This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4199.52 899.05 16899.74 7599.68 4899.46 17599.52 9399.11 1999.88 1399.91 1399.43 197.70 36598.72 12099.93 1499.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 699.50 1099.81 3699.91 199.66 5399.63 8099.39 21498.91 5099.78 3999.85 4799.36 299.94 6198.84 10599.88 4199.82 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145298.18 12199.84 2199.70 14899.31 398.52 34898.30 17399.80 8799.81 51
SteuartSystems-ACMMP99.54 1099.42 1799.87 1199.82 3899.81 2599.59 9999.51 10798.62 7399.79 3499.83 6199.28 499.97 1798.48 15599.90 2999.84 30
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.59 599.50 1099.88 599.51 16299.88 899.87 999.51 10798.99 3799.88 1399.81 8199.27 599.96 2598.85 10299.80 8799.81 51
OPU-MVS99.64 6899.56 14999.72 4299.60 9399.70 14899.27 599.42 25598.24 17599.80 8799.79 64
SED-MVS99.61 499.52 899.88 599.84 3199.90 299.60 9399.48 14699.08 2599.91 999.81 8199.20 799.96 2598.91 8999.85 5999.79 64
test_241102_ONE99.84 3199.90 299.48 14699.07 2799.91 999.74 13399.20 799.76 183
MSLP-MVS++99.46 2599.47 1499.44 11799.60 13999.16 11599.41 19499.71 1398.98 4099.45 12499.78 11199.19 999.54 24099.28 5399.84 6799.63 130
SMA-MVScopyleft99.44 3199.30 4399.85 2599.73 8299.83 1699.56 12099.47 16497.45 20399.78 3999.82 6899.18 1099.91 9598.79 11399.89 3899.81 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 299.57 599.92 199.77 5799.89 499.75 4099.56 6199.02 3099.88 1399.85 4799.18 1099.96 2599.22 5999.92 1699.90 7
HPM-MVS_fast99.51 1399.40 2099.85 2599.91 199.79 3099.76 3799.56 6197.72 17599.76 4799.75 12899.13 1299.92 8599.07 7399.92 1699.85 26
PGM-MVS99.45 2799.31 4199.86 2099.87 1599.78 3699.58 10799.65 3297.84 16199.71 5899.80 9499.12 1399.97 1798.33 16999.87 4499.83 39
test_one_060199.81 4299.88 899.49 13498.97 4399.65 7999.81 8199.09 14
test_0728_THIRD98.99 3799.81 2999.80 9499.09 1499.96 2598.85 10299.90 2999.88 16
HFP-MVS99.49 1699.37 2499.86 2099.87 1599.80 2799.66 6799.67 2398.15 12399.68 6499.69 15899.06 1699.96 2598.69 12599.87 4499.84 30
TSAR-MVS + GP.99.36 4899.36 2699.36 12599.67 10598.61 18899.07 28499.33 24599.00 3599.82 2799.81 8199.06 1699.84 14199.09 7099.42 13799.65 119
pcd_1.5k_mvsjas8.27 35511.03 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 38899.01 180.00 3880.00 3860.00 3860.00 384
PS-MVSNAJss98.92 11198.92 9798.90 19498.78 31598.53 19499.78 3299.54 7798.07 13899.00 22899.76 12599.01 1899.37 26399.13 6697.23 26698.81 232
PS-MVSNAJ99.32 5299.32 3499.30 13899.57 14598.94 15598.97 31099.46 17398.92 4999.71 5899.24 30199.01 1899.98 1099.35 4199.66 11898.97 223
EI-MVSNet-Vis-set99.58 699.56 799.64 6899.78 5199.15 12099.61 9299.45 18499.01 3299.89 1299.82 6899.01 1899.92 8599.56 1899.95 999.85 26
patch_mono-299.26 6199.62 298.16 27899.81 4294.59 33999.52 14199.64 3499.33 799.73 5299.90 1999.00 2299.99 499.69 999.98 299.89 10
EI-MVSNet-UG-set99.58 699.57 599.64 6899.78 5199.14 12199.60 9399.45 18499.01 3299.90 1199.83 6198.98 2399.93 7499.59 1599.95 999.86 23
region2R99.48 2099.35 2899.87 1199.88 1199.80 2799.65 7399.66 2798.13 12799.66 7399.68 16498.96 2499.96 2598.62 13399.87 4499.84 30
segment_acmp98.96 24
CNVR-MVS99.42 3699.30 4399.78 4399.62 13099.71 4499.26 25199.52 9398.82 5799.39 14599.71 14498.96 2499.85 13598.59 14199.80 8799.77 72
SF-MVS99.38 4699.24 5699.79 4199.79 4999.68 4899.57 11499.54 7797.82 16699.71 5899.80 9498.95 2799.93 7498.19 17899.84 6799.74 82
ACMMPR99.49 1699.36 2699.86 2099.87 1599.79 3099.66 6799.67 2398.15 12399.67 6899.69 15898.95 2799.96 2598.69 12599.87 4499.84 30
test_241102_TWO99.48 14699.08 2599.88 1399.81 8198.94 2999.96 2598.91 8999.84 6799.88 16
DVP-MVScopyleft99.57 999.47 1499.88 599.85 2599.89 499.57 11499.37 22899.10 2099.81 2999.80 9498.94 2999.96 2598.93 8699.86 5299.81 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 499.62 8699.50 12699.10 2099.86 1999.82 6898.94 29
xiu_mvs_v2_base99.26 6199.25 5599.29 14199.53 15698.91 15999.02 29799.45 18498.80 6199.71 5899.26 29998.94 2999.98 1099.34 4599.23 15198.98 222
CP-MVS99.45 2799.32 3499.85 2599.83 3699.75 3999.69 5399.52 9398.07 13899.53 11199.63 18898.93 3399.97 1798.74 11799.91 2199.83 39
ZNCC-MVS99.47 2399.33 3299.87 1199.87 1599.81 2599.64 7699.67 2398.08 13799.55 10899.64 18298.91 3499.96 2598.72 12099.90 2999.82 44
MCST-MVS99.43 3499.30 4399.82 3399.79 4999.74 4199.29 23699.40 21198.79 6299.52 11399.62 19398.91 3499.90 10698.64 13199.75 10299.82 44
HPM-MVScopyleft99.42 3699.28 4999.83 3299.90 499.72 4299.81 2099.54 7797.59 18699.68 6499.63 18898.91 3499.94 6198.58 14299.91 2199.84 30
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 8799.75 6898.95 15299.51 10797.07 23999.43 13099.70 14898.87 3799.94 6197.76 21599.64 12199.72 93
APD-MVS_3200maxsize99.48 2099.35 2899.85 2599.76 6099.83 1699.63 8099.54 7798.36 9699.79 3499.82 6898.86 3899.95 5298.62 13399.81 8399.78 70
mvsany_test199.50 1499.46 1699.62 7399.61 13499.09 12698.94 31699.48 14699.10 2099.96 899.91 1398.85 3999.96 2599.72 899.58 12799.82 44
DeepC-MVS_fast98.69 199.49 1699.39 2199.77 4699.63 12499.59 6299.36 21799.46 17399.07 2799.79 3499.82 6898.85 3999.92 8598.68 12799.87 4499.82 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6999.72 8699.40 20299.51 10797.53 19599.64 8399.78 11198.84 4199.91 9597.63 22799.82 80
CDPH-MVS99.13 7998.91 9999.80 3899.75 6899.71 4499.15 26999.41 20396.60 27499.60 9699.55 21698.83 4299.90 10697.48 24399.83 7699.78 70
ACMMP_NAP99.47 2399.34 3099.88 599.87 1599.86 1399.47 17299.48 14698.05 14399.76 4799.86 4298.82 4399.93 7498.82 11299.91 2199.84 30
test_fmvsmvis_n_192099.65 399.61 399.77 4699.38 20399.37 9199.58 10799.62 3699.41 499.87 1899.92 1198.81 44100.00 199.97 199.93 1499.94 5
XVS99.53 1199.42 1799.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15099.74 13398.81 4499.94 6198.79 11399.86 5299.84 30
X-MVStestdata96.55 29795.45 31599.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15064.01 38598.81 4499.94 6198.79 11399.86 5299.84 30
MP-MVS-pluss99.37 4799.20 6099.88 599.90 499.87 1299.30 23299.52 9397.18 22799.60 9699.79 10598.79 4799.95 5298.83 10899.91 2199.83 39
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3199.30 4399.86 2099.88 1199.79 3099.69 5399.48 14698.12 12899.50 11699.75 12898.78 4899.97 1798.57 14599.89 3899.83 39
APD-MVScopyleft99.27 5999.08 7299.84 3199.75 6899.79 3099.50 15399.50 12697.16 22999.77 4299.82 6898.78 4899.94 6197.56 23699.86 5299.80 60
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 25197.34 27098.94 18499.70 9697.53 25099.25 25399.51 10791.90 35799.30 16699.63 18898.78 4899.64 22688.09 36899.87 4499.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10599.65 5699.05 28999.41 20396.22 30098.95 23499.49 23798.77 5199.91 95
train_agg99.02 10298.77 11799.77 4699.67 10599.65 5699.05 28999.41 20396.28 29498.95 23499.49 23798.76 5299.91 9597.63 22799.72 10899.75 78
test_899.67 10599.61 6099.03 29499.41 20396.28 29498.93 23899.48 24298.76 5299.91 95
API-MVS99.04 9999.03 7899.06 16699.40 19999.31 9899.55 13099.56 6198.54 7999.33 16199.39 26698.76 5299.78 17796.98 27399.78 9498.07 342
RE-MVS-def99.34 3099.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.75 5598.61 13699.81 8399.77 72
DP-MVS Recon99.12 8598.95 9599.65 6399.74 7599.70 4699.27 24399.57 5696.40 29099.42 13399.68 16498.75 5599.80 16997.98 19599.72 10899.44 178
Test By Simon98.75 55
ACMMPcopyleft99.45 2799.32 3499.82 3399.89 899.67 5199.62 8699.69 1898.12 12899.63 8699.84 5798.73 5899.96 2598.55 15199.83 7699.81 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2599.32 3499.91 299.78 5199.88 899.36 21799.51 10798.73 6799.88 1399.84 5798.72 5999.96 2598.16 18299.87 4499.88 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5099.19 6199.79 4199.61 13499.65 5699.30 23299.48 14698.86 5299.21 18899.63 18898.72 5999.90 10698.25 17499.63 12399.80 60
DeepPCF-MVS98.18 398.81 12999.37 2497.12 32499.60 13991.75 36298.61 34699.44 19299.35 699.83 2699.85 4798.70 6199.81 16399.02 7799.91 2199.81 51
SR-MVS99.43 3499.29 4799.86 2099.75 6899.83 1699.59 9999.62 3698.21 11499.73 5299.79 10598.68 6299.96 2598.44 16099.77 9799.79 64
test_prior298.96 31198.34 9899.01 22499.52 22898.68 6297.96 19699.74 105
DPM-MVS98.95 10998.71 12299.66 5999.63 12499.55 6998.64 34599.10 29397.93 15299.42 13399.55 21698.67 6499.80 16995.80 30899.68 11699.61 134
原ACMM199.65 6399.73 8299.33 9499.47 16497.46 20099.12 20499.66 17598.67 6499.91 9597.70 22499.69 11399.71 102
CS-MVS99.50 1499.48 1299.54 8799.76 6099.42 8799.90 199.55 6998.56 7799.78 3999.70 14898.65 6699.79 17299.65 1399.78 9499.41 182
HPM-MVS++copyleft99.39 4599.23 5899.87 1199.75 6899.84 1599.43 18599.51 10798.68 7199.27 17499.53 22598.64 6799.96 2598.44 16099.80 8799.79 64
test_fmvsm_n_192099.69 199.66 199.78 4399.84 3199.44 8599.58 10799.69 1899.43 299.98 499.91 1398.62 68100.00 199.97 199.95 999.90 7
ZD-MVS99.71 9199.79 3099.61 4196.84 25699.56 10499.54 22198.58 6999.96 2596.93 27899.75 102
PHI-MVS99.30 5499.17 6399.70 5799.56 14999.52 7799.58 10799.80 897.12 23399.62 9099.73 13998.58 6999.90 10698.61 13699.91 2199.68 109
dcpmvs_299.23 6699.58 498.16 27899.83 3694.68 33799.76 3799.52 9399.07 2799.98 499.88 2998.56 7199.93 7499.67 1199.98 299.87 21
CS-MVS-test99.49 1699.48 1299.54 8799.78 5199.30 9999.89 299.58 5398.56 7799.73 5299.69 15898.55 7299.82 15899.69 999.85 5999.48 167
SR-MVS-dyc-post99.45 2799.31 4199.85 2599.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.53 7399.95 5298.61 13699.81 8399.77 72
GST-MVS99.40 4499.24 5699.85 2599.86 2099.79 3099.60 9399.67 2397.97 14999.63 8699.68 16498.52 7499.95 5298.38 16399.86 5299.81 51
MVS_111021_LR99.41 4199.33 3299.65 6399.77 5799.51 7898.94 31699.85 698.82 5799.65 7999.74 13398.51 7599.80 16998.83 10899.89 3899.64 126
MVS_111021_HR99.41 4199.32 3499.66 5999.72 8699.47 8298.95 31499.85 698.82 5799.54 10999.73 13998.51 7599.74 18698.91 8999.88 4199.77 72
旧先验199.74 7599.59 6299.54 7799.69 15898.47 7799.68 11699.73 87
DELS-MVS99.48 2099.42 1799.65 6399.72 8699.40 9099.05 28999.66 2799.14 1599.57 10399.80 9498.46 7899.94 6199.57 1799.84 6799.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 15098.34 16099.51 10399.40 19999.03 13598.80 33099.36 22996.33 29199.00 22899.12 31698.46 7899.84 14195.23 32199.37 14699.66 115
MTAPA99.52 1299.39 2199.89 499.90 499.86 1399.66 6799.47 16498.79 6299.68 6499.81 8198.43 8099.97 1798.88 9299.90 2999.83 39
新几何199.75 4999.75 6899.59 6299.54 7796.76 25999.29 16999.64 18298.43 8099.94 6196.92 28099.66 11899.72 93
F-COLMAP99.19 6799.04 7699.64 6899.78 5199.27 10399.42 19299.54 7797.29 21899.41 13799.59 20298.42 8299.93 7498.19 17899.69 11399.73 87
ETV-MVS99.26 6199.21 5999.40 12099.46 18399.30 9999.56 12099.52 9398.52 8199.44 12999.27 29798.41 8399.86 12999.10 6999.59 12699.04 215
test1299.75 4999.64 12199.61 6099.29 26799.21 18898.38 8499.89 11699.74 10599.74 82
CSCG99.32 5299.32 3499.32 13299.85 2598.29 21399.71 4999.66 2798.11 13099.41 13799.80 9498.37 8599.96 2598.99 7999.96 899.72 93
PAPM_NR99.04 9998.84 11099.66 5999.74 7599.44 8599.39 20699.38 22097.70 17799.28 17099.28 29498.34 8699.85 13596.96 27599.45 13599.69 105
TAMVS99.12 8599.08 7299.24 14999.46 18398.55 19299.51 14799.46 17398.09 13399.45 12499.82 6898.34 8699.51 24198.70 12298.93 17699.67 112
MP-MVScopyleft99.33 5199.15 6499.87 1199.88 1199.82 2299.66 6799.46 17398.09 13399.48 12099.74 13398.29 8899.96 2597.93 19899.87 4499.82 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6899.49 7998.91 32099.49 13496.42 28899.34 16099.65 17698.28 8999.69 11399.72 93
PLCcopyleft97.94 499.02 10298.85 10999.53 9599.66 11399.01 13899.24 25599.52 9396.85 25599.27 17499.48 24298.25 9099.91 9597.76 21599.62 12499.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 3699.27 5199.88 599.89 899.80 2799.67 6299.50 12698.70 6999.77 4299.49 23798.21 9199.95 5298.46 15999.77 9799.88 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EC-MVSNet99.44 3199.39 2199.58 8099.56 14999.49 7999.88 499.58 5398.38 9299.73 5299.69 15898.20 9299.70 20899.64 1499.82 8099.54 150
xiu_mvs_v1_base_debu99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base_debi99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
EIA-MVS99.18 6999.09 7199.45 11399.49 17399.18 11299.67 6299.53 8897.66 18299.40 14299.44 25198.10 9699.81 16398.94 8499.62 12499.35 188
MVS_030499.42 3699.32 3499.72 5599.70 9699.27 10399.52 14197.57 36699.51 199.82 2799.78 11198.09 9799.96 2599.97 199.97 599.94 5
CNLPA99.14 7798.99 8799.59 7799.58 14399.41 8999.16 26699.44 19298.45 8699.19 19499.49 23798.08 9899.89 11697.73 21999.75 10299.48 167
114514_t98.93 11098.67 12699.72 5599.85 2599.53 7499.62 8699.59 4992.65 35599.71 5899.78 11198.06 9999.90 10698.84 10599.91 2199.74 82
CDS-MVSNet99.09 9499.03 7899.25 14799.42 19198.73 17799.45 17699.46 17398.11 13099.46 12399.77 11998.01 10099.37 26398.70 12298.92 17899.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 7999.02 8199.45 11399.57 14598.63 18599.07 28499.34 23898.99 3799.61 9399.82 6897.98 10199.87 12697.00 27199.80 8799.85 26
EI-MVSNet98.67 14698.67 12698.68 22799.35 20997.97 22999.50 15399.38 22096.93 25299.20 19199.83 6197.87 10299.36 26798.38 16397.56 24098.71 250
IterMVS-LS98.46 15798.42 15598.58 23499.59 14198.00 22799.37 21399.43 19896.94 25199.07 21499.59 20297.87 10299.03 32198.32 17195.62 30298.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 10698.80 11399.53 9599.76 6099.19 11098.75 33599.55 6997.25 22199.47 12199.77 11997.82 10499.87 12696.93 27899.90 2999.54 150
OMC-MVS99.08 9599.04 7699.20 15399.67 10598.22 21799.28 23899.52 9398.07 13899.66 7399.81 8197.79 10599.78 17797.79 21099.81 8399.60 136
LS3D99.27 5999.12 6799.74 5299.18 25199.75 3999.56 12099.57 5698.45 8699.49 11999.85 4797.77 10699.94 6198.33 16999.84 6799.52 156
PVSNet_Blended_VisFu99.36 4899.28 4999.61 7499.86 2099.07 13199.47 17299.93 297.66 18299.71 5899.86 4297.73 10799.96 2599.47 3399.82 8099.79 64
131498.68 14598.54 14999.11 16298.89 29998.65 18399.27 24399.49 13496.89 25397.99 31799.56 21397.72 10899.83 15297.74 21899.27 15098.84 231
MVS_Test99.10 9398.97 9199.48 10799.49 17399.14 12199.67 6299.34 23897.31 21699.58 10099.76 12597.65 10999.82 15898.87 9599.07 16799.46 175
PVSNet_BlendedMVS98.86 11898.80 11399.03 17099.76 6098.79 17499.28 23899.91 397.42 20899.67 6899.37 27097.53 11099.88 12198.98 8097.29 26398.42 323
PVSNet_Blended99.08 9598.97 9199.42 11899.76 6098.79 17498.78 33299.91 396.74 26099.67 6899.49 23797.53 11099.88 12198.98 8099.85 5999.60 136
UA-Net99.42 3699.29 4799.80 3899.62 13099.55 6999.50 15399.70 1598.79 6299.77 4299.96 197.45 11299.96 2598.92 8899.90 2999.89 10
MVSFormer99.17 7199.12 6799.29 14199.51 16298.94 15599.88 499.46 17397.55 19199.80 3299.65 17697.39 11399.28 28299.03 7599.85 5999.65 119
lupinMVS99.13 7999.01 8599.46 11299.51 16298.94 15599.05 28999.16 28797.86 15799.80 3299.56 21397.39 11399.86 12998.94 8499.85 5999.58 144
DP-MVS99.16 7398.95 9599.78 4399.77 5799.53 7499.41 19499.50 12697.03 24399.04 22199.88 2997.39 11399.92 8598.66 12999.90 2999.87 21
sss99.17 7199.05 7499.53 9599.62 13098.97 14399.36 21799.62 3697.83 16299.67 6899.65 17697.37 11699.95 5299.19 6199.19 15499.68 109
mvs_anonymous99.03 10198.99 8799.16 15799.38 20398.52 19899.51 14799.38 22097.79 16799.38 14899.81 8197.30 11799.45 24599.35 4198.99 17399.51 162
miper_ehance_all_eth98.18 18298.10 17898.41 25799.23 24097.72 24498.72 33899.31 25996.60 27498.88 24599.29 29297.29 11899.13 30797.60 22995.99 29198.38 328
CPTT-MVS99.11 8998.90 10099.74 5299.80 4899.46 8399.59 9999.49 13497.03 24399.63 8699.69 15897.27 11999.96 2597.82 20899.84 6799.81 51
PMMVS98.80 13298.62 13799.34 12699.27 23298.70 17998.76 33499.31 25997.34 21399.21 18899.07 31897.20 12099.82 15898.56 14898.87 18199.52 156
EPP-MVSNet99.13 7998.99 8799.53 9599.65 11999.06 13299.81 2099.33 24597.43 20699.60 9699.88 2997.14 12199.84 14199.13 6698.94 17599.69 105
mvsmamba98.92 11198.87 10599.08 16399.07 27599.16 11599.88 499.51 10798.15 12399.40 14299.89 2397.12 12299.33 27399.38 3897.40 25998.73 247
c3_l98.12 18998.04 18798.38 26199.30 22397.69 24898.81 32999.33 24596.67 26598.83 25399.34 28097.11 12398.99 32797.58 23195.34 30898.48 315
canonicalmvs99.02 10298.86 10899.51 10399.42 19199.32 9599.80 2599.48 14698.63 7299.31 16498.81 33897.09 12499.75 18599.27 5697.90 22799.47 173
MAR-MVS98.86 11898.63 13299.54 8799.37 20699.66 5399.45 17699.54 7796.61 27299.01 22499.40 26297.09 12499.86 12997.68 22699.53 13199.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 18498.08 18298.41 25798.96 29397.72 24498.45 35599.32 25596.95 24998.97 23299.17 30897.06 12699.22 29497.86 20495.99 29198.29 332
jason99.13 7999.03 7899.45 11399.46 18398.87 16299.12 27499.26 27298.03 14699.79 3499.65 17697.02 12799.85 13599.02 7799.90 2999.65 119
jason: jason.
our_test_397.65 26697.68 22797.55 31398.62 33394.97 33398.84 32699.30 26396.83 25898.19 30899.34 28097.01 12899.02 32395.00 32596.01 28998.64 283
RRT_MVS98.70 14198.66 12998.83 21398.90 29798.45 20699.89 299.28 26997.76 17098.94 23699.92 1196.98 12999.25 28799.28 5397.00 27298.80 233
MVS97.28 28496.55 29499.48 10798.78 31598.95 15299.27 24399.39 21483.53 37298.08 31299.54 22196.97 13099.87 12694.23 33499.16 15599.63 130
Fast-Effi-MVS+-dtu98.77 13598.83 11298.60 23099.41 19496.99 27799.52 14199.49 13498.11 13099.24 18099.34 28096.96 13199.79 17297.95 19799.45 13599.02 218
1112_ss98.98 10698.77 11799.59 7799.68 10499.02 13699.25 25399.48 14697.23 22499.13 20299.58 20696.93 13299.90 10698.87 9598.78 18999.84 30
WTY-MVS99.06 9798.88 10499.61 7499.62 13099.16 11599.37 21399.56 6198.04 14499.53 11199.62 19396.84 13399.94 6198.85 10298.49 20299.72 93
FC-MVSNet-test98.75 13698.62 13799.15 16099.08 27499.45 8499.86 1299.60 4698.23 11198.70 27299.82 6896.80 13499.22 29499.07 7396.38 28298.79 234
Effi-MVS+-dtu98.78 13398.89 10398.47 25099.33 21596.91 28399.57 11499.30 26398.47 8499.41 13798.99 32796.78 13599.74 18698.73 11999.38 13998.74 245
Test_1112_low_res98.89 11398.66 12999.57 8299.69 10098.95 15299.03 29499.47 16496.98 24599.15 20099.23 30296.77 13699.89 11698.83 10898.78 18999.86 23
FIs98.78 13398.63 13299.23 15199.18 25199.54 7199.83 1699.59 4998.28 10398.79 25999.81 8196.75 13799.37 26399.08 7296.38 28298.78 235
PVSNet96.02 1798.85 12598.84 11098.89 19799.73 8297.28 25698.32 36299.60 4697.86 15799.50 11699.57 21096.75 13799.86 12998.56 14899.70 11299.54 150
nrg03098.64 14998.42 15599.28 14499.05 28199.69 4799.81 2099.46 17398.04 14499.01 22499.82 6896.69 13999.38 25899.34 4594.59 32398.78 235
CHOSEN 280x42099.12 8599.13 6699.08 16399.66 11397.89 23698.43 35699.71 1398.88 5199.62 9099.76 12596.63 14099.70 20899.46 3499.99 199.66 115
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23497.38 25498.56 35199.31 25996.65 26798.88 24599.52 22896.58 14199.12 31197.39 25195.53 30598.47 317
cdsmvs_eth3d_5k24.64 35332.85 3560.00 3690.00 3920.00 3930.00 38099.51 1070.00 3870.00 38899.56 21396.58 1410.00 3880.00 3860.00 3860.00 384
IS-MVSNet99.05 9898.87 10599.57 8299.73 8299.32 9599.75 4099.20 28298.02 14799.56 10499.86 4296.54 14399.67 21598.09 18599.13 16099.73 87
diffmvspermissive99.14 7799.02 8199.51 10399.61 13498.96 14799.28 23899.49 13498.46 8599.72 5799.71 14496.50 14499.88 12199.31 4899.11 16199.67 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet99.25 6499.14 6599.59 7799.41 19499.16 11599.35 22299.57 5698.82 5799.51 11599.61 19796.46 14599.95 5299.59 1599.98 299.65 119
ppachtmachnet_test97.49 27897.45 25097.61 31198.62 33395.24 32798.80 33099.46 17396.11 31098.22 30799.62 19396.45 14698.97 33593.77 33895.97 29498.61 303
HY-MVS97.30 798.85 12598.64 13199.47 11099.42 19199.08 12999.62 8699.36 22997.39 21199.28 17099.68 16496.44 14799.92 8598.37 16598.22 21399.40 184
UniMVSNet_NR-MVSNet98.22 17697.97 19498.96 18198.92 29698.98 14099.48 16799.53 8897.76 17098.71 26699.46 24996.43 14899.22 29498.57 14592.87 34598.69 259
Effi-MVS+98.81 12998.59 14499.48 10799.46 18399.12 12498.08 36899.50 12697.50 19899.38 14899.41 25996.37 14999.81 16399.11 6898.54 19999.51 162
AdaColmapbinary99.01 10598.80 11399.66 5999.56 14999.54 7199.18 26499.70 1598.18 12199.35 15799.63 18896.32 15099.90 10697.48 24399.77 9799.55 148
UniMVSNet (Re)98.29 17398.00 19199.13 16199.00 28699.36 9399.49 16399.51 10797.95 15098.97 23299.13 31396.30 15199.38 25898.36 16793.34 33898.66 279
LCM-MVSNet-Re97.83 23598.15 17296.87 33199.30 22392.25 36099.59 9998.26 35297.43 20696.20 34799.13 31396.27 15298.73 34698.17 18198.99 17399.64 126
PAPM97.59 26997.09 28599.07 16599.06 27898.26 21598.30 36399.10 29394.88 33298.08 31299.34 28096.27 15299.64 22689.87 36198.92 17899.31 193
Fast-Effi-MVS+98.70 14198.43 15499.51 10399.51 16299.28 10199.52 14199.47 16496.11 31099.01 22499.34 28096.20 15499.84 14197.88 20198.82 18699.39 185
EPNet_dtu98.03 20397.96 19598.23 27498.27 34595.54 32099.23 25698.75 33399.02 3097.82 32399.71 14496.11 15599.48 24293.04 34799.65 12099.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7599.02 8199.53 9599.66 11399.14 12199.72 4799.48 14698.35 9799.42 13399.84 5796.07 15699.79 17299.51 2599.14 15999.67 112
D2MVS98.41 16298.50 15198.15 28199.26 23496.62 29399.40 20299.61 4197.71 17698.98 23099.36 27396.04 15799.67 21598.70 12297.41 25898.15 339
casdiffmvs_mvgpermissive99.15 7599.02 8199.55 8699.66 11399.09 12699.64 7699.56 6198.26 10699.45 12499.87 3796.03 15899.81 16399.54 2099.15 15899.73 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21397.43 25398.88 32299.36 22996.48 28398.80 25799.55 21695.98 15998.91 33997.27 25595.50 30698.51 313
EPNet98.86 11898.71 12299.30 13897.20 36398.18 21899.62 8698.91 31899.28 1098.63 28399.81 8195.96 16099.99 499.24 5899.72 10899.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11598.72 12099.31 13399.86 2098.48 20499.56 12099.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
TestCases99.31 13399.86 2098.48 20499.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
3Dnovator97.25 999.24 6599.05 7499.81 3699.12 26499.66 5399.84 1399.74 1099.09 2498.92 23999.90 1995.94 16399.98 1098.95 8399.92 1699.79 64
casdiffmvspermissive99.13 7998.98 9099.56 8499.65 11999.16 11599.56 12099.50 12698.33 10099.41 13799.86 4295.92 16499.83 15299.45 3599.16 15599.70 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF98.22 17698.62 13796.99 32699.82 3891.58 36399.72 4799.44 19296.61 27299.66 7399.89 2395.92 16499.82 15897.46 24699.10 16499.57 145
pmmvs498.13 18797.90 20298.81 21698.61 33598.87 16298.99 30499.21 28196.44 28699.06 21899.58 20695.90 16699.11 31297.18 26496.11 28898.46 320
HyFIR lowres test99.11 8998.92 9799.65 6399.90 499.37 9199.02 29799.91 397.67 18199.59 9999.75 12895.90 16699.73 19299.53 2299.02 17299.86 23
COLMAP_ROBcopyleft97.56 698.86 11898.75 11999.17 15699.88 1198.53 19499.34 22599.59 4997.55 19198.70 27299.89 2395.83 16899.90 10698.10 18499.90 2999.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5499.19 6199.64 6899.82 3899.23 10899.62 8699.55 6998.94 4699.63 8699.95 295.82 16999.94 6199.37 4099.97 599.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14698.30 16499.80 3899.20 24699.67 5199.77 3499.72 1194.74 33598.73 26499.90 1995.78 17099.98 1096.96 27599.88 4199.76 77
BH-untuned98.42 16098.36 15898.59 23199.49 17396.70 28999.27 24399.13 29197.24 22398.80 25799.38 26795.75 17199.74 18697.07 26999.16 15599.33 191
test_djsdf98.67 14698.57 14698.98 17898.70 32698.91 15999.88 499.46 17397.55 19199.22 18599.88 2995.73 17299.28 28299.03 7597.62 23598.75 242
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23997.95 23398.71 33999.35 23496.50 27998.60 28899.54 22195.72 17399.03 32197.21 25895.77 29798.46 320
bld_raw_dy_0_6498.69 14398.58 14598.99 17698.88 30098.96 14799.80 2599.41 20397.91 15499.32 16299.87 3795.70 17499.31 27999.09 7097.27 26498.71 250
3Dnovator+97.12 1399.18 6998.97 9199.82 3399.17 25799.68 4899.81 2099.51 10799.20 1298.72 26599.89 2395.68 17599.97 1798.86 10099.86 5299.81 51
cl____98.01 20897.84 20998.55 24099.25 23897.97 22998.71 33999.34 23896.47 28598.59 28999.54 22195.65 17699.21 29997.21 25895.77 29798.46 320
VNet99.11 8998.90 10099.73 5499.52 16099.56 6799.41 19499.39 21499.01 3299.74 5199.78 11195.56 17799.92 8599.52 2498.18 21899.72 93
WR-MVS_H98.13 18797.87 20798.90 19499.02 28498.84 16799.70 5099.59 4997.27 21998.40 29899.19 30795.53 17899.23 29198.34 16893.78 33598.61 303
CHOSEN 1792x268899.19 6799.10 6999.45 11399.89 898.52 19899.39 20699.94 198.73 6799.11 20699.89 2395.50 17999.94 6199.50 2699.97 599.89 10
Vis-MVSNet (Re-imp)98.87 11598.72 12099.31 13399.71 9198.88 16199.80 2599.44 19297.91 15499.36 15499.78 11195.49 18099.43 25497.91 19999.11 16199.62 132
PatchMatch-RL98.84 12898.62 13799.52 10199.71 9199.28 10199.06 28799.77 997.74 17499.50 11699.53 22595.41 18199.84 14197.17 26599.64 12199.44 178
FA-MVS(test-final)98.75 13698.53 15099.41 11999.55 15399.05 13499.80 2599.01 30496.59 27699.58 10099.59 20295.39 18299.90 10697.78 21199.49 13399.28 195
test_yl98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
DCV-MVSNet98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
tpmrst98.33 16998.48 15297.90 29699.16 25994.78 33599.31 23099.11 29297.27 21999.45 12499.59 20295.33 18599.84 14198.48 15598.61 19299.09 207
MVP-Stereo97.81 24097.75 22197.99 29197.53 35696.60 29598.96 31198.85 32597.22 22597.23 33499.36 27395.28 18699.46 24495.51 31599.78 9497.92 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 10898.87 10599.25 14799.33 21598.42 21099.08 28399.30 26399.16 1399.43 13099.75 12895.27 18799.97 1798.56 14899.95 999.36 187
XVG-OURS98.73 13998.68 12598.88 19999.70 9697.73 24398.92 31899.55 6998.52 8199.45 12499.84 5795.27 18799.91 9598.08 18998.84 18499.00 219
BH-w/o98.00 21097.89 20698.32 26699.35 20996.20 30799.01 30298.90 32096.42 28898.38 29999.00 32695.26 18999.72 19696.06 30298.61 19299.03 216
EU-MVSNet97.98 21298.03 18897.81 30498.72 32396.65 29299.66 6799.66 2798.09 13398.35 30199.82 6895.25 19098.01 35897.41 25095.30 30998.78 235
GeoE98.85 12598.62 13799.53 9599.61 13499.08 12999.80 2599.51 10797.10 23799.31 16499.78 11195.23 19199.77 17998.21 17699.03 17099.75 78
MDTV_nov1_ep13_2view95.18 33099.35 22296.84 25699.58 10095.19 19297.82 20899.46 175
JIA-IIPM97.50 27597.02 28798.93 18698.73 32197.80 24199.30 23298.97 30891.73 35898.91 24094.86 37295.10 19399.71 20297.58 23197.98 22599.28 195
NR-MVSNet97.97 21597.61 23499.02 17198.87 30499.26 10599.47 17299.42 20097.63 18497.08 33999.50 23495.07 19499.13 30797.86 20493.59 33698.68 264
tpmvs97.98 21298.02 19097.84 30099.04 28294.73 33699.31 23099.20 28296.10 31498.76 26299.42 25594.94 19599.81 16396.97 27498.45 20398.97 223
h-mvs3397.70 25897.28 27798.97 18099.70 9697.27 25799.36 21799.45 18498.94 4699.66 7399.64 18294.93 19699.99 499.48 3184.36 36899.65 119
hse-mvs297.50 27597.14 28398.59 23199.49 17397.05 27099.28 23899.22 27898.94 4699.66 7399.42 25594.93 19699.65 22399.48 3183.80 37099.08 208
v897.95 21797.63 23398.93 18698.95 29498.81 17399.80 2599.41 20396.03 31599.10 20999.42 25594.92 19899.30 28096.94 27794.08 33298.66 279
PatchmatchNetpermissive98.31 17098.36 15898.19 27699.16 25995.32 32699.27 24398.92 31497.37 21299.37 15099.58 20694.90 19999.70 20897.43 24999.21 15299.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 22797.52 24198.92 18898.76 31998.58 19099.84 1399.46 17396.20 30198.91 24099.70 14894.89 20099.44 25096.03 30393.89 33498.75 242
sam_mvs194.86 20199.52 156
iter_conf_final98.71 14098.61 14398.99 17699.49 17398.96 14799.63 8099.41 20398.19 11799.39 14599.77 11994.82 20299.38 25899.30 5197.52 24398.64 283
DU-MVS98.08 19397.79 21198.96 18198.87 30498.98 14099.41 19499.45 18497.87 15698.71 26699.50 23494.82 20299.22 29498.57 14592.87 34598.68 264
Baseline_NR-MVSNet97.76 24597.45 25098.68 22799.09 27298.29 21399.41 19498.85 32595.65 32098.63 28399.67 17094.82 20299.10 31498.07 19292.89 34498.64 283
patchmatchnet-post98.70 34294.79 20599.74 186
Patchmatch-RL test95.84 31195.81 31095.95 34095.61 37190.57 36598.24 36498.39 35195.10 32995.20 35598.67 34394.78 20697.77 36396.28 30090.02 35999.51 162
alignmvs98.81 12998.56 14899.58 8099.43 18999.42 8799.51 14798.96 31098.61 7499.35 15798.92 33494.78 20699.77 17999.35 4198.11 22399.54 150
MDTV_nov1_ep1398.32 16299.11 26694.44 34199.27 24398.74 33697.51 19799.40 14299.62 19394.78 20699.76 18397.59 23098.81 188
Vis-MVSNetpermissive99.12 8598.97 9199.56 8499.78 5199.10 12599.68 5999.66 2798.49 8399.86 1999.87 3794.77 20999.84 14199.19 6199.41 13899.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15898.28 16598.94 18498.50 34198.96 14799.77 3499.50 12697.07 23998.87 24899.77 11994.76 21099.28 28298.66 12997.60 23698.57 309
v1097.85 23097.52 24198.86 20798.99 28798.67 18199.75 4099.41 20395.70 31998.98 23099.41 25994.75 21199.23 29196.01 30494.63 32298.67 271
OpenMVScopyleft96.50 1698.47 15698.12 17699.52 10199.04 28299.53 7499.82 1799.72 1194.56 33898.08 31299.88 2994.73 21299.98 1097.47 24599.76 10099.06 214
sam_mvs94.72 213
v14897.79 24397.55 23798.50 24398.74 32097.72 24499.54 13499.33 24596.26 29798.90 24299.51 23194.68 21499.14 30497.83 20793.15 34298.63 291
v114497.98 21297.69 22698.85 21098.87 30498.66 18299.54 13499.35 23496.27 29699.23 18499.35 27694.67 21599.23 29196.73 28695.16 31298.68 264
V4298.06 19597.79 21198.86 20798.98 29098.84 16799.69 5399.34 23896.53 27899.30 16699.37 27094.67 21599.32 27697.57 23594.66 32198.42 323
test_post65.99 38394.65 21799.73 192
baseline198.31 17097.95 19799.38 12499.50 17198.74 17699.59 9998.93 31298.41 9099.14 20199.60 20094.59 21899.79 17298.48 15593.29 33999.61 134
DSMNet-mixed97.25 28597.35 26796.95 32997.84 35193.61 35399.57 11496.63 37496.13 30998.87 24898.61 34694.59 21897.70 36595.08 32398.86 18299.55 148
SDMVSNet99.11 8998.90 10099.75 4999.81 4299.59 6299.81 2099.65 3298.78 6599.64 8399.88 2994.56 22099.93 7499.67 1198.26 21199.72 93
Patchmatch-test97.93 21897.65 23098.77 22199.18 25197.07 26899.03 29499.14 29096.16 30598.74 26399.57 21094.56 22099.72 19693.36 34399.11 16199.52 156
PCF-MVS97.08 1497.66 26597.06 28699.47 11099.61 13499.09 12698.04 36999.25 27491.24 36098.51 29299.70 14894.55 22299.91 9592.76 35199.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 29196.44 29698.79 21998.99 28798.34 21299.16 26699.07 29992.13 35699.52 11397.31 36594.54 22398.98 32888.54 36698.73 19199.03 216
CVMVSNet98.57 15298.67 12698.30 26899.35 20995.59 31799.50 15399.55 6998.60 7599.39 14599.83 6194.48 22499.45 24598.75 11698.56 19899.85 26
test-LLR98.06 19597.90 20298.55 24098.79 31297.10 26498.67 34197.75 36297.34 21398.61 28698.85 33594.45 22599.45 24597.25 25699.38 13999.10 203
test0.0.03 197.71 25797.42 26098.56 23898.41 34497.82 24098.78 33298.63 34597.34 21398.05 31698.98 32994.45 22598.98 32895.04 32497.15 27098.89 228
v14419297.92 22197.60 23598.87 20398.83 31098.65 18399.55 13099.34 23896.20 30199.32 16299.40 26294.36 22799.26 28696.37 29995.03 31598.70 255
CR-MVSNet98.17 18397.93 20098.87 20399.18 25198.49 20299.22 26099.33 24596.96 24799.56 10499.38 26794.33 22899.00 32694.83 32798.58 19599.14 200
Patchmtry97.75 24997.40 26298.81 21699.10 26998.87 16299.11 28099.33 24594.83 33398.81 25599.38 26794.33 22899.02 32396.10 30195.57 30398.53 311
tpm cat197.39 28197.36 26597.50 31599.17 25793.73 34999.43 18599.31 25991.27 35998.71 26699.08 31794.31 23099.77 17996.41 29898.50 20199.00 219
TranMVSNet+NR-MVSNet97.93 21897.66 22998.76 22298.78 31598.62 18699.65 7399.49 13497.76 17098.49 29499.60 20094.23 23198.97 33598.00 19492.90 34398.70 255
v2v48298.06 19597.77 21698.92 18898.90 29798.82 17199.57 11499.36 22996.65 26799.19 19499.35 27694.20 23299.25 28797.72 22194.97 31698.69 259
XVG-OURS-SEG-HR98.69 14398.62 13798.89 19799.71 9197.74 24299.12 27499.54 7798.44 8999.42 13399.71 14494.20 23299.92 8598.54 15298.90 18099.00 219
ab-mvs98.86 11898.63 13299.54 8799.64 12199.19 11099.44 18199.54 7797.77 16999.30 16699.81 8194.20 23299.93 7499.17 6498.82 18699.49 166
test_post199.23 25665.14 38494.18 23599.71 20297.58 231
ADS-MVSNet298.02 20598.07 18597.87 29799.33 21595.19 32999.23 25699.08 29696.24 29899.10 20999.67 17094.11 23698.93 33896.81 28399.05 16899.48 167
ADS-MVSNet98.20 17998.08 18298.56 23899.33 21596.48 29899.23 25699.15 28896.24 29899.10 20999.67 17094.11 23699.71 20296.81 28399.05 16899.48 167
RPMNet96.72 29595.90 30799.19 15499.18 25198.49 20299.22 26099.52 9388.72 36899.56 10497.38 36294.08 23899.95 5286.87 37398.58 19599.14 200
v119297.81 24097.44 25598.91 19298.88 30098.68 18099.51 14799.34 23896.18 30399.20 19199.34 28094.03 23999.36 26795.32 32095.18 31198.69 259
dmvs_testset95.02 31996.12 30191.72 35299.10 26980.43 37799.58 10797.87 36197.47 19995.22 35498.82 33793.99 24095.18 37788.09 36894.91 31999.56 147
v192192097.80 24297.45 25098.84 21198.80 31198.53 19499.52 14199.34 23896.15 30799.24 18099.47 24593.98 24199.29 28195.40 31895.13 31398.69 259
Anonymous2023120696.22 30396.03 30496.79 33397.31 36194.14 34599.63 8099.08 29696.17 30497.04 34099.06 32093.94 24297.76 36486.96 37295.06 31498.47 317
WR-MVS98.06 19597.73 22399.06 16698.86 30799.25 10699.19 26399.35 23497.30 21798.66 27599.43 25393.94 24299.21 29998.58 14294.28 32898.71 250
N_pmnet94.95 32295.83 30992.31 35098.47 34279.33 37999.12 27492.81 38693.87 34397.68 32699.13 31393.87 24499.01 32591.38 35696.19 28698.59 307
MVSTER98.49 15498.32 16299.00 17499.35 20999.02 13699.54 13499.38 22097.41 20999.20 19199.73 13993.86 24599.36 26798.87 9597.56 24098.62 294
FE-MVS98.48 15598.17 16999.40 12099.54 15598.96 14799.68 5998.81 32995.54 32199.62 9099.70 14893.82 24699.93 7497.35 25299.46 13499.32 192
CP-MVSNet98.09 19197.78 21499.01 17298.97 29299.24 10799.67 6299.46 17397.25 22198.48 29599.64 18293.79 24799.06 31798.63 13294.10 33198.74 245
cascas97.69 25997.43 25998.48 24698.60 33697.30 25598.18 36799.39 21492.96 35398.41 29798.78 34093.77 24899.27 28598.16 18298.61 19298.86 229
v124097.69 25997.32 27398.79 21998.85 30898.43 20899.48 16799.36 22996.11 31099.27 17499.36 27393.76 24999.24 29094.46 33095.23 31098.70 255
test20.0396.12 30795.96 30696.63 33497.44 35795.45 32399.51 14799.38 22096.55 27796.16 34899.25 30093.76 24996.17 37487.35 37194.22 32998.27 333
dmvs_re98.08 19398.16 17097.85 29899.55 15394.67 33899.70 5098.92 31498.15 12399.06 21899.35 27693.67 25199.25 28797.77 21497.25 26599.64 126
iter_conf0598.55 15398.44 15398.87 20399.34 21398.60 18999.55 13099.42 20098.21 11499.37 15099.77 11993.55 25299.38 25899.30 5197.48 25198.63 291
baseline297.87 22797.55 23798.82 21499.18 25198.02 22699.41 19496.58 37596.97 24696.51 34499.17 30893.43 25399.57 23697.71 22299.03 17098.86 229
TransMVSNet (Re)97.15 28896.58 29398.86 20799.12 26498.85 16699.49 16398.91 31895.48 32297.16 33799.80 9493.38 25499.11 31294.16 33691.73 35098.62 294
tfpnnormal97.84 23397.47 24798.98 17899.20 24699.22 10999.64 7699.61 4196.32 29298.27 30699.70 14893.35 25599.44 25095.69 31195.40 30798.27 333
Anonymous2023121197.88 22597.54 24098.90 19499.71 9198.53 19499.48 16799.57 5694.16 34198.81 25599.68 16493.23 25699.42 25598.84 10594.42 32698.76 240
XXY-MVS98.38 16698.09 18199.24 14999.26 23499.32 9599.56 12099.55 6997.45 20398.71 26699.83 6193.23 25699.63 23198.88 9296.32 28498.76 240
jajsoiax98.43 15998.28 16598.88 19998.60 33698.43 20899.82 1799.53 8898.19 11798.63 28399.80 9493.22 25899.44 25099.22 5997.50 24798.77 238
test_cas_vis1_n_192099.16 7399.01 8599.61 7499.81 4298.86 16599.65 7399.64 3499.39 599.97 799.94 493.20 25999.98 1099.55 1999.91 2199.99 1
MDA-MVSNet_test_wron95.45 31594.60 32298.01 28898.16 34797.21 26299.11 28099.24 27693.49 34880.73 37898.98 32993.02 26098.18 35394.22 33594.45 32598.64 283
ACMM97.58 598.37 16798.34 16098.48 24699.41 19497.10 26499.56 12099.45 18498.53 8099.04 22199.85 4793.00 26199.71 20298.74 11797.45 25398.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 20397.76 22098.84 21199.39 20298.98 14099.40 20299.38 22096.67 26599.07 21499.28 29492.93 26298.98 32897.10 26696.65 27598.56 310
DTE-MVSNet97.51 27497.19 28298.46 25198.63 33298.13 22299.84 1399.48 14696.68 26497.97 31999.67 17092.92 26398.56 34796.88 28292.60 34898.70 255
CLD-MVS98.16 18498.10 17898.33 26499.29 22796.82 28698.75 33599.44 19297.83 16299.13 20299.55 21692.92 26399.67 21598.32 17197.69 23298.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 16298.08 18299.40 12099.41 19498.83 17099.30 23298.77 33297.70 17798.94 23699.65 17692.91 26599.74 18696.52 29499.55 13099.64 126
YYNet195.36 31794.51 32497.92 29497.89 35097.10 26499.10 28299.23 27793.26 35180.77 37799.04 32292.81 26698.02 35794.30 33194.18 33098.64 283
mvs_tets98.40 16598.23 16798.91 19298.67 32998.51 20099.66 6799.53 8898.19 11798.65 28199.81 8192.75 26799.44 25099.31 4897.48 25198.77 238
IterMVS97.83 23597.77 21698.02 28799.58 14396.27 30599.02 29799.48 14697.22 22598.71 26699.70 14892.75 26799.13 30797.46 24696.00 29098.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11598.69 12499.40 12099.22 24398.72 17899.44 18199.68 2099.24 1199.18 19799.42 25592.74 26999.96 2599.34 4599.94 1399.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 23897.75 22198.06 28499.57 14596.36 30299.02 29799.49 13497.18 22798.71 26699.72 14392.72 27099.14 30497.44 24895.86 29698.67 271
SCA98.19 18098.16 17098.27 27399.30 22395.55 31899.07 28498.97 30897.57 18999.43 13099.57 21092.72 27099.74 18697.58 23199.20 15399.52 156
HQP_MVS98.27 17598.22 16898.44 25599.29 22796.97 27999.39 20699.47 16498.97 4399.11 20699.61 19792.71 27299.69 21397.78 21197.63 23398.67 271
plane_prior699.27 23296.98 27892.71 272
CL-MVSNet_self_test94.49 32593.97 32896.08 33996.16 36893.67 35298.33 36199.38 22095.13 32597.33 33298.15 35592.69 27496.57 37288.67 36579.87 37497.99 349
dp97.75 24997.80 21097.59 31299.10 26993.71 35099.32 22898.88 32296.48 28399.08 21399.55 21692.67 27599.82 15896.52 29498.58 19599.24 197
PEN-MVS97.76 24597.44 25598.72 22498.77 31898.54 19399.78 3299.51 10797.06 24198.29 30599.64 18292.63 27698.89 34198.09 18593.16 34198.72 248
LPG-MVS_test98.22 17698.13 17598.49 24499.33 21597.05 27099.58 10799.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
LGP-MVS_train98.49 24499.33 21597.05 27099.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
VPA-MVSNet98.29 17397.95 19799.30 13899.16 25999.54 7199.50 15399.58 5398.27 10599.35 15799.37 27092.53 27999.65 22399.35 4194.46 32498.72 248
TR-MVS97.76 24597.41 26198.82 21499.06 27897.87 23798.87 32498.56 34796.63 27198.68 27499.22 30392.49 28099.65 22395.40 31897.79 22998.95 227
pm-mvs197.68 26197.28 27798.88 19999.06 27898.62 18699.50 15399.45 18496.32 29297.87 32199.79 10592.47 28199.35 27097.54 23893.54 33798.67 271
HQP2-MVS92.47 281
HQP-MVS98.02 20597.90 20298.37 26299.19 24896.83 28498.98 30799.39 21498.24 10898.66 27599.40 26292.47 28199.64 22697.19 26297.58 23898.64 283
EPMVS97.82 23897.65 23098.35 26398.88 30095.98 31099.49 16394.71 38197.57 18999.26 17899.48 24292.46 28499.71 20297.87 20399.08 16699.35 188
PS-CasMVS97.93 21897.59 23698.95 18398.99 28799.06 13299.68 5999.52 9397.13 23198.31 30399.68 16492.44 28599.05 31898.51 15394.08 33298.75 242
cl2297.85 23097.64 23298.48 24699.09 27297.87 23798.60 34899.33 24597.11 23698.87 24899.22 30392.38 28699.17 30398.21 17695.99 29198.42 323
CostFormer97.72 25497.73 22397.71 30899.15 26294.02 34699.54 13499.02 30394.67 33699.04 22199.35 27692.35 28799.77 17998.50 15497.94 22699.34 190
OPM-MVS98.19 18098.10 17898.45 25298.88 30097.07 26899.28 23899.38 22098.57 7699.22 18599.81 8192.12 28899.66 21898.08 18997.54 24298.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.49 29995.64 31399.05 16899.53 15698.82 17198.84 32697.51 36797.63 18484.77 37299.21 30692.09 28998.91 33998.98 8092.21 34999.41 182
sd_testset98.75 13698.57 14699.29 14199.81 4298.26 21599.56 12099.62 3698.78 6599.64 8399.88 2992.02 29099.88 12199.54 2098.26 21199.72 93
AUN-MVS96.88 29296.31 29898.59 23199.48 18197.04 27399.27 24399.22 27897.44 20598.51 29299.41 25991.97 29199.66 21897.71 22283.83 36999.07 213
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20697.01 27599.44 18199.49 13497.54 19498.45 29699.79 10591.95 29299.72 19697.91 19997.49 25098.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 17297.98 19399.26 14699.57 14598.16 21999.41 19498.55 34896.03 31599.19 19499.74 13391.87 29399.92 8599.16 6598.29 21099.70 103
KD-MVS_self_test95.00 32094.34 32596.96 32897.07 36695.39 32599.56 12099.44 19295.11 32797.13 33897.32 36491.86 29497.27 36890.35 36081.23 37398.23 337
tpm97.67 26497.55 23798.03 28599.02 28495.01 33299.43 18598.54 34996.44 28699.12 20499.34 28091.83 29599.60 23497.75 21796.46 28099.48 167
thres100view90097.76 24597.45 25098.69 22699.72 8697.86 23999.59 9998.74 33697.93 15299.26 17898.62 34491.75 29699.83 15293.22 34498.18 21898.37 329
thres600view797.86 22997.51 24398.92 18899.72 8697.95 23399.59 9998.74 33697.94 15199.27 17498.62 34491.75 29699.86 12993.73 33998.19 21798.96 225
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 24096.80 28799.70 5099.60 4697.12 23398.18 30999.70 14891.73 29899.72 19698.39 16297.45 25398.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 22597.77 21698.19 27698.71 32596.53 29699.88 499.00 30597.79 16798.78 26099.94 491.68 29999.35 27097.21 25896.99 27398.69 259
tfpn200view997.72 25497.38 26398.72 22499.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.37 329
thres40097.77 24497.38 26398.92 18899.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.96 225
thisisatest051598.14 18697.79 21199.19 15499.50 17198.50 20198.61 34696.82 37196.95 24999.54 10999.43 25391.66 30299.86 12998.08 18999.51 13299.22 198
thres20097.61 26897.28 27798.62 22999.64 12198.03 22599.26 25198.74 33697.68 17999.09 21298.32 35391.66 30299.81 16392.88 34898.22 21398.03 345
new_pmnet96.38 30296.03 30497.41 31698.13 34895.16 33199.05 28999.20 28293.94 34297.39 33198.79 33991.61 30499.04 31990.43 35995.77 29798.05 344
pmmvs597.52 27297.30 27598.16 27898.57 33896.73 28899.27 24398.90 32096.14 30898.37 30099.53 22591.54 30599.14 30497.51 24095.87 29598.63 291
test_fmvs198.88 11498.79 11699.16 15799.69 10097.61 24999.55 13099.49 13499.32 899.98 499.91 1391.41 30699.96 2599.82 699.92 1699.90 7
tttt051798.42 16098.14 17399.28 14499.66 11398.38 21199.74 4396.85 37097.68 17999.79 3499.74 13391.39 30799.89 11698.83 10899.56 12899.57 145
tpm297.44 28097.34 27097.74 30799.15 26294.36 34399.45 17698.94 31193.45 35098.90 24299.44 25191.35 30899.59 23597.31 25398.07 22499.29 194
MVS-HIRNet95.75 31395.16 31897.51 31499.30 22393.69 35198.88 32295.78 37685.09 37198.78 26092.65 37491.29 30999.37 26394.85 32699.85 5999.46 175
thisisatest053098.35 16898.03 18899.31 13399.63 12498.56 19199.54 13496.75 37297.53 19599.73 5299.65 17691.25 31099.89 11698.62 13399.56 12899.48 167
testgi97.65 26697.50 24498.13 28299.36 20896.45 29999.42 19299.48 14697.76 17097.87 32199.45 25091.09 31198.81 34294.53 32998.52 20099.13 202
ITE_SJBPF98.08 28399.29 22796.37 30198.92 31498.34 9898.83 25399.75 12891.09 31199.62 23295.82 30697.40 25998.25 335
DeepMVS_CXcopyleft93.34 34799.29 22782.27 37499.22 27885.15 37096.33 34699.05 32190.97 31399.73 19293.57 34197.77 23098.01 346
ACMH97.28 898.10 19097.99 19298.44 25599.41 19496.96 28199.60 9399.56 6198.09 13398.15 31099.91 1390.87 31499.70 20898.88 9297.45 25398.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111198.04 20198.11 17797.83 30199.74 7593.82 34799.58 10795.40 37899.12 1899.65 7999.93 790.73 31599.84 14199.43 3699.38 13999.82 44
ECVR-MVScopyleft98.04 20198.05 18698.00 29099.74 7594.37 34299.59 9994.98 37999.13 1699.66 7399.93 790.67 31699.84 14199.40 3799.38 13999.80 60
SixPastTwentyTwo97.50 27597.33 27298.03 28598.65 33096.23 30699.77 3498.68 34497.14 23097.90 32099.93 790.45 31799.18 30297.00 27196.43 28198.67 271
MIMVSNet97.73 25297.45 25098.57 23599.45 18897.50 25199.02 29798.98 30796.11 31099.41 13799.14 31290.28 31898.74 34595.74 30998.93 17699.47 173
GBi-Net97.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
test197.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
FMVSNet297.72 25497.36 26598.80 21899.51 16298.84 16799.45 17699.42 20096.49 28098.86 25299.29 29290.26 31998.98 32896.44 29696.56 27898.58 308
Anonymous2024052998.09 19197.68 22799.34 12699.66 11398.44 20799.40 20299.43 19893.67 34599.22 18599.89 2390.23 32299.93 7499.26 5798.33 20599.66 115
ACMH+97.24 1097.92 22197.78 21498.32 26699.46 18396.68 29199.56 12099.54 7798.41 9097.79 32599.87 3790.18 32399.66 21898.05 19397.18 26998.62 294
LF4IMVS97.52 27297.46 24997.70 30998.98 29095.55 31899.29 23698.82 32898.07 13898.66 27599.64 18289.97 32499.61 23397.01 27096.68 27497.94 352
GA-MVS97.85 23097.47 24799.00 17499.38 20397.99 22898.57 34999.15 28897.04 24298.90 24299.30 29089.83 32599.38 25896.70 28898.33 20599.62 132
PVSNet_094.43 1996.09 30895.47 31497.94 29399.31 22294.34 34497.81 37099.70 1597.12 23397.46 32998.75 34189.71 32699.79 17297.69 22581.69 37299.68 109
Anonymous2024052196.20 30595.89 30897.13 32397.72 35594.96 33499.79 3199.29 26793.01 35297.20 33699.03 32389.69 32798.36 35191.16 35796.13 28798.07 342
XVG-ACMP-BASELINE97.83 23597.71 22598.20 27599.11 26696.33 30399.41 19499.52 9398.06 14299.05 22099.50 23489.64 32899.73 19297.73 21997.38 26198.53 311
gg-mvs-nofinetune96.17 30695.32 31798.73 22398.79 31298.14 22199.38 21194.09 38291.07 36298.07 31591.04 37889.62 32999.35 27096.75 28599.09 16598.68 264
GG-mvs-BLEND98.45 25298.55 33998.16 21999.43 18593.68 38397.23 33498.46 34889.30 33099.22 29495.43 31798.22 21397.98 350
USDC97.34 28297.20 28197.75 30699.07 27595.20 32898.51 35399.04 30297.99 14898.31 30399.86 4289.02 33199.55 23995.67 31397.36 26298.49 314
MS-PatchMatch97.24 28797.32 27396.99 32698.45 34393.51 35498.82 32899.32 25597.41 20998.13 31199.30 29088.99 33299.56 23795.68 31299.80 8797.90 355
VPNet97.84 23397.44 25599.01 17299.21 24498.94 15599.48 16799.57 5698.38 9299.28 17099.73 13988.89 33399.39 25799.19 6193.27 34098.71 250
K. test v397.10 29096.79 29198.01 28898.72 32396.33 30399.87 997.05 36997.59 18696.16 34899.80 9488.71 33499.04 31996.69 28996.55 27998.65 281
lessismore_v097.79 30598.69 32795.44 32494.75 38095.71 35299.87 3788.69 33599.32 27695.89 30594.93 31898.62 294
tt080597.97 21597.77 21698.57 23599.59 14196.61 29499.45 17699.08 29698.21 11498.88 24599.80 9488.66 33699.70 20898.58 14297.72 23199.39 185
TDRefinement95.42 31694.57 32397.97 29289.83 38296.11 30999.48 16798.75 33396.74 26096.68 34399.88 2988.65 33799.71 20298.37 16582.74 37198.09 341
TESTMET0.1,197.55 27097.27 28098.40 25998.93 29596.53 29698.67 34197.61 36596.96 24798.64 28299.28 29488.63 33899.45 24597.30 25499.38 13999.21 199
test_040296.64 29696.24 29997.85 29898.85 30896.43 30099.44 18199.26 27293.52 34796.98 34199.52 22888.52 33999.20 30192.58 35397.50 24797.93 353
UnsupCasMVSNet_eth96.44 30096.12 30197.40 31798.65 33095.65 31599.36 21799.51 10797.13 23196.04 35098.99 32788.40 34098.17 35496.71 28790.27 35898.40 326
MDA-MVSNet-bldmvs94.96 32193.98 32797.92 29498.24 34697.27 25799.15 26999.33 24593.80 34480.09 37999.03 32388.31 34197.86 36293.49 34294.36 32798.62 294
test-mter97.49 27897.13 28498.55 24098.79 31297.10 26498.67 34197.75 36296.65 26798.61 28698.85 33588.23 34299.45 24597.25 25699.38 13999.10 203
TinyColmap97.12 28996.89 28997.83 30199.07 27595.52 32198.57 34998.74 33697.58 18897.81 32499.79 10588.16 34399.56 23795.10 32297.21 26798.39 327
pmmvs-eth3d95.34 31894.73 32197.15 32195.53 37395.94 31199.35 22299.10 29395.13 32593.55 36397.54 36088.15 34497.91 36094.58 32889.69 36197.61 359
KD-MVS_2432*160094.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
miper_refine_blended94.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
new-patchmatchnet94.48 32694.08 32695.67 34195.08 37592.41 35999.18 26499.28 26994.55 33993.49 36497.37 36387.86 34797.01 37091.57 35588.36 36297.61 359
test250696.81 29496.65 29297.29 32099.74 7592.21 36199.60 9385.06 38999.13 1699.77 4299.93 787.82 34899.85 13599.38 3899.38 13999.80 60
FMVSNet596.43 30196.19 30097.15 32199.11 26695.89 31299.32 22899.52 9394.47 34098.34 30299.07 31887.54 34997.07 36992.61 35295.72 30098.47 317
test_vis1_n_192098.63 15098.40 15799.31 13399.86 2097.94 23599.67 6299.62 3699.43 299.99 299.91 1387.29 350100.00 199.92 499.92 1699.98 2
pmmvs696.53 29896.09 30397.82 30398.69 32795.47 32299.37 21399.47 16493.46 34997.41 33099.78 11187.06 35199.33 27396.92 28092.70 34798.65 281
pmmvs394.09 32993.25 33396.60 33594.76 37694.49 34098.92 31898.18 35789.66 36396.48 34598.06 35786.28 35297.33 36789.68 36287.20 36597.97 351
IB-MVS95.67 1896.22 30395.44 31698.57 23599.21 24496.70 28998.65 34497.74 36496.71 26297.27 33398.54 34786.03 35399.92 8598.47 15886.30 36699.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 34381.52 34686.66 35966.61 38968.44 38792.79 37897.92 35968.96 37780.04 38099.85 4785.77 35496.15 37597.86 20443.89 38295.39 372
CMPMVSbinary69.68 2394.13 32894.90 32091.84 35197.24 36280.01 37898.52 35299.48 14689.01 36691.99 36799.67 17085.67 35599.13 30795.44 31697.03 27196.39 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test195.87 31096.49 29594.00 34499.53 15684.01 37199.54 13499.32 25595.91 31797.99 31799.85 4785.49 35699.88 12191.96 35498.84 18498.12 340
test_fmvs1_n98.41 16298.14 17399.21 15299.82 3897.71 24799.74 4399.49 13499.32 899.99 299.95 285.32 35799.97 1799.82 699.84 6799.96 4
MIMVSNet195.51 31495.04 31996.92 33097.38 35895.60 31699.52 14199.50 12693.65 34696.97 34299.17 30885.28 35896.56 37388.36 36795.55 30498.60 306
LFMVS97.90 22497.35 26799.54 8799.52 16099.01 13899.39 20698.24 35497.10 23799.65 7999.79 10584.79 35999.91 9599.28 5398.38 20499.69 105
test_fmvs297.25 28597.30 27597.09 32599.43 18993.31 35599.73 4698.87 32498.83 5699.28 17099.80 9484.45 36099.66 21897.88 20197.45 25398.30 331
EGC-MVSNET82.80 34377.86 34997.62 31097.91 34996.12 30899.33 22799.28 2698.40 38625.05 38799.27 29784.11 36199.33 27389.20 36398.22 21397.42 363
FMVSNet196.84 29396.36 29798.29 26999.32 22197.26 25999.43 18599.48 14695.11 32798.55 29099.32 28783.95 36298.98 32895.81 30796.26 28598.62 294
VDD-MVS97.73 25297.35 26798.88 19999.47 18297.12 26399.34 22598.85 32598.19 11799.67 6899.85 4782.98 36399.92 8599.49 3098.32 20999.60 136
EG-PatchMatch MVS95.97 30995.69 31196.81 33297.78 35292.79 35899.16 26698.93 31296.16 30594.08 36199.22 30382.72 36499.47 24395.67 31397.50 24798.17 338
VDDNet97.55 27097.02 28799.16 15799.49 17398.12 22399.38 21199.30 26395.35 32399.68 6499.90 1982.62 36599.93 7499.31 4898.13 22299.42 180
UniMVSNet_ETH3D97.32 28396.81 29098.87 20399.40 19997.46 25299.51 14799.53 8895.86 31898.54 29199.77 11982.44 36699.66 21898.68 12797.52 24399.50 165
OpenMVS_ROBcopyleft92.34 2094.38 32793.70 33196.41 33797.38 35893.17 35699.06 28798.75 33386.58 36994.84 35998.26 35481.53 36799.32 27689.01 36497.87 22896.76 366
test_method91.10 33591.36 33790.31 35695.85 36973.72 38694.89 37599.25 27468.39 37895.82 35199.02 32580.50 36898.95 33793.64 34094.89 32098.25 335
test_vis1_n97.92 22197.44 25599.34 12699.53 15698.08 22499.74 4399.49 13499.15 14100.00 199.94 479.51 36999.98 1099.88 599.76 10099.97 3
test_vis1_rt95.81 31295.65 31296.32 33899.67 10591.35 36499.49 16396.74 37398.25 10795.24 35398.10 35674.96 37099.90 10699.53 2298.85 18397.70 358
UnsupCasMVSNet_bld93.53 33192.51 33496.58 33697.38 35893.82 34798.24 36499.48 14691.10 36193.10 36596.66 36774.89 37198.37 35094.03 33787.71 36497.56 361
Gipumacopyleft90.99 33690.15 34193.51 34698.73 32190.12 36693.98 37699.45 18479.32 37492.28 36694.91 37169.61 37297.98 35987.42 37095.67 30192.45 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvsany_test393.77 33093.45 33294.74 34395.78 37088.01 36899.64 7698.25 35398.28 10394.31 36097.97 35868.89 37398.51 34997.50 24190.37 35797.71 356
PM-MVS92.96 33292.23 33595.14 34295.61 37189.98 36799.37 21398.21 35594.80 33495.04 35897.69 35965.06 37497.90 36194.30 33189.98 36097.54 362
EMVS80.02 34679.22 34882.43 36491.19 37976.40 38197.55 37392.49 38766.36 38183.01 37591.27 37764.63 37585.79 38365.82 38260.65 38085.08 379
E-PMN80.61 34579.88 34782.81 36290.75 38076.38 38297.69 37195.76 37766.44 38083.52 37392.25 37562.54 37687.16 38268.53 38161.40 37984.89 380
testf190.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
APD_test290.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
ambc93.06 34992.68 37882.36 37398.47 35498.73 34195.09 35797.41 36155.55 37999.10 31496.42 29791.32 35197.71 356
test_f91.90 33491.26 33893.84 34595.52 37485.92 37099.69 5398.53 35095.31 32493.87 36296.37 36955.33 38098.27 35295.70 31090.98 35597.32 364
test_fmvs392.10 33391.77 33693.08 34896.19 36786.25 36999.82 1798.62 34696.65 26795.19 35696.90 36655.05 38195.93 37696.63 29390.92 35697.06 365
FPMVS84.93 34285.65 34382.75 36386.77 38463.39 38898.35 35898.92 31474.11 37583.39 37498.98 32950.85 38292.40 38084.54 37794.97 31692.46 373
PMMVS286.87 34085.37 34491.35 35490.21 38183.80 37298.89 32197.45 36883.13 37391.67 37095.03 37048.49 38394.70 37885.86 37677.62 37595.54 371
LCM-MVSNet86.80 34185.22 34591.53 35387.81 38380.96 37698.23 36698.99 30671.05 37690.13 37196.51 36848.45 38496.88 37190.51 35885.30 36796.76 366
test_vis3_rt87.04 33985.81 34290.73 35593.99 37781.96 37599.76 3790.23 38892.81 35481.35 37691.56 37640.06 38599.07 31694.27 33388.23 36391.15 376
ANet_high77.30 34774.86 35184.62 36175.88 38777.61 38097.63 37293.15 38588.81 36764.27 38289.29 37936.51 38683.93 38475.89 37952.31 38192.33 375
test12339.01 35242.50 35428.53 36739.17 39020.91 39198.75 33519.17 39219.83 38538.57 38466.67 38233.16 38715.42 38637.50 38529.66 38449.26 381
testmvs39.17 35143.78 35325.37 36836.04 39116.84 39298.36 35726.56 39020.06 38438.51 38567.32 38129.64 38815.30 38737.59 38439.90 38343.98 382
wuyk23d40.18 35041.29 35536.84 36686.18 38549.12 39079.73 37922.81 39127.64 38325.46 38628.45 38621.98 38948.89 38555.80 38323.56 38512.51 383
PMVScopyleft70.75 2275.98 34974.97 35079.01 36570.98 38855.18 38993.37 37798.21 35565.08 38261.78 38393.83 37321.74 39092.53 37978.59 37891.12 35489.34 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 34874.31 35284.70 36085.38 38676.05 38396.88 37493.17 38467.39 37971.28 38189.01 38021.66 39187.69 38171.74 38072.29 37890.35 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.13 3560.17 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3881.57 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.30 35411.06 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.58 2060.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.91 199.93 199.87 999.56 6199.10 2099.81 29
MSC_two_6792asdad99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
No_MVS99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
eth-test20.00 392
eth-test0.00 392
IU-MVS99.84 3199.88 899.32 25598.30 10299.84 2198.86 10099.85 5999.89 10
save fliter99.76 6099.59 6299.14 27199.40 21199.00 35
test_0728_SECOND99.91 299.84 3199.89 499.57 11499.51 10799.96 2598.93 8699.86 5299.88 16
GSMVS99.52 156
test_part299.81 4299.83 1699.77 42
MTGPAbinary99.47 164
MTMP99.54 13498.88 322
gm-plane-assit98.54 34092.96 35794.65 33799.15 31199.64 22697.56 236
test9_res97.49 24299.72 10899.75 78
agg_prior297.21 25899.73 10799.75 78
agg_prior99.67 10599.62 5999.40 21198.87 24899.91 95
test_prior499.56 6798.99 304
test_prior99.68 5899.67 10599.48 8199.56 6199.83 15299.74 82
旧先验298.96 31196.70 26399.47 12199.94 6198.19 178
新几何299.01 302
无先验98.99 30499.51 10796.89 25399.93 7497.53 23999.72 93
原ACMM298.95 314
testdata299.95 5296.67 290
testdata198.85 32598.32 101
plane_prior799.29 22797.03 274
plane_prior599.47 16499.69 21397.78 21197.63 23398.67 271
plane_prior499.61 197
plane_prior397.00 27698.69 7099.11 206
plane_prior299.39 20698.97 43
plane_prior199.26 234
plane_prior96.97 27999.21 26298.45 8697.60 236
n20.00 393
nn0.00 393
door-mid98.05 358
test1199.35 234
door97.92 359
HQP5-MVS96.83 284
HQP-NCC99.19 24898.98 30798.24 10898.66 275
ACMP_Plane99.19 24898.98 30798.24 10898.66 275
BP-MVS97.19 262
HQP4-MVS98.66 27599.64 22698.64 283
HQP3-MVS99.39 21497.58 238
NP-MVS99.23 24096.92 28299.40 262
ACMMP++_ref97.19 268
ACMMP++97.43 257