This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 6999.10 6999.45 11799.89 898.52 19699.39 18299.94 198.73 5399.11 19199.89 1095.50 18299.94 5499.50 999.97 399.89 2
PVSNet_Blended_VisFu99.36 5099.28 4999.61 8299.86 2199.07 13599.47 14799.93 297.66 16299.71 4699.86 2397.73 11199.96 1999.47 1699.82 7899.79 53
PVSNet_BlendedMVS98.86 11998.80 11599.03 16899.76 5298.79 17399.28 21599.91 397.42 18999.67 5999.37 25997.53 11499.88 11998.98 6097.29 24998.42 313
PVSNet_Blended99.08 9698.97 9199.42 12299.76 5298.79 17398.78 31399.91 396.74 24499.67 5999.49 22497.53 11499.88 11998.98 6099.85 5899.60 130
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9999.02 27799.91 397.67 16199.59 8699.75 11195.90 16999.73 18599.53 699.02 16699.86 11
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29899.85 698.82 4499.65 6999.74 11798.51 7599.80 16198.83 8699.89 3399.64 120
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9098.95 29699.85 698.82 4499.54 9699.73 12498.51 7599.74 17898.91 6999.88 3699.77 63
PHI-MVS99.30 5699.17 6399.70 6499.56 14499.52 8399.58 8699.80 897.12 21599.62 7799.73 12498.58 7099.90 10698.61 11899.91 1699.68 103
PatchMatch-RL98.84 13098.62 13899.52 10499.71 8699.28 10899.06 26699.77 997.74 15399.50 10399.53 21195.41 18499.84 13697.17 25099.64 12199.44 169
3Dnovator97.25 999.24 6699.05 7499.81 3899.12 25199.66 5499.84 699.74 1099.09 1098.92 22699.90 795.94 16699.98 698.95 6399.92 1199.79 53
QAPM98.67 14498.30 16199.80 4099.20 23399.67 5299.77 2499.72 1194.74 31998.73 25199.90 795.78 17399.98 696.96 26199.88 3699.76 68
OpenMVScopyleft96.50 1698.47 15298.12 17099.52 10499.04 26799.53 8099.82 1099.72 1194.56 32298.08 30299.88 1594.73 21499.98 697.47 22999.76 9699.06 203
CHOSEN 280x42099.12 8599.13 6699.08 16199.66 11097.89 23198.43 33799.71 1398.88 3999.62 7799.76 10696.63 14499.70 20199.46 1799.99 199.66 109
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12199.41 17099.71 1398.98 2799.45 11199.78 9599.19 799.54 23099.28 3299.84 6599.63 124
UA-Net99.42 3899.29 4599.80 4099.62 12699.55 7599.50 12699.70 1598.79 4999.77 3399.96 197.45 11699.96 1998.92 6899.90 2399.89 2
PVSNet_094.43 1996.09 30195.47 30497.94 28699.31 20794.34 33597.81 35299.70 1597.12 21597.46 31898.75 32789.71 31999.79 16497.69 20881.69 35299.68 103
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14499.54 7799.18 24399.70 1598.18 10299.35 14199.63 17296.32 15499.90 10697.48 22799.77 9299.55 141
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6699.69 1898.12 10799.63 7399.84 3898.73 5999.96 1998.55 13299.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13599.74 11798.81 4599.94 5498.79 9299.86 5199.84 18
X-MVStestdata96.55 29095.45 30599.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13564.01 36698.81 4599.94 5498.79 9299.86 5199.84 18
UGNet98.87 11698.69 12699.40 12399.22 22998.72 17799.44 15599.68 1999.24 399.18 18299.42 24492.74 26599.96 1999.34 2699.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5899.67 2298.08 11699.55 9599.64 16698.91 3699.96 1998.72 10199.90 2399.82 36
GST-MVS99.40 4599.24 5699.85 2599.86 2199.79 3099.60 7399.67 2297.97 12899.63 7399.68 14698.52 7499.95 4398.38 14799.86 5199.81 41
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4899.67 2298.15 10399.68 5399.69 14099.06 1399.96 1998.69 10699.87 4099.84 18
#test#99.43 3399.29 4599.86 1899.87 1599.80 2699.55 10799.67 2297.83 14099.68 5399.69 14099.06 1399.96 1998.39 14599.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4899.67 2298.15 10399.67 5999.69 14098.95 2899.96 1998.69 10699.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5599.66 2798.13 10599.66 6499.68 14698.96 2599.96 1998.62 11599.87 4099.84 18
EU-MVSNet97.98 20598.03 18097.81 29698.72 30896.65 28699.66 4899.66 2798.09 11298.35 29199.82 4995.25 19398.01 34097.41 23595.30 29598.78 225
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9899.05 26899.66 2799.14 699.57 9099.80 7698.46 7999.94 5499.57 399.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4299.66 2798.49 6799.86 1199.87 2094.77 21199.84 13699.19 4099.41 13599.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 5499.32 3199.32 13399.85 2598.29 21099.71 3499.66 2798.11 10999.41 12399.80 7698.37 8899.96 1998.99 5999.96 599.72 87
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8699.65 3297.84 13999.71 4699.80 7699.12 1199.97 1198.33 15399.87 4099.83 29
SR-MVS99.43 3399.29 4599.86 1899.75 6299.83 1499.59 7999.62 3398.21 9899.73 4399.79 8898.68 6399.96 1998.44 14399.77 9299.79 53
sss99.17 7399.05 7499.53 9899.62 12698.97 14699.36 19499.62 3397.83 14099.67 5999.65 15997.37 12199.95 4399.19 4099.19 14999.68 103
ZD-MVS99.71 8699.79 3099.61 3596.84 23999.56 9199.54 20798.58 7099.96 1996.93 26499.75 97
D2MVS98.41 15898.50 14898.15 27499.26 21996.62 28799.40 17899.61 3597.71 15598.98 21799.36 26296.04 16199.67 20698.70 10397.41 24598.15 328
tfpnnormal97.84 22497.47 24098.98 17499.20 23399.22 11599.64 5899.61 3596.32 27698.27 29699.70 13393.35 25299.44 24195.69 29695.40 29398.27 322
AllTest98.87 11698.72 12299.31 13499.86 2198.48 20299.56 9899.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
TestCases99.31 13499.86 2198.48 20299.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
FC-MVSNet-test98.75 13898.62 13899.15 15899.08 26099.45 9299.86 599.60 4098.23 9598.70 25999.82 4996.80 13799.22 28199.07 5396.38 26898.79 224
PVSNet96.02 1798.85 12798.84 11098.89 19399.73 7597.28 25098.32 34399.60 4097.86 13599.50 10399.57 19596.75 14199.86 12598.56 12999.70 10999.54 143
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25499.23 22596.80 28199.70 3599.60 4097.12 21598.18 29999.70 13391.73 29399.72 18998.39 14597.45 24198.68 254
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28796.52 28797.59 30399.22 22994.92 32899.04 27399.59 4396.49 26398.43 28598.99 31480.48 35799.39 24897.15 25199.27 14498.47 306
FIs98.78 13598.63 13399.23 15199.18 23899.54 7799.83 999.59 4398.28 8998.79 24699.81 6296.75 14199.37 25399.08 5296.38 26898.78 225
WR-MVS_H98.13 18397.87 20098.90 19099.02 27098.84 16699.70 3599.59 4397.27 20198.40 28799.19 29495.53 18199.23 27898.34 15293.78 32098.61 292
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 4899.59 4398.13 10599.82 2099.81 6298.60 6999.96 1998.46 14199.88 3699.79 53
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6699.59 4392.65 33899.71 4699.78 9598.06 10399.90 10698.84 8399.91 1699.74 74
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15599.88 1198.53 19299.34 20399.59 4397.55 17198.70 25999.89 1095.83 17199.90 10698.10 16999.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet98.29 16897.95 19099.30 13899.16 24699.54 7799.50 12699.58 4998.27 9199.35 14199.37 25992.53 27599.65 21399.35 2294.46 30998.72 239
CS-MVS99.37 4899.33 2899.51 10699.47 16899.51 8599.81 1299.57 5098.37 8099.65 6999.56 19898.21 9599.77 17099.54 599.77 9299.27 184
CANet99.25 6599.14 6599.59 8499.41 18099.16 12199.35 20099.57 5098.82 4499.51 10299.61 18296.46 14999.95 4399.59 199.98 299.65 113
Anonymous2023121197.88 21697.54 23398.90 19099.71 8698.53 19299.48 14299.57 5094.16 32598.81 24299.68 14693.23 25399.42 24698.84 8394.42 31198.76 231
VPNet97.84 22497.44 24899.01 17099.21 23198.94 15599.48 14299.57 5098.38 7799.28 15499.73 12488.89 32799.39 24899.19 4093.27 32698.71 241
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 22099.57 5096.40 27499.42 11999.68 14698.75 5699.80 16197.98 18099.72 10499.44 169
LS3D99.27 6199.12 6799.74 5699.18 23899.75 3899.56 9899.57 5098.45 7199.49 10699.85 2997.77 11099.94 5498.33 15399.84 6599.52 148
test117299.43 3399.29 4599.85 2599.75 6299.82 2099.60 7399.56 5698.28 8999.74 4199.79 8898.53 7299.95 4398.55 13299.78 8999.79 53
test_prior399.21 6799.05 7499.68 6599.67 10199.48 8898.96 29299.56 5698.34 8399.01 21099.52 21498.68 6399.83 14597.96 18199.74 10099.74 74
test_prior99.68 6599.67 10199.48 8899.56 5699.83 14599.74 74
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3799.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15499.76 3799.75 11199.13 1099.92 8099.07 5399.92 1199.85 14
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 19099.56 5698.04 12399.53 9899.62 17896.84 13699.94 5498.85 8198.49 19599.72 87
API-MVS99.04 10199.03 7999.06 16399.40 18599.31 10599.55 10799.56 5698.54 6399.33 14599.39 25598.76 5399.78 16896.98 25999.78 8998.07 330
ACMH97.28 898.10 18697.99 18498.44 25099.41 18096.96 27599.60 7399.56 5698.09 11298.15 30099.91 590.87 30899.70 20198.88 7297.45 24198.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.57 15098.67 12898.30 26399.35 19495.59 31099.50 12699.55 6498.60 6199.39 13099.83 4294.48 22599.45 23698.75 9698.56 19199.85 14
XVG-OURS98.73 13998.68 12798.88 19699.70 9397.73 23998.92 29999.55 6498.52 6599.45 11199.84 3895.27 19099.91 9198.08 17498.84 17899.00 208
LPG-MVS_test98.22 17198.13 16998.49 23999.33 19997.05 26499.58 8699.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
LGP-MVS_train98.49 23999.33 19997.05 26499.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
XXY-MVS98.38 16198.09 17499.24 14999.26 21999.32 10299.56 9899.55 6497.45 18398.71 25399.83 4293.23 25399.63 22198.88 7296.32 27098.76 231
DeepC-MVS98.35 299.30 5699.19 6199.64 7799.82 3799.23 11499.62 6699.55 6498.94 3399.63 7399.95 295.82 17299.94 5499.37 2199.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31699.55 6497.25 20399.47 10899.77 10297.82 10899.87 12296.93 26499.90 2399.54 143
SF-MVS99.38 4799.24 5699.79 4399.79 4299.68 4999.57 9199.54 7197.82 14599.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
PS-MVSNAJss98.92 11498.92 9798.90 19098.78 30098.53 19299.78 2299.54 7198.07 11799.00 21599.76 10699.01 1699.37 25399.13 4797.23 25098.81 222
新几何199.75 5199.75 6299.59 6899.54 7196.76 24399.29 15299.64 16698.43 8199.94 5496.92 26699.66 11899.72 87
旧先验199.74 7099.59 6899.54 7199.69 14098.47 7899.68 11599.73 81
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6099.54 7198.36 8199.79 2699.82 4998.86 4099.95 4398.62 11599.81 8099.78 61
XVG-OURS-SEG-HR98.69 14298.62 13898.89 19399.71 8697.74 23899.12 25399.54 7198.44 7499.42 11999.71 12994.20 23399.92 8098.54 13498.90 17599.00 208
HPM-MVScopyleft99.42 3899.28 4999.83 3399.90 399.72 4299.81 1299.54 7197.59 16699.68 5399.63 17298.91 3699.94 5498.58 12499.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15599.54 7197.77 14899.30 14999.81 6294.20 23399.93 6999.17 4398.82 17999.49 158
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16899.54 7197.29 19999.41 12399.59 18898.42 8499.93 6998.19 16199.69 11099.73 81
ACMH+97.24 1097.92 21397.78 20798.32 26199.46 17096.68 28599.56 9899.54 7198.41 7597.79 31499.87 2090.18 31599.66 20998.05 17897.18 25398.62 283
MAR-MVS98.86 11998.63 13399.54 9299.37 19199.66 5499.45 15199.54 7196.61 25599.01 21099.40 25197.09 12899.86 12597.68 21099.53 13099.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6899.14 25199.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
UniMVSNet_ETH3D97.32 27796.81 28398.87 20099.40 18597.46 24699.51 12099.53 8295.86 30398.54 27899.77 10282.44 35499.66 20998.68 10897.52 23399.50 157
EIA-MVS99.18 7199.09 7199.45 11799.49 16099.18 11899.67 4499.53 8297.66 16299.40 12899.44 23998.10 10199.81 15698.94 6499.62 12499.35 177
jajsoiax98.43 15598.28 16298.88 19698.60 32198.43 20599.82 1099.53 8298.19 9998.63 27099.80 7693.22 25599.44 24199.22 3797.50 23698.77 229
mvs_tets98.40 16098.23 16498.91 18898.67 31498.51 19899.66 4899.53 8298.19 9998.65 26899.81 6292.75 26399.44 24199.31 2997.48 24098.77 229
UniMVSNet_NR-MVSNet98.22 17197.97 18698.96 17798.92 28298.98 14399.48 14299.53 8297.76 14998.71 25399.46 23796.43 15299.22 28198.57 12692.87 33198.69 249
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.53 7299.95 4398.61 11899.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.75 5698.61 11899.81 8099.77 63
ETV-MVS99.26 6399.21 5999.40 12399.46 17099.30 10699.56 9899.52 8898.52 6599.44 11599.27 28598.41 8599.86 12599.10 5099.59 12699.04 204
MP-MVS-pluss99.37 4899.20 6099.88 699.90 399.87 999.30 20999.52 8897.18 20999.60 8399.79 8898.79 4799.95 4398.83 8699.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4299.52 699.05 16599.74 7099.68 4999.46 15099.52 8899.11 799.88 599.91 599.43 197.70 34798.72 10199.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 21097.59 22998.95 17998.99 27399.06 13699.68 4299.52 8897.13 21398.31 29399.68 14692.44 28199.05 30598.51 13594.08 31798.75 233
XVG-ACMP-BASELINE97.83 22697.71 21798.20 27099.11 25396.33 29699.41 17099.52 8898.06 12199.05 20699.50 22189.64 32199.73 18597.73 20297.38 24798.53 300
CNVR-MVS99.42 3899.30 4199.78 4599.62 12699.71 4499.26 22999.52 8898.82 4499.39 13099.71 12998.96 2599.85 13198.59 12399.80 8499.77 63
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 8898.07 11799.53 9899.63 17298.93 3599.97 1198.74 9799.91 1699.83 29
RPMNet96.72 28895.90 29899.19 15399.18 23898.49 20099.22 23999.52 8888.72 34999.56 9197.38 34694.08 23999.95 4386.87 35598.58 18899.14 189
FMVSNet596.43 29496.19 29297.15 31299.11 25395.89 30599.32 20599.52 8894.47 32498.34 29299.07 30587.54 34297.07 35192.61 33795.72 28698.47 306
OMC-MVS99.08 9699.04 7799.20 15299.67 10198.22 21499.28 21599.52 8898.07 11799.66 6499.81 6297.79 10999.78 16897.79 19599.81 8099.60 130
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14199.24 23399.52 8896.85 23899.27 15799.48 23098.25 9499.91 9197.76 19899.62 12499.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GeoE98.85 12798.62 13899.53 9899.61 13099.08 13399.80 1799.51 10197.10 21999.31 14799.78 9595.23 19499.77 17098.21 15999.03 16499.75 69
9.1499.10 6999.72 8099.40 17899.51 10197.53 17699.64 7299.78 9598.84 4299.91 9197.63 21199.82 78
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15599.51 10197.29 19999.59 8699.74 11798.15 10099.96 1996.74 27299.69 11099.81 41
ETH3D-3000-0.199.21 6799.02 8299.77 4799.73 7599.69 4799.38 18799.51 10197.45 18399.61 7999.75 11198.51 7599.91 9197.45 23299.83 7299.71 94
test_0728_SECOND99.91 299.84 3299.89 399.57 9199.51 10199.96 1998.93 6699.86 5199.88 5
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19499.51 10198.73 5399.88 599.84 3898.72 6099.96 1998.16 16699.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base_debi99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
cdsmvs_eth3d_5k24.64 33632.85 3390.00 3500.00 3710.00 3720.00 36299.51 1010.00 3670.00 36899.56 19896.58 1450.00 3680.00 3660.00 3660.00 364
HPM-MVS++copyleft99.39 4699.23 5899.87 1199.75 6299.84 1399.43 16199.51 10198.68 5799.27 15799.53 21198.64 6899.96 1998.44 14399.80 8499.79 53
无先验98.99 28499.51 10196.89 23699.93 6997.53 22399.72 87
testdata99.54 9299.75 6298.95 15299.51 10197.07 22199.43 11699.70 13398.87 3999.94 5497.76 19899.64 12199.72 87
PEN-MVS97.76 23697.44 24898.72 22098.77 30398.54 19199.78 2299.51 10197.06 22398.29 29599.64 16692.63 27298.89 32898.09 17093.16 32798.72 239
UniMVSNet (Re)98.29 16898.00 18399.13 15999.00 27299.36 10099.49 13699.51 10197.95 12998.97 21999.13 30096.30 15599.38 25098.36 15193.34 32498.66 269
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7999.51 10198.62 5999.79 2699.83 4299.28 399.97 1198.48 13799.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 29396.12 29397.40 30998.65 31595.65 30899.36 19499.51 10197.13 21396.04 33998.99 31488.40 33398.17 33696.71 27490.27 33998.40 316
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24499.68 4999.81 1299.51 10199.20 498.72 25299.89 1095.68 17799.97 1198.86 7999.86 5199.81 41
TAPA-MVS97.07 1597.74 24397.34 26398.94 18099.70 9397.53 24499.25 23199.51 10191.90 34099.30 14999.63 17298.78 4899.64 21688.09 35199.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2599.89 399.62 6699.50 12099.10 899.86 1199.82 4998.94 31
MSP-MVS99.42 3899.27 5199.88 699.89 899.80 2699.67 4499.50 12098.70 5599.77 3399.49 22498.21 9599.95 4398.46 14199.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 13198.59 14499.48 11199.46 17099.12 13098.08 34999.50 12097.50 17999.38 13399.41 24896.37 15399.81 15699.11 4998.54 19299.51 154
anonymousdsp98.44 15498.28 16298.94 18098.50 32698.96 15099.77 2499.50 12097.07 22198.87 23499.77 10294.76 21299.28 27198.66 11197.60 22698.57 298
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9899.50 12098.33 8699.41 12399.86 2395.92 16799.83 14599.45 1899.16 15099.70 96
APD-MVScopyleft99.27 6199.08 7299.84 3299.75 6299.79 3099.50 12699.50 12097.16 21199.77 3399.82 4998.78 4899.94 5497.56 22099.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 30595.04 30996.92 32097.38 34195.60 30999.52 11699.50 12093.65 33096.97 33199.17 29585.28 34896.56 35588.36 35095.55 29098.60 295
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 17099.50 12097.03 22699.04 20799.88 1597.39 11799.92 8098.66 11199.90 2399.87 10
test_part197.75 24097.24 27399.29 14199.59 13699.63 6099.65 5599.49 12896.17 28998.44 28499.69 14089.80 31899.47 23398.68 10893.66 32198.78 225
Fast-Effi-MVS+-dtu98.77 13798.83 11498.60 22699.41 18096.99 27199.52 11699.49 12898.11 10999.24 16599.34 26896.96 13499.79 16497.95 18399.45 13299.02 207
IterMVS-SCA-FT97.82 22997.75 21398.06 27899.57 14096.36 29599.02 27799.49 12897.18 20998.71 25399.72 12892.72 26699.14 29297.44 23395.86 28298.67 261
Regformer-499.59 399.54 499.73 5899.76 5299.41 9699.58 8699.49 12899.02 1599.88 599.80 7699.00 2299.94 5499.45 1899.92 1199.84 18
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13699.49 12898.94 3399.83 1799.76 10699.01 1699.94 5499.15 4699.87 4099.80 49
test22299.75 6299.49 8798.91 30199.49 12896.42 27299.34 14499.65 15998.28 9399.69 11099.72 87
131498.68 14398.54 14799.11 16098.89 28498.65 18299.27 22099.49 12896.89 23697.99 30799.56 19897.72 11299.83 14597.74 20199.27 14498.84 221
diffmvs99.14 7799.02 8299.51 10699.61 13098.96 15099.28 21599.49 12898.46 7099.72 4599.71 12996.50 14899.88 11999.31 2999.11 15599.67 106
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21798.78 30098.62 18599.65 5599.49 12897.76 14998.49 28199.60 18594.23 23298.97 32298.00 17992.90 32998.70 245
RRT_test8_iter0597.72 24697.60 22798.08 27699.23 22596.08 30299.63 6099.49 12897.54 17498.94 22399.81 6287.99 33899.35 26199.21 3996.51 26598.81 222
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9199.59 7999.49 12897.03 22699.63 7399.69 14097.27 12499.96 1997.82 19399.84 6599.81 41
ACMP97.20 1198.06 19097.94 19298.45 24799.37 19197.01 26999.44 15599.49 12897.54 17498.45 28399.79 8891.95 28799.72 18997.91 18597.49 23998.62 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7399.48 14099.08 1199.91 199.81 6299.20 599.96 1998.91 6999.85 5899.79 53
test_241102_TWO99.48 14099.08 1199.88 599.81 6298.94 3199.96 1998.91 6999.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 14099.07 1399.91 199.74 11799.20 599.76 175
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14799.48 14098.05 12299.76 3799.86 2398.82 4499.93 6998.82 9099.91 1699.84 18
canonicalmvs99.02 10498.86 10899.51 10699.42 17799.32 10299.80 1799.48 14098.63 5899.31 14798.81 32397.09 12899.75 17799.27 3497.90 21899.47 164
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 22099.48 14096.82 24299.25 16499.65 15998.38 8699.93 6997.53 22399.67 11799.73 81
testgi97.65 25997.50 23798.13 27599.36 19396.45 29299.42 16899.48 14097.76 14997.87 31099.45 23891.09 30598.81 32994.53 31598.52 19399.13 191
DTE-MVSNet97.51 26897.19 27598.46 24698.63 31798.13 21999.84 699.48 14096.68 24897.97 30899.67 15292.92 25998.56 33296.88 26892.60 33498.70 245
mPP-MVS99.44 3099.30 4199.86 1899.88 1199.79 3099.69 3799.48 14098.12 10799.50 10399.75 11198.78 4899.97 1198.57 12699.89 3399.83 29
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3299.48 14098.35 8299.42 11999.84 3896.07 16099.79 16499.51 899.14 15399.67 106
NCCC99.34 5299.19 6199.79 4399.61 13099.65 5799.30 20999.48 14098.86 4099.21 17399.63 17298.72 6099.90 10698.25 15799.63 12399.80 49
GBi-Net97.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
UnsupCasMVSNet_bld93.53 32092.51 32396.58 32697.38 34193.82 33898.24 34599.48 14091.10 34493.10 34996.66 35074.89 35898.37 33394.03 32287.71 34497.56 347
test197.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
FMVSNet196.84 28696.36 28998.29 26499.32 20697.26 25399.43 16199.48 14095.11 31198.55 27799.32 27583.95 35098.98 31595.81 29396.26 27198.62 283
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13999.25 23199.48 14097.23 20699.13 18799.58 19196.93 13599.90 10698.87 7698.78 18299.84 18
IterMVS97.83 22697.77 20998.02 28199.58 13896.27 29899.02 27799.48 14097.22 20798.71 25399.70 13392.75 26399.13 29597.46 23096.00 27698.67 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 31894.90 31091.84 33697.24 34580.01 35998.52 33399.48 14089.01 34791.99 35199.67 15285.67 34799.13 29595.44 30197.03 25696.39 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 3099.30 4199.85 2599.73 7599.83 1499.56 9899.47 15897.45 18399.78 3199.82 4999.18 899.91 9198.79 9299.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19499.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
MTGPAbinary99.47 158
pmmvs696.53 29196.09 29497.82 29598.69 31295.47 31599.37 19099.47 15893.46 33397.41 31999.78 9587.06 34399.33 26596.92 26692.70 33398.65 271
Fast-Effi-MVS+98.70 14098.43 15199.51 10699.51 15199.28 10899.52 11699.47 15896.11 29699.01 21099.34 26896.20 15899.84 13697.88 18798.82 17999.39 175
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4899.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
原ACMM199.65 7299.73 7599.33 10199.47 15897.46 18099.12 18999.66 15898.67 6699.91 9197.70 20799.69 11099.71 94
HQP_MVS98.27 17098.22 16598.44 25099.29 21296.97 27399.39 18299.47 15898.97 3099.11 19199.61 18292.71 26899.69 20497.78 19697.63 22398.67 261
plane_prior599.47 15899.69 20497.78 19697.63 22398.67 261
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15299.03 27499.47 15896.98 22899.15 18599.23 28996.77 14099.89 11498.83 8698.78 18299.86 11
ppachtmachnet_test97.49 27297.45 24397.61 30298.62 31895.24 32098.80 31199.46 16896.11 29698.22 29799.62 17896.45 15098.97 32293.77 32395.97 28098.61 292
nrg03098.64 14798.42 15299.28 14499.05 26699.69 4799.81 1299.46 16898.04 12399.01 21099.82 4996.69 14399.38 25099.34 2694.59 30898.78 225
v7n97.87 21897.52 23498.92 18498.76 30498.58 18899.84 699.46 16896.20 28698.91 22799.70 13394.89 20399.44 24196.03 28993.89 31998.75 233
PS-MVSNAJ99.32 5499.32 3199.30 13899.57 14098.94 15598.97 29199.46 16898.92 3799.71 4699.24 28899.01 1699.98 699.35 2299.66 11898.97 212
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9399.49 13699.46 16898.95 3299.83 1799.76 10699.01 1699.93 6999.17 4399.87 4099.80 49
MP-MVScopyleft99.33 5399.15 6499.87 1199.88 1199.82 2099.66 4899.46 16898.09 11299.48 10799.74 11798.29 9299.96 1997.93 18499.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 18797.78 20799.01 17098.97 27899.24 11399.67 4499.46 16897.25 20398.48 28299.64 16693.79 24699.06 30498.63 11494.10 31698.74 237
MVSFormer99.17 7399.12 6799.29 14199.51 15198.94 15599.88 199.46 16897.55 17199.80 2499.65 15997.39 11799.28 27199.03 5599.85 5899.65 113
test_djsdf98.67 14498.57 14598.98 17498.70 31198.91 15999.88 199.46 16897.55 17199.22 17099.88 1595.73 17599.28 27199.03 5597.62 22598.75 233
CDS-MVSNet99.09 9499.03 7999.25 14799.42 17798.73 17699.45 15199.46 16898.11 10999.46 11099.77 10298.01 10499.37 25398.70 10398.92 17399.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8599.08 7299.24 14999.46 17098.55 19099.51 12099.46 16898.09 11299.45 11199.82 4998.34 8999.51 23198.70 10398.93 17199.67 106
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19499.46 16899.07 1399.79 2699.82 4998.85 4199.92 8098.68 10899.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
hse-mvs397.70 25197.28 26998.97 17699.70 9397.27 25199.36 19499.45 18098.94 3399.66 6499.64 16694.93 19999.99 199.48 1484.36 34899.65 113
ETH3 D test640098.70 14098.35 15699.73 5899.69 9699.60 6599.16 24599.45 18095.42 30799.27 15799.60 18597.39 11799.91 9195.36 30599.83 7299.70 96
xiu_mvs_v2_base99.26 6399.25 5599.29 14199.53 14798.91 15999.02 27799.45 18098.80 4899.71 4699.26 28698.94 3199.98 699.34 2699.23 14698.98 211
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7399.45 18099.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7299.45 18099.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
pm-mvs197.68 25497.28 26998.88 19699.06 26398.62 18599.50 12699.45 18096.32 27697.87 31099.79 8892.47 27799.35 26197.54 22293.54 32398.67 261
DU-MVS98.08 18997.79 20498.96 17798.87 28998.98 14399.41 17099.45 18097.87 13498.71 25399.50 22194.82 20599.22 28198.57 12692.87 33198.68 254
ACMM97.58 598.37 16298.34 15798.48 24199.41 18097.10 25899.56 9899.45 18098.53 6499.04 20799.85 2993.00 25799.71 19598.74 9797.45 24198.64 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 32390.15 32693.51 33298.73 30690.12 35393.98 35899.45 18079.32 35592.28 35094.91 35369.61 35997.98 34187.42 35295.67 28792.45 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DIV-MVS_2432*160095.00 31094.34 31596.96 31897.07 34995.39 31899.56 9899.44 18995.11 31197.13 32797.32 34891.86 28997.27 35090.35 34481.23 35398.23 326
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23499.44 18997.04 22499.39 13099.67 15298.30 9199.92 8097.27 23999.69 11099.64 120
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8699.44 18999.01 1899.87 1099.80 7698.97 2499.91 9199.44 2099.92 1199.83 29
RPSCF98.22 17198.62 13896.99 31699.82 3791.58 35199.72 3299.44 18996.61 25599.66 6499.89 1095.92 16799.82 15297.46 23099.10 15899.57 139
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13499.71 8698.88 16199.80 1799.44 18997.91 13399.36 13899.78 9595.49 18399.43 24597.91 18599.11 15599.62 126
CNLPA99.14 7798.99 8799.59 8499.58 13899.41 9699.16 24599.44 18998.45 7199.19 17999.49 22498.08 10299.89 11497.73 20299.75 9799.48 159
DeepPCF-MVS98.18 398.81 13199.37 1997.12 31599.60 13491.75 35098.61 32799.44 18999.35 199.83 1799.85 2998.70 6299.81 15699.02 5799.91 1699.81 41
CLD-MVS98.16 17998.10 17198.33 25999.29 21296.82 28098.75 31699.44 18997.83 14099.13 18799.55 20292.92 25999.67 20698.32 15597.69 22298.48 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 18797.68 21999.34 12899.66 11098.44 20499.40 17899.43 19793.67 32999.22 17099.89 1090.23 31499.93 6999.26 3598.33 19899.66 109
IterMVS-LS98.46 15398.42 15298.58 23099.59 13698.00 22399.37 19099.43 19796.94 23499.07 20199.59 18897.87 10699.03 30898.32 15595.62 28898.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet97.97 20897.61 22699.02 16998.87 28999.26 11199.47 14799.42 19997.63 16497.08 32899.50 22195.07 19799.13 29597.86 18993.59 32298.68 254
FMVSNet297.72 24697.36 25898.80 21399.51 15198.84 16699.45 15199.42 19996.49 26398.86 23999.29 28090.26 31198.98 31596.44 28296.56 26298.58 297
TEST999.67 10199.65 5799.05 26899.41 20196.22 28598.95 22199.49 22498.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26899.41 20196.28 27898.95 22199.49 22498.76 5399.91 9197.63 21199.72 10499.75 69
test_899.67 10199.61 6399.03 27499.41 20196.28 27898.93 22599.48 23098.76 5399.91 91
v897.95 20997.63 22598.93 18298.95 28098.81 17299.80 1799.41 20196.03 30199.10 19499.42 24494.92 20199.30 26996.94 26394.08 31798.66 269
v1097.85 22197.52 23498.86 20398.99 27398.67 18099.75 2899.41 20195.70 30498.98 21799.41 24894.75 21399.23 27896.01 29094.63 30798.67 261
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24999.41 20196.60 25799.60 8399.55 20298.83 4399.90 10697.48 22799.83 7299.78 61
save fliter99.76 5299.59 6899.14 25199.40 20799.00 22
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28499.40 20796.26 28198.87 23499.49 22498.77 5199.91 9197.69 20899.72 10499.75 69
agg_prior99.67 10199.62 6199.40 20798.87 23499.91 91
MCST-MVS99.43 3399.30 4199.82 3599.79 4299.74 4199.29 21399.40 20798.79 4999.52 10099.62 17898.91 3699.90 10698.64 11399.75 9799.82 36
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6099.39 21198.91 3899.78 3199.85 2999.36 299.94 5498.84 8399.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 27896.55 28699.48 11198.78 30098.95 15299.27 22099.39 21183.53 35398.08 30299.54 20796.97 13399.87 12294.23 31999.16 15099.63 124
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 17099.39 21199.01 1899.74 4199.78 9595.56 18099.92 8099.52 798.18 20899.72 87
HQP3-MVS99.39 21197.58 228
cascas97.69 25297.43 25198.48 24198.60 32197.30 24998.18 34899.39 21192.96 33798.41 28698.78 32693.77 24799.27 27498.16 16698.61 18598.86 219
HQP-MVS98.02 19897.90 19598.37 25799.19 23596.83 27898.98 28899.39 21198.24 9298.66 26299.40 25192.47 27799.64 21697.19 24797.58 22898.64 273
CL-MVSNet_2432*160094.49 31593.97 31896.08 32896.16 35093.67 34298.33 34299.38 21795.13 30997.33 32198.15 34192.69 27096.57 35488.67 34879.87 35497.99 337
OPM-MVS98.19 17598.10 17198.45 24798.88 28597.07 26299.28 21599.38 21798.57 6299.22 17099.81 6292.12 28499.66 20998.08 17497.54 23298.61 292
RRT_MVS98.60 14998.44 15099.05 16598.88 28599.14 12699.49 13699.38 21797.76 14999.29 15299.86 2395.38 18599.36 25798.81 9197.16 25498.64 273
EI-MVSNet98.67 14498.67 12898.68 22399.35 19497.97 22599.50 12699.38 21796.93 23599.20 17699.83 4297.87 10699.36 25798.38 14797.56 23098.71 241
test20.0396.12 30095.96 29796.63 32497.44 34095.45 31699.51 12099.38 21796.55 26096.16 33799.25 28793.76 24896.17 35687.35 35394.22 31498.27 322
mvs_anonymous99.03 10398.99 8799.16 15699.38 18998.52 19699.51 12099.38 21797.79 14699.38 13399.81 6297.30 12299.45 23699.35 2298.99 16899.51 154
MVSTER98.49 15198.32 15999.00 17299.35 19499.02 13999.54 11099.38 21797.41 19099.20 17699.73 12493.86 24599.36 25798.87 7697.56 23098.62 283
FMVSNet398.03 19697.76 21298.84 20799.39 18898.98 14399.40 17899.38 21796.67 24999.07 20199.28 28292.93 25898.98 31597.10 25296.65 25998.56 299
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9399.39 18299.38 21797.70 15699.28 15499.28 28298.34 8999.85 13196.96 26199.45 13299.69 99
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9199.37 22699.10 899.81 2299.80 7698.94 3199.96 1998.93 6699.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
miper_lstm_enhance98.00 20397.91 19498.28 26799.34 19897.43 24798.88 30399.36 22796.48 26798.80 24499.55 20295.98 16298.91 32697.27 23995.50 29298.51 302
v124097.69 25297.32 26698.79 21498.85 29398.43 20599.48 14299.36 22796.11 29699.27 15799.36 26293.76 24899.24 27794.46 31695.23 29698.70 245
v2v48298.06 19097.77 20998.92 18498.90 28398.82 17099.57 9199.36 22796.65 25199.19 17999.35 26594.20 23399.25 27697.72 20494.97 30298.69 249
HY-MVS97.30 798.85 12798.64 13299.47 11499.42 17799.08 13399.62 6699.36 22797.39 19299.28 15499.68 14696.44 15199.92 8098.37 14998.22 20499.40 174
PAPR98.63 14898.34 15799.51 10699.40 18599.03 13898.80 31199.36 22796.33 27599.00 21599.12 30398.46 7999.84 13695.23 30799.37 14099.66 109
cl-mvsnet198.01 20197.85 20198.48 24199.24 22497.95 22998.71 32099.35 23296.50 26298.60 27599.54 20795.72 17699.03 30897.21 24395.77 28398.46 310
v114497.98 20597.69 21898.85 20698.87 28998.66 18199.54 11099.35 23296.27 28099.23 16999.35 26594.67 21799.23 27896.73 27395.16 29898.68 254
WR-MVS98.06 19097.73 21599.06 16398.86 29299.25 11299.19 24299.35 23297.30 19898.66 26299.43 24193.94 24299.21 28698.58 12494.28 31398.71 241
test1199.35 232
cl-mvsnet____98.01 20197.84 20298.55 23599.25 22397.97 22598.71 32099.34 23696.47 26998.59 27699.54 20795.65 17999.21 28697.21 24395.77 28398.46 310
v14419297.92 21397.60 22798.87 20098.83 29598.65 18299.55 10799.34 23696.20 28699.32 14699.40 25194.36 22899.26 27596.37 28595.03 30198.70 245
v192192097.80 23397.45 24398.84 20798.80 29698.53 19299.52 11699.34 23696.15 29399.24 16599.47 23393.98 24199.29 27095.40 30395.13 29998.69 249
v119297.81 23197.44 24898.91 18898.88 28598.68 17999.51 12099.34 23696.18 28899.20 17699.34 26894.03 24099.36 25795.32 30695.18 29798.69 249
V4298.06 19097.79 20498.86 20398.98 27698.84 16699.69 3799.34 23696.53 26199.30 14999.37 25994.67 21799.32 26697.57 21994.66 30698.42 313
MVS_Test99.10 9398.97 9199.48 11199.49 16099.14 12699.67 4499.34 23697.31 19799.58 8899.76 10697.65 11399.82 15298.87 7699.07 16199.46 166
MG-MVS99.13 7999.02 8299.45 11799.57 14098.63 18499.07 26399.34 23698.99 2599.61 7999.82 4997.98 10599.87 12297.00 25799.80 8499.85 14
cl-mvsnet297.85 22197.64 22498.48 24199.09 25897.87 23298.60 32999.33 24397.11 21898.87 23499.22 29092.38 28299.17 29098.21 15995.99 27798.42 313
cl_fuxian98.12 18598.04 17998.38 25699.30 20897.69 24398.81 31099.33 24396.67 24998.83 24099.34 26897.11 12798.99 31497.58 21595.34 29498.48 304
v14897.79 23497.55 23098.50 23898.74 30597.72 24099.54 11099.33 24396.26 28198.90 22999.51 21894.68 21699.14 29297.83 19293.15 32898.63 281
MDA-MVSNet-bldmvs94.96 31193.98 31797.92 28898.24 33297.27 25199.15 24999.33 24393.80 32880.09 36099.03 31088.31 33497.86 34493.49 32794.36 31298.62 283
TSAR-MVS + GP.99.36 5099.36 2199.36 12799.67 10198.61 18799.07 26399.33 24399.00 2299.82 2099.81 6299.06 1399.84 13699.09 5199.42 13499.65 113
CR-MVSNet98.17 17897.93 19398.87 20099.18 23898.49 20099.22 23999.33 24396.96 23099.56 9199.38 25694.33 22999.00 31394.83 31398.58 18899.14 189
Patchmtry97.75 24097.40 25498.81 21199.10 25698.87 16299.11 25999.33 24394.83 31798.81 24299.38 25694.33 22999.02 31096.10 28795.57 28998.53 300
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13699.81 1299.33 24397.43 18799.60 8399.88 1597.14 12699.84 13699.13 4798.94 17099.69 99
IU-MVS99.84 3299.88 799.32 25198.30 8899.84 1398.86 7999.85 5899.89 2
miper_enhance_ethall98.16 17998.08 17598.41 25298.96 27997.72 24098.45 33699.32 25196.95 23298.97 21999.17 29597.06 13099.22 28197.86 18995.99 27798.29 321
MS-PatchMatch97.24 28097.32 26696.99 31698.45 32893.51 34498.82 30999.32 25197.41 19098.13 30199.30 27888.99 32699.56 22795.68 29799.80 8497.90 343
miper_ehance_all_eth98.18 17798.10 17198.41 25299.23 22597.72 24098.72 31999.31 25496.60 25798.88 23299.29 28097.29 12399.13 29597.60 21395.99 27798.38 318
eth_miper_zixun_eth98.05 19597.96 18898.33 25999.26 21997.38 24898.56 33299.31 25496.65 25198.88 23299.52 21496.58 14599.12 29997.39 23695.53 29198.47 306
tpm cat197.39 27597.36 25897.50 30799.17 24493.73 33999.43 16199.31 25491.27 34298.71 25399.08 30494.31 23199.77 17096.41 28498.50 19499.00 208
PMMVS98.80 13498.62 13899.34 12899.27 21798.70 17898.76 31599.31 25497.34 19499.21 17399.07 30597.20 12599.82 15298.56 12998.87 17699.52 148
our_test_397.65 25997.68 21997.55 30598.62 31894.97 32698.84 30799.30 25896.83 24198.19 29899.34 26897.01 13299.02 31095.00 31196.01 27598.64 273
Effi-MVS+-dtu98.78 13598.89 10298.47 24599.33 19996.91 27799.57 9199.30 25898.47 6899.41 12398.99 31496.78 13899.74 17898.73 9999.38 13698.74 237
CANet_DTU98.97 11198.87 10499.25 14799.33 19998.42 20799.08 26299.30 25899.16 599.43 11699.75 11195.27 19099.97 1198.56 12999.95 699.36 176
mvs-test198.86 11998.84 11098.89 19399.33 19997.77 23799.44 15599.30 25898.47 6899.10 19499.43 24196.78 13899.95 4398.73 9999.02 16698.96 214
VDDNet97.55 26397.02 28099.16 15699.49 16098.12 22099.38 18799.30 25895.35 30899.68 5399.90 782.62 35399.93 6999.31 2998.13 21399.42 171
Anonymous2024052196.20 29895.89 29997.13 31497.72 33894.96 32799.79 2199.29 26393.01 33697.20 32599.03 31089.69 32098.36 33491.16 34196.13 27398.07 330
test1299.75 5199.64 11799.61 6399.29 26399.21 17398.38 8699.89 11499.74 10099.74 74
new-patchmatchnet94.48 31694.08 31695.67 33095.08 35592.41 34899.18 24399.28 26594.55 32393.49 34897.37 34787.86 34197.01 35291.57 33988.36 34397.61 345
jason99.13 7999.03 7999.45 11799.46 17098.87 16299.12 25399.26 26698.03 12599.79 2699.65 15997.02 13199.85 13199.02 5799.90 2399.65 113
jason: jason.
test_040296.64 28996.24 29197.85 29298.85 29396.43 29399.44 15599.26 26693.52 33196.98 33099.52 21488.52 33299.20 28892.58 33897.50 23697.93 341
test_method91.10 32291.36 32590.31 33995.85 35173.72 36594.89 35799.25 26868.39 35995.82 34099.02 31280.50 35698.95 32493.64 32594.89 30598.25 324
PCF-MVS97.08 1497.66 25897.06 27999.47 11499.61 13099.09 13298.04 35099.25 26891.24 34398.51 27999.70 13394.55 22399.91 9192.76 33699.85 5899.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 30694.60 31298.01 28298.16 33397.21 25699.11 25999.24 27093.49 33280.73 35998.98 31793.02 25698.18 33594.22 32094.45 31098.64 273
YYNet195.36 30894.51 31497.92 28897.89 33597.10 25899.10 26199.23 27193.26 33580.77 35899.04 30992.81 26298.02 33994.30 31794.18 31598.64 273
hse-mvs297.50 26997.14 27698.59 22799.49 16097.05 26499.28 21599.22 27298.94 3399.66 6499.42 24494.93 19999.65 21399.48 1483.80 35099.08 197
AUN-MVS96.88 28596.31 29098.59 22799.48 16797.04 26799.27 22099.22 27297.44 18698.51 27999.41 24891.97 28699.66 20997.71 20583.83 34999.07 202
DeepMVS_CXcopyleft93.34 33399.29 21282.27 35799.22 27285.15 35196.33 33599.05 30890.97 30799.73 18593.57 32697.77 22198.01 334
pmmvs498.13 18397.90 19598.81 21198.61 32098.87 16298.99 28499.21 27596.44 27099.06 20599.58 19195.90 16999.11 30097.18 24996.11 27498.46 310
KD-MVS_2432*160094.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
miper_refine_blended94.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
tpmvs97.98 20598.02 18297.84 29399.04 26794.73 33199.31 20799.20 27696.10 30098.76 24999.42 24494.94 19899.81 15696.97 26098.45 19698.97 212
new_pmnet96.38 29596.03 29597.41 30898.13 33495.16 32499.05 26899.20 27693.94 32697.39 32098.79 32491.61 29999.04 30690.43 34395.77 28398.05 332
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2899.20 27698.02 12699.56 9199.86 2396.54 14799.67 20698.09 17099.13 15499.73 81
lupinMVS99.13 7999.01 8699.46 11699.51 15198.94 15599.05 26899.16 28197.86 13599.80 2499.56 19897.39 11799.86 12598.94 6499.85 5899.58 138
GA-MVS97.85 22197.47 24099.00 17299.38 18997.99 22498.57 33099.15 28297.04 22498.90 22999.30 27889.83 31799.38 25096.70 27598.33 19899.62 126
ADS-MVSNet98.20 17498.08 17598.56 23399.33 19996.48 29199.23 23499.15 28296.24 28399.10 19499.67 15294.11 23799.71 19596.81 26999.05 16299.48 159
Patchmatch-test97.93 21097.65 22298.77 21699.18 23897.07 26299.03 27499.14 28496.16 29198.74 25099.57 19594.56 22299.72 18993.36 32899.11 15599.52 148
BH-untuned98.42 15698.36 15498.59 22799.49 16096.70 28399.27 22099.13 28597.24 20598.80 24499.38 25695.75 17499.74 17897.07 25599.16 15099.33 180
tpmrst98.33 16498.48 14997.90 29099.16 24694.78 33099.31 20799.11 28697.27 20199.45 11199.59 18895.33 18899.84 13698.48 13798.61 18599.09 196
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32699.10 28797.93 13199.42 11999.55 20298.67 6699.80 16195.80 29499.68 11599.61 128
pmmvs-eth3d95.34 30994.73 31197.15 31295.53 35495.94 30499.35 20099.10 28795.13 30993.55 34797.54 34488.15 33797.91 34294.58 31489.69 34297.61 345
PAPM97.59 26297.09 27899.07 16299.06 26398.26 21398.30 34499.10 28794.88 31698.08 30299.34 26896.27 15699.64 21689.87 34598.92 17399.31 181
Anonymous2023120696.22 29696.03 29596.79 32397.31 34494.14 33699.63 6099.08 29096.17 28997.04 32999.06 30793.94 24297.76 34686.96 35495.06 30098.47 306
ADS-MVSNet298.02 19898.07 17897.87 29199.33 19995.19 32299.23 23499.08 29096.24 28399.10 19499.67 15294.11 23798.93 32596.81 26999.05 16299.48 159
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
PatchT97.03 28496.44 28898.79 21498.99 27398.34 20999.16 24599.07 29292.13 33999.52 10097.31 34994.54 22498.98 31588.54 34998.73 18499.03 205
USDC97.34 27697.20 27497.75 29899.07 26195.20 32198.51 33499.04 29597.99 12798.31 29399.86 2389.02 32599.55 22995.67 29897.36 24898.49 303
CostFormer97.72 24697.73 21597.71 30099.15 24994.02 33799.54 11099.02 29694.67 32099.04 20799.35 26592.35 28399.77 17098.50 13697.94 21799.34 179
OurMVSNet-221017-097.88 21697.77 20998.19 27198.71 31096.53 28999.88 199.00 29797.79 14698.78 24799.94 391.68 29499.35 26197.21 24396.99 25798.69 249
LCM-MVSNet86.80 32585.22 32991.53 33787.81 36280.96 35898.23 34798.99 29871.05 35790.13 35396.51 35148.45 36696.88 35390.51 34285.30 34796.76 349
MIMVSNet97.73 24497.45 24398.57 23199.45 17597.50 24599.02 27798.98 29996.11 29699.41 12399.14 29990.28 31098.74 33095.74 29598.93 17199.47 164
SCA98.19 17598.16 16698.27 26899.30 20895.55 31199.07 26398.97 30097.57 16999.43 11699.57 19592.72 26699.74 17897.58 21599.20 14899.52 148
JIA-IIPM97.50 26997.02 28098.93 18298.73 30697.80 23699.30 20998.97 30091.73 34198.91 22794.86 35495.10 19699.71 19597.58 21597.98 21699.28 183
alignmvs98.81 13198.56 14699.58 8799.43 17699.42 9599.51 12098.96 30298.61 6099.35 14198.92 32094.78 20899.77 17099.35 2298.11 21499.54 143
tpm297.44 27497.34 26397.74 29999.15 24994.36 33499.45 15198.94 30393.45 33498.90 22999.44 23991.35 30299.59 22597.31 23798.07 21599.29 182
baseline198.31 16597.95 19099.38 12699.50 15898.74 17599.59 7998.93 30498.41 7599.14 18699.60 18594.59 22099.79 16498.48 13793.29 32599.61 128
EG-PatchMatch MVS95.97 30295.69 30296.81 32297.78 33792.79 34799.16 24598.93 30496.16 29194.08 34699.22 29082.72 35299.47 23395.67 29897.50 23698.17 327
PatchmatchNetpermissive98.31 16598.36 15498.19 27199.16 24695.32 31999.27 22098.92 30697.37 19399.37 13599.58 19194.90 20299.70 20197.43 23499.21 14799.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 27699.29 21296.37 29498.92 30698.34 8398.83 24099.75 11191.09 30599.62 22295.82 29297.40 24698.25 324
FPMVS84.93 32685.65 32782.75 34486.77 36363.39 36798.35 33998.92 30674.11 35683.39 35698.98 31750.85 36492.40 36084.54 35794.97 30292.46 354
TransMVSNet (Re)97.15 28196.58 28598.86 20399.12 25198.85 16599.49 13698.91 30995.48 30697.16 32699.80 7693.38 25199.11 30094.16 32191.73 33698.62 283
EPNet98.86 11998.71 12499.30 13897.20 34698.18 21599.62 6698.91 30999.28 298.63 27099.81 6295.96 16399.99 199.24 3699.72 10499.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 26697.30 26898.16 27398.57 32396.73 28299.27 22098.90 31196.14 29498.37 28999.53 21191.54 30099.14 29297.51 22595.87 28198.63 281
BH-w/o98.00 20397.89 19998.32 26199.35 19496.20 30099.01 28298.90 31196.42 27298.38 28899.00 31395.26 19299.72 18996.06 28898.61 18599.03 205
MTMP99.54 11098.88 313
dp97.75 24097.80 20397.59 30399.10 25693.71 34099.32 20598.88 31396.48 26799.08 20099.55 20292.67 27199.82 15296.52 28098.58 18899.24 185
MVP-Stereo97.81 23197.75 21397.99 28497.53 33996.60 28898.96 29298.85 31597.22 20797.23 32399.36 26295.28 18999.46 23595.51 30099.78 8997.92 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 24497.35 26098.88 19699.47 16897.12 25799.34 20398.85 31598.19 9999.67 5999.85 2982.98 35199.92 8099.49 1398.32 20299.60 130
Baseline_NR-MVSNet97.76 23697.45 24398.68 22399.09 25898.29 21099.41 17098.85 31595.65 30598.63 27099.67 15294.82 20599.10 30298.07 17792.89 33098.64 273
LF4IMVS97.52 26697.46 24297.70 30198.98 27695.55 31199.29 21398.82 31898.07 11798.66 26299.64 16689.97 31699.61 22397.01 25696.68 25897.94 340
BH-RMVSNet98.41 15898.08 17599.40 12399.41 18098.83 16999.30 20998.77 31997.70 15698.94 22399.65 15992.91 26199.74 17896.52 28099.55 12999.64 120
EPNet_dtu98.03 19697.96 18898.23 26998.27 33095.54 31399.23 23498.75 32099.02 1597.82 31299.71 12996.11 15999.48 23293.04 33299.65 12099.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 30794.57 31397.97 28589.83 36196.11 30199.48 14298.75 32096.74 24496.68 33299.88 1588.65 33099.71 19598.37 14982.74 35198.09 329
OpenMVS_ROBcopyleft92.34 2094.38 31793.70 32196.41 32797.38 34193.17 34599.06 26698.75 32086.58 35094.84 34598.26 34081.53 35599.32 26689.01 34797.87 21996.76 349
thres100view90097.76 23697.45 24398.69 22299.72 8097.86 23499.59 7998.74 32397.93 13199.26 16298.62 33091.75 29199.83 14593.22 32998.18 20898.37 319
thres600view797.86 22097.51 23698.92 18499.72 8097.95 22999.59 7998.74 32397.94 13099.27 15798.62 33091.75 29199.86 12593.73 32498.19 20798.96 214
thres20097.61 26197.28 26998.62 22599.64 11798.03 22199.26 22998.74 32397.68 15899.09 19998.32 33991.66 29799.81 15692.88 33398.22 20498.03 333
MDTV_nov1_ep1398.32 15999.11 25394.44 33399.27 22098.74 32397.51 17899.40 12899.62 17894.78 20899.76 17597.59 21498.81 181
TinyColmap97.12 28296.89 28297.83 29499.07 26195.52 31498.57 33098.74 32397.58 16897.81 31399.79 8888.16 33699.56 22795.10 30897.21 25198.39 317
tfpn200view997.72 24697.38 25698.72 22099.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.37 319
ambc93.06 33492.68 35782.36 35698.47 33598.73 32895.09 34397.41 34555.55 36399.10 30296.42 28391.32 33797.71 344
thres40097.77 23597.38 25698.92 18499.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.96 214
SixPastTwentyTwo97.50 26997.33 26598.03 27998.65 31596.23 29999.77 2498.68 33197.14 21297.90 30999.93 490.45 30999.18 28997.00 25796.43 26798.67 261
test0.0.03 197.71 25097.42 25298.56 23398.41 32997.82 23598.78 31398.63 33297.34 19498.05 30698.98 31794.45 22698.98 31595.04 31097.15 25598.89 218
DWT-MVSNet_test97.53 26597.40 25497.93 28799.03 26994.86 32999.57 9198.63 33296.59 25998.36 29098.79 32489.32 32399.74 17898.14 16898.16 21299.20 188
TR-MVS97.76 23697.41 25398.82 20999.06 26397.87 23298.87 30598.56 33496.63 25498.68 26199.22 29092.49 27699.65 21395.40 30397.79 22098.95 217
Anonymous20240521198.30 16797.98 18599.26 14699.57 14098.16 21699.41 17098.55 33596.03 30199.19 17999.74 11791.87 28899.92 8099.16 4598.29 20399.70 96
tpm97.67 25797.55 23098.03 27999.02 27095.01 32599.43 16198.54 33696.44 27099.12 18999.34 26891.83 29099.60 22497.75 20096.46 26699.48 159
Patchmatch-RL test95.84 30395.81 30195.95 32995.61 35290.57 35298.24 34598.39 33795.10 31395.20 34298.67 32994.78 20897.77 34596.28 28690.02 34099.51 154
LCM-MVSNet-Re97.83 22698.15 16796.87 32199.30 20892.25 34999.59 7998.26 33897.43 18796.20 33699.13 30096.27 15698.73 33198.17 16598.99 16899.64 120
LFMVS97.90 21597.35 26099.54 9299.52 14999.01 14199.39 18298.24 33997.10 21999.65 6999.79 8884.79 34999.91 9199.28 3298.38 19799.69 99
PM-MVS92.96 32192.23 32495.14 33195.61 35289.98 35499.37 19098.21 34094.80 31895.04 34497.69 34365.06 36097.90 34394.30 31789.98 34197.54 348
PMVScopyleft70.75 2275.98 33274.97 33379.01 34670.98 36755.18 36893.37 35998.21 34065.08 36361.78 36493.83 35521.74 37192.53 35978.59 35891.12 33889.34 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 31993.25 32296.60 32594.76 35694.49 33298.92 29998.18 34289.66 34696.48 33498.06 34286.28 34497.33 34989.68 34687.20 34597.97 339
door-mid98.05 343
bset_n11_16_dypcd98.16 17997.97 18698.73 21898.26 33198.28 21297.99 35198.01 34497.68 15899.10 19499.63 17295.68 17799.15 29198.78 9596.55 26398.75 233
tmp_tt82.80 32781.52 33086.66 34066.61 36868.44 36692.79 36097.92 34568.96 35880.04 36199.85 2985.77 34696.15 35797.86 18943.89 36295.39 353
door97.92 345
test-LLR98.06 19097.90 19598.55 23598.79 29797.10 25898.67 32297.75 34797.34 19498.61 27398.85 32194.45 22699.45 23697.25 24199.38 13699.10 192
test-mter97.49 27297.13 27798.55 23598.79 29797.10 25898.67 32297.75 34796.65 25198.61 27398.85 32188.23 33599.45 23697.25 24199.38 13699.10 192
IB-MVS95.67 1896.22 29695.44 30698.57 23199.21 23196.70 28398.65 32597.74 34996.71 24697.27 32298.54 33386.03 34599.92 8098.47 14086.30 34699.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 26397.27 27298.40 25498.93 28196.53 28998.67 32297.61 35096.96 23098.64 26999.28 28288.63 33199.45 23697.30 23899.38 13699.21 187
ET-MVSNet_ETH3D96.49 29295.64 30399.05 16599.53 14798.82 17098.84 30797.51 35197.63 16484.77 35499.21 29392.09 28598.91 32698.98 6092.21 33599.41 173
PMMVS286.87 32485.37 32891.35 33890.21 36083.80 35598.89 30297.45 35283.13 35491.67 35295.03 35248.49 36594.70 35885.86 35677.62 35595.54 352
K. test v397.10 28396.79 28498.01 28298.72 30896.33 29699.87 497.05 35397.59 16696.16 33799.80 7688.71 32899.04 30696.69 27696.55 26398.65 271
tttt051798.42 15698.14 16899.28 14499.66 11098.38 20899.74 3196.85 35497.68 15899.79 2699.74 11791.39 30199.89 11498.83 8699.56 12799.57 139
thisisatest051598.14 18297.79 20499.19 15399.50 15898.50 19998.61 32796.82 35596.95 23299.54 9699.43 24191.66 29799.86 12598.08 17499.51 13199.22 186
thisisatest053098.35 16398.03 18099.31 13499.63 12098.56 18999.54 11096.75 35697.53 17699.73 4399.65 15991.25 30499.89 11498.62 11599.56 12799.48 159
DSMNet-mixed97.25 27997.35 26096.95 31997.84 33693.61 34399.57 9196.63 35796.13 29598.87 23498.61 33294.59 22097.70 34795.08 30998.86 17799.55 141
baseline297.87 21897.55 23098.82 20999.18 23898.02 22299.41 17096.58 35896.97 22996.51 33399.17 29593.43 25099.57 22697.71 20599.03 16498.86 219
MVS-HIRNet95.75 30495.16 30897.51 30699.30 20893.69 34198.88 30395.78 35985.09 35298.78 24792.65 35691.29 30399.37 25394.85 31299.85 5899.46 166
E-PMN80.61 32879.88 33182.81 34390.75 35976.38 36397.69 35395.76 36066.44 36183.52 35592.25 35762.54 36287.16 36268.53 36161.40 35984.89 360
lessismore_v097.79 29798.69 31295.44 31794.75 36195.71 34199.87 2088.69 32999.32 26695.89 29194.93 30498.62 283
EPMVS97.82 22997.65 22298.35 25898.88 28595.98 30399.49 13694.71 36297.57 16999.26 16299.48 23092.46 28099.71 19597.87 18899.08 16099.35 177
gg-mvs-nofinetune96.17 29995.32 30798.73 21898.79 29798.14 21899.38 18794.09 36391.07 34598.07 30591.04 35989.62 32299.35 26196.75 27199.09 15998.68 254
GG-mvs-BLEND98.45 24798.55 32498.16 21699.43 16193.68 36497.23 32398.46 33489.30 32499.22 28195.43 30298.22 20497.98 338
MVEpermissive76.82 2176.91 33174.31 33584.70 34185.38 36576.05 36496.88 35693.17 36567.39 36071.28 36289.01 36121.66 37287.69 36171.74 36072.29 35890.35 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33074.86 33484.62 34275.88 36677.61 36197.63 35493.15 36688.81 34864.27 36389.29 36036.51 36783.93 36475.89 35952.31 36192.33 356
N_pmnet94.95 31295.83 30092.31 33598.47 32779.33 36099.12 25392.81 36793.87 32797.68 31599.13 30093.87 24499.01 31291.38 34096.19 27298.59 296
EMVS80.02 32979.22 33282.43 34591.19 35876.40 36297.55 35592.49 36866.36 36283.01 35791.27 35864.63 36185.79 36365.82 36260.65 36085.08 359
testmvs39.17 33443.78 33625.37 34936.04 37016.84 37198.36 33826.56 36920.06 36538.51 36667.32 36229.64 36915.30 36737.59 36439.90 36343.98 362
wuyk23d40.18 33341.29 33836.84 34786.18 36449.12 36979.73 36122.81 37027.64 36425.46 36728.45 36721.98 37048.89 36555.80 36323.56 36512.51 363
test12339.01 33542.50 33728.53 34839.17 36920.91 37098.75 31619.17 37119.83 36638.57 36566.67 36333.16 36815.42 36637.50 36529.66 36449.26 361
uanet_test0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.27 33811.03 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 36899.01 160.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
n20.00 372
nn0.00 372
ab-mvs-re8.30 33711.06 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.58 1910.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.64 7799.56 14499.72 4299.60 7399.70 13399.27 499.42 24698.24 15899.80 8499.79 53
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8199.90 2399.88 5
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20499.52 148
sam_mvs94.72 215
test_post199.23 23465.14 36594.18 23699.71 19597.58 215
test_post65.99 36494.65 21999.73 185
patchmatchnet-post98.70 32894.79 20799.74 178
gm-plane-assit98.54 32592.96 34694.65 32199.15 29899.64 21697.56 220
test9_res97.49 22699.72 10499.75 69
agg_prior297.21 24399.73 10399.75 69
test_prior499.56 7398.99 284
test_prior298.96 29298.34 8399.01 21099.52 21498.68 6397.96 18199.74 100
旧先验298.96 29296.70 24799.47 10899.94 5498.19 161
新几何299.01 282
原ACMM298.95 296
testdata299.95 4396.67 277
segment_acmp98.96 25
testdata198.85 30698.32 87
plane_prior799.29 21297.03 268
plane_prior699.27 21796.98 27292.71 268
plane_prior499.61 182
plane_prior397.00 27098.69 5699.11 191
plane_prior299.39 18298.97 30
plane_prior199.26 219
plane_prior96.97 27399.21 24198.45 7197.60 226
HQP5-MVS96.83 278
HQP-NCC99.19 23598.98 28898.24 9298.66 262
ACMP_Plane99.19 23598.98 28898.24 9298.66 262
BP-MVS97.19 247
HQP4-MVS98.66 26299.64 21698.64 273
HQP2-MVS92.47 277
NP-MVS99.23 22596.92 27699.40 251
MDTV_nov1_ep13_2view95.18 32399.35 20096.84 23999.58 8895.19 19597.82 19399.46 166
ACMMP++_ref97.19 252
ACMMP++97.43 244
Test By Simon98.75 56