This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6698.75 5599.99 499.97 199.96 1399.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7498.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 10899.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1899.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7299.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21599.37 10399.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15799.08 3399.91 1699.81 8999.20 799.96 3098.91 10299.85 7399.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 899.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11599.80 10199.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22598.91 5899.78 4799.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9499.45 19899.01 4099.90 1899.83 6698.98 2399.93 8499.59 2599.95 1899.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9399.45 19899.01 4099.89 1999.82 7499.01 1899.92 9599.56 2899.95 1899.85 36
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 24299.10 2799.81 3799.80 10398.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14699.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16199.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8499.79 4299.83 6699.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16499.74 14298.81 4499.94 6998.79 12699.86 6699.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17798.79 7099.68 7899.81 8998.43 8399.97 2198.88 10599.90 4399.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15499.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1399.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5799.75 13799.13 1299.92 9599.07 8699.92 2899.85 36
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 14198.94 34199.48 15799.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9999.90 199.55 7798.56 8999.78 4799.70 15798.65 6899.79 19199.65 2399.78 10899.41 199
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6198.56 8999.73 6599.69 16798.55 7599.82 17799.69 1999.85 7399.48 179
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7899.69 16799.06 1699.96 3098.69 13899.87 5899.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 8299.69 16798.95 2799.96 3098.69 13899.87 5899.84 40
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18799.07 3599.79 4299.82 7498.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 14099.66 8799.68 17398.96 2499.96 3098.62 14699.87 5899.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 11099.79 4299.82 7498.86 3899.95 5998.62 14699.81 9799.78 80
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31199.66 2899.14 2199.57 11799.80 10398.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 15299.55 12299.64 19198.91 3499.96 3098.72 13399.90 4399.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15798.05 15899.76 5799.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6298.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20899.71 1398.98 4899.45 13999.78 12299.19 999.54 26299.28 6599.84 8199.63 140
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.53 7699.95 5998.61 14999.81 9799.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17799.71 7199.80 10399.12 1399.97 2198.33 18399.87 5899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15399.53 12599.63 19798.93 3399.97 2198.74 13099.91 3599.83 49
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14399.63 10099.84 6298.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17797.45 22399.78 4799.82 7499.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15798.12 14399.50 13099.75 13798.78 4899.97 2198.57 15899.89 5299.83 49
EC-MVSNet99.44 3799.39 2799.58 9299.56 15699.49 8999.88 399.58 6198.38 10699.73 6599.69 16798.20 9599.70 22999.64 2499.82 9499.54 161
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12899.73 6599.79 11698.68 6499.96 3098.44 17499.77 11199.79 74
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22298.79 7099.52 12799.62 20298.91 3499.90 11698.64 14499.75 11699.82 54
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14697.57 39099.51 299.82 3599.78 12298.09 10099.96 3099.97 199.97 799.94 11
MSP-MVS99.42 4299.27 5999.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16199.70 1598.79 7099.77 5199.96 197.45 12099.96 3098.92 10199.90 4399.89 20
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19798.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 16099.71 15398.96 2499.85 15098.59 15499.80 10199.77 82
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14298.51 7899.80 18898.83 12199.89 5299.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33899.85 698.82 6599.54 12399.73 14898.51 7899.74 20798.91 10299.88 5599.77 82
MM99.40 5099.28 5599.74 6199.67 11199.31 11199.52 14698.87 34499.55 199.74 6399.80 10396.47 15799.98 1399.97 199.97 799.94 11
GST-MVS99.40 5099.24 6499.85 2899.86 2099.79 3099.60 9499.67 2397.97 16499.63 10099.68 17398.52 7799.95 5998.38 17799.86 6699.81 61
HPM-MVS++copyleft99.39 5299.23 6699.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18899.53 23598.64 6999.96 3098.44 17499.80 10199.79 74
SF-MVS99.38 5399.24 6499.79 4999.79 5499.68 4899.57 11599.54 8597.82 18299.71 7199.80 10398.95 2799.93 8498.19 19299.84 8199.74 92
MP-MVS-pluss99.37 5499.20 6999.88 599.90 499.87 1299.30 24799.52 10197.18 24899.60 11099.79 11698.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSMamba_pp99.36 5599.28 5599.62 8399.38 21599.50 8799.50 16199.49 14498.55 9199.77 5199.82 7497.62 11699.88 13299.39 4899.96 1399.47 185
TSAR-MVS + GP.99.36 5599.36 3299.36 14099.67 11198.61 20299.07 30699.33 26099.00 4399.82 3599.81 8999.06 1699.84 15799.09 8499.42 15199.65 129
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8699.86 2099.07 14699.47 18599.93 297.66 20099.71 7199.86 4797.73 11199.96 3099.47 4399.82 9499.79 74
NCCC99.34 5899.19 7099.79 4999.61 14199.65 5799.30 24799.48 15798.86 6099.21 20299.63 19798.72 6199.90 11698.25 18899.63 13799.80 70
mamv499.33 5999.23 6699.62 8399.39 21399.50 8799.50 16199.50 13598.13 14099.76 5799.81 8997.69 11399.88 13299.35 5299.95 1899.49 177
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 6999.46 18798.09 14899.48 13499.74 14298.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 6199.32 4099.30 15399.57 15298.94 16898.97 33499.46 18798.92 5799.71 7199.24 31299.01 1899.98 1399.35 5299.66 13298.97 248
CSCG99.32 6199.32 4099.32 14799.85 2698.29 22699.71 5199.66 2898.11 14599.41 15299.80 10398.37 8899.96 3098.99 9299.96 1399.72 103
PHI-MVS99.30 6399.17 7299.70 6799.56 15699.52 8599.58 10899.80 897.12 25499.62 10499.73 14898.58 7299.90 11698.61 14999.91 3599.68 119
DeepC-MVS98.35 299.30 6399.19 7099.64 7899.82 4299.23 12399.62 8799.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5199.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6599.10 8099.86 2199.70 10199.65 5799.53 14599.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1399.97 4
xiu_mvs_v1_base_debu99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base_debi99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
APD-MVScopyleft99.27 6999.08 8499.84 3999.75 7399.79 3099.50 16199.50 13597.16 25099.77 5199.82 7498.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6999.12 7899.74 6199.18 26799.75 3999.56 12199.57 6498.45 10099.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 167
fmvsm_s_conf0.1_n_a99.26 7199.06 8699.85 2899.52 16799.62 6599.54 13799.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
patch_mono-299.26 7199.62 598.16 29999.81 4694.59 36299.52 14699.64 3699.33 1399.73 6599.90 2599.00 2299.99 499.69 1999.98 499.89 20
ETV-MVS99.26 7199.21 6899.40 13599.46 19099.30 11399.56 12199.52 10198.52 9499.44 14499.27 30898.41 8699.86 14499.10 8399.59 14099.04 240
xiu_mvs_v2_base99.26 7199.25 6399.29 15699.53 16398.91 17299.02 31999.45 19898.80 6999.71 7199.26 31098.94 2999.98 1399.34 5899.23 16598.98 247
CANet99.25 7599.14 7599.59 8999.41 20599.16 13099.35 23699.57 6498.82 6599.51 12999.61 20696.46 15899.95 5999.59 2599.98 499.65 129
3Dnovator97.25 999.24 7699.05 8799.81 4499.12 28399.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
dcpmvs_299.23 7799.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
test_fmvsmconf0.01_n99.22 7899.03 9199.79 4998.42 36699.48 9199.55 13399.51 11599.39 1099.78 4799.93 994.80 21799.95 5999.93 1199.95 1899.94 11
iter_conf05_1199.22 7899.13 7699.49 12199.37 21999.43 9898.95 33899.38 23398.52 9499.70 7799.49 24797.62 11699.87 14099.20 7499.94 2499.16 224
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22099.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3699.97 799.89 20
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20699.54 8597.29 23999.41 15299.59 21198.42 8599.93 8498.19 19299.69 12799.73 97
EIA-MVS99.18 8299.09 8399.45 12899.49 18199.18 12799.67 6499.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 209
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27599.68 4899.81 2099.51 11599.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
MVSFormer99.17 8499.12 7899.29 15699.51 17098.94 16899.88 399.46 18797.55 21099.80 4099.65 18597.39 12199.28 30299.03 8899.85 7399.65 129
sss99.17 8499.05 8799.53 10799.62 13798.97 15899.36 23199.62 4197.83 17899.67 8299.65 18597.37 12499.95 5999.19 7599.19 16899.68 119
test_cas_vis1_n_192099.16 8699.01 9999.61 8699.81 4698.86 17899.65 7599.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 2999.91 3599.99 1
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20899.50 13597.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9899.66 12099.09 14199.64 7899.56 6998.26 12099.45 13999.87 4396.03 17199.81 18299.54 3099.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8899.02 9599.53 10799.66 12099.14 13699.72 4999.48 15798.35 11199.42 14899.84 6296.07 16999.79 19199.51 3599.14 17399.67 122
diffmvspermissive99.14 9099.02 9599.51 11599.61 14198.96 16299.28 25799.49 14498.46 9999.72 7099.71 15396.50 15699.88 13299.31 6199.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9098.99 10199.59 8999.58 15099.41 10199.16 28799.44 20698.45 10099.19 20899.49 24798.08 10199.89 12797.73 23699.75 11699.48 179
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29099.41 21696.60 29799.60 11099.55 22698.83 4299.90 11697.48 26099.83 9099.78 80
casdiffmvspermissive99.13 9298.98 10499.56 9699.65 12699.16 13099.56 12199.50 13598.33 11499.41 15299.86 4795.92 17799.83 17099.45 4599.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9299.03 9199.45 12899.46 19098.87 17599.12 29699.26 28898.03 16199.79 4299.65 18597.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
lupinMVS99.13 9299.01 9999.46 12799.51 17098.94 16899.05 31199.16 30497.86 17299.80 4099.56 22297.39 12199.86 14498.94 9799.85 7399.58 154
EPP-MVSNet99.13 9298.99 10199.53 10799.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30699.34 25398.99 4599.61 10799.82 7497.98 10499.87 14097.00 29099.80 10199.85 36
CHOSEN 280x42099.12 9899.13 7699.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13496.63 15199.70 22999.46 4499.99 199.66 125
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26299.57 6496.40 31399.42 14899.68 17398.75 5599.80 18897.98 21199.72 12299.44 195
Vis-MVSNetpermissive99.12 9898.97 10599.56 9699.78 5699.10 14099.68 6199.66 2898.49 9799.86 2799.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 9899.08 8499.24 16599.46 19098.55 20599.51 15499.46 18798.09 14899.45 13999.82 7498.34 8999.51 26398.70 13598.93 19099.67 122
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
VNet99.11 10298.90 11499.73 6499.52 16799.56 7599.41 20899.39 22599.01 4099.74 6399.78 12295.56 19099.92 9599.52 3498.18 23799.72 103
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10099.49 14497.03 26699.63 10099.69 16797.27 12999.96 3097.82 22599.84 8199.81 61
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 31999.91 397.67 19999.59 11399.75 13795.90 17999.73 21399.53 3299.02 18699.86 33
MVS_Test99.10 10698.97 10599.48 12299.49 18199.14 13699.67 6499.34 25397.31 23799.58 11499.76 13497.65 11499.82 17798.87 10899.07 18199.46 190
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20098.73 19199.45 18999.46 18798.11 14599.46 13899.77 13098.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24797.53 11899.88 13298.98 9399.85 7399.60 146
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25799.52 10198.07 15399.66 8799.81 8997.79 10999.78 19697.79 22799.81 9799.60 146
WTY-MVS99.06 11098.88 11999.61 8699.62 13799.16 13099.37 22799.56 6998.04 15999.53 12599.62 20296.84 14499.94 6998.85 11598.49 21999.72 103
bld_raw_dy_0_6499.05 11199.15 7398.74 23799.46 19096.95 30099.02 31999.47 17798.15 13599.75 6299.56 22297.63 11599.88 13299.35 5299.97 799.40 201
IS-MVSNet99.05 11198.87 12099.57 9499.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9699.39 22099.38 23397.70 19599.28 18399.28 30598.34 8999.85 15096.96 29499.45 14999.69 115
API-MVS99.04 11399.03 9199.06 18399.40 21099.31 11199.55 13399.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 364
mvs_anonymous99.03 11598.99 10199.16 17399.38 21598.52 21199.51 15499.38 23397.79 18399.38 16299.81 8997.30 12799.45 26899.35 5298.99 18799.51 173
sasdasda99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31199.41 21696.28 31798.95 25099.49 24798.76 5299.91 10597.63 24499.72 12299.75 88
canonicalmvs99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
PLCcopyleft97.94 499.02 11698.85 12599.53 10799.66 12099.01 15399.24 27599.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12098.85 12599.50 12099.42 20099.26 11999.82 1699.48 15798.60 8699.28 18398.81 35497.04 13899.76 20299.29 6497.87 25199.47 185
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28599.70 1598.18 13399.35 17099.63 19796.32 16399.90 11697.48 26099.77 11199.55 159
1112_ss98.98 12298.77 13499.59 8999.68 11099.02 15199.25 27399.48 15797.23 24599.13 21799.58 21596.93 14399.90 11698.87 10898.78 20399.84 40
MSDG98.98 12298.80 13099.53 10799.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13097.82 10899.87 14096.93 29799.90 4399.54 161
CANet_DTU98.97 12498.87 12099.25 16399.33 22998.42 22399.08 30599.30 27999.16 1999.43 14599.75 13795.27 20099.97 2198.56 16199.95 1899.36 208
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22698.67 6699.80 18895.80 32899.68 13099.61 144
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8799.59 5792.65 38099.71 7199.78 12298.06 10299.90 11698.84 11899.91 3599.74 92
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33698.53 20799.78 3299.54 8598.07 15399.00 24499.76 13499.01 1899.37 28499.13 8097.23 29098.81 257
mvsmamba98.92 12798.87 12099.08 18099.07 29599.16 13099.88 399.51 11598.15 13599.40 15799.89 2997.12 13299.33 29499.38 4997.40 28498.73 271
Test_1112_low_res98.89 12998.66 14699.57 9499.69 10698.95 16599.03 31699.47 17796.98 26899.15 21599.23 31396.77 14799.89 12798.83 12198.78 20399.86 33
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13399.49 14499.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12199.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
UGNet98.87 13198.69 14199.40 13599.22 25898.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5899.94 2499.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20697.91 16999.36 16799.78 12295.49 19399.43 27797.91 21599.11 17599.62 142
test_yl98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
EPNet98.86 13498.71 13999.30 15397.20 38698.18 23199.62 8798.91 33799.28 1698.63 29899.81 8995.96 17399.99 499.24 7199.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25799.91 397.42 22899.67 8299.37 28197.53 11899.88 13298.98 9397.29 28898.42 345
ab-mvs98.86 13498.63 14899.54 9999.64 12899.19 12599.44 19599.54 8597.77 18699.30 17999.81 8994.20 24999.93 8499.17 7898.82 20099.49 177
MAR-MVS98.86 13498.63 14899.54 9999.37 21999.66 5399.45 18999.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 228
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 23999.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 233
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14198.62 15399.53 10799.61 14199.08 14499.80 2599.51 11597.10 25899.31 17699.78 12295.23 20499.77 19898.21 19099.03 18499.75 88
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20099.08 14499.62 8799.36 24397.39 23199.28 18399.68 17396.44 16099.92 9598.37 17998.22 23299.40 201
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 21996.75 14899.86 14498.56 16199.70 12699.54 161
PatchMatch-RL98.84 14498.62 15399.52 11399.71 9699.28 11599.06 30999.77 997.74 19099.50 13099.53 23595.41 19499.84 15797.17 28499.64 13599.44 195
Effi-MVS+98.81 14598.59 15999.48 12299.46 19099.12 13998.08 39399.50 13597.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 173
alignmvs98.81 14598.56 16299.58 9299.43 19899.42 9999.51 15498.96 32898.61 8599.35 17098.92 34994.78 21999.77 19899.35 5298.11 24299.54 161
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20699.35 1299.83 3499.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
PMMVS98.80 14898.62 15399.34 14199.27 24698.70 19398.76 35999.31 27497.34 23499.21 20299.07 32997.20 13099.82 17798.56 16198.87 19599.52 167
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 22996.91 30299.57 11599.30 27998.47 9899.41 15298.99 33996.78 14699.74 20798.73 13299.38 15398.74 269
FIs98.78 14998.63 14899.23 16799.18 26799.54 7999.83 1599.59 5798.28 11798.79 27499.81 8996.75 14899.37 28499.08 8596.38 30598.78 259
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20596.99 29499.52 14699.49 14498.11 14599.24 19499.34 29196.96 14299.79 19197.95 21399.45 14999.02 243
iter_conf0598.76 15298.90 11498.33 28499.07 29596.97 29699.50 16199.31 27498.13 14099.48 13499.80 10397.89 10599.46 26699.25 7097.68 25898.56 331
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12199.62 4198.78 7399.64 9799.88 3592.02 30799.88 13299.54 3098.26 23099.72 103
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21195.39 19599.90 11697.78 22899.49 14799.28 217
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29499.45 9599.86 1199.60 5498.23 12598.70 28799.82 7496.80 14599.22 31399.07 8696.38 30598.79 258
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6295.27 20099.91 10598.08 20398.84 19899.00 244
Fast-Effi-MVS+98.70 15798.43 16799.51 11599.51 17099.28 11599.52 14699.47 17796.11 33399.01 24099.34 29196.20 16799.84 15797.88 21798.82 20099.39 203
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29699.54 8598.44 10399.42 14899.71 15394.20 24999.92 9598.54 16598.90 19499.00 244
131498.68 15998.54 16399.11 17998.89 32198.65 19799.27 26299.49 14496.89 27697.99 33799.56 22297.72 11299.83 17097.74 23599.27 16498.84 256
EI-MVSNet98.67 16098.67 14398.68 24499.35 22497.97 24399.50 16199.38 23396.93 27599.20 20599.83 6697.87 10699.36 28898.38 17797.56 26798.71 274
test_djsdf98.67 16098.57 16098.98 19398.70 34898.91 17299.88 399.46 18797.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26298.75 266
QAPM98.67 16098.30 17799.80 4699.20 26199.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
nrg03098.64 16398.42 16899.28 16099.05 30299.69 4799.81 2099.46 18798.04 15999.01 24099.82 7496.69 15099.38 28199.34 5894.59 34698.78 259
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
PAPR98.63 16498.34 17399.51 11599.40 21099.03 15098.80 35599.36 24396.33 31499.00 24499.12 32798.46 8199.84 15795.23 34399.37 16099.66 125
CVMVSNet98.57 16698.67 14398.30 28999.35 22495.59 34099.50 16199.55 7798.60 8699.39 16099.83 6694.48 24099.45 26898.75 12998.56 21499.85 36
MVSTER98.49 16798.32 17599.00 19199.35 22499.02 15199.54 13799.38 23397.41 22999.20 20599.73 14893.86 26399.36 28898.87 10897.56 26798.62 315
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6198.81 35195.54 34499.62 10499.70 15793.82 26499.93 8497.35 27199.46 14899.32 214
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11399.04 30399.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 239
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22799.43 21296.94 27499.07 22999.59 21197.87 10699.03 34198.32 18595.62 32598.71 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17198.28 17898.94 19998.50 36398.96 16299.77 3499.50 13597.07 26098.87 26399.77 13094.76 22399.28 30298.66 14297.60 26398.57 330
jajsoiax98.43 17298.28 17898.88 21498.60 35898.43 22199.82 1699.53 9698.19 13098.63 29899.80 10393.22 27599.44 27399.22 7297.50 27398.77 262
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4496.85 39497.68 19799.79 4299.74 14291.39 32499.89 12798.83 12199.56 14299.57 156
BH-untuned98.42 17398.36 17198.59 24999.49 18196.70 31099.27 26299.13 30897.24 24498.80 27299.38 27895.75 18499.74 20797.07 28899.16 16999.33 213
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4499.49 14499.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
D2MVS98.41 17598.50 16598.15 30299.26 24896.62 31599.40 21699.61 4897.71 19298.98 24699.36 28496.04 17099.67 23798.70 13597.41 28398.15 361
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20598.83 18399.30 24798.77 35497.70 19598.94 25299.65 18592.91 28299.74 20796.52 31399.55 14499.64 136
mvs_tets98.40 17898.23 18098.91 20798.67 35198.51 21399.66 6999.53 9698.19 13098.65 29699.81 8992.75 28499.44 27399.31 6197.48 27798.77 262
XXY-MVS98.38 17998.09 19499.24 16599.26 24899.32 10799.56 12199.55 7797.45 22398.71 28199.83 6693.23 27399.63 25398.88 10596.32 30798.76 264
ACMM97.58 598.37 18098.34 17398.48 26499.41 20597.10 28199.56 12199.45 19898.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27898.64 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13796.75 39697.53 21499.73 6599.65 18591.25 32799.89 12798.62 14699.56 14299.48 179
tpmrst98.33 18298.48 16697.90 31799.16 27794.78 35899.31 24599.11 30997.27 24099.45 13999.59 21195.33 19899.84 15798.48 16898.61 20899.09 232
baseline198.31 18397.95 21099.38 13999.50 17998.74 19099.59 10098.93 33098.41 10499.14 21699.60 20994.59 23399.79 19198.48 16893.29 36499.61 144
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27795.32 34999.27 26298.92 33397.37 23299.37 16499.58 21594.90 21299.70 22997.43 26699.21 16699.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20898.55 37196.03 33899.19 20899.74 14291.87 31099.92 9599.16 7998.29 22999.70 113
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27799.54 7999.50 16199.58 6198.27 11999.35 17099.37 28192.53 29699.65 24599.35 5294.46 34798.72 272
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30799.36 10599.49 17599.51 11597.95 16598.97 24899.13 32496.30 16499.38 28198.36 18193.34 36398.66 302
HQP_MVS98.27 18898.22 18198.44 27499.29 24196.97 29699.39 22099.47 17798.97 5199.11 22199.61 20692.71 28999.69 23497.78 22897.63 26098.67 294
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 31998.98 15599.48 17999.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37098.69 282
LPG-MVS_test98.22 18998.13 18898.49 26299.33 22997.05 28799.58 10899.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 4999.44 20696.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 156
ADS-MVSNet98.20 19298.08 19598.56 25699.33 22996.48 32099.23 27699.15 30596.24 32199.10 22499.67 17994.11 25399.71 22396.81 30299.05 18299.48 179
OPM-MVS98.19 19398.10 19198.45 27198.88 32297.07 28599.28 25799.38 23398.57 8899.22 19999.81 8992.12 30599.66 24098.08 20397.54 26998.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19398.16 18398.27 29499.30 23795.55 34199.07 30698.97 32697.57 20799.43 14599.57 21992.72 28799.74 20797.58 24899.20 16799.52 167
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25497.72 25898.72 36399.31 27496.60 29798.88 26099.29 30397.29 12899.13 32797.60 24695.99 31498.38 350
CR-MVSNet98.17 19697.93 21398.87 21899.18 26798.49 21599.22 28099.33 26096.96 27099.56 11899.38 27894.33 24599.00 34694.83 34998.58 21199.14 225
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31697.72 25898.45 38099.32 27096.95 27298.97 24899.17 31997.06 13799.22 31397.86 22095.99 31498.29 354
CLD-MVS98.16 19798.10 19198.33 28499.29 24196.82 30798.75 36099.44 20697.83 17899.13 21799.55 22692.92 28099.67 23798.32 18597.69 25798.48 337
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19997.79 22499.19 17099.50 17998.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 221
pmmvs498.13 20097.90 21598.81 23098.61 35798.87 17598.99 32899.21 29896.44 30999.06 23499.58 21595.90 17999.11 33297.18 28396.11 31198.46 342
WR-MVS_H98.13 20097.87 22098.90 20999.02 30598.84 18099.70 5299.59 5797.27 24098.40 31499.19 31895.53 19199.23 31098.34 18293.78 36098.61 324
c3_l98.12 20298.04 20098.38 28199.30 23797.69 26298.81 35499.33 26096.67 28898.83 26899.34 29197.11 13398.99 34797.58 24895.34 33198.48 337
ACMH97.28 898.10 20397.99 20598.44 27499.41 20596.96 29999.60 9499.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27898.67 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21699.43 21293.67 37099.22 19999.89 2990.23 33999.93 8499.26 6998.33 22499.66 125
CP-MVSNet98.09 20497.78 22799.01 18998.97 31599.24 12299.67 6499.46 18797.25 24298.48 31199.64 19193.79 26599.06 33798.63 14594.10 35498.74 269
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5298.92 33398.15 13599.06 23499.35 28793.67 26999.25 30797.77 23197.25 28999.64 136
DU-MVS98.08 20697.79 22498.96 19698.87 32598.98 15599.41 20899.45 19897.87 17198.71 28199.50 24494.82 21599.22 31398.57 15892.87 37098.68 287
v2v48298.06 20897.77 22998.92 20398.90 32098.82 18499.57 11599.36 24396.65 29099.19 20899.35 28794.20 24999.25 30797.72 23894.97 33998.69 282
V4298.06 20897.79 22498.86 22198.98 31398.84 18099.69 5599.34 25396.53 30199.30 17999.37 28194.67 23099.32 29797.57 25294.66 34498.42 345
test-LLR98.06 20897.90 21598.55 25898.79 33397.10 28198.67 36697.75 38697.34 23498.61 30198.85 35194.45 24299.45 26897.25 27599.38 15399.10 228
WR-MVS98.06 20897.73 23699.06 18398.86 32899.25 12199.19 28399.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35198.71 274
ACMP97.20 1198.06 20897.94 21298.45 27199.37 21997.01 29299.44 19599.49 14497.54 21398.45 31299.79 11691.95 30999.72 21797.91 21597.49 27698.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24897.38 26998.56 37699.31 27496.65 29098.88 26099.52 23896.58 15399.12 33197.39 26895.53 32898.47 339
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10895.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4699.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10094.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4799.38 15399.80 70
EPNet_dtu98.03 21697.96 20898.23 29598.27 36895.54 34399.23 27698.75 35599.02 3897.82 34499.71 15396.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21697.76 23398.84 22599.39 21398.98 15599.40 21699.38 23396.67 28899.07 22999.28 30592.93 27998.98 34897.10 28596.65 29898.56 331
ADS-MVSNet298.02 21898.07 19897.87 31899.33 22995.19 35299.23 27699.08 31396.24 32199.10 22499.67 17994.11 25398.93 35896.81 30299.05 18299.48 179
HQP-MVS98.02 21897.90 21598.37 28299.19 26496.83 30598.98 33199.39 22598.24 12298.66 29099.40 27392.47 29899.64 24897.19 28197.58 26598.64 306
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25496.80 30899.70 5299.60 5497.12 25498.18 32999.70 15791.73 31599.72 21798.39 17697.45 27898.68 287
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22197.84 22298.55 25899.25 25297.97 24398.71 36499.34 25396.47 30898.59 30499.54 23195.65 18899.21 31897.21 27795.77 32098.46 342
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25397.95 24798.71 36499.35 24996.50 30298.60 30399.54 23195.72 18699.03 34197.21 27795.77 32098.46 342
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22897.43 26898.88 34799.36 24396.48 30698.80 27299.55 22695.98 17298.91 35997.27 27495.50 32998.51 335
BH-w/o98.00 22397.89 21998.32 28799.35 22496.20 33099.01 32598.90 33996.42 31198.38 31599.00 33895.26 20299.72 21796.06 32198.61 20899.03 241
v114497.98 22597.69 23998.85 22498.87 32598.66 19699.54 13799.35 24996.27 31999.23 19899.35 28794.67 23099.23 31096.73 30595.16 33598.68 287
EU-MVSNet97.98 22598.03 20197.81 32598.72 34596.65 31499.66 6999.66 2898.09 14898.35 31799.82 7495.25 20398.01 38197.41 26795.30 33298.78 259
tpmvs97.98 22598.02 20397.84 32199.04 30394.73 35999.31 24599.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 248
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 18999.08 31398.21 12898.88 26099.80 10388.66 35499.70 22998.58 15597.72 25699.39 203
NR-MVSNet97.97 22897.61 24899.02 18898.87 32599.26 11999.47 18599.42 21497.63 20297.08 36299.50 24495.07 20799.13 32797.86 22093.59 36198.68 287
v897.95 23097.63 24798.93 20198.95 31798.81 18699.80 2599.41 21696.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35598.66 302
Patchmatch-test97.93 23197.65 24398.77 23599.18 26797.07 28599.03 31699.14 30796.16 32898.74 27899.57 21994.56 23599.72 21793.36 36599.11 17599.52 167
PS-CasMVS97.93 23197.59 25098.95 19898.99 31099.06 14799.68 6199.52 10197.13 25298.31 31999.68 17392.44 30299.05 33898.51 16694.08 35598.75 266
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33698.62 20099.65 7599.49 14497.76 18798.49 31099.60 20994.23 24898.97 35598.00 21092.90 36898.70 278
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4499.49 14499.15 20100.00 199.94 679.51 39499.98 1399.88 1499.76 11499.97 4
v14419297.92 23497.60 24998.87 21898.83 33198.65 19799.55 13399.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 33898.70 278
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19096.68 31399.56 12199.54 8598.41 10497.79 34699.87 4390.18 34099.66 24098.05 20797.18 29398.62 315
LFMVS97.90 23797.35 28199.54 9999.52 16799.01 15399.39 22098.24 37897.10 25899.65 9399.79 11684.79 38099.91 10599.28 6598.38 22199.69 115
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 17999.57 6494.16 36698.81 27099.68 17393.23 27399.42 27898.84 11894.42 34998.76 264
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34796.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29698.69 282
v7n97.87 24097.52 25598.92 20398.76 34198.58 20399.84 1299.46 18796.20 32498.91 25599.70 15794.89 21399.44 27396.03 32293.89 35898.75 266
baseline297.87 24097.55 25198.82 22799.18 26798.02 24099.41 20896.58 40096.97 26996.51 36799.17 31993.43 27099.57 25897.71 23999.03 18498.86 254
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10098.74 35897.94 16699.27 18898.62 36291.75 31399.86 14493.73 36198.19 23698.96 250
cl2297.85 24397.64 24698.48 26499.09 29197.87 25198.60 37399.33 26097.11 25798.87 26399.22 31492.38 30399.17 32298.21 19095.99 31498.42 345
v1097.85 24397.52 25598.86 22198.99 31098.67 19599.75 4199.41 21695.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34598.67 294
GA-MVS97.85 24397.47 26199.00 19199.38 21597.99 24298.57 37499.15 30597.04 26598.90 25799.30 30189.83 34299.38 28196.70 30798.33 22499.62 142
tfpnnormal97.84 24697.47 26198.98 19399.20 26199.22 12499.64 7899.61 4896.32 31598.27 32399.70 15793.35 27299.44 27395.69 33195.40 33098.27 355
VPNet97.84 24697.44 26999.01 18999.21 25998.94 16899.48 17999.57 6498.38 10699.28 18399.73 14888.89 35099.39 28099.19 7593.27 36598.71 274
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23792.25 38499.59 10098.26 37697.43 22696.20 37099.13 32496.27 16598.73 36798.17 19598.99 18799.64 136
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28596.33 32599.41 20899.52 10198.06 15799.05 23699.50 24489.64 34599.73 21397.73 23697.38 28698.53 333
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 31999.48 15797.22 24698.71 28199.70 15792.75 28499.13 32797.46 26396.00 31398.67 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 31999.49 14497.18 24898.71 28199.72 15292.72 28799.14 32497.44 26595.86 31998.67 294
EPMVS97.82 25197.65 24398.35 28398.88 32295.98 33399.49 17594.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 209
MVP-Stereo97.81 25397.75 23497.99 31297.53 37996.60 31798.96 33598.85 34697.22 24697.23 35799.36 28495.28 19999.46 26695.51 33599.78 10897.92 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25397.44 26998.91 20798.88 32298.68 19499.51 15499.34 25396.18 32699.20 20599.34 29194.03 25699.36 28895.32 34195.18 33498.69 282
v192192097.80 25597.45 26498.84 22598.80 33298.53 20799.52 14699.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33698.69 282
v14897.79 25697.55 25198.50 26198.74 34297.72 25899.54 13799.33 26096.26 32098.90 25799.51 24194.68 22999.14 32497.83 22493.15 36798.63 313
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.96 250
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10098.74 35897.93 16799.26 19298.62 36291.75 31399.83 17093.22 36698.18 23798.37 351
PEN-MVS97.76 25897.44 26998.72 23998.77 34098.54 20699.78 3299.51 11597.06 26298.29 32299.64 19192.63 29398.89 36198.09 19993.16 36698.72 272
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29198.29 22699.41 20898.85 34695.65 34398.63 29899.67 17994.82 21599.10 33498.07 20692.89 36998.64 306
TR-MVS97.76 25897.41 27598.82 22799.06 29997.87 25198.87 34998.56 37096.63 29498.68 28999.22 31492.49 29799.65 24595.40 33997.79 25498.95 252
Patchmtry97.75 26297.40 27698.81 23099.10 28898.87 17599.11 30299.33 26094.83 35898.81 27099.38 27894.33 24599.02 34396.10 32095.57 32698.53 333
dp97.75 26297.80 22397.59 33499.10 28893.71 37399.32 24298.88 34296.48 30699.08 22899.55 22692.67 29299.82 17796.52 31398.58 21199.24 220
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27399.51 11591.90 38299.30 17999.63 19798.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26597.35 28198.88 21499.47 18997.12 28099.34 23998.85 34698.19 13099.67 8299.85 5282.98 38799.92 9599.49 4098.32 22899.60 146
MIMVSNet97.73 26597.45 26498.57 25399.45 19697.50 26699.02 31998.98 32596.11 33399.41 15299.14 32390.28 33598.74 36695.74 32998.93 19099.47 185
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.37 351
CostFormer97.72 26797.73 23697.71 32999.15 28194.02 36999.54 13799.02 32194.67 36199.04 23799.35 28792.35 30499.77 19898.50 16797.94 24799.34 212
FMVSNet297.72 26797.36 27998.80 23299.51 17098.84 18099.45 18999.42 21496.49 30398.86 26799.29 30390.26 33698.98 34896.44 31596.56 30198.58 329
test0.0.03 197.71 27097.42 27498.56 25698.41 36797.82 25498.78 35798.63 36897.34 23498.05 33698.98 34194.45 24298.98 34895.04 34697.15 29498.89 253
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23199.45 19898.94 5499.66 8799.64 19194.93 20999.99 499.48 4184.36 39399.65 129
v124097.69 27297.32 28798.79 23398.85 32998.43 22199.48 17999.36 24396.11 33399.27 18899.36 28493.76 26799.24 30994.46 35295.23 33398.70 278
cascas97.69 27297.43 27398.48 26498.60 35897.30 27098.18 39299.39 22592.96 37898.41 31398.78 35893.77 26699.27 30598.16 19698.61 20898.86 254
pm-mvs197.68 27497.28 29298.88 21499.06 29998.62 20099.50 16199.45 19896.32 31597.87 34299.79 11692.47 29899.35 29197.54 25593.54 36298.67 294
GBi-Net97.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
test197.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
tpm97.67 27797.55 25198.03 30699.02 30595.01 35599.43 19998.54 37296.44 30999.12 21999.34 29191.83 31299.60 25697.75 23496.46 30399.48 179
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39499.25 29091.24 38598.51 30899.70 15794.55 23799.91 10592.76 37499.85 7399.42 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 27997.65 24397.63 33198.78 33697.62 26399.13 29398.33 37597.36 23399.07 22998.94 34595.64 18999.15 32392.95 37098.68 20796.12 395
our_test_397.65 27997.68 24097.55 33598.62 35594.97 35698.84 35199.30 27996.83 28198.19 32899.34 29197.01 14099.02 34395.00 34796.01 31298.64 306
testgi97.65 27997.50 25898.13 30399.36 22396.45 32199.42 20699.48 15797.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 227
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27198.74 35897.68 19799.09 22798.32 37291.66 31999.81 18292.88 37198.22 23298.03 367
PAPM97.59 28397.09 30299.07 18299.06 29998.26 22898.30 38899.10 31094.88 35698.08 33299.34 29196.27 16599.64 24889.87 38598.92 19299.31 215
UWE-MVS97.58 28497.29 29198.48 26499.09 29196.25 32899.01 32596.61 39997.86 17299.19 20899.01 33788.72 35199.90 11697.38 26998.69 20699.28 217
VDDNet97.55 28597.02 30499.16 17399.49 18198.12 23699.38 22599.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6198.13 24199.42 197
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31896.53 31898.67 36697.61 38996.96 27098.64 29799.28 30588.63 35699.45 26897.30 27399.38 15399.21 222
pmmvs597.52 28797.30 28998.16 29998.57 36096.73 30999.27 26298.90 33996.14 33198.37 31699.53 23591.54 32299.14 32497.51 25795.87 31898.63 313
LF4IMVS97.52 28797.46 26397.70 33098.98 31395.55 34199.29 25298.82 34998.07 15398.66 29099.64 19189.97 34199.61 25597.01 28996.68 29797.94 374
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35498.13 23599.84 1299.48 15796.68 28797.97 33999.67 17992.92 28098.56 37096.88 30192.60 37398.70 278
testing1197.50 29097.10 30198.71 24199.20 26196.91 30299.29 25298.82 34997.89 17098.21 32798.40 36985.63 37499.83 17098.45 17398.04 24499.37 207
ETVMVS97.50 29096.90 30899.29 15699.23 25498.78 18999.32 24298.90 33997.52 21698.56 30598.09 38184.72 38199.69 23497.86 22097.88 25099.39 203
hse-mvs297.50 29097.14 29898.59 24999.49 18197.05 28799.28 25799.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4183.80 39599.08 233
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35296.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30498.67 294
JIA-IIPM97.50 29097.02 30498.93 20198.73 34397.80 25599.30 24798.97 32691.73 38398.91 25594.86 39795.10 20699.71 22397.58 24897.98 24599.28 217
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35595.24 35098.80 35599.46 18796.11 33398.22 32699.62 20296.45 15998.97 35593.77 36095.97 31798.61 324
test-mter97.49 29597.13 30098.55 25898.79 33397.10 28198.67 36697.75 38696.65 29098.61 30198.85 35188.23 36099.45 26897.25 27599.38 15399.10 228
testing9197.44 29797.02 30498.71 24199.18 26796.89 30499.19 28399.04 31997.78 18598.31 31998.29 37385.41 37699.85 15098.01 20997.95 24699.39 203
tpm297.44 29797.34 28497.74 32899.15 28194.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 216
tpm cat197.39 29997.36 27997.50 33799.17 27593.73 37299.43 19999.31 27491.27 38498.71 28199.08 32894.31 24799.77 19896.41 31798.50 21899.00 244
testing9997.36 30096.94 30798.63 24699.18 26796.70 31099.30 24798.93 33097.71 19298.23 32498.26 37484.92 37999.84 15798.04 20897.85 25399.35 209
USDC97.34 30197.20 29697.75 32799.07 29595.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28798.49 336
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21097.46 26799.51 15499.53 9695.86 34198.54 30799.77 13082.44 39099.66 24098.68 14097.52 27099.50 176
testing397.28 30396.76 31298.82 22799.37 21998.07 23899.45 18999.36 24397.56 20997.89 34198.95 34483.70 38598.82 36296.03 32298.56 21499.58 154
MVS97.28 30396.55 31599.48 12298.78 33698.95 16599.27 26299.39 22583.53 39798.08 33299.54 23196.97 14199.87 14094.23 35699.16 16999.63 140
test_fmvs297.25 30597.30 28997.09 34799.43 19893.31 37899.73 4798.87 34498.83 6499.28 18399.80 10384.45 38299.66 24097.88 21797.45 27898.30 353
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37493.61 37699.57 11596.63 39896.13 33298.87 26398.61 36494.59 23397.70 38895.08 34598.86 19699.55 159
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36593.51 37798.82 35399.32 27097.41 22998.13 33199.30 30188.99 34999.56 25995.68 33299.80 10197.90 377
testing22297.16 30896.50 31699.16 17399.16 27798.47 21999.27 26298.66 36797.71 19298.23 32498.15 37682.28 39199.84 15797.36 27097.66 25999.18 223
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28398.85 17999.49 17598.91 33795.48 34597.16 36099.80 10393.38 27199.11 33294.16 35891.73 37598.62 315
TinyColmap97.12 31096.89 30997.83 32299.07 29595.52 34498.57 37498.74 35897.58 20697.81 34599.79 11688.16 36199.56 25995.10 34497.21 29198.39 349
K. test v397.10 31196.79 31198.01 30998.72 34596.33 32599.87 897.05 39397.59 20496.16 37199.80 10388.71 35299.04 33996.69 30896.55 30298.65 304
Syy-MVS97.09 31297.14 29896.95 35199.00 30792.73 38299.29 25299.39 22597.06 26297.41 35198.15 37693.92 26198.68 36891.71 37898.34 22299.45 193
PatchT97.03 31396.44 31898.79 23398.99 31098.34 22599.16 28799.07 31692.13 38199.52 12797.31 39094.54 23898.98 34888.54 39098.73 20599.03 241
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30797.16 27899.29 25299.39 22597.06 26297.41 35198.15 37683.46 38698.68 36895.27 34298.34 22299.45 193
AUN-MVS96.88 31596.31 32198.59 24999.48 18897.04 29099.27 26299.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39499.07 238
FMVSNet196.84 31696.36 32098.29 29099.32 23597.26 27499.43 19999.48 15795.11 35098.55 30699.32 29883.95 38498.98 34895.81 32796.26 30898.62 315
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9485.06 41499.13 2299.77 5199.93 987.82 36699.85 15099.38 4999.38 15399.80 70
RPMNet96.72 31895.90 33099.19 17099.18 26798.49 21599.22 28099.52 10188.72 39399.56 11897.38 38794.08 25599.95 5986.87 39798.58 21199.14 225
test_040296.64 31996.24 32297.85 31998.85 32996.43 32299.44 19599.26 28893.52 37296.98 36499.52 23888.52 35799.20 32092.58 37697.50 27397.93 375
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16464.01 41098.81 4499.94 6998.79 12699.86 6699.84 40
pmmvs696.53 32196.09 32697.82 32498.69 34995.47 34599.37 22799.47 17793.46 37497.41 35199.78 12287.06 36999.33 29496.92 29992.70 37298.65 304
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39799.21 31792.09 30698.91 35998.98 9392.21 37499.41 199
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35295.65 33899.36 23199.51 11597.13 25296.04 37398.99 33988.40 35898.17 37796.71 30690.27 38398.40 348
FMVSNet596.43 32496.19 32397.15 34399.11 28595.89 33599.32 24299.52 10194.47 36598.34 31899.07 32987.54 36797.07 39292.61 37595.72 32398.47 339
new_pmnet96.38 32596.03 32797.41 33898.13 37195.16 35499.05 31199.20 29993.94 36797.39 35498.79 35791.61 32199.04 33990.43 38395.77 32098.05 366
Anonymous2023120696.22 32696.03 32796.79 35697.31 38494.14 36899.63 8299.08 31396.17 32797.04 36399.06 33193.94 25997.76 38786.96 39695.06 33798.47 339
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 25996.70 31098.65 36997.74 38896.71 28597.27 35698.54 36586.03 37199.92 9598.47 17186.30 39199.10 228
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 32895.89 33197.13 34597.72 37894.96 35799.79 3199.29 28393.01 37797.20 35999.03 33489.69 34498.36 37491.16 38196.13 31098.07 364
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33398.14 23499.38 22594.09 40791.07 38798.07 33591.04 40389.62 34699.35 29196.75 30499.09 17998.68 287
test20.0396.12 33095.96 32996.63 35797.44 38095.45 34699.51 15499.38 23396.55 30096.16 37199.25 31193.76 26796.17 39787.35 39594.22 35298.27 355
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23694.34 36797.81 39599.70 1597.12 25497.46 35098.75 35989.71 34399.79 19197.69 24281.69 39799.68 119
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37592.79 38199.16 28798.93 33096.16 32894.08 38499.22 31482.72 38899.47 26595.67 33397.50 27398.17 360
APD_test195.87 33396.49 31794.00 36799.53 16384.01 39599.54 13799.32 27095.91 34097.99 33799.85 5285.49 37599.88 13291.96 37798.84 19898.12 362
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39490.57 38998.24 38998.39 37495.10 35295.20 37898.67 36194.78 21997.77 38696.28 31990.02 38499.51 173
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17596.74 39798.25 12195.24 37698.10 38074.96 39599.90 11699.53 3298.85 19797.70 380
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23793.69 37498.88 34795.78 40185.09 39698.78 27592.65 39991.29 32699.37 28494.85 34899.85 7399.46 190
MIMVSNet195.51 33795.04 34296.92 35397.38 38195.60 33999.52 14699.50 13593.65 37196.97 36599.17 31985.28 37896.56 39688.36 39195.55 32798.60 327
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37097.21 27799.11 30299.24 29293.49 37380.73 40398.98 34193.02 27798.18 37694.22 35794.45 34898.64 306
TDRefinement95.42 33994.57 34697.97 31389.83 40796.11 33299.48 17998.75 35596.74 28396.68 36699.88 3588.65 35599.71 22398.37 17982.74 39698.09 363
YYNet195.36 34094.51 34797.92 31597.89 37397.10 28199.10 30499.23 29393.26 37680.77 40299.04 33392.81 28398.02 38094.30 35394.18 35398.64 306
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39695.94 33499.35 23699.10 31095.13 34893.55 38697.54 38588.15 36297.91 38394.58 35089.69 38697.61 381
dmvs_testset95.02 34296.12 32491.72 37599.10 28880.43 40399.58 10897.87 38597.47 21995.22 37798.82 35393.99 25795.18 40088.09 39294.91 34299.56 158
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 38995.39 34899.56 12199.44 20695.11 35097.13 36197.32 38991.86 31197.27 39190.35 38481.23 39898.23 359
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 36997.27 27299.15 29099.33 26093.80 36980.09 40499.03 33488.31 35997.86 38593.49 36494.36 35098.62 315
N_pmnet94.95 34595.83 33292.31 37398.47 36479.33 40599.12 29692.81 41193.87 36897.68 34799.13 32493.87 26299.01 34591.38 38096.19 30998.59 328
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
miper_refine_blended94.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39193.67 37598.33 38699.38 23395.13 34897.33 35598.15 37692.69 29196.57 39588.67 38979.87 39997.99 371
new-patchmatchnet94.48 34994.08 35095.67 36495.08 39992.41 38399.18 28599.28 28594.55 36493.49 38797.37 38887.86 36597.01 39391.57 37988.36 38797.61 381
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38193.17 37999.06 30998.75 35586.58 39494.84 38298.26 37481.53 39299.32 29789.01 38897.87 25196.76 388
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37497.24 38580.01 40498.52 37799.48 15789.01 39191.99 39299.67 17985.67 37399.13 32795.44 33797.03 29596.39 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 35293.25 35896.60 35894.76 40194.49 36398.92 34398.18 38189.66 38896.48 36898.06 38286.28 37097.33 39089.68 38687.20 39097.97 373
mvsany_test393.77 35393.45 35794.74 36695.78 39388.01 39299.64 7898.25 37798.28 11794.31 38397.97 38368.89 39898.51 37297.50 25890.37 38297.71 378
UnsupCasMVSNet_bld93.53 35492.51 35996.58 35997.38 38193.82 37098.24 38999.48 15791.10 38693.10 38896.66 39274.89 39698.37 37394.03 35987.71 38997.56 383
WB-MVS93.10 35594.10 34990.12 38095.51 39881.88 40099.73 4799.27 28795.05 35393.09 38998.91 35094.70 22891.89 40476.62 40394.02 35796.58 390
PM-MVS92.96 35692.23 36095.14 36595.61 39489.98 39199.37 22798.21 37994.80 35995.04 38197.69 38465.06 39997.90 38494.30 35389.98 38597.54 384
SSC-MVS92.73 35793.73 35389.72 38195.02 40081.38 40199.76 3799.23 29394.87 35792.80 39098.93 34694.71 22791.37 40574.49 40593.80 35996.42 391
test_fmvs392.10 35891.77 36193.08 37196.19 39086.25 39399.82 1698.62 36996.65 29095.19 37996.90 39155.05 40695.93 39996.63 31290.92 38197.06 387
test_f91.90 35991.26 36393.84 36895.52 39785.92 39499.69 5598.53 37395.31 34793.87 38596.37 39455.33 40598.27 37595.70 33090.98 38097.32 386
test_method91.10 36091.36 36290.31 37995.85 39273.72 41294.89 40099.25 29068.39 40395.82 37499.02 33680.50 39398.95 35793.64 36294.89 34398.25 357
Gipumacopyleft90.99 36190.15 36693.51 36998.73 34390.12 39093.98 40199.45 19879.32 39992.28 39194.91 39669.61 39797.98 38287.42 39495.67 32492.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf190.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
APD_test290.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
test_vis3_rt87.04 36485.81 36790.73 37893.99 40281.96 39999.76 3790.23 41392.81 37981.35 40191.56 40140.06 41099.07 33694.27 35588.23 38891.15 401
PMMVS286.87 36585.37 36991.35 37790.21 40683.80 39698.89 34697.45 39283.13 39891.67 39595.03 39548.49 40894.70 40185.86 40077.62 40095.54 396
LCM-MVSNet86.80 36685.22 37091.53 37687.81 40880.96 40298.23 39198.99 32471.05 40190.13 39696.51 39348.45 40996.88 39490.51 38285.30 39296.76 388
FPMVS84.93 36785.65 36882.75 38886.77 40963.39 41498.35 38398.92 33374.11 40083.39 39998.98 34150.85 40792.40 40384.54 40194.97 33992.46 398
EGC-MVSNET82.80 36877.86 37497.62 33297.91 37296.12 33199.33 24199.28 2858.40 41125.05 41299.27 30884.11 38399.33 29489.20 38798.22 23297.42 385
tmp_tt82.80 36881.52 37186.66 38466.61 41468.44 41392.79 40397.92 38368.96 40280.04 40599.85 5285.77 37296.15 39897.86 22043.89 40795.39 397
E-PMN80.61 37079.88 37282.81 38790.75 40576.38 40897.69 39695.76 40266.44 40583.52 39892.25 40062.54 40187.16 40768.53 40761.40 40484.89 405
EMVS80.02 37179.22 37382.43 38991.19 40476.40 40797.55 39892.49 41266.36 40683.01 40091.27 40264.63 40085.79 40865.82 40860.65 40585.08 404
ANet_high77.30 37274.86 37684.62 38675.88 41277.61 40697.63 39793.15 41088.81 39264.27 40789.29 40436.51 41183.93 40975.89 40452.31 40692.33 400
MVEpermissive76.82 2176.91 37374.31 37784.70 38585.38 41176.05 40996.88 39993.17 40967.39 40471.28 40689.01 40521.66 41687.69 40671.74 40672.29 40390.35 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37474.97 37579.01 39070.98 41355.18 41593.37 40298.21 37965.08 40761.78 40893.83 39821.74 41592.53 40278.59 40291.12 37989.34 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37541.29 38036.84 39186.18 41049.12 41679.73 40422.81 41627.64 40825.46 41128.45 41121.98 41448.89 41055.80 40923.56 41012.51 408
testmvs39.17 37643.78 37825.37 39336.04 41616.84 41898.36 38226.56 41520.06 40938.51 41067.32 40629.64 41315.30 41237.59 41039.90 40843.98 407
test12339.01 37742.50 37928.53 39239.17 41520.91 41798.75 36019.17 41719.83 41038.57 40966.67 40733.16 41215.42 41137.50 41129.66 40949.26 406
cdsmvs_eth3d_5k24.64 37832.85 3810.00 3940.00 4170.00 4190.00 40599.51 1150.00 4120.00 41399.56 22296.58 1530.00 4130.00 4120.00 4110.00 409
ab-mvs-re8.30 37911.06 3820.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41399.58 2150.00 4170.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas8.27 38011.03 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 41399.01 180.00 4130.00 4120.00 4110.00 409
test_blank0.13 3810.17 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4131.57 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet_test0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS97.16 27895.47 336
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
PC_three_145298.18 13399.84 2999.70 15799.31 398.52 37198.30 18799.80 10199.81 61
No_MVS99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
test_one_060199.81 4699.88 899.49 14498.97 5199.65 9399.81 8999.09 14
eth-test20.00 417
eth-test0.00 417
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23198.58 7299.96 3096.93 29799.75 116
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.75 5598.61 14999.81 9799.77 82
IU-MVS99.84 3299.88 899.32 27098.30 11699.84 2998.86 11399.85 7399.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15799.27 599.42 27898.24 18999.80 10199.79 74
test_241102_TWO99.48 15799.08 3399.88 2099.81 8998.94 2999.96 3098.91 10299.84 8199.88 26
test_241102_ONE99.84 3299.90 299.48 15799.07 3599.91 1699.74 14299.20 799.76 202
9.1499.10 8099.72 9199.40 21699.51 11597.53 21499.64 9799.78 12298.84 4199.91 10597.63 24499.82 94
save fliter99.76 6599.59 7099.14 29299.40 22299.00 43
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11599.90 4399.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9999.86 6699.88 26
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7498.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21499.52 167
sam_mvs94.72 226
ambc93.06 37292.68 40382.36 39798.47 37998.73 36395.09 38097.41 38655.55 40499.10 33496.42 31691.32 37697.71 378
MTGPAbinary99.47 177
test_post199.23 27665.14 40994.18 25299.71 22397.58 248
test_post65.99 40894.65 23299.73 213
patchmatchnet-post98.70 36094.79 21899.74 207
GG-mvs-BLEND98.45 27198.55 36198.16 23299.43 19993.68 40897.23 35798.46 36689.30 34799.22 31395.43 33898.22 23297.98 372
MTMP99.54 13798.88 342
gm-plane-assit98.54 36292.96 38094.65 36299.15 32299.64 24897.56 253
test9_res97.49 25999.72 12299.75 88
TEST999.67 11199.65 5799.05 31199.41 21696.22 32398.95 25099.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 31699.41 21696.28 31798.93 25399.48 25398.76 5299.91 105
agg_prior297.21 27799.73 12199.75 88
agg_prior99.67 11199.62 6599.40 22298.87 26399.91 105
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
test_prior499.56 7598.99 328
test_prior298.96 33598.34 11299.01 24099.52 23898.68 6497.96 21299.74 119
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
旧先验298.96 33596.70 28699.47 13699.94 6998.19 192
新几何299.01 325
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19198.43 8399.94 6996.92 29999.66 13299.72 103
旧先验199.74 8099.59 7099.54 8599.69 16798.47 8099.68 13099.73 97
无先验98.99 32899.51 11596.89 27699.93 8497.53 25699.72 103
原ACMM298.95 338
原ACMM199.65 7399.73 8799.33 10699.47 17797.46 22099.12 21999.66 18498.67 6699.91 10597.70 24199.69 12799.71 112
test22299.75 7399.49 8998.91 34599.49 14496.42 31199.34 17399.65 18598.28 9299.69 12799.72 103
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 9999.75 7398.95 16599.51 11597.07 26099.43 14599.70 15798.87 3799.94 6997.76 23299.64 13599.72 103
testdata198.85 35098.32 115
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
plane_prior799.29 24197.03 291
plane_prior699.27 24696.98 29592.71 289
plane_prior599.47 17799.69 23497.78 22897.63 26098.67 294
plane_prior499.61 206
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22098.97 51
plane_prior199.26 248
plane_prior96.97 29699.21 28298.45 10097.60 263
n20.00 418
nn0.00 418
door-mid98.05 382
lessismore_v097.79 32698.69 34995.44 34794.75 40595.71 37599.87 4388.69 35399.32 29795.89 32594.93 34198.62 315
LGP-MVS_train98.49 26299.33 22997.05 28799.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26498.98 33198.24 12298.66 290
ACMP_Plane99.19 26498.98 33198.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 306
HQP3-MVS99.39 22597.58 265
HQP2-MVS92.47 298
NP-MVS99.23 25496.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23696.84 27999.58 11495.19 20597.82 22599.46 190
MDTV_nov1_ep1398.32 17599.11 28594.44 36499.27 26298.74 35897.51 21799.40 15799.62 20294.78 21999.76 20297.59 24798.81 202
ACMMP++_ref97.19 292
ACMMP++97.43 282
Test By Simon98.75 55
ITE_SJBPF98.08 30499.29 24196.37 32398.92 33398.34 11298.83 26899.75 13791.09 32899.62 25495.82 32697.40 28498.25 357
DeepMVS_CXcopyleft93.34 37099.29 24182.27 39899.22 29585.15 39596.33 36999.05 33290.97 33099.73 21393.57 36397.77 25598.01 368