This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18399.65 2399.78 10499.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16999.69 1999.85 6999.48 178
RRT_MVS98.70 15198.66 13998.83 22598.90 31198.45 21899.89 299.28 28197.76 18098.94 24799.92 1496.98 13499.25 29999.28 6397.00 28898.80 248
mvsmamba98.92 12198.87 11599.08 17599.07 28799.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28599.38 4897.40 27598.73 262
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20399.80 4099.65 18697.39 11699.28 29499.03 8599.85 6999.65 129
test_djsdf98.67 15698.57 15698.98 19098.70 34198.91 16999.88 499.46 18297.55 20399.22 19599.88 3695.73 17999.28 29499.03 8597.62 25198.75 257
OurMVSNet-221017-097.88 23597.77 22698.19 29098.71 34096.53 31299.88 499.00 31997.79 17798.78 27199.94 691.68 31399.35 28297.21 27096.99 28998.69 274
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21999.64 2499.82 9099.54 161
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
K. test v397.10 30496.79 30498.01 30298.72 33896.33 31999.87 997.05 38797.59 19796.16 36499.80 10388.71 34899.04 33296.69 30196.55 29598.65 296
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 28699.45 9399.86 1299.60 5498.23 12198.70 28399.82 7696.80 13999.22 30699.07 8396.38 29898.79 249
v7n97.87 23797.52 25298.92 20098.76 33498.58 20199.84 1399.46 18296.20 31798.91 25199.70 15894.89 20899.44 26296.03 31593.89 35198.75 257
DTE-MVSNet97.51 28597.19 29398.46 26498.63 34798.13 23499.84 1399.48 15596.68 28097.97 33299.67 18092.92 27798.56 36396.88 29492.60 36698.70 270
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27699.66 5399.84 1399.74 1099.09 3298.92 25099.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
FIs98.78 14398.63 14299.23 16299.18 26299.54 7999.83 1699.59 5798.28 11398.79 27099.81 9096.75 14299.37 27599.08 8296.38 29898.78 250
test_fmvs392.10 35191.77 35493.08 36496.19 38386.25 38699.82 1798.62 36396.65 28395.19 37296.90 38455.05 39995.93 39296.63 30590.92 37497.06 380
jajsoiax98.43 16998.28 17598.88 21198.60 35198.43 22099.82 1799.53 9698.19 12798.63 29499.80 10393.22 27299.44 26299.22 6997.50 26398.77 253
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29499.53 8299.82 1799.72 1194.56 35698.08 32599.88 3694.73 22199.98 1397.47 25699.76 11099.06 229
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22599.72 103
nrg03098.64 15998.42 16599.28 15599.05 29399.69 4799.81 2099.46 18298.04 15499.01 23599.82 7696.69 14499.38 27099.34 5594.59 33998.78 250
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19799.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 21999.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 26899.68 4899.81 2099.51 11599.20 1898.72 27699.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31896.59 29299.58 11099.59 21295.39 19099.90 11697.78 22299.49 14399.28 209
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31498.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29199.09 8097.27 28098.71 265
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25199.31 17499.78 12195.23 19999.77 19098.21 18699.03 18099.75 88
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35297.09 12999.75 19699.27 6697.90 24199.47 184
v897.95 22797.63 24498.93 19898.95 30898.81 18399.80 2599.41 21296.03 33199.10 21999.42 26594.92 20699.30 29296.94 28994.08 34898.66 294
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26697.91 20999.11 17199.62 142
Anonymous2024052196.20 32195.89 32497.13 33897.72 37194.96 35099.79 3199.29 27993.01 37097.20 35299.03 33389.69 34198.36 36791.16 37496.13 30398.07 357
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 32998.53 20599.78 3299.54 8598.07 14899.00 23999.76 13599.01 1899.37 27599.13 7697.23 28298.81 247
PEN-MVS97.76 25597.44 26698.72 23798.77 33398.54 20499.78 3299.51 11597.06 25598.29 31799.64 19292.63 29098.89 35498.09 19593.16 35998.72 263
anonymousdsp98.44 16898.28 17598.94 19698.50 35698.96 15799.77 3499.50 13597.07 25398.87 25999.77 12994.76 21999.28 29498.66 13997.60 25298.57 324
SixPastTwentyTwo97.50 28697.33 28398.03 29998.65 34596.23 32299.77 3498.68 36097.14 24497.90 33399.93 990.45 33199.18 31497.00 28396.43 29798.67 286
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35398.73 27599.90 2695.78 17799.98 1396.96 28799.88 5199.76 87
SSC-MVS92.73 35093.73 34689.72 37495.02 39381.38 39499.76 3799.23 29094.87 35092.80 38398.93 34494.71 22391.37 39874.49 39893.80 35296.42 384
test_vis3_rt87.04 35785.81 36090.73 37193.99 39581.96 39299.76 3790.23 40692.81 37281.35 39491.56 39440.06 40399.07 32994.27 34888.23 38191.15 394
dcpmvs_299.23 7599.58 798.16 29299.83 3994.68 35399.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
v1097.85 24097.52 25298.86 21998.99 30198.67 19299.75 4199.41 21295.70 33598.98 24199.41 26994.75 22099.23 30396.01 31794.63 33898.67 286
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22798.09 19599.13 17099.73 97
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 38799.98 1399.88 1499.76 11099.97 4
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37199.97 2199.82 1699.84 7799.96 7
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 38897.68 19099.79 4299.74 14391.39 32199.89 12698.83 11899.56 13899.57 156
WB-MVS93.10 34894.10 34290.12 37395.51 39181.88 39399.73 4799.27 28495.05 34693.09 38298.91 34894.70 22491.89 39776.62 39694.02 35096.58 383
test_fmvs297.25 29897.30 28697.09 34099.43 19893.31 37199.73 4798.87 33998.83 6499.28 18099.80 10384.45 37599.66 23097.88 21197.45 26998.30 346
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18399.51 3599.14 16999.67 122
RPSCF98.22 18698.62 14796.99 34199.82 4291.58 38099.72 4999.44 20196.61 28899.66 8399.89 3095.92 17199.82 16997.46 25799.10 17499.57 156
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
dmvs_re98.08 20398.16 18097.85 31299.55 16094.67 35499.70 5298.92 32898.15 13399.06 22999.35 28693.67 26599.25 29997.77 22597.25 28199.64 136
WR-MVS_H98.13 19797.87 21798.90 20699.02 29698.84 17799.70 5299.59 5797.27 23398.40 31099.19 31795.53 18699.23 30398.34 17893.78 35398.61 318
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27399.23 25096.80 30399.70 5299.60 5497.12 24798.18 32299.70 15891.73 31299.72 20798.39 17297.45 26998.68 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 35291.26 35693.84 36195.52 39085.92 38799.69 5598.53 36795.31 34093.87 37896.37 38755.33 39898.27 36895.70 32390.98 37397.32 379
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31395.45 33199.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40398.81 4499.94 6998.79 12399.86 6299.84 40
V4298.06 20597.79 22198.86 21998.98 30498.84 17799.69 5599.34 25096.53 29499.30 17699.37 28094.67 22699.32 28897.57 24694.66 33798.42 338
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34595.54 33799.62 10099.70 15893.82 26099.93 8497.35 26499.46 14499.32 206
PS-CasMVS97.93 22897.59 24798.95 19598.99 30199.06 14299.68 6199.52 10197.13 24598.31 31599.68 17492.44 29999.05 33198.51 16394.08 34898.75 257
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 364100.00 199.92 1299.92 2499.98 2
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19399.40 15299.44 26198.10 9999.81 17498.94 9499.62 13499.35 202
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23099.58 11099.76 13597.65 11299.82 16998.87 10599.07 17799.46 186
CP-MVSNet98.09 20197.78 22499.01 18498.97 30699.24 11799.67 6499.46 18297.25 23598.48 30799.64 19293.79 26199.06 33098.63 14294.10 34798.74 260
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
mvs_tets98.40 17598.23 17798.91 20498.67 34498.51 21199.66 6999.53 9698.19 12798.65 29299.81 9092.75 28199.44 26299.31 5897.48 26798.77 253
EU-MVSNet97.98 22298.03 19897.81 31898.72 33896.65 30899.66 6999.66 2898.09 14398.35 31399.82 7695.25 19898.01 37497.41 26195.30 32598.78 250
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 32998.62 19799.65 7599.49 14397.76 18098.49 30699.60 21094.23 24498.97 34898.00 20492.90 36198.70 270
mvsany_test393.77 34693.45 35094.74 35995.78 38688.01 38599.64 7898.25 37198.28 11394.31 37697.97 37668.89 39198.51 36597.50 25290.37 37597.71 371
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 30898.27 31899.70 15893.35 26999.44 26295.69 32495.40 32398.27 348
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17499.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27099.30 6197.52 25998.64 298
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 31996.03 32096.79 34997.31 37794.14 36199.63 8299.08 31096.17 32097.04 35699.06 33093.94 25597.76 38086.96 38995.06 33098.47 332
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
EPNet98.86 12898.71 13299.30 14897.20 37998.18 23099.62 8898.91 33299.28 1698.63 29499.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37399.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22499.28 18099.68 17496.44 15499.92 9598.37 17598.22 22799.40 197
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
test250696.81 31096.65 30697.29 33599.74 8092.21 37899.60 9585.06 40799.13 2299.77 5199.93 987.82 36299.85 14599.38 4899.38 14999.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 26798.24 18599.80 9799.79 74
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
ACMH97.28 898.10 20097.99 20298.44 26899.41 20396.96 29799.60 9599.56 6998.09 14398.15 32399.91 2090.87 32899.70 21998.88 10297.45 26998.67 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21198.05 19698.00 30499.74 8094.37 35899.59 10194.98 39799.13 2299.66 8399.93 990.67 33099.84 15199.40 4799.38 14999.80 70
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
thres100view90097.76 25597.45 26198.69 23999.72 9197.86 25299.59 10198.74 35297.93 16299.26 18898.62 35891.75 31099.83 16393.22 35998.18 23298.37 344
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35297.94 16199.27 18498.62 35891.75 31099.86 13993.73 35498.19 23198.96 240
LCM-MVSNet-Re97.83 24598.15 18296.87 34799.30 23392.25 37799.59 10198.26 37097.43 21996.20 36399.13 32396.27 15998.73 36098.17 19198.99 18399.64 136
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32698.41 10099.14 21199.60 21094.59 22999.79 18398.48 16593.29 35799.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 25999.63 9699.69 16897.27 12499.96 3097.82 21999.84 7799.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
dmvs_testset95.02 33596.12 31791.72 36899.10 28180.43 39699.58 10997.87 37997.47 21295.22 37098.82 35193.99 25395.18 39388.09 38594.91 33599.56 158
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test111198.04 21198.11 18797.83 31599.74 8093.82 36399.58 10995.40 39699.12 2599.65 8999.93 990.73 32999.84 15199.43 4699.38 14999.82 54
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
LPG-MVS_test98.22 18698.13 18598.49 25799.33 22597.05 28699.58 10999.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 24799.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
Effi-MVS+-dtu98.78 14398.89 11398.47 26399.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19798.73 12999.38 14998.74 260
v2v48298.06 20597.77 22698.92 20098.90 31198.82 18199.57 11699.36 24096.65 28399.19 20499.35 28694.20 24599.25 29997.72 23294.97 33298.69 274
DSMNet-mixed97.25 29897.35 27896.95 34497.84 36793.61 36999.57 11696.63 39296.13 32598.87 25998.61 36094.59 22997.70 38195.08 33898.86 19299.55 159
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13199.54 3098.26 22599.72 103
KD-MVS_self_test95.00 33694.34 34196.96 34397.07 38295.39 34199.56 12299.44 20195.11 34397.13 35497.32 38291.86 30897.27 38490.35 37781.23 39198.23 352
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 230
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21699.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16399.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 21698.71 27799.83 6893.23 27099.63 24398.88 10296.32 30098.76 255
ACMH+97.24 1097.92 23197.78 22498.32 28099.46 19196.68 30799.56 12299.54 8598.41 10097.79 33999.87 4490.18 33799.66 23098.05 20397.18 28598.62 309
ACMM97.58 598.37 17798.34 17098.48 25999.41 20397.10 28099.56 12299.45 19398.53 9099.04 23299.85 5493.00 27599.71 21398.74 12797.45 26998.64 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6799.12 7499.74 6199.18 26299.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 35999.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
v14419297.92 23197.60 24698.87 21598.83 32498.65 19499.55 13499.34 25096.20 31799.32 17299.40 27294.36 24099.26 29896.37 31195.03 33198.70 270
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27099.30 6197.48 26798.63 306
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18896.98 28599.78 10498.07 357
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
APD_test195.87 32696.49 31094.00 36099.53 16384.01 38899.54 13999.32 26795.91 33397.99 33099.85 5485.49 37099.88 13191.96 37098.84 19498.12 355
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39097.53 20799.73 6299.65 18691.25 32499.89 12698.62 14399.56 13899.48 178
MTMP99.54 13998.88 337
v114497.98 22297.69 23698.85 22298.87 31898.66 19399.54 13999.35 24696.27 31299.23 19499.35 28694.67 22699.23 30396.73 29895.16 32898.68 279
v14897.79 25397.55 24898.50 25698.74 33597.72 25799.54 13999.33 25796.26 31398.90 25399.51 24194.68 22599.14 31797.83 21893.15 36098.63 306
CostFormer97.72 26497.73 23397.71 32299.15 27494.02 36299.54 13999.02 31794.67 35499.04 23299.35 28692.35 30199.77 19098.50 16497.94 24099.34 204
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22299.20 20199.73 14993.86 25999.36 27998.87 10597.56 25698.62 309
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 33999.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
patch_mono-299.26 6999.62 598.16 29299.81 4694.59 35599.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24399.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18397.95 20799.45 14599.02 233
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38499.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 32699.01 23599.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
v192192097.80 25297.45 26198.84 22398.80 32598.53 20599.52 14899.34 25096.15 32399.24 19099.47 25593.98 25499.29 29395.40 33295.13 32998.69 274
MIMVSNet195.51 33095.04 33596.92 34697.38 37495.60 33299.52 14899.50 13593.65 36496.97 35899.17 31885.28 37296.56 38988.36 38495.55 32098.60 321
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
UniMVSNet_ETH3D97.32 29596.81 30398.87 21599.40 20897.46 26699.51 15699.53 9695.86 33498.54 30399.77 12982.44 38399.66 23098.68 13797.52 25999.50 176
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32498.61 8499.35 16798.92 34794.78 21599.77 19099.35 5198.11 23799.54 161
v119297.81 25097.44 26698.91 20498.88 31498.68 19199.51 15699.34 25096.18 31999.20 20199.34 29094.03 25299.36 27995.32 33495.18 32798.69 274
test20.0396.12 32395.96 32296.63 35097.44 37395.45 33999.51 15699.38 23196.55 29396.16 36499.25 31093.76 26396.17 39087.35 38894.22 34598.27 348
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25799.35 5198.99 18399.51 173
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25398.70 13298.93 18699.67 122
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.37 344
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
pm-mvs197.68 27197.28 28898.88 21199.06 29098.62 19799.50 16399.45 19396.32 30897.87 33599.79 11592.47 29599.35 28297.54 24993.54 35598.67 286
EI-MVSNet98.67 15698.67 13698.68 24099.35 21997.97 24299.50 16399.38 23196.93 26899.20 20199.83 6897.87 10599.36 27998.38 17397.56 25698.71 265
CVMVSNet98.57 16298.67 13698.30 28299.35 21995.59 33399.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25798.75 12698.56 20999.85 36
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27099.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23599.35 5194.46 34098.72 263
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 35797.83 17299.17 20898.45 36391.67 31499.83 16393.22 35998.18 23298.96 240
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24399.77 5199.82 7698.78 4899.94 6997.56 24799.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 32895.65 32896.32 35499.67 11191.35 38199.49 17496.74 39198.25 11795.24 36998.10 37374.96 38899.90 11699.53 3298.85 19397.70 373
TransMVSNet (Re)97.15 30296.58 30798.86 21999.12 27698.85 17699.49 17498.91 33295.48 33897.16 35399.80 10393.38 26899.11 32594.16 35191.73 36898.62 309
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 29899.36 10299.49 17499.51 11597.95 16098.97 24399.13 32396.30 15899.38 27098.36 17793.34 35698.66 294
EPMVS97.82 24897.65 24098.35 27798.88 31495.98 32699.49 17494.71 39997.57 20099.26 18899.48 25292.46 29899.71 21397.87 21399.08 17699.35 202
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 35998.81 26699.68 17493.23 27099.42 26798.84 11594.42 34298.76 255
v124097.69 26997.32 28498.79 23298.85 32298.43 22099.48 17899.36 24096.11 32699.27 18499.36 28393.76 26399.24 30294.46 34595.23 32698.70 270
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 26999.19 7193.27 35898.71 265
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31098.98 15099.48 17899.53 9697.76 18098.71 27799.46 25996.43 15599.22 30698.57 15592.87 36398.69 274
TDRefinement95.42 33294.57 33997.97 30689.83 40096.11 32599.48 17898.75 34996.74 27696.68 35999.88 3688.65 35199.71 21398.37 17582.74 38998.09 356
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
NR-MVSNet97.97 22597.61 24599.02 18398.87 31899.26 11599.47 18499.42 20997.63 19597.08 35599.50 24495.07 20299.13 32097.86 21493.59 35498.68 279
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19399.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38198.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 29696.76 30598.82 22699.37 21598.07 23799.45 18899.36 24097.56 20297.89 33498.95 34283.70 37898.82 35596.03 31598.56 20999.58 154
tt080597.97 22597.77 22698.57 24899.59 14896.61 31099.45 18899.08 31098.21 12498.88 25699.80 10388.66 35099.70 21998.58 15297.72 24699.39 198
tpm297.44 29297.34 28197.74 32199.15 27494.36 35999.45 18898.94 32593.45 36898.90 25399.44 26191.35 32299.59 24797.31 26598.07 23899.29 208
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 29698.86 26399.29 30290.26 33398.98 34196.44 30896.56 29498.58 323
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27598.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 28899.01 23599.40 27297.09 12999.86 13997.68 23799.53 14199.10 218
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20799.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
test_040296.64 31296.24 31597.85 31298.85 32296.43 31699.44 19499.26 28593.52 36596.98 35799.52 23888.52 35399.20 31392.58 36997.50 26397.93 368
ACMP97.20 1198.06 20597.94 20998.45 26599.37 21597.01 29199.44 19499.49 14397.54 20698.45 30899.79 11591.95 30699.72 20797.91 20997.49 26698.62 309
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 26598.55 35498.16 23199.43 19893.68 40197.23 35098.46 36289.30 34499.22 30695.43 33198.22 22797.98 365
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
tpm cat197.39 29397.36 27697.50 33099.17 26893.73 36599.43 19899.31 27191.27 37798.71 27799.08 32794.31 24399.77 19096.41 31098.50 21399.00 234
tpm97.67 27497.55 24898.03 29999.02 29695.01 34899.43 19898.54 36696.44 30299.12 21499.34 29091.83 30999.60 24697.75 22896.46 29699.48 178
GBi-Net97.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
test197.68 27197.48 25698.29 28399.51 17097.26 27399.43 19899.48 15596.49 29699.07 22499.32 29790.26 33398.98 34197.10 27896.65 29198.62 309
FMVSNet196.84 30996.36 31398.29 28399.32 23197.26 27399.43 19899.48 15595.11 34398.55 30299.32 29783.95 37798.98 34195.81 32096.26 30198.62 309
testgi97.65 27697.50 25598.13 29699.36 21896.45 31599.42 20599.48 15597.76 18097.87 33599.45 26091.09 32598.81 35694.53 34498.52 21299.13 217
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23299.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36596.03 33199.19 20499.74 14391.87 30799.92 9599.16 7598.29 22499.70 113
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25299.28 6399.84 7799.63 140
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23299.72 103
baseline297.87 23797.55 24898.82 22699.18 26298.02 23999.41 20796.58 39396.97 26296.51 36099.17 31893.43 26799.57 24897.71 23399.03 18098.86 244
DU-MVS98.08 20397.79 22198.96 19398.87 31898.98 15099.41 20799.45 19397.87 16698.71 27799.50 24494.82 21099.22 30698.57 15592.87 36398.68 279
Baseline_NR-MVSNet97.76 25597.45 26198.68 24099.09 28498.29 22599.41 20798.85 34195.65 33698.63 29499.67 18094.82 21099.10 32798.07 20292.89 36298.64 298
XVG-ACMP-BASELINE97.83 24597.71 23598.20 28999.11 27896.33 31999.41 20799.52 10198.06 15299.05 23199.50 24489.64 34299.73 20397.73 23097.38 27798.53 326
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 25999.04 23299.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
9.1499.10 7699.72 9199.40 21599.51 11597.53 20799.64 9399.78 12198.84 4199.91 10597.63 23899.82 90
D2MVS98.41 17298.50 16198.15 29599.26 24496.62 30999.40 21599.61 4897.71 18698.98 24199.36 28396.04 16499.67 22798.70 13297.41 27498.15 354
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36399.22 19599.89 3090.23 33699.93 8499.26 6798.33 21999.66 125
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28199.07 22499.28 30492.93 27698.98 34197.10 27896.65 29198.56 325
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37297.10 25199.65 8999.79 11584.79 37399.91 10599.28 6398.38 21699.69 115
HQP_MVS98.27 18598.22 17898.44 26899.29 23796.97 29599.39 21999.47 17398.97 5199.11 21699.61 20792.71 28699.69 22497.78 22297.63 24998.67 286
plane_prior299.39 21998.97 51
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21699.89 3095.50 18799.94 6999.50 3699.97 799.89 20
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 18899.28 18099.28 30498.34 8999.85 14596.96 28799.45 14599.69 115
gg-mvs-nofinetune96.17 32295.32 33398.73 23698.79 32698.14 23399.38 22494.09 40091.07 38098.07 32891.04 39689.62 34399.35 28296.75 29799.09 17598.68 279
VDDNet97.55 28197.02 29999.16 16899.49 18198.12 23599.38 22499.30 27595.35 33999.68 7499.90 2682.62 38299.93 8499.31 5898.13 23699.42 193
pmmvs696.53 31496.09 31997.82 31798.69 34295.47 33899.37 22699.47 17393.46 36797.41 34499.78 12187.06 36599.33 28596.92 29292.70 36598.65 296
PM-MVS92.96 34992.23 35395.14 35895.61 38789.98 38499.37 22698.21 37394.80 35295.04 37497.69 37765.06 39297.90 37794.30 34689.98 37897.54 377
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21499.72 103
IterMVS-LS98.46 16798.42 16598.58 24799.59 14898.00 24099.37 22699.43 20796.94 26799.07 22499.59 21297.87 10599.03 33498.32 18195.62 31898.71 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 26897.28 28898.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38699.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 31696.12 31797.40 33298.65 34595.65 33199.36 23099.51 11597.13 24596.04 36698.99 33788.40 35498.17 37096.71 29990.27 37698.40 341
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 33494.73 33797.15 33695.53 38995.94 32799.35 23599.10 30795.13 34193.55 37997.54 37888.15 35897.91 37694.58 34389.69 37997.61 374
MDTV_nov1_ep13_2view95.18 34699.35 23596.84 27299.58 11095.19 20097.82 21999.46 186
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34198.19 12799.67 7899.85 5482.98 38099.92 9599.49 4098.32 22399.60 146
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20398.70 28399.89 3095.83 17599.90 11698.10 19499.90 3999.08 223
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 36177.86 36797.62 32597.91 36596.12 32499.33 24099.28 2818.40 40425.05 40599.27 30784.11 37699.33 28589.20 38098.22 22797.42 378
ETVMVS97.50 28696.90 30199.29 15199.23 25098.78 18699.32 24198.90 33497.52 20998.56 30198.09 37484.72 37499.69 22497.86 21497.88 24299.39 198
FMVSNet596.43 31796.19 31697.15 33699.11 27895.89 32899.32 24199.52 10194.47 35898.34 31499.07 32887.54 36397.07 38592.61 36895.72 31698.47 332
dp97.75 25997.80 22097.59 32799.10 28193.71 36699.32 24198.88 33796.48 29999.08 22399.55 22692.67 28999.82 16996.52 30698.58 20699.24 211
tpmvs97.98 22298.02 20097.84 31499.04 29494.73 35299.31 24499.20 29696.10 33098.76 27399.42 26594.94 20399.81 17496.97 28698.45 21598.97 238
tpmrst98.33 17998.48 16297.90 31099.16 27094.78 35199.31 24499.11 30697.27 23399.45 13499.59 21295.33 19399.84 15198.48 16598.61 20399.09 222
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24199.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
JIA-IIPM97.50 28697.02 29998.93 19898.73 33697.80 25499.30 24698.97 32291.73 37698.91 25194.86 39095.10 20199.71 21397.58 24297.98 23999.28 209
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 34897.70 18898.94 24799.65 18692.91 27999.74 19796.52 30699.55 14099.64 136
Syy-MVS97.09 30597.14 29496.95 34499.00 29892.73 37599.29 25099.39 22397.06 25597.41 34498.15 36993.92 25798.68 36191.71 37198.34 21799.45 189
myMVS_eth3d96.89 30796.37 31298.43 27099.00 29897.16 27799.29 25099.39 22397.06 25597.41 34498.15 36983.46 37998.68 36195.27 33598.34 21799.45 189
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25099.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
LF4IMVS97.52 28397.46 26097.70 32398.98 30495.55 33499.29 25098.82 34498.07 14898.66 28699.64 19289.97 33899.61 24597.01 28296.68 29097.94 367
hse-mvs297.50 28697.14 29498.59 24499.49 18197.05 28699.28 25499.22 29298.94 5499.66 8399.42 26594.93 20499.65 23599.48 4183.80 38899.08 223
OPM-MVS98.19 19098.10 18898.45 26598.88 31497.07 28499.28 25499.38 23198.57 8699.22 19599.81 9092.12 30299.66 23098.08 19997.54 25898.61 318
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25499.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25499.91 397.42 22199.67 7899.37 28097.53 11399.88 13198.98 9097.29 27998.42 338
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25499.52 10198.07 14899.66 8399.81 9097.79 10899.78 18897.79 22199.81 9399.60 146
testing22297.16 30196.50 30999.16 16899.16 27098.47 21799.27 25998.66 36197.71 18698.23 31998.15 36982.28 38499.84 15197.36 26397.66 24899.18 214
AUN-MVS96.88 30896.31 31498.59 24499.48 18997.04 28999.27 25999.22 29297.44 21898.51 30499.41 26991.97 30599.66 23097.71 23383.83 38799.07 228
pmmvs597.52 28397.30 28698.16 29298.57 35396.73 30499.27 25998.90 33496.14 32498.37 31299.53 23591.54 31999.14 31797.51 25195.87 31198.63 306
131498.68 15598.54 15999.11 17498.89 31398.65 19499.27 25999.49 14396.89 26997.99 33099.56 22397.72 11199.83 16397.74 22999.27 16098.84 246
MVS97.28 29696.55 30899.48 11798.78 32998.95 16299.27 25999.39 22383.53 39098.08 32599.54 23196.97 13599.87 13694.23 34999.16 16599.63 140
BH-untuned98.42 17098.36 16898.59 24499.49 18196.70 30599.27 25999.13 30597.24 23798.80 26899.38 27795.75 17899.74 19797.07 28199.16 16599.33 205
MDTV_nov1_ep1398.32 17299.11 27894.44 35799.27 25998.74 35297.51 21099.40 15299.62 20394.78 21599.76 19497.59 24198.81 198
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 25999.57 6496.40 30699.42 14399.68 17498.75 5599.80 18097.98 20599.72 11899.44 191
PatchmatchNetpermissive98.31 18098.36 16898.19 29099.16 27095.32 34299.27 25998.92 32897.37 22599.37 16099.58 21694.90 20799.70 21997.43 26099.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 27997.28 28898.62 24299.64 12898.03 23899.26 26898.74 35297.68 19099.09 22298.32 36791.66 31699.81 17492.88 36498.22 22798.03 360
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 26899.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27099.48 15597.23 23899.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27099.51 11591.90 37599.30 17699.63 19898.78 4899.64 23888.09 38599.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27299.52 10196.85 27199.27 18499.48 25298.25 9399.91 10597.76 22699.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27365.14 40294.18 24899.71 21397.58 242
ADS-MVSNet298.02 21598.07 19597.87 31199.33 22595.19 34599.23 27399.08 31096.24 31499.10 21999.67 18094.11 24998.93 35196.81 29599.05 17899.48 178
ADS-MVSNet98.20 18998.08 19298.56 25199.33 22596.48 31499.23 27399.15 30296.24 31499.10 21999.67 18094.11 24999.71 21396.81 29599.05 17899.48 178
EPNet_dtu98.03 21397.96 20598.23 28898.27 36195.54 33699.23 27398.75 34999.02 3897.82 33799.71 15496.11 16299.48 25493.04 36299.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19397.93 21098.87 21599.18 26298.49 21399.22 27799.33 25796.96 26399.56 11499.38 27794.33 24199.00 33994.83 34298.58 20699.14 215
RPMNet96.72 31195.90 32399.19 16599.18 26298.49 21399.22 27799.52 10188.72 38699.56 11497.38 38094.08 25199.95 5986.87 39098.58 20699.14 215
plane_prior96.97 29599.21 27998.45 9697.60 252
WR-MVS98.06 20597.73 23399.06 17898.86 32199.25 11699.19 28099.35 24697.30 23198.66 28699.43 26393.94 25599.21 31198.58 15294.28 34498.71 265
new-patchmatchnet94.48 34294.08 34395.67 35795.08 39292.41 37699.18 28199.28 28194.55 35793.49 38097.37 38187.86 36197.01 38691.57 37288.36 38097.61 374
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28199.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25499.77 10799.55 159
EG-PatchMatch MVS95.97 32595.69 32796.81 34897.78 36892.79 37499.16 28398.93 32696.16 32194.08 37799.22 31382.72 38199.47 25595.67 32697.50 26398.17 353
PatchT97.03 30696.44 31198.79 23298.99 30198.34 22499.16 28399.07 31392.13 37499.52 12397.31 38394.54 23498.98 34188.54 38398.73 20199.03 231
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28399.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 23099.75 11299.48 178
MDA-MVSNet-bldmvs94.96 33793.98 34497.92 30898.24 36297.27 27199.15 28699.33 25793.80 36280.09 39799.03 33388.31 35597.86 37893.49 35794.36 34398.62 309
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28699.41 21296.60 29099.60 10699.55 22698.83 4299.90 11697.48 25499.83 8699.78 80
save fliter99.76 6599.59 7099.14 28899.40 22099.00 43
WB-MVSnew97.65 27697.65 24097.63 32498.78 32997.62 26299.13 28998.33 36997.36 22699.07 22498.94 34395.64 18499.15 31692.95 36398.68 20296.12 388
testf190.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
APD_test290.42 35590.68 35789.65 37597.78 36873.97 40399.13 28998.81 34589.62 38291.80 38698.93 34462.23 39598.80 35786.61 39191.17 37096.19 386
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29299.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 223
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29299.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 234
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29299.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
N_pmnet94.95 33895.83 32592.31 36698.47 35779.33 39899.12 29292.81 40493.87 36197.68 34099.13 32393.87 25899.01 33891.38 37396.19 30298.59 322
MDA-MVSNet_test_wron95.45 33194.60 33898.01 30298.16 36397.21 27699.11 29899.24 28993.49 36680.73 39698.98 33993.02 27498.18 36994.22 35094.45 34198.64 298
Patchmtry97.75 25997.40 27398.81 22999.10 28198.87 17299.11 29899.33 25794.83 35198.81 26699.38 27794.33 24199.02 33696.10 31395.57 31998.53 326
YYNet195.36 33394.51 34097.92 30897.89 36697.10 28099.10 30099.23 29093.26 36980.77 39599.04 33292.81 28098.02 37394.30 34694.18 34698.64 298
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30199.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 201
SCA98.19 19098.16 18098.27 28799.30 23395.55 33499.07 30298.97 32297.57 20099.43 14099.57 22092.72 28499.74 19797.58 24299.20 16399.52 167
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30299.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30299.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28399.80 9799.85 36
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30599.77 997.74 18499.50 12699.53 23595.41 18999.84 15197.17 27799.64 13199.44 191
OpenMVS_ROBcopyleft92.34 2094.38 34393.70 34996.41 35397.38 37493.17 37299.06 30598.75 34986.58 38794.84 37598.26 36881.53 38599.32 28889.01 38197.87 24396.76 381
TEST999.67 11199.65 5799.05 30799.41 21296.22 31698.95 24599.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 30799.41 21296.28 31098.95 24599.49 24798.76 5299.91 10597.63 23899.72 11899.75 88
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 30799.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30799.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 31896.03 32097.41 33198.13 36495.16 34799.05 30799.20 29693.94 36097.39 34798.79 35391.61 31899.04 33290.43 37695.77 31398.05 359
Patchmatch-test97.93 22897.65 24098.77 23499.18 26297.07 28499.03 31299.14 30496.16 32198.74 27499.57 22094.56 23199.72 20793.36 35899.11 17199.52 167
test_899.67 11199.61 6799.03 31299.41 21296.28 31098.93 24999.48 25298.76 5299.91 105
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31299.47 17396.98 26199.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
IterMVS-SCA-FT97.82 24897.75 23198.06 29899.57 15296.36 31899.02 31599.49 14397.18 24198.71 27799.72 15392.72 28499.14 31797.44 25995.86 31298.67 286
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31599.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 237
MIMVSNet97.73 26297.45 26198.57 24899.45 19697.50 26599.02 31598.98 32196.11 32699.41 14799.14 32290.28 33298.74 35995.74 32298.93 18699.47 184
IterMVS97.83 24597.77 22698.02 30199.58 15096.27 32199.02 31599.48 15597.22 23998.71 27799.70 15892.75 28199.13 32097.46 25796.00 30698.67 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31599.91 397.67 19299.59 10999.75 13895.90 17399.73 20399.53 3299.02 18299.86 33
新几何299.01 320
BH-w/o98.00 22097.89 21698.32 28099.35 21996.20 32399.01 32098.90 33496.42 30498.38 31199.00 33695.26 19799.72 20796.06 31498.61 20399.03 231
test_prior499.56 7598.99 322
无先验98.99 32299.51 11596.89 26999.93 8497.53 25099.72 103
pmmvs498.13 19797.90 21298.81 22998.61 35098.87 17298.99 32299.21 29596.44 30299.06 22999.58 21695.90 17399.11 32597.18 27696.11 30498.46 335
HQP-NCC99.19 25998.98 32598.24 11898.66 286
ACMP_Plane99.19 25998.98 32598.24 11898.66 286
HQP-MVS98.02 21597.90 21298.37 27699.19 25996.83 30098.98 32599.39 22398.24 11898.66 28699.40 27292.47 29599.64 23897.19 27497.58 25498.64 298
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 32899.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 238
MVP-Stereo97.81 25097.75 23197.99 30597.53 37296.60 31198.96 32998.85 34197.22 23997.23 35099.36 28395.28 19499.46 25695.51 32899.78 10497.92 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 32998.34 10899.01 23599.52 23898.68 6497.96 20699.74 115
旧先验298.96 32996.70 27999.47 13199.94 6998.19 188
原ACMM298.95 332
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33299.85 698.82 6599.54 11999.73 14998.51 7899.74 19798.91 9999.88 5199.77 82
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33499.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33499.85 698.82 6599.65 8999.74 14398.51 7899.80 18098.83 11899.89 4899.64 136
pmmvs394.09 34593.25 35196.60 35194.76 39494.49 35698.92 33698.18 37589.66 38196.48 36198.06 37586.28 36697.33 38389.68 37987.20 38397.97 366
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 33699.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 234
test22299.75 7399.49 8798.91 33899.49 14396.42 30499.34 17099.65 18698.28 9299.69 12399.72 103
PMMVS286.87 35885.37 36291.35 37090.21 39983.80 38998.89 33997.45 38683.13 39191.67 38895.03 38848.49 40194.70 39485.86 39377.62 39395.54 389
miper_lstm_enhance98.00 22097.91 21198.28 28699.34 22397.43 26798.88 34099.36 24096.48 29998.80 26899.55 22695.98 16698.91 35297.27 26795.50 32298.51 328
MVS-HIRNet95.75 32995.16 33497.51 32999.30 23393.69 36798.88 34095.78 39485.09 38998.78 27192.65 39291.29 32399.37 27594.85 34199.85 6999.46 186
TR-MVS97.76 25597.41 27298.82 22699.06 29097.87 25098.87 34298.56 36496.63 28798.68 28599.22 31392.49 29499.65 23595.40 33297.79 24498.95 242
testdata198.85 34398.32 111
ET-MVSNet_ETH3D96.49 31595.64 32999.05 18099.53 16398.82 18198.84 34497.51 38597.63 19584.77 39099.21 31692.09 30398.91 35298.98 9092.21 36799.41 195
our_test_397.65 27697.68 23797.55 32898.62 34894.97 34998.84 34499.30 27596.83 27498.19 32199.34 29097.01 13399.02 33695.00 34096.01 30598.64 298
MS-PatchMatch97.24 30097.32 28496.99 34198.45 35893.51 37098.82 34699.32 26797.41 22298.13 32499.30 30088.99 34699.56 24995.68 32599.80 9797.90 370
c3_l98.12 19998.04 19798.38 27599.30 23397.69 26198.81 34799.33 25796.67 28198.83 26499.34 29097.11 12898.99 34097.58 24295.34 32498.48 330
ppachtmachnet_test97.49 29097.45 26197.61 32698.62 34895.24 34398.80 34899.46 18296.11 32698.22 32099.62 20396.45 15398.97 34893.77 35395.97 31098.61 318
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 34899.36 24096.33 30799.00 23999.12 32698.46 8199.84 15195.23 33699.37 15699.66 125
test0.0.03 197.71 26797.42 27198.56 25198.41 36097.82 25398.78 35098.63 36297.34 22798.05 32998.98 33994.45 23898.98 34195.04 33997.15 28698.89 243
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35099.91 396.74 27699.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35299.31 27197.34 22799.21 19899.07 32897.20 12599.82 16998.56 15898.87 19199.52 167
test12339.01 37042.50 37228.53 38539.17 40820.91 41098.75 35319.17 41019.83 40338.57 40266.67 40033.16 40515.42 40437.50 40429.66 40249.26 399
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35399.55 7797.25 23599.47 13199.77 12997.82 10799.87 13696.93 29099.90 3999.54 161
CLD-MVS98.16 19498.10 18898.33 27899.29 23796.82 30298.75 35399.44 20197.83 17299.13 21299.55 22692.92 27799.67 22798.32 18197.69 24798.48 330
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19298.10 18898.41 27199.23 25097.72 25798.72 35699.31 27196.60 29098.88 25699.29 30297.29 12399.13 32097.60 24095.99 30798.38 343
cl____98.01 21897.84 21998.55 25399.25 24897.97 24298.71 35799.34 25096.47 30198.59 30099.54 23195.65 18399.21 31197.21 27095.77 31398.46 335
DIV-MVS_self_test98.01 21897.85 21898.48 25999.24 24997.95 24698.71 35799.35 24696.50 29598.60 29999.54 23195.72 18099.03 33497.21 27095.77 31398.46 335
test-LLR98.06 20597.90 21298.55 25398.79 32697.10 28098.67 35997.75 38097.34 22798.61 29798.85 34994.45 23899.45 25797.25 26899.38 14999.10 218
TESTMET0.1,197.55 28197.27 29198.40 27398.93 30996.53 31298.67 35997.61 38396.96 26398.64 29399.28 30488.63 35299.45 25797.30 26699.38 14999.21 213
test-mter97.49 29097.13 29698.55 25398.79 32697.10 28098.67 35997.75 38096.65 28398.61 29798.85 34988.23 35699.45 25797.25 26899.38 14999.10 218
IB-MVS95.67 1896.22 31995.44 33298.57 24899.21 25596.70 30598.65 36297.74 38296.71 27897.27 34998.54 36186.03 36799.92 9598.47 16886.30 38499.10 218
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36399.10 30797.93 16299.42 14399.55 22698.67 6699.80 18095.80 32199.68 12699.61 144
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36496.82 38996.95 26599.54 11999.43 26391.66 31699.86 13998.08 19999.51 14299.22 212
DeepPCF-MVS98.18 398.81 13999.37 3097.12 33999.60 14691.75 37998.61 36499.44 20199.35 1299.83 3499.85 5498.70 6399.81 17499.02 8799.91 3199.81 61
cl2297.85 24097.64 24398.48 25999.09 28497.87 25098.60 36699.33 25797.11 25098.87 25999.22 31392.38 30099.17 31598.21 18695.99 30798.42 338
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 36799.15 30297.04 25898.90 25399.30 30089.83 33999.38 27096.70 30098.33 21999.62 142
TinyColmap97.12 30396.89 30297.83 31599.07 28795.52 33798.57 36798.74 35297.58 19997.81 33899.79 11588.16 35799.56 24995.10 33797.21 28398.39 342
eth_miper_zixun_eth98.05 21097.96 20598.33 27899.26 24497.38 26898.56 36999.31 27196.65 28398.88 25699.52 23896.58 14799.12 32497.39 26295.53 32198.47 332
CMPMVSbinary69.68 2394.13 34494.90 33691.84 36797.24 37880.01 39798.52 37099.48 15589.01 38491.99 38599.67 18085.67 36999.13 32095.44 33097.03 28796.39 385
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 29497.20 29297.75 32099.07 28795.20 34498.51 37199.04 31697.99 15898.31 31599.86 4989.02 34599.55 25195.67 32697.36 27898.49 329
ambc93.06 36592.68 39682.36 39098.47 37298.73 35795.09 37397.41 37955.55 39799.10 32796.42 30991.32 36997.71 371
miper_enhance_ethall98.16 19498.08 19298.41 27198.96 30797.72 25798.45 37399.32 26796.95 26598.97 24399.17 31897.06 13199.22 30697.86 21495.99 30798.29 347
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37499.71 1398.88 5999.62 10099.76 13596.63 14599.70 21999.46 4499.99 199.66 125
testmvs39.17 36943.78 37125.37 38636.04 40916.84 41198.36 37526.56 40820.06 40238.51 40367.32 39929.64 40615.30 40537.59 40339.90 40143.98 400
FPMVS84.93 36085.65 36182.75 38186.77 40263.39 40798.35 37698.92 32874.11 39383.39 39298.98 33950.85 40092.40 39684.54 39494.97 33292.46 391
KD-MVS_2432*160094.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
miper_refine_blended94.62 33993.72 34797.31 33397.19 38095.82 32998.34 37799.20 29695.00 34797.57 34198.35 36587.95 35998.10 37192.87 36577.00 39498.01 361
CL-MVSNet_self_test94.49 34193.97 34596.08 35596.16 38493.67 36898.33 37999.38 23195.13 34197.33 34898.15 36992.69 28896.57 38888.67 38279.87 39297.99 364
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38099.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
PAPM97.59 28097.09 29799.07 17799.06 29098.26 22798.30 38199.10 30794.88 34998.08 32599.34 29096.27 15999.64 23889.87 37898.92 18899.31 207
Patchmatch-RL test95.84 32795.81 32695.95 35695.61 38790.57 38298.24 38298.39 36895.10 34595.20 37198.67 35794.78 21597.77 37996.28 31290.02 37799.51 173
UnsupCasMVSNet_bld93.53 34792.51 35296.58 35297.38 37493.82 36398.24 38299.48 15591.10 37993.10 38196.66 38574.89 38998.37 36694.03 35287.71 38297.56 376
LCM-MVSNet86.80 35985.22 36391.53 36987.81 40180.96 39598.23 38498.99 32071.05 39490.13 38996.51 38648.45 40296.88 38790.51 37585.30 38596.76 381
cascas97.69 26997.43 27098.48 25998.60 35197.30 26998.18 38599.39 22392.96 37198.41 30998.78 35493.77 26299.27 29798.16 19298.61 20398.86 244
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 38699.50 13597.50 21199.38 15899.41 26996.37 15699.81 17499.11 7898.54 21199.51 173
PCF-MVS97.08 1497.66 27597.06 29899.47 12099.61 14199.09 13698.04 38799.25 28791.24 37898.51 30499.70 15894.55 23399.91 10592.76 36799.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 32495.47 33097.94 30799.31 23294.34 36097.81 38899.70 1597.12 24797.46 34398.75 35589.71 34099.79 18397.69 23681.69 39099.68 119
E-PMN80.61 36379.88 36582.81 38090.75 39876.38 40197.69 38995.76 39566.44 39883.52 39192.25 39362.54 39487.16 40068.53 40061.40 39784.89 398
ANet_high77.30 36574.86 36984.62 37975.88 40577.61 39997.63 39093.15 40388.81 38564.27 40089.29 39736.51 40483.93 40275.89 39752.31 39992.33 393
EMVS80.02 36479.22 36682.43 38291.19 39776.40 40097.55 39192.49 40566.36 39983.01 39391.27 39564.63 39385.79 40165.82 40160.65 39885.08 397
MVEpermissive76.82 2176.91 36674.31 37084.70 37885.38 40476.05 40296.88 39293.17 40267.39 39771.28 39989.01 39821.66 40987.69 39971.74 39972.29 39690.35 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 35391.36 35590.31 37295.85 38573.72 40594.89 39399.25 28768.39 39695.82 36799.02 33580.50 38698.95 35093.64 35594.89 33698.25 350
Gipumacopyleft90.99 35490.15 35993.51 36298.73 33690.12 38393.98 39499.45 19379.32 39292.28 38494.91 38969.61 39097.98 37587.42 38795.67 31792.45 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 36774.97 36879.01 38370.98 40655.18 40893.37 39598.21 37365.08 40061.78 40193.83 39121.74 40892.53 39578.59 39591.12 37289.34 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 36181.52 36486.66 37766.61 40768.44 40692.79 39697.92 37768.96 39580.04 39899.85 5485.77 36896.15 39197.86 21443.89 40095.39 390
wuyk23d40.18 36841.29 37336.84 38486.18 40349.12 40979.73 39722.81 40927.64 40125.46 40428.45 40421.98 40748.89 40355.80 40223.56 40312.51 401
test_blank0.13 3740.17 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4061.57 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k24.64 37132.85 3740.00 3870.00 4100.00 4120.00 39899.51 1150.00 4050.00 40699.56 22396.58 1470.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.27 37311.03 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 40699.01 180.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.30 37211.06 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40699.58 2160.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.02 3750.03 3780.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.27 4060.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS97.16 27795.47 329
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36498.30 18399.80 9799.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 410
eth-test0.00 410
ZD-MVS99.71 9699.79 3099.61 4896.84 27299.56 11499.54 23198.58 7299.96 3096.93 29099.75 112
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 194
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
test_post65.99 40194.65 22899.73 203
patchmatchnet-post98.70 35694.79 21499.74 197
gm-plane-assit98.54 35592.96 37394.65 35599.15 32199.64 23897.56 247
test9_res97.49 25399.72 11899.75 88
agg_prior297.21 27099.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 25999.91 105
TestCases99.31 14399.86 2098.48 21599.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30399.83 8699.59 150
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16399.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 27599.29 17999.64 19298.43 8399.94 6996.92 29299.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21399.12 21499.66 18598.67 6699.91 10597.70 23599.69 12399.71 112
testdata299.95 5996.67 302
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25399.43 14099.70 15898.87 3799.94 6997.76 22699.64 13199.72 103
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
plane_prior799.29 23797.03 290
plane_prior699.27 24296.98 29492.71 286
plane_prior599.47 17399.69 22497.78 22297.63 24998.67 286
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 216
plane_prior199.26 244
n20.00 411
nn0.00 411
door-mid98.05 376
lessismore_v097.79 31998.69 34295.44 34094.75 39895.71 36899.87 4488.69 34999.32 28895.89 31894.93 33498.62 309
LGP-MVS_train98.49 25799.33 22597.05 28699.55 7797.46 21399.24 19099.83 6892.58 29199.72 20798.09 19597.51 26198.68 279
test1199.35 246
door97.92 377
HQP5-MVS96.83 300
BP-MVS97.19 274
HQP4-MVS98.66 28699.64 23898.64 298
HQP3-MVS99.39 22397.58 254
HQP2-MVS92.47 295
NP-MVS99.23 25096.92 29899.40 272
ACMMP++_ref97.19 284
ACMMP++97.43 273
Test By Simon98.75 55
ITE_SJBPF98.08 29799.29 23796.37 31798.92 32898.34 10898.83 26499.75 13891.09 32599.62 24495.82 31997.40 27598.25 350
DeepMVS_CXcopyleft93.34 36399.29 23782.27 39199.22 29285.15 38896.33 36299.05 33190.97 32799.73 20393.57 35697.77 24598.01 361