This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6198.53 1598.29 2695.55 698.56 1497.81 9293.90 1599.65 5796.62 2899.21 7699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4598.28 2899.86 997.52 599.67 699.75 5
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 798.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
IU-MVS99.42 795.39 1197.94 10690.40 18798.94 597.41 1299.66 1099.74 7
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14698.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-296.83 4397.44 995.01 17199.05 4385.39 29696.98 16698.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
ACMMP_NAP97.20 1696.86 2798.23 1199.09 3895.16 2497.60 10598.19 4892.82 11097.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2498.27 3195.34 1198.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2396.84 3097.77 3899.46 293.79 5898.52 1698.24 3893.19 9397.14 4798.34 4591.59 6099.87 895.46 7699.59 1799.64 13
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 8198.22 4392.74 11497.59 2998.20 6591.96 4999.86 994.21 10899.25 7299.63 14
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 4295.42 1097.94 6698.18 5090.57 18398.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 1796.96 2397.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 21089.67 26797.81 3399.38 1594.03 5398.59 1298.20 4694.85 3096.59 6932.69 37691.70 5699.80 3195.66 6399.40 5199.62 16
ACMMPR97.07 2396.84 3097.79 3599.44 693.88 5598.52 1698.31 2493.21 9097.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
mPP-MVS96.86 3996.60 4597.64 4999.40 1293.44 6898.50 1998.09 6793.27 8995.95 9598.33 4891.04 7399.88 595.20 8199.57 2499.60 19
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
PC_three_145290.77 17098.89 898.28 5796.24 198.35 20895.76 6199.58 2299.59 20
zzz-MVS97.07 2396.77 3797.97 2599.37 1794.42 3697.15 15298.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3697.97 2599.37 1794.42 3697.24 13998.08 6895.07 2496.11 8698.59 1890.88 7799.90 296.18 4799.50 3699.58 22
ZNCC-MVS96.96 3196.67 4397.85 2899.37 1794.12 4898.49 2098.18 5092.64 11896.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
PGM-MVS96.81 4496.53 4997.65 4799.35 2293.53 6697.65 9898.98 192.22 12797.14 4798.44 3291.17 7199.85 1894.35 10599.46 4499.57 24
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13798.08 6895.81 497.87 2898.31 5194.26 1399.68 5197.02 1699.49 4099.57 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3898.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
OPU-MVS98.55 398.82 6096.86 398.25 3898.26 5896.04 299.24 12695.36 7899.59 1799.56 27
Regformer-297.16 1996.99 2197.67 4698.32 9393.84 5696.83 17998.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6499.56 27
NCCC97.30 1597.03 1998.11 1798.77 6195.06 2697.34 13098.04 8595.96 297.09 5197.88 8493.18 2499.71 4295.84 5999.17 7999.56 27
test117296.93 3496.86 2797.15 7099.10 3692.34 9897.96 6598.04 8593.79 6797.35 3998.53 2491.40 6399.56 8596.30 3799.30 6399.55 31
Regformer-197.10 2196.96 2397.54 5298.32 9393.48 6796.83 17997.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6499.55 31
MCST-MVS97.18 1796.84 3098.20 1399.30 2695.35 1597.12 15498.07 7493.54 7796.08 8897.69 10093.86 1699.71 4296.50 3299.39 5399.55 31
SR-MVS97.01 2996.86 2797.47 5499.09 3893.27 7597.98 6098.07 7493.75 6897.45 3398.48 2991.43 6299.59 7296.22 4199.27 6899.54 34
HFP-MVS97.14 2096.92 2597.83 2999.42 794.12 4898.52 1698.32 2293.21 9097.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3897.83 2999.42 794.12 4898.15 5098.32 2292.57 11997.18 4498.29 5492.08 4499.83 2695.12 8499.59 1799.54 34
CP-MVS97.02 2796.81 3397.64 4999.33 2393.54 6598.80 898.28 2892.99 9996.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8998.10 6591.50 14898.01 2298.32 5092.33 4099.58 7594.85 9299.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15997.22 19195.35 998.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 4298.27 3192.37 12598.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
dcpmvs_296.37 6197.05 1794.31 21198.96 5084.11 31497.56 10997.51 15393.92 6197.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
APD-MVS_3200maxsize96.81 4496.71 4197.12 7299.01 4992.31 10197.98 6098.06 7793.11 9697.44 3498.55 2290.93 7599.55 8896.06 4999.25 7299.51 39
agg_prior293.94 11499.38 5499.50 43
Regformer-496.97 3096.87 2697.25 6498.34 9092.66 8996.96 16898.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
MP-MVScopyleft96.77 4696.45 5597.72 4299.39 1493.80 5798.41 2598.06 7793.37 8595.54 11298.34 4590.59 8299.88 594.83 9499.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4996.45 5597.40 5699.36 2093.11 7898.87 698.06 7791.17 16296.40 7897.99 7890.99 7499.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15698.21 4488.16 24896.64 6597.70 9991.18 7099.67 5392.44 14299.47 4299.48 47
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4597.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-396.85 4196.80 3497.01 7598.34 9092.02 11296.96 16897.76 12395.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
GST-MVS96.85 4196.52 5097.82 3299.36 2094.14 4798.29 3198.13 5892.72 11596.70 6098.06 7291.35 6599.86 994.83 9499.28 6699.47 50
test9_res94.81 9699.38 5499.45 51
DeepPCF-MVS93.97 196.61 5297.09 1495.15 16498.09 11486.63 27696.00 24898.15 5595.43 797.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5597.85 11893.72 6998.57 1398.35 4293.69 1899.40 11397.06 1599.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17295.34 1698.48 2197.87 11394.65 4488.53 27398.02 7683.69 16899.71 4293.18 13098.96 9499.44 53
SR-MVS-dyc-post96.88 3896.80 3497.11 7399.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2691.40 6399.56 8596.05 5099.26 7099.43 55
RE-MVS-def96.72 4099.02 4692.34 9897.98 6098.03 8893.52 7997.43 3698.51 2690.71 8096.05 5099.26 7099.43 55
ETH3D-3000-0.197.07 2396.71 4198.14 1698.90 5595.33 1797.68 9498.24 3891.57 14697.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
DeepC-MVS_fast93.89 296.93 3496.64 4497.78 3698.64 7494.30 3897.41 12298.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 8299.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1496.97 2298.47 599.08 4096.16 497.55 11197.97 10395.59 596.61 6797.89 8292.57 3599.84 2395.95 5499.51 3399.40 59
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21598.02 9288.58 23596.03 8997.56 11692.73 3099.59 7295.04 8699.37 5899.39 60
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 22397.88 11186.98 27896.65 6497.89 8291.99 4899.47 10492.26 14399.46 4499.39 60
MP-MVS-pluss96.70 4896.27 5997.98 2499.23 3294.71 3096.96 16898.06 7790.67 17495.55 11098.78 1291.07 7299.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5596.27 5997.22 6799.32 2492.74 8698.74 998.06 7790.57 18396.77 5798.35 4290.21 8699.53 9394.80 9799.63 1499.38 62
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9198.25 3898.81 392.99 9994.56 12798.39 3988.96 9699.85 1894.57 10497.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4696.46 5497.71 4498.40 8594.07 5198.21 4598.45 1689.86 19597.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5896.28 23198.00 9788.76 23295.68 10497.55 11892.70 3299.57 8395.01 8799.32 6099.32 66
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6898.14 5794.82 3499.01 398.55 2294.18 1497.41 31496.94 1799.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 6096.02 6597.50 5397.62 14093.38 7097.02 15997.96 10495.42 894.86 12197.81 9287.38 12199.82 2996.88 2099.20 7799.29 68
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8096.35 22398.00 9792.80 11196.03 8997.59 11292.01 4699.41 11195.01 8799.38 5499.29 68
test_prior97.23 6598.67 6692.99 8098.00 9799.41 11199.29 68
test111193.19 15292.82 14694.30 21297.58 14584.56 30998.21 4589.02 36893.53 7894.58 12698.21 6272.69 31499.05 15093.06 13398.48 10999.28 71
MVS_111021_HR96.68 5196.58 4796.99 7698.46 8192.31 10196.20 23898.90 294.30 5395.86 9797.74 9792.33 4099.38 11696.04 5299.42 4999.28 71
ETH3D cwj APD-0.1696.56 5496.06 6498.05 2098.26 10095.19 2296.99 16498.05 8489.85 19797.26 4198.22 6191.80 5299.69 4894.84 9399.28 6699.27 73
test250691.60 21490.78 22294.04 22297.66 13783.81 31798.27 3475.53 38093.43 8395.23 11698.21 6267.21 34499.07 14793.01 13798.49 10799.25 74
ECVR-MVScopyleft93.19 15292.73 15394.57 20097.66 13785.41 29498.21 4588.23 36993.43 8394.70 12498.21 6272.57 31599.07 14793.05 13498.49 10799.25 74
test1297.65 4798.46 8194.26 4197.66 13795.52 11390.89 7699.46 10599.25 7299.22 76
CHOSEN 1792x268894.15 11593.51 12496.06 12198.27 9789.38 20395.18 28398.48 1585.60 29893.76 14397.11 13783.15 17899.61 6691.33 16898.72 10199.19 77
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 19093.36 7298.65 1198.36 1794.12 5689.25 25898.06 7282.20 20499.77 3393.41 12699.32 6099.18 78
旧先验198.38 8893.38 7097.75 12498.09 7092.30 4399.01 9299.16 79
VNet95.89 7495.45 7697.21 6898.07 11692.94 8397.50 11498.15 5593.87 6397.52 3097.61 11185.29 14799.53 9395.81 6095.27 18099.16 79
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16898.30 3098.57 1289.01 21893.97 13997.57 11492.62 3399.76 3494.66 10199.27 6899.15 81
IS-MVSNet94.90 10094.52 10196.05 12297.67 13590.56 16598.44 2396.22 26493.21 9093.99 13797.74 9785.55 14598.45 20189.98 18597.86 12499.14 82
EI-MVSNet-Vis-set96.51 5596.47 5296.63 8398.24 10191.20 14196.89 17497.73 12794.74 4096.49 7398.49 2890.88 7799.58 7596.44 3598.32 11399.13 83
baseline95.58 8095.42 7896.08 11996.78 17890.41 17197.16 15097.45 16693.69 7295.65 10897.85 8887.29 12298.68 18295.66 6397.25 14499.13 83
MG-MVS95.61 7995.38 7996.31 10798.42 8490.53 16696.04 24497.48 15693.47 8195.67 10798.10 6889.17 9499.25 12591.27 17098.77 9999.13 83
LFMVS93.60 13892.63 15696.52 8898.13 11391.27 13697.94 6693.39 34790.57 18396.29 8198.31 5169.00 33499.16 13394.18 10995.87 16999.12 86
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8297.65 9898.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 18297.35 14099.11 87
EPNet95.20 9194.56 9897.14 7192.80 33892.68 8897.85 7594.87 32496.64 192.46 16897.80 9486.23 13499.65 5793.72 12098.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs95.64 7895.49 7496.08 11996.76 18190.45 16997.29 13697.44 17094.00 5995.46 11497.98 7987.52 11898.73 17695.64 6797.33 14199.08 89
TSAR-MVS + GP.96.69 4996.49 5197.27 6398.31 9593.39 6996.79 18396.72 23494.17 5597.44 3497.66 10492.76 2799.33 11896.86 2197.76 12999.08 89
HyFIR lowres test93.66 13692.92 14395.87 12998.24 10189.88 18494.58 29198.49 1385.06 30793.78 14295.78 21582.86 18898.67 18391.77 15795.71 17499.07 91
mvs_anonymous93.82 13193.74 11494.06 22096.44 19885.41 29495.81 25697.05 20789.85 19790.09 22996.36 18587.44 12097.75 28493.97 11296.69 15699.02 92
abl_696.40 5996.21 6196.98 7798.89 5892.20 10697.89 7098.03 8893.34 8897.22 4398.42 3587.93 11099.72 3995.10 8599.07 8999.02 92
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2898.11 6387.79 25995.17 11898.03 7487.09 12599.61 6693.51 12299.42 4999.02 92
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24798.10 5295.80 27892.22 12793.02 15997.45 12084.53 15797.91 27188.24 22297.97 12299.02 92
GeoE93.89 12793.28 13495.72 13896.96 17189.75 18798.24 4196.92 22289.47 20692.12 18097.21 13184.42 15898.39 20687.71 23296.50 16099.01 96
Anonymous20240521192.07 20290.83 22195.76 13298.19 10888.75 22297.58 10795.00 31586.00 29393.64 14497.45 12066.24 35199.53 9390.68 17992.71 21399.01 96
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3698.12 6094.38 5194.90 12098.15 6782.28 20298.92 15991.45 16798.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 5296.38 5797.30 6097.79 13093.19 7695.96 25098.18 5095.23 1495.87 9697.65 10591.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 9494.59 9796.26 11298.89 5890.68 16397.24 13997.73 12791.80 14192.93 16596.62 17389.13 9599.14 13689.21 20897.78 12798.97 100
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11697.67 9598.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7797.30 13598.06 7793.92 6193.38 15298.66 1486.83 12799.73 3695.60 7299.22 7598.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 7297.17 19494.39 5096.47 7596.40 18385.89 14099.20 12896.21 4595.11 18498.95 103
CS-MVS-test96.89 3797.04 1896.45 9798.29 9691.66 12199.03 497.85 11895.84 396.90 5697.97 8091.24 6798.75 17496.92 1899.33 5998.94 104
114514_t93.95 12593.06 13996.63 8399.07 4191.61 12297.46 12197.96 10477.99 35793.00 16097.57 11486.14 13999.33 11889.22 20799.15 8198.94 104
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11096.59 20697.35 18290.61 18094.64 12596.93 14686.41 13399.39 11491.20 17294.71 19298.94 104
EPP-MVSNet95.22 9095.04 8895.76 13297.49 14789.56 19398.67 1097.00 21390.69 17394.24 13397.62 11089.79 9198.81 16893.39 12896.49 16198.92 107
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3297.60 14394.52 4696.27 8296.12 19587.65 11499.18 13196.20 4694.82 18898.91 108
CS-MVS96.86 3997.06 1596.26 11298.16 11191.16 14699.09 397.87 11395.30 1297.06 5398.03 7491.72 5398.71 18097.10 1499.17 7998.90 109
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10690.93 15396.86 17597.72 13094.67 4296.16 8598.46 3090.43 8399.58 7596.23 4097.96 12398.90 109
PAPR94.18 11493.42 13196.48 9397.64 13991.42 13295.55 26597.71 13488.99 21992.34 17495.82 21089.19 9399.11 13886.14 26497.38 13898.90 109
无先验95.79 25797.87 11383.87 32399.65 5787.68 23698.89 112
DP-MVS92.76 17791.51 19796.52 8898.77 6190.99 14997.38 12896.08 26982.38 33489.29 25597.87 8583.77 16799.69 4881.37 31696.69 15698.89 112
diffmvs95.25 8895.13 8695.63 14296.43 19989.34 20595.99 24997.35 18292.83 10996.31 8097.37 12486.44 13298.67 18396.26 3897.19 14698.87 114
MVSFormer95.37 8495.16 8595.99 12696.34 20391.21 13998.22 4397.57 14791.42 15296.22 8397.32 12586.20 13797.92 26894.07 11099.05 9098.85 115
jason94.84 10394.39 10696.18 11795.52 23590.93 15396.09 24296.52 25189.28 21196.01 9397.32 12584.70 15498.77 17295.15 8398.91 9798.85 115
jason: jason.
Effi-MVS+94.93 9994.45 10496.36 10596.61 18491.47 12996.41 21597.41 17591.02 16794.50 12895.92 20487.53 11798.78 17093.89 11696.81 15198.84 117
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27997.62 14290.43 18695.55 11097.07 13991.72 5399.50 10189.62 19698.94 9598.82 118
lupinMVS94.99 9894.56 9896.29 11096.34 20391.21 13995.83 25596.27 26188.93 22396.22 8396.88 15186.20 13798.85 16595.27 8099.05 9098.82 118
test_yl94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9897.74 13291.22 13796.85 17697.10 20091.23 16095.71 10296.93 14684.30 16099.31 12193.10 13195.12 18298.75 120
CVMVSNet91.23 23691.75 18589.67 33495.77 22774.69 36596.44 21194.88 32185.81 29592.18 17797.64 10879.07 25695.58 35188.06 22495.86 17098.74 122
112194.71 10793.83 11297.34 5898.57 7993.64 6396.04 24497.73 12781.56 34195.68 10497.85 8890.23 8599.65 5787.68 23699.12 8698.73 123
test22298.24 10192.21 10495.33 27497.60 14379.22 35395.25 11597.84 9188.80 9999.15 8198.72 124
MVS_Test94.89 10194.62 9695.68 14096.83 17689.55 19496.70 19197.17 19491.17 16295.60 10996.11 19887.87 11198.76 17393.01 13797.17 14798.72 124
VDD-MVS93.82 13193.08 13896.02 12497.88 12589.96 18297.72 8995.85 27692.43 12395.86 9798.44 3268.42 33899.39 11496.31 3694.85 18698.71 126
新几何197.32 5998.60 7593.59 6497.75 12481.58 34095.75 10197.85 8890.04 8899.67 5386.50 25899.13 8398.69 127
sss94.51 10993.80 11396.64 8197.07 16091.97 11496.32 22798.06 7788.94 22294.50 12896.78 15384.60 15599.27 12491.90 15396.02 16598.68 128
DROMVSNet96.42 5896.47 5296.26 11297.01 16891.52 12798.89 597.75 12494.42 4896.64 6597.68 10189.32 9298.60 18997.45 999.11 8898.67 129
testdata95.46 15798.18 11088.90 22097.66 13782.73 33397.03 5498.07 7190.06 8798.85 16589.67 19498.98 9398.64 130
MVS_111021_LR96.24 6596.19 6396.39 10298.23 10591.35 13396.24 23698.79 493.99 6095.80 9997.65 10589.92 9099.24 12695.87 5599.20 7798.58 131
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10398.20 10690.86 15597.27 13798.25 3690.21 18894.18 13497.27 12787.48 11999.73 3693.53 12197.77 12898.55 132
EIA-MVS95.53 8295.47 7595.71 13997.06 16389.63 18997.82 7797.87 11393.57 7393.92 14095.04 24590.61 8198.95 15794.62 10298.68 10298.54 133
TAMVS94.01 12493.46 12695.64 14196.16 21290.45 16996.71 19096.89 22589.27 21293.46 15096.92 14987.29 12297.94 26488.70 21895.74 17298.53 134
ET-MVSNet_ETH3D91.49 22290.11 25095.63 14296.40 20091.57 12695.34 27393.48 34690.60 18275.58 36195.49 23180.08 24096.79 33494.25 10789.76 26398.52 135
PatchmatchNetpermissive91.91 20591.35 19993.59 24895.38 24184.11 31493.15 33295.39 29589.54 20392.10 18193.68 30782.82 19098.13 22684.81 28395.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 14492.27 17196.98 7796.77 17992.62 9198.39 2698.12 6084.50 31588.27 27997.77 9582.39 20199.81 3085.40 27798.81 9898.51 137
1112_ss93.37 14692.42 16896.21 11697.05 16590.99 14996.31 22896.72 23486.87 28189.83 23796.69 16086.51 13199.14 13688.12 22393.67 20398.50 138
ab-mvs93.57 14192.55 16196.64 8197.28 14991.96 11595.40 27197.45 16689.81 19993.22 15896.28 18879.62 24999.46 10590.74 17793.11 20998.50 138
原ACMM196.38 10398.59 7691.09 14897.89 10987.41 27095.22 11797.68 10190.25 8499.54 9087.95 22699.12 8698.49 140
Test_1112_low_res92.84 17491.84 18395.85 13097.04 16689.97 18195.53 26796.64 24385.38 30189.65 24395.18 24085.86 14199.10 13987.70 23393.58 20898.49 140
Patchmatch-test89.42 28287.99 28993.70 24395.27 25385.11 30088.98 36194.37 33581.11 34287.10 30393.69 30582.28 20297.50 30674.37 35094.76 18998.48 142
VDDNet93.05 16292.07 17496.02 12496.84 17490.39 17298.08 5495.85 27686.22 29095.79 10098.46 3067.59 34199.19 12994.92 9194.85 18698.47 143
PVSNet86.66 1892.24 19591.74 18793.73 24097.77 13183.69 32192.88 33696.72 23487.91 25493.00 16094.86 25278.51 26899.05 15086.53 25697.45 13798.47 143
GSMVS98.45 145
sam_mvs182.76 19198.45 145
SCA91.84 20791.18 21093.83 23695.59 23184.95 30494.72 28895.58 28990.82 16892.25 17693.69 30575.80 29798.10 23486.20 26295.98 16698.45 145
CDS-MVSNet94.14 11893.54 12195.93 12796.18 21091.46 13096.33 22697.04 20988.97 22193.56 14596.51 17787.55 11697.89 27289.80 19095.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15698.08 6888.35 24295.09 11997.65 10589.97 8999.48 10392.08 15298.59 10598.44 148
Patchmatch-RL test87.38 30386.24 30490.81 32088.74 36678.40 36088.12 36393.17 34887.11 27782.17 34489.29 35381.95 20995.60 35088.64 21977.02 35298.41 150
LCM-MVSNet-Re92.50 18092.52 16592.44 28596.82 17781.89 33396.92 17293.71 34392.41 12484.30 32994.60 26585.08 15097.03 32591.51 16497.36 13998.40 151
PVSNet_Blended94.87 10294.56 9895.81 13198.27 9789.46 20095.47 26998.36 1788.84 22694.36 13096.09 19988.02 10799.58 7593.44 12498.18 11798.40 151
tttt051792.96 16692.33 17094.87 18197.11 15887.16 26497.97 6492.09 35690.63 17893.88 14197.01 14376.50 28999.06 14990.29 18495.45 17798.38 153
MDTV_nov1_ep13_2view70.35 37093.10 33483.88 32293.55 14682.47 19986.25 26198.38 153
BH-RMVSNet92.72 17891.97 17994.97 17597.16 15487.99 24696.15 24095.60 28790.62 17991.87 18597.15 13678.41 27098.57 19383.16 29897.60 13198.36 155
OMC-MVS95.09 9394.70 9596.25 11598.46 8191.28 13596.43 21397.57 14792.04 13694.77 12397.96 8187.01 12699.09 14291.31 16996.77 15298.36 155
thisisatest053093.03 16392.21 17295.49 15397.07 16089.11 21697.49 11892.19 35590.16 19094.09 13596.41 18276.43 29299.05 15090.38 18195.68 17598.31 157
h-mvs3394.15 11593.52 12396.04 12397.81 12890.22 17397.62 10497.58 14695.19 1696.74 5897.45 12083.67 16999.61 6695.85 5779.73 34598.29 158
Anonymous2024052991.98 20490.73 22595.73 13798.14 11289.40 20297.99 5997.72 13079.63 35193.54 14797.41 12369.94 33299.56 8591.04 17391.11 24498.22 159
GA-MVS91.38 22790.31 23994.59 19594.65 28687.62 25494.34 30196.19 26690.73 17290.35 21693.83 29971.84 31897.96 26187.22 24893.61 20698.21 160
TAPA-MVS90.10 792.30 19191.22 20895.56 14698.33 9289.60 19196.79 18397.65 13981.83 33891.52 19197.23 13087.94 10998.91 16171.31 36098.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UGNet94.04 12393.28 13496.31 10796.85 17391.19 14297.88 7197.68 13594.40 4993.00 16096.18 19173.39 31399.61 6691.72 15898.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 14392.75 15195.59 14596.77 17990.03 17596.81 18297.13 19788.19 24591.30 19894.27 28386.21 13698.63 18687.66 23896.46 16398.12 163
tpm90.25 26889.74 26691.76 30493.92 31179.73 35293.98 31193.54 34588.28 24391.99 18393.25 31777.51 28497.44 31187.30 24787.94 27798.12 163
PMMVS92.86 17292.34 16994.42 20594.92 27186.73 27294.53 29396.38 25784.78 31294.27 13295.12 24483.13 17998.40 20391.47 16696.49 16198.12 163
EPMVS90.70 25889.81 26193.37 25894.73 28384.21 31293.67 32288.02 37089.50 20592.38 17193.49 31277.82 28297.78 28186.03 26892.68 21498.11 166
LS3D93.57 14192.61 15996.47 9497.59 14391.61 12297.67 9597.72 13085.17 30590.29 21798.34 4584.60 15599.73 3683.85 29698.27 11498.06 167
UniMVSNet_ETH3D91.34 23290.22 24794.68 19394.86 27687.86 25097.23 14497.46 16187.99 25189.90 23496.92 14966.35 34998.23 21590.30 18390.99 24897.96 168
HY-MVS89.66 993.87 12892.95 14296.63 8397.10 15992.49 9595.64 26396.64 24389.05 21793.00 16095.79 21485.77 14399.45 10789.16 21194.35 19497.96 168
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9396.59 20696.88 22690.13 19191.91 18497.24 12985.21 14899.09 14287.64 23997.83 12597.92 170
CostFormer91.18 24190.70 22692.62 28394.84 27781.76 33494.09 31094.43 33284.15 31892.72 16793.77 30379.43 25198.20 21890.70 17892.18 22397.90 171
tpmrst91.44 22491.32 20191.79 30195.15 26079.20 35693.42 32795.37 29788.55 23893.49 14993.67 30882.49 19898.27 21390.41 18089.34 26697.90 171
EPNet_dtu91.71 21091.28 20492.99 27193.76 31783.71 32096.69 19395.28 30293.15 9487.02 30595.95 20383.37 17597.38 31679.46 32896.84 15097.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 19291.30 20395.25 16196.60 18588.90 22094.36 30092.32 35487.92 25393.43 15194.57 26677.28 28599.00 15489.42 20095.86 17097.86 174
ADS-MVSNet289.45 28188.59 28392.03 29395.86 22282.26 33190.93 35094.32 33783.23 33091.28 20291.81 33779.01 26195.99 34279.52 32591.39 23897.84 175
ADS-MVSNet89.89 27688.68 28293.53 25195.86 22284.89 30590.93 35095.07 31383.23 33091.28 20291.81 33779.01 26197.85 27479.52 32591.39 23897.84 175
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10797.67 9597.47 15988.13 25093.00 16095.84 20884.86 15399.51 9887.99 22598.17 11897.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 7095.89 6896.40 10097.16 15492.44 9697.47 11997.77 12294.55 4596.48 7494.51 26791.23 6998.92 15995.65 6698.19 11697.82 178
CANet_DTU94.37 11093.65 11896.55 8796.46 19792.13 10896.21 23796.67 24294.38 5193.53 14897.03 14279.34 25299.71 4290.76 17698.45 11197.82 178
PLCcopyleft91.00 694.11 11993.43 12996.13 11898.58 7891.15 14796.69 19397.39 17687.29 27391.37 19496.71 15688.39 10599.52 9787.33 24697.13 14897.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 28888.26 28890.81 32094.58 29276.62 36292.85 33794.93 31985.12 30690.07 23193.07 31875.81 29698.12 23180.53 32087.42 28397.71 181
AdaColmapbinary94.34 11193.68 11796.31 10798.59 7691.68 12096.59 20697.81 12189.87 19492.15 17897.06 14083.62 17199.54 9089.34 20298.07 12097.70 182
baseline192.82 17591.90 18195.55 14897.20 15290.77 16097.19 14794.58 32992.20 12992.36 17296.34 18684.16 16398.21 21789.20 20983.90 32897.68 183
test-LLR91.42 22591.19 20992.12 29194.59 29080.66 34094.29 30492.98 34991.11 16490.76 20992.37 32779.02 25998.07 24188.81 21596.74 15397.63 184
test-mter90.19 27189.54 27092.12 29194.59 29080.66 34094.29 30492.98 34987.68 26490.76 20992.37 32767.67 34098.07 24188.81 21596.74 15397.63 184
PAPM91.52 22190.30 24095.20 16295.30 25289.83 18593.38 32896.85 22986.26 28988.59 27195.80 21184.88 15298.15 22475.67 34695.93 16897.63 184
F-COLMAP93.58 14092.98 14195.37 15998.40 8588.98 21897.18 14897.29 18787.75 26290.49 21297.10 13885.21 14899.50 10186.70 25596.72 15597.63 184
TESTMET0.1,190.06 27389.42 27191.97 29494.41 29880.62 34294.29 30491.97 35887.28 27490.44 21492.47 32668.79 33597.67 28988.50 22196.60 15897.61 188
CR-MVSNet90.82 25389.77 26393.95 22994.45 29687.19 26290.23 35595.68 28486.89 28092.40 16992.36 33080.91 22397.05 32481.09 31893.95 20197.60 189
RPMNet88.98 28587.05 30094.77 19094.45 29687.19 26290.23 35598.03 8877.87 35992.40 16987.55 36180.17 23999.51 9868.84 36493.95 20197.60 189
MIMVSNet88.50 29486.76 30293.72 24294.84 27787.77 25291.39 34594.05 33986.41 28787.99 28792.59 32463.27 35895.82 34777.44 33692.84 21297.57 191
PatchT88.87 28987.42 29493.22 26494.08 30885.10 30189.51 35994.64 32881.92 33792.36 17288.15 35880.05 24197.01 32872.43 35693.65 20497.54 192
tpm289.96 27489.21 27592.23 29094.91 27381.25 33793.78 31894.42 33380.62 34791.56 19093.44 31476.44 29197.94 26485.60 27492.08 22797.49 193
IB-MVS87.33 1789.91 27588.28 28794.79 18995.26 25687.70 25395.12 28593.95 34289.35 21087.03 30492.49 32570.74 32699.19 12989.18 21081.37 34197.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AUN-MVS91.76 20990.75 22494.81 18597.00 16988.57 22896.65 19796.49 25289.63 20292.15 17896.12 19578.66 26698.50 19790.83 17579.18 34897.36 195
hse-mvs293.45 14492.99 14094.81 18597.02 16788.59 22796.69 19396.47 25395.19 1696.74 5896.16 19483.67 16998.48 20095.85 5779.13 34997.35 196
CHOSEN 280x42093.12 15792.72 15494.34 20996.71 18287.27 25890.29 35497.72 13086.61 28591.34 19595.29 23684.29 16298.41 20293.25 12998.94 9597.35 196
BH-untuned92.94 16892.62 15893.92 23497.22 15086.16 28596.40 21896.25 26390.06 19289.79 23896.17 19383.19 17698.35 20887.19 24997.27 14397.24 198
131492.81 17692.03 17695.14 16595.33 24989.52 19796.04 24497.44 17087.72 26386.25 31395.33 23583.84 16698.79 16989.26 20597.05 14997.11 199
PCF-MVS89.48 1191.56 21889.95 25696.36 10596.60 18592.52 9492.51 34197.26 18879.41 35288.90 26196.56 17584.04 16599.55 8877.01 34297.30 14297.01 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 18291.60 19195.18 16397.91 12389.47 19897.65 9894.66 32692.18 13393.33 15394.91 24978.06 27899.10 13981.61 31094.06 20096.98 201
thres40092.42 18491.52 19595.12 16797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.98 201
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18597.06 16388.53 23095.28 27797.45 16691.68 14494.08 13697.68 10182.41 20098.90 16293.84 11892.47 21796.98 201
MSDG91.42 22590.24 24494.96 17697.15 15688.91 21993.69 32196.32 25985.72 29786.93 30796.47 17980.24 23798.98 15680.57 31995.05 18596.98 201
XVG-OURS93.72 13593.35 13294.80 18897.07 16088.61 22694.79 28797.46 16191.97 13993.99 13797.86 8781.74 21398.88 16492.64 14192.67 21596.92 205
PatchMatch-RL92.90 17092.02 17795.56 14698.19 10890.80 15895.27 27997.18 19287.96 25291.86 18695.68 22280.44 23298.99 15584.01 29297.54 13296.89 206
mvs-test193.63 13793.69 11693.46 25596.02 21984.61 30897.24 13996.72 23493.85 6492.30 17595.76 21683.08 18098.89 16391.69 16196.54 15996.87 207
tpmvs89.83 27989.15 27791.89 29694.92 27180.30 34693.11 33395.46 29486.28 28888.08 28492.65 32280.44 23298.52 19681.47 31289.92 26196.84 208
baseline291.63 21390.86 21793.94 23194.33 30086.32 27995.92 25291.64 36089.37 20986.94 30694.69 26081.62 21598.69 18188.64 21994.57 19396.81 209
TR-MVS91.48 22390.59 23094.16 21696.40 20087.33 25695.67 26095.34 30187.68 26491.46 19295.52 23076.77 28898.35 20882.85 30293.61 20696.79 210
OpenMVScopyleft89.19 1292.86 17291.68 18996.40 10095.34 24692.73 8798.27 3498.12 6084.86 31085.78 31697.75 9678.89 26499.74 3587.50 24398.65 10396.73 211
tpm cat188.36 29587.21 29891.81 30095.13 26280.55 34392.58 34095.70 28174.97 36187.45 29491.96 33578.01 28098.17 22380.39 32188.74 27296.72 212
DSMNet-mixed86.34 31186.12 30787.00 34489.88 36070.43 36994.93 28690.08 36677.97 35885.42 32192.78 32174.44 30593.96 36174.43 34995.14 18196.62 213
API-MVS94.84 10394.49 10295.90 12897.90 12492.00 11397.80 7997.48 15689.19 21494.81 12296.71 15688.84 9899.17 13288.91 21498.76 10096.53 214
gg-mvs-nofinetune87.82 30085.61 30994.44 20394.46 29589.27 21191.21 34984.61 37580.88 34489.89 23674.98 36871.50 32097.53 30385.75 27397.21 14596.51 215
Effi-MVS+-dtu93.08 15993.21 13692.68 28296.02 21983.25 32497.14 15396.72 23493.85 6491.20 20593.44 31483.08 18098.30 21291.69 16195.73 17396.50 216
thres100view90092.43 18391.58 19294.98 17497.92 12289.37 20497.71 9194.66 32692.20 12993.31 15494.90 25078.06 27899.08 14481.40 31394.08 19796.48 217
tfpn200view992.38 18691.52 19594.95 17797.85 12689.29 20897.41 12294.88 32192.19 13193.27 15694.46 27278.17 27499.08 14481.40 31394.08 19796.48 217
JIA-IIPM88.26 29787.04 30191.91 29593.52 32381.42 33689.38 36094.38 33480.84 34590.93 20780.74 36679.22 25597.92 26882.76 30391.62 23196.38 219
cascas91.20 23890.08 25194.58 19994.97 26789.16 21593.65 32397.59 14579.90 35089.40 25092.92 32075.36 30198.36 20792.14 14894.75 19096.23 220
RPSCF90.75 25590.86 21790.42 32796.84 17476.29 36395.61 26496.34 25883.89 32191.38 19397.87 8576.45 29098.78 17087.16 25192.23 22096.20 221
thres20092.23 19691.39 19894.75 19297.61 14189.03 21796.60 20595.09 31292.08 13593.28 15594.00 29578.39 27199.04 15381.26 31794.18 19696.19 222
xiu_mvs_v2_base95.32 8695.29 8295.40 15897.22 15090.50 16795.44 27097.44 17093.70 7196.46 7696.18 19188.59 10499.53 9394.79 9997.81 12696.17 223
PS-MVSNAJ95.37 8495.33 8195.49 15397.35 14890.66 16495.31 27697.48 15693.85 6496.51 7295.70 22188.65 10199.65 5794.80 9798.27 11496.17 223
AllTest90.23 26988.98 27893.98 22597.94 12086.64 27396.51 21095.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
TestCases93.98 22597.94 12086.64 27395.54 29085.38 30185.49 31996.77 15470.28 32899.15 13480.02 32392.87 21096.15 225
BH-w/o92.14 20191.75 18593.31 26096.99 17085.73 28995.67 26095.69 28288.73 23389.26 25794.82 25582.97 18698.07 24185.26 27996.32 16496.13 227
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13496.58 18791.71 11796.25 23397.35 18292.99 9996.70 6096.63 17082.67 19299.44 10896.22 4197.46 13396.11 228
Fast-Effi-MVS+-dtu92.29 19291.99 17893.21 26595.27 25385.52 29297.03 15696.63 24692.09 13489.11 26095.14 24280.33 23698.08 23887.54 24294.74 19196.03 231
nrg03094.05 12293.31 13396.27 11195.22 25794.59 3298.34 2797.46 16192.93 10791.21 20496.64 16487.23 12498.22 21694.99 9085.80 29695.98 232
PS-MVSNAJss93.74 13493.51 12494.44 20393.91 31289.28 21097.75 8397.56 15092.50 12289.94 23396.54 17688.65 10198.18 22193.83 11990.90 25095.86 233
HQP_MVS93.78 13393.43 12994.82 18396.21 20789.99 17897.74 8497.51 15394.85 3091.34 19596.64 16481.32 21898.60 18993.02 13592.23 22095.86 233
plane_prior597.51 15398.60 18993.02 13592.23 22095.86 233
FIs94.09 12093.70 11595.27 16095.70 22992.03 11198.10 5298.68 893.36 8790.39 21596.70 15887.63 11597.94 26492.25 14590.50 25695.84 236
FC-MVSNet-test93.94 12693.57 11995.04 16895.48 23791.45 13198.12 5198.71 693.37 8590.23 21896.70 15887.66 11397.85 27491.49 16590.39 25795.83 237
RRT_MVS93.10 15892.83 14593.93 23394.76 28088.04 24498.47 2296.55 25093.44 8290.01 23297.04 14180.64 22897.93 26794.33 10690.21 25995.83 237
MVS91.71 21090.44 23495.51 15095.20 25991.59 12496.04 24497.45 16673.44 36487.36 29895.60 22585.42 14699.10 13985.97 26997.46 13395.83 237
VPNet92.23 19691.31 20294.99 17295.56 23390.96 15197.22 14597.86 11792.96 10690.96 20696.62 17375.06 30298.20 21891.90 15383.65 33095.80 240
DU-MVS92.90 17092.04 17595.49 15394.95 26992.83 8497.16 15098.24 3893.02 9890.13 22495.71 21983.47 17297.85 27491.71 15983.93 32595.78 241
NR-MVSNet92.34 18891.27 20595.53 14994.95 26993.05 7997.39 12698.07 7492.65 11784.46 32795.71 21985.00 15197.77 28389.71 19283.52 33195.78 241
mvsmamba93.83 13093.46 12694.93 18094.88 27590.85 15698.55 1495.49 29394.24 5491.29 20196.97 14583.04 18398.14 22595.56 7591.17 24295.78 241
HQP4-MVS90.14 22098.50 19795.78 241
HQP-MVS93.19 15292.74 15294.54 20195.86 22289.33 20696.65 19797.39 17693.55 7490.14 22095.87 20680.95 22198.50 19792.13 14992.10 22595.78 241
test_low_dy_conf_00193.13 15692.80 14894.14 21794.47 29488.64 22598.26 3696.94 21692.53 12090.93 20797.16 13380.39 23497.99 25293.40 12791.12 24395.77 246
VPA-MVSNet93.24 15092.48 16795.51 15095.70 22992.39 9797.86 7298.66 1092.30 12692.09 18295.37 23480.49 23198.40 20393.95 11385.86 29595.75 247
TranMVSNet+NR-MVSNet92.50 18091.63 19095.14 16594.76 28092.07 10997.53 11298.11 6392.90 10889.56 24696.12 19583.16 17797.60 29789.30 20383.20 33495.75 247
bld_raw_conf00593.06 16192.54 16394.60 19494.64 28889.95 18398.28 3294.50 33194.06 5790.23 21896.99 14478.34 27298.12 23194.73 10091.09 24595.74 249
UniMVSNet_NR-MVSNet93.37 14692.67 15595.47 15695.34 24692.83 8497.17 14998.58 1192.98 10490.13 22495.80 21188.37 10697.85 27491.71 15983.93 32595.73 250
iter_conf_final93.60 13893.11 13795.04 16897.13 15791.30 13497.92 6895.65 28692.98 10491.60 18896.64 16479.28 25498.13 22695.34 7991.49 23495.70 251
test_part192.21 19891.10 21295.51 15097.80 12992.66 8998.02 5897.68 13589.79 20088.80 26796.02 20076.85 28798.18 22190.86 17484.11 32395.69 252
WR-MVS92.34 18891.53 19494.77 19095.13 26290.83 15796.40 21897.98 10291.88 14089.29 25595.54 22982.50 19797.80 27989.79 19185.27 30495.69 252
iter_conf0593.18 15592.63 15694.83 18296.64 18390.69 16297.60 10595.53 29292.52 12191.58 18996.64 16476.35 29398.13 22695.43 7791.42 23795.68 254
XXY-MVS92.16 19991.23 20794.95 17794.75 28290.94 15297.47 11997.43 17389.14 21588.90 26196.43 18179.71 24798.24 21489.56 19787.68 27995.67 255
ACMM89.79 892.96 16692.50 16694.35 20896.30 20588.71 22397.58 10797.36 18191.40 15490.53 21196.65 16379.77 24698.75 17491.24 17191.64 23095.59 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 26089.42 27194.27 21398.24 10189.19 21498.05 5697.89 10979.95 34988.25 28094.96 24672.56 31698.13 22689.70 19385.14 30695.49 257
bld_raw_dy_0_6492.37 18791.69 18894.39 20694.28 30489.73 18897.71 9193.65 34492.78 11390.46 21396.67 16275.88 29597.97 25692.92 13990.89 25195.48 258
jajsoiax92.42 18491.89 18294.03 22393.33 33088.50 23197.73 8697.53 15192.00 13888.85 26496.50 17875.62 30098.11 23393.88 11791.56 23395.48 258
testgi87.97 29887.21 29890.24 32992.86 33680.76 33996.67 19694.97 31791.74 14285.52 31895.83 20962.66 36094.47 35976.25 34388.36 27595.48 258
MVSTER93.20 15192.81 14794.37 20796.56 19089.59 19297.06 15597.12 19891.24 15991.30 19895.96 20282.02 20798.05 24493.48 12390.55 25495.47 261
UniMVSNet (Re)93.31 14892.55 16195.61 14495.39 24093.34 7397.39 12698.71 693.14 9590.10 22894.83 25487.71 11298.03 24891.67 16383.99 32495.46 262
mvs_tets92.31 19091.76 18493.94 23193.41 32788.29 23497.63 10397.53 15192.04 13688.76 26896.45 18074.62 30498.09 23793.91 11591.48 23595.45 263
EI-MVSNet93.03 16392.88 14493.48 25395.77 22786.98 26796.44 21197.12 19890.66 17691.30 19897.64 10886.56 12998.05 24489.91 18790.55 25495.41 264
EU-MVSNet88.72 29288.90 27988.20 33993.15 33374.21 36696.63 20294.22 33885.18 30487.32 29995.97 20176.16 29494.98 35585.27 27886.17 29295.41 264
test0.0.03 189.37 28388.70 28191.41 31192.47 34485.63 29095.22 28292.70 35291.11 16486.91 30893.65 30979.02 25993.19 36678.00 33589.18 26795.41 264
test_djsdf93.07 16092.76 14994.00 22493.49 32588.70 22498.22 4397.57 14791.42 15290.08 23095.55 22882.85 18997.92 26894.07 11091.58 23295.40 267
IterMVS-LS92.29 19291.94 18093.34 25996.25 20686.97 26896.57 20997.05 20790.67 17489.50 24994.80 25686.59 12897.64 29289.91 18786.11 29495.40 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 16592.53 16494.32 21096.12 21689.20 21295.28 27797.47 15992.66 11689.90 23495.62 22480.58 22998.40 20392.73 14092.40 21895.38 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 20691.24 20693.82 23795.05 26588.57 22897.82 7798.19 4891.70 14388.21 28195.76 21681.96 20897.52 30587.86 22784.65 31395.37 270
FMVSNet391.78 20890.69 22795.03 17096.53 19292.27 10397.02 15996.93 21889.79 20089.35 25294.65 26377.01 28697.47 30886.12 26588.82 26995.35 271
FMVSNet291.31 23390.08 25194.99 17296.51 19392.21 10497.41 12296.95 21588.82 22888.62 27094.75 25873.87 30897.42 31385.20 28088.55 27495.35 271
PS-CasMVS91.55 21990.84 22093.69 24494.96 26888.28 23597.84 7698.24 3891.46 15088.04 28595.80 21179.67 24897.48 30787.02 25284.54 31895.31 273
LPG-MVS_test92.94 16892.56 16094.10 21896.16 21288.26 23697.65 9897.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
LGP-MVS_train94.10 21896.16 21288.26 23697.46 16191.29 15590.12 22697.16 13379.05 25798.73 17692.25 14591.89 22895.31 273
GBi-Net91.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
test191.35 23090.27 24294.59 19596.51 19391.18 14397.50 11496.93 21888.82 22889.35 25294.51 26773.87 30897.29 32086.12 26588.82 26995.31 273
FMVSNet189.88 27788.31 28694.59 19595.41 23991.18 14397.50 11496.93 21886.62 28487.41 29694.51 26765.94 35397.29 32083.04 30087.43 28295.31 273
PVSNet_082.17 1985.46 32083.64 32390.92 31895.27 25379.49 35390.55 35395.60 28783.76 32483.00 34289.95 34971.09 32397.97 25682.75 30460.79 37195.31 273
ACMP89.59 1092.62 17992.14 17394.05 22196.40 20088.20 23997.36 12997.25 19091.52 14788.30 27796.64 16478.46 26998.72 17991.86 15691.48 23595.23 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 21590.85 21993.80 23893.87 31488.17 24196.94 17196.88 22689.54 20389.53 24794.90 25081.70 21498.02 24989.25 20685.04 31095.20 281
PEN-MVS91.20 23890.44 23493.48 25394.49 29387.91 24997.76 8298.18 5091.29 15587.78 29095.74 21880.35 23597.33 31885.46 27682.96 33595.19 282
OurMVSNet-221017-090.51 26390.19 24991.44 31093.41 32781.25 33796.98 16696.28 26091.68 14486.55 31196.30 18774.20 30797.98 25388.96 21387.40 28495.09 283
OPM-MVS93.28 14992.76 14994.82 18394.63 28990.77 16096.65 19797.18 19293.72 6991.68 18797.26 12879.33 25398.63 18692.13 14992.28 21995.07 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
eth_miper_zixun_eth91.02 24590.59 23092.34 28895.33 24984.35 31094.10 30996.90 22388.56 23788.84 26594.33 27884.08 16497.60 29788.77 21784.37 32095.06 285
ACMH87.59 1690.53 26289.42 27193.87 23596.21 20787.92 24797.24 13996.94 21688.45 23983.91 33696.27 18971.92 31798.62 18884.43 28989.43 26595.05 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl2291.21 23790.56 23293.14 26796.09 21886.80 27094.41 29896.58 24987.80 25888.58 27293.99 29680.85 22697.62 29589.87 18986.93 28694.99 287
v119291.07 24290.23 24593.58 24993.70 31887.82 25196.73 18797.07 20487.77 26089.58 24494.32 28080.90 22597.97 25686.52 25785.48 29994.95 288
COLMAP_ROBcopyleft87.81 1590.40 26589.28 27493.79 23997.95 11987.13 26596.92 17295.89 27582.83 33286.88 30997.18 13273.77 31199.29 12378.44 33393.62 20594.95 288
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 25290.03 25593.29 26193.55 32186.96 26996.74 18697.04 20987.36 27189.52 24894.34 27780.23 23897.97 25686.27 26085.21 30594.94 290
SixPastTwentyTwo89.15 28488.54 28490.98 31793.49 32580.28 34796.70 19194.70 32590.78 16984.15 33295.57 22671.78 31997.71 28784.63 28685.07 30894.94 290
DIV-MVS_self_test90.97 24890.33 23792.88 27595.36 24486.19 28494.46 29696.63 24687.82 25688.18 28294.23 28682.99 18497.53 30387.72 23085.57 29894.93 292
v14419291.06 24390.28 24193.39 25793.66 32087.23 26196.83 17997.07 20487.43 26989.69 24194.28 28281.48 21698.00 25187.18 25084.92 31294.93 292
cl____90.96 24990.32 23892.89 27495.37 24386.21 28394.46 29696.64 24387.82 25688.15 28394.18 28982.98 18597.54 30187.70 23385.59 29794.92 294
v124090.70 25889.85 25993.23 26393.51 32486.80 27096.61 20397.02 21287.16 27689.58 24494.31 28179.55 25097.98 25385.52 27585.44 30094.90 295
c3_l91.38 22790.89 21592.88 27595.58 23286.30 28094.68 28996.84 23088.17 24688.83 26694.23 28685.65 14497.47 30889.36 20184.63 31494.89 296
pmmvs589.86 27888.87 28092.82 27792.86 33686.23 28296.26 23295.39 29584.24 31787.12 30194.51 26774.27 30697.36 31787.61 24187.57 28094.86 297
v114491.37 22990.60 22993.68 24593.89 31388.23 23896.84 17897.03 21188.37 24189.69 24194.39 27482.04 20697.98 25387.80 22985.37 30194.84 298
K. test v387.64 30286.75 30390.32 32893.02 33579.48 35496.61 20392.08 35790.66 17680.25 35394.09 29267.21 34496.65 33685.96 27080.83 34394.83 299
IterMVS90.15 27289.67 26791.61 30695.48 23783.72 31994.33 30296.12 26889.99 19387.31 30094.15 29175.78 29996.27 34086.97 25386.89 28994.83 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 26490.06 25491.83 29895.33 24983.74 31893.86 31696.70 23987.56 26787.79 28993.81 30283.45 17496.92 33187.39 24484.62 31594.82 301
IterMVS-SCA-FT90.31 26689.81 26191.82 29995.52 23584.20 31394.30 30396.15 26790.61 18087.39 29794.27 28375.80 29796.44 33787.34 24586.88 29094.82 301
WR-MVS_H92.00 20391.35 19993.95 22995.09 26489.47 19898.04 5798.68 891.46 15088.34 27594.68 26185.86 14197.56 29985.77 27284.24 32194.82 301
GG-mvs-BLEND93.62 24693.69 31989.20 21292.39 34383.33 37687.98 28889.84 35171.00 32496.87 33282.08 30995.40 17894.80 304
v14890.99 24690.38 23692.81 27893.83 31585.80 28896.78 18596.68 24089.45 20788.75 26993.93 29882.96 18797.82 27887.83 22883.25 33294.80 304
miper_ehance_all_eth91.59 21591.13 21192.97 27295.55 23486.57 27794.47 29496.88 22687.77 26088.88 26394.01 29486.22 13597.54 30189.49 19886.93 28694.79 306
XVG-ACMP-BASELINE90.93 25090.21 24893.09 26894.31 30285.89 28795.33 27497.26 18891.06 16689.38 25195.44 23368.61 33698.60 18989.46 19991.05 24694.79 306
DTE-MVSNet90.56 26189.75 26593.01 27093.95 31087.25 25997.64 10297.65 13990.74 17187.12 30195.68 22279.97 24397.00 32983.33 29781.66 34094.78 308
ACMH+87.92 1490.20 27089.18 27693.25 26296.48 19686.45 27896.99 16496.68 24088.83 22784.79 32696.22 19070.16 33098.53 19584.42 29088.04 27694.77 309
miper_enhance_ethall91.54 22091.01 21393.15 26695.35 24587.07 26693.97 31296.90 22386.79 28289.17 25993.43 31686.55 13097.64 29289.97 18686.93 28694.74 310
lessismore_v090.45 32691.96 35079.09 35887.19 37380.32 35294.39 27466.31 35097.55 30084.00 29376.84 35394.70 311
Patchmtry88.64 29387.25 29692.78 27994.09 30786.64 27389.82 35895.68 28480.81 34687.63 29392.36 33080.91 22397.03 32578.86 33185.12 30794.67 312
v7n90.76 25489.86 25893.45 25693.54 32287.60 25597.70 9397.37 17988.85 22587.65 29294.08 29381.08 22098.10 23484.68 28583.79 32994.66 313
V4291.58 21790.87 21693.73 24094.05 30988.50 23197.32 13396.97 21488.80 23189.71 23994.33 27882.54 19698.05 24489.01 21285.07 30894.64 314
v891.29 23590.53 23393.57 25094.15 30588.12 24397.34 13097.06 20688.99 21988.32 27694.26 28583.08 18098.01 25087.62 24083.92 32794.57 315
anonymousdsp92.16 19991.55 19393.97 22792.58 34289.55 19497.51 11397.42 17489.42 20888.40 27494.84 25380.66 22797.88 27391.87 15591.28 24094.48 316
pm-mvs190.72 25789.65 26993.96 22894.29 30389.63 18997.79 8096.82 23189.07 21686.12 31595.48 23278.61 26797.78 28186.97 25381.67 33994.46 317
LTVRE_ROB88.41 1390.99 24689.92 25794.19 21496.18 21089.55 19496.31 22897.09 20287.88 25585.67 31795.91 20578.79 26598.57 19381.50 31189.98 26094.44 318
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 31784.23 32190.78 32392.38 34782.46 32993.17 33095.14 31082.12 33667.69 36492.36 33078.16 27695.50 35377.31 33879.73 34594.39 319
PVSNet_BlendedMVS94.06 12193.92 11094.47 20298.27 9789.46 20096.73 18798.36 1790.17 18994.36 13095.24 23988.02 10799.58 7593.44 12490.72 25394.36 320
v1091.04 24490.23 24593.49 25294.12 30688.16 24297.32 13397.08 20388.26 24488.29 27894.22 28882.17 20597.97 25686.45 25984.12 32294.33 321
MDA-MVSNet-bldmvs85.00 32182.95 32591.17 31693.13 33483.33 32394.56 29295.00 31584.57 31465.13 36992.65 32270.45 32795.85 34573.57 35377.49 35194.33 321
MDA-MVSNet_test_wron85.87 31784.23 32190.80 32292.38 34782.57 32693.17 33095.15 30982.15 33567.65 36592.33 33378.20 27395.51 35277.33 33779.74 34494.31 323
our_test_388.78 29187.98 29091.20 31592.45 34582.53 32793.61 32595.69 28285.77 29684.88 32493.71 30479.99 24296.78 33579.47 32786.24 29194.28 324
pmmvs490.93 25089.85 25994.17 21593.34 32990.79 15994.60 29096.02 27084.62 31387.45 29495.15 24181.88 21197.45 31087.70 23387.87 27894.27 325
MVS_030488.79 29087.57 29292.46 28494.65 28686.15 28696.40 21897.17 19486.44 28688.02 28691.71 33956.68 36697.03 32584.47 28892.58 21694.19 326
ppachtmachnet_test88.35 29687.29 29591.53 30792.45 34583.57 32293.75 31995.97 27184.28 31685.32 32294.18 28979.00 26396.93 33075.71 34584.99 31194.10 327
UnsupCasMVSNet_eth85.99 31584.45 31990.62 32489.97 35982.40 33093.62 32497.37 17989.86 19578.59 35892.37 32765.25 35595.35 35482.27 30870.75 36394.10 327
pmmvs687.81 30186.19 30592.69 28191.32 35186.30 28097.34 13096.41 25680.59 34884.05 33594.37 27667.37 34397.67 28984.75 28479.51 34794.09 329
ITE_SJBPF92.43 28695.34 24685.37 29795.92 27291.47 14987.75 29196.39 18471.00 32497.96 26182.36 30789.86 26293.97 330
FMVSNet587.29 30485.79 30891.78 30294.80 27987.28 25795.49 26895.28 30284.09 31983.85 33791.82 33662.95 35994.17 36078.48 33285.34 30393.91 331
Anonymous2023120687.09 30586.14 30689.93 33291.22 35280.35 34496.11 24195.35 29883.57 32784.16 33193.02 31973.54 31295.61 34972.16 35786.14 29393.84 332
USDC88.94 28687.83 29192.27 28994.66 28584.96 30393.86 31695.90 27487.34 27283.40 33895.56 22767.43 34298.19 22082.64 30689.67 26493.66 333
D2MVS91.30 23490.95 21492.35 28794.71 28485.52 29296.18 23998.21 4488.89 22486.60 31093.82 30179.92 24497.95 26389.29 20490.95 24993.56 334
N_pmnet78.73 33278.71 33478.79 35092.80 33846.50 38194.14 30843.71 38478.61 35580.83 34791.66 34074.94 30396.36 33867.24 36584.45 31993.50 335
MIMVSNet184.93 32283.05 32490.56 32589.56 36284.84 30695.40 27195.35 29883.91 32080.38 35192.21 33457.23 36493.34 36570.69 36382.75 33893.50 335
TransMVSNet (Re)88.94 28687.56 29393.08 26994.35 29988.45 23397.73 8695.23 30687.47 26884.26 33095.29 23679.86 24597.33 31879.44 32974.44 35893.45 337
Baseline_NR-MVSNet91.20 23890.62 22892.95 27393.83 31588.03 24597.01 16395.12 31188.42 24089.70 24095.13 24383.47 17297.44 31189.66 19583.24 33393.37 338
CL-MVSNet_self_test86.31 31285.15 31489.80 33388.83 36581.74 33593.93 31596.22 26486.67 28385.03 32390.80 34478.09 27794.50 35774.92 34771.86 36293.15 339
TDRefinement86.53 30884.76 31891.85 29782.23 37384.25 31196.38 22195.35 29884.97 30984.09 33394.94 24765.76 35498.34 21184.60 28774.52 35792.97 340
KD-MVS_self_test85.95 31684.95 31588.96 33689.55 36379.11 35795.13 28496.42 25585.91 29484.07 33490.48 34570.03 33194.82 35680.04 32272.94 36192.94 341
ambc86.56 34583.60 37170.00 37185.69 36594.97 31780.60 35088.45 35437.42 37496.84 33382.69 30575.44 35692.86 342
MS-PatchMatch90.27 26789.77 26391.78 30294.33 30084.72 30795.55 26596.73 23386.17 29186.36 31295.28 23871.28 32297.80 27984.09 29198.14 11992.81 343
KD-MVS_2432*160084.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
miper_refine_blended84.81 32382.64 32691.31 31291.07 35385.34 29891.22 34795.75 27985.56 29983.09 34090.21 34767.21 34495.89 34377.18 34062.48 36992.69 344
tfpnnormal89.70 28088.40 28593.60 24795.15 26090.10 17497.56 10998.16 5487.28 27486.16 31494.63 26477.57 28398.05 24474.48 34884.59 31692.65 346
EG-PatchMatch MVS87.02 30685.44 31091.76 30492.67 34085.00 30296.08 24396.45 25483.41 32979.52 35593.49 31257.10 36597.72 28679.34 33090.87 25292.56 347
TinyColmap86.82 30785.35 31391.21 31494.91 27382.99 32593.94 31494.02 34183.58 32681.56 34594.68 26162.34 36198.13 22675.78 34487.35 28592.52 348
CMPMVSbinary62.92 2185.62 31984.92 31687.74 34189.14 36473.12 36894.17 30796.80 23273.98 36273.65 36394.93 24866.36 34897.61 29683.95 29491.28 24092.48 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 31485.40 31288.35 33790.12 35780.06 34995.90 25395.20 30788.59 23481.29 34693.62 31071.43 32192.65 36771.26 36181.17 34292.34 350
LF4IMVS87.94 29987.25 29689.98 33192.38 34780.05 35094.38 29995.25 30587.59 26684.34 32894.74 25964.31 35697.66 29184.83 28287.45 28192.23 351
Anonymous2024052186.42 31085.44 31089.34 33590.33 35679.79 35196.73 18795.92 27283.71 32583.25 33991.36 34263.92 35796.01 34178.39 33485.36 30292.22 352
MVS-HIRNet82.47 32981.21 33186.26 34695.38 24169.21 37288.96 36289.49 36766.28 36680.79 34874.08 37068.48 33797.39 31571.93 35895.47 17692.18 353
MVP-Stereo90.74 25690.08 25192.71 28093.19 33288.20 23995.86 25496.27 26186.07 29284.86 32594.76 25777.84 28197.75 28483.88 29598.01 12192.17 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 31384.45 31991.53 30788.34 36787.25 25994.47 29495.01 31483.47 32879.51 35689.61 35269.75 33395.71 34883.13 29976.73 35491.64 355
UnsupCasMVSNet_bld82.13 33079.46 33390.14 33088.00 36882.47 32890.89 35296.62 24878.94 35475.61 36084.40 36456.63 36796.31 33977.30 33966.77 36791.63 356
test_040286.46 30984.79 31791.45 30995.02 26685.55 29196.29 23094.89 32080.90 34382.21 34393.97 29768.21 33997.29 32062.98 36888.68 27391.51 357
PM-MVS83.48 32681.86 33088.31 33887.83 36977.59 36193.43 32691.75 35986.91 27980.63 34989.91 35044.42 37295.84 34685.17 28176.73 35491.50 358
new-patchmatchnet83.18 32781.87 32987.11 34386.88 37075.99 36493.70 32095.18 30885.02 30877.30 35988.40 35565.99 35293.88 36274.19 35270.18 36491.47 359
test_method66.11 33864.89 34069.79 35572.62 37835.23 38565.19 37392.83 35120.35 37665.20 36888.08 35943.14 37382.70 37373.12 35563.46 36891.45 360
OpenMVS_ROBcopyleft81.14 2084.42 32582.28 32890.83 31990.06 35884.05 31695.73 25994.04 34073.89 36380.17 35491.53 34159.15 36397.64 29266.92 36689.05 26890.80 361
LCM-MVSNet72.55 33369.39 33782.03 34870.81 38065.42 37590.12 35794.36 33655.02 37065.88 36781.72 36524.16 38189.96 36874.32 35168.10 36690.71 362
new_pmnet82.89 32881.12 33288.18 34089.63 36180.18 34891.77 34492.57 35376.79 36075.56 36288.23 35761.22 36294.48 35871.43 35982.92 33689.87 363
pmmvs379.97 33177.50 33587.39 34282.80 37279.38 35592.70 33990.75 36570.69 36578.66 35787.47 36251.34 37093.40 36473.39 35469.65 36589.38 364
PMMVS270.19 33566.92 33880.01 34976.35 37465.67 37486.22 36487.58 37264.83 36862.38 37080.29 36726.78 37988.49 37063.79 36754.07 37285.88 365
ANet_high63.94 33959.58 34277.02 35161.24 38266.06 37385.66 36687.93 37178.53 35642.94 37471.04 37125.42 38080.71 37452.60 37230.83 37584.28 366
EGC-MVSNET68.77 33663.01 34186.07 34792.49 34382.24 33293.96 31390.96 3640.71 3812.62 38290.89 34353.66 36893.46 36357.25 37084.55 31782.51 367
FPMVS71.27 33469.85 33675.50 35274.64 37559.03 37791.30 34691.50 36158.80 36957.92 37188.28 35629.98 37785.53 37253.43 37182.84 33781.95 368
DeepMVS_CXcopyleft74.68 35490.84 35564.34 37681.61 37865.34 36767.47 36688.01 36048.60 37180.13 37562.33 36973.68 36079.58 369
PMVScopyleft53.92 2258.58 34055.40 34368.12 35651.00 38348.64 37978.86 36987.10 37446.77 37235.84 37874.28 3698.76 38286.34 37142.07 37473.91 35969.38 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 34248.81 34766.58 35765.34 38157.50 37872.49 37170.94 38240.15 37539.28 37763.51 3736.89 38473.48 37838.29 37542.38 37368.76 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 33765.41 33975.18 35392.66 34173.45 36766.50 37294.52 33053.33 37157.80 37266.07 37230.81 37589.20 36948.15 37378.88 35062.90 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 34152.56 34555.43 35874.43 37647.13 38083.63 36876.30 37942.23 37342.59 37562.22 37428.57 37874.40 37631.53 37631.51 37444.78 373
EMVS52.08 34351.31 34654.39 35972.62 37845.39 38283.84 36775.51 38141.13 37440.77 37659.65 37530.08 37673.60 37728.31 37729.90 37644.18 374
tmp_tt51.94 34453.82 34446.29 36033.73 38445.30 38378.32 37067.24 38318.02 37750.93 37387.05 36352.99 36953.11 37970.76 36225.29 37740.46 375
test12313.04 34815.66 3515.18 3624.51 3863.45 38692.50 3421.81 3872.50 3807.58 38120.15 3783.67 3852.18 3827.13 3801.07 3809.90 376
testmvs13.36 34716.33 3504.48 3635.04 3852.26 38793.18 3293.28 3862.70 3798.24 38021.66 3772.29 3862.19 3817.58 3792.96 3799.00 377
wuyk23d25.11 34524.57 34926.74 36173.98 37739.89 38457.88 3749.80 38512.27 37810.39 3796.97 3817.03 38336.44 38025.43 37817.39 3783.89 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.24 34630.99 3480.00 3640.00 3870.00 3880.00 37597.63 1410.00 3820.00 38396.88 15184.38 1590.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.39 3509.85 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38288.65 1010.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.06 34910.74 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38396.69 1600.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.55 193.34 7399.29 198.35 2094.98 2798.49 15
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.05 4394.59 3298.08 6889.22 21397.03 5498.10 6892.52 3799.65 5794.58 10399.31 62
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
9.1496.75 3898.93 5197.73 8698.23 4291.28 15897.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
save fliter98.91 5394.28 3997.02 15998.02 9295.35 9
test072699.45 395.36 1398.31 2998.29 2694.92 2898.99 498.92 295.08 8
test_part299.28 2795.74 898.10 21
sam_mvs81.94 210
MTGPAbinary98.08 68
test_post192.81 33816.58 38080.53 23097.68 28886.20 262
test_post17.58 37981.76 21298.08 238
patchmatchnet-post90.45 34682.65 19598.10 234
MTMP97.86 7282.03 377
gm-plane-assit93.22 33178.89 35984.82 31193.52 31198.64 18587.72 230
TEST998.70 6494.19 4496.41 21598.02 9288.17 24696.03 8997.56 11692.74 2999.59 72
test_898.67 6694.06 5296.37 22298.01 9588.58 23595.98 9497.55 11892.73 3099.58 75
agg_prior98.67 6693.79 5898.00 9795.68 10499.57 83
test_prior493.66 6296.42 214
test_prior296.35 22392.80 11196.03 8997.59 11292.01 4695.01 8799.38 54
旧先验295.94 25181.66 33997.34 4098.82 16792.26 143
新几何295.79 257
原ACMM295.67 260
testdata299.67 5385.96 270
segment_acmp92.89 26
testdata195.26 28193.10 97
plane_prior796.21 20789.98 180
plane_prior696.10 21790.00 17681.32 218
plane_prior496.64 164
plane_prior390.00 17694.46 4791.34 195
plane_prior297.74 8494.85 30
plane_prior196.14 215
plane_prior89.99 17897.24 13994.06 5792.16 224
n20.00 388
nn0.00 388
door-mid91.06 363
test1197.88 111
door91.13 362
HQP5-MVS89.33 206
HQP-NCC95.86 22296.65 19793.55 7490.14 220
ACMP_Plane95.86 22296.65 19793.55 7490.14 220
BP-MVS92.13 149
HQP3-MVS97.39 17692.10 225
HQP2-MVS80.95 221
NP-MVS95.99 22189.81 18695.87 206
MDTV_nov1_ep1390.76 22395.22 25780.33 34593.03 33595.28 30288.14 24992.84 16693.83 29981.34 21798.08 23882.86 30194.34 195
ACMMP++_ref90.30 258
ACMMP++91.02 247
Test By Simon88.73 100