This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9398.98 192.22 11597.14 4098.44 3191.17 5899.85 1694.35 9899.46 3999.57 22
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22898.90 294.30 4895.86 8897.74 9092.33 3599.38 10096.04 4999.42 4499.28 58
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9194.56 11798.39 3588.96 8299.85 1694.57 9797.63 11899.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22698.79 493.99 5495.80 9097.65 9789.92 7599.24 11195.87 5399.20 6598.58 116
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 16098.77 594.70 3597.99 2398.66 1493.61 1999.91 197.67 599.50 3399.72 10
FC-MVSNet-test93.94 11293.57 10595.04 15495.48 22691.45 11598.12 4898.71 693.37 7890.23 20996.70 14687.66 9997.85 26391.49 15690.39 24895.83 228
UniMVSNet (Re)93.31 13592.55 14995.61 12995.39 22993.34 6297.39 12598.71 693.14 8790.10 21894.83 24487.71 9898.03 23891.67 15483.99 31595.46 251
FIs94.09 10693.70 10295.27 14595.70 21792.03 9598.10 4998.68 893.36 8090.39 20696.70 14687.63 10197.94 25392.25 13690.50 24795.84 227
WR-MVS_H92.00 19191.35 18793.95 21495.09 25389.47 18198.04 5498.68 891.46 13788.34 26594.68 25185.86 12797.56 28885.77 26584.24 31394.82 290
VPA-MVSNet93.24 13792.48 15495.51 13595.70 21792.39 8397.86 6898.66 1092.30 11492.09 17395.37 22280.49 21798.40 19193.95 10585.86 28795.75 238
UniMVSNet_NR-MVSNet93.37 13392.67 14395.47 14095.34 23592.83 7297.17 14798.58 1192.98 9690.13 21495.80 19988.37 9297.85 26391.71 15183.93 31695.73 240
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20993.97 13197.57 10592.62 3199.76 3194.66 9399.27 5799.15 68
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 9098.49 1394.66 3897.24 3798.41 3492.31 3798.94 14596.61 2999.46 3998.96 87
HyFIR lowres test93.66 12392.92 13095.87 11498.24 8589.88 16794.58 28298.49 1385.06 30193.78 13495.78 20382.86 17498.67 17091.77 14995.71 16499.07 78
CHOSEN 1792x268894.15 10193.51 11196.06 10698.27 8289.38 18695.18 27298.48 1585.60 29193.76 13597.11 12683.15 16599.61 5791.33 15998.72 8699.19 64
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18597.11 4298.01 6992.52 3399.69 4396.03 5099.53 2799.36 53
PVSNet_BlendedMVS94.06 10793.92 9894.47 18798.27 8289.46 18396.73 17898.36 1790.17 17994.36 12095.24 22888.02 9399.58 6493.44 11690.72 24394.36 310
PVSNet_Blended94.87 8894.56 8595.81 11698.27 8289.46 18395.47 25898.36 1788.84 21794.36 12096.09 18888.02 9399.58 6493.44 11698.18 10598.40 136
3Dnovator91.36 595.19 7894.44 9297.44 4596.56 17793.36 6198.65 1198.36 1794.12 5189.25 24898.06 6382.20 19099.77 3093.41 11899.32 5499.18 65
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14498.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8297.18 3898.29 4992.08 3999.83 2495.63 6699.59 1799.54 29
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8297.15 3998.33 4391.35 5399.86 895.63 6699.59 1799.62 15
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8593.90 1599.65 4996.62 2899.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1399.58 2199.59 19
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 999.67 699.75 5
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9196.45 7098.30 4891.90 4299.85 1695.61 6899.68 499.54 29
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 999.66 1099.56 25
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 999.65 1299.74 7
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11398.27 1898.65 1693.33 2199.72 3696.49 3399.52 2899.51 33
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13698.25 3590.21 17894.18 12597.27 11787.48 10599.73 3393.53 11397.77 11698.55 117
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8597.14 4098.34 4091.59 4999.87 795.46 7399.59 1799.64 13
PS-CasMVS91.55 20790.84 20893.69 23094.96 25788.28 21997.84 7298.24 3791.46 13788.04 27595.80 19979.67 23397.48 29687.02 24584.54 31095.31 262
DU-MVS92.90 15692.04 16395.49 13794.95 25892.83 7297.16 14898.24 3793.02 9090.13 21495.71 20683.47 15897.85 26391.71 15183.93 31695.78 233
9.1496.75 3198.93 4797.73 8298.23 4091.28 14597.88 2698.44 3193.00 2499.65 4995.76 5999.47 38
D2MVS91.30 22290.95 20292.35 27494.71 27585.52 27896.18 22998.21 4188.89 21586.60 30093.82 29179.92 22997.95 25289.29 19790.95 23993.56 324
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6298.29 4991.70 4599.80 2895.66 6199.40 4699.62 15
X-MVStestdata91.71 19889.67 25797.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6232.69 37491.70 4599.80 2895.66 6199.40 4699.62 15
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10198.19 4492.82 10297.93 2598.74 1391.60 4899.86 896.26 3699.52 2899.67 11
CP-MVSNet91.89 19491.24 19493.82 22295.05 25488.57 21097.82 7498.19 4491.70 13188.21 27195.76 20481.96 19497.52 29487.86 22084.65 30595.37 259
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10896.39 7298.18 5691.61 4799.88 495.59 7199.55 2499.57 22
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17398.85 998.94 193.33 2199.83 2496.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 22690.44 22293.48 23994.49 28387.91 23497.76 7898.18 4691.29 14287.78 28095.74 20580.35 22097.33 30785.46 26982.96 32695.19 271
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23998.18 4695.23 1295.87 8797.65 9791.45 5099.70 4295.87 5399.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 27088.40 27593.60 23395.15 24990.10 15897.56 10598.16 5087.28 26486.16 30494.63 25477.57 26798.05 23474.48 34384.59 30892.65 336
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11198.15 5193.87 5897.52 2997.61 10385.29 13399.53 7895.81 5895.27 17199.16 66
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23798.15 5195.43 797.95 2498.56 1893.40 2099.36 10196.77 2599.48 3799.45 41
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30396.94 2199.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10596.70 5498.06 6391.35 5399.86 894.83 8799.28 5699.47 40
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9398.13 5494.81 2996.61 6098.35 3788.87 8399.51 8390.36 17497.35 12899.11 74
QAPM93.45 13192.27 15896.98 6296.77 16592.62 7798.39 2698.12 5684.50 30988.27 26997.77 8882.39 18799.81 2785.40 27098.81 8398.51 122
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13791.58 10898.26 3598.12 5694.38 4694.90 11098.15 5882.28 18898.92 14691.45 15898.58 9199.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 15891.68 17796.40 8595.34 23592.73 7598.27 3398.12 5684.86 30485.78 30697.75 8978.89 24999.74 3287.50 23598.65 8896.73 201
TranMVSNet+NR-MVSNet92.50 16791.63 17895.14 15094.76 27092.07 9397.53 10998.11 5992.90 10089.56 23696.12 18483.16 16497.60 28689.30 19683.20 32595.75 238
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24995.17 10798.03 6687.09 11199.61 5793.51 11499.42 4499.02 79
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8598.10 6191.50 13598.01 2298.32 4592.33 3599.58 6494.85 8699.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8195.95 8698.33 4391.04 6099.88 495.20 7899.57 2399.60 18
ZD-MVS99.05 3994.59 2898.08 6389.22 20497.03 4598.10 5992.52 3399.65 4994.58 9699.31 55
MTGPAbinary98.08 63
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13898.08 6395.07 2096.11 7998.59 1790.88 6499.90 296.18 4599.50 3399.58 21
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13698.08 6395.81 497.87 2798.31 4694.26 1399.68 4597.02 2099.49 3699.57 22
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15398.08 6388.35 23395.09 10997.65 9789.97 7499.48 8892.08 14398.59 9098.44 133
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6197.45 3098.48 2891.43 5199.59 6196.22 3999.27 5799.54 29
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15198.07 6893.54 7096.08 8097.69 9293.86 1699.71 3796.50 3299.39 4899.55 28
NR-MVSNet92.34 17691.27 19395.53 13494.95 25893.05 6897.39 12598.07 6892.65 10784.46 31795.71 20685.00 13797.77 27289.71 18583.52 32295.78 233
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16298.06 7190.67 16495.55 9998.78 1291.07 5999.86 896.58 3099.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8897.44 3198.55 2090.93 6299.55 7496.06 4699.25 6199.51 33
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7895.54 10198.34 4090.59 6899.88 494.83 8799.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17396.77 5198.35 3790.21 7199.53 7894.80 9099.63 1499.38 51
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 15096.40 7197.99 7090.99 6199.58 6495.61 6899.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 9493.80 10096.64 6597.07 14491.97 9796.32 21898.06 7188.94 21394.50 11896.78 14184.60 14199.27 10991.90 14496.02 15598.68 113
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13498.06 7193.92 5693.38 14498.66 1486.83 11399.73 3395.60 7099.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12998.04 7895.96 297.09 4397.88 7893.18 2399.71 3795.84 5799.17 6799.56 25
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 12098.04 7894.81 2996.59 6298.37 3691.24 5599.64 5695.16 7999.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2391.40 5299.56 7296.05 4799.26 5999.43 45
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2390.71 6696.05 4799.26 5999.43 45
RPMNet88.98 27587.05 29094.77 17694.45 28587.19 24790.23 35198.03 8077.87 35392.40 16187.55 35680.17 22499.51 8368.84 36093.95 19297.60 176
save fliter98.91 4994.28 3497.02 15598.02 8395.35 9
TEST998.70 5694.19 3896.41 20698.02 8388.17 23796.03 8197.56 10792.74 2899.59 61
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20698.02 8388.58 22696.03 8197.56 10792.73 2999.59 6195.04 8199.37 5299.39 49
test_898.67 5894.06 4596.37 21498.01 8688.58 22695.98 8597.55 10992.73 2999.58 64
agg_prior98.67 5893.79 5098.00 8795.68 9599.57 71
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
WR-MVS92.34 17691.53 18294.77 17695.13 25190.83 14196.40 21097.98 8991.88 12889.29 24595.54 21782.50 18397.80 26889.79 18485.27 29695.69 242
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10897.97 9095.59 596.61 6097.89 7692.57 3299.84 2195.95 5299.51 3199.40 48
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15597.96 9195.42 894.86 11197.81 8587.38 10799.82 2696.88 2399.20 6599.29 56
114514_t93.95 11193.06 12696.63 6799.07 3791.61 10597.46 11997.96 9177.99 35193.00 15297.57 10586.14 12599.33 10289.22 20099.15 6998.94 90
IU-MVS99.42 795.39 1197.94 9390.40 17798.94 597.41 1699.66 1099.74 7
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
Anonymous2023121190.63 24989.42 26194.27 19898.24 8589.19 19798.05 5397.89 9679.95 34388.25 27094.96 23672.56 30098.13 21689.70 18685.14 29895.49 246
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 26095.22 10697.68 9390.25 7099.54 7687.95 21999.12 7298.49 125
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21597.88 9886.98 26896.65 5897.89 7691.99 4199.47 8992.26 13499.46 3999.39 49
test1197.88 98
EIA-MVS95.53 6895.47 6195.71 12497.06 14789.63 17297.82 7497.87 10093.57 6693.92 13295.04 23490.61 6798.95 14494.62 9598.68 8798.54 118
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4498.03 6691.72 4398.71 16797.10 1899.17 6798.90 95
无先验95.79 24697.87 10083.87 31799.65 4987.68 22998.89 98
3Dnovator+91.43 495.40 6994.48 9098.16 1596.90 15695.34 1698.48 2197.87 10094.65 3988.53 26398.02 6883.69 15499.71 3793.18 12198.96 7899.44 43
VPNet92.23 18491.31 19094.99 15895.56 22290.96 13597.22 14397.86 10492.96 9890.96 19896.62 16175.06 28698.20 20991.90 14483.65 32195.80 231
test_vis1_n_192094.17 10094.58 8492.91 25997.42 13182.02 31997.83 7397.85 10594.68 3698.10 2098.49 2570.15 31599.32 10497.91 298.82 8297.40 182
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 999.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6298.57 1398.35 3793.69 1899.40 9797.06 1999.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4797.97 7291.24 5598.75 16196.92 2299.33 5398.94 90
AdaColmapbinary94.34 9693.68 10396.31 9298.59 6691.68 10396.59 19797.81 10989.87 18492.15 16997.06 12983.62 15799.54 7689.34 19598.07 10897.70 169
ETV-MVS96.02 5595.89 5596.40 8597.16 13892.44 8297.47 11797.77 11094.55 4096.48 6794.51 25791.23 5798.92 14695.65 6498.19 10497.82 165
新几何197.32 4898.60 6593.59 5497.75 11181.58 33495.75 9297.85 8290.04 7399.67 4786.50 25199.13 7198.69 112
旧先验198.38 7793.38 5997.75 11198.09 6192.30 3899.01 7699.16 66
DROMVSNet96.42 4696.47 4296.26 9797.01 15291.52 11098.89 597.75 11194.42 4396.64 5997.68 9389.32 7798.60 17697.45 1399.11 7398.67 114
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16697.73 11494.74 3496.49 6698.49 2590.88 6499.58 6496.44 3498.32 10099.13 70
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13897.73 11491.80 12992.93 15796.62 16189.13 8099.14 12289.21 20197.78 11598.97 86
Anonymous2024052991.98 19290.73 21395.73 12298.14 9689.40 18597.99 5697.72 11679.63 34593.54 13997.41 11369.94 31799.56 7291.04 16591.11 23598.22 145
CHOSEN 280x42093.12 14492.72 14294.34 19496.71 16987.27 24390.29 35097.72 11686.61 27591.34 18795.29 22484.29 14898.41 19093.25 12098.94 7997.35 185
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16797.72 11694.67 3796.16 7898.46 2990.43 6999.58 6496.23 3897.96 11198.90 95
LS3D93.57 12792.61 14796.47 7997.59 12691.61 10597.67 9097.72 11685.17 29990.29 20898.34 4084.60 14199.73 3383.85 29198.27 10198.06 154
PAPR94.18 9993.42 11896.48 7897.64 12291.42 11695.55 25497.71 12088.99 21092.34 16695.82 19889.19 7899.11 12586.14 25797.38 12698.90 95
UGNet94.04 10993.28 12196.31 9296.85 15891.19 12697.88 6797.68 12194.40 4493.00 15296.18 18073.39 29799.61 5791.72 15098.46 9698.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 14198.18 9488.90 20397.66 12282.73 32797.03 4598.07 6290.06 7298.85 15189.67 18798.98 7798.64 115
test1297.65 3998.46 7094.26 3597.66 12295.52 10290.89 6399.46 9099.25 6199.22 63
DTE-MVSNet90.56 25089.75 25593.01 25593.95 29987.25 24497.64 9797.65 12490.74 15987.12 29195.68 20979.97 22897.00 32083.33 29281.66 33194.78 297
TAPA-MVS90.10 792.30 17991.22 19695.56 13198.33 7989.60 17496.79 17397.65 12481.83 33291.52 18297.23 12087.94 9598.91 14871.31 35598.37 9998.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
cdsmvs_eth3d_5k23.24 34430.99 3460.00 3620.00 3850.00 3860.00 37397.63 1260.00 3800.00 38196.88 13984.38 1450.00 3810.00 3790.00 3790.00 377
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26897.62 12790.43 17695.55 9997.07 12891.72 4399.50 8689.62 18998.94 7998.82 104
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12894.52 4196.27 7596.12 18487.65 10099.18 11796.20 4494.82 17998.91 94
test22298.24 8592.21 8995.33 26397.60 12879.22 34795.25 10497.84 8488.80 8599.15 6998.72 109
cascas91.20 22690.08 23994.58 18494.97 25689.16 19893.65 31797.59 13079.90 34489.40 24092.92 31075.36 28598.36 19792.14 13994.75 18196.23 211
h-mvs3394.15 10193.52 11096.04 10897.81 11290.22 15797.62 10097.58 13195.19 1396.74 5297.45 11083.67 15599.61 5795.85 5579.73 33898.29 143
MVSFormer95.37 7095.16 7195.99 11196.34 19191.21 12398.22 4197.57 13291.42 13996.22 7697.32 11586.20 12397.92 25794.07 10299.05 7498.85 101
test_djsdf93.07 14792.76 13794.00 20993.49 31588.70 20798.22 4197.57 13291.42 13990.08 22095.55 21682.85 17597.92 25794.07 10291.58 22395.40 256
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20497.57 13292.04 12494.77 11397.96 7387.01 11299.09 12991.31 16096.77 14298.36 140
PS-MVSNAJss93.74 12193.51 11194.44 18893.91 30189.28 19397.75 7997.56 13592.50 11089.94 22396.54 16488.65 8798.18 21293.83 11190.90 24095.86 224
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15791.49 11197.50 11197.56 13593.99 5495.13 10897.92 7587.89 9698.78 15695.97 5197.33 12999.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 17191.89 17094.03 20893.33 32188.50 21497.73 8297.53 13792.00 12688.85 25596.50 16675.62 28498.11 22293.88 10991.56 22495.48 247
mvs_tets92.31 17891.76 17293.94 21693.41 31888.29 21897.63 9997.53 13792.04 12488.76 25896.45 16874.62 28898.09 22693.91 10791.48 22695.45 252
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10597.51 13993.92 5697.43 3398.52 2292.75 2799.32 10497.32 1799.50 3399.51 33
HQP_MVS93.78 12093.43 11694.82 16996.21 19589.99 16297.74 8097.51 13994.85 2491.34 18796.64 15281.32 20498.60 17693.02 12792.23 21195.86 224
plane_prior597.51 13998.60 17693.02 12792.23 21195.86 224
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13290.66 14895.31 26597.48 14293.85 5996.51 6595.70 20888.65 8799.65 4994.80 9098.27 10196.17 214
API-MVS94.84 8994.49 8995.90 11397.90 10892.00 9697.80 7697.48 14289.19 20594.81 11296.71 14488.84 8499.17 11888.91 20798.76 8596.53 204
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23497.48 14293.47 7495.67 9698.10 5989.17 7999.25 11091.27 16198.77 8499.13 70
MAR-MVS94.22 9893.46 11396.51 7598.00 10192.19 9197.67 9097.47 14588.13 24093.00 15295.84 19684.86 13999.51 8387.99 21898.17 10697.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 15192.53 15194.32 19596.12 20489.20 19595.28 26697.47 14592.66 10689.90 22495.62 21280.58 21598.40 19192.73 13292.40 20995.38 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 22090.22 23594.68 17994.86 26687.86 23597.23 14297.46 14787.99 24189.90 22496.92 13766.35 33698.23 20690.30 17590.99 23897.96 155
nrg03094.05 10893.31 12096.27 9695.22 24694.59 2898.34 2797.46 14792.93 9991.21 19696.64 15287.23 11098.22 20794.99 8485.80 28895.98 223
XVG-OURS93.72 12293.35 11994.80 17497.07 14488.61 20894.79 27797.46 14791.97 12793.99 12997.86 8181.74 19998.88 15092.64 13392.67 20696.92 196
LPG-MVS_test92.94 15492.56 14894.10 20396.16 20088.26 22097.65 9397.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
LGP-MVS_train94.10 20396.16 20088.26 22097.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
MVS91.71 19890.44 22295.51 13595.20 24891.59 10796.04 23497.45 15273.44 35987.36 28895.60 21385.42 13299.10 12685.97 26297.46 12195.83 228
XVG-OURS-SEG-HR93.86 11693.55 10694.81 17197.06 14788.53 21395.28 26697.45 15291.68 13294.08 12897.68 9382.41 18698.90 14993.84 11092.47 20896.98 192
baseline95.58 6695.42 6496.08 10496.78 16490.41 15597.16 14897.45 15293.69 6595.65 9797.85 8287.29 10898.68 16995.66 6197.25 13399.13 70
ab-mvs93.57 12792.55 14996.64 6597.28 13391.96 9895.40 26097.45 15289.81 18993.22 15096.28 17679.62 23499.46 9090.74 16993.11 20098.50 123
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13490.50 15195.44 25997.44 15693.70 6496.46 6996.18 18088.59 9099.53 7894.79 9297.81 11496.17 214
131492.81 16292.03 16495.14 15095.33 23889.52 18096.04 23497.44 15687.72 25386.25 30395.33 22383.84 15298.79 15589.26 19897.05 13897.11 190
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16890.45 15397.29 13597.44 15694.00 5395.46 10397.98 7187.52 10498.73 16395.64 6597.33 12999.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 18691.23 19594.95 16394.75 27290.94 13697.47 11797.43 15989.14 20688.90 25296.43 16979.71 23298.24 20589.56 19087.68 27195.67 244
anonymousdsp92.16 18691.55 18193.97 21292.58 33389.55 17797.51 11097.42 16089.42 19988.40 26494.84 24380.66 21397.88 26291.87 14691.28 23194.48 305
Effi-MVS+94.93 8594.45 9196.36 9096.61 17191.47 11396.41 20697.41 16191.02 15594.50 11895.92 19287.53 10398.78 15693.89 10896.81 14198.84 103
HQP3-MVS97.39 16292.10 216
HQP-MVS93.19 14092.74 14094.54 18695.86 21089.33 18996.65 18897.39 16293.55 6790.14 21095.87 19480.95 20798.50 18492.13 14092.10 21695.78 233
PLCcopyleft91.00 694.11 10593.43 11696.13 10398.58 6891.15 13196.69 18497.39 16287.29 26391.37 18696.71 14488.39 9199.52 8287.33 23897.13 13797.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 24389.86 24893.45 24193.54 31287.60 24097.70 8997.37 16588.85 21687.65 28294.08 28381.08 20698.10 22384.68 27883.79 32094.66 302
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 35082.40 31693.62 31897.37 16589.86 18578.59 35192.37 31865.25 34295.35 34782.27 30370.75 35994.10 317
ACMM89.79 892.96 15292.50 15394.35 19396.30 19388.71 20697.58 10397.36 16791.40 14190.53 20296.65 15179.77 23198.75 16191.24 16291.64 22195.59 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
diffmvspermissive95.25 7495.13 7295.63 12796.43 18789.34 18895.99 23897.35 16892.83 10196.31 7397.37 11486.44 11898.67 17096.26 3697.19 13598.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 9394.02 9696.79 6397.71 11792.05 9496.59 19797.35 16890.61 17094.64 11596.93 13486.41 11999.39 9891.20 16394.71 18398.94 90
F-COLMAP93.58 12692.98 12895.37 14398.40 7488.98 20197.18 14697.29 17387.75 25290.49 20397.10 12785.21 13499.50 8686.70 24896.72 14597.63 171
XVG-ACMP-BASELINE90.93 23990.21 23693.09 25394.31 29185.89 27395.33 26397.26 17491.06 15489.38 24195.44 22168.61 32298.60 17689.46 19291.05 23694.79 295
PCF-MVS89.48 1191.56 20689.95 24596.36 9096.60 17292.52 8092.51 33697.26 17479.41 34688.90 25296.56 16384.04 15199.55 7477.01 33797.30 13197.01 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 16692.14 16194.05 20696.40 18888.20 22397.36 12897.25 17691.52 13488.30 26796.64 15278.46 25498.72 16691.86 14791.48 22695.23 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 13692.76 13794.82 16994.63 27990.77 14496.65 18897.18 17793.72 6291.68 17897.26 11879.33 23898.63 17392.13 14092.28 21095.07 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 15692.02 16595.56 13198.19 9290.80 14295.27 26897.18 17787.96 24291.86 17795.68 20980.44 21898.99 14284.01 28797.54 12096.89 197
MVS_030488.79 28087.57 28292.46 27194.65 27786.15 27296.40 21097.17 17986.44 27788.02 27691.71 33056.68 35697.03 31684.47 28192.58 20794.19 316
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17994.39 4596.47 6896.40 17185.89 12699.20 11496.21 4395.11 17598.95 89
MVS_Test94.89 8794.62 8295.68 12596.83 16189.55 17796.70 18297.17 17991.17 15095.60 9896.11 18787.87 9798.76 16093.01 12997.17 13698.72 109
Fast-Effi-MVS+93.46 13092.75 13995.59 13096.77 16590.03 15996.81 17297.13 18288.19 23691.30 19094.27 27386.21 12298.63 17387.66 23096.46 15298.12 149
EI-MVSNet93.03 14992.88 13293.48 23995.77 21586.98 25296.44 20297.12 18390.66 16691.30 19097.64 10086.56 11598.05 23489.91 18090.55 24595.41 253
MVSTER93.20 13992.81 13694.37 19296.56 17789.59 17597.06 15297.12 18391.24 14691.30 19095.96 19082.02 19398.05 23493.48 11590.55 24595.47 250
test_yl94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
DCV-MVSNet94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
LTVRE_ROB88.41 1390.99 23589.92 24794.19 19996.18 19889.55 17796.31 21997.09 18787.88 24585.67 30795.91 19378.79 25098.57 18081.50 30689.98 25194.44 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 16492.88 13292.29 27696.08 20781.05 32797.98 5797.08 18890.72 16196.79 5098.18 5663.07 34698.45 18897.62 798.42 9897.36 183
v1091.04 23390.23 23393.49 23894.12 29588.16 22697.32 13297.08 18888.26 23588.29 26894.22 27882.17 19197.97 24586.45 25284.12 31494.33 311
v14419291.06 23290.28 22993.39 24293.66 31087.23 24696.83 17197.07 19087.43 25989.69 23194.28 27281.48 20298.00 24187.18 24284.92 30494.93 281
v119291.07 23190.23 23393.58 23593.70 30787.82 23696.73 17897.07 19087.77 25089.58 23494.32 27080.90 21197.97 24586.52 25085.48 29194.95 277
v891.29 22390.53 22193.57 23694.15 29488.12 22797.34 12997.06 19288.99 21088.32 26694.26 27583.08 16798.01 24087.62 23283.92 31894.57 304
mvs_anonymous93.82 11893.74 10194.06 20596.44 18685.41 28095.81 24597.05 19389.85 18790.09 21996.36 17387.44 10697.75 27393.97 10496.69 14699.02 79
IterMVS-LS92.29 18091.94 16893.34 24496.25 19486.97 25396.57 20097.05 19390.67 16489.50 23994.80 24686.59 11497.64 28189.91 18086.11 28695.40 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 24190.03 24493.29 24693.55 31186.96 25496.74 17797.04 19587.36 26189.52 23894.34 26780.23 22397.97 24586.27 25385.21 29794.94 279
CDS-MVSNet94.14 10493.54 10795.93 11296.18 19891.46 11496.33 21797.04 19588.97 21293.56 13796.51 16587.55 10297.89 26189.80 18395.95 15798.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 21790.60 21793.68 23193.89 30288.23 22296.84 17097.03 19788.37 23289.69 23194.39 26482.04 19297.98 24287.80 22285.37 29394.84 287
v124090.70 24789.85 24993.23 24893.51 31486.80 25596.61 19497.02 19887.16 26689.58 23494.31 27179.55 23597.98 24285.52 26885.44 29294.90 284
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19990.69 16294.24 12397.62 10289.79 7698.81 15493.39 11996.49 15098.92 93
V4291.58 20590.87 20493.73 22694.05 29888.50 21497.32 13296.97 20088.80 22289.71 22994.33 26882.54 18298.05 23489.01 20585.07 30094.64 303
test_fmvs193.21 13893.53 10892.25 27896.55 17981.20 32697.40 12496.96 20190.68 16396.80 4998.04 6569.25 31998.40 19197.58 898.50 9297.16 189
FMVSNet291.31 22190.08 23994.99 15896.51 18192.21 8997.41 12096.95 20288.82 21988.62 26094.75 24873.87 29297.42 30285.20 27388.55 26595.35 260
ACMH87.59 1690.53 25189.42 26193.87 22096.21 19587.92 23297.24 13896.94 20388.45 23083.91 32796.27 17771.92 30198.62 17584.43 28289.43 25695.05 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
test191.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
FMVSNet391.78 19690.69 21595.03 15696.53 18092.27 8897.02 15596.93 20489.79 19089.35 24294.65 25377.01 27097.47 29786.12 25888.82 26095.35 260
FMVSNet189.88 26688.31 27694.59 18095.41 22891.18 12797.50 11196.93 20486.62 27487.41 28694.51 25765.94 34097.29 30983.04 29587.43 27495.31 262
GeoE93.89 11493.28 12195.72 12396.96 15589.75 17098.24 3996.92 20889.47 19792.12 17197.21 12184.42 14498.39 19587.71 22596.50 14999.01 82
miper_enhance_ethall91.54 20891.01 20193.15 25195.35 23487.07 25193.97 30396.90 20986.79 27289.17 24993.43 30686.55 11697.64 28189.97 17986.93 27894.74 299
eth_miper_zixun_eth91.02 23490.59 21892.34 27595.33 23884.35 29594.10 30096.90 20988.56 22888.84 25694.33 26884.08 15097.60 28688.77 21084.37 31295.06 274
TAMVS94.01 11093.46 11395.64 12696.16 20090.45 15396.71 18196.89 21189.27 20393.46 14296.92 13787.29 10897.94 25388.70 21195.74 16298.53 119
miper_ehance_all_eth91.59 20391.13 19992.97 25795.55 22386.57 26394.47 28596.88 21287.77 25088.88 25494.01 28486.22 12197.54 29089.49 19186.93 27894.79 295
v2v48291.59 20390.85 20793.80 22393.87 30388.17 22596.94 16396.88 21289.54 19489.53 23794.90 24081.70 20098.02 23989.25 19985.04 30295.20 270
CNLPA94.28 9793.53 10896.52 7298.38 7792.55 7996.59 19796.88 21290.13 18191.91 17597.24 11985.21 13499.09 12987.64 23197.83 11397.92 157
PAPM91.52 20990.30 22895.20 14795.30 24189.83 16893.38 32396.85 21586.26 28288.59 26195.80 19984.88 13898.15 21475.67 34195.93 15897.63 171
c3_l91.38 21590.89 20392.88 26195.58 22186.30 26694.68 27996.84 21688.17 23788.83 25794.23 27685.65 13097.47 29789.36 19484.63 30694.89 285
pm-mvs190.72 24689.65 25993.96 21394.29 29289.63 17297.79 7796.82 21789.07 20786.12 30595.48 22078.61 25297.78 27086.97 24681.67 33094.46 306
test_vis1_n92.37 17492.26 15992.72 26694.75 27282.64 31198.02 5596.80 21891.18 14997.77 2897.93 7458.02 35398.29 20397.63 698.21 10397.23 188
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33289.14 35573.12 36094.17 29896.80 21873.98 35773.65 35894.93 23866.36 33597.61 28583.95 28991.28 23192.48 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 25689.77 25391.78 29194.33 28984.72 29395.55 25496.73 22086.17 28486.36 30295.28 22671.28 30697.80 26884.09 28698.14 10792.81 333
Effi-MVS+-dtu93.08 14693.21 12392.68 26996.02 20883.25 30997.14 15096.72 22193.85 5991.20 19793.44 30483.08 16798.30 20291.69 15395.73 16396.50 206
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17396.72 22194.17 5097.44 3197.66 9692.76 2699.33 10296.86 2497.76 11799.08 76
1112_ss93.37 13392.42 15596.21 10197.05 14990.99 13396.31 21996.72 22186.87 27189.83 22796.69 14886.51 11799.14 12288.12 21693.67 19498.50 123
PVSNet86.66 1892.24 18391.74 17593.73 22697.77 11483.69 30692.88 33196.72 22187.91 24493.00 15294.86 24278.51 25399.05 13786.53 24997.45 12598.47 128
miper_lstm_enhance90.50 25390.06 24391.83 28795.33 23883.74 30393.86 30996.70 22587.56 25787.79 27993.81 29283.45 16096.92 32287.39 23684.62 30794.82 290
v14890.99 23590.38 22492.81 26493.83 30485.80 27496.78 17596.68 22689.45 19888.75 25993.93 28882.96 17397.82 26787.83 22183.25 32394.80 293
ACMH+87.92 1490.20 25989.18 26693.25 24796.48 18486.45 26496.99 15996.68 22688.83 21884.79 31696.22 17970.16 31498.53 18284.42 28388.04 26894.77 298
CANet_DTU94.37 9593.65 10496.55 7196.46 18592.13 9296.21 22796.67 22894.38 4693.53 14097.03 13179.34 23799.71 3790.76 16898.45 9797.82 165
cl____90.96 23890.32 22692.89 26095.37 23286.21 26994.46 28796.64 22987.82 24688.15 27394.18 27982.98 17197.54 29087.70 22685.59 28994.92 283
HY-MVS89.66 993.87 11592.95 12996.63 6797.10 14392.49 8195.64 25296.64 22989.05 20893.00 15295.79 20285.77 12999.45 9289.16 20494.35 18597.96 155
Test_1112_low_res92.84 16091.84 17195.85 11597.04 15089.97 16595.53 25696.64 22985.38 29489.65 23395.18 22985.86 12799.10 12687.70 22693.58 19998.49 125
DIV-MVS_self_test90.97 23790.33 22592.88 26195.36 23386.19 27094.46 28796.63 23287.82 24688.18 27294.23 27682.99 17097.53 29287.72 22385.57 29094.93 281
Fast-Effi-MVS+-dtu92.29 18091.99 16693.21 25095.27 24285.52 27897.03 15396.63 23292.09 12289.11 25195.14 23180.33 22198.08 22787.54 23494.74 18296.03 222
UnsupCasMVSNet_bld82.13 32379.46 32790.14 31988.00 36082.47 31490.89 34896.62 23478.94 34875.61 35484.40 36156.63 35796.31 33077.30 33466.77 36591.63 346
cl2291.21 22590.56 22093.14 25296.09 20686.80 25594.41 28996.58 23587.80 24888.58 26293.99 28680.85 21297.62 28489.87 18286.93 27894.99 276
RRT_MVS93.10 14592.83 13493.93 21894.76 27088.04 22898.47 2296.55 23693.44 7590.01 22297.04 13080.64 21497.93 25694.33 9990.21 25095.83 228
jason94.84 8994.39 9396.18 10295.52 22490.93 13796.09 23296.52 23789.28 20296.01 8497.32 11584.70 14098.77 15995.15 8098.91 8198.85 101
jason: jason.
tt080591.09 23090.07 24294.16 20195.61 21988.31 21797.56 10596.51 23889.56 19389.17 24995.64 21167.08 33498.38 19691.07 16488.44 26695.80 231
AUN-MVS91.76 19790.75 21294.81 17197.00 15388.57 21096.65 18896.49 23989.63 19192.15 16996.12 18478.66 25198.50 18490.83 16679.18 34197.36 183
hse-mvs293.45 13192.99 12794.81 17197.02 15188.59 20996.69 18496.47 24095.19 1396.74 5296.16 18383.67 15598.48 18795.85 5579.13 34297.35 185
EG-PatchMatch MVS87.02 29685.44 30091.76 29392.67 33185.00 28896.08 23396.45 24183.41 32379.52 34793.49 30257.10 35597.72 27579.34 32590.87 24292.56 337
KD-MVS_self_test85.95 30784.95 30688.96 32789.55 35479.11 34795.13 27396.42 24285.91 28784.07 32590.48 33670.03 31694.82 34980.04 31772.94 35692.94 331
pmmvs687.81 29186.19 29592.69 26891.32 34286.30 26697.34 12996.41 24380.59 34284.05 32694.37 26667.37 32997.67 27884.75 27779.51 34094.09 319
PMMVS92.86 15892.34 15694.42 19094.92 26186.73 25894.53 28496.38 24484.78 30694.27 12295.12 23383.13 16698.40 19191.47 15796.49 15098.12 149
RPSCF90.75 24490.86 20590.42 31696.84 15976.29 35495.61 25396.34 24583.89 31591.38 18597.87 7976.45 27498.78 15687.16 24392.23 21196.20 212
MSDG91.42 21390.24 23294.96 16297.15 14088.91 20293.69 31596.32 24685.72 29086.93 29796.47 16780.24 22298.98 14380.57 31495.05 17696.98 192
OurMVSNet-221017-090.51 25290.19 23791.44 29993.41 31881.25 32496.98 16096.28 24791.68 13286.55 30196.30 17574.20 29197.98 24288.96 20687.40 27695.09 272
MVP-Stereo90.74 24590.08 23992.71 26793.19 32388.20 22395.86 24396.27 24886.07 28584.86 31594.76 24777.84 26597.75 27383.88 29098.01 10992.17 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 8494.56 8596.29 9596.34 19191.21 12395.83 24496.27 24888.93 21496.22 7696.88 13986.20 12398.85 15195.27 7799.05 7498.82 104
BH-untuned92.94 15492.62 14693.92 21997.22 13486.16 27196.40 21096.25 25090.06 18289.79 22896.17 18283.19 16398.35 19887.19 24197.27 13297.24 187
CL-MVSNet_self_test86.31 30285.15 30489.80 32288.83 35781.74 32293.93 30696.22 25186.67 27385.03 31390.80 33578.09 26194.50 35074.92 34271.86 35893.15 329
IS-MVSNet94.90 8694.52 8896.05 10797.67 11890.56 14998.44 2396.22 25193.21 8293.99 12997.74 9085.55 13198.45 18889.98 17897.86 11299.14 69
FA-MVS(test-final)93.52 12992.92 13095.31 14496.77 16588.54 21294.82 27696.21 25389.61 19294.20 12495.25 22783.24 16299.14 12290.01 17796.16 15498.25 144
GA-MVS91.38 21590.31 22794.59 18094.65 27787.62 23994.34 29296.19 25490.73 16090.35 20793.83 28971.84 30297.96 25087.22 24093.61 19798.21 146
IterMVS-SCA-FT90.31 25589.81 25191.82 28895.52 22484.20 29894.30 29496.15 25590.61 17087.39 28794.27 27375.80 28196.44 32887.34 23786.88 28294.82 290
IterMVS90.15 26189.67 25791.61 29595.48 22683.72 30494.33 29396.12 25689.99 18387.31 29094.15 28175.78 28396.27 33186.97 24686.89 28194.83 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 16391.51 18596.52 7298.77 5390.99 13397.38 12796.08 25782.38 32889.29 24597.87 7983.77 15399.69 4381.37 31196.69 14698.89 98
pmmvs490.93 23989.85 24994.17 20093.34 32090.79 14394.60 28196.02 25884.62 30787.45 28495.15 23081.88 19797.45 29987.70 22687.87 27094.27 315
ppachtmachnet_test88.35 28687.29 28591.53 29692.45 33683.57 30793.75 31295.97 25984.28 31085.32 31294.18 27979.00 24896.93 32175.71 34084.99 30394.10 317
Anonymous2024052186.42 30085.44 30089.34 32590.33 34779.79 34196.73 17895.92 26083.71 31983.25 33091.36 33363.92 34496.01 33278.39 32985.36 29492.22 342
ITE_SJBPF92.43 27395.34 23585.37 28395.92 26091.47 13687.75 28196.39 17271.00 30897.96 25082.36 30289.86 25393.97 320
test_fmvs289.77 26989.93 24689.31 32693.68 30976.37 35397.64 9795.90 26289.84 18891.49 18396.26 17858.77 35297.10 31394.65 9491.13 23494.46 306
USDC88.94 27687.83 28192.27 27794.66 27684.96 28993.86 30995.90 26287.34 26283.40 32995.56 21567.43 32898.19 21182.64 30189.67 25593.66 323
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26493.79 22497.95 10387.13 25096.92 16495.89 26482.83 32686.88 29997.18 12273.77 29599.29 10878.44 32893.62 19694.95 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 11893.08 12596.02 10997.88 10989.96 16697.72 8595.85 26592.43 11195.86 8898.44 3168.42 32499.39 9896.31 3594.85 17798.71 111
VDDNet93.05 14892.07 16296.02 10996.84 15990.39 15698.08 5195.85 26586.22 28395.79 9198.46 2967.59 32799.19 11594.92 8594.85 17798.47 128
Vis-MVSNet (Re-imp)94.15 10193.88 9994.95 16397.61 12487.92 23298.10 4995.80 26792.22 11593.02 15197.45 11084.53 14397.91 26088.24 21597.97 11099.02 79
KD-MVS_2432*160084.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
miper_refine_blended84.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
FE-MVS92.05 19091.05 20095.08 15396.83 16187.93 23193.91 30895.70 27086.30 28094.15 12694.97 23576.59 27299.21 11384.10 28596.86 13998.09 153
tpm cat188.36 28587.21 28891.81 28995.13 25180.55 33292.58 33595.70 27074.97 35687.45 28491.96 32678.01 26498.17 21380.39 31688.74 26396.72 202
our_test_388.78 28187.98 28091.20 30492.45 33682.53 31393.61 31995.69 27285.77 28984.88 31493.71 29479.99 22796.78 32679.47 32286.24 28394.28 314
BH-w/o92.14 18891.75 17393.31 24596.99 15485.73 27595.67 24995.69 27288.73 22489.26 24794.82 24582.97 17298.07 23185.26 27296.32 15396.13 218
CR-MVSNet90.82 24289.77 25393.95 21494.45 28587.19 24790.23 35195.68 27486.89 27092.40 16192.36 32180.91 20997.05 31581.09 31393.95 19297.60 176
Patchmtry88.64 28387.25 28692.78 26594.09 29686.64 25989.82 35495.68 27480.81 33987.63 28392.36 32180.91 20997.03 31678.86 32685.12 29994.67 301
iter_conf_final93.60 12493.11 12495.04 15497.13 14191.30 11897.92 6595.65 27692.98 9691.60 17996.64 15279.28 23998.13 21695.34 7691.49 22595.70 241
BH-RMVSNet92.72 16591.97 16794.97 16197.16 13887.99 23096.15 23095.60 27790.62 16991.87 17697.15 12578.41 25598.57 18083.16 29397.60 11998.36 140
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 34390.55 34995.60 27783.76 31883.00 33389.95 34171.09 30797.97 24582.75 29960.79 36995.31 262
SCA91.84 19591.18 19893.83 22195.59 22084.95 29094.72 27895.58 27990.82 15692.25 16793.69 29575.80 28198.10 22386.20 25595.98 15698.45 130
AllTest90.23 25888.98 26893.98 21097.94 10486.64 25996.51 20195.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
TestCases93.98 21097.94 10486.64 25995.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
iter_conf0593.18 14392.63 14494.83 16896.64 17090.69 14697.60 10195.53 28292.52 10991.58 18096.64 15276.35 27798.13 21695.43 7491.42 22895.68 243
mvsmamba93.83 11793.46 11394.93 16694.88 26590.85 14098.55 1495.49 28394.24 4991.29 19396.97 13383.04 16998.14 21595.56 7291.17 23395.78 233
tpmvs89.83 26889.15 26791.89 28594.92 26180.30 33693.11 32895.46 28486.28 28188.08 27492.65 31280.44 21898.52 18381.47 30789.92 25296.84 198
pmmvs589.86 26788.87 27092.82 26392.86 32786.23 26896.26 22295.39 28584.24 31187.12 29194.51 25774.27 29097.36 30687.61 23387.57 27294.86 286
PatchmatchNetpermissive91.91 19391.35 18793.59 23495.38 23084.11 29993.15 32795.39 28589.54 19492.10 17293.68 29782.82 17698.13 21684.81 27695.32 17098.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 21291.32 18991.79 29095.15 24979.20 34693.42 32295.37 28788.55 22993.49 14193.67 29882.49 18498.27 20490.41 17289.34 25797.90 158
Anonymous2023120687.09 29586.14 29689.93 32191.22 34380.35 33496.11 23195.35 28883.57 32184.16 32193.02 30973.54 29695.61 34172.16 35286.14 28593.84 322
MIMVSNet184.93 31383.05 31590.56 31489.56 35384.84 29295.40 26095.35 28883.91 31480.38 34392.21 32557.23 35493.34 35970.69 35882.75 32993.50 325
TDRefinement86.53 29884.76 30991.85 28682.23 36884.25 29696.38 21395.35 28884.97 30384.09 32494.94 23765.76 34198.34 20184.60 28074.52 35292.97 330
TR-MVS91.48 21190.59 21894.16 20196.40 18887.33 24195.67 24995.34 29187.68 25491.46 18495.52 21876.77 27198.35 19882.85 29793.61 19796.79 200
EPNet_dtu91.71 19891.28 19292.99 25693.76 30683.71 30596.69 18495.28 29293.15 8687.02 29595.95 19183.37 16197.38 30579.46 32396.84 14097.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 29485.79 29891.78 29194.80 26987.28 24295.49 25795.28 29284.09 31383.85 32891.82 32762.95 34794.17 35478.48 32785.34 29593.91 321
MDTV_nov1_ep1390.76 21195.22 24680.33 33593.03 33095.28 29288.14 23992.84 15893.83 28981.34 20398.08 22782.86 29694.34 186
LF4IMVS87.94 28987.25 28689.98 32092.38 33880.05 34094.38 29095.25 29587.59 25684.34 31894.74 24964.31 34397.66 28084.83 27587.45 27392.23 341
TransMVSNet (Re)88.94 27687.56 28393.08 25494.35 28888.45 21697.73 8295.23 29687.47 25884.26 32095.29 22479.86 23097.33 30779.44 32474.44 35393.45 327
test20.0386.14 30585.40 30288.35 32890.12 34880.06 33995.90 24295.20 29788.59 22581.29 33893.62 30071.43 30592.65 36171.26 35681.17 33392.34 340
new-patchmatchnet83.18 32081.87 32287.11 33486.88 36275.99 35593.70 31395.18 29885.02 30277.30 35388.40 34965.99 33993.88 35674.19 34770.18 36091.47 350
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33882.57 31293.17 32595.15 29982.15 32967.65 36092.33 32478.20 25795.51 34477.33 33279.74 33794.31 313
YYNet185.87 30884.23 31290.78 31292.38 33882.46 31593.17 32595.14 30082.12 33067.69 35992.36 32178.16 26095.50 34577.31 33379.73 33894.39 309
Baseline_NR-MVSNet91.20 22690.62 21692.95 25893.83 30488.03 22997.01 15895.12 30188.42 23189.70 23095.13 23283.47 15897.44 30089.66 18883.24 32493.37 328
thres20092.23 18491.39 18694.75 17897.61 12489.03 20096.60 19695.09 30292.08 12393.28 14794.00 28578.39 25699.04 14081.26 31294.18 18796.19 213
ADS-MVSNet89.89 26588.68 27293.53 23795.86 21084.89 29190.93 34695.07 30383.23 32491.28 19491.81 32879.01 24697.85 26379.52 32091.39 22997.84 162
pmmvs-eth3d86.22 30384.45 31091.53 29688.34 35987.25 24494.47 28595.01 30483.47 32279.51 34889.61 34469.75 31895.71 33983.13 29476.73 34991.64 345
Anonymous20240521192.07 18990.83 20995.76 11798.19 9288.75 20597.58 10395.00 30586.00 28693.64 13697.45 11066.24 33899.53 7890.68 17192.71 20499.01 82
MDA-MVSNet-bldmvs85.00 31282.95 31791.17 30593.13 32583.33 30894.56 28395.00 30584.57 30865.13 36492.65 31270.45 31195.85 33673.57 34877.49 34594.33 311
ambc86.56 33783.60 36570.00 36385.69 36394.97 30780.60 34288.45 34837.42 36796.84 32482.69 30075.44 35192.86 332
testgi87.97 28887.21 28890.24 31892.86 32780.76 32896.67 18794.97 30791.74 13085.52 30895.83 19762.66 34894.47 35276.25 33888.36 26795.48 247
dp88.90 27888.26 27890.81 30994.58 28276.62 35292.85 33294.93 30985.12 30090.07 22193.07 30875.81 28098.12 22180.53 31587.42 27597.71 168
test_fmvs383.21 31983.02 31683.78 34186.77 36368.34 36696.76 17694.91 31086.49 27684.14 32389.48 34536.04 36891.73 36391.86 14780.77 33591.26 352
test_040286.46 29984.79 30891.45 29895.02 25585.55 27796.29 22194.89 31180.90 33682.21 33593.97 28768.21 32597.29 30962.98 36488.68 26491.51 348
tfpn200view992.38 17391.52 18394.95 16397.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.48 207
CVMVSNet91.23 22491.75 17389.67 32395.77 21574.69 35696.44 20294.88 31285.81 28892.18 16897.64 10079.07 24195.58 34388.06 21795.86 16098.74 108
thres40092.42 17191.52 18395.12 15297.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.98 192
EPNet95.20 7794.56 8597.14 5792.80 32992.68 7697.85 7194.87 31596.64 192.46 16097.80 8786.23 12099.65 4993.72 11298.62 8999.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 27488.54 27490.98 30693.49 31580.28 33796.70 18294.70 31690.78 15784.15 32295.57 21471.78 30397.71 27684.63 27985.07 30094.94 279
thres100view90092.43 17091.58 18094.98 16097.92 10689.37 18797.71 8794.66 31792.20 11793.31 14694.90 24078.06 26299.08 13181.40 30894.08 18896.48 207
thres600view792.49 16991.60 17995.18 14897.91 10789.47 18197.65 9394.66 31792.18 12193.33 14594.91 23978.06 26299.10 12681.61 30594.06 19196.98 192
PatchT88.87 27987.42 28493.22 24994.08 29785.10 28789.51 35594.64 31981.92 33192.36 16488.15 35280.05 22697.01 31972.43 35193.65 19597.54 179
baseline192.82 16191.90 16995.55 13397.20 13690.77 14497.19 14594.58 32092.20 11792.36 16496.34 17484.16 14998.21 20889.20 20283.90 31997.68 170
Gipumacopyleft67.86 33565.41 33775.18 35192.66 33273.45 35966.50 37094.52 32153.33 36957.80 37066.07 37030.81 37089.20 36748.15 37178.88 34462.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CostFormer91.18 22990.70 21492.62 27094.84 26781.76 32194.09 30194.43 32284.15 31292.72 15993.77 29379.43 23698.20 20990.70 17092.18 21497.90 158
tpm289.96 26389.21 26592.23 27994.91 26381.25 32493.78 31194.42 32380.62 34191.56 18193.44 30476.44 27597.94 25385.60 26792.08 21897.49 180
JIA-IIPM88.26 28787.04 29191.91 28493.52 31381.42 32389.38 35694.38 32480.84 33890.93 19980.74 36379.22 24097.92 25782.76 29891.62 22296.38 210
Patchmatch-test89.42 27287.99 27993.70 22995.27 24285.11 28688.98 35794.37 32581.11 33587.10 29393.69 29582.28 18897.50 29574.37 34594.76 18098.48 127
LCM-MVSNet72.55 32969.39 33382.03 34370.81 37865.42 37190.12 35394.36 32655.02 36865.88 36281.72 36224.16 37689.96 36474.32 34668.10 36490.71 355
ADS-MVSNet289.45 27188.59 27392.03 28295.86 21082.26 31790.93 34694.32 32783.23 32491.28 19491.81 32879.01 24695.99 33379.52 32091.39 22997.84 162
EU-MVSNet88.72 28288.90 26988.20 33093.15 32474.21 35796.63 19394.22 32885.18 29887.32 28995.97 18976.16 27894.98 34885.27 27186.17 28495.41 253
MIMVSNet88.50 28486.76 29293.72 22894.84 26787.77 23791.39 34194.05 32986.41 27987.99 27792.59 31563.27 34595.82 33877.44 33192.84 20397.57 178
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 32190.83 30890.06 34984.05 30195.73 24894.04 33073.89 35880.17 34691.53 33259.15 35197.64 28166.92 36289.05 25990.80 354
TinyColmap86.82 29785.35 30391.21 30394.91 26382.99 31093.94 30594.02 33183.58 32081.56 33794.68 25162.34 34998.13 21675.78 33987.35 27792.52 338
IB-MVS87.33 1789.91 26488.28 27794.79 17595.26 24587.70 23895.12 27493.95 33289.35 20187.03 29492.49 31670.74 31099.19 11589.18 20381.37 33297.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_f80.57 32479.62 32683.41 34283.38 36667.80 36893.57 32093.72 33380.80 34077.91 35287.63 35533.40 36992.08 36287.14 24479.04 34390.34 356
LCM-MVSNet-Re92.50 16792.52 15292.44 27296.82 16381.89 32096.92 16493.71 33492.41 11284.30 31994.60 25585.08 13697.03 31691.51 15597.36 12798.40 136
bld_raw_dy_0_6492.37 17491.69 17694.39 19194.28 29389.73 17197.71 8793.65 33592.78 10490.46 20496.67 15075.88 27997.97 24592.92 13190.89 24195.48 247
tpm90.25 25789.74 25691.76 29393.92 30079.73 34293.98 30293.54 33688.28 23491.99 17493.25 30777.51 26897.44 30087.30 23987.94 26998.12 149
ET-MVSNet_ETH3D91.49 21090.11 23895.63 12796.40 18891.57 10995.34 26293.48 33790.60 17275.58 35595.49 21980.08 22596.79 32594.25 10089.76 25498.52 120
LFMVS93.60 12492.63 14496.52 7298.13 9791.27 12097.94 6393.39 33890.57 17396.29 7498.31 4669.00 32099.16 11994.18 10195.87 15999.12 73
Patchmatch-RL test87.38 29386.24 29490.81 30988.74 35878.40 35088.12 36193.17 33987.11 26782.17 33689.29 34681.95 19595.60 34288.64 21277.02 34698.41 135
test-LLR91.42 21391.19 19792.12 28094.59 28080.66 32994.29 29592.98 34091.11 15290.76 20092.37 31879.02 24498.07 23188.81 20896.74 14397.63 171
test-mter90.19 26089.54 26092.12 28094.59 28080.66 32994.29 29592.98 34087.68 25490.76 20092.37 31867.67 32698.07 23188.81 20896.74 14397.63 171
test_method66.11 33664.89 33869.79 35372.62 37635.23 38365.19 37192.83 34220.35 37465.20 36388.08 35343.14 36582.70 37173.12 35063.46 36691.45 351
test0.0.03 189.37 27388.70 27191.41 30092.47 33585.63 27695.22 27192.70 34391.11 15286.91 29893.65 29979.02 24493.19 36078.00 33089.18 25895.41 253
new_pmnet82.89 32181.12 32588.18 33189.63 35280.18 33891.77 34092.57 34476.79 35575.56 35688.23 35161.22 35094.48 35171.43 35482.92 32789.87 357
mvsany_test193.93 11393.98 9793.78 22594.94 26086.80 25594.62 28092.55 34588.77 22396.85 4898.49 2588.98 8198.08 22795.03 8295.62 16696.46 209
thisisatest051592.29 18091.30 19195.25 14696.60 17288.90 20394.36 29192.32 34687.92 24393.43 14394.57 25677.28 26999.00 14189.42 19395.86 16097.86 161
thisisatest053093.03 14992.21 16095.49 13797.07 14489.11 19997.49 11692.19 34790.16 18094.09 12796.41 17076.43 27699.05 13790.38 17395.68 16598.31 142
tttt051792.96 15292.33 15794.87 16797.11 14287.16 24997.97 6292.09 34890.63 16893.88 13397.01 13276.50 27399.06 13690.29 17695.45 16898.38 138
K. test v387.64 29286.75 29390.32 31793.02 32679.48 34496.61 19492.08 34990.66 16680.25 34594.09 28267.21 33096.65 32785.96 26380.83 33494.83 288
TESTMET0.1,190.06 26289.42 26191.97 28394.41 28780.62 33194.29 29591.97 35087.28 26490.44 20592.47 31768.79 32197.67 27888.50 21496.60 14897.61 175
PM-MVS83.48 31881.86 32388.31 32987.83 36177.59 35193.43 32191.75 35186.91 26980.63 34189.91 34244.42 36495.84 33785.17 27476.73 34991.50 349
baseline291.63 20190.86 20593.94 21694.33 28986.32 26595.92 24191.64 35289.37 20086.94 29694.69 25081.62 20198.69 16888.64 21294.57 18496.81 199
APD_test179.31 32677.70 32984.14 34089.11 35669.07 36592.36 33991.50 35369.07 36173.87 35792.63 31439.93 36694.32 35370.54 35980.25 33689.02 359
FPMVS71.27 33069.85 33275.50 35074.64 37359.03 37591.30 34291.50 35358.80 36557.92 36988.28 35029.98 37285.53 37053.43 36982.84 32881.95 363
door91.13 355
door-mid91.06 356
EGC-MVSNET68.77 33463.01 33986.07 33992.49 33482.24 31893.96 30490.96 3570.71 3792.62 38090.89 33453.66 35893.46 35757.25 36884.55 30982.51 362
mvsany_test383.59 31782.44 32087.03 33583.80 36473.82 35893.70 31390.92 35886.42 27882.51 33490.26 33846.76 36395.71 33990.82 16776.76 34891.57 347
pmmvs379.97 32577.50 33087.39 33382.80 36779.38 34592.70 33490.75 35970.69 36078.66 35087.47 35751.34 36193.40 35873.39 34969.65 36189.38 358
DSMNet-mixed86.34 30186.12 29787.00 33689.88 35170.43 36194.93 27590.08 36077.97 35285.42 31192.78 31174.44 28993.96 35574.43 34495.14 17296.62 203
MVS-HIRNet82.47 32281.21 32486.26 33895.38 23069.21 36488.96 35889.49 36166.28 36280.79 34074.08 36768.48 32397.39 30471.93 35395.47 16792.18 343
test111193.19 14092.82 13594.30 19797.58 12884.56 29498.21 4389.02 36293.53 7194.58 11698.21 5372.69 29899.05 13793.06 12598.48 9599.28 58
ECVR-MVScopyleft93.19 14092.73 14194.57 18597.66 12085.41 28098.21 4388.23 36393.43 7694.70 11498.21 5372.57 29999.07 13493.05 12698.49 9399.25 61
EPMVS90.70 24789.81 25193.37 24394.73 27484.21 29793.67 31688.02 36489.50 19692.38 16393.49 30277.82 26697.78 27086.03 26192.68 20598.11 152
ANet_high63.94 33759.58 34077.02 34761.24 38066.06 36985.66 36487.93 36578.53 35042.94 37271.04 36925.42 37580.71 37252.60 37030.83 37384.28 361
PMMVS270.19 33166.92 33480.01 34476.35 37265.67 37086.22 36287.58 36664.83 36462.38 36580.29 36426.78 37488.49 36863.79 36354.07 37085.88 360
lessismore_v090.45 31591.96 34179.09 34887.19 36780.32 34494.39 26466.31 33797.55 28984.00 28876.84 34794.70 300
PMVScopyleft53.92 2258.58 33855.40 34168.12 35451.00 38148.64 37778.86 36787.10 36846.77 37035.84 37674.28 3668.76 38086.34 36942.07 37273.91 35469.38 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 30485.06 30589.46 32493.47 31780.46 33396.41 20686.61 36985.22 29779.15 34988.64 34752.41 36097.06 31493.08 12490.57 24490.87 353
testf169.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
APD_test269.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
gg-mvs-nofinetune87.82 29085.61 29994.44 18894.46 28489.27 19491.21 34584.61 37280.88 33789.89 22674.98 36571.50 30497.53 29285.75 26697.21 13496.51 205
GG-mvs-BLEND93.62 23293.69 30889.20 19592.39 33883.33 37387.98 27889.84 34371.00 30896.87 32382.08 30495.40 16994.80 293
MTMP97.86 6882.03 374
DeepMVS_CXcopyleft74.68 35290.84 34664.34 37281.61 37565.34 36367.47 36188.01 35448.60 36280.13 37362.33 36573.68 35579.58 364
E-PMN53.28 33952.56 34355.43 35674.43 37447.13 37883.63 36676.30 37642.23 37142.59 37362.22 37228.57 37374.40 37431.53 37431.51 37244.78 371
test250691.60 20290.78 21094.04 20797.66 12083.81 30298.27 3375.53 37793.43 7695.23 10598.21 5367.21 33099.07 13493.01 12998.49 9399.25 61
EMVS52.08 34151.31 34454.39 35772.62 37645.39 38083.84 36575.51 37841.13 37240.77 37459.65 37330.08 37173.60 37528.31 37529.90 37444.18 372
test_vis3_rt72.73 32870.55 33179.27 34580.02 36968.13 36793.92 30774.30 37976.90 35458.99 36873.58 36820.29 37795.37 34684.16 28472.80 35774.31 367
MVEpermissive50.73 2353.25 34048.81 34566.58 35565.34 37957.50 37672.49 36970.94 38040.15 37339.28 37563.51 3716.89 38273.48 37638.29 37342.38 37168.76 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 34253.82 34246.29 35833.73 38245.30 38178.32 36867.24 38118.02 37550.93 37187.05 35852.99 35953.11 37770.76 35725.29 37540.46 373
N_pmnet78.73 32778.71 32878.79 34692.80 32946.50 37994.14 29943.71 38278.61 34980.83 33991.66 33174.94 28796.36 32967.24 36184.45 31193.50 325
wuyk23d25.11 34324.57 34726.74 35973.98 37539.89 38257.88 3729.80 38312.27 37610.39 3776.97 3797.03 38136.44 37825.43 37617.39 3763.89 376
testmvs13.36 34516.33 3484.48 3615.04 3832.26 38593.18 3243.28 3842.70 3778.24 37821.66 3752.29 3842.19 3797.58 3772.96 3779.00 375
test12313.04 34615.66 3495.18 3604.51 3843.45 38492.50 3371.81 3852.50 3787.58 37920.15 3763.67 3832.18 3807.13 3781.07 3789.90 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.39 3489.85 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38088.65 870.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re8.06 34710.74 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38196.69 1480.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145290.77 15898.89 898.28 5196.24 198.35 19895.76 5999.58 2199.59 19
eth-test20.00 385
eth-test0.00 385
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5296.04 299.24 11195.36 7599.59 1799.56 25
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1399.72 299.77 1
GSMVS98.45 130
test_part299.28 2595.74 898.10 20
sam_mvs182.76 17798.45 130
sam_mvs81.94 196
test_post192.81 33316.58 37880.53 21697.68 27786.20 255
test_post17.58 37781.76 19898.08 227
patchmatchnet-post90.45 33782.65 18198.10 223
gm-plane-assit93.22 32278.89 34984.82 30593.52 30198.64 17287.72 223
test9_res94.81 8999.38 4999.45 41
agg_prior293.94 10699.38 4999.50 36
test_prior493.66 5396.42 205
test_prior296.35 21592.80 10396.03 8197.59 10492.01 4095.01 8399.38 49
旧先验295.94 24081.66 33397.34 3698.82 15392.26 134
新几何295.79 246
原ACMM295.67 249
testdata299.67 4785.96 263
segment_acmp92.89 25
testdata195.26 27093.10 89
plane_prior796.21 19589.98 164
plane_prior696.10 20590.00 16081.32 204
plane_prior496.64 152
plane_prior390.00 16094.46 4291.34 187
plane_prior297.74 8094.85 24
plane_prior196.14 203
plane_prior89.99 16297.24 13894.06 5292.16 215
HQP5-MVS89.33 189
HQP-NCC95.86 21096.65 18893.55 6790.14 210
ACMP_Plane95.86 21096.65 18893.55 6790.14 210
BP-MVS92.13 140
HQP4-MVS90.14 21098.50 18495.78 233
HQP2-MVS80.95 207
NP-MVS95.99 20989.81 16995.87 194
MDTV_nov1_ep13_2view70.35 36293.10 32983.88 31693.55 13882.47 18586.25 25498.38 138
ACMMP++_ref90.30 249
ACMMP++91.02 237
Test By Simon88.73 86