This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27699.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28599.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21899.72 94
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32398.19 10799.67 6499.85 3282.98 36099.92 8399.49 1498.32 21199.60 137
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35899.65 120
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22399.22 28098.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 36099.08 205
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34599.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
test111198.04 19998.11 17497.83 30099.74 7293.82 34799.58 9295.40 36999.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34299.59 8494.98 37099.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
test250696.81 29296.65 29097.29 32099.74 7292.21 36099.60 7785.06 37999.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 31098.61 6699.35 15098.92 32994.78 21399.77 17799.35 2798.11 22499.54 150
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29999.46 17398.92 4399.71 5199.24 29799.01 1999.98 699.35 2799.66 12398.97 221
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31998.72 248
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28599.45 18598.80 5499.71 5199.26 29598.94 3499.98 699.34 3199.23 15598.98 220
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31898.78 234
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 25098.77 238
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36299.93 7299.31 3498.13 22399.42 179
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22399.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34797.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33297.09 13399.75 18499.27 3997.90 22899.47 172
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
EPNet98.86 12298.71 12799.30 14397.20 35798.18 22299.62 7098.91 31799.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24698.77 238
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 31099.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27598.81 231
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33698.71 250
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34396.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 26098.81 231
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35799.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27199.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27898.78 234
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 29099.07 5896.38 27898.79 233
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 28099.03 6099.85 5899.65 120
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 28099.03 6097.62 23598.75 242
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26199.26 27498.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32499.60 13991.75 36198.61 33599.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31597.51 35997.63 17384.77 36399.21 30292.09 29098.91 33598.98 6592.21 34599.41 181
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22399.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25998.42 322
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32199.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27699.16 28997.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30499.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 28098.76 240
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25198.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 24098.62 292
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23999.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32198.76 240
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36297.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21799.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28299.47 16396.98 23799.15 19499.23 29896.77 14599.89 11798.83 9498.78 19199.86 13
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30699.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26498.64 282
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37598.81 4899.94 5798.79 10099.86 5199.84 20
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35998.01 35297.68 16799.10 20399.63 17995.68 18299.15 30098.78 10396.55 27398.75 242
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31899.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25198.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32396.78 14399.74 18598.73 10799.38 14298.74 246
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35798.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25598.15 337
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36399.66 21798.68 11697.52 24399.50 165
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33198.78 234
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 28098.66 11997.60 23698.57 307
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22199.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31398.63 12294.10 32698.74 246
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36497.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23799.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 25099.35 23797.30 20798.66 27199.43 24893.94 24799.21 29598.58 13294.28 32398.71 250
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 29098.57 13492.87 34198.69 258
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 29098.57 13492.87 34198.68 263
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 27099.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32399.31 26197.34 20399.21 18299.07 31497.20 13099.82 15898.56 13798.87 18599.52 156
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35199.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26199.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31498.51 14394.08 32798.75 242
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34699.54 11799.02 30494.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22799.34 187
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31298.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33599.61 135
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33899.31 21599.11 29497.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33397.74 35796.71 25597.27 33198.54 34286.03 35399.92 8398.47 14886.30 35699.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25198.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 24098.71 250
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
TDRefinement95.42 31394.57 31997.97 29189.83 37296.11 30999.48 14998.75 32896.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36198.09 338
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30996.30 16099.38 25898.36 15993.34 33498.66 278
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30395.53 18699.23 28798.34 16093.78 33098.61 301
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31798.32 16395.62 29898.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32499.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23298.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34298.30 16599.80 8799.81 44
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21799.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33799.33 24897.11 22798.87 24399.22 29992.38 28799.17 29998.21 16895.99 28798.42 322
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25999.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
旧先验298.96 30096.70 25699.47 11799.94 5798.19 170
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
LCM-MVSNet-Re97.83 23198.15 17096.87 33099.30 21892.25 35999.59 8498.26 34697.43 19696.20 34599.13 30996.27 16198.73 34098.17 17498.99 17799.64 127
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35699.39 21692.96 34698.41 29598.78 33593.77 25299.27 28398.16 17598.61 19498.86 228
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33799.57 9898.63 34096.59 26898.36 29998.79 33389.32 33099.74 18598.14 17798.16 22299.20 196
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33798.09 17993.16 33798.72 248
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28498.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33596.82 36396.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22399.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24298.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30799.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32395.65 31498.63 27999.67 15994.82 21099.10 31198.07 18692.89 34098.64 282
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26398.62 292
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33198.00 18892.90 33998.70 254
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22899.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 30099.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
test_prior298.96 30098.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24998.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31199.49 14394.71 37297.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34499.32 25896.95 24198.97 22899.17 30497.06 13599.22 29097.86 19895.99 28798.29 330
tmp_tt82.80 33381.52 33686.66 34966.61 37968.44 37792.79 36897.92 35368.96 36780.04 37099.85 3285.77 35496.15 36797.86 19843.89 37295.39 363
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30497.86 19893.59 33298.68 263
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30197.83 20193.15 33898.63 290
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
MDTV_nov1_ep13_2view95.18 33199.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22399.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23398.67 270
plane_prior599.47 16399.69 21297.78 20597.63 23398.67 270
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24199.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 26297.55 23598.03 28499.02 28095.01 33399.43 16898.54 34496.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27699.48 167
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22899.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25798.53 309
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25399.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28597.72 21394.97 31298.69 258
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22899.22 28097.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35999.07 210
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36696.97 23896.51 34299.17 30493.43 25599.57 23497.71 21499.03 17398.86 228
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29299.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34497.81 36099.70 1597.12 22497.46 32798.75 33689.71 32699.79 17097.69 21781.69 36299.68 110
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27699.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32799.31 26196.60 26698.88 24199.29 28897.29 12899.13 30497.60 22295.99 28798.38 327
MDTV_nov1_ep1398.32 16299.11 26394.44 34199.27 22898.74 33197.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31899.33 24896.67 25898.83 24999.34 27697.11 13298.99 32397.58 22495.34 30498.48 313
test_post199.23 24265.14 37494.18 24199.71 20297.58 224
SCA98.19 17898.16 16998.27 27399.30 21895.55 31999.07 27198.97 30897.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21798.97 30891.73 35098.91 23694.86 36395.10 20199.71 20297.58 22497.98 22699.28 192
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27597.57 22894.66 31698.42 322
gm-plane-assit98.54 33592.96 35694.65 33099.15 30799.64 22497.56 229
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33398.67 270
无先验98.99 29299.51 10496.89 24599.93 7297.53 23299.72 94
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22899.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22898.90 31996.14 30398.37 29899.53 21791.54 30599.14 30197.51 23495.87 29198.63 290
test9_res97.49 23599.72 10999.75 76
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25799.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25199.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28599.48 14597.22 21698.71 26299.70 13892.75 26899.13 30497.46 23996.00 28698.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 17498.62 14196.99 32599.82 3891.58 36299.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28599.49 13297.18 21898.71 26299.72 13392.72 27199.14 30197.44 24295.86 29298.67 270
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32799.27 22898.92 31497.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 35097.41 24495.30 30598.78 234
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 34099.31 26196.65 26098.88 24199.52 22096.58 15099.12 30897.39 24595.53 30198.47 315
tpm297.44 27997.34 26897.74 30699.15 25994.36 34399.45 15898.94 31193.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22599.29 191
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 33097.61 35896.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24299.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31199.36 23296.48 27698.80 25399.55 20895.98 16798.91 33597.27 24895.50 30298.51 311
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 33097.75 35597.34 20398.61 28298.85 33094.45 23199.45 24497.25 25099.38 14299.10 200
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 33097.75 35596.65 26098.61 28298.85 33088.23 34299.45 24497.25 25099.38 14299.10 200
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32899.34 24196.47 27898.59 28599.54 21395.65 18499.21 29597.21 25295.77 29398.46 319
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32899.35 23796.50 27198.60 28499.54 21395.72 18199.03 31797.21 25295.77 29398.46 319
agg_prior297.21 25299.73 10899.75 76
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30597.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26798.69 258
BP-MVS97.19 256
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29699.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23898.64 282
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29299.21 28396.44 27999.06 21499.58 19895.90 17499.11 30997.18 25896.11 28498.46 319
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27499.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
MVS_030496.79 29396.52 29397.59 31199.22 23994.92 33699.04 28199.59 4396.49 27298.43 29498.99 32380.48 36699.39 25697.15 26099.27 15398.47 315
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32497.10 26196.65 26998.56 308
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22899.13 29397.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31999.29 22198.82 32698.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26897.94 349
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33997.14 22197.90 31899.93 490.45 31699.18 29897.00 26696.43 27798.67 270
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27199.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33999.31 21599.20 28496.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27896.94 27294.08 32798.66 278
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32499.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32399.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34398.65 280
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34196.88 27792.60 34498.70 254
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 33099.23 24299.08 29896.24 29299.10 20399.67 15994.11 24298.93 33496.81 27899.05 17199.48 167
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24299.15 29096.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37391.07 35498.07 31491.04 36889.62 32999.35 26996.75 28099.09 16898.68 263
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28796.73 28295.16 30898.68 263
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31798.65 32595.65 31699.36 20199.51 10497.13 22296.04 34898.99 32388.40 34098.17 34696.71 28390.27 34998.40 325
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33899.15 29097.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36197.59 17596.16 34699.80 8188.71 33599.04 31596.69 28596.55 27398.65 280
testdata299.95 4696.67 286
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
dp97.75 24597.80 20897.59 31199.10 26693.71 35099.32 21398.88 32196.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21798.77 32797.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32496.44 29196.56 27298.58 306
ambc93.06 34392.68 36882.36 36798.47 34398.73 33695.09 35297.41 35455.55 37299.10 31196.42 29291.32 34797.71 353
tpm cat197.39 28097.36 26397.50 31599.17 25493.73 34999.43 16899.31 26191.27 35198.71 26299.08 31394.31 23699.77 17796.41 29398.50 20399.00 217
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28496.37 29495.03 31198.70 254
Patchmatch-RL test95.84 30995.81 30795.95 33895.61 36390.57 36398.24 35398.39 34595.10 32295.20 35198.67 33894.78 21397.77 35596.28 29590.02 35099.51 162
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26799.33 24894.83 32698.81 25199.38 26494.33 23499.02 31996.10 29695.57 29998.53 309
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 29098.90 31996.42 28198.38 29799.00 32295.26 19799.72 19696.06 29798.61 19499.03 214
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32998.75 242
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28796.01 29994.63 31798.67 270
lessismore_v097.79 30498.69 32295.44 32594.75 37195.71 35099.87 2388.69 33699.32 27595.89 30094.93 31498.62 292
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31498.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25698.25 333
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35998.98 32495.81 30296.26 28198.62 292
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33499.10 29597.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28598.98 30796.11 30599.41 13299.14 30890.28 31798.74 33995.74 30498.93 18099.47 172
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30398.27 331
MS-PatchMatch97.24 28597.32 27196.99 32598.45 33893.51 35498.82 31799.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
EG-PatchMatch MVS95.97 30895.69 30896.81 33197.78 34892.79 35799.16 25398.93 31296.16 30094.08 35599.22 29982.72 36199.47 24195.67 30797.50 24698.17 336
USDC97.34 28197.20 27997.75 30599.07 27195.20 32998.51 34299.04 30397.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25898.49 312
MVP-Stereo97.81 23697.75 21897.99 29097.53 35096.60 29598.96 30098.85 32397.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34597.24 35680.01 37098.52 34199.48 14589.01 35691.99 36099.67 15985.67 35599.13 30495.44 31097.03 26696.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37497.23 33298.46 34389.30 33199.22 29095.43 31198.22 21397.98 347
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27995.40 31295.13 30998.69 258
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31398.56 34296.63 26398.68 27099.22 29992.49 28199.65 22195.40 31297.79 23098.95 226
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25399.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30798.69 258
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31999.36 23296.33 28499.00 22499.12 31298.46 8299.84 14095.23 31699.37 14999.66 116
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32298.57 33898.74 33197.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26198.39 326
DSMNet-mixed97.25 28497.35 26596.95 32897.84 34793.61 35399.57 9896.63 36596.13 30498.87 24398.61 34194.59 22597.70 35795.08 31898.86 18699.55 148
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32198.63 34097.34 20398.05 31598.98 32694.45 23198.98 32495.04 31997.15 26598.89 227
our_test_397.65 26497.68 22497.55 31398.62 32894.97 33498.84 31599.30 26596.83 25098.19 30799.34 27697.01 13799.02 31995.00 32096.01 28598.64 282
MVS-HIRNet95.75 31095.16 31497.51 31499.30 21893.69 35198.88 31195.78 36785.09 36198.78 25692.65 36591.29 30899.37 26194.85 32199.85 5899.46 174
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24799.33 24896.96 23999.56 9999.38 26494.33 23499.00 32294.83 32298.58 19799.14 197
pmmvs-eth3d95.34 31594.73 31797.15 32195.53 36595.94 31299.35 20799.10 29595.13 31893.55 35697.54 35388.15 34497.91 35294.58 32389.69 35297.61 354
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33894.53 32498.52 20299.13 199
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28694.46 32595.23 30698.70 254
YYNet195.36 31494.51 32097.92 29497.89 34697.10 26599.10 26999.23 27993.26 34480.77 36799.04 31892.81 26798.02 34994.30 32694.18 32598.64 282
PM-MVS92.96 32792.23 33095.14 34095.61 36389.98 36599.37 19798.21 34894.80 32795.04 35397.69 35265.06 36997.90 35394.30 32689.98 35197.54 357
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22899.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26799.24 27893.49 34180.73 36898.98 32693.02 26198.18 34594.22 32994.45 32098.64 282
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31795.48 31597.16 33599.80 8193.38 25699.11 30994.16 33091.73 34698.62 292
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33597.38 35293.82 34798.24 35399.48 14591.10 35393.10 35896.66 35974.89 36798.37 34394.03 33187.71 35497.56 356
ppachtmachnet_test97.49 27797.45 24897.61 31098.62 32895.24 32898.80 31999.46 17396.11 30598.22 30699.62 18596.45 15598.97 33193.77 33295.97 29098.61 301
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33197.94 13999.27 16698.62 33991.75 29699.86 12893.73 33398.19 21798.96 223
test_method91.10 32891.36 33190.31 34895.85 36273.72 37694.89 36599.25 27668.39 36895.82 34999.02 32180.50 36598.95 33393.64 33494.89 31598.25 333
DeepMVS_CXcopyleft93.34 34299.29 22282.27 36899.22 28085.15 36096.33 34499.05 31790.97 31299.73 19293.57 33597.77 23198.01 343
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25799.33 24893.80 33780.09 36999.03 31988.31 34197.86 35493.49 33694.36 32298.62 292
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28299.14 29296.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33197.93 14099.26 17198.62 33991.75 29699.83 15193.22 33898.18 21898.37 328
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.37 328
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.96 223
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32199.23 24298.75 32899.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23798.74 33197.68 16799.09 20898.32 34891.66 30299.81 16292.88 34298.22 21398.03 342
KD-MVS_2432*160094.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
miper_refine_blended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35899.25 27691.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 30096.19 29897.15 32199.11 26395.89 31399.32 21399.52 9194.47 33398.34 30199.07 31487.54 35097.07 36192.61 34695.72 29698.47 315
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27493.52 34096.98 33999.52 22088.52 33999.20 29792.58 34797.50 24697.93 350
new-patchmatchnet94.48 32294.08 32295.67 33995.08 36692.41 35899.18 25199.28 27294.55 33293.49 35797.37 35687.86 34897.01 36291.57 34888.36 35397.61 354
N_pmnet94.95 31895.83 30692.31 34498.47 33779.33 37199.12 26192.81 37793.87 33697.68 32499.13 30993.87 24999.01 32191.38 34996.19 28298.59 305
Anonymous2024052196.20 30495.89 30597.13 32397.72 34994.96 33599.79 2499.29 27093.01 34597.20 33499.03 31989.69 32798.36 34491.16 35096.13 28398.07 339
LCM-MVSNet86.80 33185.22 33591.53 34687.81 37380.96 36998.23 35598.99 30671.05 36690.13 36296.51 36048.45 37596.88 36390.51 35185.30 35796.76 359
new_pmnet96.38 30196.03 30197.41 31698.13 34495.16 33299.05 27699.20 28493.94 33597.39 32998.79 33391.61 30499.04 31590.43 35295.77 29398.05 341
KD-MVS_self_test95.00 31694.34 32196.96 32797.07 36095.39 32699.56 10599.44 19495.11 32097.13 33697.32 35791.86 29497.27 36090.35 35381.23 36398.23 335
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35299.10 29594.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
pmmvs394.09 32593.25 32896.60 33494.76 36794.49 34098.92 30798.18 35089.66 35596.48 34398.06 35186.28 35297.33 35989.68 35587.20 35597.97 348
EGC-MVSNET82.80 33377.86 33997.62 30997.91 34596.12 30899.33 21299.28 2728.40 37625.05 37799.27 29384.11 35899.33 27389.20 35698.22 21397.42 358
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33697.38 35293.17 35599.06 27498.75 32886.58 35994.84 35498.26 34981.53 36499.32 27589.01 35797.87 22996.76 359
CL-MVSNet_self_test94.49 32193.97 32496.08 33796.16 36193.67 35298.33 35099.38 22295.13 31897.33 33098.15 35092.69 27596.57 36488.67 35879.87 36497.99 346
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25399.07 30092.13 34899.52 10997.31 35894.54 22998.98 32488.54 35998.73 19399.03 214
MIMVSNet195.51 31195.04 31596.92 32997.38 35295.60 31799.52 12399.50 12493.65 33996.97 34099.17 30485.28 35696.56 36588.36 36095.55 30098.60 304
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23999.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36199.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 32990.15 33293.51 34198.73 31690.12 36493.98 36699.45 18579.32 36492.28 35994.91 36269.61 36897.98 35187.42 36295.67 29792.45 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 30695.96 30396.63 33397.44 35195.45 32499.51 12799.38 22296.55 26996.16 34699.25 29693.76 25396.17 36687.35 36394.22 32498.27 331
Anonymous2023120696.22 30296.03 30196.79 33297.31 35594.14 34599.63 6499.08 29896.17 29897.04 33899.06 31693.94 24797.76 35686.96 36495.06 31098.47 315
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24799.52 9188.72 35899.56 9997.38 35594.08 24499.95 4686.87 36598.58 19799.14 197
PMMVS286.87 33085.37 33491.35 34790.21 37183.80 36698.89 31097.45 36083.13 36391.67 36195.03 36148.49 37494.70 36885.86 36677.62 36595.54 362
FPMVS84.93 33285.65 33382.75 35386.77 37463.39 37898.35 34798.92 31474.11 36583.39 36598.98 32650.85 37392.40 37084.54 36794.97 31292.46 364
PMVScopyleft70.75 2275.98 33974.97 34079.01 35570.98 37855.18 37993.37 36798.21 34865.08 37261.78 37393.83 36421.74 38092.53 36978.59 36891.12 34889.34 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 33774.86 34184.62 35175.88 37777.61 37297.63 36293.15 37688.81 35764.27 37289.29 36936.51 37683.93 37475.89 36952.31 37192.33 366
MVEpermissive76.82 2176.91 33874.31 34284.70 35085.38 37676.05 37596.88 36493.17 37567.39 36971.28 37189.01 37021.66 38187.69 37171.74 37072.29 36890.35 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 33579.88 33782.81 35290.75 37076.38 37497.69 36195.76 36866.44 37083.52 36492.25 36662.54 37187.16 37268.53 37161.40 36984.89 370
EMVS80.02 33679.22 33882.43 35491.19 36976.40 37397.55 36392.49 37866.36 37183.01 36691.27 36764.63 37085.79 37365.82 37260.65 37085.08 369
wuyk23d40.18 34041.29 34536.84 35686.18 37549.12 38079.73 36922.81 38127.64 37325.46 37628.45 37621.98 37948.89 37555.80 37323.56 37512.51 373
testmvs39.17 34143.78 34325.37 35836.04 38116.84 38298.36 34626.56 38020.06 37438.51 37567.32 37129.64 37815.30 37737.59 37439.90 37343.98 372
test12339.01 34242.50 34428.53 35739.17 38020.91 38198.75 32419.17 38219.83 37538.57 37466.67 37233.16 37715.42 37637.50 37529.66 37449.26 371
test_blank0.13 3460.17 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3781.57 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.64 34332.85 3460.00 3590.00 3820.00 3830.00 37099.51 1040.00 3770.00 37899.56 20596.58 1500.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.27 34511.03 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 37899.01 190.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.30 34411.06 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.58 1980.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
save fliter99.76 5499.59 7399.14 25999.40 21299.00 26
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
GSMVS99.52 156
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 156
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post65.99 37394.65 22499.73 192
patchmatchnet-post98.70 33794.79 21299.74 185
MTMP99.54 11798.88 321
TEST999.67 10699.65 6299.05 27699.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
test_899.67 10699.61 6899.03 28299.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
test_prior499.56 7898.99 292
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
新几何299.01 290
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
原ACMM298.95 304
test22299.75 6499.49 9198.91 30999.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
segment_acmp98.96 28
testdata198.85 31498.32 94
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
plane_prior799.29 22297.03 275
plane_prior699.27 22796.98 27992.71 273
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24998.45 7797.60 236
n20.00 383
nn0.00 383
door-mid98.05 351
test1199.35 237
door97.92 353
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29698.24 10098.66 271
ACMP_Plane99.19 24598.98 29698.24 10098.66 271
HQP4-MVS98.66 27199.64 22498.64 282
HQP3-MVS99.39 21697.58 238
HQP2-MVS92.47 282
NP-MVS99.23 23596.92 28399.40 259
ACMMP++_ref97.19 262
ACMMP++97.43 254
Test By Simon98.75 59