This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35899.65 120
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
EPNet98.86 12298.71 12799.30 14397.20 35798.18 22299.62 7098.91 31799.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28599.45 18598.80 5499.71 5199.26 29598.94 3499.98 699.34 3199.23 15598.98 220
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29999.46 17398.92 4399.71 5199.24 29799.01 1999.98 699.35 2799.66 12398.97 221
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 27099.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21799.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
testdata299.95 4696.67 286
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24799.52 9188.72 35899.56 9997.38 35594.08 24499.95 4686.87 36598.58 19799.14 197
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37598.81 4899.94 5798.79 10099.86 5199.84 20
旧先验298.96 30096.70 25699.47 11799.94 5798.19 170
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27699.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25999.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
无先验98.99 29299.51 10496.89 24599.93 7297.53 23299.72 94
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22899.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36299.93 7299.31 3498.13 22399.42 179
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24299.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34396.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32398.19 10799.67 6499.85 3282.98 36099.92 8399.49 1498.32 21199.60 137
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21899.72 94
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26199.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33397.74 35796.71 25597.27 33198.54 34286.03 35399.92 8398.47 14886.30 35699.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25399.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 10699.65 6299.05 27699.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27699.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
test_899.67 10699.61 6899.03 28299.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29299.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34797.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30799.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24199.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35899.25 27691.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22199.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25799.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21799.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23999.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25199.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36497.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36297.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28299.47 16396.98 23799.15 19499.23 29896.77 14599.89 11798.83 9498.78 19199.86 13
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25399.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22399.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22399.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25998.42 322
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32199.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22899.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27199.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32499.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33596.82 36396.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33197.94 13999.27 16698.62 33991.75 29699.86 12893.73 33398.19 21798.96 223
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27699.16 28997.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35199.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test250696.81 29296.65 29097.29 32099.74 7292.21 36099.60 7785.06 37999.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26199.26 27498.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23799.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
test111198.04 19998.11 17497.83 30099.74 7293.82 34799.58 9295.40 36999.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34299.59 8494.98 37099.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27199.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33899.31 21599.11 29497.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31999.36 23296.33 28499.00 22499.12 31298.46 8299.84 14095.23 31699.37 14999.66 116
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27499.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33197.93 14099.26 17198.62 33991.75 29699.83 15193.22 33898.18 21898.37 328
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.37 328
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 30099.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22899.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.96 223
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
dp97.75 24597.80 20897.59 31199.10 26693.71 35099.32 21398.88 32196.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
RPSCF98.22 17498.62 14196.99 32599.82 3891.58 36299.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32399.31 26197.34 20399.21 18299.07 31497.20 13099.82 15898.56 13798.87 18599.52 156
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35799.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23798.74 33197.68 16799.09 20898.32 34891.66 30299.81 16292.88 34298.22 21398.03 342
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33999.31 21599.20 28496.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32499.60 13991.75 36198.61 33599.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33499.10 29597.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22899.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30699.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31298.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33599.61 135
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34497.81 36099.70 1597.12 22497.46 32798.75 33689.71 32699.79 17097.69 21781.69 36299.68 110
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22399.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 31098.61 6699.35 15098.92 32994.78 21399.77 17799.35 2798.11 22499.54 150
tpm cat197.39 28097.36 26397.50 31599.17 25493.73 34999.43 16899.31 26191.27 35198.71 26299.08 31394.31 23699.77 17796.41 29398.50 20399.00 217
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34699.54 11799.02 30494.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22799.34 187
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
MDTV_nov1_ep1398.32 16299.11 26394.44 34199.27 22898.74 33197.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33297.09 13399.75 18499.27 3997.90 22899.47 172
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32396.78 14399.74 18598.73 10799.38 14298.74 246
patchmatchnet-post98.70 33794.79 21299.74 185
SCA98.19 17898.16 16998.27 27399.30 21895.55 31999.07 27198.97 30897.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33799.57 9898.63 34096.59 26898.36 29998.79 33389.32 33099.74 18598.14 17798.16 22299.20 196
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22899.13 29397.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21798.77 32797.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30499.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
test_post65.99 37394.65 22499.73 192
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25798.53 309
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28599.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
DeepMVS_CXcopyleft93.34 34299.29 22282.27 36899.22 28085.15 36096.33 34499.05 31790.97 31299.73 19293.57 33597.77 23198.01 343
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28299.14 29296.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 29098.90 31996.42 28198.38 29799.00 32295.26 19799.72 19696.06 29798.61 19499.03 214
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24998.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25198.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 24265.14 37494.18 24199.71 20297.58 224
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24299.15 29096.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21798.97 30891.73 35098.91 23694.86 36395.10 20199.71 20297.58 22497.98 22699.28 192
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31199.49 14394.71 37297.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
TDRefinement95.42 31394.57 31997.97 29189.83 37296.11 30999.48 14998.75 32896.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36198.09 338
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25198.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34599.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32799.27 22898.92 31497.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25198.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23398.67 270
plane_prior599.47 16399.69 21297.78 20597.63 23398.67 270
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25598.15 337
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28498.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32499.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23298.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22899.22 28097.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35999.07 210
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36399.66 21798.68 11697.52 24399.50 165
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22399.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24298.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26398.62 292
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22399.22 28098.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 36099.08 205
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31998.72 248
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31398.56 34296.63 26398.68 27099.22 29992.49 28199.65 22195.40 31297.79 23098.95 226
gm-plane-assit98.54 33592.96 35694.65 33099.15 30799.64 22497.56 229
HQP4-MVS98.66 27199.64 22498.64 282
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29699.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23898.64 282
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35299.10 29594.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23999.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36199.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 28098.76 240
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31498.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25698.25 333
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31999.29 22198.82 32698.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26897.94 349
tpm97.67 26297.55 23598.03 28499.02 28095.01 33399.43 16898.54 34496.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27699.48 167
tpm297.44 27997.34 26897.74 30699.15 25994.36 34399.45 15898.94 31193.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22599.29 191
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36696.97 23896.51 34299.17 30493.43 25599.57 23497.71 21499.03 17398.86 228
MS-PatchMatch97.24 28597.32 27196.99 32598.45 33893.51 35498.82 31799.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32298.57 33898.74 33197.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26198.39 326
USDC97.34 28197.20 27997.75 30599.07 27195.20 32998.51 34299.04 30397.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25898.49 312
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32199.23 24298.75 32899.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33198.78 234
EG-PatchMatch MVS95.97 30895.69 30896.81 33197.78 34892.79 35799.16 25398.93 31296.16 30094.08 35599.22 29982.72 36199.47 24195.67 30797.50 24698.17 336
MVP-Stereo97.81 23697.75 21897.99 29097.53 35096.60 29598.96 30098.85 32397.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31899.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 33097.75 35597.34 20398.61 28298.85 33094.45 23199.45 24497.25 25099.38 14299.10 200
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 33097.61 35896.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 33097.75 35596.65 26098.61 28298.85 33088.23 34299.45 24497.25 25099.38 14299.10 200
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30398.27 331
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32998.75 242
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24698.77 238
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 25098.77 238
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32198.76 240
MVS_030496.79 29396.52 29397.59 31199.22 23994.92 33699.04 28199.59 4396.49 27298.43 29498.99 32380.48 36699.39 25697.15 26099.27 15398.47 315
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33698.71 250
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31898.78 234
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33899.15 29097.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30996.30 16099.38 25898.36 15993.34 33498.66 278
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27898.78 234
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 26098.81 231
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 31095.16 31497.51 31499.30 21893.69 35198.88 31195.78 36785.09 36198.78 25692.65 36591.29 30899.37 26194.85 32199.85 5899.46 174
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30798.69 258
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26498.64 282
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 24098.71 250
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 24098.62 292
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37391.07 35498.07 31491.04 36889.62 32999.35 26996.75 28099.09 16898.68 263
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33398.67 270
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 31099.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27598.81 231
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30597.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26798.69 258
EGC-MVSNET82.80 33377.86 33997.62 30997.91 34596.12 30899.33 21299.28 2728.40 37625.05 37799.27 29384.11 35899.33 27389.20 35698.22 21397.42 358
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32399.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34398.65 280
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27597.57 22894.66 31698.42 322
lessismore_v097.79 30498.69 32295.44 32594.75 37195.71 35099.87 2388.69 33699.32 27595.89 30094.93 31498.62 292
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33697.38 35293.17 35599.06 27498.75 32886.58 35994.84 35498.26 34981.53 36499.32 27589.01 35797.87 22996.76 359
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27896.94 27294.08 32798.66 278
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27995.40 31295.13 30998.69 258
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 28098.66 11997.60 23698.57 307
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 28099.03 6099.85 5899.65 120
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 28099.03 6097.62 23598.75 242
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35699.39 21692.96 34698.41 29598.78 33593.77 25299.27 28398.16 17598.61 19498.86 228
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28496.37 29495.03 31198.70 254
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28597.72 21394.97 31298.69 258
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28694.46 32595.23 30698.70 254
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28796.73 28295.16 30898.68 263
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28796.01 29994.63 31798.67 270
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30395.53 18699.23 28798.34 16093.78 33098.61 301
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34499.32 25896.95 24198.97 22899.17 30497.06 13599.22 29097.86 19895.99 28798.29 330
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37497.23 33298.46 34389.30 33199.22 29095.43 31198.22 21397.98 347
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 29099.07 5896.38 27898.79 233
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 29098.57 13492.87 34198.69 258
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 29098.57 13492.87 34198.68 263
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32899.34 24196.47 27898.59 28599.54 21395.65 18499.21 29597.21 25295.77 29398.46 319
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 25099.35 23797.30 20798.66 27199.43 24893.94 24799.21 29598.58 13294.28 32398.71 250
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27493.52 34096.98 33999.52 22088.52 33999.20 29792.58 34797.50 24697.93 350
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33997.14 22197.90 31899.93 490.45 31699.18 29897.00 26696.43 27798.67 270
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33799.33 24897.11 22798.87 24399.22 29992.38 28799.17 29998.21 16895.99 28798.42 322
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35998.01 35297.68 16799.10 20399.63 17995.68 18299.15 30098.78 10396.55 27398.75 242
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28599.49 13297.18 21898.71 26299.72 13392.72 27199.14 30197.44 24295.86 29298.67 270
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22898.90 31996.14 30398.37 29899.53 21791.54 30599.14 30197.51 23495.87 29198.63 290
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30197.83 20193.15 33898.63 290
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32799.31 26196.60 26698.88 24199.29 28897.29 12899.13 30497.60 22295.99 28798.38 327
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30497.86 19893.59 33298.68 263
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28599.48 14597.22 21698.71 26299.70 13892.75 26899.13 30497.46 23996.00 28698.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34597.24 35680.01 37098.52 34199.48 14589.01 35691.99 36099.67 15985.67 35599.13 30495.44 31097.03 26696.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 34099.31 26196.65 26098.88 24199.52 22096.58 15099.12 30897.39 24595.53 30198.47 315
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29299.21 28396.44 27999.06 21499.58 19895.90 17499.11 30997.18 25896.11 28498.46 319
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31795.48 31597.16 33599.80 8193.38 25699.11 30994.16 33091.73 34698.62 292
ambc93.06 34392.68 36882.36 36798.47 34398.73 33695.09 35297.41 35455.55 37299.10 31196.42 29291.32 34797.71 353
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32395.65 31498.63 27999.67 15994.82 21099.10 31198.07 18692.89 34098.64 282
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31398.63 12294.10 32698.74 246
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31498.51 14394.08 32798.75 242
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36197.59 17596.16 34699.80 8188.71 33599.04 31596.69 28596.55 27398.65 280
new_pmnet96.38 30196.03 30197.41 31698.13 34495.16 33299.05 27699.20 28493.94 33597.39 32998.79 33391.61 30499.04 31590.43 35295.77 29398.05 341
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32899.35 23796.50 27198.60 28499.54 21395.72 18199.03 31797.21 25295.77 29398.46 319
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31798.32 16395.62 29898.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 26497.68 22497.55 31398.62 32894.97 33498.84 31599.30 26596.83 25098.19 30799.34 27697.01 13799.02 31995.00 32096.01 28598.64 282
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26799.33 24894.83 32698.81 25199.38 26494.33 23499.02 31996.10 29695.57 29998.53 309
N_pmnet94.95 31895.83 30692.31 34498.47 33779.33 37199.12 26192.81 37793.87 33697.68 32499.13 30993.87 24999.01 32191.38 34996.19 28298.59 305
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24799.33 24896.96 23999.56 9999.38 26494.33 23499.00 32294.83 32298.58 19799.14 197
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31899.33 24896.67 25898.83 24999.34 27697.11 13298.99 32397.58 22495.34 30498.48 313
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32198.63 34097.34 20398.05 31598.98 32694.45 23198.98 32495.04 31997.15 26598.89 227
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25399.07 30092.13 34899.52 10997.31 35894.54 22998.98 32488.54 35998.73 19399.03 214
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32497.10 26196.65 26998.56 308
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32496.44 29196.56 27298.58 306
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35998.98 32495.81 30296.26 28198.62 292
ppachtmachnet_test97.49 27797.45 24897.61 31098.62 32895.24 32898.80 31999.46 17396.11 30598.22 30699.62 18596.45 15598.97 33193.77 33295.97 29098.61 301
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33198.00 18892.90 33998.70 254
test_method91.10 32891.36 33190.31 34895.85 36273.72 37694.89 36599.25 27668.39 36895.82 34999.02 32180.50 36598.95 33393.64 33494.89 31598.25 333
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 33099.23 24299.08 29896.24 29299.10 20399.67 15994.11 24298.93 33496.81 27899.05 17199.48 167
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31597.51 35997.63 17384.77 36399.21 30292.09 29098.91 33598.98 6592.21 34599.41 181
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31199.36 23296.48 27698.80 25399.55 20895.98 16798.91 33597.27 24895.50 30298.51 311
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33798.09 17993.16 33798.72 248
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33894.53 32498.52 20299.13 199
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28598.98 30796.11 30599.41 13299.14 30890.28 31798.74 33995.74 30498.93 18099.47 172
LCM-MVSNet-Re97.83 23198.15 17096.87 33099.30 21892.25 35999.59 8498.26 34697.43 19696.20 34599.13 30996.27 16198.73 34098.17 17498.99 17799.64 127
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34196.88 27792.60 34498.70 254
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34298.30 16599.80 8799.81 44
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33597.38 35293.82 34798.24 35399.48 14591.10 35393.10 35896.66 35974.89 36798.37 34394.03 33187.71 35497.56 356
Anonymous2024052196.20 30495.89 30597.13 32397.72 34994.96 33599.79 2499.29 27093.01 34597.20 33499.03 31989.69 32798.36 34491.16 35096.13 28398.07 339
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26799.24 27893.49 34180.73 36898.98 32693.02 26198.18 34594.22 32994.45 32098.64 282
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31798.65 32595.65 31699.36 20199.51 10497.13 22296.04 34898.99 32388.40 34098.17 34696.71 28390.27 34998.40 325
KD-MVS_2432*160094.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
miper_refine_blended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
YYNet195.36 31494.51 32097.92 29497.89 34697.10 26599.10 26999.23 27993.26 34480.77 36799.04 31892.81 26798.02 34994.30 32694.18 32598.64 282
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 35097.41 24495.30 30598.78 234
Gipumacopyleft90.99 32990.15 33293.51 34198.73 31690.12 36493.98 36699.45 18579.32 36492.28 35994.91 36269.61 36897.98 35187.42 36295.67 29792.45 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 31594.73 31797.15 32195.53 36595.94 31299.35 20799.10 29595.13 31893.55 35697.54 35388.15 34497.91 35294.58 32389.69 35297.61 354
PM-MVS92.96 32792.23 33095.14 34095.61 36389.98 36599.37 19798.21 34894.80 32795.04 35397.69 35265.06 36997.90 35394.30 32689.98 35197.54 357
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25799.33 24893.80 33780.09 36999.03 31988.31 34197.86 35493.49 33694.36 32298.62 292
Patchmatch-RL test95.84 30995.81 30795.95 33895.61 36390.57 36398.24 35398.39 34595.10 32295.20 35198.67 33894.78 21397.77 35596.28 29590.02 35099.51 162
Anonymous2023120696.22 30296.03 30196.79 33297.31 35594.14 34599.63 6499.08 29896.17 29897.04 33899.06 31693.94 24797.76 35686.96 36495.06 31098.47 315
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35798.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 28497.35 26596.95 32897.84 34793.61 35399.57 9896.63 36596.13 30498.87 24398.61 34194.59 22597.70 35795.08 31898.86 18699.55 148
pmmvs394.09 32593.25 32896.60 33494.76 36794.49 34098.92 30798.18 35089.66 35596.48 34398.06 35186.28 35297.33 35989.68 35587.20 35597.97 348
KD-MVS_self_test95.00 31694.34 32196.96 32797.07 36095.39 32699.56 10599.44 19495.11 32097.13 33697.32 35791.86 29497.27 36090.35 35381.23 36398.23 335
FMVSNet596.43 30096.19 29897.15 32199.11 26395.89 31399.32 21399.52 9194.47 33398.34 30199.07 31487.54 35097.07 36192.61 34695.72 29698.47 315
new-patchmatchnet94.48 32294.08 32295.67 33995.08 36692.41 35899.18 25199.28 27294.55 33293.49 35797.37 35687.86 34897.01 36291.57 34888.36 35397.61 354
LCM-MVSNet86.80 33185.22 33591.53 34687.81 37380.96 36998.23 35598.99 30671.05 36690.13 36296.51 36048.45 37596.88 36390.51 35185.30 35796.76 359
CL-MVSNet_self_test94.49 32193.97 32496.08 33796.16 36193.67 35298.33 35099.38 22295.13 31897.33 33098.15 35092.69 27596.57 36488.67 35879.87 36497.99 346
MIMVSNet195.51 31195.04 31596.92 32997.38 35295.60 31799.52 12399.50 12493.65 33996.97 34099.17 30485.28 35696.56 36588.36 36095.55 30098.60 304
test20.0396.12 30695.96 30396.63 33397.44 35195.45 32499.51 12799.38 22296.55 26996.16 34699.25 29693.76 25396.17 36687.35 36394.22 32498.27 331
tmp_tt82.80 33381.52 33686.66 34966.61 37968.44 37792.79 36897.92 35368.96 36780.04 37099.85 3285.77 35496.15 36797.86 19843.89 37295.39 363
PMMVS286.87 33085.37 33491.35 34790.21 37183.80 36698.89 31097.45 36083.13 36391.67 36195.03 36148.49 37494.70 36885.86 36677.62 36595.54 362
PMVScopyleft70.75 2275.98 33974.97 34079.01 35570.98 37855.18 37993.37 36798.21 34865.08 37261.78 37393.83 36421.74 38092.53 36978.59 36891.12 34889.34 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 33285.65 33382.75 35386.77 37463.39 37898.35 34798.92 31474.11 36583.39 36598.98 32650.85 37392.40 37084.54 36794.97 31292.46 364
MVEpermissive76.82 2176.91 33874.31 34284.70 35085.38 37676.05 37596.88 36493.17 37567.39 36971.28 37189.01 37021.66 38187.69 37171.74 37072.29 36890.35 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 33579.88 33782.81 35290.75 37076.38 37497.69 36195.76 36866.44 37083.52 36492.25 36662.54 37187.16 37268.53 37161.40 36984.89 370
EMVS80.02 33679.22 33882.43 35491.19 36976.40 37397.55 36392.49 37866.36 37183.01 36691.27 36764.63 37085.79 37365.82 37260.65 37085.08 369
ANet_high77.30 33774.86 34184.62 35175.88 37777.61 37297.63 36293.15 37688.81 35764.27 37289.29 36936.51 37683.93 37475.89 36952.31 37192.33 366
wuyk23d40.18 34041.29 34536.84 35686.18 37549.12 38079.73 36922.81 38127.64 37325.46 37628.45 37621.98 37948.89 37555.80 37323.56 37512.51 373
test12339.01 34242.50 34428.53 35739.17 38020.91 38198.75 32419.17 38219.83 37538.57 37466.67 37233.16 37715.42 37637.50 37529.66 37449.26 371
testmvs39.17 34143.78 34325.37 35836.04 38116.84 38298.36 34626.56 38020.06 37438.51 37567.32 37129.64 37815.30 37737.59 37439.90 37343.98 372
test_blank0.13 3460.17 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3781.57 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.64 34332.85 3460.00 3590.00 3820.00 3830.00 37099.51 1040.00 3770.00 37899.56 20596.58 1500.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.27 34511.03 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 37899.01 190.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.30 34411.06 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.58 1980.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
eth-test20.00 382
eth-test0.00 382
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
save fliter99.76 5499.59 7399.14 25999.40 21299.00 26
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
GSMVS99.52 156
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 156
sam_mvs94.72 220
MTGPAbinary99.47 163
MTMP99.54 11798.88 321
test9_res97.49 23599.72 10999.75 76
agg_prior297.21 25299.73 10899.75 76
test_prior499.56 7898.99 292
test_prior298.96 30098.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
新几何299.01 290
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
原ACMM298.95 304
test22299.75 6499.49 9198.91 30999.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
segment_acmp98.96 28
testdata198.85 31498.32 94
plane_prior799.29 22297.03 275
plane_prior699.27 22796.98 27992.71 273
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24998.45 7797.60 236
n20.00 383
nn0.00 383
door-mid98.05 351
test1199.35 237
door97.92 353
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29698.24 10098.66 271
ACMP_Plane99.19 24598.98 29698.24 10098.66 271
BP-MVS97.19 256
HQP3-MVS99.39 21697.58 238
HQP2-MVS92.47 282
NP-MVS99.23 23596.92 28399.40 259
MDTV_nov1_ep13_2view95.18 33199.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
ACMMP++_ref97.19 262
ACMMP++97.43 254
Test By Simon98.75 59