This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 48
IU-MVS95.30 271.25 5992.95 5566.81 26592.39 688.94 1696.63 494.85 20
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 91
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 28
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
PC_three_145268.21 25492.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
test_part295.06 872.65 3291.80 13
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14187.63 3094.27 5993.65 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 33
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 99
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21488.27 2693.98 5271.39 5891.54 23588.49 2390.45 10393.91 60
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 53
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 44
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25268.81 10988.49 13087.26 23868.08 25588.03 3093.49 6072.04 4891.77 22588.90 1789.14 12492.24 136
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 106
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 30969.39 10089.65 8690.29 15373.31 15087.77 3494.15 4171.72 5293.23 16790.31 490.67 10193.89 63
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26269.51 9389.62 8990.58 14073.42 14787.75 3594.02 4772.85 4193.24 16690.37 390.75 9993.96 58
ZD-MVS94.38 2572.22 4492.67 6770.98 19187.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3791.46 11270.32 7193.78 14181.51 8588.95 12594.63 32
MGCFI-Net85.06 6985.51 5983.70 14789.42 13063.01 24389.43 9392.62 7376.43 7687.53 3891.34 11572.82 4293.42 16181.28 8988.74 13194.66 31
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25368.40 12588.34 13786.85 24867.48 26287.48 3993.40 6470.89 6491.61 22988.38 2589.22 12292.16 140
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4091.63 10571.27 6096.06 4985.62 4295.01 3794.78 23
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
fmvsm_s_conf0.1_n_a83.32 9582.99 9384.28 11783.79 28668.07 13489.34 10082.85 30969.80 21887.36 4294.06 4568.34 9491.56 23387.95 2783.46 20893.21 97
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11786.14 24068.12 13289.43 9382.87 30870.27 20787.27 4393.80 5769.09 8491.58 23188.21 2683.65 20393.14 101
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12584.86 26467.28 15589.40 9783.01 30470.67 19687.08 4493.96 5368.38 9391.45 24188.56 2284.50 18493.56 82
旧先验286.56 19458.10 36187.04 4588.98 29074.07 158
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35069.03 10389.47 9189.65 17073.24 15486.98 4694.27 3566.62 10993.23 16790.26 589.95 11393.78 69
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13186.69 23367.31 15489.46 9283.07 30371.09 18886.96 4793.70 5869.02 8991.47 24088.79 1884.62 18393.44 87
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 114
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19691.87 10373.63 13986.60 5093.02 7576.57 1591.87 22383.36 6692.15 8095.35 3
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 85
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19392.02 9379.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 94
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5490.22 14474.15 3195.37 7881.82 8491.88 8392.65 120
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 52
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 125
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 125
testdata79.97 24790.90 9164.21 21784.71 27459.27 35185.40 5892.91 7662.02 16589.08 28868.95 20991.37 9286.63 311
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 5992.54 8673.30 3594.50 11283.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 45
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16385.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 43
patch_mono-283.65 8484.54 7380.99 22690.06 11265.83 18284.21 25588.74 20771.60 17885.01 6292.44 8774.51 2583.50 34582.15 8292.15 8093.64 78
TEST993.26 5272.96 2588.75 12091.89 10168.44 25185.00 6393.10 7074.36 2895.41 73
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24685.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 108
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 72
test_prior288.85 11775.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
test_893.13 5472.57 3588.68 12591.84 10568.69 24684.87 6793.10 7074.43 2695.16 83
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 41
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 62
h-mvs3383.15 9782.19 10586.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7091.39 11461.54 17095.50 6682.71 7775.48 30791.72 149
hse-mvs281.72 11980.94 12584.07 13188.72 16267.68 14385.87 21387.26 23876.02 8884.67 7088.22 19661.54 17093.48 15682.71 7773.44 33591.06 168
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 57
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16184.64 7391.71 10171.85 4996.03 5084.77 5194.45 5494.49 37
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25384.61 7493.48 6172.32 4496.15 4879.00 10695.43 3094.28 47
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7593.20 6969.35 8195.22 8171.39 18390.88 9893.07 103
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9384.24 5993.46 6795.13 8
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 56
agg_prior92.85 6271.94 5091.78 10884.41 7894.93 94
VDD-MVS83.01 10282.36 10384.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 7993.29 6752.19 25793.91 13577.05 12888.70 13294.57 35
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8092.38 8872.15 4693.93 13481.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18680.36 9894.35 5790.16 203
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 109
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8485.71 26169.32 8295.38 7580.82 9491.37 9292.72 115
VNet82.21 11082.41 10181.62 20790.82 9360.93 27084.47 24689.78 16576.36 8284.07 8591.88 9764.71 13290.26 26570.68 19088.89 12693.66 72
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8692.26 9071.81 5093.96 12881.31 8890.30 10595.03 10
BP-MVS184.32 7583.71 8186.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27869.37 10188.15 14587.96 22170.01 21283.95 8893.23 6868.80 9191.51 23888.61 2089.96 11292.57 121
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 72
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
GDP-MVS83.52 8982.64 9986.16 6288.14 18368.45 12489.13 10892.69 6572.82 16283.71 9291.86 9955.69 22595.35 7980.03 10189.74 11694.69 27
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9394.46 2767.93 9895.95 5784.20 6094.39 5593.23 94
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9494.17 3967.45 10396.60 3383.06 6994.50 5194.07 54
X-MVStestdata80.37 15477.83 19088.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9412.47 42067.45 10396.60 3383.06 6994.50 5194.07 54
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22693.44 2778.70 2983.63 9689.03 17274.57 2495.71 6180.26 10094.04 6193.66 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9791.20 12070.65 6995.15 8481.96 8394.89 4294.77 24
LFMVS81.82 11881.23 11983.57 15191.89 7663.43 23589.84 7881.85 32077.04 6183.21 9893.10 7052.26 25693.43 16071.98 17889.95 11393.85 64
VDDNet81.52 12580.67 12884.05 13690.44 10164.13 21989.73 8485.91 26271.11 18783.18 9993.48 6150.54 28393.49 15573.40 16588.25 13894.54 36
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 10091.07 12575.94 1895.19 8279.94 10394.38 5693.55 83
nrg03083.88 7983.53 8384.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10191.33 11672.70 4393.09 18080.79 9679.28 25992.50 125
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10189.59 15770.74 6794.82 10180.66 9784.72 18193.28 93
MVS_Test83.15 9783.06 9183.41 15686.86 22763.21 23986.11 20792.00 9574.31 12482.87 10389.44 16570.03 7493.21 16977.39 12488.50 13693.81 67
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21882.85 10491.22 11973.06 3996.02 5276.72 13394.63 4891.46 159
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10594.23 3872.13 4797.09 1684.83 4995.37 3193.65 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10694.25 3766.44 11396.24 4482.88 7494.28 5893.38 88
test1286.80 5292.63 6770.70 7591.79 10782.71 10771.67 5496.16 4794.50 5193.54 84
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13482.67 10894.09 4362.60 15295.54 6580.93 9292.93 7193.57 81
Effi-MVS+83.62 8783.08 9085.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 10988.28 19369.61 7994.45 11477.81 11987.84 14193.84 66
EI-MVSNet-UG-set83.81 8083.38 8685.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11089.41 16670.24 7394.74 10479.95 10283.92 19592.99 111
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20990.33 15076.11 8682.08 11191.61 10771.36 5994.17 12481.02 9192.58 7592.08 142
diffmvspermissive82.10 11181.88 11382.76 18983.00 30763.78 22583.68 26389.76 16672.94 15982.02 11289.85 14965.96 12290.79 25982.38 8187.30 14893.71 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base_debi80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
新几何183.42 15493.13 5470.71 7485.48 26757.43 36781.80 11691.98 9463.28 14192.27 20864.60 24792.99 7087.27 294
test_yl81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
DCV-MVSNet81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
test_cas_vis1_n_192073.76 27673.74 26573.81 33375.90 37759.77 28680.51 31082.40 31358.30 35981.62 11985.69 26244.35 33876.41 38276.29 13478.61 26285.23 334
MG-MVS83.41 9283.45 8483.28 15992.74 6562.28 25588.17 14389.50 17575.22 10181.49 12092.74 8566.75 10895.11 8772.85 17191.58 8992.45 128
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12191.43 11370.34 7097.23 1484.26 5793.36 6894.37 42
MVSFormer82.85 10382.05 10985.24 8387.35 21570.21 8090.50 6490.38 14668.55 24881.32 12189.47 16061.68 16793.46 15878.98 10790.26 10692.05 143
lupinMVS81.39 12880.27 13784.76 10187.35 21570.21 8085.55 22286.41 25362.85 32081.32 12188.61 18361.68 16792.24 21078.41 11490.26 10691.83 146
xiu_mvs_v2_base81.69 12181.05 12283.60 14989.15 14568.03 13684.46 24890.02 15970.67 19681.30 12486.53 24663.17 14594.19 12375.60 14488.54 13488.57 267
PS-MVSNAJ81.69 12181.02 12383.70 14789.51 12668.21 13184.28 25490.09 15870.79 19381.26 12585.62 26663.15 14694.29 11675.62 14388.87 12788.59 266
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31081.09 12691.57 10866.06 11995.45 6867.19 22694.82 4688.81 258
jason81.39 12880.29 13684.70 10286.63 23569.90 8885.95 21086.77 24963.24 31381.07 12789.47 16061.08 18392.15 21278.33 11590.07 11192.05 143
jason: jason.
OPM-MVS83.50 9082.95 9485.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12891.75 10060.71 18794.50 11279.67 10586.51 16089.97 219
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 9182.80 9785.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 12992.89 7761.00 18494.20 12272.45 17790.97 9693.35 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13093.82 5664.33 13396.29 4282.67 8090.69 10093.23 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 15878.89 16684.10 12590.60 9764.75 20688.95 11390.90 13265.97 28280.59 13191.17 12249.97 28893.73 14769.16 20782.70 21993.81 67
MVS_111021_LR82.61 10682.11 10684.11 12488.82 15671.58 5585.15 22986.16 25974.69 11680.47 13291.04 12662.29 15990.55 26380.33 9990.08 11090.20 202
ECVR-MVScopyleft79.61 16579.26 15880.67 23490.08 10854.69 35187.89 15477.44 36074.88 11180.27 13392.79 8248.96 30492.45 19968.55 21392.50 7794.86 18
VPA-MVSNet80.60 14680.55 13080.76 23288.07 18860.80 27386.86 18391.58 11375.67 9580.24 13489.45 16463.34 14090.25 26670.51 19279.22 26091.23 163
test111179.43 17279.18 16180.15 24489.99 11353.31 36487.33 17077.05 36475.04 10680.23 13592.77 8448.97 30392.33 20768.87 21092.40 7994.81 21
test250677.30 22776.49 22479.74 25290.08 10852.02 36887.86 15663.10 40674.88 11180.16 13692.79 8238.29 37292.35 20568.74 21292.50 7794.86 18
Anonymous20240521178.25 20077.01 21081.99 20191.03 8760.67 27584.77 23883.90 28770.65 20080.00 13791.20 12041.08 35891.43 24265.21 24185.26 17693.85 64
RRT-MVS82.60 10882.10 10784.10 12587.98 19362.94 24887.45 16691.27 12177.42 4979.85 13890.28 14056.62 22294.70 10779.87 10488.15 14094.67 28
test22291.50 8068.26 12984.16 25683.20 30154.63 37879.74 13991.63 10558.97 20191.42 9186.77 307
OMC-MVS82.69 10481.97 11284.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14091.65 10362.19 16293.96 12875.26 14986.42 16193.16 99
FA-MVS(test-final)80.96 13479.91 14284.10 12588.30 17865.01 20084.55 24590.01 16073.25 15379.61 14187.57 21058.35 20594.72 10571.29 18486.25 16492.56 122
CPTT-MVS83.73 8283.33 8884.92 9593.28 4970.86 7292.09 3690.38 14668.75 24579.57 14292.83 7960.60 19293.04 18480.92 9391.56 9090.86 176
IS-MVSNet83.15 9782.81 9684.18 12389.94 11563.30 23791.59 4388.46 21379.04 2579.49 14392.16 9165.10 12894.28 11767.71 21991.86 8694.95 11
PS-MVSNAJss82.07 11381.31 11784.34 11486.51 23667.27 15689.27 10191.51 11571.75 17379.37 14490.22 14463.15 14694.27 11877.69 12082.36 22291.49 156
EPP-MVSNet83.40 9383.02 9284.57 10490.13 10664.47 21292.32 3090.73 13774.45 12379.35 14591.10 12369.05 8795.12 8572.78 17287.22 14994.13 51
test_vis1_n_192075.52 25675.78 23274.75 32579.84 35657.44 31483.26 27285.52 26662.83 32179.34 14686.17 25445.10 33479.71 36478.75 10981.21 23487.10 302
DP-MVS Recon83.11 10082.09 10886.15 6394.44 1970.92 7188.79 11892.20 8970.53 20179.17 14791.03 12864.12 13596.03 5068.39 21690.14 10891.50 155
ab-mvs79.51 16878.97 16581.14 22288.46 17160.91 27183.84 26089.24 18570.36 20379.03 14888.87 17663.23 14490.21 26765.12 24282.57 22092.28 133
EIA-MVS83.31 9682.80 9784.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 14986.42 24869.06 8695.26 8075.54 14590.09 10993.62 79
PVSNet_Blended_VisFu82.62 10581.83 11484.96 9290.80 9469.76 9088.74 12291.70 11069.39 22678.96 14988.46 18865.47 12594.87 10074.42 15488.57 13390.24 201
HQP_MVS83.64 8583.14 8985.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15191.00 13060.42 19495.38 7578.71 11086.32 16291.33 160
plane_prior368.60 12178.44 3178.92 151
test_fmvs1_n70.86 30670.24 30472.73 34272.51 39955.28 34681.27 29879.71 34451.49 38878.73 15384.87 28227.54 39577.02 37676.06 13779.97 25185.88 325
EI-MVSNet80.52 15079.98 14082.12 19784.28 27463.19 24186.41 19788.95 19974.18 12878.69 15487.54 21366.62 10992.43 20072.57 17580.57 24390.74 181
MVSTER79.01 18477.88 18982.38 19583.07 30464.80 20584.08 25988.95 19969.01 24178.69 15487.17 22454.70 23592.43 20074.69 15180.57 24389.89 222
API-MVS81.99 11581.23 11984.26 12190.94 9070.18 8591.10 5589.32 18071.51 18078.66 15688.28 19365.26 12695.10 9064.74 24691.23 9487.51 288
GeoE81.71 12081.01 12483.80 14689.51 12664.45 21388.97 11288.73 20871.27 18478.63 15789.76 15166.32 11593.20 17269.89 19986.02 16993.74 70
test_fmvs170.93 30570.52 29972.16 34673.71 38855.05 34880.82 30178.77 35151.21 38978.58 15884.41 29031.20 39076.94 37775.88 14080.12 25084.47 345
UniMVSNet (Re)81.60 12481.11 12183.09 16988.38 17564.41 21487.60 16093.02 4578.42 3278.56 15988.16 19769.78 7793.26 16569.58 20376.49 28991.60 150
MAR-MVS81.84 11780.70 12785.27 8291.32 8271.53 5689.82 7990.92 13169.77 22078.50 16086.21 25262.36 15894.52 11165.36 24092.05 8289.77 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 13879.92 14183.47 15288.85 15364.51 20985.53 22489.39 17870.79 19378.49 16185.06 27967.54 10293.58 14967.03 22986.58 15892.32 131
FIs82.07 11382.42 10081.04 22588.80 15858.34 29788.26 14093.49 2676.93 6378.47 16291.04 12669.92 7692.34 20669.87 20084.97 17892.44 129
UniMVSNet_NR-MVSNet81.88 11681.54 11682.92 17888.46 17163.46 23387.13 17492.37 8180.19 1278.38 16389.14 16871.66 5593.05 18270.05 19676.46 29092.25 134
DU-MVS81.12 13280.52 13182.90 17987.80 20163.46 23387.02 17891.87 10379.01 2678.38 16389.07 17065.02 12993.05 18270.05 19676.46 29092.20 137
CLD-MVS82.31 10981.65 11584.29 11688.47 17067.73 14285.81 21792.35 8275.78 9178.33 16586.58 24364.01 13694.35 11576.05 13887.48 14690.79 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 19278.66 16978.76 26988.31 17755.72 34084.45 24986.63 25176.79 6778.26 16690.55 13759.30 19989.70 27766.63 23077.05 28190.88 175
V4279.38 17678.24 18082.83 18181.10 34265.50 19085.55 22289.82 16471.57 17978.21 16786.12 25560.66 18993.18 17575.64 14275.46 30989.81 226
BH-RMVSNet79.61 16578.44 17483.14 16789.38 13465.93 17984.95 23587.15 24173.56 14278.19 16889.79 15056.67 22193.36 16259.53 29186.74 15690.13 205
v2v48280.23 15679.29 15783.05 17283.62 29064.14 21887.04 17789.97 16173.61 14078.18 16987.22 22161.10 18293.82 13976.11 13676.78 28791.18 164
PVSNet_BlendedMVS80.60 14680.02 13982.36 19688.85 15365.40 19186.16 20692.00 9569.34 22878.11 17086.09 25666.02 12094.27 11871.52 18082.06 22587.39 290
PVSNet_Blended80.98 13380.34 13482.90 17988.85 15365.40 19184.43 25092.00 9567.62 25978.11 17085.05 28066.02 12094.27 11871.52 18089.50 11889.01 248
v114480.03 16079.03 16383.01 17483.78 28764.51 20987.11 17690.57 14271.96 17278.08 17286.20 25361.41 17493.94 13174.93 15077.23 27890.60 186
FE-MVS77.78 21575.68 23484.08 13088.09 18766.00 17783.13 27587.79 22768.42 25278.01 17385.23 27445.50 33295.12 8559.11 29585.83 17391.11 166
TranMVSNet+NR-MVSNet80.84 13680.31 13582.42 19487.85 19862.33 25387.74 15891.33 12080.55 977.99 17489.86 14865.23 12792.62 19267.05 22875.24 31792.30 132
Baseline_NR-MVSNet78.15 20578.33 17877.61 29285.79 24556.21 33486.78 18785.76 26473.60 14177.93 17587.57 21065.02 12988.99 28967.14 22775.33 31487.63 284
TR-MVS77.44 22376.18 22981.20 22088.24 17963.24 23884.61 24386.40 25467.55 26077.81 17686.48 24754.10 24093.15 17657.75 31082.72 21887.20 295
v119279.59 16778.43 17583.07 17183.55 29264.52 20886.93 18190.58 14070.83 19277.78 17785.90 25759.15 20093.94 13173.96 15977.19 28090.76 179
PCF-MVS73.52 780.38 15278.84 16785.01 9087.71 20668.99 10683.65 26491.46 11963.00 31777.77 17890.28 14066.10 11795.09 9161.40 27688.22 13990.94 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 16979.22 16080.27 24288.79 15958.35 29685.06 23288.61 21178.56 3077.65 17988.34 19163.81 13990.66 26264.98 24477.22 27991.80 148
XVG-OURS80.41 15179.23 15983.97 14285.64 24869.02 10583.03 28090.39 14571.09 18877.63 18091.49 11154.62 23791.35 24475.71 14183.47 20791.54 153
v14419279.47 17078.37 17682.78 18783.35 29563.96 22186.96 17990.36 14969.99 21377.50 18185.67 26460.66 18993.77 14374.27 15676.58 28890.62 184
v192192079.22 17878.03 18482.80 18483.30 29763.94 22286.80 18590.33 15069.91 21677.48 18285.53 26758.44 20493.75 14573.60 16176.85 28590.71 182
thisisatest053079.40 17477.76 19584.31 11587.69 20865.10 19987.36 16884.26 28370.04 21077.42 18388.26 19549.94 28994.79 10370.20 19484.70 18293.03 107
FC-MVSNet-test81.52 12582.02 11080.03 24688.42 17455.97 33687.95 15093.42 2977.10 5977.38 18490.98 13269.96 7591.79 22468.46 21584.50 18492.33 130
v124078.99 18577.78 19382.64 19083.21 29963.54 23086.62 19290.30 15269.74 22377.33 18585.68 26357.04 21893.76 14473.13 16976.92 28290.62 184
PAPM_NR83.02 10182.41 10184.82 9892.47 7066.37 17187.93 15291.80 10673.82 13577.32 18690.66 13567.90 9994.90 9770.37 19389.48 11993.19 98
ACMM73.20 880.78 14379.84 14483.58 15089.31 13868.37 12689.99 7691.60 11270.28 20677.25 18789.66 15353.37 24893.53 15474.24 15782.85 21588.85 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 18895.11 8791.03 170
AUN-MVS79.21 17977.60 20084.05 13688.71 16367.61 14585.84 21587.26 23869.08 23777.23 18988.14 20153.20 25093.47 15775.50 14673.45 33491.06 168
HQP-NCC89.33 13589.17 10376.41 7777.23 189
ACMP_Plane89.33 13589.17 10376.41 7777.23 189
HQP-MVS82.61 10682.02 11084.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 18990.23 14360.17 19795.11 8777.47 12285.99 17091.03 170
mmtdpeth74.16 27073.01 27277.60 29483.72 28961.13 26785.10 23185.10 27072.06 17177.21 19380.33 35143.84 34185.75 32477.14 12752.61 39885.91 324
tt080578.73 19077.83 19081.43 21285.17 25660.30 28189.41 9690.90 13271.21 18577.17 19488.73 17846.38 31893.21 16972.57 17578.96 26190.79 177
TAPA-MVS73.13 979.15 18077.94 18682.79 18689.59 12262.99 24788.16 14491.51 11565.77 28377.14 19591.09 12460.91 18593.21 16950.26 35487.05 15192.17 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 12380.89 12683.99 14190.27 10364.00 22086.76 18991.77 10968.84 24477.13 19689.50 15867.63 10194.88 9967.55 22188.52 13593.09 102
UniMVSNet_ETH3D79.10 18278.24 18081.70 20686.85 22860.24 28287.28 17288.79 20274.25 12676.84 19790.53 13849.48 29491.56 23367.98 21782.15 22393.29 92
EPNet83.72 8382.92 9586.14 6584.22 27669.48 9491.05 5685.27 26881.30 676.83 19891.65 10366.09 11895.56 6376.00 13993.85 6293.38 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 23176.75 22077.66 29088.13 18455.66 34185.12 23081.89 31873.04 15776.79 19988.90 17462.43 15787.78 30863.30 25671.18 35189.55 233
tttt051779.40 17477.91 18783.90 14588.10 18663.84 22388.37 13684.05 28571.45 18176.78 20089.12 16949.93 29194.89 9870.18 19583.18 21292.96 112
TAMVS78.89 18877.51 20283.03 17387.80 20167.79 14184.72 23985.05 27267.63 25876.75 20187.70 20662.25 16090.82 25858.53 30287.13 15090.49 191
XVG-OURS-SEG-HR80.81 13879.76 14583.96 14385.60 24968.78 11183.54 26990.50 14370.66 19976.71 20291.66 10260.69 18891.26 24676.94 12981.58 23091.83 146
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20393.37 6560.40 19696.75 2677.20 12593.73 6495.29 5
LPG-MVS_test82.08 11281.27 11884.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
SDMVSNet80.38 15280.18 13880.99 22689.03 15164.94 20280.45 31289.40 17775.19 10376.61 20689.98 14660.61 19187.69 30976.83 13183.55 20590.33 197
sd_testset77.70 21977.40 20378.60 27289.03 15160.02 28479.00 33185.83 26375.19 10376.61 20689.98 14654.81 23085.46 33062.63 26383.55 20590.33 197
tfpn200view976.42 24375.37 24379.55 25989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19989.07 241
thres40076.50 23975.37 24379.86 24989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19990.00 215
HyFIR lowres test77.53 22275.40 24183.94 14489.59 12266.62 16780.36 31388.64 21056.29 37376.45 20885.17 27657.64 21193.28 16461.34 27883.10 21391.91 145
CDS-MVSNet79.07 18377.70 19783.17 16687.60 21068.23 13084.40 25286.20 25867.49 26176.36 21186.54 24561.54 17090.79 25961.86 27287.33 14790.49 191
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 23975.55 23879.33 26089.52 12556.99 31985.83 21683.23 29873.94 13276.32 21287.12 22551.89 26691.95 21848.33 36383.75 19989.07 241
thres600view776.50 23975.44 23979.68 25489.40 13257.16 31685.53 22483.23 29873.79 13676.26 21387.09 22651.89 26691.89 22148.05 36883.72 20290.00 215
UGNet80.83 13779.59 14984.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21489.46 16249.30 29893.94 13168.48 21490.31 10491.60 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 15579.32 15683.27 16083.98 28265.37 19490.50 6490.38 14668.55 24876.19 21588.70 17956.44 22393.46 15878.98 10780.14 24990.97 173
v14878.72 19177.80 19281.47 21182.73 31461.96 25986.30 20288.08 21873.26 15276.18 21685.47 26962.46 15692.36 20471.92 17973.82 33190.09 209
WTY-MVS75.65 25475.68 23475.57 31286.40 23756.82 32177.92 34882.40 31365.10 29176.18 21687.72 20563.13 14980.90 36060.31 28481.96 22689.00 250
mvs_anonymous79.42 17379.11 16280.34 24084.45 27357.97 30382.59 28287.62 23067.40 26376.17 21888.56 18668.47 9289.59 27870.65 19186.05 16893.47 86
Anonymous2023121178.97 18677.69 19882.81 18390.54 9964.29 21690.11 7591.51 11565.01 29476.16 21988.13 20250.56 28293.03 18569.68 20277.56 27791.11 166
thisisatest051577.33 22675.38 24283.18 16585.27 25563.80 22482.11 28783.27 29765.06 29275.91 22083.84 30349.54 29394.27 11867.24 22586.19 16591.48 157
CANet_DTU80.61 14579.87 14382.83 18185.60 24963.17 24287.36 16888.65 20976.37 8175.88 22188.44 18953.51 24693.07 18173.30 16689.74 11692.25 134
thres20075.55 25574.47 25478.82 26887.78 20457.85 30683.07 27883.51 29372.44 16575.84 22284.42 28952.08 26191.75 22647.41 37083.64 20486.86 305
CHOSEN 1792x268877.63 22175.69 23383.44 15389.98 11468.58 12278.70 33687.50 23356.38 37275.80 22386.84 22958.67 20291.40 24361.58 27585.75 17490.34 196
AdaColmapbinary80.58 14979.42 15284.06 13393.09 5768.91 10889.36 9988.97 19869.27 22975.70 22489.69 15257.20 21795.77 5963.06 25788.41 13787.50 289
UWE-MVS72.13 29671.49 28774.03 33186.66 23447.70 39081.40 29776.89 36663.60 31275.59 22584.22 29739.94 36385.62 32748.98 36086.13 16788.77 260
c3_l78.75 18977.91 18781.26 21882.89 31161.56 26484.09 25889.13 19169.97 21475.56 22684.29 29466.36 11492.09 21473.47 16475.48 30790.12 206
miper_ehance_all_eth78.59 19577.76 19581.08 22482.66 31661.56 26483.65 26489.15 18968.87 24375.55 22783.79 30566.49 11292.03 21573.25 16776.39 29289.64 230
miper_enhance_ethall77.87 21476.86 21480.92 22981.65 33061.38 26682.68 28188.98 19665.52 28775.47 22882.30 33265.76 12492.00 21772.95 17076.39 29289.39 236
3Dnovator76.31 583.38 9482.31 10486.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22892.83 7958.56 20394.72 10573.24 16892.71 7492.13 141
jajsoiax79.29 17777.96 18583.27 16084.68 26766.57 16989.25 10290.16 15669.20 23475.46 23089.49 15945.75 32993.13 17876.84 13080.80 23990.11 207
IterMVS-LS80.06 15979.38 15382.11 19885.89 24463.20 24086.79 18689.34 17974.19 12775.45 23186.72 23366.62 10992.39 20272.58 17476.86 28490.75 180
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 17078.60 17082.05 19989.19 14465.91 18086.07 20888.52 21272.18 16875.42 23287.69 20761.15 18193.54 15360.38 28386.83 15586.70 309
mvs_tets79.13 18177.77 19483.22 16484.70 26666.37 17189.17 10390.19 15569.38 22775.40 23389.46 16244.17 33993.15 17676.78 13280.70 24190.14 204
mvsmamba80.60 14679.38 15384.27 11989.74 12067.24 15887.47 16486.95 24470.02 21175.38 23488.93 17351.24 27492.56 19575.47 14789.22 12293.00 110
HY-MVS69.67 1277.95 21177.15 20880.36 23987.57 21460.21 28383.37 27187.78 22866.11 27875.37 23587.06 22863.27 14290.48 26461.38 27782.43 22190.40 195
testing9176.54 23775.66 23679.18 26488.43 17355.89 33781.08 29983.00 30573.76 13775.34 23684.29 29446.20 32390.07 26964.33 24884.50 18491.58 152
GBi-Net78.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
test178.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
FMVSNet377.88 21376.85 21580.97 22886.84 22962.36 25286.52 19588.77 20371.13 18675.34 23686.66 23954.07 24191.10 25262.72 25979.57 25389.45 235
CostFormer75.24 26273.90 26279.27 26182.65 31758.27 29880.80 30282.73 31161.57 33375.33 24083.13 31855.52 22691.07 25564.98 24478.34 26988.45 269
test_vis1_n69.85 31869.21 30971.77 34872.66 39855.27 34781.48 29476.21 36952.03 38575.30 24183.20 31728.97 39376.22 38474.60 15278.41 26883.81 353
FMVSNet278.20 20377.21 20781.20 22087.60 21062.89 24987.47 16489.02 19471.63 17575.29 24287.28 21754.80 23191.10 25262.38 26479.38 25789.61 231
v879.97 16279.02 16482.80 18484.09 27964.50 21187.96 14990.29 15374.13 13075.24 24386.81 23062.88 15193.89 13874.39 15575.40 31290.00 215
testing9976.09 24975.12 24779.00 26588.16 18155.50 34380.79 30381.40 32473.30 15175.17 24484.27 29644.48 33790.02 27064.28 24984.22 19391.48 157
anonymousdsp78.60 19477.15 20882.98 17680.51 34867.08 16187.24 17389.53 17465.66 28575.16 24587.19 22352.52 25192.25 20977.17 12679.34 25889.61 231
QAPM80.88 13579.50 15185.03 8988.01 19268.97 10791.59 4392.00 9566.63 27475.15 24692.16 9157.70 21095.45 6863.52 25288.76 13090.66 183
v1079.74 16478.67 16882.97 17784.06 28064.95 20187.88 15590.62 13973.11 15575.11 24786.56 24461.46 17394.05 12773.68 16075.55 30589.90 221
Vis-MVSNet (Re-imp)78.36 19978.45 17378.07 28588.64 16551.78 37486.70 19079.63 34574.14 12975.11 24790.83 13361.29 17889.75 27558.10 30791.60 8892.69 118
cl2278.07 20777.01 21081.23 21982.37 32361.83 26183.55 26887.98 22068.96 24275.06 24983.87 30161.40 17591.88 22273.53 16276.39 29289.98 218
ACMP74.13 681.51 12780.57 12984.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25090.41 13953.82 24394.54 10977.56 12182.91 21489.86 223
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 16078.57 17184.42 11085.13 26068.74 11488.77 11988.10 21774.99 10774.97 25183.49 31257.27 21693.36 16273.53 16280.88 23791.18 164
XXY-MVS75.41 25975.56 23774.96 32183.59 29157.82 30780.59 30983.87 28866.54 27574.93 25288.31 19263.24 14380.09 36362.16 26876.85 28586.97 303
eth_miper_zixun_eth77.92 21276.69 22181.61 20983.00 30761.98 25883.15 27489.20 18769.52 22574.86 25384.35 29361.76 16692.56 19571.50 18272.89 33990.28 200
GA-MVS76.87 23375.17 24681.97 20282.75 31362.58 25081.44 29686.35 25672.16 17074.74 25482.89 32346.20 32392.02 21668.85 21181.09 23591.30 162
MonoMVSNet76.49 24275.80 23178.58 27381.55 33358.45 29586.36 20086.22 25774.87 11374.73 25583.73 30751.79 26988.73 29570.78 18772.15 34488.55 268
sss73.60 27773.64 26673.51 33582.80 31255.01 34976.12 35581.69 32162.47 32674.68 25685.85 26057.32 21578.11 37160.86 28180.93 23687.39 290
testing22274.04 27272.66 27678.19 28287.89 19655.36 34481.06 30079.20 34971.30 18374.65 25783.57 31139.11 36788.67 29751.43 34685.75 17490.53 189
test_fmvs268.35 33167.48 33170.98 35769.50 40251.95 37080.05 31776.38 36849.33 39174.65 25784.38 29123.30 40475.40 39274.51 15375.17 31885.60 328
BH-w/o78.21 20277.33 20680.84 23088.81 15765.13 19884.87 23687.85 22669.75 22174.52 25984.74 28661.34 17693.11 17958.24 30685.84 17284.27 346
WBMVS73.43 27972.81 27475.28 31887.91 19550.99 38178.59 33981.31 32665.51 28974.47 26084.83 28346.39 31786.68 31558.41 30377.86 27288.17 275
FMVSNet177.44 22376.12 23081.40 21486.81 23063.01 24388.39 13389.28 18170.49 20274.39 26187.28 21749.06 30291.11 24960.91 28078.52 26490.09 209
cl____77.72 21776.76 21880.58 23582.49 32060.48 27883.09 27687.87 22469.22 23274.38 26285.22 27562.10 16391.53 23671.09 18575.41 31189.73 229
DIV-MVS_self_test77.72 21776.76 21880.58 23582.48 32160.48 27883.09 27687.86 22569.22 23274.38 26285.24 27362.10 16391.53 23671.09 18575.40 31289.74 228
114514_t80.68 14479.51 15084.20 12294.09 3867.27 15689.64 8791.11 12858.75 35774.08 26490.72 13458.10 20695.04 9269.70 20189.42 12090.30 199
WR-MVS_H78.51 19678.49 17278.56 27488.02 19056.38 33088.43 13192.67 6777.14 5773.89 26587.55 21266.25 11689.24 28558.92 29773.55 33390.06 213
UBG73.08 28672.27 28175.51 31488.02 19051.29 37978.35 34377.38 36165.52 28773.87 26682.36 33045.55 33086.48 31855.02 32784.39 19088.75 261
ETVMVS72.25 29571.05 29475.84 30887.77 20551.91 37179.39 32474.98 37369.26 23073.71 26782.95 32140.82 36086.14 32146.17 37684.43 18989.47 234
WB-MVSnew71.96 29871.65 28672.89 34084.67 27051.88 37282.29 28577.57 35762.31 32773.67 26883.00 32053.49 24781.10 35945.75 37982.13 22485.70 327
tpm273.26 28371.46 28878.63 27083.34 29656.71 32480.65 30880.40 33756.63 37173.55 26982.02 33751.80 26891.24 24756.35 32378.42 26787.95 277
CP-MVSNet78.22 20178.34 17777.84 28787.83 20054.54 35387.94 15191.17 12577.65 3973.48 27088.49 18762.24 16188.43 30062.19 26774.07 32690.55 188
pm-mvs177.25 22876.68 22278.93 26784.22 27658.62 29486.41 19788.36 21471.37 18273.31 27188.01 20361.22 18089.15 28764.24 25073.01 33889.03 247
PS-CasMVS78.01 21078.09 18377.77 28987.71 20654.39 35588.02 14791.22 12277.50 4773.26 27288.64 18260.73 18688.41 30161.88 27173.88 33090.53 189
CVMVSNet72.99 28872.58 27774.25 32984.28 27450.85 38286.41 19783.45 29544.56 39773.23 27387.54 21349.38 29685.70 32565.90 23678.44 26686.19 316
PEN-MVS77.73 21677.69 19877.84 28787.07 22653.91 35887.91 15391.18 12477.56 4473.14 27488.82 17761.23 17989.17 28659.95 28672.37 34190.43 193
1112_ss77.40 22576.43 22680.32 24189.11 15060.41 28083.65 26487.72 22962.13 33073.05 27586.72 23362.58 15489.97 27162.11 27080.80 23990.59 187
mamv476.81 23478.23 18272.54 34486.12 24165.75 18678.76 33582.07 31764.12 30472.97 27691.02 12967.97 9768.08 40883.04 7178.02 27183.80 354
tpm72.37 29371.71 28574.35 32882.19 32452.00 36979.22 32777.29 36264.56 29872.95 27783.68 31051.35 27283.26 34858.33 30575.80 30187.81 281
cascas76.72 23674.64 25082.99 17585.78 24665.88 18182.33 28489.21 18660.85 33872.74 27881.02 34347.28 31193.75 14567.48 22285.02 17789.34 238
CR-MVSNet73.37 28071.27 29279.67 25581.32 34065.19 19675.92 35780.30 33859.92 34572.73 27981.19 34052.50 25286.69 31459.84 28777.71 27487.11 300
RPMNet73.51 27870.49 30082.58 19281.32 34065.19 19675.92 35792.27 8457.60 36572.73 27976.45 38052.30 25595.43 7048.14 36777.71 27487.11 300
testing1175.14 26374.01 25978.53 27688.16 18156.38 33080.74 30680.42 33670.67 19672.69 28183.72 30843.61 34389.86 27262.29 26683.76 19889.36 237
DTE-MVSNet76.99 23076.80 21677.54 29586.24 23853.06 36787.52 16290.66 13877.08 6072.50 28288.67 18160.48 19389.52 27957.33 31470.74 35390.05 214
Test_1112_low_res76.40 24475.44 23979.27 26189.28 14058.09 29981.69 29187.07 24259.53 34972.48 28386.67 23861.30 17789.33 28260.81 28280.15 24890.41 194
v7n78.97 18677.58 20183.14 16783.45 29465.51 18988.32 13891.21 12373.69 13872.41 28486.32 25157.93 20793.81 14069.18 20675.65 30390.11 207
SCA74.22 26972.33 28079.91 24884.05 28162.17 25679.96 31979.29 34866.30 27772.38 28580.13 35351.95 26488.60 29859.25 29377.67 27688.96 252
CNLPA78.08 20676.79 21781.97 20290.40 10271.07 6587.59 16184.55 27766.03 28172.38 28589.64 15457.56 21286.04 32259.61 29083.35 20988.79 259
reproduce_monomvs75.40 26074.38 25678.46 27983.92 28457.80 30883.78 26186.94 24573.47 14672.25 28784.47 28838.74 36889.27 28475.32 14870.53 35488.31 272
NR-MVSNet80.23 15679.38 15382.78 18787.80 20163.34 23686.31 20191.09 12979.01 2672.17 28889.07 17067.20 10692.81 19166.08 23575.65 30392.20 137
OpenMVScopyleft72.83 1079.77 16378.33 17884.09 12985.17 25669.91 8790.57 6190.97 13066.70 26872.17 28891.91 9554.70 23593.96 12861.81 27390.95 9788.41 271
MVS78.19 20476.99 21281.78 20485.66 24766.99 16284.66 24090.47 14455.08 37772.02 29085.27 27263.83 13894.11 12666.10 23489.80 11584.24 347
XVG-ACMP-BASELINE76.11 24874.27 25881.62 20783.20 30064.67 20783.60 26789.75 16769.75 22171.85 29187.09 22632.78 38592.11 21369.99 19880.43 24588.09 276
PatchmatchNetpermissive73.12 28571.33 29178.49 27883.18 30160.85 27279.63 32178.57 35264.13 30371.73 29279.81 35851.20 27585.97 32357.40 31376.36 29788.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 29172.13 28273.18 33980.54 34749.91 38679.91 32079.08 35063.11 31571.69 29379.95 35555.32 22782.77 35065.66 23973.89 32986.87 304
mvs5depth69.45 32067.45 33275.46 31673.93 38655.83 33879.19 32883.23 29866.89 26471.63 29483.32 31433.69 38485.09 33359.81 28855.34 39485.46 330
TransMVSNet (Re)75.39 26174.56 25277.86 28685.50 25157.10 31886.78 18786.09 26172.17 16971.53 29587.34 21663.01 15089.31 28356.84 31961.83 38087.17 296
Fast-Effi-MVS+-dtu78.02 20976.49 22482.62 19183.16 30366.96 16586.94 18087.45 23572.45 16371.49 29684.17 29854.79 23491.58 23167.61 22080.31 24689.30 239
PAPM77.68 22076.40 22781.51 21087.29 22261.85 26083.78 26189.59 17264.74 29671.23 29788.70 17962.59 15393.66 14852.66 33987.03 15289.01 248
tfpnnormal74.39 26673.16 27078.08 28486.10 24358.05 30084.65 24287.53 23270.32 20571.22 29885.63 26554.97 22989.86 27243.03 38675.02 31986.32 313
RPSCF73.23 28471.46 28878.54 27582.50 31959.85 28582.18 28682.84 31058.96 35471.15 29989.41 16645.48 33384.77 33758.82 29971.83 34791.02 172
PatchT68.46 33067.85 32270.29 35980.70 34543.93 40372.47 37574.88 37460.15 34370.55 30076.57 37949.94 28981.59 35550.58 34874.83 32185.34 332
CL-MVSNet_self_test72.37 29371.46 28875.09 32079.49 36353.53 36080.76 30585.01 27369.12 23670.51 30182.05 33657.92 20884.13 34052.27 34166.00 37287.60 285
IterMVS-SCA-FT75.43 25873.87 26380.11 24582.69 31564.85 20481.57 29383.47 29469.16 23570.49 30284.15 29951.95 26488.15 30369.23 20572.14 34587.34 292
miper_lstm_enhance74.11 27173.11 27177.13 30080.11 35259.62 28872.23 37686.92 24766.76 26770.40 30382.92 32256.93 21982.92 34969.06 20872.63 34088.87 255
gg-mvs-nofinetune69.95 31667.96 32075.94 30783.07 30454.51 35477.23 35270.29 38863.11 31570.32 30462.33 40143.62 34288.69 29653.88 33387.76 14284.62 344
DP-MVS76.78 23574.57 25183.42 15493.29 4869.46 9788.55 12983.70 28963.98 30970.20 30588.89 17554.01 24294.80 10246.66 37281.88 22886.01 321
pmmvs674.69 26573.39 26778.61 27181.38 33757.48 31386.64 19187.95 22264.99 29570.18 30686.61 24050.43 28489.52 27962.12 26970.18 35688.83 257
PVSNet64.34 1872.08 29770.87 29775.69 31086.21 23956.44 32874.37 37080.73 33062.06 33170.17 30782.23 33442.86 34783.31 34754.77 32984.45 18887.32 293
131476.53 23875.30 24580.21 24383.93 28362.32 25484.66 24088.81 20160.23 34270.16 30884.07 30055.30 22890.73 26167.37 22383.21 21187.59 287
Patchmtry70.74 30769.16 31075.49 31580.72 34454.07 35774.94 36880.30 33858.34 35870.01 30981.19 34052.50 25286.54 31653.37 33671.09 35285.87 326
EPMVS69.02 32368.16 31771.59 34979.61 36149.80 38877.40 35066.93 39862.82 32270.01 30979.05 36245.79 32777.86 37356.58 32175.26 31687.13 299
IterMVS74.29 26772.94 27378.35 28081.53 33463.49 23281.58 29282.49 31268.06 25669.99 31183.69 30951.66 27185.54 32865.85 23771.64 34886.01 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 28972.43 27874.48 32681.35 33858.04 30178.38 34077.46 35866.66 26969.95 31279.00 36448.06 30779.24 36566.13 23284.83 17986.15 317
test-mter71.41 30070.39 30374.48 32681.35 33858.04 30178.38 34077.46 35860.32 34169.95 31279.00 36436.08 37979.24 36566.13 23284.83 17986.15 317
pmmvs474.03 27471.91 28380.39 23881.96 32668.32 12781.45 29582.14 31559.32 35069.87 31485.13 27752.40 25488.13 30460.21 28574.74 32284.73 343
PLCcopyleft70.83 1178.05 20876.37 22883.08 17091.88 7767.80 14088.19 14289.46 17664.33 30269.87 31488.38 19053.66 24493.58 14958.86 29882.73 21787.86 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 24674.54 25381.41 21388.60 16664.38 21579.24 32689.12 19270.76 19569.79 31687.86 20449.09 30193.20 17256.21 32480.16 24786.65 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 23274.82 24983.37 15790.45 10067.36 15389.15 10786.94 24561.87 33269.52 31790.61 13651.71 27094.53 11046.38 37586.71 15788.21 274
IB-MVS68.01 1575.85 25273.36 26883.31 15884.76 26566.03 17583.38 27085.06 27170.21 20969.40 31881.05 34245.76 32894.66 10865.10 24375.49 30689.25 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 29270.90 29676.80 30388.60 16667.38 15279.53 32276.17 37062.75 32369.36 31982.00 33845.51 33184.89 33653.62 33480.58 24278.12 387
MDTV_nov1_ep1369.97 30683.18 30153.48 36177.10 35380.18 34160.45 33969.33 32080.44 34948.89 30586.90 31351.60 34478.51 265
dmvs_re71.14 30270.58 29872.80 34181.96 32659.68 28775.60 36179.34 34768.55 24869.27 32180.72 34849.42 29576.54 37952.56 34077.79 27382.19 371
testing368.56 32867.67 32871.22 35587.33 22042.87 40583.06 27971.54 38570.36 20369.08 32284.38 29130.33 39285.69 32637.50 39875.45 31085.09 339
D2MVS74.82 26473.21 26979.64 25679.81 35762.56 25180.34 31487.35 23664.37 30168.86 32382.66 32746.37 31990.10 26867.91 21881.24 23386.25 314
PMMVS69.34 32168.67 31271.35 35375.67 37962.03 25775.17 36373.46 38050.00 39068.68 32479.05 36252.07 26278.13 37061.16 27982.77 21673.90 394
Patchmatch-RL test70.24 31367.78 32677.61 29277.43 37259.57 29071.16 38070.33 38762.94 31968.65 32572.77 39250.62 28185.49 32969.58 20366.58 36987.77 282
MS-PatchMatch73.83 27572.67 27577.30 29883.87 28566.02 17681.82 28884.66 27561.37 33668.61 32682.82 32547.29 31088.21 30259.27 29284.32 19177.68 388
tpm cat170.57 30968.31 31577.35 29782.41 32257.95 30478.08 34580.22 34052.04 38468.54 32777.66 37552.00 26387.84 30751.77 34272.07 34686.25 314
mvsany_test162.30 35661.26 36065.41 37769.52 40154.86 35066.86 39749.78 41746.65 39468.50 32883.21 31649.15 30066.28 40956.93 31860.77 38375.11 393
TESTMET0.1,169.89 31769.00 31172.55 34379.27 36656.85 32078.38 34074.71 37757.64 36468.09 32977.19 37737.75 37476.70 37863.92 25184.09 19484.10 350
MIMVSNet70.69 30869.30 30774.88 32284.52 27156.35 33275.87 35979.42 34664.59 29767.76 33082.41 32941.10 35781.54 35646.64 37481.34 23186.75 308
ACMH+68.96 1476.01 25074.01 25982.03 20088.60 16665.31 19588.86 11687.55 23170.25 20867.75 33187.47 21541.27 35693.19 17458.37 30475.94 30087.60 285
LCM-MVSNet-Re77.05 22976.94 21377.36 29687.20 22351.60 37580.06 31680.46 33575.20 10267.69 33286.72 23362.48 15588.98 29063.44 25489.25 12191.51 154
ITE_SJBPF78.22 28181.77 32960.57 27683.30 29669.25 23167.54 33387.20 22236.33 37887.28 31254.34 33174.62 32386.80 306
test_fmvs363.36 35461.82 35767.98 37262.51 41146.96 39477.37 35174.03 37945.24 39667.50 33478.79 36712.16 41672.98 40072.77 17366.02 37183.99 351
pmmvs571.55 29970.20 30575.61 31177.83 37056.39 32981.74 29080.89 32757.76 36367.46 33584.49 28749.26 29985.32 33257.08 31675.29 31585.11 338
MVP-Stereo76.12 24774.46 25581.13 22385.37 25469.79 8984.42 25187.95 22265.03 29367.46 33585.33 27153.28 24991.73 22858.01 30883.27 21081.85 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 29070.44 30179.84 25088.13 18465.99 17885.93 21184.29 28165.57 28667.40 33785.49 26846.92 31492.61 19335.88 40074.38 32580.94 378
GG-mvs-BLEND75.38 31781.59 33255.80 33979.32 32569.63 39067.19 33873.67 39043.24 34488.90 29450.41 34984.50 18481.45 375
tpmvs71.09 30369.29 30876.49 30482.04 32556.04 33578.92 33381.37 32564.05 30767.18 33978.28 37049.74 29289.77 27449.67 35772.37 34183.67 355
OurMVSNet-221017-074.26 26872.42 27979.80 25183.76 28859.59 28985.92 21286.64 25066.39 27666.96 34087.58 20939.46 36491.60 23065.76 23869.27 35988.22 273
baseline275.70 25373.83 26481.30 21783.26 29861.79 26282.57 28380.65 33166.81 26566.88 34183.42 31357.86 20992.19 21163.47 25379.57 25389.91 220
F-COLMAP76.38 24574.33 25782.50 19389.28 14066.95 16688.41 13289.03 19364.05 30766.83 34288.61 18346.78 31592.89 18757.48 31178.55 26387.67 283
ACMH67.68 1675.89 25173.93 26181.77 20588.71 16366.61 16888.62 12789.01 19569.81 21766.78 34386.70 23741.95 35591.51 23855.64 32578.14 27087.17 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS68.05 33267.85 32268.67 36884.68 26740.97 41178.62 33773.08 38266.65 27266.74 34479.46 35952.11 26082.30 35232.89 40376.38 29582.75 366
myMVS_eth3d67.02 33866.29 33969.21 36384.68 26742.58 40678.62 33773.08 38266.65 27266.74 34479.46 35931.53 38982.30 35239.43 39576.38 29582.75 366
test0.0.03 168.00 33367.69 32768.90 36577.55 37147.43 39175.70 36072.95 38466.66 26966.56 34682.29 33348.06 30775.87 38744.97 38374.51 32483.41 357
MDTV_nov1_ep13_2view37.79 41375.16 36455.10 37666.53 34749.34 29753.98 33287.94 278
KD-MVS_2432*160066.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
miper_refine_blended66.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
ET-MVSNet_ETH3D78.63 19376.63 22384.64 10386.73 23269.47 9585.01 23384.61 27669.54 22466.51 35086.59 24150.16 28691.75 22676.26 13584.24 19292.69 118
EU-MVSNet68.53 32967.61 32971.31 35478.51 36947.01 39384.47 24684.27 28242.27 40066.44 35184.79 28540.44 36183.76 34258.76 30068.54 36483.17 359
EPNet_dtu75.46 25774.86 24877.23 29982.57 31854.60 35286.89 18283.09 30271.64 17466.25 35285.86 25955.99 22488.04 30554.92 32886.55 15989.05 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 32667.80 32571.02 35680.23 35150.75 38378.30 34480.47 33456.79 37066.11 35382.63 32846.35 32078.95 36743.62 38575.70 30283.36 358
SixPastTwentyTwo73.37 28071.26 29379.70 25385.08 26157.89 30585.57 21883.56 29271.03 19065.66 35485.88 25842.10 35392.57 19459.11 29563.34 37888.65 265
MSDG73.36 28270.99 29580.49 23784.51 27265.80 18380.71 30786.13 26065.70 28465.46 35583.74 30644.60 33590.91 25751.13 34776.89 28384.74 342
OpenMVS_ROBcopyleft64.09 1970.56 31068.19 31677.65 29180.26 34959.41 29185.01 23382.96 30758.76 35665.43 35682.33 33137.63 37591.23 24845.34 38276.03 29982.32 369
ppachtmachnet_test70.04 31567.34 33378.14 28379.80 35861.13 26779.19 32880.59 33259.16 35265.27 35779.29 36146.75 31687.29 31149.33 35866.72 36786.00 323
ADS-MVSNet266.20 34763.33 35074.82 32379.92 35458.75 29367.55 39575.19 37253.37 38165.25 35875.86 38342.32 35080.53 36241.57 39068.91 36185.18 335
ADS-MVSNet64.36 35162.88 35468.78 36779.92 35447.17 39267.55 39571.18 38653.37 38165.25 35875.86 38342.32 35073.99 39741.57 39068.91 36185.18 335
testgi66.67 34166.53 33867.08 37575.62 38041.69 41075.93 35676.50 36766.11 27865.20 36086.59 24135.72 38074.71 39443.71 38473.38 33684.84 341
PM-MVS66.41 34364.14 34573.20 33873.92 38756.45 32778.97 33264.96 40463.88 31164.72 36180.24 35219.84 40883.44 34666.24 23164.52 37679.71 384
JIA-IIPM66.32 34462.82 35576.82 30277.09 37461.72 26365.34 40375.38 37158.04 36264.51 36262.32 40242.05 35486.51 31751.45 34569.22 36082.21 370
ambc75.24 31973.16 39450.51 38463.05 40887.47 23464.28 36377.81 37417.80 41089.73 27657.88 30960.64 38485.49 329
EG-PatchMatch MVS74.04 27271.82 28480.71 23384.92 26367.42 15085.86 21488.08 21866.04 28064.22 36483.85 30235.10 38192.56 19557.44 31280.83 23882.16 372
dp66.80 33965.43 34170.90 35879.74 36048.82 38975.12 36674.77 37559.61 34764.08 36577.23 37642.89 34680.72 36148.86 36166.58 36983.16 360
KD-MVS_self_test68.81 32467.59 33072.46 34574.29 38545.45 39677.93 34787.00 24363.12 31463.99 36678.99 36642.32 35084.77 33756.55 32264.09 37787.16 298
pmmvs-eth3d70.50 31167.83 32478.52 27777.37 37366.18 17481.82 28881.51 32258.90 35563.90 36780.42 35042.69 34886.28 32058.56 30165.30 37483.11 361
COLMAP_ROBcopyleft66.92 1773.01 28770.41 30280.81 23187.13 22565.63 18788.30 13984.19 28462.96 31863.80 36887.69 20738.04 37392.56 19546.66 37274.91 32084.24 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 31967.96 32074.15 33082.97 31055.35 34580.01 31882.12 31662.56 32563.02 36981.53 33936.92 37681.92 35448.42 36274.06 32785.17 337
test20.0367.45 33566.95 33668.94 36475.48 38144.84 40177.50 34977.67 35666.66 26963.01 37083.80 30447.02 31378.40 36942.53 38968.86 36383.58 356
K. test v371.19 30168.51 31379.21 26383.04 30657.78 30984.35 25376.91 36572.90 16062.99 37182.86 32439.27 36591.09 25461.65 27452.66 39788.75 261
our_test_369.14 32267.00 33575.57 31279.80 35858.80 29277.96 34677.81 35559.55 34862.90 37278.25 37147.43 30983.97 34151.71 34367.58 36683.93 352
CHOSEN 280x42066.51 34264.71 34371.90 34781.45 33563.52 23157.98 41068.95 39453.57 38062.59 37376.70 37846.22 32275.29 39355.25 32679.68 25276.88 390
ttmdpeth59.91 36057.10 36468.34 37067.13 40646.65 39574.64 36967.41 39748.30 39262.52 37485.04 28120.40 40675.93 38642.55 38845.90 40782.44 368
Anonymous2024052168.80 32567.22 33473.55 33474.33 38454.11 35683.18 27385.61 26558.15 36061.68 37580.94 34530.71 39181.27 35857.00 31773.34 33785.28 333
USDC70.33 31268.37 31476.21 30680.60 34656.23 33379.19 32886.49 25260.89 33761.29 37685.47 26931.78 38889.47 28153.37 33676.21 29882.94 365
lessismore_v078.97 26681.01 34357.15 31765.99 40061.16 37782.82 32539.12 36691.34 24559.67 28946.92 40488.43 270
UnsupCasMVSNet_eth67.33 33665.99 34071.37 35173.48 39151.47 37775.16 36485.19 26965.20 29060.78 37880.93 34742.35 34977.20 37557.12 31553.69 39685.44 331
dmvs_testset62.63 35564.11 34658.19 38578.55 36824.76 42375.28 36265.94 40167.91 25760.34 37976.01 38253.56 24573.94 39831.79 40467.65 36575.88 392
AllTest70.96 30468.09 31979.58 25785.15 25863.62 22684.58 24479.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
TestCases79.58 25785.15 25863.62 22679.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
Patchmatch-test64.82 35063.24 35169.57 36179.42 36449.82 38763.49 40769.05 39351.98 38659.95 38280.13 35350.91 27770.98 40140.66 39273.57 33287.90 279
MIMVSNet168.58 32766.78 33773.98 33280.07 35351.82 37380.77 30484.37 27864.40 30059.75 38382.16 33536.47 37783.63 34442.73 38770.33 35586.48 312
test_vis1_rt60.28 35958.42 36265.84 37667.25 40555.60 34270.44 38560.94 40944.33 39859.00 38466.64 39924.91 39968.67 40662.80 25869.48 35773.25 395
LF4IMVS64.02 35262.19 35669.50 36270.90 40053.29 36576.13 35477.18 36352.65 38358.59 38580.98 34423.55 40376.52 38053.06 33866.66 36878.68 386
PVSNet_057.27 2061.67 35859.27 36168.85 36679.61 36157.44 31468.01 39373.44 38155.93 37458.54 38670.41 39744.58 33677.55 37447.01 37135.91 40971.55 397
TDRefinement67.49 33464.34 34476.92 30173.47 39261.07 26984.86 23782.98 30659.77 34658.30 38785.13 27726.06 39687.89 30647.92 36960.59 38581.81 374
mvsany_test353.99 36751.45 37261.61 38255.51 41644.74 40263.52 40645.41 42143.69 39958.11 38876.45 38017.99 40963.76 41254.77 32947.59 40376.34 391
UnsupCasMVSNet_bld63.70 35361.53 35970.21 36073.69 38951.39 37872.82 37481.89 31855.63 37557.81 38971.80 39438.67 36978.61 36849.26 35952.21 39980.63 380
DSMNet-mixed57.77 36356.90 36560.38 38367.70 40435.61 41469.18 38953.97 41532.30 41357.49 39079.88 35640.39 36268.57 40738.78 39672.37 34176.97 389
N_pmnet52.79 37153.26 36951.40 39578.99 3677.68 42969.52 3873.89 42851.63 38757.01 39174.98 38740.83 35965.96 41037.78 39764.67 37580.56 382
new-patchmatchnet61.73 35761.73 35861.70 38172.74 39724.50 42469.16 39078.03 35461.40 33456.72 39275.53 38638.42 37076.48 38145.95 37857.67 38784.13 349
CMPMVSbinary51.72 2170.19 31468.16 31776.28 30573.15 39557.55 31279.47 32383.92 28648.02 39356.48 39384.81 28443.13 34586.42 31962.67 26281.81 22984.89 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 33764.81 34274.76 32481.92 32856.68 32580.29 31581.49 32360.33 34056.27 39483.22 31524.77 40087.66 31045.52 38069.47 35879.95 383
test_f52.09 37250.82 37355.90 38953.82 41942.31 40959.42 40958.31 41336.45 40856.12 39570.96 39612.18 41557.79 41553.51 33556.57 39067.60 400
YYNet165.03 34862.91 35371.38 35075.85 37856.60 32669.12 39174.66 37857.28 36854.12 39677.87 37345.85 32674.48 39549.95 35561.52 38283.05 362
MDA-MVSNet_test_wron65.03 34862.92 35271.37 35175.93 37656.73 32269.09 39274.73 37657.28 36854.03 39777.89 37245.88 32574.39 39649.89 35661.55 38182.99 364
pmmvs357.79 36254.26 36768.37 36964.02 41056.72 32375.12 36665.17 40240.20 40252.93 39869.86 39820.36 40775.48 39045.45 38155.25 39572.90 396
MVS-HIRNet59.14 36157.67 36363.57 37981.65 33043.50 40471.73 37765.06 40339.59 40451.43 39957.73 40738.34 37182.58 35139.53 39373.95 32864.62 403
WB-MVS54.94 36554.72 36655.60 39173.50 39020.90 42574.27 37161.19 40859.16 35250.61 40074.15 38847.19 31275.78 38817.31 41635.07 41070.12 398
MVStest156.63 36452.76 37068.25 37161.67 41253.25 36671.67 37868.90 39538.59 40550.59 40183.05 31925.08 39870.66 40236.76 39938.56 40880.83 379
MDA-MVSNet-bldmvs66.68 34063.66 34975.75 30979.28 36560.56 27773.92 37278.35 35364.43 29950.13 40279.87 35744.02 34083.67 34346.10 37756.86 38883.03 363
dongtai45.42 37945.38 38045.55 39773.36 39326.85 42167.72 39434.19 42354.15 37949.65 40356.41 41025.43 39762.94 41319.45 41428.09 41446.86 413
SSC-MVS53.88 36853.59 36854.75 39372.87 39619.59 42673.84 37360.53 41057.58 36649.18 40473.45 39146.34 32175.47 39116.20 41932.28 41269.20 399
new_pmnet50.91 37450.29 37452.78 39468.58 40334.94 41663.71 40556.63 41439.73 40344.95 40565.47 40021.93 40558.48 41434.98 40156.62 38964.92 402
test_vis3_rt49.26 37647.02 37856.00 38854.30 41745.27 40066.76 39948.08 41836.83 40744.38 40653.20 4117.17 42364.07 41156.77 32055.66 39158.65 407
kuosan39.70 38340.40 38437.58 40064.52 40926.98 41965.62 40233.02 42446.12 39542.79 40748.99 41324.10 40246.56 42112.16 42226.30 41539.20 414
FPMVS53.68 36951.64 37159.81 38465.08 40851.03 38069.48 38869.58 39141.46 40140.67 40872.32 39316.46 41270.00 40524.24 41265.42 37358.40 408
APD_test153.31 37049.93 37563.42 38065.68 40750.13 38571.59 37966.90 39934.43 41040.58 40971.56 3958.65 42176.27 38334.64 40255.36 39363.86 404
LCM-MVSNet54.25 36649.68 37667.97 37353.73 42045.28 39966.85 39880.78 32935.96 40939.45 41062.23 4038.70 42078.06 37248.24 36651.20 40080.57 381
PMMVS240.82 38238.86 38646.69 39653.84 41816.45 42748.61 41349.92 41637.49 40631.67 41160.97 4048.14 42256.42 41628.42 40730.72 41367.19 401
ANet_high50.57 37546.10 37963.99 37848.67 42339.13 41270.99 38280.85 32861.39 33531.18 41257.70 40817.02 41173.65 39931.22 40515.89 42079.18 385
testf145.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
APD_test245.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
Gipumacopyleft45.18 38041.86 38355.16 39277.03 37551.52 37632.50 41680.52 33332.46 41227.12 41535.02 4169.52 41975.50 38922.31 41360.21 38638.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 38140.28 38555.82 39040.82 42542.54 40865.12 40463.99 40534.43 41024.48 41657.12 4093.92 42676.17 38517.10 41755.52 39248.75 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 40340.17 42626.90 42024.59 42717.44 41923.95 41748.61 4149.77 41826.48 42218.06 41524.47 41628.83 416
tmp_tt18.61 38921.40 39210.23 4054.82 42810.11 42834.70 41530.74 4261.48 42223.91 41826.07 41928.42 39413.41 42427.12 40815.35 4217.17 419
test_method31.52 38529.28 38938.23 39927.03 4276.50 43020.94 41862.21 4074.05 42122.35 41952.50 41213.33 41347.58 41927.04 40934.04 41160.62 405
MVEpermissive26.22 2330.37 38725.89 39143.81 39844.55 42435.46 41528.87 41739.07 42218.20 41818.58 42040.18 4152.68 42747.37 42017.07 41823.78 41748.60 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 38430.64 38735.15 40152.87 42127.67 41857.09 41147.86 41924.64 41616.40 42133.05 41711.23 41754.90 41714.46 42018.15 41822.87 417
EMVS30.81 38629.65 38834.27 40250.96 42225.95 42256.58 41246.80 42024.01 41715.53 42230.68 41812.47 41454.43 41812.81 42117.05 41922.43 418
wuyk23d16.82 39015.94 39319.46 40458.74 41331.45 41739.22 4143.74 4296.84 4206.04 4232.70 4231.27 42824.29 42310.54 42314.40 4222.63 420
EGC-MVSNET52.07 37347.05 37767.14 37483.51 29360.71 27480.50 31167.75 3960.07 4230.43 42475.85 38524.26 40181.54 35628.82 40662.25 37959.16 406
testmvs6.04 3938.02 3960.10 4070.08 4290.03 43269.74 3860.04 4300.05 4240.31 4251.68 4240.02 4300.04 4250.24 4240.02 4230.25 422
test1236.12 3928.11 3950.14 4060.06 4300.09 43171.05 3810.03 4310.04 4250.25 4261.30 4250.05 4290.03 4260.21 4250.01 4240.29 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k19.96 38826.61 3900.00 4080.00 4310.00 4330.00 41989.26 1840.00 4260.00 42788.61 18361.62 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.26 3947.02 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42663.15 1460.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.23 3919.64 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42786.72 2330.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS42.58 40639.46 394
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
eth-test20.00 431
eth-test0.00 431
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
save fliter93.80 4072.35 4290.47 6691.17 12574.31 124
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 49
GSMVS88.96 252
sam_mvs151.32 27388.96 252
sam_mvs50.01 287
MTGPAbinary92.02 93
test_post178.90 3345.43 42248.81 30685.44 33159.25 293
test_post5.46 42150.36 28584.24 339
patchmatchnet-post74.00 38951.12 27688.60 298
MTMP92.18 3432.83 425
gm-plane-assit81.40 33653.83 35962.72 32480.94 34592.39 20263.40 255
test9_res84.90 4695.70 2692.87 113
agg_prior282.91 7395.45 2992.70 116
test_prior472.60 3489.01 111
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 60
新几何286.29 203
旧先验191.96 7465.79 18486.37 25593.08 7469.31 8392.74 7388.74 263
无先验87.48 16388.98 19660.00 34494.12 12567.28 22488.97 251
原ACMM286.86 183
testdata291.01 25662.37 265
segment_acmp73.08 38
testdata184.14 25775.71 92
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7795.38 7578.71 11086.32 16291.33 160
plane_prior491.00 130
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 166
n20.00 432
nn0.00 432
door-mid69.98 389
test1192.23 87
door69.44 392
HQP5-MVS66.98 163
BP-MVS77.47 122
HQP3-MVS92.19 9085.99 170
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12790.24 142
ACMMP++_ref81.95 227
ACMMP++81.25 232
Test By Simon64.33 133