This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 799.30 298.92 1692.39 4199.79 3699.16 799.46 4198.08 180
PGM-MVS96.81 4696.53 5597.65 4299.35 2093.53 6097.65 11298.98 292.22 14097.14 6198.44 4991.17 6799.85 1894.35 12799.46 4199.57 28
MVS_111021_HR96.68 5696.58 5496.99 7598.46 7392.31 9896.20 25798.90 394.30 7195.86 11497.74 11292.33 4299.38 11996.04 7799.42 5099.28 68
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14992.37 9597.91 7698.88 495.83 1198.92 1599.05 891.45 5799.80 3399.12 899.46 4199.69 12
ACMMPcopyleft96.27 7195.93 7497.28 6099.24 2892.62 8798.25 3598.81 592.99 11894.56 14598.39 5388.96 9499.85 1894.57 12597.63 14499.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 7296.19 7196.39 10598.23 9491.35 13696.24 25598.79 693.99 7795.80 11697.65 11989.92 8699.24 13195.87 8199.20 7698.58 136
patch_mono-296.83 4597.44 1695.01 18499.05 3985.39 31196.98 18898.77 794.70 5197.99 3698.66 3293.61 1999.91 197.67 2799.50 3599.72 11
fmvsm_s_conf0.5_n96.85 4297.13 2096.04 12998.07 10890.28 17897.97 6998.76 894.93 3698.84 1999.06 788.80 9799.65 6499.06 998.63 10798.18 169
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8898.73 995.04 3499.30 298.84 2693.34 2299.78 3999.32 399.13 8499.50 43
fmvsm_s_conf0.5_n_a96.75 5096.93 3396.20 12197.64 13690.72 16498.00 6198.73 994.55 5898.91 1699.08 488.22 10699.63 7398.91 1298.37 12098.25 164
FC-MVSNet-test93.94 14293.57 13595.04 18295.48 26491.45 13398.12 5098.71 1193.37 10190.23 24696.70 17387.66 11697.85 29891.49 18490.39 28595.83 268
UniMVSNet (Re)93.31 16392.55 17595.61 15695.39 26993.34 6697.39 14998.71 1193.14 11490.10 25594.83 27287.71 11598.03 27291.67 18283.99 35595.46 287
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9298.68 1394.93 3699.24 598.87 2193.52 2099.79 3699.32 399.21 7499.40 57
FIs94.09 13693.70 13195.27 17295.70 25492.03 10998.10 5198.68 1393.36 10390.39 24396.70 17387.63 11997.94 28992.25 16490.50 28495.84 267
WR-MVS_H92.00 21791.35 21493.95 24595.09 29589.47 20498.04 5898.68 1391.46 16488.34 30494.68 27985.86 14897.56 32585.77 29984.24 35394.82 330
VPA-MVSNet93.24 16592.48 18095.51 16295.70 25492.39 9497.86 8198.66 1692.30 13992.09 20595.37 24880.49 24398.40 22793.95 13385.86 32695.75 276
fmvsm_s_conf0.5_n_397.15 2697.36 1896.52 8997.98 11491.19 14497.84 8598.65 1797.08 299.25 499.10 387.88 11399.79 3699.32 399.18 7898.59 135
fmvsm_s_conf0.5_n_296.62 5796.82 4296.02 13197.98 11490.43 17497.50 13398.59 1896.59 499.31 199.08 484.47 16599.75 4599.37 298.45 11797.88 190
UniMVSNet_NR-MVSNet93.37 16192.67 17095.47 16795.34 27592.83 8197.17 17298.58 1992.98 12390.13 25195.80 22588.37 10597.85 29891.71 17983.93 35695.73 278
CSCG96.05 7595.91 7596.46 9999.24 2890.47 17198.30 2898.57 2089.01 24993.97 16197.57 12792.62 3799.76 4294.66 12099.27 6799.15 78
MSLP-MVS++96.94 3697.06 2396.59 8598.72 5891.86 11497.67 10998.49 2194.66 5497.24 5798.41 5292.31 4498.94 17496.61 5499.46 4198.96 98
HyFIR lowres test93.66 15292.92 15895.87 13998.24 9089.88 19194.58 32598.49 2185.06 34493.78 16495.78 22982.86 19998.67 20591.77 17795.71 19199.07 89
CHOSEN 1792x268894.15 13193.51 14196.06 12798.27 8689.38 20995.18 31198.48 2385.60 33493.76 16597.11 15383.15 19099.61 7591.33 18798.72 10499.19 74
PHI-MVS96.77 4896.46 6297.71 4098.40 7894.07 4898.21 4298.45 2489.86 22197.11 6398.01 8992.52 3999.69 5896.03 7899.53 2999.36 63
fmvsm_s_conf0.1_n96.58 6096.77 4696.01 13496.67 19590.25 17997.91 7698.38 2594.48 6298.84 1999.14 188.06 10899.62 7498.82 1498.60 10998.15 173
PVSNet_BlendedMVS94.06 13793.92 12794.47 21598.27 8689.46 20696.73 20898.36 2690.17 21394.36 15095.24 25688.02 10999.58 8393.44 14490.72 28094.36 350
PVSNet_Blended94.87 11394.56 11195.81 14398.27 8689.46 20695.47 29598.36 2688.84 25794.36 15096.09 21488.02 10999.58 8393.44 14498.18 12898.40 156
3Dnovator91.36 595.19 10394.44 11997.44 5296.56 20493.36 6598.65 1198.36 2694.12 7389.25 28498.06 8382.20 21599.77 4193.41 14699.32 6499.18 75
FOURS199.55 193.34 6699.29 198.35 2994.98 3598.49 26
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16998.35 2995.16 2898.71 2398.80 2895.05 1099.89 396.70 5299.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 6596.47 5996.16 12395.48 26490.69 16597.91 7698.33 3194.07 7498.93 1299.14 187.44 12699.61 7598.63 1698.32 12298.18 169
HFP-MVS97.14 2796.92 3497.83 2699.42 794.12 4698.52 1598.32 3293.21 10697.18 5898.29 6992.08 4699.83 2695.63 9499.59 1999.54 36
ACMMPR97.07 3096.84 3897.79 3099.44 693.88 5298.52 1598.31 3393.21 10697.15 6098.33 6391.35 6199.86 995.63 9499.59 1999.62 20
test_fmvsmvis_n_192096.70 5296.84 3896.31 11096.62 19791.73 11697.98 6398.30 3496.19 896.10 10598.95 1489.42 8899.76 4298.90 1399.08 8897.43 216
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3494.76 4998.30 2998.90 1893.77 1799.68 6097.93 1999.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2798.29 3694.92 3898.99 1098.92 1695.08 8
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3695.55 1998.56 2597.81 10793.90 1599.65 6496.62 5399.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3894.78 4798.93 1298.87 2196.04 299.86 997.45 3599.58 2399.59 24
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3899.86 997.52 3199.67 699.75 6
CP-MVS97.02 3296.81 4397.64 4499.33 2193.54 5998.80 898.28 3892.99 11896.45 9298.30 6891.90 4999.85 1895.61 9699.68 499.54 36
test_fmvsmconf0.1_n97.09 2897.06 2397.19 6795.67 25692.21 10297.95 7298.27 4195.78 1598.40 2899.00 1089.99 8499.78 3999.06 999.41 5399.59 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 4195.13 2999.19 698.89 1995.54 599.85 1897.52 3199.66 1099.56 31
test_241102_TWO98.27 4195.13 2998.93 1298.89 1994.99 1199.85 1897.52 3199.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 4195.09 3299.19 698.81 2795.54 599.65 64
SF-MVS97.39 1897.13 2098.17 1599.02 4295.28 1998.23 3998.27 4192.37 13898.27 3098.65 3493.33 2399.72 5196.49 5899.52 3099.51 40
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 4195.34 2398.11 3298.56 3694.53 1299.71 5296.57 5699.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4795.13 2998.48 2798.87 2195.16 7
PVSNet_Blended_VisFu95.27 9894.91 10296.38 10698.20 9690.86 15897.27 16198.25 4790.21 21294.18 15597.27 14487.48 12599.73 4893.53 14197.77 14298.55 137
region2R97.07 3096.84 3897.77 3399.46 293.79 5498.52 1598.24 4993.19 10997.14 6198.34 6091.59 5699.87 795.46 10099.59 1999.64 18
PS-CasMVS91.55 23790.84 23793.69 26194.96 29988.28 24397.84 8598.24 4991.46 16488.04 31495.80 22579.67 25997.48 33387.02 27984.54 35095.31 299
DU-MVS92.90 18392.04 19095.49 16494.95 30092.83 8197.16 17398.24 4993.02 11790.13 25195.71 23283.47 18297.85 29891.71 17983.93 35695.78 272
9.1496.75 4798.93 5097.73 10098.23 5291.28 17397.88 4098.44 4993.00 2699.65 6495.76 8799.47 40
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9498.21 5395.73 1697.99 3699.03 992.63 3699.82 2897.80 2199.42 5099.67 13
D2MVS91.30 25390.95 23192.35 30694.71 31585.52 30796.18 25898.21 5388.89 25586.60 34293.82 32579.92 25597.95 28889.29 22990.95 27793.56 363
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10598.20 5595.80 1397.88 4098.98 1292.91 2799.81 3097.68 2399.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10598.20 5595.80 1397.88 4098.98 1292.91 2799.81 3097.68 2399.43 4899.67 13
SDMVSNet94.17 12993.61 13495.86 14198.09 10491.37 13597.35 15398.20 5593.18 11191.79 21297.28 14279.13 26798.93 17594.61 12392.84 24397.28 224
XVS97.18 2496.96 3297.81 2899.38 1494.03 5098.59 1298.20 5594.85 4096.59 8498.29 6991.70 5299.80 3395.66 8999.40 5599.62 20
X-MVStestdata91.71 22689.67 29097.81 2899.38 1494.03 5098.59 1298.20 5594.85 4096.59 8432.69 42391.70 5299.80 3395.66 8999.40 5599.62 20
ACMMP_NAP97.20 2396.86 3698.23 1199.09 3495.16 2297.60 12198.19 6092.82 12997.93 3998.74 3191.60 5599.86 996.26 6199.52 3099.67 13
CP-MVSNet91.89 22291.24 22193.82 25395.05 29688.57 23497.82 9098.19 6091.70 15788.21 31095.76 23081.96 21997.52 33187.86 25484.65 34495.37 295
ZNCC-MVS96.96 3496.67 5097.85 2599.37 1694.12 4698.49 1998.18 6292.64 13496.39 9498.18 7691.61 5499.88 495.59 9999.55 2699.57 28
SMA-MVScopyleft97.35 1997.03 2898.30 899.06 3895.42 1097.94 7398.18 6290.57 20498.85 1898.94 1593.33 2399.83 2696.72 5199.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 25890.44 25493.48 27094.49 32387.91 25797.76 9698.18 6291.29 17087.78 31895.74 23180.35 24697.33 34485.46 30382.96 36695.19 310
DELS-MVS96.61 5896.38 6697.30 5797.79 12793.19 7395.96 26898.18 6295.23 2595.87 11397.65 11991.45 5799.70 5795.87 8199.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 30888.40 31493.60 26495.15 29190.10 18197.56 12598.16 6687.28 30786.16 34694.63 28277.57 29598.05 26874.48 38584.59 34892.65 376
VNet95.89 8295.45 8597.21 6598.07 10892.94 8097.50 13398.15 6793.87 8197.52 4797.61 12585.29 15499.53 9795.81 8695.27 19999.16 76
DeepPCF-MVS93.97 196.61 5897.09 2295.15 17698.09 10486.63 28796.00 26698.15 6795.43 2097.95 3898.56 3693.40 2199.36 12096.77 4899.48 3999.45 50
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6994.82 4499.01 998.55 3894.18 1497.41 34096.94 4499.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 4296.52 5697.82 2799.36 1894.14 4598.29 2998.13 7092.72 13196.70 7698.06 8391.35 6199.86 994.83 11499.28 6699.47 49
UA-Net95.95 8095.53 8197.20 6697.67 13292.98 7997.65 11298.13 7094.81 4596.61 8298.35 5788.87 9599.51 10290.36 20497.35 15499.11 84
QAPM93.45 15992.27 18596.98 7696.77 19092.62 8798.39 2498.12 7284.50 35288.27 30897.77 11082.39 21299.81 3085.40 30498.81 10098.51 142
Vis-MVSNetpermissive95.23 10094.81 10396.51 9397.18 15791.58 12698.26 3498.12 7294.38 6994.90 13798.15 7882.28 21398.92 17691.45 18698.58 11199.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 18591.68 20496.40 10395.34 27592.73 8598.27 3298.12 7284.86 34785.78 34897.75 11178.89 27799.74 4687.50 26998.65 10696.73 240
TranMVSNet+NR-MVSNet92.50 19491.63 20595.14 17794.76 31192.07 10797.53 13098.11 7592.90 12789.56 27296.12 20983.16 18997.60 32389.30 22883.20 36595.75 276
CPTT-MVS95.57 9295.19 9596.70 7899.27 2691.48 13098.33 2698.11 7587.79 29295.17 13398.03 8687.09 13299.61 7593.51 14299.42 5099.02 90
APD-MVScopyleft96.95 3596.60 5298.01 2099.03 4194.93 2797.72 10398.10 7791.50 16298.01 3598.32 6592.33 4299.58 8394.85 11299.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 4096.60 5297.64 4499.40 1193.44 6198.50 1898.09 7893.27 10595.95 11298.33 6391.04 6999.88 495.20 10399.57 2599.60 23
ZD-MVS99.05 3994.59 3298.08 7989.22 24297.03 6698.10 7992.52 3999.65 6494.58 12499.31 65
MTGPAbinary98.08 79
MTAPA97.08 2996.78 4597.97 2399.37 1694.42 3697.24 16398.08 7995.07 3396.11 10498.59 3590.88 7499.90 296.18 7399.50 3599.58 27
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 16198.08 7995.81 1297.87 4398.31 6694.26 1399.68 6097.02 4399.49 3899.57 28
DP-MVS Recon95.68 8795.12 9997.37 5499.19 3194.19 4297.03 18098.08 7988.35 27595.09 13597.65 11989.97 8599.48 10792.08 17198.59 11098.44 153
SR-MVS97.01 3396.86 3697.47 5199.09 3493.27 7097.98 6398.07 8493.75 8497.45 4998.48 4691.43 5999.59 8096.22 6499.27 6799.54 36
MCST-MVS97.18 2496.84 3898.20 1499.30 2495.35 1597.12 17698.07 8493.54 9496.08 10697.69 11493.86 1699.71 5296.50 5799.39 5799.55 34
NR-MVSNet92.34 20291.27 22095.53 16194.95 30093.05 7697.39 14998.07 8492.65 13384.46 35995.71 23285.00 15897.77 30889.71 21683.52 36295.78 272
MP-MVS-pluss96.70 5296.27 6997.98 2299.23 3094.71 2996.96 19098.06 8790.67 19595.55 12598.78 3091.07 6899.86 996.58 5599.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4696.71 4997.12 6999.01 4592.31 9897.98 6398.06 8793.11 11597.44 5098.55 3890.93 7299.55 9396.06 7499.25 7199.51 40
MP-MVScopyleft96.77 4896.45 6397.72 3899.39 1393.80 5398.41 2398.06 8793.37 10195.54 12798.34 6090.59 7899.88 494.83 11499.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 6196.27 6997.22 6499.32 2292.74 8498.74 998.06 8790.57 20496.77 7398.35 5790.21 8199.53 9794.80 11799.63 1699.38 61
HPM-MVScopyleft96.69 5496.45 6397.40 5399.36 1893.11 7598.87 698.06 8791.17 17896.40 9397.99 9090.99 7099.58 8395.61 9699.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 12193.80 12996.64 8097.07 16391.97 11196.32 24798.06 8788.94 25394.50 14796.78 16884.60 16299.27 12991.90 17296.02 18298.68 129
DeepC-MVS93.07 396.06 7495.66 7997.29 5897.96 11693.17 7497.30 15998.06 8793.92 7993.38 17498.66 3286.83 13499.73 4895.60 9899.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 2197.03 2898.11 1798.77 5695.06 2597.34 15498.04 9495.96 997.09 6497.88 9893.18 2599.71 5295.84 8599.17 7999.56 31
DeepC-MVS_fast93.89 296.93 3796.64 5197.78 3198.64 6794.30 3797.41 14498.04 9494.81 4596.59 8498.37 5591.24 6499.64 7295.16 10599.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3996.80 4497.11 7099.02 4292.34 9697.98 6398.03 9693.52 9697.43 5298.51 4191.40 6099.56 9196.05 7599.26 6999.43 54
RE-MVS-def96.72 4899.02 4292.34 9697.98 6398.03 9693.52 9697.43 5298.51 4190.71 7696.05 7599.26 6999.43 54
RPMNet88.98 31487.05 32894.77 20294.45 32587.19 27290.23 39898.03 9677.87 39992.40 19187.55 40380.17 25099.51 10268.84 40493.95 23097.60 209
save fliter98.91 5294.28 3897.02 18298.02 9995.35 22
TEST998.70 5994.19 4296.41 23698.02 9988.17 27996.03 10797.56 12992.74 3399.59 80
train_agg96.30 7095.83 7897.72 3898.70 5994.19 4296.41 23698.02 9988.58 26696.03 10797.56 12992.73 3499.59 8095.04 10799.37 6199.39 59
test_898.67 6194.06 4996.37 24398.01 10288.58 26695.98 11197.55 13192.73 3499.58 83
agg_prior98.67 6193.79 5498.00 10395.68 12199.57 90
test_prior97.23 6398.67 6192.99 7898.00 10399.41 11599.29 66
WR-MVS92.34 20291.53 20994.77 20295.13 29390.83 15996.40 24097.98 10591.88 15389.29 28195.54 24382.50 20897.80 30489.79 21585.27 33595.69 279
HPM-MVS++copyleft97.34 2096.97 3198.47 599.08 3696.16 497.55 12997.97 10695.59 1796.61 8297.89 9692.57 3899.84 2395.95 8099.51 3399.40 57
CANet96.39 6696.02 7397.50 4997.62 13993.38 6397.02 18297.96 10795.42 2194.86 13897.81 10787.38 12899.82 2896.88 4699.20 7699.29 66
114514_t93.95 14193.06 15496.63 8299.07 3791.61 12397.46 14297.96 10777.99 39793.00 18297.57 12786.14 14699.33 12189.22 23299.15 8298.94 101
IU-MVS99.42 795.39 1197.94 10990.40 21098.94 1197.41 3899.66 1099.74 8
MSC_two_6792asdad98.86 198.67 6196.94 197.93 11099.86 997.68 2399.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 11099.86 997.68 2399.67 699.77 2
fmvsm_s_conf0.1_n_296.33 6996.44 6596.00 13597.30 15290.37 17797.53 13097.92 11296.52 599.14 899.08 483.21 18799.74 4699.22 698.06 13397.88 190
Anonymous2023121190.63 28289.42 29794.27 22998.24 9089.19 22198.05 5797.89 11379.95 38988.25 30994.96 26472.56 33398.13 25189.70 21785.14 33795.49 283
原ACMM196.38 10698.59 6991.09 15197.89 11387.41 30395.22 13297.68 11590.25 8099.54 9587.95 25399.12 8698.49 145
CDPH-MVS95.97 7995.38 9097.77 3398.93 5094.44 3596.35 24497.88 11586.98 31196.65 8097.89 9691.99 4899.47 10892.26 16299.46 4199.39 59
test1197.88 115
EIA-MVS95.53 9395.47 8495.71 15197.06 16689.63 19597.82 9097.87 11793.57 9093.92 16295.04 26290.61 7798.95 17294.62 12298.68 10598.54 138
CS-MVS96.86 4097.06 2396.26 11698.16 10191.16 14999.09 397.87 11795.30 2497.06 6598.03 8691.72 5098.71 20297.10 4199.17 7998.90 108
无先验95.79 27897.87 11783.87 36099.65 6487.68 26398.89 112
3Dnovator+91.43 495.40 9494.48 11798.16 1696.90 17695.34 1698.48 2097.87 11794.65 5588.53 30098.02 8883.69 17899.71 5293.18 14998.96 9599.44 52
VPNet92.23 21091.31 21794.99 18595.56 26090.96 15497.22 16897.86 12192.96 12490.96 23496.62 18575.06 31598.20 24591.90 17283.65 36195.80 270
test_vis1_n_192094.17 12994.58 11092.91 29097.42 15082.02 35797.83 8897.85 12294.68 5298.10 3398.49 4370.15 35199.32 12397.91 2098.82 9997.40 218
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 12294.92 3898.73 2198.87 2195.08 899.84 2397.52 3199.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1697.33 1997.69 4199.25 2794.24 4198.07 5597.85 12293.72 8598.57 2498.35 5793.69 1899.40 11697.06 4299.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SPE-MVS-test96.89 3897.04 2796.45 10098.29 8591.66 12299.03 497.85 12295.84 1096.90 6897.97 9291.24 6498.75 19596.92 4599.33 6398.94 101
test_fmvsmconf0.01_n96.15 7395.85 7797.03 7492.66 37291.83 11597.97 6997.84 12695.57 1897.53 4699.00 1084.20 17199.76 4298.82 1499.08 8899.48 47
GDP-MVS95.62 8995.13 9797.09 7196.79 18793.26 7197.89 7997.83 12793.58 8996.80 7097.82 10683.06 19499.16 14394.40 12697.95 13798.87 114
balanced_conf0396.84 4496.89 3596.68 7997.63 13892.22 10198.17 4897.82 12894.44 6498.23 3197.36 13990.97 7199.22 13397.74 2299.66 1098.61 132
AdaColmapbinary94.34 12593.68 13296.31 11098.59 6991.68 12196.59 22797.81 12989.87 22092.15 20197.06 15683.62 18199.54 9589.34 22798.07 13297.70 202
MVSMamba_PlusPlus96.51 6196.48 5896.59 8598.07 10891.97 11198.14 4997.79 13090.43 20897.34 5597.52 13291.29 6399.19 13698.12 1899.64 1498.60 133
mamv494.66 11996.10 7290.37 35598.01 11173.41 40396.82 20197.78 13189.95 21994.52 14697.43 13692.91 2799.09 15598.28 1799.16 8198.60 133
ETV-MVS96.02 7695.89 7696.40 10397.16 15892.44 9397.47 14097.77 13294.55 5896.48 8994.51 28891.23 6698.92 17695.65 9298.19 12797.82 197
新几何197.32 5698.60 6893.59 5897.75 13381.58 38095.75 11897.85 10290.04 8399.67 6286.50 28599.13 8498.69 128
旧先验198.38 8193.38 6397.75 13398.09 8192.30 4599.01 9399.16 76
EC-MVSNet96.42 6496.47 5996.26 11697.01 17291.52 12898.89 597.75 13394.42 6596.64 8197.68 11589.32 8998.60 21297.45 3599.11 8798.67 130
EI-MVSNet-Vis-set96.51 6196.47 5996.63 8298.24 9091.20 14396.89 19497.73 13694.74 5096.49 8898.49 4390.88 7499.58 8396.44 5998.32 12299.13 80
PAPM_NR95.01 10594.59 10996.26 11698.89 5490.68 16697.24 16397.73 13691.80 15492.93 18796.62 18589.13 9299.14 14889.21 23397.78 14198.97 97
Anonymous2024052991.98 21890.73 24495.73 14998.14 10289.40 20897.99 6297.72 13879.63 39193.54 16997.41 13769.94 35399.56 9191.04 19491.11 27398.22 166
CHOSEN 280x42093.12 17192.72 16994.34 22396.71 19487.27 26890.29 39797.72 13886.61 31891.34 22395.29 25084.29 17098.41 22693.25 14898.94 9697.35 221
EI-MVSNet-UG-set96.34 6896.30 6896.47 9798.20 9690.93 15696.86 19697.72 13894.67 5396.16 10398.46 4790.43 7999.58 8396.23 6397.96 13698.90 108
LS3D93.57 15592.61 17396.47 9797.59 14291.61 12397.67 10997.72 13885.17 34290.29 24598.34 6084.60 16299.73 4883.85 32598.27 12498.06 181
PAPR94.18 12893.42 14796.48 9697.64 13691.42 13495.55 29097.71 14288.99 25092.34 19795.82 22489.19 9099.11 15186.14 29197.38 15298.90 108
UGNet94.04 13993.28 15096.31 11096.85 17991.19 14497.88 8097.68 14394.40 6793.00 18296.18 20473.39 33099.61 7591.72 17898.46 11698.13 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 16898.18 10088.90 22797.66 14482.73 37197.03 6698.07 8290.06 8298.85 18389.67 21898.98 9498.64 131
test1297.65 4298.46 7394.26 3997.66 14495.52 12890.89 7399.46 10999.25 7199.22 73
DTE-MVSNet90.56 28389.75 28893.01 28693.95 33887.25 26997.64 11697.65 14690.74 19087.12 33095.68 23579.97 25497.00 35683.33 32681.66 37294.78 337
TAPA-MVS90.10 792.30 20591.22 22395.56 15898.33 8389.60 19796.79 20397.65 14681.83 37791.52 21897.23 14787.94 11198.91 17871.31 39998.37 12098.17 172
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 17292.45 18195.05 18198.09 10489.21 21896.89 19497.64 14893.18 11191.79 21297.28 14275.35 31498.65 20788.99 23892.84 24397.28 224
test_cas_vis1_n_192094.48 12394.55 11494.28 22896.78 18886.45 29297.63 11897.64 14893.32 10497.68 4598.36 5673.75 32899.08 15896.73 5099.05 9097.31 223
cdsmvs_eth3d_5k23.24 39330.99 3950.00 4110.00 4340.00 4360.00 42297.63 1500.00 4290.00 43096.88 16584.38 1670.00 4300.00 4290.00 4280.00 426
DPM-MVS95.69 8694.92 10198.01 2098.08 10795.71 995.27 30597.62 15190.43 20895.55 12597.07 15591.72 5099.50 10589.62 22098.94 9698.82 120
sasdasda96.02 7695.45 8597.75 3597.59 14295.15 2398.28 3097.60 15294.52 6096.27 9896.12 20987.65 11799.18 13996.20 6994.82 20898.91 105
canonicalmvs96.02 7695.45 8597.75 3597.59 14295.15 2398.28 3097.60 15294.52 6096.27 9896.12 20987.65 11799.18 13996.20 6994.82 20898.91 105
test22298.24 9092.21 10295.33 30097.60 15279.22 39395.25 13097.84 10488.80 9799.15 8298.72 125
cascas91.20 25890.08 27194.58 21194.97 29889.16 22293.65 36297.59 15579.90 39089.40 27692.92 35075.36 31398.36 23392.14 16794.75 21196.23 250
h-mvs3394.15 13193.52 14096.04 12997.81 12690.22 18097.62 12097.58 15695.19 2696.74 7497.45 13383.67 17999.61 7595.85 8379.73 37998.29 163
MGCFI-Net95.94 8195.40 8997.56 4897.59 14294.62 3198.21 4297.57 15794.41 6696.17 10296.16 20787.54 12199.17 14196.19 7194.73 21398.91 105
MVSFormer95.37 9595.16 9695.99 13696.34 22591.21 14198.22 4097.57 15791.42 16696.22 10097.32 14086.20 14497.92 29294.07 13099.05 9098.85 116
test_djsdf93.07 17492.76 16494.00 24093.49 35488.70 23198.22 4097.57 15791.42 16690.08 25795.55 24282.85 20097.92 29294.07 13091.58 26495.40 292
OMC-MVS95.09 10494.70 10796.25 11998.46 7391.28 13796.43 23497.57 15792.04 14994.77 14197.96 9387.01 13399.09 15591.31 18896.77 16998.36 160
PS-MVSNAJss93.74 15093.51 14194.44 21793.91 34089.28 21697.75 9797.56 16192.50 13589.94 25996.54 18888.65 10098.18 24893.83 13990.90 27895.86 264
casdiffmvs_mvgpermissive95.81 8595.57 8096.51 9396.87 17791.49 12997.50 13397.56 16193.99 7795.13 13497.92 9587.89 11298.78 19095.97 7997.33 15599.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 19891.89 19794.03 23993.33 36088.50 23897.73 10097.53 16392.00 15188.85 29296.50 19075.62 31298.11 25593.88 13791.56 26595.48 284
mvs_tets92.31 20491.76 20093.94 24793.41 35788.29 24297.63 11897.53 16392.04 14988.76 29596.45 19274.62 32098.09 26093.91 13591.48 26695.45 288
dcpmvs_296.37 6797.05 2694.31 22698.96 4984.11 33297.56 12597.51 16593.92 7997.43 5298.52 4092.75 3299.32 12397.32 4099.50 3599.51 40
HQP_MVS93.78 14993.43 14594.82 19596.21 22989.99 18597.74 9897.51 16594.85 4091.34 22396.64 17881.32 22998.60 21293.02 15592.23 25295.86 264
plane_prior597.51 16598.60 21293.02 15592.23 25295.86 264
reproduce_monomvs91.30 25391.10 22791.92 31796.82 18482.48 35197.01 18597.49 16894.64 5688.35 30395.27 25370.53 34698.10 25695.20 10384.60 34795.19 310
PS-MVSNAJ95.37 9595.33 9295.49 16497.35 15190.66 16795.31 30297.48 16993.85 8296.51 8795.70 23488.65 10099.65 6494.80 11798.27 12496.17 254
API-MVS94.84 11494.49 11695.90 13897.90 12292.00 11097.80 9397.48 16989.19 24394.81 13996.71 17188.84 9699.17 14188.91 24098.76 10396.53 243
MG-MVS95.61 9095.38 9096.31 11098.42 7690.53 16996.04 26397.48 16993.47 9895.67 12298.10 7989.17 9199.25 13091.27 18998.77 10299.13 80
MAR-MVS94.22 12793.46 14396.51 9398.00 11392.19 10597.67 10997.47 17288.13 28293.00 18295.84 22284.86 16099.51 10287.99 25298.17 12997.83 196
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 17892.53 17794.32 22496.12 23989.20 21995.28 30397.47 17292.66 13289.90 26095.62 23880.58 24198.40 22792.73 16092.40 25095.38 294
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 25190.22 26794.68 20594.86 30787.86 25897.23 16797.46 17487.99 28389.90 26096.92 16366.35 37898.23 24290.30 20590.99 27697.96 185
nrg03094.05 13893.31 14996.27 11595.22 28694.59 3298.34 2597.46 17492.93 12591.21 23296.64 17887.23 13198.22 24394.99 11085.80 32795.98 263
XVG-OURS93.72 15193.35 14894.80 20097.07 16388.61 23294.79 32097.46 17491.97 15293.99 15997.86 10181.74 22498.88 18092.64 16192.67 24896.92 235
LPG-MVS_test92.94 18192.56 17494.10 23496.16 23488.26 24497.65 11297.46 17491.29 17090.12 25397.16 15079.05 27098.73 19892.25 16491.89 26095.31 299
LGP-MVS_train94.10 23496.16 23488.26 24497.46 17491.29 17090.12 25397.16 15079.05 27098.73 19892.25 16491.89 26095.31 299
MVS91.71 22690.44 25495.51 16295.20 28891.59 12596.04 26397.45 17973.44 40787.36 32795.60 23985.42 15399.10 15285.97 29697.46 14795.83 268
XVG-OURS-SEG-HR93.86 14693.55 13694.81 19797.06 16688.53 23795.28 30397.45 17991.68 15894.08 15897.68 11582.41 21198.90 17993.84 13892.47 24996.98 231
baseline95.58 9195.42 8896.08 12596.78 18890.41 17597.16 17397.45 17993.69 8895.65 12397.85 10287.29 12998.68 20495.66 8997.25 16099.13 80
ab-mvs93.57 15592.55 17596.64 8097.28 15391.96 11395.40 29797.45 17989.81 22593.22 18096.28 20079.62 26199.46 10990.74 19893.11 24098.50 143
xiu_mvs_v2_base95.32 9795.29 9395.40 16997.22 15490.50 17095.44 29697.44 18393.70 8796.46 9196.18 20488.59 10399.53 9794.79 11997.81 14096.17 254
131492.81 18992.03 19195.14 17795.33 27889.52 20396.04 26397.44 18387.72 29686.25 34595.33 24983.84 17698.79 18989.26 23097.05 16597.11 229
casdiffmvspermissive95.64 8895.49 8296.08 12596.76 19390.45 17297.29 16097.44 18394.00 7695.46 12997.98 9187.52 12498.73 19895.64 9397.33 15599.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 21291.23 22294.95 19194.75 31290.94 15597.47 14097.43 18689.14 24488.90 28996.43 19379.71 25898.24 24189.56 22187.68 30995.67 280
anonymousdsp92.16 21291.55 20893.97 24392.58 37489.55 20097.51 13297.42 18789.42 23788.40 30294.84 27180.66 24097.88 29791.87 17491.28 27094.48 345
Effi-MVS+94.93 11094.45 11896.36 10896.61 19891.47 13196.41 23697.41 18891.02 18494.50 14795.92 21887.53 12298.78 19093.89 13696.81 16898.84 119
RRT-MVS94.51 12194.35 12194.98 18796.40 22186.55 29097.56 12597.41 18893.19 10994.93 13697.04 15779.12 26899.30 12796.19 7197.32 15799.09 86
HQP3-MVS97.39 19092.10 257
HQP-MVS93.19 16892.74 16794.54 21395.86 24689.33 21296.65 21897.39 19093.55 9190.14 24795.87 22080.95 23398.50 22092.13 16892.10 25795.78 272
PLCcopyleft91.00 694.11 13593.43 14596.13 12498.58 7191.15 15096.69 21497.39 19087.29 30691.37 22296.71 17188.39 10499.52 10187.33 27297.13 16497.73 200
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 27589.86 28193.45 27293.54 35187.60 26497.70 10897.37 19388.85 25687.65 32094.08 31681.08 23298.10 25684.68 31283.79 36094.66 342
UnsupCasMVSNet_eth85.99 34884.45 35390.62 35189.97 39282.40 35493.62 36397.37 19389.86 22178.59 39492.37 36065.25 38695.35 38682.27 33970.75 40294.10 356
ACMM89.79 892.96 17992.50 17994.35 22196.30 22788.71 23097.58 12297.36 19591.40 16890.53 24096.65 17779.77 25798.75 19591.24 19091.64 26295.59 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
xiu_mvs_v1_base95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
xiu_mvs_v1_base_debi95.01 10594.76 10495.75 14696.58 20191.71 11896.25 25297.35 19692.99 11896.70 7696.63 18282.67 20399.44 11296.22 6497.46 14796.11 259
diffmvspermissive95.25 9995.13 9795.63 15496.43 22089.34 21195.99 26797.35 19692.83 12896.31 9697.37 13886.44 13998.67 20596.26 6197.19 16298.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 11894.02 12596.79 7797.71 13192.05 10896.59 22797.35 19690.61 20194.64 14396.93 16086.41 14099.39 11791.20 19194.71 21498.94 101
F-COLMAP93.58 15492.98 15695.37 17098.40 7888.98 22597.18 17197.29 20187.75 29590.49 24197.10 15485.21 15599.50 10586.70 28296.72 17297.63 204
XVG-ACMP-BASELINE90.93 27190.21 26893.09 28494.31 33185.89 30295.33 30097.26 20291.06 18389.38 27795.44 24768.61 36198.60 21289.46 22391.05 27494.79 335
PCF-MVS89.48 1191.56 23689.95 27896.36 10896.60 19992.52 9192.51 38297.26 20279.41 39288.90 28996.56 18784.04 17599.55 9377.01 37697.30 15897.01 230
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 19392.14 18894.05 23796.40 22188.20 24797.36 15297.25 20491.52 16188.30 30696.64 17878.46 28298.72 20191.86 17591.48 26695.23 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 16492.76 16494.82 19594.63 31890.77 16296.65 21897.18 20593.72 8591.68 21697.26 14579.33 26598.63 20992.13 16892.28 25195.07 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 18392.02 19295.56 15898.19 9890.80 16095.27 30597.18 20587.96 28491.86 21195.68 23580.44 24498.99 17084.01 32097.54 14696.89 236
alignmvs95.87 8495.23 9497.78 3197.56 14795.19 2197.86 8197.17 20794.39 6896.47 9096.40 19585.89 14799.20 13596.21 6895.11 20498.95 100
MVS_Test94.89 11294.62 10895.68 15296.83 18289.55 20096.70 21297.17 20791.17 17895.60 12496.11 21387.87 11498.76 19493.01 15797.17 16398.72 125
Fast-Effi-MVS+93.46 15892.75 16695.59 15796.77 19090.03 18296.81 20297.13 20988.19 27891.30 22694.27 30586.21 14398.63 20987.66 26496.46 17998.12 175
EI-MVSNet93.03 17692.88 16093.48 27095.77 25286.98 27796.44 23297.12 21090.66 19791.30 22697.64 12286.56 13698.05 26889.91 21190.55 28295.41 289
MVSTER93.20 16792.81 16394.37 22096.56 20489.59 19897.06 17997.12 21091.24 17491.30 22695.96 21682.02 21898.05 26893.48 14390.55 28295.47 286
test_yl94.78 11694.23 12296.43 10197.74 12991.22 13996.85 19797.10 21291.23 17595.71 11996.93 16084.30 16899.31 12593.10 15095.12 20298.75 122
DCV-MVSNet94.78 11694.23 12296.43 10197.74 12991.22 13996.85 19797.10 21291.23 17595.71 11996.93 16084.30 16899.31 12593.10 15095.12 20298.75 122
LTVRE_ROB88.41 1390.99 26789.92 28094.19 23096.18 23289.55 20096.31 24897.09 21487.88 28785.67 34995.91 21978.79 27898.57 21681.50 34289.98 28794.44 348
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 19192.88 16092.29 30996.08 24281.05 36597.98 6397.08 21590.72 19296.79 7298.18 7663.07 39098.45 22497.62 2998.42 11997.36 219
v1091.04 26590.23 26593.49 26994.12 33488.16 25097.32 15797.08 21588.26 27788.29 30794.22 31082.17 21697.97 28086.45 28684.12 35494.33 351
v14419291.06 26490.28 26193.39 27393.66 34987.23 27196.83 20097.07 21787.43 30289.69 26794.28 30481.48 22798.00 27587.18 27684.92 34394.93 321
v119291.07 26390.23 26593.58 26693.70 34687.82 26096.73 20897.07 21787.77 29389.58 27094.32 30280.90 23797.97 28086.52 28485.48 33094.95 317
v891.29 25590.53 25393.57 26794.15 33388.12 25197.34 15497.06 21988.99 25088.32 30594.26 30783.08 19298.01 27487.62 26683.92 35894.57 344
mvs_anonymous93.82 14793.74 13094.06 23696.44 21985.41 30995.81 27697.05 22089.85 22390.09 25696.36 19787.44 12697.75 31093.97 13296.69 17399.02 90
IterMVS-LS92.29 20691.94 19593.34 27596.25 22886.97 27896.57 23097.05 22090.67 19589.50 27594.80 27486.59 13597.64 31889.91 21186.11 32595.40 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 27390.03 27693.29 27793.55 35086.96 27996.74 20797.04 22287.36 30489.52 27494.34 29980.23 24997.97 28086.27 28785.21 33694.94 319
CDS-MVSNet94.14 13493.54 13795.93 13796.18 23291.46 13296.33 24697.04 22288.97 25293.56 16796.51 18987.55 12097.89 29689.80 21495.95 18498.44 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 24890.60 24993.68 26293.89 34188.23 24696.84 19997.03 22488.37 27489.69 26794.39 29582.04 21797.98 27787.80 25685.37 33294.84 327
v124090.70 27989.85 28293.23 27993.51 35386.80 28096.61 22497.02 22587.16 30989.58 27094.31 30379.55 26297.98 27785.52 30285.44 33194.90 324
EPP-MVSNet95.22 10195.04 10095.76 14497.49 14889.56 19998.67 1097.00 22690.69 19394.24 15397.62 12489.79 8798.81 18793.39 14796.49 17798.92 104
V4291.58 23590.87 23393.73 25794.05 33788.50 23897.32 15796.97 22788.80 26289.71 26594.33 30082.54 20798.05 26889.01 23785.07 33994.64 343
test_fmvs193.21 16693.53 13892.25 31196.55 20681.20 36497.40 14896.96 22890.68 19496.80 7098.04 8569.25 35798.40 22797.58 3098.50 11297.16 228
FMVSNet291.31 25290.08 27194.99 18596.51 21292.21 10297.41 14496.95 22988.82 25988.62 29794.75 27673.87 32497.42 33985.20 30788.55 30295.35 296
ACMH87.59 1690.53 28489.42 29793.87 25196.21 22987.92 25597.24 16396.94 23088.45 27283.91 36996.27 20171.92 33698.62 21184.43 31589.43 29395.05 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 24990.27 26294.59 20796.51 21291.18 14697.50 13396.93 23188.82 25989.35 27894.51 28873.87 32497.29 34686.12 29288.82 29795.31 299
test191.35 24990.27 26294.59 20796.51 21291.18 14697.50 13396.93 23188.82 25989.35 27894.51 28873.87 32497.29 34686.12 29288.82 29795.31 299
FMVSNet391.78 22490.69 24795.03 18396.53 20992.27 10097.02 18296.93 23189.79 22689.35 27894.65 28177.01 29897.47 33486.12 29288.82 29795.35 296
FMVSNet189.88 30388.31 31594.59 20795.41 26891.18 14697.50 13396.93 23186.62 31787.41 32594.51 28865.94 38397.29 34683.04 32987.43 31295.31 299
GeoE93.89 14493.28 15095.72 15096.96 17589.75 19498.24 3896.92 23589.47 23492.12 20397.21 14884.42 16698.39 23187.71 25996.50 17699.01 93
miper_enhance_ethall91.54 23991.01 23093.15 28295.35 27487.07 27693.97 34896.90 23686.79 31589.17 28593.43 34586.55 13797.64 31889.97 21086.93 31794.74 339
eth_miper_zixun_eth91.02 26690.59 25092.34 30895.33 27884.35 32894.10 34596.90 23688.56 26888.84 29394.33 30084.08 17397.60 32388.77 24384.37 35295.06 314
TAMVS94.01 14093.46 14395.64 15396.16 23490.45 17296.71 21196.89 23889.27 24193.46 17296.92 16387.29 12997.94 28988.70 24495.74 18998.53 139
miper_ehance_all_eth91.59 23391.13 22692.97 28895.55 26186.57 28894.47 32996.88 23987.77 29388.88 29194.01 31886.22 14297.54 32789.49 22286.93 31794.79 335
v2v48291.59 23390.85 23693.80 25493.87 34288.17 24996.94 19196.88 23989.54 23189.53 27394.90 26881.70 22598.02 27389.25 23185.04 34195.20 307
CNLPA94.28 12693.53 13896.52 8998.38 8192.55 9096.59 22796.88 23990.13 21691.91 20897.24 14685.21 15599.09 15587.64 26597.83 13997.92 187
PAPM91.52 24090.30 26095.20 17495.30 28189.83 19293.38 36896.85 24286.26 32588.59 29895.80 22584.88 15998.15 25075.67 38195.93 18597.63 204
c3_l91.38 24690.89 23292.88 29295.58 25986.30 29594.68 32296.84 24388.17 27988.83 29494.23 30885.65 15197.47 33489.36 22684.63 34594.89 325
pm-mvs190.72 27889.65 29293.96 24494.29 33289.63 19597.79 9496.82 24489.07 24686.12 34795.48 24678.61 28097.78 30686.97 28081.67 37194.46 346
test_vis1_n92.37 20192.26 18692.72 29894.75 31282.64 34798.02 5996.80 24591.18 17797.77 4497.93 9458.02 39998.29 23997.63 2898.21 12697.23 227
CMPMVSbinary62.92 2185.62 35384.92 34987.74 37589.14 39773.12 40594.17 34396.80 24573.98 40473.65 40394.93 26666.36 37797.61 32283.95 32291.28 27092.48 381
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 29189.77 28691.78 32694.33 32984.72 32595.55 29096.73 24786.17 32786.36 34495.28 25271.28 34197.80 30484.09 31998.14 13092.81 373
Effi-MVS+-dtu93.08 17393.21 15292.68 30196.02 24383.25 34297.14 17596.72 24893.85 8291.20 23393.44 34283.08 19298.30 23891.69 18195.73 19096.50 245
TSAR-MVS + GP.96.69 5496.49 5797.27 6198.31 8493.39 6296.79 20396.72 24894.17 7297.44 5097.66 11892.76 3199.33 12196.86 4797.76 14399.08 87
1112_ss93.37 16192.42 18296.21 12097.05 16890.99 15296.31 24896.72 24886.87 31489.83 26396.69 17586.51 13899.14 14888.12 24993.67 23498.50 143
PVSNet86.66 1892.24 20991.74 20393.73 25797.77 12883.69 33992.88 37796.72 24887.91 28693.00 18294.86 27078.51 28199.05 16586.53 28397.45 15198.47 148
miper_lstm_enhance90.50 28790.06 27591.83 32295.33 27883.74 33693.86 35496.70 25287.56 30087.79 31793.81 32683.45 18496.92 35887.39 27084.62 34694.82 330
v14890.99 26790.38 25692.81 29593.83 34385.80 30396.78 20596.68 25389.45 23688.75 29693.93 32282.96 19897.82 30287.83 25583.25 36394.80 333
ACMH+87.92 1490.20 29589.18 30293.25 27896.48 21586.45 29296.99 18796.68 25388.83 25884.79 35896.22 20370.16 35098.53 21884.42 31688.04 30594.77 338
CANet_DTU94.37 12493.65 13396.55 8796.46 21892.13 10696.21 25696.67 25594.38 6993.53 17097.03 15879.34 26499.71 5290.76 19798.45 11797.82 197
cl____90.96 27090.32 25892.89 29195.37 27286.21 29894.46 33196.64 25687.82 28988.15 31294.18 31182.98 19697.54 32787.70 26085.59 32894.92 323
HY-MVS89.66 993.87 14592.95 15796.63 8297.10 16292.49 9295.64 28896.64 25689.05 24893.00 18295.79 22885.77 15099.45 11189.16 23694.35 21697.96 185
Test_1112_low_res92.84 18791.84 19895.85 14297.04 16989.97 18895.53 29296.64 25685.38 33789.65 26995.18 25785.86 14899.10 15287.70 26093.58 23998.49 145
DIV-MVS_self_test90.97 26990.33 25792.88 29295.36 27386.19 29994.46 33196.63 25987.82 28988.18 31194.23 30882.99 19597.53 32987.72 25785.57 32994.93 321
Fast-Effi-MVS+-dtu92.29 20691.99 19393.21 28195.27 28285.52 30797.03 18096.63 25992.09 14789.11 28795.14 25980.33 24798.08 26187.54 26894.74 21296.03 262
UnsupCasMVSNet_bld82.13 36779.46 37290.14 35888.00 40582.47 35290.89 39596.62 26178.94 39475.61 39884.40 40956.63 40296.31 36877.30 37366.77 41091.63 391
cl2291.21 25790.56 25293.14 28396.09 24186.80 28094.41 33396.58 26287.80 29188.58 29993.99 32080.85 23897.62 32189.87 21386.93 31794.99 316
jason94.84 11494.39 12096.18 12295.52 26290.93 15696.09 26196.52 26389.28 24096.01 11097.32 14084.70 16198.77 19395.15 10698.91 9898.85 116
jason: jason.
tt080591.09 26290.07 27494.16 23295.61 25788.31 24197.56 12596.51 26489.56 23089.17 28595.64 23767.08 37598.38 23291.07 19388.44 30395.80 270
AUN-MVS91.76 22590.75 24294.81 19797.00 17388.57 23496.65 21896.49 26589.63 22892.15 20196.12 20978.66 27998.50 22090.83 19579.18 38297.36 219
hse-mvs293.45 15992.99 15594.81 19797.02 17188.59 23396.69 21496.47 26695.19 2696.74 7496.16 20783.67 17998.48 22395.85 8379.13 38397.35 221
EG-PatchMatch MVS87.02 33785.44 34191.76 32892.67 37185.00 31996.08 26296.45 26783.41 36779.52 39093.49 33957.10 40197.72 31279.34 36490.87 27992.56 378
KD-MVS_self_test85.95 34984.95 34888.96 37089.55 39679.11 38995.13 31296.42 26885.91 33084.07 36790.48 38170.03 35294.82 38980.04 35672.94 39992.94 371
pmmvs687.81 32986.19 33692.69 30091.32 38486.30 29597.34 15496.41 26980.59 38884.05 36894.37 29767.37 37097.67 31584.75 31179.51 38194.09 358
PMMVS92.86 18592.34 18394.42 21994.92 30386.73 28394.53 32796.38 27084.78 34994.27 15295.12 26183.13 19198.40 22791.47 18596.49 17798.12 175
RPSCF90.75 27690.86 23490.42 35496.84 18076.29 39795.61 28996.34 27183.89 35891.38 22197.87 9976.45 30398.78 19087.16 27792.23 25296.20 252
BP-MVS195.89 8295.49 8297.08 7296.67 19593.20 7298.08 5396.32 27294.56 5796.32 9597.84 10484.07 17499.15 14596.75 4998.78 10198.90 108
MSDG91.42 24490.24 26494.96 19097.15 16088.91 22693.69 36096.32 27285.72 33386.93 33996.47 19180.24 24898.98 17180.57 35395.05 20596.98 231
WBMVS90.69 28189.99 27792.81 29596.48 21585.00 31995.21 31096.30 27489.46 23589.04 28894.05 31772.45 33497.82 30289.46 22387.41 31495.61 281
OurMVSNet-221017-090.51 28690.19 26991.44 33493.41 35781.25 36296.98 18896.28 27591.68 15886.55 34396.30 19974.20 32397.98 27788.96 23987.40 31595.09 312
MVP-Stereo90.74 27790.08 27192.71 29993.19 36288.20 24795.86 27396.27 27686.07 32884.86 35794.76 27577.84 29397.75 31083.88 32498.01 13492.17 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 10994.56 11196.29 11496.34 22591.21 14195.83 27596.27 27688.93 25496.22 10096.88 16586.20 14498.85 18395.27 10299.05 9098.82 120
BH-untuned92.94 18192.62 17293.92 25097.22 15486.16 30096.40 24096.25 27890.06 21789.79 26496.17 20683.19 18898.35 23487.19 27597.27 15997.24 226
CL-MVSNet_self_test86.31 34485.15 34589.80 36288.83 40081.74 36093.93 35196.22 27986.67 31685.03 35590.80 37978.09 28994.50 39074.92 38471.86 40193.15 369
IS-MVSNet94.90 11194.52 11596.05 12897.67 13290.56 16898.44 2196.22 27993.21 10693.99 15997.74 11285.55 15298.45 22489.98 20997.86 13899.14 79
FA-MVS(test-final)93.52 15792.92 15895.31 17196.77 19088.54 23694.82 31996.21 28189.61 22994.20 15495.25 25583.24 18699.14 14890.01 20896.16 18198.25 164
GA-MVS91.38 24690.31 25994.59 20794.65 31787.62 26394.34 33696.19 28290.73 19190.35 24493.83 32371.84 33797.96 28487.22 27493.61 23798.21 167
IterMVS-SCA-FT90.31 28989.81 28491.82 32395.52 26284.20 33194.30 33996.15 28390.61 20187.39 32694.27 30575.80 30996.44 36687.34 27186.88 32194.82 330
IterMVS90.15 29789.67 29091.61 33095.48 26483.72 33794.33 33796.12 28489.99 21887.31 32994.15 31375.78 31196.27 36986.97 28086.89 32094.83 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 19091.51 21296.52 8998.77 5690.99 15297.38 15196.08 28582.38 37389.29 28197.87 9983.77 17799.69 5881.37 34796.69 17398.89 112
pmmvs490.93 27189.85 28294.17 23193.34 35990.79 16194.60 32496.02 28684.62 35087.45 32395.15 25881.88 22297.45 33687.70 26087.87 30794.27 355
ppachtmachnet_test88.35 32487.29 32391.53 33192.45 37783.57 34093.75 35795.97 28784.28 35385.32 35494.18 31179.00 27696.93 35775.71 38084.99 34294.10 356
Anonymous2024052186.42 34285.44 34189.34 36890.33 38979.79 38196.73 20895.92 28883.71 36383.25 37391.36 37663.92 38896.01 37078.39 36885.36 33392.22 386
ITE_SJBPF92.43 30495.34 27585.37 31295.92 28891.47 16387.75 31996.39 19671.00 34397.96 28482.36 33889.86 28993.97 359
test_fmvs289.77 30789.93 27989.31 36993.68 34876.37 39697.64 11695.90 29089.84 22491.49 21996.26 20258.77 39897.10 35094.65 12191.13 27294.46 346
USDC88.94 31587.83 32092.27 31094.66 31684.96 32193.86 35495.90 29087.34 30583.40 37195.56 24167.43 36998.19 24782.64 33789.67 29193.66 362
COLMAP_ROBcopyleft87.81 1590.40 28889.28 30093.79 25597.95 11787.13 27596.92 19295.89 29282.83 37086.88 34197.18 14973.77 32799.29 12878.44 36793.62 23694.95 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 14793.08 15396.02 13197.88 12389.96 18997.72 10395.85 29392.43 13695.86 11498.44 4968.42 36599.39 11796.31 6094.85 20698.71 127
VDDNet93.05 17592.07 18996.02 13196.84 18090.39 17698.08 5395.85 29386.22 32695.79 11798.46 4767.59 36899.19 13694.92 11194.85 20698.47 148
mvsmamba94.57 12094.14 12495.87 13997.03 17089.93 19097.84 8595.85 29391.34 16994.79 14096.80 16780.67 23998.81 18794.85 11298.12 13198.85 116
Vis-MVSNet (Re-imp)94.15 13193.88 12894.95 19197.61 14087.92 25598.10 5195.80 29692.22 14093.02 18197.45 13384.53 16497.91 29588.24 24897.97 13599.02 90
MM97.29 2296.98 3098.23 1198.01 11195.03 2698.07 5595.76 29797.78 197.52 4798.80 2888.09 10799.86 999.44 199.37 6199.80 1
KD-MVS_2432*160084.81 35782.64 36191.31 33691.07 38685.34 31391.22 39095.75 29885.56 33583.09 37490.21 38467.21 37195.89 37277.18 37462.48 41492.69 374
miper_refine_blended84.81 35782.64 36191.31 33691.07 38685.34 31391.22 39095.75 29885.56 33583.09 37490.21 38467.21 37195.89 37277.18 37462.48 41492.69 374
FE-MVS92.05 21691.05 22895.08 18096.83 18287.93 25493.91 35395.70 30086.30 32394.15 15694.97 26376.59 30199.21 13484.10 31896.86 16698.09 179
tpm cat188.36 32387.21 32691.81 32495.13 29380.55 37192.58 38195.70 30074.97 40387.45 32391.96 37078.01 29298.17 24980.39 35588.74 30096.72 241
our_test_388.78 31987.98 31991.20 34092.45 37782.53 34993.61 36495.69 30285.77 33284.88 35693.71 32879.99 25396.78 36379.47 36186.24 32294.28 354
BH-w/o92.14 21491.75 20193.31 27696.99 17485.73 30495.67 28395.69 30288.73 26489.26 28394.82 27382.97 19798.07 26585.26 30696.32 18096.13 258
CR-MVSNet90.82 27489.77 28693.95 24594.45 32587.19 27290.23 39895.68 30486.89 31392.40 19192.36 36380.91 23597.05 35281.09 35193.95 23097.60 209
Patchmtry88.64 32187.25 32492.78 29794.09 33586.64 28489.82 40295.68 30480.81 38587.63 32192.36 36380.91 23597.03 35378.86 36585.12 33894.67 341
testing9191.90 22191.02 22994.53 21496.54 20786.55 29095.86 27395.64 30691.77 15591.89 20993.47 34169.94 35398.86 18190.23 20793.86 23298.18 169
BH-RMVSNet92.72 19291.97 19494.97 18997.16 15887.99 25396.15 25995.60 30790.62 20091.87 21097.15 15278.41 28398.57 21683.16 32797.60 14598.36 160
PVSNet_082.17 1985.46 35483.64 35790.92 34395.27 28279.49 38590.55 39695.60 30783.76 36283.00 37689.95 38671.09 34297.97 28082.75 33560.79 41695.31 299
SCA91.84 22391.18 22593.83 25295.59 25884.95 32294.72 32195.58 30990.82 18792.25 19993.69 33075.80 30998.10 25686.20 28995.98 18398.45 150
MonoMVSNet91.92 21991.77 19992.37 30592.94 36683.11 34397.09 17895.55 31092.91 12690.85 23694.55 28581.27 23196.52 36593.01 15787.76 30897.47 215
AllTest90.23 29388.98 30593.98 24197.94 11886.64 28496.51 23195.54 31185.38 33785.49 35196.77 16970.28 34899.15 14580.02 35792.87 24196.15 256
TestCases93.98 24197.94 11886.64 28495.54 31185.38 33785.49 35196.77 16970.28 34899.15 14580.02 35792.87 24196.15 256
mmtdpeth89.70 30888.96 30691.90 31995.84 25184.42 32797.46 14295.53 31390.27 21194.46 14990.50 38069.74 35698.95 17297.39 3969.48 40592.34 382
tpmvs89.83 30689.15 30391.89 32094.92 30380.30 37593.11 37395.46 31486.28 32488.08 31392.65 35380.44 24498.52 21981.47 34389.92 28896.84 237
pmmvs589.86 30588.87 30992.82 29492.86 36786.23 29796.26 25195.39 31584.24 35487.12 33094.51 28874.27 32297.36 34387.61 26787.57 31094.86 326
PatchmatchNetpermissive91.91 22091.35 21493.59 26595.38 27084.11 33293.15 37295.39 31589.54 23192.10 20493.68 33282.82 20198.13 25184.81 31095.32 19898.52 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 24391.32 21691.79 32595.15 29179.20 38893.42 36795.37 31788.55 26993.49 17193.67 33382.49 20998.27 24090.41 20289.34 29497.90 188
Anonymous2023120687.09 33686.14 33789.93 36191.22 38580.35 37396.11 26095.35 31883.57 36584.16 36393.02 34873.54 32995.61 38072.16 39686.14 32493.84 361
MIMVSNet184.93 35683.05 35890.56 35289.56 39584.84 32495.40 29795.35 31883.91 35780.38 38692.21 36757.23 40093.34 40270.69 40282.75 36993.50 364
TDRefinement86.53 33984.76 35191.85 32182.23 41784.25 32996.38 24295.35 31884.97 34684.09 36694.94 26565.76 38498.34 23784.60 31474.52 39592.97 370
TR-MVS91.48 24290.59 25094.16 23296.40 22187.33 26595.67 28395.34 32187.68 29791.46 22095.52 24476.77 30098.35 23482.85 33293.61 23796.79 239
EPNet_dtu91.71 22691.28 21992.99 28793.76 34583.71 33896.69 21495.28 32293.15 11387.02 33595.95 21783.37 18597.38 34279.46 36296.84 16797.88 190
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 33385.79 33991.78 32694.80 31087.28 26795.49 29495.28 32284.09 35683.85 37091.82 37162.95 39194.17 39478.48 36685.34 33493.91 360
MDTV_nov1_ep1390.76 24095.22 28680.33 37493.03 37595.28 32288.14 28192.84 18893.83 32381.34 22898.08 26182.86 33094.34 217
LF4IMVS87.94 32787.25 32489.98 36092.38 37980.05 38094.38 33495.25 32587.59 29984.34 36094.74 27764.31 38797.66 31784.83 30987.45 31192.23 385
TransMVSNet (Re)88.94 31587.56 32193.08 28594.35 32888.45 24097.73 10095.23 32687.47 30184.26 36295.29 25079.86 25697.33 34479.44 36374.44 39693.45 366
test20.0386.14 34785.40 34388.35 37190.12 39080.06 37995.90 27295.20 32788.59 26581.29 38193.62 33571.43 34092.65 40571.26 40081.17 37492.34 382
new-patchmatchnet83.18 36381.87 36687.11 37886.88 40875.99 39893.70 35895.18 32885.02 34577.30 39788.40 39665.99 38293.88 39974.19 38970.18 40391.47 395
MDA-MVSNet_test_wron85.87 35184.23 35590.80 34992.38 37982.57 34893.17 37095.15 32982.15 37467.65 40992.33 36678.20 28595.51 38377.33 37179.74 37894.31 353
YYNet185.87 35184.23 35590.78 35092.38 37982.46 35393.17 37095.14 33082.12 37567.69 40792.36 36378.16 28895.50 38477.31 37279.73 37994.39 349
Baseline_NR-MVSNet91.20 25890.62 24892.95 28993.83 34388.03 25297.01 18595.12 33188.42 27389.70 26695.13 26083.47 18297.44 33789.66 21983.24 36493.37 367
thres20092.23 21091.39 21394.75 20497.61 14089.03 22496.60 22695.09 33292.08 14893.28 17794.00 31978.39 28499.04 16881.26 35094.18 22196.19 253
ADS-MVSNet89.89 30288.68 31193.53 26895.86 24684.89 32390.93 39395.07 33383.23 36891.28 22991.81 37279.01 27497.85 29879.52 35991.39 26897.84 194
pmmvs-eth3d86.22 34584.45 35391.53 33188.34 40487.25 26994.47 32995.01 33483.47 36679.51 39189.61 38969.75 35595.71 37783.13 32876.73 39091.64 390
Anonymous20240521192.07 21590.83 23895.76 14498.19 9888.75 22997.58 12295.00 33586.00 32993.64 16697.45 13366.24 38099.53 9790.68 20092.71 24699.01 93
MDA-MVSNet-bldmvs85.00 35582.95 36091.17 34193.13 36483.33 34194.56 32695.00 33584.57 35165.13 41392.65 35370.45 34795.85 37473.57 39277.49 38694.33 351
ambc86.56 38183.60 41470.00 40885.69 41294.97 33780.60 38588.45 39537.42 41696.84 36182.69 33675.44 39492.86 372
testgi87.97 32687.21 32690.24 35792.86 36780.76 36696.67 21794.97 33791.74 15685.52 35095.83 22362.66 39394.47 39276.25 37888.36 30495.48 284
dp88.90 31788.26 31790.81 34794.58 32176.62 39592.85 37894.93 33985.12 34390.07 25893.07 34775.81 30898.12 25480.53 35487.42 31397.71 201
test_fmvs383.21 36283.02 35983.78 38586.77 40968.34 41196.76 20694.91 34086.49 31984.14 36589.48 39036.04 41791.73 40791.86 17580.77 37691.26 397
test_040286.46 34184.79 35091.45 33395.02 29785.55 30696.29 25094.89 34180.90 38282.21 37893.97 32168.21 36697.29 34662.98 40888.68 30191.51 393
tfpn200view992.38 20091.52 21094.95 19197.85 12489.29 21497.41 14494.88 34292.19 14493.27 17894.46 29378.17 28699.08 15881.40 34494.08 22596.48 246
CVMVSNet91.23 25691.75 20189.67 36395.77 25274.69 39996.44 23294.88 34285.81 33192.18 20097.64 12279.07 26995.58 38288.06 25195.86 18798.74 124
thres40092.42 19891.52 21095.12 17997.85 12489.29 21497.41 14494.88 34292.19 14493.27 17894.46 29378.17 28699.08 15881.40 34494.08 22596.98 231
EPNet95.20 10294.56 11197.14 6892.80 36992.68 8697.85 8494.87 34596.64 392.46 19097.80 10986.23 14199.65 6493.72 14098.62 10899.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9991.62 23190.72 24594.32 22496.48 21586.11 30195.81 27694.76 34691.55 16091.75 21493.44 34268.55 36398.82 18590.43 20193.69 23398.04 182
SixPastTwentyTwo89.15 31388.54 31390.98 34293.49 35480.28 37696.70 21294.70 34790.78 18884.15 36495.57 24071.78 33897.71 31384.63 31385.07 33994.94 319
thres100view90092.43 19791.58 20794.98 18797.92 12089.37 21097.71 10594.66 34892.20 14293.31 17694.90 26878.06 29099.08 15881.40 34494.08 22596.48 246
thres600view792.49 19691.60 20695.18 17597.91 12189.47 20497.65 11294.66 34892.18 14693.33 17594.91 26778.06 29099.10 15281.61 34194.06 22996.98 231
PatchT88.87 31887.42 32293.22 28094.08 33685.10 31789.51 40394.64 35081.92 37692.36 19488.15 39980.05 25297.01 35572.43 39593.65 23597.54 212
baseline192.82 18891.90 19695.55 16097.20 15690.77 16297.19 17094.58 35192.20 14292.36 19496.34 19884.16 17298.21 24489.20 23483.90 35997.68 203
UBG91.55 23790.76 24093.94 24796.52 21185.06 31895.22 30894.54 35290.47 20791.98 20792.71 35272.02 33598.74 19788.10 25095.26 20098.01 183
Gipumacopyleft67.86 38365.41 38575.18 39892.66 37273.45 40266.50 41994.52 35353.33 41857.80 41966.07 41930.81 41989.20 41148.15 41778.88 38562.90 419
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testing1191.68 22990.75 24294.47 21596.53 20986.56 28995.76 28094.51 35491.10 18291.24 23193.59 33668.59 36298.86 18191.10 19294.29 21898.00 184
CostFormer91.18 26190.70 24692.62 30294.84 30881.76 35994.09 34694.43 35584.15 35592.72 18993.77 32779.43 26398.20 24590.70 19992.18 25597.90 188
tpm289.96 29989.21 30192.23 31294.91 30581.25 36293.78 35694.42 35680.62 38791.56 21793.44 34276.44 30497.94 28985.60 30192.08 25997.49 213
MVS_030496.74 5196.31 6798.02 1996.87 17794.65 3097.58 12294.39 35796.47 697.16 5998.39 5387.53 12299.87 798.97 1199.41 5399.55 34
JIA-IIPM88.26 32587.04 32991.91 31893.52 35281.42 36189.38 40494.38 35880.84 38490.93 23580.74 41179.22 26697.92 29282.76 33491.62 26396.38 249
dmvs_re90.21 29489.50 29592.35 30695.47 26785.15 31595.70 28294.37 35990.94 18688.42 30193.57 33774.63 31995.67 37982.80 33389.57 29296.22 251
Patchmatch-test89.42 31187.99 31893.70 26095.27 28285.11 31688.98 40594.37 35981.11 38187.10 33393.69 33082.28 21397.50 33274.37 38794.76 21098.48 147
LCM-MVSNet72.55 37669.39 38082.03 38770.81 42765.42 41690.12 40094.36 36155.02 41765.88 41181.72 41024.16 42589.96 40874.32 38868.10 40890.71 400
ADS-MVSNet289.45 31088.59 31292.03 31595.86 24682.26 35590.93 39394.32 36283.23 36891.28 22991.81 37279.01 27495.99 37179.52 35991.39 26897.84 194
mvs5depth86.53 33985.08 34690.87 34488.74 40282.52 35091.91 38694.23 36386.35 32287.11 33293.70 32966.52 37697.76 30981.37 34775.80 39292.31 384
EU-MVSNet88.72 32088.90 30888.20 37393.15 36374.21 40096.63 22394.22 36485.18 34187.32 32895.97 21576.16 30694.98 38885.27 30586.17 32395.41 289
MIMVSNet88.50 32286.76 33293.72 25994.84 30887.77 26191.39 38894.05 36586.41 32187.99 31592.59 35663.27 38995.82 37677.44 37092.84 24397.57 211
OpenMVS_ROBcopyleft81.14 2084.42 35982.28 36590.83 34590.06 39184.05 33495.73 28194.04 36673.89 40680.17 38991.53 37559.15 39797.64 31866.92 40689.05 29690.80 399
TinyColmap86.82 33885.35 34491.21 33894.91 30582.99 34593.94 35094.02 36783.58 36481.56 38094.68 27962.34 39498.13 25175.78 37987.35 31692.52 380
ETVMVS90.52 28589.14 30494.67 20696.81 18687.85 25995.91 27193.97 36889.71 22792.34 19792.48 35865.41 38597.96 28481.37 34794.27 21998.21 167
IB-MVS87.33 1789.91 30088.28 31694.79 20195.26 28587.70 26295.12 31393.95 36989.35 23987.03 33492.49 35770.74 34599.19 13689.18 23581.37 37397.49 213
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 33587.02 33087.47 37695.16 28973.21 40495.00 31593.93 37088.55 26986.96 33691.99 36875.90 30794.00 39661.59 41094.11 22295.20 307
myMVS_eth3d87.18 33486.38 33489.58 36495.16 28979.53 38395.00 31593.93 37088.55 26986.96 33691.99 36856.23 40394.00 39675.47 38394.11 22295.20 307
testing22290.31 28988.96 30694.35 22196.54 20787.29 26695.50 29393.84 37290.97 18591.75 21492.96 34962.18 39598.00 27582.86 33094.08 22597.76 199
test_f80.57 36979.62 37183.41 38683.38 41567.80 41393.57 36593.72 37380.80 38677.91 39687.63 40233.40 41892.08 40687.14 27879.04 38490.34 401
LCM-MVSNet-Re92.50 19492.52 17892.44 30396.82 18481.89 35896.92 19293.71 37492.41 13784.30 36194.60 28385.08 15797.03 35391.51 18397.36 15398.40 156
tpm90.25 29289.74 28991.76 32893.92 33979.73 38293.98 34793.54 37588.28 27691.99 20693.25 34677.51 29697.44 33787.30 27387.94 30698.12 175
ET-MVSNet_ETH3D91.49 24190.11 27095.63 15496.40 22191.57 12795.34 29993.48 37690.60 20375.58 39995.49 24580.08 25196.79 36294.25 12889.76 29098.52 140
LFMVS93.60 15392.63 17196.52 8998.13 10391.27 13897.94 7393.39 37790.57 20496.29 9798.31 6669.00 35899.16 14394.18 12995.87 18699.12 83
MVStest182.38 36680.04 37089.37 36687.63 40782.83 34695.03 31493.37 37873.90 40573.50 40494.35 29862.89 39293.25 40373.80 39065.92 41192.04 389
Patchmatch-RL test87.38 33286.24 33590.81 34788.74 40278.40 39288.12 41093.17 37987.11 31082.17 37989.29 39181.95 22095.60 38188.64 24577.02 38798.41 155
ttmdpeth85.91 35084.76 35189.36 36789.14 39780.25 37795.66 28693.16 38083.77 36183.39 37295.26 25466.24 38095.26 38780.65 35275.57 39392.57 377
test-LLR91.42 24491.19 22492.12 31394.59 31980.66 36894.29 34092.98 38191.11 18090.76 23892.37 36079.02 27298.07 26588.81 24196.74 17097.63 204
test-mter90.19 29689.54 29492.12 31394.59 31980.66 36894.29 34092.98 38187.68 29790.76 23892.37 36067.67 36798.07 26588.81 24196.74 17097.63 204
WB-MVSnew89.88 30389.56 29390.82 34694.57 32283.06 34495.65 28792.85 38387.86 28890.83 23794.10 31479.66 26096.88 35976.34 37794.19 22092.54 379
testing387.67 33086.88 33190.05 35996.14 23780.71 36797.10 17792.85 38390.15 21587.54 32294.55 28555.70 40494.10 39573.77 39194.10 22495.35 296
test_method66.11 38464.89 38669.79 40172.62 42535.23 43365.19 42092.83 38520.35 42365.20 41288.08 40043.14 41482.70 41873.12 39463.46 41391.45 396
test0.0.03 189.37 31288.70 31091.41 33592.47 37685.63 30595.22 30892.70 38691.11 18086.91 34093.65 33479.02 27293.19 40478.00 36989.18 29595.41 289
new_pmnet82.89 36481.12 36988.18 37489.63 39480.18 37891.77 38792.57 38776.79 40175.56 40088.23 39861.22 39694.48 39171.43 39882.92 36789.87 402
mvsany_test193.93 14393.98 12693.78 25694.94 30286.80 28094.62 32392.55 38888.77 26396.85 6998.49 4388.98 9398.08 26195.03 10895.62 19396.46 248
thisisatest051592.29 20691.30 21895.25 17396.60 19988.90 22794.36 33592.32 38987.92 28593.43 17394.57 28477.28 29799.00 16989.42 22595.86 18797.86 193
thisisatest053093.03 17692.21 18795.49 16497.07 16389.11 22397.49 13992.19 39090.16 21494.09 15796.41 19476.43 30599.05 16590.38 20395.68 19298.31 162
tttt051792.96 17992.33 18494.87 19497.11 16187.16 27497.97 6992.09 39190.63 19993.88 16397.01 15976.50 30299.06 16490.29 20695.45 19698.38 158
K. test v387.64 33186.75 33390.32 35693.02 36579.48 38696.61 22492.08 39290.66 19780.25 38894.09 31567.21 37196.65 36485.96 29780.83 37594.83 328
TESTMET0.1,190.06 29889.42 29791.97 31694.41 32780.62 37094.29 34091.97 39387.28 30790.44 24292.47 35968.79 35997.67 31588.50 24796.60 17597.61 208
PM-MVS83.48 36181.86 36788.31 37287.83 40677.59 39493.43 36691.75 39486.91 31280.63 38489.91 38744.42 41395.84 37585.17 30876.73 39091.50 394
baseline291.63 23090.86 23493.94 24794.33 32986.32 29495.92 27091.64 39589.37 23886.94 33894.69 27881.62 22698.69 20388.64 24594.57 21596.81 238
APD_test179.31 37177.70 37484.14 38489.11 39969.07 41092.36 38591.50 39669.07 40973.87 40292.63 35539.93 41594.32 39370.54 40380.25 37789.02 404
FPMVS71.27 37769.85 37975.50 39774.64 42259.03 42291.30 38991.50 39658.80 41457.92 41888.28 39729.98 42185.53 41753.43 41582.84 36881.95 410
door91.13 398
door-mid91.06 399
EGC-MVSNET68.77 38263.01 38886.07 38392.49 37582.24 35693.96 34990.96 4000.71 4282.62 42990.89 37853.66 40593.46 40057.25 41384.55 34982.51 409
mvsany_test383.59 36082.44 36487.03 37983.80 41273.82 40193.70 35890.92 40186.42 32082.51 37790.26 38346.76 41295.71 37790.82 19676.76 38991.57 392
pmmvs379.97 37077.50 37587.39 37782.80 41679.38 38792.70 38090.75 40270.69 40878.66 39387.47 40451.34 40893.40 40173.39 39369.65 40489.38 403
UWE-MVS89.91 30089.48 29691.21 33895.88 24578.23 39394.91 31890.26 40389.11 24592.35 19694.52 28768.76 36097.96 28483.95 32295.59 19497.42 217
DSMNet-mixed86.34 34386.12 33887.00 38089.88 39370.43 40694.93 31790.08 40477.97 39885.42 35392.78 35174.44 32193.96 39874.43 38695.14 20196.62 242
MVS-HIRNet82.47 36581.21 36886.26 38295.38 27069.21 40988.96 40689.49 40566.28 41180.79 38374.08 41668.48 36497.39 34171.93 39795.47 19592.18 387
WB-MVS76.77 37376.63 37677.18 39285.32 41056.82 42494.53 32789.39 40682.66 37271.35 40589.18 39275.03 31688.88 41235.42 42166.79 40985.84 406
test111193.19 16892.82 16294.30 22797.58 14684.56 32698.21 4289.02 40793.53 9594.58 14498.21 7372.69 33199.05 16593.06 15398.48 11599.28 68
SSC-MVS76.05 37475.83 37776.72 39684.77 41156.22 42594.32 33888.96 40881.82 37870.52 40688.91 39374.79 31888.71 41333.69 42264.71 41285.23 407
ECVR-MVScopyleft93.19 16892.73 16894.57 21297.66 13485.41 30998.21 4288.23 40993.43 9994.70 14298.21 7372.57 33299.07 16293.05 15498.49 11399.25 71
EPMVS90.70 27989.81 28493.37 27494.73 31484.21 33093.67 36188.02 41089.50 23392.38 19393.49 33977.82 29497.78 30686.03 29592.68 24798.11 178
ANet_high63.94 38659.58 38977.02 39361.24 42966.06 41485.66 41387.93 41178.53 39642.94 42171.04 41825.42 42480.71 42052.60 41630.83 42284.28 408
PMMVS270.19 37866.92 38280.01 38876.35 42165.67 41586.22 41187.58 41264.83 41362.38 41480.29 41326.78 42388.49 41563.79 40754.07 41885.88 405
lessismore_v090.45 35391.96 38279.09 39087.19 41380.32 38794.39 29566.31 37997.55 32684.00 32176.84 38894.70 340
PMVScopyleft53.92 2258.58 38755.40 39068.12 40251.00 43048.64 42778.86 41687.10 41446.77 41935.84 42574.28 4158.76 42986.34 41642.07 41973.91 39769.38 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 34685.06 34789.46 36593.47 35680.46 37296.41 23686.61 41585.22 34079.15 39288.64 39452.41 40797.06 35193.08 15290.57 28190.87 398
testf169.31 38066.76 38376.94 39478.61 41961.93 41888.27 40886.11 41655.62 41559.69 41585.31 40720.19 42789.32 40957.62 41169.44 40679.58 411
APD_test269.31 38066.76 38376.94 39478.61 41961.93 41888.27 40886.11 41655.62 41559.69 41585.31 40720.19 42789.32 40957.62 41169.44 40679.58 411
gg-mvs-nofinetune87.82 32885.61 34094.44 21794.46 32489.27 21791.21 39284.61 41880.88 38389.89 26274.98 41471.50 33997.53 32985.75 30097.21 16196.51 244
dmvs_testset81.38 36882.60 36377.73 39191.74 38351.49 42693.03 37584.21 41989.07 24678.28 39591.25 37776.97 29988.53 41456.57 41482.24 37093.16 368
GG-mvs-BLEND93.62 26393.69 34789.20 21992.39 38483.33 42087.98 31689.84 38871.00 34396.87 36082.08 34095.40 19794.80 333
MTMP97.86 8182.03 421
DeepMVS_CXcopyleft74.68 39990.84 38864.34 41781.61 42265.34 41267.47 41088.01 40148.60 41180.13 42162.33 40973.68 39879.58 411
E-PMN53.28 38852.56 39255.43 40574.43 42347.13 42883.63 41576.30 42342.23 42042.59 42262.22 42128.57 42274.40 42231.53 42331.51 42144.78 420
test250691.60 23290.78 23994.04 23897.66 13483.81 33598.27 3275.53 42493.43 9995.23 13198.21 7367.21 37199.07 16293.01 15798.49 11399.25 71
EMVS52.08 39051.31 39354.39 40672.62 42545.39 43083.84 41475.51 42541.13 42140.77 42359.65 42230.08 42073.60 42328.31 42529.90 42344.18 421
test_vis3_rt72.73 37570.55 37879.27 38980.02 41868.13 41293.92 35274.30 42676.90 40058.99 41773.58 41720.29 42695.37 38584.16 31772.80 40074.31 414
MVEpermissive50.73 2353.25 38948.81 39466.58 40465.34 42857.50 42372.49 41870.94 42740.15 42239.28 42463.51 4206.89 43173.48 42438.29 42042.38 42068.76 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 39153.82 39146.29 40733.73 43145.30 43178.32 41767.24 42818.02 42450.93 42087.05 40552.99 40653.11 42670.76 40125.29 42440.46 422
kuosan65.27 38564.66 38767.11 40383.80 41261.32 42188.53 40760.77 42968.22 41067.67 40880.52 41249.12 41070.76 42529.67 42453.64 41969.26 417
dongtai69.99 37969.33 38171.98 40088.78 40161.64 42089.86 40159.93 43075.67 40274.96 40185.45 40650.19 40981.66 41943.86 41855.27 41772.63 415
N_pmnet78.73 37278.71 37378.79 39092.80 36946.50 42994.14 34443.71 43178.61 39580.83 38291.66 37474.94 31796.36 36767.24 40584.45 35193.50 364
wuyk23d25.11 39224.57 39626.74 40873.98 42439.89 43257.88 4219.80 43212.27 42510.39 4266.97 4287.03 43036.44 42725.43 42617.39 4253.89 425
testmvs13.36 39416.33 3974.48 4105.04 4322.26 43593.18 3693.28 4332.70 4268.24 42721.66 4242.29 4332.19 4287.58 4272.96 4269.00 424
test12313.04 39515.66 3985.18 4094.51 4333.45 43492.50 3831.81 4342.50 4277.58 42820.15 4253.67 4322.18 4297.13 4281.07 4279.90 423
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas7.39 3979.85 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42988.65 1000.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
n20.00 435
nn0.00 435
ab-mvs-re8.06 39610.74 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43096.69 1750.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS79.53 38375.56 382
PC_three_145290.77 18998.89 1798.28 7196.24 198.35 23495.76 8799.58 2399.59 24
eth-test20.00 434
eth-test0.00 434
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 7296.04 299.24 13195.36 10199.59 1999.56 31
test_0728_THIRD94.78 4798.73 2198.87 2195.87 499.84 2397.45 3599.72 299.77 2
GSMVS98.45 150
test_part299.28 2595.74 898.10 33
sam_mvs182.76 20298.45 150
sam_mvs81.94 221
test_post192.81 37916.58 42780.53 24297.68 31486.20 289
test_post17.58 42681.76 22398.08 261
patchmatchnet-post90.45 38282.65 20698.10 256
gm-plane-assit93.22 36178.89 39184.82 34893.52 33898.64 20887.72 257
test9_res94.81 11699.38 5899.45 50
agg_prior293.94 13499.38 5899.50 43
test_prior493.66 5796.42 235
test_prior296.35 24492.80 13096.03 10797.59 12692.01 4795.01 10999.38 58
旧先验295.94 26981.66 37997.34 5598.82 18592.26 162
新几何295.79 278
原ACMM295.67 283
testdata299.67 6285.96 297
segment_acmp92.89 30
testdata195.26 30793.10 116
plane_prior796.21 22989.98 187
plane_prior696.10 24090.00 18381.32 229
plane_prior496.64 178
plane_prior390.00 18394.46 6391.34 223
plane_prior297.74 9894.85 40
plane_prior196.14 237
plane_prior89.99 18597.24 16394.06 7592.16 256
HQP5-MVS89.33 212
HQP-NCC95.86 24696.65 21893.55 9190.14 247
ACMP_Plane95.86 24696.65 21893.55 9190.14 247
BP-MVS92.13 168
HQP4-MVS90.14 24798.50 22095.78 272
HQP2-MVS80.95 233
NP-MVS95.99 24489.81 19395.87 220
MDTV_nov1_ep13_2view70.35 40793.10 37483.88 35993.55 16882.47 21086.25 28898.38 158
ACMMP++_ref90.30 286
ACMMP++91.02 275
Test By Simon88.73 99