This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
dcpmvs_285.63 6186.15 5384.06 12891.71 8664.94 20086.47 19491.87 10573.63 14086.60 3993.02 7076.57 1691.87 22783.36 5692.15 8495.35 1
casdiffmvs85.11 7085.14 6785.01 9187.20 21865.77 18387.75 15792.83 6177.84 3984.36 7592.38 8272.15 5393.93 14481.27 8290.48 10595.33 2
3Dnovator+77.84 485.48 6284.47 7688.51 691.08 9373.49 1793.18 1193.78 2180.79 1076.66 19293.37 6060.40 19096.75 2577.20 11993.73 6995.29 3
CS-MVS86.69 4186.95 3685.90 7590.76 10267.57 14692.83 1793.30 3679.67 1984.57 7092.27 8371.47 5995.02 9684.24 4893.46 7095.13 4
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4992.35 8074.62 11888.90 2193.85 5275.75 2196.00 5387.80 1594.63 5495.04 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 7284.98 6984.80 10287.30 21665.39 19287.30 16992.88 5877.62 4184.04 8192.26 8471.81 5593.96 13881.31 8190.30 10795.03 6
DVP-MVS++90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3592.78 495.74 682.45 397.49 389.42 496.68 294.95 7
PC_three_145268.21 24092.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 7
IS-MVSNet83.15 8982.81 8984.18 12389.94 12263.30 23591.59 4488.46 21179.04 2779.49 13492.16 8565.10 11994.28 12367.71 20491.86 9094.95 7
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2380.19 1488.10 2794.80 1673.76 4197.11 1387.51 1895.82 2494.90 10
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5293.10 195.72 882.99 197.44 589.07 996.63 494.88 11
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5496.48 894.88 11
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2393.63 2474.77 11392.29 795.97 274.28 3697.24 1188.58 1396.91 194.87 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 22176.49 21879.74 24890.08 11552.02 34687.86 15663.10 37374.88 11080.16 12992.79 7738.29 34692.35 20968.74 19792.50 8194.86 14
ECVR-MVScopyleft79.61 16279.26 15280.67 23090.08 11554.69 33087.89 15477.44 34074.88 11080.27 12692.79 7748.96 29192.45 20368.55 19892.50 8194.86 14
IU-MVS95.30 271.25 6392.95 5666.81 24892.39 688.94 1196.63 494.85 16
test111179.43 16979.18 15680.15 24089.99 12053.31 34387.33 16877.05 34375.04 10680.23 12892.77 7948.97 29092.33 21168.87 19592.40 8394.81 17
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 7089.69 16874.31 12489.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2394.74 275.71 9089.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4894.70 374.47 12188.86 2294.61 2175.23 2595.84 5886.62 2695.92 2194.78 20
CS-MVS-test86.29 5086.48 4485.71 7791.02 9567.21 15592.36 2893.78 2178.97 3083.51 8991.20 10970.65 6895.15 8881.96 7794.89 4694.77 21
canonicalmvs85.91 5585.87 5786.04 7289.84 12469.44 10790.45 7393.00 4776.70 7288.01 2991.23 10773.28 4393.91 14581.50 8088.80 12494.77 21
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6594.05 1570.80 18687.59 3393.51 5677.57 1496.63 3183.31 5795.77 2694.72 23
test_0728_THIRD78.38 3592.12 995.78 481.46 797.40 789.42 496.57 794.67 24
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6594.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 6285.32 6485.96 7489.51 13169.47 10489.74 9192.47 7476.17 8387.73 3291.46 10370.32 7093.78 15081.51 7988.95 12194.63 26
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8993.50 2875.17 10386.34 4195.29 1270.86 6396.00 5388.78 1296.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 10989.57 9593.39 3477.53 4789.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 27
VDD-MVS83.01 9482.36 9584.96 9391.02 9566.40 16788.91 11188.11 21477.57 4384.39 7493.29 6252.19 24693.91 14577.05 12188.70 12694.57 29
VDDNet81.52 11880.67 12184.05 13090.44 10864.13 21789.73 9285.91 25471.11 18183.18 9193.48 5750.54 26993.49 16573.40 15488.25 13294.54 30
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 31
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8793.82 1973.07 15384.86 6392.89 7276.22 1896.33 3984.89 3595.13 4194.40 34
CANet86.45 4586.10 5487.51 4090.09 11470.94 7489.70 9392.59 7281.78 481.32 11391.43 10470.34 6997.23 1284.26 4693.36 7194.37 35
PHI-MVS86.43 4686.17 5287.24 4690.88 9970.96 7292.27 3294.07 1172.45 15885.22 5391.90 9069.47 7896.42 3883.28 6095.94 2094.35 36
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6793.00 4780.90 988.06 2894.06 4676.43 1796.84 2088.48 1495.99 1994.34 37
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6685.24 5294.32 3571.76 5696.93 1885.53 2995.79 2594.32 38
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3493.33 3576.07 8583.81 8493.95 5169.77 7696.01 5285.15 3194.66 5394.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5885.29 6687.17 4893.49 5371.08 6888.58 12692.42 7868.32 23984.61 6893.48 5772.32 5196.15 4879.00 10095.43 3494.28 40
test_241102_TWO94.06 1277.24 5292.78 495.72 881.26 897.44 589.07 996.58 694.26 41
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 42
DeepC-MVS_fast79.65 386.91 3886.62 4287.76 2993.52 5272.37 4491.26 5093.04 4376.62 7384.22 7693.36 6171.44 6096.76 2480.82 8695.33 3894.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8683.02 8684.57 10690.13 11364.47 21092.32 3090.73 13874.45 12379.35 13691.10 11269.05 8495.12 8972.78 16187.22 14494.13 44
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5492.83 6181.50 685.79 4693.47 5973.02 4797.00 1784.90 3394.94 4494.10 45
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 6093.59 2676.27 8288.14 2695.09 1571.06 6296.67 2887.67 1696.37 1494.09 46
XVS87.18 3486.91 3888.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8694.17 4067.45 9596.60 3483.06 6294.50 5794.07 47
X-MVStestdata80.37 14877.83 18688.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8612.47 37667.45 9596.60 3483.06 6294.50 5794.07 47
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7184.45 7194.52 2369.09 8296.70 2684.37 4494.83 5194.03 49
Regformer-485.68 6085.45 6186.35 6288.95 15769.67 9988.29 13891.29 12581.73 585.36 5090.01 14072.62 4995.35 8383.28 6087.57 13694.03 49
Regformer-286.63 4486.53 4386.95 5189.33 13971.24 6788.43 12892.05 9382.50 186.88 3690.09 13674.45 3195.61 6384.38 4390.63 10394.01 51
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6884.66 6794.52 2368.81 8696.65 2984.53 4194.90 4594.00 52
Regformer-186.41 4886.33 4686.64 5889.33 13970.93 7588.43 12891.39 12382.14 386.65 3890.09 13674.39 3495.01 9783.97 5290.63 10393.97 53
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4494.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_prior386.73 3986.86 4086.33 6392.61 7469.59 10088.85 11492.97 5475.41 9684.91 5893.54 5474.28 3695.48 7083.31 5795.86 2293.91 55
test_prior86.33 6392.61 7469.59 10092.97 5495.48 7093.91 55
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2593.43 3276.89 6484.68 6493.99 5070.67 6796.82 2184.18 5095.01 4293.90 57
Regformer-385.23 6785.07 6885.70 7888.95 15769.01 11188.29 13889.91 16280.95 885.01 5490.01 14072.45 5094.19 13182.50 7387.57 13693.90 57
Anonymous20240521178.25 19677.01 20481.99 19891.03 9460.67 27084.77 23483.90 28170.65 19280.00 13091.20 10941.08 33691.43 23865.21 22785.26 16793.85 59
LFMVS81.82 11081.23 11183.57 14791.89 8463.43 23389.84 8681.85 30777.04 6183.21 9093.10 6552.26 24593.43 17071.98 16589.95 11493.85 59
Effi-MVS+83.62 8283.08 8485.24 8588.38 18067.45 14888.89 11289.15 18675.50 9582.27 10188.28 18869.61 7794.45 12077.81 11387.84 13493.84 61
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3393.49 2974.75 11488.33 2594.43 3273.27 4497.02 1684.18 5094.84 4993.82 62
Anonymous2024052980.19 15378.89 16284.10 12590.60 10464.75 20388.95 11090.90 13565.97 26380.59 12391.17 11149.97 27593.73 15669.16 19282.70 20493.81 63
MVS_Test83.15 8983.06 8583.41 15286.86 22363.21 23786.11 20492.00 9774.31 12482.87 9589.44 15970.03 7293.21 17577.39 11888.50 13093.81 63
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8872.45 4190.02 8294.37 471.76 16787.28 3494.27 3675.18 2696.08 4985.16 3095.77 2693.80 65
GeoE81.71 11281.01 11683.80 14289.51 13164.45 21188.97 10988.73 20671.27 17978.63 14789.76 14566.32 10693.20 17769.89 18486.02 16293.74 66
diffmvs82.10 10381.88 10582.76 18683.00 28963.78 22383.68 25989.76 16572.94 15682.02 10489.85 14365.96 11390.79 25582.38 7587.30 14393.71 67
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6884.91 5894.44 3070.78 6496.61 3284.53 4194.89 4693.66 68
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2993.24 3775.23 10084.91 5894.44 3070.78 6496.61 3283.75 5594.89 4693.66 68
VNet82.21 10282.41 9381.62 20490.82 10060.93 26584.47 24289.78 16476.36 8084.07 8091.88 9164.71 12490.26 26170.68 17588.89 12293.66 68
PGM-MVS86.68 4286.27 4887.90 2194.22 3573.38 1990.22 7893.04 4375.53 9483.86 8294.42 3367.87 9296.64 3082.70 7194.57 5693.66 68
DELS-MVS85.41 6585.30 6585.77 7688.49 17567.93 13885.52 22393.44 3178.70 3183.63 8889.03 16774.57 2995.71 6280.26 9394.04 6693.66 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4293.19 4077.87 3890.32 1794.00 4874.83 2893.78 15087.63 1794.27 6493.65 73
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3786.88 3987.69 3691.16 9272.32 4790.31 7593.94 1777.12 5882.82 9794.23 3972.13 5497.09 1484.83 3695.37 3593.65 73
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 8084.54 7580.99 22390.06 11965.83 17984.21 25188.74 20571.60 17485.01 5492.44 8174.51 3083.50 32882.15 7692.15 8493.64 75
EIA-MVS83.31 8882.80 9084.82 10089.59 12765.59 18588.21 14192.68 6674.66 11678.96 13986.42 24369.06 8395.26 8475.54 13790.09 11193.62 76
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2292.65 7077.57 4383.84 8394.40 3472.24 5296.28 4185.65 2895.30 4093.62 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 6684.95 7186.57 6193.69 4870.58 8492.15 3691.62 11473.89 13582.67 10094.09 4462.60 14795.54 6880.93 8492.93 7393.57 78
CSCG86.41 4886.19 5187.07 5092.91 6572.48 3890.81 6193.56 2773.95 13283.16 9291.07 11475.94 1995.19 8679.94 9694.38 6193.55 79
test1286.80 5592.63 7370.70 8191.79 10982.71 9971.67 5796.16 4794.50 5793.54 80
APD-MVS_3200maxsize85.97 5485.88 5686.22 6792.69 7269.53 10291.93 3892.99 4973.54 14485.94 4294.51 2665.80 11495.61 6383.04 6492.51 8093.53 81
mvs_anonymous79.42 17079.11 15780.34 23684.45 25957.97 29482.59 27587.62 22767.40 24676.17 20788.56 18168.47 8789.59 27170.65 17686.05 16193.47 82
mPP-MVS86.67 4386.32 4787.72 3294.41 2473.55 1392.74 2092.22 8776.87 6582.81 9894.25 3866.44 10496.24 4282.88 6694.28 6393.38 83
EPNet83.72 7982.92 8886.14 6984.22 26269.48 10391.05 5885.27 26081.30 776.83 18791.65 9566.09 10995.56 6576.00 13293.85 6793.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8482.80 9085.43 8190.25 11168.74 11990.30 7690.13 15676.33 8180.87 12192.89 7261.00 17994.20 13072.45 16490.97 9993.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 5092.12 995.78 480.98 997.40 789.08 796.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22460.24 27687.28 17088.79 20074.25 12776.84 18690.53 12849.48 28291.56 23467.98 20282.15 20993.29 87
EI-MVSNet-Vis-set84.19 7583.81 7885.31 8288.18 18467.85 13987.66 15989.73 16780.05 1682.95 9389.59 15170.74 6694.82 10880.66 9084.72 17293.28 88
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7792.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 19192.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
CP-MVS87.11 3586.92 3787.68 3794.20 3673.86 893.98 392.82 6476.62 7383.68 8594.46 2767.93 9095.95 5684.20 4994.39 6093.23 89
ACMMPcopyleft85.89 5685.39 6287.38 4493.59 5172.63 3492.74 2093.18 4176.78 6880.73 12293.82 5364.33 12596.29 4082.67 7290.69 10293.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM_NR83.02 9382.41 9384.82 10092.47 7766.37 16887.93 15291.80 10873.82 13677.32 17790.66 12367.90 9194.90 10470.37 17889.48 11893.19 93
OMC-MVS82.69 9781.97 10484.85 9988.75 16767.42 14987.98 14890.87 13674.92 10979.72 13291.65 9562.19 15793.96 13875.26 13986.42 15693.16 94
PAPR81.66 11680.89 11883.99 13690.27 11064.00 21886.76 18791.77 11268.84 23277.13 18589.50 15267.63 9394.88 10667.55 20688.52 12993.09 95
UA-Net85.08 7184.96 7085.45 8092.07 8168.07 13689.78 9090.86 13782.48 284.60 6993.20 6369.35 7995.22 8571.39 17090.88 10193.07 96
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 6080.26 1387.78 3094.27 3675.89 2096.81 2287.45 1996.44 993.05 97
thisisatest053079.40 17177.76 19084.31 11987.69 20365.10 19887.36 16684.26 27770.04 20077.42 17488.26 19049.94 27694.79 11070.20 17984.70 17393.03 98
train_agg86.43 4686.20 5087.13 4993.26 5672.96 2688.75 11991.89 10368.69 23485.00 5693.10 6574.43 3295.41 7684.97 3295.71 3093.02 99
agg_prior186.22 5186.09 5586.62 5992.85 6671.94 5488.59 12591.78 11068.96 22984.41 7293.18 6474.94 2794.93 9884.75 3895.33 3893.01 100
DROMVSNet86.01 5386.38 4584.91 9789.31 14466.27 17092.32 3093.63 2479.37 2284.17 7891.88 9169.04 8595.43 7483.93 5393.77 6893.01 100
EI-MVSNet-UG-set83.81 7783.38 8185.09 8987.87 19367.53 14787.44 16589.66 16979.74 1882.23 10289.41 16070.24 7194.74 11179.95 9583.92 18292.99 102
tttt051779.40 17177.91 18383.90 14188.10 18763.84 22188.37 13584.05 27971.45 17776.78 18989.12 16449.93 27894.89 10570.18 18083.18 19692.96 103
test117286.20 5286.22 4986.12 7093.95 4269.89 9591.79 4392.28 8275.07 10586.40 4094.58 2265.00 12295.56 6584.34 4592.60 7892.90 104
test9_res84.90 3395.70 3192.87 105
SR-MVS86.73 3986.67 4186.91 5294.11 4072.11 5192.37 2792.56 7374.50 11986.84 3794.65 2067.31 9795.77 6084.80 3792.85 7592.84 106
ETV-MVS84.90 7484.67 7485.59 7989.39 13668.66 12588.74 12192.64 7179.97 1784.10 7985.71 25569.32 8095.38 7980.82 8691.37 9592.72 107
agg_prior282.91 6595.45 3392.70 108
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 4192.83 6173.01 15588.58 2394.52 2373.36 4296.49 3784.26 4695.01 4292.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18976.63 21784.64 10586.73 22869.47 10485.01 22984.61 26969.54 21166.51 32086.59 23650.16 27291.75 22976.26 12884.24 18092.69 110
Vis-MVSNet (Re-imp)78.36 19578.45 17078.07 27488.64 17151.78 34986.70 18879.63 32874.14 13075.11 23290.83 12161.29 17389.75 26858.10 28691.60 9192.69 110
TSAR-MVS + GP.85.71 5985.33 6386.84 5391.34 9072.50 3789.07 10787.28 23476.41 7585.80 4590.22 13474.15 3995.37 8281.82 7891.88 8792.65 112
test_yl81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
DCV-MVSNet81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
SR-MVS-dyc-post85.77 5785.61 5986.23 6693.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2865.00 12295.56 6582.75 6791.87 8892.50 115
RE-MVS-def85.48 6093.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2863.87 12982.75 6791.87 8892.50 115
nrg03083.88 7683.53 7984.96 9386.77 22769.28 10890.46 7292.67 6774.79 11282.95 9391.33 10672.70 4893.09 18580.79 8879.28 24392.50 115
MG-MVS83.41 8583.45 8083.28 15592.74 7162.28 25188.17 14389.50 17275.22 10181.49 11292.74 8066.75 10095.11 9072.85 16091.58 9292.45 118
FIs82.07 10582.42 9281.04 22288.80 16458.34 28888.26 14093.49 2976.93 6378.47 15191.04 11569.92 7492.34 21069.87 18584.97 16992.44 119
FC-MVSNet-test81.52 11882.02 10280.03 24288.42 17955.97 32487.95 15093.42 3377.10 5977.38 17590.98 12069.96 7391.79 22868.46 20084.50 17492.33 120
Fast-Effi-MVS+80.81 13379.92 13483.47 14888.85 15964.51 20785.53 22189.39 17470.79 18778.49 15085.06 27167.54 9493.58 15967.03 21586.58 15392.32 121
test_part182.78 9682.08 10084.89 9890.66 10366.97 16090.96 5992.93 5777.19 5580.53 12490.04 13863.44 13295.39 7876.04 13176.90 26292.31 122
TranMVSNet+NR-MVSNet80.84 13080.31 12882.42 19187.85 19462.33 24987.74 15891.33 12480.55 1177.99 16489.86 14265.23 11892.62 19767.05 21475.24 29492.30 123
ab-mvs79.51 16578.97 16181.14 21988.46 17760.91 26683.84 25789.24 18170.36 19579.03 13888.87 17263.23 13890.21 26365.12 22882.57 20592.28 124
CANet_DTU80.61 14179.87 13582.83 17885.60 24163.17 24087.36 16688.65 20776.37 7975.88 21088.44 18453.51 23693.07 18673.30 15589.74 11692.25 125
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17588.46 17763.46 23187.13 17292.37 7980.19 1478.38 15289.14 16371.66 5893.05 18770.05 18176.46 27092.25 125
DU-MVS81.12 12580.52 12482.90 17687.80 19763.46 23187.02 17691.87 10579.01 2878.38 15289.07 16565.02 12093.05 18770.05 18176.46 27092.20 127
NR-MVSNet80.23 15179.38 14782.78 18487.80 19763.34 23486.31 19891.09 13279.01 2872.17 26489.07 16567.20 9892.81 19666.08 22175.65 28192.20 127
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 12762.99 24488.16 14491.51 11865.77 26477.14 18491.09 11360.91 18093.21 17550.26 32687.05 14692.17 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator76.31 583.38 8782.31 9686.59 6087.94 19272.94 2990.64 6492.14 9177.21 5475.47 21792.83 7458.56 19794.72 11273.24 15792.71 7792.13 130
MVS_111021_HR85.14 6984.75 7386.32 6591.65 8772.70 3185.98 20690.33 15076.11 8482.08 10391.61 9871.36 6194.17 13381.02 8392.58 7992.08 131
MVSFormer82.85 9582.05 10185.24 8587.35 21170.21 8790.50 6890.38 14668.55 23681.32 11389.47 15461.68 16293.46 16878.98 10190.26 10892.05 132
jason81.39 12180.29 12984.70 10486.63 22969.90 9485.95 20786.77 24263.24 29081.07 11989.47 15461.08 17892.15 21678.33 10890.07 11392.05 132
jason: jason.
mvsmamba81.69 11380.74 11984.56 10787.45 21066.72 16391.26 5085.89 25574.66 11678.23 15790.56 12554.33 22894.91 10080.73 8983.54 19092.04 134
bld_raw_conf00581.08 12679.99 13284.35 11687.16 22066.17 17291.08 5684.98 26575.09 10477.71 16990.54 12750.04 27394.91 10079.96 9483.32 19391.98 135
HyFIR lowres test77.53 21675.40 23283.94 13989.59 12766.62 16480.36 29588.64 20856.29 34676.45 19585.17 26857.64 20493.28 17361.34 25983.10 19891.91 136
mvs-test180.88 12879.40 14685.29 8385.13 24969.75 9889.28 9888.10 21574.99 10776.44 19886.72 22757.27 20994.26 12873.53 15083.18 19691.87 137
XVG-OURS-SEG-HR80.81 13379.76 13883.96 13885.60 24168.78 11683.54 26590.50 14370.66 19176.71 19191.66 9460.69 18391.26 24276.94 12281.58 21691.83 138
lupinMVS81.39 12180.27 13084.76 10387.35 21170.21 8785.55 21986.41 24662.85 29781.32 11388.61 17861.68 16292.24 21478.41 10790.26 10891.83 138
abl_685.23 6784.95 7186.07 7192.23 7970.48 8590.80 6292.08 9273.51 14785.26 5194.16 4162.75 14695.92 5782.46 7491.30 9791.81 140
WR-MVS79.49 16679.22 15480.27 23888.79 16558.35 28785.06 22888.61 20978.56 3277.65 17088.34 18663.81 13190.66 25864.98 23077.22 25891.80 141
h-mvs3383.15 8982.19 9786.02 7390.56 10570.85 7888.15 14589.16 18576.02 8684.67 6591.39 10561.54 16595.50 6982.71 6975.48 28591.72 142
UniMVSNet (Re)81.60 11781.11 11383.09 16688.38 18064.41 21287.60 16093.02 4678.42 3478.56 14888.16 19269.78 7593.26 17469.58 18876.49 26991.60 143
UGNet80.83 13279.59 14284.54 10888.04 18968.09 13589.42 9688.16 21376.95 6276.22 20389.46 15649.30 28593.94 14168.48 19990.31 10691.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS80.41 14679.23 15383.97 13785.64 24069.02 11083.03 27390.39 14571.09 18277.63 17191.49 10254.62 22791.35 24075.71 13383.47 19191.54 145
RRT_MVS80.35 14979.22 15483.74 14387.63 20465.46 18991.08 5688.92 19873.82 13676.44 19890.03 13949.05 28994.25 12976.84 12379.20 24591.51 146
LCM-MVSNet-Re77.05 22476.94 20777.36 28487.20 21851.60 35080.06 29880.46 32075.20 10267.69 30486.72 22762.48 15088.98 28263.44 23889.25 12091.51 146
DP-MVS Recon83.11 9282.09 9986.15 6894.44 2170.92 7688.79 11792.20 8870.53 19379.17 13791.03 11764.12 12796.03 5068.39 20190.14 11091.50 148
PS-MVSNAJss82.07 10581.31 10984.34 11886.51 23167.27 15389.27 9991.51 11871.75 16879.37 13590.22 13463.15 14094.27 12477.69 11482.36 20791.49 149
thisisatest051577.33 22075.38 23383.18 16185.27 24563.80 22282.11 27983.27 29265.06 27175.91 20983.84 28549.54 28094.27 12467.24 21186.19 15991.48 150
DPM-MVS84.93 7284.29 7786.84 5390.20 11273.04 2487.12 17393.04 4369.80 20582.85 9691.22 10873.06 4696.02 5176.72 12794.63 5491.46 151
test_low_dy_conf_00180.11 15479.08 15883.17 16286.54 23064.59 20590.19 8089.19 18469.61 21075.86 21190.23 13249.52 28193.59 15878.26 11282.32 20891.34 152
iter_conf0580.00 15878.70 16483.91 14087.84 19565.83 17988.84 11684.92 26671.61 17378.70 14388.94 16843.88 31994.56 11479.28 9984.28 17991.33 153
HQP_MVS83.64 8183.14 8385.14 8790.08 11568.71 12191.25 5292.44 7579.12 2578.92 14191.00 11860.42 18895.38 7978.71 10386.32 15791.33 153
plane_prior592.44 7595.38 7978.71 10386.32 15791.33 153
GA-MVS76.87 22875.17 23781.97 19982.75 29462.58 24681.44 28786.35 24972.16 16574.74 23982.89 29646.20 30692.02 22068.85 19681.09 22091.30 156
VPA-MVSNet80.60 14280.55 12380.76 22888.07 18860.80 26886.86 18191.58 11675.67 9380.24 12789.45 15863.34 13490.25 26270.51 17779.22 24491.23 157
Effi-MVS+-dtu80.03 15678.57 16884.42 11385.13 24968.74 11988.77 11888.10 21574.99 10774.97 23683.49 29157.27 20993.36 17173.53 15080.88 22291.18 158
v2v48280.23 15179.29 15183.05 16983.62 27264.14 21687.04 17589.97 15973.61 14178.18 16087.22 21561.10 17793.82 14876.11 12976.78 26791.18 158
iter_conf_final80.63 14079.35 14984.46 11189.36 13867.70 14389.85 8584.49 27173.19 15178.30 15588.94 16845.98 30794.56 11479.59 9884.48 17691.11 160
Anonymous2023121178.97 18377.69 19382.81 18090.54 10664.29 21490.11 8191.51 11865.01 27376.16 20888.13 19750.56 26893.03 19069.68 18777.56 25691.11 160
hse-mvs281.72 11180.94 11784.07 12788.72 16867.68 14485.87 21087.26 23576.02 8684.67 6588.22 19161.54 16593.48 16682.71 6973.44 31191.06 162
AUN-MVS79.21 17677.60 19584.05 13088.71 16967.61 14585.84 21287.26 23569.08 22477.23 18088.14 19653.20 23993.47 16775.50 13873.45 31091.06 162
HQP4-MVS77.24 17995.11 9091.03 164
HQP-MVS82.61 9982.02 10284.37 11489.33 13966.98 15889.17 10192.19 8976.41 7577.23 18090.23 13260.17 19195.11 9077.47 11685.99 16391.03 164
RPSCF73.23 26871.46 26978.54 26782.50 30059.85 27882.18 27882.84 29958.96 32871.15 27489.41 16045.48 31484.77 32058.82 27971.83 32291.02 166
test_djsdf80.30 15079.32 15083.27 15683.98 26765.37 19390.50 6890.38 14668.55 23676.19 20488.70 17456.44 21593.46 16878.98 10180.14 23490.97 167
PCF-MVS73.52 780.38 14778.84 16385.01 9187.71 20168.99 11283.65 26091.46 12263.00 29477.77 16890.28 13066.10 10895.09 9461.40 25788.22 13390.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18878.66 16678.76 26388.31 18255.72 32684.45 24586.63 24476.79 6778.26 15690.55 12659.30 19389.70 27066.63 21677.05 26090.88 169
CPTT-MVS83.73 7883.33 8284.92 9693.28 5570.86 7792.09 3790.38 14668.75 23379.57 13392.83 7460.60 18693.04 18980.92 8591.56 9390.86 170
CLD-MVS82.31 10181.65 10784.29 12088.47 17667.73 14285.81 21492.35 8075.78 8978.33 15486.58 23864.01 12894.35 12176.05 13087.48 14190.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 16478.43 17283.07 16883.55 27464.52 20686.93 17990.58 14170.83 18577.78 16785.90 25159.15 19493.94 14173.96 14777.19 25990.76 172
IterMVS-LS80.06 15579.38 14782.11 19585.89 23663.20 23886.79 18489.34 17574.19 12875.45 22086.72 22766.62 10192.39 20672.58 16276.86 26490.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14579.98 13382.12 19484.28 26063.19 23986.41 19588.95 19674.18 12978.69 14487.54 20766.62 10192.43 20472.57 16380.57 22890.74 174
v192192079.22 17578.03 18082.80 18183.30 27963.94 22086.80 18390.33 15069.91 20377.48 17385.53 26058.44 19893.75 15473.60 14976.85 26590.71 175
QAPM80.88 12879.50 14485.03 9088.01 19168.97 11391.59 4492.00 9766.63 25575.15 23192.16 8557.70 20395.45 7263.52 23688.76 12590.66 176
v14419279.47 16778.37 17382.78 18483.35 27763.96 21986.96 17790.36 14969.99 20177.50 17285.67 25760.66 18493.77 15274.27 14476.58 26890.62 177
v124078.99 18277.78 18882.64 18783.21 28163.54 22886.62 19090.30 15269.74 20977.33 17685.68 25657.04 21293.76 15373.13 15876.92 26190.62 177
v114480.03 15679.03 15983.01 17183.78 27064.51 20787.11 17490.57 14271.96 16678.08 16386.20 24861.41 16993.94 14174.93 14077.23 25790.60 179
1112_ss77.40 21976.43 22080.32 23789.11 15660.41 27583.65 26087.72 22662.13 30573.05 25486.72 22762.58 14989.97 26562.11 25180.80 22490.59 180
CP-MVSNet78.22 19778.34 17477.84 27687.83 19654.54 33287.94 15191.17 12977.65 4073.48 24988.49 18262.24 15688.43 29162.19 24874.07 30290.55 181
PS-CasMVS78.01 20678.09 17977.77 27887.71 20154.39 33488.02 14791.22 12677.50 4873.26 25188.64 17760.73 18188.41 29261.88 25273.88 30690.53 182
CDS-MVSNet79.07 18077.70 19283.17 16287.60 20568.23 13384.40 24886.20 25067.49 24576.36 20086.54 24061.54 16590.79 25561.86 25387.33 14290.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18577.51 19783.03 17087.80 19767.79 14184.72 23585.05 26367.63 24276.75 19087.70 20162.25 15590.82 25458.53 28287.13 14590.49 183
PEN-MVS77.73 21177.69 19377.84 27687.07 22253.91 33787.91 15391.18 12877.56 4573.14 25388.82 17361.23 17489.17 27859.95 26772.37 31790.43 185
Test_1112_low_res76.40 23675.44 23079.27 25789.28 14658.09 29081.69 28387.07 23859.53 32472.48 26086.67 23361.30 17289.33 27560.81 26380.15 23390.41 186
HY-MVS69.67 1277.95 20777.15 20280.36 23587.57 20960.21 27783.37 26787.78 22566.11 25975.37 22387.06 22263.27 13690.48 26061.38 25882.43 20690.40 187
CHOSEN 1792x268877.63 21575.69 22683.44 14989.98 12168.58 12778.70 31387.50 23056.38 34575.80 21386.84 22358.67 19691.40 23961.58 25685.75 16690.34 188
114514_t80.68 13979.51 14384.20 12294.09 4167.27 15389.64 9491.11 13158.75 33174.08 24590.72 12258.10 19995.04 9569.70 18689.42 11990.30 189
eth_miper_zixun_eth77.92 20876.69 21581.61 20683.00 28961.98 25483.15 26989.20 18369.52 21274.86 23884.35 27861.76 16192.56 20071.50 16972.89 31590.28 190
PVSNet_Blended_VisFu82.62 9881.83 10684.96 9390.80 10169.76 9788.74 12191.70 11369.39 21378.96 13988.46 18365.47 11694.87 10774.42 14288.57 12790.24 191
MVS_111021_LR82.61 9982.11 9884.11 12488.82 16271.58 5985.15 22686.16 25174.69 11580.47 12591.04 11562.29 15490.55 25980.33 9290.08 11290.20 192
MSLP-MVS++85.43 6485.76 5884.45 11291.93 8370.24 8690.71 6392.86 5977.46 4984.22 7692.81 7667.16 9992.94 19180.36 9194.35 6290.16 193
mvs_tets79.13 17877.77 18983.22 16084.70 25566.37 16889.17 10190.19 15469.38 21475.40 22289.46 15644.17 31793.15 18176.78 12580.70 22690.14 194
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13765.93 17684.95 23187.15 23773.56 14378.19 15989.79 14456.67 21493.36 17159.53 27186.74 15190.13 195
c3_l78.75 18677.91 18381.26 21482.89 29261.56 26084.09 25589.13 18869.97 20275.56 21584.29 27966.36 10592.09 21873.47 15375.48 28590.12 196
v7n78.97 18377.58 19683.14 16483.45 27665.51 18688.32 13691.21 12773.69 13972.41 26186.32 24657.93 20093.81 14969.18 19175.65 28190.11 197
jajsoiax79.29 17477.96 18183.27 15684.68 25666.57 16689.25 10090.16 15569.20 22075.46 21989.49 15345.75 31293.13 18376.84 12380.80 22490.11 197
v14878.72 18777.80 18781.47 20882.73 29561.96 25586.30 19988.08 21773.26 15076.18 20585.47 26262.46 15192.36 20871.92 16673.82 30790.09 199
GBi-Net78.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
test178.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
FMVSNet177.44 21776.12 22481.40 21086.81 22663.01 24188.39 13289.28 17770.49 19474.39 24287.28 21149.06 28891.11 24560.91 26178.52 24790.09 199
WR-MVS_H78.51 19278.49 16978.56 26688.02 19056.38 31988.43 12892.67 6777.14 5773.89 24687.55 20666.25 10789.24 27758.92 27773.55 30990.06 203
DTE-MVSNet76.99 22576.80 21077.54 28386.24 23353.06 34587.52 16290.66 13977.08 6072.50 25988.67 17660.48 18789.52 27257.33 29370.74 32890.05 204
v879.97 15979.02 16082.80 18184.09 26464.50 20987.96 14990.29 15374.13 13175.24 22986.81 22462.88 14593.89 14774.39 14375.40 28990.00 205
thres600view776.50 23275.44 23079.68 25089.40 13557.16 30585.53 22183.23 29373.79 13876.26 20287.09 22051.89 25491.89 22548.05 33983.72 18890.00 205
thres40076.50 23275.37 23479.86 24589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18590.00 205
cl2278.07 20377.01 20481.23 21582.37 30461.83 25783.55 26487.98 21968.96 22975.06 23483.87 28361.40 17091.88 22673.53 15076.39 27289.98 208
OPM-MVS83.50 8382.95 8785.14 8788.79 16570.95 7389.13 10691.52 11777.55 4680.96 12091.75 9360.71 18294.50 11979.67 9786.51 15589.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24473.83 25281.30 21383.26 28061.79 25882.57 27680.65 31666.81 24866.88 31283.42 29257.86 20292.19 21563.47 23779.57 23789.91 210
v1079.74 16178.67 16582.97 17484.06 26564.95 19987.88 15590.62 14073.11 15275.11 23286.56 23961.46 16894.05 13773.68 14875.55 28389.90 211
MVSTER79.01 18177.88 18582.38 19283.07 28664.80 20284.08 25688.95 19669.01 22878.69 14487.17 21854.70 22592.43 20474.69 14180.57 22889.89 212
ACMP74.13 681.51 12080.57 12284.36 11589.42 13468.69 12489.97 8491.50 12174.46 12275.04 23590.41 12953.82 23494.54 11677.56 11582.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10481.27 11084.50 10989.23 14868.76 11790.22 7891.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
LGP-MVS_train84.50 10989.23 14868.76 11791.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
V4279.38 17378.24 17782.83 17881.10 32265.50 18785.55 21989.82 16371.57 17578.21 15886.12 24960.66 18493.18 18075.64 13475.46 28789.81 216
MAR-MVS81.84 10980.70 12085.27 8491.32 9171.53 6089.82 8790.92 13469.77 20678.50 14986.21 24762.36 15394.52 11865.36 22692.05 8689.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 21276.76 21280.58 23182.48 30260.48 27383.09 27087.86 22369.22 21874.38 24385.24 26662.10 15891.53 23571.09 17175.40 28989.74 218
cl____77.72 21276.76 21280.58 23182.49 30160.48 27383.09 27087.87 22269.22 21874.38 24385.22 26762.10 15891.53 23571.09 17175.41 28889.73 219
miper_ehance_all_eth78.59 19177.76 19081.08 22182.66 29761.56 26083.65 26089.15 18668.87 23175.55 21683.79 28766.49 10392.03 21973.25 15676.39 27289.64 220
anonymousdsp78.60 19077.15 20282.98 17380.51 32867.08 15687.24 17189.53 17165.66 26675.16 23087.19 21752.52 24092.25 21377.17 12079.34 24289.61 221
FMVSNet278.20 19977.21 20181.20 21787.60 20562.89 24587.47 16489.02 19171.63 17075.29 22887.28 21154.80 22191.10 24862.38 24679.38 24189.61 221
baseline176.98 22676.75 21477.66 27988.13 18555.66 32785.12 22781.89 30573.04 15476.79 18888.90 17062.43 15287.78 29963.30 24071.18 32689.55 223
FMVSNet377.88 20976.85 20980.97 22486.84 22562.36 24886.52 19388.77 20171.13 18075.34 22486.66 23454.07 23291.10 24862.72 24279.57 23789.45 224
miper_enhance_ethall77.87 21076.86 20880.92 22581.65 31161.38 26282.68 27488.98 19365.52 26875.47 21782.30 30465.76 11592.00 22172.95 15976.39 27289.39 225
cascas76.72 23074.64 24082.99 17285.78 23865.88 17882.33 27789.21 18260.85 31372.74 25681.02 31547.28 29893.75 15467.48 20785.02 16889.34 226
bld_raw_dy_0_6477.29 22275.98 22581.22 21685.04 25265.47 18888.14 14677.56 33769.20 22073.77 24789.40 16242.24 33088.85 28776.78 12581.64 21589.33 227
Fast-Effi-MVS+-dtu78.02 20576.49 21882.62 18883.16 28566.96 16186.94 17887.45 23272.45 15871.49 27184.17 28054.79 22491.58 23367.61 20580.31 23189.30 228
IB-MVS68.01 1575.85 24373.36 25583.31 15484.76 25466.03 17383.38 26685.06 26270.21 19969.40 29381.05 31445.76 31194.66 11365.10 22975.49 28489.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23275.55 22979.33 25689.52 13056.99 30885.83 21383.23 29373.94 13376.32 20187.12 21951.89 25491.95 22248.33 33483.75 18589.07 230
tfpn200view976.42 23575.37 23479.55 25589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18589.07 230
xiu_mvs_v1_base_debu80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base_debi80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
EPNet_dtu75.46 24774.86 23877.23 28882.57 29954.60 33186.89 18083.09 29671.64 16966.25 32285.86 25355.99 21688.04 29654.92 30486.55 15489.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22376.68 21678.93 26184.22 26258.62 28686.41 19588.36 21271.37 17873.31 25088.01 19861.22 17589.15 27964.24 23473.01 31489.03 236
PVSNet_Blended80.98 12780.34 12782.90 17688.85 15965.40 19084.43 24692.00 9767.62 24378.11 16185.05 27266.02 11194.27 12471.52 16789.50 11789.01 237
PAPM77.68 21476.40 22181.51 20787.29 21761.85 25683.78 25889.59 17064.74 27571.23 27288.70 17462.59 14893.66 15752.66 31387.03 14789.01 237
WTY-MVS75.65 24575.68 22775.57 30086.40 23256.82 31077.92 32182.40 30265.10 27076.18 20587.72 20063.13 14380.90 34060.31 26581.96 21189.00 239
无先验87.48 16388.98 19360.00 31994.12 13467.28 20988.97 240
GSMVS88.96 241
sam_mvs151.32 26088.96 241
SCA74.22 25772.33 26479.91 24484.05 26662.17 25279.96 30079.29 33066.30 25872.38 26280.13 32451.95 25288.60 28959.25 27377.67 25588.96 241
miper_lstm_enhance74.11 25873.11 25877.13 28980.11 33159.62 28072.23 34386.92 24166.76 25070.40 27882.92 29556.93 21382.92 33269.06 19372.63 31688.87 244
ACMM73.20 880.78 13879.84 13683.58 14689.31 14468.37 12989.99 8391.60 11570.28 19777.25 17889.66 14753.37 23793.53 16474.24 14582.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25373.39 25478.61 26581.38 31757.48 30386.64 18987.95 22064.99 27470.18 28186.61 23550.43 27089.52 27262.12 25070.18 33088.83 246
原ACMM184.35 11693.01 6468.79 11592.44 7563.96 28881.09 11891.57 9966.06 11095.45 7267.19 21294.82 5288.81 247
CNLPA78.08 20276.79 21181.97 19990.40 10971.07 6987.59 16184.55 27066.03 26272.38 26289.64 14857.56 20586.04 31059.61 27083.35 19288.79 248
K. test v371.19 28268.51 29079.21 25983.04 28857.78 29984.35 24976.91 34472.90 15762.99 34182.86 29739.27 34191.09 25061.65 25552.66 36388.75 249
旧先验191.96 8265.79 18286.37 24893.08 6969.31 8192.74 7688.74 250
PatchmatchNetpermissive73.12 26971.33 27278.49 26983.18 28360.85 26779.63 30278.57 33264.13 28271.73 26879.81 32951.20 26185.97 31157.40 29276.36 27588.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 26471.26 27479.70 24985.08 25157.89 29685.57 21583.56 28671.03 18365.66 32485.88 25242.10 33192.57 19959.11 27563.34 34988.65 252
PS-MVSNAJ81.69 11381.02 11583.70 14489.51 13168.21 13484.28 25090.09 15770.79 18781.26 11785.62 25963.15 14094.29 12275.62 13588.87 12388.59 253
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 15168.03 13784.46 24490.02 15870.67 19081.30 11686.53 24163.17 13994.19 13175.60 13688.54 12888.57 254
CostFormer75.24 25173.90 25079.27 25782.65 29858.27 28980.80 28882.73 30061.57 30875.33 22783.13 29455.52 21791.07 25164.98 23078.34 25188.45 255
lessismore_v078.97 26081.01 32357.15 30665.99 36861.16 34682.82 29839.12 34291.34 24159.67 26946.92 36888.43 256
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12685.17 24669.91 9390.57 6690.97 13366.70 25172.17 26491.91 8954.70 22593.96 13861.81 25490.95 10088.41 257
OurMVSNet-221017-074.26 25672.42 26379.80 24783.76 27159.59 28185.92 20986.64 24366.39 25766.96 31187.58 20439.46 34091.60 23265.76 22469.27 33288.22 258
LS3D76.95 22774.82 23983.37 15390.45 10767.36 15289.15 10586.94 24061.87 30769.52 29290.61 12451.71 25794.53 11746.38 34686.71 15288.21 259
XVG-ACMP-BASELINE76.11 24074.27 24781.62 20483.20 28264.67 20483.60 26389.75 16669.75 20771.85 26787.09 22032.78 35992.11 21769.99 18380.43 23088.09 260
tpm273.26 26771.46 26978.63 26483.34 27856.71 31380.65 29280.40 32156.63 34473.55 24882.02 30951.80 25691.24 24356.35 30078.42 25087.95 261
MDTV_nov1_ep13_2view37.79 37375.16 33455.10 34966.53 31749.34 28453.98 30787.94 262
Patchmatch-test64.82 32263.24 32269.57 33579.42 34249.82 35963.49 36469.05 36451.98 35759.95 35080.13 32450.91 26370.98 36840.66 36073.57 30887.90 263
PLCcopyleft70.83 1178.05 20476.37 22283.08 16791.88 8567.80 14088.19 14289.46 17364.33 28169.87 28988.38 18553.66 23593.58 15958.86 27882.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 27771.71 26874.35 31282.19 30652.00 34779.22 30777.29 34164.56 27772.95 25583.68 29051.35 25983.26 33158.33 28475.80 27987.81 265
Patchmatch-RL test70.24 29167.78 30277.61 28177.43 34959.57 28271.16 34570.33 35862.94 29668.65 29872.77 35650.62 26785.49 31469.58 18866.58 34187.77 266
F-COLMAP76.38 23774.33 24682.50 19089.28 14666.95 16288.41 13189.03 19064.05 28566.83 31488.61 17846.78 30192.89 19257.48 29078.55 24687.67 267
Baseline_NR-MVSNet78.15 20178.33 17577.61 28185.79 23756.21 32286.78 18585.76 25673.60 14277.93 16587.57 20565.02 12088.99 28167.14 21375.33 29187.63 268
CL-MVSNet_self_test72.37 27771.46 26975.09 30579.49 34153.53 33980.76 29085.01 26469.12 22370.51 27682.05 30857.92 20184.13 32352.27 31466.00 34387.60 269
ACMH+68.96 1476.01 24174.01 24882.03 19788.60 17265.31 19488.86 11387.55 22870.25 19867.75 30387.47 20941.27 33493.19 17958.37 28375.94 27887.60 269
131476.53 23175.30 23680.21 23983.93 26862.32 25084.66 23688.81 19960.23 31770.16 28384.07 28255.30 21990.73 25767.37 20883.21 19587.59 271
API-MVS81.99 10781.23 11184.26 12190.94 9770.18 9291.10 5589.32 17671.51 17678.66 14688.28 18865.26 11795.10 9364.74 23291.23 9887.51 272
AdaColmapbinary80.58 14479.42 14584.06 12893.09 6168.91 11489.36 9788.97 19569.27 21675.70 21489.69 14657.20 21195.77 6063.06 24188.41 13187.50 273
PVSNet_BlendedMVS80.60 14280.02 13182.36 19388.85 15965.40 19086.16 20392.00 9769.34 21578.11 16186.09 25066.02 11194.27 12471.52 16782.06 21087.39 274
sss73.60 26273.64 25373.51 31782.80 29355.01 32976.12 32781.69 30862.47 30274.68 24085.85 25457.32 20878.11 35060.86 26280.93 22187.39 274
IterMVS-SCA-FT75.43 24873.87 25180.11 24182.69 29664.85 20181.57 28583.47 28969.16 22270.49 27784.15 28151.95 25288.15 29469.23 19072.14 32087.34 276
PVSNet64.34 1872.08 27970.87 27875.69 29886.21 23456.44 31774.37 33980.73 31562.06 30670.17 28282.23 30642.86 32483.31 33054.77 30584.45 17787.32 277
新几何183.42 15093.13 5870.71 8085.48 25857.43 33981.80 10891.98 8863.28 13592.27 21264.60 23392.99 7287.27 278
112180.84 13079.77 13784.05 13093.11 6070.78 7984.66 23685.42 25957.37 34081.76 11192.02 8763.41 13394.12 13467.28 20992.93 7387.26 279
TR-MVS77.44 21776.18 22381.20 21788.24 18363.24 23684.61 24086.40 24767.55 24477.81 16686.48 24254.10 23193.15 18157.75 28982.72 20387.20 280
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 24357.10 30786.78 18586.09 25372.17 16471.53 27087.34 21063.01 14489.31 27656.84 29761.83 35187.17 281
ACMH67.68 1675.89 24273.93 24981.77 20288.71 16966.61 16588.62 12489.01 19269.81 20466.78 31586.70 23241.95 33391.51 23755.64 30278.14 25287.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 30067.59 30572.46 32374.29 36145.45 36577.93 32087.00 23963.12 29163.99 33678.99 33542.32 32784.77 32056.55 29964.09 34887.16 283
EPMVS69.02 29968.16 29471.59 32579.61 33949.80 36077.40 32366.93 36762.82 29870.01 28479.05 33145.79 31077.86 35256.58 29875.26 29387.13 284
CR-MVSNet73.37 26471.27 27379.67 25181.32 32065.19 19575.92 32980.30 32259.92 32072.73 25781.19 31252.50 24186.69 30559.84 26877.71 25387.11 285
RPMNet73.51 26370.49 27982.58 18981.32 32065.19 19575.92 32992.27 8357.60 33872.73 25776.45 34852.30 24495.43 7448.14 33877.71 25387.11 285
XXY-MVS75.41 24975.56 22874.96 30683.59 27357.82 29880.59 29383.87 28266.54 25674.93 23788.31 18763.24 13780.09 34362.16 24976.85 26586.97 287
tpmrst72.39 27572.13 26573.18 32180.54 32749.91 35879.91 30179.08 33163.11 29271.69 26979.95 32655.32 21882.77 33365.66 22573.89 30586.87 288
thres20075.55 24674.47 24478.82 26287.78 20057.85 29783.07 27283.51 28772.44 16075.84 21284.42 27752.08 24991.75 22947.41 34183.64 18986.86 289
ITE_SJBPF78.22 27181.77 31060.57 27183.30 29169.25 21767.54 30587.20 21636.33 35287.28 30354.34 30674.62 29986.80 290
test22291.50 8968.26 13284.16 25283.20 29554.63 35179.74 13191.63 9758.97 19591.42 9486.77 291
MIMVSNet70.69 28669.30 28574.88 30784.52 25756.35 32075.87 33179.42 32964.59 27667.76 30282.41 30241.10 33581.54 33746.64 34581.34 21786.75 292
BH-untuned79.47 16778.60 16782.05 19689.19 15065.91 17786.07 20588.52 21072.18 16375.42 22187.69 20261.15 17693.54 16360.38 26486.83 15086.70 293
LTVRE_ROB69.57 1376.25 23874.54 24381.41 20988.60 17264.38 21379.24 30689.12 18970.76 18969.79 29187.86 19949.09 28793.20 17756.21 30180.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24390.90 9864.21 21584.71 26759.27 32685.40 4992.91 7162.02 16089.08 28068.95 19491.37 9586.63 295
MIMVSNet168.58 30366.78 31073.98 31580.07 33251.82 34880.77 28984.37 27264.40 27959.75 35182.16 30736.47 35183.63 32742.73 35670.33 32986.48 296
tfpnnormal74.39 25473.16 25778.08 27386.10 23558.05 29184.65 23987.53 22970.32 19671.22 27385.63 25854.97 22089.86 26643.03 35575.02 29586.32 297
D2MVS74.82 25273.21 25679.64 25279.81 33562.56 24780.34 29687.35 23364.37 28068.86 29682.66 30046.37 30390.10 26467.91 20381.24 21986.25 298
tpm cat170.57 28768.31 29277.35 28582.41 30357.95 29578.08 31880.22 32452.04 35668.54 30077.66 34352.00 25187.84 29851.77 31572.07 32186.25 298
CVMVSNet72.99 27172.58 26174.25 31384.28 26050.85 35586.41 19583.45 29044.56 36173.23 25287.54 20749.38 28385.70 31265.90 22278.44 24986.19 300
AllTest70.96 28468.09 29679.58 25385.15 24763.62 22484.58 24179.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
TestCases79.58 25385.15 24763.62 22479.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
test-LLR72.94 27272.43 26274.48 31081.35 31858.04 29278.38 31477.46 33866.66 25269.95 28779.00 33348.06 29479.24 34466.13 21884.83 17086.15 301
test-mter71.41 28170.39 28274.48 31081.35 31858.04 29278.38 31477.46 33860.32 31669.95 28779.00 33336.08 35379.24 34466.13 21884.83 17086.15 301
IterMVS74.29 25572.94 25978.35 27081.53 31463.49 23081.58 28482.49 30168.06 24169.99 28683.69 28951.66 25885.54 31365.85 22371.64 32386.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 22974.57 24183.42 15093.29 5469.46 10688.55 12783.70 28363.98 28770.20 28088.89 17154.01 23394.80 10946.66 34381.88 21386.01 305
ppachtmachnet_test70.04 29367.34 30678.14 27279.80 33661.13 26379.19 30880.59 31759.16 32765.27 32779.29 33046.75 30287.29 30249.33 33066.72 33986.00 307
Patchmtry70.74 28569.16 28775.49 30280.72 32454.07 33674.94 33880.30 32258.34 33270.01 28481.19 31252.50 24186.54 30653.37 31071.09 32785.87 308
ambc75.24 30473.16 36650.51 35763.05 36587.47 23164.28 33377.81 34217.80 37289.73 26957.88 28860.64 35485.49 309
UnsupCasMVSNet_eth67.33 30965.99 31271.37 32773.48 36451.47 35275.16 33485.19 26165.20 26960.78 34780.93 31942.35 32677.20 35457.12 29453.69 36285.44 310
PatchT68.46 30567.85 29970.29 33380.70 32543.93 36872.47 34274.88 34960.15 31870.55 27576.57 34749.94 27681.59 33650.58 32074.83 29785.34 311
Anonymous2024052168.80 30167.22 30773.55 31674.33 36054.11 33583.18 26885.61 25758.15 33361.68 34480.94 31730.71 36381.27 33957.00 29673.34 31385.28 312
ADS-MVSNet266.20 31963.33 32174.82 30879.92 33358.75 28567.55 35875.19 34853.37 35365.25 32875.86 34942.32 32780.53 34241.57 35868.91 33485.18 313
ADS-MVSNet64.36 32362.88 32568.78 34079.92 33347.17 36367.55 35871.18 35753.37 35365.25 32875.86 34942.32 32773.99 36641.57 35868.91 33485.18 313
FMVSNet569.50 29667.96 29774.15 31482.97 29155.35 32880.01 29982.12 30462.56 30163.02 33981.53 31136.92 35081.92 33548.42 33374.06 30385.17 315
pmmvs571.55 28070.20 28375.61 29977.83 34756.39 31881.74 28280.89 31257.76 33667.46 30684.49 27649.26 28685.32 31657.08 29575.29 29285.11 316
CMPMVSbinary51.72 2170.19 29268.16 29476.28 29473.15 36757.55 30279.47 30483.92 28048.02 36056.48 35984.81 27343.13 32286.42 30862.67 24581.81 21484.89 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 31366.53 31167.08 34475.62 35641.69 37175.93 32876.50 34566.11 25965.20 33086.59 23635.72 35474.71 36343.71 35373.38 31284.84 318
MSDG73.36 26670.99 27580.49 23384.51 25865.80 18180.71 29186.13 25265.70 26565.46 32583.74 28844.60 31590.91 25351.13 31976.89 26384.74 319
pmmvs474.03 26071.91 26680.39 23481.96 30868.32 13081.45 28682.14 30359.32 32569.87 28985.13 26952.40 24388.13 29560.21 26674.74 29884.73 320
MVS_030472.48 27470.89 27777.24 28782.20 30559.68 27984.11 25483.49 28867.10 24766.87 31380.59 32035.00 35687.40 30159.07 27679.58 23684.63 321
gg-mvs-nofinetune69.95 29467.96 29775.94 29683.07 28654.51 33377.23 32470.29 35963.11 29270.32 27962.33 36243.62 32088.69 28853.88 30887.76 13584.62 322
BH-w/o78.21 19877.33 20080.84 22688.81 16365.13 19784.87 23287.85 22469.75 20774.52 24184.74 27561.34 17193.11 18458.24 28585.84 16584.27 323
MVS78.19 20076.99 20681.78 20185.66 23966.99 15784.66 23690.47 14455.08 35072.02 26685.27 26563.83 13094.11 13666.10 22089.80 11584.24 324
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28180.81 22787.13 22165.63 18488.30 13784.19 27862.96 29563.80 33887.69 20238.04 34792.56 20046.66 34374.91 29684.24 324
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 32661.73 32861.70 34772.74 36824.50 38169.16 35478.03 33461.40 30956.72 35875.53 35238.42 34476.48 35745.95 34857.67 35784.13 326
TESTMET0.1,169.89 29569.00 28872.55 32279.27 34456.85 30978.38 31474.71 35257.64 33768.09 30177.19 34537.75 34876.70 35563.92 23584.09 18184.10 327
our_test_369.14 29867.00 30875.57 30079.80 33658.80 28477.96 31977.81 33559.55 32362.90 34278.25 33947.43 29683.97 32451.71 31667.58 33883.93 328
tpmvs71.09 28369.29 28676.49 29382.04 30756.04 32378.92 31181.37 31164.05 28567.18 31078.28 33849.74 27989.77 26749.67 32972.37 31783.67 329
test20.0367.45 30866.95 30968.94 33775.48 35744.84 36777.50 32277.67 33666.66 25263.01 34083.80 28647.02 29978.40 34842.53 35768.86 33683.58 330
test0.0.03 168.00 30667.69 30368.90 33877.55 34847.43 36275.70 33272.95 35666.66 25266.56 31682.29 30548.06 29475.87 35944.97 35274.51 30083.41 331
Anonymous2023120668.60 30267.80 30171.02 33180.23 33050.75 35678.30 31780.47 31956.79 34366.11 32382.63 30146.35 30478.95 34643.62 35475.70 28083.36 332
EU-MVSNet68.53 30467.61 30471.31 33078.51 34647.01 36484.47 24284.27 27642.27 36266.44 32184.79 27440.44 33883.76 32558.76 28068.54 33783.17 333
dp66.80 31165.43 31370.90 33279.74 33848.82 36175.12 33674.77 35059.61 32264.08 33577.23 34442.89 32380.72 34148.86 33266.58 34183.16 334
pmmvs-eth3d70.50 28967.83 30078.52 26877.37 35066.18 17181.82 28081.51 30958.90 32963.90 33780.42 32242.69 32586.28 30958.56 28165.30 34583.11 335
YYNet165.03 32062.91 32471.38 32675.85 35456.60 31569.12 35574.66 35357.28 34154.12 36177.87 34145.85 30974.48 36449.95 32761.52 35383.05 336
MDA-MVSNet-bldmvs66.68 31263.66 32075.75 29779.28 34360.56 27273.92 34078.35 33364.43 27850.13 36579.87 32844.02 31883.67 32646.10 34756.86 35883.03 337
MDA-MVSNet_test_wron65.03 32062.92 32371.37 32775.93 35356.73 31169.09 35674.73 35157.28 34154.03 36277.89 34045.88 30874.39 36549.89 32861.55 35282.99 338
USDC70.33 29068.37 29176.21 29580.60 32656.23 32179.19 30886.49 24560.89 31261.29 34585.47 26231.78 36289.47 27453.37 31076.21 27682.94 339
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29377.65 28080.26 32959.41 28385.01 22982.96 29858.76 33065.43 32682.33 30337.63 34991.23 24445.34 35176.03 27782.32 340
JIA-IIPM66.32 31662.82 32676.82 29177.09 35161.72 25965.34 36175.38 34758.04 33564.51 33262.32 36342.05 33286.51 30751.45 31869.22 33382.21 341
EG-PatchMatch MVS74.04 25971.82 26780.71 22984.92 25367.42 14985.86 21188.08 21766.04 26164.22 33483.85 28435.10 35592.56 20057.44 29180.83 22382.16 342
MVP-Stereo76.12 23974.46 24581.13 22085.37 24469.79 9684.42 24787.95 22065.03 27267.46 30685.33 26453.28 23891.73 23158.01 28783.27 19481.85 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 30764.34 31676.92 29073.47 36561.07 26484.86 23382.98 29759.77 32158.30 35485.13 26926.06 36587.89 29747.92 34060.59 35581.81 344
GG-mvs-BLEND75.38 30381.59 31355.80 32579.32 30569.63 36167.19 30973.67 35543.24 32188.90 28650.41 32184.50 17481.45 345
KD-MVS_2432*160066.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
miper_refine_blended66.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
test_040272.79 27370.44 28079.84 24688.13 18565.99 17585.93 20884.29 27565.57 26767.40 30885.49 26146.92 30092.61 19835.88 36474.38 30180.94 348
UnsupCasMVSNet_bld63.70 32561.53 32970.21 33473.69 36351.39 35372.82 34181.89 30555.63 34857.81 35571.80 35838.67 34378.61 34749.26 33152.21 36480.63 349
LCM-MVSNet54.25 33149.68 33767.97 34253.73 37645.28 36666.85 36080.78 31435.96 36839.45 36862.23 3648.70 38078.06 35148.24 33751.20 36580.57 350
N_pmnet52.79 33353.26 33451.40 35378.99 3457.68 38469.52 3513.89 38451.63 35857.01 35774.98 35340.83 33765.96 37137.78 36364.67 34680.56 351
TinyColmap67.30 31064.81 31474.76 30981.92 30956.68 31480.29 29781.49 31060.33 31556.27 36083.22 29324.77 36687.66 30045.52 34969.47 33179.95 352
PM-MVS66.41 31564.14 31773.20 32073.92 36256.45 31678.97 31064.96 37163.88 28964.72 33180.24 32319.84 37183.44 32966.24 21764.52 34779.71 353
ANet_high50.57 33646.10 33963.99 34548.67 37939.13 37270.99 34780.85 31361.39 31031.18 37057.70 36717.02 37373.65 36731.22 36615.89 37679.18 354
LF4IMVS64.02 32462.19 32769.50 33670.90 36953.29 34476.13 32677.18 34252.65 35558.59 35280.98 31623.55 36876.52 35653.06 31266.66 34078.68 355
PatchMatch-RL72.38 27670.90 27676.80 29288.60 17267.38 15179.53 30376.17 34662.75 29969.36 29482.00 31045.51 31384.89 31953.62 30980.58 22778.12 356
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 17481.82 28084.66 26861.37 31168.61 29982.82 29847.29 29788.21 29359.27 27284.32 17877.68 357
DSMNet-mixed57.77 33056.90 33260.38 34867.70 37135.61 37469.18 35353.97 37632.30 37157.49 35679.88 32740.39 33968.57 37038.78 36272.37 31776.97 358
CHOSEN 280x42066.51 31464.71 31571.90 32481.45 31563.52 22957.98 36668.95 36553.57 35262.59 34376.70 34646.22 30575.29 36255.25 30379.68 23576.88 359
PMMVS69.34 29768.67 28971.35 32975.67 35562.03 25375.17 33373.46 35450.00 35968.68 29779.05 33152.07 25078.13 34961.16 26082.77 20173.90 360
pmmvs357.79 32954.26 33368.37 34164.02 37356.72 31275.12 33665.17 36940.20 36452.93 36369.86 36020.36 37075.48 36145.45 35055.25 36172.90 361
PVSNet_057.27 2061.67 32759.27 33068.85 33979.61 33957.44 30468.01 35773.44 35555.93 34758.54 35370.41 35944.58 31677.55 35347.01 34235.91 36971.55 362
PMMVS240.82 33938.86 34246.69 35453.84 37516.45 38248.61 36949.92 37737.49 36731.67 36960.97 3658.14 38156.42 37328.42 36830.72 37167.19 363
new_pmnet50.91 33550.29 33652.78 35268.58 37034.94 37663.71 36356.63 37539.73 36544.95 36665.47 36121.93 36958.48 37234.98 36556.62 35964.92 364
MVS-HIRNet59.14 32857.67 33163.57 34681.65 31143.50 36971.73 34465.06 37039.59 36651.43 36457.73 36638.34 34582.58 33439.53 36173.95 30464.62 365
test_method31.52 34129.28 34538.23 35627.03 3836.50 38520.94 37462.21 3744.05 37722.35 37552.50 36913.33 37547.58 37627.04 37034.04 37060.62 366
EGC-MVSNET52.07 33447.05 33867.14 34383.51 27560.71 26980.50 29467.75 3660.07 3790.43 38075.85 35124.26 36781.54 33728.82 36762.25 35059.16 367
FPMVS53.68 33251.64 33559.81 34965.08 37251.03 35469.48 35269.58 36241.46 36340.67 36772.32 35716.46 37470.00 36924.24 37165.42 34458.40 368
PMVScopyleft37.38 2244.16 33840.28 34155.82 35040.82 38142.54 37065.12 36263.99 37234.43 36924.48 37257.12 3683.92 38276.17 35817.10 37455.52 36048.75 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 34325.89 34743.81 35544.55 38035.46 37528.87 37339.07 38018.20 37418.58 37640.18 3712.68 38347.37 37717.07 37523.78 37348.60 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 33741.86 34055.16 35177.03 35251.52 35132.50 37280.52 31832.46 37027.12 37135.02 3729.52 37975.50 36022.31 37260.21 35638.45 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 35940.17 38226.90 37924.59 38317.44 37523.95 37348.61 3709.77 37826.48 37818.06 37324.47 37228.83 372
E-PMN31.77 34030.64 34335.15 35752.87 37727.67 37857.09 36747.86 37824.64 37216.40 37733.05 37311.23 37754.90 37414.46 37618.15 37422.87 373
EMVS30.81 34229.65 34434.27 35850.96 37825.95 38056.58 36846.80 37924.01 37315.53 37830.68 37412.47 37654.43 37512.81 37717.05 37522.43 374
tmp_tt18.61 34521.40 34810.23 3614.82 38410.11 38334.70 37130.74 3821.48 37823.91 37426.07 37528.42 36413.41 38027.12 36915.35 3777.17 375
wuyk23d16.82 34615.94 34919.46 36058.74 37431.45 37739.22 3703.74 3856.84 3766.04 3792.70 3791.27 38424.29 37910.54 37814.40 3782.63 376
test1236.12 3488.11 3510.14 3620.06 3860.09 38671.05 3460.03 3870.04 3810.25 3821.30 3810.05 3850.03 3820.21 3800.01 3800.29 377
testmvs6.04 3498.02 3520.10 3630.08 3850.03 38769.74 3500.04 3860.05 3800.31 3811.68 3800.02 3860.04 3810.24 3790.02 3790.25 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k19.96 34426.61 3460.00 3640.00 3870.00 3880.00 37589.26 1800.00 3820.00 38388.61 17861.62 1640.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas5.26 3507.02 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38263.15 1400.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.23 3479.64 3500.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38386.72 2270.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS195.00 1072.39 4295.06 193.84 1874.49 12091.30 15
test_one_060195.07 771.46 6194.14 778.27 3792.05 1195.74 680.83 11
eth-test20.00 387
eth-test0.00 387
ZD-MVS94.38 2772.22 4892.67 6770.98 18487.75 3194.07 4574.01 4096.70 2684.66 3994.84 49
test_241102_ONE95.30 270.98 7094.06 1277.17 5693.10 195.39 1182.99 197.27 10
9.1488.26 1592.84 6891.52 4794.75 173.93 13488.57 2494.67 1975.57 2495.79 5986.77 2395.76 28
save fliter93.80 4472.35 4590.47 7091.17 12974.31 124
test072695.27 571.25 6393.60 694.11 877.33 5092.81 395.79 380.98 9
test_part295.06 872.65 3391.80 13
sam_mvs50.01 274
MTGPAbinary92.02 94
test_post178.90 3125.43 37848.81 29385.44 31559.25 273
test_post5.46 37750.36 27184.24 322
patchmatchnet-post74.00 35451.12 26288.60 289
MTMP92.18 3532.83 381
gm-plane-assit81.40 31653.83 33862.72 30080.94 31792.39 20663.40 239
TEST993.26 5672.96 2688.75 11991.89 10368.44 23885.00 5693.10 6574.36 3595.41 76
test_893.13 5872.57 3688.68 12391.84 10768.69 23484.87 6293.10 6574.43 3295.16 87
agg_prior92.85 6671.94 5491.78 11084.41 7294.93 98
test_prior472.60 3589.01 108
test_prior288.85 11475.41 9684.91 5893.54 5474.28 3683.31 5795.86 22
旧先验286.56 19258.10 33487.04 3588.98 28274.07 146
新几何286.29 200
原ACMM286.86 181
testdata291.01 25262.37 247
segment_acmp73.08 45
testdata184.14 25375.71 90
plane_prior790.08 11568.51 128
plane_prior689.84 12468.70 12360.42 188
plane_prior491.00 118
plane_prior368.60 12678.44 3378.92 141
plane_prior291.25 5279.12 25
plane_prior189.90 123
plane_prior68.71 12190.38 7477.62 4186.16 160
n20.00 388
nn0.00 388
door-mid69.98 360
test1192.23 86
door69.44 363
HQP5-MVS66.98 158
HQP-NCC89.33 13989.17 10176.41 7577.23 180
ACMP_Plane89.33 13989.17 10176.41 7577.23 180
BP-MVS77.47 116
HQP3-MVS92.19 8985.99 163
HQP2-MVS60.17 191
NP-MVS89.62 12668.32 13090.24 131
MDTV_nov1_ep1369.97 28483.18 28353.48 34077.10 32580.18 32560.45 31469.33 29580.44 32148.89 29286.90 30451.60 31778.51 248
ACMMP++_ref81.95 212
ACMMP++81.25 218
Test By Simon64.33 125