This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 997.89 396.53 7798.41 7491.73 10598.01 5799.02 196.37 499.30 198.92 1092.39 3599.79 3399.16 399.46 3998.08 163
PGM-MVS96.81 3996.53 4797.65 4199.35 2093.53 5897.65 10498.98 292.22 12997.14 5098.44 4291.17 6099.85 1894.35 11199.46 3999.57 26
MVS_111021_HR96.68 4896.58 4696.99 6698.46 7092.31 8996.20 24298.90 394.30 5895.86 10097.74 10292.33 3699.38 11196.04 6199.42 4699.28 63
test_fmvsmconf_n97.49 1097.56 797.29 5297.44 13792.37 8697.91 7598.88 495.83 898.92 1099.05 591.45 5199.80 3099.12 499.46 3999.69 12
ACMMPcopyleft96.27 6095.93 6297.28 5499.24 2892.62 7998.25 3698.81 592.99 10594.56 12998.39 4688.96 8799.85 1894.57 11097.63 13099.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6196.19 6096.39 9398.23 9091.35 12596.24 24098.79 693.99 6595.80 10297.65 10989.92 7899.24 12295.87 6599.20 7098.58 121
patch_mono-296.83 3897.44 1195.01 17099.05 3985.39 29596.98 17498.77 794.70 4397.99 3098.66 2593.61 1999.91 197.67 1699.50 3399.72 11
fmvsm_s_conf0.5_n96.85 3697.13 1496.04 11798.07 10390.28 16797.97 6798.76 894.93 2998.84 1499.06 488.80 9099.65 5699.06 598.63 9798.18 153
fmvsm_s_conf0.5_n_a96.75 4396.93 2696.20 10997.64 12690.72 15498.00 5998.73 994.55 4898.91 1199.08 388.22 9999.63 6598.91 798.37 10998.25 149
FC-MVSNet-test93.94 12493.57 11795.04 16795.48 23891.45 12298.12 4898.71 1093.37 8990.23 22396.70 16087.66 10897.85 27791.49 16990.39 26495.83 243
UniMVSNet (Re)93.31 14792.55 16195.61 14195.39 24393.34 6497.39 13798.71 1093.14 10190.10 23294.83 25887.71 10798.03 25291.67 16783.99 33295.46 266
FIs94.09 11893.70 11395.27 15795.70 22892.03 9998.10 4998.68 1293.36 9190.39 22096.70 16087.63 11097.94 26792.25 14990.50 26395.84 242
WR-MVS_H92.00 20491.35 20093.95 22895.09 26989.47 19398.04 5598.68 1291.46 15188.34 28094.68 26585.86 13797.56 30285.77 27984.24 33094.82 308
VPA-MVSNet93.24 14992.48 16695.51 14795.70 22892.39 8597.86 7998.66 1492.30 12892.09 18595.37 23680.49 22898.40 20593.95 11885.86 30495.75 253
UniMVSNet_NR-MVSNet93.37 14592.67 15595.47 15295.34 24992.83 7497.17 16098.58 1592.98 11090.13 22895.80 21388.37 9897.85 27791.71 16483.93 33395.73 255
CSCG96.05 6495.91 6396.46 8799.24 2890.47 16298.30 3098.57 1689.01 22693.97 14397.57 11792.62 3199.76 3694.66 10599.27 6299.15 73
MSLP-MVS++96.94 3097.06 1796.59 7598.72 5591.86 10397.67 10198.49 1794.66 4697.24 4798.41 4592.31 3898.94 15796.61 4199.46 3998.96 92
HyFIR lowres test93.66 13592.92 14295.87 12598.24 8689.88 17994.58 29998.49 1785.06 31993.78 14695.78 21782.86 18598.67 18391.77 16295.71 17699.07 83
CHOSEN 1792x268894.15 11393.51 12396.06 11598.27 8389.38 19895.18 28798.48 1985.60 30993.76 14797.11 14083.15 17699.61 6791.33 17298.72 9499.19 69
PHI-MVS96.77 4196.46 5397.71 3998.40 7594.07 4698.21 4398.45 2089.86 20197.11 5298.01 8192.52 3399.69 5096.03 6299.53 2799.36 58
fmvsm_s_conf0.1_n96.58 5196.77 3796.01 12196.67 17890.25 16897.91 7598.38 2194.48 5198.84 1499.14 188.06 10199.62 6698.82 998.60 9998.15 156
PVSNet_BlendedMVS94.06 11993.92 10994.47 20098.27 8389.46 19596.73 19398.36 2290.17 19494.36 13295.24 24288.02 10299.58 7593.44 12990.72 25994.36 328
PVSNet_Blended94.87 9894.56 9595.81 12898.27 8389.46 19595.47 27398.36 2288.84 23494.36 13296.09 20288.02 10299.58 7593.44 12998.18 11798.40 141
3Dnovator91.36 595.19 8894.44 10397.44 4796.56 18793.36 6398.65 1198.36 2294.12 6189.25 26298.06 7582.20 20199.77 3593.41 13199.32 5999.18 70
FOURS199.55 193.34 6499.29 198.35 2594.98 2898.49 21
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 15798.35 2595.16 2298.71 1898.80 2095.05 1099.89 396.70 3999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 5596.47 5096.16 11195.48 23890.69 15597.91 7598.33 2794.07 6298.93 799.14 187.44 11599.61 6798.63 1198.32 11198.18 153
HFP-MVS97.14 2096.92 2797.83 2699.42 794.12 4498.52 1698.32 2893.21 9497.18 4898.29 6192.08 4099.83 2695.63 7899.59 1799.54 33
ACMMPR97.07 2396.84 3097.79 3099.44 693.88 5098.52 1698.31 2993.21 9497.15 4998.33 5591.35 5599.86 895.63 7899.59 1799.62 18
test_fmvsmvis_n_192096.70 4496.84 3096.31 9896.62 18091.73 10597.98 6198.30 3096.19 596.10 9198.95 889.42 8199.76 3698.90 899.08 7997.43 192
APDe-MVScopyleft97.82 597.73 598.08 1899.15 3394.82 2798.81 798.30 3094.76 4198.30 2498.90 1293.77 1799.68 5297.93 1299.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2998.29 3294.92 3098.99 598.92 1095.08 8
MSP-MVS97.59 897.54 897.73 3699.40 1193.77 5498.53 1598.29 3295.55 1398.56 2097.81 9793.90 1599.65 5696.62 4099.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3494.78 3998.93 798.87 1596.04 299.86 897.45 2499.58 2199.59 22
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3499.86 897.52 2099.67 699.75 6
CP-MVS97.02 2696.81 3497.64 4399.33 2193.54 5798.80 898.28 3492.99 10596.45 8098.30 6091.90 4399.85 1895.61 8099.68 499.54 33
test_fmvsmconf0.1_n97.09 2197.06 1797.19 6095.67 23092.21 9297.95 7098.27 3795.78 1098.40 2399.00 689.99 7699.78 3499.06 599.41 4999.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3795.13 2399.19 298.89 1395.54 599.85 1897.52 2099.66 1099.56 29
test_241102_TWO98.27 3795.13 2398.93 798.89 1394.99 1199.85 1897.52 2099.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3795.09 2699.19 298.81 1995.54 599.65 56
SF-MVS97.39 1397.13 1498.17 1599.02 4295.28 1998.23 4098.27 3792.37 12798.27 2598.65 2793.33 2199.72 4396.49 4599.52 2899.51 37
SteuartSystems-ACMMP97.62 797.53 997.87 2498.39 7794.25 3898.43 2498.27 3795.34 1798.11 2698.56 2994.53 1299.71 4496.57 4399.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4395.13 2398.48 2298.87 1595.16 7
PVSNet_Blended_VisFu95.27 8394.91 8696.38 9498.20 9190.86 14797.27 14998.25 4390.21 19394.18 13797.27 13187.48 11499.73 4093.53 12697.77 12898.55 122
region2R97.07 2396.84 3097.77 3399.46 293.79 5298.52 1698.24 4593.19 9797.14 5098.34 5291.59 5099.87 795.46 8599.59 1799.64 16
PS-CasMVS91.55 22090.84 22193.69 24494.96 27388.28 23297.84 8398.24 4591.46 15188.04 29095.80 21379.67 24497.48 31087.02 25984.54 32795.31 278
DU-MVS92.90 16992.04 17695.49 14994.95 27492.83 7497.16 16198.24 4593.02 10490.13 22895.71 22083.47 16997.85 27791.71 16483.93 33395.78 248
9.1496.75 3898.93 4797.73 9398.23 4891.28 15997.88 3398.44 4293.00 2499.65 5695.76 7199.47 38
D2MVS91.30 23590.95 21592.35 28794.71 29185.52 29196.18 24398.21 4988.89 23286.60 31793.82 30679.92 24097.95 26689.29 21090.95 25593.56 341
SDMVSNet94.17 11193.61 11695.86 12698.09 9991.37 12497.35 14198.20 5093.18 9891.79 19097.28 12979.13 25298.93 15894.61 10892.84 21897.28 199
XVS97.18 1896.96 2597.81 2899.38 1494.03 4898.59 1298.20 5094.85 3296.59 7298.29 6191.70 4699.80 3095.66 7399.40 5099.62 18
X-MVStestdata91.71 21189.67 27097.81 2899.38 1494.03 4898.59 1298.20 5094.85 3296.59 7232.69 39491.70 4699.80 3095.66 7399.40 5099.62 18
ACMMP_NAP97.20 1796.86 2898.23 1199.09 3495.16 2297.60 11398.19 5392.82 11697.93 3298.74 2491.60 4999.86 896.26 4899.52 2899.67 13
CP-MVSNet91.89 20791.24 20793.82 23695.05 27088.57 22397.82 8598.19 5391.70 14588.21 28695.76 21881.96 20597.52 30887.86 23484.65 32295.37 274
ZNCC-MVS96.96 2896.67 4297.85 2599.37 1694.12 4498.49 2098.18 5592.64 12296.39 8298.18 6891.61 4899.88 495.59 8399.55 2499.57 26
SMA-MVScopyleft97.35 1497.03 2298.30 899.06 3895.42 1097.94 7198.18 5590.57 18898.85 1398.94 993.33 2199.83 2696.72 3899.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 23990.44 23593.48 25394.49 29887.91 24797.76 8998.18 5591.29 15687.78 29495.74 21980.35 23197.33 32185.46 28382.96 34395.19 289
DELS-MVS96.61 4996.38 5697.30 5197.79 11793.19 6795.96 25398.18 5595.23 1995.87 9997.65 10991.45 5199.70 4995.87 6599.44 4599.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 28488.40 28993.60 24795.15 26590.10 17097.56 11798.16 5987.28 28386.16 32194.63 26877.57 27998.05 24874.48 35984.59 32592.65 354
VNet95.89 6995.45 7297.21 5898.07 10392.94 7397.50 12398.15 6093.87 6997.52 3897.61 11585.29 14399.53 8995.81 7095.27 18399.16 71
DeepPCF-MVS93.97 196.61 4997.09 1695.15 16198.09 9986.63 27596.00 25198.15 6095.43 1497.95 3198.56 2993.40 2099.36 11296.77 3699.48 3799.45 46
SD-MVS97.41 1297.53 997.06 6498.57 6994.46 3197.92 7398.14 6294.82 3699.01 498.55 3194.18 1497.41 31796.94 3299.64 1399.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3696.52 4897.82 2799.36 1894.14 4398.29 3198.13 6392.72 11996.70 6498.06 7591.35 5599.86 894.83 9999.28 6199.47 45
UA-Net95.95 6895.53 6997.20 5997.67 12292.98 7297.65 10498.13 6394.81 3796.61 7098.35 4988.87 8899.51 9490.36 18797.35 14099.11 79
QAPM93.45 14392.27 17196.98 6796.77 17392.62 7998.39 2698.12 6584.50 32788.27 28497.77 10082.39 19899.81 2985.40 28498.81 9198.51 127
Vis-MVSNetpermissive95.23 8594.81 8796.51 8197.18 14491.58 11598.26 3598.12 6594.38 5694.90 12298.15 7082.28 19998.92 15991.45 17198.58 10199.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 17191.68 19096.40 9195.34 24992.73 7798.27 3398.12 6584.86 32285.78 32397.75 10178.89 26199.74 3987.50 24998.65 9696.73 215
TranMVSNet+NR-MVSNet92.50 18091.63 19195.14 16294.76 28692.07 9797.53 12198.11 6892.90 11489.56 25096.12 19883.16 17597.60 30089.30 20983.20 34295.75 253
CPTT-MVS95.57 7795.19 8096.70 6999.27 2691.48 11998.33 2898.11 6887.79 26895.17 11998.03 7887.09 12199.61 6793.51 12799.42 4699.02 84
APD-MVScopyleft96.95 2996.60 4498.01 1999.03 4194.93 2697.72 9698.10 7091.50 14998.01 2998.32 5792.33 3699.58 7594.85 9899.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3496.60 4497.64 4399.40 1193.44 5998.50 1998.09 7193.27 9395.95 9898.33 5591.04 6299.88 495.20 9099.57 2399.60 21
ZD-MVS99.05 3994.59 2998.08 7289.22 22097.03 5598.10 7192.52 3399.65 5694.58 10999.31 60
MTGPAbinary98.08 72
MTAPA97.08 2296.78 3697.97 2299.37 1694.42 3397.24 15198.08 7295.07 2796.11 9098.59 2890.88 6699.90 296.18 5799.50 3399.58 25
CNVR-MVS97.68 697.44 1198.37 798.90 5095.86 697.27 14998.08 7295.81 997.87 3498.31 5894.26 1399.68 5297.02 3199.49 3699.57 26
DP-MVS Recon95.68 7395.12 8397.37 4999.19 3194.19 4097.03 16798.08 7288.35 25295.09 12197.65 10989.97 7799.48 9992.08 15698.59 10098.44 138
SR-MVS97.01 2796.86 2897.47 4699.09 3493.27 6697.98 6198.07 7793.75 7297.45 4098.48 3991.43 5399.59 7296.22 5199.27 6299.54 33
MCST-MVS97.18 1896.84 3098.20 1499.30 2495.35 1597.12 16498.07 7793.54 8196.08 9297.69 10493.86 1699.71 4496.50 4499.39 5299.55 32
NR-MVSNet92.34 18991.27 20695.53 14694.95 27493.05 7097.39 13798.07 7792.65 12184.46 33495.71 22085.00 14797.77 28689.71 19883.52 33995.78 248
MP-MVS-pluss96.70 4496.27 5897.98 2199.23 3094.71 2896.96 17698.06 8090.67 17995.55 11198.78 2391.07 6199.86 896.58 4299.55 2499.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 3996.71 4197.12 6299.01 4592.31 8997.98 6198.06 8093.11 10297.44 4198.55 3190.93 6499.55 8596.06 5899.25 6699.51 37
MP-MVScopyleft96.77 4196.45 5497.72 3799.39 1393.80 5198.41 2598.06 8093.37 8995.54 11398.34 5290.59 7099.88 494.83 9999.54 2699.49 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5296.27 5897.22 5799.32 2292.74 7698.74 998.06 8090.57 18896.77 6198.35 4990.21 7399.53 8994.80 10299.63 1499.38 56
HPM-MVScopyleft96.69 4696.45 5497.40 4899.36 1893.11 6998.87 698.06 8091.17 16496.40 8197.99 8290.99 6399.58 7595.61 8099.61 1699.49 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10493.80 11196.64 7097.07 15191.97 10196.32 23298.06 8088.94 23094.50 13096.78 15584.60 15199.27 12091.90 15796.02 16798.68 118
DeepC-MVS93.07 396.06 6395.66 6797.29 5297.96 10693.17 6897.30 14798.06 8093.92 6793.38 15698.66 2586.83 12399.73 4095.60 8299.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 1697.03 2298.11 1798.77 5395.06 2497.34 14298.04 8795.96 697.09 5397.88 9093.18 2399.71 4495.84 6999.17 7299.56 29
DeepC-MVS_fast93.89 296.93 3196.64 4397.78 3198.64 6494.30 3597.41 13298.04 8794.81 3796.59 7298.37 4791.24 5799.64 6495.16 9199.52 2899.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3396.80 3597.11 6399.02 4292.34 8797.98 6198.03 8993.52 8397.43 4398.51 3491.40 5499.56 8396.05 5999.26 6499.43 50
RE-MVS-def96.72 4099.02 4292.34 8797.98 6198.03 8993.52 8397.43 4398.51 3490.71 6896.05 5999.26 6499.43 50
RPMNet88.98 28987.05 30394.77 18994.45 30087.19 26090.23 37198.03 8977.87 37392.40 17387.55 37680.17 23599.51 9468.84 37793.95 20797.60 186
save fliter98.91 4994.28 3697.02 16998.02 9295.35 16
TEST998.70 5694.19 4096.41 22198.02 9288.17 25696.03 9397.56 11992.74 2899.59 72
train_agg96.30 5995.83 6697.72 3798.70 5694.19 4096.41 22198.02 9288.58 24396.03 9397.56 11992.73 2999.59 7295.04 9399.37 5699.39 54
test_898.67 5894.06 4796.37 22898.01 9588.58 24395.98 9797.55 12192.73 2999.58 75
agg_prior98.67 5893.79 5298.00 9695.68 10799.57 82
test_prior97.23 5698.67 5892.99 7198.00 9699.41 10799.29 61
WR-MVS92.34 18991.53 19594.77 18995.13 26790.83 14996.40 22597.98 9891.88 14289.29 25995.54 23182.50 19497.80 28289.79 19785.27 31395.69 257
HPM-MVS++copyleft97.34 1596.97 2498.47 599.08 3696.16 497.55 12097.97 9995.59 1196.61 7097.89 8892.57 3299.84 2395.95 6499.51 3199.40 53
CANet96.39 5696.02 6197.50 4597.62 12893.38 6197.02 16997.96 10095.42 1594.86 12397.81 9787.38 11799.82 2896.88 3499.20 7099.29 61
114514_t93.95 12393.06 13896.63 7299.07 3791.61 11297.46 13197.96 10077.99 37193.00 16497.57 11786.14 13599.33 11389.22 21399.15 7498.94 95
IU-MVS99.42 795.39 1197.94 10290.40 19298.94 697.41 2799.66 1099.74 8
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10399.86 897.68 1499.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10399.86 897.68 1499.67 699.77 2
Anonymous2023121190.63 26289.42 27594.27 21298.24 8689.19 21098.05 5497.89 10579.95 36388.25 28594.96 25072.56 31998.13 23089.70 19985.14 31595.49 261
原ACMM196.38 9498.59 6691.09 14097.89 10587.41 27995.22 11897.68 10590.25 7299.54 8787.95 23399.12 7798.49 130
CDPH-MVS95.97 6795.38 7597.77 3398.93 4794.44 3296.35 22997.88 10786.98 28796.65 6897.89 8891.99 4299.47 10092.26 14799.46 3999.39 54
test1197.88 107
EIA-MVS95.53 7895.47 7195.71 13697.06 15489.63 18497.82 8597.87 10993.57 7793.92 14495.04 24890.61 6998.95 15694.62 10798.68 9598.54 123
CS-MVS96.86 3497.06 1796.26 10498.16 9691.16 13899.09 397.87 10995.30 1897.06 5498.03 7891.72 4498.71 18097.10 2999.17 7298.90 100
无先验95.79 26097.87 10983.87 33599.65 5687.68 24398.89 103
3Dnovator+91.43 495.40 7994.48 10198.16 1696.90 16395.34 1698.48 2197.87 10994.65 4788.53 27798.02 8083.69 16599.71 4493.18 13498.96 8699.44 48
VPNet92.23 19791.31 20394.99 17195.56 23490.96 14397.22 15697.86 11392.96 11290.96 21296.62 17575.06 30198.20 22391.90 15783.65 33895.80 246
test_vis1_n_192094.17 11194.58 9492.91 27397.42 13882.02 33397.83 8497.85 11494.68 4498.10 2798.49 3670.15 33499.32 11597.91 1398.82 9097.40 193
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11494.92 3098.73 1698.87 1595.08 899.84 2397.52 2099.67 699.48 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1197.33 1397.69 4099.25 2794.24 3998.07 5297.85 11493.72 7398.57 1998.35 4993.69 1899.40 10897.06 3099.46 3999.44 48
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 3297.04 2196.45 8898.29 8291.66 11199.03 497.85 11495.84 796.90 5797.97 8491.24 5798.75 17496.92 3399.33 5898.94 95
test_fmvsmconf0.01_n96.15 6295.85 6597.03 6592.66 34791.83 10497.97 6797.84 11895.57 1297.53 3799.00 684.20 15999.76 3698.82 999.08 7999.48 43
AdaColmapbinary94.34 10793.68 11496.31 9898.59 6691.68 11096.59 21297.81 11989.87 20092.15 18197.06 14383.62 16899.54 8789.34 20898.07 12097.70 179
ETV-MVS96.02 6595.89 6496.40 9197.16 14592.44 8497.47 12997.77 12094.55 4896.48 7794.51 27291.23 5998.92 15995.65 7698.19 11697.82 175
新几何197.32 5098.60 6593.59 5697.75 12181.58 35495.75 10497.85 9490.04 7599.67 5486.50 26599.13 7698.69 117
旧先验198.38 7893.38 6197.75 12198.09 7392.30 3999.01 8499.16 71
EC-MVSNet96.42 5496.47 5096.26 10497.01 15991.52 11798.89 597.75 12194.42 5396.64 6997.68 10589.32 8298.60 19097.45 2499.11 7898.67 119
EI-MVSNet-Vis-set96.51 5296.47 5096.63 7298.24 8691.20 13396.89 18097.73 12494.74 4296.49 7698.49 3690.88 6699.58 7596.44 4698.32 11199.13 75
PAPM_NR95.01 9094.59 9396.26 10498.89 5190.68 15797.24 15197.73 12491.80 14392.93 16996.62 17589.13 8599.14 13389.21 21497.78 12798.97 91
Anonymous2024052991.98 20590.73 22695.73 13498.14 9789.40 19797.99 6097.72 12679.63 36593.54 15197.41 12569.94 33699.56 8391.04 17891.11 25198.22 151
CHOSEN 280x42093.12 15692.72 15494.34 20796.71 17787.27 25690.29 37097.72 12686.61 29491.34 20195.29 23884.29 15898.41 20493.25 13398.94 8797.35 196
EI-MVSNet-UG-set96.34 5896.30 5796.47 8598.20 9190.93 14596.86 18297.72 12694.67 4596.16 8998.46 4090.43 7199.58 7596.23 5097.96 12398.90 100
LS3D93.57 13992.61 15996.47 8597.59 13291.61 11297.67 10197.72 12685.17 31790.29 22298.34 5284.60 15199.73 4083.85 30498.27 11398.06 164
PAPR94.18 11093.42 13096.48 8497.64 12691.42 12395.55 26997.71 13088.99 22792.34 17895.82 21289.19 8399.11 13686.14 27197.38 13898.90 100
UGNet94.04 12193.28 13396.31 9896.85 16591.19 13497.88 7897.68 13194.40 5493.00 16496.18 19473.39 31699.61 6791.72 16398.46 10698.13 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15398.18 9588.90 21697.66 13282.73 34597.03 5598.07 7490.06 7498.85 16489.67 20098.98 8598.64 120
test1297.65 4198.46 7094.26 3797.66 13295.52 11490.89 6599.46 10199.25 6699.22 68
DTE-MVSNet90.56 26389.75 26893.01 26993.95 31487.25 25797.64 10897.65 13490.74 17487.12 30695.68 22379.97 23997.00 33383.33 30581.66 34994.78 315
TAPA-MVS90.10 792.30 19291.22 20995.56 14398.33 8089.60 18696.79 18897.65 13481.83 35191.52 19697.23 13487.94 10498.91 16171.31 37298.37 10998.17 155
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 15792.45 16795.05 16698.09 9989.21 20796.89 18097.64 13693.18 9891.79 19097.28 12975.35 30098.65 18588.99 21992.84 21897.28 199
test_cas_vis1_n_192094.48 10594.55 9894.28 21196.78 17186.45 27797.63 11097.64 13693.32 9297.68 3698.36 4873.75 31499.08 14296.73 3799.05 8197.31 198
cdsmvs_eth3d_5k23.24 36330.99 3650.00 3820.00 4040.00 4070.00 39397.63 1380.00 4000.00 40196.88 15384.38 1550.00 4010.00 4000.00 3990.00 397
DPM-MVS95.69 7294.92 8598.01 1998.08 10295.71 995.27 28397.62 13990.43 19195.55 11197.07 14291.72 4499.50 9789.62 20298.94 8798.82 109
canonicalmvs96.02 6595.45 7297.75 3597.59 13295.15 2398.28 3297.60 14094.52 5096.27 8696.12 19887.65 10999.18 12896.20 5694.82 19198.91 99
test22298.24 8692.21 9295.33 27897.60 14079.22 36795.25 11697.84 9688.80 9099.15 7498.72 114
cascas91.20 23990.08 25294.58 19794.97 27289.16 21193.65 33697.59 14279.90 36489.40 25492.92 32675.36 29998.36 21192.14 15294.75 19396.23 225
h-mvs3394.15 11393.52 12296.04 11797.81 11690.22 16997.62 11297.58 14395.19 2096.74 6297.45 12283.67 16699.61 6795.85 6779.73 35698.29 148
MVSFormer95.37 8095.16 8195.99 12296.34 20191.21 13198.22 4197.57 14491.42 15396.22 8797.32 12786.20 13397.92 27194.07 11599.05 8198.85 106
test_djsdf93.07 16092.76 14994.00 22393.49 33088.70 22098.22 4197.57 14491.42 15390.08 23495.55 23082.85 18697.92 27194.07 11591.58 23995.40 271
OMC-MVS95.09 8994.70 9196.25 10798.46 7091.28 12796.43 21997.57 14492.04 13894.77 12597.96 8587.01 12299.09 14091.31 17396.77 15498.36 145
PS-MVSNAJss93.74 13393.51 12394.44 20193.91 31689.28 20597.75 9097.56 14792.50 12489.94 23796.54 17888.65 9398.18 22693.83 12490.90 25695.86 239
casdiffmvs_mvgpermissive95.81 7195.57 6896.51 8196.87 16491.49 11897.50 12397.56 14793.99 6595.13 12097.92 8787.89 10598.78 16995.97 6397.33 14199.26 65
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 18491.89 18394.03 22293.33 33688.50 22797.73 9397.53 14992.00 14088.85 26996.50 18075.62 29898.11 23693.88 12291.56 24095.48 262
mvs_tets92.31 19191.76 18593.94 23093.41 33388.29 23197.63 11097.53 14992.04 13888.76 27296.45 18274.62 30698.09 24093.91 12091.48 24295.45 267
dcpmvs_296.37 5797.05 2094.31 20998.96 4684.11 31397.56 11797.51 15193.92 6797.43 4398.52 3392.75 2799.32 11597.32 2899.50 3399.51 37
HQP_MVS93.78 13293.43 12894.82 18296.21 20589.99 17497.74 9197.51 15194.85 3291.34 20196.64 16681.32 21598.60 19093.02 14092.23 22795.86 239
plane_prior597.51 15198.60 19093.02 14092.23 22795.86 239
PS-MVSNAJ95.37 8095.33 7795.49 14997.35 13990.66 15895.31 28097.48 15493.85 7096.51 7595.70 22288.65 9399.65 5694.80 10298.27 11396.17 229
API-MVS94.84 9994.49 10095.90 12497.90 11292.00 10097.80 8797.48 15489.19 22194.81 12496.71 15888.84 8999.17 12988.91 22198.76 9396.53 218
MG-MVS95.61 7595.38 7596.31 9898.42 7390.53 16096.04 24897.48 15493.47 8595.67 10898.10 7189.17 8499.25 12191.27 17498.77 9299.13 75
MAR-MVS94.22 10993.46 12596.51 8198.00 10592.19 9597.67 10197.47 15788.13 25993.00 16495.84 21084.86 14999.51 9487.99 23298.17 11897.83 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 16492.53 16394.32 20896.12 21589.20 20895.28 28197.47 15792.66 12089.90 23895.62 22680.58 22698.40 20592.73 14592.40 22595.38 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 23390.22 24894.68 19294.86 28287.86 24897.23 15597.46 15987.99 26089.90 23896.92 15166.35 35598.23 22090.30 18890.99 25497.96 165
nrg03094.05 12093.31 13296.27 10395.22 26094.59 2998.34 2797.46 15992.93 11391.21 21096.64 16687.23 12098.22 22194.99 9685.80 30595.98 238
XVG-OURS93.72 13493.35 13194.80 18797.07 15188.61 22194.79 29497.46 15991.97 14193.99 14197.86 9381.74 21098.88 16392.64 14692.67 22396.92 210
LPG-MVS_test92.94 16792.56 16094.10 21796.16 21088.26 23397.65 10497.46 15991.29 15690.12 23097.16 13779.05 25498.73 17692.25 14991.89 23595.31 278
LGP-MVS_train94.10 21796.16 21088.26 23397.46 15991.29 15690.12 23097.16 13779.05 25498.73 17692.25 14991.89 23595.31 278
MVS91.71 21190.44 23595.51 14795.20 26291.59 11496.04 24897.45 16473.44 37987.36 30395.60 22785.42 14299.10 13785.97 27697.46 13395.83 243
XVG-OURS-SEG-HR93.86 12893.55 11894.81 18497.06 15488.53 22695.28 28197.45 16491.68 14694.08 14097.68 10582.41 19798.90 16293.84 12392.47 22496.98 206
baseline95.58 7695.42 7496.08 11396.78 17190.41 16597.16 16197.45 16493.69 7695.65 10997.85 9487.29 11898.68 18295.66 7397.25 14599.13 75
ab-mvs93.57 13992.55 16196.64 7097.28 14091.96 10295.40 27597.45 16489.81 20593.22 16296.28 19079.62 24599.46 10190.74 18293.11 21598.50 128
xiu_mvs_v2_base95.32 8295.29 7895.40 15497.22 14190.50 16195.44 27497.44 16893.70 7596.46 7996.18 19488.59 9699.53 8994.79 10497.81 12696.17 229
131492.81 17592.03 17795.14 16295.33 25289.52 19296.04 24897.44 16887.72 27286.25 32095.33 23783.84 16398.79 16889.26 21197.05 15097.11 204
casdiffmvspermissive95.64 7495.49 7096.08 11396.76 17690.45 16397.29 14897.44 16894.00 6495.46 11597.98 8387.52 11398.73 17695.64 7797.33 14199.08 81
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 19991.23 20894.95 17694.75 28890.94 14497.47 12997.43 17189.14 22288.90 26696.43 18379.71 24398.24 21989.56 20387.68 28895.67 259
anonymousdsp92.16 19991.55 19493.97 22692.58 34989.55 18997.51 12297.42 17289.42 21588.40 27994.84 25780.66 22497.88 27691.87 15991.28 24794.48 323
Effi-MVS+94.93 9594.45 10296.36 9696.61 18191.47 12096.41 22197.41 17391.02 16994.50 13095.92 20687.53 11298.78 16993.89 12196.81 15398.84 108
HQP3-MVS97.39 17492.10 232
HQP-MVS93.19 15292.74 15294.54 19995.86 22189.33 20196.65 20397.39 17493.55 7890.14 22495.87 20880.95 21898.50 19892.13 15392.10 23295.78 248
PLCcopyleft91.00 694.11 11793.43 12896.13 11298.58 6891.15 13996.69 19997.39 17487.29 28291.37 20096.71 15888.39 9799.52 9387.33 25297.13 14997.73 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 25689.86 26193.45 25593.54 32787.60 25397.70 10097.37 17788.85 23387.65 29694.08 29881.08 21798.10 23784.68 29283.79 33794.66 320
UnsupCasMVSNet_eth85.99 32284.45 32690.62 32789.97 36782.40 33093.62 33797.37 17789.86 20178.59 36892.37 33465.25 36195.35 36182.27 31770.75 37794.10 334
ACMM89.79 892.96 16592.50 16594.35 20696.30 20388.71 21997.58 11597.36 17991.40 15590.53 21696.65 16579.77 24298.75 17491.24 17591.64 23795.59 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9094.76 8895.75 13196.58 18491.71 10796.25 23797.35 18092.99 10596.70 6496.63 17282.67 18999.44 10496.22 5197.46 13396.11 234
xiu_mvs_v1_base95.01 9094.76 8895.75 13196.58 18491.71 10796.25 23797.35 18092.99 10596.70 6496.63 17282.67 18999.44 10496.22 5197.46 13396.11 234
xiu_mvs_v1_base_debi95.01 9094.76 8895.75 13196.58 18491.71 10796.25 23797.35 18092.99 10596.70 6496.63 17282.67 18999.44 10496.22 5197.46 13396.11 234
diffmvspermissive95.25 8495.13 8295.63 13996.43 19789.34 20095.99 25297.35 18092.83 11596.31 8397.37 12686.44 12898.67 18396.26 4897.19 14798.87 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 10394.02 10796.79 6897.71 12192.05 9896.59 21297.35 18090.61 18594.64 12796.93 14886.41 12999.39 10991.20 17694.71 19598.94 95
F-COLMAP93.58 13892.98 14095.37 15598.40 7588.98 21497.18 15997.29 18587.75 27190.49 21797.10 14185.21 14499.50 9786.70 26296.72 15797.63 181
XVG-ACMP-BASELINE90.93 25290.21 24993.09 26794.31 30685.89 28695.33 27897.26 18691.06 16889.38 25595.44 23568.61 34198.60 19089.46 20591.05 25294.79 313
PCF-MVS89.48 1191.56 21989.95 25896.36 9696.60 18292.52 8292.51 35697.26 18679.41 36688.90 26696.56 17784.04 16299.55 8577.01 35197.30 14397.01 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 17992.14 17494.05 22096.40 19888.20 23697.36 14097.25 18891.52 14888.30 28296.64 16678.46 26698.72 17991.86 16091.48 24295.23 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 14892.76 14994.82 18294.63 29490.77 15296.65 20397.18 18993.72 7391.68 19297.26 13279.33 24998.63 18792.13 15392.28 22695.07 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 16992.02 17895.56 14398.19 9390.80 15095.27 28397.18 18987.96 26191.86 18995.68 22380.44 22998.99 15484.01 30097.54 13296.89 211
alignmvs95.87 7095.23 7997.78 3197.56 13595.19 2197.86 7997.17 19194.39 5596.47 7896.40 18585.89 13699.20 12596.21 5595.11 18798.95 94
MVS_Test94.89 9794.62 9295.68 13796.83 16889.55 18996.70 19797.17 19191.17 16495.60 11096.11 20187.87 10698.76 17393.01 14297.17 14898.72 114
Fast-Effi-MVS+93.46 14292.75 15195.59 14296.77 17390.03 17196.81 18797.13 19388.19 25591.30 20494.27 28886.21 13298.63 18787.66 24496.46 16498.12 158
EI-MVSNet93.03 16292.88 14493.48 25395.77 22686.98 26596.44 21797.12 19490.66 18191.30 20497.64 11286.56 12598.05 24889.91 19390.55 26195.41 268
MVSTER93.20 15192.81 14894.37 20596.56 18789.59 18797.06 16697.12 19491.24 16091.30 20495.96 20482.02 20498.05 24893.48 12890.55 26195.47 265
test_yl94.78 10194.23 10596.43 8997.74 11991.22 12996.85 18397.10 19691.23 16195.71 10596.93 14884.30 15699.31 11793.10 13595.12 18598.75 111
DCV-MVSNet94.78 10194.23 10596.43 8997.74 11991.22 12996.85 18397.10 19691.23 16195.71 10596.93 14884.30 15699.31 11793.10 13595.12 18598.75 111
LTVRE_ROB88.41 1390.99 24889.92 26094.19 21396.18 20889.55 18996.31 23397.09 19887.88 26485.67 32495.91 20778.79 26298.57 19481.50 32089.98 26794.44 326
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 17792.88 14492.29 29096.08 21881.05 34197.98 6197.08 19990.72 17696.79 6098.18 6863.07 36598.45 20297.62 1898.42 10897.36 194
v1091.04 24690.23 24693.49 25294.12 31088.16 23997.32 14597.08 19988.26 25488.29 28394.22 29382.17 20297.97 25986.45 26684.12 33194.33 329
v14419291.06 24590.28 24293.39 25693.66 32587.23 25996.83 18697.07 20187.43 27889.69 24594.28 28781.48 21398.00 25587.18 25684.92 32194.93 299
v119291.07 24490.23 24693.58 24993.70 32287.82 24996.73 19397.07 20187.77 26989.58 24894.32 28580.90 22297.97 25986.52 26485.48 30894.95 295
v891.29 23690.53 23493.57 25094.15 30988.12 24097.34 14297.06 20388.99 22788.32 28194.26 29083.08 17898.01 25487.62 24683.92 33594.57 322
mvs_anonymous93.82 13093.74 11294.06 21996.44 19685.41 29395.81 25997.05 20489.85 20390.09 23396.36 18787.44 11597.75 28793.97 11796.69 15899.02 84
IterMVS-LS92.29 19391.94 18193.34 25896.25 20486.97 26696.57 21597.05 20490.67 17989.50 25394.80 26086.59 12497.64 29589.91 19386.11 30395.40 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 25490.03 25793.29 26093.55 32686.96 26796.74 19297.04 20687.36 28089.52 25294.34 28280.23 23497.97 25986.27 26785.21 31494.94 297
CDS-MVSNet94.14 11693.54 11995.93 12396.18 20891.46 12196.33 23197.04 20688.97 22993.56 14996.51 17987.55 11197.89 27589.80 19695.95 16998.44 138
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 23090.60 23093.68 24593.89 31788.23 23596.84 18597.03 20888.37 25189.69 24594.39 27982.04 20397.98 25687.80 23685.37 31094.84 305
v124090.70 26089.85 26293.23 26293.51 32986.80 26896.61 20997.02 20987.16 28589.58 24894.31 28679.55 24697.98 25685.52 28285.44 30994.90 302
EPP-MVSNet95.22 8695.04 8495.76 12997.49 13689.56 18898.67 1097.00 21090.69 17794.24 13597.62 11489.79 7998.81 16793.39 13296.49 16298.92 98
V4291.58 21890.87 21793.73 24094.05 31388.50 22797.32 14596.97 21188.80 23989.71 24394.33 28382.54 19398.05 24889.01 21885.07 31794.64 321
test_fmvs193.21 15093.53 12092.25 29296.55 18981.20 34097.40 13696.96 21290.68 17896.80 5998.04 7769.25 33898.40 20597.58 1998.50 10297.16 203
FMVSNet291.31 23490.08 25294.99 17196.51 19192.21 9297.41 13296.95 21388.82 23688.62 27494.75 26273.87 31097.42 31685.20 28788.55 28295.35 275
ACMH87.59 1690.53 26489.42 27593.87 23496.21 20587.92 24597.24 15196.94 21488.45 24983.91 34496.27 19171.92 32098.62 18984.43 29589.43 27395.05 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 23190.27 24394.59 19396.51 19191.18 13597.50 12396.93 21588.82 23689.35 25694.51 27273.87 31097.29 32386.12 27288.82 27795.31 278
test191.35 23190.27 24394.59 19396.51 19191.18 13597.50 12396.93 21588.82 23689.35 25694.51 27273.87 31097.29 32386.12 27288.82 27795.31 278
FMVSNet391.78 20990.69 22895.03 16996.53 19092.27 9197.02 16996.93 21589.79 20689.35 25694.65 26777.01 28297.47 31186.12 27288.82 27795.35 275
FMVSNet189.88 28088.31 29094.59 19395.41 24291.18 13597.50 12396.93 21586.62 29387.41 30194.51 27265.94 35997.29 32383.04 30887.43 29195.31 278
GeoE93.89 12693.28 13395.72 13596.96 16289.75 18298.24 3996.92 21989.47 21392.12 18397.21 13584.42 15498.39 20987.71 23996.50 16199.01 87
miper_enhance_ethall91.54 22191.01 21493.15 26595.35 24887.07 26493.97 32296.90 22086.79 29189.17 26393.43 32286.55 12697.64 29589.97 19286.93 29594.74 317
eth_miper_zixun_eth91.02 24790.59 23192.34 28995.33 25284.35 30994.10 31996.90 22088.56 24588.84 27094.33 28384.08 16197.60 30088.77 22484.37 32995.06 292
TAMVS94.01 12293.46 12595.64 13896.16 21090.45 16396.71 19696.89 22289.27 21993.46 15496.92 15187.29 11897.94 26788.70 22595.74 17498.53 124
miper_ehance_all_eth91.59 21691.13 21292.97 27195.55 23586.57 27694.47 30396.88 22387.77 26988.88 26894.01 29986.22 13197.54 30489.49 20486.93 29594.79 313
v2v48291.59 21690.85 22093.80 23793.87 31888.17 23896.94 17796.88 22389.54 21089.53 25194.90 25481.70 21198.02 25389.25 21285.04 31995.20 286
CNLPA94.28 10893.53 12096.52 7898.38 7892.55 8196.59 21296.88 22390.13 19791.91 18797.24 13385.21 14499.09 14087.64 24597.83 12597.92 167
PAPM91.52 22290.30 24195.20 15995.30 25589.83 18093.38 34296.85 22686.26 30088.59 27595.80 21384.88 14898.15 22875.67 35595.93 17097.63 181
c3_l91.38 22890.89 21692.88 27595.58 23386.30 28094.68 29696.84 22788.17 25688.83 27194.23 29185.65 14097.47 31189.36 20784.63 32394.89 303
pm-mvs190.72 25989.65 27293.96 22794.29 30789.63 18497.79 8896.82 22889.07 22386.12 32295.48 23478.61 26497.78 28486.97 26081.67 34894.46 324
test_vis1_n92.37 18792.26 17292.72 28094.75 28882.64 32598.02 5696.80 22991.18 16397.77 3597.93 8658.02 37298.29 21797.63 1798.21 11597.23 202
CMPMVSbinary62.92 2185.62 32684.92 32387.74 34889.14 37273.12 37894.17 31796.80 22973.98 37773.65 37694.93 25266.36 35497.61 29983.95 30291.28 24792.48 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 26989.77 26691.78 30594.33 30484.72 30795.55 26996.73 23186.17 30286.36 31995.28 24071.28 32597.80 28284.09 29998.14 11992.81 351
Effi-MVS+-dtu93.08 15993.21 13592.68 28396.02 21983.25 32397.14 16396.72 23293.85 7091.20 21193.44 32083.08 17898.30 21691.69 16695.73 17596.50 220
TSAR-MVS + GP.96.69 4696.49 4997.27 5598.31 8193.39 6096.79 18896.72 23294.17 6097.44 4197.66 10892.76 2699.33 11396.86 3597.76 12999.08 81
1112_ss93.37 14592.42 16896.21 10897.05 15690.99 14196.31 23396.72 23286.87 29089.83 24196.69 16286.51 12799.14 13388.12 23093.67 20998.50 128
PVSNet86.66 1892.24 19691.74 18893.73 24097.77 11883.69 32092.88 35196.72 23287.91 26393.00 16494.86 25678.51 26599.05 14986.53 26397.45 13798.47 133
miper_lstm_enhance90.50 26690.06 25691.83 30195.33 25283.74 31793.86 32896.70 23687.56 27687.79 29393.81 30783.45 17196.92 33587.39 25084.62 32494.82 308
v14890.99 24890.38 23792.81 27893.83 31985.80 28796.78 19096.68 23789.45 21488.75 27393.93 30382.96 18497.82 28187.83 23583.25 34094.80 311
ACMH+87.92 1490.20 27389.18 28093.25 26196.48 19486.45 27796.99 17396.68 23788.83 23584.79 33396.22 19370.16 33398.53 19684.42 29688.04 28594.77 316
CANet_DTU94.37 10693.65 11596.55 7696.46 19592.13 9696.21 24196.67 23994.38 5693.53 15297.03 14579.34 24899.71 4490.76 18198.45 10797.82 175
cl____90.96 25190.32 23992.89 27495.37 24686.21 28394.46 30596.64 24087.82 26588.15 28894.18 29482.98 18297.54 30487.70 24085.59 30694.92 301
HY-MVS89.66 993.87 12792.95 14196.63 7297.10 15092.49 8395.64 26796.64 24089.05 22593.00 16495.79 21685.77 13999.45 10389.16 21794.35 19797.96 165
Test_1112_low_res92.84 17391.84 18495.85 12797.04 15789.97 17795.53 27196.64 24085.38 31289.65 24795.18 24385.86 13799.10 13787.70 24093.58 21498.49 130
DIV-MVS_self_test90.97 25090.33 23892.88 27595.36 24786.19 28494.46 30596.63 24387.82 26588.18 28794.23 29182.99 18197.53 30687.72 23785.57 30794.93 299
Fast-Effi-MVS+-dtu92.29 19391.99 17993.21 26495.27 25685.52 29197.03 16796.63 24392.09 13689.11 26595.14 24580.33 23298.08 24187.54 24894.74 19496.03 237
UnsupCasMVSNet_bld82.13 33979.46 34490.14 33388.00 37782.47 32890.89 36896.62 24578.94 36875.61 37284.40 38156.63 37596.31 34377.30 34866.77 38491.63 364
cl2291.21 23890.56 23393.14 26696.09 21786.80 26894.41 30796.58 24687.80 26788.58 27693.99 30180.85 22397.62 29889.87 19586.93 29594.99 294
RRT_MVS93.10 15792.83 14693.93 23294.76 28688.04 24198.47 2296.55 24793.44 8690.01 23697.04 14480.64 22597.93 27094.33 11290.21 26695.83 243
jason94.84 9994.39 10496.18 11095.52 23690.93 14596.09 24696.52 24889.28 21896.01 9697.32 12784.70 15098.77 17295.15 9298.91 8998.85 106
jason: jason.
tt080591.09 24390.07 25594.16 21595.61 23188.31 23097.56 11796.51 24989.56 20989.17 26395.64 22567.08 35398.38 21091.07 17788.44 28395.80 246
AUN-MVS91.76 21090.75 22594.81 18497.00 16088.57 22396.65 20396.49 25089.63 20792.15 18196.12 19878.66 26398.50 19890.83 17979.18 35997.36 194
hse-mvs293.45 14392.99 13994.81 18497.02 15888.59 22296.69 19996.47 25195.19 2096.74 6296.16 19783.67 16698.48 20195.85 6779.13 36097.35 196
EG-PatchMatch MVS87.02 31285.44 31691.76 30792.67 34685.00 30296.08 24796.45 25283.41 34179.52 36493.49 31857.10 37497.72 28979.34 33990.87 25892.56 355
KD-MVS_self_test85.95 32384.95 32288.96 34389.55 37179.11 36495.13 28896.42 25385.91 30584.07 34290.48 35470.03 33594.82 36380.04 33172.94 37492.94 349
pmmvs687.81 30486.19 31192.69 28291.32 35986.30 28097.34 14296.41 25480.59 36284.05 34394.37 28167.37 34897.67 29284.75 29179.51 35894.09 336
PMMVS92.86 17192.34 16994.42 20394.92 27786.73 27194.53 30196.38 25584.78 32494.27 13495.12 24783.13 17798.40 20591.47 17096.49 16298.12 158
RPSCF90.75 25790.86 21890.42 33096.84 16676.29 37195.61 26896.34 25683.89 33391.38 19997.87 9176.45 28798.78 16987.16 25792.23 22796.20 227
MSDG91.42 22690.24 24594.96 17597.15 14788.91 21593.69 33496.32 25785.72 30886.93 31496.47 18180.24 23398.98 15580.57 32895.05 18896.98 206
OurMVSNet-221017-090.51 26590.19 25091.44 31393.41 33381.25 33896.98 17496.28 25891.68 14686.55 31896.30 18974.20 30997.98 25688.96 22087.40 29395.09 290
MVP-Stereo90.74 25890.08 25292.71 28193.19 33888.20 23695.86 25796.27 25986.07 30384.86 33294.76 26177.84 27797.75 28783.88 30398.01 12192.17 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9494.56 9596.29 10296.34 20191.21 13195.83 25896.27 25988.93 23196.22 8796.88 15386.20 13398.85 16495.27 8999.05 8198.82 109
BH-untuned92.94 16792.62 15893.92 23397.22 14186.16 28596.40 22596.25 26190.06 19889.79 24296.17 19683.19 17498.35 21287.19 25597.27 14497.24 201
CL-MVSNet_self_test86.31 31885.15 32089.80 33788.83 37481.74 33693.93 32596.22 26286.67 29285.03 33090.80 35378.09 27394.50 36474.92 35871.86 37693.15 347
IS-MVSNet94.90 9694.52 9996.05 11697.67 12290.56 15998.44 2396.22 26293.21 9493.99 14197.74 10285.55 14198.45 20289.98 19197.86 12499.14 74
FA-MVS(test-final)93.52 14192.92 14295.31 15696.77 17388.54 22594.82 29396.21 26489.61 20894.20 13695.25 24183.24 17399.14 13390.01 19096.16 16698.25 149
GA-MVS91.38 22890.31 24094.59 19394.65 29387.62 25294.34 31096.19 26590.73 17590.35 22193.83 30471.84 32197.96 26487.22 25493.61 21298.21 152
IterMVS-SCA-FT90.31 26889.81 26491.82 30295.52 23684.20 31294.30 31396.15 26690.61 18587.39 30294.27 28875.80 29596.44 34187.34 25186.88 29994.82 308
IterMVS90.15 27589.67 27091.61 30995.48 23883.72 31894.33 31196.12 26789.99 19987.31 30594.15 29675.78 29796.27 34486.97 26086.89 29894.83 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 17691.51 19896.52 7898.77 5390.99 14197.38 13996.08 26882.38 34789.29 25997.87 9183.77 16499.69 5081.37 32596.69 15898.89 103
pmmvs490.93 25289.85 26294.17 21493.34 33590.79 15194.60 29896.02 26984.62 32587.45 29995.15 24481.88 20897.45 31387.70 24087.87 28794.27 333
ppachtmachnet_test88.35 29987.29 29891.53 31092.45 35283.57 32193.75 33195.97 27084.28 32885.32 32994.18 29479.00 26096.93 33475.71 35484.99 32094.10 334
Anonymous2024052186.42 31685.44 31689.34 34190.33 36479.79 35696.73 19395.92 27183.71 33783.25 34791.36 35063.92 36396.01 34578.39 34385.36 31192.22 360
ITE_SJBPF92.43 28695.34 24985.37 29695.92 27191.47 15087.75 29596.39 18671.00 32797.96 26482.36 31689.86 26993.97 337
test_fmvs289.77 28389.93 25989.31 34293.68 32476.37 37097.64 10895.90 27389.84 20491.49 19796.26 19258.77 37197.10 32794.65 10691.13 25094.46 324
USDC88.94 29087.83 29592.27 29194.66 29284.96 30393.86 32895.90 27387.34 28183.40 34695.56 22967.43 34798.19 22582.64 31589.67 27193.66 340
COLMAP_ROBcopyleft87.81 1590.40 26789.28 27893.79 23897.95 10787.13 26396.92 17895.89 27582.83 34486.88 31697.18 13673.77 31399.29 11978.44 34293.62 21194.95 295
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 13093.08 13796.02 11997.88 11389.96 17897.72 9695.85 27692.43 12595.86 10098.44 4268.42 34399.39 10996.31 4794.85 18998.71 116
VDDNet93.05 16192.07 17596.02 11996.84 16690.39 16698.08 5195.85 27686.22 30195.79 10398.46 4067.59 34699.19 12694.92 9794.85 18998.47 133
Vis-MVSNet (Re-imp)94.15 11393.88 11094.95 17697.61 12987.92 24598.10 4995.80 27892.22 12993.02 16397.45 12284.53 15397.91 27488.24 22997.97 12299.02 84
MM98.23 1195.03 2598.07 5295.76 27997.78 197.52 3898.80 2088.09 10099.86 899.44 199.37 5699.80 1
KD-MVS_2432*160084.81 33082.64 33491.31 31591.07 36185.34 29791.22 36395.75 28085.56 31083.09 34890.21 35767.21 34995.89 34777.18 34962.48 38792.69 352
miper_refine_blended84.81 33082.64 33491.31 31591.07 36185.34 29791.22 36395.75 28085.56 31083.09 34890.21 35767.21 34995.89 34777.18 34962.48 38792.69 352
FE-MVS92.05 20391.05 21395.08 16596.83 16887.93 24493.91 32795.70 28286.30 29894.15 13894.97 24976.59 28599.21 12484.10 29896.86 15198.09 162
tpm cat188.36 29887.21 30191.81 30395.13 26780.55 34792.58 35595.70 28274.97 37687.45 29991.96 34478.01 27698.17 22780.39 33088.74 28096.72 216
our_test_388.78 29487.98 29491.20 31892.45 35282.53 32793.61 33895.69 28485.77 30784.88 33193.71 30979.99 23896.78 33979.47 33686.24 30094.28 332
BH-w/o92.14 20191.75 18693.31 25996.99 16185.73 28895.67 26495.69 28488.73 24189.26 26194.82 25982.97 18398.07 24585.26 28696.32 16596.13 233
CR-MVSNet90.82 25589.77 26693.95 22894.45 30087.19 26090.23 37195.68 28686.89 28992.40 17392.36 33780.91 22097.05 32981.09 32793.95 20797.60 186
Patchmtry88.64 29687.25 29992.78 27994.09 31186.64 27289.82 37495.68 28680.81 35987.63 29792.36 33780.91 22097.03 33078.86 34085.12 31694.67 319
iter_conf_final93.60 13693.11 13695.04 16797.13 14891.30 12697.92 7395.65 28892.98 11091.60 19396.64 16679.28 25098.13 23095.34 8891.49 24195.70 256
BH-RMVSNet92.72 17891.97 18094.97 17497.16 14587.99 24396.15 24495.60 28990.62 18491.87 18897.15 13978.41 26798.57 19483.16 30697.60 13198.36 145
PVSNet_082.17 1985.46 32783.64 33090.92 32195.27 25679.49 36090.55 36995.60 28983.76 33683.00 35089.95 35971.09 32697.97 25982.75 31360.79 38995.31 278
SCA91.84 20891.18 21193.83 23595.59 23284.95 30494.72 29595.58 29190.82 17192.25 17993.69 31075.80 29598.10 23786.20 26995.98 16898.45 135
AllTest90.23 27188.98 28293.98 22497.94 10886.64 27296.51 21695.54 29285.38 31285.49 32696.77 15670.28 33199.15 13180.02 33292.87 21696.15 231
TestCases93.98 22497.94 10886.64 27295.54 29285.38 31285.49 32696.77 15670.28 33199.15 13180.02 33292.87 21696.15 231
iter_conf0593.18 15592.63 15694.83 18196.64 17990.69 15597.60 11395.53 29492.52 12391.58 19496.64 16676.35 29098.13 23095.43 8691.42 24495.68 258
mvsmamba93.83 12993.46 12594.93 17994.88 28190.85 14898.55 1495.49 29594.24 5991.29 20796.97 14783.04 18098.14 22995.56 8491.17 24995.78 248
tpmvs89.83 28289.15 28191.89 29994.92 27780.30 35193.11 34795.46 29686.28 29988.08 28992.65 32880.44 22998.52 19781.47 32189.92 26896.84 212
pmmvs589.86 28188.87 28492.82 27792.86 34286.23 28296.26 23695.39 29784.24 32987.12 30694.51 27274.27 30897.36 32087.61 24787.57 28994.86 304
PatchmatchNetpermissive91.91 20691.35 20093.59 24895.38 24484.11 31393.15 34695.39 29789.54 21092.10 18493.68 31282.82 18798.13 23084.81 29095.32 18298.52 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 22591.32 20291.79 30495.15 26579.20 36393.42 34195.37 29988.55 24693.49 15393.67 31382.49 19598.27 21890.41 18589.34 27497.90 168
Anonymous2023120687.09 31186.14 31289.93 33691.22 36080.35 34996.11 24595.35 30083.57 33984.16 33893.02 32573.54 31595.61 35572.16 36986.14 30293.84 339
MIMVSNet184.93 32983.05 33190.56 32889.56 37084.84 30695.40 27595.35 30083.91 33280.38 36092.21 34157.23 37393.34 37670.69 37582.75 34693.50 342
TDRefinement86.53 31484.76 32591.85 30082.23 38784.25 31096.38 22795.35 30084.97 32184.09 34194.94 25165.76 36098.34 21584.60 29474.52 37092.97 348
TR-MVS91.48 22490.59 23194.16 21596.40 19887.33 25495.67 26495.34 30387.68 27391.46 19895.52 23276.77 28498.35 21282.85 31093.61 21296.79 214
EPNet_dtu91.71 21191.28 20592.99 27093.76 32183.71 31996.69 19995.28 30493.15 10087.02 31095.95 20583.37 17297.38 31979.46 33796.84 15297.88 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 30885.79 31491.78 30594.80 28587.28 25595.49 27295.28 30484.09 33183.85 34591.82 34562.95 36694.17 36878.48 34185.34 31293.91 338
MDTV_nov1_ep1390.76 22495.22 26080.33 35093.03 34995.28 30488.14 25892.84 17093.83 30481.34 21498.08 24182.86 30994.34 198
LF4IMVS87.94 30287.25 29989.98 33592.38 35480.05 35594.38 30895.25 30787.59 27584.34 33594.74 26364.31 36297.66 29484.83 28987.45 29092.23 359
TransMVSNet (Re)88.94 29087.56 29693.08 26894.35 30388.45 22997.73 9395.23 30887.47 27784.26 33795.29 23879.86 24197.33 32179.44 33874.44 37193.45 344
test20.0386.14 32185.40 31888.35 34490.12 36580.06 35495.90 25695.20 30988.59 24281.29 35593.62 31571.43 32492.65 37871.26 37381.17 35192.34 358
new-patchmatchnet83.18 33681.87 33987.11 35186.88 37975.99 37293.70 33295.18 31085.02 32077.30 37188.40 36965.99 35893.88 37374.19 36370.18 37891.47 368
MDA-MVSNet_test_wron85.87 32484.23 32890.80 32592.38 35482.57 32693.17 34495.15 31182.15 34867.65 38092.33 34078.20 26995.51 35877.33 34679.74 35594.31 331
YYNet185.87 32484.23 32890.78 32692.38 35482.46 32993.17 34495.14 31282.12 34967.69 37992.36 33778.16 27295.50 35977.31 34779.73 35694.39 327
Baseline_NR-MVSNet91.20 23990.62 22992.95 27293.83 31988.03 24297.01 17295.12 31388.42 25089.70 24495.13 24683.47 16997.44 31489.66 20183.24 34193.37 345
thres20092.23 19791.39 19994.75 19197.61 12989.03 21396.60 21195.09 31492.08 13793.28 15994.00 30078.39 26899.04 15281.26 32694.18 19996.19 228
ADS-MVSNet89.89 27988.68 28693.53 25195.86 22184.89 30590.93 36695.07 31583.23 34291.28 20891.81 34679.01 25897.85 27779.52 33491.39 24597.84 172
pmmvs-eth3d86.22 31984.45 32691.53 31088.34 37687.25 25794.47 30395.01 31683.47 34079.51 36589.61 36269.75 33795.71 35283.13 30776.73 36791.64 363
Anonymous20240521192.07 20290.83 22295.76 12998.19 9388.75 21897.58 11595.00 31786.00 30493.64 14897.45 12266.24 35799.53 8990.68 18492.71 22199.01 87
MDA-MVSNet-bldmvs85.00 32882.95 33391.17 31993.13 34083.33 32294.56 30095.00 31784.57 32665.13 38492.65 32870.45 33095.85 34973.57 36577.49 36394.33 329
ambc86.56 35483.60 38470.00 38185.69 38394.97 31980.60 35988.45 36837.42 38796.84 33782.69 31475.44 36992.86 350
testgi87.97 30187.21 30190.24 33292.86 34280.76 34296.67 20294.97 31991.74 14485.52 32595.83 21162.66 36794.47 36676.25 35288.36 28495.48 262
dp88.90 29288.26 29290.81 32394.58 29776.62 36992.85 35294.93 32185.12 31890.07 23593.07 32475.81 29498.12 23580.53 32987.42 29297.71 178
test_fmvs383.21 33583.02 33283.78 35886.77 38068.34 38496.76 19194.91 32286.49 29584.14 34089.48 36336.04 38891.73 38091.86 16080.77 35391.26 370
test_040286.46 31584.79 32491.45 31295.02 27185.55 29096.29 23594.89 32380.90 35682.21 35293.97 30268.21 34497.29 32362.98 38188.68 28191.51 366
tfpn200view992.38 18691.52 19694.95 17697.85 11489.29 20397.41 13294.88 32492.19 13393.27 16094.46 27778.17 27099.08 14281.40 32294.08 20396.48 221
CVMVSNet91.23 23791.75 18689.67 33895.77 22674.69 37396.44 21794.88 32485.81 30692.18 18097.64 11279.07 25395.58 35788.06 23195.86 17298.74 113
thres40092.42 18491.52 19695.12 16497.85 11489.29 20397.41 13294.88 32492.19 13393.27 16094.46 27778.17 27099.08 14281.40 32294.08 20396.98 206
EPNet95.20 8794.56 9597.14 6192.80 34492.68 7897.85 8294.87 32796.64 392.46 17297.80 9986.23 13099.65 5693.72 12598.62 9899.10 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 28888.54 28890.98 32093.49 33080.28 35296.70 19794.70 32890.78 17284.15 33995.57 22871.78 32297.71 29084.63 29385.07 31794.94 297
thres100view90092.43 18391.58 19394.98 17397.92 11089.37 19997.71 9894.66 32992.20 13193.31 15894.90 25478.06 27499.08 14281.40 32294.08 20396.48 221
thres600view792.49 18291.60 19295.18 16097.91 11189.47 19397.65 10494.66 32992.18 13593.33 15794.91 25378.06 27499.10 13781.61 31994.06 20696.98 206
PatchT88.87 29387.42 29793.22 26394.08 31285.10 30189.51 37594.64 33181.92 35092.36 17688.15 37280.05 23797.01 33272.43 36893.65 21097.54 189
baseline192.82 17491.90 18295.55 14597.20 14390.77 15297.19 15894.58 33292.20 13192.36 17696.34 18884.16 16098.21 22289.20 21583.90 33697.68 180
Gipumacopyleft67.86 35465.41 35675.18 37192.66 34773.45 37666.50 39094.52 33353.33 38957.80 39066.07 39030.81 39089.20 38448.15 39078.88 36262.90 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CostFormer91.18 24290.70 22792.62 28494.84 28381.76 33594.09 32094.43 33484.15 33092.72 17193.77 30879.43 24798.20 22390.70 18392.18 23097.90 168
tpm289.96 27789.21 27992.23 29394.91 27981.25 33893.78 33094.42 33580.62 36191.56 19593.44 32076.44 28897.94 26785.60 28192.08 23497.49 190
JIA-IIPM88.26 30087.04 30491.91 29893.52 32881.42 33789.38 37694.38 33680.84 35890.93 21380.74 38379.22 25197.92 27182.76 31291.62 23896.38 224
dmvs_re90.21 27289.50 27492.35 28795.47 24185.15 29995.70 26394.37 33790.94 17088.42 27893.57 31674.63 30595.67 35482.80 31189.57 27296.22 226
Patchmatch-test89.42 28687.99 29393.70 24395.27 25685.11 30088.98 37794.37 33781.11 35587.10 30893.69 31082.28 19997.50 30974.37 36194.76 19298.48 132
LCM-MVSNet72.55 34869.39 35282.03 36070.81 39765.42 38990.12 37394.36 33955.02 38865.88 38281.72 38224.16 39689.96 38174.32 36268.10 38290.71 373
ADS-MVSNet289.45 28588.59 28792.03 29695.86 22182.26 33190.93 36694.32 34083.23 34291.28 20891.81 34679.01 25895.99 34679.52 33491.39 24597.84 172
EU-MVSNet88.72 29588.90 28388.20 34693.15 33974.21 37496.63 20894.22 34185.18 31687.32 30495.97 20376.16 29194.98 36285.27 28586.17 30195.41 268
MVS_030497.04 2596.73 3997.96 2397.60 13194.36 3498.01 5794.09 34297.33 296.29 8498.79 2289.73 8099.86 899.36 299.42 4699.67 13
MIMVSNet88.50 29786.76 30793.72 24294.84 28387.77 25091.39 36194.05 34386.41 29787.99 29192.59 33163.27 36495.82 35177.44 34592.84 21897.57 188
OpenMVS_ROBcopyleft81.14 2084.42 33282.28 33890.83 32290.06 36684.05 31595.73 26294.04 34473.89 37880.17 36391.53 34959.15 37097.64 29566.92 37989.05 27690.80 372
TinyColmap86.82 31385.35 31991.21 31794.91 27982.99 32493.94 32494.02 34583.58 33881.56 35494.68 26562.34 36898.13 23075.78 35387.35 29492.52 356
IB-MVS87.33 1789.91 27888.28 29194.79 18895.26 25987.70 25195.12 28993.95 34689.35 21787.03 30992.49 33270.74 32999.19 12689.18 21681.37 35097.49 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 31087.02 30587.47 34995.16 26373.21 37795.00 29093.93 34788.55 24686.96 31191.99 34275.90 29294.00 37061.59 38394.11 20095.20 286
myMVS_eth3d87.18 30986.38 30989.58 33995.16 26379.53 35895.00 29093.93 34788.55 24686.96 31191.99 34256.23 37694.00 37075.47 35794.11 20095.20 286
test_f80.57 34179.62 34383.41 35983.38 38567.80 38693.57 33993.72 34980.80 36077.91 37087.63 37533.40 38992.08 37987.14 25879.04 36190.34 374
LCM-MVSNet-Re92.50 18092.52 16492.44 28596.82 17081.89 33496.92 17893.71 35092.41 12684.30 33694.60 26985.08 14697.03 33091.51 16897.36 13998.40 141
bld_raw_dy_0_6492.37 18791.69 18994.39 20494.28 30889.73 18397.71 9893.65 35192.78 11890.46 21896.67 16475.88 29397.97 25992.92 14490.89 25795.48 262
tpm90.25 27089.74 26991.76 30793.92 31579.73 35793.98 32193.54 35288.28 25391.99 18693.25 32377.51 28097.44 31487.30 25387.94 28698.12 158
ET-MVSNet_ETH3D91.49 22390.11 25195.63 13996.40 19891.57 11695.34 27793.48 35390.60 18775.58 37395.49 23380.08 23696.79 33894.25 11389.76 27098.52 125
LFMVS93.60 13692.63 15696.52 7898.13 9891.27 12897.94 7193.39 35490.57 18896.29 8498.31 5869.00 33999.16 13094.18 11495.87 17199.12 78
Patchmatch-RL test87.38 30786.24 31090.81 32388.74 37578.40 36788.12 38193.17 35587.11 28682.17 35389.29 36481.95 20695.60 35688.64 22677.02 36498.41 140
test-LLR91.42 22691.19 21092.12 29494.59 29580.66 34494.29 31492.98 35691.11 16690.76 21492.37 33479.02 25698.07 24588.81 22296.74 15597.63 181
test-mter90.19 27489.54 27392.12 29494.59 29580.66 34494.29 31492.98 35687.68 27390.76 21492.37 33467.67 34598.07 24588.81 22296.74 15597.63 181
testing387.67 30586.88 30690.05 33496.14 21380.71 34397.10 16592.85 35890.15 19687.54 29894.55 27155.70 37794.10 36973.77 36494.10 20295.35 275
test_method66.11 35564.89 35769.79 37372.62 39535.23 40465.19 39192.83 35920.35 39465.20 38388.08 37343.14 38582.70 39173.12 36763.46 38691.45 369
test0.0.03 189.37 28788.70 28591.41 31492.47 35185.63 28995.22 28692.70 36091.11 16686.91 31593.65 31479.02 25693.19 37778.00 34489.18 27595.41 268
new_pmnet82.89 33781.12 34288.18 34789.63 36980.18 35391.77 36092.57 36176.79 37575.56 37488.23 37161.22 36994.48 36571.43 37182.92 34489.87 375
mvsany_test193.93 12593.98 10893.78 23994.94 27686.80 26894.62 29792.55 36288.77 24096.85 5898.49 3688.98 8698.08 24195.03 9495.62 17896.46 223
thisisatest051592.29 19391.30 20495.25 15896.60 18288.90 21694.36 30992.32 36387.92 26293.43 15594.57 27077.28 28199.00 15389.42 20695.86 17297.86 171
thisisatest053093.03 16292.21 17395.49 14997.07 15189.11 21297.49 12892.19 36490.16 19594.09 13996.41 18476.43 28999.05 14990.38 18695.68 17798.31 147
tttt051792.96 16592.33 17094.87 18097.11 14987.16 26297.97 6792.09 36590.63 18393.88 14597.01 14676.50 28699.06 14890.29 18995.45 18098.38 143
K. test v387.64 30686.75 30890.32 33193.02 34179.48 36196.61 20992.08 36690.66 18180.25 36294.09 29767.21 34996.65 34085.96 27780.83 35294.83 306
TESTMET0.1,190.06 27689.42 27591.97 29794.41 30280.62 34694.29 31491.97 36787.28 28390.44 21992.47 33368.79 34097.67 29288.50 22896.60 16097.61 185
PM-MVS83.48 33481.86 34088.31 34587.83 37877.59 36893.43 34091.75 36886.91 28880.63 35889.91 36044.42 38495.84 35085.17 28876.73 36791.50 367
baseline291.63 21490.86 21893.94 23094.33 30486.32 27995.92 25591.64 36989.37 21686.94 31394.69 26481.62 21298.69 18188.64 22694.57 19696.81 213
APD_test179.31 34377.70 34684.14 35789.11 37369.07 38392.36 35991.50 37069.07 38173.87 37592.63 33039.93 38694.32 36770.54 37680.25 35489.02 377
FPMVS71.27 34969.85 35175.50 37074.64 39259.03 39391.30 36291.50 37058.80 38557.92 38988.28 37029.98 39285.53 39053.43 38882.84 34581.95 383
door91.13 372
door-mid91.06 373
EGC-MVSNET68.77 35363.01 35886.07 35692.49 35082.24 33293.96 32390.96 3740.71 3992.62 40090.89 35253.66 37893.46 37457.25 38684.55 32682.51 382
mvsany_test383.59 33382.44 33787.03 35283.80 38373.82 37593.70 33290.92 37586.42 29682.51 35190.26 35646.76 38395.71 35290.82 18076.76 36691.57 365
pmmvs379.97 34277.50 34787.39 35082.80 38679.38 36292.70 35490.75 37670.69 38078.66 36787.47 37751.34 38193.40 37573.39 36669.65 37989.38 376
DSMNet-mixed86.34 31786.12 31387.00 35389.88 36870.43 37994.93 29290.08 37777.97 37285.42 32892.78 32774.44 30793.96 37274.43 36095.14 18496.62 217
MVS-HIRNet82.47 33881.21 34186.26 35595.38 24469.21 38288.96 37889.49 37866.28 38280.79 35774.08 38768.48 34297.39 31871.93 37095.47 17992.18 361
WB-MVS76.77 34576.63 34877.18 36585.32 38156.82 39594.53 30189.39 37982.66 34671.35 37789.18 36575.03 30288.88 38535.42 39366.79 38385.84 379
test111193.19 15292.82 14794.30 21097.58 13484.56 30898.21 4389.02 38093.53 8294.58 12898.21 6572.69 31799.05 14993.06 13898.48 10599.28 63
SSC-MVS76.05 34675.83 34976.72 36984.77 38256.22 39694.32 31288.96 38181.82 35270.52 37888.91 36674.79 30488.71 38633.69 39464.71 38585.23 380
ECVR-MVScopyleft93.19 15292.73 15394.57 19897.66 12485.41 29398.21 4388.23 38293.43 8794.70 12698.21 6572.57 31899.07 14693.05 13998.49 10399.25 66
EPMVS90.70 26089.81 26493.37 25794.73 29084.21 31193.67 33588.02 38389.50 21292.38 17593.49 31877.82 27897.78 28486.03 27592.68 22298.11 161
ANet_high63.94 35659.58 35977.02 36661.24 39966.06 38785.66 38487.93 38478.53 37042.94 39271.04 38925.42 39580.71 39252.60 38930.83 39384.28 381
PMMVS270.19 35066.92 35380.01 36176.35 39165.67 38886.22 38287.58 38564.83 38462.38 38580.29 38426.78 39488.49 38863.79 38054.07 39085.88 378
lessismore_v090.45 32991.96 35779.09 36587.19 38680.32 36194.39 27966.31 35697.55 30384.00 30176.84 36594.70 318
PMVScopyleft53.92 2258.58 35755.40 36068.12 37451.00 40048.64 39878.86 38787.10 38746.77 39035.84 39674.28 3868.76 40086.34 38942.07 39173.91 37269.38 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 32085.06 32189.46 34093.47 33280.46 34896.41 22186.61 38885.22 31579.15 36688.64 36752.41 38097.06 32893.08 13790.57 26090.87 371
testf169.31 35166.76 35476.94 36778.61 38961.93 39188.27 37986.11 38955.62 38659.69 38685.31 37920.19 39889.32 38257.62 38469.44 38079.58 384
APD_test269.31 35166.76 35476.94 36778.61 38961.93 39188.27 37986.11 38955.62 38659.69 38685.31 37920.19 39889.32 38257.62 38469.44 38079.58 384
gg-mvs-nofinetune87.82 30385.61 31594.44 20194.46 29989.27 20691.21 36584.61 39180.88 35789.89 24074.98 38571.50 32397.53 30685.75 28097.21 14696.51 219
dmvs_testset81.38 34082.60 33677.73 36491.74 35851.49 39793.03 34984.21 39289.07 22378.28 36991.25 35176.97 28388.53 38756.57 38782.24 34793.16 346
GG-mvs-BLEND93.62 24693.69 32389.20 20892.39 35883.33 39387.98 29289.84 36171.00 32796.87 33682.08 31895.40 18194.80 311
MTMP97.86 7982.03 394
DeepMVS_CXcopyleft74.68 37290.84 36364.34 39081.61 39565.34 38367.47 38188.01 37448.60 38280.13 39362.33 38273.68 37379.58 384
E-PMN53.28 35852.56 36255.43 37674.43 39347.13 39983.63 38676.30 39642.23 39142.59 39362.22 39228.57 39374.40 39431.53 39531.51 39244.78 391
test250691.60 21590.78 22394.04 22197.66 12483.81 31698.27 3375.53 39793.43 8795.23 11798.21 6567.21 34999.07 14693.01 14298.49 10399.25 66
EMVS52.08 36051.31 36354.39 37772.62 39545.39 40183.84 38575.51 39841.13 39240.77 39459.65 39330.08 39173.60 39528.31 39629.90 39444.18 392
test_vis3_rt72.73 34770.55 35079.27 36280.02 38868.13 38593.92 32674.30 39976.90 37458.99 38873.58 38820.29 39795.37 36084.16 29772.80 37574.31 387
MVEpermissive50.73 2353.25 35948.81 36466.58 37565.34 39857.50 39472.49 38970.94 40040.15 39339.28 39563.51 3916.89 40273.48 39638.29 39242.38 39168.76 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 36153.82 36146.29 37833.73 40145.30 40278.32 38867.24 40118.02 39550.93 39187.05 37852.99 37953.11 39770.76 37425.29 39540.46 393
N_pmnet78.73 34478.71 34578.79 36392.80 34446.50 40094.14 31843.71 40278.61 36980.83 35691.66 34874.94 30396.36 34267.24 37884.45 32893.50 342
wuyk23d25.11 36224.57 36626.74 37973.98 39439.89 40357.88 3929.80 40312.27 39610.39 3976.97 3997.03 40136.44 39825.43 39717.39 3963.89 396
testmvs13.36 36416.33 3674.48 3815.04 4022.26 40693.18 3433.28 4042.70 3978.24 39821.66 3952.29 4042.19 3997.58 3982.96 3979.00 395
test12313.04 36515.66 3685.18 3804.51 4033.45 40592.50 3571.81 4052.50 3987.58 39920.15 3963.67 4032.18 4007.13 3991.07 3989.90 394
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.39 3679.85 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40088.65 930.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
n20.00 406
nn0.00 406
ab-mvs-re8.06 36610.74 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40196.69 1620.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS79.53 35875.56 356
PC_three_145290.77 17398.89 1298.28 6396.24 198.35 21295.76 7199.58 2199.59 22
eth-test20.00 404
eth-test0.00 404
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6496.04 299.24 12295.36 8799.59 1799.56 29
test_0728_THIRD94.78 3998.73 1698.87 1595.87 499.84 2397.45 2499.72 299.77 2
GSMVS98.45 135
test_part299.28 2595.74 898.10 27
sam_mvs182.76 18898.45 135
sam_mvs81.94 207
test_post192.81 35316.58 39880.53 22797.68 29186.20 269
test_post17.58 39781.76 20998.08 241
patchmatchnet-post90.45 35582.65 19298.10 237
gm-plane-assit93.22 33778.89 36684.82 32393.52 31798.64 18687.72 237
test9_res94.81 10199.38 5399.45 46
agg_prior293.94 11999.38 5399.50 40
test_prior493.66 5596.42 220
test_prior296.35 22992.80 11796.03 9397.59 11692.01 4195.01 9599.38 53
旧先验295.94 25481.66 35397.34 4698.82 16692.26 147
新几何295.79 260
原ACMM295.67 264
testdata299.67 5485.96 277
segment_acmp92.89 25
testdata195.26 28593.10 103
plane_prior796.21 20589.98 176
plane_prior696.10 21690.00 17281.32 215
plane_prior496.64 166
plane_prior390.00 17294.46 5291.34 201
plane_prior297.74 9194.85 32
plane_prior196.14 213
plane_prior89.99 17497.24 15194.06 6392.16 231
HQP5-MVS89.33 201
HQP-NCC95.86 22196.65 20393.55 7890.14 224
ACMP_Plane95.86 22196.65 20393.55 7890.14 224
BP-MVS92.13 153
HQP4-MVS90.14 22498.50 19895.78 248
HQP2-MVS80.95 218
NP-MVS95.99 22089.81 18195.87 208
MDTV_nov1_ep13_2view70.35 38093.10 34883.88 33493.55 15082.47 19686.25 26898.38 143
ACMMP++_ref90.30 265
ACMMP++91.02 253
Test By Simon88.73 92