This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 166
PGM-MVS96.81 4296.53 5097.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
MVS_111021_HR96.68 5196.58 4996.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 14092.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
ACMMPcopyleft96.27 6395.93 6597.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_111021_LR96.24 6496.19 6396.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
patch_mono-296.83 4197.44 1395.01 17299.05 3985.39 29996.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 156
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11197.64 12990.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
FC-MVSNet-test93.94 12793.57 12095.04 16995.48 24391.45 12498.12 4898.71 1193.37 9190.23 22896.70 16287.66 11097.85 28191.49 17190.39 26995.83 247
UniMVSNet (Re)93.31 15092.55 16495.61 14395.39 24893.34 6497.39 13998.71 1193.14 10390.10 23794.83 26087.71 10998.03 25491.67 16983.99 33795.46 270
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
FIs94.09 12193.70 11695.27 15995.70 23392.03 10198.10 4998.68 1393.36 9390.39 22596.70 16287.63 11297.94 27192.25 15190.50 26895.84 246
WR-MVS_H92.00 20791.35 20393.95 23295.09 27489.47 19598.04 5598.68 1391.46 15388.34 28594.68 26785.86 13997.56 30685.77 28184.24 33594.82 312
VPA-MVSNet93.24 15292.48 16995.51 14995.70 23392.39 8797.86 7998.66 1692.30 13092.09 18895.37 23880.49 23098.40 20793.95 12085.86 30995.75 257
UniMVSNet_NR-MVSNet93.37 14892.67 15895.47 15495.34 25492.83 7497.17 16298.58 1792.98 11290.13 23395.80 21588.37 10097.85 28191.71 16683.93 33895.73 259
CSCG96.05 6795.91 6696.46 8999.24 2890.47 16498.30 3098.57 1889.01 23093.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
MSLP-MVS++96.94 3397.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
HyFIR lowres test93.66 13892.92 14595.87 12798.24 8789.88 18194.58 30498.49 1985.06 32493.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
CHOSEN 1792x268894.15 11693.51 12696.06 11798.27 8389.38 20095.18 29298.48 2185.60 31493.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
PHI-MVS96.77 4496.46 5697.71 3998.40 7594.07 4698.21 4398.45 2289.86 20497.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12396.67 18290.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 159
PVSNet_BlendedMVS94.06 12293.92 11294.47 20398.27 8389.46 19796.73 19598.36 2490.17 19794.36 13495.24 24488.02 10499.58 7793.44 13190.72 26494.36 332
PVSNet_Blended94.87 10194.56 9895.81 13098.27 8389.46 19795.47 27898.36 2488.84 23894.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
3Dnovator91.36 595.19 9194.44 10697.44 4796.56 19193.36 6398.65 1198.36 2494.12 6389.25 26798.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11395.48 24390.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 156
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
test_fmvsmvis_n_192096.70 4796.84 3396.31 10096.62 18491.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 196
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
CP-MVS97.02 2996.81 3797.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6295.67 23592.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
PVSNet_Blended_VisFu95.27 8694.91 8996.38 9698.20 9390.86 14997.27 15198.25 4590.21 19694.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
region2R97.07 2696.84 3397.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
PS-CasMVS91.55 22390.84 22493.69 24894.96 27888.28 23497.84 8398.24 4791.46 15388.04 29595.80 21579.67 24697.48 31487.02 26184.54 33295.31 282
DU-MVS92.90 17292.04 17995.49 15194.95 27992.83 7497.16 16398.24 4793.02 10690.13 23395.71 22283.47 17197.85 28191.71 16683.93 33895.78 252
9.1496.75 4198.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
D2MVS91.30 23890.95 21892.35 29194.71 29685.52 29596.18 24598.21 5188.89 23686.60 32293.82 30979.92 24297.95 27089.29 21290.95 26093.56 345
SDMVSNet94.17 11493.61 11995.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19397.28 13179.13 25598.93 16094.61 11092.84 22397.28 203
XVS97.18 2196.96 2897.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21489.67 27397.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39991.70 4899.80 3095.66 7599.40 5099.62 18
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
CP-MVSNet91.89 21091.24 21093.82 24095.05 27588.57 22597.82 8698.19 5591.70 14788.21 29195.76 22081.96 20797.52 31287.86 23684.65 32795.37 278
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19198.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS91.20 24290.44 23893.48 25794.49 30487.91 24997.76 9198.18 5791.29 15887.78 29995.74 22180.35 23397.33 32585.46 28582.96 34895.19 293
DELS-MVS96.61 5296.38 5997.30 5297.79 12093.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpnnormal89.70 29088.40 29593.60 25195.15 27090.10 17297.56 11998.16 6187.28 28886.16 32694.63 27077.57 28298.05 25074.48 36484.59 33092.65 358
VNet95.89 7295.45 7597.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16398.09 10186.63 27996.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 32196.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
UA-Net95.95 7195.53 7297.20 6197.67 12592.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
QAPM93.45 14692.27 17496.98 6996.77 17792.62 8098.39 2698.12 6784.50 33288.27 28997.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
Vis-MVSNetpermissive95.23 8894.81 9096.51 8397.18 14791.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft89.19 1292.86 17491.68 19396.40 9395.34 25492.73 7898.27 3398.12 6784.86 32785.78 32897.75 10378.89 26499.74 4187.50 25198.65 9896.73 219
TranMVSNet+NR-MVSNet92.50 18391.63 19495.14 16494.76 29192.07 9997.53 12398.11 7092.90 11689.56 25596.12 20083.16 17797.60 30489.30 21183.20 34795.75 257
CPTT-MVS95.57 8095.19 8396.70 7199.27 2691.48 12198.33 2898.11 7087.79 27395.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS96.86 3796.60 4797.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
ZD-MVS99.05 3994.59 2998.08 7489.22 22497.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
MTGPAbinary98.08 74
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
DP-MVS Recon95.68 7695.12 8697.37 4999.19 3194.19 4097.03 16998.08 7488.35 25695.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
SR-MVS97.01 3096.86 3197.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
NR-MVSNet92.34 19291.27 20995.53 14894.95 27993.05 7097.39 13998.07 7992.65 12384.46 33995.71 22285.00 14997.77 29089.71 20083.52 34495.78 252
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2896.96 17898.06 8290.67 18295.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize96.81 4296.71 4497.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
MP-MVScopyleft96.77 4496.45 5797.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast96.51 5596.27 6197.22 5999.32 2292.74 7798.74 998.06 8290.57 19196.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
HPM-MVScopyleft96.69 4996.45 5797.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
sss94.51 10793.80 11496.64 7297.07 15491.97 10396.32 23498.06 8288.94 23494.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
DeepC-MVS93.07 396.06 6695.66 7097.29 5397.96 10993.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post96.88 3696.80 3897.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4399.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
RPMNet88.98 29587.05 30994.77 19194.45 30687.19 26490.23 37698.03 9177.87 37892.40 17587.55 38180.17 23799.51 9668.84 38293.95 21297.60 190
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
TEST998.70 5694.19 4096.41 22398.02 9488.17 26096.03 9597.56 12192.74 3099.59 74
train_agg96.30 6295.83 6997.72 3798.70 5694.19 4096.41 22398.02 9488.58 24796.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
test_898.67 5894.06 4796.37 23098.01 9788.58 24795.98 9997.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
WR-MVS92.34 19291.53 19894.77 19195.13 27290.83 15196.40 22797.98 10091.88 14489.29 26495.54 23382.50 19697.80 28689.79 19985.27 31895.69 261
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
CANet96.39 5996.02 6497.50 4597.62 13193.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
114514_t93.95 12693.06 14196.63 7499.07 3791.61 11497.46 13397.96 10277.99 37693.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
IU-MVS99.42 795.39 1197.94 10490.40 19598.94 897.41 2999.66 1099.74 8
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
Anonymous2023121190.63 26589.42 27994.27 21698.24 8789.19 21298.05 5497.89 10779.95 36888.25 29094.96 25272.56 32298.13 23289.70 20185.14 32095.49 265
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28495.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
CDPH-MVS95.97 7095.38 7897.77 3398.93 4794.44 3296.35 23197.88 10986.98 29296.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
test1197.88 109
EIA-MVS95.53 8195.47 7495.71 13897.06 15789.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
CS-MVS96.86 3797.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
无先验95.79 26397.87 11183.87 34099.65 5887.68 24598.89 105
3Dnovator+91.43 495.40 8294.48 10498.16 1696.90 16695.34 1698.48 2197.87 11194.65 4988.53 28298.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
VPNet92.23 20091.31 20694.99 17395.56 23990.96 14597.22 15897.86 11592.96 11490.96 21696.62 17775.06 30498.20 22591.90 15983.65 34395.80 250
test_vis1_n_192094.17 11494.58 9792.91 27797.42 14182.02 33897.83 8497.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9297.40 197
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS-test96.89 3597.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6792.66 35391.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
AdaColmapbinary94.34 11093.68 11796.31 10098.59 6691.68 11296.59 21497.81 12189.87 20392.15 18497.06 14583.62 17099.54 8989.34 21098.07 12297.70 183
ETV-MVS96.02 6895.89 6796.40 9397.16 14892.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 178
新几何197.32 5198.60 6593.59 5697.75 12381.58 35995.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
EC-MVSNet96.42 5796.47 5396.26 10697.01 16291.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
PAPM_NR95.01 9394.59 9696.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
Anonymous2024052991.98 20890.73 22995.73 13698.14 9989.40 19997.99 6097.72 12879.63 37093.54 15397.41 12769.94 33999.56 8591.04 18091.11 25698.22 153
CHOSEN 280x42093.12 15992.72 15794.34 21196.71 18187.27 26090.29 37597.72 12886.61 29991.34 20595.29 24084.29 16098.41 20693.25 13598.94 8997.35 200
EI-MVSNet-UG-set96.34 6196.30 6096.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
LS3D93.57 14292.61 16296.47 8797.59 13591.61 11497.67 10397.72 12885.17 32290.29 22798.34 5484.60 15399.73 4283.85 30698.27 11598.06 167
PAPR94.18 11393.42 13396.48 8697.64 12991.42 12595.55 27397.71 13288.99 23192.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
UGNet94.04 12493.28 13696.31 10096.85 16891.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31999.61 6991.72 16598.46 10898.13 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testdata95.46 15598.18 9788.90 21897.66 13482.73 35097.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
DTE-MVSNet90.56 26689.75 27193.01 27393.95 32087.25 26197.64 11097.65 13690.74 17787.12 31195.68 22579.97 24197.00 33783.33 30781.66 35494.78 319
TAPA-MVS90.10 792.30 19591.22 21295.56 14598.33 8089.60 18896.79 19097.65 13681.83 35691.52 20097.23 13687.94 10698.91 16371.31 37798.37 11198.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sd_testset93.10 16092.45 17095.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19397.28 13175.35 30398.65 18788.99 22192.84 22397.28 203
test_cas_vis1_n_192094.48 10894.55 10194.28 21596.78 17586.45 28197.63 11297.64 13893.32 9497.68 3898.36 5073.75 31799.08 14496.73 3999.05 8397.31 202
cdsmvs_eth3d_5k23.24 36930.99 3710.00 3870.00 4100.00 4120.00 39897.63 1400.00 4050.00 40696.88 15584.38 1570.00 4060.00 4050.00 4040.00 402
DPM-MVS95.69 7594.92 8898.01 1998.08 10495.71 995.27 28897.62 14190.43 19495.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
test22298.24 8792.21 9495.33 28397.60 14279.22 37295.25 11897.84 9888.80 9299.15 7598.72 116
cascas91.20 24290.08 25594.58 20094.97 27789.16 21393.65 34197.59 14479.90 36989.40 25992.92 33075.36 30298.36 21392.14 15494.75 19596.23 229
h-mvs3394.15 11693.52 12596.04 11997.81 11990.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 36198.29 150
MVSFormer95.37 8395.16 8495.99 12496.34 20691.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27594.07 11799.05 8398.85 108
test_djsdf93.07 16392.76 15294.00 22793.49 33688.70 22298.22 4197.57 14691.42 15590.08 23995.55 23282.85 18897.92 27594.07 11791.58 24495.40 275
OMC-MVS95.09 9294.70 9496.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
PS-MVSNAJss93.74 13693.51 12694.44 20493.91 32289.28 20797.75 9297.56 14992.50 12689.94 24296.54 18088.65 9598.18 22893.83 12690.90 26195.86 243
casdiffmvs_mvgpermissive95.81 7495.57 7196.51 8396.87 16791.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jajsoiax92.42 18791.89 18694.03 22693.33 34288.50 22997.73 9597.53 15192.00 14288.85 27496.50 18275.62 30198.11 23893.88 12491.56 24595.48 266
mvs_tets92.31 19491.76 18893.94 23493.41 33988.29 23397.63 11297.53 15192.04 14088.76 27796.45 18474.62 30998.09 24293.91 12291.48 24795.45 271
dcpmvs_296.37 6097.05 2294.31 21398.96 4684.11 31797.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
HQP_MVS93.78 13593.43 13194.82 18496.21 21089.99 17697.74 9397.51 15394.85 3491.34 20596.64 16881.32 21798.60 19293.02 14292.23 23295.86 243
plane_prior597.51 15398.60 19293.02 14292.23 23295.86 243
PS-MVSNAJ95.37 8395.33 8095.49 15197.35 14290.66 16095.31 28597.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 233
API-MVS94.84 10294.49 10395.90 12697.90 11592.00 10297.80 8997.48 15689.19 22594.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 222
MG-MVS95.61 7895.38 7896.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
MAR-MVS94.22 11293.46 12896.51 8398.00 10892.19 9797.67 10397.47 15988.13 26393.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS92.98 16792.53 16694.32 21296.12 22089.20 21095.28 28697.47 15992.66 12289.90 24395.62 22880.58 22898.40 20792.73 14792.40 23095.38 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D91.34 23690.22 25194.68 19494.86 28787.86 25097.23 15797.46 16187.99 26489.90 24396.92 15366.35 35898.23 22290.30 19090.99 25997.96 168
nrg03094.05 12393.31 13596.27 10595.22 26594.59 2998.34 2797.46 16192.93 11591.21 21496.64 16887.23 12298.22 22394.99 9885.80 31095.98 242
XVG-OURS93.72 13793.35 13494.80 18997.07 15488.61 22394.79 29997.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22896.92 214
LPG-MVS_test92.94 17092.56 16394.10 22196.16 21588.26 23597.65 10697.46 16191.29 15890.12 23597.16 13979.05 25798.73 17892.25 15191.89 24095.31 282
LGP-MVS_train94.10 22196.16 21588.26 23597.46 16191.29 15890.12 23597.16 13979.05 25798.73 17892.25 15191.89 24095.31 282
MVS91.71 21490.44 23895.51 14995.20 26791.59 11696.04 25097.45 16673.44 38487.36 30895.60 22985.42 14499.10 13985.97 27897.46 13595.83 247
XVG-OURS-SEG-HR93.86 13193.55 12194.81 18697.06 15788.53 22895.28 28697.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22996.98 210
baseline95.58 7995.42 7796.08 11596.78 17590.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
ab-mvs93.57 14292.55 16496.64 7297.28 14391.96 10495.40 28097.45 16689.81 20893.22 16496.28 19279.62 24899.46 10390.74 18493.11 22098.50 130
xiu_mvs_v2_base95.32 8595.29 8195.40 15697.22 14490.50 16395.44 27997.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 233
131492.81 17892.03 18095.14 16495.33 25789.52 19496.04 25097.44 17087.72 27786.25 32595.33 23983.84 16598.79 17089.26 21397.05 15297.11 208
casdiffmvspermissive95.64 7795.49 7396.08 11596.76 18090.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS92.16 20291.23 21194.95 17894.75 29390.94 14697.47 13197.43 17389.14 22688.90 27196.43 18579.71 24598.24 22189.56 20587.68 29395.67 263
anonymousdsp92.16 20291.55 19793.97 23092.58 35589.55 19197.51 12497.42 17489.42 21988.40 28494.84 25980.66 22697.88 28091.87 16191.28 25294.48 327
Effi-MVS+94.93 9894.45 10596.36 9896.61 18591.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
HQP3-MVS97.39 17692.10 237
HQP-MVS93.19 15592.74 15594.54 20295.86 22689.33 20396.65 20597.39 17693.55 8090.14 22995.87 21080.95 22098.50 20092.13 15592.10 23795.78 252
PLCcopyleft91.00 694.11 12093.43 13196.13 11498.58 6891.15 14196.69 20197.39 17687.29 28791.37 20496.71 16088.39 9999.52 9587.33 25497.13 15197.73 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n90.76 25989.86 26493.45 25993.54 33387.60 25697.70 10297.37 17988.85 23787.65 30194.08 30181.08 21998.10 23984.68 29483.79 34294.66 324
UnsupCasMVSNet_eth85.99 32884.45 33290.62 33289.97 37382.40 33593.62 34297.37 17989.86 20478.59 37392.37 33965.25 36595.35 36682.27 32070.75 38294.10 338
ACMM89.79 892.96 16892.50 16894.35 20996.30 20888.71 22197.58 11797.36 18191.40 15790.53 22196.65 16779.77 24498.75 17691.24 17791.64 24295.59 264
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
xiu_mvs_v1_base95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13396.58 18891.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 238
diffmvspermissive95.25 8795.13 8595.63 14196.43 20289.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS94.71 10694.02 11096.79 7097.71 12492.05 10096.59 21497.35 18290.61 18894.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
F-COLMAP93.58 14192.98 14395.37 15798.40 7588.98 21697.18 16197.29 18787.75 27690.49 22297.10 14385.21 14699.50 9986.70 26496.72 15997.63 185
XVG-ACMP-BASELINE90.93 25590.21 25293.09 27194.31 31285.89 29095.33 28397.26 18891.06 17089.38 26095.44 23768.61 34498.60 19289.46 20791.05 25794.79 317
PCF-MVS89.48 1191.56 22289.95 26196.36 9896.60 18692.52 8492.51 36197.26 18879.41 37188.90 27196.56 17984.04 16499.55 8777.01 35597.30 14597.01 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP89.59 1092.62 18292.14 17794.05 22496.40 20388.20 23897.36 14297.25 19091.52 15088.30 28796.64 16878.46 26998.72 18191.86 16291.48 24795.23 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OPM-MVS93.28 15192.76 15294.82 18494.63 29990.77 15496.65 20597.18 19193.72 7591.68 19697.26 13479.33 25298.63 18992.13 15592.28 23195.07 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL92.90 17292.02 18195.56 14598.19 9590.80 15295.27 28897.18 19187.96 26591.86 19295.68 22580.44 23198.99 15684.01 30297.54 13496.89 215
alignmvs95.87 7395.23 8297.78 3197.56 13895.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
MVS_Test94.89 10094.62 9595.68 13996.83 17189.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
Fast-Effi-MVS+93.46 14592.75 15495.59 14496.77 17790.03 17396.81 18997.13 19588.19 25991.30 20894.27 29086.21 13498.63 18987.66 24696.46 16698.12 161
EI-MVSNet93.03 16592.88 14793.48 25795.77 23186.98 26996.44 21997.12 19690.66 18491.30 20897.64 11486.56 12798.05 25089.91 19590.55 26695.41 272
MVSTER93.20 15492.81 15194.37 20896.56 19189.59 18997.06 16897.12 19691.24 16291.30 20895.96 20682.02 20698.05 25093.48 13090.55 26695.47 269
test_yl94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10494.23 10896.43 9197.74 12291.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
LTVRE_ROB88.41 1390.99 25189.92 26394.19 21796.18 21389.55 19196.31 23597.09 20087.88 26885.67 32995.91 20978.79 26598.57 19681.50 32389.98 27294.44 330
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs1_n92.73 18092.88 14792.29 29496.08 22381.05 34697.98 6197.08 20190.72 17996.79 6298.18 7063.07 36998.45 20497.62 2098.42 11097.36 198
v1091.04 24990.23 24993.49 25694.12 31688.16 24197.32 14797.08 20188.26 25888.29 28894.22 29582.17 20497.97 26286.45 26884.12 33694.33 333
v14419291.06 24890.28 24593.39 26093.66 33187.23 26396.83 18897.07 20387.43 28389.69 25094.28 28981.48 21598.00 25787.18 25884.92 32694.93 303
v119291.07 24790.23 24993.58 25393.70 32887.82 25296.73 19597.07 20387.77 27489.58 25394.32 28780.90 22497.97 26286.52 26685.48 31394.95 299
v891.29 23990.53 23793.57 25494.15 31588.12 24297.34 14497.06 20588.99 23188.32 28694.26 29283.08 18098.01 25687.62 24883.92 34094.57 326
mvs_anonymous93.82 13393.74 11594.06 22396.44 20185.41 29795.81 26297.05 20689.85 20690.09 23896.36 18987.44 11797.75 29193.97 11996.69 16099.02 86
IterMVS-LS92.29 19691.94 18493.34 26296.25 20986.97 27096.57 21797.05 20690.67 18289.50 25894.80 26286.59 12697.64 29989.91 19586.11 30895.40 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 25790.03 26093.29 26493.55 33286.96 27196.74 19497.04 20887.36 28589.52 25794.34 28480.23 23697.97 26286.27 26985.21 31994.94 301
CDS-MVSNet94.14 11993.54 12295.93 12596.18 21391.46 12396.33 23397.04 20888.97 23393.56 15196.51 18187.55 11397.89 27989.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v114491.37 23390.60 23393.68 24993.89 32388.23 23796.84 18797.03 21088.37 25589.69 25094.39 28182.04 20597.98 25987.80 23885.37 31594.84 309
v124090.70 26389.85 26593.23 26693.51 33586.80 27296.61 21197.02 21187.16 29089.58 25394.31 28879.55 24997.98 25985.52 28485.44 31494.90 306
EPP-MVSNet95.22 8995.04 8795.76 13197.49 13989.56 19098.67 1097.00 21290.69 18094.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
V4291.58 22190.87 22093.73 24494.05 31988.50 22997.32 14796.97 21388.80 24389.71 24894.33 28582.54 19598.05 25089.01 22085.07 32294.64 325
test_fmvs193.21 15393.53 12392.25 29696.55 19381.20 34597.40 13896.96 21490.68 18196.80 6198.04 7969.25 34198.40 20797.58 2198.50 10497.16 207
FMVSNet291.31 23790.08 25594.99 17396.51 19692.21 9497.41 13496.95 21588.82 24088.62 27994.75 26473.87 31397.42 32085.20 28988.55 28795.35 279
ACMH87.59 1690.53 26789.42 27993.87 23896.21 21087.92 24797.24 15396.94 21688.45 25383.91 34996.27 19371.92 32398.62 19184.43 29789.43 27895.05 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net91.35 23490.27 24694.59 19696.51 19691.18 13797.50 12596.93 21788.82 24089.35 26194.51 27473.87 31397.29 32786.12 27488.82 28295.31 282
test191.35 23490.27 24694.59 19696.51 19691.18 13797.50 12596.93 21788.82 24089.35 26194.51 27473.87 31397.29 32786.12 27488.82 28295.31 282
FMVSNet391.78 21290.69 23195.03 17196.53 19592.27 9397.02 17196.93 21789.79 20989.35 26194.65 26977.01 28597.47 31586.12 27488.82 28295.35 279
FMVSNet189.88 28588.31 29694.59 19695.41 24791.18 13797.50 12596.93 21786.62 29887.41 30694.51 27465.94 36297.29 32783.04 31087.43 29695.31 282
GeoE93.89 12993.28 13695.72 13796.96 16589.75 18498.24 3996.92 22189.47 21792.12 18697.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
miper_enhance_ethall91.54 22491.01 21793.15 26995.35 25387.07 26893.97 32796.90 22286.79 29689.17 26893.43 32586.55 12897.64 29989.97 19486.93 30094.74 321
eth_miper_zixun_eth91.02 25090.59 23492.34 29395.33 25784.35 31394.10 32496.90 22288.56 24988.84 27594.33 28584.08 16397.60 30488.77 22684.37 33495.06 296
TAMVS94.01 12593.46 12895.64 14096.16 21590.45 16596.71 19896.89 22489.27 22393.46 15696.92 15387.29 12097.94 27188.70 22795.74 17698.53 126
miper_ehance_all_eth91.59 21991.13 21592.97 27595.55 24086.57 28094.47 30896.88 22587.77 27488.88 27394.01 30286.22 13397.54 30889.49 20686.93 30094.79 317
v2v48291.59 21990.85 22393.80 24193.87 32488.17 24096.94 17996.88 22589.54 21489.53 25694.90 25681.70 21398.02 25589.25 21485.04 32495.20 290
CNLPA94.28 11193.53 12396.52 8098.38 7892.55 8396.59 21496.88 22590.13 20091.91 19097.24 13585.21 14699.09 14287.64 24797.83 12797.92 170
PAPM91.52 22590.30 24495.20 16195.30 26089.83 18293.38 34796.85 22886.26 30588.59 28095.80 21584.88 15098.15 23075.67 36095.93 17297.63 185
c3_l91.38 23190.89 21992.88 27995.58 23886.30 28494.68 30196.84 22988.17 26088.83 27694.23 29385.65 14297.47 31589.36 20984.63 32894.89 307
pm-mvs190.72 26289.65 27593.96 23194.29 31389.63 18697.79 9096.82 23089.07 22786.12 32795.48 23678.61 26797.78 28886.97 26281.67 35394.46 328
test_vis1_n92.37 19092.26 17592.72 28494.75 29382.64 33098.02 5696.80 23191.18 16597.77 3797.93 8858.02 37798.29 21997.63 1998.21 11797.23 206
CMPMVSbinary62.92 2185.62 33284.92 32987.74 35389.14 37873.12 38394.17 32296.80 23173.98 38273.65 38194.93 25466.36 35797.61 30383.95 30491.28 25292.48 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch90.27 27489.77 26991.78 30994.33 31084.72 31195.55 27396.73 23386.17 30786.36 32495.28 24271.28 32897.80 28684.09 30198.14 12192.81 355
Effi-MVS+-dtu93.08 16293.21 13892.68 28796.02 22483.25 32797.14 16596.72 23493.85 7291.20 21593.44 32383.08 18098.30 21891.69 16895.73 17796.50 224
TSAR-MVS + GP.96.69 4996.49 5297.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
1112_ss93.37 14892.42 17196.21 11097.05 15990.99 14396.31 23596.72 23486.87 29589.83 24696.69 16486.51 12999.14 13588.12 23293.67 21498.50 130
PVSNet86.66 1892.24 19991.74 19193.73 24497.77 12183.69 32492.88 35696.72 23487.91 26793.00 16694.86 25878.51 26899.05 15186.53 26597.45 13998.47 135
miper_lstm_enhance90.50 27090.06 25991.83 30595.33 25783.74 32193.86 33396.70 23887.56 28187.79 29893.81 31083.45 17396.92 33987.39 25284.62 32994.82 312
v14890.99 25190.38 24092.81 28293.83 32585.80 29196.78 19296.68 23989.45 21888.75 27893.93 30682.96 18697.82 28587.83 23783.25 34594.80 315
ACMH+87.92 1490.20 27889.18 28493.25 26596.48 19986.45 28196.99 17596.68 23988.83 23984.79 33896.22 19570.16 33698.53 19884.42 29888.04 29094.77 320
CANet_DTU94.37 10993.65 11896.55 7896.46 20092.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25199.71 4690.76 18398.45 10997.82 178
cl____90.96 25490.32 24292.89 27895.37 25186.21 28794.46 31096.64 24287.82 27088.15 29394.18 29682.98 18497.54 30887.70 24285.59 31194.92 305
HY-MVS89.66 993.87 13092.95 14496.63 7497.10 15392.49 8595.64 27196.64 24289.05 22993.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 168
Test_1112_low_res92.84 17691.84 18795.85 12997.04 16089.97 17995.53 27596.64 24285.38 31789.65 25295.18 24585.86 13999.10 13987.70 24293.58 21998.49 132
DIV-MVS_self_test90.97 25390.33 24192.88 27995.36 25286.19 28894.46 31096.63 24587.82 27088.18 29294.23 29382.99 18397.53 31087.72 23985.57 31294.93 303
Fast-Effi-MVS+-dtu92.29 19691.99 18293.21 26895.27 26185.52 29597.03 16996.63 24592.09 13889.11 27095.14 24780.33 23498.08 24387.54 25094.74 19696.03 241
UnsupCasMVSNet_bld82.13 34579.46 35090.14 33888.00 38382.47 33390.89 37396.62 24778.94 37375.61 37784.40 38656.63 38096.31 34877.30 35266.77 38991.63 369
cl2291.21 24190.56 23693.14 27096.09 22286.80 27294.41 31296.58 24887.80 27288.58 28193.99 30480.85 22597.62 30289.87 19786.93 30094.99 298
RRT_MVS93.10 16092.83 14993.93 23694.76 29188.04 24398.47 2296.55 24993.44 8890.01 24197.04 14680.64 22797.93 27494.33 11490.21 27195.83 247
jason94.84 10294.39 10796.18 11295.52 24190.93 14796.09 24896.52 25089.28 22296.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
tt080591.09 24690.07 25894.16 21995.61 23688.31 23297.56 11996.51 25189.56 21389.17 26895.64 22767.08 35698.38 21291.07 17988.44 28895.80 250
AUN-MVS91.76 21390.75 22894.81 18697.00 16388.57 22596.65 20596.49 25289.63 21192.15 18496.12 20078.66 26698.50 20090.83 18179.18 36497.36 198
hse-mvs293.45 14692.99 14294.81 18697.02 16188.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36597.35 200
EG-PatchMatch MVS87.02 31885.44 32291.76 31192.67 35285.00 30696.08 24996.45 25483.41 34679.52 36993.49 32157.10 37997.72 29379.34 34390.87 26392.56 359
KD-MVS_self_test85.95 32984.95 32888.96 34889.55 37779.11 36995.13 29396.42 25585.91 31084.07 34790.48 35970.03 33894.82 36880.04 33572.94 37992.94 353
pmmvs687.81 31086.19 31792.69 28691.32 36586.30 28497.34 14496.41 25680.59 36784.05 34894.37 28367.37 35197.67 29684.75 29379.51 36394.09 340
PMMVS92.86 17492.34 17294.42 20694.92 28286.73 27594.53 30696.38 25784.78 32994.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 161
RPSCF90.75 26090.86 22190.42 33596.84 16976.29 37695.61 27296.34 25883.89 33891.38 20397.87 9376.45 29098.78 17187.16 25992.23 23296.20 231
MSDG91.42 22990.24 24894.96 17797.15 15088.91 21793.69 33996.32 25985.72 31386.93 31996.47 18380.24 23598.98 15780.57 33295.05 19096.98 210
OurMVSNet-221017-090.51 26990.19 25391.44 31793.41 33981.25 34396.98 17696.28 26091.68 14886.55 32396.30 19174.20 31297.98 25988.96 22287.40 29895.09 294
MVP-Stereo90.74 26190.08 25592.71 28593.19 34488.20 23895.86 26096.27 26186.07 30884.86 33794.76 26377.84 28097.75 29183.88 30598.01 12392.17 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lupinMVS94.99 9794.56 9896.29 10496.34 20691.21 13395.83 26196.27 26188.93 23596.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
BH-untuned92.94 17092.62 16193.92 23797.22 14486.16 28996.40 22796.25 26390.06 20189.79 24796.17 19883.19 17698.35 21487.19 25797.27 14697.24 205
CL-MVSNet_self_test86.31 32485.15 32689.80 34288.83 38081.74 34193.93 33096.22 26486.67 29785.03 33590.80 35878.09 27694.50 36974.92 36371.86 38193.15 351
IS-MVSNet94.90 9994.52 10296.05 11897.67 12590.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
FA-MVS(test-final)93.52 14492.92 14595.31 15896.77 17788.54 22794.82 29896.21 26689.61 21294.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
GA-MVS91.38 23190.31 24394.59 19694.65 29887.62 25594.34 31596.19 26790.73 17890.35 22693.83 30771.84 32497.96 26787.22 25693.61 21798.21 154
IterMVS-SCA-FT90.31 27289.81 26791.82 30695.52 24184.20 31694.30 31896.15 26890.61 18887.39 30794.27 29075.80 29896.44 34687.34 25386.88 30494.82 312
IterMVS90.15 28089.67 27391.61 31395.48 24383.72 32294.33 31696.12 26989.99 20287.31 31094.15 29875.78 30096.27 34986.97 26286.89 30394.83 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS92.76 17991.51 20196.52 8098.77 5390.99 14397.38 14196.08 27082.38 35289.29 26497.87 9383.77 16699.69 5281.37 32896.69 16098.89 105
pmmvs490.93 25589.85 26594.17 21893.34 34190.79 15394.60 30396.02 27184.62 33087.45 30495.15 24681.88 21097.45 31787.70 24287.87 29294.27 337
ppachtmachnet_test88.35 30587.29 30491.53 31492.45 35883.57 32593.75 33695.97 27284.28 33385.32 33494.18 29679.00 26396.93 33875.71 35984.99 32594.10 338
Anonymous2024052186.42 32285.44 32289.34 34690.33 37079.79 36196.73 19595.92 27383.71 34283.25 35291.36 35563.92 36796.01 35078.39 34785.36 31692.22 365
ITE_SJBPF92.43 29095.34 25485.37 30095.92 27391.47 15287.75 30096.39 18871.00 33097.96 26782.36 31989.86 27493.97 341
test_fmvs289.77 28989.93 26289.31 34793.68 33076.37 37597.64 11095.90 27589.84 20791.49 20196.26 19458.77 37697.10 33194.65 10891.13 25594.46 328
USDC88.94 29687.83 30192.27 29594.66 29784.96 30793.86 33395.90 27587.34 28683.40 35195.56 23167.43 35098.19 22782.64 31889.67 27693.66 344
COLMAP_ROBcopyleft87.81 1590.40 27189.28 28293.79 24297.95 11087.13 26796.92 18095.89 27782.83 34986.88 32197.18 13873.77 31699.29 12178.44 34693.62 21694.95 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDD-MVS93.82 13393.08 14096.02 12197.88 11689.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34699.39 11196.31 4994.85 19198.71 118
VDDNet93.05 16492.07 17896.02 12196.84 16990.39 16898.08 5195.85 27886.22 30695.79 10598.46 4267.59 34999.19 12894.92 9994.85 19198.47 135
Vis-MVSNet (Re-imp)94.15 11693.88 11394.95 17897.61 13287.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27888.24 23197.97 12499.02 86
MM97.29 1996.98 2698.23 1198.01 10795.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
KD-MVS_2432*160084.81 33682.64 34091.31 31991.07 36785.34 30191.22 36895.75 28285.56 31583.09 35390.21 36267.21 35295.89 35277.18 35362.48 39292.69 356
miper_refine_blended84.81 33682.64 34091.31 31991.07 36785.34 30191.22 36895.75 28285.56 31583.09 35390.21 36267.21 35295.89 35277.18 35362.48 39292.69 356
FE-MVS92.05 20691.05 21695.08 16796.83 17187.93 24693.91 33295.70 28486.30 30394.15 14094.97 25176.59 28899.21 12684.10 30096.86 15398.09 165
tpm cat188.36 30487.21 30791.81 30795.13 27280.55 35292.58 36095.70 28474.97 38187.45 30491.96 34978.01 27998.17 22980.39 33488.74 28596.72 220
our_test_388.78 30087.98 30091.20 32292.45 35882.53 33293.61 34395.69 28685.77 31284.88 33693.71 31279.99 24096.78 34479.47 34086.24 30594.28 336
BH-w/o92.14 20491.75 18993.31 26396.99 16485.73 29295.67 26795.69 28688.73 24589.26 26694.82 26182.97 18598.07 24785.26 28896.32 16796.13 237
CR-MVSNet90.82 25889.77 26993.95 23294.45 30687.19 26490.23 37695.68 28886.89 29492.40 17592.36 34280.91 22297.05 33381.09 33193.95 21297.60 190
Patchmtry88.64 30287.25 30592.78 28394.09 31786.64 27689.82 37995.68 28880.81 36487.63 30292.36 34280.91 22297.03 33478.86 34485.12 32194.67 323
iter_conf_final93.60 13993.11 13995.04 16997.13 15191.30 12897.92 7395.65 29092.98 11291.60 19796.64 16879.28 25398.13 23295.34 9091.49 24695.70 260
BH-RMVSNet92.72 18191.97 18394.97 17697.16 14887.99 24596.15 24695.60 29190.62 18791.87 19197.15 14178.41 27098.57 19683.16 30897.60 13398.36 147
PVSNet_082.17 1985.46 33383.64 33690.92 32595.27 26179.49 36590.55 37495.60 29183.76 34183.00 35589.95 36471.09 32997.97 26282.75 31660.79 39495.31 282
SCA91.84 21191.18 21493.83 23995.59 23784.95 30894.72 30095.58 29390.82 17492.25 18293.69 31375.80 29898.10 23986.20 27195.98 17098.45 137
AllTest90.23 27688.98 28793.98 22897.94 11186.64 27696.51 21895.54 29485.38 31785.49 33196.77 15870.28 33499.15 13380.02 33692.87 22196.15 235
TestCases93.98 22897.94 11186.64 27695.54 29485.38 31785.49 33196.77 15870.28 33499.15 13380.02 33692.87 22196.15 235
iter_conf0593.18 15892.63 15994.83 18396.64 18390.69 15797.60 11595.53 29692.52 12591.58 19896.64 16876.35 29398.13 23295.43 8891.42 24995.68 262
mvsmamba93.83 13293.46 12894.93 18194.88 28690.85 15098.55 1495.49 29794.24 6191.29 21196.97 14983.04 18298.14 23195.56 8691.17 25495.78 252
tpmvs89.83 28889.15 28591.89 30394.92 28280.30 35693.11 35295.46 29886.28 30488.08 29492.65 33280.44 23198.52 19981.47 32489.92 27396.84 216
pmmvs589.86 28788.87 29092.82 28192.86 34886.23 28696.26 23895.39 29984.24 33487.12 31194.51 27474.27 31197.36 32487.61 24987.57 29494.86 308
PatchmatchNetpermissive91.91 20991.35 20393.59 25295.38 24984.11 31793.15 35195.39 29989.54 21492.10 18793.68 31582.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst91.44 22891.32 20591.79 30895.15 27079.20 36893.42 34695.37 30188.55 25093.49 15593.67 31682.49 19798.27 22090.41 18789.34 27997.90 171
Anonymous2023120687.09 31786.14 31889.93 34191.22 36680.35 35496.11 24795.35 30283.57 34484.16 34393.02 32873.54 31895.61 36072.16 37486.14 30793.84 343
MIMVSNet184.93 33583.05 33790.56 33389.56 37684.84 31095.40 28095.35 30283.91 33780.38 36592.21 34657.23 37893.34 38170.69 38082.75 35193.50 346
TDRefinement86.53 32084.76 33191.85 30482.23 39384.25 31496.38 22995.35 30284.97 32684.09 34694.94 25365.76 36398.34 21784.60 29674.52 37592.97 352
TR-MVS91.48 22790.59 23494.16 21996.40 20387.33 25795.67 26795.34 30587.68 27891.46 20295.52 23476.77 28798.35 21482.85 31393.61 21796.79 218
EPNet_dtu91.71 21491.28 20892.99 27493.76 32783.71 32396.69 20195.28 30693.15 10287.02 31595.95 20783.37 17497.38 32379.46 34196.84 15497.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet587.29 31485.79 32091.78 30994.80 29087.28 25995.49 27795.28 30684.09 33683.85 35091.82 35062.95 37094.17 37378.48 34585.34 31793.91 342
MDTV_nov1_ep1390.76 22795.22 26580.33 35593.03 35495.28 30688.14 26292.84 17293.83 30781.34 21698.08 24382.86 31194.34 200
LF4IMVS87.94 30887.25 30589.98 34092.38 36080.05 36094.38 31395.25 30987.59 28084.34 34094.74 26564.31 36697.66 29884.83 29187.45 29592.23 364
TransMVSNet (Re)88.94 29687.56 30293.08 27294.35 30988.45 23197.73 9595.23 31087.47 28284.26 34295.29 24079.86 24397.33 32579.44 34274.44 37693.45 348
test20.0386.14 32785.40 32488.35 34990.12 37180.06 35995.90 25995.20 31188.59 24681.29 36093.62 31871.43 32792.65 38371.26 37881.17 35692.34 363
new-patchmatchnet83.18 34281.87 34587.11 35686.88 38575.99 37793.70 33795.18 31285.02 32577.30 37688.40 37465.99 36193.88 37874.19 36870.18 38391.47 373
MDA-MVSNet_test_wron85.87 33084.23 33490.80 33092.38 36082.57 33193.17 34995.15 31382.15 35367.65 38592.33 34578.20 27295.51 36377.33 35079.74 36094.31 335
YYNet185.87 33084.23 33490.78 33192.38 36082.46 33493.17 34995.14 31482.12 35467.69 38492.36 34278.16 27595.50 36477.31 35179.73 36194.39 331
Baseline_NR-MVSNet91.20 24290.62 23292.95 27693.83 32588.03 24497.01 17495.12 31588.42 25489.70 24995.13 24883.47 17197.44 31889.66 20383.24 34693.37 349
thres20092.23 20091.39 20294.75 19397.61 13289.03 21596.60 21395.09 31692.08 13993.28 16194.00 30378.39 27199.04 15481.26 33094.18 20396.19 232
ADS-MVSNet89.89 28488.68 29293.53 25595.86 22684.89 30990.93 37195.07 31783.23 34791.28 21291.81 35179.01 26197.85 28179.52 33891.39 25097.84 175
pmmvs-eth3d86.22 32584.45 33291.53 31488.34 38287.25 26194.47 30895.01 31883.47 34579.51 37089.61 36769.75 34095.71 35783.13 30976.73 37291.64 368
Anonymous20240521192.07 20590.83 22595.76 13198.19 9588.75 22097.58 11795.00 31986.00 30993.64 15097.45 12466.24 36099.53 9190.68 18692.71 22699.01 89
MDA-MVSNet-bldmvs85.00 33482.95 33991.17 32393.13 34683.33 32694.56 30595.00 31984.57 33165.13 38992.65 33270.45 33395.85 35473.57 37077.49 36894.33 333
ambc86.56 35983.60 39070.00 38685.69 38894.97 32180.60 36488.45 37337.42 39296.84 34282.69 31775.44 37492.86 354
testgi87.97 30787.21 30790.24 33792.86 34880.76 34796.67 20494.97 32191.74 14685.52 33095.83 21362.66 37194.47 37176.25 35788.36 28995.48 266
dp88.90 29888.26 29890.81 32894.58 30276.62 37492.85 35794.93 32385.12 32390.07 24093.07 32775.81 29798.12 23780.53 33387.42 29797.71 182
test_fmvs383.21 34183.02 33883.78 36386.77 38668.34 38996.76 19394.91 32486.49 30084.14 34589.48 36836.04 39391.73 38591.86 16280.77 35891.26 375
test_040286.46 32184.79 33091.45 31695.02 27685.55 29496.29 23794.89 32580.90 36182.21 35793.97 30568.21 34797.29 32762.98 38688.68 28691.51 371
tfpn200view992.38 18991.52 19994.95 17897.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20796.48 225
CVMVSNet91.23 24091.75 18989.67 34395.77 23174.69 37896.44 21994.88 32685.81 31192.18 18397.64 11479.07 25695.58 36288.06 23395.86 17498.74 115
thres40092.42 18791.52 19995.12 16697.85 11789.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27399.08 14481.40 32594.08 20796.98 210
EPNet95.20 9094.56 9897.14 6392.80 35092.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo89.15 29488.54 29490.98 32493.49 33680.28 35796.70 19994.70 33090.78 17584.15 34495.57 23071.78 32597.71 29484.63 29585.07 32294.94 301
thres100view90092.43 18691.58 19694.98 17597.92 11389.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27799.08 14481.40 32594.08 20796.48 225
thres600view792.49 18591.60 19595.18 16297.91 11489.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27799.10 13981.61 32294.06 21196.98 210
PatchT88.87 29987.42 30393.22 26794.08 31885.10 30589.51 38094.64 33381.92 35592.36 17888.15 37780.05 23997.01 33672.43 37393.65 21597.54 193
baseline192.82 17791.90 18595.55 14797.20 14690.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 34197.68 184
Gipumacopyleft67.86 36065.41 36275.18 37692.66 35373.45 38166.50 39594.52 33553.33 39457.80 39566.07 39530.81 39589.20 38948.15 39578.88 36762.90 395
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CostFormer91.18 24590.70 23092.62 28894.84 28881.76 34094.09 32594.43 33684.15 33592.72 17393.77 31179.43 25098.20 22590.70 18592.18 23597.90 171
tpm289.96 28289.21 28392.23 29794.91 28481.25 34393.78 33594.42 33780.62 36691.56 19993.44 32376.44 29197.94 27185.60 28392.08 23997.49 194
JIA-IIPM88.26 30687.04 31091.91 30293.52 33481.42 34289.38 38194.38 33880.84 36390.93 21780.74 38879.22 25497.92 27582.76 31591.62 24396.38 228
dmvs_re90.21 27789.50 27892.35 29195.47 24685.15 30395.70 26694.37 33990.94 17388.42 28393.57 31974.63 30895.67 35982.80 31489.57 27796.22 230
Patchmatch-test89.42 29287.99 29993.70 24795.27 26185.11 30488.98 38294.37 33981.11 36087.10 31393.69 31382.28 20197.50 31374.37 36694.76 19498.48 134
LCM-MVSNet72.55 35469.39 35882.03 36570.81 40365.42 39490.12 37894.36 34155.02 39365.88 38781.72 38724.16 40189.96 38674.32 36768.10 38790.71 378
ADS-MVSNet289.45 29188.59 29392.03 30095.86 22682.26 33690.93 37194.32 34283.23 34791.28 21291.81 35179.01 26195.99 35179.52 33891.39 25097.84 175
EU-MVSNet88.72 30188.90 28988.20 35193.15 34574.21 37996.63 21094.22 34385.18 32187.32 30995.97 20576.16 29494.98 36785.27 28786.17 30695.41 272
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
MIMVSNet88.50 30386.76 31393.72 24694.84 28887.77 25391.39 36694.05 34586.41 30287.99 29692.59 33563.27 36895.82 35677.44 34992.84 22397.57 192
OpenMVS_ROBcopyleft81.14 2084.42 33882.28 34490.83 32690.06 37284.05 31995.73 26594.04 34673.89 38380.17 36891.53 35459.15 37597.64 29966.92 38489.05 28190.80 377
TinyColmap86.82 31985.35 32591.21 32194.91 28482.99 32993.94 32994.02 34783.58 34381.56 35994.68 26762.34 37298.13 23275.78 35887.35 29992.52 361
ETVMVS90.52 26889.14 28694.67 19596.81 17487.85 25195.91 25893.97 34889.71 21092.34 18092.48 33765.41 36497.96 26781.37 32894.27 20198.21 154
IB-MVS87.33 1789.91 28388.28 29794.79 19095.26 26487.70 25495.12 29493.95 34989.35 22187.03 31492.49 33670.74 33299.19 12889.18 21881.37 35597.49 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Syy-MVS87.13 31687.02 31187.47 35495.16 26873.21 38295.00 29593.93 35088.55 25086.96 31691.99 34775.90 29594.00 37561.59 38894.11 20495.20 290
myMVS_eth3d87.18 31586.38 31589.58 34495.16 26879.53 36395.00 29593.93 35088.55 25086.96 31691.99 34756.23 38194.00 37575.47 36294.11 20495.20 290
testing22290.31 27288.96 28894.35 20996.54 19487.29 25895.50 27693.84 35290.97 17291.75 19592.96 32962.18 37398.00 25782.86 31194.08 20797.76 180
test_f80.57 34779.62 34983.41 36483.38 39167.80 39193.57 34493.72 35380.80 36577.91 37587.63 38033.40 39492.08 38487.14 26079.04 36690.34 379
LCM-MVSNet-Re92.50 18392.52 16792.44 28996.82 17381.89 33996.92 18093.71 35492.41 12884.30 34194.60 27185.08 14897.03 33491.51 17097.36 14198.40 143
bld_raw_dy_0_6492.37 19091.69 19294.39 20794.28 31489.73 18597.71 10093.65 35592.78 12090.46 22396.67 16675.88 29697.97 26292.92 14690.89 26295.48 266
tpm90.25 27589.74 27291.76 31193.92 32179.73 36293.98 32693.54 35688.28 25791.99 18993.25 32677.51 28397.44 31887.30 25587.94 29198.12 161
ET-MVSNet_ETH3D91.49 22690.11 25495.63 14196.40 20391.57 11895.34 28293.48 35790.60 19075.58 37895.49 23580.08 23896.79 34394.25 11589.76 27598.52 127
LFMVS93.60 13992.63 15996.52 8098.13 10091.27 13097.94 7193.39 35890.57 19196.29 8698.31 6069.00 34299.16 13294.18 11695.87 17399.12 80
Patchmatch-RL test87.38 31386.24 31690.81 32888.74 38178.40 37288.12 38693.17 35987.11 29182.17 35889.29 36981.95 20895.60 36188.64 22877.02 36998.41 142
test-LLR91.42 22991.19 21392.12 29894.59 30080.66 34994.29 31992.98 36091.11 16890.76 21992.37 33979.02 25998.07 24788.81 22496.74 15797.63 185
test-mter90.19 27989.54 27792.12 29894.59 30080.66 34994.29 31992.98 36087.68 27890.76 21992.37 33967.67 34898.07 24788.81 22496.74 15797.63 185
WB-MVSnew89.88 28589.56 27690.82 32794.57 30383.06 32895.65 27092.85 36287.86 26990.83 21894.10 29979.66 24796.88 34076.34 35694.19 20292.54 360
testing387.67 31186.88 31290.05 33996.14 21880.71 34897.10 16792.85 36290.15 19987.54 30394.55 27355.70 38294.10 37473.77 36994.10 20695.35 279
test_method66.11 36164.89 36369.79 37872.62 40135.23 40965.19 39692.83 36420.35 39965.20 38888.08 37843.14 39082.70 39673.12 37263.46 39191.45 374
test0.0.03 189.37 29388.70 29191.41 31892.47 35785.63 29395.22 29192.70 36591.11 16886.91 32093.65 31779.02 25993.19 38278.00 34889.18 28095.41 272
new_pmnet82.89 34381.12 34888.18 35289.63 37580.18 35891.77 36592.57 36676.79 38075.56 37988.23 37661.22 37494.48 37071.43 37682.92 34989.87 380
mvsany_test193.93 12893.98 11193.78 24394.94 28186.80 27294.62 30292.55 36788.77 24496.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 227
thisisatest051592.29 19691.30 20795.25 16096.60 18688.90 21894.36 31492.32 36887.92 26693.43 15794.57 27277.28 28499.00 15589.42 20895.86 17497.86 174
thisisatest053093.03 16592.21 17695.49 15197.07 15489.11 21497.49 13092.19 36990.16 19894.09 14196.41 18676.43 29299.05 15190.38 18895.68 17998.31 149
tttt051792.96 16892.33 17394.87 18297.11 15287.16 26697.97 6792.09 37090.63 18693.88 14797.01 14876.50 28999.06 15090.29 19195.45 18298.38 145
K. test v387.64 31286.75 31490.32 33693.02 34779.48 36696.61 21192.08 37190.66 18480.25 36794.09 30067.21 35296.65 34585.96 27980.83 35794.83 310
TESTMET0.1,190.06 28189.42 27991.97 30194.41 30880.62 35194.29 31991.97 37287.28 28890.44 22492.47 33868.79 34397.67 29688.50 23096.60 16297.61 189
PM-MVS83.48 34081.86 34688.31 35087.83 38477.59 37393.43 34591.75 37386.91 29380.63 36389.91 36544.42 38995.84 35585.17 29076.73 37291.50 372
baseline291.63 21790.86 22193.94 23494.33 31086.32 28395.92 25791.64 37489.37 22086.94 31894.69 26681.62 21498.69 18388.64 22894.57 19896.81 217
APD_test179.31 34977.70 35284.14 36289.11 37969.07 38892.36 36491.50 37569.07 38673.87 38092.63 33439.93 39194.32 37270.54 38180.25 35989.02 382
FPMVS71.27 35569.85 35775.50 37574.64 39859.03 39891.30 36791.50 37558.80 39057.92 39488.28 37529.98 39785.53 39553.43 39382.84 35081.95 388
door91.13 377
door-mid91.06 378
EGC-MVSNET68.77 35963.01 36486.07 36192.49 35682.24 33793.96 32890.96 3790.71 4042.62 40590.89 35753.66 38393.46 37957.25 39184.55 33182.51 387
mvsany_test383.59 33982.44 34387.03 35783.80 38973.82 38093.70 33790.92 38086.42 30182.51 35690.26 36146.76 38895.71 35790.82 18276.76 37191.57 370
pmmvs379.97 34877.50 35387.39 35582.80 39279.38 36792.70 35990.75 38170.69 38578.66 37287.47 38251.34 38693.40 38073.39 37169.65 38489.38 381
DSMNet-mixed86.34 32386.12 31987.00 35889.88 37470.43 38494.93 29790.08 38277.97 37785.42 33392.78 33174.44 31093.96 37774.43 36595.14 18696.62 221
MVS-HIRNet82.47 34481.21 34786.26 36095.38 24969.21 38788.96 38389.49 38366.28 38780.79 36274.08 39268.48 34597.39 32271.93 37595.47 18192.18 366
WB-MVS76.77 35176.63 35477.18 37085.32 38756.82 40094.53 30689.39 38482.66 35171.35 38289.18 37075.03 30588.88 39035.42 39866.79 38885.84 384
test111193.19 15592.82 15094.30 21497.58 13784.56 31298.21 4389.02 38593.53 8494.58 13098.21 6772.69 32099.05 15193.06 14098.48 10799.28 65
SSC-MVS76.05 35275.83 35576.72 37484.77 38856.22 40194.32 31788.96 38681.82 35770.52 38388.91 37174.79 30788.71 39133.69 39964.71 39085.23 385
ECVR-MVScopyleft93.19 15592.73 15694.57 20197.66 12785.41 29798.21 4388.23 38793.43 8994.70 12898.21 6772.57 32199.07 14893.05 14198.49 10599.25 68
EPMVS90.70 26389.81 26793.37 26194.73 29584.21 31593.67 34088.02 38889.50 21692.38 17793.49 32177.82 28197.78 28886.03 27792.68 22798.11 164
ANet_high63.94 36259.58 36577.02 37161.24 40566.06 39285.66 38987.93 38978.53 37542.94 39771.04 39425.42 40080.71 39752.60 39430.83 39884.28 386
PMMVS270.19 35666.92 35980.01 36676.35 39765.67 39386.22 38787.58 39064.83 38962.38 39080.29 38926.78 39988.49 39363.79 38554.07 39585.88 383
lessismore_v090.45 33491.96 36379.09 37087.19 39180.32 36694.39 28166.31 35997.55 30784.00 30376.84 37094.70 322
PMVScopyleft53.92 2258.58 36355.40 36668.12 37951.00 40648.64 40378.86 39287.10 39246.77 39535.84 40174.28 3918.76 40586.34 39442.07 39673.91 37769.38 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt86.16 32685.06 32789.46 34593.47 33880.46 35396.41 22386.61 39385.22 32079.15 37188.64 37252.41 38597.06 33293.08 13990.57 26590.87 376
testf169.31 35766.76 36076.94 37278.61 39561.93 39688.27 38486.11 39455.62 39159.69 39185.31 38420.19 40389.32 38757.62 38969.44 38579.58 389
APD_test269.31 35766.76 36076.94 37278.61 39561.93 39688.27 38486.11 39455.62 39159.69 39185.31 38420.19 40389.32 38757.62 38969.44 38579.58 389
gg-mvs-nofinetune87.82 30985.61 32194.44 20494.46 30589.27 20891.21 37084.61 39680.88 36289.89 24574.98 39071.50 32697.53 31085.75 28297.21 14896.51 223
dmvs_testset81.38 34682.60 34277.73 36991.74 36451.49 40293.03 35484.21 39789.07 22778.28 37491.25 35676.97 28688.53 39256.57 39282.24 35293.16 350
GG-mvs-BLEND93.62 25093.69 32989.20 21092.39 36383.33 39887.98 29789.84 36671.00 33096.87 34182.08 32195.40 18394.80 315
MTMP97.86 7982.03 399
DeepMVS_CXcopyleft74.68 37790.84 36964.34 39581.61 40065.34 38867.47 38688.01 37948.60 38780.13 39862.33 38773.68 37879.58 389
E-PMN53.28 36452.56 36855.43 38174.43 39947.13 40483.63 39176.30 40142.23 39642.59 39862.22 39728.57 39874.40 39931.53 40031.51 39744.78 396
test250691.60 21890.78 22694.04 22597.66 12783.81 32098.27 3375.53 40293.43 8995.23 11998.21 6767.21 35299.07 14893.01 14498.49 10599.25 68
EMVS52.08 36651.31 36954.39 38272.62 40145.39 40683.84 39075.51 40341.13 39740.77 39959.65 39830.08 39673.60 40028.31 40129.90 39944.18 397
test_vis3_rt72.73 35370.55 35679.27 36780.02 39468.13 39093.92 33174.30 40476.90 37958.99 39373.58 39320.29 40295.37 36584.16 29972.80 38074.31 392
MVEpermissive50.73 2353.25 36548.81 37066.58 38065.34 40457.50 39972.49 39470.94 40540.15 39839.28 40063.51 3966.89 40773.48 40138.29 39742.38 39668.76 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 36753.82 36746.29 38333.73 40745.30 40778.32 39367.24 40618.02 40050.93 39687.05 38352.99 38453.11 40270.76 37925.29 40040.46 398
N_pmnet78.73 35078.71 35178.79 36892.80 35046.50 40594.14 32343.71 40778.61 37480.83 36191.66 35374.94 30696.36 34767.24 38384.45 33393.50 346
wuyk23d25.11 36824.57 37226.74 38473.98 40039.89 40857.88 3979.80 40812.27 40110.39 4026.97 4047.03 40636.44 40325.43 40217.39 4013.89 401
testmvs13.36 37016.33 3734.48 3865.04 4082.26 41193.18 3483.28 4092.70 4028.24 40321.66 4002.29 4092.19 4047.58 4032.96 4029.00 400
test12313.04 37115.66 3745.18 3854.51 4093.45 41092.50 3621.81 4102.50 4037.58 40420.15 4013.67 4082.18 4057.13 4041.07 4039.90 399
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas7.39 3739.85 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40588.65 950.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
n20.00 411
nn0.00 411
ab-mvs-re8.06 37210.74 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40696.69 1640.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS79.53 36375.56 361
PC_three_145290.77 17698.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
eth-test20.00 410
eth-test0.00 410
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
test_post192.81 35816.58 40380.53 22997.68 29586.20 271
test_post17.58 40281.76 21198.08 243
patchmatchnet-post90.45 36082.65 19498.10 239
gm-plane-assit93.22 34378.89 37184.82 32893.52 32098.64 18887.72 239
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior493.66 5596.42 222
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 35897.34 4898.82 16892.26 149
新几何295.79 263
原ACMM295.67 267
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata195.26 29093.10 105
plane_prior796.21 21089.98 178
plane_prior696.10 22190.00 17481.32 217
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 205
plane_prior297.74 9394.85 34
plane_prior196.14 218
plane_prior89.99 17697.24 15394.06 6592.16 236
HQP5-MVS89.33 203
HQP-NCC95.86 22696.65 20593.55 8090.14 229
ACMP_Plane95.86 22696.65 20593.55 8090.14 229
BP-MVS92.13 155
HQP4-MVS90.14 22998.50 20095.78 252
HQP2-MVS80.95 220
NP-MVS95.99 22589.81 18395.87 210
MDTV_nov1_ep13_2view70.35 38593.10 35383.88 33993.55 15282.47 19886.25 27098.38 145
ACMMP++_ref90.30 270
ACMMP++91.02 258
Test By Simon88.73 94