| PGM-MVS | | | 98.86 31 | 99.35 27 | 98.29 34 | 99.77 1 | 99.63 29 | 99.67 5 | 95.63 45 | 98.66 120 | 95.27 53 | 99.11 28 | 99.82 42 | 99.67 4 | 99.33 24 | 99.19 21 | 99.73 59 | 99.74 75 |
|
| SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 9 | 99.76 2 | 99.62 33 | 99.39 29 | 98.23 18 | 99.52 16 | 98.03 17 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 8 | 99.30 11 | 99.68 96 | 99.76 63 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CSCG | | | 98.90 30 | 98.93 53 | 98.85 24 | 99.75 3 | 99.72 12 | 99.49 21 | 96.58 42 | 99.38 25 | 98.05 16 | 98.97 37 | 97.87 77 | 99.49 18 | 97.78 127 | 98.92 41 | 99.78 34 | 99.90 7 |
|
| APDe-MVS |  | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 11 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 6 | 99.57 7 | 99.97 8 | 99.53 15 | 99.65 2 | 99.25 15 | 99.84 12 | 99.77 58 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 99.05 25 | 99.45 14 | 98.58 30 | 99.73 5 | 99.60 43 | 99.64 8 | 98.28 13 | 99.23 45 | 94.57 66 | 99.35 16 | 99.97 8 | 99.55 13 | 99.63 3 | 98.66 58 | 99.70 85 | 99.74 75 |
|
| DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 6 | 99.76 6 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 39 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 29 | 99.74 51 | 99.79 45 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DVP-MVS++ | | | 99.41 4 | 99.64 1 | 99.14 7 | 99.69 7 | 99.75 9 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 13 | 99.66 4 | 99.99 1 | 99.33 30 | 99.62 5 | 98.86 46 | 99.74 51 | 99.90 7 |
|
| SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 7 | 99.76 6 | 99.62 14 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 37 | 99.61 6 | 98.83 51 | 99.70 85 | 99.77 58 |
|
| HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 13 | 99.69 7 | 99.59 45 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 26 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 22 | 99.24 17 | 99.71 77 | 99.76 63 |
|
| HPM-MVS++ |  | | 99.10 21 | 99.30 30 | 98.86 23 | 99.69 7 | 99.48 64 | 99.59 16 | 98.34 4 | 99.26 42 | 96.55 36 | 99.10 30 | 99.96 12 | 99.36 28 | 99.25 27 | 98.37 76 | 99.64 117 | 99.66 108 |
|
| APD-MVS |  | | 99.25 12 | 99.38 22 | 99.09 11 | 99.69 7 | 99.58 48 | 99.56 17 | 98.32 8 | 98.85 97 | 97.87 19 | 98.91 42 | 99.92 28 | 99.30 35 | 99.45 15 | 99.38 8 | 99.79 31 | 99.58 124 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 7 | 99.68 12 | 99.75 9 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 13 | 99.28 18 | 99.98 2 | 99.30 35 | 99.34 23 | 99.05 29 | 99.81 22 | 99.79 45 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SR-MVS | | | | | | 99.67 13 | | | 98.25 14 | | | | 99.94 25 | | | | | |
|
| X-MVS | | | 98.93 29 | 99.37 23 | 98.42 31 | 99.67 13 | 99.62 33 | 99.60 15 | 98.15 23 | 99.08 72 | 93.81 84 | 98.46 64 | 99.95 17 | 99.59 9 | 99.49 13 | 99.21 20 | 99.68 96 | 99.75 71 |
|
| MCST-MVS | | | 99.11 20 | 99.27 32 | 98.93 21 | 99.67 13 | 99.33 91 | 99.51 20 | 98.31 9 | 99.28 38 | 96.57 35 | 99.10 30 | 99.90 33 | 99.71 2 | 99.19 31 | 98.35 77 | 99.82 16 | 99.71 92 |
|
| ACMMPR | | | 99.30 9 | 99.54 7 | 99.03 16 | 99.66 16 | 99.64 26 | 99.68 4 | 98.25 14 | 99.56 11 | 97.12 30 | 99.19 21 | 99.95 17 | 99.72 1 | 99.43 16 | 99.25 15 | 99.72 67 | 99.77 58 |
|
| SteuartSystems-ACMMP | | | 99.20 15 | 99.51 11 | 98.83 26 | 99.66 16 | 99.66 21 | 99.71 3 | 98.12 27 | 99.14 63 | 96.62 33 | 99.16 23 | 99.98 2 | 99.12 49 | 99.63 3 | 99.19 21 | 99.78 34 | 99.83 29 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 99.18 16 | 99.32 28 | 99.03 16 | 99.65 18 | 99.41 77 | 98.87 54 | 98.24 17 | 99.14 63 | 98.73 5 | 99.11 28 | 99.92 28 | 98.92 62 | 99.22 28 | 98.84 50 | 99.76 41 | 99.56 130 |
|
| CNVR-MVS | | | 99.23 14 | 99.28 31 | 99.17 5 | 99.65 18 | 99.34 88 | 99.46 24 | 98.21 19 | 99.28 38 | 98.47 8 | 98.89 44 | 99.94 25 | 99.50 16 | 99.42 17 | 98.61 61 | 99.73 59 | 99.52 136 |
|
| DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 20 | 99.71 15 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 11 | 99.64 5 | 99.98 2 | 99.31 33 | 99.56 9 | 98.96 38 | 99.85 10 | 99.70 94 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MP-MVS |  | | 99.07 23 | 99.36 24 | 98.74 27 | 99.63 20 | 99.57 50 | 99.66 6 | 98.25 14 | 99.00 83 | 95.62 45 | 98.97 37 | 99.94 25 | 99.54 14 | 99.51 12 | 98.79 55 | 99.71 77 | 99.73 79 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| NCCC | | | 99.05 25 | 99.08 41 | 99.02 18 | 99.62 22 | 99.38 79 | 99.43 28 | 98.21 19 | 99.36 30 | 97.66 23 | 97.79 82 | 99.90 33 | 99.45 22 | 99.17 32 | 98.43 71 | 99.77 39 | 99.51 141 |
|
| CP-MVS | | | 99.27 10 | 99.44 17 | 99.08 12 | 99.62 22 | 99.58 48 | 99.53 18 | 98.16 21 | 99.21 50 | 97.79 20 | 99.15 24 | 99.96 12 | 99.59 9 | 99.54 11 | 98.86 46 | 99.78 34 | 99.74 75 |
|
| AdaColmap |  | | 99.06 24 | 98.98 51 | 99.15 6 | 99.60 24 | 99.30 94 | 99.38 30 | 98.16 21 | 99.02 81 | 98.55 7 | 98.71 53 | 99.57 56 | 99.58 12 | 99.09 37 | 97.84 106 | 99.64 117 | 99.36 154 |
|
| CPTT-MVS | | | 99.14 19 | 99.20 36 | 99.06 14 | 99.58 25 | 99.53 55 | 99.45 25 | 97.80 36 | 99.19 53 | 98.32 12 | 98.58 57 | 99.95 17 | 99.60 7 | 99.28 26 | 98.20 88 | 99.64 117 | 99.69 98 |
|
| TPM-MVS | | | | | | 99.57 26 | 98.90 117 | 98.79 58 | | | 96.52 37 | 98.62 56 | 99.91 31 | 97.56 114 | | | 99.44 168 | 99.28 157 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| QAPM | | | 98.62 40 | 99.04 47 | 98.13 38 | 99.57 26 | 99.48 64 | 99.17 38 | 94.78 54 | 99.57 10 | 96.16 39 | 96.73 106 | 99.80 43 | 99.33 30 | 98.79 61 | 99.29 13 | 99.75 46 | 99.64 115 |
|
| 3Dnovator | | 96.92 7 | 98.67 37 | 99.05 44 | 98.23 37 | 99.57 26 | 99.45 68 | 99.11 42 | 94.66 57 | 99.69 3 | 96.80 32 | 96.55 115 | 99.61 53 | 99.40 25 | 98.87 57 | 99.49 3 | 99.85 10 | 99.66 108 |
|
| DeepC-MVS_fast | | 98.34 1 | 99.17 17 | 99.45 14 | 98.85 24 | 99.55 29 | 99.37 82 | 99.64 8 | 98.05 31 | 99.53 14 | 96.58 34 | 98.93 40 | 99.92 28 | 99.49 18 | 99.46 14 | 99.32 10 | 99.80 30 | 99.64 115 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| mPP-MVS | | | | | | 99.53 30 | | | | | | | 99.89 35 | | | | | |
|
| 3Dnovator+ | | 96.92 7 | 98.71 36 | 99.05 44 | 98.32 33 | 99.53 30 | 99.34 88 | 99.06 46 | 94.61 58 | 99.65 5 | 97.49 24 | 96.75 105 | 99.86 38 | 99.44 23 | 98.78 62 | 99.30 11 | 99.81 22 | 99.67 104 |
|
| MSLP-MVS++ | | | 99.15 18 | 99.24 34 | 99.04 15 | 99.52 32 | 99.49 63 | 99.09 44 | 98.07 29 | 99.37 27 | 98.47 8 | 97.79 82 | 99.89 35 | 99.50 16 | 98.93 49 | 99.45 4 | 99.61 125 | 99.76 63 |
|
| OpenMVS |  | 96.23 11 | 97.95 58 | 98.45 67 | 97.35 55 | 99.52 32 | 99.42 75 | 98.91 53 | 94.61 58 | 98.87 94 | 92.24 111 | 94.61 143 | 99.05 64 | 99.10 51 | 98.64 73 | 99.05 29 | 99.74 51 | 99.51 141 |
|
| PLC |  | 97.93 2 | 99.02 28 | 98.94 52 | 99.11 10 | 99.46 34 | 99.24 100 | 99.06 46 | 97.96 33 | 99.31 34 | 99.16 1 | 97.90 80 | 99.79 45 | 99.36 28 | 98.71 69 | 98.12 92 | 99.65 113 | 99.52 136 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MVS_111021_HR | | | 98.59 41 | 99.36 24 | 97.68 47 | 99.42 35 | 99.61 38 | 98.14 90 | 94.81 53 | 99.31 34 | 95.00 59 | 99.51 9 | 99.79 45 | 99.00 59 | 98.94 48 | 98.83 51 | 99.69 88 | 99.57 129 |
|
| OMC-MVS | | | 98.84 32 | 99.01 50 | 98.65 29 | 99.39 36 | 99.23 101 | 99.22 35 | 96.70 41 | 99.40 24 | 97.77 21 | 97.89 81 | 99.80 43 | 99.21 38 | 99.02 43 | 98.65 59 | 99.57 147 | 99.07 172 |
|
| TSAR-MVS + ACMM | | | 98.77 33 | 99.45 14 | 97.98 42 | 99.37 37 | 99.46 66 | 99.44 27 | 98.13 26 | 99.65 5 | 92.30 109 | 98.91 42 | 99.95 17 | 99.05 55 | 99.42 17 | 98.95 39 | 99.58 143 | 99.82 30 |
|
| MVS_111021_LR | | | 98.67 37 | 99.41 21 | 97.81 45 | 99.37 37 | 99.53 55 | 98.51 67 | 95.52 47 | 99.27 40 | 94.85 61 | 99.56 8 | 99.69 50 | 99.04 56 | 99.36 20 | 98.88 44 | 99.60 133 | 99.58 124 |
|
| train_agg | | | 98.73 35 | 99.11 39 | 98.28 35 | 99.36 39 | 99.35 86 | 99.48 23 | 97.96 33 | 98.83 102 | 93.86 83 | 98.70 54 | 99.86 38 | 99.44 23 | 99.08 39 | 98.38 74 | 99.61 125 | 99.58 124 |
|
| ACMMP |  | | 98.74 34 | 99.03 48 | 98.40 32 | 99.36 39 | 99.64 26 | 99.20 36 | 97.75 37 | 98.82 104 | 95.24 54 | 98.85 45 | 99.87 37 | 99.17 45 | 98.74 67 | 97.50 119 | 99.71 77 | 99.76 63 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MAR-MVS | | | 97.71 64 | 98.04 85 | 97.32 56 | 99.35 41 | 98.91 116 | 97.65 109 | 91.68 110 | 98.00 150 | 97.01 31 | 97.72 86 | 94.83 113 | 98.85 71 | 98.44 90 | 98.86 46 | 99.41 173 | 99.52 136 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| CDPH-MVS | | | 98.41 45 | 99.10 40 | 97.61 50 | 99.32 42 | 99.36 83 | 99.49 21 | 96.15 44 | 98.82 104 | 91.82 113 | 98.41 65 | 99.66 51 | 99.10 51 | 98.93 49 | 98.97 37 | 99.75 46 | 99.58 124 |
|
| CNLPA | | | 99.03 27 | 99.05 44 | 99.01 19 | 99.27 43 | 99.22 102 | 99.03 48 | 97.98 32 | 99.34 32 | 99.00 4 | 98.25 71 | 99.71 49 | 99.31 33 | 98.80 60 | 98.82 53 | 99.48 162 | 99.17 165 |
|
| MSDG | | | 98.27 50 | 98.29 71 | 98.24 36 | 99.20 44 | 99.22 102 | 99.20 36 | 97.82 35 | 99.37 27 | 94.43 72 | 95.90 126 | 97.31 83 | 99.12 49 | 98.76 64 | 98.35 77 | 99.67 104 | 99.14 169 |
|
| PHI-MVS | | | 99.08 22 | 99.43 19 | 98.67 28 | 99.15 45 | 99.59 45 | 99.11 42 | 97.35 39 | 99.14 63 | 97.30 27 | 99.44 12 | 99.96 12 | 99.32 32 | 98.89 54 | 99.39 7 | 99.79 31 | 99.58 124 |
|
| PatchMatch-RL | | | 97.77 62 | 98.25 73 | 97.21 61 | 99.11 46 | 99.25 98 | 97.06 132 | 94.09 71 | 98.72 118 | 95.14 57 | 98.47 63 | 96.29 94 | 98.43 87 | 98.65 72 | 97.44 125 | 99.45 166 | 98.94 175 |
|
| TAPA-MVS | | 97.53 5 | 98.41 45 | 98.84 57 | 97.91 43 | 99.08 47 | 99.33 91 | 99.15 39 | 97.13 40 | 99.34 32 | 93.20 94 | 97.75 84 | 99.19 60 | 99.20 39 | 98.66 71 | 98.13 91 | 99.66 109 | 99.48 145 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| EPNet | | | 98.05 55 | 98.86 55 | 97.10 63 | 99.02 48 | 99.43 73 | 98.47 70 | 94.73 55 | 99.05 78 | 95.62 45 | 98.93 40 | 97.62 81 | 95.48 169 | 98.59 81 | 98.55 63 | 99.29 182 | 99.84 25 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EPNet_dtu | | | 96.30 113 | 98.53 64 | 93.70 135 | 98.97 49 | 98.24 161 | 97.36 115 | 94.23 70 | 98.85 97 | 79.18 187 | 99.19 21 | 98.47 70 | 94.09 191 | 97.89 122 | 98.21 87 | 98.39 197 | 98.85 181 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| COLMAP_ROB |  | 96.15 12 | 97.78 61 | 98.17 79 | 97.32 56 | 98.84 50 | 99.45 68 | 99.28 33 | 95.43 48 | 99.48 19 | 91.80 114 | 94.83 142 | 98.36 72 | 98.90 65 | 98.09 105 | 97.85 105 | 99.68 96 | 99.15 166 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepPCF-MVS | | 97.74 3 | 98.34 47 | 99.46 13 | 97.04 66 | 98.82 51 | 99.33 91 | 96.28 148 | 97.47 38 | 99.58 9 | 94.70 64 | 98.99 36 | 99.85 40 | 97.24 122 | 99.55 10 | 99.34 9 | 97.73 206 | 99.56 130 |
|
| SD-MVS | | | 99.25 12 | 99.50 12 | 98.96 20 | 98.79 52 | 99.55 53 | 99.33 32 | 98.29 12 | 99.75 1 | 97.96 18 | 99.15 24 | 99.95 17 | 99.61 6 | 99.17 32 | 99.06 28 | 99.81 22 | 99.84 25 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 99.27 10 | 99.57 5 | 98.92 22 | 98.78 53 | 99.53 55 | 99.72 2 | 98.11 28 | 99.73 2 | 97.43 25 | 99.15 24 | 99.96 12 | 99.59 9 | 99.73 1 | 99.07 26 | 99.88 4 | 99.82 30 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 98.31 49 | 98.53 64 | 98.05 39 | 98.76 54 | 98.77 124 | 99.13 40 | 98.07 29 | 99.10 69 | 94.27 77 | 96.70 107 | 99.84 41 | 98.70 74 | 97.90 121 | 98.11 93 | 99.40 175 | 99.28 157 |
|
| PCF-MVS | | 97.50 6 | 98.18 53 | 98.35 70 | 97.99 41 | 98.65 55 | 99.36 83 | 98.94 52 | 98.14 25 | 98.59 122 | 93.62 89 | 96.61 111 | 99.76 48 | 99.03 57 | 97.77 128 | 97.45 124 | 99.57 147 | 98.89 180 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| DeepC-MVS | | 97.63 4 | 98.33 48 | 98.57 62 | 98.04 40 | 98.62 56 | 99.65 22 | 99.45 25 | 98.15 23 | 99.51 17 | 92.80 101 | 95.74 130 | 96.44 92 | 99.46 21 | 99.37 19 | 99.50 2 | 99.78 34 | 99.81 35 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CS-MVS-test | | | 98.58 42 | 99.42 20 | 97.60 51 | 98.52 57 | 99.91 1 | 98.60 64 | 94.60 60 | 99.37 27 | 94.62 65 | 99.40 14 | 99.16 61 | 99.39 26 | 99.36 20 | 98.85 49 | 99.90 3 | 99.92 3 |
|
| CANet | | | 98.46 44 | 99.16 37 | 97.64 49 | 98.48 58 | 99.64 26 | 99.35 31 | 94.71 56 | 99.53 14 | 95.17 55 | 97.63 88 | 99.59 54 | 98.38 88 | 98.88 56 | 98.99 36 | 99.74 51 | 99.86 21 |
|
| LS3D | | | 97.79 60 | 98.25 73 | 97.26 60 | 98.40 59 | 99.63 29 | 99.53 18 | 98.63 1 | 99.25 44 | 88.13 131 | 96.93 102 | 94.14 123 | 99.19 40 | 99.14 35 | 99.23 18 | 99.69 88 | 99.42 149 |
|
| CHOSEN 280x420 | | | 97.99 57 | 99.24 34 | 96.53 85 | 98.34 60 | 99.61 38 | 98.36 79 | 89.80 146 | 99.27 40 | 95.08 58 | 99.81 1 | 98.58 68 | 98.64 78 | 99.02 43 | 98.92 41 | 98.93 191 | 99.48 145 |
|
| DELS-MVS | | | 98.19 52 | 98.77 59 | 97.52 52 | 98.29 61 | 99.71 15 | 99.12 41 | 94.58 62 | 98.80 107 | 95.38 52 | 96.24 120 | 98.24 74 | 97.92 103 | 99.06 40 | 99.52 1 | 99.82 16 | 99.79 45 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CS-MVS | | | 98.56 43 | 99.32 28 | 97.68 47 | 98.28 62 | 99.89 2 | 98.71 61 | 94.53 63 | 99.41 23 | 95.43 49 | 99.05 35 | 98.66 66 | 99.19 40 | 99.21 29 | 99.07 26 | 99.93 1 | 99.94 1 |
|
| RPSCF | | | 97.61 67 | 98.16 80 | 96.96 74 | 98.10 63 | 99.00 109 | 98.84 56 | 93.76 79 | 99.45 20 | 94.78 63 | 99.39 15 | 99.31 58 | 98.53 85 | 96.61 166 | 95.43 175 | 97.74 204 | 97.93 198 |
|
| PVSNet_BlendedMVS | | | 97.51 71 | 97.71 98 | 97.28 58 | 98.06 64 | 99.61 38 | 97.31 117 | 95.02 51 | 99.08 72 | 95.51 47 | 98.05 75 | 90.11 146 | 98.07 98 | 98.91 52 | 98.40 72 | 99.72 67 | 99.78 51 |
|
| PVSNet_Blended | | | 97.51 71 | 97.71 98 | 97.28 58 | 98.06 64 | 99.61 38 | 97.31 117 | 95.02 51 | 99.08 72 | 95.51 47 | 98.05 75 | 90.11 146 | 98.07 98 | 98.91 52 | 98.40 72 | 99.72 67 | 99.78 51 |
|
| MVS_0304 | | | 98.14 54 | 99.03 48 | 97.10 63 | 98.05 66 | 99.63 29 | 99.27 34 | 94.33 68 | 99.63 7 | 93.06 97 | 97.32 92 | 99.05 64 | 98.09 97 | 98.82 59 | 98.87 45 | 99.81 22 | 99.89 12 |
|
| CHOSEN 1792x2688 | | | 96.41 110 | 96.99 126 | 95.74 104 | 98.01 67 | 99.72 12 | 97.70 107 | 90.78 131 | 99.13 67 | 90.03 124 | 87.35 200 | 95.36 106 | 98.33 89 | 98.59 81 | 98.91 43 | 99.59 139 | 99.87 18 |
|
| HyFIR lowres test | | | 95.99 121 | 96.56 136 | 95.32 110 | 97.99 68 | 99.65 22 | 96.54 141 | 88.86 155 | 98.44 131 | 89.77 127 | 84.14 210 | 97.05 87 | 99.03 57 | 98.55 83 | 98.19 89 | 99.73 59 | 99.86 21 |
|
| OPM-MVS | | | 96.22 115 | 95.85 157 | 96.65 80 | 97.75 69 | 98.54 143 | 99.00 51 | 95.53 46 | 96.88 184 | 89.88 125 | 95.95 125 | 86.46 170 | 98.07 98 | 97.65 137 | 96.63 142 | 99.67 104 | 98.83 182 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tmp_tt | | | | | 82.25 212 | 97.73 70 | 88.71 221 | 80.18 221 | 68.65 224 | 99.15 60 | 86.98 140 | 99.47 10 | 85.31 179 | 68.35 222 | 87.51 217 | 83.81 219 | 91.64 221 | |
|
| TSAR-MVS + COLMAP | | | 96.79 96 | 96.55 137 | 97.06 65 | 97.70 71 | 98.46 148 | 99.07 45 | 96.23 43 | 99.38 25 | 91.32 117 | 98.80 46 | 85.61 176 | 98.69 76 | 97.64 138 | 96.92 135 | 99.37 177 | 99.06 173 |
|
| PVSNet_Blended_VisFu | | | 97.41 74 | 98.49 66 | 96.15 94 | 97.49 72 | 99.76 6 | 96.02 152 | 93.75 81 | 99.26 42 | 93.38 93 | 93.73 151 | 99.35 57 | 96.47 144 | 98.96 46 | 98.46 67 | 99.77 39 | 99.90 7 |
|
| MS-PatchMatch | | | 95.99 121 | 97.26 118 | 94.51 119 | 97.46 73 | 98.76 127 | 97.27 119 | 86.97 175 | 99.09 70 | 89.83 126 | 93.51 155 | 97.78 78 | 96.18 150 | 97.53 143 | 95.71 172 | 99.35 178 | 98.41 188 |
|
| XVS | | | | | | 97.42 74 | 99.62 33 | 98.59 65 | | | 93.81 84 | | 99.95 17 | | | | 99.69 88 | |
|
| X-MVStestdata | | | | | | 97.42 74 | 99.62 33 | 98.59 65 | | | 93.81 84 | | 99.95 17 | | | | 99.69 88 | |
|
| LGP-MVS_train | | | 96.23 114 | 96.89 128 | 95.46 109 | 97.32 76 | 98.77 124 | 98.81 57 | 93.60 84 | 98.58 123 | 85.52 149 | 99.08 32 | 86.67 167 | 97.83 110 | 97.87 123 | 97.51 118 | 99.69 88 | 99.73 79 |
|
| CMPMVS |  | 70.31 18 | 90.74 200 | 91.06 208 | 90.36 191 | 97.32 76 | 97.43 197 | 92.97 196 | 87.82 171 | 93.50 215 | 75.34 203 | 83.27 212 | 84.90 182 | 92.19 206 | 92.64 210 | 91.21 214 | 96.50 217 | 94.46 215 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| HQP-MVS | | | 96.37 111 | 96.58 135 | 96.13 95 | 97.31 78 | 98.44 150 | 98.45 71 | 95.22 49 | 98.86 95 | 88.58 129 | 98.33 69 | 87.00 162 | 97.67 112 | 97.23 153 | 96.56 146 | 99.56 150 | 99.62 119 |
|
| ACMM | | 96.26 9 | 96.67 104 | 96.69 133 | 96.66 79 | 97.29 79 | 98.46 148 | 96.48 144 | 95.09 50 | 99.21 50 | 93.19 95 | 98.78 48 | 86.73 166 | 98.17 91 | 97.84 125 | 96.32 153 | 99.74 51 | 99.49 144 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 97.13 86 | 99.14 38 | 94.78 115 | 97.21 80 | 99.38 79 | 97.56 110 | 92.04 103 | 98.48 129 | 88.03 132 | 98.39 67 | 99.91 31 | 94.03 192 | 99.33 24 | 99.23 18 | 99.81 22 | 99.25 161 |
|
| UGNet | | | 97.66 66 | 99.07 43 | 96.01 99 | 97.19 81 | 99.65 22 | 97.09 130 | 93.39 87 | 99.35 31 | 94.40 74 | 98.79 47 | 99.59 54 | 94.24 189 | 98.04 113 | 98.29 84 | 99.73 59 | 99.80 37 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TSAR-MVS + GP. | | | 98.66 39 | 99.36 24 | 97.85 44 | 97.16 82 | 99.46 66 | 99.03 48 | 94.59 61 | 99.09 70 | 97.19 29 | 99.73 3 | 99.95 17 | 99.39 26 | 98.95 47 | 98.69 57 | 99.75 46 | 99.65 111 |
|
| CANet_DTU | | | 96.64 105 | 99.08 41 | 93.81 131 | 97.10 83 | 99.42 75 | 98.85 55 | 90.01 140 | 99.31 34 | 79.98 183 | 99.78 2 | 99.10 63 | 97.42 119 | 98.35 92 | 98.05 96 | 99.47 164 | 99.53 133 |
|
| IB-MVS | | 93.96 15 | 95.02 139 | 96.44 147 | 93.36 145 | 97.05 84 | 99.28 95 | 90.43 206 | 93.39 87 | 98.02 149 | 96.02 40 | 94.92 141 | 92.07 137 | 83.52 215 | 95.38 192 | 95.82 169 | 99.72 67 | 99.59 123 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ACMP | | 96.25 10 | 96.62 107 | 96.72 132 | 96.50 88 | 96.96 85 | 98.75 128 | 97.80 102 | 94.30 69 | 98.85 97 | 93.12 96 | 98.78 48 | 86.61 168 | 97.23 123 | 97.73 131 | 96.61 143 | 99.62 123 | 99.71 92 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test2506 | | | 97.16 84 | 96.68 134 | 97.73 46 | 96.95 86 | 99.79 4 | 98.48 68 | 94.42 65 | 99.17 55 | 97.74 22 | 99.15 24 | 80.93 204 | 98.89 68 | 99.03 41 | 99.09 24 | 99.88 4 | 99.62 119 |
|
| ECVR-MVS |  | | 97.27 79 | 97.09 121 | 97.48 53 | 96.95 86 | 99.79 4 | 98.48 68 | 94.42 65 | 99.17 55 | 96.28 38 | 93.54 153 | 89.39 152 | 98.89 68 | 99.03 41 | 99.09 24 | 99.88 4 | 99.61 122 |
|
| test1111 | | | 97.09 88 | 96.83 131 | 97.39 54 | 96.92 88 | 99.81 3 | 98.44 72 | 94.45 64 | 99.17 55 | 95.85 43 | 92.10 167 | 88.97 153 | 98.78 72 | 99.02 43 | 99.11 23 | 99.88 4 | 99.63 117 |
|
| ACMH | | 95.42 14 | 95.27 136 | 95.96 153 | 94.45 121 | 96.83 89 | 98.78 123 | 94.72 179 | 91.67 111 | 98.95 86 | 86.82 142 | 96.42 117 | 83.67 187 | 97.00 126 | 97.48 145 | 96.68 140 | 99.69 88 | 99.76 63 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CLD-MVS | | | 96.74 99 | 96.51 140 | 97.01 71 | 96.71 90 | 98.62 137 | 98.73 59 | 94.38 67 | 98.94 88 | 94.46 71 | 97.33 91 | 87.03 161 | 98.07 98 | 97.20 155 | 96.87 136 | 99.72 67 | 99.54 132 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TDRefinement | | | 93.04 175 | 93.57 192 | 92.41 154 | 96.58 91 | 98.77 124 | 97.78 104 | 91.96 106 | 98.12 146 | 80.84 176 | 89.13 187 | 79.87 212 | 87.78 211 | 96.44 171 | 94.50 197 | 99.54 156 | 98.15 193 |
|
| Anonymous202405211 | | | | 97.40 110 | | 96.45 92 | 99.54 54 | 98.08 96 | 93.79 78 | 98.24 142 | | 93.55 152 | 94.41 119 | 98.88 70 | 98.04 113 | 98.24 86 | 99.75 46 | 99.76 63 |
|
| DCV-MVSNet | | | 97.56 69 | 98.36 69 | 96.62 84 | 96.44 93 | 98.36 157 | 98.37 77 | 91.73 109 | 99.11 68 | 94.80 62 | 98.36 68 | 96.28 95 | 98.60 81 | 98.12 102 | 98.44 69 | 99.76 41 | 99.87 18 |
|
| ACMH+ | | 95.51 13 | 95.40 132 | 96.00 151 | 94.70 116 | 96.33 94 | 98.79 121 | 96.79 136 | 91.32 121 | 98.77 113 | 87.18 139 | 95.60 135 | 85.46 177 | 96.97 127 | 97.15 156 | 96.59 144 | 99.59 139 | 99.65 111 |
|
| Anonymous20231211 | | | 97.10 87 | 97.06 124 | 97.14 62 | 96.32 95 | 99.52 58 | 98.16 89 | 93.76 79 | 98.84 101 | 95.98 41 | 90.92 173 | 94.58 118 | 98.90 65 | 97.72 132 | 98.10 94 | 99.71 77 | 99.75 71 |
|
| thres100view900 | | | 96.72 100 | 96.47 144 | 97.00 72 | 96.31 96 | 99.52 58 | 98.28 83 | 94.01 72 | 97.35 171 | 94.52 67 | 95.90 126 | 86.93 163 | 99.09 53 | 98.07 108 | 97.87 104 | 99.81 22 | 99.63 117 |
|
| tfpn200view9 | | | 96.75 98 | 96.51 140 | 97.03 67 | 96.31 96 | 99.67 18 | 98.41 74 | 93.99 74 | 97.35 171 | 94.52 67 | 95.90 126 | 86.93 163 | 99.14 48 | 98.26 95 | 97.80 108 | 99.82 16 | 99.70 94 |
|
| thres200 | | | 96.76 97 | 96.53 138 | 97.03 67 | 96.31 96 | 99.67 18 | 98.37 77 | 93.99 74 | 97.68 166 | 94.49 70 | 95.83 129 | 86.77 165 | 99.18 43 | 98.26 95 | 97.82 107 | 99.82 16 | 99.66 108 |
|
| thres600view7 | | | 96.69 102 | 96.43 148 | 97.00 72 | 96.28 99 | 99.67 18 | 98.41 74 | 93.99 74 | 97.85 160 | 94.29 76 | 95.96 124 | 85.91 174 | 99.19 40 | 98.26 95 | 97.63 113 | 99.82 16 | 99.73 79 |
|
| thres400 | | | 96.71 101 | 96.45 146 | 97.02 69 | 96.28 99 | 99.63 29 | 98.41 74 | 94.00 73 | 97.82 161 | 94.42 73 | 95.74 130 | 86.26 171 | 99.18 43 | 98.20 99 | 97.79 109 | 99.81 22 | 99.70 94 |
|
| baseline1 | | | 97.58 68 | 98.05 84 | 97.02 69 | 96.21 101 | 99.45 68 | 97.71 106 | 93.71 83 | 98.47 130 | 95.75 44 | 98.78 48 | 93.20 133 | 98.91 63 | 98.52 85 | 98.44 69 | 99.81 22 | 99.53 133 |
|
| sasdasda | | | 97.31 76 | 97.81 95 | 96.72 76 | 96.20 102 | 99.45 68 | 98.21 86 | 91.60 112 | 99.22 47 | 95.39 50 | 98.48 60 | 90.95 141 | 99.16 46 | 97.66 134 | 99.05 29 | 99.76 41 | 99.90 7 |
|
| canonicalmvs | | | 97.31 76 | 97.81 95 | 96.72 76 | 96.20 102 | 99.45 68 | 98.21 86 | 91.60 112 | 99.22 47 | 95.39 50 | 98.48 60 | 90.95 141 | 99.16 46 | 97.66 134 | 99.05 29 | 99.76 41 | 99.90 7 |
|
| MGCFI-Net | | | 97.26 81 | 97.79 97 | 96.64 82 | 96.17 104 | 99.43 73 | 98.14 90 | 91.52 117 | 99.23 45 | 95.16 56 | 98.48 60 | 90.87 143 | 99.07 54 | 97.59 140 | 99.02 34 | 99.76 41 | 99.91 6 |
|
| IS_MVSNet | | | 97.86 59 | 98.86 55 | 96.68 78 | 96.02 105 | 99.72 12 | 98.35 80 | 93.37 89 | 98.75 117 | 94.01 78 | 96.88 104 | 98.40 71 | 98.48 86 | 99.09 37 | 99.42 5 | 99.83 15 | 99.80 37 |
|
| USDC | | | 94.26 155 | 94.83 167 | 93.59 137 | 96.02 105 | 98.44 150 | 97.84 100 | 88.65 159 | 98.86 95 | 82.73 168 | 94.02 148 | 80.56 205 | 96.76 133 | 97.28 152 | 96.15 160 | 99.55 152 | 98.50 186 |
|
| FC-MVSNet-train | | | 97.04 89 | 97.91 92 | 96.03 98 | 96.00 107 | 98.41 153 | 96.53 143 | 93.42 86 | 99.04 80 | 93.02 98 | 98.03 77 | 94.32 121 | 97.47 118 | 97.93 119 | 97.77 110 | 99.75 46 | 99.88 16 |
|
| Vis-MVSNet (Re-imp) | | | 97.40 75 | 98.89 54 | 95.66 106 | 95.99 108 | 99.62 33 | 97.82 101 | 93.22 93 | 98.82 104 | 91.40 116 | 96.94 101 | 98.56 69 | 95.70 161 | 99.14 35 | 99.41 6 | 99.79 31 | 99.75 71 |
|
| MVSTER | | | 97.16 84 | 97.71 98 | 96.52 86 | 95.97 109 | 98.48 146 | 98.63 63 | 92.10 102 | 98.68 119 | 95.96 42 | 99.23 20 | 91.79 138 | 96.87 130 | 98.76 64 | 97.37 128 | 99.57 147 | 99.68 103 |
|
| baseline | | | 97.45 73 | 98.70 61 | 95.99 100 | 95.89 110 | 99.36 83 | 98.29 82 | 91.37 120 | 99.21 50 | 92.99 99 | 98.40 66 | 96.87 89 | 97.96 102 | 98.60 79 | 98.60 62 | 99.42 172 | 99.86 21 |
|
| TinyColmap | | | 94.00 159 | 94.35 176 | 93.60 136 | 95.89 110 | 98.26 159 | 97.49 112 | 88.82 156 | 98.56 125 | 83.21 162 | 91.28 172 | 80.48 207 | 96.68 136 | 97.34 149 | 96.26 156 | 99.53 158 | 98.24 192 |
|
| FA-MVS(training) | | | 96.52 109 | 98.29 71 | 94.45 121 | 95.88 112 | 99.52 58 | 97.66 108 | 81.47 198 | 98.94 88 | 93.79 87 | 95.54 137 | 99.11 62 | 98.29 90 | 98.89 54 | 96.49 148 | 99.63 122 | 99.52 136 |
|
| EPMVS | | | 95.05 138 | 96.86 130 | 92.94 151 | 95.84 113 | 98.96 114 | 96.68 137 | 79.87 204 | 99.05 78 | 90.15 122 | 97.12 98 | 95.99 101 | 97.49 117 | 95.17 196 | 94.75 194 | 97.59 208 | 96.96 208 |
|
| casdiffmvs_mvg |  | | 97.27 79 | 97.97 90 | 96.46 89 | 95.83 114 | 99.51 61 | 98.42 73 | 93.32 90 | 98.34 136 | 92.38 107 | 95.64 133 | 95.35 107 | 98.91 63 | 98.73 68 | 98.45 68 | 99.86 9 | 99.80 37 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PMMVS | | | 97.52 70 | 98.39 68 | 96.51 87 | 95.82 115 | 98.73 131 | 97.80 102 | 93.05 97 | 98.76 114 | 94.39 75 | 99.07 33 | 97.03 88 | 98.55 83 | 98.31 94 | 97.61 114 | 99.43 170 | 99.21 164 |
|
| diffmvs |  | | 96.83 95 | 97.33 113 | 96.25 92 | 95.76 116 | 99.34 88 | 98.06 97 | 93.22 93 | 99.43 22 | 92.30 109 | 96.90 103 | 89.83 151 | 98.55 83 | 98.00 116 | 98.14 90 | 99.64 117 | 99.70 94 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 97.30 78 | 98.54 63 | 95.87 101 | 95.74 117 | 99.28 95 | 98.19 88 | 91.40 119 | 99.18 54 | 91.59 115 | 98.17 73 | 96.18 97 | 98.63 79 | 98.61 76 | 98.55 63 | 99.66 109 | 99.78 51 |
|
| EIA-MVS | | | 97.70 65 | 98.78 58 | 96.44 90 | 95.72 118 | 99.65 22 | 98.14 90 | 93.72 82 | 98.30 138 | 92.31 108 | 98.63 55 | 97.90 76 | 98.97 60 | 98.92 51 | 98.30 83 | 99.78 34 | 99.80 37 |
|
| casdiffmvs |  | | 96.93 93 | 97.43 109 | 96.34 91 | 95.70 119 | 99.50 62 | 97.75 105 | 93.22 93 | 98.98 85 | 92.64 102 | 94.97 139 | 91.71 139 | 98.93 61 | 98.62 75 | 98.52 66 | 99.82 16 | 99.72 89 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpmrst | | | 93.86 164 | 95.88 155 | 91.50 173 | 95.69 120 | 98.62 137 | 95.64 158 | 79.41 207 | 98.80 107 | 83.76 158 | 95.63 134 | 96.13 98 | 97.25 121 | 92.92 208 | 92.31 207 | 97.27 211 | 96.74 209 |
|
| ADS-MVSNet | | | 94.65 147 | 97.04 125 | 91.88 169 | 95.68 121 | 98.99 111 | 95.89 153 | 79.03 211 | 99.15 60 | 85.81 147 | 96.96 100 | 98.21 75 | 97.10 124 | 94.48 204 | 94.24 198 | 97.74 204 | 97.21 204 |
|
| EPP-MVSNet | | | 97.75 63 | 98.71 60 | 96.63 83 | 95.68 121 | 99.56 51 | 97.51 111 | 93.10 96 | 99.22 47 | 94.99 60 | 97.18 97 | 97.30 84 | 98.65 77 | 98.83 58 | 98.93 40 | 99.84 12 | 99.92 3 |
|
| EC-MVSNet | | | 98.22 51 | 99.44 17 | 96.79 75 | 95.62 123 | 99.56 51 | 99.01 50 | 92.22 100 | 99.17 55 | 94.51 69 | 99.41 13 | 99.62 52 | 99.49 18 | 99.16 34 | 99.26 14 | 99.91 2 | 99.94 1 |
|
| ETV-MVS | | | 98.05 55 | 99.25 33 | 96.65 80 | 95.61 124 | 99.61 38 | 98.26 85 | 93.52 85 | 98.90 93 | 93.74 88 | 99.32 17 | 99.20 59 | 98.90 65 | 99.21 29 | 98.72 56 | 99.87 8 | 99.79 45 |
|
| DI_MVS_plusplus_trai | | | 96.90 94 | 97.49 104 | 96.21 93 | 95.61 124 | 99.40 78 | 98.72 60 | 92.11 101 | 99.14 63 | 92.98 100 | 93.08 163 | 95.14 109 | 98.13 95 | 98.05 112 | 97.91 102 | 99.74 51 | 99.73 79 |
|
| thisisatest0530 | | | 97.23 82 | 98.25 73 | 96.05 96 | 95.60 126 | 99.59 45 | 96.96 134 | 93.23 91 | 99.17 55 | 92.60 104 | 98.75 51 | 96.19 96 | 98.17 91 | 98.19 100 | 96.10 161 | 99.72 67 | 99.77 58 |
|
| tttt0517 | | | 97.23 82 | 98.24 76 | 96.04 97 | 95.60 126 | 99.60 43 | 96.94 135 | 93.23 91 | 99.15 60 | 92.56 105 | 98.74 52 | 96.12 99 | 98.17 91 | 98.21 98 | 96.10 161 | 99.73 59 | 99.78 51 |
|
| SCA | | | 94.95 140 | 97.44 108 | 92.04 161 | 95.55 128 | 99.16 104 | 96.26 149 | 79.30 208 | 99.02 81 | 85.73 148 | 98.18 72 | 97.13 86 | 97.69 111 | 96.03 185 | 94.91 189 | 97.69 207 | 97.65 200 |
|
| dps | | | 94.63 148 | 95.31 163 | 93.84 130 | 95.53 129 | 98.71 132 | 96.54 141 | 80.12 203 | 97.81 163 | 97.21 28 | 96.98 99 | 92.37 134 | 96.34 147 | 92.46 211 | 91.77 211 | 97.26 212 | 97.08 206 |
|
| PatchmatchNet |  | | 94.70 145 | 97.08 123 | 91.92 166 | 95.53 129 | 98.85 119 | 95.77 155 | 79.54 206 | 98.95 86 | 85.98 145 | 98.52 58 | 96.45 90 | 97.39 120 | 95.32 193 | 94.09 199 | 97.32 210 | 97.38 203 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test-LLR | | | 95.50 130 | 97.32 114 | 93.37 144 | 95.49 131 | 98.74 129 | 96.44 146 | 90.82 129 | 98.18 143 | 82.75 166 | 96.60 112 | 94.67 116 | 95.54 167 | 98.09 105 | 96.00 163 | 99.20 185 | 98.93 176 |
|
| test0.0.03 1 | | | 96.69 102 | 98.12 82 | 95.01 113 | 95.49 131 | 98.99 111 | 95.86 154 | 90.82 129 | 98.38 133 | 92.54 106 | 96.66 109 | 97.33 82 | 95.75 159 | 97.75 130 | 98.34 79 | 99.60 133 | 99.40 152 |
|
| CostFormer | | | 94.25 156 | 94.88 166 | 93.51 141 | 95.43 133 | 98.34 158 | 96.21 150 | 80.64 201 | 97.94 155 | 94.01 78 | 98.30 70 | 86.20 173 | 97.52 115 | 92.71 209 | 92.69 205 | 97.23 213 | 98.02 196 |
|
| MDTV_nov1_ep13 | | | 95.57 128 | 97.48 105 | 93.35 146 | 95.43 133 | 98.97 113 | 97.19 125 | 83.72 196 | 98.92 92 | 87.91 134 | 97.75 84 | 96.12 99 | 97.88 107 | 96.84 165 | 95.64 173 | 97.96 202 | 98.10 194 |
|
| tpm cat1 | | | 94.06 157 | 94.90 165 | 93.06 149 | 95.42 135 | 98.52 145 | 96.64 139 | 80.67 200 | 97.82 161 | 92.63 103 | 93.39 157 | 95.00 111 | 96.06 154 | 91.36 215 | 91.58 213 | 96.98 214 | 96.66 211 |
|
| Vis-MVSNet |  | | 96.16 117 | 98.22 77 | 93.75 132 | 95.33 136 | 99.70 17 | 97.27 119 | 90.85 128 | 98.30 138 | 85.51 150 | 95.72 132 | 96.45 90 | 93.69 198 | 98.70 70 | 99.00 35 | 99.84 12 | 99.69 98 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CVMVSNet | | | 95.33 135 | 97.09 121 | 93.27 147 | 95.23 137 | 98.39 155 | 95.49 161 | 92.58 99 | 97.71 165 | 83.00 165 | 94.44 146 | 93.28 131 | 93.92 195 | 97.79 126 | 98.54 65 | 99.41 173 | 99.45 147 |
|
| IterMVS-LS | | | 96.12 118 | 97.48 105 | 94.53 118 | 95.19 138 | 97.56 191 | 97.15 126 | 89.19 153 | 99.08 72 | 88.23 130 | 94.97 139 | 94.73 115 | 97.84 109 | 97.86 124 | 98.26 85 | 99.60 133 | 99.88 16 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+ | | | 95.81 124 | 97.31 117 | 94.06 127 | 95.09 139 | 99.35 86 | 97.24 122 | 88.22 164 | 98.54 126 | 85.38 151 | 98.52 58 | 88.68 154 | 98.70 74 | 98.32 93 | 97.93 99 | 99.74 51 | 99.84 25 |
|
| testgi | | | 95.67 127 | 97.48 105 | 93.56 138 | 95.07 140 | 99.00 109 | 95.33 165 | 88.47 161 | 98.80 107 | 86.90 141 | 97.30 93 | 92.33 135 | 95.97 156 | 97.66 134 | 97.91 102 | 99.60 133 | 99.38 153 |
|
| GeoE | | | 95.98 123 | 97.24 119 | 94.51 119 | 95.02 141 | 99.38 79 | 98.02 98 | 87.86 170 | 98.37 134 | 87.86 135 | 92.99 165 | 93.54 128 | 98.56 82 | 98.61 76 | 97.92 100 | 99.73 59 | 99.85 24 |
|
| RPMNet | | | 94.66 146 | 97.16 120 | 91.75 170 | 94.98 142 | 98.59 140 | 97.00 133 | 78.37 215 | 97.98 151 | 83.78 156 | 96.27 119 | 94.09 126 | 96.91 129 | 97.36 148 | 96.73 138 | 99.48 162 | 99.09 171 |
|
| CR-MVSNet | | | 94.57 152 | 97.34 112 | 91.33 177 | 94.90 143 | 98.59 140 | 97.15 126 | 79.14 209 | 97.98 151 | 80.42 179 | 96.59 114 | 93.50 130 | 96.85 131 | 98.10 103 | 97.49 120 | 99.50 161 | 99.15 166 |
|
| gg-mvs-nofinetune | | | 90.85 199 | 94.14 178 | 87.02 204 | 94.89 144 | 99.25 98 | 98.64 62 | 76.29 219 | 88.24 220 | 57.50 224 | 79.93 216 | 95.45 105 | 95.18 178 | 98.77 63 | 98.07 95 | 99.62 123 | 99.24 162 |
|
| IterMVS-SCA-FT | | | 94.89 142 | 97.87 93 | 91.42 174 | 94.86 145 | 97.70 177 | 97.24 122 | 84.88 190 | 98.93 90 | 75.74 199 | 94.26 147 | 98.25 73 | 96.69 135 | 98.52 85 | 97.68 112 | 99.10 189 | 99.73 79 |
|
| IterMVS | | | 94.81 144 | 97.71 98 | 91.42 174 | 94.83 146 | 97.63 184 | 97.38 114 | 85.08 187 | 98.93 90 | 75.67 200 | 94.02 148 | 97.64 79 | 96.66 138 | 98.45 88 | 97.60 115 | 98.90 192 | 99.72 89 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchT | | | 93.96 161 | 97.36 111 | 90.00 193 | 94.76 147 | 98.65 135 | 90.11 209 | 78.57 214 | 97.96 154 | 80.42 179 | 96.07 122 | 94.10 125 | 96.85 131 | 98.10 103 | 97.49 120 | 99.26 183 | 99.15 166 |
|
| baseline2 | | | 96.36 112 | 97.82 94 | 94.65 117 | 94.60 148 | 99.09 107 | 96.45 145 | 89.63 148 | 98.36 135 | 91.29 118 | 97.60 89 | 94.13 124 | 96.37 145 | 98.45 88 | 97.70 111 | 99.54 156 | 99.41 150 |
|
| CDS-MVSNet | | | 96.59 108 | 98.02 87 | 94.92 114 | 94.45 149 | 98.96 114 | 97.46 113 | 91.75 108 | 97.86 159 | 90.07 123 | 96.02 123 | 97.25 85 | 96.21 148 | 98.04 113 | 98.38 74 | 99.60 133 | 99.65 111 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm | | | 92.38 191 | 94.79 168 | 89.56 197 | 94.30 150 | 97.50 194 | 94.24 191 | 78.97 212 | 97.72 164 | 74.93 204 | 97.97 79 | 82.91 193 | 96.60 140 | 93.65 207 | 94.81 193 | 98.33 198 | 98.98 174 |
|
| Fast-Effi-MVS+ | | | 95.38 133 | 96.52 139 | 94.05 128 | 94.15 151 | 99.14 106 | 97.24 122 | 86.79 176 | 98.53 127 | 87.62 137 | 94.51 144 | 87.06 160 | 98.76 73 | 98.60 79 | 98.04 97 | 99.72 67 | 99.77 58 |
|
| Effi-MVS+-dtu | | | 95.74 126 | 98.04 85 | 93.06 149 | 93.92 152 | 99.16 104 | 97.90 99 | 88.16 166 | 99.07 77 | 82.02 171 | 98.02 78 | 94.32 121 | 96.74 134 | 98.53 84 | 97.56 116 | 99.61 125 | 99.62 119 |
|
| UniMVSNet_ETH3D | | | 93.15 172 | 92.33 205 | 94.11 126 | 93.91 153 | 98.61 139 | 94.81 176 | 90.98 126 | 97.06 180 | 87.51 138 | 82.27 214 | 76.33 220 | 97.87 108 | 94.79 202 | 97.47 123 | 99.56 150 | 99.81 35 |
|
| Fast-Effi-MVS+-dtu | | | 95.38 133 | 98.20 78 | 92.09 160 | 93.91 153 | 98.87 118 | 97.35 116 | 85.01 189 | 99.08 72 | 81.09 175 | 98.10 74 | 96.36 93 | 95.62 164 | 98.43 91 | 97.03 132 | 99.55 152 | 99.50 143 |
|
| TAMVS | | | 95.53 129 | 96.50 142 | 94.39 123 | 93.86 155 | 99.03 108 | 96.67 138 | 89.55 150 | 97.33 173 | 90.64 120 | 93.02 164 | 91.58 140 | 96.21 148 | 97.72 132 | 97.43 126 | 99.43 170 | 99.36 154 |
|
| GBi-Net | | | 96.98 91 | 98.00 88 | 95.78 102 | 93.81 156 | 97.98 166 | 98.09 93 | 91.32 121 | 98.80 107 | 93.92 80 | 97.21 94 | 95.94 102 | 97.89 104 | 98.07 108 | 98.34 79 | 99.68 96 | 99.67 104 |
|
| test1 | | | 96.98 91 | 98.00 88 | 95.78 102 | 93.81 156 | 97.98 166 | 98.09 93 | 91.32 121 | 98.80 107 | 93.92 80 | 97.21 94 | 95.94 102 | 97.89 104 | 98.07 108 | 98.34 79 | 99.68 96 | 99.67 104 |
|
| FMVSNet2 | | | 96.64 105 | 97.50 103 | 95.63 107 | 93.81 156 | 97.98 166 | 98.09 93 | 90.87 127 | 98.99 84 | 93.48 91 | 93.17 160 | 95.25 108 | 97.89 104 | 98.63 74 | 98.80 54 | 99.68 96 | 99.67 104 |
|
| MVS-HIRNet | | | 92.51 185 | 95.97 152 | 88.48 201 | 93.73 159 | 98.37 156 | 90.33 207 | 75.36 221 | 98.32 137 | 77.78 193 | 89.15 186 | 94.87 112 | 95.14 179 | 97.62 139 | 96.39 151 | 98.51 194 | 97.11 205 |
|
| GA-MVS | | | 93.93 162 | 96.31 150 | 91.16 181 | 93.61 160 | 98.79 121 | 95.39 164 | 90.69 134 | 98.25 141 | 73.28 208 | 96.15 121 | 88.42 155 | 94.39 187 | 97.76 129 | 95.35 177 | 99.58 143 | 99.45 147 |
|
| FC-MVSNet-test | | | 96.07 119 | 97.94 91 | 93.89 129 | 93.60 161 | 98.67 134 | 96.62 140 | 90.30 139 | 98.76 114 | 88.62 128 | 95.57 136 | 97.63 80 | 94.48 185 | 97.97 117 | 97.48 122 | 99.71 77 | 99.52 136 |
|
| FMVSNet3 | | | 97.02 90 | 98.12 82 | 95.73 105 | 93.59 162 | 97.98 166 | 98.34 81 | 91.32 121 | 98.80 107 | 93.92 80 | 97.21 94 | 95.94 102 | 97.63 113 | 98.61 76 | 98.62 60 | 99.61 125 | 99.65 111 |
|
| dmvs_re | | | 96.02 120 | 96.49 143 | 95.47 108 | 93.49 163 | 99.26 97 | 97.25 121 | 93.82 77 | 97.51 168 | 90.43 121 | 97.52 90 | 87.93 156 | 98.12 96 | 96.86 163 | 96.59 144 | 99.73 59 | 99.76 63 |
|
| FMVSNet1 | | | 95.77 125 | 96.41 149 | 95.03 112 | 93.42 164 | 97.86 173 | 97.11 129 | 89.89 143 | 98.53 127 | 92.00 112 | 89.17 185 | 93.23 132 | 98.15 94 | 98.07 108 | 98.34 79 | 99.61 125 | 99.69 98 |
|
| tfpnnormal | | | 93.85 165 | 94.12 180 | 93.54 140 | 93.22 165 | 98.24 161 | 95.45 162 | 91.96 106 | 94.61 211 | 83.91 154 | 90.74 175 | 81.75 201 | 97.04 125 | 97.49 144 | 96.16 159 | 99.68 96 | 99.84 25 |
|
| TransMVSNet (Re) | | | 93.45 168 | 94.08 181 | 92.72 153 | 92.83 166 | 97.62 187 | 94.94 170 | 91.54 116 | 95.65 208 | 83.06 164 | 88.93 188 | 83.53 188 | 94.25 188 | 97.41 146 | 97.03 132 | 99.67 104 | 98.40 191 |
|
| LTVRE_ROB | | 93.20 16 | 92.84 177 | 94.92 164 | 90.43 190 | 92.83 166 | 98.63 136 | 97.08 131 | 87.87 169 | 97.91 156 | 68.42 217 | 93.54 153 | 79.46 214 | 96.62 139 | 97.55 142 | 97.40 127 | 99.74 51 | 99.92 3 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TESTMET0.1,1 | | | 94.95 140 | 97.32 114 | 92.20 158 | 92.62 168 | 98.74 129 | 96.44 146 | 86.67 178 | 98.18 143 | 82.75 166 | 96.60 112 | 94.67 116 | 95.54 167 | 98.09 105 | 96.00 163 | 99.20 185 | 98.93 176 |
|
| pm-mvs1 | | | 94.27 154 | 95.57 159 | 92.75 152 | 92.58 169 | 98.13 164 | 94.87 174 | 90.71 133 | 96.70 190 | 83.78 156 | 89.94 181 | 89.85 150 | 94.96 182 | 97.58 141 | 97.07 131 | 99.61 125 | 99.72 89 |
|
| NR-MVSNet | | | 94.01 158 | 94.51 173 | 93.44 142 | 92.56 170 | 97.77 174 | 95.67 156 | 91.57 114 | 97.17 177 | 85.84 146 | 93.13 161 | 80.53 206 | 95.29 175 | 97.01 160 | 96.17 158 | 99.69 88 | 99.75 71 |
|
| EG-PatchMatch MVS | | | 92.45 186 | 93.92 187 | 90.72 187 | 92.56 170 | 98.43 152 | 94.88 173 | 84.54 192 | 97.18 176 | 79.55 185 | 86.12 207 | 83.23 191 | 93.15 202 | 97.22 154 | 96.00 163 | 99.67 104 | 99.27 160 |
|
| pmnet_mix02 | | | 92.44 187 | 94.68 170 | 89.83 196 | 92.46 172 | 97.65 183 | 89.92 211 | 90.49 136 | 98.76 114 | 73.05 210 | 91.78 168 | 90.08 148 | 94.86 183 | 94.53 203 | 91.94 210 | 98.21 200 | 98.01 197 |
|
| test-mter | | | 94.86 143 | 97.32 114 | 92.00 163 | 92.41 173 | 98.82 120 | 96.18 151 | 86.35 182 | 98.05 148 | 82.28 169 | 96.48 116 | 94.39 120 | 95.46 171 | 98.17 101 | 96.20 157 | 99.32 180 | 99.13 170 |
|
| our_test_3 | | | | | | 92.30 174 | 97.58 189 | 90.09 210 | | | | | | | | | | |
|
| pmmvs4 | | | 95.09 137 | 95.90 154 | 94.14 125 | 92.29 175 | 97.70 177 | 95.45 162 | 90.31 137 | 98.60 121 | 90.70 119 | 93.25 158 | 89.90 149 | 96.67 137 | 97.13 157 | 95.42 176 | 99.44 168 | 99.28 157 |
|
| FMVSNet5 | | | 95.42 131 | 96.47 144 | 94.20 124 | 92.26 176 | 95.99 212 | 95.66 157 | 87.15 174 | 97.87 158 | 93.46 92 | 96.68 108 | 93.79 127 | 97.52 115 | 97.10 159 | 97.21 130 | 99.11 188 | 96.62 212 |
|
| UniMVSNet (Re) | | | 94.58 151 | 95.34 161 | 93.71 134 | 92.25 177 | 98.08 165 | 94.97 169 | 91.29 125 | 97.03 182 | 87.94 133 | 93.97 150 | 86.25 172 | 96.07 153 | 96.27 179 | 95.97 166 | 99.72 67 | 99.79 45 |
|
| SixPastTwentyTwo | | | 93.44 169 | 95.32 162 | 91.24 179 | 92.11 178 | 98.40 154 | 92.77 197 | 88.64 160 | 98.09 147 | 77.83 192 | 93.51 155 | 85.74 175 | 96.52 143 | 96.91 162 | 94.89 192 | 99.59 139 | 99.73 79 |
|
| v8 | | | 92.87 176 | 93.87 189 | 91.72 172 | 92.05 179 | 97.50 194 | 94.79 177 | 88.20 165 | 96.85 186 | 80.11 182 | 90.01 180 | 82.86 195 | 95.48 169 | 95.15 197 | 94.90 190 | 99.66 109 | 99.80 37 |
|
| thisisatest0515 | | | 94.61 149 | 96.89 128 | 91.95 165 | 92.00 180 | 98.47 147 | 92.01 201 | 90.73 132 | 98.18 143 | 83.96 153 | 94.51 144 | 95.13 110 | 93.38 199 | 97.38 147 | 94.74 195 | 99.61 125 | 99.79 45 |
|
| WR-MVS_H | | | 93.54 167 | 94.67 171 | 92.22 156 | 91.95 181 | 97.91 171 | 94.58 185 | 88.75 157 | 96.64 191 | 83.88 155 | 90.66 177 | 85.13 180 | 94.40 186 | 96.54 170 | 95.91 168 | 99.73 59 | 99.89 12 |
|
| V42 | | | 93.05 174 | 93.90 188 | 92.04 161 | 91.91 182 | 97.66 181 | 94.91 171 | 89.91 142 | 96.85 186 | 80.58 178 | 89.66 182 | 83.43 190 | 95.37 173 | 95.03 200 | 94.90 190 | 99.59 139 | 99.78 51 |
|
| EU-MVSNet | | | 92.80 179 | 94.76 169 | 90.51 188 | 91.88 183 | 96.74 209 | 92.48 199 | 88.69 158 | 96.21 197 | 79.00 188 | 91.51 169 | 87.82 157 | 91.83 207 | 95.87 189 | 96.27 154 | 99.21 184 | 98.92 179 |
|
| N_pmnet | | | 92.21 195 | 94.60 172 | 89.42 198 | 91.88 183 | 97.38 200 | 89.15 213 | 89.74 147 | 97.89 157 | 73.75 206 | 87.94 197 | 92.23 136 | 93.85 196 | 96.10 183 | 93.20 204 | 98.15 201 | 97.43 202 |
|
| UniMVSNet_NR-MVSNet | | | 94.59 150 | 95.47 160 | 93.55 139 | 91.85 185 | 97.89 172 | 95.03 167 | 92.00 104 | 97.33 173 | 86.12 143 | 93.19 159 | 87.29 159 | 96.60 140 | 96.12 182 | 96.70 139 | 99.72 67 | 99.80 37 |
|
| pmmvs6 | | | 91.90 197 | 92.53 204 | 91.17 180 | 91.81 186 | 97.63 184 | 93.23 194 | 88.37 163 | 93.43 216 | 80.61 177 | 77.32 218 | 87.47 158 | 94.12 190 | 96.58 168 | 95.72 171 | 98.88 193 | 99.53 133 |
|
| v10 | | | 92.79 180 | 94.06 182 | 91.31 178 | 91.78 187 | 97.29 203 | 94.87 174 | 86.10 183 | 96.97 183 | 79.82 184 | 88.16 194 | 84.56 184 | 95.63 163 | 96.33 177 | 95.31 178 | 99.65 113 | 99.80 37 |
|
| MIMVSNet | | | 94.49 153 | 97.59 102 | 90.87 186 | 91.74 188 | 98.70 133 | 94.68 181 | 78.73 213 | 97.98 151 | 83.71 159 | 97.71 87 | 94.81 114 | 96.96 128 | 97.97 117 | 97.92 100 | 99.40 175 | 98.04 195 |
|
| v1144 | | | 92.81 178 | 94.03 183 | 91.40 176 | 91.68 189 | 97.60 188 | 94.73 178 | 88.40 162 | 96.71 189 | 78.48 190 | 88.14 195 | 84.46 185 | 95.45 172 | 96.31 178 | 95.22 181 | 99.65 113 | 99.76 63 |
|
| DU-MVS | | | 93.98 160 | 94.44 175 | 93.44 142 | 91.66 190 | 97.77 174 | 95.03 167 | 91.57 114 | 97.17 177 | 86.12 143 | 93.13 161 | 81.13 203 | 96.60 140 | 95.10 198 | 97.01 134 | 99.67 104 | 99.80 37 |
|
| Baseline_NR-MVSNet | | | 93.87 163 | 93.98 185 | 93.75 132 | 91.66 190 | 97.02 204 | 95.53 160 | 91.52 117 | 97.16 179 | 87.77 136 | 87.93 198 | 83.69 186 | 96.35 146 | 95.10 198 | 97.23 129 | 99.68 96 | 99.73 79 |
|
| CP-MVSNet | | | 93.25 171 | 94.00 184 | 92.38 155 | 91.65 192 | 97.56 191 | 94.38 188 | 89.20 152 | 96.05 202 | 83.16 163 | 89.51 183 | 81.97 199 | 96.16 152 | 96.43 172 | 96.56 146 | 99.71 77 | 99.89 12 |
|
| v148 | | | 92.36 193 | 92.88 200 | 91.75 170 | 91.63 193 | 97.66 181 | 92.64 198 | 90.55 135 | 96.09 200 | 83.34 161 | 88.19 193 | 80.00 209 | 92.74 203 | 93.98 206 | 94.58 196 | 99.58 143 | 99.69 98 |
|
| PS-CasMVS | | | 92.72 182 | 93.36 196 | 91.98 164 | 91.62 194 | 97.52 193 | 94.13 192 | 88.98 154 | 95.94 205 | 81.51 174 | 87.35 200 | 79.95 211 | 95.91 157 | 96.37 174 | 96.49 148 | 99.70 85 | 99.89 12 |
|
| v2v482 | | | 92.77 181 | 93.52 195 | 91.90 168 | 91.59 195 | 97.63 184 | 94.57 186 | 90.31 137 | 96.80 188 | 79.22 186 | 88.74 190 | 81.55 202 | 96.04 155 | 95.26 194 | 94.97 188 | 99.66 109 | 99.69 98 |
|
| v1192 | | | 92.43 189 | 93.61 191 | 91.05 182 | 91.53 196 | 97.43 197 | 94.61 184 | 87.99 168 | 96.60 192 | 76.72 195 | 87.11 202 | 82.74 196 | 95.85 158 | 96.35 176 | 95.30 179 | 99.60 133 | 99.74 75 |
|
| WR-MVS | | | 93.43 170 | 94.48 174 | 92.21 157 | 91.52 197 | 97.69 179 | 94.66 183 | 89.98 141 | 96.86 185 | 83.43 160 | 90.12 179 | 85.03 181 | 93.94 194 | 96.02 186 | 95.82 169 | 99.71 77 | 99.82 30 |
|
| v144192 | | | 92.38 191 | 93.55 194 | 91.00 183 | 91.44 198 | 97.47 196 | 94.27 189 | 87.41 173 | 96.52 194 | 78.03 191 | 87.50 199 | 82.65 197 | 95.32 174 | 95.82 190 | 95.15 183 | 99.55 152 | 99.78 51 |
|
| pmmvs5 | | | 92.71 184 | 94.27 177 | 90.90 185 | 91.42 199 | 97.74 176 | 93.23 194 | 86.66 179 | 95.99 204 | 78.96 189 | 91.45 170 | 83.44 189 | 95.55 166 | 97.30 151 | 95.05 186 | 99.58 143 | 98.93 176 |
|
| v1921920 | | | 92.36 193 | 93.57 192 | 90.94 184 | 91.39 200 | 97.39 199 | 94.70 180 | 87.63 172 | 96.60 192 | 76.63 196 | 86.98 203 | 82.89 194 | 95.75 159 | 96.26 180 | 95.14 184 | 99.55 152 | 99.73 79 |
|
| gm-plane-assit | | | 89.44 206 | 92.82 203 | 85.49 208 | 91.37 201 | 95.34 215 | 79.55 223 | 82.12 197 | 91.68 219 | 64.79 221 | 87.98 196 | 80.26 208 | 95.66 162 | 98.51 87 | 97.56 116 | 99.45 166 | 98.41 188 |
|
| v1240 | | | 91.99 196 | 93.33 197 | 90.44 189 | 91.29 202 | 97.30 202 | 94.25 190 | 86.79 176 | 96.43 195 | 75.49 202 | 86.34 206 | 81.85 200 | 95.29 175 | 96.42 173 | 95.22 181 | 99.52 159 | 99.73 79 |
|
| PEN-MVS | | | 92.72 182 | 93.20 198 | 92.15 159 | 91.29 202 | 97.31 201 | 94.67 182 | 89.81 144 | 96.19 198 | 81.83 172 | 88.58 191 | 79.06 215 | 95.61 165 | 95.21 195 | 96.27 154 | 99.72 67 | 99.82 30 |
|
| TranMVSNet+NR-MVSNet | | | 93.67 166 | 94.14 178 | 93.13 148 | 91.28 204 | 97.58 189 | 95.60 159 | 91.97 105 | 97.06 180 | 84.05 152 | 90.64 178 | 82.22 198 | 96.17 151 | 94.94 201 | 96.78 137 | 99.69 88 | 99.78 51 |
|
| anonymousdsp | | | 93.12 173 | 95.86 156 | 89.93 195 | 91.09 205 | 98.25 160 | 95.12 166 | 85.08 187 | 97.44 170 | 73.30 207 | 90.89 174 | 90.78 144 | 95.25 177 | 97.91 120 | 95.96 167 | 99.71 77 | 99.82 30 |
|
| MDTV_nov1_ep13_2view | | | 92.44 187 | 95.66 158 | 88.68 199 | 91.05 206 | 97.92 170 | 92.17 200 | 79.64 205 | 98.83 102 | 76.20 197 | 91.45 170 | 93.51 129 | 95.04 180 | 95.68 191 | 93.70 202 | 97.96 202 | 98.53 185 |
|
| DTE-MVSNet | | | 92.42 190 | 92.85 201 | 91.91 167 | 90.87 207 | 96.97 205 | 94.53 187 | 89.81 144 | 95.86 207 | 81.59 173 | 88.83 189 | 77.88 218 | 95.01 181 | 94.34 205 | 96.35 152 | 99.64 117 | 99.73 79 |
|
| v7n | | | 91.61 198 | 92.95 199 | 90.04 192 | 90.56 208 | 97.69 179 | 93.74 193 | 85.59 185 | 95.89 206 | 76.95 194 | 86.60 205 | 78.60 217 | 93.76 197 | 97.01 160 | 94.99 187 | 99.65 113 | 99.87 18 |
|
| test20.03 | | | 90.65 202 | 93.71 190 | 87.09 203 | 90.44 209 | 96.24 210 | 89.74 212 | 85.46 186 | 95.59 209 | 72.99 211 | 90.68 176 | 85.33 178 | 84.41 214 | 95.94 188 | 95.10 185 | 99.52 159 | 97.06 207 |
|
| FPMVS | | | 83.82 212 | 84.61 215 | 82.90 211 | 90.39 210 | 90.71 220 | 90.85 205 | 84.10 195 | 95.47 210 | 65.15 219 | 83.44 211 | 74.46 221 | 75.48 217 | 81.63 219 | 79.42 221 | 91.42 222 | 87.14 221 |
|
| Anonymous20231206 | | | 90.70 201 | 93.93 186 | 86.92 205 | 90.21 211 | 96.79 207 | 90.30 208 | 86.61 180 | 96.05 202 | 69.25 215 | 88.46 192 | 84.86 183 | 85.86 213 | 97.11 158 | 96.47 150 | 99.30 181 | 97.80 199 |
|
| new_pmnet | | | 90.45 203 | 92.84 202 | 87.66 202 | 88.96 212 | 96.16 211 | 88.71 214 | 84.66 191 | 97.56 167 | 71.91 214 | 85.60 208 | 86.58 169 | 93.28 200 | 96.07 184 | 93.54 203 | 98.46 195 | 94.39 216 |
|
| WB-MVS | | | 81.36 214 | 89.93 211 | 71.35 217 | 88.65 213 | 87.85 223 | 71.46 225 | 88.12 167 | 96.23 196 | 32.21 229 | 92.61 166 | 83.00 192 | 56.27 224 | 91.92 214 | 89.43 215 | 91.39 223 | 88.49 220 |
|
| ET-MVSNet_ETH3D | | | 96.17 116 | 96.99 126 | 95.21 111 | 88.53 214 | 98.54 143 | 98.28 83 | 92.61 98 | 98.85 97 | 93.60 90 | 99.06 34 | 90.39 145 | 98.63 79 | 95.98 187 | 96.68 140 | 99.61 125 | 99.41 150 |
|
| PM-MVS | | | 89.55 205 | 90.30 210 | 88.67 200 | 87.06 215 | 95.60 213 | 90.88 204 | 84.51 193 | 96.14 199 | 75.75 198 | 86.89 204 | 63.47 226 | 94.64 184 | 96.85 164 | 93.89 200 | 99.17 187 | 99.29 156 |
|
| pmmvs-eth3d | | | 89.81 204 | 89.65 212 | 90.00 193 | 86.94 216 | 95.38 214 | 91.08 202 | 86.39 181 | 94.57 212 | 82.27 170 | 83.03 213 | 64.94 223 | 93.96 193 | 96.57 169 | 93.82 201 | 99.35 178 | 99.24 162 |
|
| new-patchmatchnet | | | 86.12 211 | 87.30 214 | 84.74 209 | 86.92 217 | 95.19 217 | 83.57 220 | 84.42 194 | 92.67 217 | 65.66 218 | 80.32 215 | 64.72 224 | 89.41 209 | 92.33 213 | 89.21 216 | 98.43 196 | 96.69 210 |
|
| pmmvs3 | | | 88.19 208 | 91.27 207 | 84.60 210 | 85.60 218 | 93.66 218 | 85.68 218 | 81.13 199 | 92.36 218 | 63.66 223 | 89.51 183 | 77.10 219 | 93.22 201 | 96.37 174 | 92.40 206 | 98.30 199 | 97.46 201 |
|
| Gipuma |  | | 81.40 213 | 81.78 216 | 80.96 214 | 83.21 219 | 85.61 225 | 79.73 222 | 76.25 220 | 97.33 173 | 64.21 222 | 55.32 222 | 55.55 227 | 86.04 212 | 92.43 212 | 92.20 209 | 96.32 218 | 93.99 217 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MDA-MVSNet-bldmvs | | | 87.84 209 | 89.22 213 | 86.23 206 | 81.74 220 | 96.77 208 | 83.74 219 | 89.57 149 | 94.50 213 | 72.83 212 | 96.64 110 | 64.47 225 | 92.71 204 | 81.43 220 | 92.28 208 | 96.81 215 | 98.47 187 |
|
| MIMVSNet1 | | | 88.61 207 | 90.68 209 | 86.19 207 | 81.56 221 | 95.30 216 | 87.78 215 | 85.98 184 | 94.19 214 | 72.30 213 | 78.84 217 | 78.90 216 | 90.06 208 | 96.59 167 | 95.47 174 | 99.46 165 | 95.49 214 |
|
| PMVS |  | 72.60 17 | 76.39 216 | 77.66 219 | 74.92 215 | 81.04 222 | 69.37 229 | 68.47 226 | 80.54 202 | 85.39 221 | 65.07 220 | 73.52 219 | 72.91 222 | 65.67 223 | 80.35 221 | 76.81 222 | 88.71 224 | 85.25 224 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ambc | | | | 80.99 217 | | 80.04 223 | 90.84 219 | 90.91 203 | | 96.09 200 | 74.18 205 | 62.81 221 | 30.59 232 | 82.44 216 | 96.25 181 | 91.77 211 | 95.91 219 | 98.56 184 |
|
| PMMVS2 | | | 77.26 215 | 79.47 218 | 74.70 216 | 76.00 224 | 88.37 222 | 74.22 224 | 76.34 218 | 78.31 222 | 54.13 225 | 69.96 220 | 52.50 228 | 70.14 221 | 84.83 218 | 88.71 217 | 97.35 209 | 93.58 218 |
|
| test_method | | | 87.27 210 | 91.58 206 | 82.25 212 | 75.65 225 | 87.52 224 | 86.81 217 | 72.60 222 | 97.51 168 | 73.20 209 | 85.07 209 | 79.97 210 | 88.69 210 | 97.31 150 | 95.24 180 | 96.53 216 | 98.41 188 |
|
| EMVS | | | 68.12 219 | 68.11 221 | 68.14 219 | 75.51 226 | 71.76 227 | 55.38 229 | 77.20 217 | 77.78 223 | 37.79 228 | 53.59 223 | 43.61 229 | 74.72 218 | 67.05 224 | 76.70 223 | 88.27 226 | 86.24 222 |
|
| E-PMN | | | 68.30 218 | 68.43 220 | 68.15 218 | 74.70 227 | 71.56 228 | 55.64 228 | 77.24 216 | 77.48 224 | 39.46 227 | 51.95 225 | 41.68 230 | 73.28 219 | 70.65 223 | 79.51 220 | 88.61 225 | 86.20 223 |
|
| MVE |  | 67.97 19 | 65.53 220 | 67.43 222 | 63.31 220 | 59.33 228 | 74.20 226 | 53.09 230 | 70.43 223 | 66.27 225 | 43.13 226 | 45.98 226 | 30.62 231 | 70.65 220 | 79.34 222 | 86.30 218 | 83.25 227 | 89.33 219 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 31.24 221 | 40.15 223 | 20.86 222 | 12.61 229 | 17.99 230 | 25.16 231 | 13.30 225 | 48.42 226 | 24.82 230 | 53.07 224 | 30.13 233 | 28.47 225 | 42.73 225 | 37.65 224 | 20.79 228 | 51.04 225 |
|
| test123 | | | 26.75 222 | 34.25 224 | 18.01 223 | 7.93 230 | 17.18 231 | 24.85 232 | 12.36 226 | 44.83 227 | 16.52 231 | 41.80 227 | 18.10 234 | 28.29 226 | 33.08 226 | 34.79 225 | 18.10 229 | 49.95 226 |
|
| GG-mvs-BLEND | | | 69.11 217 | 98.13 81 | 35.26 221 | 3.49 231 | 98.20 163 | 94.89 172 | 2.38 227 | 98.42 132 | 5.82 232 | 96.37 118 | 98.60 67 | 5.97 227 | 98.75 66 | 97.98 98 | 99.01 190 | 98.61 183 |
|
| uanet_test | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet-low-res | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| sosnet | | | 0.00 223 | 0.00 225 | 0.00 224 | 0.00 232 | 0.00 232 | 0.00 233 | 0.00 228 | 0.00 228 | 0.00 233 | 0.00 228 | 0.00 235 | 0.00 228 | 0.00 227 | 0.00 226 | 0.00 230 | 0.00 227 |
|
| RE-MVS-def | | | | | | | | | | | 69.05 216 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.79 45 | | | | | |
|
| MTAPA | | | | | | | | | | | 98.09 15 | | 99.97 8 | | | | | |
|
| MTMP | | | | | | | | | | | 98.46 10 | | 99.96 12 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 66.86 227 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 98.57 124 | | | | | | | | |
|
| Patchmtry | | | | | | | 98.59 140 | 97.15 126 | 79.14 209 | | 80.42 179 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 96.85 206 | 87.43 216 | 89.27 151 | 98.30 138 | 75.55 201 | 95.05 138 | 79.47 213 | 92.62 205 | 89.48 216 | | 95.18 220 | 95.96 213 |
|