This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3399.86 2099.61 7399.56 13099.63 4099.48 399.98 899.83 7598.75 5899.99 499.97 199.96 1399.94 12
fmvsm_l_conf0.5_n99.71 199.67 199.85 3399.84 3299.63 7099.56 13099.63 4099.47 499.98 899.82 8498.75 5899.99 499.97 199.97 799.94 12
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5999.48 18899.64 3799.45 799.92 1999.92 1798.62 7399.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5899.84 3299.44 10299.58 11799.69 1899.43 1099.98 899.91 2398.62 73100.00 199.97 199.95 1899.90 18
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7399.02 4599.88 2799.85 6099.18 1099.96 3399.22 7699.92 2999.90 18
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvsmvis_n_192099.65 699.61 699.77 6199.38 22799.37 10899.58 11799.62 4299.41 1299.87 3299.92 1798.81 47100.00 199.97 199.93 2699.94 12
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8199.15 2499.90 2299.90 3099.00 2299.97 2199.11 8699.91 3699.86 34
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16499.08 4099.91 2099.81 9899.20 799.96 3398.91 11299.85 7799.79 79
DVP-MVS++99.59 1199.50 1699.88 999.51 17999.88 899.87 899.51 12298.99 5299.88 2799.81 9899.27 599.96 3398.85 12599.80 10599.81 66
TSAR-MVS + MP.99.58 1299.50 1699.81 4999.91 199.66 5999.63 9099.39 23398.91 6599.78 5799.85 6099.36 299.94 7598.84 12899.88 5999.82 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set99.58 1299.57 899.64 8699.78 5799.14 14299.60 10299.45 20599.01 4799.90 2299.83 7598.98 2499.93 9399.59 3299.95 1899.86 34
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8699.78 5799.15 14199.61 10199.45 20599.01 4799.89 2499.82 8499.01 1899.92 10599.56 3699.95 1899.85 38
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24999.10 3499.81 4699.80 11198.94 3299.96 3398.93 10999.86 7099.81 66
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3399.83 3999.64 6999.52 15799.65 3499.10 3499.98 899.92 1797.35 12599.96 3399.94 1199.92 2999.95 9
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2699.44 20999.65 6399.50 17399.61 4999.45 799.87 3299.92 1797.31 12699.97 2199.95 999.99 199.97 4
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12298.62 9299.79 5299.83 7599.28 499.97 2198.48 17999.90 4599.84 44
Skip Steuart: Steuart Systems R&D Blog.
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17399.74 15098.81 4799.94 7598.79 13699.86 7099.84 44
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18598.79 7799.68 8699.81 9898.43 8699.97 2198.88 11599.90 4599.83 54
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3399.84 3299.65 6399.51 16699.67 2399.13 2799.98 899.92 1796.60 15299.96 3399.95 999.96 1399.95 9
HPM-MVS_fast99.51 2199.40 3099.85 3399.91 199.79 3399.76 3799.56 7397.72 20299.76 6799.75 14599.13 1299.92 10599.07 9299.92 2999.85 38
mvsany_test199.50 2399.46 2399.62 9399.61 14899.09 14798.94 35599.48 16499.10 3499.96 1799.91 2398.85 4299.96 3399.72 2299.58 14899.82 59
CS-MVS99.50 2399.48 1899.54 10799.76 6899.42 10499.90 199.55 8198.56 9799.78 5799.70 16598.65 7199.79 20299.65 2899.78 11499.41 212
SPE-MVS-test99.49 2599.48 1899.54 10799.78 5799.30 12099.89 299.58 6498.56 9799.73 7399.69 17598.55 7899.82 18799.69 2499.85 7799.48 191
HFP-MVS99.49 2599.37 3699.86 2699.87 1599.80 3099.66 7599.67 2398.15 14599.68 8699.69 17599.06 1699.96 3398.69 14899.87 6299.84 44
ACMMPR99.49 2599.36 3899.86 2699.87 1599.79 3399.66 7599.67 2398.15 14599.67 9099.69 17598.95 3099.96 3398.69 14899.87 6299.84 44
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6199.63 13899.59 7699.36 24599.46 19499.07 4299.79 5299.82 8498.85 4299.92 10598.68 15099.87 6299.82 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 15099.66 9599.68 18298.96 2599.96 3398.62 15799.87 6299.84 44
APD-MVS_3200maxsize99.48 2999.35 4099.85 3399.76 6899.83 1999.63 9099.54 9098.36 11899.79 5299.82 8498.86 4199.95 6498.62 15799.81 10199.78 85
DELS-MVS99.48 2999.42 2599.65 8099.72 9799.40 10799.05 32799.66 2899.14 2699.57 12799.80 11198.46 8499.94 7599.57 3599.84 8599.60 155
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 16099.55 13299.64 20198.91 3799.96 3398.72 14399.90 4599.82 59
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19599.48 16498.05 16799.76 6799.86 5598.82 4699.93 9398.82 13599.91 3699.84 44
MVSMamba_PlusPlus99.46 3499.41 2999.64 8699.68 11599.50 9499.75 4299.50 14298.27 12899.87 3299.92 1798.09 10499.94 7599.65 2899.95 1899.47 197
balanced_conf0399.46 3499.39 3299.67 7599.55 16799.58 8199.74 4699.51 12298.42 11199.87 3299.84 7098.05 10799.91 11799.58 3499.94 2499.52 178
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24599.51 12298.73 8499.88 2799.84 7098.72 6499.96 3398.16 20999.87 6299.88 27
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.46 3499.47 2099.44 13999.60 15399.16 13799.41 22199.71 1398.98 5599.45 14899.78 13099.19 999.54 27499.28 7099.84 8599.63 148
SR-MVS-dyc-post99.45 3899.31 5299.85 3399.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.53 7999.95 6498.61 16099.81 10199.77 87
PGM-MVS99.45 3899.31 5299.86 2699.87 1599.78 3999.58 11799.65 3497.84 18899.71 8099.80 11199.12 1399.97 2198.33 19599.87 6299.83 54
CP-MVS99.45 3899.32 4699.85 3399.83 3999.75 4399.69 6099.52 10898.07 16199.53 13599.63 20798.93 3699.97 2198.74 14099.91 3699.83 54
ACMMPcopyleft99.45 3899.32 4699.82 4699.89 899.67 5799.62 9599.69 1898.12 15199.63 11099.84 7098.73 6399.96 3398.55 17599.83 9499.81 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft99.44 4299.30 5499.85 3399.73 9399.83 1999.56 13099.47 18597.45 23599.78 5799.82 8499.18 1099.91 11798.79 13699.89 5699.81 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 4299.30 5499.86 2699.88 1199.79 3399.69 6099.48 16498.12 15199.50 14099.75 14598.78 5199.97 2198.57 16999.89 5699.83 54
EC-MVSNet99.44 4299.39 3299.58 10099.56 16399.49 9599.88 499.58 6498.38 11499.73 7399.69 17598.20 9999.70 24099.64 3099.82 9899.54 171
SR-MVS99.43 4599.29 5899.86 2699.75 7899.83 1999.59 10999.62 4298.21 13899.73 7399.79 12398.68 6799.96 3398.44 18599.77 11799.79 79
MCST-MVS99.43 4599.30 5499.82 4699.79 5599.74 4699.29 26699.40 23098.79 7799.52 13799.62 21298.91 3799.90 12998.64 15499.75 12299.82 59
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14298.70 8699.77 6199.49 25898.21 9899.95 6498.46 18399.77 11799.88 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 4799.29 5899.80 5299.62 14499.55 8499.50 17399.70 1598.79 7799.77 6199.96 197.45 12099.96 3398.92 11199.90 4599.89 21
HPM-MVScopyleft99.42 4799.28 6099.83 4599.90 499.72 4799.81 2099.54 9097.59 21699.68 8699.63 20798.91 3799.94 7598.58 16699.91 3699.84 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CNVR-MVS99.42 4799.30 5499.78 5899.62 14499.71 4999.26 28599.52 10898.82 7299.39 16999.71 16198.96 2599.85 16098.59 16599.80 10599.77 87
SD-MVS99.41 5199.52 1299.05 19499.74 8699.68 5499.46 19899.52 10899.11 3399.88 2799.91 2399.43 197.70 40398.72 14399.93 2699.77 87
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_LR99.41 5199.33 4499.65 8099.77 6499.51 9398.94 35599.85 698.82 7299.65 10299.74 15098.51 8199.80 19998.83 13199.89 5699.64 143
MVS_111021_HR99.41 5199.32 4699.66 7699.72 9799.47 9998.95 35399.85 698.82 7299.54 13399.73 15698.51 8199.74 21898.91 11299.88 5999.77 87
MM99.40 5499.28 6099.74 6799.67 11799.31 11899.52 15798.87 35799.55 199.74 7199.80 11196.47 15899.98 1399.97 199.97 799.94 12
GST-MVS99.40 5499.24 6899.85 3399.86 2099.79 3399.60 10299.67 2397.97 17399.63 11099.68 18298.52 8099.95 6498.38 18899.86 7099.81 66
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21199.51 12298.68 8999.27 19799.53 24598.64 7299.96 3398.44 18599.80 10599.79 79
SF-MVS99.38 5799.24 6899.79 5599.79 5599.68 5499.57 12499.54 9097.82 19399.71 8099.80 11198.95 3099.93 9398.19 20599.84 8599.74 97
fmvsm_s_conf0.5_n_399.37 5899.20 7399.87 1599.75 7899.70 5199.48 18899.66 2899.45 799.99 299.93 1094.64 23899.97 2199.94 1199.97 799.95 9
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4999.77 6499.75 4399.46 19899.60 5599.47 499.98 899.94 694.98 21199.95 6499.97 199.79 11299.73 102
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26199.52 10897.18 26199.60 12099.79 12398.79 5099.95 6498.83 13199.91 3699.83 54
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.99.36 6199.36 3899.36 14899.67 11798.61 20999.07 32299.33 26999.00 5099.82 4599.81 9899.06 1699.84 16799.09 9099.42 15999.65 136
PVSNet_Blended_VisFu99.36 6199.28 6099.61 9499.86 2099.07 15299.47 19599.93 297.66 21199.71 8099.86 5597.73 11599.96 3399.47 5199.82 9899.79 79
NCCC99.34 6399.19 7599.79 5599.61 14899.65 6399.30 26199.48 16498.86 6799.21 21199.63 20798.72 6499.90 12998.25 20199.63 14399.80 75
mamv499.33 6499.42 2599.07 19099.67 11797.73 26599.42 21899.60 5598.15 14599.94 1899.91 2398.42 8899.94 7599.72 2299.96 1399.54 171
MP-MVScopyleft99.33 6499.15 7899.87 1599.88 1199.82 2599.66 7599.46 19498.09 15699.48 14499.74 15098.29 9599.96 3397.93 22799.87 6299.82 59
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n_299.32 6699.13 8099.89 799.80 5299.77 4099.44 20699.58 6499.47 499.99 299.93 1094.04 26299.96 3399.96 799.93 2699.93 17
PS-MVSNAJ99.32 6699.32 4699.30 16299.57 15998.94 17498.97 34999.46 19498.92 6499.71 8099.24 32699.01 1899.98 1399.35 5899.66 13898.97 261
CSCG99.32 6699.32 4699.32 15699.85 2698.29 23499.71 5599.66 2898.11 15399.41 16299.80 11198.37 9299.96 3398.99 10099.96 1399.72 109
PHI-MVS99.30 6999.17 7799.70 7399.56 16399.52 9299.58 11799.80 897.12 26799.62 11499.73 15698.58 7599.90 12998.61 16099.91 3699.68 126
DeepC-MVS98.35 299.30 6999.19 7599.64 8699.82 4299.23 13099.62 9599.55 8198.94 6199.63 11099.95 395.82 18499.94 7599.37 5799.97 799.73 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.29 7199.10 8499.86 2699.70 10799.65 6399.53 15699.62 4298.74 8399.99 299.95 394.53 24599.94 7599.89 1599.96 1399.97 4
xiu_mvs_v1_base_debu99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base_debi99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
APD-MVScopyleft99.27 7599.08 8899.84 4499.75 7899.79 3399.50 17399.50 14297.16 26399.77 6199.82 8498.78 5199.94 7597.56 26699.86 7099.80 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
LS3D99.27 7599.12 8299.74 6799.18 28099.75 4399.56 13099.57 6898.45 10799.49 14399.85 6097.77 11499.94 7598.33 19599.84 8599.52 178
fmvsm_s_conf0.1_n_a99.26 7799.06 9099.85 3399.52 17699.62 7199.54 14899.62 4298.69 8799.99 299.96 194.47 24799.94 7599.88 1699.92 2999.98 2
patch_mono-299.26 7799.62 598.16 30999.81 4694.59 37799.52 15799.64 3799.33 1699.73 7399.90 3099.00 2299.99 499.69 2499.98 499.89 21
ETV-MVS99.26 7799.21 7299.40 14299.46 20299.30 12099.56 13099.52 10898.52 10199.44 15399.27 32298.41 9099.86 15499.10 8999.59 14799.04 253
xiu_mvs_v2_base99.26 7799.25 6799.29 16599.53 17198.91 17899.02 33599.45 20598.80 7699.71 8099.26 32498.94 3299.98 1399.34 6399.23 17498.98 260
CANet99.25 8199.14 7999.59 9799.41 21799.16 13799.35 25099.57 6898.82 7299.51 13999.61 21696.46 15999.95 6499.59 3299.98 499.65 136
3Dnovator97.25 999.24 8299.05 9199.81 4999.12 29699.66 5999.84 1299.74 1099.09 3998.92 26499.90 3095.94 17899.98 1398.95 10599.92 2999.79 79
dcpmvs_299.23 8399.58 798.16 30999.83 3994.68 37599.76 3799.52 10899.07 4299.98 899.88 4298.56 7799.93 9399.67 2699.98 499.87 32
test_fmvsmconf0.01_n99.22 8499.03 9599.79 5598.42 38299.48 9799.55 14499.51 12299.39 1399.78 5799.93 1094.80 22299.95 6499.93 1399.95 1899.94 12
CHOSEN 1792x268899.19 8599.10 8499.45 13599.89 898.52 21999.39 23399.94 198.73 8499.11 23099.89 3595.50 19499.94 7599.50 4499.97 799.89 21
F-COLMAP99.19 8599.04 9399.64 8699.78 5799.27 12599.42 21899.54 9097.29 25299.41 16299.59 22198.42 8899.93 9398.19 20599.69 13399.73 102
EIA-MVS99.18 8799.09 8799.45 13599.49 19299.18 13499.67 6999.53 10397.66 21199.40 16799.44 27498.10 10399.81 19298.94 10699.62 14499.35 221
3Dnovator+97.12 1399.18 8798.97 10999.82 4699.17 28899.68 5499.81 2099.51 12299.20 2198.72 29199.89 3595.68 18999.97 2198.86 12399.86 7099.81 66
MVSFormer99.17 8999.12 8299.29 16599.51 17998.94 17499.88 499.46 19497.55 22299.80 5099.65 19597.39 12199.28 31499.03 9699.85 7799.65 136
sss99.17 8999.05 9199.53 11599.62 14498.97 16499.36 24599.62 4297.83 18999.67 9099.65 19597.37 12499.95 6499.19 7899.19 17799.68 126
test_cas_vis1_n_192099.16 9199.01 10399.61 9499.81 4698.86 18499.65 8199.64 3799.39 1399.97 1699.94 693.20 28499.98 1399.55 3799.91 3699.99 1
DP-MVS99.16 9198.95 11599.78 5899.77 6499.53 8999.41 22199.50 14297.03 27999.04 24699.88 4297.39 12199.92 10598.66 15299.90 4599.87 32
MVS_030499.15 9398.96 11399.73 7098.92 33199.37 10899.37 24096.92 40899.51 299.66 9599.78 13096.69 14999.97 2199.84 1899.97 799.84 44
casdiffmvs_mvgpermissive99.15 9399.02 9999.55 10699.66 12799.09 14799.64 8499.56 7398.26 13099.45 14899.87 5196.03 17399.81 19299.54 3899.15 18199.73 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9399.02 9999.53 11599.66 12799.14 14299.72 5299.48 16498.35 11999.42 15899.84 7096.07 17199.79 20299.51 4399.14 18299.67 129
diffmvspermissive99.14 9699.02 9999.51 12399.61 14898.96 16899.28 27199.49 15298.46 10699.72 7899.71 16196.50 15799.88 14699.31 6699.11 18499.67 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA99.14 9698.99 10599.59 9799.58 15799.41 10699.16 30399.44 21398.45 10799.19 21799.49 25898.08 10599.89 14197.73 24999.75 12299.48 191
CDPH-MVS99.13 9898.91 12099.80 5299.75 7899.71 4999.15 30699.41 22496.60 31199.60 12099.55 23698.83 4599.90 12997.48 27399.83 9499.78 85
casdiffmvspermissive99.13 9898.98 10899.56 10499.65 13399.16 13799.56 13099.50 14298.33 12299.41 16299.86 5595.92 17999.83 18099.45 5399.16 17899.70 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason99.13 9899.03 9599.45 13599.46 20298.87 18199.12 31299.26 29798.03 17099.79 5299.65 19597.02 13899.85 16099.02 9899.90 4599.65 136
jason: jason.
lupinMVS99.13 9899.01 10399.46 13499.51 17998.94 17499.05 32799.16 31497.86 18399.80 5099.56 23397.39 12199.86 15498.94 10699.85 7799.58 163
EPP-MVSNet99.13 9898.99 10599.53 11599.65 13399.06 15399.81 2099.33 26997.43 23999.60 12099.88 4297.14 13199.84 16799.13 8498.94 19899.69 122
MG-MVS99.13 9899.02 9999.45 13599.57 15998.63 20699.07 32299.34 26298.99 5299.61 11799.82 8497.98 10999.87 15197.00 30399.80 10599.85 38
BP-MVS199.12 10498.94 11799.65 8099.51 17999.30 12099.67 6998.92 34598.48 10499.84 3899.69 17594.96 21299.92 10599.62 3199.79 11299.71 118
CHOSEN 280x42099.12 10499.13 8099.08 18999.66 12797.89 25898.43 39699.71 1398.88 6699.62 11499.76 14296.63 15199.70 24099.46 5299.99 199.66 132
DP-MVS Recon99.12 10498.95 11599.65 8099.74 8699.70 5199.27 27699.57 6896.40 32799.42 15899.68 18298.75 5899.80 19997.98 22499.72 12899.44 207
Vis-MVSNetpermissive99.12 10498.97 10999.56 10499.78 5799.10 14699.68 6699.66 2898.49 10399.86 3699.87 5194.77 22799.84 16799.19 7899.41 16099.74 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS99.12 10499.08 8899.24 17499.46 20298.55 21399.51 16699.46 19498.09 15699.45 14899.82 8498.34 9399.51 27598.70 14598.93 19999.67 129
SDMVSNet99.11 10998.90 12199.75 6499.81 4699.59 7699.81 2099.65 3498.78 8099.64 10799.88 4294.56 24199.93 9399.67 2698.26 24099.72 109
VNet99.11 10998.90 12199.73 7099.52 17699.56 8299.41 22199.39 23399.01 4799.74 7199.78 13095.56 19299.92 10599.52 4298.18 24799.72 109
CPTT-MVS99.11 10998.90 12199.74 6799.80 5299.46 10099.59 10999.49 15297.03 27999.63 11099.69 17597.27 12999.96 3397.82 23899.84 8599.81 66
HyFIR lowres test99.11 10998.92 11899.65 8099.90 499.37 10899.02 33599.91 397.67 21099.59 12399.75 14595.90 18199.73 22499.53 4099.02 19599.86 34
MVS_Test99.10 11398.97 10999.48 12999.49 19299.14 14299.67 6999.34 26297.31 25099.58 12499.76 14297.65 11799.82 18798.87 11899.07 19099.46 202
CDS-MVSNet99.09 11499.03 9599.25 17299.42 21298.73 19799.45 20099.46 19498.11 15399.46 14799.77 13898.01 10899.37 29798.70 14598.92 20199.66 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GDP-MVS99.08 11598.89 12499.64 8699.53 17199.34 11299.64 8499.48 16498.32 12399.77 6199.66 19395.14 20899.93 9398.97 10499.50 15499.64 143
PVSNet_Blended99.08 11598.97 10999.42 14099.76 6898.79 19398.78 37199.91 396.74 29699.67 9099.49 25897.53 11899.88 14698.98 10199.85 7799.60 155
OMC-MVS99.08 11599.04 9399.20 17899.67 11798.22 23899.28 27199.52 10898.07 16199.66 9599.81 9897.79 11399.78 20797.79 24099.81 10199.60 155
mvsmamba99.06 11898.96 11399.36 14899.47 20098.64 20599.70 5699.05 32997.61 21599.65 10299.83 7596.54 15599.92 10599.19 7899.62 14499.51 185
WTY-MVS99.06 11898.88 12699.61 9499.62 14499.16 13799.37 24099.56 7398.04 16899.53 13599.62 21296.84 14399.94 7598.85 12598.49 22899.72 109
IS-MVSNet99.05 12098.87 12799.57 10299.73 9399.32 11499.75 4299.20 30998.02 17199.56 12899.86 5596.54 15599.67 24898.09 21299.13 18399.73 102
PAPM_NR99.04 12198.84 13399.66 7699.74 8699.44 10299.39 23399.38 24197.70 20699.28 19299.28 31998.34 9399.85 16096.96 30799.45 15799.69 122
API-MVS99.04 12199.03 9599.06 19299.40 22299.31 11899.55 14499.56 7398.54 9999.33 18399.39 29098.76 5599.78 20796.98 30599.78 11498.07 380
mvs_anonymous99.03 12398.99 10599.16 18299.38 22798.52 21999.51 16699.38 24197.79 19499.38 17199.81 9897.30 12799.45 28099.35 5898.99 19699.51 185
sasdasda99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
train_agg99.02 12498.77 14099.77 6199.67 11799.65 6399.05 32799.41 22496.28 33198.95 26099.49 25898.76 5599.91 11797.63 25799.72 12899.75 93
canonicalmvs99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
PLCcopyleft97.94 499.02 12498.85 13199.53 11599.66 12799.01 15999.24 28999.52 10896.85 29199.27 19799.48 26498.25 9799.91 11797.76 24599.62 14499.65 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MGCFI-Net99.01 12898.85 13199.50 12899.42 21299.26 12699.82 1699.48 16498.60 9499.28 19298.81 36897.04 13799.76 21399.29 6997.87 26199.47 197
AdaColmapbinary99.01 12898.80 13699.66 7699.56 16399.54 8699.18 30199.70 1598.18 14399.35 17999.63 20796.32 16499.90 12997.48 27399.77 11799.55 169
1112_ss98.98 13098.77 14099.59 9799.68 11599.02 15799.25 28799.48 16497.23 25899.13 22699.58 22596.93 14299.90 12998.87 11898.78 21299.84 44
MSDG98.98 13098.80 13699.53 11599.76 6899.19 13298.75 37499.55 8197.25 25599.47 14599.77 13897.82 11299.87 15196.93 31099.90 4599.54 171
CANet_DTU98.97 13298.87 12799.25 17299.33 23998.42 23199.08 32199.30 28799.16 2399.43 15599.75 14595.27 20299.97 2198.56 17299.95 1899.36 220
DPM-MVS98.95 13398.71 14699.66 7699.63 13899.55 8498.64 38599.10 32097.93 17699.42 15899.55 23698.67 6999.80 19995.80 34299.68 13699.61 152
114514_t98.93 13498.67 15099.72 7299.85 2699.53 8999.62 9599.59 6092.65 39699.71 8099.78 13098.06 10699.90 12998.84 12899.91 3699.74 97
PS-MVSNAJss98.92 13598.92 11898.90 21998.78 34998.53 21599.78 3299.54 9098.07 16199.00 25399.76 14299.01 1899.37 29799.13 8497.23 30098.81 270
RRT-MVS98.91 13698.75 14299.39 14699.46 20298.61 20999.76 3799.50 14298.06 16599.81 4699.88 4293.91 26999.94 7599.11 8699.27 17299.61 152
Test_1112_low_res98.89 13798.66 15399.57 10299.69 11198.95 17199.03 33299.47 18596.98 28199.15 22499.23 32796.77 14699.89 14198.83 13198.78 21299.86 34
test_fmvs198.88 13898.79 13999.16 18299.69 11197.61 27499.55 14499.49 15299.32 1799.98 899.91 2391.41 33299.96 3399.82 1999.92 2999.90 18
AllTest98.87 13998.72 14499.31 15799.86 2098.48 22599.56 13099.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
UGNet98.87 13998.69 14899.40 14299.22 27198.72 19899.44 20699.68 2099.24 2099.18 22199.42 27892.74 29499.96 3399.34 6399.94 2499.53 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)98.87 13998.72 14499.31 15799.71 10298.88 18099.80 2599.44 21397.91 17899.36 17699.78 13095.49 19599.43 28997.91 22899.11 18499.62 150
test_yl98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
DCV-MVSNet98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
EPNet98.86 14298.71 14699.30 16297.20 40298.18 23999.62 9598.91 35099.28 1998.63 31099.81 9895.96 17599.99 499.24 7599.72 12899.73 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS98.86 14298.80 13699.03 19699.76 6898.79 19399.28 27199.91 397.42 24199.67 9099.37 29597.53 11899.88 14698.98 10197.29 29898.42 358
ab-mvs98.86 14298.63 15599.54 10799.64 13599.19 13299.44 20699.54 9097.77 19799.30 18899.81 9894.20 25599.93 9399.17 8298.82 20999.49 190
MAR-MVS98.86 14298.63 15599.54 10799.37 23099.66 5999.45 20099.54 9096.61 30899.01 24999.40 28697.09 13399.86 15497.68 25699.53 15299.10 241
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
COLMAP_ROBcopyleft97.56 698.86 14298.75 14299.17 18199.88 1198.53 21599.34 25399.59 6097.55 22298.70 29899.89 3595.83 18399.90 12998.10 21199.90 4599.08 246
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE98.85 14998.62 16099.53 11599.61 14899.08 15099.80 2599.51 12297.10 27199.31 18599.78 13095.23 20699.77 20998.21 20399.03 19399.75 93
HY-MVS97.30 798.85 14998.64 15499.47 13299.42 21299.08 15099.62 9599.36 25097.39 24499.28 19299.68 18296.44 16199.92 10598.37 19098.22 24299.40 214
PVSNet96.02 1798.85 14998.84 13398.89 22299.73 9397.28 28398.32 40299.60 5597.86 18399.50 14099.57 23096.75 14799.86 15498.56 17299.70 13299.54 171
PatchMatch-RL98.84 15298.62 16099.52 12199.71 10299.28 12399.06 32599.77 997.74 20199.50 14099.53 24595.41 19699.84 16797.17 29799.64 14199.44 207
Effi-MVS+98.81 15398.59 16699.48 12999.46 20299.12 14598.08 40999.50 14297.50 23099.38 17199.41 28296.37 16399.81 19299.11 8698.54 22599.51 185
alignmvs98.81 15398.56 16999.58 10099.43 21099.42 10499.51 16698.96 34098.61 9399.35 17998.92 36394.78 22499.77 20999.35 5898.11 25299.54 171
DeepPCF-MVS98.18 398.81 15399.37 3697.12 36199.60 15391.75 40198.61 38699.44 21399.35 1599.83 4499.85 6098.70 6699.81 19299.02 9899.91 3699.81 66
PMMVS98.80 15698.62 16099.34 15099.27 25798.70 19998.76 37399.31 28397.34 24799.21 21199.07 34397.20 13099.82 18798.56 17298.87 20499.52 178
Effi-MVS+-dtu98.78 15798.89 12498.47 27899.33 23996.91 31299.57 12499.30 28798.47 10599.41 16298.99 35396.78 14599.74 21898.73 14299.38 16198.74 283
FIs98.78 15798.63 15599.23 17699.18 28099.54 8699.83 1599.59 6098.28 12698.79 28599.81 9896.75 14799.37 29799.08 9196.38 31698.78 272
Fast-Effi-MVS+-dtu98.77 15998.83 13598.60 25799.41 21796.99 30699.52 15799.49 15298.11 15399.24 20399.34 30596.96 14199.79 20297.95 22699.45 15799.02 256
sd_testset98.75 16098.57 16799.29 16599.81 4698.26 23699.56 13099.62 4298.78 8099.64 10799.88 4292.02 31699.88 14699.54 3898.26 24099.72 109
FA-MVS(test-final)98.75 16098.53 17199.41 14199.55 16799.05 15599.80 2599.01 33496.59 31399.58 12499.59 22195.39 19799.90 12997.78 24199.49 15599.28 229
FC-MVSNet-test98.75 16098.62 16099.15 18699.08 30799.45 10199.86 1199.60 5598.23 13598.70 29899.82 8496.80 14499.22 32699.07 9296.38 31698.79 271
XVG-OURS98.73 16398.68 14998.88 22499.70 10797.73 26598.92 35799.55 8198.52 10199.45 14899.84 7095.27 20299.91 11798.08 21698.84 20799.00 257
Fast-Effi-MVS+98.70 16498.43 17599.51 12399.51 17999.28 12399.52 15799.47 18596.11 34799.01 24999.34 30596.20 16899.84 16797.88 23098.82 20999.39 215
XVG-OURS-SEG-HR98.69 16598.62 16098.89 22299.71 10297.74 26499.12 31299.54 9098.44 11099.42 15899.71 16194.20 25599.92 10598.54 17698.90 20399.00 257
131498.68 16698.54 17099.11 18898.89 33498.65 20399.27 27699.49 15296.89 28997.99 34999.56 23397.72 11699.83 18097.74 24899.27 17298.84 269
EI-MVSNet98.67 16798.67 15098.68 25399.35 23497.97 25199.50 17399.38 24196.93 28899.20 21499.83 7597.87 11099.36 30198.38 18897.56 27798.71 287
test_djsdf98.67 16798.57 16798.98 20298.70 36398.91 17899.88 499.46 19497.55 22299.22 20899.88 4295.73 18799.28 31499.03 9697.62 27298.75 280
QAPM98.67 16798.30 18599.80 5299.20 27499.67 5799.77 3499.72 1194.74 37498.73 29099.90 3095.78 18599.98 1396.96 30799.88 5999.76 92
nrg03098.64 17098.42 17699.28 16999.05 31399.69 5399.81 2099.46 19498.04 16899.01 24999.82 8496.69 14999.38 29499.34 6394.59 36098.78 272
test_vis1_n_192098.63 17198.40 17899.31 15799.86 2097.94 25799.67 6999.62 4299.43 1099.99 299.91 2387.29 381100.00 199.92 1499.92 2999.98 2
PAPR98.63 17198.34 18199.51 12399.40 22299.03 15698.80 36999.36 25096.33 32899.00 25399.12 34198.46 8499.84 16795.23 35799.37 16899.66 132
CVMVSNet98.57 17398.67 15098.30 29899.35 23495.59 35399.50 17399.55 8198.60 9499.39 16999.83 7594.48 24699.45 28098.75 13998.56 22399.85 38
MVSTER98.49 17498.32 18399.00 20099.35 23499.02 15799.54 14899.38 24197.41 24299.20 21499.73 15693.86 27199.36 30198.87 11897.56 27798.62 329
FE-MVS98.48 17598.17 19099.40 14299.54 17098.96 16899.68 6698.81 36495.54 35899.62 11499.70 16593.82 27299.93 9397.35 28499.46 15699.32 226
OpenMVScopyleft96.50 1698.47 17698.12 19799.52 12199.04 31499.53 8999.82 1699.72 1194.56 37798.08 34499.88 4294.73 23099.98 1397.47 27599.76 12099.06 252
IterMVS-LS98.46 17798.42 17698.58 26199.59 15598.00 24999.37 24099.43 21996.94 28799.07 23899.59 22197.87 11099.03 35498.32 19795.62 33898.71 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp98.44 17898.28 18698.94 20998.50 37998.96 16899.77 3499.50 14297.07 27398.87 27399.77 13894.76 22899.28 31498.66 15297.60 27398.57 344
jajsoiax98.43 17998.28 18698.88 22498.60 37398.43 22999.82 1699.53 10398.19 14098.63 31099.80 11193.22 28399.44 28599.22 7697.50 28498.77 276
tttt051798.42 18098.14 19499.28 16999.66 12798.38 23299.74 4696.85 40997.68 20899.79 5299.74 15091.39 33399.89 14198.83 13199.56 14999.57 166
BH-untuned98.42 18098.36 17998.59 25899.49 19296.70 32099.27 27699.13 31897.24 25798.80 28399.38 29295.75 18699.74 21897.07 30199.16 17899.33 225
test_fmvs1_n98.41 18298.14 19499.21 17799.82 4297.71 27099.74 4699.49 15299.32 1799.99 299.95 385.32 39299.97 2199.82 1999.84 8599.96 7
D2MVS98.41 18298.50 17298.15 31299.26 25996.62 32699.40 22999.61 4997.71 20398.98 25599.36 29896.04 17299.67 24898.70 14597.41 29498.15 376
BH-RMVSNet98.41 18298.08 20399.40 14299.41 21798.83 18999.30 26198.77 36897.70 20698.94 26299.65 19592.91 29099.74 21896.52 32799.55 15199.64 143
mvs_tets98.40 18598.23 18898.91 21798.67 36698.51 22199.66 7599.53 10398.19 14098.65 30799.81 9892.75 29299.44 28599.31 6697.48 28898.77 276
MonoMVSNet98.38 18698.47 17498.12 31498.59 37596.19 34399.72 5298.79 36797.89 18099.44 15399.52 24896.13 16998.90 37598.64 15497.54 27999.28 229
XXY-MVS98.38 18698.09 20299.24 17499.26 25999.32 11499.56 13099.55 8197.45 23598.71 29299.83 7593.23 28199.63 26598.88 11596.32 31898.76 278
ACMM97.58 598.37 18898.34 18198.48 27399.41 21797.10 29399.56 13099.45 20598.53 10099.04 24699.85 6093.00 28699.71 23498.74 14097.45 28998.64 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053098.35 18998.03 20999.31 15799.63 13898.56 21299.54 14896.75 41197.53 22699.73 7399.65 19591.25 33699.89 14198.62 15799.56 14999.48 191
tpmrst98.33 19098.48 17397.90 33099.16 29094.78 37399.31 25999.11 31997.27 25399.45 14899.59 22195.33 20099.84 16798.48 17998.61 21799.09 245
baseline198.31 19197.95 21899.38 14799.50 19098.74 19699.59 10998.93 34298.41 11299.14 22599.60 21994.59 23999.79 20298.48 17993.29 37999.61 152
PatchmatchNetpermissive98.31 19198.36 17998.19 30799.16 29095.32 36399.27 27698.92 34597.37 24599.37 17399.58 22594.90 21799.70 24097.43 27999.21 17599.54 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous20240521198.30 19397.98 21499.26 17199.57 15998.16 24099.41 22198.55 38696.03 35299.19 21799.74 15091.87 31999.92 10599.16 8398.29 23999.70 120
VPA-MVSNet98.29 19497.95 21899.30 16299.16 29099.54 8699.50 17399.58 6498.27 12899.35 17999.37 29592.53 30499.65 25699.35 5894.46 36198.72 285
UniMVSNet (Re)98.29 19498.00 21299.13 18799.00 31899.36 11199.49 18499.51 12297.95 17498.97 25799.13 33896.30 16599.38 29498.36 19293.34 37898.66 316
HQP_MVS98.27 19698.22 18998.44 28499.29 25296.97 30899.39 23399.47 18598.97 5899.11 23099.61 21692.71 29799.69 24597.78 24197.63 27098.67 308
UniMVSNet_NR-MVSNet98.22 19797.97 21598.96 20598.92 33198.98 16199.48 18899.53 10397.76 19898.71 29299.46 27196.43 16299.22 32698.57 16992.87 38598.69 296
LPG-MVS_test98.22 19798.13 19698.49 27199.33 23997.05 29999.58 11799.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
RPSCF98.22 19798.62 16096.99 36399.82 4291.58 40299.72 5299.44 21396.61 30899.66 9599.89 3595.92 17999.82 18797.46 27699.10 18799.57 166
ADS-MVSNet98.20 20098.08 20398.56 26599.33 23996.48 33199.23 29199.15 31596.24 33599.10 23399.67 18894.11 25999.71 23496.81 31599.05 19199.48 191
OPM-MVS98.19 20198.10 19998.45 28198.88 33597.07 29799.28 27199.38 24198.57 9699.22 20899.81 9892.12 31499.66 25198.08 21697.54 27998.61 338
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA98.19 20198.16 19198.27 30499.30 24895.55 35499.07 32298.97 33897.57 21999.43 15599.57 23092.72 29599.74 21897.58 26199.20 17699.52 178
miper_ehance_all_eth98.18 20398.10 19998.41 28799.23 26797.72 26798.72 37799.31 28396.60 31198.88 27099.29 31797.29 12899.13 34097.60 25995.99 32798.38 363
CR-MVSNet98.17 20497.93 22198.87 22899.18 28098.49 22399.22 29599.33 26996.96 28399.56 12899.38 29294.33 25199.00 35994.83 36498.58 22099.14 238
miper_enhance_ethall98.16 20598.08 20398.41 28798.96 32797.72 26798.45 39599.32 27996.95 28598.97 25799.17 33397.06 13699.22 32697.86 23395.99 32798.29 367
CLD-MVS98.16 20598.10 19998.33 29499.29 25296.82 31798.75 37499.44 21397.83 18999.13 22699.55 23692.92 28899.67 24898.32 19797.69 26898.48 350
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thisisatest051598.14 20797.79 23399.19 17999.50 19098.50 22298.61 38696.82 41096.95 28599.54 13399.43 27691.66 32899.86 15498.08 21699.51 15399.22 235
pmmvs498.13 20897.90 22398.81 24098.61 37298.87 18198.99 34399.21 30896.44 32399.06 24399.58 22595.90 18199.11 34597.18 29696.11 32398.46 355
WR-MVS_H98.13 20897.87 22898.90 21999.02 31698.84 18699.70 5699.59 6097.27 25398.40 32699.19 33295.53 19399.23 32298.34 19493.78 37598.61 338
c3_l98.12 21098.04 20898.38 29199.30 24897.69 27198.81 36899.33 26996.67 30198.83 27999.34 30597.11 13298.99 36097.58 26195.34 34598.48 350
ACMH97.28 898.10 21197.99 21398.44 28499.41 21796.96 31099.60 10299.56 7398.09 15698.15 34299.91 2390.87 34099.70 24098.88 11597.45 28998.67 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052998.09 21297.68 24999.34 15099.66 12798.44 22899.40 22999.43 21993.67 38499.22 20899.89 3590.23 34899.93 9399.26 7498.33 23499.66 132
CP-MVSNet98.09 21297.78 23699.01 19898.97 32699.24 12999.67 6999.46 19497.25 25598.48 32399.64 20193.79 27399.06 35098.63 15694.10 36998.74 283
dmvs_re98.08 21498.16 19197.85 33399.55 16794.67 37699.70 5698.92 34598.15 14599.06 24399.35 30193.67 27799.25 31997.77 24497.25 29999.64 143
DU-MVS98.08 21497.79 23398.96 20598.87 33898.98 16199.41 22199.45 20597.87 18298.71 29299.50 25594.82 22099.22 32698.57 16992.87 38598.68 301
v2v48298.06 21697.77 23898.92 21398.90 33398.82 19099.57 12499.36 25096.65 30399.19 21799.35 30194.20 25599.25 31997.72 25194.97 35398.69 296
V4298.06 21697.79 23398.86 23198.98 32498.84 18699.69 6099.34 26296.53 31599.30 18899.37 29594.67 23599.32 30997.57 26594.66 35898.42 358
test-LLR98.06 21697.90 22398.55 26798.79 34697.10 29398.67 38097.75 40197.34 24798.61 31398.85 36594.45 24899.45 28097.25 28899.38 16199.10 241
WR-MVS98.06 21697.73 24599.06 19298.86 34199.25 12899.19 29999.35 25797.30 25198.66 30199.43 27693.94 26699.21 33198.58 16694.28 36598.71 287
ACMP97.20 1198.06 21697.94 22098.45 28199.37 23097.01 30499.44 20699.49 15297.54 22598.45 32499.79 12391.95 31899.72 22897.91 22897.49 28798.62 329
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth98.05 22197.96 21698.33 29499.26 25997.38 28098.56 39199.31 28396.65 30398.88 27099.52 24896.58 15399.12 34497.39 28195.53 34298.47 352
test111198.04 22298.11 19897.83 33699.74 8693.82 38599.58 11795.40 41899.12 3299.65 10299.93 1090.73 34199.84 16799.43 5499.38 16199.82 59
ECVR-MVScopyleft98.04 22298.05 20798.00 32299.74 8694.37 38099.59 10994.98 41999.13 2799.66 9599.93 1090.67 34299.84 16799.40 5599.38 16199.80 75
EPNet_dtu98.03 22497.96 21698.23 30598.27 38495.54 35699.23 29198.75 36999.02 4597.82 35699.71 16196.11 17099.48 27693.04 38499.65 14099.69 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet398.03 22497.76 24298.84 23599.39 22598.98 16199.40 22999.38 24196.67 30199.07 23899.28 31992.93 28798.98 36197.10 29896.65 30998.56 345
ADS-MVSNet298.02 22698.07 20697.87 33299.33 23995.19 36699.23 29199.08 32396.24 33599.10 23399.67 18894.11 25998.93 37296.81 31599.05 19199.48 191
HQP-MVS98.02 22697.90 22398.37 29299.19 27796.83 31598.98 34699.39 23398.24 13298.66 30199.40 28692.47 30699.64 25997.19 29497.58 27598.64 320
LTVRE_ROB97.16 1298.02 22697.90 22398.40 28999.23 26796.80 31899.70 5699.60 5597.12 26798.18 34199.70 16591.73 32499.72 22898.39 18797.45 28998.68 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____98.01 22997.84 23198.55 26799.25 26397.97 25198.71 37899.34 26296.47 32298.59 31699.54 24195.65 19099.21 33197.21 29095.77 33398.46 355
DIV-MVS_self_test98.01 22997.85 23098.48 27399.24 26597.95 25598.71 37899.35 25796.50 31698.60 31599.54 24195.72 18899.03 35497.21 29095.77 33398.46 355
miper_lstm_enhance98.00 23197.91 22298.28 30399.34 23897.43 27898.88 36199.36 25096.48 32098.80 28399.55 23695.98 17498.91 37397.27 28795.50 34398.51 348
BH-w/o98.00 23197.89 22798.32 29699.35 23496.20 34299.01 34098.90 35296.42 32598.38 32799.00 35295.26 20499.72 22896.06 33598.61 21799.03 254
v114497.98 23397.69 24898.85 23498.87 33898.66 20299.54 14899.35 25796.27 33399.23 20799.35 30194.67 23599.23 32296.73 31895.16 34998.68 301
EU-MVSNet97.98 23398.03 20997.81 33998.72 36096.65 32599.66 7599.66 2898.09 15698.35 32999.82 8495.25 20598.01 39697.41 28095.30 34698.78 272
tpmvs97.98 23398.02 21197.84 33599.04 31494.73 37499.31 25999.20 30996.10 35198.76 28899.42 27894.94 21399.81 19296.97 30698.45 22998.97 261
tt080597.97 23697.77 23898.57 26299.59 15596.61 32799.45 20099.08 32398.21 13898.88 27099.80 11188.66 36699.70 24098.58 16697.72 26799.39 215
NR-MVSNet97.97 23697.61 25899.02 19798.87 33899.26 12699.47 19599.42 22197.63 21397.08 37499.50 25595.07 21099.13 34097.86 23393.59 37698.68 301
v897.95 23897.63 25698.93 21198.95 32898.81 19299.80 2599.41 22496.03 35299.10 23399.42 27894.92 21699.30 31296.94 30994.08 37098.66 316
Patchmatch-test97.93 23997.65 25298.77 24599.18 28097.07 29799.03 33299.14 31796.16 34298.74 28999.57 23094.56 24199.72 22893.36 38099.11 18499.52 178
PS-CasMVS97.93 23997.59 26098.95 20798.99 32199.06 15399.68 6699.52 10897.13 26598.31 33199.68 18292.44 31099.05 35198.51 17794.08 37098.75 280
TranMVSNet+NR-MVSNet97.93 23997.66 25198.76 24698.78 34998.62 20799.65 8199.49 15297.76 19898.49 32299.60 21994.23 25498.97 36898.00 22392.90 38398.70 292
test_vis1_n97.92 24297.44 28199.34 15099.53 17198.08 24599.74 4699.49 15299.15 24100.00 199.94 679.51 41199.98 1399.88 1699.76 12099.97 4
v14419297.92 24297.60 25998.87 22898.83 34498.65 20399.55 14499.34 26296.20 33899.32 18499.40 28694.36 25099.26 31896.37 33295.03 35298.70 292
ACMH+97.24 1097.92 24297.78 23698.32 29699.46 20296.68 32499.56 13099.54 9098.41 11297.79 35899.87 5190.18 34999.66 25198.05 22097.18 30398.62 329
LFMVS97.90 24597.35 29399.54 10799.52 17699.01 15999.39 23398.24 39397.10 27199.65 10299.79 12384.79 39599.91 11799.28 7098.38 23199.69 122
reproduce_monomvs97.89 24697.87 22897.96 32699.51 17995.45 35999.60 10299.25 29999.17 2298.85 27899.49 25889.29 35899.64 25999.35 5896.31 31998.78 272
Anonymous2023121197.88 24797.54 26498.90 21999.71 10298.53 21599.48 18899.57 6894.16 38098.81 28199.68 18293.23 28199.42 29098.84 12894.42 36398.76 278
OurMVSNet-221017-097.88 24797.77 23898.19 30798.71 36296.53 32999.88 499.00 33597.79 19498.78 28699.94 691.68 32599.35 30497.21 29096.99 30798.69 296
v7n97.87 24997.52 26598.92 21398.76 35698.58 21199.84 1299.46 19496.20 33898.91 26599.70 16594.89 21899.44 28596.03 33693.89 37398.75 280
baseline297.87 24997.55 26198.82 23799.18 28098.02 24899.41 22196.58 41596.97 28296.51 38199.17 33393.43 27899.57 27097.71 25299.03 19398.86 267
thres600view797.86 25197.51 26798.92 21399.72 9797.95 25599.59 10998.74 37297.94 17599.27 19798.62 37691.75 32299.86 15493.73 37698.19 24698.96 263
UBG97.85 25297.48 27098.95 20799.25 26397.64 27299.24 28998.74 37297.90 17998.64 30898.20 39288.65 36799.81 19298.27 20098.40 23099.42 209
cl2297.85 25297.64 25598.48 27399.09 30497.87 25998.60 38899.33 26997.11 27098.87 27399.22 32892.38 31199.17 33598.21 20395.99 32798.42 358
v1097.85 25297.52 26598.86 23198.99 32198.67 20199.75 4299.41 22495.70 35698.98 25599.41 28294.75 22999.23 32296.01 33894.63 35998.67 308
GA-MVS97.85 25297.47 27399.00 20099.38 22797.99 25098.57 38999.15 31597.04 27898.90 26799.30 31589.83 35299.38 29496.70 32098.33 23499.62 150
tfpnnormal97.84 25697.47 27398.98 20299.20 27499.22 13199.64 8499.61 4996.32 32998.27 33599.70 16593.35 28099.44 28595.69 34595.40 34498.27 368
VPNet97.84 25697.44 28199.01 19899.21 27298.94 17499.48 18899.57 6898.38 11499.28 19299.73 15688.89 36199.39 29299.19 7893.27 38098.71 287
LCM-MVSNet-Re97.83 25898.15 19396.87 36999.30 24892.25 39999.59 10998.26 39197.43 23996.20 38599.13 33896.27 16698.73 38298.17 20898.99 19699.64 143
XVG-ACMP-BASELINE97.83 25897.71 24798.20 30699.11 29896.33 33699.41 22199.52 10898.06 16599.05 24599.50 25589.64 35599.73 22497.73 24997.38 29698.53 346
IterMVS97.83 25897.77 23898.02 31999.58 15796.27 33999.02 33599.48 16497.22 25998.71 29299.70 16592.75 29299.13 34097.46 27696.00 32698.67 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.82 26197.75 24398.06 31699.57 15996.36 33599.02 33599.49 15297.18 26198.71 29299.72 16092.72 29599.14 33797.44 27895.86 33298.67 308
EPMVS97.82 26197.65 25298.35 29398.88 33595.98 34699.49 18494.71 42197.57 21999.26 20199.48 26492.46 30999.71 23497.87 23299.08 18999.35 221
MVP-Stereo97.81 26397.75 24397.99 32397.53 39596.60 32898.96 35098.85 35997.22 25997.23 36999.36 29895.28 20199.46 27995.51 34999.78 11497.92 393
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119297.81 26397.44 28198.91 21798.88 33598.68 20099.51 16699.34 26296.18 34099.20 21499.34 30594.03 26399.36 30195.32 35595.18 34898.69 296
ttmdpeth97.80 26597.63 25698.29 29998.77 35497.38 28099.64 8499.36 25098.78 8096.30 38499.58 22592.34 31399.39 29298.36 19295.58 33998.10 378
v192192097.80 26597.45 27698.84 23598.80 34598.53 21599.52 15799.34 26296.15 34499.24 20399.47 26793.98 26599.29 31395.40 35395.13 35098.69 296
v14897.79 26797.55 26198.50 27098.74 35797.72 26799.54 14899.33 26996.26 33498.90 26799.51 25294.68 23499.14 33797.83 23793.15 38298.63 327
thres40097.77 26897.38 28998.92 21399.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.96 263
thres100view90097.76 26997.45 27698.69 25299.72 9797.86 26199.59 10998.74 37297.93 17699.26 20198.62 37691.75 32299.83 18093.22 38198.18 24798.37 364
PEN-MVS97.76 26997.44 28198.72 24898.77 35498.54 21499.78 3299.51 12297.06 27598.29 33499.64 20192.63 30198.89 37698.09 21293.16 38198.72 285
Baseline_NR-MVSNet97.76 26997.45 27698.68 25399.09 30498.29 23499.41 22198.85 35995.65 35798.63 31099.67 18894.82 22099.10 34798.07 21992.89 38498.64 320
TR-MVS97.76 26997.41 28798.82 23799.06 31097.87 25998.87 36398.56 38596.63 30798.68 30099.22 32892.49 30599.65 25695.40 35397.79 26598.95 265
Patchmtry97.75 27397.40 28898.81 24099.10 30198.87 18199.11 31899.33 26994.83 37298.81 28199.38 29294.33 25199.02 35696.10 33495.57 34098.53 346
dp97.75 27397.80 23297.59 34999.10 30193.71 38899.32 25698.88 35596.48 32099.08 23799.55 23692.67 30099.82 18796.52 32798.58 22099.24 234
WBMVS97.74 27597.50 26898.46 27999.24 26597.43 27899.21 29799.42 22197.45 23598.96 25999.41 28288.83 36299.23 32298.94 10696.02 32498.71 287
TAPA-MVS97.07 1597.74 27597.34 29698.94 20999.70 10797.53 27599.25 28799.51 12291.90 39899.30 18899.63 20798.78 5199.64 25988.09 40799.87 6299.65 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDD-MVS97.73 27797.35 29398.88 22499.47 20097.12 29299.34 25398.85 35998.19 14099.67 9099.85 6082.98 40299.92 10599.49 4898.32 23899.60 155
MIMVSNet97.73 27797.45 27698.57 26299.45 20897.50 27699.02 33598.98 33796.11 34799.41 16299.14 33790.28 34498.74 38195.74 34398.93 19999.47 197
tfpn200view997.72 27997.38 28998.72 24899.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.37 364
CostFormer97.72 27997.73 24597.71 34399.15 29494.02 38499.54 14899.02 33394.67 37599.04 24699.35 30192.35 31299.77 20998.50 17897.94 25799.34 224
FMVSNet297.72 27997.36 29198.80 24299.51 17998.84 18699.45 20099.42 22196.49 31798.86 27799.29 31790.26 34598.98 36196.44 32996.56 31298.58 343
test0.0.03 197.71 28297.42 28698.56 26598.41 38397.82 26298.78 37198.63 38397.34 24798.05 34898.98 35594.45 24898.98 36195.04 36097.15 30498.89 266
h-mvs3397.70 28397.28 30498.97 20499.70 10797.27 28499.36 24599.45 20598.94 6199.66 9599.64 20194.93 21499.99 499.48 4984.36 41099.65 136
v124097.69 28497.32 29998.79 24398.85 34298.43 22999.48 18899.36 25096.11 34799.27 19799.36 29893.76 27599.24 32194.46 36795.23 34798.70 292
cascas97.69 28497.43 28598.48 27398.60 37397.30 28298.18 40799.39 23392.96 39298.41 32598.78 37293.77 27499.27 31798.16 20998.61 21798.86 267
pm-mvs197.68 28697.28 30498.88 22499.06 31098.62 20799.50 17399.45 20596.32 32997.87 35499.79 12392.47 30699.35 30497.54 26893.54 37798.67 308
GBi-Net97.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
test197.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
tpm97.67 28997.55 26198.03 31799.02 31695.01 36999.43 21198.54 38796.44 32399.12 22899.34 30591.83 32199.60 26897.75 24796.46 31499.48 191
PCF-MVS97.08 1497.66 29097.06 31599.47 13299.61 14899.09 14798.04 41099.25 29991.24 40198.51 32099.70 16594.55 24399.91 11792.76 38999.85 7799.42 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVSnew97.65 29197.65 25297.63 34698.78 34997.62 27399.13 30998.33 39097.36 24699.07 23898.94 35995.64 19199.15 33692.95 38598.68 21696.12 412
our_test_397.65 29197.68 24997.55 35098.62 37094.97 37098.84 36599.30 28796.83 29498.19 34099.34 30597.01 13999.02 35695.00 36196.01 32598.64 320
testgi97.65 29197.50 26898.13 31399.36 23396.45 33299.42 21899.48 16497.76 19897.87 35499.45 27391.09 33798.81 37894.53 36698.52 22699.13 240
thres20097.61 29497.28 30498.62 25699.64 13598.03 24799.26 28598.74 37297.68 20899.09 23698.32 38891.66 32899.81 19292.88 38698.22 24298.03 383
PAPM97.59 29597.09 31499.07 19099.06 31098.26 23698.30 40399.10 32094.88 37098.08 34499.34 30596.27 16699.64 25989.87 40098.92 20199.31 227
UWE-MVS97.58 29697.29 30398.48 27399.09 30496.25 34099.01 34096.61 41497.86 18399.19 21799.01 35188.72 36399.90 12997.38 28298.69 21599.28 229
VDDNet97.55 29797.02 31699.16 18299.49 19298.12 24499.38 23899.30 28795.35 36099.68 8699.90 3082.62 40499.93 9399.31 6698.13 25199.42 209
TESTMET0.1,197.55 29797.27 30798.40 28998.93 32996.53 32998.67 38097.61 40496.96 28398.64 30899.28 31988.63 36999.45 28097.30 28699.38 16199.21 236
pmmvs597.52 29997.30 30198.16 30998.57 37696.73 31999.27 27698.90 35296.14 34598.37 32899.53 24591.54 33199.14 33797.51 27095.87 33198.63 327
LF4IMVS97.52 29997.46 27597.70 34498.98 32495.55 35499.29 26698.82 36298.07 16198.66 30199.64 20189.97 35099.61 26797.01 30296.68 30897.94 391
DTE-MVSNet97.51 30197.19 30998.46 27998.63 36998.13 24399.84 1299.48 16496.68 30097.97 35199.67 18892.92 28898.56 38596.88 31492.60 38998.70 292
testing1197.50 30297.10 31398.71 25099.20 27496.91 31299.29 26698.82 36297.89 18098.21 33998.40 38485.63 38999.83 18098.45 18498.04 25499.37 219
ETVMVS97.50 30296.90 32099.29 16599.23 26798.78 19599.32 25698.90 35297.52 22898.56 31798.09 39884.72 39699.69 24597.86 23397.88 26099.39 215
hse-mvs297.50 30297.14 31098.59 25899.49 19297.05 29999.28 27199.22 30598.94 6199.66 9599.42 27894.93 21499.65 25699.48 4983.80 41299.08 246
SixPastTwentyTwo97.50 30297.33 29898.03 31798.65 36796.23 34199.77 3498.68 38197.14 26497.90 35299.93 1090.45 34399.18 33497.00 30396.43 31598.67 308
JIA-IIPM97.50 30297.02 31698.93 21198.73 35897.80 26399.30 26198.97 33891.73 39998.91 26594.86 41495.10 20999.71 23497.58 26197.98 25599.28 229
ppachtmachnet_test97.49 30797.45 27697.61 34898.62 37095.24 36498.80 36999.46 19496.11 34798.22 33899.62 21296.45 16098.97 36893.77 37595.97 33098.61 338
test-mter97.49 30797.13 31298.55 26798.79 34697.10 29398.67 38097.75 40196.65 30398.61 31398.85 36588.23 37399.45 28097.25 28899.38 16199.10 241
testing9197.44 30997.02 31698.71 25099.18 28096.89 31499.19 29999.04 33097.78 19698.31 33198.29 38985.41 39199.85 16098.01 22297.95 25699.39 215
tpm297.44 30997.34 29697.74 34299.15 29494.36 38199.45 20098.94 34193.45 38998.90 26799.44 27491.35 33499.59 26997.31 28598.07 25399.29 228
tpm cat197.39 31197.36 29197.50 35299.17 28893.73 38799.43 21199.31 28391.27 40098.71 29299.08 34294.31 25399.77 20996.41 33198.50 22799.00 257
testing9997.36 31296.94 31998.63 25599.18 28096.70 32099.30 26198.93 34297.71 20398.23 33698.26 39084.92 39499.84 16798.04 22197.85 26399.35 221
USDC97.34 31397.20 30897.75 34199.07 30895.20 36598.51 39399.04 33097.99 17298.31 33199.86 5589.02 35999.55 27395.67 34797.36 29798.49 349
UniMVSNet_ETH3D97.32 31496.81 32298.87 22899.40 22297.46 27799.51 16699.53 10395.86 35598.54 31999.77 13882.44 40599.66 25198.68 15097.52 28199.50 189
testing397.28 31596.76 32498.82 23799.37 23098.07 24699.45 20099.36 25097.56 22197.89 35398.95 35883.70 40098.82 37796.03 33698.56 22399.58 163
MVS97.28 31596.55 32899.48 12998.78 34998.95 17199.27 27699.39 23383.53 41498.08 34499.54 24196.97 14099.87 15194.23 37199.16 17899.63 148
test_fmvs297.25 31797.30 30197.09 36299.43 21093.31 39399.73 5098.87 35798.83 7199.28 19299.80 11184.45 39799.66 25197.88 23097.45 28998.30 366
DSMNet-mixed97.25 31797.35 29396.95 36697.84 39093.61 39199.57 12496.63 41396.13 34698.87 27398.61 37894.59 23997.70 40395.08 35998.86 20599.55 169
MS-PatchMatch97.24 31997.32 29996.99 36398.45 38193.51 39298.82 36799.32 27997.41 24298.13 34399.30 31588.99 36099.56 27195.68 34699.80 10597.90 394
testing22297.16 32096.50 32999.16 18299.16 29098.47 22799.27 27698.66 38297.71 20398.23 33698.15 39382.28 40799.84 16797.36 28397.66 26999.18 237
TransMVSNet (Re)97.15 32196.58 32798.86 23199.12 29698.85 18599.49 18498.91 35095.48 35997.16 37299.80 11193.38 27999.11 34594.16 37391.73 39198.62 329
TinyColmap97.12 32296.89 32197.83 33699.07 30895.52 35798.57 38998.74 37297.58 21897.81 35799.79 12388.16 37499.56 27195.10 35897.21 30198.39 362
K. test v397.10 32396.79 32398.01 32098.72 36096.33 33699.87 897.05 40797.59 21696.16 38699.80 11188.71 36499.04 35296.69 32196.55 31398.65 318
Syy-MVS97.09 32497.14 31096.95 36699.00 31892.73 39799.29 26699.39 23397.06 27597.41 36398.15 39393.92 26898.68 38391.71 39398.34 23299.45 205
PatchT97.03 32596.44 33198.79 24398.99 32198.34 23399.16 30399.07 32692.13 39799.52 13797.31 40794.54 24498.98 36188.54 40598.73 21499.03 254
mmtdpeth96.95 32696.71 32597.67 34599.33 23994.90 37299.89 299.28 29398.15 14599.72 7898.57 37986.56 38499.90 12999.82 1989.02 40398.20 373
myMVS_eth3d96.89 32796.37 33298.43 28699.00 31897.16 29099.29 26699.39 23397.06 27597.41 36398.15 39383.46 40198.68 38395.27 35698.34 23299.45 205
AUN-MVS96.88 32896.31 33498.59 25899.48 19997.04 30299.27 27699.22 30597.44 23898.51 32099.41 28291.97 31799.66 25197.71 25283.83 41199.07 251
FMVSNet196.84 32996.36 33398.29 29999.32 24697.26 28699.43 21199.48 16495.11 36498.55 31899.32 31283.95 39998.98 36195.81 34196.26 32098.62 329
test250696.81 33096.65 32697.29 35799.74 8692.21 40099.60 10285.06 43199.13 2799.77 6199.93 1087.82 37999.85 16099.38 5699.38 16199.80 75
RPMNet96.72 33195.90 34499.19 17999.18 28098.49 22399.22 29599.52 10888.72 41099.56 12897.38 40494.08 26199.95 6486.87 41298.58 22099.14 238
mvs5depth96.66 33296.22 33697.97 32497.00 40696.28 33898.66 38399.03 33296.61 30896.93 37899.79 12387.20 38299.47 27796.65 32594.13 36898.16 375
test_040296.64 33396.24 33597.85 33398.85 34296.43 33399.44 20699.26 29793.52 38696.98 37699.52 24888.52 37099.20 33392.58 39197.50 28497.93 392
X-MVStestdata96.55 33495.45 35399.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17364.01 42798.81 4799.94 7598.79 13699.86 7099.84 44
pmmvs696.53 33596.09 34097.82 33898.69 36495.47 35899.37 24099.47 18593.46 38897.41 36399.78 13087.06 38399.33 30796.92 31292.70 38798.65 318
ET-MVSNet_ETH3D96.49 33695.64 35099.05 19499.53 17198.82 19098.84 36597.51 40597.63 21384.77 41499.21 33192.09 31598.91 37398.98 10192.21 39099.41 212
UnsupCasMVSNet_eth96.44 33796.12 33897.40 35498.65 36795.65 35199.36 24599.51 12297.13 26596.04 38898.99 35388.40 37198.17 39296.71 31990.27 39998.40 361
FMVSNet596.43 33896.19 33797.15 35899.11 29895.89 34899.32 25699.52 10894.47 37998.34 33099.07 34387.54 38097.07 40892.61 39095.72 33698.47 352
new_pmnet96.38 33996.03 34197.41 35398.13 38795.16 36899.05 32799.20 30993.94 38197.39 36698.79 37191.61 33099.04 35290.43 39895.77 33398.05 382
Anonymous2023120696.22 34096.03 34196.79 37197.31 40094.14 38399.63 9099.08 32396.17 34197.04 37599.06 34593.94 26697.76 40286.96 41195.06 35198.47 352
IB-MVS95.67 1896.22 34095.44 35498.57 26299.21 27296.70 32098.65 38497.74 40396.71 29897.27 36898.54 38086.03 38699.92 10598.47 18286.30 40899.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous2024052196.20 34295.89 34597.13 36097.72 39494.96 37199.79 3199.29 29193.01 39197.20 37199.03 34889.69 35498.36 38991.16 39696.13 32298.07 380
gg-mvs-nofinetune96.17 34395.32 35598.73 24798.79 34698.14 24299.38 23894.09 42291.07 40398.07 34791.04 42089.62 35699.35 30496.75 31799.09 18898.68 301
test20.0396.12 34495.96 34396.63 37297.44 39695.45 35999.51 16699.38 24196.55 31496.16 38699.25 32593.76 27596.17 41387.35 41094.22 36698.27 368
PVSNet_094.43 1996.09 34595.47 35297.94 32799.31 24794.34 38297.81 41199.70 1597.12 26797.46 36298.75 37389.71 35399.79 20297.69 25581.69 41499.68 126
MVStest196.08 34695.48 35197.89 33198.93 32996.70 32099.56 13099.35 25792.69 39591.81 40999.46 27189.90 35198.96 37095.00 36192.61 38898.00 387
EG-PatchMatch MVS95.97 34795.69 34896.81 37097.78 39192.79 39699.16 30398.93 34296.16 34294.08 39999.22 32882.72 40399.47 27795.67 34797.50 28498.17 374
APD_test195.87 34896.49 33094.00 38399.53 17184.01 41299.54 14899.32 27995.91 35497.99 34999.85 6085.49 39099.88 14691.96 39298.84 20798.12 377
Patchmatch-RL test95.84 34995.81 34795.95 37895.61 41190.57 40498.24 40498.39 38995.10 36695.20 39398.67 37594.78 22497.77 40196.28 33390.02 40099.51 185
test_vis1_rt95.81 35095.65 34996.32 37699.67 11791.35 40399.49 18496.74 41298.25 13195.24 39198.10 39774.96 41299.90 12999.53 4098.85 20697.70 397
MVS-HIRNet95.75 35195.16 35697.51 35199.30 24893.69 38998.88 36195.78 41685.09 41398.78 28692.65 41691.29 33599.37 29794.85 36399.85 7799.46 202
MIMVSNet195.51 35295.04 35796.92 36897.38 39795.60 35299.52 15799.50 14293.65 38596.97 37799.17 33385.28 39396.56 41288.36 40695.55 34198.60 341
MDA-MVSNet_test_wron95.45 35394.60 36098.01 32098.16 38697.21 28999.11 31899.24 30293.49 38780.73 42098.98 35593.02 28598.18 39194.22 37294.45 36298.64 320
TDRefinement95.42 35494.57 36197.97 32489.83 42496.11 34599.48 18898.75 36996.74 29696.68 38099.88 4288.65 36799.71 23498.37 19082.74 41398.09 379
YYNet195.36 35594.51 36297.92 32897.89 38997.10 29399.10 32099.23 30393.26 39080.77 41999.04 34792.81 29198.02 39594.30 36894.18 36798.64 320
pmmvs-eth3d95.34 35694.73 35997.15 35895.53 41395.94 34799.35 25099.10 32095.13 36293.55 40197.54 40288.15 37597.91 39894.58 36589.69 40297.61 398
dmvs_testset95.02 35796.12 33891.72 39299.10 30180.43 42099.58 11797.87 40097.47 23195.22 39298.82 36793.99 26495.18 41788.09 40794.91 35699.56 168
KD-MVS_self_test95.00 35894.34 36396.96 36597.07 40595.39 36299.56 13099.44 21395.11 36497.13 37397.32 40691.86 32097.27 40790.35 39981.23 41598.23 372
MDA-MVSNet-bldmvs94.96 35993.98 36697.92 32898.24 38597.27 28499.15 30699.33 26993.80 38380.09 42199.03 34888.31 37297.86 40093.49 37994.36 36498.62 329
N_pmnet94.95 36095.83 34692.31 39098.47 38079.33 42299.12 31292.81 42893.87 38297.68 35999.13 33893.87 27099.01 35891.38 39596.19 32198.59 342
KD-MVS_2432*160094.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
miper_refine_blended94.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
CL-MVSNet_self_test94.49 36393.97 36796.08 37796.16 40893.67 39098.33 40199.38 24195.13 36297.33 36798.15 39392.69 29996.57 41188.67 40479.87 41697.99 388
new-patchmatchnet94.48 36494.08 36595.67 37995.08 41692.41 39899.18 30199.28 29394.55 37893.49 40297.37 40587.86 37897.01 40991.57 39488.36 40497.61 398
OpenMVS_ROBcopyleft92.34 2094.38 36593.70 37196.41 37597.38 39793.17 39499.06 32598.75 36986.58 41194.84 39798.26 39081.53 40899.32 30989.01 40397.87 26196.76 405
CMPMVSbinary69.68 2394.13 36694.90 35891.84 39197.24 40180.01 42198.52 39299.48 16489.01 40891.99 40899.67 18885.67 38899.13 34095.44 35197.03 30696.39 409
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs394.09 36793.25 37396.60 37394.76 41894.49 37898.92 35798.18 39689.66 40496.48 38298.06 39986.28 38597.33 40689.68 40187.20 40797.97 390
mvsany_test393.77 36893.45 37294.74 38195.78 41088.01 40799.64 8498.25 39298.28 12694.31 39897.97 40068.89 41598.51 38797.50 27190.37 39897.71 395
UnsupCasMVSNet_bld93.53 36992.51 37596.58 37497.38 39793.82 38598.24 40499.48 16491.10 40293.10 40396.66 40974.89 41398.37 38894.03 37487.71 40697.56 400
dongtai93.26 37092.93 37494.25 38299.39 22585.68 41097.68 41393.27 42492.87 39396.85 37999.39 29082.33 40697.48 40576.78 41897.80 26499.58 163
WB-MVS93.10 37194.10 36490.12 39795.51 41581.88 41799.73 5099.27 29695.05 36793.09 40498.91 36494.70 23391.89 42176.62 41994.02 37296.58 407
PM-MVS92.96 37292.23 37695.14 38095.61 41189.98 40699.37 24098.21 39494.80 37395.04 39697.69 40165.06 41697.90 39994.30 36889.98 40197.54 401
SSC-MVS92.73 37393.73 36889.72 39895.02 41781.38 41899.76 3799.23 30394.87 37192.80 40598.93 36094.71 23291.37 42274.49 42193.80 37496.42 408
test_fmvs392.10 37491.77 37793.08 38896.19 40786.25 40899.82 1698.62 38496.65 30395.19 39496.90 40855.05 42395.93 41596.63 32690.92 39797.06 404
test_f91.90 37591.26 37993.84 38495.52 41485.92 40999.69 6098.53 38895.31 36193.87 40096.37 41155.33 42298.27 39095.70 34490.98 39697.32 403
test_method91.10 37691.36 37890.31 39695.85 40973.72 42994.89 41799.25 29968.39 42095.82 38999.02 35080.50 41098.95 37193.64 37794.89 35798.25 370
Gipumacopyleft90.99 37790.15 38293.51 38598.73 35890.12 40593.98 41899.45 20579.32 41692.28 40694.91 41369.61 41497.98 39787.42 40995.67 33792.45 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 37890.11 38393.34 38698.78 34985.59 41198.15 40893.16 42689.37 40792.07 40798.38 38581.48 40995.19 41662.54 42597.04 30599.25 233
testf190.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
APD_test290.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
test_vis3_rt87.04 38185.81 38490.73 39593.99 41981.96 41699.76 3790.23 43092.81 39481.35 41891.56 41840.06 42799.07 34994.27 37088.23 40591.15 418
PMMVS286.87 38285.37 38691.35 39490.21 42383.80 41398.89 36097.45 40683.13 41591.67 41295.03 41248.49 42594.70 41885.86 41577.62 41795.54 413
LCM-MVSNet86.80 38385.22 38791.53 39387.81 42580.96 41998.23 40698.99 33671.05 41890.13 41396.51 41048.45 42696.88 41090.51 39785.30 40996.76 405
FPMVS84.93 38485.65 38582.75 40586.77 42663.39 43198.35 39898.92 34574.11 41783.39 41698.98 35550.85 42492.40 42084.54 41694.97 35392.46 415
EGC-MVSNET82.80 38577.86 39197.62 34797.91 38896.12 34499.33 25599.28 2938.40 42825.05 42999.27 32284.11 39899.33 30789.20 40298.22 24297.42 402
tmp_tt82.80 38581.52 38886.66 40166.61 43168.44 43092.79 42097.92 39868.96 41980.04 42299.85 6085.77 38796.15 41497.86 23343.89 42495.39 414
E-PMN80.61 38779.88 38982.81 40490.75 42276.38 42597.69 41295.76 41766.44 42283.52 41592.25 41762.54 41887.16 42468.53 42361.40 42184.89 422
EMVS80.02 38879.22 39082.43 40691.19 42176.40 42497.55 41592.49 42966.36 42383.01 41791.27 41964.63 41785.79 42565.82 42460.65 42285.08 421
ANet_high77.30 38974.86 39384.62 40375.88 42977.61 42397.63 41493.15 42788.81 40964.27 42489.29 42136.51 42883.93 42675.89 42052.31 42392.33 417
MVEpermissive76.82 2176.91 39074.31 39484.70 40285.38 42876.05 42696.88 41693.17 42567.39 42171.28 42389.01 42221.66 43387.69 42371.74 42272.29 42090.35 419
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 39174.97 39279.01 40770.98 43055.18 43293.37 41998.21 39465.08 42461.78 42593.83 41521.74 43292.53 41978.59 41791.12 39589.34 420
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 39241.29 39736.84 40886.18 42749.12 43379.73 42122.81 43327.64 42525.46 42828.45 42821.98 43148.89 42755.80 42623.56 42712.51 425
testmvs39.17 39343.78 39525.37 41036.04 43316.84 43598.36 39726.56 43220.06 42638.51 42767.32 42329.64 43015.30 42937.59 42739.90 42543.98 424
test12339.01 39442.50 39628.53 40939.17 43220.91 43498.75 37419.17 43419.83 42738.57 42666.67 42433.16 42915.42 42837.50 42829.66 42649.26 423
cdsmvs_eth3d_5k24.64 39532.85 3980.00 4110.00 4340.00 4360.00 42299.51 1220.00 4290.00 43099.56 23396.58 1530.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.30 39611.06 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43099.58 2250.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.27 39711.03 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 43099.01 180.00 4300.00 4290.00 4280.00 426
test_blank0.13 3980.17 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4301.57 4290.00 4340.00 4300.00 4290.00 4280.00 426
mmdepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS97.16 29095.47 350
FOURS199.91 199.93 199.87 899.56 7399.10 3499.81 46
MSC_two_6792asdad99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
PC_three_145298.18 14399.84 3899.70 16599.31 398.52 38698.30 19999.80 10599.81 66
No_MVS99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
test_one_060199.81 4699.88 899.49 15298.97 5899.65 10299.81 9899.09 14
eth-test20.00 434
eth-test0.00 434
ZD-MVS99.71 10299.79 3399.61 4996.84 29299.56 12899.54 24198.58 7599.96 3396.93 31099.75 122
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.75 5898.61 16099.81 10199.77 87
IU-MVS99.84 3299.88 899.32 27998.30 12599.84 3898.86 12399.85 7799.89 21
OPU-MVS99.64 8699.56 16399.72 4799.60 10299.70 16599.27 599.42 29098.24 20299.80 10599.79 79
test_241102_TWO99.48 16499.08 4099.88 2799.81 9898.94 3299.96 3398.91 11299.84 8599.88 27
test_241102_ONE99.84 3299.90 299.48 16499.07 4299.91 2099.74 15099.20 799.76 213
9.1499.10 8499.72 9799.40 22999.51 12297.53 22699.64 10799.78 13098.84 4499.91 11797.63 25799.82 98
save fliter99.76 6899.59 7699.14 30899.40 23099.00 50
test_0728_THIRD98.99 5299.81 4699.80 11199.09 1499.96 3398.85 12599.90 4599.88 27
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12299.96 3398.93 10999.86 7099.88 27
test072699.85 2699.89 499.62 9599.50 14299.10 3499.86 3699.82 8498.94 32
GSMVS99.52 178
test_part299.81 4699.83 1999.77 61
sam_mvs194.86 21999.52 178
sam_mvs94.72 231
ambc93.06 38992.68 42082.36 41498.47 39498.73 37895.09 39597.41 40355.55 42199.10 34796.42 33091.32 39297.71 395
MTGPAbinary99.47 185
test_post199.23 29165.14 42694.18 25899.71 23497.58 261
test_post65.99 42594.65 23799.73 224
patchmatchnet-post98.70 37494.79 22399.74 218
GG-mvs-BLEND98.45 28198.55 37798.16 24099.43 21193.68 42397.23 36998.46 38189.30 35799.22 32695.43 35298.22 24297.98 389
MTMP99.54 14898.88 355
gm-plane-assit98.54 37892.96 39594.65 37699.15 33699.64 25997.56 266
test9_res97.49 27299.72 12899.75 93
TEST999.67 11799.65 6399.05 32799.41 22496.22 33798.95 26099.49 25898.77 5499.91 117
test_899.67 11799.61 7399.03 33299.41 22496.28 33198.93 26399.48 26498.76 5599.91 117
agg_prior297.21 29099.73 12799.75 93
agg_prior99.67 11799.62 7199.40 23098.87 27399.91 117
TestCases99.31 15799.86 2098.48 22599.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
test_prior499.56 8298.99 343
test_prior298.96 35098.34 12099.01 24999.52 24898.68 6797.96 22599.74 125
test_prior99.68 7499.67 11799.48 9799.56 7399.83 18099.74 97
旧先验298.96 35096.70 29999.47 14599.94 7598.19 205
新几何299.01 340
新几何199.75 6499.75 7899.59 7699.54 9096.76 29599.29 19199.64 20198.43 8699.94 7596.92 31299.66 13899.72 109
旧先验199.74 8699.59 7699.54 9099.69 17598.47 8399.68 13699.73 102
无先验98.99 34399.51 12296.89 28999.93 9397.53 26999.72 109
原ACMM298.95 353
原ACMM199.65 8099.73 9399.33 11399.47 18597.46 23299.12 22899.66 19398.67 6999.91 11797.70 25499.69 13399.71 118
test22299.75 7899.49 9598.91 35999.49 15296.42 32599.34 18299.65 19598.28 9699.69 13399.72 109
testdata299.95 6496.67 322
segment_acmp98.96 25
testdata99.54 10799.75 7898.95 17199.51 12297.07 27399.43 15599.70 16598.87 4099.94 7597.76 24599.64 14199.72 109
testdata198.85 36498.32 123
test1299.75 6499.64 13599.61 7399.29 29199.21 21198.38 9199.89 14199.74 12599.74 97
plane_prior799.29 25297.03 303
plane_prior699.27 25796.98 30792.71 297
plane_prior599.47 18599.69 24597.78 24197.63 27098.67 308
plane_prior499.61 216
plane_prior397.00 30598.69 8799.11 230
plane_prior299.39 23398.97 58
plane_prior199.26 259
plane_prior96.97 30899.21 29798.45 10797.60 273
n20.00 435
nn0.00 435
door-mid98.05 397
lessismore_v097.79 34098.69 36495.44 36194.75 42095.71 39099.87 5188.69 36599.32 30995.89 33994.93 35598.62 329
LGP-MVS_train98.49 27199.33 23997.05 29999.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
test1199.35 257
door97.92 398
HQP5-MVS96.83 315
HQP-NCC99.19 27798.98 34698.24 13298.66 301
ACMP_Plane99.19 27798.98 34698.24 13298.66 301
BP-MVS97.19 294
HQP4-MVS98.66 30199.64 25998.64 320
HQP3-MVS99.39 23397.58 275
HQP2-MVS92.47 306
NP-MVS99.23 26796.92 31199.40 286
MDTV_nov1_ep13_2view95.18 36799.35 25096.84 29299.58 12495.19 20797.82 23899.46 202
MDTV_nov1_ep1398.32 18399.11 29894.44 37999.27 27698.74 37297.51 22999.40 16799.62 21294.78 22499.76 21397.59 26098.81 211
ACMMP++_ref97.19 302
ACMMP++97.43 293
Test By Simon98.75 58
ITE_SJBPF98.08 31599.29 25296.37 33498.92 34598.34 12098.83 27999.75 14591.09 33799.62 26695.82 34097.40 29598.25 370
DeepMVS_CXcopyleft93.34 38699.29 25282.27 41599.22 30585.15 41296.33 38399.05 34690.97 33999.73 22493.57 37897.77 26698.01 384