This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 10099.90 199.55 7998.56 9099.78 5199.70 15998.65 6899.79 19499.65 2499.78 10999.41 205
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11599.89 299.58 6298.56 9099.73 6699.69 16998.55 7599.82 17999.69 2099.85 7499.48 183
MVSFormer99.17 8599.12 7899.29 15899.51 17498.94 16899.88 399.46 18897.55 21299.80 4499.65 18797.39 12099.28 30499.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35498.91 17299.88 399.46 18897.55 21299.22 19999.88 3795.73 18599.28 30499.03 8897.62 26598.75 271
OurMVSNet-221017-097.88 23897.77 22998.19 30098.71 35396.53 32299.88 399.00 32697.79 18498.78 27699.94 691.68 31799.35 29497.21 28096.99 29998.69 287
EC-MVSNet99.44 4099.39 3099.58 9499.56 15899.49 9199.88 399.58 6298.38 10699.73 6699.69 16998.20 9699.70 23299.64 2799.82 9599.54 163
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 799.51 11798.99 4599.88 2299.81 9399.27 599.96 3198.85 11699.80 10299.81 61
FOURS199.91 199.93 199.87 799.56 7199.10 2799.81 41
K. test v397.10 31496.79 31498.01 31298.72 35196.33 32999.87 797.05 39697.59 20696.16 37599.80 10688.71 35599.04 34296.69 31196.55 30598.65 309
FC-MVSNet-test98.75 15398.62 15399.15 17999.08 29899.45 9799.86 1099.60 5498.23 12798.70 28899.82 7996.80 14399.22 31699.07 8696.38 30898.79 263
v7n97.87 24097.52 25698.92 20698.76 34798.58 20499.84 1199.46 18896.20 32798.91 25699.70 15994.89 21399.44 27596.03 32593.89 36398.75 271
DTE-MVSNet97.51 29297.19 30098.46 27298.63 36098.13 23699.84 1199.48 15996.68 29097.97 34199.67 18192.92 28098.56 37496.88 30492.60 37998.70 283
3Dnovator97.25 999.24 7899.05 8799.81 4499.12 28799.66 5399.84 1199.74 1099.09 3298.92 25599.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
FIs98.78 15098.63 14899.23 16999.18 27199.54 8199.83 1499.59 5898.28 11798.79 27599.81 9396.75 14699.37 28799.08 8596.38 30898.78 264
MGCFI-Net99.01 12298.85 12599.50 12299.42 20499.26 12099.82 1599.48 15998.60 8799.28 18398.81 35897.04 13699.76 20599.29 6597.87 25499.47 189
test_fmvs392.10 36391.77 36693.08 37796.19 39686.25 39799.82 1598.62 37396.65 29395.19 38396.90 39755.05 41295.93 40496.63 31590.92 38797.06 393
jajsoiax98.43 17298.28 17898.88 21798.60 36498.43 22299.82 1599.53 9898.19 13298.63 30099.80 10693.22 27599.44 27599.22 7297.50 27698.77 267
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30599.53 8499.82 1599.72 1194.56 36698.08 33499.88 3794.73 22599.98 1397.47 26599.76 11599.06 244
SDMVSNet99.11 10498.90 11699.75 5899.81 4699.59 7199.81 1999.65 3398.78 7399.64 9999.88 3794.56 23599.93 8799.67 2298.26 23399.72 103
nrg03098.64 16398.42 16899.28 16299.05 30499.69 4799.81 1999.46 18898.04 15999.01 24099.82 7996.69 14899.38 28499.34 5994.59 35198.78 264
HPM-MVScopyleft99.42 4599.28 5999.83 4099.90 499.72 4299.81 1999.54 8797.59 20699.68 7899.63 19998.91 3499.94 6998.58 15699.91 3699.84 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9498.99 10199.53 10999.65 12899.06 14799.81 1999.33 26397.43 22999.60 11299.88 3797.14 13099.84 15999.13 8098.94 19199.69 115
3Dnovator+97.12 1399.18 8398.97 10599.82 4199.17 27999.68 4899.81 1999.51 11799.20 1898.72 28199.89 3295.68 18799.97 2198.86 11499.86 6799.81 61
sasdasda99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35897.09 13299.75 20899.27 6897.90 25199.47 189
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16299.05 14999.80 2499.01 32596.59 30299.58 11699.59 21395.39 19599.90 12197.78 23199.49 14999.28 222
GeoE98.85 14298.62 15399.53 10999.61 14399.08 14499.80 2499.51 11797.10 26199.31 17699.78 12495.23 20499.77 20198.21 19399.03 18699.75 88
canonicalmvs99.02 11898.86 12399.51 11799.42 20499.32 10999.80 2499.48 15998.63 8399.31 17698.81 35897.09 13299.75 20899.27 6897.90 25199.47 189
v897.95 23097.63 24798.93 20498.95 31998.81 18699.80 2499.41 21896.03 34199.10 22499.42 26894.92 21199.30 30296.94 29994.08 36098.66 307
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 15099.71 9698.88 17499.80 2499.44 20797.91 16999.36 16799.78 12495.49 19399.43 27997.91 21899.11 17799.62 142
Anonymous2024052196.20 33195.89 33497.13 34997.72 38494.96 36199.79 3099.29 28593.01 38097.20 36199.03 33889.69 34698.36 37891.16 38596.13 31398.07 369
PS-MVSNAJss98.92 12998.92 11398.90 21298.78 34098.53 20899.78 3199.54 8798.07 15399.00 24499.76 13699.01 1899.37 28799.13 8097.23 29298.81 262
PEN-MVS97.76 26097.44 27298.72 24198.77 34598.54 20799.78 3199.51 11797.06 26598.29 32499.64 19392.63 29398.89 36598.09 20293.16 37198.72 276
anonymousdsp98.44 17198.28 17898.94 20298.50 36998.96 16299.77 3399.50 13797.07 26398.87 26499.77 13294.76 22399.28 30498.66 14397.60 26698.57 335
SixPastTwentyTwo97.50 29397.33 28998.03 30998.65 35896.23 33399.77 3398.68 37097.14 25497.90 34299.93 990.45 33599.18 32497.00 29396.43 30798.67 299
QAPM98.67 16098.30 17799.80 4699.20 26599.67 5199.77 3399.72 1194.74 36398.73 28099.90 2895.78 18399.98 1396.96 29799.88 5699.76 87
SSC-MVS92.73 36293.73 35789.72 38795.02 40681.38 40799.76 3699.23 29594.87 36092.80 39498.93 35094.71 22791.37 41174.49 41093.80 36496.42 397
test_vis3_rt87.04 37085.81 37390.73 38493.99 40881.96 40599.76 3690.23 41992.81 38381.35 40791.56 40740.06 41699.07 33994.27 35988.23 39491.15 407
dcpmvs_299.23 7999.58 798.16 30299.83 3994.68 36499.76 3699.52 10399.07 3599.98 699.88 3798.56 7499.93 8799.67 2299.98 499.87 30
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3699.56 7197.72 19299.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 35
MVSMamba_PlusPlus99.46 3299.41 2699.64 8099.68 10999.50 8999.75 4099.50 13798.27 11999.87 2799.92 1498.09 10199.94 6999.65 2499.95 1899.47 189
bld_raw_conf0399.39 5499.32 4499.62 8699.53 16699.50 8999.75 4099.50 13798.13 14199.87 2799.85 5497.89 10899.90 12199.39 5299.95 1899.47 189
v1097.85 24397.52 25698.86 22498.99 31298.67 19599.75 4099.41 21895.70 34598.98 24699.41 27294.75 22499.23 31296.01 32794.63 35098.67 299
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 7199.02 3899.88 2299.85 5499.18 1099.96 3199.22 7299.92 2999.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11498.87 12199.57 9699.73 8799.32 10999.75 4099.20 30198.02 16299.56 12099.86 4996.54 15499.67 24098.09 20299.13 17699.73 97
test_vis1_n97.92 23497.44 27299.34 14399.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 40099.98 1399.88 1399.76 11599.97 4
test_fmvs1_n98.41 17598.14 18699.21 17099.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 38199.97 2199.82 1699.84 8299.96 7
balanced_conf0399.46 3299.39 3099.67 7099.55 16299.58 7699.74 4599.51 11798.42 10399.87 2799.84 6598.05 10599.91 10999.58 3099.94 2599.52 170
tttt051798.42 17398.14 18699.28 16299.66 12298.38 22599.74 4596.85 39897.68 19899.79 4699.74 14491.39 32599.89 13398.83 12299.56 14499.57 158
WB-MVS93.10 36094.10 35390.12 38695.51 40481.88 40699.73 4999.27 28995.05 35693.09 39398.91 35494.70 22891.89 41076.62 40894.02 36296.58 396
test_fmvs297.25 30897.30 29297.09 35199.43 20293.31 38299.73 4998.87 34798.83 6499.28 18399.80 10684.45 38699.66 24397.88 22097.45 28198.30 357
baseline99.15 8999.02 9599.53 10999.66 12299.14 13699.72 5199.48 15998.35 11199.42 14999.84 6596.07 16999.79 19499.51 3999.14 17599.67 122
RPSCF98.22 18998.62 15396.99 35299.82 4291.58 39199.72 5199.44 20796.61 29899.66 8799.89 3295.92 17799.82 17997.46 26699.10 18099.57 158
CSCG99.32 6399.32 4499.32 14999.85 2698.29 22799.71 5399.66 2898.11 14599.41 15399.80 10698.37 8999.96 3198.99 9299.96 1299.72 103
dmvs_re98.08 20698.16 18397.85 32399.55 16294.67 36599.70 5498.92 33698.15 13799.06 23499.35 29193.67 26999.25 30997.77 23497.25 29199.64 136
WR-MVS_H98.13 20097.87 22098.90 21299.02 30798.84 18099.70 5499.59 5897.27 24398.40 31699.19 32295.53 19199.23 31298.34 18493.78 36598.61 329
mvsmamba99.06 11298.96 10999.36 14199.47 19398.64 19999.70 5499.05 32197.61 20599.65 9499.83 7096.54 15499.92 9899.19 7499.62 13999.51 177
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28299.23 25896.80 31199.70 5499.60 5497.12 25798.18 33199.70 15991.73 31699.72 22098.39 17797.45 28198.68 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 36491.26 36893.84 37395.52 40385.92 39899.69 5898.53 37795.31 35093.87 38996.37 40055.33 41198.27 37995.70 33390.98 38697.32 392
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12799.86 6799.84 39
X-MVStestdata96.55 32395.45 34299.87 1199.85 2699.83 1699.69 5899.68 2098.98 4899.37 16464.01 41698.81 4499.94 6998.79 12799.86 6799.84 39
V4298.06 20897.79 22498.86 22498.98 31598.84 18099.69 5899.34 25696.53 30499.30 17999.37 28594.67 23099.32 29997.57 25594.66 34998.42 349
mPP-MVS99.44 4099.30 5399.86 2199.88 1199.79 3099.69 5899.48 15998.12 14399.50 13299.75 13998.78 4899.97 2198.57 15999.89 5399.83 49
CP-MVS99.45 3699.32 4499.85 2899.83 3999.75 3999.69 5899.52 10398.07 15399.53 12799.63 19998.93 3399.97 2198.74 13199.91 3699.83 49
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16299.68 6498.81 35495.54 34799.62 10699.70 15993.82 26499.93 8797.35 27499.46 15099.32 219
PS-CasMVS97.93 23197.59 25198.95 20098.99 31299.06 14799.68 6499.52 10397.13 25598.31 32199.68 17592.44 30299.05 34198.51 16794.08 36098.75 271
Vis-MVSNetpermissive99.12 10098.97 10599.56 9899.78 5699.10 14099.68 6499.66 2898.49 9699.86 3299.87 4594.77 22299.84 15999.19 7499.41 15499.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 16498.40 17099.31 15099.86 2097.94 25099.67 6799.62 4199.43 799.99 299.91 2187.29 372100.00 199.92 1199.92 2999.98 2
EIA-MVS99.18 8399.09 8399.45 12999.49 18599.18 12899.67 6799.53 9897.66 20199.40 15899.44 26498.10 10099.81 18498.94 9799.62 13999.35 214
MSP-MVS99.42 4599.27 6299.88 599.89 899.80 2799.67 6799.50 13798.70 7999.77 5599.49 24998.21 9599.95 5998.46 17399.77 11299.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10898.97 10599.48 12399.49 18599.14 13699.67 6799.34 25697.31 24099.58 11699.76 13697.65 11699.82 17998.87 10999.07 18399.46 195
CP-MVSNet98.09 20497.78 22799.01 19198.97 31799.24 12399.67 6799.46 18897.25 24598.48 31399.64 19393.79 26599.06 34098.63 14694.10 35998.74 274
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7299.47 17998.79 7099.68 7899.81 9398.43 8399.97 2198.88 10699.90 4499.83 49
HFP-MVS99.49 2299.37 3499.86 2199.87 1599.80 2799.66 7299.67 2398.15 13799.68 7899.69 16999.06 1699.96 3198.69 13999.87 5999.84 39
mvs_tets98.40 17898.23 18098.91 21098.67 35798.51 21499.66 7299.53 9898.19 13298.65 29799.81 9392.75 28499.44 27599.31 6297.48 28098.77 267
EU-MVSNet97.98 22598.03 20197.81 32998.72 35196.65 31899.66 7299.66 2898.09 14898.35 31999.82 7995.25 20398.01 38597.41 27095.30 33798.78 264
ACMMPR99.49 2299.36 3699.86 2199.87 1599.79 3099.66 7299.67 2398.15 13799.67 8299.69 16998.95 2799.96 3198.69 13999.87 5999.84 39
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7299.46 18898.09 14899.48 13699.74 14498.29 9299.96 3197.93 21799.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8799.01 9999.61 8899.81 4698.86 17899.65 7899.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
region2R99.48 2699.35 3899.87 1199.88 1199.80 2799.65 7899.66 2898.13 14199.66 8799.68 17598.96 2499.96 3198.62 14799.87 5999.84 39
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23998.78 34098.62 20199.65 7899.49 14797.76 18898.49 31299.60 21194.23 24898.97 35898.00 21392.90 37398.70 283
m2depth97.80 25697.63 24798.29 29298.77 34597.38 27399.64 8199.36 24498.78 7396.30 37399.58 21792.34 30599.39 28298.36 18295.58 33098.10 367
mvsany_test393.77 35793.45 36194.74 37095.78 39988.01 39699.64 8198.25 38198.28 11794.31 38797.97 38968.89 40498.51 37697.50 26190.37 38897.71 384
ZNCC-MVS99.47 3099.33 4299.87 1199.87 1599.81 2599.64 8199.67 2398.08 15299.55 12499.64 19398.91 3499.96 3198.72 13499.90 4499.82 54
tfpnnormal97.84 24797.47 26498.98 19599.20 26599.22 12599.64 8199.61 4896.32 31898.27 32599.70 15993.35 27299.44 27595.69 33495.40 33598.27 359
casdiffmvs_mvgpermissive99.15 8999.02 9599.55 10099.66 12299.09 14199.64 8199.56 7198.26 12299.45 14099.87 4596.03 17199.81 18499.54 3499.15 17499.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3699.31 5199.85 2899.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.53 7699.95 5998.61 15099.81 9899.77 82
RE-MVS-def99.34 4099.76 6599.82 2299.63 8699.52 10398.38 10699.76 6099.82 7998.75 5598.61 15099.81 9899.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8699.39 22798.91 5899.78 5199.85 5499.36 299.94 6998.84 11999.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 32996.03 33096.79 36097.31 39094.14 37299.63 8699.08 31596.17 33097.04 36599.06 33593.94 25997.76 39186.96 40095.06 34298.47 343
APD-MVS_3200maxsize99.48 2699.35 3899.85 2899.76 6599.83 1699.63 8699.54 8798.36 11099.79 4699.82 7998.86 3899.95 5998.62 14799.81 9899.78 80
test072699.85 2699.89 499.62 9199.50 13799.10 2799.86 3299.82 7998.94 29
EPNet98.86 13598.71 13999.30 15597.20 39298.18 23299.62 9198.91 34099.28 1698.63 30099.81 9395.96 17399.99 499.24 7199.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12898.67 14399.72 6699.85 2699.53 8499.62 9199.59 5892.65 38599.71 7299.78 12498.06 10499.90 12198.84 11999.91 3699.74 92
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14499.62 9199.36 24497.39 23499.28 18399.68 17596.44 16099.92 9898.37 18098.22 23599.40 207
ACMMPcopyleft99.45 3699.32 4499.82 4199.89 899.67 5199.62 9199.69 1898.12 14399.63 10299.84 6598.73 6099.96 3198.55 16599.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6599.19 7299.64 8099.82 4299.23 12499.62 9199.55 7998.94 5499.63 10299.95 395.82 18299.94 6999.37 5499.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 8099.78 5699.15 13599.61 9799.45 19999.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 1899.85 35
test250696.81 32096.65 31697.29 34699.74 8092.21 38999.60 9885.06 42099.13 2299.77 5599.93 987.82 37099.85 15299.38 5399.38 15599.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9899.48 15999.08 3399.91 1899.81 9399.20 799.96 3198.91 10399.85 7499.79 74
OPU-MVS99.64 8099.56 15899.72 4299.60 9899.70 15999.27 599.42 28098.24 19299.80 10299.79 74
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9899.67 2397.97 16499.63 10299.68 17598.52 7799.95 5998.38 17899.86 6799.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 8099.78 5699.14 13699.60 9899.45 19999.01 4099.90 2099.83 7098.98 2399.93 8799.59 2899.95 1899.86 32
ACMH97.28 898.10 20397.99 20598.44 27799.41 20996.96 30399.60 9899.56 7198.09 14898.15 33299.91 2190.87 33299.70 23298.88 10697.45 28198.67 299
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21498.05 19998.00 31499.74 8094.37 36999.59 10494.98 40899.13 2299.66 8799.93 990.67 33499.84 15999.40 5199.38 15599.80 70
SR-MVS99.43 4399.29 5799.86 2199.75 7399.83 1699.59 10499.62 4198.21 13099.73 6699.79 11898.68 6499.96 3198.44 17599.77 11299.79 74
thres100view90097.76 26097.45 26798.69 24599.72 9197.86 25499.59 10498.74 36197.93 16799.26 19298.62 36691.75 31499.83 17293.22 37098.18 24098.37 355
thres600view797.86 24297.51 25898.92 20699.72 9197.95 24899.59 10498.74 36197.94 16699.27 18898.62 36691.75 31499.86 14693.73 36598.19 23998.96 255
LCM-MVSNet-Re97.83 24998.15 18596.87 35899.30 23992.25 38899.59 10498.26 38097.43 22996.20 37499.13 32896.27 16598.73 37198.17 19898.99 18999.64 136
baseline198.31 18397.95 21099.38 14099.50 18398.74 19099.59 10498.93 33398.41 10499.14 21699.60 21194.59 23399.79 19498.48 16993.29 36999.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10499.51 11798.62 8599.79 4699.83 7099.28 499.97 2198.48 16999.90 4499.84 39
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10498.90 11699.74 6199.80 5299.46 9699.59 10499.49 14797.03 26999.63 10299.69 16997.27 12899.96 3197.82 22899.84 8299.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10499.58 11299.62 4199.41 999.87 2799.92 1498.81 44100.00 199.97 199.93 2799.94 11
dmvs_testset95.02 34696.12 32791.72 38199.10 29280.43 40999.58 11297.87 38997.47 22195.22 38198.82 35793.99 25795.18 40688.09 39694.91 34799.56 160
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9899.58 11299.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 1899.90 16
test111198.04 21498.11 19097.83 32699.74 8093.82 37499.58 11295.40 40799.12 2599.65 9499.93 990.73 33399.84 15999.43 5099.38 15599.82 54
PGM-MVS99.45 3699.31 5199.86 2199.87 1599.78 3699.58 11299.65 3397.84 17899.71 7299.80 10699.12 1399.97 2198.33 18599.87 5999.83 49
LPG-MVS_test98.22 18998.13 18898.49 26499.33 23197.05 29299.58 11299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
PHI-MVS99.30 6599.17 7499.70 6899.56 15899.52 8799.58 11299.80 897.12 25799.62 10699.73 15098.58 7299.90 12198.61 15099.91 3699.68 119
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11999.54 8797.82 18399.71 7299.80 10698.95 2799.93 8798.19 19599.84 8299.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11999.37 24399.10 2799.81 4199.80 10698.94 2999.96 3198.93 10099.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11999.51 11799.96 3198.93 10099.86 6799.88 25
Effi-MVS+-dtu98.78 15098.89 11998.47 27199.33 23196.91 30599.57 11999.30 28198.47 9799.41 15398.99 34396.78 14499.74 21098.73 13399.38 15598.74 274
v2v48298.06 20897.77 22998.92 20698.90 32498.82 18499.57 11999.36 24496.65 29399.19 20899.35 29194.20 24999.25 30997.72 24194.97 34498.69 287
DSMNet-mixed97.25 30897.35 28496.95 35597.84 38093.61 38099.57 11996.63 40296.13 33598.87 26498.61 36894.59 23397.70 39295.08 34898.86 19899.55 161
MVStest196.08 33595.48 34097.89 32198.93 32096.70 31399.56 12599.35 25192.69 38491.81 39899.46 26189.90 34398.96 36095.00 35092.61 37898.00 376
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12599.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12599.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 15398.57 16099.29 15899.81 4698.26 22999.56 12599.62 4198.78 7399.64 9999.88 3792.02 30899.88 13899.54 3498.26 23399.72 103
KD-MVS_self_test95.00 34794.34 35296.96 35497.07 39595.39 35299.56 12599.44 20795.11 35397.13 36397.32 39591.86 31297.27 39690.35 38881.23 40498.23 363
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11599.56 12599.52 10398.52 9499.44 14599.27 31298.41 8799.86 14699.10 8399.59 14299.04 245
SMA-MVScopyleft99.44 4099.30 5399.85 2899.73 8799.83 1699.56 12599.47 17997.45 22599.78 5199.82 7999.18 1099.91 10998.79 12799.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13298.72 13799.31 15099.86 2098.48 21899.56 12599.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
casdiffmvspermissive99.13 9498.98 10499.56 9899.65 12899.16 13199.56 12599.50 13798.33 11499.41 15399.86 4995.92 17799.83 17299.45 4999.16 17199.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17998.09 19499.24 16799.26 25099.32 10999.56 12599.55 7997.45 22598.71 28299.83 7093.23 27399.63 25698.88 10696.32 31098.76 269
ACMH+97.24 1097.92 23497.78 22798.32 28999.46 19596.68 31799.56 12599.54 8798.41 10497.79 34899.87 4590.18 34199.66 24398.05 21097.18 29598.62 320
ACMM97.58 598.37 18098.34 17398.48 26699.41 20997.10 28699.56 12599.45 19998.53 9399.04 23799.85 5493.00 27899.71 22698.74 13197.45 28198.64 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7199.12 7899.74 6199.18 27199.75 3999.56 12599.57 6698.45 9999.49 13599.85 5497.77 11399.94 6998.33 18599.84 8299.52 170
test_fmvsmconf0.01_n99.22 8099.03 9199.79 4998.42 37299.48 9399.55 13899.51 11799.39 1099.78 5199.93 994.80 21799.95 5999.93 1099.95 1899.94 11
test_fmvs198.88 13198.79 13399.16 17599.69 10597.61 26799.55 13899.49 14799.32 1499.98 699.91 2191.41 32499.96 3199.82 1699.92 2999.90 16
v14419297.92 23497.60 25098.87 22198.83 33598.65 19799.55 13899.34 25696.20 32799.32 17599.40 27694.36 24499.26 30896.37 32195.03 34398.70 283
API-MVS99.04 11599.03 9199.06 18599.40 21499.31 11399.55 13899.56 7198.54 9299.33 17499.39 28098.76 5299.78 19996.98 29599.78 10998.07 369
fmvsm_s_conf0.1_n_a99.26 7399.06 8699.85 2899.52 17199.62 6599.54 14299.62 4198.69 8099.99 299.96 194.47 24199.94 6999.88 1399.92 2999.98 2
APD_test195.87 33796.49 32094.00 37299.53 16684.01 40199.54 14299.32 27395.91 34397.99 33999.85 5485.49 37999.88 13891.96 38198.84 20098.12 366
thisisatest053098.35 18198.03 20199.31 15099.63 13398.56 20599.54 14296.75 40097.53 21699.73 6699.65 18791.25 32899.89 13398.62 14799.56 14499.48 183
MTMP99.54 14298.88 345
v114497.98 22597.69 23998.85 22798.87 32998.66 19699.54 14299.35 25196.27 32299.23 19899.35 29194.67 23099.23 31296.73 30895.16 34098.68 292
v14897.79 25897.55 25298.50 26398.74 34897.72 26099.54 14299.33 26396.26 32398.90 25899.51 24394.68 22999.14 32797.83 22793.15 37298.63 318
CostFormer97.72 27097.73 23697.71 33399.15 28594.02 37399.54 14299.02 32494.67 36499.04 23799.35 29192.35 30499.77 20198.50 16897.94 25099.34 217
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15199.54 14299.38 23597.41 23299.20 20599.73 15093.86 26399.36 29198.87 10997.56 27098.62 320
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10199.65 5799.53 15099.62 4198.74 7699.99 299.95 394.53 23999.94 6999.89 1299.96 1299.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 15199.65 3399.10 2799.98 699.92 1497.35 12499.96 3199.94 999.92 2999.95 9
MM99.40 5299.28 5999.74 6199.67 11299.31 11399.52 15198.87 34799.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 799.94 11
patch_mono-299.26 7399.62 598.16 30299.81 4694.59 36699.52 15199.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 19
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 25099.41 20996.99 29999.52 15199.49 14798.11 14599.24 19499.34 29596.96 14099.79 19497.95 21699.45 15199.02 248
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11799.52 15199.47 17996.11 33699.01 24099.34 29596.20 16799.84 15997.88 22098.82 20299.39 208
v192192097.80 25697.45 26798.84 22898.80 33698.53 20899.52 15199.34 25696.15 33399.24 19499.47 25793.98 25899.29 30395.40 34295.13 34198.69 287
MIMVSNet195.51 34195.04 34696.92 35797.38 38795.60 34399.52 15199.50 13793.65 37496.97 36799.17 32385.28 38296.56 40188.36 39595.55 33298.60 332
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15899.67 2399.13 2299.98 699.92 1496.60 15199.96 3199.95 799.96 1299.95 9
UniMVSNet_ETH3D97.32 30596.81 31398.87 22199.40 21497.46 27099.51 15899.53 9895.86 34498.54 30999.77 13282.44 39499.66 24398.68 14197.52 27399.50 181
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 10099.51 15898.96 33198.61 8699.35 17098.92 35394.78 21999.77 20199.35 5598.11 24599.54 163
v119297.81 25497.44 27298.91 21098.88 32698.68 19499.51 15899.34 25696.18 32999.20 20599.34 29594.03 25699.36 29195.32 34495.18 33998.69 287
test20.0396.12 33395.96 33296.63 36197.44 38695.45 35099.51 15899.38 23596.55 30396.16 37599.25 31593.76 26796.17 40287.35 39994.22 35798.27 359
mvs_anonymous99.03 11798.99 10199.16 17599.38 21998.52 21299.51 15899.38 23597.79 18499.38 16299.81 9397.30 12699.45 27099.35 5598.99 18999.51 177
TAMVS99.12 10099.08 8499.24 16799.46 19598.55 20699.51 15899.46 18898.09 14899.45 14099.82 7998.34 9099.51 26698.70 13698.93 19299.67 122
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16599.61 4899.45 599.87 2799.92 1497.31 12599.97 2199.95 799.99 199.97 4
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16599.07 31898.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16599.07 31898.22 12899.61 10999.51 24395.37 19699.84 15998.60 15398.33 22799.59 150
tfpn200view997.72 27097.38 28098.72 24199.69 10597.96 24699.50 16598.73 36797.83 17999.17 21398.45 37191.67 31899.83 17293.22 37098.18 24098.37 355
UA-Net99.42 4599.29 5799.80 4699.62 13999.55 7999.50 16599.70 1598.79 7099.77 5599.96 197.45 11999.96 3198.92 10299.90 4499.89 19
pm-mvs197.68 27797.28 29598.88 21799.06 30198.62 20199.50 16599.45 19996.32 31897.87 34499.79 11892.47 29899.35 29497.54 25893.54 36798.67 299
EI-MVSNet98.67 16098.67 14398.68 24699.35 22697.97 24499.50 16599.38 23596.93 27899.20 20599.83 7097.87 10999.36 29198.38 17897.56 27098.71 278
CVMVSNet98.57 16698.67 14398.30 29199.35 22695.59 34499.50 16599.55 7998.60 8799.39 16099.83 7094.48 24099.45 27098.75 13098.56 21699.85 35
VPA-MVSNet98.29 18697.95 21099.30 15599.16 28199.54 8199.50 16599.58 6298.27 11999.35 17099.37 28592.53 29699.65 24899.35 5594.46 35298.72 276
thres40097.77 25997.38 28098.92 20699.69 10597.96 24699.50 16598.73 36797.83 17999.17 21398.45 37191.67 31899.83 17293.22 37098.18 24098.96 255
APD-MVScopyleft99.27 7199.08 8499.84 3999.75 7399.79 3099.50 16599.50 13797.16 25399.77 5599.82 7998.78 4899.94 6997.56 25699.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 33995.65 33896.32 36599.67 11291.35 39299.49 17696.74 40198.25 12395.24 38098.10 38674.96 40199.90 12199.53 3698.85 19997.70 386
iter_conf0599.48 2699.40 2799.71 6799.68 10999.61 6799.49 17699.58 6298.27 11999.95 1599.92 1498.09 10199.94 6999.65 2499.96 1299.58 154
TransMVSNet (Re)97.15 31296.58 31798.86 22499.12 28798.85 17999.49 17698.91 34095.48 34897.16 36299.80 10693.38 27199.11 33594.16 36291.73 38198.62 320
UniMVSNet (Re)98.29 18698.00 20499.13 18099.00 30999.36 10799.49 17699.51 11797.95 16598.97 24899.13 32896.30 16499.38 28498.36 18293.34 36898.66 307
EPMVS97.82 25297.65 24398.35 28698.88 32695.98 33799.49 17694.71 41097.57 20999.26 19299.48 25492.46 30199.71 22697.87 22299.08 18299.35 214
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18199.64 3699.45 599.92 1799.92 1498.62 7099.99 499.96 699.99 199.96 7
Anonymous2023121197.88 23897.54 25598.90 21299.71 9698.53 20899.48 18199.57 6694.16 36998.81 27199.68 17593.23 27399.42 28098.84 11994.42 35498.76 269
v124097.69 27597.32 29098.79 23698.85 33398.43 22299.48 18199.36 24496.11 33699.27 18899.36 28893.76 26799.24 31194.46 35695.23 33898.70 283
VPNet97.84 24797.44 27299.01 19199.21 26398.94 16899.48 18199.57 6698.38 10699.28 18399.73 15088.89 35299.39 28299.19 7493.27 37098.71 278
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32298.98 15599.48 18199.53 9897.76 18898.71 28299.46 26196.43 16199.22 31698.57 15992.87 37598.69 287
TDRefinement95.42 34394.57 35097.97 31689.83 41396.11 33699.48 18198.75 35896.74 28696.68 36999.88 3788.65 35899.71 22698.37 18082.74 40298.09 368
ACMMP_NAP99.47 3099.34 4099.88 599.87 1599.86 1399.47 18799.48 15998.05 15899.76 6099.86 4998.82 4399.93 8798.82 12699.91 3699.84 39
NR-MVSNet97.97 22897.61 24999.02 19098.87 32999.26 12099.47 18799.42 21597.63 20397.08 36499.50 24695.07 20799.13 33097.86 22393.59 36698.68 292
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8899.86 2099.07 14699.47 18799.93 297.66 20199.71 7299.86 4997.73 11499.96 3199.47 4799.82 9599.79 74
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 19099.52 10399.11 2699.88 2299.91 2199.43 197.70 39298.72 13499.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 30696.76 31598.82 23099.37 22298.07 23999.45 19199.36 24497.56 21197.89 34398.95 34883.70 38998.82 36696.03 32598.56 21699.58 154
tt080597.97 22897.77 22998.57 25599.59 15096.61 32099.45 19199.08 31598.21 13098.88 26199.80 10688.66 35799.70 23298.58 15697.72 26099.39 208
tpm297.44 30097.34 28797.74 33299.15 28594.36 37099.45 19198.94 33293.45 37898.90 25899.44 26491.35 32699.59 26097.31 27598.07 24699.29 221
FMVSNet297.72 27097.36 28298.80 23599.51 17498.84 18099.45 19199.42 21596.49 30698.86 26899.29 30790.26 33798.98 35196.44 31896.56 30498.58 334
CDS-MVSNet99.09 10999.03 9199.25 16599.42 20498.73 19199.45 19199.46 18898.11 14599.46 13999.77 13298.01 10699.37 28798.70 13698.92 19499.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 19199.54 8796.61 29899.01 24099.40 27697.09 13299.86 14697.68 24699.53 14799.10 233
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 13298.69 14199.40 13699.22 26298.72 19299.44 19799.68 2099.24 1799.18 21299.42 26892.74 28699.96 3199.34 5999.94 2599.53 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 13598.63 14899.54 10199.64 13099.19 12699.44 19799.54 8797.77 18799.30 17999.81 9394.20 24999.93 8799.17 7898.82 20299.49 182
test_040296.64 32296.24 32597.85 32398.85 33396.43 32699.44 19799.26 29093.52 37596.98 36699.52 24088.52 36199.20 32392.58 38097.50 27697.93 381
ACMP97.20 1198.06 20897.94 21298.45 27499.37 22297.01 29799.44 19799.49 14797.54 21598.45 31499.79 11891.95 31099.72 22097.91 21897.49 27998.62 320
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 27498.55 36798.16 23399.43 20193.68 41297.23 35998.46 37089.30 34999.22 31695.43 34198.22 23597.98 378
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 20199.51 11798.68 8299.27 18899.53 23798.64 6999.96 3198.44 17599.80 10299.79 74
tpm cat197.39 30297.36 28297.50 34199.17 27993.73 37699.43 20199.31 27791.27 38998.71 28299.08 33294.31 24799.77 20196.41 32098.50 22099.00 249
tpm97.67 28097.55 25298.03 30999.02 30795.01 35999.43 20198.54 37696.44 31299.12 21999.34 29591.83 31399.60 25997.75 23796.46 30699.48 183
GBi-Net97.68 27797.48 26198.29 29299.51 17497.26 27999.43 20199.48 15996.49 30699.07 22999.32 30290.26 33798.98 35197.10 28896.65 30198.62 320
test197.68 27797.48 26198.29 29299.51 17497.26 27999.43 20199.48 15996.49 30699.07 22999.32 30290.26 33798.98 35197.10 28896.65 30198.62 320
FMVSNet196.84 31996.36 32398.29 29299.32 23797.26 27999.43 20199.48 15995.11 35398.55 30899.32 30283.95 38898.98 35195.81 33096.26 31198.62 320
mamv499.33 6199.42 2299.07 18399.67 11297.73 25899.42 20899.60 5498.15 13799.94 1699.91 2198.42 8599.94 6999.72 1899.96 1299.54 163
testgi97.65 28297.50 25998.13 30699.36 22596.45 32599.42 20899.48 15997.76 18897.87 34499.45 26391.09 32998.81 36794.53 35598.52 21999.13 232
F-COLMAP99.19 8199.04 8999.64 8099.78 5699.27 11999.42 20899.54 8797.29 24299.41 15399.59 21398.42 8599.93 8798.19 19599.69 12899.73 97
Anonymous20240521198.30 18597.98 20699.26 16499.57 15498.16 23399.41 21198.55 37596.03 34199.19 20899.74 14491.87 31199.92 9899.16 7998.29 23299.70 113
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14899.16 13199.41 21199.71 1398.98 4899.45 14099.78 12499.19 999.54 26599.28 6699.84 8299.63 140
VNet99.11 10498.90 11699.73 6499.52 17199.56 7799.41 21199.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3898.18 24099.72 103
baseline297.87 24097.55 25298.82 23099.18 27198.02 24199.41 21196.58 40496.97 27296.51 37099.17 32393.43 27099.57 26197.71 24299.03 18698.86 259
DU-MVS98.08 20697.79 22498.96 19898.87 32998.98 15599.41 21199.45 19997.87 17298.71 28299.50 24694.82 21599.22 31698.57 15992.87 37598.68 292
Baseline_NR-MVSNet97.76 26097.45 26798.68 24699.09 29598.29 22799.41 21198.85 34995.65 34698.63 30099.67 18194.82 21599.10 33798.07 20992.89 37498.64 311
XVG-ACMP-BASELINE97.83 24997.71 23898.20 29999.11 28996.33 32999.41 21199.52 10398.06 15799.05 23699.50 24689.64 34799.73 21697.73 23997.38 28898.53 337
DP-MVS99.16 8798.95 11199.78 5299.77 6299.53 8499.41 21199.50 13797.03 26999.04 23799.88 3797.39 12099.92 9898.66 14399.90 4499.87 30
9.1499.10 8099.72 9199.40 21999.51 11797.53 21699.64 9999.78 12498.84 4199.91 10997.63 24799.82 95
D2MVS98.41 17598.50 16598.15 30599.26 25096.62 31999.40 21999.61 4897.71 19398.98 24699.36 28896.04 17099.67 24098.70 13697.41 28698.15 365
Anonymous2024052998.09 20497.68 24099.34 14399.66 12298.44 22199.40 21999.43 21393.67 37399.22 19999.89 3290.23 34099.93 8799.26 7098.33 22799.66 125
FMVSNet398.03 21697.76 23398.84 22899.39 21798.98 15599.40 21999.38 23596.67 29199.07 22999.28 30992.93 27998.98 35197.10 28896.65 30198.56 336
LFMVS97.90 23797.35 28499.54 10199.52 17199.01 15399.39 22398.24 38297.10 26199.65 9499.79 11884.79 38499.91 10999.28 6698.38 22499.69 115
HQP_MVS98.27 18898.22 18198.44 27799.29 24396.97 30199.39 22399.47 17998.97 5199.11 22199.61 20892.71 28999.69 23797.78 23197.63 26398.67 299
plane_prior299.39 22398.97 51
CHOSEN 1792x268899.19 8199.10 8099.45 12999.89 898.52 21299.39 22399.94 198.73 7799.11 22199.89 3295.50 19299.94 6999.50 4099.97 799.89 19
PAPM_NR99.04 11598.84 12799.66 7199.74 8099.44 9899.39 22399.38 23597.70 19699.28 18399.28 30998.34 9099.85 15296.96 29799.45 15199.69 115
gg-mvs-nofinetune96.17 33295.32 34498.73 24098.79 33798.14 23599.38 22894.09 41191.07 39298.07 33791.04 40989.62 34899.35 29496.75 30799.09 18198.68 292
VDDNet97.55 28897.02 30799.16 17599.49 18598.12 23799.38 22899.30 28195.35 34999.68 7899.90 2882.62 39399.93 8799.31 6298.13 24499.42 202
MVS_030499.15 8998.96 10999.73 6498.92 32299.37 10499.37 23096.92 39799.51 299.66 8799.78 12496.69 14899.97 2199.84 1599.97 799.84 39
pmmvs696.53 32496.09 32997.82 32898.69 35595.47 34999.37 23099.47 17993.46 37797.41 35399.78 12487.06 37399.33 29796.92 30292.70 37798.65 309
PM-MVS92.96 36192.23 36595.14 36995.61 40089.98 39599.37 23098.21 38394.80 36295.04 38597.69 39065.06 40597.90 38894.30 35789.98 39197.54 390
WTY-MVS99.06 11298.88 12099.61 8899.62 13999.16 13199.37 23099.56 7198.04 15999.53 12799.62 20496.84 14299.94 6998.85 11698.49 22199.72 103
IterMVS-LS98.46 17098.42 16898.58 25499.59 15098.00 24299.37 23099.43 21396.94 27799.07 22999.59 21397.87 10999.03 34498.32 18795.62 32998.71 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 27497.28 29598.97 19799.70 10197.27 27799.36 23599.45 19998.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39999.65 129
DPE-MVScopyleft99.46 3299.32 4499.91 299.78 5699.88 899.36 23599.51 11798.73 7799.88 2299.84 6598.72 6199.96 3198.16 19999.87 5999.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 32696.12 32797.40 34398.65 35895.65 34299.36 23599.51 11797.13 25596.04 37798.99 34388.40 36298.17 38196.71 30990.27 38998.40 352
sss99.17 8599.05 8799.53 10999.62 13998.97 15899.36 23599.62 4197.83 17999.67 8299.65 18797.37 12399.95 5999.19 7499.19 17099.68 119
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13399.59 7199.36 23599.46 18899.07 3599.79 4699.82 7998.85 3999.92 9898.68 14199.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 24099.57 6698.82 6599.51 13199.61 20896.46 15899.95 5999.59 2899.98 499.65 129
pmmvs-eth3d95.34 34594.73 34897.15 34795.53 40295.94 33899.35 24099.10 31295.13 35193.55 39097.54 39188.15 36697.91 38794.58 35489.69 39297.61 387
MDTV_nov1_ep13_2view95.18 35799.35 24096.84 28299.58 11695.19 20597.82 22899.46 195
VDD-MVS97.73 26897.35 28498.88 21799.47 19397.12 28599.34 24398.85 34998.19 13299.67 8299.85 5482.98 39199.92 9899.49 4498.32 23199.60 146
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17499.88 1198.53 20899.34 24399.59 5897.55 21298.70 28899.89 3295.83 18199.90 12198.10 20199.90 4499.08 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 37477.86 38097.62 33697.91 37896.12 33599.33 24599.28 2878.40 41725.05 41899.27 31284.11 38799.33 29789.20 39198.22 23597.42 391
ETVMVS97.50 29396.90 31199.29 15899.23 25898.78 18999.32 24698.90 34297.52 21898.56 30798.09 38784.72 38599.69 23797.86 22397.88 25399.39 208
FMVSNet596.43 32796.19 32697.15 34799.11 28995.89 33999.32 24699.52 10394.47 36898.34 32099.07 33387.54 37197.07 39792.61 37995.72 32798.47 343
dp97.75 26497.80 22397.59 33899.10 29293.71 37799.32 24698.88 34596.48 30999.08 22899.55 22892.67 29299.82 17996.52 31698.58 21399.24 226
tpmvs97.98 22598.02 20397.84 32599.04 30594.73 36399.31 24999.20 30196.10 34098.76 27899.42 26894.94 20899.81 18496.97 29698.45 22298.97 253
tpmrst98.33 18298.48 16697.90 32099.16 28194.78 36299.31 24999.11 31197.27 24399.45 14099.59 21395.33 19899.84 15998.48 16998.61 21099.09 237
testing9997.36 30396.94 31098.63 24899.18 27196.70 31399.30 25198.93 33397.71 19398.23 32698.26 37984.92 38399.84 15998.04 21197.85 25699.35 214
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 25199.52 10397.18 25199.60 11299.79 11898.79 4799.95 5998.83 12299.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6099.19 7299.79 4999.61 14399.65 5799.30 25199.48 15998.86 6099.21 20299.63 19998.72 6199.90 12198.25 19199.63 13899.80 70
JIA-IIPM97.50 29397.02 30798.93 20498.73 34997.80 25699.30 25198.97 32991.73 38898.91 25694.86 40395.10 20699.71 22697.58 25197.98 24899.28 222
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18399.30 25198.77 35797.70 19698.94 25399.65 18792.91 28299.74 21096.52 31699.55 14699.64 136
testing1197.50 29397.10 30498.71 24399.20 26596.91 30599.29 25698.82 35297.89 17198.21 32998.40 37385.63 37899.83 17298.45 17498.04 24799.37 212
Syy-MVS97.09 31597.14 30196.95 35599.00 30992.73 38699.29 25699.39 22797.06 26597.41 35398.15 38293.92 26198.68 37291.71 38298.34 22599.45 198
myMVS_eth3d96.89 31796.37 32298.43 27999.00 30997.16 28399.29 25699.39 22797.06 26597.41 35398.15 38283.46 39098.68 37295.27 34598.34 22599.45 198
MCST-MVS99.43 4399.30 5399.82 4199.79 5499.74 4199.29 25699.40 22498.79 7099.52 12999.62 20498.91 3499.90 12198.64 14599.75 11799.82 54
LF4IMVS97.52 29097.46 26697.70 33498.98 31595.55 34599.29 25698.82 35298.07 15398.66 29199.64 19389.97 34299.61 25897.01 29296.68 30097.94 380
hse-mvs297.50 29397.14 30198.59 25199.49 18597.05 29299.28 26199.22 29798.94 5499.66 8799.42 26894.93 20999.65 24899.48 4583.80 40199.08 238
OPM-MVS98.19 19398.10 19198.45 27498.88 32697.07 29099.28 26199.38 23598.57 8999.22 19999.81 9392.12 30699.66 24398.08 20697.54 27298.61 329
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9299.02 9599.51 11799.61 14398.96 16299.28 26199.49 14798.46 9899.72 7199.71 15596.50 15699.88 13899.31 6299.11 17799.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18799.28 26199.91 397.42 23199.67 8299.37 28597.53 11799.88 13898.98 9397.29 29098.42 349
OMC-MVS99.08 11099.04 8999.20 17199.67 11298.22 23199.28 26199.52 10398.07 15399.66 8799.81 9397.79 11299.78 19997.79 23099.81 9899.60 146
testing22297.16 31196.50 31999.16 17599.16 28198.47 22099.27 26698.66 37197.71 19398.23 32698.15 38282.28 39699.84 15997.36 27397.66 26299.18 229
AUN-MVS96.88 31896.31 32498.59 25199.48 19297.04 29599.27 26699.22 29797.44 22898.51 31099.41 27291.97 30999.66 24397.71 24283.83 40099.07 243
pmmvs597.52 29097.30 29298.16 30298.57 36696.73 31299.27 26698.90 34296.14 33498.37 31899.53 23791.54 32399.14 32797.51 26095.87 32298.63 318
131498.68 15998.54 16399.11 18198.89 32598.65 19799.27 26699.49 14796.89 27997.99 33999.56 22597.72 11599.83 17297.74 23899.27 16698.84 261
MVS97.28 30696.55 31899.48 12398.78 34098.95 16599.27 26699.39 22783.53 40398.08 33499.54 23396.97 13999.87 14394.23 36099.16 17199.63 140
BH-untuned98.42 17398.36 17198.59 25199.49 18596.70 31399.27 26699.13 31097.24 24798.80 27399.38 28295.75 18499.74 21097.07 29199.16 17199.33 218
MDTV_nov1_ep1398.32 17599.11 28994.44 36899.27 26698.74 36197.51 21999.40 15899.62 20494.78 21999.76 20597.59 25098.81 204
DP-MVS Recon99.12 10098.95 11199.65 7599.74 8099.70 4699.27 26699.57 6696.40 31699.42 14999.68 17598.75 5599.80 19197.98 21499.72 12399.44 200
PatchmatchNetpermissive98.31 18398.36 17198.19 30099.16 28195.32 35399.27 26698.92 33697.37 23599.37 16499.58 21794.90 21299.70 23297.43 26999.21 16899.54 163
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 28597.28 29598.62 24999.64 13098.03 24099.26 27598.74 36197.68 19899.09 22798.32 37791.66 32099.81 18492.88 37598.22 23598.03 372
CNVR-MVS99.42 4599.30 5399.78 5299.62 13999.71 4499.26 27599.52 10398.82 6599.39 16099.71 15598.96 2499.85 15298.59 15599.80 10299.77 82
1112_ss98.98 12498.77 13499.59 9199.68 10999.02 15199.25 27799.48 15997.23 24899.13 21799.58 21796.93 14199.90 12198.87 10998.78 20599.84 39
TAPA-MVS97.07 1597.74 26697.34 28798.94 20299.70 10197.53 26899.25 27799.51 11791.90 38799.30 17999.63 19998.78 4899.64 25188.09 39699.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG97.85 24397.48 26198.95 20099.25 25497.64 26599.24 27998.74 36197.90 17098.64 29898.20 38188.65 35899.81 18498.27 19098.40 22399.42 202
PLCcopyleft97.94 499.02 11898.85 12599.53 10999.66 12299.01 15399.24 27999.52 10396.85 28199.27 18899.48 25498.25 9499.91 10997.76 23599.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 28165.14 41594.18 25299.71 22697.58 251
ADS-MVSNet298.02 21898.07 19897.87 32299.33 23195.19 35699.23 28199.08 31596.24 32499.10 22499.67 18194.11 25398.93 36296.81 30599.05 18499.48 183
ADS-MVSNet98.20 19298.08 19598.56 25899.33 23196.48 32499.23 28199.15 30796.24 32499.10 22499.67 18194.11 25399.71 22696.81 30599.05 18499.48 183
EPNet_dtu98.03 21697.96 20898.23 29898.27 37495.54 34799.23 28198.75 35899.02 3897.82 34699.71 15596.11 16899.48 26793.04 37399.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19697.93 21398.87 22199.18 27198.49 21699.22 28599.33 26396.96 27399.56 12099.38 28294.33 24599.00 34994.83 35398.58 21399.14 230
RPMNet96.72 32195.90 33399.19 17299.18 27198.49 21699.22 28599.52 10388.72 39999.56 12097.38 39394.08 25599.95 5986.87 40198.58 21399.14 230
WBMVS97.74 26697.50 25998.46 27299.24 25697.43 27199.21 28799.42 21597.45 22598.96 25099.41 27288.83 35399.23 31298.94 9796.02 31598.71 278
plane_prior96.97 30199.21 28798.45 9997.60 266
testing9197.44 30097.02 30798.71 24399.18 27196.89 30799.19 28999.04 32297.78 18698.31 32198.29 37885.41 38099.85 15298.01 21297.95 24999.39 208
WR-MVS98.06 20897.73 23699.06 18598.86 33299.25 12299.19 28999.35 25197.30 24198.66 29199.43 26693.94 25999.21 32198.58 15694.28 35698.71 278
new-patchmatchnet94.48 35394.08 35495.67 36895.08 40592.41 38799.18 29199.28 28794.55 36793.49 39197.37 39487.86 36997.01 39891.57 38388.36 39397.61 387
AdaColmapbinary99.01 12298.80 13099.66 7199.56 15899.54 8199.18 29199.70 1598.18 13599.35 17099.63 19996.32 16399.90 12197.48 26399.77 11299.55 161
EG-PatchMatch MVS95.97 33695.69 33796.81 35997.78 38192.79 38599.16 29398.93 33396.16 33194.08 38899.22 31882.72 39299.47 26895.67 33697.50 27698.17 364
PatchT97.03 31696.44 32198.79 23698.99 31298.34 22699.16 29399.07 31892.13 38699.52 12997.31 39694.54 23898.98 35188.54 39498.73 20799.03 246
CNLPA99.14 9298.99 10199.59 9199.58 15299.41 10299.16 29399.44 20798.45 9999.19 20899.49 24998.08 10399.89 13397.73 23999.75 11799.48 183
MDA-MVSNet-bldmvs94.96 34893.98 35597.92 31898.24 37597.27 27799.15 29699.33 26393.80 37280.09 41099.03 33888.31 36397.86 38993.49 36894.36 35598.62 320
CDPH-MVS99.13 9498.91 11599.80 4699.75 7399.71 4499.15 29699.41 21896.60 30099.60 11299.55 22898.83 4299.90 12197.48 26399.83 9199.78 80
save fliter99.76 6599.59 7199.14 29899.40 22499.00 43
WB-MVSnew97.65 28297.65 24397.63 33598.78 34097.62 26699.13 29998.33 37997.36 23699.07 22998.94 34995.64 18999.15 32692.95 37498.68 20996.12 401
testf190.42 36890.68 36989.65 38897.78 38173.97 41699.13 29998.81 35489.62 39491.80 39998.93 35062.23 40898.80 36886.61 40291.17 38396.19 399
APD_test290.42 36890.68 36989.65 38897.78 38173.97 41699.13 29998.81 35489.62 39491.80 39998.93 35062.23 40898.80 36886.61 40291.17 38396.19 399
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14399.63 13398.97 15899.12 30299.51 11798.86 6099.84 3499.47 25798.18 9799.99 499.50 4099.31 16399.08 238
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21599.71 9697.74 25799.12 30299.54 8798.44 10299.42 14999.71 15594.20 24999.92 9898.54 16698.90 19699.00 249
jason99.13 9499.03 9199.45 12999.46 19598.87 17599.12 30299.26 29098.03 16199.79 4699.65 18797.02 13799.85 15299.02 9099.90 4499.65 129
jason: jason.
N_pmnet94.95 34995.83 33592.31 37998.47 37079.33 41199.12 30292.81 41793.87 37197.68 34999.13 32893.87 26299.01 34891.38 38496.19 31298.59 333
MDA-MVSNet_test_wron95.45 34294.60 34998.01 31298.16 37697.21 28299.11 30899.24 29493.49 37680.73 40998.98 34593.02 27798.18 38094.22 36194.45 35398.64 311
Patchmtry97.75 26497.40 27998.81 23399.10 29298.87 17599.11 30899.33 26394.83 36198.81 27199.38 28294.33 24599.02 34696.10 32395.57 33198.53 337
YYNet195.36 34494.51 35197.92 31897.89 37997.10 28699.10 31099.23 29593.26 37980.77 40899.04 33792.81 28398.02 38494.30 35794.18 35898.64 311
CANet_DTU98.97 12698.87 12199.25 16599.33 23198.42 22499.08 31199.30 28199.16 1999.43 14699.75 13995.27 20099.97 2198.56 16299.95 1899.36 213
SCA98.19 19398.16 18398.27 29799.30 23995.55 34599.07 31298.97 32997.57 20999.43 14699.57 22292.72 28799.74 21097.58 25199.20 16999.52 170
TSAR-MVS + GP.99.36 5899.36 3699.36 14199.67 11298.61 20399.07 31299.33 26399.00 4399.82 4099.81 9399.06 1699.84 15999.09 8499.42 15399.65 129
MG-MVS99.13 9499.02 9599.45 12999.57 15498.63 20099.07 31299.34 25698.99 4599.61 10999.82 7997.98 10799.87 14397.00 29399.80 10299.85 35
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9699.28 11799.06 31599.77 997.74 19199.50 13299.53 23795.41 19499.84 15997.17 28799.64 13699.44 200
OpenMVS_ROBcopyleft92.34 2094.38 35493.70 36096.41 36497.38 38793.17 38399.06 31598.75 35886.58 40094.84 38698.26 37981.53 39799.32 29989.01 39297.87 25496.76 394
TEST999.67 11299.65 5799.05 31799.41 21896.22 32698.95 25199.49 24998.77 5199.91 109
train_agg99.02 11898.77 13499.77 5599.67 11299.65 5799.05 31799.41 21896.28 32098.95 25199.49 24998.76 5299.91 10997.63 24799.72 12399.75 88
lupinMVS99.13 9499.01 9999.46 12899.51 17498.94 16899.05 31799.16 30697.86 17399.80 4499.56 22597.39 12099.86 14698.94 9799.85 7499.58 154
DELS-MVS99.48 2699.42 2299.65 7599.72 9199.40 10399.05 31799.66 2899.14 2199.57 11999.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 32896.03 33097.41 34298.13 37795.16 35899.05 31799.20 30193.94 37097.39 35698.79 36191.61 32299.04 34290.43 38795.77 32498.05 371
Patchmatch-test97.93 23197.65 24398.77 23899.18 27197.07 29099.03 32299.14 30996.16 33198.74 27999.57 22294.56 23599.72 22093.36 36999.11 17799.52 170
test_899.67 11299.61 6799.03 32299.41 21896.28 32098.93 25499.48 25498.76 5299.91 109
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10598.95 16599.03 32299.47 17996.98 27199.15 21599.23 31796.77 14599.89 13398.83 12298.78 20599.86 32
IterMVS-SCA-FT97.82 25297.75 23498.06 30899.57 15496.36 32899.02 32599.49 14797.18 25198.71 28299.72 15492.72 28799.14 32797.44 26895.86 32398.67 299
xiu_mvs_v2_base99.26 7399.25 6699.29 15899.53 16698.91 17299.02 32599.45 19998.80 6999.71 7299.26 31498.94 2999.98 1399.34 5999.23 16798.98 252
MIMVSNet97.73 26897.45 26798.57 25599.45 20097.50 26999.02 32598.98 32896.11 33699.41 15399.14 32790.28 33698.74 37095.74 33298.93 19299.47 189
IterMVS97.83 24997.77 22998.02 31199.58 15296.27 33199.02 32599.48 15997.22 24998.71 28299.70 15992.75 28499.13 33097.46 26696.00 31798.67 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10498.92 11399.65 7599.90 499.37 10499.02 32599.91 397.67 20099.59 11599.75 13995.90 17999.73 21699.53 3699.02 18899.86 32
UWE-MVS97.58 28797.29 29498.48 26699.09 29596.25 33299.01 33096.61 40397.86 17399.19 20899.01 34188.72 35499.90 12197.38 27298.69 20899.28 222
新几何299.01 330
BH-w/o98.00 22397.89 21998.32 28999.35 22696.20 33499.01 33098.90 34296.42 31498.38 31799.00 34295.26 20299.72 22096.06 32498.61 21099.03 246
test_prior499.56 7798.99 333
无先验98.99 33399.51 11796.89 27999.93 8797.53 25999.72 103
pmmvs498.13 20097.90 21598.81 23398.61 36398.87 17598.99 33399.21 30096.44 31299.06 23499.58 21795.90 17999.11 33597.18 28696.11 31498.46 346
HQP-NCC99.19 26898.98 33698.24 12498.66 291
ACMP_Plane99.19 26898.98 33698.24 12498.66 291
HQP-MVS98.02 21897.90 21598.37 28599.19 26896.83 30898.98 33699.39 22798.24 12498.66 29199.40 27692.47 29899.64 25197.19 28497.58 26898.64 311
PS-MVSNAJ99.32 6399.32 4499.30 15599.57 15498.94 16898.97 33999.46 18898.92 5799.71 7299.24 31699.01 1899.98 1399.35 5599.66 13398.97 253
MVP-Stereo97.81 25497.75 23497.99 31597.53 38596.60 32198.96 34098.85 34997.22 24997.23 35999.36 28895.28 19999.46 26995.51 33899.78 10997.92 382
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 34098.34 11299.01 24099.52 24098.68 6497.96 21599.74 120
旧先验298.96 34096.70 28999.47 13799.94 6998.19 195
原ACMM298.95 343
MVS_111021_HR99.41 4999.32 4499.66 7199.72 9199.47 9598.95 34399.85 698.82 6599.54 12599.73 15098.51 7899.74 21098.91 10399.88 5699.77 82
mvsany_test199.50 2099.46 2099.62 8699.61 14399.09 14198.94 34599.48 15999.10 2799.96 1499.91 2198.85 3999.96 3199.72 1899.58 14399.82 54
MVS_111021_LR99.41 4999.33 4299.65 7599.77 6299.51 8898.94 34599.85 698.82 6599.65 9499.74 14498.51 7899.80 19198.83 12299.89 5399.64 136
pmmvs394.09 35693.25 36296.60 36294.76 40794.49 36798.92 34798.18 38589.66 39396.48 37198.06 38886.28 37497.33 39589.68 39087.20 39697.97 379
XVG-OURS98.73 15698.68 14298.88 21799.70 10197.73 25898.92 34799.55 7998.52 9499.45 14099.84 6595.27 20099.91 10998.08 20698.84 20099.00 249
test22299.75 7399.49 9198.91 34999.49 14796.42 31499.34 17399.65 18798.28 9399.69 12899.72 103
PMMVS286.87 37185.37 37591.35 38390.21 41283.80 40298.89 35097.45 39583.13 40491.67 40195.03 40148.49 41494.70 40785.86 40477.62 40695.54 402
miper_lstm_enhance98.00 22397.91 21498.28 29699.34 23097.43 27198.88 35199.36 24496.48 30998.80 27399.55 22895.98 17298.91 36397.27 27795.50 33498.51 339
MVS-HIRNet95.75 34095.16 34597.51 34099.30 23993.69 37898.88 35195.78 40585.09 40298.78 27692.65 40591.29 32799.37 28794.85 35299.85 7499.46 195
TR-MVS97.76 26097.41 27898.82 23099.06 30197.87 25298.87 35398.56 37496.63 29798.68 29099.22 31892.49 29799.65 24895.40 34297.79 25898.95 257
testdata198.85 35498.32 115
ET-MVSNet_ETH3D96.49 32595.64 33999.05 18799.53 16698.82 18498.84 35597.51 39497.63 20384.77 40399.21 32192.09 30798.91 36398.98 9392.21 38099.41 205
our_test_397.65 28297.68 24097.55 33998.62 36194.97 36098.84 35599.30 28196.83 28498.19 33099.34 29597.01 13899.02 34695.00 35096.01 31698.64 311
MS-PatchMatch97.24 31097.32 29096.99 35298.45 37193.51 38198.82 35799.32 27397.41 23298.13 33399.30 30588.99 35199.56 26295.68 33599.80 10297.90 383
c3_l98.12 20298.04 20098.38 28499.30 23997.69 26498.81 35899.33 26396.67 29198.83 26999.34 29597.11 13198.99 35097.58 25195.34 33698.48 341
ppachtmachnet_test97.49 29897.45 26797.61 33798.62 36195.24 35498.80 35999.46 18896.11 33698.22 32899.62 20496.45 15998.97 35893.77 36495.97 32198.61 329
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15098.80 35999.36 24496.33 31799.00 24499.12 33198.46 8199.84 15995.23 34699.37 16299.66 125
test0.0.03 197.71 27397.42 27798.56 25898.41 37397.82 25598.78 36198.63 37297.34 23798.05 33898.98 34594.45 24298.98 35195.04 34997.15 29698.89 258
PVSNet_Blended99.08 11098.97 10599.42 13499.76 6598.79 18798.78 36199.91 396.74 28699.67 8299.49 24997.53 11799.88 13898.98 9399.85 7499.60 146
PMMVS98.80 14998.62 15399.34 14399.27 24898.70 19398.76 36399.31 27797.34 23799.21 20299.07 33397.20 12999.82 17998.56 16298.87 19799.52 170
test12339.01 38342.50 38528.53 39839.17 42120.91 42398.75 36419.17 42319.83 41638.57 41566.67 41333.16 41815.42 41737.50 41729.66 41549.26 412
MSDG98.98 12498.80 13099.53 10999.76 6599.19 12698.75 36499.55 7997.25 24599.47 13799.77 13297.82 11199.87 14396.93 30099.90 4499.54 163
CLD-MVS98.16 19798.10 19198.33 28799.29 24396.82 31098.75 36499.44 20797.83 17999.13 21799.55 22892.92 28099.67 24098.32 18797.69 26198.48 341
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19598.10 19198.41 28099.23 25897.72 26098.72 36799.31 27796.60 30098.88 26199.29 30797.29 12799.13 33097.60 24995.99 31898.38 354
cl____98.01 22197.84 22298.55 26099.25 25497.97 24498.71 36899.34 25696.47 31198.59 30699.54 23395.65 18899.21 32197.21 28095.77 32498.46 346
DIV-MVS_self_test98.01 22197.85 22198.48 26699.24 25697.95 24898.71 36899.35 25196.50 30598.60 30599.54 23395.72 18699.03 34497.21 28095.77 32498.46 346
test-LLR98.06 20897.90 21598.55 26098.79 33797.10 28698.67 37097.75 39097.34 23798.61 30398.85 35594.45 24299.45 27097.25 27899.38 15599.10 233
TESTMET0.1,197.55 28897.27 29898.40 28298.93 32096.53 32298.67 37097.61 39396.96 27398.64 29899.28 30988.63 36099.45 27097.30 27699.38 15599.21 228
test-mter97.49 29897.13 30398.55 26098.79 33797.10 28698.67 37097.75 39096.65 29398.61 30398.85 35588.23 36499.45 27097.25 27899.38 15599.10 233
IB-MVS95.67 1896.22 32995.44 34398.57 25599.21 26396.70 31398.65 37397.74 39296.71 28897.27 35898.54 36986.03 37599.92 9898.47 17286.30 39799.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 12798.71 13999.66 7199.63 13399.55 7998.64 37499.10 31297.93 16799.42 14999.55 22898.67 6699.80 19195.80 33199.68 13199.61 144
thisisatest051598.14 19997.79 22499.19 17299.50 18398.50 21598.61 37596.82 39996.95 27599.54 12599.43 26691.66 32099.86 14698.08 20699.51 14899.22 227
DeepPCF-MVS98.18 398.81 14699.37 3497.12 35099.60 14891.75 39098.61 37599.44 20799.35 1299.83 3999.85 5498.70 6399.81 18499.02 9099.91 3699.81 61
cl2297.85 24397.64 24698.48 26699.09 29597.87 25298.60 37799.33 26397.11 26098.87 26499.22 31892.38 30399.17 32598.21 19395.99 31898.42 349
GA-MVS97.85 24397.47 26499.00 19399.38 21997.99 24398.57 37899.15 30797.04 26898.90 25899.30 30589.83 34499.38 28496.70 31098.33 22799.62 142
TinyColmap97.12 31396.89 31297.83 32699.07 29995.52 34898.57 37898.74 36197.58 20897.81 34799.79 11888.16 36599.56 26295.10 34797.21 29398.39 353
eth_miper_zixun_eth98.05 21397.96 20898.33 28799.26 25097.38 27398.56 38099.31 27796.65 29398.88 26199.52 24096.58 15299.12 33497.39 27195.53 33398.47 343
CMPMVSbinary69.68 2394.13 35594.90 34791.84 38097.24 39180.01 41098.52 38199.48 15989.01 39791.99 39799.67 18185.67 37799.13 33095.44 34097.03 29896.39 398
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 30497.20 29997.75 33199.07 29995.20 35598.51 38299.04 32297.99 16398.31 32199.86 4989.02 35099.55 26495.67 33697.36 28998.49 340
ambc93.06 37892.68 40982.36 40398.47 38398.73 36795.09 38497.41 39255.55 41099.10 33796.42 31991.32 38297.71 384
miper_enhance_ethall98.16 19798.08 19598.41 28098.96 31897.72 26098.45 38499.32 27396.95 27598.97 24899.17 32397.06 13599.22 31697.86 22395.99 31898.29 358
CHOSEN 280x42099.12 10099.13 7799.08 18299.66 12297.89 25198.43 38599.71 1398.88 5999.62 10699.76 13696.63 15099.70 23299.46 4899.99 199.66 125
testmvs39.17 38243.78 38425.37 39936.04 42216.84 42498.36 38626.56 42120.06 41538.51 41667.32 41229.64 41915.30 41837.59 41639.90 41443.98 413
FPMVS84.93 37385.65 37482.75 39486.77 41563.39 42098.35 38798.92 33674.11 40683.39 40598.98 34550.85 41392.40 40984.54 40594.97 34492.46 404
KD-MVS_2432*160094.62 35093.72 35897.31 34497.19 39395.82 34098.34 38899.20 30195.00 35797.57 35098.35 37587.95 36798.10 38292.87 37677.00 40798.01 373
miper_refine_blended94.62 35093.72 35897.31 34497.19 39395.82 34098.34 38899.20 30195.00 35797.57 35098.35 37587.95 36798.10 38292.87 37677.00 40798.01 373
CL-MVSNet_self_test94.49 35293.97 35696.08 36696.16 39793.67 37998.33 39099.38 23595.13 35197.33 35798.15 38292.69 29196.57 40088.67 39379.87 40597.99 377
PVSNet96.02 1798.85 14298.84 12798.89 21599.73 8797.28 27698.32 39199.60 5497.86 17399.50 13299.57 22296.75 14699.86 14698.56 16299.70 12799.54 163
PAPM97.59 28697.09 30599.07 18399.06 30198.26 22998.30 39299.10 31294.88 35998.08 33499.34 29596.27 16599.64 25189.87 38998.92 19499.31 220
Patchmatch-RL test95.84 33895.81 33695.95 36795.61 40090.57 39398.24 39398.39 37895.10 35595.20 38298.67 36594.78 21997.77 39096.28 32290.02 39099.51 177
UnsupCasMVSNet_bld93.53 35892.51 36496.58 36397.38 38793.82 37498.24 39399.48 15991.10 39193.10 39296.66 39874.89 40298.37 37794.03 36387.71 39597.56 389
LCM-MVSNet86.80 37285.22 37691.53 38287.81 41480.96 40898.23 39598.99 32771.05 40790.13 40296.51 39948.45 41596.88 39990.51 38685.30 39896.76 394
cascas97.69 27597.43 27698.48 26698.60 36497.30 27598.18 39699.39 22792.96 38198.41 31598.78 36293.77 26699.27 30798.16 19998.61 21098.86 259
kuosan90.92 36790.11 37293.34 37598.78 34085.59 40098.15 39793.16 41589.37 39692.07 39698.38 37481.48 39895.19 40562.54 41497.04 29799.25 225
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 13998.08 39899.50 13797.50 22099.38 16299.41 27296.37 16299.81 18499.11 8298.54 21899.51 177
PCF-MVS97.08 1497.66 28197.06 30699.47 12699.61 14399.09 14198.04 39999.25 29291.24 39098.51 31099.70 15994.55 23799.91 10992.76 37899.85 7499.42 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 33495.47 34197.94 31799.31 23894.34 37197.81 40099.70 1597.12 25797.46 35298.75 36389.71 34599.79 19497.69 24581.69 40399.68 119
E-PMN80.61 37679.88 37882.81 39390.75 41176.38 41497.69 40195.76 40666.44 41183.52 40492.25 40662.54 40787.16 41368.53 41261.40 41084.89 411
dongtai93.26 35992.93 36394.25 37199.39 21785.68 39997.68 40293.27 41392.87 38296.85 36899.39 28082.33 39597.48 39476.78 40797.80 25799.58 154
ANet_high77.30 37874.86 38284.62 39275.88 41877.61 41297.63 40393.15 41688.81 39864.27 41389.29 41036.51 41783.93 41575.89 40952.31 41292.33 406
EMVS80.02 37779.22 37982.43 39591.19 41076.40 41397.55 40492.49 41866.36 41283.01 40691.27 40864.63 40685.79 41465.82 41360.65 41185.08 410
MVEpermissive76.82 2176.91 37974.31 38384.70 39185.38 41776.05 41596.88 40593.17 41467.39 41071.28 41289.01 41121.66 42287.69 41271.74 41172.29 40990.35 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 36591.36 36790.31 38595.85 39873.72 41894.89 40699.25 29268.39 40995.82 37899.02 34080.50 39998.95 36193.64 36694.89 34898.25 361
Gipumacopyleft90.99 36690.15 37193.51 37498.73 34990.12 39493.98 40799.45 19979.32 40592.28 39594.91 40269.61 40397.98 38687.42 39895.67 32892.45 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 38074.97 38179.01 39670.98 41955.18 42193.37 40898.21 38365.08 41361.78 41493.83 40421.74 42192.53 40878.59 40691.12 38589.34 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 37481.52 37786.66 39066.61 42068.44 41992.79 40997.92 38768.96 40880.04 41199.85 5485.77 37696.15 40397.86 22343.89 41395.39 403
wuyk23d40.18 38141.29 38636.84 39786.18 41649.12 42279.73 41022.81 42227.64 41425.46 41728.45 41721.98 42048.89 41655.80 41523.56 41612.51 414
test_blank0.13 3870.17 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4191.57 4180.00 4230.00 4190.00 4180.00 4170.00 415
uanet_test0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
cdsmvs_eth3d_5k24.64 38432.85 3870.00 4000.00 4230.00 4250.00 41199.51 1170.00 4180.00 41999.56 22596.58 1520.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas8.27 38611.03 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 41999.01 180.00 4190.00 4180.00 4170.00 415
sosnet-low-res0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
sosnet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
Regformer0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs-re8.30 38511.06 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41999.58 2170.00 4230.00 4190.00 4180.00 4170.00 415
uanet0.02 3880.03 3910.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.27 4190.00 4230.00 4190.00 4180.00 4170.00 415
WAC-MVS97.16 28395.47 339
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26399.96 3198.87 10999.84 8299.89 19
PC_three_145298.18 13599.84 3499.70 15999.31 398.52 37598.30 18999.80 10299.81 61
No_MVS99.87 1199.51 17499.76 3799.33 26399.96 3198.87 10999.84 8299.89 19
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9499.81 9399.09 14
eth-test20.00 423
eth-test0.00 423
ZD-MVS99.71 9699.79 3099.61 4896.84 28299.56 12099.54 23398.58 7299.96 3196.93 30099.75 117
IU-MVS99.84 3299.88 899.32 27398.30 11699.84 3498.86 11499.85 7499.89 19
test_241102_TWO99.48 15999.08 3399.88 2299.81 9398.94 2999.96 3198.91 10399.84 8299.88 25
test_241102_ONE99.84 3299.90 299.48 15999.07 3599.91 1899.74 14499.20 799.76 205
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3198.85 11699.90 4499.88 25
GSMVS99.52 170
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 170
sam_mvs94.72 226
MTGPAbinary99.47 179
test_post65.99 41494.65 23299.73 216
patchmatchnet-post98.70 36494.79 21899.74 210
gm-plane-assit98.54 36892.96 38494.65 36599.15 32699.64 25197.56 256
test9_res97.49 26299.72 12399.75 88
agg_prior297.21 28099.73 12299.75 88
agg_prior99.67 11299.62 6599.40 22498.87 26499.91 109
TestCases99.31 15099.86 2098.48 21899.61 4897.85 17699.36 16799.85 5495.95 17499.85 15296.66 31399.83 9199.59 150
test_prior99.68 6999.67 11299.48 9399.56 7199.83 17299.74 92
新几何199.75 5899.75 7399.59 7199.54 8796.76 28599.29 18299.64 19398.43 8399.94 6996.92 30299.66 13399.72 103
旧先验199.74 8099.59 7199.54 8799.69 16998.47 8099.68 13199.73 97
原ACMM199.65 7599.73 8799.33 10899.47 17997.46 22299.12 21999.66 18698.67 6699.91 10997.70 24499.69 12899.71 112
testdata299.95 5996.67 312
segment_acmp98.96 24
testdata99.54 10199.75 7398.95 16599.51 11797.07 26399.43 14699.70 15998.87 3799.94 6997.76 23599.64 13699.72 103
test1299.75 5899.64 13099.61 6799.29 28599.21 20298.38 8899.89 13399.74 12099.74 92
plane_prior799.29 24397.03 296
plane_prior699.27 24896.98 30092.71 289
plane_prior599.47 17999.69 23797.78 23197.63 26398.67 299
plane_prior499.61 208
plane_prior397.00 29898.69 8099.11 221
plane_prior199.26 250
n20.00 424
nn0.00 424
door-mid98.05 386
lessismore_v097.79 33098.69 35595.44 35194.75 40995.71 37999.87 4588.69 35699.32 29995.89 32894.93 34698.62 320
LGP-MVS_train98.49 26499.33 23197.05 29299.55 7997.46 22299.24 19499.83 7092.58 29499.72 22098.09 20297.51 27498.68 292
test1199.35 251
door97.92 387
HQP5-MVS96.83 308
BP-MVS97.19 284
HQP4-MVS98.66 29199.64 25198.64 311
HQP3-MVS99.39 22797.58 268
HQP2-MVS92.47 298
NP-MVS99.23 25896.92 30499.40 276
ACMMP++_ref97.19 294
ACMMP++97.43 285
Test By Simon98.75 55
ITE_SJBPF98.08 30799.29 24396.37 32798.92 33698.34 11298.83 26999.75 13991.09 32999.62 25795.82 32997.40 28798.25 361
DeepMVS_CXcopyleft93.34 37599.29 24382.27 40499.22 29785.15 40196.33 37299.05 33690.97 33199.73 21693.57 36797.77 25998.01 373