This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2999.58 2399.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2599.66 1099.56 29
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2599.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4499.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1799.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3699.49 3999.57 26
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2298.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4899.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4599.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsm_n_192097.55 1197.89 396.53 8298.41 7491.73 11098.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 174
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14792.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7698.57 2198.35 5193.69 1899.40 11097.06 3599.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3799.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 3998.27 3992.37 12798.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19398.85 1598.94 993.33 2399.83 2696.72 4399.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14498.04 8995.96 697.09 5797.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
MM97.29 1996.98 2698.23 1198.01 10995.03 2698.07 5495.76 28897.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11797.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8496.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1598.32 3093.21 9697.18 5298.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24592.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 8199.78 3599.06 799.41 5299.59 22
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7199.90 296.18 6699.50 3699.58 25
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1598.24 4793.19 9997.14 5498.34 5491.59 5399.87 795.46 9399.59 1999.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1598.31 3193.21 9697.15 5398.33 5791.35 5899.86 895.63 8799.59 1999.62 18
MVS_030497.04 2896.73 4297.96 2397.60 13894.36 3698.01 5994.09 35197.33 296.29 8898.79 2489.73 8599.86 899.36 299.42 4999.67 13
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10796.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7597.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 1998.18 5792.64 12396.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15198.01 3198.32 5992.33 3999.58 7794.85 10499.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10498.49 1994.66 4897.24 5198.41 4792.31 4198.94 16696.61 4699.46 4298.96 94
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13498.04 8994.81 3996.59 7698.37 4991.24 6299.64 6695.16 9799.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6197.97 8691.24 6298.75 18796.92 3899.33 6198.94 97
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8697.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5898.03 8091.72 4798.71 19397.10 3499.17 7698.90 104
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1898.09 7393.27 9595.95 10498.33 5791.04 6799.88 495.20 9699.57 2599.60 21
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17297.97 6998.76 894.93 3098.84 1699.06 488.80 9699.65 5899.06 798.63 10498.18 163
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 2998.13 6592.72 12096.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
patch_mono-296.83 4197.44 1395.01 17899.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2199.50 3699.72 11
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10497.44 4398.55 3390.93 6999.55 8796.06 6799.25 6999.51 37
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 12997.14 5498.44 4491.17 6599.85 1894.35 11899.46 4299.57 26
MP-MVScopyleft96.77 4496.45 5897.72 3899.39 1393.80 5398.41 2398.06 8293.37 9195.54 11998.34 5490.59 7599.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5797.71 4098.40 7594.07 4898.21 4298.45 2289.86 20997.11 5698.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13290.72 16098.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 157
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 19091.73 11097.98 6398.30 3296.19 596.10 9798.95 889.42 8699.76 3898.90 1099.08 8597.43 206
MP-MVS-pluss96.70 4796.27 6297.98 2199.23 3094.71 2996.96 17998.06 8290.67 18495.55 11798.78 2591.07 6699.86 896.58 4799.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6397.44 4397.66 11092.76 2999.33 11596.86 4097.76 13799.08 83
HPM-MVScopyleft96.69 4996.45 5897.40 5099.36 1893.11 7198.87 698.06 8291.17 16796.40 8597.99 8490.99 6899.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
DELS-MVS96.61 5296.38 6097.30 5497.79 12393.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS93.97 196.61 5297.09 1895.15 17098.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4199.48 4099.45 47
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18990.25 17397.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 167
MVSMamba_PlusPlus96.51 5596.48 5396.59 7998.07 10591.97 10598.14 4897.79 12390.43 19697.34 4897.52 12491.29 6099.19 12898.12 1599.64 1398.60 127
EI-MVSNet-Vis-set96.51 5596.47 5496.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7199.58 7796.44 5198.32 11899.13 77
HPM-MVS_fast96.51 5596.27 6297.22 6199.32 2292.74 7998.74 998.06 8290.57 19396.77 6598.35 5190.21 7899.53 9194.80 10999.63 1699.38 58
EC-MVSNet96.42 5896.47 5496.26 11097.01 16991.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8798.60 20397.45 2999.11 8498.67 125
fmvsm_s_conf0.1_n_a96.40 5996.47 5496.16 11895.48 25390.69 16197.91 7698.33 2994.07 6598.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 163
CANet96.39 6096.02 6897.50 4797.62 13593.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3999.20 7499.29 63
dcpmvs_296.37 6197.05 2294.31 21998.96 4684.11 32297.56 11997.51 15993.92 7097.43 4598.52 3592.75 3099.32 11797.32 3399.50 3699.51 37
EI-MVSNet-UG-set96.34 6296.30 6196.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7699.58 7796.23 5797.96 13198.90 104
train_agg96.30 6395.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 9999.37 5999.39 56
ACMMPcopyleft96.27 6495.93 6997.28 5799.24 2892.62 8298.25 3598.81 592.99 10794.56 13798.39 4888.96 9399.85 1894.57 11797.63 13899.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6596.19 6496.39 9898.23 9191.35 13196.24 24498.79 693.99 6895.80 10897.65 11189.92 8399.24 12495.87 7499.20 7498.58 129
iter_conf05_1196.17 6696.16 6596.21 11497.48 14690.74 15998.14 4897.80 12292.80 11897.34 4897.29 13488.54 10399.10 14396.40 5299.64 1398.80 116
test_fmvsmconf0.01_n96.15 6795.85 7297.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
iter_conf0596.12 6896.06 6796.29 10798.07 10591.48 12497.25 15397.65 13990.43 19694.65 13497.52 12491.29 6099.19 12898.12 1599.56 2698.22 159
DeepC-MVS93.07 396.06 6995.66 7497.29 5597.96 11293.17 7097.30 14998.06 8293.92 7093.38 16598.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16798.30 2898.57 1889.01 23693.97 15297.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
sasdasda96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3097.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 20098.91 101
ETV-MVS96.02 7195.89 7196.40 9697.16 15592.44 8897.47 13197.77 12594.55 5096.48 8194.51 27891.23 6498.92 16895.65 8598.19 12397.82 188
canonicalmvs96.02 7195.45 7997.75 3597.59 13995.15 2398.28 3097.60 14694.52 5296.27 9096.12 20287.65 11699.18 13296.20 6394.82 20098.91 101
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
UA-Net95.95 7595.53 7697.20 6397.67 12892.98 7497.65 10798.13 6594.81 3996.61 7498.35 5188.87 9499.51 9690.36 19497.35 14899.11 81
MGCFI-Net95.94 7695.40 8397.56 4697.59 13994.62 3098.21 4297.57 15194.41 5796.17 9496.16 20087.54 12099.17 13496.19 6594.73 20598.91 101
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12598.15 6293.87 7297.52 4097.61 11785.29 15299.53 9195.81 7995.27 19299.16 73
alignmvs95.87 7895.23 8897.78 3197.56 14495.19 2197.86 8097.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19698.95 96
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17491.49 12397.50 12597.56 15593.99 6895.13 12697.92 8987.89 11298.78 18295.97 7297.33 14999.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19695.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 114
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8299.48 10192.08 16198.59 10798.44 146
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18790.45 16897.29 15097.44 17794.00 6795.46 12197.98 8587.52 12298.73 18995.64 8697.33 14999.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16596.04 25297.48 16293.47 8895.67 11498.10 7389.17 8999.25 12391.27 17998.77 9999.13 77
baseline95.58 8495.42 8296.08 12096.78 18290.41 17097.16 16497.45 17393.69 7995.65 11597.85 9687.29 12798.68 19595.66 8297.25 15399.13 77
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2698.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
EIA-MVS95.53 8695.47 7895.71 14497.06 16389.63 18997.82 8897.87 11193.57 8093.92 15395.04 25390.61 7498.95 16594.62 11498.68 10298.54 131
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17395.34 1698.48 2097.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
PS-MVSNAJ95.37 8895.33 8695.49 15897.35 14990.66 16395.31 29097.48 16293.85 7396.51 7995.70 22788.65 9999.65 5894.80 10998.27 12096.17 245
MVSFormer95.37 8895.16 9095.99 12996.34 21591.21 13698.22 4097.57 15191.42 15596.22 9297.32 13286.20 14297.92 28294.07 12199.05 8798.85 110
xiu_mvs_v2_base95.32 9095.29 8795.40 16397.22 15190.50 16695.44 28497.44 17793.70 7896.46 8396.18 19788.59 10299.53 9194.79 11197.81 13496.17 245
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14697.27 13787.48 12399.73 4293.53 13297.77 13698.55 130
diffmvspermissive95.25 9295.13 9195.63 14796.43 21189.34 20595.99 25697.35 18992.83 11696.31 8797.37 13186.44 13798.67 19696.26 5597.19 15598.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive95.23 9394.81 9696.51 8697.18 15491.58 12098.26 3498.12 6794.38 6094.90 12898.15 7282.28 20798.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet95.22 9495.04 9395.76 13797.49 14589.56 19398.67 1097.00 21990.69 18294.24 14497.62 11689.79 8498.81 17993.39 13896.49 17098.92 100
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18197.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19793.36 6598.65 1198.36 2494.12 6489.25 27498.06 7782.20 20999.77 3793.41 13799.32 6299.18 72
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 13894.77 13297.96 8787.01 13199.09 14791.31 17896.77 16298.36 153
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13996.58 19491.71 11296.25 24197.35 18992.99 10796.70 6896.63 17582.67 19799.44 10696.22 5897.46 14196.11 250
xiu_mvs_v1_base95.01 9894.76 9795.75 13996.58 19491.71 11296.25 24197.35 18992.99 10796.70 6896.63 17582.67 19799.44 10696.22 5897.46 14196.11 250
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13996.58 19491.71 11296.25 24197.35 18992.99 10796.70 6896.63 17582.67 19799.44 10696.22 5897.46 14196.11 250
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16297.24 15497.73 12991.80 14392.93 17896.62 17889.13 9099.14 13989.21 22297.78 13598.97 93
lupinMVS94.99 10294.56 10496.29 10796.34 21591.21 13695.83 26496.27 26788.93 24196.22 9296.88 15786.20 14298.85 17595.27 9599.05 8798.82 114
Effi-MVS+94.93 10394.45 11196.36 10196.61 19191.47 12696.41 22597.41 18291.02 17394.50 13995.92 21187.53 12198.78 18293.89 12796.81 16198.84 113
IS-MVSNet94.90 10494.52 10896.05 12397.67 12890.56 16498.44 2196.22 27093.21 9693.99 15097.74 10485.55 15098.45 21589.98 19997.86 13299.14 76
MVS_Test94.89 10594.62 10195.68 14596.83 17889.55 19496.70 20197.17 20091.17 16795.60 11696.11 20687.87 11398.76 18693.01 14897.17 15698.72 120
PVSNet_Blended94.87 10694.56 10495.81 13698.27 8389.46 20095.47 28398.36 2488.84 24494.36 14196.09 20788.02 10999.58 7793.44 13598.18 12498.40 149
jason94.84 10794.39 11396.18 11795.52 25190.93 15196.09 25096.52 25689.28 22796.01 10297.32 13284.70 15998.77 18595.15 9898.91 9698.85 110
jason: jason.
API-MVS94.84 10794.49 10995.90 13197.90 11892.00 10497.80 9197.48 16289.19 23094.81 13096.71 16488.84 9599.17 13488.91 22998.76 10096.53 234
test_yl94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15284.30 16599.31 11993.10 14195.12 19498.75 117
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12591.22 13496.85 18697.10 20591.23 16495.71 11196.93 15284.30 16599.31 11993.10 14195.12 19498.75 117
WTY-MVS94.71 11194.02 11796.79 7297.71 12792.05 10296.59 21697.35 18990.61 19094.64 13596.93 15286.41 13899.39 11191.20 18194.71 20698.94 97
mamv494.66 11296.10 6690.37 34298.01 10973.41 38896.82 19097.78 12489.95 20794.52 13897.43 12992.91 2799.09 14798.28 1499.16 7898.60 127
mvsmamba94.57 11394.14 11695.87 13297.03 16789.93 18497.84 8495.85 28491.34 15894.79 13196.80 16080.67 23298.81 17994.85 10498.12 12798.85 110
sss94.51 11493.80 12296.64 7497.07 16091.97 10596.32 23698.06 8288.94 24094.50 13996.78 16184.60 16099.27 12291.90 16296.02 17598.68 124
test_cas_vis1_n_192094.48 11594.55 10794.28 22196.78 18286.45 28597.63 11397.64 14293.32 9497.68 3898.36 5073.75 32099.08 15096.73 4299.05 8797.31 213
CANet_DTU94.37 11693.65 12696.55 8196.46 20992.13 10096.21 24596.67 24894.38 6093.53 16197.03 15079.34 25799.71 4690.76 18798.45 11497.82 188
AdaColmapbinary94.34 11793.68 12596.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19297.06 14983.62 17799.54 8989.34 21698.07 12897.70 193
bld_raw_dy_0_6494.33 11893.90 12095.62 14997.64 13290.95 14995.17 29897.47 16582.34 35991.28 21996.84 15989.10 9199.04 16096.27 5499.00 9196.85 227
CNLPA94.28 11993.53 13196.52 8398.38 7892.55 8596.59 21696.88 23290.13 20491.91 19897.24 13985.21 15399.09 14787.64 25397.83 13397.92 180
MAR-MVS94.22 12093.46 13696.51 8698.00 11192.19 9997.67 10497.47 16588.13 26993.00 17395.84 21584.86 15899.51 9687.99 24098.17 12597.83 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR94.18 12193.42 14096.48 8997.64 13291.42 12995.55 27897.71 13588.99 23792.34 18895.82 21789.19 8899.11 14286.14 27997.38 14698.90 104
SDMVSNet94.17 12293.61 12795.86 13498.09 10191.37 13097.35 14398.20 5293.18 10091.79 20297.28 13579.13 26098.93 16794.61 11592.84 23597.28 214
test_vis1_n_192094.17 12294.58 10392.91 28297.42 14882.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1898.82 9797.40 208
h-mvs3394.15 12493.52 13396.04 12497.81 12290.22 17497.62 11597.58 15095.19 2096.74 6697.45 12683.67 17599.61 6995.85 7679.73 36898.29 156
CHOSEN 1792x268894.15 12493.51 13496.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15697.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
Vis-MVSNet (Re-imp)94.15 12493.88 12194.95 18497.61 13687.92 24998.10 5195.80 28792.22 12993.02 17297.45 12684.53 16297.91 28588.24 23797.97 13099.02 86
CDS-MVSNet94.14 12793.54 13095.93 13096.18 22291.46 12796.33 23597.04 21588.97 23993.56 15896.51 18287.55 11997.89 28689.80 20495.95 17798.44 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft91.00 694.11 12893.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21296.71 16488.39 10499.52 9587.33 26097.13 15797.73 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FIs94.09 12993.70 12495.27 16695.70 24392.03 10398.10 5198.68 1393.36 9390.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 258
PVSNet_BlendedMVS94.06 13093.92 11994.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14195.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
nrg03094.05 13193.31 14296.27 10995.22 27594.59 3198.34 2597.46 16892.93 11491.21 22396.64 17187.23 12998.22 23494.99 10285.80 31795.98 254
UGNet94.04 13293.28 14396.31 10396.85 17591.19 13997.88 7997.68 13694.40 5893.00 17396.18 19773.39 32299.61 6991.72 16898.46 11398.13 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS94.01 13393.46 13695.64 14696.16 22490.45 16896.71 20096.89 23189.27 22893.46 16396.92 15587.29 12797.94 27988.70 23395.74 18298.53 132
114514_t93.95 13493.06 14796.63 7699.07 3791.61 11797.46 13397.96 10277.99 38393.00 17397.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
FC-MVSNet-test93.94 13593.57 12895.04 17695.48 25391.45 12898.12 5098.71 1193.37 9190.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 259
mvsany_test193.93 13693.98 11893.78 24894.94 29186.80 27494.62 30992.55 37388.77 25096.85 6298.49 3888.98 9298.08 25195.03 10095.62 18696.46 239
GeoE93.89 13793.28 14395.72 14396.96 17289.75 18898.24 3896.92 22889.47 22292.12 19497.21 14184.42 16398.39 22287.71 24796.50 16999.01 89
HY-MVS89.66 993.87 13892.95 15096.63 7697.10 15992.49 8795.64 27696.64 24989.05 23593.00 17395.79 22185.77 14899.45 10589.16 22594.35 20897.96 178
XVG-OURS-SEG-HR93.86 13993.55 12994.81 19097.06 16388.53 23195.28 29197.45 17391.68 14794.08 14997.68 10782.41 20598.90 17193.84 12992.47 24196.98 221
VDD-MVS93.82 14093.08 14696.02 12697.88 11989.96 18397.72 10095.85 28492.43 12595.86 10698.44 4468.42 35399.39 11196.31 5394.85 19898.71 122
mvs_anonymous93.82 14093.74 12394.06 22996.44 21085.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16699.02 86
HQP_MVS93.78 14293.43 13894.82 18896.21 21989.99 17997.74 9597.51 15994.85 3491.34 21396.64 17181.32 22398.60 20393.02 14692.23 24495.86 255
PS-MVSNAJss93.74 14393.51 13494.44 21093.91 32989.28 21097.75 9497.56 15592.50 12489.94 24996.54 18188.65 9998.18 23993.83 13090.90 27095.86 255
XVG-OURS93.72 14493.35 14194.80 19397.07 16088.61 22694.79 30697.46 16891.97 14193.99 15097.86 9581.74 21898.88 17292.64 15192.67 24096.92 225
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15595.78 22282.86 19398.67 19691.77 16795.71 18499.07 85
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19396.29 8898.31 6069.00 34699.16 13694.18 12095.87 17999.12 80
F-COLMAP93.58 14792.98 14995.37 16498.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16597.63 195
ab-mvs93.57 14892.55 16896.64 7497.28 15091.96 10795.40 28597.45 17389.81 21393.22 17196.28 19379.62 25499.46 10390.74 18893.11 23298.50 136
LS3D93.57 14892.61 16696.47 9097.59 13991.61 11797.67 10497.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 175
FA-MVS(test-final)93.52 15092.92 15195.31 16596.77 18488.54 23094.82 30596.21 27289.61 21794.20 14595.25 24683.24 18299.14 13990.01 19896.16 17498.25 157
Fast-Effi-MVS+93.46 15192.75 15995.59 15196.77 18490.03 17696.81 19197.13 20288.19 26591.30 21694.27 29486.21 14198.63 20087.66 25296.46 17298.12 169
hse-mvs293.45 15292.99 14894.81 19097.02 16888.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21495.85 7679.13 37297.35 211
QAPM93.45 15292.27 17896.98 7196.77 18492.62 8298.39 2498.12 6784.50 33888.27 29697.77 10282.39 20699.81 2985.40 29298.81 9898.51 135
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16195.34 26492.83 7697.17 16398.58 1792.98 11290.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
1112_ss93.37 15492.42 17596.21 11497.05 16590.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13988.12 23893.67 22698.50 136
UniMVSNet (Re)93.31 15692.55 16895.61 15095.39 25893.34 6697.39 13998.71 1193.14 10390.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15796.65 20797.18 19893.72 7691.68 20697.26 13879.33 25898.63 20092.13 15892.28 24395.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet93.24 15892.48 17395.51 15695.70 24392.39 8997.86 8098.66 1692.30 12892.09 19695.37 24180.49 23698.40 21893.95 12485.86 31695.75 267
test_fmvs193.21 15993.53 13192.25 30196.55 19981.20 35097.40 13896.96 22190.68 18396.80 6398.04 7969.25 34598.40 21897.58 2498.50 10997.16 218
MVSTER93.20 16092.81 15694.37 21396.56 19789.59 19297.06 16997.12 20391.24 16391.30 21695.96 20982.02 21298.05 25893.48 13490.55 27495.47 276
test111193.19 16192.82 15594.30 22097.58 14384.56 31798.21 4289.02 39293.53 8594.58 13698.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 13085.41 30298.21 4288.23 39493.43 8994.70 13398.21 6772.57 32499.07 15493.05 14598.49 11099.25 68
HQP-MVS93.19 16192.74 16094.54 20695.86 23689.33 20696.65 20797.39 18393.55 8190.14 23795.87 21380.95 22698.50 21192.13 15892.10 24995.78 263
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18887.27 26290.29 38297.72 13186.61 30591.34 21395.29 24384.29 16798.41 21793.25 13998.94 9497.35 211
sd_testset93.10 16592.45 17495.05 17598.09 10189.21 21296.89 18397.64 14293.18 10091.79 20297.28 13575.35 30698.65 19888.99 22792.84 23597.28 214
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23383.25 33297.14 16696.72 24193.85 7391.20 22493.44 32983.08 18798.30 22991.69 17195.73 18396.50 236
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4097.57 15191.42 15590.08 24795.55 23582.85 19497.92 28294.07 12191.58 25695.40 282
VDDNet93.05 16892.07 18296.02 12696.84 17690.39 17198.08 5395.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10394.85 19898.47 141
thisisatest053093.03 16992.21 18095.49 15897.07 16089.11 21797.49 13092.19 37590.16 20294.09 14896.41 18776.43 29799.05 15790.38 19395.68 18598.31 155
EI-MVSNet93.03 16992.88 15393.48 26295.77 24186.98 27196.44 22197.12 20390.66 18691.30 21697.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
CLD-MVS92.98 17192.53 17094.32 21796.12 22989.20 21395.28 29197.47 16592.66 12189.90 25095.62 23180.58 23498.40 21892.73 15092.40 24295.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tttt051792.96 17292.33 17794.87 18797.11 15887.16 26897.97 6992.09 37690.63 18893.88 15497.01 15176.50 29499.06 15690.29 19695.45 18998.38 151
ACMM89.79 892.96 17292.50 17294.35 21496.30 21788.71 22497.58 11797.36 18891.40 15790.53 23096.65 17079.77 25098.75 18791.24 18091.64 25495.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22488.26 23897.65 10797.46 16891.29 15990.12 24397.16 14379.05 26298.73 18992.25 15491.89 25295.31 289
BH-untuned92.94 17492.62 16593.92 24297.22 15186.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22587.19 26397.27 15297.24 216
DU-MVS92.90 17692.04 18395.49 15894.95 28992.83 7697.16 16498.24 4793.02 10690.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 263
PatchMatch-RL92.90 17692.02 18595.56 15298.19 9590.80 15595.27 29397.18 19887.96 27191.86 20195.68 22880.44 23798.99 16384.01 30897.54 14096.89 226
PMMVS92.86 17892.34 17694.42 21294.92 29286.73 27794.53 31396.38 26384.78 33594.27 14395.12 25283.13 18698.40 21891.47 17596.49 17098.12 169
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26492.73 8098.27 3298.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 231
Test_1112_low_res92.84 18091.84 19195.85 13597.04 16689.97 18295.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14387.70 24893.58 23198.49 138
baseline192.82 18191.90 18995.55 15497.20 15390.77 15797.19 16194.58 34092.20 13192.36 18596.34 19184.16 16998.21 23589.20 22383.90 34897.68 194
131492.81 18292.03 18495.14 17195.33 26789.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18189.26 21997.05 15897.11 219
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14196.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16698.89 107
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23281.05 35197.98 6397.08 20890.72 18196.79 6498.18 7063.07 37698.45 21597.62 2398.42 11597.36 209
BH-RMVSNet92.72 18591.97 18794.97 18297.16 15587.99 24796.15 24895.60 29890.62 18991.87 20097.15 14578.41 27598.57 20783.16 31597.60 13998.36 153
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21288.20 24197.36 14297.25 19791.52 15088.30 29496.64 17178.46 27498.72 19291.86 16591.48 25895.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 18081.89 34496.92 18193.71 36192.41 12684.30 34894.60 27485.08 15597.03 34191.51 17397.36 14798.40 149
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17194.76 30092.07 10197.53 12398.11 7092.90 11589.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
thres600view792.49 18991.60 19895.18 16997.91 11789.47 19897.65 10794.66 33792.18 13593.33 16694.91 25878.06 28299.10 14381.61 32994.06 22196.98 221
thres100view90092.43 19091.58 19994.98 18197.92 11689.37 20497.71 10294.66 33792.20 13193.31 16794.90 25978.06 28299.08 15081.40 33294.08 21796.48 237
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9797.53 15792.00 14088.85 28196.50 18375.62 30498.11 24693.88 12891.56 25795.48 274
thres40092.42 19191.52 20295.12 17397.85 12089.29 20897.41 13494.88 33192.19 13393.27 16994.46 28378.17 27899.08 15081.40 33294.08 21796.98 221
tfpn200view992.38 19391.52 20294.95 18497.85 12089.29 20897.41 13494.88 33192.19 13393.27 16994.46 28378.17 27899.08 15081.40 33294.08 21796.48 237
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5896.80 23891.18 16697.77 3797.93 8858.02 38498.29 23097.63 2298.21 12297.23 217
WR-MVS92.34 19591.53 20194.77 19595.13 28290.83 15496.40 22997.98 10091.88 14289.29 27195.54 23682.50 20297.80 29389.79 20585.27 32595.69 270
NR-MVSNet92.34 19591.27 21295.53 15594.95 28993.05 7297.39 13998.07 7992.65 12284.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 263
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11397.53 15792.04 13888.76 28496.45 18574.62 31298.09 25093.91 12691.48 25895.45 278
TAPA-MVS90.10 792.30 19891.22 21595.56 15298.33 8089.60 19196.79 19297.65 13981.83 36391.52 20897.23 14087.94 11198.91 17071.31 38498.37 11698.17 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051592.29 19991.30 21095.25 16796.60 19288.90 22194.36 32192.32 37487.92 27293.43 16494.57 27577.28 28999.00 16289.42 21495.86 18097.86 184
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27185.52 30097.03 17096.63 25292.09 13689.11 27795.14 25080.33 24098.08 25187.54 25694.74 20496.03 253
IterMVS-LS92.29 19991.94 18893.34 26796.25 21886.97 27296.57 21997.05 21390.67 18489.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12483.69 32992.88 36396.72 24187.91 27393.00 17394.86 26178.51 27399.05 15786.53 27197.45 14598.47 141
VPNet92.23 20391.31 20994.99 17995.56 24990.96 14897.22 15997.86 11592.96 11390.96 22596.62 17875.06 30798.20 23691.90 16283.65 35095.80 261
thres20092.23 20391.39 20594.75 19797.61 13689.03 21896.60 21595.09 32192.08 13793.28 16894.00 30778.39 27699.04 16081.26 33794.18 21396.19 244
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12497.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26294.48 334
XXY-MVS92.16 20591.23 21494.95 18494.75 30190.94 15097.47 13197.43 18089.14 23188.90 27896.43 18679.71 25198.24 23289.56 21187.68 30095.67 271
BH-w/o92.14 20791.75 19393.31 26896.99 17185.73 29795.67 27295.69 29388.73 25189.26 27394.82 26482.97 19198.07 25585.26 29496.32 17396.13 249
Anonymous20240521192.07 20890.83 22995.76 13798.19 9588.75 22397.58 11795.00 32486.00 31593.64 15797.45 12666.24 36799.53 9190.68 19092.71 23899.01 89
FE-MVS92.05 20991.05 21995.08 17496.83 17887.93 24893.91 33995.70 29186.30 30994.15 14794.97 25476.59 29399.21 12684.10 30696.86 15998.09 173
WR-MVS_H92.00 21091.35 20693.95 23895.09 28489.47 19898.04 5798.68 1391.46 15388.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
Anonymous2024052991.98 21190.73 23495.73 14298.14 9989.40 20297.99 6297.72 13179.63 37793.54 16097.41 13069.94 34299.56 8591.04 18491.11 26598.22 159
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25984.11 32293.15 35895.39 30489.54 21992.10 19593.68 31982.82 19598.13 24284.81 29895.32 19198.52 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing9191.90 21391.02 22094.53 20796.54 20086.55 28495.86 26295.64 29791.77 14491.89 19993.47 32869.94 34298.86 17390.23 19793.86 22498.18 163
CP-MVSNet91.89 21491.24 21393.82 24595.05 28588.57 22897.82 8898.19 5591.70 14688.21 29895.76 22381.96 21397.52 31987.86 24284.65 33495.37 285
SCA91.84 21591.18 21793.83 24495.59 24784.95 31394.72 30795.58 30090.82 17692.25 19093.69 31775.80 30198.10 24786.20 27795.98 17698.45 143
FMVSNet391.78 21690.69 23795.03 17796.53 20292.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
AUN-MVS91.76 21790.75 23294.81 19097.00 17088.57 22896.65 20796.49 25889.63 21692.15 19296.12 20278.66 27198.50 21190.83 18579.18 37197.36 209
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
MVS91.71 21890.44 24495.51 15695.20 27791.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14385.97 28497.46 14195.83 259
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10287.02 32295.95 21083.37 18197.38 33079.46 34896.84 16097.88 183
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing1191.68 22190.75 23294.47 20896.53 20286.56 28395.76 26994.51 34291.10 17191.24 22293.59 32368.59 35098.86 17391.10 18294.29 21098.00 177
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22098.69 19488.64 23494.57 20796.81 229
testing9991.62 22390.72 23594.32 21796.48 20786.11 29495.81 26594.76 33591.55 14991.75 20493.44 32968.55 35198.82 17790.43 19193.69 22598.04 176
test250691.60 22490.78 23094.04 23197.66 13083.81 32598.27 3275.53 40993.43 8995.23 12398.21 6767.21 35999.07 15493.01 14898.49 11099.25 68
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 25086.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 21998.02 26389.25 22085.04 33195.20 297
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20198.05 25889.01 22685.07 32994.64 332
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19292.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15197.01 220
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS91.55 22990.84 22893.69 25394.96 28888.28 23797.84 8498.24 4791.46 15388.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26387.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
PAPM91.52 23190.30 25095.20 16895.30 27089.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24175.67 36795.93 17897.63 195
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14796.40 21291.57 12195.34 28793.48 36390.60 19275.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 133
TR-MVS91.48 23390.59 24094.16 22596.40 21287.33 25995.67 27295.34 31087.68 28491.46 21095.52 23776.77 29298.35 22582.85 32093.61 22996.79 230
tpmrst91.44 23491.32 20891.79 31395.15 28079.20 37393.42 35395.37 30688.55 25693.49 16293.67 32082.49 20398.27 23190.41 19289.34 28697.90 181
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 16990.76 22892.37 34679.02 26498.07 25588.81 23096.74 16397.63 195
MSDG91.42 23590.24 25494.96 18397.15 15788.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19796.98 221
c3_l91.38 23790.89 22392.88 28495.58 24886.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18090.35 23493.83 31171.84 32797.96 27487.22 26293.61 22998.21 161
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21197.98 26787.80 24485.37 32294.84 316
GBi-Net91.35 24090.27 25294.59 20096.51 20491.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20491.18 14097.50 12596.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15566.35 36598.23 23390.30 19590.99 26897.96 178
FMVSNet291.31 24390.08 26194.99 17996.51 20492.21 9697.41 13496.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14497.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
CVMVSNet91.23 24691.75 19389.67 35095.77 24174.69 38496.44 22194.88 33185.81 31792.18 19197.64 11479.07 26195.58 36988.06 23995.86 18098.74 119
cl2291.21 24790.56 24293.14 27596.09 23186.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23197.62 30989.87 20386.93 30794.99 305
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9398.18 5791.29 15987.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
cascas91.20 24890.08 26194.58 20494.97 28789.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22492.14 15794.75 20396.23 241
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 18093.77 31579.43 25698.20 23690.70 18992.18 24797.90 181
tt080591.09 25290.07 26494.16 22595.61 24688.31 23597.56 11996.51 25789.56 21889.17 27595.64 23067.08 36398.38 22391.07 18388.44 29595.80 261
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23097.97 27086.52 27285.48 32094.95 306
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22198.00 26587.18 26484.92 33394.93 310
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21097.97 27086.45 27484.12 34394.33 340
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26784.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19297.82 29287.83 24383.25 35294.80 322
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22289.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20781.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26286.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 18997.53 31787.72 24585.57 31994.93 310
cl____90.96 26090.32 24892.89 28395.37 26186.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19097.54 31587.70 24885.59 31894.92 312
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15694.60 31096.02 27784.62 33687.45 31195.15 24981.88 21697.45 32487.70 24887.87 29994.27 344
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17289.38 26795.44 24068.61 34998.60 20389.46 21391.05 26694.79 324
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29586.89 30092.40 18292.36 34980.91 22897.05 34081.09 33893.95 22297.60 200
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10397.37 18688.85 24387.65 30894.08 30581.08 22598.10 24784.68 30083.79 34994.66 331
RPSCF90.75 26690.86 22590.42 34196.84 17676.29 38295.61 27796.34 26483.89 34491.38 21197.87 9376.45 29598.78 18287.16 26592.23 24496.20 243
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12992.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9296.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18493.49 32677.82 28697.78 29586.03 28392.68 23998.11 172
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11197.65 13990.74 17987.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21987.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20284.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETVMVS90.52 27489.14 29394.67 19996.81 18187.85 25395.91 26093.97 35589.71 21592.34 18892.48 34465.41 37197.96 27481.37 33594.27 21198.21 161
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14786.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26783.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11387.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22894.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing22290.31 27888.96 29594.35 21496.54 20087.29 26095.50 28193.84 35990.97 17491.75 20492.96 33662.18 38098.00 26582.86 31894.08 21797.76 190
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25184.20 32194.30 32596.15 27490.61 19087.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19793.25 33377.51 28897.44 32587.30 26187.94 29898.12 169
AllTest90.23 28288.98 29493.98 23497.94 11486.64 27896.51 22095.54 30185.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23396.15 247
dmvs_re90.21 28389.50 28492.35 29695.47 25685.15 30895.70 27194.37 34690.94 17588.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 242
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20786.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20984.42 30488.04 29794.77 327
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16397.63 195
IterMVS90.15 28689.67 27991.61 31895.48 25383.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16897.61 199
tpm289.96 28889.21 29092.23 30294.91 29481.25 34893.78 34294.42 34480.62 37391.56 20793.44 32976.44 29697.94 27985.60 28992.08 25197.49 204
UWE-MVS89.91 28989.48 28591.21 32695.88 23578.23 37894.91 30490.26 38889.11 23292.35 18794.52 27768.76 34897.96 27483.95 31095.59 18797.42 207
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27487.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 204
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23684.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 26097.84 185
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21292.54 367
FMVSNet189.88 29288.31 30394.59 20095.41 25791.18 14097.50 12596.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
tpmvs89.83 29589.15 29291.89 30894.92 29280.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 21081.47 33189.92 28096.84 228
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11195.90 28189.84 21291.49 20996.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
tfpnnormal89.70 29788.40 30293.60 25695.15 28090.10 17597.56 11998.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23682.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 26097.84 185
Patchmatch-test89.42 29987.99 30693.70 25295.27 27185.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20797.50 32074.37 37394.76 20298.48 140
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 16986.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17784.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18287.55 38880.17 24399.51 9668.84 38993.95 22297.60 200
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9795.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23882.64 32589.67 28393.66 351
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 192
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18588.15 38480.05 24597.01 34372.43 38093.65 22797.54 203
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29385.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29580.81 37187.63 30992.36 34980.91 22897.03 34178.86 35185.12 32894.67 330
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23597.57 202
tpm cat188.36 31187.21 31491.81 31295.13 28280.55 35792.58 36795.70 29174.97 38987.45 31191.96 35678.01 28498.17 24080.39 34188.74 29296.72 232
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25596.38 240
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14585.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15496.51 235
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14496.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
testing387.67 31886.88 31990.05 34696.14 22780.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21695.35 286
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18680.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21495.60 36888.64 23477.02 37698.41 148
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27879.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21495.20 297
Syy-MVS87.13 32387.02 31887.47 36195.16 27873.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21495.20 297
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
TinyColmap86.82 32685.35 33291.21 32694.91 29482.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22884.60 30274.52 38292.97 359
test_040286.46 32884.79 33791.45 32195.02 28685.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19396.62 233
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26292.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27179.49 37090.55 38195.60 29883.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28985.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28985.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25969.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18892.18 373
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15784.38 1640.00 4150.00 4140.00 4130.00 411
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 990.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36875.56 368
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
PC_three_145290.77 17898.89 1498.28 6596.24 198.35 22595.76 8099.58 2399.59 22
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1999.67 699.77 2
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5998.10 7392.52 3699.65 5894.58 11699.31 63
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8697.43 4598.51 3690.71 7396.05 6899.26 6799.43 51
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3299.66 1099.74 8
OPU-MVS98.55 398.82 5296.86 398.25 3598.26 6696.04 299.24 12495.36 9499.59 1999.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2599.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
9.1496.75 4198.93 4797.73 9798.23 5091.28 16297.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2999.72 299.77 2
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 897.52 2599.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 143
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19698.45 143
sam_mvs81.94 215
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21798.08 251
patchmatchnet-post90.45 36782.65 20098.10 247
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 19094.80 322
MTMP97.86 8082.03 406
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19987.72 245
test9_res94.81 10899.38 5699.45 47
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
agg_prior293.94 12599.38 5699.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
TestCases93.98 23497.94 11486.64 27895.54 30185.38 32385.49 33896.77 16270.28 33799.15 13780.02 34392.87 23396.15 247
test_prior493.66 5796.42 224
test_prior296.35 23392.80 11896.03 9997.59 11892.01 4495.01 10199.38 56
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
新几何295.79 267
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 8099.67 5686.50 27399.13 8198.69 123
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7799.54 8987.95 24199.12 8398.49 138
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9699.15 7998.72 120
testdata299.67 5685.96 285
segment_acmp92.89 28
testdata95.46 16298.18 9788.90 22197.66 13782.73 35697.03 5998.07 7690.06 7998.85 17589.67 20898.98 9298.64 126
testdata195.26 29593.10 105
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 7099.46 10399.25 6999.22 70
plane_prior796.21 21989.98 181
plane_prior696.10 23090.00 17781.32 223
plane_prior597.51 15998.60 20393.02 14692.23 24495.86 255
plane_prior496.64 171
plane_prior390.00 17794.46 5591.34 213
plane_prior297.74 9594.85 34
plane_prior196.14 227
plane_prior89.99 17997.24 15494.06 6692.16 248
n20.00 420
nn0.00 420
door-mid91.06 384
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
LGP-MVS_train94.10 22796.16 22488.26 23897.46 16891.29 15990.12 24397.16 14379.05 26298.73 18992.25 15491.89 25295.31 289
test1197.88 109
door91.13 383
HQP5-MVS89.33 206
HQP-NCC95.86 23696.65 20793.55 8190.14 237
ACMP_Plane95.86 23696.65 20793.55 8190.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 21195.78 263
HQP3-MVS97.39 18392.10 249
HQP2-MVS80.95 226
NP-MVS95.99 23489.81 18795.87 213
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15982.47 20486.25 27698.38 151
MDTV_nov1_ep1390.76 23195.22 27580.33 36093.03 36195.28 31188.14 26892.84 17993.83 31181.34 22298.08 25182.86 31894.34 209
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 98
ITE_SJBPF92.43 29595.34 26485.37 30595.92 27991.47 15287.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396