This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2399.48 1899.54 10699.76 6899.42 10399.90 199.55 8098.56 9699.78 5699.70 16498.65 7199.79 20199.65 2799.78 11399.41 211
mmtdpeth96.95 32596.71 32497.67 34499.33 23894.90 37199.89 299.28 29298.15 14499.72 7798.57 37886.56 38399.90 12899.82 1889.02 40298.20 372
SPE-MVS-test99.49 2599.48 1899.54 10699.78 5799.30 11999.89 299.58 6398.56 9699.73 7299.69 17498.55 7899.82 18699.69 2399.85 7699.48 190
MVSFormer99.17 8899.12 8199.29 16499.51 17898.94 17399.88 499.46 19397.55 22199.80 4999.65 19497.39 12199.28 31399.03 9599.85 7699.65 135
test_djsdf98.67 16698.57 16698.98 20198.70 36298.91 17799.88 499.46 19397.55 22199.22 20799.88 4195.73 18799.28 31399.03 9597.62 27198.75 279
OurMVSNet-221017-097.88 24697.77 23798.19 30698.71 36196.53 32899.88 499.00 33497.79 19398.78 28599.94 691.68 32499.35 30397.21 28996.99 30698.69 295
EC-MVSNet99.44 4299.39 3299.58 9999.56 16299.49 9499.88 499.58 6398.38 11399.73 7299.69 17498.20 9999.70 23999.64 2999.82 9799.54 170
DVP-MVS++99.59 1199.50 1699.88 999.51 17899.88 899.87 899.51 12198.99 5199.88 2699.81 9799.27 599.96 3298.85 12499.80 10499.81 65
FOURS199.91 199.93 199.87 899.56 7299.10 3399.81 45
K. test v397.10 32296.79 32298.01 31998.72 35996.33 33599.87 897.05 40697.59 21596.16 38599.80 11088.71 36399.04 35196.69 32096.55 31298.65 317
FC-MVSNet-test98.75 15998.62 15999.15 18599.08 30699.45 10099.86 1199.60 5498.23 13498.70 29799.82 8396.80 14499.22 32599.07 9196.38 31598.79 270
v7n97.87 24897.52 26498.92 21298.76 35598.58 21099.84 1299.46 19396.20 33798.91 26499.70 16494.89 21899.44 28496.03 33593.89 37298.75 279
DTE-MVSNet97.51 30097.19 30898.46 27898.63 36898.13 24299.84 1299.48 16396.68 29997.97 35099.67 18792.92 28798.56 38496.88 31392.60 38898.70 291
3Dnovator97.25 999.24 8199.05 9099.81 4899.12 29599.66 5899.84 1299.74 1099.09 3898.92 26399.90 2995.94 17899.98 1398.95 10499.92 2899.79 78
FIs98.78 15698.63 15499.23 17599.18 27999.54 8599.83 1599.59 5998.28 12598.79 28499.81 9796.75 14799.37 29699.08 9096.38 31598.78 271
MGCFI-Net99.01 12798.85 13099.50 12799.42 21199.26 12599.82 1699.48 16398.60 9399.28 19198.81 36797.04 13799.76 21299.29 6897.87 26099.47 196
test_fmvs392.10 37391.77 37693.08 38796.19 40686.25 40799.82 1698.62 38396.65 30295.19 39396.90 40755.05 42295.93 41496.63 32590.92 39697.06 403
jajsoiax98.43 17898.28 18598.88 22398.60 37298.43 22899.82 1699.53 10298.19 13998.63 30999.80 11093.22 28299.44 28499.22 7597.50 28398.77 275
OpenMVScopyleft96.50 1698.47 17598.12 19699.52 12099.04 31399.53 8899.82 1699.72 1194.56 37698.08 34399.88 4194.73 23099.98 1397.47 27499.76 11999.06 251
SDMVSNet99.11 10898.90 12099.75 6399.81 4699.59 7599.81 2099.65 3398.78 7999.64 10699.88 4194.56 24099.93 9299.67 2598.26 23999.72 108
nrg03098.64 16998.42 17599.28 16899.05 31299.69 5299.81 2099.46 19398.04 16799.01 24899.82 8396.69 14999.38 29399.34 6294.59 35998.78 271
HPM-MVScopyleft99.42 4799.28 6099.83 4499.90 499.72 4799.81 2099.54 8997.59 21599.68 8599.63 20698.91 3799.94 7498.58 16599.91 3599.84 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9798.99 10499.53 11499.65 13299.06 15299.81 2099.33 26897.43 23899.60 11999.88 4197.14 13199.84 16699.13 8398.94 19799.69 121
3Dnovator+97.12 1399.18 8698.97 10899.82 4599.17 28799.68 5399.81 2099.51 12199.20 2098.72 29099.89 3495.68 18999.97 2198.86 12299.86 6999.81 65
sasdasda99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
FA-MVS(test-final)98.75 15998.53 17099.41 14099.55 16699.05 15499.80 2599.01 33396.59 31299.58 12399.59 22095.39 19799.90 12897.78 24099.49 15499.28 228
GeoE98.85 14898.62 15999.53 11499.61 14799.08 14999.80 2599.51 12197.10 27099.31 18499.78 12995.23 20699.77 20898.21 20299.03 19299.75 92
canonicalmvs99.02 12398.86 12899.51 12299.42 21199.32 11399.80 2599.48 16398.63 8999.31 18498.81 36797.09 13399.75 21599.27 7197.90 25799.47 196
v897.95 23797.63 25598.93 21098.95 32798.81 19199.80 2599.41 22396.03 35199.10 23299.42 27794.92 21699.30 31196.94 30894.08 36998.66 315
Vis-MVSNet (Re-imp)98.87 13898.72 14399.31 15699.71 10198.88 17999.80 2599.44 21297.91 17799.36 17599.78 12995.49 19599.43 28897.91 22799.11 18399.62 149
Anonymous2024052196.20 34195.89 34497.13 35997.72 39394.96 37099.79 3199.29 29093.01 39097.20 37099.03 34789.69 35398.36 38891.16 39596.13 32198.07 379
PS-MVSNAJss98.92 13498.92 11798.90 21898.78 34898.53 21499.78 3299.54 8998.07 16099.00 25299.76 14199.01 1899.37 29699.13 8397.23 29998.81 269
PEN-MVS97.76 26897.44 28098.72 24798.77 35398.54 21399.78 3299.51 12197.06 27498.29 33399.64 20092.63 30098.89 37598.09 21193.16 38098.72 284
anonymousdsp98.44 17798.28 18598.94 20898.50 37898.96 16799.77 3499.50 14197.07 27298.87 27299.77 13794.76 22899.28 31398.66 15197.60 27298.57 343
SixPastTwentyTwo97.50 30197.33 29798.03 31698.65 36696.23 34099.77 3498.68 38097.14 26397.90 35199.93 1090.45 34299.18 33397.00 30296.43 31498.67 307
QAPM98.67 16698.30 18499.80 5199.20 27399.67 5699.77 3499.72 1194.74 37398.73 28999.90 2995.78 18599.98 1396.96 30699.88 5899.76 91
SSC-MVS92.73 37293.73 36789.72 39795.02 41681.38 41799.76 3799.23 30294.87 37092.80 40498.93 35994.71 23291.37 42174.49 42093.80 37396.42 407
test_vis3_rt87.04 38085.81 38390.73 39493.99 41881.96 41599.76 3790.23 42992.81 39381.35 41791.56 41740.06 42699.07 34894.27 36988.23 40491.15 417
dcpmvs_299.23 8299.58 798.16 30899.83 3994.68 37499.76 3799.52 10799.07 4199.98 799.88 4198.56 7799.93 9299.67 2599.98 499.87 31
RRT-MVS98.91 13598.75 14199.39 14599.46 20198.61 20899.76 3799.50 14198.06 16499.81 4599.88 4193.91 26899.94 7499.11 8599.27 17199.61 151
HPM-MVS_fast99.51 2199.40 3099.85 3299.91 199.79 3399.76 3799.56 7297.72 20199.76 6699.75 14499.13 1299.92 10499.07 9199.92 2899.85 37
MVSMamba_PlusPlus99.46 3499.41 2999.64 8599.68 11499.50 9399.75 4299.50 14198.27 12799.87 3199.92 1698.09 10499.94 7499.65 2799.95 1799.47 196
v1097.85 25197.52 26498.86 23098.99 32098.67 20099.75 4299.41 22395.70 35598.98 25499.41 28194.75 22999.23 32196.01 33794.63 35898.67 307
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7299.02 4499.88 2699.85 5999.18 1099.96 3299.22 7599.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11998.87 12699.57 10199.73 9299.32 11399.75 4299.20 30898.02 17099.56 12799.86 5496.54 15599.67 24798.09 21199.13 18299.73 101
test_vis1_n97.92 24197.44 28099.34 14999.53 17098.08 24499.74 4699.49 15199.15 23100.00 199.94 679.51 41099.98 1399.88 1599.76 11999.97 4
test_fmvs1_n98.41 18198.14 19399.21 17699.82 4297.71 26999.74 4699.49 15199.32 1699.99 299.95 385.32 39199.97 2199.82 1899.84 8499.96 7
balanced_conf0399.46 3499.39 3299.67 7499.55 16699.58 8099.74 4699.51 12198.42 11099.87 3199.84 6998.05 10799.91 11699.58 3399.94 2399.52 177
tttt051798.42 17998.14 19399.28 16899.66 12698.38 23199.74 4696.85 40897.68 20799.79 5199.74 14991.39 33299.89 14098.83 13099.56 14899.57 165
WB-MVS93.10 37094.10 36390.12 39695.51 41481.88 41699.73 5099.27 29595.05 36693.09 40398.91 36394.70 23391.89 42076.62 41894.02 37196.58 406
test_fmvs297.25 31697.30 30097.09 36199.43 20993.31 39299.73 5098.87 35698.83 7099.28 19199.80 11084.45 39699.66 25097.88 22997.45 28898.30 365
MonoMVSNet98.38 18598.47 17398.12 31398.59 37496.19 34299.72 5298.79 36697.89 17999.44 15299.52 24796.13 16998.90 37498.64 15397.54 27899.28 228
baseline99.15 9299.02 9899.53 11499.66 12699.14 14199.72 5299.48 16398.35 11899.42 15799.84 6996.07 17199.79 20199.51 4299.14 18199.67 128
RPSCF98.22 19698.62 15996.99 36299.82 4291.58 40199.72 5299.44 21296.61 30799.66 9499.89 3495.92 17999.82 18697.46 27599.10 18699.57 165
CSCG99.32 6599.32 4699.32 15599.85 2698.29 23399.71 5599.66 2898.11 15299.41 16199.80 11098.37 9299.96 3298.99 9999.96 1299.72 108
dmvs_re98.08 21398.16 19097.85 33299.55 16694.67 37599.70 5698.92 34498.15 14499.06 24299.35 30093.67 27699.25 31897.77 24397.25 29899.64 142
WR-MVS_H98.13 20797.87 22798.90 21899.02 31598.84 18599.70 5699.59 5997.27 25298.40 32599.19 33195.53 19399.23 32198.34 19393.78 37498.61 337
mvsmamba99.06 11798.96 11299.36 14799.47 19998.64 20499.70 5699.05 32897.61 21499.65 10199.83 7496.54 15599.92 10499.19 7799.62 14399.51 184
LTVRE_ROB97.16 1298.02 22597.90 22298.40 28899.23 26696.80 31799.70 5699.60 5497.12 26698.18 34099.70 16491.73 32399.72 22798.39 18697.45 28898.68 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 37491.26 37893.84 38395.52 41385.92 40899.69 6098.53 38795.31 36093.87 39996.37 41055.33 42198.27 38995.70 34390.98 39597.32 402
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17299.74 14998.81 4799.94 7498.79 13599.86 6999.84 43
X-MVStestdata96.55 33395.45 35299.87 1599.85 2699.83 1999.69 6099.68 2098.98 5499.37 17264.01 42698.81 4799.94 7498.79 13599.86 6999.84 43
V4298.06 21597.79 23298.86 23098.98 32398.84 18599.69 6099.34 26196.53 31499.30 18799.37 29494.67 23599.32 30897.57 26494.66 35798.42 357
mPP-MVS99.44 4299.30 5499.86 2599.88 1199.79 3399.69 6099.48 16398.12 15099.50 13999.75 14498.78 5199.97 2198.57 16899.89 5599.83 53
CP-MVS99.45 3899.32 4699.85 3299.83 3999.75 4399.69 6099.52 10798.07 16099.53 13499.63 20698.93 3699.97 2198.74 13999.91 3599.83 53
FE-MVS98.48 17498.17 18999.40 14199.54 16998.96 16799.68 6698.81 36395.54 35799.62 11399.70 16493.82 27199.93 9297.35 28399.46 15599.32 225
PS-CasMVS97.93 23897.59 25998.95 20698.99 32099.06 15299.68 6699.52 10797.13 26498.31 33099.68 18192.44 30999.05 35098.51 17694.08 36998.75 279
Vis-MVSNetpermissive99.12 10398.97 10899.56 10399.78 5799.10 14599.68 6699.66 2898.49 10299.86 3599.87 5094.77 22799.84 16699.19 7799.41 15999.74 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BP-MVS199.12 10398.94 11699.65 7999.51 17899.30 11999.67 6998.92 34498.48 10399.84 3799.69 17494.96 21299.92 10499.62 3099.79 11199.71 117
test_vis1_n_192098.63 17098.40 17799.31 15699.86 2097.94 25699.67 6999.62 4199.43 999.99 299.91 2287.29 380100.00 199.92 1399.92 2899.98 2
EIA-MVS99.18 8699.09 8699.45 13499.49 19199.18 13399.67 6999.53 10297.66 21099.40 16699.44 27398.10 10399.81 19198.94 10599.62 14399.35 220
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14198.70 8599.77 6099.49 25798.21 9899.95 6398.46 18299.77 11699.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 11298.97 10899.48 12899.49 19199.14 14199.67 6999.34 26197.31 24999.58 12399.76 14197.65 11799.82 18698.87 11799.07 18999.46 201
CP-MVSNet98.09 21197.78 23599.01 19798.97 32599.24 12899.67 6999.46 19397.25 25498.48 32299.64 20093.79 27299.06 34998.63 15594.10 36898.74 282
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18498.79 7699.68 8599.81 9798.43 8699.97 2198.88 11499.90 4499.83 53
HFP-MVS99.49 2599.37 3699.86 2599.87 1599.80 3099.66 7599.67 2398.15 14499.68 8599.69 17499.06 1699.96 3298.69 14799.87 6199.84 43
mvs_tets98.40 18498.23 18798.91 21698.67 36598.51 22099.66 7599.53 10298.19 13998.65 30699.81 9792.75 29199.44 28499.31 6597.48 28798.77 275
EU-MVSNet97.98 23298.03 20897.81 33898.72 35996.65 32499.66 7599.66 2898.09 15598.35 32899.82 8395.25 20598.01 39597.41 27995.30 34598.78 271
ACMMPR99.49 2599.36 3899.86 2599.87 1599.79 3399.66 7599.67 2398.15 14499.67 8999.69 17498.95 3099.96 3298.69 14799.87 6199.84 43
MP-MVScopyleft99.33 6399.15 7799.87 1599.88 1199.82 2599.66 7599.46 19398.09 15599.48 14399.74 14998.29 9599.96 3297.93 22699.87 6199.82 58
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 9099.01 10299.61 9399.81 4698.86 18399.65 8199.64 3699.39 1299.97 1599.94 693.20 28399.98 1399.55 3699.91 3599.99 1
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 14999.66 9499.68 18198.96 2599.96 3298.62 15699.87 6199.84 43
TranMVSNet+NR-MVSNet97.93 23897.66 25098.76 24598.78 34898.62 20699.65 8199.49 15197.76 19798.49 32199.60 21894.23 25398.97 36798.00 22292.90 38298.70 291
GDP-MVS99.08 11498.89 12399.64 8599.53 17099.34 11199.64 8499.48 16398.32 12299.77 6099.66 19295.14 20899.93 9298.97 10399.50 15399.64 142
ttmdpeth97.80 26497.63 25598.29 29898.77 35397.38 27999.64 8499.36 24998.78 7996.30 38399.58 22492.34 31299.39 29198.36 19195.58 33898.10 377
mvsany_test393.77 36793.45 37194.74 38095.78 40988.01 40699.64 8498.25 39198.28 12594.31 39797.97 39968.89 41498.51 38697.50 27090.37 39797.71 394
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 15999.55 13199.64 20098.91 3799.96 3298.72 14299.90 4499.82 58
tfpnnormal97.84 25597.47 27298.98 20199.20 27399.22 13099.64 8499.61 4896.32 32898.27 33499.70 16493.35 27999.44 28495.69 34495.40 34398.27 367
casdiffmvs_mvgpermissive99.15 9299.02 9899.55 10599.66 12699.09 14699.64 8499.56 7298.26 12999.45 14799.87 5096.03 17399.81 19199.54 3799.15 18099.73 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3899.31 5299.85 3299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.53 7999.95 6398.61 15999.81 10099.77 86
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10798.38 11399.76 6699.82 8398.75 5898.61 15999.81 10099.77 86
TSAR-MVS + MP.99.58 1299.50 1699.81 4899.91 199.66 5899.63 9099.39 23298.91 6499.78 5699.85 5999.36 299.94 7498.84 12799.88 5899.82 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 33996.03 34096.79 37097.31 39994.14 38299.63 9099.08 32296.17 34097.04 37499.06 34493.94 26597.76 40186.96 41095.06 35098.47 351
APD-MVS_3200maxsize99.48 2999.35 4099.85 3299.76 6899.83 1999.63 9099.54 8998.36 11799.79 5199.82 8398.86 4199.95 6398.62 15699.81 10099.78 84
test072699.85 2699.89 499.62 9599.50 14199.10 3399.86 3599.82 8398.94 32
EPNet98.86 14198.71 14599.30 16197.20 40198.18 23899.62 9598.91 34999.28 1898.63 30999.81 9795.96 17599.99 499.24 7499.72 12799.73 101
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 13398.67 14999.72 7199.85 2699.53 8899.62 9599.59 5992.65 39599.71 7999.78 12998.06 10699.90 12898.84 12799.91 3599.74 96
HY-MVS97.30 798.85 14898.64 15399.47 13199.42 21199.08 14999.62 9599.36 24997.39 24399.28 19199.68 18196.44 16199.92 10498.37 18998.22 24199.40 213
ACMMPcopyleft99.45 3899.32 4699.82 4599.89 899.67 5699.62 9599.69 1898.12 15099.63 10999.84 6998.73 6399.96 3298.55 17499.83 9399.81 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6899.19 7499.64 8599.82 4299.23 12999.62 9599.55 8098.94 6099.63 10999.95 395.82 18499.94 7499.37 5699.97 799.73 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8599.78 5799.15 14099.61 10199.45 20499.01 4699.89 2399.82 8399.01 1899.92 10499.56 3599.95 1799.85 37
reproduce_monomvs97.89 24597.87 22797.96 32599.51 17895.45 35899.60 10299.25 29899.17 2198.85 27799.49 25789.29 35799.64 25899.35 5796.31 31898.78 271
test250696.81 32996.65 32597.29 35699.74 8592.21 39999.60 10285.06 43099.13 2699.77 6099.93 1087.82 37899.85 15999.38 5599.38 16099.80 74
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16399.08 3999.91 1999.81 9799.20 799.96 3298.91 11199.85 7699.79 78
OPU-MVS99.64 8599.56 16299.72 4799.60 10299.70 16499.27 599.42 28998.24 20199.80 10499.79 78
GST-MVS99.40 5499.24 6899.85 3299.86 2099.79 3399.60 10299.67 2397.97 17299.63 10999.68 18198.52 8099.95 6398.38 18799.86 6999.81 65
EI-MVSNet-UG-set99.58 1299.57 899.64 8599.78 5799.14 14199.60 10299.45 20499.01 4699.90 2199.83 7498.98 2499.93 9299.59 3199.95 1799.86 33
ACMH97.28 898.10 21097.99 21298.44 28399.41 21696.96 30999.60 10299.56 7298.09 15598.15 34199.91 2290.87 33999.70 23998.88 11497.45 28898.67 307
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 22198.05 20698.00 32199.74 8594.37 37999.59 10994.98 41899.13 2699.66 9499.93 1090.67 34199.84 16699.40 5499.38 16099.80 74
SR-MVS99.43 4599.29 5899.86 2599.75 7899.83 1999.59 10999.62 4198.21 13799.73 7299.79 12298.68 6799.96 3298.44 18499.77 11699.79 78
thres100view90097.76 26897.45 27598.69 25199.72 9697.86 26099.59 10998.74 37197.93 17599.26 20098.62 37591.75 32199.83 17993.22 38098.18 24698.37 363
thres600view797.86 25097.51 26698.92 21299.72 9697.95 25499.59 10998.74 37197.94 17499.27 19698.62 37591.75 32199.86 15393.73 37598.19 24598.96 262
LCM-MVSNet-Re97.83 25798.15 19296.87 36899.30 24792.25 39899.59 10998.26 39097.43 23896.20 38499.13 33796.27 16698.73 38198.17 20798.99 19599.64 142
baseline198.31 19097.95 21799.38 14699.50 18998.74 19599.59 10998.93 34198.41 11199.14 22499.60 21894.59 23899.79 20198.48 17893.29 37899.61 151
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12198.62 9199.79 5199.83 7499.28 499.97 2198.48 17899.90 4499.84 43
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10898.90 12099.74 6699.80 5299.46 9999.59 10999.49 15197.03 27899.63 10999.69 17497.27 12999.96 3297.82 23799.84 8499.81 65
test_fmvsmvis_n_192099.65 699.61 699.77 6099.38 22699.37 10799.58 11799.62 4199.41 1199.87 3199.92 1698.81 47100.00 199.97 199.93 2599.94 11
dmvs_testset95.02 35696.12 33791.72 39199.10 30080.43 41999.58 11797.87 39997.47 23095.22 39198.82 36693.99 26395.18 41688.09 40694.91 35599.56 167
test_fmvsm_n_192099.69 499.66 399.78 5799.84 3299.44 10199.58 11799.69 1899.43 999.98 799.91 2298.62 73100.00 199.97 199.95 1799.90 17
test111198.04 22198.11 19797.83 33599.74 8593.82 38499.58 11795.40 41799.12 3199.65 10199.93 1090.73 34099.84 16699.43 5399.38 16099.82 58
PGM-MVS99.45 3899.31 5299.86 2599.87 1599.78 3999.58 11799.65 3397.84 18799.71 7999.80 11099.12 1399.97 2198.33 19499.87 6199.83 53
LPG-MVS_test98.22 19698.13 19598.49 27099.33 23897.05 29899.58 11799.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
PHI-MVS99.30 6899.17 7699.70 7299.56 16299.52 9199.58 11799.80 897.12 26699.62 11399.73 15598.58 7599.90 12898.61 15999.91 3599.68 125
SF-MVS99.38 5799.24 6899.79 5499.79 5599.68 5399.57 12499.54 8997.82 19299.71 7999.80 11098.95 3099.93 9298.19 20499.84 8499.74 96
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24899.10 3399.81 4599.80 11098.94 3299.96 3298.93 10899.86 6999.81 65
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12199.96 3298.93 10899.86 6999.88 26
Effi-MVS+-dtu98.78 15698.89 12398.47 27799.33 23896.91 31199.57 12499.30 28698.47 10499.41 16198.99 35296.78 14599.74 21798.73 14199.38 16098.74 282
v2v48298.06 21597.77 23798.92 21298.90 33298.82 18999.57 12499.36 24996.65 30299.19 21699.35 30094.20 25499.25 31897.72 25094.97 35298.69 295
DSMNet-mixed97.25 31697.35 29296.95 36597.84 38993.61 39099.57 12496.63 41296.13 34598.87 27298.61 37794.59 23897.70 40295.08 35898.86 20499.55 168
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8099.15 2399.90 2199.90 2999.00 2299.97 2199.11 8599.91 3599.86 33
MVStest196.08 34595.48 35097.89 33098.93 32896.70 31999.56 13099.35 25692.69 39491.81 40899.46 27089.90 35098.96 36995.00 36092.61 38798.00 386
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3299.86 2099.61 7299.56 13099.63 3999.48 399.98 799.83 7498.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3299.84 3299.63 6999.56 13099.63 3999.47 499.98 799.82 8398.75 5899.99 499.97 199.97 799.94 11
sd_testset98.75 15998.57 16699.29 16499.81 4698.26 23599.56 13099.62 4198.78 7999.64 10699.88 4192.02 31599.88 14599.54 3798.26 23999.72 108
KD-MVS_self_test95.00 35794.34 36296.96 36497.07 40495.39 36199.56 13099.44 21295.11 36397.13 37297.32 40591.86 31997.27 40690.35 39881.23 41498.23 371
ETV-MVS99.26 7699.21 7299.40 14199.46 20199.30 11999.56 13099.52 10798.52 10099.44 15299.27 32198.41 9099.86 15399.10 8899.59 14699.04 252
SMA-MVScopyleft99.44 4299.30 5499.85 3299.73 9299.83 1999.56 13099.47 18497.45 23499.78 5699.82 8399.18 1099.91 11698.79 13599.89 5599.81 65
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13898.72 14399.31 15699.86 2098.48 22499.56 13099.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
casdiffmvspermissive99.13 9798.98 10799.56 10399.65 13299.16 13699.56 13099.50 14198.33 12199.41 16199.86 5495.92 17999.83 17999.45 5299.16 17799.70 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 18598.09 20199.24 17399.26 25899.32 11399.56 13099.55 8097.45 23498.71 29199.83 7493.23 28099.63 26498.88 11496.32 31798.76 277
ACMH+97.24 1097.92 24197.78 23598.32 29599.46 20196.68 32399.56 13099.54 8998.41 11197.79 35799.87 5090.18 34899.66 25098.05 21997.18 30298.62 328
ACMM97.58 598.37 18798.34 18098.48 27299.41 21697.10 29299.56 13099.45 20498.53 9999.04 24599.85 5993.00 28599.71 23398.74 13997.45 28898.64 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7499.12 8199.74 6699.18 27999.75 4399.56 13099.57 6798.45 10699.49 14299.85 5997.77 11499.94 7498.33 19499.84 8499.52 177
test_fmvsmconf0.01_n99.22 8399.03 9499.79 5498.42 38199.48 9699.55 14499.51 12199.39 1299.78 5699.93 1094.80 22299.95 6399.93 1299.95 1799.94 11
test_fmvs198.88 13798.79 13899.16 18199.69 11097.61 27399.55 14499.49 15199.32 1699.98 799.91 2291.41 33199.96 3299.82 1899.92 2899.90 17
v14419297.92 24197.60 25898.87 22798.83 34398.65 20299.55 14499.34 26196.20 33799.32 18399.40 28594.36 24999.26 31796.37 33195.03 35198.70 291
API-MVS99.04 12099.03 9499.06 19199.40 22199.31 11799.55 14499.56 7298.54 9899.33 18299.39 28998.76 5599.78 20696.98 30499.78 11398.07 379
fmvsm_s_conf0.1_n_a99.26 7699.06 8999.85 3299.52 17599.62 7099.54 14899.62 4198.69 8699.99 299.96 194.47 24699.94 7499.88 1599.92 2899.98 2
APD_test195.87 34796.49 32994.00 38299.53 17084.01 41199.54 14899.32 27895.91 35397.99 34899.85 5985.49 38999.88 14591.96 39198.84 20698.12 376
thisisatest053098.35 18898.03 20899.31 15699.63 13798.56 21199.54 14896.75 41097.53 22599.73 7299.65 19491.25 33599.89 14098.62 15699.56 14899.48 190
MTMP99.54 14898.88 354
v114497.98 23297.69 24798.85 23398.87 33798.66 20199.54 14899.35 25696.27 33299.23 20699.35 30094.67 23599.23 32196.73 31795.16 34898.68 300
v14897.79 26697.55 26098.50 26998.74 35697.72 26699.54 14899.33 26896.26 33398.90 26699.51 25194.68 23499.14 33697.83 23693.15 38198.63 326
CostFormer97.72 27897.73 24497.71 34299.15 29394.02 38399.54 14899.02 33294.67 37499.04 24599.35 30092.35 31199.77 20898.50 17797.94 25699.34 223
MVSTER98.49 17398.32 18299.00 19999.35 23399.02 15699.54 14899.38 24097.41 24199.20 21399.73 15593.86 27099.36 30098.87 11797.56 27698.62 328
fmvsm_s_conf0.1_n99.29 7099.10 8399.86 2599.70 10699.65 6299.53 15699.62 4198.74 8299.99 299.95 394.53 24499.94 7499.89 1499.96 1299.97 4
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 8999.13 2699.89 2399.89 3498.96 2599.96 3299.04 9399.90 4499.85 37
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3299.83 3999.64 6899.52 15799.65 3399.10 3399.98 799.92 1697.35 12599.96 3299.94 1199.92 2899.95 9
MM99.40 5499.28 6099.74 6699.67 11699.31 11799.52 15798.87 35699.55 199.74 7099.80 11096.47 15899.98 1399.97 199.97 799.94 11
patch_mono-299.26 7699.62 598.16 30899.81 4694.59 37699.52 15799.64 3699.33 1599.73 7299.90 2999.00 2299.99 499.69 2399.98 499.89 20
Fast-Effi-MVS+-dtu98.77 15898.83 13498.60 25699.41 21696.99 30599.52 15799.49 15198.11 15299.24 20299.34 30496.96 14199.79 20197.95 22599.45 15699.02 255
Fast-Effi-MVS+98.70 16398.43 17499.51 12299.51 17899.28 12299.52 15799.47 18496.11 34699.01 24899.34 30496.20 16899.84 16697.88 22998.82 20899.39 214
v192192097.80 26497.45 27598.84 23498.80 34498.53 21499.52 15799.34 26196.15 34399.24 20299.47 26693.98 26499.29 31295.40 35295.13 34998.69 295
MIMVSNet195.51 35195.04 35696.92 36797.38 39695.60 35199.52 15799.50 14193.65 38496.97 37699.17 33285.28 39296.56 41188.36 40595.55 34098.60 340
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3299.84 3299.65 6299.51 16699.67 2399.13 2699.98 799.92 1696.60 15299.96 3299.95 999.96 1299.95 9
UniMVSNet_ETH3D97.32 31396.81 32198.87 22799.40 22197.46 27699.51 16699.53 10295.86 35498.54 31899.77 13782.44 40499.66 25098.68 14997.52 28099.50 188
alignmvs98.81 15298.56 16899.58 9999.43 20999.42 10399.51 16698.96 33998.61 9299.35 17898.92 36294.78 22499.77 20899.35 5798.11 25199.54 170
v119297.81 26297.44 28098.91 21698.88 33498.68 19999.51 16699.34 26196.18 33999.20 21399.34 30494.03 26299.36 30095.32 35495.18 34798.69 295
test20.0396.12 34395.96 34296.63 37197.44 39595.45 35899.51 16699.38 24096.55 31396.16 38599.25 32493.76 27496.17 41287.35 40994.22 36598.27 367
mvs_anonymous99.03 12298.99 10499.16 18199.38 22698.52 21899.51 16699.38 24097.79 19399.38 17099.81 9797.30 12799.45 27999.35 5798.99 19599.51 184
TAMVS99.12 10399.08 8799.24 17399.46 20198.55 21299.51 16699.46 19398.09 15599.45 14799.82 8398.34 9399.51 27498.70 14498.93 19899.67 128
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2599.44 20899.65 6299.50 17399.61 4899.45 799.87 3199.92 1697.31 12699.97 2199.95 999.99 199.97 4
test_yl98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
DCV-MVSNet98.86 14198.63 15499.54 10699.49 19199.18 13399.50 17399.07 32598.22 13599.61 11699.51 25195.37 19899.84 16698.60 16298.33 23399.59 158
tfpn200view997.72 27897.38 28898.72 24799.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.37 363
UA-Net99.42 4799.29 5899.80 5199.62 14399.55 8399.50 17399.70 1598.79 7699.77 6099.96 197.45 12099.96 3298.92 11099.90 4499.89 20
pm-mvs197.68 28597.28 30398.88 22399.06 30998.62 20699.50 17399.45 20496.32 32897.87 35399.79 12292.47 30599.35 30397.54 26793.54 37698.67 307
EI-MVSNet98.67 16698.67 14998.68 25299.35 23397.97 25099.50 17399.38 24096.93 28799.20 21399.83 7497.87 11099.36 30098.38 18797.56 27698.71 286
CVMVSNet98.57 17298.67 14998.30 29799.35 23395.59 35299.50 17399.55 8098.60 9399.39 16899.83 7494.48 24599.45 27998.75 13898.56 22299.85 37
VPA-MVSNet98.29 19397.95 21799.30 16199.16 28999.54 8599.50 17399.58 6398.27 12799.35 17899.37 29492.53 30399.65 25599.35 5794.46 36098.72 284
thres40097.77 26797.38 28898.92 21299.69 11097.96 25299.50 17398.73 37797.83 18899.17 22198.45 38191.67 32599.83 17993.22 38098.18 24698.96 262
APD-MVScopyleft99.27 7499.08 8799.84 4399.75 7899.79 3399.50 17399.50 14197.16 26299.77 6099.82 8398.78 5199.94 7497.56 26599.86 6999.80 74
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 34995.65 34896.32 37599.67 11691.35 40299.49 18496.74 41198.25 13095.24 39098.10 39674.96 41199.90 12899.53 3998.85 20597.70 396
TransMVSNet (Re)97.15 32096.58 32698.86 23099.12 29598.85 18499.49 18498.91 34995.48 35897.16 37199.80 11093.38 27899.11 34494.16 37291.73 39098.62 328
UniMVSNet (Re)98.29 19398.00 21199.13 18699.00 31799.36 11099.49 18499.51 12197.95 17398.97 25699.13 33796.30 16599.38 29398.36 19193.34 37798.66 315
EPMVS97.82 26097.65 25198.35 29298.88 33495.98 34599.49 18494.71 42097.57 21899.26 20099.48 26392.46 30899.71 23397.87 23199.08 18899.35 220
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5899.48 18899.64 3699.45 799.92 1899.92 1698.62 7399.99 499.96 799.99 199.96 7
Anonymous2023121197.88 24697.54 26398.90 21899.71 10198.53 21499.48 18899.57 6794.16 37998.81 28099.68 18193.23 28099.42 28998.84 12794.42 36298.76 277
v124097.69 28397.32 29898.79 24298.85 34198.43 22899.48 18899.36 24996.11 34699.27 19699.36 29793.76 27499.24 32094.46 36695.23 34698.70 291
VPNet97.84 25597.44 28099.01 19799.21 27198.94 17399.48 18899.57 6798.38 11399.28 19199.73 15588.89 36099.39 29199.19 7793.27 37998.71 286
UniMVSNet_NR-MVSNet98.22 19697.97 21498.96 20498.92 33098.98 16099.48 18899.53 10297.76 19798.71 29199.46 27096.43 16299.22 32598.57 16892.87 38498.69 295
TDRefinement95.42 35394.57 36097.97 32389.83 42396.11 34499.48 18898.75 36896.74 29596.68 37999.88 4188.65 36699.71 23398.37 18982.74 41298.09 378
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19499.48 16398.05 16699.76 6699.86 5498.82 4699.93 9298.82 13499.91 3599.84 43
NR-MVSNet97.97 23597.61 25799.02 19698.87 33799.26 12599.47 19499.42 22097.63 21297.08 37399.50 25495.07 21099.13 33997.86 23293.59 37598.68 300
PVSNet_Blended_VisFu99.36 6099.28 6099.61 9399.86 2099.07 15199.47 19499.93 297.66 21099.71 7999.86 5497.73 11599.96 3299.47 5099.82 9799.79 78
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4899.77 6499.75 4399.46 19799.60 5499.47 499.98 799.94 694.98 21199.95 6399.97 199.79 11199.73 101
SD-MVS99.41 5199.52 1299.05 19399.74 8599.68 5399.46 19799.52 10799.11 3299.88 2699.91 2299.43 197.70 40298.72 14299.93 2599.77 86
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 31496.76 32398.82 23699.37 22998.07 24599.45 19999.36 24997.56 22097.89 35298.95 35783.70 39998.82 37696.03 33598.56 22299.58 162
tt080597.97 23597.77 23798.57 26199.59 15496.61 32699.45 19999.08 32298.21 13798.88 26999.80 11088.66 36599.70 23998.58 16597.72 26699.39 214
tpm297.44 30897.34 29597.74 34199.15 29394.36 38099.45 19998.94 34093.45 38898.90 26699.44 27391.35 33399.59 26897.31 28498.07 25299.29 227
FMVSNet297.72 27897.36 29098.80 24199.51 17898.84 18599.45 19999.42 22096.49 31698.86 27699.29 31690.26 34498.98 36096.44 32896.56 31198.58 342
CDS-MVSNet99.09 11399.03 9499.25 17199.42 21198.73 19699.45 19999.46 19398.11 15299.46 14699.77 13798.01 10899.37 29698.70 14498.92 20099.66 131
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 14198.63 15499.54 10699.37 22999.66 5899.45 19999.54 8996.61 30799.01 24899.40 28597.09 13399.86 15397.68 25599.53 15199.10 240
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_299.32 6599.13 7999.89 799.80 5299.77 4099.44 20599.58 6399.47 499.99 299.93 1094.04 26199.96 3299.96 799.93 2599.93 16
UGNet98.87 13898.69 14799.40 14199.22 27098.72 19799.44 20599.68 2099.24 1999.18 22099.42 27792.74 29399.96 3299.34 6299.94 2399.53 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 14198.63 15499.54 10699.64 13499.19 13199.44 20599.54 8997.77 19699.30 18799.81 9794.20 25499.93 9299.17 8198.82 20899.49 189
test_040296.64 33296.24 33497.85 33298.85 34196.43 33299.44 20599.26 29693.52 38596.98 37599.52 24788.52 36999.20 33292.58 39097.50 28397.93 391
ACMP97.20 1198.06 21597.94 21998.45 28099.37 22997.01 30399.44 20599.49 15197.54 22498.45 32399.79 12291.95 31799.72 22797.91 22797.49 28698.62 328
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 28098.55 37698.16 23999.43 21093.68 42297.23 36898.46 38089.30 35699.22 32595.43 35198.22 24197.98 388
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21099.51 12198.68 8899.27 19699.53 24498.64 7299.96 3298.44 18499.80 10499.79 78
tpm cat197.39 31097.36 29097.50 35199.17 28793.73 38699.43 21099.31 28291.27 39998.71 29199.08 34194.31 25299.77 20896.41 33098.50 22699.00 256
tpm97.67 28897.55 26098.03 31699.02 31595.01 36899.43 21098.54 38696.44 32299.12 22799.34 30491.83 32099.60 26797.75 24696.46 31399.48 190
GBi-Net97.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
test197.68 28597.48 26998.29 29899.51 17897.26 28599.43 21099.48 16396.49 31699.07 23799.32 31190.26 34498.98 36097.10 29796.65 30898.62 328
FMVSNet196.84 32896.36 33298.29 29899.32 24597.26 28599.43 21099.48 16395.11 36398.55 31799.32 31183.95 39898.98 36095.81 34096.26 31998.62 328
mamv499.33 6399.42 2599.07 18999.67 11697.73 26499.42 21799.60 5498.15 14499.94 1799.91 2298.42 8899.94 7499.72 2199.96 1299.54 170
testgi97.65 29097.50 26798.13 31299.36 23296.45 33199.42 21799.48 16397.76 19797.87 35399.45 27291.09 33698.81 37794.53 36598.52 22599.13 239
F-COLMAP99.19 8499.04 9299.64 8599.78 5799.27 12499.42 21799.54 8997.29 25199.41 16199.59 22098.42 8899.93 9298.19 20499.69 13299.73 101
Anonymous20240521198.30 19297.98 21399.26 17099.57 15898.16 23999.41 22098.55 38596.03 35199.19 21699.74 14991.87 31899.92 10499.16 8298.29 23899.70 119
MSLP-MVS++99.46 3499.47 2099.44 13899.60 15299.16 13699.41 22099.71 1398.98 5499.45 14799.78 12999.19 999.54 27399.28 6999.84 8499.63 147
VNet99.11 10898.90 12099.73 6999.52 17599.56 8199.41 22099.39 23299.01 4699.74 7099.78 12995.56 19299.92 10499.52 4198.18 24699.72 108
baseline297.87 24897.55 26098.82 23699.18 27998.02 24799.41 22096.58 41496.97 28196.51 38099.17 33293.43 27799.57 26997.71 25199.03 19298.86 266
DU-MVS98.08 21397.79 23298.96 20498.87 33798.98 16099.41 22099.45 20497.87 18198.71 29199.50 25494.82 22099.22 32598.57 16892.87 38498.68 300
Baseline_NR-MVSNet97.76 26897.45 27598.68 25299.09 30398.29 23399.41 22098.85 35895.65 35698.63 30999.67 18794.82 22099.10 34698.07 21892.89 38398.64 319
XVG-ACMP-BASELINE97.83 25797.71 24698.20 30599.11 29796.33 33599.41 22099.52 10798.06 16499.05 24499.50 25489.64 35499.73 22397.73 24897.38 29598.53 345
DP-MVS99.16 9098.95 11499.78 5799.77 6499.53 8899.41 22099.50 14197.03 27899.04 24599.88 4197.39 12199.92 10498.66 15199.90 4499.87 31
9.1499.10 8399.72 9699.40 22899.51 12197.53 22599.64 10699.78 12998.84 4499.91 11697.63 25699.82 97
D2MVS98.41 18198.50 17198.15 31199.26 25896.62 32599.40 22899.61 4897.71 20298.98 25499.36 29796.04 17299.67 24798.70 14497.41 29398.15 375
Anonymous2024052998.09 21197.68 24899.34 14999.66 12698.44 22799.40 22899.43 21893.67 38399.22 20799.89 3490.23 34799.93 9299.26 7398.33 23399.66 131
FMVSNet398.03 22397.76 24198.84 23499.39 22498.98 16099.40 22899.38 24096.67 30099.07 23799.28 31892.93 28698.98 36097.10 29796.65 30898.56 344
LFMVS97.90 24497.35 29299.54 10699.52 17599.01 15899.39 23298.24 39297.10 27099.65 10199.79 12284.79 39499.91 11699.28 6998.38 23099.69 121
HQP_MVS98.27 19598.22 18898.44 28399.29 25196.97 30799.39 23299.47 18498.97 5799.11 22999.61 21592.71 29699.69 24497.78 24097.63 26998.67 307
plane_prior299.39 23298.97 57
CHOSEN 1792x268899.19 8499.10 8399.45 13499.89 898.52 21899.39 23299.94 198.73 8399.11 22999.89 3495.50 19499.94 7499.50 4399.97 799.89 20
PAPM_NR99.04 12098.84 13299.66 7599.74 8599.44 10199.39 23299.38 24097.70 20599.28 19199.28 31898.34 9399.85 15996.96 30699.45 15699.69 121
gg-mvs-nofinetune96.17 34295.32 35498.73 24698.79 34598.14 24199.38 23794.09 42191.07 40298.07 34691.04 41989.62 35599.35 30396.75 31699.09 18798.68 300
VDDNet97.55 29697.02 31599.16 18199.49 19198.12 24399.38 23799.30 28695.35 35999.68 8599.90 2982.62 40399.93 9299.31 6598.13 25099.42 208
MVS_030499.15 9298.96 11299.73 6998.92 33099.37 10799.37 23996.92 40799.51 299.66 9499.78 12996.69 14999.97 2199.84 1799.97 799.84 43
pmmvs696.53 33496.09 33997.82 33798.69 36395.47 35799.37 23999.47 18493.46 38797.41 36299.78 12987.06 38299.33 30696.92 31192.70 38698.65 317
PM-MVS92.96 37192.23 37595.14 37995.61 41089.98 40599.37 23998.21 39394.80 37295.04 39597.69 40065.06 41597.90 39894.30 36789.98 40097.54 400
WTY-MVS99.06 11798.88 12599.61 9399.62 14399.16 13699.37 23999.56 7298.04 16799.53 13499.62 21196.84 14399.94 7498.85 12498.49 22799.72 108
IterMVS-LS98.46 17698.42 17598.58 26099.59 15498.00 24899.37 23999.43 21896.94 28699.07 23799.59 22097.87 11099.03 35398.32 19695.62 33798.71 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 28297.28 30398.97 20399.70 10697.27 28399.36 24499.45 20498.94 6099.66 9499.64 20094.93 21499.99 499.48 4884.36 40999.65 135
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24499.51 12198.73 8399.88 2699.84 6998.72 6499.96 3298.16 20899.87 6199.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 33696.12 33797.40 35398.65 36695.65 35099.36 24499.51 12197.13 26496.04 38798.99 35288.40 37098.17 39196.71 31890.27 39898.40 360
sss99.17 8899.05 9099.53 11499.62 14398.97 16399.36 24499.62 4197.83 18899.67 8999.65 19497.37 12499.95 6399.19 7799.19 17699.68 125
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6099.63 13799.59 7599.36 24499.46 19399.07 4199.79 5199.82 8398.85 4299.92 10498.68 14999.87 6199.82 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 8099.14 7899.59 9699.41 21699.16 13699.35 24999.57 6798.82 7199.51 13899.61 21596.46 15999.95 6399.59 3199.98 499.65 135
pmmvs-eth3d95.34 35594.73 35897.15 35795.53 41295.94 34699.35 24999.10 31995.13 36193.55 40097.54 40188.15 37497.91 39794.58 36489.69 40197.61 397
MDTV_nov1_ep13_2view95.18 36699.35 24996.84 29199.58 12395.19 20797.82 23799.46 201
VDD-MVS97.73 27697.35 29298.88 22399.47 19997.12 29199.34 25298.85 35898.19 13999.67 8999.85 5982.98 40199.92 10499.49 4798.32 23799.60 154
COLMAP_ROBcopyleft97.56 698.86 14198.75 14199.17 18099.88 1198.53 21499.34 25299.59 5997.55 22198.70 29799.89 3495.83 18399.90 12898.10 21099.90 4499.08 245
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 38477.86 39097.62 34697.91 38796.12 34399.33 25499.28 2928.40 42725.05 42899.27 32184.11 39799.33 30689.20 40198.22 24197.42 401
ETVMVS97.50 30196.90 31999.29 16499.23 26698.78 19499.32 25598.90 35197.52 22798.56 31698.09 39784.72 39599.69 24497.86 23297.88 25999.39 214
FMVSNet596.43 33796.19 33697.15 35799.11 29795.89 34799.32 25599.52 10794.47 37898.34 32999.07 34287.54 37997.07 40792.61 38995.72 33598.47 351
dp97.75 27297.80 23197.59 34899.10 30093.71 38799.32 25598.88 35496.48 31999.08 23699.55 23592.67 29999.82 18696.52 32698.58 21999.24 233
tpmvs97.98 23298.02 21097.84 33499.04 31394.73 37399.31 25899.20 30896.10 35098.76 28799.42 27794.94 21399.81 19196.97 30598.45 22898.97 260
tpmrst98.33 18998.48 17297.90 32999.16 28994.78 37299.31 25899.11 31897.27 25299.45 14799.59 22095.33 20099.84 16698.48 17898.61 21699.09 244
testing9997.36 31196.94 31898.63 25499.18 27996.70 31999.30 26098.93 34197.71 20298.23 33598.26 38984.92 39399.84 16698.04 22097.85 26299.35 220
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26099.52 10797.18 26099.60 11999.79 12298.79 5099.95 6398.83 13099.91 3599.83 53
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6299.19 7499.79 5499.61 14799.65 6299.30 26099.48 16398.86 6699.21 21099.63 20698.72 6499.90 12898.25 20099.63 14299.80 74
JIA-IIPM97.50 30197.02 31598.93 21098.73 35797.80 26299.30 26098.97 33791.73 39898.91 26494.86 41395.10 20999.71 23397.58 26097.98 25499.28 228
BH-RMVSNet98.41 18198.08 20299.40 14199.41 21698.83 18899.30 26098.77 36797.70 20598.94 26199.65 19492.91 28999.74 21796.52 32699.55 15099.64 142
testing1197.50 30197.10 31298.71 24999.20 27396.91 31199.29 26598.82 36197.89 17998.21 33898.40 38385.63 38899.83 17998.45 18398.04 25399.37 218
Syy-MVS97.09 32397.14 30996.95 36599.00 31792.73 39699.29 26599.39 23297.06 27497.41 36298.15 39293.92 26798.68 38291.71 39298.34 23199.45 204
myMVS_eth3d96.89 32696.37 33198.43 28599.00 31797.16 28999.29 26599.39 23297.06 27497.41 36298.15 39283.46 40098.68 38295.27 35598.34 23199.45 204
MCST-MVS99.43 4599.30 5499.82 4599.79 5599.74 4699.29 26599.40 22998.79 7699.52 13699.62 21198.91 3799.90 12898.64 15399.75 12199.82 58
LF4IMVS97.52 29897.46 27497.70 34398.98 32395.55 35399.29 26598.82 36198.07 16098.66 30099.64 20089.97 34999.61 26697.01 30196.68 30797.94 390
hse-mvs297.50 30197.14 30998.59 25799.49 19197.05 29899.28 27099.22 30498.94 6099.66 9499.42 27794.93 21499.65 25599.48 4883.80 41199.08 245
OPM-MVS98.19 20098.10 19898.45 28098.88 33497.07 29699.28 27099.38 24098.57 9599.22 20799.81 9792.12 31399.66 25098.08 21597.54 27898.61 337
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9599.02 9899.51 12299.61 14798.96 16799.28 27099.49 15198.46 10599.72 7799.71 16096.50 15799.88 14599.31 6599.11 18399.67 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 14198.80 13599.03 19599.76 6898.79 19299.28 27099.91 397.42 24099.67 8999.37 29497.53 11899.88 14598.98 10097.29 29798.42 357
OMC-MVS99.08 11499.04 9299.20 17799.67 11698.22 23799.28 27099.52 10798.07 16099.66 9499.81 9797.79 11399.78 20697.79 23999.81 10099.60 154
testing22297.16 31996.50 32899.16 18199.16 28998.47 22699.27 27598.66 38197.71 20298.23 33598.15 39282.28 40699.84 16697.36 28297.66 26899.18 236
AUN-MVS96.88 32796.31 33398.59 25799.48 19897.04 30199.27 27599.22 30497.44 23798.51 31999.41 28191.97 31699.66 25097.71 25183.83 41099.07 250
pmmvs597.52 29897.30 30098.16 30898.57 37596.73 31899.27 27598.90 35196.14 34498.37 32799.53 24491.54 33099.14 33697.51 26995.87 33098.63 326
131498.68 16598.54 16999.11 18798.89 33398.65 20299.27 27599.49 15196.89 28897.99 34899.56 23297.72 11699.83 17997.74 24799.27 17198.84 268
MVS97.28 31496.55 32799.48 12898.78 34898.95 17099.27 27599.39 23283.53 41398.08 34399.54 24096.97 14099.87 15094.23 37099.16 17799.63 147
BH-untuned98.42 17998.36 17898.59 25799.49 19196.70 31999.27 27599.13 31797.24 25698.80 28299.38 29195.75 18699.74 21797.07 30099.16 17799.33 224
MDTV_nov1_ep1398.32 18299.11 29794.44 37899.27 27598.74 37197.51 22899.40 16699.62 21194.78 22499.76 21297.59 25998.81 210
DP-MVS Recon99.12 10398.95 11499.65 7999.74 8599.70 5199.27 27599.57 6796.40 32699.42 15799.68 18198.75 5899.80 19897.98 22399.72 12799.44 206
PatchmatchNetpermissive98.31 19098.36 17898.19 30699.16 28995.32 36299.27 27598.92 34497.37 24499.37 17299.58 22494.90 21799.70 23997.43 27899.21 17499.54 170
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 29397.28 30398.62 25599.64 13498.03 24699.26 28498.74 37197.68 20799.09 23598.32 38791.66 32799.81 19192.88 38598.22 24198.03 382
CNVR-MVS99.42 4799.30 5499.78 5799.62 14399.71 4999.26 28499.52 10798.82 7199.39 16899.71 16098.96 2599.85 15998.59 16499.80 10499.77 86
1112_ss98.98 12998.77 13999.59 9699.68 11499.02 15699.25 28699.48 16397.23 25799.13 22599.58 22496.93 14299.90 12898.87 11798.78 21199.84 43
TAPA-MVS97.07 1597.74 27497.34 29598.94 20899.70 10697.53 27499.25 28699.51 12191.90 39799.30 18799.63 20698.78 5199.64 25888.09 40699.87 6199.65 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG97.85 25197.48 26998.95 20699.25 26297.64 27199.24 28898.74 37197.90 17898.64 30798.20 39188.65 36699.81 19198.27 19998.40 22999.42 208
PLCcopyleft97.94 499.02 12398.85 13099.53 11499.66 12699.01 15899.24 28899.52 10796.85 29099.27 19699.48 26398.25 9799.91 11697.76 24499.62 14399.65 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 29065.14 42594.18 25799.71 23397.58 260
ADS-MVSNet298.02 22598.07 20597.87 33199.33 23895.19 36599.23 29099.08 32296.24 33499.10 23299.67 18794.11 25898.93 37196.81 31499.05 19099.48 190
ADS-MVSNet98.20 19998.08 20298.56 26499.33 23896.48 33099.23 29099.15 31496.24 33499.10 23299.67 18794.11 25899.71 23396.81 31499.05 19099.48 190
EPNet_dtu98.03 22397.96 21598.23 30498.27 38395.54 35599.23 29098.75 36899.02 4497.82 35599.71 16096.11 17099.48 27593.04 38399.65 13999.69 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 20397.93 22098.87 22799.18 27998.49 22299.22 29499.33 26896.96 28299.56 12799.38 29194.33 25099.00 35894.83 36398.58 21999.14 237
RPMNet96.72 33095.90 34399.19 17899.18 27998.49 22299.22 29499.52 10788.72 40999.56 12797.38 40394.08 26099.95 6386.87 41198.58 21999.14 237
WBMVS97.74 27497.50 26798.46 27899.24 26497.43 27799.21 29699.42 22097.45 23498.96 25899.41 28188.83 36199.23 32198.94 10596.02 32398.71 286
plane_prior96.97 30799.21 29698.45 10697.60 272
testing9197.44 30897.02 31598.71 24999.18 27996.89 31399.19 29899.04 32997.78 19598.31 33098.29 38885.41 39099.85 15998.01 22197.95 25599.39 214
WR-MVS98.06 21597.73 24499.06 19198.86 34099.25 12799.19 29899.35 25697.30 25098.66 30099.43 27593.94 26599.21 33098.58 16594.28 36498.71 286
new-patchmatchnet94.48 36394.08 36495.67 37895.08 41592.41 39799.18 30099.28 29294.55 37793.49 40197.37 40487.86 37797.01 40891.57 39388.36 40397.61 397
AdaColmapbinary99.01 12798.80 13599.66 7599.56 16299.54 8599.18 30099.70 1598.18 14299.35 17899.63 20696.32 16499.90 12897.48 27299.77 11699.55 168
EG-PatchMatch MVS95.97 34695.69 34796.81 36997.78 39092.79 39599.16 30298.93 34196.16 34194.08 39899.22 32782.72 40299.47 27695.67 34697.50 28398.17 373
PatchT97.03 32496.44 33098.79 24298.99 32098.34 23299.16 30299.07 32592.13 39699.52 13697.31 40694.54 24398.98 36088.54 40498.73 21399.03 253
CNLPA99.14 9598.99 10499.59 9699.58 15699.41 10599.16 30299.44 21298.45 10699.19 21699.49 25798.08 10599.89 14097.73 24899.75 12199.48 190
MDA-MVSNet-bldmvs94.96 35893.98 36597.92 32798.24 38497.27 28399.15 30599.33 26893.80 38280.09 42099.03 34788.31 37197.86 39993.49 37894.36 36398.62 328
CDPH-MVS99.13 9798.91 11999.80 5199.75 7899.71 4999.15 30599.41 22396.60 31099.60 11999.55 23598.83 4599.90 12897.48 27299.83 9399.78 84
save fliter99.76 6899.59 7599.14 30799.40 22999.00 49
WB-MVSnew97.65 29097.65 25197.63 34598.78 34897.62 27299.13 30898.33 38997.36 24599.07 23798.94 35895.64 19199.15 33592.95 38498.68 21596.12 411
testf190.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
APD_test290.42 37890.68 37989.65 39897.78 39073.97 42699.13 30898.81 36389.62 40491.80 40998.93 35962.23 41898.80 37886.61 41291.17 39296.19 409
xiu_mvs_v1_base_debu99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
xiu_mvs_v1_base_debi99.29 7099.27 6399.34 14999.63 13798.97 16399.12 31199.51 12198.86 6699.84 3799.47 26698.18 10099.99 499.50 4399.31 16899.08 245
XVG-OURS-SEG-HR98.69 16498.62 15998.89 22199.71 10197.74 26399.12 31199.54 8998.44 10999.42 15799.71 16094.20 25499.92 10498.54 17598.90 20299.00 256
jason99.13 9799.03 9499.45 13499.46 20198.87 18099.12 31199.26 29698.03 16999.79 5199.65 19497.02 13899.85 15999.02 9799.90 4499.65 135
jason: jason.
N_pmnet94.95 35995.83 34592.31 38998.47 37979.33 42199.12 31192.81 42793.87 38197.68 35899.13 33793.87 26999.01 35791.38 39496.19 32098.59 341
MDA-MVSNet_test_wron95.45 35294.60 35998.01 31998.16 38597.21 28899.11 31799.24 30193.49 38680.73 41998.98 35493.02 28498.18 39094.22 37194.45 36198.64 319
Patchmtry97.75 27297.40 28798.81 23999.10 30098.87 18099.11 31799.33 26894.83 37198.81 28099.38 29194.33 25099.02 35596.10 33395.57 33998.53 345
YYNet195.36 35494.51 36197.92 32797.89 38897.10 29299.10 31999.23 30293.26 38980.77 41899.04 34692.81 29098.02 39494.30 36794.18 36698.64 319
CANet_DTU98.97 13198.87 12699.25 17199.33 23898.42 23099.08 32099.30 28699.16 2299.43 15499.75 14495.27 20299.97 2198.56 17199.95 1799.36 219
SCA98.19 20098.16 19098.27 30399.30 24795.55 35399.07 32198.97 33797.57 21899.43 15499.57 22992.72 29499.74 21797.58 26099.20 17599.52 177
TSAR-MVS + GP.99.36 6099.36 3899.36 14799.67 11698.61 20899.07 32199.33 26899.00 4999.82 4499.81 9799.06 1699.84 16699.09 8999.42 15899.65 135
MG-MVS99.13 9799.02 9899.45 13499.57 15898.63 20599.07 32199.34 26198.99 5199.61 11699.82 8397.98 10999.87 15097.00 30299.80 10499.85 37
PatchMatch-RL98.84 15198.62 15999.52 12099.71 10199.28 12299.06 32499.77 997.74 20099.50 13999.53 24495.41 19699.84 16697.17 29699.64 14099.44 206
OpenMVS_ROBcopyleft92.34 2094.38 36493.70 37096.41 37497.38 39693.17 39399.06 32498.75 36886.58 41094.84 39698.26 38981.53 40799.32 30889.01 40297.87 26096.76 404
TEST999.67 11699.65 6299.05 32699.41 22396.22 33698.95 25999.49 25798.77 5499.91 116
train_agg99.02 12398.77 13999.77 6099.67 11699.65 6299.05 32699.41 22396.28 33098.95 25999.49 25798.76 5599.91 11697.63 25699.72 12799.75 92
lupinMVS99.13 9799.01 10299.46 13399.51 17898.94 17399.05 32699.16 31397.86 18299.80 4999.56 23297.39 12199.86 15398.94 10599.85 7699.58 162
DELS-MVS99.48 2999.42 2599.65 7999.72 9699.40 10699.05 32699.66 2899.14 2599.57 12699.80 11098.46 8499.94 7499.57 3499.84 8499.60 154
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 33896.03 34097.41 35298.13 38695.16 36799.05 32699.20 30893.94 38097.39 36598.79 37091.61 32999.04 35190.43 39795.77 33298.05 381
Patchmatch-test97.93 23897.65 25198.77 24499.18 27997.07 29699.03 33199.14 31696.16 34198.74 28899.57 22994.56 24099.72 22793.36 37999.11 18399.52 177
test_899.67 11699.61 7299.03 33199.41 22396.28 33098.93 26299.48 26398.76 5599.91 116
Test_1112_low_res98.89 13698.66 15299.57 10199.69 11098.95 17099.03 33199.47 18496.98 28099.15 22399.23 32696.77 14699.89 14098.83 13098.78 21199.86 33
IterMVS-SCA-FT97.82 26097.75 24298.06 31599.57 15896.36 33499.02 33499.49 15197.18 26098.71 29199.72 15992.72 29499.14 33697.44 27795.86 33198.67 307
xiu_mvs_v2_base99.26 7699.25 6799.29 16499.53 17098.91 17799.02 33499.45 20498.80 7599.71 7999.26 32398.94 3299.98 1399.34 6299.23 17398.98 259
MIMVSNet97.73 27697.45 27598.57 26199.45 20797.50 27599.02 33498.98 33696.11 34699.41 16199.14 33690.28 34398.74 38095.74 34298.93 19899.47 196
IterMVS97.83 25797.77 23798.02 31899.58 15696.27 33899.02 33499.48 16397.22 25898.71 29199.70 16492.75 29199.13 33997.46 27596.00 32598.67 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10898.92 11799.65 7999.90 499.37 10799.02 33499.91 397.67 20999.59 12299.75 14495.90 18199.73 22399.53 3999.02 19499.86 33
UWE-MVS97.58 29597.29 30298.48 27299.09 30396.25 33999.01 33996.61 41397.86 18299.19 21699.01 35088.72 36299.90 12897.38 28198.69 21499.28 228
新几何299.01 339
BH-w/o98.00 23097.89 22698.32 29599.35 23396.20 34199.01 33998.90 35196.42 32498.38 32699.00 35195.26 20499.72 22796.06 33498.61 21699.03 253
test_prior499.56 8198.99 342
无先验98.99 34299.51 12196.89 28899.93 9297.53 26899.72 108
pmmvs498.13 20797.90 22298.81 23998.61 37198.87 18098.99 34299.21 30796.44 32299.06 24299.58 22495.90 18199.11 34497.18 29596.11 32298.46 354
HQP-NCC99.19 27698.98 34598.24 13198.66 300
ACMP_Plane99.19 27698.98 34598.24 13198.66 300
HQP-MVS98.02 22597.90 22298.37 29199.19 27696.83 31498.98 34599.39 23298.24 13198.66 30099.40 28592.47 30599.64 25897.19 29397.58 27498.64 319
PS-MVSNAJ99.32 6599.32 4699.30 16199.57 15898.94 17398.97 34899.46 19398.92 6399.71 7999.24 32599.01 1899.98 1399.35 5799.66 13798.97 260
MVP-Stereo97.81 26297.75 24297.99 32297.53 39496.60 32798.96 34998.85 35897.22 25897.23 36899.36 29795.28 20199.46 27895.51 34899.78 11397.92 392
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 34998.34 11999.01 24899.52 24798.68 6797.96 22499.74 124
旧先验298.96 34996.70 29899.47 14499.94 7498.19 204
原ACMM298.95 352
MVS_111021_HR99.41 5199.32 4699.66 7599.72 9699.47 9898.95 35299.85 698.82 7199.54 13299.73 15598.51 8199.74 21798.91 11199.88 5899.77 86
mvsany_test199.50 2399.46 2399.62 9299.61 14799.09 14698.94 35499.48 16399.10 3399.96 1699.91 2298.85 4299.96 3299.72 2199.58 14799.82 58
MVS_111021_LR99.41 5199.33 4499.65 7999.77 6499.51 9298.94 35499.85 698.82 7199.65 10199.74 14998.51 8199.80 19898.83 13099.89 5599.64 142
pmmvs394.09 36693.25 37296.60 37294.76 41794.49 37798.92 35698.18 39589.66 40396.48 38198.06 39886.28 38497.33 40589.68 40087.20 40697.97 389
XVG-OURS98.73 16298.68 14898.88 22399.70 10697.73 26498.92 35699.55 8098.52 10099.45 14799.84 6995.27 20299.91 11698.08 21598.84 20699.00 256
test22299.75 7899.49 9498.91 35899.49 15196.42 32499.34 18199.65 19498.28 9699.69 13299.72 108
PMMVS286.87 38185.37 38591.35 39390.21 42283.80 41298.89 35997.45 40583.13 41491.67 41195.03 41148.49 42494.70 41785.86 41477.62 41695.54 412
miper_lstm_enhance98.00 23097.91 22198.28 30299.34 23797.43 27798.88 36099.36 24996.48 31998.80 28299.55 23595.98 17498.91 37297.27 28695.50 34298.51 347
MVS-HIRNet95.75 35095.16 35597.51 35099.30 24793.69 38898.88 36095.78 41585.09 41298.78 28592.65 41591.29 33499.37 29694.85 36299.85 7699.46 201
TR-MVS97.76 26897.41 28698.82 23699.06 30997.87 25898.87 36298.56 38496.63 30698.68 29999.22 32792.49 30499.65 25595.40 35297.79 26498.95 264
testdata198.85 36398.32 122
ET-MVSNet_ETH3D96.49 33595.64 34999.05 19399.53 17098.82 18998.84 36497.51 40497.63 21284.77 41399.21 33092.09 31498.91 37298.98 10092.21 38999.41 211
our_test_397.65 29097.68 24897.55 34998.62 36994.97 36998.84 36499.30 28696.83 29398.19 33999.34 30497.01 13999.02 35595.00 36096.01 32498.64 319
MS-PatchMatch97.24 31897.32 29896.99 36298.45 38093.51 39198.82 36699.32 27897.41 24198.13 34299.30 31488.99 35999.56 27095.68 34599.80 10497.90 393
c3_l98.12 20998.04 20798.38 29099.30 24797.69 27098.81 36799.33 26896.67 30098.83 27899.34 30497.11 13298.99 35997.58 26095.34 34498.48 349
ppachtmachnet_test97.49 30697.45 27597.61 34798.62 36995.24 36398.80 36899.46 19396.11 34698.22 33799.62 21196.45 16098.97 36793.77 37495.97 32998.61 337
PAPR98.63 17098.34 18099.51 12299.40 22199.03 15598.80 36899.36 24996.33 32799.00 25299.12 34098.46 8499.84 16695.23 35699.37 16799.66 131
test0.0.03 197.71 28197.42 28598.56 26498.41 38297.82 26198.78 37098.63 38297.34 24698.05 34798.98 35494.45 24798.98 36095.04 35997.15 30398.89 265
PVSNet_Blended99.08 11498.97 10899.42 13999.76 6898.79 19298.78 37099.91 396.74 29599.67 8999.49 25797.53 11899.88 14598.98 10099.85 7699.60 154
PMMVS98.80 15598.62 15999.34 14999.27 25698.70 19898.76 37299.31 28297.34 24699.21 21099.07 34297.20 13099.82 18698.56 17198.87 20399.52 177
test12339.01 39342.50 39528.53 40839.17 43120.91 43398.75 37319.17 43319.83 42638.57 42566.67 42333.16 42815.42 42737.50 42729.66 42549.26 422
MSDG98.98 12998.80 13599.53 11499.76 6899.19 13198.75 37399.55 8097.25 25499.47 14499.77 13797.82 11299.87 15096.93 30999.90 4499.54 170
CLD-MVS98.16 20498.10 19898.33 29399.29 25196.82 31698.75 37399.44 21297.83 18899.13 22599.55 23592.92 28799.67 24798.32 19697.69 26798.48 349
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 20298.10 19898.41 28699.23 26697.72 26698.72 37699.31 28296.60 31098.88 26999.29 31697.29 12899.13 33997.60 25895.99 32698.38 362
cl____98.01 22897.84 23098.55 26699.25 26297.97 25098.71 37799.34 26196.47 32198.59 31599.54 24095.65 19099.21 33097.21 28995.77 33298.46 354
DIV-MVS_self_test98.01 22897.85 22998.48 27299.24 26497.95 25498.71 37799.35 25696.50 31598.60 31499.54 24095.72 18899.03 35397.21 28995.77 33298.46 354
test-LLR98.06 21597.90 22298.55 26698.79 34597.10 29298.67 37997.75 40097.34 24698.61 31298.85 36494.45 24799.45 27997.25 28799.38 16099.10 240
TESTMET0.1,197.55 29697.27 30698.40 28898.93 32896.53 32898.67 37997.61 40396.96 28298.64 30799.28 31888.63 36899.45 27997.30 28599.38 16099.21 235
test-mter97.49 30697.13 31198.55 26698.79 34597.10 29298.67 37997.75 40096.65 30298.61 31298.85 36488.23 37299.45 27997.25 28799.38 16099.10 240
mvs5depth96.66 33196.22 33597.97 32397.00 40596.28 33798.66 38299.03 33196.61 30796.93 37799.79 12287.20 38199.47 27696.65 32494.13 36798.16 374
IB-MVS95.67 1896.22 33995.44 35398.57 26199.21 27196.70 31998.65 38397.74 40296.71 29797.27 36798.54 37986.03 38599.92 10498.47 18186.30 40799.10 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 13298.71 14599.66 7599.63 13799.55 8398.64 38499.10 31997.93 17599.42 15799.55 23598.67 6999.80 19895.80 34199.68 13599.61 151
thisisatest051598.14 20697.79 23299.19 17899.50 18998.50 22198.61 38596.82 40996.95 28499.54 13299.43 27591.66 32799.86 15398.08 21599.51 15299.22 234
DeepPCF-MVS98.18 398.81 15299.37 3697.12 36099.60 15291.75 40098.61 38599.44 21299.35 1499.83 4399.85 5998.70 6699.81 19199.02 9799.91 3599.81 65
cl2297.85 25197.64 25498.48 27299.09 30397.87 25898.60 38799.33 26897.11 26998.87 27299.22 32792.38 31099.17 33498.21 20295.99 32698.42 357
GA-MVS97.85 25197.47 27299.00 19999.38 22697.99 24998.57 38899.15 31497.04 27798.90 26699.30 31489.83 35199.38 29396.70 31998.33 23399.62 149
TinyColmap97.12 32196.89 32097.83 33599.07 30795.52 35698.57 38898.74 37197.58 21797.81 35699.79 12288.16 37399.56 27095.10 35797.21 30098.39 361
eth_miper_zixun_eth98.05 22097.96 21598.33 29399.26 25897.38 27998.56 39099.31 28296.65 30298.88 26999.52 24796.58 15399.12 34397.39 28095.53 34198.47 351
CMPMVSbinary69.68 2394.13 36594.90 35791.84 39097.24 40080.01 42098.52 39199.48 16389.01 40791.99 40799.67 18785.67 38799.13 33995.44 35097.03 30596.39 408
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 31297.20 30797.75 34099.07 30795.20 36498.51 39299.04 32997.99 17198.31 33099.86 5489.02 35899.55 27295.67 34697.36 29698.49 348
ambc93.06 38892.68 41982.36 41398.47 39398.73 37795.09 39497.41 40255.55 42099.10 34696.42 32991.32 39197.71 394
miper_enhance_ethall98.16 20498.08 20298.41 28698.96 32697.72 26698.45 39499.32 27896.95 28498.97 25699.17 33297.06 13699.22 32597.86 23295.99 32698.29 366
CHOSEN 280x42099.12 10399.13 7999.08 18899.66 12697.89 25798.43 39599.71 1398.88 6599.62 11399.76 14196.63 15199.70 23999.46 5199.99 199.66 131
testmvs39.17 39243.78 39425.37 40936.04 43216.84 43498.36 39626.56 43120.06 42538.51 42667.32 42229.64 42915.30 42837.59 42639.90 42443.98 423
FPMVS84.93 38385.65 38482.75 40486.77 42563.39 43098.35 39798.92 34474.11 41683.39 41598.98 35450.85 42392.40 41984.54 41594.97 35292.46 414
KD-MVS_2432*160094.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
miper_refine_blended94.62 36093.72 36897.31 35497.19 40295.82 34898.34 39899.20 30895.00 36797.57 35998.35 38587.95 37598.10 39292.87 38677.00 41798.01 383
CL-MVSNet_self_test94.49 36293.97 36696.08 37696.16 40793.67 38998.33 40099.38 24095.13 36197.33 36698.15 39292.69 29896.57 41088.67 40379.87 41597.99 387
PVSNet96.02 1798.85 14898.84 13298.89 22199.73 9297.28 28298.32 40199.60 5497.86 18299.50 13999.57 22996.75 14799.86 15398.56 17199.70 13199.54 170
PAPM97.59 29497.09 31399.07 18999.06 30998.26 23598.30 40299.10 31994.88 36998.08 34399.34 30496.27 16699.64 25889.87 39998.92 20099.31 226
Patchmatch-RL test95.84 34895.81 34695.95 37795.61 41090.57 40398.24 40398.39 38895.10 36595.20 39298.67 37494.78 22497.77 40096.28 33290.02 39999.51 184
UnsupCasMVSNet_bld93.53 36892.51 37496.58 37397.38 39693.82 38498.24 40399.48 16391.10 40193.10 40296.66 40874.89 41298.37 38794.03 37387.71 40597.56 399
LCM-MVSNet86.80 38285.22 38691.53 39287.81 42480.96 41898.23 40598.99 33571.05 41790.13 41296.51 40948.45 42596.88 40990.51 39685.30 40896.76 404
cascas97.69 28397.43 28498.48 27298.60 37297.30 28198.18 40699.39 23292.96 39198.41 32498.78 37193.77 27399.27 31698.16 20898.61 21698.86 266
kuosan90.92 37790.11 38293.34 38598.78 34885.59 41098.15 40793.16 42589.37 40692.07 40698.38 38481.48 40895.19 41562.54 42497.04 30499.25 232
Effi-MVS+98.81 15298.59 16599.48 12899.46 20199.12 14498.08 40899.50 14197.50 22999.38 17099.41 28196.37 16399.81 19199.11 8598.54 22499.51 184
PCF-MVS97.08 1497.66 28997.06 31499.47 13199.61 14799.09 14698.04 40999.25 29891.24 40098.51 31999.70 16494.55 24299.91 11692.76 38899.85 7699.42 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 34495.47 35197.94 32699.31 24694.34 38197.81 41099.70 1597.12 26697.46 36198.75 37289.71 35299.79 20197.69 25481.69 41399.68 125
E-PMN80.61 38679.88 38882.81 40390.75 42176.38 42497.69 41195.76 41666.44 42183.52 41492.25 41662.54 41787.16 42368.53 42261.40 42084.89 421
dongtai93.26 36992.93 37394.25 38199.39 22485.68 40997.68 41293.27 42392.87 39296.85 37899.39 28982.33 40597.48 40476.78 41797.80 26399.58 162
ANet_high77.30 38874.86 39284.62 40275.88 42877.61 42297.63 41393.15 42688.81 40864.27 42389.29 42036.51 42783.93 42575.89 41952.31 42292.33 416
EMVS80.02 38779.22 38982.43 40591.19 42076.40 42397.55 41492.49 42866.36 42283.01 41691.27 41864.63 41685.79 42465.82 42360.65 42185.08 420
MVEpermissive76.82 2176.91 38974.31 39384.70 40185.38 42776.05 42596.88 41593.17 42467.39 42071.28 42289.01 42121.66 43287.69 42271.74 42172.29 41990.35 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 37591.36 37790.31 39595.85 40873.72 42894.89 41699.25 29868.39 41995.82 38899.02 34980.50 40998.95 37093.64 37694.89 35698.25 369
Gipumacopyleft90.99 37690.15 38193.51 38498.73 35790.12 40493.98 41799.45 20479.32 41592.28 40594.91 41269.61 41397.98 39687.42 40895.67 33692.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 39074.97 39179.01 40670.98 42955.18 43193.37 41898.21 39365.08 42361.78 42493.83 41421.74 43192.53 41878.59 41691.12 39489.34 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 38481.52 38786.66 40066.61 43068.44 42992.79 41997.92 39768.96 41880.04 42199.85 5985.77 38696.15 41397.86 23243.89 42395.39 413
wuyk23d40.18 39141.29 39636.84 40786.18 42649.12 43279.73 42022.81 43227.64 42425.46 42728.45 42721.98 43048.89 42655.80 42523.56 42612.51 424
mmdepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.13 3970.17 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4291.57 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k24.64 39432.85 3970.00 4100.00 4330.00 4350.00 42199.51 1210.00 4280.00 42999.56 23296.58 1530.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.27 39611.03 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 42999.01 180.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.30 39511.06 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42999.58 2240.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.02 3980.03 4010.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.27 4290.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS97.16 28995.47 349
MSC_two_6792asdad99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
PC_three_145298.18 14299.84 3799.70 16499.31 398.52 38598.30 19899.80 10499.81 65
No_MVS99.87 1599.51 17899.76 4199.33 26899.96 3298.87 11799.84 8499.89 20
test_one_060199.81 4699.88 899.49 15198.97 5799.65 10199.81 9799.09 14
eth-test20.00 433
eth-test0.00 433
ZD-MVS99.71 10199.79 3399.61 4896.84 29199.56 12799.54 24098.58 7599.96 3296.93 30999.75 121
IU-MVS99.84 3299.88 899.32 27898.30 12499.84 3798.86 12299.85 7699.89 20
test_241102_TWO99.48 16399.08 3999.88 2699.81 9798.94 3299.96 3298.91 11199.84 8499.88 26
test_241102_ONE99.84 3299.90 299.48 16399.07 4199.91 1999.74 14999.20 799.76 212
test_0728_THIRD98.99 5199.81 4599.80 11099.09 1499.96 3298.85 12499.90 4499.88 26
GSMVS99.52 177
test_part299.81 4699.83 1999.77 60
sam_mvs194.86 21999.52 177
sam_mvs94.72 231
MTGPAbinary99.47 184
test_post65.99 42494.65 23799.73 223
patchmatchnet-post98.70 37394.79 22399.74 217
gm-plane-assit98.54 37792.96 39494.65 37599.15 33599.64 25897.56 265
test9_res97.49 27199.72 12799.75 92
agg_prior297.21 28999.73 12699.75 92
agg_prior99.67 11699.62 7099.40 22998.87 27299.91 116
TestCases99.31 15699.86 2098.48 22499.61 4897.85 18599.36 17599.85 5995.95 17699.85 15996.66 32299.83 9399.59 158
test_prior99.68 7399.67 11699.48 9699.56 7299.83 17999.74 96
新几何199.75 6399.75 7899.59 7599.54 8996.76 29499.29 19099.64 20098.43 8699.94 7496.92 31199.66 13799.72 108
旧先验199.74 8599.59 7599.54 8999.69 17498.47 8399.68 13599.73 101
原ACMM199.65 7999.73 9299.33 11299.47 18497.46 23199.12 22799.66 19298.67 6999.91 11697.70 25399.69 13299.71 117
testdata299.95 6396.67 321
segment_acmp98.96 25
testdata99.54 10699.75 7898.95 17099.51 12197.07 27299.43 15499.70 16498.87 4099.94 7497.76 24499.64 14099.72 108
test1299.75 6399.64 13499.61 7299.29 29099.21 21098.38 9199.89 14099.74 12499.74 96
plane_prior799.29 25197.03 302
plane_prior699.27 25696.98 30692.71 296
plane_prior599.47 18499.69 24497.78 24097.63 26998.67 307
plane_prior499.61 215
plane_prior397.00 30498.69 8699.11 229
plane_prior199.26 258
n20.00 434
nn0.00 434
door-mid98.05 396
lessismore_v097.79 33998.69 36395.44 36094.75 41995.71 38999.87 5088.69 36499.32 30895.89 33894.93 35498.62 328
LGP-MVS_train98.49 27099.33 23897.05 29899.55 8097.46 23199.24 20299.83 7492.58 30199.72 22798.09 21197.51 28198.68 300
test1199.35 256
door97.92 397
HQP5-MVS96.83 314
BP-MVS97.19 293
HQP4-MVS98.66 30099.64 25898.64 319
HQP3-MVS99.39 23297.58 274
HQP2-MVS92.47 305
NP-MVS99.23 26696.92 31099.40 285
ACMMP++_ref97.19 301
ACMMP++97.43 292
Test By Simon98.75 58
ITE_SJBPF98.08 31499.29 25196.37 33398.92 34498.34 11998.83 27899.75 14491.09 33699.62 26595.82 33997.40 29498.25 369
DeepMVS_CXcopyleft93.34 38599.29 25182.27 41499.22 30485.15 41196.33 38299.05 34590.97 33899.73 22393.57 37797.77 26598.01 383