This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 6999.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10099.85 7099.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11399.80 9899.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22298.91 5899.78 4799.85 5399.36 299.94 6998.84 11699.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13299.60 9599.45 19499.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13199.61 9499.45 19499.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23899.10 2799.81 3799.80 10298.94 2999.96 3098.93 9799.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16699.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12499.86 6399.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17498.79 7099.68 7499.81 8998.43 8399.97 2198.88 10399.90 4099.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14799.96 3099.95 899.96 1299.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18999.76 5699.75 13699.13 1299.92 9599.07 8299.92 2599.85 36
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13898.94 33999.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8899.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 196
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8899.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7499.69 16699.06 1699.96 3098.69 13699.87 5599.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 7899.69 16698.95 2799.96 3098.69 13699.87 5599.84 40
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18399.07 3599.79 4299.82 7598.85 3999.92 9598.68 13899.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13999.66 8399.68 17298.96 2499.96 3098.62 14499.87 5599.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10999.79 4299.82 7598.86 3899.95 5998.62 14499.81 9499.78 80
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14999.55 11999.64 19098.91 3499.96 3098.72 13199.90 4099.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15599.76 5699.86 4898.82 4399.93 8498.82 12399.91 3299.84 40
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19499.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 12899.60 14699.16 12699.41 20799.71 1398.98 4899.45 13599.78 12099.19 999.54 25999.28 6299.84 7899.63 140
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10599.76 5699.82 7598.53 7699.95 5998.61 14799.81 9499.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17499.71 6899.80 10299.12 1399.97 2198.33 18199.87 5599.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15099.53 12299.63 19698.93 3399.97 2198.74 12899.91 3299.83 49
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14099.63 9699.84 6398.73 6099.96 3098.55 16299.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17497.45 22199.78 4799.82 7599.18 1099.91 10598.79 12499.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 14099.50 12799.75 13698.78 4899.97 2198.57 15699.89 4999.83 49
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10599.73 6299.69 16698.20 9599.70 22699.64 2499.82 9199.54 161
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12799.73 6299.79 11498.68 6499.96 3098.44 17299.77 10899.79 74
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 21998.79 7099.52 12499.62 20198.91 3499.90 11698.64 14299.75 11399.82 54
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14897.57 38899.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17099.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9999.90 4099.89 20
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20299.68 7499.63 19698.91 3499.94 6998.58 15399.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15299.80 9899.77 82
SD-MVS99.41 4799.52 1199.05 18399.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38698.72 13199.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33999.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 11999.89 4999.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33799.85 698.82 6599.54 12099.73 14798.51 7899.74 20498.91 10099.88 5299.77 82
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14898.87 34199.55 199.74 6099.80 10296.47 15299.98 1399.97 199.97 799.94 11
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 16199.63 9699.68 17298.52 7799.95 5998.38 17599.86 6399.81 61
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18599.53 23398.64 6999.96 3098.44 17299.80 9899.79 74
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17999.71 6899.80 10298.95 2799.93 8498.19 19099.84 7899.74 92
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24699.60 10799.79 11498.79 4799.95 5998.83 11999.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 5599.36 3299.36 13899.67 11198.61 20099.07 30599.33 25699.00 4399.82 3599.81 8999.06 1699.84 15599.09 8099.42 14899.65 129
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14499.47 18499.93 297.66 19899.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19999.63 19698.72 6199.90 11698.25 18699.63 13499.80 70
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18398.09 14599.48 13199.74 14198.29 9199.96 3097.93 21299.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 5999.32 4099.30 15199.57 15298.94 16698.97 33299.46 18398.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 245
CSCG99.32 5999.32 4099.32 14599.85 2698.29 22699.71 5199.66 2898.11 14299.41 14899.80 10298.37 8899.96 3098.99 9099.96 1299.72 103
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25299.62 10199.73 14798.58 7299.90 11698.61 14799.91 3299.68 119
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11999.62 8799.55 7798.94 5499.63 9699.95 395.82 17799.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13999.63 13198.97 15699.12 29599.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 230
xiu_mvs_v1_base99.29 6399.27 5899.34 13999.63 13198.97 15699.12 29599.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 230
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13999.63 13198.97 15699.12 29599.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 230
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24899.77 5199.82 7598.78 4899.94 6997.56 25199.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6799.12 7499.74 6199.18 26599.75 3999.56 12299.57 6498.45 9999.49 13099.85 5397.77 10999.94 6998.33 18199.84 7899.52 167
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2599.98 2
patch_mono-299.26 6999.62 598.16 29799.81 4694.59 36099.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
ETV-MVS99.26 6999.21 6699.40 13299.46 19099.30 11099.56 12299.52 10198.52 9399.44 14099.27 30798.41 8699.86 14299.10 7999.59 13799.04 237
xiu_mvs_v2_base99.26 6999.25 6299.29 15499.53 16398.91 17099.02 31899.45 19498.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 244
CANet99.25 7399.14 7299.59 8799.41 20399.16 12699.35 23599.57 6498.82 6599.51 12699.61 20596.46 15399.95 5999.59 2599.98 499.65 129
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28199.66 5399.84 1399.74 1099.09 3298.92 25299.90 2695.94 17199.98 1398.95 9499.92 2599.79 74
dcpmvs_299.23 7599.58 798.16 29799.83 3994.68 35899.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36499.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
CHOSEN 1792x268899.19 7799.10 7699.45 12499.89 898.52 21099.39 21999.94 198.73 7699.11 21899.89 3095.50 18799.94 6999.50 3699.97 799.89 20
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20599.54 8597.29 23799.41 14899.59 21098.42 8599.93 8498.19 19099.69 12499.73 97
EIA-MVS99.18 7999.09 7999.45 12499.49 18199.18 12399.67 6499.53 9697.66 19899.40 15399.44 26198.10 9999.81 18098.94 9599.62 13599.35 205
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27399.68 4899.81 2099.51 11599.20 1898.72 27899.89 3095.68 18299.97 2198.86 11199.86 6399.81 61
MVSFormer99.17 8199.12 7499.29 15499.51 17098.94 16699.88 499.46 18397.55 20899.80 4099.65 18497.39 11699.28 29999.03 8499.85 7099.65 129
sss99.17 8199.05 8399.53 10599.62 13798.97 15699.36 23099.62 4197.83 17599.67 7899.65 18497.37 11999.95 5999.19 7199.19 16599.68 119
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17699.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3299.99 1
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26499.04 23499.88 3697.39 11699.92 9598.66 14099.90 4099.87 31
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13899.64 7899.56 6998.26 11999.45 13599.87 4496.03 16699.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13299.72 4999.48 15598.35 11099.42 14499.84 6396.07 16499.79 18999.51 3599.14 17099.67 122
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16099.28 25699.49 14398.46 9899.72 6799.71 15296.50 15199.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20298.45 9999.19 20599.49 24698.08 10199.89 12797.73 23499.75 11399.48 178
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21396.60 29599.60 10799.55 22498.83 4299.90 11697.48 25899.83 8799.78 80
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12699.56 12299.50 13598.33 11399.41 14899.86 4895.92 17299.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 8999.03 8799.45 12499.46 19098.87 17399.12 29599.26 28498.03 15899.79 4299.65 18497.02 13399.85 14899.02 8699.90 4099.65 129
jason: jason.
lupinMVS99.13 8999.01 9599.46 12399.51 17098.94 16699.05 31099.16 30097.86 16999.80 4099.56 22197.39 11699.86 14298.94 9599.85 7099.58 154
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14599.81 2099.33 25697.43 22499.60 10799.88 3697.14 12699.84 15599.13 7698.94 18699.69 115
MG-MVS99.13 8999.02 9199.45 12499.57 15298.63 19799.07 30599.34 24998.99 4599.61 10499.82 7597.98 10499.87 13897.00 28899.80 9899.85 36
CHOSEN 280x42099.12 9599.13 7399.08 17899.66 12097.89 25098.43 37999.71 1398.88 5999.62 10199.76 13396.63 14699.70 22699.46 4499.99 199.66 125
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31199.42 14499.68 17298.75 5599.80 18697.98 20999.72 11999.44 192
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13799.68 6199.66 2898.49 9699.86 2799.87 4494.77 21799.84 15599.19 7199.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 9599.08 8099.24 16399.46 19098.55 20499.51 15699.46 18398.09 14599.45 13599.82 7598.34 8999.51 26098.70 13398.93 18799.67 122
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22799.72 103
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22299.01 4099.74 6099.78 12095.56 18599.92 9599.52 3498.18 23499.72 103
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26499.63 9699.69 16697.27 12499.96 3097.82 22399.84 7899.81 61
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19799.59 11099.75 13695.90 17499.73 21099.53 3299.02 18399.86 33
MVS_Test99.10 10398.97 10199.48 11899.49 18199.14 13299.67 6499.34 24997.31 23599.58 11199.76 13397.65 11299.82 17598.87 10699.07 17899.46 187
CDS-MVSNet99.09 10499.03 8799.25 16199.42 19998.73 18999.45 18899.46 18398.11 14299.46 13499.77 12898.01 10399.37 28198.70 13398.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 10598.97 10199.42 12999.76 6598.79 18598.78 35599.91 396.74 28199.67 7899.49 24697.53 11399.88 13398.98 9199.85 7099.60 146
OMC-MVS99.08 10599.04 8599.20 16799.67 11198.22 23099.28 25699.52 10198.07 15099.66 8399.81 8997.79 10899.78 19497.79 22599.81 9499.60 146
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12699.37 22699.56 6998.04 15699.53 12299.62 20196.84 13999.94 6998.85 11398.49 21699.72 103
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29598.02 15999.56 11599.86 4896.54 15099.67 23498.09 19799.13 17199.73 97
PAPM_NR99.04 10998.84 12199.66 6999.74 8099.44 9499.39 21999.38 23097.70 19399.28 18199.28 30498.34 8999.85 14896.96 29299.45 14699.69 115
API-MVS99.04 10999.03 8799.06 18199.40 20899.31 10899.55 13499.56 6998.54 9099.33 17299.39 27698.76 5299.78 19496.98 29099.78 10598.07 362
mvs_anonymous99.03 11198.99 9799.16 17199.38 21298.52 21099.51 15699.38 23097.79 18099.38 15999.81 8997.30 12299.45 26499.35 5198.99 18499.51 173
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20299.27 6597.90 24599.47 184
train_agg99.02 11298.77 12899.77 5599.67 11199.65 5799.05 31099.41 21396.28 31598.95 24799.49 24698.76 5299.91 10597.63 24299.72 11999.75 88
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20299.27 6597.90 24599.47 184
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15199.24 27499.52 10196.85 27699.27 18599.48 25198.25 9399.91 10597.76 23099.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary99.01 11698.80 12499.66 6999.56 15699.54 7999.18 28499.70 1598.18 13399.35 16899.63 19696.32 15899.90 11697.48 25899.77 10899.55 159
1112_ss98.98 11798.77 12899.59 8799.68 11099.02 14999.25 27299.48 15597.23 24399.13 21499.58 21496.93 13899.90 11698.87 10698.78 20099.84 40
MSDG98.98 11798.80 12499.53 10599.76 6599.19 12198.75 35899.55 7797.25 24099.47 13299.77 12897.82 10799.87 13896.93 29599.90 4099.54 161
CANet_DTU98.97 11998.87 11599.25 16199.33 22798.42 22399.08 30499.30 27499.16 1999.43 14199.75 13695.27 19599.97 2198.56 15999.95 1699.36 204
DPM-MVS98.95 12098.71 13399.66 6999.63 13199.55 7798.64 36899.10 30697.93 16499.42 14499.55 22498.67 6699.80 18695.80 32699.68 12799.61 144
114514_t98.93 12198.67 13799.72 6599.85 2699.53 8299.62 8799.59 5792.65 37899.71 6899.78 12098.06 10299.90 11698.84 11699.91 3299.74 92
PS-MVSNAJss98.92 12298.92 10798.90 20798.78 33498.53 20699.78 3299.54 8598.07 15099.00 24199.76 13399.01 1899.37 28199.13 7697.23 28798.81 254
mvsmamba98.92 12298.87 11599.08 17899.07 29399.16 12699.88 499.51 11598.15 13599.40 15399.89 3097.12 12799.33 29199.38 4897.40 28198.73 269
Test_1112_low_res98.89 12498.66 14099.57 9299.69 10698.95 16399.03 31599.47 17496.98 26699.15 21299.23 31296.77 14299.89 12798.83 11998.78 20099.86 33
test_fmvs198.88 12598.79 12799.16 17199.69 10697.61 26499.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2599.90 17
AllTest98.87 12698.72 13199.31 14699.86 2098.48 21699.56 12299.61 4897.85 17299.36 16599.85 5395.95 16999.85 14896.66 30899.83 8799.59 150
UGNet98.87 12698.69 13599.40 13299.22 25698.72 19099.44 19499.68 2099.24 1799.18 20999.42 26592.74 28299.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 12698.72 13199.31 14699.71 9698.88 17299.80 2599.44 20297.91 16699.36 16599.78 12095.49 18899.43 27397.91 21399.11 17299.62 142
test_yl98.86 12998.63 14399.54 9799.49 18199.18 12399.50 16399.07 31298.22 12599.61 10499.51 23995.37 19199.84 15598.60 15098.33 22199.59 150
DCV-MVSNet98.86 12998.63 14399.54 9799.49 18199.18 12399.50 16399.07 31298.22 12599.61 10499.51 23995.37 19199.84 15598.60 15098.33 22199.59 150
EPNet98.86 12998.71 13399.30 15197.20 38498.18 23199.62 8798.91 33499.28 1698.63 29699.81 8995.96 16899.99 499.24 6899.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 12998.80 12499.03 18599.76 6598.79 18599.28 25699.91 397.42 22699.67 7899.37 28097.53 11399.88 13398.98 9197.29 28598.42 343
ab-mvs98.86 12998.63 14399.54 9799.64 12899.19 12199.44 19499.54 8597.77 18399.30 17799.81 8994.20 24499.93 8499.17 7498.82 19799.49 177
MAR-MVS98.86 12998.63 14399.54 9799.37 21599.66 5399.45 18899.54 8596.61 29399.01 23799.40 27297.09 12999.86 14297.68 24199.53 14299.10 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 12998.75 13099.17 17099.88 1198.53 20699.34 23899.59 5797.55 20898.70 28599.89 3095.83 17699.90 11698.10 19699.90 4099.08 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 13698.62 14899.53 10599.61 14199.08 14299.80 2599.51 11597.10 25699.31 17499.78 12095.23 19999.77 19698.21 18899.03 18199.75 88
HY-MVS97.30 798.85 13698.64 14299.47 12199.42 19999.08 14299.62 8799.36 23997.39 22999.28 18199.68 17296.44 15599.92 9598.37 17798.22 22999.40 198
PVSNet96.02 1798.85 13698.84 12198.89 21099.73 8797.28 27198.32 38599.60 5497.86 16999.50 12799.57 21896.75 14399.86 14298.56 15999.70 12399.54 161
PatchMatch-RL98.84 13998.62 14899.52 11199.71 9699.28 11299.06 30899.77 997.74 18899.50 12799.53 23395.41 18999.84 15597.17 28299.64 13299.44 192
Effi-MVS+98.81 14098.59 15499.48 11899.46 19099.12 13698.08 39199.50 13597.50 21699.38 15999.41 26996.37 15799.81 18099.11 7898.54 21399.51 173
alignmvs98.81 14098.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8599.35 16898.92 34894.78 21499.77 19699.35 5198.11 23999.54 161
DeepPCF-MVS98.18 398.81 14099.37 3097.12 34499.60 14691.75 38498.61 36999.44 20299.35 1299.83 3499.85 5398.70 6399.81 18099.02 8699.91 3299.81 61
PMMVS98.80 14398.62 14899.34 13999.27 24498.70 19198.76 35799.31 27097.34 23299.21 19999.07 32897.20 12599.82 17598.56 15998.87 19299.52 167
Effi-MVS+-dtu98.78 14498.89 11398.47 26899.33 22796.91 30099.57 11699.30 27498.47 9799.41 14898.99 33896.78 14199.74 20498.73 13099.38 15098.74 267
FIs98.78 14498.63 14399.23 16599.18 26599.54 7999.83 1699.59 5798.28 11698.79 27299.81 8996.75 14399.37 28199.08 8196.38 30398.78 257
Fast-Effi-MVS+-dtu98.77 14698.83 12398.60 24799.41 20396.99 29499.52 14899.49 14398.11 14299.24 19199.34 29096.96 13799.79 18997.95 21199.45 14699.02 240
sd_testset98.75 14798.57 15599.29 15499.81 4698.26 22899.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13399.54 3098.26 22799.72 103
FA-MVS(test-final)98.75 14798.53 15999.41 13099.55 16099.05 14799.80 2599.01 31896.59 29799.58 11199.59 21095.39 19099.90 11697.78 22699.49 14499.28 213
FC-MVSNet-test98.75 14798.62 14899.15 17599.08 29299.45 9399.86 1299.60 5498.23 12498.70 28599.82 7596.80 14099.22 31199.07 8296.38 30398.79 256
XVG-OURS98.73 15098.68 13698.88 21299.70 10197.73 25798.92 34199.55 7798.52 9399.45 13599.84 6395.27 19599.91 10598.08 20198.84 19599.00 241
Fast-Effi-MVS+98.70 15198.43 16399.51 11399.51 17099.28 11299.52 14899.47 17496.11 33199.01 23799.34 29096.20 16299.84 15597.88 21598.82 19799.39 199
RRT_MVS98.70 15198.66 14098.83 22698.90 31798.45 21999.89 299.28 28097.76 18498.94 24999.92 1496.98 13599.25 30499.28 6297.00 29398.80 255
XVG-OURS-SEG-HR98.69 15398.62 14898.89 21099.71 9697.74 25699.12 29599.54 8598.44 10299.42 14499.71 15294.20 24499.92 9598.54 16398.90 19199.00 241
131498.68 15498.54 15899.11 17798.89 31998.65 19599.27 26199.49 14396.89 27497.99 33599.56 22197.72 11199.83 16897.74 23399.27 16198.84 253
EI-MVSNet98.67 15598.67 13798.68 24399.35 22197.97 24399.50 16399.38 23096.93 27399.20 20299.83 6797.87 10599.36 28598.38 17597.56 26398.71 272
test_djsdf98.67 15598.57 15598.98 19198.70 34698.91 17099.88 499.46 18397.55 20899.22 19699.88 3695.73 18099.28 29999.03 8497.62 25898.75 264
QAPM98.67 15598.30 17399.80 4699.20 25999.67 5199.77 3499.72 1194.74 35898.73 27799.90 2695.78 17899.98 1396.96 29299.88 5299.76 87
nrg03098.64 15898.42 16499.28 15899.05 29999.69 4799.81 2099.46 18398.04 15699.01 23799.82 7596.69 14599.38 27799.34 5594.59 34498.78 257
test_vis1_n_192098.63 15998.40 16699.31 14699.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 2087.29 366100.00 199.92 1299.92 2599.98 2
PAPR98.63 15998.34 16999.51 11399.40 20899.03 14898.80 35399.36 23996.33 31299.00 24199.12 32698.46 8199.84 15595.23 34199.37 15799.66 125
CVMVSNet98.57 16198.67 13798.30 28799.35 22195.59 33899.50 16399.55 7798.60 8699.39 15799.83 6794.48 23599.45 26498.75 12798.56 21199.85 36
iter_conf0598.55 16298.44 16298.87 21699.34 22598.60 20199.55 13499.42 21098.21 12799.37 16199.77 12893.55 26599.38 27799.30 6197.48 27398.63 311
MVSTER98.49 16398.32 17199.00 18999.35 22199.02 14999.54 13999.38 23097.41 22799.20 20299.73 14793.86 25899.36 28598.87 10697.56 26398.62 314
FE-MVS98.48 16498.17 17899.40 13299.54 16298.96 16099.68 6198.81 34895.54 34299.62 10199.70 15693.82 25999.93 8497.35 26999.46 14599.32 210
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 30099.53 8299.82 1799.72 1194.56 36198.08 33099.88 3694.73 22099.98 1397.47 26099.76 11199.06 236
IterMVS-LS98.46 16698.42 16498.58 25199.59 14898.00 24199.37 22699.43 20896.94 27299.07 22699.59 21097.87 10599.03 33998.32 18395.62 32398.71 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 16798.28 17498.94 19798.50 36198.96 16099.77 3499.50 13597.07 25898.87 26199.77 12894.76 21899.28 29998.66 14097.60 25998.57 329
jajsoiax98.43 16898.28 17498.88 21298.60 35698.43 22199.82 1799.53 9698.19 13098.63 29699.80 10293.22 27199.44 26999.22 6997.50 26998.77 260
tttt051798.42 16998.14 18299.28 15899.66 12098.38 22499.74 4496.85 39297.68 19599.79 4299.74 14191.39 32099.89 12798.83 11999.56 13999.57 156
BH-untuned98.42 16998.36 16798.59 24899.49 18196.70 30899.27 26199.13 30497.24 24298.80 27099.38 27795.75 17999.74 20497.07 28699.16 16699.33 209
test_fmvs1_n98.41 17198.14 18299.21 16699.82 4297.71 26199.74 4499.49 14399.32 1499.99 299.95 385.32 37599.97 2199.82 1699.84 7899.96 7
D2MVS98.41 17198.50 16098.15 30099.26 24696.62 31399.40 21599.61 4897.71 19098.98 24399.36 28396.04 16599.67 23498.70 13397.41 28098.15 359
BH-RMVSNet98.41 17198.08 19199.40 13299.41 20398.83 18199.30 24698.77 35197.70 19398.94 24999.65 18492.91 27899.74 20496.52 31199.55 14199.64 136
mvs_tets98.40 17498.23 17698.91 20598.67 34998.51 21299.66 6999.53 9698.19 13098.65 29499.81 8992.75 28099.44 26999.31 5897.48 27398.77 260
XXY-MVS98.38 17598.09 19099.24 16399.26 24699.32 10499.56 12299.55 7797.45 22198.71 27999.83 6793.23 26999.63 25098.88 10396.32 30598.76 262
ACMM97.58 598.37 17698.34 16998.48 26399.41 20397.10 28199.56 12299.45 19498.53 9199.04 23499.85 5393.00 27499.71 22098.74 12897.45 27598.64 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf05_1198.35 17797.99 20199.41 13099.37 21599.13 13598.96 33398.23 37698.50 9599.63 9699.46 25888.83 34899.87 13899.00 8899.95 1699.23 217
thisisatest053098.35 17798.03 19799.31 14699.63 13198.56 20399.54 13996.75 39497.53 21299.73 6299.65 18491.25 32399.89 12798.62 14499.56 13999.48 178
tpmrst98.33 17998.48 16197.90 31599.16 27594.78 35699.31 24499.11 30597.27 23899.45 13599.59 21095.33 19399.84 15598.48 16698.61 20599.09 229
baseline198.31 18097.95 20799.38 13799.50 17998.74 18899.59 10198.93 32798.41 10399.14 21399.60 20894.59 22899.79 18998.48 16693.29 36299.61 144
PatchmatchNetpermissive98.31 18098.36 16798.19 29599.16 27595.32 34799.27 26198.92 33097.37 23099.37 16199.58 21494.90 20799.70 22697.43 26499.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18297.98 20399.26 16099.57 15298.16 23299.41 20798.55 36896.03 33699.19 20599.74 14191.87 30699.92 9599.16 7598.29 22699.70 113
VPA-MVSNet98.29 18397.95 20799.30 15199.16 27599.54 7999.50 16399.58 6198.27 11899.35 16899.37 28092.53 29299.65 24299.35 5194.46 34598.72 270
UniMVSNet (Re)98.29 18398.00 20099.13 17699.00 30499.36 10299.49 17499.51 11597.95 16298.97 24599.13 32396.30 15999.38 27798.36 17993.34 36198.66 300
HQP_MVS98.27 18598.22 17798.44 27399.29 23996.97 29699.39 21999.47 17498.97 5199.11 21899.61 20592.71 28599.69 23197.78 22697.63 25698.67 292
bld_raw_dy_0_6498.26 18697.88 21799.40 13299.37 21599.09 13899.62 8798.94 32598.53 9199.40 15399.51 23988.93 34699.89 12799.00 8897.64 25599.23 217
UniMVSNet_NR-MVSNet98.22 18797.97 20498.96 19498.92 31698.98 15399.48 17899.53 9697.76 18498.71 27999.46 25896.43 15699.22 31198.57 15692.87 36898.69 280
LPG-MVS_test98.22 18798.13 18498.49 26199.33 22797.05 28799.58 10999.55 7797.46 21899.24 19199.83 6792.58 29099.72 21498.09 19797.51 26798.68 285
RPSCF98.22 18798.62 14896.99 34699.82 4291.58 38599.72 4999.44 20296.61 29399.66 8399.89 3095.92 17299.82 17597.46 26199.10 17599.57 156
ADS-MVSNet98.20 19098.08 19198.56 25599.33 22796.48 31899.23 27599.15 30196.24 31999.10 22199.67 17894.11 24899.71 22096.81 30099.05 17999.48 178
OPM-MVS98.19 19198.10 18798.45 27098.88 32097.07 28599.28 25699.38 23098.57 8799.22 19699.81 8992.12 30199.66 23798.08 20197.54 26598.61 323
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19198.16 17998.27 29299.30 23595.55 33999.07 30598.97 32297.57 20599.43 14199.57 21892.72 28399.74 20497.58 24699.20 16499.52 167
miper_ehance_all_eth98.18 19398.10 18798.41 27699.23 25297.72 25898.72 36199.31 27096.60 29598.88 25899.29 30297.29 12399.13 32597.60 24495.99 31298.38 348
CR-MVSNet98.17 19497.93 21098.87 21699.18 26598.49 21499.22 27999.33 25696.96 26899.56 11599.38 27794.33 24099.00 34494.83 34798.58 20899.14 222
miper_enhance_ethall98.16 19598.08 19198.41 27698.96 31397.72 25898.45 37899.32 26696.95 27098.97 24599.17 31897.06 13299.22 31197.86 21895.99 31298.29 352
CLD-MVS98.16 19598.10 18798.33 28399.29 23996.82 30598.75 35899.44 20297.83 17599.13 21499.55 22492.92 27699.67 23498.32 18397.69 25398.48 335
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19797.79 22299.19 16899.50 17998.50 21398.61 36996.82 39396.95 27099.54 12099.43 26391.66 31599.86 14298.08 20199.51 14399.22 219
pmmvs498.13 19897.90 21298.81 23098.61 35598.87 17398.99 32699.21 29496.44 30799.06 23199.58 21495.90 17499.11 33097.18 28196.11 30998.46 340
WR-MVS_H98.13 19897.87 21898.90 20799.02 30298.84 17899.70 5299.59 5797.27 23898.40 31299.19 31795.53 18699.23 30898.34 18093.78 35898.61 323
c3_l98.12 20098.04 19698.38 28099.30 23597.69 26298.81 35299.33 25696.67 28698.83 26699.34 29097.11 12898.99 34597.58 24695.34 32998.48 335
ACMH97.28 898.10 20197.99 20198.44 27399.41 20396.96 29899.60 9599.56 6998.09 14598.15 32899.91 2090.87 32799.70 22698.88 10397.45 27598.67 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20297.68 23899.34 13999.66 12098.44 22099.40 21599.43 20893.67 36899.22 19699.89 3090.23 33599.93 8499.26 6798.33 22199.66 125
CP-MVSNet98.09 20297.78 22599.01 18798.97 31299.24 11899.67 6499.46 18397.25 24098.48 30999.64 19093.79 26099.06 33598.63 14394.10 35298.74 267
dmvs_re98.08 20498.16 17997.85 31799.55 16094.67 35999.70 5298.92 33098.15 13599.06 23199.35 28693.67 26499.25 30497.77 22997.25 28699.64 136
DU-MVS98.08 20497.79 22298.96 19498.87 32398.98 15399.41 20799.45 19497.87 16898.71 27999.50 24394.82 21099.22 31198.57 15692.87 36898.68 285
v2v48298.06 20697.77 22798.92 20198.90 31798.82 18299.57 11699.36 23996.65 28899.19 20599.35 28694.20 24499.25 30497.72 23694.97 33798.69 280
V4298.06 20697.79 22298.86 22098.98 31098.84 17899.69 5599.34 24996.53 29999.30 17799.37 28094.67 22599.32 29497.57 25094.66 34298.42 343
test-LLR98.06 20697.90 21298.55 25798.79 33197.10 28198.67 36497.75 38497.34 23298.61 29998.85 35094.45 23799.45 26497.25 27399.38 15099.10 225
WR-MVS98.06 20697.73 23499.06 18198.86 32699.25 11799.19 28299.35 24597.30 23698.66 28899.43 26393.94 25499.21 31698.58 15394.28 34998.71 272
ACMP97.20 1198.06 20697.94 20998.45 27099.37 21597.01 29299.44 19499.49 14397.54 21198.45 31099.79 11491.95 30599.72 21497.91 21397.49 27298.62 314
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21197.96 20598.33 28399.26 24697.38 26998.56 37499.31 27096.65 28898.88 25899.52 23696.58 14899.12 32997.39 26695.53 32698.47 337
test111198.04 21298.11 18697.83 32099.74 8093.82 36899.58 10995.40 40199.12 2599.65 8999.93 990.73 32899.84 15599.43 4699.38 15099.82 54
ECVR-MVScopyleft98.04 21298.05 19598.00 30999.74 8094.37 36399.59 10194.98 40299.13 2299.66 8399.93 990.67 32999.84 15599.40 4799.38 15099.80 70
EPNet_dtu98.03 21497.96 20598.23 29398.27 36695.54 34199.23 27598.75 35299.02 3897.82 34299.71 15296.11 16399.48 26193.04 36799.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21497.76 23198.84 22499.39 21198.98 15399.40 21599.38 23096.67 28699.07 22699.28 30492.93 27598.98 34697.10 28396.65 29698.56 330
ADS-MVSNet298.02 21698.07 19497.87 31699.33 22795.19 35099.23 27599.08 30996.24 31999.10 22199.67 17894.11 24898.93 35696.81 30099.05 17999.48 178
HQP-MVS98.02 21697.90 21298.37 28199.19 26296.83 30398.98 32999.39 22298.24 12198.66 28899.40 27292.47 29499.64 24597.19 27997.58 26198.64 304
LTVRE_ROB97.16 1298.02 21697.90 21298.40 27899.23 25296.80 30699.70 5299.60 5497.12 25298.18 32799.70 15691.73 31199.72 21498.39 17497.45 27598.68 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 21997.84 22098.55 25799.25 25097.97 24398.71 36299.34 24996.47 30698.59 30299.54 22995.65 18399.21 31697.21 27595.77 31898.46 340
DIV-MVS_self_test98.01 21997.85 21998.48 26399.24 25197.95 24798.71 36299.35 24596.50 30098.60 30199.54 22995.72 18199.03 33997.21 27595.77 31898.46 340
miper_lstm_enhance98.00 22197.91 21198.28 29199.34 22597.43 26898.88 34599.36 23996.48 30498.80 27099.55 22495.98 16798.91 35797.27 27295.50 32798.51 333
BH-w/o98.00 22197.89 21698.32 28599.35 22196.20 32899.01 32398.90 33696.42 30998.38 31399.00 33795.26 19799.72 21496.06 31998.61 20599.03 238
v114497.98 22397.69 23798.85 22398.87 32398.66 19499.54 13999.35 24596.27 31799.23 19599.35 28694.67 22599.23 30896.73 30395.16 33398.68 285
EU-MVSNet97.98 22398.03 19797.81 32398.72 34396.65 31299.66 6999.66 2898.09 14598.35 31599.82 7595.25 19898.01 37997.41 26595.30 33098.78 257
tpmvs97.98 22398.02 19997.84 31999.04 30094.73 35799.31 24499.20 29596.10 33598.76 27599.42 26594.94 20399.81 18096.97 29198.45 21798.97 245
tt080597.97 22697.77 22798.57 25299.59 14896.61 31499.45 18899.08 30998.21 12798.88 25899.80 10288.66 35299.70 22698.58 15397.72 25299.39 199
NR-MVSNet97.97 22697.61 24699.02 18698.87 32399.26 11699.47 18499.42 21097.63 20097.08 36099.50 24395.07 20299.13 32597.86 21893.59 35998.68 285
v897.95 22897.63 24598.93 19998.95 31498.81 18499.80 2599.41 21396.03 33699.10 22199.42 26594.92 20699.30 29796.94 29494.08 35398.66 300
Patchmatch-test97.93 22997.65 24198.77 23599.18 26597.07 28599.03 31599.14 30396.16 32698.74 27699.57 21894.56 23099.72 21493.36 36399.11 17299.52 167
PS-CasMVS97.93 22997.59 24898.95 19698.99 30799.06 14599.68 6199.52 10197.13 25098.31 31799.68 17292.44 29899.05 33698.51 16494.08 35398.75 264
TranMVSNet+NR-MVSNet97.93 22997.66 24098.76 23698.78 33498.62 19899.65 7599.49 14397.76 18498.49 30899.60 20894.23 24398.97 35398.00 20892.90 36698.70 276
test_vis1_n97.92 23297.44 26799.34 13999.53 16398.08 23799.74 4499.49 14399.15 20100.00 199.94 679.51 39299.98 1399.88 1499.76 11199.97 4
v14419297.92 23297.60 24798.87 21698.83 32998.65 19599.55 13499.34 24996.20 32299.32 17399.40 27294.36 23999.26 30396.37 31695.03 33698.70 276
ACMH+97.24 1097.92 23297.78 22598.32 28599.46 19096.68 31199.56 12299.54 8598.41 10397.79 34499.87 4490.18 33699.66 23798.05 20597.18 29098.62 314
LFMVS97.90 23597.35 27999.54 9799.52 16799.01 15199.39 21998.24 37597.10 25699.65 8999.79 11484.79 37899.91 10599.28 6298.38 21899.69 115
Anonymous2023121197.88 23697.54 25298.90 20799.71 9698.53 20699.48 17899.57 6494.16 36498.81 26899.68 17293.23 26999.42 27498.84 11694.42 34798.76 262
OurMVSNet-221017-097.88 23697.77 22798.19 29598.71 34596.53 31699.88 499.00 31997.79 18098.78 27399.94 691.68 31299.35 28897.21 27596.99 29498.69 280
v7n97.87 23897.52 25398.92 20198.76 33998.58 20299.84 1399.46 18396.20 32298.91 25399.70 15694.89 20899.44 26996.03 32093.89 35698.75 264
baseline297.87 23897.55 24998.82 22799.18 26598.02 24099.41 20796.58 39896.97 26796.51 36599.17 31893.43 26699.57 25597.71 23799.03 18198.86 251
thres600view797.86 24097.51 25598.92 20199.72 9197.95 24799.59 10198.74 35597.94 16399.27 18598.62 36091.75 30999.86 14293.73 35998.19 23398.96 247
cl2297.85 24197.64 24498.48 26399.09 28997.87 25198.60 37199.33 25697.11 25598.87 26199.22 31392.38 29999.17 32098.21 18895.99 31298.42 343
v1097.85 24197.52 25398.86 22098.99 30798.67 19399.75 4199.41 21395.70 34098.98 24399.41 26994.75 21999.23 30896.01 32294.63 34398.67 292
GA-MVS97.85 24197.47 25999.00 18999.38 21297.99 24298.57 37299.15 30197.04 26398.90 25599.30 30089.83 33899.38 27796.70 30598.33 22199.62 142
tfpnnormal97.84 24497.47 25998.98 19199.20 25999.22 12099.64 7899.61 4896.32 31398.27 32199.70 15693.35 26899.44 26995.69 32995.40 32898.27 353
VPNet97.84 24497.44 26799.01 18799.21 25798.94 16699.48 17899.57 6498.38 10599.28 18199.73 14788.89 34799.39 27699.19 7193.27 36398.71 272
LCM-MVSNet-Re97.83 24698.15 18196.87 35299.30 23592.25 38299.59 10198.26 37397.43 22496.20 36899.13 32396.27 16098.73 36598.17 19398.99 18499.64 136
XVG-ACMP-BASELINE97.83 24697.71 23698.20 29499.11 28396.33 32399.41 20799.52 10198.06 15499.05 23399.50 24389.64 34199.73 21097.73 23497.38 28398.53 331
IterMVS97.83 24697.77 22798.02 30699.58 15096.27 32599.02 31899.48 15597.22 24498.71 27999.70 15692.75 28099.13 32597.46 26196.00 31198.67 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 24997.75 23298.06 30399.57 15296.36 32299.02 31899.49 14397.18 24698.71 27999.72 15192.72 28399.14 32297.44 26395.86 31798.67 292
EPMVS97.82 24997.65 24198.35 28298.88 32095.98 33199.49 17494.71 40497.57 20599.26 18999.48 25192.46 29799.71 22097.87 21799.08 17799.35 205
MVP-Stereo97.81 25197.75 23297.99 31097.53 37796.60 31598.96 33398.85 34397.22 24497.23 35599.36 28395.28 19499.46 26395.51 33399.78 10597.92 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25197.44 26798.91 20598.88 32098.68 19299.51 15699.34 24996.18 32499.20 20299.34 29094.03 25199.36 28595.32 33995.18 33298.69 280
v192192097.80 25397.45 26298.84 22498.80 33098.53 20699.52 14899.34 24996.15 32899.24 19199.47 25493.98 25399.29 29895.40 33795.13 33498.69 280
v14897.79 25497.55 24998.50 26098.74 34097.72 25899.54 13999.33 25696.26 31898.90 25599.51 23994.68 22499.14 32297.83 22293.15 36598.63 311
thres40097.77 25597.38 27598.92 20199.69 10697.96 24599.50 16398.73 36097.83 17599.17 21098.45 36591.67 31399.83 16893.22 36498.18 23498.96 247
thres100view90097.76 25697.45 26298.69 24299.72 9197.86 25399.59 10198.74 35597.93 16499.26 18998.62 36091.75 30999.83 16893.22 36498.18 23498.37 349
PEN-MVS97.76 25697.44 26798.72 23898.77 33898.54 20599.78 3299.51 11597.06 26098.29 32099.64 19092.63 28998.89 35998.09 19793.16 36498.72 270
Baseline_NR-MVSNet97.76 25697.45 26298.68 24399.09 28998.29 22699.41 20798.85 34395.65 34198.63 29699.67 17894.82 21099.10 33298.07 20492.89 36798.64 304
TR-MVS97.76 25697.41 27398.82 22799.06 29697.87 25198.87 34798.56 36796.63 29298.68 28799.22 31392.49 29399.65 24295.40 33797.79 25098.95 249
Patchmtry97.75 26097.40 27498.81 23099.10 28698.87 17399.11 30199.33 25694.83 35698.81 26899.38 27794.33 24099.02 34196.10 31895.57 32498.53 331
dp97.75 26097.80 22197.59 33299.10 28693.71 37199.32 24198.88 33996.48 30499.08 22599.55 22492.67 28899.82 17596.52 31198.58 20899.24 216
TAPA-MVS97.07 1597.74 26297.34 28298.94 19799.70 10197.53 26599.25 27299.51 11591.90 38099.30 17799.63 19698.78 4899.64 24588.09 39099.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26397.35 27998.88 21299.47 18997.12 28099.34 23898.85 34398.19 13099.67 7899.85 5382.98 38599.92 9599.49 4098.32 22599.60 146
MIMVSNet97.73 26397.45 26298.57 25299.45 19597.50 26699.02 31898.98 32196.11 33199.41 14899.14 32290.28 33198.74 36495.74 32798.93 18799.47 184
tfpn200view997.72 26597.38 27598.72 23899.69 10697.96 24599.50 16398.73 36097.83 17599.17 21098.45 36591.67 31399.83 16893.22 36498.18 23498.37 349
CostFormer97.72 26597.73 23497.71 32799.15 27994.02 36799.54 13999.02 31794.67 35999.04 23499.35 28692.35 30099.77 19698.50 16597.94 24499.34 208
FMVSNet297.72 26597.36 27798.80 23299.51 17098.84 17899.45 18899.42 21096.49 30198.86 26599.29 30290.26 33298.98 34696.44 31396.56 29998.58 328
test0.0.03 197.71 26897.42 27298.56 25598.41 36597.82 25498.78 35598.63 36597.34 23298.05 33498.98 34094.45 23798.98 34695.04 34497.15 29198.89 250
h-mvs3397.70 26997.28 29098.97 19399.70 10197.27 27299.36 23099.45 19498.94 5499.66 8399.64 19094.93 20499.99 499.48 4184.36 39199.65 129
v124097.69 27097.32 28598.79 23398.85 32798.43 22199.48 17899.36 23996.11 33199.27 18599.36 28393.76 26299.24 30794.46 35095.23 33198.70 276
cascas97.69 27097.43 27198.48 26398.60 35697.30 27098.18 39099.39 22292.96 37698.41 31198.78 35693.77 26199.27 30298.16 19498.61 20598.86 251
pm-mvs197.68 27297.28 29098.88 21299.06 29698.62 19899.50 16399.45 19496.32 31397.87 34099.79 11492.47 29499.35 28897.54 25393.54 36098.67 292
GBi-Net97.68 27297.48 25798.29 28899.51 17097.26 27499.43 19899.48 15596.49 30199.07 22699.32 29790.26 33298.98 34697.10 28396.65 29698.62 314
test197.68 27297.48 25798.29 28899.51 17097.26 27499.43 19899.48 15596.49 30199.07 22699.32 29790.26 33298.98 34697.10 28396.65 29698.62 314
tpm97.67 27597.55 24998.03 30499.02 30295.01 35399.43 19898.54 36996.44 30799.12 21699.34 29091.83 30899.60 25397.75 23296.46 30199.48 178
PCF-MVS97.08 1497.66 27697.06 30199.47 12199.61 14199.09 13898.04 39299.25 28691.24 38398.51 30699.70 15694.55 23299.91 10592.76 37299.85 7099.42 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 27797.65 24197.63 32998.78 33497.62 26399.13 29298.33 37297.36 23199.07 22698.94 34495.64 18499.15 32192.95 36898.68 20496.12 393
our_test_397.65 27797.68 23897.55 33398.62 35394.97 35498.84 34999.30 27496.83 27998.19 32699.34 29097.01 13499.02 34195.00 34596.01 31098.64 304
testgi97.65 27797.50 25698.13 30199.36 22096.45 31999.42 20599.48 15597.76 18497.87 34099.45 26091.09 32498.81 36194.53 34998.52 21499.13 224
thres20097.61 28097.28 29098.62 24699.64 12898.03 23999.26 27098.74 35597.68 19599.09 22498.32 37091.66 31599.81 18092.88 36998.22 22998.03 365
PAPM97.59 28197.09 30099.07 18099.06 29698.26 22898.30 38699.10 30694.88 35498.08 33099.34 29096.27 16099.64 24589.87 38398.92 18999.31 211
UWE-MVS97.58 28297.29 28998.48 26399.09 28996.25 32699.01 32396.61 39797.86 16999.19 20599.01 33688.72 34999.90 11697.38 26798.69 20399.28 213
VDDNet97.55 28397.02 30299.16 17199.49 18198.12 23699.38 22499.30 27495.35 34499.68 7499.90 2682.62 38799.93 8499.31 5898.13 23899.42 194
TESTMET0.1,197.55 28397.27 29398.40 27898.93 31596.53 31698.67 36497.61 38796.96 26898.64 29599.28 30488.63 35499.45 26497.30 27199.38 15099.21 220
pmmvs597.52 28597.30 28798.16 29798.57 35896.73 30799.27 26198.90 33696.14 32998.37 31499.53 23391.54 31899.14 32297.51 25595.87 31698.63 311
LF4IMVS97.52 28597.46 26197.70 32898.98 31095.55 33999.29 25198.82 34698.07 15098.66 28899.64 19089.97 33799.61 25297.01 28796.68 29597.94 372
DTE-MVSNet97.51 28797.19 29598.46 26998.63 35298.13 23599.84 1399.48 15596.68 28597.97 33799.67 17892.92 27698.56 36896.88 29992.60 37198.70 276
testing1197.50 28897.10 29998.71 24099.20 25996.91 30099.29 25198.82 34697.89 16798.21 32598.40 36785.63 37299.83 16898.45 17198.04 24199.37 203
ETVMVS97.50 28896.90 30699.29 15499.23 25298.78 18799.32 24198.90 33697.52 21498.56 30398.09 37984.72 37999.69 23197.86 21897.88 24799.39 199
hse-mvs297.50 28897.14 29698.59 24899.49 18197.05 28799.28 25699.22 29198.94 5499.66 8399.42 26594.93 20499.65 24299.48 4183.80 39399.08 230
SixPastTwentyTwo97.50 28897.33 28498.03 30498.65 35096.23 32799.77 3498.68 36397.14 24997.90 33899.93 990.45 33099.18 31997.00 28896.43 30298.67 292
JIA-IIPM97.50 28897.02 30298.93 19998.73 34197.80 25599.30 24698.97 32291.73 38198.91 25394.86 39595.10 20199.71 22097.58 24697.98 24299.28 213
ppachtmachnet_test97.49 29397.45 26297.61 33198.62 35395.24 34898.80 35399.46 18396.11 33198.22 32499.62 20196.45 15498.97 35393.77 35895.97 31598.61 323
test-mter97.49 29397.13 29898.55 25798.79 33197.10 28198.67 36497.75 38496.65 28898.61 29998.85 35088.23 35899.45 26497.25 27399.38 15099.10 225
testing9197.44 29597.02 30298.71 24099.18 26596.89 30299.19 28299.04 31597.78 18298.31 31798.29 37185.41 37499.85 14898.01 20797.95 24399.39 199
tpm297.44 29597.34 28297.74 32699.15 27994.36 36499.45 18898.94 32593.45 37398.90 25599.44 26191.35 32199.59 25497.31 27098.07 24099.29 212
tpm cat197.39 29797.36 27797.50 33599.17 27393.73 37099.43 19899.31 27091.27 38298.71 27999.08 32794.31 24299.77 19696.41 31598.50 21599.00 241
testing9997.36 29896.94 30598.63 24599.18 26596.70 30899.30 24698.93 32797.71 19098.23 32298.26 37284.92 37799.84 15598.04 20697.85 24999.35 205
USDC97.34 29997.20 29497.75 32599.07 29395.20 34998.51 37699.04 31597.99 16098.31 31799.86 4889.02 34499.55 25895.67 33197.36 28498.49 334
UniMVSNet_ETH3D97.32 30096.81 30898.87 21699.40 20897.46 26799.51 15699.53 9695.86 33998.54 30599.77 12882.44 38899.66 23798.68 13897.52 26699.50 176
testing397.28 30196.76 31098.82 22799.37 21598.07 23899.45 18899.36 23997.56 20797.89 33998.95 34383.70 38398.82 36096.03 32098.56 21199.58 154
MVS97.28 30196.55 31399.48 11898.78 33498.95 16399.27 26199.39 22283.53 39598.08 33099.54 22996.97 13699.87 13894.23 35499.16 16699.63 140
test_fmvs297.25 30397.30 28797.09 34599.43 19793.31 37699.73 4798.87 34198.83 6499.28 18199.80 10284.45 38099.66 23797.88 21597.45 27598.30 351
DSMNet-mixed97.25 30397.35 27996.95 34997.84 37293.61 37499.57 11696.63 39696.13 33098.87 26198.61 36294.59 22897.70 38695.08 34398.86 19399.55 159
MS-PatchMatch97.24 30597.32 28596.99 34698.45 36393.51 37598.82 35199.32 26697.41 22798.13 32999.30 30088.99 34599.56 25695.68 33099.80 9897.90 375
testing22297.16 30696.50 31499.16 17199.16 27598.47 21899.27 26198.66 36497.71 19098.23 32298.15 37482.28 38999.84 15597.36 26897.66 25499.18 221
TransMVSNet (Re)97.15 30796.58 31298.86 22099.12 28198.85 17799.49 17498.91 33495.48 34397.16 35899.80 10293.38 26799.11 33094.16 35691.73 37398.62 314
TinyColmap97.12 30896.89 30797.83 32099.07 29395.52 34298.57 37298.74 35597.58 20497.81 34399.79 11488.16 35999.56 25695.10 34297.21 28898.39 347
K. test v397.10 30996.79 30998.01 30798.72 34396.33 32399.87 997.05 39197.59 20296.16 36999.80 10288.71 35099.04 33796.69 30696.55 30098.65 302
Syy-MVS97.09 31097.14 29696.95 34999.00 30492.73 38099.29 25199.39 22297.06 26097.41 34998.15 37493.92 25698.68 36691.71 37698.34 21999.45 190
PatchT97.03 31196.44 31698.79 23398.99 30798.34 22599.16 28699.07 31292.13 37999.52 12497.31 38894.54 23398.98 34688.54 38898.73 20299.03 238
myMVS_eth3d96.89 31296.37 31798.43 27599.00 30497.16 27899.29 25199.39 22297.06 26097.41 34998.15 37483.46 38498.68 36695.27 34098.34 21999.45 190
AUN-MVS96.88 31396.31 31998.59 24899.48 18897.04 29099.27 26199.22 29197.44 22398.51 30699.41 26991.97 30499.66 23797.71 23783.83 39299.07 235
FMVSNet196.84 31496.36 31898.29 28899.32 23397.26 27499.43 19899.48 15595.11 34898.55 30499.32 29783.95 38298.98 34695.81 32596.26 30698.62 314
test250696.81 31596.65 31197.29 34099.74 8092.21 38399.60 9585.06 41299.13 2299.77 5199.93 987.82 36499.85 14899.38 4899.38 15099.80 70
RPMNet96.72 31695.90 32899.19 16899.18 26598.49 21499.22 27999.52 10188.72 39199.56 11597.38 38594.08 25099.95 5986.87 39598.58 20899.14 222
test_040296.64 31796.24 32097.85 31798.85 32796.43 32099.44 19499.26 28493.52 37096.98 36299.52 23688.52 35599.20 31892.58 37497.50 26997.93 373
X-MVStestdata96.55 31895.45 33699.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16164.01 40898.81 4499.94 6998.79 12499.86 6399.84 40
pmmvs696.53 31996.09 32497.82 32298.69 34795.47 34399.37 22699.47 17493.46 37297.41 34999.78 12087.06 36799.33 29196.92 29792.70 37098.65 302
ET-MVSNet_ETH3D96.49 32095.64 33499.05 18399.53 16398.82 18298.84 34997.51 38997.63 20084.77 39599.21 31692.09 30298.91 35798.98 9192.21 37299.41 196
UnsupCasMVSNet_eth96.44 32196.12 32297.40 33798.65 35095.65 33699.36 23099.51 11597.13 25096.04 37198.99 33888.40 35698.17 37596.71 30490.27 38198.40 346
FMVSNet596.43 32296.19 32197.15 34199.11 28395.89 33399.32 24199.52 10194.47 36398.34 31699.07 32887.54 36597.07 39092.61 37395.72 32198.47 337
new_pmnet96.38 32396.03 32597.41 33698.13 36995.16 35299.05 31099.20 29593.94 36597.39 35298.79 35591.61 31799.04 33790.43 38195.77 31898.05 364
Anonymous2023120696.22 32496.03 32596.79 35497.31 38294.14 36699.63 8299.08 30996.17 32597.04 36199.06 33093.94 25497.76 38586.96 39495.06 33598.47 337
IB-MVS95.67 1896.22 32495.44 33798.57 25299.21 25796.70 30898.65 36797.74 38696.71 28397.27 35498.54 36386.03 36999.92 9598.47 16986.30 38999.10 225
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 32695.89 32997.13 34397.72 37694.96 35599.79 3199.29 27893.01 37597.20 35799.03 33389.69 34098.36 37291.16 37996.13 30898.07 362
gg-mvs-nofinetune96.17 32795.32 33898.73 23798.79 33198.14 23499.38 22494.09 40591.07 38598.07 33391.04 40189.62 34299.35 28896.75 30299.09 17698.68 285
test20.0396.12 32895.96 32796.63 35597.44 37895.45 34499.51 15699.38 23096.55 29896.16 36999.25 31093.76 26296.17 39587.35 39394.22 35098.27 353
PVSNet_094.43 1996.09 32995.47 33597.94 31299.31 23494.34 36597.81 39399.70 1597.12 25297.46 34898.75 35789.71 33999.79 18997.69 24081.69 39599.68 119
EG-PatchMatch MVS95.97 33095.69 33296.81 35397.78 37392.79 37999.16 28698.93 32796.16 32694.08 38299.22 31382.72 38699.47 26295.67 33197.50 26998.17 358
APD_test195.87 33196.49 31594.00 36599.53 16384.01 39399.54 13999.32 26695.91 33897.99 33599.85 5385.49 37399.88 13391.96 37598.84 19598.12 360
Patchmatch-RL test95.84 33295.81 33195.95 36195.61 39290.57 38798.24 38798.39 37195.10 35095.20 37698.67 35994.78 21497.77 38496.28 31790.02 38299.51 173
test_vis1_rt95.81 33395.65 33396.32 35999.67 11191.35 38699.49 17496.74 39598.25 12095.24 37498.10 37874.96 39399.90 11699.53 3298.85 19497.70 378
MVS-HIRNet95.75 33495.16 33997.51 33499.30 23593.69 37298.88 34595.78 39985.09 39498.78 27392.65 39791.29 32299.37 28194.85 34699.85 7099.46 187
MIMVSNet195.51 33595.04 34096.92 35197.38 37995.60 33799.52 14899.50 13593.65 36996.97 36399.17 31885.28 37696.56 39488.36 38995.55 32598.60 326
MDA-MVSNet_test_wron95.45 33694.60 34398.01 30798.16 36897.21 27799.11 30199.24 28893.49 37180.73 40198.98 34093.02 27398.18 37494.22 35594.45 34698.64 304
TDRefinement95.42 33794.57 34497.97 31189.83 40596.11 33099.48 17898.75 35296.74 28196.68 36499.88 3688.65 35399.71 22098.37 17782.74 39498.09 361
YYNet195.36 33894.51 34597.92 31397.89 37197.10 28199.10 30399.23 28993.26 37480.77 40099.04 33292.81 27998.02 37894.30 35194.18 35198.64 304
pmmvs-eth3d95.34 33994.73 34297.15 34195.53 39495.94 33299.35 23599.10 30695.13 34693.55 38497.54 38388.15 36097.91 38194.58 34889.69 38497.61 379
dmvs_testset95.02 34096.12 32291.72 37399.10 28680.43 40199.58 10997.87 38397.47 21795.22 37598.82 35293.99 25295.18 39888.09 39094.91 34099.56 158
KD-MVS_self_test95.00 34194.34 34696.96 34897.07 38795.39 34699.56 12299.44 20295.11 34897.13 35997.32 38791.86 30797.27 38990.35 38281.23 39698.23 357
MDA-MVSNet-bldmvs94.96 34293.98 34997.92 31398.24 36797.27 27299.15 28999.33 25693.80 36780.09 40299.03 33388.31 35797.86 38393.49 36294.36 34898.62 314
N_pmnet94.95 34395.83 33092.31 37198.47 36279.33 40399.12 29592.81 40993.87 36697.68 34599.13 32393.87 25799.01 34391.38 37896.19 30798.59 327
KD-MVS_2432*160094.62 34493.72 35297.31 33897.19 38595.82 33498.34 38299.20 29595.00 35297.57 34698.35 36887.95 36198.10 37692.87 37077.00 39998.01 366
miper_refine_blended94.62 34493.72 35297.31 33897.19 38595.82 33498.34 38299.20 29595.00 35297.57 34698.35 36887.95 36198.10 37692.87 37077.00 39998.01 366
CL-MVSNet_self_test94.49 34693.97 35096.08 36096.16 38993.67 37398.33 38499.38 23095.13 34697.33 35398.15 37492.69 28796.57 39388.67 38779.87 39797.99 369
new-patchmatchnet94.48 34794.08 34895.67 36295.08 39792.41 38199.18 28499.28 28094.55 36293.49 38597.37 38687.86 36397.01 39191.57 37788.36 38597.61 379
OpenMVS_ROBcopyleft92.34 2094.38 34893.70 35496.41 35897.38 37993.17 37799.06 30898.75 35286.58 39294.84 38098.26 37281.53 39099.32 29489.01 38697.87 24896.76 386
CMPMVSbinary69.68 2394.13 34994.90 34191.84 37297.24 38380.01 40298.52 37599.48 15589.01 38991.99 39099.67 17885.67 37199.13 32595.44 33597.03 29296.39 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 35093.25 35696.60 35694.76 39994.49 36198.92 34198.18 37989.66 38696.48 36698.06 38086.28 36897.33 38889.68 38487.20 38897.97 371
mvsany_test393.77 35193.45 35594.74 36495.78 39188.01 39099.64 7898.25 37498.28 11694.31 38197.97 38168.89 39698.51 37097.50 25690.37 38097.71 376
UnsupCasMVSNet_bld93.53 35292.51 35796.58 35797.38 37993.82 36898.24 38799.48 15591.10 38493.10 38696.66 39074.89 39498.37 37194.03 35787.71 38797.56 381
WB-MVS93.10 35394.10 34790.12 37895.51 39681.88 39899.73 4799.27 28395.05 35193.09 38798.91 34994.70 22391.89 40276.62 40194.02 35596.58 388
PM-MVS92.96 35492.23 35895.14 36395.61 39289.98 38999.37 22698.21 37794.80 35795.04 37997.69 38265.06 39797.90 38294.30 35189.98 38397.54 382
SSC-MVS92.73 35593.73 35189.72 37995.02 39881.38 39999.76 3799.23 28994.87 35592.80 38898.93 34594.71 22291.37 40374.49 40393.80 35796.42 389
test_fmvs392.10 35691.77 35993.08 36996.19 38886.25 39199.82 1798.62 36696.65 28895.19 37796.90 38955.05 40495.93 39796.63 31090.92 37997.06 385
test_f91.90 35791.26 36193.84 36695.52 39585.92 39299.69 5598.53 37095.31 34593.87 38396.37 39255.33 40398.27 37395.70 32890.98 37897.32 384
test_method91.10 35891.36 36090.31 37795.85 39073.72 41094.89 39899.25 28668.39 40195.82 37299.02 33580.50 39198.95 35593.64 36094.89 34198.25 355
Gipumacopyleft90.99 35990.15 36493.51 36798.73 34190.12 38893.98 39999.45 19479.32 39792.28 38994.91 39469.61 39597.98 38087.42 39295.67 32292.45 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf190.42 36090.68 36289.65 38097.78 37373.97 40899.13 29298.81 34889.62 38791.80 39198.93 34562.23 40098.80 36286.61 39691.17 37596.19 391
APD_test290.42 36090.68 36289.65 38097.78 37373.97 40899.13 29298.81 34889.62 38791.80 39198.93 34562.23 40098.80 36286.61 39691.17 37596.19 391
test_vis3_rt87.04 36285.81 36590.73 37693.99 40081.96 39799.76 3790.23 41192.81 37781.35 39991.56 39940.06 40899.07 33494.27 35388.23 38691.15 399
PMMVS286.87 36385.37 36791.35 37590.21 40483.80 39498.89 34497.45 39083.13 39691.67 39395.03 39348.49 40694.70 39985.86 39877.62 39895.54 394
LCM-MVSNet86.80 36485.22 36891.53 37487.81 40680.96 40098.23 38998.99 32071.05 39990.13 39496.51 39148.45 40796.88 39290.51 38085.30 39096.76 386
FPMVS84.93 36585.65 36682.75 38686.77 40763.39 41298.35 38198.92 33074.11 39883.39 39798.98 34050.85 40592.40 40184.54 39994.97 33792.46 396
EGC-MVSNET82.80 36677.86 37297.62 33097.91 37096.12 32999.33 24099.28 2808.40 40925.05 41099.27 30784.11 38199.33 29189.20 38598.22 22997.42 383
tmp_tt82.80 36681.52 36986.66 38266.61 41268.44 41192.79 40197.92 38168.96 40080.04 40399.85 5385.77 37096.15 39697.86 21843.89 40595.39 395
E-PMN80.61 36879.88 37082.81 38590.75 40376.38 40697.69 39495.76 40066.44 40383.52 39692.25 39862.54 39987.16 40568.53 40561.40 40284.89 403
EMVS80.02 36979.22 37182.43 38791.19 40276.40 40597.55 39692.49 41066.36 40483.01 39891.27 40064.63 39885.79 40665.82 40660.65 40385.08 402
ANet_high77.30 37074.86 37484.62 38475.88 41077.61 40497.63 39593.15 40888.81 39064.27 40589.29 40236.51 40983.93 40775.89 40252.31 40492.33 398
MVEpermissive76.82 2176.91 37174.31 37584.70 38385.38 40976.05 40796.88 39793.17 40767.39 40271.28 40489.01 40321.66 41487.69 40471.74 40472.29 40190.35 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37274.97 37379.01 38870.98 41155.18 41393.37 40098.21 37765.08 40561.78 40693.83 39621.74 41392.53 40078.59 40091.12 37789.34 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37341.29 37836.84 38986.18 40849.12 41479.73 40222.81 41427.64 40625.46 40928.45 40921.98 41248.89 40855.80 40723.56 40812.51 406
testmvs39.17 37443.78 37625.37 39136.04 41416.84 41698.36 38026.56 41320.06 40738.51 40867.32 40429.64 41115.30 41037.59 40839.90 40643.98 405
test12339.01 37542.50 37728.53 39039.17 41320.91 41598.75 35819.17 41519.83 40838.57 40766.67 40533.16 41015.42 40937.50 40929.66 40749.26 404
cdsmvs_eth3d_5k24.64 37632.85 3790.00 3920.00 4150.00 4170.00 40399.51 1150.00 4100.00 41199.56 22196.58 1480.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.30 37711.06 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.58 2140.00 4150.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas8.27 37811.03 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 41199.01 180.00 4110.00 4100.00 4090.00 407
test_blank0.13 3790.17 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4111.57 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.02 3800.03 3830.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.27 4110.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS97.16 27895.47 334
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25699.96 3098.87 10699.84 7899.89 20
PC_three_145298.18 13399.84 2999.70 15699.31 398.52 36998.30 18599.80 9899.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25699.96 3098.87 10699.84 7899.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
eth-test20.00 415
eth-test0.00 415
ZD-MVS99.71 9699.79 3099.61 4896.84 27799.56 11599.54 22998.58 7299.96 3096.93 29599.75 113
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10599.76 5699.82 7598.75 5598.61 14799.81 9499.77 82
IU-MVS99.84 3299.88 899.32 26698.30 11599.84 2998.86 11199.85 7099.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15699.27 599.42 27498.24 18799.80 9899.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10099.84 7899.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
9.1499.10 7699.72 9199.40 21599.51 11597.53 21299.64 9399.78 12098.84 4199.91 10597.63 24299.82 91
save fliter99.76 6599.59 7099.14 29199.40 21999.00 43
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11399.90 4099.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9799.86 6399.88 26
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7598.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 221
ambc93.06 37092.68 40182.36 39598.47 37798.73 36095.09 37897.41 38455.55 40299.10 33296.42 31491.32 37497.71 376
MTGPAbinary99.47 174
test_post199.23 27565.14 40794.18 24799.71 22097.58 246
test_post65.99 40694.65 22799.73 210
patchmatchnet-post98.70 35894.79 21399.74 204
GG-mvs-BLEND98.45 27098.55 35998.16 23299.43 19893.68 40697.23 35598.46 36489.30 34399.22 31195.43 33698.22 22997.98 370
MTMP99.54 13998.88 339
gm-plane-assit98.54 36092.96 37894.65 36099.15 32199.64 24597.56 251
test9_res97.49 25799.72 11999.75 88
TEST999.67 11199.65 5799.05 31099.41 21396.22 32198.95 24799.49 24698.77 5199.91 105
test_899.67 11199.61 6799.03 31599.41 21396.28 31598.93 25199.48 25198.76 5299.91 105
agg_prior297.21 27599.73 11899.75 88
agg_prior99.67 11199.62 6599.40 21998.87 26199.91 105
TestCases99.31 14699.86 2098.48 21699.61 4897.85 17299.36 16599.85 5395.95 16999.85 14896.66 30899.83 8799.59 150
test_prior499.56 7598.99 326
test_prior298.96 33398.34 11199.01 23799.52 23698.68 6497.96 21099.74 116
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
旧先验298.96 33396.70 28499.47 13299.94 6998.19 190
新几何299.01 323
新几何199.75 5899.75 7399.59 7099.54 8596.76 28099.29 18099.64 19098.43 8399.94 6996.92 29799.66 12999.72 103
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
无先验98.99 32699.51 11596.89 27499.93 8497.53 25499.72 103
原ACMM298.95 337
原ACMM199.65 7399.73 8799.33 10399.47 17497.46 21899.12 21699.66 18398.67 6699.91 10597.70 23999.69 12499.71 112
test22299.75 7399.49 8798.91 34399.49 14396.42 30999.34 17199.65 18498.28 9299.69 12499.72 103
testdata299.95 5996.67 307
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16399.51 11597.07 25899.43 14199.70 15698.87 3799.94 6997.76 23099.64 13299.72 103
testdata198.85 34898.32 114
test1299.75 5899.64 12899.61 6799.29 27899.21 19998.38 8799.89 12799.74 11699.74 92
plane_prior799.29 23997.03 291
plane_prior699.27 24496.98 29592.71 285
plane_prior599.47 17499.69 23197.78 22697.63 25698.67 292
plane_prior499.61 205
plane_prior397.00 29398.69 7999.11 218
plane_prior299.39 21998.97 51
plane_prior199.26 246
plane_prior96.97 29699.21 28198.45 9997.60 259
n20.00 416
nn0.00 416
door-mid98.05 380
lessismore_v097.79 32498.69 34795.44 34594.75 40395.71 37399.87 4488.69 35199.32 29495.89 32394.93 33998.62 314
LGP-MVS_train98.49 26199.33 22797.05 28799.55 7797.46 21899.24 19199.83 6792.58 29099.72 21498.09 19797.51 26798.68 285
test1199.35 245
door97.92 381
HQP5-MVS96.83 303
HQP-NCC99.19 26298.98 32998.24 12198.66 288
ACMP_Plane99.19 26298.98 32998.24 12198.66 288
BP-MVS97.19 279
HQP4-MVS98.66 28899.64 24598.64 304
HQP3-MVS99.39 22297.58 261
HQP2-MVS92.47 294
NP-MVS99.23 25296.92 29999.40 272
MDTV_nov1_ep13_2view95.18 35199.35 23596.84 27799.58 11195.19 20097.82 22399.46 187
MDTV_nov1_ep1398.32 17199.11 28394.44 36299.27 26198.74 35597.51 21599.40 15399.62 20194.78 21499.76 20097.59 24598.81 199
ACMMP++_ref97.19 289
ACMMP++97.43 279
Test By Simon98.75 55
ITE_SJBPF98.08 30299.29 23996.37 32198.92 33098.34 11198.83 26699.75 13691.09 32499.62 25195.82 32497.40 28198.25 355
DeepMVS_CXcopyleft93.34 36899.29 23982.27 39699.22 29185.15 39396.33 36799.05 33190.97 32699.73 21093.57 36197.77 25198.01 366