This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23485.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19567.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25069.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24184.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29569.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 194
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 22969.93 8388.65 12190.78 12769.97 20188.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21165.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20582.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
baseline84.93 6384.98 6184.80 9287.30 20965.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33569.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 23968.81 10588.49 12587.26 22968.08 24388.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24068.40 12088.34 13286.85 23767.48 25087.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26669.37 9788.15 14087.96 21270.01 19983.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
nrg03083.88 7183.53 7584.96 8486.77 21969.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24892.50 114
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18367.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18392.99 100
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22167.31 14789.46 8983.07 29271.09 17786.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23379.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
EPNet83.72 7582.92 8786.14 5984.22 26469.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 33082.15 7592.15 7593.64 71
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 22868.12 12789.43 9082.87 29670.27 19587.27 3793.80 5469.09 7891.58 22488.21 2683.65 19093.14 93
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25267.28 14889.40 9383.01 29370.67 18587.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 210
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18172.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27368.07 12989.34 9582.85 29769.80 20587.36 3694.06 4268.34 8891.56 22687.95 2783.46 19693.21 90
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29591.72 139
MVS_Test83.15 8883.06 8383.41 14986.86 21563.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 18979.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
MVSFormer82.85 9482.05 9985.24 7587.35 20370.21 7790.50 6290.38 13768.55 23681.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21378.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 192
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 193
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 161
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
diffmvspermissive82.10 10181.88 10382.76 18283.00 29363.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18489.83 215
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22467.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 21091.49 146
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 275
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27892.25 123
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20778.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32391.06 159
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17378.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18581.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 257
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18281.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 256
mvsmamba81.69 11180.74 11784.56 9787.45 20266.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19492.04 134
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23277.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27791.60 140
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17683.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24090.41 13053.82 23394.54 10477.56 11382.91 20289.86 214
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 11980.29 12784.70 9486.63 22369.90 8585.95 20386.77 23863.24 29781.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11980.27 12884.76 9387.35 20370.21 7785.55 21586.41 24262.85 30481.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DU-MVS81.12 12380.52 12282.90 17287.80 18763.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27892.20 126
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24778.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 239
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
QAPM80.88 12679.50 14285.03 8188.01 18068.97 10391.59 4392.00 8766.63 26175.15 23692.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18462.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30592.30 121
UGNet80.83 12879.59 14084.54 9888.04 17868.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18278.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23668.78 10783.54 26090.50 13470.66 18776.71 19491.66 9660.69 18091.26 23976.94 12081.58 21991.83 136
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20370.19 7985.56 21288.77 19469.06 22681.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 234
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19477.25 18089.66 14453.37 23893.53 14974.24 14882.85 20388.85 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34174.08 25290.72 12458.10 19895.04 8569.70 19189.42 11390.30 190
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 156
CANet_DTU80.61 13779.87 13482.83 17485.60 23663.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17760.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24991.23 153
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21578.11 16386.09 24966.02 11294.27 11371.52 17182.06 21387.39 277
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21675.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 276
EI-MVSNet80.52 14179.98 13182.12 19084.28 26263.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23290.74 172
XVG-OURS80.41 14279.23 15083.97 13485.64 23569.02 10183.03 27190.39 13671.09 17777.63 17391.49 10454.62 22691.35 23775.71 13483.47 19591.54 142
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30089.40 16675.19 9876.61 19889.98 13760.61 18387.69 29876.83 12383.55 19290.33 188
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19268.99 10283.65 25591.46 11163.00 30177.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40067.45 9596.60 3383.06 6394.50 5094.07 47
RRT_MVS80.35 14679.22 15183.74 14087.63 19665.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25091.51 143
test_djsdf80.30 14779.32 14783.27 15383.98 27065.37 18990.50 6290.38 13768.55 23676.19 20888.70 17256.44 21393.46 15378.98 9980.14 23890.97 164
v2v48280.23 14879.29 14883.05 16583.62 27664.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27591.18 154
NR-MVSNet80.23 14879.38 14482.78 18087.80 18763.34 23186.31 19491.09 12079.01 2672.17 27389.07 16267.20 9892.81 18566.08 22575.65 29192.20 126
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 26980.59 12291.17 11349.97 27693.73 14269.16 19782.70 20793.81 60
IterMVS-LS80.06 15179.38 14482.11 19185.89 23163.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27290.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24768.74 11088.77 11488.10 20874.99 10274.97 24183.49 29857.27 20893.36 15673.53 15380.88 22691.18 154
v114480.03 15279.03 15583.01 16783.78 27464.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26690.60 177
iter_conf0580.00 15478.70 16083.91 13787.84 18565.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32794.56 10279.28 9784.28 18091.33 149
v879.97 15579.02 15682.80 17784.09 26764.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30090.00 206
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24369.91 8490.57 6090.97 12166.70 25572.17 27391.91 9154.70 22493.96 12461.81 26090.95 9188.41 260
v1079.74 15778.67 16182.97 17084.06 26864.95 19687.88 15190.62 13073.11 14675.11 23786.56 23761.46 16594.05 12373.68 15175.55 29389.90 212
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33787.89 15077.44 34574.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 196
v119279.59 16078.43 16883.07 16483.55 27864.52 20386.93 17590.58 13170.83 18177.78 17085.90 25059.15 19293.94 12773.96 15077.19 26890.76 170
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19179.03 13888.87 16963.23 13690.21 26065.12 23282.57 20892.28 122
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26791.80 138
v14419279.47 16378.37 16982.78 18083.35 28163.96 21686.96 17390.36 14069.99 20077.50 17485.67 25760.66 18193.77 13874.27 14776.58 27690.62 175
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15775.42 22587.69 20061.15 17393.54 14860.38 27086.83 14486.70 296
test111179.43 16579.18 15380.15 23889.99 10853.31 35087.33 16477.05 34875.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
mvs_anonymous79.42 16679.11 15480.34 23484.45 26157.97 29482.59 27387.62 22167.40 25176.17 21188.56 17968.47 8689.59 26870.65 18186.05 15793.47 79
thisisatest053079.40 16777.76 18784.31 10987.69 19465.10 19487.36 16284.26 27370.04 19877.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
tttt051779.40 16777.91 17983.90 13888.10 17563.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27994.89 9270.18 18583.18 20092.96 101
V4279.38 16978.24 17382.83 17481.10 32765.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29789.81 217
jajsoiax79.29 17077.96 17783.27 15384.68 25566.57 16289.25 9790.16 14769.20 22175.46 22389.49 15045.75 31793.13 17276.84 12180.80 22890.11 198
v192192079.22 17178.03 17682.80 17783.30 28363.94 21786.80 17990.33 14169.91 20377.48 17585.53 26058.44 19693.75 14073.60 15276.85 27390.71 173
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22577.23 18288.14 19453.20 24093.47 15275.50 13973.45 32291.06 159
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27077.14 18791.09 11560.91 17793.21 16350.26 33887.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17477.77 18683.22 15784.70 25466.37 16489.17 9890.19 14669.38 21475.40 22689.46 15344.17 32593.15 17076.78 12480.70 23090.14 195
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21660.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21193.29 85
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19768.23 12584.40 24486.20 24667.49 24976.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 182
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 17777.88 18182.38 18883.07 29064.80 20084.08 25188.95 18969.01 22978.69 14587.17 21754.70 22492.43 19374.69 14280.57 23289.89 213
v124078.99 17877.78 18582.64 18383.21 28563.54 22586.62 18690.30 14369.74 21077.33 17885.68 25657.04 21093.76 13973.13 16076.92 27090.62 175
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 27976.16 21288.13 19550.56 27093.03 17969.68 19277.56 26591.11 156
v7n78.97 17977.58 19383.14 16083.45 28065.51 18288.32 13391.21 11473.69 13072.41 27086.32 24457.93 19993.81 13569.18 19675.65 29190.11 198
TAMVS78.89 18177.51 19483.03 16687.80 18767.79 13584.72 23185.05 26067.63 24676.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 182
c3_l78.75 18277.91 17981.26 21182.89 29761.56 25784.09 25089.13 18169.97 20175.56 21984.29 28466.36 10692.09 20773.47 15575.48 29590.12 197
tt080578.73 18377.83 18281.43 20585.17 24360.30 27389.41 9290.90 12371.21 17477.17 18688.73 17146.38 30693.21 16372.57 16678.96 25190.79 168
v14878.72 18477.80 18481.47 20482.73 30061.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31990.09 200
VPNet78.69 18578.66 16278.76 26188.31 16955.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26990.88 166
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22069.47 9285.01 22584.61 26569.54 21166.51 33486.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
anonymousdsp78.60 18777.15 20082.98 16980.51 33367.08 15387.24 16789.53 16365.66 27275.16 23587.19 21652.52 24192.25 20277.17 11879.34 24789.61 222
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30261.56 25783.65 25589.15 17968.87 23175.55 22083.79 29366.49 10492.03 20873.25 15876.39 28089.64 221
WR-MVS_H78.51 18978.49 16578.56 26588.02 17956.38 32088.43 12692.67 6177.14 5473.89 25387.55 20566.25 10889.24 27458.92 28373.55 32190.06 204
GBi-Net78.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22887.28 21054.80 22091.11 24262.72 24779.57 24290.09 200
test178.40 19077.40 19581.40 20787.60 19763.01 23888.39 12889.28 17071.63 16375.34 22887.28 21054.80 22091.11 24262.72 24779.57 24290.09 200
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27488.64 15851.78 35986.70 18479.63 32974.14 12175.11 23790.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 18880.00 12891.20 11141.08 34491.43 23565.21 23185.26 16593.85 57
CP-MVSNet78.22 19478.34 17077.84 27687.83 18654.54 33987.94 14791.17 11677.65 3873.48 25888.49 18062.24 15388.43 28962.19 25474.07 31490.55 179
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 20874.52 24884.74 27761.34 16893.11 17358.24 29185.84 16184.27 331
FMVSNet278.20 19677.21 19981.20 21487.60 19762.89 24287.47 16089.02 18471.63 16375.29 23387.28 21054.80 22091.10 24562.38 25279.38 24689.61 222
MVS78.19 19776.99 20481.78 19785.66 23466.99 15484.66 23290.47 13555.08 36172.02 27585.27 26563.83 13094.11 12266.10 22489.80 10984.24 332
Baseline_NR-MVSNet78.15 19878.33 17177.61 28185.79 23256.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 30287.63 271
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 26872.38 27189.64 14557.56 20486.04 30959.61 27683.35 19788.79 250
cl2278.07 20077.01 20281.23 21282.37 30961.83 25483.55 25987.98 21168.96 23075.06 23983.87 28961.40 16791.88 21573.53 15376.39 28089.98 209
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28769.87 29888.38 18353.66 23493.58 14458.86 28482.73 20587.86 267
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 28966.96 15786.94 17487.45 22672.45 15271.49 28084.17 28654.79 22391.58 22467.61 21080.31 23589.30 230
PS-CasMVS78.01 20378.09 17577.77 27887.71 19254.39 34188.02 14391.22 11377.50 4673.26 26088.64 17560.73 17888.41 29061.88 25873.88 31890.53 180
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20160.21 27583.37 26287.78 21966.11 26575.37 22787.06 22163.27 13490.48 25761.38 26482.43 20990.40 186
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29361.98 25183.15 26589.20 17769.52 21274.86 24384.35 28361.76 15892.56 18971.50 17372.89 32790.28 191
FMVSNet377.88 20676.85 20780.97 22286.84 21762.36 24586.52 18988.77 19471.13 17575.34 22886.66 23254.07 23191.10 24562.72 24779.57 24289.45 226
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31661.38 25982.68 27288.98 18665.52 27475.47 22182.30 31565.76 11692.00 21072.95 16176.39 28089.39 227
FE-MVS77.78 20875.68 22684.08 12288.09 17666.00 17083.13 26687.79 21868.42 24078.01 16685.23 26745.50 31995.12 7859.11 28185.83 16291.11 156
PEN-MVS77.73 20977.69 19077.84 27687.07 21453.91 34487.91 14991.18 11577.56 4373.14 26288.82 17061.23 17189.17 27559.95 27372.37 32990.43 184
cl____77.72 21076.76 21080.58 22982.49 30660.48 27083.09 26787.87 21569.22 21974.38 25085.22 26862.10 15591.53 22971.09 17675.41 29989.73 220
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30760.48 27083.09 26787.86 21669.22 21974.38 25085.24 26662.10 15591.53 22971.09 17675.40 30089.74 219
sd_testset77.70 21277.40 19578.60 26489.03 14460.02 27679.00 31885.83 25275.19 9876.61 19889.98 13754.81 21985.46 31662.63 25183.55 19290.33 188
PAPM77.68 21376.40 21981.51 20387.29 21061.85 25383.78 25389.59 16264.74 28171.23 28188.70 17262.59 14593.66 14352.66 32387.03 14189.01 239
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32287.50 22456.38 35675.80 21686.84 22258.67 19491.40 23661.58 26285.75 16390.34 187
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30188.64 20156.29 35776.45 20085.17 26957.64 20393.28 15861.34 26583.10 20191.91 135
FMVSNet177.44 21676.12 22281.40 20786.81 21863.01 23888.39 12889.28 17070.49 19074.39 24987.28 21049.06 29091.11 24260.91 26778.52 25490.09 200
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 24877.81 16986.48 24054.10 23093.15 17057.75 29582.72 20687.20 282
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31473.05 26386.72 22662.58 14689.97 26262.11 25780.80 22890.59 178
thisisatest051577.33 21975.38 23383.18 15885.27 24263.80 21982.11 27883.27 28765.06 27775.91 21383.84 29149.54 28194.27 11367.24 21586.19 15491.48 147
test250677.30 22076.49 21679.74 24690.08 10352.02 35387.86 15263.10 38874.88 10480.16 12792.79 7938.29 35792.35 19868.74 20292.50 7294.86 17
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 24965.47 18488.14 14277.56 34269.20 22173.77 25489.40 15942.24 33888.85 28476.78 12481.64 21889.33 229
pm-mvs177.25 22276.68 21478.93 25984.22 26458.62 28686.41 19188.36 20571.37 17173.31 25988.01 19661.22 17289.15 27664.24 23873.01 32689.03 238
LCM-MVSNet-Re77.05 22376.94 20577.36 28487.20 21151.60 36080.06 30480.46 32075.20 9767.69 31686.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
DTE-MVSNet76.99 22476.80 20877.54 28386.24 22653.06 35287.52 15890.66 12977.08 5772.50 26888.67 17460.48 18589.52 26957.33 29970.74 34090.05 205
baseline176.98 22576.75 21277.66 27988.13 17355.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29763.30 24471.18 33889.55 224
LS3D76.95 22674.82 23983.37 15090.45 9567.36 14689.15 10286.94 23561.87 31669.52 30190.61 12651.71 25994.53 10546.38 35986.71 14688.21 262
GA-MVS76.87 22775.17 23781.97 19582.75 29962.58 24381.44 28786.35 24572.16 15974.74 24482.89 30746.20 31192.02 20968.85 20181.09 22491.30 152
DP-MVS76.78 22874.57 24183.42 14793.29 4869.46 9488.55 12483.70 27963.98 29370.20 28988.89 16854.01 23294.80 9646.66 35681.88 21686.01 308
cascas76.72 22974.64 24082.99 16885.78 23365.88 17482.33 27589.21 17660.85 32272.74 26581.02 32647.28 30093.75 14067.48 21285.02 16689.34 228
131476.53 23075.30 23680.21 23783.93 27162.32 24784.66 23288.81 19260.23 32670.16 29284.07 28855.30 21790.73 25467.37 21383.21 19987.59 274
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34783.75 18689.07 232
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35283.72 18990.00 206
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34783.75 18690.00 206
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34783.75 18689.07 232
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33372.48 26986.67 23161.30 16989.33 27260.81 26980.15 23790.41 185
F-COLMAP76.38 23674.33 24682.50 18689.28 13366.95 15888.41 12789.03 18364.05 29166.83 32688.61 17646.78 30492.89 18157.48 29678.55 25387.67 270
LTVRE_ROB69.57 1376.25 23774.54 24381.41 20688.60 15964.38 21079.24 31489.12 18270.76 18469.79 30087.86 19749.09 28993.20 16656.21 30980.16 23686.65 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 23874.46 24581.13 21785.37 24169.79 8684.42 24387.95 21365.03 27867.46 31985.33 26453.28 23991.73 22158.01 29383.27 19881.85 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 23974.27 24781.62 20083.20 28664.67 20283.60 25889.75 15869.75 20871.85 27687.09 21932.78 36992.11 20669.99 18880.43 23488.09 263
ACMH+68.96 1476.01 24074.01 24882.03 19388.60 15965.31 19088.86 11087.55 22270.25 19667.75 31587.47 20841.27 34293.19 16858.37 28975.94 28887.60 272
ACMH67.68 1675.89 24173.93 24981.77 19888.71 15666.61 16188.62 12289.01 18569.81 20466.78 32786.70 23041.95 34191.51 23155.64 31078.14 26087.17 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 24273.36 25683.31 15184.76 25366.03 16883.38 26185.06 25970.21 19769.40 30281.05 32545.76 31694.66 10165.10 23375.49 29489.25 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 24373.83 25281.30 21083.26 28461.79 25582.57 27480.65 31666.81 25266.88 32583.42 29957.86 20192.19 20463.47 24179.57 24289.91 211
WTY-MVS75.65 24475.68 22675.57 30086.40 22556.82 31177.92 33282.40 30165.10 27676.18 20987.72 19863.13 14180.90 34560.31 27181.96 21489.00 241
thres20075.55 24574.47 24478.82 26087.78 19057.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25191.75 21947.41 35483.64 19186.86 292
test_vis1_n_192075.52 24675.78 22474.75 31079.84 34157.44 30483.26 26385.52 25562.83 30579.34 13686.17 24745.10 32179.71 34978.75 10181.21 22387.10 289
EPNet_dtu75.46 24774.86 23877.23 28782.57 30454.60 33886.89 17683.09 29171.64 16266.25 33685.86 25255.99 21488.04 29454.92 31286.55 14889.05 237
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 24873.87 25180.11 23982.69 30164.85 19981.57 28483.47 28469.16 22370.49 28684.15 28751.95 25488.15 29269.23 19572.14 33287.34 279
XXY-MVS75.41 24975.56 22874.96 30683.59 27757.82 29880.59 29783.87 27866.54 26274.93 24288.31 18563.24 13580.09 34862.16 25576.85 27386.97 290
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 23857.10 30886.78 18186.09 24972.17 15871.53 27987.34 20963.01 14289.31 27356.84 30461.83 36687.17 283
CostFormer75.24 25173.90 25079.27 25582.65 30358.27 28980.80 29282.73 29961.57 31775.33 23183.13 30355.52 21591.07 24864.98 23478.34 25988.45 258
D2MVS74.82 25273.21 25779.64 25079.81 34262.56 24480.34 30287.35 22764.37 28668.86 30782.66 31146.37 30790.10 26167.91 20881.24 22286.25 301
pmmvs674.69 25373.39 25578.61 26381.38 32257.48 30386.64 18587.95 21364.99 28070.18 29086.61 23350.43 27289.52 26962.12 25670.18 34288.83 248
tfpnnormal74.39 25473.16 25878.08 27386.10 23058.05 29184.65 23487.53 22370.32 19371.22 28285.63 25854.97 21889.86 26343.03 37075.02 30786.32 300
IterMVS74.29 25572.94 26078.35 26981.53 31963.49 22781.58 28382.49 30068.06 24469.99 29583.69 29551.66 26085.54 31465.85 22771.64 33586.01 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 25672.42 26579.80 24583.76 27559.59 28185.92 20586.64 23966.39 26366.96 32487.58 20239.46 35091.60 22365.76 22869.27 34588.22 261
SCA74.22 25772.33 26679.91 24284.05 26962.17 24979.96 30779.29 33266.30 26472.38 27180.13 33551.95 25488.60 28759.25 27977.67 26488.96 243
miper_lstm_enhance74.11 25873.11 25977.13 28880.11 33759.62 28072.23 35986.92 23666.76 25470.40 28782.92 30656.93 21182.92 33469.06 19872.63 32888.87 246
testing22274.04 25972.66 26278.19 27187.89 18255.36 33081.06 29079.20 33371.30 17274.65 24683.57 29739.11 35388.67 28651.43 33085.75 16390.53 180
EG-PatchMatch MVS74.04 25971.82 26980.71 22784.92 25167.42 14385.86 20788.08 20966.04 26764.22 34883.85 29035.10 36692.56 18957.44 29780.83 22782.16 355
pmmvs474.03 26171.91 26880.39 23281.96 31268.32 12281.45 28682.14 30359.32 33469.87 29885.13 27052.40 24488.13 29360.21 27274.74 31084.73 328
MS-PatchMatch73.83 26272.67 26177.30 28683.87 27266.02 16981.82 27984.66 26461.37 32068.61 31082.82 30947.29 29988.21 29159.27 27884.32 17977.68 370
test_cas_vis1_n_192073.76 26373.74 25373.81 31875.90 36259.77 27880.51 29882.40 30158.30 34381.62 11085.69 25544.35 32476.41 36776.29 12778.61 25285.23 319
sss73.60 26473.64 25473.51 32082.80 29855.01 33576.12 33981.69 30862.47 31074.68 24585.85 25357.32 20778.11 35660.86 26880.93 22587.39 277
RPMNet73.51 26570.49 28582.58 18581.32 32565.19 19175.92 34192.27 7657.60 34972.73 26676.45 36252.30 24595.43 6548.14 35177.71 26287.11 287
SixPastTwentyTwo73.37 26671.26 27879.70 24785.08 24857.89 29685.57 21183.56 28271.03 17965.66 33885.88 25142.10 33992.57 18859.11 28163.34 36488.65 255
CR-MVSNet73.37 26671.27 27779.67 24981.32 32565.19 19175.92 34180.30 32259.92 32972.73 26681.19 32352.50 24286.69 30359.84 27477.71 26287.11 287
MSDG73.36 26870.99 28080.49 23184.51 26065.80 17780.71 29586.13 24865.70 27165.46 33983.74 29444.60 32290.91 25051.13 33176.89 27184.74 327
tpm273.26 26971.46 27378.63 26283.34 28256.71 31480.65 29680.40 32156.63 35573.55 25782.02 32051.80 25891.24 24056.35 30878.42 25787.95 264
RPSCF73.23 27071.46 27378.54 26682.50 30559.85 27782.18 27782.84 29858.96 33871.15 28389.41 15745.48 32084.77 32258.82 28571.83 33491.02 163
PatchmatchNetpermissive73.12 27171.33 27678.49 26883.18 28760.85 26479.63 30978.57 33664.13 28871.73 27779.81 34051.20 26385.97 31057.40 29876.36 28588.66 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 27270.41 28780.81 22587.13 21365.63 18088.30 13484.19 27462.96 30263.80 35287.69 20038.04 35892.56 18946.66 35674.91 30884.24 332
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 27372.58 26374.25 31484.28 26250.85 36586.41 19183.45 28544.56 37873.23 26187.54 20649.38 28485.70 31165.90 22678.44 25686.19 303
test-LLR72.94 27472.43 26474.48 31181.35 32358.04 29278.38 32577.46 34366.66 25669.95 29679.00 34648.06 29679.24 35066.13 22284.83 16886.15 304
test_040272.79 27570.44 28679.84 24488.13 17365.99 17185.93 20484.29 27165.57 27367.40 32185.49 26146.92 30392.61 18735.88 38274.38 31380.94 361
tpmrst72.39 27672.13 26773.18 32480.54 33249.91 36979.91 30879.08 33463.11 29971.69 27879.95 33755.32 21682.77 33565.66 22973.89 31786.87 291
PatchMatch-RL72.38 27770.90 28176.80 29188.60 15967.38 14579.53 31076.17 35462.75 30769.36 30382.00 32145.51 31884.89 32153.62 31880.58 23178.12 369
CL-MVSNet_self_test72.37 27871.46 27375.09 30579.49 34853.53 34680.76 29485.01 26169.12 22470.51 28582.05 31957.92 20084.13 32552.27 32566.00 35887.60 272
tpm72.37 27871.71 27074.35 31382.19 31052.00 35479.22 31577.29 34664.56 28372.95 26483.68 29651.35 26183.26 33358.33 29075.80 28987.81 268
ETVMVS72.25 28071.05 27975.84 29687.77 19151.91 35679.39 31274.98 35769.26 21773.71 25582.95 30540.82 34686.14 30846.17 36084.43 17889.47 225
UWE-MVS72.13 28171.49 27274.03 31686.66 22247.70 37381.40 28876.89 35063.60 29675.59 21884.22 28539.94 34985.62 31348.98 34486.13 15688.77 251
PVSNet64.34 1872.08 28270.87 28275.69 29886.21 22756.44 31874.37 35380.73 31562.06 31570.17 29182.23 31742.86 33283.31 33254.77 31384.45 17787.32 280
WB-MVSnew71.96 28371.65 27172.89 32584.67 25851.88 35782.29 27677.57 34162.31 31173.67 25683.00 30453.49 23781.10 34445.75 36382.13 21285.70 313
pmmvs571.55 28470.20 29075.61 29977.83 35556.39 31981.74 28180.89 31257.76 34767.46 31984.49 27849.26 28785.32 31857.08 30175.29 30385.11 323
test-mter71.41 28570.39 28874.48 31181.35 32358.04 29278.38 32577.46 34360.32 32569.95 29679.00 34636.08 36479.24 35066.13 22284.83 16886.15 304
K. test v371.19 28668.51 29879.21 25783.04 29257.78 29984.35 24576.91 34972.90 15162.99 35582.86 30839.27 35191.09 24761.65 26152.66 38288.75 252
dmvs_re71.14 28770.58 28372.80 32681.96 31259.68 27975.60 34579.34 33168.55 23669.27 30580.72 33149.42 28376.54 36452.56 32477.79 26182.19 354
tpmvs71.09 28869.29 29376.49 29282.04 31156.04 32478.92 32081.37 31164.05 29167.18 32378.28 35249.74 28089.77 26449.67 34172.37 32983.67 339
AllTest70.96 28968.09 30479.58 25185.15 24563.62 22184.58 23679.83 32662.31 31160.32 36386.73 22432.02 37088.96 28150.28 33671.57 33686.15 304
test_fmvs170.93 29070.52 28472.16 33073.71 37255.05 33480.82 29178.77 33551.21 37278.58 14984.41 28031.20 37476.94 36275.88 13380.12 23984.47 330
test_fmvs1_n70.86 29170.24 28972.73 32772.51 38255.28 33281.27 28979.71 32851.49 37178.73 14384.87 27427.54 37977.02 36176.06 13079.97 24085.88 311
Patchmtry70.74 29269.16 29575.49 30280.72 32954.07 34374.94 35280.30 32258.34 34270.01 29381.19 32352.50 24286.54 30453.37 32071.09 33985.87 312
MIMVSNet70.69 29369.30 29274.88 30784.52 25956.35 32175.87 34379.42 33064.59 28267.76 31482.41 31341.10 34381.54 34146.64 35881.34 22086.75 295
tpm cat170.57 29468.31 30077.35 28582.41 30857.95 29578.08 32980.22 32452.04 36768.54 31177.66 35752.00 25387.84 29651.77 32672.07 33386.25 301
OpenMVS_ROBcopyleft64.09 1970.56 29568.19 30177.65 28080.26 33459.41 28385.01 22582.96 29558.76 34065.43 34082.33 31437.63 36091.23 24145.34 36676.03 28782.32 352
pmmvs-eth3d70.50 29667.83 30978.52 26777.37 35866.18 16781.82 27981.51 30958.90 33963.90 35180.42 33342.69 33386.28 30758.56 28765.30 36083.11 345
USDC70.33 29768.37 29976.21 29480.60 33156.23 32279.19 31686.49 24160.89 32161.29 35985.47 26231.78 37289.47 27153.37 32076.21 28682.94 349
Patchmatch-RL test70.24 29867.78 31177.61 28177.43 35759.57 28271.16 36270.33 37162.94 30368.65 30972.77 37450.62 26985.49 31569.58 19366.58 35587.77 269
CMPMVSbinary51.72 2170.19 29968.16 30276.28 29373.15 37857.55 30279.47 31183.92 27648.02 37556.48 37684.81 27543.13 33086.42 30662.67 25081.81 21784.89 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 30067.34 31778.14 27279.80 34361.13 26079.19 31680.59 31759.16 33665.27 34179.29 34346.75 30587.29 30049.33 34266.72 35386.00 310
gg-mvs-nofinetune69.95 30167.96 30575.94 29583.07 29054.51 34077.23 33670.29 37263.11 29970.32 28862.33 38343.62 32888.69 28553.88 31787.76 13184.62 329
TESTMET0.1,169.89 30269.00 29672.55 32879.27 35156.85 31078.38 32574.71 36157.64 34868.09 31377.19 35937.75 35976.70 36363.92 23984.09 18284.10 335
test_vis1_n69.85 30369.21 29471.77 33272.66 38155.27 33381.48 28576.21 35352.03 36875.30 23283.20 30228.97 37776.22 36974.60 14378.41 25883.81 338
FMVSNet569.50 30467.96 30574.15 31582.97 29655.35 33180.01 30682.12 30462.56 30963.02 35381.53 32236.92 36181.92 33948.42 34674.06 31585.17 322
PMMVS69.34 30568.67 29771.35 33775.67 36462.03 25075.17 34773.46 36450.00 37368.68 30879.05 34452.07 25278.13 35561.16 26682.77 20473.90 376
our_test_369.14 30667.00 31975.57 30079.80 34358.80 28477.96 33077.81 33959.55 33262.90 35678.25 35347.43 29883.97 32651.71 32767.58 35283.93 337
EPMVS69.02 30768.16 30271.59 33379.61 34649.80 37177.40 33466.93 38062.82 30670.01 29379.05 34445.79 31577.86 35856.58 30675.26 30487.13 286
KD-MVS_self_test68.81 30867.59 31572.46 32974.29 37045.45 37877.93 33187.00 23463.12 29863.99 35078.99 34842.32 33584.77 32256.55 30764.09 36387.16 285
Anonymous2024052168.80 30967.22 31873.55 31974.33 36954.11 34283.18 26485.61 25458.15 34461.68 35880.94 32830.71 37581.27 34357.00 30273.34 32585.28 318
Anonymous2023120668.60 31067.80 31071.02 34080.23 33650.75 36678.30 32880.47 31956.79 35466.11 33782.63 31246.35 30878.95 35243.62 36975.70 29083.36 342
MIMVSNet168.58 31166.78 32173.98 31780.07 33851.82 35880.77 29384.37 26864.40 28559.75 36682.16 31836.47 36283.63 32942.73 37170.33 34186.48 299
testing368.56 31267.67 31371.22 33987.33 20842.87 38783.06 27071.54 36970.36 19169.08 30684.38 28130.33 37685.69 31237.50 38175.45 29885.09 324
EU-MVSNet68.53 31367.61 31471.31 33878.51 35447.01 37684.47 23884.27 27242.27 38166.44 33584.79 27640.44 34783.76 32758.76 28668.54 35083.17 343
PatchT68.46 31467.85 30770.29 34380.70 33043.93 38572.47 35874.88 35860.15 32770.55 28476.57 36149.94 27781.59 34050.58 33274.83 30985.34 317
test_fmvs268.35 31567.48 31670.98 34169.50 38551.95 35580.05 30576.38 35249.33 37474.65 24684.38 28123.30 38575.40 37674.51 14475.17 30685.60 314
Syy-MVS68.05 31667.85 30768.67 35284.68 25540.97 39378.62 32373.08 36666.65 25966.74 32879.46 34152.11 25082.30 33732.89 38576.38 28382.75 350
test0.0.03 168.00 31767.69 31268.90 34977.55 35647.43 37475.70 34472.95 36866.66 25666.56 33082.29 31648.06 29675.87 37144.97 36774.51 31283.41 341
TDRefinement67.49 31864.34 32876.92 28973.47 37661.07 26184.86 22982.98 29459.77 33058.30 37085.13 27026.06 38087.89 29547.92 35360.59 37181.81 357
test20.0367.45 31966.95 32068.94 34875.48 36644.84 38377.50 33377.67 34066.66 25663.01 35483.80 29247.02 30278.40 35442.53 37268.86 34983.58 340
UnsupCasMVSNet_eth67.33 32065.99 32471.37 33573.48 37551.47 36275.16 34885.19 25865.20 27560.78 36180.93 33042.35 33477.20 36057.12 30053.69 38185.44 316
TinyColmap67.30 32164.81 32674.76 30981.92 31456.68 31580.29 30381.49 31060.33 32456.27 37783.22 30024.77 38287.66 29945.52 36469.47 34479.95 365
myMVS_eth3d67.02 32266.29 32369.21 34784.68 25542.58 38878.62 32373.08 36666.65 25966.74 32879.46 34131.53 37382.30 33739.43 37876.38 28382.75 350
dp66.80 32365.43 32570.90 34279.74 34548.82 37275.12 35074.77 35959.61 33164.08 34977.23 35842.89 33180.72 34648.86 34566.58 35583.16 344
MDA-MVSNet-bldmvs66.68 32463.66 33375.75 29779.28 35060.56 26973.92 35578.35 33764.43 28450.13 38479.87 33944.02 32683.67 32846.10 36156.86 37483.03 347
testgi66.67 32566.53 32267.08 35775.62 36541.69 39275.93 34076.50 35166.11 26565.20 34486.59 23435.72 36574.71 37843.71 36873.38 32484.84 326
CHOSEN 280x42066.51 32664.71 32771.90 33181.45 32063.52 22657.98 39068.95 37853.57 36362.59 35776.70 36046.22 31075.29 37755.25 31179.68 24176.88 372
PM-MVS66.41 32764.14 32973.20 32373.92 37156.45 31778.97 31964.96 38663.88 29564.72 34580.24 33419.84 38883.44 33166.24 22164.52 36279.71 366
JIA-IIPM66.32 32862.82 33976.82 29077.09 35961.72 25665.34 38375.38 35558.04 34664.51 34662.32 38442.05 34086.51 30551.45 32969.22 34682.21 353
KD-MVS_2432*160066.22 32963.89 33173.21 32175.47 36753.42 34870.76 36584.35 26964.10 28966.52 33278.52 35034.55 36784.98 31950.40 33450.33 38581.23 359
miper_refine_blended66.22 32963.89 33173.21 32175.47 36753.42 34870.76 36584.35 26964.10 28966.52 33278.52 35034.55 36784.98 31950.40 33450.33 38581.23 359
ADS-MVSNet266.20 33163.33 33474.82 30879.92 33958.75 28567.55 37675.19 35653.37 36465.25 34275.86 36542.32 33580.53 34741.57 37368.91 34785.18 320
YYNet165.03 33262.91 33771.38 33475.85 36356.60 31669.12 37374.66 36257.28 35254.12 37977.87 35545.85 31474.48 37949.95 33961.52 36883.05 346
MDA-MVSNet_test_wron65.03 33262.92 33671.37 33575.93 36156.73 31269.09 37474.73 36057.28 35254.03 38077.89 35445.88 31374.39 38049.89 34061.55 36782.99 348
Patchmatch-test64.82 33463.24 33569.57 34579.42 34949.82 37063.49 38769.05 37751.98 36959.95 36580.13 33550.91 26570.98 38540.66 37573.57 32087.90 266
ADS-MVSNet64.36 33562.88 33868.78 35179.92 33947.17 37567.55 37671.18 37053.37 36465.25 34275.86 36542.32 33573.99 38141.57 37368.91 34785.18 320
LF4IMVS64.02 33662.19 34069.50 34670.90 38353.29 35176.13 33877.18 34752.65 36658.59 36880.98 32723.55 38476.52 36553.06 32266.66 35478.68 368
UnsupCasMVSNet_bld63.70 33761.53 34370.21 34473.69 37351.39 36372.82 35781.89 30555.63 35957.81 37271.80 37638.67 35478.61 35349.26 34352.21 38380.63 362
test_fmvs363.36 33861.82 34167.98 35462.51 39246.96 37777.37 33574.03 36345.24 37767.50 31878.79 34912.16 39672.98 38472.77 16466.02 35783.99 336
dmvs_testset62.63 33964.11 33058.19 36778.55 35324.76 40375.28 34665.94 38367.91 24560.34 36276.01 36453.56 23573.94 38231.79 38667.65 35175.88 374
mvsany_test162.30 34061.26 34465.41 35969.52 38454.86 33666.86 37849.78 39946.65 37668.50 31283.21 30149.15 28866.28 39156.93 30360.77 36975.11 375
new-patchmatchnet61.73 34161.73 34261.70 36372.74 38024.50 40469.16 37278.03 33861.40 31856.72 37575.53 36838.42 35576.48 36645.95 36257.67 37384.13 334
PVSNet_057.27 2061.67 34259.27 34568.85 35079.61 34657.44 30468.01 37573.44 36555.93 35858.54 36970.41 37944.58 32377.55 35947.01 35535.91 39171.55 379
test_vis1_rt60.28 34358.42 34665.84 35867.25 38855.60 32970.44 36760.94 39144.33 37959.00 36766.64 38124.91 38168.67 38962.80 24669.48 34373.25 377
MVS-HIRNet59.14 34457.67 34763.57 36181.65 31643.50 38671.73 36065.06 38539.59 38551.43 38257.73 38938.34 35682.58 33639.53 37673.95 31664.62 385
pmmvs357.79 34554.26 35068.37 35364.02 39156.72 31375.12 35065.17 38440.20 38352.93 38169.86 38020.36 38775.48 37445.45 36555.25 38072.90 378
DSMNet-mixed57.77 34656.90 34860.38 36567.70 38735.61 39669.18 37153.97 39732.30 39357.49 37379.88 33840.39 34868.57 39038.78 37972.37 32976.97 371
WB-MVS54.94 34754.72 34955.60 37373.50 37420.90 40574.27 35461.19 39059.16 33650.61 38374.15 37047.19 30175.78 37217.31 39735.07 39270.12 380
LCM-MVSNet54.25 34849.68 35867.97 35553.73 40045.28 38166.85 37980.78 31435.96 38939.45 39062.23 3858.70 40078.06 35748.24 35051.20 38480.57 363
mvsany_test353.99 34951.45 35461.61 36455.51 39644.74 38463.52 38645.41 40343.69 38058.11 37176.45 36217.99 38963.76 39454.77 31347.59 38776.34 373
SSC-MVS53.88 35053.59 35154.75 37572.87 37919.59 40673.84 35660.53 39257.58 35049.18 38573.45 37346.34 30975.47 37516.20 40032.28 39469.20 381
FPMVS53.68 35151.64 35359.81 36665.08 39051.03 36469.48 37069.58 37541.46 38240.67 38872.32 37516.46 39270.00 38824.24 39465.42 35958.40 390
APD_test153.31 35249.93 35763.42 36265.68 38950.13 36871.59 36166.90 38134.43 39040.58 38971.56 3778.65 40176.27 36834.64 38455.36 37963.86 386
N_pmnet52.79 35353.26 35251.40 37778.99 3527.68 40969.52 3693.89 40851.63 37057.01 37474.98 36940.83 34565.96 39237.78 38064.67 36180.56 364
test_f52.09 35450.82 35555.90 37153.82 39942.31 39159.42 38958.31 39536.45 38856.12 37870.96 37812.18 39557.79 39653.51 31956.57 37667.60 382
EGC-MVSNET52.07 35547.05 35967.14 35683.51 27960.71 26680.50 29967.75 3790.07 4030.43 40475.85 36724.26 38381.54 34128.82 38862.25 36559.16 388
new_pmnet50.91 35650.29 35652.78 37668.58 38634.94 39863.71 38556.63 39639.73 38444.95 38665.47 38221.93 38658.48 39534.98 38356.62 37564.92 384
ANet_high50.57 35746.10 36163.99 36048.67 40339.13 39470.99 36480.85 31361.39 31931.18 39257.70 39017.02 39173.65 38331.22 38715.89 40079.18 367
test_vis3_rt49.26 35847.02 36056.00 37054.30 39745.27 38266.76 38048.08 40036.83 38744.38 38753.20 3927.17 40364.07 39356.77 30555.66 37758.65 389
testf145.72 35941.96 36257.00 36856.90 39445.32 37966.14 38159.26 39326.19 39430.89 39360.96 3874.14 40470.64 38626.39 39246.73 38955.04 391
APD_test245.72 35941.96 36257.00 36856.90 39445.32 37966.14 38159.26 39326.19 39430.89 39360.96 3874.14 40470.64 38626.39 39246.73 38955.04 391
Gipumacopyleft45.18 36141.86 36455.16 37477.03 36051.52 36132.50 39680.52 31832.46 39227.12 39535.02 3969.52 39975.50 37322.31 39560.21 37238.45 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36240.28 36555.82 37240.82 40542.54 39065.12 38463.99 38734.43 39024.48 39657.12 3913.92 40676.17 37017.10 39855.52 37848.75 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36338.86 36646.69 37853.84 39816.45 40748.61 39349.92 39837.49 38631.67 39160.97 3868.14 40256.42 39728.42 38930.72 39567.19 383
E-PMN31.77 36430.64 36735.15 38152.87 40127.67 40057.09 39147.86 40124.64 39616.40 40133.05 39711.23 39754.90 39814.46 40118.15 39822.87 397
test_method31.52 36529.28 36938.23 38027.03 4076.50 41020.94 39862.21 3894.05 40122.35 39952.50 39313.33 39347.58 40027.04 39134.04 39360.62 387
EMVS30.81 36629.65 36834.27 38250.96 40225.95 40256.58 39246.80 40224.01 39715.53 40230.68 39812.47 39454.43 39912.81 40217.05 39922.43 398
MVEpermissive26.22 2330.37 36725.89 37143.81 37944.55 40435.46 39728.87 39739.07 40418.20 39818.58 40040.18 3952.68 40747.37 40117.07 39923.78 39748.60 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 36826.61 3700.00 3880.00 4110.00 4130.00 39989.26 1730.00 4060.00 40788.61 17661.62 1610.00 4070.00 4060.00 4050.00 403
tmp_tt18.61 36921.40 37210.23 3854.82 40810.11 40834.70 39530.74 4061.48 40223.91 39826.07 39928.42 37813.41 40427.12 39015.35 4017.17 399
wuyk23d16.82 37015.94 37319.46 38458.74 39331.45 39939.22 3943.74 4096.84 4006.04 4032.70 4031.27 40824.29 40310.54 40314.40 4022.63 400
ab-mvs-re7.23 3719.64 3740.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 40786.72 2260.00 4110.00 4070.00 4060.00 4050.00 403
test1236.12 3728.11 3750.14 3860.06 4100.09 41171.05 3630.03 4110.04 4050.25 4061.30 4050.05 4090.03 4060.21 4050.01 4040.29 401
testmvs6.04 3738.02 3760.10 3870.08 4090.03 41269.74 3680.04 4100.05 4040.31 4051.68 4040.02 4100.04 4050.24 4040.02 4030.25 402
pcd_1.5k_mvsjas5.26 3747.02 3770.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 40663.15 1380.00 4070.00 4060.00 4050.00 403
test_blank0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
uanet_test0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
DCPMVS0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
sosnet-low-res0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
sosnet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
uncertanet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
Regformer0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
uanet0.00 3750.00 3780.00 3880.00 4110.00 4130.00 3990.00 4120.00 4060.00 4070.00 4060.00 4110.00 4070.00 4060.00 4050.00 403
WAC-MVS42.58 38839.46 377
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24292.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 411
eth-test0.00 411
ZD-MVS94.38 2572.22 4492.67 6170.98 18087.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
IU-MVS95.30 271.25 5792.95 5166.81 25292.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 243
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 243
sam_mvs50.01 275
ambc75.24 30473.16 37750.51 36763.05 38887.47 22564.28 34777.81 35617.80 39089.73 26657.88 29460.64 37085.49 315
MTGPAbinary92.02 85
test_post178.90 3215.43 40248.81 29585.44 31759.25 279
test_post5.46 40150.36 27384.24 324
patchmatchnet-post74.00 37151.12 26488.60 287
GG-mvs-BLEND75.38 30381.59 31855.80 32679.32 31369.63 37467.19 32273.67 37243.24 32988.90 28350.41 33384.50 17381.45 358
MTMP92.18 3532.83 405
gm-plane-assit81.40 32153.83 34562.72 30880.94 32892.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 23985.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23484.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24563.62 22179.83 32662.31 31160.32 36386.73 22432.02 37088.96 28150.28 33671.57 33686.15 304
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34587.04 3988.98 27974.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 35181.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 281
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 253
无先验87.48 15988.98 18660.00 32894.12 12167.28 21488.97 242
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29481.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 249
test22291.50 7768.26 12484.16 24883.20 29054.63 36279.74 12991.63 9958.97 19391.42 8586.77 294
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33585.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 298
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 412
nn0.00 412
door-mid69.98 373
lessismore_v078.97 25881.01 32857.15 30765.99 38261.16 36082.82 30939.12 35291.34 23859.67 27546.92 38888.43 259
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18489.83 215
test1192.23 79
door69.44 376
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39575.16 34855.10 36066.53 33149.34 28553.98 31687.94 265
MDTV_nov1_ep1369.97 29183.18 28753.48 34777.10 33780.18 32560.45 32369.33 30480.44 33248.89 29486.90 30251.60 32878.51 255
ACMMP++_ref81.95 215
ACMMP++81.25 221
Test By Simon64.33 125
ITE_SJBPF78.22 27081.77 31560.57 26883.30 28669.25 21867.54 31787.20 21536.33 36387.28 30154.34 31574.62 31186.80 293
DeepMVS_CXcopyleft27.40 38340.17 40626.90 40124.59 40717.44 39923.95 39748.61 3949.77 39826.48 40218.06 39624.47 39628.83 396