This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CHOSEN 280x42099.12 8599.13 6699.08 16199.66 11097.89 23198.43 33799.71 1398.88 3999.62 7799.76 10696.63 14499.70 20199.46 1799.99 199.66 109
CANet99.25 6599.14 6599.59 8499.41 18099.16 12199.35 20099.57 5098.82 4499.51 10299.61 18296.46 14999.95 4399.59 199.98 299.65 113
CHOSEN 1792x268899.19 6999.10 6999.45 11799.89 898.52 19699.39 18299.94 198.73 5399.11 19199.89 1095.50 18299.94 5499.50 999.97 399.89 2
DeepC-MVS98.35 299.30 5699.19 6199.64 7799.82 3799.23 11499.62 6699.55 6498.94 3399.63 7399.95 295.82 17299.94 5499.37 2199.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG99.32 5499.32 3199.32 13399.85 2598.29 21099.71 3499.66 2798.11 10999.41 12399.80 7698.37 8899.96 1998.99 5999.96 599.72 87
CANet_DTU98.97 11198.87 10499.25 14799.33 19998.42 20799.08 26299.30 25899.16 599.43 11699.75 11195.27 19099.97 1198.56 12999.95 699.36 176
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7399.45 18099.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7299.45 18099.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
UGNet98.87 11698.69 12699.40 12399.22 22998.72 17799.44 15599.68 1999.24 399.18 18299.42 24492.74 26599.96 1999.34 2699.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SD-MVS99.41 4299.52 699.05 16599.74 7099.68 4999.46 15099.52 8899.11 799.88 599.91 599.43 197.70 34798.72 10199.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8699.44 18999.01 1899.87 1099.80 7698.97 2499.91 9199.44 2099.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9699.58 8699.49 12899.02 1599.88 599.80 7699.00 2299.94 5499.45 1899.92 1199.84 18
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3799.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15499.76 3799.75 11199.13 1099.92 8099.07 5399.92 1199.85 14
3Dnovator97.25 999.24 6699.05 7499.81 3899.12 25199.66 5499.84 699.74 1099.09 1098.92 22699.90 795.94 16699.98 698.95 6399.92 1199.79 53
MP-MVS-pluss99.37 4899.20 6099.88 699.90 399.87 999.30 20999.52 8897.18 20999.60 8399.79 8898.79 4799.95 4398.83 8699.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14799.48 14098.05 12299.76 3799.86 2398.82 4499.93 6998.82 9099.91 1699.84 18
HPM-MVScopyleft99.42 3899.28 4999.83 3399.90 399.72 4299.81 1299.54 7197.59 16699.68 5399.63 17298.91 3699.94 5498.58 12499.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6699.59 4392.65 33899.71 4699.78 9598.06 10399.90 10698.84 8399.91 1699.74 74
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 8898.07 11799.53 9899.63 17298.93 3599.97 1198.74 9799.91 1699.83 29
PHI-MVS99.30 5699.17 6399.70 6499.56 14499.52 8399.58 8699.80 897.12 21599.62 7799.73 12498.58 7099.90 10698.61 11899.91 1699.68 103
DeepPCF-MVS98.18 398.81 13199.37 1997.12 31599.60 13491.75 35098.61 32799.44 18999.35 199.83 1799.85 2998.70 6299.81 15699.02 5799.91 1699.81 41
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5899.67 2298.08 11699.55 9599.64 16698.91 3699.96 1998.72 10199.90 2399.82 36
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8199.90 2399.88 5
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19499.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4899.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
UA-Net99.42 3899.29 4599.80 4099.62 12699.55 7599.50 12699.70 1598.79 4999.77 3399.96 197.45 11699.96 1998.92 6899.90 2399.89 2
jason99.13 7999.03 7999.45 11799.46 17098.87 16299.12 25399.26 26698.03 12599.79 2699.65 15997.02 13199.85 13199.02 5799.90 2399.65 113
jason: jason.
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7999.51 10198.62 5999.79 2699.83 4299.28 399.97 1198.48 13799.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 17099.50 12097.03 22699.04 20799.88 1597.39 11799.92 8098.66 11199.90 2399.87 10
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31699.55 6497.25 20399.47 10899.77 10297.82 10899.87 12296.93 26499.90 2399.54 143
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15599.88 1198.53 19299.34 20399.59 4397.55 17198.70 25999.89 1095.83 17199.90 10698.10 16999.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3099.30 4199.85 2599.73 7599.83 1499.56 9899.47 15897.45 18399.78 3199.82 4999.18 899.91 9198.79 9299.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3099.30 4199.86 1899.88 1199.79 3099.69 3799.48 14098.12 10799.50 10399.75 11198.78 4899.97 1198.57 12699.89 3399.83 29
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29899.85 698.82 4499.65 6999.74 11798.51 7599.80 16198.83 8699.89 3399.64 120
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6099.39 21198.91 3899.78 3199.85 2999.36 299.94 5498.84 8399.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 4899.59 4398.13 10599.82 2099.81 6298.60 6999.96 1998.46 14199.88 3699.79 53
QAPM98.67 14498.30 16199.80 4099.20 23399.67 5299.77 2499.72 1194.74 31998.73 25199.90 795.78 17399.98 696.96 26199.88 3699.76 68
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9098.95 29699.85 698.82 4499.54 9699.73 12498.51 7599.74 17898.91 6999.88 3699.77 63
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19499.51 10198.73 5399.88 599.84 3898.72 6099.96 1998.16 16699.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4899.67 2298.15 10399.68 5399.69 14099.06 1399.96 1998.69 10699.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5599.66 2798.13 10599.66 6499.68 14698.96 2599.96 1998.62 11599.87 4099.84 18
#test#99.43 3399.29 4599.86 1899.87 1599.80 2699.55 10799.67 2297.83 14099.68 5399.69 14099.06 1399.96 1998.39 14599.87 4099.84 18
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9399.49 13699.46 16898.95 3299.83 1799.76 10699.01 1699.93 6999.17 4399.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13699.49 12898.94 3399.83 1799.76 10699.01 1699.94 5499.15 4699.87 4099.80 49
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4899.67 2298.15 10399.67 5999.69 14098.95 2899.96 1998.69 10699.87 4099.84 18
MP-MVScopyleft99.33 5399.15 6499.87 1199.88 1199.82 2099.66 4899.46 16898.09 11299.48 10799.74 11798.29 9299.96 1997.93 18499.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8699.65 3297.84 13999.71 4699.80 7699.12 1199.97 1198.33 15399.87 4099.83 29
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19499.46 16899.07 1399.79 2699.82 4998.85 4199.92 8098.68 10899.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 24397.34 26398.94 18099.70 9397.53 24499.25 23199.51 10191.90 34099.30 14999.63 17298.78 4899.64 21688.09 35199.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9199.37 22699.10 899.81 2299.80 7698.94 3199.96 1998.93 6699.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 399.57 9199.51 10199.96 1998.93 6699.86 5199.88 5
GST-MVS99.40 4599.24 5699.85 2599.86 2199.79 3099.60 7399.67 2297.97 12899.63 7399.68 14698.52 7499.95 4398.38 14799.86 5199.81 41
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13599.74 11798.81 4599.94 5498.79 9299.86 5199.84 18
X-MVStestdata96.55 29095.45 30599.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13564.01 36698.81 4599.94 5498.79 9299.86 5199.84 18
APD-MVScopyleft99.27 6199.08 7299.84 3299.75 6299.79 3099.50 12699.50 12097.16 21199.77 3399.82 4998.78 4899.94 5497.56 22099.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24499.68 4999.81 1299.51 10199.20 498.72 25299.89 1095.68 17799.97 1198.86 7999.86 5199.81 41
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7399.48 14099.08 1199.91 199.81 6299.20 599.96 1998.91 6999.85 5899.79 53
IU-MVS99.84 3299.88 799.32 25198.30 8899.84 1398.86 7999.85 5899.89 2
MVSFormer99.17 7399.12 6799.29 14199.51 15198.94 15599.88 199.46 16897.55 17199.80 2499.65 15997.39 11799.28 27199.03 5599.85 5899.65 113
lupinMVS99.13 7999.01 8699.46 11699.51 15198.94 15599.05 26899.16 28197.86 13599.80 2499.56 19897.39 11799.86 12598.94 6499.85 5899.58 138
PVSNet_Blended99.08 9698.97 9199.42 12299.76 5298.79 17398.78 31399.91 396.74 24499.67 5999.49 22497.53 11499.88 11998.98 6099.85 5899.60 130
MVS-HIRNet95.75 30495.16 30897.51 30699.30 20893.69 34198.88 30395.78 35985.09 35298.78 24792.65 35691.29 30399.37 25394.85 31299.85 5899.46 166
PCF-MVS97.08 1497.66 25897.06 27999.47 11499.61 13099.09 13298.04 35099.25 26891.24 34398.51 27999.70 13394.55 22399.91 9192.76 33699.85 5899.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_241102_TWO99.48 14099.08 1199.88 599.81 6298.94 3199.96 1998.91 6999.84 6599.88 5
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6899.14 25199.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
SF-MVS99.38 4799.24 5699.79 4399.79 4299.68 4999.57 9199.54 7197.82 14599.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12199.41 17099.71 1398.98 2799.45 11199.78 9599.19 799.54 23099.28 3299.84 6599.63 124
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9899.05 26899.66 2799.14 699.57 9099.80 7698.46 7999.94 5499.57 399.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9199.59 7999.49 12897.03 22699.63 7399.69 14097.27 12499.96 1997.82 19399.84 6599.81 41
LS3D99.27 6199.12 6799.74 5699.18 23899.75 3899.56 9899.57 5098.45 7199.49 10699.85 2997.77 11099.94 5498.33 15399.84 6599.52 148
ETH3 D test640098.70 14098.35 15699.73 5899.69 9699.60 6599.16 24599.45 18095.42 30799.27 15799.60 18597.39 11799.91 9195.36 30599.83 7299.70 96
ETH3D-3000-0.199.21 6799.02 8299.77 4799.73 7599.69 4799.38 18799.51 10197.45 18399.61 7999.75 11198.51 7599.91 9197.45 23299.83 7299.71 94
AllTest98.87 11698.72 12299.31 13499.86 2198.48 20299.56 9899.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
TestCases99.31 13499.86 2198.48 20299.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24999.41 20196.60 25799.60 8399.55 20298.83 4399.90 10697.48 22799.83 7299.78 61
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6699.69 1898.12 10799.63 7399.84 3898.73 5999.96 1998.55 13299.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 6999.72 8099.40 17899.51 10197.53 17699.64 7299.78 9598.84 4299.91 9197.63 21199.82 78
PVSNet_Blended_VisFu99.36 5099.28 4999.61 8299.86 2199.07 13599.47 14799.93 297.66 16299.71 4699.86 2397.73 11199.96 1999.47 1699.82 7899.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.53 7299.95 4398.61 11899.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.75 5698.61 11899.81 8099.77 63
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6099.54 7198.36 8199.79 2699.82 4998.86 4099.95 4398.62 11599.81 8099.78 61
OMC-MVS99.08 9699.04 7799.20 15299.67 10198.22 21499.28 21599.52 8898.07 11799.66 6499.81 6297.79 10999.78 16897.79 19599.81 8099.60 130
OPU-MVS99.64 7799.56 14499.72 4299.60 7399.70 13399.27 499.42 24698.24 15899.80 8499.79 53
MS-PatchMatch97.24 28097.32 26696.99 31698.45 32893.51 34498.82 30999.32 25197.41 19098.13 30199.30 27888.99 32699.56 22795.68 29799.80 8497.90 343
HPM-MVS++copyleft99.39 4699.23 5899.87 1199.75 6299.84 1399.43 16199.51 10198.68 5799.27 15799.53 21198.64 6899.96 1998.44 14399.80 8499.79 53
CNVR-MVS99.42 3899.30 4199.78 4599.62 12699.71 4499.26 22999.52 8898.82 4499.39 13099.71 12998.96 2599.85 13198.59 12399.80 8499.77 63
MG-MVS99.13 7999.02 8299.45 11799.57 14098.63 18499.07 26399.34 23698.99 2599.61 7999.82 4997.98 10599.87 12297.00 25799.80 8499.85 14
test117299.43 3399.29 4599.85 2599.75 6299.82 2099.60 7399.56 5698.28 8999.74 4199.79 8898.53 7299.95 4398.55 13299.78 8999.79 53
MVP-Stereo97.81 23197.75 21397.99 28497.53 33996.60 28898.96 29298.85 31597.22 20797.23 32399.36 26295.28 18999.46 23595.51 30099.78 8997.92 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 10199.03 7999.06 16399.40 18599.31 10599.55 10799.56 5698.54 6399.33 14599.39 25598.76 5399.78 16896.98 25999.78 8998.07 330
CS-MVS99.37 4899.33 2899.51 10699.47 16899.51 8599.81 1299.57 5098.37 8099.65 6999.56 19898.21 9599.77 17099.54 599.77 9299.27 184
SR-MVS99.43 3399.29 4599.86 1899.75 6299.83 1499.59 7999.62 3398.21 9899.73 4399.79 8898.68 6399.96 1998.44 14399.77 9299.79 53
MSP-MVS99.42 3899.27 5199.88 699.89 899.80 2699.67 4499.50 12098.70 5599.77 3399.49 22498.21 9599.95 4398.46 14199.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14499.54 7799.18 24399.70 1598.18 10299.35 14199.63 17296.32 15499.90 10697.48 22799.77 9299.55 141
OpenMVScopyleft96.50 1698.47 15298.12 17099.52 10499.04 26799.53 8099.82 1099.72 1194.56 32298.08 30299.88 1594.73 21499.98 697.47 22999.76 9699.06 203
ZD-MVS99.71 8699.79 3099.61 3596.84 23999.56 9199.54 20798.58 7099.96 1996.93 26499.75 97
MCST-MVS99.43 3399.30 4199.82 3599.79 4299.74 4199.29 21399.40 20798.79 4999.52 10099.62 17898.91 3699.90 10698.64 11399.75 9799.82 36
CNLPA99.14 7798.99 8799.59 8499.58 13899.41 9699.16 24599.44 18998.45 7199.19 17999.49 22498.08 10299.89 11497.73 20299.75 9799.48 159
test_prior399.21 6799.05 7499.68 6599.67 10199.48 8898.96 29299.56 5698.34 8399.01 21099.52 21498.68 6399.83 14597.96 18199.74 10099.74 74
test_prior298.96 29298.34 8399.01 21099.52 21498.68 6397.96 18199.74 100
test1299.75 5199.64 11799.61 6399.29 26399.21 17398.38 8699.89 11499.74 10099.74 74
agg_prior297.21 24399.73 10399.75 69
test9_res97.49 22699.72 10499.75 69
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26899.41 20196.28 27898.95 22199.49 22498.76 5399.91 9197.63 21199.72 10499.75 69
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28499.40 20796.26 28198.87 23499.49 22498.77 5199.91 9197.69 20899.72 10499.75 69
EPNet98.86 11998.71 12499.30 13897.20 34698.18 21599.62 6698.91 30999.28 298.63 27099.81 6295.96 16399.99 199.24 3699.72 10499.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 22099.57 5096.40 27499.42 11999.68 14698.75 5699.80 16197.98 18099.72 10499.44 169
PVSNet96.02 1798.85 12798.84 11098.89 19399.73 7597.28 25098.32 34399.60 4097.86 13599.50 10399.57 19596.75 14199.86 12598.56 12999.70 10999.54 143
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23499.44 18997.04 22499.39 13099.67 15298.30 9199.92 8097.27 23999.69 11099.64 120
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15599.51 10197.29 19999.59 8699.74 11798.15 10099.96 1996.74 27299.69 11099.81 41
原ACMM199.65 7299.73 7599.33 10199.47 15897.46 18099.12 18999.66 15898.67 6699.91 9197.70 20799.69 11099.71 94
test22299.75 6299.49 8798.91 30199.49 12896.42 27299.34 14499.65 15998.28 9399.69 11099.72 87
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16899.54 7197.29 19999.41 12399.59 18898.42 8499.93 6998.19 16199.69 11099.73 81
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32699.10 28797.93 13199.42 11999.55 20298.67 6699.80 16195.80 29499.68 11599.61 128
旧先验199.74 7099.59 6899.54 7199.69 14098.47 7899.68 11599.73 81
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 22099.48 14096.82 24299.25 16499.65 15998.38 8699.93 6997.53 22399.67 11799.73 81
PS-MVSNAJ99.32 5499.32 3199.30 13899.57 14098.94 15598.97 29199.46 16898.92 3799.71 4699.24 28899.01 1699.98 699.35 2299.66 11898.97 212
新几何199.75 5199.75 6299.59 6899.54 7196.76 24399.29 15299.64 16698.43 8199.94 5496.92 26699.66 11899.72 87
EPNet_dtu98.03 19697.96 18898.23 26998.27 33095.54 31399.23 23498.75 32099.02 1597.82 31299.71 12996.11 15999.48 23293.04 33299.65 12099.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 9299.75 6298.95 15299.51 10197.07 22199.43 11699.70 13398.87 3999.94 5497.76 19899.64 12199.72 87
PatchMatch-RL98.84 13098.62 13899.52 10499.71 8699.28 10899.06 26699.77 997.74 15399.50 10399.53 21195.41 18499.84 13697.17 25099.64 12199.44 169
NCCC99.34 5299.19 6199.79 4399.61 13099.65 5799.30 20999.48 14098.86 4099.21 17399.63 17298.72 6099.90 10698.25 15799.63 12399.80 49
EIA-MVS99.18 7199.09 7199.45 11799.49 16099.18 11899.67 4499.53 8297.66 16299.40 12899.44 23998.10 10199.81 15698.94 6499.62 12499.35 177
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14199.24 23399.52 8896.85 23899.27 15799.48 23098.25 9499.91 9197.76 19899.62 12499.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6399.21 5999.40 12399.46 17099.30 10699.56 9899.52 8898.52 6599.44 11599.27 28598.41 8599.86 12599.10 5099.59 12699.04 204
thisisatest053098.35 16398.03 18099.31 13499.63 12098.56 18999.54 11096.75 35697.53 17699.73 4399.65 15991.25 30499.89 11498.62 11599.56 12799.48 159
tttt051798.42 15698.14 16899.28 14499.66 11098.38 20899.74 3196.85 35497.68 15899.79 2699.74 11791.39 30199.89 11498.83 8699.56 12799.57 139
BH-RMVSNet98.41 15898.08 17599.40 12399.41 18098.83 16999.30 20998.77 31997.70 15698.94 22399.65 15992.91 26199.74 17896.52 28099.55 12999.64 120
MAR-MVS98.86 11998.63 13399.54 9299.37 19199.66 5499.45 15199.54 7196.61 25599.01 21099.40 25197.09 12899.86 12597.68 21099.53 13099.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 18297.79 20499.19 15399.50 15898.50 19998.61 32796.82 35596.95 23299.54 9699.43 24191.66 29799.86 12598.08 17499.51 13199.22 186
Fast-Effi-MVS+-dtu98.77 13798.83 11498.60 22699.41 18096.99 27199.52 11699.49 12898.11 10999.24 16599.34 26896.96 13499.79 16497.95 18399.45 13299.02 207
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9399.39 18299.38 21797.70 15699.28 15499.28 28298.34 8999.85 13196.96 26199.45 13299.69 99
TSAR-MVS + GP.99.36 5099.36 2199.36 12799.67 10198.61 18799.07 26399.33 24399.00 2299.82 2099.81 6299.06 1399.84 13699.09 5199.42 13499.65 113
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4299.66 2798.49 6799.86 1199.87 2094.77 21199.84 13699.19 4099.41 13599.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 13598.89 10298.47 24599.33 19996.91 27799.57 9199.30 25898.47 6899.41 12398.99 31496.78 13899.74 17898.73 9999.38 13698.74 237
test-LLR98.06 19097.90 19598.55 23598.79 29797.10 25898.67 32297.75 34797.34 19498.61 27398.85 32194.45 22699.45 23697.25 24199.38 13699.10 192
TESTMET0.1,197.55 26397.27 27298.40 25498.93 28196.53 28998.67 32297.61 35096.96 23098.64 26999.28 28288.63 33199.45 23697.30 23899.38 13699.21 187
test-mter97.49 27297.13 27798.55 23598.79 29797.10 25898.67 32297.75 34796.65 25198.61 27398.85 32188.23 33599.45 23697.25 24199.38 13699.10 192
PAPR98.63 14898.34 15799.51 10699.40 18599.03 13898.80 31199.36 22796.33 27599.00 21599.12 30398.46 7999.84 13695.23 30799.37 14099.66 109
xiu_mvs_v1_base_debu99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base_debi99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
MVS_030496.79 28796.52 28797.59 30399.22 22994.92 32899.04 27399.59 4396.49 26398.43 28598.99 31480.48 35799.39 24897.15 25199.27 14498.47 306
131498.68 14398.54 14799.11 16098.89 28498.65 18299.27 22099.49 12896.89 23697.99 30799.56 19897.72 11299.83 14597.74 20199.27 14498.84 221
xiu_mvs_v2_base99.26 6399.25 5599.29 14199.53 14798.91 15999.02 27799.45 18098.80 4899.71 4699.26 28698.94 3199.98 699.34 2699.23 14698.98 211
PatchmatchNetpermissive98.31 16598.36 15498.19 27199.16 24695.32 31999.27 22098.92 30697.37 19399.37 13599.58 19194.90 20299.70 20197.43 23499.21 14799.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17598.16 16698.27 26899.30 20895.55 31199.07 26398.97 30097.57 16999.43 11699.57 19592.72 26699.74 17897.58 21599.20 14899.52 148
sss99.17 7399.05 7499.53 9899.62 12698.97 14699.36 19499.62 3397.83 14099.67 5999.65 15997.37 12199.95 4399.19 4099.19 14999.68 103
MVS97.28 27896.55 28699.48 11198.78 30098.95 15299.27 22099.39 21183.53 35398.08 30299.54 20796.97 13399.87 12294.23 31999.16 15099.63 124
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9899.50 12098.33 8699.41 12399.86 2395.92 16799.83 14599.45 1899.16 15099.70 96
BH-untuned98.42 15698.36 15498.59 22799.49 16096.70 28399.27 22099.13 28597.24 20598.80 24499.38 25695.75 17499.74 17897.07 25599.16 15099.33 180
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3299.48 14098.35 8299.42 11999.84 3896.07 16099.79 16499.51 899.14 15399.67 106
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2899.20 27698.02 12699.56 9199.86 2396.54 14799.67 20698.09 17099.13 15499.73 81
Patchmatch-test97.93 21097.65 22298.77 21699.18 23897.07 26299.03 27499.14 28496.16 29198.74 25099.57 19594.56 22299.72 18993.36 32899.11 15599.52 148
diffmvs99.14 7799.02 8299.51 10699.61 13098.96 15099.28 21599.49 12898.46 7099.72 4599.71 12996.50 14899.88 11999.31 2999.11 15599.67 106
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13499.71 8698.88 16199.80 1799.44 18997.91 13399.36 13899.78 9595.49 18399.43 24597.91 18599.11 15599.62 126
RPSCF98.22 17198.62 13896.99 31699.82 3791.58 35199.72 3299.44 18996.61 25599.66 6499.89 1095.92 16799.82 15297.46 23099.10 15899.57 139
gg-mvs-nofinetune96.17 29995.32 30798.73 21898.79 29798.14 21899.38 18794.09 36391.07 34598.07 30591.04 35989.62 32299.35 26196.75 27199.09 15998.68 254
EPMVS97.82 22997.65 22298.35 25898.88 28595.98 30399.49 13694.71 36297.57 16999.26 16299.48 23092.46 28099.71 19597.87 18899.08 16099.35 177
MVS_Test99.10 9398.97 9199.48 11199.49 16099.14 12699.67 4499.34 23697.31 19799.58 8899.76 10697.65 11399.82 15298.87 7699.07 16199.46 166
ADS-MVSNet298.02 19898.07 17897.87 29199.33 19995.19 32299.23 23499.08 29096.24 28399.10 19499.67 15294.11 23798.93 32596.81 26999.05 16299.48 159
ADS-MVSNet98.20 17498.08 17598.56 23399.33 19996.48 29199.23 23499.15 28296.24 28399.10 19499.67 15294.11 23799.71 19596.81 26999.05 16299.48 159
GeoE98.85 12798.62 13899.53 9899.61 13099.08 13399.80 1799.51 10197.10 21999.31 14799.78 9595.23 19499.77 17098.21 15999.03 16499.75 69
baseline297.87 21897.55 23098.82 20999.18 23898.02 22299.41 17096.58 35896.97 22996.51 33399.17 29593.43 25099.57 22697.71 20599.03 16498.86 219
mvs-test198.86 11998.84 11098.89 19399.33 19997.77 23799.44 15599.30 25898.47 6899.10 19499.43 24196.78 13899.95 4398.73 9999.02 16698.96 214
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9999.02 27799.91 397.67 16199.59 8699.75 11195.90 16999.73 18599.53 699.02 16699.86 11
LCM-MVSNet-Re97.83 22698.15 16796.87 32199.30 20892.25 34999.59 7998.26 33897.43 18796.20 33699.13 30096.27 15698.73 33198.17 16598.99 16899.64 120
mvs_anonymous99.03 10398.99 8799.16 15699.38 18998.52 19699.51 12099.38 21797.79 14699.38 13399.81 6297.30 12299.45 23699.35 2298.99 16899.51 154
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13699.81 1299.33 24397.43 18799.60 8399.88 1597.14 12699.84 13699.13 4798.94 17099.69 99
MIMVSNet97.73 24497.45 24398.57 23199.45 17597.50 24599.02 27798.98 29996.11 29699.41 12399.14 29990.28 31098.74 33095.74 29598.93 17199.47 164
TAMVS99.12 8599.08 7299.24 14999.46 17098.55 19099.51 12099.46 16898.09 11299.45 11199.82 4998.34 8999.51 23198.70 10398.93 17199.67 106
CDS-MVSNet99.09 9499.03 7999.25 14799.42 17798.73 17699.45 15199.46 16898.11 10999.46 11099.77 10298.01 10499.37 25398.70 10398.92 17399.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 26297.09 27899.07 16299.06 26398.26 21398.30 34499.10 28794.88 31698.08 30299.34 26896.27 15699.64 21689.87 34598.92 17399.31 181
XVG-OURS-SEG-HR98.69 14298.62 13898.89 19399.71 8697.74 23899.12 25399.54 7198.44 7499.42 11999.71 12994.20 23399.92 8098.54 13498.90 17599.00 208
PMMVS98.80 13498.62 13899.34 12899.27 21798.70 17898.76 31599.31 25497.34 19499.21 17399.07 30597.20 12599.82 15298.56 12998.87 17699.52 148
DSMNet-mixed97.25 27997.35 26096.95 31997.84 33693.61 34399.57 9196.63 35796.13 29598.87 23498.61 33294.59 22097.70 34795.08 30998.86 17799.55 141
XVG-OURS98.73 13998.68 12798.88 19699.70 9397.73 23998.92 29999.55 6498.52 6599.45 11199.84 3895.27 19099.91 9198.08 17498.84 17899.00 208
Fast-Effi-MVS+98.70 14098.43 15199.51 10699.51 15199.28 10899.52 11699.47 15896.11 29699.01 21099.34 26896.20 15899.84 13697.88 18798.82 17999.39 175
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15599.54 7197.77 14899.30 14999.81 6294.20 23399.93 6999.17 4398.82 17999.49 158
MDTV_nov1_ep1398.32 15999.11 25394.44 33399.27 22098.74 32397.51 17899.40 12899.62 17894.78 20899.76 17597.59 21498.81 181
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15299.03 27499.47 15896.98 22899.15 18599.23 28996.77 14099.89 11498.83 8698.78 18299.86 11
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13999.25 23199.48 14097.23 20699.13 18799.58 19196.93 13599.90 10698.87 7698.78 18299.84 18
PatchT97.03 28496.44 28898.79 21498.99 27398.34 20999.16 24599.07 29292.13 33999.52 10097.31 34994.54 22498.98 31588.54 34998.73 18499.03 205
tpmrst98.33 16498.48 14997.90 29099.16 24694.78 33099.31 20799.11 28697.27 20199.45 11199.59 18895.33 18899.84 13698.48 13798.61 18599.09 196
BH-w/o98.00 20397.89 19998.32 26199.35 19496.20 30099.01 28298.90 31196.42 27298.38 28899.00 31395.26 19299.72 18996.06 28898.61 18599.03 205
cascas97.69 25297.43 25198.48 24198.60 32197.30 24998.18 34899.39 21192.96 33798.41 28698.78 32693.77 24799.27 27498.16 16698.61 18598.86 219
CR-MVSNet98.17 17897.93 19398.87 20099.18 23898.49 20099.22 23999.33 24396.96 23099.56 9199.38 25694.33 22999.00 31394.83 31398.58 18899.14 189
RPMNet96.72 28895.90 29899.19 15399.18 23898.49 20099.22 23999.52 8888.72 34999.56 9197.38 34694.08 23999.95 4386.87 35598.58 18899.14 189
dp97.75 24097.80 20397.59 30399.10 25693.71 34099.32 20598.88 31396.48 26799.08 20099.55 20292.67 27199.82 15296.52 28098.58 18899.24 185
CVMVSNet98.57 15098.67 12898.30 26399.35 19495.59 31099.50 12699.55 6498.60 6199.39 13099.83 4294.48 22599.45 23698.75 9698.56 19199.85 14
Effi-MVS+98.81 13198.59 14499.48 11199.46 17099.12 13098.08 34999.50 12097.50 17999.38 13399.41 24896.37 15399.81 15699.11 4998.54 19299.51 154
testgi97.65 25997.50 23798.13 27599.36 19396.45 29299.42 16899.48 14097.76 14997.87 31099.45 23891.09 30598.81 32994.53 31598.52 19399.13 191
tpm cat197.39 27597.36 25897.50 30799.17 24493.73 33999.43 16199.31 25491.27 34298.71 25399.08 30494.31 23199.77 17096.41 28498.50 19499.00 208
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 19099.56 5698.04 12399.53 9899.62 17896.84 13699.94 5498.85 8198.49 19599.72 87
tpmvs97.98 20598.02 18297.84 29399.04 26794.73 33199.31 20799.20 27696.10 30098.76 24999.42 24494.94 19899.81 15696.97 26098.45 19698.97 212
LFMVS97.90 21597.35 26099.54 9299.52 14999.01 14199.39 18298.24 33997.10 21999.65 6999.79 8884.79 34999.91 9199.28 3298.38 19799.69 99
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
Anonymous2024052998.09 18797.68 21999.34 12899.66 11098.44 20499.40 17899.43 19793.67 32999.22 17099.89 1090.23 31499.93 6999.26 3598.33 19899.66 109
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
GA-MVS97.85 22197.47 24099.00 17299.38 18997.99 22498.57 33099.15 28297.04 22498.90 22999.30 27889.83 31799.38 25096.70 27598.33 19899.62 126
VDD-MVS97.73 24497.35 26098.88 19699.47 16897.12 25799.34 20398.85 31598.19 9999.67 5999.85 2982.98 35199.92 8099.49 1398.32 20299.60 130
Anonymous20240521198.30 16797.98 18599.26 14699.57 14098.16 21699.41 17098.55 33596.03 30199.19 17999.74 11791.87 28899.92 8099.16 4598.29 20399.70 96
GG-mvs-BLEND98.45 24798.55 32498.16 21699.43 16193.68 36497.23 32398.46 33489.30 32499.22 28195.43 30298.22 20497.98 338
thres20097.61 26197.28 26998.62 22599.64 11798.03 22199.26 22998.74 32397.68 15899.09 19998.32 33991.66 29799.81 15692.88 33398.22 20498.03 333
HY-MVS97.30 798.85 12798.64 13299.47 11499.42 17799.08 13399.62 6699.36 22797.39 19299.28 15499.68 14696.44 15199.92 8098.37 14998.22 20499.40 174
thres600view797.86 22097.51 23698.92 18499.72 8097.95 22999.59 7998.74 32397.94 13099.27 15798.62 33091.75 29199.86 12593.73 32498.19 20798.96 214
thres100view90097.76 23697.45 24398.69 22299.72 8097.86 23499.59 7998.74 32397.93 13199.26 16298.62 33091.75 29199.83 14593.22 32998.18 20898.37 319
tfpn200view997.72 24697.38 25698.72 22099.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.37 319
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 17099.39 21199.01 1899.74 4199.78 9595.56 18099.92 8099.52 798.18 20899.72 87
thres40097.77 23597.38 25698.92 18499.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.96 214
DWT-MVSNet_test97.53 26597.40 25497.93 28799.03 26994.86 32999.57 9198.63 33296.59 25998.36 29098.79 32489.32 32399.74 17898.14 16898.16 21299.20 188
VDDNet97.55 26397.02 28099.16 15699.49 16098.12 22099.38 18799.30 25895.35 30899.68 5399.90 782.62 35399.93 6999.31 2998.13 21399.42 171
alignmvs98.81 13198.56 14699.58 8799.43 17699.42 9599.51 12098.96 30298.61 6099.35 14198.92 32094.78 20899.77 17099.35 2298.11 21499.54 143
tpm297.44 27497.34 26397.74 29999.15 24994.36 33499.45 15198.94 30393.45 33498.90 22999.44 23991.35 30299.59 22597.31 23798.07 21599.29 182
JIA-IIPM97.50 26997.02 28098.93 18298.73 30697.80 23699.30 20998.97 30091.73 34198.91 22794.86 35495.10 19699.71 19597.58 21597.98 21699.28 183
CostFormer97.72 24697.73 21597.71 30099.15 24994.02 33799.54 11099.02 29694.67 32099.04 20799.35 26592.35 28399.77 17098.50 13697.94 21799.34 179
canonicalmvs99.02 10498.86 10899.51 10699.42 17799.32 10299.80 1799.48 14098.63 5899.31 14798.81 32397.09 12899.75 17799.27 3497.90 21899.47 164
OpenMVS_ROBcopyleft92.34 2094.38 31793.70 32196.41 32797.38 34193.17 34599.06 26698.75 32086.58 35094.84 34598.26 34081.53 35599.32 26689.01 34797.87 21996.76 349
TR-MVS97.76 23697.41 25398.82 20999.06 26397.87 23298.87 30598.56 33496.63 25498.68 26199.22 29092.49 27699.65 21395.40 30397.79 22098.95 217
DeepMVS_CXcopyleft93.34 33399.29 21282.27 35799.22 27285.15 35196.33 33599.05 30890.97 30799.73 18593.57 32697.77 22198.01 334
CLD-MVS98.16 17998.10 17198.33 25999.29 21296.82 28098.75 31699.44 18997.83 14099.13 18799.55 20292.92 25999.67 20698.32 15597.69 22298.48 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS98.27 17098.22 16598.44 25099.29 21296.97 27399.39 18299.47 15898.97 3099.11 19199.61 18292.71 26899.69 20497.78 19697.63 22398.67 261
plane_prior599.47 15899.69 20497.78 19697.63 22398.67 261
test_djsdf98.67 14498.57 14598.98 17498.70 31198.91 15999.88 199.46 16897.55 17199.22 17099.88 1595.73 17599.28 27199.03 5597.62 22598.75 233
anonymousdsp98.44 15498.28 16298.94 18098.50 32698.96 15099.77 2499.50 12097.07 22198.87 23499.77 10294.76 21299.28 27198.66 11197.60 22698.57 298
plane_prior96.97 27399.21 24198.45 7197.60 226
HQP3-MVS99.39 21197.58 228
HQP-MVS98.02 19897.90 19598.37 25799.19 23596.83 27898.98 28899.39 21198.24 9298.66 26299.40 25192.47 27799.64 21697.19 24797.58 22898.64 273
EI-MVSNet98.67 14498.67 12898.68 22399.35 19497.97 22599.50 12699.38 21796.93 23599.20 17699.83 4297.87 10699.36 25798.38 14797.56 23098.71 241
MVSTER98.49 15198.32 15999.00 17299.35 19499.02 13999.54 11099.38 21797.41 19099.20 17699.73 12493.86 24599.36 25798.87 7697.56 23098.62 283
OPM-MVS98.19 17598.10 17198.45 24798.88 28597.07 26299.28 21599.38 21798.57 6299.22 17099.81 6292.12 28499.66 20998.08 17497.54 23298.61 292
UniMVSNet_ETH3D97.32 27796.81 28398.87 20099.40 18597.46 24699.51 12099.53 8295.86 30398.54 27899.77 10282.44 35499.66 20998.68 10897.52 23399.50 157
LPG-MVS_test98.22 17198.13 16998.49 23999.33 19997.05 26499.58 8699.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
LGP-MVS_train98.49 23999.33 19997.05 26499.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
jajsoiax98.43 15598.28 16298.88 19698.60 32198.43 20599.82 1099.53 8298.19 9998.63 27099.80 7693.22 25599.44 24199.22 3797.50 23698.77 229
EG-PatchMatch MVS95.97 30295.69 30296.81 32297.78 33792.79 34799.16 24598.93 30496.16 29194.08 34699.22 29082.72 35299.47 23395.67 29897.50 23698.17 327
test_040296.64 28996.24 29197.85 29298.85 29396.43 29399.44 15599.26 26693.52 33196.98 33099.52 21488.52 33299.20 28892.58 33897.50 23697.93 341
ACMP97.20 1198.06 19097.94 19298.45 24799.37 19197.01 26999.44 15599.49 12897.54 17498.45 28399.79 8891.95 28799.72 18997.91 18597.49 23998.62 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets98.40 16098.23 16498.91 18898.67 31498.51 19899.66 4899.53 8298.19 9998.65 26899.81 6292.75 26399.44 24199.31 2997.48 24098.77 229
ACMM97.58 598.37 16298.34 15798.48 24199.41 18097.10 25899.56 9899.45 18098.53 6499.04 20799.85 2993.00 25799.71 19598.74 9797.45 24198.64 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18697.99 18498.44 25099.41 18096.96 27599.60 7399.56 5698.09 11298.15 30099.91 590.87 30899.70 20198.88 7297.45 24198.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25499.23 22596.80 28199.70 3599.60 4097.12 21598.18 29999.70 13391.73 29399.72 18998.39 14597.45 24198.68 254
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 244
D2MVS98.41 15898.50 14898.15 27499.26 21996.62 28799.40 17899.61 3597.71 15598.98 21799.36 26296.04 16199.67 20698.70 10397.41 24598.15 328
ITE_SJBPF98.08 27699.29 21296.37 29498.92 30698.34 8398.83 24099.75 11191.09 30599.62 22295.82 29297.40 24698.25 324
XVG-ACMP-BASELINE97.83 22697.71 21798.20 27099.11 25396.33 29699.41 17099.52 8898.06 12199.05 20699.50 22189.64 32199.73 18597.73 20297.38 24798.53 300
USDC97.34 27697.20 27497.75 29899.07 26195.20 32198.51 33499.04 29597.99 12798.31 29399.86 2389.02 32599.55 22995.67 29897.36 24898.49 303
PVSNet_BlendedMVS98.86 11998.80 11599.03 16899.76 5298.79 17399.28 21599.91 397.42 18999.67 5999.37 25997.53 11499.88 11998.98 6097.29 24998.42 313
PS-MVSNAJss98.92 11498.92 9798.90 19098.78 30098.53 19299.78 2299.54 7198.07 11799.00 21599.76 10699.01 1699.37 25399.13 4797.23 25098.81 222
TinyColmap97.12 28296.89 28297.83 29499.07 26195.52 31498.57 33098.74 32397.58 16897.81 31399.79 8888.16 33699.56 22795.10 30897.21 25198.39 317
ACMMP++_ref97.19 252
ACMH+97.24 1097.92 21397.78 20798.32 26199.46 17096.68 28599.56 9899.54 7198.41 7597.79 31499.87 2090.18 31599.66 20998.05 17897.18 25398.62 283
RRT_MVS98.60 14998.44 15099.05 16598.88 28599.14 12699.49 13699.38 21797.76 14999.29 15299.86 2395.38 18599.36 25798.81 9197.16 25498.64 273
test0.0.03 197.71 25097.42 25298.56 23398.41 32997.82 23598.78 31398.63 33297.34 19498.05 30698.98 31794.45 22698.98 31595.04 31097.15 25598.89 218
CMPMVSbinary69.68 2394.13 31894.90 31091.84 33697.24 34580.01 35998.52 33399.48 14089.01 34791.99 35199.67 15285.67 34799.13 29595.44 30197.03 25696.39 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-097.88 21697.77 20998.19 27198.71 31096.53 28999.88 199.00 29797.79 14698.78 24799.94 391.68 29499.35 26197.21 24396.99 25798.69 249
LF4IMVS97.52 26697.46 24297.70 30198.98 27695.55 31199.29 21398.82 31898.07 11798.66 26299.64 16689.97 31699.61 22397.01 25696.68 25897.94 340
GBi-Net97.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
test197.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
FMVSNet398.03 19697.76 21298.84 20799.39 18898.98 14399.40 17899.38 21796.67 24999.07 20199.28 28292.93 25898.98 31597.10 25296.65 25998.56 299
FMVSNet297.72 24697.36 25898.80 21399.51 15198.84 16699.45 15199.42 19996.49 26398.86 23999.29 28090.26 31198.98 31596.44 28296.56 26298.58 297
bset_n11_16_dypcd98.16 17997.97 18698.73 21898.26 33198.28 21297.99 35198.01 34497.68 15899.10 19499.63 17295.68 17799.15 29198.78 9596.55 26398.75 233
K. test v397.10 28396.79 28498.01 28298.72 30896.33 29699.87 497.05 35397.59 16696.16 33799.80 7688.71 32899.04 30696.69 27696.55 26398.65 271
RRT_test8_iter0597.72 24697.60 22798.08 27699.23 22596.08 30299.63 6099.49 12897.54 17498.94 22399.81 6287.99 33899.35 26199.21 3996.51 26598.81 222
tpm97.67 25797.55 23098.03 27999.02 27095.01 32599.43 16198.54 33696.44 27099.12 18999.34 26891.83 29099.60 22497.75 20096.46 26699.48 159
SixPastTwentyTwo97.50 26997.33 26598.03 27998.65 31596.23 29999.77 2498.68 33197.14 21297.90 30999.93 490.45 30999.18 28997.00 25796.43 26798.67 261
FIs98.78 13598.63 13399.23 15199.18 23899.54 7799.83 999.59 4398.28 8998.79 24699.81 6296.75 14199.37 25399.08 5296.38 26898.78 225
FC-MVSNet-test98.75 13898.62 13899.15 15899.08 26099.45 9299.86 599.60 4098.23 9598.70 25999.82 4996.80 13799.22 28199.07 5396.38 26898.79 224
XXY-MVS98.38 16198.09 17499.24 14999.26 21999.32 10299.56 9899.55 6497.45 18398.71 25399.83 4293.23 25399.63 22198.88 7296.32 27098.76 231
FMVSNet196.84 28696.36 28998.29 26499.32 20697.26 25399.43 16199.48 14095.11 31198.55 27799.32 27583.95 35098.98 31595.81 29396.26 27198.62 283
N_pmnet94.95 31295.83 30092.31 33598.47 32779.33 36099.12 25392.81 36793.87 32797.68 31599.13 30093.87 24499.01 31291.38 34096.19 27298.59 296
Anonymous2024052196.20 29895.89 29997.13 31497.72 33894.96 32799.79 2199.29 26393.01 33697.20 32599.03 31089.69 32098.36 33491.16 34196.13 27398.07 330
pmmvs498.13 18397.90 19598.81 21198.61 32098.87 16298.99 28499.21 27596.44 27099.06 20599.58 19195.90 16999.11 30097.18 24996.11 27498.46 310
our_test_397.65 25997.68 21997.55 30598.62 31894.97 32698.84 30799.30 25896.83 24198.19 29899.34 26897.01 13299.02 31095.00 31196.01 27598.64 273
IterMVS97.83 22697.77 20998.02 28199.58 13896.27 29899.02 27799.48 14097.22 20798.71 25399.70 13392.75 26399.13 29597.46 23096.00 27698.67 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet297.85 22197.64 22498.48 24199.09 25897.87 23298.60 32999.33 24397.11 21898.87 23499.22 29092.38 28299.17 29098.21 15995.99 27798.42 313
miper_ehance_all_eth98.18 17798.10 17198.41 25299.23 22597.72 24098.72 31999.31 25496.60 25798.88 23299.29 28097.29 12399.13 29597.60 21395.99 27798.38 318
miper_enhance_ethall98.16 17998.08 17598.41 25298.96 27997.72 24098.45 33699.32 25196.95 23298.97 21999.17 29597.06 13099.22 28197.86 18995.99 27798.29 321
ppachtmachnet_test97.49 27297.45 24397.61 30298.62 31895.24 32098.80 31199.46 16896.11 29698.22 29799.62 17896.45 15098.97 32293.77 32395.97 28098.61 292
pmmvs597.52 26697.30 26898.16 27398.57 32396.73 28299.27 22098.90 31196.14 29498.37 28999.53 21191.54 30099.14 29297.51 22595.87 28198.63 281
IterMVS-SCA-FT97.82 22997.75 21398.06 27899.57 14096.36 29599.02 27799.49 12897.18 20998.71 25399.72 12892.72 26699.14 29297.44 23395.86 28298.67 261
cl-mvsnet____98.01 20197.84 20298.55 23599.25 22397.97 22598.71 32099.34 23696.47 26998.59 27699.54 20795.65 17999.21 28697.21 24395.77 28398.46 310
cl-mvsnet198.01 20197.85 20198.48 24199.24 22497.95 22998.71 32099.35 23296.50 26298.60 27599.54 20795.72 17699.03 30897.21 24395.77 28398.46 310
new_pmnet96.38 29596.03 29597.41 30898.13 33495.16 32499.05 26899.20 27693.94 32697.39 32098.79 32491.61 29999.04 30690.43 34395.77 28398.05 332
FMVSNet596.43 29496.19 29297.15 31299.11 25395.89 30599.32 20599.52 8894.47 32498.34 29299.07 30587.54 34297.07 35192.61 33795.72 28698.47 306
Gipumacopyleft90.99 32390.15 32693.51 33298.73 30690.12 35393.98 35899.45 18079.32 35592.28 35094.91 35369.61 35997.98 34187.42 35295.67 28792.45 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 15398.42 15298.58 23099.59 13698.00 22399.37 19099.43 19796.94 23499.07 20199.59 18897.87 10699.03 30898.32 15595.62 28898.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 24097.40 25498.81 21199.10 25698.87 16299.11 25999.33 24394.83 31798.81 24299.38 25694.33 22999.02 31096.10 28795.57 28998.53 300
MIMVSNet195.51 30595.04 30996.92 32097.38 34195.60 30999.52 11699.50 12093.65 33096.97 33199.17 29585.28 34896.56 35588.36 35095.55 29098.60 295
eth_miper_zixun_eth98.05 19597.96 18898.33 25999.26 21997.38 24898.56 33299.31 25496.65 25198.88 23299.52 21496.58 14599.12 29997.39 23695.53 29198.47 306
miper_lstm_enhance98.00 20397.91 19498.28 26799.34 19897.43 24798.88 30399.36 22796.48 26798.80 24499.55 20295.98 16298.91 32697.27 23995.50 29298.51 302
tfpnnormal97.84 22497.47 24098.98 17499.20 23399.22 11599.64 5899.61 3596.32 27698.27 29699.70 13393.35 25299.44 24195.69 29695.40 29398.27 322
cl_fuxian98.12 18598.04 17998.38 25699.30 20897.69 24398.81 31099.33 24396.67 24998.83 24099.34 26897.11 12798.99 31497.58 21595.34 29498.48 304
EU-MVSNet97.98 20598.03 18097.81 29698.72 30896.65 28699.66 4899.66 2798.09 11298.35 29199.82 4995.25 19398.01 34097.41 23595.30 29598.78 225
v124097.69 25297.32 26698.79 21498.85 29398.43 20599.48 14299.36 22796.11 29699.27 15799.36 26293.76 24899.24 27794.46 31695.23 29698.70 245
v119297.81 23197.44 24898.91 18898.88 28598.68 17999.51 12099.34 23696.18 28899.20 17699.34 26894.03 24099.36 25795.32 30695.18 29798.69 249
v114497.98 20597.69 21898.85 20698.87 28998.66 18199.54 11099.35 23296.27 28099.23 16999.35 26594.67 21799.23 27896.73 27395.16 29898.68 254
v192192097.80 23397.45 24398.84 20798.80 29698.53 19299.52 11699.34 23696.15 29399.24 16599.47 23393.98 24199.29 27095.40 30395.13 29998.69 249
Anonymous2023120696.22 29696.03 29596.79 32397.31 34494.14 33699.63 6099.08 29096.17 28997.04 32999.06 30793.94 24297.76 34686.96 35495.06 30098.47 306
v14419297.92 21397.60 22798.87 20098.83 29598.65 18299.55 10799.34 23696.20 28699.32 14699.40 25194.36 22899.26 27596.37 28595.03 30198.70 245
v2v48298.06 19097.77 20998.92 18498.90 28398.82 17099.57 9199.36 22796.65 25199.19 17999.35 26594.20 23399.25 27697.72 20494.97 30298.69 249
FPMVS84.93 32685.65 32782.75 34486.77 36363.39 36798.35 33998.92 30674.11 35683.39 35698.98 31750.85 36492.40 36084.54 35794.97 30292.46 354
lessismore_v097.79 29798.69 31295.44 31794.75 36195.71 34199.87 2088.69 32999.32 26695.89 29194.93 30498.62 283
test_method91.10 32291.36 32590.31 33995.85 35173.72 36594.89 35799.25 26868.39 35995.82 34099.02 31280.50 35698.95 32493.64 32594.89 30598.25 324
V4298.06 19097.79 20498.86 20398.98 27698.84 16699.69 3799.34 23696.53 26199.30 14999.37 25994.67 21799.32 26697.57 21994.66 30698.42 313
v1097.85 22197.52 23498.86 20398.99 27398.67 18099.75 2899.41 20195.70 30498.98 21799.41 24894.75 21399.23 27896.01 29094.63 30798.67 261
nrg03098.64 14798.42 15299.28 14499.05 26699.69 4799.81 1299.46 16898.04 12399.01 21099.82 4996.69 14399.38 25099.34 2694.59 30898.78 225
VPA-MVSNet98.29 16897.95 19099.30 13899.16 24699.54 7799.50 12699.58 4998.27 9199.35 14199.37 25992.53 27599.65 21399.35 2294.46 30998.72 239
MDA-MVSNet_test_wron95.45 30694.60 31298.01 28298.16 33397.21 25699.11 25999.24 27093.49 33280.73 35998.98 31793.02 25698.18 33594.22 32094.45 31098.64 273
Anonymous2023121197.88 21697.54 23398.90 19099.71 8698.53 19299.48 14299.57 5094.16 32598.81 24299.68 14693.23 25399.42 24698.84 8394.42 31198.76 231
MDA-MVSNet-bldmvs94.96 31193.98 31797.92 28898.24 33297.27 25199.15 24999.33 24393.80 32880.09 36099.03 31088.31 33497.86 34493.49 32794.36 31298.62 283
WR-MVS98.06 19097.73 21599.06 16398.86 29299.25 11299.19 24299.35 23297.30 19898.66 26299.43 24193.94 24299.21 28698.58 12494.28 31398.71 241
test20.0396.12 30095.96 29796.63 32497.44 34095.45 31699.51 12099.38 21796.55 26096.16 33799.25 28793.76 24896.17 35687.35 35394.22 31498.27 322
YYNet195.36 30894.51 31497.92 28897.89 33597.10 25899.10 26199.23 27193.26 33580.77 35899.04 30992.81 26298.02 33994.30 31794.18 31598.64 273
CP-MVSNet98.09 18797.78 20799.01 17098.97 27899.24 11399.67 4499.46 16897.25 20398.48 28299.64 16693.79 24699.06 30498.63 11494.10 31698.74 237
v897.95 20997.63 22598.93 18298.95 28098.81 17299.80 1799.41 20196.03 30199.10 19499.42 24494.92 20199.30 26996.94 26394.08 31798.66 269
PS-CasMVS97.93 21097.59 22998.95 17998.99 27399.06 13699.68 4299.52 8897.13 21398.31 29399.68 14692.44 28199.05 30598.51 13594.08 31798.75 233
v7n97.87 21897.52 23498.92 18498.76 30498.58 18899.84 699.46 16896.20 28698.91 22799.70 13394.89 20399.44 24196.03 28993.89 31998.75 233
WR-MVS_H98.13 18397.87 20098.90 19099.02 27098.84 16699.70 3599.59 4397.27 20198.40 28799.19 29495.53 18199.23 27898.34 15293.78 32098.61 292
test_part197.75 24097.24 27399.29 14199.59 13699.63 6099.65 5599.49 12896.17 28998.44 28499.69 14089.80 31899.47 23398.68 10893.66 32198.78 225
NR-MVSNet97.97 20897.61 22699.02 16998.87 28999.26 11199.47 14799.42 19997.63 16497.08 32899.50 22195.07 19799.13 29597.86 18993.59 32298.68 254
pm-mvs197.68 25497.28 26998.88 19699.06 26398.62 18599.50 12699.45 18096.32 27697.87 31099.79 8892.47 27799.35 26197.54 22293.54 32398.67 261
UniMVSNet (Re)98.29 16898.00 18399.13 15999.00 27299.36 10099.49 13699.51 10197.95 12998.97 21999.13 30096.30 15599.38 25098.36 15193.34 32498.66 269
baseline198.31 16597.95 19099.38 12699.50 15898.74 17599.59 7998.93 30498.41 7599.14 18699.60 18594.59 22099.79 16498.48 13793.29 32599.61 128
VPNet97.84 22497.44 24899.01 17099.21 23198.94 15599.48 14299.57 5098.38 7799.28 15499.73 12488.89 32799.39 24899.19 4093.27 32698.71 241
PEN-MVS97.76 23697.44 24898.72 22098.77 30398.54 19199.78 2299.51 10197.06 22398.29 29599.64 16692.63 27298.89 32898.09 17093.16 32798.72 239
v14897.79 23497.55 23098.50 23898.74 30597.72 24099.54 11099.33 24396.26 28198.90 22999.51 21894.68 21699.14 29297.83 19293.15 32898.63 281
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21798.78 30098.62 18599.65 5599.49 12897.76 14998.49 28199.60 18594.23 23298.97 32298.00 17992.90 32998.70 245
Baseline_NR-MVSNet97.76 23697.45 24398.68 22399.09 25898.29 21099.41 17098.85 31595.65 30598.63 27099.67 15294.82 20599.10 30298.07 17792.89 33098.64 273
UniMVSNet_NR-MVSNet98.22 17197.97 18698.96 17798.92 28298.98 14399.48 14299.53 8297.76 14998.71 25399.46 23796.43 15299.22 28198.57 12692.87 33198.69 249
DU-MVS98.08 18997.79 20498.96 17798.87 28998.98 14399.41 17099.45 18097.87 13498.71 25399.50 22194.82 20599.22 28198.57 12692.87 33198.68 254
pmmvs696.53 29196.09 29497.82 29598.69 31295.47 31599.37 19099.47 15893.46 33397.41 31999.78 9587.06 34399.33 26596.92 26692.70 33398.65 271
DTE-MVSNet97.51 26897.19 27598.46 24698.63 31798.13 21999.84 699.48 14096.68 24897.97 30899.67 15292.92 25998.56 33296.88 26892.60 33498.70 245
ET-MVSNet_ETH3D96.49 29295.64 30399.05 16599.53 14798.82 17098.84 30797.51 35197.63 16484.77 35499.21 29392.09 28598.91 32698.98 6092.21 33599.41 173
TransMVSNet (Re)97.15 28196.58 28598.86 20399.12 25198.85 16599.49 13698.91 30995.48 30697.16 32699.80 7693.38 25199.11 30094.16 32191.73 33698.62 283
ambc93.06 33492.68 35782.36 35698.47 33598.73 32895.09 34397.41 34555.55 36399.10 30296.42 28391.32 33797.71 344
PMVScopyleft70.75 2275.98 33274.97 33379.01 34670.98 36755.18 36893.37 35998.21 34065.08 36361.78 36493.83 35521.74 37192.53 35978.59 35891.12 33889.34 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth96.44 29396.12 29397.40 30998.65 31595.65 30899.36 19499.51 10197.13 21396.04 33998.99 31488.40 33398.17 33696.71 27490.27 33998.40 316
Patchmatch-RL test95.84 30395.81 30195.95 32995.61 35290.57 35298.24 34598.39 33795.10 31395.20 34298.67 32994.78 20897.77 34596.28 28690.02 34099.51 154
PM-MVS92.96 32192.23 32495.14 33195.61 35289.98 35499.37 19098.21 34094.80 31895.04 34497.69 34365.06 36097.90 34394.30 31789.98 34197.54 348
pmmvs-eth3d95.34 30994.73 31197.15 31295.53 35495.94 30499.35 20099.10 28795.13 30993.55 34797.54 34488.15 33797.91 34294.58 31489.69 34297.61 345
new-patchmatchnet94.48 31694.08 31695.67 33095.08 35592.41 34899.18 24399.28 26594.55 32393.49 34897.37 34787.86 34197.01 35291.57 33988.36 34397.61 345
UnsupCasMVSNet_bld93.53 32092.51 32396.58 32697.38 34193.82 33898.24 34599.48 14091.10 34493.10 34996.66 35074.89 35898.37 33394.03 32287.71 34497.56 347
pmmvs394.09 31993.25 32296.60 32594.76 35694.49 33298.92 29998.18 34289.66 34696.48 33498.06 34286.28 34497.33 34989.68 34687.20 34597.97 339
IB-MVS95.67 1896.22 29695.44 30698.57 23199.21 23196.70 28398.65 32597.74 34996.71 24697.27 32298.54 33386.03 34599.92 8098.47 14086.30 34699.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 32585.22 32991.53 33787.81 36280.96 35898.23 34798.99 29871.05 35790.13 35396.51 35148.45 36696.88 35390.51 34285.30 34796.76 349
hse-mvs397.70 25197.28 26998.97 17699.70 9397.27 25199.36 19499.45 18098.94 3399.66 6499.64 16694.93 19999.99 199.48 1484.36 34899.65 113
AUN-MVS96.88 28596.31 29098.59 22799.48 16797.04 26799.27 22099.22 27297.44 18698.51 27999.41 24891.97 28699.66 20997.71 20583.83 34999.07 202
hse-mvs297.50 26997.14 27698.59 22799.49 16097.05 26499.28 21599.22 27298.94 3399.66 6499.42 24494.93 19999.65 21399.48 1483.80 35099.08 197
TDRefinement95.42 30794.57 31397.97 28589.83 36196.11 30199.48 14298.75 32096.74 24496.68 33299.88 1588.65 33099.71 19598.37 14982.74 35198.09 329
PVSNet_094.43 1996.09 30195.47 30497.94 28699.31 20794.34 33597.81 35299.70 1597.12 21597.46 31898.75 32789.71 31999.79 16497.69 20881.69 35299.68 103
DIV-MVS_2432*160095.00 31094.34 31596.96 31897.07 34995.39 31899.56 9899.44 18995.11 31197.13 32797.32 34891.86 28997.27 35090.35 34481.23 35398.23 326
CL-MVSNet_2432*160094.49 31593.97 31896.08 32896.16 35093.67 34298.33 34299.38 21795.13 30997.33 32198.15 34192.69 27096.57 35488.67 34879.87 35497.99 337
PMMVS286.87 32485.37 32891.35 33890.21 36083.80 35598.89 30297.45 35283.13 35491.67 35295.03 35248.49 36594.70 35885.86 35677.62 35595.54 352
KD-MVS_2432*160094.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
miper_refine_blended94.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
MVEpermissive76.82 2176.91 33174.31 33584.70 34185.38 36576.05 36496.88 35693.17 36567.39 36071.28 36289.01 36121.66 37287.69 36171.74 36072.29 35890.35 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 32879.88 33182.81 34390.75 35976.38 36397.69 35395.76 36066.44 36183.52 35592.25 35762.54 36287.16 36268.53 36161.40 35984.89 360
EMVS80.02 32979.22 33282.43 34591.19 35876.40 36297.55 35592.49 36866.36 36283.01 35791.27 35864.63 36185.79 36365.82 36260.65 36085.08 359
ANet_high77.30 33074.86 33484.62 34275.88 36677.61 36197.63 35493.15 36688.81 34864.27 36389.29 36036.51 36783.93 36475.89 35952.31 36192.33 356
tmp_tt82.80 32781.52 33086.66 34066.61 36868.44 36692.79 36097.92 34568.96 35880.04 36199.85 2985.77 34696.15 35797.86 18943.89 36295.39 353
testmvs39.17 33443.78 33625.37 34936.04 37016.84 37198.36 33826.56 36920.06 36538.51 36667.32 36229.64 36915.30 36737.59 36439.90 36343.98 362
test12339.01 33542.50 33728.53 34839.17 36920.91 37098.75 31619.17 37119.83 36638.57 36566.67 36333.16 36815.42 36637.50 36529.66 36449.26 361
wuyk23d40.18 33341.29 33836.84 34786.18 36449.12 36979.73 36122.81 37027.64 36425.46 36728.45 36721.98 37048.89 36555.80 36323.56 36512.51 363
uanet_test0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.64 33632.85 3390.00 3500.00 3710.00 3720.00 36299.51 1010.00 3670.00 36899.56 19896.58 1450.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.27 33811.03 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 36899.01 160.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.30 33711.06 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.58 1910.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE99.84 3299.90 199.48 14099.07 1399.91 199.74 11799.20 599.76 175
save fliter99.76 5299.59 6899.14 25199.40 20799.00 22
test072699.85 2599.89 399.62 6699.50 12099.10 899.86 1199.82 4998.94 31
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20499.52 148
sam_mvs94.72 215
MTGPAbinary99.47 158
test_post199.23 23465.14 36594.18 23699.71 19597.58 215
test_post65.99 36494.65 21999.73 185
patchmatchnet-post98.70 32894.79 20799.74 178
MTMP99.54 11098.88 313
gm-plane-assit98.54 32592.96 34694.65 32199.15 29899.64 21697.56 220
TEST999.67 10199.65 5799.05 26899.41 20196.22 28598.95 22199.49 22498.77 5199.91 91
test_899.67 10199.61 6399.03 27499.41 20196.28 27898.93 22599.48 23098.76 5399.91 91
agg_prior99.67 10199.62 6199.40 20798.87 23499.91 91
test_prior499.56 7398.99 284
test_prior99.68 6599.67 10199.48 8899.56 5699.83 14599.74 74
旧先验298.96 29296.70 24799.47 10899.94 5498.19 161
新几何299.01 282
无先验98.99 28499.51 10196.89 23699.93 6997.53 22399.72 87
原ACMM298.95 296
testdata299.95 4396.67 277
segment_acmp98.96 25
testdata198.85 30698.32 87
plane_prior799.29 21297.03 268
plane_prior699.27 21796.98 27292.71 268
plane_prior499.61 182
plane_prior397.00 27098.69 5699.11 191
plane_prior299.39 18298.97 30
plane_prior199.26 219
n20.00 372
nn0.00 372
door-mid98.05 343
test1199.35 232
door97.92 345
HQP5-MVS96.83 278
HQP-NCC99.19 23598.98 28898.24 9298.66 262
ACMP_Plane99.19 23598.98 28898.24 9298.66 262
BP-MVS97.19 247
HQP4-MVS98.66 26299.64 21698.64 273
HQP2-MVS92.47 277
NP-MVS99.23 22596.92 27699.40 251
MDTV_nov1_ep13_2view95.18 32399.35 20096.84 23999.58 8895.19 19597.82 19399.46 166
Test By Simon98.75 56