This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20099.65 5799.50 16299.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12397.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4899.99 199.66 125
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10599.92 9799.58 2999.98 499.56 160
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 20
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3898.56 7499.93 8699.67 2299.98 499.87 31
CANet99.25 7799.14 7699.59 9199.41 20899.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2799.98 499.65 129
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7898.75 5599.99 499.97 199.97 899.94 11
MM99.40 5199.28 5899.74 6199.67 11399.31 11199.52 14798.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
iter_conf05_1199.40 5199.32 4299.63 8499.53 16699.47 9399.75 4199.52 10498.11 14399.87 2799.85 5597.72 11499.89 13099.56 3199.97 899.53 170
MVS_030499.42 4399.32 4299.72 6599.70 10299.27 11899.52 14797.57 39099.51 299.82 3899.78 12498.09 10199.96 3099.97 199.97 899.94 11
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3295.50 19299.94 6999.50 4099.97 899.89 20
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8899.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVSMamba_pp99.36 5799.28 5899.62 8599.38 21899.50 8899.50 16299.49 14798.55 9199.77 5499.82 7897.62 11799.88 13699.39 5299.96 1499.47 189
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
fmvsm_s_conf0.5_n99.51 1899.40 2699.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
iter_conf0599.48 2699.40 2699.71 6799.68 11199.61 6799.49 17499.58 6298.27 11899.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
mamv499.33 6199.42 2299.07 18399.67 11397.73 25899.42 20699.60 5498.15 13599.94 1699.91 2198.42 8599.94 6999.72 1899.96 1499.54 164
CSCG99.32 6399.32 4299.32 14899.85 2698.29 22799.71 5299.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13499.51 11999.39 1099.78 5099.93 1094.80 21799.95 5999.93 1199.95 2199.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 2199.90 17
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2199.36 211
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9599.45 20099.01 4099.90 2099.83 7098.98 2399.93 8699.59 2799.95 2199.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9499.45 20099.01 4099.89 2199.82 7899.01 1899.92 9799.56 3199.95 2199.85 36
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21899.37 10399.58 10999.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
SD-MVS99.41 4899.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2199.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17199.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2187.29 368100.00 199.92 1299.92 2999.98 2
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13499.49 14799.32 1499.98 699.91 2191.41 32399.96 3099.82 1699.92 2999.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2699.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9799.07 8699.92 2999.85 36
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
MP-MVS-pluss99.37 5699.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 3099.34 3899.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5098.82 4399.93 8698.82 12599.91 3699.84 40
HPM-MVScopyleft99.42 4399.28 5899.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8899.59 5892.65 38199.71 7299.78 12498.06 10499.90 11998.84 11899.91 3699.74 92
CP-MVS99.45 3499.32 4299.85 2899.83 3999.75 3999.69 5699.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
PHI-MVS99.30 6599.17 7499.70 6899.56 15999.52 8699.58 10999.80 897.12 25399.62 10499.73 15098.58 7299.90 11998.61 14999.91 3699.68 119
DeepPCF-MVS98.18 398.81 14699.37 3297.12 34699.60 14991.75 38698.61 37199.44 20899.35 1299.83 3799.85 5598.70 6399.81 18399.02 9099.91 3699.81 61
ZNCC-MVS99.47 3099.33 4099.87 1199.87 1599.81 2599.64 7999.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
test_0728_THIRD98.99 4599.81 4099.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
MTAPA99.52 1799.39 2999.89 499.90 499.86 1399.66 7099.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
UA-Net99.42 4399.29 5699.80 4699.62 14099.55 7899.50 16299.70 1598.79 7099.77 5499.96 197.45 12099.96 3098.92 10199.90 4499.89 20
jason99.13 9499.03 9299.45 12999.46 19498.87 17699.12 29899.26 28898.03 16099.79 4599.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11998.62 8499.79 4599.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3897.39 12199.92 9798.66 14299.90 4499.87 31
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11099.87 14296.93 29799.90 4499.54 164
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3295.83 18199.90 11998.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3899.30 5299.85 2899.73 8899.83 1699.56 12299.47 18097.45 22299.78 5099.82 7899.18 1099.91 10898.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3899.30 5299.86 2199.88 1199.79 3099.69 5699.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
MVS_111021_LR99.41 4899.33 4099.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22798.91 5899.78 5099.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2895.78 18399.98 1396.96 29499.88 5699.76 87
MVS_111021_HR99.41 4899.32 4299.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
DPE-MVScopyleft99.46 3299.32 4299.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 2299.37 3299.86 2199.87 1599.80 2799.66 7099.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
region2R99.48 2699.35 3699.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
ACMMPR99.49 2299.36 3499.86 2199.87 1599.79 3099.66 7099.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7099.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 3499.31 5099.86 2199.87 1599.78 3699.58 10999.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
DeepC-MVS_fast98.69 199.49 2299.39 2999.77 5599.63 13499.59 7199.36 23399.46 18999.07 3599.79 4599.82 7898.85 3999.92 9798.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24399.10 2799.81 4099.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11999.96 3098.93 9999.86 6799.88 26
GST-MVS99.40 5199.24 6799.85 2899.86 2099.79 3099.60 9599.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16299.50 13997.16 24999.77 5499.82 7898.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3295.68 18799.97 2198.86 11399.86 6799.81 61
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
IU-MVS99.84 3299.88 899.32 27198.30 11599.84 3298.86 11399.85 7499.89 20
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
MVSFormer99.17 8699.12 7899.29 15799.51 17498.94 16999.88 399.46 18997.55 20999.80 4399.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
lupinMVS99.13 9499.01 10099.46 12899.51 17498.94 16999.05 31399.16 30497.86 17199.80 4399.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13698.98 9399.85 7499.60 146
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14499.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10892.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
SF-MVS99.38 5599.24 6799.79 4999.79 5499.68 4899.57 11699.54 8897.82 18199.71 7299.80 10698.95 2799.93 8698.19 19299.84 8299.74 92
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14999.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3099.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10199.49 14797.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12299.57 6698.45 9999.49 13499.85 5597.77 11299.94 6998.33 18399.84 8299.52 172
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12299.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 11997.48 26099.83 9199.78 80
ACMMPcopyleft99.45 3499.32 4299.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 10099.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10897.63 24499.82 95
PVSNet_Blended_VisFu99.36 5799.28 5899.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5097.73 11399.96 3099.47 4799.82 9599.79 74
EC-MVSNet99.44 3899.39 2999.58 9499.56 15999.49 8999.88 399.58 6298.38 10599.73 6699.69 16998.20 9699.70 23099.64 2699.82 9599.54 164
SR-MVS-dyc-post99.45 3499.31 5099.85 2899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.75 5598.61 14999.81 9899.77 82
APD-MVS_3200maxsize99.48 2699.35 3699.85 2899.76 6599.83 1699.63 8399.54 8898.36 10999.79 4599.82 7898.86 3899.95 5998.62 14699.81 9899.78 80
OMC-MVS99.08 11099.04 9099.20 17099.67 11398.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11199.78 19797.79 22799.81 9899.60 146
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
PC_three_145298.18 13399.84 3299.70 15999.31 398.52 37198.30 18799.80 10299.81 61
OPU-MVS99.64 7999.56 15999.72 4299.60 9599.70 15999.27 599.42 27898.24 18999.80 10299.79 74
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
CNVR-MVS99.42 4399.30 5299.78 5299.62 14099.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
MG-MVS99.13 9499.02 9699.45 12999.57 15598.63 20099.07 30899.34 25498.99 4599.61 10799.82 7897.98 10799.87 14297.00 29099.80 10299.85 36
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5099.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 11499.03 9299.06 18599.40 21399.31 11199.55 13499.56 7198.54 9299.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
SR-MVS99.43 4199.29 5699.86 2199.75 7399.83 1699.59 10199.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
MSP-MVS99.42 4399.27 6299.88 599.89 899.80 2799.67 6599.50 13998.70 7899.77 5499.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 12198.80 13099.66 7099.56 15999.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 11997.48 26099.77 11299.55 162
test_vis1_n97.92 23497.44 26999.34 14299.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 242
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
MCST-MVS99.43 4199.30 5299.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 11998.64 14499.75 11799.82 54
CNLPA99.14 9298.99 10299.59 9199.58 15399.41 10199.16 28999.44 20898.45 9999.19 20899.49 24898.08 10399.89 13097.73 23699.75 11799.48 183
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 120
test1299.75 5899.64 13199.61 6799.29 28399.21 20298.38 8899.89 13099.74 12099.74 92
agg_prior297.21 27799.73 12299.75 88
test9_res97.49 25999.72 12399.75 88
train_agg99.02 11798.77 13499.77 5599.67 11399.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10897.63 24499.72 12399.75 88
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8898.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10897.70 24199.69 12899.71 112
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8698.19 19299.69 12899.73 97
DPM-MVS98.95 12698.71 13999.66 7099.63 13499.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
PS-MVSNAJ99.32 6399.32 4299.30 15499.57 15598.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
NCCC99.34 6099.19 7299.79 4999.61 14499.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 11998.25 18899.63 13899.80 70
EIA-MVS99.18 8499.09 8399.45 12999.49 18599.18 12899.67 6599.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12399.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10897.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 7399.21 7099.40 13699.46 19499.30 11499.56 12299.52 10498.52 9499.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
mvsany_test199.50 2099.46 2099.62 8599.61 14499.09 14298.94 34199.48 16099.10 2799.96 1499.91 2198.85 3999.96 3099.72 1899.58 14299.82 54
thisisatest053098.35 18198.03 20199.31 14999.63 13498.56 20599.54 13896.75 39697.53 21399.73 6699.65 18791.25 32799.89 13098.62 14699.56 14399.48 183
tttt051798.42 17398.14 18699.28 16199.66 12398.38 22599.74 4596.85 39497.68 19699.79 4599.74 14491.39 32499.89 13098.83 12199.56 14399.57 158
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20898.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 19997.79 22499.19 17199.50 18398.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16399.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 11997.78 22899.49 14899.28 220
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16399.68 6298.81 35195.54 34499.62 10499.70 15993.82 26499.93 8697.35 27199.46 14999.32 217
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20896.99 29699.52 14799.49 14798.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
TSAR-MVS + GP.99.36 5799.36 3499.36 14199.67 11398.61 20399.07 30899.33 26199.00 4399.82 3899.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6299.66 2898.49 9699.86 3099.87 4694.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5499.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5099.38 15499.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5199.38 15499.80 70
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
PAPR98.63 16498.34 17399.51 11799.40 21399.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14796.89 27597.99 33799.56 22497.72 11499.83 17197.74 23599.27 16598.84 259
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16698.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
sss99.17 8699.05 8899.53 10999.62 14098.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 12999.16 13199.56 12299.50 13998.33 11399.41 15299.86 5095.92 17799.83 17199.45 4999.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.42 17398.36 17198.59 25099.49 18596.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12399.09 14299.64 7999.56 7198.26 12099.45 13999.87 4696.03 17199.81 18399.54 3499.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9099.02 9699.53 10999.66 12399.14 13799.72 5099.48 16098.35 11099.42 14899.84 6696.07 16999.79 19299.51 3999.14 17499.67 122
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5096.54 15599.67 23898.09 19999.13 17599.73 97
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
diffmvspermissive99.14 9299.02 9699.51 11799.61 14498.96 16399.28 25999.49 14798.46 9899.72 7199.71 15596.50 15699.88 13699.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20896.61 29499.66 8799.89 3295.92 17799.82 17897.46 26399.10 17999.57 158
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
MVS_Test99.10 10898.97 10699.48 12399.49 18599.14 13799.67 6599.34 25497.31 23699.58 11599.76 13697.65 11699.82 17898.87 10899.07 18299.46 194
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
GeoE98.85 14298.62 15399.53 10999.61 14499.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3699.02 18799.86 33
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10198.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
mvs_anonymous99.03 11698.99 10299.16 17499.38 21898.52 21299.51 15599.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
EPP-MVSNet99.13 9498.99 10299.53 10999.65 12999.06 14899.81 2099.33 26197.43 22599.60 11099.88 3897.14 13199.84 15899.13 8098.94 19099.69 115
MIMVSNet97.73 26597.45 26498.57 25499.45 19997.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
TAMVS99.12 10099.08 8599.24 16699.46 19498.55 20699.51 15599.46 18998.09 14799.45 13999.82 7898.34 9099.51 26498.70 13598.93 19199.67 122
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20398.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10699.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10299.42 14899.71 15594.20 24999.92 9798.54 16598.90 19599.00 247
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
test_vis1_rt95.81 33595.65 33596.32 36199.67 11391.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 11999.53 3698.85 19897.70 382
APD_test195.87 33396.49 31794.00 36899.53 16684.01 39799.54 13899.32 27195.91 34097.99 33799.85 5585.49 37599.88 13691.96 37798.84 19998.12 364
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9499.45 13999.84 6695.27 20099.91 10898.08 20398.84 19999.00 247
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11699.52 14799.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
ab-mvs98.86 13598.63 14899.54 10199.64 13199.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8699.17 7898.82 20199.49 182
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13098.83 12198.78 20499.86 33
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 11998.87 10898.78 20499.84 40
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 11997.38 26998.69 20799.28 220
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16299.55 7998.60 8699.39 16099.83 7094.48 24099.45 26898.75 12998.56 21599.85 36
Effi-MVS+98.81 14698.59 15999.48 12399.46 19499.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
WTY-MVS99.06 11298.88 11999.61 8799.62 14099.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
LFMVS97.90 23797.35 28199.54 10199.52 17199.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10899.28 6798.38 22299.69 115
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
Anonymous2024052998.09 20497.68 24099.34 14299.66 12398.44 22199.40 21899.43 21493.67 37099.22 19999.89 3290.23 33999.93 8699.26 7198.33 22599.66 125
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
GA-MVS97.85 24397.47 26199.00 19399.38 21897.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
VDD-MVS97.73 26597.35 28198.88 21699.47 19397.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9799.49 4498.32 22999.60 146
Anonymous20240521198.30 18597.98 20699.26 16399.57 15598.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9799.16 7998.29 23099.70 113
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3894.56 23599.93 8699.67 2298.26 23199.72 103
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12299.62 4198.78 7399.64 9799.88 3892.02 30799.88 13699.54 3498.26 23199.72 103
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
thres20097.61 28297.28 29298.62 24899.64 13198.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20399.08 14599.62 8899.36 24497.39 23099.28 18399.68 17596.44 16099.92 9798.37 17998.22 23399.40 205
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10198.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10198.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
VNet99.11 10498.90 11599.73 6499.52 17199.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9799.52 3898.18 23899.72 103
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
VDDNet97.55 28597.02 30499.16 17499.49 18598.12 23799.38 22799.30 27995.35 34699.68 7899.90 2882.62 38999.93 8699.31 6398.13 24299.42 201
alignmvs98.81 14698.56 16299.58 9499.43 20199.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
sasdasda99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
canonicalmvs99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
MGCFI-Net99.01 12198.85 12599.50 12299.42 20399.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
dongtai93.26 35592.93 35994.25 36799.39 21685.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
tt080597.97 22897.77 22998.57 25499.59 15196.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26398.75 269
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
plane_prior96.97 29899.21 28498.45 9997.60 264
HQP3-MVS99.39 22797.58 266
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16299.38 23596.93 27499.20 20599.83 7097.87 10899.36 28898.38 17797.56 26898.71 277
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13899.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21397.46 26999.51 15599.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 10999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7099.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
test_fmvs297.25 30597.30 28997.09 34799.43 20193.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
ACMM97.58 598.37 18098.34 17398.48 26599.41 20897.10 28399.56 12299.45 20098.53 9399.04 23799.85 5593.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20397.99 20598.44 27599.41 20896.96 30099.60 9599.56 7198.09 14798.15 33099.91 2190.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 283
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3297.12 13299.33 29499.38 5397.40 28598.73 274
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11198.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5089.02 34899.55 26295.67 33397.36 28898.49 338
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13698.98 9397.29 28998.42 347
dmvs_re98.08 20698.16 18397.85 31999.55 16394.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
ACMMP++_ref97.19 293
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19496.68 31399.56 12299.54 8898.41 10397.79 34699.87 4690.18 34099.66 24198.05 20797.18 29498.62 318
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
GBi-Net97.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet398.03 21697.76 23398.84 22799.39 21698.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
FMVSNet297.72 26797.36 27998.80 23499.51 17498.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11698.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7896.80 14599.22 31399.07 8696.38 30798.79 261
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12299.55 7997.45 22298.71 28199.83 7093.23 27399.63 25498.88 10596.32 30998.76 267
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
IterMVS97.83 24897.77 22998.02 30899.58 15396.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15596.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 17098.42 16898.58 25399.59 15198.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10899.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 7999.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14798.35 31799.82 7895.25 20398.01 38197.41 26795.30 33498.78 262
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15599.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13899.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14799.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13499.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11699.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 10997.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5699.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7896.69 15099.38 28199.34 6094.59 34898.78 262
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16299.58 6298.27 11899.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6599.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6299.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16299.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
baseline198.31 18397.95 21099.38 14099.50 18398.74 19199.59 10198.93 33098.41 10399.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10599.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13899.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7699.49 14797.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16698.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9798.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39599.65 129
AUN-MVS96.88 31596.31 32198.59 25099.48 19297.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
hse-mvs297.50 29097.14 29898.59 25099.49 18597.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4583.80 39799.08 236
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22498.37 17982.74 39898.09 365
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 40
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
eth-test20.00 419
eth-test0.00 419
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
test072699.85 2699.89 499.62 8899.50 13999.10 2799.86 3099.82 7898.94 29
GSMVS99.52 172
test_part299.81 4699.83 1699.77 54
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
MTGPAbinary99.47 180
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
patchmatchnet-post98.70 36194.79 21899.74 208
MTMP99.54 13898.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
TEST999.67 11399.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 108
test_899.67 11399.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 108
agg_prior99.67 11399.62 6599.40 22498.87 26399.91 108
test_prior499.56 7698.99 329
test_prior99.68 6999.67 11399.48 9199.56 7199.83 17199.74 92
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
新几何299.01 326
无先验98.99 32999.51 11996.89 27599.93 8697.53 25699.72 103
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 250
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 250
door97.92 383
HQP5-MVS96.83 305
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24998.64 309
HQP2-MVS92.47 298
NP-MVS99.23 25696.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
Test By Simon98.75 55