This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5197.73 11499.96 3099.47 4899.82 9599.79 74
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13798.98 9397.29 28998.42 347
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13798.98 9399.85 7499.60 146
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3799.02 18799.86 33
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10499.73 15098.58 7299.90 12098.61 14999.91 3699.68 119
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3994.73 22599.98 1397.47 26299.76 11599.06 242
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12497.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4999.99 199.66 125
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
AdaColmapbinary99.01 12198.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12097.48 26099.77 11299.55 162
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14199.63 10099.84 6798.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14798.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 262
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6399.66 2898.49 9599.86 3199.87 4794.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 6399.32 4399.32 14899.85 2698.29 22799.71 5399.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3994.56 23599.93 8799.67 2298.26 23199.72 103
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7198.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12399.62 4198.78 7399.64 9799.88 3992.02 30799.88 13799.54 3598.26 23199.72 103
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
sss99.17 8699.05 8899.53 10999.62 14198.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12399.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7996.80 14599.22 31399.07 8696.38 30798.79 261
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5499.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11598.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5499.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12098.84 11899.91 3699.74 92
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12098.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23099.64 2799.82 9599.54 164
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2899.98 499.65 129
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12399.57 6698.45 9899.49 13499.85 5697.77 11399.94 6998.33 18399.84 8299.52 172
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 41
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17199.74 92
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5699.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14299.64 8099.56 7198.26 12099.45 13999.87 4796.03 17199.81 18399.54 3599.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS99.06 11298.88 11999.61 8799.62 14199.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
API-MVS99.04 11499.03 9299.06 18599.40 21499.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
ACMH97.28 898.10 20397.99 20598.44 27599.41 20996.96 30099.60 9699.56 7198.09 14798.15 33099.91 2290.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10699.92 9899.58 3099.98 499.56 160
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16399.55 7998.60 8699.39 16099.83 7194.48 24099.45 26898.75 12998.56 21599.85 36
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 13999.84 6795.27 20099.91 10998.08 20398.84 19999.00 247
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 11099.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12399.55 7997.45 22298.71 28199.83 7193.23 27399.63 25498.88 10596.32 30998.76 267
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11199.87 14296.93 29799.90 4499.54 164
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18199.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14899.71 15594.20 24999.92 9898.54 16598.90 19599.00 247
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8799.17 7898.82 20199.49 182
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19596.68 31399.56 12399.54 8898.41 10297.79 34699.87 4790.18 34099.66 24198.05 20797.18 29498.62 318
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21497.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4199.52 10498.11 14399.87 2799.85 5697.72 11599.89 13199.56 3299.97 899.53 170
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3998.56 7499.93 8799.67 2299.98 499.87 31
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11499.56 12399.52 10498.52 9399.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
OMC-MVS99.08 11099.04 9099.20 17099.67 11498.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11299.78 19797.79 22799.81 9899.60 146
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12499.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10997.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10997.63 24499.82 95
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6798.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3397.12 13299.33 29499.38 5397.40 28598.73 274
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7199.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4199.50 13998.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 189
test072699.85 2699.89 499.62 8999.50 13999.10 2799.86 3199.82 7998.94 29
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13998.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13998.33 11299.41 15299.86 5195.92 17799.83 17199.45 5099.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13997.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3997.39 12199.92 9898.66 14299.90 4499.87 31
test_vis1_n97.92 23497.44 26999.34 14299.53 16798.08 23899.74 4699.49 14899.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4699.49 14899.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13599.49 14899.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
test_one_060199.81 4699.88 899.49 14898.97 5199.65 9399.81 9399.09 14
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20996.99 29699.52 14899.49 14898.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14897.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
test22299.75 7399.49 8998.91 34599.49 14896.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14896.89 27597.99 33799.56 22497.72 11599.83 17197.74 23599.27 16598.84 259
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16399.28 25999.49 14898.46 9799.72 7199.71 15596.50 15699.88 13799.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14897.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10299.49 14897.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14897.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MGCFI-Net99.01 12198.85 12599.50 12299.42 20499.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
sasdasda99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14298.94 34199.48 16099.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14299.82 54
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5198.82 4399.93 8798.82 12599.91 3699.84 40
canonicalmvs99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
baseline99.15 9099.02 9699.53 10999.66 12499.14 13799.72 5199.48 16098.35 10999.42 14899.84 6796.07 16999.79 19299.51 4099.14 17499.67 122
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 12098.25 18899.63 13899.80 70
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 12098.87 10898.78 20499.84 40
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 18097.45 22299.78 5199.82 7999.18 1099.91 10998.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTGPAbinary99.47 180
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10997.70 24199.69 12899.71 112
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13198.83 12198.78 20499.86 33
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7996.69 15099.38 28199.34 6094.59 34898.78 262
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
PS-MVSNAJ99.32 6399.32 4399.30 15499.57 15698.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
MVSFormer99.17 8699.12 7899.29 15799.51 17598.94 16999.88 399.46 18997.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3995.73 18599.28 30299.03 8897.62 26398.75 269
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20498.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10799.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 10099.08 8599.24 16699.46 19598.55 20699.51 15699.46 18998.09 14799.45 13999.82 7998.34 9099.51 26498.70 13598.93 19199.67 122
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18999.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16798.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9699.45 20099.01 4099.90 2099.83 7198.98 2399.93 8799.59 2899.95 2099.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9599.45 20099.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
ACMM97.58 598.37 18098.34 17398.48 26599.41 20997.10 28399.56 12399.45 20098.53 9299.04 23799.85 5693.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5199.44 20896.61 29499.66 8799.89 3395.92 17799.82 17897.46 26399.10 17999.57 158
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20898.45 9899.19 20899.49 24898.08 10499.89 13197.73 23699.75 11799.48 183
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20899.35 1299.83 3899.85 5698.70 6399.81 18399.02 9099.91 3699.81 61
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 20497.68 24099.34 14299.66 12498.44 22199.40 21899.43 21493.67 37099.22 19999.89 3390.23 33999.93 8799.26 7198.33 22599.66 125
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
TEST999.67 11499.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 109
train_agg99.02 11798.77 13499.77 5599.67 11499.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10997.63 24499.72 12399.75 88
test_899.67 11499.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 109
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 12097.48 26099.83 9199.78 80
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
agg_prior99.67 11499.62 6599.40 22498.87 26399.91 109
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 12098.64 14499.75 11799.82 54
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22798.91 5899.78 5199.85 5699.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
VNet99.11 10498.90 11599.73 6499.52 17299.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23899.72 103
HQP3-MVS99.39 22797.58 266
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16399.38 23596.93 27499.20 20599.83 7197.87 10999.36 28898.38 17797.56 26898.71 277
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
mvs_anonymous99.03 11698.99 10299.16 17499.38 21998.52 21299.51 15699.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13999.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
FMVSNet398.03 21697.76 23398.84 22799.39 21798.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24399.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11799.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14599.62 8999.36 24497.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23399.40 205
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13999.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
test1199.35 250
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13599.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15699.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5799.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13799.67 6699.34 25497.31 23699.58 11599.76 13697.65 11799.82 17898.87 10899.07 18299.46 194
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25498.99 4599.61 10799.82 7997.98 10899.87 14297.00 29099.80 10299.85 36
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26199.00 4399.82 3999.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14899.81 2099.33 26197.43 22599.60 11099.88 3997.14 13199.84 15899.13 8098.94 19099.69 115
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27195.91 34097.99 33799.85 5685.49 37599.88 13791.96 37798.84 19998.12 364
IU-MVS99.84 3299.88 899.32 27198.30 11499.84 3398.86 11399.85 7499.89 20
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11799.30 27998.47 9699.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2099.36 211
VDDNet97.55 28597.02 30499.16 17499.49 18698.12 23799.38 22799.30 27995.35 34699.68 7899.90 2982.62 38999.93 8799.31 6398.13 24299.42 201
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
test1299.75 5899.64 13299.61 6799.29 28399.21 20298.38 8899.89 13199.74 12099.74 92
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4999.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
jason99.13 9499.03 9299.45 12999.46 19598.87 17699.12 29899.26 28898.03 16099.79 4699.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10992.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4683.80 39799.08 236
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5196.54 15599.67 23898.09 19999.13 17599.73 97
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16999.05 31399.16 30497.86 17199.80 4499.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
GA-MVS97.85 24397.47 26199.00 19399.38 21997.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
DPM-MVS98.95 12698.71 13999.66 7099.63 13599.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5189.02 34899.55 26295.67 33397.36 28898.49 338
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 12097.78 22899.49 14899.28 220
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
MIMVSNet97.73 26597.45 26498.57 25499.45 20097.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
baseline198.31 18397.95 21099.38 14099.50 18498.74 19199.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5498.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
MTMP99.54 13998.88 342
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
test_fmvs297.25 30597.30 28997.09 34799.43 20293.31 37899.73 4998.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5682.98 38799.92 9899.49 4598.32 22999.60 146
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16399.68 6398.81 35195.54 34499.62 10499.70 15993.82 26499.93 8797.35 27199.46 14999.32 217
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3988.65 35599.71 22498.37 17982.74 39898.09 365
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
Anonymous20240521198.30 18597.98 20699.26 16399.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23099.70 113
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10999.28 6798.38 22299.69 115
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
door-mid98.05 382
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5685.77 37296.15 39997.86 22043.89 40995.39 399
door97.92 383
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
tttt051798.42 17398.14 18699.28 16199.66 12498.38 22599.74 4696.85 39497.68 19699.79 4699.74 14491.39 32499.89 13198.83 12199.56 14399.57 158
thisisatest051598.14 19997.79 22499.19 17199.50 18498.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
thisisatest053098.35 18198.03 20199.31 14999.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13198.62 14699.56 14399.48 183
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12099.53 3798.85 19897.70 382
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 12097.38 26998.69 20799.28 220
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5199.38 15499.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5299.38 15499.80 70
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4788.69 35399.32 29795.89 32594.93 34398.62 318
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
dongtai93.26 35592.93 35994.25 36799.39 21785.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27898.24 18999.80 10299.79 74
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
GSMVS99.52 172
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
patchmatchnet-post98.70 36194.79 21899.74 208
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
test_prior499.56 7698.99 329
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
新几何299.01 326
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 113
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior199.26 250
plane_prior96.97 29899.21 28498.45 9897.60 264
HQP5-MVS96.83 305
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24998.64 309
HQP2-MVS92.47 298
NP-MVS99.23 25696.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55