This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast98.69 199.49 2299.39 2999.77 5599.63 13499.59 7199.36 23399.46 18999.07 3599.79 4599.82 7898.85 3999.92 9798.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8899.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.18 398.81 14699.37 3297.12 34699.60 14991.75 38698.61 37199.44 20899.35 1299.83 3799.85 5598.70 6399.81 18399.02 9099.91 3699.81 61
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12399.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10897.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMM97.58 598.37 18098.34 17398.48 26599.41 20897.10 28399.56 12299.45 20098.53 9399.04 23799.85 5593.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3295.83 18199.90 11998.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20399.08 14599.62 8899.36 24497.39 23099.28 18399.68 17596.44 16099.92 9798.37 17998.22 23399.40 205
ACMH97.28 898.10 20397.99 20598.44 27599.41 20896.96 30099.60 9599.56 7198.09 14798.15 33099.91 2190.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19496.68 31399.56 12299.54 8898.41 10397.79 34699.87 4690.18 34099.66 24198.05 20797.18 29498.62 318
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3295.68 18799.97 2198.86 11399.86 6799.81 61
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14499.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10892.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 242
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9798.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dongtai93.26 35592.93 35994.25 36799.39 21685.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
MVSMamba_pp99.36 5799.28 5899.62 8599.38 21899.50 8899.50 16299.49 14798.55 9199.77 5499.82 7897.62 11799.88 13699.39 5299.96 1499.47 189
MGCFI-Net99.01 12198.85 12599.50 12299.42 20399.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 11997.38 26998.69 20799.28 220
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
sasdasda99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7898.75 5599.99 499.97 199.97 899.94 11
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17199.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2699.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
MM99.40 5199.28 5899.74 6199.67 11399.31 11199.52 14798.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
WAC-MVS97.16 28095.47 336
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20099.65 5799.50 16299.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13499.51 11999.39 1099.78 5099.93 1094.80 21799.95 5999.93 1199.95 2199.94 11
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21899.37 10399.58 10999.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
dmvs_re98.08 20698.16 18397.85 31999.55 16394.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3894.56 23599.93 8699.67 2298.26 23199.72 103
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 10997.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12299.62 4198.78 7399.64 9799.88 3892.02 30799.88 13699.54 3498.26 23199.72 103
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 2199.90 17
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2187.29 368100.00 199.92 1299.92 2999.98 2
test_vis1_n97.92 23497.44 26999.34 14299.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
mvsany_test199.50 2099.46 2099.62 8599.61 14499.09 14298.94 34199.48 16099.10 2799.96 1499.91 2198.85 3999.96 3099.72 1899.58 14299.82 54
APD_test195.87 33396.49 31794.00 36899.53 16684.01 39799.54 13899.32 27195.91 34097.99 33799.85 5585.49 37599.88 13691.96 37798.84 19998.12 364
test_vis1_rt95.81 33595.65 33596.32 36199.67 11391.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 11999.53 3698.85 19897.70 382
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
test_fmvs297.25 30597.30 28997.09 34799.43 20193.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13499.49 14799.32 1499.98 699.91 2191.41 32399.96 3099.82 1699.92 2999.90 17
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16399.68 6298.81 35195.54 34499.62 10499.70 15993.82 26499.93 8697.35 27199.46 14999.32 217
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16399.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 11997.78 22899.49 14899.28 220
iter_conf05_1199.40 5199.32 4299.63 8499.53 16699.47 9399.75 4199.52 10498.11 14399.87 2799.85 5597.72 11499.89 13099.56 3199.97 899.53 170
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10599.92 9799.58 2999.98 499.56 160
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 20
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5499.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5099.38 15499.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5199.38 15499.80 70
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080597.97 22897.77 22998.57 25499.59 15196.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 40
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
PC_three_145298.18 13399.84 3299.70 15999.31 398.52 37198.30 18799.80 10299.81 61
No_MVS99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
eth-test20.00 419
eth-test0.00 419
GeoE98.85 14298.62 15399.53 10999.61 14499.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39599.65 129
hse-mvs297.50 29097.14 29898.59 25099.49 18597.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4583.80 39799.08 236
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
AUN-MVS96.88 31596.31 32198.59 25099.48 19297.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
SR-MVS-dyc-post99.45 3499.31 5099.85 2899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.75 5598.61 14999.81 9899.77 82
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
IU-MVS99.84 3299.88 899.32 27198.30 11599.84 3298.86 11399.85 7499.89 20
OPU-MVS99.64 7999.56 15999.72 4299.60 9599.70 15999.27 599.42 27898.24 18999.80 10299.79 74
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
SF-MVS99.38 5599.24 6799.79 4999.79 5499.68 4899.57 11699.54 8897.82 18199.71 7299.80 10698.95 2799.93 8698.19 19299.84 8299.74 92
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
ZNCC-MVS99.47 3099.33 4099.87 1199.87 1599.81 2599.64 7999.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3898.56 7499.93 8699.67 2299.98 499.87 31
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10897.63 24499.82 95
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16698.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21397.46 26999.51 15599.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
EIA-MVS99.18 8499.09 8399.45 12999.49 18599.18 12899.67 6599.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
ETV-MVS99.26 7399.21 7099.40 13699.46 19499.30 11499.56 12299.52 10498.52 9499.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5099.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24399.10 2799.81 4099.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 4099.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11999.96 3098.93 9999.86 6799.88 26
test072699.85 2699.89 499.62 8899.50 13999.10 2799.86 3099.82 7898.94 29
SR-MVS99.43 4199.29 5699.86 2199.75 7399.83 1699.59 10199.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
DPM-MVS98.95 12698.71 13999.66 7099.63 13499.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
GST-MVS99.40 5199.24 6799.85 2899.86 2099.79 3099.60 9599.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
thisisatest053098.35 18198.03 20199.31 14999.63 13498.56 20599.54 13896.75 39697.53 21399.73 6699.65 18791.25 32799.89 13098.62 14699.56 14399.48 183
Anonymous2024052998.09 20497.68 24099.34 14299.66 12398.44 22199.40 21899.43 21493.67 37099.22 19999.89 3290.23 33999.93 8699.26 7198.33 22599.66 125
Anonymous20240521198.30 18597.98 20699.26 16399.57 15598.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9799.16 7998.29 23099.70 113
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
tttt051798.42 17398.14 18699.28 16199.66 12398.38 22599.74 4596.85 39497.68 19699.79 4599.74 14491.39 32499.89 13098.83 12199.56 14399.57 158
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
thisisatest051598.14 19997.79 22499.19 17199.50 18398.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
SMA-MVScopyleft99.44 3899.30 5299.85 2899.73 8899.83 1699.56 12299.47 18097.45 22299.78 5099.82 7899.18 1099.91 10898.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.52 172
DPE-MVScopyleft99.46 3299.32 4299.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.81 4699.83 1699.77 54
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10198.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 7999.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12397.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4899.99 199.66 125
CANet99.25 7799.14 7699.59 9199.41 20899.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2799.98 499.65 129
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20896.99 29699.52 14799.49 14798.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2199.36 211
MVS_030499.42 4399.32 4299.72 6599.70 10299.27 11899.52 14797.57 39099.51 299.82 3899.78 12498.09 10199.96 3099.97 199.97 899.94 11
MP-MVS-pluss99.37 5699.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4399.27 6299.88 599.89 899.80 2799.67 6599.50 13998.70 7899.77 5499.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15596.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22798.91 5899.78 5099.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.47 3099.34 3899.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5098.82 4399.93 8698.82 12599.91 3699.84 40
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
MTGPAbinary99.47 180
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
Effi-MVS+98.81 14698.59 15999.48 12399.46 19499.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16698.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11699.52 14799.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
patchmatchnet-post98.70 36194.79 21899.74 208
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
MTAPA99.52 1799.39 2999.89 499.90 499.86 1399.66 7099.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
MTMP99.54 13898.88 342
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
test9_res97.49 25999.72 12399.75 88
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.67 11399.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 108
train_agg99.02 11798.77 13499.77 5599.67 11399.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10897.63 24499.72 12399.75 88
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
test_899.67 11399.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 108
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
agg_prior297.21 27799.73 12299.75 88
agg_prior99.67 11399.62 6599.40 22498.87 26399.91 108
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
canonicalmvs99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
alignmvs98.81 14698.56 16299.58 9499.43 20199.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7896.69 15099.38 28199.34 6094.59 34898.78 262
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13499.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11698.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14799.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
UA-Net99.42 4399.29 5699.80 4699.62 14099.55 7899.50 16299.70 1598.79 7099.77 5499.96 197.45 12099.96 3098.92 10199.90 4499.89 20
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15599.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7896.80 14599.22 31399.07 8696.38 30798.79 261
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13899.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS99.49 2299.37 3299.86 2199.87 1599.80 2799.66 7099.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13899.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12299.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
region2R99.48 2699.35 3699.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
iter_conf0599.48 2699.40 2699.71 6799.68 11199.61 6799.49 17499.58 6298.27 11899.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
mamv499.33 6199.42 2299.07 18399.67 11397.73 25899.42 20699.60 5498.15 13599.94 1699.91 2198.42 8599.94 6999.72 1899.96 1499.54 164
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
PS-MVSNAJ99.32 6399.32 4299.30 15499.57 15598.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7099.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9599.45 20099.01 4099.90 2099.83 7098.98 2399.93 8699.59 2799.95 2199.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9499.45 20099.01 4099.89 2199.82 7899.01 1899.92 9799.56 3199.95 2199.85 36
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
test_prior499.56 7698.99 329
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16299.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 120
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
test_prior99.68 6999.67 11399.48 9199.56 7199.83 17199.74 92
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
新几何299.01 326
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
无先验98.99 32999.51 11996.89 27599.93 8697.53 25699.72 103
原ACMM298.95 339
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10897.70 24199.69 12899.71 112
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
testdata198.85 35098.32 114
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14796.89 27597.99 33799.56 22497.72 11499.83 17197.74 23599.27 16598.84 259
LFMVS97.90 23797.35 28199.54 10199.52 17199.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10899.28 6798.38 22299.69 115
VDD-MVS97.73 26597.35 28198.88 21699.47 19397.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9799.49 4498.32 22999.60 146
VDDNet97.55 28597.02 30499.16 17499.49 18598.12 23799.38 22799.30 27995.35 34699.68 7899.90 2882.62 38999.93 8699.31 6398.13 24299.42 201
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10599.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11699.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5699.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
SD-MVS99.41 4899.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2199.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.85 24397.47 26199.00 19399.38 21897.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14999.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.48 2699.35 3699.85 2899.76 6599.83 1699.63 8399.54 8898.36 10999.79 4599.82 7898.86 3899.95 5998.62 14699.81 9899.78 80
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16299.38 23596.93 27499.20 20599.83 7097.87 10899.36 28898.38 17797.56 26898.71 277
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16299.55 7998.60 8699.39 16099.83 7094.48 24099.45 26898.75 12998.56 21599.85 36
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14798.35 31799.82 7895.25 20398.01 38197.41 26795.30 33498.78 262
VNet99.11 10498.90 11599.73 6499.52 17199.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9799.52 3898.18 23899.72 103
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16299.58 6298.27 11899.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
ACMMPR99.49 2299.36 3499.86 2199.87 1599.79 3099.66 7099.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10198.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7099.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
thres20097.61 28297.28 29298.62 24899.64 13198.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
PGM-MVS99.45 3499.31 5099.86 2199.87 1599.78 3699.58 10999.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10198.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
MCST-MVS99.43 4199.30 5299.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 11998.64 14499.75 11799.82 54
mvs_anonymous99.03 11698.99 10299.16 17499.38 21898.52 21299.51 15599.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
MVS_Test99.10 10898.97 10699.48 12399.49 18599.14 13799.67 6599.34 25497.31 23699.58 11599.76 13697.65 11699.82 17898.87 10899.07 18299.46 194
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 11997.48 26099.83 9199.78 80
test1299.75 5899.64 13199.61 6799.29 28399.21 20298.38 8899.89 13099.74 12099.74 92
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 12999.16 13199.56 12299.50 13998.33 11399.41 15299.86 5095.92 17799.83 17199.45 4999.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive99.14 9299.02 9699.51 11799.61 14498.96 16399.28 25999.49 14798.46 9899.72 7199.71 15596.50 15699.88 13699.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
baseline198.31 18397.95 21099.38 14099.50 18398.74 19199.59 10198.93 33098.41 10399.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 250
plane_prior96.97 29899.21 28498.45 9997.60 264
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6299.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6599.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7699.49 14797.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
TSAR-MVS + GP.99.36 5799.36 3499.36 14199.67 11398.61 20399.07 30899.33 26199.00 4399.82 3899.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
n20.00 420
nn0.00 420
mPP-MVS99.44 3899.30 5299.86 2199.88 1199.79 3099.69 5699.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
door-mid98.05 382
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10299.42 14899.71 15594.20 24999.92 9798.54 16598.90 19599.00 247
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3297.12 13299.33 29499.38 5397.40 28598.73 274
MVSFormer99.17 8699.12 7899.29 15799.51 17498.94 16999.88 399.46 18997.55 20999.80 4399.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
jason99.13 9499.03 9299.45 12999.46 19498.87 17699.12 29899.26 28898.03 16099.79 4599.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
lupinMVS99.13 9499.01 10099.46 12899.51 17498.94 16999.05 31399.16 30497.86 17199.80 4399.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26398.75 269
HPM-MVS_fast99.51 1899.40 2699.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9799.07 8699.92 2999.85 36
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
HPM-MVScopyleft99.42 4399.28 5899.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9499.45 13999.84 6695.27 20099.91 10898.08 20398.84 19999.00 247
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12399.09 14299.64 7999.56 7198.26 12099.45 13999.87 4696.03 17199.81 18399.54 3499.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 10999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
baseline99.15 9099.02 9699.53 10999.66 12399.14 13799.72 5099.48 16098.35 11099.42 14899.84 6696.07 16999.79 19299.51 3999.14 17499.67 122
test1199.35 250
door97.92 383
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3295.50 19299.94 6999.50 4099.97 899.89 20
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8898.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.83 305
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16299.50 13997.16 24999.77 5499.82 7898.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24998.64 309
HQP3-MVS99.39 22797.58 266
HQP2-MVS92.47 298
CNVR-MVS99.42 4399.30 5299.78 5299.62 14099.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
NCCC99.34 6099.19 7299.79 4999.61 14499.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 11998.25 18899.63 13899.80 70
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8899.59 5892.65 38199.71 7299.78 12498.06 10499.90 11998.84 11899.91 3699.74 92
CP-MVS99.45 3499.32 4299.85 2899.83 3999.75 3999.69 5699.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
NP-MVS99.23 25696.92 30199.40 273
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11998.62 8499.79 4599.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3099.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.42 17398.36 17198.59 25099.49 18596.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13899.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10199.49 14797.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
GBi-Net97.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
PVSNet_Blended_VisFu99.36 5799.28 5899.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5097.73 11399.96 3099.47 4799.82 9599.79 74
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13698.98 9397.29 28998.42 347
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13698.98 9399.85 7499.60 146
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
test197.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
FMVSNet398.03 21697.76 23398.84 22799.39 21698.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
FMVSNet297.72 26797.36 27998.80 23499.51 17498.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20898.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS99.06 11298.88 11999.61 8799.62 14099.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12299.55 7997.45 22298.71 28199.83 7093.23 27399.63 25498.88 10596.32 30998.76 267
EC-MVSNet99.44 3899.39 2999.58 9499.56 15999.49 8999.88 399.58 6298.38 10599.73 6699.69 16998.20 9699.70 23099.64 2699.82 9599.54 164
sss99.17 8699.05 8899.53 10999.62 14098.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13098.83 12198.78 20499.86 33
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 11998.87 10898.78 20499.84 40
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs98.86 13598.63 14899.54 10199.64 13199.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8699.17 7898.82 20199.49 182
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
MIMVSNet97.73 26597.45 26498.57 25499.45 19997.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
IterMVS-LS98.46 17098.42 16898.58 25399.59 15198.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10899.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20398.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10699.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref97.19 293
IterMVS97.83 24897.77 22998.02 30899.58 15396.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
MVS_111021_LR99.41 4899.33 4099.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3897.39 12199.92 9798.66 14299.90 4499.87 31
ACMMP++97.43 283
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2895.78 18399.98 1396.96 29499.88 5699.76 87
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6299.66 2898.49 9699.86 3099.87 4694.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5096.54 15599.67 23898.09 19999.13 17599.73 97
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3699.02 18799.86 33
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
TAMVS99.12 10099.08 8599.24 16699.46 19498.55 20699.51 15599.46 18998.09 14799.45 13999.82 7898.34 9099.51 26498.70 13598.93 19199.67 122
PAPR98.63 16498.34 17399.51 11799.40 21399.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20896.61 29499.66 8799.89 3295.92 17799.82 17897.46 26399.10 17999.57 158
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
MVS_111021_HR99.41 4899.32 4299.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
CSCG99.32 6399.32 4299.32 14899.85 2698.29 22799.71 5299.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
API-MVS99.04 11499.03 9299.06 18599.40 21399.31 11199.55 13499.56 7198.54 9299.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
Test By Simon98.75 55
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22498.37 17982.74 39898.09 365
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5089.02 34899.55 26295.67 33397.36 28898.49 338
EPP-MVSNet99.13 9498.99 10299.53 10999.65 12999.06 14899.81 2099.33 26197.43 22599.60 11099.88 3897.14 13199.84 15899.13 8098.94 19099.69 115
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
ACMMPcopyleft99.45 3499.32 4299.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 10099.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA99.14 9298.99 10299.59 9199.58 15399.41 10199.16 28999.44 20898.45 9999.19 20899.49 24898.08 10399.89 13097.73 23699.75 11799.48 183
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.30 6599.17 7499.70 6899.56 15999.52 8699.58 10999.80 897.12 25399.62 10499.73 15098.58 7299.90 11998.61 14999.91 3699.68 119
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8698.19 19299.69 12899.73 97
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
OMC-MVS99.08 11099.04 9099.20 17099.67 11398.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11199.78 19797.79 22799.81 9899.60 146
MG-MVS99.13 9499.02 9699.45 12999.57 15598.63 20099.07 30899.34 25498.99 4599.61 10799.82 7897.98 10799.87 14297.00 29099.80 10299.85 36
AdaColmapbinary99.01 12198.80 13099.66 7099.56 15999.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 11997.48 26099.77 11299.55 162
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11198.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11099.87 14296.93 29799.90 4499.54 164
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12299.57 6698.45 9999.49 13499.85 5597.77 11299.94 6998.33 18399.84 8299.52 172
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015