This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CS-MVS99.50 2099.48 1599.54 10099.76 6599.42 9999.90 199.55 7798.56 8999.78 4899.70 15898.65 6899.79 19199.65 2399.78 10899.41 201
CS-MVS-test99.49 2299.48 1599.54 10099.78 5699.30 11399.89 299.58 6198.56 8999.73 6699.69 16898.55 7599.82 17799.69 1999.85 7399.48 181
mvsmamba98.92 12798.87 12099.08 18099.07 29699.16 13099.88 399.51 11698.15 13499.40 15799.89 2997.12 13299.33 29499.38 5097.40 28598.73 273
MVSFormer99.17 8499.12 7899.29 15699.51 17198.94 16899.88 399.46 18897.55 21099.80 4199.65 18697.39 12199.28 30299.03 8899.85 7399.65 129
test_djsdf98.67 16098.57 16098.98 19398.70 35098.91 17299.88 399.46 18897.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26398.75 268
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
EC-MVSNet99.44 3799.39 2799.58 9399.56 15699.49 8999.88 399.58 6198.38 10599.73 6699.69 16898.20 9599.70 22999.64 2499.82 9499.54 162
DVP-MVS++99.59 899.50 1399.88 599.51 17199.88 899.87 899.51 11698.99 4599.88 2099.81 9099.27 599.96 3098.85 11599.80 10199.81 61
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 38
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20496.16 37299.80 10488.71 35299.04 33996.69 30896.55 30498.65 306
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29599.45 9699.86 1199.60 5498.23 12498.70 28799.82 7596.80 14599.22 31399.07 8696.38 30798.79 260
v7n97.87 24097.52 25598.92 20398.76 34398.58 20399.84 1299.46 18896.20 32498.91 25599.70 15894.89 21399.44 27396.03 32293.89 36098.75 268
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23599.84 1299.48 15896.68 28797.97 33999.67 18092.92 28098.56 37096.88 30192.60 37598.70 280
3Dnovator97.25 999.24 7799.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
FIs98.78 14998.63 14899.23 16799.18 26899.54 7999.83 1599.59 5798.28 11698.79 27499.81 9096.75 14899.37 28499.08 8596.38 30798.78 261
MGCFI-Net99.01 12098.85 12599.50 12199.42 20199.26 11999.82 1699.48 15898.60 8699.28 18398.81 35597.04 13899.76 20299.29 6597.87 25199.47 187
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
jajsoiax98.43 17298.28 17898.88 21498.60 36098.43 22199.82 1699.53 9698.19 12998.63 29899.80 10493.22 27599.44 27399.22 7397.50 27498.77 264
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11499.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 241
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
nrg03098.64 16398.42 16899.28 16099.05 30399.69 4799.81 2099.46 18898.04 15999.01 24099.82 7596.69 15099.38 28199.34 5994.59 34898.78 261
HPM-MVScopyleft99.42 4299.28 5699.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19898.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPP-MVSNet99.13 9298.99 10199.53 10899.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27699.68 4899.81 2099.51 11699.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
sasdasda99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21295.39 19599.90 11697.78 22899.49 14799.28 219
GeoE98.85 14198.62 15399.53 10899.61 14199.08 14499.80 2599.51 11697.10 25899.31 17699.78 12395.23 20499.77 19898.21 19099.03 18499.75 88
canonicalmvs99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
v897.95 23097.63 24798.93 20198.95 31898.81 18699.80 2599.41 21796.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20797.91 16999.36 16799.78 12395.49 19399.43 27797.91 21599.11 17599.62 142
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33798.53 20799.78 3299.54 8598.07 15399.00 24499.76 13599.01 1899.37 28499.13 8097.23 29198.81 259
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20699.78 3299.51 11697.06 26298.29 32299.64 19292.63 29398.89 36198.09 19993.16 36898.72 274
anonymousdsp98.44 17198.28 17898.94 19998.50 36598.96 16299.77 3499.50 13697.07 26098.87 26399.77 13194.76 22399.28 30298.66 14297.60 26498.57 332
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 296
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
dcpmvs_299.23 7899.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5899.75 13899.13 1299.92 9599.07 8699.92 2899.85 36
iter_conf05_1199.40 5099.32 4099.63 8399.53 16399.47 9399.75 4199.52 10198.11 14499.87 2599.85 5297.72 11299.89 12799.56 2899.97 799.53 167
v1097.85 24397.52 25598.86 22198.99 31198.67 19599.75 4199.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7399.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IS-MVSNet99.05 11198.87 12099.57 9599.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4599.49 14599.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4599.49 14599.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4596.85 39497.68 19799.79 4399.74 14391.39 32499.89 12798.83 12199.56 14299.57 157
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
test_fmvs297.25 30597.30 28997.09 34799.43 19993.31 37899.73 4898.87 34498.83 6499.28 18399.80 10484.45 38299.66 24097.88 21797.45 27998.30 355
baseline99.15 8899.02 9599.53 10899.66 12099.14 13699.72 5099.48 15898.35 11099.42 14899.84 6396.07 16999.79 19199.51 3699.14 17399.67 122
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 157
CSCG99.32 6299.32 4099.32 14799.85 2698.29 22699.71 5299.66 2898.11 14499.41 15299.80 10498.37 8899.96 3098.99 9299.96 1499.72 103
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5398.92 33398.15 13499.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
WR-MVS_H98.13 20097.87 22098.90 20999.02 30698.84 18099.70 5399.59 5797.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5399.60 5497.12 25498.18 32999.70 15891.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14398.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
V4298.06 20897.79 22498.86 22198.98 31498.84 18099.69 5699.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
mPP-MVS99.44 3799.30 5099.86 2199.88 1199.79 3099.69 5699.48 15898.12 14299.50 13099.75 13898.78 4899.97 2198.57 15899.89 5299.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15399.53 12599.63 19898.93 3399.97 2198.74 13099.91 3599.83 49
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6298.81 35195.54 34499.62 10499.70 15893.82 26499.93 8497.35 27199.46 14899.32 216
PS-CasMVS97.93 23197.59 25098.95 19898.99 31199.06 14799.68 6299.52 10197.13 25298.31 31999.68 17492.44 30299.05 33898.51 16694.08 35798.75 268
Vis-MVSNetpermissive99.12 9898.97 10599.56 9799.78 5699.10 14099.68 6299.66 2898.49 9699.86 2899.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6599.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
EIA-MVS99.18 8299.09 8399.45 12899.49 18299.18 12799.67 6599.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 211
MSP-MVS99.42 4299.27 6099.88 599.89 899.80 2799.67 6599.50 13698.70 7899.77 5299.49 24898.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test99.10 10698.97 10599.48 12299.49 18299.14 13699.67 6599.34 25397.31 23799.58 11499.76 13597.65 11599.82 17798.87 10899.07 18199.46 192
CP-MVSNet98.09 20497.78 22799.01 18998.97 31699.24 12299.67 6599.46 18897.25 24298.48 31199.64 19293.79 26599.06 33798.63 14594.10 35698.74 271
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17898.79 7099.68 7899.81 9098.43 8399.97 2198.88 10599.90 4399.83 49
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13499.68 7899.69 16899.06 1699.96 3098.69 13899.87 5899.84 40
mvs_tets98.40 17898.23 18098.91 20798.67 35398.51 21399.66 7099.53 9698.19 12998.65 29699.81 9092.75 28499.44 27399.31 6297.48 27898.77 264
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14898.35 31799.82 7595.25 20398.01 38197.41 26795.30 33498.78 261
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13499.67 8299.69 16898.95 2799.96 3098.69 13899.87 5899.84 40
MP-MVScopyleft99.33 6099.15 7499.87 1199.88 1199.82 2299.66 7099.46 18898.09 14899.48 13499.74 14398.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_cas_vis1_n_192099.16 8699.01 9999.61 8799.81 4698.86 17899.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3099.91 3599.99 1
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 13999.66 8799.68 17498.96 2499.96 3098.62 14699.87 5899.84 40
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33798.62 20099.65 7699.49 14597.76 18798.49 31099.60 21094.23 24898.97 35598.00 21092.90 37098.70 280
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15299.55 12299.64 19298.91 3499.96 3098.72 13399.90 4399.82 54
tfpnnormal97.84 24697.47 26198.98 19399.20 26299.22 12499.64 7999.61 4896.32 31598.27 32399.70 15893.35 27299.44 27395.69 33195.40 33298.27 357
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9999.66 12099.09 14199.64 7999.56 6998.26 11999.45 13999.87 4396.03 17199.81 18299.54 3199.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS-dyc-post99.45 3399.31 4899.85 2899.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.53 7699.95 5998.61 14999.81 9799.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.75 5598.61 14999.81 9799.77 82
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22698.91 5899.78 4899.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 10999.79 4399.82 7598.86 3899.95 5998.62 14699.81 9799.78 80
test072699.85 2699.89 499.62 8899.50 13699.10 2799.86 2899.82 7598.94 29
EPNet98.86 13498.71 13999.30 15397.20 38898.18 23199.62 8898.91 33799.28 1698.63 29899.81 9095.96 17399.99 499.24 7299.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8899.59 5792.65 38199.71 7299.78 12398.06 10299.90 11698.84 11899.91 3599.74 92
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20199.08 14499.62 8899.36 24397.39 23199.28 18399.68 17496.44 16099.92 9598.37 17998.22 23299.40 203
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14299.63 10099.84 6398.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 6499.19 7199.64 7899.82 4299.23 12399.62 8899.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5299.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9499.45 19999.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1999.85 36
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5299.93 987.82 36699.85 15099.38 5099.38 15399.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15899.08 3399.91 1699.81 9099.20 799.96 3098.91 10299.85 7399.79 74
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27898.24 18999.80 10199.79 74
GST-MVS99.40 5099.24 6599.85 2899.86 2099.79 3099.60 9599.67 2397.97 16499.63 10099.68 17498.52 7799.95 5998.38 17799.86 6699.81 61
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9599.45 19999.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1999.86 33
ACMH97.28 898.10 20397.99 20598.44 27499.41 20696.96 29999.60 9599.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4899.38 15399.80 70
SR-MVS99.43 4099.29 5499.86 2199.75 7399.83 1699.59 10199.62 4198.21 12799.73 6699.79 11798.68 6499.96 3098.44 17499.77 11199.79 74
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10198.74 35897.93 16799.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10198.74 35897.94 16699.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10198.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
baseline198.31 18397.95 21099.38 13999.50 18098.74 19099.59 10198.93 33098.41 10399.14 21699.60 21094.59 23399.79 19198.48 16893.29 36699.61 144
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11698.62 8499.79 4399.83 6799.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9599.59 10199.49 14597.03 26699.63 10099.69 16897.27 12999.96 3097.82 22599.84 8199.81 61
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21799.37 10399.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10997.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1999.90 17
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4799.38 15399.82 54
PGM-MVS99.45 3399.31 4899.86 2199.87 1599.78 3699.58 10999.65 3397.84 17799.71 7299.80 10499.12 1399.97 2198.33 18399.87 5899.83 49
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28799.58 10999.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
PHI-MVS99.30 6499.17 7399.70 6799.56 15699.52 8599.58 10999.80 897.12 25499.62 10499.73 14998.58 7299.90 11698.61 14999.91 3599.68 119
SF-MVS99.38 5499.24 6599.79 4999.79 5499.68 4899.57 11699.54 8597.82 18299.71 7299.80 10498.95 2799.93 8498.19 19299.84 8199.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24299.10 2799.81 3899.80 10498.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11699.96 3098.93 9999.86 6699.88 26
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
v2v48298.06 20897.77 22998.92 20398.90 32198.82 18499.57 11699.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 160
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12299.62 4198.78 7399.64 9799.88 3592.02 30799.88 13399.54 3198.26 23099.72 103
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
ETV-MVS99.26 7299.21 6999.40 13599.46 19199.30 11399.56 12299.52 10198.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
SMA-MVScopyleft99.44 3799.30 5099.85 2899.73 8799.83 1699.56 12299.47 17897.45 22399.78 4899.82 7599.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12299.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
casdiffmvspermissive99.13 9298.98 10499.56 9799.65 12699.16 13099.56 12299.50 13698.33 11399.41 15299.86 4795.92 17799.83 17099.45 4699.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS98.38 17998.09 19499.24 16599.26 24999.32 10799.56 12299.55 7797.45 22398.71 28199.83 6793.23 27399.63 25398.88 10596.32 30998.76 266
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19196.68 31399.56 12299.54 8598.41 10397.79 34699.87 4390.18 34099.66 24098.05 20797.18 29498.62 317
ACMM97.58 598.37 18098.34 17398.48 26499.41 20697.10 28199.56 12299.45 19998.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 7099.12 7899.74 6199.18 26899.75 3999.56 12299.57 6498.45 9999.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 169
test_fmvsmconf0.01_n99.22 7999.03 9199.79 4998.42 36899.48 9199.55 13499.51 11699.39 1099.78 4899.93 994.80 21799.95 5999.93 1199.95 1999.94 11
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13499.49 14599.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
v14419297.92 23497.60 24998.87 21898.83 33298.65 19799.55 13499.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
API-MVS99.04 11399.03 9199.06 18399.40 21199.31 11199.55 13499.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
fmvsm_s_conf0.1_n_a99.26 7299.06 8699.85 2899.52 16899.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
APD_test195.87 33396.49 31794.00 36899.53 16384.01 39799.54 13899.32 27095.91 34097.99 33799.85 5285.49 37599.88 13391.96 37798.84 19898.12 364
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13896.75 39697.53 21499.73 6699.65 18691.25 32799.89 12798.62 14699.56 14299.48 181
MTMP99.54 13898.88 342
v114497.98 22597.69 23998.85 22498.87 32698.66 19699.54 13899.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
v14897.79 25697.55 25198.50 26198.74 34497.72 25899.54 13899.33 26096.26 32098.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 315
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 214
MVSTER98.49 16798.32 17599.00 19199.35 22599.02 15199.54 13899.38 23497.41 22999.20 20599.73 14993.86 26399.36 28898.87 10897.56 26898.62 317
fmvsm_s_conf0.1_n99.29 6699.10 8099.86 2199.70 10199.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
MM99.40 5099.28 5699.74 6199.67 11199.31 11199.52 14798.87 34499.55 199.74 6499.80 10496.47 15799.98 1399.97 199.97 799.94 11
patch_mono-299.26 7299.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2599.00 2299.99 499.69 1999.98 499.89 20
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20696.99 29499.52 14799.49 14598.11 14499.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14797.57 39099.51 299.82 3699.78 12398.09 10099.96 3099.97 199.97 799.94 11
Fast-Effi-MVS+98.70 15798.43 16799.51 11699.51 17199.28 11599.52 14799.47 17896.11 33399.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 205
v192192097.80 25597.45 26498.84 22598.80 33398.53 20799.52 14799.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13693.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1499.95 9
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21197.46 26799.51 15599.53 9695.86 34198.54 30799.77 13182.44 39099.66 24098.68 14097.52 27199.50 178
alignmvs98.81 14598.56 16299.58 9399.43 19999.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5398.11 24299.54 162
v119297.81 25397.44 26998.91 20798.88 32398.68 19499.51 15599.34 25396.18 32699.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23496.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
mvs_anonymous99.03 11598.99 10199.16 17399.38 21798.52 21199.51 15599.38 23497.79 18399.38 16299.81 9097.30 12799.45 26899.35 5398.99 18799.51 175
TAMVS99.12 9899.08 8499.24 16599.46 19198.55 20599.51 15599.46 18898.09 14899.45 13999.82 7598.34 8999.51 26398.70 13598.93 19099.67 122
MVSMamba_pp99.36 5699.28 5699.62 8499.38 21799.50 8799.50 16299.49 14598.55 9199.77 5299.82 7597.62 11799.88 13399.39 4999.96 1499.47 187
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19899.65 5799.50 16299.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
test_yl98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
UA-Net99.42 4299.29 5499.80 4699.62 13799.55 7799.50 16299.70 1598.79 7099.77 5299.96 197.45 12099.96 3098.92 10199.90 4399.89 20
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29699.50 16299.31 27498.13 13999.48 13499.80 10497.89 10599.46 26699.25 7197.68 25998.56 333
mamv499.33 6099.23 6799.62 8499.39 21499.50 8799.50 16299.50 13698.13 13999.76 5899.81 9097.69 11499.88 13399.35 5399.95 1999.49 179
pm-mvs197.68 27497.28 29298.88 21499.06 30098.62 20099.50 16299.45 19996.32 31597.87 34299.79 11792.47 29899.35 29197.54 25593.54 36498.67 296
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24399.50 16299.38 23496.93 27599.20 20599.83 6797.87 10699.36 28898.38 17797.56 26898.71 276
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16299.55 7798.60 8699.39 16099.83 6794.48 24099.45 26898.75 12998.56 21499.85 36
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27899.54 7999.50 16299.58 6198.27 11899.35 17099.37 28292.53 29699.65 24599.35 5394.46 34998.72 274
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
APD-MVScopyleft99.27 7099.08 8499.84 3999.75 7399.79 3099.50 16299.50 13697.16 25099.77 5299.82 7598.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17696.74 39798.25 12095.24 37798.10 38274.96 39799.90 11699.53 3398.85 19797.70 382
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28498.85 17999.49 17698.91 33795.48 34597.16 36099.80 10493.38 27199.11 33294.16 35891.73 37798.62 317
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30899.36 10599.49 17699.51 11697.95 16598.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17694.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 211
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18099.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 18099.57 6494.16 36698.81 27099.68 17493.23 27399.42 27898.84 11894.42 35198.76 266
v124097.69 27297.32 28798.79 23398.85 33098.43 22199.48 18099.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
VPNet97.84 24697.44 26999.01 18999.21 26098.94 16899.48 18099.57 6498.38 10599.28 18399.73 14988.89 35099.39 28099.19 7593.27 36798.71 276
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 32098.98 15599.48 18099.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 18098.75 35596.74 28396.68 36799.88 3588.65 35599.71 22398.37 17982.74 39898.09 365
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18699.48 15898.05 15899.76 5899.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
NR-MVSNet97.97 22897.61 24899.02 18898.87 32699.26 11999.47 18699.42 21597.63 20297.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 289
PVSNet_Blended_VisFu99.36 5699.28 5699.61 8799.86 2099.07 14699.47 18699.93 297.66 20099.71 7299.86 4797.73 11199.96 3099.47 4499.82 9499.79 74
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18999.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing397.28 30396.76 31298.82 22799.37 22198.07 23899.45 19099.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 19099.08 31398.21 12798.88 26099.80 10488.66 35499.70 22998.58 15597.72 25799.39 205
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 19098.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 218
FMVSNet297.72 26797.36 27998.80 23299.51 17198.84 18099.45 19099.42 21596.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20198.73 19199.45 19099.46 18898.11 14499.46 13899.77 13198.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MAR-MVS98.86 13498.63 14899.54 10099.37 22199.66 5399.45 19099.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.87 13198.69 14199.40 13599.22 25998.72 19299.44 19699.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2599.53 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ab-mvs98.86 13498.63 14899.54 10099.64 12899.19 12599.44 19699.54 8597.77 18699.30 17999.81 9094.20 24999.93 8499.17 7898.82 20099.49 179
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19699.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22197.01 29299.44 19699.49 14597.54 21398.45 31299.79 11791.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GG-mvs-BLEND98.45 27198.55 36398.16 23299.43 20093.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
HPM-MVS++copyleft99.39 5399.23 6799.87 1199.75 7399.84 1599.43 20099.51 11698.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10199.79 74
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 20099.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 20098.54 37296.44 30999.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 181
GBi-Net97.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
test197.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27499.43 20099.48 15895.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20799.48 15897.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20799.54 8597.29 23999.41 15299.59 21298.42 8599.93 8498.19 19299.69 12799.73 97
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20998.55 37196.03 33899.19 20899.74 14391.87 31099.92 9599.16 7998.29 22999.70 113
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20999.71 1398.98 4899.45 13999.78 12399.19 999.54 26299.28 6699.84 8199.63 140
VNet99.11 10298.90 11499.73 6499.52 16899.56 7599.41 20999.39 22699.01 4099.74 6499.78 12395.56 19099.92 9599.52 3598.18 23799.72 103
baseline297.87 24097.55 25198.82 22799.18 26898.02 24099.41 20996.58 40096.97 26996.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
DU-MVS98.08 20697.79 22498.96 19698.87 32698.98 15599.41 20999.45 19997.87 17198.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 289
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22699.41 20998.85 34695.65 34398.63 29899.67 18094.82 21599.10 33498.07 20692.89 37198.64 308
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 20999.52 10198.06 15799.05 23699.50 24589.64 34599.73 21397.73 23697.38 28798.53 335
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20999.50 13697.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
9.1499.10 8099.72 9199.40 21799.51 11697.53 21499.64 9799.78 12398.84 4199.91 10597.63 24499.82 94
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21799.61 4897.71 19298.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21799.43 21393.67 37099.22 19999.89 2990.23 33999.93 8499.26 7098.33 22499.66 125
FMVSNet398.03 21697.76 23398.84 22599.39 21498.98 15599.40 21799.38 23496.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
LFMVS97.90 23797.35 28199.54 10099.52 16899.01 15399.39 22198.24 37897.10 25899.65 9399.79 11784.79 38099.91 10599.28 6698.38 22199.69 115
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29699.39 22199.47 17898.97 5199.11 22199.61 20792.71 28999.69 23497.78 22897.63 26198.67 296
plane_prior299.39 22198.97 51
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22199.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3799.97 799.89 20
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9799.39 22199.38 23497.70 19599.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23499.38 22694.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
VDDNet97.55 28597.02 30499.16 17399.49 18298.12 23699.38 22699.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6298.13 24199.42 199
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22899.47 17893.46 37497.41 35199.78 12387.06 36999.33 29496.92 29992.70 37498.65 306
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22898.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
WTY-MVS99.06 11098.88 11999.61 8799.62 13799.16 13099.37 22899.56 6998.04 15999.53 12599.62 20396.84 14499.94 6998.85 11598.49 21999.72 103
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22899.43 21396.94 27499.07 22999.59 21297.87 10699.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23299.45 19998.94 5499.66 8799.64 19294.93 20999.99 499.48 4284.36 39599.65 129
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23299.51 11698.73 7699.88 2099.84 6398.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23299.51 11697.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
sss99.17 8499.05 8799.53 10899.62 13798.97 15899.36 23299.62 4197.83 17899.67 8299.65 18697.37 12499.95 5999.19 7599.19 16899.68 119
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23299.46 18899.07 3599.79 4399.82 7598.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.25 7699.14 7699.59 9099.41 20699.16 13099.35 23799.57 6498.82 6599.51 12999.61 20796.46 15899.95 5999.59 2599.98 499.65 129
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23799.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
MDTV_nov1_ep13_2view95.18 35399.35 23796.84 27999.58 11495.19 20597.82 22599.46 192
VDD-MVS97.73 26597.35 28198.88 21499.47 19097.12 28099.34 24098.85 34698.19 12999.67 8299.85 5282.98 38799.92 9599.49 4198.32 22899.60 146
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 24099.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24299.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
ETVMVS97.50 29096.90 30899.29 15699.23 25598.78 18999.32 24398.90 33997.52 21698.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 205
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24399.52 10194.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24398.88 34296.48 30699.08 22899.55 22792.67 29299.82 17796.52 31398.58 21199.24 223
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24699.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24699.11 30997.27 24099.45 13999.59 21295.33 19899.84 15798.48 16898.61 20899.09 234
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24898.93 33097.71 19298.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 211
MP-MVS-pluss99.37 5599.20 7099.88 599.90 499.87 1299.30 24899.52 10197.18 24899.60 11099.79 11798.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5999.19 7199.79 4999.61 14199.65 5799.30 24899.48 15898.86 6099.21 20299.63 19898.72 6199.90 11698.25 18899.63 13799.80 70
JIA-IIPM97.50 29097.02 30498.93 20198.73 34597.80 25599.30 24898.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 219
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20698.83 18399.30 24898.77 35497.70 19598.94 25299.65 18692.91 28299.74 20796.52 31399.55 14499.64 136
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25398.82 34997.89 17098.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 209
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25399.39 22697.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 195
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27899.29 25399.39 22697.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 195
MCST-MVS99.43 4099.30 5099.82 4199.79 5499.74 4199.29 25399.40 22398.79 7099.52 12799.62 20398.91 3499.90 11698.64 14499.75 11699.82 54
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25398.82 34998.07 15398.66 29099.64 19289.97 34199.61 25597.01 28996.68 29997.94 376
hse-mvs297.50 29097.14 29898.59 24999.49 18297.05 28799.28 25899.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4283.80 39799.08 235
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28599.28 25899.38 23498.57 8899.22 19999.81 9092.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive99.14 9099.02 9599.51 11699.61 14198.96 16299.28 25899.49 14598.46 9899.72 7199.71 15496.50 15699.88 13399.31 6299.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25899.91 397.42 22899.67 8299.37 28297.53 11899.88 13398.98 9397.29 28998.42 347
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25899.52 10198.07 15399.66 8799.81 9097.79 10999.78 19697.79 22799.81 9799.60 146
testing22297.16 30896.50 31699.16 17399.16 27898.47 21999.27 26398.66 36797.71 19298.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 226
AUN-MVS96.88 31596.31 32198.59 24999.48 18997.04 29099.27 26399.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26398.90 33996.14 33198.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 315
131498.68 15998.54 16399.11 17998.89 32298.65 19799.27 26399.49 14596.89 27697.99 33799.56 22397.72 11299.83 17097.74 23599.27 16498.84 258
MVS97.28 30396.55 31599.48 12298.78 33798.95 16599.27 26399.39 22683.53 39998.08 33299.54 23296.97 14199.87 14194.23 35699.16 16999.63 140
BH-untuned98.42 17398.36 17198.59 24999.49 18296.70 31099.27 26399.13 30897.24 24498.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 215
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26398.74 35897.51 21799.40 15799.62 20394.78 21999.76 20297.59 24798.81 202
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26399.57 6496.40 31399.42 14899.68 17498.75 5599.80 18897.98 21199.72 12299.44 197
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26398.92 33397.37 23299.37 16499.58 21694.90 21299.70 22997.43 26699.21 16699.54 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27298.74 35897.68 19799.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
CNVR-MVS99.42 4299.30 5099.78 5299.62 13799.71 4499.26 27299.52 10198.82 6599.39 16099.71 15498.96 2499.85 15098.59 15499.80 10199.77 82
1112_ss98.98 12298.77 13499.59 9099.68 11099.02 15199.25 27499.48 15897.23 24599.13 21799.58 21696.93 14399.90 11698.87 10898.78 20399.84 40
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27499.51 11691.90 38399.30 17999.63 19898.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.94 499.02 11698.85 12599.53 10899.66 12099.01 15399.24 27699.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_post199.23 27765.14 41194.18 25299.71 22397.58 248
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27799.08 31396.24 32199.10 22499.67 18094.11 25398.93 35896.81 30299.05 18299.48 181
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27799.15 30596.24 32199.10 22499.67 18094.11 25399.71 22396.81 30299.05 18299.48 181
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27798.75 35599.02 3897.82 34499.71 15496.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet98.17 19697.93 21398.87 21899.18 26898.49 21599.22 28199.33 26096.96 27099.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
RPMNet96.72 31895.90 33099.19 17099.18 26898.49 21599.22 28199.52 10188.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
plane_prior96.97 29699.21 28398.45 9997.60 264
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28499.04 31997.78 18598.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 205
WR-MVS98.06 20897.73 23699.06 18398.86 32999.25 12199.19 28499.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28699.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28699.70 1598.18 13299.35 17099.63 19896.32 16399.90 11697.48 26099.77 11199.55 160
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28898.93 33096.16 32894.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
PatchT97.03 31396.44 31898.79 23398.99 31198.34 22599.16 28899.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
CNLPA99.14 9098.99 10199.59 9099.58 15099.41 10199.16 28899.44 20798.45 9999.19 20899.49 24898.08 10199.89 12797.73 23699.75 11699.48 181
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27299.15 29199.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29199.41 21796.60 29799.60 11099.55 22798.83 4299.90 11697.48 26099.83 9099.78 80
save fliter99.76 6599.59 7099.14 29399.40 22399.00 43
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26399.13 29498.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
xiu_mvs_v1_base_debu99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29799.54 8598.44 10299.42 14899.71 15494.20 24999.92 9598.54 16598.90 19499.00 246
jason99.13 9299.03 9199.45 12899.46 19198.87 17599.12 29799.26 28898.03 16199.79 4399.65 18697.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29792.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27799.11 30399.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
Patchmtry97.75 26297.40 27698.81 23099.10 28998.87 17599.11 30399.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28199.10 30599.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
CANet_DTU98.97 12498.87 12099.25 16399.33 23098.42 22399.08 30699.30 27999.16 1999.43 14599.75 13895.27 20099.97 2198.56 16199.95 1999.36 210
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30798.97 32697.57 20799.43 14599.57 22092.72 28799.74 20797.58 24899.20 16799.52 169
TSAR-MVS + GP.99.36 5699.36 3299.36 14099.67 11198.61 20299.07 30799.33 26099.00 4399.82 3699.81 9099.06 1699.84 15799.09 8499.42 15199.65 129
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30799.34 25398.99 4599.61 10799.82 7597.98 10499.87 14197.00 29099.80 10199.85 36
PatchMatch-RL98.84 14498.62 15399.52 11499.71 9699.28 11599.06 31099.77 997.74 19099.50 13099.53 23695.41 19499.84 15797.17 28499.64 13599.44 197
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31098.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
TEST999.67 11199.65 5799.05 31299.41 21796.22 32398.95 25099.49 24898.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31299.41 21796.28 31798.95 25099.49 24898.76 5299.91 10597.63 24499.72 12299.75 88
lupinMVS99.13 9299.01 9999.46 12799.51 17198.94 16899.05 31299.16 30497.86 17299.80 4199.56 22397.39 12199.86 14498.94 9799.85 7399.58 154
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31299.66 2899.14 2199.57 11799.80 10498.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31299.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
Patchmatch-test97.93 23197.65 24398.77 23599.18 26897.07 28599.03 31799.14 30796.16 32898.74 27899.57 22094.56 23599.72 21793.36 36599.11 17599.52 169
test_899.67 11199.61 6799.03 31799.41 21796.28 31798.93 25399.48 25398.76 5299.91 105
Test_1112_low_res98.89 12998.66 14699.57 9599.69 10698.95 16599.03 31799.47 17896.98 26899.15 21599.23 31496.77 14799.89 12798.83 12198.78 20399.86 33
bld_raw_dy_0_6499.05 11199.15 7498.74 23799.46 19196.95 30099.02 32099.47 17898.15 13499.75 6399.56 22397.63 11699.88 13399.35 5399.97 799.40 203
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 32099.49 14597.18 24898.71 28199.72 15392.72 28799.14 32497.44 26595.86 32198.67 296
xiu_mvs_v2_base99.26 7299.25 6499.29 15699.53 16398.91 17299.02 32099.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16598.98 249
MIMVSNet97.73 26597.45 26498.57 25399.45 19797.50 26699.02 32098.98 32596.11 33399.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 187
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 32099.48 15897.22 24698.71 28199.70 15892.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 32099.91 397.67 19999.59 11399.75 13895.90 17999.73 21399.53 3399.02 18699.86 33
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32696.61 39997.86 17299.19 20899.01 33888.72 35199.90 11697.38 26998.69 20699.28 219
新几何299.01 326
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32698.90 33996.42 31198.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
test_prior499.56 7598.99 329
无先验98.99 32999.51 11696.89 27699.93 8497.53 25699.72 103
pmmvs498.13 20097.90 21598.81 23098.61 35998.87 17598.99 32999.21 29896.44 30999.06 23499.58 21695.90 17999.11 33297.18 28396.11 31398.46 344
HQP-NCC99.19 26598.98 33298.24 12198.66 290
ACMP_Plane99.19 26598.98 33298.24 12198.66 290
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33299.39 22698.24 12198.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
PS-MVSNAJ99.32 6299.32 4099.30 15399.57 15298.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5399.66 13298.97 250
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24697.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 119
旧先验298.96 33696.70 28699.47 13699.94 6998.19 192
原ACMM298.95 339
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33999.85 698.82 6599.54 12399.73 14998.51 7899.74 20798.91 10299.88 5599.77 82
mvsany_test199.50 2099.46 2099.62 8499.61 14199.09 14198.94 34199.48 15899.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14398.51 7899.80 18898.83 12199.89 5299.64 136
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6395.27 20099.91 10598.08 20398.84 19899.00 246
test22299.75 7399.49 8998.91 34599.49 14596.42 31199.34 17399.65 18698.28 9299.69 12799.72 103
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26898.88 34799.36 24396.48 30698.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 192
TR-MVS97.76 25897.41 27598.82 22799.06 30097.87 25198.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
testdata198.85 35098.32 114
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 201
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28198.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26298.81 35499.33 26096.67 28898.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33398.22 32699.62 20396.45 15998.97 35593.77 36095.97 31998.61 326
PAPR98.63 16498.34 17399.51 11699.40 21199.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25498.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24897.53 11899.88 13398.98 9399.85 7399.60 146
PMMVS98.80 14898.62 15399.34 14199.27 24798.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 169
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
MSDG98.98 12298.80 13099.53 10899.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13197.82 10899.87 14196.93 29799.90 4399.54 162
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20797.83 17899.13 21799.55 22792.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25898.72 36399.31 27496.60 29798.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
cl____98.01 22197.84 22298.55 25899.25 25397.97 24398.71 36499.34 25396.47 30898.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24798.71 36499.35 24996.50 30298.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28198.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 225
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28198.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22798.67 6699.80 18895.80 32899.68 13099.61 144
thisisatest051598.14 19997.79 22499.19 17099.50 18098.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 224
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20799.35 1299.83 3599.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
cl2297.85 24397.64 24698.48 26499.09 29297.87 25198.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
GA-MVS97.85 24397.47 26199.00 19199.38 21797.99 24298.57 37499.15 30597.04 26598.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20697.81 34599.79 11788.16 36199.56 25995.10 34497.21 29298.39 351
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 26998.56 37699.31 27496.65 29098.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15889.01 39391.99 39499.67 18085.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28898.49 338
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25898.45 38099.32 27096.95 27298.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
CHOSEN 280x42099.12 9899.13 7799.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13596.63 15199.70 22999.46 4599.99 199.66 125
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 22096.75 14899.86 14498.56 16199.70 12699.54 162
PAPM97.59 28397.09 30299.07 18299.06 30098.26 22898.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 217
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 175
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15891.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
cascas97.69 27297.43 27398.48 26498.60 36097.30 27098.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 222
Effi-MVS+98.81 14598.59 15999.48 12299.46 19199.12 13998.08 39499.50 13697.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 175
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39599.25 29091.24 38698.51 30899.70 15894.55 23799.91 10592.76 37499.85 7399.42 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
dongtai93.26 35592.93 35994.25 36799.39 21485.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5285.77 37296.15 39997.86 22043.89 40995.39 399
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1160.00 4140.00 41599.56 22396.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2160.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27895.47 336
MSC_two_6792asdad99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
PC_three_145298.18 13299.84 3099.70 15899.31 398.52 37198.30 18799.80 10199.81 61
No_MVS99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
test_one_060199.81 4699.88 899.49 14598.97 5199.65 9399.81 9099.09 14
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23298.58 7299.96 3096.93 29799.75 116
IU-MVS99.84 3299.88 899.32 27098.30 11599.84 3098.86 11399.85 7399.89 20
test_241102_TWO99.48 15899.08 3399.88 2099.81 9098.94 2999.96 3098.91 10299.84 8199.88 26
test_241102_ONE99.84 3299.90 299.48 15899.07 3599.91 1699.74 14399.20 799.76 202
test_0728_THIRD98.99 4599.81 3899.80 10499.09 1499.96 3098.85 11599.90 4399.88 26
GSMVS99.52 169
test_part299.81 4699.83 1699.77 52
sam_mvs194.86 21499.52 169
sam_mvs94.72 226
MTGPAbinary99.47 178
test_post65.99 41094.65 23299.73 213
patchmatchnet-post98.70 36194.79 21899.74 207
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
agg_prior99.67 11199.62 6599.40 22398.87 26399.91 105
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19298.43 8399.94 6996.92 29999.66 13299.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 13099.73 97
原ACMM199.65 7399.73 8799.33 10699.47 17897.46 22099.12 21999.66 18598.67 6699.91 10597.70 24199.69 12799.71 112
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata99.54 10099.75 7398.95 16599.51 11697.07 26099.43 14599.70 15898.87 3799.94 6997.76 23299.64 13599.72 103
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
plane_prior799.29 24297.03 291
plane_prior699.27 24796.98 29592.71 289
plane_prior599.47 17899.69 23497.78 22897.63 26198.67 296
plane_prior499.61 207
plane_prior397.00 29398.69 7999.11 221
plane_prior199.26 249
n20.00 420
nn0.00 420
door-mid98.05 382
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4388.69 35399.32 29795.89 32594.93 34398.62 317
LGP-MVS_train98.49 26299.33 23097.05 28799.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
test1199.35 249
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 308
HQP3-MVS99.39 22697.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25596.92 30199.40 273
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11198.83 26899.75 13891.09 32899.62 25495.82 32697.40 28598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370