This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 699.30 298.92 1592.39 4199.79 3699.16 699.46 4198.08 179
PGM-MVS96.81 4596.53 5497.65 4299.35 2093.53 6097.65 11198.98 292.22 13997.14 6098.44 4891.17 6799.85 1894.35 12699.46 4199.57 28
MVS_111021_HR96.68 5596.58 5396.99 7598.46 7392.31 9896.20 25698.90 394.30 7095.86 11397.74 11192.33 4299.38 11896.04 7699.42 5099.28 68
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14892.37 9597.91 7698.88 495.83 1098.92 1499.05 791.45 5799.80 3399.12 799.46 4199.69 12
ACMMPcopyleft96.27 7095.93 7397.28 6099.24 2892.62 8798.25 3598.81 592.99 11794.56 14498.39 5288.96 9499.85 1894.57 12497.63 14399.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 7196.19 7096.39 10498.23 9491.35 13696.24 25498.79 693.99 7695.80 11597.65 11889.92 8699.24 13095.87 8099.20 7698.58 135
patch_mono-296.83 4497.44 1695.01 18399.05 3985.39 31096.98 18798.77 794.70 5097.99 3598.66 3193.61 1999.91 197.67 2699.50 3599.72 11
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17797.97 6998.76 894.93 3598.84 1899.06 688.80 9799.65 6399.06 898.63 10698.18 168
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3399.30 298.84 2593.34 2299.78 3899.32 399.13 8399.50 43
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13590.72 16398.00 6198.73 994.55 5798.91 1599.08 388.22 10699.63 7298.91 1198.37 11998.25 163
FC-MVSNet-test93.94 14193.57 13495.04 18195.48 26391.45 13398.12 5098.71 1193.37 10090.23 24596.70 17287.66 11597.85 29791.49 18390.39 28495.83 267
UniMVSNet (Re)93.31 16292.55 17495.61 15595.39 26893.34 6697.39 14898.71 1193.14 11390.10 25494.83 27187.71 11498.03 27191.67 18183.99 35495.46 286
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3599.24 498.87 2093.52 2099.79 3699.32 399.21 7499.40 57
FIs94.09 13593.70 13095.27 17195.70 25392.03 10998.10 5198.68 1393.36 10290.39 24296.70 17287.63 11897.94 28892.25 16390.50 28395.84 266
WR-MVS_H92.00 21691.35 21393.95 24495.09 29489.47 20398.04 5898.68 1391.46 16388.34 30394.68 27885.86 14797.56 32485.77 29884.24 35294.82 329
VPA-MVSNet93.24 16492.48 17995.51 16195.70 25392.39 9497.86 8198.66 1692.30 13892.09 20495.37 24780.49 24298.40 22693.95 13285.86 32595.75 275
fmvsm_s_conf0.5_n_296.62 5696.82 4196.02 13097.98 11490.43 17397.50 13298.59 1796.59 399.31 199.08 384.47 16499.75 4499.37 298.45 11697.88 189
UniMVSNet_NR-MVSNet93.37 16092.67 16995.47 16695.34 27492.83 8197.17 17198.58 1892.98 12290.13 25095.80 22488.37 10597.85 29791.71 17883.93 35595.73 277
CSCG96.05 7495.91 7496.46 9899.24 2890.47 17098.30 2898.57 1989.01 24893.97 16097.57 12692.62 3799.76 4194.66 11999.27 6799.15 78
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 2094.66 5397.24 5698.41 5192.31 4498.94 17396.61 5399.46 4198.96 98
HyFIR lowres test93.66 15192.92 15795.87 13898.24 9089.88 19094.58 32498.49 2085.06 34393.78 16395.78 22882.86 19898.67 20491.77 17695.71 19099.07 89
CHOSEN 1792x268894.15 13093.51 14096.06 12698.27 8689.38 20895.18 31098.48 2285.60 33393.76 16497.11 15283.15 18999.61 7491.33 18698.72 10399.19 74
PHI-MVS96.77 4796.46 6197.71 4098.40 7894.07 4898.21 4298.45 2389.86 22097.11 6298.01 8892.52 3999.69 5796.03 7799.53 2999.36 63
fmvsm_s_conf0.1_n96.58 5996.77 4596.01 13396.67 19490.25 17897.91 7698.38 2494.48 6198.84 1899.14 188.06 10899.62 7398.82 1398.60 10898.15 172
PVSNet_BlendedMVS94.06 13693.92 12694.47 21498.27 8689.46 20596.73 20798.36 2590.17 21294.36 14995.24 25588.02 10999.58 8293.44 14390.72 27994.36 349
PVSNet_Blended94.87 11294.56 11095.81 14298.27 8689.46 20595.47 29498.36 2588.84 25694.36 14996.09 21388.02 10999.58 8293.44 14398.18 12798.40 155
3Dnovator91.36 595.19 10294.44 11897.44 5296.56 20393.36 6598.65 1198.36 2594.12 7289.25 28398.06 8282.20 21499.77 4093.41 14599.32 6499.18 75
FOURS199.55 193.34 6699.29 198.35 2894.98 3498.49 25
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16898.35 2895.16 2798.71 2298.80 2795.05 1099.89 396.70 5199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 6496.47 5896.16 12295.48 26390.69 16497.91 7698.33 3094.07 7398.93 1199.14 187.44 12599.61 7498.63 1598.32 12198.18 168
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3193.21 10597.18 5798.29 6892.08 4699.83 2695.63 9399.59 1999.54 36
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3293.21 10597.15 5998.33 6291.35 6199.86 995.63 9399.59 1999.62 20
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19691.73 11697.98 6398.30 3396.19 796.10 10498.95 1389.42 8899.76 4198.90 1299.08 8797.43 215
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3394.76 4898.30 2898.90 1793.77 1799.68 5997.93 1899.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2798.29 3594.92 3798.99 998.92 1595.08 8
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3595.55 1898.56 2497.81 10693.90 1599.65 6396.62 5299.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3794.78 4698.93 1198.87 2096.04 299.86 997.45 3499.58 2399.59 24
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3799.86 997.52 3099.67 699.75 6
CP-MVS97.02 3196.81 4297.64 4499.33 2193.54 5998.80 898.28 3792.99 11796.45 9198.30 6791.90 4999.85 1895.61 9599.68 499.54 36
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25592.21 10297.95 7298.27 4095.78 1498.40 2799.00 989.99 8499.78 3899.06 899.41 5399.59 24
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 4095.13 2899.19 598.89 1895.54 599.85 1897.52 3099.66 1099.56 31
test_241102_TWO98.27 4095.13 2898.93 1198.89 1894.99 1199.85 1897.52 3099.65 1399.74 8
test_241102_ONE99.42 795.30 1798.27 4095.09 3199.19 598.81 2695.54 599.65 63
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 4092.37 13798.27 2998.65 3393.33 2399.72 5096.49 5799.52 3099.51 40
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 4095.34 2298.11 3198.56 3594.53 1299.71 5196.57 5599.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4695.13 2898.48 2698.87 2095.16 7
PVSNet_Blended_VisFu95.27 9794.91 10196.38 10598.20 9690.86 15797.27 16098.25 4690.21 21194.18 15497.27 14387.48 12499.73 4793.53 14097.77 14198.55 136
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4893.19 10897.14 6098.34 5991.59 5699.87 795.46 9999.59 1999.64 18
PS-CasMVS91.55 23690.84 23693.69 26094.96 29888.28 24297.84 8598.24 4891.46 16388.04 31395.80 22479.67 25897.48 33287.02 27884.54 34995.31 298
DU-MVS92.90 18292.04 18995.49 16394.95 29992.83 8197.16 17298.24 4893.02 11690.13 25095.71 23183.47 18197.85 29791.71 17883.93 35595.78 271
9.1496.75 4698.93 5097.73 9998.23 5191.28 17297.88 3998.44 4893.00 2699.65 6395.76 8699.47 40
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5295.73 1597.99 3599.03 892.63 3699.82 2897.80 2099.42 5099.67 13
D2MVS91.30 25290.95 23092.35 30594.71 31485.52 30696.18 25798.21 5288.89 25486.60 34193.82 32479.92 25497.95 28789.29 22890.95 27693.56 362
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5495.80 1297.88 3998.98 1192.91 2799.81 3097.68 2299.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5495.80 1297.88 3998.98 1192.91 2799.81 3097.68 2299.43 4899.67 13
SDMVSNet94.17 12893.61 13395.86 14098.09 10491.37 13597.35 15298.20 5493.18 11091.79 21197.28 14179.13 26698.93 17494.61 12292.84 24297.28 223
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5494.85 3996.59 8398.29 6891.70 5299.80 3395.66 8899.40 5599.62 20
X-MVStestdata91.71 22589.67 28997.81 2899.38 1494.03 5098.59 1298.20 5494.85 3996.59 8332.69 42291.70 5299.80 3395.66 8899.40 5599.62 20
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5992.82 12897.93 3898.74 3091.60 5599.86 996.26 6099.52 3099.67 13
CP-MVSNet91.89 22191.24 22093.82 25295.05 29588.57 23397.82 8998.19 5991.70 15688.21 30995.76 22981.96 21897.52 33087.86 25384.65 34395.37 294
ZNCC-MVS96.96 3396.67 4997.85 2599.37 1694.12 4698.49 1998.18 6192.64 13396.39 9398.18 7591.61 5499.88 495.59 9899.55 2699.57 28
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6190.57 20398.85 1798.94 1493.33 2399.83 2696.72 5099.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 25790.44 25393.48 26994.49 32287.91 25697.76 9598.18 6191.29 16987.78 31795.74 23080.35 24597.33 34385.46 30282.96 36595.19 309
DELS-MVS96.61 5796.38 6597.30 5797.79 12693.19 7395.96 26798.18 6195.23 2495.87 11297.65 11891.45 5799.70 5695.87 8099.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 30788.40 31393.60 26395.15 29090.10 18097.56 12498.16 6587.28 30686.16 34594.63 28177.57 29498.05 26774.48 38484.59 34792.65 375
VNet95.89 8195.45 8497.21 6598.07 10892.94 8097.50 13298.15 6693.87 8097.52 4697.61 12485.29 15399.53 9695.81 8595.27 19899.16 76
DeepPCF-MVS93.97 196.61 5797.09 2195.15 17598.09 10486.63 28696.00 26598.15 6695.43 1997.95 3798.56 3593.40 2199.36 11996.77 4799.48 3999.45 50
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6894.82 4399.01 898.55 3794.18 1497.41 33996.94 4399.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 4196.52 5597.82 2799.36 1894.14 4598.29 2998.13 6992.72 13096.70 7598.06 8291.35 6199.86 994.83 11399.28 6699.47 49
UA-Net95.95 7995.53 8097.20 6697.67 13192.98 7997.65 11198.13 6994.81 4496.61 8198.35 5688.87 9599.51 10190.36 20397.35 15399.11 84
QAPM93.45 15892.27 18496.98 7696.77 18992.62 8798.39 2498.12 7184.50 35188.27 30797.77 10982.39 21199.81 3085.40 30398.81 9998.51 141
Vis-MVSNetpermissive95.23 9994.81 10296.51 9297.18 15691.58 12698.26 3498.12 7194.38 6894.90 13698.15 7782.28 21298.92 17591.45 18598.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 18491.68 20396.40 10295.34 27492.73 8598.27 3298.12 7184.86 34685.78 34797.75 11078.89 27699.74 4587.50 26898.65 10596.73 239
TranMVSNet+NR-MVSNet92.50 19391.63 20495.14 17694.76 31092.07 10797.53 12998.11 7492.90 12689.56 27196.12 20883.16 18897.60 32289.30 22783.20 36495.75 275
CPTT-MVS95.57 9195.19 9496.70 7899.27 2691.48 13098.33 2698.11 7487.79 29195.17 13298.03 8587.09 13199.61 7493.51 14199.42 5099.02 90
APD-MVScopyleft96.95 3496.60 5198.01 2099.03 4194.93 2797.72 10298.10 7691.50 16198.01 3498.32 6492.33 4299.58 8294.85 11199.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3996.60 5197.64 4499.40 1193.44 6198.50 1898.09 7793.27 10495.95 11198.33 6291.04 6999.88 495.20 10299.57 2599.60 23
ZD-MVS99.05 3994.59 3298.08 7889.22 24197.03 6598.10 7892.52 3999.65 6394.58 12399.31 65
MTGPAbinary98.08 78
MTAPA97.08 2896.78 4497.97 2399.37 1694.42 3697.24 16298.08 7895.07 3296.11 10398.59 3490.88 7499.90 296.18 7299.50 3599.58 27
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 16098.08 7895.81 1197.87 4298.31 6594.26 1399.68 5997.02 4299.49 3899.57 28
DP-MVS Recon95.68 8695.12 9897.37 5499.19 3194.19 4297.03 17998.08 7888.35 27495.09 13497.65 11889.97 8599.48 10692.08 17098.59 10998.44 152
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8393.75 8397.45 4898.48 4591.43 5999.59 7996.22 6399.27 6799.54 36
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17598.07 8393.54 9396.08 10597.69 11393.86 1699.71 5196.50 5699.39 5799.55 34
NR-MVSNet92.34 20191.27 21995.53 16094.95 29993.05 7697.39 14898.07 8392.65 13284.46 35895.71 23185.00 15797.77 30789.71 21583.52 36195.78 271
MP-MVS-pluss96.70 5196.27 6897.98 2299.23 3094.71 2996.96 18998.06 8690.67 19495.55 12498.78 2991.07 6899.86 996.58 5499.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4596.71 4897.12 6999.01 4592.31 9897.98 6398.06 8693.11 11497.44 4998.55 3790.93 7299.55 9296.06 7399.25 7199.51 40
MP-MVScopyleft96.77 4796.45 6297.72 3899.39 1393.80 5398.41 2398.06 8693.37 10095.54 12698.34 5990.59 7899.88 494.83 11399.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 6096.27 6897.22 6499.32 2292.74 8498.74 998.06 8690.57 20396.77 7298.35 5690.21 8199.53 9694.80 11699.63 1699.38 61
HPM-MVScopyleft96.69 5396.45 6297.40 5399.36 1893.11 7598.87 698.06 8691.17 17796.40 9297.99 8990.99 7099.58 8295.61 9599.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 12093.80 12896.64 8097.07 16291.97 11196.32 24698.06 8688.94 25294.50 14696.78 16784.60 16199.27 12891.90 17196.02 18198.68 129
DeepC-MVS93.07 396.06 7395.66 7897.29 5897.96 11593.17 7497.30 15898.06 8693.92 7893.38 17398.66 3186.83 13399.73 4795.60 9799.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15398.04 9395.96 897.09 6397.88 9793.18 2599.71 5195.84 8499.17 7899.56 31
DeepC-MVS_fast93.89 296.93 3696.64 5097.78 3198.64 6794.30 3797.41 14398.04 9394.81 4496.59 8398.37 5491.24 6499.64 7195.16 10499.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3896.80 4397.11 7099.02 4292.34 9697.98 6398.03 9593.52 9597.43 5198.51 4091.40 6099.56 9096.05 7499.26 6999.43 54
RE-MVS-def96.72 4799.02 4292.34 9697.98 6398.03 9593.52 9597.43 5198.51 4090.71 7696.05 7499.26 6999.43 54
RPMNet88.98 31387.05 32794.77 20194.45 32487.19 27190.23 39798.03 9577.87 39892.40 19087.55 40280.17 24999.51 10168.84 40393.95 22997.60 208
save fliter98.91 5294.28 3897.02 18198.02 9895.35 21
TEST998.70 5994.19 4296.41 23598.02 9888.17 27896.03 10697.56 12892.74 3399.59 79
train_agg96.30 6995.83 7797.72 3898.70 5994.19 4296.41 23598.02 9888.58 26596.03 10697.56 12892.73 3499.59 7995.04 10699.37 6199.39 59
test_898.67 6194.06 4996.37 24298.01 10188.58 26595.98 11097.55 13092.73 3499.58 82
agg_prior98.67 6193.79 5498.00 10295.68 12099.57 89
test_prior97.23 6398.67 6192.99 7898.00 10299.41 11499.29 66
WR-MVS92.34 20191.53 20894.77 20195.13 29290.83 15896.40 23997.98 10491.88 15289.29 28095.54 24282.50 20797.80 30389.79 21485.27 33495.69 278
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10595.59 1696.61 8197.89 9592.57 3899.84 2395.95 7999.51 3399.40 57
CANet96.39 6596.02 7297.50 4997.62 13893.38 6397.02 18197.96 10695.42 2094.86 13797.81 10687.38 12799.82 2896.88 4599.20 7699.29 66
114514_t93.95 14093.06 15396.63 8299.07 3791.61 12397.46 14197.96 10677.99 39693.00 18197.57 12686.14 14599.33 12089.22 23199.15 8198.94 101
IU-MVS99.42 795.39 1197.94 10890.40 20998.94 1097.41 3799.66 1099.74 8
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10999.86 997.68 2299.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10999.86 997.68 2299.67 699.77 2
fmvsm_s_conf0.1_n_296.33 6896.44 6496.00 13497.30 15190.37 17697.53 12997.92 11196.52 499.14 799.08 383.21 18699.74 4599.22 598.06 13297.88 189
Anonymous2023121190.63 28189.42 29694.27 22898.24 9089.19 22098.05 5797.89 11279.95 38888.25 30894.96 26372.56 33298.13 25089.70 21685.14 33695.49 282
原ACMM196.38 10598.59 6991.09 15097.89 11287.41 30295.22 13197.68 11490.25 8099.54 9487.95 25299.12 8598.49 144
CDPH-MVS95.97 7895.38 8997.77 3398.93 5094.44 3596.35 24397.88 11486.98 31096.65 7997.89 9591.99 4899.47 10792.26 16199.46 4199.39 59
test1197.88 114
EIA-MVS95.53 9295.47 8395.71 15097.06 16589.63 19497.82 8997.87 11693.57 8993.92 16195.04 26190.61 7798.95 17194.62 12198.68 10498.54 137
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11695.30 2397.06 6498.03 8591.72 5098.71 20197.10 4099.17 7898.90 108
无先验95.79 27797.87 11683.87 35999.65 6387.68 26298.89 112
3Dnovator+91.43 495.40 9394.48 11698.16 1696.90 17595.34 1698.48 2097.87 11694.65 5488.53 29998.02 8783.69 17799.71 5193.18 14898.96 9499.44 52
VPNet92.23 20991.31 21694.99 18495.56 25990.96 15397.22 16797.86 12092.96 12390.96 23396.62 18475.06 31498.20 24491.90 17183.65 36095.80 269
test_vis1_n_192094.17 12894.58 10992.91 28997.42 14982.02 35697.83 8797.85 12194.68 5198.10 3298.49 4270.15 35099.32 12297.91 1998.82 9897.40 217
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 12194.92 3798.73 2098.87 2095.08 899.84 2397.52 3099.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 12193.72 8498.57 2398.35 5693.69 1899.40 11597.06 4199.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 12195.84 996.90 6797.97 9191.24 6498.75 19496.92 4499.33 6398.94 101
test_fmvsmconf0.01_n96.15 7295.85 7697.03 7492.66 37191.83 11597.97 6997.84 12595.57 1797.53 4599.00 984.20 17099.76 4198.82 1399.08 8799.48 47
GDP-MVS95.62 8895.13 9697.09 7196.79 18693.26 7197.89 7997.83 12693.58 8896.80 6997.82 10583.06 19399.16 14294.40 12597.95 13698.87 114
balanced_conf0396.84 4396.89 3496.68 7997.63 13792.22 10198.17 4897.82 12794.44 6398.23 3097.36 13890.97 7199.22 13297.74 2199.66 1098.61 132
AdaColmapbinary94.34 12493.68 13196.31 10998.59 6991.68 12196.59 22697.81 12889.87 21992.15 20097.06 15583.62 18099.54 9489.34 22698.07 13197.70 201
MVSMamba_PlusPlus96.51 6096.48 5796.59 8598.07 10891.97 11198.14 4997.79 12990.43 20797.34 5497.52 13191.29 6399.19 13598.12 1799.64 1498.60 133
mamv494.66 11896.10 7190.37 35498.01 11173.41 40296.82 20097.78 13089.95 21894.52 14597.43 13592.91 2799.09 15498.28 1699.16 8098.60 133
ETV-MVS96.02 7595.89 7596.40 10297.16 15792.44 9397.47 13997.77 13194.55 5796.48 8894.51 28791.23 6698.92 17595.65 9198.19 12697.82 196
新几何197.32 5698.60 6893.59 5897.75 13281.58 37995.75 11797.85 10190.04 8399.67 6186.50 28499.13 8398.69 128
旧先验198.38 8193.38 6397.75 13298.09 8092.30 4599.01 9299.16 76
EC-MVSNet96.42 6396.47 5896.26 11597.01 17191.52 12898.89 597.75 13294.42 6496.64 8097.68 11489.32 8998.60 21197.45 3499.11 8698.67 130
EI-MVSNet-Vis-set96.51 6096.47 5896.63 8298.24 9091.20 14396.89 19397.73 13594.74 4996.49 8798.49 4290.88 7499.58 8296.44 5898.32 12199.13 80
PAPM_NR95.01 10494.59 10896.26 11598.89 5490.68 16597.24 16297.73 13591.80 15392.93 18696.62 18489.13 9299.14 14789.21 23297.78 14098.97 97
Anonymous2024052991.98 21790.73 24395.73 14898.14 10289.40 20797.99 6297.72 13779.63 39093.54 16897.41 13669.94 35299.56 9091.04 19391.11 27298.22 165
CHOSEN 280x42093.12 17092.72 16894.34 22296.71 19387.27 26790.29 39697.72 13786.61 31791.34 22295.29 24984.29 16998.41 22593.25 14798.94 9597.35 220
EI-MVSNet-UG-set96.34 6796.30 6796.47 9698.20 9690.93 15596.86 19597.72 13794.67 5296.16 10298.46 4690.43 7999.58 8296.23 6297.96 13598.90 108
LS3D93.57 15492.61 17296.47 9697.59 14191.61 12397.67 10897.72 13785.17 34190.29 24498.34 5984.60 16199.73 4783.85 32498.27 12398.06 180
PAPR94.18 12793.42 14696.48 9597.64 13591.42 13495.55 28997.71 14188.99 24992.34 19695.82 22389.19 9099.11 15086.14 29097.38 15198.90 108
UGNet94.04 13893.28 14996.31 10996.85 17891.19 14497.88 8097.68 14294.40 6693.00 18196.18 20373.39 32999.61 7491.72 17798.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 16798.18 10088.90 22697.66 14382.73 37097.03 6598.07 8190.06 8298.85 18289.67 21798.98 9398.64 131
test1297.65 4298.46 7394.26 3997.66 14395.52 12790.89 7399.46 10899.25 7199.22 73
DTE-MVSNet90.56 28289.75 28793.01 28593.95 33787.25 26897.64 11597.65 14590.74 18987.12 32995.68 23479.97 25397.00 35583.33 32581.66 37194.78 336
TAPA-MVS90.10 792.30 20491.22 22295.56 15798.33 8389.60 19696.79 20297.65 14581.83 37691.52 21797.23 14687.94 11198.91 17771.31 39898.37 11998.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 17192.45 18095.05 18098.09 10489.21 21796.89 19397.64 14793.18 11091.79 21197.28 14175.35 31398.65 20688.99 23792.84 24297.28 223
test_cas_vis1_n_192094.48 12294.55 11394.28 22796.78 18786.45 29197.63 11797.64 14793.32 10397.68 4498.36 5573.75 32799.08 15796.73 4999.05 8997.31 222
cdsmvs_eth3d_5k23.24 39230.99 3940.00 4100.00 4330.00 4350.00 42197.63 1490.00 4280.00 42996.88 16484.38 1660.00 4290.00 4280.00 4270.00 425
DPM-MVS95.69 8594.92 10098.01 2098.08 10795.71 995.27 30497.62 15090.43 20795.55 12497.07 15491.72 5099.50 10489.62 21998.94 9598.82 120
sasdasda96.02 7595.45 8497.75 3597.59 14195.15 2398.28 3097.60 15194.52 5996.27 9796.12 20887.65 11699.18 13896.20 6894.82 20798.91 105
canonicalmvs96.02 7595.45 8497.75 3597.59 14195.15 2398.28 3097.60 15194.52 5996.27 9796.12 20887.65 11699.18 13896.20 6894.82 20798.91 105
test22298.24 9092.21 10295.33 29997.60 15179.22 39295.25 12997.84 10388.80 9799.15 8198.72 125
cascas91.20 25790.08 27094.58 21094.97 29789.16 22193.65 36197.59 15479.90 38989.40 27592.92 34975.36 31298.36 23292.14 16694.75 21096.23 249
h-mvs3394.15 13093.52 13996.04 12897.81 12590.22 17997.62 11997.58 15595.19 2596.74 7397.45 13283.67 17899.61 7495.85 8279.73 37898.29 162
MGCFI-Net95.94 8095.40 8897.56 4897.59 14194.62 3198.21 4297.57 15694.41 6596.17 10196.16 20687.54 12099.17 14096.19 7094.73 21298.91 105
MVSFormer95.37 9495.16 9595.99 13596.34 22491.21 14198.22 4097.57 15691.42 16596.22 9997.32 13986.20 14397.92 29194.07 12999.05 8998.85 116
test_djsdf93.07 17392.76 16394.00 23993.49 35388.70 23098.22 4097.57 15691.42 16590.08 25695.55 24182.85 19997.92 29194.07 12991.58 26395.40 291
OMC-MVS95.09 10394.70 10696.25 11898.46 7391.28 13796.43 23397.57 15692.04 14894.77 14097.96 9287.01 13299.09 15491.31 18796.77 16898.36 159
PS-MVSNAJss93.74 14993.51 14094.44 21693.91 33989.28 21597.75 9697.56 16092.50 13489.94 25896.54 18788.65 10098.18 24793.83 13890.90 27795.86 263
casdiffmvs_mvgpermissive95.81 8495.57 7996.51 9296.87 17691.49 12997.50 13297.56 16093.99 7695.13 13397.92 9487.89 11298.78 18995.97 7897.33 15499.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 19791.89 19694.03 23893.33 35988.50 23797.73 9997.53 16292.00 15088.85 29196.50 18975.62 31198.11 25493.88 13691.56 26495.48 283
mvs_tets92.31 20391.76 19993.94 24693.41 35688.29 24197.63 11797.53 16292.04 14888.76 29496.45 19174.62 31998.09 25993.91 13491.48 26595.45 287
dcpmvs_296.37 6697.05 2594.31 22598.96 4984.11 33197.56 12497.51 16493.92 7897.43 5198.52 3992.75 3299.32 12297.32 3999.50 3599.51 40
HQP_MVS93.78 14893.43 14494.82 19496.21 22889.99 18497.74 9797.51 16494.85 3991.34 22296.64 17781.32 22898.60 21193.02 15492.23 25195.86 263
plane_prior597.51 16498.60 21193.02 15492.23 25195.86 263
reproduce_monomvs91.30 25291.10 22691.92 31696.82 18382.48 35097.01 18497.49 16794.64 5588.35 30295.27 25270.53 34598.10 25595.20 10284.60 34695.19 309
PS-MVSNAJ95.37 9495.33 9195.49 16397.35 15090.66 16695.31 30197.48 16893.85 8196.51 8695.70 23388.65 10099.65 6394.80 11698.27 12396.17 253
API-MVS94.84 11394.49 11595.90 13797.90 12192.00 11097.80 9297.48 16889.19 24294.81 13896.71 17088.84 9699.17 14088.91 23998.76 10296.53 242
MG-MVS95.61 8995.38 8996.31 10998.42 7690.53 16896.04 26297.48 16893.47 9795.67 12198.10 7889.17 9199.25 12991.27 18898.77 10199.13 80
MAR-MVS94.22 12693.46 14296.51 9298.00 11392.19 10597.67 10897.47 17188.13 28193.00 18195.84 22184.86 15999.51 10187.99 25198.17 12897.83 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 17792.53 17694.32 22396.12 23889.20 21895.28 30297.47 17192.66 13189.90 25995.62 23780.58 24098.40 22692.73 15992.40 24995.38 293
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 25090.22 26694.68 20494.86 30687.86 25797.23 16697.46 17387.99 28289.90 25996.92 16266.35 37798.23 24190.30 20490.99 27597.96 184
nrg03094.05 13793.31 14896.27 11495.22 28594.59 3298.34 2597.46 17392.93 12491.21 23196.64 17787.23 13098.22 24294.99 10985.80 32695.98 262
XVG-OURS93.72 15093.35 14794.80 19997.07 16288.61 23194.79 31997.46 17391.97 15193.99 15897.86 10081.74 22398.88 17992.64 16092.67 24796.92 234
LPG-MVS_test92.94 18092.56 17394.10 23396.16 23388.26 24397.65 11197.46 17391.29 16990.12 25297.16 14979.05 26998.73 19792.25 16391.89 25995.31 298
LGP-MVS_train94.10 23396.16 23388.26 24397.46 17391.29 16990.12 25297.16 14979.05 26998.73 19792.25 16391.89 25995.31 298
MVS91.71 22590.44 25395.51 16195.20 28791.59 12596.04 26297.45 17873.44 40687.36 32695.60 23885.42 15299.10 15185.97 29597.46 14695.83 267
XVG-OURS-SEG-HR93.86 14593.55 13594.81 19697.06 16588.53 23695.28 30297.45 17891.68 15794.08 15797.68 11482.41 21098.90 17893.84 13792.47 24896.98 230
baseline95.58 9095.42 8796.08 12496.78 18790.41 17497.16 17297.45 17893.69 8795.65 12297.85 10187.29 12898.68 20395.66 8897.25 15999.13 80
ab-mvs93.57 15492.55 17496.64 8097.28 15291.96 11395.40 29697.45 17889.81 22493.22 17996.28 19979.62 26099.46 10890.74 19793.11 23998.50 142
xiu_mvs_v2_base95.32 9695.29 9295.40 16897.22 15390.50 16995.44 29597.44 18293.70 8696.46 9096.18 20388.59 10399.53 9694.79 11897.81 13996.17 253
131492.81 18892.03 19095.14 17695.33 27789.52 20296.04 26297.44 18287.72 29586.25 34495.33 24883.84 17598.79 18889.26 22997.05 16497.11 228
casdiffmvspermissive95.64 8795.49 8196.08 12496.76 19290.45 17197.29 15997.44 18294.00 7595.46 12897.98 9087.52 12398.73 19795.64 9297.33 15499.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 21191.23 22194.95 19094.75 31190.94 15497.47 13997.43 18589.14 24388.90 28896.43 19279.71 25798.24 24089.56 22087.68 30895.67 279
anonymousdsp92.16 21191.55 20793.97 24292.58 37389.55 19997.51 13197.42 18689.42 23688.40 30194.84 27080.66 23997.88 29691.87 17391.28 26994.48 344
Effi-MVS+94.93 10994.45 11796.36 10796.61 19791.47 13196.41 23597.41 18791.02 18394.50 14695.92 21787.53 12198.78 18993.89 13596.81 16798.84 119
RRT-MVS94.51 12094.35 12094.98 18696.40 22086.55 28997.56 12497.41 18793.19 10894.93 13597.04 15679.12 26799.30 12696.19 7097.32 15699.09 86
HQP3-MVS97.39 18992.10 256
HQP-MVS93.19 16792.74 16694.54 21295.86 24589.33 21196.65 21797.39 18993.55 9090.14 24695.87 21980.95 23298.50 21992.13 16792.10 25695.78 271
PLCcopyleft91.00 694.11 13493.43 14496.13 12398.58 7191.15 14996.69 21397.39 18987.29 30591.37 22196.71 17088.39 10499.52 10087.33 27197.13 16397.73 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 27489.86 28093.45 27193.54 35087.60 26397.70 10797.37 19288.85 25587.65 31994.08 31581.08 23198.10 25584.68 31183.79 35994.66 341
UnsupCasMVSNet_eth85.99 34784.45 35290.62 35089.97 39182.40 35393.62 36297.37 19289.86 22078.59 39392.37 35965.25 38595.35 38582.27 33870.75 40194.10 355
ACMM89.79 892.96 17892.50 17894.35 22096.30 22688.71 22997.58 12197.36 19491.40 16790.53 23996.65 17679.77 25698.75 19491.24 18991.64 26195.59 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
xiu_mvs_v1_base95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
xiu_mvs_v1_base_debi95.01 10494.76 10395.75 14596.58 20091.71 11896.25 25197.35 19592.99 11796.70 7596.63 18182.67 20299.44 11196.22 6397.46 14696.11 258
diffmvspermissive95.25 9895.13 9695.63 15396.43 21989.34 21095.99 26697.35 19592.83 12796.31 9597.37 13786.44 13898.67 20496.26 6097.19 16198.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 11794.02 12496.79 7797.71 13092.05 10896.59 22697.35 19590.61 20094.64 14296.93 15986.41 13999.39 11691.20 19094.71 21398.94 101
F-COLMAP93.58 15392.98 15595.37 16998.40 7888.98 22497.18 17097.29 20087.75 29490.49 24097.10 15385.21 15499.50 10486.70 28196.72 17197.63 203
XVG-ACMP-BASELINE90.93 27090.21 26793.09 28394.31 33085.89 30195.33 29997.26 20191.06 18289.38 27695.44 24668.61 36098.60 21189.46 22291.05 27394.79 334
PCF-MVS89.48 1191.56 23589.95 27796.36 10796.60 19892.52 9192.51 38197.26 20179.41 39188.90 28896.56 18684.04 17499.55 9277.01 37597.30 15797.01 229
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 19292.14 18794.05 23696.40 22088.20 24697.36 15197.25 20391.52 16088.30 30596.64 17778.46 28198.72 20091.86 17491.48 26595.23 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 16392.76 16394.82 19494.63 31790.77 16196.65 21797.18 20493.72 8491.68 21597.26 14479.33 26498.63 20892.13 16792.28 25095.07 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 18292.02 19195.56 15798.19 9890.80 15995.27 30497.18 20487.96 28391.86 21095.68 23480.44 24398.99 16984.01 31997.54 14596.89 235
alignmvs95.87 8395.23 9397.78 3197.56 14695.19 2197.86 8197.17 20694.39 6796.47 8996.40 19485.89 14699.20 13496.21 6795.11 20398.95 100
MVS_Test94.89 11194.62 10795.68 15196.83 18189.55 19996.70 21197.17 20691.17 17795.60 12396.11 21287.87 11398.76 19393.01 15697.17 16298.72 125
Fast-Effi-MVS+93.46 15792.75 16595.59 15696.77 18990.03 18196.81 20197.13 20888.19 27791.30 22594.27 30486.21 14298.63 20887.66 26396.46 17898.12 174
EI-MVSNet93.03 17592.88 15993.48 26995.77 25186.98 27696.44 23197.12 20990.66 19691.30 22597.64 12186.56 13598.05 26789.91 21090.55 28195.41 288
MVSTER93.20 16692.81 16294.37 21996.56 20389.59 19797.06 17897.12 20991.24 17391.30 22595.96 21582.02 21798.05 26793.48 14290.55 28195.47 285
test_yl94.78 11594.23 12196.43 10097.74 12891.22 13996.85 19697.10 21191.23 17495.71 11896.93 15984.30 16799.31 12493.10 14995.12 20198.75 122
DCV-MVSNet94.78 11594.23 12196.43 10097.74 12891.22 13996.85 19697.10 21191.23 17495.71 11896.93 15984.30 16799.31 12493.10 14995.12 20198.75 122
LTVRE_ROB88.41 1390.99 26689.92 27994.19 22996.18 23189.55 19996.31 24797.09 21387.88 28685.67 34895.91 21878.79 27798.57 21581.50 34189.98 28694.44 347
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 19092.88 15992.29 30896.08 24181.05 36497.98 6397.08 21490.72 19196.79 7198.18 7563.07 38998.45 22397.62 2898.42 11897.36 218
v1091.04 26490.23 26493.49 26894.12 33388.16 24997.32 15697.08 21488.26 27688.29 30694.22 30982.17 21597.97 27986.45 28584.12 35394.33 350
v14419291.06 26390.28 26093.39 27293.66 34887.23 27096.83 19997.07 21687.43 30189.69 26694.28 30381.48 22698.00 27487.18 27584.92 34294.93 320
v119291.07 26290.23 26493.58 26593.70 34587.82 25996.73 20797.07 21687.77 29289.58 26994.32 30180.90 23697.97 27986.52 28385.48 32994.95 316
v891.29 25490.53 25293.57 26694.15 33288.12 25097.34 15397.06 21888.99 24988.32 30494.26 30683.08 19198.01 27387.62 26583.92 35794.57 343
mvs_anonymous93.82 14693.74 12994.06 23596.44 21885.41 30895.81 27597.05 21989.85 22290.09 25596.36 19687.44 12597.75 30993.97 13196.69 17299.02 90
IterMVS-LS92.29 20591.94 19493.34 27496.25 22786.97 27796.57 22997.05 21990.67 19489.50 27494.80 27386.59 13497.64 31789.91 21086.11 32495.40 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 27290.03 27593.29 27693.55 34986.96 27896.74 20697.04 22187.36 30389.52 27394.34 29880.23 24897.97 27986.27 28685.21 33594.94 318
CDS-MVSNet94.14 13393.54 13695.93 13696.18 23191.46 13296.33 24597.04 22188.97 25193.56 16696.51 18887.55 11997.89 29589.80 21395.95 18398.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 24790.60 24893.68 26193.89 34088.23 24596.84 19897.03 22388.37 27389.69 26694.39 29482.04 21697.98 27687.80 25585.37 33194.84 326
v124090.70 27889.85 28193.23 27893.51 35286.80 27996.61 22397.02 22487.16 30889.58 26994.31 30279.55 26197.98 27685.52 30185.44 33094.90 323
EPP-MVSNet95.22 10095.04 9995.76 14397.49 14789.56 19898.67 1097.00 22590.69 19294.24 15297.62 12389.79 8798.81 18693.39 14696.49 17698.92 104
V4291.58 23490.87 23293.73 25694.05 33688.50 23797.32 15696.97 22688.80 26189.71 26494.33 29982.54 20698.05 26789.01 23685.07 33894.64 342
test_fmvs193.21 16593.53 13792.25 31096.55 20581.20 36397.40 14796.96 22790.68 19396.80 6998.04 8469.25 35698.40 22697.58 2998.50 11197.16 227
FMVSNet291.31 25190.08 27094.99 18496.51 21192.21 10297.41 14396.95 22888.82 25888.62 29694.75 27573.87 32397.42 33885.20 30688.55 30195.35 295
ACMH87.59 1690.53 28389.42 29693.87 25096.21 22887.92 25497.24 16296.94 22988.45 27183.91 36896.27 20071.92 33598.62 21084.43 31489.43 29295.05 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 24890.27 26194.59 20696.51 21191.18 14597.50 13296.93 23088.82 25889.35 27794.51 28773.87 32397.29 34586.12 29188.82 29695.31 298
test191.35 24890.27 26194.59 20696.51 21191.18 14597.50 13296.93 23088.82 25889.35 27794.51 28773.87 32397.29 34586.12 29188.82 29695.31 298
FMVSNet391.78 22390.69 24695.03 18296.53 20892.27 10097.02 18196.93 23089.79 22589.35 27794.65 28077.01 29797.47 33386.12 29188.82 29695.35 295
FMVSNet189.88 30288.31 31494.59 20695.41 26791.18 14597.50 13296.93 23086.62 31687.41 32494.51 28765.94 38297.29 34583.04 32887.43 31195.31 298
GeoE93.89 14393.28 14995.72 14996.96 17489.75 19398.24 3896.92 23489.47 23392.12 20297.21 14784.42 16598.39 23087.71 25896.50 17599.01 93
miper_enhance_ethall91.54 23891.01 22993.15 28195.35 27387.07 27593.97 34796.90 23586.79 31489.17 28493.43 34486.55 13697.64 31789.97 20986.93 31694.74 338
eth_miper_zixun_eth91.02 26590.59 24992.34 30795.33 27784.35 32794.10 34496.90 23588.56 26788.84 29294.33 29984.08 17297.60 32288.77 24284.37 35195.06 313
TAMVS94.01 13993.46 14295.64 15296.16 23390.45 17196.71 21096.89 23789.27 24093.46 17196.92 16287.29 12897.94 28888.70 24395.74 18898.53 138
miper_ehance_all_eth91.59 23291.13 22592.97 28795.55 26086.57 28794.47 32896.88 23887.77 29288.88 29094.01 31786.22 14197.54 32689.49 22186.93 31694.79 334
v2v48291.59 23290.85 23593.80 25393.87 34188.17 24896.94 19096.88 23889.54 23089.53 27294.90 26781.70 22498.02 27289.25 23085.04 34095.20 306
CNLPA94.28 12593.53 13796.52 8998.38 8192.55 9096.59 22696.88 23890.13 21591.91 20797.24 14585.21 15499.09 15487.64 26497.83 13897.92 186
PAPM91.52 23990.30 25995.20 17395.30 28089.83 19193.38 36796.85 24186.26 32488.59 29795.80 22484.88 15898.15 24975.67 38095.93 18497.63 203
c3_l91.38 24590.89 23192.88 29195.58 25886.30 29494.68 32196.84 24288.17 27888.83 29394.23 30785.65 15097.47 33389.36 22584.63 34494.89 324
pm-mvs190.72 27789.65 29193.96 24394.29 33189.63 19497.79 9396.82 24389.07 24586.12 34695.48 24578.61 27997.78 30586.97 27981.67 37094.46 345
test_vis1_n92.37 20092.26 18592.72 29794.75 31182.64 34698.02 5996.80 24491.18 17697.77 4397.93 9358.02 39898.29 23897.63 2798.21 12597.23 226
CMPMVSbinary62.92 2185.62 35284.92 34887.74 37489.14 39673.12 40494.17 34296.80 24473.98 40373.65 40294.93 26566.36 37697.61 32183.95 32191.28 26992.48 380
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 29089.77 28591.78 32594.33 32884.72 32495.55 28996.73 24686.17 32686.36 34395.28 25171.28 34097.80 30384.09 31898.14 12992.81 372
Effi-MVS+-dtu93.08 17293.21 15192.68 30096.02 24283.25 34197.14 17496.72 24793.85 8191.20 23293.44 34183.08 19198.30 23791.69 18095.73 18996.50 244
TSAR-MVS + GP.96.69 5396.49 5697.27 6198.31 8493.39 6296.79 20296.72 24794.17 7197.44 4997.66 11792.76 3199.33 12096.86 4697.76 14299.08 87
1112_ss93.37 16092.42 18196.21 11997.05 16790.99 15196.31 24796.72 24786.87 31389.83 26296.69 17486.51 13799.14 14788.12 24893.67 23398.50 142
PVSNet86.66 1892.24 20891.74 20293.73 25697.77 12783.69 33892.88 37696.72 24787.91 28593.00 18194.86 26978.51 28099.05 16486.53 28297.45 15098.47 147
miper_lstm_enhance90.50 28690.06 27491.83 32195.33 27783.74 33593.86 35396.70 25187.56 29987.79 31693.81 32583.45 18396.92 35787.39 26984.62 34594.82 329
v14890.99 26690.38 25592.81 29493.83 34285.80 30296.78 20496.68 25289.45 23588.75 29593.93 32182.96 19797.82 30187.83 25483.25 36294.80 332
ACMH+87.92 1490.20 29489.18 30193.25 27796.48 21486.45 29196.99 18696.68 25288.83 25784.79 35796.22 20270.16 34998.53 21784.42 31588.04 30494.77 337
CANet_DTU94.37 12393.65 13296.55 8796.46 21792.13 10696.21 25596.67 25494.38 6893.53 16997.03 15779.34 26399.71 5190.76 19698.45 11697.82 196
cl____90.96 26990.32 25792.89 29095.37 27186.21 29794.46 33096.64 25587.82 28888.15 31194.18 31082.98 19597.54 32687.70 25985.59 32794.92 322
HY-MVS89.66 993.87 14492.95 15696.63 8297.10 16192.49 9295.64 28796.64 25589.05 24793.00 18195.79 22785.77 14999.45 11089.16 23594.35 21597.96 184
Test_1112_low_res92.84 18691.84 19795.85 14197.04 16889.97 18795.53 29196.64 25585.38 33689.65 26895.18 25685.86 14799.10 15187.70 25993.58 23898.49 144
DIV-MVS_self_test90.97 26890.33 25692.88 29195.36 27286.19 29894.46 33096.63 25887.82 28888.18 31094.23 30782.99 19497.53 32887.72 25685.57 32894.93 320
Fast-Effi-MVS+-dtu92.29 20591.99 19293.21 28095.27 28185.52 30697.03 17996.63 25892.09 14689.11 28695.14 25880.33 24698.08 26087.54 26794.74 21196.03 261
UnsupCasMVSNet_bld82.13 36679.46 37190.14 35788.00 40482.47 35190.89 39496.62 26078.94 39375.61 39784.40 40856.63 40196.31 36777.30 37266.77 40991.63 390
cl2291.21 25690.56 25193.14 28296.09 24086.80 27994.41 33296.58 26187.80 29088.58 29893.99 31980.85 23797.62 32089.87 21286.93 31694.99 315
jason94.84 11394.39 11996.18 12195.52 26190.93 15596.09 26096.52 26289.28 23996.01 10997.32 13984.70 16098.77 19295.15 10598.91 9798.85 116
jason: jason.
tt080591.09 26190.07 27394.16 23195.61 25688.31 24097.56 12496.51 26389.56 22989.17 28495.64 23667.08 37498.38 23191.07 19288.44 30295.80 269
AUN-MVS91.76 22490.75 24194.81 19697.00 17288.57 23396.65 21796.49 26489.63 22792.15 20096.12 20878.66 27898.50 21990.83 19479.18 38197.36 218
hse-mvs293.45 15892.99 15494.81 19697.02 17088.59 23296.69 21396.47 26595.19 2596.74 7396.16 20683.67 17898.48 22295.85 8279.13 38297.35 220
EG-PatchMatch MVS87.02 33685.44 34091.76 32792.67 37085.00 31896.08 26196.45 26683.41 36679.52 38993.49 33857.10 40097.72 31179.34 36390.87 27892.56 377
KD-MVS_self_test85.95 34884.95 34788.96 36989.55 39579.11 38895.13 31196.42 26785.91 32984.07 36690.48 38070.03 35194.82 38880.04 35572.94 39892.94 370
pmmvs687.81 32886.19 33592.69 29991.32 38386.30 29497.34 15396.41 26880.59 38784.05 36794.37 29667.37 36997.67 31484.75 31079.51 38094.09 357
PMMVS92.86 18492.34 18294.42 21894.92 30286.73 28294.53 32696.38 26984.78 34894.27 15195.12 26083.13 19098.40 22691.47 18496.49 17698.12 174
RPSCF90.75 27590.86 23390.42 35396.84 17976.29 39695.61 28896.34 27083.89 35791.38 22097.87 9876.45 30298.78 18987.16 27692.23 25196.20 251
BP-MVS195.89 8195.49 8197.08 7296.67 19493.20 7298.08 5396.32 27194.56 5696.32 9497.84 10384.07 17399.15 14496.75 4898.78 10098.90 108
MSDG91.42 24390.24 26394.96 18997.15 15988.91 22593.69 35996.32 27185.72 33286.93 33896.47 19080.24 24798.98 17080.57 35295.05 20496.98 230
WBMVS90.69 28089.99 27692.81 29496.48 21485.00 31895.21 30996.30 27389.46 23489.04 28794.05 31672.45 33397.82 30189.46 22287.41 31395.61 280
OurMVSNet-221017-090.51 28590.19 26891.44 33393.41 35681.25 36196.98 18796.28 27491.68 15786.55 34296.30 19874.20 32297.98 27688.96 23887.40 31495.09 311
MVP-Stereo90.74 27690.08 27092.71 29893.19 36188.20 24695.86 27296.27 27586.07 32784.86 35694.76 27477.84 29297.75 30983.88 32398.01 13392.17 387
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 10894.56 11096.29 11396.34 22491.21 14195.83 27496.27 27588.93 25396.22 9996.88 16486.20 14398.85 18295.27 10199.05 8998.82 120
BH-untuned92.94 18092.62 17193.92 24997.22 15386.16 29996.40 23996.25 27790.06 21689.79 26396.17 20583.19 18798.35 23387.19 27497.27 15897.24 225
CL-MVSNet_self_test86.31 34385.15 34489.80 36188.83 39981.74 35993.93 35096.22 27886.67 31585.03 35490.80 37878.09 28894.50 38974.92 38371.86 40093.15 368
IS-MVSNet94.90 11094.52 11496.05 12797.67 13190.56 16798.44 2196.22 27893.21 10593.99 15897.74 11185.55 15198.45 22389.98 20897.86 13799.14 79
FA-MVS(test-final)93.52 15692.92 15795.31 17096.77 18988.54 23594.82 31896.21 28089.61 22894.20 15395.25 25483.24 18599.14 14790.01 20796.16 18098.25 163
GA-MVS91.38 24590.31 25894.59 20694.65 31687.62 26294.34 33596.19 28190.73 19090.35 24393.83 32271.84 33697.96 28387.22 27393.61 23698.21 166
IterMVS-SCA-FT90.31 28889.81 28391.82 32295.52 26184.20 33094.30 33896.15 28290.61 20087.39 32594.27 30475.80 30896.44 36587.34 27086.88 32094.82 329
IterMVS90.15 29689.67 28991.61 32995.48 26383.72 33694.33 33696.12 28389.99 21787.31 32894.15 31275.78 31096.27 36886.97 27986.89 31994.83 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 18991.51 21196.52 8998.77 5690.99 15197.38 15096.08 28482.38 37289.29 28097.87 9883.77 17699.69 5781.37 34696.69 17298.89 112
pmmvs490.93 27089.85 28194.17 23093.34 35890.79 16094.60 32396.02 28584.62 34987.45 32295.15 25781.88 22197.45 33587.70 25987.87 30694.27 354
ppachtmachnet_test88.35 32387.29 32291.53 33092.45 37683.57 33993.75 35695.97 28684.28 35285.32 35394.18 31079.00 27596.93 35675.71 37984.99 34194.10 355
Anonymous2024052186.42 34185.44 34089.34 36790.33 38879.79 38096.73 20795.92 28783.71 36283.25 37291.36 37563.92 38796.01 36978.39 36785.36 33292.22 385
ITE_SJBPF92.43 30395.34 27485.37 31195.92 28791.47 16287.75 31896.39 19571.00 34297.96 28382.36 33789.86 28893.97 358
test_fmvs289.77 30689.93 27889.31 36893.68 34776.37 39597.64 11595.90 28989.84 22391.49 21896.26 20158.77 39797.10 34994.65 12091.13 27194.46 345
USDC88.94 31487.83 31992.27 30994.66 31584.96 32093.86 35395.90 28987.34 30483.40 37095.56 24067.43 36898.19 24682.64 33689.67 29093.66 361
COLMAP_ROBcopyleft87.81 1590.40 28789.28 29993.79 25497.95 11687.13 27496.92 19195.89 29182.83 36986.88 34097.18 14873.77 32699.29 12778.44 36693.62 23594.95 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 14693.08 15296.02 13097.88 12289.96 18897.72 10295.85 29292.43 13595.86 11398.44 4868.42 36499.39 11696.31 5994.85 20598.71 127
VDDNet93.05 17492.07 18896.02 13096.84 17990.39 17598.08 5395.85 29286.22 32595.79 11698.46 4667.59 36799.19 13594.92 11094.85 20598.47 147
mvsmamba94.57 11994.14 12395.87 13897.03 16989.93 18997.84 8595.85 29291.34 16894.79 13996.80 16680.67 23898.81 18694.85 11198.12 13098.85 116
Vis-MVSNet (Re-imp)94.15 13093.88 12794.95 19097.61 13987.92 25498.10 5195.80 29592.22 13993.02 18097.45 13284.53 16397.91 29488.24 24797.97 13499.02 90
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29697.78 197.52 4698.80 2788.09 10799.86 999.44 199.37 6199.80 1
KD-MVS_2432*160084.81 35682.64 36091.31 33591.07 38585.34 31291.22 38995.75 29785.56 33483.09 37390.21 38367.21 37095.89 37177.18 37362.48 41392.69 373
miper_refine_blended84.81 35682.64 36091.31 33591.07 38585.34 31291.22 38995.75 29785.56 33483.09 37390.21 38367.21 37095.89 37177.18 37362.48 41392.69 373
FE-MVS92.05 21591.05 22795.08 17996.83 18187.93 25393.91 35295.70 29986.30 32294.15 15594.97 26276.59 30099.21 13384.10 31796.86 16598.09 178
tpm cat188.36 32287.21 32591.81 32395.13 29280.55 37092.58 38095.70 29974.97 40287.45 32291.96 36978.01 29198.17 24880.39 35488.74 29996.72 240
our_test_388.78 31887.98 31891.20 33992.45 37682.53 34893.61 36395.69 30185.77 33184.88 35593.71 32779.99 25296.78 36279.47 36086.24 32194.28 353
BH-w/o92.14 21391.75 20093.31 27596.99 17385.73 30395.67 28295.69 30188.73 26389.26 28294.82 27282.97 19698.07 26485.26 30596.32 17996.13 257
CR-MVSNet90.82 27389.77 28593.95 24494.45 32487.19 27190.23 39795.68 30386.89 31292.40 19092.36 36280.91 23497.05 35181.09 35093.95 22997.60 208
Patchmtry88.64 32087.25 32392.78 29694.09 33486.64 28389.82 40195.68 30380.81 38487.63 32092.36 36280.91 23497.03 35278.86 36485.12 33794.67 340
testing9191.90 22091.02 22894.53 21396.54 20686.55 28995.86 27295.64 30591.77 15491.89 20893.47 34069.94 35298.86 18090.23 20693.86 23198.18 168
BH-RMVSNet92.72 19191.97 19394.97 18897.16 15787.99 25296.15 25895.60 30690.62 19991.87 20997.15 15178.41 28298.57 21583.16 32697.60 14498.36 159
PVSNet_082.17 1985.46 35383.64 35690.92 34295.27 28179.49 38490.55 39595.60 30683.76 36183.00 37589.95 38571.09 34197.97 27982.75 33460.79 41595.31 298
SCA91.84 22291.18 22493.83 25195.59 25784.95 32194.72 32095.58 30890.82 18692.25 19893.69 32975.80 30898.10 25586.20 28895.98 18298.45 149
MonoMVSNet91.92 21891.77 19892.37 30492.94 36583.11 34297.09 17795.55 30992.91 12590.85 23594.55 28481.27 23096.52 36493.01 15687.76 30797.47 214
AllTest90.23 29288.98 30493.98 24097.94 11786.64 28396.51 23095.54 31085.38 33685.49 35096.77 16870.28 34799.15 14480.02 35692.87 24096.15 255
TestCases93.98 24097.94 11786.64 28395.54 31085.38 33685.49 35096.77 16870.28 34799.15 14480.02 35692.87 24096.15 255
mmtdpeth89.70 30788.96 30591.90 31895.84 25084.42 32697.46 14195.53 31290.27 21094.46 14890.50 37969.74 35598.95 17197.39 3869.48 40492.34 381
tpmvs89.83 30589.15 30291.89 31994.92 30280.30 37493.11 37295.46 31386.28 32388.08 31292.65 35280.44 24398.52 21881.47 34289.92 28796.84 236
pmmvs589.86 30488.87 30892.82 29392.86 36686.23 29696.26 25095.39 31484.24 35387.12 32994.51 28774.27 32197.36 34287.61 26687.57 30994.86 325
PatchmatchNetpermissive91.91 21991.35 21393.59 26495.38 26984.11 33193.15 37195.39 31489.54 23092.10 20393.68 33182.82 20098.13 25084.81 30995.32 19798.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 24291.32 21591.79 32495.15 29079.20 38793.42 36695.37 31688.55 26893.49 17093.67 33282.49 20898.27 23990.41 20189.34 29397.90 187
Anonymous2023120687.09 33586.14 33689.93 36091.22 38480.35 37296.11 25995.35 31783.57 36484.16 36293.02 34773.54 32895.61 37972.16 39586.14 32393.84 360
MIMVSNet184.93 35583.05 35790.56 35189.56 39484.84 32395.40 29695.35 31783.91 35680.38 38592.21 36657.23 39993.34 40170.69 40182.75 36893.50 363
TDRefinement86.53 33884.76 35091.85 32082.23 41684.25 32896.38 24195.35 31784.97 34584.09 36594.94 26465.76 38398.34 23684.60 31374.52 39492.97 369
TR-MVS91.48 24190.59 24994.16 23196.40 22087.33 26495.67 28295.34 32087.68 29691.46 21995.52 24376.77 29998.35 23382.85 33193.61 23696.79 238
EPNet_dtu91.71 22591.28 21892.99 28693.76 34483.71 33796.69 21395.28 32193.15 11287.02 33495.95 21683.37 18497.38 34179.46 36196.84 16697.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 33285.79 33891.78 32594.80 30987.28 26695.49 29395.28 32184.09 35583.85 36991.82 37062.95 39094.17 39378.48 36585.34 33393.91 359
MDTV_nov1_ep1390.76 23995.22 28580.33 37393.03 37495.28 32188.14 28092.84 18793.83 32281.34 22798.08 26082.86 32994.34 216
LF4IMVS87.94 32687.25 32389.98 35992.38 37880.05 37994.38 33395.25 32487.59 29884.34 35994.74 27664.31 38697.66 31684.83 30887.45 31092.23 384
TransMVSNet (Re)88.94 31487.56 32093.08 28494.35 32788.45 23997.73 9995.23 32587.47 30084.26 36195.29 24979.86 25597.33 34379.44 36274.44 39593.45 365
test20.0386.14 34685.40 34288.35 37090.12 38980.06 37895.90 27195.20 32688.59 26481.29 38093.62 33471.43 33992.65 40471.26 39981.17 37392.34 381
new-patchmatchnet83.18 36281.87 36587.11 37786.88 40775.99 39793.70 35795.18 32785.02 34477.30 39688.40 39565.99 38193.88 39874.19 38870.18 40291.47 394
MDA-MVSNet_test_wron85.87 35084.23 35490.80 34892.38 37882.57 34793.17 36995.15 32882.15 37367.65 40892.33 36578.20 28495.51 38277.33 37079.74 37794.31 352
YYNet185.87 35084.23 35490.78 34992.38 37882.46 35293.17 36995.14 32982.12 37467.69 40692.36 36278.16 28795.50 38377.31 37179.73 37894.39 348
Baseline_NR-MVSNet91.20 25790.62 24792.95 28893.83 34288.03 25197.01 18495.12 33088.42 27289.70 26595.13 25983.47 18197.44 33689.66 21883.24 36393.37 366
thres20092.23 20991.39 21294.75 20397.61 13989.03 22396.60 22595.09 33192.08 14793.28 17694.00 31878.39 28399.04 16781.26 34994.18 22096.19 252
ADS-MVSNet89.89 30188.68 31093.53 26795.86 24584.89 32290.93 39295.07 33283.23 36791.28 22891.81 37179.01 27397.85 29779.52 35891.39 26797.84 193
pmmvs-eth3d86.22 34484.45 35291.53 33088.34 40387.25 26894.47 32895.01 33383.47 36579.51 39089.61 38869.75 35495.71 37683.13 32776.73 38991.64 389
Anonymous20240521192.07 21490.83 23795.76 14398.19 9888.75 22897.58 12195.00 33486.00 32893.64 16597.45 13266.24 37999.53 9690.68 19992.71 24599.01 93
MDA-MVSNet-bldmvs85.00 35482.95 35991.17 34093.13 36383.33 34094.56 32595.00 33484.57 35065.13 41292.65 35270.45 34695.85 37373.57 39177.49 38594.33 350
ambc86.56 38083.60 41370.00 40785.69 41194.97 33680.60 38488.45 39437.42 41596.84 36082.69 33575.44 39392.86 371
testgi87.97 32587.21 32590.24 35692.86 36680.76 36596.67 21694.97 33691.74 15585.52 34995.83 22262.66 39294.47 39176.25 37788.36 30395.48 283
dp88.90 31688.26 31690.81 34694.58 32076.62 39492.85 37794.93 33885.12 34290.07 25793.07 34675.81 30798.12 25380.53 35387.42 31297.71 200
test_fmvs383.21 36183.02 35883.78 38486.77 40868.34 41096.76 20594.91 33986.49 31884.14 36489.48 38936.04 41691.73 40691.86 17480.77 37591.26 396
test_040286.46 34084.79 34991.45 33295.02 29685.55 30596.29 24994.89 34080.90 38182.21 37793.97 32068.21 36597.29 34562.98 40788.68 30091.51 392
tfpn200view992.38 19991.52 20994.95 19097.85 12389.29 21397.41 14394.88 34192.19 14393.27 17794.46 29278.17 28599.08 15781.40 34394.08 22496.48 245
CVMVSNet91.23 25591.75 20089.67 36295.77 25174.69 39896.44 23194.88 34185.81 33092.18 19997.64 12179.07 26895.58 38188.06 25095.86 18698.74 124
thres40092.42 19791.52 20995.12 17897.85 12389.29 21397.41 14394.88 34192.19 14393.27 17794.46 29278.17 28599.08 15781.40 34394.08 22496.98 230
EPNet95.20 10194.56 11097.14 6892.80 36892.68 8697.85 8494.87 34496.64 292.46 18997.80 10886.23 14099.65 6393.72 13998.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9991.62 23090.72 24494.32 22396.48 21486.11 30095.81 27594.76 34591.55 15991.75 21393.44 34168.55 36298.82 18490.43 20093.69 23298.04 181
SixPastTwentyTwo89.15 31288.54 31290.98 34193.49 35380.28 37596.70 21194.70 34690.78 18784.15 36395.57 23971.78 33797.71 31284.63 31285.07 33894.94 318
thres100view90092.43 19691.58 20694.98 18697.92 11989.37 20997.71 10494.66 34792.20 14193.31 17594.90 26778.06 28999.08 15781.40 34394.08 22496.48 245
thres600view792.49 19591.60 20595.18 17497.91 12089.47 20397.65 11194.66 34792.18 14593.33 17494.91 26678.06 28999.10 15181.61 34094.06 22896.98 230
PatchT88.87 31787.42 32193.22 27994.08 33585.10 31689.51 40294.64 34981.92 37592.36 19388.15 39880.05 25197.01 35472.43 39493.65 23497.54 211
baseline192.82 18791.90 19595.55 15997.20 15590.77 16197.19 16994.58 35092.20 14192.36 19396.34 19784.16 17198.21 24389.20 23383.90 35897.68 202
UBG91.55 23690.76 23993.94 24696.52 21085.06 31795.22 30794.54 35190.47 20691.98 20692.71 35172.02 33498.74 19688.10 24995.26 19998.01 182
Gipumacopyleft67.86 38265.41 38475.18 39792.66 37173.45 40166.50 41894.52 35253.33 41757.80 41866.07 41830.81 41889.20 41048.15 41678.88 38462.90 418
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testing1191.68 22890.75 24194.47 21496.53 20886.56 28895.76 27994.51 35391.10 18191.24 23093.59 33568.59 36198.86 18091.10 19194.29 21798.00 183
CostFormer91.18 26090.70 24592.62 30194.84 30781.76 35894.09 34594.43 35484.15 35492.72 18893.77 32679.43 26298.20 24490.70 19892.18 25497.90 187
tpm289.96 29889.21 30092.23 31194.91 30481.25 36193.78 35594.42 35580.62 38691.56 21693.44 34176.44 30397.94 28885.60 30092.08 25897.49 212
MVS_030496.74 5096.31 6698.02 1996.87 17694.65 3097.58 12194.39 35696.47 597.16 5898.39 5287.53 12199.87 798.97 1099.41 5399.55 34
JIA-IIPM88.26 32487.04 32891.91 31793.52 35181.42 36089.38 40394.38 35780.84 38390.93 23480.74 41079.22 26597.92 29182.76 33391.62 26296.38 248
dmvs_re90.21 29389.50 29492.35 30595.47 26685.15 31495.70 28194.37 35890.94 18588.42 30093.57 33674.63 31895.67 37882.80 33289.57 29196.22 250
Patchmatch-test89.42 31087.99 31793.70 25995.27 28185.11 31588.98 40494.37 35881.11 38087.10 33293.69 32982.28 21297.50 33174.37 38694.76 20998.48 146
LCM-MVSNet72.55 37569.39 37982.03 38670.81 42665.42 41590.12 39994.36 36055.02 41665.88 41081.72 40924.16 42489.96 40774.32 38768.10 40790.71 399
ADS-MVSNet289.45 30988.59 31192.03 31495.86 24582.26 35490.93 39294.32 36183.23 36791.28 22891.81 37179.01 27395.99 37079.52 35891.39 26797.84 193
mvs5depth86.53 33885.08 34590.87 34388.74 40182.52 34991.91 38594.23 36286.35 32187.11 33193.70 32866.52 37597.76 30881.37 34675.80 39192.31 383
EU-MVSNet88.72 31988.90 30788.20 37293.15 36274.21 39996.63 22294.22 36385.18 34087.32 32795.97 21476.16 30594.98 38785.27 30486.17 32295.41 288
MIMVSNet88.50 32186.76 33193.72 25894.84 30787.77 26091.39 38794.05 36486.41 32087.99 31492.59 35563.27 38895.82 37577.44 36992.84 24297.57 210
OpenMVS_ROBcopyleft81.14 2084.42 35882.28 36490.83 34490.06 39084.05 33395.73 28094.04 36573.89 40580.17 38891.53 37459.15 39697.64 31766.92 40589.05 29590.80 398
TinyColmap86.82 33785.35 34391.21 33794.91 30482.99 34493.94 34994.02 36683.58 36381.56 37994.68 27862.34 39398.13 25075.78 37887.35 31592.52 379
ETVMVS90.52 28489.14 30394.67 20596.81 18587.85 25895.91 27093.97 36789.71 22692.34 19692.48 35765.41 38497.96 28381.37 34694.27 21898.21 166
IB-MVS87.33 1789.91 29988.28 31594.79 20095.26 28487.70 26195.12 31293.95 36889.35 23887.03 33392.49 35670.74 34499.19 13589.18 23481.37 37297.49 212
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 33487.02 32987.47 37595.16 28873.21 40395.00 31493.93 36988.55 26886.96 33591.99 36775.90 30694.00 39561.59 40994.11 22195.20 306
myMVS_eth3d87.18 33386.38 33389.58 36395.16 28879.53 38295.00 31493.93 36988.55 26886.96 33591.99 36756.23 40294.00 39575.47 38294.11 22195.20 306
testing22290.31 28888.96 30594.35 22096.54 20687.29 26595.50 29293.84 37190.97 18491.75 21392.96 34862.18 39498.00 27482.86 32994.08 22497.76 198
test_f80.57 36879.62 37083.41 38583.38 41467.80 41293.57 36493.72 37280.80 38577.91 39587.63 40133.40 41792.08 40587.14 27779.04 38390.34 400
LCM-MVSNet-Re92.50 19392.52 17792.44 30296.82 18381.89 35796.92 19193.71 37392.41 13684.30 36094.60 28285.08 15697.03 35291.51 18297.36 15298.40 155
tpm90.25 29189.74 28891.76 32793.92 33879.73 38193.98 34693.54 37488.28 27591.99 20593.25 34577.51 29597.44 33687.30 27287.94 30598.12 174
ET-MVSNet_ETH3D91.49 24090.11 26995.63 15396.40 22091.57 12795.34 29893.48 37590.60 20275.58 39895.49 24480.08 25096.79 36194.25 12789.76 28998.52 139
LFMVS93.60 15292.63 17096.52 8998.13 10391.27 13897.94 7393.39 37690.57 20396.29 9698.31 6569.00 35799.16 14294.18 12895.87 18599.12 83
MVStest182.38 36580.04 36989.37 36587.63 40682.83 34595.03 31393.37 37773.90 40473.50 40394.35 29762.89 39193.25 40273.80 38965.92 41092.04 388
Patchmatch-RL test87.38 33186.24 33490.81 34688.74 40178.40 39188.12 40993.17 37887.11 30982.17 37889.29 39081.95 21995.60 38088.64 24477.02 38698.41 154
ttmdpeth85.91 34984.76 35089.36 36689.14 39680.25 37695.66 28593.16 37983.77 36083.39 37195.26 25366.24 37995.26 38680.65 35175.57 39292.57 376
test-LLR91.42 24391.19 22392.12 31294.59 31880.66 36794.29 33992.98 38091.11 17990.76 23792.37 35979.02 27198.07 26488.81 24096.74 16997.63 203
test-mter90.19 29589.54 29392.12 31294.59 31880.66 36794.29 33992.98 38087.68 29690.76 23792.37 35967.67 36698.07 26488.81 24096.74 16997.63 203
WB-MVSnew89.88 30289.56 29290.82 34594.57 32183.06 34395.65 28692.85 38287.86 28790.83 23694.10 31379.66 25996.88 35876.34 37694.19 21992.54 378
testing387.67 32986.88 33090.05 35896.14 23680.71 36697.10 17692.85 38290.15 21487.54 32194.55 28455.70 40394.10 39473.77 39094.10 22395.35 295
test_method66.11 38364.89 38569.79 40072.62 42435.23 43265.19 41992.83 38420.35 42265.20 41188.08 39943.14 41382.70 41773.12 39363.46 41291.45 395
test0.0.03 189.37 31188.70 30991.41 33492.47 37585.63 30495.22 30792.70 38591.11 17986.91 33993.65 33379.02 27193.19 40378.00 36889.18 29495.41 288
new_pmnet82.89 36381.12 36888.18 37389.63 39380.18 37791.77 38692.57 38676.79 40075.56 39988.23 39761.22 39594.48 39071.43 39782.92 36689.87 401
mvsany_test193.93 14293.98 12593.78 25594.94 30186.80 27994.62 32292.55 38788.77 26296.85 6898.49 4288.98 9398.08 26095.03 10795.62 19296.46 247
thisisatest051592.29 20591.30 21795.25 17296.60 19888.90 22694.36 33492.32 38887.92 28493.43 17294.57 28377.28 29699.00 16889.42 22495.86 18697.86 192
thisisatest053093.03 17592.21 18695.49 16397.07 16289.11 22297.49 13892.19 38990.16 21394.09 15696.41 19376.43 30499.05 16490.38 20295.68 19198.31 161
tttt051792.96 17892.33 18394.87 19397.11 16087.16 27397.97 6992.09 39090.63 19893.88 16297.01 15876.50 30199.06 16390.29 20595.45 19598.38 157
K. test v387.64 33086.75 33290.32 35593.02 36479.48 38596.61 22392.08 39190.66 19680.25 38794.09 31467.21 37096.65 36385.96 29680.83 37494.83 327
TESTMET0.1,190.06 29789.42 29691.97 31594.41 32680.62 36994.29 33991.97 39287.28 30690.44 24192.47 35868.79 35897.67 31488.50 24696.60 17497.61 207
PM-MVS83.48 36081.86 36688.31 37187.83 40577.59 39393.43 36591.75 39386.91 31180.63 38389.91 38644.42 41295.84 37485.17 30776.73 38991.50 393
baseline291.63 22990.86 23393.94 24694.33 32886.32 29395.92 26991.64 39489.37 23786.94 33794.69 27781.62 22598.69 20288.64 24494.57 21496.81 237
APD_test179.31 37077.70 37384.14 38389.11 39869.07 40992.36 38491.50 39569.07 40873.87 40192.63 35439.93 41494.32 39270.54 40280.25 37689.02 403
FPMVS71.27 37669.85 37875.50 39674.64 42159.03 42191.30 38891.50 39558.80 41357.92 41788.28 39629.98 42085.53 41653.43 41482.84 36781.95 409
door91.13 397
door-mid91.06 398
EGC-MVSNET68.77 38163.01 38786.07 38292.49 37482.24 35593.96 34890.96 3990.71 4272.62 42890.89 37753.66 40493.46 39957.25 41284.55 34882.51 408
mvsany_test383.59 35982.44 36387.03 37883.80 41173.82 40093.70 35790.92 40086.42 31982.51 37690.26 38246.76 41195.71 37690.82 19576.76 38891.57 391
pmmvs379.97 36977.50 37487.39 37682.80 41579.38 38692.70 37990.75 40170.69 40778.66 39287.47 40351.34 40793.40 40073.39 39269.65 40389.38 402
UWE-MVS89.91 29989.48 29591.21 33795.88 24478.23 39294.91 31790.26 40289.11 24492.35 19594.52 28668.76 35997.96 28383.95 32195.59 19397.42 216
DSMNet-mixed86.34 34286.12 33787.00 37989.88 39270.43 40594.93 31690.08 40377.97 39785.42 35292.78 35074.44 32093.96 39774.43 38595.14 20096.62 241
MVS-HIRNet82.47 36481.21 36786.26 38195.38 26969.21 40888.96 40589.49 40466.28 41080.79 38274.08 41568.48 36397.39 34071.93 39695.47 19492.18 386
WB-MVS76.77 37276.63 37577.18 39185.32 40956.82 42394.53 32689.39 40582.66 37171.35 40489.18 39175.03 31588.88 41135.42 42066.79 40885.84 405
test111193.19 16792.82 16194.30 22697.58 14584.56 32598.21 4289.02 40693.53 9494.58 14398.21 7272.69 33099.05 16493.06 15298.48 11499.28 68
SSC-MVS76.05 37375.83 37676.72 39584.77 41056.22 42494.32 33788.96 40781.82 37770.52 40588.91 39274.79 31788.71 41233.69 42164.71 41185.23 406
ECVR-MVScopyleft93.19 16792.73 16794.57 21197.66 13385.41 30898.21 4288.23 40893.43 9894.70 14198.21 7272.57 33199.07 16193.05 15398.49 11299.25 71
EPMVS90.70 27889.81 28393.37 27394.73 31384.21 32993.67 36088.02 40989.50 23292.38 19293.49 33877.82 29397.78 30586.03 29492.68 24698.11 177
ANet_high63.94 38559.58 38877.02 39261.24 42866.06 41385.66 41287.93 41078.53 39542.94 42071.04 41725.42 42380.71 41952.60 41530.83 42184.28 407
PMMVS270.19 37766.92 38180.01 38776.35 42065.67 41486.22 41087.58 41164.83 41262.38 41380.29 41226.78 42288.49 41463.79 40654.07 41785.88 404
lessismore_v090.45 35291.96 38179.09 38987.19 41280.32 38694.39 29466.31 37897.55 32584.00 32076.84 38794.70 339
PMVScopyleft53.92 2258.58 38655.40 38968.12 40151.00 42948.64 42678.86 41587.10 41346.77 41835.84 42474.28 4148.76 42886.34 41542.07 41873.91 39669.38 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 34585.06 34689.46 36493.47 35580.46 37196.41 23586.61 41485.22 33979.15 39188.64 39352.41 40697.06 35093.08 15190.57 28090.87 397
testf169.31 37966.76 38276.94 39378.61 41861.93 41788.27 40786.11 41555.62 41459.69 41485.31 40620.19 42689.32 40857.62 41069.44 40579.58 410
APD_test269.31 37966.76 38276.94 39378.61 41861.93 41788.27 40786.11 41555.62 41459.69 41485.31 40620.19 42689.32 40857.62 41069.44 40579.58 410
gg-mvs-nofinetune87.82 32785.61 33994.44 21694.46 32389.27 21691.21 39184.61 41780.88 38289.89 26174.98 41371.50 33897.53 32885.75 29997.21 16096.51 243
dmvs_testset81.38 36782.60 36277.73 39091.74 38251.49 42593.03 37484.21 41889.07 24578.28 39491.25 37676.97 29888.53 41356.57 41382.24 36993.16 367
GG-mvs-BLEND93.62 26293.69 34689.20 21892.39 38383.33 41987.98 31589.84 38771.00 34296.87 35982.08 33995.40 19694.80 332
MTMP97.86 8182.03 420
DeepMVS_CXcopyleft74.68 39890.84 38764.34 41681.61 42165.34 41167.47 40988.01 40048.60 41080.13 42062.33 40873.68 39779.58 410
E-PMN53.28 38752.56 39155.43 40474.43 42247.13 42783.63 41476.30 42242.23 41942.59 42162.22 42028.57 42174.40 42131.53 42231.51 42044.78 419
test250691.60 23190.78 23894.04 23797.66 13383.81 33498.27 3275.53 42393.43 9895.23 13098.21 7267.21 37099.07 16193.01 15698.49 11299.25 71
EMVS52.08 38951.31 39254.39 40572.62 42445.39 42983.84 41375.51 42441.13 42040.77 42259.65 42130.08 41973.60 42228.31 42429.90 42244.18 420
test_vis3_rt72.73 37470.55 37779.27 38880.02 41768.13 41193.92 35174.30 42576.90 39958.99 41673.58 41620.29 42595.37 38484.16 31672.80 39974.31 413
MVEpermissive50.73 2353.25 38848.81 39366.58 40365.34 42757.50 42272.49 41770.94 42640.15 42139.28 42363.51 4196.89 43073.48 42338.29 41942.38 41968.76 417
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 39053.82 39046.29 40633.73 43045.30 43078.32 41667.24 42718.02 42350.93 41987.05 40452.99 40553.11 42570.76 40025.29 42340.46 421
kuosan65.27 38464.66 38667.11 40283.80 41161.32 42088.53 40660.77 42868.22 40967.67 40780.52 41149.12 40970.76 42429.67 42353.64 41869.26 416
dongtai69.99 37869.33 38071.98 39988.78 40061.64 41989.86 40059.93 42975.67 40174.96 40085.45 40550.19 40881.66 41843.86 41755.27 41672.63 414
N_pmnet78.73 37178.71 37278.79 38992.80 36846.50 42894.14 34343.71 43078.61 39480.83 38191.66 37374.94 31696.36 36667.24 40484.45 35093.50 363
wuyk23d25.11 39124.57 39526.74 40773.98 42339.89 43157.88 4209.80 43112.27 42410.39 4256.97 4277.03 42936.44 42625.43 42517.39 4243.89 424
testmvs13.36 39316.33 3964.48 4095.04 4312.26 43493.18 3683.28 4322.70 4258.24 42621.66 4232.29 4322.19 4277.58 4262.96 4259.00 423
test12313.04 39415.66 3975.18 4084.51 4323.45 43392.50 3821.81 4332.50 4267.58 42720.15 4243.67 4312.18 4287.13 4271.07 4269.90 422
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas7.39 3969.85 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42888.65 1000.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
n20.00 434
nn0.00 434
ab-mvs-re8.06 39510.74 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42996.69 1740.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS79.53 38275.56 381
PC_three_145290.77 18898.89 1698.28 7096.24 198.35 23395.76 8699.58 2399.59 24
eth-test20.00 433
eth-test0.00 433
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 7196.04 299.24 13095.36 10099.59 1999.56 31
test_0728_THIRD94.78 4698.73 2098.87 2095.87 499.84 2397.45 3499.72 299.77 2
GSMVS98.45 149
test_part299.28 2595.74 898.10 32
sam_mvs182.76 20198.45 149
sam_mvs81.94 220
test_post192.81 37816.58 42680.53 24197.68 31386.20 288
test_post17.58 42581.76 22298.08 260
patchmatchnet-post90.45 38182.65 20598.10 255
gm-plane-assit93.22 36078.89 39084.82 34793.52 33798.64 20787.72 256
test9_res94.81 11599.38 5899.45 50
agg_prior293.94 13399.38 5899.50 43
test_prior493.66 5796.42 234
test_prior296.35 24392.80 12996.03 10697.59 12592.01 4795.01 10899.38 58
旧先验295.94 26881.66 37897.34 5498.82 18492.26 161
新几何295.79 277
原ACMM295.67 282
testdata299.67 6185.96 296
segment_acmp92.89 30
testdata195.26 30693.10 115
plane_prior796.21 22889.98 186
plane_prior696.10 23990.00 18281.32 228
plane_prior496.64 177
plane_prior390.00 18294.46 6291.34 222
plane_prior297.74 9794.85 39
plane_prior196.14 236
plane_prior89.99 18497.24 16294.06 7492.16 255
HQP5-MVS89.33 211
HQP-NCC95.86 24596.65 21793.55 9090.14 246
ACMP_Plane95.86 24596.65 21793.55 9090.14 246
BP-MVS92.13 167
HQP4-MVS90.14 24698.50 21995.78 271
HQP2-MVS80.95 232
NP-MVS95.99 24389.81 19295.87 219
MDTV_nov1_ep13_2view70.35 40693.10 37383.88 35893.55 16782.47 20986.25 28798.38 157
ACMMP++_ref90.30 285
ACMMP++91.02 274
Test By Simon88.73 99