| test_fmvsm_n_1920 | | | 97.55 11 | 97.89 3 | 96.53 88 | 98.41 77 | 91.73 116 | 98.01 60 | 99.02 1 | 96.37 4 | 99.30 1 | 98.92 13 | 92.39 41 | 99.79 36 | 99.16 4 | 99.46 41 | 98.08 179 |
|
| PGM-MVS | | | 96.81 45 | 96.53 53 | 97.65 42 | 99.35 20 | 93.53 60 | 97.65 111 | 98.98 2 | 92.22 137 | 97.14 58 | 98.44 46 | 91.17 67 | 99.85 18 | 94.35 124 | 99.46 41 | 99.57 28 |
|
| MVS_111021_HR | | | 96.68 55 | 96.58 52 | 96.99 75 | 98.46 73 | 92.31 98 | 96.20 254 | 98.90 3 | 94.30 68 | 95.86 111 | 97.74 109 | 92.33 42 | 99.38 116 | 96.04 74 | 99.42 50 | 99.28 68 |
|
| test_fmvsmconf_n | | | 97.49 15 | 97.56 9 | 97.29 58 | 97.44 147 | 92.37 95 | 97.91 76 | 98.88 4 | 95.83 8 | 98.92 12 | 99.05 5 | 91.45 57 | 99.80 33 | 99.12 5 | 99.46 41 | 99.69 12 |
|
| ACMMP |  | | 96.27 68 | 95.93 71 | 97.28 60 | 99.24 28 | 92.62 87 | 98.25 35 | 98.81 5 | 92.99 115 | 94.56 142 | 98.39 50 | 88.96 94 | 99.85 18 | 94.57 122 | 97.63 141 | 99.36 63 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MVS_111021_LR | | | 96.24 69 | 96.19 68 | 96.39 104 | 98.23 94 | 91.35 136 | 96.24 252 | 98.79 6 | 93.99 74 | 95.80 113 | 97.65 116 | 89.92 86 | 99.24 128 | 95.87 78 | 99.20 76 | 98.58 135 |
|
| patch_mono-2 | | | 96.83 44 | 97.44 16 | 95.01 181 | 99.05 39 | 85.39 308 | 96.98 185 | 98.77 7 | 94.70 48 | 97.99 33 | 98.66 29 | 93.61 19 | 99.91 1 | 97.67 24 | 99.50 35 | 99.72 11 |
|
| fmvsm_s_conf0.5_n | | | 96.85 41 | 97.13 19 | 96.04 128 | 98.07 108 | 90.28 175 | 97.97 69 | 98.76 8 | 94.93 33 | 98.84 16 | 99.06 4 | 88.80 97 | 99.65 61 | 99.06 6 | 98.63 106 | 98.18 168 |
|
| fmvsm_l_conf0.5_n | | | 97.65 7 | 97.75 6 | 97.34 55 | 98.21 95 | 92.75 83 | 97.83 87 | 98.73 9 | 95.04 31 | 99.30 1 | 98.84 23 | 93.34 22 | 99.78 38 | 99.32 2 | 99.13 83 | 99.50 43 |
|
| fmvsm_s_conf0.5_n_a | | | 96.75 49 | 96.93 32 | 96.20 120 | 97.64 134 | 90.72 163 | 98.00 61 | 98.73 9 | 94.55 55 | 98.91 13 | 99.08 3 | 88.22 106 | 99.63 70 | 98.91 9 | 98.37 118 | 98.25 163 |
|
| FC-MVSNet-test | | | 93.94 139 | 93.57 132 | 95.04 179 | 95.48 261 | 91.45 133 | 98.12 50 | 98.71 11 | 93.37 98 | 90.23 243 | 96.70 170 | 87.66 115 | 97.85 295 | 91.49 181 | 90.39 282 | 95.83 265 |
|
| UniMVSNet (Re) | | | 93.31 160 | 92.55 172 | 95.61 153 | 95.39 266 | 93.34 66 | 97.39 146 | 98.71 11 | 93.14 111 | 90.10 252 | 94.83 269 | 87.71 114 | 98.03 269 | 91.67 179 | 83.99 352 | 95.46 284 |
|
| fmvsm_l_conf0.5_n_a | | | 97.63 8 | 97.76 5 | 97.26 62 | 98.25 89 | 92.59 89 | 97.81 91 | 98.68 13 | 94.93 33 | 99.24 3 | 98.87 18 | 93.52 20 | 99.79 36 | 99.32 2 | 99.21 74 | 99.40 57 |
|
| FIs | | | 94.09 133 | 93.70 128 | 95.27 169 | 95.70 251 | 92.03 109 | 98.10 51 | 98.68 13 | 93.36 100 | 90.39 240 | 96.70 170 | 87.63 118 | 97.94 286 | 92.25 161 | 90.50 281 | 95.84 264 |
|
| WR-MVS_H | | | 92.00 214 | 91.35 211 | 93.95 242 | 95.09 292 | 89.47 201 | 98.04 58 | 98.68 13 | 91.46 161 | 88.34 301 | 94.68 276 | 85.86 147 | 97.56 322 | 85.77 296 | 84.24 350 | 94.82 327 |
|
| VPA-MVSNet | | | 93.24 162 | 92.48 177 | 95.51 159 | 95.70 251 | 92.39 94 | 97.86 81 | 98.66 16 | 92.30 136 | 92.09 202 | 95.37 245 | 80.49 240 | 98.40 224 | 93.95 130 | 85.86 323 | 95.75 273 |
|
| UniMVSNet_NR-MVSNet | | | 93.37 158 | 92.67 167 | 95.47 164 | 95.34 272 | 92.83 81 | 97.17 169 | 98.58 17 | 92.98 120 | 90.13 248 | 95.80 222 | 88.37 105 | 97.85 295 | 91.71 176 | 83.93 353 | 95.73 275 |
|
| CSCG | | | 96.05 72 | 95.91 72 | 96.46 98 | 99.24 28 | 90.47 170 | 98.30 28 | 98.57 18 | 89.01 246 | 93.97 158 | 97.57 124 | 92.62 37 | 99.76 41 | 94.66 117 | 99.27 67 | 99.15 78 |
|
| MSLP-MVS++ | | | 96.94 35 | 97.06 22 | 96.59 85 | 98.72 58 | 91.86 114 | 97.67 108 | 98.49 19 | 94.66 51 | 97.24 54 | 98.41 49 | 92.31 44 | 98.94 171 | 96.61 51 | 99.46 41 | 98.96 98 |
|
| HyFIR lowres test | | | 93.66 149 | 92.92 155 | 95.87 136 | 98.24 90 | 89.88 188 | 94.58 322 | 98.49 19 | 85.06 341 | 93.78 161 | 95.78 226 | 82.86 196 | 98.67 202 | 91.77 174 | 95.71 188 | 99.07 89 |
|
| CHOSEN 1792x2688 | | | 94.15 128 | 93.51 138 | 96.06 126 | 98.27 86 | 89.38 206 | 95.18 308 | 98.48 21 | 85.60 331 | 93.76 162 | 97.11 150 | 83.15 187 | 99.61 72 | 91.33 184 | 98.72 103 | 99.19 74 |
|
| PHI-MVS | | | 96.77 47 | 96.46 60 | 97.71 40 | 98.40 78 | 94.07 48 | 98.21 42 | 98.45 22 | 89.86 218 | 97.11 60 | 98.01 86 | 92.52 39 | 99.69 55 | 96.03 75 | 99.53 29 | 99.36 63 |
|
| fmvsm_s_conf0.1_n | | | 96.58 58 | 96.77 44 | 96.01 132 | 96.67 192 | 90.25 176 | 97.91 76 | 98.38 23 | 94.48 59 | 98.84 16 | 99.14 1 | 88.06 108 | 99.62 71 | 98.82 11 | 98.60 108 | 98.15 172 |
|
| PVSNet_BlendedMVS | | | 94.06 134 | 93.92 124 | 94.47 212 | 98.27 86 | 89.46 203 | 96.73 205 | 98.36 24 | 90.17 210 | 94.36 147 | 95.24 253 | 88.02 109 | 99.58 80 | 93.44 141 | 90.72 277 | 94.36 347 |
|
| PVSNet_Blended | | | 94.87 110 | 94.56 108 | 95.81 140 | 98.27 86 | 89.46 203 | 95.47 292 | 98.36 24 | 88.84 254 | 94.36 147 | 96.09 211 | 88.02 109 | 99.58 80 | 93.44 141 | 98.18 126 | 98.40 155 |
|
| 3Dnovator | | 91.36 5 | 95.19 100 | 94.44 116 | 97.44 52 | 96.56 201 | 93.36 65 | 98.65 11 | 98.36 24 | 94.12 70 | 89.25 281 | 98.06 80 | 82.20 212 | 99.77 40 | 93.41 143 | 99.32 64 | 99.18 75 |
|
| FOURS1 | | | | | | 99.55 1 | 93.34 66 | 99.29 1 | 98.35 27 | 94.98 32 | 98.49 23 | | | | | | |
|
| DPE-MVS |  | | 97.86 4 | 97.65 8 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 166 | 98.35 27 | 95.16 25 | 98.71 20 | 98.80 25 | 95.05 10 | 99.89 3 | 96.70 49 | 99.73 1 | 99.73 10 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| fmvsm_s_conf0.1_n_a | | | 96.40 63 | 96.47 57 | 96.16 122 | 95.48 261 | 90.69 164 | 97.91 76 | 98.33 29 | 94.07 71 | 98.93 9 | 99.14 1 | 87.44 125 | 99.61 72 | 98.63 13 | 98.32 120 | 98.18 168 |
|
| HFP-MVS | | | 97.14 26 | 96.92 33 | 97.83 26 | 99.42 7 | 94.12 46 | 98.52 15 | 98.32 30 | 93.21 103 | 97.18 55 | 98.29 66 | 92.08 46 | 99.83 26 | 95.63 91 | 99.59 19 | 99.54 36 |
|
| ACMMPR | | | 97.07 29 | 96.84 37 | 97.79 30 | 99.44 6 | 93.88 52 | 98.52 15 | 98.31 31 | 93.21 103 | 97.15 57 | 98.33 60 | 91.35 61 | 99.86 9 | 95.63 91 | 99.59 19 | 99.62 20 |
|
| test_fmvsmvis_n_1920 | | | 96.70 51 | 96.84 37 | 96.31 109 | 96.62 194 | 91.73 116 | 97.98 63 | 98.30 32 | 96.19 5 | 96.10 102 | 98.95 11 | 89.42 88 | 99.76 41 | 98.90 10 | 99.08 87 | 97.43 213 |
|
| APDe-MVS |  | | 97.82 5 | 97.73 7 | 98.08 18 | 99.15 33 | 94.82 28 | 98.81 7 | 98.30 32 | 94.76 46 | 98.30 26 | 98.90 15 | 93.77 17 | 99.68 57 | 97.93 16 | 99.69 3 | 99.75 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 27 | 98.29 34 | 94.92 35 | 98.99 7 | 98.92 13 | 95.08 8 | | | | |
|
| MSP-MVS | | | 97.59 10 | 97.54 10 | 97.73 37 | 99.40 11 | 93.77 56 | 98.53 14 | 98.29 34 | 95.55 16 | 98.56 22 | 97.81 104 | 93.90 15 | 99.65 61 | 96.62 50 | 99.21 74 | 99.77 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 61 | 95.39 11 | 99.29 1 | 98.28 36 | 94.78 44 | 98.93 9 | 98.87 18 | 96.04 2 | 99.86 9 | 97.45 32 | 99.58 23 | 99.59 24 |
|
| test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 42 | 98.28 36 | | | | | 99.86 9 | 97.52 28 | 99.67 6 | 99.75 6 |
|
| CP-MVS | | | 97.02 31 | 96.81 41 | 97.64 44 | 99.33 21 | 93.54 59 | 98.80 8 | 98.28 36 | 92.99 115 | 96.45 89 | 98.30 65 | 91.90 49 | 99.85 18 | 95.61 93 | 99.68 4 | 99.54 36 |
|
| test_fmvsmconf0.1_n | | | 97.09 27 | 97.06 22 | 97.19 67 | 95.67 253 | 92.21 102 | 97.95 72 | 98.27 39 | 95.78 12 | 98.40 25 | 99.00 7 | 89.99 84 | 99.78 38 | 99.06 6 | 99.41 53 | 99.59 24 |
|
| SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 35 | 98.27 39 | 95.13 26 | 99.19 4 | 98.89 16 | 95.54 5 | 99.85 18 | 97.52 28 | 99.66 10 | 99.56 31 |
|
| test_241102_TWO | | | | | | | | | 98.27 39 | 95.13 26 | 98.93 9 | 98.89 16 | 94.99 11 | 99.85 18 | 97.52 28 | 99.65 13 | 99.74 8 |
|
| test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 39 | 95.09 29 | 99.19 4 | 98.81 24 | 95.54 5 | 99.65 61 | | | |
|
| SF-MVS | | | 97.39 18 | 97.13 19 | 98.17 15 | 99.02 42 | 95.28 19 | 98.23 39 | 98.27 39 | 92.37 135 | 98.27 27 | 98.65 31 | 93.33 23 | 99.72 48 | 96.49 55 | 99.52 30 | 99.51 40 |
|
| SteuartSystems-ACMMP | | | 97.62 9 | 97.53 11 | 97.87 24 | 98.39 80 | 94.25 40 | 98.43 22 | 98.27 39 | 95.34 20 | 98.11 29 | 98.56 33 | 94.53 12 | 99.71 49 | 96.57 53 | 99.62 17 | 99.65 17 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 45 | 95.13 26 | 98.48 24 | 98.87 18 | 95.16 7 | | | | |
|
| PVSNet_Blended_VisFu | | | 95.27 95 | 94.91 99 | 96.38 105 | 98.20 96 | 90.86 157 | 97.27 158 | 98.25 45 | 90.21 209 | 94.18 152 | 97.27 141 | 87.48 124 | 99.73 45 | 93.53 138 | 97.77 139 | 98.55 136 |
|
| region2R | | | 97.07 29 | 96.84 37 | 97.77 33 | 99.46 2 | 93.79 54 | 98.52 15 | 98.24 47 | 93.19 106 | 97.14 58 | 98.34 57 | 91.59 56 | 99.87 7 | 95.46 97 | 99.59 19 | 99.64 18 |
|
| PS-CasMVS | | | 91.55 234 | 90.84 234 | 93.69 258 | 94.96 296 | 88.28 240 | 97.84 85 | 98.24 47 | 91.46 161 | 88.04 311 | 95.80 222 | 79.67 256 | 97.48 330 | 87.02 276 | 84.54 347 | 95.31 296 |
|
| DU-MVS | | | 92.90 180 | 92.04 187 | 95.49 161 | 94.95 297 | 92.83 81 | 97.16 170 | 98.24 47 | 93.02 114 | 90.13 248 | 95.71 229 | 83.47 180 | 97.85 295 | 91.71 176 | 83.93 353 | 95.78 269 |
|
| 9.14 | | | | 96.75 45 | | 98.93 50 | | 97.73 99 | 98.23 50 | 91.28 170 | 97.88 37 | 98.44 46 | 93.00 26 | 99.65 61 | 95.76 84 | 99.47 40 | |
|
| reproduce_model | | | 97.51 14 | 97.51 13 | 97.50 49 | 98.99 46 | 93.01 77 | 97.79 93 | 98.21 51 | 95.73 13 | 97.99 33 | 99.03 6 | 92.63 36 | 99.82 28 | 97.80 18 | 99.42 50 | 99.67 13 |
|
| D2MVS | | | 91.30 250 | 90.95 228 | 92.35 303 | 94.71 312 | 85.52 304 | 96.18 255 | 98.21 51 | 88.89 252 | 86.60 339 | 93.82 322 | 79.92 252 | 97.95 285 | 89.29 226 | 90.95 274 | 93.56 360 |
|
| reproduce-ours | | | 97.53 12 | 97.51 13 | 97.60 46 | 98.97 47 | 93.31 68 | 97.71 104 | 98.20 53 | 95.80 10 | 97.88 37 | 98.98 9 | 92.91 27 | 99.81 30 | 97.68 20 | 99.43 48 | 99.67 13 |
|
| our_new_method | | | 97.53 12 | 97.51 13 | 97.60 46 | 98.97 47 | 93.31 68 | 97.71 104 | 98.20 53 | 95.80 10 | 97.88 37 | 98.98 9 | 92.91 27 | 99.81 30 | 97.68 20 | 99.43 48 | 99.67 13 |
|
| SDMVSNet | | | 94.17 126 | 93.61 131 | 95.86 138 | 98.09 104 | 91.37 135 | 97.35 150 | 98.20 53 | 93.18 108 | 91.79 209 | 97.28 139 | 79.13 264 | 98.93 172 | 94.61 120 | 92.84 240 | 97.28 221 |
|
| XVS | | | 97.18 24 | 96.96 31 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 53 | 94.85 37 | 96.59 81 | 98.29 66 | 91.70 52 | 99.80 33 | 95.66 86 | 99.40 55 | 99.62 20 |
|
| X-MVStestdata | | | 91.71 223 | 89.67 287 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 53 | 94.85 37 | 96.59 81 | 32.69 420 | 91.70 52 | 99.80 33 | 95.66 86 | 99.40 55 | 99.62 20 |
|
| ACMMP_NAP | | | 97.20 23 | 96.86 35 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 120 | 98.19 58 | 92.82 126 | 97.93 36 | 98.74 28 | 91.60 55 | 99.86 9 | 96.26 58 | 99.52 30 | 99.67 13 |
|
| CP-MVSNet | | | 91.89 219 | 91.24 218 | 93.82 250 | 95.05 293 | 88.57 231 | 97.82 89 | 98.19 58 | 91.70 154 | 88.21 307 | 95.76 227 | 81.96 216 | 97.52 328 | 87.86 251 | 84.65 341 | 95.37 292 |
|
| ZNCC-MVS | | | 96.96 33 | 96.67 48 | 97.85 25 | 99.37 16 | 94.12 46 | 98.49 19 | 98.18 60 | 92.64 131 | 96.39 91 | 98.18 73 | 91.61 54 | 99.88 4 | 95.59 96 | 99.55 26 | 99.57 28 |
|
| SMA-MVS |  | | 97.35 19 | 97.03 27 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 73 | 98.18 60 | 90.57 201 | 98.85 15 | 98.94 12 | 93.33 23 | 99.83 26 | 96.72 48 | 99.68 4 | 99.63 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PEN-MVS | | | 91.20 255 | 90.44 251 | 93.48 267 | 94.49 320 | 87.91 254 | 97.76 95 | 98.18 60 | 91.29 167 | 87.78 315 | 95.74 228 | 80.35 243 | 97.33 341 | 85.46 300 | 82.96 363 | 95.19 307 |
|
| DELS-MVS | | | 96.61 56 | 96.38 63 | 97.30 57 | 97.79 125 | 93.19 73 | 95.96 265 | 98.18 60 | 95.23 22 | 95.87 110 | 97.65 116 | 91.45 57 | 99.70 54 | 95.87 78 | 99.44 47 | 99.00 96 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| tfpnnormal | | | 89.70 305 | 88.40 311 | 93.60 261 | 95.15 288 | 90.10 178 | 97.56 124 | 98.16 64 | 87.28 304 | 86.16 343 | 94.63 279 | 77.57 292 | 98.05 265 | 74.48 382 | 84.59 345 | 92.65 373 |
|
| VNet | | | 95.89 79 | 95.45 82 | 97.21 65 | 98.07 108 | 92.94 80 | 97.50 131 | 98.15 65 | 93.87 78 | 97.52 44 | 97.61 122 | 85.29 153 | 99.53 94 | 95.81 83 | 95.27 196 | 99.16 76 |
|
| DeepPCF-MVS | | 93.97 1 | 96.61 56 | 97.09 21 | 95.15 173 | 98.09 104 | 86.63 284 | 96.00 263 | 98.15 65 | 95.43 17 | 97.95 35 | 98.56 33 | 93.40 21 | 99.36 117 | 96.77 45 | 99.48 39 | 99.45 50 |
|
| SD-MVS | | | 97.41 17 | 97.53 11 | 97.06 73 | 98.57 72 | 94.46 34 | 97.92 75 | 98.14 67 | 94.82 41 | 99.01 6 | 98.55 35 | 94.18 14 | 97.41 337 | 96.94 41 | 99.64 14 | 99.32 65 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GST-MVS | | | 96.85 41 | 96.52 54 | 97.82 27 | 99.36 18 | 94.14 45 | 98.29 29 | 98.13 68 | 92.72 128 | 96.70 73 | 98.06 80 | 91.35 61 | 99.86 9 | 94.83 111 | 99.28 66 | 99.47 49 |
|
| UA-Net | | | 95.95 77 | 95.53 78 | 97.20 66 | 97.67 130 | 92.98 79 | 97.65 111 | 98.13 68 | 94.81 42 | 96.61 79 | 98.35 54 | 88.87 95 | 99.51 99 | 90.36 201 | 97.35 151 | 99.11 84 |
|
| QAPM | | | 93.45 156 | 92.27 182 | 96.98 76 | 96.77 187 | 92.62 87 | 98.39 24 | 98.12 70 | 84.50 349 | 88.27 305 | 97.77 107 | 82.39 209 | 99.81 30 | 85.40 301 | 98.81 99 | 98.51 141 |
|
| Vis-MVSNet |  | | 95.23 97 | 94.81 100 | 96.51 92 | 97.18 154 | 91.58 126 | 98.26 34 | 98.12 70 | 94.38 66 | 94.90 134 | 98.15 75 | 82.28 210 | 98.92 173 | 91.45 183 | 98.58 110 | 99.01 93 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| OpenMVS |  | 89.19 12 | 92.86 182 | 91.68 201 | 96.40 102 | 95.34 272 | 92.73 85 | 98.27 32 | 98.12 70 | 84.86 344 | 85.78 345 | 97.75 108 | 78.89 274 | 99.74 44 | 87.50 266 | 98.65 105 | 96.73 237 |
|
| TranMVSNet+NR-MVSNet | | | 92.50 191 | 91.63 202 | 95.14 174 | 94.76 308 | 92.07 107 | 97.53 129 | 98.11 73 | 92.90 124 | 89.56 269 | 96.12 206 | 83.16 186 | 97.60 320 | 89.30 225 | 83.20 362 | 95.75 273 |
|
| CPTT-MVS | | | 95.57 89 | 95.19 92 | 96.70 78 | 99.27 26 | 91.48 130 | 98.33 26 | 98.11 73 | 87.79 289 | 95.17 130 | 98.03 83 | 87.09 131 | 99.61 72 | 93.51 139 | 99.42 50 | 99.02 90 |
|
| APD-MVS |  | | 96.95 34 | 96.60 50 | 98.01 20 | 99.03 41 | 94.93 27 | 97.72 102 | 98.10 75 | 91.50 159 | 98.01 32 | 98.32 62 | 92.33 42 | 99.58 80 | 94.85 109 | 99.51 33 | 99.53 39 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| mPP-MVS | | | 96.86 39 | 96.60 50 | 97.64 44 | 99.40 11 | 93.44 61 | 98.50 18 | 98.09 76 | 93.27 102 | 95.95 109 | 98.33 60 | 91.04 69 | 99.88 4 | 95.20 100 | 99.57 25 | 99.60 23 |
|
| ZD-MVS | | | | | | 99.05 39 | 94.59 32 | | 98.08 77 | 89.22 239 | 97.03 63 | 98.10 76 | 92.52 39 | 99.65 61 | 94.58 121 | 99.31 65 | |
|
| MTGPA |  | | | | | | | | 98.08 77 | | | | | | | | |
|
| MTAPA | | | 97.08 28 | 96.78 43 | 97.97 23 | 99.37 16 | 94.42 36 | 97.24 160 | 98.08 77 | 95.07 30 | 96.11 101 | 98.59 32 | 90.88 74 | 99.90 2 | 96.18 70 | 99.50 35 | 99.58 27 |
|
| CNVR-MVS | | | 97.68 6 | 97.44 16 | 98.37 7 | 98.90 53 | 95.86 6 | 97.27 158 | 98.08 77 | 95.81 9 | 97.87 40 | 98.31 63 | 94.26 13 | 99.68 57 | 97.02 40 | 99.49 38 | 99.57 28 |
|
| DP-MVS Recon | | | 95.68 84 | 95.12 96 | 97.37 54 | 99.19 31 | 94.19 42 | 97.03 177 | 98.08 77 | 88.35 272 | 95.09 132 | 97.65 116 | 89.97 85 | 99.48 104 | 92.08 168 | 98.59 109 | 98.44 152 |
|
| SR-MVS | | | 97.01 32 | 96.86 35 | 97.47 51 | 99.09 34 | 93.27 70 | 97.98 63 | 98.07 82 | 93.75 81 | 97.45 46 | 98.48 43 | 91.43 59 | 99.59 77 | 96.22 61 | 99.27 67 | 99.54 36 |
|
| MCST-MVS | | | 97.18 24 | 96.84 37 | 98.20 14 | 99.30 24 | 95.35 15 | 97.12 173 | 98.07 82 | 93.54 91 | 96.08 103 | 97.69 111 | 93.86 16 | 99.71 49 | 96.50 54 | 99.39 57 | 99.55 34 |
|
| NR-MVSNet | | | 92.34 199 | 91.27 217 | 95.53 158 | 94.95 297 | 93.05 76 | 97.39 146 | 98.07 82 | 92.65 130 | 84.46 356 | 95.71 229 | 85.00 157 | 97.77 305 | 89.71 213 | 83.52 359 | 95.78 269 |
|
| MP-MVS-pluss | | | 96.70 51 | 96.27 66 | 97.98 22 | 99.23 30 | 94.71 29 | 96.96 187 | 98.06 85 | 90.67 192 | 95.55 122 | 98.78 27 | 91.07 68 | 99.86 9 | 96.58 52 | 99.55 26 | 99.38 61 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| APD-MVS_3200maxsize | | | 96.81 45 | 96.71 47 | 97.12 69 | 99.01 45 | 92.31 98 | 97.98 63 | 98.06 85 | 93.11 112 | 97.44 47 | 98.55 35 | 90.93 72 | 99.55 90 | 96.06 71 | 99.25 71 | 99.51 40 |
|
| MP-MVS |  | | 96.77 47 | 96.45 61 | 97.72 38 | 99.39 13 | 93.80 53 | 98.41 23 | 98.06 85 | 93.37 98 | 95.54 124 | 98.34 57 | 90.59 78 | 99.88 4 | 94.83 111 | 99.54 28 | 99.49 45 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS_fast | | | 96.51 59 | 96.27 66 | 97.22 64 | 99.32 22 | 92.74 84 | 98.74 9 | 98.06 85 | 90.57 201 | 96.77 70 | 98.35 54 | 90.21 81 | 99.53 94 | 94.80 114 | 99.63 16 | 99.38 61 |
|
| HPM-MVS |  | | 96.69 53 | 96.45 61 | 97.40 53 | 99.36 18 | 93.11 75 | 98.87 6 | 98.06 85 | 91.17 175 | 96.40 90 | 97.99 87 | 90.99 70 | 99.58 80 | 95.61 93 | 99.61 18 | 99.49 45 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| sss | | | 94.51 118 | 93.80 126 | 96.64 80 | 97.07 160 | 91.97 111 | 96.32 244 | 98.06 85 | 88.94 250 | 94.50 144 | 96.78 165 | 84.60 161 | 99.27 126 | 91.90 169 | 96.02 179 | 98.68 129 |
|
| DeepC-MVS | | 93.07 3 | 96.06 71 | 95.66 76 | 97.29 58 | 97.96 114 | 93.17 74 | 97.30 156 | 98.06 85 | 93.92 76 | 93.38 171 | 98.66 29 | 86.83 133 | 99.73 45 | 95.60 95 | 99.22 73 | 98.96 98 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| NCCC | | | 97.30 21 | 97.03 27 | 98.11 17 | 98.77 56 | 95.06 25 | 97.34 151 | 98.04 92 | 95.96 6 | 97.09 61 | 97.88 95 | 93.18 25 | 99.71 49 | 95.84 82 | 99.17 78 | 99.56 31 |
|
| DeepC-MVS_fast | | 93.89 2 | 96.93 36 | 96.64 49 | 97.78 31 | 98.64 67 | 94.30 37 | 97.41 141 | 98.04 92 | 94.81 42 | 96.59 81 | 98.37 52 | 91.24 64 | 99.64 69 | 95.16 102 | 99.52 30 | 99.42 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 96.88 38 | 96.80 42 | 97.11 70 | 99.02 42 | 92.34 96 | 97.98 63 | 98.03 94 | 93.52 93 | 97.43 49 | 98.51 38 | 91.40 60 | 99.56 88 | 96.05 72 | 99.26 69 | 99.43 54 |
|
| RE-MVS-def | | | | 96.72 46 | | 99.02 42 | 92.34 96 | 97.98 63 | 98.03 94 | 93.52 93 | 97.43 49 | 98.51 38 | 90.71 76 | | 96.05 72 | 99.26 69 | 99.43 54 |
|
| RPMNet | | | 88.98 311 | 87.05 325 | 94.77 199 | 94.45 322 | 87.19 269 | 90.23 395 | 98.03 94 | 77.87 396 | 92.40 188 | 87.55 400 | 80.17 247 | 99.51 99 | 68.84 401 | 93.95 227 | 97.60 206 |
|
| save fliter | | | | | | 98.91 52 | 94.28 38 | 97.02 179 | 98.02 97 | 95.35 19 | | | | | | | |
|
| TEST9 | | | | | | 98.70 59 | 94.19 42 | 96.41 233 | 98.02 97 | 88.17 276 | 96.03 104 | 97.56 126 | 92.74 33 | 99.59 77 | | | |
|
| train_agg | | | 96.30 67 | 95.83 75 | 97.72 38 | 98.70 59 | 94.19 42 | 96.41 233 | 98.02 97 | 88.58 263 | 96.03 104 | 97.56 126 | 92.73 34 | 99.59 77 | 95.04 104 | 99.37 61 | 99.39 59 |
|
| test_8 | | | | | | 98.67 61 | 94.06 49 | 96.37 240 | 98.01 100 | 88.58 263 | 95.98 108 | 97.55 128 | 92.73 34 | 99.58 80 | | | |
|
| agg_prior | | | | | | 98.67 61 | 93.79 54 | | 98.00 101 | | 95.68 118 | | | 99.57 87 | | | |
|
| test_prior | | | | | 97.23 63 | 98.67 61 | 92.99 78 | | 98.00 101 | | | | | 99.41 112 | | | 99.29 66 |
|
| WR-MVS | | | 92.34 199 | 91.53 206 | 94.77 199 | 95.13 290 | 90.83 158 | 96.40 237 | 97.98 103 | 91.88 150 | 89.29 278 | 95.54 240 | 82.50 205 | 97.80 301 | 89.79 212 | 85.27 332 | 95.69 276 |
|
| HPM-MVS++ |  | | 97.34 20 | 96.97 30 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 128 | 97.97 104 | 95.59 14 | 96.61 79 | 97.89 93 | 92.57 38 | 99.84 23 | 95.95 77 | 99.51 33 | 99.40 57 |
|
| CANet | | | 96.39 64 | 96.02 70 | 97.50 49 | 97.62 137 | 93.38 63 | 97.02 179 | 97.96 105 | 95.42 18 | 94.86 135 | 97.81 104 | 87.38 127 | 99.82 28 | 96.88 43 | 99.20 76 | 99.29 66 |
|
| 114514_t | | | 93.95 138 | 93.06 151 | 96.63 82 | 99.07 37 | 91.61 123 | 97.46 139 | 97.96 105 | 77.99 394 | 93.00 179 | 97.57 124 | 86.14 145 | 99.33 118 | 89.22 229 | 99.15 81 | 98.94 101 |
|
| IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 107 | 90.40 207 | 98.94 8 | | | | 97.41 35 | 99.66 10 | 99.74 8 |
|
| MSC_two_6792asdad | | | | | 98.86 1 | 98.67 61 | 96.94 1 | | 97.93 108 | | | | | 99.86 9 | 97.68 20 | 99.67 6 | 99.77 2 |
|
| No_MVS | | | | | 98.86 1 | 98.67 61 | 96.94 1 | | 97.93 108 | | | | | 99.86 9 | 97.68 20 | 99.67 6 | 99.77 2 |
|
| Anonymous20231211 | | | 90.63 279 | 89.42 294 | 94.27 226 | 98.24 90 | 89.19 218 | 98.05 57 | 97.89 110 | 79.95 386 | 88.25 306 | 94.96 261 | 72.56 330 | 98.13 248 | 89.70 214 | 85.14 334 | 95.49 280 |
|
| 原ACMM1 | | | | | 96.38 105 | 98.59 69 | 91.09 150 | | 97.89 110 | 87.41 300 | 95.22 129 | 97.68 112 | 90.25 80 | 99.54 92 | 87.95 250 | 99.12 85 | 98.49 144 |
|
| CDPH-MVS | | | 95.97 76 | 95.38 87 | 97.77 33 | 98.93 50 | 94.44 35 | 96.35 241 | 97.88 112 | 86.98 308 | 96.65 77 | 97.89 93 | 91.99 48 | 99.47 105 | 92.26 159 | 99.46 41 | 99.39 59 |
|
| test11 | | | | | | | | | 97.88 112 | | | | | | | | |
|
| EIA-MVS | | | 95.53 90 | 95.47 81 | 95.71 148 | 97.06 163 | 89.63 192 | 97.82 89 | 97.87 114 | 93.57 87 | 93.92 159 | 95.04 259 | 90.61 77 | 98.95 169 | 94.62 119 | 98.68 104 | 98.54 137 |
|
| CS-MVS | | | 96.86 39 | 97.06 22 | 96.26 115 | 98.16 101 | 91.16 148 | 99.09 3 | 97.87 114 | 95.30 21 | 97.06 62 | 98.03 83 | 91.72 50 | 98.71 199 | 97.10 38 | 99.17 78 | 98.90 108 |
|
| 无先验 | | | | | | | | 95.79 275 | 97.87 114 | 83.87 357 | | | | 99.65 61 | 87.68 260 | | 98.89 112 |
|
| 3Dnovator+ | | 91.43 4 | 95.40 91 | 94.48 114 | 98.16 16 | 96.90 173 | 95.34 16 | 98.48 20 | 97.87 114 | 94.65 52 | 88.53 297 | 98.02 85 | 83.69 176 | 99.71 49 | 93.18 146 | 98.96 94 | 99.44 52 |
|
| VPNet | | | 92.23 207 | 91.31 214 | 94.99 182 | 95.56 257 | 90.96 153 | 97.22 165 | 97.86 118 | 92.96 121 | 90.96 231 | 96.62 182 | 75.06 312 | 98.20 242 | 91.90 169 | 83.65 358 | 95.80 267 |
|
| test_vis1_n_1920 | | | 94.17 126 | 94.58 107 | 92.91 287 | 97.42 148 | 82.02 354 | 97.83 87 | 97.85 119 | 94.68 49 | 98.10 30 | 98.49 40 | 70.15 348 | 99.32 120 | 97.91 17 | 98.82 98 | 97.40 215 |
|
| DVP-MVS |  | | 97.91 3 | 97.81 4 | 98.22 13 | 99.45 3 | 95.36 13 | 98.21 42 | 97.85 119 | 94.92 35 | 98.73 18 | 98.87 18 | 95.08 8 | 99.84 23 | 97.52 28 | 99.67 6 | 99.48 47 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| TSAR-MVS + MP. | | | 97.42 16 | 97.33 18 | 97.69 41 | 99.25 27 | 94.24 41 | 98.07 55 | 97.85 119 | 93.72 82 | 98.57 21 | 98.35 54 | 93.69 18 | 99.40 113 | 97.06 39 | 99.46 41 | 99.44 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SPE-MVS-test | | | 96.89 37 | 97.04 26 | 96.45 99 | 98.29 85 | 91.66 122 | 99.03 4 | 97.85 119 | 95.84 7 | 96.90 65 | 97.97 89 | 91.24 64 | 98.75 192 | 96.92 42 | 99.33 63 | 98.94 101 |
|
| test_fmvsmconf0.01_n | | | 96.15 70 | 95.85 74 | 97.03 74 | 92.66 369 | 91.83 115 | 97.97 69 | 97.84 123 | 95.57 15 | 97.53 43 | 99.00 7 | 84.20 169 | 99.76 41 | 98.82 11 | 99.08 87 | 99.48 47 |
|
| GDP-MVS | | | 95.62 86 | 95.13 94 | 97.09 71 | 96.79 184 | 93.26 71 | 97.89 79 | 97.83 124 | 93.58 86 | 96.80 67 | 97.82 103 | 83.06 191 | 99.16 140 | 94.40 123 | 97.95 134 | 98.87 114 |
|
| balanced_conf03 | | | 96.84 43 | 96.89 34 | 96.68 79 | 97.63 136 | 92.22 101 | 98.17 48 | 97.82 125 | 94.44 61 | 98.23 28 | 97.36 136 | 90.97 71 | 99.22 130 | 97.74 19 | 99.66 10 | 98.61 132 |
|
| AdaColmap |  | | 94.34 122 | 93.68 129 | 96.31 109 | 98.59 69 | 91.68 121 | 96.59 224 | 97.81 126 | 89.87 217 | 92.15 198 | 97.06 153 | 83.62 179 | 99.54 92 | 89.34 224 | 98.07 130 | 97.70 199 |
|
| MVSMamba_PlusPlus | | | 96.51 59 | 96.48 56 | 96.59 85 | 98.07 108 | 91.97 111 | 98.14 49 | 97.79 127 | 90.43 205 | 97.34 52 | 97.52 129 | 91.29 63 | 99.19 133 | 98.12 15 | 99.64 14 | 98.60 133 |
|
| mamv4 | | | 94.66 116 | 96.10 69 | 90.37 352 | 98.01 111 | 73.41 400 | 96.82 198 | 97.78 128 | 89.95 216 | 94.52 143 | 97.43 133 | 92.91 27 | 99.09 152 | 98.28 14 | 99.16 80 | 98.60 133 |
|
| ETV-MVS | | | 96.02 73 | 95.89 73 | 96.40 102 | 97.16 155 | 92.44 93 | 97.47 137 | 97.77 129 | 94.55 55 | 96.48 86 | 94.51 285 | 91.23 66 | 98.92 173 | 95.65 89 | 98.19 125 | 97.82 194 |
|
| 新几何1 | | | | | 97.32 56 | 98.60 68 | 93.59 58 | | 97.75 130 | 81.58 377 | 95.75 115 | 97.85 99 | 90.04 83 | 99.67 59 | 86.50 282 | 99.13 83 | 98.69 128 |
|
| 旧先验1 | | | | | | 98.38 81 | 93.38 63 | | 97.75 130 | | | 98.09 78 | 92.30 45 | | | 99.01 92 | 99.16 76 |
|
| EC-MVSNet | | | 96.42 62 | 96.47 57 | 96.26 115 | 97.01 169 | 91.52 128 | 98.89 5 | 97.75 130 | 94.42 62 | 96.64 78 | 97.68 112 | 89.32 89 | 98.60 209 | 97.45 32 | 99.11 86 | 98.67 130 |
|
| EI-MVSNet-Vis-set | | | 96.51 59 | 96.47 57 | 96.63 82 | 98.24 90 | 91.20 143 | 96.89 191 | 97.73 133 | 94.74 47 | 96.49 85 | 98.49 40 | 90.88 74 | 99.58 80 | 96.44 56 | 98.32 120 | 99.13 80 |
|
| PAPM_NR | | | 95.01 102 | 94.59 106 | 96.26 115 | 98.89 54 | 90.68 165 | 97.24 160 | 97.73 133 | 91.80 151 | 92.93 184 | 96.62 182 | 89.13 92 | 99.14 145 | 89.21 230 | 97.78 138 | 98.97 97 |
|
| Anonymous20240529 | | | 91.98 215 | 90.73 241 | 95.73 146 | 98.14 102 | 89.40 205 | 97.99 62 | 97.72 135 | 79.63 388 | 93.54 166 | 97.41 134 | 69.94 350 | 99.56 88 | 91.04 191 | 91.11 270 | 98.22 165 |
|
| CHOSEN 280x420 | | | 93.12 168 | 92.72 166 | 94.34 220 | 96.71 191 | 87.27 265 | 90.29 394 | 97.72 135 | 86.61 315 | 91.34 220 | 95.29 247 | 84.29 168 | 98.41 223 | 93.25 145 | 98.94 95 | 97.35 218 |
|
| EI-MVSNet-UG-set | | | 96.34 66 | 96.30 65 | 96.47 96 | 98.20 96 | 90.93 155 | 96.86 193 | 97.72 135 | 94.67 50 | 96.16 100 | 98.46 44 | 90.43 79 | 99.58 80 | 96.23 60 | 97.96 133 | 98.90 108 |
|
| LS3D | | | 93.57 152 | 92.61 170 | 96.47 96 | 97.59 140 | 91.61 123 | 97.67 108 | 97.72 135 | 85.17 339 | 90.29 242 | 98.34 57 | 84.60 161 | 99.73 45 | 83.85 322 | 98.27 122 | 98.06 180 |
|
| PAPR | | | 94.18 125 | 93.42 144 | 96.48 95 | 97.64 134 | 91.42 134 | 95.55 287 | 97.71 139 | 88.99 247 | 92.34 194 | 95.82 221 | 89.19 90 | 99.11 148 | 86.14 288 | 97.38 149 | 98.90 108 |
|
| UGNet | | | 94.04 136 | 93.28 147 | 96.31 109 | 96.85 176 | 91.19 144 | 97.88 80 | 97.68 140 | 94.40 64 | 93.00 179 | 96.18 201 | 73.39 327 | 99.61 72 | 91.72 175 | 98.46 115 | 98.13 173 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| testdata | | | | | 95.46 165 | 98.18 100 | 88.90 224 | | 97.66 141 | 82.73 368 | 97.03 63 | 98.07 79 | 90.06 82 | 98.85 180 | 89.67 215 | 98.98 93 | 98.64 131 |
|
| test12 | | | | | 97.65 42 | 98.46 73 | 94.26 39 | | 97.66 141 | | 95.52 125 | | 90.89 73 | 99.46 106 | | 99.25 71 | 99.22 73 |
|
| DTE-MVSNet | | | 90.56 280 | 89.75 285 | 93.01 283 | 93.95 335 | 87.25 266 | 97.64 115 | 97.65 143 | 90.74 187 | 87.12 327 | 95.68 232 | 79.97 251 | 97.00 353 | 83.33 323 | 81.66 369 | 94.78 334 |
|
| TAPA-MVS | | 90.10 7 | 92.30 202 | 91.22 220 | 95.56 155 | 98.33 83 | 89.60 194 | 96.79 200 | 97.65 143 | 81.83 374 | 91.52 215 | 97.23 144 | 87.94 111 | 98.91 175 | 71.31 396 | 98.37 118 | 98.17 171 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| sd_testset | | | 93.10 169 | 92.45 178 | 95.05 178 | 98.09 104 | 89.21 215 | 96.89 191 | 97.64 145 | 93.18 108 | 91.79 209 | 97.28 139 | 75.35 311 | 98.65 204 | 88.99 235 | 92.84 240 | 97.28 221 |
|
| test_cas_vis1_n_1920 | | | 94.48 120 | 94.55 111 | 94.28 225 | 96.78 185 | 86.45 289 | 97.63 117 | 97.64 145 | 93.32 101 | 97.68 42 | 98.36 53 | 73.75 325 | 99.08 155 | 96.73 47 | 99.05 89 | 97.31 220 |
|
| cdsmvs_eth3d_5k | | | 23.24 390 | 30.99 392 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 97.63 147 | 0.00 426 | 0.00 427 | 96.88 162 | 84.38 165 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DPM-MVS | | | 95.69 83 | 94.92 98 | 98.01 20 | 98.08 107 | 95.71 9 | 95.27 302 | 97.62 148 | 90.43 205 | 95.55 122 | 97.07 152 | 91.72 50 | 99.50 102 | 89.62 217 | 98.94 95 | 98.82 120 |
|
| sasdasda | | | 96.02 73 | 95.45 82 | 97.75 35 | 97.59 140 | 95.15 23 | 98.28 30 | 97.60 149 | 94.52 57 | 96.27 95 | 96.12 206 | 87.65 116 | 99.18 136 | 96.20 66 | 94.82 205 | 98.91 105 |
|
| canonicalmvs | | | 96.02 73 | 95.45 82 | 97.75 35 | 97.59 140 | 95.15 23 | 98.28 30 | 97.60 149 | 94.52 57 | 96.27 95 | 96.12 206 | 87.65 116 | 99.18 136 | 96.20 66 | 94.82 205 | 98.91 105 |
|
| test222 | | | | | | 98.24 90 | 92.21 102 | 95.33 297 | 97.60 149 | 79.22 390 | 95.25 127 | 97.84 101 | 88.80 97 | | | 99.15 81 | 98.72 125 |
|
| cascas | | | 91.20 255 | 90.08 268 | 94.58 208 | 94.97 295 | 89.16 219 | 93.65 359 | 97.59 152 | 79.90 387 | 89.40 273 | 92.92 347 | 75.36 310 | 98.36 230 | 92.14 164 | 94.75 208 | 96.23 247 |
|
| h-mvs33 | | | 94.15 128 | 93.52 137 | 96.04 128 | 97.81 124 | 90.22 177 | 97.62 119 | 97.58 153 | 95.19 23 | 96.74 71 | 97.45 130 | 83.67 177 | 99.61 72 | 95.85 80 | 79.73 376 | 98.29 162 |
|
| MGCFI-Net | | | 95.94 78 | 95.40 86 | 97.56 48 | 97.59 140 | 94.62 31 | 98.21 42 | 97.57 154 | 94.41 63 | 96.17 99 | 96.16 204 | 87.54 120 | 99.17 138 | 96.19 68 | 94.73 210 | 98.91 105 |
|
| MVSFormer | | | 95.37 92 | 95.16 93 | 95.99 133 | 96.34 222 | 91.21 141 | 98.22 40 | 97.57 154 | 91.42 163 | 96.22 97 | 97.32 137 | 86.20 143 | 97.92 289 | 94.07 127 | 99.05 89 | 98.85 116 |
|
| test_djsdf | | | 93.07 171 | 92.76 161 | 94.00 237 | 93.49 351 | 88.70 228 | 98.22 40 | 97.57 154 | 91.42 163 | 90.08 254 | 95.55 239 | 82.85 197 | 97.92 289 | 94.07 127 | 91.58 261 | 95.40 289 |
|
| OMC-MVS | | | 95.09 101 | 94.70 104 | 96.25 118 | 98.46 73 | 91.28 137 | 96.43 231 | 97.57 154 | 92.04 146 | 94.77 138 | 97.96 90 | 87.01 132 | 99.09 152 | 91.31 185 | 96.77 166 | 98.36 159 |
|
| PS-MVSNAJss | | | 93.74 147 | 93.51 138 | 94.44 214 | 93.91 337 | 89.28 213 | 97.75 96 | 97.56 158 | 92.50 132 | 89.94 256 | 96.54 185 | 88.65 100 | 98.18 245 | 93.83 136 | 90.90 275 | 95.86 261 |
|
| casdiffmvs_mvg |  | | 95.81 82 | 95.57 77 | 96.51 92 | 96.87 174 | 91.49 129 | 97.50 131 | 97.56 158 | 93.99 74 | 95.13 131 | 97.92 92 | 87.89 112 | 98.78 187 | 95.97 76 | 97.33 152 | 99.26 70 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| jajsoiax | | | 92.42 195 | 91.89 194 | 94.03 236 | 93.33 357 | 88.50 235 | 97.73 99 | 97.53 160 | 92.00 148 | 88.85 289 | 96.50 187 | 75.62 309 | 98.11 252 | 93.88 134 | 91.56 262 | 95.48 281 |
|
| mvs_tets | | | 92.31 201 | 91.76 197 | 93.94 244 | 93.41 354 | 88.29 239 | 97.63 117 | 97.53 160 | 92.04 146 | 88.76 292 | 96.45 189 | 74.62 317 | 98.09 257 | 93.91 132 | 91.48 263 | 95.45 285 |
|
| dcpmvs_2 | | | 96.37 65 | 97.05 25 | 94.31 223 | 98.96 49 | 84.11 329 | 97.56 124 | 97.51 162 | 93.92 76 | 97.43 49 | 98.52 37 | 92.75 32 | 99.32 120 | 97.32 37 | 99.50 35 | 99.51 40 |
|
| HQP_MVS | | | 93.78 146 | 93.43 142 | 94.82 192 | 96.21 226 | 89.99 182 | 97.74 97 | 97.51 162 | 94.85 37 | 91.34 220 | 96.64 175 | 81.32 226 | 98.60 209 | 93.02 152 | 92.23 249 | 95.86 261 |
|
| plane_prior5 | | | | | | | | | 97.51 162 | | | | | 98.60 209 | 93.02 152 | 92.23 249 | 95.86 261 |
|
| reproduce_monomvs | | | 91.30 250 | 91.10 224 | 91.92 314 | 96.82 181 | 82.48 348 | 97.01 182 | 97.49 165 | 94.64 53 | 88.35 300 | 95.27 250 | 70.53 343 | 98.10 253 | 95.20 100 | 84.60 344 | 95.19 307 |
|
| PS-MVSNAJ | | | 95.37 92 | 95.33 89 | 95.49 161 | 97.35 149 | 90.66 166 | 95.31 299 | 97.48 166 | 93.85 79 | 96.51 84 | 95.70 231 | 88.65 100 | 99.65 61 | 94.80 114 | 98.27 122 | 96.17 251 |
|
| API-MVS | | | 94.84 111 | 94.49 113 | 95.90 135 | 97.90 120 | 92.00 110 | 97.80 92 | 97.48 166 | 89.19 240 | 94.81 136 | 96.71 168 | 88.84 96 | 99.17 138 | 88.91 237 | 98.76 102 | 96.53 240 |
|
| MG-MVS | | | 95.61 87 | 95.38 87 | 96.31 109 | 98.42 76 | 90.53 168 | 96.04 260 | 97.48 166 | 93.47 95 | 95.67 119 | 98.10 76 | 89.17 91 | 99.25 127 | 91.27 186 | 98.77 101 | 99.13 80 |
|
| MAR-MVS | | | 94.22 124 | 93.46 140 | 96.51 92 | 98.00 113 | 92.19 105 | 97.67 108 | 97.47 169 | 88.13 279 | 93.00 179 | 95.84 219 | 84.86 159 | 99.51 99 | 87.99 249 | 98.17 127 | 97.83 193 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CLD-MVS | | | 92.98 175 | 92.53 174 | 94.32 221 | 96.12 236 | 89.20 216 | 95.28 300 | 97.47 169 | 92.66 129 | 89.90 257 | 95.62 235 | 80.58 238 | 98.40 224 | 92.73 157 | 92.40 247 | 95.38 291 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| UniMVSNet_ETH3D | | | 91.34 248 | 90.22 264 | 94.68 202 | 94.86 304 | 87.86 255 | 97.23 164 | 97.46 171 | 87.99 280 | 89.90 257 | 96.92 160 | 66.35 375 | 98.23 239 | 90.30 202 | 90.99 273 | 97.96 184 |
|
| nrg030 | | | 94.05 135 | 93.31 146 | 96.27 114 | 95.22 283 | 94.59 32 | 98.34 25 | 97.46 171 | 92.93 122 | 91.21 229 | 96.64 175 | 87.23 130 | 98.22 240 | 94.99 107 | 85.80 324 | 95.98 260 |
|
| XVG-OURS | | | 93.72 148 | 93.35 145 | 94.80 197 | 97.07 160 | 88.61 229 | 94.79 317 | 97.46 171 | 91.97 149 | 93.99 156 | 97.86 98 | 81.74 221 | 98.88 177 | 92.64 158 | 92.67 245 | 96.92 232 |
|
| LPG-MVS_test | | | 92.94 178 | 92.56 171 | 94.10 231 | 96.16 231 | 88.26 241 | 97.65 111 | 97.46 171 | 91.29 167 | 90.12 250 | 97.16 147 | 79.05 267 | 98.73 195 | 92.25 161 | 91.89 257 | 95.31 296 |
|
| LGP-MVS_train | | | | | 94.10 231 | 96.16 231 | 88.26 241 | | 97.46 171 | 91.29 167 | 90.12 250 | 97.16 147 | 79.05 267 | 98.73 195 | 92.25 161 | 91.89 257 | 95.31 296 |
|
| MVS | | | 91.71 223 | 90.44 251 | 95.51 159 | 95.20 285 | 91.59 125 | 96.04 260 | 97.45 176 | 73.44 404 | 87.36 324 | 95.60 236 | 85.42 152 | 99.10 149 | 85.97 293 | 97.46 144 | 95.83 265 |
|
| XVG-OURS-SEG-HR | | | 93.86 143 | 93.55 133 | 94.81 194 | 97.06 163 | 88.53 234 | 95.28 300 | 97.45 176 | 91.68 155 | 94.08 155 | 97.68 112 | 82.41 208 | 98.90 176 | 93.84 135 | 92.47 246 | 96.98 228 |
|
| baseline | | | 95.58 88 | 95.42 85 | 96.08 124 | 96.78 185 | 90.41 173 | 97.16 170 | 97.45 176 | 93.69 85 | 95.65 120 | 97.85 99 | 87.29 128 | 98.68 201 | 95.66 86 | 97.25 157 | 99.13 80 |
|
| ab-mvs | | | 93.57 152 | 92.55 172 | 96.64 80 | 97.28 150 | 91.96 113 | 95.40 294 | 97.45 176 | 89.81 222 | 93.22 177 | 96.28 197 | 79.62 258 | 99.46 106 | 90.74 195 | 93.11 237 | 98.50 142 |
|
| xiu_mvs_v2_base | | | 95.32 94 | 95.29 90 | 95.40 166 | 97.22 151 | 90.50 169 | 95.44 293 | 97.44 180 | 93.70 84 | 96.46 88 | 96.18 201 | 88.59 103 | 99.53 94 | 94.79 116 | 97.81 137 | 96.17 251 |
|
| 1314 | | | 92.81 186 | 92.03 188 | 95.14 174 | 95.33 275 | 89.52 200 | 96.04 260 | 97.44 180 | 87.72 293 | 86.25 342 | 95.33 246 | 83.84 174 | 98.79 186 | 89.26 227 | 97.05 162 | 97.11 226 |
|
| casdiffmvs |  | | 95.64 85 | 95.49 79 | 96.08 124 | 96.76 190 | 90.45 171 | 97.29 157 | 97.44 180 | 94.00 73 | 95.46 126 | 97.98 88 | 87.52 123 | 98.73 195 | 95.64 90 | 97.33 152 | 99.08 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| XXY-MVS | | | 92.16 209 | 91.23 219 | 94.95 188 | 94.75 309 | 90.94 154 | 97.47 137 | 97.43 183 | 89.14 241 | 88.90 286 | 96.43 190 | 79.71 255 | 98.24 238 | 89.56 218 | 87.68 306 | 95.67 277 |
|
| anonymousdsp | | | 92.16 209 | 91.55 205 | 93.97 240 | 92.58 371 | 89.55 197 | 97.51 130 | 97.42 184 | 89.42 234 | 88.40 299 | 94.84 268 | 80.66 237 | 97.88 294 | 91.87 171 | 91.28 267 | 94.48 342 |
|
| Effi-MVS+ | | | 94.93 107 | 94.45 115 | 96.36 107 | 96.61 195 | 91.47 131 | 96.41 233 | 97.41 185 | 91.02 181 | 94.50 144 | 95.92 215 | 87.53 121 | 98.78 187 | 93.89 133 | 96.81 165 | 98.84 119 |
|
| RRT-MVS | | | 94.51 118 | 94.35 118 | 94.98 184 | 96.40 218 | 86.55 287 | 97.56 124 | 97.41 185 | 93.19 106 | 94.93 133 | 97.04 154 | 79.12 265 | 99.30 124 | 96.19 68 | 97.32 154 | 99.09 86 |
|
| HQP3-MVS | | | | | | | | | 97.39 187 | | | | | | | 92.10 254 | |
|
| HQP-MVS | | | 93.19 165 | 92.74 164 | 94.54 210 | 95.86 243 | 89.33 209 | 96.65 215 | 97.39 187 | 93.55 88 | 90.14 244 | 95.87 217 | 80.95 230 | 98.50 217 | 92.13 165 | 92.10 254 | 95.78 269 |
|
| PLC |  | 91.00 6 | 94.11 132 | 93.43 142 | 96.13 123 | 98.58 71 | 91.15 149 | 96.69 211 | 97.39 187 | 87.29 303 | 91.37 219 | 96.71 168 | 88.39 104 | 99.52 98 | 87.33 269 | 97.13 161 | 97.73 197 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v7n | | | 90.76 272 | 89.86 278 | 93.45 269 | 93.54 348 | 87.60 261 | 97.70 107 | 97.37 190 | 88.85 253 | 87.65 317 | 94.08 313 | 81.08 229 | 98.10 253 | 84.68 309 | 83.79 357 | 94.66 339 |
|
| UnsupCasMVSNet_eth | | | 85.99 345 | 84.45 350 | 90.62 348 | 89.97 389 | 82.40 351 | 93.62 360 | 97.37 190 | 89.86 218 | 78.59 391 | 92.37 357 | 65.25 383 | 95.35 383 | 82.27 336 | 70.75 399 | 94.10 353 |
|
| ACMM | | 89.79 8 | 92.96 176 | 92.50 176 | 94.35 218 | 96.30 224 | 88.71 227 | 97.58 121 | 97.36 192 | 91.40 165 | 90.53 237 | 96.65 174 | 79.77 254 | 98.75 192 | 91.24 187 | 91.64 259 | 95.59 279 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| xiu_mvs_v1_base_debu | | | 95.01 102 | 94.76 101 | 95.75 143 | 96.58 198 | 91.71 118 | 96.25 249 | 97.35 193 | 92.99 115 | 96.70 73 | 96.63 179 | 82.67 200 | 99.44 109 | 96.22 61 | 97.46 144 | 96.11 256 |
|
| xiu_mvs_v1_base | | | 95.01 102 | 94.76 101 | 95.75 143 | 96.58 198 | 91.71 118 | 96.25 249 | 97.35 193 | 92.99 115 | 96.70 73 | 96.63 179 | 82.67 200 | 99.44 109 | 96.22 61 | 97.46 144 | 96.11 256 |
|
| xiu_mvs_v1_base_debi | | | 95.01 102 | 94.76 101 | 95.75 143 | 96.58 198 | 91.71 118 | 96.25 249 | 97.35 193 | 92.99 115 | 96.70 73 | 96.63 179 | 82.67 200 | 99.44 109 | 96.22 61 | 97.46 144 | 96.11 256 |
|
| diffmvs |  | | 95.25 96 | 95.13 94 | 95.63 151 | 96.43 217 | 89.34 208 | 95.99 264 | 97.35 193 | 92.83 125 | 96.31 93 | 97.37 135 | 86.44 138 | 98.67 202 | 96.26 58 | 97.19 159 | 98.87 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| WTY-MVS | | | 94.71 115 | 94.02 122 | 96.79 77 | 97.71 129 | 92.05 108 | 96.59 224 | 97.35 193 | 90.61 198 | 94.64 140 | 96.93 157 | 86.41 139 | 99.39 114 | 91.20 188 | 94.71 211 | 98.94 101 |
|
| F-COLMAP | | | 93.58 151 | 92.98 153 | 95.37 167 | 98.40 78 | 88.98 222 | 97.18 168 | 97.29 198 | 87.75 292 | 90.49 238 | 97.10 151 | 85.21 154 | 99.50 102 | 86.70 279 | 96.72 169 | 97.63 201 |
|
| XVG-ACMP-BASELINE | | | 90.93 268 | 90.21 265 | 93.09 281 | 94.31 328 | 85.89 299 | 95.33 297 | 97.26 199 | 91.06 180 | 89.38 274 | 95.44 244 | 68.61 358 | 98.60 209 | 89.46 220 | 91.05 271 | 94.79 332 |
|
| PCF-MVS | | 89.48 11 | 91.56 233 | 89.95 275 | 96.36 107 | 96.60 196 | 92.52 91 | 92.51 379 | 97.26 199 | 79.41 389 | 88.90 286 | 96.56 184 | 84.04 173 | 99.55 90 | 77.01 373 | 97.30 155 | 97.01 227 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| ACMP | | 89.59 10 | 92.62 190 | 92.14 185 | 94.05 234 | 96.40 218 | 88.20 244 | 97.36 149 | 97.25 201 | 91.52 158 | 88.30 303 | 96.64 175 | 78.46 279 | 98.72 198 | 91.86 172 | 91.48 263 | 95.23 303 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| OPM-MVS | | | 93.28 161 | 92.76 161 | 94.82 192 | 94.63 315 | 90.77 161 | 96.65 215 | 97.18 202 | 93.72 82 | 91.68 213 | 97.26 142 | 79.33 262 | 98.63 206 | 92.13 165 | 92.28 248 | 95.07 310 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PatchMatch-RL | | | 92.90 180 | 92.02 189 | 95.56 155 | 98.19 98 | 90.80 159 | 95.27 302 | 97.18 202 | 87.96 281 | 91.86 208 | 95.68 232 | 80.44 241 | 98.99 167 | 84.01 317 | 97.54 143 | 96.89 233 |
|
| alignmvs | | | 95.87 81 | 95.23 91 | 97.78 31 | 97.56 145 | 95.19 21 | 97.86 81 | 97.17 204 | 94.39 65 | 96.47 87 | 96.40 192 | 85.89 146 | 99.20 132 | 96.21 65 | 95.11 201 | 98.95 100 |
|
| MVS_Test | | | 94.89 109 | 94.62 105 | 95.68 149 | 96.83 179 | 89.55 197 | 96.70 209 | 97.17 204 | 91.17 175 | 95.60 121 | 96.11 210 | 87.87 113 | 98.76 191 | 93.01 154 | 97.17 160 | 98.72 125 |
|
| Fast-Effi-MVS+ | | | 93.46 155 | 92.75 163 | 95.59 154 | 96.77 187 | 90.03 179 | 96.81 199 | 97.13 206 | 88.19 275 | 91.30 223 | 94.27 302 | 86.21 142 | 98.63 206 | 87.66 261 | 96.46 176 | 98.12 174 |
|
| EI-MVSNet | | | 93.03 173 | 92.88 157 | 93.48 267 | 95.77 249 | 86.98 274 | 96.44 229 | 97.12 207 | 90.66 194 | 91.30 223 | 97.64 119 | 86.56 135 | 98.05 265 | 89.91 208 | 90.55 279 | 95.41 286 |
|
| MVSTER | | | 93.20 164 | 92.81 160 | 94.37 217 | 96.56 201 | 89.59 195 | 97.06 176 | 97.12 207 | 91.24 171 | 91.30 223 | 95.96 213 | 82.02 215 | 98.05 265 | 93.48 140 | 90.55 279 | 95.47 283 |
|
| test_yl | | | 94.78 113 | 94.23 119 | 96.43 100 | 97.74 127 | 91.22 139 | 96.85 194 | 97.10 209 | 91.23 172 | 95.71 116 | 96.93 157 | 84.30 166 | 99.31 122 | 93.10 147 | 95.12 199 | 98.75 122 |
|
| DCV-MVSNet | | | 94.78 113 | 94.23 119 | 96.43 100 | 97.74 127 | 91.22 139 | 96.85 194 | 97.10 209 | 91.23 172 | 95.71 116 | 96.93 157 | 84.30 166 | 99.31 122 | 93.10 147 | 95.12 199 | 98.75 122 |
|
| LTVRE_ROB | | 88.41 13 | 90.99 264 | 89.92 277 | 94.19 227 | 96.18 229 | 89.55 197 | 96.31 245 | 97.09 211 | 87.88 284 | 85.67 346 | 95.91 216 | 78.79 275 | 98.57 213 | 81.50 339 | 89.98 284 | 94.44 345 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_fmvs1_n | | | 92.73 188 | 92.88 157 | 92.29 306 | 96.08 239 | 81.05 362 | 97.98 63 | 97.08 212 | 90.72 189 | 96.79 69 | 98.18 73 | 63.07 387 | 98.45 221 | 97.62 26 | 98.42 117 | 97.36 216 |
|
| v10 | | | 91.04 262 | 90.23 262 | 93.49 266 | 94.12 331 | 88.16 247 | 97.32 154 | 97.08 212 | 88.26 274 | 88.29 304 | 94.22 307 | 82.17 213 | 97.97 277 | 86.45 283 | 84.12 351 | 94.33 348 |
|
| v144192 | | | 91.06 261 | 90.28 258 | 93.39 270 | 93.66 346 | 87.23 268 | 96.83 197 | 97.07 214 | 87.43 299 | 89.69 264 | 94.28 301 | 81.48 224 | 98.00 272 | 87.18 273 | 84.92 340 | 94.93 318 |
|
| v1192 | | | 91.07 260 | 90.23 262 | 93.58 263 | 93.70 343 | 87.82 257 | 96.73 205 | 97.07 214 | 87.77 290 | 89.58 267 | 94.32 299 | 80.90 234 | 97.97 277 | 86.52 281 | 85.48 327 | 94.95 314 |
|
| v8 | | | 91.29 252 | 90.53 250 | 93.57 264 | 94.15 330 | 88.12 248 | 97.34 151 | 97.06 216 | 88.99 247 | 88.32 302 | 94.26 304 | 83.08 189 | 98.01 271 | 87.62 263 | 83.92 355 | 94.57 341 |
|
| mvs_anonymous | | | 93.82 144 | 93.74 127 | 94.06 233 | 96.44 216 | 85.41 306 | 95.81 273 | 97.05 217 | 89.85 220 | 90.09 253 | 96.36 194 | 87.44 125 | 97.75 307 | 93.97 129 | 96.69 170 | 99.02 90 |
|
| IterMVS-LS | | | 92.29 203 | 91.94 192 | 93.34 272 | 96.25 225 | 86.97 275 | 96.57 227 | 97.05 217 | 90.67 192 | 89.50 272 | 94.80 271 | 86.59 134 | 97.64 315 | 89.91 208 | 86.11 322 | 95.40 289 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v1921920 | | | 90.85 270 | 90.03 273 | 93.29 274 | 93.55 347 | 86.96 276 | 96.74 204 | 97.04 219 | 87.36 301 | 89.52 271 | 94.34 296 | 80.23 246 | 97.97 277 | 86.27 284 | 85.21 333 | 94.94 316 |
|
| CDS-MVSNet | | | 94.14 131 | 93.54 134 | 95.93 134 | 96.18 229 | 91.46 132 | 96.33 243 | 97.04 219 | 88.97 249 | 93.56 164 | 96.51 186 | 87.55 119 | 97.89 293 | 89.80 211 | 95.95 181 | 98.44 152 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| v1144 | | | 91.37 245 | 90.60 246 | 93.68 259 | 93.89 338 | 88.23 243 | 96.84 196 | 97.03 221 | 88.37 271 | 89.69 264 | 94.39 292 | 82.04 214 | 97.98 274 | 87.80 253 | 85.37 329 | 94.84 324 |
|
| v1240 | | | 90.70 276 | 89.85 279 | 93.23 276 | 93.51 350 | 86.80 277 | 96.61 221 | 97.02 222 | 87.16 306 | 89.58 267 | 94.31 300 | 79.55 259 | 97.98 274 | 85.52 299 | 85.44 328 | 94.90 321 |
|
| EPP-MVSNet | | | 95.22 98 | 95.04 97 | 95.76 141 | 97.49 146 | 89.56 196 | 98.67 10 | 97.00 223 | 90.69 190 | 94.24 150 | 97.62 121 | 89.79 87 | 98.81 184 | 93.39 144 | 96.49 174 | 98.92 104 |
|
| V42 | | | 91.58 232 | 90.87 230 | 93.73 254 | 94.05 334 | 88.50 235 | 97.32 154 | 96.97 224 | 88.80 259 | 89.71 262 | 94.33 297 | 82.54 204 | 98.05 265 | 89.01 234 | 85.07 336 | 94.64 340 |
|
| test_fmvs1 | | | 93.21 163 | 93.53 135 | 92.25 308 | 96.55 203 | 81.20 361 | 97.40 145 | 96.96 225 | 90.68 191 | 96.80 67 | 98.04 82 | 69.25 354 | 98.40 224 | 97.58 27 | 98.50 111 | 97.16 225 |
|
| FMVSNet2 | | | 91.31 249 | 90.08 268 | 94.99 182 | 96.51 209 | 92.21 102 | 97.41 141 | 96.95 226 | 88.82 256 | 88.62 294 | 94.75 273 | 73.87 321 | 97.42 336 | 85.20 304 | 88.55 299 | 95.35 293 |
|
| ACMH | | 87.59 16 | 90.53 281 | 89.42 294 | 93.87 248 | 96.21 226 | 87.92 252 | 97.24 160 | 96.94 227 | 88.45 269 | 83.91 366 | 96.27 198 | 71.92 333 | 98.62 208 | 84.43 312 | 89.43 290 | 95.05 312 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GBi-Net | | | 91.35 246 | 90.27 259 | 94.59 204 | 96.51 209 | 91.18 145 | 97.50 131 | 96.93 228 | 88.82 256 | 89.35 275 | 94.51 285 | 73.87 321 | 97.29 343 | 86.12 289 | 88.82 294 | 95.31 296 |
|
| test1 | | | 91.35 246 | 90.27 259 | 94.59 204 | 96.51 209 | 91.18 145 | 97.50 131 | 96.93 228 | 88.82 256 | 89.35 275 | 94.51 285 | 73.87 321 | 97.29 343 | 86.12 289 | 88.82 294 | 95.31 296 |
|
| FMVSNet3 | | | 91.78 221 | 90.69 244 | 95.03 180 | 96.53 206 | 92.27 100 | 97.02 179 | 96.93 228 | 89.79 223 | 89.35 275 | 94.65 278 | 77.01 295 | 97.47 331 | 86.12 289 | 88.82 294 | 95.35 293 |
|
| FMVSNet1 | | | 89.88 300 | 88.31 312 | 94.59 204 | 95.41 265 | 91.18 145 | 97.50 131 | 96.93 228 | 86.62 314 | 87.41 322 | 94.51 285 | 65.94 380 | 97.29 343 | 83.04 326 | 87.43 309 | 95.31 296 |
|
| GeoE | | | 93.89 141 | 93.28 147 | 95.72 147 | 96.96 172 | 89.75 191 | 98.24 38 | 96.92 232 | 89.47 231 | 92.12 200 | 97.21 145 | 84.42 164 | 98.39 228 | 87.71 256 | 96.50 173 | 99.01 93 |
|
| miper_enhance_ethall | | | 91.54 236 | 91.01 227 | 93.15 279 | 95.35 271 | 87.07 273 | 93.97 345 | 96.90 233 | 86.79 312 | 89.17 282 | 93.43 342 | 86.55 136 | 97.64 315 | 89.97 207 | 86.93 314 | 94.74 336 |
|
| eth_miper_zixun_eth | | | 91.02 263 | 90.59 247 | 92.34 305 | 95.33 275 | 84.35 325 | 94.10 342 | 96.90 233 | 88.56 265 | 88.84 290 | 94.33 297 | 84.08 171 | 97.60 320 | 88.77 240 | 84.37 349 | 95.06 311 |
|
| TAMVS | | | 94.01 137 | 93.46 140 | 95.64 150 | 96.16 231 | 90.45 171 | 96.71 208 | 96.89 235 | 89.27 238 | 93.46 169 | 96.92 160 | 87.29 128 | 97.94 286 | 88.70 241 | 95.74 186 | 98.53 138 |
|
| miper_ehance_all_eth | | | 91.59 230 | 91.13 223 | 92.97 285 | 95.55 258 | 86.57 285 | 94.47 326 | 96.88 236 | 87.77 290 | 88.88 288 | 94.01 315 | 86.22 141 | 97.54 324 | 89.49 219 | 86.93 314 | 94.79 332 |
|
| v2v482 | | | 91.59 230 | 90.85 233 | 93.80 251 | 93.87 339 | 88.17 246 | 96.94 188 | 96.88 236 | 89.54 228 | 89.53 270 | 94.90 265 | 81.70 222 | 98.02 270 | 89.25 228 | 85.04 338 | 95.20 304 |
|
| CNLPA | | | 94.28 123 | 93.53 135 | 96.52 89 | 98.38 81 | 92.55 90 | 96.59 224 | 96.88 236 | 90.13 213 | 91.91 205 | 97.24 143 | 85.21 154 | 99.09 152 | 87.64 262 | 97.83 136 | 97.92 186 |
|
| PAPM | | | 91.52 237 | 90.30 257 | 95.20 171 | 95.30 278 | 89.83 189 | 93.38 365 | 96.85 239 | 86.26 322 | 88.59 295 | 95.80 222 | 84.88 158 | 98.15 247 | 75.67 378 | 95.93 182 | 97.63 201 |
|
| c3_l | | | 91.38 243 | 90.89 229 | 92.88 289 | 95.58 256 | 86.30 292 | 94.68 319 | 96.84 240 | 88.17 276 | 88.83 291 | 94.23 305 | 85.65 150 | 97.47 331 | 89.36 223 | 84.63 342 | 94.89 322 |
|
| pm-mvs1 | | | 90.72 275 | 89.65 289 | 93.96 241 | 94.29 329 | 89.63 192 | 97.79 93 | 96.82 241 | 89.07 243 | 86.12 344 | 95.48 243 | 78.61 277 | 97.78 303 | 86.97 277 | 81.67 368 | 94.46 343 |
|
| test_vis1_n | | | 92.37 198 | 92.26 183 | 92.72 295 | 94.75 309 | 82.64 344 | 98.02 59 | 96.80 242 | 91.18 174 | 97.77 41 | 97.93 91 | 58.02 396 | 98.29 236 | 97.63 25 | 98.21 124 | 97.23 224 |
|
| CMPMVS |  | 62.92 21 | 85.62 350 | 84.92 346 | 87.74 372 | 89.14 394 | 73.12 402 | 94.17 340 | 96.80 242 | 73.98 401 | 73.65 400 | 94.93 263 | 66.36 374 | 97.61 319 | 83.95 319 | 91.28 267 | 92.48 378 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MS-PatchMatch | | | 90.27 288 | 89.77 283 | 91.78 323 | 94.33 326 | 84.72 322 | 95.55 287 | 96.73 244 | 86.17 324 | 86.36 341 | 95.28 249 | 71.28 338 | 97.80 301 | 84.09 316 | 98.14 128 | 92.81 370 |
|
| Effi-MVS+-dtu | | | 93.08 170 | 93.21 149 | 92.68 298 | 96.02 240 | 83.25 339 | 97.14 172 | 96.72 245 | 93.85 79 | 91.20 230 | 93.44 339 | 83.08 189 | 98.30 235 | 91.69 178 | 95.73 187 | 96.50 242 |
|
| TSAR-MVS + GP. | | | 96.69 53 | 96.49 55 | 97.27 61 | 98.31 84 | 93.39 62 | 96.79 200 | 96.72 245 | 94.17 69 | 97.44 47 | 97.66 115 | 92.76 31 | 99.33 118 | 96.86 44 | 97.76 140 | 99.08 87 |
|
| 1112_ss | | | 93.37 158 | 92.42 179 | 96.21 119 | 97.05 165 | 90.99 151 | 96.31 245 | 96.72 245 | 86.87 311 | 89.83 260 | 96.69 172 | 86.51 137 | 99.14 145 | 88.12 246 | 93.67 231 | 98.50 142 |
|
| PVSNet | | 86.66 18 | 92.24 206 | 91.74 200 | 93.73 254 | 97.77 126 | 83.69 336 | 92.88 374 | 96.72 245 | 87.91 283 | 93.00 179 | 94.86 267 | 78.51 278 | 99.05 162 | 86.53 280 | 97.45 148 | 98.47 147 |
|
| miper_lstm_enhance | | | 90.50 284 | 90.06 272 | 91.83 319 | 95.33 275 | 83.74 333 | 93.86 351 | 96.70 249 | 87.56 297 | 87.79 314 | 93.81 323 | 83.45 182 | 96.92 355 | 87.39 267 | 84.62 343 | 94.82 327 |
|
| v148 | | | 90.99 264 | 90.38 253 | 92.81 292 | 93.83 340 | 85.80 300 | 96.78 202 | 96.68 250 | 89.45 233 | 88.75 293 | 93.93 319 | 82.96 195 | 97.82 299 | 87.83 252 | 83.25 360 | 94.80 330 |
|
| ACMH+ | | 87.92 14 | 90.20 292 | 89.18 299 | 93.25 275 | 96.48 212 | 86.45 289 | 96.99 184 | 96.68 250 | 88.83 255 | 84.79 355 | 96.22 200 | 70.16 347 | 98.53 215 | 84.42 313 | 88.04 302 | 94.77 335 |
|
| CANet_DTU | | | 94.37 121 | 93.65 130 | 96.55 87 | 96.46 215 | 92.13 106 | 96.21 253 | 96.67 252 | 94.38 66 | 93.53 167 | 97.03 155 | 79.34 261 | 99.71 49 | 90.76 194 | 98.45 116 | 97.82 194 |
|
| cl____ | | | 90.96 267 | 90.32 255 | 92.89 288 | 95.37 269 | 86.21 295 | 94.46 328 | 96.64 253 | 87.82 286 | 88.15 309 | 94.18 308 | 82.98 193 | 97.54 324 | 87.70 257 | 85.59 325 | 94.92 320 |
|
| HY-MVS | | 89.66 9 | 93.87 142 | 92.95 154 | 96.63 82 | 97.10 159 | 92.49 92 | 95.64 285 | 96.64 253 | 89.05 245 | 93.00 179 | 95.79 225 | 85.77 149 | 99.45 108 | 89.16 233 | 94.35 213 | 97.96 184 |
|
| Test_1112_low_res | | | 92.84 184 | 91.84 195 | 95.85 139 | 97.04 166 | 89.97 185 | 95.53 289 | 96.64 253 | 85.38 334 | 89.65 266 | 95.18 254 | 85.86 147 | 99.10 149 | 87.70 257 | 93.58 236 | 98.49 144 |
|
| DIV-MVS_self_test | | | 90.97 266 | 90.33 254 | 92.88 289 | 95.36 270 | 86.19 296 | 94.46 328 | 96.63 256 | 87.82 286 | 88.18 308 | 94.23 305 | 82.99 192 | 97.53 326 | 87.72 254 | 85.57 326 | 94.93 318 |
|
| Fast-Effi-MVS+-dtu | | | 92.29 203 | 91.99 190 | 93.21 278 | 95.27 279 | 85.52 304 | 97.03 177 | 96.63 256 | 92.09 144 | 89.11 284 | 95.14 256 | 80.33 244 | 98.08 258 | 87.54 265 | 94.74 209 | 96.03 259 |
|
| UnsupCasMVSNet_bld | | | 82.13 364 | 79.46 369 | 90.14 355 | 88.00 402 | 82.47 349 | 90.89 392 | 96.62 258 | 78.94 391 | 75.61 395 | 84.40 406 | 56.63 399 | 96.31 365 | 77.30 370 | 66.77 407 | 91.63 388 |
|
| cl22 | | | 91.21 254 | 90.56 249 | 93.14 280 | 96.09 238 | 86.80 277 | 94.41 330 | 96.58 259 | 87.80 288 | 88.58 296 | 93.99 317 | 80.85 235 | 97.62 318 | 89.87 210 | 86.93 314 | 94.99 313 |
|
| jason | | | 94.84 111 | 94.39 117 | 96.18 121 | 95.52 259 | 90.93 155 | 96.09 258 | 96.52 260 | 89.28 237 | 96.01 107 | 97.32 137 | 84.70 160 | 98.77 190 | 95.15 103 | 98.91 97 | 98.85 116 |
| jason: jason. |
| tt0805 | | | 91.09 259 | 90.07 271 | 94.16 229 | 95.61 254 | 88.31 238 | 97.56 124 | 96.51 261 | 89.56 227 | 89.17 282 | 95.64 234 | 67.08 372 | 98.38 229 | 91.07 190 | 88.44 300 | 95.80 267 |
|
| AUN-MVS | | | 91.76 222 | 90.75 239 | 94.81 194 | 97.00 170 | 88.57 231 | 96.65 215 | 96.49 262 | 89.63 225 | 92.15 198 | 96.12 206 | 78.66 276 | 98.50 217 | 90.83 192 | 79.18 379 | 97.36 216 |
|
| hse-mvs2 | | | 93.45 156 | 92.99 152 | 94.81 194 | 97.02 168 | 88.59 230 | 96.69 211 | 96.47 263 | 95.19 23 | 96.74 71 | 96.16 204 | 83.67 177 | 98.48 220 | 95.85 80 | 79.13 380 | 97.35 218 |
|
| EG-PatchMatch MVS | | | 87.02 334 | 85.44 338 | 91.76 325 | 92.67 368 | 85.00 316 | 96.08 259 | 96.45 264 | 83.41 364 | 79.52 387 | 93.49 336 | 57.10 398 | 97.72 309 | 79.34 361 | 90.87 276 | 92.56 375 |
|
| KD-MVS_self_test | | | 85.95 346 | 84.95 345 | 88.96 367 | 89.55 393 | 79.11 386 | 95.13 309 | 96.42 265 | 85.91 327 | 84.07 364 | 90.48 378 | 70.03 349 | 94.82 386 | 80.04 353 | 72.94 396 | 92.94 368 |
|
| pmmvs6 | | | 87.81 326 | 86.19 333 | 92.69 297 | 91.32 381 | 86.30 292 | 97.34 151 | 96.41 266 | 80.59 385 | 84.05 365 | 94.37 294 | 67.37 367 | 97.67 312 | 84.75 308 | 79.51 378 | 94.09 355 |
|
| PMMVS | | | 92.86 182 | 92.34 180 | 94.42 216 | 94.92 300 | 86.73 280 | 94.53 324 | 96.38 267 | 84.78 346 | 94.27 149 | 95.12 258 | 83.13 188 | 98.40 224 | 91.47 182 | 96.49 174 | 98.12 174 |
|
| RPSCF | | | 90.75 273 | 90.86 231 | 90.42 351 | 96.84 177 | 76.29 394 | 95.61 286 | 96.34 268 | 83.89 355 | 91.38 218 | 97.87 96 | 76.45 300 | 98.78 187 | 87.16 274 | 92.23 249 | 96.20 249 |
|
| BP-MVS1 | | | 95.89 79 | 95.49 79 | 97.08 72 | 96.67 192 | 93.20 72 | 98.08 53 | 96.32 269 | 94.56 54 | 96.32 92 | 97.84 101 | 84.07 172 | 99.15 142 | 96.75 46 | 98.78 100 | 98.90 108 |
|
| MSDG | | | 91.42 241 | 90.24 261 | 94.96 187 | 97.15 157 | 88.91 223 | 93.69 357 | 96.32 269 | 85.72 330 | 86.93 336 | 96.47 188 | 80.24 245 | 98.98 168 | 80.57 350 | 95.05 202 | 96.98 228 |
|
| WBMVS | | | 90.69 278 | 89.99 274 | 92.81 292 | 96.48 212 | 85.00 316 | 95.21 307 | 96.30 271 | 89.46 232 | 89.04 285 | 94.05 314 | 72.45 331 | 97.82 299 | 89.46 220 | 87.41 311 | 95.61 278 |
|
| OurMVSNet-221017-0 | | | 90.51 283 | 90.19 266 | 91.44 331 | 93.41 354 | 81.25 359 | 96.98 185 | 96.28 272 | 91.68 155 | 86.55 340 | 96.30 196 | 74.20 320 | 97.98 274 | 88.96 236 | 87.40 312 | 95.09 309 |
|
| MVP-Stereo | | | 90.74 274 | 90.08 268 | 92.71 296 | 93.19 359 | 88.20 244 | 95.86 270 | 96.27 273 | 86.07 325 | 84.86 354 | 94.76 272 | 77.84 290 | 97.75 307 | 83.88 321 | 98.01 131 | 92.17 385 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| lupinMVS | | | 94.99 106 | 94.56 108 | 96.29 113 | 96.34 222 | 91.21 141 | 95.83 272 | 96.27 273 | 88.93 251 | 96.22 97 | 96.88 162 | 86.20 143 | 98.85 180 | 95.27 99 | 99.05 89 | 98.82 120 |
|
| BH-untuned | | | 92.94 178 | 92.62 169 | 93.92 247 | 97.22 151 | 86.16 297 | 96.40 237 | 96.25 275 | 90.06 214 | 89.79 261 | 96.17 203 | 83.19 185 | 98.35 231 | 87.19 272 | 97.27 156 | 97.24 223 |
|
| CL-MVSNet_self_test | | | 86.31 341 | 85.15 342 | 89.80 359 | 88.83 397 | 81.74 357 | 93.93 348 | 96.22 276 | 86.67 313 | 85.03 352 | 90.80 376 | 78.09 286 | 94.50 387 | 74.92 381 | 71.86 398 | 93.15 366 |
|
| IS-MVSNet | | | 94.90 108 | 94.52 112 | 96.05 127 | 97.67 130 | 90.56 167 | 98.44 21 | 96.22 276 | 93.21 103 | 93.99 156 | 97.74 109 | 85.55 151 | 98.45 221 | 89.98 206 | 97.86 135 | 99.14 79 |
|
| FA-MVS(test-final) | | | 93.52 154 | 92.92 155 | 95.31 168 | 96.77 187 | 88.54 233 | 94.82 316 | 96.21 278 | 89.61 226 | 94.20 151 | 95.25 252 | 83.24 184 | 99.14 145 | 90.01 205 | 96.16 178 | 98.25 163 |
|
| GA-MVS | | | 91.38 243 | 90.31 256 | 94.59 204 | 94.65 314 | 87.62 260 | 94.34 333 | 96.19 279 | 90.73 188 | 90.35 241 | 93.83 320 | 71.84 334 | 97.96 281 | 87.22 271 | 93.61 234 | 98.21 166 |
|
| IterMVS-SCA-FT | | | 90.31 286 | 89.81 281 | 91.82 320 | 95.52 259 | 84.20 328 | 94.30 336 | 96.15 280 | 90.61 198 | 87.39 323 | 94.27 302 | 75.80 306 | 96.44 363 | 87.34 268 | 86.88 318 | 94.82 327 |
|
| IterMVS | | | 90.15 294 | 89.67 287 | 91.61 327 | 95.48 261 | 83.72 334 | 94.33 334 | 96.12 281 | 89.99 215 | 87.31 326 | 94.15 310 | 75.78 308 | 96.27 366 | 86.97 277 | 86.89 317 | 94.83 325 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 92.76 187 | 91.51 209 | 96.52 89 | 98.77 56 | 90.99 151 | 97.38 148 | 96.08 282 | 82.38 370 | 89.29 278 | 97.87 96 | 83.77 175 | 99.69 55 | 81.37 344 | 96.69 170 | 98.89 112 |
|
| pmmvs4 | | | 90.93 268 | 89.85 279 | 94.17 228 | 93.34 356 | 90.79 160 | 94.60 321 | 96.02 283 | 84.62 347 | 87.45 320 | 95.15 255 | 81.88 219 | 97.45 333 | 87.70 257 | 87.87 304 | 94.27 352 |
|
| ppachtmachnet_test | | | 88.35 321 | 87.29 320 | 91.53 328 | 92.45 374 | 83.57 337 | 93.75 354 | 95.97 284 | 84.28 350 | 85.32 351 | 94.18 308 | 79.00 273 | 96.93 354 | 75.71 377 | 84.99 339 | 94.10 353 |
|
| Anonymous20240521 | | | 86.42 339 | 85.44 338 | 89.34 365 | 90.33 386 | 79.79 378 | 96.73 205 | 95.92 285 | 83.71 360 | 83.25 370 | 91.36 373 | 63.92 385 | 96.01 367 | 78.39 365 | 85.36 330 | 92.22 383 |
|
| ITE_SJBPF | | | | | 92.43 301 | 95.34 272 | 85.37 309 | | 95.92 285 | 91.47 160 | 87.75 316 | 96.39 193 | 71.00 340 | 97.96 281 | 82.36 335 | 89.86 286 | 93.97 356 |
|
| test_fmvs2 | | | 89.77 304 | 89.93 276 | 89.31 366 | 93.68 345 | 76.37 393 | 97.64 115 | 95.90 287 | 89.84 221 | 91.49 216 | 96.26 199 | 58.77 395 | 97.10 347 | 94.65 118 | 91.13 269 | 94.46 343 |
|
| USDC | | | 88.94 312 | 87.83 317 | 92.27 307 | 94.66 313 | 84.96 318 | 93.86 351 | 95.90 287 | 87.34 302 | 83.40 368 | 95.56 238 | 67.43 366 | 98.19 244 | 82.64 334 | 89.67 288 | 93.66 359 |
|
| COLMAP_ROB |  | 87.81 15 | 90.40 285 | 89.28 297 | 93.79 252 | 97.95 115 | 87.13 272 | 96.92 189 | 95.89 289 | 82.83 367 | 86.88 338 | 97.18 146 | 73.77 324 | 99.29 125 | 78.44 364 | 93.62 233 | 94.95 314 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| VDD-MVS | | | 93.82 144 | 93.08 150 | 96.02 130 | 97.88 121 | 89.96 186 | 97.72 102 | 95.85 290 | 92.43 133 | 95.86 111 | 98.44 46 | 68.42 362 | 99.39 114 | 96.31 57 | 94.85 203 | 98.71 127 |
|
| VDDNet | | | 93.05 172 | 92.07 186 | 96.02 130 | 96.84 177 | 90.39 174 | 98.08 53 | 95.85 290 | 86.22 323 | 95.79 114 | 98.46 44 | 67.59 365 | 99.19 133 | 94.92 108 | 94.85 203 | 98.47 147 |
|
| mvsmamba | | | 94.57 117 | 94.14 121 | 95.87 136 | 97.03 167 | 89.93 187 | 97.84 85 | 95.85 290 | 91.34 166 | 94.79 137 | 96.80 164 | 80.67 236 | 98.81 184 | 94.85 109 | 98.12 129 | 98.85 116 |
|
| Vis-MVSNet (Re-imp) | | | 94.15 128 | 93.88 125 | 94.95 188 | 97.61 138 | 87.92 252 | 98.10 51 | 95.80 293 | 92.22 137 | 93.02 178 | 97.45 130 | 84.53 163 | 97.91 292 | 88.24 245 | 97.97 132 | 99.02 90 |
|
| MM | | | 97.29 22 | 96.98 29 | 98.23 11 | 98.01 111 | 95.03 26 | 98.07 55 | 95.76 294 | 97.78 1 | 97.52 44 | 98.80 25 | 88.09 107 | 99.86 9 | 99.44 1 | 99.37 61 | 99.80 1 |
|
| KD-MVS_2432*1600 | | | 84.81 354 | 82.64 358 | 91.31 333 | 91.07 383 | 85.34 310 | 91.22 387 | 95.75 295 | 85.56 332 | 83.09 371 | 90.21 381 | 67.21 368 | 95.89 369 | 77.18 371 | 62.48 411 | 92.69 371 |
|
| miper_refine_blended | | | 84.81 354 | 82.64 358 | 91.31 333 | 91.07 383 | 85.34 310 | 91.22 387 | 95.75 295 | 85.56 332 | 83.09 371 | 90.21 381 | 67.21 368 | 95.89 369 | 77.18 371 | 62.48 411 | 92.69 371 |
|
| FE-MVS | | | 92.05 213 | 91.05 225 | 95.08 177 | 96.83 179 | 87.93 251 | 93.91 350 | 95.70 297 | 86.30 320 | 94.15 153 | 94.97 260 | 76.59 298 | 99.21 131 | 84.10 315 | 96.86 163 | 98.09 178 |
|
| tpm cat1 | | | 88.36 320 | 87.21 323 | 91.81 321 | 95.13 290 | 80.55 368 | 92.58 378 | 95.70 297 | 74.97 400 | 87.45 320 | 91.96 367 | 78.01 289 | 98.17 246 | 80.39 352 | 88.74 297 | 96.72 238 |
|
| our_test_3 | | | 88.78 316 | 87.98 316 | 91.20 337 | 92.45 374 | 82.53 346 | 93.61 361 | 95.69 299 | 85.77 329 | 84.88 353 | 93.71 325 | 79.99 250 | 96.78 360 | 79.47 358 | 86.24 319 | 94.28 351 |
|
| BH-w/o | | | 92.14 211 | 91.75 198 | 93.31 273 | 96.99 171 | 85.73 301 | 95.67 280 | 95.69 299 | 88.73 261 | 89.26 280 | 94.82 270 | 82.97 194 | 98.07 262 | 85.26 303 | 96.32 177 | 96.13 255 |
|
| CR-MVSNet | | | 90.82 271 | 89.77 283 | 93.95 242 | 94.45 322 | 87.19 269 | 90.23 395 | 95.68 301 | 86.89 310 | 92.40 188 | 92.36 360 | 80.91 232 | 97.05 349 | 81.09 348 | 93.95 227 | 97.60 206 |
|
| Patchmtry | | | 88.64 318 | 87.25 321 | 92.78 294 | 94.09 332 | 86.64 281 | 89.82 399 | 95.68 301 | 80.81 382 | 87.63 318 | 92.36 360 | 80.91 232 | 97.03 350 | 78.86 362 | 85.12 335 | 94.67 338 |
|
| testing91 | | | 91.90 218 | 91.02 226 | 94.53 211 | 96.54 204 | 86.55 287 | 95.86 270 | 95.64 303 | 91.77 152 | 91.89 206 | 93.47 338 | 69.94 350 | 98.86 178 | 90.23 204 | 93.86 229 | 98.18 168 |
|
| BH-RMVSNet | | | 92.72 189 | 91.97 191 | 94.97 186 | 97.16 155 | 87.99 250 | 96.15 256 | 95.60 304 | 90.62 197 | 91.87 207 | 97.15 149 | 78.41 280 | 98.57 213 | 83.16 324 | 97.60 142 | 98.36 159 |
|
| PVSNet_0 | | 82.17 19 | 85.46 351 | 83.64 354 | 90.92 340 | 95.27 279 | 79.49 382 | 90.55 393 | 95.60 304 | 83.76 359 | 83.00 373 | 89.95 383 | 71.09 339 | 97.97 277 | 82.75 332 | 60.79 413 | 95.31 296 |
|
| SCA | | | 91.84 220 | 91.18 222 | 93.83 249 | 95.59 255 | 84.95 319 | 94.72 318 | 95.58 306 | 90.82 184 | 92.25 196 | 93.69 327 | 75.80 306 | 98.10 253 | 86.20 286 | 95.98 180 | 98.45 149 |
|
| MonoMVSNet | | | 91.92 216 | 91.77 196 | 92.37 302 | 92.94 363 | 83.11 340 | 97.09 175 | 95.55 307 | 92.91 123 | 90.85 233 | 94.55 282 | 81.27 228 | 96.52 362 | 93.01 154 | 87.76 305 | 97.47 212 |
|
| AllTest | | | 90.23 290 | 88.98 302 | 93.98 238 | 97.94 116 | 86.64 281 | 96.51 228 | 95.54 308 | 85.38 334 | 85.49 348 | 96.77 166 | 70.28 345 | 99.15 142 | 80.02 354 | 92.87 238 | 96.15 253 |
|
| TestCases | | | | | 93.98 238 | 97.94 116 | 86.64 281 | | 95.54 308 | 85.38 334 | 85.49 348 | 96.77 166 | 70.28 345 | 99.15 142 | 80.02 354 | 92.87 238 | 96.15 253 |
|
| mmtdpeth | | | 89.70 305 | 88.96 303 | 91.90 316 | 95.84 248 | 84.42 324 | 97.46 139 | 95.53 310 | 90.27 208 | 94.46 146 | 90.50 377 | 69.74 353 | 98.95 169 | 97.39 36 | 69.48 402 | 92.34 379 |
|
| tpmvs | | | 89.83 303 | 89.15 300 | 91.89 317 | 94.92 300 | 80.30 372 | 93.11 370 | 95.46 311 | 86.28 321 | 88.08 310 | 92.65 350 | 80.44 241 | 98.52 216 | 81.47 340 | 89.92 285 | 96.84 234 |
|
| pmmvs5 | | | 89.86 302 | 88.87 306 | 92.82 291 | 92.86 364 | 86.23 294 | 96.26 248 | 95.39 312 | 84.24 351 | 87.12 327 | 94.51 285 | 74.27 319 | 97.36 340 | 87.61 264 | 87.57 307 | 94.86 323 |
|
| PatchmatchNet |  | | 91.91 217 | 91.35 211 | 93.59 262 | 95.38 267 | 84.11 329 | 93.15 369 | 95.39 312 | 89.54 228 | 92.10 201 | 93.68 329 | 82.82 198 | 98.13 248 | 84.81 307 | 95.32 195 | 98.52 139 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpmrst | | | 91.44 240 | 91.32 213 | 91.79 322 | 95.15 288 | 79.20 385 | 93.42 364 | 95.37 314 | 88.55 266 | 93.49 168 | 93.67 330 | 82.49 206 | 98.27 237 | 90.41 199 | 89.34 291 | 97.90 187 |
|
| Anonymous20231206 | | | 87.09 333 | 86.14 334 | 89.93 358 | 91.22 382 | 80.35 370 | 96.11 257 | 95.35 315 | 83.57 362 | 84.16 360 | 93.02 345 | 73.54 326 | 95.61 377 | 72.16 393 | 86.14 321 | 93.84 358 |
|
| MIMVSNet1 | | | 84.93 353 | 83.05 355 | 90.56 349 | 89.56 392 | 84.84 321 | 95.40 294 | 95.35 315 | 83.91 354 | 80.38 383 | 92.21 364 | 57.23 397 | 93.34 399 | 70.69 399 | 82.75 366 | 93.50 361 |
|
| TDRefinement | | | 86.53 336 | 84.76 348 | 91.85 318 | 82.23 414 | 84.25 326 | 96.38 239 | 95.35 315 | 84.97 343 | 84.09 363 | 94.94 262 | 65.76 381 | 98.34 234 | 84.60 311 | 74.52 392 | 92.97 367 |
|
| TR-MVS | | | 91.48 239 | 90.59 247 | 94.16 229 | 96.40 218 | 87.33 262 | 95.67 280 | 95.34 318 | 87.68 294 | 91.46 217 | 95.52 241 | 76.77 297 | 98.35 231 | 82.85 329 | 93.61 234 | 96.79 236 |
|
| EPNet_dtu | | | 91.71 223 | 91.28 216 | 92.99 284 | 93.76 342 | 83.71 335 | 96.69 211 | 95.28 319 | 93.15 110 | 87.02 332 | 95.95 214 | 83.37 183 | 97.38 339 | 79.46 359 | 96.84 164 | 97.88 189 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| FMVSNet5 | | | 87.29 330 | 85.79 336 | 91.78 323 | 94.80 307 | 87.28 264 | 95.49 291 | 95.28 319 | 84.09 353 | 83.85 367 | 91.82 368 | 62.95 388 | 94.17 391 | 78.48 363 | 85.34 331 | 93.91 357 |
|
| MDTV_nov1_ep13 | | | | 90.76 237 | | 95.22 283 | 80.33 371 | 93.03 372 | 95.28 319 | 88.14 278 | 92.84 185 | 93.83 320 | 81.34 225 | 98.08 258 | 82.86 327 | 94.34 214 | |
|
| LF4IMVS | | | 87.94 324 | 87.25 321 | 89.98 357 | 92.38 376 | 80.05 377 | 94.38 331 | 95.25 322 | 87.59 296 | 84.34 357 | 94.74 274 | 64.31 384 | 97.66 314 | 84.83 306 | 87.45 308 | 92.23 382 |
|
| TransMVSNet (Re) | | | 88.94 312 | 87.56 318 | 93.08 282 | 94.35 325 | 88.45 237 | 97.73 99 | 95.23 323 | 87.47 298 | 84.26 359 | 95.29 247 | 79.86 253 | 97.33 341 | 79.44 360 | 74.44 393 | 93.45 363 |
|
| test20.03 | | | 86.14 344 | 85.40 340 | 88.35 368 | 90.12 387 | 80.06 376 | 95.90 269 | 95.20 324 | 88.59 262 | 81.29 378 | 93.62 332 | 71.43 337 | 92.65 402 | 71.26 397 | 81.17 371 | 92.34 379 |
|
| new-patchmatchnet | | | 83.18 360 | 81.87 363 | 87.11 375 | 86.88 405 | 75.99 395 | 93.70 355 | 95.18 325 | 85.02 342 | 77.30 394 | 88.40 393 | 65.99 379 | 93.88 396 | 74.19 386 | 70.18 400 | 91.47 392 |
|
| MDA-MVSNet_test_wron | | | 85.87 348 | 84.23 352 | 90.80 346 | 92.38 376 | 82.57 345 | 93.17 367 | 95.15 326 | 82.15 371 | 67.65 406 | 92.33 363 | 78.20 282 | 95.51 380 | 77.33 368 | 79.74 375 | 94.31 350 |
|
| YYNet1 | | | 85.87 348 | 84.23 352 | 90.78 347 | 92.38 376 | 82.46 350 | 93.17 367 | 95.14 327 | 82.12 372 | 67.69 404 | 92.36 360 | 78.16 285 | 95.50 381 | 77.31 369 | 79.73 376 | 94.39 346 |
|
| Baseline_NR-MVSNet | | | 91.20 255 | 90.62 245 | 92.95 286 | 93.83 340 | 88.03 249 | 97.01 182 | 95.12 328 | 88.42 270 | 89.70 263 | 95.13 257 | 83.47 180 | 97.44 334 | 89.66 216 | 83.24 361 | 93.37 364 |
|
| thres200 | | | 92.23 207 | 91.39 210 | 94.75 201 | 97.61 138 | 89.03 221 | 96.60 223 | 95.09 329 | 92.08 145 | 93.28 174 | 94.00 316 | 78.39 281 | 99.04 165 | 81.26 347 | 94.18 218 | 96.19 250 |
|
| ADS-MVSNet | | | 89.89 299 | 88.68 308 | 93.53 265 | 95.86 243 | 84.89 320 | 90.93 390 | 95.07 330 | 83.23 365 | 91.28 226 | 91.81 369 | 79.01 271 | 97.85 295 | 79.52 356 | 91.39 265 | 97.84 191 |
|
| pmmvs-eth3d | | | 86.22 342 | 84.45 350 | 91.53 328 | 88.34 401 | 87.25 266 | 94.47 326 | 95.01 331 | 83.47 363 | 79.51 388 | 89.61 386 | 69.75 352 | 95.71 374 | 83.13 325 | 76.73 387 | 91.64 387 |
|
| Anonymous202405211 | | | 92.07 212 | 90.83 235 | 95.76 141 | 98.19 98 | 88.75 226 | 97.58 121 | 95.00 332 | 86.00 326 | 93.64 163 | 97.45 130 | 66.24 377 | 99.53 94 | 90.68 197 | 92.71 243 | 99.01 93 |
|
| MDA-MVSNet-bldmvs | | | 85.00 352 | 82.95 357 | 91.17 338 | 93.13 361 | 83.33 338 | 94.56 323 | 95.00 332 | 84.57 348 | 65.13 410 | 92.65 350 | 70.45 344 | 95.85 371 | 73.57 389 | 77.49 383 | 94.33 348 |
|
| ambc | | | | | 86.56 378 | 83.60 411 | 70.00 405 | 85.69 409 | 94.97 334 | | 80.60 382 | 88.45 392 | 37.42 413 | 96.84 358 | 82.69 333 | 75.44 391 | 92.86 369 |
|
| testgi | | | 87.97 323 | 87.21 323 | 90.24 354 | 92.86 364 | 80.76 363 | 96.67 214 | 94.97 334 | 91.74 153 | 85.52 347 | 95.83 220 | 62.66 390 | 94.47 389 | 76.25 375 | 88.36 301 | 95.48 281 |
|
| dp | | | 88.90 314 | 88.26 314 | 90.81 344 | 94.58 318 | 76.62 392 | 92.85 375 | 94.93 336 | 85.12 340 | 90.07 255 | 93.07 344 | 75.81 305 | 98.12 251 | 80.53 351 | 87.42 310 | 97.71 198 |
|
| test_fmvs3 | | | 83.21 359 | 83.02 356 | 83.78 382 | 86.77 406 | 68.34 408 | 96.76 203 | 94.91 337 | 86.49 316 | 84.14 362 | 89.48 387 | 36.04 414 | 91.73 404 | 91.86 172 | 80.77 373 | 91.26 394 |
|
| test_0402 | | | 86.46 338 | 84.79 347 | 91.45 330 | 95.02 294 | 85.55 303 | 96.29 247 | 94.89 338 | 80.90 379 | 82.21 375 | 93.97 318 | 68.21 363 | 97.29 343 | 62.98 405 | 88.68 298 | 91.51 390 |
|
| tfpn200view9 | | | 92.38 197 | 91.52 207 | 94.95 188 | 97.85 122 | 89.29 211 | 97.41 141 | 94.88 339 | 92.19 141 | 93.27 175 | 94.46 290 | 78.17 283 | 99.08 155 | 81.40 341 | 94.08 222 | 96.48 243 |
|
| CVMVSNet | | | 91.23 253 | 91.75 198 | 89.67 360 | 95.77 249 | 74.69 396 | 96.44 229 | 94.88 339 | 85.81 328 | 92.18 197 | 97.64 119 | 79.07 266 | 95.58 379 | 88.06 248 | 95.86 184 | 98.74 124 |
|
| thres400 | | | 92.42 195 | 91.52 207 | 95.12 176 | 97.85 122 | 89.29 211 | 97.41 141 | 94.88 339 | 92.19 141 | 93.27 175 | 94.46 290 | 78.17 283 | 99.08 155 | 81.40 341 | 94.08 222 | 96.98 228 |
|
| EPNet | | | 95.20 99 | 94.56 108 | 97.14 68 | 92.80 366 | 92.68 86 | 97.85 84 | 94.87 342 | 96.64 2 | 92.46 187 | 97.80 106 | 86.23 140 | 99.65 61 | 93.72 137 | 98.62 107 | 99.10 85 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| testing99 | | | 91.62 228 | 90.72 242 | 94.32 221 | 96.48 212 | 86.11 298 | 95.81 273 | 94.76 343 | 91.55 157 | 91.75 211 | 93.44 339 | 68.55 360 | 98.82 182 | 90.43 198 | 93.69 230 | 98.04 181 |
|
| SixPastTwentyTwo | | | 89.15 310 | 88.54 310 | 90.98 339 | 93.49 351 | 80.28 373 | 96.70 209 | 94.70 344 | 90.78 185 | 84.15 361 | 95.57 237 | 71.78 335 | 97.71 310 | 84.63 310 | 85.07 336 | 94.94 316 |
|
| thres100view900 | | | 92.43 194 | 91.58 204 | 94.98 184 | 97.92 118 | 89.37 207 | 97.71 104 | 94.66 345 | 92.20 139 | 93.31 173 | 94.90 265 | 78.06 287 | 99.08 155 | 81.40 341 | 94.08 222 | 96.48 243 |
|
| thres600view7 | | | 92.49 193 | 91.60 203 | 95.18 172 | 97.91 119 | 89.47 201 | 97.65 111 | 94.66 345 | 92.18 143 | 93.33 172 | 94.91 264 | 78.06 287 | 99.10 149 | 81.61 338 | 94.06 226 | 96.98 228 |
|
| PatchT | | | 88.87 315 | 87.42 319 | 93.22 277 | 94.08 333 | 85.10 314 | 89.51 400 | 94.64 347 | 81.92 373 | 92.36 191 | 88.15 396 | 80.05 249 | 97.01 352 | 72.43 392 | 93.65 232 | 97.54 209 |
|
| baseline1 | | | 92.82 185 | 91.90 193 | 95.55 157 | 97.20 153 | 90.77 161 | 97.19 167 | 94.58 348 | 92.20 139 | 92.36 191 | 96.34 195 | 84.16 170 | 98.21 241 | 89.20 231 | 83.90 356 | 97.68 200 |
|
| UBG | | | 91.55 234 | 90.76 237 | 93.94 244 | 96.52 208 | 85.06 315 | 95.22 305 | 94.54 349 | 90.47 204 | 91.98 204 | 92.71 349 | 72.02 332 | 98.74 194 | 88.10 247 | 95.26 197 | 98.01 182 |
|
| Gipuma |  | | 67.86 380 | 65.41 382 | 75.18 395 | 92.66 369 | 73.45 399 | 66.50 416 | 94.52 350 | 53.33 415 | 57.80 416 | 66.07 416 | 30.81 416 | 89.20 408 | 48.15 414 | 78.88 382 | 62.90 416 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testing11 | | | 91.68 226 | 90.75 239 | 94.47 212 | 96.53 206 | 86.56 286 | 95.76 277 | 94.51 351 | 91.10 179 | 91.24 228 | 93.59 333 | 68.59 359 | 98.86 178 | 91.10 189 | 94.29 215 | 98.00 183 |
|
| CostFormer | | | 91.18 258 | 90.70 243 | 92.62 299 | 94.84 305 | 81.76 356 | 94.09 343 | 94.43 352 | 84.15 352 | 92.72 186 | 93.77 324 | 79.43 260 | 98.20 242 | 90.70 196 | 92.18 252 | 97.90 187 |
|
| tpm2 | | | 89.96 296 | 89.21 298 | 92.23 309 | 94.91 302 | 81.25 359 | 93.78 353 | 94.42 353 | 80.62 384 | 91.56 214 | 93.44 339 | 76.44 301 | 97.94 286 | 85.60 298 | 92.08 256 | 97.49 210 |
|
| MVS_0304 | | | 96.74 50 | 96.31 64 | 98.02 19 | 96.87 174 | 94.65 30 | 97.58 121 | 94.39 354 | 96.47 3 | 97.16 56 | 98.39 50 | 87.53 121 | 99.87 7 | 98.97 8 | 99.41 53 | 99.55 34 |
|
| JIA-IIPM | | | 88.26 322 | 87.04 326 | 91.91 315 | 93.52 349 | 81.42 358 | 89.38 401 | 94.38 355 | 80.84 381 | 90.93 232 | 80.74 408 | 79.22 263 | 97.92 289 | 82.76 331 | 91.62 260 | 96.38 246 |
|
| dmvs_re | | | 90.21 291 | 89.50 292 | 92.35 303 | 95.47 264 | 85.15 312 | 95.70 279 | 94.37 356 | 90.94 183 | 88.42 298 | 93.57 334 | 74.63 316 | 95.67 376 | 82.80 330 | 89.57 289 | 96.22 248 |
|
| Patchmatch-test | | | 89.42 308 | 87.99 315 | 93.70 257 | 95.27 279 | 85.11 313 | 88.98 402 | 94.37 356 | 81.11 378 | 87.10 330 | 93.69 327 | 82.28 210 | 97.50 329 | 74.37 384 | 94.76 207 | 98.48 146 |
|
| LCM-MVSNet | | | 72.55 373 | 69.39 377 | 82.03 384 | 70.81 424 | 65.42 413 | 90.12 397 | 94.36 358 | 55.02 414 | 65.88 408 | 81.72 407 | 24.16 422 | 89.96 405 | 74.32 385 | 68.10 405 | 90.71 397 |
|
| ADS-MVSNet2 | | | 89.45 307 | 88.59 309 | 92.03 312 | 95.86 243 | 82.26 352 | 90.93 390 | 94.32 359 | 83.23 365 | 91.28 226 | 91.81 369 | 79.01 271 | 95.99 368 | 79.52 356 | 91.39 265 | 97.84 191 |
|
| mvs5depth | | | 86.53 336 | 85.08 343 | 90.87 341 | 88.74 399 | 82.52 347 | 91.91 383 | 94.23 360 | 86.35 319 | 87.11 329 | 93.70 326 | 66.52 373 | 97.76 306 | 81.37 344 | 75.80 389 | 92.31 381 |
|
| EU-MVSNet | | | 88.72 317 | 88.90 305 | 88.20 370 | 93.15 360 | 74.21 397 | 96.63 220 | 94.22 361 | 85.18 338 | 87.32 325 | 95.97 212 | 76.16 303 | 94.98 385 | 85.27 302 | 86.17 320 | 95.41 286 |
|
| MIMVSNet | | | 88.50 319 | 86.76 329 | 93.72 256 | 94.84 305 | 87.77 258 | 91.39 385 | 94.05 362 | 86.41 318 | 87.99 312 | 92.59 353 | 63.27 386 | 95.82 373 | 77.44 367 | 92.84 240 | 97.57 208 |
|
| OpenMVS_ROB |  | 81.14 20 | 84.42 356 | 82.28 362 | 90.83 342 | 90.06 388 | 84.05 331 | 95.73 278 | 94.04 363 | 73.89 403 | 80.17 386 | 91.53 372 | 59.15 394 | 97.64 315 | 66.92 403 | 89.05 293 | 90.80 396 |
|
| TinyColmap | | | 86.82 335 | 85.35 341 | 91.21 335 | 94.91 302 | 82.99 342 | 93.94 347 | 94.02 364 | 83.58 361 | 81.56 377 | 94.68 276 | 62.34 391 | 98.13 248 | 75.78 376 | 87.35 313 | 92.52 377 |
|
| ETVMVS | | | 90.52 282 | 89.14 301 | 94.67 203 | 96.81 183 | 87.85 256 | 95.91 268 | 93.97 365 | 89.71 224 | 92.34 194 | 92.48 355 | 65.41 382 | 97.96 281 | 81.37 344 | 94.27 216 | 98.21 166 |
|
| IB-MVS | | 87.33 17 | 89.91 297 | 88.28 313 | 94.79 198 | 95.26 282 | 87.70 259 | 95.12 310 | 93.95 366 | 89.35 236 | 87.03 331 | 92.49 354 | 70.74 342 | 99.19 133 | 89.18 232 | 81.37 370 | 97.49 210 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| Syy-MVS | | | 87.13 332 | 87.02 327 | 87.47 373 | 95.16 286 | 73.21 401 | 95.00 312 | 93.93 367 | 88.55 266 | 86.96 333 | 91.99 365 | 75.90 304 | 94.00 393 | 61.59 407 | 94.11 219 | 95.20 304 |
|
| myMVS_eth3d | | | 87.18 331 | 86.38 331 | 89.58 361 | 95.16 286 | 79.53 380 | 95.00 312 | 93.93 367 | 88.55 266 | 86.96 333 | 91.99 365 | 56.23 400 | 94.00 393 | 75.47 380 | 94.11 219 | 95.20 304 |
|
| testing222 | | | 90.31 286 | 88.96 303 | 94.35 218 | 96.54 204 | 87.29 263 | 95.50 290 | 93.84 369 | 90.97 182 | 91.75 211 | 92.96 346 | 62.18 392 | 98.00 272 | 82.86 327 | 94.08 222 | 97.76 196 |
|
| test_f | | | 80.57 366 | 79.62 368 | 83.41 383 | 83.38 412 | 67.80 410 | 93.57 362 | 93.72 370 | 80.80 383 | 77.91 393 | 87.63 399 | 33.40 415 | 92.08 403 | 87.14 275 | 79.04 381 | 90.34 398 |
|
| LCM-MVSNet-Re | | | 92.50 191 | 92.52 175 | 92.44 300 | 96.82 181 | 81.89 355 | 96.92 189 | 93.71 371 | 92.41 134 | 84.30 358 | 94.60 280 | 85.08 156 | 97.03 350 | 91.51 180 | 97.36 150 | 98.40 155 |
|
| tpm | | | 90.25 289 | 89.74 286 | 91.76 325 | 93.92 336 | 79.73 379 | 93.98 344 | 93.54 372 | 88.28 273 | 91.99 203 | 93.25 343 | 77.51 293 | 97.44 334 | 87.30 270 | 87.94 303 | 98.12 174 |
|
| ET-MVSNet_ETH3D | | | 91.49 238 | 90.11 267 | 95.63 151 | 96.40 218 | 91.57 127 | 95.34 296 | 93.48 373 | 90.60 200 | 75.58 396 | 95.49 242 | 80.08 248 | 96.79 359 | 94.25 125 | 89.76 287 | 98.52 139 |
|
| LFMVS | | | 93.60 150 | 92.63 168 | 96.52 89 | 98.13 103 | 91.27 138 | 97.94 73 | 93.39 374 | 90.57 201 | 96.29 94 | 98.31 63 | 69.00 355 | 99.16 140 | 94.18 126 | 95.87 183 | 99.12 83 |
|
| MVStest1 | | | 82.38 363 | 80.04 367 | 89.37 363 | 87.63 404 | 82.83 343 | 95.03 311 | 93.37 375 | 73.90 402 | 73.50 401 | 94.35 295 | 62.89 389 | 93.25 400 | 73.80 387 | 65.92 408 | 92.04 386 |
|
| Patchmatch-RL test | | | 87.38 329 | 86.24 332 | 90.81 344 | 88.74 399 | 78.40 389 | 88.12 407 | 93.17 376 | 87.11 307 | 82.17 376 | 89.29 388 | 81.95 217 | 95.60 378 | 88.64 242 | 77.02 384 | 98.41 154 |
|
| ttmdpeth | | | 85.91 347 | 84.76 348 | 89.36 364 | 89.14 394 | 80.25 374 | 95.66 283 | 93.16 377 | 83.77 358 | 83.39 369 | 95.26 251 | 66.24 377 | 95.26 384 | 80.65 349 | 75.57 390 | 92.57 374 |
|
| test-LLR | | | 91.42 241 | 91.19 221 | 92.12 310 | 94.59 316 | 80.66 365 | 94.29 337 | 92.98 378 | 91.11 177 | 90.76 235 | 92.37 357 | 79.02 269 | 98.07 262 | 88.81 238 | 96.74 167 | 97.63 201 |
|
| test-mter | | | 90.19 293 | 89.54 291 | 92.12 310 | 94.59 316 | 80.66 365 | 94.29 337 | 92.98 378 | 87.68 294 | 90.76 235 | 92.37 357 | 67.67 364 | 98.07 262 | 88.81 238 | 96.74 167 | 97.63 201 |
|
| WB-MVSnew | | | 89.88 300 | 89.56 290 | 90.82 343 | 94.57 319 | 83.06 341 | 95.65 284 | 92.85 380 | 87.86 285 | 90.83 234 | 94.10 311 | 79.66 257 | 96.88 356 | 76.34 374 | 94.19 217 | 92.54 376 |
|
| testing3 | | | 87.67 327 | 86.88 328 | 90.05 356 | 96.14 234 | 80.71 364 | 97.10 174 | 92.85 380 | 90.15 212 | 87.54 319 | 94.55 282 | 55.70 401 | 94.10 392 | 73.77 388 | 94.10 221 | 95.35 293 |
|
| test_method | | | 66.11 381 | 64.89 383 | 69.79 398 | 72.62 422 | 35.23 430 | 65.19 417 | 92.83 382 | 20.35 420 | 65.20 409 | 88.08 397 | 43.14 411 | 82.70 415 | 73.12 391 | 63.46 410 | 91.45 393 |
|
| test0.0.03 1 | | | 89.37 309 | 88.70 307 | 91.41 332 | 92.47 373 | 85.63 302 | 95.22 305 | 92.70 383 | 91.11 177 | 86.91 337 | 93.65 331 | 79.02 269 | 93.19 401 | 78.00 366 | 89.18 292 | 95.41 286 |
|
| new_pmnet | | | 82.89 361 | 81.12 366 | 88.18 371 | 89.63 391 | 80.18 375 | 91.77 384 | 92.57 384 | 76.79 398 | 75.56 397 | 88.23 395 | 61.22 393 | 94.48 388 | 71.43 395 | 82.92 364 | 89.87 399 |
|
| mvsany_test1 | | | 93.93 140 | 93.98 123 | 93.78 253 | 94.94 299 | 86.80 277 | 94.62 320 | 92.55 385 | 88.77 260 | 96.85 66 | 98.49 40 | 88.98 93 | 98.08 258 | 95.03 105 | 95.62 190 | 96.46 245 |
|
| thisisatest0515 | | | 92.29 203 | 91.30 215 | 95.25 170 | 96.60 196 | 88.90 224 | 94.36 332 | 92.32 386 | 87.92 282 | 93.43 170 | 94.57 281 | 77.28 294 | 99.00 166 | 89.42 222 | 95.86 184 | 97.86 190 |
|
| thisisatest0530 | | | 93.03 173 | 92.21 184 | 95.49 161 | 97.07 160 | 89.11 220 | 97.49 136 | 92.19 387 | 90.16 211 | 94.09 154 | 96.41 191 | 76.43 302 | 99.05 162 | 90.38 200 | 95.68 189 | 98.31 161 |
|
| tttt0517 | | | 92.96 176 | 92.33 181 | 94.87 191 | 97.11 158 | 87.16 271 | 97.97 69 | 92.09 388 | 90.63 196 | 93.88 160 | 97.01 156 | 76.50 299 | 99.06 161 | 90.29 203 | 95.45 193 | 98.38 157 |
|
| K. test v3 | | | 87.64 328 | 86.75 330 | 90.32 353 | 93.02 362 | 79.48 383 | 96.61 221 | 92.08 389 | 90.66 194 | 80.25 385 | 94.09 312 | 67.21 368 | 96.65 361 | 85.96 294 | 80.83 372 | 94.83 325 |
|
| TESTMET0.1,1 | | | 90.06 295 | 89.42 294 | 91.97 313 | 94.41 324 | 80.62 367 | 94.29 337 | 91.97 390 | 87.28 304 | 90.44 239 | 92.47 356 | 68.79 356 | 97.67 312 | 88.50 244 | 96.60 172 | 97.61 205 |
|
| PM-MVS | | | 83.48 358 | 81.86 364 | 88.31 369 | 87.83 403 | 77.59 391 | 93.43 363 | 91.75 391 | 86.91 309 | 80.63 381 | 89.91 384 | 44.42 410 | 95.84 372 | 85.17 305 | 76.73 387 | 91.50 391 |
|
| baseline2 | | | 91.63 227 | 90.86 231 | 93.94 244 | 94.33 326 | 86.32 291 | 95.92 267 | 91.64 392 | 89.37 235 | 86.94 335 | 94.69 275 | 81.62 223 | 98.69 200 | 88.64 242 | 94.57 212 | 96.81 235 |
|
| APD_test1 | | | 79.31 368 | 77.70 371 | 84.14 381 | 89.11 396 | 69.07 407 | 92.36 382 | 91.50 393 | 69.07 406 | 73.87 399 | 92.63 352 | 39.93 412 | 94.32 390 | 70.54 400 | 80.25 374 | 89.02 401 |
|
| FPMVS | | | 71.27 374 | 69.85 376 | 75.50 394 | 74.64 419 | 59.03 419 | 91.30 386 | 91.50 393 | 58.80 411 | 57.92 415 | 88.28 394 | 29.98 418 | 85.53 414 | 53.43 412 | 82.84 365 | 81.95 407 |
|
| door | | | | | | | | | 91.13 395 | | | | | | | | |
|
| door-mid | | | | | | | | | 91.06 396 | | | | | | | | |
|
| EGC-MVSNET | | | 68.77 379 | 63.01 385 | 86.07 380 | 92.49 372 | 82.24 353 | 93.96 346 | 90.96 397 | 0.71 425 | 2.62 426 | 90.89 375 | 53.66 402 | 93.46 397 | 57.25 410 | 84.55 346 | 82.51 406 |
|
| mvsany_test3 | | | 83.59 357 | 82.44 361 | 87.03 376 | 83.80 409 | 73.82 398 | 93.70 355 | 90.92 398 | 86.42 317 | 82.51 374 | 90.26 380 | 46.76 409 | 95.71 374 | 90.82 193 | 76.76 386 | 91.57 389 |
|
| pmmvs3 | | | 79.97 367 | 77.50 372 | 87.39 374 | 82.80 413 | 79.38 384 | 92.70 377 | 90.75 399 | 70.69 405 | 78.66 390 | 87.47 401 | 51.34 405 | 93.40 398 | 73.39 390 | 69.65 401 | 89.38 400 |
|
| UWE-MVS | | | 89.91 297 | 89.48 293 | 91.21 335 | 95.88 242 | 78.23 390 | 94.91 315 | 90.26 400 | 89.11 242 | 92.35 193 | 94.52 284 | 68.76 357 | 97.96 281 | 83.95 319 | 95.59 191 | 97.42 214 |
|
| DSMNet-mixed | | | 86.34 340 | 86.12 335 | 87.00 377 | 89.88 390 | 70.43 403 | 94.93 314 | 90.08 401 | 77.97 395 | 85.42 350 | 92.78 348 | 74.44 318 | 93.96 395 | 74.43 383 | 95.14 198 | 96.62 239 |
|
| MVS-HIRNet | | | 82.47 362 | 81.21 365 | 86.26 379 | 95.38 267 | 69.21 406 | 88.96 403 | 89.49 402 | 66.28 408 | 80.79 380 | 74.08 413 | 68.48 361 | 97.39 338 | 71.93 394 | 95.47 192 | 92.18 384 |
|
| WB-MVS | | | 76.77 370 | 76.63 373 | 77.18 389 | 85.32 407 | 56.82 421 | 94.53 324 | 89.39 403 | 82.66 369 | 71.35 402 | 89.18 389 | 75.03 313 | 88.88 409 | 35.42 418 | 66.79 406 | 85.84 403 |
|
| test1111 | | | 93.19 165 | 92.82 159 | 94.30 224 | 97.58 144 | 84.56 323 | 98.21 42 | 89.02 404 | 93.53 92 | 94.58 141 | 98.21 70 | 72.69 328 | 99.05 162 | 93.06 150 | 98.48 114 | 99.28 68 |
|
| SSC-MVS | | | 76.05 371 | 75.83 374 | 76.72 393 | 84.77 408 | 56.22 422 | 94.32 335 | 88.96 405 | 81.82 375 | 70.52 403 | 88.91 390 | 74.79 315 | 88.71 410 | 33.69 419 | 64.71 409 | 85.23 404 |
|
| ECVR-MVS |  | | 93.19 165 | 92.73 165 | 94.57 209 | 97.66 132 | 85.41 306 | 98.21 42 | 88.23 406 | 93.43 96 | 94.70 139 | 98.21 70 | 72.57 329 | 99.07 159 | 93.05 151 | 98.49 112 | 99.25 71 |
|
| EPMVS | | | 90.70 276 | 89.81 281 | 93.37 271 | 94.73 311 | 84.21 327 | 93.67 358 | 88.02 407 | 89.50 230 | 92.38 190 | 93.49 336 | 77.82 291 | 97.78 303 | 86.03 292 | 92.68 244 | 98.11 177 |
|
| ANet_high | | | 63.94 383 | 59.58 386 | 77.02 390 | 61.24 426 | 66.06 411 | 85.66 410 | 87.93 408 | 78.53 393 | 42.94 418 | 71.04 415 | 25.42 421 | 80.71 417 | 52.60 413 | 30.83 419 | 84.28 405 |
|
| PMMVS2 | | | 70.19 375 | 66.92 379 | 80.01 385 | 76.35 418 | 65.67 412 | 86.22 408 | 87.58 409 | 64.83 410 | 62.38 411 | 80.29 410 | 26.78 420 | 88.49 412 | 63.79 404 | 54.07 415 | 85.88 402 |
|
| lessismore_v0 | | | | | 90.45 350 | 91.96 379 | 79.09 387 | | 87.19 410 | | 80.32 384 | 94.39 292 | 66.31 376 | 97.55 323 | 84.00 318 | 76.84 385 | 94.70 337 |
|
| PMVS |  | 53.92 22 | 58.58 384 | 55.40 387 | 68.12 399 | 51.00 427 | 48.64 424 | 78.86 413 | 87.10 411 | 46.77 416 | 35.84 422 | 74.28 412 | 8.76 426 | 86.34 413 | 42.07 416 | 73.91 394 | 69.38 413 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis1_rt | | | 86.16 343 | 85.06 344 | 89.46 362 | 93.47 353 | 80.46 369 | 96.41 233 | 86.61 412 | 85.22 337 | 79.15 389 | 88.64 391 | 52.41 404 | 97.06 348 | 93.08 149 | 90.57 278 | 90.87 395 |
|
| testf1 | | | 69.31 377 | 66.76 380 | 76.94 391 | 78.61 416 | 61.93 415 | 88.27 405 | 86.11 413 | 55.62 412 | 59.69 412 | 85.31 404 | 20.19 424 | 89.32 406 | 57.62 408 | 69.44 403 | 79.58 408 |
|
| APD_test2 | | | 69.31 377 | 66.76 380 | 76.94 391 | 78.61 416 | 61.93 415 | 88.27 405 | 86.11 413 | 55.62 412 | 59.69 412 | 85.31 404 | 20.19 424 | 89.32 406 | 57.62 408 | 69.44 403 | 79.58 408 |
|
| gg-mvs-nofinetune | | | 87.82 325 | 85.61 337 | 94.44 214 | 94.46 321 | 89.27 214 | 91.21 389 | 84.61 415 | 80.88 380 | 89.89 259 | 74.98 411 | 71.50 336 | 97.53 326 | 85.75 297 | 97.21 158 | 96.51 241 |
|
| dmvs_testset | | | 81.38 365 | 82.60 360 | 77.73 388 | 91.74 380 | 51.49 423 | 93.03 372 | 84.21 416 | 89.07 243 | 78.28 392 | 91.25 374 | 76.97 296 | 88.53 411 | 56.57 411 | 82.24 367 | 93.16 365 |
|
| GG-mvs-BLEND | | | | | 93.62 260 | 93.69 344 | 89.20 216 | 92.39 381 | 83.33 417 | | 87.98 313 | 89.84 385 | 71.00 340 | 96.87 357 | 82.08 337 | 95.40 194 | 94.80 330 |
|
| MTMP | | | | | | | | 97.86 81 | 82.03 418 | | | | | | | | |
|
| DeepMVS_CX |  | | | | 74.68 396 | 90.84 385 | 64.34 414 | | 81.61 419 | 65.34 409 | 67.47 407 | 88.01 398 | 48.60 408 | 80.13 418 | 62.33 406 | 73.68 395 | 79.58 408 |
|
| E-PMN | | | 53.28 385 | 52.56 389 | 55.43 402 | 74.43 420 | 47.13 425 | 83.63 412 | 76.30 420 | 42.23 417 | 42.59 419 | 62.22 418 | 28.57 419 | 74.40 419 | 31.53 420 | 31.51 418 | 44.78 417 |
|
| test2506 | | | 91.60 229 | 90.78 236 | 94.04 235 | 97.66 132 | 83.81 332 | 98.27 32 | 75.53 421 | 93.43 96 | 95.23 128 | 98.21 70 | 67.21 368 | 99.07 159 | 93.01 154 | 98.49 112 | 99.25 71 |
|
| EMVS | | | 52.08 387 | 51.31 390 | 54.39 403 | 72.62 422 | 45.39 427 | 83.84 411 | 75.51 422 | 41.13 418 | 40.77 420 | 59.65 419 | 30.08 417 | 73.60 420 | 28.31 422 | 29.90 420 | 44.18 418 |
|
| test_vis3_rt | | | 72.73 372 | 70.55 375 | 79.27 386 | 80.02 415 | 68.13 409 | 93.92 349 | 74.30 423 | 76.90 397 | 58.99 414 | 73.58 414 | 20.29 423 | 95.37 382 | 84.16 314 | 72.80 397 | 74.31 411 |
|
| MVE |  | 50.73 23 | 53.25 386 | 48.81 391 | 66.58 401 | 65.34 425 | 57.50 420 | 72.49 415 | 70.94 424 | 40.15 419 | 39.28 421 | 63.51 417 | 6.89 428 | 73.48 421 | 38.29 417 | 42.38 417 | 68.76 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 51.94 388 | 53.82 388 | 46.29 404 | 33.73 428 | 45.30 428 | 78.32 414 | 67.24 425 | 18.02 421 | 50.93 417 | 87.05 402 | 52.99 403 | 53.11 423 | 70.76 398 | 25.29 421 | 40.46 419 |
|
| kuosan | | | 65.27 382 | 64.66 384 | 67.11 400 | 83.80 409 | 61.32 418 | 88.53 404 | 60.77 426 | 68.22 407 | 67.67 405 | 80.52 409 | 49.12 407 | 70.76 422 | 29.67 421 | 53.64 416 | 69.26 414 |
|
| dongtai | | | 69.99 376 | 69.33 378 | 71.98 397 | 88.78 398 | 61.64 417 | 89.86 398 | 59.93 427 | 75.67 399 | 74.96 398 | 85.45 403 | 50.19 406 | 81.66 416 | 43.86 415 | 55.27 414 | 72.63 412 |
|
| N_pmnet | | | 78.73 369 | 78.71 370 | 78.79 387 | 92.80 366 | 46.50 426 | 94.14 341 | 43.71 428 | 78.61 392 | 80.83 379 | 91.66 371 | 74.94 314 | 96.36 364 | 67.24 402 | 84.45 348 | 93.50 361 |
|
| wuyk23d | | | 25.11 389 | 24.57 393 | 26.74 405 | 73.98 421 | 39.89 429 | 57.88 418 | 9.80 429 | 12.27 422 | 10.39 423 | 6.97 425 | 7.03 427 | 36.44 424 | 25.43 423 | 17.39 422 | 3.89 422 |
|
| testmvs | | | 13.36 391 | 16.33 394 | 4.48 407 | 5.04 429 | 2.26 432 | 93.18 366 | 3.28 430 | 2.70 423 | 8.24 424 | 21.66 421 | 2.29 430 | 2.19 425 | 7.58 424 | 2.96 423 | 9.00 421 |
|
| test123 | | | 13.04 392 | 15.66 395 | 5.18 406 | 4.51 430 | 3.45 431 | 92.50 380 | 1.81 431 | 2.50 424 | 7.58 425 | 20.15 422 | 3.67 429 | 2.18 426 | 7.13 425 | 1.07 424 | 9.90 420 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 7.39 394 | 9.85 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 88.65 100 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| ab-mvs-re | | | 8.06 393 | 10.74 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 96.69 172 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 79.53 380 | | | | | | | | 75.56 379 | | |
|
| PC_three_1452 | | | | | | | | | | 90.77 186 | 98.89 14 | 98.28 68 | 96.24 1 | 98.35 231 | 95.76 84 | 99.58 23 | 99.59 24 |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 98.55 3 | 98.82 55 | 96.86 3 | 98.25 35 | | | | 98.26 69 | 96.04 2 | 99.24 128 | 95.36 98 | 99.59 19 | 99.56 31 |
|
| test_0728_THIRD | | | | | | | | | | 94.78 44 | 98.73 18 | 98.87 18 | 95.87 4 | 99.84 23 | 97.45 32 | 99.72 2 | 99.77 2 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.45 149 |
|
| test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 30 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 82.76 199 | | | | 98.45 149 |
|
| sam_mvs | | | | | | | | | | | | | 81.94 218 | | | | |
|
| test_post1 | | | | | | | | 92.81 376 | | | | 16.58 424 | 80.53 239 | 97.68 311 | 86.20 286 | | |
|
| test_post | | | | | | | | | | | | 17.58 423 | 81.76 220 | 98.08 258 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 90.45 379 | 82.65 203 | 98.10 253 | | | |
|
| gm-plane-assit | | | | | | 93.22 358 | 78.89 388 | | | 84.82 345 | | 93.52 335 | | 98.64 205 | 87.72 254 | | |
|
| test9_res | | | | | | | | | | | | | | | 94.81 113 | 99.38 58 | 99.45 50 |
|
| agg_prior2 | | | | | | | | | | | | | | | 93.94 131 | 99.38 58 | 99.50 43 |
|
| test_prior4 | | | | | | | 93.66 57 | 96.42 232 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 96.35 241 | | 92.80 127 | 96.03 104 | 97.59 123 | 92.01 47 | | 95.01 106 | 99.38 58 | |
|
| 旧先验2 | | | | | | | | 95.94 266 | | 81.66 376 | 97.34 52 | | | 98.82 182 | 92.26 159 | | |
|
| 新几何2 | | | | | | | | 95.79 275 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 95.67 280 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.67 59 | 85.96 294 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.89 30 | | | | |
|
| testdata1 | | | | | | | | 95.26 304 | | 93.10 113 | | | | | | | |
|
| plane_prior7 | | | | | | 96.21 226 | 89.98 184 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 96.10 237 | 90.00 180 | | | | | | 81.32 226 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 96.64 175 | | | | | |
|
| plane_prior3 | | | | | | | 90.00 180 | | | 94.46 60 | 91.34 220 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.74 97 | | 94.85 37 | | | | | | | |
|
| plane_prior1 | | | | | | 96.14 234 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 89.99 182 | 97.24 160 | | 94.06 72 | | | | | | 92.16 253 | |
|
| HQP5-MVS | | | | | | | 89.33 209 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 95.86 243 | | 96.65 215 | | 93.55 88 | 90.14 244 | | | | | | |
|
| ACMP_Plane | | | | | | 95.86 243 | | 96.65 215 | | 93.55 88 | 90.14 244 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.13 165 | | |
|
| HQP4-MVS | | | | | | | | | | | 90.14 244 | | | 98.50 217 | | | 95.78 269 |
|
| HQP2-MVS | | | | | | | | | | | | | 80.95 230 | | | | |
|
| NP-MVS | | | | | | 95.99 241 | 89.81 190 | | | | | 95.87 217 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 70.35 404 | 93.10 371 | | 83.88 356 | 93.55 165 | | 82.47 207 | | 86.25 285 | | 98.38 157 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 283 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.02 272 | |
|
| Test By Simon | | | | | | | | | | | | | 88.73 99 | | | | |
|