This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4299.52 699.05 16599.74 7099.68 4999.46 15099.52 8899.11 799.88 599.91 599.43 197.70 34798.72 10199.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6099.39 21198.91 3899.78 3199.85 2999.36 299.94 5498.84 8399.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7999.51 10198.62 5999.79 2699.83 4299.28 399.97 1198.48 13799.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.64 7799.56 14499.72 4299.60 7399.70 13399.27 499.42 24698.24 15899.80 8499.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7399.48 14099.08 1199.91 199.81 6299.20 599.96 1998.91 6999.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 14099.07 1399.91 199.74 11799.20 599.76 175
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12199.41 17099.71 1398.98 2799.45 11199.78 9599.19 799.54 23099.28 3299.84 6599.63 124
SMA-MVScopyleft99.44 3099.30 4199.85 2599.73 7599.83 1499.56 9899.47 15897.45 18399.78 3199.82 4999.18 899.91 9198.79 9299.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3799.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15499.76 3799.75 11199.13 1099.92 8099.07 5399.92 1199.85 14
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8699.65 3297.84 13999.71 4699.80 7699.12 1199.97 1198.33 15399.87 4099.83 29
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8199.90 2399.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4899.67 2298.15 10399.68 5399.69 14099.06 1399.96 1998.69 10699.87 4099.84 18
#test#99.43 3399.29 4599.86 1899.87 1599.80 2699.55 10799.67 2297.83 14099.68 5399.69 14099.06 1399.96 1998.39 14599.87 4099.84 18
TSAR-MVS + GP.99.36 5099.36 2199.36 12799.67 10198.61 18799.07 26399.33 24399.00 2299.82 2099.81 6299.06 1399.84 13699.09 5199.42 13499.65 113
pcd_1.5k_mvsjas8.27 33811.03 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 36899.01 160.00 3680.00 3660.00 3660.00 364
PS-MVSNAJss98.92 11498.92 9798.90 19098.78 30098.53 19299.78 2299.54 7198.07 11799.00 21599.76 10699.01 1699.37 25399.13 4797.23 25098.81 222
PS-MVSNAJ99.32 5499.32 3199.30 13899.57 14098.94 15598.97 29199.46 16898.92 3799.71 4699.24 28899.01 1699.98 699.35 2299.66 11898.97 212
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7299.45 18099.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9399.49 13699.46 16898.95 3299.83 1799.76 10699.01 1699.93 6999.17 4399.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13699.49 12898.94 3399.83 1799.76 10699.01 1699.94 5499.15 4699.87 4099.80 49
Regformer-499.59 399.54 499.73 5899.76 5299.41 9699.58 8699.49 12899.02 1599.88 599.80 7699.00 2299.94 5499.45 1899.92 1199.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7399.45 18099.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8699.44 18999.01 1899.87 1099.80 7698.97 2499.91 9199.44 2099.92 1199.83 29
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5599.66 2798.13 10599.66 6499.68 14698.96 2599.96 1998.62 11599.87 4099.84 18
segment_acmp98.96 25
CNVR-MVS99.42 3899.30 4199.78 4599.62 12699.71 4499.26 22999.52 8898.82 4499.39 13099.71 12998.96 2599.85 13198.59 12399.80 8499.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6899.14 25199.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
SF-MVS99.38 4799.24 5699.79 4399.79 4299.68 4999.57 9199.54 7197.82 14599.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4899.67 2298.15 10399.67 5999.69 14098.95 2899.96 1998.69 10699.87 4099.84 18
test_241102_TWO99.48 14099.08 1199.88 599.81 6298.94 3199.96 1998.91 6999.84 6599.88 5
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9199.37 22699.10 899.81 2299.80 7698.94 3199.96 1998.93 6699.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 399.62 6699.50 12099.10 899.86 1199.82 4998.94 31
xiu_mvs_v2_base99.26 6399.25 5599.29 14199.53 14798.91 15999.02 27799.45 18098.80 4899.71 4699.26 28698.94 3199.98 699.34 2699.23 14698.98 211
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 8898.07 11799.53 9899.63 17298.93 3599.97 1198.74 9799.91 1699.83 29
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5899.67 2298.08 11699.55 9599.64 16698.91 3699.96 1998.72 10199.90 2399.82 36
MCST-MVS99.43 3399.30 4199.82 3599.79 4299.74 4199.29 21399.40 20798.79 4999.52 10099.62 17898.91 3699.90 10698.64 11399.75 9799.82 36
HPM-MVScopyleft99.42 3899.28 4999.83 3399.90 399.72 4299.81 1299.54 7197.59 16699.68 5399.63 17298.91 3699.94 5498.58 12499.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9299.75 6298.95 15299.51 10197.07 22199.43 11699.70 13398.87 3999.94 5497.76 19899.64 12199.72 87
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6099.54 7198.36 8199.79 2699.82 4998.86 4099.95 4398.62 11599.81 8099.78 61
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19499.46 16899.07 1399.79 2699.82 4998.85 4199.92 8098.68 10899.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6999.72 8099.40 17899.51 10197.53 17699.64 7299.78 9598.84 4299.91 9197.63 21199.82 78
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24999.41 20196.60 25799.60 8399.55 20298.83 4399.90 10697.48 22799.83 7299.78 61
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14799.48 14098.05 12299.76 3799.86 2398.82 4499.93 6998.82 9099.91 1699.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13599.74 11798.81 4599.94 5498.79 9299.86 5199.84 18
X-MVStestdata96.55 29095.45 30599.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13564.01 36698.81 4599.94 5498.79 9299.86 5199.84 18
MP-MVS-pluss99.37 4899.20 6099.88 699.90 399.87 999.30 20999.52 8897.18 20999.60 8399.79 8898.79 4799.95 4398.83 8699.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3099.30 4199.86 1899.88 1199.79 3099.69 3799.48 14098.12 10799.50 10399.75 11198.78 4899.97 1198.57 12699.89 3399.83 29
APD-MVScopyleft99.27 6199.08 7299.84 3299.75 6299.79 3099.50 12699.50 12097.16 21199.77 3399.82 4998.78 4899.94 5497.56 22099.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 24397.34 26398.94 18099.70 9397.53 24499.25 23199.51 10191.90 34099.30 14999.63 17298.78 4899.64 21688.09 35199.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10199.65 5799.05 26899.41 20196.22 28598.95 22199.49 22498.77 5199.91 91
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28499.40 20796.26 28198.87 23499.49 22498.77 5199.91 9197.69 20899.72 10499.75 69
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26899.41 20196.28 27898.95 22199.49 22498.76 5399.91 9197.63 21199.72 10499.75 69
test_899.67 10199.61 6399.03 27499.41 20196.28 27898.93 22599.48 23098.76 5399.91 91
API-MVS99.04 10199.03 7999.06 16399.40 18599.31 10599.55 10799.56 5698.54 6399.33 14599.39 25598.76 5399.78 16896.98 25999.78 8998.07 330
RE-MVS-def99.34 2699.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.75 5698.61 11899.81 8099.77 63
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 22099.57 5096.40 27499.42 11999.68 14698.75 5699.80 16197.98 18099.72 10499.44 169
Test By Simon98.75 56
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6699.69 1898.12 10799.63 7399.84 3898.73 5999.96 1998.55 13299.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19499.51 10198.73 5399.88 599.84 3898.72 6099.96 1998.16 16699.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5299.19 6199.79 4399.61 13099.65 5799.30 20999.48 14098.86 4099.21 17399.63 17298.72 6099.90 10698.25 15799.63 12399.80 49
DeepPCF-MVS98.18 398.81 13199.37 1997.12 31599.60 13491.75 35098.61 32799.44 18999.35 199.83 1799.85 2998.70 6299.81 15699.02 5799.91 1699.81 41
SR-MVS99.43 3399.29 4599.86 1899.75 6299.83 1499.59 7999.62 3398.21 9899.73 4399.79 8898.68 6399.96 1998.44 14399.77 9299.79 53
test_prior399.21 6799.05 7499.68 6599.67 10199.48 8898.96 29299.56 5698.34 8399.01 21099.52 21498.68 6399.83 14597.96 18199.74 10099.74 74
test_prior298.96 29298.34 8399.01 21099.52 21498.68 6397.96 18199.74 100
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32699.10 28797.93 13199.42 11999.55 20298.67 6699.80 16195.80 29499.68 11599.61 128
原ACMM199.65 7299.73 7599.33 10199.47 15897.46 18099.12 18999.66 15898.67 6699.91 9197.70 20799.69 11099.71 94
HPM-MVS++copyleft99.39 4699.23 5899.87 1199.75 6299.84 1399.43 16199.51 10198.68 5799.27 15799.53 21198.64 6899.96 1998.44 14399.80 8499.79 53
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 4899.59 4398.13 10599.82 2099.81 6298.60 6999.96 1998.46 14199.88 3699.79 53
ZD-MVS99.71 8699.79 3099.61 3596.84 23999.56 9199.54 20798.58 7099.96 1996.93 26499.75 97
PHI-MVS99.30 5699.17 6399.70 6499.56 14499.52 8399.58 8699.80 897.12 21599.62 7799.73 12498.58 7099.90 10698.61 11899.91 1699.68 103
test117299.43 3399.29 4599.85 2599.75 6299.82 2099.60 7399.56 5698.28 8999.74 4199.79 8898.53 7299.95 4398.55 13299.78 8999.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.53 7299.95 4398.61 11899.81 8099.77 63
GST-MVS99.40 4599.24 5699.85 2599.86 2199.79 3099.60 7399.67 2297.97 12899.63 7399.68 14698.52 7499.95 4398.38 14799.86 5199.81 41
ETH3D-3000-0.199.21 6799.02 8299.77 4799.73 7599.69 4799.38 18799.51 10197.45 18399.61 7999.75 11198.51 7599.91 9197.45 23299.83 7299.71 94
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29899.85 698.82 4499.65 6999.74 11798.51 7599.80 16198.83 8699.89 3399.64 120
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9098.95 29699.85 698.82 4499.54 9699.73 12498.51 7599.74 17898.91 6999.88 3699.77 63
旧先验199.74 7099.59 6899.54 7199.69 14098.47 7899.68 11599.73 81
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9899.05 26899.66 2799.14 699.57 9099.80 7698.46 7999.94 5499.57 399.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 14898.34 15799.51 10699.40 18599.03 13898.80 31199.36 22796.33 27599.00 21599.12 30398.46 7999.84 13695.23 30799.37 14099.66 109
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19499.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4899.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
新几何199.75 5199.75 6299.59 6899.54 7196.76 24399.29 15299.64 16698.43 8199.94 5496.92 26699.66 11899.72 87
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16899.54 7197.29 19999.41 12399.59 18898.42 8499.93 6998.19 16199.69 11099.73 81
ETV-MVS99.26 6399.21 5999.40 12399.46 17099.30 10699.56 9899.52 8898.52 6599.44 11599.27 28598.41 8599.86 12599.10 5099.59 12699.04 204
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 22099.48 14096.82 24299.25 16499.65 15998.38 8699.93 6997.53 22399.67 11799.73 81
test1299.75 5199.64 11799.61 6399.29 26399.21 17398.38 8699.89 11499.74 10099.74 74
CSCG99.32 5499.32 3199.32 13399.85 2598.29 21099.71 3499.66 2798.11 10999.41 12399.80 7698.37 8899.96 1998.99 5999.96 599.72 87
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9399.39 18299.38 21797.70 15699.28 15499.28 28298.34 8999.85 13196.96 26199.45 13299.69 99
TAMVS99.12 8599.08 7299.24 14999.46 17098.55 19099.51 12099.46 16898.09 11299.45 11199.82 4998.34 8999.51 23198.70 10398.93 17199.67 106
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23499.44 18997.04 22499.39 13099.67 15298.30 9199.92 8097.27 23999.69 11099.64 120
MP-MVScopyleft99.33 5399.15 6499.87 1199.88 1199.82 2099.66 4899.46 16898.09 11299.48 10799.74 11798.29 9299.96 1997.93 18499.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6299.49 8798.91 30199.49 12896.42 27299.34 14499.65 15998.28 9399.69 11099.72 87
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14199.24 23399.52 8896.85 23899.27 15799.48 23098.25 9499.91 9197.76 19899.62 12499.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS99.37 4899.33 2899.51 10699.47 16899.51 8599.81 1299.57 5098.37 8099.65 6999.56 19898.21 9599.77 17099.54 599.77 9299.27 184
MSP-MVS99.42 3899.27 5199.88 699.89 899.80 2699.67 4499.50 12098.70 5599.77 3399.49 22498.21 9599.95 4398.46 14199.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base_debi99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15599.51 10197.29 19999.59 8699.74 11798.15 10099.96 1996.74 27299.69 11099.81 41
EIA-MVS99.18 7199.09 7199.45 11799.49 16099.18 11899.67 4499.53 8297.66 16299.40 12899.44 23998.10 10199.81 15698.94 6499.62 12499.35 177
CNLPA99.14 7798.99 8799.59 8499.58 13899.41 9699.16 24599.44 18998.45 7199.19 17999.49 22498.08 10299.89 11497.73 20299.75 9799.48 159
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6699.59 4392.65 33899.71 4699.78 9598.06 10399.90 10698.84 8399.91 1699.74 74
CDS-MVSNet99.09 9499.03 7999.25 14799.42 17798.73 17699.45 15199.46 16898.11 10999.46 11099.77 10298.01 10499.37 25398.70 10398.92 17399.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 7999.02 8299.45 11799.57 14098.63 18499.07 26399.34 23698.99 2599.61 7999.82 4997.98 10599.87 12297.00 25799.80 8499.85 14
EI-MVSNet98.67 14498.67 12898.68 22399.35 19497.97 22599.50 12699.38 21796.93 23599.20 17699.83 4297.87 10699.36 25798.38 14797.56 23098.71 241
IterMVS-LS98.46 15398.42 15298.58 23099.59 13698.00 22399.37 19099.43 19796.94 23499.07 20199.59 18897.87 10699.03 30898.32 15595.62 28898.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31699.55 6497.25 20399.47 10899.77 10297.82 10899.87 12296.93 26499.90 2399.54 143
OMC-MVS99.08 9699.04 7799.20 15299.67 10198.22 21499.28 21599.52 8898.07 11799.66 6499.81 6297.79 10999.78 16897.79 19599.81 8099.60 130
LS3D99.27 6199.12 6799.74 5699.18 23899.75 3899.56 9899.57 5098.45 7199.49 10699.85 2997.77 11099.94 5498.33 15399.84 6599.52 148
PVSNet_Blended_VisFu99.36 5099.28 4999.61 8299.86 2199.07 13599.47 14799.93 297.66 16299.71 4699.86 2397.73 11199.96 1999.47 1699.82 7899.79 53
131498.68 14398.54 14799.11 16098.89 28498.65 18299.27 22099.49 12896.89 23697.99 30799.56 19897.72 11299.83 14597.74 20199.27 14498.84 221
MVS_Test99.10 9398.97 9199.48 11199.49 16099.14 12699.67 4499.34 23697.31 19799.58 8899.76 10697.65 11399.82 15298.87 7699.07 16199.46 166
PVSNet_BlendedMVS98.86 11998.80 11599.03 16899.76 5298.79 17399.28 21599.91 397.42 18999.67 5999.37 25997.53 11499.88 11998.98 6097.29 24998.42 313
PVSNet_Blended99.08 9698.97 9199.42 12299.76 5298.79 17398.78 31399.91 396.74 24499.67 5999.49 22497.53 11499.88 11998.98 6099.85 5899.60 130
UA-Net99.42 3899.29 4599.80 4099.62 12699.55 7599.50 12699.70 1598.79 4999.77 3399.96 197.45 11699.96 1998.92 6899.90 2399.89 2
ETH3 D test640098.70 14098.35 15699.73 5899.69 9699.60 6599.16 24599.45 18095.42 30799.27 15799.60 18597.39 11799.91 9195.36 30599.83 7299.70 96
MVSFormer99.17 7399.12 6799.29 14199.51 15198.94 15599.88 199.46 16897.55 17199.80 2499.65 15997.39 11799.28 27199.03 5599.85 5899.65 113
lupinMVS99.13 7999.01 8699.46 11699.51 15198.94 15599.05 26899.16 28197.86 13599.80 2499.56 19897.39 11799.86 12598.94 6499.85 5899.58 138
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 17099.50 12097.03 22699.04 20799.88 1597.39 11799.92 8098.66 11199.90 2399.87 10
sss99.17 7399.05 7499.53 9899.62 12698.97 14699.36 19499.62 3397.83 14099.67 5999.65 15997.37 12199.95 4399.19 4099.19 14999.68 103
mvs_anonymous99.03 10398.99 8799.16 15699.38 18998.52 19699.51 12099.38 21797.79 14699.38 13399.81 6297.30 12299.45 23699.35 2298.99 16899.51 154
miper_ehance_all_eth98.18 17798.10 17198.41 25299.23 22597.72 24098.72 31999.31 25496.60 25798.88 23299.29 28097.29 12399.13 29597.60 21395.99 27798.38 318
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9199.59 7999.49 12897.03 22699.63 7399.69 14097.27 12499.96 1997.82 19399.84 6599.81 41
PMMVS98.80 13498.62 13899.34 12899.27 21798.70 17898.76 31599.31 25497.34 19499.21 17399.07 30597.20 12599.82 15298.56 12998.87 17699.52 148
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13699.81 1299.33 24397.43 18799.60 8399.88 1597.14 12699.84 13699.13 4798.94 17099.69 99
cl_fuxian98.12 18598.04 17998.38 25699.30 20897.69 24398.81 31099.33 24396.67 24998.83 24099.34 26897.11 12798.99 31497.58 21595.34 29498.48 304
canonicalmvs99.02 10498.86 10899.51 10699.42 17799.32 10299.80 1799.48 14098.63 5899.31 14798.81 32397.09 12899.75 17799.27 3497.90 21899.47 164
MAR-MVS98.86 11998.63 13399.54 9299.37 19199.66 5499.45 15199.54 7196.61 25599.01 21099.40 25197.09 12899.86 12597.68 21099.53 13099.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 17998.08 17598.41 25298.96 27997.72 24098.45 33699.32 25196.95 23298.97 21999.17 29597.06 13099.22 28197.86 18995.99 27798.29 321
jason99.13 7999.03 7999.45 11799.46 17098.87 16299.12 25399.26 26698.03 12599.79 2699.65 15997.02 13199.85 13199.02 5799.90 2399.65 113
jason: jason.
our_test_397.65 25997.68 21997.55 30598.62 31894.97 32698.84 30799.30 25896.83 24198.19 29899.34 26897.01 13299.02 31095.00 31196.01 27598.64 273
MVS97.28 27896.55 28699.48 11198.78 30098.95 15299.27 22099.39 21183.53 35398.08 30299.54 20796.97 13399.87 12294.23 31999.16 15099.63 124
Fast-Effi-MVS+-dtu98.77 13798.83 11498.60 22699.41 18096.99 27199.52 11699.49 12898.11 10999.24 16599.34 26896.96 13499.79 16497.95 18399.45 13299.02 207
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13999.25 23199.48 14097.23 20699.13 18799.58 19196.93 13599.90 10698.87 7698.78 18299.84 18
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 19099.56 5698.04 12399.53 9899.62 17896.84 13699.94 5498.85 8198.49 19599.72 87
FC-MVSNet-test98.75 13898.62 13899.15 15899.08 26099.45 9299.86 599.60 4098.23 9598.70 25999.82 4996.80 13799.22 28199.07 5396.38 26898.79 224
Effi-MVS+-dtu98.78 13598.89 10298.47 24599.33 19996.91 27799.57 9199.30 25898.47 6899.41 12398.99 31496.78 13899.74 17898.73 9999.38 13698.74 237
mvs-test198.86 11998.84 11098.89 19399.33 19997.77 23799.44 15599.30 25898.47 6899.10 19499.43 24196.78 13899.95 4398.73 9999.02 16698.96 214
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15299.03 27499.47 15896.98 22899.15 18599.23 28996.77 14099.89 11498.83 8698.78 18299.86 11
FIs98.78 13598.63 13399.23 15199.18 23899.54 7799.83 999.59 4398.28 8998.79 24699.81 6296.75 14199.37 25399.08 5296.38 26898.78 225
PVSNet96.02 1798.85 12798.84 11098.89 19399.73 7597.28 25098.32 34399.60 4097.86 13599.50 10399.57 19596.75 14199.86 12598.56 12999.70 10999.54 143
nrg03098.64 14798.42 15299.28 14499.05 26699.69 4799.81 1299.46 16898.04 12399.01 21099.82 4996.69 14399.38 25099.34 2694.59 30898.78 225
CHOSEN 280x42099.12 8599.13 6699.08 16199.66 11097.89 23198.43 33799.71 1398.88 3999.62 7799.76 10696.63 14499.70 20199.46 1799.99 199.66 109
eth_miper_zixun_eth98.05 19597.96 18898.33 25999.26 21997.38 24898.56 33299.31 25496.65 25198.88 23299.52 21496.58 14599.12 29997.39 23695.53 29198.47 306
cdsmvs_eth3d_5k24.64 33632.85 3390.00 3500.00 3710.00 3720.00 36299.51 1010.00 3670.00 36899.56 19896.58 1450.00 3680.00 3660.00 3660.00 364
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2899.20 27698.02 12699.56 9199.86 2396.54 14799.67 20698.09 17099.13 15499.73 81
diffmvs99.14 7799.02 8299.51 10699.61 13098.96 15099.28 21599.49 12898.46 7099.72 4599.71 12996.50 14899.88 11999.31 2999.11 15599.67 106
CANet99.25 6599.14 6599.59 8499.41 18099.16 12199.35 20099.57 5098.82 4499.51 10299.61 18296.46 14999.95 4399.59 199.98 299.65 113
ppachtmachnet_test97.49 27297.45 24397.61 30298.62 31895.24 32098.80 31199.46 16896.11 29698.22 29799.62 17896.45 15098.97 32293.77 32395.97 28098.61 292
HY-MVS97.30 798.85 12798.64 13299.47 11499.42 17799.08 13399.62 6699.36 22797.39 19299.28 15499.68 14696.44 15199.92 8098.37 14998.22 20499.40 174
UniMVSNet_NR-MVSNet98.22 17197.97 18698.96 17798.92 28298.98 14399.48 14299.53 8297.76 14998.71 25399.46 23796.43 15299.22 28198.57 12692.87 33198.69 249
Effi-MVS+98.81 13198.59 14499.48 11199.46 17099.12 13098.08 34999.50 12097.50 17999.38 13399.41 24896.37 15399.81 15699.11 4998.54 19299.51 154
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14499.54 7799.18 24399.70 1598.18 10299.35 14199.63 17296.32 15499.90 10697.48 22799.77 9299.55 141
UniMVSNet (Re)98.29 16898.00 18399.13 15999.00 27299.36 10099.49 13699.51 10197.95 12998.97 21999.13 30096.30 15599.38 25098.36 15193.34 32498.66 269
LCM-MVSNet-Re97.83 22698.15 16796.87 32199.30 20892.25 34999.59 7998.26 33897.43 18796.20 33699.13 30096.27 15698.73 33198.17 16598.99 16899.64 120
PAPM97.59 26297.09 27899.07 16299.06 26398.26 21398.30 34499.10 28794.88 31698.08 30299.34 26896.27 15699.64 21689.87 34598.92 17399.31 181
Fast-Effi-MVS+98.70 14098.43 15199.51 10699.51 15199.28 10899.52 11699.47 15896.11 29699.01 21099.34 26896.20 15899.84 13697.88 18798.82 17999.39 175
EPNet_dtu98.03 19697.96 18898.23 26998.27 33095.54 31399.23 23498.75 32099.02 1597.82 31299.71 12996.11 15999.48 23293.04 33299.65 12099.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3299.48 14098.35 8299.42 11999.84 3896.07 16099.79 16499.51 899.14 15399.67 106
D2MVS98.41 15898.50 14898.15 27499.26 21996.62 28799.40 17899.61 3597.71 15598.98 21799.36 26296.04 16199.67 20698.70 10397.41 24598.15 328
miper_lstm_enhance98.00 20397.91 19498.28 26799.34 19897.43 24798.88 30399.36 22796.48 26798.80 24499.55 20295.98 16298.91 32697.27 23995.50 29298.51 302
EPNet98.86 11998.71 12499.30 13897.20 34698.18 21599.62 6698.91 30999.28 298.63 27099.81 6295.96 16399.99 199.24 3699.72 10499.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11698.72 12299.31 13499.86 2198.48 20299.56 9899.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
TestCases99.31 13499.86 2198.48 20299.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
3Dnovator97.25 999.24 6699.05 7499.81 3899.12 25199.66 5499.84 699.74 1099.09 1098.92 22699.90 795.94 16699.98 698.95 6399.92 1199.79 53
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9899.50 12098.33 8699.41 12399.86 2395.92 16799.83 14599.45 1899.16 15099.70 96
RPSCF98.22 17198.62 13896.99 31699.82 3791.58 35199.72 3299.44 18996.61 25599.66 6499.89 1095.92 16799.82 15297.46 23099.10 15899.57 139
pmmvs498.13 18397.90 19598.81 21198.61 32098.87 16298.99 28499.21 27596.44 27099.06 20599.58 19195.90 16999.11 30097.18 24996.11 27498.46 310
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9999.02 27799.91 397.67 16199.59 8699.75 11195.90 16999.73 18599.53 699.02 16699.86 11
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15599.88 1198.53 19299.34 20399.59 4397.55 17198.70 25999.89 1095.83 17199.90 10698.10 16999.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5699.19 6199.64 7799.82 3799.23 11499.62 6699.55 6498.94 3399.63 7399.95 295.82 17299.94 5499.37 2199.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14498.30 16199.80 4099.20 23399.67 5299.77 2499.72 1194.74 31998.73 25199.90 795.78 17399.98 696.96 26199.88 3699.76 68
BH-untuned98.42 15698.36 15498.59 22799.49 16096.70 28399.27 22099.13 28597.24 20598.80 24499.38 25695.75 17499.74 17897.07 25599.16 15099.33 180
test_djsdf98.67 14498.57 14598.98 17498.70 31198.91 15999.88 199.46 16897.55 17199.22 17099.88 1595.73 17599.28 27199.03 5597.62 22598.75 233
cl-mvsnet198.01 20197.85 20198.48 24199.24 22497.95 22998.71 32099.35 23296.50 26298.60 27599.54 20795.72 17699.03 30897.21 24395.77 28398.46 310
bset_n11_16_dypcd98.16 17997.97 18698.73 21898.26 33198.28 21297.99 35198.01 34497.68 15899.10 19499.63 17295.68 17799.15 29198.78 9596.55 26398.75 233
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24499.68 4999.81 1299.51 10199.20 498.72 25299.89 1095.68 17799.97 1198.86 7999.86 5199.81 41
cl-mvsnet____98.01 20197.84 20298.55 23599.25 22397.97 22598.71 32099.34 23696.47 26998.59 27699.54 20795.65 17999.21 28697.21 24395.77 28398.46 310
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 17099.39 21199.01 1899.74 4199.78 9595.56 18099.92 8099.52 798.18 20899.72 87
WR-MVS_H98.13 18397.87 20098.90 19099.02 27098.84 16699.70 3599.59 4397.27 20198.40 28799.19 29495.53 18199.23 27898.34 15293.78 32098.61 292
CHOSEN 1792x268899.19 6999.10 6999.45 11799.89 898.52 19699.39 18299.94 198.73 5399.11 19199.89 1095.50 18299.94 5499.50 999.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13499.71 8698.88 16199.80 1799.44 18997.91 13399.36 13899.78 9595.49 18399.43 24597.91 18599.11 15599.62 126
PatchMatch-RL98.84 13098.62 13899.52 10499.71 8699.28 10899.06 26699.77 997.74 15399.50 10399.53 21195.41 18499.84 13697.17 25099.64 12199.44 169
RRT_MVS98.60 14998.44 15099.05 16598.88 28599.14 12699.49 13699.38 21797.76 14999.29 15299.86 2395.38 18599.36 25798.81 9197.16 25498.64 273
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
tpmrst98.33 16498.48 14997.90 29099.16 24694.78 33099.31 20799.11 28697.27 20199.45 11199.59 18895.33 18899.84 13698.48 13798.61 18599.09 196
MVP-Stereo97.81 23197.75 21397.99 28497.53 33996.60 28898.96 29298.85 31597.22 20797.23 32399.36 26295.28 18999.46 23595.51 30099.78 8997.92 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11198.87 10499.25 14799.33 19998.42 20799.08 26299.30 25899.16 599.43 11699.75 11195.27 19099.97 1198.56 12999.95 699.36 176
XVG-OURS98.73 13998.68 12798.88 19699.70 9397.73 23998.92 29999.55 6498.52 6599.45 11199.84 3895.27 19099.91 9198.08 17498.84 17899.00 208
BH-w/o98.00 20397.89 19998.32 26199.35 19496.20 30099.01 28298.90 31196.42 27298.38 28899.00 31395.26 19299.72 18996.06 28898.61 18599.03 205
EU-MVSNet97.98 20598.03 18097.81 29698.72 30896.65 28699.66 4899.66 2798.09 11298.35 29199.82 4995.25 19398.01 34097.41 23595.30 29598.78 225
GeoE98.85 12798.62 13899.53 9899.61 13099.08 13399.80 1799.51 10197.10 21999.31 14799.78 9595.23 19499.77 17098.21 15999.03 16499.75 69
MDTV_nov1_ep13_2view95.18 32399.35 20096.84 23999.58 8895.19 19597.82 19399.46 166
JIA-IIPM97.50 26997.02 28098.93 18298.73 30697.80 23699.30 20998.97 30091.73 34198.91 22794.86 35495.10 19699.71 19597.58 21597.98 21699.28 183
NR-MVSNet97.97 20897.61 22699.02 16998.87 28999.26 11199.47 14799.42 19997.63 16497.08 32899.50 22195.07 19799.13 29597.86 18993.59 32298.68 254
tpmvs97.98 20598.02 18297.84 29399.04 26794.73 33199.31 20799.20 27696.10 30098.76 24999.42 24494.94 19899.81 15696.97 26098.45 19698.97 212
hse-mvs397.70 25197.28 26998.97 17699.70 9397.27 25199.36 19499.45 18098.94 3399.66 6499.64 16694.93 19999.99 199.48 1484.36 34899.65 113
hse-mvs297.50 26997.14 27698.59 22799.49 16097.05 26499.28 21599.22 27298.94 3399.66 6499.42 24494.93 19999.65 21399.48 1483.80 35099.08 197
v897.95 20997.63 22598.93 18298.95 28098.81 17299.80 1799.41 20196.03 30199.10 19499.42 24494.92 20199.30 26996.94 26394.08 31798.66 269
PatchmatchNetpermissive98.31 16598.36 15498.19 27199.16 24695.32 31999.27 22098.92 30697.37 19399.37 13599.58 19194.90 20299.70 20197.43 23499.21 14799.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 21897.52 23498.92 18498.76 30498.58 18899.84 699.46 16896.20 28698.91 22799.70 13394.89 20399.44 24196.03 28993.89 31998.75 233
sam_mvs194.86 20499.52 148
DU-MVS98.08 18997.79 20498.96 17798.87 28998.98 14399.41 17099.45 18097.87 13498.71 25399.50 22194.82 20599.22 28198.57 12692.87 33198.68 254
Baseline_NR-MVSNet97.76 23697.45 24398.68 22399.09 25898.29 21099.41 17098.85 31595.65 30598.63 27099.67 15294.82 20599.10 30298.07 17792.89 33098.64 273
patchmatchnet-post98.70 32894.79 20799.74 178
Patchmatch-RL test95.84 30395.81 30195.95 32995.61 35290.57 35298.24 34598.39 33795.10 31395.20 34298.67 32994.78 20897.77 34596.28 28690.02 34099.51 154
alignmvs98.81 13198.56 14699.58 8799.43 17699.42 9599.51 12098.96 30298.61 6099.35 14198.92 32094.78 20899.77 17099.35 2298.11 21499.54 143
MDTV_nov1_ep1398.32 15999.11 25394.44 33399.27 22098.74 32397.51 17899.40 12899.62 17894.78 20899.76 17597.59 21498.81 181
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4299.66 2798.49 6799.86 1199.87 2094.77 21199.84 13699.19 4099.41 13599.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15498.28 16298.94 18098.50 32698.96 15099.77 2499.50 12097.07 22198.87 23499.77 10294.76 21299.28 27198.66 11197.60 22698.57 298
v1097.85 22197.52 23498.86 20398.99 27398.67 18099.75 2899.41 20195.70 30498.98 21799.41 24894.75 21399.23 27896.01 29094.63 30798.67 261
OpenMVScopyleft96.50 1698.47 15298.12 17099.52 10499.04 26799.53 8099.82 1099.72 1194.56 32298.08 30299.88 1594.73 21499.98 697.47 22999.76 9699.06 203
sam_mvs94.72 215
v14897.79 23497.55 23098.50 23898.74 30597.72 24099.54 11099.33 24396.26 28198.90 22999.51 21894.68 21699.14 29297.83 19293.15 32898.63 281
v114497.98 20597.69 21898.85 20698.87 28998.66 18199.54 11099.35 23296.27 28099.23 16999.35 26594.67 21799.23 27896.73 27395.16 29898.68 254
V4298.06 19097.79 20498.86 20398.98 27698.84 16699.69 3799.34 23696.53 26199.30 14999.37 25994.67 21799.32 26697.57 21994.66 30698.42 313
test_post65.99 36494.65 21999.73 185
baseline198.31 16597.95 19099.38 12699.50 15898.74 17599.59 7998.93 30498.41 7599.14 18699.60 18594.59 22099.79 16498.48 13793.29 32599.61 128
DSMNet-mixed97.25 27997.35 26096.95 31997.84 33693.61 34399.57 9196.63 35796.13 29598.87 23498.61 33294.59 22097.70 34795.08 30998.86 17799.55 141
Patchmatch-test97.93 21097.65 22298.77 21699.18 23897.07 26299.03 27499.14 28496.16 29198.74 25099.57 19594.56 22299.72 18993.36 32899.11 15599.52 148
PCF-MVS97.08 1497.66 25897.06 27999.47 11499.61 13099.09 13298.04 35099.25 26891.24 34398.51 27999.70 13394.55 22399.91 9192.76 33699.85 5899.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 28496.44 28898.79 21498.99 27398.34 20999.16 24599.07 29292.13 33999.52 10097.31 34994.54 22498.98 31588.54 34998.73 18499.03 205
CVMVSNet98.57 15098.67 12898.30 26399.35 19495.59 31099.50 12699.55 6498.60 6199.39 13099.83 4294.48 22599.45 23698.75 9698.56 19199.85 14
test-LLR98.06 19097.90 19598.55 23598.79 29797.10 25898.67 32297.75 34797.34 19498.61 27398.85 32194.45 22699.45 23697.25 24199.38 13699.10 192
test0.0.03 197.71 25097.42 25298.56 23398.41 32997.82 23598.78 31398.63 33297.34 19498.05 30698.98 31794.45 22698.98 31595.04 31097.15 25598.89 218
v14419297.92 21397.60 22798.87 20098.83 29598.65 18299.55 10799.34 23696.20 28699.32 14699.40 25194.36 22899.26 27596.37 28595.03 30198.70 245
CR-MVSNet98.17 17897.93 19398.87 20099.18 23898.49 20099.22 23999.33 24396.96 23099.56 9199.38 25694.33 22999.00 31394.83 31398.58 18899.14 189
Patchmtry97.75 24097.40 25498.81 21199.10 25698.87 16299.11 25999.33 24394.83 31798.81 24299.38 25694.33 22999.02 31096.10 28795.57 28998.53 300
tpm cat197.39 27597.36 25897.50 30799.17 24493.73 33999.43 16199.31 25491.27 34298.71 25399.08 30494.31 23199.77 17096.41 28498.50 19499.00 208
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21798.78 30098.62 18599.65 5599.49 12897.76 14998.49 28199.60 18594.23 23298.97 32298.00 17992.90 32998.70 245
v2v48298.06 19097.77 20998.92 18498.90 28398.82 17099.57 9199.36 22796.65 25199.19 17999.35 26594.20 23399.25 27697.72 20494.97 30298.69 249
XVG-OURS-SEG-HR98.69 14298.62 13898.89 19399.71 8697.74 23899.12 25399.54 7198.44 7499.42 11999.71 12994.20 23399.92 8098.54 13498.90 17599.00 208
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15599.54 7197.77 14899.30 14999.81 6294.20 23399.93 6999.17 4398.82 17999.49 158
test_post199.23 23465.14 36594.18 23699.71 19597.58 215
ADS-MVSNet298.02 19898.07 17897.87 29199.33 19995.19 32299.23 23499.08 29096.24 28399.10 19499.67 15294.11 23798.93 32596.81 26999.05 16299.48 159
ADS-MVSNet98.20 17498.08 17598.56 23399.33 19996.48 29199.23 23499.15 28296.24 28399.10 19499.67 15294.11 23799.71 19596.81 26999.05 16299.48 159
RPMNet96.72 28895.90 29899.19 15399.18 23898.49 20099.22 23999.52 8888.72 34999.56 9197.38 34694.08 23999.95 4386.87 35598.58 18899.14 189
v119297.81 23197.44 24898.91 18898.88 28598.68 17999.51 12099.34 23696.18 28899.20 17699.34 26894.03 24099.36 25795.32 30695.18 29798.69 249
v192192097.80 23397.45 24398.84 20798.80 29698.53 19299.52 11699.34 23696.15 29399.24 16599.47 23393.98 24199.29 27095.40 30395.13 29998.69 249
Anonymous2023120696.22 29696.03 29596.79 32397.31 34494.14 33699.63 6099.08 29096.17 28997.04 32999.06 30793.94 24297.76 34686.96 35495.06 30098.47 306
WR-MVS98.06 19097.73 21599.06 16398.86 29299.25 11299.19 24299.35 23297.30 19898.66 26299.43 24193.94 24299.21 28698.58 12494.28 31398.71 241
N_pmnet94.95 31295.83 30092.31 33598.47 32779.33 36099.12 25392.81 36793.87 32797.68 31599.13 30093.87 24499.01 31291.38 34096.19 27298.59 296
MVSTER98.49 15198.32 15999.00 17299.35 19499.02 13999.54 11099.38 21797.41 19099.20 17699.73 12493.86 24599.36 25798.87 7697.56 23098.62 283
CP-MVSNet98.09 18797.78 20799.01 17098.97 27899.24 11399.67 4499.46 16897.25 20398.48 28299.64 16693.79 24699.06 30498.63 11494.10 31698.74 237
cascas97.69 25297.43 25198.48 24198.60 32197.30 24998.18 34899.39 21192.96 33798.41 28698.78 32693.77 24799.27 27498.16 16698.61 18598.86 219
v124097.69 25297.32 26698.79 21498.85 29398.43 20599.48 14299.36 22796.11 29699.27 15799.36 26293.76 24899.24 27794.46 31695.23 29698.70 245
test20.0396.12 30095.96 29796.63 32497.44 34095.45 31699.51 12099.38 21796.55 26096.16 33799.25 28793.76 24896.17 35687.35 35394.22 31498.27 322
baseline297.87 21897.55 23098.82 20999.18 23898.02 22299.41 17096.58 35896.97 22996.51 33399.17 29593.43 25099.57 22697.71 20599.03 16498.86 219
TransMVSNet (Re)97.15 28196.58 28598.86 20399.12 25198.85 16599.49 13698.91 30995.48 30697.16 32699.80 7693.38 25199.11 30094.16 32191.73 33698.62 283
tfpnnormal97.84 22497.47 24098.98 17499.20 23399.22 11599.64 5899.61 3596.32 27698.27 29699.70 13393.35 25299.44 24195.69 29695.40 29398.27 322
Anonymous2023121197.88 21697.54 23398.90 19099.71 8698.53 19299.48 14299.57 5094.16 32598.81 24299.68 14693.23 25399.42 24698.84 8394.42 31198.76 231
XXY-MVS98.38 16198.09 17499.24 14999.26 21999.32 10299.56 9899.55 6497.45 18398.71 25399.83 4293.23 25399.63 22198.88 7296.32 27098.76 231
jajsoiax98.43 15598.28 16298.88 19698.60 32198.43 20599.82 1099.53 8298.19 9998.63 27099.80 7693.22 25599.44 24199.22 3797.50 23698.77 229
MDA-MVSNet_test_wron95.45 30694.60 31298.01 28298.16 33397.21 25699.11 25999.24 27093.49 33280.73 35998.98 31793.02 25698.18 33594.22 32094.45 31098.64 273
ACMM97.58 598.37 16298.34 15798.48 24199.41 18097.10 25899.56 9899.45 18098.53 6499.04 20799.85 2993.00 25799.71 19598.74 9797.45 24198.64 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 19697.76 21298.84 20799.39 18898.98 14399.40 17899.38 21796.67 24999.07 20199.28 28292.93 25898.98 31597.10 25296.65 25998.56 299
DTE-MVSNet97.51 26897.19 27598.46 24698.63 31798.13 21999.84 699.48 14096.68 24897.97 30899.67 15292.92 25998.56 33296.88 26892.60 33498.70 245
CLD-MVS98.16 17998.10 17198.33 25999.29 21296.82 28098.75 31699.44 18997.83 14099.13 18799.55 20292.92 25999.67 20698.32 15597.69 22298.48 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 15898.08 17599.40 12399.41 18098.83 16999.30 20998.77 31997.70 15698.94 22399.65 15992.91 26199.74 17896.52 28099.55 12999.64 120
YYNet195.36 30894.51 31497.92 28897.89 33597.10 25899.10 26199.23 27193.26 33580.77 35899.04 30992.81 26298.02 33994.30 31794.18 31598.64 273
mvs_tets98.40 16098.23 16498.91 18898.67 31498.51 19899.66 4899.53 8298.19 9998.65 26899.81 6292.75 26399.44 24199.31 2997.48 24098.77 229
IterMVS97.83 22697.77 20998.02 28199.58 13896.27 29899.02 27799.48 14097.22 20798.71 25399.70 13392.75 26399.13 29597.46 23096.00 27698.67 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11698.69 12699.40 12399.22 22998.72 17799.44 15599.68 1999.24 399.18 18299.42 24492.74 26599.96 1999.34 2699.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 22997.75 21398.06 27899.57 14096.36 29599.02 27799.49 12897.18 20998.71 25399.72 12892.72 26699.14 29297.44 23395.86 28298.67 261
SCA98.19 17598.16 16698.27 26899.30 20895.55 31199.07 26398.97 30097.57 16999.43 11699.57 19592.72 26699.74 17897.58 21599.20 14899.52 148
HQP_MVS98.27 17098.22 16598.44 25099.29 21296.97 27399.39 18299.47 15898.97 3099.11 19199.61 18292.71 26899.69 20497.78 19697.63 22398.67 261
plane_prior699.27 21796.98 27292.71 268
CL-MVSNet_2432*160094.49 31593.97 31896.08 32896.16 35093.67 34298.33 34299.38 21795.13 30997.33 32198.15 34192.69 27096.57 35488.67 34879.87 35497.99 337
dp97.75 24097.80 20397.59 30399.10 25693.71 34099.32 20598.88 31396.48 26799.08 20099.55 20292.67 27199.82 15296.52 28098.58 18899.24 185
PEN-MVS97.76 23697.44 24898.72 22098.77 30398.54 19199.78 2299.51 10197.06 22398.29 29599.64 16692.63 27298.89 32898.09 17093.16 32798.72 239
LPG-MVS_test98.22 17198.13 16998.49 23999.33 19997.05 26499.58 8699.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
LGP-MVS_train98.49 23999.33 19997.05 26499.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
VPA-MVSNet98.29 16897.95 19099.30 13899.16 24699.54 7799.50 12699.58 4998.27 9199.35 14199.37 25992.53 27599.65 21399.35 2294.46 30998.72 239
TR-MVS97.76 23697.41 25398.82 20999.06 26397.87 23298.87 30598.56 33496.63 25498.68 26199.22 29092.49 27699.65 21395.40 30397.79 22098.95 217
pm-mvs197.68 25497.28 26998.88 19699.06 26398.62 18599.50 12699.45 18096.32 27697.87 31099.79 8892.47 27799.35 26197.54 22293.54 32398.67 261
HQP2-MVS92.47 277
HQP-MVS98.02 19897.90 19598.37 25799.19 23596.83 27898.98 28899.39 21198.24 9298.66 26299.40 25192.47 27799.64 21697.19 24797.58 22898.64 273
EPMVS97.82 22997.65 22298.35 25898.88 28595.98 30399.49 13694.71 36297.57 16999.26 16299.48 23092.46 28099.71 19597.87 18899.08 16099.35 177
PS-CasMVS97.93 21097.59 22998.95 17998.99 27399.06 13699.68 4299.52 8897.13 21398.31 29399.68 14692.44 28199.05 30598.51 13594.08 31798.75 233
cl-mvsnet297.85 22197.64 22498.48 24199.09 25897.87 23298.60 32999.33 24397.11 21898.87 23499.22 29092.38 28299.17 29098.21 15995.99 27798.42 313
CostFormer97.72 24697.73 21597.71 30099.15 24994.02 33799.54 11099.02 29694.67 32099.04 20799.35 26592.35 28399.77 17098.50 13697.94 21799.34 179
OPM-MVS98.19 17598.10 17198.45 24798.88 28597.07 26299.28 21599.38 21798.57 6299.22 17099.81 6292.12 28499.66 20998.08 17497.54 23298.61 292
ET-MVSNet_ETH3D96.49 29295.64 30399.05 16599.53 14798.82 17098.84 30797.51 35197.63 16484.77 35499.21 29392.09 28598.91 32698.98 6092.21 33599.41 173
AUN-MVS96.88 28596.31 29098.59 22799.48 16797.04 26799.27 22099.22 27297.44 18698.51 27999.41 24891.97 28699.66 20997.71 20583.83 34999.07 202
ACMP97.20 1198.06 19097.94 19298.45 24799.37 19197.01 26999.44 15599.49 12897.54 17498.45 28399.79 8891.95 28799.72 18997.91 18597.49 23998.62 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 16797.98 18599.26 14699.57 14098.16 21699.41 17098.55 33596.03 30199.19 17999.74 11791.87 28899.92 8099.16 4598.29 20399.70 96
DIV-MVS_2432*160095.00 31094.34 31596.96 31897.07 34995.39 31899.56 9899.44 18995.11 31197.13 32797.32 34891.86 28997.27 35090.35 34481.23 35398.23 326
tpm97.67 25797.55 23098.03 27999.02 27095.01 32599.43 16198.54 33696.44 27099.12 18999.34 26891.83 29099.60 22497.75 20096.46 26699.48 159
thres100view90097.76 23697.45 24398.69 22299.72 8097.86 23499.59 7998.74 32397.93 13199.26 16298.62 33091.75 29199.83 14593.22 32998.18 20898.37 319
thres600view797.86 22097.51 23698.92 18499.72 8097.95 22999.59 7998.74 32397.94 13099.27 15798.62 33091.75 29199.86 12593.73 32498.19 20798.96 214
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25499.23 22596.80 28199.70 3599.60 4097.12 21598.18 29999.70 13391.73 29399.72 18998.39 14597.45 24198.68 254
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 21697.77 20998.19 27198.71 31096.53 28999.88 199.00 29797.79 14698.78 24799.94 391.68 29499.35 26197.21 24396.99 25798.69 249
tfpn200view997.72 24697.38 25698.72 22099.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.37 319
thres40097.77 23597.38 25698.92 18499.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.96 214
thisisatest051598.14 18297.79 20499.19 15399.50 15898.50 19998.61 32796.82 35596.95 23299.54 9699.43 24191.66 29799.86 12598.08 17499.51 13199.22 186
thres20097.61 26197.28 26998.62 22599.64 11798.03 22199.26 22998.74 32397.68 15899.09 19998.32 33991.66 29799.81 15692.88 33398.22 20498.03 333
new_pmnet96.38 29596.03 29597.41 30898.13 33495.16 32499.05 26899.20 27693.94 32697.39 32098.79 32491.61 29999.04 30690.43 34395.77 28398.05 332
pmmvs597.52 26697.30 26898.16 27398.57 32396.73 28299.27 22098.90 31196.14 29498.37 28999.53 21191.54 30099.14 29297.51 22595.87 28198.63 281
tttt051798.42 15698.14 16899.28 14499.66 11098.38 20899.74 3196.85 35497.68 15899.79 2699.74 11791.39 30199.89 11498.83 8699.56 12799.57 139
tpm297.44 27497.34 26397.74 29999.15 24994.36 33499.45 15198.94 30393.45 33498.90 22999.44 23991.35 30299.59 22597.31 23798.07 21599.29 182
MVS-HIRNet95.75 30495.16 30897.51 30699.30 20893.69 34198.88 30395.78 35985.09 35298.78 24792.65 35691.29 30399.37 25394.85 31299.85 5899.46 166
thisisatest053098.35 16398.03 18099.31 13499.63 12098.56 18999.54 11096.75 35697.53 17699.73 4399.65 15991.25 30499.89 11498.62 11599.56 12799.48 159
testgi97.65 25997.50 23798.13 27599.36 19396.45 29299.42 16899.48 14097.76 14997.87 31099.45 23891.09 30598.81 32994.53 31598.52 19399.13 191
ITE_SJBPF98.08 27699.29 21296.37 29498.92 30698.34 8398.83 24099.75 11191.09 30599.62 22295.82 29297.40 24698.25 324
DeepMVS_CXcopyleft93.34 33399.29 21282.27 35799.22 27285.15 35196.33 33599.05 30890.97 30799.73 18593.57 32697.77 22198.01 334
ACMH97.28 898.10 18697.99 18498.44 25099.41 18096.96 27599.60 7399.56 5698.09 11298.15 30099.91 590.87 30899.70 20198.88 7297.45 24198.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo97.50 26997.33 26598.03 27998.65 31596.23 29999.77 2498.68 33197.14 21297.90 30999.93 490.45 30999.18 28997.00 25796.43 26798.67 261
MIMVSNet97.73 24497.45 24398.57 23199.45 17597.50 24599.02 27798.98 29996.11 29699.41 12399.14 29990.28 31098.74 33095.74 29598.93 17199.47 164
GBi-Net97.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
test197.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
FMVSNet297.72 24697.36 25898.80 21399.51 15198.84 16699.45 15199.42 19996.49 26398.86 23999.29 28090.26 31198.98 31596.44 28296.56 26298.58 297
Anonymous2024052998.09 18797.68 21999.34 12899.66 11098.44 20499.40 17899.43 19793.67 32999.22 17099.89 1090.23 31499.93 6999.26 3598.33 19899.66 109
ACMH+97.24 1097.92 21397.78 20798.32 26199.46 17096.68 28599.56 9899.54 7198.41 7597.79 31499.87 2090.18 31599.66 20998.05 17897.18 25398.62 283
LF4IMVS97.52 26697.46 24297.70 30198.98 27695.55 31199.29 21398.82 31898.07 11798.66 26299.64 16689.97 31699.61 22397.01 25696.68 25897.94 340
GA-MVS97.85 22197.47 24099.00 17299.38 18997.99 22498.57 33099.15 28297.04 22498.90 22999.30 27889.83 31799.38 25096.70 27598.33 19899.62 126
test_part197.75 24097.24 27399.29 14199.59 13699.63 6099.65 5599.49 12896.17 28998.44 28499.69 14089.80 31899.47 23398.68 10893.66 32198.78 225
PVSNet_094.43 1996.09 30195.47 30497.94 28699.31 20794.34 33597.81 35299.70 1597.12 21597.46 31898.75 32789.71 31999.79 16497.69 20881.69 35299.68 103
Anonymous2024052196.20 29895.89 29997.13 31497.72 33894.96 32799.79 2199.29 26393.01 33697.20 32599.03 31089.69 32098.36 33491.16 34196.13 27398.07 330
XVG-ACMP-BASELINE97.83 22697.71 21798.20 27099.11 25396.33 29699.41 17099.52 8898.06 12199.05 20699.50 22189.64 32199.73 18597.73 20297.38 24798.53 300
gg-mvs-nofinetune96.17 29995.32 30798.73 21898.79 29798.14 21899.38 18794.09 36391.07 34598.07 30591.04 35989.62 32299.35 26196.75 27199.09 15998.68 254
DWT-MVSNet_test97.53 26597.40 25497.93 28799.03 26994.86 32999.57 9198.63 33296.59 25998.36 29098.79 32489.32 32399.74 17898.14 16898.16 21299.20 188
GG-mvs-BLEND98.45 24798.55 32498.16 21699.43 16193.68 36497.23 32398.46 33489.30 32499.22 28195.43 30298.22 20497.98 338
USDC97.34 27697.20 27497.75 29899.07 26195.20 32198.51 33499.04 29597.99 12798.31 29399.86 2389.02 32599.55 22995.67 29897.36 24898.49 303
MS-PatchMatch97.24 28097.32 26696.99 31698.45 32893.51 34498.82 30999.32 25197.41 19098.13 30199.30 27888.99 32699.56 22795.68 29799.80 8497.90 343
VPNet97.84 22497.44 24899.01 17099.21 23198.94 15599.48 14299.57 5098.38 7799.28 15499.73 12488.89 32799.39 24899.19 4093.27 32698.71 241
K. test v397.10 28396.79 28498.01 28298.72 30896.33 29699.87 497.05 35397.59 16696.16 33799.80 7688.71 32899.04 30696.69 27696.55 26398.65 271
lessismore_v097.79 29798.69 31295.44 31794.75 36195.71 34199.87 2088.69 32999.32 26695.89 29194.93 30498.62 283
TDRefinement95.42 30794.57 31397.97 28589.83 36196.11 30199.48 14298.75 32096.74 24496.68 33299.88 1588.65 33099.71 19598.37 14982.74 35198.09 329
TESTMET0.1,197.55 26397.27 27298.40 25498.93 28196.53 28998.67 32297.61 35096.96 23098.64 26999.28 28288.63 33199.45 23697.30 23899.38 13699.21 187
test_040296.64 28996.24 29197.85 29298.85 29396.43 29399.44 15599.26 26693.52 33196.98 33099.52 21488.52 33299.20 28892.58 33897.50 23697.93 341
UnsupCasMVSNet_eth96.44 29396.12 29397.40 30998.65 31595.65 30899.36 19499.51 10197.13 21396.04 33998.99 31488.40 33398.17 33696.71 27490.27 33998.40 316
MDA-MVSNet-bldmvs94.96 31193.98 31797.92 28898.24 33297.27 25199.15 24999.33 24393.80 32880.09 36099.03 31088.31 33497.86 34493.49 32794.36 31298.62 283
test-mter97.49 27297.13 27798.55 23598.79 29797.10 25898.67 32297.75 34796.65 25198.61 27398.85 32188.23 33599.45 23697.25 24199.38 13699.10 192
TinyColmap97.12 28296.89 28297.83 29499.07 26195.52 31498.57 33098.74 32397.58 16897.81 31399.79 8888.16 33699.56 22795.10 30897.21 25198.39 317
pmmvs-eth3d95.34 30994.73 31197.15 31295.53 35495.94 30499.35 20099.10 28795.13 30993.55 34797.54 34488.15 33797.91 34294.58 31489.69 34297.61 345
RRT_test8_iter0597.72 24697.60 22798.08 27699.23 22596.08 30299.63 6099.49 12897.54 17498.94 22399.81 6287.99 33899.35 26199.21 3996.51 26598.81 222
KD-MVS_2432*160094.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
miper_refine_blended94.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
new-patchmatchnet94.48 31694.08 31695.67 33095.08 35592.41 34899.18 24399.28 26594.55 32393.49 34897.37 34787.86 34197.01 35291.57 33988.36 34397.61 345
FMVSNet596.43 29496.19 29297.15 31299.11 25395.89 30599.32 20599.52 8894.47 32498.34 29299.07 30587.54 34297.07 35192.61 33795.72 28698.47 306
pmmvs696.53 29196.09 29497.82 29598.69 31295.47 31599.37 19099.47 15893.46 33397.41 31999.78 9587.06 34399.33 26596.92 26692.70 33398.65 271
pmmvs394.09 31993.25 32296.60 32594.76 35694.49 33298.92 29998.18 34289.66 34696.48 33498.06 34286.28 34497.33 34989.68 34687.20 34597.97 339
IB-MVS95.67 1896.22 29695.44 30698.57 23199.21 23196.70 28398.65 32597.74 34996.71 24697.27 32298.54 33386.03 34599.92 8098.47 14086.30 34699.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 32781.52 33086.66 34066.61 36868.44 36692.79 36097.92 34568.96 35880.04 36199.85 2985.77 34696.15 35797.86 18943.89 36295.39 353
CMPMVSbinary69.68 2394.13 31894.90 31091.84 33697.24 34580.01 35998.52 33399.48 14089.01 34791.99 35199.67 15285.67 34799.13 29595.44 30197.03 25696.39 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 30595.04 30996.92 32097.38 34195.60 30999.52 11699.50 12093.65 33096.97 33199.17 29585.28 34896.56 35588.36 35095.55 29098.60 295
LFMVS97.90 21597.35 26099.54 9299.52 14999.01 14199.39 18298.24 33997.10 21999.65 6999.79 8884.79 34999.91 9199.28 3298.38 19799.69 99
FMVSNet196.84 28696.36 28998.29 26499.32 20697.26 25399.43 16199.48 14095.11 31198.55 27799.32 27583.95 35098.98 31595.81 29396.26 27198.62 283
VDD-MVS97.73 24497.35 26098.88 19699.47 16897.12 25799.34 20398.85 31598.19 9999.67 5999.85 2982.98 35199.92 8099.49 1398.32 20299.60 130
EG-PatchMatch MVS95.97 30295.69 30296.81 32297.78 33792.79 34799.16 24598.93 30496.16 29194.08 34699.22 29082.72 35299.47 23395.67 29897.50 23698.17 327
VDDNet97.55 26397.02 28099.16 15699.49 16098.12 22099.38 18799.30 25895.35 30899.68 5399.90 782.62 35399.93 6999.31 2998.13 21399.42 171
UniMVSNet_ETH3D97.32 27796.81 28398.87 20099.40 18597.46 24699.51 12099.53 8295.86 30398.54 27899.77 10282.44 35499.66 20998.68 10897.52 23399.50 157
OpenMVS_ROBcopyleft92.34 2094.38 31793.70 32196.41 32797.38 34193.17 34599.06 26698.75 32086.58 35094.84 34598.26 34081.53 35599.32 26689.01 34797.87 21996.76 349
test_method91.10 32291.36 32590.31 33995.85 35173.72 36594.89 35799.25 26868.39 35995.82 34099.02 31280.50 35698.95 32493.64 32594.89 30598.25 324
MVS_030496.79 28796.52 28797.59 30399.22 22994.92 32899.04 27399.59 4396.49 26398.43 28598.99 31480.48 35799.39 24897.15 25199.27 14498.47 306
UnsupCasMVSNet_bld93.53 32092.51 32396.58 32697.38 34193.82 33898.24 34599.48 14091.10 34493.10 34996.66 35074.89 35898.37 33394.03 32287.71 34497.56 347
Gipumacopyleft90.99 32390.15 32693.51 33298.73 30690.12 35393.98 35899.45 18079.32 35592.28 35094.91 35369.61 35997.98 34187.42 35295.67 28792.45 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32192.23 32495.14 33195.61 35289.98 35499.37 19098.21 34094.80 31895.04 34497.69 34365.06 36097.90 34394.30 31789.98 34197.54 348
EMVS80.02 32979.22 33282.43 34591.19 35876.40 36297.55 35592.49 36866.36 36283.01 35791.27 35864.63 36185.79 36365.82 36260.65 36085.08 359
E-PMN80.61 32879.88 33182.81 34390.75 35976.38 36397.69 35395.76 36066.44 36183.52 35592.25 35762.54 36287.16 36268.53 36161.40 35984.89 360
ambc93.06 33492.68 35782.36 35698.47 33598.73 32895.09 34397.41 34555.55 36399.10 30296.42 28391.32 33797.71 344
FPMVS84.93 32685.65 32782.75 34486.77 36363.39 36798.35 33998.92 30674.11 35683.39 35698.98 31750.85 36492.40 36084.54 35794.97 30292.46 354
PMMVS286.87 32485.37 32891.35 33890.21 36083.80 35598.89 30297.45 35283.13 35491.67 35295.03 35248.49 36594.70 35885.86 35677.62 35595.54 352
LCM-MVSNet86.80 32585.22 32991.53 33787.81 36280.96 35898.23 34798.99 29871.05 35790.13 35396.51 35148.45 36696.88 35390.51 34285.30 34796.76 349
ANet_high77.30 33074.86 33484.62 34275.88 36677.61 36197.63 35493.15 36688.81 34864.27 36389.29 36036.51 36783.93 36475.89 35952.31 36192.33 356
test12339.01 33542.50 33728.53 34839.17 36920.91 37098.75 31619.17 37119.83 36638.57 36566.67 36333.16 36815.42 36637.50 36529.66 36449.26 361
testmvs39.17 33443.78 33625.37 34936.04 37016.84 37198.36 33826.56 36920.06 36538.51 36667.32 36229.64 36915.30 36737.59 36439.90 36343.98 362
wuyk23d40.18 33341.29 33836.84 34786.18 36449.12 36979.73 36122.81 37027.64 36425.46 36728.45 36721.98 37048.89 36555.80 36323.56 36512.51 363
PMVScopyleft70.75 2275.98 33274.97 33379.01 34670.98 36755.18 36893.37 35998.21 34065.08 36361.78 36493.83 35521.74 37192.53 35978.59 35891.12 33889.34 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 33174.31 33584.70 34185.38 36576.05 36496.88 35693.17 36567.39 36071.28 36289.01 36121.66 37287.69 36171.74 36072.29 35890.35 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.30 33711.06 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.58 1910.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
IU-MVS99.84 3299.88 799.32 25198.30 8899.84 1398.86 7999.85 5899.89 2
save fliter99.76 5299.59 6899.14 25199.40 20799.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9199.51 10199.96 1998.93 6699.86 5199.88 5
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
MTGPAbinary99.47 158
MTMP99.54 11098.88 313
gm-plane-assit98.54 32592.96 34694.65 32199.15 29899.64 21697.56 220
test9_res97.49 22699.72 10499.75 69
agg_prior297.21 24399.73 10399.75 69
agg_prior99.67 10199.62 6199.40 20798.87 23499.91 91
test_prior499.56 7398.99 284
test_prior99.68 6599.67 10199.48 8899.56 5699.83 14599.74 74
旧先验298.96 29296.70 24799.47 10899.94 5498.19 161
新几何299.01 282
无先验98.99 28499.51 10196.89 23699.93 6997.53 22399.72 87
原ACMM298.95 296
testdata299.95 4396.67 277
testdata198.85 30698.32 87
plane_prior799.29 21297.03 268
plane_prior599.47 15899.69 20497.78 19697.63 22398.67 261
plane_prior499.61 182
plane_prior397.00 27098.69 5699.11 191
plane_prior299.39 18298.97 30
plane_prior199.26 219
plane_prior96.97 27399.21 24198.45 7197.60 226
n20.00 372
nn0.00 372
door-mid98.05 343
test1199.35 232
door97.92 345
HQP5-MVS96.83 278
HQP-NCC99.19 23598.98 28898.24 9298.66 262
ACMP_Plane99.19 23598.98 28898.24 9298.66 262
BP-MVS97.19 247
HQP4-MVS98.66 26299.64 21698.64 273
HQP3-MVS99.39 21197.58 228
NP-MVS99.23 22596.92 27699.40 251
ACMMP++_ref97.19 252
ACMMP++97.43 244