This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 9999.76 6599.42 9999.90 199.55 7798.56 8999.78 4799.70 15798.65 6899.79 19199.65 2399.78 10899.41 199
CS-MVS-test99.49 2299.48 1599.54 9999.78 5699.30 11399.89 299.58 6198.56 8999.73 6599.69 16798.55 7599.82 17799.69 1999.85 7399.48 179
mvsmamba98.92 12798.87 12099.08 18099.07 29599.16 13099.88 399.51 11598.15 13599.40 15799.89 2997.12 13299.33 29499.38 4997.40 28498.73 271
MVSFormer99.17 8499.12 7899.29 15699.51 17098.94 16899.88 399.46 18797.55 21099.80 4099.65 18597.39 12199.28 30299.03 8899.85 7399.65 129
test_djsdf98.67 16098.57 16098.98 19398.70 34898.91 17299.88 399.46 18797.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26298.75 266
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34796.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29698.69 282
EC-MVSNet99.44 3799.39 2799.58 9299.56 15699.49 8999.88 399.58 6198.38 10699.73 6599.69 16798.20 9599.70 22999.64 2499.82 9499.54 161
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 899.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11599.80 10199.81 61
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 37
K. test v397.10 31196.79 31198.01 30998.72 34596.33 32599.87 897.05 39397.59 20496.16 37199.80 10388.71 35299.04 33996.69 30896.55 30298.65 304
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29499.45 9599.86 1199.60 5498.23 12598.70 28799.82 7496.80 14599.22 31399.07 8696.38 30598.79 258
v7n97.87 24097.52 25598.92 20398.76 34198.58 20399.84 1299.46 18796.20 32498.91 25599.70 15794.89 21399.44 27396.03 32293.89 35898.75 266
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35498.13 23599.84 1299.48 15796.68 28797.97 33999.67 17992.92 28098.56 37096.88 30192.60 37398.70 278
3Dnovator97.25 999.24 7699.05 8799.81 4499.12 28399.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
FIs98.78 14998.63 14899.23 16799.18 26799.54 7999.83 1599.59 5798.28 11798.79 27499.81 8996.75 14899.37 28499.08 8596.38 30598.78 259
MGCFI-Net99.01 12098.85 12599.50 12099.42 20099.26 11999.82 1699.48 15798.60 8699.28 18398.81 35497.04 13899.76 20299.29 6497.87 25199.47 185
test_fmvs392.10 35891.77 36193.08 37196.19 39086.25 39399.82 1698.62 36996.65 29095.19 37996.90 39155.05 40695.93 39996.63 31290.92 38197.06 387
jajsoiax98.43 17298.28 17898.88 21498.60 35898.43 22199.82 1699.53 9698.19 13098.63 29899.80 10393.22 27599.44 27399.22 7297.50 27398.77 262
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11399.04 30399.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 239
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
nrg03098.64 16398.42 16899.28 16099.05 30299.69 4799.81 2099.46 18798.04 15999.01 24099.82 7496.69 15099.38 28199.34 5894.59 34698.78 259
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19798.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9298.99 10199.53 10799.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27599.68 4899.81 2099.51 11599.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
sasdasda99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21195.39 19599.90 11697.78 22899.49 14799.28 217
GeoE98.85 14198.62 15399.53 10799.61 14199.08 14499.80 2599.51 11597.10 25899.31 17699.78 12295.23 20499.77 19898.21 19099.03 18499.75 88
canonicalmvs99.02 11698.86 12399.51 11599.42 20099.32 10799.80 2599.48 15798.63 8299.31 17698.81 35497.09 13499.75 20599.27 6797.90 24899.47 185
v897.95 23097.63 24798.93 20198.95 31798.81 18699.80 2599.41 21696.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35598.66 302
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20697.91 16999.36 16799.78 12295.49 19399.43 27797.91 21599.11 17599.62 142
Anonymous2024052196.20 32895.89 33197.13 34597.72 37894.96 35799.79 3199.29 28393.01 37797.20 35999.03 33489.69 34498.36 37491.16 38196.13 31098.07 364
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33698.53 20799.78 3299.54 8598.07 15399.00 24499.76 13499.01 1899.37 28499.13 8097.23 29098.81 257
PEN-MVS97.76 25897.44 26998.72 23998.77 34098.54 20699.78 3299.51 11597.06 26298.29 32299.64 19192.63 29398.89 36198.09 19993.16 36698.72 272
anonymousdsp98.44 17198.28 17898.94 19998.50 36398.96 16299.77 3499.50 13597.07 26098.87 26399.77 13094.76 22399.28 30298.66 14297.60 26398.57 330
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35296.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30498.67 294
QAPM98.67 16098.30 17799.80 4699.20 26199.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
SSC-MVS92.73 35793.73 35389.72 38195.02 40081.38 40199.76 3799.23 29394.87 35792.80 39098.93 34694.71 22791.37 40574.49 40593.80 35996.42 391
test_vis3_rt87.04 36485.81 36790.73 37893.99 40281.96 39999.76 3790.23 41392.81 37981.35 40191.56 40140.06 41099.07 33694.27 35588.23 38891.15 401
dcpmvs_299.23 7799.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5799.75 13799.13 1299.92 9599.07 8699.92 2899.85 36
v1097.85 24397.52 25598.86 22198.99 31098.67 19599.75 4199.41 21695.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34598.67 294
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7299.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11198.87 12099.57 9499.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4499.49 14499.15 20100.00 199.94 679.51 39499.98 1399.88 1499.76 11499.97 4
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4499.49 14499.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4496.85 39497.68 19799.79 4299.74 14291.39 32499.89 12798.83 12199.56 14299.57 156
WB-MVS93.10 35594.10 34990.12 38095.51 39881.88 40099.73 4799.27 28795.05 35393.09 38998.91 35094.70 22891.89 40476.62 40394.02 35796.58 390
test_fmvs297.25 30597.30 28997.09 34799.43 19893.31 37899.73 4798.87 34498.83 6499.28 18399.80 10384.45 38299.66 24097.88 21797.45 27898.30 353
baseline99.15 8899.02 9599.53 10799.66 12099.14 13699.72 4999.48 15798.35 11199.42 14899.84 6296.07 16999.79 19199.51 3599.14 17399.67 122
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 4999.44 20696.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 156
CSCG99.32 6199.32 4099.32 14799.85 2698.29 22699.71 5199.66 2898.11 14599.41 15299.80 10398.37 8899.96 3098.99 9299.96 1399.72 103
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5298.92 33398.15 13599.06 23499.35 28793.67 26999.25 30797.77 23197.25 28999.64 136
WR-MVS_H98.13 20097.87 22098.90 20999.02 30598.84 18099.70 5299.59 5797.27 24098.40 31499.19 31895.53 19199.23 31098.34 18293.78 36098.61 324
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25496.80 30899.70 5299.60 5497.12 25498.18 32999.70 15791.73 31599.72 21798.39 17697.45 27898.68 287
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 35991.26 36393.84 36895.52 39785.92 39499.69 5598.53 37395.31 34793.87 38596.37 39455.33 40598.27 37595.70 33090.98 38097.32 386
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16499.74 14298.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16464.01 41098.81 4499.94 6998.79 12699.86 6699.84 40
V4298.06 20897.79 22498.86 22198.98 31398.84 18099.69 5599.34 25396.53 30199.30 17999.37 28194.67 23099.32 29797.57 25294.66 34498.42 345
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15798.12 14399.50 13099.75 13798.78 4899.97 2198.57 15899.89 5299.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 15399.53 12599.63 19798.93 3399.97 2198.74 13099.91 3599.83 49
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6198.81 35195.54 34499.62 10499.70 15793.82 26499.93 8497.35 27199.46 14899.32 214
PS-CasMVS97.93 23197.59 25098.95 19898.99 31099.06 14799.68 6199.52 10197.13 25298.31 31999.68 17392.44 30299.05 33898.51 16694.08 35598.75 266
Vis-MVSNetpermissive99.12 9898.97 10599.56 9699.78 5699.10 14099.68 6199.66 2898.49 9799.86 2799.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6499.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
EIA-MVS99.18 8299.09 8399.45 12899.49 18199.18 12799.67 6499.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 209
MSP-MVS99.42 4299.27 5999.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10698.97 10599.48 12299.49 18199.14 13699.67 6499.34 25397.31 23799.58 11499.76 13497.65 11499.82 17798.87 10899.07 18199.46 190
CP-MVSNet98.09 20497.78 22799.01 18998.97 31599.24 12299.67 6499.46 18797.25 24298.48 31199.64 19193.79 26599.06 33798.63 14594.10 35498.74 269
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17798.79 7099.68 7899.81 8998.43 8399.97 2198.88 10599.90 4399.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13599.68 7899.69 16799.06 1699.96 3098.69 13899.87 5899.84 40
mvs_tets98.40 17898.23 18098.91 20798.67 35198.51 21399.66 6999.53 9698.19 13098.65 29699.81 8992.75 28499.44 27399.31 6197.48 27798.77 262
EU-MVSNet97.98 22598.03 20197.81 32598.72 34596.65 31499.66 6999.66 2898.09 14898.35 31799.82 7495.25 20398.01 38197.41 26795.30 33298.78 259
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13599.67 8299.69 16798.95 2799.96 3098.69 13899.87 5899.84 40
MP-MVScopyleft99.33 5999.15 7399.87 1199.88 1199.82 2299.66 6999.46 18798.09 14899.48 13499.74 14298.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8699.01 9999.61 8699.81 4698.86 17899.65 7599.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 2999.91 3599.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 14099.66 8799.68 17398.96 2499.96 3098.62 14699.87 5899.84 40
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33698.62 20099.65 7599.49 14497.76 18798.49 31099.60 20994.23 24898.97 35598.00 21092.90 36898.70 278
mvsany_test393.77 35393.45 35794.74 36695.78 39388.01 39299.64 7898.25 37798.28 11794.31 38397.97 38368.89 39898.51 37297.50 25890.37 38297.71 378
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 15299.55 12299.64 19198.91 3499.96 3098.72 13399.90 4399.82 54
tfpnnormal97.84 24697.47 26198.98 19399.20 26199.22 12499.64 7899.61 4896.32 31598.27 32399.70 15793.35 27299.44 27395.69 33195.40 33098.27 355
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9899.66 12099.09 14199.64 7899.56 6998.26 12099.45 13999.87 4396.03 17199.81 18299.54 3099.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.53 7699.95 5998.61 14999.81 9799.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10699.76 5799.82 7498.75 5598.61 14999.81 9799.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22598.91 5899.78 4799.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 32696.03 32796.79 35697.31 38494.14 36899.63 8299.08 31396.17 32797.04 36399.06 33193.94 25997.76 38786.96 39695.06 33798.47 339
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 11099.79 4299.82 7498.86 3899.95 5998.62 14699.81 9799.78 80
test072699.85 2699.89 499.62 8799.50 13599.10 2799.86 2799.82 7498.94 29
EPNet98.86 13498.71 13999.30 15397.20 38698.18 23199.62 8798.91 33799.28 1698.63 29899.81 8995.96 17399.99 499.24 7199.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8799.59 5792.65 38099.71 7199.78 12298.06 10299.90 11698.84 11899.91 3599.74 92
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20099.08 14499.62 8799.36 24397.39 23199.28 18399.68 17396.44 16099.92 9598.37 17998.22 23299.40 201
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8799.69 1898.12 14399.63 10099.84 6298.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6399.19 7099.64 7899.82 4299.23 12399.62 8799.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5199.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9399.45 19899.01 4099.89 1999.82 7499.01 1899.92 9599.56 2899.95 1899.85 36
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9485.06 41499.13 2299.77 5199.93 987.82 36699.85 15099.38 4999.38 15399.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9499.48 15799.08 3399.91 1699.81 8999.20 799.96 3098.91 10299.85 7399.79 74
OPU-MVS99.64 7899.56 15699.72 4299.60 9499.70 15799.27 599.42 27898.24 18999.80 10199.79 74
GST-MVS99.40 5099.24 6499.85 2899.86 2099.79 3099.60 9499.67 2397.97 16499.63 10099.68 17398.52 7799.95 5998.38 17799.86 6699.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9499.45 19899.01 4099.90 1899.83 6698.98 2399.93 8499.59 2599.95 1899.86 33
ACMH97.28 898.10 20397.99 20598.44 27499.41 20596.96 29999.60 9499.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27898.67 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10094.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4799.38 15399.80 70
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10099.62 4198.21 12899.73 6599.79 11698.68 6499.96 3098.44 17499.77 11199.79 74
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10098.74 35897.93 16799.26 19298.62 36291.75 31399.83 17093.22 36698.18 23798.37 351
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10098.74 35897.94 16699.27 18898.62 36291.75 31399.86 14493.73 36198.19 23698.96 250
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23792.25 38499.59 10098.26 37697.43 22696.20 37099.13 32496.27 16598.73 36798.17 19598.99 18799.64 136
baseline198.31 18397.95 21099.38 13999.50 17998.74 19099.59 10098.93 33098.41 10499.14 21699.60 20994.59 23399.79 19198.48 16893.29 36499.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10099.51 11598.62 8499.79 4299.83 6699.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9499.59 10099.49 14497.03 26699.63 10099.69 16797.27 12999.96 3097.82 22599.84 8199.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21599.37 10399.58 10899.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
dmvs_testset95.02 34296.12 32491.72 37599.10 28880.43 40399.58 10897.87 38597.47 21995.22 37798.82 35393.99 25795.18 40088.09 39294.91 34299.56 158
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9699.58 10899.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1899.90 17
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10895.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4699.38 15399.82 54
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10899.65 3397.84 17799.71 7199.80 10399.12 1399.97 2198.33 18399.87 5899.83 49
LPG-MVS_test98.22 18998.13 18898.49 26299.33 22997.05 28799.58 10899.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
PHI-MVS99.30 6399.17 7299.70 6799.56 15699.52 8599.58 10899.80 897.12 25499.62 10499.73 14898.58 7299.90 11698.61 14999.91 3599.68 119
SF-MVS99.38 5399.24 6499.79 4999.79 5499.68 4899.57 11599.54 8597.82 18299.71 7199.80 10398.95 2799.93 8498.19 19299.84 8199.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11599.37 24299.10 2799.81 3799.80 10398.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11599.51 11599.96 3098.93 9999.86 6699.88 26
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 22996.91 30299.57 11599.30 27998.47 9899.41 15298.99 33996.78 14699.74 20798.73 13299.38 15398.74 269
v2v48298.06 20897.77 22998.92 20398.90 32098.82 18499.57 11599.36 24396.65 29099.19 20899.35 28794.20 24999.25 30797.72 23894.97 33998.69 282
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37493.61 37699.57 11596.63 39896.13 33298.87 26398.61 36494.59 23397.70 38895.08 34598.86 19699.55 159
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12199.63 3999.48 399.98 699.83 6698.75 5599.99 499.97 199.96 1399.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12199.63 3999.47 499.98 699.82 7498.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12199.62 4198.78 7399.64 9799.88 3592.02 30799.88 13299.54 3098.26 23099.72 103
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 38995.39 34899.56 12199.44 20695.11 35097.13 36197.32 38991.86 31197.27 39190.35 38481.23 39898.23 359
ETV-MVS99.26 7199.21 6899.40 13599.46 19099.30 11399.56 12199.52 10198.52 9499.44 14499.27 30898.41 8699.86 14499.10 8399.59 14099.04 240
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12199.47 17797.45 22399.78 4799.82 7499.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12199.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
casdiffmvspermissive99.13 9298.98 10499.56 9699.65 12699.16 13099.56 12199.50 13598.33 11499.41 15299.86 4795.92 17799.83 17099.45 4599.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17998.09 19499.24 16599.26 24899.32 10799.56 12199.55 7797.45 22398.71 28199.83 6693.23 27399.63 25398.88 10596.32 30798.76 264
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19096.68 31399.56 12199.54 8598.41 10497.79 34699.87 4390.18 34099.66 24098.05 20797.18 29398.62 315
ACMM97.58 598.37 18098.34 17398.48 26499.41 20597.10 28199.56 12199.45 19898.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27898.64 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6999.12 7899.74 6199.18 26799.75 3999.56 12199.57 6498.45 10099.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 167
test_fmvsmconf0.01_n99.22 7899.03 9199.79 4998.42 36699.48 9199.55 13399.51 11599.39 1099.78 4799.93 994.80 21799.95 5999.93 1199.95 1899.94 11
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13399.49 14499.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
v14419297.92 23497.60 24998.87 21898.83 33198.65 19799.55 13399.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 33898.70 278
API-MVS99.04 11399.03 9199.06 18399.40 21099.31 11199.55 13399.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 364
fmvsm_s_conf0.1_n_a99.26 7199.06 8699.85 2899.52 16799.62 6599.54 13799.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
APD_test195.87 33396.49 31794.00 36799.53 16384.01 39599.54 13799.32 27095.91 34097.99 33799.85 5285.49 37599.88 13291.96 37798.84 19898.12 362
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13796.75 39697.53 21499.73 6599.65 18591.25 32799.89 12798.62 14699.56 14299.48 179
MTMP99.54 13798.88 342
v114497.98 22597.69 23998.85 22498.87 32598.66 19699.54 13799.35 24996.27 31999.23 19899.35 28794.67 23099.23 31096.73 30595.16 33598.68 287
v14897.79 25697.55 25198.50 26198.74 34297.72 25899.54 13799.33 26096.26 32098.90 25799.51 24194.68 22999.14 32497.83 22493.15 36798.63 313
CostFormer97.72 26797.73 23697.71 32999.15 28194.02 36999.54 13799.02 32194.67 36199.04 23799.35 28792.35 30499.77 19898.50 16797.94 24799.34 212
MVSTER98.49 16798.32 17599.00 19199.35 22499.02 15199.54 13799.38 23397.41 22999.20 20599.73 14893.86 26399.36 28898.87 10897.56 26798.62 315
fmvsm_s_conf0.1_n99.29 6599.10 8099.86 2199.70 10199.65 5799.53 14599.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1399.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14699.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
MM99.40 5099.28 5599.74 6199.67 11199.31 11199.52 14698.87 34499.55 199.74 6399.80 10396.47 15799.98 1399.97 199.97 799.94 11
patch_mono-299.26 7199.62 598.16 29999.81 4694.59 36299.52 14699.64 3699.33 1399.73 6599.90 2599.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20596.99 29499.52 14699.49 14498.11 14599.24 19499.34 29196.96 14299.79 19197.95 21399.45 14999.02 243
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14697.57 39099.51 299.82 3599.78 12298.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15798.43 16799.51 11599.51 17099.28 11599.52 14699.47 17796.11 33399.01 24099.34 29196.20 16799.84 15797.88 21798.82 20099.39 203
v192192097.80 25597.45 26498.84 22598.80 33298.53 20799.52 14699.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33698.69 282
MIMVSNet195.51 33795.04 34296.92 35397.38 38195.60 33999.52 14699.50 13593.65 37196.97 36599.17 31985.28 37896.56 39688.36 39195.55 32798.60 327
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15499.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1399.95 9
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21097.46 26799.51 15499.53 9695.86 34198.54 30799.77 13082.44 39099.66 24098.68 14097.52 27099.50 176
alignmvs98.81 14598.56 16299.58 9299.43 19899.42 9999.51 15498.96 32898.61 8599.35 17098.92 34994.78 21999.77 19899.35 5298.11 24299.54 161
v119297.81 25397.44 26998.91 20798.88 32298.68 19499.51 15499.34 25396.18 32699.20 20599.34 29194.03 25699.36 28895.32 34195.18 33498.69 282
test20.0396.12 33095.96 32996.63 35797.44 38095.45 34699.51 15499.38 23396.55 30096.16 37199.25 31193.76 26796.17 39787.35 39594.22 35298.27 355
mvs_anonymous99.03 11598.99 10199.16 17399.38 21598.52 21199.51 15499.38 23397.79 18399.38 16299.81 8997.30 12799.45 26899.35 5298.99 18799.51 173
TAMVS99.12 9899.08 8499.24 16599.46 19098.55 20599.51 15499.46 18798.09 14899.45 13999.82 7498.34 8999.51 26398.70 13598.93 19099.67 122
MVSMamba_pp99.36 5599.28 5599.62 8399.38 21599.50 8799.50 16199.49 14498.55 9199.77 5199.82 7497.62 11699.88 13299.39 4899.96 1399.47 185
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16199.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
test_yl98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 9999.49 18199.18 12799.50 16199.07 31698.22 12699.61 10799.51 24195.37 19699.84 15798.60 15298.33 22499.59 150
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.37 351
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16199.70 1598.79 7099.77 5199.96 197.45 12099.96 3098.92 10199.90 4399.89 20
iter_conf0598.76 15298.90 11498.33 28499.07 29596.97 29699.50 16199.31 27498.13 14099.48 13499.80 10397.89 10599.46 26699.25 7097.68 25898.56 331
mamv499.33 5999.23 6699.62 8399.39 21399.50 8799.50 16199.50 13598.13 14099.76 5799.81 8997.69 11399.88 13299.35 5299.95 1899.49 177
pm-mvs197.68 27497.28 29298.88 21499.06 29998.62 20099.50 16199.45 19896.32 31597.87 34299.79 11692.47 29899.35 29197.54 25593.54 36298.67 294
EI-MVSNet98.67 16098.67 14398.68 24499.35 22497.97 24399.50 16199.38 23396.93 27599.20 20599.83 6697.87 10699.36 28898.38 17797.56 26798.71 274
CVMVSNet98.57 16698.67 14398.30 28999.35 22495.59 34099.50 16199.55 7798.60 8699.39 16099.83 6694.48 24099.45 26898.75 12998.56 21499.85 36
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27799.54 7999.50 16199.58 6198.27 11999.35 17099.37 28192.53 29699.65 24599.35 5294.46 34798.72 272
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16198.73 36397.83 17899.17 21398.45 36791.67 31799.83 17093.22 36698.18 23798.96 250
APD-MVScopyleft99.27 6999.08 8499.84 3999.75 7399.79 3099.50 16199.50 13597.16 25099.77 5199.82 7498.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17596.74 39798.25 12195.24 37698.10 38074.96 39599.90 11699.53 3298.85 19797.70 380
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28398.85 17999.49 17598.91 33795.48 34597.16 36099.80 10393.38 27199.11 33294.16 35891.73 37598.62 315
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30799.36 10599.49 17599.51 11597.95 16598.97 24899.13 32496.30 16499.38 28198.36 18193.34 36398.66 302
EPMVS97.82 25197.65 24398.35 28398.88 32295.98 33399.49 17594.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 209
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 17999.57 6494.16 36698.81 27099.68 17393.23 27399.42 27898.84 11894.42 34998.76 264
v124097.69 27297.32 28798.79 23398.85 32998.43 22199.48 17999.36 24396.11 33399.27 18899.36 28493.76 26799.24 30994.46 35295.23 33398.70 278
VPNet97.84 24697.44 26999.01 18999.21 25998.94 16899.48 17999.57 6498.38 10699.28 18399.73 14888.89 35099.39 28099.19 7593.27 36598.71 274
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 31998.98 15599.48 17999.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37098.69 282
TDRefinement95.42 33994.57 34697.97 31389.83 40796.11 33299.48 17998.75 35596.74 28396.68 36699.88 3588.65 35599.71 22398.37 17982.74 39698.09 363
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15798.05 15899.76 5799.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
NR-MVSNet97.97 22897.61 24899.02 18898.87 32599.26 11999.47 18599.42 21497.63 20297.08 36299.50 24495.07 20799.13 32797.86 22093.59 36198.68 287
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8699.86 2099.07 14699.47 18599.93 297.66 20099.71 7199.86 4797.73 11199.96 3099.47 4399.82 9499.79 74
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 30396.76 31298.82 22799.37 21998.07 23899.45 18999.36 24397.56 20997.89 34198.95 34483.70 38598.82 36296.03 32298.56 21499.58 154
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 18999.08 31398.21 12898.88 26099.80 10388.66 35499.70 22998.58 15597.72 25699.39 203
tpm297.44 29797.34 28497.74 32899.15 28194.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 216
FMVSNet297.72 26797.36 27998.80 23299.51 17098.84 18099.45 18999.42 21496.49 30398.86 26799.29 30390.26 33698.98 34896.44 31596.56 30198.58 329
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20098.73 19199.45 18999.46 18798.11 14599.46 13899.77 13098.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 13498.63 14899.54 9999.37 21999.66 5399.45 18999.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 228
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 13198.69 14199.40 13599.22 25898.72 19299.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5899.94 2499.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 13498.63 14899.54 9999.64 12899.19 12599.44 19599.54 8597.77 18699.30 17999.81 8994.20 24999.93 8499.17 7898.82 20099.49 177
test_040296.64 31996.24 32297.85 31998.85 32996.43 32299.44 19599.26 28893.52 37296.98 36499.52 23888.52 35799.20 32092.58 37697.50 27397.93 375
ACMP97.20 1198.06 20897.94 21298.45 27199.37 21997.01 29299.44 19599.49 14497.54 21398.45 31299.79 11691.95 30999.72 21797.91 21597.49 27698.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 27198.55 36198.16 23299.43 19993.68 40897.23 35798.46 36689.30 34799.22 31395.43 33898.22 23297.98 372
HPM-MVS++copyleft99.39 5299.23 6699.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18899.53 23598.64 6999.96 3098.44 17499.80 10199.79 74
tpm cat197.39 29997.36 27997.50 33799.17 27593.73 37299.43 19999.31 27491.27 38498.71 28199.08 32894.31 24799.77 19896.41 31798.50 21899.00 244
tpm97.67 27797.55 25198.03 30699.02 30595.01 35599.43 19998.54 37296.44 30999.12 21999.34 29191.83 31299.60 25697.75 23496.46 30399.48 179
GBi-Net97.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
test197.68 27497.48 25998.29 29099.51 17097.26 27499.43 19999.48 15796.49 30399.07 22999.32 29890.26 33698.98 34897.10 28596.65 29898.62 315
FMVSNet196.84 31696.36 32098.29 29099.32 23597.26 27499.43 19999.48 15795.11 35098.55 30699.32 29883.95 38498.98 34895.81 32796.26 30898.62 315
testgi97.65 27997.50 25898.13 30399.36 22396.45 32199.42 20699.48 15797.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 227
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20699.54 8597.29 23999.41 15299.59 21198.42 8599.93 8498.19 19299.69 12799.73 97
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20898.55 37196.03 33899.19 20899.74 14291.87 31099.92 9599.16 7998.29 22999.70 113
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20899.71 1398.98 4899.45 13999.78 12299.19 999.54 26299.28 6599.84 8199.63 140
VNet99.11 10298.90 11499.73 6499.52 16799.56 7599.41 20899.39 22599.01 4099.74 6399.78 12295.56 19099.92 9599.52 3498.18 23799.72 103
baseline297.87 24097.55 25198.82 22799.18 26798.02 24099.41 20896.58 40096.97 26996.51 36799.17 31993.43 27099.57 25897.71 23999.03 18498.86 254
DU-MVS98.08 20697.79 22498.96 19698.87 32598.98 15599.41 20899.45 19897.87 17198.71 28199.50 24494.82 21599.22 31398.57 15892.87 37098.68 287
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29198.29 22699.41 20898.85 34695.65 34398.63 29899.67 17994.82 21599.10 33498.07 20692.89 36998.64 306
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28596.33 32599.41 20899.52 10198.06 15799.05 23699.50 24489.64 34599.73 21397.73 23697.38 28698.53 333
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20899.50 13597.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
9.1499.10 8099.72 9199.40 21699.51 11597.53 21499.64 9799.78 12298.84 4199.91 10597.63 24499.82 94
D2MVS98.41 17598.50 16598.15 30299.26 24896.62 31599.40 21699.61 4897.71 19298.98 24699.36 28496.04 17099.67 23798.70 13597.41 28398.15 361
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21699.43 21293.67 37099.22 19999.89 2990.23 33999.93 8499.26 6998.33 22499.66 125
FMVSNet398.03 21697.76 23398.84 22599.39 21398.98 15599.40 21699.38 23396.67 28899.07 22999.28 30592.93 27998.98 34897.10 28596.65 29898.56 331
LFMVS97.90 23797.35 28199.54 9999.52 16799.01 15399.39 22098.24 37897.10 25899.65 9399.79 11684.79 38099.91 10599.28 6598.38 22199.69 115
HQP_MVS98.27 18898.22 18198.44 27499.29 24196.97 29699.39 22099.47 17798.97 5199.11 22199.61 20692.71 28999.69 23497.78 22897.63 26098.67 294
plane_prior299.39 22098.97 51
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22099.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3699.97 799.89 20
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9699.39 22099.38 23397.70 19599.28 18399.28 30598.34 8999.85 15096.96 29499.45 14999.69 115
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33398.14 23499.38 22594.09 40791.07 38798.07 33591.04 40389.62 34699.35 29196.75 30499.09 17998.68 287
VDDNet97.55 28597.02 30499.16 17399.49 18198.12 23699.38 22599.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6198.13 24199.42 197
pmmvs696.53 32196.09 32697.82 32498.69 34995.47 34599.37 22799.47 17793.46 37497.41 35199.78 12287.06 36999.33 29496.92 29992.70 37298.65 304
PM-MVS92.96 35692.23 36095.14 36595.61 39489.98 39199.37 22798.21 37994.80 35995.04 38197.69 38465.06 39997.90 38494.30 35389.98 38597.54 384
WTY-MVS99.06 11098.88 11999.61 8699.62 13799.16 13099.37 22799.56 6998.04 15999.53 12599.62 20296.84 14499.94 6998.85 11598.49 21999.72 103
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22799.43 21296.94 27499.07 22999.59 21197.87 10699.03 34198.32 18595.62 32598.71 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23199.45 19898.94 5499.66 8799.64 19194.93 20999.99 499.48 4184.36 39399.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6298.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35295.65 33899.36 23199.51 11597.13 25296.04 37398.99 33988.40 35898.17 37796.71 30690.27 38398.40 348
sss99.17 8499.05 8799.53 10799.62 13798.97 15899.36 23199.62 4197.83 17899.67 8299.65 18597.37 12499.95 5999.19 7599.19 16899.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18799.07 3599.79 4299.82 7498.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7599.14 7599.59 8999.41 20599.16 13099.35 23699.57 6498.82 6599.51 12999.61 20696.46 15899.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39695.94 33499.35 23699.10 31095.13 34893.55 38697.54 38588.15 36297.91 38394.58 35089.69 38697.61 381
MDTV_nov1_ep13_2view95.18 35399.35 23696.84 27999.58 11495.19 20597.82 22599.46 190
VDD-MVS97.73 26597.35 28198.88 21499.47 18997.12 28099.34 23998.85 34698.19 13099.67 8299.85 5282.98 38799.92 9599.49 4098.32 22899.60 146
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 23999.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 233
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 36877.86 37497.62 33297.91 37296.12 33199.33 24199.28 2858.40 41125.05 41299.27 30884.11 38399.33 29489.20 38798.22 23297.42 385
ETVMVS97.50 29096.90 30899.29 15699.23 25498.78 18999.32 24298.90 33997.52 21698.56 30598.09 38184.72 38199.69 23497.86 22097.88 25099.39 203
FMVSNet596.43 32496.19 32397.15 34399.11 28595.89 33599.32 24299.52 10194.47 36598.34 31899.07 32987.54 36797.07 39292.61 37595.72 32398.47 339
dp97.75 26297.80 22397.59 33499.10 28893.71 37399.32 24298.88 34296.48 30699.08 22899.55 22692.67 29299.82 17796.52 31398.58 21199.24 220
tpmvs97.98 22598.02 20397.84 32199.04 30394.73 35999.31 24599.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 248
tpmrst98.33 18298.48 16697.90 31799.16 27794.78 35899.31 24599.11 30997.27 24099.45 13999.59 21195.33 19899.84 15798.48 16898.61 20899.09 232
testing9997.36 30096.94 30798.63 24699.18 26796.70 31099.30 24798.93 33097.71 19298.23 32498.26 37484.92 37999.84 15798.04 20897.85 25399.35 209
MP-MVS-pluss99.37 5499.20 6999.88 599.90 499.87 1299.30 24799.52 10197.18 24899.60 11099.79 11698.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5899.19 7099.79 4999.61 14199.65 5799.30 24799.48 15798.86 6099.21 20299.63 19798.72 6199.90 11698.25 18899.63 13799.80 70
JIA-IIPM97.50 29097.02 30498.93 20198.73 34397.80 25599.30 24798.97 32691.73 38398.91 25594.86 39795.10 20699.71 22397.58 24897.98 24599.28 217
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20598.83 18399.30 24798.77 35497.70 19598.94 25299.65 18592.91 28299.74 20796.52 31399.55 14499.64 136
testing1197.50 29097.10 30198.71 24199.20 26196.91 30299.29 25298.82 34997.89 17098.21 32798.40 36985.63 37499.83 17098.45 17398.04 24499.37 207
Syy-MVS97.09 31297.14 29896.95 35199.00 30792.73 38299.29 25299.39 22597.06 26297.41 35198.15 37693.92 26198.68 36891.71 37898.34 22299.45 193
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30797.16 27899.29 25299.39 22597.06 26297.41 35198.15 37683.46 38698.68 36895.27 34298.34 22299.45 193
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22298.79 7099.52 12799.62 20298.91 3499.90 11698.64 14499.75 11699.82 54
LF4IMVS97.52 28797.46 26397.70 33098.98 31395.55 34199.29 25298.82 34998.07 15398.66 29099.64 19189.97 34199.61 25597.01 28996.68 29797.94 374
hse-mvs297.50 29097.14 29898.59 24999.49 18197.05 28799.28 25799.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4183.80 39599.08 233
OPM-MVS98.19 19398.10 19198.45 27198.88 32297.07 28599.28 25799.38 23398.57 8899.22 19999.81 8992.12 30599.66 24098.08 20397.54 26998.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9099.02 9599.51 11599.61 14198.96 16299.28 25799.49 14498.46 9999.72 7099.71 15396.50 15699.88 13299.31 6199.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25799.91 397.42 22899.67 8299.37 28197.53 11899.88 13298.98 9397.29 28898.42 345
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25799.52 10198.07 15399.66 8799.81 8997.79 10999.78 19697.79 22799.81 9799.60 146
testing22297.16 30896.50 31699.16 17399.16 27798.47 21999.27 26298.66 36797.71 19298.23 32498.15 37682.28 39199.84 15797.36 27097.66 25999.18 223
AUN-MVS96.88 31596.31 32198.59 24999.48 18897.04 29099.27 26299.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39499.07 238
pmmvs597.52 28797.30 28998.16 29998.57 36096.73 30999.27 26298.90 33996.14 33198.37 31699.53 23591.54 32299.14 32497.51 25795.87 31898.63 313
131498.68 15998.54 16399.11 17998.89 32198.65 19799.27 26299.49 14496.89 27697.99 33799.56 22297.72 11299.83 17097.74 23599.27 16498.84 256
MVS97.28 30396.55 31599.48 12298.78 33698.95 16599.27 26299.39 22583.53 39798.08 33299.54 23196.97 14199.87 14094.23 35699.16 16999.63 140
BH-untuned98.42 17398.36 17198.59 24999.49 18196.70 31099.27 26299.13 30897.24 24498.80 27299.38 27895.75 18499.74 20797.07 28899.16 16999.33 213
MDTV_nov1_ep1398.32 17599.11 28594.44 36499.27 26298.74 35897.51 21799.40 15799.62 20294.78 21999.76 20297.59 24798.81 202
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26299.57 6496.40 31399.42 14899.68 17398.75 5599.80 18897.98 21199.72 12299.44 195
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27795.32 34999.27 26298.92 33397.37 23299.37 16499.58 21594.90 21299.70 22997.43 26699.21 16699.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27198.74 35897.68 19799.09 22798.32 37291.66 31999.81 18292.88 37198.22 23298.03 367
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 16099.71 15398.96 2499.85 15098.59 15499.80 10199.77 82
1112_ss98.98 12298.77 13499.59 8999.68 11099.02 15199.25 27399.48 15797.23 24599.13 21799.58 21596.93 14399.90 11698.87 10898.78 20399.84 40
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27399.51 11591.90 38299.30 17999.63 19798.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11698.85 12599.53 10799.66 12099.01 15399.24 27599.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27665.14 40994.18 25299.71 22397.58 248
ADS-MVSNet298.02 21898.07 19897.87 31899.33 22995.19 35299.23 27699.08 31396.24 32199.10 22499.67 17994.11 25398.93 35896.81 30299.05 18299.48 179
ADS-MVSNet98.20 19298.08 19598.56 25699.33 22996.48 32099.23 27699.15 30596.24 32199.10 22499.67 17994.11 25399.71 22396.81 30299.05 18299.48 179
EPNet_dtu98.03 21697.96 20898.23 29598.27 36895.54 34399.23 27698.75 35599.02 3897.82 34499.71 15396.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19697.93 21398.87 21899.18 26798.49 21599.22 28099.33 26096.96 27099.56 11899.38 27894.33 24599.00 34694.83 34998.58 21199.14 225
RPMNet96.72 31895.90 33099.19 17099.18 26798.49 21599.22 28099.52 10188.72 39399.56 11897.38 38794.08 25599.95 5986.87 39798.58 21199.14 225
plane_prior96.97 29699.21 28298.45 10097.60 263
testing9197.44 29797.02 30498.71 24199.18 26796.89 30499.19 28399.04 31997.78 18598.31 31998.29 37385.41 37699.85 15098.01 20997.95 24699.39 203
WR-MVS98.06 20897.73 23699.06 18398.86 32899.25 12199.19 28399.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35198.71 274
new-patchmatchnet94.48 34994.08 35095.67 36495.08 39992.41 38399.18 28599.28 28594.55 36493.49 38797.37 38887.86 36597.01 39391.57 37988.36 38797.61 381
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28599.70 1598.18 13399.35 17099.63 19796.32 16399.90 11697.48 26099.77 11199.55 159
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37592.79 38199.16 28798.93 33096.16 32894.08 38499.22 31482.72 38899.47 26595.67 33397.50 27398.17 360
PatchT97.03 31396.44 31898.79 23398.99 31098.34 22599.16 28799.07 31692.13 38199.52 12797.31 39094.54 23898.98 34888.54 39098.73 20599.03 241
CNLPA99.14 9098.99 10199.59 8999.58 15099.41 10199.16 28799.44 20698.45 10099.19 20899.49 24798.08 10199.89 12797.73 23699.75 11699.48 179
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 36997.27 27299.15 29099.33 26093.80 36980.09 40499.03 33488.31 35997.86 38593.49 36494.36 35098.62 315
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29099.41 21696.60 29799.60 11099.55 22698.83 4299.90 11697.48 26099.83 9099.78 80
save fliter99.76 6599.59 7099.14 29299.40 22299.00 43
WB-MVSnew97.65 27997.65 24397.63 33198.78 33697.62 26399.13 29398.33 37597.36 23399.07 22998.94 34595.64 18999.15 32392.95 37098.68 20796.12 395
testf190.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
APD_test290.42 36290.68 36489.65 38297.78 37573.97 41099.13 29398.81 35189.62 38991.80 39398.93 34662.23 40298.80 36486.61 39891.17 37796.19 393
xiu_mvs_v1_base_debu99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
xiu_mvs_v1_base_debi99.29 6599.27 5999.34 14199.63 13198.97 15899.12 29699.51 11598.86 6099.84 2999.47 25698.18 9699.99 499.50 3699.31 16199.08 233
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29699.54 8598.44 10399.42 14899.71 15394.20 24999.92 9598.54 16598.90 19499.00 244
jason99.13 9299.03 9199.45 12899.46 19098.87 17599.12 29699.26 28898.03 16199.79 4299.65 18597.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
N_pmnet94.95 34595.83 33292.31 37398.47 36479.33 40599.12 29692.81 41193.87 36897.68 34799.13 32493.87 26299.01 34591.38 38096.19 30998.59 328
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37097.21 27799.11 30299.24 29293.49 37380.73 40398.98 34193.02 27798.18 37694.22 35794.45 34898.64 306
Patchmtry97.75 26297.40 27698.81 23099.10 28898.87 17599.11 30299.33 26094.83 35898.81 27099.38 27894.33 24599.02 34396.10 32095.57 32698.53 333
YYNet195.36 34094.51 34797.92 31597.89 37397.10 28199.10 30499.23 29393.26 37680.77 40299.04 33392.81 28398.02 38094.30 35394.18 35398.64 306
CANet_DTU98.97 12498.87 12099.25 16399.33 22998.42 22399.08 30599.30 27999.16 1999.43 14599.75 13795.27 20099.97 2198.56 16199.95 1899.36 208
SCA98.19 19398.16 18398.27 29499.30 23795.55 34199.07 30698.97 32697.57 20799.43 14599.57 21992.72 28799.74 20797.58 24899.20 16799.52 167
TSAR-MVS + GP.99.36 5599.36 3299.36 14099.67 11198.61 20299.07 30699.33 26099.00 4399.82 3599.81 8999.06 1699.84 15799.09 8499.42 15199.65 129
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30699.34 25398.99 4599.61 10799.82 7497.98 10499.87 14097.00 29099.80 10199.85 36
PatchMatch-RL98.84 14498.62 15399.52 11399.71 9699.28 11599.06 30999.77 997.74 19099.50 13099.53 23595.41 19499.84 15797.17 28499.64 13599.44 195
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38193.17 37999.06 30998.75 35586.58 39494.84 38298.26 37481.53 39299.32 29789.01 38897.87 25196.76 388
TEST999.67 11199.65 5799.05 31199.41 21696.22 32398.95 25099.49 24798.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31199.41 21696.28 31798.95 25099.49 24798.76 5299.91 10597.63 24499.72 12299.75 88
lupinMVS99.13 9299.01 9999.46 12799.51 17098.94 16899.05 31199.16 30497.86 17299.80 4099.56 22297.39 12199.86 14498.94 9799.85 7399.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31199.66 2899.14 2199.57 11799.80 10398.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 32596.03 32797.41 33898.13 37195.16 35499.05 31199.20 29993.94 36797.39 35498.79 35791.61 32199.04 33990.43 38395.77 32098.05 366
Patchmatch-test97.93 23197.65 24398.77 23599.18 26797.07 28599.03 31699.14 30796.16 32898.74 27899.57 21994.56 23599.72 21793.36 36599.11 17599.52 167
test_899.67 11199.61 6799.03 31699.41 21696.28 31798.93 25399.48 25398.76 5299.91 105
Test_1112_low_res98.89 12998.66 14699.57 9499.69 10698.95 16599.03 31699.47 17796.98 26899.15 21599.23 31396.77 14799.89 12798.83 12198.78 20399.86 33
bld_raw_dy_0_6499.05 11199.15 7398.74 23799.46 19096.95 30099.02 31999.47 17798.15 13599.75 6299.56 22297.63 11599.88 13299.35 5299.97 799.40 201
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 31999.49 14497.18 24898.71 28199.72 15292.72 28799.14 32497.44 26595.86 31998.67 294
xiu_mvs_v2_base99.26 7199.25 6399.29 15699.53 16398.91 17299.02 31999.45 19898.80 6999.71 7199.26 31098.94 2999.98 1399.34 5899.23 16598.98 247
MIMVSNet97.73 26597.45 26498.57 25399.45 19697.50 26699.02 31998.98 32596.11 33399.41 15299.14 32390.28 33598.74 36695.74 32998.93 19099.47 185
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 31999.48 15797.22 24698.71 28199.70 15792.75 28499.13 32797.46 26396.00 31398.67 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 31999.91 397.67 19999.59 11399.75 13795.90 17999.73 21399.53 3299.02 18699.86 33
UWE-MVS97.58 28497.29 29198.48 26499.09 29196.25 32899.01 32596.61 39997.86 17299.19 20899.01 33788.72 35199.90 11697.38 26998.69 20699.28 217
新几何299.01 325
BH-w/o98.00 22397.89 21998.32 28799.35 22496.20 33099.01 32598.90 33996.42 31198.38 31599.00 33895.26 20299.72 21796.06 32198.61 20899.03 241
test_prior499.56 7598.99 328
无先验98.99 32899.51 11596.89 27699.93 8497.53 25699.72 103
pmmvs498.13 20097.90 21598.81 23098.61 35798.87 17598.99 32899.21 29896.44 30999.06 23499.58 21595.90 17999.11 33297.18 28396.11 31198.46 342
HQP-NCC99.19 26498.98 33198.24 12298.66 290
ACMP_Plane99.19 26498.98 33198.24 12298.66 290
HQP-MVS98.02 21897.90 21598.37 28299.19 26496.83 30598.98 33199.39 22598.24 12298.66 29099.40 27392.47 29899.64 24897.19 28197.58 26598.64 306
PS-MVSNAJ99.32 6199.32 4099.30 15399.57 15298.94 16898.97 33499.46 18798.92 5799.71 7199.24 31299.01 1899.98 1399.35 5299.66 13298.97 248
MVP-Stereo97.81 25397.75 23497.99 31297.53 37996.60 31798.96 33598.85 34697.22 24697.23 35799.36 28495.28 19999.46 26695.51 33599.78 10897.92 376
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 33598.34 11299.01 24099.52 23898.68 6497.96 21299.74 119
旧先验298.96 33596.70 28699.47 13699.94 6998.19 192
iter_conf05_1199.22 7899.13 7699.49 12199.37 21999.43 9898.95 33899.38 23398.52 9499.70 7799.49 24797.62 11699.87 14099.20 7499.94 2499.16 224
原ACMM298.95 338
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33899.85 698.82 6599.54 12399.73 14898.51 7899.74 20798.91 10299.88 5599.77 82
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 14198.94 34199.48 15799.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14298.51 7899.80 18898.83 12199.89 5299.64 136
pmmvs394.09 35293.25 35896.60 35894.76 40194.49 36398.92 34398.18 38189.66 38896.48 36898.06 38286.28 37097.33 39089.68 38687.20 39097.97 373
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6295.27 20099.91 10598.08 20398.84 19899.00 244
test22299.75 7399.49 8998.91 34599.49 14496.42 31199.34 17399.65 18598.28 9299.69 12799.72 103
PMMVS286.87 36585.37 36991.35 37790.21 40683.80 39698.89 34697.45 39283.13 39891.67 39595.03 39548.49 40894.70 40185.86 40077.62 40095.54 396
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22897.43 26898.88 34799.36 24396.48 30698.80 27299.55 22695.98 17298.91 35997.27 27495.50 32998.51 335
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23793.69 37498.88 34795.78 40185.09 39698.78 27592.65 39991.29 32699.37 28494.85 34899.85 7399.46 190
TR-MVS97.76 25897.41 27598.82 22799.06 29997.87 25198.87 34998.56 37096.63 29498.68 28999.22 31492.49 29799.65 24595.40 33997.79 25498.95 252
testdata198.85 35098.32 115
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39799.21 31792.09 30698.91 35998.98 9392.21 37499.41 199
our_test_397.65 27997.68 24097.55 33598.62 35594.97 35698.84 35199.30 27996.83 28198.19 32899.34 29197.01 14099.02 34395.00 34796.01 31298.64 306
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36593.51 37798.82 35399.32 27097.41 22998.13 33199.30 30188.99 34999.56 25995.68 33299.80 10197.90 377
c3_l98.12 20298.04 20098.38 28199.30 23797.69 26298.81 35499.33 26096.67 28898.83 26899.34 29197.11 13398.99 34797.58 24895.34 33198.48 337
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35595.24 35098.80 35599.46 18796.11 33398.22 32699.62 20296.45 15998.97 35593.77 36095.97 31798.61 324
PAPR98.63 16498.34 17399.51 11599.40 21099.03 15098.80 35599.36 24396.33 31499.00 24499.12 32798.46 8199.84 15795.23 34399.37 16099.66 125
test0.0.03 197.71 27097.42 27498.56 25698.41 36797.82 25498.78 35798.63 36897.34 23498.05 33698.98 34194.45 24298.98 34895.04 34697.15 29498.89 253
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24797.53 11899.88 13298.98 9399.85 7399.60 146
PMMVS98.80 14898.62 15399.34 14199.27 24698.70 19398.76 35999.31 27497.34 23499.21 20299.07 32997.20 13099.82 17798.56 16198.87 19599.52 167
test12339.01 37742.50 37928.53 39239.17 41520.91 41798.75 36019.17 41719.83 41038.57 40966.67 40733.16 41215.42 41137.50 41129.66 40949.26 406
MSDG98.98 12298.80 13099.53 10799.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13097.82 10899.87 14096.93 29799.90 4399.54 161
CLD-MVS98.16 19798.10 19198.33 28499.29 24196.82 30798.75 36099.44 20697.83 17899.13 21799.55 22692.92 28099.67 23798.32 18597.69 25798.48 337
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25497.72 25898.72 36399.31 27496.60 29798.88 26099.29 30397.29 12899.13 32797.60 24695.99 31498.38 350
cl____98.01 22197.84 22298.55 25899.25 25297.97 24398.71 36499.34 25396.47 30898.59 30499.54 23195.65 18899.21 31897.21 27795.77 32098.46 342
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25397.95 24798.71 36499.35 24996.50 30298.60 30399.54 23195.72 18699.03 34197.21 27795.77 32098.46 342
test-LLR98.06 20897.90 21598.55 25898.79 33397.10 28198.67 36697.75 38697.34 23498.61 30198.85 35194.45 24299.45 26897.25 27599.38 15399.10 228
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31896.53 31898.67 36697.61 38996.96 27098.64 29799.28 30588.63 35699.45 26897.30 27399.38 15399.21 222
test-mter97.49 29597.13 30098.55 25898.79 33397.10 28198.67 36697.75 38696.65 29098.61 30198.85 35188.23 36099.45 26897.25 27599.38 15399.10 228
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 25996.70 31098.65 36997.74 38896.71 28597.27 35698.54 36586.03 37199.92 9598.47 17186.30 39199.10 228
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22698.67 6699.80 18895.80 32899.68 13099.61 144
thisisatest051598.14 19997.79 22499.19 17099.50 17998.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 221
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20699.35 1299.83 3499.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
cl2297.85 24397.64 24698.48 26499.09 29197.87 25198.60 37399.33 26097.11 25798.87 26399.22 31492.38 30399.17 32298.21 19095.99 31498.42 345
GA-MVS97.85 24397.47 26199.00 19199.38 21597.99 24298.57 37499.15 30597.04 26598.90 25799.30 30189.83 34299.38 28196.70 30798.33 22499.62 142
TinyColmap97.12 31096.89 30997.83 32299.07 29595.52 34498.57 37498.74 35897.58 20697.81 34599.79 11688.16 36199.56 25995.10 34497.21 29198.39 349
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24897.38 26998.56 37699.31 27496.65 29098.88 26099.52 23896.58 15399.12 33197.39 26895.53 32898.47 339
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37497.24 38580.01 40498.52 37799.48 15789.01 39191.99 39299.67 17985.67 37399.13 32795.44 33797.03 29596.39 392
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 30197.20 29697.75 32799.07 29595.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28798.49 336
ambc93.06 37292.68 40382.36 39798.47 37998.73 36395.09 38097.41 38655.55 40499.10 33496.42 31691.32 37697.71 378
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31697.72 25898.45 38099.32 27096.95 27298.97 24899.17 31997.06 13799.22 31397.86 22095.99 31498.29 354
CHOSEN 280x42099.12 9899.13 7699.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13496.63 15199.70 22999.46 4499.99 199.66 125
testmvs39.17 37643.78 37825.37 39336.04 41616.84 41898.36 38226.56 41520.06 40938.51 41067.32 40629.64 41315.30 41237.59 41039.90 40843.98 407
FPMVS84.93 36785.65 36882.75 38886.77 40963.39 41498.35 38398.92 33374.11 40083.39 39998.98 34150.85 40792.40 40384.54 40194.97 33992.46 398
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
miper_refine_blended94.62 34693.72 35497.31 34097.19 38795.82 33698.34 38499.20 29995.00 35497.57 34898.35 37087.95 36398.10 37892.87 37277.00 40198.01 368
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39193.67 37598.33 38699.38 23395.13 34897.33 35598.15 37692.69 29196.57 39588.67 38979.87 39997.99 371
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 21996.75 14899.86 14498.56 16199.70 12699.54 161
PAPM97.59 28397.09 30299.07 18299.06 29998.26 22898.30 38899.10 31094.88 35698.08 33299.34 29196.27 16599.64 24889.87 38598.92 19299.31 215
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39490.57 38998.24 38998.39 37495.10 35295.20 37898.67 36194.78 21997.77 38696.28 31990.02 38499.51 173
UnsupCasMVSNet_bld93.53 35492.51 35996.58 35997.38 38193.82 37098.24 38999.48 15791.10 38693.10 38896.66 39274.89 39698.37 37394.03 35987.71 38997.56 383
LCM-MVSNet86.80 36685.22 37091.53 37687.81 40880.96 40298.23 39198.99 32471.05 40190.13 39696.51 39348.45 40996.88 39490.51 38285.30 39296.76 388
cascas97.69 27297.43 27398.48 26498.60 35897.30 27098.18 39299.39 22592.96 37898.41 31398.78 35893.77 26699.27 30598.16 19698.61 20898.86 254
Effi-MVS+98.81 14598.59 15999.48 12299.46 19099.12 13998.08 39399.50 13597.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 173
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39499.25 29091.24 38598.51 30899.70 15794.55 23799.91 10592.76 37499.85 7399.42 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23694.34 36797.81 39599.70 1597.12 25497.46 35098.75 35989.71 34399.79 19197.69 24281.69 39799.68 119
E-PMN80.61 37079.88 37282.81 38790.75 40576.38 40897.69 39695.76 40266.44 40583.52 39892.25 40062.54 40187.16 40768.53 40761.40 40484.89 405
ANet_high77.30 37274.86 37684.62 38675.88 41277.61 40697.63 39793.15 41088.81 39264.27 40789.29 40436.51 41183.93 40975.89 40452.31 40692.33 400
EMVS80.02 37179.22 37382.43 38991.19 40476.40 40797.55 39892.49 41266.36 40683.01 40091.27 40264.63 40085.79 40865.82 40860.65 40585.08 404
MVEpermissive76.82 2176.91 37374.31 37784.70 38585.38 41176.05 40996.88 39993.17 40967.39 40471.28 40689.01 40521.66 41687.69 40671.74 40672.29 40390.35 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 36091.36 36290.31 37995.85 39273.72 41294.89 40099.25 29068.39 40395.82 37499.02 33680.50 39398.95 35793.64 36294.89 34398.25 357
Gipumacopyleft90.99 36190.15 36693.51 36998.73 34390.12 39093.98 40199.45 19879.32 39992.28 39194.91 39669.61 39797.98 38287.42 39495.67 32492.45 399
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 37474.97 37579.01 39070.98 41355.18 41593.37 40298.21 37965.08 40761.78 40893.83 39821.74 41592.53 40278.59 40291.12 37989.34 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 36881.52 37186.66 38466.61 41468.44 41392.79 40397.92 38368.96 40280.04 40599.85 5285.77 37296.15 39897.86 22043.89 40795.39 397
wuyk23d40.18 37541.29 38036.84 39186.18 41049.12 41679.73 40422.81 41627.64 40825.46 41128.45 41121.98 41448.89 41055.80 40923.56 41012.51 408
test_blank0.13 3810.17 3840.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4131.57 4120.00 4170.00 4130.00 4120.00 4110.00 409
uanet_test0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
DCPMVS0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
cdsmvs_eth3d_5k24.64 37832.85 3810.00 3940.00 4170.00 4190.00 40599.51 1150.00 4120.00 41399.56 22296.58 1530.00 4130.00 4120.00 4110.00 409
pcd_1.5k_mvsjas8.27 38011.03 3830.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 41399.01 180.00 4130.00 4120.00 4110.00 409
sosnet-low-res0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
sosnet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
uncertanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
Regformer0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
ab-mvs-re8.30 37911.06 3820.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 41399.58 2150.00 4170.00 4130.00 4120.00 4110.00 409
uanet0.02 3820.03 3850.00 3940.00 4170.00 4190.00 4050.00 4180.00 4120.00 4130.27 4130.00 4170.00 4130.00 4120.00 4110.00 409
WAC-MVS97.16 27895.47 336
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
PC_three_145298.18 13399.84 2999.70 15799.31 398.52 37198.30 18799.80 10199.81 61
No_MVS99.87 1199.51 17099.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
test_one_060199.81 4699.88 899.49 14498.97 5199.65 9399.81 8999.09 14
eth-test20.00 417
eth-test0.00 417
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23198.58 7299.96 3096.93 29799.75 116
IU-MVS99.84 3299.88 899.32 27098.30 11699.84 2998.86 11399.85 7399.89 20
test_241102_TWO99.48 15799.08 3399.88 2099.81 8998.94 2999.96 3098.91 10299.84 8199.88 26
test_241102_ONE99.84 3299.90 299.48 15799.07 3599.91 1699.74 14299.20 799.76 202
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11599.90 4399.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21499.52 167
sam_mvs94.72 226
MTGPAbinary99.47 177
test_post65.99 40894.65 23299.73 213
patchmatchnet-post98.70 36094.79 21899.74 207
gm-plane-assit98.54 36292.96 38094.65 36299.15 32299.64 24897.56 253
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
agg_prior99.67 11199.62 6599.40 22298.87 26399.91 105
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19198.43 8399.94 6996.92 29999.66 13299.72 103
旧先验199.74 8099.59 7099.54 8599.69 16798.47 8099.68 13099.73 97
原ACMM199.65 7399.73 8799.33 10699.47 17797.46 22099.12 21999.66 18498.67 6699.91 10597.70 24199.69 12799.71 112
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 9999.75 7398.95 16599.51 11597.07 26099.43 14599.70 15798.87 3799.94 6997.76 23299.64 13599.72 103
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
plane_prior799.29 24197.03 291
plane_prior699.27 24696.98 29592.71 289
plane_prior599.47 17799.69 23497.78 22897.63 26098.67 294
plane_prior499.61 206
plane_prior397.00 29398.69 7999.11 221
plane_prior199.26 248
n20.00 418
nn0.00 418
door-mid98.05 382
lessismore_v097.79 32698.69 34995.44 34794.75 40595.71 37599.87 4388.69 35399.32 29795.89 32594.93 34198.62 315
LGP-MVS_train98.49 26299.33 22997.05 28799.55 7797.46 22099.24 19499.83 6692.58 29499.72 21798.09 19997.51 27198.68 287
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 306
HQP3-MVS99.39 22597.58 265
HQP2-MVS92.47 298
NP-MVS99.23 25496.92 30199.40 273
ACMMP++_ref97.19 292
ACMMP++97.43 282
Test By Simon98.75 55
ITE_SJBPF98.08 30499.29 24196.37 32398.92 33398.34 11298.83 26899.75 13791.09 32899.62 25495.82 32697.40 28498.25 357
DeepMVS_CXcopyleft93.34 37099.29 24182.27 39899.22 29585.15 39596.33 36999.05 33290.97 33099.73 21393.57 36397.77 25598.01 368