This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.66 199.57 399.92 199.77 5499.89 499.75 3799.56 5899.02 2199.88 699.85 3899.18 1099.96 2099.22 4999.92 1399.90 1
patch_mono-299.26 6699.62 198.16 28399.81 4294.59 34499.52 12999.64 3399.33 299.73 4999.90 1399.00 2599.99 199.69 199.98 299.89 2
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25499.96 2098.87 8999.84 6899.89 2
IU-MVS99.84 3399.88 899.32 26498.30 9899.84 1598.86 9499.85 6099.89 2
UA-Net99.42 4299.29 5099.80 4399.62 13599.55 8099.50 14099.70 1598.79 5799.77 3899.96 197.45 12399.96 2098.92 8199.90 2599.89 2
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20899.39 19599.94 198.73 6199.11 20699.89 1795.50 19299.94 5899.50 1399.97 599.89 2
test_241102_TWO99.48 14899.08 1699.88 699.81 7198.94 3599.96 2098.91 8299.84 6899.88 8
test_0728_THIRD98.99 3199.81 2599.80 8699.09 1499.96 2098.85 9699.90 2599.88 8
test_0728_SECOND99.91 299.84 3399.89 499.57 10499.51 10799.96 2098.93 7999.86 5399.88 8
DPE-MVScopyleft99.46 2799.32 3699.91 299.78 4899.88 899.36 20799.51 10798.73 6199.88 699.84 4798.72 6499.96 2098.16 18199.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 4299.27 5699.88 699.89 999.80 2999.67 5399.50 12898.70 6399.77 3899.49 23898.21 10299.95 4798.46 15599.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_299.23 7199.58 298.16 28399.83 3794.68 34399.76 3599.52 9399.07 1899.98 199.88 2398.56 7799.93 7399.67 399.98 299.87 13
DP-MVS99.16 8098.95 10099.78 4899.77 5499.53 8599.41 18399.50 12897.03 24199.04 22199.88 2397.39 12499.92 8598.66 12599.90 2599.87 13
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13499.60 8399.45 18899.01 2499.90 499.83 5198.98 2799.93 7399.59 699.95 899.86 15
Test_1112_low_res98.89 12198.66 13899.57 9299.69 10598.95 16199.03 28899.47 16696.98 24399.15 20099.23 30496.77 14999.89 11998.83 10298.78 19399.86 15
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10599.02 29199.91 397.67 17799.59 9799.75 12395.90 17999.73 19399.53 1099.02 17799.86 15
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13399.61 8299.45 18899.01 2499.89 599.82 5899.01 1999.92 8599.56 999.95 899.85 18
CVMVSNet98.57 16098.67 13598.30 27399.35 20795.59 32299.50 14099.55 6798.60 6999.39 14299.83 5194.48 23699.45 24598.75 11098.56 20299.85 18
HPM-MVS_fast99.51 1599.40 2199.85 2899.91 199.79 3399.76 3599.56 5897.72 17199.76 4399.75 12399.13 1299.92 8599.07 6599.92 1399.85 18
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19599.07 27799.34 24798.99 3199.61 9099.82 5897.98 11299.87 12797.00 27199.80 9099.85 18
ACMMP_NAP99.47 2599.34 3299.88 699.87 1699.86 1399.47 16099.48 14898.05 13799.76 4399.86 3398.82 4899.93 7398.82 10699.91 1899.84 22
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5799.67 2298.15 11699.68 6299.69 15499.06 1699.96 2098.69 12099.87 4299.84 22
region2R99.48 2299.35 3099.87 1299.88 1299.80 2999.65 6599.66 2798.13 12099.66 7399.68 16298.96 2999.96 2098.62 12999.87 4299.84 22
#test#99.43 3799.29 5099.86 2199.87 1699.80 2999.55 11999.67 2297.83 15699.68 6299.69 15499.06 1699.96 2098.39 15999.87 4299.84 22
Regformer-499.59 399.54 699.73 6199.76 5799.41 10299.58 9899.49 13699.02 2199.88 699.80 8699.00 2599.94 5899.45 2299.92 1399.84 22
XVS99.53 1299.42 1899.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14899.74 12998.81 4999.94 5898.79 10799.86 5399.84 22
X-MVStestdata96.55 30195.45 31699.87 1299.85 2699.83 1799.69 4699.68 1998.98 3499.37 14864.01 38098.81 4999.94 5898.79 10799.86 5399.84 22
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5799.67 2298.15 11699.67 6899.69 15498.95 3299.96 2098.69 12099.87 4299.84 22
HPM-MVScopyleft99.42 4299.28 5499.83 3699.90 499.72 4799.81 2099.54 7697.59 18299.68 6299.63 18898.91 4099.94 5898.58 13899.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 1099.42 1899.87 1299.82 3999.81 2799.59 9099.51 10798.62 6799.79 3099.83 5199.28 499.97 1298.48 15199.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 11498.77 12499.59 8799.68 10999.02 14699.25 24599.48 14897.23 22199.13 20299.58 20696.93 14499.90 11198.87 8998.78 19399.84 22
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 22399.52 9397.18 22499.60 9499.79 9898.79 5199.95 4798.83 10299.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
MTAPA99.52 1499.39 2299.89 499.90 499.86 1399.66 5799.47 16698.79 5799.68 6299.81 7198.43 8899.97 1298.88 8599.90 2599.83 33
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9899.44 19799.01 2499.87 1299.80 8698.97 2899.91 9699.44 2499.92 1399.83 33
PGM-MVS99.45 2999.31 4399.86 2199.87 1699.78 4099.58 9899.65 3297.84 15599.71 5599.80 8699.12 1399.97 1298.33 16799.87 4299.83 33
mPP-MVS99.44 3399.30 4699.86 2199.88 1299.79 3399.69 4699.48 14898.12 12299.50 11499.75 12398.78 5299.97 1298.57 14099.89 3599.83 33
CP-MVS99.45 2999.32 3699.85 2899.83 3799.75 4399.69 4699.52 9398.07 13299.53 10999.63 18898.93 3999.97 1298.74 11199.91 1899.83 33
test111198.04 20698.11 18297.83 30599.74 7693.82 35299.58 9895.40 37499.12 1099.65 7999.93 490.73 32199.84 14299.43 2599.38 14499.82 40
ZNCC-MVS99.47 2599.33 3499.87 1299.87 1699.81 2799.64 6899.67 2298.08 13199.55 10699.64 18298.91 4099.96 2098.72 11599.90 2599.82 40
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 7099.39 22398.91 4699.78 3599.85 3899.36 299.94 5898.84 9999.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5799.46 17698.09 12799.48 11899.74 12998.29 9999.96 2097.93 19899.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 3799.30 4699.82 3899.79 4699.74 4699.29 22799.40 21998.79 5799.52 11199.62 19398.91 4099.90 11198.64 12799.75 10599.82 40
DeepC-MVS_fast98.69 199.49 1799.39 2299.77 5099.63 12999.59 7399.36 20799.46 17699.07 1899.79 3099.82 5898.85 4599.92 8598.68 12299.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 999.51 10798.99 3199.88 699.81 7199.27 599.96 2098.85 9699.80 9099.81 46
PC_three_145298.18 11499.84 1599.70 14599.31 398.52 34798.30 17199.80 9099.81 46
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16899.51 10797.29 21499.59 9799.74 12998.15 10799.96 2096.74 28699.69 11899.81 46
DVP-MVScopyleft99.57 899.47 1499.88 699.85 2699.89 499.57 10499.37 23799.10 1299.81 2599.80 8698.94 3599.96 2098.93 7999.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 8399.67 2297.97 14399.63 8499.68 16298.52 8199.95 4798.38 16199.86 5399.81 46
SMA-MVScopyleft99.44 3399.30 4699.85 2899.73 8499.83 1799.56 11099.47 16697.45 19899.78 3599.82 5899.18 1099.91 9698.79 10799.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 9099.49 13697.03 24199.63 8499.69 15497.27 13199.96 2097.82 20799.84 6899.81 46
ACMMPcopyleft99.45 2999.32 3699.82 3899.89 999.67 5799.62 7699.69 1898.12 12299.63 8499.84 4798.73 6399.96 2098.55 14699.83 7799.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 13799.37 2597.12 32999.60 14391.75 36698.61 34199.44 19799.35 199.83 2099.85 3898.70 6699.81 16599.02 7099.91 1899.81 46
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25799.68 5499.81 2099.51 10799.20 598.72 26799.89 1795.68 18899.97 1298.86 9499.86 5399.81 46
test250696.81 29796.65 29597.29 32599.74 7692.21 36599.60 8385.06 38499.13 899.77 3899.93 487.82 35499.85 13699.38 2799.38 14499.80 56
ECVR-MVScopyleft98.04 20698.05 19198.00 29599.74 7694.37 34799.59 9094.98 37599.13 899.66 7399.93 490.67 32299.84 14299.40 2699.38 14499.80 56
Regformer-199.53 1299.47 1499.72 6499.71 9599.44 9899.49 15099.46 17698.95 4099.83 2099.76 11899.01 1999.93 7399.17 5499.87 4299.80 56
Regformer-299.54 1099.47 1499.75 5499.71 9599.52 8899.49 15099.49 13698.94 4199.83 2099.76 11899.01 1999.94 5899.15 5799.87 4299.80 56
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 14099.50 12897.16 22699.77 3899.82 5898.78 5299.94 5897.56 23499.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 22399.48 14898.86 4899.21 18899.63 18898.72 6499.90 11198.25 17299.63 13199.80 56
test117299.43 3799.29 5099.85 2899.75 6899.82 2399.60 8399.56 5898.28 9999.74 4799.79 9898.53 7999.95 4798.55 14699.78 9799.79 62
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 8399.48 14899.08 1699.91 299.81 7199.20 799.96 2098.91 8299.85 6099.79 62
OPU-MVS99.64 8099.56 15399.72 4799.60 8399.70 14599.27 599.42 25598.24 17399.80 9099.79 62
SR-MVS99.43 3799.29 5099.86 2199.75 6899.83 1799.59 9099.62 3498.21 10899.73 4999.79 9898.68 6799.96 2098.44 15799.77 10199.79 62
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17499.51 10798.68 6599.27 17299.53 22598.64 7399.96 2098.44 15799.80 9099.79 62
abl_699.44 3399.31 4399.83 3699.85 2699.75 4399.66 5799.59 4498.13 12099.82 2399.81 7198.60 7499.96 2098.46 15599.88 3899.79 62
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 16099.93 297.66 17899.71 5599.86 3397.73 11899.96 2099.47 2099.82 8399.79 62
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26499.66 5999.84 1499.74 1099.09 1598.92 24199.90 1395.94 17699.98 798.95 7699.92 1399.79 62
APD-MVS_3200maxsize99.48 2299.35 3099.85 2899.76 5799.83 1799.63 7099.54 7698.36 9199.79 3099.82 5898.86 4499.95 4798.62 12999.81 8699.78 70
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 26399.41 21096.60 27299.60 9499.55 21698.83 4799.90 11197.48 24199.83 7799.78 70
SR-MVS-dyc-post99.45 2999.31 4399.85 2899.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.53 7999.95 4798.61 13299.81 8699.77 72
RE-MVS-def99.34 3299.76 5799.82 2399.63 7099.52 9398.38 8799.76 4399.82 5898.75 6098.61 13299.81 8699.77 72
SD-MVS99.41 4699.52 899.05 17199.74 7699.68 5499.46 16399.52 9399.11 1199.88 699.91 1099.43 197.70 36298.72 11599.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 4299.30 4699.78 4899.62 13599.71 4999.26 24399.52 9398.82 5299.39 14299.71 14198.96 2999.85 13698.59 13799.80 9099.77 72
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 31099.85 698.82 5299.54 10799.73 13698.51 8299.74 18798.91 8299.88 3899.77 72
QAPM98.67 15498.30 17299.80 4399.20 24699.67 5799.77 3299.72 1194.74 33398.73 26699.90 1395.78 18399.98 796.96 27599.88 3899.76 77
GeoE98.85 13398.62 14699.53 10499.61 13999.08 14099.80 2499.51 10797.10 23499.31 16399.78 10595.23 20399.77 18098.21 17499.03 17599.75 78
test9_res97.49 24099.72 11299.75 78
train_agg99.02 10998.77 12499.77 5099.67 11099.65 6299.05 28299.41 21096.28 29298.95 23599.49 23898.76 5799.91 9697.63 22599.72 11299.75 78
agg_prior199.01 11298.76 12699.76 5399.67 11099.62 6698.99 29899.40 21996.26 29598.87 24999.49 23898.77 5599.91 9697.69 22299.72 11299.75 78
agg_prior297.21 25799.73 11199.75 78
xxxxxxxxxxxxxcwj99.43 3799.32 3699.75 5499.76 5799.59 7399.14 26599.53 8799.00 2899.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 10499.54 7697.82 16199.71 5599.80 8698.95 3299.93 7398.19 17699.84 6899.74 83
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30699.56 5898.34 9399.01 22499.52 22898.68 6799.83 15397.96 19599.74 10899.74 83
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
test1299.75 5499.64 12699.61 6899.29 27699.21 18898.38 9399.89 11999.74 10899.74 83
114514_t98.93 11898.67 13599.72 6499.85 2699.53 8599.62 7699.59 4492.65 35299.71 5599.78 10598.06 11099.90 11198.84 9999.91 1899.74 83
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 5199.66 2798.49 7799.86 1399.87 2994.77 22199.84 14299.19 5199.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 7699.59 7399.54 7699.69 15498.47 8599.68 12399.73 90
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23499.48 14896.82 25799.25 17999.65 17598.38 9399.93 7397.53 23799.67 12599.73 90
EPNet98.86 12598.71 13099.30 14397.20 36298.18 22799.62 7698.91 32499.28 398.63 28599.81 7195.96 17399.99 199.24 4899.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10899.75 3799.20 29198.02 14199.56 10299.86 3396.54 15799.67 21598.09 18499.13 16599.73 90
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 18199.54 7697.29 21499.41 13499.59 20398.42 9199.93 7398.19 17699.69 11899.73 90
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7699.55 6798.94 4199.63 8499.95 295.82 18299.94 5899.37 2999.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.75 5499.75 6899.59 7399.54 7696.76 25899.29 16899.64 18298.43 8899.94 5896.92 28099.66 12699.72 96
无先验98.99 29899.51 10796.89 25199.93 7397.53 23799.72 96
test22299.75 6899.49 9198.91 31599.49 13696.42 28699.34 15999.65 17598.28 10099.69 11899.72 96
testdata99.54 9699.75 6898.95 16199.51 10797.07 23699.43 12799.70 14598.87 4399.94 5897.76 21299.64 12999.72 96
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 18399.39 22399.01 2499.74 4799.78 10595.56 19099.92 8599.52 1198.18 22099.72 96
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 20399.56 5898.04 13899.53 10999.62 19396.84 14599.94 5898.85 9698.49 20699.72 96
CSCG99.32 5799.32 3699.32 13899.85 2698.29 22399.71 4399.66 2798.11 12499.41 13499.80 8698.37 9599.96 2098.99 7299.96 799.72 96
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 20099.51 10797.45 19899.61 9099.75 12398.51 8299.91 9697.45 24699.83 7799.71 103
原ACMM199.65 7599.73 8499.33 10799.47 16697.46 19599.12 20499.66 17498.67 7099.91 9697.70 22199.69 11899.71 103
ETH3 D test640098.70 14898.35 16799.73 6199.69 10599.60 7099.16 25999.45 18895.42 32199.27 17299.60 20097.39 12499.91 9695.36 31999.83 7799.70 105
Anonymous20240521198.30 17897.98 19899.26 15199.57 14998.16 22899.41 18398.55 34996.03 31599.19 19499.74 12991.87 30099.92 8599.16 5698.29 21499.70 105
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 11099.50 12898.33 9699.41 13499.86 3395.92 17799.83 15399.45 2299.16 16199.70 105
LFMVS97.90 22797.35 27099.54 9699.52 15999.01 14899.39 19598.24 35397.10 23499.65 7999.79 9884.79 36299.91 9699.28 4398.38 20899.69 108
EPNet_dtu98.03 20897.96 20098.23 27998.27 34695.54 32599.23 24898.75 33599.02 2197.82 32699.71 14196.11 16999.48 24193.04 34699.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10698.84 11699.66 7199.74 7699.44 9899.39 19599.38 22997.70 17399.28 16999.28 29698.34 9699.85 13696.96 27599.45 14099.69 108
EPP-MVSNet99.13 8498.99 9299.53 10499.65 12499.06 14399.81 2099.33 25497.43 20299.60 9499.88 2397.14 13399.84 14299.13 5898.94 18199.69 108
sss99.17 7899.05 7999.53 10499.62 13598.97 15399.36 20799.62 3497.83 15699.67 6899.65 17597.37 12899.95 4799.19 5199.19 16099.68 112
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9899.80 897.12 23099.62 8899.73 13698.58 7599.90 11198.61 13299.91 1899.68 112
PVSNet_094.43 1996.09 31295.47 31597.94 29899.31 22194.34 34997.81 36599.70 1597.12 23097.46 33298.75 34189.71 33399.79 17397.69 22281.69 36799.68 112
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22999.49 13698.46 8099.72 5499.71 14196.50 15899.88 12499.31 3899.11 16699.67 115
baseline99.15 8199.02 8799.53 10499.66 11999.14 13499.72 4199.48 14898.35 9299.42 13099.84 4796.07 17099.79 17399.51 1299.14 16499.67 115
TAMVS99.12 9099.08 7799.24 15499.46 18398.55 20299.51 13499.46 17698.09 12799.45 12299.82 5898.34 9699.51 24098.70 11798.93 18299.67 115
Anonymous2024052998.09 19797.68 23199.34 13399.66 11998.44 21799.40 19199.43 20593.67 34399.22 18599.89 1790.23 32899.93 7399.26 4798.33 20999.66 118
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 24398.43 35199.71 1398.88 4799.62 8899.76 11896.63 15399.70 20999.46 2199.99 199.66 118
CDS-MVSNet99.09 9999.03 8499.25 15299.42 19098.73 18699.45 16499.46 17698.11 12499.46 12199.77 11298.01 11199.37 26498.70 11798.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 15898.34 16899.51 11299.40 19899.03 14598.80 32599.36 23896.33 28999.00 22999.12 31898.46 8699.84 14295.23 32199.37 15199.66 118
h-mvs3397.70 26297.28 27998.97 18399.70 10297.27 26399.36 20799.45 18898.94 4199.66 7399.64 18294.93 20899.99 199.48 1884.36 36399.65 122
CANet99.25 6999.14 7099.59 8799.41 19399.16 12899.35 21399.57 5398.82 5299.51 11399.61 19796.46 15999.95 4799.59 699.98 299.65 122
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19899.07 27799.33 25499.00 2899.82 2399.81 7199.06 1699.84 14299.09 6299.42 14299.65 122
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16499.88 499.46 17697.55 18799.80 2899.65 17597.39 12499.28 28499.03 6799.85 6099.65 122
jason99.13 8499.03 8499.45 12299.46 18398.87 17199.12 26799.26 28198.03 14099.79 3099.65 17597.02 13999.85 13699.02 7099.90 2599.65 122
jason: jason.
PLCcopyleft97.94 499.02 10998.85 11599.53 10499.66 11999.01 14899.24 24799.52 9396.85 25399.27 17299.48 24498.25 10199.91 9697.76 21299.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 25597.34 27398.94 18899.70 10297.53 25699.25 24599.51 10791.90 35499.30 16599.63 18898.78 5299.64 22588.09 36699.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1699.06 10398.84 11699.72 6499.51 16199.60 7099.23 24899.44 19797.04 23999.39 14299.67 16898.30 9899.92 8597.27 25399.69 11899.64 129
LCM-MVSNet-Re97.83 23898.15 17896.87 33599.30 22292.25 36499.59 9098.26 35297.43 20296.20 35099.13 31596.27 16698.73 34598.17 18098.99 17999.64 129
BH-RMVSNet98.41 16998.08 18799.40 12899.41 19398.83 17899.30 22398.77 33497.70 17398.94 23899.65 17592.91 27399.74 18796.52 29499.55 13799.64 129
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5499.51 9098.94 31299.85 698.82 5299.65 7999.74 12998.51 8299.80 17098.83 10299.89 3599.64 129
MVS97.28 28896.55 29799.48 11698.78 31698.95 16199.27 23499.39 22383.53 36798.08 31699.54 22196.97 14299.87 12794.23 33399.16 16199.63 133
MSLP-MVS++99.46 2799.47 1499.44 12699.60 14399.16 12899.41 18399.71 1398.98 3499.45 12299.78 10599.19 999.54 23999.28 4399.84 6899.63 133
GA-MVS97.85 23397.47 25199.00 17799.38 20297.99 23698.57 34499.15 29797.04 23998.90 24499.30 29289.83 33199.38 25996.70 28998.33 20999.62 135
Vis-MVSNet (Re-imp)98.87 12298.72 12899.31 13999.71 9598.88 17099.80 2499.44 19797.91 14899.36 15299.78 10595.49 19399.43 25497.91 19999.11 16699.62 135
DPM-MVS98.95 11798.71 13099.66 7199.63 12999.55 8098.64 34099.10 30297.93 14699.42 13099.55 21698.67 7099.80 17095.80 30899.68 12399.61 137
baseline198.31 17697.95 20299.38 13199.50 17198.74 18599.59 9098.93 31998.41 8599.14 20199.60 20094.59 23099.79 17398.48 15193.29 34099.61 137
VDD-MVS97.73 25697.35 27098.88 20599.47 18297.12 26999.34 21698.85 33098.19 11099.67 6899.85 3882.98 36599.92 8599.49 1798.32 21399.60 139
DELS-MVS99.48 2299.42 1899.65 7599.72 8999.40 10499.05 28299.66 2799.14 799.57 10199.80 8698.46 8699.94 5899.57 899.84 6899.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18298.78 32799.91 396.74 25999.67 6899.49 23897.53 12199.88 12498.98 7399.85 6099.60 139
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22699.28 22999.52 9398.07 13299.66 7399.81 7197.79 11699.78 17897.79 20999.81 8699.60 139
test_yl98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
DCV-MVSNet98.86 12598.63 14199.54 9699.49 17399.18 12599.50 14099.07 30798.22 10699.61 9099.51 23295.37 19599.84 14298.60 13598.33 20999.59 143
AllTest98.87 12298.72 12899.31 13999.86 2298.48 21499.56 11099.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
TestCases99.31 13999.86 2298.48 21499.61 3697.85 15399.36 15299.85 3895.95 17499.85 13696.66 29299.83 7799.59 143
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16499.05 28299.16 29697.86 15199.80 2899.56 21397.39 12499.86 13098.94 7799.85 6099.58 147
tttt051798.42 16798.14 17999.28 14999.66 11998.38 22199.74 4096.85 36797.68 17599.79 3099.74 12991.39 31399.89 11998.83 10299.56 13599.57 148
RPSCF98.22 18298.62 14696.99 33099.82 3991.58 36799.72 4199.44 19796.61 27099.66 7399.89 1795.92 17799.82 16097.46 24499.10 16999.57 148
DSMNet-mixed97.25 28997.35 27096.95 33397.84 35293.61 35899.57 10496.63 37096.13 30998.87 24998.61 34694.59 23097.70 36295.08 32398.86 18899.55 150
AdaColmapbinary99.01 11298.80 12199.66 7199.56 15399.54 8299.18 25799.70 1598.18 11499.35 15599.63 18896.32 16499.90 11197.48 24199.77 10199.55 150
alignmvs98.81 13798.56 15699.58 9099.43 18999.42 10099.51 13498.96 31798.61 6899.35 15598.92 33594.78 21899.77 18099.35 3198.11 22599.54 152
DROMVSNet99.44 3399.39 2299.58 9099.56 15399.49 9199.88 499.58 5098.38 8799.73 4999.69 15498.20 10399.70 20999.64 599.82 8399.54 152
PatchmatchNetpermissive98.31 17698.36 16598.19 28199.16 25995.32 33199.27 23498.92 32197.37 20899.37 14899.58 20694.90 21199.70 20997.43 24899.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 13398.84 11698.89 20299.73 8497.28 26298.32 35799.60 4197.86 15199.50 11499.57 21096.75 15099.86 13098.56 14399.70 11799.54 152
MSDG98.98 11498.80 12199.53 10499.76 5799.19 12398.75 33099.55 6797.25 21899.47 11999.77 11297.82 11599.87 12796.93 27899.90 2599.54 152
UGNet98.87 12298.69 13399.40 12899.22 24298.72 18799.44 16899.68 1999.24 499.18 19799.42 25892.74 27799.96 2099.34 3599.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 158
sam_mvs194.86 21399.52 158
SCA98.19 18698.16 17798.27 27899.30 22295.55 32399.07 27798.97 31597.57 18599.43 12799.57 21092.72 27899.74 18797.58 22999.20 15999.52 158
Patchmatch-test97.93 22297.65 23498.77 22799.18 25197.07 27499.03 28899.14 29996.16 30598.74 26599.57 21094.56 23299.72 19793.36 34299.11 16699.52 158
PMMVS98.80 14098.62 14699.34 13399.27 23198.70 18998.76 32999.31 26797.34 20999.21 18899.07 32097.20 13299.82 16098.56 14398.87 18799.52 158
LS3D99.27 6499.12 7299.74 5999.18 25199.75 4399.56 11099.57 5398.45 8199.49 11799.85 3897.77 11799.94 5898.33 16799.84 6899.52 158
Effi-MVS+98.81 13798.59 15399.48 11699.46 18399.12 13798.08 36399.50 12897.50 19499.38 14699.41 26296.37 16399.81 16599.11 6098.54 20399.51 164
Patchmatch-RL test95.84 31495.81 31295.95 34395.61 36890.57 36898.24 35998.39 35195.10 32795.20 35698.67 34394.78 21897.77 36096.28 30090.02 35599.51 164
mvs_anonymous99.03 10898.99 9299.16 16199.38 20298.52 20899.51 13499.38 22997.79 16399.38 14699.81 7197.30 12999.45 24599.35 3198.99 17999.51 164
UniMVSNet_ETH3D97.32 28796.81 29398.87 20999.40 19897.46 25899.51 13499.53 8795.86 31798.54 29399.77 11282.44 36899.66 21898.68 12297.52 24499.50 167
ab-mvs98.86 12598.63 14199.54 9699.64 12699.19 12399.44 16899.54 7697.77 16599.30 16599.81 7194.20 24499.93 7399.17 5498.82 19099.49 168
thisisatest053098.35 17498.03 19399.31 13999.63 12998.56 20199.54 12396.75 36997.53 19199.73 4999.65 17591.25 31699.89 11998.62 12999.56 13599.48 169
CS-MVS-test99.49 1799.48 1299.54 9699.78 4899.30 11299.89 299.58 5098.56 7199.73 4999.69 15498.55 7899.82 16099.69 199.85 6099.48 169
ADS-MVSNet298.02 21098.07 19097.87 30299.33 21395.19 33499.23 24899.08 30596.24 29799.10 20999.67 16894.11 24898.93 33996.81 28399.05 17399.48 169
ADS-MVSNet98.20 18598.08 18798.56 24399.33 21396.48 30399.23 24899.15 29796.24 29799.10 20999.67 16894.11 24899.71 20396.81 28399.05 17399.48 169
tpm97.67 26897.55 24198.03 29099.02 28395.01 33799.43 17498.54 35096.44 28499.12 20499.34 28291.83 30299.60 23397.75 21496.46 28199.48 169
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10299.16 25999.44 19798.45 8199.19 19499.49 23898.08 10999.89 11997.73 21699.75 10599.48 169
canonicalmvs99.02 10998.86 11499.51 11299.42 19099.32 10899.80 2499.48 14898.63 6699.31 16398.81 33897.09 13699.75 18699.27 4697.90 22999.47 175
MIMVSNet97.73 25697.45 25498.57 24199.45 18897.50 25799.02 29198.98 31496.11 31099.41 13499.14 31490.28 32498.74 34495.74 30998.93 18299.47 175
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13499.67 5399.34 24797.31 21299.58 9999.76 11897.65 12099.82 16098.87 8999.07 17299.46 177
MDTV_nov1_ep13_2view95.18 33599.35 21396.84 25499.58 9995.19 20497.82 20799.46 177
MVS-HIRNet95.75 31595.16 31997.51 31999.30 22293.69 35698.88 31795.78 37285.09 36698.78 26292.65 37091.29 31599.37 26494.85 32699.85 6099.46 177
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23499.57 5396.40 28899.42 13099.68 16298.75 6099.80 17097.98 19499.72 11299.44 180
PatchMatch-RL98.84 13698.62 14699.52 11099.71 9599.28 11599.06 28099.77 997.74 17099.50 11499.53 22595.41 19499.84 14297.17 26499.64 12999.44 180
VDDNet97.55 27497.02 29099.16 16199.49 17398.12 23299.38 20099.30 27195.35 32299.68 6299.90 1382.62 36799.93 7399.31 3898.13 22499.42 182
PCF-MVS97.08 1497.66 26997.06 28999.47 11999.61 13999.09 13998.04 36499.25 28391.24 35798.51 29499.70 14594.55 23399.91 9692.76 35099.85 6099.42 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 30395.64 31499.05 17199.53 15798.82 17998.84 32197.51 36497.63 18084.77 36899.21 30892.09 29798.91 34098.98 7392.21 35099.41 184
CS-MVS99.50 1699.48 1299.54 9699.76 5799.42 10099.90 199.55 6798.56 7199.78 3599.70 14598.65 7299.79 17399.65 499.78 9799.41 184
HY-MVS97.30 798.85 13398.64 14099.47 11999.42 19099.08 14099.62 7699.36 23897.39 20799.28 16999.68 16296.44 16199.92 8598.37 16398.22 21599.40 186
Fast-Effi-MVS+98.70 14898.43 16299.51 11299.51 16199.28 11599.52 12999.47 16696.11 31099.01 22499.34 28296.20 16899.84 14297.88 20198.82 19099.39 187
CANet_DTU98.97 11698.87 10999.25 15299.33 21398.42 22099.08 27699.30 27199.16 699.43 12799.75 12395.27 19999.97 1298.56 14399.95 899.36 188
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 5399.53 8797.66 17899.40 13999.44 25398.10 10899.81 16598.94 7799.62 13299.35 189
EPMVS97.82 24197.65 23498.35 26898.88 30195.98 31599.49 15094.71 37797.57 18599.26 17799.48 24492.46 29299.71 20397.87 20299.08 17199.35 189
CostFormer97.72 25897.73 22797.71 31299.15 26294.02 35199.54 12399.02 31194.67 33499.04 22199.35 27992.35 29599.77 18098.50 15097.94 22899.34 191
BH-untuned98.42 16798.36 16598.59 23799.49 17396.70 29599.27 23499.13 30097.24 22098.80 25999.38 27095.75 18499.74 18797.07 26999.16 16199.33 192
PAPM97.59 27397.09 28899.07 16899.06 27798.26 22598.30 35899.10 30294.88 33098.08 31699.34 28296.27 16699.64 22589.87 35998.92 18499.31 193
tpm297.44 28497.34 27397.74 31199.15 26294.36 34899.45 16498.94 31893.45 34898.90 24499.44 25391.35 31499.59 23497.31 25198.07 22699.29 194
JIA-IIPM97.50 27997.02 29098.93 19098.73 32297.80 24899.30 22398.97 31591.73 35598.91 24294.86 36895.10 20599.71 20397.58 22997.98 22799.28 195
dp97.75 25297.80 21597.59 31699.10 26993.71 35599.32 21998.88 32896.48 28199.08 21499.55 21692.67 28399.82 16096.52 29498.58 19999.24 196
thisisatest051598.14 19297.79 21699.19 15899.50 17198.50 21198.61 34196.82 36896.95 24799.54 10799.43 25591.66 30999.86 13098.08 18899.51 13999.22 197
TESTMET0.1,197.55 27497.27 28298.40 26498.93 29596.53 30198.67 33697.61 36396.96 24598.64 28499.28 29688.63 34499.45 24597.30 25299.38 14499.21 198
CR-MVSNet98.17 18997.93 20598.87 20999.18 25198.49 21299.22 25399.33 25496.96 24599.56 10299.38 27094.33 24099.00 32794.83 32798.58 19999.14 199
RPMNet96.72 29995.90 30999.19 15899.18 25198.49 21299.22 25399.52 9388.72 36399.56 10297.38 36094.08 25099.95 4786.87 37098.58 19999.14 199
testgi97.65 27097.50 24898.13 28799.36 20696.45 30499.42 18199.48 14897.76 16697.87 32499.45 25291.09 31798.81 34394.53 32998.52 20499.13 201
test-LLR98.06 20097.90 20798.55 24598.79 31397.10 27098.67 33697.75 36097.34 20998.61 28898.85 33694.45 23799.45 24597.25 25599.38 14499.10 202
test-mter97.49 28297.13 28798.55 24598.79 31397.10 27098.67 33697.75 36096.65 26698.61 28898.85 33688.23 34899.45 24597.25 25599.38 14499.10 202
IB-MVS95.67 1896.22 30795.44 31798.57 24199.21 24496.70 29598.65 33997.74 36296.71 26197.27 33698.54 34786.03 35899.92 8598.47 15486.30 36199.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 12598.63 14199.54 9699.37 20499.66 5999.45 16499.54 7696.61 27099.01 22499.40 26597.09 13699.86 13097.68 22499.53 13899.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 17598.48 16097.90 30199.16 25994.78 34199.31 22199.11 30197.27 21699.45 12299.59 20395.33 19799.84 14298.48 15198.61 19699.09 206
hse-mvs297.50 27997.14 28698.59 23799.49 17397.05 27699.28 22999.22 28798.94 4199.66 7399.42 25894.93 20899.65 22299.48 1883.80 36599.08 207
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26799.51 10798.86 4899.84 1599.47 24798.18 10499.99 199.50 1399.31 15299.08 207
COLMAP_ROBcopyleft97.56 698.86 12598.75 12799.17 16099.88 1298.53 20499.34 21699.59 4497.55 18798.70 27499.89 1795.83 18199.90 11198.10 18399.90 2599.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 29596.31 30198.59 23799.48 18197.04 27999.27 23499.22 28797.44 20198.51 29499.41 26291.97 29899.66 21897.71 21983.83 36499.07 212
OpenMVScopyleft96.50 1698.47 16398.12 18199.52 11099.04 28199.53 8599.82 1899.72 1194.56 33698.08 31699.88 2394.73 22499.98 797.47 24399.76 10499.06 213
ETV-MVS99.26 6699.21 6499.40 12899.46 18399.30 11299.56 11099.52 9398.52 7599.44 12699.27 29998.41 9299.86 13099.10 6199.59 13499.04 214
PatchT97.03 29496.44 29998.79 22598.99 28798.34 22299.16 25999.07 30792.13 35399.52 11197.31 36394.54 23498.98 32988.54 36498.73 19599.03 215
BH-w/o98.00 21597.89 21198.32 27199.35 20796.20 31299.01 29698.90 32696.42 28698.38 30399.00 32895.26 20199.72 19796.06 30298.61 19699.03 215
Fast-Effi-MVS+-dtu98.77 14398.83 12098.60 23699.41 19396.99 28399.52 12999.49 13698.11 12499.24 18099.34 28296.96 14399.79 17397.95 19799.45 14099.02 217
XVG-OURS-SEG-HR98.69 15198.62 14698.89 20299.71 9597.74 25099.12 26799.54 7698.44 8499.42 13099.71 14194.20 24499.92 8598.54 14898.90 18699.00 218
XVG-OURS98.73 14698.68 13498.88 20599.70 10297.73 25198.92 31399.55 6798.52 7599.45 12299.84 4795.27 19999.91 9698.08 18898.84 18999.00 218
tpm cat197.39 28597.36 26897.50 32099.17 25793.73 35499.43 17499.31 26791.27 35698.71 26899.08 31994.31 24299.77 18096.41 29898.50 20599.00 218
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16899.02 29199.45 18898.80 5699.71 5599.26 30198.94 3599.98 799.34 3599.23 15798.98 221
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16498.97 30599.46 17698.92 4599.71 5599.24 30399.01 1999.98 799.35 3199.66 12698.97 222
tpmvs97.98 21798.02 19597.84 30499.04 28194.73 34299.31 22199.20 29196.10 31498.76 26499.42 25894.94 20799.81 16596.97 27498.45 20798.97 222
mvs-test198.86 12598.84 11698.89 20299.33 21397.77 24999.44 16899.30 27198.47 7899.10 20999.43 25596.78 14799.95 4798.73 11399.02 17798.96 224
thres600view797.86 23297.51 24798.92 19299.72 8997.95 24199.59 9098.74 33897.94 14599.27 17298.62 34491.75 30399.86 13093.73 33898.19 21998.96 224
thres40097.77 24797.38 26698.92 19299.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.96 224
TR-MVS97.76 24897.41 26498.82 22099.06 27797.87 24498.87 31998.56 34896.63 26998.68 27699.22 30592.49 28899.65 22295.40 31797.79 23198.95 227
test0.0.03 197.71 26197.42 26398.56 24398.41 34597.82 24798.78 32798.63 34797.34 20998.05 32098.98 33294.45 23798.98 32995.04 32497.15 27198.89 228
baseline297.87 23097.55 24198.82 22099.18 25198.02 23499.41 18396.58 37196.97 24496.51 34799.17 31093.43 26299.57 23597.71 21999.03 17598.86 229
cascas97.69 26397.43 26298.48 25198.60 33797.30 26198.18 36299.39 22392.96 35198.41 30198.78 34093.77 25899.27 28898.16 18198.61 19698.86 229
131498.68 15398.54 15799.11 16598.89 30098.65 19399.27 23499.49 13696.89 25197.99 32199.56 21397.72 11999.83 15397.74 21599.27 15598.84 231
PS-MVSNAJss98.92 11998.92 10298.90 19998.78 31698.53 20499.78 3099.54 7698.07 13299.00 22999.76 11899.01 1999.37 26499.13 5897.23 26798.81 232
RRT_MVS98.70 14898.66 13898.83 21998.90 29898.45 21699.89 299.28 27897.76 16698.94 23899.92 996.98 14199.25 29099.28 4397.00 27398.80 233
FC-MVSNet-test98.75 14598.62 14699.15 16399.08 27399.45 9799.86 1399.60 4198.23 10598.70 27499.82 5896.80 14699.22 29699.07 6596.38 28398.79 234
test_low_dy_conf_00198.76 14498.71 13098.92 19298.92 29698.71 18899.87 999.41 21097.81 16299.35 15599.93 496.63 15399.28 28499.03 6797.44 25798.78 235
test_part197.75 25297.24 28399.29 14699.59 14599.63 6599.65 6599.49 13696.17 30398.44 29999.69 15489.80 33299.47 24298.68 12293.66 33698.78 235
nrg03098.64 15798.42 16399.28 14999.05 28099.69 5299.81 2099.46 17698.04 13899.01 22499.82 5896.69 15299.38 25999.34 3594.59 32398.78 235
FIs98.78 14198.63 14199.23 15699.18 25199.54 8299.83 1799.59 4498.28 9998.79 26199.81 7196.75 15099.37 26499.08 6496.38 28398.78 235
EU-MVSNet97.98 21798.03 19397.81 30898.72 32496.65 29899.66 5799.66 2798.09 12798.35 30599.82 5895.25 20298.01 35597.41 24995.30 31098.78 235
jajsoiax98.43 16698.28 17398.88 20598.60 33798.43 21899.82 1899.53 8798.19 11098.63 28599.80 8693.22 26799.44 25099.22 4997.50 24898.77 240
mvs_tets98.40 17198.23 17598.91 19798.67 33098.51 21099.66 5799.53 8798.19 11098.65 28399.81 7192.75 27599.44 25099.31 3897.48 25298.77 240
Anonymous2023121197.88 22897.54 24498.90 19999.71 9598.53 20499.48 15599.57 5394.16 33998.81 25799.68 16293.23 26599.42 25598.84 9994.42 32698.76 242
XXY-MVS98.38 17298.09 18699.24 15499.26 23399.32 10899.56 11099.55 6797.45 19898.71 26899.83 5193.23 26599.63 23098.88 8596.32 28598.76 242
v7n97.87 23097.52 24598.92 19298.76 32098.58 20099.84 1499.46 17696.20 30098.91 24299.70 14594.89 21299.44 25096.03 30393.89 33498.75 244
PS-CasMVS97.93 22297.59 24098.95 18698.99 28799.06 14399.68 5199.52 9397.13 22898.31 30799.68 16292.44 29399.05 31998.51 14994.08 33298.75 244
test_djsdf98.67 15498.57 15598.98 18198.70 32798.91 16899.88 499.46 17697.55 18799.22 18599.88 2395.73 18599.28 28499.03 6797.62 23698.75 244
Effi-MVS+-dtu98.78 14198.89 10798.47 25599.33 21396.91 28999.57 10499.30 27198.47 7899.41 13498.99 32996.78 14799.74 18798.73 11399.38 14498.74 247
CP-MVSNet98.09 19797.78 21999.01 17598.97 29299.24 12099.67 5399.46 17697.25 21898.48 29799.64 18293.79 25799.06 31898.63 12894.10 33198.74 247
bld_raw_conf00598.62 15998.50 15898.95 18699.02 28398.79 18299.66 5799.55 6798.14 11998.95 23599.91 1094.54 23499.33 27499.36 3097.39 26298.74 247
mvsmamba98.92 11998.87 10999.08 16699.07 27499.16 12899.88 499.51 10798.15 11699.40 13999.89 1797.12 13499.33 27499.38 2797.40 26098.73 250
VPA-MVSNet98.29 17997.95 20299.30 14399.16 25999.54 8299.50 14099.58 5098.27 10199.35 15599.37 27392.53 28799.65 22299.35 3194.46 32498.72 251
PEN-MVS97.76 24897.44 25998.72 23098.77 31998.54 20399.78 3099.51 10797.06 23898.29 30999.64 18292.63 28498.89 34298.09 18493.16 34298.72 251
bld_raw_dy_0_6498.69 15198.58 15498.99 17998.88 30198.96 15799.80 2499.41 21097.91 14899.32 16199.87 2995.70 18799.31 28199.09 6297.27 26698.71 253
VPNet97.84 23697.44 25999.01 17599.21 24498.94 16499.48 15599.57 5398.38 8799.28 16999.73 13688.89 34099.39 25799.19 5193.27 34198.71 253
EI-MVSNet98.67 15498.67 13598.68 23399.35 20797.97 23799.50 14099.38 22996.93 25099.20 19199.83 5197.87 11399.36 26898.38 16197.56 24198.71 253
WR-MVS98.06 20097.73 22799.06 16998.86 30899.25 11999.19 25699.35 24397.30 21398.66 27799.43 25593.94 25399.21 30198.58 13894.28 32898.71 253
IterMVS-LS98.46 16498.42 16398.58 24099.59 14598.00 23599.37 20399.43 20596.94 24999.07 21599.59 20397.87 11399.03 32298.32 16995.62 30398.71 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 22597.60 23998.87 20998.83 31198.65 19399.55 11999.34 24796.20 30099.32 16199.40 26594.36 23999.26 28996.37 29995.03 31698.70 258
v124097.69 26397.32 27698.79 22598.85 30998.43 21899.48 15599.36 23896.11 31099.27 17299.36 27693.76 25999.24 29294.46 33095.23 31198.70 258
DTE-MVSNet97.51 27897.19 28598.46 25698.63 33398.13 23199.84 1499.48 14896.68 26397.97 32299.67 16892.92 27198.56 34696.88 28292.60 34998.70 258
TranMVSNet+NR-MVSNet97.93 22297.66 23398.76 22898.78 31698.62 19699.65 6599.49 13697.76 16698.49 29699.60 20094.23 24398.97 33698.00 19392.90 34498.70 258
v192192097.80 24597.45 25498.84 21798.80 31298.53 20499.52 12999.34 24796.15 30799.24 18099.47 24793.98 25299.29 28395.40 31795.13 31498.69 262
v119297.81 24397.44 25998.91 19798.88 30198.68 19099.51 13499.34 24796.18 30299.20 19199.34 28294.03 25199.36 26895.32 32095.18 31298.69 262
v2v48298.06 20097.77 22198.92 19298.90 29898.82 17999.57 10499.36 23896.65 26699.19 19499.35 27994.20 24499.25 29097.72 21894.97 31798.69 262
UniMVSNet_NR-MVSNet98.22 18297.97 19998.96 18498.92 29698.98 15099.48 15599.53 8797.76 16698.71 26899.46 25196.43 16299.22 29698.57 14092.87 34698.69 262
OurMVSNet-221017-097.88 22897.77 22198.19 28198.71 32696.53 30199.88 499.00 31297.79 16398.78 26299.94 391.68 30699.35 27197.21 25796.99 27498.69 262
gg-mvs-nofinetune96.17 31095.32 31898.73 22998.79 31398.14 23099.38 20094.09 37891.07 35998.07 31991.04 37389.62 33699.35 27196.75 28599.09 17098.68 267
v114497.98 21797.69 23098.85 21698.87 30598.66 19299.54 12399.35 24396.27 29499.23 18499.35 27994.67 22799.23 29396.73 28795.16 31398.68 267
DU-MVS98.08 19997.79 21698.96 18498.87 30598.98 15099.41 18399.45 18897.87 15098.71 26899.50 23594.82 21499.22 29698.57 14092.87 34698.68 267
NR-MVSNet97.97 22097.61 23899.02 17498.87 30599.26 11899.47 16099.42 20797.63 18097.08 34299.50 23595.07 20699.13 30997.86 20393.59 33798.68 267
LPG-MVS_test98.22 18298.13 18098.49 24999.33 21397.05 27699.58 9899.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LGP-MVS_train98.49 24999.33 21397.05 27699.55 6797.46 19599.24 18099.83 5192.58 28599.72 19798.09 18497.51 24698.68 267
LTVRE_ROB97.16 1298.02 21097.90 20798.40 26499.23 23996.80 29399.70 4499.60 4197.12 23098.18 31399.70 14591.73 30599.72 19798.39 15997.45 25498.68 267
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 24197.75 22598.06 28999.57 14996.36 30799.02 29199.49 13697.18 22498.71 26899.72 14092.72 27899.14 30697.44 24795.86 29798.67 274
pm-mvs197.68 26597.28 27998.88 20599.06 27798.62 19699.50 14099.45 18896.32 29097.87 32499.79 9892.47 28999.35 27197.54 23693.54 33898.67 274
v1097.85 23397.52 24598.86 21398.99 28798.67 19199.75 3799.41 21095.70 31898.98 23199.41 26294.75 22399.23 29396.01 30494.63 32298.67 274
HQP_MVS98.27 18198.22 17698.44 26099.29 22696.97 28599.39 19599.47 16698.97 3799.11 20699.61 19792.71 28099.69 21397.78 21097.63 23498.67 274
plane_prior599.47 16699.69 21397.78 21097.63 23498.67 274
SixPastTwentyTwo97.50 27997.33 27598.03 29098.65 33196.23 31199.77 3298.68 34697.14 22797.90 32399.93 490.45 32399.18 30497.00 27196.43 28298.67 274
IterMVS97.83 23897.77 22198.02 29299.58 14796.27 31099.02 29199.48 14897.22 22298.71 26899.70 14592.75 27599.13 30997.46 24496.00 29198.67 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 19697.99 19798.44 26099.41 19396.96 28799.60 8399.56 5898.09 12798.15 31499.91 1090.87 32099.70 20998.88 8597.45 25498.67 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 22197.63 23798.93 19098.95 29498.81 18199.80 2499.41 21096.03 31599.10 20999.42 25894.92 21099.30 28296.94 27794.08 33298.66 282
UniMVSNet (Re)98.29 17998.00 19699.13 16499.00 28699.36 10699.49 15099.51 10797.95 14498.97 23399.13 31596.30 16599.38 25998.36 16593.34 33998.66 282
pmmvs696.53 30296.09 30597.82 30798.69 32895.47 32799.37 20399.47 16693.46 34797.41 33399.78 10587.06 35699.33 27496.92 28092.70 34898.65 284
K. test v397.10 29396.79 29498.01 29398.72 32496.33 30899.87 997.05 36697.59 18296.16 35199.80 8688.71 34199.04 32096.69 29096.55 28098.65 284
iter_conf_final98.71 14798.61 15298.99 17999.49 17398.96 15799.63 7099.41 21098.19 11099.39 14299.77 11294.82 21499.38 25999.30 4197.52 24498.64 286
our_test_397.65 27097.68 23197.55 31898.62 33494.97 33898.84 32199.30 27196.83 25698.19 31299.34 28297.01 14099.02 32495.00 32596.01 29098.64 286
YYNet195.36 31994.51 32597.92 29997.89 35197.10 27099.10 27599.23 28693.26 34980.77 37299.04 32492.81 27498.02 35494.30 33194.18 33098.64 286
MDA-MVSNet_test_wron95.45 31794.60 32398.01 29398.16 34897.21 26899.11 27399.24 28593.49 34680.73 37398.98 33293.02 26898.18 35094.22 33494.45 32598.64 286
Baseline_NR-MVSNet97.76 24897.45 25498.68 23399.09 27198.29 22399.41 18398.85 33095.65 31998.63 28599.67 16894.82 21499.10 31698.07 19192.89 34598.64 286
HQP4-MVS98.66 27799.64 22598.64 286
HQP-MVS98.02 21097.90 20798.37 26799.19 24896.83 29098.98 30299.39 22398.24 10298.66 27799.40 26592.47 28999.64 22597.19 26197.58 23998.64 286
ACMM97.58 598.37 17398.34 16898.48 25199.41 19397.10 27099.56 11099.45 18898.53 7499.04 22199.85 3893.00 26999.71 20398.74 11197.45 25498.64 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 27697.30 27898.16 28398.57 33996.73 29499.27 23498.90 32696.14 30898.37 30499.53 22591.54 31299.14 30697.51 23995.87 29698.63 294
v14897.79 24697.55 24198.50 24898.74 32197.72 25299.54 12399.33 25496.26 29598.90 24499.51 23294.68 22699.14 30697.83 20693.15 34398.63 294
iter_conf0598.55 16198.44 16198.87 20999.34 21198.60 19999.55 11999.42 20798.21 10899.37 14899.77 11293.55 26199.38 25999.30 4197.48 25298.63 294
MDA-MVSNet-bldmvs94.96 32293.98 32897.92 29998.24 34797.27 26399.15 26399.33 25493.80 34280.09 37499.03 32588.31 34797.86 35993.49 34194.36 32798.62 297
TransMVSNet (Re)97.15 29196.58 29698.86 21399.12 26498.85 17499.49 15098.91 32495.48 32097.16 34099.80 8693.38 26399.11 31494.16 33591.73 35198.62 297
lessismore_v097.79 30998.69 32895.44 32994.75 37695.71 35599.87 2988.69 34299.32 27895.89 30594.93 31998.62 297
MVSTER98.49 16298.32 17099.00 17799.35 20799.02 14699.54 12399.38 22997.41 20599.20 19199.73 13693.86 25699.36 26898.87 8997.56 24198.62 297
GBi-Net97.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
test197.68 26597.48 24998.29 27499.51 16197.26 26599.43 17499.48 14896.49 27799.07 21599.32 28990.26 32598.98 32997.10 26696.65 27698.62 297
FMVSNet196.84 29696.36 30098.29 27499.32 22097.26 26599.43 17499.48 14895.11 32598.55 29299.32 28983.95 36498.98 32995.81 30796.26 28698.62 297
ACMP97.20 1198.06 20097.94 20498.45 25799.37 20497.01 28199.44 16899.49 13697.54 19098.45 29899.79 9891.95 29999.72 19797.91 19997.49 25198.62 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 22597.78 21998.32 27199.46 18396.68 29799.56 11099.54 7698.41 8597.79 32899.87 2990.18 32999.66 21898.05 19297.18 27098.62 297
ppachtmachnet_test97.49 28297.45 25497.61 31598.62 33495.24 33298.80 32599.46 17696.11 31098.22 31199.62 19396.45 16098.97 33693.77 33795.97 29598.61 306
OPM-MVS98.19 18698.10 18398.45 25798.88 30197.07 27499.28 22999.38 22998.57 7099.22 18599.81 7192.12 29699.66 21898.08 18897.54 24398.61 306
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.13 19397.87 21298.90 19999.02 28398.84 17599.70 4499.59 4497.27 21698.40 30299.19 30995.53 19199.23 29398.34 16693.78 33598.61 306
MIMVSNet195.51 31695.04 32096.92 33497.38 35795.60 32199.52 12999.50 12893.65 34496.97 34599.17 31085.28 36196.56 37088.36 36595.55 30598.60 309
N_pmnet94.95 32395.83 31192.31 34998.47 34379.33 37699.12 26792.81 38293.87 34197.68 32999.13 31593.87 25599.01 32691.38 35496.19 28798.59 310
FMVSNet297.72 25897.36 26898.80 22499.51 16198.84 17599.45 16499.42 20796.49 27798.86 25499.29 29490.26 32598.98 32996.44 29696.56 27998.58 311
anonymousdsp98.44 16598.28 17398.94 18898.50 34298.96 15799.77 3299.50 12897.07 23698.87 24999.77 11294.76 22299.28 28498.66 12597.60 23798.57 312
FMVSNet398.03 20897.76 22498.84 21799.39 20198.98 15099.40 19199.38 22996.67 26499.07 21599.28 29692.93 27098.98 32997.10 26696.65 27698.56 313
XVG-ACMP-BASELINE97.83 23897.71 22998.20 28099.11 26696.33 30899.41 18399.52 9398.06 13699.05 22099.50 23589.64 33599.73 19397.73 21697.38 26398.53 314
Patchmtry97.75 25297.40 26598.81 22299.10 26998.87 17199.11 27399.33 25494.83 33198.81 25799.38 27094.33 24099.02 32496.10 30195.57 30498.53 314
miper_lstm_enhance98.00 21597.91 20698.28 27799.34 21197.43 25998.88 31799.36 23896.48 28198.80 25999.55 21695.98 17298.91 34097.27 25395.50 30798.51 316
USDC97.34 28697.20 28497.75 31099.07 27495.20 33398.51 34899.04 31097.99 14298.31 30799.86 3389.02 33899.55 23895.67 31297.36 26498.49 317
c3_l98.12 19598.04 19298.38 26699.30 22297.69 25598.81 32499.33 25496.67 26498.83 25599.34 28297.11 13598.99 32897.58 22995.34 30998.48 318
CLD-MVS98.16 19098.10 18398.33 26999.29 22696.82 29298.75 33099.44 19797.83 15699.13 20299.55 21692.92 27199.67 21598.32 16997.69 23398.48 318
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 20597.96 20098.33 26999.26 23397.38 26098.56 34699.31 26796.65 26698.88 24799.52 22896.58 15599.12 31397.39 25095.53 30698.47 320
MVS_030496.79 29896.52 29897.59 31699.22 24294.92 34099.04 28799.59 4496.49 27798.43 30098.99 32980.48 37199.39 25797.15 26599.27 15598.47 320
Anonymous2023120696.22 30796.03 30696.79 33797.31 36094.14 35099.63 7099.08 30596.17 30397.04 34399.06 32293.94 25397.76 36186.96 36995.06 31598.47 320
FMVSNet596.43 30596.19 30397.15 32699.11 26695.89 31799.32 21999.52 9394.47 33898.34 30699.07 32087.54 35597.07 36692.61 35195.72 30198.47 320
cl____98.01 21397.84 21498.55 24599.25 23797.97 23798.71 33499.34 24796.47 28398.59 29199.54 22195.65 18999.21 30197.21 25795.77 29898.46 324
DIV-MVS_self_test98.01 21397.85 21398.48 25199.24 23897.95 24198.71 33499.35 24396.50 27698.60 29099.54 22195.72 18699.03 32297.21 25795.77 29898.46 324
pmmvs498.13 19397.90 20798.81 22298.61 33698.87 17198.99 29899.21 29096.44 28499.06 21999.58 20695.90 17999.11 31497.18 26396.11 28998.46 324
cl2297.85 23397.64 23698.48 25199.09 27197.87 24498.60 34399.33 25497.11 23398.87 24999.22 30592.38 29499.17 30598.21 17495.99 29298.42 327
V4298.06 20097.79 21698.86 21398.98 29098.84 17599.69 4699.34 24796.53 27599.30 16599.37 27394.67 22799.32 27897.57 23394.66 32198.42 327
PVSNet_BlendedMVS98.86 12598.80 12199.03 17399.76 5798.79 18299.28 22999.91 397.42 20499.67 6899.37 27397.53 12199.88 12498.98 7397.29 26598.42 327
UnsupCasMVSNet_eth96.44 30496.12 30497.40 32298.65 33195.65 32099.36 20799.51 10797.13 22896.04 35398.99 32988.40 34698.17 35196.71 28890.27 35498.40 330
TinyColmap97.12 29296.89 29297.83 30599.07 27495.52 32698.57 34498.74 33897.58 18497.81 32799.79 9888.16 34999.56 23695.10 32297.21 26898.39 331
miper_ehance_all_eth98.18 18898.10 18398.41 26299.23 23997.72 25298.72 33399.31 26796.60 27298.88 24799.29 29497.29 13099.13 30997.60 22795.99 29298.38 332
thres100view90097.76 24897.45 25498.69 23299.72 8997.86 24699.59 9098.74 33897.93 14699.26 17798.62 34491.75 30399.83 15393.22 34398.18 22098.37 333
tfpn200view997.72 25897.38 26698.72 23099.69 10597.96 23999.50 14098.73 34397.83 15699.17 19898.45 34991.67 30799.83 15393.22 34398.18 22098.37 333
miper_enhance_ethall98.16 19098.08 18798.41 26298.96 29397.72 25298.45 35099.32 26496.95 24798.97 23399.17 31097.06 13899.22 29697.86 20395.99 29298.29 335
tfpnnormal97.84 23697.47 25198.98 18199.20 24699.22 12299.64 6899.61 3696.32 29098.27 31099.70 14593.35 26499.44 25095.69 31095.40 30898.27 336
test20.0396.12 31195.96 30896.63 33897.44 35695.45 32899.51 13499.38 22996.55 27496.16 35199.25 30293.76 25996.17 37187.35 36894.22 32998.27 336
test_method91.10 33391.36 33690.31 35395.85 36773.72 38194.89 37099.25 28368.39 37395.82 35499.02 32780.50 37098.95 33893.64 33994.89 32098.25 338
ITE_SJBPF98.08 28899.29 22696.37 30698.92 32198.34 9398.83 25599.75 12391.09 31799.62 23195.82 30697.40 26098.25 338
KD-MVS_self_test95.00 32194.34 32696.96 33297.07 36595.39 33099.56 11099.44 19795.11 32597.13 34197.32 36291.86 30197.27 36590.35 35881.23 36898.23 340
EG-PatchMatch MVS95.97 31395.69 31396.81 33697.78 35392.79 36299.16 25998.93 31996.16 30594.08 36099.22 30582.72 36699.47 24295.67 31297.50 24898.17 341
D2MVS98.41 16998.50 15898.15 28699.26 23396.62 29999.40 19199.61 3697.71 17298.98 23199.36 27696.04 17199.67 21598.70 11797.41 25998.15 342
TDRefinement95.42 31894.57 32497.97 29789.83 37796.11 31499.48 15598.75 33596.74 25996.68 34699.88 2388.65 34399.71 20398.37 16382.74 36698.09 343
Anonymous2024052196.20 30995.89 31097.13 32897.72 35494.96 33999.79 2999.29 27693.01 35097.20 33999.03 32589.69 33498.36 34991.16 35596.13 28898.07 344
API-MVS99.04 10699.03 8499.06 16999.40 19899.31 11199.55 11999.56 5898.54 7399.33 16099.39 26998.76 5799.78 17896.98 27399.78 9798.07 344
new_pmnet96.38 30696.03 30697.41 32198.13 34995.16 33699.05 28299.20 29193.94 34097.39 33498.79 33991.61 31199.04 32090.43 35795.77 29898.05 346
thres20097.61 27297.28 27998.62 23599.64 12698.03 23399.26 24398.74 33897.68 17599.09 21398.32 35391.66 30999.81 16592.88 34798.22 21598.03 347
KD-MVS_2432*160094.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
miper_refine_blended94.62 32493.72 33097.31 32397.19 36395.82 31898.34 35499.20 29195.00 32897.57 33098.35 35187.95 35198.10 35292.87 34877.00 37198.01 348
DeepMVS_CXcopyleft93.34 34799.29 22682.27 37399.22 28785.15 36596.33 34999.05 32390.97 31999.73 19393.57 34097.77 23298.01 348
CL-MVSNet_self_test94.49 32693.97 32996.08 34296.16 36693.67 35798.33 35699.38 22995.13 32397.33 33598.15 35592.69 28296.57 36988.67 36379.87 36997.99 351
GG-mvs-BLEND98.45 25798.55 34098.16 22899.43 17493.68 37997.23 33798.46 34889.30 33799.22 29695.43 31698.22 21597.98 352
pmmvs394.09 33093.25 33396.60 33994.76 37294.49 34598.92 31398.18 35689.66 36096.48 34898.06 35686.28 35797.33 36489.68 36087.20 36097.97 353
LF4IMVS97.52 27697.46 25397.70 31398.98 29095.55 32399.29 22798.82 33398.07 13298.66 27799.64 18289.97 33099.61 23297.01 27096.68 27597.94 354
test_040296.64 30096.24 30297.85 30398.85 30996.43 30599.44 16899.26 28193.52 34596.98 34499.52 22888.52 34599.20 30392.58 35297.50 24897.93 355
MVP-Stereo97.81 24397.75 22597.99 29697.53 35596.60 30098.96 30698.85 33097.22 22297.23 33799.36 27695.28 19899.46 24495.51 31499.78 9797.92 356
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 29097.32 27696.99 33098.45 34493.51 35998.82 32399.32 26497.41 20598.13 31599.30 29288.99 33999.56 23695.68 31199.80 9097.90 357
ambc93.06 34892.68 37382.36 37298.47 34998.73 34395.09 35797.41 35955.55 37799.10 31696.42 29791.32 35297.71 358
new-patchmatchnet94.48 32794.08 32795.67 34495.08 37192.41 36399.18 25799.28 27894.55 33793.49 36297.37 36187.86 35397.01 36791.57 35388.36 35897.61 359
pmmvs-eth3d95.34 32094.73 32297.15 32695.53 37095.94 31699.35 21399.10 30295.13 32393.55 36197.54 35888.15 35097.91 35794.58 32889.69 35797.61 359
UnsupCasMVSNet_bld93.53 33192.51 33496.58 34097.38 35793.82 35298.24 35999.48 14891.10 35893.10 36396.66 36474.89 37298.37 34894.03 33687.71 35997.56 361
PM-MVS92.96 33292.23 33595.14 34595.61 36889.98 37099.37 20398.21 35494.80 33295.04 35897.69 35765.06 37497.90 35894.30 33189.98 35697.54 362
EGC-MVSNET82.80 33877.86 34497.62 31497.91 35096.12 31399.33 21899.28 2788.40 38125.05 38299.27 29984.11 36399.33 27489.20 36198.22 21597.42 363
LCM-MVSNet86.80 33685.22 34091.53 35187.81 37880.96 37498.23 36198.99 31371.05 37190.13 36796.51 36548.45 38096.88 36890.51 35685.30 36296.76 364
OpenMVS_ROBcopyleft92.34 2094.38 32893.70 33296.41 34197.38 35793.17 36099.06 28098.75 33586.58 36494.84 35998.26 35481.53 36999.32 27889.01 36297.87 23096.76 364
CMPMVSbinary69.68 2394.13 32994.90 32191.84 35097.24 36180.01 37598.52 34799.48 14889.01 36191.99 36599.67 16885.67 36099.13 30995.44 31597.03 27296.39 366
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 33585.37 33991.35 35290.21 37683.80 37198.89 31697.45 36583.13 36891.67 36695.03 36648.49 37994.70 37385.86 37177.62 37095.54 367
tmp_tt82.80 33881.52 34186.66 35466.61 38468.44 38292.79 37397.92 35868.96 37280.04 37599.85 3885.77 35996.15 37297.86 20343.89 37795.39 368
FPMVS84.93 33785.65 33882.75 35886.77 37963.39 38398.35 35398.92 32174.11 37083.39 37098.98 33250.85 37892.40 37584.54 37294.97 31792.46 369
Gipumacopyleft90.99 33490.15 33793.51 34698.73 32290.12 36993.98 37199.45 18879.32 36992.28 36494.91 36769.61 37397.98 35687.42 36795.67 30292.45 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 34274.86 34684.62 35675.88 38277.61 37797.63 36793.15 38188.81 36264.27 37789.29 37436.51 38183.93 37975.89 37452.31 37692.33 371
MVEpermissive76.82 2176.91 34374.31 34784.70 35585.38 38176.05 38096.88 36993.17 38067.39 37471.28 37689.01 37521.66 38687.69 37671.74 37572.29 37390.35 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 34474.97 34579.01 36070.98 38355.18 38493.37 37298.21 35465.08 37761.78 37893.83 36921.74 38592.53 37478.59 37391.12 35389.34 373
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 34179.22 34382.43 35991.19 37476.40 37897.55 36892.49 38366.36 37683.01 37191.27 37264.63 37585.79 37865.82 37760.65 37585.08 374
E-PMN80.61 34079.88 34282.81 35790.75 37576.38 37997.69 36695.76 37366.44 37583.52 36992.25 37162.54 37687.16 37768.53 37661.40 37484.89 375
test12339.01 34742.50 34928.53 36239.17 38520.91 38698.75 33019.17 38719.83 38038.57 37966.67 37733.16 38215.42 38137.50 38029.66 37949.26 376
testmvs39.17 34643.78 34825.37 36336.04 38616.84 38798.36 35226.56 38520.06 37938.51 38067.32 37629.64 38315.30 38237.59 37939.90 37843.98 377
wuyk23d40.18 34541.29 35036.84 36186.18 38049.12 38579.73 37422.81 38627.64 37825.46 38128.45 38121.98 38448.89 38055.80 37823.56 38012.51 378
test_blank0.13 3510.17 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3831.57 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.64 34832.85 3510.00 3640.00 3870.00 3880.00 37599.51 1070.00 3820.00 38399.56 21396.58 1550.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.27 35011.03 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 38399.01 190.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.30 34911.06 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.58 2060.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.02 3520.03 3550.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.27 3830.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.91 199.93 199.87 999.56 5899.10 1299.81 25
test_one_060199.81 4299.88 899.49 13698.97 3799.65 7999.81 7199.09 14
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.71 9599.79 3399.61 3696.84 25499.56 10299.54 22198.58 7599.96 2096.93 27899.75 105
test_241102_ONE99.84 3399.90 299.48 14899.07 1899.91 299.74 12999.20 799.76 184
9.1499.10 7499.72 8999.40 19199.51 10797.53 19199.64 8399.78 10598.84 4699.91 9697.63 22599.82 83
save fliter99.76 5799.59 7399.14 26599.40 21999.00 28
test072699.85 2699.89 499.62 7699.50 12899.10 1299.86 1399.82 5898.94 35
test_part299.81 4299.83 1799.77 38
sam_mvs94.72 225
MTGPAbinary99.47 166
test_post199.23 24865.14 37994.18 24799.71 20397.58 229
test_post65.99 37894.65 22999.73 193
patchmatchnet-post98.70 34294.79 21799.74 187
MTMP99.54 12398.88 328
gm-plane-assit98.54 34192.96 36194.65 33599.15 31399.64 22597.56 234
TEST999.67 11099.65 6299.05 28299.41 21096.22 29998.95 23599.49 23898.77 5599.91 96
test_899.67 11099.61 6899.03 28899.41 21096.28 29298.93 24099.48 24498.76 5799.91 96
agg_prior99.67 11099.62 6699.40 21998.87 24999.91 96
test_prior499.56 7898.99 298
test_prior298.96 30698.34 9399.01 22499.52 22898.68 6797.96 19599.74 108
旧先验298.96 30696.70 26299.47 11999.94 5898.19 176
新几何299.01 296
原ACMM298.95 310
testdata299.95 4796.67 291
segment_acmp98.96 29
testdata198.85 32098.32 97
plane_prior799.29 22697.03 280
plane_prior699.27 23196.98 28492.71 280
plane_prior499.61 197
plane_prior397.00 28298.69 6499.11 206
plane_prior299.39 19598.97 37
plane_prior199.26 233
plane_prior96.97 28599.21 25598.45 8197.60 237
n20.00 388
nn0.00 388
door-mid98.05 357
test1199.35 243
door97.92 358
HQP5-MVS96.83 290
HQP-NCC99.19 24898.98 30298.24 10298.66 277
ACMP_Plane99.19 24898.98 30298.24 10298.66 277
BP-MVS97.19 261
HQP3-MVS99.39 22397.58 239
HQP2-MVS92.47 289
NP-MVS99.23 23996.92 28899.40 265
MDTV_nov1_ep1398.32 17099.11 26694.44 34699.27 23498.74 33897.51 19399.40 13999.62 19394.78 21899.76 18497.59 22898.81 192
ACMMP++_ref97.19 269
ACMMP++97.43 258
Test By Simon98.75 60