This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2399.48 1899.54 10799.76 6899.42 10499.90 199.55 8198.56 9799.78 5799.70 16598.65 7199.79 20299.65 2899.78 11499.41 212
mmtdpeth96.95 32696.71 32597.67 34599.33 23994.90 37299.89 299.28 29398.15 14599.72 7898.57 37986.56 38499.90 12999.82 1989.02 40398.20 373
SPE-MVS-test99.49 2599.48 1899.54 10799.78 5799.30 12099.89 299.58 6498.56 9799.73 7399.69 17598.55 7899.82 18799.69 2499.85 7799.48 191
MVSFormer99.17 8999.12 8299.29 16599.51 17998.94 17499.88 499.46 19497.55 22299.80 5099.65 19597.39 12199.28 31499.03 9699.85 7799.65 136
test_djsdf98.67 16798.57 16798.98 20298.70 36398.91 17899.88 499.46 19497.55 22299.22 20899.88 4295.73 18799.28 31499.03 9697.62 27298.75 280
OurMVSNet-221017-097.88 24797.77 23898.19 30798.71 36296.53 32999.88 499.00 33597.79 19498.78 28699.94 691.68 32599.35 30497.21 29096.99 30798.69 296
EC-MVSNet99.44 4299.39 3299.58 10099.56 16399.49 9599.88 499.58 6498.38 11499.73 7399.69 17598.20 9999.70 24099.64 3099.82 9899.54 171
DVP-MVS++99.59 1199.50 1699.88 999.51 17999.88 899.87 899.51 12298.99 5299.88 2799.81 9899.27 599.96 3398.85 12599.80 10599.81 66
FOURS199.91 199.93 199.87 899.56 7399.10 3499.81 46
K. test v397.10 32396.79 32398.01 32098.72 36096.33 33699.87 897.05 40797.59 21696.16 38699.80 11188.71 36499.04 35296.69 32196.55 31398.65 318
FC-MVSNet-test98.75 16098.62 16099.15 18699.08 30799.45 10199.86 1199.60 5598.23 13598.70 29899.82 8496.80 14499.22 32699.07 9296.38 31698.79 271
v7n97.87 24997.52 26598.92 21398.76 35698.58 21199.84 1299.46 19496.20 33898.91 26599.70 16594.89 21899.44 28596.03 33693.89 37398.75 280
DTE-MVSNet97.51 30197.19 30998.46 27998.63 36998.13 24399.84 1299.48 16496.68 30097.97 35199.67 18892.92 28898.56 38596.88 31492.60 38998.70 292
3Dnovator97.25 999.24 8299.05 9199.81 4999.12 29699.66 5999.84 1299.74 1099.09 3998.92 26499.90 3095.94 17899.98 1398.95 10599.92 2999.79 79
FIs98.78 15798.63 15599.23 17699.18 28099.54 8699.83 1599.59 6098.28 12698.79 28599.81 9896.75 14799.37 29799.08 9196.38 31698.78 272
MGCFI-Net99.01 12898.85 13199.50 12899.42 21299.26 12699.82 1699.48 16498.60 9499.28 19298.81 36897.04 13799.76 21399.29 6997.87 26199.47 197
test_fmvs392.10 37491.77 37793.08 38896.19 40786.25 40899.82 1698.62 38496.65 30395.19 39496.90 40855.05 42395.93 41596.63 32690.92 39797.06 404
jajsoiax98.43 17998.28 18698.88 22498.60 37398.43 22999.82 1699.53 10398.19 14098.63 31099.80 11193.22 28399.44 28599.22 7697.50 28498.77 276
OpenMVScopyleft96.50 1698.47 17698.12 19799.52 12199.04 31499.53 8999.82 1699.72 1194.56 37798.08 34499.88 4294.73 23099.98 1397.47 27599.76 12099.06 252
SDMVSNet99.11 10998.90 12199.75 6499.81 4699.59 7699.81 2099.65 3498.78 8099.64 10799.88 4294.56 24199.93 9399.67 2698.26 24099.72 109
nrg03098.64 17098.42 17699.28 16999.05 31399.69 5399.81 2099.46 19498.04 16899.01 24999.82 8496.69 14999.38 29499.34 6394.59 36098.78 272
HPM-MVScopyleft99.42 4799.28 6099.83 4599.90 499.72 4799.81 2099.54 9097.59 21699.68 8699.63 20798.91 3799.94 7598.58 16699.91 3699.84 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9898.99 10599.53 11599.65 13399.06 15399.81 2099.33 26997.43 23999.60 12099.88 4297.14 13199.84 16799.13 8498.94 19899.69 122
3Dnovator+97.12 1399.18 8798.97 10999.82 4699.17 28899.68 5499.81 2099.51 12299.20 2198.72 29199.89 3595.68 18999.97 2198.86 12399.86 7099.81 66
sasdasda99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
FA-MVS(test-final)98.75 16098.53 17199.41 14199.55 16799.05 15599.80 2599.01 33496.59 31399.58 12499.59 22195.39 19799.90 12997.78 24199.49 15599.28 229
GeoE98.85 14998.62 16099.53 11599.61 14899.08 15099.80 2599.51 12297.10 27199.31 18599.78 13095.23 20699.77 20998.21 20399.03 19399.75 93
canonicalmvs99.02 12498.86 12999.51 12399.42 21299.32 11499.80 2599.48 16498.63 9099.31 18598.81 36897.09 13399.75 21699.27 7297.90 25899.47 197
v897.95 23897.63 25698.93 21198.95 32898.81 19299.80 2599.41 22496.03 35299.10 23399.42 27894.92 21699.30 31296.94 30994.08 37098.66 316
Vis-MVSNet (Re-imp)98.87 13998.72 14499.31 15799.71 10298.88 18099.80 2599.44 21397.91 17899.36 17699.78 13095.49 19599.43 28997.91 22899.11 18499.62 150
Anonymous2024052196.20 34295.89 34597.13 36097.72 39494.96 37199.79 3199.29 29193.01 39197.20 37199.03 34889.69 35498.36 38991.16 39696.13 32298.07 380
PS-MVSNAJss98.92 13598.92 11898.90 21998.78 34998.53 21599.78 3299.54 9098.07 16199.00 25399.76 14299.01 1899.37 29799.13 8497.23 30098.81 270
PEN-MVS97.76 26997.44 28198.72 24898.77 35498.54 21499.78 3299.51 12297.06 27598.29 33499.64 20192.63 30198.89 37698.09 21293.16 38198.72 285
anonymousdsp98.44 17898.28 18698.94 20998.50 37998.96 16899.77 3499.50 14297.07 27398.87 27399.77 13894.76 22899.28 31498.66 15297.60 27398.57 344
SixPastTwentyTwo97.50 30297.33 29898.03 31798.65 36796.23 34199.77 3498.68 38197.14 26497.90 35299.93 1090.45 34399.18 33497.00 30396.43 31598.67 308
QAPM98.67 16798.30 18599.80 5299.20 27499.67 5799.77 3499.72 1194.74 37498.73 29099.90 3095.78 18599.98 1396.96 30799.88 5999.76 92
SSC-MVS92.73 37393.73 36889.72 39895.02 41781.38 41899.76 3799.23 30394.87 37192.80 40598.93 36094.71 23291.37 42274.49 42193.80 37496.42 408
test_vis3_rt87.04 38185.81 38490.73 39593.99 41981.96 41699.76 3790.23 43092.81 39481.35 41891.56 41840.06 42799.07 34994.27 37088.23 40591.15 418
dcpmvs_299.23 8399.58 798.16 30999.83 3994.68 37599.76 3799.52 10899.07 4299.98 899.88 4298.56 7799.93 9399.67 2699.98 499.87 32
RRT-MVS98.91 13698.75 14299.39 14699.46 20298.61 20999.76 3799.50 14298.06 16599.81 4699.88 4293.91 26999.94 7599.11 8699.27 17299.61 152
HPM-MVS_fast99.51 2199.40 3099.85 3399.91 199.79 3399.76 3799.56 7397.72 20299.76 6799.75 14599.13 1299.92 10599.07 9299.92 2999.85 38
MVSMamba_PlusPlus99.46 3499.41 2999.64 8699.68 11599.50 9499.75 4299.50 14298.27 12899.87 3299.92 1798.09 10499.94 7599.65 2899.95 1899.47 197
v1097.85 25297.52 26598.86 23198.99 32198.67 20199.75 4299.41 22495.70 35698.98 25599.41 28294.75 22999.23 32296.01 33894.63 35998.67 308
APDe-MVScopyleft99.66 599.57 899.92 199.77 6499.89 499.75 4299.56 7399.02 4599.88 2799.85 6099.18 1099.96 3399.22 7699.92 2999.90 18
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 12098.87 12799.57 10299.73 9399.32 11499.75 4299.20 30998.02 17199.56 12899.86 5596.54 15599.67 24898.09 21299.13 18399.73 102
test_vis1_n97.92 24297.44 28199.34 15099.53 17198.08 24599.74 4699.49 15299.15 24100.00 199.94 679.51 41199.98 1399.88 1699.76 12099.97 4
test_fmvs1_n98.41 18298.14 19499.21 17799.82 4297.71 27099.74 4699.49 15299.32 1799.99 299.95 385.32 39299.97 2199.82 1999.84 8599.96 7
balanced_conf0399.46 3499.39 3299.67 7599.55 16799.58 8199.74 4699.51 12298.42 11199.87 3299.84 7098.05 10799.91 11799.58 3499.94 2499.52 178
tttt051798.42 18098.14 19499.28 16999.66 12798.38 23299.74 4696.85 40997.68 20899.79 5299.74 15091.39 33399.89 14198.83 13199.56 14999.57 166
WB-MVS93.10 37194.10 36490.12 39795.51 41581.88 41799.73 5099.27 29695.05 36793.09 40498.91 36494.70 23391.89 42176.62 41994.02 37296.58 407
test_fmvs297.25 31797.30 30197.09 36299.43 21093.31 39399.73 5098.87 35798.83 7199.28 19299.80 11184.45 39799.66 25197.88 23097.45 28998.30 366
MonoMVSNet98.38 18698.47 17498.12 31498.59 37596.19 34399.72 5298.79 36797.89 18099.44 15399.52 24896.13 16998.90 37598.64 15497.54 27999.28 229
baseline99.15 9399.02 9999.53 11599.66 12799.14 14299.72 5299.48 16498.35 11999.42 15899.84 7096.07 17199.79 20299.51 4399.14 18299.67 129
RPSCF98.22 19798.62 16096.99 36399.82 4291.58 40299.72 5299.44 21396.61 30899.66 9599.89 3595.92 17999.82 18797.46 27699.10 18799.57 166
CSCG99.32 6699.32 4699.32 15699.85 2698.29 23499.71 5599.66 2898.11 15399.41 16299.80 11198.37 9299.96 3398.99 10099.96 1399.72 109
dmvs_re98.08 21498.16 19197.85 33399.55 16794.67 37699.70 5698.92 34598.15 14599.06 24399.35 30193.67 27799.25 31997.77 24497.25 29999.64 143
WR-MVS_H98.13 20897.87 22898.90 21999.02 31698.84 18699.70 5699.59 6097.27 25398.40 32699.19 33295.53 19399.23 32298.34 19493.78 37598.61 338
mvsmamba99.06 11898.96 11399.36 14899.47 20098.64 20599.70 5699.05 32997.61 21599.65 10299.83 7596.54 15599.92 10599.19 7899.62 14499.51 185
LTVRE_ROB97.16 1298.02 22697.90 22398.40 28999.23 26796.80 31899.70 5699.60 5597.12 26798.18 34199.70 16591.73 32499.72 22898.39 18797.45 28998.68 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 37591.26 37993.84 38495.52 41485.92 40999.69 6098.53 38895.31 36193.87 40096.37 41155.33 42298.27 39095.70 34490.98 39697.32 403
XVS99.53 1999.42 2599.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17399.74 15098.81 4799.94 7598.79 13699.86 7099.84 44
X-MVStestdata96.55 33495.45 35399.87 1599.85 2699.83 1999.69 6099.68 2098.98 5599.37 17364.01 42798.81 4799.94 7598.79 13699.86 7099.84 44
V4298.06 21697.79 23398.86 23198.98 32498.84 18699.69 6099.34 26296.53 31599.30 18899.37 29594.67 23599.32 30997.57 26594.66 35898.42 358
mPP-MVS99.44 4299.30 5499.86 2699.88 1199.79 3399.69 6099.48 16498.12 15199.50 14099.75 14598.78 5199.97 2198.57 16999.89 5699.83 54
CP-MVS99.45 3899.32 4699.85 3399.83 3999.75 4399.69 6099.52 10898.07 16199.53 13599.63 20798.93 3699.97 2198.74 14099.91 3699.83 54
FE-MVS98.48 17598.17 19099.40 14299.54 17098.96 16899.68 6698.81 36495.54 35899.62 11499.70 16593.82 27299.93 9397.35 28499.46 15699.32 226
PS-CasMVS97.93 23997.59 26098.95 20798.99 32199.06 15399.68 6699.52 10897.13 26598.31 33199.68 18292.44 31099.05 35198.51 17794.08 37098.75 280
Vis-MVSNetpermissive99.12 10498.97 10999.56 10499.78 5799.10 14699.68 6699.66 2898.49 10399.86 3699.87 5194.77 22799.84 16799.19 7899.41 16099.74 97
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BP-MVS199.12 10498.94 11799.65 8099.51 17999.30 12099.67 6998.92 34598.48 10499.84 3899.69 17594.96 21299.92 10599.62 3199.79 11299.71 118
test_vis1_n_192098.63 17198.40 17899.31 15799.86 2097.94 25799.67 6999.62 4299.43 1099.99 299.91 2387.29 381100.00 199.92 1499.92 2999.98 2
EIA-MVS99.18 8799.09 8799.45 13599.49 19299.18 13499.67 6999.53 10397.66 21199.40 16799.44 27498.10 10399.81 19298.94 10699.62 14499.35 221
MSP-MVS99.42 4799.27 6399.88 999.89 899.80 3099.67 6999.50 14298.70 8699.77 6199.49 25898.21 9899.95 6498.46 18399.77 11799.88 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 11398.97 10999.48 12999.49 19299.14 14299.67 6999.34 26297.31 25099.58 12499.76 14297.65 11799.82 18798.87 11899.07 19099.46 202
CP-MVSNet98.09 21297.78 23699.01 19898.97 32699.24 12999.67 6999.46 19497.25 25598.48 32399.64 20193.79 27399.06 35098.63 15694.10 36998.74 283
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18598.79 7799.68 8699.81 9898.43 8699.97 2198.88 11599.90 4599.83 54
HFP-MVS99.49 2599.37 3699.86 2699.87 1599.80 3099.66 7599.67 2398.15 14599.68 8699.69 17599.06 1699.96 3398.69 14899.87 6299.84 44
mvs_tets98.40 18598.23 18898.91 21798.67 36698.51 22199.66 7599.53 10398.19 14098.65 30799.81 9892.75 29299.44 28599.31 6697.48 28898.77 276
EU-MVSNet97.98 23398.03 20997.81 33998.72 36096.65 32599.66 7599.66 2898.09 15698.35 32999.82 8495.25 20598.01 39697.41 28095.30 34698.78 272
ACMMPR99.49 2599.36 3899.86 2699.87 1599.79 3399.66 7599.67 2398.15 14599.67 9099.69 17598.95 3099.96 3398.69 14899.87 6299.84 44
MP-MVScopyleft99.33 6499.15 7899.87 1599.88 1199.82 2599.66 7599.46 19498.09 15699.48 14499.74 15098.29 9599.96 3397.93 22799.87 6299.82 59
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 9199.01 10399.61 9499.81 4698.86 18499.65 8199.64 3799.39 1399.97 1699.94 693.20 28499.98 1399.55 3799.91 3699.99 1
region2R99.48 2999.35 4099.87 1599.88 1199.80 3099.65 8199.66 2898.13 15099.66 9599.68 18298.96 2599.96 3398.62 15799.87 6299.84 44
TranMVSNet+NR-MVSNet97.93 23997.66 25198.76 24698.78 34998.62 20799.65 8199.49 15297.76 19898.49 32299.60 21994.23 25498.97 36898.00 22392.90 38398.70 292
GDP-MVS99.08 11598.89 12499.64 8699.53 17199.34 11299.64 8499.48 16498.32 12399.77 6199.66 19395.14 20899.93 9398.97 10499.50 15499.64 143
ttmdpeth97.80 26597.63 25698.29 29998.77 35497.38 28099.64 8499.36 25098.78 8096.30 38499.58 22592.34 31399.39 29298.36 19295.58 33998.10 378
mvsany_test393.77 36893.45 37294.74 38195.78 41088.01 40799.64 8498.25 39298.28 12694.31 39897.97 40068.89 41598.51 38797.50 27190.37 39897.71 395
ZNCC-MVS99.47 3299.33 4499.87 1599.87 1599.81 2899.64 8499.67 2398.08 16099.55 13299.64 20198.91 3799.96 3398.72 14399.90 4599.82 59
tfpnnormal97.84 25697.47 27398.98 20299.20 27499.22 13199.64 8499.61 4996.32 32998.27 33599.70 16593.35 28099.44 28595.69 34595.40 34498.27 368
casdiffmvs_mvgpermissive99.15 9399.02 9999.55 10699.66 12799.09 14799.64 8499.56 7398.26 13099.45 14899.87 5196.03 17399.81 19299.54 3899.15 18199.73 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3899.31 5299.85 3399.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.53 7999.95 6498.61 16099.81 10199.77 87
RE-MVS-def99.34 4299.76 6899.82 2599.63 9099.52 10898.38 11499.76 6799.82 8498.75 5898.61 16099.81 10199.77 87
TSAR-MVS + MP.99.58 1299.50 1699.81 4999.91 199.66 5999.63 9099.39 23398.91 6599.78 5799.85 6099.36 299.94 7598.84 12899.88 5999.82 59
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 34096.03 34196.79 37197.31 40094.14 38399.63 9099.08 32396.17 34197.04 37599.06 34593.94 26697.76 40286.96 41195.06 35198.47 352
APD-MVS_3200maxsize99.48 2999.35 4099.85 3399.76 6899.83 1999.63 9099.54 9098.36 11899.79 5299.82 8498.86 4199.95 6498.62 15799.81 10199.78 85
test072699.85 2699.89 499.62 9599.50 14299.10 3499.86 3699.82 8498.94 32
EPNet98.86 14298.71 14699.30 16297.20 40298.18 23999.62 9598.91 35099.28 1998.63 31099.81 9895.96 17599.99 499.24 7599.72 12899.73 102
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 13498.67 15099.72 7299.85 2699.53 8999.62 9599.59 6092.65 39699.71 8099.78 13098.06 10699.90 12998.84 12899.91 3699.74 97
HY-MVS97.30 798.85 14998.64 15499.47 13299.42 21299.08 15099.62 9599.36 25097.39 24499.28 19299.68 18296.44 16199.92 10598.37 19098.22 24299.40 214
ACMMPcopyleft99.45 3899.32 4699.82 4699.89 899.67 5799.62 9599.69 1898.12 15199.63 11099.84 7098.73 6399.96 3398.55 17599.83 9499.81 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6999.19 7599.64 8699.82 4299.23 13099.62 9599.55 8198.94 6199.63 11099.95 395.82 18499.94 7599.37 5799.97 799.73 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8699.78 5799.15 14199.61 10199.45 20599.01 4799.89 2499.82 8499.01 1899.92 10599.56 3699.95 1899.85 38
reproduce_monomvs97.89 24697.87 22897.96 32699.51 17995.45 35999.60 10299.25 29999.17 2298.85 27899.49 25889.29 35899.64 25999.35 5896.31 31998.78 272
test250696.81 33096.65 32697.29 35799.74 8692.21 40099.60 10285.06 43199.13 2799.77 6199.93 1087.82 37999.85 16099.38 5699.38 16199.80 75
SED-MVS99.61 899.52 1299.88 999.84 3299.90 299.60 10299.48 16499.08 4099.91 2099.81 9899.20 799.96 3398.91 11299.85 7799.79 79
OPU-MVS99.64 8699.56 16399.72 4799.60 10299.70 16599.27 599.42 29098.24 20299.80 10599.79 79
GST-MVS99.40 5499.24 6899.85 3399.86 2099.79 3399.60 10299.67 2397.97 17399.63 11099.68 18298.52 8099.95 6498.38 18899.86 7099.81 66
EI-MVSNet-UG-set99.58 1299.57 899.64 8699.78 5799.14 14299.60 10299.45 20599.01 4799.90 2299.83 7598.98 2499.93 9399.59 3299.95 1899.86 34
ACMH97.28 898.10 21197.99 21398.44 28499.41 21796.96 31099.60 10299.56 7398.09 15698.15 34299.91 2390.87 34099.70 24098.88 11597.45 28998.67 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 22298.05 20798.00 32299.74 8694.37 38099.59 10994.98 41999.13 2799.66 9599.93 1090.67 34299.84 16799.40 5599.38 16199.80 75
SR-MVS99.43 4599.29 5899.86 2699.75 7899.83 1999.59 10999.62 4298.21 13899.73 7399.79 12398.68 6799.96 3398.44 18599.77 11799.79 79
thres100view90097.76 26997.45 27698.69 25299.72 9797.86 26199.59 10998.74 37297.93 17699.26 20198.62 37691.75 32299.83 18093.22 38198.18 24798.37 364
thres600view797.86 25197.51 26798.92 21399.72 9797.95 25599.59 10998.74 37297.94 17599.27 19798.62 37691.75 32299.86 15493.73 37698.19 24698.96 263
LCM-MVSNet-Re97.83 25898.15 19396.87 36999.30 24892.25 39999.59 10998.26 39197.43 23996.20 38599.13 33896.27 16698.73 38298.17 20898.99 19699.64 143
baseline198.31 19197.95 21899.38 14799.50 19098.74 19699.59 10998.93 34298.41 11299.14 22599.60 21994.59 23999.79 20298.48 17993.29 37999.61 152
SteuartSystems-ACMMP99.54 1899.42 2599.87 1599.82 4299.81 2899.59 10999.51 12298.62 9299.79 5299.83 7599.28 499.97 2198.48 17999.90 4599.84 44
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10998.90 12199.74 6799.80 5299.46 10099.59 10999.49 15297.03 27999.63 11099.69 17597.27 12999.96 3397.82 23899.84 8599.81 66
test_fmvsmvis_n_192099.65 699.61 699.77 6199.38 22799.37 10899.58 11799.62 4299.41 1299.87 3299.92 1798.81 47100.00 199.97 199.93 2699.94 12
dmvs_testset95.02 35796.12 33891.72 39299.10 30180.43 42099.58 11797.87 40097.47 23195.22 39298.82 36793.99 26495.18 41788.09 40794.91 35699.56 168
test_fmvsm_n_192099.69 499.66 399.78 5899.84 3299.44 10299.58 11799.69 1899.43 1099.98 899.91 2398.62 73100.00 199.97 199.95 1899.90 18
test111198.04 22298.11 19897.83 33699.74 8693.82 38599.58 11795.40 41899.12 3299.65 10299.93 1090.73 34199.84 16799.43 5499.38 16199.82 59
PGM-MVS99.45 3899.31 5299.86 2699.87 1599.78 3999.58 11799.65 3497.84 18899.71 8099.80 11199.12 1399.97 2198.33 19599.87 6299.83 54
LPG-MVS_test98.22 19798.13 19698.49 27199.33 23997.05 29999.58 11799.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
PHI-MVS99.30 6999.17 7799.70 7399.56 16399.52 9299.58 11799.80 897.12 26799.62 11499.73 15698.58 7599.90 12998.61 16099.91 3699.68 126
SF-MVS99.38 5799.24 6899.79 5599.79 5599.68 5499.57 12499.54 9097.82 19399.71 8099.80 11198.95 3099.93 9398.19 20599.84 8599.74 97
DVP-MVScopyleft99.57 1599.47 2099.88 999.85 2699.89 499.57 12499.37 24999.10 3499.81 4699.80 11198.94 3299.96 3398.93 10999.86 7099.81 66
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 12299.96 3398.93 10999.86 7099.88 27
Effi-MVS+-dtu98.78 15798.89 12498.47 27899.33 23996.91 31299.57 12499.30 28798.47 10599.41 16298.99 35396.78 14599.74 21898.73 14299.38 16198.74 283
v2v48298.06 21697.77 23898.92 21398.90 33398.82 19099.57 12499.36 25096.65 30399.19 21799.35 30194.20 25599.25 31997.72 25194.97 35398.69 296
DSMNet-mixed97.25 31797.35 29396.95 36697.84 39093.61 39199.57 12496.63 41396.13 34698.87 27398.61 37894.59 23997.70 40395.08 35998.86 20599.55 169
reproduce_model99.63 799.54 1199.90 499.78 5799.88 899.56 13099.55 8199.15 2499.90 2299.90 3099.00 2299.97 2199.11 8699.91 3699.86 34
MVStest196.08 34695.48 35197.89 33198.93 32996.70 32099.56 13099.35 25792.69 39591.81 40999.46 27189.90 35198.96 37095.00 36192.61 38898.00 387
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3399.86 2099.61 7399.56 13099.63 4099.48 399.98 899.83 7598.75 5899.99 499.97 199.96 1399.94 12
fmvsm_l_conf0.5_n99.71 199.67 199.85 3399.84 3299.63 7099.56 13099.63 4099.47 499.98 899.82 8498.75 5899.99 499.97 199.97 799.94 12
sd_testset98.75 16098.57 16799.29 16599.81 4698.26 23699.56 13099.62 4298.78 8099.64 10799.88 4292.02 31699.88 14699.54 3898.26 24099.72 109
KD-MVS_self_test95.00 35894.34 36396.96 36597.07 40595.39 36299.56 13099.44 21395.11 36497.13 37397.32 40691.86 32097.27 40790.35 39981.23 41598.23 372
ETV-MVS99.26 7799.21 7299.40 14299.46 20299.30 12099.56 13099.52 10898.52 10199.44 15399.27 32298.41 9099.86 15499.10 8999.59 14799.04 253
SMA-MVScopyleft99.44 4299.30 5499.85 3399.73 9399.83 1999.56 13099.47 18597.45 23599.78 5799.82 8499.18 1099.91 11798.79 13699.89 5699.81 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13998.72 14499.31 15799.86 2098.48 22599.56 13099.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
casdiffmvspermissive99.13 9898.98 10899.56 10499.65 13399.16 13799.56 13099.50 14298.33 12299.41 16299.86 5595.92 17999.83 18099.45 5399.16 17899.70 120
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 18698.09 20299.24 17499.26 25999.32 11499.56 13099.55 8197.45 23598.71 29299.83 7593.23 28199.63 26598.88 11596.32 31898.76 278
ACMH+97.24 1097.92 24297.78 23698.32 29699.46 20296.68 32499.56 13099.54 9098.41 11297.79 35899.87 5190.18 34999.66 25198.05 22097.18 30398.62 329
ACMM97.58 598.37 18898.34 18198.48 27399.41 21797.10 29399.56 13099.45 20598.53 10099.04 24699.85 6093.00 28699.71 23498.74 14097.45 28998.64 320
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7599.12 8299.74 6799.18 28099.75 4399.56 13099.57 6898.45 10799.49 14399.85 6097.77 11499.94 7598.33 19599.84 8599.52 178
test_fmvsmconf0.01_n99.22 8499.03 9599.79 5598.42 38299.48 9799.55 14499.51 12299.39 1399.78 5799.93 1094.80 22299.95 6499.93 1399.95 1899.94 12
test_fmvs198.88 13898.79 13999.16 18299.69 11197.61 27499.55 14499.49 15299.32 1799.98 899.91 2391.41 33299.96 3399.82 1999.92 2999.90 18
v14419297.92 24297.60 25998.87 22898.83 34498.65 20399.55 14499.34 26296.20 33899.32 18499.40 28694.36 25099.26 31896.37 33295.03 35298.70 292
API-MVS99.04 12199.03 9599.06 19299.40 22299.31 11899.55 14499.56 7398.54 9999.33 18399.39 29098.76 5599.78 20796.98 30599.78 11498.07 380
fmvsm_s_conf0.1_n_a99.26 7799.06 9099.85 3399.52 17699.62 7199.54 14899.62 4298.69 8799.99 299.96 194.47 24799.94 7599.88 1699.92 2999.98 2
APD_test195.87 34896.49 33094.00 38399.53 17184.01 41299.54 14899.32 27995.91 35497.99 34999.85 6085.49 39099.88 14691.96 39298.84 20798.12 377
thisisatest053098.35 18998.03 20999.31 15799.63 13898.56 21299.54 14896.75 41197.53 22699.73 7399.65 19591.25 33699.89 14198.62 15799.56 14999.48 191
MTMP99.54 14898.88 355
v114497.98 23397.69 24898.85 23498.87 33898.66 20299.54 14899.35 25796.27 33399.23 20799.35 30194.67 23599.23 32296.73 31895.16 34998.68 301
v14897.79 26797.55 26198.50 27098.74 35797.72 26799.54 14899.33 26996.26 33498.90 26799.51 25294.68 23499.14 33797.83 23793.15 38298.63 327
CostFormer97.72 27997.73 24597.71 34399.15 29494.02 38499.54 14899.02 33394.67 37599.04 24699.35 30192.35 31299.77 20998.50 17897.94 25799.34 224
MVSTER98.49 17498.32 18399.00 20099.35 23499.02 15799.54 14899.38 24197.41 24299.20 21499.73 15693.86 27199.36 30198.87 11897.56 27798.62 329
fmvsm_s_conf0.1_n99.29 7199.10 8499.86 2699.70 10799.65 6399.53 15699.62 4298.74 8399.99 299.95 394.53 24599.94 7599.89 1599.96 1399.97 4
reproduce-ours99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
our_new_method99.61 899.52 1299.90 499.76 6899.88 899.52 15799.54 9099.13 2799.89 2499.89 3598.96 2599.96 3399.04 9499.90 4599.85 38
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3399.83 3999.64 6999.52 15799.65 3499.10 3499.98 899.92 1797.35 12599.96 3399.94 1199.92 2999.95 9
MM99.40 5499.28 6099.74 6799.67 11799.31 11899.52 15798.87 35799.55 199.74 7199.80 11196.47 15899.98 1399.97 199.97 799.94 12
patch_mono-299.26 7799.62 598.16 30999.81 4694.59 37799.52 15799.64 3799.33 1699.73 7399.90 3099.00 2299.99 499.69 2499.98 499.89 21
Fast-Effi-MVS+-dtu98.77 15998.83 13598.60 25799.41 21796.99 30699.52 15799.49 15298.11 15399.24 20399.34 30596.96 14199.79 20297.95 22699.45 15799.02 256
Fast-Effi-MVS+98.70 16498.43 17599.51 12399.51 17999.28 12399.52 15799.47 18596.11 34799.01 24999.34 30596.20 16899.84 16797.88 23098.82 20999.39 215
v192192097.80 26597.45 27698.84 23598.80 34598.53 21599.52 15799.34 26296.15 34499.24 20399.47 26793.98 26599.29 31395.40 35395.13 35098.69 296
MIMVSNet195.51 35295.04 35796.92 36897.38 39795.60 35299.52 15799.50 14293.65 38596.97 37799.17 33385.28 39396.56 41288.36 40695.55 34198.60 341
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3399.84 3299.65 6399.51 16699.67 2399.13 2799.98 899.92 1796.60 15299.96 3399.95 999.96 1399.95 9
UniMVSNet_ETH3D97.32 31496.81 32298.87 22899.40 22297.46 27799.51 16699.53 10395.86 35598.54 31999.77 13882.44 40599.66 25198.68 15097.52 28199.50 189
alignmvs98.81 15398.56 16999.58 10099.43 21099.42 10499.51 16698.96 34098.61 9399.35 17998.92 36394.78 22499.77 20999.35 5898.11 25299.54 171
v119297.81 26397.44 28198.91 21798.88 33598.68 20099.51 16699.34 26296.18 34099.20 21499.34 30594.03 26399.36 30195.32 35595.18 34898.69 296
test20.0396.12 34495.96 34396.63 37297.44 39695.45 35999.51 16699.38 24196.55 31496.16 38699.25 32593.76 27596.17 41387.35 41094.22 36698.27 368
mvs_anonymous99.03 12398.99 10599.16 18299.38 22798.52 21999.51 16699.38 24197.79 19499.38 17199.81 9897.30 12799.45 28099.35 5898.99 19699.51 185
TAMVS99.12 10499.08 8899.24 17499.46 20298.55 21399.51 16699.46 19498.09 15699.45 14899.82 8498.34 9399.51 27598.70 14598.93 19999.67 129
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2699.44 20999.65 6399.50 17399.61 4999.45 799.87 3299.92 1797.31 12699.97 2199.95 999.99 199.97 4
test_yl98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
DCV-MVSNet98.86 14298.63 15599.54 10799.49 19299.18 13499.50 17399.07 32698.22 13699.61 11799.51 25295.37 19899.84 16798.60 16398.33 23499.59 159
tfpn200view997.72 27997.38 28998.72 24899.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.37 364
UA-Net99.42 4799.29 5899.80 5299.62 14499.55 8499.50 17399.70 1598.79 7799.77 6199.96 197.45 12099.96 3398.92 11199.90 4599.89 21
pm-mvs197.68 28697.28 30498.88 22499.06 31098.62 20799.50 17399.45 20596.32 32997.87 35499.79 12392.47 30699.35 30497.54 26893.54 37798.67 308
EI-MVSNet98.67 16798.67 15098.68 25399.35 23497.97 25199.50 17399.38 24196.93 28899.20 21499.83 7597.87 11099.36 30198.38 18897.56 27798.71 287
CVMVSNet98.57 17398.67 15098.30 29899.35 23495.59 35399.50 17399.55 8198.60 9499.39 16999.83 7594.48 24699.45 28098.75 13998.56 22399.85 38
VPA-MVSNet98.29 19497.95 21899.30 16299.16 29099.54 8699.50 17399.58 6498.27 12899.35 17999.37 29592.53 30499.65 25699.35 5894.46 36198.72 285
thres40097.77 26897.38 28998.92 21399.69 11197.96 25399.50 17398.73 37897.83 18999.17 22298.45 38291.67 32699.83 18093.22 38198.18 24798.96 263
APD-MVScopyleft99.27 7599.08 8899.84 4499.75 7899.79 3399.50 17399.50 14297.16 26399.77 6199.82 8498.78 5199.94 7597.56 26699.86 7099.80 75
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 35095.65 34996.32 37699.67 11791.35 40399.49 18496.74 41298.25 13195.24 39198.10 39774.96 41299.90 12999.53 4098.85 20697.70 397
TransMVSNet (Re)97.15 32196.58 32798.86 23199.12 29698.85 18599.49 18498.91 35095.48 35997.16 37299.80 11193.38 27999.11 34594.16 37391.73 39198.62 329
UniMVSNet (Re)98.29 19498.00 21299.13 18799.00 31899.36 11199.49 18499.51 12297.95 17498.97 25799.13 33896.30 16599.38 29498.36 19293.34 37898.66 316
EPMVS97.82 26197.65 25298.35 29398.88 33595.98 34699.49 18494.71 42197.57 21999.26 20199.48 26492.46 30999.71 23497.87 23299.08 18999.35 221
fmvsm_s_conf0.5_n_399.37 5899.20 7399.87 1599.75 7899.70 5199.48 18899.66 2899.45 799.99 299.93 1094.64 23899.97 2199.94 1199.97 799.95 9
test_fmvsmconf_n99.70 399.64 499.87 1599.80 5299.66 5999.48 18899.64 3799.45 799.92 1999.92 1798.62 7399.99 499.96 799.99 199.96 7
Anonymous2023121197.88 24797.54 26498.90 21999.71 10298.53 21599.48 18899.57 6894.16 38098.81 28199.68 18293.23 28199.42 29098.84 12894.42 36398.76 278
v124097.69 28497.32 29998.79 24398.85 34298.43 22999.48 18899.36 25096.11 34799.27 19799.36 29893.76 27599.24 32194.46 36795.23 34798.70 292
VPNet97.84 25697.44 28199.01 19899.21 27298.94 17499.48 18899.57 6898.38 11499.28 19299.73 15688.89 36199.39 29299.19 7893.27 38098.71 287
UniMVSNet_NR-MVSNet98.22 19797.97 21598.96 20598.92 33198.98 16199.48 18899.53 10397.76 19898.71 29299.46 27196.43 16299.22 32698.57 16992.87 38598.69 296
TDRefinement95.42 35494.57 36197.97 32489.83 42496.11 34599.48 18898.75 36996.74 29696.68 38099.88 4288.65 36799.71 23498.37 19082.74 41398.09 379
ACMMP_NAP99.47 3299.34 4299.88 999.87 1599.86 1699.47 19599.48 16498.05 16799.76 6799.86 5598.82 4699.93 9398.82 13599.91 3699.84 44
NR-MVSNet97.97 23697.61 25899.02 19798.87 33899.26 12699.47 19599.42 22197.63 21397.08 37499.50 25595.07 21099.13 34097.86 23393.59 37698.68 301
PVSNet_Blended_VisFu99.36 6199.28 6099.61 9499.86 2099.07 15299.47 19599.93 297.66 21199.71 8099.86 5597.73 11599.96 3399.47 5199.82 9899.79 79
fmvsm_s_conf0.1_n_299.37 5899.22 7199.81 4999.77 6499.75 4399.46 19899.60 5599.47 499.98 899.94 694.98 21199.95 6499.97 199.79 11299.73 102
SD-MVS99.41 5199.52 1299.05 19499.74 8699.68 5499.46 19899.52 10899.11 3399.88 2799.91 2399.43 197.70 40398.72 14399.93 2699.77 87
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 31596.76 32498.82 23799.37 23098.07 24699.45 20099.36 25097.56 22197.89 35398.95 35883.70 40098.82 37796.03 33698.56 22399.58 163
tt080597.97 23697.77 23898.57 26299.59 15596.61 32799.45 20099.08 32398.21 13898.88 27099.80 11188.66 36699.70 24098.58 16697.72 26799.39 215
tpm297.44 30997.34 29697.74 34299.15 29494.36 38199.45 20098.94 34193.45 38998.90 26799.44 27491.35 33499.59 26997.31 28598.07 25399.29 228
FMVSNet297.72 27997.36 29198.80 24299.51 17998.84 18699.45 20099.42 22196.49 31798.86 27799.29 31790.26 34598.98 36196.44 32996.56 31298.58 343
CDS-MVSNet99.09 11499.03 9599.25 17299.42 21298.73 19799.45 20099.46 19498.11 15399.46 14799.77 13898.01 10899.37 29798.70 14598.92 20199.66 132
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 14298.63 15599.54 10799.37 23099.66 5999.45 20099.54 9096.61 30899.01 24999.40 28697.09 13399.86 15497.68 25699.53 15299.10 241
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_299.32 6699.13 8099.89 799.80 5299.77 4099.44 20699.58 6499.47 499.99 299.93 1094.04 26299.96 3399.96 799.93 2699.93 17
UGNet98.87 13998.69 14899.40 14299.22 27198.72 19899.44 20699.68 2099.24 2099.18 22199.42 27892.74 29499.96 3399.34 6399.94 2499.53 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 14298.63 15599.54 10799.64 13599.19 13299.44 20699.54 9097.77 19799.30 18899.81 9894.20 25599.93 9399.17 8298.82 20999.49 190
test_040296.64 33396.24 33597.85 33398.85 34296.43 33399.44 20699.26 29793.52 38696.98 37699.52 24888.52 37099.20 33392.58 39197.50 28497.93 392
ACMP97.20 1198.06 21697.94 22098.45 28199.37 23097.01 30499.44 20699.49 15297.54 22598.45 32499.79 12391.95 31899.72 22897.91 22897.49 28798.62 329
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 28198.55 37798.16 24099.43 21193.68 42397.23 36998.46 38189.30 35799.22 32695.43 35298.22 24297.98 389
HPM-MVS++copyleft99.39 5699.23 7099.87 1599.75 7899.84 1899.43 21199.51 12298.68 8999.27 19799.53 24598.64 7299.96 3398.44 18599.80 10599.79 79
tpm cat197.39 31197.36 29197.50 35299.17 28893.73 38799.43 21199.31 28391.27 40098.71 29299.08 34294.31 25399.77 20996.41 33198.50 22799.00 257
tpm97.67 28997.55 26198.03 31799.02 31695.01 36999.43 21198.54 38796.44 32399.12 22899.34 30591.83 32199.60 26897.75 24796.46 31499.48 191
GBi-Net97.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
test197.68 28697.48 27098.29 29999.51 17997.26 28699.43 21199.48 16496.49 31799.07 23899.32 31290.26 34598.98 36197.10 29896.65 30998.62 329
FMVSNet196.84 32996.36 33398.29 29999.32 24697.26 28699.43 21199.48 16495.11 36498.55 31899.32 31283.95 39998.98 36195.81 34196.26 32098.62 329
mamv499.33 6499.42 2599.07 19099.67 11797.73 26599.42 21899.60 5598.15 14599.94 1899.91 2398.42 8899.94 7599.72 2299.96 1399.54 171
testgi97.65 29197.50 26898.13 31399.36 23396.45 33299.42 21899.48 16497.76 19897.87 35499.45 27391.09 33798.81 37894.53 36698.52 22699.13 240
F-COLMAP99.19 8599.04 9399.64 8699.78 5799.27 12599.42 21899.54 9097.29 25299.41 16299.59 22198.42 8899.93 9398.19 20599.69 13399.73 102
Anonymous20240521198.30 19397.98 21499.26 17199.57 15998.16 24099.41 22198.55 38696.03 35299.19 21799.74 15091.87 31999.92 10599.16 8398.29 23999.70 120
MSLP-MVS++99.46 3499.47 2099.44 13999.60 15399.16 13799.41 22199.71 1398.98 5599.45 14899.78 13099.19 999.54 27499.28 7099.84 8599.63 148
VNet99.11 10998.90 12199.73 7099.52 17699.56 8299.41 22199.39 23399.01 4799.74 7199.78 13095.56 19299.92 10599.52 4298.18 24799.72 109
baseline297.87 24997.55 26198.82 23799.18 28098.02 24899.41 22196.58 41596.97 28296.51 38199.17 33393.43 27899.57 27097.71 25299.03 19398.86 267
DU-MVS98.08 21497.79 23398.96 20598.87 33898.98 16199.41 22199.45 20597.87 18298.71 29299.50 25594.82 22099.22 32698.57 16992.87 38598.68 301
Baseline_NR-MVSNet97.76 26997.45 27698.68 25399.09 30498.29 23499.41 22198.85 35995.65 35798.63 31099.67 18894.82 22099.10 34798.07 21992.89 38498.64 320
XVG-ACMP-BASELINE97.83 25897.71 24798.20 30699.11 29896.33 33699.41 22199.52 10898.06 16599.05 24599.50 25589.64 35599.73 22497.73 24997.38 29698.53 346
DP-MVS99.16 9198.95 11599.78 5899.77 6499.53 8999.41 22199.50 14297.03 27999.04 24699.88 4297.39 12199.92 10598.66 15299.90 4599.87 32
9.1499.10 8499.72 9799.40 22999.51 12297.53 22699.64 10799.78 13098.84 4499.91 11797.63 25799.82 98
D2MVS98.41 18298.50 17298.15 31299.26 25996.62 32699.40 22999.61 4997.71 20398.98 25599.36 29896.04 17299.67 24898.70 14597.41 29498.15 376
Anonymous2024052998.09 21297.68 24999.34 15099.66 12798.44 22899.40 22999.43 21993.67 38499.22 20899.89 3590.23 34899.93 9399.26 7498.33 23499.66 132
FMVSNet398.03 22497.76 24298.84 23599.39 22598.98 16199.40 22999.38 24196.67 30199.07 23899.28 31992.93 28798.98 36197.10 29896.65 30998.56 345
LFMVS97.90 24597.35 29399.54 10799.52 17699.01 15999.39 23398.24 39397.10 27199.65 10299.79 12384.79 39599.91 11799.28 7098.38 23199.69 122
HQP_MVS98.27 19698.22 18998.44 28499.29 25296.97 30899.39 23399.47 18598.97 5899.11 23099.61 21692.71 29799.69 24597.78 24197.63 27098.67 308
plane_prior299.39 23398.97 58
CHOSEN 1792x268899.19 8599.10 8499.45 13599.89 898.52 21999.39 23399.94 198.73 8499.11 23099.89 3595.50 19499.94 7599.50 4499.97 799.89 21
PAPM_NR99.04 12198.84 13399.66 7699.74 8699.44 10299.39 23399.38 24197.70 20699.28 19299.28 31998.34 9399.85 16096.96 30799.45 15799.69 122
gg-mvs-nofinetune96.17 34395.32 35598.73 24798.79 34698.14 24299.38 23894.09 42291.07 40398.07 34791.04 42089.62 35699.35 30496.75 31799.09 18898.68 301
VDDNet97.55 29797.02 31699.16 18299.49 19298.12 24499.38 23899.30 28795.35 36099.68 8699.90 3082.62 40499.93 9399.31 6698.13 25199.42 209
MVS_030499.15 9398.96 11399.73 7098.92 33199.37 10899.37 24096.92 40899.51 299.66 9599.78 13096.69 14999.97 2199.84 1899.97 799.84 44
pmmvs696.53 33596.09 34097.82 33898.69 36495.47 35899.37 24099.47 18593.46 38897.41 36399.78 13087.06 38399.33 30796.92 31292.70 38798.65 318
PM-MVS92.96 37292.23 37695.14 38095.61 41189.98 40699.37 24098.21 39494.80 37395.04 39697.69 40165.06 41697.90 39994.30 36889.98 40197.54 401
WTY-MVS99.06 11898.88 12699.61 9499.62 14499.16 13799.37 24099.56 7398.04 16899.53 13599.62 21296.84 14399.94 7598.85 12598.49 22899.72 109
IterMVS-LS98.46 17798.42 17698.58 26199.59 15598.00 24999.37 24099.43 21996.94 28799.07 23899.59 22197.87 11099.03 35498.32 19795.62 33898.71 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 28397.28 30498.97 20499.70 10797.27 28499.36 24599.45 20598.94 6199.66 9599.64 20194.93 21499.99 499.48 4984.36 41099.65 136
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5799.88 899.36 24599.51 12298.73 8499.88 2799.84 7098.72 6499.96 3398.16 20999.87 6299.88 27
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 33796.12 33897.40 35498.65 36795.65 35199.36 24599.51 12297.13 26596.04 38898.99 35388.40 37198.17 39296.71 31990.27 39998.40 361
sss99.17 8999.05 9199.53 11599.62 14498.97 16499.36 24599.62 4297.83 18999.67 9099.65 19597.37 12499.95 6499.19 7899.19 17799.68 126
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 6199.63 13899.59 7699.36 24599.46 19499.07 4299.79 5299.82 8498.85 4299.92 10598.68 15099.87 6299.82 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 8199.14 7999.59 9799.41 21799.16 13799.35 25099.57 6898.82 7299.51 13999.61 21696.46 15999.95 6499.59 3299.98 499.65 136
pmmvs-eth3d95.34 35694.73 35997.15 35895.53 41395.94 34799.35 25099.10 32095.13 36293.55 40197.54 40288.15 37597.91 39894.58 36589.69 40297.61 398
MDTV_nov1_ep13_2view95.18 36799.35 25096.84 29299.58 12495.19 20797.82 23899.46 202
VDD-MVS97.73 27797.35 29398.88 22499.47 20097.12 29299.34 25398.85 35998.19 14099.67 9099.85 6082.98 40299.92 10599.49 4898.32 23899.60 155
COLMAP_ROBcopyleft97.56 698.86 14298.75 14299.17 18199.88 1198.53 21599.34 25399.59 6097.55 22298.70 29899.89 3595.83 18399.90 12998.10 21199.90 4599.08 246
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 38577.86 39197.62 34797.91 38896.12 34499.33 25599.28 2938.40 42825.05 42999.27 32284.11 39899.33 30789.20 40298.22 24297.42 402
ETVMVS97.50 30296.90 32099.29 16599.23 26798.78 19599.32 25698.90 35297.52 22898.56 31798.09 39884.72 39699.69 24597.86 23397.88 26099.39 215
FMVSNet596.43 33896.19 33797.15 35899.11 29895.89 34899.32 25699.52 10894.47 37998.34 33099.07 34387.54 38097.07 40892.61 39095.72 33698.47 352
dp97.75 27397.80 23297.59 34999.10 30193.71 38899.32 25698.88 35596.48 32099.08 23799.55 23692.67 30099.82 18796.52 32798.58 22099.24 234
tpmvs97.98 23398.02 21197.84 33599.04 31494.73 37499.31 25999.20 30996.10 35198.76 28899.42 27894.94 21399.81 19296.97 30698.45 22998.97 261
tpmrst98.33 19098.48 17397.90 33099.16 29094.78 37399.31 25999.11 31997.27 25399.45 14899.59 22195.33 20099.84 16798.48 17998.61 21799.09 245
testing9997.36 31296.94 31998.63 25599.18 28096.70 32099.30 26198.93 34297.71 20398.23 33698.26 39084.92 39499.84 16798.04 22197.85 26399.35 221
MP-MVS-pluss99.37 5899.20 7399.88 999.90 499.87 1599.30 26199.52 10897.18 26199.60 12099.79 12398.79 5099.95 6498.83 13199.91 3699.83 54
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6399.19 7599.79 5599.61 14899.65 6399.30 26199.48 16498.86 6799.21 21199.63 20798.72 6499.90 12998.25 20199.63 14399.80 75
JIA-IIPM97.50 30297.02 31698.93 21198.73 35897.80 26399.30 26198.97 33891.73 39998.91 26594.86 41495.10 20999.71 23497.58 26197.98 25599.28 229
BH-RMVSNet98.41 18298.08 20399.40 14299.41 21798.83 18999.30 26198.77 36897.70 20698.94 26299.65 19592.91 29099.74 21896.52 32799.55 15199.64 143
testing1197.50 30297.10 31398.71 25099.20 27496.91 31299.29 26698.82 36297.89 18098.21 33998.40 38485.63 38999.83 18098.45 18498.04 25499.37 219
Syy-MVS97.09 32497.14 31096.95 36699.00 31892.73 39799.29 26699.39 23397.06 27597.41 36398.15 39393.92 26898.68 38391.71 39398.34 23299.45 205
myMVS_eth3d96.89 32796.37 33298.43 28699.00 31897.16 29099.29 26699.39 23397.06 27597.41 36398.15 39383.46 40198.68 38395.27 35698.34 23299.45 205
MCST-MVS99.43 4599.30 5499.82 4699.79 5599.74 4699.29 26699.40 23098.79 7799.52 13799.62 21298.91 3799.90 12998.64 15499.75 12299.82 59
LF4IMVS97.52 29997.46 27597.70 34498.98 32495.55 35499.29 26698.82 36298.07 16198.66 30199.64 20189.97 35099.61 26797.01 30296.68 30897.94 391
hse-mvs297.50 30297.14 31098.59 25899.49 19297.05 29999.28 27199.22 30598.94 6199.66 9599.42 27894.93 21499.65 25699.48 4983.80 41299.08 246
OPM-MVS98.19 20198.10 19998.45 28198.88 33597.07 29799.28 27199.38 24198.57 9699.22 20899.81 9892.12 31499.66 25198.08 21697.54 27998.61 338
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9699.02 9999.51 12399.61 14898.96 16899.28 27199.49 15298.46 10699.72 7899.71 16196.50 15799.88 14699.31 6699.11 18499.67 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 14298.80 13699.03 19699.76 6898.79 19399.28 27199.91 397.42 24199.67 9099.37 29597.53 11899.88 14698.98 10197.29 29898.42 358
OMC-MVS99.08 11599.04 9399.20 17899.67 11798.22 23899.28 27199.52 10898.07 16199.66 9599.81 9897.79 11399.78 20797.79 24099.81 10199.60 155
testing22297.16 32096.50 32999.16 18299.16 29098.47 22799.27 27698.66 38297.71 20398.23 33698.15 39382.28 40799.84 16797.36 28397.66 26999.18 237
AUN-MVS96.88 32896.31 33498.59 25899.48 19997.04 30299.27 27699.22 30597.44 23898.51 32099.41 28291.97 31799.66 25197.71 25283.83 41199.07 251
pmmvs597.52 29997.30 30198.16 30998.57 37696.73 31999.27 27698.90 35296.14 34598.37 32899.53 24591.54 33199.14 33797.51 27095.87 33198.63 327
131498.68 16698.54 17099.11 18898.89 33498.65 20399.27 27699.49 15296.89 28997.99 34999.56 23397.72 11699.83 18097.74 24899.27 17298.84 269
MVS97.28 31596.55 32899.48 12998.78 34998.95 17199.27 27699.39 23383.53 41498.08 34499.54 24196.97 14099.87 15194.23 37199.16 17899.63 148
BH-untuned98.42 18098.36 17998.59 25899.49 19296.70 32099.27 27699.13 31897.24 25798.80 28399.38 29295.75 18699.74 21897.07 30199.16 17899.33 225
MDTV_nov1_ep1398.32 18399.11 29894.44 37999.27 27698.74 37297.51 22999.40 16799.62 21294.78 22499.76 21397.59 26098.81 211
DP-MVS Recon99.12 10498.95 11599.65 8099.74 8699.70 5199.27 27699.57 6896.40 32799.42 15899.68 18298.75 5899.80 19997.98 22499.72 12899.44 207
PatchmatchNetpermissive98.31 19198.36 17998.19 30799.16 29095.32 36399.27 27698.92 34597.37 24599.37 17399.58 22594.90 21799.70 24097.43 27999.21 17599.54 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 29497.28 30498.62 25699.64 13598.03 24799.26 28598.74 37297.68 20899.09 23698.32 38891.66 32899.81 19292.88 38698.22 24298.03 383
CNVR-MVS99.42 4799.30 5499.78 5899.62 14499.71 4999.26 28599.52 10898.82 7299.39 16999.71 16198.96 2599.85 16098.59 16599.80 10599.77 87
1112_ss98.98 13098.77 14099.59 9799.68 11599.02 15799.25 28799.48 16497.23 25899.13 22699.58 22596.93 14299.90 12998.87 11898.78 21299.84 44
TAPA-MVS97.07 1597.74 27597.34 29698.94 20999.70 10797.53 27599.25 28799.51 12291.90 39899.30 18899.63 20798.78 5199.64 25988.09 40799.87 6299.65 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UBG97.85 25297.48 27098.95 20799.25 26397.64 27299.24 28998.74 37297.90 17998.64 30898.20 39288.65 36799.81 19298.27 20098.40 23099.42 209
PLCcopyleft97.94 499.02 12498.85 13199.53 11599.66 12799.01 15999.24 28999.52 10896.85 29199.27 19799.48 26498.25 9799.91 11797.76 24599.62 14499.65 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 29165.14 42694.18 25899.71 23497.58 261
ADS-MVSNet298.02 22698.07 20697.87 33299.33 23995.19 36699.23 29199.08 32396.24 33599.10 23399.67 18894.11 25998.93 37296.81 31599.05 19199.48 191
ADS-MVSNet98.20 20098.08 20398.56 26599.33 23996.48 33199.23 29199.15 31596.24 33599.10 23399.67 18894.11 25999.71 23496.81 31599.05 19199.48 191
EPNet_dtu98.03 22497.96 21698.23 30598.27 38495.54 35699.23 29198.75 36999.02 4597.82 35699.71 16196.11 17099.48 27693.04 38499.65 14099.69 122
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 20497.93 22198.87 22899.18 28098.49 22399.22 29599.33 26996.96 28399.56 12899.38 29294.33 25199.00 35994.83 36498.58 22099.14 238
RPMNet96.72 33195.90 34499.19 17999.18 28098.49 22399.22 29599.52 10888.72 41099.56 12897.38 40494.08 26199.95 6486.87 41298.58 22099.14 238
WBMVS97.74 27597.50 26898.46 27999.24 26597.43 27899.21 29799.42 22197.45 23598.96 25999.41 28288.83 36299.23 32298.94 10696.02 32498.71 287
plane_prior96.97 30899.21 29798.45 10797.60 273
testing9197.44 30997.02 31698.71 25099.18 28096.89 31499.19 29999.04 33097.78 19698.31 33198.29 38985.41 39199.85 16098.01 22297.95 25699.39 215
WR-MVS98.06 21697.73 24599.06 19298.86 34199.25 12899.19 29999.35 25797.30 25198.66 30199.43 27693.94 26699.21 33198.58 16694.28 36598.71 287
new-patchmatchnet94.48 36494.08 36595.67 37995.08 41692.41 39899.18 30199.28 29394.55 37893.49 40297.37 40587.86 37897.01 40991.57 39488.36 40497.61 398
AdaColmapbinary99.01 12898.80 13699.66 7699.56 16399.54 8699.18 30199.70 1598.18 14399.35 17999.63 20796.32 16499.90 12997.48 27399.77 11799.55 169
EG-PatchMatch MVS95.97 34795.69 34896.81 37097.78 39192.79 39699.16 30398.93 34296.16 34294.08 39999.22 32882.72 40399.47 27795.67 34797.50 28498.17 374
PatchT97.03 32596.44 33198.79 24398.99 32198.34 23399.16 30399.07 32692.13 39799.52 13797.31 40794.54 24498.98 36188.54 40598.73 21499.03 254
CNLPA99.14 9698.99 10599.59 9799.58 15799.41 10699.16 30399.44 21398.45 10799.19 21799.49 25898.08 10599.89 14197.73 24999.75 12299.48 191
MDA-MVSNet-bldmvs94.96 35993.98 36697.92 32898.24 38597.27 28499.15 30699.33 26993.80 38380.09 42199.03 34888.31 37297.86 40093.49 37994.36 36498.62 329
CDPH-MVS99.13 9898.91 12099.80 5299.75 7899.71 4999.15 30699.41 22496.60 31199.60 12099.55 23698.83 4599.90 12997.48 27399.83 9499.78 85
save fliter99.76 6899.59 7699.14 30899.40 23099.00 50
WB-MVSnew97.65 29197.65 25297.63 34698.78 34997.62 27399.13 30998.33 39097.36 24699.07 23898.94 35995.64 19199.15 33692.95 38598.68 21696.12 412
testf190.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
APD_test290.42 37990.68 38089.65 39997.78 39173.97 42799.13 30998.81 36489.62 40591.80 41098.93 36062.23 41998.80 37986.61 41391.17 39396.19 410
xiu_mvs_v1_base_debu99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
xiu_mvs_v1_base_debi99.29 7199.27 6399.34 15099.63 13898.97 16499.12 31299.51 12298.86 6799.84 3899.47 26798.18 10099.99 499.50 4499.31 16999.08 246
XVG-OURS-SEG-HR98.69 16598.62 16098.89 22299.71 10297.74 26499.12 31299.54 9098.44 11099.42 15899.71 16194.20 25599.92 10598.54 17698.90 20399.00 257
jason99.13 9899.03 9599.45 13599.46 20298.87 18199.12 31299.26 29798.03 17099.79 5299.65 19597.02 13899.85 16099.02 9899.90 4599.65 136
jason: jason.
N_pmnet94.95 36095.83 34692.31 39098.47 38079.33 42299.12 31292.81 42893.87 38297.68 35999.13 33893.87 27099.01 35891.38 39596.19 32198.59 342
MDA-MVSNet_test_wron95.45 35394.60 36098.01 32098.16 38697.21 28999.11 31899.24 30293.49 38780.73 42098.98 35593.02 28598.18 39194.22 37294.45 36298.64 320
Patchmtry97.75 27397.40 28898.81 24099.10 30198.87 18199.11 31899.33 26994.83 37298.81 28199.38 29294.33 25199.02 35696.10 33495.57 34098.53 346
YYNet195.36 35594.51 36297.92 32897.89 38997.10 29399.10 32099.23 30393.26 39080.77 41999.04 34792.81 29198.02 39594.30 36894.18 36798.64 320
CANet_DTU98.97 13298.87 12799.25 17299.33 23998.42 23199.08 32199.30 28799.16 2399.43 15599.75 14595.27 20299.97 2198.56 17299.95 1899.36 220
SCA98.19 20198.16 19198.27 30499.30 24895.55 35499.07 32298.97 33897.57 21999.43 15599.57 23092.72 29599.74 21897.58 26199.20 17699.52 178
TSAR-MVS + GP.99.36 6199.36 3899.36 14899.67 11798.61 20999.07 32299.33 26999.00 5099.82 4599.81 9899.06 1699.84 16799.09 9099.42 15999.65 136
MG-MVS99.13 9899.02 9999.45 13599.57 15998.63 20699.07 32299.34 26298.99 5299.61 11799.82 8497.98 10999.87 15197.00 30399.80 10599.85 38
PatchMatch-RL98.84 15298.62 16099.52 12199.71 10299.28 12399.06 32599.77 997.74 20199.50 14099.53 24595.41 19699.84 16797.17 29799.64 14199.44 207
OpenMVS_ROBcopyleft92.34 2094.38 36593.70 37196.41 37597.38 39793.17 39499.06 32598.75 36986.58 41194.84 39798.26 39081.53 40899.32 30989.01 40397.87 26196.76 405
TEST999.67 11799.65 6399.05 32799.41 22496.22 33798.95 26099.49 25898.77 5499.91 117
train_agg99.02 12498.77 14099.77 6199.67 11799.65 6399.05 32799.41 22496.28 33198.95 26099.49 25898.76 5599.91 11797.63 25799.72 12899.75 93
lupinMVS99.13 9899.01 10399.46 13499.51 17998.94 17499.05 32799.16 31497.86 18399.80 5099.56 23397.39 12199.86 15498.94 10699.85 7799.58 163
DELS-MVS99.48 2999.42 2599.65 8099.72 9799.40 10799.05 32799.66 2899.14 2699.57 12799.80 11198.46 8499.94 7599.57 3599.84 8599.60 155
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 33996.03 34197.41 35398.13 38795.16 36899.05 32799.20 30993.94 38197.39 36698.79 37191.61 33099.04 35290.43 39895.77 33398.05 382
Patchmatch-test97.93 23997.65 25298.77 24599.18 28097.07 29799.03 33299.14 31796.16 34298.74 28999.57 23094.56 24199.72 22893.36 38099.11 18499.52 178
test_899.67 11799.61 7399.03 33299.41 22496.28 33198.93 26399.48 26498.76 5599.91 117
Test_1112_low_res98.89 13798.66 15399.57 10299.69 11198.95 17199.03 33299.47 18596.98 28199.15 22499.23 32796.77 14699.89 14198.83 13198.78 21299.86 34
IterMVS-SCA-FT97.82 26197.75 24398.06 31699.57 15996.36 33599.02 33599.49 15297.18 26198.71 29299.72 16092.72 29599.14 33797.44 27895.86 33298.67 308
xiu_mvs_v2_base99.26 7799.25 6799.29 16599.53 17198.91 17899.02 33599.45 20598.80 7699.71 8099.26 32498.94 3299.98 1399.34 6399.23 17498.98 260
MIMVSNet97.73 27797.45 27698.57 26299.45 20897.50 27699.02 33598.98 33796.11 34799.41 16299.14 33790.28 34498.74 38195.74 34398.93 19999.47 197
IterMVS97.83 25897.77 23898.02 31999.58 15796.27 33999.02 33599.48 16497.22 25998.71 29299.70 16592.75 29299.13 34097.46 27696.00 32698.67 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10998.92 11899.65 8099.90 499.37 10899.02 33599.91 397.67 21099.59 12399.75 14595.90 18199.73 22499.53 4099.02 19599.86 34
UWE-MVS97.58 29697.29 30398.48 27399.09 30496.25 34099.01 34096.61 41497.86 18399.19 21799.01 35188.72 36399.90 12997.38 28298.69 21599.28 229
新几何299.01 340
BH-w/o98.00 23197.89 22798.32 29699.35 23496.20 34299.01 34098.90 35296.42 32598.38 32799.00 35295.26 20499.72 22896.06 33598.61 21799.03 254
test_prior499.56 8298.99 343
无先验98.99 34399.51 12296.89 28999.93 9397.53 26999.72 109
pmmvs498.13 20897.90 22398.81 24098.61 37298.87 18198.99 34399.21 30896.44 32399.06 24399.58 22595.90 18199.11 34597.18 29696.11 32398.46 355
HQP-NCC99.19 27798.98 34698.24 13298.66 301
ACMP_Plane99.19 27798.98 34698.24 13298.66 301
HQP-MVS98.02 22697.90 22398.37 29299.19 27796.83 31598.98 34699.39 23398.24 13298.66 30199.40 28692.47 30699.64 25997.19 29497.58 27598.64 320
PS-MVSNAJ99.32 6699.32 4699.30 16299.57 15998.94 17498.97 34999.46 19498.92 6499.71 8099.24 32699.01 1899.98 1399.35 5899.66 13898.97 261
MVP-Stereo97.81 26397.75 24397.99 32397.53 39596.60 32898.96 35098.85 35997.22 25997.23 36999.36 29895.28 20199.46 27995.51 34999.78 11497.92 393
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 35098.34 12099.01 24999.52 24898.68 6797.96 22599.74 125
旧先验298.96 35096.70 29999.47 14599.94 7598.19 205
原ACMM298.95 353
MVS_111021_HR99.41 5199.32 4699.66 7699.72 9799.47 9998.95 35399.85 698.82 7299.54 13399.73 15698.51 8199.74 21898.91 11299.88 5999.77 87
mvsany_test199.50 2399.46 2399.62 9399.61 14899.09 14798.94 35599.48 16499.10 3499.96 1799.91 2398.85 4299.96 3399.72 2299.58 14899.82 59
MVS_111021_LR99.41 5199.33 4499.65 8099.77 6499.51 9398.94 35599.85 698.82 7299.65 10299.74 15098.51 8199.80 19998.83 13199.89 5699.64 143
pmmvs394.09 36793.25 37396.60 37394.76 41894.49 37898.92 35798.18 39689.66 40496.48 38298.06 39986.28 38597.33 40689.68 40187.20 40797.97 390
XVG-OURS98.73 16398.68 14998.88 22499.70 10797.73 26598.92 35799.55 8198.52 10199.45 14899.84 7095.27 20299.91 11798.08 21698.84 20799.00 257
test22299.75 7899.49 9598.91 35999.49 15296.42 32599.34 18299.65 19598.28 9699.69 13399.72 109
PMMVS286.87 38285.37 38691.35 39490.21 42383.80 41398.89 36097.45 40683.13 41591.67 41295.03 41248.49 42594.70 41885.86 41577.62 41795.54 413
miper_lstm_enhance98.00 23197.91 22298.28 30399.34 23897.43 27898.88 36199.36 25096.48 32098.80 28399.55 23695.98 17498.91 37397.27 28795.50 34398.51 348
MVS-HIRNet95.75 35195.16 35697.51 35199.30 24893.69 38998.88 36195.78 41685.09 41398.78 28692.65 41691.29 33599.37 29794.85 36399.85 7799.46 202
TR-MVS97.76 26997.41 28798.82 23799.06 31097.87 25998.87 36398.56 38596.63 30798.68 30099.22 32892.49 30599.65 25695.40 35397.79 26598.95 265
testdata198.85 36498.32 123
ET-MVSNet_ETH3D96.49 33695.64 35099.05 19499.53 17198.82 19098.84 36597.51 40597.63 21384.77 41499.21 33192.09 31598.91 37398.98 10192.21 39099.41 212
our_test_397.65 29197.68 24997.55 35098.62 37094.97 37098.84 36599.30 28796.83 29498.19 34099.34 30597.01 13999.02 35695.00 36196.01 32598.64 320
MS-PatchMatch97.24 31997.32 29996.99 36398.45 38193.51 39298.82 36799.32 27997.41 24298.13 34399.30 31588.99 36099.56 27195.68 34699.80 10597.90 394
c3_l98.12 21098.04 20898.38 29199.30 24897.69 27198.81 36899.33 26996.67 30198.83 27999.34 30597.11 13298.99 36097.58 26195.34 34598.48 350
ppachtmachnet_test97.49 30797.45 27697.61 34898.62 37095.24 36498.80 36999.46 19496.11 34798.22 33899.62 21296.45 16098.97 36893.77 37595.97 33098.61 338
PAPR98.63 17198.34 18199.51 12399.40 22299.03 15698.80 36999.36 25096.33 32899.00 25399.12 34198.46 8499.84 16795.23 35799.37 16899.66 132
test0.0.03 197.71 28297.42 28698.56 26598.41 38397.82 26298.78 37198.63 38397.34 24798.05 34898.98 35594.45 24898.98 36195.04 36097.15 30498.89 266
PVSNet_Blended99.08 11598.97 10999.42 14099.76 6898.79 19398.78 37199.91 396.74 29699.67 9099.49 25897.53 11899.88 14698.98 10199.85 7799.60 155
PMMVS98.80 15698.62 16099.34 15099.27 25798.70 19998.76 37399.31 28397.34 24799.21 21199.07 34397.20 13099.82 18798.56 17298.87 20499.52 178
test12339.01 39442.50 39628.53 40939.17 43220.91 43498.75 37419.17 43419.83 42738.57 42666.67 42433.16 42915.42 42837.50 42829.66 42649.26 423
MSDG98.98 13098.80 13699.53 11599.76 6899.19 13298.75 37499.55 8197.25 25599.47 14599.77 13897.82 11299.87 15196.93 31099.90 4599.54 171
CLD-MVS98.16 20598.10 19998.33 29499.29 25296.82 31798.75 37499.44 21397.83 18999.13 22699.55 23692.92 28899.67 24898.32 19797.69 26898.48 350
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 20398.10 19998.41 28799.23 26797.72 26798.72 37799.31 28396.60 31198.88 27099.29 31797.29 12899.13 34097.60 25995.99 32798.38 363
cl____98.01 22997.84 23198.55 26799.25 26397.97 25198.71 37899.34 26296.47 32298.59 31699.54 24195.65 19099.21 33197.21 29095.77 33398.46 355
DIV-MVS_self_test98.01 22997.85 23098.48 27399.24 26597.95 25598.71 37899.35 25796.50 31698.60 31599.54 24195.72 18899.03 35497.21 29095.77 33398.46 355
test-LLR98.06 21697.90 22398.55 26798.79 34697.10 29398.67 38097.75 40197.34 24798.61 31398.85 36594.45 24899.45 28097.25 28899.38 16199.10 241
TESTMET0.1,197.55 29797.27 30798.40 28998.93 32996.53 32998.67 38097.61 40496.96 28398.64 30899.28 31988.63 36999.45 28097.30 28699.38 16199.21 236
test-mter97.49 30797.13 31298.55 26798.79 34697.10 29398.67 38097.75 40196.65 30398.61 31398.85 36588.23 37399.45 28097.25 28899.38 16199.10 241
mvs5depth96.66 33296.22 33697.97 32497.00 40696.28 33898.66 38399.03 33296.61 30896.93 37899.79 12387.20 38299.47 27796.65 32594.13 36898.16 375
IB-MVS95.67 1896.22 34095.44 35498.57 26299.21 27296.70 32098.65 38497.74 40396.71 29897.27 36898.54 38086.03 38699.92 10598.47 18286.30 40899.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 13398.71 14699.66 7699.63 13899.55 8498.64 38599.10 32097.93 17699.42 15899.55 23698.67 6999.80 19995.80 34299.68 13699.61 152
thisisatest051598.14 20797.79 23399.19 17999.50 19098.50 22298.61 38696.82 41096.95 28599.54 13399.43 27691.66 32899.86 15498.08 21699.51 15399.22 235
DeepPCF-MVS98.18 398.81 15399.37 3697.12 36199.60 15391.75 40198.61 38699.44 21399.35 1599.83 4499.85 6098.70 6699.81 19299.02 9899.91 3699.81 66
cl2297.85 25297.64 25598.48 27399.09 30497.87 25998.60 38899.33 26997.11 27098.87 27399.22 32892.38 31199.17 33598.21 20395.99 32798.42 358
GA-MVS97.85 25297.47 27399.00 20099.38 22797.99 25098.57 38999.15 31597.04 27898.90 26799.30 31589.83 35299.38 29496.70 32098.33 23499.62 150
TinyColmap97.12 32296.89 32197.83 33699.07 30895.52 35798.57 38998.74 37297.58 21897.81 35799.79 12388.16 37499.56 27195.10 35897.21 30198.39 362
eth_miper_zixun_eth98.05 22197.96 21698.33 29499.26 25997.38 28098.56 39199.31 28396.65 30398.88 27099.52 24896.58 15399.12 34497.39 28195.53 34298.47 352
CMPMVSbinary69.68 2394.13 36694.90 35891.84 39197.24 40180.01 42198.52 39299.48 16489.01 40891.99 40899.67 18885.67 38899.13 34095.44 35197.03 30696.39 409
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 31397.20 30897.75 34199.07 30895.20 36598.51 39399.04 33097.99 17298.31 33199.86 5589.02 35999.55 27395.67 34797.36 29798.49 349
ambc93.06 38992.68 42082.36 41498.47 39498.73 37895.09 39597.41 40355.55 42199.10 34796.42 33091.32 39297.71 395
miper_enhance_ethall98.16 20598.08 20398.41 28798.96 32797.72 26798.45 39599.32 27996.95 28598.97 25799.17 33397.06 13699.22 32697.86 23395.99 32798.29 367
CHOSEN 280x42099.12 10499.13 8099.08 18999.66 12797.89 25898.43 39699.71 1398.88 6699.62 11499.76 14296.63 15199.70 24099.46 5299.99 199.66 132
testmvs39.17 39343.78 39525.37 41036.04 43316.84 43598.36 39726.56 43220.06 42638.51 42767.32 42329.64 43015.30 42937.59 42739.90 42543.98 424
FPMVS84.93 38485.65 38582.75 40586.77 42663.39 43198.35 39898.92 34574.11 41783.39 41698.98 35550.85 42492.40 42084.54 41694.97 35392.46 415
KD-MVS_2432*160094.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
miper_refine_blended94.62 36193.72 36997.31 35597.19 40395.82 34998.34 39999.20 30995.00 36897.57 36098.35 38687.95 37698.10 39392.87 38777.00 41898.01 384
CL-MVSNet_self_test94.49 36393.97 36796.08 37796.16 40893.67 39098.33 40199.38 24195.13 36297.33 36798.15 39392.69 29996.57 41188.67 40479.87 41697.99 388
PVSNet96.02 1798.85 14998.84 13398.89 22299.73 9397.28 28398.32 40299.60 5597.86 18399.50 14099.57 23096.75 14799.86 15498.56 17299.70 13299.54 171
PAPM97.59 29597.09 31499.07 19099.06 31098.26 23698.30 40399.10 32094.88 37098.08 34499.34 30596.27 16699.64 25989.87 40098.92 20199.31 227
Patchmatch-RL test95.84 34995.81 34795.95 37895.61 41190.57 40498.24 40498.39 38995.10 36695.20 39398.67 37594.78 22497.77 40196.28 33390.02 40099.51 185
UnsupCasMVSNet_bld93.53 36992.51 37596.58 37497.38 39793.82 38598.24 40499.48 16491.10 40293.10 40396.66 40974.89 41398.37 38894.03 37487.71 40697.56 400
LCM-MVSNet86.80 38385.22 38791.53 39387.81 42580.96 41998.23 40698.99 33671.05 41890.13 41396.51 41048.45 42696.88 41090.51 39785.30 40996.76 405
cascas97.69 28497.43 28598.48 27398.60 37397.30 28298.18 40799.39 23392.96 39298.41 32598.78 37293.77 27499.27 31798.16 20998.61 21798.86 267
kuosan90.92 37890.11 38393.34 38698.78 34985.59 41198.15 40893.16 42689.37 40792.07 40798.38 38581.48 40995.19 41662.54 42597.04 30599.25 233
Effi-MVS+98.81 15398.59 16699.48 12999.46 20299.12 14598.08 40999.50 14297.50 23099.38 17199.41 28296.37 16399.81 19299.11 8698.54 22599.51 185
PCF-MVS97.08 1497.66 29097.06 31599.47 13299.61 14899.09 14798.04 41099.25 29991.24 40198.51 32099.70 16594.55 24399.91 11792.76 38999.85 7799.42 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 34595.47 35297.94 32799.31 24794.34 38297.81 41199.70 1597.12 26797.46 36298.75 37389.71 35399.79 20297.69 25581.69 41499.68 126
E-PMN80.61 38779.88 38982.81 40490.75 42276.38 42597.69 41295.76 41766.44 42283.52 41592.25 41762.54 41887.16 42468.53 42361.40 42184.89 422
dongtai93.26 37092.93 37494.25 38299.39 22585.68 41097.68 41393.27 42492.87 39396.85 37999.39 29082.33 40697.48 40576.78 41897.80 26499.58 163
ANet_high77.30 38974.86 39384.62 40375.88 42977.61 42397.63 41493.15 42788.81 40964.27 42489.29 42136.51 42883.93 42675.89 42052.31 42392.33 417
EMVS80.02 38879.22 39082.43 40691.19 42176.40 42497.55 41592.49 42966.36 42383.01 41791.27 41964.63 41785.79 42565.82 42460.65 42285.08 421
MVEpermissive76.82 2176.91 39074.31 39484.70 40285.38 42876.05 42696.88 41693.17 42567.39 42171.28 42389.01 42221.66 43387.69 42371.74 42272.29 42090.35 419
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 37691.36 37890.31 39695.85 40973.72 42994.89 41799.25 29968.39 42095.82 38999.02 35080.50 41098.95 37193.64 37794.89 35798.25 370
Gipumacopyleft90.99 37790.15 38293.51 38598.73 35890.12 40593.98 41899.45 20579.32 41692.28 40694.91 41369.61 41497.98 39787.42 40995.67 33792.45 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 39174.97 39279.01 40770.98 43055.18 43293.37 41998.21 39465.08 42461.78 42593.83 41521.74 43292.53 41978.59 41791.12 39589.34 420
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 38581.52 38886.66 40166.61 43168.44 43092.79 42097.92 39868.96 41980.04 42299.85 6085.77 38796.15 41497.86 23343.89 42495.39 414
wuyk23d40.18 39241.29 39736.84 40886.18 42749.12 43379.73 42122.81 43327.64 42525.46 42828.45 42821.98 43148.89 42755.80 42623.56 42712.51 425
mmdepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.13 3980.17 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4301.57 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k24.64 39532.85 3980.00 4110.00 4340.00 4360.00 42299.51 1220.00 4290.00 43099.56 23396.58 1530.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.27 39711.03 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 43099.01 180.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.30 39611.06 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43099.58 2250.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.02 3990.03 4020.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.27 4300.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS97.16 29095.47 350
MSC_two_6792asdad99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
PC_three_145298.18 14399.84 3899.70 16599.31 398.52 38698.30 19999.80 10599.81 66
No_MVS99.87 1599.51 17999.76 4199.33 26999.96 3398.87 11899.84 8599.89 21
test_one_060199.81 4699.88 899.49 15298.97 5899.65 10299.81 9899.09 14
eth-test20.00 434
eth-test0.00 434
ZD-MVS99.71 10299.79 3399.61 4996.84 29299.56 12899.54 24198.58 7599.96 3396.93 31099.75 122
IU-MVS99.84 3299.88 899.32 27998.30 12599.84 3898.86 12399.85 7799.89 21
test_241102_TWO99.48 16499.08 4099.88 2799.81 9898.94 3299.96 3398.91 11299.84 8599.88 27
test_241102_ONE99.84 3299.90 299.48 16499.07 4299.91 2099.74 15099.20 799.76 213
test_0728_THIRD98.99 5299.81 4699.80 11199.09 1499.96 3398.85 12599.90 4599.88 27
GSMVS99.52 178
test_part299.81 4699.83 1999.77 61
sam_mvs194.86 21999.52 178
sam_mvs94.72 231
MTGPAbinary99.47 185
test_post65.99 42594.65 23799.73 224
patchmatchnet-post98.70 37494.79 22399.74 218
gm-plane-assit98.54 37892.96 39594.65 37699.15 33699.64 25997.56 266
test9_res97.49 27299.72 12899.75 93
agg_prior297.21 29099.73 12799.75 93
agg_prior99.67 11799.62 7199.40 23098.87 27399.91 117
TestCases99.31 15799.86 2098.48 22599.61 4997.85 18699.36 17699.85 6095.95 17699.85 16096.66 32399.83 9499.59 159
test_prior99.68 7499.67 11799.48 9799.56 7399.83 18099.74 97
新几何199.75 6499.75 7899.59 7699.54 9096.76 29599.29 19199.64 20198.43 8699.94 7596.92 31299.66 13899.72 109
旧先验199.74 8699.59 7699.54 9099.69 17598.47 8399.68 13699.73 102
原ACMM199.65 8099.73 9399.33 11399.47 18597.46 23299.12 22899.66 19398.67 6999.91 11797.70 25499.69 13399.71 118
testdata299.95 6496.67 322
segment_acmp98.96 25
testdata99.54 10799.75 7898.95 17199.51 12297.07 27399.43 15599.70 16598.87 4099.94 7597.76 24599.64 14199.72 109
test1299.75 6499.64 13599.61 7399.29 29199.21 21198.38 9199.89 14199.74 12599.74 97
plane_prior799.29 25297.03 303
plane_prior699.27 25796.98 30792.71 297
plane_prior599.47 18599.69 24597.78 24197.63 27098.67 308
plane_prior499.61 216
plane_prior397.00 30598.69 8799.11 230
plane_prior199.26 259
n20.00 435
nn0.00 435
door-mid98.05 397
lessismore_v097.79 34098.69 36495.44 36194.75 42095.71 39099.87 5188.69 36599.32 30995.89 33994.93 35598.62 329
LGP-MVS_train98.49 27199.33 23997.05 29999.55 8197.46 23299.24 20399.83 7592.58 30299.72 22898.09 21297.51 28298.68 301
test1199.35 257
door97.92 398
HQP5-MVS96.83 315
BP-MVS97.19 294
HQP4-MVS98.66 30199.64 25998.64 320
HQP3-MVS99.39 23397.58 275
HQP2-MVS92.47 306
NP-MVS99.23 26796.92 31199.40 286
ACMMP++_ref97.19 302
ACMMP++97.43 293
Test By Simon98.75 58
ITE_SJBPF98.08 31599.29 25296.37 33498.92 34598.34 12098.83 27999.75 14591.09 33799.62 26695.82 34097.40 29598.25 370
DeepMVS_CXcopyleft93.34 38699.29 25282.27 41599.22 30585.15 41296.33 38399.05 34690.97 33999.73 22493.57 37897.77 26698.01 384