This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 42
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5293.10 195.72 882.99 197.44 589.07 996.63 494.88 11
IU-MVS95.30 271.25 6392.95 5666.81 24892.39 688.94 1196.63 494.85 16
test_241102_ONE95.30 270.98 7094.06 1277.17 5693.10 195.39 1182.99 197.27 10
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 5092.12 995.78 480.98 997.40 789.08 796.41 1293.33 86
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 6393.60 694.11 877.33 5092.81 395.79 380.98 9
test_one_060195.07 771.46 6194.14 778.27 3792.05 1195.74 680.83 11
test_part295.06 872.65 3391.80 13
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 6080.26 1387.78 3094.27 3675.89 2096.81 2287.45 1996.44 993.05 97
FOURS195.00 1072.39 4295.06 193.84 1874.49 12091.30 15
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4494.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6793.00 4780.90 988.06 2894.06 4676.43 1796.84 2088.48 1495.99 1994.34 37
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6884.66 6794.52 2368.81 8696.65 2984.53 4194.90 4594.00 52
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7184.45 7194.52 2369.09 8296.70 2684.37 4494.83 5194.03 49
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5496.48 894.88 11
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6884.91 5894.44 3070.78 6496.61 3284.53 4194.89 4693.66 68
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2993.24 3775.23 10084.91 5894.44 3070.78 6496.61 3283.75 5594.89 4693.66 68
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3393.49 2974.75 11488.33 2594.43 3273.27 4497.02 1684.18 5094.84 4993.82 62
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8793.82 1973.07 15384.86 6392.89 7276.22 1896.33 3984.89 3595.13 4194.40 34
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 31
DP-MVS Recon83.11 9282.09 9986.15 6894.44 2170.92 7688.79 11792.20 8870.53 19379.17 13791.03 11764.12 12796.03 5068.39 20190.14 11091.50 148
XVS87.18 3486.91 3888.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8694.17 4067.45 9596.60 3483.06 6294.50 5794.07 47
X-MVStestdata80.37 14877.83 18688.00 1594.42 2273.33 2092.78 1892.99 4979.14 2383.67 8612.47 37667.45 9596.60 3483.06 6294.50 5794.07 47
mPP-MVS86.67 4386.32 4787.72 3294.41 2473.55 1392.74 2092.22 8776.87 6582.81 9894.25 3866.44 10496.24 4282.88 6694.28 6393.38 83
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5492.83 6181.50 685.79 4693.47 5973.02 4797.00 1784.90 3394.94 4494.10 45
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6685.24 5294.32 3571.76 5696.93 1885.53 2995.79 2594.32 38
ZD-MVS94.38 2772.22 4892.67 6770.98 18487.75 3194.07 4574.01 4096.70 2684.66 3994.84 49
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2292.65 7077.57 4383.84 8394.40 3472.24 5296.28 4185.65 2895.30 4093.62 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3592.78 495.74 682.45 397.49 389.42 496.68 294.95 7
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 32
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6594.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2393.63 2474.77 11392.29 795.97 274.28 3697.24 1188.58 1396.91 194.87 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 4192.83 6173.01 15588.58 2394.52 2373.36 4296.49 3784.26 4695.01 4292.70 108
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 4286.27 4887.90 2194.22 3573.38 1990.22 7893.04 4375.53 9483.86 8294.42 3367.87 9296.64 3082.70 7194.57 5693.66 68
CP-MVS87.11 3586.92 3787.68 3794.20 3673.86 893.98 392.82 6476.62 7383.68 8594.46 2767.93 9095.95 5684.20 4994.39 6093.23 89
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7792.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 19192.02 9479.45 2085.88 4394.80 1668.07 8896.21 4386.69 2495.34 3693.23 89
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2593.43 3276.89 6484.68 6493.99 5070.67 6796.82 2184.18 5095.01 4293.90 57
SR-MVS86.73 3986.67 4186.91 5294.11 4072.11 5192.37 2792.56 7374.50 11986.84 3794.65 2067.31 9795.77 6084.80 3792.85 7592.84 106
114514_t80.68 13979.51 14384.20 12294.09 4167.27 15389.64 9491.11 13158.75 33174.08 24590.72 12258.10 19995.04 9569.70 18689.42 11990.30 189
test117286.20 5286.22 4986.12 7093.95 4269.89 9591.79 4392.28 8275.07 10586.40 4094.58 2265.00 12295.56 6584.34 4592.60 7892.90 104
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3493.33 3576.07 8583.81 8493.95 5169.77 7696.01 5285.15 3194.66 5394.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 7089.69 16874.31 12489.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
save fliter93.80 4472.35 4590.47 7091.17 12974.31 124
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6594.05 1570.80 18687.59 3393.51 5677.57 1496.63 3183.31 5795.77 2694.72 23
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 6093.59 2676.27 8288.14 2695.09 1571.06 6296.67 2887.67 1696.37 1494.09 46
HPM-MVS_fast85.35 6684.95 7186.57 6193.69 4870.58 8492.15 3691.62 11473.89 13582.67 10094.09 4462.60 14795.54 6880.93 8492.93 7393.57 78
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4992.35 8074.62 11888.90 2193.85 5275.75 2196.00 5387.80 1594.63 5495.04 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8993.50 2875.17 10386.34 4195.29 1270.86 6396.00 5388.78 1296.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 5685.39 6287.38 4493.59 5172.63 3492.74 2093.18 4176.78 6880.73 12293.82 5364.33 12596.29 4082.67 7290.69 10293.23 89
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3886.62 4287.76 2993.52 5272.37 4491.26 5093.04 4376.62 7384.22 7693.36 6171.44 6096.76 2480.82 8695.33 3894.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5885.29 6687.17 4893.49 5371.08 6888.58 12692.42 7868.32 23984.61 6893.48 5772.32 5196.15 4879.00 10095.43 3494.28 40
DP-MVS76.78 22974.57 24183.42 15093.29 5469.46 10688.55 12783.70 28363.98 28770.20 28088.89 17154.01 23394.80 10946.66 34381.88 21386.01 305
CPTT-MVS83.73 7883.33 8284.92 9693.28 5570.86 7792.09 3790.38 14668.75 23379.57 13392.83 7460.60 18693.04 18980.92 8591.56 9390.86 170
TEST993.26 5672.96 2688.75 11991.89 10368.44 23885.00 5693.10 6574.36 3595.41 76
train_agg86.43 4686.20 5087.13 4993.26 5672.96 2688.75 11991.89 10368.69 23485.00 5693.10 6574.43 3295.41 7684.97 3295.71 3093.02 99
test_893.13 5872.57 3688.68 12391.84 10768.69 23484.87 6293.10 6574.43 3295.16 87
新几何183.42 15093.13 5870.71 8085.48 25857.43 33981.80 10891.98 8863.28 13592.27 21264.60 23392.99 7287.27 278
112180.84 13079.77 13784.05 13093.11 6070.78 7984.66 23685.42 25957.37 34081.76 11192.02 8763.41 13394.12 13467.28 20992.93 7387.26 279
AdaColmapbinary80.58 14479.42 14584.06 12893.09 6168.91 11489.36 9788.97 19569.27 21675.70 21489.69 14657.20 21195.77 6063.06 24188.41 13187.50 273
SR-MVS-dyc-post85.77 5785.61 5986.23 6693.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2865.00 12295.56 6582.75 6791.87 8892.50 115
RE-MVS-def85.48 6093.06 6270.63 8291.88 3992.27 8373.53 14585.69 4794.45 2863.87 12982.75 6791.87 8892.50 115
原ACMM184.35 11693.01 6468.79 11592.44 7563.96 28881.09 11891.57 9966.06 11095.45 7267.19 21294.82 5288.81 247
CSCG86.41 4886.19 5187.07 5092.91 6572.48 3890.81 6193.56 2773.95 13283.16 9291.07 11475.94 1995.19 8679.94 9694.38 6193.55 79
agg_prior186.22 5186.09 5586.62 5992.85 6671.94 5488.59 12591.78 11068.96 22984.41 7293.18 6474.94 2794.93 9884.75 3895.33 3893.01 100
agg_prior92.85 6671.94 5491.78 11084.41 7294.93 98
9.1488.26 1592.84 6891.52 4794.75 173.93 13488.57 2494.67 1975.57 2495.79 5986.77 2395.76 28
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2394.74 275.71 9089.16 1995.10 1375.65 2296.19 4587.07 2196.01 1794.79 18
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4894.70 374.47 12188.86 2294.61 2175.23 2595.84 5886.62 2695.92 2194.78 20
MG-MVS83.41 8583.45 8083.28 15592.74 7162.28 25188.17 14389.50 17275.22 10181.49 11292.74 8066.75 10095.11 9072.85 16091.58 9292.45 118
APD-MVS_3200maxsize85.97 5485.88 5686.22 6792.69 7269.53 10291.93 3892.99 4973.54 14485.94 4294.51 2665.80 11495.61 6383.04 6492.51 8093.53 81
test1286.80 5592.63 7370.70 8191.79 10982.71 9971.67 5796.16 4794.50 5793.54 80
test_prior386.73 3986.86 4086.33 6392.61 7469.59 10088.85 11492.97 5475.41 9684.91 5893.54 5474.28 3695.48 7083.31 5795.86 2293.91 55
test_prior86.33 6392.61 7469.59 10092.97 5495.48 7093.91 55
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4293.19 4077.87 3890.32 1794.00 4874.83 2893.78 15087.63 1794.27 6493.65 73
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 9382.41 9384.82 10092.47 7766.37 16887.93 15291.80 10873.82 13677.32 17790.66 12367.90 9194.90 10470.37 17889.48 11893.19 93
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 10989.57 9593.39 3477.53 4789.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 27
abl_685.23 6784.95 7186.07 7192.23 7970.48 8590.80 6292.08 9273.51 14785.26 5194.16 4162.75 14695.92 5782.46 7491.30 9791.81 140
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2380.19 1488.10 2794.80 1673.76 4197.11 1387.51 1895.82 2494.90 10
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 7184.96 7085.45 8092.07 8168.07 13689.78 9090.86 13782.48 284.60 6993.20 6369.35 7995.22 8571.39 17090.88 10193.07 96
旧先验191.96 8265.79 18286.37 24893.08 6969.31 8192.74 7688.74 250
MSLP-MVS++85.43 6485.76 5884.45 11291.93 8370.24 8690.71 6392.86 5977.46 4984.22 7692.81 7667.16 9992.94 19180.36 9194.35 6290.16 193
LFMVS81.82 11081.23 11183.57 14791.89 8463.43 23389.84 8681.85 30777.04 6183.21 9093.10 6552.26 24593.43 17071.98 16589.95 11493.85 59
PLCcopyleft70.83 1178.05 20476.37 22283.08 16791.88 8567.80 14088.19 14289.46 17364.33 28169.87 28988.38 18553.66 23593.58 15958.86 27882.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 6186.15 5384.06 12891.71 8664.94 20086.47 19491.87 10573.63 14086.60 3993.02 7076.57 1691.87 22783.36 5692.15 8495.35 1
MVS_111021_HR85.14 6984.75 7386.32 6591.65 8772.70 3185.98 20690.33 15076.11 8482.08 10391.61 9871.36 6194.17 13381.02 8392.58 7992.08 131
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8872.45 4190.02 8294.37 471.76 16787.28 3494.27 3675.18 2696.08 4985.16 3095.77 2693.80 65
test22291.50 8968.26 13284.16 25283.20 29554.63 35179.74 13191.63 9758.97 19591.42 9486.77 291
TSAR-MVS + GP.85.71 5985.33 6386.84 5391.34 9072.50 3789.07 10787.28 23476.41 7585.80 4590.22 13474.15 3995.37 8281.82 7891.88 8792.65 112
MAR-MVS81.84 10980.70 12085.27 8491.32 9171.53 6089.82 8790.92 13469.77 20678.50 14986.21 24762.36 15394.52 11865.36 22692.05 8689.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3786.88 3987.69 3691.16 9272.32 4790.31 7593.94 1777.12 5882.82 9794.23 3972.13 5497.09 1484.83 3695.37 3593.65 73
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 6284.47 7688.51 691.08 9373.49 1793.18 1193.78 2180.79 1076.66 19293.37 6060.40 19096.75 2577.20 11993.73 6995.29 3
Anonymous20240521178.25 19677.01 20481.99 19891.03 9460.67 27084.77 23483.90 28170.65 19280.00 13091.20 10941.08 33691.43 23865.21 22785.26 16793.85 59
CS-MVS-test86.29 5086.48 4485.71 7791.02 9567.21 15592.36 2893.78 2178.97 3083.51 8991.20 10970.65 6895.15 8881.96 7794.89 4694.77 21
VDD-MVS83.01 9482.36 9584.96 9391.02 9566.40 16788.91 11188.11 21477.57 4384.39 7493.29 6252.19 24693.91 14577.05 12188.70 12694.57 29
API-MVS81.99 10781.23 11184.26 12190.94 9770.18 9291.10 5589.32 17671.51 17678.66 14688.28 18865.26 11795.10 9364.74 23291.23 9887.51 272
testdata79.97 24390.90 9864.21 21584.71 26759.27 32685.40 4992.91 7162.02 16089.08 28068.95 19491.37 9586.63 295
PHI-MVS86.43 4686.17 5287.24 4690.88 9970.96 7292.27 3294.07 1172.45 15885.22 5391.90 9069.47 7896.42 3883.28 6095.94 2094.35 36
VNet82.21 10282.41 9381.62 20490.82 10060.93 26584.47 24289.78 16476.36 8084.07 8091.88 9164.71 12490.26 26170.68 17588.89 12293.66 68
PVSNet_Blended_VisFu82.62 9881.83 10684.96 9390.80 10169.76 9788.74 12191.70 11369.39 21378.96 13988.46 18365.47 11694.87 10774.42 14288.57 12790.24 191
CS-MVS86.69 4186.95 3685.90 7590.76 10267.57 14692.83 1793.30 3679.67 1984.57 7092.27 8371.47 5995.02 9684.24 4893.46 7095.13 4
test_part182.78 9682.08 10084.89 9890.66 10366.97 16090.96 5992.93 5777.19 5580.53 12490.04 13863.44 13295.39 7876.04 13176.90 26292.31 122
Anonymous2024052980.19 15378.89 16284.10 12590.60 10464.75 20388.95 11090.90 13565.97 26380.59 12391.17 11149.97 27593.73 15669.16 19282.70 20493.81 63
h-mvs3383.15 8982.19 9786.02 7390.56 10570.85 7888.15 14589.16 18576.02 8684.67 6591.39 10561.54 16595.50 6982.71 6975.48 28591.72 142
Anonymous2023121178.97 18377.69 19382.81 18090.54 10664.29 21490.11 8191.51 11865.01 27376.16 20888.13 19750.56 26893.03 19069.68 18777.56 25691.11 160
LS3D76.95 22774.82 23983.37 15390.45 10767.36 15289.15 10586.94 24061.87 30769.52 29290.61 12451.71 25794.53 11746.38 34686.71 15288.21 259
VDDNet81.52 11880.67 12184.05 13090.44 10864.13 21789.73 9285.91 25471.11 18183.18 9193.48 5750.54 26993.49 16573.40 15488.25 13294.54 30
CNLPA78.08 20276.79 21181.97 19990.40 10971.07 6987.59 16184.55 27066.03 26272.38 26289.64 14857.56 20586.04 31059.61 27083.35 19288.79 248
PAPR81.66 11680.89 11883.99 13690.27 11064.00 21886.76 18791.77 11268.84 23277.13 18589.50 15267.63 9394.88 10667.55 20688.52 12993.09 95
Vis-MVSNetpermissive83.46 8482.80 9085.43 8190.25 11168.74 11990.30 7690.13 15676.33 8180.87 12192.89 7261.00 17994.20 13072.45 16490.97 9993.35 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 7284.29 7786.84 5390.20 11273.04 2487.12 17393.04 4369.80 20582.85 9691.22 10873.06 4696.02 5176.72 12794.63 5491.46 151
EPP-MVSNet83.40 8683.02 8684.57 10690.13 11364.47 21092.32 3090.73 13874.45 12379.35 13691.10 11269.05 8495.12 8972.78 16187.22 14494.13 44
CANet86.45 4586.10 5487.51 4090.09 11470.94 7489.70 9392.59 7281.78 481.32 11391.43 10470.34 6997.23 1284.26 4693.36 7194.37 35
test250677.30 22176.49 21879.74 24890.08 11552.02 34687.86 15663.10 37374.88 11080.16 12992.79 7738.29 34692.35 20968.74 19792.50 8194.86 14
ECVR-MVScopyleft79.61 16279.26 15280.67 23090.08 11554.69 33087.89 15477.44 34074.88 11080.27 12692.79 7748.96 29192.45 20368.55 19892.50 8194.86 14
HQP_MVS83.64 8183.14 8385.14 8790.08 11568.71 12191.25 5292.44 7579.12 2578.92 14191.00 11860.42 18895.38 7978.71 10386.32 15791.33 153
plane_prior790.08 11568.51 128
patch_mono-283.65 8084.54 7580.99 22390.06 11965.83 17984.21 25188.74 20571.60 17485.01 5492.44 8174.51 3083.50 32882.15 7692.15 8493.64 75
test111179.43 16979.18 15680.15 24089.99 12053.31 34387.33 16877.05 34375.04 10680.23 12892.77 7948.97 29092.33 21168.87 19592.40 8394.81 17
CHOSEN 1792x268877.63 21575.69 22683.44 14989.98 12168.58 12778.70 31387.50 23056.38 34575.80 21386.84 22358.67 19691.40 23961.58 25685.75 16690.34 188
IS-MVSNet83.15 8982.81 8984.18 12389.94 12263.30 23591.59 4488.46 21179.04 2779.49 13492.16 8565.10 11994.28 12367.71 20491.86 9094.95 7
plane_prior189.90 123
canonicalmvs85.91 5585.87 5786.04 7289.84 12469.44 10790.45 7393.00 4776.70 7288.01 2991.23 10773.28 4393.91 14581.50 8088.80 12494.77 21
plane_prior689.84 12468.70 12360.42 188
NP-MVS89.62 12668.32 13090.24 131
EIA-MVS83.31 8882.80 9084.82 10089.59 12765.59 18588.21 14192.68 6674.66 11678.96 13986.42 24369.06 8395.26 8475.54 13790.09 11193.62 76
HyFIR lowres test77.53 21675.40 23283.94 13989.59 12766.62 16480.36 29588.64 20856.29 34676.45 19585.17 26857.64 20493.28 17361.34 25983.10 19891.91 136
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 12762.99 24488.16 14491.51 11865.77 26477.14 18491.09 11360.91 18093.21 17550.26 32687.05 14692.17 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 23275.55 22979.33 25689.52 13056.99 30885.83 21383.23 29373.94 13376.32 20187.12 21951.89 25491.95 22248.33 33483.75 18589.07 230
GeoE81.71 11281.01 11683.80 14289.51 13164.45 21188.97 10988.73 20671.27 17978.63 14789.76 14566.32 10693.20 17769.89 18486.02 16293.74 66
alignmvs85.48 6285.32 6485.96 7489.51 13169.47 10489.74 9192.47 7476.17 8387.73 3291.46 10370.32 7093.78 15081.51 7988.95 12194.63 26
PS-MVSNAJ81.69 11381.02 11583.70 14489.51 13168.21 13484.28 25090.09 15770.79 18781.26 11785.62 25963.15 14094.29 12275.62 13588.87 12388.59 253
ACMP74.13 681.51 12080.57 12284.36 11589.42 13468.69 12489.97 8491.50 12174.46 12275.04 23590.41 12953.82 23494.54 11677.56 11582.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 23275.44 23079.68 25089.40 13557.16 30585.53 22183.23 29373.79 13876.26 20287.09 22051.89 25491.89 22548.05 33983.72 18890.00 205
ETV-MVS84.90 7484.67 7485.59 7989.39 13668.66 12588.74 12192.64 7179.97 1784.10 7985.71 25569.32 8095.38 7980.82 8691.37 9592.72 107
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13765.93 17684.95 23187.15 23773.56 14378.19 15989.79 14456.67 21493.36 17159.53 27186.74 15190.13 195
iter_conf_final80.63 14079.35 14984.46 11189.36 13867.70 14389.85 8584.49 27173.19 15178.30 15588.94 16845.98 30794.56 11479.59 9884.48 17691.11 160
Regformer-186.41 4886.33 4686.64 5889.33 13970.93 7588.43 12891.39 12382.14 386.65 3890.09 13674.39 3495.01 9783.97 5290.63 10393.97 53
Regformer-286.63 4486.53 4386.95 5189.33 13971.24 6788.43 12892.05 9382.50 186.88 3690.09 13674.45 3195.61 6384.38 4390.63 10394.01 51
HQP-NCC89.33 13989.17 10176.41 7577.23 180
ACMP_Plane89.33 13989.17 10176.41 7577.23 180
HQP-MVS82.61 9982.02 10284.37 11489.33 13966.98 15889.17 10192.19 8976.41 7577.23 18090.23 13260.17 19195.11 9077.47 11685.99 16391.03 164
DROMVSNet86.01 5386.38 4584.91 9789.31 14466.27 17092.32 3093.63 2479.37 2284.17 7891.88 9169.04 8595.43 7483.93 5393.77 6893.01 100
ACMM73.20 880.78 13879.84 13683.58 14689.31 14468.37 12989.99 8391.60 11570.28 19777.25 17889.66 14753.37 23793.53 16474.24 14582.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23675.44 23079.27 25789.28 14658.09 29081.69 28387.07 23859.53 32472.48 26086.67 23361.30 17289.33 27560.81 26380.15 23390.41 186
F-COLMAP76.38 23774.33 24682.50 19089.28 14666.95 16288.41 13189.03 19064.05 28566.83 31488.61 17846.78 30192.89 19257.48 29078.55 24687.67 267
LPG-MVS_test82.08 10481.27 11084.50 10989.23 14868.76 11790.22 7891.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
LGP-MVS_train84.50 10989.23 14868.76 11791.94 10175.37 9876.64 19391.51 10054.29 22994.91 10078.44 10583.78 18389.83 214
BH-untuned79.47 16778.60 16782.05 19689.19 15065.91 17786.07 20588.52 21072.18 16375.42 22187.69 20261.15 17693.54 16360.38 26486.83 15086.70 293
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 15168.03 13784.46 24490.02 15870.67 19081.30 11686.53 24163.17 13994.19 13175.60 13688.54 12888.57 254
test_yl81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
DCV-MVSNet81.17 12380.47 12583.24 15889.13 15263.62 22486.21 20189.95 16072.43 16181.78 10989.61 14957.50 20693.58 15970.75 17386.90 14892.52 113
tfpn200view976.42 23575.37 23479.55 25589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18589.07 230
thres40076.50 23275.37 23479.86 24589.13 15257.65 30085.17 22483.60 28473.41 14876.45 19586.39 24452.12 24791.95 22248.33 33483.75 18590.00 205
1112_ss77.40 21976.43 22080.32 23789.11 15660.41 27583.65 26087.72 22662.13 30573.05 25486.72 22762.58 14989.97 26562.11 25180.80 22490.59 180
Regformer-385.23 6785.07 6885.70 7888.95 15769.01 11188.29 13889.91 16280.95 885.01 5490.01 14072.45 5094.19 13182.50 7387.57 13693.90 57
Regformer-485.68 6085.45 6186.35 6288.95 15769.67 9988.29 13891.29 12581.73 585.36 5090.01 14072.62 4995.35 8383.28 6087.57 13694.03 49
Fast-Effi-MVS+80.81 13379.92 13483.47 14888.85 15964.51 20785.53 22189.39 17470.79 18778.49 15085.06 27167.54 9493.58 15967.03 21586.58 15392.32 121
PVSNet_BlendedMVS80.60 14280.02 13182.36 19388.85 15965.40 19086.16 20392.00 9769.34 21578.11 16186.09 25066.02 11194.27 12471.52 16782.06 21087.39 274
PVSNet_Blended80.98 12780.34 12782.90 17688.85 15965.40 19084.43 24692.00 9767.62 24378.11 16185.05 27266.02 11194.27 12471.52 16789.50 11789.01 237
MVS_111021_LR82.61 9982.11 9884.11 12488.82 16271.58 5985.15 22686.16 25174.69 11580.47 12591.04 11562.29 15490.55 25980.33 9290.08 11290.20 192
BH-w/o78.21 19877.33 20080.84 22688.81 16365.13 19784.87 23287.85 22469.75 20774.52 24184.74 27561.34 17193.11 18458.24 28585.84 16584.27 323
FIs82.07 10582.42 9281.04 22288.80 16458.34 28888.26 14093.49 2976.93 6378.47 15191.04 11569.92 7492.34 21069.87 18584.97 16992.44 119
OPM-MVS83.50 8382.95 8785.14 8788.79 16570.95 7389.13 10691.52 11777.55 4680.96 12091.75 9360.71 18294.50 11979.67 9786.51 15589.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 16679.22 15480.27 23888.79 16558.35 28785.06 22888.61 20978.56 3277.65 17088.34 18663.81 13190.66 25864.98 23077.22 25891.80 141
OMC-MVS82.69 9781.97 10484.85 9988.75 16767.42 14987.98 14890.87 13674.92 10979.72 13291.65 9562.19 15793.96 13875.26 13986.42 15693.16 94
hse-mvs281.72 11180.94 11784.07 12788.72 16867.68 14485.87 21087.26 23576.02 8684.67 6588.22 19161.54 16593.48 16682.71 6973.44 31191.06 162
AUN-MVS79.21 17677.60 19584.05 13088.71 16967.61 14585.84 21287.26 23569.08 22477.23 18088.14 19653.20 23993.47 16775.50 13873.45 31091.06 162
ACMH67.68 1675.89 24273.93 24981.77 20288.71 16966.61 16588.62 12489.01 19269.81 20466.78 31586.70 23241.95 33391.51 23755.64 30278.14 25287.17 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 19578.45 17078.07 27488.64 17151.78 34986.70 18879.63 32874.14 13075.11 23290.83 12161.29 17389.75 26858.10 28691.60 9192.69 110
PatchMatch-RL72.38 27670.90 27676.80 29288.60 17267.38 15179.53 30376.17 34662.75 29969.36 29482.00 31045.51 31384.89 31953.62 30980.58 22778.12 356
ACMH+68.96 1476.01 24174.01 24882.03 19788.60 17265.31 19488.86 11387.55 22870.25 19867.75 30387.47 20941.27 33493.19 17958.37 28375.94 27887.60 269
LTVRE_ROB69.57 1376.25 23874.54 24381.41 20988.60 17264.38 21379.24 30689.12 18970.76 18969.79 29187.86 19949.09 28793.20 17756.21 30180.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 6585.30 6585.77 7688.49 17567.93 13885.52 22393.44 3178.70 3183.63 8889.03 16774.57 2995.71 6280.26 9394.04 6693.66 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 10181.65 10784.29 12088.47 17667.73 14285.81 21492.35 8075.78 8978.33 15486.58 23864.01 12894.35 12176.05 13087.48 14190.79 171
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17588.46 17763.46 23187.13 17292.37 7980.19 1478.38 15289.14 16371.66 5893.05 18770.05 18176.46 27092.25 125
ab-mvs79.51 16578.97 16181.14 21988.46 17760.91 26683.84 25789.24 18170.36 19579.03 13888.87 17263.23 13890.21 26365.12 22882.57 20592.28 124
FC-MVSNet-test81.52 11882.02 10280.03 24288.42 17955.97 32487.95 15093.42 3377.10 5977.38 17590.98 12069.96 7391.79 22868.46 20084.50 17492.33 120
Effi-MVS+83.62 8283.08 8485.24 8588.38 18067.45 14888.89 11289.15 18675.50 9582.27 10188.28 18869.61 7794.45 12077.81 11387.84 13493.84 61
UniMVSNet (Re)81.60 11781.11 11383.09 16688.38 18064.41 21287.60 16093.02 4678.42 3478.56 14888.16 19269.78 7593.26 17469.58 18876.49 26991.60 143
VPNet78.69 18878.66 16678.76 26388.31 18255.72 32684.45 24586.63 24476.79 6778.26 15690.55 12659.30 19389.70 27066.63 21677.05 26090.88 169
TR-MVS77.44 21776.18 22381.20 21788.24 18363.24 23684.61 24086.40 24767.55 24477.81 16686.48 24254.10 23193.15 18157.75 28982.72 20387.20 280
EI-MVSNet-Vis-set84.19 7583.81 7885.31 8288.18 18467.85 13987.66 15989.73 16780.05 1682.95 9389.59 15170.74 6694.82 10880.66 9084.72 17293.28 88
baseline176.98 22676.75 21477.66 27988.13 18555.66 32785.12 22781.89 30573.04 15476.79 18888.90 17062.43 15287.78 29963.30 24071.18 32689.55 223
test_040272.79 27370.44 28079.84 24688.13 18565.99 17585.93 20884.29 27565.57 26767.40 30885.49 26146.92 30092.61 19835.88 36474.38 30180.94 348
tttt051779.40 17177.91 18383.90 14188.10 18763.84 22188.37 13584.05 27971.45 17776.78 18989.12 16449.93 27894.89 10570.18 18083.18 19692.96 103
VPA-MVSNet80.60 14280.55 12380.76 22888.07 18860.80 26886.86 18191.58 11675.67 9380.24 12789.45 15863.34 13490.25 26270.51 17779.22 24491.23 157
UGNet80.83 13279.59 14284.54 10888.04 18968.09 13589.42 9688.16 21376.95 6276.22 20389.46 15649.30 28593.94 14168.48 19990.31 10691.60 143
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 19278.49 16978.56 26688.02 19056.38 31988.43 12892.67 6777.14 5773.89 24687.55 20666.25 10789.24 27758.92 27773.55 30990.06 203
QAPM80.88 12879.50 14485.03 9088.01 19168.97 11391.59 4492.00 9766.63 25575.15 23192.16 8557.70 20395.45 7263.52 23688.76 12590.66 176
3Dnovator76.31 583.38 8782.31 9686.59 6087.94 19272.94 2990.64 6492.14 9177.21 5475.47 21792.83 7458.56 19794.72 11273.24 15792.71 7792.13 130
EI-MVSNet-UG-set83.81 7783.38 8185.09 8987.87 19367.53 14787.44 16589.66 16979.74 1882.23 10289.41 16070.24 7194.74 11179.95 9583.92 18292.99 102
TranMVSNet+NR-MVSNet80.84 13080.31 12882.42 19187.85 19462.33 24987.74 15891.33 12480.55 1177.99 16489.86 14265.23 11892.62 19767.05 21475.24 29492.30 123
iter_conf0580.00 15878.70 16483.91 14087.84 19565.83 17988.84 11684.92 26671.61 17378.70 14388.94 16843.88 31994.56 11479.28 9984.28 17991.33 153
CP-MVSNet78.22 19778.34 17477.84 27687.83 19654.54 33287.94 15191.17 12977.65 4073.48 24988.49 18262.24 15688.43 29162.19 24874.07 30290.55 181
DU-MVS81.12 12580.52 12482.90 17687.80 19763.46 23187.02 17691.87 10579.01 2878.38 15289.07 16565.02 12093.05 18770.05 18176.46 27092.20 127
NR-MVSNet80.23 15179.38 14782.78 18487.80 19763.34 23486.31 19891.09 13279.01 2872.17 26489.07 16567.20 9892.81 19666.08 22175.65 28192.20 127
TAMVS78.89 18577.51 19783.03 17087.80 19767.79 14184.72 23585.05 26367.63 24276.75 19087.70 20162.25 15590.82 25458.53 28287.13 14590.49 183
thres20075.55 24674.47 24478.82 26287.78 20057.85 29783.07 27283.51 28772.44 16075.84 21284.42 27752.08 24991.75 22947.41 34183.64 18986.86 289
PS-CasMVS78.01 20678.09 17977.77 27887.71 20154.39 33488.02 14791.22 12677.50 4873.26 25188.64 17760.73 18188.41 29261.88 25273.88 30690.53 182
PCF-MVS73.52 780.38 14778.84 16385.01 9187.71 20168.99 11283.65 26091.46 12263.00 29477.77 16890.28 13066.10 10895.09 9461.40 25788.22 13390.94 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 17177.76 19084.31 11987.69 20365.10 19887.36 16684.26 27770.04 20077.42 17488.26 19049.94 27694.79 11070.20 17984.70 17393.03 98
RRT_MVS80.35 14979.22 15483.74 14387.63 20465.46 18991.08 5688.92 19873.82 13676.44 19890.03 13949.05 28994.25 12976.84 12379.20 24591.51 146
GBi-Net78.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
test178.40 19377.40 19881.40 21087.60 20563.01 24188.39 13289.28 17771.63 17075.34 22487.28 21154.80 22191.11 24562.72 24279.57 23790.09 199
FMVSNet278.20 19977.21 20181.20 21787.60 20562.89 24587.47 16489.02 19171.63 17075.29 22887.28 21154.80 22191.10 24862.38 24679.38 24189.61 221
CDS-MVSNet79.07 18077.70 19283.17 16287.60 20568.23 13384.40 24886.20 25067.49 24576.36 20086.54 24061.54 16590.79 25561.86 25387.33 14290.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 20777.15 20280.36 23587.57 20960.21 27783.37 26787.78 22566.11 25975.37 22387.06 22263.27 13690.48 26061.38 25882.43 20690.40 187
mvsmamba81.69 11380.74 11984.56 10787.45 21066.72 16391.26 5085.89 25574.66 11678.23 15790.56 12554.33 22894.91 10080.73 8983.54 19092.04 134
xiu_mvs_v1_base_debu80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
xiu_mvs_v1_base_debi80.80 13579.72 13984.03 13387.35 21170.19 8985.56 21688.77 20169.06 22581.83 10588.16 19250.91 26392.85 19378.29 10987.56 13889.06 232
MVSFormer82.85 9582.05 10185.24 8587.35 21170.21 8790.50 6890.38 14668.55 23681.32 11389.47 15461.68 16293.46 16878.98 10190.26 10892.05 132
lupinMVS81.39 12180.27 13084.76 10387.35 21170.21 8785.55 21986.41 24662.85 29781.32 11388.61 17861.68 16292.24 21478.41 10790.26 10891.83 138
baseline84.93 7284.98 6984.80 10287.30 21665.39 19287.30 16992.88 5877.62 4184.04 8192.26 8471.81 5593.96 13881.31 8190.30 10795.03 6
PAPM77.68 21476.40 22181.51 20787.29 21761.85 25683.78 25889.59 17064.74 27571.23 27288.70 17462.59 14893.66 15752.66 31387.03 14789.01 237
LCM-MVSNet-Re77.05 22476.94 20777.36 28487.20 21851.60 35080.06 29880.46 32075.20 10267.69 30486.72 22762.48 15088.98 28263.44 23889.25 12091.51 146
casdiffmvs85.11 7085.14 6785.01 9187.20 21865.77 18387.75 15792.83 6177.84 3984.36 7592.38 8272.15 5393.93 14481.27 8290.48 10595.33 2
bld_raw_conf00581.08 12679.99 13284.35 11687.16 22066.17 17291.08 5684.98 26575.09 10477.71 16990.54 12750.04 27394.91 10079.96 9483.32 19391.98 135
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28180.81 22787.13 22165.63 18488.30 13784.19 27862.96 29563.80 33887.69 20238.04 34792.56 20046.66 34374.91 29684.24 324
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 21177.69 19377.84 27687.07 22253.91 33787.91 15391.18 12877.56 4573.14 25388.82 17361.23 17489.17 27859.95 26772.37 31790.43 185
MVS_Test83.15 8983.06 8583.41 15286.86 22363.21 23786.11 20492.00 9774.31 12482.87 9589.44 15970.03 7293.21 17577.39 11888.50 13093.81 63
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22460.24 27687.28 17088.79 20074.25 12776.84 18690.53 12849.48 28291.56 23467.98 20282.15 20993.29 87
FMVSNet377.88 20976.85 20980.97 22486.84 22562.36 24886.52 19388.77 20171.13 18075.34 22486.66 23454.07 23291.10 24862.72 24279.57 23789.45 224
FMVSNet177.44 21776.12 22481.40 21086.81 22663.01 24188.39 13289.28 17770.49 19474.39 24287.28 21149.06 28891.11 24560.91 26178.52 24790.09 199
nrg03083.88 7683.53 7984.96 9386.77 22769.28 10890.46 7292.67 6774.79 11282.95 9391.33 10672.70 4893.09 18580.79 8879.28 24392.50 115
ET-MVSNet_ETH3D78.63 18976.63 21784.64 10586.73 22869.47 10485.01 22984.61 26969.54 21166.51 32086.59 23650.16 27291.75 22976.26 12884.24 18092.69 110
jason81.39 12180.29 12984.70 10486.63 22969.90 9485.95 20786.77 24263.24 29081.07 11989.47 15461.08 17892.15 21678.33 10890.07 11392.05 132
jason: jason.
test_low_dy_conf_00180.11 15479.08 15883.17 16286.54 23064.59 20590.19 8089.19 18469.61 21075.86 21190.23 13249.52 28193.59 15878.26 11282.32 20891.34 152
PS-MVSNAJss82.07 10581.31 10984.34 11886.51 23167.27 15389.27 9991.51 11871.75 16879.37 13590.22 13463.15 14094.27 12477.69 11482.36 20791.49 149
WTY-MVS75.65 24575.68 22775.57 30086.40 23256.82 31077.92 32182.40 30265.10 27076.18 20587.72 20063.13 14380.90 34060.31 26581.96 21189.00 239
DTE-MVSNet76.99 22576.80 21077.54 28386.24 23353.06 34587.52 16290.66 13977.08 6072.50 25988.67 17660.48 18789.52 27257.33 29370.74 32890.05 204
PVSNet64.34 1872.08 27970.87 27875.69 29886.21 23456.44 31774.37 33980.73 31562.06 30670.17 28282.23 30642.86 32483.31 33054.77 30584.45 17787.32 277
tfpnnormal74.39 25473.16 25778.08 27386.10 23558.05 29184.65 23987.53 22970.32 19671.22 27385.63 25854.97 22089.86 26643.03 35575.02 29586.32 297
IterMVS-LS80.06 15579.38 14782.11 19585.89 23663.20 23886.79 18489.34 17574.19 12875.45 22086.72 22766.62 10192.39 20672.58 16276.86 26490.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 20178.33 17577.61 28185.79 23756.21 32286.78 18585.76 25673.60 14277.93 16587.57 20565.02 12088.99 28167.14 21375.33 29187.63 268
cascas76.72 23074.64 24082.99 17285.78 23865.88 17882.33 27789.21 18260.85 31372.74 25681.02 31547.28 29893.75 15467.48 20785.02 16889.34 226
MVS78.19 20076.99 20681.78 20185.66 23966.99 15784.66 23690.47 14455.08 35072.02 26685.27 26563.83 13094.11 13666.10 22089.80 11584.24 324
XVG-OURS80.41 14679.23 15383.97 13785.64 24069.02 11083.03 27390.39 14571.09 18277.63 17191.49 10254.62 22791.35 24075.71 13383.47 19191.54 145
CANet_DTU80.61 14179.87 13582.83 17885.60 24163.17 24087.36 16688.65 20776.37 7975.88 21088.44 18453.51 23693.07 18673.30 15589.74 11692.25 125
XVG-OURS-SEG-HR80.81 13379.76 13883.96 13885.60 24168.78 11683.54 26590.50 14370.66 19176.71 19191.66 9460.69 18391.26 24276.94 12281.58 21691.83 138
TransMVSNet (Re)75.39 25074.56 24277.86 27585.50 24357.10 30786.78 18586.09 25372.17 16471.53 27087.34 21063.01 14489.31 27656.84 29761.83 35187.17 281
MVP-Stereo76.12 23974.46 24581.13 22085.37 24469.79 9684.42 24787.95 22065.03 27267.46 30685.33 26453.28 23891.73 23158.01 28783.27 19481.85 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 22075.38 23383.18 16185.27 24563.80 22282.11 27983.27 29265.06 27175.91 20983.84 28549.54 28094.27 12467.24 21186.19 15991.48 150
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12685.17 24669.91 9390.57 6690.97 13366.70 25172.17 26491.91 8954.70 22593.96 13861.81 25490.95 10088.41 257
AllTest70.96 28468.09 29679.58 25385.15 24763.62 22484.58 24179.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
TestCases79.58 25385.15 24763.62 22479.83 32662.31 30360.32 34886.73 22532.02 36088.96 28450.28 32471.57 32486.15 301
Effi-MVS+-dtu80.03 15678.57 16884.42 11385.13 24968.74 11988.77 11888.10 21574.99 10774.97 23683.49 29157.27 20993.36 17173.53 15080.88 22291.18 158
mvs-test180.88 12879.40 14685.29 8385.13 24969.75 9889.28 9888.10 21574.99 10776.44 19886.72 22757.27 20994.26 12873.53 15083.18 19691.87 137
SixPastTwentyTwo73.37 26471.26 27479.70 24985.08 25157.89 29685.57 21583.56 28671.03 18365.66 32485.88 25242.10 33192.57 19959.11 27563.34 34988.65 252
bld_raw_dy_0_6477.29 22275.98 22581.22 21685.04 25265.47 18888.14 14677.56 33769.20 22073.77 24789.40 16242.24 33088.85 28776.78 12581.64 21589.33 227
EG-PatchMatch MVS74.04 25971.82 26780.71 22984.92 25367.42 14985.86 21188.08 21766.04 26164.22 33483.85 28435.10 35592.56 20057.44 29180.83 22382.16 342
IB-MVS68.01 1575.85 24373.36 25583.31 15484.76 25466.03 17383.38 26685.06 26270.21 19969.40 29381.05 31445.76 31194.66 11365.10 22975.49 28489.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 17877.77 18983.22 16084.70 25566.37 16889.17 10190.19 15469.38 21475.40 22289.46 15644.17 31793.15 18176.78 12580.70 22690.14 194
jajsoiax79.29 17477.96 18183.27 15684.68 25666.57 16689.25 10090.16 15569.20 22075.46 21989.49 15345.75 31293.13 18376.84 12380.80 22490.11 197
MIMVSNet70.69 28669.30 28574.88 30784.52 25756.35 32075.87 33179.42 32964.59 27667.76 30282.41 30241.10 33581.54 33746.64 34581.34 21786.75 292
MSDG73.36 26670.99 27580.49 23384.51 25865.80 18180.71 29186.13 25265.70 26565.46 32583.74 28844.60 31590.91 25351.13 31976.89 26384.74 319
mvs_anonymous79.42 17079.11 15780.34 23684.45 25957.97 29482.59 27587.62 22767.40 24676.17 20788.56 18168.47 8789.59 27170.65 17686.05 16193.47 82
EI-MVSNet80.52 14579.98 13382.12 19484.28 26063.19 23986.41 19588.95 19674.18 12978.69 14487.54 20766.62 10192.43 20472.57 16380.57 22890.74 174
CVMVSNet72.99 27172.58 26174.25 31384.28 26050.85 35586.41 19583.45 29044.56 36173.23 25287.54 20749.38 28385.70 31265.90 22278.44 24986.19 300
pm-mvs177.25 22376.68 21678.93 26184.22 26258.62 28686.41 19588.36 21271.37 17873.31 25088.01 19861.22 17589.15 27964.24 23473.01 31489.03 236
EPNet83.72 7982.92 8886.14 6984.22 26269.48 10391.05 5885.27 26081.30 776.83 18791.65 9566.09 10995.56 6576.00 13293.85 6793.38 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v879.97 15979.02 16082.80 18184.09 26464.50 20987.96 14990.29 15374.13 13175.24 22986.81 22462.88 14593.89 14774.39 14375.40 28990.00 205
v1079.74 16178.67 16582.97 17484.06 26564.95 19987.88 15590.62 14073.11 15275.11 23286.56 23961.46 16894.05 13773.68 14875.55 28389.90 211
SCA74.22 25772.33 26479.91 24484.05 26662.17 25279.96 30079.29 33066.30 25872.38 26280.13 32451.95 25288.60 28959.25 27377.67 25588.96 241
test_djsdf80.30 15079.32 15083.27 15683.98 26765.37 19390.50 6890.38 14668.55 23676.19 20488.70 17456.44 21593.46 16878.98 10180.14 23490.97 167
131476.53 23175.30 23680.21 23983.93 26862.32 25084.66 23688.81 19960.23 31770.16 28384.07 28255.30 21990.73 25767.37 20883.21 19587.59 271
MS-PatchMatch73.83 26172.67 26077.30 28683.87 26966.02 17481.82 28084.66 26861.37 31168.61 29982.82 29847.29 29788.21 29359.27 27284.32 17877.68 357
v114480.03 15679.03 15983.01 17183.78 27064.51 20787.11 17490.57 14271.96 16678.08 16386.20 24861.41 16993.94 14174.93 14077.23 25790.60 179
OurMVSNet-221017-074.26 25672.42 26379.80 24783.76 27159.59 28185.92 20986.64 24366.39 25766.96 31187.58 20439.46 34091.60 23265.76 22469.27 33288.22 258
v2v48280.23 15179.29 15183.05 16983.62 27264.14 21687.04 17589.97 15973.61 14178.18 16087.22 21561.10 17793.82 14876.11 12976.78 26791.18 158
XXY-MVS75.41 24975.56 22874.96 30683.59 27357.82 29880.59 29383.87 28266.54 25674.93 23788.31 18763.24 13780.09 34362.16 24976.85 26586.97 287
v119279.59 16478.43 17283.07 16883.55 27464.52 20686.93 17990.58 14170.83 18577.78 16785.90 25159.15 19493.94 14173.96 14777.19 25990.76 172
EGC-MVSNET52.07 33447.05 33867.14 34383.51 27560.71 26980.50 29467.75 3660.07 3790.43 38075.85 35124.26 36781.54 33728.82 36762.25 35059.16 367
v7n78.97 18377.58 19683.14 16483.45 27665.51 18688.32 13691.21 12773.69 13972.41 26186.32 24657.93 20093.81 14969.18 19175.65 28190.11 197
v14419279.47 16778.37 17382.78 18483.35 27763.96 21986.96 17790.36 14969.99 20177.50 17285.67 25760.66 18493.77 15274.27 14476.58 26890.62 177
tpm273.26 26771.46 26978.63 26483.34 27856.71 31380.65 29280.40 32156.63 34473.55 24882.02 30951.80 25691.24 24356.35 30078.42 25087.95 261
v192192079.22 17578.03 18082.80 18183.30 27963.94 22086.80 18390.33 15069.91 20377.48 17385.53 26058.44 19893.75 15473.60 14976.85 26590.71 175
baseline275.70 24473.83 25281.30 21383.26 28061.79 25882.57 27680.65 31666.81 24866.88 31283.42 29257.86 20292.19 21563.47 23779.57 23789.91 210
v124078.99 18277.78 18882.64 18783.21 28163.54 22886.62 19090.30 15269.74 20977.33 17685.68 25657.04 21293.76 15373.13 15876.92 26190.62 177
XVG-ACMP-BASELINE76.11 24074.27 24781.62 20483.20 28264.67 20483.60 26389.75 16669.75 20771.85 26787.09 22032.78 35992.11 21769.99 18380.43 23088.09 260
MDTV_nov1_ep1369.97 28483.18 28353.48 34077.10 32580.18 32560.45 31469.33 29580.44 32148.89 29286.90 30451.60 31778.51 248
PatchmatchNetpermissive73.12 26971.33 27278.49 26983.18 28360.85 26779.63 30278.57 33264.13 28271.73 26879.81 32951.20 26185.97 31157.40 29276.36 27588.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 20576.49 21882.62 18883.16 28566.96 16186.94 17887.45 23272.45 15871.49 27184.17 28054.79 22491.58 23367.61 20580.31 23189.30 228
gg-mvs-nofinetune69.95 29467.96 29775.94 29683.07 28654.51 33377.23 32470.29 35963.11 29270.32 27962.33 36243.62 32088.69 28853.88 30887.76 13584.62 322
MVSTER79.01 18177.88 18582.38 19283.07 28664.80 20284.08 25688.95 19669.01 22878.69 14487.17 21854.70 22592.43 20474.69 14180.57 22889.89 212
K. test v371.19 28268.51 29079.21 25983.04 28857.78 29984.35 24976.91 34472.90 15762.99 34182.86 29739.27 34191.09 25061.65 25552.66 36388.75 249
eth_miper_zixun_eth77.92 20876.69 21581.61 20683.00 28961.98 25483.15 26989.20 18369.52 21274.86 23884.35 27861.76 16192.56 20071.50 16972.89 31590.28 190
diffmvs82.10 10381.88 10582.76 18683.00 28963.78 22383.68 25989.76 16572.94 15682.02 10489.85 14365.96 11390.79 25582.38 7587.30 14393.71 67
FMVSNet569.50 29667.96 29774.15 31482.97 29155.35 32880.01 29982.12 30462.56 30163.02 33981.53 31136.92 35081.92 33548.42 33374.06 30385.17 315
c3_l78.75 18677.91 18381.26 21482.89 29261.56 26084.09 25589.13 18869.97 20275.56 21584.29 27966.36 10592.09 21873.47 15375.48 28590.12 196
sss73.60 26273.64 25373.51 31782.80 29355.01 32976.12 32781.69 30862.47 30274.68 24085.85 25457.32 20878.11 35060.86 26280.93 22187.39 274
GA-MVS76.87 22875.17 23781.97 19982.75 29462.58 24681.44 28786.35 24972.16 16574.74 23982.89 29646.20 30692.02 22068.85 19681.09 22091.30 156
v14878.72 18777.80 18781.47 20882.73 29561.96 25586.30 19988.08 21773.26 15076.18 20585.47 26262.46 15192.36 20871.92 16673.82 30790.09 199
IterMVS-SCA-FT75.43 24873.87 25180.11 24182.69 29664.85 20181.57 28583.47 28969.16 22270.49 27784.15 28151.95 25288.15 29469.23 19072.14 32087.34 276
miper_ehance_all_eth78.59 19177.76 19081.08 22182.66 29761.56 26083.65 26089.15 18668.87 23175.55 21683.79 28766.49 10392.03 21973.25 15676.39 27289.64 220
CostFormer75.24 25173.90 25079.27 25782.65 29858.27 28980.80 28882.73 30061.57 30875.33 22783.13 29455.52 21791.07 25164.98 23078.34 25188.45 255
EPNet_dtu75.46 24774.86 23877.23 28882.57 29954.60 33186.89 18083.09 29671.64 16966.25 32285.86 25355.99 21688.04 29654.92 30486.55 15489.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 26871.46 26978.54 26782.50 30059.85 27882.18 27882.84 29958.96 32871.15 27489.41 16045.48 31484.77 32058.82 27971.83 32291.02 166
cl____77.72 21276.76 21280.58 23182.49 30160.48 27383.09 27087.87 22269.22 21874.38 24385.22 26762.10 15891.53 23571.09 17175.41 28889.73 219
DIV-MVS_self_test77.72 21276.76 21280.58 23182.48 30260.48 27383.09 27087.86 22369.22 21874.38 24385.24 26662.10 15891.53 23571.09 17175.40 28989.74 218
tpm cat170.57 28768.31 29277.35 28582.41 30357.95 29578.08 31880.22 32452.04 35668.54 30077.66 34352.00 25187.84 29851.77 31572.07 32186.25 298
cl2278.07 20377.01 20481.23 21582.37 30461.83 25783.55 26487.98 21968.96 22975.06 23483.87 28361.40 17091.88 22673.53 15076.39 27289.98 208
MVS_030472.48 27470.89 27777.24 28782.20 30559.68 27984.11 25483.49 28867.10 24766.87 31380.59 32035.00 35687.40 30159.07 27679.58 23684.63 321
tpm72.37 27771.71 26874.35 31282.19 30652.00 34779.22 30777.29 34164.56 27772.95 25583.68 29051.35 25983.26 33158.33 28475.80 27987.81 265
tpmvs71.09 28369.29 28676.49 29382.04 30756.04 32378.92 31181.37 31164.05 28567.18 31078.28 33849.74 27989.77 26749.67 32972.37 31783.67 329
pmmvs474.03 26071.91 26680.39 23481.96 30868.32 13081.45 28682.14 30359.32 32569.87 28985.13 26952.40 24388.13 29560.21 26674.74 29884.73 320
TinyColmap67.30 31064.81 31474.76 30981.92 30956.68 31480.29 29781.49 31060.33 31556.27 36083.22 29324.77 36687.66 30045.52 34969.47 33179.95 352
ITE_SJBPF78.22 27181.77 31060.57 27183.30 29169.25 21767.54 30587.20 21636.33 35287.28 30354.34 30674.62 29986.80 290
miper_enhance_ethall77.87 21076.86 20880.92 22581.65 31161.38 26282.68 27488.98 19365.52 26875.47 21782.30 30465.76 11592.00 22172.95 15976.39 27289.39 225
MVS-HIRNet59.14 32857.67 33163.57 34681.65 31143.50 36971.73 34465.06 37039.59 36651.43 36457.73 36638.34 34582.58 33439.53 36173.95 30464.62 365
GG-mvs-BLEND75.38 30381.59 31355.80 32579.32 30569.63 36167.19 30973.67 35543.24 32188.90 28650.41 32184.50 17481.45 345
IterMVS74.29 25572.94 25978.35 27081.53 31463.49 23081.58 28482.49 30168.06 24169.99 28683.69 28951.66 25885.54 31365.85 22371.64 32386.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 31464.71 31571.90 32481.45 31563.52 22957.98 36668.95 36553.57 35262.59 34376.70 34646.22 30575.29 36255.25 30379.68 23576.88 359
gm-plane-assit81.40 31653.83 33862.72 30080.94 31792.39 20663.40 239
pmmvs674.69 25373.39 25478.61 26581.38 31757.48 30386.64 18987.95 22064.99 27470.18 28186.61 23550.43 27089.52 27262.12 25070.18 33088.83 246
test-LLR72.94 27272.43 26274.48 31081.35 31858.04 29278.38 31477.46 33866.66 25269.95 28779.00 33348.06 29479.24 34466.13 21884.83 17086.15 301
test-mter71.41 28170.39 28274.48 31081.35 31858.04 29278.38 31477.46 33860.32 31669.95 28779.00 33336.08 35379.24 34466.13 21884.83 17086.15 301
CR-MVSNet73.37 26471.27 27379.67 25181.32 32065.19 19575.92 32980.30 32259.92 32072.73 25781.19 31252.50 24186.69 30559.84 26877.71 25387.11 285
RPMNet73.51 26370.49 27982.58 18981.32 32065.19 19575.92 32992.27 8357.60 33872.73 25776.45 34852.30 24495.43 7448.14 33877.71 25387.11 285
V4279.38 17378.24 17782.83 17881.10 32265.50 18785.55 21989.82 16371.57 17578.21 15886.12 24960.66 18493.18 18075.64 13475.46 28789.81 216
lessismore_v078.97 26081.01 32357.15 30665.99 36861.16 34682.82 29839.12 34291.34 24159.67 26946.92 36888.43 256
Patchmtry70.74 28569.16 28775.49 30280.72 32454.07 33674.94 33880.30 32258.34 33270.01 28481.19 31252.50 24186.54 30653.37 31071.09 32785.87 308
PatchT68.46 30567.85 29970.29 33380.70 32543.93 36872.47 34274.88 34960.15 31870.55 27576.57 34749.94 27681.59 33650.58 32074.83 29785.34 311
USDC70.33 29068.37 29176.21 29580.60 32656.23 32179.19 30886.49 24560.89 31261.29 34585.47 26231.78 36289.47 27453.37 31076.21 27682.94 339
tpmrst72.39 27572.13 26573.18 32180.54 32749.91 35879.91 30179.08 33163.11 29271.69 26979.95 32655.32 21882.77 33365.66 22573.89 30586.87 288
anonymousdsp78.60 19077.15 20282.98 17380.51 32867.08 15687.24 17189.53 17165.66 26675.16 23087.19 21752.52 24092.25 21377.17 12079.34 24289.61 221
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29377.65 28080.26 32959.41 28385.01 22982.96 29858.76 33065.43 32682.33 30337.63 34991.23 24445.34 35176.03 27782.32 340
Anonymous2023120668.60 30267.80 30171.02 33180.23 33050.75 35678.30 31780.47 31956.79 34366.11 32382.63 30146.35 30478.95 34643.62 35475.70 28083.36 332
miper_lstm_enhance74.11 25873.11 25877.13 28980.11 33159.62 28072.23 34386.92 24166.76 25070.40 27882.92 29556.93 21382.92 33269.06 19372.63 31688.87 244
MIMVSNet168.58 30366.78 31073.98 31580.07 33251.82 34880.77 28984.37 27264.40 27959.75 35182.16 30736.47 35183.63 32742.73 35670.33 32986.48 296
ADS-MVSNet266.20 31963.33 32174.82 30879.92 33358.75 28567.55 35875.19 34853.37 35365.25 32875.86 34942.32 32780.53 34241.57 35868.91 33485.18 313
ADS-MVSNet64.36 32362.88 32568.78 34079.92 33347.17 36367.55 35871.18 35753.37 35365.25 32875.86 34942.32 32773.99 36641.57 35868.91 33485.18 313
D2MVS74.82 25273.21 25679.64 25279.81 33562.56 24780.34 29687.35 23364.37 28068.86 29682.66 30046.37 30390.10 26467.91 20381.24 21986.25 298
our_test_369.14 29867.00 30875.57 30079.80 33658.80 28477.96 31977.81 33559.55 32362.90 34278.25 33947.43 29683.97 32451.71 31667.58 33883.93 328
ppachtmachnet_test70.04 29367.34 30678.14 27279.80 33661.13 26379.19 30880.59 31759.16 32765.27 32779.29 33046.75 30287.29 30249.33 33066.72 33986.00 307
dp66.80 31165.43 31370.90 33279.74 33848.82 36175.12 33674.77 35059.61 32264.08 33577.23 34442.89 32380.72 34148.86 33266.58 34183.16 334
EPMVS69.02 29968.16 29471.59 32579.61 33949.80 36077.40 32366.93 36762.82 29870.01 28479.05 33145.79 31077.86 35256.58 29875.26 29387.13 284
PVSNet_057.27 2061.67 32759.27 33068.85 33979.61 33957.44 30468.01 35773.44 35555.93 34758.54 35370.41 35944.58 31677.55 35347.01 34235.91 36971.55 362
CL-MVSNet_self_test72.37 27771.46 26975.09 30579.49 34153.53 33980.76 29085.01 26469.12 22370.51 27682.05 30857.92 20184.13 32352.27 31466.00 34387.60 269
Patchmatch-test64.82 32263.24 32269.57 33579.42 34249.82 35963.49 36469.05 36451.98 35759.95 35080.13 32450.91 26370.98 36840.66 36073.57 30887.90 263
MDA-MVSNet-bldmvs66.68 31263.66 32075.75 29779.28 34360.56 27273.92 34078.35 33364.43 27850.13 36579.87 32844.02 31883.67 32646.10 34756.86 35883.03 337
TESTMET0.1,169.89 29569.00 28872.55 32279.27 34456.85 30978.38 31474.71 35257.64 33768.09 30177.19 34537.75 34876.70 35563.92 23584.09 18184.10 327
N_pmnet52.79 33353.26 33451.40 35378.99 3457.68 38469.52 3513.89 38451.63 35857.01 35774.98 35340.83 33765.96 37137.78 36364.67 34680.56 351
EU-MVSNet68.53 30467.61 30471.31 33078.51 34647.01 36484.47 24284.27 27642.27 36266.44 32184.79 27440.44 33883.76 32558.76 28068.54 33783.17 333
pmmvs571.55 28070.20 28375.61 29977.83 34756.39 31881.74 28280.89 31257.76 33667.46 30684.49 27649.26 28685.32 31657.08 29575.29 29285.11 316
test0.0.03 168.00 30667.69 30368.90 33877.55 34847.43 36275.70 33272.95 35666.66 25266.56 31682.29 30548.06 29475.87 35944.97 35274.51 30083.41 331
Patchmatch-RL test70.24 29167.78 30277.61 28177.43 34959.57 28271.16 34570.33 35862.94 29668.65 29872.77 35650.62 26785.49 31469.58 18866.58 34187.77 266
pmmvs-eth3d70.50 28967.83 30078.52 26877.37 35066.18 17181.82 28081.51 30958.90 32963.90 33780.42 32242.69 32586.28 30958.56 28165.30 34583.11 335
JIA-IIPM66.32 31662.82 32676.82 29177.09 35161.72 25965.34 36175.38 34758.04 33564.51 33262.32 36342.05 33286.51 30751.45 31869.22 33382.21 341
Gipumacopyleft45.18 33741.86 34055.16 35177.03 35251.52 35132.50 37280.52 31832.46 37027.12 37135.02 3729.52 37975.50 36022.31 37260.21 35638.45 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 32062.92 32371.37 32775.93 35356.73 31169.09 35674.73 35157.28 34154.03 36277.89 34045.88 30874.39 36549.89 32861.55 35282.99 338
YYNet165.03 32062.91 32471.38 32675.85 35456.60 31569.12 35574.66 35357.28 34154.12 36177.87 34145.85 30974.48 36449.95 32761.52 35383.05 336
PMMVS69.34 29768.67 28971.35 32975.67 35562.03 25375.17 33373.46 35450.00 35968.68 29779.05 33152.07 25078.13 34961.16 26082.77 20173.90 360
testgi66.67 31366.53 31167.08 34475.62 35641.69 37175.93 32876.50 34566.11 25965.20 33086.59 23635.72 35474.71 36343.71 35373.38 31284.84 318
test20.0367.45 30866.95 30968.94 33775.48 35744.84 36777.50 32277.67 33666.66 25263.01 34083.80 28647.02 29978.40 34842.53 35768.86 33683.58 330
KD-MVS_2432*160066.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
miper_refine_blended66.22 31763.89 31873.21 31875.47 35853.42 34170.76 34884.35 27364.10 28366.52 31878.52 33634.55 35784.98 31750.40 32250.33 36681.23 346
Anonymous2024052168.80 30167.22 30773.55 31674.33 36054.11 33583.18 26885.61 25758.15 33361.68 34480.94 31730.71 36381.27 33957.00 29673.34 31385.28 312
KD-MVS_self_test68.81 30067.59 30572.46 32374.29 36145.45 36577.93 32087.00 23963.12 29163.99 33678.99 33542.32 32784.77 32056.55 29964.09 34887.16 283
PM-MVS66.41 31564.14 31773.20 32073.92 36256.45 31678.97 31064.96 37163.88 28964.72 33180.24 32319.84 37183.44 32966.24 21764.52 34779.71 353
UnsupCasMVSNet_bld63.70 32561.53 32970.21 33473.69 36351.39 35372.82 34181.89 30555.63 34857.81 35571.80 35838.67 34378.61 34749.26 33152.21 36480.63 349
UnsupCasMVSNet_eth67.33 30965.99 31271.37 32773.48 36451.47 35275.16 33485.19 26165.20 26960.78 34780.93 31942.35 32677.20 35457.12 29453.69 36285.44 310
TDRefinement67.49 30764.34 31676.92 29073.47 36561.07 26484.86 23382.98 29759.77 32158.30 35485.13 26926.06 36587.89 29747.92 34060.59 35581.81 344
ambc75.24 30473.16 36650.51 35763.05 36587.47 23164.28 33377.81 34217.80 37289.73 26957.88 28860.64 35485.49 309
CMPMVSbinary51.72 2170.19 29268.16 29476.28 29473.15 36757.55 30279.47 30483.92 28048.02 36056.48 35984.81 27343.13 32286.42 30862.67 24581.81 21484.89 317
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet61.73 32661.73 32861.70 34772.74 36824.50 38169.16 35478.03 33461.40 30956.72 35875.53 35238.42 34476.48 35745.95 34857.67 35784.13 326
LF4IMVS64.02 32462.19 32769.50 33670.90 36953.29 34476.13 32677.18 34252.65 35558.59 35280.98 31623.55 36876.52 35653.06 31266.66 34078.68 355
new_pmnet50.91 33550.29 33652.78 35268.58 37034.94 37663.71 36356.63 37539.73 36544.95 36665.47 36121.93 36958.48 37234.98 36556.62 35964.92 364
DSMNet-mixed57.77 33056.90 33260.38 34867.70 37135.61 37469.18 35353.97 37632.30 37157.49 35679.88 32740.39 33968.57 37038.78 36272.37 31776.97 358
FPMVS53.68 33251.64 33559.81 34965.08 37251.03 35469.48 35269.58 36241.46 36340.67 36772.32 35716.46 37470.00 36924.24 37165.42 34458.40 368
pmmvs357.79 32954.26 33368.37 34164.02 37356.72 31275.12 33665.17 36940.20 36452.93 36369.86 36020.36 37075.48 36145.45 35055.25 36172.90 361
wuyk23d16.82 34615.94 34919.46 36058.74 37431.45 37739.22 3703.74 3856.84 3766.04 3792.70 3791.27 38424.29 37910.54 37814.40 3782.63 376
PMMVS240.82 33938.86 34246.69 35453.84 37516.45 38248.61 36949.92 37737.49 36731.67 36960.97 3658.14 38156.42 37328.42 36830.72 37167.19 363
LCM-MVSNet54.25 33149.68 33767.97 34253.73 37645.28 36666.85 36080.78 31435.96 36839.45 36862.23 3648.70 38078.06 35148.24 33751.20 36580.57 350
E-PMN31.77 34030.64 34335.15 35752.87 37727.67 37857.09 36747.86 37824.64 37216.40 37733.05 37311.23 37754.90 37414.46 37618.15 37422.87 373
EMVS30.81 34229.65 34434.27 35850.96 37825.95 38056.58 36846.80 37924.01 37315.53 37830.68 37412.47 37654.43 37512.81 37717.05 37522.43 374
ANet_high50.57 33646.10 33963.99 34548.67 37939.13 37270.99 34780.85 31361.39 31031.18 37057.70 36717.02 37373.65 36731.22 36615.89 37679.18 354
MVEpermissive26.22 2330.37 34325.89 34743.81 35544.55 38035.46 37528.87 37339.07 38018.20 37418.58 37640.18 3712.68 38347.37 37717.07 37523.78 37348.60 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 33840.28 34155.82 35040.82 38142.54 37065.12 36263.99 37234.43 36924.48 37257.12 3683.92 38276.17 35817.10 37455.52 36048.75 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 35940.17 38226.90 37924.59 38317.44 37523.95 37348.61 3709.77 37826.48 37818.06 37324.47 37228.83 372
test_method31.52 34129.28 34538.23 35627.03 3836.50 38520.94 37462.21 3744.05 37722.35 37552.50 36913.33 37547.58 37627.04 37034.04 37060.62 366
tmp_tt18.61 34521.40 34810.23 3614.82 38410.11 38334.70 37130.74 3821.48 37823.91 37426.07 37528.42 36413.41 38027.12 36915.35 3777.17 375
testmvs6.04 3498.02 3520.10 3630.08 3850.03 38769.74 3500.04 3860.05 3800.31 3811.68 3800.02 3860.04 3810.24 3790.02 3790.25 378
test1236.12 3488.11 3510.14 3620.06 3860.09 38671.05 3460.03 3870.04 3810.25 3821.30 3810.05 3850.03 3820.21 3800.01 3800.29 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
eth-test20.00 387
eth-test0.00 387
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k19.96 34426.61 3460.00 3640.00 3870.00 3880.00 37589.26 1800.00 3820.00 38388.61 17861.62 1640.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas5.26 3507.02 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38263.15 1400.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.23 3479.64 3500.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38386.72 2270.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
PC_three_145268.21 24092.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 7
test_241102_TWO94.06 1277.24 5292.78 495.72 881.26 897.44 589.07 996.58 694.26 41
test_0728_THIRD78.38 3592.12 995.78 481.46 797.40 789.42 496.57 794.67 24
GSMVS88.96 241
sam_mvs151.32 26088.96 241
sam_mvs50.01 274
MTGPAbinary92.02 94
test_post178.90 3125.43 37848.81 29385.44 31559.25 273
test_post5.46 37750.36 27184.24 322
patchmatchnet-post74.00 35451.12 26288.60 289
MTMP92.18 3532.83 381
test9_res84.90 3395.70 3192.87 105
agg_prior282.91 6595.45 3392.70 108
test_prior472.60 3589.01 108
test_prior288.85 11475.41 9684.91 5893.54 5474.28 3683.31 5795.86 22
旧先验286.56 19258.10 33487.04 3588.98 28274.07 146
新几何286.29 200
无先验87.48 16388.98 19360.00 31994.12 13467.28 20988.97 240
原ACMM286.86 181
testdata291.01 25262.37 247
segment_acmp73.08 45
testdata184.14 25375.71 90
plane_prior592.44 7595.38 7978.71 10386.32 15791.33 153
plane_prior491.00 118
plane_prior368.60 12678.44 3378.92 141
plane_prior291.25 5279.12 25
plane_prior68.71 12190.38 7477.62 4186.16 160
n20.00 388
nn0.00 388
door-mid69.98 360
test1192.23 86
door69.44 363
HQP5-MVS66.98 158
BP-MVS77.47 116
HQP4-MVS77.24 17995.11 9091.03 164
HQP3-MVS92.19 8985.99 163
HQP2-MVS60.17 191
MDTV_nov1_ep13_2view37.79 37375.16 33455.10 34966.53 31749.34 28453.98 30787.94 262
ACMMP++_ref81.95 212
ACMMP++81.25 218
Test By Simon64.33 125