This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2399.48 1899.54 10299.76 6699.42 10199.90 199.55 7898.56 9499.78 5399.70 16298.65 7199.79 19799.65 2599.78 11099.41 207
mmtdpeth96.95 32196.71 32097.67 34099.33 23494.90 36799.89 299.28 28998.15 14099.72 7398.57 37486.56 37999.90 12499.82 1689.02 39898.20 368
CS-MVS-test99.49 2599.48 1899.54 10299.78 5699.30 11699.89 299.58 6298.56 9499.73 6899.69 17298.55 7899.82 18299.69 2199.85 7599.48 186
MVSFormer99.17 8699.12 7999.29 16099.51 17598.94 16999.88 499.46 19097.55 21799.80 4699.65 19097.39 12199.28 30999.03 9299.85 7599.65 132
test_djsdf98.67 16298.57 16298.98 19798.70 35898.91 17399.88 499.46 19097.55 21799.22 20399.88 3995.73 18799.28 30999.03 9297.62 26798.75 275
OurMVSNet-221017-097.88 24297.77 23398.19 30298.71 35796.53 32499.88 499.00 33197.79 18998.78 28199.94 691.68 32099.35 29997.21 28596.99 30298.69 291
EC-MVSNet99.44 4299.39 3299.58 9599.56 16099.49 9299.88 499.58 6298.38 11099.73 6899.69 17298.20 9999.70 23599.64 2799.82 9699.54 166
DVP-MVS++99.59 1199.50 1699.88 899.51 17599.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12099.80 10399.81 64
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 42
K. test v397.10 31896.79 31898.01 31598.72 35596.33 33199.87 897.05 40297.59 21196.16 38199.80 10888.71 35999.04 34796.69 31696.55 30898.65 313
FC-MVSNet-test98.75 15598.62 15599.15 18199.08 30299.45 9899.86 1199.60 5498.23 13098.70 29399.82 8196.80 14499.22 32199.07 8896.38 31198.79 266
v7n97.87 24497.52 26098.92 20898.76 35198.58 20699.84 1299.46 19096.20 33398.91 26099.70 16294.89 21599.44 28096.03 33193.89 36898.75 275
DTE-MVSNet97.51 29697.19 30498.46 27498.63 36498.13 23899.84 1299.48 16196.68 29597.97 34699.67 18492.92 28398.56 38096.88 30992.60 38498.70 287
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29199.66 5699.84 1299.74 1099.09 3698.92 25999.90 2795.94 17899.98 1398.95 10099.92 2799.79 77
FIs98.78 15298.63 15099.23 17199.18 27599.54 8399.83 1599.59 5898.28 12198.79 28099.81 9596.75 14799.37 29299.08 8796.38 31198.78 267
MGCFI-Net99.01 12398.85 12699.50 12399.42 20799.26 12199.82 1699.48 16198.60 9199.28 18798.81 36397.04 13799.76 20899.29 6597.87 25699.47 192
test_fmvs392.10 36991.77 37293.08 38396.19 40286.25 40399.82 1698.62 37996.65 29895.19 38996.90 40355.05 41895.93 41096.63 32190.92 39297.06 399
jajsoiax98.43 17498.28 18198.88 21998.60 36898.43 22499.82 1699.53 10098.19 13598.63 30599.80 10893.22 27899.44 28099.22 7297.50 27998.77 271
OpenMVScopyleft96.50 1698.47 17198.12 19299.52 11699.04 30999.53 8699.82 1699.72 1194.56 37298.08 33999.88 3994.73 22799.98 1397.47 27099.76 11699.06 247
SDMVSNet99.11 10598.90 11799.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10299.88 3994.56 23799.93 9099.67 2398.26 23599.72 106
nrg03098.64 16598.42 17199.28 16499.05 30899.69 5099.81 2099.46 19098.04 16399.01 24499.82 8196.69 14999.38 28999.34 5994.59 35598.78 267
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21199.68 8199.63 20298.91 3799.94 7298.58 16199.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9598.99 10299.53 11099.65 13099.06 14899.81 2099.33 26597.43 23499.60 11599.88 3997.14 13199.84 16299.13 8098.94 19399.69 118
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28399.68 5199.81 2099.51 11999.20 1898.72 28699.89 3295.68 18999.97 2198.86 11899.86 6899.81 64
sasdasda99.02 11998.86 12499.51 11899.42 20799.32 11099.80 2599.48 16198.63 8799.31 18098.81 36397.09 13399.75 21199.27 6897.90 25399.47 192
FA-MVS(test-final)98.75 15598.53 16699.41 13699.55 16499.05 15099.80 2599.01 33096.59 30899.58 11999.59 21695.39 19799.90 12497.78 23699.49 15099.28 224
GeoE98.85 14498.62 15599.53 11099.61 14599.08 14599.80 2599.51 11997.10 26699.31 18099.78 12795.23 20699.77 20498.21 19899.03 18899.75 91
canonicalmvs99.02 11998.86 12499.51 11899.42 20799.32 11099.80 2599.48 16198.63 8799.31 18098.81 36397.09 13399.75 21199.27 6897.90 25399.47 192
v897.95 23397.63 25198.93 20698.95 32398.81 18799.80 2599.41 22096.03 34799.10 22899.42 27394.92 21399.30 30796.94 30494.08 36598.66 311
Vis-MVSNet (Re-imp)98.87 13498.72 13999.31 15299.71 9998.88 17599.80 2599.44 20997.91 17399.36 17199.78 12795.49 19599.43 28497.91 22399.11 17999.62 145
Anonymous2024052196.20 33795.89 34097.13 35597.72 38994.96 36699.79 3199.29 28793.01 38697.20 36699.03 34389.69 34998.36 38491.16 39196.13 31798.07 375
PS-MVSNAJss98.92 13098.92 11498.90 21498.78 34498.53 21099.78 3299.54 8798.07 15699.00 24899.76 13999.01 1899.37 29299.13 8097.23 29598.81 265
PEN-MVS97.76 26497.44 27698.72 24398.77 34998.54 20999.78 3299.51 11997.06 27098.29 32999.64 19692.63 29698.89 37198.09 20793.16 37698.72 280
anonymousdsp98.44 17398.28 18198.94 20498.50 37498.96 16399.77 3499.50 13997.07 26898.87 26899.77 13594.76 22599.28 30998.66 14797.60 26898.57 339
SixPastTwentyTwo97.50 29797.33 29398.03 31298.65 36296.23 33699.77 3498.68 37697.14 25997.90 34799.93 990.45 33899.18 32997.00 29896.43 31098.67 303
QAPM98.67 16298.30 18099.80 4999.20 26999.67 5499.77 3499.72 1194.74 36998.73 28599.90 2795.78 18599.98 1396.96 30299.88 5799.76 90
SSC-MVS92.73 36893.73 36389.72 39395.02 41281.38 41399.76 3799.23 29994.87 36692.80 40098.93 35594.71 22991.37 41774.49 41693.80 36996.42 403
test_vis3_rt87.04 37685.81 37990.73 39093.99 41481.96 41199.76 3790.23 42592.81 38981.35 41391.56 41340.06 42299.07 34494.27 36588.23 40091.15 413
dcpmvs_299.23 8099.58 798.16 30499.83 3994.68 37099.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
RRT-MVS98.91 13198.75 13799.39 14199.46 19798.61 20499.76 3799.50 13998.06 16099.81 4299.88 3993.91 26499.94 7299.11 8299.27 16799.61 147
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19799.76 6299.75 14299.13 1299.92 10199.07 8899.92 2799.85 36
MVSMamba_PlusPlus99.46 3499.41 2999.64 8299.68 11299.50 9199.75 4299.50 13998.27 12399.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 192
v1097.85 24797.52 26098.86 22698.99 31698.67 19699.75 4299.41 22095.70 35198.98 25099.41 27794.75 22699.23 31796.01 33394.63 35498.67 303
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7299.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11598.87 12299.57 9799.73 9099.32 11099.75 4299.20 30598.02 16699.56 12399.86 5296.54 15599.67 24398.09 20799.13 17899.73 100
test_vis1_n97.92 23797.44 27699.34 14599.53 16898.08 24099.74 4699.49 14999.15 21100.00 199.94 679.51 40699.98 1399.88 1399.76 11699.97 4
test_fmvs1_n98.41 17798.14 18999.21 17299.82 4297.71 26599.74 4699.49 14999.32 1499.99 299.95 385.32 38799.97 2199.82 1699.84 8399.96 7
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10799.87 2999.84 6798.05 10799.91 11299.58 3099.94 2399.52 173
tttt051798.42 17598.14 18999.28 16499.66 12498.38 22799.74 4696.85 40497.68 20399.79 4899.74 14791.39 32899.89 13698.83 12699.56 14599.57 161
WB-MVS93.10 36694.10 35990.12 39295.51 41081.88 41299.73 5099.27 29295.05 36293.09 39998.91 35994.70 23091.89 41676.62 41494.02 36796.58 402
test_fmvs297.25 31297.30 29697.09 35799.43 20593.31 38899.73 5098.87 35298.83 6899.28 18799.80 10884.45 39299.66 24697.88 22597.45 28498.30 361
MonoMVSNet98.38 18198.47 16998.12 30998.59 37096.19 33899.72 5298.79 36297.89 17599.44 14899.52 24396.13 16998.90 37098.64 14997.54 27499.28 224
baseline99.15 9099.02 9699.53 11099.66 12499.14 13799.72 5299.48 16198.35 11599.42 15399.84 6796.07 17199.79 19799.51 3999.14 17799.67 125
RPSCF98.22 19298.62 15596.99 35899.82 4291.58 39799.72 5299.44 20996.61 30399.66 9099.89 3295.92 17999.82 18297.46 27199.10 18299.57 161
CSCG99.32 6499.32 4699.32 15199.85 2698.29 22999.71 5599.66 2898.11 14899.41 15799.80 10898.37 9299.96 3298.99 9699.96 1299.72 106
dmvs_re98.08 20998.16 18697.85 32899.55 16494.67 37199.70 5698.92 34198.15 14099.06 23899.35 29693.67 27299.25 31497.77 23997.25 29499.64 139
WR-MVS_H98.13 20397.87 22398.90 21499.02 31198.84 18199.70 5699.59 5897.27 24898.40 32199.19 32795.53 19399.23 31798.34 18993.78 37098.61 333
mvsmamba99.06 11398.96 11099.36 14399.47 19598.64 20099.70 5699.05 32597.61 21099.65 9799.83 7296.54 15599.92 10199.19 7499.62 14099.51 180
LTVRE_ROB97.16 1298.02 22197.90 21898.40 28499.23 26296.80 31399.70 5699.60 5497.12 26298.18 33699.70 16291.73 31999.72 22398.39 18297.45 28498.68 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 37091.26 37493.84 37995.52 40985.92 40499.69 6098.53 38395.31 35693.87 39596.37 40655.33 41798.27 38595.70 33990.98 39197.32 398
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 16899.74 14798.81 4799.94 7298.79 13199.86 6899.84 42
X-MVStestdata96.55 32995.45 34899.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 16864.01 42298.81 4799.94 7298.79 13199.86 6899.84 42
V4298.06 21197.79 22898.86 22698.98 31998.84 18199.69 6099.34 25896.53 31099.30 18399.37 29094.67 23299.32 30497.57 26094.66 35398.42 353
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14699.50 13599.75 14298.78 5199.97 2198.57 16499.89 5499.83 52
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15699.53 13099.63 20298.93 3699.97 2198.74 13599.91 3499.83 52
FE-MVS98.48 17098.17 18599.40 13799.54 16798.96 16399.68 6698.81 35995.54 35399.62 10999.70 16293.82 26799.93 9097.35 27999.46 15199.32 221
PS-CasMVS97.93 23497.59 25598.95 20298.99 31699.06 14899.68 6699.52 10597.13 26098.31 32699.68 17892.44 30599.05 34698.51 17294.08 36598.75 275
Vis-MVSNetpermissive99.12 10198.97 10699.56 9999.78 5699.10 14199.68 6699.66 2898.49 10099.86 3399.87 4894.77 22499.84 16299.19 7499.41 15599.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 16698.40 17399.31 15299.86 2097.94 25299.67 6999.62 4199.43 799.99 299.91 2087.29 376100.00 199.92 1199.92 2799.98 2
EIA-MVS99.18 8499.09 8499.45 13099.49 18799.18 12999.67 6999.53 10097.66 20699.40 16299.44 26998.10 10399.81 18798.94 10199.62 14099.35 216
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5799.49 25398.21 9899.95 6298.46 17899.77 11399.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10998.97 10699.48 12499.49 18799.14 13799.67 6999.34 25897.31 24599.58 11999.76 13997.65 11799.82 18298.87 11399.07 18599.46 197
CP-MVSNet98.09 20797.78 23199.01 19398.97 32199.24 12499.67 6999.46 19097.25 25098.48 31899.64 19693.79 26899.06 34598.63 15194.10 36498.74 278
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7499.47 18198.79 7499.68 8199.81 9598.43 8699.97 2198.88 11099.90 4399.83 52
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7499.67 2398.15 14099.68 8199.69 17299.06 1699.96 3298.69 14399.87 6099.84 42
mvs_tets98.40 18098.23 18398.91 21298.67 36198.51 21699.66 7499.53 10098.19 13598.65 30299.81 9592.75 28799.44 28099.31 6297.48 28398.77 271
EU-MVSNet97.98 22898.03 20497.81 33498.72 35596.65 32099.66 7499.66 2898.09 15198.35 32499.82 8195.25 20598.01 39197.41 27595.30 34198.78 267
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7499.67 2398.15 14099.67 8599.69 17298.95 3099.96 3298.69 14399.87 6099.84 42
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7499.46 19098.09 15199.48 13999.74 14798.29 9599.96 3297.93 22299.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8899.01 10099.61 8999.81 4698.86 17999.65 8099.64 3699.39 1099.97 1399.94 693.20 27999.98 1399.55 3399.91 3499.99 1
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8099.66 2898.13 14599.66 9099.68 17898.96 2599.96 3298.62 15299.87 6099.84 42
TranMVSNet+NR-MVSNet97.93 23497.66 24698.76 24198.78 34498.62 20299.65 8099.49 14997.76 19398.49 31799.60 21494.23 25098.97 36398.00 21892.90 37898.70 287
ttmdpeth97.80 26097.63 25198.29 29498.77 34997.38 27599.64 8399.36 24698.78 7796.30 37999.58 22092.34 30899.39 28798.36 18795.58 33498.10 373
mvsany_test393.77 36393.45 36794.74 37695.78 40588.01 40299.64 8398.25 38798.28 12194.31 39397.97 39568.89 41098.51 38297.50 26690.37 39397.71 390
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8399.67 2398.08 15599.55 12799.64 19698.91 3799.96 3298.72 13899.90 4399.82 57
tfpnnormal97.84 25197.47 26898.98 19799.20 26999.22 12699.64 8399.61 4896.32 32498.27 33099.70 16293.35 27599.44 28095.69 34095.40 33998.27 363
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10199.66 12499.09 14299.64 8399.56 7098.26 12599.45 14399.87 4896.03 17399.81 18799.54 3499.15 17699.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 8899.52 10598.38 11099.76 6299.82 8198.53 7999.95 6298.61 15599.81 9999.77 85
RE-MVS-def99.34 4299.76 6699.82 2599.63 8899.52 10598.38 11099.76 6299.82 8198.75 5898.61 15599.81 9999.77 85
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 8899.39 22998.91 6299.78 5399.85 5799.36 299.94 7298.84 12399.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 33596.03 33696.79 36697.31 39594.14 37899.63 8899.08 31996.17 33697.04 37099.06 34093.94 26197.76 39786.96 40695.06 34698.47 347
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 8899.54 8798.36 11499.79 4899.82 8198.86 4199.95 6298.62 15299.81 9999.78 83
test072699.85 2699.89 499.62 9399.50 13999.10 3199.86 3399.82 8198.94 32
EPNet98.86 13798.71 14199.30 15797.20 39798.18 23499.62 9398.91 34599.28 1698.63 30599.81 9595.96 17599.99 499.24 7199.72 12499.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12998.67 14599.72 6999.85 2699.53 8699.62 9399.59 5892.65 39199.71 7599.78 12798.06 10699.90 12498.84 12399.91 3499.74 95
HY-MVS97.30 798.85 14498.64 14999.47 12799.42 20799.08 14599.62 9399.36 24697.39 23999.28 18799.68 17896.44 16199.92 10198.37 18598.22 23799.40 209
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9399.69 1898.12 14699.63 10599.84 6798.73 6399.96 3298.55 17099.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6699.19 7399.64 8299.82 4299.23 12599.62 9399.55 7898.94 5899.63 10599.95 395.82 18499.94 7299.37 5399.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8299.78 5699.15 13699.61 9999.45 20199.01 4499.89 2199.82 8199.01 1899.92 10199.56 3299.95 1799.85 36
reproduce_monomvs97.89 24197.87 22397.96 32199.51 17595.45 35499.60 10099.25 29599.17 1998.85 27399.49 25389.29 35399.64 25499.35 5496.31 31498.78 267
test250696.81 32596.65 32197.29 35299.74 8392.21 39599.60 10085.06 42699.13 2499.77 5799.93 987.82 37499.85 15599.38 5299.38 15699.80 73
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10099.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10799.85 7599.79 77
OPU-MVS99.64 8299.56 16099.72 4599.60 10099.70 16299.27 599.42 28598.24 19799.80 10399.79 77
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10099.67 2397.97 16899.63 10599.68 17898.52 8099.95 6298.38 18399.86 6899.81 64
EI-MVSNet-UG-set99.58 1299.57 899.64 8299.78 5699.14 13799.60 10099.45 20199.01 4499.90 1999.83 7298.98 2499.93 9099.59 2899.95 1799.86 32
ACMH97.28 898.10 20697.99 20898.44 27999.41 21296.96 30599.60 10099.56 7098.09 15198.15 33799.91 2090.87 33599.70 23598.88 11097.45 28498.67 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21798.05 20298.00 31799.74 8394.37 37599.59 10794.98 41499.13 2499.66 9099.93 990.67 33799.84 16299.40 5199.38 15699.80 73
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10799.62 4198.21 13399.73 6899.79 12098.68 6799.96 3298.44 18099.77 11399.79 77
thres100view90097.76 26497.45 27198.69 24799.72 9497.86 25699.59 10798.74 36797.93 17199.26 19698.62 37191.75 31799.83 17593.22 37698.18 24298.37 359
thres600view797.86 24697.51 26298.92 20899.72 9497.95 25099.59 10798.74 36797.94 17099.27 19298.62 37191.75 31799.86 14993.73 37198.19 24198.96 258
LCM-MVSNet-Re97.83 25398.15 18896.87 36499.30 24392.25 39499.59 10798.26 38697.43 23496.20 38099.13 33396.27 16698.73 37798.17 20398.99 19199.64 139
baseline198.31 18697.95 21399.38 14299.50 18598.74 19199.59 10798.93 33898.41 10899.14 22099.60 21494.59 23599.79 19798.48 17493.29 37499.61 147
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10799.51 11998.62 8999.79 4899.83 7299.28 499.97 2198.48 17499.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10598.90 11799.74 6499.80 5299.46 9799.59 10799.49 14997.03 27499.63 10599.69 17297.27 12999.96 3297.82 23399.84 8399.81 64
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22299.37 10599.58 11599.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
dmvs_testset95.02 35296.12 33391.72 38799.10 29680.43 41599.58 11597.87 39597.47 22695.22 38798.82 36293.99 25995.18 41288.09 40294.91 35199.56 163
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11599.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test111198.04 21798.11 19397.83 33199.74 8393.82 38099.58 11595.40 41399.12 2999.65 9799.93 990.73 33699.84 16299.43 5099.38 15699.82 57
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11599.65 3397.84 18399.71 7599.80 10899.12 1399.97 2198.33 19099.87 6099.83 52
LPG-MVS_test98.22 19298.13 19198.49 26699.33 23497.05 29499.58 11599.55 7897.46 22799.24 19899.83 7292.58 29799.72 22398.09 20797.51 27798.68 296
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11599.80 897.12 26299.62 10999.73 15398.58 7599.90 12498.61 15599.91 3499.68 122
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12299.54 8797.82 18899.71 7599.80 10898.95 3099.93 9098.19 20099.84 8399.74 95
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12299.37 24599.10 3199.81 4299.80 10898.94 3299.96 3298.93 10499.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 12299.51 11999.96 3298.93 10499.86 6899.88 25
Effi-MVS+-dtu98.78 15298.89 12098.47 27399.33 23496.91 30799.57 12299.30 28398.47 10199.41 15798.99 34896.78 14599.74 21398.73 13799.38 15698.74 278
v2v48298.06 21197.77 23398.92 20898.90 32898.82 18599.57 12299.36 24696.65 29899.19 21299.35 29694.20 25199.25 31497.72 24694.97 34898.69 291
DSMNet-mixed97.25 31297.35 28896.95 36197.84 38593.61 38699.57 12296.63 40896.13 34198.87 26898.61 37394.59 23597.70 39895.08 35498.86 20099.55 164
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 12899.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8299.91 3499.86 32
MVStest196.08 34195.48 34697.89 32698.93 32496.70 31599.56 12899.35 25392.69 39091.81 40499.46 26689.90 34698.96 36595.00 35692.61 38398.00 382
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 12899.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 12899.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
sd_testset98.75 15598.57 16299.29 16099.81 4698.26 23199.56 12899.62 4198.78 7799.64 10299.88 3992.02 31199.88 14199.54 3498.26 23599.72 106
KD-MVS_self_test95.00 35394.34 35896.96 36097.07 40095.39 35799.56 12899.44 20995.11 35997.13 36897.32 40191.86 31597.27 40290.35 39481.23 41098.23 367
ETV-MVS99.26 7499.21 7199.40 13799.46 19799.30 11699.56 12899.52 10598.52 9899.44 14899.27 31798.41 9099.86 14999.10 8599.59 14399.04 248
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 12899.47 18197.45 23099.78 5399.82 8199.18 1099.91 11298.79 13199.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13498.72 13999.31 15299.86 2098.48 22099.56 12899.61 4897.85 18199.36 17199.85 5795.95 17699.85 15596.66 31899.83 9299.59 154
casdiffmvspermissive99.13 9598.98 10599.56 9999.65 13099.16 13299.56 12899.50 13998.33 11899.41 15799.86 5295.92 17999.83 17599.45 4999.16 17399.70 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 18198.09 19799.24 16999.26 25499.32 11099.56 12899.55 7897.45 23098.71 28799.83 7293.23 27699.63 26098.88 11096.32 31398.76 273
ACMH+97.24 1097.92 23797.78 23198.32 29199.46 19796.68 31999.56 12899.54 8798.41 10897.79 35399.87 4890.18 34499.66 24698.05 21597.18 29898.62 324
ACMM97.58 598.37 18398.34 17698.48 26899.41 21297.10 28899.56 12899.45 20198.53 9799.04 24199.85 5793.00 28199.71 22998.74 13597.45 28498.64 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7299.12 7999.74 6499.18 27599.75 4299.56 12899.57 6598.45 10399.49 13899.85 5797.77 11499.94 7298.33 19099.84 8399.52 173
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37799.48 9499.55 14299.51 11999.39 1099.78 5399.93 994.80 21999.95 6299.93 1099.95 1799.94 11
test_fmvs198.88 13398.79 13499.16 17799.69 10897.61 26999.55 14299.49 14999.32 1499.98 699.91 2091.41 32799.96 3299.82 1699.92 2799.90 16
v14419297.92 23797.60 25498.87 22398.83 33998.65 19899.55 14299.34 25896.20 33399.32 17999.40 28194.36 24699.26 31396.37 32795.03 34798.70 287
API-MVS99.04 11699.03 9299.06 18799.40 21799.31 11499.55 14299.56 7098.54 9699.33 17899.39 28598.76 5599.78 20296.98 30099.78 11098.07 375
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17299.62 6899.54 14699.62 4198.69 8499.99 299.96 194.47 24399.94 7299.88 1399.92 2799.98 2
APD_test195.87 34396.49 32594.00 37899.53 16884.01 40799.54 14699.32 27595.91 34997.99 34499.85 5785.49 38599.88 14191.96 38798.84 20298.12 372
thisisatest053098.35 18498.03 20499.31 15299.63 13598.56 20799.54 14696.75 40697.53 22199.73 6899.65 19091.25 33199.89 13698.62 15299.56 14599.48 186
MTMP99.54 14698.88 350
v114497.98 22897.69 24398.85 22998.87 33398.66 19799.54 14699.35 25396.27 32899.23 20299.35 29694.67 23299.23 31796.73 31395.16 34498.68 296
v14897.79 26297.55 25698.50 26598.74 35297.72 26299.54 14699.33 26596.26 32998.90 26299.51 24794.68 23199.14 33297.83 23293.15 37798.63 322
CostFormer97.72 27497.73 24097.71 33899.15 28994.02 37999.54 14699.02 32994.67 37099.04 24199.35 29692.35 30799.77 20498.50 17397.94 25299.34 219
MVSTER98.49 16998.32 17899.00 19599.35 22999.02 15299.54 14699.38 23797.41 23799.20 20999.73 15393.86 26699.36 29698.87 11397.56 27298.62 324
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15499.62 4198.74 8099.99 299.95 394.53 24199.94 7299.89 1299.96 1299.97 4
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15599.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9099.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15599.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9099.90 4399.85 36
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15599.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
MM99.40 5499.28 6099.74 6499.67 11499.31 11499.52 15598.87 35299.55 199.74 6699.80 10896.47 15899.98 1399.97 199.97 799.94 11
patch_mono-299.26 7499.62 598.16 30499.81 4694.59 37299.52 15599.64 3699.33 1399.73 6899.90 2799.00 2299.99 499.69 2199.98 499.89 19
Fast-Effi-MVS+-dtu98.77 15498.83 13098.60 25299.41 21296.99 30199.52 15599.49 14998.11 14899.24 19899.34 30096.96 14199.79 19797.95 22199.45 15299.02 251
Fast-Effi-MVS+98.70 15998.43 17099.51 11899.51 17599.28 11899.52 15599.47 18196.11 34299.01 24499.34 30096.20 16899.84 16297.88 22598.82 20499.39 210
v192192097.80 26097.45 27198.84 23098.80 34098.53 21099.52 15599.34 25896.15 33999.24 19899.47 26293.98 26099.29 30895.40 34895.13 34598.69 291
MIMVSNet195.51 34795.04 35296.92 36397.38 39295.60 34799.52 15599.50 13993.65 38096.97 37299.17 32885.28 38896.56 40788.36 40195.55 33698.60 336
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16499.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
UniMVSNet_ETH3D97.32 30996.81 31798.87 22399.40 21797.46 27299.51 16499.53 10095.86 35098.54 31499.77 13582.44 40099.66 24698.68 14597.52 27699.50 184
alignmvs98.81 14898.56 16499.58 9599.43 20599.42 10199.51 16498.96 33698.61 9099.35 17498.92 35894.78 22199.77 20499.35 5498.11 24799.54 166
v119297.81 25897.44 27698.91 21298.88 33098.68 19599.51 16499.34 25896.18 33599.20 20999.34 30094.03 25899.36 29695.32 35095.18 34398.69 291
test20.0396.12 33995.96 33896.63 36797.44 39195.45 35499.51 16499.38 23796.55 30996.16 38199.25 32093.76 27096.17 40887.35 40594.22 36198.27 363
mvs_anonymous99.03 11898.99 10299.16 17799.38 22298.52 21499.51 16499.38 23797.79 18999.38 16699.81 9597.30 12799.45 27599.35 5498.99 19199.51 180
TAMVS99.12 10199.08 8599.24 16999.46 19798.55 20899.51 16499.46 19098.09 15199.45 14399.82 8198.34 9399.51 27098.70 14098.93 19499.67 125
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20499.65 6099.50 17199.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
test_yl98.86 13798.63 15099.54 10299.49 18799.18 12999.50 17199.07 32298.22 13199.61 11299.51 24795.37 19899.84 16298.60 15898.33 22999.59 154
DCV-MVSNet98.86 13798.63 15099.54 10299.49 18799.18 12999.50 17199.07 32298.22 13199.61 11299.51 24795.37 19899.84 16298.60 15898.33 22999.59 154
tfpn200view997.72 27497.38 28498.72 24399.69 10897.96 24899.50 17198.73 37397.83 18499.17 21798.45 37791.67 32199.83 17593.22 37698.18 24298.37 359
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17199.70 1598.79 7499.77 5799.96 197.45 12099.96 3298.92 10699.90 4399.89 19
pm-mvs197.68 28197.28 29998.88 21999.06 30598.62 20299.50 17199.45 20196.32 32497.87 34999.79 12092.47 30199.35 29997.54 26393.54 37298.67 303
EI-MVSNet98.67 16298.67 14598.68 24899.35 22997.97 24699.50 17199.38 23796.93 28399.20 20999.83 7297.87 11099.36 29698.38 18397.56 27298.71 282
CVMVSNet98.57 16898.67 14598.30 29399.35 22995.59 34899.50 17199.55 7898.60 9199.39 16499.83 7294.48 24299.45 27598.75 13498.56 21899.85 36
VPA-MVSNet98.29 18997.95 21399.30 15799.16 28599.54 8399.50 17199.58 6298.27 12399.35 17499.37 29092.53 29999.65 25199.35 5494.46 35698.72 280
thres40097.77 26397.38 28498.92 20899.69 10897.96 24899.50 17198.73 37397.83 18499.17 21798.45 37791.67 32199.83 17593.22 37698.18 24298.96 258
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17199.50 13997.16 25899.77 5799.82 8198.78 5199.94 7297.56 26199.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 34595.65 34496.32 37199.67 11491.35 39899.49 18296.74 40798.25 12695.24 38698.10 39274.96 40799.90 12499.53 3698.85 20197.70 392
TransMVSNet (Re)97.15 31696.58 32298.86 22699.12 29198.85 18099.49 18298.91 34595.48 35497.16 36799.80 10893.38 27499.11 34094.16 36891.73 38698.62 324
UniMVSNet (Re)98.29 18998.00 20799.13 18299.00 31399.36 10899.49 18299.51 11997.95 16998.97 25299.13 33396.30 16599.38 28998.36 18793.34 37398.66 311
EPMVS97.82 25697.65 24798.35 28898.88 33095.98 34199.49 18294.71 41697.57 21499.26 19699.48 25992.46 30499.71 22997.87 22799.08 18499.35 216
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18699.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
Anonymous2023121197.88 24297.54 25998.90 21499.71 9998.53 21099.48 18699.57 6594.16 37598.81 27699.68 17893.23 27699.42 28598.84 12394.42 35898.76 273
v124097.69 27997.32 29498.79 23898.85 33798.43 22499.48 18699.36 24696.11 34299.27 19299.36 29393.76 27099.24 31694.46 36295.23 34298.70 287
VPNet97.84 25197.44 27699.01 19399.21 26798.94 16999.48 18699.57 6598.38 11099.28 18799.73 15388.89 35699.39 28799.19 7493.27 37598.71 282
UniMVSNet_NR-MVSNet98.22 19297.97 21098.96 20098.92 32698.98 15699.48 18699.53 10097.76 19398.71 28799.46 26696.43 16299.22 32198.57 16492.87 38098.69 291
TDRefinement95.42 34994.57 35697.97 31989.83 41996.11 34099.48 18698.75 36496.74 29196.68 37599.88 3988.65 36299.71 22998.37 18582.74 40898.09 374
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19299.48 16198.05 16299.76 6299.86 5298.82 4699.93 9098.82 13099.91 3499.84 42
NR-MVSNet97.97 23197.61 25399.02 19298.87 33399.26 12199.47 19299.42 21797.63 20897.08 36999.50 25095.07 20999.13 33597.86 22893.59 37198.68 296
PVSNet_Blended_VisFu99.36 5999.28 6099.61 8999.86 2099.07 14799.47 19299.93 297.66 20699.71 7599.86 5297.73 11599.96 3299.47 4799.82 9699.79 77
SD-MVS99.41 5199.52 1299.05 18999.74 8399.68 5199.46 19599.52 10599.11 3099.88 2499.91 2099.43 197.70 39898.72 13899.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 31096.76 31998.82 23299.37 22598.07 24199.45 19699.36 24697.56 21697.89 34898.95 35383.70 39598.82 37296.03 33198.56 21899.58 158
tt080597.97 23197.77 23398.57 25799.59 15296.61 32299.45 19699.08 31998.21 13398.88 26599.80 10888.66 36199.70 23598.58 16197.72 26299.39 210
tpm297.44 30497.34 29197.74 33799.15 28994.36 37699.45 19698.94 33793.45 38498.90 26299.44 26991.35 32999.59 26497.31 28098.07 24899.29 223
FMVSNet297.72 27497.36 28698.80 23799.51 17598.84 18199.45 19699.42 21796.49 31298.86 27299.29 31290.26 34098.98 35696.44 32496.56 30798.58 338
CDS-MVSNet99.09 11099.03 9299.25 16799.42 20798.73 19299.45 19699.46 19098.11 14899.46 14299.77 13598.01 10899.37 29298.70 14098.92 19699.66 128
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 13798.63 15099.54 10299.37 22599.66 5699.45 19699.54 8796.61 30399.01 24499.40 28197.09 13399.86 14997.68 25199.53 14899.10 236
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 13498.69 14399.40 13799.22 26698.72 19399.44 20299.68 2099.24 1799.18 21699.42 27392.74 28999.96 3299.34 5999.94 2399.53 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 13798.63 15099.54 10299.64 13299.19 12799.44 20299.54 8797.77 19299.30 18399.81 9594.20 25199.93 9099.17 7898.82 20499.49 185
test_040296.64 32896.24 33097.85 32898.85 33796.43 32899.44 20299.26 29393.52 38196.98 37199.52 24388.52 36599.20 32892.58 38697.50 27997.93 387
ACMP97.20 1198.06 21197.94 21598.45 27699.37 22597.01 29999.44 20299.49 14997.54 22098.45 31999.79 12091.95 31399.72 22397.91 22397.49 28298.62 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 27698.55 37298.16 23599.43 20693.68 41897.23 36498.46 37689.30 35299.22 32195.43 34798.22 23797.98 384
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20699.51 11998.68 8699.27 19299.53 24098.64 7299.96 3298.44 18099.80 10399.79 77
tpm cat197.39 30697.36 28697.50 34799.17 28393.73 38299.43 20699.31 27991.27 39598.71 28799.08 33794.31 24999.77 20496.41 32698.50 22299.00 252
tpm97.67 28497.55 25698.03 31299.02 31195.01 36499.43 20698.54 38296.44 31899.12 22399.34 30091.83 31699.60 26397.75 24296.46 30999.48 186
GBi-Net97.68 28197.48 26598.29 29499.51 17597.26 28199.43 20699.48 16196.49 31299.07 23399.32 30790.26 34098.98 35697.10 29396.65 30498.62 324
test197.68 28197.48 26598.29 29499.51 17597.26 28199.43 20699.48 16196.49 31299.07 23399.32 30790.26 34098.98 35697.10 29396.65 30498.62 324
FMVSNet196.84 32496.36 32898.29 29499.32 24197.26 28199.43 20699.48 16195.11 35998.55 31399.32 30783.95 39498.98 35695.81 33696.26 31598.62 324
mamv499.33 6299.42 2599.07 18599.67 11497.73 26099.42 21399.60 5498.15 14099.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 166
testgi97.65 28697.50 26398.13 30899.36 22896.45 32799.42 21399.48 16197.76 19397.87 34999.45 26891.09 33298.81 37394.53 36198.52 22199.13 235
F-COLMAP99.19 8299.04 9099.64 8299.78 5699.27 12099.42 21399.54 8797.29 24799.41 15799.59 21698.42 8899.93 9098.19 20099.69 12999.73 100
Anonymous20240521198.30 18897.98 20999.26 16699.57 15698.16 23599.41 21698.55 38196.03 34799.19 21299.74 14791.87 31499.92 10199.16 7998.29 23499.70 116
MSLP-MVS++99.46 3499.47 2099.44 13499.60 15099.16 13299.41 21699.71 1398.98 5299.45 14399.78 12799.19 999.54 26999.28 6699.84 8399.63 143
VNet99.11 10598.90 11799.73 6799.52 17299.56 7999.41 21699.39 22999.01 4499.74 6699.78 12795.56 19299.92 10199.52 3898.18 24299.72 106
baseline297.87 24497.55 25698.82 23299.18 27598.02 24399.41 21696.58 41096.97 27796.51 37699.17 32893.43 27399.57 26597.71 24799.03 18898.86 262
DU-MVS98.08 20997.79 22898.96 20098.87 33398.98 15699.41 21699.45 20197.87 17798.71 28799.50 25094.82 21799.22 32198.57 16492.87 38098.68 296
Baseline_NR-MVSNet97.76 26497.45 27198.68 24899.09 29998.29 22999.41 21698.85 35495.65 35298.63 30599.67 18494.82 21799.10 34298.07 21492.89 37998.64 315
XVG-ACMP-BASELINE97.83 25397.71 24298.20 30199.11 29396.33 33199.41 21699.52 10598.06 16099.05 24099.50 25089.64 35099.73 21997.73 24497.38 29198.53 341
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21699.50 13997.03 27499.04 24199.88 3997.39 12199.92 10198.66 14799.90 4399.87 30
9.1499.10 8199.72 9499.40 22499.51 11997.53 22199.64 10299.78 12798.84 4499.91 11297.63 25299.82 96
D2MVS98.41 17798.50 16798.15 30799.26 25496.62 32199.40 22499.61 4897.71 19898.98 25099.36 29396.04 17299.67 24398.70 14097.41 28998.15 371
Anonymous2024052998.09 20797.68 24499.34 14599.66 12498.44 22399.40 22499.43 21593.67 37999.22 20399.89 3290.23 34399.93 9099.26 7098.33 22999.66 128
FMVSNet398.03 21997.76 23798.84 23099.39 22098.98 15699.40 22499.38 23796.67 29699.07 23399.28 31492.93 28298.98 35697.10 29396.65 30498.56 340
LFMVS97.90 24097.35 28899.54 10299.52 17299.01 15499.39 22898.24 38897.10 26699.65 9799.79 12084.79 39099.91 11299.28 6698.38 22699.69 118
HQP_MVS98.27 19198.22 18498.44 27999.29 24796.97 30399.39 22899.47 18198.97 5599.11 22599.61 21192.71 29299.69 24097.78 23697.63 26598.67 303
plane_prior299.39 22898.97 55
CHOSEN 1792x268899.19 8299.10 8199.45 13099.89 898.52 21499.39 22899.94 198.73 8199.11 22599.89 3295.50 19499.94 7299.50 4099.97 799.89 19
PAPM_NR99.04 11698.84 12899.66 7399.74 8399.44 9999.39 22899.38 23797.70 20199.28 18799.28 31498.34 9399.85 15596.96 30299.45 15299.69 118
gg-mvs-nofinetune96.17 33895.32 35098.73 24298.79 34198.14 23799.38 23394.09 41791.07 39898.07 34291.04 41589.62 35199.35 29996.75 31299.09 18398.68 296
VDDNet97.55 29297.02 31199.16 17799.49 18798.12 23999.38 23399.30 28395.35 35599.68 8199.90 2782.62 39999.93 9099.31 6298.13 24699.42 204
MVS_030499.15 9098.96 11099.73 6798.92 32699.37 10599.37 23596.92 40399.51 299.66 9099.78 12796.69 14999.97 2199.84 1599.97 799.84 42
pmmvs696.53 33096.09 33597.82 33398.69 35995.47 35399.37 23599.47 18193.46 38397.41 35899.78 12787.06 37899.33 30296.92 30792.70 38298.65 313
PM-MVS92.96 36792.23 37195.14 37595.61 40689.98 40199.37 23598.21 38994.80 36895.04 39197.69 39665.06 41197.90 39494.30 36389.98 39697.54 396
WTY-MVS99.06 11398.88 12199.61 8999.62 14199.16 13299.37 23599.56 7098.04 16399.53 13099.62 20796.84 14399.94 7298.85 12098.49 22399.72 106
IterMVS-LS98.46 17298.42 17198.58 25699.59 15298.00 24499.37 23599.43 21596.94 28299.07 23399.59 21697.87 11099.03 34998.32 19295.62 33398.71 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 27897.28 29998.97 19999.70 10497.27 27999.36 24099.45 20198.94 5899.66 9099.64 19694.93 21199.99 499.48 4584.36 40599.65 132
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24099.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20499.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 33296.12 33397.40 34998.65 36295.65 34699.36 24099.51 11997.13 26096.04 38398.99 34888.40 36698.17 38796.71 31490.27 39498.40 356
sss99.17 8699.05 8899.53 11099.62 14198.97 15999.36 24099.62 4197.83 18499.67 8599.65 19097.37 12499.95 6299.19 7499.19 17299.68 122
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24099.46 19099.07 3999.79 4899.82 8198.85 4299.92 10198.68 14599.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7899.14 7799.59 9299.41 21299.16 13299.35 24599.57 6598.82 6999.51 13499.61 21196.46 15999.95 6299.59 2899.98 499.65 132
pmmvs-eth3d95.34 35194.73 35497.15 35395.53 40895.94 34299.35 24599.10 31695.13 35793.55 39697.54 39788.15 37097.91 39394.58 36089.69 39797.61 393
MDTV_nov1_ep13_2view95.18 36299.35 24596.84 28799.58 11995.19 20797.82 23399.46 197
VDD-MVS97.73 27297.35 28898.88 21999.47 19597.12 28799.34 24898.85 35498.19 13599.67 8599.85 5782.98 39799.92 10199.49 4498.32 23399.60 150
COLMAP_ROBcopyleft97.56 698.86 13798.75 13799.17 17699.88 1198.53 21099.34 24899.59 5897.55 21798.70 29399.89 3295.83 18399.90 12498.10 20699.90 4399.08 241
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 38077.86 38697.62 34297.91 38396.12 33999.33 25099.28 2898.40 42325.05 42499.27 31784.11 39399.33 30289.20 39798.22 23797.42 397
ETVMVS97.50 29796.90 31599.29 16099.23 26298.78 19099.32 25198.90 34797.52 22398.56 31298.09 39384.72 39199.69 24097.86 22897.88 25599.39 210
FMVSNet596.43 33396.19 33297.15 35399.11 29395.89 34399.32 25199.52 10594.47 37498.34 32599.07 33887.54 37597.07 40392.61 38595.72 33198.47 347
dp97.75 26897.80 22797.59 34499.10 29693.71 38399.32 25198.88 35096.48 31599.08 23299.55 23192.67 29599.82 18296.52 32298.58 21599.24 229
tpmvs97.98 22898.02 20697.84 33099.04 30994.73 36999.31 25499.20 30596.10 34698.76 28399.42 27394.94 21099.81 18796.97 30198.45 22498.97 256
tpmrst98.33 18598.48 16897.90 32599.16 28594.78 36899.31 25499.11 31597.27 24899.45 14399.59 21695.33 20099.84 16298.48 17498.61 21299.09 240
testing9997.36 30796.94 31498.63 25099.18 27596.70 31599.30 25698.93 33897.71 19898.23 33198.26 38584.92 38999.84 16298.04 21697.85 25899.35 216
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25699.52 10597.18 25699.60 11599.79 12098.79 5099.95 6298.83 12699.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25699.48 16198.86 6499.21 20699.63 20298.72 6499.90 12498.25 19699.63 13999.80 73
JIA-IIPM97.50 29797.02 31198.93 20698.73 35397.80 25899.30 25698.97 33491.73 39498.91 26094.86 40995.10 20899.71 22997.58 25697.98 25099.28 224
BH-RMVSNet98.41 17798.08 19899.40 13799.41 21298.83 18499.30 25698.77 36397.70 20198.94 25799.65 19092.91 28599.74 21396.52 32299.55 14799.64 139
testing1197.50 29797.10 30898.71 24599.20 26996.91 30799.29 26198.82 35797.89 17598.21 33498.40 37985.63 38499.83 17598.45 17998.04 24999.37 214
Syy-MVS97.09 31997.14 30596.95 36199.00 31392.73 39299.29 26199.39 22997.06 27097.41 35898.15 38893.92 26398.68 37891.71 38898.34 22799.45 200
myMVS_eth3d96.89 32296.37 32798.43 28199.00 31397.16 28599.29 26199.39 22997.06 27097.41 35898.15 38883.46 39698.68 37895.27 35198.34 22799.45 200
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26199.40 22698.79 7499.52 13299.62 20798.91 3799.90 12498.64 14999.75 11899.82 57
LF4IMVS97.52 29497.46 27097.70 33998.98 31995.55 34999.29 26198.82 35798.07 15698.66 29699.64 19689.97 34599.61 26297.01 29796.68 30397.94 386
hse-mvs297.50 29797.14 30598.59 25399.49 18797.05 29499.28 26699.22 30198.94 5899.66 9099.42 27394.93 21199.65 25199.48 4583.80 40799.08 241
OPM-MVS98.19 19698.10 19498.45 27698.88 33097.07 29299.28 26699.38 23798.57 9399.22 20399.81 9592.12 30999.66 24698.08 21197.54 27498.61 333
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9399.02 9699.51 11899.61 14598.96 16399.28 26699.49 14998.46 10299.72 7399.71 15896.50 15799.88 14199.31 6299.11 17999.67 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13798.80 13199.03 19199.76 6698.79 18899.28 26699.91 397.42 23699.67 8599.37 29097.53 11899.88 14198.98 9797.29 29398.42 353
OMC-MVS99.08 11199.04 9099.20 17399.67 11498.22 23399.28 26699.52 10598.07 15699.66 9099.81 9597.79 11399.78 20297.79 23599.81 9999.60 150
testing22297.16 31596.50 32499.16 17799.16 28598.47 22299.27 27198.66 37797.71 19898.23 33198.15 38882.28 40299.84 16297.36 27897.66 26499.18 232
AUN-MVS96.88 32396.31 32998.59 25399.48 19497.04 29799.27 27199.22 30197.44 23398.51 31599.41 27791.97 31299.66 24697.71 24783.83 40699.07 246
pmmvs597.52 29497.30 29698.16 30498.57 37196.73 31499.27 27198.90 34796.14 34098.37 32399.53 24091.54 32699.14 33297.51 26595.87 32698.63 322
131498.68 16198.54 16599.11 18398.89 32998.65 19899.27 27199.49 14996.89 28497.99 34499.56 22897.72 11699.83 17597.74 24399.27 16798.84 264
MVS97.28 31096.55 32399.48 12498.78 34498.95 16699.27 27199.39 22983.53 40998.08 33999.54 23696.97 14099.87 14694.23 36699.16 17399.63 143
BH-untuned98.42 17598.36 17498.59 25399.49 18796.70 31599.27 27199.13 31497.24 25298.80 27899.38 28795.75 18699.74 21397.07 29699.16 17399.33 220
MDTV_nov1_ep1398.32 17899.11 29394.44 37499.27 27198.74 36797.51 22499.40 16299.62 20794.78 22199.76 20897.59 25598.81 206
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27199.57 6596.40 32299.42 15399.68 17898.75 5899.80 19497.98 21999.72 12499.44 202
PatchmatchNetpermissive98.31 18698.36 17498.19 30299.16 28595.32 35899.27 27198.92 34197.37 24099.37 16899.58 22094.90 21499.70 23597.43 27499.21 17099.54 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 28997.28 29998.62 25199.64 13298.03 24299.26 28098.74 36797.68 20399.09 23198.32 38391.66 32399.81 18792.88 38198.22 23798.03 378
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28099.52 10598.82 6999.39 16499.71 15898.96 2599.85 15598.59 16099.80 10399.77 85
1112_ss98.98 12598.77 13599.59 9299.68 11299.02 15299.25 28299.48 16197.23 25399.13 22199.58 22096.93 14299.90 12498.87 11398.78 20799.84 42
TAPA-MVS97.07 1597.74 27097.34 29198.94 20499.70 10497.53 27099.25 28299.51 11991.90 39399.30 18399.63 20298.78 5199.64 25488.09 40299.87 6099.65 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG97.85 24797.48 26598.95 20299.25 25897.64 26799.24 28498.74 36797.90 17498.64 30398.20 38788.65 36299.81 18798.27 19598.40 22599.42 204
PLCcopyleft97.94 499.02 11998.85 12699.53 11099.66 12499.01 15499.24 28499.52 10596.85 28699.27 19299.48 25998.25 9799.91 11297.76 24099.62 14099.65 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 28665.14 42194.18 25499.71 22997.58 256
ADS-MVSNet298.02 22198.07 20197.87 32799.33 23495.19 36199.23 28699.08 31996.24 33099.10 22899.67 18494.11 25598.93 36796.81 31099.05 18699.48 186
ADS-MVSNet98.20 19598.08 19898.56 26099.33 23496.48 32699.23 28699.15 31196.24 33099.10 22899.67 18494.11 25599.71 22996.81 31099.05 18699.48 186
EPNet_dtu98.03 21997.96 21198.23 30098.27 37995.54 35199.23 28698.75 36499.02 4297.82 35199.71 15896.11 17099.48 27193.04 37999.65 13699.69 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19997.93 21698.87 22399.18 27598.49 21899.22 29099.33 26596.96 27899.56 12399.38 28794.33 24799.00 35494.83 35998.58 21599.14 233
RPMNet96.72 32695.90 33999.19 17499.18 27598.49 21899.22 29099.52 10588.72 40599.56 12397.38 39994.08 25799.95 6286.87 40798.58 21599.14 233
WBMVS97.74 27097.50 26398.46 27499.24 26097.43 27399.21 29299.42 21797.45 23098.96 25499.41 27788.83 35799.23 31798.94 10196.02 31998.71 282
plane_prior96.97 30399.21 29298.45 10397.60 268
testing9197.44 30497.02 31198.71 24599.18 27596.89 30999.19 29499.04 32697.78 19198.31 32698.29 38485.41 38699.85 15598.01 21797.95 25199.39 210
WR-MVS98.06 21197.73 24099.06 18798.86 33699.25 12399.19 29499.35 25397.30 24698.66 29699.43 27193.94 26199.21 32698.58 16194.28 36098.71 282
new-patchmatchnet94.48 35994.08 36095.67 37495.08 41192.41 39399.18 29699.28 28994.55 37393.49 39797.37 40087.86 37397.01 40491.57 38988.36 39997.61 393
AdaColmapbinary99.01 12398.80 13199.66 7399.56 16099.54 8399.18 29699.70 1598.18 13899.35 17499.63 20296.32 16499.90 12497.48 26899.77 11399.55 164
EG-PatchMatch MVS95.97 34295.69 34396.81 36597.78 38692.79 39199.16 29898.93 33896.16 33794.08 39499.22 32382.72 39899.47 27295.67 34297.50 27998.17 369
PatchT97.03 32096.44 32698.79 23898.99 31698.34 22899.16 29899.07 32292.13 39299.52 13297.31 40294.54 24098.98 35688.54 40098.73 20999.03 249
CNLPA99.14 9398.99 10299.59 9299.58 15499.41 10399.16 29899.44 20998.45 10399.19 21299.49 25398.08 10599.89 13697.73 24499.75 11899.48 186
MDA-MVSNet-bldmvs94.96 35493.98 36197.92 32398.24 38097.27 27999.15 30199.33 26593.80 37880.09 41699.03 34388.31 36797.86 39593.49 37494.36 35998.62 324
CDPH-MVS99.13 9598.91 11699.80 4999.75 7699.71 4799.15 30199.41 22096.60 30699.60 11599.55 23198.83 4599.90 12497.48 26899.83 9299.78 83
save fliter99.76 6699.59 7399.14 30399.40 22699.00 47
WB-MVSnew97.65 28697.65 24797.63 34198.78 34497.62 26899.13 30498.33 38597.36 24199.07 23398.94 35495.64 19199.15 33192.95 38098.68 21196.12 407
testf190.42 37490.68 37589.65 39497.78 38673.97 42299.13 30498.81 35989.62 40091.80 40598.93 35562.23 41498.80 37486.61 40891.17 38896.19 405
APD_test290.42 37490.68 37589.65 39497.78 38673.97 42299.13 30498.81 35989.62 40091.80 40598.93 35562.23 41498.80 37486.61 40891.17 38896.19 405
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14599.63 13598.97 15999.12 30799.51 11998.86 6499.84 3599.47 26298.18 10099.99 499.50 4099.31 16499.08 241
XVG-OURS-SEG-HR98.69 16098.62 15598.89 21799.71 9997.74 25999.12 30799.54 8798.44 10699.42 15399.71 15894.20 25199.92 10198.54 17198.90 19899.00 252
jason99.13 9599.03 9299.45 13099.46 19798.87 17699.12 30799.26 29398.03 16599.79 4899.65 19097.02 13899.85 15599.02 9499.90 4399.65 132
jason: jason.
N_pmnet94.95 35595.83 34192.31 38598.47 37579.33 41799.12 30792.81 42393.87 37797.68 35499.13 33393.87 26599.01 35391.38 39096.19 31698.59 337
MDA-MVSNet_test_wron95.45 34894.60 35598.01 31598.16 38197.21 28499.11 31399.24 29893.49 38280.73 41598.98 35093.02 28098.18 38694.22 36794.45 35798.64 315
Patchmtry97.75 26897.40 28398.81 23599.10 29698.87 17699.11 31399.33 26594.83 36798.81 27699.38 28794.33 24799.02 35196.10 32995.57 33598.53 341
YYNet195.36 35094.51 35797.92 32397.89 38497.10 28899.10 31599.23 29993.26 38580.77 41499.04 34292.81 28698.02 39094.30 36394.18 36298.64 315
CANet_DTU98.97 12798.87 12299.25 16799.33 23498.42 22699.08 31699.30 28399.16 2099.43 15099.75 14295.27 20299.97 2198.56 16799.95 1799.36 215
SCA98.19 19698.16 18698.27 29999.30 24395.55 34999.07 31798.97 33497.57 21499.43 15099.57 22592.72 29099.74 21397.58 25699.20 17199.52 173
TSAR-MVS + GP.99.36 5999.36 3899.36 14399.67 11498.61 20499.07 31799.33 26599.00 4799.82 4199.81 9599.06 1699.84 16299.09 8699.42 15499.65 132
MG-MVS99.13 9599.02 9699.45 13099.57 15698.63 20199.07 31799.34 25898.99 4999.61 11299.82 8197.98 10999.87 14697.00 29899.80 10399.85 36
PatchMatch-RL98.84 14798.62 15599.52 11699.71 9999.28 11899.06 32099.77 997.74 19699.50 13599.53 24095.41 19699.84 16297.17 29299.64 13799.44 202
OpenMVS_ROBcopyleft92.34 2094.38 36093.70 36696.41 37097.38 39293.17 38999.06 32098.75 36486.58 40694.84 39298.26 38581.53 40399.32 30489.01 39897.87 25696.76 400
TEST999.67 11499.65 6099.05 32299.41 22096.22 33298.95 25599.49 25398.77 5499.91 112
train_agg99.02 11998.77 13599.77 5899.67 11499.65 6099.05 32299.41 22096.28 32698.95 25599.49 25398.76 5599.91 11297.63 25299.72 12499.75 91
lupinMVS99.13 9599.01 10099.46 12999.51 17598.94 16999.05 32299.16 31097.86 17899.80 4699.56 22897.39 12199.86 14998.94 10199.85 7599.58 158
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32299.66 2899.14 2399.57 12299.80 10898.46 8499.94 7299.57 3199.84 8399.60 150
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 33496.03 33697.41 34898.13 38295.16 36399.05 32299.20 30593.94 37697.39 36198.79 36691.61 32599.04 34790.43 39395.77 32898.05 377
Patchmatch-test97.93 23497.65 24798.77 24099.18 27597.07 29299.03 32799.14 31396.16 33798.74 28499.57 22594.56 23799.72 22393.36 37599.11 17999.52 173
test_899.67 11499.61 7099.03 32799.41 22096.28 32698.93 25899.48 25998.76 5599.91 112
Test_1112_low_res98.89 13298.66 14899.57 9799.69 10898.95 16699.03 32799.47 18196.98 27699.15 21999.23 32296.77 14699.89 13698.83 12698.78 20799.86 32
IterMVS-SCA-FT97.82 25697.75 23898.06 31199.57 15696.36 33099.02 33099.49 14997.18 25698.71 28799.72 15792.72 29099.14 33297.44 27395.86 32798.67 303
xiu_mvs_v2_base99.26 7499.25 6799.29 16099.53 16898.91 17399.02 33099.45 20198.80 7399.71 7599.26 31998.94 3299.98 1399.34 5999.23 16998.98 255
MIMVSNet97.73 27297.45 27198.57 25799.45 20397.50 27199.02 33098.98 33396.11 34299.41 15799.14 33290.28 33998.74 37695.74 33898.93 19499.47 192
IterMVS97.83 25397.77 23398.02 31499.58 15496.27 33499.02 33099.48 16197.22 25498.71 28799.70 16292.75 28799.13 33597.46 27196.00 32198.67 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10598.92 11499.65 7799.90 499.37 10599.02 33099.91 397.67 20599.59 11899.75 14295.90 18199.73 21999.53 3699.02 19099.86 32
UWE-MVS97.58 29197.29 29898.48 26899.09 29996.25 33599.01 33596.61 40997.86 17899.19 21299.01 34688.72 35899.90 12497.38 27798.69 21099.28 224
新几何299.01 335
BH-w/o98.00 22697.89 22298.32 29199.35 22996.20 33799.01 33598.90 34796.42 32098.38 32299.00 34795.26 20499.72 22396.06 33098.61 21299.03 249
test_prior499.56 7998.99 338
无先验98.99 33899.51 11996.89 28499.93 9097.53 26499.72 106
pmmvs498.13 20397.90 21898.81 23598.61 36798.87 17698.99 33899.21 30496.44 31899.06 23899.58 22095.90 18199.11 34097.18 29196.11 31898.46 350
HQP-NCC99.19 27298.98 34198.24 12798.66 296
ACMP_Plane99.19 27298.98 34198.24 12798.66 296
HQP-MVS98.02 22197.90 21898.37 28799.19 27296.83 31098.98 34199.39 22998.24 12798.66 29699.40 28192.47 30199.64 25497.19 28997.58 27098.64 315
PS-MVSNAJ99.32 6499.32 4699.30 15799.57 15698.94 16998.97 34499.46 19098.92 6199.71 7599.24 32199.01 1899.98 1399.35 5499.66 13498.97 256
MVP-Stereo97.81 25897.75 23897.99 31897.53 39096.60 32398.96 34598.85 35497.22 25497.23 36499.36 29395.28 20199.46 27495.51 34499.78 11097.92 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 34598.34 11699.01 24499.52 24398.68 6797.96 22099.74 121
旧先验298.96 34596.70 29499.47 14099.94 7298.19 200
原ACMM298.95 348
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 34899.85 698.82 6999.54 12899.73 15398.51 8199.74 21398.91 10799.88 5799.77 85
mvsany_test199.50 2399.46 2399.62 8899.61 14599.09 14298.94 35099.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14499.82 57
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35099.85 698.82 6999.65 9799.74 14798.51 8199.80 19498.83 12699.89 5499.64 139
pmmvs394.09 36293.25 36896.60 36894.76 41394.49 37398.92 35298.18 39189.66 39996.48 37798.06 39486.28 38097.33 40189.68 39687.20 40297.97 385
XVG-OURS98.73 15898.68 14498.88 21999.70 10497.73 26098.92 35299.55 7898.52 9899.45 14399.84 6795.27 20299.91 11298.08 21198.84 20299.00 252
test22299.75 7699.49 9298.91 35499.49 14996.42 32099.34 17799.65 19098.28 9699.69 12999.72 106
PMMVS286.87 37785.37 38191.35 38990.21 41883.80 40898.89 35597.45 40183.13 41091.67 40795.03 40748.49 42094.70 41385.86 41077.62 41295.54 408
miper_lstm_enhance98.00 22697.91 21798.28 29899.34 23397.43 27398.88 35699.36 24696.48 31598.80 27899.55 23195.98 17498.91 36897.27 28295.50 33898.51 343
MVS-HIRNet95.75 34695.16 35197.51 34699.30 24393.69 38498.88 35695.78 41185.09 40898.78 28192.65 41191.29 33099.37 29294.85 35899.85 7599.46 197
TR-MVS97.76 26497.41 28298.82 23299.06 30597.87 25498.87 35898.56 38096.63 30298.68 29599.22 32392.49 30099.65 25195.40 34897.79 26098.95 260
testdata198.85 35998.32 119
ET-MVSNet_ETH3D96.49 33195.64 34599.05 18999.53 16898.82 18598.84 36097.51 40097.63 20884.77 40999.21 32692.09 31098.91 36898.98 9792.21 38599.41 207
our_test_397.65 28697.68 24497.55 34598.62 36594.97 36598.84 36099.30 28396.83 28998.19 33599.34 30097.01 13999.02 35195.00 35696.01 32098.64 315
MS-PatchMatch97.24 31497.32 29496.99 35898.45 37693.51 38798.82 36299.32 27597.41 23798.13 33899.30 31088.99 35599.56 26695.68 34199.80 10397.90 389
c3_l98.12 20598.04 20398.38 28699.30 24397.69 26698.81 36399.33 26596.67 29698.83 27499.34 30097.11 13298.99 35597.58 25695.34 34098.48 345
ppachtmachnet_test97.49 30297.45 27197.61 34398.62 36595.24 35998.80 36499.46 19096.11 34298.22 33399.62 20796.45 16098.97 36393.77 37095.97 32598.61 333
PAPR98.63 16698.34 17699.51 11899.40 21799.03 15198.80 36499.36 24696.33 32399.00 24899.12 33698.46 8499.84 16295.23 35299.37 16399.66 128
test0.0.03 197.71 27797.42 28198.56 26098.41 37897.82 25798.78 36698.63 37897.34 24298.05 34398.98 35094.45 24498.98 35695.04 35597.15 29998.89 261
PVSNet_Blended99.08 11198.97 10699.42 13599.76 6698.79 18898.78 36699.91 396.74 29199.67 8599.49 25397.53 11899.88 14198.98 9799.85 7599.60 150
PMMVS98.80 15198.62 15599.34 14599.27 25298.70 19498.76 36899.31 27997.34 24299.21 20699.07 33897.20 13099.82 18298.56 16798.87 19999.52 173
test12339.01 38942.50 39128.53 40439.17 42720.91 42998.75 36919.17 42919.83 42238.57 42166.67 41933.16 42415.42 42337.50 42329.66 42149.26 418
MSDG98.98 12598.80 13199.53 11099.76 6699.19 12798.75 36999.55 7897.25 25099.47 14099.77 13597.82 11299.87 14696.93 30599.90 4399.54 166
CLD-MVS98.16 20098.10 19498.33 28999.29 24796.82 31298.75 36999.44 20997.83 18499.13 22199.55 23192.92 28399.67 24398.32 19297.69 26398.48 345
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19898.10 19498.41 28299.23 26297.72 26298.72 37299.31 27996.60 30698.88 26599.29 31297.29 12899.13 33597.60 25495.99 32298.38 358
cl____98.01 22497.84 22698.55 26299.25 25897.97 24698.71 37399.34 25896.47 31798.59 31199.54 23695.65 19099.21 32697.21 28595.77 32898.46 350
DIV-MVS_self_test98.01 22497.85 22598.48 26899.24 26097.95 25098.71 37399.35 25396.50 31198.60 31099.54 23695.72 18899.03 34997.21 28595.77 32898.46 350
test-LLR98.06 21197.90 21898.55 26298.79 34197.10 28898.67 37597.75 39697.34 24298.61 30898.85 36094.45 24499.45 27597.25 28399.38 15699.10 236
TESTMET0.1,197.55 29297.27 30298.40 28498.93 32496.53 32498.67 37597.61 39996.96 27898.64 30399.28 31488.63 36499.45 27597.30 28199.38 15699.21 231
test-mter97.49 30297.13 30798.55 26298.79 34197.10 28898.67 37597.75 39696.65 29898.61 30898.85 36088.23 36899.45 27597.25 28399.38 15699.10 236
mvs5depth96.66 32796.22 33197.97 31997.00 40196.28 33398.66 37899.03 32896.61 30396.93 37399.79 12087.20 37799.47 27296.65 32094.13 36398.16 370
IB-MVS95.67 1896.22 33595.44 34998.57 25799.21 26796.70 31598.65 37997.74 39896.71 29397.27 36398.54 37586.03 38199.92 10198.47 17786.30 40399.10 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 12898.71 14199.66 7399.63 13599.55 8198.64 38099.10 31697.93 17199.42 15399.55 23198.67 6999.80 19495.80 33799.68 13299.61 147
thisisatest051598.14 20297.79 22899.19 17499.50 18598.50 21798.61 38196.82 40596.95 28099.54 12899.43 27191.66 32399.86 14998.08 21199.51 14999.22 230
DeepPCF-MVS98.18 398.81 14899.37 3697.12 35699.60 15091.75 39698.61 38199.44 20999.35 1299.83 4099.85 5798.70 6699.81 18799.02 9499.91 3499.81 64
cl2297.85 24797.64 25098.48 26899.09 29997.87 25498.60 38399.33 26597.11 26598.87 26899.22 32392.38 30699.17 33098.21 19895.99 32298.42 353
GA-MVS97.85 24797.47 26899.00 19599.38 22297.99 24598.57 38499.15 31197.04 27398.90 26299.30 31089.83 34799.38 28996.70 31598.33 22999.62 145
TinyColmap97.12 31796.89 31697.83 33199.07 30395.52 35298.57 38498.74 36797.58 21397.81 35299.79 12088.16 36999.56 26695.10 35397.21 29698.39 357
eth_miper_zixun_eth98.05 21697.96 21198.33 28999.26 25497.38 27598.56 38699.31 27996.65 29898.88 26599.52 24396.58 15399.12 33997.39 27695.53 33798.47 347
CMPMVSbinary69.68 2394.13 36194.90 35391.84 38697.24 39680.01 41698.52 38799.48 16189.01 40391.99 40399.67 18485.67 38399.13 33595.44 34697.03 30196.39 404
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 30897.20 30397.75 33699.07 30395.20 36098.51 38899.04 32697.99 16798.31 32699.86 5289.02 35499.55 26895.67 34297.36 29298.49 344
ambc93.06 38492.68 41582.36 40998.47 38998.73 37395.09 39097.41 39855.55 41699.10 34296.42 32591.32 38797.71 390
miper_enhance_ethall98.16 20098.08 19898.41 28298.96 32297.72 26298.45 39099.32 27596.95 28098.97 25299.17 32897.06 13699.22 32197.86 22895.99 32298.29 362
CHOSEN 280x42099.12 10199.13 7899.08 18499.66 12497.89 25398.43 39199.71 1398.88 6399.62 10999.76 13996.63 15199.70 23599.46 4899.99 199.66 128
testmvs39.17 38843.78 39025.37 40536.04 42816.84 43098.36 39226.56 42720.06 42138.51 42267.32 41829.64 42515.30 42437.59 42239.90 42043.98 419
FPMVS84.93 37985.65 38082.75 40086.77 42163.39 42698.35 39398.92 34174.11 41283.39 41198.98 35050.85 41992.40 41584.54 41194.97 34892.46 410
KD-MVS_2432*160094.62 35693.72 36497.31 35097.19 39895.82 34498.34 39499.20 30595.00 36397.57 35598.35 38187.95 37198.10 38892.87 38277.00 41398.01 379
miper_refine_blended94.62 35693.72 36497.31 35097.19 39895.82 34498.34 39499.20 30595.00 36397.57 35598.35 38187.95 37198.10 38892.87 38277.00 41398.01 379
CL-MVSNet_self_test94.49 35893.97 36296.08 37296.16 40393.67 38598.33 39699.38 23795.13 35797.33 36298.15 38892.69 29496.57 40688.67 39979.87 41197.99 383
PVSNet96.02 1798.85 14498.84 12898.89 21799.73 9097.28 27898.32 39799.60 5497.86 17899.50 13599.57 22596.75 14799.86 14998.56 16799.70 12899.54 166
PAPM97.59 29097.09 30999.07 18599.06 30598.26 23198.30 39899.10 31694.88 36598.08 33999.34 30096.27 16699.64 25489.87 39598.92 19699.31 222
Patchmatch-RL test95.84 34495.81 34295.95 37395.61 40690.57 39998.24 39998.39 38495.10 36195.20 38898.67 37094.78 22197.77 39696.28 32890.02 39599.51 180
UnsupCasMVSNet_bld93.53 36492.51 37096.58 36997.38 39293.82 38098.24 39999.48 16191.10 39793.10 39896.66 40474.89 40898.37 38394.03 36987.71 40197.56 395
LCM-MVSNet86.80 37885.22 38291.53 38887.81 42080.96 41498.23 40198.99 33271.05 41390.13 40896.51 40548.45 42196.88 40590.51 39285.30 40496.76 400
cascas97.69 27997.43 28098.48 26898.60 36897.30 27798.18 40299.39 22992.96 38798.41 32098.78 36793.77 26999.27 31298.16 20498.61 21298.86 262
kuosan90.92 37390.11 37893.34 38198.78 34485.59 40698.15 40393.16 42189.37 40292.07 40298.38 38081.48 40495.19 41162.54 42097.04 30099.25 228
Effi-MVS+98.81 14898.59 16199.48 12499.46 19799.12 14098.08 40499.50 13997.50 22599.38 16699.41 27796.37 16399.81 18799.11 8298.54 22099.51 180
PCF-MVS97.08 1497.66 28597.06 31099.47 12799.61 14599.09 14298.04 40599.25 29591.24 39698.51 31599.70 16294.55 23999.91 11292.76 38499.85 7599.42 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 34095.47 34797.94 32299.31 24294.34 37797.81 40699.70 1597.12 26297.46 35798.75 36889.71 34899.79 19797.69 25081.69 40999.68 122
E-PMN80.61 38279.88 38482.81 39990.75 41776.38 42097.69 40795.76 41266.44 41783.52 41092.25 41262.54 41387.16 41968.53 41861.40 41684.89 417
dongtai93.26 36592.93 36994.25 37799.39 22085.68 40597.68 40893.27 41992.87 38896.85 37499.39 28582.33 40197.48 40076.78 41397.80 25999.58 158
ANet_high77.30 38474.86 38884.62 39875.88 42477.61 41897.63 40993.15 42288.81 40464.27 41989.29 41636.51 42383.93 42175.89 41552.31 41892.33 412
EMVS80.02 38379.22 38582.43 40191.19 41676.40 41997.55 41092.49 42466.36 41883.01 41291.27 41464.63 41285.79 42065.82 41960.65 41785.08 416
MVEpermissive76.82 2176.91 38574.31 38984.70 39785.38 42376.05 42196.88 41193.17 42067.39 41671.28 41889.01 41721.66 42887.69 41871.74 41772.29 41590.35 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 37191.36 37390.31 39195.85 40473.72 42494.89 41299.25 29568.39 41595.82 38499.02 34580.50 40598.95 36693.64 37294.89 35298.25 365
Gipumacopyleft90.99 37290.15 37793.51 38098.73 35390.12 40093.98 41399.45 20179.32 41192.28 40194.91 40869.61 40997.98 39287.42 40495.67 33292.45 411
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 38674.97 38779.01 40270.98 42555.18 42793.37 41498.21 38965.08 41961.78 42093.83 41021.74 42792.53 41478.59 41291.12 39089.34 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 38081.52 38386.66 39666.61 42668.44 42592.79 41597.92 39368.96 41480.04 41799.85 5785.77 38296.15 40997.86 22843.89 41995.39 409
wuyk23d40.18 38741.29 39236.84 40386.18 42249.12 42879.73 41622.81 42827.64 42025.46 42328.45 42321.98 42648.89 42255.80 42123.56 42212.51 420
mmdepth0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.13 3930.17 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4251.57 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.64 39032.85 3930.00 4060.00 4290.00 4310.00 41799.51 1190.00 4240.00 42599.56 22896.58 1530.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas8.27 39211.03 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 42599.01 180.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.30 39111.06 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.58 2200.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.02 3940.03 3970.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.27 4250.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS97.16 28595.47 345
MSC_two_6792asdad99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11399.84 8399.89 19
PC_three_145298.18 13899.84 3599.70 16299.31 398.52 38198.30 19499.80 10399.81 64
No_MVS99.87 1499.51 17599.76 4099.33 26599.96 3298.87 11399.84 8399.89 19
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9799.81 9599.09 14
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.71 9999.79 3399.61 4896.84 28799.56 12399.54 23698.58 7599.96 3296.93 30599.75 118
IU-MVS99.84 3299.88 899.32 27598.30 12099.84 3598.86 11899.85 7599.89 19
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10799.84 8399.88 25
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 208
test_0728_THIRD98.99 4999.81 4299.80 10899.09 1499.96 3298.85 12099.90 4399.88 25
GSMVS99.52 173
test_part299.81 4699.83 1999.77 57
sam_mvs194.86 21699.52 173
sam_mvs94.72 228
MTGPAbinary99.47 181
test_post65.99 42094.65 23499.73 219
patchmatchnet-post98.70 36994.79 22099.74 213
gm-plane-assit98.54 37392.96 39094.65 37199.15 33199.64 25497.56 261
test9_res97.49 26799.72 12499.75 91
agg_prior297.21 28599.73 12399.75 91
agg_prior99.67 11499.62 6899.40 22698.87 26899.91 112
TestCases99.31 15299.86 2098.48 22099.61 4897.85 18199.36 17199.85 5795.95 17699.85 15596.66 31899.83 9299.59 154
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17599.74 95
新几何199.75 6199.75 7699.59 7399.54 8796.76 29099.29 18699.64 19698.43 8699.94 7296.92 30799.66 13499.72 106
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13299.73 100
原ACMM199.65 7799.73 9099.33 10999.47 18197.46 22799.12 22399.66 18998.67 6999.91 11297.70 24999.69 12999.71 115
testdata299.95 6296.67 317
segment_acmp98.96 25
testdata99.54 10299.75 7698.95 16699.51 11997.07 26899.43 15099.70 16298.87 4099.94 7297.76 24099.64 13799.72 106
test1299.75 6199.64 13299.61 7099.29 28799.21 20698.38 9199.89 13699.74 12199.74 95
plane_prior799.29 24797.03 298
plane_prior699.27 25296.98 30292.71 292
plane_prior599.47 18199.69 24097.78 23697.63 26598.67 303
plane_prior499.61 211
plane_prior397.00 30098.69 8499.11 225
plane_prior199.26 254
n20.00 430
nn0.00 430
door-mid98.05 392
lessismore_v097.79 33598.69 35995.44 35694.75 41595.71 38599.87 4888.69 36099.32 30495.89 33494.93 35098.62 324
LGP-MVS_train98.49 26699.33 23497.05 29499.55 7897.46 22799.24 19899.83 7292.58 29799.72 22398.09 20797.51 27798.68 296
test1199.35 253
door97.92 393
HQP5-MVS96.83 310
BP-MVS97.19 289
HQP4-MVS98.66 29699.64 25498.64 315
HQP3-MVS99.39 22997.58 270
HQP2-MVS92.47 301
NP-MVS99.23 26296.92 30699.40 281
ACMMP++_ref97.19 297
ACMMP++97.43 288
Test By Simon98.75 58
ITE_SJBPF98.08 31099.29 24796.37 32998.92 34198.34 11698.83 27499.75 14291.09 33299.62 26195.82 33597.40 29098.25 365
DeepMVS_CXcopyleft93.34 38199.29 24782.27 41099.22 30185.15 40796.33 37899.05 34190.97 33499.73 21993.57 37397.77 26198.01 379