| test_fmvsm_n_1920 |  |  | 97.55 9 | 97.89 3 | 96.53 77 | 98.41 74 | 91.73 105 | 98.01 57 | 99.02 1 | 96.37 4 | 99.30 1 | 98.92 10 | 92.39 35 | 99.79 33 | 99.16 3 | 99.46 39 | 98.08 163 | 
 | 
| PGM-MVS |  |  | 96.81 39 | 96.53 47 | 97.65 41 | 99.35 20 | 93.53 58 | 97.65 104 | 98.98 2 | 92.22 129 | 97.14 50 | 98.44 42 | 91.17 60 | 99.85 18 | 94.35 111 | 99.46 39 | 99.57 26 | 
 | 
| MVS_111021_HR |  |  | 96.68 48 | 96.58 46 | 96.99 66 | 98.46 70 | 92.31 89 | 96.20 242 | 98.90 3 | 94.30 58 | 95.86 100 | 97.74 102 | 92.33 36 | 99.38 111 | 96.04 61 | 99.42 46 | 99.28 63 | 
 | 
| test_fmvsmconf_n |  |  | 97.49 10 | 97.56 7 | 97.29 52 | 97.44 137 | 92.37 86 | 97.91 75 | 98.88 4 | 95.83 8 | 98.92 10 | 99.05 5 | 91.45 51 | 99.80 30 | 99.12 4 | 99.46 39 | 99.69 12 | 
 | 
| ACMMP |   |  | 96.27 60 | 95.93 62 | 97.28 54 | 99.24 28 | 92.62 79 | 98.25 36 | 98.81 5 | 92.99 105 | 94.56 129 | 98.39 46 | 88.96 87 | 99.85 18 | 94.57 110 | 97.63 130 | 99.36 58 | 
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence | 
| MVS_111021_LR |  |  | 96.24 61 | 96.19 60 | 96.39 93 | 98.23 90 | 91.35 125 | 96.24 240 | 98.79 6 | 93.99 65 | 95.80 102 | 97.65 109 | 89.92 78 | 99.24 122 | 95.87 65 | 99.20 70 | 98.58 121 | 
 | 
| patch_mono-2 |  |  | 96.83 38 | 97.44 11 | 95.01 170 | 99.05 39 | 85.39 295 | 96.98 174 | 98.77 7 | 94.70 43 | 97.99 30 | 98.66 25 | 93.61 19 | 99.91 1 | 97.67 16 | 99.50 33 | 99.72 11 | 
 | 
| fmvsm_s_conf0.5_n |  |  | 96.85 36 | 97.13 14 | 96.04 117 | 98.07 103 | 90.28 167 | 97.97 67 | 98.76 8 | 94.93 29 | 98.84 14 | 99.06 4 | 88.80 90 | 99.65 56 | 99.06 5 | 98.63 97 | 98.18 153 | 
 | 
| fmvsm_s_conf0.5_n_a |  |  | 96.75 43 | 96.93 26 | 96.20 109 | 97.64 126 | 90.72 154 | 98.00 59 | 98.73 9 | 94.55 48 | 98.91 11 | 99.08 3 | 88.22 99 | 99.63 65 | 98.91 7 | 98.37 109 | 98.25 149 | 
 | 
| FC-MVSNet-test |  |  | 93.94 124 | 93.57 117 | 95.04 167 | 95.48 238 | 91.45 122 | 98.12 48 | 98.71 10 | 93.37 89 | 90.23 223 | 96.70 160 | 87.66 108 | 97.85 277 | 91.49 169 | 90.39 264 | 95.83 243 | 
 | 
| UniMVSNet (Re) |  |  | 93.31 147 | 92.55 161 | 95.61 141 | 95.39 243 | 93.34 64 | 97.39 137 | 98.71 10 | 93.14 101 | 90.10 232 | 94.83 258 | 87.71 107 | 98.03 252 | 91.67 167 | 83.99 332 | 95.46 266 | 
 | 
| FIs |  |  | 94.09 118 | 93.70 113 | 95.27 157 | 95.70 228 | 92.03 99 | 98.10 49 | 98.68 12 | 93.36 91 | 90.39 220 | 96.70 160 | 87.63 110 | 97.94 267 | 92.25 149 | 90.50 263 | 95.84 242 | 
 | 
| WR-MVS_H |  |  | 92.00 204 | 91.35 200 | 93.95 228 | 95.09 269 | 89.47 193 | 98.04 55 | 98.68 12 | 91.46 151 | 88.34 280 | 94.68 265 | 85.86 137 | 97.56 302 | 85.77 279 | 84.24 330 | 94.82 308 | 
 | 
| VPA-MVSNet |  |  | 93.24 149 | 92.48 166 | 95.51 147 | 95.70 228 | 92.39 85 | 97.86 79 | 98.66 14 | 92.30 128 | 92.09 185 | 95.37 236 | 80.49 228 | 98.40 205 | 93.95 118 | 85.86 304 | 95.75 253 | 
 | 
| UniMVSNet_NR-MVSNet |  |  | 93.37 145 | 92.67 155 | 95.47 152 | 95.34 249 | 92.83 74 | 97.17 160 | 98.58 15 | 92.98 110 | 90.13 228 | 95.80 213 | 88.37 98 | 97.85 277 | 91.71 164 | 83.93 333 | 95.73 255 | 
 | 
| CSCG |  |  | 96.05 64 | 95.91 63 | 96.46 87 | 99.24 28 | 90.47 162 | 98.30 30 | 98.57 16 | 89.01 226 | 93.97 143 | 97.57 117 | 92.62 31 | 99.76 36 | 94.66 105 | 99.27 62 | 99.15 73 | 
 | 
| MSLP-MVS++ |  |  | 96.94 30 | 97.06 17 | 96.59 75 | 98.72 55 | 91.86 103 | 97.67 101 | 98.49 17 | 94.66 46 | 97.24 47 | 98.41 45 | 92.31 38 | 98.94 157 | 96.61 41 | 99.46 39 | 98.96 92 | 
 | 
| HyFIR lowres test |  |  | 93.66 135 | 92.92 142 | 95.87 125 | 98.24 86 | 89.88 179 | 94.58 299 | 98.49 17 | 85.06 319 | 93.78 146 | 95.78 217 | 82.86 185 | 98.67 183 | 91.77 162 | 95.71 176 | 99.07 83 | 
 | 
| CHOSEN 1792x2688 |  |  | 94.15 113 | 93.51 123 | 96.06 115 | 98.27 83 | 89.38 198 | 95.18 287 | 98.48 19 | 85.60 309 | 93.76 147 | 97.11 140 | 83.15 176 | 99.61 67 | 91.33 172 | 98.72 94 | 99.19 69 | 
 | 
| PHI-MVS |  |  | 96.77 41 | 96.46 53 | 97.71 39 | 98.40 75 | 94.07 46 | 98.21 43 | 98.45 20 | 89.86 201 | 97.11 52 | 98.01 81 | 92.52 33 | 99.69 50 | 96.03 62 | 99.53 27 | 99.36 58 | 
 | 
| fmvsm_s_conf0.1_n |  |  | 96.58 51 | 96.77 37 | 96.01 121 | 96.67 178 | 90.25 168 | 97.91 75 | 98.38 21 | 94.48 51 | 98.84 14 | 99.14 1 | 88.06 101 | 99.62 66 | 98.82 9 | 98.60 99 | 98.15 156 | 
 | 
| PVSNet_BlendedMVS |  |  | 94.06 119 | 93.92 109 | 94.47 200 | 98.27 83 | 89.46 195 | 96.73 193 | 98.36 22 | 90.17 194 | 94.36 132 | 95.24 242 | 88.02 102 | 99.58 75 | 93.44 129 | 90.72 259 | 94.36 328 | 
 | 
| PVSNet_Blended |  |  | 94.87 98 | 94.56 95 | 95.81 128 | 98.27 83 | 89.46 195 | 95.47 273 | 98.36 22 | 88.84 234 | 94.36 132 | 96.09 202 | 88.02 102 | 99.58 75 | 93.44 129 | 98.18 117 | 98.40 141 | 
 | 
| 3Dnovator |  | 91.36 5 | 95.19 88 | 94.44 103 | 97.44 47 | 96.56 187 | 93.36 63 | 98.65 11 | 98.36 22 | 94.12 61 | 89.25 262 | 98.06 75 | 82.20 201 | 99.77 35 | 93.41 131 | 99.32 59 | 99.18 70 | 
 | 
| FOURS1 |  |  |  |  |  | 99.55 1 | 93.34 64 | 99.29 1 | 98.35 25 | 94.98 28 | 98.49 21 |  |  |  |  |  |  | 
 | 
| DPE-MVS |   |  | 97.86 4 | 97.65 6 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 157 | 98.35 25 | 95.16 22 | 98.71 18 | 98.80 20 | 95.05 10 | 99.89 3 | 96.70 39 | 99.73 1 | 99.73 10 | 
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 | 
| fmvsm_s_conf0.1_n_a |  |  | 96.40 55 | 96.47 50 | 96.16 111 | 95.48 238 | 90.69 155 | 97.91 75 | 98.33 27 | 94.07 62 | 98.93 7 | 99.14 1 | 87.44 115 | 99.61 67 | 98.63 11 | 98.32 111 | 98.18 153 | 
 | 
| HFP-MVS |  |  | 97.14 20 | 96.92 27 | 97.83 26 | 99.42 7 | 94.12 44 | 98.52 16 | 98.32 28 | 93.21 94 | 97.18 48 | 98.29 61 | 92.08 40 | 99.83 26 | 95.63 78 | 99.59 17 | 99.54 33 | 
 | 
| ACMMPR |  |  | 97.07 23 | 96.84 30 | 97.79 30 | 99.44 6 | 93.88 50 | 98.52 16 | 98.31 29 | 93.21 94 | 97.15 49 | 98.33 55 | 91.35 55 | 99.86 8 | 95.63 78 | 99.59 17 | 99.62 18 | 
 | 
| test_fmvsmvis_n_1920 |  |  | 96.70 44 | 96.84 30 | 96.31 98 | 96.62 180 | 91.73 105 | 97.98 61 | 98.30 30 | 96.19 5 | 96.10 91 | 98.95 8 | 89.42 81 | 99.76 36 | 98.90 8 | 99.08 79 | 97.43 192 | 
 | 
| APDe-MVS |   |  | 97.82 5 | 97.73 5 | 98.08 18 | 99.15 33 | 94.82 27 | 98.81 7 | 98.30 30 | 94.76 41 | 98.30 24 | 98.90 12 | 93.77 17 | 99.68 52 | 97.93 12 | 99.69 3 | 99.75 6 | 
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition | 
| test0726 |  |  |  |  |  | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 32 | 94.92 30 | 98.99 5 | 98.92 10 | 95.08 8 |  |  |  |  | 
 | 
| MSP-MVS |  |  | 97.59 8 | 97.54 8 | 97.73 36 | 99.40 11 | 93.77 54 | 98.53 15 | 98.29 32 | 95.55 13 | 98.56 20 | 97.81 97 | 93.90 15 | 99.65 56 | 96.62 40 | 99.21 69 | 99.77 2 | 
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 | 
| DVP-MVS++ |  |  | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 34 | 94.78 39 | 98.93 7 | 98.87 15 | 96.04 2 | 99.86 8 | 97.45 24 | 99.58 21 | 99.59 22 | 
 | 
| test_0728_SECOND |  |  |  |  | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 43 | 98.28 34 |  |  |  |  | 99.86 8 | 97.52 20 | 99.67 6 | 99.75 6 | 
 | 
| CP-MVS |  |  | 97.02 26 | 96.81 34 | 97.64 43 | 99.33 21 | 93.54 57 | 98.80 8 | 98.28 34 | 92.99 105 | 96.45 80 | 98.30 60 | 91.90 43 | 99.85 18 | 95.61 80 | 99.68 4 | 99.54 33 | 
 | 
| test_fmvsmconf0.1_n |  |  | 97.09 21 | 97.06 17 | 97.19 60 | 95.67 230 | 92.21 92 | 97.95 70 | 98.27 37 | 95.78 10 | 98.40 23 | 99.00 6 | 89.99 76 | 99.78 34 | 99.06 5 | 99.41 49 | 99.59 22 | 
 | 
| SED-MVS |  |  | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 36 | 98.27 37 | 95.13 23 | 99.19 2 | 98.89 13 | 95.54 5 | 99.85 18 | 97.52 20 | 99.66 10 | 99.56 29 | 
 | 
| test_241102_TWO |  |  |  |  |  |  |  |  | 98.27 37 | 95.13 23 | 98.93 7 | 98.89 13 | 94.99 11 | 99.85 18 | 97.52 20 | 99.65 12 | 99.74 8 | 
 | 
| test_241102_ONE |  |  |  |  |  | 99.42 7 | 95.30 17 |  | 98.27 37 | 95.09 26 | 99.19 2 | 98.81 19 | 95.54 5 | 99.65 56 |  |  |  | 
 | 
| SF-MVS |  |  | 97.39 13 | 97.13 14 | 98.17 15 | 99.02 42 | 95.28 19 | 98.23 40 | 98.27 37 | 92.37 127 | 98.27 25 | 98.65 27 | 93.33 21 | 99.72 43 | 96.49 45 | 99.52 28 | 99.51 37 | 
 | 
| SteuartSystems-ACMMP |  |  | 97.62 7 | 97.53 9 | 97.87 24 | 98.39 77 | 94.25 38 | 98.43 24 | 98.27 37 | 95.34 17 | 98.11 26 | 98.56 29 | 94.53 12 | 99.71 44 | 96.57 43 | 99.62 15 | 99.65 15 | 
| Skip Steuart: Steuart Systems R&D Blog. | 
| test_one_0601 |  |  |  |  |  | 99.32 22 | 95.20 20 |  | 98.25 43 | 95.13 23 | 98.48 22 | 98.87 15 | 95.16 7 |  |  |  |  | 
 | 
| PVSNet_Blended_VisFu |  |  | 95.27 83 | 94.91 86 | 96.38 94 | 98.20 91 | 90.86 147 | 97.27 149 | 98.25 43 | 90.21 193 | 94.18 137 | 97.27 131 | 87.48 114 | 99.73 40 | 93.53 126 | 97.77 128 | 98.55 122 | 
 | 
| region2R |  |  | 97.07 23 | 96.84 30 | 97.77 33 | 99.46 2 | 93.79 52 | 98.52 16 | 98.24 45 | 93.19 97 | 97.14 50 | 98.34 52 | 91.59 50 | 99.87 7 | 95.46 85 | 99.59 17 | 99.64 16 | 
 | 
| PS-CasMVS |  |  | 91.55 220 | 90.84 221 | 93.69 244 | 94.96 273 | 88.28 232 | 97.84 83 | 98.24 45 | 91.46 151 | 88.04 290 | 95.80 213 | 79.67 244 | 97.48 310 | 87.02 259 | 84.54 327 | 95.31 278 | 
 | 
| DU-MVS |  |  | 92.90 169 | 92.04 176 | 95.49 149 | 94.95 274 | 92.83 74 | 97.16 161 | 98.24 45 | 93.02 104 | 90.13 228 | 95.71 220 | 83.47 169 | 97.85 277 | 91.71 164 | 83.93 333 | 95.78 248 | 
 | 
| 9.14 |  |  |  | 96.75 38 |  | 98.93 47 |  | 97.73 93 | 98.23 48 | 91.28 159 | 97.88 33 | 98.44 42 | 93.00 24 | 99.65 56 | 95.76 71 | 99.47 38 |  | 
 | 
| D2MVS |  |  | 91.30 235 | 90.95 215 | 92.35 287 | 94.71 291 | 85.52 291 | 96.18 243 | 98.21 49 | 88.89 232 | 86.60 317 | 93.82 306 | 79.92 240 | 97.95 266 | 89.29 210 | 90.95 255 | 93.56 341 | 
 | 
| SDMVSNet |  |  | 94.17 111 | 93.61 116 | 95.86 126 | 98.09 99 | 91.37 124 | 97.35 141 | 98.20 50 | 93.18 98 | 91.79 190 | 97.28 129 | 79.13 252 | 98.93 158 | 94.61 108 | 92.84 218 | 97.28 199 | 
 | 
| XVS |  |  | 97.18 18 | 96.96 25 | 97.81 28 | 99.38 14 | 94.03 48 | 98.59 12 | 98.20 50 | 94.85 32 | 96.59 72 | 98.29 61 | 91.70 46 | 99.80 30 | 95.66 73 | 99.40 50 | 99.62 18 | 
 | 
| X-MVStestdata |  |  | 91.71 211 | 89.67 270 | 97.81 28 | 99.38 14 | 94.03 48 | 98.59 12 | 98.20 50 | 94.85 32 | 96.59 72 | 32.69 394 | 91.70 46 | 99.80 30 | 95.66 73 | 99.40 50 | 99.62 18 | 
 | 
| ACMMP_NAP |  |  | 97.20 17 | 96.86 28 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 113 | 98.19 53 | 92.82 116 | 97.93 32 | 98.74 24 | 91.60 49 | 99.86 8 | 96.26 48 | 99.52 28 | 99.67 13 | 
 | 
| CP-MVSNet |  |  | 91.89 207 | 91.24 207 | 93.82 236 | 95.05 270 | 88.57 223 | 97.82 85 | 98.19 53 | 91.70 145 | 88.21 286 | 95.76 218 | 81.96 205 | 97.52 308 | 87.86 234 | 84.65 322 | 95.37 274 | 
 | 
| ZNCC-MVS |  |  | 96.96 28 | 96.67 42 | 97.85 25 | 99.37 16 | 94.12 44 | 98.49 20 | 98.18 55 | 92.64 122 | 96.39 82 | 98.18 68 | 91.61 48 | 99.88 4 | 95.59 83 | 99.55 24 | 99.57 26 | 
 | 
| SMA-MVS |   |  | 97.35 14 | 97.03 22 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 71 | 98.18 55 | 90.57 188 | 98.85 13 | 98.94 9 | 93.33 21 | 99.83 26 | 96.72 38 | 99.68 4 | 99.63 17 | 
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology | 
| PEN-MVS |  |  | 91.20 239 | 90.44 235 | 93.48 253 | 94.49 298 | 87.91 247 | 97.76 89 | 98.18 55 | 91.29 156 | 87.78 294 | 95.74 219 | 80.35 231 | 97.33 321 | 85.46 283 | 82.96 343 | 95.19 289 | 
 | 
| DELS-MVS |  |  | 96.61 49 | 96.38 56 | 97.30 51 | 97.79 117 | 93.19 67 | 95.96 253 | 98.18 55 | 95.23 19 | 95.87 99 | 97.65 109 | 91.45 51 | 99.70 49 | 95.87 65 | 99.44 45 | 99.00 90 | 
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 | 
| tfpnnormal |  |  | 89.70 284 | 88.40 289 | 93.60 247 | 95.15 265 | 90.10 170 | 97.56 117 | 98.16 59 | 87.28 283 | 86.16 321 | 94.63 268 | 77.57 279 | 98.05 248 | 74.48 359 | 84.59 325 | 92.65 354 | 
 | 
| VNet |  |  | 95.89 69 | 95.45 72 | 97.21 58 | 98.07 103 | 92.94 73 | 97.50 123 | 98.15 60 | 93.87 69 | 97.52 38 | 97.61 115 | 85.29 143 | 99.53 89 | 95.81 70 | 95.27 183 | 99.16 71 | 
 | 
| DeepPCF-MVS |  | 93.97 1 | 96.61 49 | 97.09 16 | 95.15 161 | 98.09 99 | 86.63 275 | 96.00 251 | 98.15 60 | 95.43 14 | 97.95 31 | 98.56 29 | 93.40 20 | 99.36 112 | 96.77 36 | 99.48 37 | 99.45 46 | 
 | 
| SD-MVS |  |  | 97.41 12 | 97.53 9 | 97.06 64 | 98.57 69 | 94.46 31 | 97.92 73 | 98.14 62 | 94.82 36 | 99.01 4 | 98.55 31 | 94.18 14 | 97.41 317 | 96.94 32 | 99.64 13 | 99.32 60 | 
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 | 
| GST-MVS |  |  | 96.85 36 | 96.52 48 | 97.82 27 | 99.36 18 | 94.14 43 | 98.29 31 | 98.13 63 | 92.72 119 | 96.70 64 | 98.06 75 | 91.35 55 | 99.86 8 | 94.83 99 | 99.28 61 | 99.47 45 | 
 | 
| UA-Net |  |  | 95.95 68 | 95.53 69 | 97.20 59 | 97.67 122 | 92.98 72 | 97.65 104 | 98.13 63 | 94.81 37 | 96.61 70 | 98.35 49 | 88.87 88 | 99.51 94 | 90.36 187 | 97.35 140 | 99.11 79 | 
 | 
| QAPM |  |  | 93.45 143 | 92.27 171 | 96.98 67 | 96.77 173 | 92.62 79 | 98.39 26 | 98.12 65 | 84.50 327 | 88.27 284 | 97.77 100 | 82.39 198 | 99.81 29 | 85.40 284 | 98.81 91 | 98.51 127 | 
 | 
| Vis-MVSNet |   |  | 95.23 85 | 94.81 87 | 96.51 81 | 97.18 144 | 91.58 115 | 98.26 35 | 98.12 65 | 94.38 56 | 94.90 122 | 98.15 70 | 82.28 199 | 98.92 159 | 91.45 171 | 98.58 101 | 99.01 87 | 
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 | 
| OpenMVS |   | 89.19 12 | 92.86 171 | 91.68 190 | 96.40 91 | 95.34 249 | 92.73 77 | 98.27 33 | 98.12 65 | 84.86 322 | 85.78 323 | 97.75 101 | 78.89 261 | 99.74 39 | 87.50 249 | 98.65 96 | 96.73 215 | 
 | 
| TranMVSNet+NR-MVSNet |  |  | 92.50 180 | 91.63 191 | 95.14 162 | 94.76 286 | 92.07 97 | 97.53 121 | 98.11 68 | 92.90 114 | 89.56 250 | 96.12 198 | 83.16 175 | 97.60 300 | 89.30 209 | 83.20 342 | 95.75 253 | 
 | 
| CPTT-MVS |  |  | 95.57 77 | 95.19 80 | 96.70 69 | 99.27 26 | 91.48 119 | 98.33 28 | 98.11 68 | 87.79 268 | 95.17 119 | 98.03 78 | 87.09 121 | 99.61 67 | 93.51 127 | 99.42 46 | 99.02 84 | 
 | 
| APD-MVS |   |  | 96.95 29 | 96.60 44 | 98.01 19 | 99.03 41 | 94.93 26 | 97.72 96 | 98.10 70 | 91.50 149 | 98.01 29 | 98.32 57 | 92.33 36 | 99.58 75 | 94.85 98 | 99.51 31 | 99.53 36 | 
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 | 
| mPP-MVS |  |  | 96.86 34 | 96.60 44 | 97.64 43 | 99.40 11 | 93.44 59 | 98.50 19 | 98.09 71 | 93.27 93 | 95.95 98 | 98.33 55 | 91.04 62 | 99.88 4 | 95.20 90 | 99.57 23 | 99.60 21 | 
 | 
| ZD-MVS |  |  |  |  |  | 99.05 39 | 94.59 29 |  | 98.08 72 | 89.22 220 | 97.03 55 | 98.10 71 | 92.52 33 | 99.65 56 | 94.58 109 | 99.31 60 |  | 
 | 
| MTGPA |   |  |  |  |  |  |  |  | 98.08 72 |  |  |  |  |  |  |  |  | 
 | 
| MTAPA |  |  | 97.08 22 | 96.78 36 | 97.97 22 | 99.37 16 | 94.42 33 | 97.24 151 | 98.08 72 | 95.07 27 | 96.11 90 | 98.59 28 | 90.88 66 | 99.90 2 | 96.18 57 | 99.50 33 | 99.58 25 | 
 | 
| CNVR-MVS |  |  | 97.68 6 | 97.44 11 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 149 | 98.08 72 | 95.81 9 | 97.87 34 | 98.31 58 | 94.26 13 | 99.68 52 | 97.02 31 | 99.49 36 | 99.57 26 | 
 | 
| DP-MVS Recon |  |  | 95.68 73 | 95.12 83 | 97.37 49 | 99.19 31 | 94.19 40 | 97.03 167 | 98.08 72 | 88.35 252 | 95.09 121 | 97.65 109 | 89.97 77 | 99.48 99 | 92.08 156 | 98.59 100 | 98.44 138 | 
 | 
| SR-MVS |  |  | 97.01 27 | 96.86 28 | 97.47 46 | 99.09 34 | 93.27 66 | 97.98 61 | 98.07 77 | 93.75 72 | 97.45 40 | 98.48 39 | 91.43 53 | 99.59 72 | 96.22 51 | 99.27 62 | 99.54 33 | 
 | 
| MCST-MVS |  |  | 97.18 18 | 96.84 30 | 98.20 14 | 99.30 24 | 95.35 15 | 97.12 164 | 98.07 77 | 93.54 81 | 96.08 92 | 97.69 104 | 93.86 16 | 99.71 44 | 96.50 44 | 99.39 52 | 99.55 32 | 
 | 
| NR-MVSNet |  |  | 92.34 189 | 91.27 206 | 95.53 146 | 94.95 274 | 93.05 70 | 97.39 137 | 98.07 77 | 92.65 121 | 84.46 334 | 95.71 220 | 85.00 147 | 97.77 286 | 89.71 198 | 83.52 339 | 95.78 248 | 
 | 
| MP-MVS-pluss |  |  | 96.70 44 | 96.27 58 | 97.98 21 | 99.23 30 | 94.71 28 | 96.96 176 | 98.06 80 | 90.67 179 | 95.55 111 | 98.78 23 | 91.07 61 | 99.86 8 | 96.58 42 | 99.55 24 | 99.38 56 | 
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss | 
| APD-MVS_3200maxsize |  |  | 96.81 39 | 96.71 41 | 97.12 62 | 99.01 45 | 92.31 89 | 97.98 61 | 98.06 80 | 93.11 102 | 97.44 41 | 98.55 31 | 90.93 64 | 99.55 85 | 96.06 58 | 99.25 66 | 99.51 37 | 
 | 
| MP-MVS |   |  | 96.77 41 | 96.45 54 | 97.72 37 | 99.39 13 | 93.80 51 | 98.41 25 | 98.06 80 | 93.37 89 | 95.54 113 | 98.34 52 | 90.59 70 | 99.88 4 | 94.83 99 | 99.54 26 | 99.49 41 | 
| Rongxuan Tan, Qing Wang,  et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. | 
| HPM-MVS_fast |  |  | 96.51 52 | 96.27 58 | 97.22 57 | 99.32 22 | 92.74 76 | 98.74 9 | 98.06 80 | 90.57 188 | 96.77 61 | 98.35 49 | 90.21 73 | 99.53 89 | 94.80 102 | 99.63 14 | 99.38 56 | 
 | 
| HPM-MVS |   |  | 96.69 46 | 96.45 54 | 97.40 48 | 99.36 18 | 93.11 69 | 98.87 6 | 98.06 80 | 91.17 164 | 96.40 81 | 97.99 82 | 90.99 63 | 99.58 75 | 95.61 80 | 99.61 16 | 99.49 41 | 
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 | 
| sss |  |  | 94.51 104 | 93.80 111 | 96.64 70 | 97.07 151 | 91.97 101 | 96.32 232 | 98.06 80 | 88.94 230 | 94.50 130 | 96.78 155 | 84.60 151 | 99.27 120 | 91.90 157 | 96.02 167 | 98.68 118 | 
 | 
| DeepC-MVS |  | 93.07 3 | 96.06 63 | 95.66 67 | 97.29 52 | 97.96 106 | 93.17 68 | 97.30 147 | 98.06 80 | 93.92 67 | 93.38 156 | 98.66 25 | 86.83 123 | 99.73 40 | 95.60 82 | 99.22 68 | 98.96 92 | 
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 | 
| NCCC |  |  | 97.30 16 | 97.03 22 | 98.11 17 | 98.77 53 | 95.06 24 | 97.34 142 | 98.04 87 | 95.96 6 | 97.09 53 | 97.88 90 | 93.18 23 | 99.71 44 | 95.84 69 | 99.17 72 | 99.56 29 | 
 | 
| DeepC-MVS_fast |  | 93.89 2 | 96.93 31 | 96.64 43 | 97.78 31 | 98.64 64 | 94.30 35 | 97.41 132 | 98.04 87 | 94.81 37 | 96.59 72 | 98.37 47 | 91.24 57 | 99.64 64 | 95.16 91 | 99.52 28 | 99.42 52 | 
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 | 
| SR-MVS-dyc-post |  |  | 96.88 33 | 96.80 35 | 97.11 63 | 99.02 42 | 92.34 87 | 97.98 61 | 98.03 89 | 93.52 83 | 97.43 43 | 98.51 34 | 91.40 54 | 99.56 83 | 96.05 59 | 99.26 64 | 99.43 50 | 
 | 
| RE-MVS-def |  |  |  | 96.72 40 |  | 99.02 42 | 92.34 87 | 97.98 61 | 98.03 89 | 93.52 83 | 97.43 43 | 98.51 34 | 90.71 68 |  | 96.05 59 | 99.26 64 | 99.43 50 | 
 | 
| RPMNet |  |  | 88.98 289 | 87.05 303 | 94.77 189 | 94.45 300 | 87.19 260 | 90.23 371 | 98.03 89 | 77.87 373 | 92.40 173 | 87.55 376 | 80.17 235 | 99.51 94 | 68.84 377 | 93.95 207 | 97.60 186 | 
 | 
| save fliter |  |  |  |  |  | 98.91 49 | 94.28 36 | 97.02 169 | 98.02 92 | 95.35 16 |  |  |  |  |  |  |  | 
 | 
| TEST9 |  |  |  |  |  | 98.70 56 | 94.19 40 | 96.41 221 | 98.02 92 | 88.17 256 | 96.03 93 | 97.56 119 | 92.74 28 | 99.59 72 |  |  |  | 
 | 
| train_agg |  |  | 96.30 59 | 95.83 66 | 97.72 37 | 98.70 56 | 94.19 40 | 96.41 221 | 98.02 92 | 88.58 243 | 96.03 93 | 97.56 119 | 92.73 29 | 99.59 72 | 95.04 93 | 99.37 56 | 99.39 54 | 
 | 
| test_8 |  |  |  |  |  | 98.67 58 | 94.06 47 | 96.37 228 | 98.01 95 | 88.58 243 | 95.98 97 | 97.55 121 | 92.73 29 | 99.58 75 |  |  |  | 
 | 
| agg_prior |  |  |  |  |  | 98.67 58 | 93.79 52 |  | 98.00 96 |  | 95.68 107 |  |  | 99.57 82 |  |  |  | 
 | 
| test_prior |  |  |  |  | 97.23 56 | 98.67 58 | 92.99 71 |  | 98.00 96 |  |  |  |  | 99.41 107 |  |  | 99.29 61 | 
 | 
| WR-MVS |  |  | 92.34 189 | 91.53 195 | 94.77 189 | 95.13 267 | 90.83 149 | 96.40 225 | 97.98 98 | 91.88 142 | 89.29 259 | 95.54 231 | 82.50 194 | 97.80 282 | 89.79 197 | 85.27 313 | 95.69 257 | 
 | 
| HPM-MVS++ |   |  | 97.34 15 | 96.97 24 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 120 | 97.97 99 | 95.59 11 | 96.61 70 | 97.89 88 | 92.57 32 | 99.84 23 | 95.95 64 | 99.51 31 | 99.40 53 | 
 | 
| CANet |  |  | 96.39 56 | 96.02 61 | 97.50 45 | 97.62 128 | 93.38 61 | 97.02 169 | 97.96 100 | 95.42 15 | 94.86 123 | 97.81 97 | 87.38 117 | 99.82 28 | 96.88 34 | 99.20 70 | 99.29 61 | 
 | 
| 114514_t |  |  | 93.95 123 | 93.06 138 | 96.63 72 | 99.07 37 | 91.61 112 | 97.46 131 | 97.96 100 | 77.99 371 | 93.00 164 | 97.57 117 | 86.14 135 | 99.33 113 | 89.22 213 | 99.15 74 | 98.94 95 | 
 | 
| IU-MVS |  |  |  |  |  | 99.42 7 | 95.39 11 |  | 97.94 102 | 90.40 192 | 98.94 6 |  |  |  | 97.41 27 | 99.66 10 | 99.74 8 | 
 | 
| MSC_two_6792asdad |  |  |  |  | 98.86 1 | 98.67 58 | 96.94 1 |  | 97.93 103 |  |  |  |  | 99.86 8 | 97.68 14 | 99.67 6 | 99.77 2 | 
 | 
| No_MVS |  |  |  |  | 98.86 1 | 98.67 58 | 96.94 1 |  | 97.93 103 |  |  |  |  | 99.86 8 | 97.68 14 | 99.67 6 | 99.77 2 | 
 | 
| Anonymous20231211 |  |  | 90.63 262 | 89.42 275 | 94.27 212 | 98.24 86 | 89.19 210 | 98.05 54 | 97.89 105 | 79.95 363 | 88.25 285 | 94.96 250 | 72.56 319 | 98.13 230 | 89.70 199 | 85.14 315 | 95.49 261 | 
 | 
| 原ACMM1 |  |  |  |  | 96.38 94 | 98.59 66 | 91.09 140 |  | 97.89 105 | 87.41 279 | 95.22 118 | 97.68 105 | 90.25 72 | 99.54 87 | 87.95 233 | 99.12 77 | 98.49 130 | 
 | 
| CDPH-MVS |  |  | 95.97 67 | 95.38 75 | 97.77 33 | 98.93 47 | 94.44 32 | 96.35 229 | 97.88 107 | 86.98 287 | 96.65 68 | 97.89 88 | 91.99 42 | 99.47 100 | 92.26 147 | 99.46 39 | 99.39 54 | 
 | 
| test11 |  |  |  |  |  |  |  |  | 97.88 107 |  |  |  |  |  |  |  |  | 
 | 
| EIA-MVS |  |  | 95.53 78 | 95.47 71 | 95.71 136 | 97.06 154 | 89.63 184 | 97.82 85 | 97.87 109 | 93.57 77 | 93.92 144 | 95.04 248 | 90.61 69 | 98.95 156 | 94.62 107 | 98.68 95 | 98.54 123 | 
 | 
| CS-MVS |  |  | 96.86 34 | 97.06 17 | 96.26 104 | 98.16 96 | 91.16 138 | 99.09 3 | 97.87 109 | 95.30 18 | 97.06 54 | 98.03 78 | 91.72 44 | 98.71 180 | 97.10 29 | 99.17 72 | 98.90 100 | 
 | 
| 无先验 |  |  |  |  |  |  |  | 95.79 260 | 97.87 109 | 83.87 335 |  |  |  | 99.65 56 | 87.68 243 |  | 98.89 103 | 
 | 
| 3Dnovator+ |  | 91.43 4 | 95.40 79 | 94.48 101 | 98.16 16 | 96.90 163 | 95.34 16 | 98.48 21 | 97.87 109 | 94.65 47 | 88.53 277 | 98.02 80 | 83.69 165 | 99.71 44 | 93.18 134 | 98.96 86 | 99.44 48 | 
 | 
| VPNet |  |  | 92.23 197 | 91.31 203 | 94.99 171 | 95.56 234 | 90.96 143 | 97.22 156 | 97.86 113 | 92.96 112 | 90.96 212 | 96.62 175 | 75.06 301 | 98.20 223 | 91.90 157 | 83.65 338 | 95.80 246 | 
 | 
| test_vis1_n_1920 |  |  | 94.17 111 | 94.58 94 | 92.91 273 | 97.42 138 | 82.02 333 | 97.83 84 | 97.85 114 | 94.68 44 | 98.10 27 | 98.49 36 | 70.15 334 | 99.32 115 | 97.91 13 | 98.82 90 | 97.40 193 | 
 | 
| DVP-MVS |   |  | 97.91 3 | 97.81 4 | 98.22 13 | 99.45 3 | 95.36 13 | 98.21 43 | 97.85 114 | 94.92 30 | 98.73 16 | 98.87 15 | 95.08 8 | 99.84 23 | 97.52 20 | 99.67 6 | 99.48 43 | 
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 | 
| TSAR-MVS + MP. |  |  | 97.42 11 | 97.33 13 | 97.69 40 | 99.25 27 | 94.24 39 | 98.07 52 | 97.85 114 | 93.72 73 | 98.57 19 | 98.35 49 | 93.69 18 | 99.40 108 | 97.06 30 | 99.46 39 | 99.44 48 | 
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition | 
| CS-MVS-test |  |  | 96.89 32 | 97.04 21 | 96.45 88 | 98.29 82 | 91.66 111 | 99.03 4 | 97.85 114 | 95.84 7 | 96.90 57 | 97.97 84 | 91.24 57 | 98.75 174 | 96.92 33 | 99.33 58 | 98.94 95 | 
 | 
| test_fmvsmconf0.01_n |  |  | 96.15 62 | 95.85 65 | 97.03 65 | 92.66 347 | 91.83 104 | 97.97 67 | 97.84 118 | 95.57 12 | 97.53 37 | 99.00 6 | 84.20 159 | 99.76 36 | 98.82 9 | 99.08 79 | 99.48 43 | 
 | 
| AdaColmap |   |  | 94.34 107 | 93.68 114 | 96.31 98 | 98.59 66 | 91.68 110 | 96.59 212 | 97.81 119 | 89.87 200 | 92.15 181 | 97.06 143 | 83.62 168 | 99.54 87 | 89.34 208 | 98.07 120 | 97.70 179 | 
 | 
| ETV-MVS |  |  | 96.02 65 | 95.89 64 | 96.40 91 | 97.16 145 | 92.44 84 | 97.47 129 | 97.77 120 | 94.55 48 | 96.48 77 | 94.51 272 | 91.23 59 | 98.92 159 | 95.65 76 | 98.19 116 | 97.82 175 | 
 | 
| 新几何1 |  |  |  |  | 97.32 50 | 98.60 65 | 93.59 56 |  | 97.75 121 | 81.58 354 | 95.75 104 | 97.85 94 | 90.04 75 | 99.67 54 | 86.50 265 | 99.13 76 | 98.69 117 | 
 | 
| 旧先验1 |  |  |  |  |  | 98.38 78 | 93.38 61 |  | 97.75 121 |  |  | 98.09 73 | 92.30 39 |  |  | 99.01 84 | 99.16 71 | 
 | 
| EC-MVSNet |  |  | 96.42 54 | 96.47 50 | 96.26 104 | 97.01 159 | 91.52 117 | 98.89 5 | 97.75 121 | 94.42 53 | 96.64 69 | 97.68 105 | 89.32 82 | 98.60 190 | 97.45 24 | 99.11 78 | 98.67 119 | 
 | 
| EI-MVSNet-Vis-set |  |  | 96.51 52 | 96.47 50 | 96.63 72 | 98.24 86 | 91.20 133 | 96.89 180 | 97.73 124 | 94.74 42 | 96.49 76 | 98.49 36 | 90.88 66 | 99.58 75 | 96.44 46 | 98.32 111 | 99.13 75 | 
 | 
| PAPM_NR |  |  | 95.01 90 | 94.59 93 | 96.26 104 | 98.89 51 | 90.68 157 | 97.24 151 | 97.73 124 | 91.80 143 | 92.93 169 | 96.62 175 | 89.13 85 | 99.14 133 | 89.21 214 | 97.78 127 | 98.97 91 | 
 | 
| Anonymous20240529 |  |  | 91.98 205 | 90.73 226 | 95.73 134 | 98.14 97 | 89.40 197 | 97.99 60 | 97.72 126 | 79.63 365 | 93.54 151 | 97.41 125 | 69.94 336 | 99.56 83 | 91.04 178 | 91.11 251 | 98.22 151 | 
 | 
| CHOSEN 280x420 |  |  | 93.12 156 | 92.72 154 | 94.34 207 | 96.71 177 | 87.27 256 | 90.29 370 | 97.72 126 | 86.61 294 | 91.34 201 | 95.29 238 | 84.29 158 | 98.41 204 | 93.25 133 | 98.94 87 | 97.35 196 | 
 | 
| EI-MVSNet-UG-set |  |  | 96.34 58 | 96.30 57 | 96.47 85 | 98.20 91 | 90.93 145 | 96.86 182 | 97.72 126 | 94.67 45 | 96.16 89 | 98.46 40 | 90.43 71 | 99.58 75 | 96.23 50 | 97.96 123 | 98.90 100 | 
 | 
| LS3D |  |  | 93.57 139 | 92.61 159 | 96.47 85 | 97.59 132 | 91.61 112 | 97.67 101 | 97.72 126 | 85.17 317 | 90.29 222 | 98.34 52 | 84.60 151 | 99.73 40 | 83.85 304 | 98.27 113 | 98.06 164 | 
 | 
| PAPR |  |  | 94.18 110 | 93.42 130 | 96.48 84 | 97.64 126 | 91.42 123 | 95.55 269 | 97.71 130 | 88.99 227 | 92.34 178 | 95.82 212 | 89.19 83 | 99.11 136 | 86.14 271 | 97.38 138 | 98.90 100 | 
 | 
| UGNet |  |  | 94.04 121 | 93.28 133 | 96.31 98 | 96.85 165 | 91.19 134 | 97.88 78 | 97.68 131 | 94.40 54 | 93.00 164 | 96.18 194 | 73.39 316 | 99.61 67 | 91.72 163 | 98.46 106 | 98.13 157 | 
| Wanjuan Su, Qingshan Xu,  Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 | 
| testdata |  |  |  |  | 95.46 153 | 98.18 95 | 88.90 216 |  | 97.66 132 | 82.73 345 | 97.03 55 | 98.07 74 | 90.06 74 | 98.85 164 | 89.67 200 | 98.98 85 | 98.64 120 | 
 | 
| test12 |  |  |  |  | 97.65 41 | 98.46 70 | 94.26 37 |  | 97.66 132 |  | 95.52 114 |  | 90.89 65 | 99.46 101 |  | 99.25 66 | 99.22 68 | 
 | 
| DTE-MVSNet |  |  | 90.56 263 | 89.75 268 | 93.01 269 | 93.95 314 | 87.25 257 | 97.64 108 | 97.65 134 | 90.74 174 | 87.12 306 | 95.68 223 | 79.97 239 | 97.00 333 | 83.33 305 | 81.66 349 | 94.78 315 | 
 | 
| TAPA-MVS |  | 90.10 7 | 92.30 192 | 91.22 209 | 95.56 143 | 98.33 80 | 89.60 186 | 96.79 188 | 97.65 134 | 81.83 351 | 91.52 196 | 97.23 134 | 87.94 104 | 98.91 161 | 71.31 372 | 98.37 109 | 98.17 155 | 
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 | 
| sd_testset |  |  | 93.10 157 | 92.45 167 | 95.05 166 | 98.09 99 | 89.21 207 | 96.89 180 | 97.64 136 | 93.18 98 | 91.79 190 | 97.28 129 | 75.35 300 | 98.65 185 | 88.99 219 | 92.84 218 | 97.28 199 | 
 | 
| test_cas_vis1_n_1920 |  |  | 94.48 105 | 94.55 98 | 94.28 211 | 96.78 171 | 86.45 277 | 97.63 110 | 97.64 136 | 93.32 92 | 97.68 36 | 98.36 48 | 73.75 314 | 99.08 142 | 96.73 37 | 99.05 81 | 97.31 198 | 
 | 
| cdsmvs_eth3d_5k |  |  | 23.24 363 | 30.99 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 97.63 138 | 0.00 400 | 0.00 401 | 96.88 153 | 84.38 155 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| DPM-MVS |  |  | 95.69 72 | 94.92 85 | 98.01 19 | 98.08 102 | 95.71 9 | 95.27 283 | 97.62 139 | 90.43 191 | 95.55 111 | 97.07 142 | 91.72 44 | 99.50 97 | 89.62 202 | 98.94 87 | 98.82 109 | 
 | 
| canonicalmvs |  |  | 96.02 65 | 95.45 72 | 97.75 35 | 97.59 132 | 95.15 23 | 98.28 32 | 97.60 140 | 94.52 50 | 96.27 86 | 96.12 198 | 87.65 109 | 99.18 128 | 96.20 56 | 94.82 191 | 98.91 99 | 
 | 
| test222 |  |  |  |  |  | 98.24 86 | 92.21 92 | 95.33 278 | 97.60 140 | 79.22 367 | 95.25 116 | 97.84 96 | 88.80 90 |  |  | 99.15 74 | 98.72 114 | 
 | 
| cascas |  |  | 91.20 239 | 90.08 252 | 94.58 197 | 94.97 272 | 89.16 211 | 93.65 336 | 97.59 142 | 79.90 364 | 89.40 254 | 92.92 326 | 75.36 299 | 98.36 211 | 92.14 152 | 94.75 193 | 96.23 225 | 
 | 
| h-mvs33 |  |  | 94.15 113 | 93.52 122 | 96.04 117 | 97.81 116 | 90.22 169 | 97.62 112 | 97.58 143 | 95.19 20 | 96.74 62 | 97.45 122 | 83.67 166 | 99.61 67 | 95.85 67 | 79.73 356 | 98.29 148 | 
 | 
| MVSFormer |  |  | 95.37 80 | 95.16 81 | 95.99 122 | 96.34 201 | 91.21 131 | 98.22 41 | 97.57 144 | 91.42 153 | 96.22 87 | 97.32 127 | 86.20 133 | 97.92 271 | 94.07 115 | 99.05 81 | 98.85 106 | 
 | 
| test_djsdf |  |  | 93.07 160 | 92.76 149 | 94.00 223 | 93.49 330 | 88.70 220 | 98.22 41 | 97.57 144 | 91.42 153 | 90.08 234 | 95.55 230 | 82.85 186 | 97.92 271 | 94.07 115 | 91.58 239 | 95.40 271 | 
 | 
| OMC-MVS |  |  | 95.09 89 | 94.70 91 | 96.25 107 | 98.46 70 | 91.28 127 | 96.43 219 | 97.57 144 | 92.04 138 | 94.77 125 | 97.96 85 | 87.01 122 | 99.09 140 | 91.31 173 | 96.77 154 | 98.36 145 | 
 | 
| PS-MVSNAJss |  |  | 93.74 133 | 93.51 123 | 94.44 201 | 93.91 316 | 89.28 205 | 97.75 90 | 97.56 147 | 92.50 124 | 89.94 237 | 96.54 178 | 88.65 93 | 98.18 226 | 93.83 124 | 90.90 256 | 95.86 239 | 
 | 
| casdiffmvs_mvg |   |  | 95.81 71 | 95.57 68 | 96.51 81 | 96.87 164 | 91.49 118 | 97.50 123 | 97.56 147 | 93.99 65 | 95.13 120 | 97.92 87 | 87.89 105 | 98.78 169 | 95.97 63 | 97.33 141 | 99.26 65 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| jajsoiax |  |  | 92.42 184 | 91.89 183 | 94.03 222 | 93.33 336 | 88.50 227 | 97.73 93 | 97.53 149 | 92.00 140 | 88.85 269 | 96.50 180 | 75.62 298 | 98.11 236 | 93.88 122 | 91.56 240 | 95.48 262 | 
 | 
| mvs_tets |  |  | 92.31 191 | 91.76 185 | 93.94 230 | 93.41 333 | 88.29 231 | 97.63 110 | 97.53 149 | 92.04 138 | 88.76 272 | 96.45 182 | 74.62 306 | 98.09 240 | 93.91 120 | 91.48 242 | 95.45 267 | 
 | 
| dcpmvs_2 |  |  | 96.37 57 | 97.05 20 | 94.31 209 | 98.96 46 | 84.11 313 | 97.56 117 | 97.51 151 | 93.92 67 | 97.43 43 | 98.52 33 | 92.75 27 | 99.32 115 | 97.32 28 | 99.50 33 | 99.51 37 | 
 | 
| HQP_MVS |  |  | 93.78 132 | 93.43 128 | 94.82 182 | 96.21 205 | 89.99 174 | 97.74 91 | 97.51 151 | 94.85 32 | 91.34 201 | 96.64 166 | 81.32 215 | 98.60 190 | 93.02 140 | 92.23 227 | 95.86 239 | 
 | 
| plane_prior5 |  |  |  |  |  |  |  |  | 97.51 151 |  |  |  |  | 98.60 190 | 93.02 140 | 92.23 227 | 95.86 239 | 
 | 
| PS-MVSNAJ |  |  | 95.37 80 | 95.33 77 | 95.49 149 | 97.35 139 | 90.66 158 | 95.31 280 | 97.48 154 | 93.85 70 | 96.51 75 | 95.70 222 | 88.65 93 | 99.65 56 | 94.80 102 | 98.27 113 | 96.17 229 | 
 | 
| API-MVS |  |  | 94.84 99 | 94.49 100 | 95.90 124 | 97.90 112 | 92.00 100 | 97.80 87 | 97.48 154 | 89.19 221 | 94.81 124 | 96.71 158 | 88.84 89 | 99.17 129 | 88.91 221 | 98.76 93 | 96.53 218 | 
 | 
| MG-MVS |  |  | 95.61 75 | 95.38 75 | 96.31 98 | 98.42 73 | 90.53 160 | 96.04 248 | 97.48 154 | 93.47 85 | 95.67 108 | 98.10 71 | 89.17 84 | 99.25 121 | 91.27 174 | 98.77 92 | 99.13 75 | 
 | 
| MAR-MVS |  |  | 94.22 109 | 93.46 125 | 96.51 81 | 98.00 105 | 92.19 95 | 97.67 101 | 97.47 157 | 88.13 259 | 93.00 164 | 95.84 210 | 84.86 149 | 99.51 94 | 87.99 232 | 98.17 118 | 97.83 174 | 
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 | 
| CLD-MVS |  |  | 92.98 164 | 92.53 163 | 94.32 208 | 96.12 215 | 89.20 208 | 95.28 281 | 97.47 157 | 92.66 120 | 89.90 238 | 95.62 226 | 80.58 226 | 98.40 205 | 92.73 145 | 92.40 225 | 95.38 273 | 
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 | 
| UniMVSNet_ETH3D |  |  | 91.34 233 | 90.22 248 | 94.68 192 | 94.86 282 | 87.86 248 | 97.23 155 | 97.46 159 | 87.99 260 | 89.90 238 | 96.92 151 | 66.35 355 | 98.23 220 | 90.30 188 | 90.99 254 | 97.96 165 | 
 | 
| nrg030 |  |  | 94.05 120 | 93.31 132 | 96.27 103 | 95.22 260 | 94.59 29 | 98.34 27 | 97.46 159 | 92.93 113 | 91.21 210 | 96.64 166 | 87.23 120 | 98.22 221 | 94.99 96 | 85.80 305 | 95.98 238 | 
 | 
| XVG-OURS |  |  | 93.72 134 | 93.35 131 | 94.80 187 | 97.07 151 | 88.61 221 | 94.79 294 | 97.46 159 | 91.97 141 | 93.99 141 | 97.86 93 | 81.74 210 | 98.88 163 | 92.64 146 | 92.67 223 | 96.92 210 | 
 | 
| LPG-MVS_test |  |  | 92.94 167 | 92.56 160 | 94.10 217 | 96.16 210 | 88.26 233 | 97.65 104 | 97.46 159 | 91.29 156 | 90.12 230 | 97.16 137 | 79.05 254 | 98.73 176 | 92.25 149 | 91.89 235 | 95.31 278 | 
 | 
| LGP-MVS_train |  |  |  |  | 94.10 217 | 96.16 210 | 88.26 233 |  | 97.46 159 | 91.29 156 | 90.12 230 | 97.16 137 | 79.05 254 | 98.73 176 | 92.25 149 | 91.89 235 | 95.31 278 | 
 | 
| MVS |  |  | 91.71 211 | 90.44 235 | 95.51 147 | 95.20 262 | 91.59 114 | 96.04 248 | 97.45 164 | 73.44 379 | 87.36 303 | 95.60 227 | 85.42 142 | 99.10 137 | 85.97 276 | 97.46 133 | 95.83 243 | 
 | 
| XVG-OURS-SEG-HR |  |  | 93.86 128 | 93.55 118 | 94.81 184 | 97.06 154 | 88.53 226 | 95.28 281 | 97.45 164 | 91.68 146 | 94.08 140 | 97.68 105 | 82.41 197 | 98.90 162 | 93.84 123 | 92.47 224 | 96.98 206 | 
 | 
| baseline |  |  | 95.58 76 | 95.42 74 | 96.08 113 | 96.78 171 | 90.41 165 | 97.16 161 | 97.45 164 | 93.69 76 | 95.65 109 | 97.85 94 | 87.29 118 | 98.68 182 | 95.66 73 | 97.25 145 | 99.13 75 | 
 | 
| ab-mvs |  |  | 93.57 139 | 92.55 161 | 96.64 70 | 97.28 140 | 91.96 102 | 95.40 275 | 97.45 164 | 89.81 205 | 93.22 162 | 96.28 190 | 79.62 245 | 99.46 101 | 90.74 182 | 93.11 215 | 98.50 128 | 
 | 
| xiu_mvs_v2_base |  |  | 95.32 82 | 95.29 78 | 95.40 154 | 97.22 141 | 90.50 161 | 95.44 274 | 97.44 168 | 93.70 75 | 96.46 79 | 96.18 194 | 88.59 96 | 99.53 89 | 94.79 104 | 97.81 126 | 96.17 229 | 
 | 
| 1314 |  |  | 92.81 175 | 92.03 177 | 95.14 162 | 95.33 252 | 89.52 192 | 96.04 248 | 97.44 168 | 87.72 272 | 86.25 320 | 95.33 237 | 83.84 163 | 98.79 168 | 89.26 211 | 97.05 150 | 97.11 204 | 
 | 
| casdiffmvs |   |  | 95.64 74 | 95.49 70 | 96.08 113 | 96.76 176 | 90.45 163 | 97.29 148 | 97.44 168 | 94.00 64 | 95.46 115 | 97.98 83 | 87.52 113 | 98.73 176 | 95.64 77 | 97.33 141 | 99.08 81 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| XXY-MVS |  |  | 92.16 199 | 91.23 208 | 94.95 176 | 94.75 288 | 90.94 144 | 97.47 129 | 97.43 171 | 89.14 222 | 88.90 266 | 96.43 183 | 79.71 243 | 98.24 219 | 89.56 203 | 87.68 288 | 95.67 259 | 
 | 
| anonymousdsp |  |  | 92.16 199 | 91.55 194 | 93.97 226 | 92.58 349 | 89.55 189 | 97.51 122 | 97.42 172 | 89.42 215 | 88.40 279 | 94.84 257 | 80.66 224 | 97.88 276 | 91.87 159 | 91.28 247 | 94.48 323 | 
 | 
| Effi-MVS+ |  |  | 94.93 95 | 94.45 102 | 96.36 96 | 96.61 181 | 91.47 120 | 96.41 221 | 97.41 173 | 91.02 169 | 94.50 130 | 95.92 206 | 87.53 112 | 98.78 169 | 93.89 121 | 96.81 153 | 98.84 108 | 
 | 
| HQP3-MVS |  |  |  |  |  |  |  |  | 97.39 174 |  |  |  |  |  |  | 92.10 232 |  | 
 | 
| HQP-MVS |  |  | 93.19 152 | 92.74 152 | 94.54 199 | 95.86 221 | 89.33 201 | 96.65 203 | 97.39 174 | 93.55 78 | 90.14 224 | 95.87 208 | 80.95 218 | 98.50 198 | 92.13 153 | 92.10 232 | 95.78 248 | 
 | 
| PLC |   | 91.00 6 | 94.11 117 | 93.43 128 | 96.13 112 | 98.58 68 | 91.15 139 | 96.69 199 | 97.39 174 | 87.29 282 | 91.37 200 | 96.71 158 | 88.39 97 | 99.52 93 | 87.33 252 | 97.13 149 | 97.73 177 | 
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 | 
| v7n |  |  | 90.76 256 | 89.86 261 | 93.45 255 | 93.54 327 | 87.60 253 | 97.70 100 | 97.37 177 | 88.85 233 | 87.65 296 | 94.08 298 | 81.08 217 | 98.10 237 | 84.68 292 | 83.79 337 | 94.66 320 | 
 | 
| UnsupCasMVSNet_eth |  |  | 85.99 322 | 84.45 326 | 90.62 327 | 89.97 367 | 82.40 330 | 93.62 337 | 97.37 177 | 89.86 201 | 78.59 368 | 92.37 334 | 65.25 361 | 95.35 361 | 82.27 317 | 70.75 377 | 94.10 334 | 
 | 
| ACMM |  | 89.79 8 | 92.96 165 | 92.50 165 | 94.35 206 | 96.30 203 | 88.71 219 | 97.58 115 | 97.36 179 | 91.40 155 | 90.53 216 | 96.65 165 | 79.77 242 | 98.75 174 | 91.24 175 | 91.64 237 | 95.59 260 | 
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 | 
| xiu_mvs_v1_base_debu |  |  | 95.01 90 | 94.76 88 | 95.75 131 | 96.58 184 | 91.71 107 | 96.25 237 | 97.35 180 | 92.99 105 | 96.70 64 | 96.63 172 | 82.67 189 | 99.44 104 | 96.22 51 | 97.46 133 | 96.11 234 | 
 | 
| xiu_mvs_v1_base |  |  | 95.01 90 | 94.76 88 | 95.75 131 | 96.58 184 | 91.71 107 | 96.25 237 | 97.35 180 | 92.99 105 | 96.70 64 | 96.63 172 | 82.67 189 | 99.44 104 | 96.22 51 | 97.46 133 | 96.11 234 | 
 | 
| xiu_mvs_v1_base_debi |  |  | 95.01 90 | 94.76 88 | 95.75 131 | 96.58 184 | 91.71 107 | 96.25 237 | 97.35 180 | 92.99 105 | 96.70 64 | 96.63 172 | 82.67 189 | 99.44 104 | 96.22 51 | 97.46 133 | 96.11 234 | 
 | 
| diffmvs |   |  | 95.25 84 | 95.13 82 | 95.63 139 | 96.43 197 | 89.34 200 | 95.99 252 | 97.35 180 | 92.83 115 | 96.31 83 | 97.37 126 | 86.44 128 | 98.67 183 | 96.26 48 | 97.19 147 | 98.87 105 | 
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 | 
| WTY-MVS |  |  | 94.71 103 | 94.02 107 | 96.79 68 | 97.71 121 | 92.05 98 | 96.59 212 | 97.35 180 | 90.61 185 | 94.64 127 | 96.93 148 | 86.41 129 | 99.39 109 | 91.20 176 | 94.71 195 | 98.94 95 | 
 | 
| F-COLMAP |  |  | 93.58 138 | 92.98 140 | 95.37 155 | 98.40 75 | 88.98 214 | 97.18 159 | 97.29 185 | 87.75 271 | 90.49 217 | 97.10 141 | 85.21 144 | 99.50 97 | 86.70 262 | 96.72 157 | 97.63 181 | 
 | 
| XVG-ACMP-BASELINE |  |  | 90.93 252 | 90.21 249 | 93.09 267 | 94.31 306 | 85.89 286 | 95.33 278 | 97.26 186 | 91.06 168 | 89.38 255 | 95.44 235 | 68.61 341 | 98.60 190 | 89.46 205 | 91.05 252 | 94.79 313 | 
 | 
| PCF-MVS |  | 89.48 11 | 91.56 219 | 89.95 258 | 96.36 96 | 96.60 182 | 92.52 82 | 92.51 356 | 97.26 186 | 79.41 366 | 88.90 266 | 96.56 177 | 84.04 162 | 99.55 85 | 77.01 351 | 97.30 143 | 97.01 205 | 
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 | 
| ACMP |  | 89.59 10 | 92.62 179 | 92.14 174 | 94.05 220 | 96.40 198 | 88.20 236 | 97.36 140 | 97.25 188 | 91.52 148 | 88.30 282 | 96.64 166 | 78.46 266 | 98.72 179 | 91.86 160 | 91.48 242 | 95.23 285 | 
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 | 
| OPM-MVS |  |  | 93.28 148 | 92.76 149 | 94.82 182 | 94.63 294 | 90.77 152 | 96.65 203 | 97.18 189 | 93.72 73 | 91.68 192 | 97.26 132 | 79.33 249 | 98.63 187 | 92.13 153 | 92.28 226 | 95.07 291 | 
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). | 
| PatchMatch-RL |  |  | 92.90 169 | 92.02 178 | 95.56 143 | 98.19 93 | 90.80 150 | 95.27 283 | 97.18 189 | 87.96 261 | 91.86 189 | 95.68 223 | 80.44 229 | 98.99 154 | 84.01 300 | 97.54 132 | 96.89 211 | 
 | 
| alignmvs |  |  | 95.87 70 | 95.23 79 | 97.78 31 | 97.56 135 | 95.19 21 | 97.86 79 | 97.17 191 | 94.39 55 | 96.47 78 | 96.40 185 | 85.89 136 | 99.20 125 | 96.21 55 | 95.11 187 | 98.95 94 | 
 | 
| MVS_Test |  |  | 94.89 97 | 94.62 92 | 95.68 137 | 96.83 168 | 89.55 189 | 96.70 197 | 97.17 191 | 91.17 164 | 95.60 110 | 96.11 201 | 87.87 106 | 98.76 173 | 93.01 142 | 97.17 148 | 98.72 114 | 
 | 
| Fast-Effi-MVS+ |  |  | 93.46 142 | 92.75 151 | 95.59 142 | 96.77 173 | 90.03 171 | 96.81 187 | 97.13 193 | 88.19 255 | 91.30 204 | 94.27 288 | 86.21 132 | 98.63 187 | 87.66 244 | 96.46 164 | 98.12 158 | 
 | 
| EI-MVSNet |  |  | 93.03 162 | 92.88 144 | 93.48 253 | 95.77 226 | 86.98 265 | 96.44 217 | 97.12 194 | 90.66 181 | 91.30 204 | 97.64 112 | 86.56 125 | 98.05 248 | 89.91 193 | 90.55 261 | 95.41 268 | 
 | 
| MVSTER |  |  | 93.20 151 | 92.81 148 | 94.37 205 | 96.56 187 | 89.59 187 | 97.06 166 | 97.12 194 | 91.24 160 | 91.30 204 | 95.96 204 | 82.02 204 | 98.05 248 | 93.48 128 | 90.55 261 | 95.47 265 | 
 | 
| test_yl |  |  | 94.78 101 | 94.23 105 | 96.43 89 | 97.74 119 | 91.22 129 | 96.85 183 | 97.10 196 | 91.23 161 | 95.71 105 | 96.93 148 | 84.30 156 | 99.31 117 | 93.10 135 | 95.12 185 | 98.75 111 | 
 | 
| DCV-MVSNet |  |  | 94.78 101 | 94.23 105 | 96.43 89 | 97.74 119 | 91.22 129 | 96.85 183 | 97.10 196 | 91.23 161 | 95.71 105 | 96.93 148 | 84.30 156 | 99.31 117 | 93.10 135 | 95.12 185 | 98.75 111 | 
 | 
| LTVRE_ROB |  | 88.41 13 | 90.99 248 | 89.92 260 | 94.19 213 | 96.18 208 | 89.55 189 | 96.31 233 | 97.09 198 | 87.88 264 | 85.67 324 | 95.91 207 | 78.79 262 | 98.57 194 | 81.50 320 | 89.98 267 | 94.44 326 | 
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 | 
| test_fmvs1_n |  |  | 92.73 177 | 92.88 144 | 92.29 290 | 96.08 218 | 81.05 341 | 97.98 61 | 97.08 199 | 90.72 176 | 96.79 60 | 98.18 68 | 63.07 365 | 98.45 202 | 97.62 18 | 98.42 108 | 97.36 194 | 
 | 
| v10 |  |  | 91.04 246 | 90.23 246 | 93.49 252 | 94.12 310 | 88.16 239 | 97.32 145 | 97.08 199 | 88.26 254 | 88.29 283 | 94.22 293 | 82.17 202 | 97.97 259 | 86.45 266 | 84.12 331 | 94.33 329 | 
 | 
| v144192 |  |  | 91.06 245 | 90.28 242 | 93.39 256 | 93.66 325 | 87.23 259 | 96.83 186 | 97.07 201 | 87.43 278 | 89.69 245 | 94.28 287 | 81.48 213 | 98.00 255 | 87.18 256 | 84.92 321 | 94.93 299 | 
 | 
| v1192 |  |  | 91.07 244 | 90.23 246 | 93.58 249 | 93.70 322 | 87.82 249 | 96.73 193 | 97.07 201 | 87.77 269 | 89.58 248 | 94.32 285 | 80.90 222 | 97.97 259 | 86.52 264 | 85.48 308 | 94.95 295 | 
 | 
| v8 |  |  | 91.29 236 | 90.53 234 | 93.57 250 | 94.15 309 | 88.12 240 | 97.34 142 | 97.06 203 | 88.99 227 | 88.32 281 | 94.26 290 | 83.08 178 | 98.01 254 | 87.62 246 | 83.92 335 | 94.57 322 | 
 | 
| mvs_anonymous |  |  | 93.82 130 | 93.74 112 | 94.06 219 | 96.44 196 | 85.41 293 | 95.81 259 | 97.05 204 | 89.85 203 | 90.09 233 | 96.36 187 | 87.44 115 | 97.75 287 | 93.97 117 | 96.69 158 | 99.02 84 | 
 | 
| IterMVS-LS |  |  | 92.29 193 | 91.94 181 | 93.34 258 | 96.25 204 | 86.97 266 | 96.57 215 | 97.05 204 | 90.67 179 | 89.50 253 | 94.80 260 | 86.59 124 | 97.64 295 | 89.91 193 | 86.11 303 | 95.40 271 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. | 
| v1921920 |  |  | 90.85 254 | 90.03 257 | 93.29 260 | 93.55 326 | 86.96 267 | 96.74 192 | 97.04 206 | 87.36 280 | 89.52 252 | 94.34 282 | 80.23 234 | 97.97 259 | 86.27 267 | 85.21 314 | 94.94 297 | 
 | 
| CDS-MVSNet |  |  | 94.14 116 | 93.54 119 | 95.93 123 | 96.18 208 | 91.46 121 | 96.33 231 | 97.04 206 | 88.97 229 | 93.56 149 | 96.51 179 | 87.55 111 | 97.89 275 | 89.80 196 | 95.95 169 | 98.44 138 | 
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 | 
| v1144 |  |  | 91.37 230 | 90.60 230 | 93.68 245 | 93.89 317 | 88.23 235 | 96.84 185 | 97.03 208 | 88.37 251 | 89.69 245 | 94.39 279 | 82.04 203 | 97.98 256 | 87.80 236 | 85.37 310 | 94.84 305 | 
 | 
| v1240 |  |  | 90.70 260 | 89.85 262 | 93.23 262 | 93.51 329 | 86.80 268 | 96.61 209 | 97.02 209 | 87.16 285 | 89.58 248 | 94.31 286 | 79.55 246 | 97.98 256 | 85.52 282 | 85.44 309 | 94.90 302 | 
 | 
| EPP-MVSNet |  |  | 95.22 86 | 95.04 84 | 95.76 129 | 97.49 136 | 89.56 188 | 98.67 10 | 97.00 210 | 90.69 177 | 94.24 135 | 97.62 114 | 89.79 79 | 98.81 167 | 93.39 132 | 96.49 162 | 98.92 98 | 
 | 
| V42 |  |  | 91.58 218 | 90.87 217 | 93.73 240 | 94.05 313 | 88.50 227 | 97.32 145 | 96.97 211 | 88.80 239 | 89.71 243 | 94.33 283 | 82.54 193 | 98.05 248 | 89.01 218 | 85.07 317 | 94.64 321 | 
 | 
| test_fmvs1 |  |  | 93.21 150 | 93.53 120 | 92.25 292 | 96.55 189 | 81.20 340 | 97.40 136 | 96.96 212 | 90.68 178 | 96.80 59 | 98.04 77 | 69.25 338 | 98.40 205 | 97.58 19 | 98.50 102 | 97.16 203 | 
 | 
| FMVSNet2 |  |  | 91.31 234 | 90.08 252 | 94.99 171 | 96.51 191 | 92.21 92 | 97.41 132 | 96.95 213 | 88.82 236 | 88.62 274 | 94.75 262 | 73.87 310 | 97.42 316 | 85.20 287 | 88.55 282 | 95.35 275 | 
 | 
| ACMH |  | 87.59 16 | 90.53 264 | 89.42 275 | 93.87 234 | 96.21 205 | 87.92 245 | 97.24 151 | 96.94 214 | 88.45 249 | 83.91 344 | 96.27 191 | 71.92 320 | 98.62 189 | 84.43 295 | 89.43 273 | 95.05 293 | 
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 | 
| GBi-Net |  |  | 91.35 231 | 90.27 243 | 94.59 193 | 96.51 191 | 91.18 135 | 97.50 123 | 96.93 215 | 88.82 236 | 89.35 256 | 94.51 272 | 73.87 310 | 97.29 323 | 86.12 272 | 88.82 277 | 95.31 278 | 
 | 
| test1 |  |  | 91.35 231 | 90.27 243 | 94.59 193 | 96.51 191 | 91.18 135 | 97.50 123 | 96.93 215 | 88.82 236 | 89.35 256 | 94.51 272 | 73.87 310 | 97.29 323 | 86.12 272 | 88.82 277 | 95.31 278 | 
 | 
| FMVSNet3 |  |  | 91.78 209 | 90.69 228 | 95.03 169 | 96.53 190 | 92.27 91 | 97.02 169 | 96.93 215 | 89.79 206 | 89.35 256 | 94.65 267 | 77.01 282 | 97.47 311 | 86.12 272 | 88.82 277 | 95.35 275 | 
 | 
| FMVSNet1 |  |  | 89.88 280 | 88.31 290 | 94.59 193 | 95.41 242 | 91.18 135 | 97.50 123 | 96.93 215 | 86.62 293 | 87.41 301 | 94.51 272 | 65.94 359 | 97.29 323 | 83.04 308 | 87.43 291 | 95.31 278 | 
 | 
| GeoE |  |  | 93.89 126 | 93.28 133 | 95.72 135 | 96.96 162 | 89.75 182 | 98.24 39 | 96.92 219 | 89.47 213 | 92.12 183 | 97.21 135 | 84.42 154 | 98.39 209 | 87.71 239 | 96.50 161 | 99.01 87 | 
 | 
| miper_enhance_ethall |  |  | 91.54 221 | 91.01 214 | 93.15 265 | 95.35 248 | 87.07 264 | 93.97 322 | 96.90 220 | 86.79 291 | 89.17 263 | 93.43 322 | 86.55 126 | 97.64 295 | 89.97 192 | 86.93 295 | 94.74 317 | 
 | 
| eth_miper_zixun_eth |  |  | 91.02 247 | 90.59 231 | 92.34 289 | 95.33 252 | 84.35 309 | 94.10 319 | 96.90 220 | 88.56 245 | 88.84 270 | 94.33 283 | 84.08 161 | 97.60 300 | 88.77 224 | 84.37 329 | 95.06 292 | 
 | 
| TAMVS |  |  | 94.01 122 | 93.46 125 | 95.64 138 | 96.16 210 | 90.45 163 | 96.71 196 | 96.89 222 | 89.27 219 | 93.46 154 | 96.92 151 | 87.29 118 | 97.94 267 | 88.70 225 | 95.74 174 | 98.53 124 | 
 | 
| miper_ehance_all_eth |  |  | 91.59 216 | 91.13 212 | 92.97 271 | 95.55 235 | 86.57 276 | 94.47 303 | 96.88 223 | 87.77 269 | 88.88 268 | 94.01 299 | 86.22 131 | 97.54 304 | 89.49 204 | 86.93 295 | 94.79 313 | 
 | 
| v2v482 |  |  | 91.59 216 | 90.85 220 | 93.80 237 | 93.87 318 | 88.17 238 | 96.94 177 | 96.88 223 | 89.54 210 | 89.53 251 | 94.90 254 | 81.70 211 | 98.02 253 | 89.25 212 | 85.04 319 | 95.20 286 | 
 | 
| CNLPA |  |  | 94.28 108 | 93.53 120 | 96.52 78 | 98.38 78 | 92.55 81 | 96.59 212 | 96.88 223 | 90.13 197 | 91.91 187 | 97.24 133 | 85.21 144 | 99.09 140 | 87.64 245 | 97.83 125 | 97.92 167 | 
 | 
| PAPM |  |  | 91.52 222 | 90.30 241 | 95.20 159 | 95.30 255 | 89.83 180 | 93.38 342 | 96.85 226 | 86.26 300 | 88.59 275 | 95.80 213 | 84.88 148 | 98.15 228 | 75.67 355 | 95.93 170 | 97.63 181 | 
 | 
| c3_l |  |  | 91.38 228 | 90.89 216 | 92.88 275 | 95.58 233 | 86.30 280 | 94.68 296 | 96.84 227 | 88.17 256 | 88.83 271 | 94.23 291 | 85.65 140 | 97.47 311 | 89.36 207 | 84.63 323 | 94.89 303 | 
 | 
| pm-mvs1 |  |  | 90.72 259 | 89.65 272 | 93.96 227 | 94.29 307 | 89.63 184 | 97.79 88 | 96.82 228 | 89.07 223 | 86.12 322 | 95.48 234 | 78.61 264 | 97.78 284 | 86.97 260 | 81.67 348 | 94.46 324 | 
 | 
| test_vis1_n |  |  | 92.37 187 | 92.26 172 | 92.72 280 | 94.75 288 | 82.64 325 | 98.02 56 | 96.80 229 | 91.18 163 | 97.77 35 | 97.93 86 | 58.02 372 | 98.29 217 | 97.63 17 | 98.21 115 | 97.23 202 | 
 | 
| CMPMVS |   | 62.92 21 | 85.62 326 | 84.92 323 | 87.74 348 | 89.14 372 | 73.12 378 | 94.17 317 | 96.80 229 | 73.98 377 | 73.65 376 | 94.93 252 | 66.36 354 | 97.61 299 | 83.95 302 | 91.28 247 | 92.48 357 | 
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 | 
| MS-PatchMatch |  |  | 90.27 269 | 89.77 266 | 91.78 305 | 94.33 304 | 84.72 307 | 95.55 269 | 96.73 231 | 86.17 302 | 86.36 319 | 95.28 240 | 71.28 325 | 97.80 282 | 84.09 299 | 98.14 119 | 92.81 351 | 
 | 
| Effi-MVS+-dtu |  |  | 93.08 159 | 93.21 135 | 92.68 283 | 96.02 219 | 83.25 323 | 97.14 163 | 96.72 232 | 93.85 70 | 91.20 211 | 93.44 320 | 83.08 178 | 98.30 216 | 91.69 166 | 95.73 175 | 96.50 220 | 
 | 
| TSAR-MVS + GP. |  |  | 96.69 46 | 96.49 49 | 97.27 55 | 98.31 81 | 93.39 60 | 96.79 188 | 96.72 232 | 94.17 60 | 97.44 41 | 97.66 108 | 92.76 26 | 99.33 113 | 96.86 35 | 97.76 129 | 99.08 81 | 
 | 
| 1112_ss |  |  | 93.37 145 | 92.42 168 | 96.21 108 | 97.05 156 | 90.99 141 | 96.31 233 | 96.72 232 | 86.87 290 | 89.83 241 | 96.69 162 | 86.51 127 | 99.14 133 | 88.12 230 | 93.67 209 | 98.50 128 | 
 | 
| PVSNet |  | 86.66 18 | 92.24 196 | 91.74 188 | 93.73 240 | 97.77 118 | 83.69 320 | 92.88 351 | 96.72 232 | 87.91 263 | 93.00 164 | 94.86 256 | 78.51 265 | 99.05 149 | 86.53 263 | 97.45 137 | 98.47 133 | 
 | 
| miper_lstm_enhance |  |  | 90.50 266 | 90.06 256 | 91.83 301 | 95.33 252 | 83.74 317 | 93.86 328 | 96.70 236 | 87.56 276 | 87.79 293 | 93.81 307 | 83.45 171 | 96.92 335 | 87.39 250 | 84.62 324 | 94.82 308 | 
 | 
| v148 |  |  | 90.99 248 | 90.38 237 | 92.81 278 | 93.83 319 | 85.80 287 | 96.78 190 | 96.68 237 | 89.45 214 | 88.75 273 | 93.93 303 | 82.96 184 | 97.82 281 | 87.83 235 | 83.25 340 | 94.80 311 | 
 | 
| ACMH+ |  | 87.92 14 | 90.20 273 | 89.18 280 | 93.25 261 | 96.48 194 | 86.45 277 | 96.99 173 | 96.68 237 | 88.83 235 | 84.79 333 | 96.22 193 | 70.16 333 | 98.53 196 | 84.42 296 | 88.04 285 | 94.77 316 | 
 | 
| CANet_DTU |  |  | 94.37 106 | 93.65 115 | 96.55 76 | 96.46 195 | 92.13 96 | 96.21 241 | 96.67 239 | 94.38 56 | 93.53 152 | 97.03 145 | 79.34 248 | 99.71 44 | 90.76 181 | 98.45 107 | 97.82 175 | 
 | 
| cl____ |  |  | 90.96 251 | 90.32 239 | 92.89 274 | 95.37 246 | 86.21 283 | 94.46 305 | 96.64 240 | 87.82 265 | 88.15 288 | 94.18 294 | 82.98 182 | 97.54 304 | 87.70 240 | 85.59 306 | 94.92 301 | 
 | 
| HY-MVS |  | 89.66 9 | 93.87 127 | 92.95 141 | 96.63 72 | 97.10 150 | 92.49 83 | 95.64 267 | 96.64 240 | 89.05 225 | 93.00 164 | 95.79 216 | 85.77 139 | 99.45 103 | 89.16 217 | 94.35 197 | 97.96 165 | 
 | 
| Test_1112_low_res |  |  | 92.84 173 | 91.84 184 | 95.85 127 | 97.04 157 | 89.97 177 | 95.53 271 | 96.64 240 | 85.38 312 | 89.65 247 | 95.18 243 | 85.86 137 | 99.10 137 | 87.70 240 | 93.58 214 | 98.49 130 | 
 | 
| DIV-MVS_self_test |  |  | 90.97 250 | 90.33 238 | 92.88 275 | 95.36 247 | 86.19 284 | 94.46 305 | 96.63 243 | 87.82 265 | 88.18 287 | 94.23 291 | 82.99 181 | 97.53 306 | 87.72 237 | 85.57 307 | 94.93 299 | 
 | 
| Fast-Effi-MVS+-dtu |  |  | 92.29 193 | 91.99 179 | 93.21 264 | 95.27 256 | 85.52 291 | 97.03 167 | 96.63 243 | 92.09 136 | 89.11 265 | 95.14 245 | 80.33 232 | 98.08 241 | 87.54 248 | 94.74 194 | 96.03 237 | 
 | 
| UnsupCasMVSNet_bld |  |  | 82.13 339 | 79.46 344 | 90.14 333 | 88.00 377 | 82.47 328 | 90.89 368 | 96.62 245 | 78.94 368 | 75.61 372 | 84.40 381 | 56.63 375 | 96.31 343 | 77.30 348 | 66.77 384 | 91.63 364 | 
 | 
| cl22 |  |  | 91.21 238 | 90.56 233 | 93.14 266 | 96.09 217 | 86.80 268 | 94.41 307 | 96.58 246 | 87.80 267 | 88.58 276 | 93.99 301 | 80.85 223 | 97.62 298 | 89.87 195 | 86.93 295 | 94.99 294 | 
 | 
| RRT_MVS |  |  | 93.10 157 | 92.83 146 | 93.93 232 | 94.76 286 | 88.04 241 | 98.47 22 | 96.55 247 | 93.44 86 | 90.01 236 | 97.04 144 | 80.64 225 | 97.93 270 | 94.33 112 | 90.21 266 | 95.83 243 | 
 | 
| jason |  |  | 94.84 99 | 94.39 104 | 96.18 110 | 95.52 236 | 90.93 145 | 96.09 246 | 96.52 248 | 89.28 218 | 96.01 96 | 97.32 127 | 84.70 150 | 98.77 172 | 95.15 92 | 98.91 89 | 98.85 106 | 
| jason: jason. | 
| tt0805 |  |  | 91.09 243 | 90.07 255 | 94.16 215 | 95.61 231 | 88.31 230 | 97.56 117 | 96.51 249 | 89.56 209 | 89.17 263 | 95.64 225 | 67.08 353 | 98.38 210 | 91.07 177 | 88.44 283 | 95.80 246 | 
 | 
| AUN-MVS |  |  | 91.76 210 | 90.75 225 | 94.81 184 | 97.00 160 | 88.57 223 | 96.65 203 | 96.49 250 | 89.63 207 | 92.15 181 | 96.12 198 | 78.66 263 | 98.50 198 | 90.83 179 | 79.18 359 | 97.36 194 | 
 | 
| hse-mvs2 |  |  | 93.45 143 | 92.99 139 | 94.81 184 | 97.02 158 | 88.59 222 | 96.69 199 | 96.47 251 | 95.19 20 | 96.74 62 | 96.16 197 | 83.67 166 | 98.48 201 | 95.85 67 | 79.13 360 | 97.35 196 | 
 | 
| EG-PatchMatch MVS |  |  | 87.02 312 | 85.44 316 | 91.76 307 | 92.67 346 | 85.00 302 | 96.08 247 | 96.45 252 | 83.41 341 | 79.52 364 | 93.49 318 | 57.10 374 | 97.72 289 | 79.34 339 | 90.87 258 | 92.56 355 | 
 | 
| KD-MVS_self_test |  |  | 85.95 323 | 84.95 322 | 88.96 343 | 89.55 371 | 79.11 364 | 95.13 288 | 96.42 253 | 85.91 305 | 84.07 342 | 90.48 354 | 70.03 335 | 94.82 363 | 80.04 331 | 72.94 374 | 92.94 349 | 
 | 
| pmmvs6 |  |  | 87.81 304 | 86.19 311 | 92.69 282 | 91.32 359 | 86.30 280 | 97.34 142 | 96.41 254 | 80.59 362 | 84.05 343 | 94.37 281 | 67.37 348 | 97.67 292 | 84.75 291 | 79.51 358 | 94.09 336 | 
 | 
| PMMVS |  |  | 92.86 171 | 92.34 169 | 94.42 203 | 94.92 277 | 86.73 271 | 94.53 301 | 96.38 255 | 84.78 324 | 94.27 134 | 95.12 247 | 83.13 177 | 98.40 205 | 91.47 170 | 96.49 162 | 98.12 158 | 
 | 
| RPSCF |  |  | 90.75 257 | 90.86 218 | 90.42 330 | 96.84 166 | 76.29 371 | 95.61 268 | 96.34 256 | 83.89 333 | 91.38 199 | 97.87 91 | 76.45 287 | 98.78 169 | 87.16 257 | 92.23 227 | 96.20 227 | 
 | 
| MSDG |  |  | 91.42 226 | 90.24 245 | 94.96 175 | 97.15 147 | 88.91 215 | 93.69 334 | 96.32 257 | 85.72 308 | 86.93 314 | 96.47 181 | 80.24 233 | 98.98 155 | 80.57 328 | 95.05 188 | 96.98 206 | 
 | 
| OurMVSNet-221017-0 |  |  | 90.51 265 | 90.19 250 | 91.44 313 | 93.41 333 | 81.25 338 | 96.98 174 | 96.28 258 | 91.68 146 | 86.55 318 | 96.30 189 | 74.20 309 | 97.98 256 | 88.96 220 | 87.40 293 | 95.09 290 | 
 | 
| MVP-Stereo |  |  | 90.74 258 | 90.08 252 | 92.71 281 | 93.19 338 | 88.20 236 | 95.86 257 | 96.27 259 | 86.07 303 | 84.86 332 | 94.76 261 | 77.84 277 | 97.75 287 | 83.88 303 | 98.01 121 | 92.17 362 | 
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. | 
| lupinMVS |  |  | 94.99 94 | 94.56 95 | 96.29 102 | 96.34 201 | 91.21 131 | 95.83 258 | 96.27 259 | 88.93 231 | 96.22 87 | 96.88 153 | 86.20 133 | 98.85 164 | 95.27 89 | 99.05 81 | 98.82 109 | 
 | 
| BH-untuned |  |  | 92.94 167 | 92.62 158 | 93.92 233 | 97.22 141 | 86.16 285 | 96.40 225 | 96.25 261 | 90.06 198 | 89.79 242 | 96.17 196 | 83.19 174 | 98.35 212 | 87.19 255 | 97.27 144 | 97.24 201 | 
 | 
| CL-MVSNet_self_test |  |  | 86.31 318 | 85.15 320 | 89.80 337 | 88.83 374 | 81.74 336 | 93.93 325 | 96.22 262 | 86.67 292 | 85.03 330 | 90.80 353 | 78.09 273 | 94.50 364 | 74.92 358 | 71.86 376 | 93.15 347 | 
 | 
| IS-MVSNet |  |  | 94.90 96 | 94.52 99 | 96.05 116 | 97.67 122 | 90.56 159 | 98.44 23 | 96.22 262 | 93.21 94 | 93.99 141 | 97.74 102 | 85.55 141 | 98.45 202 | 89.98 191 | 97.86 124 | 99.14 74 | 
 | 
| FA-MVS(test-final) |  |  | 93.52 141 | 92.92 142 | 95.31 156 | 96.77 173 | 88.54 225 | 94.82 293 | 96.21 264 | 89.61 208 | 94.20 136 | 95.25 241 | 83.24 173 | 99.14 133 | 90.01 190 | 96.16 166 | 98.25 149 | 
 | 
| GA-MVS |  |  | 91.38 228 | 90.31 240 | 94.59 193 | 94.65 293 | 87.62 252 | 94.34 310 | 96.19 265 | 90.73 175 | 90.35 221 | 93.83 304 | 71.84 321 | 97.96 264 | 87.22 254 | 93.61 212 | 98.21 152 | 
 | 
| IterMVS-SCA-FT |  |  | 90.31 268 | 89.81 264 | 91.82 302 | 95.52 236 | 84.20 312 | 94.30 313 | 96.15 266 | 90.61 185 | 87.39 302 | 94.27 288 | 75.80 295 | 96.44 341 | 87.34 251 | 86.88 299 | 94.82 308 | 
 | 
| IterMVS |  |  | 90.15 275 | 89.67 270 | 91.61 309 | 95.48 238 | 83.72 318 | 94.33 311 | 96.12 267 | 89.99 199 | 87.31 305 | 94.15 296 | 75.78 297 | 96.27 344 | 86.97 260 | 86.89 298 | 94.83 306 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. | 
| DP-MVS |  |  | 92.76 176 | 91.51 198 | 96.52 78 | 98.77 53 | 90.99 141 | 97.38 139 | 96.08 268 | 82.38 347 | 89.29 259 | 97.87 91 | 83.77 164 | 99.69 50 | 81.37 325 | 96.69 158 | 98.89 103 | 
 | 
| pmmvs4 |  |  | 90.93 252 | 89.85 262 | 94.17 214 | 93.34 335 | 90.79 151 | 94.60 298 | 96.02 269 | 84.62 325 | 87.45 299 | 95.15 244 | 81.88 208 | 97.45 313 | 87.70 240 | 87.87 287 | 94.27 333 | 
 | 
| ppachtmachnet_test |  |  | 88.35 299 | 87.29 298 | 91.53 310 | 92.45 352 | 83.57 321 | 93.75 331 | 95.97 270 | 84.28 328 | 85.32 329 | 94.18 294 | 79.00 260 | 96.93 334 | 75.71 354 | 84.99 320 | 94.10 334 | 
 | 
| Anonymous20240521 |  |  | 86.42 316 | 85.44 316 | 89.34 341 | 90.33 364 | 79.79 356 | 96.73 193 | 95.92 271 | 83.71 337 | 83.25 347 | 91.36 350 | 63.92 363 | 96.01 345 | 78.39 343 | 85.36 311 | 92.22 360 | 
 | 
| ITE_SJBPF |  |  |  |  | 92.43 286 | 95.34 249 | 85.37 296 |  | 95.92 271 | 91.47 150 | 87.75 295 | 96.39 186 | 71.00 327 | 97.96 264 | 82.36 316 | 89.86 269 | 93.97 337 | 
 | 
| test_fmvs2 |  |  | 89.77 283 | 89.93 259 | 89.31 342 | 93.68 324 | 76.37 370 | 97.64 108 | 95.90 273 | 89.84 204 | 91.49 197 | 96.26 192 | 58.77 371 | 97.10 327 | 94.65 106 | 91.13 250 | 94.46 324 | 
 | 
| USDC |  |  | 88.94 290 | 87.83 295 | 92.27 291 | 94.66 292 | 84.96 303 | 93.86 328 | 95.90 273 | 87.34 281 | 83.40 346 | 95.56 229 | 67.43 347 | 98.19 225 | 82.64 315 | 89.67 271 | 93.66 340 | 
 | 
| COLMAP_ROB |   | 87.81 15 | 90.40 267 | 89.28 278 | 93.79 238 | 97.95 107 | 87.13 263 | 96.92 178 | 95.89 275 | 82.83 344 | 86.88 316 | 97.18 136 | 73.77 313 | 99.29 119 | 78.44 342 | 93.62 211 | 94.95 295 | 
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 | 
| VDD-MVS |  |  | 93.82 130 | 93.08 137 | 96.02 119 | 97.88 113 | 89.96 178 | 97.72 96 | 95.85 276 | 92.43 125 | 95.86 100 | 98.44 42 | 68.42 343 | 99.39 109 | 96.31 47 | 94.85 189 | 98.71 116 | 
 | 
| VDDNet |  |  | 93.05 161 | 92.07 175 | 96.02 119 | 96.84 166 | 90.39 166 | 98.08 51 | 95.85 276 | 86.22 301 | 95.79 103 | 98.46 40 | 67.59 346 | 99.19 126 | 94.92 97 | 94.85 189 | 98.47 133 | 
 | 
| Vis-MVSNet (Re-imp) |  |  | 94.15 113 | 93.88 110 | 94.95 176 | 97.61 129 | 87.92 245 | 98.10 49 | 95.80 278 | 92.22 129 | 93.02 163 | 97.45 122 | 84.53 153 | 97.91 274 | 88.24 229 | 97.97 122 | 99.02 84 | 
 | 
| MM |  |  |  |  | 98.23 11 |  | 95.03 25 | 98.07 52 | 95.76 279 | 97.78 1 | 97.52 38 | 98.80 20 | 88.09 100 | 99.86 8 | 99.44 1 | 99.37 56 | 99.80 1 | 
 | 
| KD-MVS_2432*1600 |  |  | 84.81 330 | 82.64 334 | 91.31 315 | 91.07 361 | 85.34 297 | 91.22 363 | 95.75 280 | 85.56 310 | 83.09 348 | 90.21 357 | 67.21 349 | 95.89 347 | 77.18 349 | 62.48 387 | 92.69 352 | 
 | 
| miper_refine_blended |  |  | 84.81 330 | 82.64 334 | 91.31 315 | 91.07 361 | 85.34 297 | 91.22 363 | 95.75 280 | 85.56 310 | 83.09 348 | 90.21 357 | 67.21 349 | 95.89 347 | 77.18 349 | 62.48 387 | 92.69 352 | 
 | 
| FE-MVS |  |  | 92.05 203 | 91.05 213 | 95.08 165 | 96.83 168 | 87.93 244 | 93.91 327 | 95.70 282 | 86.30 298 | 94.15 138 | 94.97 249 | 76.59 285 | 99.21 124 | 84.10 298 | 96.86 151 | 98.09 162 | 
 | 
| tpm cat1 |  |  | 88.36 298 | 87.21 301 | 91.81 303 | 95.13 267 | 80.55 347 | 92.58 355 | 95.70 282 | 74.97 376 | 87.45 299 | 91.96 344 | 78.01 276 | 98.17 227 | 80.39 330 | 88.74 280 | 96.72 216 | 
 | 
| our_test_3 |  |  | 88.78 294 | 87.98 294 | 91.20 318 | 92.45 352 | 82.53 327 | 93.61 338 | 95.69 284 | 85.77 307 | 84.88 331 | 93.71 309 | 79.99 238 | 96.78 339 | 79.47 336 | 86.24 300 | 94.28 332 | 
 | 
| BH-w/o |  |  | 92.14 201 | 91.75 186 | 93.31 259 | 96.99 161 | 85.73 288 | 95.67 264 | 95.69 284 | 88.73 241 | 89.26 261 | 94.82 259 | 82.97 183 | 98.07 245 | 85.26 286 | 96.32 165 | 96.13 233 | 
 | 
| CR-MVSNet |  |  | 90.82 255 | 89.77 266 | 93.95 228 | 94.45 300 | 87.19 260 | 90.23 371 | 95.68 286 | 86.89 289 | 92.40 173 | 92.36 337 | 80.91 220 | 97.05 329 | 81.09 327 | 93.95 207 | 97.60 186 | 
 | 
| Patchmtry |  |  | 88.64 296 | 87.25 299 | 92.78 279 | 94.09 311 | 86.64 272 | 89.82 374 | 95.68 286 | 80.81 359 | 87.63 297 | 92.36 337 | 80.91 220 | 97.03 330 | 78.86 340 | 85.12 316 | 94.67 319 | 
 | 
| iter_conf_final |  |  | 93.60 136 | 93.11 136 | 95.04 167 | 97.13 148 | 91.30 126 | 97.92 73 | 95.65 288 | 92.98 110 | 91.60 193 | 96.64 166 | 79.28 250 | 98.13 230 | 95.34 88 | 91.49 241 | 95.70 256 | 
 | 
| BH-RMVSNet |  |  | 92.72 178 | 91.97 180 | 94.97 174 | 97.16 145 | 87.99 243 | 96.15 244 | 95.60 289 | 90.62 184 | 91.87 188 | 97.15 139 | 78.41 267 | 98.57 194 | 83.16 306 | 97.60 131 | 98.36 145 | 
 | 
| PVSNet_0 |  | 82.17 19 | 85.46 327 | 83.64 330 | 90.92 321 | 95.27 256 | 79.49 360 | 90.55 369 | 95.60 289 | 83.76 336 | 83.00 350 | 89.95 359 | 71.09 326 | 97.97 259 | 82.75 313 | 60.79 389 | 95.31 278 | 
 | 
| SCA |  |  | 91.84 208 | 91.18 211 | 93.83 235 | 95.59 232 | 84.95 304 | 94.72 295 | 95.58 291 | 90.82 171 | 92.25 179 | 93.69 310 | 75.80 295 | 98.10 237 | 86.20 269 | 95.98 168 | 98.45 135 | 
 | 
| AllTest |  |  | 90.23 271 | 88.98 282 | 93.98 224 | 97.94 108 | 86.64 272 | 96.51 216 | 95.54 292 | 85.38 312 | 85.49 326 | 96.77 156 | 70.28 331 | 99.15 131 | 80.02 332 | 92.87 216 | 96.15 231 | 
 | 
| TestCases |  |  |  |  | 93.98 224 | 97.94 108 | 86.64 272 |  | 95.54 292 | 85.38 312 | 85.49 326 | 96.77 156 | 70.28 331 | 99.15 131 | 80.02 332 | 92.87 216 | 96.15 231 | 
 | 
| iter_conf05 |  |  | 93.18 155 | 92.63 156 | 94.83 181 | 96.64 179 | 90.69 155 | 97.60 113 | 95.53 294 | 92.52 123 | 91.58 194 | 96.64 166 | 76.35 290 | 98.13 230 | 95.43 86 | 91.42 244 | 95.68 258 | 
 | 
| mvsmamba |  |  | 93.83 129 | 93.46 125 | 94.93 179 | 94.88 281 | 90.85 148 | 98.55 14 | 95.49 295 | 94.24 59 | 91.29 207 | 96.97 147 | 83.04 180 | 98.14 229 | 95.56 84 | 91.17 249 | 95.78 248 | 
 | 
| tpmvs |  |  | 89.83 282 | 89.15 281 | 91.89 299 | 94.92 277 | 80.30 351 | 93.11 347 | 95.46 296 | 86.28 299 | 88.08 289 | 92.65 328 | 80.44 229 | 98.52 197 | 81.47 321 | 89.92 268 | 96.84 212 | 
 | 
| pmmvs5 |  |  | 89.86 281 | 88.87 284 | 92.82 277 | 92.86 342 | 86.23 282 | 96.26 236 | 95.39 297 | 84.24 329 | 87.12 306 | 94.51 272 | 74.27 308 | 97.36 320 | 87.61 247 | 87.57 289 | 94.86 304 | 
 | 
| PatchmatchNet |   |  | 91.91 206 | 91.35 200 | 93.59 248 | 95.38 244 | 84.11 313 | 93.15 346 | 95.39 297 | 89.54 210 | 92.10 184 | 93.68 312 | 82.82 187 | 98.13 230 | 84.81 290 | 95.32 182 | 98.52 125 | 
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. | 
| tpmrst |  |  | 91.44 225 | 91.32 202 | 91.79 304 | 95.15 265 | 79.20 363 | 93.42 341 | 95.37 299 | 88.55 246 | 93.49 153 | 93.67 313 | 82.49 195 | 98.27 218 | 90.41 185 | 89.34 274 | 97.90 168 | 
 | 
| Anonymous20231206 |  |  | 87.09 311 | 86.14 312 | 89.93 336 | 91.22 360 | 80.35 349 | 96.11 245 | 95.35 300 | 83.57 339 | 84.16 338 | 93.02 325 | 73.54 315 | 95.61 355 | 72.16 369 | 86.14 302 | 93.84 339 | 
 | 
| MIMVSNet1 |  |  | 84.93 329 | 83.05 331 | 90.56 328 | 89.56 370 | 84.84 306 | 95.40 275 | 95.35 300 | 83.91 332 | 80.38 360 | 92.21 341 | 57.23 373 | 93.34 376 | 70.69 375 | 82.75 346 | 93.50 342 | 
 | 
| TDRefinement |  |  | 86.53 314 | 84.76 325 | 91.85 300 | 82.23 387 | 84.25 310 | 96.38 227 | 95.35 300 | 84.97 321 | 84.09 341 | 94.94 251 | 65.76 360 | 98.34 215 | 84.60 294 | 74.52 370 | 92.97 348 | 
 | 
| TR-MVS |  |  | 91.48 224 | 90.59 231 | 94.16 215 | 96.40 198 | 87.33 254 | 95.67 264 | 95.34 303 | 87.68 273 | 91.46 198 | 95.52 232 | 76.77 284 | 98.35 212 | 82.85 310 | 93.61 212 | 96.79 214 | 
 | 
| EPNet_dtu |  |  | 91.71 211 | 91.28 205 | 92.99 270 | 93.76 321 | 83.71 319 | 96.69 199 | 95.28 304 | 93.15 100 | 87.02 310 | 95.95 205 | 83.37 172 | 97.38 319 | 79.46 337 | 96.84 152 | 97.88 170 | 
| Wanjuan Su,  Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 | 
| FMVSNet5 |  |  | 87.29 308 | 85.79 314 | 91.78 305 | 94.80 285 | 87.28 255 | 95.49 272 | 95.28 304 | 84.09 331 | 83.85 345 | 91.82 345 | 62.95 366 | 94.17 368 | 78.48 341 | 85.34 312 | 93.91 338 | 
 | 
| MDTV_nov1_ep13 |  |  |  | 90.76 224 |  | 95.22 260 | 80.33 350 | 93.03 349 | 95.28 304 | 88.14 258 | 92.84 170 | 93.83 304 | 81.34 214 | 98.08 241 | 82.86 309 | 94.34 198 |  | 
 | 
| LF4IMVS |  |  | 87.94 302 | 87.25 299 | 89.98 335 | 92.38 354 | 80.05 355 | 94.38 308 | 95.25 307 | 87.59 275 | 84.34 335 | 94.74 263 | 64.31 362 | 97.66 294 | 84.83 289 | 87.45 290 | 92.23 359 | 
 | 
| TransMVSNet (Re) |  |  | 88.94 290 | 87.56 296 | 93.08 268 | 94.35 303 | 88.45 229 | 97.73 93 | 95.23 308 | 87.47 277 | 84.26 337 | 95.29 238 | 79.86 241 | 97.33 321 | 79.44 338 | 74.44 371 | 93.45 344 | 
 | 
| test20.03 |  |  | 86.14 321 | 85.40 318 | 88.35 344 | 90.12 365 | 80.06 354 | 95.90 256 | 95.20 309 | 88.59 242 | 81.29 355 | 93.62 315 | 71.43 324 | 92.65 378 | 71.26 373 | 81.17 351 | 92.34 358 | 
 | 
| new-patchmatchnet |  |  | 83.18 336 | 81.87 339 | 87.11 351 | 86.88 379 | 75.99 372 | 93.70 332 | 95.18 310 | 85.02 320 | 77.30 371 | 88.40 369 | 65.99 358 | 93.88 373 | 74.19 363 | 70.18 378 | 91.47 368 | 
 | 
| MDA-MVSNet_test_wron |  |  | 85.87 324 | 84.23 328 | 90.80 325 | 92.38 354 | 82.57 326 | 93.17 344 | 95.15 311 | 82.15 348 | 67.65 380 | 92.33 340 | 78.20 269 | 95.51 358 | 77.33 346 | 79.74 355 | 94.31 331 | 
 | 
| YYNet1 |  |  | 85.87 324 | 84.23 328 | 90.78 326 | 92.38 354 | 82.46 329 | 93.17 344 | 95.14 312 | 82.12 349 | 67.69 379 | 92.36 337 | 78.16 272 | 95.50 359 | 77.31 347 | 79.73 356 | 94.39 327 | 
 | 
| Baseline_NR-MVSNet |  |  | 91.20 239 | 90.62 229 | 92.95 272 | 93.83 319 | 88.03 242 | 97.01 172 | 95.12 313 | 88.42 250 | 89.70 244 | 95.13 246 | 83.47 169 | 97.44 314 | 89.66 201 | 83.24 341 | 93.37 345 | 
 | 
| thres200 |  |  | 92.23 197 | 91.39 199 | 94.75 191 | 97.61 129 | 89.03 213 | 96.60 211 | 95.09 314 | 92.08 137 | 93.28 159 | 94.00 300 | 78.39 268 | 99.04 152 | 81.26 326 | 94.18 199 | 96.19 228 | 
 | 
| ADS-MVSNet |  |  | 89.89 279 | 88.68 286 | 93.53 251 | 95.86 221 | 84.89 305 | 90.93 366 | 95.07 315 | 83.23 342 | 91.28 208 | 91.81 346 | 79.01 258 | 97.85 277 | 79.52 334 | 91.39 245 | 97.84 172 | 
 | 
| pmmvs-eth3d |  |  | 86.22 319 | 84.45 326 | 91.53 310 | 88.34 376 | 87.25 257 | 94.47 303 | 95.01 316 | 83.47 340 | 79.51 365 | 89.61 362 | 69.75 337 | 95.71 352 | 83.13 307 | 76.73 367 | 91.64 363 | 
 | 
| Anonymous202405211 |  |  | 92.07 202 | 90.83 222 | 95.76 129 | 98.19 93 | 88.75 218 | 97.58 115 | 95.00 317 | 86.00 304 | 93.64 148 | 97.45 122 | 66.24 357 | 99.53 89 | 90.68 184 | 92.71 221 | 99.01 87 | 
 | 
| MDA-MVSNet-bldmvs |  |  | 85.00 328 | 82.95 333 | 91.17 319 | 93.13 340 | 83.33 322 | 94.56 300 | 95.00 317 | 84.57 326 | 65.13 384 | 92.65 328 | 70.45 330 | 95.85 349 | 73.57 365 | 77.49 363 | 94.33 329 | 
 | 
| ambc |  |  |  |  | 86.56 354 | 83.60 384 | 70.00 381 | 85.69 383 | 94.97 319 |  | 80.60 359 | 88.45 368 | 37.42 387 | 96.84 337 | 82.69 314 | 75.44 369 | 92.86 350 | 
 | 
| testgi |  |  | 87.97 301 | 87.21 301 | 90.24 332 | 92.86 342 | 80.76 342 | 96.67 202 | 94.97 319 | 91.74 144 | 85.52 325 | 95.83 211 | 62.66 367 | 94.47 366 | 76.25 352 | 88.36 284 | 95.48 262 | 
 | 
| dp |  |  | 88.90 292 | 88.26 292 | 90.81 323 | 94.58 297 | 76.62 369 | 92.85 352 | 94.93 321 | 85.12 318 | 90.07 235 | 93.07 324 | 75.81 294 | 98.12 235 | 80.53 329 | 87.42 292 | 97.71 178 | 
 | 
| test_fmvs3 |  |  | 83.21 335 | 83.02 332 | 83.78 358 | 86.77 380 | 68.34 384 | 96.76 191 | 94.91 322 | 86.49 295 | 84.14 340 | 89.48 363 | 36.04 388 | 91.73 380 | 91.86 160 | 80.77 353 | 91.26 370 | 
 | 
| test_0402 |  |  | 86.46 315 | 84.79 324 | 91.45 312 | 95.02 271 | 85.55 290 | 96.29 235 | 94.89 323 | 80.90 356 | 82.21 352 | 93.97 302 | 68.21 344 | 97.29 323 | 62.98 381 | 88.68 281 | 91.51 366 | 
 | 
| tfpn200view9 |  |  | 92.38 186 | 91.52 196 | 94.95 176 | 97.85 114 | 89.29 203 | 97.41 132 | 94.88 324 | 92.19 133 | 93.27 160 | 94.46 277 | 78.17 270 | 99.08 142 | 81.40 322 | 94.08 203 | 96.48 221 | 
 | 
| CVMVSNet |  |  | 91.23 237 | 91.75 186 | 89.67 338 | 95.77 226 | 74.69 373 | 96.44 217 | 94.88 324 | 85.81 306 | 92.18 180 | 97.64 112 | 79.07 253 | 95.58 357 | 88.06 231 | 95.86 172 | 98.74 113 | 
 | 
| thres400 |  |  | 92.42 184 | 91.52 196 | 95.12 164 | 97.85 114 | 89.29 203 | 97.41 132 | 94.88 324 | 92.19 133 | 93.27 160 | 94.46 277 | 78.17 270 | 99.08 142 | 81.40 322 | 94.08 203 | 96.98 206 | 
 | 
| EPNet |  |  | 95.20 87 | 94.56 95 | 97.14 61 | 92.80 344 | 92.68 78 | 97.85 82 | 94.87 327 | 96.64 3 | 92.46 172 | 97.80 99 | 86.23 130 | 99.65 56 | 93.72 125 | 98.62 98 | 99.10 80 | 
| Wanjuan Su,  Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 | 
| SixPastTwentyTwo |  |  | 89.15 288 | 88.54 288 | 90.98 320 | 93.49 330 | 80.28 352 | 96.70 197 | 94.70 328 | 90.78 172 | 84.15 339 | 95.57 228 | 71.78 322 | 97.71 290 | 84.63 293 | 85.07 317 | 94.94 297 | 
 | 
| thres100view900 |  |  | 92.43 183 | 91.58 193 | 94.98 173 | 97.92 110 | 89.37 199 | 97.71 98 | 94.66 329 | 92.20 131 | 93.31 158 | 94.90 254 | 78.06 274 | 99.08 142 | 81.40 322 | 94.08 203 | 96.48 221 | 
 | 
| thres600view7 |  |  | 92.49 182 | 91.60 192 | 95.18 160 | 97.91 111 | 89.47 193 | 97.65 104 | 94.66 329 | 92.18 135 | 93.33 157 | 94.91 253 | 78.06 274 | 99.10 137 | 81.61 319 | 94.06 206 | 96.98 206 | 
 | 
| PatchT |  |  | 88.87 293 | 87.42 297 | 93.22 263 | 94.08 312 | 85.10 301 | 89.51 375 | 94.64 331 | 81.92 350 | 92.36 176 | 88.15 372 | 80.05 237 | 97.01 332 | 72.43 368 | 93.65 210 | 97.54 189 | 
 | 
| baseline1 |  |  | 92.82 174 | 91.90 182 | 95.55 145 | 97.20 143 | 90.77 152 | 97.19 158 | 94.58 332 | 92.20 131 | 92.36 176 | 96.34 188 | 84.16 160 | 98.21 222 | 89.20 215 | 83.90 336 | 97.68 180 | 
 | 
| Gipuma |   |  | 67.86 354 | 65.41 356 | 75.18 371 | 92.66 347 | 73.45 376 | 66.50 390 | 94.52 333 | 53.33 389 | 57.80 390 | 66.07 390 | 30.81 390 | 89.20 384 | 48.15 390 | 78.88 362 | 62.90 390 | 
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 | 
| CostFormer |  |  | 91.18 242 | 90.70 227 | 92.62 284 | 94.84 283 | 81.76 335 | 94.09 320 | 94.43 334 | 84.15 330 | 92.72 171 | 93.77 308 | 79.43 247 | 98.20 223 | 90.70 183 | 92.18 230 | 97.90 168 | 
 | 
| tpm2 |  |  | 89.96 277 | 89.21 279 | 92.23 293 | 94.91 279 | 81.25 338 | 93.78 330 | 94.42 335 | 80.62 361 | 91.56 195 | 93.44 320 | 76.44 288 | 97.94 267 | 85.60 281 | 92.08 234 | 97.49 190 | 
 | 
| JIA-IIPM |  |  | 88.26 300 | 87.04 304 | 91.91 298 | 93.52 328 | 81.42 337 | 89.38 376 | 94.38 336 | 80.84 358 | 90.93 213 | 80.74 383 | 79.22 251 | 97.92 271 | 82.76 312 | 91.62 238 | 96.38 224 | 
 | 
| dmvs_re |  |  | 90.21 272 | 89.50 274 | 92.35 287 | 95.47 241 | 85.15 299 | 95.70 263 | 94.37 337 | 90.94 170 | 88.42 278 | 93.57 316 | 74.63 305 | 95.67 354 | 82.80 311 | 89.57 272 | 96.22 226 | 
 | 
| Patchmatch-test |  |  | 89.42 286 | 87.99 293 | 93.70 243 | 95.27 256 | 85.11 300 | 88.98 377 | 94.37 337 | 81.11 355 | 87.10 308 | 93.69 310 | 82.28 199 | 97.50 309 | 74.37 361 | 94.76 192 | 98.48 132 | 
 | 
| LCM-MVSNet |  |  | 72.55 348 | 69.39 352 | 82.03 360 | 70.81 397 | 65.42 389 | 90.12 373 | 94.36 339 | 55.02 388 | 65.88 382 | 81.72 382 | 24.16 396 | 89.96 381 | 74.32 362 | 68.10 382 | 90.71 373 | 
 | 
| ADS-MVSNet2 |  |  | 89.45 285 | 88.59 287 | 92.03 296 | 95.86 221 | 82.26 331 | 90.93 366 | 94.32 340 | 83.23 342 | 91.28 208 | 91.81 346 | 79.01 258 | 95.99 346 | 79.52 334 | 91.39 245 | 97.84 172 | 
 | 
| EU-MVSNet |  |  | 88.72 295 | 88.90 283 | 88.20 346 | 93.15 339 | 74.21 374 | 96.63 208 | 94.22 341 | 85.18 316 | 87.32 304 | 95.97 203 | 76.16 291 | 94.98 362 | 85.27 285 | 86.17 301 | 95.41 268 | 
 | 
| MVS_0304 |  |  | 97.04 25 | 96.73 39 | 97.96 23 | 97.60 131 | 94.36 34 | 98.01 57 | 94.09 342 | 97.33 2 | 96.29 84 | 98.79 22 | 89.73 80 | 99.86 8 | 99.36 2 | 99.42 46 | 99.67 13 | 
 | 
| MIMVSNet |  |  | 88.50 297 | 86.76 307 | 93.72 242 | 94.84 283 | 87.77 250 | 91.39 361 | 94.05 343 | 86.41 297 | 87.99 291 | 92.59 331 | 63.27 364 | 95.82 351 | 77.44 345 | 92.84 218 | 97.57 188 | 
 | 
| OpenMVS_ROB |   | 81.14 20 | 84.42 332 | 82.28 338 | 90.83 322 | 90.06 366 | 84.05 315 | 95.73 262 | 94.04 344 | 73.89 378 | 80.17 363 | 91.53 349 | 59.15 370 | 97.64 295 | 66.92 379 | 89.05 276 | 90.80 372 | 
 | 
| TinyColmap |  |  | 86.82 313 | 85.35 319 | 91.21 317 | 94.91 279 | 82.99 324 | 93.94 324 | 94.02 345 | 83.58 338 | 81.56 354 | 94.68 265 | 62.34 368 | 98.13 230 | 75.78 353 | 87.35 294 | 92.52 356 | 
 | 
| IB-MVS |  | 87.33 17 | 89.91 278 | 88.28 291 | 94.79 188 | 95.26 259 | 87.70 251 | 95.12 289 | 93.95 346 | 89.35 217 | 87.03 309 | 92.49 332 | 70.74 329 | 99.19 126 | 89.18 216 | 81.37 350 | 97.49 190 | 
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 | 
| Syy-MVS |  |  | 87.13 310 | 87.02 305 | 87.47 349 | 95.16 263 | 73.21 377 | 95.00 290 | 93.93 347 | 88.55 246 | 86.96 311 | 91.99 342 | 75.90 292 | 94.00 370 | 61.59 383 | 94.11 200 | 95.20 286 | 
 | 
| myMVS_eth3d |  |  | 87.18 309 | 86.38 309 | 89.58 339 | 95.16 263 | 79.53 358 | 95.00 290 | 93.93 347 | 88.55 246 | 86.96 311 | 91.99 342 | 56.23 376 | 94.00 370 | 75.47 357 | 94.11 200 | 95.20 286 | 
 | 
| test_f |  |  | 80.57 341 | 79.62 343 | 83.41 359 | 83.38 385 | 67.80 386 | 93.57 339 | 93.72 349 | 80.80 360 | 77.91 370 | 87.63 375 | 33.40 389 | 92.08 379 | 87.14 258 | 79.04 361 | 90.34 374 | 
 | 
| LCM-MVSNet-Re |  |  | 92.50 180 | 92.52 164 | 92.44 285 | 96.82 170 | 81.89 334 | 96.92 178 | 93.71 350 | 92.41 126 | 84.30 336 | 94.60 269 | 85.08 146 | 97.03 330 | 91.51 168 | 97.36 139 | 98.40 141 | 
 | 
| bld_raw_dy_0_64 |  |  | 92.37 187 | 91.69 189 | 94.39 204 | 94.28 308 | 89.73 183 | 97.71 98 | 93.65 351 | 92.78 118 | 90.46 218 | 96.67 164 | 75.88 293 | 97.97 259 | 92.92 144 | 90.89 257 | 95.48 262 | 
 | 
| tpm |  |  | 90.25 270 | 89.74 269 | 91.76 307 | 93.92 315 | 79.73 357 | 93.98 321 | 93.54 352 | 88.28 253 | 91.99 186 | 93.25 323 | 77.51 280 | 97.44 314 | 87.30 253 | 87.94 286 | 98.12 158 | 
 | 
| ET-MVSNet_ETH3D |  |  | 91.49 223 | 90.11 251 | 95.63 139 | 96.40 198 | 91.57 116 | 95.34 277 | 93.48 353 | 90.60 187 | 75.58 373 | 95.49 233 | 80.08 236 | 96.79 338 | 94.25 113 | 89.76 270 | 98.52 125 | 
 | 
| LFMVS |  |  | 93.60 136 | 92.63 156 | 96.52 78 | 98.13 98 | 91.27 128 | 97.94 71 | 93.39 354 | 90.57 188 | 96.29 84 | 98.31 58 | 69.00 339 | 99.16 130 | 94.18 114 | 95.87 171 | 99.12 78 | 
 | 
| Patchmatch-RL test |  |  | 87.38 307 | 86.24 310 | 90.81 323 | 88.74 375 | 78.40 367 | 88.12 381 | 93.17 355 | 87.11 286 | 82.17 353 | 89.29 364 | 81.95 206 | 95.60 356 | 88.64 226 | 77.02 364 | 98.41 140 | 
 | 
| test-LLR |  |  | 91.42 226 | 91.19 210 | 92.12 294 | 94.59 295 | 80.66 344 | 94.29 314 | 92.98 356 | 91.11 166 | 90.76 214 | 92.37 334 | 79.02 256 | 98.07 245 | 88.81 222 | 96.74 155 | 97.63 181 | 
 | 
| test-mter |  |  | 90.19 274 | 89.54 273 | 92.12 294 | 94.59 295 | 80.66 344 | 94.29 314 | 92.98 356 | 87.68 273 | 90.76 214 | 92.37 334 | 67.67 345 | 98.07 245 | 88.81 222 | 96.74 155 | 97.63 181 | 
 | 
| testing3 |  |  | 87.67 305 | 86.88 306 | 90.05 334 | 96.14 213 | 80.71 343 | 97.10 165 | 92.85 358 | 90.15 196 | 87.54 298 | 94.55 271 | 55.70 377 | 94.10 369 | 73.77 364 | 94.10 202 | 95.35 275 | 
 | 
| test_method |  |  | 66.11 355 | 64.89 357 | 69.79 373 | 72.62 395 | 35.23 404 | 65.19 391 | 92.83 359 | 20.35 394 | 65.20 383 | 88.08 373 | 43.14 385 | 82.70 391 | 73.12 367 | 63.46 386 | 91.45 369 | 
 | 
| test0.0.03 1 |  |  | 89.37 287 | 88.70 285 | 91.41 314 | 92.47 351 | 85.63 289 | 95.22 286 | 92.70 360 | 91.11 166 | 86.91 315 | 93.65 314 | 79.02 256 | 93.19 377 | 78.00 344 | 89.18 275 | 95.41 268 | 
 | 
| new_pmnet |  |  | 82.89 337 | 81.12 342 | 88.18 347 | 89.63 369 | 80.18 353 | 91.77 360 | 92.57 361 | 76.79 375 | 75.56 374 | 88.23 371 | 61.22 369 | 94.48 365 | 71.43 371 | 82.92 344 | 89.87 375 | 
 | 
| mvsany_test1 |  |  | 93.93 125 | 93.98 108 | 93.78 239 | 94.94 276 | 86.80 268 | 94.62 297 | 92.55 362 | 88.77 240 | 96.85 58 | 98.49 36 | 88.98 86 | 98.08 241 | 95.03 94 | 95.62 178 | 96.46 223 | 
 | 
| thisisatest0515 |  |  | 92.29 193 | 91.30 204 | 95.25 158 | 96.60 182 | 88.90 216 | 94.36 309 | 92.32 363 | 87.92 262 | 93.43 155 | 94.57 270 | 77.28 281 | 99.00 153 | 89.42 206 | 95.86 172 | 97.86 171 | 
 | 
| thisisatest0530 |  |  | 93.03 162 | 92.21 173 | 95.49 149 | 97.07 151 | 89.11 212 | 97.49 128 | 92.19 364 | 90.16 195 | 94.09 139 | 96.41 184 | 76.43 289 | 99.05 149 | 90.38 186 | 95.68 177 | 98.31 147 | 
 | 
| tttt0517 |  |  | 92.96 165 | 92.33 170 | 94.87 180 | 97.11 149 | 87.16 262 | 97.97 67 | 92.09 365 | 90.63 183 | 93.88 145 | 97.01 146 | 76.50 286 | 99.06 148 | 90.29 189 | 95.45 180 | 98.38 143 | 
 | 
| K. test v3 |  |  | 87.64 306 | 86.75 308 | 90.32 331 | 93.02 341 | 79.48 361 | 96.61 209 | 92.08 366 | 90.66 181 | 80.25 362 | 94.09 297 | 67.21 349 | 96.65 340 | 85.96 277 | 80.83 352 | 94.83 306 | 
 | 
| TESTMET0.1,1 |  |  | 90.06 276 | 89.42 275 | 91.97 297 | 94.41 302 | 80.62 346 | 94.29 314 | 91.97 367 | 87.28 283 | 90.44 219 | 92.47 333 | 68.79 340 | 97.67 292 | 88.50 228 | 96.60 160 | 97.61 185 | 
 | 
| PM-MVS |  |  | 83.48 334 | 81.86 340 | 88.31 345 | 87.83 378 | 77.59 368 | 93.43 340 | 91.75 368 | 86.91 288 | 80.63 358 | 89.91 360 | 44.42 384 | 95.84 350 | 85.17 288 | 76.73 367 | 91.50 367 | 
 | 
| baseline2 |  |  | 91.63 214 | 90.86 218 | 93.94 230 | 94.33 304 | 86.32 279 | 95.92 255 | 91.64 369 | 89.37 216 | 86.94 313 | 94.69 264 | 81.62 212 | 98.69 181 | 88.64 226 | 94.57 196 | 96.81 213 | 
 | 
| APD_test1 |  |  | 79.31 343 | 77.70 346 | 84.14 357 | 89.11 373 | 69.07 383 | 92.36 359 | 91.50 370 | 69.07 381 | 73.87 375 | 92.63 330 | 39.93 386 | 94.32 367 | 70.54 376 | 80.25 354 | 89.02 377 | 
 | 
| FPMVS |  |  | 71.27 349 | 69.85 351 | 75.50 370 | 74.64 392 | 59.03 393 | 91.30 362 | 91.50 370 | 58.80 385 | 57.92 389 | 88.28 370 | 29.98 392 | 85.53 390 | 53.43 388 | 82.84 345 | 81.95 383 | 
 | 
| door |  |  |  |  |  |  |  |  | 91.13 372 |  |  |  |  |  |  |  |  | 
 | 
| door-mid |  |  |  |  |  |  |  |  | 91.06 373 |  |  |  |  |  |  |  |  | 
 | 
| EGC-MVSNET |  |  | 68.77 353 | 63.01 358 | 86.07 356 | 92.49 350 | 82.24 332 | 93.96 323 | 90.96 374 | 0.71 399 | 2.62 400 | 90.89 352 | 53.66 378 | 93.46 374 | 57.25 386 | 84.55 326 | 82.51 382 | 
 | 
| mvsany_test3 |  |  | 83.59 333 | 82.44 337 | 87.03 352 | 83.80 383 | 73.82 375 | 93.70 332 | 90.92 375 | 86.42 296 | 82.51 351 | 90.26 356 | 46.76 383 | 95.71 352 | 90.82 180 | 76.76 366 | 91.57 365 | 
 | 
| pmmvs3 |  |  | 79.97 342 | 77.50 347 | 87.39 350 | 82.80 386 | 79.38 362 | 92.70 354 | 90.75 376 | 70.69 380 | 78.66 367 | 87.47 377 | 51.34 381 | 93.40 375 | 73.39 366 | 69.65 379 | 89.38 376 | 
 | 
| DSMNet-mixed |  |  | 86.34 317 | 86.12 313 | 87.00 353 | 89.88 368 | 70.43 379 | 94.93 292 | 90.08 377 | 77.97 372 | 85.42 328 | 92.78 327 | 74.44 307 | 93.96 372 | 74.43 360 | 95.14 184 | 96.62 217 | 
 | 
| MVS-HIRNet |  |  | 82.47 338 | 81.21 341 | 86.26 355 | 95.38 244 | 69.21 382 | 88.96 378 | 89.49 378 | 66.28 382 | 80.79 357 | 74.08 387 | 68.48 342 | 97.39 318 | 71.93 370 | 95.47 179 | 92.18 361 | 
 | 
| WB-MVS |  |  | 76.77 345 | 76.63 348 | 77.18 365 | 85.32 381 | 56.82 395 | 94.53 301 | 89.39 379 | 82.66 346 | 71.35 377 | 89.18 365 | 75.03 302 | 88.88 385 | 35.42 393 | 66.79 383 | 85.84 379 | 
 | 
| test1111 |  |  | 93.19 152 | 92.82 147 | 94.30 210 | 97.58 134 | 84.56 308 | 98.21 43 | 89.02 380 | 93.53 82 | 94.58 128 | 98.21 65 | 72.69 317 | 99.05 149 | 93.06 138 | 98.48 105 | 99.28 63 | 
 | 
| SSC-MVS |  |  | 76.05 346 | 75.83 349 | 76.72 369 | 84.77 382 | 56.22 396 | 94.32 312 | 88.96 381 | 81.82 352 | 70.52 378 | 88.91 366 | 74.79 304 | 88.71 386 | 33.69 394 | 64.71 385 | 85.23 380 | 
 | 
| ECVR-MVS |   |  | 93.19 152 | 92.73 153 | 94.57 198 | 97.66 124 | 85.41 293 | 98.21 43 | 88.23 382 | 93.43 87 | 94.70 126 | 98.21 65 | 72.57 318 | 99.07 146 | 93.05 139 | 98.49 103 | 99.25 66 | 
 | 
| EPMVS |  |  | 90.70 260 | 89.81 264 | 93.37 257 | 94.73 290 | 84.21 311 | 93.67 335 | 88.02 383 | 89.50 212 | 92.38 175 | 93.49 318 | 77.82 278 | 97.78 284 | 86.03 275 | 92.68 222 | 98.11 161 | 
 | 
| ANet_high |  |  | 63.94 356 | 59.58 359 | 77.02 366 | 61.24 399 | 66.06 387 | 85.66 384 | 87.93 384 | 78.53 370 | 42.94 392 | 71.04 389 | 25.42 395 | 80.71 392 | 52.60 389 | 30.83 393 | 84.28 381 | 
 | 
| PMMVS2 |  |  | 70.19 350 | 66.92 353 | 80.01 361 | 76.35 391 | 65.67 388 | 86.22 382 | 87.58 385 | 64.83 384 | 62.38 385 | 80.29 384 | 26.78 394 | 88.49 388 | 63.79 380 | 54.07 390 | 85.88 378 | 
 | 
| lessismore_v0 |  |  |  |  | 90.45 329 | 91.96 357 | 79.09 365 |  | 87.19 386 |  | 80.32 361 | 94.39 279 | 66.31 356 | 97.55 303 | 84.00 301 | 76.84 365 | 94.70 318 | 
 | 
| PMVS |   | 53.92 22 | 58.58 357 | 55.40 360 | 68.12 374 | 51.00 400 | 48.64 398 | 78.86 387 | 87.10 387 | 46.77 390 | 35.84 396 | 74.28 386 | 8.76 400 | 86.34 389 | 42.07 391 | 73.91 372 | 69.38 388 | 
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) | 
| test_vis1_rt |  |  | 86.16 320 | 85.06 321 | 89.46 340 | 93.47 332 | 80.46 348 | 96.41 221 | 86.61 388 | 85.22 315 | 79.15 366 | 88.64 367 | 52.41 380 | 97.06 328 | 93.08 137 | 90.57 260 | 90.87 371 | 
 | 
| testf1 |  |  | 69.31 351 | 66.76 354 | 76.94 367 | 78.61 389 | 61.93 391 | 88.27 379 | 86.11 389 | 55.62 386 | 59.69 386 | 85.31 379 | 20.19 398 | 89.32 382 | 57.62 384 | 69.44 380 | 79.58 384 | 
 | 
| APD_test2 |  |  | 69.31 351 | 66.76 354 | 76.94 367 | 78.61 389 | 61.93 391 | 88.27 379 | 86.11 389 | 55.62 386 | 59.69 386 | 85.31 379 | 20.19 398 | 89.32 382 | 57.62 384 | 69.44 380 | 79.58 384 | 
 | 
| gg-mvs-nofinetune |  |  | 87.82 303 | 85.61 315 | 94.44 201 | 94.46 299 | 89.27 206 | 91.21 365 | 84.61 391 | 80.88 357 | 89.89 240 | 74.98 385 | 71.50 323 | 97.53 306 | 85.75 280 | 97.21 146 | 96.51 219 | 
 | 
| dmvs_testset |  |  | 81.38 340 | 82.60 336 | 77.73 364 | 91.74 358 | 51.49 397 | 93.03 349 | 84.21 392 | 89.07 223 | 78.28 369 | 91.25 351 | 76.97 283 | 88.53 387 | 56.57 387 | 82.24 347 | 93.16 346 | 
 | 
| GG-mvs-BLEND |  |  |  |  | 93.62 246 | 93.69 323 | 89.20 208 | 92.39 358 | 83.33 393 |  | 87.98 292 | 89.84 361 | 71.00 327 | 96.87 336 | 82.08 318 | 95.40 181 | 94.80 311 | 
 | 
| MTMP |  |  |  |  |  |  |  | 97.86 79 | 82.03 394 |  |  |  |  |  |  |  |  | 
 | 
| DeepMVS_CX |   |  |  |  | 74.68 372 | 90.84 363 | 64.34 390 |  | 81.61 395 | 65.34 383 | 67.47 381 | 88.01 374 | 48.60 382 | 80.13 393 | 62.33 382 | 73.68 373 | 79.58 384 | 
 | 
| E-PMN |  |  | 53.28 358 | 52.56 362 | 55.43 376 | 74.43 393 | 47.13 399 | 83.63 386 | 76.30 396 | 42.23 391 | 42.59 393 | 62.22 392 | 28.57 393 | 74.40 394 | 31.53 395 | 31.51 392 | 44.78 391 | 
 | 
| test2506 |  |  | 91.60 215 | 90.78 223 | 94.04 221 | 97.66 124 | 83.81 316 | 98.27 33 | 75.53 397 | 93.43 87 | 95.23 117 | 98.21 65 | 67.21 349 | 99.07 146 | 93.01 142 | 98.49 103 | 99.25 66 | 
 | 
| EMVS |  |  | 52.08 360 | 51.31 363 | 54.39 377 | 72.62 395 | 45.39 401 | 83.84 385 | 75.51 398 | 41.13 392 | 40.77 394 | 59.65 393 | 30.08 391 | 73.60 395 | 28.31 396 | 29.90 394 | 44.18 392 | 
 | 
| test_vis3_rt |  |  | 72.73 347 | 70.55 350 | 79.27 362 | 80.02 388 | 68.13 385 | 93.92 326 | 74.30 399 | 76.90 374 | 58.99 388 | 73.58 388 | 20.29 397 | 95.37 360 | 84.16 297 | 72.80 375 | 74.31 387 | 
 | 
| MVE |   | 50.73 23 | 53.25 359 | 48.81 364 | 66.58 375 | 65.34 398 | 57.50 394 | 72.49 389 | 70.94 400 | 40.15 393 | 39.28 395 | 63.51 391 | 6.89 402 | 73.48 396 | 38.29 392 | 42.38 391 | 68.76 389 | 
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) | 
| tmp_tt |  |  | 51.94 361 | 53.82 361 | 46.29 378 | 33.73 401 | 45.30 402 | 78.32 388 | 67.24 401 | 18.02 395 | 50.93 391 | 87.05 378 | 52.99 379 | 53.11 397 | 70.76 374 | 25.29 395 | 40.46 393 | 
 | 
| N_pmnet |  |  | 78.73 344 | 78.71 345 | 78.79 363 | 92.80 344 | 46.50 400 | 94.14 318 | 43.71 402 | 78.61 369 | 80.83 356 | 91.66 348 | 74.94 303 | 96.36 342 | 67.24 378 | 84.45 328 | 93.50 342 | 
 | 
| wuyk23d |  |  | 25.11 362 | 24.57 366 | 26.74 379 | 73.98 394 | 39.89 403 | 57.88 392 | 9.80 403 | 12.27 396 | 10.39 397 | 6.97 399 | 7.03 401 | 36.44 398 | 25.43 397 | 17.39 396 | 3.89 396 | 
 | 
| testmvs |  |  | 13.36 364 | 16.33 367 | 4.48 381 | 5.04 402 | 2.26 406 | 93.18 343 | 3.28 404 | 2.70 397 | 8.24 398 | 21.66 395 | 2.29 404 | 2.19 399 | 7.58 398 | 2.96 397 | 9.00 395 | 
 | 
| test123 |  |  | 13.04 365 | 15.66 368 | 5.18 380 | 4.51 403 | 3.45 405 | 92.50 357 | 1.81 405 | 2.50 398 | 7.58 399 | 20.15 396 | 3.67 403 | 2.18 400 | 7.13 399 | 1.07 398 | 9.90 394 | 
 | 
| test_blank |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uanet_test |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| DCPMVS |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| pcd_1.5k_mvsjas |  |  | 7.39 367 | 9.85 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 88.65 93 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| sosnet-low-res |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| sosnet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uncertanet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| Regformer |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| n2 |  |  |  |  |  |  |  |  | 0.00 406 |  |  |  |  |  |  |  |  | 
 | 
| nn |  |  |  |  |  |  |  |  | 0.00 406 |  |  |  |  |  |  |  |  | 
 | 
| ab-mvs-re |  |  | 8.06 366 | 10.74 369 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 96.69 162 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| uanet |  |  | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 | 
 | 
| WAC-MVS |  |  |  |  |  |  | 79.53 358 |  |  |  |  |  |  |  | 75.56 356 |  |  | 
 | 
| PC_three_1452 |  |  |  |  |  |  |  |  |  | 90.77 173 | 98.89 12 | 98.28 63 | 96.24 1 | 98.35 212 | 95.76 71 | 99.58 21 | 99.59 22 | 
 | 
| eth-test2 |  |  |  |  |  | 0.00 404 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| eth-test |  |  |  |  |  | 0.00 404 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| OPU-MVS |  |  |  |  | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 36 |  |  |  | 98.26 64 | 96.04 2 | 99.24 122 | 95.36 87 | 99.59 17 | 99.56 29 | 
 | 
| test_0728_THIRD |  |  |  |  |  |  |  |  |  | 94.78 39 | 98.73 16 | 98.87 15 | 95.87 4 | 99.84 23 | 97.45 24 | 99.72 2 | 99.77 2 | 
 | 
| GSMVS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 98.45 135 | 
 | 
| test_part2 |  |  |  |  |  | 99.28 25 | 95.74 8 |  |  |  | 98.10 27 |  |  |  |  |  |  | 
 | 
| sam_mvs1 |  |  |  |  |  |  |  |  |  |  |  |  | 82.76 188 |  |  |  | 98.45 135 | 
 | 
| sam_mvs |  |  |  |  |  |  |  |  |  |  |  |  | 81.94 207 |  |  |  |  | 
 | 
| test_post1 |  |  |  |  |  |  |  | 92.81 353 |  |  |  | 16.58 398 | 80.53 227 | 97.68 291 | 86.20 269 |  |  | 
 | 
| test_post |  |  |  |  |  |  |  |  |  |  |  | 17.58 397 | 81.76 209 | 98.08 241 |  |  |  | 
 | 
| patchmatchnet-post |  |  |  |  |  |  |  |  |  |  |  | 90.45 355 | 82.65 192 | 98.10 237 |  |  |  | 
 | 
| gm-plane-assit |  |  |  |  |  | 93.22 337 | 78.89 366 |  |  | 84.82 323 |  | 93.52 317 |  | 98.64 186 | 87.72 237 |  |  | 
 | 
| test9_res |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 94.81 101 | 99.38 53 | 99.45 46 | 
 | 
| agg_prior2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 93.94 119 | 99.38 53 | 99.50 40 | 
 | 
| test_prior4 |  |  |  |  |  |  | 93.66 55 | 96.42 220 |  |  |  |  |  |  |  |  |  | 
 | 
| test_prior2 |  |  |  |  |  |  |  | 96.35 229 |  | 92.80 117 | 96.03 93 | 97.59 116 | 92.01 41 |  | 95.01 95 | 99.38 53 |  | 
 | 
| 旧先验2 |  |  |  |  |  |  |  | 95.94 254 |  | 81.66 353 | 97.34 46 |  |  | 98.82 166 | 92.26 147 |  |  | 
 | 
| 新几何2 |  |  |  |  |  |  |  | 95.79 260 |  |  |  |  |  |  |  |  |  | 
 | 
| 原ACMM2 |  |  |  |  |  |  |  | 95.67 264 |  |  |  |  |  |  |  |  |  | 
 | 
| testdata2 |  |  |  |  |  |  |  |  |  |  |  |  |  | 99.67 54 | 85.96 277 |  |  | 
 | 
| segment_acmp |  |  |  |  |  |  |  |  |  |  |  |  | 92.89 25 |  |  |  |  | 
 | 
| testdata1 |  |  |  |  |  |  |  | 95.26 285 |  | 93.10 103 |  |  |  |  |  |  |  | 
 | 
| plane_prior7 |  |  |  |  |  | 96.21 205 | 89.98 176 |  |  |  |  |  |  |  |  |  |  | 
 | 
| plane_prior6 |  |  |  |  |  | 96.10 216 | 90.00 172 |  |  |  |  |  | 81.32 215 |  |  |  |  | 
 | 
| plane_prior4 |  |  |  |  |  |  |  |  |  |  |  | 96.64 166 |  |  |  |  |  | 
 | 
| plane_prior3 |  |  |  |  |  |  | 90.00 172 |  |  | 94.46 52 | 91.34 201 |  |  |  |  |  |  | 
 | 
| plane_prior2 |  |  |  |  |  |  |  | 97.74 91 |  | 94.85 32 |  |  |  |  |  |  |  | 
 | 
| plane_prior1 |  |  |  |  |  | 96.14 213 |  |  |  |  |  |  |  |  |  |  |  | 
 | 
| plane_prior |  |  |  |  |  |  | 89.99 174 | 97.24 151 |  | 94.06 63 |  |  |  |  |  | 92.16 231 |  | 
 | 
| HQP5-MVS |  |  |  |  |  |  | 89.33 201 |  |  |  |  |  |  |  |  |  |  | 
 | 
| HQP-NCC |  |  |  |  |  | 95.86 221 |  | 96.65 203 |  | 93.55 78 | 90.14 224 |  |  |  |  |  |  | 
 | 
| ACMP_Plane |  |  |  |  |  | 95.86 221 |  | 96.65 203 |  | 93.55 78 | 90.14 224 |  |  |  |  |  |  | 
 | 
| BP-MVS |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 92.13 153 |  |  | 
 | 
| HQP4-MVS |  |  |  |  |  |  |  |  |  |  | 90.14 224 |  |  | 98.50 198 |  |  | 95.78 248 | 
 | 
| HQP2-MVS |  |  |  |  |  |  |  |  |  |  |  |  | 80.95 218 |  |  |  |  | 
 | 
| NP-MVS |  |  |  |  |  | 95.99 220 | 89.81 181 |  |  |  |  | 95.87 208 |  |  |  |  |  | 
 | 
| MDTV_nov1_ep13_2view |  |  |  |  |  |  | 70.35 380 | 93.10 348 |  | 83.88 334 | 93.55 150 |  | 82.47 196 |  | 86.25 268 |  | 98.38 143 | 
 | 
| ACMMP++_ref |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 90.30 265 |  | 
 | 
| ACMMP++ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 91.02 253 |  | 
 | 
| Test By Simon |  |  |  |  |  |  |  |  |  |  |  |  | 88.73 92 |  |  |  |  | 
 |