| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 51 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 7 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 61 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 9 | 89.08 12 | 96.41 12 | 93.33 90 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 62 | 94.67 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 42 | 94.10 8 | 75.90 88 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 11 | 87.44 33 | 96.34 15 | 93.95 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 94 | 73.65 10 | 92.66 23 | 91.17 122 | 86.57 1 | 87.39 38 | 94.97 15 | 71.70 54 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 92 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 36 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 110 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 13 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 56 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 102 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 59 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 43 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 16 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 49 | 92.40 24 | 94.74 2 | 75.71 90 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 88 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 30 |
|
| SD-MVS | | | 88.06 14 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 41 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 137 | 87.63 30 | 94.27 61 | 93.65 75 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 51 | 92.83 57 | 81.50 5 | 85.79 52 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 43 | 94.94 40 | 94.10 51 |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 54 | 93.59 23 | 76.27 82 | 88.14 24 | 95.09 14 | 71.06 62 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 52 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 79 | 74.62 113 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 53 | 87.80 28 | 94.63 48 | 95.04 8 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 64 | 85.24 57 | 94.32 30 | 71.76 52 | 96.93 19 | 85.53 40 | 95.79 22 | 94.32 44 |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 66 | 77.57 41 | 83.84 87 | 94.40 29 | 72.24 45 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 78 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVS_0304 | | | 87.69 20 | 87.55 22 | 88.12 13 | 89.45 128 | 71.76 51 | 91.47 46 | 89.54 169 | 82.14 3 | 86.65 46 | 94.28 31 | 68.28 94 | 97.46 6 | 90.81 2 | 95.31 34 | 95.15 6 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 78 | 93.50 25 | 75.17 103 | 86.34 48 | 95.29 12 | 70.86 64 | 96.00 53 | 88.78 19 | 96.04 16 | 94.58 30 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 66 | 84.91 62 | 94.44 27 | 70.78 65 | 96.61 32 | 84.53 52 | 94.89 42 | 93.66 71 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 15 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 66 | 84.66 69 | 94.52 20 | 68.81 88 | 96.65 30 | 84.53 52 | 94.90 41 | 94.00 56 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 40 | 92.83 57 | 73.01 151 | 88.58 21 | 94.52 20 | 73.36 34 | 96.49 36 | 84.26 55 | 95.01 37 | 92.70 112 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 62 | 84.68 66 | 93.99 48 | 70.67 67 | 96.82 22 | 84.18 59 | 95.01 37 | 93.90 61 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 14 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 69 | 84.45 75 | 94.52 20 | 69.09 82 | 96.70 27 | 84.37 54 | 94.83 45 | 94.03 55 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 76 | 93.82 16 | 73.07 149 | 84.86 65 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 45 | 95.13 36 | 94.40 40 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 189 | 92.02 91 | 79.45 19 | 85.88 50 | 94.80 16 | 68.07 95 | 96.21 42 | 86.69 36 | 95.34 32 | 93.23 93 |
|
| XVS | | | 87.18 29 | 86.91 34 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 90 | 94.17 36 | 67.45 102 | 96.60 33 | 83.06 66 | 94.50 51 | 94.07 53 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 31 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 33 | 93.33 31 | 76.07 85 | 83.81 88 | 93.95 51 | 69.77 76 | 96.01 52 | 85.15 41 | 94.66 47 | 94.32 44 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 30 | 86.92 33 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 60 | 76.62 72 | 83.68 89 | 94.46 24 | 67.93 97 | 95.95 56 | 84.20 58 | 94.39 56 | 93.23 93 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 35 | 87.69 33 | 91.16 81 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 56 | 82.82 102 | 94.23 35 | 72.13 47 | 97.09 16 | 84.83 46 | 95.37 31 | 93.65 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 37 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 72 | 84.22 79 | 93.36 63 | 71.44 58 | 96.76 25 | 80.82 92 | 95.33 33 | 94.16 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| balanced_conf03 | | | 86.78 34 | 86.99 30 | 86.15 58 | 91.24 80 | 67.61 141 | 90.51 59 | 92.90 53 | 77.26 50 | 87.44 37 | 91.63 101 | 71.27 61 | 96.06 47 | 85.62 39 | 95.01 37 | 94.78 22 |
|
| SR-MVS | | | 86.73 35 | 86.67 36 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 72 | 74.50 114 | 86.84 45 | 94.65 19 | 67.31 104 | 95.77 58 | 84.80 47 | 92.85 71 | 92.84 110 |
|
| CS-MVS | | | 86.69 36 | 86.95 32 | 85.90 67 | 90.76 95 | 67.57 143 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 74 | 92.27 86 | 71.47 57 | 95.02 90 | 84.24 57 | 93.46 67 | 95.13 7 |
|
| PGM-MVS | | | 86.68 37 | 86.27 41 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 94 | 83.86 86 | 94.42 28 | 67.87 99 | 96.64 31 | 82.70 76 | 94.57 50 | 93.66 71 |
|
| mPP-MVS | | | 86.67 38 | 86.32 40 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 85 | 76.87 63 | 82.81 103 | 94.25 34 | 66.44 112 | 96.24 41 | 82.88 71 | 94.28 60 | 93.38 87 |
|
| CANet | | | 86.45 39 | 86.10 46 | 87.51 37 | 90.09 106 | 70.94 67 | 89.70 82 | 92.59 71 | 81.78 4 | 81.32 118 | 91.43 109 | 70.34 69 | 97.23 14 | 84.26 55 | 93.36 68 | 94.37 41 |
|
| train_agg | | | 86.43 40 | 86.20 42 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 116 | 91.89 99 | 68.69 239 | 85.00 60 | 93.10 67 | 74.43 26 | 95.41 71 | 84.97 42 | 95.71 25 | 93.02 104 |
|
| PHI-MVS | | | 86.43 40 | 86.17 44 | 87.24 41 | 90.88 90 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 156 | 85.22 58 | 91.90 92 | 69.47 78 | 96.42 37 | 83.28 65 | 95.94 19 | 94.35 42 |
|
| CSCG | | | 86.41 42 | 86.19 43 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 55 | 93.56 24 | 73.95 125 | 83.16 96 | 91.07 121 | 75.94 18 | 95.19 79 | 79.94 100 | 94.38 58 | 93.55 82 |
|
| CS-MVS-test | | | 86.29 43 | 86.48 38 | 85.71 69 | 91.02 86 | 67.21 156 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 93 | 91.20 116 | 70.65 68 | 95.15 81 | 81.96 80 | 94.89 42 | 94.77 23 |
|
| EC-MVSNet | | | 86.01 44 | 86.38 39 | 84.91 93 | 89.31 137 | 66.27 170 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 81 | 91.88 93 | 69.04 86 | 95.43 69 | 83.93 60 | 93.77 65 | 93.01 105 |
|
| MVSMamba_PlusPlus | | | 85.99 45 | 85.96 49 | 86.05 62 | 91.09 82 | 67.64 139 | 89.63 85 | 92.65 66 | 72.89 154 | 84.64 70 | 91.71 96 | 71.85 49 | 96.03 48 | 84.77 48 | 94.45 54 | 94.49 34 |
|
| casdiffmvs_mvg |  | | 85.99 45 | 86.09 47 | 85.70 70 | 87.65 205 | 67.22 155 | 88.69 120 | 93.04 38 | 79.64 18 | 85.33 56 | 92.54 83 | 73.30 35 | 94.50 108 | 83.49 62 | 91.14 93 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 47 | 85.88 50 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 37 | 92.99 46 | 73.54 137 | 85.94 49 | 94.51 23 | 65.80 122 | 95.61 61 | 83.04 68 | 92.51 75 | 93.53 84 |
|
| test_fmvsmconf_n | | | 85.92 48 | 86.04 48 | 85.57 73 | 85.03 258 | 69.51 90 | 89.62 87 | 90.58 137 | 73.42 140 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 162 | 90.37 3 | 90.75 97 | 93.96 57 |
|
| sasdasda | | | 85.91 49 | 85.87 51 | 86.04 63 | 89.84 116 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 70 | 88.01 28 | 91.23 113 | 73.28 36 | 93.91 131 | 81.50 83 | 88.80 125 | 94.77 23 |
|
| canonicalmvs | | | 85.91 49 | 85.87 51 | 86.04 63 | 89.84 116 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 70 | 88.01 28 | 91.23 113 | 73.28 36 | 93.91 131 | 81.50 83 | 88.80 125 | 94.77 23 |
|
| ACMMP |  | | 85.89 51 | 85.39 59 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 66 | 80.73 127 | 93.82 53 | 64.33 132 | 96.29 39 | 82.67 77 | 90.69 98 | 93.23 93 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 52 | 85.61 55 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 38 | 92.27 81 | 73.53 138 | 85.69 53 | 94.45 25 | 65.00 130 | 95.56 62 | 82.75 72 | 91.87 83 | 92.50 121 |
|
| CDPH-MVS | | | 85.76 53 | 85.29 64 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 124 | 92.42 77 | 68.32 246 | 84.61 72 | 93.48 58 | 72.32 44 | 96.15 45 | 79.00 102 | 95.43 30 | 94.28 46 |
|
| TSAR-MVS + GP. | | | 85.71 54 | 85.33 61 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 106 | 87.28 233 | 76.41 75 | 85.80 51 | 90.22 140 | 74.15 31 | 95.37 76 | 81.82 81 | 91.88 82 | 92.65 116 |
|
| dcpmvs_2 | | | 85.63 55 | 86.15 45 | 84.06 129 | 91.71 75 | 64.94 199 | 86.47 192 | 91.87 101 | 73.63 133 | 86.60 47 | 93.02 72 | 76.57 15 | 91.87 219 | 83.36 63 | 92.15 79 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 56 | 85.65 54 | 85.50 74 | 82.99 303 | 69.39 97 | 89.65 83 | 90.29 150 | 73.31 143 | 87.77 31 | 94.15 38 | 71.72 53 | 93.23 163 | 90.31 4 | 90.67 99 | 93.89 62 |
|
| iter_conf05 | | | 85.49 57 | 85.43 58 | 85.67 71 | 91.09 82 | 66.55 166 | 87.18 169 | 92.08 90 | 72.89 154 | 82.90 99 | 91.71 96 | 71.85 49 | 96.03 48 | 84.77 48 | 94.39 56 | 94.42 37 |
|
| alignmvs | | | 85.48 58 | 85.32 62 | 85.96 66 | 89.51 125 | 69.47 92 | 89.74 80 | 92.47 73 | 76.17 83 | 87.73 34 | 91.46 108 | 70.32 70 | 93.78 137 | 81.51 82 | 88.95 122 | 94.63 29 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 58 | 84.47 75 | 88.51 7 | 91.08 84 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 198 | 93.37 62 | 60.40 195 | 96.75 26 | 77.20 121 | 93.73 66 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 60 | 85.76 53 | 84.45 106 | 91.93 72 | 70.24 76 | 90.71 56 | 92.86 55 | 77.46 47 | 84.22 79 | 92.81 78 | 67.16 106 | 92.94 182 | 80.36 96 | 94.35 59 | 90.16 199 |
|
| DELS-MVS | | | 85.41 61 | 85.30 63 | 85.77 68 | 88.49 168 | 67.93 133 | 85.52 221 | 93.44 27 | 78.70 29 | 83.63 92 | 89.03 168 | 74.57 24 | 95.71 60 | 80.26 98 | 94.04 63 | 93.66 71 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 62 | 84.95 69 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 35 | 91.62 109 | 73.89 128 | 82.67 105 | 94.09 40 | 62.60 151 | 95.54 64 | 80.93 90 | 92.93 70 | 93.57 80 |
|
| bld_raw_conf03 | | | 85.32 63 | 85.07 66 | 86.07 61 | 90.86 91 | 67.64 139 | 89.63 85 | 92.65 66 | 72.35 161 | 84.64 70 | 90.81 130 | 68.76 90 | 96.09 46 | 81.45 85 | 94.45 54 | 94.49 34 |
|
| test_fmvsm_n_1920 | | | 85.29 64 | 85.34 60 | 85.13 84 | 86.12 237 | 69.93 83 | 88.65 122 | 90.78 133 | 69.97 207 | 88.27 23 | 93.98 49 | 71.39 59 | 91.54 231 | 88.49 23 | 90.45 101 | 93.91 59 |
|
| MVS_111021_HR | | | 85.14 65 | 84.75 70 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 204 | 90.33 147 | 76.11 84 | 82.08 108 | 91.61 103 | 71.36 60 | 94.17 120 | 81.02 89 | 92.58 74 | 92.08 138 |
|
| casdiffmvs |  | | 85.11 66 | 85.14 65 | 85.01 87 | 87.20 219 | 65.77 182 | 87.75 153 | 92.83 57 | 77.84 37 | 84.36 78 | 92.38 85 | 72.15 46 | 93.93 130 | 81.27 88 | 90.48 100 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 67 | 84.96 68 | 85.45 75 | 92.07 70 | 68.07 130 | 89.78 79 | 90.86 132 | 82.48 2 | 84.60 73 | 93.20 66 | 69.35 79 | 95.22 78 | 71.39 177 | 90.88 96 | 93.07 101 |
|
| MGCFI-Net | | | 85.06 68 | 85.51 56 | 83.70 143 | 89.42 129 | 63.01 240 | 89.43 91 | 92.62 70 | 76.43 74 | 87.53 35 | 91.34 111 | 72.82 42 | 93.42 157 | 81.28 87 | 88.74 128 | 94.66 28 |
|
| DPM-MVS | | | 84.93 69 | 84.29 76 | 86.84 47 | 90.20 104 | 73.04 23 | 87.12 171 | 93.04 38 | 69.80 211 | 82.85 101 | 91.22 115 | 73.06 39 | 96.02 51 | 76.72 128 | 94.63 48 | 91.46 155 |
|
| baseline | | | 84.93 69 | 84.98 67 | 84.80 97 | 87.30 217 | 65.39 190 | 87.30 166 | 92.88 54 | 77.62 39 | 84.04 84 | 92.26 87 | 71.81 51 | 93.96 124 | 81.31 86 | 90.30 103 | 95.03 9 |
|
| ETV-MVS | | | 84.90 71 | 84.67 71 | 85.59 72 | 89.39 132 | 68.66 117 | 88.74 118 | 92.64 69 | 79.97 15 | 84.10 82 | 85.71 257 | 69.32 80 | 95.38 73 | 80.82 92 | 91.37 90 | 92.72 111 |
|
| test_fmvsmconf0.01_n | | | 84.73 72 | 84.52 74 | 85.34 77 | 80.25 343 | 69.03 100 | 89.47 89 | 89.65 167 | 73.24 147 | 86.98 43 | 94.27 32 | 66.62 108 | 93.23 163 | 90.26 5 | 89.95 111 | 93.78 68 |
|
| fmvsm_l_conf0.5_n | | | 84.47 73 | 84.54 72 | 84.27 116 | 85.42 248 | 68.81 106 | 88.49 126 | 87.26 234 | 68.08 248 | 88.03 27 | 93.49 57 | 72.04 48 | 91.77 221 | 88.90 17 | 89.14 121 | 92.24 132 |
|
| EI-MVSNet-Vis-set | | | 84.19 74 | 83.81 79 | 85.31 78 | 88.18 179 | 67.85 134 | 87.66 155 | 89.73 165 | 80.05 14 | 82.95 97 | 89.59 153 | 70.74 66 | 94.82 98 | 80.66 95 | 84.72 177 | 93.28 92 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 75 | 84.16 77 | 84.06 129 | 85.38 249 | 68.40 121 | 88.34 133 | 86.85 243 | 67.48 255 | 87.48 36 | 93.40 61 | 70.89 63 | 91.61 225 | 88.38 25 | 89.22 119 | 92.16 136 |
|
| test_fmvsmvis_n_1920 | | | 84.02 76 | 83.87 78 | 84.49 105 | 84.12 274 | 69.37 98 | 88.15 141 | 87.96 217 | 70.01 205 | 83.95 85 | 93.23 65 | 68.80 89 | 91.51 234 | 88.61 20 | 89.96 110 | 92.57 117 |
|
| nrg030 | | | 83.88 77 | 83.53 81 | 84.96 89 | 86.77 227 | 69.28 99 | 90.46 64 | 92.67 63 | 74.79 109 | 82.95 97 | 91.33 112 | 72.70 43 | 93.09 176 | 80.79 94 | 79.28 255 | 92.50 121 |
|
| EI-MVSNet-UG-set | | | 83.81 78 | 83.38 84 | 85.09 85 | 87.87 194 | 67.53 144 | 87.44 162 | 89.66 166 | 79.74 16 | 82.23 107 | 89.41 162 | 70.24 71 | 94.74 101 | 79.95 99 | 83.92 191 | 92.99 107 |
|
| fmvsm_s_conf0.5_n | | | 83.80 79 | 83.71 80 | 84.07 127 | 86.69 229 | 67.31 150 | 89.46 90 | 83.07 295 | 71.09 181 | 86.96 44 | 93.70 55 | 69.02 87 | 91.47 236 | 88.79 18 | 84.62 179 | 93.44 86 |
|
| CPTT-MVS | | | 83.73 80 | 83.33 86 | 84.92 92 | 93.28 49 | 70.86 69 | 92.09 36 | 90.38 143 | 68.75 238 | 79.57 138 | 92.83 76 | 60.60 191 | 93.04 180 | 80.92 91 | 91.56 88 | 90.86 172 |
|
| EPNet | | | 83.72 81 | 82.92 93 | 86.14 60 | 84.22 272 | 69.48 91 | 91.05 53 | 85.27 262 | 81.30 6 | 76.83 193 | 91.65 99 | 66.09 117 | 95.56 62 | 76.00 134 | 93.85 64 | 93.38 87 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 82 | 84.54 72 | 80.99 222 | 90.06 111 | 65.83 179 | 84.21 249 | 88.74 203 | 71.60 171 | 85.01 59 | 92.44 84 | 74.51 25 | 83.50 337 | 82.15 79 | 92.15 79 | 93.64 77 |
|
| HQP_MVS | | | 83.64 83 | 83.14 87 | 85.14 82 | 90.08 107 | 68.71 113 | 91.25 49 | 92.44 74 | 79.12 23 | 78.92 147 | 91.00 126 | 60.42 193 | 95.38 73 | 78.71 106 | 86.32 158 | 91.33 156 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 84 | 83.41 83 | 84.28 114 | 86.14 236 | 68.12 128 | 89.43 91 | 82.87 300 | 70.27 200 | 87.27 40 | 93.80 54 | 69.09 82 | 91.58 227 | 88.21 26 | 83.65 199 | 93.14 99 |
|
| Effi-MVS+ | | | 83.62 85 | 83.08 88 | 85.24 80 | 88.38 174 | 67.45 145 | 88.89 111 | 89.15 185 | 75.50 95 | 82.27 106 | 88.28 189 | 69.61 77 | 94.45 110 | 77.81 115 | 87.84 137 | 93.84 65 |
|
| fmvsm_s_conf0.1_n | | | 83.56 86 | 83.38 84 | 84.10 122 | 84.86 260 | 67.28 151 | 89.40 95 | 83.01 296 | 70.67 189 | 87.08 41 | 93.96 50 | 68.38 92 | 91.45 237 | 88.56 22 | 84.50 180 | 93.56 81 |
|
| OPM-MVS | | | 83.50 87 | 82.95 92 | 85.14 82 | 88.79 158 | 70.95 66 | 89.13 105 | 91.52 112 | 77.55 44 | 80.96 125 | 91.75 95 | 60.71 186 | 94.50 108 | 79.67 101 | 86.51 156 | 89.97 215 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 88 | 82.80 95 | 85.43 76 | 90.25 103 | 68.74 111 | 90.30 69 | 90.13 154 | 76.33 81 | 80.87 126 | 92.89 74 | 61.00 183 | 94.20 118 | 72.45 171 | 90.97 94 | 93.35 89 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 89 | 83.45 82 | 83.28 155 | 92.74 62 | 62.28 251 | 88.17 139 | 89.50 171 | 75.22 99 | 81.49 117 | 92.74 82 | 66.75 107 | 95.11 84 | 72.85 165 | 91.58 87 | 92.45 124 |
|
| EPP-MVSNet | | | 83.40 90 | 83.02 90 | 84.57 101 | 90.13 105 | 64.47 209 | 92.32 30 | 90.73 134 | 74.45 117 | 79.35 141 | 91.10 119 | 69.05 85 | 95.12 82 | 72.78 166 | 87.22 145 | 94.13 50 |
|
| 3Dnovator | | 76.31 5 | 83.38 91 | 82.31 101 | 86.59 52 | 87.94 191 | 72.94 28 | 90.64 57 | 92.14 89 | 77.21 53 | 75.47 223 | 92.83 76 | 58.56 202 | 94.72 102 | 73.24 162 | 92.71 73 | 92.13 137 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 92 | 82.99 91 | 84.28 114 | 83.79 281 | 68.07 130 | 89.34 97 | 82.85 301 | 69.80 211 | 87.36 39 | 94.06 42 | 68.34 93 | 91.56 229 | 87.95 27 | 83.46 204 | 93.21 96 |
|
| EIA-MVS | | | 83.31 93 | 82.80 95 | 84.82 95 | 89.59 121 | 65.59 185 | 88.21 137 | 92.68 62 | 74.66 112 | 78.96 145 | 86.42 244 | 69.06 84 | 95.26 77 | 75.54 140 | 90.09 107 | 93.62 78 |
|
| h-mvs33 | | | 83.15 94 | 82.19 102 | 86.02 65 | 90.56 97 | 70.85 70 | 88.15 141 | 89.16 184 | 76.02 86 | 84.67 67 | 91.39 110 | 61.54 169 | 95.50 65 | 82.71 74 | 75.48 303 | 91.72 145 |
|
| MVS_Test | | | 83.15 94 | 83.06 89 | 83.41 152 | 86.86 223 | 63.21 236 | 86.11 202 | 92.00 93 | 74.31 118 | 82.87 100 | 89.44 161 | 70.03 72 | 93.21 165 | 77.39 120 | 88.50 133 | 93.81 66 |
|
| IS-MVSNet | | | 83.15 94 | 82.81 94 | 84.18 120 | 89.94 114 | 63.30 234 | 91.59 42 | 88.46 209 | 79.04 25 | 79.49 139 | 92.16 88 | 65.10 127 | 94.28 113 | 67.71 212 | 91.86 85 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 97 | 82.09 104 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 114 | 92.20 86 | 70.53 194 | 79.17 143 | 91.03 124 | 64.12 134 | 96.03 48 | 68.39 209 | 90.14 106 | 91.50 151 |
|
| PAPM_NR | | | 83.02 98 | 82.41 98 | 84.82 95 | 92.47 67 | 66.37 168 | 87.93 148 | 91.80 104 | 73.82 129 | 77.32 182 | 90.66 132 | 67.90 98 | 94.90 94 | 70.37 186 | 89.48 116 | 93.19 97 |
|
| VDD-MVS | | | 83.01 99 | 82.36 100 | 84.96 89 | 91.02 86 | 66.40 167 | 88.91 110 | 88.11 212 | 77.57 41 | 84.39 77 | 93.29 64 | 52.19 253 | 93.91 131 | 77.05 123 | 88.70 129 | 94.57 32 |
|
| MVSFormer | | | 82.85 100 | 82.05 105 | 85.24 80 | 87.35 211 | 70.21 77 | 90.50 61 | 90.38 143 | 68.55 241 | 81.32 118 | 89.47 156 | 61.68 166 | 93.46 154 | 78.98 103 | 90.26 104 | 92.05 139 |
|
| OMC-MVS | | | 82.69 101 | 81.97 108 | 84.85 94 | 88.75 160 | 67.42 146 | 87.98 144 | 90.87 131 | 74.92 106 | 79.72 136 | 91.65 99 | 62.19 161 | 93.96 124 | 75.26 143 | 86.42 157 | 93.16 98 |
|
| PVSNet_Blended_VisFu | | | 82.62 102 | 81.83 110 | 84.96 89 | 90.80 93 | 69.76 87 | 88.74 118 | 91.70 108 | 69.39 219 | 78.96 145 | 88.46 184 | 65.47 124 | 94.87 97 | 74.42 148 | 88.57 130 | 90.24 197 |
|
| MVS_111021_LR | | | 82.61 103 | 82.11 103 | 84.11 121 | 88.82 155 | 71.58 53 | 85.15 224 | 86.16 253 | 74.69 111 | 80.47 129 | 91.04 122 | 62.29 158 | 90.55 259 | 80.33 97 | 90.08 108 | 90.20 198 |
|
| HQP-MVS | | | 82.61 103 | 82.02 106 | 84.37 108 | 89.33 134 | 66.98 159 | 89.17 100 | 92.19 87 | 76.41 75 | 77.23 185 | 90.23 139 | 60.17 196 | 95.11 84 | 77.47 118 | 85.99 166 | 91.03 166 |
|
| CLD-MVS | | | 82.31 105 | 81.65 111 | 84.29 113 | 88.47 169 | 67.73 137 | 85.81 212 | 92.35 79 | 75.78 89 | 78.33 161 | 86.58 239 | 64.01 135 | 94.35 111 | 76.05 133 | 87.48 142 | 90.79 173 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 106 | 82.41 98 | 81.62 203 | 90.82 92 | 60.93 265 | 84.47 240 | 89.78 162 | 76.36 80 | 84.07 83 | 91.88 93 | 64.71 131 | 90.26 261 | 70.68 183 | 88.89 123 | 93.66 71 |
|
| diffmvs |  | | 82.10 107 | 81.88 109 | 82.76 185 | 83.00 301 | 63.78 222 | 83.68 256 | 89.76 163 | 72.94 152 | 82.02 109 | 89.85 145 | 65.96 121 | 90.79 255 | 82.38 78 | 87.30 144 | 93.71 70 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 108 | 81.27 114 | 84.50 103 | 89.23 141 | 68.76 109 | 90.22 70 | 91.94 97 | 75.37 97 | 76.64 199 | 91.51 105 | 54.29 234 | 94.91 92 | 78.44 108 | 83.78 192 | 89.83 220 |
|
| FIs | | | 82.07 109 | 82.42 97 | 81.04 221 | 88.80 157 | 58.34 291 | 88.26 136 | 93.49 26 | 76.93 61 | 78.47 158 | 91.04 122 | 69.92 74 | 92.34 202 | 69.87 193 | 84.97 174 | 92.44 125 |
|
| PS-MVSNAJss | | | 82.07 109 | 81.31 113 | 84.34 111 | 86.51 232 | 67.27 152 | 89.27 98 | 91.51 113 | 71.75 166 | 79.37 140 | 90.22 140 | 63.15 145 | 94.27 114 | 77.69 116 | 82.36 218 | 91.49 152 |
|
| API-MVS | | | 81.99 111 | 81.23 115 | 84.26 118 | 90.94 88 | 70.18 82 | 91.10 52 | 89.32 176 | 71.51 173 | 78.66 152 | 88.28 189 | 65.26 125 | 95.10 87 | 64.74 239 | 91.23 92 | 87.51 282 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 112 | 81.54 112 | 82.92 174 | 88.46 170 | 63.46 230 | 87.13 170 | 92.37 78 | 80.19 12 | 78.38 159 | 89.14 164 | 71.66 56 | 93.05 178 | 70.05 189 | 76.46 286 | 92.25 130 |
|
| MAR-MVS | | | 81.84 113 | 80.70 123 | 85.27 79 | 91.32 79 | 71.53 54 | 89.82 76 | 90.92 128 | 69.77 213 | 78.50 156 | 86.21 248 | 62.36 157 | 94.52 107 | 65.36 233 | 92.05 81 | 89.77 223 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 114 | 81.23 115 | 83.57 147 | 91.89 73 | 63.43 232 | 89.84 75 | 81.85 312 | 77.04 59 | 83.21 94 | 93.10 67 | 52.26 252 | 93.43 156 | 71.98 172 | 89.95 111 | 93.85 63 |
|
| hse-mvs2 | | | 81.72 115 | 80.94 121 | 84.07 127 | 88.72 161 | 67.68 138 | 85.87 208 | 87.26 234 | 76.02 86 | 84.67 67 | 88.22 192 | 61.54 169 | 93.48 152 | 82.71 74 | 73.44 331 | 91.06 164 |
|
| GeoE | | | 81.71 116 | 81.01 120 | 83.80 142 | 89.51 125 | 64.45 210 | 88.97 108 | 88.73 204 | 71.27 177 | 78.63 153 | 89.76 147 | 66.32 114 | 93.20 168 | 69.89 192 | 86.02 165 | 93.74 69 |
|
| xiu_mvs_v2_base | | | 81.69 117 | 81.05 118 | 83.60 145 | 89.15 144 | 68.03 132 | 84.46 242 | 90.02 156 | 70.67 189 | 81.30 121 | 86.53 242 | 63.17 144 | 94.19 119 | 75.60 139 | 88.54 131 | 88.57 263 |
|
| PS-MVSNAJ | | | 81.69 117 | 81.02 119 | 83.70 143 | 89.51 125 | 68.21 127 | 84.28 248 | 90.09 155 | 70.79 186 | 81.26 122 | 85.62 262 | 63.15 145 | 94.29 112 | 75.62 138 | 88.87 124 | 88.59 262 |
|
| PAPR | | | 81.66 119 | 80.89 122 | 83.99 137 | 90.27 102 | 64.00 217 | 86.76 185 | 91.77 107 | 68.84 237 | 77.13 191 | 89.50 154 | 67.63 100 | 94.88 96 | 67.55 214 | 88.52 132 | 93.09 100 |
|
| UniMVSNet (Re) | | | 81.60 120 | 81.11 117 | 83.09 165 | 88.38 174 | 64.41 211 | 87.60 156 | 93.02 42 | 78.42 32 | 78.56 155 | 88.16 193 | 69.78 75 | 93.26 161 | 69.58 196 | 76.49 285 | 91.60 146 |
|
| FC-MVSNet-test | | | 81.52 121 | 82.02 106 | 80.03 242 | 88.42 173 | 55.97 329 | 87.95 146 | 93.42 29 | 77.10 57 | 77.38 180 | 90.98 128 | 69.96 73 | 91.79 220 | 68.46 208 | 84.50 180 | 92.33 126 |
|
| VDDNet | | | 81.52 121 | 80.67 124 | 84.05 132 | 90.44 100 | 64.13 216 | 89.73 81 | 85.91 256 | 71.11 180 | 83.18 95 | 93.48 58 | 50.54 278 | 93.49 151 | 73.40 159 | 88.25 135 | 94.54 33 |
|
| ACMP | | 74.13 6 | 81.51 123 | 80.57 125 | 84.36 109 | 89.42 129 | 68.69 116 | 89.97 74 | 91.50 116 | 74.46 116 | 75.04 245 | 90.41 136 | 53.82 239 | 94.54 105 | 77.56 117 | 82.91 210 | 89.86 219 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 124 | 80.29 132 | 84.70 99 | 86.63 231 | 69.90 85 | 85.95 205 | 86.77 244 | 63.24 305 | 81.07 124 | 89.47 156 | 61.08 182 | 92.15 208 | 78.33 111 | 90.07 109 | 92.05 139 |
| jason: jason. |
| lupinMVS | | | 81.39 124 | 80.27 133 | 84.76 98 | 87.35 211 | 70.21 77 | 85.55 217 | 86.41 248 | 62.85 312 | 81.32 118 | 88.61 179 | 61.68 166 | 92.24 206 | 78.41 110 | 90.26 104 | 91.83 142 |
|
| test_yl | | | 81.17 126 | 80.47 128 | 83.24 158 | 89.13 145 | 63.62 223 | 86.21 199 | 89.95 159 | 72.43 159 | 81.78 114 | 89.61 151 | 57.50 212 | 93.58 145 | 70.75 181 | 86.90 149 | 92.52 119 |
|
| DCV-MVSNet | | | 81.17 126 | 80.47 128 | 83.24 158 | 89.13 145 | 63.62 223 | 86.21 199 | 89.95 159 | 72.43 159 | 81.78 114 | 89.61 151 | 57.50 212 | 93.58 145 | 70.75 181 | 86.90 149 | 92.52 119 |
|
| DU-MVS | | | 81.12 128 | 80.52 127 | 82.90 175 | 87.80 197 | 63.46 230 | 87.02 174 | 91.87 101 | 79.01 26 | 78.38 159 | 89.07 166 | 65.02 128 | 93.05 178 | 70.05 189 | 76.46 286 | 92.20 133 |
|
| PVSNet_Blended | | | 80.98 129 | 80.34 130 | 82.90 175 | 88.85 152 | 65.40 188 | 84.43 244 | 92.00 93 | 67.62 252 | 78.11 166 | 85.05 276 | 66.02 119 | 94.27 114 | 71.52 174 | 89.50 115 | 89.01 244 |
|
| FA-MVS(test-final) | | | 80.96 130 | 79.91 138 | 84.10 122 | 88.30 177 | 65.01 197 | 84.55 239 | 90.01 157 | 73.25 146 | 79.61 137 | 87.57 206 | 58.35 204 | 94.72 102 | 71.29 178 | 86.25 160 | 92.56 118 |
|
| QAPM | | | 80.88 131 | 79.50 147 | 85.03 86 | 88.01 190 | 68.97 104 | 91.59 42 | 92.00 93 | 66.63 266 | 75.15 241 | 92.16 88 | 57.70 209 | 95.45 67 | 63.52 245 | 88.76 127 | 90.66 179 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 132 | 80.31 131 | 82.42 190 | 87.85 195 | 62.33 249 | 87.74 154 | 91.33 118 | 80.55 9 | 77.99 170 | 89.86 144 | 65.23 126 | 92.62 188 | 67.05 221 | 75.24 313 | 92.30 128 |
|
| UGNet | | | 80.83 133 | 79.59 145 | 84.54 102 | 88.04 187 | 68.09 129 | 89.42 93 | 88.16 211 | 76.95 60 | 76.22 209 | 89.46 158 | 49.30 293 | 93.94 127 | 68.48 207 | 90.31 102 | 91.60 146 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 134 | 79.92 137 | 83.47 148 | 88.85 152 | 64.51 206 | 85.53 219 | 89.39 174 | 70.79 186 | 78.49 157 | 85.06 275 | 67.54 101 | 93.58 145 | 67.03 222 | 86.58 154 | 92.32 127 |
|
| XVG-OURS-SEG-HR | | | 80.81 134 | 79.76 141 | 83.96 139 | 85.60 245 | 68.78 108 | 83.54 262 | 90.50 140 | 70.66 192 | 76.71 197 | 91.66 98 | 60.69 187 | 91.26 242 | 76.94 124 | 81.58 226 | 91.83 142 |
|
| xiu_mvs_v1_base_debu | | | 80.80 136 | 79.72 142 | 84.03 134 | 87.35 211 | 70.19 79 | 85.56 214 | 88.77 199 | 69.06 231 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 184 | 78.29 112 | 87.56 139 | 89.06 239 |
|
| xiu_mvs_v1_base | | | 80.80 136 | 79.72 142 | 84.03 134 | 87.35 211 | 70.19 79 | 85.56 214 | 88.77 199 | 69.06 231 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 184 | 78.29 112 | 87.56 139 | 89.06 239 |
|
| xiu_mvs_v1_base_debi | | | 80.80 136 | 79.72 142 | 84.03 134 | 87.35 211 | 70.19 79 | 85.56 214 | 88.77 199 | 69.06 231 | 81.83 110 | 88.16 193 | 50.91 272 | 92.85 184 | 78.29 112 | 87.56 139 | 89.06 239 |
|
| ACMM | | 73.20 8 | 80.78 139 | 79.84 140 | 83.58 146 | 89.31 137 | 68.37 122 | 89.99 73 | 91.60 110 | 70.28 199 | 77.25 183 | 89.66 149 | 53.37 244 | 93.53 150 | 74.24 151 | 82.85 211 | 88.85 252 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 140 | 79.51 146 | 84.20 119 | 94.09 38 | 67.27 152 | 89.64 84 | 91.11 125 | 58.75 349 | 74.08 258 | 90.72 131 | 58.10 205 | 95.04 89 | 69.70 194 | 89.42 117 | 90.30 195 |
|
| CANet_DTU | | | 80.61 141 | 79.87 139 | 82.83 177 | 85.60 245 | 63.17 239 | 87.36 163 | 88.65 205 | 76.37 79 | 75.88 216 | 88.44 185 | 53.51 242 | 93.07 177 | 73.30 160 | 89.74 114 | 92.25 130 |
|
| VPA-MVSNet | | | 80.60 142 | 80.55 126 | 80.76 228 | 88.07 186 | 60.80 268 | 86.86 179 | 91.58 111 | 75.67 93 | 80.24 131 | 89.45 160 | 63.34 139 | 90.25 262 | 70.51 185 | 79.22 256 | 91.23 159 |
|
| mvsmamba | | | 80.60 142 | 79.38 149 | 84.27 116 | 89.74 119 | 67.24 154 | 87.47 160 | 86.95 240 | 70.02 204 | 75.38 229 | 88.93 169 | 51.24 269 | 92.56 191 | 75.47 142 | 89.22 119 | 93.00 106 |
|
| PVSNet_BlendedMVS | | | 80.60 142 | 80.02 135 | 82.36 192 | 88.85 152 | 65.40 188 | 86.16 201 | 92.00 93 | 69.34 221 | 78.11 166 | 86.09 252 | 66.02 119 | 94.27 114 | 71.52 174 | 82.06 221 | 87.39 284 |
|
| AdaColmap |  | | 80.58 145 | 79.42 148 | 84.06 129 | 93.09 54 | 68.91 105 | 89.36 96 | 88.97 194 | 69.27 222 | 75.70 219 | 89.69 148 | 57.20 216 | 95.77 58 | 63.06 250 | 88.41 134 | 87.50 283 |
|
| EI-MVSNet | | | 80.52 146 | 79.98 136 | 82.12 193 | 84.28 270 | 63.19 238 | 86.41 193 | 88.95 195 | 74.18 122 | 78.69 150 | 87.54 209 | 66.62 108 | 92.43 196 | 72.57 169 | 80.57 239 | 90.74 177 |
|
| XVG-OURS | | | 80.41 147 | 79.23 155 | 83.97 138 | 85.64 244 | 69.02 102 | 83.03 273 | 90.39 142 | 71.09 181 | 77.63 176 | 91.49 107 | 54.62 233 | 91.35 240 | 75.71 136 | 83.47 203 | 91.54 149 |
|
| SDMVSNet | | | 80.38 148 | 80.18 134 | 80.99 222 | 89.03 150 | 64.94 199 | 80.45 305 | 89.40 173 | 75.19 101 | 76.61 201 | 89.98 142 | 60.61 190 | 87.69 303 | 76.83 126 | 83.55 201 | 90.33 193 |
|
| PCF-MVS | | 73.52 7 | 80.38 148 | 78.84 163 | 85.01 87 | 87.71 202 | 68.99 103 | 83.65 257 | 91.46 117 | 63.00 309 | 77.77 174 | 90.28 137 | 66.10 116 | 95.09 88 | 61.40 269 | 88.22 136 | 90.94 170 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 150 | 77.83 186 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 90 | 12.47 411 | 67.45 102 | 96.60 33 | 83.06 66 | 94.50 51 | 94.07 53 |
|
| test_djsdf | | | 80.30 151 | 79.32 152 | 83.27 156 | 83.98 278 | 65.37 191 | 90.50 61 | 90.38 143 | 68.55 241 | 76.19 210 | 88.70 175 | 56.44 220 | 93.46 154 | 78.98 103 | 80.14 245 | 90.97 169 |
|
| v2v482 | | | 80.23 152 | 79.29 153 | 83.05 168 | 83.62 284 | 64.14 215 | 87.04 173 | 89.97 158 | 73.61 134 | 78.18 165 | 87.22 217 | 61.10 181 | 93.82 135 | 76.11 131 | 76.78 283 | 91.18 160 |
|
| NR-MVSNet | | | 80.23 152 | 79.38 149 | 82.78 183 | 87.80 197 | 63.34 233 | 86.31 196 | 91.09 126 | 79.01 26 | 72.17 281 | 89.07 166 | 67.20 105 | 92.81 187 | 66.08 228 | 75.65 299 | 92.20 133 |
|
| Anonymous20240529 | | | 80.19 154 | 78.89 162 | 84.10 122 | 90.60 96 | 64.75 203 | 88.95 109 | 90.90 129 | 65.97 274 | 80.59 128 | 91.17 118 | 49.97 283 | 93.73 143 | 69.16 200 | 82.70 215 | 93.81 66 |
|
| IterMVS-LS | | | 80.06 155 | 79.38 149 | 82.11 194 | 85.89 240 | 63.20 237 | 86.79 182 | 89.34 175 | 74.19 121 | 75.45 226 | 86.72 229 | 66.62 108 | 92.39 198 | 72.58 168 | 76.86 280 | 90.75 176 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 156 | 78.57 167 | 84.42 107 | 85.13 256 | 68.74 111 | 88.77 115 | 88.10 213 | 74.99 105 | 74.97 246 | 83.49 306 | 57.27 215 | 93.36 158 | 73.53 156 | 80.88 233 | 91.18 160 |
|
| v1144 | | | 80.03 156 | 79.03 159 | 83.01 170 | 83.78 282 | 64.51 206 | 87.11 172 | 90.57 139 | 71.96 165 | 78.08 168 | 86.20 249 | 61.41 173 | 93.94 127 | 74.93 144 | 77.23 274 | 90.60 182 |
|
| v8 | | | 79.97 158 | 79.02 160 | 82.80 180 | 84.09 275 | 64.50 208 | 87.96 145 | 90.29 150 | 74.13 124 | 75.24 238 | 86.81 226 | 62.88 150 | 93.89 134 | 74.39 149 | 75.40 308 | 90.00 211 |
|
| OpenMVS |  | 72.83 10 | 79.77 159 | 78.33 174 | 84.09 125 | 85.17 252 | 69.91 84 | 90.57 58 | 90.97 127 | 66.70 260 | 72.17 281 | 91.91 91 | 54.70 231 | 93.96 124 | 61.81 266 | 90.95 95 | 88.41 266 |
|
| v10 | | | 79.74 160 | 78.67 164 | 82.97 173 | 84.06 276 | 64.95 198 | 87.88 151 | 90.62 136 | 73.11 148 | 75.11 242 | 86.56 240 | 61.46 172 | 94.05 123 | 73.68 154 | 75.55 301 | 89.90 217 |
|
| ECVR-MVS |  | | 79.61 161 | 79.26 154 | 80.67 230 | 90.08 107 | 54.69 343 | 87.89 150 | 77.44 352 | 74.88 107 | 80.27 130 | 92.79 79 | 48.96 299 | 92.45 195 | 68.55 206 | 92.50 76 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 161 | 78.44 170 | 83.14 163 | 89.38 133 | 65.93 176 | 84.95 229 | 87.15 237 | 73.56 136 | 78.19 164 | 89.79 146 | 56.67 219 | 93.36 158 | 59.53 283 | 86.74 152 | 90.13 201 |
|
| v1192 | | | 79.59 163 | 78.43 171 | 83.07 167 | 83.55 286 | 64.52 205 | 86.93 177 | 90.58 137 | 70.83 185 | 77.78 173 | 85.90 253 | 59.15 199 | 93.94 127 | 73.96 153 | 77.19 276 | 90.76 175 |
|
| ab-mvs | | | 79.51 164 | 78.97 161 | 81.14 218 | 88.46 170 | 60.91 266 | 83.84 254 | 89.24 181 | 70.36 196 | 79.03 144 | 88.87 172 | 63.23 143 | 90.21 263 | 65.12 235 | 82.57 216 | 92.28 129 |
|
| WR-MVS | | | 79.49 165 | 79.22 156 | 80.27 238 | 88.79 158 | 58.35 290 | 85.06 226 | 88.61 207 | 78.56 30 | 77.65 175 | 88.34 187 | 63.81 138 | 90.66 258 | 64.98 237 | 77.22 275 | 91.80 144 |
|
| v144192 | | | 79.47 166 | 78.37 172 | 82.78 183 | 83.35 289 | 63.96 218 | 86.96 175 | 90.36 146 | 69.99 206 | 77.50 177 | 85.67 260 | 60.66 188 | 93.77 139 | 74.27 150 | 76.58 284 | 90.62 180 |
|
| BH-untuned | | | 79.47 166 | 78.60 166 | 82.05 195 | 89.19 143 | 65.91 177 | 86.07 203 | 88.52 208 | 72.18 162 | 75.42 227 | 87.69 203 | 61.15 180 | 93.54 149 | 60.38 276 | 86.83 151 | 86.70 303 |
|
| test1111 | | | 79.43 168 | 79.18 157 | 80.15 240 | 89.99 112 | 53.31 356 | 87.33 165 | 77.05 356 | 75.04 104 | 80.23 132 | 92.77 81 | 48.97 298 | 92.33 203 | 68.87 203 | 92.40 78 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 169 | 79.11 158 | 80.34 236 | 84.45 269 | 57.97 297 | 82.59 275 | 87.62 226 | 67.40 256 | 76.17 213 | 88.56 182 | 68.47 91 | 89.59 274 | 70.65 184 | 86.05 164 | 93.47 85 |
|
| thisisatest0530 | | | 79.40 170 | 77.76 191 | 84.31 112 | 87.69 204 | 65.10 196 | 87.36 163 | 84.26 276 | 70.04 203 | 77.42 179 | 88.26 191 | 49.94 284 | 94.79 100 | 70.20 187 | 84.70 178 | 93.03 103 |
|
| tttt0517 | | | 79.40 170 | 77.91 183 | 83.90 141 | 88.10 184 | 63.84 220 | 88.37 132 | 84.05 278 | 71.45 174 | 76.78 195 | 89.12 165 | 49.93 286 | 94.89 95 | 70.18 188 | 83.18 208 | 92.96 108 |
|
| V42 | | | 79.38 172 | 78.24 176 | 82.83 177 | 81.10 335 | 65.50 187 | 85.55 217 | 89.82 161 | 71.57 172 | 78.21 163 | 86.12 251 | 60.66 188 | 93.18 171 | 75.64 137 | 75.46 305 | 89.81 222 |
|
| jajsoiax | | | 79.29 173 | 77.96 181 | 83.27 156 | 84.68 263 | 66.57 165 | 89.25 99 | 90.16 153 | 69.20 227 | 75.46 225 | 89.49 155 | 45.75 324 | 93.13 174 | 76.84 125 | 80.80 235 | 90.11 203 |
|
| v1921920 | | | 79.22 174 | 78.03 180 | 82.80 180 | 83.30 291 | 63.94 219 | 86.80 181 | 90.33 147 | 69.91 209 | 77.48 178 | 85.53 263 | 58.44 203 | 93.75 141 | 73.60 155 | 76.85 281 | 90.71 178 |
|
| AUN-MVS | | | 79.21 175 | 77.60 196 | 84.05 132 | 88.71 162 | 67.61 141 | 85.84 210 | 87.26 234 | 69.08 230 | 77.23 185 | 88.14 197 | 53.20 246 | 93.47 153 | 75.50 141 | 73.45 330 | 91.06 164 |
|
| TAPA-MVS | | 73.13 9 | 79.15 176 | 77.94 182 | 82.79 182 | 89.59 121 | 62.99 244 | 88.16 140 | 91.51 113 | 65.77 275 | 77.14 190 | 91.09 120 | 60.91 184 | 93.21 165 | 50.26 346 | 87.05 147 | 92.17 135 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 177 | 77.77 190 | 83.22 160 | 84.70 262 | 66.37 168 | 89.17 100 | 90.19 152 | 69.38 220 | 75.40 228 | 89.46 158 | 44.17 334 | 93.15 172 | 76.78 127 | 80.70 237 | 90.14 200 |
|
| UniMVSNet_ETH3D | | | 79.10 178 | 78.24 176 | 81.70 202 | 86.85 224 | 60.24 277 | 87.28 167 | 88.79 198 | 74.25 120 | 76.84 192 | 90.53 135 | 49.48 289 | 91.56 229 | 67.98 210 | 82.15 219 | 93.29 91 |
|
| CDS-MVSNet | | | 79.07 179 | 77.70 193 | 83.17 162 | 87.60 206 | 68.23 126 | 84.40 246 | 86.20 252 | 67.49 254 | 76.36 206 | 86.54 241 | 61.54 169 | 90.79 255 | 61.86 265 | 87.33 143 | 90.49 187 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 180 | 77.88 185 | 82.38 191 | 83.07 298 | 64.80 202 | 84.08 253 | 88.95 195 | 69.01 234 | 78.69 150 | 87.17 220 | 54.70 231 | 92.43 196 | 74.69 145 | 80.57 239 | 89.89 218 |
|
| v1240 | | | 78.99 181 | 77.78 189 | 82.64 186 | 83.21 293 | 63.54 227 | 86.62 188 | 90.30 149 | 69.74 216 | 77.33 181 | 85.68 259 | 57.04 217 | 93.76 140 | 73.13 163 | 76.92 278 | 90.62 180 |
|
| Anonymous20231211 | | | 78.97 182 | 77.69 194 | 82.81 179 | 90.54 98 | 64.29 213 | 90.11 72 | 91.51 113 | 65.01 286 | 76.16 214 | 88.13 198 | 50.56 277 | 93.03 181 | 69.68 195 | 77.56 273 | 91.11 162 |
|
| v7n | | | 78.97 182 | 77.58 197 | 83.14 163 | 83.45 288 | 65.51 186 | 88.32 134 | 91.21 120 | 73.69 132 | 72.41 278 | 86.32 247 | 57.93 206 | 93.81 136 | 69.18 199 | 75.65 299 | 90.11 203 |
|
| TAMVS | | | 78.89 184 | 77.51 198 | 83.03 169 | 87.80 197 | 67.79 136 | 84.72 233 | 85.05 265 | 67.63 251 | 76.75 196 | 87.70 202 | 62.25 159 | 90.82 254 | 58.53 294 | 87.13 146 | 90.49 187 |
|
| c3_l | | | 78.75 185 | 77.91 183 | 81.26 214 | 82.89 305 | 61.56 260 | 84.09 252 | 89.13 187 | 69.97 207 | 75.56 221 | 84.29 289 | 66.36 113 | 92.09 210 | 73.47 158 | 75.48 303 | 90.12 202 |
|
| tt0805 | | | 78.73 186 | 77.83 186 | 81.43 208 | 85.17 252 | 60.30 276 | 89.41 94 | 90.90 129 | 71.21 178 | 77.17 189 | 88.73 174 | 46.38 313 | 93.21 165 | 72.57 169 | 78.96 257 | 90.79 173 |
|
| v148 | | | 78.72 187 | 77.80 188 | 81.47 207 | 82.73 308 | 61.96 255 | 86.30 197 | 88.08 214 | 73.26 145 | 76.18 211 | 85.47 265 | 62.46 155 | 92.36 200 | 71.92 173 | 73.82 327 | 90.09 205 |
|
| VPNet | | | 78.69 188 | 78.66 165 | 78.76 265 | 88.31 176 | 55.72 332 | 84.45 243 | 86.63 246 | 76.79 65 | 78.26 162 | 90.55 134 | 59.30 198 | 89.70 273 | 66.63 223 | 77.05 277 | 90.88 171 |
|
| ET-MVSNet_ETH3D | | | 78.63 189 | 76.63 219 | 84.64 100 | 86.73 228 | 69.47 92 | 85.01 227 | 84.61 269 | 69.54 217 | 66.51 342 | 86.59 237 | 50.16 281 | 91.75 222 | 76.26 130 | 84.24 188 | 92.69 114 |
|
| anonymousdsp | | | 78.60 190 | 77.15 204 | 82.98 172 | 80.51 341 | 67.08 157 | 87.24 168 | 89.53 170 | 65.66 277 | 75.16 240 | 87.19 219 | 52.52 247 | 92.25 205 | 77.17 122 | 79.34 254 | 89.61 227 |
|
| miper_ehance_all_eth | | | 78.59 191 | 77.76 191 | 81.08 220 | 82.66 310 | 61.56 260 | 83.65 257 | 89.15 185 | 68.87 236 | 75.55 222 | 83.79 300 | 66.49 111 | 92.03 211 | 73.25 161 | 76.39 288 | 89.64 226 |
|
| WR-MVS_H | | | 78.51 192 | 78.49 168 | 78.56 269 | 88.02 188 | 56.38 323 | 88.43 127 | 92.67 63 | 77.14 55 | 73.89 259 | 87.55 208 | 66.25 115 | 89.24 280 | 58.92 289 | 73.55 329 | 90.06 209 |
|
| GBi-Net | | | 78.40 193 | 77.40 199 | 81.40 210 | 87.60 206 | 63.01 240 | 88.39 129 | 89.28 177 | 71.63 168 | 75.34 231 | 87.28 213 | 54.80 227 | 91.11 245 | 62.72 252 | 79.57 249 | 90.09 205 |
|
| test1 | | | 78.40 193 | 77.40 199 | 81.40 210 | 87.60 206 | 63.01 240 | 88.39 129 | 89.28 177 | 71.63 168 | 75.34 231 | 87.28 213 | 54.80 227 | 91.11 245 | 62.72 252 | 79.57 249 | 90.09 205 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 195 | 78.45 169 | 78.07 279 | 88.64 164 | 51.78 365 | 86.70 186 | 79.63 337 | 74.14 123 | 75.11 242 | 90.83 129 | 61.29 177 | 89.75 271 | 58.10 299 | 91.60 86 | 92.69 114 |
|
| Anonymous202405211 | | | 78.25 196 | 77.01 206 | 81.99 197 | 91.03 85 | 60.67 270 | 84.77 232 | 83.90 280 | 70.65 193 | 80.00 134 | 91.20 116 | 41.08 352 | 91.43 238 | 65.21 234 | 85.26 172 | 93.85 63 |
|
| CP-MVSNet | | | 78.22 197 | 78.34 173 | 77.84 281 | 87.83 196 | 54.54 345 | 87.94 147 | 91.17 122 | 77.65 38 | 73.48 264 | 88.49 183 | 62.24 160 | 88.43 294 | 62.19 260 | 74.07 322 | 90.55 184 |
|
| BH-w/o | | | 78.21 198 | 77.33 202 | 80.84 226 | 88.81 156 | 65.13 195 | 84.87 230 | 87.85 222 | 69.75 214 | 74.52 253 | 84.74 282 | 61.34 175 | 93.11 175 | 58.24 298 | 85.84 168 | 84.27 338 |
|
| FMVSNet2 | | | 78.20 199 | 77.21 203 | 81.20 216 | 87.60 206 | 62.89 245 | 87.47 160 | 89.02 190 | 71.63 168 | 75.29 237 | 87.28 213 | 54.80 227 | 91.10 248 | 62.38 257 | 79.38 253 | 89.61 227 |
|
| MVS | | | 78.19 200 | 76.99 208 | 81.78 200 | 85.66 243 | 66.99 158 | 84.66 234 | 90.47 141 | 55.08 369 | 72.02 283 | 85.27 268 | 63.83 137 | 94.11 122 | 66.10 227 | 89.80 113 | 84.24 339 |
|
| Baseline_NR-MVSNet | | | 78.15 201 | 78.33 174 | 77.61 286 | 85.79 241 | 56.21 327 | 86.78 183 | 85.76 258 | 73.60 135 | 77.93 171 | 87.57 206 | 65.02 128 | 88.99 284 | 67.14 220 | 75.33 310 | 87.63 278 |
|
| CNLPA | | | 78.08 202 | 76.79 213 | 81.97 198 | 90.40 101 | 71.07 62 | 87.59 157 | 84.55 270 | 66.03 273 | 72.38 279 | 89.64 150 | 57.56 211 | 86.04 316 | 59.61 282 | 83.35 205 | 88.79 255 |
|
| cl22 | | | 78.07 203 | 77.01 206 | 81.23 215 | 82.37 317 | 61.83 257 | 83.55 261 | 87.98 216 | 68.96 235 | 75.06 244 | 83.87 296 | 61.40 174 | 91.88 218 | 73.53 156 | 76.39 288 | 89.98 214 |
|
| PLC |  | 70.83 11 | 78.05 204 | 76.37 224 | 83.08 166 | 91.88 74 | 67.80 135 | 88.19 138 | 89.46 172 | 64.33 294 | 69.87 306 | 88.38 186 | 53.66 240 | 93.58 145 | 58.86 290 | 82.73 213 | 87.86 274 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 205 | 76.49 220 | 82.62 187 | 83.16 297 | 66.96 161 | 86.94 176 | 87.45 231 | 72.45 156 | 71.49 288 | 84.17 293 | 54.79 230 | 91.58 227 | 67.61 213 | 80.31 242 | 89.30 235 |
|
| PS-CasMVS | | | 78.01 206 | 78.09 179 | 77.77 283 | 87.71 202 | 54.39 347 | 88.02 143 | 91.22 119 | 77.50 46 | 73.26 266 | 88.64 178 | 60.73 185 | 88.41 295 | 61.88 264 | 73.88 326 | 90.53 185 |
|
| HY-MVS | | 69.67 12 | 77.95 207 | 77.15 204 | 80.36 235 | 87.57 210 | 60.21 278 | 83.37 264 | 87.78 224 | 66.11 270 | 75.37 230 | 87.06 224 | 63.27 141 | 90.48 260 | 61.38 270 | 82.43 217 | 90.40 191 |
|
| eth_miper_zixun_eth | | | 77.92 208 | 76.69 217 | 81.61 205 | 83.00 301 | 61.98 254 | 83.15 267 | 89.20 183 | 69.52 218 | 74.86 248 | 84.35 288 | 61.76 165 | 92.56 191 | 71.50 176 | 72.89 335 | 90.28 196 |
|
| FMVSNet3 | | | 77.88 209 | 76.85 211 | 80.97 224 | 86.84 225 | 62.36 248 | 86.52 191 | 88.77 199 | 71.13 179 | 75.34 231 | 86.66 235 | 54.07 237 | 91.10 248 | 62.72 252 | 79.57 249 | 89.45 231 |
|
| miper_enhance_ethall | | | 77.87 210 | 76.86 210 | 80.92 225 | 81.65 324 | 61.38 262 | 82.68 274 | 88.98 192 | 65.52 279 | 75.47 223 | 82.30 324 | 65.76 123 | 92.00 213 | 72.95 164 | 76.39 288 | 89.39 232 |
|
| FE-MVS | | | 77.78 211 | 75.68 229 | 84.08 126 | 88.09 185 | 66.00 174 | 83.13 268 | 87.79 223 | 68.42 245 | 78.01 169 | 85.23 270 | 45.50 327 | 95.12 82 | 59.11 287 | 85.83 169 | 91.11 162 |
|
| PEN-MVS | | | 77.73 212 | 77.69 194 | 77.84 281 | 87.07 222 | 53.91 350 | 87.91 149 | 91.18 121 | 77.56 43 | 73.14 268 | 88.82 173 | 61.23 178 | 89.17 281 | 59.95 279 | 72.37 337 | 90.43 189 |
|
| cl____ | | | 77.72 213 | 76.76 214 | 80.58 231 | 82.49 314 | 60.48 273 | 83.09 269 | 87.87 220 | 69.22 225 | 74.38 256 | 85.22 271 | 62.10 162 | 91.53 232 | 71.09 179 | 75.41 307 | 89.73 225 |
|
| DIV-MVS_self_test | | | 77.72 213 | 76.76 214 | 80.58 231 | 82.48 315 | 60.48 273 | 83.09 269 | 87.86 221 | 69.22 225 | 74.38 256 | 85.24 269 | 62.10 162 | 91.53 232 | 71.09 179 | 75.40 308 | 89.74 224 |
|
| sd_testset | | | 77.70 215 | 77.40 199 | 78.60 268 | 89.03 150 | 60.02 279 | 79.00 323 | 85.83 257 | 75.19 101 | 76.61 201 | 89.98 142 | 54.81 226 | 85.46 323 | 62.63 256 | 83.55 201 | 90.33 193 |
|
| PAPM | | | 77.68 216 | 76.40 223 | 81.51 206 | 87.29 218 | 61.85 256 | 83.78 255 | 89.59 168 | 64.74 288 | 71.23 289 | 88.70 175 | 62.59 152 | 93.66 144 | 52.66 331 | 87.03 148 | 89.01 244 |
|
| CHOSEN 1792x2688 | | | 77.63 217 | 75.69 228 | 83.44 149 | 89.98 113 | 68.58 119 | 78.70 328 | 87.50 229 | 56.38 364 | 75.80 218 | 86.84 225 | 58.67 201 | 91.40 239 | 61.58 268 | 85.75 170 | 90.34 192 |
|
| HyFIR lowres test | | | 77.53 218 | 75.40 236 | 83.94 140 | 89.59 121 | 66.62 163 | 80.36 306 | 88.64 206 | 56.29 365 | 76.45 203 | 85.17 272 | 57.64 210 | 93.28 160 | 61.34 271 | 83.10 209 | 91.91 141 |
|
| FMVSNet1 | | | 77.44 219 | 76.12 226 | 81.40 210 | 86.81 226 | 63.01 240 | 88.39 129 | 89.28 177 | 70.49 195 | 74.39 255 | 87.28 213 | 49.06 297 | 91.11 245 | 60.91 273 | 78.52 260 | 90.09 205 |
|
| TR-MVS | | | 77.44 219 | 76.18 225 | 81.20 216 | 88.24 178 | 63.24 235 | 84.61 237 | 86.40 249 | 67.55 253 | 77.81 172 | 86.48 243 | 54.10 236 | 93.15 172 | 57.75 302 | 82.72 214 | 87.20 289 |
|
| 1112_ss | | | 77.40 221 | 76.43 222 | 80.32 237 | 89.11 149 | 60.41 275 | 83.65 257 | 87.72 225 | 62.13 322 | 73.05 269 | 86.72 229 | 62.58 153 | 89.97 267 | 62.11 263 | 80.80 235 | 90.59 183 |
|
| thisisatest0515 | | | 77.33 222 | 75.38 237 | 83.18 161 | 85.27 251 | 63.80 221 | 82.11 280 | 83.27 290 | 65.06 284 | 75.91 215 | 83.84 298 | 49.54 288 | 94.27 114 | 67.24 218 | 86.19 161 | 91.48 153 |
|
| test2506 | | | 77.30 223 | 76.49 220 | 79.74 248 | 90.08 107 | 52.02 359 | 87.86 152 | 63.10 397 | 74.88 107 | 80.16 133 | 92.79 79 | 38.29 365 | 92.35 201 | 68.74 205 | 92.50 76 | 94.86 17 |
|
| pm-mvs1 | | | 77.25 224 | 76.68 218 | 78.93 263 | 84.22 272 | 58.62 289 | 86.41 193 | 88.36 210 | 71.37 175 | 73.31 265 | 88.01 199 | 61.22 179 | 89.15 282 | 64.24 243 | 73.01 334 | 89.03 243 |
|
| LCM-MVSNet-Re | | | 77.05 225 | 76.94 209 | 77.36 289 | 87.20 219 | 51.60 366 | 80.06 309 | 80.46 327 | 75.20 100 | 67.69 324 | 86.72 229 | 62.48 154 | 88.98 285 | 63.44 247 | 89.25 118 | 91.51 150 |
|
| DTE-MVSNet | | | 76.99 226 | 76.80 212 | 77.54 288 | 86.24 234 | 53.06 358 | 87.52 158 | 90.66 135 | 77.08 58 | 72.50 276 | 88.67 177 | 60.48 192 | 89.52 275 | 57.33 306 | 70.74 348 | 90.05 210 |
|
| baseline1 | | | 76.98 227 | 76.75 216 | 77.66 284 | 88.13 182 | 55.66 333 | 85.12 225 | 81.89 310 | 73.04 150 | 76.79 194 | 88.90 170 | 62.43 156 | 87.78 302 | 63.30 249 | 71.18 346 | 89.55 229 |
|
| LS3D | | | 76.95 228 | 74.82 244 | 83.37 153 | 90.45 99 | 67.36 149 | 89.15 104 | 86.94 241 | 61.87 324 | 69.52 309 | 90.61 133 | 51.71 265 | 94.53 106 | 46.38 367 | 86.71 153 | 88.21 268 |
|
| GA-MVS | | | 76.87 229 | 75.17 241 | 81.97 198 | 82.75 307 | 62.58 246 | 81.44 289 | 86.35 251 | 72.16 164 | 74.74 249 | 82.89 315 | 46.20 318 | 92.02 212 | 68.85 204 | 81.09 231 | 91.30 158 |
|
| mamv4 | | | 76.81 230 | 78.23 178 | 72.54 336 | 86.12 237 | 65.75 183 | 78.76 327 | 82.07 309 | 64.12 296 | 72.97 270 | 91.02 125 | 67.97 96 | 68.08 399 | 83.04 68 | 78.02 267 | 83.80 346 |
|
| DP-MVS | | | 76.78 231 | 74.57 246 | 83.42 150 | 93.29 48 | 69.46 94 | 88.55 125 | 83.70 282 | 63.98 301 | 70.20 297 | 88.89 171 | 54.01 238 | 94.80 99 | 46.66 364 | 81.88 224 | 86.01 315 |
|
| cascas | | | 76.72 232 | 74.64 245 | 82.99 171 | 85.78 242 | 65.88 178 | 82.33 277 | 89.21 182 | 60.85 330 | 72.74 272 | 81.02 335 | 47.28 306 | 93.75 141 | 67.48 215 | 85.02 173 | 89.34 234 |
|
| testing91 | | | 76.54 233 | 75.66 231 | 79.18 260 | 88.43 172 | 55.89 330 | 81.08 292 | 83.00 297 | 73.76 131 | 75.34 231 | 84.29 289 | 46.20 318 | 90.07 265 | 64.33 241 | 84.50 180 | 91.58 148 |
|
| 1314 | | | 76.53 234 | 75.30 240 | 80.21 239 | 83.93 279 | 62.32 250 | 84.66 234 | 88.81 197 | 60.23 334 | 70.16 300 | 84.07 295 | 55.30 224 | 90.73 257 | 67.37 216 | 83.21 207 | 87.59 281 |
|
| thres100view900 | | | 76.50 235 | 75.55 233 | 79.33 256 | 89.52 124 | 56.99 312 | 85.83 211 | 83.23 291 | 73.94 126 | 76.32 207 | 87.12 221 | 51.89 262 | 91.95 214 | 48.33 355 | 83.75 195 | 89.07 237 |
|
| thres600view7 | | | 76.50 235 | 75.44 234 | 79.68 250 | 89.40 131 | 57.16 309 | 85.53 219 | 83.23 291 | 73.79 130 | 76.26 208 | 87.09 222 | 51.89 262 | 91.89 217 | 48.05 360 | 83.72 198 | 90.00 211 |
|
| thres400 | | | 76.50 235 | 75.37 238 | 79.86 245 | 89.13 145 | 57.65 303 | 85.17 222 | 83.60 283 | 73.41 141 | 76.45 203 | 86.39 245 | 52.12 254 | 91.95 214 | 48.33 355 | 83.75 195 | 90.00 211 |
|
| tfpn200view9 | | | 76.42 238 | 75.37 238 | 79.55 255 | 89.13 145 | 57.65 303 | 85.17 222 | 83.60 283 | 73.41 141 | 76.45 203 | 86.39 245 | 52.12 254 | 91.95 214 | 48.33 355 | 83.75 195 | 89.07 237 |
|
| Test_1112_low_res | | | 76.40 239 | 75.44 234 | 79.27 257 | 89.28 139 | 58.09 293 | 81.69 284 | 87.07 238 | 59.53 341 | 72.48 277 | 86.67 234 | 61.30 176 | 89.33 278 | 60.81 275 | 80.15 244 | 90.41 190 |
|
| F-COLMAP | | | 76.38 240 | 74.33 251 | 82.50 189 | 89.28 139 | 66.95 162 | 88.41 128 | 89.03 189 | 64.05 299 | 66.83 334 | 88.61 179 | 46.78 310 | 92.89 183 | 57.48 303 | 78.55 259 | 87.67 277 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 241 | 74.54 248 | 81.41 209 | 88.60 165 | 64.38 212 | 79.24 319 | 89.12 188 | 70.76 188 | 69.79 308 | 87.86 200 | 49.09 296 | 93.20 168 | 56.21 316 | 80.16 243 | 86.65 304 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 242 | 74.46 250 | 81.13 219 | 85.37 250 | 69.79 86 | 84.42 245 | 87.95 218 | 65.03 285 | 67.46 327 | 85.33 267 | 53.28 245 | 91.73 224 | 58.01 300 | 83.27 206 | 81.85 365 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 243 | 74.27 252 | 81.62 203 | 83.20 294 | 64.67 204 | 83.60 260 | 89.75 164 | 69.75 214 | 71.85 284 | 87.09 222 | 32.78 377 | 92.11 209 | 69.99 191 | 80.43 241 | 88.09 270 |
|
| testing99 | | | 76.09 244 | 75.12 242 | 79.00 261 | 88.16 180 | 55.50 335 | 80.79 296 | 81.40 316 | 73.30 144 | 75.17 239 | 84.27 291 | 44.48 332 | 90.02 266 | 64.28 242 | 84.22 189 | 91.48 153 |
|
| ACMH+ | | 68.96 14 | 76.01 245 | 74.01 253 | 82.03 196 | 88.60 165 | 65.31 192 | 88.86 112 | 87.55 227 | 70.25 201 | 67.75 323 | 87.47 211 | 41.27 350 | 93.19 170 | 58.37 296 | 75.94 296 | 87.60 279 |
|
| ACMH | | 67.68 16 | 75.89 246 | 73.93 255 | 81.77 201 | 88.71 162 | 66.61 164 | 88.62 123 | 89.01 191 | 69.81 210 | 66.78 335 | 86.70 233 | 41.95 349 | 91.51 234 | 55.64 317 | 78.14 266 | 87.17 290 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 247 | 73.36 262 | 83.31 154 | 84.76 261 | 66.03 172 | 83.38 263 | 85.06 264 | 70.21 202 | 69.40 310 | 81.05 334 | 45.76 323 | 94.66 104 | 65.10 236 | 75.49 302 | 89.25 236 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 248 | 73.83 258 | 81.30 213 | 83.26 292 | 61.79 258 | 82.57 276 | 80.65 323 | 66.81 257 | 66.88 333 | 83.42 307 | 57.86 208 | 92.19 207 | 63.47 246 | 79.57 249 | 89.91 216 |
|
| WTY-MVS | | | 75.65 249 | 75.68 229 | 75.57 305 | 86.40 233 | 56.82 314 | 77.92 340 | 82.40 305 | 65.10 283 | 76.18 211 | 87.72 201 | 63.13 148 | 80.90 352 | 60.31 277 | 81.96 222 | 89.00 246 |
|
| thres200 | | | 75.55 250 | 74.47 249 | 78.82 264 | 87.78 200 | 57.85 300 | 83.07 271 | 83.51 286 | 72.44 158 | 75.84 217 | 84.42 284 | 52.08 257 | 91.75 222 | 47.41 362 | 83.64 200 | 86.86 299 |
|
| test_vis1_n_1920 | | | 75.52 251 | 75.78 227 | 74.75 317 | 79.84 349 | 57.44 307 | 83.26 265 | 85.52 260 | 62.83 313 | 79.34 142 | 86.17 250 | 45.10 329 | 79.71 356 | 78.75 105 | 81.21 230 | 87.10 296 |
|
| EPNet_dtu | | | 75.46 252 | 74.86 243 | 77.23 292 | 82.57 312 | 54.60 344 | 86.89 178 | 83.09 294 | 71.64 167 | 66.25 344 | 85.86 255 | 55.99 221 | 88.04 299 | 54.92 320 | 86.55 155 | 89.05 242 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 253 | 73.87 257 | 80.11 241 | 82.69 309 | 64.85 201 | 81.57 286 | 83.47 287 | 69.16 228 | 70.49 294 | 84.15 294 | 51.95 260 | 88.15 297 | 69.23 198 | 72.14 340 | 87.34 286 |
|
| XXY-MVS | | | 75.41 254 | 75.56 232 | 74.96 313 | 83.59 285 | 57.82 301 | 80.59 302 | 83.87 281 | 66.54 267 | 74.93 247 | 88.31 188 | 63.24 142 | 80.09 355 | 62.16 261 | 76.85 281 | 86.97 297 |
|
| TransMVSNet (Re) | | | 75.39 255 | 74.56 247 | 77.86 280 | 85.50 247 | 57.10 311 | 86.78 183 | 86.09 255 | 72.17 163 | 71.53 287 | 87.34 212 | 63.01 149 | 89.31 279 | 56.84 311 | 61.83 374 | 87.17 290 |
|
| CostFormer | | | 75.24 256 | 73.90 256 | 79.27 257 | 82.65 311 | 58.27 292 | 80.80 295 | 82.73 303 | 61.57 325 | 75.33 235 | 83.13 311 | 55.52 222 | 91.07 251 | 64.98 237 | 78.34 265 | 88.45 264 |
|
| testing11 | | | 75.14 257 | 74.01 253 | 78.53 271 | 88.16 180 | 56.38 323 | 80.74 299 | 80.42 328 | 70.67 189 | 72.69 275 | 83.72 302 | 43.61 337 | 89.86 268 | 62.29 259 | 83.76 194 | 89.36 233 |
|
| D2MVS | | | 74.82 258 | 73.21 263 | 79.64 252 | 79.81 350 | 62.56 247 | 80.34 307 | 87.35 232 | 64.37 293 | 68.86 315 | 82.66 319 | 46.37 314 | 90.10 264 | 67.91 211 | 81.24 229 | 86.25 308 |
|
| pmmvs6 | | | 74.69 259 | 73.39 261 | 78.61 267 | 81.38 330 | 57.48 306 | 86.64 187 | 87.95 218 | 64.99 287 | 70.18 298 | 86.61 236 | 50.43 279 | 89.52 275 | 62.12 262 | 70.18 350 | 88.83 253 |
|
| tfpnnormal | | | 74.39 260 | 73.16 264 | 78.08 278 | 86.10 239 | 58.05 294 | 84.65 236 | 87.53 228 | 70.32 198 | 71.22 290 | 85.63 261 | 54.97 225 | 89.86 268 | 43.03 378 | 75.02 315 | 86.32 307 |
|
| IterMVS | | | 74.29 261 | 72.94 266 | 78.35 274 | 81.53 327 | 63.49 229 | 81.58 285 | 82.49 304 | 68.06 249 | 69.99 303 | 83.69 303 | 51.66 266 | 85.54 321 | 65.85 230 | 71.64 343 | 86.01 315 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 262 | 72.42 272 | 79.80 247 | 83.76 283 | 59.59 284 | 85.92 207 | 86.64 245 | 66.39 268 | 66.96 332 | 87.58 205 | 39.46 358 | 91.60 226 | 65.76 231 | 69.27 353 | 88.22 267 |
|
| SCA | | | 74.22 263 | 72.33 273 | 79.91 244 | 84.05 277 | 62.17 252 | 79.96 312 | 79.29 340 | 66.30 269 | 72.38 279 | 80.13 344 | 51.95 260 | 88.60 292 | 59.25 285 | 77.67 272 | 88.96 248 |
|
| miper_lstm_enhance | | | 74.11 264 | 73.11 265 | 77.13 293 | 80.11 345 | 59.62 283 | 72.23 368 | 86.92 242 | 66.76 259 | 70.40 295 | 82.92 314 | 56.93 218 | 82.92 341 | 69.06 201 | 72.63 336 | 88.87 251 |
|
| testing222 | | | 74.04 265 | 72.66 269 | 78.19 276 | 87.89 193 | 55.36 336 | 81.06 293 | 79.20 341 | 71.30 176 | 74.65 251 | 83.57 305 | 39.11 361 | 88.67 291 | 51.43 338 | 85.75 170 | 90.53 185 |
|
| EG-PatchMatch MVS | | | 74.04 265 | 71.82 277 | 80.71 229 | 84.92 259 | 67.42 146 | 85.86 209 | 88.08 214 | 66.04 272 | 64.22 356 | 83.85 297 | 35.10 374 | 92.56 191 | 57.44 304 | 80.83 234 | 82.16 364 |
|
| pmmvs4 | | | 74.03 267 | 71.91 276 | 80.39 234 | 81.96 320 | 68.32 123 | 81.45 288 | 82.14 307 | 59.32 342 | 69.87 306 | 85.13 273 | 52.40 250 | 88.13 298 | 60.21 278 | 74.74 318 | 84.73 335 |
|
| MS-PatchMatch | | | 73.83 268 | 72.67 268 | 77.30 291 | 83.87 280 | 66.02 173 | 81.82 281 | 84.66 268 | 61.37 328 | 68.61 318 | 82.82 317 | 47.29 305 | 88.21 296 | 59.27 284 | 84.32 187 | 77.68 379 |
|
| test_cas_vis1_n_1920 | | | 73.76 269 | 73.74 259 | 73.81 325 | 75.90 370 | 59.77 281 | 80.51 303 | 82.40 305 | 58.30 351 | 81.62 116 | 85.69 258 | 44.35 333 | 76.41 374 | 76.29 129 | 78.61 258 | 85.23 326 |
|
| sss | | | 73.60 270 | 73.64 260 | 73.51 327 | 82.80 306 | 55.01 341 | 76.12 347 | 81.69 313 | 62.47 318 | 74.68 250 | 85.85 256 | 57.32 214 | 78.11 363 | 60.86 274 | 80.93 232 | 87.39 284 |
|
| RPMNet | | | 73.51 271 | 70.49 293 | 82.58 188 | 81.32 333 | 65.19 193 | 75.92 349 | 92.27 81 | 57.60 357 | 72.73 273 | 76.45 371 | 52.30 251 | 95.43 69 | 48.14 359 | 77.71 270 | 87.11 294 |
|
| WBMVS | | | 73.43 272 | 72.81 267 | 75.28 310 | 87.91 192 | 50.99 372 | 78.59 331 | 81.31 318 | 65.51 281 | 74.47 254 | 84.83 279 | 46.39 312 | 86.68 309 | 58.41 295 | 77.86 268 | 88.17 269 |
|
| SixPastTwentyTwo | | | 73.37 273 | 71.26 286 | 79.70 249 | 85.08 257 | 57.89 299 | 85.57 213 | 83.56 285 | 71.03 183 | 65.66 346 | 85.88 254 | 42.10 347 | 92.57 190 | 59.11 287 | 63.34 372 | 88.65 261 |
|
| CR-MVSNet | | | 73.37 273 | 71.27 285 | 79.67 251 | 81.32 333 | 65.19 193 | 75.92 349 | 80.30 330 | 59.92 337 | 72.73 273 | 81.19 332 | 52.50 248 | 86.69 308 | 59.84 280 | 77.71 270 | 87.11 294 |
|
| MSDG | | | 73.36 275 | 70.99 288 | 80.49 233 | 84.51 268 | 65.80 180 | 80.71 300 | 86.13 254 | 65.70 276 | 65.46 347 | 83.74 301 | 44.60 330 | 90.91 253 | 51.13 339 | 76.89 279 | 84.74 334 |
|
| tpm2 | | | 73.26 276 | 71.46 281 | 78.63 266 | 83.34 290 | 56.71 317 | 80.65 301 | 80.40 329 | 56.63 363 | 73.55 263 | 82.02 329 | 51.80 264 | 91.24 243 | 56.35 315 | 78.42 263 | 87.95 271 |
|
| RPSCF | | | 73.23 277 | 71.46 281 | 78.54 270 | 82.50 313 | 59.85 280 | 82.18 279 | 82.84 302 | 58.96 346 | 71.15 291 | 89.41 162 | 45.48 328 | 84.77 329 | 58.82 291 | 71.83 342 | 91.02 168 |
|
| PatchmatchNet |  | | 73.12 278 | 71.33 284 | 78.49 273 | 83.18 295 | 60.85 267 | 79.63 314 | 78.57 344 | 64.13 295 | 71.73 285 | 79.81 349 | 51.20 270 | 85.97 317 | 57.40 305 | 76.36 293 | 88.66 260 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| UBG | | | 73.08 279 | 72.27 274 | 75.51 307 | 88.02 188 | 51.29 370 | 78.35 335 | 77.38 353 | 65.52 279 | 73.87 260 | 82.36 322 | 45.55 325 | 86.48 312 | 55.02 319 | 84.39 186 | 88.75 257 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 280 | 70.41 295 | 80.81 227 | 87.13 221 | 65.63 184 | 88.30 135 | 84.19 277 | 62.96 310 | 63.80 360 | 87.69 203 | 38.04 366 | 92.56 191 | 46.66 364 | 74.91 316 | 84.24 339 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 281 | 72.58 270 | 74.25 321 | 84.28 270 | 50.85 373 | 86.41 193 | 83.45 288 | 44.56 389 | 73.23 267 | 87.54 209 | 49.38 291 | 85.70 318 | 65.90 229 | 78.44 262 | 86.19 310 |
|
| test-LLR | | | 72.94 282 | 72.43 271 | 74.48 318 | 81.35 331 | 58.04 295 | 78.38 332 | 77.46 350 | 66.66 261 | 69.95 304 | 79.00 355 | 48.06 302 | 79.24 357 | 66.13 225 | 84.83 175 | 86.15 311 |
|
| test_0402 | | | 72.79 283 | 70.44 294 | 79.84 246 | 88.13 182 | 65.99 175 | 85.93 206 | 84.29 274 | 65.57 278 | 67.40 329 | 85.49 264 | 46.92 309 | 92.61 189 | 35.88 391 | 74.38 321 | 80.94 370 |
|
| tpmrst | | | 72.39 284 | 72.13 275 | 73.18 331 | 80.54 340 | 49.91 377 | 79.91 313 | 79.08 342 | 63.11 307 | 71.69 286 | 79.95 346 | 55.32 223 | 82.77 342 | 65.66 232 | 73.89 325 | 86.87 298 |
|
| PatchMatch-RL | | | 72.38 285 | 70.90 289 | 76.80 296 | 88.60 165 | 67.38 148 | 79.53 315 | 76.17 362 | 62.75 315 | 69.36 311 | 82.00 330 | 45.51 326 | 84.89 328 | 53.62 326 | 80.58 238 | 78.12 378 |
|
| CL-MVSNet_self_test | | | 72.37 286 | 71.46 281 | 75.09 312 | 79.49 356 | 53.53 352 | 80.76 298 | 85.01 266 | 69.12 229 | 70.51 293 | 82.05 328 | 57.92 207 | 84.13 332 | 52.27 333 | 66.00 366 | 87.60 279 |
|
| tpm | | | 72.37 286 | 71.71 278 | 74.35 320 | 82.19 318 | 52.00 360 | 79.22 320 | 77.29 354 | 64.56 290 | 72.95 271 | 83.68 304 | 51.35 267 | 83.26 340 | 58.33 297 | 75.80 297 | 87.81 275 |
|
| ETVMVS | | | 72.25 288 | 71.05 287 | 75.84 301 | 87.77 201 | 51.91 362 | 79.39 317 | 74.98 365 | 69.26 223 | 73.71 261 | 82.95 313 | 40.82 354 | 86.14 315 | 46.17 368 | 84.43 185 | 89.47 230 |
|
| UWE-MVS | | | 72.13 289 | 71.49 280 | 74.03 323 | 86.66 230 | 47.70 381 | 81.40 290 | 76.89 358 | 63.60 304 | 75.59 220 | 84.22 292 | 39.94 357 | 85.62 320 | 48.98 352 | 86.13 163 | 88.77 256 |
|
| PVSNet | | 64.34 18 | 72.08 290 | 70.87 290 | 75.69 303 | 86.21 235 | 56.44 321 | 74.37 362 | 80.73 322 | 62.06 323 | 70.17 299 | 82.23 326 | 42.86 341 | 83.31 339 | 54.77 321 | 84.45 184 | 87.32 287 |
|
| WB-MVSnew | | | 71.96 291 | 71.65 279 | 72.89 332 | 84.67 266 | 51.88 363 | 82.29 278 | 77.57 349 | 62.31 319 | 73.67 262 | 83.00 312 | 53.49 243 | 81.10 351 | 45.75 371 | 82.13 220 | 85.70 320 |
|
| pmmvs5 | | | 71.55 292 | 70.20 298 | 75.61 304 | 77.83 363 | 56.39 322 | 81.74 283 | 80.89 319 | 57.76 355 | 67.46 327 | 84.49 283 | 49.26 294 | 85.32 325 | 57.08 308 | 75.29 311 | 85.11 330 |
|
| test-mter | | | 71.41 293 | 70.39 296 | 74.48 318 | 81.35 331 | 58.04 295 | 78.38 332 | 77.46 350 | 60.32 333 | 69.95 304 | 79.00 355 | 36.08 372 | 79.24 357 | 66.13 225 | 84.83 175 | 86.15 311 |
|
| K. test v3 | | | 71.19 294 | 68.51 306 | 79.21 259 | 83.04 300 | 57.78 302 | 84.35 247 | 76.91 357 | 72.90 153 | 62.99 363 | 82.86 316 | 39.27 359 | 91.09 250 | 61.65 267 | 52.66 390 | 88.75 257 |
|
| dmvs_re | | | 71.14 295 | 70.58 291 | 72.80 333 | 81.96 320 | 59.68 282 | 75.60 353 | 79.34 339 | 68.55 241 | 69.27 313 | 80.72 340 | 49.42 290 | 76.54 371 | 52.56 332 | 77.79 269 | 82.19 363 |
|
| tpmvs | | | 71.09 296 | 69.29 301 | 76.49 297 | 82.04 319 | 56.04 328 | 78.92 325 | 81.37 317 | 64.05 299 | 67.18 331 | 78.28 361 | 49.74 287 | 89.77 270 | 49.67 349 | 72.37 337 | 83.67 347 |
|
| AllTest | | | 70.96 297 | 68.09 312 | 79.58 253 | 85.15 254 | 63.62 223 | 84.58 238 | 79.83 334 | 62.31 319 | 60.32 372 | 86.73 227 | 32.02 378 | 88.96 287 | 50.28 344 | 71.57 344 | 86.15 311 |
|
| test_fmvs1 | | | 70.93 298 | 70.52 292 | 72.16 338 | 73.71 380 | 55.05 340 | 80.82 294 | 78.77 343 | 51.21 381 | 78.58 154 | 84.41 285 | 31.20 382 | 76.94 369 | 75.88 135 | 80.12 246 | 84.47 337 |
|
| test_fmvs1_n | | | 70.86 299 | 70.24 297 | 72.73 334 | 72.51 391 | 55.28 338 | 81.27 291 | 79.71 336 | 51.49 380 | 78.73 149 | 84.87 278 | 27.54 387 | 77.02 368 | 76.06 132 | 79.97 247 | 85.88 318 |
|
| Patchmtry | | | 70.74 300 | 69.16 303 | 75.49 308 | 80.72 337 | 54.07 349 | 74.94 360 | 80.30 330 | 58.34 350 | 70.01 301 | 81.19 332 | 52.50 248 | 86.54 310 | 53.37 328 | 71.09 347 | 85.87 319 |
|
| MIMVSNet | | | 70.69 301 | 69.30 300 | 74.88 314 | 84.52 267 | 56.35 325 | 75.87 351 | 79.42 338 | 64.59 289 | 67.76 322 | 82.41 321 | 41.10 351 | 81.54 348 | 46.64 366 | 81.34 227 | 86.75 302 |
|
| tpm cat1 | | | 70.57 302 | 68.31 308 | 77.35 290 | 82.41 316 | 57.95 298 | 78.08 337 | 80.22 332 | 52.04 376 | 68.54 319 | 77.66 366 | 52.00 259 | 87.84 301 | 51.77 334 | 72.07 341 | 86.25 308 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 303 | 68.19 309 | 77.65 285 | 80.26 342 | 59.41 286 | 85.01 227 | 82.96 299 | 58.76 348 | 65.43 348 | 82.33 323 | 37.63 368 | 91.23 244 | 45.34 374 | 76.03 295 | 82.32 361 |
|
| pmmvs-eth3d | | | 70.50 304 | 67.83 317 | 78.52 272 | 77.37 366 | 66.18 171 | 81.82 281 | 81.51 314 | 58.90 347 | 63.90 359 | 80.42 342 | 42.69 342 | 86.28 314 | 58.56 293 | 65.30 368 | 83.11 353 |
|
| USDC | | | 70.33 305 | 68.37 307 | 76.21 299 | 80.60 339 | 56.23 326 | 79.19 321 | 86.49 247 | 60.89 329 | 61.29 368 | 85.47 265 | 31.78 380 | 89.47 277 | 53.37 328 | 76.21 294 | 82.94 357 |
|
| Patchmatch-RL test | | | 70.24 306 | 67.78 319 | 77.61 286 | 77.43 365 | 59.57 285 | 71.16 371 | 70.33 379 | 62.94 311 | 68.65 317 | 72.77 383 | 50.62 276 | 85.49 322 | 69.58 196 | 66.58 363 | 87.77 276 |
|
| CMPMVS |  | 51.72 21 | 70.19 307 | 68.16 310 | 76.28 298 | 73.15 387 | 57.55 305 | 79.47 316 | 83.92 279 | 48.02 385 | 56.48 385 | 84.81 280 | 43.13 339 | 86.42 313 | 62.67 255 | 81.81 225 | 84.89 332 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 308 | 67.34 325 | 78.14 277 | 79.80 351 | 61.13 263 | 79.19 321 | 80.59 324 | 59.16 344 | 65.27 349 | 79.29 352 | 46.75 311 | 87.29 305 | 49.33 350 | 66.72 361 | 86.00 317 |
|
| gg-mvs-nofinetune | | | 69.95 309 | 67.96 313 | 75.94 300 | 83.07 298 | 54.51 346 | 77.23 344 | 70.29 380 | 63.11 307 | 70.32 296 | 62.33 392 | 43.62 336 | 88.69 290 | 53.88 325 | 87.76 138 | 84.62 336 |
|
| TESTMET0.1,1 | | | 69.89 310 | 69.00 304 | 72.55 335 | 79.27 359 | 56.85 313 | 78.38 332 | 74.71 369 | 57.64 356 | 68.09 321 | 77.19 368 | 37.75 367 | 76.70 370 | 63.92 244 | 84.09 190 | 84.10 342 |
|
| test_vis1_n | | | 69.85 311 | 69.21 302 | 71.77 340 | 72.66 390 | 55.27 339 | 81.48 287 | 76.21 361 | 52.03 377 | 75.30 236 | 83.20 310 | 28.97 385 | 76.22 376 | 74.60 146 | 78.41 264 | 83.81 345 |
|
| FMVSNet5 | | | 69.50 312 | 67.96 313 | 74.15 322 | 82.97 304 | 55.35 337 | 80.01 311 | 82.12 308 | 62.56 317 | 63.02 361 | 81.53 331 | 36.92 369 | 81.92 346 | 48.42 354 | 74.06 323 | 85.17 329 |
|
| PMMVS | | | 69.34 313 | 68.67 305 | 71.35 345 | 75.67 372 | 62.03 253 | 75.17 355 | 73.46 372 | 50.00 382 | 68.68 316 | 79.05 353 | 52.07 258 | 78.13 362 | 61.16 272 | 82.77 212 | 73.90 385 |
|
| our_test_3 | | | 69.14 314 | 67.00 327 | 75.57 305 | 79.80 351 | 58.80 287 | 77.96 338 | 77.81 347 | 59.55 340 | 62.90 364 | 78.25 362 | 47.43 304 | 83.97 333 | 51.71 335 | 67.58 360 | 83.93 344 |
|
| EPMVS | | | 69.02 315 | 68.16 310 | 71.59 341 | 79.61 354 | 49.80 379 | 77.40 342 | 66.93 389 | 62.82 314 | 70.01 301 | 79.05 353 | 45.79 322 | 77.86 365 | 56.58 313 | 75.26 312 | 87.13 293 |
|
| KD-MVS_self_test | | | 68.81 316 | 67.59 323 | 72.46 337 | 74.29 378 | 45.45 387 | 77.93 339 | 87.00 239 | 63.12 306 | 63.99 358 | 78.99 357 | 42.32 344 | 84.77 329 | 56.55 314 | 64.09 371 | 87.16 292 |
|
| Anonymous20240521 | | | 68.80 317 | 67.22 326 | 73.55 326 | 74.33 377 | 54.11 348 | 83.18 266 | 85.61 259 | 58.15 352 | 61.68 367 | 80.94 337 | 30.71 383 | 81.27 350 | 57.00 309 | 73.34 333 | 85.28 325 |
|
| Anonymous20231206 | | | 68.60 318 | 67.80 318 | 71.02 348 | 80.23 344 | 50.75 374 | 78.30 336 | 80.47 326 | 56.79 362 | 66.11 345 | 82.63 320 | 46.35 315 | 78.95 359 | 43.62 377 | 75.70 298 | 83.36 350 |
|
| MIMVSNet1 | | | 68.58 319 | 66.78 329 | 73.98 324 | 80.07 346 | 51.82 364 | 80.77 297 | 84.37 271 | 64.40 292 | 59.75 375 | 82.16 327 | 36.47 370 | 83.63 336 | 42.73 379 | 70.33 349 | 86.48 306 |
|
| testing3 | | | 68.56 320 | 67.67 321 | 71.22 347 | 87.33 216 | 42.87 396 | 83.06 272 | 71.54 377 | 70.36 196 | 69.08 314 | 84.38 286 | 30.33 384 | 85.69 319 | 37.50 390 | 75.45 306 | 85.09 331 |
|
| EU-MVSNet | | | 68.53 321 | 67.61 322 | 71.31 346 | 78.51 362 | 47.01 384 | 84.47 240 | 84.27 275 | 42.27 392 | 66.44 343 | 84.79 281 | 40.44 355 | 83.76 334 | 58.76 292 | 68.54 358 | 83.17 351 |
|
| PatchT | | | 68.46 322 | 67.85 315 | 70.29 351 | 80.70 338 | 43.93 394 | 72.47 367 | 74.88 366 | 60.15 335 | 70.55 292 | 76.57 370 | 49.94 284 | 81.59 347 | 50.58 340 | 74.83 317 | 85.34 324 |
|
| test_fmvs2 | | | 68.35 323 | 67.48 324 | 70.98 349 | 69.50 394 | 51.95 361 | 80.05 310 | 76.38 360 | 49.33 383 | 74.65 251 | 84.38 286 | 23.30 395 | 75.40 384 | 74.51 147 | 75.17 314 | 85.60 321 |
|
| Syy-MVS | | | 68.05 324 | 67.85 315 | 68.67 360 | 84.68 263 | 40.97 402 | 78.62 329 | 73.08 374 | 66.65 264 | 66.74 336 | 79.46 350 | 52.11 256 | 82.30 344 | 32.89 394 | 76.38 291 | 82.75 358 |
|
| test0.0.03 1 | | | 68.00 325 | 67.69 320 | 68.90 357 | 77.55 364 | 47.43 382 | 75.70 352 | 72.95 376 | 66.66 261 | 66.56 338 | 82.29 325 | 48.06 302 | 75.87 379 | 44.97 375 | 74.51 320 | 83.41 349 |
|
| TDRefinement | | | 67.49 326 | 64.34 336 | 76.92 294 | 73.47 384 | 61.07 264 | 84.86 231 | 82.98 298 | 59.77 338 | 58.30 379 | 85.13 273 | 26.06 388 | 87.89 300 | 47.92 361 | 60.59 379 | 81.81 366 |
|
| test20.03 | | | 67.45 327 | 66.95 328 | 68.94 356 | 75.48 374 | 44.84 392 | 77.50 341 | 77.67 348 | 66.66 261 | 63.01 362 | 83.80 299 | 47.02 308 | 78.40 361 | 42.53 381 | 68.86 357 | 83.58 348 |
|
| UnsupCasMVSNet_eth | | | 67.33 328 | 65.99 332 | 71.37 343 | 73.48 383 | 51.47 368 | 75.16 356 | 85.19 263 | 65.20 282 | 60.78 370 | 80.93 339 | 42.35 343 | 77.20 367 | 57.12 307 | 53.69 389 | 85.44 323 |
|
| TinyColmap | | | 67.30 329 | 64.81 334 | 74.76 316 | 81.92 322 | 56.68 318 | 80.29 308 | 81.49 315 | 60.33 332 | 56.27 386 | 83.22 308 | 24.77 391 | 87.66 304 | 45.52 372 | 69.47 352 | 79.95 374 |
|
| myMVS_eth3d | | | 67.02 330 | 66.29 331 | 69.21 355 | 84.68 263 | 42.58 397 | 78.62 329 | 73.08 374 | 66.65 264 | 66.74 336 | 79.46 350 | 31.53 381 | 82.30 344 | 39.43 387 | 76.38 291 | 82.75 358 |
|
| dp | | | 66.80 331 | 65.43 333 | 70.90 350 | 79.74 353 | 48.82 380 | 75.12 358 | 74.77 367 | 59.61 339 | 64.08 357 | 77.23 367 | 42.89 340 | 80.72 353 | 48.86 353 | 66.58 363 | 83.16 352 |
|
| MDA-MVSNet-bldmvs | | | 66.68 332 | 63.66 341 | 75.75 302 | 79.28 358 | 60.56 272 | 73.92 364 | 78.35 345 | 64.43 291 | 50.13 393 | 79.87 348 | 44.02 335 | 83.67 335 | 46.10 369 | 56.86 382 | 83.03 355 |
|
| testgi | | | 66.67 333 | 66.53 330 | 67.08 366 | 75.62 373 | 41.69 401 | 75.93 348 | 76.50 359 | 66.11 270 | 65.20 352 | 86.59 237 | 35.72 373 | 74.71 386 | 43.71 376 | 73.38 332 | 84.84 333 |
|
| CHOSEN 280x420 | | | 66.51 334 | 64.71 335 | 71.90 339 | 81.45 328 | 63.52 228 | 57.98 401 | 68.95 386 | 53.57 372 | 62.59 365 | 76.70 369 | 46.22 317 | 75.29 385 | 55.25 318 | 79.68 248 | 76.88 381 |
|
| PM-MVS | | | 66.41 335 | 64.14 337 | 73.20 330 | 73.92 379 | 56.45 320 | 78.97 324 | 64.96 395 | 63.88 303 | 64.72 353 | 80.24 343 | 19.84 399 | 83.44 338 | 66.24 224 | 64.52 370 | 79.71 375 |
|
| JIA-IIPM | | | 66.32 336 | 62.82 347 | 76.82 295 | 77.09 367 | 61.72 259 | 65.34 394 | 75.38 363 | 58.04 354 | 64.51 354 | 62.32 393 | 42.05 348 | 86.51 311 | 51.45 337 | 69.22 354 | 82.21 362 |
|
| KD-MVS_2432*1600 | | | 66.22 337 | 63.89 339 | 73.21 328 | 75.47 375 | 53.42 354 | 70.76 374 | 84.35 272 | 64.10 297 | 66.52 340 | 78.52 359 | 34.55 375 | 84.98 326 | 50.40 342 | 50.33 393 | 81.23 368 |
|
| miper_refine_blended | | | 66.22 337 | 63.89 339 | 73.21 328 | 75.47 375 | 53.42 354 | 70.76 374 | 84.35 272 | 64.10 297 | 66.52 340 | 78.52 359 | 34.55 375 | 84.98 326 | 50.40 342 | 50.33 393 | 81.23 368 |
|
| ADS-MVSNet2 | | | 66.20 339 | 63.33 342 | 74.82 315 | 79.92 347 | 58.75 288 | 67.55 386 | 75.19 364 | 53.37 373 | 65.25 350 | 75.86 374 | 42.32 344 | 80.53 354 | 41.57 382 | 68.91 355 | 85.18 327 |
|
| YYNet1 | | | 65.03 340 | 62.91 345 | 71.38 342 | 75.85 371 | 56.60 319 | 69.12 382 | 74.66 370 | 57.28 360 | 54.12 388 | 77.87 364 | 45.85 321 | 74.48 387 | 49.95 347 | 61.52 376 | 83.05 354 |
|
| MDA-MVSNet_test_wron | | | 65.03 340 | 62.92 344 | 71.37 343 | 75.93 369 | 56.73 315 | 69.09 383 | 74.73 368 | 57.28 360 | 54.03 389 | 77.89 363 | 45.88 320 | 74.39 388 | 49.89 348 | 61.55 375 | 82.99 356 |
|
| Patchmatch-test | | | 64.82 342 | 63.24 343 | 69.57 353 | 79.42 357 | 49.82 378 | 63.49 398 | 69.05 385 | 51.98 378 | 59.95 374 | 80.13 344 | 50.91 272 | 70.98 393 | 40.66 384 | 73.57 328 | 87.90 273 |
|
| ADS-MVSNet | | | 64.36 343 | 62.88 346 | 68.78 359 | 79.92 347 | 47.17 383 | 67.55 386 | 71.18 378 | 53.37 373 | 65.25 350 | 75.86 374 | 42.32 344 | 73.99 389 | 41.57 382 | 68.91 355 | 85.18 327 |
|
| LF4IMVS | | | 64.02 344 | 62.19 348 | 69.50 354 | 70.90 392 | 53.29 357 | 76.13 346 | 77.18 355 | 52.65 375 | 58.59 377 | 80.98 336 | 23.55 394 | 76.52 372 | 53.06 330 | 66.66 362 | 78.68 377 |
|
| UnsupCasMVSNet_bld | | | 63.70 345 | 61.53 351 | 70.21 352 | 73.69 381 | 51.39 369 | 72.82 366 | 81.89 310 | 55.63 367 | 57.81 381 | 71.80 385 | 38.67 362 | 78.61 360 | 49.26 351 | 52.21 391 | 80.63 371 |
|
| test_fmvs3 | | | 63.36 346 | 61.82 349 | 67.98 363 | 62.51 403 | 46.96 385 | 77.37 343 | 74.03 371 | 45.24 388 | 67.50 326 | 78.79 358 | 12.16 407 | 72.98 392 | 72.77 167 | 66.02 365 | 83.99 343 |
|
| dmvs_testset | | | 62.63 347 | 64.11 338 | 58.19 376 | 78.55 361 | 24.76 414 | 75.28 354 | 65.94 392 | 67.91 250 | 60.34 371 | 76.01 373 | 53.56 241 | 73.94 390 | 31.79 395 | 67.65 359 | 75.88 383 |
|
| mvsany_test1 | | | 62.30 348 | 61.26 352 | 65.41 368 | 69.52 393 | 54.86 342 | 66.86 388 | 49.78 408 | 46.65 386 | 68.50 320 | 83.21 309 | 49.15 295 | 66.28 400 | 56.93 310 | 60.77 377 | 75.11 384 |
|
| new-patchmatchnet | | | 61.73 349 | 61.73 350 | 61.70 372 | 72.74 389 | 24.50 415 | 69.16 381 | 78.03 346 | 61.40 326 | 56.72 384 | 75.53 377 | 38.42 363 | 76.48 373 | 45.95 370 | 57.67 381 | 84.13 341 |
|
| PVSNet_0 | | 57.27 20 | 61.67 350 | 59.27 353 | 68.85 358 | 79.61 354 | 57.44 307 | 68.01 384 | 73.44 373 | 55.93 366 | 58.54 378 | 70.41 388 | 44.58 331 | 77.55 366 | 47.01 363 | 35.91 400 | 71.55 388 |
|
| test_vis1_rt | | | 60.28 351 | 58.42 354 | 65.84 367 | 67.25 397 | 55.60 334 | 70.44 376 | 60.94 400 | 44.33 390 | 59.00 376 | 66.64 390 | 24.91 390 | 68.67 397 | 62.80 251 | 69.48 351 | 73.25 386 |
|
| m2depth | | | 59.91 352 | 57.10 356 | 68.34 362 | 67.13 398 | 46.65 386 | 74.64 361 | 67.41 388 | 48.30 384 | 62.52 366 | 85.04 277 | 20.40 397 | 75.93 378 | 42.55 380 | 45.90 399 | 82.44 360 |
|
| MVS-HIRNet | | | 59.14 353 | 57.67 355 | 63.57 370 | 81.65 324 | 43.50 395 | 71.73 369 | 65.06 394 | 39.59 396 | 51.43 391 | 57.73 398 | 38.34 364 | 82.58 343 | 39.53 385 | 73.95 324 | 64.62 394 |
|
| pmmvs3 | | | 57.79 354 | 54.26 359 | 68.37 361 | 64.02 402 | 56.72 316 | 75.12 358 | 65.17 393 | 40.20 394 | 52.93 390 | 69.86 389 | 20.36 398 | 75.48 382 | 45.45 373 | 55.25 388 | 72.90 387 |
|
| DSMNet-mixed | | | 57.77 355 | 56.90 357 | 60.38 374 | 67.70 396 | 35.61 405 | 69.18 380 | 53.97 406 | 32.30 404 | 57.49 382 | 79.88 347 | 40.39 356 | 68.57 398 | 38.78 388 | 72.37 337 | 76.97 380 |
|
| WB-MVS | | | 54.94 356 | 54.72 358 | 55.60 382 | 73.50 382 | 20.90 416 | 74.27 363 | 61.19 399 | 59.16 344 | 50.61 392 | 74.15 379 | 47.19 307 | 75.78 380 | 17.31 407 | 35.07 401 | 70.12 389 |
|
| LCM-MVSNet | | | 54.25 357 | 49.68 367 | 67.97 364 | 53.73 411 | 45.28 390 | 66.85 389 | 80.78 321 | 35.96 400 | 39.45 401 | 62.23 394 | 8.70 411 | 78.06 364 | 48.24 358 | 51.20 392 | 80.57 372 |
|
| mvsany_test3 | | | 53.99 358 | 51.45 363 | 61.61 373 | 55.51 407 | 44.74 393 | 63.52 397 | 45.41 412 | 43.69 391 | 58.11 380 | 76.45 371 | 17.99 400 | 63.76 403 | 54.77 321 | 47.59 395 | 76.34 382 |
|
| SSC-MVS | | | 53.88 359 | 53.59 360 | 54.75 384 | 72.87 388 | 19.59 417 | 73.84 365 | 60.53 401 | 57.58 358 | 49.18 395 | 73.45 382 | 46.34 316 | 75.47 383 | 16.20 410 | 32.28 403 | 69.20 390 |
|
| FPMVS | | | 53.68 360 | 51.64 362 | 59.81 375 | 65.08 400 | 51.03 371 | 69.48 379 | 69.58 383 | 41.46 393 | 40.67 399 | 72.32 384 | 16.46 403 | 70.00 396 | 24.24 403 | 65.42 367 | 58.40 399 |
|
| APD_test1 | | | 53.31 361 | 49.93 366 | 63.42 371 | 65.68 399 | 50.13 376 | 71.59 370 | 66.90 390 | 34.43 401 | 40.58 400 | 71.56 386 | 8.65 412 | 76.27 375 | 34.64 393 | 55.36 387 | 63.86 395 |
|
| N_pmnet | | | 52.79 362 | 53.26 361 | 51.40 386 | 78.99 360 | 7.68 420 | 69.52 378 | 3.89 419 | 51.63 379 | 57.01 383 | 74.98 378 | 40.83 353 | 65.96 401 | 37.78 389 | 64.67 369 | 80.56 373 |
|
| test_f | | | 52.09 363 | 50.82 364 | 55.90 380 | 53.82 410 | 42.31 400 | 59.42 400 | 58.31 404 | 36.45 399 | 56.12 387 | 70.96 387 | 12.18 406 | 57.79 406 | 53.51 327 | 56.57 384 | 67.60 391 |
|
| EGC-MVSNET | | | 52.07 364 | 47.05 368 | 67.14 365 | 83.51 287 | 60.71 269 | 80.50 304 | 67.75 387 | 0.07 414 | 0.43 415 | 75.85 376 | 24.26 392 | 81.54 348 | 28.82 397 | 62.25 373 | 59.16 397 |
|
| new_pmnet | | | 50.91 365 | 50.29 365 | 52.78 385 | 68.58 395 | 34.94 407 | 63.71 396 | 56.63 405 | 39.73 395 | 44.95 396 | 65.47 391 | 21.93 396 | 58.48 405 | 34.98 392 | 56.62 383 | 64.92 393 |
|
| ANet_high | | | 50.57 366 | 46.10 370 | 63.99 369 | 48.67 414 | 39.13 403 | 70.99 373 | 80.85 320 | 61.39 327 | 31.18 403 | 57.70 399 | 17.02 402 | 73.65 391 | 31.22 396 | 15.89 411 | 79.18 376 |
|
| test_vis3_rt | | | 49.26 367 | 47.02 369 | 56.00 379 | 54.30 408 | 45.27 391 | 66.76 390 | 48.08 409 | 36.83 398 | 44.38 397 | 53.20 402 | 7.17 414 | 64.07 402 | 56.77 312 | 55.66 385 | 58.65 398 |
|
| testf1 | | | 45.72 368 | 41.96 372 | 57.00 377 | 56.90 405 | 45.32 388 | 66.14 391 | 59.26 402 | 26.19 405 | 30.89 404 | 60.96 396 | 4.14 415 | 70.64 394 | 26.39 401 | 46.73 397 | 55.04 400 |
|
| APD_test2 | | | 45.72 368 | 41.96 372 | 57.00 377 | 56.90 405 | 45.32 388 | 66.14 391 | 59.26 402 | 26.19 405 | 30.89 404 | 60.96 396 | 4.14 415 | 70.64 394 | 26.39 401 | 46.73 397 | 55.04 400 |
|
| dongtai | | | 45.42 370 | 45.38 371 | 45.55 388 | 73.36 385 | 26.85 412 | 67.72 385 | 34.19 414 | 54.15 371 | 49.65 394 | 56.41 401 | 25.43 389 | 62.94 404 | 19.45 405 | 28.09 405 | 46.86 404 |
|
| Gipuma |  | | 45.18 371 | 41.86 374 | 55.16 383 | 77.03 368 | 51.52 367 | 32.50 407 | 80.52 325 | 32.46 403 | 27.12 406 | 35.02 407 | 9.52 410 | 75.50 381 | 22.31 404 | 60.21 380 | 38.45 406 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 372 | 40.28 376 | 55.82 381 | 40.82 416 | 42.54 399 | 65.12 395 | 63.99 396 | 34.43 401 | 24.48 407 | 57.12 400 | 3.92 417 | 76.17 377 | 17.10 408 | 55.52 386 | 48.75 402 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 373 | 38.86 377 | 46.69 387 | 53.84 409 | 16.45 418 | 48.61 404 | 49.92 407 | 37.49 397 | 31.67 402 | 60.97 395 | 8.14 413 | 56.42 407 | 28.42 398 | 30.72 404 | 67.19 392 |
|
| kuosan | | | 39.70 374 | 40.40 375 | 37.58 391 | 64.52 401 | 26.98 410 | 65.62 393 | 33.02 415 | 46.12 387 | 42.79 398 | 48.99 404 | 24.10 393 | 46.56 412 | 12.16 413 | 26.30 406 | 39.20 405 |
|
| E-PMN | | | 31.77 375 | 30.64 378 | 35.15 392 | 52.87 412 | 27.67 409 | 57.09 402 | 47.86 410 | 24.64 407 | 16.40 412 | 33.05 408 | 11.23 408 | 54.90 408 | 14.46 411 | 18.15 409 | 22.87 408 |
|
| test_method | | | 31.52 376 | 29.28 380 | 38.23 390 | 27.03 418 | 6.50 421 | 20.94 409 | 62.21 398 | 4.05 412 | 22.35 410 | 52.50 403 | 13.33 404 | 47.58 410 | 27.04 400 | 34.04 402 | 60.62 396 |
|
| EMVS | | | 30.81 377 | 29.65 379 | 34.27 393 | 50.96 413 | 25.95 413 | 56.58 403 | 46.80 411 | 24.01 408 | 15.53 413 | 30.68 409 | 12.47 405 | 54.43 409 | 12.81 412 | 17.05 410 | 22.43 409 |
|
| MVE |  | 26.22 23 | 30.37 378 | 25.89 382 | 43.81 389 | 44.55 415 | 35.46 406 | 28.87 408 | 39.07 413 | 18.20 409 | 18.58 411 | 40.18 406 | 2.68 418 | 47.37 411 | 17.07 409 | 23.78 408 | 48.60 403 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 379 | 26.61 381 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 89.26 180 | 0.00 417 | 0.00 418 | 88.61 179 | 61.62 168 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| tmp_tt | | | 18.61 380 | 21.40 383 | 10.23 396 | 4.82 419 | 10.11 419 | 34.70 406 | 30.74 417 | 1.48 413 | 23.91 409 | 26.07 410 | 28.42 386 | 13.41 415 | 27.12 399 | 15.35 412 | 7.17 410 |
|
| wuyk23d | | | 16.82 381 | 15.94 384 | 19.46 395 | 58.74 404 | 31.45 408 | 39.22 405 | 3.74 420 | 6.84 411 | 6.04 414 | 2.70 414 | 1.27 419 | 24.29 414 | 10.54 414 | 14.40 413 | 2.63 411 |
|
| ab-mvs-re | | | 7.23 382 | 9.64 385 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 86.72 229 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| test123 | | | 6.12 383 | 8.11 386 | 0.14 397 | 0.06 421 | 0.09 422 | 71.05 372 | 0.03 422 | 0.04 416 | 0.25 417 | 1.30 416 | 0.05 420 | 0.03 417 | 0.21 416 | 0.01 415 | 0.29 412 |
|
| testmvs | | | 6.04 384 | 8.02 387 | 0.10 398 | 0.08 420 | 0.03 423 | 69.74 377 | 0.04 421 | 0.05 415 | 0.31 416 | 1.68 415 | 0.02 421 | 0.04 416 | 0.24 415 | 0.02 414 | 0.25 413 |
|
| pcd_1.5k_mvsjas | | | 5.26 385 | 7.02 388 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 63.15 145 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| test_blank | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| uanet_test | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| DCPMVS | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| sosnet-low-res | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| sosnet | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| uncertanet | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| Regformer | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| uanet | | | 0.00 386 | 0.00 389 | 0.00 399 | 0.00 422 | 0.00 424 | 0.00 410 | 0.00 423 | 0.00 417 | 0.00 418 | 0.00 417 | 0.00 422 | 0.00 418 | 0.00 417 | 0.00 416 | 0.00 414 |
|
| WAC-MVS | | | | | | | 42.58 397 | | | | | | | | 39.46 386 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 115 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 38 |
|
| PC_three_1452 | | | | | | | | | | 68.21 247 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 55 | 84.58 51 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 38 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 422 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 422 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 63 | 70.98 184 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 50 | 94.84 44 | |
|
| RE-MVS-def | | | | 85.48 57 | | 93.06 55 | 70.63 73 | 91.88 38 | 92.27 81 | 73.53 138 | 85.69 53 | 94.45 25 | 63.87 136 | | 82.75 72 | 91.87 83 | 92.50 121 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 257 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 61 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 51 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 7 | 89.07 14 | 96.58 6 | 94.26 47 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 54 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 12 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 45 | 94.75 1 | 73.93 127 | 88.57 22 | 94.67 18 | 75.57 22 | 95.79 57 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 63 | 91.17 122 | 74.31 118 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 9 | 89.42 9 | 96.57 7 | 94.67 26 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 48 |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 248 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 268 | | | | 88.96 248 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 282 | | | | |
|
| ambc | | | | | 75.24 311 | 73.16 386 | 50.51 375 | 63.05 399 | 87.47 230 | | 64.28 355 | 77.81 365 | 17.80 401 | 89.73 272 | 57.88 301 | 60.64 378 | 85.49 322 |
|
| MTGPA |  | | | | | | | | 92.02 91 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 326 | | | | 5.43 413 | 48.81 301 | 85.44 324 | 59.25 285 | | |
|
| test_post | | | | | | | | | | | | 5.46 412 | 50.36 280 | 84.24 331 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 380 | 51.12 271 | 88.60 292 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 309 | 81.59 326 | 55.80 331 | 79.32 318 | 69.63 382 | | 67.19 330 | 73.67 381 | 43.24 338 | 88.90 289 | 50.41 341 | 84.50 180 | 81.45 367 |
|
| MTMP | | | | | | | | 92.18 34 | 32.83 416 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 329 | 53.83 351 | | | 62.72 316 | | 80.94 337 | | 92.39 198 | 63.40 248 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 43 | 95.70 26 | 92.87 109 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 116 | 91.89 99 | 68.44 244 | 85.00 60 | 93.10 67 | 74.36 28 | 95.41 71 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 121 | 91.84 103 | 68.69 239 | 84.87 64 | 93.10 67 | 74.43 26 | 95.16 80 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 70 | 95.45 29 | 92.70 112 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 50 | | 91.78 106 | | 84.41 76 | | | 94.93 91 | | | |
|
| TestCases | | | | | 79.58 253 | 85.15 254 | 63.62 223 | | 79.83 334 | 62.31 319 | 60.32 372 | 86.73 227 | 32.02 378 | 88.96 287 | 50.28 344 | 71.57 344 | 86.15 311 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 107 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 113 | | 75.41 96 | 84.91 62 | 93.54 56 | 74.28 29 | | 83.31 64 | 95.86 20 | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 66 | | | 93.91 59 |
|
| 旧先验2 | | | | | | | | 86.56 190 | | 58.10 353 | 87.04 42 | | | 88.98 285 | 74.07 152 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 198 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 150 | 93.13 52 | 70.71 71 | | 85.48 261 | 57.43 359 | 81.80 113 | 91.98 90 | 63.28 140 | 92.27 204 | 64.60 240 | 92.99 69 | 87.27 288 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 181 | | 86.37 250 | | | 93.08 71 | 69.31 81 | | | 92.74 72 | 88.74 259 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 159 | 88.98 192 | 60.00 336 | | | | 94.12 121 | 67.28 217 | | 88.97 247 |
|
| 原ACMM2 | | | | | | | | 86.86 179 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 110 | 93.01 57 | 68.79 107 | | 92.44 74 | 63.96 302 | 81.09 123 | 91.57 104 | 66.06 118 | 95.45 67 | 67.19 219 | 94.82 46 | 88.81 254 |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 250 | 83.20 293 | 54.63 370 | 79.74 135 | 91.63 101 | 58.97 200 | | | 91.42 89 | 86.77 301 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 252 | 62.37 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata | | | | | 79.97 243 | 90.90 89 | 64.21 214 | | 84.71 267 | 59.27 343 | 85.40 55 | 92.91 73 | 62.02 164 | 89.08 283 | 68.95 202 | 91.37 90 | 86.63 305 |
|
| testdata1 | | | | | | | | 84.14 251 | | 75.71 90 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 105 | | 82.71 104 | | 71.67 55 | 96.16 44 | | 94.50 51 | 93.54 83 |
|
| plane_prior7 | | | | | | 90.08 107 | 68.51 120 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 116 | 68.70 115 | | | | | | 60.42 193 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 74 | | | | | 95.38 73 | 78.71 106 | 86.32 158 | 91.33 156 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 126 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 147 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 49 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 115 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 67 | | 77.62 39 | | | | | | 86.16 162 | |
|
| n2 | | | | | | | | | 0.00 423 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 423 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 381 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 262 | 81.01 336 | 57.15 310 | | 65.99 391 | | 61.16 369 | 82.82 317 | 39.12 360 | 91.34 241 | 59.67 281 | 46.92 396 | 88.43 265 |
|
| LGP-MVS_train | | | | | 84.50 103 | 89.23 141 | 68.76 109 | | 91.94 97 | 75.37 97 | 76.64 199 | 91.51 105 | 54.29 234 | 94.91 92 | 78.44 108 | 83.78 192 | 89.83 220 |
|
| test11 | | | | | | | | | 92.23 84 | | | | | | | | |
|
| door | | | | | | | | | 69.44 384 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 159 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 134 | | 89.17 100 | | 76.41 75 | 77.23 185 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 134 | | 89.17 100 | | 76.41 75 | 77.23 185 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 118 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 184 | | | 95.11 84 | | | 91.03 166 |
|
| HQP3-MVS | | | | | | | | | 92.19 87 | | | | | | | 85.99 166 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 196 | | | | |
|
| NP-MVS | | | | | | 89.62 120 | 68.32 123 | | | | | 90.24 138 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 404 | 75.16 356 | | 55.10 368 | 66.53 339 | | 49.34 292 | | 53.98 324 | | 87.94 272 |
|
| MDTV_nov1_ep13 | | | | 69.97 299 | | 83.18 295 | 53.48 353 | 77.10 345 | 80.18 333 | 60.45 331 | 69.33 312 | 80.44 341 | 48.89 300 | 86.90 307 | 51.60 336 | 78.51 261 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 223 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 228 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 132 | | | | |
|
| ITE_SJBPF | | | | | 78.22 275 | 81.77 323 | 60.57 271 | | 83.30 289 | 69.25 224 | 67.54 325 | 87.20 218 | 36.33 371 | 87.28 306 | 54.34 323 | 74.62 319 | 86.80 300 |
|
| DeepMVS_CX |  | | | | 27.40 394 | 40.17 417 | 26.90 411 | | 24.59 418 | 17.44 410 | 23.95 408 | 48.61 405 | 9.77 409 | 26.48 413 | 18.06 406 | 24.47 407 | 28.83 407 |
|