This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2399.48 1899.54 10499.76 6699.42 10199.90 199.55 7898.56 9499.78 5499.70 16298.65 7199.79 19999.65 2599.78 11199.41 209
mmtdpeth96.95 32396.71 32297.67 34299.33 23694.90 36999.89 299.28 29098.15 14299.72 7598.57 37686.56 38199.90 12699.82 1689.02 40098.20 370
SPE-MVS-test99.49 2599.48 1899.54 10499.78 5699.30 11799.89 299.58 6298.56 9499.73 7099.69 17298.55 7899.82 18499.69 2199.85 7599.48 188
MVSFormer99.17 8699.12 7999.29 16299.51 17698.94 17199.88 499.46 19197.55 21999.80 4799.65 19297.39 12199.28 31199.03 9399.85 7599.65 133
test_djsdf98.67 16498.57 16498.98 19998.70 36098.91 17599.88 499.46 19197.55 21999.22 20599.88 3995.73 18799.28 31199.03 9397.62 26998.75 277
OurMVSNet-221017-097.88 24497.77 23598.19 30498.71 35996.53 32699.88 499.00 33297.79 19198.78 28399.94 691.68 32299.35 30197.21 28796.99 30498.69 293
EC-MVSNet99.44 4299.39 3299.58 9799.56 16099.49 9299.88 499.58 6298.38 11199.73 7099.69 17298.20 9999.70 23799.64 2799.82 9699.54 168
DVP-MVS++99.59 1199.50 1699.88 899.51 17699.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12299.80 10399.81 64
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 43
K. test v397.10 32096.79 32098.01 31798.72 35796.33 33399.87 897.05 40497.59 21396.16 38399.80 10888.71 36199.04 34996.69 31896.55 31098.65 315
FC-MVSNet-test98.75 15798.62 15799.15 18399.08 30499.45 9899.86 1199.60 5498.23 13298.70 29599.82 8196.80 14499.22 32399.07 8996.38 31398.79 268
v7n97.87 24697.52 26298.92 21098.76 35398.58 20899.84 1299.46 19196.20 33598.91 26299.70 16294.89 21799.44 28296.03 33393.89 37098.75 277
DTE-MVSNet97.51 29897.19 30698.46 27698.63 36698.13 24099.84 1299.48 16196.68 29797.97 34899.67 18592.92 28598.56 38296.88 31192.60 38698.70 289
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29399.66 5699.84 1299.74 1099.09 3698.92 26199.90 2795.94 17899.98 1398.95 10299.92 2799.79 77
FIs98.78 15498.63 15299.23 17399.18 27799.54 8399.83 1599.59 5898.28 12398.79 28299.81 9596.75 14799.37 29499.08 8896.38 31398.78 269
MGCFI-Net99.01 12598.85 12899.50 12599.42 20999.26 12399.82 1699.48 16198.60 9199.28 18998.81 36597.04 13799.76 21099.29 6697.87 25899.47 194
test_fmvs392.10 37191.77 37493.08 38596.19 40486.25 40599.82 1698.62 38196.65 30095.19 39196.90 40555.05 42095.93 41296.63 32390.92 39497.06 401
jajsoiax98.43 17698.28 18398.88 22198.60 37098.43 22699.82 1699.53 10098.19 13798.63 30799.80 10893.22 28099.44 28299.22 7397.50 28198.77 273
OpenMVScopyleft96.50 1698.47 17398.12 19499.52 11899.04 31199.53 8699.82 1699.72 1194.56 37498.08 34199.88 3994.73 22999.98 1397.47 27299.76 11799.06 249
SDMVSNet99.11 10698.90 11899.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10499.88 3994.56 23999.93 9099.67 2398.26 23799.72 106
nrg03098.64 16798.42 17399.28 16699.05 31099.69 5099.81 2099.46 19198.04 16599.01 24699.82 8196.69 14999.38 29199.34 6094.59 35798.78 269
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21399.68 8399.63 20498.91 3799.94 7298.58 16399.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9598.99 10299.53 11299.65 13099.06 15099.81 2099.33 26697.43 23699.60 11799.88 3997.14 13199.84 16499.13 8198.94 19599.69 119
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28599.68 5199.81 2099.51 11999.20 1898.72 28899.89 3295.68 18999.97 2198.86 12099.86 6899.81 64
sasdasda99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
FA-MVS(test-final)98.75 15798.53 16899.41 13899.55 16499.05 15299.80 2599.01 33196.59 31099.58 12199.59 21895.39 19799.90 12697.78 23899.49 15299.28 226
GeoE98.85 14698.62 15799.53 11299.61 14599.08 14799.80 2599.51 11997.10 26899.31 18299.78 12795.23 20699.77 20698.21 20099.03 19099.75 91
canonicalmvs99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
v897.95 23597.63 25398.93 20898.95 32598.81 18999.80 2599.41 22196.03 34999.10 23099.42 27594.92 21599.30 30996.94 30694.08 36798.66 313
Vis-MVSNet (Re-imp)98.87 13698.72 14199.31 15499.71 9998.88 17799.80 2599.44 21097.91 17599.36 17399.78 12795.49 19599.43 28697.91 22599.11 18199.62 147
Anonymous2024052196.20 33995.89 34297.13 35797.72 39194.96 36899.79 3199.29 28893.01 38897.20 36899.03 34589.69 35198.36 38691.16 39396.13 31998.07 377
PS-MVSNAJss98.92 13298.92 11598.90 21698.78 34698.53 21299.78 3299.54 8798.07 15899.00 25099.76 13999.01 1899.37 29499.13 8197.23 29798.81 267
PEN-MVS97.76 26697.44 27898.72 24598.77 35198.54 21199.78 3299.51 11997.06 27298.29 33199.64 19892.63 29898.89 37398.09 20993.16 37898.72 282
anonymousdsp98.44 17598.28 18398.94 20698.50 37698.96 16599.77 3499.50 13997.07 27098.87 27099.77 13594.76 22799.28 31198.66 14997.60 27098.57 341
SixPastTwentyTwo97.50 29997.33 29598.03 31498.65 36496.23 33899.77 3498.68 37897.14 26197.90 34999.93 990.45 34099.18 33197.00 30096.43 31298.67 305
QAPM98.67 16498.30 18299.80 4999.20 27199.67 5499.77 3499.72 1194.74 37198.73 28799.90 2795.78 18599.98 1396.96 30499.88 5799.76 90
SSC-MVS92.73 37093.73 36589.72 39595.02 41481.38 41599.76 3799.23 30094.87 36892.80 40298.93 35794.71 23191.37 41974.49 41893.80 37196.42 405
test_vis3_rt87.04 37885.81 38190.73 39293.99 41681.96 41399.76 3790.23 42792.81 39181.35 41591.56 41540.06 42499.07 34694.27 36788.23 40291.15 415
dcpmvs_299.23 8099.58 798.16 30699.83 3994.68 37299.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
RRT-MVS98.91 13398.75 13999.39 14399.46 19998.61 20699.76 3799.50 13998.06 16299.81 4399.88 3993.91 26699.94 7299.11 8399.27 16999.61 149
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19999.76 6499.75 14299.13 1299.92 10299.07 8999.92 2799.85 36
MVSMamba_PlusPlus99.46 3499.41 2999.64 8399.68 11299.50 9199.75 4299.50 13998.27 12599.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 194
v1097.85 24997.52 26298.86 22898.99 31898.67 19899.75 4299.41 22195.70 35398.98 25299.41 27994.75 22899.23 31996.01 33594.63 35698.67 305
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7399.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11798.87 12499.57 9999.73 9099.32 11199.75 4299.20 30698.02 16899.56 12599.86 5296.54 15599.67 24598.09 20999.13 18099.73 100
test_vis1_n97.92 23997.44 27899.34 14799.53 16898.08 24299.74 4699.49 14999.15 21100.00 199.94 679.51 40899.98 1399.88 1399.76 11799.97 4
test_fmvs1_n98.41 17998.14 19199.21 17499.82 4297.71 26799.74 4699.49 14999.32 1499.99 299.95 385.32 38999.97 2199.82 1699.84 8399.96 7
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10899.87 2999.84 6798.05 10799.91 11499.58 3199.94 2399.52 175
tttt051798.42 17798.14 19199.28 16699.66 12498.38 22999.74 4696.85 40697.68 20599.79 4999.74 14791.39 33099.89 13898.83 12899.56 14699.57 163
WB-MVS93.10 36894.10 36190.12 39495.51 41281.88 41499.73 5099.27 29395.05 36493.09 40198.91 36194.70 23291.89 41876.62 41694.02 36996.58 404
test_fmvs297.25 31497.30 29897.09 35999.43 20793.31 39099.73 5098.87 35498.83 6899.28 18999.80 10884.45 39499.66 24897.88 22797.45 28698.30 363
MonoMVSNet98.38 18398.47 17198.12 31198.59 37296.19 34099.72 5298.79 36497.89 17799.44 15099.52 24596.13 16998.90 37298.64 15197.54 27699.28 226
baseline99.15 9099.02 9699.53 11299.66 12499.14 13999.72 5299.48 16198.35 11699.42 15599.84 6796.07 17199.79 19999.51 4099.14 17999.67 126
RPSCF98.22 19498.62 15796.99 36099.82 4291.58 39999.72 5299.44 21096.61 30599.66 9299.89 3295.92 17999.82 18497.46 27399.10 18499.57 163
CSCG99.32 6499.32 4699.32 15399.85 2698.29 23199.71 5599.66 2898.11 15099.41 15999.80 10898.37 9299.96 3298.99 9799.96 1299.72 106
dmvs_re98.08 21198.16 18897.85 33099.55 16494.67 37399.70 5698.92 34298.15 14299.06 24099.35 29893.67 27499.25 31697.77 24197.25 29699.64 140
WR-MVS_H98.13 20597.87 22598.90 21699.02 31398.84 18399.70 5699.59 5897.27 25098.40 32399.19 32995.53 19399.23 31998.34 19193.78 37298.61 335
mvsmamba99.06 11598.96 11099.36 14599.47 19798.64 20299.70 5699.05 32697.61 21299.65 9999.83 7296.54 15599.92 10299.19 7599.62 14199.51 182
LTVRE_ROB97.16 1298.02 22397.90 22098.40 28699.23 26496.80 31599.70 5699.60 5497.12 26498.18 33899.70 16291.73 32199.72 22598.39 18497.45 28698.68 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 37291.26 37693.84 38195.52 41185.92 40699.69 6098.53 38595.31 35893.87 39796.37 40855.33 41998.27 38795.70 34190.98 39397.32 400
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17099.74 14798.81 4799.94 7298.79 13399.86 6899.84 42
X-MVStestdata96.55 33195.45 35099.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17064.01 42498.81 4799.94 7298.79 13399.86 6899.84 42
V4298.06 21397.79 23098.86 22898.98 32198.84 18399.69 6099.34 25996.53 31299.30 18599.37 29294.67 23499.32 30697.57 26294.66 35598.42 355
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14899.50 13799.75 14298.78 5199.97 2198.57 16699.89 5499.83 52
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15899.53 13299.63 20498.93 3699.97 2198.74 13799.91 3499.83 52
FE-MVS98.48 17298.17 18799.40 13999.54 16798.96 16599.68 6698.81 36195.54 35599.62 11199.70 16293.82 26999.93 9097.35 28199.46 15399.32 223
PS-CasMVS97.93 23697.59 25798.95 20498.99 31899.06 15099.68 6699.52 10597.13 26298.31 32899.68 17992.44 30799.05 34898.51 17494.08 36798.75 277
Vis-MVSNetpermissive99.12 10198.97 10699.56 10199.78 5699.10 14399.68 6699.66 2898.49 10099.86 3399.87 4894.77 22699.84 16499.19 7599.41 15799.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BP-MVS199.12 10198.94 11499.65 7799.51 17699.30 11799.67 6998.92 34298.48 10199.84 3599.69 17294.96 21199.92 10299.62 2899.79 11099.71 115
test_vis1_n_192098.63 16898.40 17599.31 15499.86 2097.94 25499.67 6999.62 4199.43 799.99 299.91 2087.29 378100.00 199.92 1199.92 2799.98 2
EIA-MVS99.18 8499.09 8499.45 13299.49 18999.18 13199.67 6999.53 10097.66 20899.40 16499.44 27198.10 10399.81 18998.94 10399.62 14199.35 218
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5899.49 25598.21 9899.95 6298.46 18099.77 11499.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 11098.97 10699.48 12699.49 18999.14 13999.67 6999.34 25997.31 24799.58 12199.76 13997.65 11799.82 18498.87 11599.07 18799.46 199
CP-MVSNet98.09 20997.78 23399.01 19598.97 32399.24 12699.67 6999.46 19197.25 25298.48 32099.64 19893.79 27099.06 34798.63 15394.10 36698.74 280
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18298.79 7499.68 8399.81 9598.43 8699.97 2198.88 11299.90 4399.83 52
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7599.67 2398.15 14299.68 8399.69 17299.06 1699.96 3298.69 14599.87 6099.84 42
mvs_tets98.40 18298.23 18598.91 21498.67 36398.51 21899.66 7599.53 10098.19 13798.65 30499.81 9592.75 28999.44 28299.31 6397.48 28598.77 273
EU-MVSNet97.98 23098.03 20697.81 33698.72 35796.65 32299.66 7599.66 2898.09 15398.35 32699.82 8195.25 20598.01 39397.41 27795.30 34398.78 269
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7599.67 2398.15 14299.67 8799.69 17298.95 3099.96 3298.69 14599.87 6099.84 42
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7599.46 19198.09 15399.48 14199.74 14798.29 9599.96 3297.93 22499.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8899.01 10099.61 9199.81 4698.86 18199.65 8199.64 3699.39 1099.97 1399.94 693.20 28199.98 1399.55 3499.91 3499.99 1
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8199.66 2898.13 14799.66 9299.68 17998.96 2599.96 3298.62 15499.87 6099.84 42
TranMVSNet+NR-MVSNet97.93 23697.66 24898.76 24398.78 34698.62 20499.65 8199.49 14997.76 19598.49 31999.60 21694.23 25298.97 36598.00 22092.90 38098.70 289
GDP-MVS99.08 11298.89 12199.64 8399.53 16899.34 10999.64 8499.48 16198.32 12099.77 5899.66 19095.14 20899.93 9098.97 10199.50 15199.64 140
ttmdpeth97.80 26297.63 25398.29 29698.77 35197.38 27799.64 8499.36 24798.78 7796.30 38199.58 22292.34 31099.39 28998.36 18995.58 33698.10 375
mvsany_test393.77 36593.45 36994.74 37895.78 40788.01 40499.64 8498.25 38998.28 12394.31 39597.97 39768.89 41298.51 38497.50 26890.37 39597.71 392
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8499.67 2398.08 15799.55 12999.64 19898.91 3799.96 3298.72 14099.90 4399.82 57
tfpnnormal97.84 25397.47 27098.98 19999.20 27199.22 12899.64 8499.61 4896.32 32698.27 33299.70 16293.35 27799.44 28295.69 34295.40 34198.27 365
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10399.66 12499.09 14499.64 8499.56 7098.26 12799.45 14599.87 4896.03 17399.81 18999.54 3599.15 17899.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.53 7999.95 6298.61 15799.81 9999.77 85
RE-MVS-def99.34 4299.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.75 5898.61 15799.81 9999.77 85
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 9099.39 23098.91 6299.78 5499.85 5799.36 299.94 7298.84 12599.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 33796.03 33896.79 36897.31 39794.14 38099.63 9099.08 32096.17 33897.04 37299.06 34293.94 26397.76 39986.96 40895.06 34898.47 349
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 9099.54 8798.36 11599.79 4999.82 8198.86 4199.95 6298.62 15499.81 9999.78 83
test072699.85 2699.89 499.62 9599.50 13999.10 3199.86 3399.82 8198.94 32
EPNet98.86 13998.71 14399.30 15997.20 39998.18 23699.62 9598.91 34799.28 1698.63 30799.81 9595.96 17599.99 499.24 7299.72 12599.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 13198.67 14799.72 6999.85 2699.53 8699.62 9599.59 5892.65 39399.71 7799.78 12798.06 10699.90 12698.84 12599.91 3499.74 95
HY-MVS97.30 798.85 14698.64 15199.47 12999.42 20999.08 14799.62 9599.36 24797.39 24199.28 18999.68 17996.44 16199.92 10298.37 18798.22 23999.40 211
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9599.69 1898.12 14899.63 10799.84 6798.73 6399.96 3298.55 17299.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6699.19 7399.64 8399.82 4299.23 12799.62 9599.55 7898.94 5899.63 10799.95 395.82 18499.94 7299.37 5499.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8399.78 5699.15 13899.61 10199.45 20299.01 4499.89 2199.82 8199.01 1899.92 10299.56 3399.95 1799.85 36
reproduce_monomvs97.89 24397.87 22597.96 32399.51 17695.45 35699.60 10299.25 29699.17 1998.85 27599.49 25589.29 35599.64 25699.35 5596.31 31698.78 269
test250696.81 32796.65 32397.29 35499.74 8392.21 39799.60 10285.06 42899.13 2499.77 5899.93 987.82 37699.85 15799.38 5399.38 15899.80 73
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10299.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10999.85 7599.79 77
OPU-MVS99.64 8399.56 16099.72 4599.60 10299.70 16299.27 599.42 28798.24 19999.80 10399.79 77
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10299.67 2397.97 17099.63 10799.68 17998.52 8099.95 6298.38 18599.86 6899.81 64
EI-MVSNet-UG-set99.58 1299.57 899.64 8399.78 5699.14 13999.60 10299.45 20299.01 4499.90 1999.83 7298.98 2499.93 9099.59 2999.95 1799.86 32
ACMH97.28 898.10 20897.99 21098.44 28199.41 21496.96 30799.60 10299.56 7098.09 15398.15 33999.91 2090.87 33799.70 23798.88 11297.45 28698.67 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21998.05 20498.00 31999.74 8394.37 37799.59 10994.98 41699.13 2499.66 9299.93 990.67 33999.84 16499.40 5299.38 15899.80 73
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10999.62 4198.21 13599.73 7099.79 12098.68 6799.96 3298.44 18299.77 11499.79 77
thres100view90097.76 26697.45 27398.69 24999.72 9497.86 25899.59 10998.74 36997.93 17399.26 19898.62 37391.75 31999.83 17793.22 37898.18 24498.37 361
thres600view797.86 24897.51 26498.92 21099.72 9497.95 25299.59 10998.74 36997.94 17299.27 19498.62 37391.75 31999.86 15193.73 37398.19 24398.96 260
LCM-MVSNet-Re97.83 25598.15 19096.87 36699.30 24592.25 39699.59 10998.26 38897.43 23696.20 38299.13 33596.27 16698.73 37998.17 20598.99 19399.64 140
baseline198.31 18897.95 21599.38 14499.50 18798.74 19399.59 10998.93 33998.41 10999.14 22299.60 21694.59 23799.79 19998.48 17693.29 37699.61 149
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10999.51 11998.62 8999.79 4999.83 7299.28 499.97 2198.48 17699.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10698.90 11899.74 6499.80 5299.46 9799.59 10999.49 14997.03 27699.63 10799.69 17297.27 12999.96 3297.82 23599.84 8399.81 64
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22499.37 10599.58 11799.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
dmvs_testset95.02 35496.12 33591.72 38999.10 29880.43 41799.58 11797.87 39797.47 22895.22 38998.82 36493.99 26195.18 41488.09 40494.91 35399.56 165
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11799.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test111198.04 21998.11 19597.83 33399.74 8393.82 38299.58 11795.40 41599.12 2999.65 9999.93 990.73 33899.84 16499.43 5199.38 15899.82 57
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11799.65 3397.84 18599.71 7799.80 10899.12 1399.97 2198.33 19299.87 6099.83 52
LPG-MVS_test98.22 19498.13 19398.49 26899.33 23697.05 29699.58 11799.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11799.80 897.12 26499.62 11199.73 15398.58 7599.90 12698.61 15799.91 3499.68 123
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12499.54 8797.82 19099.71 7799.80 10898.95 3099.93 9098.19 20299.84 8399.74 95
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12499.37 24699.10 3199.81 4399.80 10898.94 3299.96 3298.93 10699.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 11999.96 3298.93 10699.86 6899.88 25
Effi-MVS+-dtu98.78 15498.89 12198.47 27599.33 23696.91 30999.57 12499.30 28498.47 10299.41 15998.99 35096.78 14599.74 21598.73 13999.38 15898.74 280
v2v48298.06 21397.77 23598.92 21098.90 33098.82 18799.57 12499.36 24796.65 30099.19 21499.35 29894.20 25399.25 31697.72 24894.97 35098.69 293
DSMNet-mixed97.25 31497.35 29096.95 36397.84 38793.61 38899.57 12496.63 41096.13 34398.87 27098.61 37594.59 23797.70 40095.08 35698.86 20299.55 166
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 13099.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8399.91 3499.86 32
MVStest196.08 34395.48 34897.89 32898.93 32696.70 31799.56 13099.35 25492.69 39291.81 40699.46 26889.90 34898.96 36795.00 35892.61 38598.00 384
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 13099.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 13099.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
sd_testset98.75 15798.57 16499.29 16299.81 4698.26 23399.56 13099.62 4198.78 7799.64 10499.88 3992.02 31399.88 14399.54 3598.26 23799.72 106
KD-MVS_self_test95.00 35594.34 36096.96 36297.07 40295.39 35999.56 13099.44 21095.11 36197.13 37097.32 40391.86 31797.27 40490.35 39681.23 41298.23 369
ETV-MVS99.26 7499.21 7199.40 13999.46 19999.30 11799.56 13099.52 10598.52 9899.44 15099.27 31998.41 9099.86 15199.10 8699.59 14499.04 250
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 13099.47 18297.45 23299.78 5499.82 8199.18 1099.91 11498.79 13399.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13698.72 14199.31 15499.86 2098.48 22299.56 13099.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
casdiffmvspermissive99.13 9598.98 10599.56 10199.65 13099.16 13499.56 13099.50 13998.33 11999.41 15999.86 5295.92 17999.83 17799.45 5099.16 17599.70 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 18398.09 19999.24 17199.26 25699.32 11199.56 13099.55 7897.45 23298.71 28999.83 7293.23 27899.63 26298.88 11296.32 31598.76 275
ACMH+97.24 1097.92 23997.78 23398.32 29399.46 19996.68 32199.56 13099.54 8798.41 10997.79 35599.87 4890.18 34699.66 24898.05 21797.18 30098.62 326
ACMM97.58 598.37 18598.34 17898.48 27099.41 21497.10 29099.56 13099.45 20298.53 9799.04 24399.85 5793.00 28399.71 23198.74 13797.45 28698.64 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7299.12 7999.74 6499.18 27799.75 4299.56 13099.57 6598.45 10499.49 14099.85 5797.77 11499.94 7298.33 19299.84 8399.52 175
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37999.48 9499.55 14499.51 11999.39 1099.78 5499.93 994.80 22199.95 6299.93 1099.95 1799.94 11
test_fmvs198.88 13598.79 13699.16 17999.69 10897.61 27199.55 14499.49 14999.32 1499.98 699.91 2091.41 32999.96 3299.82 1699.92 2799.90 16
v14419297.92 23997.60 25698.87 22598.83 34198.65 20099.55 14499.34 25996.20 33599.32 18199.40 28394.36 24899.26 31596.37 32995.03 34998.70 289
API-MVS99.04 11899.03 9299.06 18999.40 21999.31 11599.55 14499.56 7098.54 9699.33 18099.39 28798.76 5599.78 20496.98 30299.78 11198.07 377
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17399.62 6899.54 14899.62 4198.69 8499.99 299.96 194.47 24599.94 7299.88 1399.92 2799.98 2
APD_test195.87 34596.49 32794.00 38099.53 16884.01 40999.54 14899.32 27695.91 35197.99 34699.85 5785.49 38799.88 14391.96 38998.84 20498.12 374
thisisatest053098.35 18698.03 20699.31 15499.63 13598.56 20999.54 14896.75 40897.53 22399.73 7099.65 19291.25 33399.89 13898.62 15499.56 14699.48 188
MTMP99.54 14898.88 352
v114497.98 23097.69 24598.85 23198.87 33598.66 19999.54 14899.35 25496.27 33099.23 20499.35 29894.67 23499.23 31996.73 31595.16 34698.68 298
v14897.79 26497.55 25898.50 26798.74 35497.72 26499.54 14899.33 26696.26 33198.90 26499.51 24994.68 23399.14 33497.83 23493.15 37998.63 324
CostFormer97.72 27697.73 24297.71 34099.15 29194.02 38199.54 14899.02 33094.67 37299.04 24399.35 29892.35 30999.77 20698.50 17597.94 25499.34 221
MVSTER98.49 17198.32 18099.00 19799.35 23199.02 15499.54 14899.38 23897.41 23999.20 21199.73 15393.86 26899.36 29898.87 11597.56 27498.62 326
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15699.62 4198.74 8099.99 299.95 394.53 24399.94 7299.89 1299.96 1299.97 4
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15799.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
MM99.40 5499.28 6099.74 6499.67 11499.31 11599.52 15798.87 35499.55 199.74 6899.80 10896.47 15899.98 1399.97 199.97 799.94 11
patch_mono-299.26 7499.62 598.16 30699.81 4694.59 37499.52 15799.64 3699.33 1399.73 7099.90 2799.00 2299.99 499.69 2199.98 499.89 19
Fast-Effi-MVS+-dtu98.77 15698.83 13298.60 25499.41 21496.99 30399.52 15799.49 14998.11 15099.24 20099.34 30296.96 14199.79 19997.95 22399.45 15499.02 253
Fast-Effi-MVS+98.70 16198.43 17299.51 12099.51 17699.28 12099.52 15799.47 18296.11 34499.01 24699.34 30296.20 16899.84 16497.88 22798.82 20699.39 212
v192192097.80 26297.45 27398.84 23298.80 34298.53 21299.52 15799.34 25996.15 34199.24 20099.47 26493.98 26299.29 31095.40 35095.13 34798.69 293
MIMVSNet195.51 34995.04 35496.92 36597.38 39495.60 34999.52 15799.50 13993.65 38296.97 37499.17 33085.28 39096.56 40988.36 40395.55 33898.60 338
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16699.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
UniMVSNet_ETH3D97.32 31196.81 31998.87 22599.40 21997.46 27499.51 16699.53 10095.86 35298.54 31699.77 13582.44 40299.66 24898.68 14797.52 27899.50 186
alignmvs98.81 15098.56 16699.58 9799.43 20799.42 10199.51 16698.96 33798.61 9099.35 17698.92 36094.78 22399.77 20699.35 5598.11 24999.54 168
v119297.81 26097.44 27898.91 21498.88 33298.68 19799.51 16699.34 25996.18 33799.20 21199.34 30294.03 26099.36 29895.32 35295.18 34598.69 293
test20.0396.12 34195.96 34096.63 36997.44 39395.45 35699.51 16699.38 23896.55 31196.16 38399.25 32293.76 27296.17 41087.35 40794.22 36398.27 365
mvs_anonymous99.03 12098.99 10299.16 17999.38 22498.52 21699.51 16699.38 23897.79 19199.38 16899.81 9597.30 12799.45 27799.35 5598.99 19399.51 182
TAMVS99.12 10199.08 8599.24 17199.46 19998.55 21099.51 16699.46 19198.09 15399.45 14599.82 8198.34 9399.51 27298.70 14298.93 19699.67 126
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20699.65 6099.50 17399.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
test_yl98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
DCV-MVSNet98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
tfpn200view997.72 27697.38 28698.72 24599.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.37 361
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17399.70 1598.79 7499.77 5899.96 197.45 12099.96 3298.92 10899.90 4399.89 19
pm-mvs197.68 28397.28 30198.88 22199.06 30798.62 20499.50 17399.45 20296.32 32697.87 35199.79 12092.47 30399.35 30197.54 26593.54 37498.67 305
EI-MVSNet98.67 16498.67 14798.68 25099.35 23197.97 24899.50 17399.38 23896.93 28599.20 21199.83 7297.87 11099.36 29898.38 18597.56 27498.71 284
CVMVSNet98.57 17098.67 14798.30 29599.35 23195.59 35099.50 17399.55 7898.60 9199.39 16699.83 7294.48 24499.45 27798.75 13698.56 22099.85 36
VPA-MVSNet98.29 19197.95 21599.30 15999.16 28799.54 8399.50 17399.58 6298.27 12599.35 17699.37 29292.53 30199.65 25399.35 5594.46 35898.72 282
thres40097.77 26597.38 28698.92 21099.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.96 260
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17399.50 13997.16 26099.77 5899.82 8198.78 5199.94 7297.56 26399.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 34795.65 34696.32 37399.67 11491.35 40099.49 18496.74 40998.25 12895.24 38898.10 39474.96 40999.90 12699.53 3798.85 20397.70 394
TransMVSNet (Re)97.15 31896.58 32498.86 22899.12 29398.85 18299.49 18498.91 34795.48 35697.16 36999.80 10893.38 27699.11 34294.16 37091.73 38898.62 326
UniMVSNet (Re)98.29 19198.00 20999.13 18499.00 31599.36 10899.49 18499.51 11997.95 17198.97 25499.13 33596.30 16599.38 29198.36 18993.34 37598.66 313
EPMVS97.82 25897.65 24998.35 29098.88 33295.98 34399.49 18494.71 41897.57 21699.26 19899.48 26192.46 30699.71 23197.87 22999.08 18699.35 218
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18899.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
Anonymous2023121197.88 24497.54 26198.90 21699.71 9998.53 21299.48 18899.57 6594.16 37798.81 27899.68 17993.23 27899.42 28798.84 12594.42 36098.76 275
v124097.69 28197.32 29698.79 24098.85 33998.43 22699.48 18899.36 24796.11 34499.27 19499.36 29593.76 27299.24 31894.46 36495.23 34498.70 289
VPNet97.84 25397.44 27899.01 19599.21 26998.94 17199.48 18899.57 6598.38 11199.28 18999.73 15388.89 35899.39 28999.19 7593.27 37798.71 284
UniMVSNet_NR-MVSNet98.22 19497.97 21298.96 20298.92 32898.98 15899.48 18899.53 10097.76 19598.71 28999.46 26896.43 16299.22 32398.57 16692.87 38298.69 293
TDRefinement95.42 35194.57 35897.97 32189.83 42196.11 34299.48 18898.75 36696.74 29396.68 37799.88 3988.65 36499.71 23198.37 18782.74 41098.09 376
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19499.48 16198.05 16499.76 6499.86 5298.82 4699.93 9098.82 13299.91 3499.84 42
NR-MVSNet97.97 23397.61 25599.02 19498.87 33599.26 12399.47 19499.42 21897.63 21097.08 37199.50 25295.07 21099.13 33797.86 23093.59 37398.68 298
PVSNet_Blended_VisFu99.36 5999.28 6099.61 9199.86 2099.07 14999.47 19499.93 297.66 20899.71 7799.86 5297.73 11599.96 3299.47 4899.82 9699.79 77
SD-MVS99.41 5199.52 1299.05 19199.74 8399.68 5199.46 19799.52 10599.11 3099.88 2499.91 2099.43 197.70 40098.72 14099.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 31296.76 32198.82 23499.37 22798.07 24399.45 19899.36 24797.56 21897.89 35098.95 35583.70 39798.82 37496.03 33398.56 22099.58 160
tt080597.97 23397.77 23598.57 25999.59 15296.61 32499.45 19899.08 32098.21 13598.88 26799.80 10888.66 36399.70 23798.58 16397.72 26499.39 212
tpm297.44 30697.34 29397.74 33999.15 29194.36 37899.45 19898.94 33893.45 38698.90 26499.44 27191.35 33199.59 26697.31 28298.07 25099.29 225
FMVSNet297.72 27697.36 28898.80 23999.51 17698.84 18399.45 19899.42 21896.49 31498.86 27499.29 31490.26 34298.98 35896.44 32696.56 30998.58 340
CDS-MVSNet99.09 11199.03 9299.25 16999.42 20998.73 19499.45 19899.46 19198.11 15099.46 14499.77 13598.01 10899.37 29498.70 14298.92 19899.66 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 13998.63 15299.54 10499.37 22799.66 5699.45 19899.54 8796.61 30599.01 24699.40 28397.09 13399.86 15197.68 25399.53 14999.10 238
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 13698.69 14599.40 13999.22 26898.72 19599.44 20499.68 2099.24 1799.18 21899.42 27592.74 29199.96 3299.34 6099.94 2399.53 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 13998.63 15299.54 10499.64 13299.19 12999.44 20499.54 8797.77 19499.30 18599.81 9594.20 25399.93 9099.17 7998.82 20699.49 187
test_040296.64 33096.24 33297.85 33098.85 33996.43 33099.44 20499.26 29493.52 38396.98 37399.52 24588.52 36799.20 33092.58 38897.50 28197.93 389
ACMP97.20 1198.06 21397.94 21798.45 27899.37 22797.01 30199.44 20499.49 14997.54 22298.45 32199.79 12091.95 31599.72 22597.91 22597.49 28498.62 326
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 27898.55 37498.16 23799.43 20893.68 42097.23 36698.46 37889.30 35499.22 32395.43 34998.22 23997.98 386
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20899.51 11998.68 8699.27 19499.53 24298.64 7299.96 3298.44 18299.80 10399.79 77
tpm cat197.39 30897.36 28897.50 34999.17 28593.73 38499.43 20899.31 28091.27 39798.71 28999.08 33994.31 25199.77 20696.41 32898.50 22499.00 254
tpm97.67 28697.55 25898.03 31499.02 31395.01 36699.43 20898.54 38496.44 32099.12 22599.34 30291.83 31899.60 26597.75 24496.46 31199.48 188
GBi-Net97.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
test197.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
FMVSNet196.84 32696.36 33098.29 29699.32 24397.26 28399.43 20899.48 16195.11 36198.55 31599.32 30983.95 39698.98 35895.81 33896.26 31798.62 326
mamv499.33 6299.42 2599.07 18799.67 11497.73 26299.42 21599.60 5498.15 14299.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 168
testgi97.65 28897.50 26598.13 31099.36 23096.45 32999.42 21599.48 16197.76 19597.87 35199.45 27091.09 33498.81 37594.53 36398.52 22399.13 237
F-COLMAP99.19 8299.04 9099.64 8399.78 5699.27 12299.42 21599.54 8797.29 24999.41 15999.59 21898.42 8899.93 9098.19 20299.69 13099.73 100
Anonymous20240521198.30 19097.98 21199.26 16899.57 15698.16 23799.41 21898.55 38396.03 34999.19 21499.74 14791.87 31699.92 10299.16 8098.29 23699.70 117
MSLP-MVS++99.46 3499.47 2099.44 13699.60 15099.16 13499.41 21899.71 1398.98 5299.45 14599.78 12799.19 999.54 27199.28 6799.84 8399.63 145
VNet99.11 10698.90 11899.73 6799.52 17399.56 7999.41 21899.39 23099.01 4499.74 6899.78 12795.56 19299.92 10299.52 3998.18 24499.72 106
baseline297.87 24697.55 25898.82 23499.18 27798.02 24599.41 21896.58 41296.97 27996.51 37899.17 33093.43 27599.57 26797.71 24999.03 19098.86 264
DU-MVS98.08 21197.79 23098.96 20298.87 33598.98 15899.41 21899.45 20297.87 17998.71 28999.50 25294.82 21999.22 32398.57 16692.87 38298.68 298
Baseline_NR-MVSNet97.76 26697.45 27398.68 25099.09 30198.29 23199.41 21898.85 35695.65 35498.63 30799.67 18594.82 21999.10 34498.07 21692.89 38198.64 317
XVG-ACMP-BASELINE97.83 25597.71 24498.20 30399.11 29596.33 33399.41 21899.52 10598.06 16299.05 24299.50 25289.64 35299.73 22197.73 24697.38 29398.53 343
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21899.50 13997.03 27699.04 24399.88 3997.39 12199.92 10298.66 14999.90 4399.87 30
9.1499.10 8199.72 9499.40 22699.51 11997.53 22399.64 10499.78 12798.84 4499.91 11497.63 25499.82 96
D2MVS98.41 17998.50 16998.15 30999.26 25696.62 32399.40 22699.61 4897.71 20098.98 25299.36 29596.04 17299.67 24598.70 14297.41 29198.15 373
Anonymous2024052998.09 20997.68 24699.34 14799.66 12498.44 22599.40 22699.43 21693.67 38199.22 20599.89 3290.23 34599.93 9099.26 7198.33 23199.66 129
FMVSNet398.03 22197.76 23998.84 23299.39 22298.98 15899.40 22699.38 23896.67 29899.07 23599.28 31692.93 28498.98 35897.10 29596.65 30698.56 342
LFMVS97.90 24297.35 29099.54 10499.52 17399.01 15699.39 23098.24 39097.10 26899.65 9999.79 12084.79 39299.91 11499.28 6798.38 22899.69 119
HQP_MVS98.27 19398.22 18698.44 28199.29 24996.97 30599.39 23099.47 18298.97 5599.11 22799.61 21392.71 29499.69 24297.78 23897.63 26798.67 305
plane_prior299.39 23098.97 55
CHOSEN 1792x268899.19 8299.10 8199.45 13299.89 898.52 21699.39 23099.94 198.73 8199.11 22799.89 3295.50 19499.94 7299.50 4199.97 799.89 19
PAPM_NR99.04 11898.84 13099.66 7399.74 8399.44 9999.39 23099.38 23897.70 20399.28 18999.28 31698.34 9399.85 15796.96 30499.45 15499.69 119
gg-mvs-nofinetune96.17 34095.32 35298.73 24498.79 34398.14 23999.38 23594.09 41991.07 40098.07 34491.04 41789.62 35399.35 30196.75 31499.09 18598.68 298
VDDNet97.55 29497.02 31399.16 17999.49 18998.12 24199.38 23599.30 28495.35 35799.68 8399.90 2782.62 40199.93 9099.31 6398.13 24899.42 206
MVS_030499.15 9098.96 11099.73 6798.92 32899.37 10599.37 23796.92 40599.51 299.66 9299.78 12796.69 14999.97 2199.84 1599.97 799.84 42
pmmvs696.53 33296.09 33797.82 33598.69 36195.47 35599.37 23799.47 18293.46 38597.41 36099.78 12787.06 38099.33 30496.92 30992.70 38498.65 315
PM-MVS92.96 36992.23 37395.14 37795.61 40889.98 40399.37 23798.21 39194.80 37095.04 39397.69 39865.06 41397.90 39694.30 36589.98 39897.54 398
WTY-MVS99.06 11598.88 12399.61 9199.62 14199.16 13499.37 23799.56 7098.04 16599.53 13299.62 20996.84 14399.94 7298.85 12298.49 22599.72 106
IterMVS-LS98.46 17498.42 17398.58 25899.59 15298.00 24699.37 23799.43 21696.94 28499.07 23599.59 21897.87 11099.03 35198.32 19495.62 33598.71 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 28097.28 30198.97 20199.70 10497.27 28199.36 24299.45 20298.94 5899.66 9299.64 19894.93 21399.99 499.48 4684.36 40799.65 133
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24299.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20699.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 33496.12 33597.40 35198.65 36495.65 34899.36 24299.51 11997.13 26296.04 38598.99 35088.40 36898.17 38996.71 31690.27 39698.40 358
sss99.17 8699.05 8899.53 11299.62 14198.97 16199.36 24299.62 4197.83 18699.67 8799.65 19297.37 12499.95 6299.19 7599.19 17499.68 123
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24299.46 19199.07 3999.79 4999.82 8198.85 4299.92 10298.68 14799.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7899.14 7799.59 9499.41 21499.16 13499.35 24799.57 6598.82 6999.51 13699.61 21396.46 15999.95 6299.59 2999.98 499.65 133
pmmvs-eth3d95.34 35394.73 35697.15 35595.53 41095.94 34499.35 24799.10 31795.13 35993.55 39897.54 39988.15 37297.91 39594.58 36289.69 39997.61 395
MDTV_nov1_ep13_2view95.18 36499.35 24796.84 28999.58 12195.19 20797.82 23599.46 199
VDD-MVS97.73 27497.35 29098.88 22199.47 19797.12 28999.34 25098.85 35698.19 13799.67 8799.85 5782.98 39999.92 10299.49 4598.32 23599.60 152
COLMAP_ROBcopyleft97.56 698.86 13998.75 13999.17 17899.88 1198.53 21299.34 25099.59 5897.55 21998.70 29599.89 3295.83 18399.90 12698.10 20899.90 4399.08 243
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 38277.86 38897.62 34497.91 38596.12 34199.33 25299.28 2908.40 42525.05 42699.27 31984.11 39599.33 30489.20 39998.22 23997.42 399
ETVMVS97.50 29996.90 31799.29 16299.23 26498.78 19299.32 25398.90 34997.52 22598.56 31498.09 39584.72 39399.69 24297.86 23097.88 25799.39 212
FMVSNet596.43 33596.19 33497.15 35599.11 29595.89 34599.32 25399.52 10594.47 37698.34 32799.07 34087.54 37797.07 40592.61 38795.72 33398.47 349
dp97.75 27097.80 22997.59 34699.10 29893.71 38599.32 25398.88 35296.48 31799.08 23499.55 23392.67 29799.82 18496.52 32498.58 21799.24 231
tpmvs97.98 23098.02 20897.84 33299.04 31194.73 37199.31 25699.20 30696.10 34898.76 28599.42 27594.94 21299.81 18996.97 30398.45 22698.97 258
tpmrst98.33 18798.48 17097.90 32799.16 28794.78 37099.31 25699.11 31697.27 25099.45 14599.59 21895.33 20099.84 16498.48 17698.61 21499.09 242
testing9997.36 30996.94 31698.63 25299.18 27796.70 31799.30 25898.93 33997.71 20098.23 33398.26 38784.92 39199.84 16498.04 21897.85 26099.35 218
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25899.52 10597.18 25899.60 11799.79 12098.79 5099.95 6298.83 12899.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25899.48 16198.86 6499.21 20899.63 20498.72 6499.90 12698.25 19899.63 14099.80 73
JIA-IIPM97.50 29997.02 31398.93 20898.73 35597.80 26099.30 25898.97 33591.73 39698.91 26294.86 41195.10 20999.71 23197.58 25897.98 25299.28 226
BH-RMVSNet98.41 17998.08 20099.40 13999.41 21498.83 18699.30 25898.77 36597.70 20398.94 25999.65 19292.91 28799.74 21596.52 32499.55 14899.64 140
testing1197.50 29997.10 31098.71 24799.20 27196.91 30999.29 26398.82 35997.89 17798.21 33698.40 38185.63 38699.83 17798.45 18198.04 25199.37 216
Syy-MVS97.09 32197.14 30796.95 36399.00 31592.73 39499.29 26399.39 23097.06 27297.41 36098.15 39093.92 26598.68 38091.71 39098.34 22999.45 202
myMVS_eth3d96.89 32496.37 32998.43 28399.00 31597.16 28799.29 26399.39 23097.06 27297.41 36098.15 39083.46 39898.68 38095.27 35398.34 22999.45 202
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26399.40 22798.79 7499.52 13499.62 20998.91 3799.90 12698.64 15199.75 11999.82 57
LF4IMVS97.52 29697.46 27297.70 34198.98 32195.55 35199.29 26398.82 35998.07 15898.66 29899.64 19889.97 34799.61 26497.01 29996.68 30597.94 388
hse-mvs297.50 29997.14 30798.59 25599.49 18997.05 29699.28 26899.22 30298.94 5899.66 9299.42 27594.93 21399.65 25399.48 4683.80 40999.08 243
OPM-MVS98.19 19898.10 19698.45 27898.88 33297.07 29499.28 26899.38 23898.57 9399.22 20599.81 9592.12 31199.66 24898.08 21397.54 27698.61 335
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9399.02 9699.51 12099.61 14598.96 16599.28 26899.49 14998.46 10399.72 7599.71 15896.50 15799.88 14399.31 6399.11 18199.67 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13998.80 13399.03 19399.76 6698.79 19099.28 26899.91 397.42 23899.67 8799.37 29297.53 11899.88 14398.98 9897.29 29598.42 355
OMC-MVS99.08 11299.04 9099.20 17599.67 11498.22 23599.28 26899.52 10598.07 15899.66 9299.81 9597.79 11399.78 20497.79 23799.81 9999.60 152
testing22297.16 31796.50 32699.16 17999.16 28798.47 22499.27 27398.66 37997.71 20098.23 33398.15 39082.28 40499.84 16497.36 28097.66 26699.18 234
AUN-MVS96.88 32596.31 33198.59 25599.48 19697.04 29999.27 27399.22 30297.44 23598.51 31799.41 27991.97 31499.66 24897.71 24983.83 40899.07 248
pmmvs597.52 29697.30 29898.16 30698.57 37396.73 31699.27 27398.90 34996.14 34298.37 32599.53 24291.54 32899.14 33497.51 26795.87 32898.63 324
131498.68 16398.54 16799.11 18598.89 33198.65 20099.27 27399.49 14996.89 28697.99 34699.56 23097.72 11699.83 17797.74 24599.27 16998.84 266
MVS97.28 31296.55 32599.48 12698.78 34698.95 16899.27 27399.39 23083.53 41198.08 34199.54 23896.97 14099.87 14894.23 36899.16 17599.63 145
BH-untuned98.42 17798.36 17698.59 25599.49 18996.70 31799.27 27399.13 31597.24 25498.80 28099.38 28995.75 18699.74 21597.07 29899.16 17599.33 222
MDTV_nov1_ep1398.32 18099.11 29594.44 37699.27 27398.74 36997.51 22699.40 16499.62 20994.78 22399.76 21097.59 25798.81 208
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27399.57 6596.40 32499.42 15599.68 17998.75 5899.80 19697.98 22199.72 12599.44 204
PatchmatchNetpermissive98.31 18898.36 17698.19 30499.16 28795.32 36099.27 27398.92 34297.37 24299.37 17099.58 22294.90 21699.70 23797.43 27699.21 17299.54 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 29197.28 30198.62 25399.64 13298.03 24499.26 28298.74 36997.68 20599.09 23398.32 38591.66 32599.81 18992.88 38398.22 23998.03 380
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28299.52 10598.82 6999.39 16699.71 15898.96 2599.85 15798.59 16299.80 10399.77 85
1112_ss98.98 12798.77 13799.59 9499.68 11299.02 15499.25 28499.48 16197.23 25599.13 22399.58 22296.93 14299.90 12698.87 11598.78 20999.84 42
TAPA-MVS97.07 1597.74 27297.34 29398.94 20699.70 10497.53 27299.25 28499.51 11991.90 39599.30 18599.63 20498.78 5199.64 25688.09 40499.87 6099.65 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG97.85 24997.48 26798.95 20499.25 26097.64 26999.24 28698.74 36997.90 17698.64 30598.20 38988.65 36499.81 18998.27 19798.40 22799.42 206
PLCcopyleft97.94 499.02 12198.85 12899.53 11299.66 12499.01 15699.24 28699.52 10596.85 28899.27 19499.48 26198.25 9799.91 11497.76 24299.62 14199.65 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 28865.14 42394.18 25699.71 23197.58 258
ADS-MVSNet298.02 22398.07 20397.87 32999.33 23695.19 36399.23 28899.08 32096.24 33299.10 23099.67 18594.11 25798.93 36996.81 31299.05 18899.48 188
ADS-MVSNet98.20 19798.08 20098.56 26299.33 23696.48 32899.23 28899.15 31296.24 33299.10 23099.67 18594.11 25799.71 23196.81 31299.05 18899.48 188
EPNet_dtu98.03 22197.96 21398.23 30298.27 38195.54 35399.23 28898.75 36699.02 4297.82 35399.71 15896.11 17099.48 27393.04 38199.65 13799.69 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 20197.93 21898.87 22599.18 27798.49 22099.22 29299.33 26696.96 28099.56 12599.38 28994.33 24999.00 35694.83 36198.58 21799.14 235
RPMNet96.72 32895.90 34199.19 17699.18 27798.49 22099.22 29299.52 10588.72 40799.56 12597.38 40194.08 25999.95 6286.87 40998.58 21799.14 235
WBMVS97.74 27297.50 26598.46 27699.24 26297.43 27599.21 29499.42 21897.45 23298.96 25699.41 27988.83 35999.23 31998.94 10396.02 32198.71 284
plane_prior96.97 30599.21 29498.45 10497.60 270
testing9197.44 30697.02 31398.71 24799.18 27796.89 31199.19 29699.04 32797.78 19398.31 32898.29 38685.41 38899.85 15798.01 21997.95 25399.39 212
WR-MVS98.06 21397.73 24299.06 18998.86 33899.25 12599.19 29699.35 25497.30 24898.66 29899.43 27393.94 26399.21 32898.58 16394.28 36298.71 284
new-patchmatchnet94.48 36194.08 36295.67 37695.08 41392.41 39599.18 29899.28 29094.55 37593.49 39997.37 40287.86 37597.01 40691.57 39188.36 40197.61 395
AdaColmapbinary99.01 12598.80 13399.66 7399.56 16099.54 8399.18 29899.70 1598.18 14099.35 17699.63 20496.32 16499.90 12697.48 27099.77 11499.55 166
EG-PatchMatch MVS95.97 34495.69 34596.81 36797.78 38892.79 39399.16 30098.93 33996.16 33994.08 39699.22 32582.72 40099.47 27495.67 34497.50 28198.17 371
PatchT97.03 32296.44 32898.79 24098.99 31898.34 23099.16 30099.07 32392.13 39499.52 13497.31 40494.54 24298.98 35888.54 40298.73 21199.03 251
CNLPA99.14 9398.99 10299.59 9499.58 15499.41 10399.16 30099.44 21098.45 10499.19 21499.49 25598.08 10599.89 13897.73 24699.75 11999.48 188
MDA-MVSNet-bldmvs94.96 35693.98 36397.92 32598.24 38297.27 28199.15 30399.33 26693.80 38080.09 41899.03 34588.31 36997.86 39793.49 37694.36 36198.62 326
CDPH-MVS99.13 9598.91 11799.80 4999.75 7699.71 4799.15 30399.41 22196.60 30899.60 11799.55 23398.83 4599.90 12697.48 27099.83 9299.78 83
save fliter99.76 6699.59 7399.14 30599.40 22799.00 47
WB-MVSnew97.65 28897.65 24997.63 34398.78 34697.62 27099.13 30698.33 38797.36 24399.07 23598.94 35695.64 19199.15 33392.95 38298.68 21396.12 409
testf190.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
APD_test290.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
XVG-OURS-SEG-HR98.69 16298.62 15798.89 21999.71 9997.74 26199.12 30999.54 8798.44 10799.42 15599.71 15894.20 25399.92 10298.54 17398.90 20099.00 254
jason99.13 9599.03 9299.45 13299.46 19998.87 17899.12 30999.26 29498.03 16799.79 4999.65 19297.02 13899.85 15799.02 9599.90 4399.65 133
jason: jason.
N_pmnet94.95 35795.83 34392.31 38798.47 37779.33 41999.12 30992.81 42593.87 37997.68 35699.13 33593.87 26799.01 35591.38 39296.19 31898.59 339
MDA-MVSNet_test_wron95.45 35094.60 35798.01 31798.16 38397.21 28699.11 31599.24 29993.49 38480.73 41798.98 35293.02 28298.18 38894.22 36994.45 35998.64 317
Patchmtry97.75 27097.40 28598.81 23799.10 29898.87 17899.11 31599.33 26694.83 36998.81 27899.38 28994.33 24999.02 35396.10 33195.57 33798.53 343
YYNet195.36 35294.51 35997.92 32597.89 38697.10 29099.10 31799.23 30093.26 38780.77 41699.04 34492.81 28898.02 39294.30 36594.18 36498.64 317
CANet_DTU98.97 12998.87 12499.25 16999.33 23698.42 22899.08 31899.30 28499.16 2099.43 15299.75 14295.27 20299.97 2198.56 16999.95 1799.36 217
SCA98.19 19898.16 18898.27 30199.30 24595.55 35199.07 31998.97 33597.57 21699.43 15299.57 22792.72 29299.74 21597.58 25899.20 17399.52 175
TSAR-MVS + GP.99.36 5999.36 3899.36 14599.67 11498.61 20699.07 31999.33 26699.00 4799.82 4299.81 9599.06 1699.84 16499.09 8799.42 15699.65 133
MG-MVS99.13 9599.02 9699.45 13299.57 15698.63 20399.07 31999.34 25998.99 4999.61 11499.82 8197.98 10999.87 14897.00 30099.80 10399.85 36
PatchMatch-RL98.84 14998.62 15799.52 11899.71 9999.28 12099.06 32299.77 997.74 19899.50 13799.53 24295.41 19699.84 16497.17 29499.64 13899.44 204
OpenMVS_ROBcopyleft92.34 2094.38 36293.70 36896.41 37297.38 39493.17 39199.06 32298.75 36686.58 40894.84 39498.26 38781.53 40599.32 30689.01 40097.87 25896.76 402
TEST999.67 11499.65 6099.05 32499.41 22196.22 33498.95 25799.49 25598.77 5499.91 114
train_agg99.02 12198.77 13799.77 5899.67 11499.65 6099.05 32499.41 22196.28 32898.95 25799.49 25598.76 5599.91 11497.63 25499.72 12599.75 91
lupinMVS99.13 9599.01 10099.46 13199.51 17698.94 17199.05 32499.16 31197.86 18099.80 4799.56 23097.39 12199.86 15198.94 10399.85 7599.58 160
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32499.66 2899.14 2399.57 12499.80 10898.46 8499.94 7299.57 3299.84 8399.60 152
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 33696.03 33897.41 35098.13 38495.16 36599.05 32499.20 30693.94 37897.39 36398.79 36891.61 32799.04 34990.43 39595.77 33098.05 379
Patchmatch-test97.93 23697.65 24998.77 24299.18 27797.07 29499.03 32999.14 31496.16 33998.74 28699.57 22794.56 23999.72 22593.36 37799.11 18199.52 175
test_899.67 11499.61 7099.03 32999.41 22196.28 32898.93 26099.48 26198.76 5599.91 114
Test_1112_low_res98.89 13498.66 15099.57 9999.69 10898.95 16899.03 32999.47 18296.98 27899.15 22199.23 32496.77 14699.89 13898.83 12898.78 20999.86 32
IterMVS-SCA-FT97.82 25897.75 24098.06 31399.57 15696.36 33299.02 33299.49 14997.18 25898.71 28999.72 15792.72 29299.14 33497.44 27595.86 32998.67 305
xiu_mvs_v2_base99.26 7499.25 6799.29 16299.53 16898.91 17599.02 33299.45 20298.80 7399.71 7799.26 32198.94 3299.98 1399.34 6099.23 17198.98 257
MIMVSNet97.73 27497.45 27398.57 25999.45 20597.50 27399.02 33298.98 33496.11 34499.41 15999.14 33490.28 34198.74 37895.74 34098.93 19699.47 194
IterMVS97.83 25597.77 23598.02 31699.58 15496.27 33699.02 33299.48 16197.22 25698.71 28999.70 16292.75 28999.13 33797.46 27396.00 32398.67 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10698.92 11599.65 7799.90 499.37 10599.02 33299.91 397.67 20799.59 12099.75 14295.90 18199.73 22199.53 3799.02 19299.86 32
UWE-MVS97.58 29397.29 30098.48 27099.09 30196.25 33799.01 33796.61 41197.86 18099.19 21499.01 34888.72 36099.90 12697.38 27998.69 21299.28 226
新几何299.01 337
BH-w/o98.00 22897.89 22498.32 29399.35 23196.20 33999.01 33798.90 34996.42 32298.38 32499.00 34995.26 20499.72 22596.06 33298.61 21499.03 251
test_prior499.56 7998.99 340
无先验98.99 34099.51 11996.89 28699.93 9097.53 26699.72 106
pmmvs498.13 20597.90 22098.81 23798.61 36998.87 17898.99 34099.21 30596.44 32099.06 24099.58 22295.90 18199.11 34297.18 29396.11 32098.46 352
HQP-NCC99.19 27498.98 34398.24 12998.66 298
ACMP_Plane99.19 27498.98 34398.24 12998.66 298
HQP-MVS98.02 22397.90 22098.37 28999.19 27496.83 31298.98 34399.39 23098.24 12998.66 29899.40 28392.47 30399.64 25697.19 29197.58 27298.64 317
PS-MVSNAJ99.32 6499.32 4699.30 15999.57 15698.94 17198.97 34699.46 19198.92 6199.71 7799.24 32399.01 1899.98 1399.35 5599.66 13598.97 258
MVP-Stereo97.81 26097.75 24097.99 32097.53 39296.60 32598.96 34798.85 35697.22 25697.23 36699.36 29595.28 20199.46 27695.51 34699.78 11197.92 390
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 34798.34 11799.01 24699.52 24598.68 6797.96 22299.74 122
旧先验298.96 34796.70 29699.47 14299.94 7298.19 202
原ACMM298.95 350
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 35099.85 698.82 6999.54 13099.73 15398.51 8199.74 21598.91 10999.88 5799.77 85
mvsany_test199.50 2399.46 2399.62 9099.61 14599.09 14498.94 35299.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14599.82 57
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35299.85 698.82 6999.65 9999.74 14798.51 8199.80 19698.83 12899.89 5499.64 140
pmmvs394.09 36493.25 37096.60 37094.76 41594.49 37598.92 35498.18 39389.66 40196.48 37998.06 39686.28 38297.33 40389.68 39887.20 40497.97 387
XVG-OURS98.73 16098.68 14698.88 22199.70 10497.73 26298.92 35499.55 7898.52 9899.45 14599.84 6795.27 20299.91 11498.08 21398.84 20499.00 254
test22299.75 7699.49 9298.91 35699.49 14996.42 32299.34 17999.65 19298.28 9699.69 13099.72 106
PMMVS286.87 37985.37 38391.35 39190.21 42083.80 41098.89 35797.45 40383.13 41291.67 40995.03 40948.49 42294.70 41585.86 41277.62 41495.54 410
miper_lstm_enhance98.00 22897.91 21998.28 30099.34 23597.43 27598.88 35899.36 24796.48 31798.80 28099.55 23395.98 17498.91 37097.27 28495.50 34098.51 345
MVS-HIRNet95.75 34895.16 35397.51 34899.30 24593.69 38698.88 35895.78 41385.09 41098.78 28392.65 41391.29 33299.37 29494.85 36099.85 7599.46 199
TR-MVS97.76 26697.41 28498.82 23499.06 30797.87 25698.87 36098.56 38296.63 30498.68 29799.22 32592.49 30299.65 25395.40 35097.79 26298.95 262
testdata198.85 36198.32 120
ET-MVSNet_ETH3D96.49 33395.64 34799.05 19199.53 16898.82 18798.84 36297.51 40297.63 21084.77 41199.21 32892.09 31298.91 37098.98 9892.21 38799.41 209
our_test_397.65 28897.68 24697.55 34798.62 36794.97 36798.84 36299.30 28496.83 29198.19 33799.34 30297.01 13999.02 35395.00 35896.01 32298.64 317
MS-PatchMatch97.24 31697.32 29696.99 36098.45 37893.51 38998.82 36499.32 27697.41 23998.13 34099.30 31288.99 35799.56 26895.68 34399.80 10397.90 391
c3_l98.12 20798.04 20598.38 28899.30 24597.69 26898.81 36599.33 26696.67 29898.83 27699.34 30297.11 13298.99 35797.58 25895.34 34298.48 347
ppachtmachnet_test97.49 30497.45 27397.61 34598.62 36795.24 36198.80 36699.46 19196.11 34498.22 33599.62 20996.45 16098.97 36593.77 37295.97 32798.61 335
PAPR98.63 16898.34 17899.51 12099.40 21999.03 15398.80 36699.36 24796.33 32599.00 25099.12 33898.46 8499.84 16495.23 35499.37 16599.66 129
test0.0.03 197.71 27997.42 28398.56 26298.41 38097.82 25998.78 36898.63 38097.34 24498.05 34598.98 35294.45 24698.98 35895.04 35797.15 30198.89 263
PVSNet_Blended99.08 11298.97 10699.42 13799.76 6698.79 19098.78 36899.91 396.74 29399.67 8799.49 25597.53 11899.88 14398.98 9899.85 7599.60 152
PMMVS98.80 15398.62 15799.34 14799.27 25498.70 19698.76 37099.31 28097.34 24499.21 20899.07 34097.20 13099.82 18498.56 16998.87 20199.52 175
test12339.01 39142.50 39328.53 40639.17 42920.91 43198.75 37119.17 43119.83 42438.57 42366.67 42133.16 42615.42 42537.50 42529.66 42349.26 420
MSDG98.98 12798.80 13399.53 11299.76 6699.19 12998.75 37199.55 7897.25 25299.47 14299.77 13597.82 11299.87 14896.93 30799.90 4399.54 168
CLD-MVS98.16 20298.10 19698.33 29199.29 24996.82 31498.75 37199.44 21097.83 18699.13 22399.55 23392.92 28599.67 24598.32 19497.69 26598.48 347
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 20098.10 19698.41 28499.23 26497.72 26498.72 37499.31 28096.60 30898.88 26799.29 31497.29 12899.13 33797.60 25695.99 32498.38 360
cl____98.01 22697.84 22898.55 26499.25 26097.97 24898.71 37599.34 25996.47 31998.59 31399.54 23895.65 19099.21 32897.21 28795.77 33098.46 352
DIV-MVS_self_test98.01 22697.85 22798.48 27099.24 26297.95 25298.71 37599.35 25496.50 31398.60 31299.54 23895.72 18899.03 35197.21 28795.77 33098.46 352
test-LLR98.06 21397.90 22098.55 26498.79 34397.10 29098.67 37797.75 39897.34 24498.61 31098.85 36294.45 24699.45 27797.25 28599.38 15899.10 238
TESTMET0.1,197.55 29497.27 30498.40 28698.93 32696.53 32698.67 37797.61 40196.96 28098.64 30599.28 31688.63 36699.45 27797.30 28399.38 15899.21 233
test-mter97.49 30497.13 30998.55 26498.79 34397.10 29098.67 37797.75 39896.65 30098.61 31098.85 36288.23 37099.45 27797.25 28599.38 15899.10 238
mvs5depth96.66 32996.22 33397.97 32197.00 40396.28 33598.66 38099.03 32996.61 30596.93 37599.79 12087.20 37999.47 27496.65 32294.13 36598.16 372
IB-MVS95.67 1896.22 33795.44 35198.57 25999.21 26996.70 31798.65 38197.74 40096.71 29597.27 36598.54 37786.03 38399.92 10298.47 17986.30 40599.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 13098.71 14399.66 7399.63 13599.55 8198.64 38299.10 31797.93 17399.42 15599.55 23398.67 6999.80 19695.80 33999.68 13399.61 149
thisisatest051598.14 20497.79 23099.19 17699.50 18798.50 21998.61 38396.82 40796.95 28299.54 13099.43 27391.66 32599.86 15198.08 21399.51 15099.22 232
DeepPCF-MVS98.18 398.81 15099.37 3697.12 35899.60 15091.75 39898.61 38399.44 21099.35 1299.83 4199.85 5798.70 6699.81 18999.02 9599.91 3499.81 64
cl2297.85 24997.64 25298.48 27099.09 30197.87 25698.60 38599.33 26697.11 26798.87 27099.22 32592.38 30899.17 33298.21 20095.99 32498.42 355
GA-MVS97.85 24997.47 27099.00 19799.38 22497.99 24798.57 38699.15 31297.04 27598.90 26499.30 31289.83 34999.38 29196.70 31798.33 23199.62 147
TinyColmap97.12 31996.89 31897.83 33399.07 30595.52 35498.57 38698.74 36997.58 21597.81 35499.79 12088.16 37199.56 26895.10 35597.21 29898.39 359
eth_miper_zixun_eth98.05 21897.96 21398.33 29199.26 25697.38 27798.56 38899.31 28096.65 30098.88 26799.52 24596.58 15399.12 34197.39 27895.53 33998.47 349
CMPMVSbinary69.68 2394.13 36394.90 35591.84 38897.24 39880.01 41898.52 38999.48 16189.01 40591.99 40599.67 18585.67 38599.13 33795.44 34897.03 30396.39 406
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 31097.20 30597.75 33899.07 30595.20 36298.51 39099.04 32797.99 16998.31 32899.86 5289.02 35699.55 27095.67 34497.36 29498.49 346
ambc93.06 38692.68 41782.36 41198.47 39198.73 37595.09 39297.41 40055.55 41899.10 34496.42 32791.32 38997.71 392
miper_enhance_ethall98.16 20298.08 20098.41 28498.96 32497.72 26498.45 39299.32 27696.95 28298.97 25499.17 33097.06 13699.22 32397.86 23095.99 32498.29 364
CHOSEN 280x42099.12 10199.13 7899.08 18699.66 12497.89 25598.43 39399.71 1398.88 6399.62 11199.76 13996.63 15199.70 23799.46 4999.99 199.66 129
testmvs39.17 39043.78 39225.37 40736.04 43016.84 43298.36 39426.56 42920.06 42338.51 42467.32 42029.64 42715.30 42637.59 42439.90 42243.98 421
FPMVS84.93 38185.65 38282.75 40286.77 42363.39 42898.35 39598.92 34274.11 41483.39 41398.98 35250.85 42192.40 41784.54 41394.97 35092.46 412
KD-MVS_2432*160094.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
miper_refine_blended94.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
CL-MVSNet_self_test94.49 36093.97 36496.08 37496.16 40593.67 38798.33 39899.38 23895.13 35997.33 36498.15 39092.69 29696.57 40888.67 40179.87 41397.99 385
PVSNet96.02 1798.85 14698.84 13098.89 21999.73 9097.28 28098.32 39999.60 5497.86 18099.50 13799.57 22796.75 14799.86 15198.56 16999.70 12999.54 168
PAPM97.59 29297.09 31199.07 18799.06 30798.26 23398.30 40099.10 31794.88 36798.08 34199.34 30296.27 16699.64 25689.87 39798.92 19899.31 224
Patchmatch-RL test95.84 34695.81 34495.95 37595.61 40890.57 40198.24 40198.39 38695.10 36395.20 39098.67 37294.78 22397.77 39896.28 33090.02 39799.51 182
UnsupCasMVSNet_bld93.53 36692.51 37296.58 37197.38 39493.82 38298.24 40199.48 16191.10 39993.10 40096.66 40674.89 41098.37 38594.03 37187.71 40397.56 397
LCM-MVSNet86.80 38085.22 38491.53 39087.81 42280.96 41698.23 40398.99 33371.05 41590.13 41096.51 40748.45 42396.88 40790.51 39485.30 40696.76 402
cascas97.69 28197.43 28298.48 27098.60 37097.30 27998.18 40499.39 23092.96 38998.41 32298.78 36993.77 27199.27 31498.16 20698.61 21498.86 264
kuosan90.92 37590.11 38093.34 38398.78 34685.59 40898.15 40593.16 42389.37 40492.07 40498.38 38281.48 40695.19 41362.54 42297.04 30299.25 230
Effi-MVS+98.81 15098.59 16399.48 12699.46 19999.12 14298.08 40699.50 13997.50 22799.38 16899.41 27996.37 16399.81 18999.11 8398.54 22299.51 182
PCF-MVS97.08 1497.66 28797.06 31299.47 12999.61 14599.09 14498.04 40799.25 29691.24 39898.51 31799.70 16294.55 24199.91 11492.76 38699.85 7599.42 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 34295.47 34997.94 32499.31 24494.34 37997.81 40899.70 1597.12 26497.46 35998.75 37089.71 35099.79 19997.69 25281.69 41199.68 123
E-PMN80.61 38479.88 38682.81 40190.75 41976.38 42297.69 40995.76 41466.44 41983.52 41292.25 41462.54 41587.16 42168.53 42061.40 41884.89 419
dongtai93.26 36792.93 37194.25 37999.39 22285.68 40797.68 41093.27 42192.87 39096.85 37699.39 28782.33 40397.48 40276.78 41597.80 26199.58 160
ANet_high77.30 38674.86 39084.62 40075.88 42677.61 42097.63 41193.15 42488.81 40664.27 42189.29 41836.51 42583.93 42375.89 41752.31 42092.33 414
EMVS80.02 38579.22 38782.43 40391.19 41876.40 42197.55 41292.49 42666.36 42083.01 41491.27 41664.63 41485.79 42265.82 42160.65 41985.08 418
MVEpermissive76.82 2176.91 38774.31 39184.70 39985.38 42576.05 42396.88 41393.17 42267.39 41871.28 42089.01 41921.66 43087.69 42071.74 41972.29 41790.35 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 37391.36 37590.31 39395.85 40673.72 42694.89 41499.25 29668.39 41795.82 38699.02 34780.50 40798.95 36893.64 37494.89 35498.25 367
Gipumacopyleft90.99 37490.15 37993.51 38298.73 35590.12 40293.98 41599.45 20279.32 41392.28 40394.91 41069.61 41197.98 39487.42 40695.67 33492.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 38874.97 38979.01 40470.98 42755.18 42993.37 41698.21 39165.08 42161.78 42293.83 41221.74 42992.53 41678.59 41491.12 39289.34 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 38281.52 38586.66 39866.61 42868.44 42792.79 41797.92 39568.96 41680.04 41999.85 5785.77 38496.15 41197.86 23043.89 42195.39 411
wuyk23d40.18 38941.29 39436.84 40586.18 42449.12 43079.73 41822.81 43027.64 42225.46 42528.45 42521.98 42848.89 42455.80 42323.56 42412.51 422
mmdepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.13 3950.17 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4271.57 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.64 39232.85 3950.00 4080.00 4310.00 4330.00 41999.51 1190.00 4260.00 42799.56 23096.58 1530.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.27 39411.03 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 42799.01 180.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.30 39311.06 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.58 2220.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS97.16 28795.47 347
MSC_two_6792asdad99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
PC_three_145298.18 14099.84 3599.70 16299.31 398.52 38398.30 19699.80 10399.81 64
No_MVS99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9999.81 9599.09 14
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.71 9999.79 3399.61 4896.84 28999.56 12599.54 23898.58 7599.96 3296.93 30799.75 119
IU-MVS99.84 3299.88 899.32 27698.30 12299.84 3598.86 12099.85 7599.89 19
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10999.84 8399.88 25
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 210
test_0728_THIRD98.99 4999.81 4399.80 10899.09 1499.96 3298.85 12299.90 4399.88 25
GSMVS99.52 175
test_part299.81 4699.83 1999.77 58
sam_mvs194.86 21899.52 175
sam_mvs94.72 230
MTGPAbinary99.47 182
test_post65.99 42294.65 23699.73 221
patchmatchnet-post98.70 37194.79 22299.74 215
gm-plane-assit98.54 37592.96 39294.65 37399.15 33399.64 25697.56 263
test9_res97.49 26999.72 12599.75 91
agg_prior297.21 28799.73 12499.75 91
agg_prior99.67 11499.62 6899.40 22798.87 27099.91 114
TestCases99.31 15499.86 2098.48 22299.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17799.74 95
新几何199.75 6199.75 7699.59 7399.54 8796.76 29299.29 18899.64 19898.43 8699.94 7296.92 30999.66 13599.72 106
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13399.73 100
原ACMM199.65 7799.73 9099.33 11099.47 18297.46 22999.12 22599.66 19098.67 6999.91 11497.70 25199.69 13099.71 115
testdata299.95 6296.67 319
segment_acmp98.96 25
testdata99.54 10499.75 7698.95 16899.51 11997.07 27099.43 15299.70 16298.87 4099.94 7297.76 24299.64 13899.72 106
test1299.75 6199.64 13299.61 7099.29 28899.21 20898.38 9199.89 13899.74 12299.74 95
plane_prior799.29 24997.03 300
plane_prior699.27 25496.98 30492.71 294
plane_prior599.47 18299.69 24297.78 23897.63 26798.67 305
plane_prior499.61 213
plane_prior397.00 30298.69 8499.11 227
plane_prior199.26 256
n20.00 432
nn0.00 432
door-mid98.05 394
lessismore_v097.79 33798.69 36195.44 35894.75 41795.71 38799.87 4888.69 36299.32 30695.89 33694.93 35298.62 326
LGP-MVS_train98.49 26899.33 23697.05 29699.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
test1199.35 254
door97.92 395
HQP5-MVS96.83 312
BP-MVS97.19 291
HQP4-MVS98.66 29899.64 25698.64 317
HQP3-MVS99.39 23097.58 272
HQP2-MVS92.47 303
NP-MVS99.23 26496.92 30899.40 283
ACMMP++_ref97.19 299
ACMMP++97.43 290
Test By Simon98.75 58
ITE_SJBPF98.08 31299.29 24996.37 33198.92 34298.34 11798.83 27699.75 14291.09 33499.62 26395.82 33797.40 29298.25 367
DeepMVS_CXcopyleft93.34 38399.29 24982.27 41299.22 30285.15 40996.33 38099.05 34390.97 33699.73 22193.57 37597.77 26398.01 381