This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21799.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37598.81 4899.94 5798.79 10099.86 5199.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22199.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25799.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21799.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23799.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27699.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29299.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25999.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22899.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25399.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21899.72 94
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24299.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 30099.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33499.10 29597.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30499.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25199.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27699.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22899.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30699.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28599.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23999.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25399.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 31098.61 6699.35 15098.92 32994.78 21399.77 17799.35 2798.11 22499.54 150
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28299.47 16396.98 23799.15 19499.23 29896.77 14599.89 11798.83 9498.78 19199.86 13
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28498.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34797.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24199.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32499.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27499.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33297.09 13399.75 18499.27 3997.90 22899.47 172
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22399.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31999.36 23296.33 28499.00 22499.12 31298.46 8299.84 14095.23 31699.37 14999.66 116
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35799.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22899.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35899.25 27691.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27699.16 28997.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26199.26 27498.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27199.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32199.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21798.77 32797.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31298.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33599.61 135
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27199.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32399.31 26197.34 20399.21 18299.07 31497.20 13099.82 15898.56 13798.87 18599.52 156
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36497.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29999.46 17398.92 4399.71 5199.24 29799.01 1999.98 699.35 2799.66 12398.97 221
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31998.72 248
EPNet98.86 12298.71 12799.30 14397.20 35798.18 22299.62 7098.91 31799.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33198.78 234
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28599.45 18598.80 5499.71 5199.26 29598.94 3499.98 699.34 3199.23 15598.98 220
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 28099.03 6099.85 5899.65 120
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36297.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31898.78 234
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34396.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 27099.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 28098.76 240
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27898.78 234
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22399.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33596.82 36396.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24799.52 9188.72 35899.56 9997.38 35594.08 24499.95 4686.87 36598.58 19799.14 197
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36299.93 7299.31 3498.13 22399.42 179
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 29099.07 5896.38 27898.79 233
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30996.30 16099.38 25898.36 15993.34 33498.66 278
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22899.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34599.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35299.10 29594.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 25099.35 23797.30 20798.66 27199.43 24893.94 24799.21 29598.58 13294.28 32398.71 250
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31597.51 35997.63 17384.77 36399.21 30292.09 29098.91 33598.98 6592.21 34599.41 181
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26498.64 282
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35798.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22399.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25998.42 322
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30497.86 19893.59 33298.68 263
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33698.71 250
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31398.63 12294.10 32698.74 246
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33899.15 29097.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 24098.62 292
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30398.27 331
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 28099.03 6097.62 23598.75 242
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35899.65 120
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 29098.57 13492.87 34198.69 258
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 29098.57 13492.87 34198.68 263
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31498.51 14394.08 32798.75 242
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 28098.66 11997.60 23698.57 307
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23999.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36199.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27896.94 27294.08 32798.66 278
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21798.97 30891.73 35098.91 23694.86 36395.10 20199.71 20297.58 22497.98 22699.28 192
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32998.75 242
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28597.72 21394.97 31298.69 258
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33197.94 13999.27 16698.62 33991.75 29699.86 12893.73 33398.19 21798.96 223
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.96 223
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30798.69 258
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 25098.77 238
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32198.76 240
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 26098.81 231
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30395.53 18699.23 28798.34 16093.78 33098.61 301
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26199.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35199.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24698.77 238
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33398.67 270
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32398.19 10799.67 6499.85 3282.98 36099.92 8399.49 1498.32 21199.60 137
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30799.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36399.66 21798.68 11697.52 24399.50 165
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28496.37 29495.03 31198.70 254
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24799.33 24896.96 23999.56 9999.38 26494.33 23499.00 32294.83 32298.58 19799.14 197
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28796.01 29994.63 31798.67 270
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27597.57 22894.66 31698.42 322
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31795.48 31597.16 33599.80 8193.38 25699.11 30994.16 33091.73 34698.62 292
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28796.73 28295.16 30898.68 263
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27995.40 31295.13 30998.69 258
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32497.10 26196.65 26998.56 308
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36696.97 23896.51 34299.17 30493.43 25599.57 23497.71 21499.03 17398.86 228
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31398.56 34296.63 26398.68 27099.22 29992.49 28199.65 22195.40 31297.79 23098.95 226
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29299.21 28396.44 27999.06 21499.58 19895.90 17499.11 30997.18 25896.11 28498.46 319
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26799.33 24894.83 32698.81 25199.38 26494.33 23499.02 31996.10 29695.57 29998.53 309
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32496.44 29196.56 27298.58 306
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28694.46 32595.23 30698.70 254
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25399.07 30092.13 34899.52 10997.31 35894.54 22998.98 32488.54 35998.73 19399.03 214
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28299.14 29296.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33198.00 18892.90 33998.70 254
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37391.07 35498.07 31491.04 36889.62 32999.35 26996.75 28099.09 16898.68 263
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35998.01 35297.68 16799.10 20399.63 17995.68 18299.15 30098.78 10396.55 27398.75 242
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.37 328
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33798.09 17993.16 33798.72 248
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33197.93 14099.26 17198.62 33991.75 29699.83 15193.22 33898.18 21898.37 328
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 24098.71 250
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32395.65 31498.63 27999.67 15994.82 21099.10 31198.07 18692.89 34098.64 282
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23798.74 33197.68 16799.09 20898.32 34891.66 30299.81 16292.88 34298.22 21398.03 342
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22399.22 28098.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 36099.08 205
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22899.22 28097.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35999.07 210
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22899.13 29397.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31798.32 16395.62 29898.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28598.98 30796.11 30599.41 13299.14 30890.28 31798.74 33995.74 30498.93 18099.47 172
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33397.74 35796.71 25597.27 33198.54 34286.03 35399.92 8398.47 14886.30 35699.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24299.15 29096.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32198.63 34097.34 20398.05 31598.98 32694.45 23198.98 32495.04 31997.15 26598.89 227
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32899.34 24196.47 27898.59 28599.54 21395.65 18499.21 29597.21 25295.77 29398.46 319
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 33097.75 35597.34 20398.61 28298.85 33094.45 23199.45 24497.25 25099.38 14299.10 200
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 33097.75 35596.65 26098.61 28298.85 33088.23 34299.45 24497.25 25099.38 14299.10 200
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30197.83 20193.15 33898.63 290
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33799.33 24897.11 22798.87 24399.22 29992.38 28799.17 29998.21 16895.99 28798.42 322
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32899.35 23796.50 27198.60 28499.54 21395.72 18199.03 31797.21 25295.77 29398.46 319
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35699.39 21692.96 34698.41 29598.78 33593.77 25299.27 28398.16 17598.61 19498.86 228
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25198.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32396.78 14399.74 18598.73 10799.38 14298.74 246
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34196.88 27792.60 34498.70 254
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22399.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24298.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37497.23 33298.46 34389.30 33199.22 29095.43 31198.22 21397.98 347
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24998.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23398.67 270
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25198.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32799.31 26196.60 26698.88 24199.29 28897.29 12899.13 30497.60 22295.99 28798.38 327
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34499.32 25896.95 24198.97 22899.17 30497.06 13599.22 29097.86 19895.99 28798.29 330
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 33097.61 35896.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25198.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31899.33 24896.67 25898.83 24999.34 27697.11 13298.99 32397.58 22495.34 30498.48 313
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29699.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23898.64 282
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31199.49 14394.71 37297.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 34099.31 26196.65 26098.88 24199.52 22096.58 15099.12 30897.39 24595.53 30198.47 315
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32499.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23298.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 29098.90 31996.42 28198.38 29799.00 32295.26 19799.72 19696.06 29798.61 19499.03 214
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26398.62 292
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31899.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35998.98 32495.81 30296.26 28198.62 292
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31199.36 23296.48 27698.80 25399.55 20895.98 16798.91 33597.27 24895.50 30298.51 311
SCA98.19 17898.16 16998.27 27399.30 21895.55 31999.07 27198.97 30897.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32199.23 24298.75 32899.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25798.53 309
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30597.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26798.69 258
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32799.27 22898.92 31497.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22898.90 31996.14 30398.37 29899.53 21791.54 30599.14 30197.51 23495.87 29198.63 290
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25598.15 337
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33894.53 32498.52 20299.13 199
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 31099.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27598.81 231
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31498.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25698.25 333
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28599.49 13297.18 21898.71 26299.72 13392.72 27199.14 30197.44 24295.86 29298.67 270
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33997.14 22197.90 31899.93 490.45 31699.18 29897.00 26696.43 27798.67 270
tpm97.67 26297.55 23598.03 28499.02 28095.01 33399.43 16898.54 34496.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27699.48 167
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28599.48 14597.22 21698.71 26299.70 13892.75 26899.13 30497.46 23996.00 28698.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26799.24 27893.49 34180.73 36898.98 32693.02 26198.18 34594.22 32994.45 32098.64 282
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36197.59 17596.16 34699.80 8188.71 33599.04 31596.69 28596.55 27398.65 280
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34299.59 8494.98 37099.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
MVP-Stereo97.81 23697.75 21897.99 29097.53 35096.60 29598.96 30098.85 32397.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement95.42 31394.57 31997.97 29189.83 37296.11 30999.48 14998.75 32896.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36198.09 338
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34497.81 36099.70 1597.12 22497.46 32798.75 33689.71 32699.79 17097.69 21781.69 36299.68 110
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33799.57 9898.63 34096.59 26898.36 29998.79 33389.32 33099.74 18598.14 17798.16 22299.20 196
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25799.33 24893.80 33780.09 36999.03 31988.31 34197.86 35493.49 33694.36 32298.62 292
YYNet195.36 31494.51 32097.92 29497.89 34697.10 26599.10 26999.23 27993.26 34480.77 36799.04 31892.81 26798.02 34994.30 32694.18 32598.64 282
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33899.31 21599.11 29497.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 33099.23 24299.08 29896.24 29299.10 20399.67 15994.11 24298.93 33496.81 27899.05 17199.48 167
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27493.52 34096.98 33999.52 22088.52 33999.20 29792.58 34797.50 24697.93 350
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33999.31 21599.20 28496.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
test111198.04 19998.11 17497.83 30099.74 7293.82 34799.58 9295.40 36999.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32298.57 33898.74 33197.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26198.39 326
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32399.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34398.65 280
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 35097.41 24495.30 30598.78 234
lessismore_v097.79 30498.69 32295.44 32594.75 37195.71 35099.87 2388.69 33699.32 27595.89 30094.93 31498.62 292
USDC97.34 28197.20 27997.75 30599.07 27195.20 32998.51 34299.04 30397.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25898.49 312
tpm297.44 27997.34 26897.74 30699.15 25994.36 34399.45 15898.94 31193.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22599.29 191
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34699.54 11799.02 30494.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22799.34 187
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31999.29 22198.82 32698.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26897.94 349
EGC-MVSNET82.80 33377.86 33997.62 30997.91 34596.12 30899.33 21299.28 2728.40 37625.05 37799.27 29384.11 35899.33 27389.20 35698.22 21397.42 358
ppachtmachnet_test97.49 27797.45 24897.61 31098.62 32895.24 32898.80 31999.46 17396.11 30598.22 30699.62 18596.45 15598.97 33193.77 33295.97 29098.61 301
MVS_030496.79 29396.52 29397.59 31199.22 23994.92 33699.04 28199.59 4396.49 27298.43 29498.99 32380.48 36699.39 25697.15 26099.27 15398.47 315
dp97.75 24597.80 20897.59 31199.10 26693.71 35099.32 21398.88 32196.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
our_test_397.65 26497.68 22497.55 31398.62 32894.97 33498.84 31599.30 26596.83 25098.19 30799.34 27697.01 13799.02 31995.00 32096.01 28598.64 282
MVS-HIRNet95.75 31095.16 31497.51 31499.30 21893.69 35198.88 31195.78 36785.09 36198.78 25692.65 36591.29 30899.37 26194.85 32199.85 5899.46 174
tpm cat197.39 28097.36 26397.50 31599.17 25493.73 34999.43 16899.31 26191.27 35198.71 26299.08 31394.31 23699.77 17796.41 29398.50 20399.00 217
new_pmnet96.38 30196.03 30197.41 31698.13 34495.16 33299.05 27699.20 28493.94 33597.39 32998.79 33391.61 30499.04 31590.43 35295.77 29398.05 341
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31798.65 32595.65 31699.36 20199.51 10497.13 22296.04 34898.99 32388.40 34098.17 34696.71 28390.27 34998.40 325
KD-MVS_2432*160094.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
miper_refine_blended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
test250696.81 29296.65 29097.29 32099.74 7292.21 36099.60 7785.06 37999.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
pmmvs-eth3d95.34 31594.73 31797.15 32195.53 36595.94 31299.35 20799.10 29595.13 31893.55 35697.54 35388.15 34497.91 35294.58 32389.69 35297.61 354
FMVSNet596.43 30096.19 29897.15 32199.11 26395.89 31399.32 21399.52 9194.47 33398.34 30199.07 31487.54 35097.07 36192.61 34695.72 29698.47 315
Anonymous2024052196.20 30495.89 30597.13 32397.72 34994.96 33599.79 2499.29 27093.01 34597.20 33499.03 31989.69 32798.36 34491.16 35096.13 28398.07 339
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32499.60 13991.75 36198.61 33599.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
MS-PatchMatch97.24 28597.32 27196.99 32598.45 33893.51 35498.82 31799.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
RPSCF98.22 17498.62 14196.99 32599.82 3891.58 36299.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
KD-MVS_self_test95.00 31694.34 32196.96 32797.07 36095.39 32699.56 10599.44 19495.11 32097.13 33697.32 35791.86 29497.27 36090.35 35381.23 36398.23 335
DSMNet-mixed97.25 28497.35 26596.95 32897.84 34793.61 35399.57 9896.63 36596.13 30498.87 24398.61 34194.59 22597.70 35795.08 31898.86 18699.55 148
MIMVSNet195.51 31195.04 31596.92 32997.38 35295.60 31799.52 12399.50 12493.65 33996.97 34099.17 30485.28 35696.56 36588.36 36095.55 30098.60 304
LCM-MVSNet-Re97.83 23198.15 17096.87 33099.30 21892.25 35999.59 8498.26 34697.43 19696.20 34599.13 30996.27 16198.73 34098.17 17498.99 17799.64 127
EG-PatchMatch MVS95.97 30895.69 30896.81 33197.78 34892.79 35799.16 25398.93 31296.16 30094.08 35599.22 29982.72 36199.47 24195.67 30797.50 24698.17 336
Anonymous2023120696.22 30296.03 30196.79 33297.31 35594.14 34599.63 6499.08 29896.17 29897.04 33899.06 31693.94 24797.76 35686.96 36495.06 31098.47 315
test20.0396.12 30695.96 30396.63 33397.44 35195.45 32499.51 12799.38 22296.55 26996.16 34699.25 29693.76 25396.17 36687.35 36394.22 32498.27 331
pmmvs394.09 32593.25 32896.60 33494.76 36794.49 34098.92 30798.18 35089.66 35596.48 34398.06 35186.28 35297.33 35989.68 35587.20 35597.97 348
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33597.38 35293.82 34798.24 35399.48 14591.10 35393.10 35896.66 35974.89 36798.37 34394.03 33187.71 35497.56 356
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33697.38 35293.17 35599.06 27498.75 32886.58 35994.84 35498.26 34981.53 36499.32 27589.01 35797.87 22996.76 359
CL-MVSNet_self_test94.49 32193.97 32496.08 33796.16 36193.67 35298.33 35099.38 22295.13 31897.33 33098.15 35092.69 27596.57 36488.67 35879.87 36497.99 346
Patchmatch-RL test95.84 30995.81 30795.95 33895.61 36390.57 36398.24 35398.39 34595.10 32295.20 35198.67 33894.78 21397.77 35596.28 29590.02 35099.51 162
new-patchmatchnet94.48 32294.08 32295.67 33995.08 36692.41 35899.18 25199.28 27294.55 33293.49 35797.37 35687.86 34897.01 36291.57 34888.36 35397.61 354
PM-MVS92.96 32792.23 33095.14 34095.61 36389.98 36599.37 19798.21 34894.80 32795.04 35397.69 35265.06 36997.90 35394.30 32689.98 35197.54 357
Gipumacopyleft90.99 32990.15 33293.51 34198.73 31690.12 36493.98 36699.45 18579.32 36492.28 35994.91 36269.61 36897.98 35187.42 36295.67 29792.45 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft93.34 34299.29 22282.27 36899.22 28085.15 36096.33 34499.05 31790.97 31299.73 19293.57 33597.77 23198.01 343
ambc93.06 34392.68 36882.36 36798.47 34398.73 33695.09 35297.41 35455.55 37299.10 31196.42 29291.32 34797.71 353
N_pmnet94.95 31895.83 30692.31 34498.47 33779.33 37199.12 26192.81 37793.87 33697.68 32499.13 30993.87 24999.01 32191.38 34996.19 28298.59 305
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34597.24 35680.01 37098.52 34199.48 14589.01 35691.99 36099.67 15985.67 35599.13 30495.44 31097.03 26696.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet86.80 33185.22 33591.53 34687.81 37380.96 36998.23 35598.99 30671.05 36690.13 36296.51 36048.45 37596.88 36390.51 35185.30 35796.76 359
PMMVS286.87 33085.37 33491.35 34790.21 37183.80 36698.89 31097.45 36083.13 36391.67 36195.03 36148.49 37494.70 36885.86 36677.62 36595.54 362
test_method91.10 32891.36 33190.31 34895.85 36273.72 37694.89 36599.25 27668.39 36895.82 34999.02 32180.50 36598.95 33393.64 33494.89 31598.25 333
tmp_tt82.80 33381.52 33686.66 34966.61 37968.44 37792.79 36897.92 35368.96 36780.04 37099.85 3285.77 35496.15 36797.86 19843.89 37295.39 363
MVEpermissive76.82 2176.91 33874.31 34284.70 35085.38 37676.05 37596.88 36493.17 37567.39 36971.28 37189.01 37021.66 38187.69 37171.74 37072.29 36890.35 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33774.86 34184.62 35175.88 37777.61 37297.63 36293.15 37688.81 35764.27 37289.29 36936.51 37683.93 37475.89 36952.31 37192.33 366
E-PMN80.61 33579.88 33782.81 35290.75 37076.38 37497.69 36195.76 36866.44 37083.52 36492.25 36662.54 37187.16 37268.53 37161.40 36984.89 370
FPMVS84.93 33285.65 33382.75 35386.77 37463.39 37898.35 34798.92 31474.11 36583.39 36598.98 32650.85 37392.40 37084.54 36794.97 31292.46 364
EMVS80.02 33679.22 33882.43 35491.19 36976.40 37397.55 36392.49 37866.36 37183.01 36691.27 36764.63 37085.79 37365.82 37260.65 37085.08 369
PMVScopyleft70.75 2275.98 33974.97 34079.01 35570.98 37855.18 37993.37 36798.21 34865.08 37261.78 37393.83 36421.74 38092.53 36978.59 36891.12 34889.34 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 34041.29 34536.84 35686.18 37549.12 38079.73 36922.81 38127.64 37325.46 37628.45 37621.98 37948.89 37555.80 37323.56 37512.51 373
test12339.01 34242.50 34428.53 35739.17 38020.91 38198.75 32419.17 38219.83 37538.57 37466.67 37233.16 37715.42 37637.50 37529.66 37449.26 371
testmvs39.17 34143.78 34325.37 35836.04 38116.84 38298.36 34626.56 38020.06 37438.51 37567.32 37129.64 37815.30 37737.59 37439.90 37343.98 372
test_blank0.13 3460.17 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3781.57 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.64 34332.85 3460.00 3590.00 3820.00 3830.00 37099.51 1040.00 3770.00 37899.56 20596.58 1500.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.27 34511.03 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 37899.01 190.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.30 34411.06 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.58 1980.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34298.30 16599.80 8799.81 44
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
save fliter99.76 5499.59 7399.14 25999.40 21299.00 26
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
GSMVS99.52 156
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 156
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post199.23 24265.14 37494.18 24199.71 20297.58 224
test_post65.99 37394.65 22499.73 192
patchmatchnet-post98.70 33794.79 21299.74 185
MTMP99.54 11798.88 321
gm-plane-assit98.54 33592.96 35694.65 33099.15 30799.64 22497.56 229
test9_res97.49 23599.72 10999.75 76
TEST999.67 10699.65 6299.05 27699.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
test_899.67 10699.61 6899.03 28299.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
agg_prior297.21 25299.73 10899.75 76
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
test_prior499.56 7898.99 292
test_prior298.96 30098.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
旧先验298.96 30096.70 25699.47 11799.94 5798.19 170
新几何299.01 290
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
无先验98.99 29299.51 10496.89 24599.93 7297.53 23299.72 94
原ACMM298.95 304
test22299.75 6499.49 9198.91 30999.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
testdata299.95 4696.67 286
segment_acmp98.96 28
testdata198.85 31498.32 94
plane_prior799.29 22297.03 275
plane_prior699.27 22796.98 27992.71 273
plane_prior599.47 16399.69 21297.78 20597.63 23398.67 270
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24998.45 7797.60 236
n20.00 383
nn0.00 383
door-mid98.05 351
test1199.35 237
door97.92 353
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29698.24 10098.66 271
ACMP_Plane99.19 24598.98 29698.24 10098.66 271
BP-MVS97.19 256
HQP4-MVS98.66 27199.64 22498.64 282
HQP3-MVS99.39 21697.58 238
HQP2-MVS92.47 282
NP-MVS99.23 23596.92 28399.40 259
MDTV_nov1_ep13_2view95.18 33199.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
MDTV_nov1_ep1398.32 16299.11 26394.44 34199.27 22898.74 33197.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
ACMMP++_ref97.19 262
ACMMP++97.43 254
Test By Simon98.75 59