This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37899.71 1398.88 5999.62 10099.76 13596.63 14599.70 22399.46 4499.99 199.66 125
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34199.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38799.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30499.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 203
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18899.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27999.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24599.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37799.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25199.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5498.70 6399.81 17899.02 8799.91 3199.81 61
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29599.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13199.77 12997.82 10799.87 13796.93 29499.90 3999.54 161
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 3999.08 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 22099.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14398.51 7899.80 18498.83 11899.89 4899.64 136
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5199.76 87
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 11999.73 14998.51 7899.74 20198.91 9999.88 5199.77 82
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19399.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 21199.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17399.71 6899.80 10399.12 1399.97 2198.33 18099.87 5499.83 49
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27299.51 11591.90 37999.30 17699.63 19898.78 4899.64 24288.09 38999.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17499.86 6299.81 61
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40798.81 4499.94 6998.79 12399.86 6299.84 40
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24799.77 5199.82 7698.78 4899.94 6997.56 25099.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27199.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17399.69 1999.85 6999.48 178
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18697.39 11699.28 29899.03 8599.85 6999.65 129
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 31099.16 30197.86 16899.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23393.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32399.37 27994.85 34599.85 6999.46 186
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13698.04 39199.25 28791.24 38298.51 30599.70 15894.55 23399.91 10592.76 37199.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7799.96 7
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17899.71 6899.80 10398.95 2799.93 8498.19 18999.84 7799.74 92
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25699.28 6399.84 7799.63 140
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26399.63 9699.69 16897.27 12499.96 3097.82 22299.84 7799.81 61
LS3D99.27 6799.12 7499.74 6199.18 26399.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 18099.84 7799.52 167
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21296.60 29499.60 10699.55 22698.83 4299.90 11697.48 25799.83 8699.78 80
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 7699.72 9199.40 21599.51 11597.53 21199.64 9399.78 12198.84 4199.91 10597.63 24199.82 90
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19799.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22399.64 2499.82 9099.54 161
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25699.52 10198.07 14899.66 8399.81 9097.79 10899.78 19297.79 22499.81 9399.60 146
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36898.30 18499.80 9799.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27198.24 18699.80 9799.79 74
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26797.41 22698.13 32899.30 30088.99 34699.56 25395.68 32999.80 9797.90 374
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17199.80 9799.79 74
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30599.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28799.80 9799.85 36
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18799.65 2399.78 10499.41 195
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33398.85 34397.22 24397.23 35499.36 28395.28 19499.46 26095.51 33299.78 10497.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19296.98 28999.78 10498.07 361
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17199.77 10799.79 74
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28499.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25799.77 10799.55 159
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11099.97 4
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29899.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 22199.98 1397.47 25999.76 11099.06 233
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11499.54 23198.58 7299.96 3096.93 29499.75 112
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23399.75 11299.48 178
test_prior298.96 33398.34 10899.01 23699.52 23898.68 6497.96 20999.74 115
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
agg_prior297.21 27499.73 11799.75 88
test9_res97.49 25699.72 11899.75 88
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 31099.41 21296.28 31498.95 24699.49 24798.76 5299.91 10597.63 24199.72 11899.75 88
EPNet98.86 12898.71 13299.30 14897.20 38398.18 23099.62 8898.91 33499.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31099.42 14399.68 17498.75 5599.80 18497.98 20899.72 11899.44 191
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18598.67 6699.91 10597.70 23899.69 12399.71 112
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17099.65 18698.28 9299.69 12399.72 103
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23699.41 14799.59 21298.42 8599.93 8498.19 18999.69 12399.73 97
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30797.93 16299.42 14399.55 22698.67 6699.80 18495.80 32599.68 12699.61 144
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33299.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 242
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19298.43 8399.94 6996.92 29699.66 12899.72 103
EPNet_dtu98.03 21397.96 20598.23 29298.27 36595.54 34099.23 27598.75 35299.02 3897.82 34199.71 15496.11 16299.48 25893.04 36699.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14099.70 15898.87 3799.94 6997.76 22999.64 13199.72 103
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30899.77 997.74 18799.50 12699.53 23595.41 18999.84 15397.17 28199.64 13199.44 191
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18599.63 13399.80 70
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19799.40 15299.44 26198.10 9999.81 17898.94 9499.62 13499.35 204
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27499.52 10196.85 27599.27 18499.48 25298.25 9399.91 10597.76 22999.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 234
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39397.53 21199.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 39197.68 19499.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 35197.70 19298.94 24899.65 18692.91 27999.74 20196.52 31099.55 14099.64 136
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29299.01 23699.40 27297.09 12999.86 14097.68 24099.53 14199.10 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36896.82 39296.95 26999.54 11999.43 26391.66 31699.86 14098.08 20099.51 14299.22 216
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31996.59 29699.58 11099.59 21295.39 19099.90 11697.78 22599.49 14399.28 212
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34895.54 34199.62 10099.70 15893.82 26099.93 8497.35 26899.46 14499.32 209
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18797.95 21099.45 14599.02 237
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19299.28 18099.28 30498.34 8999.85 14696.96 29199.45 14599.69 115
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30599.33 25799.00 4399.82 3599.81 9099.06 1699.84 15399.09 8099.42 14799.65 129
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15399.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9585.06 41199.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
test111198.04 21198.11 18797.83 31999.74 8093.82 36799.58 10995.40 40099.12 2599.65 8999.93 990.73 32999.84 15399.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30899.74 8094.37 36299.59 10194.98 40199.13 2299.66 8399.93 990.67 33099.84 15399.40 4799.38 14999.80 70
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 20198.73 12999.38 14998.74 264
test-LLR98.06 20597.90 21298.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23899.45 26197.25 27299.38 14999.10 222
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31396.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26197.30 27099.38 14999.21 217
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26197.25 27299.38 14999.10 222
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35299.36 24096.33 31199.00 24099.12 32698.46 8199.84 15395.23 34099.37 15699.66 125
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
131498.68 15598.54 15999.11 17498.89 31798.65 19499.27 26199.49 14396.89 27397.99 33499.56 22397.72 11199.83 16697.74 23299.27 16098.84 250
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31899.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 241
PatchmatchNetpermissive98.31 18098.36 16898.19 29499.16 27395.32 34699.27 26198.92 33097.37 22999.37 16099.58 21694.90 20799.70 22397.43 26399.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19098.16 18098.27 29199.30 23395.55 33899.07 30598.97 32397.57 20499.43 14099.57 22092.72 28499.74 20197.58 24599.20 16399.52 167
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17499.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26199.39 22383.53 39498.08 32999.54 23196.97 13599.87 13794.23 35399.16 16599.63 140
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16699.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.42 17098.36 16898.59 24799.49 18196.70 30799.27 26199.13 30597.24 24198.80 26999.38 27795.75 17899.74 20197.07 28599.16 16599.33 208
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17899.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18799.51 3599.14 16999.67 122
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 23198.09 19699.13 17099.73 97
Patchmatch-test97.93 22897.65 24098.77 23499.18 26397.07 28499.03 31599.14 30496.16 32598.74 27599.57 22094.56 23199.72 21193.36 36299.11 17199.52 167
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25699.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 27097.91 21299.11 17199.62 142
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4999.44 20196.61 29299.66 8399.89 3095.92 17199.82 17397.46 26099.10 17499.57 156
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22494.09 40491.07 38498.07 33291.04 40089.62 34399.35 28696.75 30199.09 17598.68 283
EPMVS97.82 24897.65 24098.35 28198.88 31895.98 33099.49 17494.71 40397.57 20499.26 18899.48 25292.46 29899.71 21797.87 21699.08 17699.35 204
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23499.58 11099.76 13597.65 11299.82 17398.87 10599.07 17799.46 186
ADS-MVSNet298.02 21598.07 19597.87 31599.33 22595.19 34999.23 27599.08 31096.24 31899.10 22099.67 18094.11 24998.93 35596.81 29999.05 17899.48 178
ADS-MVSNet98.20 18998.08 19298.56 25499.33 22596.48 31799.23 27599.15 30296.24 31899.10 22099.67 18094.11 24999.71 21796.81 29999.05 17899.48 178
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25599.31 17499.78 12195.23 19999.77 19498.21 18799.03 18099.75 88
baseline297.87 23797.55 24898.82 22699.18 26398.02 23999.41 20796.58 39796.97 26696.51 36499.17 31893.43 26799.57 25297.71 23699.03 18098.86 248
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19699.59 10999.75 13895.90 17399.73 20799.53 3299.02 18299.86 33
LCM-MVSNet-Re97.83 24598.15 18296.87 35199.30 23392.25 38199.59 10198.26 37397.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18399.64 136
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17999.38 15899.81 9097.30 12299.45 26199.35 5198.99 18399.51 173
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22399.60 10699.88 3697.14 12699.84 15399.13 7698.94 18599.69 115
MIMVSNet97.73 26297.45 26198.57 25199.45 19697.50 26599.02 31898.98 32296.11 33099.41 14799.14 32290.28 33298.74 36395.74 32698.93 18699.47 184
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25798.70 13298.93 18699.67 122
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27998.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 28097.09 29999.07 17799.06 29498.26 22798.30 38599.10 30794.88 35398.08 32999.34 29096.27 15999.64 24289.87 38298.92 18899.31 210
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29599.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 238
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35699.31 27197.34 23199.21 19899.07 32897.20 12599.82 17398.56 15898.87 19199.52 167
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11696.63 39596.13 32998.87 26098.61 36194.59 22997.70 38595.08 34298.86 19299.55 159
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17496.74 39498.25 11795.24 37398.10 37774.96 39299.90 11699.53 3298.85 19397.70 377
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13999.32 26795.91 33797.99 33499.85 5485.49 37299.88 13291.96 37498.84 19498.12 359
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 20098.84 19499.00 238
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 33099.01 23699.34 29096.20 16199.84 15397.88 21498.82 19699.39 198
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18299.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
MDTV_nov1_ep1398.32 17299.11 28194.44 36199.27 26198.74 35597.51 21499.40 15299.62 20394.78 21599.76 19897.59 24498.81 198
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31599.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27299.48 15597.23 24299.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
PatchT97.03 31096.44 31598.79 23298.99 30598.34 22499.16 28699.07 31392.13 37899.52 12397.31 38794.54 23498.98 34588.54 38798.73 20199.03 235
UWE-MVS97.58 28197.29 28898.48 26299.09 28796.25 32599.01 32396.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20299.28 212
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29298.33 37297.36 23099.07 22598.94 34495.64 18499.15 32092.95 36798.68 20396.12 392
tpmrst98.33 17998.48 16297.90 31499.16 27394.78 35599.31 24499.11 30697.27 23799.45 13499.59 21295.33 19399.84 15398.48 16598.61 20499.09 226
BH-w/o98.00 22097.89 21698.32 28499.35 21996.20 32799.01 32398.90 33696.42 30898.38 31299.00 33795.26 19799.72 21196.06 31898.61 20499.03 235
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22392.96 37598.41 31098.78 35593.77 26299.27 30198.16 19398.61 20498.86 248
CR-MVSNet98.17 19397.93 21098.87 21599.18 26398.49 21399.22 27999.33 25796.96 26799.56 11499.38 27794.33 24199.00 34394.83 34698.58 20799.14 219
RPMNet96.72 31595.90 32799.19 16599.18 26398.49 21399.22 27999.52 10188.72 39099.56 11497.38 38494.08 25199.95 5986.87 39498.58 20799.14 219
dp97.75 25997.80 22097.59 33199.10 28493.71 37099.32 24198.88 33996.48 30399.08 22499.55 22692.67 28999.82 17396.52 31098.58 20799.24 215
testing397.28 30096.76 30998.82 22699.37 21598.07 23799.45 18899.36 24097.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21099.58 154
CVMVSNet98.57 16298.67 13698.30 28699.35 21995.59 33799.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 26198.75 12698.56 21099.85 36
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 39099.50 13597.50 21599.38 15899.41 26996.37 15699.81 17899.11 7898.54 21299.51 173
testgi97.65 27697.50 25598.13 30099.36 21896.45 31899.42 20599.48 15597.76 18397.87 33999.45 26091.09 32598.81 36094.53 34898.52 21399.13 221
tpm cat197.39 29697.36 27697.50 33499.17 27193.73 36999.43 19899.31 27191.27 38198.71 27899.08 32794.31 24399.77 19496.41 31498.50 21499.00 238
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
tpmvs97.98 22298.02 20097.84 31899.04 29894.73 35699.31 24499.20 29696.10 33498.76 27499.42 26594.94 20399.81 17896.97 29098.45 21698.97 242
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37597.10 25599.65 8999.79 11584.79 37799.91 10599.28 6398.38 21799.69 115
Syy-MVS97.09 30997.14 29596.95 34899.00 30292.73 37999.29 25199.39 22397.06 25997.41 34898.15 37393.92 25798.68 36591.71 37598.34 21899.45 189
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30297.16 27799.29 25199.39 22397.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21899.45 189
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36799.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 37199.15 30297.04 26298.90 25499.30 30089.83 33999.38 27496.70 30498.33 22099.62 142
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34398.19 12799.67 7899.85 5482.98 38499.92 9599.49 4098.32 22499.60 146
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36896.03 33599.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 24099.28 2818.40 40825.05 40999.27 30784.11 38099.33 28989.20 38498.22 22897.42 382
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19893.68 40597.23 35498.46 36389.30 34499.22 31095.43 33598.22 22897.98 369
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 27098.74 35597.68 19499.09 22398.32 36991.66 31699.81 17892.88 36898.22 22898.03 364
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22899.28 18099.68 17496.44 15499.92 9598.37 17698.22 22899.40 197
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35597.94 16199.27 18498.62 35991.75 31099.86 14093.73 35898.19 23298.96 244
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10198.74 35597.93 16299.26 18898.62 35991.75 31099.83 16693.22 36398.18 23398.37 348
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.37 348
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.96 244
VDDNet97.55 28297.02 30199.16 16899.49 18198.12 23599.38 22499.30 27595.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23799.42 193
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32598.61 8499.35 16798.92 34894.78 21599.77 19499.35 5198.11 23899.54 161
tpm297.44 29497.34 28197.74 32599.15 27794.36 36399.45 18898.94 32693.45 37298.90 25499.44 26191.35 32299.59 25197.31 26998.07 23999.29 211
testing1197.50 28797.10 29898.71 23999.20 25796.91 29999.29 25198.82 34697.89 16698.21 32498.40 36685.63 37199.83 16698.45 17098.04 24099.37 202
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24698.97 32391.73 38098.91 25294.86 39495.10 20199.71 21797.58 24597.98 24199.28 212
testing9197.44 29497.02 30198.71 23999.18 26396.89 30199.19 28299.04 31697.78 18198.31 31698.29 37085.41 37399.85 14698.01 20697.95 24299.39 198
CostFormer97.72 26497.73 23397.71 32699.15 27794.02 36699.54 13999.02 31894.67 35899.04 23399.35 28692.35 30199.77 19498.50 16497.94 24399.34 207
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20099.27 6697.90 24499.47 184
ETVMVS97.50 28796.90 30599.29 15199.23 25098.78 18699.32 24198.90 33697.52 21398.56 30298.09 37884.72 37899.69 22897.86 21797.88 24599.39 198
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30898.75 35286.58 39194.84 37998.26 37181.53 38999.32 29289.01 38597.87 24696.76 385
testing9997.36 29796.94 30498.63 24499.18 26396.70 30799.30 24698.93 32797.71 18998.23 32198.26 37184.92 37699.84 15398.04 20597.85 24799.35 204
TR-MVS97.76 25597.41 27298.82 22699.06 29497.87 25098.87 34698.56 36796.63 29198.68 28699.22 31392.49 29499.65 23995.40 33697.79 24898.95 246
DeepMVS_CXcopyleft93.34 36799.29 23782.27 39599.22 29285.15 39296.33 36699.05 33190.97 32799.73 20793.57 36097.77 24998.01 365
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22398.58 15297.72 25099.39 198
CLD-MVS98.16 19498.10 18898.33 28299.29 23796.82 30498.75 35799.44 20197.83 17499.13 21399.55 22692.92 27799.67 23198.32 18297.69 25198.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing22297.16 30596.50 31399.16 16899.16 27398.47 21799.27 26198.66 36497.71 18998.23 32198.15 37382.28 38899.84 15397.36 26797.66 25299.18 218
HQP_MVS98.27 18598.22 17898.44 27299.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22897.78 22597.63 25398.67 290
plane_prior599.47 17399.69 22897.78 22597.63 25398.67 290
test_djsdf98.67 15698.57 15698.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8597.62 25598.75 261
anonymousdsp98.44 16898.28 17598.94 19698.50 36098.96 15799.77 3499.50 13597.07 25798.87 26099.77 12994.76 21999.28 29898.66 13997.60 25698.57 328
plane_prior96.97 29599.21 28198.45 9697.60 256
HQP3-MVS99.39 22397.58 258
HQP-MVS98.02 21597.90 21298.37 28099.19 26096.83 30298.98 32999.39 22398.24 11898.66 28799.40 27292.47 29599.64 24297.19 27897.58 25898.64 302
EI-MVSNet98.67 15698.67 13698.68 24299.35 21997.97 24299.50 16399.38 23196.93 27299.20 20199.83 6897.87 10599.36 28398.38 17497.56 26098.71 269
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22699.20 20199.73 14993.86 25999.36 28398.87 10597.56 26098.62 313
OPM-MVS98.19 19098.10 18898.45 26998.88 31897.07 28499.28 25699.38 23198.57 8699.22 19599.81 9092.12 30299.66 23498.08 20097.54 26298.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27499.30 6197.52 26398.64 302
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20897.46 26699.51 15699.53 9695.86 33898.54 30499.77 12982.44 38799.66 23498.68 13797.52 26399.50 176
LPG-MVS_test98.22 18698.13 18598.49 26099.33 22597.05 28699.58 10999.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
LGP-MVS_train98.49 26099.33 22597.05 28699.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
jajsoiax98.43 16998.28 17598.88 21198.60 35598.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26699.22 6997.50 26798.77 257
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28698.93 32796.16 32594.08 38199.22 31382.72 38599.47 25995.67 33097.50 26798.17 357
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19499.26 28593.52 36996.98 36199.52 23888.52 35499.20 31792.58 37397.50 26797.93 372
ACMP97.20 1198.06 20597.94 20998.45 26999.37 21597.01 29199.44 19499.49 14397.54 21098.45 30999.79 11591.95 30699.72 21197.91 21297.49 27098.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27499.30 6197.48 27198.63 310
mvs_tets98.40 17598.23 17798.91 20498.67 34898.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26699.31 5897.48 27198.77 257
test_fmvs297.25 30297.30 28697.09 34499.43 19893.31 37599.73 4798.87 34198.83 6499.28 18099.80 10384.45 37999.66 23497.88 21497.45 27398.30 350
ACMM97.58 598.37 17798.34 17098.48 26299.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21798.74 12797.45 27398.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20097.99 20298.44 27299.41 20396.96 29799.60 9599.56 6998.09 14398.15 32799.91 2090.87 32899.70 22398.88 10297.45 27398.67 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27799.23 25096.80 30599.70 5299.60 5497.12 25198.18 32699.70 15891.73 31299.72 21198.39 17397.45 27398.68 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 277
D2MVS98.41 17298.50 16198.15 29999.26 24496.62 31299.40 21599.61 4897.71 18998.98 24299.36 28396.04 16499.67 23198.70 13297.41 27898.15 358
mvsmamba98.92 12198.87 11599.08 17599.07 29199.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28999.38 4897.40 27998.73 266
ITE_SJBPF98.08 30199.29 23796.37 32098.92 33098.34 10898.83 26599.75 13891.09 32599.62 24895.82 32397.40 27998.25 354
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28196.33 32299.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20797.73 23397.38 28198.53 330
USDC97.34 29897.20 29397.75 32499.07 29195.20 34898.51 37599.04 31697.99 15898.31 31699.86 4989.02 34599.55 25595.67 33097.36 28298.49 333
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25699.91 397.42 22599.67 7899.37 28097.53 11399.88 13298.98 9097.29 28398.42 342
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31898.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29599.09 8097.27 28498.71 269
dmvs_re98.08 20398.16 18097.85 31699.55 16094.67 35899.70 5298.92 33098.15 13399.06 23099.35 28693.67 26599.25 30397.77 22897.25 28599.64 136
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27999.13 7697.23 28698.81 251
TinyColmap97.12 30796.89 30697.83 31999.07 29195.52 34198.57 37198.74 35597.58 20397.81 34299.79 11588.16 35899.56 25395.10 34197.21 28798.39 346
ACMMP++_ref97.19 288
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19196.68 31099.56 12299.54 8598.41 10097.79 34399.87 4490.18 33799.66 23498.05 20497.18 28998.62 313
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36597.34 23198.05 33398.98 34094.45 23898.98 34595.04 34397.15 29098.89 247
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 18085.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RRT_MVS98.70 15198.66 13998.83 22598.90 31598.45 21899.89 299.28 28197.76 18398.94 24899.92 1496.98 13499.25 30399.28 6397.00 29298.80 252
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 32097.79 17998.78 27299.94 691.68 31399.35 28697.21 27496.99 29398.69 278
LF4IMVS97.52 28497.46 26097.70 32798.98 30895.55 33899.29 25198.82 34698.07 14898.66 28799.64 19289.97 33899.61 24997.01 28696.68 29497.94 371
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28599.07 22599.28 30492.93 27698.98 34597.10 28296.65 29598.56 329
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 30098.86 26499.29 30290.26 33398.98 34596.44 31296.56 29898.58 327
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10388.71 34999.04 33696.69 30596.55 29998.65 300
tpm97.67 27497.55 24898.03 30399.02 30095.01 35299.43 19898.54 36996.44 30699.12 21599.34 29091.83 30999.60 25097.75 23196.46 30099.48 178
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3498.68 36397.14 24897.90 33799.93 990.45 33199.18 31897.00 28796.43 30198.67 290
FIs98.78 14398.63 14299.23 16299.18 26399.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27999.08 8296.38 30298.78 254
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 29099.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 31099.07 8396.38 30298.79 253
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 22098.71 27899.83 6893.23 27099.63 24798.88 10296.32 30498.76 259
FMVSNet196.84 31396.36 31798.29 28799.32 23197.26 27399.43 19899.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29592.81 40893.87 36597.68 34499.13 32393.87 25899.01 34291.38 37796.19 30698.59 326
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3199.29 27993.01 37497.20 35699.03 33389.69 34198.36 37191.16 37896.13 30798.07 361
pmmvs498.13 19797.90 21298.81 22998.61 35498.87 17298.99 32699.21 29596.44 30699.06 23099.58 21695.90 17399.11 32997.18 28096.11 30898.46 339
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27596.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 302
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31899.48 15597.22 24398.71 27899.70 15892.75 28199.13 32497.46 26096.00 31098.67 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.85 24097.64 24398.48 26299.09 28797.87 25098.60 37099.33 25797.11 25498.87 26099.22 31392.38 30099.17 31998.21 18795.99 31198.42 342
miper_ehance_all_eth98.18 19298.10 18898.41 27599.23 25097.72 25798.72 36099.31 27196.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
miper_enhance_ethall98.16 19498.08 19298.41 27598.96 31197.72 25798.45 37799.32 26796.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20396.45 15398.97 35293.77 35795.97 31498.61 322
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26198.90 33696.14 32898.37 31399.53 23591.54 31999.14 32197.51 25495.87 31598.63 310
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31899.49 14397.18 24598.71 27899.72 15392.72 28499.14 32197.44 26295.86 31698.67 290
cl____98.01 21897.84 21998.55 25699.25 24897.97 24298.71 36199.34 25096.47 30598.59 30199.54 23195.65 18399.21 31597.21 27495.77 31798.46 339
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 24997.95 24698.71 36199.35 24696.50 29998.60 30099.54 23195.72 18099.03 33897.21 27495.77 31798.46 339
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 31099.20 29693.94 36497.39 35198.79 35491.61 31899.04 33690.43 38095.77 31798.05 363
FMVSNet596.43 32196.19 32097.15 34099.11 28195.89 33299.32 24199.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 16798.42 16598.58 25099.59 14898.00 24099.37 22699.43 20796.94 27199.07 22599.59 21297.87 10599.03 33898.32 18295.62 32298.71 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 25997.40 27398.81 22999.10 28498.87 17299.11 30199.33 25794.83 35598.81 26799.38 27794.33 24199.02 34096.10 31795.57 32398.53 330
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14899.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
eth_miper_zixun_eth98.05 21097.96 20598.33 28299.26 24497.38 26898.56 37399.31 27196.65 28798.88 25799.52 23896.58 14799.12 32897.39 26595.53 32598.47 336
miper_lstm_enhance98.00 22097.91 21198.28 29099.34 22397.43 26798.88 34499.36 24096.48 30398.80 26999.55 22695.98 16698.91 35697.27 27195.50 32698.51 332
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31298.27 32099.70 15893.35 26999.44 26695.69 32895.40 32798.27 352
c3_l98.12 19998.04 19798.38 27999.30 23397.69 26198.81 35199.33 25796.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
EU-MVSNet97.98 22298.03 19897.81 32298.72 34296.65 31199.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37897.41 26495.30 32998.78 254
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17899.36 24096.11 33099.27 18499.36 28393.76 26399.24 30694.46 34995.23 33098.70 274
v119297.81 25097.44 26698.91 20498.88 31898.68 19199.51 15699.34 25096.18 32399.20 20199.34 29094.03 25299.36 28395.32 33895.18 33198.69 278
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13999.35 24696.27 31699.23 19499.35 28694.67 22699.23 30796.73 30295.16 33298.68 283
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14899.34 25096.15 32799.24 19099.47 25593.98 25499.29 29795.40 33695.13 33398.69 278
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8299.08 31096.17 32497.04 36099.06 33093.94 25597.76 38486.96 39395.06 33498.47 336
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13499.34 25096.20 32199.32 17299.40 27294.36 24099.26 30296.37 31595.03 33598.70 274
v2v48298.06 20597.77 22698.92 20098.90 31598.82 18199.57 11699.36 24096.65 28799.19 20499.35 28694.20 24599.25 30397.72 23594.97 33698.69 278
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 33074.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29295.89 32294.93 33898.62 313
dmvs_testset95.02 33996.12 32191.72 37299.10 28480.43 40099.58 10997.87 38297.47 21695.22 37498.82 35293.99 25395.18 39788.09 38994.91 33999.56 158
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28768.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
V4298.06 20597.79 22198.86 21998.98 30898.84 17799.69 5599.34 25096.53 29899.30 17699.37 28094.67 22699.32 29297.57 24994.66 34198.42 342
v1097.85 24097.52 25298.86 21998.99 30598.67 19299.75 4199.41 21295.70 33998.98 24299.41 26994.75 22099.23 30796.01 32194.63 34298.67 290
nrg03098.64 15998.42 16599.28 15599.05 29799.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27499.34 5594.59 34398.78 254
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27399.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23999.35 5194.46 34498.72 267
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30199.24 28993.49 37080.73 40098.98 34093.02 27498.18 37394.22 35494.45 34598.64 302
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36398.81 26799.68 17493.23 27099.42 27198.84 11594.42 34698.76 259
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28999.33 25793.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
WR-MVS98.06 20597.73 23399.06 17898.86 32599.25 11699.19 28299.35 24697.30 23598.66 28799.43 26393.94 25599.21 31598.58 15294.28 34898.71 269
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15699.38 23196.55 29796.16 36899.25 31093.76 26396.17 39487.35 39294.22 34998.27 352
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30399.23 29093.26 37380.77 39999.04 33292.81 28098.02 37794.30 35094.18 35098.64 302
CP-MVSNet98.09 20197.78 22499.01 18498.97 31099.24 11799.67 6499.46 18297.25 23998.48 30899.64 19293.79 26199.06 33498.63 14294.10 35198.74 264
v897.95 22797.63 24498.93 19898.95 31298.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20699.30 29696.94 29394.08 35298.66 298
PS-CasMVS97.93 22897.59 24798.95 19598.99 30599.06 14299.68 6199.52 10197.13 24998.31 31699.68 17492.44 29999.05 33598.51 16394.08 35298.75 261
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4799.27 28495.05 35093.09 38698.91 34994.70 22491.89 40176.62 40094.02 35496.58 387
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15894.89 20899.44 26696.03 31993.89 35598.75 261
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3799.23 29094.87 35492.80 38798.93 34594.71 22391.37 40274.49 40293.80 35696.42 388
WR-MVS_H98.13 19797.87 21798.90 20699.02 30098.84 17799.70 5299.59 5797.27 23798.40 31199.19 31795.53 18699.23 30798.34 17993.78 35798.61 322
NR-MVSNet97.97 22597.61 24599.02 18398.87 32299.26 11599.47 18499.42 20997.63 19997.08 35999.50 24495.07 20299.13 32497.86 21793.59 35898.68 283
pm-mvs197.68 27197.28 28998.88 21199.06 29498.62 19799.50 16399.45 19396.32 31297.87 33999.79 11592.47 29599.35 28697.54 25293.54 35998.67 290
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30299.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27498.36 17893.34 36098.66 298
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32798.41 10099.14 21299.60 21094.59 22999.79 18798.48 16593.29 36199.61 144
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27399.19 7193.27 36298.71 269
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3299.51 11597.06 25998.29 31999.64 19292.63 29098.89 35898.09 19693.16 36398.72 267
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13999.33 25796.26 31798.90 25499.51 24194.68 22599.14 32197.83 22193.15 36498.63 310
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7599.49 14397.76 18398.49 30799.60 21094.23 24498.97 35298.00 20792.90 36598.70 274
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28798.29 22599.41 20798.85 34395.65 34098.63 29599.67 18094.82 21099.10 33198.07 20392.89 36698.64 302
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31498.98 15099.48 17899.53 9697.76 18398.71 27899.46 25996.43 15599.22 31098.57 15592.87 36798.69 278
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15099.41 20799.45 19397.87 16798.71 27899.50 24494.82 21099.22 31098.57 15592.87 36798.68 283
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22699.47 17393.46 37197.41 34899.78 12187.06 36699.33 28996.92 29692.70 36998.65 300
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 18092.92 27798.56 36796.88 29892.60 37098.70 274
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18099.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30398.91 35698.98 9092.21 37199.41 195
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 27998.85 17699.49 17498.91 33495.48 34297.16 35799.80 10393.38 26899.11 32994.16 35591.73 37298.62 313
ambc93.06 36992.68 40082.36 39498.47 37698.73 36095.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5598.53 37095.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36696.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7898.25 37498.28 11394.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 23099.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37195.10 34995.20 37598.67 35894.78 21597.77 38396.28 31690.02 38199.51 173
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22698.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23599.10 30795.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28499.28 28194.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3790.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25596.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 32171.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 39099.65 129
AUN-MVS96.88 31296.31 31898.59 24799.48 18997.04 28999.27 26199.22 29297.44 22298.51 30599.41 26991.97 30599.66 23497.71 23683.83 39199.07 232
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25699.22 29298.94 5499.66 8399.42 26594.93 20499.65 23999.48 4183.80 39299.08 227
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17898.75 35296.74 28096.68 36399.88 3688.65 35299.71 21798.37 17682.74 39398.09 360
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23294.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 34099.79 18797.69 23981.69 39499.68 119
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12299.44 20195.11 34797.13 35897.32 38691.86 30897.27 38890.35 38181.23 39598.23 356
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 23195.13 34597.33 35298.15 37392.69 28896.57 39288.67 38679.87 39697.99 368
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5485.77 36996.15 39597.86 21743.89 40495.39 394
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22396.58 1470.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2160.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.16 27795.47 333
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 414
eth-test0.00 414
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 198
save fliter99.76 6599.59 7099.14 29199.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
test_post199.23 27565.14 40694.18 24899.71 21797.58 245
test_post65.99 40594.65 22899.73 207
patchmatchnet-post98.70 35794.79 21499.74 201
MTMP99.54 13998.88 339
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24297.56 250
TEST999.67 11199.65 5799.05 31099.41 21296.22 32098.95 24699.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 31599.41 21296.28 31498.93 25099.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
test_prior499.56 7598.99 326
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16699.74 92
旧先验298.96 33396.70 28399.47 13199.94 6998.19 189
新几何299.01 323
无先验98.99 32699.51 11596.89 27399.93 8497.53 25399.72 103
原ACMM298.95 336
testdata299.95 5996.67 306
segment_acmp98.96 24
testdata198.85 34798.32 111
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 217
plane_prior299.39 21998.97 51
plane_prior199.26 244
n20.00 415
nn0.00 415
door-mid98.05 379
test1199.35 246
door97.92 380
HQP5-MVS96.83 302
HQP-NCC99.19 26098.98 32998.24 11898.66 287
ACMP_Plane99.19 26098.98 32998.24 11898.66 287
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24298.64 302
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
MDTV_nov1_ep13_2view95.18 35099.35 23596.84 27699.58 11095.19 20097.82 22299.46 186
Test By Simon98.75 55