This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36898.30 18499.80 9799.81 61
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27198.24 18699.80 9799.79 74
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 198
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25699.28 6399.84 7799.63 140
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 22099.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18899.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17399.71 6899.80 10399.12 1399.97 2198.33 18099.87 5499.83 49
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30599.33 25799.00 4399.82 3599.81 9099.06 1699.84 15399.09 8099.42 14799.65 129
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27999.13 7697.23 28698.81 251
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33299.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 242
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
segment_acmp98.96 24
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17899.71 6899.80 10398.95 2799.93 8498.19 18999.84 7799.74 92
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31899.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 241
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14099.70 15898.87 3799.94 6997.76 22999.64 13199.72 103
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7699.72 9199.40 21599.51 11597.53 21199.64 9399.78 12198.84 4199.91 10597.63 24199.82 90
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21296.60 29499.60 10699.55 22698.83 4299.90 11697.48 25799.83 8699.78 80
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40798.81 4499.94 6998.79 12399.86 6299.84 40
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24599.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24799.77 5199.82 7698.78 4899.94 6997.56 25099.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27299.51 11591.90 37999.30 17699.63 19898.78 4899.64 24288.09 38999.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 11199.65 5799.05 31099.41 21296.22 32098.95 24699.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 31099.41 21296.28 31498.95 24699.49 24798.76 5299.91 10597.63 24199.72 11899.75 88
test_899.67 11199.61 6799.03 31599.41 21296.28 31498.93 25099.48 25298.76 5299.91 105
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19296.98 28999.78 10498.07 361
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31099.42 14399.68 17498.75 5599.80 18497.98 20899.72 11899.44 191
Test By Simon98.75 55
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19399.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18599.63 13399.80 70
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5498.70 6399.81 17899.02 8799.91 3199.81 61
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17199.77 10799.79 74
test_prior298.96 33398.34 10899.01 23699.52 23898.68 6497.96 20999.74 115
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30797.93 16299.42 14399.55 22698.67 6699.80 18495.80 32599.68 12699.61 144
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18598.67 6699.91 10597.70 23899.69 12399.71 112
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18799.65 2399.78 10499.41 195
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17199.80 9799.79 74
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11499.54 23198.58 7299.96 3096.93 29499.75 112
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25199.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17399.69 1999.85 6999.48 178
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17499.86 6299.81 61
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14398.51 7899.80 18498.83 11899.89 4899.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 11999.73 14998.51 7899.74 20198.91 9999.88 5199.77 82
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35299.36 24096.33 31199.00 24099.12 32698.46 8199.84 15395.23 34099.37 15699.66 125
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19298.43 8399.94 6996.92 29699.66 12899.72 103
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23699.41 14799.59 21298.42 8599.93 8498.19 18999.69 12399.73 97
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 234
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19299.28 18099.28 30498.34 8999.85 14696.96 29199.45 14599.69 115
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25798.70 13298.93 18699.67 122
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 21199.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17099.65 18698.28 9299.69 12399.72 103
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27499.52 10196.85 27599.27 18499.48 25298.25 9399.91 10597.76 22999.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22399.64 2499.82 9099.54 161
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19799.40 15299.44 26198.10 9999.81 17898.94 9499.62 13499.35 204
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38799.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23399.75 11299.48 178
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37799.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27998.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30599.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28799.80 9799.85 36
EI-MVSNet98.67 15698.67 13698.68 24299.35 21997.97 24299.50 16399.38 23196.93 27299.20 20199.83 6897.87 10599.36 28398.38 17497.56 26098.71 269
IterMVS-LS98.46 16798.42 16598.58 25099.59 14898.00 24099.37 22699.43 20796.94 27199.07 22599.59 21297.87 10599.03 33898.32 18295.62 32298.71 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13199.77 12997.82 10799.87 13796.93 29499.90 3999.54 161
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25699.52 10198.07 14899.66 8399.81 9097.79 10899.78 19297.79 22499.81 9399.60 146
LS3D99.27 6799.12 7499.74 6199.18 26399.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 18099.84 7799.52 167
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19799.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
131498.68 15598.54 15999.11 17498.89 31798.65 19499.27 26199.49 14396.89 27397.99 33499.56 22397.72 11199.83 16697.74 23299.27 16098.84 250
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23499.58 11099.76 13597.65 11299.82 17398.87 10599.07 17799.46 186
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25699.91 397.42 22599.67 7899.37 28097.53 11399.88 13298.98 9097.29 28398.42 342
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18697.39 11699.28 29899.03 8599.85 6999.65 129
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 31099.16 30197.86 16899.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17499.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17999.38 15899.81 9097.30 12299.45 26199.35 5198.99 18399.51 173
miper_ehance_all_eth98.18 19298.10 18898.41 27599.23 25097.72 25798.72 36099.31 27196.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26399.63 9699.69 16897.27 12499.96 3097.82 22299.84 7799.81 61
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35699.31 27197.34 23199.21 19899.07 32897.20 12599.82 17398.56 15898.87 19199.52 167
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22399.60 10699.88 3697.14 12699.84 15399.13 7698.94 18599.69 115
mvsmamba98.92 12198.87 11599.08 17599.07 29199.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28999.38 4897.40 27998.73 266
c3_l98.12 19998.04 19798.38 27999.30 23397.69 26198.81 35199.33 25796.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20099.27 6697.90 24499.47 184
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29299.01 23699.40 27297.09 12999.86 14097.68 24099.53 14199.10 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 19498.08 19298.41 27598.96 31197.72 25798.45 37799.32 26796.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29599.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27596.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 302
RRT_MVS98.70 15198.66 13998.83 22598.90 31598.45 21899.89 299.28 28197.76 18398.94 24899.92 1496.98 13499.25 30399.28 6397.00 29298.80 252
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26199.39 22383.53 39498.08 32999.54 23196.97 13599.87 13794.23 35399.16 16599.63 140
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18797.95 21099.45 14599.02 237
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27299.48 15597.23 24299.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 29099.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 31099.07 8396.38 30298.79 253
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 20198.73 12999.38 14998.74 264
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31599.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
FIs98.78 14398.63 14299.23 16299.18 26399.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27999.08 8296.38 30298.78 254
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
nrg03098.64 15998.42 16599.28 15599.05 29799.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27499.34 5594.59 34398.78 254
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37899.71 1398.88 5999.62 10099.76 13596.63 14599.70 22399.46 4499.99 199.66 125
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
eth_miper_zixun_eth98.05 21097.96 20598.33 28299.26 24497.38 26898.56 37399.31 27196.65 28798.88 25799.52 23896.58 14799.12 32897.39 26595.53 32598.47 336
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22396.58 1470.00 4100.00 4090.00 4080.00 406
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 23198.09 19699.13 17099.73 97
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25699.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34199.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20396.45 15398.97 35293.77 35795.97 31498.61 322
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22899.28 18099.68 17496.44 15499.92 9598.37 17698.22 22899.40 197
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31498.98 15099.48 17899.53 9697.76 18398.71 27899.46 25996.43 15599.22 31098.57 15592.87 36798.69 278
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 39099.50 13597.50 21599.38 15899.41 26996.37 15699.81 17899.11 7898.54 21299.51 173
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28499.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25799.77 10799.55 159
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30299.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27498.36 17893.34 36098.66 298
LCM-MVSNet-Re97.83 24598.15 18296.87 35199.30 23392.25 38199.59 10198.26 37397.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18399.64 136
PAPM97.59 28097.09 29999.07 17799.06 29498.26 22798.30 38599.10 30794.88 35398.08 32999.34 29096.27 15999.64 24289.87 38298.92 18899.31 210
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 33099.01 23699.34 29096.20 16199.84 15397.88 21498.82 19699.39 198
EPNet_dtu98.03 21397.96 20598.23 29298.27 36595.54 34099.23 27598.75 35299.02 3897.82 34199.71 15496.11 16299.48 25893.04 36699.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18799.51 3599.14 16999.67 122
D2MVS98.41 17298.50 16198.15 29999.26 24496.62 31299.40 21599.61 4897.71 18998.98 24299.36 28396.04 16499.67 23198.70 13297.41 27898.15 358
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17899.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_lstm_enhance98.00 22097.91 21198.28 29099.34 22397.43 26798.88 34499.36 24096.48 30398.80 26999.55 22695.98 16698.91 35697.27 27195.50 32698.51 332
EPNet98.86 12898.71 13299.30 14897.20 38398.18 23099.62 8898.91 33499.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27999.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16699.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4999.44 20196.61 29299.66 8399.89 3095.92 17199.82 17397.46 26099.10 17499.57 156
pmmvs498.13 19797.90 21298.81 22998.61 35498.87 17298.99 32699.21 29596.44 30699.06 23099.58 21695.90 17399.11 32997.18 28096.11 30898.46 339
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19699.59 10999.75 13895.90 17399.73 20799.53 3299.02 18299.86 33
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 3999.08 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5199.76 87
BH-untuned98.42 17098.36 16898.59 24799.49 18196.70 30799.27 26199.13 30597.24 24198.80 26999.38 27795.75 17899.74 20197.07 28599.16 16599.33 208
test_djsdf98.67 15698.57 15698.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8597.62 25598.75 261
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 24997.95 24698.71 36199.35 24696.50 29998.60 30099.54 23195.72 18099.03 33897.21 27495.77 31798.46 339
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31898.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29599.09 8097.27 28498.71 269
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27199.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
cl____98.01 21897.84 21998.55 25699.25 24897.97 24298.71 36199.34 25096.47 30598.59 30199.54 23195.65 18399.21 31597.21 27495.77 31798.46 339
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29298.33 37297.36 23099.07 22598.94 34495.64 18499.15 32092.95 36798.68 20396.12 392
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
WR-MVS_H98.13 19797.87 21798.90 20699.02 30098.84 17799.70 5299.59 5797.27 23798.40 31199.19 31795.53 18699.23 30798.34 17993.78 35798.61 322
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 27097.91 21299.11 17199.62 142
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30899.77 997.74 18799.50 12699.53 23595.41 18999.84 15397.17 28199.64 13199.44 191
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31996.59 29699.58 11099.59 21295.39 19099.90 11697.78 22599.49 14399.28 212
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
tpmrst98.33 17998.48 16297.90 31499.16 27394.78 35599.31 24499.11 30697.27 23799.45 13499.59 21295.33 19399.84 15398.48 16598.61 20499.09 226
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33398.85 34397.22 24397.23 35499.36 28395.28 19499.46 26095.51 33299.78 10497.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30499.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 203
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 20098.84 19499.00 238
BH-w/o98.00 22097.89 21698.32 28499.35 21996.20 32799.01 32398.90 33696.42 30898.38 31299.00 33795.26 19799.72 21196.06 31898.61 20499.03 235
EU-MVSNet97.98 22298.03 19897.81 32298.72 34296.65 31199.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37897.41 26495.30 32998.78 254
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25599.31 17499.78 12195.23 19999.77 19498.21 18799.03 18099.75 88
MDTV_nov1_ep13_2view95.18 35099.35 23596.84 27699.58 11095.19 20097.82 22299.46 186
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24698.97 32391.73 38098.91 25294.86 39495.10 20199.71 21797.58 24597.98 24199.28 212
NR-MVSNet97.97 22597.61 24599.02 18398.87 32299.26 11599.47 18499.42 20997.63 19997.08 35999.50 24495.07 20299.13 32497.86 21793.59 35898.68 283
tpmvs97.98 22298.02 20097.84 31899.04 29894.73 35699.31 24499.20 29696.10 33498.76 27499.42 26594.94 20399.81 17896.97 29098.45 21698.97 242
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 39099.65 129
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25699.22 29298.94 5499.66 8399.42 26594.93 20499.65 23999.48 4183.80 39299.08 227
v897.95 22797.63 24498.93 19898.95 31298.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20699.30 29696.94 29394.08 35298.66 298
PatchmatchNetpermissive98.31 18098.36 16898.19 29499.16 27395.32 34699.27 26198.92 33097.37 22999.37 16099.58 21694.90 20799.70 22397.43 26399.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15894.89 20899.44 26696.03 31993.89 35598.75 261
sam_mvs194.86 20999.52 167
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27499.30 6197.52 26398.64 302
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15099.41 20799.45 19397.87 16798.71 27899.50 24494.82 21099.22 31098.57 15592.87 36798.68 283
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28798.29 22599.41 20798.85 34395.65 34098.63 29599.67 18094.82 21099.10 33198.07 20392.89 36698.64 302
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
patchmatchnet-post98.70 35794.79 21499.74 201
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37195.10 34995.20 37598.67 35894.78 21597.77 38396.28 31690.02 38199.51 173
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32598.61 8499.35 16798.92 34894.78 21599.77 19499.35 5198.11 23899.54 161
MDTV_nov1_ep1398.32 17299.11 28194.44 36199.27 26198.74 35597.51 21499.40 15299.62 20394.78 21599.76 19897.59 24498.81 198
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15399.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 16898.28 17598.94 19698.50 36098.96 15799.77 3499.50 13597.07 25798.87 26099.77 12994.76 21999.28 29898.66 13997.60 25698.57 328
v1097.85 24097.52 25298.86 21998.99 30598.67 19299.75 4199.41 21295.70 33998.98 24299.41 26994.75 22099.23 30796.01 32194.63 34298.67 290
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29899.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 22199.98 1397.47 25999.76 11099.06 233
sam_mvs94.72 222
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3799.23 29094.87 35492.80 38798.93 34594.71 22391.37 40274.49 40293.80 35696.42 388
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4799.27 28495.05 35093.09 38698.91 34994.70 22491.89 40176.62 40094.02 35496.58 387
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13999.33 25796.26 31798.90 25499.51 24194.68 22599.14 32197.83 22193.15 36498.63 310
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13999.35 24696.27 31699.23 19499.35 28694.67 22699.23 30796.73 30295.16 33298.68 283
V4298.06 20597.79 22198.86 21998.98 30898.84 17799.69 5599.34 25096.53 29899.30 17699.37 28094.67 22699.32 29297.57 24994.66 34198.42 342
test_post65.99 40594.65 22899.73 207
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32798.41 10099.14 21299.60 21094.59 22999.79 18798.48 16593.29 36199.61 144
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11696.63 39596.13 32998.87 26098.61 36194.59 22997.70 38595.08 34298.86 19299.55 159
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
Patchmatch-test97.93 22897.65 24098.77 23499.18 26397.07 28499.03 31599.14 30496.16 32598.74 27599.57 22094.56 23199.72 21193.36 36299.11 17199.52 167
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13698.04 39199.25 28791.24 38298.51 30599.70 15894.55 23399.91 10592.76 37199.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 31096.44 31598.79 23298.99 30598.34 22499.16 28699.07 31392.13 37899.52 12397.31 38794.54 23498.98 34588.54 38798.73 20199.03 235
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
CVMVSNet98.57 16298.67 13698.30 28699.35 21995.59 33799.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 26198.75 12698.56 21099.85 36
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
test-LLR98.06 20597.90 21298.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23899.45 26197.25 27299.38 14999.10 222
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36597.34 23198.05 33398.98 34094.45 23898.98 34595.04 34397.15 29098.89 247
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13499.34 25096.20 32199.32 17299.40 27294.36 24099.26 30296.37 31595.03 33598.70 274
CR-MVSNet98.17 19397.93 21098.87 21599.18 26398.49 21399.22 27999.33 25796.96 26799.56 11499.38 27794.33 24199.00 34394.83 34698.58 20799.14 219
Patchmtry97.75 25997.40 27398.81 22999.10 28498.87 17299.11 30199.33 25794.83 35598.81 26799.38 27794.33 24199.02 34096.10 31795.57 32398.53 330
tpm cat197.39 29697.36 27697.50 33499.17 27193.73 36999.43 19899.31 27191.27 38198.71 27899.08 32794.31 24399.77 19496.41 31498.50 21499.00 238
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7599.49 14397.76 18398.49 30799.60 21094.23 24498.97 35298.00 20792.90 36598.70 274
v2v48298.06 20597.77 22698.92 20098.90 31598.82 18199.57 11699.36 24096.65 28799.19 20499.35 28694.20 24599.25 30397.72 23594.97 33698.69 278
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29599.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 238
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18299.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
test_post199.23 27565.14 40694.18 24899.71 21797.58 245
ADS-MVSNet298.02 21598.07 19597.87 31599.33 22595.19 34999.23 27599.08 31096.24 31899.10 22099.67 18094.11 24998.93 35596.81 29999.05 17899.48 178
ADS-MVSNet98.20 18998.08 19298.56 25499.33 22596.48 31799.23 27599.15 30296.24 31899.10 22099.67 18094.11 24999.71 21796.81 29999.05 17899.48 178
RPMNet96.72 31595.90 32799.19 16599.18 26398.49 21399.22 27999.52 10188.72 39099.56 11497.38 38494.08 25199.95 5986.87 39498.58 20799.14 219
v119297.81 25097.44 26698.91 20498.88 31898.68 19199.51 15699.34 25096.18 32399.20 20199.34 29094.03 25299.36 28395.32 33895.18 33198.69 278
dmvs_testset95.02 33996.12 32191.72 37299.10 28480.43 40099.58 10997.87 38297.47 21695.22 37498.82 35293.99 25395.18 39788.09 38994.91 33999.56 158
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14899.34 25096.15 32799.24 19099.47 25593.98 25499.29 29795.40 33695.13 33398.69 278
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8299.08 31096.17 32497.04 36099.06 33093.94 25597.76 38486.96 39395.06 33498.47 336
WR-MVS98.06 20597.73 23399.06 17898.86 32599.25 11699.19 28299.35 24697.30 23598.66 28799.43 26393.94 25599.21 31598.58 15294.28 34898.71 269
Syy-MVS97.09 30997.14 29596.95 34899.00 30292.73 37999.29 25199.39 22397.06 25997.41 34898.15 37393.92 25798.68 36591.71 37598.34 21899.45 189
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29592.81 40893.87 36597.68 34499.13 32393.87 25899.01 34291.38 37796.19 30698.59 326
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22699.20 20199.73 14993.86 25999.36 28398.87 10597.56 26098.62 313
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34895.54 34199.62 10099.70 15893.82 26099.93 8497.35 26899.46 14499.32 209
CP-MVSNet98.09 20197.78 22499.01 18498.97 31099.24 11799.67 6499.46 18297.25 23998.48 30899.64 19293.79 26199.06 33498.63 14294.10 35198.74 264
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22392.96 37598.41 31098.78 35593.77 26299.27 30198.16 19398.61 20498.86 248
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17899.36 24096.11 33099.27 18499.36 28393.76 26399.24 30694.46 34995.23 33098.70 274
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15699.38 23196.55 29796.16 36899.25 31093.76 26396.17 39487.35 39294.22 34998.27 352
dmvs_re98.08 20398.16 18097.85 31699.55 16094.67 35899.70 5298.92 33098.15 13399.06 23099.35 28693.67 26599.25 30397.77 22897.25 28599.64 136
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27499.30 6197.48 27198.63 310
baseline297.87 23797.55 24898.82 22699.18 26398.02 23999.41 20796.58 39796.97 26696.51 36499.17 31893.43 26799.57 25297.71 23699.03 18098.86 248
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 27998.85 17699.49 17498.91 33495.48 34297.16 35799.80 10393.38 26899.11 32994.16 35591.73 37298.62 313
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31298.27 32099.70 15893.35 26999.44 26695.69 32895.40 32798.27 352
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36398.81 26799.68 17493.23 27099.42 27198.84 11594.42 34698.76 259
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 22098.71 27899.83 6893.23 27099.63 24798.88 10296.32 30498.76 259
jajsoiax98.43 16998.28 17598.88 21198.60 35598.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26699.22 6997.50 26798.77 257
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30199.24 28993.49 37080.73 40098.98 34093.02 27498.18 37394.22 35494.45 34598.64 302
ACMM97.58 598.37 17798.34 17098.48 26299.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21798.74 12797.45 27398.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28599.07 22599.28 30492.93 27698.98 34597.10 28296.65 29598.56 329
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 18092.92 27798.56 36796.88 29892.60 37098.70 274
CLD-MVS98.16 19498.10 18898.33 28299.29 23796.82 30498.75 35799.44 20197.83 17499.13 21399.55 22692.92 27799.67 23198.32 18297.69 25198.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 35197.70 19298.94 24899.65 18692.91 27999.74 20196.52 31099.55 14099.64 136
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30399.23 29093.26 37380.77 39999.04 33292.81 28098.02 37794.30 35094.18 35098.64 302
mvs_tets98.40 17598.23 17798.91 20498.67 34898.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26699.31 5897.48 27198.77 257
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31899.48 15597.22 24398.71 27899.70 15892.75 28199.13 32497.46 26096.00 31098.67 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31899.49 14397.18 24598.71 27899.72 15392.72 28499.14 32197.44 26295.86 31698.67 290
SCA98.19 19098.16 18098.27 29199.30 23395.55 33899.07 30598.97 32397.57 20499.43 14099.57 22092.72 28499.74 20197.58 24599.20 16399.52 167
HQP_MVS98.27 18598.22 17898.44 27299.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22897.78 22597.63 25398.67 290
plane_prior699.27 24296.98 29492.71 286
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 23195.13 34597.33 35298.15 37392.69 28896.57 39288.67 38679.87 39697.99 368
dp97.75 25997.80 22097.59 33199.10 28493.71 37099.32 24198.88 33996.48 30399.08 22499.55 22692.67 28999.82 17396.52 31098.58 20799.24 215
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3299.51 11597.06 25998.29 31999.64 19292.63 29098.89 35898.09 19693.16 36398.72 267
LPG-MVS_test98.22 18698.13 18598.49 26099.33 22597.05 28699.58 10999.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
LGP-MVS_train98.49 26099.33 22597.05 28699.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27399.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23999.35 5194.46 34498.72 267
TR-MVS97.76 25597.41 27298.82 22699.06 29497.87 25098.87 34698.56 36796.63 29198.68 28699.22 31392.49 29499.65 23995.40 33697.79 24898.95 246
pm-mvs197.68 27197.28 28998.88 21199.06 29498.62 19799.50 16399.45 19396.32 31297.87 33999.79 11592.47 29599.35 28697.54 25293.54 35998.67 290
HQP2-MVS92.47 295
HQP-MVS98.02 21597.90 21298.37 28099.19 26096.83 30298.98 32999.39 22398.24 11898.66 28799.40 27292.47 29599.64 24297.19 27897.58 25898.64 302
EPMVS97.82 24897.65 24098.35 28198.88 31895.98 33099.49 17494.71 40397.57 20499.26 18899.48 25292.46 29899.71 21797.87 21699.08 17699.35 204
PS-CasMVS97.93 22897.59 24798.95 19598.99 30599.06 14299.68 6199.52 10197.13 24998.31 31699.68 17492.44 29999.05 33598.51 16394.08 35298.75 261
cl2297.85 24097.64 24398.48 26299.09 28797.87 25098.60 37099.33 25797.11 25498.87 26099.22 31392.38 30099.17 31998.21 18795.99 31198.42 342
CostFormer97.72 26497.73 23397.71 32699.15 27794.02 36699.54 13999.02 31894.67 35899.04 23399.35 28692.35 30199.77 19498.50 16497.94 24399.34 207
OPM-MVS98.19 19098.10 18898.45 26998.88 31897.07 28499.28 25699.38 23198.57 8699.22 19599.81 9092.12 30299.66 23498.08 20097.54 26298.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18099.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30398.91 35698.98 9092.21 37199.41 195
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
AUN-MVS96.88 31296.31 31898.59 24799.48 18997.04 28999.27 26199.22 29297.44 22298.51 30599.41 26991.97 30599.66 23497.71 23683.83 39199.07 232
ACMP97.20 1198.06 20597.94 20998.45 26999.37 21597.01 29199.44 19499.49 14397.54 21098.45 30999.79 11591.95 30699.72 21197.91 21297.49 27098.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36896.03 33599.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12299.44 20195.11 34797.13 35897.32 38691.86 30897.27 38890.35 38181.23 39598.23 356
tpm97.67 27497.55 24898.03 30399.02 30095.01 35299.43 19898.54 36996.44 30699.12 21599.34 29091.83 30999.60 25097.75 23196.46 30099.48 178
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10198.74 35597.93 16299.26 18898.62 35991.75 31099.83 16693.22 36398.18 23398.37 348
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35597.94 16199.27 18498.62 35991.75 31099.86 14093.73 35898.19 23298.96 244
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27799.23 25096.80 30599.70 5299.60 5497.12 25198.18 32699.70 15891.73 31299.72 21198.39 17397.45 27398.68 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 32097.79 17998.78 27299.94 691.68 31399.35 28697.21 27496.99 29398.69 278
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.37 348
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.96 244
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36896.82 39296.95 26999.54 11999.43 26391.66 31699.86 14098.08 20099.51 14299.22 216
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 27098.74 35597.68 19499.09 22398.32 36991.66 31699.81 17892.88 36898.22 22898.03 364
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 31099.20 29693.94 36497.39 35198.79 35491.61 31899.04 33690.43 38095.77 31798.05 363
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26198.90 33696.14 32898.37 31399.53 23591.54 31999.14 32197.51 25495.87 31598.63 310
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 39197.68 19499.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
tpm297.44 29497.34 28197.74 32599.15 27794.36 36399.45 18898.94 32693.45 37298.90 25499.44 26191.35 32299.59 25197.31 26998.07 23999.29 211
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23393.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32399.37 27994.85 34599.85 6999.46 186
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39397.53 21199.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
testgi97.65 27697.50 25598.13 30099.36 21896.45 31899.42 20599.48 15597.76 18397.87 33999.45 26091.09 32598.81 36094.53 34898.52 21399.13 221
ITE_SJBPF98.08 30199.29 23796.37 32098.92 33098.34 10898.83 26599.75 13891.09 32599.62 24895.82 32397.40 27998.25 354
DeepMVS_CXcopyleft93.34 36799.29 23782.27 39599.22 29285.15 39296.33 36699.05 33190.97 32799.73 20793.57 36097.77 24998.01 365
ACMH97.28 898.10 20097.99 20298.44 27299.41 20396.96 29799.60 9599.56 6998.09 14398.15 32799.91 2090.87 32899.70 22398.88 10297.45 27398.67 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111198.04 21198.11 18797.83 31999.74 8093.82 36799.58 10995.40 40099.12 2599.65 8999.93 990.73 32999.84 15399.43 4699.38 14999.82 54
ECVR-MVScopyleft98.04 21198.05 19698.00 30899.74 8094.37 36299.59 10194.98 40199.13 2299.66 8399.93 990.67 33099.84 15399.40 4799.38 14999.80 70
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3498.68 36397.14 24897.90 33799.93 990.45 33199.18 31897.00 28796.43 30198.67 290
MIMVSNet97.73 26297.45 26198.57 25199.45 19697.50 26599.02 31898.98 32296.11 33099.41 14799.14 32290.28 33298.74 36395.74 32698.93 18699.47 184
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 30098.86 26499.29 30290.26 33398.98 34596.44 31296.56 29898.58 327
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36799.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19196.68 31099.56 12299.54 8598.41 10097.79 34399.87 4490.18 33799.66 23498.05 20497.18 28998.62 313
LF4IMVS97.52 28497.46 26097.70 32798.98 30895.55 33899.29 25198.82 34698.07 14898.66 28799.64 19289.97 33899.61 24997.01 28696.68 29497.94 371
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 37199.15 30297.04 26298.90 25499.30 30089.83 33999.38 27496.70 30498.33 22099.62 142
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23294.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 34099.79 18797.69 23981.69 39499.68 119
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3199.29 27993.01 37497.20 35699.03 33389.69 34198.36 37191.16 37896.13 30798.07 361
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28196.33 32299.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20797.73 23397.38 28198.53 330
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22494.09 40491.07 38498.07 33291.04 40089.62 34399.35 28696.75 30199.09 17598.68 283
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19893.68 40597.23 35498.46 36389.30 34499.22 31095.43 33598.22 22897.98 369
USDC97.34 29897.20 29397.75 32499.07 29195.20 34898.51 37599.04 31697.99 15898.31 31699.86 4989.02 34599.55 25595.67 33097.36 28298.49 333
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26797.41 22698.13 32899.30 30088.99 34699.56 25395.68 32999.80 9797.90 374
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27399.19 7193.27 36298.71 269
UWE-MVS97.58 28197.29 28898.48 26299.09 28796.25 32599.01 32396.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20299.28 212
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10388.71 34999.04 33696.69 30596.55 29998.65 300
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29295.89 32294.93 33898.62 313
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22398.58 15297.72 25099.39 198
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17898.75 35296.74 28096.68 36399.88 3688.65 35299.71 21798.37 17682.74 39398.09 360
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31396.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26197.30 27099.38 14999.21 217
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19499.26 28593.52 36996.98 36199.52 23888.52 35499.20 31792.58 37397.50 26797.93 372
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 23099.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28999.33 25793.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26197.25 27299.38 14999.10 222
TinyColmap97.12 30796.89 30697.83 31999.07 29195.52 34198.57 37198.74 35597.58 20397.81 34299.79 11588.16 35899.56 25395.10 34197.21 28798.39 346
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23599.10 30795.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28499.28 28194.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9585.06 41199.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
FMVSNet596.43 32196.19 32097.15 34099.11 28195.89 33299.32 24199.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22699.47 17393.46 37197.41 34899.78 12187.06 36699.33 28996.92 29692.70 36998.65 300
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25596.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5485.77 36996.15 39597.86 21743.89 40495.39 394
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 18085.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testing1197.50 28797.10 29898.71 23999.20 25796.91 29999.29 25198.82 34697.89 16698.21 32498.40 36685.63 37199.83 16698.45 17098.04 24099.37 202
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13999.32 26795.91 33797.99 33499.85 5485.49 37299.88 13291.96 37498.84 19498.12 359
testing9197.44 29497.02 30198.71 23999.18 26396.89 30199.19 28299.04 31697.78 18198.31 31698.29 37085.41 37399.85 14698.01 20697.95 24299.39 198
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7799.96 7
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14899.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
testing9997.36 29796.94 30498.63 24499.18 26396.70 30799.30 24698.93 32797.71 18998.23 32198.26 37184.92 37699.84 15398.04 20597.85 24799.35 204
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37597.10 25599.65 8999.79 11584.79 37799.91 10599.28 6398.38 21799.69 115
ETVMVS97.50 28796.90 30599.29 15199.23 25098.78 18699.32 24198.90 33697.52 21398.56 30298.09 37884.72 37899.69 22897.86 21797.88 24599.39 198
test_fmvs297.25 30297.30 28697.09 34499.43 19893.31 37599.73 4798.87 34198.83 6499.28 18099.80 10384.45 37999.66 23497.88 21497.45 27398.30 350
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 24099.28 2818.40 40825.05 40999.27 30784.11 38099.33 28989.20 38498.22 22897.42 382
FMVSNet196.84 31396.36 31798.29 28799.32 23197.26 27399.43 19899.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
testing397.28 30096.76 30998.82 22699.37 21598.07 23799.45 18899.36 24097.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21099.58 154
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30297.16 27799.29 25199.39 22397.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21899.45 189
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34398.19 12799.67 7899.85 5482.98 38499.92 9599.49 4098.32 22499.60 146
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28698.93 32796.16 32594.08 38199.22 31382.72 38599.47 25995.67 33097.50 26798.17 357
VDDNet97.55 28297.02 30199.16 16899.49 18198.12 23599.38 22499.30 27595.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23799.42 193
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20897.46 26699.51 15699.53 9695.86 33898.54 30499.77 12982.44 38799.66 23498.68 13797.52 26399.50 176
testing22297.16 30596.50 31399.16 16899.16 27398.47 21799.27 26198.66 36497.71 18998.23 32198.15 37382.28 38899.84 15397.36 26797.66 25299.18 218
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30898.75 35286.58 39194.84 37998.26 37181.53 38999.32 29289.01 38597.87 24696.76 385
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28768.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11099.97 4
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17496.74 39498.25 11795.24 37398.10 37774.96 39299.90 11699.53 3298.85 19397.70 377
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7898.25 37498.28 11394.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22698.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
ambc93.06 36992.68 40082.36 39498.47 37698.73 36095.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5598.53 37095.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36696.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 33074.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 32171.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3790.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2160.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS97.16 27795.47 333
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
eth-test20.00 414
eth-test0.00 414
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
save fliter99.76 6599.59 7099.14 29199.40 22099.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
MTGPAbinary99.47 173
MTMP99.54 13998.88 339
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24297.56 250
test9_res97.49 25699.72 11899.75 88
agg_prior297.21 27499.73 11799.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
test_prior499.56 7598.99 326
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16699.74 92
旧先验298.96 33396.70 28399.47 13199.94 6998.19 189
新几何299.01 323
无先验98.99 32699.51 11596.89 27399.93 8497.53 25399.72 103
原ACMM298.95 336
testdata299.95 5996.67 306
testdata198.85 34798.32 111
plane_prior799.29 23797.03 290
plane_prior599.47 17399.69 22897.78 22597.63 25398.67 290
plane_prior499.61 207
plane_prior397.00 29298.69 7999.11 217
plane_prior299.39 21998.97 51
plane_prior199.26 244
plane_prior96.97 29599.21 28198.45 9697.60 256
n20.00 415
nn0.00 415
door-mid98.05 379
test1199.35 246
door97.92 380
HQP5-MVS96.83 302
HQP-NCC99.19 26098.98 32998.24 11898.66 287
ACMP_Plane99.19 26098.98 32998.24 11898.66 287
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24298.64 302
HQP3-MVS99.39 22397.58 258
NP-MVS99.23 25096.92 29899.40 272
ACMMP++_ref97.19 288
ACMMP++97.43 277