 38496.63 30698.68 29999.22 32792.49 30499.65 25595.40 35297.79 26498.95 264
Patchmtry97.75 27297.40 28798.81 23999.10 30098.87 18099.11 31799.33 26894.83 37198.81 28099.38 29194.33 25099.02 35596.10 33395.57 33998.53 345
dp97.75 27297.80 23197.59 34899.10 30093.71 38799.32 25598.88 35496.48 31999.08 23699.55 23592.67 29999.82 18696.52 32698.58 21999.24 233
WBMVS97.74 27497.50 26798.46 27899.24 26497.43 27799.21 29699.42 22097.45 23498.96 25899.41 28188.83 36199.23 32198.94 10596.02 32398.71 286
TAPA-MVS97.07 1597.74 27497.34 29598.94 20899.70 10697.53 27499.25 28699.51 12191.90 39799.30 18799.63 20698.78 5199.64 25888.09 40699.87 6199.65 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 27697.35 29298.88 22399.47 19997.12 29199.34 25298.85 35898.19 13999.67 8999.85 5982.98 40199.92 10499.49 4798.32 23799.60 154
MIMVSNet97.73 27697.45 27598.57 26199.45 20797.50 27599.02 33498.98 33696.11 34699.41 16199.14 33690.28 34398.74 38095.74 34298.93 19899.47 196
tfpn200view997.72 27897.38 28898.72 24799.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.37 363
CostFormer97.72 27897.73 24497.71 34299.15 29394.02 38399.54 14899.02 33294.67 37499.04 24599.35 30092.35 31199.77 20898.50 17797.94 25699.34 223
FMVSNet297.72 27897.36 29098.80 24199.51 17898.84 18599.45 19999.42 22096.49 31698.86 27699.29 31690.26 34498.98 36096.44 32896.56 31198.58 342
test0.0.03 197.71 28197.42 28598.56 26498.41 38297.82 26198.78 37098.63 38297.34 24698.05 34798.98 35494.45 24798.98 36095.04 35997.15 30398.89 265
h-mvs3397.70 28297.28 30398.97 20399.70 10697.27 28399.36 24499.45 20498.94 6099.66 9499.64 20094.93 21499.99 499.48 4884.36 40999.65 135
v124097.69 28397.32 29898.79 24298.85 34198.43 22899.48 18899.36 24996.11 34699.27 19699.36 29793.76 27499.24 32094.46 36695.23 34698.70 291
cascas97.69 28397.43 28498.48 27298.60 37297.30 28198.18 40699.39 23292.96 39198.41 32498.78 37193.77 27399.27 31698.16 20898.61 21698.86 266
pm-mvs197.68 28597.28 30398.88 22399.06 30998.62 20699.50 17399.45 20496.32 32897.87 35399.79 12292.47 30599.35 30397.54 26793.54 37698.67 307
GBi-Net97.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
test197.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
tpm97.67 28897.55 26098.03 31699.02 31595.01 36899.43 21098.54 38696.44 32299.12 22799.34 30491.83 32099.60 26797.75 24696.46 31399.48 190
PCF-MVS97.08 1497.66 28997.06 31499.47 13199.61 14799.09 14698.04 40999.25 29891.24 40098.51 31999.70 16494.55 24299.91 11692.76 38899.85 7699.42 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 29097.65 25197.63 34598.78 34897.62 27299.13 30898.33 38997.36 24599.07 23798.94 35895.64 19199.15 33592.95 38498.68 21596.12 411
our_test_397.65 29097.68 24897.55 34998.62 36994.97 36998.84 36499.30 28696.83 29398.19 33999.34 30497.01 13999.02 35595.00 36096.01 32498.64 319
testgi97.65 29097.50 26798.13 31299.36 23296.45 33199.42 21799.48 16397.76 19797.87 35399.45 27291.09 33698.81 37794.53 36598.52 22599.13 239
thres20097.61 29397.28 30398.62 25599.64 13498.03 24699.26 28498.74 37197.68 20799.09 23598.32 38791.66 32799.81 19192.88 38598.22 24198.03 382
PAPM97.59 29497.09 31399.07 18999.06 30998.26 23598.30 40299.10 31994.88 36998.08 34399.34 30496.27 16699.64 25889.87 39998.92 20099.31 226
UWE-MVS97.58 29597.29 30298.48 27299.09 30396.25 33999.01 33996.61 41397.86 18299.19 21699.01 35088.72 36299.90 12897.38 28198.69 21499.28 228
VDDNet97.55 29697.02 31599.16 18199.49 19198.12 24399.38 23799.30 28695.35 35999.68 8599.90 2982.62 40399.93 9299.31 6598.13 25099.42 208
TESTMET0.1,197.55 29697.27 30698.40 28898.93 32896.53 32898.67 37997.61 40396.96 28298.64 30799.28 31888.63 36899.45 27997.30 28599.38 16099.21 235
pmmvs597.52 29897.30 30098.16 30898.57 37596.73 31899.27 27598.90 35196.14 34498.37 32799.53 24491.54 33099.14 33697.51 26995.87 33098.63 326
LF4IMVS97.52 29897.46 27497.70 34398.98 32395.55 35399.29 26598.82 36198.07 16098.66 30099.64 20089.97 34999.61 26697.01 30196.68 30797.94 390
DTE-MVSNet97.51 30097.19 30898.46 27898.63 36898.13 24299.84 1299.48 16396.68 29997.97 35099.67 18792.92 28798.56 38496.88 31392.60 38898.70 291
testing1197.50 30197.10 31298.71 24999.20 27396.91 31199.29 26598.82 36197.89 17998.21 33898.40 38385.63 38899.83 17998.45 18398.04 25399.37 218
ETVMVS97.50 30196.90 31999.29 16499.23 26698.78 19499.32 25598.90 35197.52 22798.56 31698.09 39784.72 39599.69 24497.86 23297.88 25999.39 214
hse-mvs297.50 30197.14 30998.59 25799.49 19197.05 29899.28 27099.22 30498.94 6099.66 9499.42 27794.93 21499.65 25599.48 4883.80 41199.08 245
SixPastTwentyTwo97.50 30197.33 29798.03 31698.65 36696.23 34099.77 3498.68 38097.14 26397.90 35199.93 1090.45 34299.18 33397.00 30296.43 31498.67 307
JIA-IIPM97.50 30197.02 31598.93 21098.73 35797.80 26299.30 26098.97 33791.73 39898.91 26494.86 41395.10 20999.71 23397.58 26097.98 25499.28 228
ppachtmachnet_test97.49 30697.45 27597.61 34798.62 36995.24 36398.80 36899.46 19396.11 34698.22 33799.62 21196.45 16098.97 36793.77 37495.97 32998.61 337
test-mter97.49 30697.13 31198.55 26698.79 34597.10 29298.67 37997.75 40096.65 30298.61 31298.85 36488.23 37299.45 27997.25 28799.38 16099.10 240
testing9197.44 30897.02 31598.71 24999.18 27996.89 31399.19 29899.04 32997.78 19598.31 33098.29 38885.41 39099.85 15998.01 22197.95 25599.39 214
tpm297.44 30897.34 29597.74 34199.15 29394.36 38099.45 19998.94 34093.45 38898.90 26699.44 27391.35 33399.59 26897.31 28498.07 25299.29 227
tpm cat197.39 31097.36 29097.50 35199.17 28793.73 38699.43 21099.31 28291.27 39998.71 29199.08 34194.31 25299.77 20896.41 33098.50 22699.00 256
testing9997.36 31196.94 31898.63 25499.18 27996.70 31999.30 26098.93 34197.71 20298.23 33598.26 38984.92 39399.84 16698.04 22097.85 26299.35 220
USDC97.34 31297.20 30797.75 34099.07 30795.20 36498.51 39299.04 32997.99 17198.31 33099.86 5489.02 35899.55 27295.67 34697.36 29698.49 348
UniMVSNet_ETH3D97.32 31396.81 32198.87 22799.40 22197.46 27699.51 16699.53 10295.86 35498.54 31899.77 13782.44 40499.66 25098.68 14997.52 28099.50 188
testing397.28 31496.76 32398.82 23699.37 22998.07 24599.45 19999.36 24997.56 22097.89 35298.95 35783.70 39998.82 37696.03 33598.56 22299.58 162
MVS97.28 31496.55 32799.48 12898.78 34898.95 17099.27 27599.39 23283.53 41398.08 34399.54 24096.97 14099.87 15094.23 37099.16 17799.63 147
test_fmvs297.25 31697.30 30097.09 36199.43 20993.31 39299.73 5098.87 35698.83 7099.28 19199.80 11084.45 39699.66 25097.88 22997.45 28898.30 365
DSMNet-mixed97.25 31697.35 29296.95 36597.84 38993.61 39099.57 12496.63 41296.13 34598.87 27298.61 37794.59 23897.70 40295.08 35898.86 20499.55 168
MS-PatchMatch97.24 31897.32 29896.99 36298.45 38093.51 39198.82 36699.32 27897.41 24198.13 34299.30 31488.99 35999.56 27095.68 34599.80 10497.90 393
testing22297.16 31996.50 32899.16 18199.16 28998.47 22699.27 27598.66 38197.71 20298.23 33598.15 39282.28 40699.84 16697.36 28297.66 26899.18 236
TransMVSNet (Re)97.15 32096.58 32698.86 23099.12 29598.85 18499.49 18498.91 34995.48 35897.16 37199.80 11093.38 27899.11 34494.16 37291.73 39098.62 328
TinyColmap97.12 32196.89 32097.83 33599.07 30795.52 35698.57 38898.74 37197.58 21797.81 35699.79 12288.16 37399.56 27095.10 35797.21 30098.39 361
K. test v397.10 32296.79 32298.01 31998.72 35996.33 33599.87 897.05 40697.59 21596.16 38599.80 11088.71 36399.04 35196.69 32096.55 31298.65 317
Syy-MVS97.09 32397.14 30996.95 36599.00 31792.73 39699.29 26599.39 23297.06 27497.41 36298.15 39293.92 26798.68 38291.71 39298.34 23199.45 204
PatchT97.03 32496.44 33098.79 24298.99 32098.34 23299.16 30299.07 32592.13 39699.52 13697.31 40694.54 24398.98 36088.54 40498.73 21399.03 253
mmtdpeth96.95 32596.71 32497.67 34499.33 23894.90 37199.89 299.28 29298.15 14499.72 7798.57 37886.56 38399.90 12899.82 1889.02 40298.20 372
myMVS_eth3d96.89 32696.37 33198.43 28599.00 31797.16 28999.29 26599.39 23297.06 27497.41 36298.15 39283.46 40098.68 38295.27 35598.34 23199.45 204
AUN-MVS96.88 32796.31 33398.59 25799.48 19897.04 30199.27 27599.22 30497.44 23798.51 31999.41 28191.97 31699.66 25097.71 25183.83 41099.07 250
FMVSNet196.84 32896.36 33298.29 29899.32 24597.26 28599.43 21099.48 16395.11 36398.55 31799.32 31183.95 39898.98 36095.81 34096.26 31998.62 328
test250696.81 32996.65 32597.29 35699.74 8592.21 39999.60 10285.06 43099.13 2699.77 6099.93 1087.82 37899.85 15999.38 5599.38 16099.80 74
RPMNet96.72 33095.90 34399.19 17899.18 27998.49 22299.22 29499.52 10788.72 40999.56 12797.38 40394.08 26099.95 6386.87 41198.58 21999.14 237
mvs5depth96.66 33196.22 33597.97 32397.00 40596.28 33798.66 38299.03 33196.61 30796.93 37799.79 12287.20 38199.47 27696.65 32494.13 36798.16 374
test_040296.64 33296.24 33497.85 33298.85 34196.43 33299.44 20599.26 29693.52 38596.98 37599.52 24788.52 36999.20 33292.58 39097.50 28397.93 391
X-MVStestdata96.55 33395.45 35299.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17264.01 42698.81 4799.94 7498.79 13599.86 6999.84 43
pmmvs696.53 33496.09 33997.82 33798.69 36395.47 35799.37 23999.47 18493.46 38797.41 36299.78 12987.06 38299.33 30696.92 31192.70 38698.65 317
ET-MVSNet_ETH3D96.49 33595.64 34999.05 19399.53 17098.82 18998.84 36497.51 40497.63 21284.77 41399.21 33092.09 31498.91 37298.98 10092.21 38999.41 211
UnsupCasMVSNet_eth96.44 33696.12 33797.40 35398.65 36695.65 35099.36 24499.51 12197.13 26496.04 38798.99 35288.40 37098.17 39196.71 31890.27 39898.40 360
FMVSNet596.43 33796.19 33697.15 35799.11 29795.89 34799.32 25599.52 10794.47 37898.34 32999.07 34287.54 37997.07 40792.61 38995.72 33598.47 351
new_pmnet96.38 33896.03 34097.41 35298.13 38695.16 36799.05 32699.20 30893.94 38097.39 36598.79 37091.61 32999.04 35190.43 39795.77 33298.05 381
Anonymous2023120696.22 33996.03 34096.79 37097.31 39994.14 38299.63 9099.08 32296.17 34097.04 37499.06 34493.94 26597.76 40186.96 41095.06 35098.47 351
IB-MVS95.67 1896.22 33995.44 35398.57 26199.21 27196.70 31998.65 38397.74 40296.71 29797.27 36798.54 37986.03 38599.92 10498.47 18186.30 40799.10 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 34195.89 34497.13 35997.72 39394.96 37099.79 3199.29 29093.01 39097.20 37099.03 34789.69 35398.36 38891.16 39596.13 32198.07 379
gg-mvs-nofinetune96.17 34295.32 35498.73 24698.79 34598.14 24199.38 23794.09 42191.07 40298.07 34691.04 41989.62 35599.35 30396.75 31699.09 18798.68 300
test20.0396.12 34395.96 34296.63 37197.44 39595.45 35899.51 16699.38 24096.55 31396.16 38599.25 32493.76 27496.17 41287.35 40994.22 36598.27 367
PVSNet_094.43 1996.09 34495.47 35197.94 32699.31 24694.34 38197.81 41099.70 1597.12 26697.46 36198.75 37289.71 35299.79 20197.69 25481.69 41399.68 125
MVStest196.08 34595.48 35097.89 33098.93 32896.70 31999.56 13099.35 25692.69 39491.81 40899.46 27089.90 35098.96 36995.00 36092.61 38798.00 386
EG-PatchMatch MVS95.97 34695.69 34796.81 36997.78 39092.79 39599.16 30298.93 34196.16 34194.08 39899.22 32782.72 40299.47 27695.67 34697.50 28398.17 373
APD_test195.87 34796.49 32994.00 38299.53 17084.01 41199.54 14899.32 27895.91 35397.99 34899.85 5985.49 38999.88 14591.96 39198.84 20698.12 376
Patchmatch-RL test95.84 34895.81 34695.95 37795.61 41090.57 40398.24 40398.39 38895.10 36595.20 39298.67 37494.78 22497.77 40096.28 33290.02 39999.51 184
test_vis1_rt95.81 34995.65 34896.32 37599.67 11691.35 40299.49 18496.74 41198.25 13095.24 39098.10 39674.96 41199.90 12899.53 3998.85 20597.70 396
MVS-HIRNet95.75 35095.16 35597.51 35099.30 24793.69 38898.88 36095.78 41585.09 41298.78 28592.65 41591.29 33499.37 29694.85 36299.85 7699.46 201
MIMVSNet195.51 35195.04 35696.92 36797.38 39695.60 35199.52 15799.50 14193.65 38496.97 37699.17 33285.28 39296.56 41188.36 40595.55 34098.60 340
MDA-MVSNet_test_wron95.45 35294.60 35998.01 31998.16 38597.21 28899.11 31799.24 30193.49 38680.73 41998.98 35493.02 28498.18 39094.22 37194.45 36198.64 319
TDRefinement95.42 35394.57 36097.97 32389.83 42396.11 34499.48 18898.75 36896.74 29596.68 37999.88 4188.65 36699.71 23398.37 18982.74 41298.09 378
YYNet195.36 35494.51 36197.92 32797.89 38897.10 29299.10 31999.23 30293.26 38980.77 41899.04 34692.81 29098.02 39494.30 36794.18 36698.64 319
pmmvs-eth3d95.34 35594.73 35897.15 35795.53 41295.94 34699.35 24999.10 31995.13 36193.55 40097.54 40188.15 37497.91 39794.58 36489.69 40197.61 397
dmvs_testset95.02 35696.12 33791.72 39199.10 30080.43 41999.58 11797.87 39997.47 23095.22 39198.82 36693.99 26395.18 41688.09 40694.91 35599.56 167
KD-MVS_self_test95.00 35794.34 36296.96 36497.07 40495.39 36199.56 13099.44 21295.11 36397.13 37297.32 40591.86 31997.27 40690.35 39881.23 41498.23 371
MDA-MVSNet-bldmvs94.96 35893.98 36597.92 32798.24 38497.27 28399.15 30599.33 26893.80 38280.09 42099.03 34788.31 37197.86 39993.49 37894.36 36398.62 328
N_pmnet94.95 35995.83 34592.31 38998.47 37979.33 42199.12 31192.81 42793.87 38197.68 35899.13 33793.87 26999.01 35791.38 39496.19 32098.59 341
KD-MVS_2432*160094.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
miper_refine_blended94.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
CL-MVSNet_self_test94.49 36293.97 36696.08 37696.16 40793.67 38998.33 40099.38 24095.13 36197.33 36698.15 39292.69 29896.57 41088.67 40379.87 41597.99 387
new-patchmatchnet94.48 36394.08 36495.67 37895.08 41592.41 39799.18 30099.28 29294.55 37793.49 40197.37 40487.86 37797.01 40891.57 39388.36 40397.61 397
OpenMVS_ROBcopyleft92.34 2094.38 36493.70 37096.41 37497.38 39693.17 39399.06 32498.75 36886.58 41094.84 39698.26 38981.53 40799.32 30889.01 40297.87 26096.76 404
CMPMVSbinary69.68 2394.13 36594.90 35791.84 39097.24 40080.01 42098.52 39199.48 16389.01 40791.99 40799.67 18785.67 38799.13 33995.44 35097.03 30596.39 408
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 36693.25 37296.60 37294.76 41794.49 37798.92 35698.18 39589.66 40396.48 38198.06 39886.28 38497.33 40589.68 40087.20 40697.97 389
mvsany_test393.77 36793.45 37194.74 38095.78 40988.01 40699.64 8498.25 39198.28 12594.31 39797.97 39968.89 41498.51 38697.50 27090.37 39797.71 394
UnsupCasMVSNet_bld93.53 36892.51 37496.58 37397.38 39693.82 38498.24 40399.48 16391.10 40193.10 40296.66 40874.89 41298.37 38794.03 37387.71 40597.56 399
dongtai93.26 36992.93 37394.25 38199.39 22485.68 40997.68 41293.27 42392.87 39296.85 37899.39 28982.33 40597.48 40476.78 41797.80 26399.58 162
WB-MVS93.10 37094.10 36390.12 39695.51 41481.88 41699.73 5099.27 29595.05 36693.09 40398.91 36394.70 23391.89 42076.62 41894.02 37196.58 406
PM-MVS92.96 37192.23 37595.14 37995.61 41089.98 40599.37 23998.21 39394.80 37295.04 39597.69 40065.06 41597.90 39894.30 36789.98 40097.54 400
SSC-MVS92.73 37293.73 36789.72 39795.02 41681.38 41799.76 3799.23 30294.87 37092.80 40498.93 35994.71 23291.37 42174.49 42093.80 37396.42 407
test_fmvs392.10 37391.77 37693.08 38796.19 40686.25 40799.82 1698.62 38396.65 30295.19 39396.90 40755.05 42295.93 41496.63 32590.92 39697.06 403
test_f91.90 37491.26 37893.84 38395.52 41385.92 40899.69 6098.53 38795.31 36093.87 39996.37 41055.33 42198.27 38995.70 34390.98 39597.32 402
test_method91.10 37591.36 37790.31 39595.85 40873.72 42894.89 41699.25 29868.39 41995.82 38899.02 34980.50 40998.95 37093.64 37694.89 35698.25 369
Gipumacopyleft90.99 37690.15 38193.51 38498.73 35790.12 40493.98 41799.45 20479.32 41592.28 40594.91 41269.61 41397.98 39687.42 40895.67 33692.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 37790.11 38293.34 38598.78 34885.59 41098.15 40793.16 42589.37 40692.07 40698.38 38481.48 40895.19 41562.54 42497.04 30499.25 232
testf190.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
APD_test290.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
test_vis3_rt87.04 38085.81 38390.73 39493.99 41881.96 41599.76 3790.23 42992.81 39381.35 41791.56 41740.06 42699.07 34894.27 36988.23 40491.15 417
PMMVS286.87 38185.37 38591.35 39390.21 42283.80 41298.89 35997.45 40583.13 41491.67 41195.03 41148.49 42494.70 41785.86 41477.62 41695.54 412
LCM-MVSNet86.80 38285.22 38691.53 39287.81 42480.96 41898.23 40598.99 33571.05 41790.13 41296.51 40948.45 42596.88 40990.51 39685.30 40896.76 404
FPMVS84.93 38385.65 38482.75 40486.77 42563.39 43098.35 39798.92 34474.11 41683.39 41598.98 35450.85 42392.40 41984.54 41594.97 35292.46 414
EGC-MVSNET82.80 38477.86 39097.62 34697.91 38796.12 34399.33 25499.28 2928.40 42725.05 42899.27 32184.11 39799.33 30689.20 40198.22 24197.42 401
tmp_tt82.80 38481.52 38786.66 40066.61 43068.44 42992.79 41997.92 39768.96 41880.04 42199.85 5985.77 38696.15 41397.86 23243.89 42395.39 413
E-PMN80.61 38679.88 38882.81 40390.75 42176.38 42497.69 41195.76 41666.44 42183.52 41492.25 41662.54 41787.16 42368.53 42261.40 42084.89 421
EMVS80.02 38779.22 38982.43 40591.19 42076.40 42397.55 41492.49 42866.36 42283.01 41691.27 41864.63 41685.79 42465.82 42360.65 42185.08 420
ANet_high77.30 38874.86 39284.62 40275.88 42877.61 42297.63 41393.15 42688.81 40864.27 42389.29 42036.51 42783.93 42575.89 41952.31 42292.33 416
MVEpermissive76.82 2176.91 38974.31 39384.70 40185.38 42776.05 42596.88 41593.17 42467.39 42071.28 42289.01 42121.66 43287.69 42271.74 42172.29 41990.35 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 39074.97 39179.01 40670.98 42955.18 43193.37 41898.21 39365.08 42361.78 42493.83 41421.74 43192.53 41878.59 41691.12 39489.34 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 39141.29 39636.84 40786.18 42649.12 43279.73 42022.81 43227.64 42425.46 42728.45 42721.98 43048.89 42655.80 42523.56 42612.51 424
testmvs39.17 39243.78 39425.37 40936.04 43216.84 43498.36 39626.56 43120.06 42538.51 42667.32 42229.64 42915.30 42837.59 42639.90 42443.98 423
test12339.01 39342.50 39528.53 40839.17 43120.91 43398.75 37319.17 43319.83 42638.57 42566.67 42333.16 42815.42 42737.50 42729.66 42549.26 422
cdsmvs_eth3d_5k24.64 39432.85 3970.00 4100.00 4330.00 4350.00 42199.51 1210.00 4280.00 42999.56 23296.58 1530.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.30 39511.06 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42999.58 2240.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.27 39611.03 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 42999.01 180.00 4290.00 4280.00 4270.00 425
test_blank0.13 3970.17 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4291.57 4280.00 4330.00 4290.00 4280.00 4270.00 425
mmdepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS97.16 28995.47 349
FOURS199.91 199.93 199.87 899.56 7299.10 3399.81 45
MSC_two_6792asdad99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
PC_three_145298.18 14299.84 3799.70 16499.31 398.52 38598.30 19899.80 10499.81 65
No_MVS99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
test_one_060199.81 4699.88 899.49 15198.97 5799.65 10199.81 9799.09 14
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.71 10199.79 3399.61 4896.84 29199.56 12799.54 24098.58 7599.96 3296.93 30999.75 121
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.75 5898.61 15999.81 10099.77 86
IU-MVS99.84 3299.88 899.32 27898.30 12499.84 3798.86 12299.85 7699.89 20
OPU-MVS99.64 8599.56 16299.72 4799.60 10299.70 16499.27 599.42 28998.24 20199.80 10499.79 78
test_241102_TWO99.48 16399.08 3999.88 2699.81 9798.94 3299.96 3298.91 11199.84 8499.88 26
test_241102_ONE99.84 3299.90 299.48 16399.07 4199.91 1999.74 14999.20 799.76 212
9.1499.10 8399.72 9699.40 22899.51 12197.53 22599.64 10699.78 12998.84 4499.91 11697.63 25699.82 97
save fliter99.76 6899.59 7599.14 30799.40 22999.00 49
test_0728_THIRD98.99 5199.81 4599.80 11099.09 1499.96 3298.85 12499.90 4499.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12199.96 3298.93 10899.86 6999.88 26
test072699.85 2699.89 499.62 9599.50 14199.10 3399.86 3599.82 8398.94 32
GSMVS99.52 177
test_part299.81 4699.83 1999.77 60
sam_mvs194.86 21999.52 177
sam_mvs94.72 231
ambc93.06 38892.68 41982.36 41398.47 39398.73 37795.09 39497.41 40255.55 42099.10 34696.42 32991.32 39197.71 394
MTGPAbinary99.47 184
test_post199.23 29065.14 42594.18 25799.71 23397.58 260
test_post65.99 42494.65 23799.73 223
patchmatchnet-post98.70 37394.79 22399.74 217
GG-mvs-BLEND98.45 28098.55 37698.16 23999.43 21093.68 42297.23 36898.46 38089.30 35699.22 32595.43 35198.22 24197.98 388
MTMP99.54 14898.88 354
gm-plane-assit98.54 37792.96 39494.65 37599.15 33599.64 25897.56 265
test9_res97.49 27199.72 12799.75 92
TEST999.67 11699.65 6299.05 32699.41 22396.22 33698.95 25999.49 25798.77 5499.91 116
test_899.67 11699.61 7299.03 33199.41 22396.28 33098.93 26299.48 26398.76 5599.91 116
agg_prior297.21 28999.73 12699.75 92
agg_prior99.67 11699.62 7099.40 22998.87 27299.91 116
TestCases99.31 15699.86 2098.48 22499.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
test_prior499.56 8198.99 342
test_prior298.96 34998.34 11999.01 24899.52 24798.68 6797.96 22499.74 124
test_prior99.68 7399.67 11699.48 9699.56 7299.83 17999.74 96
旧先验298.96 34996.70 29899.47 14499.94 7498.19 204
新几何299.01 339
新几何199.75 6399.75 7899.59 7599.54 8996.76 29499.29 19099.64 20098.43 8699.94 7496.92 31199.66 13799.72 108
旧先验199.74 8599.59 7599.54 8999.69 17498.47 8399.68 13599.73 101
无先验98.99 34299.51 12196.89 28899.93 9297.53 26899.72 108
原ACMM298.95 352
原ACMM199.65 7999.73 9299.33 11299.47 18497.46 23199.12 22799.66 19298.67 6999.91 11697.70 25399.69 13299.71 117
test22299.75 7899.49 9498.91 35899.49 15196.42 32499.34 18199.65 19498.28 9699.69 13299.72 108
testdata299.95 6396.67 321
segment_acmp98.96 25
testdata99.54 10699.75 7898.95 17099.51 12197.07 27299.43 15499.70 16498.87 4099.94 7497.76 24499.64 14099.72 108
testdata198.85 36398.32 122
test1299.75 6399.64 13499.61 7299.29 29099.21 21098.38 9199.89 14099.74 12499.74 96
plane_prior799.29 25197.03 302
plane_prior699.27 25696.98 30692.71 296
plane_prior599.47 18499.69 24497.78 24097.63 26998.67 307
plane_prior499.61 215
plane_prior397.00 30498.69 8699.11 229
plane_prior299.39 23298.97 57
plane_prior199.26 258
plane_prior96.97 30799.21 29698.45 10697.60 272
n20.00 434
nn0.00 434
door-mid98.05 396
lessismore_v097.79 33998.69 36395.44 36094.75 41995.71 38999.87 5088.69 36499.32 30895.89 33894.93 35498.62 328
LGP-MVS_train98.49 27099.33 23897.05 29899.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
test1199.35 256
door97.92 397
HQP5-MVS96.83 314
HQP-NCC99.19 27698.98 34598.24 13198.66 300
ACMP_Plane99.19 27698.98 34598.24 13198.66 300
BP-MVS97.19 293
HQP4-MVS98.66 30099.64 25898.64 319
HQP3-MVS99.39 23297.58 274
HQP2-MVS92.47 305
NP-MVS99.23 26696.92 31099.40 285
MDTV_nov1_ep13_2view95.18 36699.35 24996.84 29199.58 12395.19 20797.82 23799.46 201
MDTV_nov1_ep1398.32 18299.11 29794.44 37899.27 27598.74 37197.51 22899.40 16699.62 21194.78 22499.76 21297.59 25998.81 210
ACMMP++_ref97.19 301
ACMMP++97.43 292
Test By Simon98.75 58
ITE_SJBPF98.08 31499.29 25196.37 33398.92 34498.34 11998.83 27899.75 14491.09 33699.62 26595.82 33997.40 29498.25 369
DeepMVS_CXcopyleft93.34 38599.29 25182.27 41499.22 30485.15 41196.33 38299.05 34590.97 33899.73 22393.57 37797.77 26598.01 383