This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 12899.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 12899.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18699.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11599.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7299.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22299.37 10599.58 11599.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 12899.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8299.91 3499.86 32
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15599.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9099.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15599.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9099.90 4399.85 36
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10099.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10799.85 7599.79 77
DVP-MVS++99.59 1199.50 1699.88 899.51 17599.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12099.80 10399.81 64
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 8899.39 22998.91 6299.78 5399.85 5799.36 299.94 7298.84 12399.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 1299.57 899.64 8299.78 5699.14 13799.60 10099.45 20199.01 4499.90 1999.83 7298.98 2499.93 9099.59 2899.95 1799.86 32
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8299.78 5699.15 13699.61 9999.45 20199.01 4499.89 2199.82 8199.01 1899.92 10199.56 3299.95 1799.85 36
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12299.37 24599.10 3199.81 4299.80 10898.94 3299.96 3298.93 10499.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15599.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20499.65 6099.50 17199.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10799.51 11998.62 8999.79 4899.83 7299.28 499.97 2198.48 17499.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 16899.74 14798.81 4799.94 7298.79 13199.86 6899.84 42
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7499.47 18198.79 7499.68 8199.81 9598.43 8699.97 2198.88 11099.90 4399.83 52
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16499.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19799.76 6299.75 14299.13 1299.92 10199.07 8899.92 2799.85 36
mvsany_test199.50 2399.46 2399.62 8899.61 14599.09 14298.94 35099.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14499.82 57
CS-MVS99.50 2399.48 1899.54 10299.76 6699.42 10199.90 199.55 7898.56 9499.78 5399.70 16298.65 7199.79 19799.65 2599.78 11099.41 207
CS-MVS-test99.49 2599.48 1899.54 10299.78 5699.30 11699.89 299.58 6298.56 9499.73 6899.69 17298.55 7899.82 18299.69 2199.85 7599.48 186
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7499.67 2398.15 14099.68 8199.69 17299.06 1699.96 3298.69 14399.87 6099.84 42
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7499.67 2398.15 14099.67 8599.69 17298.95 3099.96 3298.69 14399.87 6099.84 42
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24099.46 19099.07 3999.79 4899.82 8198.85 4299.92 10198.68 14599.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8099.66 2898.13 14599.66 9099.68 17898.96 2599.96 3298.62 15299.87 6099.84 42
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 8899.54 8798.36 11499.79 4899.82 8198.86 4199.95 6298.62 15299.81 9999.78 83
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32299.66 2899.14 2399.57 12299.80 10898.46 8499.94 7299.57 3199.84 8399.60 150
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8399.67 2398.08 15599.55 12799.64 19698.91 3799.96 3298.72 13899.90 4399.82 57
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19299.48 16198.05 16299.76 6299.86 5298.82 4699.93 9098.82 13099.91 3499.84 42
MVSMamba_PlusPlus99.46 3499.41 2999.64 8299.68 11299.50 9199.75 4299.50 13998.27 12399.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 192
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10799.87 2999.84 6798.05 10799.91 11299.58 3099.94 2399.52 173
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24099.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20499.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3499.47 2099.44 13499.60 15099.16 13299.41 21699.71 1398.98 5299.45 14399.78 12799.19 999.54 26999.28 6699.84 8399.63 143
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 8899.52 10598.38 11099.76 6299.82 8198.53 7999.95 6298.61 15599.81 9999.77 85
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11599.65 3397.84 18399.71 7599.80 10899.12 1399.97 2198.33 19099.87 6099.83 52
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15699.53 13099.63 20298.93 3699.97 2198.74 13599.91 3499.83 52
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9399.69 1898.12 14699.63 10599.84 6798.73 6399.96 3298.55 17099.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 12899.47 18197.45 23099.78 5399.82 8199.18 1099.91 11298.79 13199.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14699.50 13599.75 14298.78 5199.97 2198.57 16499.89 5499.83 52
EC-MVSNet99.44 4299.39 3299.58 9599.56 16099.49 9299.88 499.58 6298.38 11099.73 6899.69 17298.20 9999.70 23599.64 2799.82 9699.54 166
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10799.62 4198.21 13399.73 6899.79 12098.68 6799.96 3298.44 18099.77 11399.79 77
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26199.40 22698.79 7499.52 13299.62 20798.91 3799.90 12498.64 14999.75 11899.82 57
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5799.49 25398.21 9899.95 6298.46 17899.77 11399.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17199.70 1598.79 7499.77 5799.96 197.45 12099.96 3298.92 10699.90 4399.89 19
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21199.68 8199.63 20298.91 3799.94 7298.58 16199.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28099.52 10598.82 6999.39 16499.71 15898.96 2599.85 15598.59 16099.80 10399.77 85
SD-MVS99.41 5199.52 1299.05 18999.74 8399.68 5199.46 19599.52 10599.11 3099.88 2499.91 2099.43 197.70 39898.72 13899.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35099.85 698.82 6999.65 9799.74 14798.51 8199.80 19498.83 12699.89 5499.64 139
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 34899.85 698.82 6999.54 12899.73 15398.51 8199.74 21398.91 10799.88 5799.77 85
MM99.40 5499.28 6099.74 6499.67 11499.31 11499.52 15598.87 35299.55 199.74 6699.80 10896.47 15899.98 1399.97 199.97 799.94 11
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10099.67 2397.97 16899.63 10599.68 17898.52 8099.95 6298.38 18399.86 6899.81 64
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20699.51 11998.68 8699.27 19299.53 24098.64 7299.96 3298.44 18099.80 10399.79 77
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12299.54 8797.82 18899.71 7599.80 10898.95 3099.93 9098.19 20099.84 8399.74 95
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25699.52 10597.18 25699.60 11599.79 12098.79 5099.95 6298.83 12699.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 5999.36 3899.36 14399.67 11498.61 20499.07 31799.33 26599.00 4799.82 4199.81 9599.06 1699.84 16299.09 8699.42 15499.65 132
PVSNet_Blended_VisFu99.36 5999.28 6099.61 8999.86 2099.07 14799.47 19299.93 297.66 20699.71 7599.86 5297.73 11599.96 3299.47 4799.82 9699.79 77
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25699.48 16198.86 6499.21 20699.63 20298.72 6499.90 12498.25 19699.63 13999.80 73
mamv499.33 6299.42 2599.07 18599.67 11497.73 26099.42 21399.60 5498.15 14099.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 166
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7499.46 19098.09 15199.48 13999.74 14798.29 9599.96 3297.93 22299.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 6499.32 4699.30 15799.57 15698.94 16998.97 34499.46 19098.92 6199.71 7599.24 32199.01 1899.98 1399.35 5499.66 13498.97 256
CSCG99.32 6499.32 4699.32 15199.85 2698.29 22999.71 5599.66 2898.11 14899.41 15799.80 10898.37 9299.96 3298.99 9699.96 1299.72 106
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11599.80 897.12 26299.62 10999.73 15398.58 7599.90 12498.61 15599.91 3499.68 122
DeepC-MVS98.35 299.30 6699.19 7399.64 8299.82 4299.23 12599.62 9399.55 7898.94 5899.63 10599.95 395.82 18499.94 7299.37 5399.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15499.62 4198.74 8099.99 299.95 394.53 24199.94 7299.89 1299.96 1299.97 4
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17199.50 13997.16 25899.77 5799.82 8198.78 5199.94 7297.56 26199.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 7299.12 7999.74 6499.18 27599.75 4299.56 12899.57 6598.45 10399.49 13899.85 5797.77 11499.94 7298.33 19099.84 8399.52 173
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17299.62 6899.54 14699.62 4198.69 8499.99 299.96 194.47 24399.94 7299.88 1399.92 2799.98 2
patch_mono-299.26 7499.62 598.16 30499.81 4694.59 37299.52 15599.64 3699.33 1399.73 6899.90 2799.00 2299.99 499.69 2199.98 499.89 19
ETV-MVS99.26 7499.21 7199.40 13799.46 19799.30 11699.56 12899.52 10598.52 9899.44 14899.27 31798.41 9099.86 14999.10 8599.59 14399.04 248
xiu_mvs_v2_base99.26 7499.25 6799.29 16099.53 16898.91 17399.02 33099.45 20198.80 7399.71 7599.26 31998.94 3299.98 1399.34 5999.23 16998.98 255
CANet99.25 7899.14 7799.59 9299.41 21299.16 13299.35 24599.57 6598.82 6999.51 13499.61 21196.46 15999.95 6299.59 2899.98 499.65 132
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29199.66 5699.84 1299.74 1099.09 3698.92 25999.90 2795.94 17899.98 1398.95 10099.92 2799.79 77
dcpmvs_299.23 8099.58 798.16 30499.83 3994.68 37099.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37799.48 9499.55 14299.51 11999.39 1099.78 5399.93 994.80 21999.95 6299.93 1099.95 1799.94 11
CHOSEN 1792x268899.19 8299.10 8199.45 13099.89 898.52 21499.39 22899.94 198.73 8199.11 22599.89 3295.50 19499.94 7299.50 4099.97 799.89 19
F-COLMAP99.19 8299.04 9099.64 8299.78 5699.27 12099.42 21399.54 8797.29 24799.41 15799.59 21698.42 8899.93 9098.19 20099.69 12999.73 100
EIA-MVS99.18 8499.09 8499.45 13099.49 18799.18 12999.67 6999.53 10097.66 20699.40 16299.44 26998.10 10399.81 18798.94 10199.62 14099.35 216
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28399.68 5199.81 2099.51 11999.20 1898.72 28699.89 3295.68 18999.97 2198.86 11899.86 6899.81 64
MVSFormer99.17 8699.12 7999.29 16099.51 17598.94 16999.88 499.46 19097.55 21799.80 4699.65 19097.39 12199.28 30999.03 9299.85 7599.65 132
sss99.17 8699.05 8899.53 11099.62 14198.97 15999.36 24099.62 4197.83 18499.67 8599.65 19097.37 12499.95 6299.19 7499.19 17299.68 122
test_cas_vis1_n_192099.16 8899.01 10099.61 8999.81 4698.86 17999.65 8099.64 3699.39 1099.97 1399.94 693.20 27999.98 1399.55 3399.91 3499.99 1
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21699.50 13997.03 27499.04 24199.88 3997.39 12199.92 10198.66 14799.90 4399.87 30
MVS_030499.15 9098.96 11099.73 6798.92 32699.37 10599.37 23596.92 40399.51 299.66 9099.78 12796.69 14999.97 2199.84 1599.97 799.84 42
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10199.66 12499.09 14299.64 8399.56 7098.26 12599.45 14399.87 4896.03 17399.81 18799.54 3499.15 17699.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9099.02 9699.53 11099.66 12499.14 13799.72 5299.48 16198.35 11599.42 15399.84 6796.07 17199.79 19799.51 3999.14 17799.67 125
diffmvspermissive99.14 9399.02 9699.51 11899.61 14598.96 16399.28 26699.49 14998.46 10299.72 7399.71 15896.50 15799.88 14199.31 6299.11 17999.67 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9398.99 10299.59 9299.58 15499.41 10399.16 29899.44 20998.45 10399.19 21299.49 25398.08 10599.89 13697.73 24499.75 11899.48 186
CDPH-MVS99.13 9598.91 11699.80 4999.75 7699.71 4799.15 30199.41 22096.60 30699.60 11599.55 23198.83 4599.90 12497.48 26899.83 9299.78 83
casdiffmvspermissive99.13 9598.98 10599.56 9999.65 13099.16 13299.56 12899.50 13998.33 11899.41 15799.86 5295.92 17999.83 17599.45 4999.16 17399.70 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9599.03 9299.45 13099.46 19798.87 17699.12 30799.26 29398.03 16599.79 4899.65 19097.02 13899.85 15599.02 9499.90 4399.65 132
jason: jason.
lupinMVS99.13 9599.01 10099.46 12999.51 17598.94 16999.05 32299.16 31097.86 17899.80 4699.56 22897.39 12199.86 14998.94 10199.85 7599.58 158
EPP-MVSNet99.13 9598.99 10299.53 11099.65 13099.06 14899.81 2099.33 26597.43 23499.60 11599.88 3997.14 13199.84 16299.13 8098.94 19399.69 118
MG-MVS99.13 9599.02 9699.45 13099.57 15698.63 20199.07 31799.34 25898.99 4999.61 11299.82 8197.98 10999.87 14697.00 29899.80 10399.85 36
CHOSEN 280x42099.12 10199.13 7899.08 18499.66 12497.89 25398.43 39199.71 1398.88 6399.62 10999.76 13996.63 15199.70 23599.46 4899.99 199.66 128
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27199.57 6596.40 32299.42 15399.68 17898.75 5899.80 19497.98 21999.72 12499.44 202
Vis-MVSNetpermissive99.12 10198.97 10699.56 9999.78 5699.10 14199.68 6699.66 2898.49 10099.86 3399.87 4894.77 22499.84 16299.19 7499.41 15599.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 10199.08 8599.24 16999.46 19798.55 20899.51 16499.46 19098.09 15199.45 14399.82 8198.34 9399.51 27098.70 14098.93 19499.67 125
SDMVSNet99.11 10598.90 11799.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10299.88 3994.56 23799.93 9099.67 2398.26 23599.72 106
VNet99.11 10598.90 11799.73 6799.52 17299.56 7999.41 21699.39 22999.01 4499.74 6699.78 12795.56 19299.92 10199.52 3898.18 24299.72 106
CPTT-MVS99.11 10598.90 11799.74 6499.80 5299.46 9799.59 10799.49 14997.03 27499.63 10599.69 17297.27 12999.96 3297.82 23399.84 8399.81 64
HyFIR lowres test99.11 10598.92 11499.65 7799.90 499.37 10599.02 33099.91 397.67 20599.59 11899.75 14295.90 18199.73 21999.53 3699.02 19099.86 32
MVS_Test99.10 10998.97 10699.48 12499.49 18799.14 13799.67 6999.34 25897.31 24599.58 11999.76 13997.65 11799.82 18298.87 11399.07 18599.46 197
CDS-MVSNet99.09 11099.03 9299.25 16799.42 20798.73 19299.45 19699.46 19098.11 14899.46 14299.77 13598.01 10899.37 29298.70 14098.92 19699.66 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 11198.97 10699.42 13599.76 6698.79 18898.78 36699.91 396.74 29199.67 8599.49 25397.53 11899.88 14198.98 9799.85 7599.60 150
OMC-MVS99.08 11199.04 9099.20 17399.67 11498.22 23399.28 26699.52 10598.07 15699.66 9099.81 9597.79 11399.78 20297.79 23599.81 9999.60 150
mvsmamba99.06 11398.96 11099.36 14399.47 19598.64 20099.70 5699.05 32597.61 21099.65 9799.83 7296.54 15599.92 10199.19 7499.62 14099.51 180
WTY-MVS99.06 11398.88 12199.61 8999.62 14199.16 13299.37 23599.56 7098.04 16399.53 13099.62 20796.84 14399.94 7298.85 12098.49 22399.72 106
IS-MVSNet99.05 11598.87 12299.57 9799.73 9099.32 11099.75 4299.20 30598.02 16699.56 12399.86 5296.54 15599.67 24398.09 20799.13 17899.73 100
PAPM_NR99.04 11698.84 12899.66 7399.74 8399.44 9999.39 22899.38 23797.70 20199.28 18799.28 31498.34 9399.85 15596.96 30299.45 15299.69 118
API-MVS99.04 11699.03 9299.06 18799.40 21799.31 11499.55 14299.56 7098.54 9699.33 17899.39 28598.76 5599.78 20296.98 30099.78 11098.07 375
mvs_anonymous99.03 11898.99 10299.16 17799.38 22298.52 21499.51 16499.38 23797.79 18999.38 16699.81 9597.30 12799.45 27599.35 5498.99 19199.51 180
sasdasda99.02 11998.86 12499.51 11899.42 20799.32 11099.80 2599.48 16198.63 8799.31 18098.81 36397.09 13399.75 21199.27 6897.90 25399.47 192
train_agg99.02 11998.77 13599.77 5899.67 11499.65 6099.05 32299.41 22096.28 32698.95 25599.49 25398.76 5599.91 11297.63 25299.72 12499.75 91
canonicalmvs99.02 11998.86 12499.51 11899.42 20799.32 11099.80 2599.48 16198.63 8799.31 18098.81 36397.09 13399.75 21199.27 6897.90 25399.47 192
PLCcopyleft97.94 499.02 11998.85 12699.53 11099.66 12499.01 15499.24 28499.52 10596.85 28699.27 19299.48 25998.25 9799.91 11297.76 24099.62 14099.65 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12398.85 12699.50 12399.42 20799.26 12199.82 1699.48 16198.60 9199.28 18798.81 36397.04 13799.76 20899.29 6597.87 25699.47 192
AdaColmapbinary99.01 12398.80 13199.66 7399.56 16099.54 8399.18 29699.70 1598.18 13899.35 17499.63 20296.32 16499.90 12497.48 26899.77 11399.55 164
1112_ss98.98 12598.77 13599.59 9299.68 11299.02 15299.25 28299.48 16197.23 25399.13 22199.58 22096.93 14299.90 12498.87 11398.78 20799.84 42
MSDG98.98 12598.80 13199.53 11099.76 6699.19 12798.75 36999.55 7897.25 25099.47 14099.77 13597.82 11299.87 14696.93 30599.90 4399.54 166
CANet_DTU98.97 12798.87 12299.25 16799.33 23498.42 22699.08 31699.30 28399.16 2099.43 15099.75 14295.27 20299.97 2198.56 16799.95 1799.36 215
DPM-MVS98.95 12898.71 14199.66 7399.63 13599.55 8198.64 38099.10 31697.93 17199.42 15399.55 23198.67 6999.80 19495.80 33799.68 13299.61 147
114514_t98.93 12998.67 14599.72 6999.85 2699.53 8699.62 9399.59 5892.65 39199.71 7599.78 12798.06 10699.90 12498.84 12399.91 3499.74 95
PS-MVSNAJss98.92 13098.92 11498.90 21498.78 34498.53 21099.78 3299.54 8798.07 15699.00 24899.76 13999.01 1899.37 29299.13 8097.23 29598.81 265
RRT-MVS98.91 13198.75 13799.39 14199.46 19798.61 20499.76 3799.50 13998.06 16099.81 4299.88 3993.91 26499.94 7299.11 8299.27 16799.61 147
Test_1112_low_res98.89 13298.66 14899.57 9799.69 10898.95 16699.03 32799.47 18196.98 27699.15 21999.23 32296.77 14699.89 13698.83 12698.78 20799.86 32
test_fmvs198.88 13398.79 13499.16 17799.69 10897.61 26999.55 14299.49 14999.32 1499.98 699.91 2091.41 32799.96 3299.82 1699.92 2799.90 16
AllTest98.87 13498.72 13999.31 15299.86 2098.48 22099.56 12899.61 4897.85 18199.36 17199.85 5795.95 17699.85 15596.66 31899.83 9299.59 154
UGNet98.87 13498.69 14399.40 13799.22 26698.72 19399.44 20299.68 2099.24 1799.18 21699.42 27392.74 28999.96 3299.34 5999.94 2399.53 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13498.72 13999.31 15299.71 9998.88 17599.80 2599.44 20997.91 17399.36 17199.78 12795.49 19599.43 28497.91 22399.11 17999.62 145
test_yl98.86 13798.63 15099.54 10299.49 18799.18 12999.50 17199.07 32298.22 13199.61 11299.51 24795.37 19899.84 16298.60 15898.33 22999.59 154
DCV-MVSNet98.86 13798.63 15099.54 10299.49 18799.18 12999.50 17199.07 32298.22 13199.61 11299.51 24795.37 19899.84 16298.60 15898.33 22999.59 154
EPNet98.86 13798.71 14199.30 15797.20 39798.18 23499.62 9398.91 34599.28 1698.63 30599.81 9595.96 17599.99 499.24 7199.72 12499.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 13798.80 13199.03 19199.76 6698.79 18899.28 26699.91 397.42 23699.67 8599.37 29097.53 11899.88 14198.98 9797.29 29398.42 353
ab-mvs98.86 13798.63 15099.54 10299.64 13299.19 12799.44 20299.54 8797.77 19299.30 18399.81 9594.20 25199.93 9099.17 7898.82 20499.49 185
MAR-MVS98.86 13798.63 15099.54 10299.37 22599.66 5699.45 19699.54 8796.61 30399.01 24499.40 28197.09 13399.86 14997.68 25199.53 14899.10 236
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 13798.75 13799.17 17699.88 1198.53 21099.34 24899.59 5897.55 21798.70 29399.89 3295.83 18399.90 12498.10 20699.90 4399.08 241
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14498.62 15599.53 11099.61 14599.08 14599.80 2599.51 11997.10 26699.31 18099.78 12795.23 20699.77 20498.21 19899.03 18899.75 91
HY-MVS97.30 798.85 14498.64 14999.47 12799.42 20799.08 14599.62 9399.36 24697.39 23999.28 18799.68 17896.44 16199.92 10198.37 18598.22 23799.40 209
PVSNet96.02 1798.85 14498.84 12898.89 21799.73 9097.28 27898.32 39799.60 5497.86 17899.50 13599.57 22596.75 14799.86 14998.56 16799.70 12899.54 166
PatchMatch-RL98.84 14798.62 15599.52 11699.71 9999.28 11899.06 32099.77 997.74 19699.50 13599.53 24095.41 19699.84 16297.17 29299.64 13799.44 202
Effi-MVS+98.81 14898.59 16199.48 12499.46 19799.12 14098.08 40499.50 13997.50 22599.38 16699.41 27796.37 16399.81 18799.11 8298.54 22099.51 180
alignmvs98.81 14898.56 16499.58 9599.43 20599.42 10199.51 16498.96 33698.61 9099.35 17498.92 35894.78 22199.77 20499.35 5498.11 24799.54 166
DeepPCF-MVS98.18 398.81 14899.37 3697.12 35699.60 15091.75 39698.61 38199.44 20999.35 1299.83 4099.85 5798.70 6699.81 18799.02 9499.91 3499.81 64
PMMVS98.80 15198.62 15599.34 14599.27 25298.70 19498.76 36899.31 27997.34 24299.21 20699.07 33897.20 13099.82 18298.56 16798.87 19999.52 173
Effi-MVS+-dtu98.78 15298.89 12098.47 27399.33 23496.91 30799.57 12299.30 28398.47 10199.41 15798.99 34896.78 14599.74 21398.73 13799.38 15698.74 278
FIs98.78 15298.63 15099.23 17199.18 27599.54 8399.83 1599.59 5898.28 12198.79 28099.81 9596.75 14799.37 29299.08 8796.38 31198.78 267
Fast-Effi-MVS+-dtu98.77 15498.83 13098.60 25299.41 21296.99 30199.52 15599.49 14998.11 14899.24 19899.34 30096.96 14199.79 19797.95 22199.45 15299.02 251
sd_testset98.75 15598.57 16299.29 16099.81 4698.26 23199.56 12899.62 4198.78 7799.64 10299.88 3992.02 31199.88 14199.54 3498.26 23599.72 106
FA-MVS(test-final)98.75 15598.53 16699.41 13699.55 16499.05 15099.80 2599.01 33096.59 30899.58 11999.59 21695.39 19799.90 12497.78 23699.49 15099.28 224
FC-MVSNet-test98.75 15598.62 15599.15 18199.08 30299.45 9899.86 1199.60 5498.23 13098.70 29399.82 8196.80 14499.22 32199.07 8896.38 31198.79 266
XVG-OURS98.73 15898.68 14498.88 21999.70 10497.73 26098.92 35299.55 7898.52 9899.45 14399.84 6795.27 20299.91 11298.08 21198.84 20299.00 252
Fast-Effi-MVS+98.70 15998.43 17099.51 11899.51 17599.28 11899.52 15599.47 18196.11 34299.01 24499.34 30096.20 16899.84 16297.88 22598.82 20499.39 210
XVG-OURS-SEG-HR98.69 16098.62 15598.89 21799.71 9997.74 25999.12 30799.54 8798.44 10699.42 15399.71 15894.20 25199.92 10198.54 17198.90 19899.00 252
131498.68 16198.54 16599.11 18398.89 32998.65 19899.27 27199.49 14996.89 28497.99 34499.56 22897.72 11699.83 17597.74 24399.27 16798.84 264
EI-MVSNet98.67 16298.67 14598.68 24899.35 22997.97 24699.50 17199.38 23796.93 28399.20 20999.83 7297.87 11099.36 29698.38 18397.56 27298.71 282
test_djsdf98.67 16298.57 16298.98 19798.70 35898.91 17399.88 499.46 19097.55 21799.22 20399.88 3995.73 18799.28 30999.03 9297.62 26798.75 275
QAPM98.67 16298.30 18099.80 4999.20 26999.67 5499.77 3499.72 1194.74 36998.73 28599.90 2795.78 18599.98 1396.96 30299.88 5799.76 90
nrg03098.64 16598.42 17199.28 16499.05 30899.69 5099.81 2099.46 19098.04 16399.01 24499.82 8196.69 14999.38 28999.34 5994.59 35598.78 267
test_vis1_n_192098.63 16698.40 17399.31 15299.86 2097.94 25299.67 6999.62 4199.43 799.99 299.91 2087.29 376100.00 199.92 1199.92 2799.98 2
PAPR98.63 16698.34 17699.51 11899.40 21799.03 15198.80 36499.36 24696.33 32399.00 24899.12 33698.46 8499.84 16295.23 35299.37 16399.66 128
CVMVSNet98.57 16898.67 14598.30 29399.35 22995.59 34899.50 17199.55 7898.60 9199.39 16499.83 7294.48 24299.45 27598.75 13498.56 21899.85 36
MVSTER98.49 16998.32 17899.00 19599.35 22999.02 15299.54 14699.38 23797.41 23799.20 20999.73 15393.86 26699.36 29698.87 11397.56 27298.62 324
FE-MVS98.48 17098.17 18599.40 13799.54 16798.96 16399.68 6698.81 35995.54 35399.62 10999.70 16293.82 26799.93 9097.35 27999.46 15199.32 221
OpenMVScopyleft96.50 1698.47 17198.12 19299.52 11699.04 30999.53 8699.82 1699.72 1194.56 37298.08 33999.88 3994.73 22799.98 1397.47 27099.76 11699.06 247
IterMVS-LS98.46 17298.42 17198.58 25699.59 15298.00 24499.37 23599.43 21596.94 28299.07 23399.59 21697.87 11099.03 34998.32 19295.62 33398.71 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17398.28 18198.94 20498.50 37498.96 16399.77 3499.50 13997.07 26898.87 26899.77 13594.76 22599.28 30998.66 14797.60 26898.57 339
jajsoiax98.43 17498.28 18198.88 21998.60 36898.43 22499.82 1699.53 10098.19 13598.63 30599.80 10893.22 27899.44 28099.22 7297.50 27998.77 271
tttt051798.42 17598.14 18999.28 16499.66 12498.38 22799.74 4696.85 40497.68 20399.79 4899.74 14791.39 32899.89 13698.83 12699.56 14599.57 161
BH-untuned98.42 17598.36 17498.59 25399.49 18796.70 31599.27 27199.13 31497.24 25298.80 27899.38 28795.75 18699.74 21397.07 29699.16 17399.33 220
test_fmvs1_n98.41 17798.14 18999.21 17299.82 4297.71 26599.74 4699.49 14999.32 1499.99 299.95 385.32 38799.97 2199.82 1699.84 8399.96 7
D2MVS98.41 17798.50 16798.15 30799.26 25496.62 32199.40 22499.61 4897.71 19898.98 25099.36 29396.04 17299.67 24398.70 14097.41 28998.15 371
BH-RMVSNet98.41 17798.08 19899.40 13799.41 21298.83 18499.30 25698.77 36397.70 20198.94 25799.65 19092.91 28599.74 21396.52 32299.55 14799.64 139
mvs_tets98.40 18098.23 18398.91 21298.67 36198.51 21699.66 7499.53 10098.19 13598.65 30299.81 9592.75 28799.44 28099.31 6297.48 28398.77 271
MonoMVSNet98.38 18198.47 16998.12 30998.59 37096.19 33899.72 5298.79 36297.89 17599.44 14899.52 24396.13 16998.90 37098.64 14997.54 27499.28 224
XXY-MVS98.38 18198.09 19799.24 16999.26 25499.32 11099.56 12899.55 7897.45 23098.71 28799.83 7293.23 27699.63 26098.88 11096.32 31398.76 273
ACMM97.58 598.37 18398.34 17698.48 26899.41 21297.10 28899.56 12899.45 20198.53 9799.04 24199.85 5793.00 28199.71 22998.74 13597.45 28498.64 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18498.03 20499.31 15299.63 13598.56 20799.54 14696.75 40697.53 22199.73 6899.65 19091.25 33199.89 13698.62 15299.56 14599.48 186
tpmrst98.33 18598.48 16897.90 32599.16 28594.78 36899.31 25499.11 31597.27 24899.45 14399.59 21695.33 20099.84 16298.48 17498.61 21299.09 240
baseline198.31 18697.95 21399.38 14299.50 18598.74 19199.59 10798.93 33898.41 10899.14 22099.60 21494.59 23599.79 19798.48 17493.29 37499.61 147
PatchmatchNetpermissive98.31 18698.36 17498.19 30299.16 28595.32 35899.27 27198.92 34197.37 24099.37 16899.58 22094.90 21499.70 23597.43 27499.21 17099.54 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18897.98 20999.26 16699.57 15698.16 23599.41 21698.55 38196.03 34799.19 21299.74 14791.87 31499.92 10199.16 7998.29 23499.70 116
VPA-MVSNet98.29 18997.95 21399.30 15799.16 28599.54 8399.50 17199.58 6298.27 12399.35 17499.37 29092.53 29999.65 25199.35 5494.46 35698.72 280
UniMVSNet (Re)98.29 18998.00 20799.13 18299.00 31399.36 10899.49 18299.51 11997.95 16998.97 25299.13 33396.30 16599.38 28998.36 18793.34 37398.66 311
HQP_MVS98.27 19198.22 18498.44 27999.29 24796.97 30399.39 22899.47 18198.97 5599.11 22599.61 21192.71 29299.69 24097.78 23697.63 26598.67 303
UniMVSNet_NR-MVSNet98.22 19297.97 21098.96 20098.92 32698.98 15699.48 18699.53 10097.76 19398.71 28799.46 26696.43 16299.22 32198.57 16492.87 38098.69 291
LPG-MVS_test98.22 19298.13 19198.49 26699.33 23497.05 29499.58 11599.55 7897.46 22799.24 19899.83 7292.58 29799.72 22398.09 20797.51 27798.68 296
RPSCF98.22 19298.62 15596.99 35899.82 4291.58 39799.72 5299.44 20996.61 30399.66 9099.89 3295.92 17999.82 18297.46 27199.10 18299.57 161
ADS-MVSNet98.20 19598.08 19898.56 26099.33 23496.48 32699.23 28699.15 31196.24 33099.10 22899.67 18494.11 25599.71 22996.81 31099.05 18699.48 186
OPM-MVS98.19 19698.10 19498.45 27698.88 33097.07 29299.28 26699.38 23798.57 9399.22 20399.81 9592.12 30999.66 24698.08 21197.54 27498.61 333
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19698.16 18698.27 29999.30 24395.55 34999.07 31798.97 33497.57 21499.43 15099.57 22592.72 29099.74 21397.58 25699.20 17199.52 173
miper_ehance_all_eth98.18 19898.10 19498.41 28299.23 26297.72 26298.72 37299.31 27996.60 30698.88 26599.29 31297.29 12899.13 33597.60 25495.99 32298.38 358
CR-MVSNet98.17 19997.93 21698.87 22399.18 27598.49 21899.22 29099.33 26596.96 27899.56 12399.38 28794.33 24799.00 35494.83 35998.58 21599.14 233
miper_enhance_ethall98.16 20098.08 19898.41 28298.96 32297.72 26298.45 39099.32 27596.95 28098.97 25299.17 32897.06 13699.22 32197.86 22895.99 32298.29 362
CLD-MVS98.16 20098.10 19498.33 28999.29 24796.82 31298.75 36999.44 20997.83 18499.13 22199.55 23192.92 28399.67 24398.32 19297.69 26398.48 345
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 20297.79 22899.19 17499.50 18598.50 21798.61 38196.82 40596.95 28099.54 12899.43 27191.66 32399.86 14998.08 21199.51 14999.22 230
pmmvs498.13 20397.90 21898.81 23598.61 36798.87 17698.99 33899.21 30496.44 31899.06 23899.58 22095.90 18199.11 34097.18 29196.11 31898.46 350
WR-MVS_H98.13 20397.87 22398.90 21499.02 31198.84 18199.70 5699.59 5897.27 24898.40 32199.19 32795.53 19399.23 31798.34 18993.78 37098.61 333
c3_l98.12 20598.04 20398.38 28699.30 24397.69 26698.81 36399.33 26596.67 29698.83 27499.34 30097.11 13298.99 35597.58 25695.34 34098.48 345
ACMH97.28 898.10 20697.99 20898.44 27999.41 21296.96 30599.60 10099.56 7098.09 15198.15 33799.91 2090.87 33599.70 23598.88 11097.45 28498.67 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20797.68 24499.34 14599.66 12498.44 22399.40 22499.43 21593.67 37999.22 20399.89 3290.23 34399.93 9099.26 7098.33 22999.66 128
CP-MVSNet98.09 20797.78 23199.01 19398.97 32199.24 12499.67 6999.46 19097.25 25098.48 31899.64 19693.79 26899.06 34598.63 15194.10 36498.74 278
dmvs_re98.08 20998.16 18697.85 32899.55 16494.67 37199.70 5698.92 34198.15 14099.06 23899.35 29693.67 27299.25 31497.77 23997.25 29499.64 139
DU-MVS98.08 20997.79 22898.96 20098.87 33398.98 15699.41 21699.45 20197.87 17798.71 28799.50 25094.82 21799.22 32198.57 16492.87 38098.68 296
v2v48298.06 21197.77 23398.92 20898.90 32898.82 18599.57 12299.36 24696.65 29899.19 21299.35 29694.20 25199.25 31497.72 24694.97 34898.69 291
V4298.06 21197.79 22898.86 22698.98 31998.84 18199.69 6099.34 25896.53 31099.30 18399.37 29094.67 23299.32 30497.57 26094.66 35398.42 353
test-LLR98.06 21197.90 21898.55 26298.79 34197.10 28898.67 37597.75 39697.34 24298.61 30898.85 36094.45 24499.45 27597.25 28399.38 15699.10 236
WR-MVS98.06 21197.73 24099.06 18798.86 33699.25 12399.19 29499.35 25397.30 24698.66 29699.43 27193.94 26199.21 32698.58 16194.28 36098.71 282
ACMP97.20 1198.06 21197.94 21598.45 27699.37 22597.01 29999.44 20299.49 14997.54 22098.45 31999.79 12091.95 31399.72 22397.91 22397.49 28298.62 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21697.96 21198.33 28999.26 25497.38 27598.56 38699.31 27996.65 29898.88 26599.52 24396.58 15399.12 33997.39 27695.53 33798.47 347
test111198.04 21798.11 19397.83 33199.74 8393.82 38099.58 11595.40 41399.12 2999.65 9799.93 990.73 33699.84 16299.43 5099.38 15699.82 57
ECVR-MVScopyleft98.04 21798.05 20298.00 31799.74 8394.37 37599.59 10794.98 41499.13 2499.66 9099.93 990.67 33799.84 16299.40 5199.38 15699.80 73
EPNet_dtu98.03 21997.96 21198.23 30098.27 37995.54 35199.23 28698.75 36499.02 4297.82 35199.71 15896.11 17099.48 27193.04 37999.65 13699.69 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21997.76 23798.84 23099.39 22098.98 15699.40 22499.38 23796.67 29699.07 23399.28 31492.93 28298.98 35697.10 29396.65 30498.56 340
ADS-MVSNet298.02 22198.07 20197.87 32799.33 23495.19 36199.23 28699.08 31996.24 33099.10 22899.67 18494.11 25598.93 36796.81 31099.05 18699.48 186
HQP-MVS98.02 22197.90 21898.37 28799.19 27296.83 31098.98 34199.39 22998.24 12798.66 29699.40 28192.47 30199.64 25497.19 28997.58 27098.64 315
LTVRE_ROB97.16 1298.02 22197.90 21898.40 28499.23 26296.80 31399.70 5699.60 5497.12 26298.18 33699.70 16291.73 31999.72 22398.39 18297.45 28498.68 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22497.84 22698.55 26299.25 25897.97 24698.71 37399.34 25896.47 31798.59 31199.54 23695.65 19099.21 32697.21 28595.77 32898.46 350
DIV-MVS_self_test98.01 22497.85 22598.48 26899.24 26097.95 25098.71 37399.35 25396.50 31198.60 31099.54 23695.72 18899.03 34997.21 28595.77 32898.46 350
miper_lstm_enhance98.00 22697.91 21798.28 29899.34 23397.43 27398.88 35699.36 24696.48 31598.80 27899.55 23195.98 17498.91 36897.27 28295.50 33898.51 343
BH-w/o98.00 22697.89 22298.32 29199.35 22996.20 33799.01 33598.90 34796.42 32098.38 32299.00 34795.26 20499.72 22396.06 33098.61 21299.03 249
v114497.98 22897.69 24398.85 22998.87 33398.66 19799.54 14699.35 25396.27 32899.23 20299.35 29694.67 23299.23 31796.73 31395.16 34498.68 296
EU-MVSNet97.98 22898.03 20497.81 33498.72 35596.65 32099.66 7499.66 2898.09 15198.35 32499.82 8195.25 20598.01 39197.41 27595.30 34198.78 267
tpmvs97.98 22898.02 20697.84 33099.04 30994.73 36999.31 25499.20 30596.10 34698.76 28399.42 27394.94 21099.81 18796.97 30198.45 22498.97 256
tt080597.97 23197.77 23398.57 25799.59 15296.61 32299.45 19699.08 31998.21 13398.88 26599.80 10888.66 36199.70 23598.58 16197.72 26299.39 210
NR-MVSNet97.97 23197.61 25399.02 19298.87 33399.26 12199.47 19299.42 21797.63 20897.08 36999.50 25095.07 20999.13 33597.86 22893.59 37198.68 296
v897.95 23397.63 25198.93 20698.95 32398.81 18799.80 2599.41 22096.03 34799.10 22899.42 27394.92 21399.30 30796.94 30494.08 36598.66 311
Patchmatch-test97.93 23497.65 24798.77 24099.18 27597.07 29299.03 32799.14 31396.16 33798.74 28499.57 22594.56 23799.72 22393.36 37599.11 17999.52 173
PS-CasMVS97.93 23497.59 25598.95 20298.99 31699.06 14899.68 6699.52 10597.13 26098.31 32699.68 17892.44 30599.05 34698.51 17294.08 36598.75 275
TranMVSNet+NR-MVSNet97.93 23497.66 24698.76 24198.78 34498.62 20299.65 8099.49 14997.76 19398.49 31799.60 21494.23 25098.97 36398.00 21892.90 37898.70 287
test_vis1_n97.92 23797.44 27699.34 14599.53 16898.08 24099.74 4699.49 14999.15 21100.00 199.94 679.51 40699.98 1399.88 1399.76 11699.97 4
v14419297.92 23797.60 25498.87 22398.83 33998.65 19899.55 14299.34 25896.20 33399.32 17999.40 28194.36 24699.26 31396.37 32795.03 34798.70 287
ACMH+97.24 1097.92 23797.78 23198.32 29199.46 19796.68 31999.56 12899.54 8798.41 10897.79 35399.87 4890.18 34499.66 24698.05 21597.18 29898.62 324
LFMVS97.90 24097.35 28899.54 10299.52 17299.01 15499.39 22898.24 38897.10 26699.65 9799.79 12084.79 39099.91 11299.28 6698.38 22699.69 118
reproduce_monomvs97.89 24197.87 22397.96 32199.51 17595.45 35499.60 10099.25 29599.17 1998.85 27399.49 25389.29 35399.64 25499.35 5496.31 31498.78 267
Anonymous2023121197.88 24297.54 25998.90 21499.71 9998.53 21099.48 18699.57 6594.16 37598.81 27699.68 17893.23 27699.42 28598.84 12394.42 35898.76 273
OurMVSNet-221017-097.88 24297.77 23398.19 30298.71 35796.53 32499.88 499.00 33197.79 18998.78 28199.94 691.68 32099.35 29997.21 28596.99 30298.69 291
v7n97.87 24497.52 26098.92 20898.76 35198.58 20699.84 1299.46 19096.20 33398.91 26099.70 16294.89 21599.44 28096.03 33193.89 36898.75 275
baseline297.87 24497.55 25698.82 23299.18 27598.02 24399.41 21696.58 41096.97 27796.51 37699.17 32893.43 27399.57 26597.71 24799.03 18898.86 262
thres600view797.86 24697.51 26298.92 20899.72 9497.95 25099.59 10798.74 36797.94 17099.27 19298.62 37191.75 31799.86 14993.73 37198.19 24198.96 258
UBG97.85 24797.48 26598.95 20299.25 25897.64 26799.24 28498.74 36797.90 17498.64 30398.20 38788.65 36299.81 18798.27 19598.40 22599.42 204
cl2297.85 24797.64 25098.48 26899.09 29997.87 25498.60 38399.33 26597.11 26598.87 26899.22 32392.38 30699.17 33098.21 19895.99 32298.42 353
v1097.85 24797.52 26098.86 22698.99 31698.67 19699.75 4299.41 22095.70 35198.98 25099.41 27794.75 22699.23 31796.01 33394.63 35498.67 303
GA-MVS97.85 24797.47 26899.00 19599.38 22297.99 24598.57 38499.15 31197.04 27398.90 26299.30 31089.83 34799.38 28996.70 31598.33 22999.62 145
tfpnnormal97.84 25197.47 26898.98 19799.20 26999.22 12699.64 8399.61 4896.32 32498.27 33099.70 16293.35 27599.44 28095.69 34095.40 33998.27 363
VPNet97.84 25197.44 27699.01 19399.21 26798.94 16999.48 18699.57 6598.38 11099.28 18799.73 15388.89 35699.39 28799.19 7493.27 37598.71 282
LCM-MVSNet-Re97.83 25398.15 18896.87 36499.30 24392.25 39499.59 10798.26 38697.43 23496.20 38099.13 33396.27 16698.73 37798.17 20398.99 19199.64 139
XVG-ACMP-BASELINE97.83 25397.71 24298.20 30199.11 29396.33 33199.41 21699.52 10598.06 16099.05 24099.50 25089.64 35099.73 21997.73 24497.38 29198.53 341
IterMVS97.83 25397.77 23398.02 31499.58 15496.27 33499.02 33099.48 16197.22 25498.71 28799.70 16292.75 28799.13 33597.46 27196.00 32198.67 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 25697.75 23898.06 31199.57 15696.36 33099.02 33099.49 14997.18 25698.71 28799.72 15792.72 29099.14 33297.44 27395.86 32798.67 303
EPMVS97.82 25697.65 24798.35 28898.88 33095.98 34199.49 18294.71 41697.57 21499.26 19699.48 25992.46 30499.71 22997.87 22799.08 18499.35 216
MVP-Stereo97.81 25897.75 23897.99 31897.53 39096.60 32398.96 34598.85 35497.22 25497.23 36499.36 29395.28 20199.46 27495.51 34499.78 11097.92 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25897.44 27698.91 21298.88 33098.68 19599.51 16499.34 25896.18 33599.20 20999.34 30094.03 25899.36 29695.32 35095.18 34398.69 291
ttmdpeth97.80 26097.63 25198.29 29498.77 34997.38 27599.64 8399.36 24698.78 7796.30 37999.58 22092.34 30899.39 28798.36 18795.58 33498.10 373
v192192097.80 26097.45 27198.84 23098.80 34098.53 21099.52 15599.34 25896.15 33999.24 19899.47 26293.98 26099.29 30895.40 34895.13 34598.69 291
v14897.79 26297.55 25698.50 26598.74 35297.72 26299.54 14699.33 26596.26 32998.90 26299.51 24794.68 23199.14 33297.83 23293.15 37798.63 322
thres40097.77 26397.38 28498.92 20899.69 10897.96 24899.50 17198.73 37397.83 18499.17 21798.45 37791.67 32199.83 17593.22 37698.18 24298.96 258
thres100view90097.76 26497.45 27198.69 24799.72 9497.86 25699.59 10798.74 36797.93 17199.26 19698.62 37191.75 31799.83 17593.22 37698.18 24298.37 359
PEN-MVS97.76 26497.44 27698.72 24398.77 34998.54 20999.78 3299.51 11997.06 27098.29 32999.64 19692.63 29698.89 37198.09 20793.16 37698.72 280
Baseline_NR-MVSNet97.76 26497.45 27198.68 24899.09 29998.29 22999.41 21698.85 35495.65 35298.63 30599.67 18494.82 21799.10 34298.07 21492.89 37998.64 315
TR-MVS97.76 26497.41 28298.82 23299.06 30597.87 25498.87 35898.56 38096.63 30298.68 29599.22 32392.49 30099.65 25195.40 34897.79 26098.95 260
Patchmtry97.75 26897.40 28398.81 23599.10 29698.87 17699.11 31399.33 26594.83 36798.81 27699.38 28794.33 24799.02 35196.10 32995.57 33598.53 341
dp97.75 26897.80 22797.59 34499.10 29693.71 38399.32 25198.88 35096.48 31599.08 23299.55 23192.67 29599.82 18296.52 32298.58 21599.24 229
WBMVS97.74 27097.50 26398.46 27499.24 26097.43 27399.21 29299.42 21797.45 23098.96 25499.41 27788.83 35799.23 31798.94 10196.02 31998.71 282
TAPA-MVS97.07 1597.74 27097.34 29198.94 20499.70 10497.53 27099.25 28299.51 11991.90 39399.30 18399.63 20298.78 5199.64 25488.09 40299.87 6099.65 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 27297.35 28898.88 21999.47 19597.12 28799.34 24898.85 35498.19 13599.67 8599.85 5782.98 39799.92 10199.49 4498.32 23399.60 150
MIMVSNet97.73 27297.45 27198.57 25799.45 20397.50 27199.02 33098.98 33396.11 34299.41 15799.14 33290.28 33998.74 37695.74 33898.93 19499.47 192
tfpn200view997.72 27497.38 28498.72 24399.69 10897.96 24899.50 17198.73 37397.83 18499.17 21798.45 37791.67 32199.83 17593.22 37698.18 24298.37 359
CostFormer97.72 27497.73 24097.71 33899.15 28994.02 37999.54 14699.02 32994.67 37099.04 24199.35 29692.35 30799.77 20498.50 17397.94 25299.34 219
FMVSNet297.72 27497.36 28698.80 23799.51 17598.84 18199.45 19699.42 21796.49 31298.86 27299.29 31290.26 34098.98 35696.44 32496.56 30798.58 338
test0.0.03 197.71 27797.42 28198.56 26098.41 37897.82 25798.78 36698.63 37897.34 24298.05 34398.98 35094.45 24498.98 35695.04 35597.15 29998.89 261
h-mvs3397.70 27897.28 29998.97 19999.70 10497.27 27999.36 24099.45 20198.94 5899.66 9099.64 19694.93 21199.99 499.48 4584.36 40599.65 132
v124097.69 27997.32 29498.79 23898.85 33798.43 22499.48 18699.36 24696.11 34299.27 19299.36 29393.76 27099.24 31694.46 36295.23 34298.70 287
cascas97.69 27997.43 28098.48 26898.60 36897.30 27798.18 40299.39 22992.96 38798.41 32098.78 36793.77 26999.27 31298.16 20498.61 21298.86 262
pm-mvs197.68 28197.28 29998.88 21999.06 30598.62 20299.50 17199.45 20196.32 32497.87 34999.79 12092.47 30199.35 29997.54 26393.54 37298.67 303
GBi-Net97.68 28197.48 26598.29 29499.51 17597.26 28199.43 20699.48 16196.49 31299.07 23399.32 30790.26 34098.98 35697.10 29396.65 30498.62 324
test197.68 28197.48 26598.29 29499.51 17597.26 28199.43 20699.48 16196.49 31299.07 23399.32 30790.26 34098.98 35697.10 29396.65 30498.62 324
tpm97.67 28497.55 25698.03 31299.02 31195.01 36499.43 20698.54 38296.44 31899.12 22399.34 30091.83 31699.60 26397.75 24296.46 30999.48 186
PCF-MVS97.08 1497.66 28597.06 31099.47 12799.61 14599.09 14298.04 40599.25 29591.24 39698.51 31599.70 16294.55 23999.91 11292.76 38499.85 7599.42 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 28697.65 24797.63 34198.78 34497.62 26899.13 30498.33 38597.36 24199.07 23398.94 35495.64 19199.15 33192.95 38098.68 21196.12 407
our_test_397.65 28697.68 24497.55 34598.62 36594.97 36598.84 36099.30 28396.83 28998.19 33599.34 30097.01 13999.02 35195.00 35696.01 32098.64 315
testgi97.65 28697.50 26398.13 30899.36 22896.45 32799.42 21399.48 16197.76 19397.87 34999.45 26891.09 33298.81 37394.53 36198.52 22199.13 235
thres20097.61 28997.28 29998.62 25199.64 13298.03 24299.26 28098.74 36797.68 20399.09 23198.32 38391.66 32399.81 18792.88 38198.22 23798.03 378
PAPM97.59 29097.09 30999.07 18599.06 30598.26 23198.30 39899.10 31694.88 36598.08 33999.34 30096.27 16699.64 25489.87 39598.92 19699.31 222
UWE-MVS97.58 29197.29 29898.48 26899.09 29996.25 33599.01 33596.61 40997.86 17899.19 21299.01 34688.72 35899.90 12497.38 27798.69 21099.28 224
VDDNet97.55 29297.02 31199.16 17799.49 18798.12 23999.38 23399.30 28395.35 35599.68 8199.90 2782.62 39999.93 9099.31 6298.13 24699.42 204
TESTMET0.1,197.55 29297.27 30298.40 28498.93 32496.53 32498.67 37597.61 39996.96 27898.64 30399.28 31488.63 36499.45 27597.30 28199.38 15699.21 231
pmmvs597.52 29497.30 29698.16 30498.57 37196.73 31499.27 27198.90 34796.14 34098.37 32399.53 24091.54 32699.14 33297.51 26595.87 32698.63 322
LF4IMVS97.52 29497.46 27097.70 33998.98 31995.55 34999.29 26198.82 35798.07 15698.66 29699.64 19689.97 34599.61 26297.01 29796.68 30397.94 386
DTE-MVSNet97.51 29697.19 30498.46 27498.63 36498.13 23899.84 1299.48 16196.68 29597.97 34699.67 18492.92 28398.56 38096.88 30992.60 38498.70 287
testing1197.50 29797.10 30898.71 24599.20 26996.91 30799.29 26198.82 35797.89 17598.21 33498.40 37985.63 38499.83 17598.45 17998.04 24999.37 214
ETVMVS97.50 29796.90 31599.29 16099.23 26298.78 19099.32 25198.90 34797.52 22398.56 31298.09 39384.72 39199.69 24097.86 22897.88 25599.39 210
hse-mvs297.50 29797.14 30598.59 25399.49 18797.05 29499.28 26699.22 30198.94 5899.66 9099.42 27394.93 21199.65 25199.48 4583.80 40799.08 241
SixPastTwentyTwo97.50 29797.33 29398.03 31298.65 36296.23 33699.77 3498.68 37697.14 25997.90 34799.93 990.45 33899.18 32997.00 29896.43 31098.67 303
JIA-IIPM97.50 29797.02 31198.93 20698.73 35397.80 25899.30 25698.97 33491.73 39498.91 26094.86 40995.10 20899.71 22997.58 25697.98 25099.28 224
ppachtmachnet_test97.49 30297.45 27197.61 34398.62 36595.24 35998.80 36499.46 19096.11 34298.22 33399.62 20796.45 16098.97 36393.77 37095.97 32598.61 333
test-mter97.49 30297.13 30798.55 26298.79 34197.10 28898.67 37597.75 39696.65 29898.61 30898.85 36088.23 36899.45 27597.25 28399.38 15699.10 236
testing9197.44 30497.02 31198.71 24599.18 27596.89 30999.19 29499.04 32697.78 19198.31 32698.29 38485.41 38699.85 15598.01 21797.95 25199.39 210
tpm297.44 30497.34 29197.74 33799.15 28994.36 37699.45 19698.94 33793.45 38498.90 26299.44 26991.35 32999.59 26497.31 28098.07 24899.29 223
tpm cat197.39 30697.36 28697.50 34799.17 28393.73 38299.43 20699.31 27991.27 39598.71 28799.08 33794.31 24999.77 20496.41 32698.50 22299.00 252
testing9997.36 30796.94 31498.63 25099.18 27596.70 31599.30 25698.93 33897.71 19898.23 33198.26 38584.92 38999.84 16298.04 21697.85 25899.35 216
USDC97.34 30897.20 30397.75 33699.07 30395.20 36098.51 38899.04 32697.99 16798.31 32699.86 5289.02 35499.55 26895.67 34297.36 29298.49 344
UniMVSNet_ETH3D97.32 30996.81 31798.87 22399.40 21797.46 27299.51 16499.53 10095.86 35098.54 31499.77 13582.44 40099.66 24698.68 14597.52 27699.50 184
testing397.28 31096.76 31998.82 23299.37 22598.07 24199.45 19699.36 24697.56 21697.89 34898.95 35383.70 39598.82 37296.03 33198.56 21899.58 158
MVS97.28 31096.55 32399.48 12498.78 34498.95 16699.27 27199.39 22983.53 40998.08 33999.54 23696.97 14099.87 14694.23 36699.16 17399.63 143
test_fmvs297.25 31297.30 29697.09 35799.43 20593.31 38899.73 5098.87 35298.83 6899.28 18799.80 10884.45 39299.66 24697.88 22597.45 28498.30 361
DSMNet-mixed97.25 31297.35 28896.95 36197.84 38593.61 38699.57 12296.63 40896.13 34198.87 26898.61 37394.59 23597.70 39895.08 35498.86 20099.55 164
MS-PatchMatch97.24 31497.32 29496.99 35898.45 37693.51 38798.82 36299.32 27597.41 23798.13 33899.30 31088.99 35599.56 26695.68 34199.80 10397.90 389
testing22297.16 31596.50 32499.16 17799.16 28598.47 22299.27 27198.66 37797.71 19898.23 33198.15 38882.28 40299.84 16297.36 27897.66 26499.18 232
TransMVSNet (Re)97.15 31696.58 32298.86 22699.12 29198.85 18099.49 18298.91 34595.48 35497.16 36799.80 10893.38 27499.11 34094.16 36891.73 38698.62 324
TinyColmap97.12 31796.89 31697.83 33199.07 30395.52 35298.57 38498.74 36797.58 21397.81 35299.79 12088.16 36999.56 26695.10 35397.21 29698.39 357
K. test v397.10 31896.79 31898.01 31598.72 35596.33 33199.87 897.05 40297.59 21196.16 38199.80 10888.71 35999.04 34796.69 31696.55 30898.65 313
Syy-MVS97.09 31997.14 30596.95 36199.00 31392.73 39299.29 26199.39 22997.06 27097.41 35898.15 38893.92 26398.68 37891.71 38898.34 22799.45 200
PatchT97.03 32096.44 32698.79 23898.99 31698.34 22899.16 29899.07 32292.13 39299.52 13297.31 40294.54 24098.98 35688.54 40098.73 20999.03 249
mmtdpeth96.95 32196.71 32097.67 34099.33 23494.90 36799.89 299.28 28998.15 14099.72 7398.57 37486.56 37999.90 12499.82 1689.02 39898.20 368
myMVS_eth3d96.89 32296.37 32798.43 28199.00 31397.16 28599.29 26199.39 22997.06 27097.41 35898.15 38883.46 39698.68 37895.27 35198.34 22799.45 200
AUN-MVS96.88 32396.31 32998.59 25399.48 19497.04 29799.27 27199.22 30197.44 23398.51 31599.41 27791.97 31299.66 24697.71 24783.83 40699.07 246
FMVSNet196.84 32496.36 32898.29 29499.32 24197.26 28199.43 20699.48 16195.11 35998.55 31399.32 30783.95 39498.98 35695.81 33696.26 31598.62 324
test250696.81 32596.65 32197.29 35299.74 8392.21 39599.60 10085.06 42699.13 2499.77 5799.93 987.82 37499.85 15599.38 5299.38 15699.80 73
RPMNet96.72 32695.90 33999.19 17499.18 27598.49 21899.22 29099.52 10588.72 40599.56 12397.38 39994.08 25799.95 6286.87 40798.58 21599.14 233
mvs5depth96.66 32796.22 33197.97 31997.00 40196.28 33398.66 37899.03 32896.61 30396.93 37399.79 12087.20 37799.47 27296.65 32094.13 36398.16 370
test_040296.64 32896.24 33097.85 32898.85 33796.43 32899.44 20299.26 29393.52 38196.98 37199.52 24388.52 36599.20 32892.58 38697.50 27997.93 387
X-MVStestdata96.55 32995.45 34899.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 16864.01 42298.81 4799.94 7298.79 13199.86 6899.84 42
pmmvs696.53 33096.09 33597.82 33398.69 35995.47 35399.37 23599.47 18193.46 38397.41 35899.78 12787.06 37899.33 30296.92 30792.70 38298.65 313
ET-MVSNet_ETH3D96.49 33195.64 34599.05 18999.53 16898.82 18598.84 36097.51 40097.63 20884.77 40999.21 32692.09 31098.91 36898.98 9792.21 38599.41 207
UnsupCasMVSNet_eth96.44 33296.12 33397.40 34998.65 36295.65 34699.36 24099.51 11997.13 26096.04 38398.99 34888.40 36698.17 38796.71 31490.27 39498.40 356
FMVSNet596.43 33396.19 33297.15 35399.11 29395.89 34399.32 25199.52 10594.47 37498.34 32599.07 33887.54 37597.07 40392.61 38595.72 33198.47 347
new_pmnet96.38 33496.03 33697.41 34898.13 38295.16 36399.05 32299.20 30593.94 37697.39 36198.79 36691.61 32599.04 34790.43 39395.77 32898.05 377
Anonymous2023120696.22 33596.03 33696.79 36697.31 39594.14 37899.63 8899.08 31996.17 33697.04 37099.06 34093.94 26197.76 39786.96 40695.06 34698.47 347
IB-MVS95.67 1896.22 33595.44 34998.57 25799.21 26796.70 31598.65 37997.74 39896.71 29397.27 36398.54 37586.03 38199.92 10198.47 17786.30 40399.10 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 33795.89 34097.13 35597.72 38994.96 36699.79 3199.29 28793.01 38697.20 36699.03 34389.69 34998.36 38491.16 39196.13 31798.07 375
gg-mvs-nofinetune96.17 33895.32 35098.73 24298.79 34198.14 23799.38 23394.09 41791.07 39898.07 34291.04 41589.62 35199.35 29996.75 31299.09 18398.68 296
test20.0396.12 33995.96 33896.63 36797.44 39195.45 35499.51 16499.38 23796.55 30996.16 38199.25 32093.76 27096.17 40887.35 40594.22 36198.27 363
PVSNet_094.43 1996.09 34095.47 34797.94 32299.31 24294.34 37797.81 40699.70 1597.12 26297.46 35798.75 36889.71 34899.79 19797.69 25081.69 40999.68 122
MVStest196.08 34195.48 34697.89 32698.93 32496.70 31599.56 12899.35 25392.69 39091.81 40499.46 26689.90 34698.96 36595.00 35692.61 38398.00 382
EG-PatchMatch MVS95.97 34295.69 34396.81 36597.78 38692.79 39199.16 29898.93 33896.16 33794.08 39499.22 32382.72 39899.47 27295.67 34297.50 27998.17 369
APD_test195.87 34396.49 32594.00 37899.53 16884.01 40799.54 14699.32 27595.91 34997.99 34499.85 5785.49 38599.88 14191.96 38798.84 20298.12 372
Patchmatch-RL test95.84 34495.81 34295.95 37395.61 40690.57 39998.24 39998.39 38495.10 36195.20 38898.67 37094.78 22197.77 39696.28 32890.02 39599.51 180
test_vis1_rt95.81 34595.65 34496.32 37199.67 11491.35 39899.49 18296.74 40798.25 12695.24 38698.10 39274.96 40799.90 12499.53 3698.85 20197.70 392
MVS-HIRNet95.75 34695.16 35197.51 34699.30 24393.69 38498.88 35695.78 41185.09 40898.78 28192.65 41191.29 33099.37 29294.85 35899.85 7599.46 197
MIMVSNet195.51 34795.04 35296.92 36397.38 39295.60 34799.52 15599.50 13993.65 38096.97 37299.17 32885.28 38896.56 40788.36 40195.55 33698.60 336
MDA-MVSNet_test_wron95.45 34894.60 35598.01 31598.16 38197.21 28499.11 31399.24 29893.49 38280.73 41598.98 35093.02 28098.18 38694.22 36794.45 35798.64 315
TDRefinement95.42 34994.57 35697.97 31989.83 41996.11 34099.48 18698.75 36496.74 29196.68 37599.88 3988.65 36299.71 22998.37 18582.74 40898.09 374
YYNet195.36 35094.51 35797.92 32397.89 38497.10 28899.10 31599.23 29993.26 38580.77 41499.04 34292.81 28698.02 39094.30 36394.18 36298.64 315
pmmvs-eth3d95.34 35194.73 35497.15 35395.53 40895.94 34299.35 24599.10 31695.13 35793.55 39697.54 39788.15 37097.91 39394.58 36089.69 39797.61 393
dmvs_testset95.02 35296.12 33391.72 38799.10 29680.43 41599.58 11597.87 39597.47 22695.22 38798.82 36293.99 25995.18 41288.09 40294.91 35199.56 163
KD-MVS_self_test95.00 35394.34 35896.96 36097.07 40095.39 35799.56 12899.44 20995.11 35997.13 36897.32 40191.86 31597.27 40290.35 39481.23 41098.23 367
MDA-MVSNet-bldmvs94.96 35493.98 36197.92 32398.24 38097.27 27999.15 30199.33 26593.80 37880.09 41699.03 34388.31 36797.86 39593.49 37494.36 35998.62 324
N_pmnet94.95 35595.83 34192.31 38598.47 37579.33 41799.12 30792.81 42393.87 37797.68 35499.13 33393.87 26599.01 35391.38 39096.19 31698.59 337
KD-MVS_2432*160094.62 35693.72 36497.31 35097.19 39895.82 34498.34 39499.20 30595.00 36397.57 35598.35 38187.95 37198.10 38892.87 38277.00 41398.01 379
miper_refine_blended94.62 35693.72 36497.31 35097.19 39895.82 34498.34 39499.20 30595.00 36397.57 35598.35 38187.95 37198.10 38892.87 38277.00 41398.01 379
CL-MVSNet_self_test94.49 35893.97 36296.08 37296.16 40393.67 38598.33 39699.38 23795.13 35797.33 36298.15 38892.69 29496.57 40688.67 39979.87 41197.99 383
new-patchmatchnet94.48 35994.08 36095.67 37495.08 41192.41 39399.18 29699.28 28994.55 37393.49 39797.37 40087.86 37397.01 40491.57 38988.36 39997.61 393
OpenMVS_ROBcopyleft92.34 2094.38 36093.70 36696.41 37097.38 39293.17 38999.06 32098.75 36486.58 40694.84 39298.26 38581.53 40399.32 30489.01 39897.87 25696.76 400
CMPMVSbinary69.68 2394.13 36194.90 35391.84 38697.24 39680.01 41698.52 38799.48 16189.01 40391.99 40399.67 18485.67 38399.13 33595.44 34697.03 30196.39 404
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 36293.25 36896.60 36894.76 41394.49 37398.92 35298.18 39189.66 39996.48 37798.06 39486.28 38097.33 40189.68 39687.20 40297.97 385
mvsany_test393.77 36393.45 36794.74 37695.78 40588.01 40299.64 8398.25 38798.28 12194.31 39397.97 39568.89 41098.51 38297.50 26690.37 39397.71 390
UnsupCasMVSNet_bld93.53 36492.51 37096.58 36997.38 39293.82 38098.24 39999.48 16191.10 39793.10 39896.66 40474.89 40898.37 38394.03 36987.71 40197.56 395
dongtai93.26 36592.93 36994.25 37799.39 22085.68 40597.68 40893.27 41992.87 38896.85 37499.39 28582.33 40197.48 40076.78 41397.80 25999.58 158
WB-MVS93.10 36694.10 35990.12 39295.51 41081.88 41299.73 5099.27 29295.05 36293.09 39998.91 35994.70 23091.89 41676.62 41494.02 36796.58 402
PM-MVS92.96 36792.23 37195.14 37595.61 40689.98 40199.37 23598.21 38994.80 36895.04 39197.69 39665.06 41197.90 39494.30 36389.98 39697.54 396
SSC-MVS92.73 36893.73 36389.72 39395.02 41281.38 41399.76 3799.23 29994.87 36692.80 40098.93 35594.71 22991.37 41774.49 41693.80 36996.42 403
test_fmvs392.10 36991.77 37293.08 38396.19 40286.25 40399.82 1698.62 37996.65 29895.19 38996.90 40355.05 41895.93 41096.63 32190.92 39297.06 399
test_f91.90 37091.26 37493.84 37995.52 40985.92 40499.69 6098.53 38395.31 35693.87 39596.37 40655.33 41798.27 38595.70 33990.98 39197.32 398
test_method91.10 37191.36 37390.31 39195.85 40473.72 42494.89 41299.25 29568.39 41595.82 38499.02 34580.50 40598.95 36693.64 37294.89 35298.25 365
Gipumacopyleft90.99 37290.15 37793.51 38098.73 35390.12 40093.98 41399.45 20179.32 41192.28 40194.91 40869.61 40997.98 39287.42 40495.67 33292.45 411
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 37390.11 37893.34 38198.78 34485.59 40698.15 40393.16 42189.37 40292.07 40298.38 38081.48 40495.19 41162.54 42097.04 30099.25 228
testf190.42 37490.68 37589.65 39497.78 38673.97 42299.13 30498.81 35989.62 40091.80 40598.93 35562.23 41498.80 37486.61 40891.17 38896.19 405
APD_test290.42 37490.68 37589.65 39497.78 38673.97 42299.13 30498.81 35989.62 40091.80 40598.93 35562.23 41498.80 37486.61 40891.17 38896.19 405
test_vis3_rt87.04 37685.81 37990.73 39093.99 41481.96 41199.76 3790.23 42592.81 38981.35 41391.56 41340.06 42299.07 34494.27 36588.23 40091.15 413
PMMVS286.87 37785.37 38191.35 38990.21 41883.80 40898.89 35597.45 40183.13 41091.67 40795.03 40748.49 42094.70 41385.86 41077.62 41295.54 408
LCM-MVSNet86.80 37885.22 38291.53 38887.81 42080.96 41498.23 40198.99 33271.05 41390.13 40896.51 40548.45 42196.88 40590.51 39285.30 40496.76 400
FPMVS84.93 37985.65 38082.75 40086.77 42163.39 42698.35 39398.92 34174.11 41283.39 41198.98 35050.85 41992.40 41584.54 41194.97 34892.46 410
EGC-MVSNET82.80 38077.86 38697.62 34297.91 38396.12 33999.33 25099.28 2898.40 42325.05 42499.27 31784.11 39399.33 30289.20 39798.22 23797.42 397
tmp_tt82.80 38081.52 38386.66 39666.61 42668.44 42592.79 41597.92 39368.96 41480.04 41799.85 5785.77 38296.15 40997.86 22843.89 41995.39 409
E-PMN80.61 38279.88 38482.81 39990.75 41776.38 42097.69 40795.76 41266.44 41783.52 41092.25 41262.54 41387.16 41968.53 41861.40 41684.89 417
EMVS80.02 38379.22 38582.43 40191.19 41676.40 41997.55 41092.49 42466.36 41883.01 41291.27 41464.63 41285.79 42065.82 41960.65 41785.08 416
ANet_high77.30 38474.86 38884.62 39875.88 42477.61 41897.63 40993.15 42288.81 40464.27 41989.29 41636.51 42383.93 42175.89 41552.31 41892.33 412
MVEpermissive76.82 2176.91 38574.31 38984.70 39785.38 42376.05 42196.88 41193.17 42067.39 41671.28 41889.01 41721.66 42887.69 41871.74 41772.29 41590.35 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 38674.97 38779.01 40270.98 42555.18 42793.37 41498.21 38965.08 41961.78 42093.83 41021.74 42792.53 41478.59 41291.12 39089.34 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 38741.29 39236.84 40386.18 42249.12 42879.73 41622.81 42827.64 42025.46 42328.45 42321.98 42648.89 42255.80 42123.56 42212.51 420
testmvs39.17 38843.78 39025.37 40536.04 42816.84 43098.36 39226.56 42720.06 42138.51 42267.32 41829.64 42515.30 42437.59 42239.90 42043.98 419
test12339.01 38942.50 39128.53 40439.17 42720.91 42998.75 36919.17 42919.83 42238.57 42166.67 41933.16 42415.42 42337.50 42329.66 42149.26 418
cdsmvs_eth3d_5k24.64 39032.85 3930.00 4060.00 4290.00 4310.00 41799.51 1190.00 4240.00 42599.56 22896.58 1530.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.30 39111.06 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.58 2200.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.27 39211.03 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 42599.01 180.00 4250.00 4240.00 4230.00 421
test_blank0.13 3930.17 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4251.57 4240.00 4290.00 4250.00 4240.00 4230.00 421
mmdepth0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.16 28595.47 345
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 42
MSC_two_6792asdad99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11399.84 8399.89 19
PC_three_145298.18 13899.84 3599.70 16299.31 398.52 38198.30 19499.80 10399.81 64
No_MVS99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11399.84 8399.89 19
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9799.81 9599.09 14
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.71 9999.79 3399.61 4896.84 28799.56 12399.54 23698.58 7599.96 3296.93 30599.75 118
RE-MVS-def99.34 4299.76 6699.82 2599.63 8899.52 10598.38 11099.76 6299.82 8198.75 5898.61 15599.81 9999.77 85
IU-MVS99.84 3299.88 899.32 27598.30 12099.84 3598.86 11899.85 7599.89 19
OPU-MVS99.64 8299.56 16099.72 4599.60 10099.70 16299.27 599.42 28598.24 19799.80 10399.79 77
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10799.84 8399.88 25
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 208
9.1499.10 8199.72 9499.40 22499.51 11997.53 22199.64 10299.78 12798.84 4499.91 11297.63 25299.82 96
save fliter99.76 6699.59 7399.14 30399.40 22699.00 47
test_0728_THIRD98.99 4999.81 4299.80 10899.09 1499.96 3298.85 12099.90 4399.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 12299.51 11999.96 3298.93 10499.86 6899.88 25
test072699.85 2699.89 499.62 9399.50 13999.10 3199.86 3399.82 8198.94 32
GSMVS99.52 173
test_part299.81 4699.83 1999.77 57
sam_mvs194.86 21699.52 173
sam_mvs94.72 228
ambc93.06 38492.68 41582.36 40998.47 38998.73 37395.09 39097.41 39855.55 41699.10 34296.42 32591.32 38797.71 390
MTGPAbinary99.47 181
test_post199.23 28665.14 42194.18 25499.71 22997.58 256
test_post65.99 42094.65 23499.73 219
patchmatchnet-post98.70 36994.79 22099.74 213
GG-mvs-BLEND98.45 27698.55 37298.16 23599.43 20693.68 41897.23 36498.46 37689.30 35299.22 32195.43 34798.22 23797.98 384
MTMP99.54 14698.88 350
gm-plane-assit98.54 37392.96 39094.65 37199.15 33199.64 25497.56 261
test9_res97.49 26799.72 12499.75 91
TEST999.67 11499.65 6099.05 32299.41 22096.22 33298.95 25599.49 25398.77 5499.91 112
test_899.67 11499.61 7099.03 32799.41 22096.28 32698.93 25899.48 25998.76 5599.91 112
agg_prior297.21 28599.73 12399.75 91
agg_prior99.67 11499.62 6899.40 22698.87 26899.91 112
TestCases99.31 15299.86 2098.48 22099.61 4897.85 18199.36 17199.85 5795.95 17699.85 15596.66 31899.83 9299.59 154
test_prior499.56 7998.99 338
test_prior298.96 34598.34 11699.01 24499.52 24398.68 6797.96 22099.74 121
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17599.74 95
旧先验298.96 34596.70 29499.47 14099.94 7298.19 200
新几何299.01 335
新几何199.75 6199.75 7699.59 7399.54 8796.76 29099.29 18699.64 19698.43 8699.94 7296.92 30799.66 13499.72 106
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13299.73 100
无先验98.99 33899.51 11996.89 28499.93 9097.53 26499.72 106
原ACMM298.95 348
原ACMM199.65 7799.73 9099.33 10999.47 18197.46 22799.12 22399.66 18998.67 6999.91 11297.70 24999.69 12999.71 115
test22299.75 7699.49 9298.91 35499.49 14996.42 32099.34 17799.65 19098.28 9699.69 12999.72 106
testdata299.95 6296.67 317
segment_acmp98.96 25
testdata99.54 10299.75 7698.95 16699.51 11997.07 26899.43 15099.70 16298.87 4099.94 7297.76 24099.64 13799.72 106
testdata198.85 35998.32 119
test1299.75 6199.64 13299.61 7099.29 28799.21 20698.38 9199.89 13699.74 12199.74 95
plane_prior799.29 24797.03 298
plane_prior699.27 25296.98 30292.71 292
plane_prior599.47 18199.69 24097.78 23697.63 26598.67 303
plane_prior499.61 211
plane_prior397.00 30098.69 8499.11 225
plane_prior299.39 22898.97 55
plane_prior199.26 254
plane_prior96.97 30399.21 29298.45 10397.60 268
n20.00 430
nn0.00 430
door-mid98.05 392
lessismore_v097.79 33598.69 35995.44 35694.75 41595.71 38599.87 4888.69 36099.32 30495.89 33494.93 35098.62 324
LGP-MVS_train98.49 26699.33 23497.05 29499.55 7897.46 22799.24 19899.83 7292.58 29799.72 22398.09 20797.51 27798.68 296
test1199.35 253
door97.92 393
HQP5-MVS96.83 310
HQP-NCC99.19 27298.98 34198.24 12798.66 296
ACMP_Plane99.19 27298.98 34198.24 12798.66 296
BP-MVS97.19 289
HQP4-MVS98.66 29699.64 25498.64 315
HQP3-MVS99.39 22997.58 270
HQP2-MVS92.47 301
NP-MVS99.23 26296.92 30699.40 281
MDTV_nov1_ep13_2view95.18 36299.35 24596.84 28799.58 11995.19 20797.82 23399.46 197
MDTV_nov1_ep1398.32 17899.11 29394.44 37499.27 27198.74 36797.51 22499.40 16299.62 20794.78 22199.76 20897.59 25598.81 206
ACMMP++_ref97.19 297
ACMMP++97.43 288
Test By Simon98.75 58
ITE_SJBPF98.08 31099.29 24796.37 32998.92 34198.34 11698.83 27499.75 14291.09 33299.62 26195.82 33597.40 29098.25 365
DeepMVS_CXcopyleft93.34 38199.29 24782.27 41099.22 30185.15 40796.33 37899.05 34190.97 33499.73 21993.57 37397.77 26198.01 379