This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CHOSEN 280x42099.12 8599.13 6699.08 16399.66 11397.89 23698.43 35699.71 1398.88 5199.62 9099.76 12596.63 14099.70 20899.46 3499.99 199.66 115
patch_mono-299.26 6199.62 298.16 27899.81 4294.59 33999.52 14199.64 3499.33 799.73 5299.90 1999.00 2299.99 499.69 999.98 299.89 10
dcpmvs_299.23 6699.58 498.16 27899.83 3694.68 33799.76 3799.52 9399.07 2799.98 499.88 2998.56 7199.93 7499.67 1199.98 299.87 21
CANet99.25 6499.14 6599.59 7799.41 19499.16 11599.35 22299.57 5698.82 5799.51 11599.61 19796.46 14599.95 5299.59 1599.98 299.65 119
MVS_030499.42 3699.32 3499.72 5599.70 9699.27 10399.52 14197.57 36699.51 199.82 2799.78 11198.09 9799.96 2599.97 199.97 599.94 5
CHOSEN 1792x268899.19 6799.10 6999.45 11399.89 898.52 19899.39 20699.94 198.73 6799.11 20699.89 2395.50 17999.94 6199.50 2699.97 599.89 10
DeepC-MVS98.35 299.30 5499.19 6199.64 6899.82 3899.23 10899.62 8699.55 6998.94 4699.63 8699.95 295.82 16999.94 6199.37 4099.97 599.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG99.32 5299.32 3499.32 13299.85 2598.29 21399.71 4999.66 2798.11 13099.41 13799.80 9498.37 8599.96 2598.99 7999.96 899.72 93
test_fmvsm_n_192099.69 199.66 199.78 4399.84 3199.44 8599.58 10799.69 1899.43 299.98 499.91 1398.62 68100.00 199.97 199.95 999.90 7
CANet_DTU98.97 10898.87 10599.25 14799.33 21598.42 21099.08 28399.30 26399.16 1399.43 13099.75 12895.27 18799.97 1798.56 14899.95 999.36 187
EI-MVSNet-UG-set99.58 699.57 599.64 6899.78 5199.14 12199.60 9399.45 18499.01 3299.90 1199.83 6198.98 2399.93 7499.59 1599.95 999.86 23
EI-MVSNet-Vis-set99.58 699.56 799.64 6899.78 5199.15 12099.61 9299.45 18499.01 3299.89 1299.82 6899.01 1899.92 8599.56 1899.95 999.85 26
UGNet98.87 11598.69 12499.40 12099.22 24398.72 17899.44 18199.68 2099.24 1199.18 19799.42 25592.74 26999.96 2599.34 4599.94 1399.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvsmvis_n_192099.65 399.61 399.77 4699.38 20399.37 9199.58 10799.62 3699.41 499.87 1899.92 1198.81 44100.00 199.97 199.93 1499.94 5
SD-MVS99.41 4199.52 899.05 16899.74 7599.68 4899.46 17599.52 9399.11 1999.88 1399.91 1399.43 197.70 36598.72 12099.93 1499.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_vis1_n_192098.63 15098.40 15799.31 13399.86 2097.94 23599.67 6299.62 3699.43 299.99 299.91 1387.29 350100.00 199.92 499.92 1699.98 2
test_fmvs198.88 11498.79 11699.16 15799.69 10097.61 24999.55 13099.49 13499.32 899.98 499.91 1391.41 30699.96 2599.82 699.92 1699.90 7
APDe-MVS99.66 299.57 599.92 199.77 5799.89 499.75 4099.56 6199.02 3099.88 1399.85 4799.18 1099.96 2599.22 5999.92 1699.90 7
HPM-MVS_fast99.51 1399.40 2099.85 2599.91 199.79 3099.76 3799.56 6197.72 17599.76 4799.75 12899.13 1299.92 8599.07 7399.92 1699.85 26
3Dnovator97.25 999.24 6599.05 7499.81 3699.12 26499.66 5399.84 1399.74 1099.09 2498.92 23999.90 1995.94 16399.98 1098.95 8399.92 1699.79 64
test_cas_vis1_n_192099.16 7399.01 8599.61 7499.81 4298.86 16599.65 7399.64 3499.39 599.97 799.94 493.20 25999.98 1099.55 1999.91 2199.99 1
MP-MVS-pluss99.37 4799.20 6099.88 599.90 499.87 1299.30 23299.52 9397.18 22799.60 9699.79 10598.79 4799.95 5298.83 10899.91 2199.83 39
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2399.34 3099.88 599.87 1599.86 1399.47 17299.48 14698.05 14399.76 4799.86 4298.82 4399.93 7498.82 11299.91 2199.84 30
HPM-MVScopyleft99.42 3699.28 4999.83 3299.90 499.72 4299.81 2099.54 7797.59 18699.68 6499.63 18898.91 3499.94 6198.58 14299.91 2199.84 30
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 11098.67 12699.72 5599.85 2599.53 7499.62 8699.59 4992.65 35599.71 5899.78 11198.06 9999.90 10698.84 10599.91 2199.74 82
CP-MVS99.45 2799.32 3499.85 2599.83 3699.75 3999.69 5399.52 9398.07 13899.53 11199.63 18898.93 3399.97 1798.74 11799.91 2199.83 39
PHI-MVS99.30 5499.17 6399.70 5799.56 14999.52 7799.58 10799.80 897.12 23399.62 9099.73 13998.58 6999.90 10698.61 13699.91 2199.68 109
DeepPCF-MVS98.18 398.81 12999.37 2497.12 32499.60 13991.75 36298.61 34699.44 19299.35 699.83 2699.85 4798.70 6199.81 16399.02 7799.91 2199.81 51
ZNCC-MVS99.47 2399.33 3299.87 1199.87 1599.81 2599.64 7699.67 2398.08 13799.55 10899.64 18298.91 3499.96 2598.72 12099.90 2999.82 44
test_0728_THIRD98.99 3799.81 2999.80 9499.09 1499.96 2598.85 10299.90 2999.88 16
MTAPA99.52 1299.39 2199.89 499.90 499.86 1399.66 6799.47 16498.79 6299.68 6499.81 8198.43 8099.97 1798.88 9299.90 2999.83 39
UA-Net99.42 3699.29 4799.80 3899.62 13099.55 6999.50 15399.70 1598.79 6299.77 4299.96 197.45 11299.96 2598.92 8899.90 2999.89 10
jason99.13 7999.03 7899.45 11399.46 18398.87 16299.12 27499.26 27298.03 14699.79 3499.65 17697.02 12799.85 13599.02 7799.90 2999.65 119
jason: jason.
SteuartSystems-ACMMP99.54 1099.42 1799.87 1199.82 3899.81 2599.59 9999.51 10798.62 7399.79 3499.83 6199.28 499.97 1798.48 15599.90 2999.84 30
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 7398.95 9599.78 4399.77 5799.53 7499.41 19499.50 12697.03 24399.04 22199.88 2997.39 11399.92 8598.66 12999.90 2999.87 21
MSDG98.98 10698.80 11399.53 9599.76 6099.19 11098.75 33599.55 6997.25 22199.47 12199.77 11997.82 10499.87 12696.93 27899.90 2999.54 150
COLMAP_ROBcopyleft97.56 698.86 11898.75 11999.17 15699.88 1198.53 19499.34 22599.59 4997.55 19198.70 27299.89 2395.83 16899.90 10698.10 18499.90 2999.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3199.30 4399.85 2599.73 8299.83 1699.56 12099.47 16497.45 20399.78 3999.82 6899.18 1099.91 9598.79 11399.89 3899.81 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3199.30 4399.86 2099.88 1199.79 3099.69 5399.48 14698.12 12899.50 11699.75 12898.78 4899.97 1798.57 14599.89 3899.83 39
MVS_111021_LR99.41 4199.33 3299.65 6399.77 5799.51 7898.94 31699.85 698.82 5799.65 7999.74 13398.51 7599.80 16998.83 10899.89 3899.64 126
TSAR-MVS + MP.99.58 699.50 1099.81 3699.91 199.66 5399.63 8099.39 21498.91 5099.78 3999.85 4799.36 299.94 6198.84 10599.88 4199.82 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM98.67 14698.30 16499.80 3899.20 24699.67 5199.77 3499.72 1194.74 33598.73 26499.90 1995.78 17099.98 1096.96 27599.88 4199.76 77
MVS_111021_HR99.41 4199.32 3499.66 5999.72 8699.47 8298.95 31499.85 698.82 5799.54 10999.73 13998.51 7599.74 18698.91 8999.88 4199.77 72
DPE-MVScopyleft99.46 2599.32 3499.91 299.78 5199.88 899.36 21799.51 10798.73 6799.88 1399.84 5798.72 5999.96 2598.16 18299.87 4499.88 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 1699.37 2499.86 2099.87 1599.80 2799.66 6799.67 2398.15 12399.68 6499.69 15899.06 1699.96 2598.69 12599.87 4499.84 30
region2R99.48 2099.35 2899.87 1199.88 1199.80 2799.65 7399.66 2798.13 12799.66 7399.68 16498.96 2499.96 2598.62 13399.87 4499.84 30
ACMMPR99.49 1699.36 2699.86 2099.87 1599.79 3099.66 6799.67 2398.15 12399.67 6899.69 15898.95 2799.96 2598.69 12599.87 4499.84 30
MP-MVScopyleft99.33 5199.15 6499.87 1199.88 1199.82 2299.66 6799.46 17398.09 13399.48 12099.74 13398.29 8899.96 2597.93 19899.87 4499.82 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 2799.31 4199.86 2099.87 1599.78 3699.58 10799.65 3297.84 16199.71 5899.80 9499.12 1399.97 1798.33 16999.87 4499.83 39
DeepC-MVS_fast98.69 199.49 1699.39 2199.77 4699.63 12499.59 6299.36 21799.46 17399.07 2799.79 3499.82 6898.85 3999.92 8598.68 12799.87 4499.82 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 25197.34 27098.94 18499.70 9697.53 25099.25 25399.51 10791.90 35799.30 16699.63 18898.78 4899.64 22688.09 36899.87 4499.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.57 999.47 1499.88 599.85 2599.89 499.57 11499.37 22899.10 2099.81 2999.80 9498.94 2999.96 2598.93 8699.86 5299.81 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3199.89 499.57 11499.51 10799.96 2598.93 8699.86 5299.88 16
GST-MVS99.40 4499.24 5699.85 2599.86 2099.79 3099.60 9399.67 2397.97 14999.63 8699.68 16498.52 7499.95 5298.38 16399.86 5299.81 51
XVS99.53 1199.42 1799.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15099.74 13398.81 4499.94 6198.79 11399.86 5299.84 30
X-MVStestdata96.55 29795.45 31599.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15064.01 38598.81 4499.94 6198.79 11399.86 5299.84 30
APD-MVScopyleft99.27 5999.08 7299.84 3199.75 6899.79 3099.50 15399.50 12697.16 22999.77 4299.82 6898.78 4899.94 6197.56 23699.86 5299.80 60
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 6998.97 9199.82 3399.17 25799.68 4899.81 2099.51 10799.20 1298.72 26599.89 2395.68 17599.97 1798.86 10099.86 5299.81 51
SED-MVS99.61 499.52 899.88 599.84 3199.90 299.60 9399.48 14699.08 2599.91 999.81 8199.20 799.96 2598.91 8999.85 5999.79 64
IU-MVS99.84 3199.88 899.32 25598.30 10299.84 2198.86 10099.85 5999.89 10
CS-MVS-test99.49 1699.48 1299.54 8799.78 5199.30 9999.89 299.58 5398.56 7799.73 5299.69 15898.55 7299.82 15899.69 999.85 5999.48 167
MVSFormer99.17 7199.12 6799.29 14199.51 16298.94 15599.88 499.46 17397.55 19199.80 3299.65 17697.39 11399.28 28299.03 7599.85 5999.65 119
lupinMVS99.13 7999.01 8599.46 11299.51 16298.94 15599.05 28999.16 28797.86 15799.80 3299.56 21397.39 11399.86 12998.94 8499.85 5999.58 144
PVSNet_Blended99.08 9598.97 9199.42 11899.76 6098.79 17498.78 33299.91 396.74 26099.67 6899.49 23797.53 11099.88 12198.98 8099.85 5999.60 136
MVS-HIRNet95.75 31395.16 31897.51 31499.30 22393.69 35198.88 32295.78 37685.09 37198.78 26092.65 37491.29 30999.37 26394.85 32699.85 5999.46 175
PCF-MVS97.08 1497.66 26597.06 28699.47 11099.61 13499.09 12698.04 36999.25 27491.24 36098.51 29299.70 14894.55 22299.91 9592.76 35199.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvs1_n98.41 16298.14 17399.21 15299.82 3897.71 24799.74 4399.49 13499.32 899.99 299.95 285.32 35799.97 1799.82 699.84 6799.96 4
MSC_two_6792asdad99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
No_MVS99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
test_241102_TWO99.48 14699.08 2599.88 1399.81 8198.94 2999.96 2598.91 8999.84 6799.88 16
SF-MVS99.38 4699.24 5699.79 4199.79 4999.68 4899.57 11499.54 7797.82 16699.71 5899.80 9498.95 2799.93 7498.19 17899.84 6799.74 82
MSLP-MVS++99.46 2599.47 1499.44 11799.60 13999.16 11599.41 19499.71 1398.98 4099.45 12499.78 11199.19 999.54 24099.28 5399.84 6799.63 130
DELS-MVS99.48 2099.42 1799.65 6399.72 8699.40 9099.05 28999.66 2799.14 1599.57 10399.80 9498.46 7899.94 6199.57 1799.84 6799.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 8998.90 10099.74 5299.80 4899.46 8399.59 9999.49 13497.03 24399.63 8699.69 15897.27 11999.96 2597.82 20899.84 6799.81 51
LS3D99.27 5999.12 6799.74 5299.18 25199.75 3999.56 12099.57 5698.45 8699.49 11999.85 4797.77 10699.94 6198.33 16999.84 6799.52 156
AllTest98.87 11598.72 12099.31 13399.86 2098.48 20499.56 12099.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
TestCases99.31 13399.86 2098.48 20499.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
CDPH-MVS99.13 7998.91 9999.80 3899.75 6899.71 4499.15 26999.41 20396.60 27499.60 9699.55 21698.83 4299.90 10697.48 24399.83 7699.78 70
ACMMPcopyleft99.45 2799.32 3499.82 3399.89 899.67 5199.62 8699.69 1898.12 12899.63 8699.84 5798.73 5899.96 2598.55 15199.83 7699.81 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 6999.72 8699.40 20299.51 10797.53 19599.64 8399.78 11198.84 4199.91 9597.63 22799.82 80
PVSNet_Blended_VisFu99.36 4899.28 4999.61 7499.86 2099.07 13199.47 17299.93 297.66 18299.71 5899.86 4297.73 10799.96 2599.47 3399.82 8099.79 64
EC-MVSNet99.44 3199.39 2199.58 8099.56 14999.49 7999.88 499.58 5398.38 9299.73 5299.69 15898.20 9299.70 20899.64 1499.82 8099.54 150
SR-MVS-dyc-post99.45 2799.31 4199.85 2599.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.53 7399.95 5298.61 13699.81 8399.77 72
RE-MVS-def99.34 3099.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.75 5598.61 13699.81 8399.77 72
APD-MVS_3200maxsize99.48 2099.35 2899.85 2599.76 6099.83 1699.63 8099.54 7798.36 9699.79 3499.82 6898.86 3899.95 5298.62 13399.81 8399.78 70
OMC-MVS99.08 9599.04 7699.20 15399.67 10598.22 21799.28 23899.52 9398.07 13899.66 7399.81 8197.79 10599.78 17797.79 21099.81 8399.60 136
DVP-MVS++99.59 599.50 1099.88 599.51 16299.88 899.87 999.51 10798.99 3799.88 1399.81 8199.27 599.96 2598.85 10299.80 8799.81 51
PC_three_145298.18 12199.84 2199.70 14899.31 398.52 34898.30 17399.80 8799.81 51
OPU-MVS99.64 6899.56 14999.72 4299.60 9399.70 14899.27 599.42 25598.24 17599.80 8799.79 64
MS-PatchMatch97.24 28797.32 27396.99 32698.45 34393.51 35498.82 32899.32 25597.41 20998.13 31199.30 29088.99 33299.56 23795.68 31299.80 8797.90 355
HPM-MVS++copyleft99.39 4599.23 5899.87 1199.75 6899.84 1599.43 18599.51 10798.68 7199.27 17499.53 22598.64 6799.96 2598.44 16099.80 8799.79 64
CNVR-MVS99.42 3699.30 4399.78 4399.62 13099.71 4499.26 25199.52 9398.82 5799.39 14599.71 14498.96 2499.85 13598.59 14199.80 8799.77 72
MG-MVS99.13 7999.02 8199.45 11399.57 14598.63 18599.07 28499.34 23898.99 3799.61 9399.82 6897.98 10199.87 12697.00 27199.80 8799.85 26
CS-MVS99.50 1499.48 1299.54 8799.76 6099.42 8799.90 199.55 6998.56 7799.78 3999.70 14898.65 6699.79 17299.65 1399.78 9499.41 182
MVP-Stereo97.81 24097.75 22197.99 29197.53 35696.60 29598.96 31198.85 32597.22 22597.23 33499.36 27395.28 18699.46 24495.51 31599.78 9497.92 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 9999.03 7899.06 16699.40 19999.31 9899.55 13099.56 6198.54 7999.33 16199.39 26698.76 5299.78 17796.98 27399.78 9498.07 342
SR-MVS99.43 3499.29 4799.86 2099.75 6899.83 1699.59 9999.62 3698.21 11499.73 5299.79 10598.68 6299.96 2598.44 16099.77 9799.79 64
MSP-MVS99.42 3699.27 5199.88 599.89 899.80 2799.67 6299.50 12698.70 6999.77 4299.49 23798.21 9199.95 5298.46 15999.77 9799.88 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 10598.80 11399.66 5999.56 14999.54 7199.18 26499.70 1598.18 12199.35 15799.63 18896.32 15099.90 10697.48 24399.77 9799.55 148
test_vis1_n97.92 22197.44 25599.34 12699.53 15698.08 22499.74 4399.49 13499.15 14100.00 199.94 479.51 36999.98 1099.88 599.76 10099.97 3
OpenMVScopyleft96.50 1698.47 15698.12 17699.52 10199.04 28299.53 7499.82 1799.72 1194.56 33898.08 31299.88 2994.73 21299.98 1097.47 24599.76 10099.06 214
ZD-MVS99.71 9199.79 3099.61 4196.84 25699.56 10499.54 22198.58 6999.96 2596.93 27899.75 102
MCST-MVS99.43 3499.30 4399.82 3399.79 4999.74 4199.29 23699.40 21198.79 6299.52 11399.62 19398.91 3499.90 10698.64 13199.75 10299.82 44
CNLPA99.14 7798.99 8799.59 7799.58 14399.41 8999.16 26699.44 19298.45 8699.19 19499.49 23798.08 9899.89 11697.73 21999.75 10299.48 167
test_prior298.96 31198.34 9899.01 22499.52 22898.68 6297.96 19699.74 105
test1299.75 4999.64 12199.61 6099.29 26799.21 18898.38 8499.89 11699.74 10599.74 82
agg_prior297.21 25899.73 10799.75 78
test9_res97.49 24299.72 10899.75 78
train_agg99.02 10298.77 11799.77 4699.67 10599.65 5699.05 28999.41 20396.28 29498.95 23499.49 23798.76 5299.91 9597.63 22799.72 10899.75 78
EPNet98.86 11898.71 12299.30 13897.20 36398.18 21899.62 8698.91 31899.28 1098.63 28399.81 8195.96 16099.99 499.24 5899.72 10899.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 8598.95 9599.65 6399.74 7599.70 4699.27 24399.57 5696.40 29099.42 13399.68 16498.75 5599.80 16997.98 19599.72 10899.44 178
PVSNet96.02 1798.85 12598.84 11098.89 19799.73 8297.28 25698.32 36299.60 4697.86 15799.50 11699.57 21096.75 13799.86 12998.56 14899.70 11299.54 150
原ACMM199.65 6399.73 8299.33 9499.47 16497.46 20099.12 20499.66 17598.67 6499.91 9597.70 22499.69 11399.71 102
test22299.75 6899.49 7998.91 32099.49 13496.42 28899.34 16099.65 17698.28 8999.69 11399.72 93
F-COLMAP99.19 6799.04 7699.64 6899.78 5199.27 10399.42 19299.54 7797.29 21899.41 13799.59 20298.42 8299.93 7498.19 17899.69 11399.73 87
DPM-MVS98.95 10998.71 12299.66 5999.63 12499.55 6998.64 34599.10 29397.93 15299.42 13399.55 21698.67 6499.80 16995.80 30899.68 11699.61 134
旧先验199.74 7599.59 6299.54 7799.69 15898.47 7799.68 11699.73 87
PS-MVSNAJ99.32 5299.32 3499.30 13899.57 14598.94 15598.97 31099.46 17398.92 4999.71 5899.24 30199.01 1899.98 1099.35 4199.66 11898.97 223
新几何199.75 4999.75 6899.59 6299.54 7796.76 25999.29 16999.64 18298.43 8099.94 6196.92 28099.66 11899.72 93
EPNet_dtu98.03 20397.96 19598.23 27498.27 34595.54 32099.23 25698.75 33399.02 3097.82 32399.71 14496.11 15599.48 24293.04 34799.65 12099.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 8799.75 6898.95 15299.51 10797.07 23999.43 13099.70 14898.87 3799.94 6197.76 21599.64 12199.72 93
PatchMatch-RL98.84 12898.62 13799.52 10199.71 9199.28 10199.06 28799.77 997.74 17499.50 11699.53 22595.41 18199.84 14197.17 26599.64 12199.44 178
NCCC99.34 5099.19 6199.79 4199.61 13499.65 5699.30 23299.48 14698.86 5299.21 18899.63 18898.72 5999.90 10698.25 17499.63 12399.80 60
EIA-MVS99.18 6999.09 7199.45 11399.49 17399.18 11299.67 6299.53 8897.66 18299.40 14299.44 25198.10 9699.81 16398.94 8499.62 12499.35 188
PLCcopyleft97.94 499.02 10298.85 10999.53 9599.66 11399.01 13899.24 25599.52 9396.85 25599.27 17499.48 24298.25 9099.91 9597.76 21599.62 12499.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6199.21 5999.40 12099.46 18399.30 9999.56 12099.52 9398.52 8199.44 12999.27 29798.41 8399.86 12999.10 6999.59 12699.04 215
mvsany_test199.50 1499.46 1699.62 7399.61 13499.09 12698.94 31699.48 14699.10 2099.96 899.91 1398.85 3999.96 2599.72 899.58 12799.82 44
thisisatest053098.35 16898.03 18899.31 13399.63 12498.56 19199.54 13496.75 37297.53 19599.73 5299.65 17691.25 31099.89 11698.62 13399.56 12899.48 167
tttt051798.42 16098.14 17399.28 14499.66 11398.38 21199.74 4396.85 37097.68 17999.79 3499.74 13391.39 30799.89 11698.83 10899.56 12899.57 145
BH-RMVSNet98.41 16298.08 18299.40 12099.41 19498.83 17099.30 23298.77 33297.70 17798.94 23699.65 17692.91 26599.74 18696.52 29499.55 13099.64 126
MAR-MVS98.86 11898.63 13299.54 8799.37 20699.66 5399.45 17699.54 7796.61 27299.01 22499.40 26297.09 12499.86 12997.68 22699.53 13199.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 18697.79 21199.19 15499.50 17198.50 20198.61 34696.82 37196.95 24999.54 10999.43 25391.66 30299.86 12998.08 18999.51 13299.22 198
FA-MVS(test-final)98.75 13698.53 15099.41 11999.55 15399.05 13499.80 2599.01 30496.59 27699.58 10099.59 20295.39 18299.90 10697.78 21199.49 13399.28 195
FE-MVS98.48 15598.17 16999.40 12099.54 15598.96 14799.68 5998.81 32995.54 32199.62 9099.70 14893.82 24699.93 7497.35 25299.46 13499.32 192
Fast-Effi-MVS+-dtu98.77 13598.83 11298.60 23099.41 19496.99 27799.52 14199.49 13498.11 13099.24 18099.34 28096.96 13199.79 17297.95 19799.45 13599.02 218
PAPM_NR99.04 9998.84 11099.66 5999.74 7599.44 8599.39 20699.38 22097.70 17799.28 17099.28 29498.34 8699.85 13596.96 27599.45 13599.69 105
TSAR-MVS + GP.99.36 4899.36 2699.36 12599.67 10598.61 18899.07 28499.33 24599.00 3599.82 2799.81 8199.06 1699.84 14199.09 7099.42 13799.65 119
Vis-MVSNetpermissive99.12 8598.97 9199.56 8499.78 5199.10 12599.68 5999.66 2798.49 8399.86 1999.87 3794.77 20999.84 14199.19 6199.41 13899.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250696.81 29496.65 29297.29 32099.74 7592.21 36199.60 9385.06 38999.13 1699.77 4299.93 787.82 34899.85 13599.38 3899.38 13999.80 60
test111198.04 20198.11 17797.83 30199.74 7593.82 34799.58 10795.40 37899.12 1899.65 7999.93 790.73 31599.84 14199.43 3699.38 13999.82 44
ECVR-MVScopyleft98.04 20198.05 18698.00 29099.74 7594.37 34299.59 9994.98 37999.13 1699.66 7399.93 790.67 31699.84 14199.40 3799.38 13999.80 60
Effi-MVS+-dtu98.78 13398.89 10398.47 25099.33 21596.91 28399.57 11499.30 26398.47 8499.41 13798.99 32796.78 13599.74 18698.73 11999.38 13998.74 245
test-LLR98.06 19597.90 20298.55 24098.79 31297.10 26498.67 34197.75 36297.34 21398.61 28698.85 33594.45 22599.45 24597.25 25699.38 13999.10 203
TESTMET0.1,197.55 27097.27 28098.40 25998.93 29596.53 29698.67 34197.61 36596.96 24798.64 28299.28 29488.63 33899.45 24597.30 25499.38 13999.21 199
test-mter97.49 27897.13 28498.55 24098.79 31297.10 26498.67 34197.75 36296.65 26798.61 28698.85 33588.23 34299.45 24597.25 25699.38 13999.10 203
PAPR98.63 15098.34 16099.51 10399.40 19999.03 13598.80 33099.36 22996.33 29199.00 22899.12 31698.46 7899.84 14195.23 32199.37 14699.66 115
xiu_mvs_v1_base_debu99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base_debi99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
131498.68 14598.54 14999.11 16298.89 29998.65 18399.27 24399.49 13496.89 25397.99 31799.56 21397.72 10899.83 15297.74 21899.27 15098.84 231
xiu_mvs_v2_base99.26 6199.25 5599.29 14199.53 15698.91 15999.02 29799.45 18498.80 6199.71 5899.26 29998.94 2999.98 1099.34 4599.23 15198.98 222
PatchmatchNetpermissive98.31 17098.36 15898.19 27699.16 25995.32 32699.27 24398.92 31497.37 21299.37 15099.58 20694.90 19999.70 20897.43 24999.21 15299.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 18098.16 17098.27 27399.30 22395.55 31899.07 28498.97 30897.57 18999.43 13099.57 21092.72 27099.74 18697.58 23199.20 15399.52 156
sss99.17 7199.05 7499.53 9599.62 13098.97 14399.36 21799.62 3697.83 16299.67 6899.65 17697.37 11699.95 5299.19 6199.19 15499.68 109
MVS97.28 28496.55 29499.48 10798.78 31598.95 15299.27 24399.39 21483.53 37298.08 31299.54 22196.97 13099.87 12694.23 33499.16 15599.63 130
casdiffmvspermissive99.13 7998.98 9099.56 8499.65 11999.16 11599.56 12099.50 12698.33 10099.41 13799.86 4295.92 16499.83 15299.45 3599.16 15599.70 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.42 16098.36 15898.59 23199.49 17396.70 28999.27 24399.13 29197.24 22398.80 25799.38 26795.75 17199.74 18697.07 26999.16 15599.33 191
casdiffmvs_mvgpermissive99.15 7599.02 8199.55 8699.66 11399.09 12699.64 7699.56 6198.26 10699.45 12499.87 3796.03 15899.81 16399.54 2099.15 15899.73 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 7599.02 8199.53 9599.66 11399.14 12199.72 4799.48 14698.35 9799.42 13399.84 5796.07 15699.79 17299.51 2599.14 15999.67 112
IS-MVSNet99.05 9898.87 10599.57 8299.73 8299.32 9599.75 4099.20 28298.02 14799.56 10499.86 4296.54 14399.67 21598.09 18599.13 16099.73 87
Patchmatch-test97.93 21897.65 23098.77 22199.18 25197.07 26899.03 29499.14 29096.16 30598.74 26399.57 21094.56 22099.72 19693.36 34399.11 16199.52 156
diffmvspermissive99.14 7799.02 8199.51 10399.61 13498.96 14799.28 23899.49 13498.46 8599.72 5799.71 14496.50 14499.88 12199.31 4899.11 16199.67 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)98.87 11598.72 12099.31 13399.71 9198.88 16199.80 2599.44 19297.91 15499.36 15499.78 11195.49 18099.43 25497.91 19999.11 16199.62 132
RPSCF98.22 17698.62 13796.99 32699.82 3891.58 36399.72 4799.44 19296.61 27299.66 7399.89 2395.92 16499.82 15897.46 24699.10 16499.57 145
gg-mvs-nofinetune96.17 30695.32 31798.73 22398.79 31298.14 22199.38 21194.09 38291.07 36298.07 31591.04 37889.62 32999.35 27096.75 28599.09 16598.68 264
EPMVS97.82 23897.65 23098.35 26398.88 30095.98 31099.49 16394.71 38197.57 18999.26 17899.48 24292.46 28499.71 20297.87 20399.08 16699.35 188
MVS_Test99.10 9398.97 9199.48 10799.49 17399.14 12199.67 6299.34 23897.31 21699.58 10099.76 12597.65 10999.82 15898.87 9599.07 16799.46 175
ADS-MVSNet298.02 20598.07 18597.87 29799.33 21595.19 32999.23 25699.08 29696.24 29899.10 20999.67 17094.11 23698.93 33896.81 28399.05 16899.48 167
ADS-MVSNet98.20 17998.08 18298.56 23899.33 21596.48 29899.23 25699.15 28896.24 29899.10 20999.67 17094.11 23699.71 20296.81 28399.05 16899.48 167
GeoE98.85 12598.62 13799.53 9599.61 13499.08 12999.80 2599.51 10797.10 23799.31 16499.78 11195.23 19199.77 17998.21 17699.03 17099.75 78
baseline297.87 22797.55 23798.82 21499.18 25198.02 22699.41 19496.58 37596.97 24696.51 34499.17 30893.43 25399.57 23697.71 22299.03 17098.86 229
HyFIR lowres test99.11 8998.92 9799.65 6399.90 499.37 9199.02 29799.91 397.67 18199.59 9999.75 12895.90 16699.73 19299.53 2299.02 17299.86 23
LCM-MVSNet-Re97.83 23598.15 17296.87 33199.30 22392.25 36099.59 9998.26 35297.43 20696.20 34799.13 31396.27 15298.73 34698.17 18198.99 17399.64 126
mvs_anonymous99.03 10198.99 8799.16 15799.38 20398.52 19899.51 14799.38 22097.79 16799.38 14899.81 8197.30 11799.45 24599.35 4198.99 17399.51 162
EPP-MVSNet99.13 7998.99 8799.53 9599.65 11999.06 13299.81 2099.33 24597.43 20699.60 9699.88 2997.14 12199.84 14199.13 6698.94 17599.69 105
MIMVSNet97.73 25297.45 25098.57 23599.45 18897.50 25199.02 29798.98 30796.11 31099.41 13799.14 31290.28 31898.74 34595.74 30998.93 17699.47 173
TAMVS99.12 8599.08 7299.24 14999.46 18398.55 19299.51 14799.46 17398.09 13399.45 12499.82 6898.34 8699.51 24198.70 12298.93 17699.67 112
CDS-MVSNet99.09 9499.03 7899.25 14799.42 19198.73 17799.45 17699.46 17398.11 13099.46 12399.77 11998.01 10099.37 26398.70 12298.92 17899.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 26997.09 28599.07 16599.06 27898.26 21598.30 36399.10 29394.88 33298.08 31299.34 28096.27 15299.64 22689.87 36198.92 17899.31 193
XVG-OURS-SEG-HR98.69 14398.62 13798.89 19799.71 9197.74 24299.12 27499.54 7798.44 8999.42 13399.71 14494.20 23299.92 8598.54 15298.90 18099.00 219
PMMVS98.80 13298.62 13799.34 12699.27 23298.70 17998.76 33499.31 25997.34 21399.21 18899.07 31897.20 12099.82 15898.56 14898.87 18199.52 156
DSMNet-mixed97.25 28597.35 26796.95 32997.84 35193.61 35399.57 11496.63 37496.13 30998.87 24898.61 34694.59 21897.70 36595.08 32398.86 18299.55 148
test_vis1_rt95.81 31295.65 31296.32 33899.67 10591.35 36499.49 16396.74 37398.25 10795.24 35398.10 35674.96 37099.90 10699.53 2298.85 18397.70 358
APD_test195.87 31096.49 29594.00 34499.53 15684.01 37199.54 13499.32 25595.91 31797.99 31799.85 4785.49 35699.88 12191.96 35498.84 18498.12 340
XVG-OURS98.73 13998.68 12598.88 19999.70 9697.73 24398.92 31899.55 6998.52 8199.45 12499.84 5795.27 18799.91 9598.08 18998.84 18499.00 219
Fast-Effi-MVS+98.70 14198.43 15499.51 10399.51 16299.28 10199.52 14199.47 16496.11 31099.01 22499.34 28096.20 15499.84 14197.88 20198.82 18699.39 185
ab-mvs98.86 11898.63 13299.54 8799.64 12199.19 11099.44 18199.54 7797.77 16999.30 16699.81 8194.20 23299.93 7499.17 6498.82 18699.49 166
MDTV_nov1_ep1398.32 16299.11 26694.44 34199.27 24398.74 33697.51 19799.40 14299.62 19394.78 20699.76 18397.59 23098.81 188
Test_1112_low_res98.89 11398.66 12999.57 8299.69 10098.95 15299.03 29499.47 16496.98 24599.15 20099.23 30296.77 13699.89 11698.83 10898.78 18999.86 23
1112_ss98.98 10698.77 11799.59 7799.68 10499.02 13699.25 25399.48 14697.23 22499.13 20299.58 20696.93 13299.90 10698.87 9598.78 18999.84 30
PatchT97.03 29196.44 29698.79 21998.99 28798.34 21299.16 26699.07 29992.13 35699.52 11397.31 36594.54 22398.98 32888.54 36698.73 19199.03 216
tpmrst98.33 16998.48 15297.90 29699.16 25994.78 33599.31 23099.11 29297.27 21999.45 12499.59 20295.33 18599.84 14198.48 15598.61 19299.09 207
BH-w/o98.00 21097.89 20698.32 26699.35 20996.20 30799.01 30298.90 32096.42 28898.38 29999.00 32695.26 18999.72 19696.06 30298.61 19299.03 216
cascas97.69 25997.43 25998.48 24698.60 33697.30 25598.18 36799.39 21492.96 35398.41 29798.78 34093.77 24899.27 28598.16 18298.61 19298.86 229
CR-MVSNet98.17 18397.93 20098.87 20399.18 25198.49 20299.22 26099.33 24596.96 24799.56 10499.38 26794.33 22899.00 32694.83 32798.58 19599.14 200
RPMNet96.72 29595.90 30799.19 15499.18 25198.49 20299.22 26099.52 9388.72 36899.56 10497.38 36294.08 23899.95 5286.87 37398.58 19599.14 200
dp97.75 24997.80 21097.59 31299.10 26993.71 35099.32 22898.88 32296.48 28399.08 21399.55 21692.67 27599.82 15896.52 29498.58 19599.24 197
CVMVSNet98.57 15298.67 12698.30 26899.35 20995.59 31799.50 15399.55 6998.60 7599.39 14599.83 6194.48 22499.45 24598.75 11698.56 19899.85 26
Effi-MVS+98.81 12998.59 14499.48 10799.46 18399.12 12498.08 36899.50 12697.50 19899.38 14899.41 25996.37 14999.81 16399.11 6898.54 19999.51 162
testgi97.65 26697.50 24498.13 28299.36 20896.45 29999.42 19299.48 14697.76 17097.87 32199.45 25091.09 31198.81 34294.53 32998.52 20099.13 202
tpm cat197.39 28197.36 26597.50 31599.17 25793.73 34999.43 18599.31 25991.27 35998.71 26699.08 31794.31 23099.77 17996.41 29898.50 20199.00 219
WTY-MVS99.06 9798.88 10499.61 7499.62 13099.16 11599.37 21399.56 6198.04 14499.53 11199.62 19396.84 13399.94 6198.85 10298.49 20299.72 93
tpmvs97.98 21298.02 19097.84 30099.04 28294.73 33699.31 23099.20 28296.10 31498.76 26299.42 25594.94 19599.81 16396.97 27498.45 20398.97 223
LFMVS97.90 22497.35 26799.54 8799.52 16099.01 13899.39 20698.24 35497.10 23799.65 7999.79 10584.79 35999.91 9599.28 5398.38 20499.69 105
test_yl98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
Anonymous2024052998.09 19197.68 22799.34 12699.66 11398.44 20799.40 20299.43 19893.67 34599.22 18599.89 2390.23 32299.93 7499.26 5798.33 20599.66 115
DCV-MVSNet98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
GA-MVS97.85 23097.47 24799.00 17499.38 20397.99 22898.57 34999.15 28897.04 24298.90 24299.30 29089.83 32599.38 25896.70 28898.33 20599.62 132
VDD-MVS97.73 25297.35 26798.88 19999.47 18297.12 26399.34 22598.85 32598.19 11799.67 6899.85 4782.98 36399.92 8599.49 3098.32 20999.60 136
Anonymous20240521198.30 17297.98 19399.26 14699.57 14598.16 21999.41 19498.55 34896.03 31599.19 19499.74 13391.87 29399.92 8599.16 6598.29 21099.70 103
SDMVSNet99.11 8998.90 10099.75 4999.81 4299.59 6299.81 2099.65 3298.78 6599.64 8399.88 2994.56 22099.93 7499.67 1198.26 21199.72 93
sd_testset98.75 13698.57 14699.29 14199.81 4298.26 21599.56 12099.62 3698.78 6599.64 8399.88 2992.02 29099.88 12199.54 2098.26 21199.72 93
EGC-MVSNET82.80 34377.86 34997.62 31097.91 34996.12 30899.33 22799.28 2698.40 38625.05 38799.27 29784.11 36199.33 27389.20 36398.22 21397.42 363
GG-mvs-BLEND98.45 25298.55 33998.16 21999.43 18593.68 38397.23 33498.46 34889.30 33099.22 29495.43 31798.22 21397.98 350
thres20097.61 26897.28 27798.62 22999.64 12198.03 22599.26 25198.74 33697.68 17999.09 21298.32 35391.66 30299.81 16392.88 34898.22 21398.03 345
HY-MVS97.30 798.85 12598.64 13199.47 11099.42 19199.08 12999.62 8699.36 22997.39 21199.28 17099.68 16496.44 14799.92 8598.37 16598.22 21399.40 184
thres600view797.86 22997.51 24398.92 18899.72 8697.95 23399.59 9998.74 33697.94 15199.27 17498.62 34491.75 29699.86 12993.73 33998.19 21798.96 225
thres100view90097.76 24597.45 25098.69 22699.72 8697.86 23999.59 9998.74 33697.93 15299.26 17898.62 34491.75 29699.83 15293.22 34498.18 21898.37 329
tfpn200view997.72 25497.38 26398.72 22499.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.37 329
VNet99.11 8998.90 10099.73 5499.52 16099.56 6799.41 19499.39 21499.01 3299.74 5199.78 11195.56 17799.92 8599.52 2498.18 21899.72 93
thres40097.77 24497.38 26398.92 18899.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.96 225
VDDNet97.55 27097.02 28799.16 15799.49 17398.12 22399.38 21199.30 26395.35 32399.68 6499.90 1982.62 36599.93 7499.31 4898.13 22299.42 180
alignmvs98.81 12998.56 14899.58 8099.43 18999.42 8799.51 14798.96 31098.61 7499.35 15798.92 33494.78 20699.77 17999.35 4198.11 22399.54 150
tpm297.44 28097.34 27097.74 30799.15 26294.36 34399.45 17698.94 31193.45 35098.90 24299.44 25191.35 30899.59 23597.31 25398.07 22499.29 194
JIA-IIPM97.50 27597.02 28798.93 18698.73 32197.80 24199.30 23298.97 30891.73 35898.91 24094.86 37295.10 19399.71 20297.58 23197.98 22599.28 195
CostFormer97.72 25497.73 22397.71 30899.15 26294.02 34699.54 13499.02 30394.67 33699.04 22199.35 27692.35 28799.77 17998.50 15497.94 22699.34 190
canonicalmvs99.02 10298.86 10899.51 10399.42 19199.32 9599.80 2599.48 14698.63 7299.31 16498.81 33897.09 12499.75 18599.27 5697.90 22799.47 173
OpenMVS_ROBcopyleft92.34 2094.38 32793.70 33196.41 33797.38 35893.17 35699.06 28798.75 33386.58 36994.84 35998.26 35481.53 36799.32 27689.01 36497.87 22896.76 366
TR-MVS97.76 24597.41 26198.82 21499.06 27897.87 23798.87 32498.56 34796.63 27198.68 27499.22 30392.49 28099.65 22395.40 31897.79 22998.95 227
DeepMVS_CXcopyleft93.34 34799.29 22782.27 37499.22 27885.15 37096.33 34699.05 32190.97 31399.73 19293.57 34197.77 23098.01 346
tt080597.97 21597.77 21698.57 23599.59 14196.61 29499.45 17699.08 29698.21 11498.88 24599.80 9488.66 33699.70 20898.58 14297.72 23199.39 185
CLD-MVS98.16 18498.10 17898.33 26499.29 22796.82 28698.75 33599.44 19297.83 16299.13 20299.55 21692.92 26399.67 21598.32 17197.69 23298.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS98.27 17598.22 16898.44 25599.29 22796.97 27999.39 20699.47 16498.97 4399.11 20699.61 19792.71 27299.69 21397.78 21197.63 23398.67 271
plane_prior599.47 16499.69 21397.78 21197.63 23398.67 271
test_djsdf98.67 14698.57 14698.98 17898.70 32698.91 15999.88 499.46 17397.55 19199.22 18599.88 2995.73 17299.28 28299.03 7597.62 23598.75 242
anonymousdsp98.44 15898.28 16598.94 18498.50 34198.96 14799.77 3499.50 12697.07 23998.87 24899.77 11994.76 21099.28 28298.66 12997.60 23698.57 309
plane_prior96.97 27999.21 26298.45 8697.60 236
HQP3-MVS99.39 21497.58 238
HQP-MVS98.02 20597.90 20298.37 26299.19 24896.83 28498.98 30799.39 21498.24 10898.66 27599.40 26292.47 28199.64 22697.19 26297.58 23898.64 283
EI-MVSNet98.67 14698.67 12698.68 22799.35 20997.97 22999.50 15399.38 22096.93 25299.20 19199.83 6197.87 10299.36 26798.38 16397.56 24098.71 250
MVSTER98.49 15498.32 16299.00 17499.35 20999.02 13699.54 13499.38 22097.41 20999.20 19199.73 13993.86 24599.36 26798.87 9597.56 24098.62 294
OPM-MVS98.19 18098.10 17898.45 25298.88 30097.07 26899.28 23899.38 22098.57 7699.22 18599.81 8192.12 28899.66 21898.08 18997.54 24298.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final98.71 14098.61 14398.99 17699.49 17398.96 14799.63 8099.41 20398.19 11799.39 14599.77 11994.82 20299.38 25899.30 5197.52 24398.64 283
UniMVSNet_ETH3D97.32 28396.81 29098.87 20399.40 19997.46 25299.51 14799.53 8895.86 31898.54 29199.77 11982.44 36699.66 21898.68 12797.52 24399.50 165
LPG-MVS_test98.22 17698.13 17598.49 24499.33 21597.05 27099.58 10799.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
LGP-MVS_train98.49 24499.33 21597.05 27099.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
jajsoiax98.43 15998.28 16598.88 19998.60 33698.43 20899.82 1799.53 8898.19 11798.63 28399.80 9493.22 25899.44 25099.22 5997.50 24798.77 238
EG-PatchMatch MVS95.97 30995.69 31196.81 33297.78 35292.79 35899.16 26698.93 31296.16 30594.08 36199.22 30382.72 36499.47 24395.67 31397.50 24798.17 338
test_040296.64 29696.24 29997.85 29898.85 30896.43 30099.44 18199.26 27293.52 34796.98 34199.52 22888.52 33999.20 30192.58 35397.50 24797.93 353
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20697.01 27599.44 18199.49 13497.54 19498.45 29699.79 10591.95 29299.72 19697.91 19997.49 25098.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0598.55 15398.44 15398.87 20399.34 21398.60 18999.55 13099.42 20098.21 11499.37 15099.77 11993.55 25299.38 25899.30 5197.48 25198.63 291
mvs_tets98.40 16598.23 16798.91 19298.67 32998.51 20099.66 6799.53 8898.19 11798.65 28199.81 8192.75 26799.44 25099.31 4897.48 25198.77 238
test_fmvs297.25 28597.30 27597.09 32599.43 18993.31 35599.73 4698.87 32498.83 5699.28 17099.80 9484.45 36099.66 21897.88 20197.45 25398.30 331
ACMM97.58 598.37 16798.34 16098.48 24699.41 19497.10 26499.56 12099.45 18498.53 8099.04 22199.85 4793.00 26199.71 20298.74 11797.45 25398.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 19097.99 19298.44 25599.41 19496.96 28199.60 9399.56 6198.09 13398.15 31099.91 1390.87 31499.70 20898.88 9297.45 25398.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 24096.80 28799.70 5099.60 4697.12 23398.18 30999.70 14891.73 29899.72 19698.39 16297.45 25398.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 257
D2MVS98.41 16298.50 15198.15 28199.26 23496.62 29399.40 20299.61 4197.71 17698.98 23099.36 27396.04 15799.67 21598.70 12297.41 25898.15 339
mvsmamba98.92 11198.87 10599.08 16399.07 27599.16 11599.88 499.51 10798.15 12399.40 14299.89 2397.12 12299.33 27399.38 3897.40 25998.73 247
ITE_SJBPF98.08 28399.29 22796.37 30198.92 31498.34 9898.83 25399.75 12891.09 31199.62 23295.82 30697.40 25998.25 335
XVG-ACMP-BASELINE97.83 23597.71 22598.20 27599.11 26696.33 30399.41 19499.52 9398.06 14299.05 22099.50 23489.64 32899.73 19297.73 21997.38 26198.53 311
USDC97.34 28297.20 28197.75 30699.07 27595.20 32898.51 35399.04 30297.99 14898.31 30399.86 4289.02 33199.55 23995.67 31397.36 26298.49 314
PVSNet_BlendedMVS98.86 11898.80 11399.03 17099.76 6098.79 17499.28 23899.91 397.42 20899.67 6899.37 27097.53 11099.88 12198.98 8097.29 26398.42 323
bld_raw_dy_0_6498.69 14398.58 14598.99 17698.88 30098.96 14799.80 2599.41 20397.91 15499.32 16299.87 3795.70 17499.31 27999.09 7097.27 26498.71 250
dmvs_re98.08 19398.16 17097.85 29899.55 15394.67 33899.70 5098.92 31498.15 12399.06 21899.35 27693.67 25199.25 28797.77 21497.25 26599.64 126
PS-MVSNAJss98.92 11198.92 9798.90 19498.78 31598.53 19499.78 3299.54 7798.07 13899.00 22899.76 12599.01 1899.37 26399.13 6697.23 26698.81 232
TinyColmap97.12 28996.89 28997.83 30199.07 27595.52 32198.57 34998.74 33697.58 18897.81 32499.79 10588.16 34399.56 23795.10 32297.21 26798.39 327
ACMMP++_ref97.19 268
ACMH+97.24 1097.92 22197.78 21498.32 26699.46 18396.68 29199.56 12099.54 7798.41 9097.79 32599.87 3790.18 32399.66 21898.05 19397.18 26998.62 294
test0.0.03 197.71 25797.42 26098.56 23898.41 34497.82 24098.78 33298.63 34597.34 21398.05 31698.98 32994.45 22598.98 32895.04 32497.15 27098.89 228
CMPMVSbinary69.68 2394.13 32894.90 32091.84 35197.24 36280.01 37898.52 35299.48 14689.01 36691.99 36799.67 17085.67 35599.13 30795.44 31697.03 27196.39 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RRT_MVS98.70 14198.66 12998.83 21398.90 29798.45 20699.89 299.28 26997.76 17098.94 23699.92 1196.98 12999.25 28799.28 5397.00 27298.80 233
OurMVSNet-221017-097.88 22597.77 21698.19 27698.71 32596.53 29699.88 499.00 30597.79 16798.78 26099.94 491.68 29999.35 27097.21 25896.99 27398.69 259
LF4IMVS97.52 27297.46 24997.70 30998.98 29095.55 31899.29 23698.82 32898.07 13898.66 27599.64 18289.97 32499.61 23397.01 27096.68 27497.94 352
GBi-Net97.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
test197.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
FMVSNet398.03 20397.76 22098.84 21199.39 20298.98 14099.40 20299.38 22096.67 26599.07 21499.28 29492.93 26298.98 32897.10 26696.65 27598.56 310
FMVSNet297.72 25497.36 26598.80 21899.51 16298.84 16799.45 17699.42 20096.49 28098.86 25299.29 29290.26 31998.98 32896.44 29696.56 27898.58 308
K. test v397.10 29096.79 29198.01 28898.72 32396.33 30399.87 997.05 36997.59 18696.16 34899.80 9488.71 33499.04 31996.69 28996.55 27998.65 281
tpm97.67 26497.55 23798.03 28599.02 28495.01 33299.43 18598.54 34996.44 28699.12 20499.34 28091.83 29599.60 23497.75 21796.46 28099.48 167
SixPastTwentyTwo97.50 27597.33 27298.03 28598.65 33096.23 30699.77 3498.68 34497.14 23097.90 32099.93 790.45 31799.18 30297.00 27196.43 28198.67 271
FIs98.78 13398.63 13299.23 15199.18 25199.54 7199.83 1699.59 4998.28 10398.79 25999.81 8196.75 13799.37 26399.08 7296.38 28298.78 235
FC-MVSNet-test98.75 13698.62 13799.15 16099.08 27499.45 8499.86 1299.60 4698.23 11198.70 27299.82 6896.80 13499.22 29499.07 7396.38 28298.79 234
XXY-MVS98.38 16698.09 18199.24 14999.26 23499.32 9599.56 12099.55 6997.45 20398.71 26699.83 6193.23 25699.63 23198.88 9296.32 28498.76 240
FMVSNet196.84 29396.36 29798.29 26999.32 22197.26 25999.43 18599.48 14695.11 32798.55 29099.32 28783.95 36298.98 32895.81 30796.26 28598.62 294
N_pmnet94.95 32295.83 30992.31 35098.47 34279.33 37999.12 27492.81 38693.87 34397.68 32699.13 31393.87 24499.01 32591.38 35696.19 28698.59 307
Anonymous2024052196.20 30595.89 30897.13 32397.72 35594.96 33499.79 3199.29 26793.01 35297.20 33699.03 32389.69 32798.36 35191.16 35796.13 28798.07 342
pmmvs498.13 18797.90 20298.81 21698.61 33598.87 16298.99 30499.21 28196.44 28699.06 21899.58 20695.90 16699.11 31297.18 26496.11 28898.46 320
our_test_397.65 26697.68 22797.55 31398.62 33394.97 33398.84 32699.30 26396.83 25898.19 30899.34 28097.01 12899.02 32395.00 32596.01 28998.64 283
IterMVS97.83 23597.77 21698.02 28799.58 14396.27 30599.02 29799.48 14697.22 22598.71 26699.70 14892.75 26799.13 30797.46 24696.00 29098.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.85 23097.64 23298.48 24699.09 27297.87 23798.60 34899.33 24597.11 23698.87 24899.22 30392.38 28699.17 30398.21 17695.99 29198.42 323
miper_ehance_all_eth98.18 18298.10 17898.41 25799.23 24097.72 24498.72 33899.31 25996.60 27498.88 24599.29 29297.29 11899.13 30797.60 22995.99 29198.38 328
miper_enhance_ethall98.16 18498.08 18298.41 25798.96 29397.72 24498.45 35599.32 25596.95 24998.97 23299.17 30897.06 12699.22 29497.86 20495.99 29198.29 332
ppachtmachnet_test97.49 27897.45 25097.61 31198.62 33395.24 32798.80 33099.46 17396.11 31098.22 30799.62 19396.45 14698.97 33593.77 33895.97 29498.61 303
pmmvs597.52 27297.30 27598.16 27898.57 33896.73 28899.27 24398.90 32096.14 30898.37 30099.53 22591.54 30599.14 30497.51 24095.87 29598.63 291
IterMVS-SCA-FT97.82 23897.75 22198.06 28499.57 14596.36 30299.02 29799.49 13497.18 22798.71 26699.72 14392.72 27099.14 30497.44 24895.86 29698.67 271
cl____98.01 20897.84 20998.55 24099.25 23897.97 22998.71 33999.34 23896.47 28598.59 28999.54 22195.65 17699.21 29997.21 25895.77 29798.46 320
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23997.95 23398.71 33999.35 23496.50 27998.60 28899.54 22195.72 17399.03 32197.21 25895.77 29798.46 320
new_pmnet96.38 30296.03 30497.41 31698.13 34895.16 33199.05 28999.20 28293.94 34297.39 33198.79 33991.61 30499.04 31990.43 35995.77 29798.05 344
FMVSNet596.43 30196.19 30097.15 32199.11 26695.89 31299.32 22899.52 9394.47 34098.34 30299.07 31887.54 34997.07 36992.61 35295.72 30098.47 317
Gipumacopyleft90.99 33690.15 34193.51 34698.73 32190.12 36693.98 37699.45 18479.32 37492.28 36694.91 37169.61 37297.98 35987.42 37095.67 30192.45 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 15798.42 15598.58 23499.59 14198.00 22799.37 21399.43 19896.94 25199.07 21499.59 20297.87 10299.03 32198.32 17195.62 30298.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 24997.40 26298.81 21699.10 26998.87 16299.11 28099.33 24594.83 33398.81 25599.38 26794.33 22899.02 32396.10 30195.57 30398.53 311
MIMVSNet195.51 31495.04 31996.92 33097.38 35895.60 31699.52 14199.50 12693.65 34696.97 34299.17 30885.28 35896.56 37388.36 36795.55 30498.60 306
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23497.38 25498.56 35199.31 25996.65 26798.88 24599.52 22896.58 14199.12 31197.39 25195.53 30598.47 317
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21397.43 25398.88 32299.36 22996.48 28398.80 25799.55 21695.98 15998.91 33997.27 25595.50 30698.51 313
tfpnnormal97.84 23397.47 24798.98 17899.20 24699.22 10999.64 7699.61 4196.32 29298.27 30699.70 14893.35 25599.44 25095.69 31195.40 30798.27 333
c3_l98.12 18998.04 18798.38 26199.30 22397.69 24898.81 32999.33 24596.67 26598.83 25399.34 28097.11 12398.99 32797.58 23195.34 30898.48 315
EU-MVSNet97.98 21298.03 18897.81 30498.72 32396.65 29299.66 6799.66 2798.09 13398.35 30199.82 6895.25 19098.01 35897.41 25095.30 30998.78 235
v124097.69 25997.32 27398.79 21998.85 30898.43 20899.48 16799.36 22996.11 31099.27 17499.36 27393.76 24999.24 29094.46 33095.23 31098.70 255
v119297.81 24097.44 25598.91 19298.88 30098.68 18099.51 14799.34 23896.18 30399.20 19199.34 28094.03 23999.36 26795.32 32095.18 31198.69 259
v114497.98 21297.69 22698.85 21098.87 30498.66 18299.54 13499.35 23496.27 29699.23 18499.35 27694.67 21599.23 29196.73 28695.16 31298.68 264
v192192097.80 24297.45 25098.84 21198.80 31198.53 19499.52 14199.34 23896.15 30799.24 18099.47 24593.98 24199.29 28195.40 31895.13 31398.69 259
Anonymous2023120696.22 30396.03 30496.79 33397.31 36194.14 34599.63 8099.08 29696.17 30497.04 34099.06 32093.94 24297.76 36486.96 37295.06 31498.47 317
v14419297.92 22197.60 23598.87 20398.83 31098.65 18399.55 13099.34 23896.20 30199.32 16299.40 26294.36 22799.26 28696.37 29995.03 31598.70 255
v2v48298.06 19597.77 21698.92 18898.90 29798.82 17199.57 11499.36 22996.65 26799.19 19499.35 27694.20 23299.25 28797.72 22194.97 31698.69 259
FPMVS84.93 34285.65 34382.75 36386.77 38463.39 38898.35 35898.92 31474.11 37583.39 37498.98 32950.85 38292.40 38084.54 37794.97 31692.46 373
lessismore_v097.79 30598.69 32795.44 32494.75 38095.71 35299.87 3788.69 33599.32 27695.89 30594.93 31898.62 294
dmvs_testset95.02 31996.12 30191.72 35299.10 26980.43 37799.58 10797.87 36197.47 19995.22 35498.82 33793.99 24095.18 37788.09 36894.91 31999.56 147
test_method91.10 33591.36 33790.31 35695.85 36973.72 38694.89 37599.25 27468.39 37895.82 35199.02 32580.50 36898.95 33793.64 34094.89 32098.25 335
V4298.06 19597.79 21198.86 20798.98 29098.84 16799.69 5399.34 23896.53 27899.30 16699.37 27094.67 21599.32 27697.57 23594.66 32198.42 323
v1097.85 23097.52 24198.86 20798.99 28798.67 18199.75 4099.41 20395.70 31998.98 23099.41 25994.75 21199.23 29196.01 30494.63 32298.67 271
nrg03098.64 14998.42 15599.28 14499.05 28199.69 4799.81 2099.46 17398.04 14499.01 22499.82 6896.69 13999.38 25899.34 4594.59 32398.78 235
VPA-MVSNet98.29 17397.95 19799.30 13899.16 25999.54 7199.50 15399.58 5398.27 10599.35 15799.37 27092.53 27999.65 22399.35 4194.46 32498.72 248
MDA-MVSNet_test_wron95.45 31594.60 32298.01 28898.16 34797.21 26299.11 28099.24 27693.49 34880.73 37898.98 32993.02 26098.18 35394.22 33594.45 32598.64 283
Anonymous2023121197.88 22597.54 24098.90 19499.71 9198.53 19499.48 16799.57 5694.16 34198.81 25599.68 16493.23 25699.42 25598.84 10594.42 32698.76 240
MDA-MVSNet-bldmvs94.96 32193.98 32797.92 29498.24 34697.27 25799.15 26999.33 24593.80 34480.09 37999.03 32388.31 34197.86 36293.49 34294.36 32798.62 294
WR-MVS98.06 19597.73 22399.06 16698.86 30799.25 10699.19 26399.35 23497.30 21798.66 27599.43 25393.94 24299.21 29998.58 14294.28 32898.71 250
test20.0396.12 30795.96 30696.63 33497.44 35795.45 32399.51 14799.38 22096.55 27796.16 34899.25 30093.76 24996.17 37487.35 37194.22 32998.27 333
YYNet195.36 31794.51 32497.92 29497.89 35097.10 26499.10 28299.23 27793.26 35180.77 37799.04 32292.81 26698.02 35794.30 33194.18 33098.64 283
CP-MVSNet98.09 19197.78 21499.01 17298.97 29299.24 10799.67 6299.46 17397.25 22198.48 29599.64 18293.79 24799.06 31798.63 13294.10 33198.74 245
v897.95 21797.63 23398.93 18698.95 29498.81 17399.80 2599.41 20396.03 31599.10 20999.42 25594.92 19899.30 28096.94 27794.08 33298.66 279
PS-CasMVS97.93 21897.59 23698.95 18398.99 28799.06 13299.68 5999.52 9397.13 23198.31 30399.68 16492.44 28599.05 31898.51 15394.08 33298.75 242
v7n97.87 22797.52 24198.92 18898.76 31998.58 19099.84 1399.46 17396.20 30198.91 24099.70 14894.89 20099.44 25096.03 30393.89 33498.75 242
WR-MVS_H98.13 18797.87 20798.90 19499.02 28498.84 16799.70 5099.59 4997.27 21998.40 29899.19 30795.53 17899.23 29198.34 16893.78 33598.61 303
NR-MVSNet97.97 21597.61 23499.02 17198.87 30499.26 10599.47 17299.42 20097.63 18497.08 33999.50 23495.07 19499.13 30797.86 20493.59 33698.68 264
pm-mvs197.68 26197.28 27798.88 19999.06 27898.62 18699.50 15399.45 18496.32 29297.87 32199.79 10592.47 28199.35 27097.54 23893.54 33798.67 271
UniMVSNet (Re)98.29 17398.00 19199.13 16199.00 28699.36 9399.49 16399.51 10797.95 15098.97 23299.13 31396.30 15199.38 25898.36 16793.34 33898.66 279
baseline198.31 17097.95 19799.38 12499.50 17198.74 17699.59 9998.93 31298.41 9099.14 20199.60 20094.59 21899.79 17298.48 15593.29 33999.61 134
VPNet97.84 23397.44 25599.01 17299.21 24498.94 15599.48 16799.57 5698.38 9299.28 17099.73 13988.89 33399.39 25799.19 6193.27 34098.71 250
PEN-MVS97.76 24597.44 25598.72 22498.77 31898.54 19399.78 3299.51 10797.06 24198.29 30599.64 18292.63 27698.89 34198.09 18593.16 34198.72 248
v14897.79 24397.55 23798.50 24398.74 32097.72 24499.54 13499.33 24596.26 29798.90 24299.51 23194.68 21499.14 30497.83 20793.15 34298.63 291
TranMVSNet+NR-MVSNet97.93 21897.66 22998.76 22298.78 31598.62 18699.65 7399.49 13497.76 17098.49 29499.60 20094.23 23198.97 33598.00 19492.90 34398.70 255
Baseline_NR-MVSNet97.76 24597.45 25098.68 22799.09 27298.29 21399.41 19498.85 32595.65 32098.63 28399.67 17094.82 20299.10 31498.07 19292.89 34498.64 283
UniMVSNet_NR-MVSNet98.22 17697.97 19498.96 18198.92 29698.98 14099.48 16799.53 8897.76 17098.71 26699.46 24996.43 14899.22 29498.57 14592.87 34598.69 259
DU-MVS98.08 19397.79 21198.96 18198.87 30498.98 14099.41 19499.45 18497.87 15698.71 26699.50 23494.82 20299.22 29498.57 14592.87 34598.68 264
pmmvs696.53 29896.09 30397.82 30398.69 32795.47 32299.37 21399.47 16493.46 34997.41 33099.78 11187.06 35199.33 27396.92 28092.70 34798.65 281
DTE-MVSNet97.51 27497.19 28298.46 25198.63 33298.13 22299.84 1399.48 14696.68 26497.97 31999.67 17092.92 26398.56 34796.88 28292.60 34898.70 255
ET-MVSNet_ETH3D96.49 29995.64 31399.05 16899.53 15698.82 17198.84 32697.51 36797.63 18484.77 37299.21 30692.09 28998.91 33998.98 8092.21 34999.41 182
TransMVSNet (Re)97.15 28896.58 29398.86 20799.12 26498.85 16699.49 16398.91 31895.48 32297.16 33799.80 9493.38 25499.11 31294.16 33691.73 35098.62 294
ambc93.06 34992.68 37882.36 37398.47 35498.73 34195.09 35797.41 36155.55 37999.10 31496.42 29791.32 35197.71 356
testf190.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
APD_test290.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
PMVScopyleft70.75 2275.98 34974.97 35079.01 36570.98 38855.18 38993.37 37798.21 35565.08 38261.78 38393.83 37321.74 39092.53 37978.59 37891.12 35489.34 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f91.90 33491.26 33893.84 34595.52 37485.92 37099.69 5398.53 35095.31 32493.87 36296.37 36955.33 38098.27 35295.70 31090.98 35597.32 364
test_fmvs392.10 33391.77 33693.08 34896.19 36786.25 36999.82 1798.62 34696.65 26795.19 35696.90 36655.05 38195.93 37696.63 29390.92 35697.06 365
mvsany_test393.77 33093.45 33294.74 34395.78 37088.01 36899.64 7698.25 35398.28 10394.31 36097.97 35868.89 37398.51 34997.50 24190.37 35797.71 356
UnsupCasMVSNet_eth96.44 30096.12 30197.40 31798.65 33095.65 31599.36 21799.51 10797.13 23196.04 35098.99 32788.40 34098.17 35496.71 28790.27 35898.40 326
Patchmatch-RL test95.84 31195.81 31095.95 34095.61 37190.57 36598.24 36498.39 35195.10 32995.20 35598.67 34394.78 20697.77 36396.28 30090.02 35999.51 162
PM-MVS92.96 33292.23 33595.14 34295.61 37189.98 36799.37 21398.21 35594.80 33495.04 35897.69 35965.06 37497.90 36194.30 33189.98 36097.54 362
pmmvs-eth3d95.34 31894.73 32197.15 32195.53 37395.94 31199.35 22299.10 29395.13 32593.55 36397.54 36088.15 34497.91 36094.58 32889.69 36197.61 359
new-patchmatchnet94.48 32694.08 32695.67 34195.08 37592.41 35999.18 26499.28 26994.55 33993.49 36497.37 36387.86 34797.01 37091.57 35588.36 36297.61 359
test_vis3_rt87.04 33985.81 34290.73 35593.99 37781.96 37599.76 3790.23 38892.81 35481.35 37691.56 37640.06 38599.07 31694.27 33388.23 36391.15 376
UnsupCasMVSNet_bld93.53 33192.51 33496.58 33697.38 35893.82 34798.24 36499.48 14691.10 36193.10 36596.66 36774.89 37198.37 35094.03 33787.71 36497.56 361
pmmvs394.09 32993.25 33396.60 33594.76 37694.49 34098.92 31898.18 35789.66 36396.48 34598.06 35786.28 35297.33 36789.68 36287.20 36597.97 351
IB-MVS95.67 1896.22 30395.44 31698.57 23599.21 24496.70 28998.65 34497.74 36496.71 26297.27 33398.54 34786.03 35399.92 8598.47 15886.30 36699.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 34185.22 34591.53 35387.81 38380.96 37698.23 36698.99 30671.05 37690.13 37196.51 36848.45 38496.88 37190.51 35885.30 36796.76 366
h-mvs3397.70 25897.28 27798.97 18099.70 9697.27 25799.36 21799.45 18498.94 4699.66 7399.64 18294.93 19699.99 499.48 3184.36 36899.65 119
AUN-MVS96.88 29296.31 29898.59 23199.48 18197.04 27399.27 24399.22 27897.44 20598.51 29299.41 25991.97 29199.66 21897.71 22283.83 36999.07 213
hse-mvs297.50 27597.14 28398.59 23199.49 17397.05 27099.28 23899.22 27898.94 4699.66 7399.42 25594.93 19699.65 22399.48 3183.80 37099.08 208
TDRefinement95.42 31694.57 32397.97 29289.83 38296.11 30999.48 16798.75 33396.74 26096.68 34399.88 2988.65 33799.71 20298.37 16582.74 37198.09 341
PVSNet_094.43 1996.09 30895.47 31497.94 29399.31 22294.34 34497.81 37099.70 1597.12 23397.46 32998.75 34189.71 32699.79 17297.69 22581.69 37299.68 109
KD-MVS_self_test95.00 32094.34 32596.96 32897.07 36695.39 32599.56 12099.44 19295.11 32797.13 33897.32 36491.86 29497.27 36890.35 36081.23 37398.23 337
CL-MVSNet_self_test94.49 32593.97 32896.08 33996.16 36893.67 35298.33 36199.38 22095.13 32597.33 33298.15 35592.69 27496.57 37288.67 36579.87 37497.99 349
PMMVS286.87 34085.37 34491.35 35490.21 38183.80 37298.89 32197.45 36883.13 37391.67 37095.03 37048.49 38394.70 37885.86 37677.62 37595.54 371
KD-MVS_2432*160094.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
miper_refine_blended94.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
MVEpermissive76.82 2176.91 34874.31 35284.70 36085.38 38676.05 38396.88 37493.17 38467.39 37971.28 38189.01 38021.66 39187.69 38171.74 38072.29 37890.35 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 34579.88 34782.81 36290.75 38076.38 38297.69 37195.76 37766.44 38083.52 37392.25 37562.54 37687.16 38268.53 38161.40 37984.89 380
EMVS80.02 34679.22 34882.43 36491.19 37976.40 38197.55 37392.49 38766.36 38183.01 37591.27 37764.63 37585.79 38365.82 38260.65 38085.08 379
ANet_high77.30 34774.86 35184.62 36175.88 38777.61 38097.63 37293.15 38588.81 36764.27 38289.29 37936.51 38683.93 38475.89 37952.31 38192.33 375
tmp_tt82.80 34381.52 34686.66 35966.61 38968.44 38792.79 37897.92 35968.96 37780.04 38099.85 4785.77 35496.15 37597.86 20443.89 38295.39 372
testmvs39.17 35143.78 35325.37 36836.04 39116.84 39298.36 35726.56 39020.06 38438.51 38567.32 38129.64 38815.30 38737.59 38439.90 38343.98 382
test12339.01 35242.50 35428.53 36739.17 39020.91 39198.75 33519.17 39219.83 38538.57 38466.67 38233.16 38715.42 38637.50 38529.66 38449.26 381
wuyk23d40.18 35041.29 35536.84 36686.18 38549.12 39079.73 37922.81 39127.64 38325.46 38628.45 38621.98 38948.89 38555.80 38323.56 38512.51 383
test_blank0.13 3560.17 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3881.57 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.64 35332.85 3560.00 3690.00 3920.00 3930.00 38099.51 1070.00 3870.00 38899.56 21396.58 1410.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.27 35511.03 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 38899.01 180.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.30 35411.06 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.58 2060.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.91 199.93 199.87 999.56 6199.10 2099.81 29
test_one_060199.81 4299.88 899.49 13498.97 4399.65 7999.81 8199.09 14
eth-test20.00 392
eth-test0.00 392
test_241102_ONE99.84 3199.90 299.48 14699.07 2799.91 999.74 13399.20 799.76 183
save fliter99.76 6099.59 6299.14 27199.40 21199.00 35
test072699.85 2599.89 499.62 8699.50 12699.10 2099.86 1999.82 6898.94 29
GSMVS99.52 156
test_part299.81 4299.83 1699.77 42
sam_mvs194.86 20199.52 156
sam_mvs94.72 213
MTGPAbinary99.47 164
test_post199.23 25665.14 38494.18 23599.71 20297.58 231
test_post65.99 38394.65 21799.73 192
patchmatchnet-post98.70 34294.79 20599.74 186
MTMP99.54 13498.88 322
gm-plane-assit98.54 34092.96 35794.65 33799.15 31199.64 22697.56 236
TEST999.67 10599.65 5699.05 28999.41 20396.22 30098.95 23499.49 23798.77 5199.91 95
test_899.67 10599.61 6099.03 29499.41 20396.28 29498.93 23899.48 24298.76 5299.91 95
agg_prior99.67 10599.62 5999.40 21198.87 24899.91 95
test_prior499.56 6798.99 304
test_prior99.68 5899.67 10599.48 8199.56 6199.83 15299.74 82
旧先验298.96 31196.70 26399.47 12199.94 6198.19 178
新几何299.01 302
无先验98.99 30499.51 10796.89 25399.93 7497.53 23999.72 93
原ACMM298.95 314
testdata299.95 5296.67 290
segment_acmp98.96 24
testdata198.85 32598.32 101
plane_prior799.29 22797.03 274
plane_prior699.27 23296.98 27892.71 272
plane_prior499.61 197
plane_prior397.00 27698.69 7099.11 206
plane_prior299.39 20698.97 43
plane_prior199.26 234
n20.00 393
nn0.00 393
door-mid98.05 358
test1199.35 234
door97.92 359
HQP5-MVS96.83 284
HQP-NCC99.19 24898.98 30798.24 10898.66 275
ACMP_Plane99.19 24898.98 30798.24 10898.66 275
BP-MVS97.19 262
HQP4-MVS98.66 27599.64 22698.64 283
HQP2-MVS92.47 281
NP-MVS99.23 24096.92 28299.40 262
MDTV_nov1_ep13_2view95.18 33099.35 22296.84 25699.58 10095.19 19297.82 20899.46 175
Test By Simon98.75 55