This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 166
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 30196.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24691.45 12498.12 4898.71 1193.37 9190.23 23196.70 16287.66 11097.85 28491.49 17190.39 27295.83 250
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 25193.34 6497.39 13998.71 1193.14 10390.10 24094.83 26087.71 10998.03 25691.67 16983.99 34095.46 273
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
FIs94.09 12193.70 11695.27 15995.70 23692.03 10198.10 4998.68 1393.36 9390.39 22896.70 16287.63 11297.94 27492.25 15190.50 27195.84 249
WR-MVS_H92.00 20791.35 20393.95 23495.09 27789.47 19598.04 5598.68 1391.46 15488.34 28894.68 26785.86 13997.56 30985.77 28384.24 33894.82 315
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23692.39 8797.86 7998.66 1692.30 13092.09 18995.37 23880.49 23098.40 20993.95 12085.86 31295.75 260
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25792.83 7497.17 16298.58 1792.98 11290.13 23695.80 21588.37 10097.85 28491.71 16683.93 34195.73 262
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23393.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30798.49 1985.06 32793.78 14895.78 21982.86 18798.67 18791.77 16495.71 17899.07 85
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29498.48 2185.60 31793.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20697.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 159
PVSNet_BlendedMVS94.06 12293.92 11294.47 20398.27 8389.46 19796.73 19598.36 2490.17 19994.36 13495.24 24488.02 10499.58 7793.44 13190.72 26794.36 335
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 28098.36 2488.84 24194.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 27098.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24690.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 198
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23892.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19894.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
PS-CasMVS91.55 22590.84 22493.69 25094.96 28188.28 23497.84 8398.24 4791.46 15488.04 29895.80 21579.67 24697.48 31787.02 26384.54 33595.31 285
DU-MVS92.90 17292.04 17995.49 15194.95 28292.83 7497.16 16398.24 4793.02 10690.13 23695.71 22283.47 17197.85 28491.71 16683.93 34195.78 255
9.1496.75 4198.93 4797.73 9598.23 5091.28 16297.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
D2MVS91.30 24090.95 21892.35 29394.71 29985.52 29796.18 24598.21 5188.89 23986.60 32593.82 31079.92 24297.95 27389.29 21490.95 26393.56 348
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19497.28 13179.13 25598.93 16094.61 11092.84 22697.28 206
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21489.67 27597.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 40291.70 4899.80 3095.66 7599.40 5099.62 18
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
CP-MVSNet91.89 21091.24 21093.82 24295.05 27888.57 22597.82 8698.19 5591.70 14788.21 29495.76 22081.96 20797.52 31587.86 23884.65 33095.37 281
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19398.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 24490.44 24093.48 25994.49 30787.91 24997.76 9198.18 5791.29 15987.78 30295.74 22180.35 23397.33 32885.46 28782.96 35195.19 296
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 29388.40 29893.60 25395.15 27390.10 17297.56 11998.16 6187.28 29186.16 32994.63 27077.57 28298.05 25274.48 36784.59 33392.65 361
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18699.16 73
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32496.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19197.35 14299.11 81
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33588.27 29297.77 10282.39 20099.81 2985.40 28898.81 9398.51 129
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25792.73 7898.27 3398.12 6784.86 33085.78 33197.75 10378.89 26499.74 4187.50 25398.65 9896.73 222
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29492.07 9997.53 12398.11 7092.90 11689.56 25896.12 20083.16 17797.60 30789.30 21383.20 35095.75 260
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27695.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15298.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
ZD-MVS99.05 3994.59 2998.08 7489.22 22697.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
MTGPAbinary98.08 74
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 25995.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
NR-MVSNet92.34 19291.27 20995.53 14894.95 28293.05 7097.39 13998.07 7992.65 12384.46 34295.71 22285.00 14997.77 29389.71 20283.52 34795.78 255
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18495.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19396.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16796.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23794.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
RPMNet88.98 29887.05 31294.77 19194.45 30987.19 26490.23 37998.03 9177.87 38192.40 17587.55 38480.17 23799.51 9668.84 38593.95 21497.60 192
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
TEST998.70 5694.19 4096.41 22398.02 9488.17 26396.03 9597.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 25096.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
test_898.67 5894.06 4796.37 23098.01 9788.58 25095.98 9997.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
WR-MVS92.34 19291.53 19894.77 19195.13 27590.83 15196.40 22797.98 10091.88 14489.29 26795.54 23382.50 19697.80 28989.79 20185.27 32195.69 264
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 37993.00 16697.57 11986.14 13799.33 11589.22 21799.15 7598.94 97
IU-MVS99.42 795.39 1197.94 10490.40 19798.94 897.41 2999.66 1099.74 8
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
Anonymous2023121190.63 26789.42 28294.27 21898.24 8789.19 21298.05 5497.89 10779.95 37188.25 29394.96 25272.56 32298.13 23489.70 20385.14 32395.49 268
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28795.22 12097.68 10790.25 7499.54 8987.95 23799.12 7998.49 132
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29596.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
test1197.88 109
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18497.10 3199.17 7398.90 102
无先验95.79 26497.87 11183.87 34399.65 5887.68 24798.89 105
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28598.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
VPNet92.23 20091.31 20694.99 17395.56 24290.96 14597.22 15897.86 11592.96 11490.96 21996.62 17775.06 30498.20 22791.90 15983.65 34695.80 253
test_vis1_n_192094.17 11494.58 9792.91 27997.42 14182.02 34097.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 200
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17896.92 3599.33 5898.94 97
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35691.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20592.15 18597.06 14583.62 17099.54 8989.34 21298.07 12297.70 185
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27591.23 6198.92 16195.65 7898.19 11897.82 180
新几何197.32 5198.60 6593.59 5697.75 12381.58 36295.75 10697.85 9690.04 7799.67 5686.50 26999.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19497.45 2699.11 8098.67 121
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21897.78 12998.97 93
Anonymous2024052991.98 20890.73 23095.73 13698.14 9989.40 19997.99 6097.72 12879.63 37393.54 15397.41 12769.94 33999.56 8591.04 18191.11 25998.22 153
CHOSEN 280x42093.12 15992.72 15794.34 21296.71 18187.27 26090.29 37897.72 12886.61 30291.34 20795.29 24084.29 16098.41 20893.25 13598.94 8997.35 203
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32590.29 23098.34 5484.60 15399.73 4283.85 30998.27 11598.06 167
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27597.71 13288.99 23492.34 18195.82 21489.19 8599.11 13886.14 27597.38 14098.90 102
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15598.18 9788.90 21897.66 13482.73 35397.03 5798.07 7690.06 7698.85 16789.67 20498.98 8798.64 122
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
DTE-MVSNet90.56 26889.75 27393.01 27593.95 32387.25 26197.64 11097.65 13690.74 17987.12 31495.68 22579.97 24197.00 34083.33 31081.66 35794.78 322
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 35991.52 20297.23 13687.94 10698.91 16371.31 38098.37 11198.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19497.28 13175.35 30398.65 18988.99 22392.84 22697.28 206
test_cas_vis1_n_192094.48 10894.55 10194.28 21796.78 17586.45 28297.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 205
cdsmvs_eth3d_5k23.24 37230.99 3740.00 3900.00 4130.00 4150.00 40197.63 1400.00 4080.00 40996.88 15584.38 1570.00 4090.00 4080.00 4070.00 405
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 29097.62 14190.43 19695.55 11397.07 14491.72 4699.50 9989.62 20698.94 8998.82 111
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19498.91 101
test22298.24 8792.21 9495.33 28597.60 14279.22 37595.25 11897.84 9888.80 9299.15 7598.72 116
cascas91.20 24490.08 25794.58 20094.97 28089.16 21393.65 34497.59 14479.90 37289.40 26292.92 33375.36 30298.36 21592.14 15494.75 19696.23 232
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36498.29 150
MVSFormer95.37 8395.16 8495.99 12496.34 20891.21 13398.22 4197.57 14691.42 15696.22 8997.32 12986.20 13597.92 27894.07 11799.05 8398.85 108
test_djsdf93.07 16392.76 15294.00 22993.49 33988.70 22298.22 4197.57 14691.42 15690.08 24295.55 23282.85 18897.92 27894.07 11791.58 24795.40 278
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
PS-MVSNAJss93.74 13693.51 12694.44 20593.91 32589.28 20797.75 9297.56 14992.50 12689.94 24596.54 18088.65 9598.18 23093.83 12690.90 26495.86 246
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17395.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 18791.89 18694.03 22893.33 34588.50 22997.73 9597.53 15192.00 14288.85 27796.50 18275.62 30198.11 24093.88 12491.56 24895.48 269
mvs_tets92.31 19491.76 18893.94 23693.41 34288.29 23397.63 11297.53 15192.04 14088.76 28096.45 18474.62 30998.09 24493.91 12291.48 25095.45 274
dcpmvs_296.37 6097.05 2294.31 21598.96 4684.11 31997.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
HQP_MVS93.78 13593.43 13194.82 18496.21 21289.99 17697.74 9397.51 15394.85 3491.34 20796.64 16881.32 21798.60 19493.02 14292.23 23595.86 246
plane_prior597.51 15398.60 19493.02 14292.23 23595.86 246
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28797.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 236
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22794.81 12696.71 16088.84 9199.17 13188.91 22598.76 9596.53 225
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26693.00 16695.84 21284.86 15199.51 9687.99 23698.17 12097.83 179
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 16792.53 16694.32 21396.12 22289.20 21095.28 28897.47 15992.66 12289.90 24695.62 22880.58 22898.40 20992.73 14792.40 23395.38 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 23890.22 25394.68 19494.86 29087.86 25097.23 15797.46 16187.99 26789.90 24696.92 15366.35 36198.23 22490.30 19290.99 26297.96 170
nrg03094.05 12393.31 13596.27 10595.22 26894.59 2998.34 2797.46 16192.93 11591.21 21796.64 16887.23 12298.22 22594.99 9885.80 31395.98 245
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 30297.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 23196.92 217
LPG-MVS_test92.94 17092.56 16394.10 22396.16 21788.26 23597.65 10697.46 16191.29 15990.12 23897.16 13979.05 25798.73 18092.25 15191.89 24395.31 285
LGP-MVS_train94.10 22396.16 21788.26 23597.46 16191.29 15990.12 23897.16 13979.05 25798.73 18092.25 15191.89 24395.31 285
MVS91.71 21490.44 24095.51 14995.20 27091.59 11696.04 25097.45 16673.44 38787.36 31195.60 22985.42 14499.10 13985.97 28097.46 13595.83 250
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28897.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 23296.98 213
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18695.66 7597.25 14799.13 77
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28297.45 16689.81 21093.22 16496.28 19279.62 24899.46 10390.74 18593.11 22398.50 130
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 28197.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 236
131492.81 17892.03 18095.14 16495.33 26089.52 19496.04 25097.44 17087.72 28086.25 32895.33 23983.84 16598.79 17289.26 21597.05 15297.11 211
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 18095.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 20291.23 21194.95 17894.75 29690.94 14697.47 13197.43 17389.14 22888.90 27496.43 18579.71 24598.24 22389.56 20787.68 29695.67 266
anonymousdsp92.16 20291.55 19793.97 23292.58 35889.55 19197.51 12497.42 17489.42 22188.40 28794.84 25980.66 22697.88 28391.87 16191.28 25594.48 330
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17394.50 13295.92 20887.53 11498.78 17393.89 12396.81 15598.84 110
HQP3-MVS97.39 17692.10 240
HQP-MVS93.19 15592.74 15594.54 20295.86 22989.33 20396.65 20597.39 17693.55 8090.14 23295.87 21080.95 22098.50 20292.13 15592.10 24095.78 255
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 29091.37 20696.71 16088.39 9999.52 9587.33 25697.13 15197.73 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 26189.86 26693.45 26193.54 33687.60 25697.70 10297.37 17988.85 24087.65 30494.08 30281.08 21998.10 24184.68 29683.79 34594.66 327
UnsupCasMVSNet_eth85.99 33184.45 33590.62 33589.97 37682.40 33793.62 34597.37 17989.86 20678.59 37692.37 34265.25 36895.35 36982.27 32370.75 38594.10 341
ACMM89.79 892.96 16892.50 16894.35 21096.30 21088.71 22197.58 11797.36 18191.40 15890.53 22496.65 16779.77 24498.75 17891.24 17791.64 24595.59 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 241
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 241
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 241
diffmvspermissive95.25 8795.13 8595.63 14196.43 20489.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18796.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 19094.64 12996.93 15086.41 13199.39 11191.20 17894.71 19898.94 97
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 27990.49 22597.10 14385.21 14699.50 9986.70 26696.72 15997.63 187
XVG-ACMP-BASELINE90.93 25790.21 25493.09 27394.31 31585.89 29295.33 28597.26 18891.06 17289.38 26395.44 23768.61 34598.60 19489.46 20991.05 26094.79 320
PCF-MVS89.48 1191.56 22489.95 26396.36 9896.60 18692.52 8492.51 36497.26 18879.41 37488.90 27496.56 17984.04 16499.55 8777.01 35897.30 14597.01 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 18292.14 17794.05 22696.40 20588.20 23897.36 14297.25 19091.52 15188.30 29096.64 16878.46 26998.72 18391.86 16291.48 25095.23 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 15192.76 15294.82 18494.63 30290.77 15496.65 20597.18 19193.72 7591.68 19897.26 13479.33 25298.63 19192.13 15592.28 23495.07 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 29097.18 19187.96 26891.86 19395.68 22580.44 23198.99 15684.01 30497.54 13496.89 218
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 19098.95 96
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16795.60 11296.11 20387.87 10898.76 17793.01 14497.17 15098.72 116
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 26291.30 21094.27 29186.21 13498.63 19187.66 24896.46 16698.12 161
EI-MVSNet93.03 16592.88 14793.48 25995.77 23486.98 26996.44 21997.12 19690.66 18691.30 21097.64 11486.56 12798.05 25289.91 19790.55 26995.41 275
MVSTER93.20 15492.81 15194.37 20996.56 19189.59 18997.06 16897.12 19691.24 16391.30 21095.96 20682.02 20698.05 25293.48 13090.55 26995.47 272
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16495.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16495.71 10796.93 15084.30 15899.31 11993.10 13795.12 18898.75 113
LTVRE_ROB88.41 1390.99 25389.92 26594.19 21996.18 21589.55 19196.31 23597.09 20087.88 27185.67 33295.91 20978.79 26598.57 19881.50 32689.98 27594.44 333
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 18092.88 14792.29 29696.08 22581.05 34897.98 6197.08 20190.72 18196.79 6298.18 7063.07 37298.45 20697.62 2098.42 11097.36 201
v1091.04 25190.23 25193.49 25894.12 31988.16 24197.32 14797.08 20188.26 26188.29 29194.22 29682.17 20497.97 26486.45 27084.12 33994.33 336
v14419291.06 25090.28 24793.39 26293.66 33487.23 26396.83 18897.07 20387.43 28689.69 25394.28 29081.48 21598.00 25987.18 26084.92 32994.93 306
v119291.07 24990.23 25193.58 25593.70 33187.82 25296.73 19597.07 20387.77 27789.58 25694.32 28880.90 22497.97 26486.52 26885.48 31694.95 302
v891.29 24190.53 23993.57 25694.15 31888.12 24297.34 14497.06 20588.99 23488.32 28994.26 29383.08 18098.01 25887.62 25083.92 34394.57 329
mvs_anonymous93.82 13393.74 11594.06 22596.44 20385.41 29995.81 26297.05 20689.85 20890.09 24196.36 18987.44 11797.75 29493.97 11996.69 16099.02 86
IterMVS-LS92.29 19691.94 18493.34 26496.25 21186.97 27096.57 21797.05 20690.67 18489.50 26194.80 26286.59 12697.64 30289.91 19786.11 31195.40 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 25990.03 26293.29 26693.55 33586.96 27196.74 19497.04 20887.36 28889.52 26094.34 28580.23 23697.97 26486.27 27185.21 32294.94 304
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21591.46 12396.33 23397.04 20888.97 23693.56 15196.51 18187.55 11397.89 28289.80 20095.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 23590.60 23593.68 25193.89 32688.23 23796.84 18797.03 21088.37 25889.69 25394.39 28282.04 20597.98 26187.80 24085.37 31894.84 312
v124090.70 26589.85 26793.23 26893.51 33886.80 27296.61 21197.02 21187.16 29389.58 25694.31 28979.55 24997.98 26185.52 28685.44 31794.90 309
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18294.24 13797.62 11689.79 8198.81 17193.39 13496.49 16498.92 100
V4291.58 22390.87 22093.73 24694.05 32288.50 22997.32 14796.97 21388.80 24689.71 25194.33 28682.54 19598.05 25289.01 22285.07 32594.64 328
test_fmvs193.21 15393.53 12392.25 29896.55 19381.20 34797.40 13896.96 21490.68 18396.80 6198.04 7969.25 34198.40 20997.58 2198.50 10497.16 210
FMVSNet291.31 23990.08 25794.99 17396.51 19792.21 9497.41 13496.95 21588.82 24388.62 28294.75 26473.87 31397.42 32385.20 29188.55 29095.35 282
ACMH87.59 1690.53 26989.42 28293.87 24096.21 21287.92 24797.24 15396.94 21688.45 25683.91 35296.27 19371.92 32398.62 19384.43 29989.43 28195.05 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 23690.27 24894.59 19696.51 19791.18 13797.50 12596.93 21788.82 24389.35 26494.51 27573.87 31397.29 33086.12 27688.82 28595.31 285
test191.35 23690.27 24894.59 19696.51 19791.18 13797.50 12596.93 21788.82 24389.35 26494.51 27573.87 31397.29 33086.12 27688.82 28595.31 285
FMVSNet391.78 21290.69 23395.03 17196.53 19592.27 9397.02 17196.93 21789.79 21189.35 26494.65 26977.01 28597.47 31886.12 27688.82 28595.35 282
FMVSNet189.88 28888.31 29994.59 19695.41 25091.18 13797.50 12596.93 21786.62 30187.41 30994.51 27565.94 36597.29 33083.04 31387.43 29995.31 285
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 21992.12 18797.21 13784.42 15698.39 21387.71 24396.50 16399.01 89
miper_enhance_ethall91.54 22691.01 21793.15 27195.35 25687.07 26893.97 33096.90 22286.79 29989.17 27193.43 32886.55 12897.64 30289.97 19686.93 30394.74 324
eth_miper_zixun_eth91.02 25290.59 23692.34 29595.33 26084.35 31594.10 32796.90 22288.56 25288.84 27894.33 28684.08 16397.60 30788.77 22884.37 33795.06 299
TAMVS94.01 12593.46 12895.64 14096.16 21790.45 16596.71 19896.89 22489.27 22593.46 15696.92 15387.29 12097.94 27488.70 22995.74 17698.53 126
miper_ehance_all_eth91.59 22191.13 21592.97 27795.55 24386.57 28094.47 31196.88 22587.77 27788.88 27694.01 30386.22 13397.54 31189.49 20886.93 30394.79 320
v2v48291.59 22190.85 22393.80 24393.87 32788.17 24096.94 17996.88 22589.54 21689.53 25994.90 25681.70 21398.02 25789.25 21685.04 32795.20 293
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20291.91 19197.24 13585.21 14699.09 14287.64 24997.83 12797.92 172
PAPM91.52 22790.30 24695.20 16195.30 26389.83 18293.38 35096.85 22886.26 30888.59 28395.80 21584.88 15098.15 23275.67 36395.93 17297.63 187
c3_l91.38 23390.89 21992.88 28195.58 24186.30 28594.68 30496.84 22988.17 26388.83 27994.23 29485.65 14297.47 31889.36 21184.63 33194.89 310
pm-mvs190.72 26489.65 27793.96 23394.29 31689.63 18697.79 9096.82 23089.07 23086.12 33095.48 23678.61 26797.78 29186.97 26481.67 35694.46 331
test_vis1_n92.37 19092.26 17592.72 28694.75 29682.64 33298.02 5696.80 23191.18 16697.77 3797.93 8858.02 38098.29 22197.63 1998.21 11797.23 209
CMPMVSbinary62.92 2185.62 33584.92 33287.74 35689.14 38173.12 38694.17 32596.80 23173.98 38573.65 38494.93 25466.36 36097.61 30683.95 30691.28 25592.48 365
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 27689.77 27191.78 31194.33 31384.72 31395.55 27596.73 23386.17 31086.36 32795.28 24271.28 32897.80 28984.09 30398.14 12192.81 358
Effi-MVS+-dtu93.08 16293.21 13892.68 28996.02 22683.25 32997.14 16596.72 23493.85 7291.20 21893.44 32583.08 18098.30 22091.69 16895.73 17796.50 227
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29889.83 24996.69 16486.51 12999.14 13588.12 23493.67 21798.50 130
PVSNet86.66 1892.24 19991.74 19193.73 24697.77 12183.69 32692.88 35996.72 23487.91 27093.00 16694.86 25878.51 26899.05 15186.53 26797.45 13998.47 135
miper_lstm_enhance90.50 27290.06 26191.83 30795.33 26083.74 32393.86 33696.70 23887.56 28487.79 30193.81 31183.45 17396.92 34287.39 25484.62 33294.82 315
v14890.99 25390.38 24292.81 28493.83 32885.80 29396.78 19296.68 23989.45 22088.75 28193.93 30782.96 18697.82 28887.83 23983.25 34894.80 318
ACMH+87.92 1490.20 28089.18 28793.25 26796.48 20086.45 28296.99 17596.68 23988.83 24284.79 34196.22 19570.16 33698.53 20084.42 30088.04 29394.77 323
CANet_DTU94.37 10993.65 11896.55 7896.46 20292.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18498.45 10997.82 180
cl____90.96 25690.32 24492.89 28095.37 25486.21 28894.46 31396.64 24287.82 27388.15 29694.18 29782.98 18497.54 31187.70 24485.59 31494.92 308
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27396.64 24289.05 23293.00 16695.79 21885.77 14199.45 10589.16 22194.35 20097.96 170
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27796.64 24285.38 32089.65 25595.18 24585.86 13999.10 13987.70 24493.58 22298.49 132
DIV-MVS_self_test90.97 25590.33 24392.88 28195.36 25586.19 28994.46 31396.63 24587.82 27388.18 29594.23 29482.99 18397.53 31387.72 24185.57 31594.93 306
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 27095.27 26485.52 29797.03 16996.63 24592.09 13889.11 27395.14 24780.33 23498.08 24587.54 25294.74 19796.03 244
UnsupCasMVSNet_bld82.13 34879.46 35390.14 34188.00 38682.47 33590.89 37696.62 24778.94 37675.61 38084.40 38956.63 38396.31 35177.30 35566.77 39291.63 372
cl2291.21 24390.56 23893.14 27296.09 22486.80 27294.41 31596.58 24887.80 27588.58 28493.99 30580.85 22597.62 30589.87 19986.93 30394.99 301
RRT_MVS93.10 16092.83 14993.93 23894.76 29488.04 24398.47 2296.55 24993.44 8890.01 24497.04 14680.64 22797.93 27794.33 11490.21 27495.83 250
jason94.84 10294.39 10796.18 11295.52 24490.93 14796.09 24896.52 25089.28 22496.01 9897.32 12984.70 15298.77 17695.15 9498.91 9198.85 108
jason: jason.
tt080591.09 24890.07 26094.16 22195.61 23988.31 23297.56 11996.51 25189.56 21589.17 27195.64 22767.08 35998.38 21491.07 18088.44 29195.80 253
AUN-MVS91.76 21390.75 22894.81 18697.00 16388.57 22596.65 20596.49 25289.63 21392.15 18596.12 20078.66 26698.50 20290.83 18279.18 36797.36 201
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20595.85 6979.13 36897.35 203
EG-PatchMatch MVS87.02 32185.44 32591.76 31392.67 35585.00 30896.08 24996.45 25483.41 34979.52 37293.49 32357.10 38297.72 29679.34 34690.87 26692.56 362
KD-MVS_self_test85.95 33284.95 33188.96 35189.55 38079.11 37195.13 29596.42 25585.91 31384.07 35090.48 36270.03 33894.82 37180.04 33872.94 38292.94 356
pmmvs687.81 31386.19 32092.69 28891.32 36886.30 28597.34 14496.41 25680.59 37084.05 35194.37 28467.37 35497.67 29984.75 29579.51 36694.09 343
PMMVS92.86 17492.34 17294.42 20794.92 28586.73 27594.53 30996.38 25784.78 33294.27 13695.12 24983.13 17998.40 20991.47 17296.49 16498.12 161
RPSCF90.75 26290.86 22190.42 33896.84 16976.29 37995.61 27496.34 25883.89 34191.38 20597.87 9376.45 29098.78 17387.16 26192.23 23596.20 234
MSDG91.42 23190.24 25094.96 17797.15 15088.91 21793.69 34296.32 25985.72 31686.93 32296.47 18380.24 23598.98 15780.57 33595.05 19196.98 213
OurMVSNet-221017-090.51 27190.19 25591.44 31993.41 34281.25 34596.98 17696.28 26091.68 14886.55 32696.30 19174.20 31297.98 26188.96 22487.40 30195.09 297
MVP-Stereo90.74 26390.08 25792.71 28793.19 34788.20 23895.86 26096.27 26186.07 31184.86 34094.76 26377.84 28097.75 29483.88 30898.01 12392.17 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9794.56 9896.29 10496.34 20891.21 13395.83 26196.27 26188.93 23896.22 8996.88 15586.20 13598.85 16795.27 9199.05 8398.82 111
BH-untuned92.94 17092.62 16193.92 23997.22 14486.16 29096.40 22796.25 26390.06 20389.79 25096.17 19883.19 17698.35 21687.19 25997.27 14697.24 208
CL-MVSNet_self_test86.31 32785.15 32989.80 34588.83 38381.74 34393.93 33396.22 26486.67 30085.03 33890.80 36178.09 27694.50 37274.92 36671.86 38493.15 354
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20689.98 19597.86 12699.14 76
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 30196.21 26689.61 21494.20 13895.25 24383.24 17599.14 13590.01 19496.16 16898.25 151
GA-MVS91.38 23390.31 24594.59 19694.65 30187.62 25594.34 31896.19 26790.73 18090.35 22993.83 30871.84 32497.96 26987.22 25893.61 22098.21 154
IterMVS-SCA-FT90.31 27489.81 26991.82 30895.52 24484.20 31894.30 32196.15 26890.61 19087.39 31094.27 29175.80 29896.44 34987.34 25586.88 30794.82 315
IterMVS90.15 28289.67 27591.61 31595.48 24683.72 32494.33 31996.12 26989.99 20487.31 31394.15 29975.78 30096.27 35286.97 26486.89 30694.83 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35589.29 26797.87 9383.77 16699.69 5281.37 33196.69 16098.89 105
pmmvs490.93 25789.85 26794.17 22093.34 34490.79 15394.60 30696.02 27184.62 33387.45 30795.15 24681.88 21097.45 32087.70 24487.87 29594.27 340
ppachtmachnet_test88.35 30887.29 30791.53 31692.45 36183.57 32793.75 33995.97 27284.28 33685.32 33794.18 29779.00 26396.93 34175.71 36284.99 32894.10 341
Anonymous2024052186.42 32585.44 32589.34 34990.33 37379.79 36396.73 19595.92 27383.71 34583.25 35591.36 35863.92 37096.01 35378.39 35085.36 31992.22 368
ITE_SJBPF92.43 29295.34 25785.37 30295.92 27391.47 15387.75 30396.39 18871.00 33097.96 26982.36 32289.86 27793.97 344
test_fmvs289.77 29289.93 26489.31 35093.68 33376.37 37897.64 11095.90 27589.84 20991.49 20396.26 19458.77 37997.10 33494.65 10891.13 25894.46 331
USDC88.94 29987.83 30492.27 29794.66 30084.96 30993.86 33695.90 27587.34 28983.40 35495.56 23167.43 35398.19 22982.64 32189.67 27993.66 347
COLMAP_ROBcopyleft87.81 1590.40 27389.28 28593.79 24497.95 11087.13 26796.92 18095.89 27782.83 35286.88 32497.18 13873.77 31699.29 12178.44 34993.62 21994.95 302
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34999.39 11196.31 4994.85 19298.71 118
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 30995.79 10598.46 4267.59 35299.19 12894.92 9994.85 19298.47 135
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 28188.24 23397.97 12499.02 86
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
KD-MVS_2432*160084.81 33982.64 34391.31 32191.07 37085.34 30391.22 37195.75 28285.56 31883.09 35690.21 36567.21 35595.89 35577.18 35662.48 39592.69 359
miper_refine_blended84.81 33982.64 34391.31 32191.07 37085.34 30391.22 37195.75 28285.56 31883.09 35690.21 36567.21 35595.89 35577.18 35662.48 39592.69 359
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33595.70 28486.30 30694.15 14094.97 25176.59 28899.21 12684.10 30296.86 15398.09 165
tpm cat188.36 30787.21 31091.81 30995.13 27580.55 35492.58 36395.70 28474.97 38487.45 30791.96 35278.01 27998.17 23180.39 33788.74 28896.72 223
our_test_388.78 30387.98 30391.20 32592.45 36182.53 33493.61 34695.69 28685.77 31584.88 33993.71 31379.99 24096.78 34779.47 34386.24 30894.28 339
BH-w/o92.14 20491.75 18993.31 26596.99 16485.73 29495.67 26995.69 28688.73 24889.26 26994.82 26182.97 18598.07 24985.26 29096.32 16796.13 240
CR-MVSNet90.82 26089.77 27193.95 23494.45 30987.19 26490.23 37995.68 28886.89 29792.40 17592.36 34580.91 22297.05 33681.09 33493.95 21497.60 192
Patchmtry88.64 30587.25 30892.78 28594.09 32086.64 27689.82 38295.68 28880.81 36787.63 30592.36 34580.91 22297.03 33778.86 34785.12 32494.67 326
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 19996.64 16879.28 25398.13 23495.34 9091.49 24995.70 263
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29190.62 18991.87 19297.15 14178.41 27098.57 19883.16 31197.60 13398.36 147
PVSNet_082.17 1985.46 33683.64 33990.92 32895.27 26479.49 36790.55 37795.60 29183.76 34483.00 35889.95 36771.09 32997.97 26482.75 31960.79 39795.31 285
SCA91.84 21191.18 21493.83 24195.59 24084.95 31094.72 30395.58 29390.82 17692.25 18393.69 31475.80 29898.10 24186.20 27395.98 17098.45 137
AllTest90.23 27888.98 29093.98 23097.94 11186.64 27696.51 21895.54 29485.38 32085.49 33496.77 15870.28 33499.15 13380.02 33992.87 22496.15 238
TestCases93.98 23097.94 11186.64 27695.54 29485.38 32085.49 33496.77 15870.28 33499.15 13380.02 33992.87 22496.15 238
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29692.52 12591.58 20096.64 16876.35 29398.13 23495.43 8891.42 25295.68 265
mvsmamba93.83 13293.46 12894.93 18194.88 28990.85 15098.55 1495.49 29794.24 6191.29 21396.97 14983.04 18298.14 23395.56 8691.17 25795.78 255
tpmvs89.83 29189.15 28891.89 30594.92 28580.30 35893.11 35595.46 29886.28 30788.08 29792.65 33580.44 23198.52 20181.47 32789.92 27696.84 219
pmmvs589.86 29088.87 29392.82 28392.86 35186.23 28796.26 23895.39 29984.24 33787.12 31494.51 27574.27 31197.36 32787.61 25187.57 29794.86 311
PatchmatchNetpermissive91.91 20991.35 20393.59 25495.38 25284.11 31993.15 35495.39 29989.54 21692.10 18893.68 31682.82 18998.13 23484.81 29495.32 18598.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 23091.32 20591.79 31095.15 27379.20 37093.42 34995.37 30188.55 25393.49 15593.67 31782.49 19798.27 22290.41 18989.34 28297.90 173
Anonymous2023120687.09 32086.14 32189.93 34491.22 36980.35 35696.11 24795.35 30283.57 34784.16 34693.02 33173.54 31895.61 36372.16 37786.14 31093.84 346
MIMVSNet184.93 33883.05 34090.56 33689.56 37984.84 31295.40 28295.35 30283.91 34080.38 36892.21 34957.23 38193.34 38470.69 38382.75 35493.50 349
TDRefinement86.53 32384.76 33491.85 30682.23 39684.25 31696.38 22995.35 30284.97 32984.09 34994.94 25365.76 36698.34 21984.60 29874.52 37892.97 355
TR-MVS91.48 22990.59 23694.16 22196.40 20587.33 25795.67 26995.34 30587.68 28191.46 20495.52 23476.77 28798.35 21682.85 31693.61 22096.79 221
EPNet_dtu91.71 21491.28 20892.99 27693.76 33083.71 32596.69 20195.28 30693.15 10287.02 31895.95 20783.37 17497.38 32679.46 34496.84 15497.88 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 31785.79 32391.78 31194.80 29387.28 25995.49 27995.28 30684.09 33983.85 35391.82 35362.95 37394.17 37678.48 34885.34 32093.91 345
MDTV_nov1_ep1390.76 22795.22 26880.33 35793.03 35795.28 30688.14 26592.84 17293.83 30881.34 21698.08 24582.86 31494.34 201
LF4IMVS87.94 31187.25 30889.98 34392.38 36380.05 36294.38 31695.25 30987.59 28384.34 34394.74 26564.31 36997.66 30184.83 29387.45 29892.23 367
TransMVSNet (Re)88.94 29987.56 30593.08 27494.35 31288.45 23197.73 9595.23 31087.47 28584.26 34595.29 24079.86 24397.33 32879.44 34574.44 37993.45 351
test20.0386.14 33085.40 32788.35 35290.12 37480.06 36195.90 25995.20 31188.59 24981.29 36393.62 31971.43 32792.65 38671.26 38181.17 35992.34 366
new-patchmatchnet83.18 34581.87 34887.11 35986.88 38875.99 38093.70 34095.18 31285.02 32877.30 37988.40 37765.99 36493.88 38174.19 37170.18 38691.47 376
MDA-MVSNet_test_wron85.87 33384.23 33790.80 33392.38 36382.57 33393.17 35295.15 31382.15 35667.65 38892.33 34878.20 27295.51 36677.33 35379.74 36394.31 338
YYNet185.87 33384.23 33790.78 33492.38 36382.46 33693.17 35295.14 31482.12 35767.69 38792.36 34578.16 27595.50 36777.31 35479.73 36494.39 334
Baseline_NR-MVSNet91.20 24490.62 23492.95 27893.83 32888.03 24497.01 17495.12 31588.42 25789.70 25295.13 24883.47 17197.44 32189.66 20583.24 34993.37 352
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31692.08 13993.28 16194.00 30478.39 27199.04 15481.26 33394.18 20596.19 235
ADS-MVSNet89.89 28788.68 29593.53 25795.86 22984.89 31190.93 37495.07 31783.23 35091.28 21491.81 35479.01 26197.85 28479.52 34191.39 25397.84 177
pmmvs-eth3d86.22 32884.45 33591.53 31688.34 38587.25 26194.47 31195.01 31883.47 34879.51 37389.61 37069.75 34095.71 36083.13 31276.73 37591.64 371
Anonymous20240521192.07 20590.83 22595.76 13198.19 9588.75 22097.58 11795.00 31986.00 31293.64 15097.45 12466.24 36399.53 9190.68 18792.71 22999.01 89
MDA-MVSNet-bldmvs85.00 33782.95 34291.17 32693.13 34983.33 32894.56 30895.00 31984.57 33465.13 39292.65 33570.45 33395.85 35773.57 37377.49 37194.33 336
ambc86.56 36283.60 39370.00 38985.69 39194.97 32180.60 36788.45 37637.42 39596.84 34582.69 32075.44 37792.86 357
testgi87.97 31087.21 31090.24 34092.86 35180.76 34996.67 20494.97 32191.74 14685.52 33395.83 21362.66 37494.47 37476.25 36088.36 29295.48 269
dp88.90 30188.26 30190.81 33194.58 30576.62 37792.85 36094.93 32385.12 32690.07 24393.07 33075.81 29798.12 23980.53 33687.42 30097.71 184
test_fmvs383.21 34483.02 34183.78 36686.77 38968.34 39296.76 19394.91 32486.49 30384.14 34889.48 37136.04 39691.73 38891.86 16280.77 36191.26 378
test_040286.46 32484.79 33391.45 31895.02 27985.55 29696.29 23794.89 32580.90 36482.21 36093.97 30668.21 35097.29 33062.98 38988.68 28991.51 374
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 28078.17 27399.08 14481.40 32894.08 20996.48 228
CVMVSNet91.23 24291.75 18989.67 34695.77 23474.69 38196.44 21994.88 32685.81 31492.18 18497.64 11479.07 25695.58 36588.06 23595.86 17498.74 115
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 28078.17 27399.08 14481.40 32894.08 20996.98 213
EPNet95.20 9094.56 9897.14 6392.80 35392.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9991.62 21990.72 23194.32 21396.48 20086.11 29195.81 26294.76 33091.55 15091.75 19693.44 32568.55 34798.82 16990.43 18893.69 21698.04 168
SixPastTwentyTwo89.15 29788.54 29790.98 32793.49 33980.28 35996.70 19994.70 33190.78 17784.15 34795.57 23071.78 32597.71 29784.63 29785.07 32594.94 304
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33292.20 13393.31 16094.90 25678.06 27799.08 14481.40 32894.08 20996.48 228
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33292.18 13793.33 15994.91 25578.06 27799.10 13981.61 32594.06 21396.98 213
PatchT88.87 30287.42 30693.22 26994.08 32185.10 30789.51 38394.64 33481.92 35892.36 17888.15 38080.05 23997.01 33972.43 37693.65 21897.54 195
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33592.20 13392.36 17896.34 19084.16 16298.21 22689.20 21983.90 34497.68 186
Gipumacopyleft67.86 36365.41 36575.18 37992.66 35673.45 38466.50 39894.52 33653.33 39757.80 39866.07 39830.81 39889.20 39248.15 39878.88 37062.90 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testing1191.68 21790.75 22894.47 20396.53 19586.56 28195.76 26694.51 33791.10 17191.24 21693.59 32068.59 34698.86 16691.10 17994.29 20298.00 169
CostFormer91.18 24790.70 23292.62 29094.84 29181.76 34294.09 32894.43 33884.15 33892.72 17393.77 31279.43 25098.20 22790.70 18692.18 23897.90 173
tpm289.96 28489.21 28692.23 29994.91 28781.25 34593.78 33894.42 33980.62 36991.56 20193.44 32576.44 29197.94 27485.60 28592.08 24297.49 196
JIA-IIPM88.26 30987.04 31391.91 30493.52 33781.42 34489.38 38494.38 34080.84 36690.93 22080.74 39179.22 25497.92 27882.76 31891.62 24696.38 231
dmvs_re90.21 27989.50 28092.35 29395.47 24985.15 30595.70 26894.37 34190.94 17588.42 28693.57 32174.63 30895.67 36282.80 31789.57 28096.22 233
Patchmatch-test89.42 29587.99 30293.70 24995.27 26485.11 30688.98 38594.37 34181.11 36387.10 31693.69 31482.28 20197.50 31674.37 36994.76 19598.48 134
LCM-MVSNet72.55 35769.39 36182.03 36870.81 40665.42 39790.12 38194.36 34355.02 39665.88 39081.72 39024.16 40489.96 38974.32 37068.10 39090.71 381
ADS-MVSNet289.45 29488.59 29692.03 30295.86 22982.26 33890.93 37494.32 34483.23 35091.28 21491.81 35479.01 26195.99 35479.52 34191.39 25397.84 177
EU-MVSNet88.72 30488.90 29288.20 35493.15 34874.21 38296.63 21094.22 34585.18 32487.32 31295.97 20576.16 29494.98 37085.27 28986.17 30995.41 275
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34697.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
MIMVSNet88.50 30686.76 31693.72 24894.84 29187.77 25391.39 36994.05 34786.41 30587.99 29992.59 33863.27 37195.82 35977.44 35292.84 22697.57 194
OpenMVS_ROBcopyleft81.14 2084.42 34182.28 34790.83 32990.06 37584.05 32195.73 26794.04 34873.89 38680.17 37191.53 35759.15 37897.64 30266.92 38789.05 28490.80 380
TinyColmap86.82 32285.35 32891.21 32394.91 28782.99 33193.94 33294.02 34983.58 34681.56 36294.68 26762.34 37598.13 23475.78 36187.35 30292.52 364
ETVMVS90.52 27089.14 28994.67 19596.81 17487.85 25195.91 25893.97 35089.71 21292.34 18192.48 34065.41 36797.96 26981.37 33194.27 20398.21 154
IB-MVS87.33 1789.91 28588.28 30094.79 19095.26 26787.70 25495.12 29693.95 35189.35 22387.03 31792.49 33970.74 33299.19 12889.18 22081.37 35897.49 196
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 31987.02 31487.47 35795.16 27173.21 38595.00 29793.93 35288.55 25386.96 31991.99 35075.90 29594.00 37861.59 39194.11 20695.20 293
myMVS_eth3d87.18 31886.38 31889.58 34795.16 27179.53 36595.00 29793.93 35288.55 25386.96 31991.99 35056.23 38494.00 37875.47 36594.11 20695.20 293
testing22290.31 27488.96 29194.35 21096.54 19487.29 25895.50 27893.84 35490.97 17491.75 19692.96 33262.18 37698.00 25982.86 31494.08 20997.76 182
test_f80.57 35079.62 35283.41 36783.38 39467.80 39493.57 34793.72 35580.80 36877.91 37887.63 38333.40 39792.08 38787.14 26279.04 36990.34 382
LCM-MVSNet-Re92.50 18392.52 16792.44 29196.82 17381.89 34196.92 18093.71 35692.41 12884.30 34494.60 27185.08 14897.03 33791.51 17097.36 14198.40 143
bld_raw_dy_0_6492.37 19091.69 19294.39 20894.28 31789.73 18597.71 10093.65 35792.78 12090.46 22696.67 16675.88 29697.97 26492.92 14690.89 26595.48 269
tpm90.25 27789.74 27491.76 31393.92 32479.73 36493.98 32993.54 35888.28 26091.99 19093.25 32977.51 28397.44 32187.30 25787.94 29498.12 161
ET-MVSNet_ETH3D91.49 22890.11 25695.63 14196.40 20591.57 11895.34 28493.48 35990.60 19275.58 38195.49 23580.08 23896.79 34694.25 11589.76 27898.52 127
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 36090.57 19396.29 8698.31 6069.00 34299.16 13294.18 11695.87 17399.12 80
Patchmatch-RL test87.38 31686.24 31990.81 33188.74 38478.40 37488.12 38993.17 36187.11 29482.17 36189.29 37281.95 20895.60 36488.64 23077.02 37298.41 142
test-LLR91.42 23191.19 21392.12 30094.59 30380.66 35194.29 32292.98 36291.11 16990.76 22292.37 34279.02 25998.07 24988.81 22696.74 15797.63 187
test-mter90.19 28189.54 27992.12 30094.59 30380.66 35194.29 32292.98 36287.68 28190.76 22292.37 34267.67 35198.07 24988.81 22696.74 15797.63 187
WB-MVSnew89.88 28889.56 27890.82 33094.57 30683.06 33095.65 27292.85 36487.86 27290.83 22194.10 30079.66 24796.88 34376.34 35994.19 20492.54 363
testing387.67 31486.88 31590.05 34296.14 22080.71 35097.10 16792.85 36490.15 20187.54 30694.55 27355.70 38594.10 37773.77 37294.10 20895.35 282
test_method66.11 36464.89 36669.79 38172.62 40435.23 41265.19 39992.83 36620.35 40265.20 39188.08 38143.14 39382.70 39973.12 37563.46 39491.45 377
test0.0.03 189.37 29688.70 29491.41 32092.47 36085.63 29595.22 29392.70 36791.11 16986.91 32393.65 31879.02 25993.19 38578.00 35189.18 28395.41 275
new_pmnet82.89 34681.12 35188.18 35589.63 37880.18 36091.77 36892.57 36876.79 38375.56 38288.23 37961.22 37794.48 37371.43 37982.92 35289.87 383
mvsany_test193.93 12893.98 11193.78 24594.94 28486.80 27294.62 30592.55 36988.77 24796.85 6098.49 3888.98 8898.08 24595.03 9695.62 18096.46 230
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31792.32 37087.92 26993.43 15794.57 27277.28 28499.00 15589.42 21095.86 17497.86 176
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 37190.16 20094.09 14196.41 18676.43 29299.05 15190.38 19095.68 17998.31 149
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37290.63 18893.88 14797.01 14876.50 28999.06 15090.29 19395.45 18398.38 145
K. test v387.64 31586.75 31790.32 33993.02 35079.48 36896.61 21192.08 37390.66 18680.25 37094.09 30167.21 35596.65 34885.96 28180.83 36094.83 313
TESTMET0.1,190.06 28389.42 28291.97 30394.41 31180.62 35394.29 32291.97 37487.28 29190.44 22792.47 34168.79 34397.67 29988.50 23296.60 16297.61 191
PM-MVS83.48 34381.86 34988.31 35387.83 38777.59 37693.43 34891.75 37586.91 29680.63 36689.91 36844.42 39295.84 35885.17 29276.73 37591.50 375
baseline291.63 21890.86 22193.94 23694.33 31386.32 28495.92 25791.64 37689.37 22286.94 32194.69 26681.62 21498.69 18588.64 23094.57 19996.81 220
APD_test179.31 35277.70 35584.14 36589.11 38269.07 39192.36 36791.50 37769.07 38973.87 38392.63 33739.93 39494.32 37570.54 38480.25 36289.02 385
FPMVS71.27 35869.85 36075.50 37874.64 40159.03 40191.30 37091.50 37758.80 39357.92 39788.28 37829.98 40085.53 39853.43 39682.84 35381.95 391
door91.13 379
door-mid91.06 380
EGC-MVSNET68.77 36263.01 36786.07 36492.49 35982.24 33993.96 33190.96 3810.71 4072.62 40890.89 36053.66 38693.46 38257.25 39484.55 33482.51 390
mvsany_test383.59 34282.44 34687.03 36083.80 39273.82 38393.70 34090.92 38286.42 30482.51 35990.26 36446.76 39195.71 36090.82 18376.76 37491.57 373
pmmvs379.97 35177.50 35687.39 35882.80 39579.38 36992.70 36290.75 38370.69 38878.66 37587.47 38551.34 38993.40 38373.39 37469.65 38789.38 384
UWE-MVS89.91 28589.48 28191.21 32395.88 22878.23 37594.91 30090.26 38489.11 22992.35 18094.52 27468.76 34497.96 26983.95 30695.59 18197.42 199
DSMNet-mixed86.34 32686.12 32287.00 36189.88 37770.43 38794.93 29990.08 38577.97 38085.42 33692.78 33474.44 31093.96 38074.43 36895.14 18796.62 224
MVS-HIRNet82.47 34781.21 35086.26 36395.38 25269.21 39088.96 38689.49 38666.28 39080.79 36574.08 39568.48 34897.39 32571.93 37895.47 18292.18 369
WB-MVS76.77 35476.63 35777.18 37385.32 39056.82 40394.53 30989.39 38782.66 35471.35 38589.18 37375.03 30588.88 39335.42 40166.79 39185.84 387
test111193.19 15592.82 15094.30 21697.58 13784.56 31498.21 4389.02 38893.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
SSC-MVS76.05 35575.83 35876.72 37784.77 39156.22 40494.32 32088.96 38981.82 36070.52 38688.91 37474.79 30788.71 39433.69 40264.71 39385.23 388
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 29998.21 4388.23 39093.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
EPMVS90.70 26589.81 26993.37 26394.73 29884.21 31793.67 34388.02 39189.50 21892.38 17793.49 32377.82 28197.78 29186.03 27992.68 23098.11 164
ANet_high63.94 36559.58 36877.02 37461.24 40866.06 39585.66 39287.93 39278.53 37842.94 40071.04 39725.42 40380.71 40052.60 39730.83 40184.28 389
PMMVS270.19 35966.92 36280.01 36976.35 40065.67 39686.22 39087.58 39364.83 39262.38 39380.29 39226.78 40288.49 39663.79 38854.07 39885.88 386
lessismore_v090.45 33791.96 36679.09 37287.19 39480.32 36994.39 28266.31 36297.55 31084.00 30576.84 37394.70 325
PMVScopyleft53.92 2258.58 36655.40 36968.12 38251.00 40948.64 40678.86 39587.10 39546.77 39835.84 40474.28 3948.76 40886.34 39742.07 39973.91 38069.38 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 32985.06 33089.46 34893.47 34180.46 35596.41 22386.61 39685.22 32379.15 37488.64 37552.41 38897.06 33593.08 13990.57 26890.87 379
testf169.31 36066.76 36376.94 37578.61 39861.93 39988.27 38786.11 39755.62 39459.69 39485.31 38720.19 40689.32 39057.62 39269.44 38879.58 392
APD_test269.31 36066.76 36376.94 37578.61 39861.93 39988.27 38786.11 39755.62 39459.69 39485.31 38720.19 40689.32 39057.62 39269.44 38879.58 392
gg-mvs-nofinetune87.82 31285.61 32494.44 20594.46 30889.27 20891.21 37384.61 39980.88 36589.89 24874.98 39371.50 32697.53 31385.75 28497.21 14896.51 226
dmvs_testset81.38 34982.60 34577.73 37291.74 36751.49 40593.03 35784.21 40089.07 23078.28 37791.25 35976.97 28688.53 39556.57 39582.24 35593.16 353
GG-mvs-BLEND93.62 25293.69 33289.20 21092.39 36683.33 40187.98 30089.84 36971.00 33096.87 34482.08 32495.40 18494.80 318
MTMP97.86 7982.03 402
DeepMVS_CXcopyleft74.68 38090.84 37264.34 39881.61 40365.34 39167.47 38988.01 38248.60 39080.13 40162.33 39073.68 38179.58 392
E-PMN53.28 36752.56 37155.43 38474.43 40247.13 40783.63 39476.30 40442.23 39942.59 40162.22 40028.57 40174.40 40231.53 40331.51 40044.78 399
test250691.60 22090.78 22694.04 22797.66 12783.81 32298.27 3375.53 40593.43 8995.23 11998.21 6767.21 35599.07 14893.01 14498.49 10599.25 68
EMVS52.08 36951.31 37254.39 38572.62 40445.39 40983.84 39375.51 40641.13 40040.77 40259.65 40130.08 39973.60 40328.31 40429.90 40244.18 400
test_vis3_rt72.73 35670.55 35979.27 37080.02 39768.13 39393.92 33474.30 40776.90 38258.99 39673.58 39620.29 40595.37 36884.16 30172.80 38374.31 395
MVEpermissive50.73 2353.25 36848.81 37366.58 38365.34 40757.50 40272.49 39770.94 40840.15 40139.28 40363.51 3996.89 41073.48 40438.29 40042.38 39968.76 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 37053.82 37046.29 38633.73 41045.30 41078.32 39667.24 40918.02 40350.93 39987.05 38652.99 38753.11 40570.76 38225.29 40340.46 401
N_pmnet78.73 35378.71 35478.79 37192.80 35346.50 40894.14 32643.71 41078.61 37780.83 36491.66 35674.94 30696.36 35067.24 38684.45 33693.50 349
wuyk23d25.11 37124.57 37526.74 38773.98 40339.89 41157.88 4009.80 41112.27 40410.39 4056.97 4077.03 40936.44 40625.43 40517.39 4043.89 404
testmvs13.36 37316.33 3764.48 3895.04 4112.26 41493.18 3513.28 4122.70 4058.24 40621.66 4032.29 4122.19 4077.58 4062.96 4059.00 403
test12313.04 37415.66 3775.18 3884.51 4123.45 41392.50 3651.81 4132.50 4067.58 40720.15 4043.67 4112.18 4087.13 4071.07 4069.90 402
test_blank0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uanet_test0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
DCPMVS0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
pcd_1.5k_mvsjas7.39 3769.85 3790.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 40888.65 950.00 4090.00 4080.00 4070.00 405
sosnet-low-res0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
sosnet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uncertanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
Regformer0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
n20.00 414
nn0.00 414
ab-mvs-re8.06 37510.74 3780.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 40996.69 1640.00 4130.00 4090.00 4080.00 4070.00 405
uanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
WAC-MVS79.53 36575.56 364
PC_three_145290.77 17898.89 1498.28 6596.24 198.35 21695.76 7399.58 2199.59 22
eth-test20.00 413
eth-test0.00 413
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
test_post192.81 36116.58 40680.53 22997.68 29886.20 273
test_post17.58 40581.76 21198.08 245
patchmatchnet-post90.45 36382.65 19498.10 241
gm-plane-assit93.22 34678.89 37384.82 33193.52 32298.64 19087.72 241
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 36197.34 4898.82 16992.26 149
新几何295.79 264
原ACMM295.67 269
testdata299.67 5685.96 281
segment_acmp92.89 27
testdata195.26 29293.10 105
plane_prior796.21 21289.98 178
plane_prior696.10 22390.00 17481.32 217
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 207
plane_prior297.74 9394.85 34
plane_prior196.14 220
plane_prior89.99 17697.24 15394.06 6592.16 239
HQP5-MVS89.33 203
HQP-NCC95.86 22996.65 20593.55 8090.14 232
ACMP_Plane95.86 22996.65 20593.55 8090.14 232
BP-MVS92.13 155
HQP4-MVS90.14 23298.50 20295.78 255
HQP2-MVS80.95 220
NP-MVS95.99 22789.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38893.10 35683.88 34293.55 15282.47 19886.25 27298.38 145
ACMMP++_ref90.30 273
ACMMP++91.02 261
Test By Simon88.73 94