This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18399.65 2399.78 10499.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16999.69 1999.85 6999.48 178
RRT_MVS98.70 15098.66 13898.83 22498.90 30998.45 21799.89 299.28 28197.76 18098.94 24799.92 1496.98 13499.25 29899.28 6397.00 28798.80 247
mvsmamba98.92 12098.87 11499.08 17499.07 28599.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28499.38 4897.40 27498.73 261
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20399.80 4099.65 18697.39 11699.28 29399.03 8599.85 6999.65 129
test_djsdf98.67 15598.57 15598.98 18998.70 33998.91 16999.88 499.46 18297.55 20399.22 19599.88 3695.73 17999.28 29399.03 8597.62 25098.75 256
OurMVSNet-221017-097.88 23497.77 22598.19 28998.71 33896.53 31199.88 499.00 31997.79 17798.78 27199.94 691.68 31399.35 28197.21 26996.99 28898.69 273
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21999.64 2499.82 9099.54 161
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
K. test v397.10 30296.79 30298.01 30198.72 33696.33 31899.87 997.05 38697.59 19796.16 36399.80 10388.71 34899.04 33196.69 30096.55 29498.65 295
FC-MVSNet-test98.75 14598.62 14699.15 17199.08 28499.45 9399.86 1299.60 5498.23 12198.70 28399.82 7696.80 13999.22 30599.07 8396.38 29798.79 248
v7n97.87 23697.52 25198.92 19998.76 33298.58 20099.84 1399.46 18296.20 31698.91 25199.70 15894.89 20899.44 26196.03 31493.89 35098.75 256
DTE-MVSNet97.51 28497.19 29298.46 26398.63 34598.13 23399.84 1399.48 15596.68 27997.97 33199.67 18092.92 27798.56 36296.88 29392.60 36598.70 269
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27499.66 5399.84 1399.74 1099.09 3298.92 25099.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 27099.81 9096.75 14299.37 27499.08 8296.38 29798.78 249
test_fmvs392.10 34991.77 35293.08 36396.19 38186.25 38599.82 1798.62 36296.65 28295.19 37196.90 38355.05 39895.93 39196.63 30490.92 37397.06 379
jajsoiax98.43 16898.28 17498.88 21098.60 34998.43 21999.82 1799.53 9698.19 12798.63 29499.80 10393.22 27299.44 26199.22 6997.50 26298.77 252
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29299.53 8299.82 1799.72 1194.56 35598.08 32499.88 3694.73 22199.98 1397.47 25599.76 11099.06 228
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22599.72 103
nrg03098.64 15898.42 16499.28 15499.05 29199.69 4799.81 2099.46 18298.04 15499.01 23599.82 7696.69 14499.38 26999.34 5594.59 33898.78 249
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19799.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21899.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27699.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 29199.58 11099.59 21295.39 19099.90 11697.78 22199.49 14399.28 208
bld_raw_dy_0_6498.69 15298.58 15498.99 18798.88 31298.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29099.09 8097.27 27998.71 264
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 25099.31 17499.78 12195.23 19999.77 19098.21 18699.03 18099.75 88
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35297.09 12999.75 19699.27 6697.90 24199.47 184
v897.95 22697.63 24398.93 19798.95 30698.81 18399.80 2599.41 21296.03 33099.10 21999.42 26594.92 20699.30 29196.94 28894.08 34798.66 293
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 26597.91 20999.11 17199.62 142
Anonymous2024052196.20 31995.89 32297.13 33797.72 36994.96 34999.79 3199.29 27993.01 36997.20 35199.03 33389.69 34198.36 36691.16 37396.13 30298.07 356
PS-MVSNAJss98.92 12098.92 10698.90 20598.78 32798.53 20499.78 3299.54 8598.07 14899.00 23999.76 13599.01 1899.37 27499.13 7697.23 28198.81 246
PEN-MVS97.76 25497.44 26598.72 23698.77 33198.54 20399.78 3299.51 11597.06 25498.29 31699.64 19292.63 29098.89 35398.09 19593.16 35898.72 262
anonymousdsp98.44 16798.28 17498.94 19598.50 35498.96 15799.77 3499.50 13597.07 25298.87 25999.77 12994.76 21999.28 29398.66 13997.60 25198.57 323
SixPastTwentyTwo97.50 28597.33 28298.03 29898.65 34396.23 32199.77 3498.68 35997.14 24397.90 33299.93 990.45 33199.18 31397.00 28296.43 29698.67 285
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35298.73 27599.90 2695.78 17799.98 1396.96 28699.88 5199.76 87
SSC-MVS92.73 34893.73 34489.72 37395.02 39181.38 39399.76 3799.23 29094.87 34992.80 38298.93 34494.71 22391.37 39774.49 39793.80 35196.42 383
test_vis3_rt87.04 35585.81 35890.73 37093.99 39381.96 39199.76 3790.23 40592.81 37181.35 39391.56 39340.06 40299.07 32894.27 34788.23 38091.15 393
dcpmvs_299.23 7499.58 798.16 29199.83 3994.68 35299.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
v1097.85 23997.52 25198.86 21898.99 29998.67 19199.75 4199.41 21295.70 33498.98 24199.41 26994.75 22099.23 30296.01 31694.63 33798.67 285
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22698.09 19599.13 17099.73 97
test_vis1_n97.92 23097.44 26599.34 13699.53 16298.08 23599.74 4499.49 14399.15 20100.00 199.94 679.51 38699.98 1399.88 1499.76 11099.97 4
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25999.74 4499.49 14399.32 1499.99 299.95 385.32 37199.97 2199.82 1699.84 7799.96 7
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22299.74 4496.85 38797.68 19099.79 4299.74 14391.39 32199.89 12698.83 11899.56 13899.57 156
WB-MVS93.10 34694.10 34090.12 37295.51 38981.88 39299.73 4799.27 28495.05 34593.09 38198.91 34894.70 22491.89 39676.62 39594.02 34996.58 382
test_fmvs297.25 29697.30 28597.09 33999.43 19793.31 37099.73 4798.87 33898.83 6499.28 18099.80 10384.45 37499.66 22997.88 21197.45 26898.30 345
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18399.51 3599.14 16999.67 122
RPSCF98.22 18598.62 14696.99 34099.82 4291.58 37999.72 4999.44 20196.61 28799.66 8399.89 3095.92 17199.82 16997.46 25699.10 17499.57 156
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22499.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
dmvs_re98.08 20298.16 17997.85 31199.55 15994.67 35399.70 5298.92 32898.15 13399.06 22999.35 28693.67 26599.25 29897.77 22497.25 28099.64 136
WR-MVS_H98.13 19697.87 21698.90 20599.02 29498.84 17799.70 5299.59 5797.27 23298.40 30999.19 31795.53 18699.23 30298.34 17893.78 35298.61 317
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27299.23 24996.80 30299.70 5299.60 5497.12 24698.18 32199.70 15891.73 31299.72 20798.39 17297.45 26898.68 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 35091.26 35493.84 36095.52 38885.92 38699.69 5598.53 36695.31 33993.87 37796.37 38655.33 39798.27 36795.70 32290.98 37297.32 378
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31195.45 32999.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40298.81 4499.94 6998.79 12399.86 6299.84 40
V4298.06 20497.79 22098.86 21898.98 30298.84 17799.69 5599.34 25096.53 29399.30 17699.37 28094.67 22699.32 28797.57 24594.66 33698.42 337
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33699.62 10099.70 15893.82 26099.93 8497.35 26399.46 14499.32 205
PS-CasMVS97.93 22797.59 24698.95 19498.99 29999.06 14299.68 6199.52 10197.13 24498.31 31499.68 17492.44 29999.05 33098.51 16394.08 34798.75 256
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24799.67 6499.62 4199.43 799.99 299.91 2087.29 364100.00 199.92 1299.92 2499.98 2
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19399.40 15299.44 26198.10 9999.81 17498.94 9499.62 13499.35 201
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22999.58 11099.76 13597.65 11299.82 16998.87 10599.07 17799.46 186
CP-MVSNet98.09 20097.78 22399.01 18398.97 30499.24 11799.67 6499.46 18297.25 23498.48 30699.64 19293.79 26199.06 32998.63 14294.10 34698.74 259
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
mvs_tets98.40 17498.23 17698.91 20398.67 34298.51 21099.66 6999.53 9698.19 12798.65 29299.81 9092.75 28199.44 26199.31 5897.48 26698.77 252
EU-MVSNet97.98 22198.03 19797.81 31798.72 33696.65 30799.66 6999.66 2898.09 14398.35 31299.82 7695.25 19898.01 37397.41 26095.30 32498.78 249
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23498.78 32798.62 19699.65 7599.49 14397.76 18098.49 30599.60 21094.23 24498.97 34798.00 20492.90 36098.70 269
mvsany_test393.77 34493.45 34894.74 35895.78 38488.01 38499.64 7898.25 37098.28 11394.31 37597.97 37568.89 39098.51 36497.50 25190.37 37497.71 370
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
tfpnnormal97.84 24297.47 25798.98 18999.20 25599.22 11999.64 7899.61 4896.32 30798.27 31799.70 15893.35 26999.44 26195.69 32395.40 32298.27 347
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17499.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final98.71 14998.61 15298.99 18799.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 26999.30 6197.52 25898.64 297
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 31796.03 31896.79 34897.31 37594.14 36099.63 8299.08 31096.17 31997.04 35599.06 33093.94 25597.76 37986.96 38895.06 32998.47 331
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
EPNet98.86 12798.71 13199.30 14897.20 37798.18 22999.62 8898.91 33299.28 1698.63 29499.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37299.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22399.28 18099.68 17496.44 15499.92 9598.37 17598.22 22799.40 197
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
test250696.81 30896.65 30497.29 33499.74 8092.21 37799.60 9585.06 40699.13 2299.77 5199.93 987.82 36299.85 14599.38 4899.38 14999.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26698.24 18599.80 9799.79 74
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
ACMH97.28 898.10 19997.99 20198.44 26799.41 20296.96 29699.60 9599.56 6998.09 14398.15 32299.91 2090.87 32899.70 21998.88 10297.45 26898.67 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21098.05 19598.00 30399.74 8094.37 35799.59 10194.98 39699.13 2299.66 8399.93 990.67 33099.84 15199.40 4799.38 14999.80 70
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
thres100view90097.76 25497.45 26098.69 23899.72 9197.86 25199.59 10198.74 35197.93 16299.26 18898.62 35891.75 31099.83 16393.22 35898.18 23298.37 343
thres600view797.86 23897.51 25398.92 19999.72 9197.95 24599.59 10198.74 35197.94 16199.27 18498.62 35891.75 31099.86 13993.73 35398.19 23198.96 239
LCM-MVSNet-Re97.83 24498.15 18196.87 34699.30 23292.25 37699.59 10198.26 36997.43 21896.20 36299.13 32396.27 15998.73 35998.17 19198.99 18399.64 136
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22999.79 18398.48 16593.29 35699.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25899.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
dmvs_testset95.02 33396.12 31591.72 36799.10 27980.43 39599.58 10997.87 37897.47 21195.22 36998.82 35193.99 25395.18 39288.09 38494.91 33499.56 158
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test111198.04 21098.11 18697.83 31499.74 8093.82 36299.58 10995.40 39599.12 2599.65 8999.93 990.73 32999.84 15199.43 4699.38 14999.82 54
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
LPG-MVS_test98.22 18598.13 18498.49 25699.33 22497.05 28599.58 10999.55 7797.46 21299.24 19099.83 6892.58 29199.72 20798.09 19597.51 26098.68 278
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24699.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
Effi-MVS+-dtu98.78 14298.89 11298.47 26299.33 22496.91 29899.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19798.73 12999.38 14998.74 259
v2v48298.06 20497.77 22598.92 19998.90 30998.82 18199.57 11699.36 24096.65 28299.19 20499.35 28694.20 24599.25 29897.72 23194.97 33198.69 273
DSMNet-mixed97.25 29697.35 27796.95 34397.84 36593.61 36899.57 11696.63 39196.13 32498.87 25998.61 36094.59 22997.70 38095.08 33798.86 19299.55 159
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22699.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13199.54 3098.26 22599.72 103
KD-MVS_self_test95.00 33494.34 33996.96 34297.07 38095.39 34099.56 12299.44 20195.11 34297.13 35397.32 38191.86 30897.27 38390.35 37681.23 39098.23 351
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 229
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21599.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30299.83 8699.59 150
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16399.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21598.71 27799.83 6893.23 27099.63 24298.88 10296.32 29998.76 254
ACMH+97.24 1097.92 23097.78 22398.32 27999.46 19096.68 30699.56 12299.54 8598.41 10097.79 33899.87 4490.18 33799.66 22998.05 20397.18 28498.62 308
ACMM97.58 598.37 17698.34 16998.48 25899.41 20297.10 27999.56 12299.45 19398.53 9099.04 23299.85 5493.00 27599.71 21398.74 12797.45 26898.64 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35799.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26299.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
v14419297.92 23097.60 24598.87 21498.83 32298.65 19399.55 13499.34 25096.20 31699.32 17299.40 27294.36 24099.26 29796.37 31095.03 33098.70 269
iter_conf0598.55 16298.44 16298.87 21499.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 26999.30 6197.48 26698.63 305
API-MVS99.04 10899.03 8699.06 17799.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18896.98 28499.78 10498.07 356
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
APD_test195.87 32496.49 30894.00 35999.53 16284.01 38799.54 13999.32 26795.91 33297.99 32999.85 5485.49 37099.88 13191.96 36998.84 19498.12 354
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38997.53 20799.73 6299.65 18691.25 32499.89 12698.62 14399.56 13899.48 178
MTMP99.54 13998.88 336
v114497.98 22197.69 23598.85 22198.87 31698.66 19299.54 13999.35 24696.27 31199.23 19499.35 28694.67 22699.23 30296.73 29795.16 32798.68 278
v14897.79 25297.55 24798.50 25598.74 33397.72 25699.54 13999.33 25796.26 31298.90 25399.51 24194.68 22599.14 31697.83 21793.15 35998.63 305
CostFormer97.72 26397.73 23297.71 32199.15 27294.02 36199.54 13999.02 31794.67 35399.04 23299.35 28692.35 30199.77 19098.50 16497.94 24099.34 203
MVSTER98.49 16398.32 17199.00 18599.35 21899.02 14699.54 13999.38 23197.41 22199.20 20199.73 14993.86 25999.36 27898.87 10597.56 25598.62 308
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
patch_mono-299.26 6899.62 598.16 29199.81 4694.59 35499.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24299.41 20296.99 29299.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18397.95 20799.45 14599.02 232
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38399.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32599.01 23599.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
v192192097.80 25197.45 26098.84 22298.80 32398.53 20499.52 14899.34 25096.15 32299.24 19099.47 25593.98 25499.29 29295.40 33195.13 32898.69 273
MIMVSNet195.51 32895.04 33396.92 34597.38 37295.60 33199.52 14899.50 13593.65 36396.97 35799.17 31885.28 37296.56 38888.36 38395.55 31998.60 320
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
UniMVSNet_ETH3D97.32 29396.81 30198.87 21499.40 20797.46 26599.51 15699.53 9695.86 33398.54 30299.77 12982.44 38299.66 22998.68 13797.52 25899.50 176
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34794.78 21599.77 19099.35 5198.11 23799.54 161
v119297.81 24997.44 26598.91 20398.88 31298.68 19099.51 15699.34 25096.18 31899.20 20199.34 29094.03 25299.36 27895.32 33395.18 32698.69 273
test20.0396.12 32195.96 32096.63 34997.44 37195.45 33899.51 15699.38 23196.55 29296.16 36399.25 31093.76 26396.17 38987.35 38794.22 34498.27 347
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25699.35 5198.99 18399.51 173
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25298.70 13298.93 18699.67 122
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15198.60 14998.33 21999.59 150
tfpn200view997.72 26397.38 27398.72 23699.69 10697.96 24399.50 16398.73 35697.83 17299.17 20898.45 36391.67 31499.83 16393.22 35898.18 23298.37 343
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
pm-mvs197.68 27097.28 28798.88 21099.06 28898.62 19699.50 16399.45 19396.32 30797.87 33499.79 11592.47 29599.35 28197.54 24893.54 35498.67 285
EI-MVSNet98.67 15598.67 13598.68 23999.35 21897.97 24199.50 16399.38 23196.93 26799.20 20199.83 6897.87 10599.36 27898.38 17397.56 25598.71 264
CVMVSNet98.57 16198.67 13598.30 28199.35 21895.59 33299.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 25698.75 12698.56 20999.85 36
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23499.35 5194.46 33998.72 262
thres40097.77 25397.38 27398.92 19999.69 10697.96 24399.50 16398.73 35697.83 17299.17 20898.45 36391.67 31499.83 16393.22 35898.18 23298.96 239
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24299.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 32695.65 32696.32 35399.67 11191.35 38099.49 17496.74 39098.25 11795.24 36898.10 37374.96 38799.90 11699.53 3298.85 19397.70 372
TransMVSNet (Re)97.15 30096.58 30598.86 21899.12 27498.85 17699.49 17498.91 33295.48 33797.16 35299.80 10393.38 26899.11 32494.16 35091.73 36798.62 308
UniMVSNet (Re)98.29 18298.00 20099.13 17299.00 29699.36 10299.49 17499.51 11597.95 16098.97 24399.13 32396.30 15899.38 26998.36 17793.34 35598.66 293
EPMVS97.82 24797.65 23998.35 27698.88 31295.98 32599.49 17494.71 39897.57 20099.26 18899.48 25292.46 29899.71 21397.87 21399.08 17699.35 201
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23497.54 25098.90 20599.71 9698.53 20499.48 17899.57 6494.16 35898.81 26699.68 17493.23 27099.42 26698.84 11594.42 34198.76 254
v124097.69 26897.32 28398.79 23198.85 32098.43 21999.48 17899.36 24096.11 32599.27 18499.36 28393.76 26399.24 30194.46 34495.23 32598.70 269
VPNet97.84 24297.44 26599.01 18399.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 26899.19 7193.27 35798.71 264
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19298.92 30898.98 15099.48 17899.53 9697.76 18098.71 27799.46 25996.43 15599.22 30598.57 15592.87 36298.69 273
TDRefinement95.42 33094.57 33797.97 30589.83 39896.11 32499.48 17898.75 34896.74 27596.68 35899.88 3688.65 35199.71 21398.37 17582.74 38898.09 355
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
NR-MVSNet97.97 22497.61 24499.02 18298.87 31699.26 11599.47 18499.42 20997.63 19597.08 35499.50 24495.07 20299.13 31997.86 21493.59 35398.68 278
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19399.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
SD-MVS99.41 4799.52 1199.05 17999.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38098.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 29496.76 30398.82 22599.37 21498.07 23699.45 18899.36 24097.56 20297.89 33398.95 34283.70 37798.82 35496.03 31498.56 20999.58 154
tt080597.97 22497.77 22598.57 24799.59 14796.61 30999.45 18899.08 31098.21 12498.88 25699.80 10388.66 35099.70 21998.58 15297.72 24599.39 198
tpm297.44 29097.34 28097.74 32099.15 27294.36 35899.45 18898.94 32593.45 36798.90 25399.44 26191.35 32299.59 24697.31 26498.07 23899.29 207
FMVSNet297.72 26397.36 27598.80 23099.51 16998.84 17799.45 18899.42 20996.49 29598.86 26399.29 30290.26 33398.98 34096.44 30796.56 29398.58 322
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27498.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28799.01 23599.40 27297.09 12999.86 13997.68 23699.53 14199.10 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
test_040296.64 31096.24 31397.85 31198.85 32096.43 31599.44 19499.26 28593.52 36496.98 35699.52 23888.52 35399.20 31292.58 36897.50 26297.93 367
ACMP97.20 1198.06 20497.94 20898.45 26499.37 21497.01 29099.44 19499.49 14397.54 20698.45 30799.79 11591.95 30699.72 20797.91 20997.49 26598.62 308
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 26498.55 35298.16 23099.43 19893.68 40097.23 34998.46 36289.30 34499.22 30595.43 33098.22 22797.98 364
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
tpm cat197.39 29197.36 27597.50 32999.17 26693.73 36499.43 19899.31 27191.27 37698.71 27799.08 32794.31 24399.77 19096.41 30998.50 21399.00 233
tpm97.67 27397.55 24798.03 29899.02 29495.01 34799.43 19898.54 36596.44 30199.12 21499.34 29091.83 30999.60 24597.75 22796.46 29599.48 178
GBi-Net97.68 27097.48 25598.29 28299.51 16997.26 27299.43 19899.48 15596.49 29599.07 22499.32 29790.26 33398.98 34097.10 27796.65 29098.62 308
test197.68 27097.48 25598.29 28299.51 16997.26 27299.43 19899.48 15596.49 29599.07 22499.32 29790.26 33398.98 34097.10 27796.65 29098.62 308
FMVSNet196.84 30796.36 31198.29 28299.32 23097.26 27299.43 19899.48 15595.11 34298.55 30199.32 29783.95 37698.98 34095.81 31996.26 30098.62 308
testgi97.65 27597.50 25498.13 29599.36 21796.45 31499.42 20599.48 15597.76 18097.87 33499.45 26091.09 32598.81 35594.53 34398.52 21299.13 216
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 23199.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 23099.41 20798.55 36496.03 33099.19 20499.74 14391.87 30799.92 9599.16 7598.29 22499.70 113
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25199.28 6399.84 7799.63 140
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23299.72 103
baseline297.87 23697.55 24798.82 22599.18 26098.02 23899.41 20796.58 39296.97 26196.51 35999.17 31893.43 26799.57 24797.71 23299.03 18098.86 243
DU-MVS98.08 20297.79 22098.96 19298.87 31698.98 15099.41 20799.45 19397.87 16698.71 27799.50 24494.82 21099.22 30598.57 15592.87 36298.68 278
Baseline_NR-MVSNet97.76 25497.45 26098.68 23999.09 28298.29 22499.41 20798.85 34095.65 33598.63 29499.67 18094.82 21099.10 32698.07 20292.89 36198.64 297
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28899.11 27696.33 31899.41 20799.52 10198.06 15299.05 23199.50 24489.64 34299.73 20397.73 22997.38 27698.53 325
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25899.04 23299.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
9.1499.10 7599.72 9199.40 21599.51 11597.53 20799.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
D2MVS98.41 17198.50 16098.15 29499.26 24396.62 30899.40 21599.61 4897.71 18698.98 24199.36 28396.04 16499.67 22698.70 13297.41 27398.15 353
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21899.40 21599.43 20793.67 36299.22 19599.89 3090.23 33699.93 8499.26 6798.33 21999.66 125
FMVSNet398.03 21297.76 22998.84 22299.39 21098.98 15099.40 21599.38 23196.67 28099.07 22499.28 30492.93 27698.98 34097.10 27796.65 29098.56 324
LFMVS97.90 23397.35 27799.54 9799.52 16699.01 14899.39 21998.24 37197.10 25099.65 8999.79 11584.79 37399.91 10599.28 6398.38 21699.69 115
HQP_MVS98.27 18498.22 17798.44 26799.29 23696.97 29499.39 21999.47 17398.97 5199.11 21699.61 20792.71 28699.69 22497.78 22197.63 24898.67 285
plane_prior299.39 21998.97 51
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18799.94 6999.50 3699.97 799.89 20
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18899.28 18099.28 30498.34 8999.85 14596.96 28699.45 14599.69 115
gg-mvs-nofinetune96.17 32095.32 33198.73 23598.79 32498.14 23299.38 22494.09 39991.07 37998.07 32791.04 39589.62 34399.35 28196.75 29699.09 17598.68 278
VDDNet97.55 28097.02 29899.16 16799.49 18098.12 23499.38 22499.30 27595.35 33899.68 7499.90 2682.62 38199.93 8499.31 5898.13 23699.42 193
pmmvs696.53 31296.09 31797.82 31698.69 34095.47 33799.37 22699.47 17393.46 36697.41 34399.78 12187.06 36599.33 28496.92 29192.70 36498.65 295
PM-MVS92.96 34792.23 35195.14 35795.61 38589.98 38399.37 22698.21 37294.80 35195.04 37397.69 37665.06 39197.90 37694.30 34589.98 37797.54 376
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21499.72 103
IterMVS-LS98.46 16698.42 16498.58 24699.59 14798.00 23999.37 22699.43 20796.94 26699.07 22499.59 21297.87 10599.03 33398.32 18195.62 31798.71 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 26797.28 28798.97 19199.70 10197.27 27099.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 38599.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 31496.12 31597.40 33198.65 34395.65 33099.36 23099.51 11597.13 24496.04 36598.99 33788.40 35498.17 36996.71 29890.27 37598.40 340
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 33294.73 33597.15 33595.53 38795.94 32699.35 23599.10 30795.13 34093.55 37897.54 37788.15 35897.91 37594.58 34289.69 37897.61 373
MDTV_nov1_ep13_2view95.18 34599.35 23596.84 27199.58 11095.19 20097.82 21899.46 186
VDD-MVS97.73 26197.35 27798.88 21099.47 18997.12 27899.34 23898.85 34098.19 12799.67 7899.85 5482.98 37999.92 9599.49 4098.32 22399.60 146
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20398.70 28399.89 3095.83 17599.90 11698.10 19499.90 3999.08 222
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 35977.86 36597.62 32497.91 36396.12 32399.33 24099.28 2818.40 40325.05 40499.27 30784.11 37599.33 28489.20 37998.22 22797.42 377
FMVSNet596.43 31596.19 31497.15 33599.11 27695.89 32799.32 24199.52 10194.47 35798.34 31399.07 32887.54 36397.07 38492.61 36795.72 31598.47 331
dp97.75 25897.80 21997.59 32699.10 27993.71 36599.32 24198.88 33696.48 29899.08 22399.55 22692.67 28999.82 16996.52 30598.58 20699.24 210
tpmvs97.98 22198.02 19997.84 31399.04 29294.73 35199.31 24399.20 29696.10 32998.76 27399.42 26594.94 20399.81 17496.97 28598.45 21598.97 237
tpmrst98.33 17898.48 16197.90 30999.16 26894.78 35099.31 24399.11 30697.27 23299.45 13499.59 21295.33 19399.84 15198.48 16598.61 20399.09 221
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 24099.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
JIA-IIPM97.50 28597.02 29898.93 19798.73 33497.80 25399.30 24598.97 32291.73 37598.91 25194.86 38995.10 20199.71 21397.58 24197.98 23999.28 208
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18898.94 24799.65 18692.91 27999.74 19796.52 30599.55 14099.64 136
Syy-MVS97.09 30397.14 29396.95 34399.00 29692.73 37499.29 24999.39 22397.06 25497.41 34398.15 36993.92 25798.68 36091.71 37098.34 21799.45 189
myMVS_eth3d96.89 30596.37 31098.43 26999.00 29697.16 27699.29 24999.39 22397.06 25497.41 34398.15 36983.46 37898.68 36095.27 33498.34 21799.45 189
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
LF4IMVS97.52 28297.46 25997.70 32298.98 30295.55 33399.29 24998.82 34398.07 14898.66 28699.64 19289.97 33899.61 24497.01 28196.68 28997.94 366
hse-mvs297.50 28597.14 29398.59 24399.49 18097.05 28599.28 25399.22 29298.94 5499.66 8399.42 26594.93 20499.65 23499.48 4183.80 38799.08 222
OPM-MVS98.19 18998.10 18798.45 26498.88 31297.07 28399.28 25399.38 23198.57 8699.22 19599.81 9092.12 30299.66 22998.08 19997.54 25798.61 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12798.80 12299.03 18199.76 6598.79 18499.28 25399.91 397.42 22099.67 7899.37 28097.53 11399.88 13198.98 9097.29 27898.42 337
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22899.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18897.79 22099.81 9399.60 146
testing22297.16 29996.50 30799.16 16799.16 26898.47 21699.27 25898.66 36097.71 18698.23 31898.15 36982.28 38399.84 15197.36 26297.66 24799.18 213
AUN-MVS96.88 30696.31 31298.59 24399.48 18897.04 28899.27 25899.22 29297.44 21798.51 30399.41 26991.97 30599.66 22997.71 23283.83 38699.07 227
pmmvs597.52 28297.30 28598.16 29198.57 35196.73 30399.27 25898.90 33496.14 32398.37 31199.53 23591.54 31999.14 31697.51 25095.87 31098.63 305
131498.68 15498.54 15899.11 17398.89 31198.65 19399.27 25899.49 14396.89 26897.99 32999.56 22397.72 11199.83 16397.74 22899.27 16098.84 245
MVS97.28 29496.55 30699.48 11798.78 32798.95 16299.27 25899.39 22383.53 38998.08 32499.54 23196.97 13599.87 13694.23 34899.16 16599.63 140
BH-untuned98.42 16998.36 16798.59 24399.49 18096.70 30499.27 25899.13 30597.24 23698.80 26899.38 27795.75 17899.74 19797.07 28099.16 16599.33 204
MDTV_nov1_ep1398.32 17199.11 27694.44 35699.27 25898.74 35197.51 20999.40 15299.62 20394.78 21599.76 19497.59 24098.81 198
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30599.42 14399.68 17498.75 5599.80 18097.98 20599.72 11899.44 191
PatchmatchNetpermissive98.31 17998.36 16798.19 28999.16 26895.32 34199.27 25898.92 32897.37 22499.37 16099.58 21694.90 20799.70 21997.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 27897.28 28798.62 24199.64 12798.03 23799.26 26798.74 35197.68 19099.09 22298.32 36791.66 31699.81 17492.88 36398.22 22798.03 359
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26799.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26999.48 15597.23 23799.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
TAPA-MVS97.07 1597.74 26097.34 28098.94 19599.70 10197.53 26399.25 26999.51 11591.90 37499.30 17699.63 19898.78 4899.64 23788.09 38499.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27199.52 10196.85 27099.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27265.14 40194.18 24899.71 21397.58 241
ADS-MVSNet298.02 21498.07 19497.87 31099.33 22495.19 34499.23 27299.08 31096.24 31399.10 21999.67 18094.11 24998.93 35096.81 29499.05 17899.48 178
ADS-MVSNet98.20 18898.08 19198.56 25099.33 22496.48 31399.23 27299.15 30296.24 31399.10 21999.67 18094.11 24999.71 21396.81 29499.05 17899.48 178
EPNet_dtu98.03 21297.96 20498.23 28798.27 35995.54 33599.23 27298.75 34899.02 3897.82 33699.71 15496.11 16299.48 25393.04 36199.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19297.93 20998.87 21499.18 26098.49 21299.22 27699.33 25796.96 26299.56 11499.38 27794.33 24199.00 33894.83 34198.58 20699.14 214
RPMNet96.72 30995.90 32199.19 16499.18 26098.49 21299.22 27699.52 10188.72 38599.56 11497.38 37994.08 25199.95 5986.87 38998.58 20699.14 214
plane_prior96.97 29499.21 27898.45 9697.60 251
WR-MVS98.06 20497.73 23299.06 17798.86 31999.25 11699.19 27999.35 24697.30 23098.66 28699.43 26393.94 25599.21 31098.58 15294.28 34398.71 264
new-patchmatchnet94.48 34094.08 34195.67 35695.08 39092.41 37599.18 28099.28 28194.55 35693.49 37997.37 38087.86 36197.01 38591.57 37188.36 37997.61 373
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 28099.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
EG-PatchMatch MVS95.97 32395.69 32596.81 34797.78 36692.79 37399.16 28298.93 32696.16 32094.08 37699.22 31382.72 38099.47 25495.67 32597.50 26298.17 352
PatchT97.03 30496.44 30998.79 23198.99 29998.34 22399.16 28299.07 31392.13 37399.52 12397.31 38294.54 23498.98 34088.54 38298.73 20199.03 230
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28299.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
MDA-MVSNet-bldmvs94.96 33593.98 34297.92 30798.24 36097.27 27099.15 28599.33 25793.80 36180.09 39699.03 33388.31 35597.86 37793.49 35694.36 34298.62 308
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28599.41 21296.60 28999.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
save fliter99.76 6599.59 7099.14 28799.40 22099.00 43
WB-MVSnew97.65 27597.65 23997.63 32398.78 32797.62 26199.13 28898.33 36897.36 22599.07 22498.94 34395.64 18499.15 31592.95 36298.68 20296.12 387
testf190.42 35390.68 35589.65 37497.78 36673.97 40299.13 28898.81 34489.62 38191.80 38598.93 34462.23 39498.80 35686.61 39091.17 36996.19 385
APD_test290.42 35390.68 35589.65 37497.78 36673.97 40299.13 28898.81 34489.62 38191.80 38598.93 34462.23 39498.80 35686.61 39091.17 36996.19 385
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 29199.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 222
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20899.71 9697.74 25499.12 29199.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 233
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 29199.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
N_pmnet94.95 33695.83 32392.31 36598.47 35579.33 39799.12 29192.81 40393.87 36097.68 33999.13 32393.87 25899.01 33791.38 37296.19 30198.59 321
MDA-MVSNet_test_wron95.45 32994.60 33698.01 30198.16 36197.21 27599.11 29799.24 28993.49 36580.73 39598.98 33993.02 27498.18 36894.22 34994.45 34098.64 297
Patchmtry97.75 25897.40 27298.81 22899.10 27998.87 17299.11 29799.33 25794.83 35098.81 26699.38 27794.33 24199.02 33596.10 31295.57 31898.53 325
YYNet195.36 33194.51 33897.92 30797.89 36497.10 27999.10 29999.23 29093.26 36880.77 39499.04 33292.81 28098.02 37294.30 34594.18 34598.64 297
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22199.08 30099.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 200
SCA98.19 18998.16 17998.27 28699.30 23295.55 33399.07 30198.97 32297.57 20099.43 14099.57 22092.72 28499.74 19797.58 24199.20 16399.52 167
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 30199.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 30199.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28299.80 9799.85 36
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30499.77 997.74 18499.50 12699.53 23595.41 18999.84 15197.17 27699.64 13199.44 191
OpenMVS_ROBcopyleft92.34 2094.38 34193.70 34796.41 35297.38 37293.17 37199.06 30498.75 34886.58 38694.84 37498.26 36881.53 38499.32 28789.01 38097.87 24296.76 380
TEST999.67 11199.65 5799.05 30699.41 21296.22 31598.95 24599.49 24798.77 5199.91 105
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30699.41 21296.28 30998.95 24599.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30699.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30699.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 31696.03 31897.41 33098.13 36295.16 34699.05 30699.20 29693.94 35997.39 34698.79 35391.61 31899.04 33190.43 37595.77 31298.05 358
Patchmatch-test97.93 22797.65 23998.77 23399.18 26097.07 28399.03 31199.14 30496.16 32098.74 27499.57 22094.56 23199.72 20793.36 35799.11 17199.52 167
test_899.67 11199.61 6799.03 31199.41 21296.28 30998.93 24999.48 25298.76 5299.91 105
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 31199.47 17396.98 26099.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
IterMVS-SCA-FT97.82 24797.75 23098.06 29799.57 15196.36 31799.02 31499.49 14397.18 24098.71 27799.72 15392.72 28499.14 31697.44 25895.86 31198.67 285
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31499.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 236
MIMVSNet97.73 26197.45 26098.57 24799.45 19597.50 26499.02 31498.98 32196.11 32599.41 14799.14 32290.28 33298.74 35895.74 32198.93 18699.47 184
IterMVS97.83 24497.77 22598.02 30099.58 14996.27 32099.02 31499.48 15597.22 23898.71 27799.70 15892.75 28199.13 31997.46 25696.00 30598.67 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31499.91 397.67 19299.59 10999.75 13895.90 17399.73 20399.53 3299.02 18299.86 33
新几何299.01 319
BH-w/o98.00 21997.89 21598.32 27999.35 21896.20 32299.01 31998.90 33496.42 30398.38 31099.00 33695.26 19799.72 20796.06 31398.61 20399.03 230
test_prior499.56 7598.99 321
无先验98.99 32199.51 11596.89 26899.93 8497.53 24999.72 103
pmmvs498.13 19697.90 21198.81 22898.61 34898.87 17298.99 32199.21 29596.44 30199.06 22999.58 21695.90 17399.11 32497.18 27596.11 30398.46 334
HQP-NCC99.19 25798.98 32498.24 11898.66 286
ACMP_Plane99.19 25798.98 32498.24 11898.66 286
HQP-MVS98.02 21497.90 21198.37 27599.19 25796.83 29998.98 32499.39 22398.24 11898.66 28699.40 27292.47 29599.64 23797.19 27397.58 25398.64 297
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32799.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 237
MVP-Stereo97.81 24997.75 23097.99 30497.53 37096.60 31098.96 32898.85 34097.22 23897.23 34999.36 28395.28 19499.46 25595.51 32799.78 10497.92 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 32898.34 10899.01 23599.52 23898.68 6497.96 20699.74 115
旧先验298.96 32896.70 27899.47 13199.94 6998.19 188
原ACMM298.95 331
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33199.85 698.82 6599.54 11999.73 14998.51 7899.74 19798.91 9999.88 5199.77 82
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33399.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33399.85 698.82 6599.65 8999.74 14398.51 7899.80 18098.83 11899.89 4899.64 136
pmmvs394.09 34393.25 34996.60 35094.76 39294.49 35598.92 33598.18 37489.66 38096.48 36098.06 37486.28 36697.33 38289.68 37887.20 38297.97 365
XVG-OURS98.73 14898.68 13498.88 21099.70 10197.73 25598.92 33599.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 19998.84 19499.00 233
test22299.75 7399.49 8798.91 33799.49 14396.42 30399.34 17099.65 18698.28 9299.69 12399.72 103
PMMVS286.87 35685.37 36091.35 36990.21 39783.80 38898.89 33897.45 38583.13 39091.67 38795.03 38748.49 40094.70 39385.86 39277.62 39295.54 388
miper_lstm_enhance98.00 21997.91 21098.28 28599.34 22297.43 26698.88 33999.36 24096.48 29898.80 26899.55 22695.98 16698.91 35197.27 26695.50 32198.51 327
MVS-HIRNet95.75 32795.16 33297.51 32899.30 23293.69 36698.88 33995.78 39385.09 38898.78 27192.65 39191.29 32399.37 27494.85 34099.85 6999.46 186
TR-MVS97.76 25497.41 27198.82 22599.06 28897.87 24998.87 34198.56 36396.63 28698.68 28599.22 31392.49 29499.65 23495.40 33197.79 24398.95 241
testdata198.85 34298.32 111
ET-MVSNet_ETH3D96.49 31395.64 32799.05 17999.53 16298.82 18198.84 34397.51 38497.63 19584.77 38999.21 31692.09 30398.91 35198.98 9092.21 36699.41 195
our_test_397.65 27597.68 23697.55 32798.62 34694.97 34898.84 34399.30 27596.83 27398.19 32099.34 29097.01 13399.02 33595.00 33996.01 30498.64 297
MS-PatchMatch97.24 29897.32 28396.99 34098.45 35693.51 36998.82 34599.32 26797.41 22198.13 32399.30 30088.99 34699.56 24895.68 32499.80 9797.90 369
c3_l98.12 19898.04 19698.38 27499.30 23297.69 26098.81 34699.33 25796.67 28098.83 26499.34 29097.11 12898.99 33997.58 24195.34 32398.48 329
ppachtmachnet_test97.49 28897.45 26097.61 32598.62 34695.24 34298.80 34799.46 18296.11 32598.22 31999.62 20396.45 15398.97 34793.77 35295.97 30998.61 317
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34799.36 24096.33 30699.00 23999.12 32698.46 8199.84 15195.23 33599.37 15699.66 125
test0.0.03 197.71 26697.42 27098.56 25098.41 35897.82 25298.78 34998.63 36197.34 22698.05 32898.98 33994.45 23898.98 34095.04 33897.15 28598.89 242
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34999.91 396.74 27599.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 35199.31 27197.34 22699.21 19899.07 32897.20 12599.82 16998.56 15898.87 19199.52 167
test12339.01 36842.50 37028.53 38439.17 40620.91 40998.75 35219.17 40919.83 40238.57 40166.67 39933.16 40415.42 40337.50 40329.66 40149.26 398
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35299.55 7797.25 23499.47 13199.77 12997.82 10799.87 13696.93 28999.90 3999.54 161
CLD-MVS98.16 19398.10 18798.33 27799.29 23696.82 30198.75 35299.44 20197.83 17299.13 21299.55 22692.92 27799.67 22698.32 18197.69 24698.48 329
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19198.10 18798.41 27099.23 24997.72 25698.72 35599.31 27196.60 28998.88 25699.29 30297.29 12399.13 31997.60 23995.99 30698.38 342
cl____98.01 21797.84 21898.55 25299.25 24797.97 24198.71 35699.34 25096.47 30098.59 30099.54 23195.65 18399.21 31097.21 26995.77 31298.46 334
DIV-MVS_self_test98.01 21797.85 21798.48 25899.24 24897.95 24598.71 35699.35 24696.50 29498.60 29999.54 23195.72 18099.03 33397.21 26995.77 31298.46 334
test-LLR98.06 20497.90 21198.55 25298.79 32497.10 27998.67 35897.75 37997.34 22698.61 29798.85 34994.45 23899.45 25697.25 26799.38 14999.10 217
TESTMET0.1,197.55 28097.27 29098.40 27298.93 30796.53 31198.67 35897.61 38296.96 26298.64 29399.28 30488.63 35299.45 25697.30 26599.38 14999.21 212
test-mter97.49 28897.13 29598.55 25298.79 32497.10 27998.67 35897.75 37996.65 28298.61 29798.85 34988.23 35699.45 25697.25 26799.38 14999.10 217
IB-MVS95.67 1896.22 31795.44 33098.57 24799.21 25396.70 30498.65 36197.74 38196.71 27797.27 34898.54 36186.03 36799.92 9598.47 16886.30 38399.10 217
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36299.10 30797.93 16299.42 14399.55 22698.67 6699.80 18095.80 32099.68 12699.61 144
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36396.82 38896.95 26499.54 11999.43 26391.66 31699.86 13998.08 19999.51 14299.22 211
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33899.60 14591.75 37898.61 36399.44 20199.35 1299.83 3499.85 5498.70 6399.81 17499.02 8799.91 3199.81 61
cl2297.85 23997.64 24298.48 25899.09 28297.87 24998.60 36599.33 25797.11 24998.87 25999.22 31392.38 30099.17 31498.21 18695.99 30698.42 337
GA-MVS97.85 23997.47 25799.00 18599.38 21197.99 24098.57 36699.15 30297.04 25798.90 25399.30 30089.83 33999.38 26996.70 29998.33 21999.62 142
TinyColmap97.12 30196.89 30097.83 31499.07 28595.52 33698.57 36698.74 35197.58 19997.81 33799.79 11588.16 35799.56 24895.10 33697.21 28298.39 341
eth_miper_zixun_eth98.05 20997.96 20498.33 27799.26 24397.38 26798.56 36899.31 27196.65 28298.88 25699.52 23896.58 14799.12 32397.39 26195.53 32098.47 331
CMPMVSbinary69.68 2394.13 34294.90 33491.84 36697.24 37680.01 39698.52 36999.48 15589.01 38391.99 38499.67 18085.67 36999.13 31995.44 32997.03 28696.39 384
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 29297.20 29197.75 31999.07 28595.20 34398.51 37099.04 31697.99 15898.31 31499.86 4989.02 34599.55 25095.67 32597.36 27798.49 328
ambc93.06 36492.68 39482.36 38998.47 37198.73 35695.09 37297.41 37855.55 39699.10 32696.42 30891.32 36897.71 370
miper_enhance_ethall98.16 19398.08 19198.41 27098.96 30597.72 25698.45 37299.32 26796.95 26498.97 24399.17 31897.06 13199.22 30597.86 21495.99 30698.29 346
CHOSEN 280x42099.12 9499.13 7299.08 17499.66 11997.89 24898.43 37399.71 1398.88 5999.62 10099.76 13596.63 14599.70 21999.46 4499.99 199.66 125
testmvs39.17 36743.78 36925.37 38536.04 40716.84 41098.36 37426.56 40720.06 40138.51 40267.32 39829.64 40515.30 40437.59 40239.90 40043.98 399
FPMVS84.93 35885.65 35982.75 38086.77 40063.39 40698.35 37598.92 32874.11 39283.39 39198.98 33950.85 39992.40 39584.54 39394.97 33192.46 390
KD-MVS_2432*160094.62 33793.72 34597.31 33297.19 37895.82 32898.34 37699.20 29695.00 34697.57 34098.35 36587.95 35998.10 37092.87 36477.00 39398.01 360
miper_refine_blended94.62 33793.72 34597.31 33297.19 37895.82 32898.34 37699.20 29695.00 34697.57 34098.35 36587.95 35998.10 37092.87 36477.00 39398.01 360
CL-MVSNet_self_test94.49 33993.97 34396.08 35496.16 38293.67 36798.33 37899.38 23195.13 34097.33 34798.15 36992.69 28896.57 38788.67 38179.87 39197.99 363
PVSNet96.02 1798.85 13498.84 11998.89 20899.73 8797.28 26998.32 37999.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
PAPM97.59 27997.09 29699.07 17699.06 28898.26 22698.30 38099.10 30794.88 34898.08 32499.34 29096.27 15999.64 23789.87 37798.92 18899.31 206
Patchmatch-RL test95.84 32595.81 32495.95 35595.61 38590.57 38198.24 38198.39 36795.10 34495.20 37098.67 35794.78 21597.77 37896.28 31190.02 37699.51 173
UnsupCasMVSNet_bld93.53 34592.51 35096.58 35197.38 37293.82 36298.24 38199.48 15591.10 37893.10 38096.66 38474.89 38898.37 36594.03 35187.71 38197.56 375
LCM-MVSNet86.80 35785.22 36191.53 36887.81 39980.96 39498.23 38398.99 32071.05 39390.13 38896.51 38548.45 40196.88 38690.51 37485.30 38496.76 380
cascas97.69 26897.43 26998.48 25898.60 34997.30 26898.18 38499.39 22392.96 37098.41 30898.78 35493.77 26299.27 29698.16 19298.61 20398.86 243
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38599.50 13597.50 21099.38 15899.41 26996.37 15699.81 17499.11 7898.54 21199.51 173
PCF-MVS97.08 1497.66 27497.06 29799.47 12099.61 14099.09 13698.04 38699.25 28791.24 37798.51 30399.70 15894.55 23399.91 10592.76 36699.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 32295.47 32897.94 30699.31 23194.34 35997.81 38799.70 1597.12 24697.46 34298.75 35589.71 34099.79 18397.69 23581.69 38999.68 119
E-PMN80.61 36179.88 36382.81 37990.75 39676.38 40097.69 38895.76 39466.44 39783.52 39092.25 39262.54 39387.16 39968.53 39961.40 39684.89 397
ANet_high77.30 36374.86 36784.62 37875.88 40377.61 39897.63 38993.15 40288.81 38464.27 39989.29 39636.51 40383.93 40175.89 39652.31 39892.33 392
EMVS80.02 36279.22 36482.43 38191.19 39576.40 39997.55 39092.49 40466.36 39883.01 39291.27 39464.63 39285.79 40065.82 40060.65 39785.08 396
MVEpermissive76.82 2176.91 36474.31 36884.70 37785.38 40276.05 40196.88 39193.17 40167.39 39671.28 39889.01 39721.66 40887.69 39871.74 39872.29 39590.35 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 35191.36 35390.31 37195.85 38373.72 40494.89 39299.25 28768.39 39595.82 36699.02 33580.50 38598.95 34993.64 35494.89 33598.25 349
Gipumacopyleft90.99 35290.15 35793.51 36198.73 33490.12 38293.98 39399.45 19379.32 39192.28 38394.91 38869.61 38997.98 37487.42 38695.67 31692.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 36574.97 36679.01 38270.98 40455.18 40793.37 39498.21 37265.08 39961.78 40093.83 39021.74 40792.53 39478.59 39491.12 37189.34 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 35981.52 36286.66 37666.61 40568.44 40592.79 39597.92 37668.96 39480.04 39799.85 5485.77 36896.15 39097.86 21443.89 39995.39 389
wuyk23d40.18 36641.29 37136.84 38386.18 40149.12 40879.73 39622.81 40827.64 40025.46 40328.45 40321.98 40648.89 40255.80 40123.56 40212.51 400
test_blank0.13 3720.17 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4051.57 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
cdsmvs_eth3d_5k24.64 36932.85 3720.00 3860.00 4080.00 4110.00 39799.51 1150.00 4040.00 40599.56 22396.58 1470.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas8.27 37111.03 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 40599.01 180.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
ab-mvs-re8.30 37011.06 3730.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40599.58 2160.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.02 3730.03 3760.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.27 4050.00 4090.00 4050.00 4040.00 4030.00 401
WAC-MVS97.16 27695.47 328
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36398.30 18399.80 9799.81 61
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 408
eth-test0.00 408
ZD-MVS99.71 9699.79 3099.61 4896.84 27199.56 11499.54 23198.58 7299.96 3096.93 28999.75 112
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 194
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
test_post65.99 40094.65 22899.73 203
patchmatchnet-post98.70 35694.79 21499.74 197
gm-plane-assit98.54 35392.96 37294.65 35499.15 32199.64 23797.56 246
test9_res97.49 25299.72 11899.75 88
agg_prior297.21 26999.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 25999.91 105
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30299.83 8699.59 150
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16399.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 27499.29 17999.64 19298.43 8399.94 6996.92 29199.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21299.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
testdata299.95 5996.67 301
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25299.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
plane_prior799.29 23697.03 289
plane_prior699.27 24196.98 29392.71 286
plane_prior599.47 17399.69 22497.78 22197.63 24898.67 285
plane_prior499.61 207
plane_prior397.00 29198.69 7999.11 216
plane_prior199.26 243
n20.00 410
nn0.00 410
door-mid98.05 375
lessismore_v097.79 31898.69 34095.44 33994.75 39795.71 36799.87 4488.69 34999.32 28795.89 31794.93 33398.62 308
LGP-MVS_train98.49 25699.33 22497.05 28599.55 7797.46 21299.24 19099.83 6892.58 29199.72 20798.09 19597.51 26098.68 278
test1199.35 246
door97.92 376
HQP5-MVS96.83 299
BP-MVS97.19 273
HQP4-MVS98.66 28699.64 23798.64 297
HQP3-MVS99.39 22397.58 253
HQP2-MVS92.47 295
NP-MVS99.23 24996.92 29799.40 272
ACMMP++_ref97.19 283
ACMMP++97.43 272
Test By Simon98.75 55
ITE_SJBPF98.08 29699.29 23696.37 31698.92 32898.34 10898.83 26499.75 13891.09 32599.62 24395.82 31897.40 27498.25 349
DeepMVS_CXcopyleft93.34 36299.29 23682.27 39099.22 29285.15 38796.33 36199.05 33190.97 32799.73 20393.57 35597.77 24498.01 360