This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5496.48 894.88 11
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 6080.26 1387.78 3094.27 3675.89 2096.81 2287.45 1996.44 993.05 97
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2393.63 2474.77 11392.29 795.97 274.28 3697.24 1188.58 1396.91 194.87 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 6284.47 7688.51 691.08 9373.49 1793.18 1193.78 2180.79 1076.66 19293.37 6060.40 19096.75 2577.20 11993.73 6995.29 3
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6793.00 4780.90 988.06 2894.06 4676.43 1796.84 2088.48 1495.99 1994.34 37
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2380.19 1488.10 2794.80 1673.76 4197.11 1387.51 1895.82 2494.90 10
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6594.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5492.83 6181.50 685.79 4693.47 5973.02 4797.00 1784.90 3394.94 4494.10 45
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6685.24 5294.32 3571.76 5696.93 1885.53 2995.79 2594.32 38
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7184.45 7194.52 2369.09 8296.70 2684.37 4494.83 5194.03 49
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6884.66 6794.52 2368.81 8696.65 2984.53 4194.90 4594.00 52
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4494.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 3486.91 3888.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8694.17 4067.45 9596.60 3483.06 6294.50 5794.07 47
X-MVStestdata80.37 14877.83 18688.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8612.47 37667.45 9596.60 3483.06 6294.50 5794.07 47
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 6093.59 2676.27 8288.14 2695.09 1571.06 6296.67 2887.67 1696.37 1494.09 46
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6884.91 5894.44 3070.78 6496.61 3284.53 4194.89 4693.66 68
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2993.24 3775.23 10084.91 5894.44 3070.78 6496.61 3283.75 5594.89 4693.66 68
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2292.65 7077.57 4383.84 8394.40 3472.24 5296.28 4185.65 2895.30 4093.62 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7792.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 19192.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
PGM-MVS86.68 4286.27 4887.90 2194.22 3573.38 1990.22 7893.04 4375.53 9483.86 8294.42 3367.87 9296.64 3082.70 7194.57 5693.66 68
DVP-MVS++90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3592.78 495.74 682.45 397.49 389.42 496.68 294.95 7
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2593.43 3276.89 6484.68 6493.99 5070.67 6796.82 2184.18 5095.01 4293.90 57
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5293.10 195.72 882.99 197.44 589.07 996.63 494.88 11
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 7089.69 16874.31 12489.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3393.49 2974.75 11488.33 2594.43 3273.27 4497.02 1684.18 5094.84 4993.82 62
DeepC-MVS_fast79.65 386.91 3886.62 4287.76 2993.52 5272.37 4491.26 5093.04 4376.62 7384.22 7693.36 6171.44 6096.76 2480.82 8695.33 3894.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 31
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8793.82 1973.07 15384.86 6392.89 7276.22 1896.33 3984.89 3595.13 4194.40 34
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4992.35 8074.62 11888.90 2193.85 5275.75 2196.00 5387.80 1594.63 5495.04 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 4386.32 4787.72 3294.41 2473.55 1392.74 2092.22 8776.87 6582.81 9894.25 3866.44 10496.24 4282.88 6694.28 6393.38 83
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 42
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6594.05 1570.80 18687.59 3393.51 5677.57 1496.63 3183.31 5795.77 2694.72 23
DeepC-MVS79.81 287.08 3786.88 3987.69 3691.16 9272.32 4790.31 7593.94 1777.12 5882.82 9794.23 3972.13 5497.09 1484.83 3695.37 3593.65 73
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3586.92 3787.68 3794.20 3673.86 893.98 392.82 6476.62 7383.68 8594.46 2767.93 9095.95 5684.20 4994.39 6093.23 89
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2394.74 275.71 9089.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8993.50 2875.17 10386.34 4195.29 1270.86 6396.00 5388.78 1296.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 4586.10 5487.51 4090.09 11470.94 7489.70 9392.59 7281.78 481.32 11391.43 10470.34 6997.23 1284.26 4693.36 7194.37 35
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4894.70 374.47 12188.86 2294.61 2175.23 2595.84 5886.62 2695.92 2194.78 20
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3493.33 3576.07 8583.81 8493.95 5169.77 7696.01 5285.15 3194.66 5394.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8872.45 4190.02 8294.37 471.76 16787.28 3494.27 3675.18 2696.08 4985.16 3095.77 2693.80 65
ACMMPcopyleft85.89 5685.39 6287.38 4493.59 5172.63 3492.74 2093.18 4176.78 6880.73 12293.82 5364.33 12596.29 4082.67 7290.69 10293.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 5092.12 995.78 480.98 997.40 789.08 796.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 4686.17 5287.24 4690.88 9970.96 7292.27 3294.07 1172.45 15885.22 5391.90 9069.47 7896.42 3883.28 6095.94 2094.35 36
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 4192.83 6173.01 15588.58 2394.52 2373.36 4296.49 3784.26 4695.01 4292.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5885.29 6687.17 4893.49 5371.08 6888.58 12692.42 7868.32 23984.61 6893.48 5772.32 5196.15 4879.00 10095.43 3494.28 40
train_agg86.43 4686.20 5087.13 4993.26 5672.96 2688.75 11991.89 10368.69 23485.00 5693.10 6574.43 3295.41 7684.97 3295.71 3093.02 99
CSCG86.41 4886.19 5187.07 5092.91 6572.48 3890.81 6193.56 2773.95 13283.16 9291.07 11475.94 1995.19 8679.94 9694.38 6193.55 79
Regformer-286.63 4486.53 4386.95 5189.33 13971.24 6788.43 12892.05 9382.50 186.88 3690.09 13674.45 3195.61 6384.38 4390.63 10394.01 51
SR-MVS86.73 3986.67 4186.91 5294.11 4072.11 5192.37 2792.56 7374.50 11986.84 3794.65 2067.31 9795.77 6084.80 3792.85 7592.84 106
DPM-MVS84.93 7284.29 7786.84 5390.20 11273.04 2487.12 17393.04 4369.80 20582.85 9691.22 10873.06 4696.02 5176.72 12794.63 5491.46 151
TSAR-MVS + GP.85.71 5985.33 6386.84 5391.34 9072.50 3789.07 10787.28 23476.41 7585.80 4590.22 13474.15 3995.37 8281.82 7891.88 8792.65 112
test1286.80 5592.63 7370.70 8191.79 10982.71 9971.67 5796.16 4794.50 5793.54 80
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 10989.57 9593.39 3477.53 4789.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 27
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4293.19 4077.87 3890.32 1794.00 4874.83 2893.78 15087.63 1794.27 6493.65 73
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-186.41 4886.33 4686.64 5889.33 13970.93 7588.43 12891.39 12382.14 386.65 3890.09 13674.39 3495.01 9783.97 5290.63 10393.97 53
agg_prior186.22 5186.09 5586.62 5992.85 6671.94 5488.59 12591.78 11068.96 22984.41 7293.18 6474.94 2794.93 9884.75 3895.33 3893.01 100
3Dnovator76.31 583.38 8782.31 9686.59 6087.94 19272.94 2990.64 6492.14 9177.21 5475.47 21792.83 7458.56 19794.72 11273.24 15792.71 7792.13 130
HPM-MVS_fast85.35 6684.95 7186.57 6193.69 4870.58 8492.15 3691.62 11473.89 13582.67 10094.09 4462.60 14795.54 6880.93 8492.93 7393.57 78
Regformer-485.68 6085.45 6186.35 6288.95 15769.67 9988.29 13891.29 12581.73 585.36 5090.01 14072.62 4995.35 8383.28 6087.57 13694.03 49
test_prior386.73 3986.86 4086.33 6392.61 7469.59 10088.85 11492.97 5475.41 9684.91 5893.54 5474.28 3695.48 7083.31 5795.86 2293.91 55
test_prior86.33 6392.61 7469.59 10092.97 5495.48 7093.91 55
MVS_111021_HR85.14 6984.75 7386.32 6591.65 8772.70 3185.98 20690.33 15076.11 8482.08 10391.61 9871.36 6194.17 13381.02 8392.58 7992.08 131
SR-MVS-dyc-post85.77 5785.61 5986.23 6693.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2865.00 12295.56 6582.75 6791.87 8892.50 115
APD-MVS_3200maxsize85.97 5485.88 5686.22 6792.69 7269.53 10291.93 3892.99 4973.54 14485.94 4294.51 2665.80 11495.61 6383.04 6492.51 8093.53 81
DP-MVS Recon83.11 9282.09 9986.15 6894.44 2170.92 7688.79 11792.20 8870.53 19379.17 13791.03 11764.12 12796.03 5068.39 20190.14 11091.50 148
EPNet83.72 7982.92 8886.14 6984.22 26269.48 10391.05 5885.27 26081.30 776.83 18791.65 9566.09 10995.56 6576.00 13293.85 6793.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test117286.20 5286.22 4986.12 7093.95 4269.89 9591.79 4392.28 8275.07 10586.40 4094.58 2265.00 12295.56 6584.34 4592.60 7892.90 104
abl_685.23 6784.95 7186.07 7192.23 7970.48 8590.80 6292.08 9273.51 14785.26 5194.16 4162.75 14695.92 5782.46 7491.30 9791.81 140
canonicalmvs85.91 5585.87 5786.04 7289.84 12469.44 10790.45 7393.00 4776.70 7288.01 2991.23 10773.28 4393.91 14581.50 8088.80 12494.77 21
h-mvs3383.15 8982.19 9786.02 7390.56 10570.85 7888.15 14589.16 18576.02 8684.67 6591.39 10561.54 16595.50 6982.71 6975.48 28591.72 142
alignmvs85.48 6285.32 6485.96 7489.51 13169.47 10489.74 9192.47 7476.17 8387.73 3291.46 10370.32 7093.78 15081.51 7988.95 12194.63 26
CS-MVS86.69 4186.95 3685.90 7590.76 10267.57 14692.83 1793.30 3679.67 1984.57 7092.27 8371.47 5995.02 9684.24 4893.46 7095.13 4
DELS-MVS85.41 6585.30 6585.77 7688.49 17567.93 13885.52 22393.44 3178.70 3183.63 8889.03 16774.57 2995.71 6280.26 9394.04 6693.66 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 5086.48 4485.71 7791.02 9567.21 15592.36 2893.78 2178.97 3083.51 8991.20 10970.65 6895.15 8881.96 7794.89 4694.77 21
Regformer-385.23 6785.07 6885.70 7888.95 15769.01 11188.29 13889.91 16280.95 885.01 5490.01 14072.45 5094.19 13182.50 7387.57 13693.90 57
ETV-MVS84.90 7484.67 7485.59 7989.39 13668.66 12588.74 12192.64 7179.97 1784.10 7985.71 25569.32 8095.38 7980.82 8691.37 9592.72 107
UA-Net85.08 7184.96 7085.45 8092.07 8168.07 13689.78 9090.86 13782.48 284.60 6993.20 6369.35 7995.22 8571.39 17090.88 10193.07 96
Vis-MVSNetpermissive83.46 8482.80 9085.43 8190.25 11168.74 11990.30 7690.13 15676.33 8180.87 12192.89 7261.00 17994.20 13072.45 16490.97 9993.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet-Vis-set84.19 7583.81 7885.31 8288.18 18467.85 13987.66 15989.73 16780.05 1682.95 9389.59 15170.74 6694.82 10880.66 9084.72 17293.28 88
mvs-test180.88 12879.40 14685.29 8385.13 24969.75 9889.28 9888.10 21574.99 10776.44 19886.72 22757.27 20994.26 12873.53 15083.18 19691.87 137
MAR-MVS81.84 10980.70 12085.27 8491.32 9171.53 6089.82 8790.92 13469.77 20678.50 14986.21 24762.36 15394.52 11865.36 22692.05 8689.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 8283.08 8485.24 8588.38 18067.45 14888.89 11289.15 18675.50 9582.27 10188.28 18869.61 7794.45 12077.81 11387.84 13493.84 61
MVSFormer82.85 9582.05 10185.24 8587.35 21170.21 8790.50 6890.38 14668.55 23681.32 11389.47 15461.68 16293.46 16878.98 10190.26 10892.05 132
OPM-MVS83.50 8382.95 8785.14 8788.79 16570.95 7389.13 10691.52 11777.55 4680.96 12091.75 9360.71 18294.50 11979.67 9786.51 15589.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS83.64 8183.14 8385.14 8790.08 11568.71 12191.25 5292.44 7579.12 2578.92 14191.00 11860.42 18895.38 7978.71 10386.32 15791.33 153
EI-MVSNet-UG-set83.81 7783.38 8185.09 8987.87 19367.53 14787.44 16589.66 16979.74 1882.23 10289.41 16070.24 7194.74 11179.95 9583.92 18292.99 102
QAPM80.88 12879.50 14485.03 9088.01 19168.97 11391.59 4492.00 9766.63 25575.15 23192.16 8557.70 20395.45 7263.52 23688.76 12590.66 176
casdiffmvs85.11 7085.14 6785.01 9187.20 21865.77 18387.75 15792.83 6177.84 3984.36 7592.38 8272.15 5393.93 14481.27 8290.48 10595.33 2
PCF-MVS73.52 780.38 14778.84 16385.01 9187.71 20168.99 11283.65 26091.46 12263.00 29477.77 16890.28 13066.10 10895.09 9461.40 25788.22 13390.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7683.53 7984.96 9386.77 22769.28 10890.46 7292.67 6774.79 11282.95 9391.33 10672.70 4893.09 18580.79 8879.28 24392.50 115
VDD-MVS83.01 9482.36 9584.96 9391.02 9566.40 16788.91 11188.11 21477.57 4384.39 7493.29 6252.19 24693.91 14577.05 12188.70 12694.57 29
PVSNet_Blended_VisFu82.62 9881.83 10684.96 9390.80 10169.76 9788.74 12191.70 11369.39 21378.96 13988.46 18365.47 11694.87 10774.42 14288.57 12790.24 191
CPTT-MVS83.73 7883.33 8284.92 9693.28 5570.86 7792.09 3790.38 14668.75 23379.57 13392.83 7460.60 18693.04 18980.92 8591.56 9390.86 170
DROMVSNet86.01 5386.38 4584.91 9789.31 14466.27 17092.32 3093.63 2479.37 2284.17 7891.88 9169.04 8595.43 7483.93 5393.77 6893.01 100
test_part182.78 9682.08 10084.89 9890.66 10366.97 16090.96 5992.93 5777.19 5580.53 12490.04 13863.44 13295.39 7876.04 13176.90 26292.31 122
OMC-MVS82.69 9781.97 10484.85 9988.75 16767.42 14987.98 14890.87 13674.92 10979.72 13291.65 9562.19 15793.96 13875.26 13986.42 15693.16 94
EIA-MVS83.31 8882.80 9084.82 10089.59 12765.59 18588.21 14192.68 6674.66 11678.96 13986.42 24369.06 8395.26 8475.54 13790.09 11193.62 76
PAPM_NR83.02 9382.41 9384.82 10092.47 7766.37 16887.93 15291.80 10873.82 13677.32 17790.66 12367.90 9194.90 10470.37 17889.48 11893.19 93
baseline84.93 7284.98 6984.80 10287.30 21665.39 19287.30 16992.88 5877.62 4184.04 8192.26 8471.81 5593.96 13881.31 8190.30 10795.03 6
lupinMVS81.39 12180.27 13084.76 10387.35 21170.21 8785.55 21986.41 24662.85 29781.32 11388.61 17861.68 16292.24 21478.41 10790.26 10891.83 138
jason81.39 12180.29 12984.70 10486.63 22969.90 9485.95 20786.77 24263.24 29081.07 11989.47 15461.08 17892.15 21678.33 10890.07 11392.05 132
jason: jason.
ET-MVSNet_ETH3D78.63 18976.63 21784.64 10586.73 22869.47 10485.01 22984.61 26969.54 21166.51 32086.59 23650.16 27291.75 22976.26 12884.24 18092.69 110
EPP-MVSNet83.40 8683.02 8684.57 10690.13 11364.47 21092.32 3090.73 13874.45 12379.35 13691.10 11269.05 8495.12 8972.78 16187.22 14494.13 44
mvsmamba81.69 11380.74 11984.56 10787.45 21066.72 16391.26 5085.89 25574.66 11678.23 15790.56 12554.33 22894.91 10080.73 8983.54 19092.04 134
UGNet80.83 13279.59 14284.54 10888.04 18968.09 13589.42 9688.16 21376.95 6276.22 20389.46 15649.30 28593.94 14168.48 19990.31 10691.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 10481.27 11084.50 10989.23 14868.76 11790.22 7891.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
LGP-MVS_train84.50 10989.23 14868.76 11791.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
iter_conf_final80.63 14079.35 14984.46 11189.36 13867.70 14389.85 8584.49 27173.19 15178.30 15588.94 16845.98 30794.56 11479.59 9884.48 17691.11 160
MSLP-MVS++85.43 6485.76 5884.45 11291.93 8370.24 8690.71 6392.86 5977.46 4984.22 7692.81 7667.16 9992.94 19180.36 9194.35 6290.16 193
Effi-MVS+-dtu80.03 15678.57 16884.42 11385.13 24968.74 11988.77 11888.10 21574.99 10774.97 23683.49 29157.27 20993.36 17173.53 15080.88 22291.18 158
HQP-MVS82.61 9982.02 10284.37 11489.33 13966.98 15889.17 10192.19 8976.41 7577.23 18090.23 13260.17 19195.11 9077.47 11685.99 16391.03 164
ACMP74.13 681.51 12080.57 12284.36 11589.42 13468.69 12489.97 8491.50 12174.46 12275.04 23590.41 12953.82 23494.54 11677.56 11582.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 11693.01 6468.79 11592.44 7563.96 28881.09 11891.57 9966.06 11095.45 7267.19 21294.82 5288.81 247
bld_raw_conf00581.08 12679.99 13284.35 11687.16 22066.17 17291.08 5684.98 26575.09 10477.71 16990.54 12750.04 27394.91 10079.96 9483.32 19391.98 135
PS-MVSNAJss82.07 10581.31 10984.34 11886.51 23167.27 15389.27 9991.51 11871.75 16879.37 13590.22 13463.15 14094.27 12477.69 11482.36 20791.49 149
thisisatest053079.40 17177.76 19084.31 11987.69 20365.10 19887.36 16684.26 27770.04 20077.42 17488.26 19049.94 27694.79 11070.20 17984.70 17393.03 98
CLD-MVS82.31 10181.65 10784.29 12088.47 17667.73 14285.81 21492.35 8075.78 8978.33 15486.58 23864.01 12894.35 12176.05 13087.48 14190.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS81.99 10781.23 11184.26 12190.94 9770.18 9291.10 5589.32 17671.51 17678.66 14688.28 18865.26 11795.10 9364.74 23291.23 9887.51 272
114514_t80.68 13979.51 14384.20 12294.09 4167.27 15389.64 9491.11 13158.75 33174.08 24590.72 12258.10 19995.04 9569.70 18689.42 11990.30 189
IS-MVSNet83.15 8982.81 8984.18 12389.94 12263.30 23591.59 4488.46 21179.04 2779.49 13492.16 8565.10 11994.28 12367.71 20491.86 9094.95 7
MVS_111021_LR82.61 9982.11 9884.11 12488.82 16271.58 5985.15 22686.16 25174.69 11580.47 12591.04 11562.29 15490.55 25980.33 9290.08 11290.20 192
Anonymous2024052980.19 15378.89 16284.10 12590.60 10464.75 20388.95 11090.90 13565.97 26380.59 12391.17 11149.97 27593.73 15669.16 19282.70 20493.81 63
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12685.17 24669.91 9390.57 6690.97 13366.70 25172.17 26491.91 8954.70 22593.96 13861.81 25490.95 10088.41 257
hse-mvs281.72 11180.94 11784.07 12788.72 16867.68 14485.87 21087.26 23576.02 8684.67 6588.22 19161.54 16593.48 16682.71 6973.44 31191.06 162
dcpmvs_285.63 6186.15 5384.06 12891.71 8664.94 20086.47 19491.87 10573.63 14086.60 3993.02 7076.57 1691.87 22783.36 5692.15 8495.35 1
AdaColmapbinary80.58 14479.42 14584.06 12893.09 6168.91 11489.36 9788.97 19569.27 21675.70 21489.69 14657.20 21195.77 6063.06 24188.41 13187.50 273
AUN-MVS79.21 17677.60 19584.05 13088.71 16967.61 14585.84 21287.26 23569.08 22477.23 18088.14 19653.20 23993.47 16775.50 13873.45 31091.06 162
112180.84 13079.77 13784.05 13093.11 6070.78 7984.66 23685.42 25957.37 34081.76 11192.02 8763.41 13394.12 13467.28 20992.93 7387.26 279
VDDNet81.52 11880.67 12184.05 13090.44 10864.13 21789.73 9285.91 25471.11 18183.18 9193.48 5750.54 26993.49 16573.40 15488.25 13294.54 30
xiu_mvs_v1_base_debu80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base_debi80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
PAPR81.66 11680.89 11883.99 13690.27 11064.00 21886.76 18791.77 11268.84 23277.13 18589.50 15267.63 9394.88 10667.55 20688.52 12993.09 95
XVG-OURS80.41 14679.23 15383.97 13785.64 24069.02 11083.03 27390.39 14571.09 18277.63 17191.49 10254.62 22791.35 24075.71 13383.47 19191.54 145
XVG-OURS-SEG-HR80.81 13379.76 13883.96 13885.60 24168.78 11683.54 26590.50 14370.66 19176.71 19191.66 9460.69 18391.26 24276.94 12281.58 21691.83 138
HyFIR lowres test77.53 21675.40 23283.94 13989.59 12766.62 16480.36 29588.64 20856.29 34676.45 19585.17 26857.64 20493.28 17361.34 25983.10 19891.91 136
iter_conf0580.00 15878.70 16483.91 14087.84 19565.83 17988.84 11684.92 26671.61 17378.70 14388.94 16843.88 31994.56 11479.28 9984.28 17991.33 153
tttt051779.40 17177.91 18383.90 14188.10 18763.84 22188.37 13584.05 27971.45 17776.78 18989.12 16449.93 27894.89 10570.18 18083.18 19692.96 103
GeoE81.71 11281.01 11683.80 14289.51 13164.45 21188.97 10988.73 20671.27 17978.63 14789.76 14566.32 10693.20 17769.89 18486.02 16293.74 66
RRT_MVS80.35 14979.22 15483.74 14387.63 20465.46 18991.08 5688.92 19873.82 13676.44 19890.03 13949.05 28994.25 12976.84 12379.20 24591.51 146
PS-MVSNAJ81.69 11381.02 11583.70 14489.51 13168.21 13484.28 25090.09 15770.79 18781.26 11785.62 25963.15 14094.29 12275.62 13588.87 12388.59 253
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 15168.03 13784.46 24490.02 15870.67 19081.30 11686.53 24163.17 13994.19 13175.60 13688.54 12888.57 254
ACMM73.20 880.78 13879.84 13683.58 14689.31 14468.37 12989.99 8391.60 11570.28 19777.25 17889.66 14753.37 23793.53 16474.24 14582.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 11081.23 11183.57 14791.89 8463.43 23389.84 8681.85 30777.04 6183.21 9093.10 6552.26 24593.43 17071.98 16589.95 11493.85 59
Fast-Effi-MVS+80.81 13379.92 13483.47 14888.85 15964.51 20785.53 22189.39 17470.79 18778.49 15085.06 27167.54 9493.58 15967.03 21586.58 15392.32 121
CHOSEN 1792x268877.63 21575.69 22683.44 14989.98 12168.58 12778.70 31387.50 23056.38 34575.80 21386.84 22358.67 19691.40 23961.58 25685.75 16690.34 188
新几何183.42 15093.13 5870.71 8085.48 25857.43 33981.80 10891.98 8863.28 13592.27 21264.60 23392.99 7287.27 278
DP-MVS76.78 22974.57 24183.42 15093.29 5469.46 10688.55 12783.70 28363.98 28770.20 28088.89 17154.01 23394.80 10946.66 34381.88 21386.01 305
MVS_Test83.15 8983.06 8583.41 15286.86 22363.21 23786.11 20492.00 9774.31 12482.87 9589.44 15970.03 7293.21 17577.39 11888.50 13093.81 63
LS3D76.95 22774.82 23983.37 15390.45 10767.36 15289.15 10586.94 24061.87 30769.52 29290.61 12451.71 25794.53 11746.38 34686.71 15288.21 259
IB-MVS68.01 1575.85 24373.36 25583.31 15484.76 25466.03 17383.38 26685.06 26270.21 19969.40 29381.05 31445.76 31194.66 11365.10 22975.49 28489.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8583.45 8083.28 15592.74 7162.28 25188.17 14389.50 17275.22 10181.49 11292.74 8066.75 10095.11 9072.85 16091.58 9292.45 118
jajsoiax79.29 17477.96 18183.27 15684.68 25666.57 16689.25 10090.16 15569.20 22075.46 21989.49 15345.75 31293.13 18376.84 12380.80 22490.11 197
test_djsdf80.30 15079.32 15083.27 15683.98 26765.37 19390.50 6890.38 14668.55 23676.19 20488.70 17456.44 21593.46 16878.98 10180.14 23490.97 167
test_yl81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
DCV-MVSNet81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
mvs_tets79.13 17877.77 18983.22 16084.70 25566.37 16889.17 10190.19 15469.38 21475.40 22289.46 15644.17 31793.15 18176.78 12580.70 22690.14 194
thisisatest051577.33 22075.38 23383.18 16185.27 24563.80 22282.11 27983.27 29265.06 27175.91 20983.84 28549.54 28094.27 12467.24 21186.19 15991.48 150
test_low_dy_conf_00180.11 15479.08 15883.17 16286.54 23064.59 20590.19 8089.19 18469.61 21075.86 21190.23 13249.52 28193.59 15878.26 11282.32 20891.34 152
CDS-MVSNet79.07 18077.70 19283.17 16287.60 20568.23 13384.40 24886.20 25067.49 24576.36 20086.54 24061.54 16590.79 25561.86 25387.33 14290.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 18377.58 19683.14 16483.45 27665.51 18688.32 13691.21 12773.69 13972.41 26186.32 24657.93 20093.81 14969.18 19175.65 28190.11 197
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13765.93 17684.95 23187.15 23773.56 14378.19 15989.79 14456.67 21493.36 17159.53 27186.74 15190.13 195
UniMVSNet (Re)81.60 11781.11 11383.09 16688.38 18064.41 21287.60 16093.02 4678.42 3478.56 14888.16 19269.78 7593.26 17469.58 18876.49 26991.60 143
PLCcopyleft70.83 1178.05 20476.37 22283.08 16791.88 8567.80 14088.19 14289.46 17364.33 28169.87 28988.38 18553.66 23593.58 15958.86 27882.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 16478.43 17283.07 16883.55 27464.52 20686.93 17990.58 14170.83 18577.78 16785.90 25159.15 19493.94 14173.96 14777.19 25990.76 172
v2v48280.23 15179.29 15183.05 16983.62 27264.14 21687.04 17589.97 15973.61 14178.18 16087.22 21561.10 17793.82 14876.11 12976.78 26791.18 158
TAMVS78.89 18577.51 19783.03 17087.80 19767.79 14184.72 23585.05 26367.63 24276.75 19087.70 20162.25 15590.82 25458.53 28287.13 14590.49 183
v114480.03 15679.03 15983.01 17183.78 27064.51 20787.11 17490.57 14271.96 16678.08 16386.20 24861.41 16993.94 14174.93 14077.23 25790.60 179
cascas76.72 23074.64 24082.99 17285.78 23865.88 17882.33 27789.21 18260.85 31372.74 25681.02 31547.28 29893.75 15467.48 20785.02 16889.34 226
anonymousdsp78.60 19077.15 20282.98 17380.51 32867.08 15687.24 17189.53 17165.66 26675.16 23087.19 21752.52 24092.25 21377.17 12079.34 24289.61 221
v1079.74 16178.67 16582.97 17484.06 26564.95 19987.88 15590.62 14073.11 15275.11 23286.56 23961.46 16894.05 13773.68 14875.55 28389.90 211
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17588.46 17763.46 23187.13 17292.37 7980.19 1478.38 15289.14 16371.66 5893.05 18770.05 18176.46 27092.25 125
DU-MVS81.12 12580.52 12482.90 17687.80 19763.46 23187.02 17691.87 10579.01 2878.38 15289.07 16565.02 12093.05 18770.05 18176.46 27092.20 127
PVSNet_Blended80.98 12780.34 12782.90 17688.85 15965.40 19084.43 24692.00 9767.62 24378.11 16185.05 27266.02 11194.27 12471.52 16789.50 11789.01 237
CANet_DTU80.61 14179.87 13582.83 17885.60 24163.17 24087.36 16688.65 20776.37 7975.88 21088.44 18453.51 23693.07 18673.30 15589.74 11692.25 125
V4279.38 17378.24 17782.83 17881.10 32265.50 18785.55 21989.82 16371.57 17578.21 15886.12 24960.66 18493.18 18075.64 13475.46 28789.81 216
Anonymous2023121178.97 18377.69 19382.81 18090.54 10664.29 21490.11 8191.51 11865.01 27376.16 20888.13 19750.56 26893.03 19069.68 18777.56 25691.11 160
v192192079.22 17578.03 18082.80 18183.30 27963.94 22086.80 18390.33 15069.91 20377.48 17385.53 26058.44 19893.75 15473.60 14976.85 26590.71 175
v879.97 15979.02 16082.80 18184.09 26464.50 20987.96 14990.29 15374.13 13175.24 22986.81 22462.88 14593.89 14774.39 14375.40 28990.00 205
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 12762.99 24488.16 14491.51 11865.77 26477.14 18491.09 11360.91 18093.21 17550.26 32687.05 14692.17 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 16778.37 17382.78 18483.35 27763.96 21986.96 17790.36 14969.99 20177.50 17285.67 25760.66 18493.77 15274.27 14476.58 26890.62 177
NR-MVSNet80.23 15179.38 14782.78 18487.80 19763.34 23486.31 19891.09 13279.01 2872.17 26489.07 16567.20 9892.81 19666.08 22175.65 28192.20 127
diffmvs82.10 10381.88 10582.76 18683.00 28963.78 22383.68 25989.76 16572.94 15682.02 10489.85 14365.96 11390.79 25582.38 7587.30 14393.71 67
v124078.99 18277.78 18882.64 18783.21 28163.54 22886.62 19090.30 15269.74 20977.33 17685.68 25657.04 21293.76 15373.13 15876.92 26190.62 177
Fast-Effi-MVS+-dtu78.02 20576.49 21882.62 18883.16 28566.96 16186.94 17887.45 23272.45 15871.49 27184.17 28054.79 22491.58 23367.61 20580.31 23189.30 228
RPMNet73.51 26370.49 27982.58 18981.32 32065.19 19575.92 32992.27 8357.60 33872.73 25776.45 34852.30 24495.43 7448.14 33877.71 25387.11 285
F-COLMAP76.38 23774.33 24682.50 19089.28 14666.95 16288.41 13189.03 19064.05 28566.83 31488.61 17846.78 30192.89 19257.48 29078.55 24687.67 267
TranMVSNet+NR-MVSNet80.84 13080.31 12882.42 19187.85 19462.33 24987.74 15891.33 12480.55 1177.99 16489.86 14265.23 11892.62 19767.05 21475.24 29492.30 123
MVSTER79.01 18177.88 18582.38 19283.07 28664.80 20284.08 25688.95 19669.01 22878.69 14487.17 21854.70 22592.43 20474.69 14180.57 22889.89 212
PVSNet_BlendedMVS80.60 14280.02 13182.36 19388.85 15965.40 19086.16 20392.00 9769.34 21578.11 16186.09 25066.02 11194.27 12471.52 16782.06 21087.39 274
EI-MVSNet80.52 14579.98 13382.12 19484.28 26063.19 23986.41 19588.95 19674.18 12978.69 14487.54 20766.62 10192.43 20472.57 16380.57 22890.74 174
IterMVS-LS80.06 15579.38 14782.11 19585.89 23663.20 23886.79 18489.34 17574.19 12875.45 22086.72 22766.62 10192.39 20672.58 16276.86 26490.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16778.60 16782.05 19689.19 15065.91 17786.07 20588.52 21072.18 16375.42 22187.69 20261.15 17693.54 16360.38 26486.83 15086.70 293
ACMH+68.96 1476.01 24174.01 24882.03 19788.60 17265.31 19488.86 11387.55 22870.25 19867.75 30387.47 20941.27 33493.19 17958.37 28375.94 27887.60 269
Anonymous20240521178.25 19677.01 20481.99 19891.03 9460.67 27084.77 23483.90 28170.65 19280.00 13091.20 10941.08 33691.43 23865.21 22785.26 16793.85 59
GA-MVS76.87 22875.17 23781.97 19982.75 29462.58 24681.44 28786.35 24972.16 16574.74 23982.89 29646.20 30692.02 22068.85 19681.09 22091.30 156
CNLPA78.08 20276.79 21181.97 19990.40 10971.07 6987.59 16184.55 27066.03 26272.38 26289.64 14857.56 20586.04 31059.61 27083.35 19288.79 248
MVS78.19 20076.99 20681.78 20185.66 23966.99 15784.66 23690.47 14455.08 35072.02 26685.27 26563.83 13094.11 13666.10 22089.80 11584.24 324
ACMH67.68 1675.89 24273.93 24981.77 20288.71 16966.61 16588.62 12489.01 19269.81 20466.78 31586.70 23241.95 33391.51 23755.64 30278.14 25287.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22460.24 27687.28 17088.79 20074.25 12776.84 18690.53 12849.48 28291.56 23467.98 20282.15 20993.29 87
VNet82.21 10282.41 9381.62 20490.82 10060.93 26584.47 24289.78 16476.36 8084.07 8091.88 9164.71 12490.26 26170.68 17588.89 12293.66 68
XVG-ACMP-BASELINE76.11 24074.27 24781.62 20483.20 28264.67 20483.60 26389.75 16669.75 20771.85 26787.09 22032.78 35992.11 21769.99 18380.43 23088.09 260
eth_miper_zixun_eth77.92 20876.69 21581.61 20683.00 28961.98 25483.15 26989.20 18369.52 21274.86 23884.35 27861.76 16192.56 20071.50 16972.89 31590.28 190
PAPM77.68 21476.40 22181.51 20787.29 21761.85 25683.78 25889.59 17064.74 27571.23 27288.70 17462.59 14893.66 15752.66 31387.03 14789.01 237
v14878.72 18777.80 18781.47 20882.73 29561.96 25586.30 19988.08 21773.26 15076.18 20585.47 26262.46 15192.36 20871.92 16673.82 30790.09 199
LTVRE_ROB69.57 1376.25 23874.54 24381.41 20988.60 17264.38 21379.24 30689.12 18970.76 18969.79 29187.86 19949.09 28793.20 17756.21 30180.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
test178.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
FMVSNet177.44 21776.12 22481.40 21086.81 22663.01 24188.39 13289.28 17770.49 19474.39 24287.28 21149.06 28891.11 24560.91 26178.52 24790.09 199
baseline275.70 24473.83 25281.30 21383.26 28061.79 25882.57 27680.65 31666.81 24866.88 31283.42 29257.86 20292.19 21563.47 23779.57 23789.91 210
c3_l78.75 18677.91 18381.26 21482.89 29261.56 26084.09 25589.13 18869.97 20275.56 21584.29 27966.36 10592.09 21873.47 15375.48 28590.12 196
cl2278.07 20377.01 20481.23 21582.37 30461.83 25783.55 26487.98 21968.96 22975.06 23483.87 28361.40 17091.88 22673.53 15076.39 27289.98 208
bld_raw_dy_0_6477.29 22275.98 22581.22 21685.04 25265.47 18888.14 14677.56 33769.20 22073.77 24789.40 16242.24 33088.85 28776.78 12581.64 21589.33 227
FMVSNet278.20 19977.21 20181.20 21787.60 20562.89 24587.47 16489.02 19171.63 17075.29 22887.28 21154.80 22191.10 24862.38 24679.38 24189.61 221
TR-MVS77.44 21776.18 22381.20 21788.24 18363.24 23684.61 24086.40 24767.55 24477.81 16686.48 24254.10 23193.15 18157.75 28982.72 20387.20 280
ab-mvs79.51 16578.97 16181.14 21988.46 17760.91 26683.84 25789.24 18170.36 19579.03 13888.87 17263.23 13890.21 26365.12 22882.57 20592.28 124
MVP-Stereo76.12 23974.46 24581.13 22085.37 24469.79 9684.42 24787.95 22065.03 27267.46 30685.33 26453.28 23891.73 23158.01 28783.27 19481.85 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 19177.76 19081.08 22182.66 29761.56 26083.65 26089.15 18668.87 23175.55 21683.79 28766.49 10392.03 21973.25 15676.39 27289.64 220
FIs82.07 10582.42 9281.04 22288.80 16458.34 28888.26 14093.49 2976.93 6378.47 15191.04 11569.92 7492.34 21069.87 18584.97 16992.44 119
patch_mono-283.65 8084.54 7580.99 22390.06 11965.83 17984.21 25188.74 20571.60 17485.01 5492.44 8174.51 3083.50 32882.15 7692.15 8493.64 75
FMVSNet377.88 20976.85 20980.97 22486.84 22562.36 24886.52 19388.77 20171.13 18075.34 22486.66 23454.07 23291.10 24862.72 24279.57 23789.45 224
miper_enhance_ethall77.87 21076.86 20880.92 22581.65 31161.38 26282.68 27488.98 19365.52 26875.47 21782.30 30465.76 11592.00 22172.95 15976.39 27289.39 225
BH-w/o78.21 19877.33 20080.84 22688.81 16365.13 19784.87 23287.85 22469.75 20774.52 24184.74 27561.34 17193.11 18458.24 28585.84 16584.27 323
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28180.81 22787.13 22165.63 18488.30 13784.19 27862.96 29563.80 33887.69 20238.04 34792.56 20046.66 34374.91 29684.24 324
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 14280.55 12380.76 22888.07 18860.80 26886.86 18191.58 11675.67 9380.24 12789.45 15863.34 13490.25 26270.51 17779.22 24491.23 157
EG-PatchMatch MVS74.04 25971.82 26780.71 22984.92 25367.42 14985.86 21188.08 21766.04 26164.22 33483.85 28435.10 35592.56 20057.44 29180.83 22382.16 342
ECVR-MVScopyleft79.61 16279.26 15280.67 23090.08 11554.69 33087.89 15477.44 34074.88 11080.27 12692.79 7748.96 29192.45 20368.55 19892.50 8194.86 14
cl____77.72 21276.76 21280.58 23182.49 30160.48 27383.09 27087.87 22269.22 21874.38 24385.22 26762.10 15891.53 23571.09 17175.41 28889.73 219
DIV-MVS_self_test77.72 21276.76 21280.58 23182.48 30260.48 27383.09 27087.86 22369.22 21874.38 24385.24 26662.10 15891.53 23571.09 17175.40 28989.74 218
MSDG73.36 26670.99 27580.49 23384.51 25865.80 18180.71 29186.13 25265.70 26565.46 32583.74 28844.60 31590.91 25351.13 31976.89 26384.74 319
pmmvs474.03 26071.91 26680.39 23481.96 30868.32 13081.45 28682.14 30359.32 32569.87 28985.13 26952.40 24388.13 29560.21 26674.74 29884.73 320
HY-MVS69.67 1277.95 20777.15 20280.36 23587.57 20960.21 27783.37 26787.78 22566.11 25975.37 22387.06 22263.27 13690.48 26061.38 25882.43 20690.40 187
mvs_anonymous79.42 17079.11 15780.34 23684.45 25957.97 29482.59 27587.62 22767.40 24676.17 20788.56 18168.47 8789.59 27170.65 17686.05 16193.47 82
1112_ss77.40 21976.43 22080.32 23789.11 15660.41 27583.65 26087.72 22662.13 30573.05 25486.72 22762.58 14989.97 26562.11 25180.80 22490.59 180
WR-MVS79.49 16679.22 15480.27 23888.79 16558.35 28785.06 22888.61 20978.56 3277.65 17088.34 18663.81 13190.66 25864.98 23077.22 25891.80 141
131476.53 23175.30 23680.21 23983.93 26862.32 25084.66 23688.81 19960.23 31770.16 28384.07 28255.30 21990.73 25767.37 20883.21 19587.59 271
test111179.43 16979.18 15680.15 24089.99 12053.31 34387.33 16877.05 34375.04 10680.23 12892.77 7948.97 29092.33 21168.87 19592.40 8394.81 17
IterMVS-SCA-FT75.43 24873.87 25180.11 24182.69 29664.85 20181.57 28583.47 28969.16 22270.49 27784.15 28151.95 25288.15 29469.23 19072.14 32087.34 276
FC-MVSNet-test81.52 11882.02 10280.03 24288.42 17955.97 32487.95 15093.42 3377.10 5977.38 17590.98 12069.96 7391.79 22868.46 20084.50 17492.33 120
testdata79.97 24390.90 9864.21 21584.71 26759.27 32685.40 4992.91 7162.02 16089.08 28068.95 19491.37 9586.63 295
SCA74.22 25772.33 26479.91 24484.05 26662.17 25279.96 30079.29 33066.30 25872.38 26280.13 32451.95 25288.60 28959.25 27377.67 25588.96 241
thres40076.50 23275.37 23479.86 24589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18590.00 205
test_040272.79 27370.44 28079.84 24688.13 18565.99 17585.93 20884.29 27565.57 26767.40 30885.49 26146.92 30092.61 19835.88 36474.38 30180.94 348
OurMVSNet-221017-074.26 25672.42 26379.80 24783.76 27159.59 28185.92 20986.64 24366.39 25766.96 31187.58 20439.46 34091.60 23265.76 22469.27 33288.22 258
test250677.30 22176.49 21879.74 24890.08 11552.02 34687.86 15663.10 37374.88 11080.16 12992.79 7738.29 34692.35 20968.74 19792.50 8194.86 14
SixPastTwentyTwo73.37 26471.26 27479.70 24985.08 25157.89 29685.57 21583.56 28671.03 18365.66 32485.88 25242.10 33192.57 19959.11 27563.34 34988.65 252
thres600view776.50 23275.44 23079.68 25089.40 13557.16 30585.53 22183.23 29373.79 13876.26 20287.09 22051.89 25491.89 22548.05 33983.72 18890.00 205
CR-MVSNet73.37 26471.27 27379.67 25181.32 32065.19 19575.92 32980.30 32259.92 32072.73 25781.19 31252.50 24186.69 30559.84 26877.71 25387.11 285
D2MVS74.82 25273.21 25679.64 25279.81 33562.56 24780.34 29687.35 23364.37 28068.86 29682.66 30046.37 30390.10 26467.91 20381.24 21986.25 298
AllTest70.96 28468.09 29679.58 25385.15 24763.62 22484.58 24179.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
TestCases79.58 25385.15 24763.62 22479.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
tfpn200view976.42 23575.37 23479.55 25589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18589.07 230
thres100view90076.50 23275.55 22979.33 25689.52 13056.99 30885.83 21383.23 29373.94 13376.32 20187.12 21951.89 25491.95 22248.33 33483.75 18589.07 230
CostFormer75.24 25173.90 25079.27 25782.65 29858.27 28980.80 28882.73 30061.57 30875.33 22783.13 29455.52 21791.07 25164.98 23078.34 25188.45 255
Test_1112_low_res76.40 23675.44 23079.27 25789.28 14658.09 29081.69 28387.07 23859.53 32472.48 26086.67 23361.30 17289.33 27560.81 26380.15 23390.41 186
K. test v371.19 28268.51 29079.21 25983.04 28857.78 29984.35 24976.91 34472.90 15762.99 34182.86 29739.27 34191.09 25061.65 25552.66 36388.75 249
lessismore_v078.97 26081.01 32357.15 30665.99 36861.16 34682.82 29839.12 34291.34 24159.67 26946.92 36888.43 256
pm-mvs177.25 22376.68 21678.93 26184.22 26258.62 28686.41 19588.36 21271.37 17873.31 25088.01 19861.22 17589.15 27964.24 23473.01 31489.03 236
thres20075.55 24674.47 24478.82 26287.78 20057.85 29783.07 27283.51 28772.44 16075.84 21284.42 27752.08 24991.75 22947.41 34183.64 18986.86 289
VPNet78.69 18878.66 16678.76 26388.31 18255.72 32684.45 24586.63 24476.79 6778.26 15690.55 12659.30 19389.70 27066.63 21677.05 26090.88 169
tpm273.26 26771.46 26978.63 26483.34 27856.71 31380.65 29280.40 32156.63 34473.55 24882.02 30951.80 25691.24 24356.35 30078.42 25087.95 261
pmmvs674.69 25373.39 25478.61 26581.38 31757.48 30386.64 18987.95 22064.99 27470.18 28186.61 23550.43 27089.52 27262.12 25070.18 33088.83 246
WR-MVS_H78.51 19278.49 16978.56 26688.02 19056.38 31988.43 12892.67 6777.14 5773.89 24687.55 20666.25 10789.24 27758.92 27773.55 30990.06 203
RPSCF73.23 26871.46 26978.54 26782.50 30059.85 27882.18 27882.84 29958.96 32871.15 27489.41 16045.48 31484.77 32058.82 27971.83 32291.02 166
pmmvs-eth3d70.50 28967.83 30078.52 26877.37 35066.18 17181.82 28081.51 30958.90 32963.90 33780.42 32242.69 32586.28 30958.56 28165.30 34583.11 335
PatchmatchNetpermissive73.12 26971.33 27278.49 26983.18 28360.85 26779.63 30278.57 33264.13 28271.73 26879.81 32951.20 26185.97 31157.40 29276.36 27588.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 25572.94 25978.35 27081.53 31463.49 23081.58 28482.49 30168.06 24169.99 28683.69 28951.66 25885.54 31365.85 22371.64 32386.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 27181.77 31060.57 27183.30 29169.25 21767.54 30587.20 21636.33 35287.28 30354.34 30674.62 29986.80 290
ppachtmachnet_test70.04 29367.34 30678.14 27279.80 33661.13 26379.19 30880.59 31759.16 32765.27 32779.29 33046.75 30287.29 30249.33 33066.72 33986.00 307
tfpnnormal74.39 25473.16 25778.08 27386.10 23558.05 29184.65 23987.53 22970.32 19671.22 27385.63 25854.97 22089.86 26643.03 35575.02 29586.32 297
Vis-MVSNet (Re-imp)78.36 19578.45 17078.07 27488.64 17151.78 34986.70 18879.63 32874.14 13075.11 23290.83 12161.29 17389.75 26858.10 28691.60 9192.69 110
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 24357.10 30786.78 18586.09 25372.17 16471.53 27087.34 21063.01 14489.31 27656.84 29761.83 35187.17 281
PEN-MVS77.73 21177.69 19377.84 27687.07 22253.91 33787.91 15391.18 12877.56 4573.14 25388.82 17361.23 17489.17 27859.95 26772.37 31790.43 185
CP-MVSNet78.22 19778.34 17477.84 27687.83 19654.54 33287.94 15191.17 12977.65 4073.48 24988.49 18262.24 15688.43 29162.19 24874.07 30290.55 181
PS-CasMVS78.01 20678.09 17977.77 27887.71 20154.39 33488.02 14791.22 12677.50 4873.26 25188.64 17760.73 18188.41 29261.88 25273.88 30690.53 182
baseline176.98 22676.75 21477.66 27988.13 18555.66 32785.12 22781.89 30573.04 15476.79 18888.90 17062.43 15287.78 29963.30 24071.18 32689.55 223
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29377.65 28080.26 32959.41 28385.01 22982.96 29858.76 33065.43 32682.33 30337.63 34991.23 24445.34 35176.03 27782.32 340
Patchmatch-RL test70.24 29167.78 30277.61 28177.43 34959.57 28271.16 34570.33 35862.94 29668.65 29872.77 35650.62 26785.49 31469.58 18866.58 34187.77 266
Baseline_NR-MVSNet78.15 20178.33 17577.61 28185.79 23756.21 32286.78 18585.76 25673.60 14277.93 16587.57 20565.02 12088.99 28167.14 21375.33 29187.63 268
DTE-MVSNet76.99 22576.80 21077.54 28386.24 23353.06 34587.52 16290.66 13977.08 6072.50 25988.67 17660.48 18789.52 27257.33 29370.74 32890.05 204
LCM-MVSNet-Re77.05 22476.94 20777.36 28487.20 21851.60 35080.06 29880.46 32075.20 10267.69 30486.72 22762.48 15088.98 28263.44 23889.25 12091.51 146
tpm cat170.57 28768.31 29277.35 28582.41 30357.95 29578.08 31880.22 32452.04 35668.54 30077.66 34352.00 25187.84 29851.77 31572.07 32186.25 298
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 17481.82 28084.66 26861.37 31168.61 29982.82 29847.29 29788.21 29359.27 27284.32 17877.68 357
MVS_030472.48 27470.89 27777.24 28782.20 30559.68 27984.11 25483.49 28867.10 24766.87 31380.59 32035.00 35687.40 30159.07 27679.58 23684.63 321
EPNet_dtu75.46 24774.86 23877.23 28882.57 29954.60 33186.89 18083.09 29671.64 16966.25 32285.86 25355.99 21688.04 29654.92 30486.55 15489.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 25873.11 25877.13 28980.11 33159.62 28072.23 34386.92 24166.76 25070.40 27882.92 29556.93 21382.92 33269.06 19372.63 31688.87 244
TDRefinement67.49 30764.34 31676.92 29073.47 36561.07 26484.86 23382.98 29759.77 32158.30 35485.13 26926.06 36587.89 29747.92 34060.59 35581.81 344
JIA-IIPM66.32 31662.82 32676.82 29177.09 35161.72 25965.34 36175.38 34758.04 33564.51 33262.32 36342.05 33286.51 30751.45 31869.22 33382.21 341
PatchMatch-RL72.38 27670.90 27676.80 29288.60 17267.38 15179.53 30376.17 34662.75 29969.36 29482.00 31045.51 31384.89 31953.62 30980.58 22778.12 356
tpmvs71.09 28369.29 28676.49 29382.04 30756.04 32378.92 31181.37 31164.05 28567.18 31078.28 33849.74 27989.77 26749.67 32972.37 31783.67 329
CMPMVSbinary51.72 2170.19 29268.16 29476.28 29473.15 36757.55 30279.47 30483.92 28048.02 36056.48 35984.81 27343.13 32286.42 30862.67 24581.81 21484.89 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 29068.37 29176.21 29580.60 32656.23 32179.19 30886.49 24560.89 31261.29 34585.47 26231.78 36289.47 27453.37 31076.21 27682.94 339
gg-mvs-nofinetune69.95 29467.96 29775.94 29683.07 28654.51 33377.23 32470.29 35963.11 29270.32 27962.33 36243.62 32088.69 28853.88 30887.76 13584.62 322
MDA-MVSNet-bldmvs66.68 31263.66 32075.75 29779.28 34360.56 27273.92 34078.35 33364.43 27850.13 36579.87 32844.02 31883.67 32646.10 34756.86 35883.03 337
PVSNet64.34 1872.08 27970.87 27875.69 29886.21 23456.44 31774.37 33980.73 31562.06 30670.17 28282.23 30642.86 32483.31 33054.77 30584.45 17787.32 277
pmmvs571.55 28070.20 28375.61 29977.83 34756.39 31881.74 28280.89 31257.76 33667.46 30684.49 27649.26 28685.32 31657.08 29575.29 29285.11 316
our_test_369.14 29867.00 30875.57 30079.80 33658.80 28477.96 31977.81 33559.55 32362.90 34278.25 33947.43 29683.97 32451.71 31667.58 33883.93 328
WTY-MVS75.65 24575.68 22775.57 30086.40 23256.82 31077.92 32182.40 30265.10 27076.18 20587.72 20063.13 14380.90 34060.31 26581.96 21189.00 239
Patchmtry70.74 28569.16 28775.49 30280.72 32454.07 33674.94 33880.30 32258.34 33270.01 28481.19 31252.50 24186.54 30653.37 31071.09 32785.87 308
GG-mvs-BLEND75.38 30381.59 31355.80 32579.32 30569.63 36167.19 30973.67 35543.24 32188.90 28650.41 32184.50 17481.45 345
ambc75.24 30473.16 36650.51 35763.05 36587.47 23164.28 33377.81 34217.80 37289.73 26957.88 28860.64 35485.49 309
CL-MVSNet_self_test72.37 27771.46 26975.09 30579.49 34153.53 33980.76 29085.01 26469.12 22370.51 27682.05 30857.92 20184.13 32352.27 31466.00 34387.60 269
XXY-MVS75.41 24975.56 22874.96 30683.59 27357.82 29880.59 29383.87 28266.54 25674.93 23788.31 18763.24 13780.09 34362.16 24976.85 26586.97 287
MIMVSNet70.69 28669.30 28574.88 30784.52 25756.35 32075.87 33179.42 32964.59 27667.76 30282.41 30241.10 33581.54 33746.64 34581.34 21786.75 292
ADS-MVSNet266.20 31963.33 32174.82 30879.92 33358.75 28567.55 35875.19 34853.37 35365.25 32875.86 34942.32 32780.53 34241.57 35868.91 33485.18 313
TinyColmap67.30 31064.81 31474.76 30981.92 30956.68 31480.29 29781.49 31060.33 31556.27 36083.22 29324.77 36687.66 30045.52 34969.47 33179.95 352
test-LLR72.94 27272.43 26274.48 31081.35 31858.04 29278.38 31477.46 33866.66 25269.95 28779.00 33348.06 29479.24 34466.13 21884.83 17086.15 301
test-mter71.41 28170.39 28274.48 31081.35 31858.04 29278.38 31477.46 33860.32 31669.95 28779.00 33336.08 35379.24 34466.13 21884.83 17086.15 301
tpm72.37 27771.71 26874.35 31282.19 30652.00 34779.22 30777.29 34164.56 27772.95 25583.68 29051.35 25983.26 33158.33 28475.80 27987.81 265
CVMVSNet72.99 27172.58 26174.25 31384.28 26050.85 35586.41 19583.45 29044.56 36173.23 25287.54 20749.38 28385.70 31265.90 22278.44 24986.19 300
FMVSNet569.50 29667.96 29774.15 31482.97 29155.35 32880.01 29982.12 30462.56 30163.02 33981.53 31136.92 35081.92 33548.42 33374.06 30385.17 315
MIMVSNet168.58 30366.78 31073.98 31580.07 33251.82 34880.77 28984.37 27264.40 27959.75 35182.16 30736.47 35183.63 32742.73 35670.33 32986.48 296
Anonymous2024052168.80 30167.22 30773.55 31674.33 36054.11 33583.18 26885.61 25758.15 33361.68 34480.94 31730.71 36381.27 33957.00 29673.34 31385.28 312
sss73.60 26273.64 25373.51 31782.80 29355.01 32976.12 32781.69 30862.47 30274.68 24085.85 25457.32 20878.11 35060.86 26280.93 22187.39 274
KD-MVS_2432*160066.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
miper_refine_blended66.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
PM-MVS66.41 31564.14 31773.20 32073.92 36256.45 31678.97 31064.96 37163.88 28964.72 33180.24 32319.84 37183.44 32966.24 21764.52 34779.71 353
tpmrst72.39 27572.13 26573.18 32180.54 32749.91 35879.91 30179.08 33163.11 29271.69 26979.95 32655.32 21882.77 33365.66 22573.89 30586.87 288
TESTMET0.1,169.89 29569.00 28872.55 32279.27 34456.85 30978.38 31474.71 35257.64 33768.09 30177.19 34537.75 34876.70 35563.92 23584.09 18184.10 327
KD-MVS_self_test68.81 30067.59 30572.46 32374.29 36145.45 36577.93 32087.00 23963.12 29163.99 33678.99 33542.32 32784.77 32056.55 29964.09 34887.16 283
CHOSEN 280x42066.51 31464.71 31571.90 32481.45 31563.52 22957.98 36668.95 36553.57 35262.59 34376.70 34646.22 30575.29 36255.25 30379.68 23576.88 359
EPMVS69.02 29968.16 29471.59 32579.61 33949.80 36077.40 32366.93 36762.82 29870.01 28479.05 33145.79 31077.86 35256.58 29875.26 29387.13 284
YYNet165.03 32062.91 32471.38 32675.85 35456.60 31569.12 35574.66 35357.28 34154.12 36177.87 34145.85 30974.48 36449.95 32761.52 35383.05 336
MDA-MVSNet_test_wron65.03 32062.92 32371.37 32775.93 35356.73 31169.09 35674.73 35157.28 34154.03 36277.89 34045.88 30874.39 36549.89 32861.55 35282.99 338
UnsupCasMVSNet_eth67.33 30965.99 31271.37 32773.48 36451.47 35275.16 33485.19 26165.20 26960.78 34780.93 31942.35 32677.20 35457.12 29453.69 36285.44 310
PMMVS69.34 29768.67 28971.35 32975.67 35562.03 25375.17 33373.46 35450.00 35968.68 29779.05 33152.07 25078.13 34961.16 26082.77 20173.90 360
EU-MVSNet68.53 30467.61 30471.31 33078.51 34647.01 36484.47 24284.27 27642.27 36266.44 32184.79 27440.44 33883.76 32558.76 28068.54 33783.17 333
Anonymous2023120668.60 30267.80 30171.02 33180.23 33050.75 35678.30 31780.47 31956.79 34366.11 32382.63 30146.35 30478.95 34643.62 35475.70 28083.36 332
dp66.80 31165.43 31370.90 33279.74 33848.82 36175.12 33674.77 35059.61 32264.08 33577.23 34442.89 32380.72 34148.86 33266.58 34183.16 334
PatchT68.46 30567.85 29970.29 33380.70 32543.93 36872.47 34274.88 34960.15 31870.55 27576.57 34749.94 27681.59 33650.58 32074.83 29785.34 311
UnsupCasMVSNet_bld63.70 32561.53 32970.21 33473.69 36351.39 35372.82 34181.89 30555.63 34857.81 35571.80 35838.67 34378.61 34749.26 33152.21 36480.63 349
Patchmatch-test64.82 32263.24 32269.57 33579.42 34249.82 35963.49 36469.05 36451.98 35759.95 35080.13 32450.91 26370.98 36840.66 36073.57 30887.90 263
LF4IMVS64.02 32462.19 32769.50 33670.90 36953.29 34476.13 32677.18 34252.65 35558.59 35280.98 31623.55 36876.52 35653.06 31266.66 34078.68 355
test20.0367.45 30866.95 30968.94 33775.48 35744.84 36777.50 32277.67 33666.66 25263.01 34083.80 28647.02 29978.40 34842.53 35768.86 33683.58 330
test0.0.03 168.00 30667.69 30368.90 33877.55 34847.43 36275.70 33272.95 35666.66 25266.56 31682.29 30548.06 29475.87 35944.97 35274.51 30083.41 331
PVSNet_057.27 2061.67 32759.27 33068.85 33979.61 33957.44 30468.01 35773.44 35555.93 34758.54 35370.41 35944.58 31677.55 35347.01 34235.91 36971.55 362
ADS-MVSNet64.36 32362.88 32568.78 34079.92 33347.17 36367.55 35871.18 35753.37 35365.25 32875.86 34942.32 32773.99 36641.57 35868.91 33485.18 313
pmmvs357.79 32954.26 33368.37 34164.02 37356.72 31275.12 33665.17 36940.20 36452.93 36369.86 36020.36 37075.48 36145.45 35055.25 36172.90 361
LCM-MVSNet54.25 33149.68 33767.97 34253.73 37645.28 36666.85 36080.78 31435.96 36839.45 36862.23 3648.70 38078.06 35148.24 33751.20 36580.57 350
EGC-MVSNET52.07 33447.05 33867.14 34383.51 27560.71 26980.50 29467.75 3660.07 3790.43 38075.85 35124.26 36781.54 33728.82 36762.25 35059.16 367
testgi66.67 31366.53 31167.08 34475.62 35641.69 37175.93 32876.50 34566.11 25965.20 33086.59 23635.72 35474.71 36343.71 35373.38 31284.84 318
ANet_high50.57 33646.10 33963.99 34548.67 37939.13 37270.99 34780.85 31361.39 31031.18 37057.70 36717.02 37373.65 36731.22 36615.89 37679.18 354
MVS-HIRNet59.14 32857.67 33163.57 34681.65 31143.50 36971.73 34465.06 37039.59 36651.43 36457.73 36638.34 34582.58 33439.53 36173.95 30464.62 365
new-patchmatchnet61.73 32661.73 32861.70 34772.74 36824.50 38169.16 35478.03 33461.40 30956.72 35875.53 35238.42 34476.48 35745.95 34857.67 35784.13 326
DSMNet-mixed57.77 33056.90 33260.38 34867.70 37135.61 37469.18 35353.97 37632.30 37157.49 35679.88 32740.39 33968.57 37038.78 36272.37 31776.97 358
FPMVS53.68 33251.64 33559.81 34965.08 37251.03 35469.48 35269.58 36241.46 36340.67 36772.32 35716.46 37470.00 36924.24 37165.42 34458.40 368
PMVScopyleft37.38 2244.16 33840.28 34155.82 35040.82 38142.54 37065.12 36263.99 37234.43 36924.48 37257.12 3683.92 38276.17 35817.10 37455.52 36048.75 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 33741.86 34055.16 35177.03 35251.52 35132.50 37280.52 31832.46 37027.12 37135.02 3729.52 37975.50 36022.31 37260.21 35638.45 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet50.91 33550.29 33652.78 35268.58 37034.94 37663.71 36356.63 37539.73 36544.95 36665.47 36121.93 36958.48 37234.98 36556.62 35964.92 364
N_pmnet52.79 33353.26 33451.40 35378.99 3457.68 38469.52 3513.89 38451.63 35857.01 35774.98 35340.83 33765.96 37137.78 36364.67 34680.56 351
PMMVS240.82 33938.86 34246.69 35453.84 37516.45 38248.61 36949.92 37737.49 36731.67 36960.97 3658.14 38156.42 37328.42 36830.72 37167.19 363
MVEpermissive26.22 2330.37 34325.89 34743.81 35544.55 38035.46 37528.87 37339.07 38018.20 37418.58 37640.18 3712.68 38347.37 37717.07 37523.78 37348.60 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 34129.28 34538.23 35627.03 3836.50 38520.94 37462.21 3744.05 37722.35 37552.50 36913.33 37547.58 37627.04 37034.04 37060.62 366
E-PMN31.77 34030.64 34335.15 35752.87 37727.67 37857.09 36747.86 37824.64 37216.40 37733.05 37311.23 37754.90 37414.46 37618.15 37422.87 373
EMVS30.81 34229.65 34434.27 35850.96 37825.95 38056.58 36846.80 37924.01 37315.53 37830.68 37412.47 37654.43 37512.81 37717.05 37522.43 374
DeepMVS_CXcopyleft27.40 35940.17 38226.90 37924.59 38317.44 37523.95 37348.61 3709.77 37826.48 37818.06 37324.47 37228.83 372
wuyk23d16.82 34615.94 34919.46 36058.74 37431.45 37739.22 3703.74 3856.84 3766.04 3792.70 3791.27 38424.29 37910.54 37814.40 3782.63 376
tmp_tt18.61 34521.40 34810.23 3614.82 38410.11 38334.70 37130.74 3821.48 37823.91 37426.07 37528.42 36413.41 38027.12 36915.35 3777.17 375
test1236.12 3488.11 3510.14 3620.06 3860.09 38671.05 3460.03 3870.04 3810.25 3821.30 3810.05 3850.03 3820.21 3800.01 3800.29 377
testmvs6.04 3498.02 3520.10 3630.08 3850.03 38769.74 3500.04 3860.05 3800.31 3811.68 3800.02 3860.04 3810.24 3790.02 3790.25 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k19.96 34426.61 3460.00 3640.00 3870.00 3880.00 37589.26 1800.00 3820.00 38388.61 17861.62 1640.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas5.26 3507.02 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38263.15 1400.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.23 3479.64 3500.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38386.72 2270.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS195.00 1072.39 4295.06 193.84 1874.49 12091.30 15
PC_three_145268.21 24092.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 7
test_one_060195.07 771.46 6194.14 778.27 3792.05 1195.74 680.83 11
eth-test20.00 387
eth-test0.00 387
ZD-MVS94.38 2772.22 4892.67 6770.98 18487.75 3194.07 4574.01 4096.70 2684.66 3994.84 49
RE-MVS-def85.48 6093.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2863.87 12982.75 6791.87 8892.50 115
IU-MVS95.30 271.25 6392.95 5666.81 24892.39 688.94 1196.63 494.85 16
test_241102_TWO94.06 1277.24 5292.78 495.72 881.26 897.44 589.07 996.58 694.26 41
test_241102_ONE95.30 270.98 7094.06 1277.17 5693.10 195.39 1182.99 197.27 10
9.1488.26 1592.84 6891.52 4794.75 173.93 13488.57 2494.67 1975.57 2495.79 5986.77 2395.76 28
save fliter93.80 4472.35 4590.47 7091.17 12974.31 124
test_0728_THIRD78.38 3592.12 995.78 481.46 797.40 789.42 496.57 794.67 24
test072695.27 571.25 6393.60 694.11 877.33 5092.81 395.79 380.98 9
GSMVS88.96 241
test_part295.06 872.65 3391.80 13
sam_mvs151.32 26088.96 241
sam_mvs50.01 274
MTGPAbinary92.02 94
test_post178.90 3125.43 37848.81 29385.44 31559.25 273
test_post5.46 37750.36 27184.24 322
patchmatchnet-post74.00 35451.12 26288.60 289
MTMP92.18 3532.83 381
gm-plane-assit81.40 31653.83 33862.72 30080.94 31792.39 20663.40 239
test9_res84.90 3395.70 3192.87 105
TEST993.26 5672.96 2688.75 11991.89 10368.44 23885.00 5693.10 6574.36 3595.41 76
test_893.13 5872.57 3688.68 12391.84 10768.69 23484.87 6293.10 6574.43 3295.16 87
agg_prior282.91 6595.45 3392.70 108
agg_prior92.85 6671.94 5491.78 11084.41 7294.93 98
test_prior472.60 3589.01 108
test_prior288.85 11475.41 9684.91 5893.54 5474.28 3683.31 5795.86 22
旧先验286.56 19258.10 33487.04 3588.98 28274.07 146
新几何286.29 200
旧先验191.96 8265.79 18286.37 24893.08 6969.31 8192.74 7688.74 250
无先验87.48 16388.98 19360.00 31994.12 13467.28 20988.97 240
原ACMM286.86 181
test22291.50 8968.26 13284.16 25283.20 29554.63 35179.74 13191.63 9758.97 19591.42 9486.77 291
testdata291.01 25262.37 247
segment_acmp73.08 45
testdata184.14 25375.71 90
plane_prior790.08 11568.51 128
plane_prior689.84 12468.70 12360.42 188
plane_prior592.44 7595.38 7978.71 10386.32 15791.33 153
plane_prior491.00 118
plane_prior368.60 12678.44 3378.92 141
plane_prior291.25 5279.12 25
plane_prior189.90 123
plane_prior68.71 12190.38 7477.62 4186.16 160
n20.00 388
nn0.00 388
door-mid69.98 360
test1192.23 86
door69.44 363
HQP5-MVS66.98 158
HQP-NCC89.33 13989.17 10176.41 7577.23 180
ACMP_Plane89.33 13989.17 10176.41 7577.23 180
BP-MVS77.47 116
HQP4-MVS77.24 17995.11 9091.03 164
HQP3-MVS92.19 8985.99 163
HQP2-MVS60.17 191
NP-MVS89.62 12668.32 13090.24 131
MDTV_nov1_ep13_2view37.79 37375.16 33455.10 34966.53 31749.34 28453.98 30787.94 262
MDTV_nov1_ep1369.97 28483.18 28353.48 34077.10 32580.18 32560.45 31469.33 29580.44 32148.89 29286.90 30451.60 31778.51 248
ACMMP++_ref81.95 212
ACMMP++81.25 218
Test By Simon64.33 125