This table lists the benchmark results for the low-res two-view scenario. This benchmark evaluates the Middlebury stereo metrics (for all metrics, smaller is better):

The mask determines whether the metric is evaluated for all pixels with ground truth, or only for pixels which are visible in both images (non-occluded).
The coverage selector allows to limit the table to results for all pixels (dense), or a given minimum fraction of pixels.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click one or more dataset result cells or column headers to show visualizations. Most visualizations are only available for training datasets. The visualizations may not work with mobile browsers.




Method Infoalllakes. 1llakes. 1ssand box 1lsand box 1sstora. room 1lstora. room 1sstora. room 2lstora. room 2sstora. room 2 1lstora. room 2 1sstora. room 2 2lstora. room 2 2sstora. room 3lstora. room 3stunnel 1ltunnel 1stunnel 2ltunnel 2stunnel 3ltunnel 3s
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DepthFocustwo views0.08
85
0.04
1
0.15
441
0.12
7
0.09
355
0.07
43
0.12
100
0.10
35
0.05
4
0.09
183
0.05
7
0.07
124
0.04
1
0.08
25
0.08
25
0.06
168
0.05
276
0.07
312
0.07
393
0.05
170
0.04
73
Selective-IGEV-i32two views0.07
7
0.06
117
0.08
57
0.17
309
0.06
28
0.08
85
0.12
100
0.13
115
0.07
15
0.08
131
0.07
65
0.06
42
0.04
1
0.10
124
0.09
104
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
MatchStereocopylefttwo views0.07
7
0.04
1
0.08
57
0.14
70
0.06
28
0.05
4
0.12
100
0.12
85
0.09
52
0.07
75
0.06
23
0.04
1
0.04
1
0.08
25
0.09
104
0.06
168
0.05
276
0.05
50
0.03
1
0.04
48
0.04
73
Tingman Yan, Tao Liu, Xilian Yang, Qunfei Zhao, Zeyang Xia: MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching. Arxiv, 2025
GASTEREOtwo views0.08
85
0.05
43
0.09
123
0.19
472
0.07
134
0.07
43
0.12
100
0.14
146
0.11
110
0.10
230
0.09
161
0.07
124
0.04
1
0.12
295
0.08
25
0.06
168
0.05
276
0.05
50
0.04
60
0.04
48
0.05
207
MSCFtwo views0.08
85
0.05
43
0.08
57
0.19
472
0.08
220
0.06
14
0.12
100
0.14
146
0.11
110
0.10
230
0.09
161
0.07
124
0.04
1
0.11
199
0.08
25
0.06
168
0.05
276
0.05
50
0.04
60
0.05
170
0.05
207
LG-Stereo_L1two views0.07
7
0.05
43
0.11
252
0.14
70
0.06
28
0.07
43
0.13
179
0.09
21
0.07
15
0.05
2
0.04
1
0.05
5
0.04
1
0.08
25
0.07
1
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
MLG-Stereo_test2two views0.06
1
0.04
1
0.10
189
0.15
124
0.05
2
0.07
43
0.11
64
0.09
21
0.04
2
0.06
25
0.05
7
0.06
42
0.04
1
0.08
25
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.05
170
0.05
207
SCVtwo views0.08
85
0.09
440
0.08
57
0.15
124
0.08
220
0.10
202
0.13
179
0.10
35
0.12
149
0.07
75
0.07
65
0.06
42
0.04
1
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.04
60
0.06
293
0.04
73
FoundationStereotwo views0.06
1
0.04
1
0.08
57
0.12
7
0.05
2
0.09
139
0.13
179
0.06
1
0.09
52
0.05
2
0.05
7
0.06
42
0.04
1
0.06
1
0.07
1
0.06
168
0.04
25
0.05
50
0.03
1
0.05
170
0.04
73
AIO_rvctwo views0.07
7
0.06
117
0.08
57
0.15
124
0.06
28
0.08
85
0.14
246
0.09
21
0.08
25
0.07
75
0.08
125
0.07
124
0.04
1
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
GIP-stereotwo views0.08
85
0.06
117
0.11
252
0.14
70
0.06
28
0.09
139
0.13
179
0.14
146
0.11
110
0.07
75
0.08
125
0.05
5
0.04
1
0.10
124
0.07
1
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
IGEV-BASED-STEREO-two views0.09
176
0.10
503
0.31
619
0.15
124
0.06
28
0.08
85
0.14
246
0.10
35
0.10
77
0.07
75
0.07
65
0.06
42
0.04
1
0.11
199
0.07
1
0.12
588
0.04
25
0.07
312
0.05
192
0.05
170
0.05
207
Selective-IGEVtwo views0.07
7
0.06
117
0.08
57
0.17
309
0.06
28
0.08
85
0.12
100
0.13
115
0.07
15
0.08
131
0.07
65
0.06
42
0.04
1
0.10
124
0.09
104
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
depth_test_26two views0.08
85
0.04
1
0.11
252
0.13
22
0.07
134
0.07
43
0.11
64
0.12
85
0.11
110
0.09
183
0.07
65
0.08
186
0.05
14
0.09
59
0.08
25
0.08
426
0.06
430
0.06
200
0.06
293
0.06
293
0.07
400
MGAtwo views0.07
7
0.04
1
0.10
189
0.13
22
0.06
28
0.08
85
0.09
20
0.12
85
0.08
25
0.05
2
0.06
23
0.06
42
0.05
14
0.10
124
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.05
170
0.05
207
CARtwo views0.07
7
0.05
43
0.08
57
0.14
70
0.06
28
0.07
43
0.08
7
0.12
85
0.08
25
0.05
2
0.06
23
0.05
5
0.05
14
0.10
124
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
MSE-Stereotwo views0.07
7
0.04
1
0.08
57
0.13
22
0.06
28
0.07
43
0.08
7
0.12
85
0.08
25
0.05
2
0.06
23
0.05
5
0.05
14
0.10
124
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
aanet-new-40ktwo views0.07
7
0.08
358
0.07
11
0.17
309
0.07
134
0.08
85
0.13
179
0.10
35
0.10
77
0.07
75
0.08
125
0.06
42
0.05
14
0.08
25
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
aanet-new-36ktwo views0.08
85
0.06
117
0.09
123
0.17
309
0.06
28
0.09
139
0.13
179
0.11
58
0.13
192
0.08
131
0.08
125
0.06
42
0.05
14
0.09
59
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
aanet-new-34ktwo views0.08
85
0.06
117
0.09
123
0.17
309
0.05
2
0.07
43
0.13
179
0.12
85
0.12
149
0.09
183
0.08
125
0.07
124
0.05
14
0.10
124
0.09
104
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
GCAP-Stereo-DPT26Ktwo views0.07
7
0.06
117
0.07
11
0.16
222
0.06
28
0.08
85
0.12
100
0.10
35
0.08
25
0.06
25
0.09
161
0.06
42
0.05
14
0.08
25
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
GCAP-Stereo-DPT-20Ktwo views0.07
7
0.05
43
0.11
252
0.15
124
0.06
28
0.07
43
0.13
179
0.09
21
0.11
110
0.07
75
0.08
125
0.06
42
0.05
14
0.09
59
0.07
1
0.05
51
0.05
276
0.05
50
0.04
60
0.03
1
0.04
73
GCAP-Stereo-DPT-24Ktwo views0.07
7
0.06
117
0.07
11
0.15
124
0.06
28
0.10
202
0.15
334
0.12
85
0.11
110
0.06
25
0.11
248
0.06
42
0.05
14
0.09
59
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
GCAP-Stereo-DPT-50Ktwo views0.08
85
0.06
117
0.17
508
0.15
124
0.06
28
0.06
14
0.13
179
0.13
115
0.13
192
0.07
75
0.07
65
0.06
42
0.05
14
0.08
25
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
GCAP-Stereo-DPT-25Ktwo views0.08
85
0.06
117
0.07
11
0.16
222
0.06
28
0.06
14
0.14
246
0.14
146
0.14
225
0.07
75
0.10
197
0.06
42
0.05
14
0.09
59
0.09
104
0.04
11
0.04
25
0.04
1
0.04
60
0.03
1
0.03
2
PipStereotwo views0.07
7
0.04
1
0.09
123
0.13
22
0.05
2
0.08
85
0.11
64
0.06
1
0.06
6
0.06
25
0.05
7
0.08
186
0.05
14
0.08
25
0.09
104
0.06
168
0.04
25
0.04
1
0.03
1
0.05
170
0.04
73
PSi22btwo views0.06
1
0.04
1
0.09
123
0.13
22
0.05
2
0.08
85
0.11
64
0.06
1
0.06
6
0.06
25
0.06
23
0.08
186
0.05
14
0.08
25
0.09
104
0.06
168
0.04
25
0.04
1
0.03
1
0.05
170
0.04
73
PSi22atwo views0.06
1
0.04
1
0.09
123
0.12
7
0.05
2
0.06
14
0.11
64
0.06
1
0.06
6
0.06
25
0.06
23
0.06
42
0.05
14
0.08
25
0.09
104
0.07
343
0.04
25
0.04
1
0.03
1
0.05
170
0.04
73
Foundation-i32two views0.06
1
0.04
1
0.09
123
0.13
22
0.04
1
0.06
14
0.12
100
0.06
1
0.05
4
0.06
25
0.05
7
0.05
5
0.05
14
0.07
4
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
Test_v1two views0.07
7
0.04
1
0.06
5
0.13
22
0.06
28
0.08
85
0.11
64
0.15
188
0.12
149
0.06
25
0.05
7
0.04
1
0.05
14
0.08
25
0.10
208
0.07
343
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
Pro-Stereotwo views0.07
7
0.05
43
0.08
57
0.15
124
0.07
134
0.08
85
0.12
100
0.07
7
0.07
15
0.06
25
0.06
23
0.05
5
0.05
14
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
BStereobinarytwo views0.08
85
0.06
117
0.16
477
0.15
124
0.08
220
0.07
43
0.09
20
0.15
188
0.16
291
0.06
25
0.07
65
0.07
124
0.05
14
0.09
59
0.11
291
0.04
11
0.05
276
0.05
50
0.07
393
0.04
48
0.04
73
Anonymus123two views0.09
176
0.06
117
0.16
477
0.15
124
0.08
220
0.11
256
0.09
20
0.18
302
0.16
291
0.06
25
0.07
65
0.07
124
0.05
14
0.09
59
0.11
291
0.04
11
0.05
276
0.05
50
0.07
393
0.04
48
0.04
73
VIP-Stereotwo views0.07
7
0.07
239
0.07
11
0.15
124
0.06
28
0.12
310
0.10
35
0.11
58
0.11
110
0.06
25
0.07
65
0.06
42
0.05
14
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.03
1
0.03
1
0.02
1
GEAStereotwo views0.08
85
0.05
43
0.08
57
0.13
22
0.08
220
0.08
85
0.14
246
0.10
35
0.09
52
0.08
131
0.10
197
0.06
42
0.05
14
0.11
199
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.05
207
GSStereotwo views0.08
85
0.05
43
0.08
57
0.13
22
0.08
220
0.08
85
0.14
246
0.11
58
0.12
149
0.08
131
0.10
197
0.05
5
0.05
14
0.11
199
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.05
207
GS-Stereotwo views0.14
246
0.11
58
0.12
149
0.08
131
0.10
197
0.05
5
0.05
14
0.11
199
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.05
207
gasm-ftwo views0.08
85
0.05
43
0.07
11
0.13
22
0.08
220
0.08
85
0.14
246
0.10
35
0.09
52
0.08
131
0.10
197
0.06
42
0.05
14
0.10
124
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.06
293
0.05
207
252Zero-FEtwo views0.08
85
0.04
1
0.09
123
0.13
22
0.07
134
0.12
310
0.11
64
0.13
115
0.14
225
0.06
25
0.05
7
0.06
42
0.05
14
0.09
59
0.10
208
0.06
168
0.04
25
0.04
1
0.03
1
0.05
170
0.06
310
asdatwo views0.07
7
0.08
358
0.08
57
0.16
222
0.06
28
0.06
14
0.10
35
0.16
228
0.10
77
0.06
25
0.06
23
0.05
5
0.05
14
0.10
124
0.10
208
0.03
1
0.03
1
0.04
1
0.03
1
0.04
48
0.03
2
IGEVbinarytwo views0.07
7
0.04
1
0.08
57
0.13
22
0.06
28
0.09
139
0.12
100
0.14
146
0.10
77
0.06
25
0.09
161
0.07
124
0.05
14
0.09
59
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
111111two views0.07
7
0.04
1
0.09
123
0.17
309
0.06
28
0.05
4
0.10
35
0.11
58
0.09
52
0.06
25
0.06
23
0.07
124
0.05
14
0.09
59
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.07
381
0.06
310
LG-Stereo_L2two views0.07
7
0.05
43
0.10
189
0.14
70
0.06
28
0.07
43
0.12
100
0.09
21
0.09
52
0.06
25
0.04
1
0.05
5
0.05
14
0.08
25
0.08
25
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.03
2
MLG-Stereo_test1two views0.06
1
0.05
43
0.08
57
0.17
309
0.05
2
0.06
14
0.11
64
0.08
12
0.03
1
0.05
2
0.04
1
0.06
42
0.05
14
0.09
59
0.09
104
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
MLG-Stereotwo views0.07
7
0.05
43
0.08
57
0.17
309
0.05
2
0.07
43
0.11
64
0.08
12
0.04
2
0.05
2
0.04
1
0.06
42
0.05
14
0.10
124
0.09
104
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
LG-Stereo_Zeroshottwo views0.07
7
0.06
117
0.10
189
0.16
222
0.07
134
0.04
1
0.13
179
0.10
35
0.10
77
0.05
2
0.11
248
0.07
124
0.05
14
0.07
4
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
HARTtwo views0.08
85
0.07
239
0.09
123
0.17
309
0.07
134
0.10
202
0.16
405
0.13
115
0.11
110
0.08
131
0.10
197
0.07
124
0.05
14
0.10
124
0.08
25
0.05
51
0.04
25
0.06
200
0.04
60
0.05
170
0.04
73
GREAT-IGEVpermissivetwo views0.07
7
0.06
117
0.08
57
0.13
22
0.07
134
0.07
43
0.14
246
0.09
21
0.09
52
0.06
25
0.07
65
0.06
42
0.05
14
0.10
124
0.07
1
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
Jiahao LI, Xinhong Chen, Zhengmin JIANG, Qian Zhou, Yung-Hui Li, Jianping Wang: Global Regulation and Excitation via Attention Tuning for Stereo Matching. ICCV2025
SCV_C0two views0.08
85
0.07
239
0.07
11
0.16
222
0.09
355
0.08
85
0.15
334
0.11
58
0.12
149
0.08
131
0.07
65
0.06
42
0.05
14
0.11
199
0.07
1
0.05
51
0.05
276
0.05
50
0.04
60
0.06
293
0.05
207
DEFOM-Stereo_RVCtwo views0.08
85
0.06
117
0.09
123
0.22
590
0.06
28
0.08
85
0.12
100
0.10
35
0.10
77
0.07
75
0.07
65
0.06
42
0.05
14
0.11
199
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.06
293
0.04
73
StereoAnything_RVCtwo views0.07
7
0.15
598
0.17
508
0.11
1
0.05
2
0.05
4
0.11
64
0.08
12
0.08
25
0.06
25
0.06
23
0.05
5
0.05
14
0.09
59
0.08
25
0.08
426
0.04
25
0.05
50
0.03
1
0.05
170
0.04
73
AIO_testtwo views0.07
7
0.05
43
0.07
11
0.15
124
0.07
134
0.06
14
0.14
246
0.10
35
0.10
77
0.07
75
0.07
65
0.06
42
0.05
14
0.08
25
0.10
208
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
AIO-test2two views0.10
246
0.08
358
0.10
189
0.23
614
0.08
220
0.11
256
0.10
35
0.23
421
0.23
439
0.08
131
0.09
161
0.08
186
0.05
14
0.10
124
0.08
25
0.06
168
0.05
276
0.08
406
0.09
514
0.05
170
0.05
207
DEFOM-Stereotwo views0.07
7
0.05
43
0.07
11
0.14
70
0.06
28
0.10
202
0.13
179
0.07
7
0.13
192
0.06
25
0.07
65
0.06
42
0.05
14
0.10
124
0.09
104
0.04
11
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
dual_stereotwo views0.07
7
0.04
1
0.08
57
0.15
124
0.05
2
0.05
4
0.13
179
0.12
85
0.08
25
0.07
75
0.06
23
0.05
5
0.05
14
0.07
4
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
Occ-Gtwo views0.08
85
0.05
43
0.06
5
0.14
70
0.07
134
0.08
85
0.14
246
0.13
115
0.15
252
0.07
75
0.11
248
0.07
124
0.05
14
0.09
59
0.10
208
0.06
168
0.05
276
0.05
50
0.04
60
0.05
170
0.05
207
Utwo views0.08
85
0.07
239
0.09
123
0.19
472
0.10
469
0.10
202
0.13
179
0.12
85
0.17
321
0.07
75
0.07
65
0.06
42
0.05
14
0.07
4
0.08
25
0.06
168
0.04
25
0.06
200
0.04
60
0.06
293
0.05
207
AIO-Stereopermissivetwo views0.08
85
0.06
117
0.09
123
0.18
402
0.06
28
0.08
85
0.12
100
0.15
188
0.09
52
0.08
131
0.08
125
0.07
124
0.05
14
0.11
199
0.08
25
0.05
51
0.05
276
0.05
50
0.04
60
0.04
48
0.04
73
RSM++two views0.08
85
0.06
117
0.09
123
0.17
309
0.07
134
0.09
139
0.12
100
0.11
58
0.11
110
0.08
131
0.06
23
0.07
124
0.05
14
0.10
124
0.09
104
0.04
11
0.04
25
0.06
200
0.05
192
0.05
170
0.03
2
RSMtwo views0.08
85
0.06
117
0.09
123
0.17
309
0.06
28
0.08
85
0.12
100
0.12
85
0.10
77
0.08
131
0.07
65
0.06
42
0.05
14
0.11
199
0.09
104
0.04
11
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
GCAPDPT-zeroshot4090two views0.07
7
0.05
43
0.11
252
0.15
124
0.06
28
0.07
43
0.13
179
0.09
21
0.11
110
0.07
75
0.08
125
0.06
42
0.05
14
0.09
59
0.07
1
0.05
51
0.05
276
0.05
50
0.04
60
0.03
1
0.04
73
MIM_Stereotwo views0.09
176
0.07
239
0.11
252
0.15
124
0.07
134
0.06
14
0.12
100
0.20
345
0.14
225
0.13
343
0.13
289
0.09
223
0.05
14
0.12
295
0.08
25
0.05
51
0.06
430
0.07
312
0.06
293
0.06
293
0.05
207
EGLCR-Stereotwo views0.08
85
0.05
43
0.08
57
0.14
70
0.06
28
0.10
202
0.12
100
0.11
58
0.16
291
0.06
25
0.05
7
0.07
124
0.05
14
0.10
124
0.11
291
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
CroCo-Stereo Lap2two views0.09
176
0.09
440
0.08
57
0.22
590
0.09
355
0.09
139
0.19
536
0.16
228
0.12
149
0.09
183
0.10
197
0.05
5
0.05
14
0.08
25
0.08
25
0.06
168
0.06
430
0.07
312
0.05
192
0.05
170
0.05
207
iRaft-Stereo_20wtwo views0.09
176
0.05
43
0.13
353
0.14
70
0.08
220
0.12
310
0.15
334
0.18
302
0.10
77
0.11
266
0.08
125
0.08
186
0.05
14
0.10
124
0.09
104
0.06
168
0.04
25
0.06
200
0.05
192
0.06
293
0.05
207
MCSU-Stereotwo views0.07
7
0.05
43
0.07
11
0.16
222
0.05
2
0.08
85
0.12
100
0.09
21
0.07
15
0.06
25
0.10
197
0.06
42
0.06
66
0.08
25
0.08
25
0.06
168
0.04
25
0.04
1
0.03
1
0.04
48
0.03
2
quiztmtwo views0.08
85
0.07
239
0.08
57
0.18
402
0.07
134
0.09
139
0.14
246
0.14
146
0.12
149
0.07
75
0.07
65
0.05
5
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.04
60
0.04
48
0.03
2
monster-protwo views0.07
7
0.06
117
0.05
1
0.15
124
0.05
2
0.07
43
0.10
35
0.15
188
0.15
252
0.05
2
0.06
23
0.05
5
0.06
66
0.07
4
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
DNtwo views0.10
246
0.05
43
0.09
123
0.14
70
0.09
355
0.12
310
0.18
496
0.17
267
0.16
291
0.08
131
0.09
161
0.08
186
0.06
66
0.08
25
0.09
104
0.11
563
0.05
276
0.07
312
0.06
293
0.07
381
0.09
517
aanet-new-90ktwo views0.08
85
0.07
239
0.08
57
0.19
472
0.06
28
0.07
43
0.12
100
0.12
85
0.13
192
0.06
25
0.07
65
0.06
42
0.06
66
0.10
124
0.07
1
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.03
2
aanet-new-60ktwo views0.07
7
0.07
239
0.08
57
0.18
402
0.06
28
0.07
43
0.10
35
0.09
21
0.14
225
0.07
75
0.07
65
0.06
42
0.06
66
0.11
199
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
aanet-new-70ktwo views0.07
7
0.06
117
0.09
123
0.17
309
0.06
28
0.08
85
0.12
100
0.11
58
0.10
77
0.06
25
0.07
65
0.07
124
0.06
66
0.10
124
0.07
1
0.04
11
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
aanet-new-78ktwo views0.07
7
0.07
239
0.09
123
0.19
472
0.06
28
0.07
43
0.12
100
0.11
58
0.13
192
0.06
25
0.07
65
0.06
42
0.06
66
0.09
59
0.07
1
0.04
11
0.04
25
0.05
50
0.04
60
0.05
170
0.03
2
aanet-new-32ktwo views0.08
85
0.07
239
0.09
123
0.18
402
0.06
28
0.11
256
0.11
64
0.10
35
0.08
25
0.07
75
0.07
65
0.07
124
0.06
66
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
aanet-new-30ktwo views0.08
85
0.07
239
0.09
123
0.18
402
0.06
28
0.11
256
0.11
64
0.10
35
0.08
25
0.07
75
0.07
65
0.07
124
0.06
66
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
aanet-new-28ktwo views0.08
85
0.07
239
0.09
123
0.18
402
0.06
28
0.08
85
0.12
100
0.10
35
0.09
52
0.09
183
0.08
125
0.08
186
0.06
66
0.12
295
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
aanet-new-22ktwo views0.08
85
0.06
117
0.09
123
0.17
309
0.06
28
0.08
85
0.11
64
0.14
146
0.12
149
0.09
183
0.09
161
0.08
186
0.06
66
0.10
124
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
aanet-new-16ktwo views0.08
85
0.08
358
0.08
57
0.18
402
0.06
28
0.07
43
0.09
20
0.13
115
0.12
149
0.08
131
0.07
65
0.07
124
0.06
66
0.09
59
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.05
170
0.03
2
aanet-new-14ktwo views0.08
85
0.09
440
0.08
57
0.19
472
0.06
28
0.07
43
0.10
35
0.14
146
0.15
252
0.06
25
0.08
125
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
aanet-new-8ktwo views0.08
85
0.07
239
0.08
57
0.19
472
0.07
134
0.09
139
0.12
100
0.16
228
0.15
252
0.07
75
0.07
65
0.06
42
0.06
66
0.10
124
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
GCAP-Stereo-cres-4ktwo views0.08
85
0.07
239
0.08
57
0.18
402
0.07
134
0.11
256
0.14
246
0.12
85
0.11
110
0.07
75
0.11
248
0.07
124
0.06
66
0.09
59
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
GCAP-Stereo-DPT-crestwo views0.08
85
0.05
43
0.07
11
0.15
124
0.06
28
0.10
202
0.14
246
0.13
115
0.12
149
0.07
75
0.09
161
0.07
124
0.06
66
0.10
124
0.09
104
0.05
51
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
GCAP-Stereo-DPT-36Ktwo views0.08
85
0.06
117
0.15
441
0.14
70
0.06
28
0.08
85
0.13
179
0.13
115
0.11
110
0.07
75
0.08
125
0.07
124
0.06
66
0.09
59
0.08
25
0.05
51
0.05
276
0.05
50
0.04
60
0.03
1
0.04
73
GCAP-Stereo-DPT-22Ktwo views0.08
85
0.06
117
0.07
11
0.17
309
0.06
28
0.07
43
0.14
246
0.13
115
0.16
291
0.05
2
0.10
197
0.06
42
0.06
66
0.08
25
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
GCAP-Stereo-DPT-5Ktwo views0.08
85
0.06
117
0.10
189
0.16
222
0.07
134
0.11
256
0.12
100
0.15
188
0.15
252
0.08
131
0.12
270
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.05
192
0.03
1
0.04
73
GCAP-Stereo-DPT-2Ktwo views0.08
85
0.06
117
0.10
189
0.16
222
0.07
134
0.11
256
0.13
179
0.14
146
0.14
225
0.08
131
0.13
289
0.05
5
0.06
66
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
GCAP-Stereo-DPT-3Ktwo views0.08
85
0.07
239
0.10
189
0.16
222
0.07
134
0.09
139
0.12
100
0.15
188
0.14
225
0.08
131
0.11
248
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
GCAP-Stereo-DPT-FTtwo views0.08
85
0.05
43
0.12
300
0.15
124
0.06
28
0.10
202
0.14
246
0.12
85
0.12
149
0.07
75
0.09
161
0.06
42
0.06
66
0.10
124
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
PSi22two views0.08
85
0.06
117
0.11
252
0.16
222
0.07
134
0.08
85
0.10
35
0.14
146
0.08
25
0.08
131
0.06
23
0.10
260
0.06
66
0.12
295
0.09
104
0.05
51
0.04
25
0.04
1
0.03
1
0.04
48
0.04
73
Foundation-i1btwo views0.08
85
0.05
43
0.07
11
0.14
70
0.05
2
0.09
139
0.12
100
0.13
115
0.10
77
0.09
183
0.10
197
0.09
223
0.06
66
0.07
4
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
Foundation-i1atwo views0.08
85
0.05
43
0.07
11
0.13
22
0.05
2
0.13
366
0.13
179
0.12
85
0.09
52
0.11
266
0.11
248
0.11
291
0.06
66
0.08
25
0.09
104
0.06
168
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
Selective-IGEV-i16pctwo views0.13
404
0.06
117
0.13
353
0.15
124
0.11
520
0.38
664
0.16
405
0.23
421
0.16
291
0.10
230
0.15
326
0.09
223
0.06
66
0.13
351
0.10
208
0.10
531
0.08
535
0.06
200
0.07
393
0.09
515
0.09
517
gcap_with_dpttwo views0.08
85
0.06
117
0.09
123
0.16
222
0.07
134
0.09
139
0.12
100
0.13
115
0.13
192
0.08
131
0.12
270
0.04
1
0.06
66
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
DispViT+two views0.08
85
0.05
43
0.09
123
0.13
22
0.06
28
0.05
4
0.11
64
0.18
302
0.16
291
0.09
183
0.08
125
0.07
124
0.06
66
0.11
199
0.09
104
0.06
168
0.04
25
0.04
1
0.03
1
0.03
1
0.03
2
BLMT-Stereotwo views0.07
7
0.04
1
0.08
57
0.15
124
0.07
134
0.06
14
0.14
246
0.07
7
0.10
77
0.05
2
0.05
7
0.04
1
0.06
66
0.07
4
0.09
104
0.04
11
0.04
25
0.05
50
0.05
192
0.04
48
0.04
73
WQFJA1++two views0.08
85
0.04
1
0.11
252
0.14
70
0.07
134
0.11
256
0.11
64
0.11
58
0.07
15
0.07
75
0.07
65
0.07
124
0.06
66
0.10
124
0.10
208
0.06
168
0.04
25
0.05
50
0.04
60
0.06
293
0.06
310
DLNR-FEtwo views10.43
728
1.83
718
19.53
745
120.75
749
13.06
735
0.06
14
0.13
179
0.23
421
0.10
77
0.07
75
0.10
197
0.09
223
0.06
66
0.10
124
0.09
104
0.13
614
0.04
25
0.06
200
0.04
60
52.01
750
0.04
73
Select-FEtwo views0.11
299
0.06
117
0.20
556
0.15
124
0.11
520
0.11
256
0.13
179
0.21
372
0.18
354
0.09
183
0.11
248
0.10
260
0.06
66
0.12
295
0.09
104
0.07
343
0.05
276
0.07
312
0.08
467
0.06
293
0.08
471
IGEV-FEtwo views0.09
176
0.05
43
0.12
300
0.13
22
0.08
220
0.12
310
0.13
179
0.17
267
0.11
110
0.10
230
0.06
23
0.09
223
0.06
66
0.11
199
0.09
104
0.06
168
0.04
25
0.06
200
0.06
293
0.05
170
0.05
207
DDF-Stereotwo views0.08
85
0.04
1
0.09
123
0.15
124
0.10
469
0.06
14
0.13
179
0.09
21
0.14
225
0.06
25
0.06
23
0.07
124
0.06
66
0.09
59
0.10
208
0.06
168
0.04
25
0.06
200
0.04
60
0.08
450
0.05
207
Zero-FE251two views0.07
7
0.05
43
0.09
123
0.13
22
0.06
28
0.12
310
0.12
100
0.11
58
0.10
77
0.07
75
0.08
125
0.06
42
0.06
66
0.09
59
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
MonStereotwo views0.07
7
0.06
117
0.05
1
0.15
124
0.05
2
0.08
85
0.10
35
0.15
188
0.15
252
0.05
2
0.06
23
0.05
5
0.06
66
0.07
4
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
Monster-pub-eth3dtwo views0.07
7
0.06
117
0.05
1
0.15
124
0.05
2
0.08
85
0.10
35
0.15
188
0.15
252
0.05
2
0.06
23
0.05
5
0.06
66
0.07
4
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
Monster-pub-mixalltwo views0.07
7
0.04
1
0.09
123
0.13
22
0.06
28
0.05
4
0.09
20
0.11
58
0.07
15
0.06
25
0.06
23
0.05
5
0.06
66
0.09
59
0.09
104
0.06
168
0.04
25
0.04
1
0.03
1
0.05
170
0.05
207
Replicate-Monstertwo views0.07
7
0.05
43
0.09
123
0.14
70
0.06
28
0.08
85
0.09
20
0.13
115
0.13
192
0.05
2
0.07
65
0.06
42
0.06
66
0.08
25
0.10
208
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.04
73
zero-FEtwo views0.08
85
0.04
1
0.09
123
0.15
124
0.10
469
0.05
4
0.14
246
0.09
21
0.14
225
0.07
75
0.06
23
0.07
124
0.06
66
0.09
59
0.10
208
0.06
168
0.04
25
0.06
200
0.04
60
0.08
450
0.05
207
AdaDepthtwo views0.07
7
0.06
117
0.07
11
0.18
402
0.06
28
0.11
256
0.12
100
0.09
21
0.07
15
0.06
25
0.05
7
0.07
124
0.06
66
0.09
59
0.10
208
0.04
11
0.05
276
0.05
50
0.04
60
0.04
48
0.04
73
S2M2_XLtwo views0.08
85
0.06
117
0.12
300
0.12
7
0.08
220
0.09
139
0.09
20
0.07
7
0.07
15
0.08
131
0.07
65
0.07
124
0.06
66
0.09
59
0.09
104
0.08
426
0.06
430
0.07
312
0.05
192
0.08
450
0.06
310
Junhong Min, Youngpil Jeon, Jimin Kim, Minyong Choi: S^2M^2 : Scalable Stereo Matching Model for Reliable Depth Estimation. ICCV 2025
asdtwo views0.07
7
0.08
358
0.07
11
0.16
222
0.07
134
0.08
85
0.08
7
0.11
58
0.08
25
0.07
75
0.07
65
0.06
42
0.06
66
0.10
124
0.09
104
0.03
1
0.03
1
0.04
1
0.04
60
0.04
48
0.03
2
qwetwo views0.07
7
0.08
358
0.07
11
0.15
124
0.06
28
0.07
43
0.10
35
0.18
302
0.11
110
0.07
75
0.07
65
0.06
42
0.06
66
0.10
124
0.09
104
0.03
1
0.03
1
0.04
1
0.04
60
0.04
48
0.03
2
2.25wtwo views0.07
7
0.06
117
0.07
11
0.14
70
0.06
28
0.08
85
0.08
7
0.10
35
0.15
252
0.08
131
0.10
197
0.07
124
0.06
66
0.08
25
0.10
208
0.05
51
0.03
1
0.04
1
0.04
60
0.03
1
0.04
73
4.25_newtwo views0.07
7
0.08
358
0.09
123
0.15
124
0.06
28
0.09
139
0.08
7
0.14
146
0.08
25
0.07
75
0.07
65
0.06
42
0.06
66
0.12
295
0.10
208
0.03
1
0.03
1
0.04
1
0.03
1
0.04
48
0.03
2
4.5w_newtwo views0.07
7
0.08
358
0.09
123
0.15
124
0.06
28
0.09
139
0.08
7
0.14
146
0.08
25
0.07
75
0.07
65
0.06
42
0.06
66
0.12
295
0.10
208
0.03
1
0.03
1
0.04
1
0.03
1
0.04
48
0.03
2
4.5_newtwo views0.07
7
0.09
440
0.08
57
0.15
124
0.07
134
0.06
14
0.10
35
0.14
146
0.11
110
0.06
25
0.08
125
0.06
42
0.06
66
0.08
25
0.10
208
0.03
1
0.03
1
0.04
1
0.04
60
0.04
48
0.03
2
4.5w-stereotwo views0.07
7
0.09
440
0.08
57
0.15
124
0.07
134
0.06
14
0.10
35
0.14
146
0.11
110
0.06
25
0.08
125
0.06
42
0.06
66
0.08
25
0.10
208
0.03
1
0.03
1
0.04
1
0.04
60
0.04
48
0.03
2
4.25w-stereotwo views0.07
7
0.08
358
0.09
123
0.15
124
0.06
28
0.09
139
0.08
7
0.14
146
0.08
25
0.07
75
0.07
65
0.06
42
0.06
66
0.12
295
0.10
208
0.03
1
0.03
1
0.04
1
0.03
1
0.04
48
0.03
2
4w-stereotwo views0.07
7
0.08
358
0.08
57
0.16
222
0.06
28
0.07
43
0.08
7
0.12
85
0.08
25
0.07
75
0.07
65
0.05
5
0.06
66
0.09
59
0.10
208
0.03
1
0.03
1
0.04
1
0.04
60
0.04
48
0.03
2
2.5wtwo views0.07
7
0.07
239
0.07
11
0.16
222
0.06
28
0.08
85
0.12
100
0.10
35
0.10
77
0.07
75
0.06
23
0.09
223
0.06
66
0.08
25
0.09
104
0.04
11
0.03
1
0.04
1
0.04
60
0.03
1
0.03
2
2.75w_newtwo views0.07
7
0.07
239
0.07
11
0.13
22
0.06
28
0.08
85
0.08
7
0.18
302
0.12
149
0.07
75
0.08
125
0.06
42
0.06
66
0.09
59
0.11
291
0.04
11
0.04
25
0.04
1
0.03
1
0.03
1
0.04
73
3.25w_newtwo views0.07
7
0.06
117
0.07
11
0.15
124
0.06
28
0.10
202
0.07
3
0.12
85
0.11
110
0.08
131
0.06
23
0.07
124
0.06
66
0.11
199
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
3.25wtwo views0.07
7
0.06
117
0.07
11
0.15
124
0.06
28
0.10
202
0.07
3
0.12
85
0.11
110
0.08
131
0.06
23
0.07
124
0.06
66
0.11
199
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
3.75wtwo views0.07
7
0.07
239
0.08
57
0.16
222
0.07
134
0.07
43
0.09
20
0.16
228
0.09
52
0.07
75
0.06
23
0.05
5
0.06
66
0.09
59
0.10
208
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
3w_stereotwo views0.08
85
0.09
440
0.10
189
0.17
309
0.07
134
0.08
85
0.10
35
0.20
345
0.13
192
0.06
25
0.07
65
0.05
5
0.06
66
0.08
25
0.09
104
0.03
1
0.03
1
0.04
1
0.03
1
0.04
48
0.03
2
2w_stereotwo views0.08
85
0.08
358
0.09
123
0.16
222
0.06
28
0.08
85
0.10
35
0.20
345
0.15
252
0.08
131
0.07
65
0.06
42
0.06
66
0.06
1
0.09
104
0.04
11
0.03
1
0.04
1
0.04
60
0.03
1
0.03
2
1w_stereotwo views0.07
7
0.06
117
0.07
11
0.16
222
0.06
28
0.07
43
0.10
35
0.14
146
0.14
225
0.07
75
0.08
125
0.05
5
0.06
66
0.09
59
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.04
73
monsterstwo views0.07
7
0.06
117
0.06
5
0.15
124
0.06
28
0.08
85
0.09
20
0.12
85
0.08
25
0.09
183
0.07
65
0.06
42
0.06
66
0.08
25
0.08
25
0.05
51
0.04
25
0.04
1
0.04
60
0.03
1
0.03
2
MLG-Stereo_test3two views0.07
7
0.05
43
0.10
189
0.14
70
0.06
28
0.07
43
0.11
64
0.08
12
0.06
6
0.06
25
0.04
1
0.06
42
0.06
66
0.07
4
0.10
208
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.06
310
LGtest1two views0.07
7
0.04
1
0.10
189
0.15
124
0.06
28
0.07
43
0.09
20
0.08
12
0.06
6
0.05
2
0.04
1
0.06
42
0.06
66
0.10
124
0.09
104
0.07
343
0.04
25
0.05
50
0.04
60
0.06
293
0.06
310
MM-Stereo_test3two views0.10
246
0.07
239
0.07
11
0.18
402
0.07
134
0.12
310
0.19
536
0.24
445
0.19
373
0.06
25
0.10
197
0.08
186
0.06
66
0.11
199
0.08
25
0.06
168
0.06
430
0.07
312
0.05
192
0.05
170
0.04
73
MM-Stereo_test2two views0.09
176
0.06
117
0.09
123
0.19
472
0.08
220
0.12
310
0.18
496
0.15
188
0.14
225
0.07
75
0.10
197
0.07
124
0.06
66
0.12
295
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.03
2
MM-Stereo_test1two views0.10
246
0.07
239
0.08
57
0.18
402
0.07
134
0.12
310
0.18
496
0.21
372
0.20
397
0.09
183
0.11
248
0.08
186
0.06
66
0.10
124
0.10
208
0.06
168
0.05
276
0.07
312
0.06
293
0.05
170
0.04
73
HUFtwo views0.08
85
0.05
43
0.08
57
0.14
70
0.06
28
0.09
139
0.13
179
0.13
115
0.13
192
0.07
75
0.07
65
0.08
186
0.06
66
0.10
124
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
castereo++two views0.08
85
0.05
43
0.08
57
0.15
124
0.05
2
0.14
403
0.12
100
0.11
58
0.15
252
0.07
75
0.07
65
0.07
124
0.06
66
0.08
25
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
IGEV-RUCAtwo views0.08
85
0.06
117
0.11
252
0.14
70
0.09
355
0.10
202
0.12
100
0.10
35
0.12
149
0.06
25
0.07
65
0.07
124
0.06
66
0.09
59
0.08
25
0.06
168
0.05
276
0.05
50
0.04
60
0.05
170
0.06
310
MonStertwo views0.07
7
0.06
117
0.05
1
0.15
124
0.05
2
0.07
43
0.10
35
0.15
188
0.15
252
0.05
2
0.06
23
0.05
5
0.06
66
0.07
4
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
ffffttwo views0.09
176
0.06
117
0.12
300
0.16
222
0.07
134
0.09
139
0.17
447
0.12
85
0.11
110
0.08
131
0.07
65
0.09
223
0.06
66
0.11
199
0.12
355
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.05
207
1: 1. 1
tt45two views0.09
176
0.06
117
0.11
252
0.15
124
0.07
134
0.11
256
0.16
405
0.13
115
0.11
110
0.09
183
0.06
23
0.08
186
0.06
66
0.13
351
0.10
208
0.06
168
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
mmstwo views0.09
176
0.07
239
0.08
57
0.16
222
0.08
220
0.10
202
0.16
405
0.12
85
0.11
110
0.08
131
0.09
161
0.08
186
0.06
66
0.11
199
0.12
355
0.05
51
0.04
25
0.07
312
0.05
192
0.04
48
0.03
2
ours_stereotwo views0.09
176
0.07
239
0.09
123
0.17
309
0.08
220
0.11
256
0.16
405
0.11
58
0.12
149
0.08
131
0.10
197
0.08
186
0.06
66
0.12
295
0.12
355
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.03
2
WCG-NETtwo views0.08
85
0.05
43
0.09
123
0.15
124
0.06
28
0.11
256
0.14
246
0.13
115
0.13
192
0.06
25
0.09
161
0.07
124
0.06
66
0.13
351
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
GCAP-BATtwo views0.09
176
0.05
43
0.11
252
0.13
22
0.07
134
0.11
256
0.14
246
0.14
146
0.16
291
0.07
75
0.10
197
0.08
186
0.06
66
0.13
351
0.08
25
0.07
343
0.05
276
0.05
50
0.05
192
0.04
48
0.04
73
IGEV-Stereo++two views0.07
7
0.06
117
0.08
57
0.18
402
0.06
28
0.04
1
0.10
35
0.11
58
0.11
110
0.06
25
0.07
65
0.07
124
0.06
66
0.09
59
0.09
104
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
RAStereotwo views0.10
246
0.09
440
0.08
57
0.20
540
0.08
220
0.13
366
0.18
496
0.15
188
0.17
321
0.10
230
0.12
270
0.05
5
0.06
66
0.09
59
0.08
25
0.07
343
0.05
276
0.07
312
0.05
192
0.05
170
0.04
73
Pointernettwo views0.09
176
0.04
1
0.09
123
0.16
222
0.08
220
0.13
366
0.10
35
0.15
188
0.17
321
0.09
183
0.07
65
0.06
42
0.06
66
0.11
199
0.09
104
0.08
426
0.04
25
0.05
50
0.03
1
0.06
293
0.05
207
IGEV-Stereo+two views0.07
7
0.04
1
0.08
57
0.15
124
0.06
28
0.04
1
0.09
20
0.10
35
0.09
52
0.06
25
0.06
23
0.06
42
0.06
66
0.06
1
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.06
293
0.06
310
WCG-NET(raft)two views0.08
85
0.05
43
0.10
189
0.15
124
0.06
28
0.11
256
0.13
179
0.15
188
0.12
149
0.08
131
0.07
65
0.06
42
0.06
66
0.13
351
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
RAFT-Stereo-weighttwo views0.09
176
0.06
117
0.10
189
0.16
222
0.07
134
0.09
139
0.14
246
0.19
333
0.16
291
0.11
266
0.10
197
0.08
186
0.06
66
0.10
124
0.11
291
0.06
168
0.04
25
0.06
200
0.04
60
0.04
48
0.04
73
gcap-zeroshottwo views0.08
85
0.06
117
0.10
189
0.15
124
0.07
134
0.11
256
0.12
100
0.15
188
0.15
252
0.08
131
0.12
270
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.05
192
0.03
1
0.04
73
test_for_modeltwo views0.08
85
0.06
117
0.10
189
0.16
222
0.07
134
0.11
256
0.12
100
0.15
188
0.15
252
0.08
131
0.12
270
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.05
192
0.03
1
0.04
73
MGS-Stereotwo views0.09
176
0.07
239
0.12
300
0.15
124
0.08
220
0.09
139
0.15
334
0.12
85
0.12
149
0.07
75
0.10
197
0.08
186
0.06
66
0.10
124
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.06
293
0.05
207
MoCha-V2two views0.08
85
0.05
43
0.10
189
0.20
540
0.07
134
0.09
139
0.14
246
0.11
58
0.08
25
0.07
75
0.08
125
0.07
124
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
IGEV++two views0.08
85
0.06
117
0.08
57
0.18
402
0.07
134
0.09
139
0.13
179
0.10
35
0.09
52
0.08
131
0.08
125
0.06
42
0.06
66
0.13
351
0.09
104
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
ACVNet-DCAtwo views0.10
246
0.08
358
0.12
300
0.17
309
0.09
355
0.13
366
0.15
334
0.23
421
0.16
291
0.09
183
0.09
161
0.06
42
0.06
66
0.10
124
0.07
1
0.06
168
0.04
25
0.06
200
0.05
192
0.07
381
0.07
400
1test111two views0.11
299
0.08
358
0.12
300
0.17
309
0.09
355
0.13
366
0.15
334
0.23
421
0.16
291
0.09
183
0.09
161
0.06
42
0.06
66
0.15
412
0.16
493
0.06
168
0.04
25
0.06
200
0.05
192
0.07
381
0.07
400
cc1two views0.10
246
0.08
358
0.12
300
0.17
309
0.09
355
0.13
366
0.15
334
0.16
228
0.18
354
0.09
183
0.09
161
0.06
42
0.06
66
0.10
124
0.07
1
0.06
168
0.04
25
0.06
200
0.05
192
0.06
293
0.06
310
ff7two views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.10
230
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
IGEVStereo-DCAtwo views0.09
176
0.06
117
0.11
252
0.15
124
0.10
469
0.11
256
0.15
334
0.16
228
0.12
149
0.10
230
0.06
23
0.08
186
0.06
66
0.10
124
0.08
25
0.06
168
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
fffftwo views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.10
230
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
rrrtwo views0.09
176
0.06
117
0.12
300
0.15
124
0.10
469
0.11
256
0.16
405
0.16
228
0.15
252
0.10
230
0.06
23
0.08
186
0.06
66
0.10
124
0.08
25
0.06
168
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
11ttwo views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.10
230
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
tt1two views0.10
246
0.08
358
0.12
300
0.17
309
0.09
355
0.12
310
0.16
405
0.15
188
0.19
373
0.09
183
0.08
125
0.06
42
0.06
66
0.10
124
0.07
1
0.06
168
0.04
25
0.06
200
0.05
192
0.06
293
0.06
310
MaDis-Stereotwo views0.09
176
0.09
440
0.08
57
0.17
309
0.09
355
0.13
366
0.10
35
0.16
228
0.16
291
0.09
183
0.11
248
0.06
42
0.06
66
0.09
59
0.13
402
0.07
343
0.06
430
0.07
312
0.05
192
0.05
170
0.04
73
IGEV_Zeroshot_testtwo views0.09
176
0.05
43
0.12
300
0.13
22
0.08
220
0.12
310
0.13
179
0.17
267
0.11
110
0.10
230
0.06
23
0.09
223
0.06
66
0.11
199
0.09
104
0.06
168
0.04
25
0.06
200
0.06
293
0.05
170
0.05
207
MSKI-zero shottwo views0.09
176
0.05
43
0.09
123
0.15
124
0.07
134
0.10
202
0.13
179
0.14
146
0.13
192
0.09
183
0.09
161
0.09
223
0.06
66
0.12
295
0.10
208
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
DLNR_Zeroshot_testpermissivetwo views10.40
727
1.82
717
19.49
744
120.77
750
13.11
736
0.06
14
0.13
179
0.23
421
0.10
77
0.07
75
0.10
197
0.09
223
0.06
66
0.10
124
0.09
104
0.13
614
0.04
25
0.06
200
0.04
60
51.54
749
0.04
73
testlalalatwo views0.08
85
0.06
117
0.10
189
0.15
124
0.07
134
0.11
256
0.12
100
0.15
188
0.15
252
0.08
131
0.12
270
0.05
5
0.06
66
0.09
59
0.08
25
0.05
51
0.04
25
0.06
200
0.05
192
0.03
1
0.04
73
GCAPDPT-zeroshottwo views0.09
176
0.05
43
0.11
252
0.13
22
0.07
134
0.11
256
0.14
246
0.14
146
0.16
291
0.07
75
0.10
197
0.08
186
0.06
66
0.13
351
0.08
25
0.07
343
0.05
276
0.05
50
0.05
192
0.04
48
0.04
73
CAStwo views0.08
85
0.04
1
0.07
11
0.17
309
0.08
220
0.10
202
0.13
179
0.12
85
0.09
52
0.09
183
0.10
197
0.08
186
0.06
66
0.09
59
0.08
25
0.08
426
0.04
25
0.05
50
0.03
1
0.05
170
0.04
73
anonymousdsptwo views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.09
183
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
CEStwo views0.08
85
0.04
1
0.08
57
0.14
70
0.07
134
0.09
139
0.14
246
0.11
58
0.09
52
0.08
131
0.09
161
0.11
291
0.06
66
0.12
295
0.08
25
0.06
168
0.04
25
0.05
50
0.03
1
0.05
170
0.05
207
ProNettwo views0.09
176
0.07
239
0.10
189
0.17
309
0.08
220
0.10
202
0.15
334
0.15
188
0.12
149
0.09
183
0.06
23
0.07
124
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.06
310
MC-Stereotwo views0.08
85
0.06
117
0.09
123
0.17
309
0.06
28
0.10
202
0.14
246
0.12
85
0.10
77
0.09
183
0.12
270
0.09
223
0.06
66
0.11
199
0.10
208
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
ccc-4two views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.10
230
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
IGEV-Stereopermissivetwo views0.09
176
0.07
239
0.11
252
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.12
149
0.09
183
0.06
23
0.06
42
0.06
66
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
Gangwei Xu, Xianqi Wang, Xiaohuan Ding, Xin Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023
TRStereotwo views0.09
176
0.05
43
0.12
300
0.15
124
0.12
554
0.10
202
0.13
179
0.18
302
0.18
354
0.09
183
0.09
161
0.09
223
0.06
66
0.10
124
0.08
25
0.07
343
0.05
276
0.07
312
0.07
393
0.04
48
0.04
73
CroCo-Stereocopylefttwo views0.09
176
0.08
358
0.08
57
0.22
590
0.09
355
0.09
139
0.19
536
0.15
188
0.12
149
0.07
75
0.07
65
0.08
186
0.06
66
0.08
25
0.07
1
0.07
343
0.05
276
0.06
200
0.04
60
0.05
170
0.04
73
P.Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Bregier, G. Csurka, L. Antsfeld, B. Chidlovskii, J. Revaud: CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow. ICCV 2023
TANstereotwo views0.09
176
0.04
1
0.08
57
0.13
22
0.06
28
0.11
256
0.14
246
0.15
188
0.19
373
0.11
266
0.15
326
0.10
260
0.06
66
0.12
295
0.09
104
0.07
343
0.05
276
0.05
50
0.04
60
0.06
293
0.05
207
XX-Stereotwo views0.09
176
0.05
43
0.08
57
0.17
309
0.09
355
0.15
430
0.12
100
0.20
345
0.10
77
0.10
230
0.14
305
0.07
124
0.06
66
0.12
295
0.08
25
0.06
168
0.05
276
0.06
200
0.06
293
0.04
48
0.04
73
test_xeample3two views0.09
176
0.06
117
0.12
300
0.16
222
0.09
355
0.11
256
0.15
334
0.16
228
0.13
192
0.10
230
0.06
23
0.08
186
0.06
66
0.10
124
0.09
104
0.05
51
0.04
25
0.06
200
0.05
192
0.05
170
0.06
310
DNStwo views0.09
176
0.05
43
0.11
252
0.15
124
0.08
220
0.10
202
0.16
405
0.17
267
0.09
52
0.08
131
0.12
270
0.08
186
0.07
180
0.09
59
0.08
25
0.07
343
0.04
25
0.05
50
0.05
192
0.06
293
0.05
207
aanet-32k-newtwo views0.08
85
0.07
239
0.08
57
0.18
402
0.06
28
0.08
85
0.12
100
0.11
58
0.12
149
0.07
75
0.08
125
0.05
5
0.07
180
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.06
293
0.04
73
aanet-new-24ktwo views0.07
7
0.07
239
0.07
11
0.17
309
0.06
28
0.07
43
0.12
100
0.09
21
0.11
110
0.09
183
0.09
161
0.06
42
0.07
180
0.09
59
0.07
1
0.04
11
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
aanet-new-10ktwo views0.08
85
0.08
358
0.08
57
0.19
472
0.07
134
0.08
85
0.12
100
0.14
146
0.11
110
0.07
75
0.08
125
0.07
124
0.07
180
0.09
59
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
aanet-new-12ktwo views0.08
85
0.09
440
0.07
11
0.20
540
0.08
220
0.08
85
0.13
179
0.12
85
0.13
192
0.08
131
0.08
125
0.05
5
0.07
180
0.09
59
0.08
25
0.04
11
0.04
25
0.05
50
0.04
60
0.06
293
0.04
73
aanet-newtwo views0.08
85
0.09
440
0.10
189
0.18
402
0.08
220
0.10
202
0.12
100
0.15
188
0.12
149
0.08
131
0.08
125
0.05
5
0.07
180
0.10
124
0.08
25
0.05
51
0.04
25
0.05
50
0.04
60
0.06
293
0.04
73
LACA3two views0.07
7
0.08
358
0.08
57
0.13
22
0.05
2
0.09
139
0.11
64
0.08
12
0.08
25
0.08
131
0.05
7
0.07
124
0.07
180
0.07
4
0.07
1
0.06
168
0.04
25
0.04
1
0.03
1
0.03
1
0.03
2
Foundation-i1c-attntwo views0.08
85
0.05
43
0.07
11
0.14
70
0.05
2
0.09
139
0.12
100
0.12
85
0.10
77
0.09
183
0.10
197
0.10
260
0.07
180
0.07
4
0.10
208
0.06
168
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
Selective-IGEV-i16pbtwo views0.14
441
0.08
358
0.17
508
0.15
124
0.11
520
0.41
669
0.16
405
0.28
523
0.23
439
0.11
266
0.20
414
0.10
260
0.07
180
0.17
481
0.12
355
0.10
531
0.07
503
0.06
200
0.08
467
0.09
515
0.10
548
Foundation-i1two views0.09
176
0.04
1
0.10
189
0.14
70
0.06
28
0.10
202
0.13
179
0.16
228
0.14
225
0.10
230
0.10
197
0.11
291
0.07
180
0.07
4
0.10
208
0.06
168
0.04
25
0.05
50
0.05
192
0.05
170
0.05
207
LACA1two views0.07
7
0.07
239
0.07
11
0.14
70
0.05
2
0.09
139
0.11
64
0.10
35
0.07
15
0.05
2
0.05
7
0.06
42
0.07
180
0.08
25
0.09
104
0.06
168
0.04
25
0.04
1
0.04
60
0.03
1
0.04
73
BridgeDepth_RVCpermissivetwo views0.07
7
0.04
1
0.09
123
0.11
1
0.05
2
0.10
202
0.10
35
0.14
146
0.09
52
0.06
25
0.07
65
0.06
42
0.07
180
0.07
4
0.10
208
0.06
168
0.04
25
0.04
1
0.04
60
0.04
48
0.03
2
Tongfan Guan, Jiaxin Guo, Chen Wang, Yun-Hui Liu: BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment. ICCV 2025 Highlight
HiDETtwo views0.08
85
0.04
1
0.10
189
0.13
22
0.06
28
0.08
85
0.12
100
0.12
85
0.11
110
0.06
25
0.07
65
0.07
124
0.07
180
0.11
199
0.11
291
0.06
168
0.04
25
0.04
1
0.03
1
0.04
48
0.04
73
LCMNettwo views0.08
85
0.05
43
0.10
189
0.13
22
0.07
134
0.09
139
0.12
100
0.10
35
0.11
110
0.06
25
0.08
125
0.06
42
0.07
180
0.11
199
0.10
208
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.04
73
FE-Mochatwo views0.09
176
0.06
117
0.14
392
0.16
222
0.09
355
0.10
202
0.15
334
0.18
302
0.16
291
0.10
230
0.09
161
0.07
124
0.07
180
0.09
59
0.09
104
0.06
168
0.04
25
0.06
200
0.06
293
0.05
170
0.05
207
Wavelet-MonStertwo views0.07
7
0.05
43
0.07
11
0.16
222
0.06
28
0.07
43
0.11
64
0.10
35
0.08
25
0.06
25
0.06
23
0.07
124
0.07
180
0.09
59
0.09
104
0.04
11
0.04
25
0.04
1
0.03
1
0.03
1
0.03
2
3.5w_stereotwo views0.07
7
0.07
239
0.07
11
0.15
124
0.07
134
0.09
139
0.06
1
0.13
115
0.11
110
0.07
75
0.07
65
0.06
42
0.07
180
0.10
124
0.09
104
0.04
11
0.03
1
0.04
1
0.03
1
0.03
1
0.03
2
monsterstereotwo views0.07
7
0.06
117
0.06
5
0.16
222
0.06
28
0.08
85
0.10
35
0.16
228
0.11
110
0.07
75
0.08
125
0.06
42
0.07
180
0.08
25
0.09
104
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.03
2
LG-G_1two views0.07
7
0.04
1
0.11
252
0.15
124
0.06
28
0.09
139
0.08
7
0.08
12
0.06
6
0.06
25
0.05
7
0.07
124
0.07
180
0.11
199
0.08
25
0.07
343
0.04
25
0.05
50
0.04
60
0.05
170
0.05
207
LG-Gtwo views0.07
7
0.04
1
0.11
252
0.15
124
0.06
28
0.09
139
0.08
7
0.08
12
0.06
6
0.06
25
0.05
7
0.07
124
0.07
180
0.11
199
0.08
25
0.07
343
0.04
25
0.05
50
0.04
60
0.05
170
0.05
207
LG-Stereotwo views0.08
85
0.07
239
0.10
189
0.18
402
0.07
134
0.10
202
0.17
447
0.11
58
0.08
25
0.05
2
0.07
65
0.05
5
0.07
180
0.09
59
0.09
104
0.04
11
0.05
276
0.07
312
0.07
393
0.04
48
0.04
73
AIO-test1two views0.10
246
0.07
239
0.10
189
0.23
614
0.07
134
0.09
139
0.13
179
0.21
372
0.14
225
0.11
266
0.12
270
0.09
223
0.07
180
0.11
199
0.09
104
0.06
168
0.05
276
0.09
492
0.10
556
0.03
1
0.06
310
SMoEStereo_RVCtwo views0.08
85
0.06
117
0.12
300
0.16
222
0.07
134
0.09
139
0.14
246
0.11
58
0.13
192
0.09
183
0.07
65
0.07
124
0.07
180
0.12
295
0.10
208
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
tgtwo views0.10
246
0.06
117
0.10
189
0.18
402
0.08
220
0.11
256
0.16
405
0.20
345
0.12
149
0.08
131
0.11
248
0.11
291
0.07
180
0.11
199
0.10
208
0.05
51
0.04
25
0.08
406
0.08
467
0.04
48
0.04
73
PAM_32two views0.09
176
0.05
43
0.17
508
0.15
124
0.08
220
0.10
202
0.15
334
0.14
146
0.15
252
0.09
183
0.08
125
0.09
223
0.07
180
0.14
385
0.08
25
0.06
168
0.05
276
0.06
200
0.06
293
0.05
170
0.06
310
PAMtwo views0.10
246
0.05
43
0.16
477
0.15
124
0.08
220
0.09
139
0.16
405
0.15
188
0.16
291
0.12
309
0.09
161
0.09
223
0.07
180
0.13
351
0.08
25
0.06
168
0.05
276
0.06
200
0.06
293
0.05
170
0.06
310
UGAM-zerotwo views0.09
176
0.05
43
0.15
441
0.15
124
0.08
220
0.09
139
0.13
179
0.19
333
0.15
252
0.11
266
0.15
326
0.07
124
0.07
180
0.09
59
0.09
104
0.06
168
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
model_zeroshottwo views0.10
246
0.04
1
0.11
252
0.15
124
0.09
355
0.12
310
0.14
246
0.20
345
0.13
192
0.11
266
0.10
197
0.12
313
0.07
180
0.12
295
0.10
208
0.07
343
0.06
430
0.06
200
0.05
192
0.06
293
0.06
310
AIO-Stereo-zeroshot1permissivetwo views0.11
299
0.05
43
0.14
392
0.15
124
0.20
658
0.09
139
0.17
447
0.21
372
0.15
252
0.11
266
0.14
305
0.10
260
0.07
180
0.10
124
0.08
25
0.06
168
0.05
276
0.07
312
0.07
393
0.07
381
0.09
517
AIO-Stereo-zeroshotpermissivetwo views0.11
299
0.05
43
0.11
252
0.15
124
0.13
577
0.13
366
0.16
405
0.23
421
0.17
321
0.10
230
0.12
270
0.10
260
0.07
180
0.11
199
0.09
104
0.06
168
0.05
276
0.06
200
0.06
293
0.07
381
0.08
471
CAS++two views0.11
299
0.07
239
0.11
252
0.14
70
0.09
355
0.12
310
0.14
246
0.24
445
0.14
225
0.11
266
0.09
161
0.11
291
0.07
180
0.14
385
0.09
104
0.11
563
0.09
568
0.09
492
0.07
393
0.07
381
0.08
471
Junhong Min, Youngpil Jeon: Confidence Aware Stereo Matching for Realistic Cluttered Scenario. ICIP 2024
MyStereo07two views0.10
246
0.07
239
0.10
189
0.17
309
0.09
355
0.14
403
0.18
496
0.15
188
0.15
252
0.09
183
0.06
23
0.06
42
0.07
180
0.12
295
0.09
104
0.06
168
0.05
276
0.08
406
0.07
393
0.06
293
0.06
310
MyStereo06two views0.10
246
0.07
239
0.12
300
0.17
309
0.09
355
0.13
366
0.18
496
0.19
333
0.12
149
0.12
309
0.08
125
0.07
124
0.07
180
0.11
199
0.09
104
0.06
168
0.05
276
0.07
312
0.07
393
0.06
293
0.06
310
UniTT-Stereotwo views0.09
176
0.07
239
0.08
57
0.18
402
0.08
220
0.13
366
0.11
64
0.12
85
0.11
110
0.10
230
0.12
270
0.05
5
0.07
180
0.09
59
0.09
104
0.07
343
0.05
276
0.05
50
0.05
192
0.05
170
0.05
207
CASnettwo views0.09
176
0.09
440
0.09
123
0.19
472
0.06
28
0.07
43
0.11
64
0.18
302
0.14
225
0.11
266
0.10
197
0.09
223
0.07
180
0.10
124
0.10
208
0.06
168
0.04
25
0.10
541
0.08
467
0.05
170
0.03
2
Junhong Min, Youngpil Jeon: Confidence Aware Stereo Matching for Realistic Cluttered Scenario. ICIP 2024 submissions (1861)
HHtwo views0.09
176
0.06
117
0.13
353
0.17
309
0.08
220
0.10
202
0.16
405
0.14
146
0.10
77
0.08
131
0.09
161
0.08
186
0.07
180
0.10
124
0.09
104
0.06
168
0.04
25
0.06
200
0.05
192
0.05
170
0.04
73
HanStereotwo views0.09
176
0.06
117
0.13
353
0.17
309
0.08
220
0.10
202
0.16
405
0.14
146
0.10
77
0.08
131
0.09
161
0.08
186
0.07
180
0.10
124
0.09
104
0.06
168
0.04
25
0.06
200
0.05
192
0.05
170
0.04
73
LL-Strereo2two views0.10
246
0.10
503
0.15
441
0.18
402
0.08
220
0.15
430
0.09
20
0.17
267
0.14
225
0.14
370
0.10
197
0.09
223
0.07
180
0.16
447
0.10
208
0.05
51
0.05
276
0.10
541
0.07
393
0.06
293
0.05
207
4D-IteraStereotwo views0.09
176
0.07
239
0.10
189
0.18
402
0.07
134
0.09
139
0.15
334
0.17
267
0.15
252
0.10
230
0.11
248
0.10
260
0.07
180
0.11
199
0.09
104
0.05
51
0.03
1
0.08
406
0.07
393
0.06
293
0.05
207
RCA-Stereotwo views0.09
176
0.06
117
0.09
123
0.16
222
0.06
28
0.09
139
0.13
179
0.18
302
0.14
225
0.09
183
0.10
197
0.08
186
0.07
180
0.12
295
0.11
291
0.06
168
0.04
25
0.06
200
0.05
192
0.05
170
0.04
73
RAFT_CTSACEtwo views0.12
377
0.09
440
0.10
189
0.22
590
0.08
220
0.12
310
0.24
615
0.18
302
0.16
291
0.20
515
0.27
526
0.13
346
0.07
180
0.13
351
0.09
104
0.05
51
0.06
430
0.08
406
0.07
393
0.04
48
0.04
73
IPLGtwo views0.10
246
0.07
239
0.15
441
0.17
309
0.08
220
0.11
256
0.14
246
0.20
345
0.15
252
0.12
309
0.17
363
0.07
124
0.07
180
0.14
385
0.13
402
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
MIPNettwo views0.11
299
0.08
358
0.14
392
0.17
309
0.09
355
0.12
310
0.14
246
0.20
345
0.24
456
0.11
266
0.10
197
0.09
223
0.07
180
0.13
351
0.12
355
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
iRaftStereo_RVCtwo views0.10
246
0.07
239
0.09
123
0.17
309
0.09
355
0.11
256
0.17
447
0.18
302
0.12
149
0.09
183
0.12
270
0.10
260
0.07
180
0.11
199
0.10
208
0.05
51
0.04
25
0.08
406
0.08
467
0.04
48
0.04
73
CREStereo++_RVCtwo views0.08
85
0.04
1
0.06
5
0.13
22
0.07
134
0.09
139
0.12
100
0.14
146
0.14
225
0.10
230
0.14
305
0.08
186
0.07
180
0.09
59
0.11
291
0.06
168
0.04
25
0.05
50
0.05
192
0.04
48
0.04
73
Junpeng Jing, Jiankun Li, Pengfei Xiong, Jiangyu Liu, Shuaicheng Liu, Yichen Guo, Xin Deng, Mai Xu, Lai Jiang, Leonid Sigal: Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching. ICCV2023
raftrobusttwo views0.09
176
0.06
117
0.10
189
0.17
309
0.08
220
0.09
139
0.10
35
0.18
302
0.16
291
0.10
230
0.09
161
0.12
313
0.07
180
0.12
295
0.10
208
0.08
426
0.05
276
0.06
200
0.05
192
0.05
170
0.05
207
sCroCo_RVCtwo views0.12
377
0.09
440
0.23
581
0.24
623
0.11
520
0.19
528
0.14
246
0.17
267
0.14
225
0.10
230
0.13
289
0.12
313
0.07
180
0.14
385
0.11
291
0.08
426
0.08
535
0.08
406
0.08
467
0.05
170
0.07
400
EAI-Stereotwo views0.09
176
0.07
239
0.11
252
0.15
124
0.06
28
0.10
202
0.15
334
0.16
228
0.09
52
0.08
131
0.09
161
0.08
186
0.07
180
0.09
59
0.11
291
0.05
51
0.04
25
0.05
50
0.05
192
0.05
170
0.04
73
PMTNettwo views0.09
176
0.05
43
0.09
123
0.12
7
0.06
28
0.12
310
0.14
246
0.15
188
0.11
110
0.09
183
0.13
289
0.10
260
0.07
180
0.13
351
0.10
208
0.15
632
0.04
25
0.05
50
0.03
1
0.07
381
0.06
310
SEtwo views0.10
246
0.10
503
0.08
57
0.19
472
0.09
355
0.11
256
0.11
64
0.15
188
0.11
110
0.10
230
0.16
339
0.09
223
0.08
229
0.09
59
0.10
208
0.06
168
0.05
276
0.08
406
0.07
393
0.07
381
0.04
73
Anonymusbinarytwo views0.08
85
0.05
43
0.10
189
0.15
124
0.08
220
0.10
202
0.15
334
0.15
188
0.10
77
0.07
75
0.06
23
0.07
124
0.08
229
0.12
295
0.10
208
0.06
168
0.04
25
0.05
50
0.05
192
0.05
170
0.06
310
LGCATtwo views0.08
85
0.04
1
0.10
189
0.11
1
0.06
28
0.07
43
0.12
100
0.07
7
0.08
25
0.09
183
0.07
65
0.07
124
0.08
229
0.12
295
0.11
291
0.10
531
0.09
568
0.04
1
0.05
192
0.04
48
0.09
517
derftwo views0.07
7
0.04
1
0.10
189
0.14
70
0.06
28
0.05
4
0.12
100
0.12
85
0.09
52
0.05
2
0.07
65
0.07
124
0.08
229
0.10
124
0.10
208
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.05
207
mm2two views0.07
7
0.04
1
0.10
189
0.13
22
0.06
28
0.06
14
0.12
100
0.13
115
0.08
25
0.06
25
0.07
65
0.06
42
0.08
229
0.10
124
0.09
104
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.05
207
mm1two views0.07
7
0.04
1
0.10
189
0.13
22
0.06
28
0.06
14
0.12
100
0.06
1
0.08
25
0.06
25
0.07
65
0.06
42
0.08
229
0.10
124
0.09
104
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.05
207
qqaitwo views0.07
7
0.05
43
0.10
189
0.14
70
0.06
28
0.05
4
0.12
100
0.08
12
0.09
52
0.05
2
0.06
23
0.06
42
0.08
229
0.10
124
0.09
104
0.06
168
0.05
276
0.05
50
0.03
1
0.04
48
0.05
207
PointNettwo views0.07
7
0.06
117
0.07
11
0.15
124
0.07
134
0.08
85
0.14
246
0.11
58
0.08
25
0.05
2
0.07
65
0.08
186
0.08
229
0.09
59
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
DFtwo views0.08
85
0.05
43
0.09
123
0.15
124
0.06
28
0.11
256
0.13
179
0.10
35
0.12
149
0.09
183
0.10
197
0.10
260
0.08
229
0.11
199
0.09
104
0.07
343
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
RT-Monstertwo views0.09
176
0.05
43
0.09
123
0.14
70
0.08
220
0.11
256
0.10
35
0.17
267
0.18
354
0.13
343
0.10
197
0.09
223
0.08
229
0.10
124
0.10
208
0.07
343
0.05
276
0.05
50
0.04
60
0.05
170
0.06
310
GeoVLMtwo views0.08
85
0.04
1
0.10
189
0.13
22
0.06
28
0.10
202
0.12
100
0.13
115
0.08
25
0.06
25
0.07
65
0.06
42
0.08
229
0.10
124
0.11
291
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.05
207
LACA2two views0.07
7
0.05
43
0.06
5
0.15
124
0.06
28
0.09
139
0.11
64
0.11
58
0.10
77
0.05
2
0.05
7
0.06
42
0.08
229
0.09
59
0.07
1
0.07
343
0.04
25
0.04
1
0.04
60
0.04
48
0.04
73
NLSM3two views0.09
176
0.06
117
0.08
57
0.19
472
0.08
220
0.11
256
0.16
405
0.18
302
0.16
291
0.06
25
0.08
125
0.07
124
0.08
229
0.09
59
0.11
291
0.04
11
0.04
25
0.06
200
0.07
393
0.03
1
0.03
2
MonSter++two views0.08
85
0.04
1
0.10
189
0.13
22
0.06
28
0.09
139
0.12
100
0.13
115
0.08
25
0.06
25
0.07
65
0.06
42
0.08
229
0.10
124
0.11
291
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.04
73
CSFM-Stereotwo views0.07
7
0.05
43
0.07
11
0.14
70
0.06
28
0.09
139
0.13
179
0.15
188
0.06
6
0.07
75
0.08
125
0.06
42
0.08
229
0.09
59
0.09
104
0.06
168
0.05
276
0.04
1
0.03
1
0.04
48
0.04
73
DAtwo views0.08
85
0.07
239
0.07
11
0.19
472
0.08
220
0.09
139
0.12
100
0.13
115
0.12
149
0.08
131
0.10
197
0.10
260
0.08
229
0.09
59
0.10
208
0.05
51
0.04
25
0.06
200
0.04
60
0.05
170
0.03
2
GGEVtwo views0.08
85
0.07
239
0.07
11
0.19
472
0.08
220
0.09
139
0.12
100
0.13
115
0.12
149
0.08
131
0.10
197
0.10
260
0.08
229
0.09
59
0.10
208
0.05
51
0.04
25
0.06
200
0.04
60
0.05
170
0.03
2
Reg-Stereo(zero)two views0.08
85
0.05
43
0.08
57
0.16
222
0.06
28
0.12
310
0.11
64
0.15
188
0.10
77
0.12
309
0.09
161
0.10
260
0.08
229
0.11
199
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
castereotwo views0.09
176
0.06
117
0.11
252
0.15
124
0.06
28
0.11
256
0.15
334
0.14
146
0.18
354
0.08
131
0.10
197
0.11
291
0.08
229
0.09
59
0.10
208
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.03
2
999two views0.09
176
0.05
43
0.13
353
0.15
124
0.08
220
0.10
202
0.14
246
0.15
188
0.11
110
0.10
230
0.08
125
0.08
186
0.08
229
0.16
447
0.10
208
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.05
207
rvit_stereo_0080two views0.10
246
0.08
358
0.14
392
0.15
124
0.09
355
0.07
43
0.15
334
0.16
228
0.16
291
0.11
266
0.10
197
0.14
368
0.08
229
0.12
295
0.10
208
0.09
488
0.07
503
0.07
312
0.06
293
0.07
381
0.05
207
trnettwo views0.08
85
0.05
43
0.07
11
0.12
7
0.05
2
0.12
310
0.11
64
0.13
115
0.10
77
0.08
131
0.13
289
0.09
223
0.08
229
0.11
199
0.10
208
0.08
426
0.05
276
0.05
50
0.03
1
0.06
293
0.05
207
Former-RAFT_DAM_RVCtwo views0.10
246
0.08
358
0.12
300
0.16
222
0.08
220
0.15
430
0.16
405
0.18
302
0.18
354
0.10
230
0.09
161
0.09
223
0.08
229
0.11
199
0.12
355
0.07
343
0.05
276
0.08
406
0.06
293
0.07
381
0.06
310
AE-Stereotwo views0.10
246
0.08
358
0.10
189
0.18
402
0.09
355
0.10
202
0.15
334
0.14
146
0.19
373
0.09
183
0.14
305
0.12
313
0.08
229
0.11
199
0.10
208
0.05
51
0.06
430
0.07
312
0.06
293
0.05
170
0.04
73
whm_ethtwo views0.10
246
0.08
358
0.14
392
0.15
124
0.09
355
0.07
43
0.15
334
0.16
228
0.16
291
0.11
266
0.10
197
0.14
368
0.08
229
0.12
295
0.10
208
0.09
488
0.07
503
0.07
312
0.06
293
0.07
381
0.05
207
AEACVtwo views0.08
85
0.05
43
0.08
57
0.14
70
0.13
577
0.14
403
0.13
179
0.14
146
0.09
52
0.07
75
0.09
161
0.07
124
0.08
229
0.10
124
0.09
104
0.06
168
0.04
25
0.06
200
0.05
192
0.05
170
0.04
73
GLC_STEREOtwo views0.11
299
0.07
239
0.11
252
0.17
309
0.07
134
0.09
139
0.13
179
0.15
188
0.24
456
0.12
309
0.13
289
0.12
313
0.08
229
0.18
504
0.11
291
0.06
168
0.08
535
0.08
406
0.06
293
0.05
170
0.05
207
IPLGRtwo views0.11
299
0.09
440
0.16
477
0.18
402
0.08
220
0.12
310
0.17
447
0.21
372
0.24
456
0.11
266
0.12
270
0.11
291
0.08
229
0.12
295
0.12
355
0.06
168
0.05
276
0.06
200
0.06
293
0.04
48
0.04
73
test-3two views0.08
85
0.06
117
0.09
123
0.17
309
0.07
134
0.07
43
0.14
246
0.12
85
0.15
252
0.09
183
0.08
125
0.07
124
0.08
229
0.11
199
0.10
208
0.05
51
0.04
25
0.07
312
0.05
192
0.04
48
0.04
73
test_1two views0.08
85
0.06
117
0.09
123
0.17
309
0.07
134
0.07
43
0.14
246
0.12
85
0.15
252
0.09
183
0.08
125
0.07
124
0.08
229
0.11
199
0.10
208
0.05
51
0.04
25
0.07
312
0.05
192
0.04
48
0.04
73
HHNettwo views0.11
299
0.06
117
0.16
477
0.15
124
0.14
598
0.07
43
0.13
179
0.20
345
0.17
321
0.14
370
0.25
500
0.11
291
0.08
229
0.13
351
0.10
208
0.05
51
0.04
25
0.08
406
0.06
293
0.05
170
0.09
517
AnonymousMtwo views0.09
176
0.05
43
0.10
189
0.14
70
0.06
28
0.09
139
0.13
179
0.19
333
0.14
225
0.13
343
0.11
248
0.09
223
0.08
229
0.13
351
0.10
208
0.08
426
0.05
276
0.08
406
0.05
192
0.05
170
0.05
207
test-1two views0.10
246
0.07
239
0.16
477
0.19
472
0.08
220
0.11
256
0.24
615
0.14
146
0.18
354
0.09
183
0.07
65
0.09
223
0.08
229
0.07
4
0.09
104
0.06
168
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
Prome-Stereotwo views0.11
299
0.06
117
0.10
189
0.18
402
0.08
220
0.12
310
0.15
334
0.22
398
0.13
192
0.12
309
0.17
363
0.13
346
0.08
229
0.12
295
0.10
208
0.05
51
0.04
25
0.07
312
0.06
293
0.06
293
0.09
517
raft+_RVCtwo views0.11
299
0.07
239
0.09
123
0.16
222
0.07
134
0.10
202
0.11
64
0.24
445
0.20
397
0.12
309
0.15
326
0.12
313
0.08
229
0.12
295
0.13
402
0.07
343
0.04
25
0.07
312
0.06
293
0.05
170
0.05
207
XX-TBDtwo views0.09
176
0.06
117
0.07
11
0.14
70
0.07
134
0.12
310
0.16
405
0.14
146
0.13
192
0.11
266
0.12
270
0.09
223
0.08
229
0.10
124
0.10
208
0.06
168
0.04
25
0.05
50
0.03
1
0.06
293
0.05
207
sAnonymous2two views0.13
404
0.12
548
0.24
585
0.20
540
0.12
554
0.17
485
0.13
179
0.26
482
0.21
413
0.11
266
0.11
248
0.13
346
0.08
229
0.10
124
0.10
208
0.09
488
0.05
276
0.08
406
0.06
293
0.15
636
0.10
548
CroCo_RVCtwo views0.13
404
0.12
548
0.24
585
0.20
540
0.12
554
0.17
485
0.13
179
0.26
482
0.21
413
0.11
266
0.11
248
0.13
346
0.08
229
0.10
124
0.10
208
0.09
488
0.05
276
0.08
406
0.06
293
0.15
636
0.10
548
CREStereotwo views0.09
176
0.04
1
0.08
57
0.11
1
0.06
28
0.13
366
0.14
246
0.14
146
0.10
77
0.08
131
0.13
289
0.09
223
0.08
229
0.11
199
0.10
208
0.08
426
0.04
25
0.05
50
0.03
1
0.06
293
0.06
310
Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, Shuaicheng Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. CVPR 2022
R-Stereo Traintwo views0.10
246
0.06
117
0.10
189
0.17
309
0.08
220
0.11
256
0.14
246
0.23
421
0.11
110
0.12
309
0.19
402
0.11
291
0.08
229
0.09
59
0.11
291
0.07
343
0.05
276
0.06
200
0.05
192
0.05
170
0.05
207
RAFT-Stereopermissivetwo views0.10
246
0.06
117
0.10
189
0.17
309
0.08
220
0.11
256
0.14
246
0.23
421
0.11
110
0.12
309
0.19
402
0.11
291
0.08
229
0.09
59
0.11
291
0.07
343
0.05
276
0.06
200
0.05
192
0.05
170
0.05
207
Lahav Lipson, Zachary Teed, and Jia Deng: RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. 3DV
SMOEtwo views0.10
246
0.08
358
0.09
123
0.18
402
0.07
134
0.13
366
0.14
246
0.18
302
0.13
192
0.11
266
0.13
289
0.12
313
0.09
270
0.11
199
0.11
291
0.05
51
0.05
276
0.08
406
0.06
293
0.06
293
0.04
73
ManiGeoRcopylefttwo views0.10
246
0.05
43
0.12
300
0.12
7
0.08
220
0.12
310
0.12
100
0.24
445
0.14
225
0.12
309
0.14
305
0.12
313
0.09
270
0.13
351
0.13
402
0.07
343
0.04
25
0.05
50
0.05
192
0.07
381
0.07
400
HLf10two views0.10
246
0.05
43
0.12
300
0.12
7
0.08
220
0.12
310
0.12
100
0.24
445
0.14
225
0.12
309
0.14
305
0.12
313
0.09
270
0.13
351
0.13
402
0.07
343
0.04
25
0.05
50
0.05
192
0.07
381
0.07
400
TestStereo_HLe17two views0.10
246
0.05
43
0.12
300
0.13
22
0.07
134
0.11
256
0.15
334
0.21
372
0.15
252
0.11
266
0.14
305
0.11
291
0.09
270
0.13
351
0.12
355
0.07
343
0.04
25
0.05
50
0.05
192
0.07
381
0.06
310
GGDAcopylefttwo views0.11
299
0.06
117
0.11
252
0.13
22
0.07
134
0.12
310
0.14
246
0.19
333
0.19
373
0.13
343
0.20
414
0.12
313
0.09
270
0.12
295
0.12
355
0.07
343
0.04
25
0.05
50
0.05
192
0.06
293
0.07
400
LiteMatch*copylefttwo views0.08
85
0.04
1
0.11
252
0.13
22
0.08
220
0.08
85
0.13
179
0.14
146
0.09
52
0.05
2
0.05
7
0.05
5
0.09
270
0.11
199
0.10
208
0.06
168
0.05
276
0.05
50
0.04
60
0.05
170
0.05
207
VMStereo-Basecopylefttwo views0.09
176
0.05
43
0.10
189
0.13
22
0.07
134
0.10
202
0.10
35
0.16
228
0.13
192
0.10
230
0.15
326
0.10
260
0.09
270
0.11
199
0.10
208
0.07
343
0.05
276
0.05
50
0.04
60
0.05
170
0.06
310
Hybrid-DGEV-03two views0.10
246
0.06
117
0.09
123
0.18
402
0.08
220
0.16
462
0.14
246
0.15
188
0.14
225
0.13
343
0.16
339
0.12
313
0.09
270
0.13
351
0.11
291
0.06
168
0.04
25
0.08
406
0.06
293
0.05
170
0.04
73
WQFJXtwo views0.10
246
0.07
239
0.09
123
0.21
573
0.09
355
0.12
310
0.16
405
0.18
302
0.17
321
0.12
309
0.10
197
0.07
124
0.09
270
0.12
295
0.10
208
0.06
168
0.07
503
0.06
200
0.05
192
0.06
293
0.05
207
NLMM1two views0.11
299
0.09
440
0.07
11
0.22
590
0.10
469
0.12
310
0.20
560
0.18
302
0.20
397
0.12
309
0.11
248
0.07
124
0.09
270
0.11
199
0.11
291
0.08
426
0.08
535
0.07
312
0.06
293
0.04
48
0.04
73
NLCSMtwo views0.11
299
0.09
440
0.09
123
0.23
614
0.11
520
0.12
310
0.19
536
0.18
302
0.18
354
0.12
309
0.11
248
0.07
124
0.09
270
0.11
199
0.10
208
0.07
343
0.08
535
0.07
312
0.07
393
0.06
293
0.05
207
BridgeDepthpermissivetwo views0.07
7
0.07
239
0.08
57
0.18
402
0.06
28
0.07
43
0.11
64
0.09
21
0.06
6
0.04
1
0.07
65
0.10
260
0.09
270
0.08
25
0.08
25
0.04
11
0.03
1
0.04
1
0.04
60
0.03
1
0.03
2
Tongfan Guan, Jiaxin Guo, Chen Wang, Yun-Hui Liu: BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment. ICCV 2025 Highlight
water-stereotwo views0.09
176
0.06
117
0.08
57
0.16
222
0.07
134
0.09
139
0.13
179
0.15
188
0.13
192
0.11
266
0.12
270
0.08
186
0.09
270
0.07
4
0.08
25
0.06
168
0.05
276
0.05
50
0.05
192
0.04
48
0.04
73
DilatedVolume-Stereopermissivetwo views0.09
176
0.05
43
0.08
57
0.15
124
0.06
28
0.11
256
0.12
100
0.14
146
0.16
291
0.11
266
0.11
248
0.09
223
0.09
270
0.11
199
0.10
208
0.06
168
0.05
276
0.05
50
0.04
60
0.03
1
0.03
2
S2M2_Ltwo views0.09
176
0.08
358
0.11
252
0.13
22
0.10
469
0.08
85
0.06
1
0.10
35
0.10
77
0.10
230
0.09
161
0.10
260
0.09
270
0.11
199
0.11
291
0.13
614
0.07
503
0.08
406
0.09
514
0.10
548
0.08
471
Junhong Min, Youngpil Jeon, Jimin Kim, Minyong Choi: S^2M^2 : Scalable Stereo Matching Model for Reliable Depth Estimation. ICCV 2025
SGD-Stereotwo views0.08
85
0.05
43
0.10
189
0.14
70
0.05
2
0.12
310
0.12
100
0.11
58
0.12
149
0.07
75
0.09
161
0.09
223
0.09
270
0.08
25
0.08
25
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.03
2
fast-itertwo views0.11
299
0.06
117
0.11
252
0.13
22
0.09
355
0.09
139
0.14
246
0.21
372
0.10
77
0.19
492
0.17
363
0.14
368
0.09
270
0.16
447
0.08
25
0.05
51
0.04
25
0.07
312
0.08
467
0.07
381
0.06
310
CoSvtwo views0.11
299
0.06
117
0.11
252
0.13
22
0.09
355
0.09
139
0.14
246
0.21
372
0.10
77
0.19
492
0.17
363
0.14
368
0.09
270
0.16
447
0.08
25
0.05
51
0.04
25
0.07
312
0.08
467
0.07
381
0.06
310
fffytwo views0.09
176
0.08
358
0.09
123
0.16
222
0.07
134
0.13
366
0.17
447
0.13
115
0.12
149
0.08
131
0.09
161
0.08
186
0.09
270
0.13
351
0.11
291
0.05
51
0.05
276
0.07
312
0.05
192
0.04
48
0.05
207
rvit_stereo_0081_agatwo views0.11
299
0.09
440
0.14
392
0.18
402
0.09
355
0.13
366
0.14
246
0.14
146
0.19
373
0.10
230
0.18
391
0.16
412
0.09
270
0.12
295
0.09
104
0.10
531
0.06
430
0.08
406
0.07
393
0.07
381
0.06
310
rvit_stereo_0081two views0.11
299
0.08
358
0.15
441
0.16
222
0.09
355
0.10
202
0.14
246
0.14
146
0.24
456
0.11
266
0.13
289
0.13
346
0.09
270
0.11
199
0.12
355
0.10
531
0.07
503
0.08
406
0.07
393
0.07
381
0.05
207
rvit_stereo_0082two views0.11
299
0.08
358
0.15
441
0.16
222
0.09
355
0.10
202
0.14
246
0.14
146
0.24
456
0.11
266
0.13
289
0.13
346
0.09
270
0.11
199
0.12
355
0.10
531
0.07
503
0.08
406
0.07
393
0.07
381
0.05
207
EKT-Stereotwo views0.11
299
0.07
239
0.14
392
0.15
124
0.10
469
0.13
366
0.14
246
0.18
302
0.21
413
0.11
266
0.08
125
0.12
313
0.09
270
0.11
199
0.12
355
0.08
426
0.06
430
0.07
312
0.06
293
0.08
450
0.07
400
GCAP-Stereotwo views0.09
176
0.07
239
0.13
353
0.18
402
0.06
28
0.11
256
0.07
3
0.13
115
0.12
149
0.09
183
0.10
197
0.07
124
0.09
270
0.13
351
0.10
208
0.06
168
0.05
276
0.05
50
0.04
60
0.04
48
0.05
207
Any-RAFTtwo views0.10
246
0.05
43
0.09
123
0.14
70
0.07
134
0.13
366
0.14
246
0.21
372
0.15
252
0.11
266
0.12
270
0.12
313
0.09
270
0.12
295
0.09
104
0.07
343
0.04
25
0.05
50
0.04
60
0.06
293
0.05
207
RAFT-Testtwo views0.09
176
0.06
117
0.10
189
0.15
124
0.07
134
0.11
256
0.15
334
0.16
228
0.13
192
0.09
183
0.10
197
0.10
260
0.09
270
0.12
295
0.09
104
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
LoS_RVCtwo views0.08
85
0.05
43
0.07
11
0.15
124
0.07
134
0.08
85
0.15
334
0.11
58
0.10
77
0.08
131
0.09
161
0.06
42
0.09
270
0.10
124
0.09
104
0.05
51
0.04
25
0.05
50
0.03
1
0.04
48
0.03
2
anonymousdsp2two views0.11
299
0.07
239
0.10
189
0.16
222
0.09
355
0.13
366
0.14
246
0.18
302
0.22
427
0.13
343
0.14
305
0.12
313
0.09
270
0.14
385
0.11
291
0.05
51
0.04
25
0.05
50
0.04
60
0.06
293
0.05
207
LoStwo views0.09
176
0.05
43
0.11
252
0.13
22
0.07
134
0.14
403
0.11
64
0.15
188
0.15
252
0.09
183
0.09
161
0.12
313
0.09
270
0.15
412
0.10
208
0.07
343
0.05
276
0.05
50
0.03
1
0.05
170
0.05
207
Kunhong Li, Longguang Wang, Ye Zhang, Kaiwen Xue, Shunbo Zhou, Yulan Guo: LoS: Local Structure-guided Stereo Matching.
knoymoustwo views0.11
299
0.05
43
0.12
300
0.13
22
0.07
134
0.15
430
0.14
246
0.19
333
0.13
192
0.11
266
0.17
363
0.13
346
0.09
270
0.13
351
0.11
291
0.08
426
0.05
276
0.06
200
0.05
192
0.08
450
0.07
400
test_4two views0.10
246
0.10
503
0.08
57
0.19
472
0.09
355
0.08
85
0.22
591
0.15
188
0.17
321
0.12
309
0.18
391
0.12
313
0.09
270
0.08
25
0.11
291
0.04
11
0.04
25
0.08
406
0.08
467
0.04
48
0.03
2
iRaft-Stereo_5wtwo views0.12
377
0.09
440
0.12
300
0.19
472
0.08
220
0.09
139
0.12
100
0.21
372
0.21
413
0.19
492
0.14
305
0.11
291
0.09
270
0.20
544
0.16
493
0.05
51
0.05
276
0.07
312
0.06
293
0.05
170
0.06
310
CIPLGtwo views0.11
299
0.08
358
0.14
392
0.17
309
0.08
220
0.12
310
0.15
334
0.17
267
0.15
252
0.14
370
0.11
248
0.16
412
0.09
270
0.16
447
0.11
291
0.07
343
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
ddtwo views0.15
486
0.16
606
0.16
477
0.19
472
0.09
355
0.15
430
0.18
496
0.21
372
0.25
478
0.23
559
0.20
414
0.21
484
0.09
270
0.21
561
0.16
493
0.10
531
0.06
430
0.08
406
0.06
293
0.08
450
0.06
310
IPLGR_Ctwo views0.11
299
0.08
358
0.14
392
0.17
309
0.08
220
0.12
310
0.15
334
0.17
267
0.15
252
0.14
370
0.10
197
0.16
412
0.09
270
0.16
447
0.11
291
0.07
343
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
ACREtwo views0.11
299
0.08
358
0.14
392
0.17
309
0.08
220
0.12
310
0.15
334
0.17
267
0.14
225
0.14
370
0.10
197
0.16
412
0.09
270
0.16
447
0.11
291
0.07
343
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
test_3two views0.10
246
0.09
440
0.10
189
0.20
540
0.08
220
0.13
366
0.26
640
0.14
146
0.21
413
0.10
230
0.10
197
0.09
223
0.09
270
0.08
25
0.11
291
0.05
51
0.04
25
0.08
406
0.07
393
0.04
48
0.04
73
Pruner-Stereotwo views0.11
299
0.07
239
0.12
300
0.17
309
0.09
355
0.06
14
0.12
100
0.17
267
0.17
321
0.13
343
0.19
402
0.13
346
0.09
270
0.11
199
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.08
471
RAFT-345two views0.11
299
0.07
239
0.15
441
0.16
222
0.08
220
0.08
85
0.12
100
0.15
188
0.10
77
0.11
266
0.36
597
0.09
223
0.09
270
0.11
199
0.12
355
0.05
51
0.05
276
0.07
312
0.06
293
0.04
48
0.05
207
RALAANettwo views0.11
299
0.08
358
0.10
189
0.17
309
0.09
355
0.14
403
0.10
35
0.20
345
0.15
252
0.14
370
0.13
289
0.16
412
0.09
270
0.12
295
0.11
291
0.06
168
0.05
276
0.07
312
0.06
293
0.05
170
0.04
73
RAFT-Stereo + iAFFtwo views0.09
176
0.06
117
0.10
189
0.17
309
0.06
28
0.10
202
0.16
405
0.17
267
0.14
225
0.09
183
0.10
197
0.08
186
0.09
270
0.11
199
0.09
104
0.05
51
0.04
25
0.06
200
0.06
293
0.04
48
0.03
2
AFF-stereotwo views0.09
176
0.06
117
0.10
189
0.17
309
0.07
134
0.10
202
0.16
405
0.17
267
0.09
52
0.10
230
0.12
270
0.09
223
0.09
270
0.12
295
0.09
104
0.05
51
0.04
25
0.07
312
0.07
393
0.04
48
0.03
2
CFNet-RSSMtwo views0.09
176
0.07
239
0.09
123
0.16
222
0.07
134
0.09
139
0.15
334
0.16
228
0.17
321
0.08
131
0.12
270
0.10
260
0.09
270
0.11
199
0.09
104
0.06
168
0.04
25
0.06
200
0.04
60
0.04
48
0.04
73
Gwc-CoAtRStwo views0.09
176
0.06
117
0.10
189
0.16
222
0.07
134
0.10
202
0.14
246
0.17
267
0.17
321
0.08
131
0.10
197
0.12
313
0.09
270
0.12
295
0.09
104
0.06
168
0.04
25
0.06
200
0.04
60
0.04
48
0.04
73
Stwo views0.12
377
0.08
358
0.09
123
0.20
540
0.08
220
0.13
366
0.19
536
0.17
267
0.16
291
0.13
343
0.11
248
0.13
346
0.10
314
0.11
199
0.13
402
0.09
488
0.07
503
0.13
607
0.15
643
0.06
293
0.04
73
PhaseNettwo views0.09
176
0.06
117
0.10
189
0.15
124
0.08
220
0.10
202
0.14
246
0.20
345
0.12
149
0.07
75
0.08
125
0.09
223
0.10
314
0.13
351
0.12
355
0.06
168
0.04
25
0.06
200
0.06
293
0.05
170
0.05
207
HLf8two views0.11
299
0.05
43
0.13
353
0.11
1
0.08
220
0.15
430
0.12
100
0.22
398
0.15
252
0.13
343
0.17
363
0.12
313
0.10
314
0.14
385
0.12
355
0.09
488
0.05
276
0.05
50
0.05
192
0.08
450
0.08
471
TestStereo_HL2two views0.11
299
0.06
117
0.11
252
0.12
7
0.08
220
0.12
310
0.14
246
0.20
345
0.18
354
0.13
343
0.21
438
0.12
313
0.10
314
0.12
295
0.12
355
0.07
343
0.05
276
0.05
50
0.05
192
0.07
381
0.07
400
TS12two views0.08
85
0.06
117
0.09
123
0.21
573
0.07
134
0.11
256
0.13
179
0.11
58
0.09
52
0.10
230
0.10
197
0.08
186
0.10
314
0.09
59
0.12
355
0.04
11
0.04
25
0.05
50
0.04
60
0.03
1
0.04
73
RT-IGEVtwo views0.13
404
0.06
117
0.13
353
0.15
124
0.09
355
0.15
430
0.17
447
0.24
445
0.27
502
0.16
426
0.17
363
0.17
434
0.10
314
0.14
385
0.11
291
0.08
426
0.05
276
0.07
312
0.05
192
0.07
381
0.07
400
Selective-IGEV-i1two views0.13
404
0.07
239
0.12
300
0.19
472
0.08
220
0.18
504
0.16
405
0.22
398
0.30
534
0.16
426
0.17
363
0.16
412
0.10
314
0.14
385
0.13
402
0.06
168
0.05
276
0.06
200
0.05
192
0.06
293
0.05
207
DStereoRTtwo views0.16
509
0.06
117
0.11
252
0.19
472
0.09
355
0.12
310
0.12
100
0.28
523
0.22
427
0.12
309
0.20
414
0.11
291
0.10
314
0.15
412
0.14
445
0.06
168
0.05
276
0.96
712
0.09
514
0.05
170
0.04
73
WQFJA1two views0.10
246
0.07
239
0.08
57
0.20
540
0.09
355
0.12
310
0.17
447
0.17
267
0.17
321
0.09
183
0.10
197
0.08
186
0.10
314
0.12
295
0.11
291
0.06
168
0.07
503
0.07
312
0.06
293
0.06
293
0.05
207
WQFJX1two views0.10
246
0.07
239
0.08
57
0.22
590
0.09
355
0.12
310
0.17
447
0.18
302
0.17
321
0.10
230
0.09
161
0.07
124
0.10
314
0.11
199
0.09
104
0.07
343
0.08
535
0.07
312
0.06
293
0.05
170
0.04
73
NLMMtwo views0.10
246
0.07
239
0.08
57
0.20
540
0.09
355
0.12
310
0.17
447
0.17
267
0.17
321
0.09
183
0.10
197
0.08
186
0.10
314
0.12
295
0.11
291
0.06
168
0.07
503
0.07
312
0.06
293
0.06
293
0.05
207
NLSM1two views0.10
246
0.07
239
0.07
11
0.19
472
0.08
220
0.13
366
0.16
405
0.21
372
0.15
252
0.11
266
0.10
197
0.06
42
0.10
314
0.10
124
0.11
291
0.07
343
0.08
535
0.08
406
0.07
393
0.05
170
0.05
207
xyz-stereo-finetunetwo views0.11
299
0.08
358
0.13
353
0.14
70
0.06
28
0.10
202
0.19
536
0.17
267
0.19
373
0.12
309
0.14
305
0.15
397
0.10
314
0.13
351
0.11
291
0.05
51
0.04
25
0.07
312
0.05
192
0.04
48
0.05
207
rvit_stereo_0083two views0.12
377
0.08
358
0.17
508
0.16
222
0.09
355
0.11
256
0.15
334
0.14
146
0.26
492
0.11
266
0.14
305
0.13
346
0.10
314
0.12
295
0.12
355
0.10
531
0.08
535
0.09
492
0.07
393
0.07
381
0.05
207
rvit_stereo_fttwo views0.12
377
0.07
239
0.13
353
0.19
472
0.10
469
0.12
310
0.17
447
0.16
228
0.16
291
0.12
309
0.13
289
0.15
397
0.10
314
0.14
385
0.13
402
0.09
488
0.06
430
0.08
406
0.07
393
0.07
381
0.05
207
H2IRNETtwo views0.10
246
0.09
440
0.09
123
0.18
402
0.09
355
0.12
310
0.15
334
0.14
146
0.21
413
0.10
230
0.10
197
0.10
260
0.10
314
0.10
124
0.10
208
0.05
51
0.04
25
0.08
406
0.08
467
0.06
293
0.05
207
MyStereo8two views0.12
377
0.07
239
0.15
441
0.15
124
0.09
355
0.18
504
0.14
246
0.19
333
0.22
427
0.12
309
0.18
391
0.11
291
0.10
314
0.16
447
0.18
526
0.07
343
0.05
276
0.07
312
0.05
192
0.08
450
0.09
517
MyStereo04two views0.13
404
0.07
239
0.10
189
0.17
309
0.09
355
0.14
403
0.18
496
0.29
537
0.38
596
0.17
445
0.14
305
0.16
412
0.10
314
0.15
412
0.13
402
0.06
168
0.05
276
0.08
406
0.07
393
0.06
293
0.06
310
StereoVisiontwo views0.13
404
0.12
548
0.09
123
0.24
623
0.10
469
0.15
430
0.21
581
0.21
372
0.20
397
0.12
309
0.24
472
0.10
260
0.10
314
0.16
447
0.10
208
0.09
488
0.11
603
0.12
592
0.12
611
0.06
293
0.05
207
DCREtwo views0.11
299
0.07
239
0.13
353
0.16
222
0.11
520
0.11
256
0.17
447
0.18
302
0.17
321
0.11
266
0.18
391
0.10
260
0.10
314
0.15
412
0.11
291
0.06
168
0.05
276
0.06
200
0.06
293
0.05
170
0.04
73
Selective-RAFTtwo views0.11
299
0.10
503
0.11
252
0.21
573
0.08
220
0.16
462
0.13
179
0.20
345
0.22
427
0.10
230
0.10
197
0.11
291
0.10
314
0.15
412
0.11
291
0.05
51
0.05
276
0.06
200
0.05
192
0.06
293
0.05
207
TestStereo1two views0.13
404
0.08
358
0.08
57
0.19
472
0.08
220
0.18
504
0.29
663
0.23
421
0.16
291
0.17
445
0.20
414
0.16
412
0.10
314
0.12
295
0.13
402
0.06
168
0.06
430
0.08
406
0.06
293
0.05
170
0.05
207
DisPMtwo views0.11
299
0.07
239
0.12
300
0.16
222
0.09
355
0.06
14
0.13
179
0.17
267
0.17
321
0.14
370
0.20
414
0.12
313
0.10
314
0.11
199
0.10
208
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.11
575
raft_robusttwo views0.13
404
0.10
503
0.07
11
0.18
402
0.08
220
0.13
366
0.24
615
0.28
523
0.33
556
0.20
515
0.19
402
0.14
368
0.10
314
0.11
199
0.12
355
0.05
51
0.05
276
0.07
312
0.07
393
0.05
170
0.04
73
RAFT+CT+SAtwo views0.13
404
0.11
530
0.09
123
0.19
472
0.09
355
0.15
430
0.28
653
0.22
398
0.22
427
0.15
397
0.26
517
0.10
260
0.10
314
0.11
199
0.12
355
0.05
51
0.04
25
0.07
312
0.08
467
0.07
381
0.06
310
SA-5Ktwo views0.13
404
0.08
358
0.08
57
0.19
472
0.08
220
0.18
504
0.29
663
0.23
421
0.16
291
0.17
445
0.20
414
0.16
412
0.10
314
0.12
295
0.13
402
0.06
168
0.06
430
0.08
406
0.06
293
0.05
170
0.05
207
PFNet+two views0.11
299
0.06
117
0.13
353
0.16
222
0.09
355
0.05
4
0.12
100
0.17
267
0.21
413
0.16
426
0.19
402
0.14
368
0.10
314
0.11
199
0.11
291
0.08
426
0.05
276
0.09
492
0.08
467
0.06
293
0.11
575
STrans-v2two views0.10
246
0.07
239
0.12
300
0.18
402
0.07
134
0.10
202
0.14
246
0.21
372
0.11
110
0.11
266
0.15
326
0.12
313
0.10
314
0.11
199
0.12
355
0.05
51
0.04
25
0.06
200
0.06
293
0.04
48
0.04
73
KYRafttwo views0.11
299
0.07
239
0.10
189
0.19
472
0.09
355
0.08
85
0.15
334
0.22
398
0.12
149
0.13
343
0.16
339
0.20
475
0.10
314
0.12
295
0.10
208
0.05
51
0.04
25
0.08
406
0.08
467
0.06
293
0.16
647
ASMatchtwo views0.11
299
0.06
117
0.13
353
0.16
222
0.10
469
0.07
43
0.14
246
0.17
267
0.17
321
0.12
309
0.16
339
0.16
412
0.10
314
0.13
351
0.10
208
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.08
471
RAFT-RH_RVCtwo views0.11
299
0.06
117
0.14
392
0.16
222
0.09
355
0.12
310
0.12
100
0.17
267
0.12
149
0.13
343
0.41
634
0.11
291
0.10
314
0.13
351
0.12
355
0.05
51
0.04
25
0.08
406
0.05
192
0.04
48
0.06
310
cross-rafttwo views0.10
246
0.09
440
0.09
123
0.19
472
0.07
134
0.11
256
0.25
631
0.13
115
0.15
252
0.08
131
0.11
248
0.12
313
0.10
314
0.09
59
0.11
291
0.05
51
0.04
25
0.06
200
0.05
192
0.04
48
0.04
73
rafts_anoytwo views0.11
299
0.06
117
0.10
189
0.17
309
0.08
220
0.10
202
0.14
246
0.17
267
0.14
225
0.13
343
0.13
289
0.12
313
0.10
314
0.11
199
0.12
355
0.07
343
0.04
25
0.09
492
0.11
590
0.07
381
0.06
310
Anonymous3two views0.16
509
0.13
576
0.33
626
0.26
640
0.14
598
0.27
623
0.17
447
0.28
523
0.28
517
0.15
397
0.17
363
0.14
368
0.10
314
0.15
412
0.12
355
0.08
426
0.08
535
0.08
406
0.08
467
0.08
450
0.11
575
RALCasStereoNettwo views0.10
246
0.06
117
0.09
123
0.16
222
0.08
220
0.12
310
0.14
246
0.17
267
0.11
110
0.12
309
0.17
363
0.14
368
0.10
314
0.12
295
0.11
291
0.07
343
0.06
430
0.06
200
0.05
192
0.08
450
0.07
400
RAFT + AFFtwo views0.13
404
0.07
239
0.20
556
0.20
540
0.10
469
0.14
403
0.24
615
0.26
482
0.20
397
0.11
266
0.10
197
0.12
313
0.10
314
0.15
412
0.12
355
0.07
343
0.06
430
0.09
492
0.08
467
0.06
293
0.08
471
GMStereopermissivetwo views0.13
404
0.14
588
0.14
392
0.18
402
0.09
355
0.15
430
0.16
405
0.20
345
0.24
456
0.16
426
0.17
363
0.10
260
0.10
314
0.16
447
0.13
402
0.07
343
0.06
430
0.06
200
0.06
293
0.07
381
0.06
310
Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, Andreas Geiger: Unifying Flow, Stereo and Depth Estimation. TPAMI 2023
HLF11two views0.11
299
0.05
43
0.13
353
0.12
7
0.08
220
0.14
403
0.11
64
0.22
398
0.10
77
0.12
309
0.23
459
0.11
291
0.11
351
0.14
385
0.13
402
0.08
426
0.05
276
0.05
50
0.04
60
0.08
450
0.08
471
TestStereo-Hlcopylefttwo views0.11
299
0.06
117
0.11
252
0.13
22
0.08
220
0.15
430
0.14
246
0.20
345
0.17
321
0.13
343
0.16
339
0.12
313
0.11
351
0.14
385
0.13
402
0.06
168
0.04
25
0.05
50
0.05
192
0.06
293
0.06
310
MultiAttentiontwo views0.29
647
0.08
358
0.14
392
0.19
472
0.12
554
1.45
715
1.33
719
0.36
626
0.37
589
0.19
492
0.21
438
0.24
526
0.11
351
0.38
661
0.18
526
0.06
168
0.05
276
0.08
406
0.08
467
0.10
548
0.09
517
depthmonostereotwo views0.09
176
0.06
117
0.09
123
0.15
124
0.06
28
0.10
202
0.13
179
0.14
146
0.14
225
0.10
230
0.10
197
0.09
223
0.11
351
0.08
25
0.09
104
0.06
168
0.05
276
0.06
200
0.04
60
0.04
48
0.03
2
MyStereo05two views0.13
404
0.07
239
0.10
189
0.17
309
0.09
355
0.13
366
0.18
496
0.27
503
0.35
577
0.17
445
0.14
305
0.15
397
0.11
351
0.15
412
0.13
402
0.06
168
0.05
276
0.07
312
0.07
393
0.06
293
0.06
310
CoDeXtwo views0.12
377
0.07
239
0.12
300
0.17
309
0.08
220
0.12
310
0.15
334
0.23
421
0.27
502
0.13
343
0.17
363
0.16
412
0.11
351
0.14
385
0.11
291
0.07
343
0.05
276
0.07
312
0.06
293
0.06
293
0.05
207
GMStereo_Zeroshotpermissivetwo views0.16
509
0.13
576
0.24
585
0.20
540
0.10
469
0.17
485
0.13
179
0.29
537
0.25
478
0.23
559
0.32
572
0.25
540
0.11
351
0.19
519
0.14
445
0.09
488
0.06
430
0.11
572
0.06
293
0.12
586
0.08
471
MIF-Stereo (partial)two views0.11
299
0.06
117
0.10
189
0.19
472
0.10
469
0.10
202
0.11
64
0.17
267
0.18
354
0.14
370
0.16
339
0.09
223
0.11
351
0.12
295
0.12
355
0.08
426
0.05
276
0.08
406
0.07
393
0.06
293
0.07
400
riskmintwo views0.11
299
0.06
117
0.13
353
0.14
70
0.08
220
0.14
403
0.14
246
0.18
302
0.14
225
0.11
266
0.14
305
0.16
412
0.11
351
0.14
385
0.12
355
0.09
488
0.05
276
0.07
312
0.05
192
0.08
450
0.08
471
ffftwo views0.10
246
0.06
117
0.12
300
0.15
124
0.07
134
0.09
139
0.17
447
0.16
228
0.20
397
0.13
343
0.16
339
0.10
260
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
Sa-1000two views0.12
377
0.08
358
0.08
57
0.18
402
0.08
220
0.14
403
0.22
591
0.22
398
0.18
354
0.15
397
0.20
414
0.17
434
0.11
351
0.10
124
0.10
208
0.06
168
0.05
276
0.09
492
0.09
514
0.05
170
0.05
207
SAtwo views0.12
377
0.09
440
0.08
57
0.18
402
0.08
220
0.12
310
0.24
615
0.23
421
0.18
354
0.17
445
0.27
526
0.14
368
0.11
351
0.11
199
0.11
291
0.05
51
0.05
276
0.09
492
0.08
467
0.05
170
0.04
73
CrosDoStereotwo views0.12
377
0.06
117
0.12
300
0.14
70
0.08
220
0.12
310
0.15
334
0.17
267
0.22
427
0.19
492
0.24
472
0.15
397
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.07
312
0.07
393
0.05
170
0.05
207
LCNettwo views0.11
299
0.07
239
0.09
123
0.19
472
0.09
355
0.08
85
0.15
334
0.21
372
0.15
252
0.11
266
0.15
326
0.16
412
0.11
351
0.12
295
0.11
291
0.05
51
0.04
25
0.08
406
0.07
393
0.06
293
0.15
636
TransformOpticalFlowtwo views0.10
246
0.08
358
0.13
353
0.18
402
0.07
134
0.09
139
0.15
334
0.19
333
0.15
252
0.12
309
0.17
363
0.11
291
0.11
351
0.11
199
0.10
208
0.05
51
0.04
25
0.06
200
0.06
293
0.05
170
0.05
207
NF-Stereotwo views0.11
299
0.07
239
0.13
353
0.17
309
0.09
355
0.10
202
0.14
246
0.23
421
0.19
373
0.12
309
0.17
363
0.12
313
0.11
351
0.11
199
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.12
588
OCTAStereotwo views0.11
299
0.07
239
0.13
353
0.17
309
0.09
355
0.10
202
0.14
246
0.23
421
0.19
373
0.12
309
0.17
363
0.12
313
0.11
351
0.11
199
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.12
588
PSM-softLosstwo views0.12
377
0.07
239
0.15
441
0.17
309
0.09
355
0.08
85
0.13
179
0.24
445
0.17
321
0.14
370
0.19
402
0.13
346
0.11
351
0.11
199
0.11
291
0.07
343
0.05
276
0.08
406
0.07
393
0.06
293
0.12
588
KMStereotwo views0.12
377
0.07
239
0.15
441
0.17
309
0.09
355
0.08
85
0.13
179
0.24
445
0.17
321
0.14
370
0.19
402
0.13
346
0.11
351
0.11
199
0.11
291
0.07
343
0.05
276
0.08
406
0.07
393
0.06
293
0.12
588
PSM-AADtwo views0.11
299
0.07
239
0.10
189
0.19
472
0.09
355
0.10
202
0.15
334
0.20
345
0.13
192
0.12
309
0.14
305
0.18
448
0.11
351
0.11
199
0.10
208
0.05
51
0.05
276
0.09
492
0.08
467
0.06
293
0.14
629
DeepStereo_LLtwo views0.12
377
0.06
117
0.12
300
0.14
70
0.08
220
0.12
310
0.15
334
0.17
267
0.22
427
0.19
492
0.24
472
0.15
397
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.07
312
0.07
393
0.05
170
0.05
207
PFNettwo views0.12
377
0.06
117
0.17
508
0.17
309
0.08
220
0.09
139
0.15
334
0.26
482
0.20
397
0.16
426
0.16
339
0.14
368
0.11
351
0.12
295
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.05
170
0.05
207
GrayStereotwo views0.11
299
0.06
117
0.11
252
0.19
472
0.09
355
0.09
139
0.16
405
0.18
302
0.17
321
0.14
370
0.17
363
0.17
434
0.11
351
0.12
295
0.11
291
0.05
51
0.05
276
0.07
312
0.06
293
0.05
170
0.10
548
RE-Stereotwo views0.11
299
0.07
239
0.13
353
0.17
309
0.09
355
0.10
202
0.14
246
0.23
421
0.19
373
0.12
309
0.17
363
0.12
313
0.11
351
0.11
199
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.12
588
TVStereotwo views0.11
299
0.07
239
0.13
353
0.17
309
0.09
355
0.10
202
0.14
246
0.23
421
0.19
373
0.12
309
0.17
363
0.12
313
0.11
351
0.11
199
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.12
588
GMM-Stereotwo views0.11
299
0.07
239
0.10
189
0.18
402
0.09
355
0.08
85
0.15
334
0.23
421
0.16
291
0.11
266
0.15
326
0.13
346
0.11
351
0.11
199
0.11
291
0.05
51
0.04
25
0.08
406
0.07
393
0.06
293
0.09
517
s12784htwo views0.09
176
0.06
117
0.07
11
0.15
124
0.05
2
0.16
462
0.18
496
0.15
188
0.15
252
0.10
230
0.11
248
0.11
291
0.11
351
0.10
124
0.12
355
0.05
51
0.04
25
0.05
50
0.04
60
0.04
48
0.04
73
DCANettwo views0.10
246
0.06
117
0.12
300
0.16
222
0.06
28
0.09
139
0.17
447
0.15
188
0.19
373
0.13
343
0.17
363
0.10
260
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
csctwo views0.10
246
0.06
117
0.12
300
0.15
124
0.07
134
0.09
139
0.17
447
0.16
228
0.20
397
0.13
343
0.16
339
0.10
260
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
cscssctwo views0.10
246
0.06
117
0.12
300
0.15
124
0.07
134
0.09
139
0.17
447
0.16
228
0.20
397
0.13
343
0.16
339
0.10
260
0.11
351
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
111two views0.10
246
0.06
117
0.12
300
0.15
124
0.07
134
0.10
202
0.14
246
0.21
372
0.23
439
0.11
266
0.12
270
0.14
368
0.11
351
0.13
351
0.10
208
0.06
168
0.04
25
0.06
200
0.04
60
0.05
170
0.05
207
ARAFTtwo views0.12
377
0.08
358
0.17
508
0.19
472
0.09
355
0.14
403
0.18
496
0.20
345
0.12
149
0.12
309
0.13
289
0.14
368
0.11
351
0.15
412
0.12
355
0.06
168
0.05
276
0.10
541
0.09
514
0.05
170
0.04
73
HITNettwo views0.10
246
0.06
117
0.12
300
0.14
70
0.06
28
0.11
256
0.10
35
0.18
302
0.18
354
0.13
343
0.16
339
0.14
368
0.11
351
0.15
412
0.13
402
0.06
168
0.04
25
0.04
1
0.04
60
0.06
293
0.05
207
Vladimir Tankovich, Christian Häne, Yinda Zhang, Adarsh Kowdle, Sean Fanello, Sofien Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021
SMEtwo views0.11
299
0.09
440
0.10
189
0.17
309
0.07
134
0.20
544
0.13
179
0.21
372
0.17
321
0.12
309
0.13
289
0.10
260
0.12
384
0.13
351
0.13
402
0.07
343
0.07
503
0.08
406
0.09
514
0.06
293
0.05
207
TestStereo_HL3two views0.11
299
0.05
43
0.16
477
0.13
22
0.07
134
0.12
310
0.11
64
0.20
345
0.09
52
0.15
397
0.30
559
0.13
346
0.12
384
0.16
447
0.11
291
0.07
343
0.05
276
0.05
50
0.05
192
0.06
293
0.07
400
IGEV_i1two views0.12
377
0.07
239
0.12
300
0.16
222
0.08
220
0.19
528
0.14
246
0.18
302
0.22
427
0.18
475
0.18
391
0.16
412
0.12
384
0.16
447
0.14
445
0.06
168
0.05
276
0.06
200
0.05
192
0.06
293
0.06
310
Hybrid-DGEV-2two views0.11
299
0.06
117
0.12
300
0.18
402
0.09
355
0.09
139
0.13
179
0.28
523
0.29
524
0.11
266
0.11
248
0.09
223
0.12
384
0.12
295
0.09
104
0.06
168
0.05
276
0.07
312
0.07
393
0.05
170
0.05
207
FlowAnything_testtwo views0.11
299
0.08
358
0.14
392
0.15
124
0.09
355
0.07
43
0.14
246
0.20
345
0.11
110
0.09
183
0.09
161
0.12
313
0.12
384
0.13
351
0.11
291
0.09
488
0.06
430
0.09
492
0.09
514
0.06
293
0.09
517
xyz-stereo-finetune2two views0.11
299
0.07
239
0.13
353
0.13
22
0.07
134
0.11
256
0.19
536
0.17
267
0.12
149
0.15
397
0.15
326
0.17
434
0.12
384
0.13
351
0.11
291
0.05
51
0.04
25
0.07
312
0.05
192
0.04
48
0.06
310
DFGA-Nettwo views0.13
404
0.11
530
0.18
532
0.17
309
0.10
469
0.12
310
0.13
179
0.22
398
0.25
478
0.16
426
0.16
339
0.13
346
0.12
384
0.16
447
0.14
445
0.07
343
0.05
276
0.08
406
0.07
393
0.05
170
0.05
207
DDVStwo views0.15
486
0.10
503
0.21
566
0.16
222
0.12
554
0.15
430
0.14
246
0.25
464
0.19
373
0.18
475
0.29
552
0.27
558
0.12
384
0.19
519
0.15
477
0.09
488
0.06
430
0.09
492
0.07
393
0.11
571
0.11
575
rvit_0105_6two views0.14
441
0.09
440
0.18
532
0.17
309
0.10
469
0.10
202
0.16
405
0.19
333
0.26
492
0.12
309
0.18
391
0.17
434
0.12
384
0.18
504
0.12
355
0.15
632
0.11
603
0.12
592
0.10
556
0.09
515
0.06
310
rvit_0105_5two views0.14
441
0.09
440
0.13
353
0.17
309
0.09
355
0.14
403
0.23
602
0.24
445
0.27
502
0.14
370
0.15
326
0.18
448
0.12
384
0.17
481
0.14
445
0.14
628
0.11
603
0.10
541
0.10
556
0.08
450
0.06
310
GCSTcopylefttwo views0.37
665
0.42
685
0.26
593
1.02
711
0.39
685
0.18
504
0.08
7
0.20
345
0.17
321
0.28
608
0.25
500
0.15
397
0.12
384
0.16
447
0.14
445
0.64
706
0.43
695
0.75
702
0.65
706
0.63
699
0.46
698
plaintwo views0.10
246
0.08
358
0.10
189
0.19
472
0.09
355
0.10
202
0.15
334
0.14
146
0.13
192
0.13
343
0.15
326
0.09
223
0.12
384
0.13
351
0.12
355
0.07
343
0.05
276
0.09
492
0.06
293
0.06
293
0.06
310
PCWNet_CMDtwo views0.14
441
0.08
358
0.15
441
0.17
309
0.09
355
0.14
403
0.14
246
0.29
537
0.36
582
0.14
370
0.20
414
0.21
484
0.12
384
0.17
481
0.13
402
0.07
343
0.05
276
0.07
312
0.07
393
0.07
381
0.07
400
ADStereo(finetuned)two views0.10
246
0.06
117
0.12
300
0.16
222
0.06
28
0.09
139
0.17
447
0.15
188
0.19
373
0.13
343
0.17
363
0.10
260
0.12
384
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
GMOStereotwo views0.11
299
0.09
440
0.07
11
0.19
472
0.08
220
0.12
310
0.28
653
0.13
115
0.17
321
0.11
266
0.17
363
0.14
368
0.12
384
0.07
4
0.07
1
0.05
51
0.05
276
0.09
492
0.07
393
0.04
48
0.04
73
error versiontwo views0.11
299
0.09
440
0.07
11
0.19
472
0.08
220
0.12
310
0.28
653
0.13
115
0.17
321
0.11
266
0.17
363
0.14
368
0.12
384
0.07
4
0.07
1
0.05
51
0.05
276
0.09
492
0.07
393
0.04
48
0.04
73
test-vtwo views0.11
299
0.09
440
0.07
11
0.19
472
0.08
220
0.12
310
0.28
653
0.13
115
0.17
321
0.11
266
0.17
363
0.14
368
0.12
384
0.07
4
0.07
1
0.05
51
0.05
276
0.09
492
0.07
393
0.04
48
0.04
73
GANet-ADLtwo views0.13
404
0.07
239
0.15
441
0.17
309
0.10
469
0.18
504
0.15
334
0.30
551
0.20
397
0.13
343
0.18
391
0.19
463
0.12
384
0.16
447
0.13
402
0.08
426
0.06
430
0.06
200
0.05
192
0.07
381
0.08
471
Patchmatch Stereo++two views0.11
299
0.09
440
0.16
477
0.18
402
0.08
220
0.06
14
0.11
64
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
Wenjia Ren, Qingmin Liao, Zhijing Shao, Xiangru Lin, Xin Yue, Yu Zhang, Zongqing Lu: Patchmatch Stereo++: Patchmatch Binocular Stereo with Continuous Disparity Optimization. ACM MM 2023
OMP-Stereotwo views0.11
299
0.06
117
0.14
392
0.18
402
0.08
220
0.09
139
0.12
100
0.21
372
0.21
413
0.13
343
0.14
305
0.11
291
0.12
384
0.11
199
0.13
402
0.06
168
0.04
25
0.07
312
0.06
293
0.05
170
0.04
73
IIG-Stereotwo views0.11
299
0.06
117
0.13
353
0.17
309
0.08
220
0.11
256
0.12
100
0.22
398
0.17
321
0.14
370
0.17
363
0.11
291
0.12
384
0.12
295
0.12
355
0.06
168
0.05
276
0.07
312
0.06
293
0.05
170
0.04
73
NRIStereotwo views0.11
299
0.08
358
0.14
392
0.18
402
0.08
220
0.10
202
0.14
246
0.16
228
0.15
252
0.12
309
0.14
305
0.13
346
0.12
384
0.13
351
0.10
208
0.06
168
0.04
25
0.07
312
0.06
293
0.06
293
0.07
400
PSM-adaLosstwo views0.11
299
0.09
440
0.16
477
0.18
402
0.08
220
0.06
14
0.12
100
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
FTStereotwo views0.12
377
0.06
117
0.14
392
0.18
402
0.09
355
0.07
43
0.15
334
0.21
372
0.18
354
0.12
309
0.24
472
0.12
313
0.12
384
0.13
351
0.13
402
0.05
51
0.05
276
0.07
312
0.06
293
0.06
293
0.10
548
ROB_FTStereo_v2two views0.11
299
0.09
440
0.16
477
0.19
472
0.08
220
0.06
14
0.12
100
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
ROB_FTStereotwo views0.11
299
0.09
440
0.16
477
0.19
472
0.08
220
0.06
14
0.11
64
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
HUI-Stereotwo views0.11
299
0.09
440
0.16
477
0.18
402
0.08
220
0.06
14
0.12
100
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
SST-Stereotwo views0.10
246
0.07
239
0.15
441
0.18
402
0.09
355
0.06
14
0.12
100
0.17
267
0.11
110
0.15
397
0.17
363
0.13
346
0.12
384
0.10
124
0.11
291
0.06
168
0.04
25
0.09
492
0.06
293
0.06
293
0.05
207
THIR-Stereotwo views0.12
377
0.07
239
0.11
252
0.15
124
0.08
220
0.14
403
0.16
405
0.17
267
0.25
478
0.16
426
0.24
472
0.14
368
0.12
384
0.12
295
0.14
445
0.06
168
0.04
25
0.07
312
0.07
393
0.05
170
0.05
207
RAFT_R40two views0.11
299
0.07
239
0.14
392
0.18
402
0.09
355
0.06
14
0.13
179
0.17
267
0.16
291
0.14
370
0.18
391
0.15
397
0.12
384
0.10
124
0.11
291
0.06
168
0.04
25
0.09
492
0.06
293
0.06
293
0.05
207
DeepStereo_RVCtwo views0.11
299
0.08
358
0.16
477
0.18
402
0.08
220
0.08
85
0.12
100
0.17
267
0.12
149
0.13
343
0.14
305
0.12
313
0.12
384
0.12
295
0.11
291
0.06
168
0.04
25
0.07
312
0.06
293
0.07
381
0.08
471
iGMRVCtwo views0.11
299
0.09
440
0.16
477
0.19
472
0.08
220
0.06
14
0.12
100
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
IRAFT_RVCtwo views0.12
377
0.08
358
0.16
477
0.19
472
0.08
220
0.07
43
0.15
334
0.24
445
0.23
439
0.14
370
0.14
305
0.15
397
0.12
384
0.12
295
0.10
208
0.06
168
0.04
25
0.09
492
0.06
293
0.06
293
0.06
310
iRAFTtwo views0.11
299
0.09
440
0.16
477
0.18
402
0.08
220
0.06
14
0.11
64
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
CRE-IMPtwo views0.11
299
0.09
440
0.16
477
0.19
472
0.08
220
0.10
202
0.12
100
0.18
302
0.10
77
0.14
370
0.13
289
0.13
346
0.12
384
0.12
295
0.11
291
0.07
343
0.04
25
0.08
406
0.06
293
0.08
450
0.08
471
test-2two views0.11
299
0.09
440
0.07
11
0.19
472
0.08
220
0.12
310
0.28
653
0.13
115
0.17
321
0.11
266
0.17
363
0.14
368
0.12
384
0.07
4
0.07
1
0.05
51
0.05
276
0.09
492
0.07
393
0.04
48
0.04
73
RAFTtwo views0.13
404
0.09
440
0.11
252
0.18
402
0.08
220
0.15
430
0.24
615
0.20
345
0.19
373
0.21
530
0.21
438
0.17
434
0.12
384
0.16
447
0.09
104
0.06
168
0.07
503
0.10
541
0.09
514
0.05
170
0.05
207
RAFT-IKPtwo views0.11
299
0.09
440
0.16
477
0.19
472
0.08
220
0.06
14
0.12
100
0.16
228
0.13
192
0.15
397
0.16
339
0.14
368
0.12
384
0.11
199
0.10
208
0.06
168
0.04
25
0.08
406
0.06
293
0.08
450
0.07
400
TestStereotwo views0.13
404
0.14
588
0.11
252
0.23
614
0.08
220
0.15
430
0.21
581
0.20
345
0.23
439
0.14
370
0.24
472
0.16
412
0.12
384
0.16
447
0.14
445
0.05
51
0.06
430
0.08
406
0.06
293
0.09
515
0.05
207
FENettwo views0.13
404
0.08
358
0.12
300
0.16
222
0.08
220
0.14
403
0.15
334
0.22
398
0.23
439
0.17
445
0.23
459
0.16
412
0.12
384
0.14
385
0.15
477
0.08
426
0.05
276
0.08
406
0.08
467
0.07
381
0.07
400
DIP-Stereotwo views0.11
299
0.07
239
0.14
392
0.17
309
0.09
355
0.13
366
0.09
20
0.16
228
0.16
291
0.11
266
0.16
339
0.14
368
0.12
384
0.15
412
0.13
402
0.06
168
0.05
276
0.06
200
0.05
192
0.05
170
0.06
310
Zihua Zheng, Ni Nie, Zhi Ling, Pengfei Xiong, Jiangyu Liu, Hao Wang, Jiankun Li: DIP: Deep Inverse Patchmatch for High-Resolution Optical Flow. cvpr2022
MSMDNettwo views0.14
441
0.08
358
0.15
441
0.17
309
0.09
355
0.14
403
0.14
246
0.29
537
0.36
582
0.14
370
0.21
438
0.21
484
0.12
384
0.17
481
0.14
445
0.07
343
0.05
276
0.07
312
0.07
393
0.07
381
0.07
400
G2L-Stereotwo views0.14
441
0.07
239
0.13
353
0.17
309
0.09
355
0.13
366
0.12
100
0.27
503
0.22
427
0.16
426
0.27
526
0.21
484
0.13
426
0.17
481
0.18
526
0.09
488
0.08
535
0.08
406
0.07
393
0.07
381
0.07
400
rvit_0105_4two views0.14
441
0.09
440
0.17
508
0.17
309
0.10
469
0.12
310
0.19
536
0.23
421
0.27
502
0.14
370
0.20
414
0.17
434
0.13
426
0.17
481
0.13
402
0.15
632
0.11
603
0.11
572
0.10
556
0.09
515
0.06
310
rvit_0105_3two views0.15
486
0.09
440
0.14
392
0.19
472
0.12
554
0.15
430
0.25
631
0.25
464
0.29
524
0.15
397
0.17
363
0.20
475
0.13
426
0.17
481
0.14
445
0.13
614
0.11
603
0.12
592
0.14
626
0.07
381
0.06
310
UGAMtwo views0.13
404
0.10
503
0.09
123
0.22
590
0.08
220
0.12
310
0.20
560
0.17
267
0.23
439
0.21
530
0.16
339
0.13
346
0.13
426
0.19
519
0.12
355
0.07
343
0.05
276
0.13
607
0.11
590
0.07
381
0.05
207
ffmtwo views0.12
377
0.09
440
0.14
392
0.16
222
0.08
220
0.17
485
0.17
447
0.15
188
0.19
373
0.15
397
0.25
500
0.19
463
0.13
426
0.10
124
0.07
1
0.06
168
0.04
25
0.09
492
0.08
467
0.06
293
0.06
310
ff1two views0.13
404
0.09
440
0.14
392
0.16
222
0.08
220
0.17
485
0.17
447
0.15
188
0.19
373
0.15
397
0.25
500
0.19
463
0.13
426
0.14
385
0.20
545
0.06
168
0.04
25
0.09
492
0.08
467
0.06
293
0.06
310
mmxtwo views0.14
441
0.09
440
0.14
392
0.16
222
0.08
220
0.17
485
0.17
447
0.27
503
0.25
478
0.15
397
0.25
500
0.19
463
0.13
426
0.14
385
0.20
545
0.08
426
0.06
430
0.09
492
0.08
467
0.08
450
0.08
471
xxxcopylefttwo views0.14
441
0.09
440
0.14
392
0.16
222
0.08
220
0.17
485
0.17
447
0.27
503
0.25
478
0.15
397
0.25
500
0.19
463
0.13
426
0.14
385
0.20
545
0.08
426
0.06
430
0.09
492
0.08
467
0.08
450
0.08
471
LL-Strereotwo views0.13
404
0.09
440
0.11
252
0.20
540
0.10
469
0.11
256
0.18
496
0.32
574
0.24
456
0.15
397
0.15
326
0.14
368
0.13
426
0.19
519
0.11
291
0.06
168
0.04
25
0.09
492
0.08
467
0.04
48
0.05
207
SDNRtwo views0.19
556
0.08
358
0.19
544
0.16
222
0.12
554
0.77
700
0.14
246
0.25
464
0.32
549
0.19
492
0.24
472
0.19
463
0.13
426
0.19
519
0.15
477
0.16
648
0.18
661
0.14
621
0.11
590
0.08
450
0.11
575
BUStwo views0.14
441
0.09
440
0.14
392
0.22
590
0.10
469
0.19
528
0.14
246
0.34
603
0.19
373
0.17
445
0.22
450
0.16
412
0.13
426
0.15
412
0.13
402
0.08
426
0.06
430
0.10
541
0.09
514
0.07
381
0.07
400
NINENettwo views0.16
509
0.10
503
0.15
441
0.17
309
0.11
520
0.19
528
0.14
246
0.40
648
0.36
582
0.18
475
0.21
438
0.16
412
0.13
426
0.15
412
0.13
402
0.08
426
0.08
535
0.10
541
0.07
393
0.10
548
0.09
517
UDGNettwo views0.14
441
0.13
576
0.16
477
0.17
309
0.10
469
0.12
310
0.16
405
0.21
372
0.27
502
0.20
515
0.20
414
0.16
412
0.13
426
0.16
447
0.13
402
0.10
531
0.06
430
0.09
492
0.07
393
0.06
293
0.07
400
dadtwo views0.17
530
0.20
638
0.20
556
0.16
222
0.11
520
0.20
544
0.18
496
0.21
372
0.28
517
0.30
622
0.24
472
0.29
577
0.13
426
0.19
519
0.16
493
0.18
655
0.09
568
0.11
572
0.09
514
0.11
571
0.07
400
GEStereo_RVCtwo views0.17
530
0.12
548
0.15
441
0.22
590
0.11
520
0.19
528
0.17
447
0.32
574
0.48
636
0.20
515
0.25
500
0.17
434
0.13
426
0.21
561
0.16
493
0.10
531
0.06
430
0.08
406
0.07
393
0.09
515
0.08
471
CFNet_pseudotwo views0.14
441
0.08
358
0.15
441
0.16
222
0.09
355
0.13
366
0.14
246
0.27
503
0.34
568
0.14
370
0.21
438
0.22
502
0.13
426
0.18
504
0.14
445
0.07
343
0.05
276
0.08
406
0.06
293
0.07
381
0.07
400
GEStwo views0.14
441
0.08
358
0.16
477
0.15
124
0.10
469
0.13
366
0.13
179
0.28
523
0.25
478
0.16
426
0.23
459
0.18
448
0.13
426
0.16
447
0.13
402
0.08
426
0.07
503
0.07
312
0.06
293
0.08
450
0.09
517
SFCPSMtwo views0.13
404
0.07
239
0.14
392
0.17
309
0.09
355
0.15
430
0.16
405
0.28
523
0.27
502
0.14
370
0.17
363
0.12
313
0.13
426
0.14
385
0.11
291
0.08
426
0.05
276
0.07
312
0.07
393
0.07
381
0.06
310
ccs_robtwo views0.14
441
0.08
358
0.15
441
0.16
222
0.09
355
0.12
310
0.14
246
0.27
503
0.34
568
0.14
370
0.21
438
0.22
502
0.13
426
0.18
504
0.14
445
0.07
343
0.05
276
0.08
406
0.07
393
0.07
381
0.07
400
AdaStereotwo views0.15
486
0.11
530
0.15
441
0.18
402
0.09
355
0.20
544
0.11
64
0.32
574
0.28
517
0.20
515
0.23
459
0.20
475
0.13
426
0.19
519
0.14
445
0.12
588
0.05
276
0.10
541
0.07
393
0.09
515
0.07
400
Xiao Song, Guorun Yang, Xinge Zhu, Hui Zhou, Zhe Wang, Jianping Shi: AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
iResNetv2_ROBtwo views0.14
441
0.08
358
0.15
441
0.16
222
0.08
220
0.16
462
0.12
100
0.25
464
0.35
577
0.21
530
0.29
552
0.24
526
0.13
426
0.14
385
0.14
445
0.06
168
0.05
276
0.06
200
0.04
60
0.09
515
0.08
471
MLCVtwo views0.12
377
0.07
239
0.16
477
0.18
402
0.06
28
0.15
430
0.17
447
0.19
333
0.21
413
0.18
475
0.25
500
0.17
434
0.13
426
0.14
385
0.13
402
0.05
51
0.04
25
0.05
50
0.04
60
0.05
170
0.04
73
iResNettwo views0.13
404
0.10
503
0.18
532
0.19
472
0.08
220
0.13
366
0.18
496
0.20
345
0.26
492
0.15
397
0.23
459
0.15
397
0.13
426
0.14
385
0.14
445
0.06
168
0.04
25
0.06
200
0.05
192
0.06
293
0.05
207
DN-CSS_ROBtwo views0.13
404
0.13
576
0.16
477
0.18
402
0.10
469
0.16
462
0.08
7
0.22
398
0.18
354
0.17
445
0.22
450
0.13
346
0.13
426
0.12
295
0.13
402
0.05
51
0.05
276
0.10
541
0.10
556
0.08
450
0.06
310
G2L-ROBtwo views0.13
404
0.06
117
0.13
353
0.13
22
0.08
220
0.14
403
0.16
405
0.25
464
0.18
354
0.19
492
0.18
391
0.20
475
0.14
450
0.17
481
0.16
493
0.08
426
0.05
276
0.06
200
0.05
192
0.08
450
0.09
517
test_sample6two views0.14
441
0.08
358
0.13
353
0.16
222
0.08
220
0.17
485
0.19
536
0.25
464
0.17
321
0.17
445
0.27
526
0.19
463
0.14
450
0.15
412
0.13
402
0.08
426
0.05
276
0.08
406
0.07
393
0.08
450
0.08
471
test_sample5two views0.14
441
0.08
358
0.14
392
0.16
222
0.08
220
0.18
504
0.18
496
0.25
464
0.17
321
0.17
445
0.27
526
0.18
448
0.14
450
0.16
447
0.13
402
0.08
426
0.05
276
0.08
406
0.07
393
0.08
450
0.08
471
test_sample4two views0.14
441
0.08
358
0.14
392
0.15
124
0.08
220
0.19
528
0.18
496
0.26
482
0.17
321
0.16
426
0.25
500
0.18
448
0.14
450
0.16
447
0.13
402
0.08
426
0.06
430
0.08
406
0.06
293
0.08
450
0.08
471
DualNettwo views0.14
441
0.08
358
0.14
392
0.16
222
0.08
220
0.18
504
0.18
496
0.25
464
0.17
321
0.17
445
0.27
526
0.18
448
0.14
450
0.16
447
0.13
402
0.08
426
0.05
276
0.08
406
0.07
393
0.08
450
0.08
471
CFNet_ucstwo views0.15
486
0.08
358
0.16
477
0.16
222
0.11
520
0.14
403
0.14
246
0.30
551
0.34
568
0.16
426
0.24
472
0.23
520
0.14
450
0.18
504
0.15
477
0.09
488
0.06
430
0.08
406
0.07
393
0.09
515
0.09
517
anonymousatwo views0.13
404
0.07
239
0.13
353
0.18
402
0.09
355
0.13
366
0.17
447
0.19
333
0.29
524
0.15
397
0.24
472
0.15
397
0.14
450
0.14
385
0.14
445
0.07
343
0.05
276
0.07
312
0.09
514
0.05
170
0.06
310
DCANet-4two views0.10
246
0.06
117
0.12
300
0.16
222
0.06
28
0.09
139
0.17
447
0.18
302
0.19
373
0.13
343
0.16
339
0.09
223
0.14
450
0.11
199
0.12
355
0.06
168
0.04
25
0.05
50
0.04
60
0.04
48
0.05
207
GwcNet-ADLtwo views0.13
404
0.08
358
0.14
392
0.20
540
0.09
355
0.11
256
0.20
560
0.30
551
0.24
456
0.13
343
0.14
305
0.18
448
0.14
450
0.13
351
0.14
445
0.07
343
0.05
276
0.06
200
0.05
192
0.07
381
0.06
310
AAGNettwo views0.11
299
0.07
239
0.16
477
0.19
472
0.09
355
0.08
85
0.13
179
0.18
302
0.13
192
0.16
426
0.21
438
0.13
346
0.14
450
0.11
199
0.14
445
0.06
168
0.04
25
0.09
492
0.06
293
0.06
293
0.05
207
DEmStereotwo views0.12
377
0.06
117
0.14
392
0.14
70
0.10
469
0.16
462
0.15
334
0.16
228
0.24
456
0.17
445
0.24
472
0.13
346
0.14
450
0.12
295
0.13
402
0.05
51
0.04
25
0.07
312
0.06
293
0.05
170
0.05
207
HCRNettwo views0.16
509
0.24
654
0.12
300
0.35
675
0.11
520
0.15
430
0.17
447
0.26
482
0.22
427
0.19
492
0.24
472
0.21
484
0.14
450
0.15
412
0.13
402
0.11
563
0.07
503
0.11
572
0.10
556
0.09
515
0.07
400
xxxxtwo views0.15
486
0.07
239
0.14
392
0.14
70
0.08
220
0.23
587
0.18
496
0.31
563
0.19
373
0.14
370
0.28
540
0.22
502
0.14
450
0.15
412
0.26
621
0.09
488
0.05
276
0.07
312
0.07
393
0.08
450
0.07
400
PSMNet-RSSMtwo views0.14
441
0.07
239
0.13
353
0.15
124
0.08
220
0.13
366
0.16
405
0.24
445
0.24
456
0.16
426
0.28
540
0.22
502
0.14
450
0.15
412
0.13
402
0.11
563
0.06
430
0.09
492
0.12
611
0.08
450
0.07
400
CFNet-ftpermissivetwo views0.14
441
0.07
239
0.15
441
0.12
7
0.09
355
0.16
462
0.18
496
0.22
398
0.24
456
0.17
445
0.26
517
0.24
526
0.14
450
0.16
447
0.14
445
0.11
563
0.06
430
0.08
406
0.09
514
0.09
515
0.08
471
BEATNet_4xtwo views0.12
377
0.08
358
0.14
392
0.18
402
0.07
134
0.15
430
0.07
3
0.22
398
0.18
354
0.16
426
0.19
402
0.18
448
0.14
450
0.16
447
0.15
477
0.07
343
0.05
276
0.05
50
0.05
192
0.06
293
0.06
310
HSM-Net_RVCpermissivetwo views0.14
441
0.08
358
0.11
252
0.15
124
0.08
220
0.15
430
0.15
334
0.27
503
0.29
524
0.19
492
0.21
438
0.29
577
0.14
450
0.17
481
0.13
402
0.06
168
0.06
430
0.06
200
0.06
293
0.07
381
0.06
310
Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan: Hierarchical Deep Stereo Matching on High-resolution Images. CVPR 2019
CFNet_RVCtwo views0.14
441
0.07
239
0.15
441
0.12
7
0.09
355
0.16
462
0.18
496
0.22
398
0.24
456
0.17
445
0.26
517
0.24
526
0.14
450
0.16
447
0.14
445
0.11
563
0.06
430
0.08
406
0.09
514
0.09
515
0.08
471
LiteMatchtwo views0.09
176
0.06
117
0.10
189
0.16
222
0.07
134
0.09
139
0.15
334
0.13
115
0.08
25
0.06
25
0.07
65
0.06
42
0.15
468
0.10
124
0.14
445
0.07
343
0.04
25
0.06
200
0.06
293
0.06
293
0.06
310
Lsterematchtwo views0.11
299
0.06
117
0.11
252
0.16
222
0.07
134
0.13
366
0.15
334
0.14
146
0.17
321
0.16
426
0.18
391
0.15
397
0.15
468
0.12
295
0.14
445
0.07
343
0.04
25
0.06
200
0.06
293
0.06
293
0.06
310
DCVSM-stereotwo views0.14
441
0.09
440
0.16
477
0.16
222
0.10
469
0.15
430
0.09
20
0.19
333
0.23
439
0.20
515
0.23
459
0.26
550
0.15
468
0.18
504
0.14
445
0.09
488
0.07
503
0.09
492
0.08
467
0.10
548
0.12
588
ACV-stereotwo views0.15
486
0.10
503
0.28
606
0.18
402
0.12
554
0.14
403
0.12
100
0.23
421
0.21
413
0.19
492
0.23
459
0.22
502
0.15
468
0.23
585
0.17
508
0.07
343
0.06
430
0.07
312
0.07
393
0.07
381
0.07
400
ITSA-stereotwo views0.15
486
0.10
503
0.14
392
0.19
472
0.08
220
0.12
310
0.14
246
0.30
551
0.49
643
0.17
445
0.19
402
0.22
502
0.15
468
0.17
481
0.16
493
0.10
531
0.06
430
0.08
406
0.08
467
0.08
450
0.08
471
rvit_stereo_0075_2two views0.17
530
0.12
548
0.25
590
0.23
614
0.16
629
0.13
366
0.10
35
0.30
551
0.27
502
0.20
515
0.28
540
0.22
502
0.15
468
0.18
504
0.13
402
0.16
648
0.10
590
0.17
645
0.10
556
0.10
548
0.09
517
test_sample3two views0.14
441
0.08
358
0.15
441
0.14
70
0.09
355
0.19
528
0.17
447
0.26
482
0.18
354
0.16
426
0.22
450
0.19
463
0.15
468
0.17
481
0.13
402
0.08
426
0.06
430
0.07
312
0.06
293
0.09
515
0.08
471
test_sample2two views0.12
377
0.07
239
0.12
300
0.14
70
0.08
220
0.16
462
0.18
496
0.21
372
0.16
291
0.14
370
0.20
414
0.19
463
0.15
468
0.15
412
0.12
355
0.08
426
0.05
276
0.07
312
0.06
293
0.08
450
0.07
400
SMFormertwo views0.14
441
0.07
239
0.17
508
0.14
70
0.08
220
0.16
462
0.17
447
0.26
482
0.27
502
0.19
492
0.20
414
0.18
448
0.15
468
0.15
412
0.17
508
0.08
426
0.05
276
0.07
312
0.06
293
0.07
381
0.06
310
ttatwo views0.14
441
0.07
239
0.17
508
0.14
70
0.08
220
0.16
462
0.17
447
0.26
482
0.27
502
0.19
492
0.20
414
0.18
448
0.15
468
0.15
412
0.17
508
0.08
426
0.05
276
0.07
312
0.06
293
0.06
293
0.06
310
qqq1two views0.13
404
0.07
239
0.17
508
0.14
70
0.08
220
0.16
462
0.17
447
0.26
482
0.27
502
0.19
492
0.20
414
0.18
448
0.15
468
0.15
412
0.11
291
0.08
426
0.05
276
0.05
50
0.05
192
0.06
293
0.06
310
fff1two views0.13
404
0.07
239
0.17
508
0.14
70
0.08
220
0.16
462
0.17
447
0.26
482
0.27
502
0.19
492
0.20
414
0.18
448
0.15
468
0.15
412
0.11
291
0.08
426
0.05
276
0.05
50
0.05
192
0.06
293
0.06
310
1111xtwo views0.15
486
0.08
358
0.12
300
0.18
402
0.07
134
0.18
504
0.25
631
0.31
563
0.24
456
0.17
445
0.24
472
0.26
550
0.15
468
0.13
351
0.23
586
0.07
343
0.07
503
0.08
406
0.09
514
0.07
381
0.06
310
iinet-ftwo views0.16
509
0.06
117
0.45
652
0.14
70
0.10
469
0.21
562
0.14
246
0.27
503
0.23
439
0.21
530
0.24
472
0.21
484
0.15
468
0.18
504
0.21
565
0.09
488
0.07
503
0.07
312
0.06
293
0.09
515
0.10
548
GASNettwo views0.22
590
0.23
651
0.33
626
0.26
640
0.17
644
0.26
613
0.16
405
0.44
665
0.42
617
0.27
593
0.24
472
0.30
587
0.15
468
0.27
606
0.18
526
0.12
588
0.08
535
0.12
592
0.11
590
0.16
645
0.07
400
CASStwo views0.13
404
0.12
548
0.11
252
0.23
614
0.09
355
0.15
430
0.17
447
0.18
302
0.19
373
0.17
445
0.18
391
0.15
397
0.15
468
0.14
385
0.14
445
0.09
488
0.06
430
0.10
541
0.08
467
0.09
515
0.07
400
Junhong Min, Youngpil Jeon: Confidence-Aware Symmetric Stereo Matching via U-Net Transformer.
Wz-Net-LNSev-Reftwo views0.18
544
0.09
440
0.29
614
0.15
124
0.10
469
0.22
571
0.20
560
0.26
482
0.39
600
0.25
581
0.42
641
0.24
526
0.15
468
0.20
544
0.19
539
0.07
343
0.05
276
0.06
200
0.05
192
0.10
548
0.09
517
test_5two views0.14
441
0.12
548
0.08
57
0.20
540
0.10
469
0.14
403
0.29
663
0.21
372
0.24
456
0.18
475
0.28
540
0.11
291
0.15
468
0.12
295
0.13
402
0.06
168
0.05
276
0.07
312
0.08
467
0.08
450
0.07
400
CSP-Nettwo views0.16
509
0.09
440
0.14
392
0.16
222
0.09
355
0.19
528
0.17
447
0.25
464
0.32
549
0.25
581
0.30
559
0.24
526
0.15
468
0.21
561
0.18
526
0.09
488
0.06
430
0.07
312
0.07
393
0.08
450
0.07
400
DAStwo views0.15
486
0.08
358
0.18
532
0.19
472
0.10
469
0.19
528
0.17
447
0.27
503
0.29
524
0.18
475
0.25
500
0.21
484
0.15
468
0.16
447
0.12
355
0.08
426
0.06
430
0.06
200
0.06
293
0.07
381
0.07
400
SepStereotwo views0.15
486
0.08
358
0.18
532
0.19
472
0.10
469
0.19
528
0.17
447
0.27
503
0.29
524
0.18
475
0.25
500
0.21
484
0.15
468
0.25
601
0.12
355
0.08
426
0.06
430
0.06
200
0.06
293
0.07
381
0.07
400
DRafttwo views0.12
377
0.06
117
0.11
252
0.14
70
0.09
355
0.14
403
0.17
447
0.21
372
0.30
534
0.17
445
0.28
540
0.10
260
0.15
468
0.10
124
0.12
355
0.05
51
0.04
25
0.07
312
0.06
293
0.05
170
0.05
207
GANet-RSSMtwo views0.14
441
0.07
239
0.13
353
0.13
22
0.08
220
0.14
403
0.17
447
0.22
398
0.21
413
0.17
445
0.24
472
0.23
520
0.15
468
0.16
447
0.15
477
0.10
531
0.06
430
0.07
312
0.08
467
0.08
450
0.07
400
DSFCAtwo views0.16
509
0.09
440
0.14
392
0.16
222
0.10
469
0.20
544
0.19
536
0.28
523
0.31
542
0.23
559
0.24
472
0.22
502
0.15
468
0.19
519
0.20
545
0.10
531
0.07
503
0.09
492
0.09
514
0.08
450
0.08
471
FADNet-RVC-Resampletwo views0.16
509
0.11
530
0.31
619
0.22
590
0.11
520
0.19
528
0.14
246
0.25
464
0.24
456
0.24
568
0.27
526
0.20
475
0.15
468
0.16
447
0.15
477
0.07
343
0.08
535
0.12
592
0.10
556
0.09
515
0.10
548
UCFNet_RVCtwo views0.14
441
0.08
358
0.13
353
0.11
1
0.10
469
0.20
544
0.10
35
0.24
445
0.22
427
0.17
445
0.20
414
0.23
520
0.15
468
0.17
481
0.15
477
0.12
588
0.07
503
0.10
541
0.13
622
0.11
571
0.10
548
iResNet_ROBtwo views0.14
441
0.07
239
0.13
353
0.14
70
0.07
134
0.18
504
0.14
246
0.26
482
0.31
542
0.22
546
0.25
500
0.23
520
0.15
468
0.15
412
0.13
402
0.07
343
0.05
276
0.05
50
0.04
60
0.08
450
0.08
471
PWCDC_ROBbinarytwo views0.20
568
0.13
576
0.22
572
0.24
623
0.11
520
0.19
528
0.15
334
0.33
594
0.54
656
0.29
617
0.50
657
0.21
484
0.15
468
0.27
606
0.20
545
0.11
563
0.09
568
0.10
541
0.08
467
0.11
571
0.09
517
xyz-stereotwo views0.13
404
0.07
239
0.20
556
0.15
124
0.05
2
0.20
544
0.15
334
0.17
267
0.31
542
0.15
397
0.29
552
0.26
550
0.16
496
0.13
351
0.12
355
0.05
51
0.05
276
0.06
200
0.05
192
0.04
48
0.04
73
G2L-Stereo_testtwo views0.14
441
0.07
239
0.11
252
0.13
22
0.08
220
0.12
310
0.16
405
0.30
551
0.28
517
0.20
515
0.23
459
0.20
475
0.16
496
0.17
481
0.18
526
0.07
343
0.05
276
0.05
50
0.05
192
0.07
381
0.06
310
FACV-RUCAtwo views0.13
404
0.11
530
0.12
300
0.19
472
0.12
554
0.15
430
0.15
334
0.22
398
0.20
397
0.15
397
0.16
339
0.14
368
0.16
496
0.14
385
0.13
402
0.07
343
0.05
276
0.08
406
0.06
293
0.10
548
0.08
471
test_sample1two views0.13
404
0.07
239
0.14
392
0.13
22
0.08
220
0.19
528
0.16
405
0.20
345
0.15
252
0.14
370
0.22
450
0.18
448
0.16
496
0.17
481
0.14
445
0.07
343
0.06
430
0.06
200
0.06
293
0.08
450
0.07
400
xx1two views0.11
299
0.08
358
0.12
300
0.17
309
0.09
355
0.13
366
0.15
334
0.16
228
0.18
354
0.09
183
0.09
161
0.16
412
0.16
496
0.10
124
0.07
1
0.06
168
0.04
25
0.08
406
0.08
467
0.07
381
0.07
400
mmmtwo views0.14
441
0.08
358
0.17
508
0.17
309
0.09
355
0.17
485
0.18
496
0.21
372
0.15
252
0.15
397
0.23
459
0.21
484
0.16
496
0.16
447
0.17
508
0.08
426
0.05
276
0.08
406
0.07
393
0.07
381
0.07
400
11t1two views0.12
377
0.06
117
0.13
353
0.14
70
0.08
220
0.17
485
0.15
334
0.18
302
0.15
252
0.15
397
0.15
326
0.16
412
0.16
496
0.15
412
0.13
402
0.08
426
0.05
276
0.06
200
0.05
192
0.08
450
0.07
400
CBFPSMtwo views0.14
441
0.06
117
0.26
593
0.17
309
0.09
355
0.13
366
0.15
334
0.22
398
0.23
439
0.20
515
0.27
526
0.24
526
0.16
496
0.16
447
0.18
526
0.06
168
0.06
430
0.06
200
0.07
393
0.07
381
0.07
400
gwcnet-sptwo views0.14
441
0.07
239
0.12
300
0.18
402
0.09
355
0.16
462
0.17
447
0.24
445
0.24
456
0.18
475
0.24
472
0.15
397
0.16
496
0.15
412
0.15
477
0.08
426
0.06
430
0.07
312
0.08
467
0.08
450
0.07
400
scenettwo views0.14
441
0.07
239
0.12
300
0.18
402
0.09
355
0.16
462
0.17
447
0.24
445
0.24
456
0.18
475
0.24
472
0.15
397
0.16
496
0.15
412
0.15
477
0.08
426
0.06
430
0.07
312
0.08
467
0.08
450
0.07
400
ssnettwo views0.14
441
0.07
239
0.12
300
0.18
402
0.09
355
0.16
462
0.17
447
0.24
445
0.24
456
0.18
475
0.24
472
0.15
397
0.16
496
0.15
412
0.15
477
0.08
426
0.06
430
0.07
312
0.08
467
0.08
450
0.07
400
qqqtwo views0.13
404
0.09
440
0.15
441
0.16
222
0.08
220
0.13
366
0.15
334
0.23
421
0.16
291
0.15
397
0.19
402
0.16
412
0.16
496
0.15
412
0.16
493
0.07
343
0.06
430
0.08
406
0.08
467
0.07
381
0.07
400
BSDual-CNNtwo views0.15
486
0.09
440
0.14
392
0.22
590
0.10
469
0.14
403
0.15
334
0.34
603
0.19
373
0.17
445
0.22
450
0.25
540
0.16
496
0.15
412
0.14
445
0.08
426
0.06
430
0.10
541
0.09
514
0.07
381
0.07
400
psmgtwo views0.14
441
0.09
440
0.14
392
0.17
309
0.10
469
0.15
430
0.17
447
0.29
537
0.19
373
0.17
445
0.21
438
0.25
540
0.16
496
0.15
412
0.14
445
0.08
426
0.06
430
0.08
406
0.08
467
0.07
381
0.06
310
AASNettwo views0.16
509
0.08
358
0.12
300
0.19
472
0.09
355
0.18
504
0.15
334
0.37
632
0.37
589
0.19
492
0.23
459
0.20
475
0.16
496
0.17
481
0.20
545
0.10
531
0.08
535
0.08
406
0.07
393
0.09
515
0.09
517
PSMNet-ADLtwo views0.15
486
0.12
548
0.13
353
0.22
590
0.09
355
0.13
366
0.20
560
0.26
482
0.23
439
0.18
475
0.20
414
0.24
526
0.16
496
0.18
504
0.17
508
0.08
426
0.08
535
0.08
406
0.11
590
0.08
450
0.07
400
ADLNettwo views0.16
509
0.08
358
0.15
441
0.16
222
0.10
469
0.16
462
0.17
447
0.32
574
0.27
502
0.22
546
0.27
526
0.24
526
0.16
496
0.18
504
0.21
565
0.10
531
0.06
430
0.10
541
0.10
556
0.08
450
0.09
517
222two views0.16
509
0.07
239
0.14
392
0.14
70
0.08
220
0.24
592
0.18
496
0.30
551
0.20
397
0.17
445
0.28
540
0.17
434
0.16
496
0.15
412
0.40
677
0.10
531
0.05
276
0.07
312
0.06
293
0.07
381
0.08
471
test_xeamplepermissivetwo views0.15
486
0.06
117
0.13
353
0.14
70
0.08
220
0.21
562
0.20
560
0.28
523
0.20
397
0.16
426
0.29
552
0.19
463
0.16
496
0.15
412
0.26
621
0.09
488
0.05
276
0.07
312
0.07
393
0.07
381
0.07
400
ACVNettwo views0.15
486
0.09
440
0.15
441
0.13
22
0.12
554
0.14
403
0.20
560
0.22
398
0.33
556
0.17
445
0.26
517
0.21
484
0.16
496
0.17
481
0.21
565
0.07
343
0.06
430
0.06
200
0.06
293
0.08
450
0.06
310
cf-rtwo views0.13
404
0.07
239
0.12
300
0.16
222
0.08
220
0.14
403
0.19
536
0.20
345
0.25
478
0.17
445
0.25
500
0.21
484
0.16
496
0.14
385
0.14
445
0.10
531
0.05
276
0.06
200
0.08
467
0.06
293
0.06
310
GwcNet-RSSMtwo views0.14
441
0.07
239
0.12
300
0.15
124
0.08
220
0.15
430
0.20
560
0.21
372
0.27
502
0.18
475
0.27
526
0.22
502
0.16
496
0.14
385
0.15
477
0.10
531
0.05
276
0.07
312
0.09
514
0.07
381
0.07
400
HSMtwo views0.15
486
0.08
358
0.14
392
0.16
222
0.09
355
0.16
462
0.14
246
0.28
523
0.25
478
0.19
492
0.23
459
0.37
632
0.16
496
0.20
544
0.15
477
0.07
343
0.05
276
0.07
312
0.06
293
0.07
381
0.06
310
z-ln-s-rtwo views0.17
530
0.10
503
0.40
645
0.19
472
0.08
220
0.17
485
0.18
496
0.22
398
0.33
556
0.18
475
0.40
623
0.22
502
0.17
519
0.20
544
0.23
586
0.07
343
0.05
276
0.07
312
0.07
393
0.07
381
0.05
207
coex_refinementtwo views0.14
441
0.07
239
0.12
300
0.17
309
0.10
469
0.15
430
0.15
334
0.26
482
0.29
524
0.18
475
0.20
414
0.22
502
0.17
519
0.16
447
0.18
526
0.08
426
0.05
276
0.06
200
0.06
293
0.09
515
0.08
471
ISRNettwo views0.18
544
0.08
358
0.19
544
0.19
472
0.13
577
0.15
430
0.12
100
0.30
551
0.32
549
0.21
530
0.25
500
0.27
558
0.17
519
0.17
481
0.20
545
0.20
664
0.08
535
0.14
621
0.14
626
0.14
620
0.17
656
rvit_105_1two views0.19
556
0.11
530
0.25
590
0.21
573
0.16
629
0.21
562
0.27
647
0.31
563
0.41
609
0.19
492
0.20
414
0.22
502
0.17
519
0.19
519
0.17
508
0.12
588
0.12
619
0.13
607
0.15
643
0.08
450
0.07
400
DispNOtwo views0.14
441
0.08
358
0.17
508
0.19
472
0.12
554
0.11
256
0.21
581
0.23
421
0.29
524
0.17
445
0.23
459
0.18
448
0.17
519
0.15
412
0.15
477
0.07
343
0.05
276
0.08
406
0.08
467
0.07
381
0.06
310
xtwo views0.13
404
0.07
239
0.14
392
0.14
70
0.08
220
0.18
504
0.14
246
0.22
398
0.20
397
0.15
397
0.19
402
0.19
463
0.17
519
0.18
504
0.18
526
0.07
343
0.05
276
0.06
200
0.06
293
0.07
381
0.07
400
CRFU-Nettwo views0.16
509
0.08
358
0.14
392
0.17
309
0.09
355
0.19
528
0.14
246
0.26
482
0.20
397
0.28
608
0.27
526
0.29
577
0.17
519
0.19
519
0.17
508
0.09
488
0.09
568
0.07
312
0.07
393
0.08
450
0.08
471
AACVNettwo views0.16
509
0.08
358
0.14
392
0.15
124
0.10
469
0.18
504
0.15
334
0.23
421
0.24
456
0.27
593
0.27
526
0.28
568
0.17
519
0.19
519
0.16
493
0.09
488
0.07
503
0.09
492
0.07
393
0.10
548
0.09
517
LMCR-Stereopermissivemany views0.15
486
0.08
358
0.13
353
0.21
573
0.09
355
0.17
485
0.20
560
0.27
503
0.19
373
0.24
568
0.24
472
0.23
520
0.17
519
0.20
544
0.17
508
0.07
343
0.06
430
0.08
406
0.06
293
0.10
548
0.08
471
acv_fttwo views0.15
486
0.09
440
0.15
441
0.19
472
0.10
469
0.16
462
0.17
447
0.25
464
0.33
556
0.19
492
0.26
517
0.21
484
0.17
519
0.17
481
0.18
526
0.07
343
0.06
430
0.06
200
0.06
293
0.08
450
0.06
310
CCAANettwo views0.14
441
0.06
117
0.14
392
0.17
309
0.09
355
0.16
462
0.13
179
0.30
551
0.24
456
0.16
426
0.32
572
0.18
448
0.17
519
0.17
481
0.14
445
0.06
168
0.05
276
0.09
492
0.09
514
0.06
293
0.09
517
FADNet_RVCtwo views0.16
509
0.14
588
0.40
645
0.20
540
0.11
520
0.13
366
0.13
179
0.26
482
0.22
427
0.21
530
0.23
459
0.20
475
0.17
519
0.14
385
0.16
493
0.08
426
0.08
535
0.12
592
0.09
514
0.11
571
0.10
548
CFNettwo views0.15
486
0.10
503
0.17
508
0.17
309
0.08
220
0.18
504
0.09
20
0.28
523
0.25
478
0.19
492
0.24
472
0.24
526
0.17
519
0.17
481
0.14
445
0.08
426
0.06
430
0.09
492
0.10
556
0.07
381
0.06
310
NLCA_NET_v2_RVCtwo views0.17
530
0.10
503
0.22
572
0.20
540
0.10
469
0.15
430
0.18
496
0.31
563
0.25
478
0.21
530
0.30
559
0.25
540
0.17
519
0.21
561
0.20
545
0.09
488
0.06
430
0.08
406
0.08
467
0.07
381
0.08
471
Zhibo Rao, Mingyi He, Yuchao Dai, Zhidong Zhu, Bo Li, and Renjie He.: NLCA-Net: A non-local context attention network for stereo matching.
StereoDRNet-Refinedtwo views0.17
530
0.12
548
0.15
441
0.20
540
0.09
355
0.18
504
0.18
496
0.26
482
0.23
439
0.26
587
0.40
623
0.22
502
0.17
519
0.21
561
0.20
545
0.08
426
0.05
276
0.09
492
0.10
556
0.07
381
0.07
400
Rohan Chabra, Julian Straub, Chris Sweeney, Richard Newcombe, Henry Fuchs: StereoDRNet. CVPR
YMNettwo views0.20
568
0.12
548
0.19
544
0.20
540
0.14
598
0.26
613
0.23
602
0.32
574
0.34
568
0.27
593
0.34
589
0.30
587
0.18
534
0.18
504
0.22
574
0.10
531
0.13
634
0.10
541
0.10
556
0.08
450
0.09
517
YMNet_1two views0.20
568
0.12
548
0.19
544
0.20
540
0.14
598
0.26
613
0.23
602
0.32
574
0.34
568
0.27
593
0.34
589
0.30
587
0.18
534
0.18
504
0.22
574
0.10
531
0.13
634
0.10
541
0.10
556
0.08
450
0.09
517
ssnet_v2two views0.17
530
0.10
503
0.17
508
0.17
309
0.11
520
0.21
562
0.21
581
0.33
594
0.25
478
0.22
546
0.22
450
0.27
558
0.18
534
0.22
574
0.20
545
0.11
563
0.09
568
0.09
492
0.09
514
0.08
450
0.08
471
Wz-Net-LNSevtwo views0.22
590
0.16
606
0.38
641
0.21
573
0.13
577
0.25
603
0.23
602
0.32
574
0.43
622
0.30
622
0.41
634
0.31
600
0.18
534
0.22
574
0.25
609
0.10
531
0.09
568
0.08
406
0.08
467
0.12
586
0.11
575
hknettwo views0.15
486
0.11
530
0.13
353
0.22
590
0.11
520
0.14
403
0.15
334
0.34
603
0.25
478
0.17
445
0.22
450
0.22
502
0.18
534
0.17
481
0.12
355
0.07
343
0.06
430
0.10
541
0.09
514
0.07
381
0.07
400
ADLNet2two views0.16
509
0.09
440
0.13
353
0.16
222
0.09
355
0.20
544
0.16
405
0.31
563
0.39
600
0.16
426
0.20
414
0.20
475
0.18
534
0.21
561
0.22
574
0.08
426
0.06
430
0.07
312
0.07
393
0.09
515
0.07
400
ICVPtwo views0.15
486
0.09
440
0.12
300
0.22
590
0.09
355
0.17
485
0.21
581
0.25
464
0.23
439
0.18
475
0.30
559
0.26
550
0.18
534
0.17
481
0.14
445
0.09
488
0.07
503
0.08
406
0.07
393
0.07
381
0.07
400
Kwon, Oh-Hun and Zell, Eduard: Image-Coupled Volume Propagation for Stereo Matching. 2023 IEEE International Conference on Image Processing (ICIP)
ac_64two views0.16
509
0.08
358
0.15
441
0.18
402
0.10
469
0.22
571
0.18
496
0.24
445
0.21
413
0.18
475
0.24
472
0.29
577
0.18
534
0.19
519
0.22
574
0.09
488
0.07
503
0.08
406
0.09
514
0.07
381
0.06
310
HGLStereotwo views0.17
530
0.08
358
0.19
544
0.17
309
0.12
554
0.18
504
0.18
496
0.31
563
0.32
549
0.21
530
0.32
572
0.25
540
0.18
534
0.19
519
0.20
545
0.09
488
0.09
568
0.07
312
0.07
393
0.09
515
0.10
548
DMCAtwo views0.14
441
0.09
440
0.16
477
0.19
472
0.09
355
0.15
430
0.17
447
0.23
421
0.27
502
0.14
370
0.19
402
0.17
434
0.18
534
0.15
412
0.17
508
0.10
531
0.06
430
0.08
406
0.06
293
0.09
515
0.10
548
STTStereotwo views0.18
544
0.12
548
0.27
601
0.20
540
0.11
520
0.16
462
0.21
581
0.29
537
0.23
439
0.21
530
0.30
559
0.29
577
0.18
534
0.20
544
0.19
539
0.12
588
0.11
603
0.11
572
0.14
626
0.09
515
0.08
471
RASNettwo views0.14
441
0.07
239
0.14
392
0.16
222
0.08
220
0.18
504
0.14
246
0.29
537
0.20
397
0.17
445
0.25
500
0.21
484
0.18
534
0.20
544
0.19
539
0.07
343
0.06
430
0.06
200
0.08
467
0.06
293
0.06
310
TDLMtwo views0.17
530
0.12
548
0.13
353
0.24
623
0.10
469
0.18
504
0.18
496
0.36
626
0.30
534
0.21
530
0.28
540
0.28
568
0.18
534
0.23
585
0.18
526
0.11
563
0.07
503
0.10
541
0.10
556
0.08
450
0.08
471
CVANet_RVCtwo views0.18
544
0.10
503
0.14
392
0.21
573
0.10
469
0.18
504
0.17
447
0.34
603
0.33
556
0.22
546
0.31
568
0.28
568
0.18
534
0.23
585
0.17
508
0.12
588
0.08
535
0.12
592
0.11
590
0.09
515
0.07
400
DeepPruner_ROBtwo views0.16
509
0.11
530
0.15
441
0.17
309
0.10
469
0.17
485
0.15
334
0.32
574
0.21
413
0.19
492
0.21
438
0.22
502
0.18
534
0.20
544
0.15
477
0.13
614
0.09
568
0.09
492
0.09
514
0.11
571
0.10
548
pmcnntwo views0.15
486
0.07
239
0.19
544
0.15
124
0.07
134
0.20
544
0.15
334
0.24
445
0.26
492
0.21
530
0.34
589
0.28
568
0.18
534
0.18
504
0.17
508
0.07
343
0.05
276
0.05
50
0.04
60
0.07
381
0.06
310
TCMNettwo views0.19
556
0.12
548
0.19
544
0.20
540
0.18
651
0.20
544
0.24
615
0.27
503
0.36
582
0.23
559
0.26
517
0.25
540
0.19
550
0.19
519
0.23
586
0.13
614
0.11
603
0.11
572
0.12
611
0.13
606
0.12
588
DualNet (step1)two views0.16
509
0.12
548
0.20
556
0.12
7
0.14
598
0.17
485
0.13
179
0.27
503
0.23
439
0.20
515
0.20
414
0.24
526
0.19
550
0.16
447
0.16
493
0.15
632
0.06
430
0.14
621
0.14
626
0.14
620
0.12
588
test_sample9two views0.18
544
0.12
548
0.20
556
0.12
7
0.14
598
0.17
485
0.13
179
0.27
503
0.23
439
0.20
515
0.20
414
0.24
526
0.19
550
0.19
519
0.17
508
0.15
632
0.30
687
0.14
621
0.14
626
0.14
620
0.12
588
test_sample7two views0.15
486
0.10
503
0.16
477
0.14
70
0.11
520
0.16
462
0.16
405
0.27
503
0.23
439
0.20
515
0.20
414
0.24
526
0.19
550
0.16
447
0.16
493
0.12
588
0.06
430
0.10
541
0.09
514
0.10
548
0.10
548
Wz-Net-MNSevtwo views0.22
590
0.13
576
0.31
619
0.20
540
0.14
598
0.36
660
0.24
615
0.33
594
0.44
627
0.28
608
0.40
623
0.38
636
0.19
550
0.24
595
0.25
609
0.09
488
0.07
503
0.09
492
0.09
514
0.12
586
0.10
548
pcwnet_v2two views0.19
556
0.10
503
0.26
593
0.17
309
0.14
598
0.18
504
0.15
334
0.37
632
0.46
634
0.19
492
0.24
472
0.21
484
0.19
550
0.20
544
0.19
539
0.13
614
0.10
590
0.10
541
0.10
556
0.11
571
0.13
612
delettwo views0.17
530
0.08
358
0.17
508
0.19
472
0.11
520
0.20
544
0.21
581
0.30
551
0.37
589
0.17
445
0.26
517
0.19
463
0.19
550
0.19
519
0.21
565
0.08
426
0.08
535
0.09
492
0.11
590
0.06
293
0.06
310
UNettwo views0.17
530
0.09
440
0.18
532
0.19
472
0.12
554
0.27
623
0.19
536
0.33
594
0.29
524
0.21
530
0.24
472
0.23
520
0.19
550
0.19
519
0.18
526
0.07
343
0.06
430
0.08
406
0.07
393
0.08
450
0.06
310
UPFNettwo views0.16
509
0.08
358
0.12
300
0.20
540
0.12
554
0.20
544
0.23
602
0.28
523
0.26
492
0.17
445
0.24
472
0.22
502
0.19
550
0.19
519
0.21
565
0.09
488
0.07
503
0.08
406
0.09
514
0.08
450
0.06
310
NVstereo2Dtwo views0.19
556
0.10
503
0.15
441
0.17
309
0.15
618
0.28
630
0.23
602
0.44
665
0.42
617
0.15
397
0.27
526
0.25
540
0.19
550
0.22
574
0.17
508
0.09
488
0.06
430
0.10
541
0.08
467
0.15
636
0.09
517
StereoDRNettwo views0.18
544
0.11
530
0.17
508
0.22
590
0.11
520
0.21
562
0.22
591
0.37
632
0.33
556
0.24
568
0.28
540
0.30
587
0.19
550
0.20
544
0.20
545
0.09
488
0.08
535
0.11
572
0.09
514
0.09
515
0.07
400
SGM-Foresttwo views0.20
568
0.14
588
0.18
532
0.19
472
0.13
577
0.20
544
0.22
591
0.33
594
0.30
534
0.24
568
0.29
552
0.28
568
0.19
550
0.23
585
0.17
508
0.15
632
0.16
654
0.15
633
0.14
626
0.12
586
0.12
588
Johannes L. Schönberger, Sudipta Sinha, Marc Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching. ECCV 2018
fast-acv-fttwo views0.18
544
0.11
530
0.19
544
0.19
472
0.12
554
0.24
592
0.21
581
0.25
464
0.34
568
0.22
546
0.34
589
0.27
558
0.20
562
0.21
561
0.23
586
0.09
488
0.09
568
0.08
406
0.10
556
0.08
450
0.07
400
IERtwo views0.14
441
0.07
239
0.13
353
0.17
309
0.09
355
0.14
403
0.16
405
0.25
464
0.26
492
0.18
475
0.25
500
0.17
434
0.20
562
0.16
447
0.14
445
0.08
426
0.05
276
0.07
312
0.06
293
0.08
450
0.07
400
MMNettwo views0.17
530
0.09
440
0.16
477
0.20
540
0.11
520
0.27
623
0.20
560
0.25
464
0.41
609
0.22
546
0.30
559
0.21
484
0.20
562
0.17
481
0.20
545
0.06
168
0.06
430
0.07
312
0.07
393
0.08
450
0.07
400
GwcNetcopylefttwo views0.20
568
0.13
576
0.19
544
0.18
402
0.12
554
0.24
592
0.19
536
0.35
619
0.43
622
0.20
515
0.32
572
0.33
614
0.20
562
0.22
574
0.24
599
0.11
563
0.09
568
0.09
492
0.09
514
0.09
515
0.10
548
DGSMNettwo views0.24
613
0.19
632
0.33
626
0.21
573
0.24
669
0.24
592
0.20
560
0.35
619
0.41
609
0.24
568
0.32
572
0.38
636
0.21
566
0.29
625
0.23
586
0.12
588
0.11
603
0.14
621
0.16
648
0.23
666
0.23
671
FADNet-RVCtwo views0.20
568
0.20
638
0.38
641
0.21
573
0.16
629
0.20
544
0.15
334
0.26
482
0.26
492
0.26
587
0.32
572
0.26
550
0.21
566
0.22
574
0.19
539
0.12
588
0.13
634
0.12
592
0.14
626
0.13
606
0.18
659
FADNettwo views0.21
581
0.22
648
0.36
635
0.18
402
0.17
644
0.24
592
0.13
179
0.31
563
0.31
542
0.23
559
0.25
500
0.27
558
0.21
566
0.19
519
0.15
477
0.13
614
0.15
650
0.12
592
0.15
643
0.16
645
0.18
659
MaskLacGwcNet_RVCtwo views0.22
590
0.21
644
0.24
585
0.26
640
0.11
520
0.23
587
0.14
246
0.39
644
0.24
456
0.32
634
0.36
597
0.30
587
0.21
566
0.19
519
0.21
565
0.17
653
0.14
644
0.21
659
0.16
648
0.12
586
0.12
588
SuperBtwo views0.20
568
0.10
503
0.56
668
0.16
222
0.09
355
0.18
504
0.18
496
0.24
445
0.50
646
0.26
587
0.39
617
0.17
434
0.21
566
0.22
574
0.21
565
0.08
426
0.06
430
0.06
200
0.06
293
0.12
586
0.10
548
RTSCtwo views0.23
606
0.12
548
0.28
606
0.21
573
0.13
577
0.28
630
0.16
405
0.35
619
0.66
682
0.27
593
0.33
585
0.30
587
0.21
566
0.31
629
0.29
641
0.10
531
0.08
535
0.09
492
0.10
556
0.13
606
0.13
612
AANet_RVCtwo views0.16
509
0.10
503
0.10
189
0.18
402
0.09
355
0.18
504
0.19
536
0.26
482
0.31
542
0.22
546
0.35
594
0.21
484
0.21
566
0.22
574
0.16
493
0.06
168
0.05
276
0.06
200
0.06
293
0.07
381
0.06
310
DRN-Testtwo views0.19
556
0.11
530
0.20
556
0.22
590
0.10
469
0.22
571
0.22
591
0.39
644
0.37
589
0.24
568
0.32
572
0.26
550
0.21
566
0.22
574
0.24
599
0.11
563
0.07
503
0.11
572
0.10
556
0.09
515
0.07
400
MDST_ROBtwo views0.22
590
0.10
503
0.17
508
0.18
402
0.11
520
0.37
661
0.19
536
0.43
663
0.41
609
0.39
652
0.39
617
0.29
577
0.21
566
0.26
603
0.18
526
0.11
563
0.10
590
0.14
621
0.11
590
0.10
548
0.08
471
w-ln-seven-2two views0.20
568
0.14
588
0.37
639
0.22
590
0.12
554
0.20
544
0.21
581
0.28
523
0.37
589
0.25
581
0.37
603
0.27
558
0.22
575
0.21
561
0.23
586
0.08
426
0.08
535
0.09
492
0.09
514
0.10
548
0.09
517
w-ln-seventwo views0.24
613
0.14
588
0.55
665
0.19
472
0.14
598
0.26
613
0.22
591
0.35
619
0.60
670
0.29
617
0.39
617
0.30
587
0.22
575
0.21
561
0.26
621
0.09
488
0.09
568
0.11
572
0.10
556
0.11
571
0.10
548
SQANettwo views0.23
606
0.23
651
0.30
617
0.30
667
0.19
655
0.27
623
0.13
179
0.29
537
0.33
556
0.24
568
0.37
603
0.31
600
0.22
575
0.27
606
0.23
586
0.15
632
0.10
590
0.21
659
0.16
648
0.21
662
0.15
636
SACVNettwo views0.18
544
0.12
548
0.14
392
0.17
309
0.13
577
0.22
571
0.18
496
0.31
563
0.30
534
0.23
559
0.31
568
0.30
587
0.22
575
0.22
574
0.17
508
0.11
563
0.08
535
0.10
541
0.10
556
0.12
586
0.14
629
FINETtwo views0.21
581
0.18
628
0.26
593
0.18
402
0.16
629
0.23
587
0.23
602
0.32
574
0.48
636
0.25
581
0.32
572
0.22
502
0.22
575
0.22
574
0.17
508
0.18
655
0.16
654
0.11
572
0.10
556
0.15
636
0.13
612
hitnet-ftcopylefttwo views0.18
544
0.09
440
0.17
508
0.14
70
0.09
355
0.26
613
0.20
560
0.25
464
0.26
492
0.24
568
0.32
572
0.31
600
0.22
575
0.24
595
0.21
565
0.12
588
0.07
503
0.10
541
0.08
467
0.12
586
0.11
575
ADCP+two views0.20
568
0.10
503
0.33
626
0.20
540
0.12
554
0.22
571
0.26
640
0.31
563
0.34
568
0.26
587
0.37
603
0.22
502
0.22
575
0.27
606
0.27
629
0.09
488
0.06
430
0.08
406
0.08
467
0.09
515
0.10
548
PSMNet_ROBtwo views0.21
581
0.11
530
0.15
441
0.27
653
0.15
618
0.24
592
0.35
681
0.43
663
0.37
589
0.27
593
0.32
572
0.32
610
0.22
575
0.21
561
0.26
621
0.12
588
0.08
535
0.13
607
0.11
590
0.09
515
0.09
517
ADCReftwo views0.19
556
0.12
548
0.41
648
0.20
540
0.12
554
0.22
571
0.18
496
0.32
574
0.36
582
0.26
587
0.32
572
0.17
434
0.23
583
0.24
595
0.24
599
0.07
343
0.06
430
0.09
492
0.09
514
0.08
450
0.08
471
RYNettwo views0.22
590
0.12
548
0.22
572
0.19
472
0.17
644
0.46
671
0.26
640
0.38
640
0.48
636
0.24
568
0.28
540
0.34
621
0.23
583
0.20
544
0.30
648
0.10
531
0.06
430
0.09
492
0.09
514
0.13
606
0.15
636
NaN_ROBtwo views0.22
590
0.19
632
0.24
585
0.25
635
0.13
577
0.29
634
0.26
640
0.33
594
0.41
609
0.31
628
0.31
568
0.32
610
0.23
583
0.30
628
0.21
565
0.11
563
0.17
659
0.10
541
0.10
556
0.08
450
0.09
517
NOSS_ROBtwo views0.19
556
0.12
548
0.18
532
0.16
222
0.12
554
0.15
430
0.12
100
0.30
551
0.32
549
0.20
515
0.22
450
0.27
558
0.23
583
0.21
561
0.16
493
0.16
648
0.18
661
0.23
664
0.21
663
0.12
586
0.13
612
DispFullNettwo views0.27
638
0.21
644
0.65
678
0.28
656
0.16
629
0.26
613
0.17
447
0.33
594
0.58
665
0.27
593
0.38
609
0.43
655
0.23
583
0.38
661
0.23
586
0.12
588
0.06
430
0.19
656
0.11
590
0.21
662
0.15
636
CBMVpermissivetwo views0.19
556
0.14
588
0.17
508
0.18
402
0.10
469
0.20
544
0.11
64
0.29
537
0.30
534
0.29
617
0.30
559
0.30
587
0.23
583
0.27
606
0.19
539
0.13
614
0.15
650
0.17
645
0.16
648
0.10
548
0.10
548
Konstantinos Batsos, Changjiang Cai, Philippos Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. Computer Vision and Pattern Recognition (CVPR) 2018
z-mn7two views0.24
613
0.14
588
0.45
652
0.19
472
0.13
577
0.28
630
0.25
631
0.34
603
0.62
673
0.27
593
0.56
669
0.29
577
0.24
589
0.32
636
0.25
609
0.08
426
0.08
535
0.08
406
0.08
467
0.10
548
0.10
548
ToySttwo views0.17
530
0.11
530
0.18
532
0.17
309
0.11
520
0.16
462
0.25
631
0.24
445
0.33
556
0.19
492
0.24
472
0.26
550
0.24
589
0.19
519
0.20
545
0.07
343
0.08
535
0.09
492
0.10
556
0.09
515
0.08
471
WZ-Nettwo views0.28
643
0.17
617
0.78
695
0.22
590
0.16
629
0.34
650
0.29
663
0.39
644
0.57
662
0.24
568
0.55
664
0.37
632
0.24
589
0.33
639
0.35
665
0.09
488
0.08
535
0.09
492
0.10
556
0.14
620
0.16
647
psm_uptwo views0.18
544
0.10
503
0.18
532
0.20
540
0.11
520
0.17
485
0.19
536
0.37
632
0.34
568
0.21
530
0.28
540
0.29
577
0.24
589
0.20
544
0.22
574
0.09
488
0.10
590
0.11
572
0.11
590
0.08
450
0.08
471
RPtwo views0.21
581
0.13
576
0.21
566
0.23
614
0.11
520
0.21
562
0.20
560
0.25
464
0.44
627
0.21
530
0.38
609
0.36
627
0.24
589
0.27
606
0.25
609
0.11
563
0.12
619
0.13
607
0.12
611
0.12
586
0.14
629
PS-NSSStwo views0.20
568
0.21
644
0.23
581
0.20
540
0.10
469
0.19
528
0.17
447
0.36
626
0.25
478
0.27
593
0.33
585
0.27
558
0.24
589
0.20
544
0.20
545
0.15
632
0.12
619
0.17
645
0.14
626
0.10
548
0.08
471
CBMV_ROBtwo views0.19
556
0.13
576
0.17
508
0.16
222
0.11
520
0.15
430
0.13
179
0.26
482
0.28
517
0.27
593
0.30
559
0.27
558
0.24
589
0.23
585
0.16
493
0.15
632
0.17
659
0.22
663
0.20
661
0.10
548
0.11
575
DLCB_ROBtwo views0.18
544
0.10
503
0.15
441
0.23
614
0.11
520
0.24
592
0.18
496
0.29
537
0.28
517
0.27
593
0.28
540
0.28
568
0.24
589
0.19
519
0.20
545
0.08
426
0.08
535
0.09
492
0.09
514
0.07
381
0.07
400
PWC_ROBbinarytwo views0.21
581
0.16
606
0.26
593
0.18
402
0.11
520
0.22
571
0.13
179
0.32
574
0.49
643
0.30
622
0.40
623
0.32
610
0.24
589
0.31
629
0.22
574
0.10
531
0.07
503
0.11
572
0.08
467
0.11
571
0.10
548
zh-mn7two views0.25
625
0.14
588
0.56
668
0.19
472
0.14
598
0.24
592
0.22
591
0.34
603
0.62
673
0.35
641
0.65
678
0.31
600
0.25
598
0.31
629
0.25
609
0.09
488
0.08
535
0.09
492
0.09
514
0.09
515
0.11
575
PSMNet-RUCAtwo views0.27
638
0.33
676
0.41
648
0.36
677
0.32
684
0.18
504
0.19
536
0.42
659
0.30
534
0.33
638
0.41
634
0.39
644
0.25
598
0.31
629
0.20
545
0.18
655
0.10
590
0.25
666
0.15
643
0.21
662
0.16
647
test_sample8two views0.19
556
0.12
548
0.20
556
0.12
7
0.14
598
0.17
485
0.13
179
0.31
563
0.21
413
0.27
593
0.22
450
0.36
627
0.25
598
0.19
519
0.17
508
0.15
632
0.30
687
0.14
621
0.14
626
0.14
620
0.12
588
HBP-ISPtwo views0.18
544
0.13
576
0.16
477
0.15
124
0.11
520
0.08
85
0.13
179
0.28
523
0.29
524
0.22
546
0.33
585
0.21
484
0.25
598
0.23
585
0.17
508
0.14
628
0.16
654
0.21
659
0.17
655
0.10
548
0.08
471
DDUNettwo views0.22
590
0.17
617
0.21
566
0.22
590
0.15
618
0.25
603
0.24
615
0.29
537
0.30
534
0.31
628
0.36
597
0.33
614
0.25
598
0.24
595
0.20
545
0.18
655
0.13
634
0.17
645
0.11
590
0.16
645
0.16
647
Syn2CoExtwo views0.21
581
0.16
606
0.27
601
0.29
665
0.14
598
0.26
613
0.20
560
0.33
594
0.31
542
0.28
608
0.36
597
0.27
558
0.25
598
0.19
519
0.24
599
0.16
648
0.12
619
0.14
621
0.11
590
0.09
515
0.08
471
Wz-Net-SNSevtwo views0.25
625
0.17
617
0.44
651
0.25
635
0.14
598
0.26
613
0.23
602
0.38
640
0.56
660
0.30
622
0.55
664
0.39
644
0.26
604
0.23
585
0.30
648
0.10
531
0.09
568
0.09
492
0.10
556
0.11
571
0.11
575
AF-Nettwo views0.22
590
0.17
617
0.17
508
0.26
640
0.13
577
0.25
603
0.24
615
0.32
574
0.50
646
0.25
581
0.33
585
0.38
636
0.26
604
0.28
618
0.25
609
0.11
563
0.10
590
0.16
641
0.11
590
0.11
571
0.10
548
PA-Nettwo views0.23
606
0.18
628
0.33
626
0.28
656
0.22
664
0.21
562
0.38
686
0.29
537
0.39
600
0.22
546
0.32
572
0.25
540
0.26
604
0.20
544
0.25
609
0.09
488
0.23
680
0.15
633
0.22
666
0.09
515
0.13
612
Zhibo Rao, Mingyi He, Yuchao Dai, Zhelun Shen: Patch Attention Network with Generative Adversarial Model for Semi-Supervised Binocular Disparity Prediction.
DISCOtwo views0.19
556
0.09
440
0.22
572
0.17
309
0.10
469
0.25
603
0.18
496
0.27
503
0.44
627
0.22
546
0.31
568
0.33
614
0.26
604
0.28
618
0.28
637
0.08
426
0.06
430
0.07
312
0.07
393
0.09
515
0.09
517
SANettwo views0.24
613
0.14
588
0.28
606
0.21
573
0.11
520
0.27
623
0.24
615
0.38
640
0.64
678
0.36
644
0.40
623
0.43
655
0.26
604
0.27
606
0.24
599
0.12
588
0.09
568
0.10
541
0.09
514
0.13
606
0.11
575
XPNet_ROBtwo views0.22
590
0.11
530
0.19
544
0.22
590
0.13
577
0.22
571
0.19
536
0.34
603
0.40
606
0.30
622
0.39
617
0.39
644
0.26
604
0.26
603
0.28
637
0.15
632
0.10
590
0.10
541
0.10
556
0.13
606
0.12
588
ETE_ROBtwo views0.23
606
0.17
617
0.22
572
0.25
635
0.13
577
0.26
613
0.29
663
0.31
563
0.36
582
0.28
608
0.36
597
0.45
659
0.26
604
0.27
606
0.26
621
0.11
563
0.08
535
0.12
592
0.09
514
0.14
620
0.13
612
LALA_ROBtwo views0.25
625
0.16
606
0.22
572
0.26
640
0.17
644
0.27
623
0.27
647
0.42
659
0.37
589
0.33
638
0.38
609
0.51
671
0.26
604
0.28
618
0.27
629
0.16
648
0.09
568
0.12
592
0.11
590
0.13
606
0.12
588
DStereoOtwo views0.24
613
0.18
628
0.18
532
0.20
540
0.14
598
0.21
562
0.19
536
0.32
574
0.41
609
0.29
617
0.21
438
0.32
610
0.27
612
0.41
673
0.27
629
0.46
695
0.12
619
0.31
682
0.11
590
0.15
636
0.12
588
FSDtwo views0.25
625
0.27
664
0.26
593
0.24
623
0.22
664
0.25
603
0.25
631
0.27
503
0.26
492
0.25
581
0.26
517
0.25
540
0.27
612
0.27
606
0.24
599
0.21
668
0.20
667
0.27
670
0.26
673
0.25
674
0.24
672
MSAF-DinoV2two views0.22
590
0.11
530
0.23
581
0.17
309
0.10
469
0.27
623
0.16
405
0.37
632
0.55
657
0.21
530
0.27
526
0.47
667
0.27
612
0.35
648
0.39
674
0.09
488
0.06
430
0.07
312
0.09
514
0.12
586
0.10
548
ACVNet-4btwo views0.39
666
0.53
688
0.55
665
0.45
685
0.24
669
0.47
673
0.18
496
0.49
675
0.64
678
0.42
662
0.45
648
0.60
679
0.27
612
0.34
642
0.24
599
0.33
686
0.14
644
0.48
690
0.42
692
0.30
682
0.26
680
Anonymous_2two views0.22
590
0.17
617
0.28
606
0.15
124
0.16
629
0.32
640
0.22
591
0.22
398
0.17
321
0.23
559
0.24
472
0.26
550
0.27
612
0.27
606
0.23
586
0.22
673
0.25
683
0.17
645
0.17
655
0.17
653
0.17
656
UDGtwo views0.21
581
0.17
617
0.19
544
0.23
614
0.15
618
0.30
637
0.20
560
0.33
594
0.35
577
0.23
559
0.28
540
0.31
600
0.27
612
0.20
544
0.22
574
0.15
632
0.12
619
0.13
607
0.09
514
0.14
620
0.14
629
aanetorigintwo views0.22
590
0.17
617
0.56
668
0.17
309
0.10
469
0.15
430
0.19
536
0.20
345
0.33
556
0.49
672
0.48
652
0.29
577
0.27
612
0.20
544
0.23
586
0.08
426
0.07
503
0.08
406
0.07
393
0.10
548
0.09
517
DMCA-RVCcopylefttwo views0.17
530
0.10
503
0.15
441
0.24
623
0.11
520
0.18
504
0.18
496
0.25
464
0.24
456
0.21
530
0.26
517
0.25
540
0.27
612
0.18
504
0.20
545
0.12
588
0.08
535
0.13
607
0.10
556
0.10
548
0.08
471
RGCtwo views0.25
625
0.20
638
0.29
614
0.28
656
0.16
629
0.22
571
0.23
602
0.32
574
0.44
627
0.27
593
0.40
623
0.38
636
0.27
612
0.36
654
0.22
574
0.11
563
0.13
634
0.17
645
0.17
655
0.14
620
0.16
647
stereogantwo views0.22
590
0.11
530
0.21
566
0.20
540
0.12
554
0.31
639
0.19
536
0.35
619
0.44
627
0.22
546
0.39
617
0.35
625
0.27
612
0.33
639
0.22
574
0.10
531
0.12
619
0.10
541
0.10
556
0.14
620
0.13
612
FBW_ROBtwo views0.24
613
0.17
617
0.22
572
0.26
640
0.14
598
0.25
603
0.22
591
0.41
654
0.41
609
0.41
659
0.41
634
0.42
651
0.27
612
0.31
629
0.23
586
0.09
488
0.14
644
0.14
621
0.12
611
0.11
571
0.09
517
NCC-stereotwo views0.24
613
0.15
598
0.31
619
0.26
640
0.16
629
0.20
544
0.30
671
0.40
648
0.40
606
0.24
568
0.38
609
0.33
614
0.28
623
0.36
654
0.27
629
0.12
588
0.11
603
0.15
633
0.22
666
0.13
606
0.13
612
Nwc_Nettwo views0.23
606
0.16
606
0.21
566
0.25
635
0.14
598
0.24
592
0.26
640
0.37
632
0.38
596
0.22
546
0.41
634
0.30
587
0.28
623
0.28
618
0.25
609
0.11
563
0.10
590
0.17
645
0.20
661
0.10
548
0.10
548
Abc-Nettwo views0.24
613
0.15
598
0.31
619
0.26
640
0.16
629
0.20
544
0.30
671
0.40
648
0.40
606
0.24
568
0.38
609
0.33
614
0.28
623
0.36
654
0.27
629
0.12
588
0.11
603
0.15
633
0.22
666
0.13
606
0.13
612
Xing Li, Yangyu Fan, Guoyun Lv, and Haoyue Ma: Area-based Correlation and Non-local Attention Network for Stereo Matching. The Visual Computer
SHDtwo views0.26
636
0.15
598
0.30
617
0.24
623
0.18
651
0.22
571
0.15
334
0.38
640
0.71
686
0.32
634
0.41
634
0.36
627
0.28
623
0.32
636
0.29
641
0.12
588
0.11
603
0.14
621
0.13
622
0.16
645
0.20
665
DeepPrunerFtwo views0.24
613
0.17
617
0.42
650
0.26
640
0.16
629
0.22
571
0.28
653
0.37
632
0.50
646
0.26
587
0.29
552
0.24
526
0.28
623
0.21
561
0.22
574
0.15
632
0.11
603
0.20
658
0.18
659
0.12
586
0.13
612
ADCPNettwo views0.25
625
0.16
606
0.61
675
0.21
573
0.15
618
0.35
658
0.25
631
0.32
574
0.35
577
0.30
622
0.40
623
0.36
627
0.28
623
0.28
618
0.32
657
0.12
588
0.10
590
0.11
572
0.12
611
0.14
620
0.13
612
GANettwo views0.21
581
0.12
548
0.21
566
0.24
623
0.13
577
0.22
571
0.22
591
0.41
654
0.26
492
0.31
628
0.42
641
0.37
632
0.28
623
0.23
585
0.22
574
0.10
531
0.12
619
0.10
541
0.09
514
0.10
548
0.08
471
NCCL2two views0.23
606
0.15
598
0.17
508
0.34
673
0.18
651
0.24
592
0.23
602
0.34
603
0.28
517
0.31
628
0.38
609
0.38
636
0.28
623
0.23
585
0.24
599
0.15
632
0.12
619
0.18
654
0.21
663
0.13
606
0.13
612
APVNettwo views0.22
590
0.12
548
0.19
544
0.18
402
0.14
598
0.32
640
0.31
677
0.39
644
0.32
549
0.27
593
0.40
623
0.30
587
0.29
631
0.26
603
0.25
609
0.11
563
0.12
619
0.11
572
0.14
626
0.12
586
0.12
588
G-Nettwo views0.24
613
0.16
606
0.36
635
0.22
590
0.16
629
0.51
677
0.23
602
0.29
537
0.34
568
0.36
644
0.38
609
0.31
600
0.29
631
0.27
606
0.26
621
0.11
563
0.09
568
0.12
592
0.09
514
0.16
645
0.13
612
DPSNettwo views0.28
643
0.16
606
0.31
619
0.18
402
0.13
577
0.54
679
0.42
690
0.51
681
0.67
683
0.29
617
0.38
609
0.38
636
0.29
631
0.31
629
0.23
586
0.11
563
0.10
590
0.11
572
0.08
467
0.20
661
0.16
647
PDISCO_ROBtwo views0.27
638
0.16
606
0.26
593
0.28
656
0.20
658
0.32
640
0.26
640
0.44
665
0.57
662
0.28
608
0.40
623
0.45
659
0.29
631
0.33
639
0.34
664
0.12
588
0.09
568
0.17
645
0.16
648
0.17
653
0.13
612
ccnettwo views0.29
647
0.28
669
0.23
581
0.20
540
0.28
678
0.41
669
0.21
581
0.45
668
0.33
556
0.36
644
0.46
649
0.36
627
0.30
635
0.39
665
0.42
681
0.23
677
0.14
644
0.21
659
0.17
655
0.23
666
0.18
659
S-Stereotwo views0.20
568
0.12
548
0.25
590
0.21
573
0.13
577
0.20
544
0.18
496
0.32
574
0.43
622
0.23
559
0.36
597
0.28
568
0.30
635
0.19
519
0.22
574
0.09
488
0.12
619
0.10
541
0.10
556
0.13
606
0.13
612
XQCtwo views0.28
643
0.23
651
0.51
660
0.28
656
0.19
655
0.34
650
0.27
647
0.36
626
0.57
662
0.31
628
0.30
559
0.37
632
0.30
635
0.38
661
0.38
672
0.13
614
0.09
568
0.15
633
0.12
611
0.17
653
0.18
659
ADCLtwo views0.24
613
0.11
530
0.47
657
0.22
590
0.12
554
0.34
650
0.29
663
0.29
537
0.56
660
0.24
568
0.46
649
0.30
587
0.30
635
0.29
625
0.29
641
0.08
426
0.07
503
0.09
492
0.09
514
0.10
548
0.10
548
PStereotwo views0.20
568
0.22
648
0.20
556
0.17
309
0.10
469
0.13
366
0.20
560
0.27
503
0.38
596
0.20
515
0.14
305
0.28
568
0.31
639
0.24
595
0.31
655
0.18
655
0.13
634
0.15
633
0.11
590
0.12
586
0.12
588
zh-sn7two views0.25
625
0.17
617
0.50
659
0.24
623
0.13
577
0.25
603
0.24
615
0.34
603
0.48
636
0.28
608
0.54
662
0.28
568
0.31
639
0.36
654
0.32
657
0.10
531
0.10
590
0.11
572
0.10
556
0.12
586
0.12
588
MFN_U_SF_DS_RVCtwo views0.30
653
0.24
654
0.29
614
0.36
677
0.16
629
0.34
650
0.30
671
0.32
574
0.42
617
0.40
655
0.46
649
0.38
636
0.31
639
0.34
642
0.28
637
0.19
662
0.20
667
0.26
667
0.29
680
0.18
657
0.19
664
STTRV1_RVCtwo views0.25
625
0.26
660
0.39
643
0.19
472
0.26
676
0.30
637
0.24
615
0.34
603
0.35
577
0.36
644
0.34
589
0.31
600
0.31
639
0.28
618
0.25
609
0.17
653
0.10
590
0.16
641
0.14
626
0.17
653
0.12
588
CC-Net-ROBtwo views0.28
643
0.31
674
0.36
635
0.29
665
0.15
618
0.25
603
0.19
536
0.45
668
0.33
556
0.39
652
0.37
603
0.39
644
0.31
639
0.27
606
0.26
621
0.24
679
0.19
664
0.30
681
0.23
670
0.18
657
0.15
636
DANettwo views0.21
581
0.15
598
0.28
606
0.25
635
0.13
577
0.22
571
0.19
536
0.27
503
0.27
502
0.28
608
0.32
572
0.35
625
0.31
639
0.31
629
0.23
586
0.11
563
0.09
568
0.11
572
0.10
556
0.13
606
0.11
575
Z Ling, K Yang, J Li, Y Zhang, X Gao, L Luo, L Xie: Domain-adaptive modules for stereo matching network. Neurocomputing 2021
light-stereotwo views0.42
673
0.26
660
0.59
673
0.60
693
0.49
692
0.32
640
0.23
602
0.46
670
0.52
655
0.56
680
0.58
674
0.76
691
0.32
645
0.48
677
0.29
641
0.32
684
0.24
681
0.27
670
0.33
685
0.46
690
0.39
692
FAT-Stereotwo views0.20
568
0.12
548
0.22
572
0.21
573
0.12
554
0.17
485
0.18
496
0.34
603
0.39
600
0.27
593
0.37
603
0.34
621
0.32
645
0.21
561
0.20
545
0.09
488
0.11
603
0.10
541
0.09
514
0.11
571
0.14
629
DStereoSAtwo views0.25
625
0.19
632
0.37
639
0.26
640
0.17
644
0.22
571
0.20
560
0.49
675
0.59
666
0.22
546
0.29
552
0.29
577
0.33
647
0.39
665
0.28
637
0.12
588
0.11
603
0.16
641
0.14
626
0.14
620
0.12
588
otakutwo views0.39
666
0.37
681
0.52
661
0.44
684
0.28
678
0.58
681
0.24
615
0.41
654
0.62
673
0.40
655
0.49
653
0.46
663
0.33
647
0.40
670
0.32
657
0.30
682
0.30
687
0.39
686
0.33
685
0.29
681
0.28
681
AnyNet_C32two views0.26
636
0.16
606
0.36
635
0.20
540
0.16
629
0.25
603
0.30
671
0.32
574
0.44
627
0.31
628
0.49
653
0.30
587
0.33
647
0.40
670
0.33
662
0.12
588
0.12
619
0.12
592
0.14
626
0.14
620
0.15
636
GANetREF_RVCpermissivetwo views0.31
655
0.34
678
0.27
601
0.35
675
0.16
629
0.32
640
0.41
687
0.48
673
0.51
653
0.35
641
0.35
594
0.34
621
0.33
647
0.39
665
0.32
657
0.27
681
0.20
667
0.29
679
0.15
643
0.18
657
0.17
656
Zhang, Feihu and Prisacariu, Victor and Yang, Ruigang and Torr, Philip HS: GA-Net: Guided Aggregation Net for End- to-end Stereo Matching. CVPR 2019
CSANtwo views0.29
647
0.24
654
0.27
601
0.34
673
0.19
655
0.33
647
0.42
690
0.37
632
0.50
646
0.38
650
0.40
623
0.44
657
0.33
647
0.28
618
0.30
648
0.20
664
0.16
654
0.19
656
0.19
660
0.14
620
0.15
636
DStereoFStwo views0.27
638
0.22
648
0.31
619
0.22
590
0.15
618
0.22
571
0.20
560
0.50
679
0.48
636
0.28
608
0.44
646
0.33
614
0.34
652
0.52
683
0.29
641
0.12
588
0.11
603
0.15
633
0.13
622
0.16
645
0.16
647
PASMtwo views0.32
657
0.24
654
0.48
658
0.28
656
0.27
677
0.29
634
0.30
671
0.34
603
0.49
643
0.35
641
0.39
617
0.46
663
0.34
652
0.34
642
0.35
665
0.23
677
0.25
683
0.26
667
0.28
679
0.23
666
0.21
667
WCMA_ROBtwo views0.24
613
0.11
530
0.22
572
0.17
309
0.14
598
0.32
640
0.15
334
0.32
574
0.32
549
0.38
650
0.53
660
0.40
648
0.34
652
0.34
642
0.25
609
0.11
563
0.12
619
0.12
592
0.10
556
0.14
620
0.14
629
edge stereotwo views0.22
590
0.13
576
0.20
556
0.21
573
0.13
577
0.23
587
0.16
405
0.32
574
0.42
617
0.32
634
0.40
623
0.38
636
0.35
655
0.25
601
0.24
599
0.13
614
0.11
603
0.14
621
0.11
590
0.12
586
0.13
612
SGM_RVCbinarytwo views0.23
606
0.12
548
0.15
441
0.15
124
0.09
355
0.33
647
0.18
496
0.34
603
0.31
542
0.44
667
0.37
603
0.53
675
0.35
655
0.35
648
0.24
599
0.13
614
0.13
634
0.13
607
0.13
622
0.10
548
0.11
575
Heiko Hirschmueller: Stereo processing by semiglobal matching and mutual information. TPAMI 2008, Volume 30(2), pp. 328-341
ADCStwo views0.29
647
0.18
628
0.45
652
0.21
573
0.17
644
0.28
630
0.23
602
0.41
654
0.63
677
0.40
655
0.49
653
0.40
648
0.36
657
0.39
665
0.40
677
0.13
614
0.12
619
0.13
607
0.14
626
0.16
645
0.16
647
LSMtwo views0.33
660
0.20
638
0.58
671
0.26
640
0.60
702
0.34
650
0.25
631
0.42
659
0.48
636
0.45
668
0.58
674
0.42
651
0.36
657
0.35
648
0.25
609
0.12
588
0.20
667
0.14
621
0.16
648
0.19
660
0.33
687
psmorigintwo views0.25
625
0.15
598
0.34
634
0.17
309
0.13
577
0.23
587
0.14
246
0.34
603
0.33
556
0.41
659
0.55
664
0.41
650
0.37
659
0.34
642
0.27
629
0.11
563
0.15
650
0.11
572
0.11
590
0.12
586
0.16
647
AANettwo views0.30
653
0.19
632
1.03
704
0.16
222
0.13
577
0.22
571
0.16
405
0.30
551
0.62
673
0.60
681
0.52
659
0.46
663
0.38
660
0.23
585
0.32
657
0.12
588
0.09
568
0.11
572
0.10
556
0.13
606
0.12
588
Wz-Net-TNSevtwo views0.29
647
0.20
638
0.65
678
0.19
472
0.15
618
0.38
664
0.27
647
0.35
619
0.55
657
0.34
640
0.42
641
0.45
659
0.38
660
0.32
636
0.30
648
0.12
588
0.13
634
0.10
541
0.12
611
0.15
636
0.14
629
AnyNet_C01two views0.36
664
0.25
659
1.37
710
0.22
590
0.17
644
0.48
675
0.27
647
0.35
619
0.39
600
0.39
652
0.74
688
0.46
663
0.38
660
0.45
675
0.47
686
0.13
614
0.13
634
0.13
607
0.14
626
0.14
620
0.15
636
EDNetEfficienttwo views0.29
647
0.24
654
1.13
707
0.18
402
0.10
469
0.19
528
0.20
560
0.20
345
0.60
670
0.74
694
0.56
669
0.31
600
0.39
663
0.22
574
0.30
648
0.09
488
0.07
503
0.08
406
0.07
393
0.11
571
0.09
517
MFN_U_SF_RVCtwo views0.32
657
0.21
644
0.55
665
0.30
667
0.15
618
0.34
650
0.17
447
0.52
682
0.46
634
0.46
671
0.55
664
0.59
678
0.39
663
0.35
648
0.37
670
0.15
632
0.14
644
0.18
654
0.21
663
0.16
645
0.15
636
SAMSARAtwo views0.40
669
0.28
669
0.33
626
0.55
691
0.39
685
0.82
701
1.23
718
0.47
672
0.51
653
0.36
644
0.35
594
0.55
677
0.39
663
0.38
661
0.39
674
0.15
632
0.20
667
0.15
633
0.14
626
0.23
666
0.20
665
FC-DCNN v2copylefttwo views0.33
660
0.27
664
0.28
606
0.26
640
0.23
667
0.37
661
0.28
653
0.40
648
0.43
622
0.45
668
0.56
669
0.51
671
0.40
666
0.37
659
0.29
641
0.21
668
0.20
667
0.27
670
0.26
673
0.25
674
0.24
672
ADCMidtwo views0.25
625
0.15
598
0.40
645
0.20
540
0.14
598
0.25
603
0.26
640
0.34
603
0.38
596
0.36
644
0.44
646
0.34
621
0.40
666
0.35
648
0.33
662
0.10
531
0.09
568
0.11
572
0.11
590
0.13
606
0.12
588
FC-DCNNcopylefttwo views0.33
660
0.27
664
0.28
606
0.26
640
0.23
667
0.37
661
0.28
653
0.40
648
0.43
622
0.45
668
0.55
664
0.51
671
0.40
666
0.37
659
0.30
648
0.21
668
0.20
667
0.27
670
0.26
673
0.25
674
0.24
672
MSMD_ROBtwo views0.31
655
0.26
660
0.26
593
0.24
623
0.21
662
0.34
650
0.25
631
0.34
603
0.39
600
0.40
655
0.69
682
0.45
659
0.40
666
0.34
642
0.27
629
0.20
664
0.19
664
0.26
667
0.25
672
0.23
666
0.22
669
MeshStereopermissivetwo views0.27
638
0.13
576
0.18
532
0.15
124
0.11
520
0.32
640
0.24
615
0.40
648
0.36
582
0.52
674
0.57
672
0.67
686
0.40
666
0.35
648
0.26
621
0.14
628
0.13
634
0.13
607
0.11
590
0.11
571
0.10
548
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, Y. Rui: MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation. ICCV 2015
FCDSN-DCtwo views0.33
660
0.28
669
0.28
606
0.30
667
0.24
669
0.39
666
0.28
653
0.42
659
0.42
617
0.43
665
0.53
660
0.51
671
0.41
671
0.36
654
0.30
648
0.21
668
0.20
667
0.27
670
0.26
673
0.25
674
0.24
672
Dominik Hirner, Friedrich Fraundorfer: FCDSN-DC: An accurate but lightweight end-to-end trainable neural network for stereo estimation with depth completion.
RTStwo views0.45
677
0.19
632
3.26
717
0.24
623
0.15
618
0.74
694
0.20
560
0.36
626
0.76
693
0.42
662
0.43
644
0.31
600
0.41
671
0.53
686
0.35
665
0.10
531
0.08
535
0.13
607
0.12
611
0.15
636
0.15
636
RTSAtwo views0.45
677
0.19
632
3.26
717
0.24
623
0.15
618
0.74
694
0.20
560
0.36
626
0.76
693
0.42
662
0.43
644
0.31
600
0.41
671
0.53
686
0.35
665
0.10
531
0.08
535
0.13
607
0.12
611
0.15
636
0.15
636
Ntrotwo views0.40
669
0.40
683
0.53
662
0.46
688
0.30
682
0.65
687
0.24
615
0.46
670
0.68
684
0.41
659
0.49
653
0.48
669
0.42
674
0.39
665
0.31
655
0.32
684
0.28
685
0.37
685
0.30
682
0.32
686
0.29
682
SGM-ForestMtwo views0.32
657
0.12
548
0.16
477
0.16
222
0.11
520
0.39
666
0.19
536
0.41
654
0.50
646
0.52
674
0.54
662
1.32
707
0.42
674
0.40
670
0.27
629
0.14
628
0.16
654
0.16
641
0.16
648
0.12
586
0.12
588
LE_ROBtwo views0.50
683
0.07
239
0.14
392
0.15
124
0.08
220
0.24
592
0.16
405
0.22
398
1.81
717
4.63
723
0.67
680
0.47
667
0.44
676
0.20
544
0.29
641
0.07
343
0.06
430
0.06
200
0.06
293
0.08
450
0.06
310
coex-fttwo views3.30
715
0.34
678
59.09
749
0.18
402
0.13
577
0.26
613
0.22
591
0.27
503
0.72
687
1.90
718
0.70
684
0.44
657
0.45
677
0.29
625
0.41
680
0.09
488
0.09
568
0.12
592
0.09
514
0.14
620
0.13
612
RainbowNettwo views0.54
686
0.61
692
0.70
693
0.57
692
0.43
689
0.65
687
0.37
685
0.60
691
0.87
697
0.50
673
0.66
679
0.64
682
0.47
678
0.49
678
0.43
684
0.47
696
0.48
701
0.52
694
0.41
691
0.52
693
0.40
695
Consistency-Rafttwo views0.44
675
0.40
683
0.45
652
0.37
679
0.43
689
0.46
671
0.41
687
0.57
689
0.55
657
0.32
634
0.73
686
0.33
614
0.48
679
0.42
674
0.49
688
0.39
689
0.35
692
0.45
689
0.51
699
0.42
689
0.29
682
ACVNet_1two views0.44
675
0.49
687
0.60
674
0.45
685
0.28
678
0.49
676
0.27
647
0.57
689
0.72
687
0.62
683
0.58
674
0.74
690
0.49
680
0.50
679
0.35
665
0.26
680
0.24
681
0.39
686
0.29
680
0.31
685
0.24
672
EDNetEfficientorigintwo views7.91
723
0.31
674
153.02
750
0.19
472
0.09
355
0.21
562
0.16
405
0.22
398
0.59
666
0.72
690
0.67
680
0.42
651
0.50
681
0.24
595
0.39
674
0.08
426
0.07
503
0.08
406
0.07
393
0.12
586
0.10
548
TCMNet-wrong-testtwo views3.67
717
5.48
730
3.89
721
12.18
733
11.75
733
4.65
718
3.88
722
1.06
712
0.72
687
1.09
710
2.15
719
6.30
725
0.53
682
3.43
721
2.36
720
0.89
715
0.20
667
1.87
723
1.69
722
5.57
727
3.62
728
FADEtwo views0.45
677
0.33
676
1.03
704
0.33
672
0.25
675
0.35
658
0.29
663
0.64
693
1.07
701
0.43
665
0.41
634
0.42
651
0.53
682
0.70
696
0.51
692
0.30
682
0.21
679
0.41
688
0.38
689
0.23
666
0.22
669
MSC_U_SF_DS_RVCtwo views0.43
674
0.39
682
0.54
663
0.40
680
0.20
658
0.64
686
0.32
679
0.53
684
0.72
687
0.71
688
0.72
685
0.61
680
0.54
684
0.51
681
0.46
685
0.20
664
0.19
664
0.29
679
0.30
682
0.23
666
0.18
659
ELAS_RVCcopylefttwo views0.41
671
0.29
672
0.33
626
0.28
656
0.24
669
0.54
679
0.36
682
0.49
675
0.59
666
0.72
690
0.74
688
0.65
684
0.54
684
0.54
688
0.40
677
0.22
673
0.20
667
0.27
670
0.26
673
0.26
679
0.25
678
A. Geiger, M. Roser, R. Urtasun: Efficient large-scale stereo matching. ACCV 2010
ELAScopylefttwo views0.41
671
0.29
672
0.33
626
0.27
653
0.24
669
0.60
684
0.36
682
0.50
679
0.50
646
0.71
688
0.79
692
0.67
686
0.54
684
0.51
681
0.42
681
0.22
673
0.20
667
0.27
670
0.26
673
0.26
679
0.25
678
A. Geiger, M. Roser, R. Urtasun: Efficient large-scale stereo matching. ACCV 2010
anonymitytwo views0.53
685
0.58
690
0.65
678
0.41
682
0.61
703
0.53
678
0.41
687
0.56
687
0.41
609
0.55
678
0.50
657
0.49
670
0.55
687
0.58
691
0.50
691
0.58
702
0.50
705
0.51
692
0.51
699
0.51
692
0.57
701
SGM+DAISYtwo views0.56
687
0.57
689
0.65
678
0.40
680
0.54
695
0.66
689
0.49
695
0.56
687
0.45
633
0.66
684
0.69
682
0.67
686
0.56
688
0.63
693
0.56
694
0.59
703
0.48
701
0.50
691
0.50
698
0.52
693
0.58
702
MonStereo1two views0.47
682
0.26
660
0.58
671
0.28
656
0.20
658
0.39
666
0.18
496
0.49
675
0.64
678
0.52
674
0.87
695
1.01
696
0.57
689
0.50
679
0.56
694
0.53
699
0.31
690
0.54
696
0.40
690
0.33
687
0.34
688
SPS-STEREOcopylefttwo views0.57
688
0.58
690
0.65
678
0.45
685
0.55
697
0.62
685
0.44
694
0.62
692
0.50
646
0.68
686
0.64
677
0.66
685
0.57
689
0.61
692
0.60
697
0.62
705
0.47
700
0.51
692
0.49
696
0.55
697
0.58
702
K. Yamaguchi, D. McAllester, R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014
PVDtwo views0.39
666
0.20
638
0.39
643
0.31
671
0.22
664
0.29
634
0.43
692
0.52
682
0.96
700
0.55
678
0.79
692
0.53
675
0.59
691
0.52
683
0.38
672
0.19
662
0.14
644
0.17
645
0.14
626
0.24
673
0.31
685
MANEtwo views0.45
677
0.27
664
0.27
601
0.27
653
0.24
669
0.47
673
0.31
677
0.55
686
0.59
666
0.72
690
1.13
709
1.15
701
0.61
692
0.52
683
0.37
670
0.21
668
0.20
667
0.27
670
0.31
684
0.25
674
0.24
672
PWCKtwo views0.71
693
0.94
707
0.95
702
0.76
698
0.31
683
0.74
694
0.36
682
0.90
700
0.90
698
0.96
703
0.75
690
0.95
695
0.61
692
0.87
706
0.66
700
0.72
708
0.46
696
0.75
702
0.49
696
0.69
706
0.44
697
BEATNet-Init1two views0.52
684
0.27
664
0.62
676
0.30
667
0.21
662
0.76
698
0.29
663
0.54
685
0.65
681
0.86
699
0.95
700
2.07
717
0.62
694
0.56
690
0.42
681
0.18
655
0.18
661
0.23
664
0.22
666
0.22
665
0.21
667
NVStereoNet_ROBtwo views0.46
681
0.36
680
0.46
656
0.41
682
0.28
678
0.34
650
0.34
680
0.48
673
0.60
670
0.72
690
0.93
698
0.70
689
0.66
695
0.47
676
0.60
697
0.22
673
0.33
691
0.34
684
0.34
688
0.30
682
0.30
684
Nikolai Smolyanskiy, Alexey Kamenev, Stan Birchfield: On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach. Arxiv
MFMNet_retwo views0.64
689
0.66
696
0.65
678
0.51
689
0.69
707
0.69
690
0.57
701
0.64
693
0.73
691
0.60
681
0.73
686
0.62
681
0.67
696
0.65
694
0.60
697
0.66
707
0.58
714
0.63
697
0.59
702
0.68
704
0.69
711
MADNet+two views0.75
696
0.71
698
3.70
720
0.66
695
0.41
687
0.98
706
0.97
716
0.69
695
0.73
691
0.52
674
0.57
672
0.64
682
0.68
697
0.86
705
1.01
713
0.34
687
0.36
693
0.28
678
0.23
670
0.36
688
0.31
685
ACVNet_2two views0.66
692
0.66
696
0.68
687
0.63
694
0.41
687
0.71
692
0.49
695
0.96
705
1.39
710
0.89
700
1.09
705
1.04
697
0.73
698
0.54
688
0.47
686
0.43
693
0.40
694
0.53
695
0.44
693
0.47
691
0.35
690
TorneroNet-64two views0.76
697
0.72
699
0.74
694
0.78
700
0.58
701
0.91
705
0.56
700
0.84
699
1.29
707
0.66
684
0.90
696
1.40
709
0.75
699
0.85
704
0.67
703
0.49
697
0.46
696
0.72
701
0.59
702
0.67
703
0.53
700
IMH-64-1two views0.65
690
0.61
692
0.68
687
0.71
696
0.51
693
0.59
682
0.49
695
0.91
701
0.85
695
0.74
694
1.02
702
0.81
692
0.78
700
0.79
698
0.49
688
0.42
691
0.46
696
0.71
699
0.47
694
0.52
693
0.39
692
IMH-64two views0.65
690
0.61
692
0.68
687
0.71
696
0.51
693
0.59
682
0.49
695
0.91
701
0.85
695
0.74
694
1.02
702
0.81
692
0.78
700
0.79
698
0.49
688
0.42
691
0.46
696
0.71
699
0.47
694
0.52
693
0.39
692
JetBluetwo views0.71
693
0.45
686
1.14
708
0.51
689
0.47
691
2.02
716
0.64
705
0.75
696
0.70
685
0.69
687
0.77
691
1.22
703
0.83
702
1.03
713
1.01
713
0.40
690
0.28
685
0.33
683
0.33
685
0.30
682
0.34
688
LVEtwo views0.83
701
0.85
705
0.85
700
0.80
701
0.56
698
1.04
711
0.65
706
1.05
710
1.47
713
0.96
703
1.22
713
1.10
700
0.85
703
0.83
701
0.71
705
0.49
697
0.55
711
0.76
705
0.60
704
0.65
701
0.59
707
TorneroNettwo views0.82
700
0.74
700
0.81
699
0.84
703
0.63
704
0.99
707
0.63
703
0.96
705
1.16
704
0.80
697
1.11
707
1.36
708
0.86
704
0.93
709
0.80
708
0.56
700
0.49
703
0.78
707
0.66
707
0.73
709
0.63
710
IMHtwo views0.71
693
0.64
695
0.68
687
0.76
698
0.54
695
0.69
690
0.54
699
0.98
707
1.10
703
0.82
698
1.09
705
0.89
694
0.88
705
0.87
706
0.52
693
0.44
694
0.50
705
0.75
702
0.51
699
0.56
698
0.41
696
WAO-7two views0.79
698
0.78
701
0.54
663
0.85
704
0.67
706
0.74
694
0.68
709
1.05
710
1.32
708
0.90
701
1.20
712
1.04
697
0.92
706
0.69
695
0.66
700
0.60
704
0.62
715
0.67
698
0.68
708
0.64
700
0.58
702
JetRedtwo views1.62
712
1.46
715
2.98
715
0.92
707
1.21
716
4.99
719
1.53
721
1.27
718
1.39
710
1.83
717
1.74
718
1.60
715
0.95
707
1.41
716
2.45
721
0.90
716
1.60
721
0.93
711
0.90
716
1.35
717
0.99
718
KSHMRtwo views1.09
709
1.17
711
0.88
701
1.25
716
1.00
715
0.99
707
0.96
715
1.13
715
1.37
709
1.16
712
1.29
714
1.41
710
0.96
708
1.01
712
0.92
710
1.03
717
1.08
719
1.20
717
1.03
718
1.01
714
0.97
717
Deantwo views0.87
702
0.86
706
0.79
697
0.81
702
0.56
698
0.90
702
0.63
703
1.15
716
1.73
716
1.15
711
1.15
710
1.31
706
0.99
709
0.81
700
0.81
709
0.57
701
0.56
712
0.77
706
0.64
705
0.66
702
0.58
702
WAO-6two views0.81
699
0.80
702
0.62
676
0.86
705
0.63
704
0.76
698
0.58
702
0.98
707
1.54
715
0.90
701
0.96
701
1.07
699
1.03
710
0.70
696
0.66
700
0.72
708
0.49
703
0.90
710
0.71
709
0.68
704
0.58
702
WAO-8two views0.91
703
0.81
703
0.65
678
0.94
708
0.69
707
0.90
702
0.67
707
1.07
713
1.83
718
1.06
708
1.45
715
1.30
704
1.07
711
0.84
702
0.78
706
0.74
710
0.53
708
0.86
708
0.75
710
0.69
706
0.62
708
ktntwo views1.01
708
1.21
712
0.80
698
1.23
715
0.86
713
1.01
709
0.87
713
0.94
704
1.39
710
1.04
706
1.12
708
1.15
701
1.07
711
0.94
710
0.59
696
1.28
720
0.71
717
1.38
720
0.83
713
1.02
715
0.75
714
Venustwo views0.91
703
0.81
703
0.65
678
0.94
708
0.69
707
0.90
702
0.67
707
1.07
713
1.83
718
1.06
708
1.45
715
1.30
704
1.07
711
0.84
702
0.78
706
0.74
710
0.53
708
0.86
708
0.75
710
0.69
706
0.62
708
DPSimNet_ROBtwo views1.11
710
1.23
713
0.78
695
1.13
713
0.88
714
1.10
712
1.13
717
1.16
717
1.23
706
1.43
715
1.02
702
1.41
710
1.10
714
0.90
708
1.60
715
1.46
721
0.51
707
1.21
718
1.03
718
0.90
712
1.01
719
notakertwo views0.97
706
1.11
710
0.98
703
1.13
713
0.81
711
0.73
693
0.68
709
0.93
703
1.16
704
1.18
713
1.18
711
1.41
710
1.16
715
1.08
715
0.69
704
0.81
713
0.64
716
1.17
716
0.79
712
0.98
713
0.80
715
UNDER WATER-64two views0.95
705
0.94
707
1.43
712
0.87
706
0.56
698
1.18
714
0.87
713
0.77
697
0.94
699
1.04
706
0.85
694
1.58
714
1.21
716
0.94
710
0.96
711
0.87
714
0.57
713
1.03
714
0.88
715
0.78
710
0.73
712
UNDER WATERtwo views0.97
706
0.97
709
1.42
711
0.99
710
0.70
710
1.12
713
0.84
712
0.80
698
1.08
702
1.01
705
0.90
696
1.55
713
1.22
717
1.03
713
1.00
712
0.78
712
0.53
708
1.02
713
0.87
714
0.80
711
0.74
713
HanzoNettwo views1.29
711
1.26
714
1.19
709
1.12
712
0.85
712
1.02
710
0.83
711
1.03
709
1.48
714
1.64
716
1.61
717
2.50
719
1.72
718
1.61
717
1.61
716
1.26
719
0.80
718
1.31
719
1.01
717
1.02
715
0.86
716
Selective-IGEV-i1patwo views2.80
714
3.51
722
0.67
686
0.28
656
0.14
598
10.22
724
0.43
692
4.36
721
3.63
721
3.53
721
6.92
723
3.47
720
1.97
719
13.41
736
2.26
718
0.36
688
0.15
650
0.13
607
0.10
556
0.15
636
0.35
690
MADNet++two views1.95
713
1.75
716
1.59
713
1.82
718
1.69
718
2.33
717
1.40
720
2.35
720
2.09
720
2.57
720
2.36
720
2.24
718
2.17
720
2.28
718
2.34
719
1.87
722
1.66
722
1.54
721
1.34
721
1.92
719
1.77
722
Selective-IGEV-i16patwo views18.58
737
3.30
720
1.09
706
0.21
573
0.18
651
103.68
750
0.28
653
19.87
741
40.73
750
4.16
722
56.45
750
8.07
727
2.59
721
123.95
751
5.89
725
0.18
655
0.12
619
0.09
492
0.12
611
0.12
586
0.51
699
ASD4two views3.54
716
3.38
721
2.05
714
1.72
717
2.51
720
9.03
723
17.71
727
2.25
719
5.51
723
2.46
719
2.81
721
2.03
716
3.36
722
2.73
719
5.06
722
1.22
718
1.34
720
1.13
715
1.33
720
1.68
718
1.49
721
tttwo views4.67
718
0.06
117
3.55
719
2.02
719
1.55
717
10.25
725
16.71
726
8.91
730
5.03
722
1.31
714
0.94
699
4.71
721
4.76
723
3.33
720
5.87
724
6.06
730
10.30
737
1.88
724
2.11
724
2.75
721
1.21
720
LRCNet_RVCtwo views10.62
731
13.42
738
7.30
723
18.92
737
2.07
719
0.33
647
0.30
671
5.59
725
0.48
636
13.03
736
17.94
736
8.87
728
5.65
724
4.79
722
1.89
717
23.51
746
2.73
727
27.55
749
25.71
749
16.07
743
16.33
745
PMLtwo views8.91
726
9.34
737
6.13
722
5.35
723
6.41
724
14.99
728
23.38
734
5.27
722
6.83
724
18.04
740
28.19
749
7.67
726
6.83
725
7.85
726
5.75
723
5.35
729
1.83
723
5.95
735
1.93
723
8.64
733
2.52
724
USTesttwo views6.22
719
2.73
719
3.00
716
6.57
726
7.29
725
14.37
727
21.57
728
7.00
729
9.56
728
5.34
726
6.10
722
5.72
724
7.64
726
6.41
725
6.96
726
1.97
723
3.42
728
1.64
722
2.15
725
2.66
720
2.36
723
xxxxx1two views7.79
720
5.02
727
7.31
724
3.12
720
3.85
721
16.35
729
22.88
729
5.86
726
8.69
725
7.97
727
8.54
724
9.12
729
8.27
727
10.18
727
10.92
727
2.42
724
2.45
724
3.56
727
12.37
734
3.77
722
3.06
725
tt_lltwo views7.79
720
5.02
727
7.31
724
3.12
720
3.85
721
16.35
729
22.88
729
5.86
726
8.69
725
7.97
727
8.54
724
9.12
729
8.27
727
10.18
727
10.92
727
2.42
724
2.45
724
3.56
727
12.37
734
3.77
722
3.06
725
fftwo views7.79
720
5.02
727
7.31
724
3.12
720
3.85
721
16.35
729
22.88
729
5.86
726
8.69
725
7.97
727
8.54
724
9.12
729
8.27
727
10.18
727
10.92
727
2.42
724
2.45
724
3.56
727
12.37
734
3.77
722
3.06
725
DPSMNet_ROBtwo views8.06
724
4.48
723
8.63
733
5.37
725
10.74
728
8.32
721
22.98
733
5.46
723
13.36
733
5.12
724
9.92
729
5.08
722
10.40
730
5.53
724
12.58
730
3.80
728
8.00
729
3.50
725
7.02
730
3.83
725
7.14
732
DGTPSM_ROBtwo views8.06
724
4.48
723
8.63
733
5.35
723
10.72
727
8.32
721
22.97
732
5.46
723
13.35
732
5.12
724
9.92
729
5.08
722
10.40
730
5.52
723
12.58
730
3.79
727
8.00
729
3.50
725
7.02
730
3.83
725
7.14
732
iinet-testtwo views10.48
729
8.09
732
7.54
728
10.26
727
10.94
729
18.00
733
25.26
735
11.33
734
13.28
730
9.69
731
9.85
727
9.42
732
11.17
732
11.02
731
12.78
733
6.59
732
8.30
731
5.56
730
6.56
726
6.89
728
7.02
730
IINettwo views10.48
729
8.09
732
7.54
728
10.26
727
10.94
729
18.00
733
25.26
735
11.33
734
13.28
730
9.69
731
9.85
727
9.42
732
11.17
732
11.02
731
12.78
733
6.59
732
8.30
731
5.56
730
6.56
726
6.89
728
7.02
730
Anonymous_1two views10.96
732
7.92
731
7.46
727
10.33
729
10.06
726
18.65
735
26.34
737
11.06
733
13.44
734
9.40
730
10.05
731
9.67
734
11.23
734
10.73
730
12.72
732
6.42
731
8.38
733
5.77
732
10.61
733
12.12
734
6.77
729
DPSM_ROBtwo views11.15
733
8.58
734
8.00
730
10.88
730
11.58
731
19.10
736
26.71
738
12.05
736
14.07
737
10.36
733
10.84
732
10.33
735
11.86
735
11.70
733
13.54
735
6.99
734
8.79
734
5.89
733
6.95
728
7.29
730
7.42
734
DPSMtwo views11.15
733
8.58
734
8.00
730
10.88
730
11.58
731
19.10
736
26.71
738
12.05
736
14.07
737
10.36
733
10.84
732
10.33
735
11.86
735
11.70
733
13.54
735
6.99
734
8.79
734
5.89
733
6.95
728
7.29
730
7.42
734
real-time stereopermissivetwo views11.43
735
8.99
736
8.31
732
11.33
732
12.02
734
19.46
738
27.13
740
12.28
738
14.25
739
10.57
735
11.11
734
10.56
737
12.04
737
11.92
735
14.08
737
7.07
736
8.88
736
6.10
736
7.09
732
7.74
732
7.65
736
HaxPigtwo views15.71
736
18.52
747
19.18
743
16.89
736
15.89
737
7.73
720
7.60
723
13.31
739
10.82
729
15.42
737
14.91
735
15.98
738
14.92
738
15.58
737
15.98
738
18.95
745
16.73
738
19.46
745
18.08
745
19.26
744
19.05
748
MEDIAN_ROBtwo views20.38
740
24.04
748
23.31
746
21.23
738
21.71
740
10.40
726
7.92
724
17.64
740
15.50
740
20.12
741
19.70
737
20.34
739
20.32
739
21.19
738
21.13
741
23.81
747
21.81
747
24.98
748
23.76
748
24.71
747
23.93
749
RSGM-ECtwo views20.36
738
4.73
725
0.68
687
16.76
734
16.92
738
21.28
739
27.18
741
10.46
731
14.04
735
18.00
738
21.31
739
22.24
748
21.82
740
22.57
739
17.63
739
62.81
749
33.79
749
20.14
746
18.10
746
20.18
745
16.45
746
acvatwo views20.36
738
4.73
725
0.68
687
16.76
734
16.92
738
21.28
739
27.18
741
10.46
731
14.04
735
18.00
738
21.31
739
22.24
748
21.82
740
22.57
739
17.63
739
62.81
749
33.79
749
20.14
746
18.10
746
20.18
745
16.45
746
fast-regtwo views22.85
747
17.43
746
19.15
742
22.22
746
24.34
747
38.36
744
53.78
745
24.23
746
28.52
748
20.55
742
22.05
747
20.54
740
23.77
742
23.21
741
27.31
744
14.18
744
17.47
740
14.33
744
14.96
744
15.81
742
14.81
737
FlowAnythingtwo views22.44
744
17.35
743
16.14
739
22.07
744
23.23
741
38.39
746
53.77
744
24.25
747
28.44
746
20.96
749
21.82
745
20.70
741
23.84
743
23.49
746
27.14
743
14.04
737
17.79
746
11.75
737
14.15
743
14.65
735
14.89
738
Selective-RAFT-Errortwo views22.47
745
17.37
744
16.09
738
22.06
743
23.34
746
38.39
746
53.83
750
24.29
749
28.47
747
20.74
747
21.83
746
20.81
742
23.90
744
23.54
748
27.53
750
14.08
741
17.69
741
11.82
738
14.00
737
14.69
738
15.00
744
Hybrid-DGEVtwo views22.47
745
17.40
745
16.14
739
22.00
739
23.29
743
38.36
744
53.80
746
24.43
750
28.63
749
20.59
743
21.81
744
20.88
743
23.91
745
23.45
745
27.42
747
14.08
741
17.69
741
11.83
739
14.06
742
14.65
735
14.93
740
CasAABBNettwo views22.42
741
17.33
740
16.01
737
22.01
740
23.28
742
38.32
741
53.80
746
24.14
745
28.41
745
20.60
744
21.77
743
20.89
746
23.91
745
23.43
744
27.36
745
14.07
738
17.69
741
11.83
739
14.01
738
14.67
737
14.95
741
RAFT-FEzeroshottwo views22.43
742
17.33
740
15.98
735
22.02
741
23.31
744
38.34
742
53.82
748
24.05
743
28.39
743
20.61
745
21.76
741
20.88
743
23.92
747
23.41
742
27.42
747
14.07
738
17.69
741
11.83
739
14.02
739
14.69
738
14.97
742
RAFT-FEtwo views22.43
742
17.33
740
15.98
735
22.02
741
23.31
744
38.34
742
53.82
748
24.05
743
28.39
743
20.61
745
21.76
741
20.88
743
23.92
747
23.41
742
27.42
747
14.07
738
17.69
741
11.83
739
14.02
739
14.69
738
14.97
742
LSM0two views22.87
748
17.28
739
18.96
741
22.19
745
29.04
749
38.42
748
53.71
743
24.28
748
28.31
742
20.78
748
21.00
738
21.43
747
24.16
749
23.50
747
27.39
746
14.09
743
17.38
739
11.84
743
14.04
741
14.73
741
14.89
738
AVERAGE_ROBtwo views24.90
749
29.20
749
28.14
747
24.89
747
24.64
748
17.75
732
11.12
725
21.45
742
19.93
741
25.12
750
24.46
748
25.12
750
25.46
750
24.69
749
22.83
742
29.76
748
27.13
748
28.97
750
27.95
750
29.91
748
29.47
750
test_example2two views98.32
750
94.13
750
45.89
748
96.35
748
109.85
750
88.61
749
95.45
751
25.75
751
94.37
751
130.00
752
126.06
752
58.17
751
74.63
751
88.51
750
79.96
751
150.23
751
221.02
751
77.62
751
99.10
751
113.75
751
96.94
751
ccccctwo views245.47
751
285.66
751
306.18
751
368.85
751
370.60
751
123.16
751
145.33
752
115.05
752
110.08
752
126.68
751
110.87
751
122.83
752
165.88
752
252.94
752
276.56
752
384.56
752
353.86
752
254.69
752
223.00
752
425.87
752
386.83
752