| test_fmvsm_n_1920 | | | 97.55 11 | 97.89 3 | 96.53 88 | 98.41 77 | 91.73 116 | 98.01 60 | 99.02 1 | 96.37 7 | 99.30 2 | 98.92 16 | 92.39 41 | 99.79 36 | 99.16 7 | 99.46 41 | 98.08 180 |
|
| PGM-MVS | | | 96.81 46 | 96.53 55 | 97.65 42 | 99.35 20 | 93.53 60 | 97.65 112 | 98.98 2 | 92.22 140 | 97.14 61 | 98.44 49 | 91.17 67 | 99.85 18 | 94.35 127 | 99.46 41 | 99.57 28 |
|
| MVS_111021_HR | | | 96.68 56 | 96.58 54 | 96.99 75 | 98.46 73 | 92.31 98 | 96.20 257 | 98.90 3 | 94.30 71 | 95.86 114 | 97.74 112 | 92.33 42 | 99.38 119 | 96.04 77 | 99.42 50 | 99.28 68 |
|
| test_fmvsmconf_n | | | 97.49 15 | 97.56 9 | 97.29 58 | 97.44 149 | 92.37 95 | 97.91 76 | 98.88 4 | 95.83 11 | 98.92 15 | 99.05 8 | 91.45 57 | 99.80 33 | 99.12 8 | 99.46 41 | 99.69 12 |
|
| ACMMP |  | | 96.27 71 | 95.93 74 | 97.28 60 | 99.24 28 | 92.62 87 | 98.25 35 | 98.81 5 | 92.99 118 | 94.56 145 | 98.39 53 | 88.96 94 | 99.85 18 | 94.57 125 | 97.63 144 | 99.36 63 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MVS_111021_LR | | | 96.24 72 | 96.19 71 | 96.39 105 | 98.23 94 | 91.35 136 | 96.24 255 | 98.79 6 | 93.99 77 | 95.80 116 | 97.65 119 | 89.92 86 | 99.24 131 | 95.87 81 | 99.20 76 | 98.58 136 |
|
| patch_mono-2 | | | 96.83 45 | 97.44 16 | 95.01 184 | 99.05 39 | 85.39 311 | 96.98 188 | 98.77 7 | 94.70 51 | 97.99 36 | 98.66 32 | 93.61 19 | 99.91 1 | 97.67 27 | 99.50 35 | 99.72 11 |
|
| fmvsm_s_conf0.5_n | | | 96.85 42 | 97.13 20 | 96.04 129 | 98.07 108 | 90.28 178 | 97.97 69 | 98.76 8 | 94.93 36 | 98.84 19 | 99.06 7 | 88.80 97 | 99.65 64 | 99.06 9 | 98.63 107 | 98.18 169 |
|
| fmvsm_l_conf0.5_n | | | 97.65 7 | 97.75 6 | 97.34 55 | 98.21 95 | 92.75 83 | 97.83 88 | 98.73 9 | 95.04 34 | 99.30 2 | 98.84 26 | 93.34 22 | 99.78 39 | 99.32 3 | 99.13 84 | 99.50 43 |
|
| fmvsm_s_conf0.5_n_a | | | 96.75 50 | 96.93 33 | 96.20 121 | 97.64 136 | 90.72 164 | 98.00 61 | 98.73 9 | 94.55 58 | 98.91 16 | 99.08 4 | 88.22 106 | 99.63 73 | 98.91 12 | 98.37 120 | 98.25 164 |
|
| FC-MVSNet-test | | | 93.94 142 | 93.57 135 | 95.04 182 | 95.48 264 | 91.45 133 | 98.12 50 | 98.71 11 | 93.37 101 | 90.23 246 | 96.70 173 | 87.66 116 | 97.85 298 | 91.49 184 | 90.39 285 | 95.83 268 |
|
| UniMVSNet (Re) | | | 93.31 163 | 92.55 175 | 95.61 156 | 95.39 269 | 93.34 66 | 97.39 149 | 98.71 11 | 93.14 114 | 90.10 255 | 94.83 272 | 87.71 115 | 98.03 272 | 91.67 182 | 83.99 355 | 95.46 287 |
|
| fmvsm_l_conf0.5_n_a | | | 97.63 8 | 97.76 5 | 97.26 62 | 98.25 89 | 92.59 89 | 97.81 92 | 98.68 13 | 94.93 36 | 99.24 5 | 98.87 21 | 93.52 20 | 99.79 36 | 99.32 3 | 99.21 74 | 99.40 57 |
|
| FIs | | | 94.09 136 | 93.70 131 | 95.27 172 | 95.70 254 | 92.03 109 | 98.10 51 | 98.68 13 | 93.36 103 | 90.39 243 | 96.70 173 | 87.63 119 | 97.94 289 | 92.25 164 | 90.50 284 | 95.84 267 |
|
| WR-MVS_H | | | 92.00 217 | 91.35 214 | 93.95 245 | 95.09 295 | 89.47 204 | 98.04 58 | 98.68 13 | 91.46 164 | 88.34 304 | 94.68 279 | 85.86 148 | 97.56 325 | 85.77 299 | 84.24 353 | 94.82 330 |
|
| VPA-MVSNet | | | 93.24 165 | 92.48 180 | 95.51 162 | 95.70 254 | 92.39 94 | 97.86 81 | 98.66 16 | 92.30 139 | 92.09 205 | 95.37 248 | 80.49 243 | 98.40 227 | 93.95 133 | 85.86 326 | 95.75 276 |
|
| fmvsm_s_conf0.5_n_3 | | | 97.15 26 | 97.36 18 | 96.52 89 | 97.98 114 | 91.19 144 | 97.84 85 | 98.65 17 | 97.08 2 | 99.25 4 | 99.10 3 | 87.88 113 | 99.79 36 | 99.32 3 | 99.18 78 | 98.59 135 |
|
| fmvsm_s_conf0.5_n_2 | | | 96.62 57 | 96.82 42 | 96.02 131 | 97.98 114 | 90.43 174 | 97.50 133 | 98.59 18 | 96.59 4 | 99.31 1 | 99.08 4 | 84.47 165 | 99.75 45 | 99.37 2 | 98.45 117 | 97.88 190 |
|
| UniMVSNet_NR-MVSNet | | | 93.37 161 | 92.67 170 | 95.47 167 | 95.34 275 | 92.83 81 | 97.17 172 | 98.58 19 | 92.98 123 | 90.13 251 | 95.80 225 | 88.37 105 | 97.85 298 | 91.71 179 | 83.93 356 | 95.73 278 |
|
| CSCG | | | 96.05 75 | 95.91 75 | 96.46 99 | 99.24 28 | 90.47 171 | 98.30 28 | 98.57 20 | 89.01 249 | 93.97 161 | 97.57 127 | 92.62 37 | 99.76 42 | 94.66 120 | 99.27 67 | 99.15 78 |
|
| MSLP-MVS++ | | | 96.94 36 | 97.06 23 | 96.59 85 | 98.72 58 | 91.86 114 | 97.67 109 | 98.49 21 | 94.66 54 | 97.24 57 | 98.41 52 | 92.31 44 | 98.94 174 | 96.61 54 | 99.46 41 | 98.96 98 |
|
| HyFIR lowres test | | | 93.66 152 | 92.92 158 | 95.87 139 | 98.24 90 | 89.88 191 | 94.58 325 | 98.49 21 | 85.06 344 | 93.78 164 | 95.78 229 | 82.86 199 | 98.67 205 | 91.77 177 | 95.71 191 | 99.07 89 |
|
| CHOSEN 1792x2688 | | | 94.15 131 | 93.51 141 | 96.06 127 | 98.27 86 | 89.38 209 | 95.18 311 | 98.48 23 | 85.60 334 | 93.76 165 | 97.11 153 | 83.15 190 | 99.61 75 | 91.33 187 | 98.72 104 | 99.19 74 |
|
| PHI-MVS | | | 96.77 48 | 96.46 62 | 97.71 40 | 98.40 78 | 94.07 48 | 98.21 42 | 98.45 24 | 89.86 221 | 97.11 63 | 98.01 89 | 92.52 39 | 99.69 58 | 96.03 78 | 99.53 29 | 99.36 63 |
|
| fmvsm_s_conf0.1_n | | | 96.58 60 | 96.77 46 | 96.01 134 | 96.67 195 | 90.25 179 | 97.91 76 | 98.38 25 | 94.48 62 | 98.84 19 | 99.14 1 | 88.06 108 | 99.62 74 | 98.82 14 | 98.60 109 | 98.15 173 |
|
| PVSNet_BlendedMVS | | | 94.06 137 | 93.92 127 | 94.47 215 | 98.27 86 | 89.46 206 | 96.73 208 | 98.36 26 | 90.17 213 | 94.36 150 | 95.24 256 | 88.02 109 | 99.58 83 | 93.44 144 | 90.72 280 | 94.36 350 |
|
| PVSNet_Blended | | | 94.87 113 | 94.56 111 | 95.81 143 | 98.27 86 | 89.46 206 | 95.47 295 | 98.36 26 | 88.84 257 | 94.36 150 | 96.09 214 | 88.02 109 | 99.58 83 | 93.44 144 | 98.18 128 | 98.40 156 |
|
| 3Dnovator | | 91.36 5 | 95.19 103 | 94.44 119 | 97.44 52 | 96.56 204 | 93.36 65 | 98.65 11 | 98.36 26 | 94.12 73 | 89.25 284 | 98.06 83 | 82.20 215 | 99.77 41 | 93.41 146 | 99.32 64 | 99.18 75 |
|
| FOURS1 | | | | | | 99.55 1 | 93.34 66 | 99.29 1 | 98.35 29 | 94.98 35 | 98.49 26 | | | | | | |
|
| DPE-MVS |  | | 97.86 4 | 97.65 8 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 169 | 98.35 29 | 95.16 28 | 98.71 23 | 98.80 28 | 95.05 10 | 99.89 3 | 96.70 52 | 99.73 1 | 99.73 10 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| fmvsm_s_conf0.1_n_a | | | 96.40 65 | 96.47 59 | 96.16 123 | 95.48 264 | 90.69 165 | 97.91 76 | 98.33 31 | 94.07 74 | 98.93 12 | 99.14 1 | 87.44 126 | 99.61 75 | 98.63 16 | 98.32 122 | 98.18 169 |
|
| HFP-MVS | | | 97.14 27 | 96.92 34 | 97.83 26 | 99.42 7 | 94.12 46 | 98.52 15 | 98.32 32 | 93.21 106 | 97.18 58 | 98.29 69 | 92.08 46 | 99.83 26 | 95.63 94 | 99.59 19 | 99.54 36 |
|
| ACMMPR | | | 97.07 30 | 96.84 38 | 97.79 30 | 99.44 6 | 93.88 52 | 98.52 15 | 98.31 33 | 93.21 106 | 97.15 60 | 98.33 63 | 91.35 61 | 99.86 9 | 95.63 94 | 99.59 19 | 99.62 20 |
|
| test_fmvsmvis_n_1920 | | | 96.70 52 | 96.84 38 | 96.31 110 | 96.62 197 | 91.73 116 | 97.98 63 | 98.30 34 | 96.19 8 | 96.10 105 | 98.95 14 | 89.42 88 | 99.76 42 | 98.90 13 | 99.08 88 | 97.43 216 |
|
| APDe-MVS |  | | 97.82 5 | 97.73 7 | 98.08 18 | 99.15 33 | 94.82 28 | 98.81 7 | 98.30 34 | 94.76 49 | 98.30 29 | 98.90 18 | 93.77 17 | 99.68 60 | 97.93 19 | 99.69 3 | 99.75 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 27 | 98.29 36 | 94.92 38 | 98.99 10 | 98.92 16 | 95.08 8 | | | | |
|
| MSP-MVS | | | 97.59 10 | 97.54 10 | 97.73 37 | 99.40 11 | 93.77 56 | 98.53 14 | 98.29 36 | 95.55 19 | 98.56 25 | 97.81 107 | 93.90 15 | 99.65 64 | 96.62 53 | 99.21 74 | 99.77 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 61 | 95.39 11 | 99.29 1 | 98.28 38 | 94.78 47 | 98.93 12 | 98.87 21 | 96.04 2 | 99.86 9 | 97.45 35 | 99.58 23 | 99.59 24 |
|
| test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 42 | 98.28 38 | | | | | 99.86 9 | 97.52 31 | 99.67 6 | 99.75 6 |
|
| CP-MVS | | | 97.02 32 | 96.81 43 | 97.64 44 | 99.33 21 | 93.54 59 | 98.80 8 | 98.28 38 | 92.99 118 | 96.45 92 | 98.30 68 | 91.90 49 | 99.85 18 | 95.61 96 | 99.68 4 | 99.54 36 |
|
| test_fmvsmconf0.1_n | | | 97.09 28 | 97.06 23 | 97.19 67 | 95.67 256 | 92.21 102 | 97.95 72 | 98.27 41 | 95.78 15 | 98.40 28 | 99.00 10 | 89.99 84 | 99.78 39 | 99.06 9 | 99.41 53 | 99.59 24 |
|
| SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 35 | 98.27 41 | 95.13 29 | 99.19 6 | 98.89 19 | 95.54 5 | 99.85 18 | 97.52 31 | 99.66 10 | 99.56 31 |
|
| test_241102_TWO | | | | | | | | | 98.27 41 | 95.13 29 | 98.93 12 | 98.89 19 | 94.99 11 | 99.85 18 | 97.52 31 | 99.65 13 | 99.74 8 |
|
| test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 41 | 95.09 32 | 99.19 6 | 98.81 27 | 95.54 5 | 99.65 64 | | | |
|
| SF-MVS | | | 97.39 18 | 97.13 20 | 98.17 15 | 99.02 42 | 95.28 19 | 98.23 39 | 98.27 41 | 92.37 138 | 98.27 30 | 98.65 34 | 93.33 23 | 99.72 51 | 96.49 58 | 99.52 30 | 99.51 40 |
|
| SteuartSystems-ACMMP | | | 97.62 9 | 97.53 11 | 97.87 24 | 98.39 80 | 94.25 40 | 98.43 22 | 98.27 41 | 95.34 23 | 98.11 32 | 98.56 36 | 94.53 12 | 99.71 52 | 96.57 56 | 99.62 17 | 99.65 17 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 47 | 95.13 29 | 98.48 27 | 98.87 21 | 95.16 7 | | | | |
|
| PVSNet_Blended_VisFu | | | 95.27 98 | 94.91 102 | 96.38 106 | 98.20 96 | 90.86 158 | 97.27 161 | 98.25 47 | 90.21 212 | 94.18 155 | 97.27 144 | 87.48 125 | 99.73 48 | 93.53 141 | 97.77 142 | 98.55 137 |
|
| region2R | | | 97.07 30 | 96.84 38 | 97.77 33 | 99.46 2 | 93.79 54 | 98.52 15 | 98.24 49 | 93.19 109 | 97.14 61 | 98.34 60 | 91.59 56 | 99.87 7 | 95.46 100 | 99.59 19 | 99.64 18 |
|
| PS-CasMVS | | | 91.55 237 | 90.84 237 | 93.69 261 | 94.96 299 | 88.28 243 | 97.84 85 | 98.24 49 | 91.46 164 | 88.04 314 | 95.80 225 | 79.67 259 | 97.48 333 | 87.02 279 | 84.54 350 | 95.31 299 |
|
| DU-MVS | | | 92.90 183 | 92.04 190 | 95.49 164 | 94.95 300 | 92.83 81 | 97.16 173 | 98.24 49 | 93.02 117 | 90.13 251 | 95.71 232 | 83.47 182 | 97.85 298 | 91.71 179 | 83.93 356 | 95.78 272 |
|
| 9.14 | | | | 96.75 47 | | 98.93 50 | | 97.73 100 | 98.23 52 | 91.28 173 | 97.88 40 | 98.44 49 | 93.00 26 | 99.65 64 | 95.76 87 | 99.47 40 | |
|
| reproduce_model | | | 97.51 14 | 97.51 13 | 97.50 49 | 98.99 46 | 93.01 77 | 97.79 94 | 98.21 53 | 95.73 16 | 97.99 36 | 99.03 9 | 92.63 36 | 99.82 28 | 97.80 21 | 99.42 50 | 99.67 13 |
|
| D2MVS | | | 91.30 253 | 90.95 231 | 92.35 306 | 94.71 315 | 85.52 307 | 96.18 258 | 98.21 53 | 88.89 255 | 86.60 342 | 93.82 325 | 79.92 255 | 97.95 288 | 89.29 229 | 90.95 277 | 93.56 363 |
|
| reproduce-ours | | | 97.53 12 | 97.51 13 | 97.60 46 | 98.97 47 | 93.31 68 | 97.71 105 | 98.20 55 | 95.80 13 | 97.88 40 | 98.98 12 | 92.91 27 | 99.81 30 | 97.68 23 | 99.43 48 | 99.67 13 |
|
| our_new_method | | | 97.53 12 | 97.51 13 | 97.60 46 | 98.97 47 | 93.31 68 | 97.71 105 | 98.20 55 | 95.80 13 | 97.88 40 | 98.98 12 | 92.91 27 | 99.81 30 | 97.68 23 | 99.43 48 | 99.67 13 |
|
| SDMVSNet | | | 94.17 129 | 93.61 134 | 95.86 141 | 98.09 104 | 91.37 135 | 97.35 153 | 98.20 55 | 93.18 111 | 91.79 212 | 97.28 142 | 79.13 267 | 98.93 175 | 94.61 123 | 92.84 243 | 97.28 224 |
|
| XVS | | | 97.18 24 | 96.96 32 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 55 | 94.85 40 | 96.59 84 | 98.29 69 | 91.70 52 | 99.80 33 | 95.66 89 | 99.40 55 | 99.62 20 |
|
| X-MVStestdata | | | 91.71 226 | 89.67 290 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 55 | 94.85 40 | 96.59 84 | 32.69 423 | 91.70 52 | 99.80 33 | 95.66 89 | 99.40 55 | 99.62 20 |
|
| ACMMP_NAP | | | 97.20 23 | 96.86 36 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 121 | 98.19 60 | 92.82 129 | 97.93 39 | 98.74 31 | 91.60 55 | 99.86 9 | 96.26 61 | 99.52 30 | 99.67 13 |
|
| CP-MVSNet | | | 91.89 222 | 91.24 221 | 93.82 253 | 95.05 296 | 88.57 234 | 97.82 90 | 98.19 60 | 91.70 157 | 88.21 310 | 95.76 230 | 81.96 219 | 97.52 331 | 87.86 254 | 84.65 344 | 95.37 295 |
|
| ZNCC-MVS | | | 96.96 34 | 96.67 50 | 97.85 25 | 99.37 16 | 94.12 46 | 98.49 19 | 98.18 62 | 92.64 134 | 96.39 94 | 98.18 76 | 91.61 54 | 99.88 4 | 95.59 99 | 99.55 26 | 99.57 28 |
|
| SMA-MVS |  | | 97.35 19 | 97.03 28 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 73 | 98.18 62 | 90.57 204 | 98.85 18 | 98.94 15 | 93.33 23 | 99.83 26 | 96.72 51 | 99.68 4 | 99.63 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PEN-MVS | | | 91.20 258 | 90.44 254 | 93.48 270 | 94.49 323 | 87.91 257 | 97.76 96 | 98.18 62 | 91.29 170 | 87.78 318 | 95.74 231 | 80.35 246 | 97.33 344 | 85.46 303 | 82.96 366 | 95.19 310 |
|
| DELS-MVS | | | 96.61 58 | 96.38 66 | 97.30 57 | 97.79 127 | 93.19 73 | 95.96 268 | 98.18 62 | 95.23 25 | 95.87 113 | 97.65 119 | 91.45 57 | 99.70 57 | 95.87 81 | 99.44 47 | 99.00 96 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| tfpnnormal | | | 89.70 308 | 88.40 314 | 93.60 264 | 95.15 291 | 90.10 181 | 97.56 125 | 98.16 66 | 87.28 307 | 86.16 346 | 94.63 282 | 77.57 295 | 98.05 268 | 74.48 385 | 84.59 348 | 92.65 376 |
|
| VNet | | | 95.89 82 | 95.45 85 | 97.21 65 | 98.07 108 | 92.94 80 | 97.50 133 | 98.15 67 | 93.87 81 | 97.52 47 | 97.61 125 | 85.29 154 | 99.53 97 | 95.81 86 | 95.27 199 | 99.16 76 |
|
| DeepPCF-MVS | | 93.97 1 | 96.61 58 | 97.09 22 | 95.15 176 | 98.09 104 | 86.63 287 | 96.00 266 | 98.15 67 | 95.43 20 | 97.95 38 | 98.56 36 | 93.40 21 | 99.36 120 | 96.77 48 | 99.48 39 | 99.45 50 |
|
| SD-MVS | | | 97.41 17 | 97.53 11 | 97.06 73 | 98.57 72 | 94.46 34 | 97.92 75 | 98.14 69 | 94.82 44 | 99.01 9 | 98.55 38 | 94.18 14 | 97.41 340 | 96.94 44 | 99.64 14 | 99.32 65 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GST-MVS | | | 96.85 42 | 96.52 56 | 97.82 27 | 99.36 18 | 94.14 45 | 98.29 29 | 98.13 70 | 92.72 131 | 96.70 76 | 98.06 83 | 91.35 61 | 99.86 9 | 94.83 114 | 99.28 66 | 99.47 49 |
|
| UA-Net | | | 95.95 80 | 95.53 81 | 97.20 66 | 97.67 132 | 92.98 79 | 97.65 112 | 98.13 70 | 94.81 45 | 96.61 82 | 98.35 57 | 88.87 95 | 99.51 102 | 90.36 204 | 97.35 154 | 99.11 84 |
|
| QAPM | | | 93.45 159 | 92.27 185 | 96.98 76 | 96.77 190 | 92.62 87 | 98.39 24 | 98.12 72 | 84.50 352 | 88.27 308 | 97.77 110 | 82.39 212 | 99.81 30 | 85.40 304 | 98.81 100 | 98.51 142 |
|
| Vis-MVSNet |  | | 95.23 100 | 94.81 103 | 96.51 93 | 97.18 157 | 91.58 126 | 98.26 34 | 98.12 72 | 94.38 69 | 94.90 137 | 98.15 78 | 82.28 213 | 98.92 176 | 91.45 186 | 98.58 111 | 99.01 93 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| OpenMVS |  | 89.19 12 | 92.86 185 | 91.68 204 | 96.40 103 | 95.34 275 | 92.73 85 | 98.27 32 | 98.12 72 | 84.86 347 | 85.78 348 | 97.75 111 | 78.89 277 | 99.74 46 | 87.50 269 | 98.65 106 | 96.73 240 |
|
| TranMVSNet+NR-MVSNet | | | 92.50 194 | 91.63 205 | 95.14 177 | 94.76 311 | 92.07 107 | 97.53 130 | 98.11 75 | 92.90 127 | 89.56 272 | 96.12 209 | 83.16 189 | 97.60 323 | 89.30 228 | 83.20 365 | 95.75 276 |
|
| CPTT-MVS | | | 95.57 92 | 95.19 95 | 96.70 78 | 99.27 26 | 91.48 130 | 98.33 26 | 98.11 75 | 87.79 292 | 95.17 133 | 98.03 86 | 87.09 132 | 99.61 75 | 93.51 142 | 99.42 50 | 99.02 90 |
|
| APD-MVS |  | | 96.95 35 | 96.60 52 | 98.01 20 | 99.03 41 | 94.93 27 | 97.72 103 | 98.10 77 | 91.50 162 | 98.01 35 | 98.32 65 | 92.33 42 | 99.58 83 | 94.85 112 | 99.51 33 | 99.53 39 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| mPP-MVS | | | 96.86 40 | 96.60 52 | 97.64 44 | 99.40 11 | 93.44 61 | 98.50 18 | 98.09 78 | 93.27 105 | 95.95 112 | 98.33 63 | 91.04 69 | 99.88 4 | 95.20 103 | 99.57 25 | 99.60 23 |
|
| ZD-MVS | | | | | | 99.05 39 | 94.59 32 | | 98.08 79 | 89.22 242 | 97.03 66 | 98.10 79 | 92.52 39 | 99.65 64 | 94.58 124 | 99.31 65 | |
|
| MTGPA |  | | | | | | | | 98.08 79 | | | | | | | | |
|
| MTAPA | | | 97.08 29 | 96.78 45 | 97.97 23 | 99.37 16 | 94.42 36 | 97.24 163 | 98.08 79 | 95.07 33 | 96.11 104 | 98.59 35 | 90.88 74 | 99.90 2 | 96.18 73 | 99.50 35 | 99.58 27 |
|
| CNVR-MVS | | | 97.68 6 | 97.44 16 | 98.37 7 | 98.90 53 | 95.86 6 | 97.27 161 | 98.08 79 | 95.81 12 | 97.87 43 | 98.31 66 | 94.26 13 | 99.68 60 | 97.02 43 | 99.49 38 | 99.57 28 |
|
| DP-MVS Recon | | | 95.68 87 | 95.12 99 | 97.37 54 | 99.19 31 | 94.19 42 | 97.03 180 | 98.08 79 | 88.35 275 | 95.09 135 | 97.65 119 | 89.97 85 | 99.48 107 | 92.08 171 | 98.59 110 | 98.44 153 |
|
| SR-MVS | | | 97.01 33 | 96.86 36 | 97.47 51 | 99.09 34 | 93.27 70 | 97.98 63 | 98.07 84 | 93.75 84 | 97.45 49 | 98.48 46 | 91.43 59 | 99.59 80 | 96.22 64 | 99.27 67 | 99.54 36 |
|
| MCST-MVS | | | 97.18 24 | 96.84 38 | 98.20 14 | 99.30 24 | 95.35 15 | 97.12 176 | 98.07 84 | 93.54 94 | 96.08 106 | 97.69 114 | 93.86 16 | 99.71 52 | 96.50 57 | 99.39 57 | 99.55 34 |
|
| NR-MVSNet | | | 92.34 202 | 91.27 220 | 95.53 161 | 94.95 300 | 93.05 76 | 97.39 149 | 98.07 84 | 92.65 133 | 84.46 359 | 95.71 232 | 85.00 158 | 97.77 308 | 89.71 216 | 83.52 362 | 95.78 272 |
|
| MP-MVS-pluss | | | 96.70 52 | 96.27 69 | 97.98 22 | 99.23 30 | 94.71 29 | 96.96 190 | 98.06 87 | 90.67 195 | 95.55 125 | 98.78 30 | 91.07 68 | 99.86 9 | 96.58 55 | 99.55 26 | 99.38 61 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| APD-MVS_3200maxsize | | | 96.81 46 | 96.71 49 | 97.12 69 | 99.01 45 | 92.31 98 | 97.98 63 | 98.06 87 | 93.11 115 | 97.44 50 | 98.55 38 | 90.93 72 | 99.55 93 | 96.06 74 | 99.25 71 | 99.51 40 |
|
| MP-MVS |  | | 96.77 48 | 96.45 63 | 97.72 38 | 99.39 13 | 93.80 53 | 98.41 23 | 98.06 87 | 93.37 101 | 95.54 127 | 98.34 60 | 90.59 78 | 99.88 4 | 94.83 114 | 99.54 28 | 99.49 45 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS_fast | | | 96.51 61 | 96.27 69 | 97.22 64 | 99.32 22 | 92.74 84 | 98.74 9 | 98.06 87 | 90.57 204 | 96.77 73 | 98.35 57 | 90.21 81 | 99.53 97 | 94.80 117 | 99.63 16 | 99.38 61 |
|
| HPM-MVS |  | | 96.69 54 | 96.45 63 | 97.40 53 | 99.36 18 | 93.11 75 | 98.87 6 | 98.06 87 | 91.17 178 | 96.40 93 | 97.99 90 | 90.99 70 | 99.58 83 | 95.61 96 | 99.61 18 | 99.49 45 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| sss | | | 94.51 121 | 93.80 129 | 96.64 80 | 97.07 163 | 91.97 111 | 96.32 247 | 98.06 87 | 88.94 253 | 94.50 147 | 96.78 168 | 84.60 162 | 99.27 129 | 91.90 172 | 96.02 182 | 98.68 129 |
|
| DeepC-MVS | | 93.07 3 | 96.06 74 | 95.66 79 | 97.29 58 | 97.96 116 | 93.17 74 | 97.30 159 | 98.06 87 | 93.92 79 | 93.38 174 | 98.66 32 | 86.83 134 | 99.73 48 | 95.60 98 | 99.22 73 | 98.96 98 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| NCCC | | | 97.30 21 | 97.03 28 | 98.11 17 | 98.77 56 | 95.06 25 | 97.34 154 | 98.04 94 | 95.96 9 | 97.09 64 | 97.88 98 | 93.18 25 | 99.71 52 | 95.84 85 | 99.17 79 | 99.56 31 |
|
| DeepC-MVS_fast | | 93.89 2 | 96.93 37 | 96.64 51 | 97.78 31 | 98.64 67 | 94.30 37 | 97.41 144 | 98.04 94 | 94.81 45 | 96.59 84 | 98.37 55 | 91.24 64 | 99.64 72 | 95.16 105 | 99.52 30 | 99.42 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS-dyc-post | | | 96.88 39 | 96.80 44 | 97.11 70 | 99.02 42 | 92.34 96 | 97.98 63 | 98.03 96 | 93.52 96 | 97.43 52 | 98.51 41 | 91.40 60 | 99.56 91 | 96.05 75 | 99.26 69 | 99.43 54 |
|
| RE-MVS-def | | | | 96.72 48 | | 99.02 42 | 92.34 96 | 97.98 63 | 98.03 96 | 93.52 96 | 97.43 52 | 98.51 41 | 90.71 76 | | 96.05 75 | 99.26 69 | 99.43 54 |
|
| RPMNet | | | 88.98 314 | 87.05 328 | 94.77 202 | 94.45 325 | 87.19 272 | 90.23 398 | 98.03 96 | 77.87 399 | 92.40 191 | 87.55 403 | 80.17 250 | 99.51 102 | 68.84 404 | 93.95 230 | 97.60 209 |
|
| save fliter | | | | | | 98.91 52 | 94.28 38 | 97.02 182 | 98.02 99 | 95.35 22 | | | | | | | |
|
| TEST9 | | | | | | 98.70 59 | 94.19 42 | 96.41 236 | 98.02 99 | 88.17 279 | 96.03 107 | 97.56 129 | 92.74 33 | 99.59 80 | | | |
|
| train_agg | | | 96.30 70 | 95.83 78 | 97.72 38 | 98.70 59 | 94.19 42 | 96.41 236 | 98.02 99 | 88.58 266 | 96.03 107 | 97.56 129 | 92.73 34 | 99.59 80 | 95.04 107 | 99.37 61 | 99.39 59 |
|
| test_8 | | | | | | 98.67 61 | 94.06 49 | 96.37 243 | 98.01 102 | 88.58 266 | 95.98 111 | 97.55 131 | 92.73 34 | 99.58 83 | | | |
|
| agg_prior | | | | | | 98.67 61 | 93.79 54 | | 98.00 103 | | 95.68 121 | | | 99.57 90 | | | |
|
| test_prior | | | | | 97.23 63 | 98.67 61 | 92.99 78 | | 98.00 103 | | | | | 99.41 115 | | | 99.29 66 |
|
| WR-MVS | | | 92.34 202 | 91.53 209 | 94.77 202 | 95.13 293 | 90.83 159 | 96.40 240 | 97.98 105 | 91.88 153 | 89.29 281 | 95.54 243 | 82.50 208 | 97.80 304 | 89.79 215 | 85.27 335 | 95.69 279 |
|
| HPM-MVS++ |  | | 97.34 20 | 96.97 31 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 129 | 97.97 106 | 95.59 17 | 96.61 82 | 97.89 96 | 92.57 38 | 99.84 23 | 95.95 80 | 99.51 33 | 99.40 57 |
|
| CANet | | | 96.39 66 | 96.02 73 | 97.50 49 | 97.62 139 | 93.38 63 | 97.02 182 | 97.96 107 | 95.42 21 | 94.86 138 | 97.81 107 | 87.38 128 | 99.82 28 | 96.88 46 | 99.20 76 | 99.29 66 |
|
| 114514_t | | | 93.95 141 | 93.06 154 | 96.63 82 | 99.07 37 | 91.61 123 | 97.46 142 | 97.96 107 | 77.99 397 | 93.00 182 | 97.57 127 | 86.14 146 | 99.33 121 | 89.22 232 | 99.15 82 | 98.94 101 |
|
| IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 109 | 90.40 210 | 98.94 11 | | | | 97.41 38 | 99.66 10 | 99.74 8 |
|
| MSC_two_6792asdad | | | | | 98.86 1 | 98.67 61 | 96.94 1 | | 97.93 110 | | | | | 99.86 9 | 97.68 23 | 99.67 6 | 99.77 2 |
|
| No_MVS | | | | | 98.86 1 | 98.67 61 | 96.94 1 | | 97.93 110 | | | | | 99.86 9 | 97.68 23 | 99.67 6 | 99.77 2 |
|
| fmvsm_s_conf0.1_n_2 | | | 96.33 69 | 96.44 65 | 96.00 135 | 97.30 152 | 90.37 177 | 97.53 130 | 97.92 112 | 96.52 5 | 99.14 8 | 99.08 4 | 83.21 187 | 99.74 46 | 99.22 6 | 98.06 133 | 97.88 190 |
|
| Anonymous20231211 | | | 90.63 282 | 89.42 297 | 94.27 229 | 98.24 90 | 89.19 221 | 98.05 57 | 97.89 113 | 79.95 389 | 88.25 309 | 94.96 264 | 72.56 333 | 98.13 251 | 89.70 217 | 85.14 337 | 95.49 283 |
|
| 原ACMM1 | | | | | 96.38 106 | 98.59 69 | 91.09 151 | | 97.89 113 | 87.41 303 | 95.22 132 | 97.68 115 | 90.25 80 | 99.54 95 | 87.95 253 | 99.12 86 | 98.49 145 |
|
| CDPH-MVS | | | 95.97 79 | 95.38 90 | 97.77 33 | 98.93 50 | 94.44 35 | 96.35 244 | 97.88 115 | 86.98 311 | 96.65 80 | 97.89 96 | 91.99 48 | 99.47 108 | 92.26 162 | 99.46 41 | 99.39 59 |
|
| test11 | | | | | | | | | 97.88 115 | | | | | | | | |
|
| EIA-MVS | | | 95.53 93 | 95.47 84 | 95.71 151 | 97.06 166 | 89.63 195 | 97.82 90 | 97.87 117 | 93.57 90 | 93.92 162 | 95.04 262 | 90.61 77 | 98.95 172 | 94.62 122 | 98.68 105 | 98.54 138 |
|
| CS-MVS | | | 96.86 40 | 97.06 23 | 96.26 116 | 98.16 101 | 91.16 149 | 99.09 3 | 97.87 117 | 95.30 24 | 97.06 65 | 98.03 86 | 91.72 50 | 98.71 202 | 97.10 41 | 99.17 79 | 98.90 108 |
|
| 无先验 | | | | | | | | 95.79 278 | 97.87 117 | 83.87 360 | | | | 99.65 64 | 87.68 263 | | 98.89 112 |
|
| 3Dnovator+ | | 91.43 4 | 95.40 94 | 94.48 117 | 98.16 16 | 96.90 176 | 95.34 16 | 98.48 20 | 97.87 117 | 94.65 55 | 88.53 300 | 98.02 88 | 83.69 178 | 99.71 52 | 93.18 149 | 98.96 95 | 99.44 52 |
|
| VPNet | | | 92.23 210 | 91.31 217 | 94.99 185 | 95.56 260 | 90.96 154 | 97.22 168 | 97.86 121 | 92.96 124 | 90.96 234 | 96.62 185 | 75.06 315 | 98.20 245 | 91.90 172 | 83.65 361 | 95.80 270 |
|
| test_vis1_n_1920 | | | 94.17 129 | 94.58 110 | 92.91 290 | 97.42 150 | 82.02 357 | 97.83 88 | 97.85 122 | 94.68 52 | 98.10 33 | 98.49 43 | 70.15 351 | 99.32 123 | 97.91 20 | 98.82 99 | 97.40 218 |
|
| DVP-MVS |  | | 97.91 3 | 97.81 4 | 98.22 13 | 99.45 3 | 95.36 13 | 98.21 42 | 97.85 122 | 94.92 38 | 98.73 21 | 98.87 21 | 95.08 8 | 99.84 23 | 97.52 31 | 99.67 6 | 99.48 47 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| TSAR-MVS + MP. | | | 97.42 16 | 97.33 19 | 97.69 41 | 99.25 27 | 94.24 41 | 98.07 55 | 97.85 122 | 93.72 85 | 98.57 24 | 98.35 57 | 93.69 18 | 99.40 116 | 97.06 42 | 99.46 41 | 99.44 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SPE-MVS-test | | | 96.89 38 | 97.04 27 | 96.45 100 | 98.29 85 | 91.66 122 | 99.03 4 | 97.85 122 | 95.84 10 | 96.90 68 | 97.97 92 | 91.24 64 | 98.75 195 | 96.92 45 | 99.33 63 | 98.94 101 |
|
| test_fmvsmconf0.01_n | | | 96.15 73 | 95.85 77 | 97.03 74 | 92.66 372 | 91.83 115 | 97.97 69 | 97.84 126 | 95.57 18 | 97.53 46 | 99.00 10 | 84.20 171 | 99.76 42 | 98.82 14 | 99.08 88 | 99.48 47 |
|
| GDP-MVS | | | 95.62 89 | 95.13 97 | 97.09 71 | 96.79 187 | 93.26 71 | 97.89 79 | 97.83 127 | 93.58 89 | 96.80 70 | 97.82 106 | 83.06 194 | 99.16 143 | 94.40 126 | 97.95 137 | 98.87 114 |
|
| balanced_conf03 | | | 96.84 44 | 96.89 35 | 96.68 79 | 97.63 138 | 92.22 101 | 98.17 48 | 97.82 128 | 94.44 64 | 98.23 31 | 97.36 139 | 90.97 71 | 99.22 133 | 97.74 22 | 99.66 10 | 98.61 132 |
|
| AdaColmap |  | | 94.34 125 | 93.68 132 | 96.31 110 | 98.59 69 | 91.68 121 | 96.59 227 | 97.81 129 | 89.87 220 | 92.15 201 | 97.06 156 | 83.62 181 | 99.54 95 | 89.34 227 | 98.07 132 | 97.70 202 |
|
| MVSMamba_PlusPlus | | | 96.51 61 | 96.48 58 | 96.59 85 | 98.07 108 | 91.97 111 | 98.14 49 | 97.79 130 | 90.43 208 | 97.34 55 | 97.52 132 | 91.29 63 | 99.19 136 | 98.12 18 | 99.64 14 | 98.60 133 |
|
| mamv4 | | | 94.66 119 | 96.10 72 | 90.37 355 | 98.01 111 | 73.41 403 | 96.82 201 | 97.78 131 | 89.95 219 | 94.52 146 | 97.43 136 | 92.91 27 | 99.09 155 | 98.28 17 | 99.16 81 | 98.60 133 |
|
| ETV-MVS | | | 96.02 76 | 95.89 76 | 96.40 103 | 97.16 158 | 92.44 93 | 97.47 140 | 97.77 132 | 94.55 58 | 96.48 89 | 94.51 288 | 91.23 66 | 98.92 176 | 95.65 92 | 98.19 127 | 97.82 197 |
|
| 新几何1 | | | | | 97.32 56 | 98.60 68 | 93.59 58 | | 97.75 133 | 81.58 380 | 95.75 118 | 97.85 102 | 90.04 83 | 99.67 62 | 86.50 285 | 99.13 84 | 98.69 128 |
|
| 旧先验1 | | | | | | 98.38 81 | 93.38 63 | | 97.75 133 | | | 98.09 81 | 92.30 45 | | | 99.01 93 | 99.16 76 |
|
| EC-MVSNet | | | 96.42 64 | 96.47 59 | 96.26 116 | 97.01 172 | 91.52 128 | 98.89 5 | 97.75 133 | 94.42 65 | 96.64 81 | 97.68 115 | 89.32 89 | 98.60 212 | 97.45 35 | 99.11 87 | 98.67 130 |
|
| EI-MVSNet-Vis-set | | | 96.51 61 | 96.47 59 | 96.63 82 | 98.24 90 | 91.20 143 | 96.89 194 | 97.73 136 | 94.74 50 | 96.49 88 | 98.49 43 | 90.88 74 | 99.58 83 | 96.44 59 | 98.32 122 | 99.13 80 |
|
| PAPM_NR | | | 95.01 105 | 94.59 109 | 96.26 116 | 98.89 54 | 90.68 166 | 97.24 163 | 97.73 136 | 91.80 154 | 92.93 187 | 96.62 185 | 89.13 92 | 99.14 148 | 89.21 233 | 97.78 141 | 98.97 97 |
|
| Anonymous20240529 | | | 91.98 218 | 90.73 244 | 95.73 149 | 98.14 102 | 89.40 208 | 97.99 62 | 97.72 138 | 79.63 391 | 93.54 169 | 97.41 137 | 69.94 353 | 99.56 91 | 91.04 194 | 91.11 273 | 98.22 166 |
|
| CHOSEN 280x420 | | | 93.12 171 | 92.72 169 | 94.34 223 | 96.71 194 | 87.27 268 | 90.29 397 | 97.72 138 | 86.61 318 | 91.34 223 | 95.29 250 | 84.29 170 | 98.41 226 | 93.25 148 | 98.94 96 | 97.35 221 |
|
| EI-MVSNet-UG-set | | | 96.34 68 | 96.30 68 | 96.47 97 | 98.20 96 | 90.93 156 | 96.86 196 | 97.72 138 | 94.67 53 | 96.16 103 | 98.46 47 | 90.43 79 | 99.58 83 | 96.23 63 | 97.96 136 | 98.90 108 |
|
| LS3D | | | 93.57 155 | 92.61 173 | 96.47 97 | 97.59 142 | 91.61 123 | 97.67 109 | 97.72 138 | 85.17 342 | 90.29 245 | 98.34 60 | 84.60 162 | 99.73 48 | 83.85 325 | 98.27 124 | 98.06 181 |
|
| PAPR | | | 94.18 128 | 93.42 147 | 96.48 96 | 97.64 136 | 91.42 134 | 95.55 290 | 97.71 142 | 88.99 250 | 92.34 197 | 95.82 224 | 89.19 90 | 99.11 151 | 86.14 291 | 97.38 152 | 98.90 108 |
|
| UGNet | | | 94.04 139 | 93.28 150 | 96.31 110 | 96.85 179 | 91.19 144 | 97.88 80 | 97.68 143 | 94.40 67 | 93.00 182 | 96.18 204 | 73.39 330 | 99.61 75 | 91.72 178 | 98.46 116 | 98.13 174 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| testdata | | | | | 95.46 168 | 98.18 100 | 88.90 227 | | 97.66 144 | 82.73 371 | 97.03 66 | 98.07 82 | 90.06 82 | 98.85 183 | 89.67 218 | 98.98 94 | 98.64 131 |
|
| test12 | | | | | 97.65 42 | 98.46 73 | 94.26 39 | | 97.66 144 | | 95.52 128 | | 90.89 73 | 99.46 109 | | 99.25 71 | 99.22 73 |
|
| DTE-MVSNet | | | 90.56 283 | 89.75 288 | 93.01 286 | 93.95 338 | 87.25 269 | 97.64 116 | 97.65 146 | 90.74 190 | 87.12 330 | 95.68 235 | 79.97 254 | 97.00 356 | 83.33 326 | 81.66 372 | 94.78 337 |
|
| TAPA-MVS | | 90.10 7 | 92.30 205 | 91.22 223 | 95.56 158 | 98.33 83 | 89.60 197 | 96.79 203 | 97.65 146 | 81.83 377 | 91.52 218 | 97.23 147 | 87.94 111 | 98.91 178 | 71.31 399 | 98.37 120 | 98.17 172 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| sd_testset | | | 93.10 172 | 92.45 181 | 95.05 181 | 98.09 104 | 89.21 218 | 96.89 194 | 97.64 148 | 93.18 111 | 91.79 212 | 97.28 142 | 75.35 314 | 98.65 207 | 88.99 238 | 92.84 243 | 97.28 224 |
|
| test_cas_vis1_n_1920 | | | 94.48 123 | 94.55 114 | 94.28 228 | 96.78 188 | 86.45 292 | 97.63 118 | 97.64 148 | 93.32 104 | 97.68 45 | 98.36 56 | 73.75 328 | 99.08 158 | 96.73 50 | 99.05 90 | 97.31 223 |
|
| cdsmvs_eth3d_5k | | | 23.24 393 | 30.99 395 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 97.63 150 | 0.00 429 | 0.00 430 | 96.88 165 | 84.38 167 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DPM-MVS | | | 95.69 86 | 94.92 101 | 98.01 20 | 98.08 107 | 95.71 9 | 95.27 305 | 97.62 151 | 90.43 208 | 95.55 125 | 97.07 155 | 91.72 50 | 99.50 105 | 89.62 220 | 98.94 96 | 98.82 120 |
|
| sasdasda | | | 96.02 76 | 95.45 85 | 97.75 35 | 97.59 142 | 95.15 23 | 98.28 30 | 97.60 152 | 94.52 60 | 96.27 98 | 96.12 209 | 87.65 117 | 99.18 139 | 96.20 69 | 94.82 208 | 98.91 105 |
|
| canonicalmvs | | | 96.02 76 | 95.45 85 | 97.75 35 | 97.59 142 | 95.15 23 | 98.28 30 | 97.60 152 | 94.52 60 | 96.27 98 | 96.12 209 | 87.65 117 | 99.18 139 | 96.20 69 | 94.82 208 | 98.91 105 |
|
| test222 | | | | | | 98.24 90 | 92.21 102 | 95.33 300 | 97.60 152 | 79.22 393 | 95.25 130 | 97.84 104 | 88.80 97 | | | 99.15 82 | 98.72 125 |
|
| cascas | | | 91.20 258 | 90.08 271 | 94.58 211 | 94.97 298 | 89.16 222 | 93.65 362 | 97.59 155 | 79.90 390 | 89.40 276 | 92.92 350 | 75.36 313 | 98.36 233 | 92.14 167 | 94.75 211 | 96.23 250 |
|
| h-mvs33 | | | 94.15 131 | 93.52 140 | 96.04 129 | 97.81 126 | 90.22 180 | 97.62 120 | 97.58 156 | 95.19 26 | 96.74 74 | 97.45 133 | 83.67 179 | 99.61 75 | 95.85 83 | 79.73 379 | 98.29 163 |
|
| MGCFI-Net | | | 95.94 81 | 95.40 89 | 97.56 48 | 97.59 142 | 94.62 31 | 98.21 42 | 97.57 157 | 94.41 66 | 96.17 102 | 96.16 207 | 87.54 121 | 99.17 141 | 96.19 71 | 94.73 213 | 98.91 105 |
|
| MVSFormer | | | 95.37 95 | 95.16 96 | 95.99 136 | 96.34 225 | 91.21 141 | 98.22 40 | 97.57 157 | 91.42 166 | 96.22 100 | 97.32 140 | 86.20 144 | 97.92 292 | 94.07 130 | 99.05 90 | 98.85 116 |
|
| test_djsdf | | | 93.07 174 | 92.76 164 | 94.00 240 | 93.49 354 | 88.70 231 | 98.22 40 | 97.57 157 | 91.42 166 | 90.08 257 | 95.55 242 | 82.85 200 | 97.92 292 | 94.07 130 | 91.58 264 | 95.40 292 |
|
| OMC-MVS | | | 95.09 104 | 94.70 107 | 96.25 119 | 98.46 73 | 91.28 137 | 96.43 234 | 97.57 157 | 92.04 149 | 94.77 141 | 97.96 93 | 87.01 133 | 99.09 155 | 91.31 188 | 96.77 169 | 98.36 160 |
|
| PS-MVSNAJss | | | 93.74 150 | 93.51 141 | 94.44 217 | 93.91 340 | 89.28 216 | 97.75 97 | 97.56 161 | 92.50 135 | 89.94 259 | 96.54 188 | 88.65 100 | 98.18 248 | 93.83 139 | 90.90 278 | 95.86 264 |
|
| casdiffmvs_mvg |  | | 95.81 85 | 95.57 80 | 96.51 93 | 96.87 177 | 91.49 129 | 97.50 133 | 97.56 161 | 93.99 77 | 95.13 134 | 97.92 95 | 87.89 112 | 98.78 190 | 95.97 79 | 97.33 155 | 99.26 70 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| jajsoiax | | | 92.42 198 | 91.89 197 | 94.03 239 | 93.33 360 | 88.50 238 | 97.73 100 | 97.53 163 | 92.00 151 | 88.85 292 | 96.50 190 | 75.62 312 | 98.11 255 | 93.88 137 | 91.56 265 | 95.48 284 |
|
| mvs_tets | | | 92.31 204 | 91.76 200 | 93.94 247 | 93.41 357 | 88.29 242 | 97.63 118 | 97.53 163 | 92.04 149 | 88.76 295 | 96.45 192 | 74.62 320 | 98.09 260 | 93.91 135 | 91.48 266 | 95.45 288 |
|
| dcpmvs_2 | | | 96.37 67 | 97.05 26 | 94.31 226 | 98.96 49 | 84.11 332 | 97.56 125 | 97.51 165 | 93.92 79 | 97.43 52 | 98.52 40 | 92.75 32 | 99.32 123 | 97.32 40 | 99.50 35 | 99.51 40 |
|
| HQP_MVS | | | 93.78 149 | 93.43 145 | 94.82 195 | 96.21 229 | 89.99 185 | 97.74 98 | 97.51 165 | 94.85 40 | 91.34 223 | 96.64 178 | 81.32 229 | 98.60 212 | 93.02 155 | 92.23 252 | 95.86 264 |
|
| plane_prior5 | | | | | | | | | 97.51 165 | | | | | 98.60 212 | 93.02 155 | 92.23 252 | 95.86 264 |
|
| reproduce_monomvs | | | 91.30 253 | 91.10 227 | 91.92 317 | 96.82 184 | 82.48 351 | 97.01 185 | 97.49 168 | 94.64 56 | 88.35 303 | 95.27 253 | 70.53 346 | 98.10 256 | 95.20 103 | 84.60 347 | 95.19 310 |
|
| PS-MVSNAJ | | | 95.37 95 | 95.33 92 | 95.49 164 | 97.35 151 | 90.66 167 | 95.31 302 | 97.48 169 | 93.85 82 | 96.51 87 | 95.70 234 | 88.65 100 | 99.65 64 | 94.80 117 | 98.27 124 | 96.17 254 |
|
| API-MVS | | | 94.84 114 | 94.49 116 | 95.90 138 | 97.90 122 | 92.00 110 | 97.80 93 | 97.48 169 | 89.19 243 | 94.81 139 | 96.71 171 | 88.84 96 | 99.17 141 | 88.91 240 | 98.76 103 | 96.53 243 |
|
| MG-MVS | | | 95.61 90 | 95.38 90 | 96.31 110 | 98.42 76 | 90.53 169 | 96.04 263 | 97.48 169 | 93.47 98 | 95.67 122 | 98.10 79 | 89.17 91 | 99.25 130 | 91.27 189 | 98.77 102 | 99.13 80 |
|
| MAR-MVS | | | 94.22 127 | 93.46 143 | 96.51 93 | 98.00 113 | 92.19 105 | 97.67 109 | 97.47 172 | 88.13 282 | 93.00 182 | 95.84 222 | 84.86 160 | 99.51 102 | 87.99 252 | 98.17 129 | 97.83 196 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CLD-MVS | | | 92.98 178 | 92.53 177 | 94.32 224 | 96.12 239 | 89.20 219 | 95.28 303 | 97.47 172 | 92.66 132 | 89.90 260 | 95.62 238 | 80.58 241 | 98.40 227 | 92.73 160 | 92.40 250 | 95.38 294 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| UniMVSNet_ETH3D | | | 91.34 251 | 90.22 267 | 94.68 205 | 94.86 307 | 87.86 258 | 97.23 167 | 97.46 174 | 87.99 283 | 89.90 260 | 96.92 163 | 66.35 378 | 98.23 242 | 90.30 205 | 90.99 276 | 97.96 185 |
|
| nrg030 | | | 94.05 138 | 93.31 149 | 96.27 115 | 95.22 286 | 94.59 32 | 98.34 25 | 97.46 174 | 92.93 125 | 91.21 232 | 96.64 178 | 87.23 131 | 98.22 243 | 94.99 110 | 85.80 327 | 95.98 263 |
|
| XVG-OURS | | | 93.72 151 | 93.35 148 | 94.80 200 | 97.07 163 | 88.61 232 | 94.79 320 | 97.46 174 | 91.97 152 | 93.99 159 | 97.86 101 | 81.74 224 | 98.88 180 | 92.64 161 | 92.67 248 | 96.92 235 |
|
| LPG-MVS_test | | | 92.94 181 | 92.56 174 | 94.10 234 | 96.16 234 | 88.26 244 | 97.65 112 | 97.46 174 | 91.29 170 | 90.12 253 | 97.16 150 | 79.05 270 | 98.73 198 | 92.25 164 | 91.89 260 | 95.31 299 |
|
| LGP-MVS_train | | | | | 94.10 234 | 96.16 234 | 88.26 244 | | 97.46 174 | 91.29 170 | 90.12 253 | 97.16 150 | 79.05 270 | 98.73 198 | 92.25 164 | 91.89 260 | 95.31 299 |
|
| MVS | | | 91.71 226 | 90.44 254 | 95.51 162 | 95.20 288 | 91.59 125 | 96.04 263 | 97.45 179 | 73.44 407 | 87.36 327 | 95.60 239 | 85.42 153 | 99.10 152 | 85.97 296 | 97.46 147 | 95.83 268 |
|
| XVG-OURS-SEG-HR | | | 93.86 146 | 93.55 136 | 94.81 197 | 97.06 166 | 88.53 237 | 95.28 303 | 97.45 179 | 91.68 158 | 94.08 158 | 97.68 115 | 82.41 211 | 98.90 179 | 93.84 138 | 92.47 249 | 96.98 231 |
|
| baseline | | | 95.58 91 | 95.42 88 | 96.08 125 | 96.78 188 | 90.41 175 | 97.16 173 | 97.45 179 | 93.69 88 | 95.65 123 | 97.85 102 | 87.29 129 | 98.68 204 | 95.66 89 | 97.25 160 | 99.13 80 |
|
| ab-mvs | | | 93.57 155 | 92.55 175 | 96.64 80 | 97.28 153 | 91.96 113 | 95.40 297 | 97.45 179 | 89.81 225 | 93.22 180 | 96.28 200 | 79.62 261 | 99.46 109 | 90.74 198 | 93.11 240 | 98.50 143 |
|
| xiu_mvs_v2_base | | | 95.32 97 | 95.29 93 | 95.40 169 | 97.22 154 | 90.50 170 | 95.44 296 | 97.44 183 | 93.70 87 | 96.46 91 | 96.18 204 | 88.59 103 | 99.53 97 | 94.79 119 | 97.81 140 | 96.17 254 |
|
| 1314 | | | 92.81 189 | 92.03 191 | 95.14 177 | 95.33 278 | 89.52 203 | 96.04 263 | 97.44 183 | 87.72 296 | 86.25 345 | 95.33 249 | 83.84 176 | 98.79 189 | 89.26 230 | 97.05 165 | 97.11 229 |
|
| casdiffmvs |  | | 95.64 88 | 95.49 82 | 96.08 125 | 96.76 193 | 90.45 172 | 97.29 160 | 97.44 183 | 94.00 76 | 95.46 129 | 97.98 91 | 87.52 124 | 98.73 198 | 95.64 93 | 97.33 155 | 99.08 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| XXY-MVS | | | 92.16 212 | 91.23 222 | 94.95 191 | 94.75 312 | 90.94 155 | 97.47 140 | 97.43 186 | 89.14 244 | 88.90 289 | 96.43 193 | 79.71 258 | 98.24 241 | 89.56 221 | 87.68 309 | 95.67 280 |
|
| anonymousdsp | | | 92.16 212 | 91.55 208 | 93.97 243 | 92.58 374 | 89.55 200 | 97.51 132 | 97.42 187 | 89.42 237 | 88.40 302 | 94.84 271 | 80.66 240 | 97.88 297 | 91.87 174 | 91.28 270 | 94.48 345 |
|
| Effi-MVS+ | | | 94.93 110 | 94.45 118 | 96.36 108 | 96.61 198 | 91.47 131 | 96.41 236 | 97.41 188 | 91.02 184 | 94.50 147 | 95.92 218 | 87.53 122 | 98.78 190 | 93.89 136 | 96.81 168 | 98.84 119 |
|
| RRT-MVS | | | 94.51 121 | 94.35 121 | 94.98 187 | 96.40 221 | 86.55 290 | 97.56 125 | 97.41 188 | 93.19 109 | 94.93 136 | 97.04 157 | 79.12 268 | 99.30 127 | 96.19 71 | 97.32 157 | 99.09 86 |
|
| HQP3-MVS | | | | | | | | | 97.39 190 | | | | | | | 92.10 257 | |
|
| HQP-MVS | | | 93.19 168 | 92.74 167 | 94.54 213 | 95.86 246 | 89.33 212 | 96.65 218 | 97.39 190 | 93.55 91 | 90.14 247 | 95.87 220 | 80.95 233 | 98.50 220 | 92.13 168 | 92.10 257 | 95.78 272 |
|
| PLC |  | 91.00 6 | 94.11 135 | 93.43 145 | 96.13 124 | 98.58 71 | 91.15 150 | 96.69 214 | 97.39 190 | 87.29 306 | 91.37 222 | 96.71 171 | 88.39 104 | 99.52 101 | 87.33 272 | 97.13 164 | 97.73 200 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v7n | | | 90.76 275 | 89.86 281 | 93.45 272 | 93.54 351 | 87.60 264 | 97.70 108 | 97.37 193 | 88.85 256 | 87.65 320 | 94.08 316 | 81.08 232 | 98.10 256 | 84.68 312 | 83.79 360 | 94.66 342 |
|
| UnsupCasMVSNet_eth | | | 85.99 348 | 84.45 353 | 90.62 351 | 89.97 392 | 82.40 354 | 93.62 363 | 97.37 193 | 89.86 221 | 78.59 394 | 92.37 360 | 65.25 386 | 95.35 386 | 82.27 339 | 70.75 402 | 94.10 356 |
|
| ACMM | | 89.79 8 | 92.96 179 | 92.50 179 | 94.35 221 | 96.30 227 | 88.71 230 | 97.58 122 | 97.36 195 | 91.40 168 | 90.53 240 | 96.65 177 | 79.77 257 | 98.75 195 | 91.24 190 | 91.64 262 | 95.59 282 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| xiu_mvs_v1_base_debu | | | 95.01 105 | 94.76 104 | 95.75 146 | 96.58 201 | 91.71 118 | 96.25 252 | 97.35 196 | 92.99 118 | 96.70 76 | 96.63 182 | 82.67 203 | 99.44 112 | 96.22 64 | 97.46 147 | 96.11 259 |
|
| xiu_mvs_v1_base | | | 95.01 105 | 94.76 104 | 95.75 146 | 96.58 201 | 91.71 118 | 96.25 252 | 97.35 196 | 92.99 118 | 96.70 76 | 96.63 182 | 82.67 203 | 99.44 112 | 96.22 64 | 97.46 147 | 96.11 259 |
|
| xiu_mvs_v1_base_debi | | | 95.01 105 | 94.76 104 | 95.75 146 | 96.58 201 | 91.71 118 | 96.25 252 | 97.35 196 | 92.99 118 | 96.70 76 | 96.63 182 | 82.67 203 | 99.44 112 | 96.22 64 | 97.46 147 | 96.11 259 |
|
| diffmvs |  | | 95.25 99 | 95.13 97 | 95.63 154 | 96.43 220 | 89.34 211 | 95.99 267 | 97.35 196 | 92.83 128 | 96.31 96 | 97.37 138 | 86.44 139 | 98.67 205 | 96.26 61 | 97.19 162 | 98.87 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| WTY-MVS | | | 94.71 118 | 94.02 125 | 96.79 77 | 97.71 131 | 92.05 108 | 96.59 227 | 97.35 196 | 90.61 201 | 94.64 143 | 96.93 160 | 86.41 140 | 99.39 117 | 91.20 191 | 94.71 214 | 98.94 101 |
|
| F-COLMAP | | | 93.58 154 | 92.98 156 | 95.37 170 | 98.40 78 | 88.98 225 | 97.18 171 | 97.29 201 | 87.75 295 | 90.49 241 | 97.10 154 | 85.21 155 | 99.50 105 | 86.70 282 | 96.72 172 | 97.63 204 |
|
| XVG-ACMP-BASELINE | | | 90.93 271 | 90.21 268 | 93.09 284 | 94.31 331 | 85.89 302 | 95.33 300 | 97.26 202 | 91.06 183 | 89.38 277 | 95.44 247 | 68.61 361 | 98.60 212 | 89.46 223 | 91.05 274 | 94.79 335 |
|
| PCF-MVS | | 89.48 11 | 91.56 236 | 89.95 278 | 96.36 108 | 96.60 199 | 92.52 91 | 92.51 382 | 97.26 202 | 79.41 392 | 88.90 289 | 96.56 187 | 84.04 175 | 99.55 93 | 77.01 376 | 97.30 158 | 97.01 230 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| ACMP | | 89.59 10 | 92.62 193 | 92.14 188 | 94.05 237 | 96.40 221 | 88.20 247 | 97.36 152 | 97.25 204 | 91.52 161 | 88.30 306 | 96.64 178 | 78.46 282 | 98.72 201 | 91.86 175 | 91.48 266 | 95.23 306 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| OPM-MVS | | | 93.28 164 | 92.76 164 | 94.82 195 | 94.63 318 | 90.77 162 | 96.65 218 | 97.18 205 | 93.72 85 | 91.68 216 | 97.26 145 | 79.33 265 | 98.63 209 | 92.13 168 | 92.28 251 | 95.07 313 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| PatchMatch-RL | | | 92.90 183 | 92.02 192 | 95.56 158 | 98.19 98 | 90.80 160 | 95.27 305 | 97.18 205 | 87.96 284 | 91.86 211 | 95.68 235 | 80.44 244 | 98.99 170 | 84.01 320 | 97.54 146 | 96.89 236 |
|
| alignmvs | | | 95.87 84 | 95.23 94 | 97.78 31 | 97.56 147 | 95.19 21 | 97.86 81 | 97.17 207 | 94.39 68 | 96.47 90 | 96.40 195 | 85.89 147 | 99.20 135 | 96.21 68 | 95.11 204 | 98.95 100 |
|
| MVS_Test | | | 94.89 112 | 94.62 108 | 95.68 152 | 96.83 182 | 89.55 200 | 96.70 212 | 97.17 207 | 91.17 178 | 95.60 124 | 96.11 213 | 87.87 114 | 98.76 194 | 93.01 157 | 97.17 163 | 98.72 125 |
|
| Fast-Effi-MVS+ | | | 93.46 158 | 92.75 166 | 95.59 157 | 96.77 190 | 90.03 182 | 96.81 202 | 97.13 209 | 88.19 278 | 91.30 226 | 94.27 305 | 86.21 143 | 98.63 209 | 87.66 264 | 96.46 179 | 98.12 175 |
|
| EI-MVSNet | | | 93.03 176 | 92.88 160 | 93.48 270 | 95.77 252 | 86.98 277 | 96.44 232 | 97.12 210 | 90.66 197 | 91.30 226 | 97.64 122 | 86.56 136 | 98.05 268 | 89.91 211 | 90.55 282 | 95.41 289 |
|
| MVSTER | | | 93.20 167 | 92.81 163 | 94.37 220 | 96.56 204 | 89.59 198 | 97.06 179 | 97.12 210 | 91.24 174 | 91.30 226 | 95.96 216 | 82.02 218 | 98.05 268 | 93.48 143 | 90.55 282 | 95.47 286 |
|
| test_yl | | | 94.78 116 | 94.23 122 | 96.43 101 | 97.74 129 | 91.22 139 | 96.85 197 | 97.10 212 | 91.23 175 | 95.71 119 | 96.93 160 | 84.30 168 | 99.31 125 | 93.10 150 | 95.12 202 | 98.75 122 |
|
| DCV-MVSNet | | | 94.78 116 | 94.23 122 | 96.43 101 | 97.74 129 | 91.22 139 | 96.85 197 | 97.10 212 | 91.23 175 | 95.71 119 | 96.93 160 | 84.30 168 | 99.31 125 | 93.10 150 | 95.12 202 | 98.75 122 |
|
| LTVRE_ROB | | 88.41 13 | 90.99 267 | 89.92 280 | 94.19 230 | 96.18 232 | 89.55 200 | 96.31 248 | 97.09 214 | 87.88 287 | 85.67 349 | 95.91 219 | 78.79 278 | 98.57 216 | 81.50 342 | 89.98 287 | 94.44 348 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_fmvs1_n | | | 92.73 191 | 92.88 160 | 92.29 309 | 96.08 242 | 81.05 365 | 97.98 63 | 97.08 215 | 90.72 192 | 96.79 72 | 98.18 76 | 63.07 390 | 98.45 224 | 97.62 29 | 98.42 119 | 97.36 219 |
|
| v10 | | | 91.04 265 | 90.23 265 | 93.49 269 | 94.12 334 | 88.16 250 | 97.32 157 | 97.08 215 | 88.26 277 | 88.29 307 | 94.22 310 | 82.17 216 | 97.97 280 | 86.45 286 | 84.12 354 | 94.33 351 |
|
| v144192 | | | 91.06 264 | 90.28 261 | 93.39 273 | 93.66 349 | 87.23 271 | 96.83 200 | 97.07 217 | 87.43 302 | 89.69 267 | 94.28 304 | 81.48 227 | 98.00 275 | 87.18 276 | 84.92 343 | 94.93 321 |
|
| v1192 | | | 91.07 263 | 90.23 265 | 93.58 266 | 93.70 346 | 87.82 260 | 96.73 208 | 97.07 217 | 87.77 293 | 89.58 270 | 94.32 302 | 80.90 237 | 97.97 280 | 86.52 284 | 85.48 330 | 94.95 317 |
|
| v8 | | | 91.29 255 | 90.53 253 | 93.57 267 | 94.15 333 | 88.12 251 | 97.34 154 | 97.06 219 | 88.99 250 | 88.32 305 | 94.26 307 | 83.08 192 | 98.01 274 | 87.62 266 | 83.92 358 | 94.57 344 |
|
| mvs_anonymous | | | 93.82 147 | 93.74 130 | 94.06 236 | 96.44 219 | 85.41 309 | 95.81 276 | 97.05 220 | 89.85 223 | 90.09 256 | 96.36 197 | 87.44 126 | 97.75 310 | 93.97 132 | 96.69 173 | 99.02 90 |
|
| IterMVS-LS | | | 92.29 206 | 91.94 195 | 93.34 275 | 96.25 228 | 86.97 278 | 96.57 230 | 97.05 220 | 90.67 195 | 89.50 275 | 94.80 274 | 86.59 135 | 97.64 318 | 89.91 211 | 86.11 325 | 95.40 292 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v1921920 | | | 90.85 273 | 90.03 276 | 93.29 277 | 93.55 350 | 86.96 279 | 96.74 207 | 97.04 222 | 87.36 304 | 89.52 274 | 94.34 299 | 80.23 249 | 97.97 280 | 86.27 287 | 85.21 336 | 94.94 319 |
|
| CDS-MVSNet | | | 94.14 134 | 93.54 137 | 95.93 137 | 96.18 232 | 91.46 132 | 96.33 246 | 97.04 222 | 88.97 252 | 93.56 167 | 96.51 189 | 87.55 120 | 97.89 296 | 89.80 214 | 95.95 184 | 98.44 153 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| v1144 | | | 91.37 248 | 90.60 249 | 93.68 262 | 93.89 341 | 88.23 246 | 96.84 199 | 97.03 224 | 88.37 274 | 89.69 267 | 94.39 295 | 82.04 217 | 97.98 277 | 87.80 256 | 85.37 332 | 94.84 327 |
|
| v1240 | | | 90.70 279 | 89.85 282 | 93.23 279 | 93.51 353 | 86.80 280 | 96.61 224 | 97.02 225 | 87.16 309 | 89.58 270 | 94.31 303 | 79.55 262 | 97.98 277 | 85.52 302 | 85.44 331 | 94.90 324 |
|
| EPP-MVSNet | | | 95.22 101 | 95.04 100 | 95.76 144 | 97.49 148 | 89.56 199 | 98.67 10 | 97.00 226 | 90.69 193 | 94.24 153 | 97.62 124 | 89.79 87 | 98.81 187 | 93.39 147 | 96.49 177 | 98.92 104 |
|
| V42 | | | 91.58 235 | 90.87 233 | 93.73 257 | 94.05 337 | 88.50 238 | 97.32 157 | 96.97 227 | 88.80 262 | 89.71 265 | 94.33 300 | 82.54 207 | 98.05 268 | 89.01 237 | 85.07 339 | 94.64 343 |
|
| test_fmvs1 | | | 93.21 166 | 93.53 138 | 92.25 311 | 96.55 206 | 81.20 364 | 97.40 148 | 96.96 228 | 90.68 194 | 96.80 70 | 98.04 85 | 69.25 357 | 98.40 227 | 97.58 30 | 98.50 112 | 97.16 228 |
|
| FMVSNet2 | | | 91.31 252 | 90.08 271 | 94.99 185 | 96.51 212 | 92.21 102 | 97.41 144 | 96.95 229 | 88.82 259 | 88.62 297 | 94.75 276 | 73.87 324 | 97.42 339 | 85.20 307 | 88.55 302 | 95.35 296 |
|
| ACMH | | 87.59 16 | 90.53 284 | 89.42 297 | 93.87 251 | 96.21 229 | 87.92 255 | 97.24 163 | 96.94 230 | 88.45 272 | 83.91 369 | 96.27 201 | 71.92 336 | 98.62 211 | 84.43 315 | 89.43 293 | 95.05 315 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GBi-Net | | | 91.35 249 | 90.27 262 | 94.59 207 | 96.51 212 | 91.18 146 | 97.50 133 | 96.93 231 | 88.82 259 | 89.35 278 | 94.51 288 | 73.87 324 | 97.29 346 | 86.12 292 | 88.82 297 | 95.31 299 |
|
| test1 | | | 91.35 249 | 90.27 262 | 94.59 207 | 96.51 212 | 91.18 146 | 97.50 133 | 96.93 231 | 88.82 259 | 89.35 278 | 94.51 288 | 73.87 324 | 97.29 346 | 86.12 292 | 88.82 297 | 95.31 299 |
|
| FMVSNet3 | | | 91.78 224 | 90.69 247 | 95.03 183 | 96.53 209 | 92.27 100 | 97.02 182 | 96.93 231 | 89.79 226 | 89.35 278 | 94.65 281 | 77.01 298 | 97.47 334 | 86.12 292 | 88.82 297 | 95.35 296 |
|
| FMVSNet1 | | | 89.88 303 | 88.31 315 | 94.59 207 | 95.41 268 | 91.18 146 | 97.50 133 | 96.93 231 | 86.62 317 | 87.41 325 | 94.51 288 | 65.94 383 | 97.29 346 | 83.04 329 | 87.43 312 | 95.31 299 |
|
| GeoE | | | 93.89 144 | 93.28 150 | 95.72 150 | 96.96 175 | 89.75 194 | 98.24 38 | 96.92 235 | 89.47 234 | 92.12 203 | 97.21 148 | 84.42 166 | 98.39 231 | 87.71 259 | 96.50 176 | 99.01 93 |
|
| miper_enhance_ethall | | | 91.54 239 | 91.01 230 | 93.15 282 | 95.35 274 | 87.07 276 | 93.97 348 | 96.90 236 | 86.79 315 | 89.17 285 | 93.43 345 | 86.55 137 | 97.64 318 | 89.97 210 | 86.93 317 | 94.74 339 |
|
| eth_miper_zixun_eth | | | 91.02 266 | 90.59 250 | 92.34 308 | 95.33 278 | 84.35 328 | 94.10 345 | 96.90 236 | 88.56 268 | 88.84 293 | 94.33 300 | 84.08 173 | 97.60 323 | 88.77 243 | 84.37 352 | 95.06 314 |
|
| TAMVS | | | 94.01 140 | 93.46 143 | 95.64 153 | 96.16 234 | 90.45 172 | 96.71 211 | 96.89 238 | 89.27 241 | 93.46 172 | 96.92 163 | 87.29 129 | 97.94 289 | 88.70 244 | 95.74 189 | 98.53 139 |
|
| miper_ehance_all_eth | | | 91.59 233 | 91.13 226 | 92.97 288 | 95.55 261 | 86.57 288 | 94.47 329 | 96.88 239 | 87.77 293 | 88.88 291 | 94.01 318 | 86.22 142 | 97.54 327 | 89.49 222 | 86.93 317 | 94.79 335 |
|
| v2v482 | | | 91.59 233 | 90.85 236 | 93.80 254 | 93.87 342 | 88.17 249 | 96.94 191 | 96.88 239 | 89.54 231 | 89.53 273 | 94.90 268 | 81.70 225 | 98.02 273 | 89.25 231 | 85.04 341 | 95.20 307 |
|
| CNLPA | | | 94.28 126 | 93.53 138 | 96.52 89 | 98.38 81 | 92.55 90 | 96.59 227 | 96.88 239 | 90.13 216 | 91.91 208 | 97.24 146 | 85.21 155 | 99.09 155 | 87.64 265 | 97.83 139 | 97.92 187 |
|
| PAPM | | | 91.52 240 | 90.30 260 | 95.20 174 | 95.30 281 | 89.83 192 | 93.38 368 | 96.85 242 | 86.26 325 | 88.59 298 | 95.80 225 | 84.88 159 | 98.15 250 | 75.67 381 | 95.93 185 | 97.63 204 |
|
| c3_l | | | 91.38 246 | 90.89 232 | 92.88 292 | 95.58 259 | 86.30 295 | 94.68 322 | 96.84 243 | 88.17 279 | 88.83 294 | 94.23 308 | 85.65 151 | 97.47 334 | 89.36 226 | 84.63 345 | 94.89 325 |
|
| pm-mvs1 | | | 90.72 278 | 89.65 292 | 93.96 244 | 94.29 332 | 89.63 195 | 97.79 94 | 96.82 244 | 89.07 246 | 86.12 347 | 95.48 246 | 78.61 280 | 97.78 306 | 86.97 280 | 81.67 371 | 94.46 346 |
|
| test_vis1_n | | | 92.37 201 | 92.26 186 | 92.72 298 | 94.75 312 | 82.64 347 | 98.02 59 | 96.80 245 | 91.18 177 | 97.77 44 | 97.93 94 | 58.02 399 | 98.29 239 | 97.63 28 | 98.21 126 | 97.23 227 |
|
| CMPMVS |  | 62.92 21 | 85.62 353 | 84.92 349 | 87.74 375 | 89.14 397 | 73.12 405 | 94.17 343 | 96.80 245 | 73.98 404 | 73.65 403 | 94.93 266 | 66.36 377 | 97.61 322 | 83.95 322 | 91.28 270 | 92.48 381 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| MS-PatchMatch | | | 90.27 291 | 89.77 286 | 91.78 326 | 94.33 329 | 84.72 325 | 95.55 290 | 96.73 247 | 86.17 327 | 86.36 344 | 95.28 252 | 71.28 341 | 97.80 304 | 84.09 319 | 98.14 130 | 92.81 373 |
|
| Effi-MVS+-dtu | | | 93.08 173 | 93.21 152 | 92.68 301 | 96.02 243 | 83.25 342 | 97.14 175 | 96.72 248 | 93.85 82 | 91.20 233 | 93.44 342 | 83.08 192 | 98.30 238 | 91.69 181 | 95.73 190 | 96.50 245 |
|
| TSAR-MVS + GP. | | | 96.69 54 | 96.49 57 | 97.27 61 | 98.31 84 | 93.39 62 | 96.79 203 | 96.72 248 | 94.17 72 | 97.44 50 | 97.66 118 | 92.76 31 | 99.33 121 | 96.86 47 | 97.76 143 | 99.08 87 |
|
| 1112_ss | | | 93.37 161 | 92.42 182 | 96.21 120 | 97.05 168 | 90.99 152 | 96.31 248 | 96.72 248 | 86.87 314 | 89.83 263 | 96.69 175 | 86.51 138 | 99.14 148 | 88.12 249 | 93.67 234 | 98.50 143 |
|
| PVSNet | | 86.66 18 | 92.24 209 | 91.74 203 | 93.73 257 | 97.77 128 | 83.69 339 | 92.88 377 | 96.72 248 | 87.91 286 | 93.00 182 | 94.86 270 | 78.51 281 | 99.05 165 | 86.53 283 | 97.45 151 | 98.47 148 |
|
| miper_lstm_enhance | | | 90.50 287 | 90.06 275 | 91.83 322 | 95.33 278 | 83.74 336 | 93.86 354 | 96.70 252 | 87.56 300 | 87.79 317 | 93.81 326 | 83.45 184 | 96.92 358 | 87.39 270 | 84.62 346 | 94.82 330 |
|
| v148 | | | 90.99 267 | 90.38 256 | 92.81 295 | 93.83 343 | 85.80 303 | 96.78 205 | 96.68 253 | 89.45 236 | 88.75 296 | 93.93 322 | 82.96 198 | 97.82 302 | 87.83 255 | 83.25 363 | 94.80 333 |
|
| ACMH+ | | 87.92 14 | 90.20 295 | 89.18 302 | 93.25 278 | 96.48 215 | 86.45 292 | 96.99 187 | 96.68 253 | 88.83 258 | 84.79 358 | 96.22 203 | 70.16 350 | 98.53 218 | 84.42 316 | 88.04 305 | 94.77 338 |
|
| CANet_DTU | | | 94.37 124 | 93.65 133 | 96.55 87 | 96.46 218 | 92.13 106 | 96.21 256 | 96.67 255 | 94.38 69 | 93.53 170 | 97.03 158 | 79.34 264 | 99.71 52 | 90.76 197 | 98.45 117 | 97.82 197 |
|
| cl____ | | | 90.96 270 | 90.32 258 | 92.89 291 | 95.37 272 | 86.21 298 | 94.46 331 | 96.64 256 | 87.82 289 | 88.15 312 | 94.18 311 | 82.98 196 | 97.54 327 | 87.70 260 | 85.59 328 | 94.92 323 |
|
| HY-MVS | | 89.66 9 | 93.87 145 | 92.95 157 | 96.63 82 | 97.10 162 | 92.49 92 | 95.64 288 | 96.64 256 | 89.05 248 | 93.00 182 | 95.79 228 | 85.77 150 | 99.45 111 | 89.16 236 | 94.35 216 | 97.96 185 |
|
| Test_1112_low_res | | | 92.84 187 | 91.84 198 | 95.85 142 | 97.04 169 | 89.97 188 | 95.53 292 | 96.64 256 | 85.38 337 | 89.65 269 | 95.18 257 | 85.86 148 | 99.10 152 | 87.70 260 | 93.58 239 | 98.49 145 |
|
| DIV-MVS_self_test | | | 90.97 269 | 90.33 257 | 92.88 292 | 95.36 273 | 86.19 299 | 94.46 331 | 96.63 259 | 87.82 289 | 88.18 311 | 94.23 308 | 82.99 195 | 97.53 329 | 87.72 257 | 85.57 329 | 94.93 321 |
|
| Fast-Effi-MVS+-dtu | | | 92.29 206 | 91.99 193 | 93.21 281 | 95.27 282 | 85.52 307 | 97.03 180 | 96.63 259 | 92.09 147 | 89.11 287 | 95.14 259 | 80.33 247 | 98.08 261 | 87.54 268 | 94.74 212 | 96.03 262 |
|
| UnsupCasMVSNet_bld | | | 82.13 367 | 79.46 372 | 90.14 358 | 88.00 405 | 82.47 352 | 90.89 395 | 96.62 261 | 78.94 394 | 75.61 398 | 84.40 409 | 56.63 402 | 96.31 368 | 77.30 373 | 66.77 410 | 91.63 391 |
|
| cl22 | | | 91.21 257 | 90.56 252 | 93.14 283 | 96.09 241 | 86.80 280 | 94.41 333 | 96.58 262 | 87.80 291 | 88.58 299 | 93.99 320 | 80.85 238 | 97.62 321 | 89.87 213 | 86.93 317 | 94.99 316 |
|
| jason | | | 94.84 114 | 94.39 120 | 96.18 122 | 95.52 262 | 90.93 156 | 96.09 261 | 96.52 263 | 89.28 240 | 96.01 110 | 97.32 140 | 84.70 161 | 98.77 193 | 95.15 106 | 98.91 98 | 98.85 116 |
| jason: jason. |
| tt0805 | | | 91.09 262 | 90.07 274 | 94.16 232 | 95.61 257 | 88.31 241 | 97.56 125 | 96.51 264 | 89.56 230 | 89.17 285 | 95.64 237 | 67.08 375 | 98.38 232 | 91.07 193 | 88.44 303 | 95.80 270 |
|
| AUN-MVS | | | 91.76 225 | 90.75 242 | 94.81 197 | 97.00 173 | 88.57 234 | 96.65 218 | 96.49 265 | 89.63 228 | 92.15 201 | 96.12 209 | 78.66 279 | 98.50 220 | 90.83 195 | 79.18 382 | 97.36 219 |
|
| hse-mvs2 | | | 93.45 159 | 92.99 155 | 94.81 197 | 97.02 171 | 88.59 233 | 96.69 214 | 96.47 266 | 95.19 26 | 96.74 74 | 96.16 207 | 83.67 179 | 98.48 223 | 95.85 83 | 79.13 383 | 97.35 221 |
|
| EG-PatchMatch MVS | | | 87.02 337 | 85.44 341 | 91.76 328 | 92.67 371 | 85.00 319 | 96.08 262 | 96.45 267 | 83.41 367 | 79.52 390 | 93.49 339 | 57.10 401 | 97.72 312 | 79.34 364 | 90.87 279 | 92.56 378 |
|
| KD-MVS_self_test | | | 85.95 349 | 84.95 348 | 88.96 370 | 89.55 396 | 79.11 389 | 95.13 312 | 96.42 268 | 85.91 330 | 84.07 367 | 90.48 381 | 70.03 352 | 94.82 389 | 80.04 356 | 72.94 399 | 92.94 371 |
|
| pmmvs6 | | | 87.81 329 | 86.19 336 | 92.69 300 | 91.32 384 | 86.30 295 | 97.34 154 | 96.41 269 | 80.59 388 | 84.05 368 | 94.37 297 | 67.37 370 | 97.67 315 | 84.75 311 | 79.51 381 | 94.09 358 |
|
| PMMVS | | | 92.86 185 | 92.34 183 | 94.42 219 | 94.92 303 | 86.73 283 | 94.53 327 | 96.38 270 | 84.78 349 | 94.27 152 | 95.12 261 | 83.13 191 | 98.40 227 | 91.47 185 | 96.49 177 | 98.12 175 |
|
| RPSCF | | | 90.75 276 | 90.86 234 | 90.42 354 | 96.84 180 | 76.29 397 | 95.61 289 | 96.34 271 | 83.89 358 | 91.38 221 | 97.87 99 | 76.45 303 | 98.78 190 | 87.16 277 | 92.23 252 | 96.20 252 |
|
| BP-MVS1 | | | 95.89 82 | 95.49 82 | 97.08 72 | 96.67 195 | 93.20 72 | 98.08 53 | 96.32 272 | 94.56 57 | 96.32 95 | 97.84 104 | 84.07 174 | 99.15 145 | 96.75 49 | 98.78 101 | 98.90 108 |
|
| MSDG | | | 91.42 244 | 90.24 264 | 94.96 190 | 97.15 160 | 88.91 226 | 93.69 360 | 96.32 272 | 85.72 333 | 86.93 339 | 96.47 191 | 80.24 248 | 98.98 171 | 80.57 353 | 95.05 205 | 96.98 231 |
|
| WBMVS | | | 90.69 281 | 89.99 277 | 92.81 295 | 96.48 215 | 85.00 319 | 95.21 310 | 96.30 274 | 89.46 235 | 89.04 288 | 94.05 317 | 72.45 334 | 97.82 302 | 89.46 223 | 87.41 314 | 95.61 281 |
|
| OurMVSNet-221017-0 | | | 90.51 286 | 90.19 269 | 91.44 334 | 93.41 357 | 81.25 362 | 96.98 188 | 96.28 275 | 91.68 158 | 86.55 343 | 96.30 199 | 74.20 323 | 97.98 277 | 88.96 239 | 87.40 315 | 95.09 312 |
|
| MVP-Stereo | | | 90.74 277 | 90.08 271 | 92.71 299 | 93.19 362 | 88.20 247 | 95.86 273 | 96.27 276 | 86.07 328 | 84.86 357 | 94.76 275 | 77.84 293 | 97.75 310 | 83.88 324 | 98.01 134 | 92.17 388 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| lupinMVS | | | 94.99 109 | 94.56 111 | 96.29 114 | 96.34 225 | 91.21 141 | 95.83 275 | 96.27 276 | 88.93 254 | 96.22 100 | 96.88 165 | 86.20 144 | 98.85 183 | 95.27 102 | 99.05 90 | 98.82 120 |
|
| BH-untuned | | | 92.94 181 | 92.62 172 | 93.92 250 | 97.22 154 | 86.16 300 | 96.40 240 | 96.25 278 | 90.06 217 | 89.79 264 | 96.17 206 | 83.19 188 | 98.35 234 | 87.19 275 | 97.27 159 | 97.24 226 |
|
| CL-MVSNet_self_test | | | 86.31 344 | 85.15 345 | 89.80 362 | 88.83 400 | 81.74 360 | 93.93 351 | 96.22 279 | 86.67 316 | 85.03 355 | 90.80 379 | 78.09 289 | 94.50 390 | 74.92 384 | 71.86 401 | 93.15 369 |
|
| IS-MVSNet | | | 94.90 111 | 94.52 115 | 96.05 128 | 97.67 132 | 90.56 168 | 98.44 21 | 96.22 279 | 93.21 106 | 93.99 159 | 97.74 112 | 85.55 152 | 98.45 224 | 89.98 209 | 97.86 138 | 99.14 79 |
|
| FA-MVS(test-final) | | | 93.52 157 | 92.92 158 | 95.31 171 | 96.77 190 | 88.54 236 | 94.82 319 | 96.21 281 | 89.61 229 | 94.20 154 | 95.25 255 | 83.24 186 | 99.14 148 | 90.01 208 | 96.16 181 | 98.25 164 |
|
| GA-MVS | | | 91.38 246 | 90.31 259 | 94.59 207 | 94.65 317 | 87.62 263 | 94.34 336 | 96.19 282 | 90.73 191 | 90.35 244 | 93.83 323 | 71.84 337 | 97.96 284 | 87.22 274 | 93.61 237 | 98.21 167 |
|
| IterMVS-SCA-FT | | | 90.31 289 | 89.81 284 | 91.82 323 | 95.52 262 | 84.20 331 | 94.30 339 | 96.15 283 | 90.61 201 | 87.39 326 | 94.27 305 | 75.80 309 | 96.44 366 | 87.34 271 | 86.88 321 | 94.82 330 |
|
| IterMVS | | | 90.15 297 | 89.67 290 | 91.61 330 | 95.48 264 | 83.72 337 | 94.33 337 | 96.12 284 | 89.99 218 | 87.31 329 | 94.15 313 | 75.78 311 | 96.27 369 | 86.97 280 | 86.89 320 | 94.83 328 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS | | | 92.76 190 | 91.51 212 | 96.52 89 | 98.77 56 | 90.99 152 | 97.38 151 | 96.08 285 | 82.38 373 | 89.29 281 | 97.87 99 | 83.77 177 | 99.69 58 | 81.37 347 | 96.69 173 | 98.89 112 |
|
| pmmvs4 | | | 90.93 271 | 89.85 282 | 94.17 231 | 93.34 359 | 90.79 161 | 94.60 324 | 96.02 286 | 84.62 350 | 87.45 323 | 95.15 258 | 81.88 222 | 97.45 336 | 87.70 260 | 87.87 307 | 94.27 355 |
|
| ppachtmachnet_test | | | 88.35 324 | 87.29 323 | 91.53 331 | 92.45 377 | 83.57 340 | 93.75 357 | 95.97 287 | 84.28 353 | 85.32 354 | 94.18 311 | 79.00 276 | 96.93 357 | 75.71 380 | 84.99 342 | 94.10 356 |
|
| Anonymous20240521 | | | 86.42 342 | 85.44 341 | 89.34 368 | 90.33 389 | 79.79 381 | 96.73 208 | 95.92 288 | 83.71 363 | 83.25 373 | 91.36 376 | 63.92 388 | 96.01 370 | 78.39 368 | 85.36 333 | 92.22 386 |
|
| ITE_SJBPF | | | | | 92.43 304 | 95.34 275 | 85.37 312 | | 95.92 288 | 91.47 163 | 87.75 319 | 96.39 196 | 71.00 343 | 97.96 284 | 82.36 338 | 89.86 289 | 93.97 359 |
|
| test_fmvs2 | | | 89.77 307 | 89.93 279 | 89.31 369 | 93.68 348 | 76.37 396 | 97.64 116 | 95.90 290 | 89.84 224 | 91.49 219 | 96.26 202 | 58.77 398 | 97.10 350 | 94.65 121 | 91.13 272 | 94.46 346 |
|
| USDC | | | 88.94 315 | 87.83 320 | 92.27 310 | 94.66 316 | 84.96 321 | 93.86 354 | 95.90 290 | 87.34 305 | 83.40 371 | 95.56 241 | 67.43 369 | 98.19 247 | 82.64 337 | 89.67 291 | 93.66 362 |
|
| COLMAP_ROB |  | 87.81 15 | 90.40 288 | 89.28 300 | 93.79 255 | 97.95 117 | 87.13 275 | 96.92 192 | 95.89 292 | 82.83 370 | 86.88 341 | 97.18 149 | 73.77 327 | 99.29 128 | 78.44 367 | 93.62 236 | 94.95 317 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| VDD-MVS | | | 93.82 147 | 93.08 153 | 96.02 131 | 97.88 123 | 89.96 189 | 97.72 103 | 95.85 293 | 92.43 136 | 95.86 114 | 98.44 49 | 68.42 365 | 99.39 117 | 96.31 60 | 94.85 206 | 98.71 127 |
|
| VDDNet | | | 93.05 175 | 92.07 189 | 96.02 131 | 96.84 180 | 90.39 176 | 98.08 53 | 95.85 293 | 86.22 326 | 95.79 117 | 98.46 47 | 67.59 368 | 99.19 136 | 94.92 111 | 94.85 206 | 98.47 148 |
|
| mvsmamba | | | 94.57 120 | 94.14 124 | 95.87 139 | 97.03 170 | 89.93 190 | 97.84 85 | 95.85 293 | 91.34 169 | 94.79 140 | 96.80 167 | 80.67 239 | 98.81 187 | 94.85 112 | 98.12 131 | 98.85 116 |
|
| Vis-MVSNet (Re-imp) | | | 94.15 131 | 93.88 128 | 94.95 191 | 97.61 140 | 87.92 255 | 98.10 51 | 95.80 296 | 92.22 140 | 93.02 181 | 97.45 133 | 84.53 164 | 97.91 295 | 88.24 248 | 97.97 135 | 99.02 90 |
|
| MM | | | 97.29 22 | 96.98 30 | 98.23 11 | 98.01 111 | 95.03 26 | 98.07 55 | 95.76 297 | 97.78 1 | 97.52 47 | 98.80 28 | 88.09 107 | 99.86 9 | 99.44 1 | 99.37 61 | 99.80 1 |
|
| KD-MVS_2432*1600 | | | 84.81 357 | 82.64 361 | 91.31 336 | 91.07 386 | 85.34 313 | 91.22 390 | 95.75 298 | 85.56 335 | 83.09 374 | 90.21 384 | 67.21 371 | 95.89 372 | 77.18 374 | 62.48 414 | 92.69 374 |
|
| miper_refine_blended | | | 84.81 357 | 82.64 361 | 91.31 336 | 91.07 386 | 85.34 313 | 91.22 390 | 95.75 298 | 85.56 335 | 83.09 374 | 90.21 384 | 67.21 371 | 95.89 372 | 77.18 374 | 62.48 414 | 92.69 374 |
|
| FE-MVS | | | 92.05 216 | 91.05 228 | 95.08 180 | 96.83 182 | 87.93 254 | 93.91 353 | 95.70 300 | 86.30 323 | 94.15 156 | 94.97 263 | 76.59 301 | 99.21 134 | 84.10 318 | 96.86 166 | 98.09 179 |
|
| tpm cat1 | | | 88.36 323 | 87.21 326 | 91.81 324 | 95.13 293 | 80.55 371 | 92.58 381 | 95.70 300 | 74.97 403 | 87.45 323 | 91.96 370 | 78.01 292 | 98.17 249 | 80.39 355 | 88.74 300 | 96.72 241 |
|
| our_test_3 | | | 88.78 319 | 87.98 319 | 91.20 340 | 92.45 377 | 82.53 349 | 93.61 364 | 95.69 302 | 85.77 332 | 84.88 356 | 93.71 328 | 79.99 253 | 96.78 363 | 79.47 361 | 86.24 322 | 94.28 354 |
|
| BH-w/o | | | 92.14 214 | 91.75 201 | 93.31 276 | 96.99 174 | 85.73 304 | 95.67 283 | 95.69 302 | 88.73 264 | 89.26 283 | 94.82 273 | 82.97 197 | 98.07 265 | 85.26 306 | 96.32 180 | 96.13 258 |
|
| CR-MVSNet | | | 90.82 274 | 89.77 286 | 93.95 245 | 94.45 325 | 87.19 272 | 90.23 398 | 95.68 304 | 86.89 313 | 92.40 191 | 92.36 363 | 80.91 235 | 97.05 352 | 81.09 351 | 93.95 230 | 97.60 209 |
|
| Patchmtry | | | 88.64 321 | 87.25 324 | 92.78 297 | 94.09 335 | 86.64 284 | 89.82 402 | 95.68 304 | 80.81 385 | 87.63 321 | 92.36 363 | 80.91 235 | 97.03 353 | 78.86 365 | 85.12 338 | 94.67 341 |
|
| testing91 | | | 91.90 221 | 91.02 229 | 94.53 214 | 96.54 207 | 86.55 290 | 95.86 273 | 95.64 306 | 91.77 155 | 91.89 209 | 93.47 341 | 69.94 353 | 98.86 181 | 90.23 207 | 93.86 232 | 98.18 169 |
|
| BH-RMVSNet | | | 92.72 192 | 91.97 194 | 94.97 189 | 97.16 158 | 87.99 253 | 96.15 259 | 95.60 307 | 90.62 200 | 91.87 210 | 97.15 152 | 78.41 283 | 98.57 216 | 83.16 327 | 97.60 145 | 98.36 160 |
|
| PVSNet_0 | | 82.17 19 | 85.46 354 | 83.64 357 | 90.92 343 | 95.27 282 | 79.49 385 | 90.55 396 | 95.60 307 | 83.76 362 | 83.00 376 | 89.95 386 | 71.09 342 | 97.97 280 | 82.75 335 | 60.79 416 | 95.31 299 |
|
| SCA | | | 91.84 223 | 91.18 225 | 93.83 252 | 95.59 258 | 84.95 322 | 94.72 321 | 95.58 309 | 90.82 187 | 92.25 199 | 93.69 330 | 75.80 309 | 98.10 256 | 86.20 289 | 95.98 183 | 98.45 150 |
|
| MonoMVSNet | | | 91.92 219 | 91.77 199 | 92.37 305 | 92.94 366 | 83.11 343 | 97.09 178 | 95.55 310 | 92.91 126 | 90.85 236 | 94.55 285 | 81.27 231 | 96.52 365 | 93.01 157 | 87.76 308 | 97.47 215 |
|
| AllTest | | | 90.23 293 | 88.98 305 | 93.98 241 | 97.94 118 | 86.64 284 | 96.51 231 | 95.54 311 | 85.38 337 | 85.49 351 | 96.77 169 | 70.28 348 | 99.15 145 | 80.02 357 | 92.87 241 | 96.15 256 |
|
| TestCases | | | | | 93.98 241 | 97.94 118 | 86.64 284 | | 95.54 311 | 85.38 337 | 85.49 351 | 96.77 169 | 70.28 348 | 99.15 145 | 80.02 357 | 92.87 241 | 96.15 256 |
|
| mmtdpeth | | | 89.70 308 | 88.96 306 | 91.90 319 | 95.84 251 | 84.42 327 | 97.46 142 | 95.53 313 | 90.27 211 | 94.46 149 | 90.50 380 | 69.74 356 | 98.95 172 | 97.39 39 | 69.48 405 | 92.34 382 |
|
| tpmvs | | | 89.83 306 | 89.15 303 | 91.89 320 | 94.92 303 | 80.30 375 | 93.11 373 | 95.46 314 | 86.28 324 | 88.08 313 | 92.65 353 | 80.44 244 | 98.52 219 | 81.47 343 | 89.92 288 | 96.84 237 |
|
| pmmvs5 | | | 89.86 305 | 88.87 309 | 92.82 294 | 92.86 367 | 86.23 297 | 96.26 251 | 95.39 315 | 84.24 354 | 87.12 330 | 94.51 288 | 74.27 322 | 97.36 343 | 87.61 267 | 87.57 310 | 94.86 326 |
|
| PatchmatchNet |  | | 91.91 220 | 91.35 214 | 93.59 265 | 95.38 270 | 84.11 332 | 93.15 372 | 95.39 315 | 89.54 231 | 92.10 204 | 93.68 332 | 82.82 201 | 98.13 251 | 84.81 310 | 95.32 198 | 98.52 140 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tpmrst | | | 91.44 243 | 91.32 216 | 91.79 325 | 95.15 291 | 79.20 388 | 93.42 367 | 95.37 317 | 88.55 269 | 93.49 171 | 93.67 333 | 82.49 209 | 98.27 240 | 90.41 202 | 89.34 294 | 97.90 188 |
|
| Anonymous20231206 | | | 87.09 336 | 86.14 337 | 89.93 361 | 91.22 385 | 80.35 373 | 96.11 260 | 95.35 318 | 83.57 365 | 84.16 363 | 93.02 348 | 73.54 329 | 95.61 380 | 72.16 396 | 86.14 324 | 93.84 361 |
|
| MIMVSNet1 | | | 84.93 356 | 83.05 358 | 90.56 352 | 89.56 395 | 84.84 324 | 95.40 297 | 95.35 318 | 83.91 357 | 80.38 386 | 92.21 367 | 57.23 400 | 93.34 402 | 70.69 402 | 82.75 369 | 93.50 364 |
|
| TDRefinement | | | 86.53 339 | 84.76 351 | 91.85 321 | 82.23 417 | 84.25 329 | 96.38 242 | 95.35 318 | 84.97 346 | 84.09 366 | 94.94 265 | 65.76 384 | 98.34 237 | 84.60 314 | 74.52 395 | 92.97 370 |
|
| TR-MVS | | | 91.48 242 | 90.59 250 | 94.16 232 | 96.40 221 | 87.33 265 | 95.67 283 | 95.34 321 | 87.68 297 | 91.46 220 | 95.52 244 | 76.77 300 | 98.35 234 | 82.85 332 | 93.61 237 | 96.79 239 |
|
| EPNet_dtu | | | 91.71 226 | 91.28 219 | 92.99 287 | 93.76 345 | 83.71 338 | 96.69 214 | 95.28 322 | 93.15 113 | 87.02 335 | 95.95 217 | 83.37 185 | 97.38 342 | 79.46 362 | 96.84 167 | 97.88 190 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| FMVSNet5 | | | 87.29 333 | 85.79 339 | 91.78 326 | 94.80 310 | 87.28 267 | 95.49 294 | 95.28 322 | 84.09 356 | 83.85 370 | 91.82 371 | 62.95 391 | 94.17 394 | 78.48 366 | 85.34 334 | 93.91 360 |
|
| MDTV_nov1_ep13 | | | | 90.76 240 | | 95.22 286 | 80.33 374 | 93.03 375 | 95.28 322 | 88.14 281 | 92.84 188 | 93.83 323 | 81.34 228 | 98.08 261 | 82.86 330 | 94.34 217 | |
|
| LF4IMVS | | | 87.94 327 | 87.25 324 | 89.98 360 | 92.38 379 | 80.05 380 | 94.38 334 | 95.25 325 | 87.59 299 | 84.34 360 | 94.74 277 | 64.31 387 | 97.66 317 | 84.83 309 | 87.45 311 | 92.23 385 |
|
| TransMVSNet (Re) | | | 88.94 315 | 87.56 321 | 93.08 285 | 94.35 328 | 88.45 240 | 97.73 100 | 95.23 326 | 87.47 301 | 84.26 362 | 95.29 250 | 79.86 256 | 97.33 344 | 79.44 363 | 74.44 396 | 93.45 366 |
|
| test20.03 | | | 86.14 347 | 85.40 343 | 88.35 371 | 90.12 390 | 80.06 379 | 95.90 272 | 95.20 327 | 88.59 265 | 81.29 381 | 93.62 335 | 71.43 340 | 92.65 405 | 71.26 400 | 81.17 374 | 92.34 382 |
|
| new-patchmatchnet | | | 83.18 363 | 81.87 366 | 87.11 378 | 86.88 408 | 75.99 398 | 93.70 358 | 95.18 328 | 85.02 345 | 77.30 397 | 88.40 396 | 65.99 382 | 93.88 399 | 74.19 389 | 70.18 403 | 91.47 395 |
|
| MDA-MVSNet_test_wron | | | 85.87 351 | 84.23 355 | 90.80 349 | 92.38 379 | 82.57 348 | 93.17 370 | 95.15 329 | 82.15 374 | 67.65 409 | 92.33 366 | 78.20 285 | 95.51 383 | 77.33 371 | 79.74 378 | 94.31 353 |
|
| YYNet1 | | | 85.87 351 | 84.23 355 | 90.78 350 | 92.38 379 | 82.46 353 | 93.17 370 | 95.14 330 | 82.12 375 | 67.69 407 | 92.36 363 | 78.16 288 | 95.50 384 | 77.31 372 | 79.73 379 | 94.39 349 |
|
| Baseline_NR-MVSNet | | | 91.20 258 | 90.62 248 | 92.95 289 | 93.83 343 | 88.03 252 | 97.01 185 | 95.12 331 | 88.42 273 | 89.70 266 | 95.13 260 | 83.47 182 | 97.44 337 | 89.66 219 | 83.24 364 | 93.37 367 |
|
| thres200 | | | 92.23 210 | 91.39 213 | 94.75 204 | 97.61 140 | 89.03 224 | 96.60 226 | 95.09 332 | 92.08 148 | 93.28 177 | 94.00 319 | 78.39 284 | 99.04 168 | 81.26 350 | 94.18 221 | 96.19 253 |
|
| ADS-MVSNet | | | 89.89 302 | 88.68 311 | 93.53 268 | 95.86 246 | 84.89 323 | 90.93 393 | 95.07 333 | 83.23 368 | 91.28 229 | 91.81 372 | 79.01 274 | 97.85 298 | 79.52 359 | 91.39 268 | 97.84 194 |
|
| pmmvs-eth3d | | | 86.22 345 | 84.45 353 | 91.53 331 | 88.34 404 | 87.25 269 | 94.47 329 | 95.01 334 | 83.47 366 | 79.51 391 | 89.61 389 | 69.75 355 | 95.71 377 | 83.13 328 | 76.73 390 | 91.64 390 |
|
| Anonymous202405211 | | | 92.07 215 | 90.83 238 | 95.76 144 | 98.19 98 | 88.75 229 | 97.58 122 | 95.00 335 | 86.00 329 | 93.64 166 | 97.45 133 | 66.24 380 | 99.53 97 | 90.68 200 | 92.71 246 | 99.01 93 |
|
| MDA-MVSNet-bldmvs | | | 85.00 355 | 82.95 360 | 91.17 341 | 93.13 364 | 83.33 341 | 94.56 326 | 95.00 335 | 84.57 351 | 65.13 413 | 92.65 353 | 70.45 347 | 95.85 374 | 73.57 392 | 77.49 386 | 94.33 351 |
|
| ambc | | | | | 86.56 381 | 83.60 414 | 70.00 408 | 85.69 412 | 94.97 337 | | 80.60 385 | 88.45 395 | 37.42 416 | 96.84 361 | 82.69 336 | 75.44 394 | 92.86 372 |
|
| testgi | | | 87.97 326 | 87.21 326 | 90.24 357 | 92.86 367 | 80.76 366 | 96.67 217 | 94.97 337 | 91.74 156 | 85.52 350 | 95.83 223 | 62.66 393 | 94.47 392 | 76.25 378 | 88.36 304 | 95.48 284 |
|
| dp | | | 88.90 317 | 88.26 317 | 90.81 347 | 94.58 321 | 76.62 395 | 92.85 378 | 94.93 339 | 85.12 343 | 90.07 258 | 93.07 347 | 75.81 308 | 98.12 254 | 80.53 354 | 87.42 313 | 97.71 201 |
|
| test_fmvs3 | | | 83.21 362 | 83.02 359 | 83.78 385 | 86.77 409 | 68.34 411 | 96.76 206 | 94.91 340 | 86.49 319 | 84.14 365 | 89.48 390 | 36.04 417 | 91.73 407 | 91.86 175 | 80.77 376 | 91.26 397 |
|
| test_0402 | | | 86.46 341 | 84.79 350 | 91.45 333 | 95.02 297 | 85.55 306 | 96.29 250 | 94.89 341 | 80.90 382 | 82.21 378 | 93.97 321 | 68.21 366 | 97.29 346 | 62.98 408 | 88.68 301 | 91.51 393 |
|
| tfpn200view9 | | | 92.38 200 | 91.52 210 | 94.95 191 | 97.85 124 | 89.29 214 | 97.41 144 | 94.88 342 | 92.19 144 | 93.27 178 | 94.46 293 | 78.17 286 | 99.08 158 | 81.40 344 | 94.08 225 | 96.48 246 |
|
| CVMVSNet | | | 91.23 256 | 91.75 201 | 89.67 363 | 95.77 252 | 74.69 399 | 96.44 232 | 94.88 342 | 85.81 331 | 92.18 200 | 97.64 122 | 79.07 269 | 95.58 382 | 88.06 251 | 95.86 187 | 98.74 124 |
|
| thres400 | | | 92.42 198 | 91.52 210 | 95.12 179 | 97.85 124 | 89.29 214 | 97.41 144 | 94.88 342 | 92.19 144 | 93.27 178 | 94.46 293 | 78.17 286 | 99.08 158 | 81.40 344 | 94.08 225 | 96.98 231 |
|
| EPNet | | | 95.20 102 | 94.56 111 | 97.14 68 | 92.80 369 | 92.68 86 | 97.85 84 | 94.87 345 | 96.64 3 | 92.46 190 | 97.80 109 | 86.23 141 | 99.65 64 | 93.72 140 | 98.62 108 | 99.10 85 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| testing99 | | | 91.62 231 | 90.72 245 | 94.32 224 | 96.48 215 | 86.11 301 | 95.81 276 | 94.76 346 | 91.55 160 | 91.75 214 | 93.44 342 | 68.55 363 | 98.82 185 | 90.43 201 | 93.69 233 | 98.04 182 |
|
| SixPastTwentyTwo | | | 89.15 313 | 88.54 313 | 90.98 342 | 93.49 354 | 80.28 376 | 96.70 212 | 94.70 347 | 90.78 188 | 84.15 364 | 95.57 240 | 71.78 338 | 97.71 313 | 84.63 313 | 85.07 339 | 94.94 319 |
|
| thres100view900 | | | 92.43 197 | 91.58 207 | 94.98 187 | 97.92 120 | 89.37 210 | 97.71 105 | 94.66 348 | 92.20 142 | 93.31 176 | 94.90 268 | 78.06 290 | 99.08 158 | 81.40 344 | 94.08 225 | 96.48 246 |
|
| thres600view7 | | | 92.49 196 | 91.60 206 | 95.18 175 | 97.91 121 | 89.47 204 | 97.65 112 | 94.66 348 | 92.18 146 | 93.33 175 | 94.91 267 | 78.06 290 | 99.10 152 | 81.61 341 | 94.06 229 | 96.98 231 |
|
| PatchT | | | 88.87 318 | 87.42 322 | 93.22 280 | 94.08 336 | 85.10 317 | 89.51 403 | 94.64 350 | 81.92 376 | 92.36 194 | 88.15 399 | 80.05 252 | 97.01 355 | 72.43 395 | 93.65 235 | 97.54 212 |
|
| baseline1 | | | 92.82 188 | 91.90 196 | 95.55 160 | 97.20 156 | 90.77 162 | 97.19 170 | 94.58 351 | 92.20 142 | 92.36 194 | 96.34 198 | 84.16 172 | 98.21 244 | 89.20 234 | 83.90 359 | 97.68 203 |
|
| UBG | | | 91.55 237 | 90.76 240 | 93.94 247 | 96.52 211 | 85.06 318 | 95.22 308 | 94.54 352 | 90.47 207 | 91.98 207 | 92.71 352 | 72.02 335 | 98.74 197 | 88.10 250 | 95.26 200 | 98.01 183 |
|
| Gipuma |  | | 67.86 383 | 65.41 385 | 75.18 398 | 92.66 372 | 73.45 402 | 66.50 419 | 94.52 353 | 53.33 418 | 57.80 419 | 66.07 419 | 30.81 419 | 89.20 411 | 48.15 417 | 78.88 385 | 62.90 419 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testing11 | | | 91.68 229 | 90.75 242 | 94.47 215 | 96.53 209 | 86.56 289 | 95.76 280 | 94.51 354 | 91.10 182 | 91.24 231 | 93.59 336 | 68.59 362 | 98.86 181 | 91.10 192 | 94.29 218 | 98.00 184 |
|
| CostFormer | | | 91.18 261 | 90.70 246 | 92.62 302 | 94.84 308 | 81.76 359 | 94.09 346 | 94.43 355 | 84.15 355 | 92.72 189 | 93.77 327 | 79.43 263 | 98.20 245 | 90.70 199 | 92.18 255 | 97.90 188 |
|
| tpm2 | | | 89.96 299 | 89.21 301 | 92.23 312 | 94.91 305 | 81.25 362 | 93.78 356 | 94.42 356 | 80.62 387 | 91.56 217 | 93.44 342 | 76.44 304 | 97.94 289 | 85.60 301 | 92.08 259 | 97.49 213 |
|
| MVS_0304 | | | 96.74 51 | 96.31 67 | 98.02 19 | 96.87 177 | 94.65 30 | 97.58 122 | 94.39 357 | 96.47 6 | 97.16 59 | 98.39 53 | 87.53 122 | 99.87 7 | 98.97 11 | 99.41 53 | 99.55 34 |
|
| JIA-IIPM | | | 88.26 325 | 87.04 329 | 91.91 318 | 93.52 352 | 81.42 361 | 89.38 404 | 94.38 358 | 80.84 384 | 90.93 235 | 80.74 411 | 79.22 266 | 97.92 292 | 82.76 334 | 91.62 263 | 96.38 249 |
|
| dmvs_re | | | 90.21 294 | 89.50 295 | 92.35 306 | 95.47 267 | 85.15 315 | 95.70 282 | 94.37 359 | 90.94 186 | 88.42 301 | 93.57 337 | 74.63 319 | 95.67 379 | 82.80 333 | 89.57 292 | 96.22 251 |
|
| Patchmatch-test | | | 89.42 311 | 87.99 318 | 93.70 260 | 95.27 282 | 85.11 316 | 88.98 405 | 94.37 359 | 81.11 381 | 87.10 333 | 93.69 330 | 82.28 213 | 97.50 332 | 74.37 387 | 94.76 210 | 98.48 147 |
|
| LCM-MVSNet | | | 72.55 376 | 69.39 380 | 82.03 387 | 70.81 427 | 65.42 416 | 90.12 400 | 94.36 361 | 55.02 417 | 65.88 411 | 81.72 410 | 24.16 425 | 89.96 408 | 74.32 388 | 68.10 408 | 90.71 400 |
|
| ADS-MVSNet2 | | | 89.45 310 | 88.59 312 | 92.03 315 | 95.86 246 | 82.26 355 | 90.93 393 | 94.32 362 | 83.23 368 | 91.28 229 | 91.81 372 | 79.01 274 | 95.99 371 | 79.52 359 | 91.39 268 | 97.84 194 |
|
| mvs5depth | | | 86.53 339 | 85.08 346 | 90.87 344 | 88.74 402 | 82.52 350 | 91.91 386 | 94.23 363 | 86.35 322 | 87.11 332 | 93.70 329 | 66.52 376 | 97.76 309 | 81.37 347 | 75.80 392 | 92.31 384 |
|
| EU-MVSNet | | | 88.72 320 | 88.90 308 | 88.20 373 | 93.15 363 | 74.21 400 | 96.63 223 | 94.22 364 | 85.18 341 | 87.32 328 | 95.97 215 | 76.16 306 | 94.98 388 | 85.27 305 | 86.17 323 | 95.41 289 |
|
| MIMVSNet | | | 88.50 322 | 86.76 332 | 93.72 259 | 94.84 308 | 87.77 261 | 91.39 388 | 94.05 365 | 86.41 321 | 87.99 315 | 92.59 356 | 63.27 389 | 95.82 376 | 77.44 370 | 92.84 243 | 97.57 211 |
|
| OpenMVS_ROB |  | 81.14 20 | 84.42 359 | 82.28 365 | 90.83 345 | 90.06 391 | 84.05 334 | 95.73 281 | 94.04 366 | 73.89 406 | 80.17 389 | 91.53 375 | 59.15 397 | 97.64 318 | 66.92 406 | 89.05 296 | 90.80 399 |
|
| TinyColmap | | | 86.82 338 | 85.35 344 | 91.21 338 | 94.91 305 | 82.99 345 | 93.94 350 | 94.02 367 | 83.58 364 | 81.56 380 | 94.68 279 | 62.34 394 | 98.13 251 | 75.78 379 | 87.35 316 | 92.52 380 |
|
| ETVMVS | | | 90.52 285 | 89.14 304 | 94.67 206 | 96.81 186 | 87.85 259 | 95.91 271 | 93.97 368 | 89.71 227 | 92.34 197 | 92.48 358 | 65.41 385 | 97.96 284 | 81.37 347 | 94.27 219 | 98.21 167 |
|
| IB-MVS | | 87.33 17 | 89.91 300 | 88.28 316 | 94.79 201 | 95.26 285 | 87.70 262 | 95.12 313 | 93.95 369 | 89.35 239 | 87.03 334 | 92.49 357 | 70.74 345 | 99.19 136 | 89.18 235 | 81.37 373 | 97.49 213 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| Syy-MVS | | | 87.13 335 | 87.02 330 | 87.47 376 | 95.16 289 | 73.21 404 | 95.00 315 | 93.93 370 | 88.55 269 | 86.96 336 | 91.99 368 | 75.90 307 | 94.00 396 | 61.59 410 | 94.11 222 | 95.20 307 |
|
| myMVS_eth3d | | | 87.18 334 | 86.38 334 | 89.58 364 | 95.16 289 | 79.53 383 | 95.00 315 | 93.93 370 | 88.55 269 | 86.96 336 | 91.99 368 | 56.23 403 | 94.00 396 | 75.47 383 | 94.11 222 | 95.20 307 |
|
| testing222 | | | 90.31 289 | 88.96 306 | 94.35 221 | 96.54 207 | 87.29 266 | 95.50 293 | 93.84 372 | 90.97 185 | 91.75 214 | 92.96 349 | 62.18 395 | 98.00 275 | 82.86 330 | 94.08 225 | 97.76 199 |
|
| test_f | | | 80.57 369 | 79.62 371 | 83.41 386 | 83.38 415 | 67.80 413 | 93.57 365 | 93.72 373 | 80.80 386 | 77.91 396 | 87.63 402 | 33.40 418 | 92.08 406 | 87.14 278 | 79.04 384 | 90.34 401 |
|
| LCM-MVSNet-Re | | | 92.50 194 | 92.52 178 | 92.44 303 | 96.82 184 | 81.89 358 | 96.92 192 | 93.71 374 | 92.41 137 | 84.30 361 | 94.60 283 | 85.08 157 | 97.03 353 | 91.51 183 | 97.36 153 | 98.40 156 |
|
| tpm | | | 90.25 292 | 89.74 289 | 91.76 328 | 93.92 339 | 79.73 382 | 93.98 347 | 93.54 375 | 88.28 276 | 91.99 206 | 93.25 346 | 77.51 296 | 97.44 337 | 87.30 273 | 87.94 306 | 98.12 175 |
|
| ET-MVSNet_ETH3D | | | 91.49 241 | 90.11 270 | 95.63 154 | 96.40 221 | 91.57 127 | 95.34 299 | 93.48 376 | 90.60 203 | 75.58 399 | 95.49 245 | 80.08 251 | 96.79 362 | 94.25 128 | 89.76 290 | 98.52 140 |
|
| LFMVS | | | 93.60 153 | 92.63 171 | 96.52 89 | 98.13 103 | 91.27 138 | 97.94 73 | 93.39 377 | 90.57 204 | 96.29 97 | 98.31 66 | 69.00 358 | 99.16 143 | 94.18 129 | 95.87 186 | 99.12 83 |
|
| MVStest1 | | | 82.38 366 | 80.04 370 | 89.37 366 | 87.63 407 | 82.83 346 | 95.03 314 | 93.37 378 | 73.90 405 | 73.50 404 | 94.35 298 | 62.89 392 | 93.25 403 | 73.80 390 | 65.92 411 | 92.04 389 |
|
| Patchmatch-RL test | | | 87.38 332 | 86.24 335 | 90.81 347 | 88.74 402 | 78.40 392 | 88.12 410 | 93.17 379 | 87.11 310 | 82.17 379 | 89.29 391 | 81.95 220 | 95.60 381 | 88.64 245 | 77.02 387 | 98.41 155 |
|
| ttmdpeth | | | 85.91 350 | 84.76 351 | 89.36 367 | 89.14 397 | 80.25 377 | 95.66 286 | 93.16 380 | 83.77 361 | 83.39 372 | 95.26 254 | 66.24 380 | 95.26 387 | 80.65 352 | 75.57 393 | 92.57 377 |
|
| test-LLR | | | 91.42 244 | 91.19 224 | 92.12 313 | 94.59 319 | 80.66 368 | 94.29 340 | 92.98 381 | 91.11 180 | 90.76 238 | 92.37 360 | 79.02 272 | 98.07 265 | 88.81 241 | 96.74 170 | 97.63 204 |
|
| test-mter | | | 90.19 296 | 89.54 294 | 92.12 313 | 94.59 319 | 80.66 368 | 94.29 340 | 92.98 381 | 87.68 297 | 90.76 238 | 92.37 360 | 67.67 367 | 98.07 265 | 88.81 241 | 96.74 170 | 97.63 204 |
|
| WB-MVSnew | | | 89.88 303 | 89.56 293 | 90.82 346 | 94.57 322 | 83.06 344 | 95.65 287 | 92.85 383 | 87.86 288 | 90.83 237 | 94.10 314 | 79.66 260 | 96.88 359 | 76.34 377 | 94.19 220 | 92.54 379 |
|
| testing3 | | | 87.67 330 | 86.88 331 | 90.05 359 | 96.14 237 | 80.71 367 | 97.10 177 | 92.85 383 | 90.15 215 | 87.54 322 | 94.55 285 | 55.70 404 | 94.10 395 | 73.77 391 | 94.10 224 | 95.35 296 |
|
| test_method | | | 66.11 384 | 64.89 386 | 69.79 401 | 72.62 425 | 35.23 433 | 65.19 420 | 92.83 385 | 20.35 423 | 65.20 412 | 88.08 400 | 43.14 414 | 82.70 418 | 73.12 394 | 63.46 413 | 91.45 396 |
|
| test0.0.03 1 | | | 89.37 312 | 88.70 310 | 91.41 335 | 92.47 376 | 85.63 305 | 95.22 308 | 92.70 386 | 91.11 180 | 86.91 340 | 93.65 334 | 79.02 272 | 93.19 404 | 78.00 369 | 89.18 295 | 95.41 289 |
|
| new_pmnet | | | 82.89 364 | 81.12 369 | 88.18 374 | 89.63 394 | 80.18 378 | 91.77 387 | 92.57 387 | 76.79 401 | 75.56 400 | 88.23 398 | 61.22 396 | 94.48 391 | 71.43 398 | 82.92 367 | 89.87 402 |
|
| mvsany_test1 | | | 93.93 143 | 93.98 126 | 93.78 256 | 94.94 302 | 86.80 280 | 94.62 323 | 92.55 388 | 88.77 263 | 96.85 69 | 98.49 43 | 88.98 93 | 98.08 261 | 95.03 108 | 95.62 193 | 96.46 248 |
|
| thisisatest0515 | | | 92.29 206 | 91.30 218 | 95.25 173 | 96.60 199 | 88.90 227 | 94.36 335 | 92.32 389 | 87.92 285 | 93.43 173 | 94.57 284 | 77.28 297 | 99.00 169 | 89.42 225 | 95.86 187 | 97.86 193 |
|
| thisisatest0530 | | | 93.03 176 | 92.21 187 | 95.49 164 | 97.07 163 | 89.11 223 | 97.49 139 | 92.19 390 | 90.16 214 | 94.09 157 | 96.41 194 | 76.43 305 | 99.05 165 | 90.38 203 | 95.68 192 | 98.31 162 |
|
| tttt0517 | | | 92.96 179 | 92.33 184 | 94.87 194 | 97.11 161 | 87.16 274 | 97.97 69 | 92.09 391 | 90.63 199 | 93.88 163 | 97.01 159 | 76.50 302 | 99.06 164 | 90.29 206 | 95.45 196 | 98.38 158 |
|
| K. test v3 | | | 87.64 331 | 86.75 333 | 90.32 356 | 93.02 365 | 79.48 386 | 96.61 224 | 92.08 392 | 90.66 197 | 80.25 388 | 94.09 315 | 67.21 371 | 96.65 364 | 85.96 297 | 80.83 375 | 94.83 328 |
|
| TESTMET0.1,1 | | | 90.06 298 | 89.42 297 | 91.97 316 | 94.41 327 | 80.62 370 | 94.29 340 | 91.97 393 | 87.28 307 | 90.44 242 | 92.47 359 | 68.79 359 | 97.67 315 | 88.50 247 | 96.60 175 | 97.61 208 |
|
| PM-MVS | | | 83.48 361 | 81.86 367 | 88.31 372 | 87.83 406 | 77.59 394 | 93.43 366 | 91.75 394 | 86.91 312 | 80.63 384 | 89.91 387 | 44.42 413 | 95.84 375 | 85.17 308 | 76.73 390 | 91.50 394 |
|
| baseline2 | | | 91.63 230 | 90.86 234 | 93.94 247 | 94.33 329 | 86.32 294 | 95.92 270 | 91.64 395 | 89.37 238 | 86.94 338 | 94.69 278 | 81.62 226 | 98.69 203 | 88.64 245 | 94.57 215 | 96.81 238 |
|
| APD_test1 | | | 79.31 371 | 77.70 374 | 84.14 384 | 89.11 399 | 69.07 410 | 92.36 385 | 91.50 396 | 69.07 409 | 73.87 402 | 92.63 355 | 39.93 415 | 94.32 393 | 70.54 403 | 80.25 377 | 89.02 404 |
|
| FPMVS | | | 71.27 377 | 69.85 379 | 75.50 397 | 74.64 422 | 59.03 422 | 91.30 389 | 91.50 396 | 58.80 414 | 57.92 418 | 88.28 397 | 29.98 421 | 85.53 417 | 53.43 415 | 82.84 368 | 81.95 410 |
|
| door | | | | | | | | | 91.13 398 | | | | | | | | |
|
| door-mid | | | | | | | | | 91.06 399 | | | | | | | | |
|
| EGC-MVSNET | | | 68.77 382 | 63.01 388 | 86.07 383 | 92.49 375 | 82.24 356 | 93.96 349 | 90.96 400 | 0.71 428 | 2.62 429 | 90.89 378 | 53.66 405 | 93.46 400 | 57.25 413 | 84.55 349 | 82.51 409 |
|
| mvsany_test3 | | | 83.59 360 | 82.44 364 | 87.03 379 | 83.80 412 | 73.82 401 | 93.70 358 | 90.92 401 | 86.42 320 | 82.51 377 | 90.26 383 | 46.76 412 | 95.71 377 | 90.82 196 | 76.76 389 | 91.57 392 |
|
| pmmvs3 | | | 79.97 370 | 77.50 375 | 87.39 377 | 82.80 416 | 79.38 387 | 92.70 380 | 90.75 402 | 70.69 408 | 78.66 393 | 87.47 404 | 51.34 408 | 93.40 401 | 73.39 393 | 69.65 404 | 89.38 403 |
|
| UWE-MVS | | | 89.91 300 | 89.48 296 | 91.21 338 | 95.88 245 | 78.23 393 | 94.91 318 | 90.26 403 | 89.11 245 | 92.35 196 | 94.52 287 | 68.76 360 | 97.96 284 | 83.95 322 | 95.59 194 | 97.42 217 |
|
| DSMNet-mixed | | | 86.34 343 | 86.12 338 | 87.00 380 | 89.88 393 | 70.43 406 | 94.93 317 | 90.08 404 | 77.97 398 | 85.42 353 | 92.78 351 | 74.44 321 | 93.96 398 | 74.43 386 | 95.14 201 | 96.62 242 |
|
| MVS-HIRNet | | | 82.47 365 | 81.21 368 | 86.26 382 | 95.38 270 | 69.21 409 | 88.96 406 | 89.49 405 | 66.28 411 | 80.79 383 | 74.08 416 | 68.48 364 | 97.39 341 | 71.93 397 | 95.47 195 | 92.18 387 |
|
| WB-MVS | | | 76.77 373 | 76.63 376 | 77.18 392 | 85.32 410 | 56.82 424 | 94.53 327 | 89.39 406 | 82.66 372 | 71.35 405 | 89.18 392 | 75.03 316 | 88.88 412 | 35.42 421 | 66.79 409 | 85.84 406 |
|
| test1111 | | | 93.19 168 | 92.82 162 | 94.30 227 | 97.58 146 | 84.56 326 | 98.21 42 | 89.02 407 | 93.53 95 | 94.58 144 | 98.21 73 | 72.69 331 | 99.05 165 | 93.06 153 | 98.48 115 | 99.28 68 |
|
| SSC-MVS | | | 76.05 374 | 75.83 377 | 76.72 396 | 84.77 411 | 56.22 425 | 94.32 338 | 88.96 408 | 81.82 378 | 70.52 406 | 88.91 393 | 74.79 318 | 88.71 413 | 33.69 422 | 64.71 412 | 85.23 407 |
|
| ECVR-MVS |  | | 93.19 168 | 92.73 168 | 94.57 212 | 97.66 134 | 85.41 309 | 98.21 42 | 88.23 409 | 93.43 99 | 94.70 142 | 98.21 73 | 72.57 332 | 99.07 162 | 93.05 154 | 98.49 113 | 99.25 71 |
|
| EPMVS | | | 90.70 279 | 89.81 284 | 93.37 274 | 94.73 314 | 84.21 330 | 93.67 361 | 88.02 410 | 89.50 233 | 92.38 193 | 93.49 339 | 77.82 294 | 97.78 306 | 86.03 295 | 92.68 247 | 98.11 178 |
|
| ANet_high | | | 63.94 386 | 59.58 389 | 77.02 393 | 61.24 429 | 66.06 414 | 85.66 413 | 87.93 411 | 78.53 396 | 42.94 421 | 71.04 418 | 25.42 424 | 80.71 420 | 52.60 416 | 30.83 422 | 84.28 408 |
|
| PMMVS2 | | | 70.19 378 | 66.92 382 | 80.01 388 | 76.35 421 | 65.67 415 | 86.22 411 | 87.58 412 | 64.83 413 | 62.38 414 | 80.29 413 | 26.78 423 | 88.49 415 | 63.79 407 | 54.07 418 | 85.88 405 |
|
| lessismore_v0 | | | | | 90.45 353 | 91.96 382 | 79.09 390 | | 87.19 413 | | 80.32 387 | 94.39 295 | 66.31 379 | 97.55 326 | 84.00 321 | 76.84 388 | 94.70 340 |
|
| PMVS |  | 53.92 22 | 58.58 387 | 55.40 390 | 68.12 402 | 51.00 430 | 48.64 427 | 78.86 416 | 87.10 414 | 46.77 419 | 35.84 425 | 74.28 415 | 8.76 429 | 86.34 416 | 42.07 419 | 73.91 397 | 69.38 416 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_vis1_rt | | | 86.16 346 | 85.06 347 | 89.46 365 | 93.47 356 | 80.46 372 | 96.41 236 | 86.61 415 | 85.22 340 | 79.15 392 | 88.64 394 | 52.41 407 | 97.06 351 | 93.08 152 | 90.57 281 | 90.87 398 |
|
| testf1 | | | 69.31 380 | 66.76 383 | 76.94 394 | 78.61 419 | 61.93 418 | 88.27 408 | 86.11 416 | 55.62 415 | 59.69 415 | 85.31 407 | 20.19 427 | 89.32 409 | 57.62 411 | 69.44 406 | 79.58 411 |
|
| APD_test2 | | | 69.31 380 | 66.76 383 | 76.94 394 | 78.61 419 | 61.93 418 | 88.27 408 | 86.11 416 | 55.62 415 | 59.69 415 | 85.31 407 | 20.19 427 | 89.32 409 | 57.62 411 | 69.44 406 | 79.58 411 |
|
| gg-mvs-nofinetune | | | 87.82 328 | 85.61 340 | 94.44 217 | 94.46 324 | 89.27 217 | 91.21 392 | 84.61 418 | 80.88 383 | 89.89 262 | 74.98 414 | 71.50 339 | 97.53 329 | 85.75 300 | 97.21 161 | 96.51 244 |
|
| dmvs_testset | | | 81.38 368 | 82.60 363 | 77.73 391 | 91.74 383 | 51.49 426 | 93.03 375 | 84.21 419 | 89.07 246 | 78.28 395 | 91.25 377 | 76.97 299 | 88.53 414 | 56.57 414 | 82.24 370 | 93.16 368 |
|
| GG-mvs-BLEND | | | | | 93.62 263 | 93.69 347 | 89.20 219 | 92.39 384 | 83.33 420 | | 87.98 316 | 89.84 388 | 71.00 343 | 96.87 360 | 82.08 340 | 95.40 197 | 94.80 333 |
|
| MTMP | | | | | | | | 97.86 81 | 82.03 421 | | | | | | | | |
|
| DeepMVS_CX |  | | | | 74.68 399 | 90.84 388 | 64.34 417 | | 81.61 422 | 65.34 412 | 67.47 410 | 88.01 401 | 48.60 411 | 80.13 421 | 62.33 409 | 73.68 398 | 79.58 411 |
|
| E-PMN | | | 53.28 388 | 52.56 392 | 55.43 405 | 74.43 423 | 47.13 428 | 83.63 415 | 76.30 423 | 42.23 420 | 42.59 422 | 62.22 421 | 28.57 422 | 74.40 422 | 31.53 423 | 31.51 421 | 44.78 420 |
|
| test2506 | | | 91.60 232 | 90.78 239 | 94.04 238 | 97.66 134 | 83.81 335 | 98.27 32 | 75.53 424 | 93.43 99 | 95.23 131 | 98.21 73 | 67.21 371 | 99.07 162 | 93.01 157 | 98.49 113 | 99.25 71 |
|
| EMVS | | | 52.08 390 | 51.31 393 | 54.39 406 | 72.62 425 | 45.39 430 | 83.84 414 | 75.51 425 | 41.13 421 | 40.77 423 | 59.65 422 | 30.08 420 | 73.60 423 | 28.31 425 | 29.90 423 | 44.18 421 |
|
| test_vis3_rt | | | 72.73 375 | 70.55 378 | 79.27 389 | 80.02 418 | 68.13 412 | 93.92 352 | 74.30 426 | 76.90 400 | 58.99 417 | 73.58 417 | 20.29 426 | 95.37 385 | 84.16 317 | 72.80 400 | 74.31 414 |
|
| MVE |  | 50.73 23 | 53.25 389 | 48.81 394 | 66.58 404 | 65.34 428 | 57.50 423 | 72.49 418 | 70.94 427 | 40.15 422 | 39.28 424 | 63.51 420 | 6.89 431 | 73.48 424 | 38.29 420 | 42.38 420 | 68.76 418 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| tmp_tt | | | 51.94 391 | 53.82 391 | 46.29 407 | 33.73 431 | 45.30 431 | 78.32 417 | 67.24 428 | 18.02 424 | 50.93 420 | 87.05 405 | 52.99 406 | 53.11 426 | 70.76 401 | 25.29 424 | 40.46 422 |
|
| kuosan | | | 65.27 385 | 64.66 387 | 67.11 403 | 83.80 412 | 61.32 421 | 88.53 407 | 60.77 429 | 68.22 410 | 67.67 408 | 80.52 412 | 49.12 410 | 70.76 425 | 29.67 424 | 53.64 419 | 69.26 417 |
|
| dongtai | | | 69.99 379 | 69.33 381 | 71.98 400 | 88.78 401 | 61.64 420 | 89.86 401 | 59.93 430 | 75.67 402 | 74.96 401 | 85.45 406 | 50.19 409 | 81.66 419 | 43.86 418 | 55.27 417 | 72.63 415 |
|
| N_pmnet | | | 78.73 372 | 78.71 373 | 78.79 390 | 92.80 369 | 46.50 429 | 94.14 344 | 43.71 431 | 78.61 395 | 80.83 382 | 91.66 374 | 74.94 317 | 96.36 367 | 67.24 405 | 84.45 351 | 93.50 364 |
|
| wuyk23d | | | 25.11 392 | 24.57 396 | 26.74 408 | 73.98 424 | 39.89 432 | 57.88 421 | 9.80 432 | 12.27 425 | 10.39 426 | 6.97 428 | 7.03 430 | 36.44 427 | 25.43 426 | 17.39 425 | 3.89 425 |
|
| testmvs | | | 13.36 394 | 16.33 397 | 4.48 410 | 5.04 432 | 2.26 435 | 93.18 369 | 3.28 433 | 2.70 426 | 8.24 427 | 21.66 424 | 2.29 433 | 2.19 428 | 7.58 427 | 2.96 426 | 9.00 424 |
|
| test123 | | | 13.04 395 | 15.66 398 | 5.18 409 | 4.51 433 | 3.45 434 | 92.50 383 | 1.81 434 | 2.50 427 | 7.58 428 | 20.15 425 | 3.67 432 | 2.18 429 | 7.13 428 | 1.07 427 | 9.90 423 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 7.39 397 | 9.85 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 88.65 100 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| ab-mvs-re | | | 8.06 396 | 10.74 399 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 96.69 175 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| WAC-MVS | | | | | | | 79.53 383 | | | | | | | | 75.56 382 | | |
|
| PC_three_1452 | | | | | | | | | | 90.77 189 | 98.89 17 | 98.28 71 | 96.24 1 | 98.35 234 | 95.76 87 | 99.58 23 | 99.59 24 |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 98.55 3 | 98.82 55 | 96.86 3 | 98.25 35 | | | | 98.26 72 | 96.04 2 | 99.24 131 | 95.36 101 | 99.59 19 | 99.56 31 |
|
| test_0728_THIRD | | | | | | | | | | 94.78 47 | 98.73 21 | 98.87 21 | 95.87 4 | 99.84 23 | 97.45 35 | 99.72 2 | 99.77 2 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.45 150 |
|
| test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 33 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 82.76 202 | | | | 98.45 150 |
|
| sam_mvs | | | | | | | | | | | | | 81.94 221 | | | | |
|
| test_post1 | | | | | | | | 92.81 379 | | | | 16.58 427 | 80.53 242 | 97.68 314 | 86.20 289 | | |
|
| test_post | | | | | | | | | | | | 17.58 426 | 81.76 223 | 98.08 261 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 90.45 382 | 82.65 206 | 98.10 256 | | | |
|
| gm-plane-assit | | | | | | 93.22 361 | 78.89 391 | | | 84.82 348 | | 93.52 338 | | 98.64 208 | 87.72 257 | | |
|
| test9_res | | | | | | | | | | | | | | | 94.81 116 | 99.38 58 | 99.45 50 |
|
| agg_prior2 | | | | | | | | | | | | | | | 93.94 134 | 99.38 58 | 99.50 43 |
|
| test_prior4 | | | | | | | 93.66 57 | 96.42 235 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 96.35 244 | | 92.80 130 | 96.03 107 | 97.59 126 | 92.01 47 | | 95.01 109 | 99.38 58 | |
|
| 旧先验2 | | | | | | | | 95.94 269 | | 81.66 379 | 97.34 55 | | | 98.82 185 | 92.26 162 | | |
|
| 新几何2 | | | | | | | | 95.79 278 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 95.67 283 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.67 62 | 85.96 297 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.89 30 | | | | |
|
| testdata1 | | | | | | | | 95.26 307 | | 93.10 116 | | | | | | | |
|
| plane_prior7 | | | | | | 96.21 229 | 89.98 187 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 96.10 240 | 90.00 183 | | | | | | 81.32 229 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 96.64 178 | | | | | |
|
| plane_prior3 | | | | | | | 90.00 183 | | | 94.46 63 | 91.34 223 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.74 98 | | 94.85 40 | | | | | | | |
|
| plane_prior1 | | | | | | 96.14 237 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 89.99 185 | 97.24 163 | | 94.06 75 | | | | | | 92.16 256 | |
|
| HQP5-MVS | | | | | | | 89.33 212 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 95.86 246 | | 96.65 218 | | 93.55 91 | 90.14 247 | | | | | | |
|
| ACMP_Plane | | | | | | 95.86 246 | | 96.65 218 | | 93.55 91 | 90.14 247 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.13 168 | | |
|
| HQP4-MVS | | | | | | | | | | | 90.14 247 | | | 98.50 220 | | | 95.78 272 |
|
| HQP2-MVS | | | | | | | | | | | | | 80.95 233 | | | | |
|
| NP-MVS | | | | | | 95.99 244 | 89.81 193 | | | | | 95.87 220 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 70.35 407 | 93.10 374 | | 83.88 359 | 93.55 168 | | 82.47 210 | | 86.25 288 | | 98.38 158 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 286 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.02 275 | |
|
| Test By Simon | | | | | | | | | | | | | 88.73 99 | | | | |
|