This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18899.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18799.65 2399.78 10499.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17399.69 1999.85 6999.48 178
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19399.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25699.28 6399.84 7799.63 140
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17399.71 6899.80 10399.12 1399.97 2198.33 18099.87 5499.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 22099.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22399.64 2499.82 9099.54 161
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17199.77 10799.79 74
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38799.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14398.51 7899.80 18498.83 11899.89 4899.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 11999.73 14998.51 7899.74 20198.91 9999.88 5199.77 82
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34199.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17499.86 6299.81 61
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17199.80 9799.79 74
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17899.71 6899.80 10398.95 2799.93 8498.19 18999.84 7799.74 92
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24599.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30599.33 25799.00 4399.82 3599.81 9099.06 1699.84 15399.09 8099.42 14799.65 129
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19799.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18599.63 13399.80 70
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 21199.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33299.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 242
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25199.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24799.77 5199.82 7698.78 4899.94 6997.56 25099.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 6799.12 7499.74 6199.18 26399.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 18099.84 7799.52 167
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 234
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31899.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 241
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27999.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23699.41 14799.59 21298.42 8599.93 8498.19 18999.69 12399.73 97
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19799.40 15299.44 26198.10 9999.81 17898.94 9499.62 13499.35 204
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27199.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18697.39 11699.28 29899.03 8599.85 6999.65 129
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17499.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17899.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18799.51 3599.14 16999.67 122
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25699.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23399.75 11299.48 178
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21296.60 29499.60 10699.55 22698.83 4299.90 11697.48 25799.83 8699.78 80
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16699.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29599.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 31099.16 30197.86 16899.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22399.60 10699.88 3697.14 12699.84 15399.13 7698.94 18599.69 115
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30599.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28799.80 9799.85 36
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37899.71 1398.88 5999.62 10099.76 13596.63 14599.70 22399.46 4499.99 199.66 125
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31099.42 14399.68 17498.75 5599.80 18497.98 20899.72 11899.44 191
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15399.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25798.70 13298.93 18699.67 122
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26399.63 9699.69 16897.27 12499.96 3097.82 22299.84 7799.81 61
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19699.59 10999.75 13895.90 17399.73 20799.53 3299.02 18299.86 33
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23499.58 11099.76 13597.65 11299.82 17398.87 10599.07 17799.46 186
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27998.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25699.52 10198.07 14899.66 8399.81 9097.79 10899.78 19297.79 22499.81 9399.60 146
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 23198.09 19699.13 17099.73 97
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19299.28 18099.28 30498.34 8999.85 14696.96 29199.45 14599.69 115
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19296.98 28999.78 10498.07 361
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17999.38 15899.81 9097.30 12299.45 26199.35 5198.99 18399.51 173
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 31099.41 21296.28 31498.95 24699.49 24798.76 5299.91 10597.63 24199.72 11899.75 88
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20099.27 6697.90 24499.47 184
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27499.52 10196.85 27599.27 18499.48 25298.25 9399.91 10597.76 22999.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28499.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25799.77 10799.55 159
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27299.48 15597.23 24299.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13199.77 12997.82 10799.87 13796.93 29499.90 3999.54 161
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30499.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 203
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30797.93 16299.42 14399.55 22698.67 6699.80 18495.80 32599.68 12699.61 144
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37799.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27999.13 7697.23 28698.81 251
mvsmamba98.92 12198.87 11599.08 17599.07 29199.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28999.38 4897.40 27998.73 266
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31599.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 27097.91 21299.11 17199.62 142
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
EPNet98.86 12898.71 13299.30 14897.20 38398.18 23099.62 8898.91 33499.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25699.91 397.42 22599.67 7899.37 28097.53 11399.88 13298.98 9097.29 28398.42 342
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18299.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29299.01 23699.40 27297.09 12999.86 14097.68 24099.53 14199.10 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 3999.08 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25599.31 17499.78 12195.23 19999.77 19498.21 18799.03 18099.75 88
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22899.28 18099.68 17496.44 15499.92 9598.37 17698.22 22899.40 197
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30899.77 997.74 18799.50 12699.53 23595.41 18999.84 15397.17 28199.64 13199.44 191
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 39099.50 13597.50 21599.38 15899.41 26996.37 15699.81 17899.11 7898.54 21299.51 173
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32598.61 8499.35 16798.92 34894.78 21599.77 19499.35 5198.11 23899.54 161
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5498.70 6399.81 17899.02 8799.91 3199.81 61
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35699.31 27197.34 23199.21 19899.07 32897.20 12599.82 17398.56 15898.87 19199.52 167
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 20198.73 12999.38 14998.74 264
FIs98.78 14398.63 14299.23 16299.18 26399.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27999.08 8296.38 30298.78 254
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18797.95 21099.45 14599.02 237
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31996.59 29699.58 11099.59 21295.39 19099.90 11697.78 22599.49 14399.28 212
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 29099.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 31099.07 8396.38 30298.79 253
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 20098.84 19499.00 238
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27499.30 6197.52 26398.64 302
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 33099.01 23699.34 29096.20 16199.84 15397.88 21498.82 19699.39 198
RRT_MVS98.70 15198.66 13998.83 22598.90 31598.45 21899.89 299.28 28197.76 18398.94 24899.92 1496.98 13499.25 30399.28 6397.00 29298.80 252
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31898.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29599.09 8097.27 28498.71 269
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29599.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 238
131498.68 15598.54 15999.11 17498.89 31798.65 19499.27 26199.49 14396.89 27397.99 33499.56 22397.72 11199.83 16697.74 23299.27 16098.84 250
EI-MVSNet98.67 15698.67 13698.68 24299.35 21997.97 24299.50 16399.38 23196.93 27299.20 20199.83 6897.87 10599.36 28398.38 17497.56 26098.71 269
test_djsdf98.67 15698.57 15698.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8597.62 25598.75 261
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5199.76 87
nrg03098.64 15998.42 16599.28 15599.05 29799.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27499.34 5594.59 34398.78 254
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35299.36 24096.33 31199.00 24099.12 32698.46 8199.84 15395.23 34099.37 15699.66 125
CVMVSNet98.57 16298.67 13698.30 28699.35 21995.59 33799.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 26198.75 12698.56 21099.85 36
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27499.30 6197.48 27198.63 310
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22699.20 20199.73 14993.86 25999.36 28398.87 10597.56 26098.62 313
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34895.54 34199.62 10099.70 15893.82 26099.93 8497.35 26899.46 14499.32 209
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29899.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 22199.98 1397.47 25999.76 11099.06 233
IterMVS-LS98.46 16798.42 16598.58 25099.59 14898.00 24099.37 22699.43 20796.94 27199.07 22599.59 21297.87 10599.03 33898.32 18295.62 32298.71 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 16898.28 17598.94 19698.50 36098.96 15799.77 3499.50 13597.07 25798.87 26099.77 12994.76 21999.28 29898.66 13997.60 25698.57 328
jajsoiax98.43 16998.28 17598.88 21198.60 35598.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26699.22 6997.50 26798.77 257
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 39197.68 19499.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
BH-untuned98.42 17098.36 16898.59 24799.49 18196.70 30799.27 26199.13 30597.24 24198.80 26999.38 27795.75 17899.74 20197.07 28599.16 16599.33 208
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7799.96 7
D2MVS98.41 17298.50 16198.15 29999.26 24496.62 31299.40 21599.61 4897.71 18998.98 24299.36 28396.04 16499.67 23198.70 13297.41 27898.15 358
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 35197.70 19298.94 24899.65 18692.91 27999.74 20196.52 31099.55 14099.64 136
mvs_tets98.40 17598.23 17798.91 20498.67 34898.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26699.31 5897.48 27198.77 257
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 22098.71 27899.83 6893.23 27099.63 24798.88 10296.32 30498.76 259
ACMM97.58 598.37 17798.34 17098.48 26299.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21798.74 12797.45 27398.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39397.53 21199.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
tpmrst98.33 17998.48 16297.90 31499.16 27394.78 35599.31 24499.11 30697.27 23799.45 13499.59 21295.33 19399.84 15398.48 16598.61 20499.09 226
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32798.41 10099.14 21299.60 21094.59 22999.79 18798.48 16593.29 36199.61 144
PatchmatchNetpermissive98.31 18098.36 16898.19 29499.16 27395.32 34699.27 26198.92 33097.37 22999.37 16099.58 21694.90 20799.70 22397.43 26399.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36896.03 33599.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27399.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23999.35 5194.46 34498.72 267
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30299.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27498.36 17893.34 36098.66 298
HQP_MVS98.27 18598.22 17898.44 27299.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22897.78 22597.63 25398.67 290
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31498.98 15099.48 17899.53 9697.76 18398.71 27899.46 25996.43 15599.22 31098.57 15592.87 36798.69 278
LPG-MVS_test98.22 18698.13 18598.49 26099.33 22597.05 28699.58 10999.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4999.44 20196.61 29299.66 8399.89 3095.92 17199.82 17397.46 26099.10 17499.57 156
ADS-MVSNet98.20 18998.08 19298.56 25499.33 22596.48 31799.23 27599.15 30296.24 31899.10 22099.67 18094.11 24999.71 21796.81 29999.05 17899.48 178
OPM-MVS98.19 19098.10 18898.45 26998.88 31897.07 28499.28 25699.38 23198.57 8699.22 19599.81 9092.12 30299.66 23498.08 20097.54 26298.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 19098.16 18098.27 29199.30 23395.55 33899.07 30598.97 32397.57 20499.43 14099.57 22092.72 28499.74 20197.58 24599.20 16399.52 167
miper_ehance_all_eth98.18 19298.10 18898.41 27599.23 25097.72 25798.72 36099.31 27196.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
CR-MVSNet98.17 19397.93 21098.87 21599.18 26398.49 21399.22 27999.33 25796.96 26799.56 11499.38 27794.33 24199.00 34394.83 34698.58 20799.14 219
miper_enhance_ethall98.16 19498.08 19298.41 27598.96 31197.72 25798.45 37799.32 26796.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
CLD-MVS98.16 19498.10 18898.33 28299.29 23796.82 30498.75 35799.44 20197.83 17499.13 21399.55 22692.92 27799.67 23198.32 18297.69 25198.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36896.82 39296.95 26999.54 11999.43 26391.66 31699.86 14098.08 20099.51 14299.22 216
pmmvs498.13 19797.90 21298.81 22998.61 35498.87 17298.99 32699.21 29596.44 30699.06 23099.58 21695.90 17399.11 32997.18 28096.11 30898.46 339
WR-MVS_H98.13 19797.87 21798.90 20699.02 30098.84 17799.70 5299.59 5797.27 23798.40 31199.19 31795.53 18699.23 30798.34 17993.78 35798.61 322
c3_l98.12 19998.04 19798.38 27999.30 23397.69 26198.81 35199.33 25796.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
ACMH97.28 898.10 20097.99 20298.44 27299.41 20396.96 29799.60 9599.56 6998.09 14398.15 32799.91 2090.87 32899.70 22398.88 10297.45 27398.67 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36799.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
CP-MVSNet98.09 20197.78 22499.01 18498.97 31099.24 11799.67 6499.46 18297.25 23998.48 30899.64 19293.79 26199.06 33498.63 14294.10 35198.74 264
dmvs_re98.08 20398.16 18097.85 31699.55 16094.67 35899.70 5298.92 33098.15 13399.06 23099.35 28693.67 26599.25 30397.77 22897.25 28599.64 136
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15099.41 20799.45 19397.87 16798.71 27899.50 24494.82 21099.22 31098.57 15592.87 36798.68 283
v2v48298.06 20597.77 22698.92 20098.90 31598.82 18199.57 11699.36 24096.65 28799.19 20499.35 28694.20 24599.25 30397.72 23594.97 33698.69 278
V4298.06 20597.79 22198.86 21998.98 30898.84 17799.69 5599.34 25096.53 29899.30 17699.37 28094.67 22699.32 29297.57 24994.66 34198.42 342
test-LLR98.06 20597.90 21298.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23899.45 26197.25 27299.38 14999.10 222
WR-MVS98.06 20597.73 23399.06 17898.86 32599.25 11699.19 28299.35 24697.30 23598.66 28799.43 26393.94 25599.21 31598.58 15294.28 34898.71 269
ACMP97.20 1198.06 20597.94 20998.45 26999.37 21597.01 29199.44 19499.49 14397.54 21098.45 30999.79 11591.95 30699.72 21197.91 21297.49 27098.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 21097.96 20598.33 28299.26 24497.38 26898.56 37399.31 27196.65 28798.88 25799.52 23896.58 14799.12 32897.39 26595.53 32598.47 336
test111198.04 21198.11 18797.83 31999.74 8093.82 36799.58 10995.40 40099.12 2599.65 8999.93 990.73 32999.84 15399.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30899.74 8094.37 36299.59 10194.98 40199.13 2299.66 8399.93 990.67 33099.84 15399.40 4799.38 14999.80 70
EPNet_dtu98.03 21397.96 20598.23 29298.27 36595.54 34099.23 27598.75 35299.02 3897.82 34199.71 15496.11 16299.48 25893.04 36699.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28599.07 22599.28 30492.93 27698.98 34597.10 28296.65 29598.56 329
ADS-MVSNet298.02 21598.07 19597.87 31599.33 22595.19 34999.23 27599.08 31096.24 31899.10 22099.67 18094.11 24998.93 35596.81 29999.05 17899.48 178
HQP-MVS98.02 21597.90 21298.37 28099.19 26096.83 30298.98 32999.39 22398.24 11898.66 28799.40 27292.47 29599.64 24297.19 27897.58 25898.64 302
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27799.23 25096.80 30599.70 5299.60 5497.12 25198.18 32699.70 15891.73 31299.72 21198.39 17397.45 27398.68 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 21897.84 21998.55 25699.25 24897.97 24298.71 36199.34 25096.47 30598.59 30199.54 23195.65 18399.21 31597.21 27495.77 31798.46 339
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 24997.95 24698.71 36199.35 24696.50 29998.60 30099.54 23195.72 18099.03 33897.21 27495.77 31798.46 339
miper_lstm_enhance98.00 22097.91 21198.28 29099.34 22397.43 26798.88 34499.36 24096.48 30398.80 26999.55 22695.98 16698.91 35697.27 27195.50 32698.51 332
BH-w/o98.00 22097.89 21698.32 28499.35 21996.20 32799.01 32398.90 33696.42 30898.38 31299.00 33795.26 19799.72 21196.06 31898.61 20499.03 235
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13999.35 24696.27 31699.23 19499.35 28694.67 22699.23 30796.73 30295.16 33298.68 283
EU-MVSNet97.98 22298.03 19897.81 32298.72 34296.65 31199.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37897.41 26495.30 32998.78 254
tpmvs97.98 22298.02 20097.84 31899.04 29894.73 35699.31 24499.20 29696.10 33498.76 27499.42 26594.94 20399.81 17896.97 29098.45 21698.97 242
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22398.58 15297.72 25099.39 198
NR-MVSNet97.97 22597.61 24599.02 18398.87 32299.26 11599.47 18499.42 20997.63 19997.08 35999.50 24495.07 20299.13 32497.86 21793.59 35898.68 283
v897.95 22797.63 24498.93 19898.95 31298.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20699.30 29696.94 29394.08 35298.66 298
Patchmatch-test97.93 22897.65 24098.77 23499.18 26397.07 28499.03 31599.14 30496.16 32598.74 27599.57 22094.56 23199.72 21193.36 36299.11 17199.52 167
PS-CasMVS97.93 22897.59 24798.95 19598.99 30599.06 14299.68 6199.52 10197.13 24998.31 31699.68 17492.44 29999.05 33598.51 16394.08 35298.75 261
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7599.49 14397.76 18398.49 30799.60 21094.23 24498.97 35298.00 20792.90 36598.70 274
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11099.97 4
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13499.34 25096.20 32199.32 17299.40 27294.36 24099.26 30296.37 31595.03 33598.70 274
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19196.68 31099.56 12299.54 8598.41 10097.79 34399.87 4490.18 33799.66 23498.05 20497.18 28998.62 313
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37597.10 25599.65 8999.79 11584.79 37799.91 10599.28 6398.38 21799.69 115
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36398.81 26799.68 17493.23 27099.42 27198.84 11594.42 34698.76 259
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 32097.79 17998.78 27299.94 691.68 31399.35 28697.21 27496.99 29398.69 278
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15894.89 20899.44 26696.03 31993.89 35598.75 261
baseline297.87 23797.55 24898.82 22699.18 26398.02 23999.41 20796.58 39796.97 26696.51 36499.17 31893.43 26799.57 25297.71 23699.03 18098.86 248
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35597.94 16199.27 18498.62 35991.75 31099.86 14093.73 35898.19 23298.96 244
cl2297.85 24097.64 24398.48 26299.09 28797.87 25098.60 37099.33 25797.11 25498.87 26099.22 31392.38 30099.17 31998.21 18795.99 31198.42 342
v1097.85 24097.52 25298.86 21998.99 30598.67 19299.75 4199.41 21295.70 33998.98 24299.41 26994.75 22099.23 30796.01 32194.63 34298.67 290
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 37199.15 30297.04 26298.90 25499.30 30089.83 33999.38 27496.70 30498.33 22099.62 142
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31298.27 32099.70 15893.35 26999.44 26695.69 32895.40 32798.27 352
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27399.19 7193.27 36298.71 269
LCM-MVSNet-Re97.83 24598.15 18296.87 35199.30 23392.25 38199.59 10198.26 37397.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18399.64 136
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28196.33 32299.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20797.73 23397.38 28198.53 330
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31899.48 15597.22 24398.71 27899.70 15892.75 28199.13 32497.46 26096.00 31098.67 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31899.49 14397.18 24598.71 27899.72 15392.72 28499.14 32197.44 26295.86 31698.67 290
EPMVS97.82 24897.65 24098.35 28198.88 31895.98 33099.49 17494.71 40397.57 20499.26 18899.48 25292.46 29899.71 21797.87 21699.08 17699.35 204
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33398.85 34397.22 24397.23 35499.36 28395.28 19499.46 26095.51 33299.78 10497.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 25097.44 26698.91 20498.88 31898.68 19199.51 15699.34 25096.18 32399.20 20199.34 29094.03 25299.36 28395.32 33895.18 33198.69 278
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14899.34 25096.15 32799.24 19099.47 25593.98 25499.29 29795.40 33695.13 33398.69 278
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13999.33 25796.26 31798.90 25499.51 24194.68 22599.14 32197.83 22193.15 36498.63 310
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.96 244
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10198.74 35597.93 16299.26 18898.62 35991.75 31099.83 16693.22 36398.18 23398.37 348
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3299.51 11597.06 25998.29 31999.64 19292.63 29098.89 35898.09 19693.16 36398.72 267
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28798.29 22599.41 20798.85 34395.65 34098.63 29599.67 18094.82 21099.10 33198.07 20392.89 36698.64 302
TR-MVS97.76 25597.41 27298.82 22699.06 29497.87 25098.87 34698.56 36796.63 29198.68 28699.22 31392.49 29499.65 23995.40 33697.79 24898.95 246
Patchmtry97.75 25997.40 27398.81 22999.10 28498.87 17299.11 30199.33 25794.83 35598.81 26799.38 27794.33 24199.02 34096.10 31795.57 32398.53 330
dp97.75 25997.80 22097.59 33199.10 28493.71 37099.32 24198.88 33996.48 30399.08 22499.55 22692.67 28999.82 17396.52 31098.58 20799.24 215
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27299.51 11591.90 37999.30 17699.63 19898.78 4899.64 24288.09 38999.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34398.19 12799.67 7899.85 5482.98 38499.92 9599.49 4098.32 22499.60 146
MIMVSNet97.73 26297.45 26198.57 25199.45 19697.50 26599.02 31898.98 32296.11 33099.41 14799.14 32290.28 33298.74 36395.74 32698.93 18699.47 184
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.37 348
CostFormer97.72 26497.73 23397.71 32699.15 27794.02 36699.54 13999.02 31894.67 35899.04 23399.35 28692.35 30199.77 19498.50 16497.94 24399.34 207
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 30098.86 26499.29 30290.26 33398.98 34596.44 31296.56 29898.58 327
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36597.34 23198.05 33398.98 34094.45 23898.98 34595.04 34397.15 29098.89 247
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 39099.65 129
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17899.36 24096.11 33099.27 18499.36 28393.76 26399.24 30694.46 34995.23 33098.70 274
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22392.96 37598.41 31098.78 35593.77 26299.27 30198.16 19398.61 20498.86 248
pm-mvs197.68 27197.28 28998.88 21199.06 29498.62 19799.50 16399.45 19396.32 31297.87 33999.79 11592.47 29599.35 28697.54 25293.54 35998.67 290
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
tpm97.67 27497.55 24898.03 30399.02 30095.01 35299.43 19898.54 36996.44 30699.12 21599.34 29091.83 30999.60 25097.75 23196.46 30099.48 178
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13698.04 39199.25 28791.24 38298.51 30599.70 15894.55 23399.91 10592.76 37199.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29298.33 37297.36 23099.07 22598.94 34495.64 18499.15 32092.95 36798.68 20396.12 392
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27596.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 302
testgi97.65 27697.50 25598.13 30099.36 21896.45 31899.42 20599.48 15597.76 18397.87 33999.45 26091.09 32598.81 36094.53 34898.52 21399.13 221
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 27098.74 35597.68 19499.09 22398.32 36991.66 31699.81 17892.88 36898.22 22898.03 364
PAPM97.59 28097.09 29999.07 17799.06 29498.26 22798.30 38599.10 30794.88 35398.08 32999.34 29096.27 15999.64 24289.87 38298.92 18899.31 210
UWE-MVS97.58 28197.29 28898.48 26299.09 28796.25 32599.01 32396.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20299.28 212
VDDNet97.55 28297.02 30199.16 16899.49 18198.12 23599.38 22499.30 27595.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23799.42 193
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31396.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26197.30 27099.38 14999.21 217
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26198.90 33696.14 32898.37 31399.53 23591.54 31999.14 32197.51 25495.87 31598.63 310
LF4IMVS97.52 28497.46 26097.70 32798.98 30895.55 33899.29 25198.82 34698.07 14898.66 28799.64 19289.97 33899.61 24997.01 28696.68 29497.94 371
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 18092.92 27798.56 36796.88 29892.60 37098.70 274
testing1197.50 28797.10 29898.71 23999.20 25796.91 29999.29 25198.82 34697.89 16698.21 32498.40 36685.63 37199.83 16698.45 17098.04 24099.37 202
ETVMVS97.50 28796.90 30599.29 15199.23 25098.78 18699.32 24198.90 33697.52 21398.56 30298.09 37884.72 37899.69 22897.86 21797.88 24599.39 198
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25699.22 29298.94 5499.66 8399.42 26594.93 20499.65 23999.48 4183.80 39299.08 227
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3498.68 36397.14 24897.90 33799.93 990.45 33199.18 31897.00 28796.43 30198.67 290
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24698.97 32391.73 38098.91 25294.86 39495.10 20199.71 21797.58 24597.98 24199.28 212
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20396.45 15398.97 35293.77 35795.97 31498.61 322
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26197.25 27299.38 14999.10 222
testing9197.44 29497.02 30198.71 23999.18 26396.89 30199.19 28299.04 31697.78 18198.31 31698.29 37085.41 37399.85 14698.01 20697.95 24299.39 198
tpm297.44 29497.34 28197.74 32599.15 27794.36 36399.45 18898.94 32693.45 37298.90 25499.44 26191.35 32299.59 25197.31 26998.07 23999.29 211
tpm cat197.39 29697.36 27697.50 33499.17 27193.73 36999.43 19899.31 27191.27 38198.71 27899.08 32794.31 24399.77 19496.41 31498.50 21499.00 238
testing9997.36 29796.94 30498.63 24499.18 26396.70 30799.30 24698.93 32797.71 18998.23 32198.26 37184.92 37699.84 15398.04 20597.85 24799.35 204
USDC97.34 29897.20 29397.75 32499.07 29195.20 34898.51 37599.04 31697.99 15898.31 31699.86 4989.02 34599.55 25595.67 33097.36 28298.49 333
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20897.46 26699.51 15699.53 9695.86 33898.54 30499.77 12982.44 38799.66 23498.68 13797.52 26399.50 176
testing397.28 30096.76 30998.82 22699.37 21598.07 23799.45 18899.36 24097.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21099.58 154
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26199.39 22383.53 39498.08 32999.54 23196.97 13599.87 13794.23 35399.16 16599.63 140
test_fmvs297.25 30297.30 28697.09 34499.43 19893.31 37599.73 4798.87 34198.83 6499.28 18099.80 10384.45 37999.66 23497.88 21497.45 27398.30 350
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11696.63 39596.13 32998.87 26098.61 36194.59 22997.70 38595.08 34298.86 19299.55 159
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26797.41 22698.13 32899.30 30088.99 34699.56 25395.68 32999.80 9797.90 374
testing22297.16 30596.50 31399.16 16899.16 27398.47 21799.27 26198.66 36497.71 18998.23 32198.15 37382.28 38899.84 15397.36 26797.66 25299.18 218
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 27998.85 17699.49 17498.91 33495.48 34297.16 35799.80 10393.38 26899.11 32994.16 35591.73 37298.62 313
TinyColmap97.12 30796.89 30697.83 31999.07 29195.52 34198.57 37198.74 35597.58 20397.81 34299.79 11588.16 35899.56 25395.10 34197.21 28798.39 346
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10388.71 34999.04 33696.69 30596.55 29998.65 300
Syy-MVS97.09 30997.14 29596.95 34899.00 30292.73 37999.29 25199.39 22397.06 25997.41 34898.15 37393.92 25798.68 36591.71 37598.34 21899.45 189
PatchT97.03 31096.44 31598.79 23298.99 30598.34 22499.16 28699.07 31392.13 37899.52 12397.31 38794.54 23498.98 34588.54 38798.73 20199.03 235
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30297.16 27799.29 25199.39 22397.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21899.45 189
AUN-MVS96.88 31296.31 31898.59 24799.48 18997.04 28999.27 26199.22 29297.44 22298.51 30599.41 26991.97 30599.66 23497.71 23683.83 39199.07 232
FMVSNet196.84 31396.36 31798.29 28799.32 23197.26 27399.43 19899.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9585.06 41199.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
RPMNet96.72 31595.90 32799.19 16599.18 26398.49 21399.22 27999.52 10188.72 39099.56 11497.38 38494.08 25199.95 5986.87 39498.58 20799.14 219
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19499.26 28593.52 36996.98 36199.52 23888.52 35499.20 31792.58 37397.50 26797.93 372
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40798.81 4499.94 6998.79 12399.86 6299.84 40
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22699.47 17393.46 37197.41 34899.78 12187.06 36699.33 28996.92 29692.70 36998.65 300
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18099.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30398.91 35698.98 9092.21 37199.41 195
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 23099.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
FMVSNet596.43 32196.19 32097.15 34099.11 28195.89 33299.32 24199.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 31099.20 29693.94 36497.39 35198.79 35491.61 31899.04 33690.43 38095.77 31798.05 363
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8299.08 31096.17 32497.04 36099.06 33093.94 25597.76 38486.96 39395.06 33498.47 336
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25596.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3199.29 27993.01 37497.20 35699.03 33389.69 34198.36 37191.16 37896.13 30798.07 361
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22494.09 40491.07 38498.07 33291.04 40089.62 34399.35 28696.75 30199.09 17598.68 283
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15699.38 23196.55 29796.16 36899.25 31093.76 26396.17 39487.35 39294.22 34998.27 352
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23294.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 34099.79 18797.69 23981.69 39499.68 119
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28698.93 32796.16 32594.08 38199.22 31382.72 38599.47 25995.67 33097.50 26798.17 357
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13999.32 26795.91 33797.99 33499.85 5485.49 37299.88 13291.96 37498.84 19498.12 359
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37195.10 34995.20 37598.67 35894.78 21597.77 38396.28 31690.02 38199.51 173
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17496.74 39498.25 11795.24 37398.10 37774.96 39299.90 11699.53 3298.85 19397.70 377
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23393.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32399.37 27994.85 34599.85 6999.46 186
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14899.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30199.24 28993.49 37080.73 40098.98 34093.02 27498.18 37394.22 35494.45 34598.64 302
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17898.75 35296.74 28096.68 36399.88 3688.65 35299.71 21798.37 17682.74 39398.09 360
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30399.23 29093.26 37380.77 39999.04 33292.81 28098.02 37794.30 35094.18 35098.64 302
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23599.10 30795.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
dmvs_testset95.02 33996.12 32191.72 37299.10 28480.43 40099.58 10997.87 38297.47 21695.22 37498.82 35293.99 25395.18 39788.09 38994.91 33999.56 158
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12299.44 20195.11 34797.13 35897.32 38691.86 30897.27 38890.35 38181.23 39598.23 356
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28999.33 25793.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29592.81 40893.87 36597.68 34499.13 32393.87 25899.01 34291.38 37796.19 30698.59 326
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 23195.13 34597.33 35298.15 37392.69 28896.57 39288.67 38679.87 39697.99 368
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28499.28 28194.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30898.75 35286.58 39194.84 37998.26 37181.53 38999.32 29289.01 38597.87 24696.76 385
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 18085.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7898.25 37498.28 11394.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4799.27 28495.05 35093.09 38698.91 34994.70 22491.89 40176.62 40094.02 35496.58 387
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22698.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3799.23 29094.87 35492.80 38798.93 34594.71 22391.37 40274.49 40293.80 35696.42 388
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36696.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5598.53 37095.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28768.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3790.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 32171.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 33074.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 24099.28 2818.40 40825.05 40999.27 30784.11 38099.33 28989.20 38498.22 22897.42 382
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5485.77 36996.15 39597.86 21743.89 40495.39 394
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22396.58 1470.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2160.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.16 27795.47 333
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36898.30 18499.80 9799.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11499.54 23198.58 7299.96 3096.93 29499.75 112
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27198.24 18699.80 9799.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 198
9.1499.10 7699.72 9199.40 21599.51 11597.53 21199.64 9399.78 12198.84 4199.91 10597.63 24199.82 90
save fliter99.76 6599.59 7099.14 29199.40 22099.00 43
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
ambc93.06 36992.68 40082.36 39498.47 37698.73 36095.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
MTGPAbinary99.47 173
test_post199.23 27565.14 40694.18 24899.71 21797.58 245
test_post65.99 40594.65 22899.73 207
patchmatchnet-post98.70 35794.79 21499.74 201
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19893.68 40597.23 35498.46 36389.30 34499.22 31095.43 33598.22 22897.98 369
MTMP99.54 13998.88 339
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24297.56 250
test9_res97.49 25699.72 11899.75 88
TEST999.67 11199.65 5799.05 31099.41 21296.22 32098.95 24699.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 31599.41 21296.28 31498.93 25099.48 25298.76 5299.91 105
agg_prior297.21 27499.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
test_prior499.56 7598.99 326
test_prior298.96 33398.34 10899.01 23699.52 23898.68 6497.96 20999.74 115
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16699.74 92
旧先验298.96 33396.70 28399.47 13199.94 6998.19 189
新几何299.01 323
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19298.43 8399.94 6996.92 29699.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
无先验98.99 32699.51 11596.89 27399.93 8497.53 25399.72 103
原ACMM298.95 336
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18598.67 6699.91 10597.70 23899.69 12399.71 112
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17099.65 18698.28 9299.69 12399.72 103
testdata299.95 5996.67 306
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14099.70 15898.87 3799.94 6997.76 22999.64 13199.72 103
testdata198.85 34798.32 111
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior599.47 17399.69 22897.78 22597.63 25398.67 290
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 217
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 28198.45 9697.60 256
n20.00 415
nn0.00 415
door-mid98.05 379
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29295.89 32294.93 33898.62 313
LGP-MVS_train98.49 26099.33 22597.05 28699.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
test1199.35 246
door97.92 380
HQP5-MVS96.83 302
HQP-NCC99.19 26098.98 32998.24 11898.66 287
ACMP_Plane99.19 26098.98 32998.24 11898.66 287
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24298.64 302
HQP3-MVS99.39 22397.58 258
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
MDTV_nov1_ep13_2view95.18 35099.35 23596.84 27699.58 11095.19 20097.82 22299.46 186
MDTV_nov1_ep1398.32 17299.11 28194.44 36199.27 26198.74 35597.51 21499.40 15299.62 20394.78 21599.76 19897.59 24498.81 198
ACMMP++_ref97.19 288
ACMMP++97.43 277
Test By Simon98.75 55
ITE_SJBPF98.08 30199.29 23796.37 32098.92 33098.34 10898.83 26599.75 13891.09 32599.62 24895.82 32397.40 27998.25 354
DeepMVS_CXcopyleft93.34 36799.29 23782.27 39599.22 29285.15 39296.33 36699.05 33190.97 32799.73 20793.57 36097.77 24998.01 365