This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 195
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
RRT_MVS98.70 15098.66 13998.83 22598.90 31698.45 21899.89 299.28 27997.76 18398.94 24899.92 1496.98 13499.25 30399.28 6297.00 29298.80 254
mvsmamba98.92 12198.87 11599.08 17799.07 29299.16 12599.88 499.51 11598.15 13499.40 15399.89 3097.12 12799.33 29099.38 4897.40 28098.73 268
MVSFormer99.17 8199.12 7499.29 15399.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18497.39 11699.28 29899.03 8399.85 7099.65 129
test_djsdf98.67 15498.57 15498.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8397.62 25798.75 263
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 31897.79 17998.78 27299.94 691.68 31199.35 28797.21 27496.99 29398.69 279
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10499.73 6299.69 16698.20 9599.70 22599.64 2499.82 9199.54 161
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11299.80 9899.81 61
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10288.71 34999.04 33696.69 30596.55 29998.65 301
FC-MVSNet-test98.75 14698.62 14799.15 17499.08 29199.45 9399.86 1299.60 5498.23 12398.70 28499.82 7596.80 13999.22 31099.07 8196.38 30298.79 255
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15694.89 20799.44 26896.03 31993.89 35598.75 263
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 17892.92 27598.56 36796.88 29892.60 37098.70 275
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28099.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2599.79 74
FIs98.78 14398.63 14299.23 16499.18 26499.54 7999.83 1699.59 5798.28 11598.79 27199.81 8996.75 14299.37 28099.08 8096.38 30298.78 256
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36596.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
jajsoiax98.43 16798.28 17398.88 21198.60 35598.43 22099.82 1799.53 9698.19 12998.63 29599.80 10293.22 27099.44 26899.22 6897.50 26898.77 259
OpenMVScopyleft96.50 1698.47 16498.12 18499.52 11199.04 29999.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 21999.98 1397.47 25999.76 11199.06 235
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 22999.93 8499.67 2198.26 22799.72 103
nrg03098.64 15798.42 16399.28 15799.05 29899.69 4799.81 2099.46 18298.04 15599.01 23699.82 7596.69 14499.38 27699.34 5594.59 34398.78 256
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19698.91 3499.94 6998.58 15299.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14499.81 2099.33 25597.43 22399.60 10799.88 3697.14 12699.84 15599.13 7598.94 18699.69 115
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27299.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18199.97 2198.86 11099.86 6399.81 61
FA-MVS(test-final)98.75 14698.53 15899.41 12999.55 16099.05 14699.80 2599.01 31796.59 29699.58 11199.59 21095.39 18999.90 11697.78 22599.49 14499.28 212
GeoE98.85 13598.62 14799.53 10599.61 14199.08 14199.80 2599.51 11597.10 25599.31 17499.78 12095.23 19899.77 19698.21 18799.03 18199.75 88
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20299.27 6597.90 24599.47 184
v897.95 22797.63 24498.93 19898.95 31398.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20599.30 29696.94 29394.08 35298.66 299
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14599.71 9698.88 17199.80 2599.44 20197.91 16599.36 16599.78 12095.49 18799.43 27297.91 21299.11 17299.62 142
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3099.29 27793.01 37497.20 35699.03 33389.69 33998.36 37191.16 37896.13 30798.07 361
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3199.54 8598.07 14999.00 24099.76 13399.01 1899.37 28099.13 7597.23 28698.81 253
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3199.51 11597.06 25998.29 31999.64 19092.63 28898.89 35898.09 19693.16 36398.72 269
anonymousdsp98.44 16698.28 17398.94 19698.50 36098.96 15999.77 3399.50 13597.07 25798.87 26099.77 12894.76 21799.28 29898.66 13997.60 25898.57 328
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3398.68 36297.14 24897.90 33799.93 990.45 32999.18 31897.00 28796.43 30198.67 291
QAPM98.67 15498.30 17299.80 4699.20 25899.67 5199.77 3399.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5299.76 87
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3699.23 28894.87 35492.80 38798.93 34594.71 22191.37 40274.49 40293.80 35696.42 388
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3690.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3699.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3699.56 6997.72 18899.76 5699.75 13699.13 1299.92 9599.07 8199.92 2599.85 36
v1097.85 24097.52 25298.86 21998.99 30698.67 19299.75 4099.41 21295.70 33998.98 24299.41 26994.75 21899.23 30796.01 32194.63 34298.67 291
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4099.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 6899.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4099.20 29498.02 15899.56 11599.86 4896.54 14999.67 23398.09 19699.13 17199.73 97
test_vis1_n97.92 23197.44 26699.34 13899.53 16398.08 23699.74 4399.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11199.97 4
test_fmvs1_n98.41 17098.14 18199.21 16599.82 4297.71 26099.74 4399.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7899.96 7
tttt051798.42 16898.14 18199.28 15799.66 12098.38 22399.74 4396.85 39197.68 19499.79 4299.74 14191.39 31999.89 12798.83 11899.56 13999.57 156
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4699.27 28295.05 35093.09 38698.91 34994.70 22291.89 40176.62 40094.02 35496.58 387
test_fmvs297.25 30297.30 28697.09 34499.43 19793.31 37599.73 4698.87 34098.83 6499.28 18099.80 10284.45 37999.66 23697.88 21497.45 27498.30 350
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4899.48 15598.35 10999.42 14499.84 6396.07 16399.79 18999.51 3599.14 17099.67 122
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4899.44 20196.61 29299.66 8399.89 3095.92 17199.82 17597.46 26099.10 17599.57 156
CSCG99.32 5999.32 4099.32 14499.85 2698.29 22599.71 5099.66 2898.11 14199.41 14899.80 10298.37 8899.96 3098.99 8999.96 1299.72 103
dmvs_re98.08 20398.16 17897.85 31699.55 16094.67 35899.70 5198.92 32998.15 13499.06 23099.35 28693.67 26399.25 30397.77 22897.25 28599.64 136
WR-MVS_H98.13 19797.87 21798.90 20699.02 30198.84 17799.70 5199.59 5797.27 23798.40 31199.19 31795.53 18599.23 30798.34 17993.78 35798.61 322
LTVRE_ROB97.16 1298.02 21597.90 21198.40 27799.23 25196.80 30599.70 5199.60 5497.12 25198.18 32699.70 15691.73 31099.72 21398.39 17397.45 27498.68 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5498.53 36995.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5499.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12399.86 6399.84 40
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5499.68 2098.98 4899.37 16164.01 40798.81 4499.94 6998.79 12399.86 6399.84 40
V4298.06 20597.79 22198.86 21998.98 30998.84 17799.69 5499.34 24896.53 29899.30 17699.37 28094.67 22499.32 29397.57 24994.66 34198.42 342
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5499.48 15598.12 13999.50 12799.75 13698.78 4899.97 2198.57 15599.89 4999.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5499.52 10198.07 14999.53 12299.63 19698.93 3399.97 2198.74 12799.91 3299.83 49
FE-MVS98.48 16398.17 17799.40 13199.54 16298.96 15999.68 6098.81 34795.54 34199.62 10199.70 15693.82 25899.93 8497.35 26899.46 14599.32 209
PS-CasMVS97.93 22897.59 24798.95 19598.99 30699.06 14499.68 6099.52 10197.13 24998.31 31699.68 17292.44 29799.05 33598.51 16394.08 35298.75 263
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13699.68 6099.66 2898.49 9599.86 2799.87 4494.77 21699.84 15599.19 7099.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 15898.40 16599.31 14599.86 2097.94 24899.67 6399.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2599.98 2
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6399.53 9697.66 19799.40 15399.44 26198.10 9999.81 18098.94 9499.62 13599.35 204
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6399.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 16999.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6399.34 24897.31 23499.58 11199.76 13397.65 11299.82 17598.87 10599.07 17899.46 186
CP-MVSNet98.09 20197.78 22499.01 18698.97 31199.24 11799.67 6399.46 18297.25 23998.48 30899.64 19093.79 25999.06 33498.63 14294.10 35198.74 266
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6899.47 17398.79 7099.68 7499.81 8998.43 8399.97 2198.88 10299.90 4099.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6899.67 2398.15 13499.68 7499.69 16699.06 1699.96 3098.69 13599.87 5599.84 40
mvs_tets98.40 17398.23 17598.91 20498.67 34898.51 21199.66 6899.53 9698.19 12998.65 29399.81 8992.75 27999.44 26899.31 5897.48 27298.77 259
EU-MVSNet97.98 22298.03 19697.81 32298.72 34296.65 31199.66 6899.66 2898.09 14498.35 31499.82 7595.25 19798.01 37897.41 26495.30 32998.78 256
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6899.67 2398.15 13499.67 7899.69 16698.95 2799.96 3098.69 13599.87 5599.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6899.46 18298.09 14499.48 13199.74 14198.29 9199.96 3097.93 21199.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7499.64 3699.39 1099.97 1399.94 693.20 27199.98 1399.55 2999.91 3299.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7499.66 2898.13 13899.66 8399.68 17298.96 2499.96 3098.62 14399.87 5599.84 40
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7499.49 14397.76 18398.49 30799.60 20894.23 24298.97 35298.00 20792.90 36598.70 275
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7798.25 37398.28 11594.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7799.67 2398.08 14899.55 11999.64 19098.91 3499.96 3098.72 13099.90 4099.82 54
tfpnnormal97.84 24397.47 25898.98 19099.20 25899.22 11999.64 7799.61 4896.32 31298.27 32099.70 15693.35 26799.44 26895.69 32895.40 32798.27 352
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13799.64 7799.56 6998.26 11899.45 13599.87 4496.03 16599.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8199.52 10198.38 10499.76 5699.82 7598.53 7699.95 5998.61 14699.81 9499.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8199.52 10198.38 10499.76 5699.82 7598.75 5598.61 14699.81 9499.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8199.39 22198.91 5899.78 4799.85 5399.36 299.94 6998.84 11599.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8199.08 30896.17 32497.04 36099.06 33093.94 25397.76 38486.96 39395.06 33498.47 336
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8199.54 8598.36 10899.79 4299.82 7598.86 3899.95 5998.62 14399.81 9499.78 80
bld_raw_dy_0_6498.26 18597.88 21699.40 13199.37 21499.09 13799.62 8698.94 32498.53 9099.40 15399.51 23988.93 34599.89 12799.00 8797.64 25499.23 216
test072699.85 2699.89 499.62 8699.50 13599.10 2799.86 2799.82 7598.94 29
EPNet98.86 12898.71 13299.30 15097.20 38398.18 23099.62 8698.91 33399.28 1698.63 29599.81 8995.96 16799.99 499.24 6799.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8699.59 5792.65 37799.71 6899.78 12098.06 10299.90 11698.84 11599.91 3299.74 92
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 19999.08 14199.62 8699.36 23897.39 22899.28 18099.68 17296.44 15499.92 9598.37 17698.22 22999.40 197
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8699.69 1898.12 13999.63 9699.84 6398.73 6099.96 3098.55 16199.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8699.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9399.45 19399.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9485.06 41199.13 2299.77 5199.93 987.82 36399.85 14899.38 4899.38 15099.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 9999.85 7099.79 74
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15699.27 599.42 27398.24 18699.80 9899.79 74
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9499.67 2397.97 16099.63 9699.68 17298.52 7799.95 5998.38 17499.86 6399.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9499.45 19399.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
ACMH97.28 898.10 20097.99 20098.44 27299.41 20296.96 29799.60 9499.56 6998.09 14498.15 32799.91 2090.87 32699.70 22598.88 10297.45 27498.67 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21198.05 19498.00 30899.74 8094.37 36299.59 10094.98 40199.13 2299.66 8399.93 990.67 32899.84 15599.40 4799.38 15099.80 70
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12699.73 6299.79 11498.68 6499.96 3098.44 17199.77 10899.79 74
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10098.74 35497.93 16399.26 18898.62 35991.75 30899.83 16893.22 36398.18 23498.37 348
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10098.74 35497.94 16299.27 18498.62 35991.75 30899.86 14293.73 35898.19 23398.96 246
LCM-MVSNet-Re97.83 24598.15 18096.87 35199.30 23492.25 38199.59 10098.26 37297.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18499.64 136
baseline198.31 17997.95 20699.38 13699.50 17998.74 18799.59 10098.93 32698.41 10299.14 21299.60 20894.59 22799.79 18998.48 16593.29 36199.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8399.79 4299.83 6799.28 499.97 2198.48 16599.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10099.49 14397.03 26399.63 9699.69 16697.27 12499.96 3097.82 22299.84 7899.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
dmvs_testset95.02 33996.12 32191.72 37299.10 28580.43 40099.58 10897.87 38297.47 21695.22 37498.82 35293.99 25195.18 39788.09 38994.91 33999.56 158
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10899.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test111198.04 21198.11 18597.83 31999.74 8093.82 36799.58 10895.40 40099.12 2599.65 8999.93 990.73 32799.84 15599.43 4699.38 15099.82 54
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17399.71 6899.80 10299.12 1399.97 2198.33 18099.87 5599.83 49
LPG-MVS_test98.22 18698.13 18398.49 26099.33 22697.05 28699.58 10899.55 7797.46 21799.24 19099.83 6792.58 28999.72 21398.09 19697.51 26698.68 284
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10899.80 897.12 25199.62 10199.73 14798.58 7299.90 11698.61 14699.91 3299.68 119
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11599.54 8597.82 17899.71 6899.80 10298.95 2799.93 8498.19 18999.84 7899.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 23799.10 2799.81 3799.80 10298.94 2999.96 3098.93 9699.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9699.86 6399.88 26
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22696.91 29999.57 11599.30 27398.47 9699.41 14898.99 33896.78 14099.74 20398.73 12999.38 15098.74 266
v2v48298.06 20597.77 22698.92 20098.90 31698.82 18199.57 11599.36 23896.65 28799.19 20499.35 28694.20 24399.25 30397.72 23594.97 33698.69 279
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11596.63 39596.13 32998.87 26098.61 36194.59 22797.70 38595.08 34298.86 19399.55 159
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 14698.57 15499.29 15399.81 4698.26 22799.56 12199.62 4198.78 7399.64 9399.88 3692.02 30299.88 13399.54 3098.26 22799.72 103
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12199.44 20195.11 34797.13 35897.32 38691.86 30697.27 38890.35 38181.23 39598.23 356
ETV-MVS99.26 6999.21 6699.40 13199.46 19099.30 10999.56 12199.52 10198.52 9299.44 14099.27 30798.41 8699.86 14299.10 7899.59 13799.04 236
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17397.45 22099.78 4799.82 7599.18 1099.91 10598.79 12399.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 12598.72 13099.31 14599.86 2098.48 21599.56 12199.61 4897.85 17199.36 16599.85 5395.95 16899.85 14896.66 30799.83 8799.59 150
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12199.50 13598.33 11299.41 14899.86 4895.92 17199.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17498.09 18999.24 16299.26 24599.32 10499.56 12199.55 7797.45 22098.71 27899.83 6793.23 26899.63 24998.88 10296.32 30498.76 261
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19096.68 31099.56 12199.54 8598.41 10297.79 34399.87 4490.18 33599.66 23698.05 20497.18 28998.62 313
ACMM97.58 598.37 17598.34 16898.48 26299.41 20297.10 28099.56 12199.45 19398.53 9099.04 23399.85 5393.00 27399.71 21998.74 12797.45 27498.64 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6799.12 7499.74 6199.18 26499.75 3999.56 12199.57 6498.45 9899.49 13099.85 5397.77 10999.94 6998.33 18099.84 7899.52 167
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13399.51 11599.39 1099.78 4799.93 994.80 21199.95 5999.93 1199.95 1699.94 11
test_fmvs198.88 12498.79 12699.16 17099.69 10697.61 26399.55 13399.49 14399.32 1499.98 699.91 2091.41 31899.96 3099.82 1699.92 2599.90 17
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13399.34 24896.20 32199.32 17399.40 27294.36 23899.26 30296.37 31595.03 33598.70 275
iter_conf0598.55 16198.44 16198.87 21599.34 22498.60 20099.55 13399.42 20998.21 12699.37 16199.77 12893.55 26499.38 27699.30 6197.48 27298.63 310
API-MVS99.04 10999.03 8799.06 18099.40 20799.31 10799.55 13399.56 6998.54 8999.33 17299.39 27698.76 5299.78 19496.98 28999.78 10598.07 361
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 23599.94 6999.88 1499.92 2599.98 2
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13899.32 26595.91 33797.99 33499.85 5385.49 37299.88 13391.96 37498.84 19598.12 359
thisisatest053098.35 17698.03 19699.31 14599.63 13198.56 20299.54 13896.75 39397.53 21199.73 6299.65 18491.25 32299.89 12798.62 14399.56 13999.48 178
MTMP99.54 13898.88 338
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13899.35 24496.27 31699.23 19499.35 28694.67 22499.23 30796.73 30295.16 33298.68 284
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13899.33 25596.26 31798.90 25499.51 23994.68 22399.14 32197.83 22193.15 36498.63 310
CostFormer97.72 26497.73 23397.71 32699.15 27894.02 36699.54 13899.02 31694.67 35899.04 23399.35 28692.35 29999.77 19698.50 16497.94 24499.34 207
MVSTER98.49 16298.32 17099.00 18899.35 22099.02 14899.54 13899.38 22997.41 22699.20 20199.73 14793.86 25799.36 28498.87 10597.56 26298.62 313
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23399.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14798.87 34099.55 199.74 6099.80 10296.47 15199.98 1399.97 199.97 799.94 11
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14799.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20296.99 29399.52 14799.49 14398.11 14199.24 19099.34 29096.96 13699.79 18997.95 21099.45 14699.02 239
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14797.57 38799.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15098.43 16299.51 11399.51 17099.28 11199.52 14799.47 17396.11 33099.01 23699.34 29096.20 16199.84 15597.88 21498.82 19799.39 198
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14799.34 24896.15 32799.24 19099.47 25493.98 25299.29 29795.40 33695.13 33398.69 279
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14799.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20797.46 26699.51 15599.53 9695.86 33898.54 30499.77 12882.44 38799.66 23698.68 13797.52 26599.50 176
alignmvs98.81 13998.56 15699.58 9099.43 19799.42 9699.51 15598.96 32398.61 8499.35 16898.92 34894.78 21399.77 19699.35 5198.11 23999.54 161
v119297.81 25097.44 26698.91 20498.88 31998.68 19199.51 15599.34 24896.18 32399.20 20199.34 29094.03 25099.36 28495.32 33895.18 33198.69 279
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15599.38 22996.55 29796.16 36899.25 31093.76 26196.17 39487.35 39294.22 34998.27 352
mvs_anonymous99.03 11198.99 9799.16 17099.38 21198.52 20999.51 15599.38 22997.79 17999.38 15999.81 8997.30 12299.45 26399.35 5198.99 18499.51 173
TAMVS99.12 9599.08 8099.24 16299.46 19098.55 20399.51 15599.46 18298.09 14499.45 13599.82 7598.34 8999.51 25998.70 13298.93 18799.67 122
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16299.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16299.07 31198.22 12499.61 10499.51 23995.37 19099.84 15598.60 14998.33 22199.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16299.07 31198.22 12499.61 10499.51 23995.37 19099.84 15598.60 14998.33 22199.59 150
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16298.73 35997.83 17499.17 20998.45 36491.67 31299.83 16893.22 36398.18 23498.37 348
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16299.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 4099.89 20
pm-mvs197.68 27197.28 28998.88 21199.06 29598.62 19799.50 16299.45 19396.32 31297.87 33999.79 11492.47 29399.35 28797.54 25293.54 35998.67 291
EI-MVSNet98.67 15498.67 13698.68 24299.35 22097.97 24299.50 16299.38 22996.93 27299.20 20199.83 6797.87 10599.36 28498.38 17497.56 26298.71 271
CVMVSNet98.57 16098.67 13698.30 28699.35 22095.59 33799.50 16299.55 7798.60 8599.39 15799.83 6794.48 23499.45 26398.75 12698.56 21199.85 36
VPA-MVSNet98.29 18297.95 20699.30 15099.16 27499.54 7999.50 16299.58 6198.27 11799.35 16899.37 28092.53 29199.65 24199.35 5194.46 34498.72 269
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16298.73 35997.83 17499.17 20998.45 36491.67 31299.83 16893.22 36398.18 23498.96 246
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16299.50 13597.16 24799.77 5199.82 7598.78 4899.94 6997.56 25099.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17396.74 39498.25 11995.24 37398.10 37774.96 39299.90 11699.53 3298.85 19497.70 377
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 28098.85 17699.49 17398.91 33395.48 34297.16 35799.80 10293.38 26699.11 32994.16 35591.73 37298.62 313
UniMVSNet (Re)98.29 18298.00 19999.13 17599.00 30399.36 10299.49 17399.51 11597.95 16198.97 24499.13 32396.30 15899.38 27698.36 17893.34 36098.66 299
EPMVS97.82 24897.65 24098.35 28198.88 31995.98 33099.49 17394.71 40397.57 20499.26 18899.48 25192.46 29699.71 21997.87 21699.08 17799.35 204
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17799.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17799.57 6494.16 36398.81 26799.68 17293.23 26899.42 27398.84 11594.42 34698.76 261
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17799.36 23896.11 33099.27 18499.36 28393.76 26199.24 30694.46 34995.23 33098.70 275
VPNet97.84 24397.44 26699.01 18699.21 25698.94 16599.48 17799.57 6498.38 10499.28 18099.73 14788.89 34699.39 27599.19 7093.27 36298.71 271
UniMVSNet_NR-MVSNet98.22 18697.97 20398.96 19398.92 31598.98 15299.48 17799.53 9697.76 18398.71 27899.46 25896.43 15599.22 31098.57 15592.87 36798.69 279
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17798.75 35196.74 28096.68 36399.88 3688.65 35299.71 21998.37 17682.74 39398.09 360
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18399.48 15598.05 15499.76 5699.86 4898.82 4399.93 8498.82 12299.91 3299.84 40
NR-MVSNet97.97 22597.61 24599.02 18598.87 32299.26 11599.47 18399.42 20997.63 19997.08 35999.50 24395.07 20199.13 32497.86 21793.59 35898.68 284
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14399.47 18399.93 297.66 19799.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
SD-MVS99.41 4799.52 1199.05 18299.74 8099.68 4899.46 18699.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 30096.76 30998.82 22699.37 21498.07 23799.45 18799.36 23897.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21199.58 154
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18799.08 30898.21 12698.88 25799.80 10288.66 35199.70 22598.58 15297.72 25199.39 198
tpm297.44 29497.34 28197.74 32599.15 27894.36 36399.45 18798.94 32493.45 37298.90 25499.44 26191.35 32099.59 25397.31 26998.07 24099.29 211
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18799.42 20996.49 30098.86 26499.29 30290.26 33198.98 34596.44 31296.56 29898.58 327
CDS-MVSNet99.09 10499.03 8799.25 16099.42 19998.73 18899.45 18799.46 18298.11 14199.46 13499.77 12898.01 10399.37 28098.70 13298.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 12898.63 14299.54 9799.37 21499.66 5399.45 18799.54 8596.61 29299.01 23699.40 27297.09 12999.86 14297.68 24099.53 14299.10 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 12598.69 13499.40 13199.22 25598.72 18999.44 19399.68 2099.24 1799.18 20899.42 26592.74 28199.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19399.54 8597.77 18299.30 17699.81 8994.20 24399.93 8499.17 7398.82 19799.49 177
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19399.26 28393.52 36996.98 36199.52 23688.52 35499.20 31792.58 37397.50 26897.93 372
ACMP97.20 1198.06 20597.94 20898.45 26999.37 21497.01 29199.44 19399.49 14397.54 21098.45 30999.79 11491.95 30499.72 21397.91 21297.49 27198.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19793.68 40597.23 35498.46 36389.30 34299.22 31095.43 33598.22 22997.98 369
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19799.51 11598.68 8199.27 18499.53 23398.64 6999.96 3098.44 17199.80 9899.79 74
tpm cat197.39 29697.36 27697.50 33499.17 27293.73 36999.43 19799.31 26991.27 38198.71 27899.08 32794.31 24199.77 19696.41 31498.50 21599.00 240
tpm97.67 27497.55 24898.03 30399.02 30195.01 35299.43 19798.54 36896.44 30699.12 21599.34 29091.83 30799.60 25297.75 23196.46 30099.48 178
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19799.48 15596.49 30099.07 22599.32 29790.26 33198.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19799.48 15596.49 30099.07 22599.32 29790.26 33198.98 34597.10 28296.65 29598.62 313
FMVSNet196.84 31396.36 31798.29 28799.32 23297.26 27399.43 19799.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
testgi97.65 27697.50 25598.13 30099.36 21996.45 31899.42 20499.48 15597.76 18397.87 33999.45 26091.09 32398.81 36094.53 34898.52 21499.13 223
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20499.54 8597.29 23699.41 14899.59 21098.42 8599.93 8498.19 18999.69 12499.73 97
Anonymous20240521198.30 18197.98 20299.26 15999.57 15298.16 23199.41 20698.55 36796.03 33599.19 20499.74 14191.87 30599.92 9599.16 7498.29 22699.70 113
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20699.71 1398.98 4899.45 13599.78 12099.19 999.54 25899.28 6299.84 7899.63 140
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20699.39 22199.01 4099.74 6099.78 12095.56 18499.92 9599.52 3498.18 23499.72 103
baseline297.87 23797.55 24898.82 22699.18 26498.02 23999.41 20696.58 39796.97 26696.51 36499.17 31893.43 26599.57 25497.71 23699.03 18198.86 250
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15299.41 20699.45 19397.87 16798.71 27899.50 24394.82 20999.22 31098.57 15592.87 36798.68 284
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28898.29 22599.41 20698.85 34295.65 34098.63 29599.67 17894.82 20999.10 33198.07 20392.89 36698.64 303
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28296.33 32299.41 20699.52 10198.06 15399.05 23299.50 24389.64 34099.73 20997.73 23397.38 28298.53 330
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20699.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 4099.87 31
9.1499.10 7699.72 9199.40 21499.51 11597.53 21199.64 9399.78 12098.84 4199.91 10597.63 24199.82 91
D2MVS98.41 17098.50 15998.15 29999.26 24596.62 31299.40 21499.61 4897.71 18998.98 24299.36 28396.04 16499.67 23398.70 13297.41 27998.15 358
Anonymous2024052998.09 20197.68 23799.34 13899.66 12098.44 21999.40 21499.43 20793.67 36799.22 19599.89 3090.23 33499.93 8499.26 6698.33 22199.66 125
FMVSNet398.03 21397.76 23098.84 22399.39 21098.98 15299.40 21499.38 22996.67 28599.07 22599.28 30492.93 27498.98 34597.10 28296.65 29598.56 329
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 15099.39 21898.24 37497.10 25599.65 8999.79 11484.79 37799.91 10599.28 6298.38 21899.69 115
HQP_MVS98.27 18498.22 17698.44 27299.29 23896.97 29599.39 21899.47 17398.97 5199.11 21799.61 20592.71 28499.69 23097.78 22597.63 25598.67 291
plane_prior299.39 21898.97 51
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21899.94 198.73 7699.11 21799.89 3095.50 18699.94 6999.50 3699.97 799.89 20
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21899.38 22997.70 19299.28 18099.28 30498.34 8999.85 14896.96 29199.45 14699.69 115
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22394.09 40491.07 38498.07 33291.04 40089.62 34199.35 28796.75 30199.09 17698.68 284
VDDNet97.55 28297.02 30199.16 17099.49 18198.12 23599.38 22399.30 27395.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23899.42 193
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22599.47 17393.46 37197.41 34899.78 12087.06 36699.33 29096.92 29692.70 36998.65 301
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22598.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22599.56 6998.04 15599.53 12299.62 20196.84 13899.94 6998.85 11298.49 21699.72 103
IterMVS-LS98.46 16598.42 16398.58 25099.59 14898.00 24099.37 22599.43 20796.94 27199.07 22599.59 21097.87 10599.03 33898.32 18295.62 32298.71 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 22999.45 19398.94 5499.66 8399.64 19094.93 20399.99 499.48 4184.36 39099.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 22999.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19399.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 22999.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
sss99.17 8199.05 8399.53 10599.62 13798.97 15599.36 22999.62 4197.83 17499.67 7899.65 18497.37 11999.95 5999.19 7099.19 16599.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 22999.46 18299.07 3599.79 4299.82 7598.85 3999.92 9598.68 13799.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7399.14 7299.59 8799.41 20299.16 12599.35 23499.57 6498.82 6599.51 12699.61 20596.46 15299.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23499.10 30595.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
MDTV_nov1_ep13_2view95.18 35099.35 23496.84 27699.58 11195.19 19997.82 22299.46 186
VDD-MVS97.73 26297.35 27898.88 21199.47 18997.12 27999.34 23798.85 34298.19 12999.67 7899.85 5382.98 38499.92 9599.49 4098.32 22599.60 146
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16999.88 1198.53 20599.34 23799.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 4099.08 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 23999.28 2798.40 40825.05 40999.27 30784.11 38099.33 29089.20 38498.22 22997.42 382
ETVMVS97.50 28796.90 30599.29 15399.23 25198.78 18699.32 24098.90 33597.52 21398.56 30298.09 37884.72 37899.69 23097.86 21797.88 24699.39 198
FMVSNet596.43 32196.19 32097.15 34099.11 28295.89 33299.32 24099.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
dp97.75 25997.80 22097.59 33199.10 28593.71 37099.32 24098.88 33896.48 30399.08 22499.55 22492.67 28799.82 17596.52 31098.58 20899.24 215
tpmvs97.98 22298.02 19897.84 31899.04 29994.73 35699.31 24399.20 29496.10 33498.76 27499.42 26594.94 20299.81 18096.97 29098.45 21798.97 244
tpmrst98.33 17898.48 16097.90 31499.16 27494.78 35599.31 24399.11 30497.27 23799.45 13599.59 21095.33 19299.84 15598.48 16598.61 20599.09 228
testing9997.36 29796.94 30498.63 24499.18 26496.70 30799.30 24598.93 32697.71 18998.23 32198.26 37184.92 37699.84 15598.04 20597.85 24899.35 204
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24599.52 10197.18 24599.60 10799.79 11498.79 4799.95 5998.83 11899.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24599.48 15598.86 6099.21 19899.63 19698.72 6199.90 11698.25 18599.63 13499.80 70
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24598.97 32191.73 38098.91 25294.86 39495.10 20099.71 21997.58 24597.98 24299.28 212
BH-RMVSNet98.41 17098.08 19099.40 13199.41 20298.83 18099.30 24598.77 35097.70 19298.94 24899.65 18492.91 27799.74 20396.52 31099.55 14199.64 136
testing1197.50 28797.10 29898.71 23999.20 25896.91 29999.29 25098.82 34597.89 16698.21 32498.40 36685.63 37199.83 16898.45 17098.04 24199.37 202
Syy-MVS97.09 30997.14 29596.95 34899.00 30392.73 37999.29 25099.39 22197.06 25997.41 34898.15 37393.92 25598.68 36591.71 37598.34 21999.45 189
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30397.16 27799.29 25099.39 22197.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21999.45 189
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25099.40 21898.79 7099.52 12499.62 20198.91 3499.90 11698.64 14199.75 11399.82 54
LF4IMVS97.52 28497.46 26097.70 32798.98 30995.55 33899.29 25098.82 34598.07 14998.66 28799.64 19089.97 33699.61 25197.01 28696.68 29497.94 371
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25599.22 29098.94 5499.66 8399.42 26594.93 20399.65 24199.48 4183.80 39299.08 229
OPM-MVS98.19 19098.10 18698.45 26998.88 31997.07 28499.28 25599.38 22998.57 8699.22 19599.81 8992.12 30099.66 23698.08 20097.54 26498.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15999.28 25599.49 14398.46 9799.72 6799.71 15296.50 15099.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 12898.80 12399.03 18499.76 6598.79 18499.28 25599.91 397.42 22599.67 7899.37 28097.53 11399.88 13398.98 9097.29 28498.42 342
OMC-MVS99.08 10599.04 8599.20 16699.67 11198.22 22999.28 25599.52 10198.07 14999.66 8399.81 8997.79 10899.78 19497.79 22499.81 9499.60 146
testing22297.16 30596.50 31399.16 17099.16 27498.47 21799.27 26098.66 36397.71 18998.23 32198.15 37382.28 38899.84 15597.36 26797.66 25399.18 220
AUN-MVS96.88 31296.31 31898.59 24799.48 18897.04 28999.27 26099.22 29097.44 22298.51 30599.41 26991.97 30399.66 23697.71 23683.83 39199.07 234
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26098.90 33596.14 32898.37 31399.53 23391.54 31799.14 32197.51 25495.87 31598.63 310
131498.68 15398.54 15799.11 17698.89 31898.65 19499.27 26099.49 14396.89 27397.99 33499.56 22197.72 11199.83 16897.74 23299.27 16198.84 252
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26099.39 22183.53 39498.08 32999.54 22996.97 13599.87 13894.23 35399.16 16699.63 140
BH-untuned98.42 16898.36 16698.59 24799.49 18196.70 30799.27 26099.13 30397.24 24198.80 26999.38 27795.75 17899.74 20397.07 28599.16 16699.33 208
MDTV_nov1_ep1398.32 17099.11 28294.44 36199.27 26098.74 35497.51 21499.40 15399.62 20194.78 21399.76 20097.59 24498.81 199
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26099.57 6496.40 31099.42 14499.68 17298.75 5599.80 18697.98 20899.72 11999.44 191
PatchmatchNetpermissive98.31 17998.36 16698.19 29499.16 27495.32 34699.27 26098.92 32997.37 22999.37 16199.58 21494.90 20699.70 22597.43 26399.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 26998.74 35497.68 19499.09 22398.32 36991.66 31499.81 18092.88 36898.22 22998.03 364
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 26999.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15199.80 9899.77 82
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14899.25 27199.48 15597.23 24299.13 21399.58 21496.93 13799.90 11698.87 10598.78 20099.84 40
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27199.51 11591.90 37999.30 17699.63 19698.78 4899.64 24488.09 38999.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 15099.24 27399.52 10196.85 27599.27 18499.48 25198.25 9399.91 10597.76 22999.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27465.14 40694.18 24699.71 21997.58 245
ADS-MVSNet298.02 21598.07 19397.87 31599.33 22695.19 34999.23 27499.08 30896.24 31899.10 22099.67 17894.11 24798.93 35596.81 29999.05 17999.48 178
ADS-MVSNet98.20 18998.08 19098.56 25499.33 22696.48 31799.23 27499.15 30096.24 31899.10 22099.67 17894.11 24799.71 21996.81 29999.05 17999.48 178
EPNet_dtu98.03 21397.96 20498.23 29298.27 36595.54 34099.23 27498.75 35199.02 3897.82 34199.71 15296.11 16299.48 26093.04 36699.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19397.93 20998.87 21599.18 26498.49 21399.22 27899.33 25596.96 26799.56 11599.38 27794.33 23999.00 34394.83 34698.58 20899.14 221
RPMNet96.72 31595.90 32799.19 16799.18 26498.49 21399.22 27899.52 10188.72 39099.56 11597.38 38494.08 24999.95 5986.87 39498.58 20899.14 221
plane_prior96.97 29599.21 28098.45 9897.60 258
testing9197.44 29497.02 30198.71 23999.18 26496.89 30199.19 28199.04 31497.78 18198.31 31698.29 37085.41 37399.85 14898.01 20697.95 24399.39 198
WR-MVS98.06 20597.73 23399.06 18098.86 32599.25 11699.19 28199.35 24497.30 23598.66 28799.43 26393.94 25399.21 31598.58 15294.28 34898.71 271
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28399.28 27994.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28399.70 1598.18 13299.35 16899.63 19696.32 15799.90 11697.48 25799.77 10899.55 159
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28598.93 32696.16 32594.08 38199.22 31382.72 38599.47 26195.67 33097.50 26898.17 357
PatchT97.03 31096.44 31598.79 23298.99 30698.34 22499.16 28599.07 31192.13 37899.52 12497.31 38794.54 23298.98 34588.54 38798.73 20299.03 237
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28599.44 20198.45 9899.19 20499.49 24698.08 10199.89 12797.73 23399.75 11399.48 178
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28899.33 25593.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28899.41 21296.60 29499.60 10799.55 22498.83 4299.90 11697.48 25799.83 8799.78 80
save fliter99.76 6599.59 7099.14 29099.40 21899.00 43
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29198.33 37197.36 23099.07 22598.94 34495.64 18399.15 32092.95 36798.68 20496.12 392
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29198.81 34789.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29198.81 34789.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13899.63 13198.97 15599.12 29499.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 229
xiu_mvs_v1_base99.29 6399.27 5899.34 13899.63 13198.97 15599.12 29499.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 229
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13899.63 13198.97 15599.12 29499.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 229
XVG-OURS-SEG-HR98.69 15298.62 14798.89 20999.71 9697.74 25599.12 29499.54 8598.44 10199.42 14499.71 15294.20 24399.92 9598.54 16298.90 19199.00 240
jason99.13 8999.03 8799.45 12399.46 19098.87 17299.12 29499.26 28398.03 15799.79 4299.65 18497.02 13299.85 14899.02 8599.90 4099.65 129
jason: jason.
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29492.81 40893.87 36597.68 34499.13 32393.87 25699.01 34291.38 37796.19 30698.59 326
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30099.24 28793.49 37080.73 40098.98 34093.02 27298.18 37394.22 35494.45 34598.64 303
Patchmtry97.75 25997.40 27398.81 22999.10 28598.87 17299.11 30099.33 25594.83 35598.81 26799.38 27794.33 23999.02 34096.10 31795.57 32398.53 330
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30299.23 28893.26 37380.77 39999.04 33292.81 27898.02 37794.30 35094.18 35098.64 303
CANet_DTU98.97 11898.87 11599.25 16099.33 22698.42 22299.08 30399.30 27399.16 1999.43 14199.75 13695.27 19499.97 2198.56 15899.95 1699.36 203
SCA98.19 19098.16 17898.27 29199.30 23495.55 33899.07 30498.97 32197.57 20499.43 14199.57 21892.72 28299.74 20397.58 24599.20 16499.52 167
TSAR-MVS + GP.99.36 5599.36 3299.36 13799.67 11198.61 19999.07 30499.33 25599.00 4399.82 3599.81 8999.06 1699.84 15599.09 7999.42 14899.65 129
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30499.34 24898.99 4599.61 10499.82 7597.98 10499.87 13897.00 28799.80 9899.85 36
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30799.77 997.74 18799.50 12799.53 23395.41 18899.84 15597.17 28199.64 13299.44 191
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30798.75 35186.58 39194.84 37998.26 37181.53 38999.32 29389.01 38597.87 24796.76 385
TEST999.67 11199.65 5799.05 30999.41 21296.22 32098.95 24699.49 24698.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 30999.41 21296.28 31498.95 24699.49 24698.76 5299.91 10597.63 24199.72 11999.75 88
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 30999.16 29997.86 16899.80 4099.56 22197.39 11699.86 14298.94 9499.85 7099.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30999.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 30999.20 29493.94 36497.39 35198.79 35491.61 31699.04 33690.43 38095.77 31798.05 363
Patchmatch-test97.93 22897.65 24098.77 23499.18 26497.07 28499.03 31499.14 30296.16 32598.74 27599.57 21894.56 22999.72 21393.36 36299.11 17299.52 167
test_899.67 11199.61 6799.03 31499.41 21296.28 31498.93 25099.48 25198.76 5299.91 105
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31499.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 20099.86 33
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31799.49 14397.18 24598.71 27899.72 15192.72 28299.14 32197.44 26295.86 31698.67 291
xiu_mvs_v2_base99.26 6999.25 6299.29 15399.53 16398.91 16999.02 31799.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 243
MIMVSNet97.73 26297.45 26198.57 25199.45 19597.50 26599.02 31798.98 32096.11 33099.41 14899.14 32290.28 33098.74 36395.74 32698.93 18799.47 184
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31799.48 15597.22 24398.71 27899.70 15692.75 27999.13 32497.46 26096.00 31098.67 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31799.91 397.67 19699.59 11099.75 13695.90 17399.73 20999.53 3299.02 18399.86 33
UWE-MVS97.58 28197.29 28898.48 26299.09 28896.25 32599.01 32296.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20399.28 212
新几何299.01 322
BH-w/o98.00 22097.89 21598.32 28499.35 22096.20 32799.01 32298.90 33596.42 30898.38 31299.00 33795.26 19699.72 21396.06 31898.61 20599.03 237
test_prior499.56 7598.99 325
无先验98.99 32599.51 11596.89 27399.93 8497.53 25399.72 103
pmmvs498.13 19797.90 21198.81 22998.61 35498.87 17298.99 32599.21 29396.44 30699.06 23099.58 21495.90 17399.11 32997.18 28096.11 30898.46 339
HQP-NCC99.19 26198.98 32898.24 12098.66 287
ACMP_Plane99.19 26198.98 32898.24 12098.66 287
HQP-MVS98.02 21597.90 21198.37 28099.19 26196.83 30298.98 32899.39 22198.24 12098.66 28799.40 27292.47 29399.64 24497.19 27897.58 26098.64 303
PS-MVSNAJ99.32 5999.32 4099.30 15099.57 15298.94 16598.97 33199.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 244
iter_conf05_1198.35 17697.99 20099.41 12999.37 21499.13 13498.96 33298.23 37598.50 9499.63 9699.46 25888.83 34799.87 13899.00 8799.95 1699.23 216
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33298.85 34297.22 24397.23 35499.36 28395.28 19399.46 26295.51 33299.78 10597.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 33298.34 11099.01 23699.52 23698.68 6497.96 20999.74 116
旧先验298.96 33296.70 28399.47 13299.94 6998.19 189
原ACMM298.95 336
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 12099.73 14798.51 7899.74 20398.91 9999.88 5299.77 82
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13798.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 11899.89 4999.64 136
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9299.45 13599.84 6395.27 19499.91 10598.08 20098.84 19599.00 240
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17199.65 18498.28 9299.69 12499.72 103
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
miper_lstm_enhance98.00 22097.91 21098.28 29099.34 22497.43 26798.88 34499.36 23896.48 30398.80 26999.55 22495.98 16698.91 35697.27 27195.50 32698.51 332
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23493.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32199.37 28094.85 34599.85 7099.46 186
TR-MVS97.76 25597.41 27298.82 22699.06 29597.87 25098.87 34698.56 36696.63 29198.68 28699.22 31392.49 29299.65 24195.40 33697.79 24998.95 248
testdata198.85 34798.32 113
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18299.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30198.91 35698.98 9092.21 37199.41 195
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27396.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 303
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26597.41 22698.13 32899.30 30088.99 34499.56 25595.68 32999.80 9897.90 374
c3_l98.12 19998.04 19598.38 27999.30 23497.69 26198.81 35199.33 25596.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20196.45 15398.97 35293.77 35795.97 31498.61 322
PAPR98.63 15898.34 16899.51 11399.40 20799.03 14798.80 35299.36 23896.33 31199.00 24099.12 32698.46 8199.84 15595.23 34099.37 15799.66 125
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36497.34 23198.05 33398.98 34094.45 23698.98 34595.04 34397.15 29098.89 249
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24697.53 11399.88 13398.98 9099.85 7099.60 146
PMMVS98.80 14298.62 14799.34 13899.27 24398.70 19098.76 35699.31 26997.34 23199.21 19899.07 32897.20 12599.82 17598.56 15898.87 19299.52 167
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13299.77 12897.82 10799.87 13896.93 29499.90 4099.54 161
CLD-MVS98.16 19498.10 18698.33 28299.29 23896.82 30498.75 35799.44 20197.83 17499.13 21399.55 22492.92 27599.67 23398.32 18297.69 25298.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19298.10 18698.41 27599.23 25197.72 25798.72 36099.31 26996.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
cl____98.01 21897.84 21998.55 25699.25 24997.97 24298.71 36199.34 24896.47 30598.59 30199.54 22995.65 18299.21 31597.21 27495.77 31798.46 339
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 25097.95 24698.71 36199.35 24496.50 29998.60 30099.54 22995.72 18099.03 33897.21 27495.77 31798.46 339
test-LLR98.06 20597.90 21198.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23699.45 26397.25 27299.38 15099.10 224
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31496.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26397.30 27099.38 15099.21 219
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26397.25 27299.38 15099.10 224
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25696.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 224
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30597.93 16399.42 14499.55 22498.67 6699.80 18695.80 32599.68 12799.61 144
thisisatest051598.14 19697.79 22199.19 16799.50 17998.50 21298.61 36896.82 39296.95 26999.54 12099.43 26391.66 31499.86 14298.08 20099.51 14399.22 218
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5398.70 6399.81 18099.02 8599.91 3299.81 61
cl2297.85 24097.64 24398.48 26299.09 28897.87 25098.60 37099.33 25597.11 25498.87 26099.22 31392.38 29899.17 31998.21 18795.99 31198.42 342
GA-MVS97.85 24097.47 25899.00 18899.38 21197.99 24198.57 37199.15 30097.04 26298.90 25499.30 30089.83 33799.38 27696.70 30498.33 22199.62 142
TinyColmap97.12 30796.89 30697.83 31999.07 29295.52 34198.57 37198.74 35497.58 20397.81 34299.79 11488.16 35899.56 25595.10 34197.21 28798.39 346
eth_miper_zixun_eth98.05 21097.96 20498.33 28299.26 24597.38 26898.56 37399.31 26996.65 28798.88 25799.52 23696.58 14799.12 32897.39 26595.53 32598.47 336
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 17885.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 29897.20 29397.75 32499.07 29295.20 34898.51 37599.04 31497.99 15998.31 31699.86 4889.02 34399.55 25795.67 33097.36 28398.49 333
ambc93.06 36992.68 40082.36 39498.47 37698.73 35995.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
miper_enhance_ethall98.16 19498.08 19098.41 27598.96 31297.72 25798.45 37799.32 26596.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
CHOSEN 280x42099.12 9599.13 7399.08 17799.66 12097.89 24998.43 37899.71 1398.88 5999.62 10199.76 13396.63 14599.70 22599.46 4499.99 199.66 125
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 32974.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29495.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29495.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 22995.13 34597.33 35298.15 37392.69 28696.57 39288.67 38679.87 39697.99 368
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12799.57 21896.75 14299.86 14298.56 15899.70 12399.54 161
PAPM97.59 28097.09 29999.07 17999.06 29598.26 22798.30 38599.10 30594.88 35398.08 32999.34 29096.27 15999.64 24489.87 38298.92 18999.31 210
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37095.10 34995.20 37598.67 35894.78 21397.77 38396.28 31690.02 38199.51 173
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 31971.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22192.96 37598.41 31098.78 35593.77 26099.27 30198.16 19398.61 20598.86 250
Effi-MVS+98.81 13998.59 15399.48 11799.46 19099.12 13598.08 39099.50 13597.50 21599.38 15999.41 26996.37 15699.81 18099.11 7798.54 21399.51 173
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13798.04 39199.25 28591.24 38298.51 30599.70 15694.55 23199.91 10592.76 37199.85 7099.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23394.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 33899.79 18997.69 23981.69 39499.68 119
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28568.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5385.77 36996.15 39597.86 21743.89 40495.39 394
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22196.58 1470.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2140.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.16 27795.47 333
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25599.96 3098.87 10599.84 7899.89 20
PC_three_145298.18 13299.84 2999.70 15699.31 398.52 36898.30 18499.80 9899.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25599.96 3098.87 10599.84 7899.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11599.54 22998.58 7299.96 3096.93 29499.75 113
IU-MVS99.84 3299.88 899.32 26598.30 11499.84 2998.86 11099.85 7099.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 9999.84 7899.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11299.90 4099.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 20899.52 167
sam_mvs94.72 220
MTGPAbinary99.47 173
test_post65.99 40594.65 22699.73 209
patchmatchnet-post98.70 35794.79 21299.74 203
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24497.56 250
test9_res97.49 25699.72 11999.75 88
agg_prior297.21 27499.73 11899.75 88
agg_prior99.67 11199.62 6599.40 21898.87 26099.91 105
TestCases99.31 14599.86 2098.48 21599.61 4897.85 17199.36 16599.85 5395.95 16899.85 14896.66 30799.83 8799.59 150
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19098.43 8399.94 6996.92 29699.66 12999.72 103
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18398.67 6699.91 10597.70 23899.69 12499.71 112
testdata299.95 5996.67 306
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14199.70 15698.87 3799.94 6997.76 22999.64 13299.72 103
test1299.75 5899.64 12899.61 6799.29 27799.21 19898.38 8799.89 12799.74 11699.74 92
plane_prior799.29 23897.03 290
plane_prior699.27 24396.98 29492.71 284
plane_prior599.47 17399.69 23097.78 22597.63 25598.67 291
plane_prior499.61 205
plane_prior397.00 29298.69 7999.11 217
plane_prior199.26 245
n20.00 415
nn0.00 415
door-mid98.05 379
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29395.89 32294.93 33898.62 313
LGP-MVS_train98.49 26099.33 22697.05 28699.55 7797.46 21799.24 19099.83 6792.58 28999.72 21398.09 19697.51 26698.68 284
test1199.35 244
door97.92 380
HQP5-MVS96.83 302
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24498.64 303
HQP3-MVS99.39 22197.58 260
HQP2-MVS92.47 293
NP-MVS99.23 25196.92 29899.40 272
ACMMP++_ref97.19 288
ACMMP++97.43 278
Test By Simon98.75 55
ITE_SJBPF98.08 30199.29 23896.37 32098.92 32998.34 11098.83 26599.75 13691.09 32399.62 25095.82 32397.40 28098.25 354
DeepMVS_CXcopyleft93.34 36799.29 23882.27 39599.22 29085.15 39296.33 36699.05 33190.97 32599.73 20993.57 36097.77 25098.01 365