This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5698.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6898.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15997.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6498.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13197.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11997.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 11197.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11996.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28999.42 2197.03 2799.02 8699.09 14399.35 198.21 22499.73 3199.78 9299.77 108
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4697.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27399.63 9381.76 35099.96 2598.56 7899.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 11196.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 14297.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7897.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6195.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 24297.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14696.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15696.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8495.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11994.63 10299.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11994.35 11499.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1997.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9196.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9196.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10694.56 10499.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10498.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15799.99 24
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14693.19 15899.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 11197.96 799.55 4899.94 497.18 20100.00 193.81 19899.94 6199.98 55
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14993.81 14099.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
PAPM98.60 3498.42 3299.14 6696.05 25898.96 2499.90 7899.35 2496.68 3898.35 11899.66 10096.45 2898.51 19299.45 4199.89 7899.96 74
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 7095.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9195.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17693.53 14999.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12699.90 7899.51 1697.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9195.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
9.1498.38 3999.87 5799.91 7498.33 15793.22 15799.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
MVS_111021_LR98.42 4998.38 3998.53 11599.39 10895.79 16299.87 9299.86 296.70 3798.78 9699.79 6492.03 14499.90 7999.17 5099.86 8399.88 96
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 7094.77 9499.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8494.87 9299.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15793.97 13299.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 15194.08 12599.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7294.77 9499.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13199.97 1898.39 14294.43 10998.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15494.92 8999.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
test117298.38 5498.25 4898.77 9399.88 5496.56 13499.80 12498.36 15194.68 9999.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7497.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5190.78 23699.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 18297.34 1699.85 699.85 3591.20 15699.89 8399.41 4499.67 9998.69 210
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14695.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11995.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14994.68 9999.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
RE-MVS-def98.13 5699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1793.90 13799.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13399.40 19898.51 9895.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13299.82 11798.30 16493.95 13499.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 17292.18 19799.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 11194.31 11798.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 11192.06 20298.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14399.36 20798.50 10295.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 14294.04 13098.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19397.05 2699.86 499.86 3190.65 16799.71 13399.39 4598.63 13498.69 210
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 14294.70 9798.26 12399.81 5991.84 148100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15299.82 11798.43 11994.56 10497.52 13999.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
PLCcopyleft95.54 397.93 7397.89 7098.05 13999.82 7094.77 19599.92 7098.46 10693.93 13597.20 14599.27 13195.44 4799.97 5597.41 12999.51 11299.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9897.00 2898.52 10999.71 8987.80 19899.95 6499.75 2699.38 11799.83 100
ETV-MVS97.92 7497.80 7298.25 13098.14 17396.48 13599.98 1097.63 22595.61 7199.29 7499.46 11692.55 13298.82 17299.02 6098.54 13599.46 161
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 14099.90 7898.17 18292.61 18098.62 10699.57 10791.87 14799.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 7597.66 7498.47 11899.52 10195.41 17599.47 19198.87 4591.68 21298.84 9399.85 3592.34 13899.99 4098.44 9299.96 52100.00 1
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 18193.35 15396.45 16599.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2995.38 7698.27 12199.08 14489.00 18999.95 6499.12 5199.25 12099.57 145
CS-MVS97.74 8397.61 7798.15 13597.52 21196.69 128100.00 197.11 28294.93 8699.73 2999.41 12091.68 15098.25 22298.84 7199.24 12199.52 154
lupinMVS97.85 7697.60 7898.62 10397.28 22497.70 8999.99 597.55 23695.50 7599.43 5999.67 9890.92 16398.71 18298.40 9399.62 10299.45 163
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1495.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 20099.78 107
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29698.62 6892.78 17099.53 5099.83 5195.08 53100.00 194.36 18599.92 7199.99 24
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13799.88 8998.16 18591.75 21198.94 9199.54 11091.82 14999.65 14297.62 12699.99 2299.99 24
EIA-MVS97.53 8997.46 8297.76 15098.04 17794.84 19199.98 1097.61 23094.41 11297.90 13299.59 10592.40 13698.87 17098.04 10899.13 12599.59 138
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15299.18 22599.45 1894.84 9396.41 16899.71 8991.40 15299.99 4097.99 11198.03 15399.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test97.44 9197.41 8497.53 15797.46 21394.66 197100.00 197.04 29194.69 9899.72 3399.25 13591.22 15498.29 21498.33 9798.95 12799.64 126
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12499.87 9298.14 18893.78 14296.55 16399.69 9492.28 13999.98 4697.13 13599.44 11599.93 85
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
abl_697.67 8697.34 8898.66 10099.68 9196.11 15599.68 15598.14 18893.80 14199.27 7599.70 9188.65 19499.98 4697.46 12899.72 9699.89 94
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 11194.40 11398.41 11499.47 11493.65 10399.42 15598.57 8894.26 21399.67 120
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16399.96 2598.35 15489.90 24998.36 11799.79 6491.18 15999.99 4098.37 9499.99 2299.99 24
DROMVSNet97.38 9897.24 9197.80 14597.41 21495.64 17099.99 597.06 28794.59 10399.63 4099.32 12789.20 18798.14 22698.76 7899.23 12299.62 132
OMC-MVS97.28 10097.23 9297.41 16499.76 7993.36 22699.65 16197.95 20396.03 5897.41 14299.70 9189.61 17899.51 14796.73 14698.25 14499.38 170
test250697.53 8997.19 9398.58 10898.66 14696.90 12398.81 26899.77 594.93 8697.95 13098.96 15892.51 13399.20 15994.93 16698.15 14599.64 126
DWT-MVSNet_test97.31 9997.19 9397.66 15398.24 16694.67 19698.86 26298.20 18093.60 14898.09 12698.89 16797.51 798.78 17594.04 19297.28 16699.55 147
MAR-MVS97.43 9297.19 9398.15 13599.47 10594.79 19499.05 24198.76 5292.65 17898.66 10499.82 5588.52 19599.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 8197.17 9699.63 1598.98 12399.32 897.49 31799.52 1495.69 6998.32 11997.41 21993.32 11099.77 11998.08 10795.75 19799.81 102
xiu_mvs_v1_base_debu97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base_debi97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
CSCG97.10 10697.04 10097.27 17299.89 5091.92 25699.90 7899.07 3288.67 26995.26 18899.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
sss97.57 8897.03 10199.18 5798.37 15798.04 7699.73 14799.38 2293.46 15198.76 9999.06 14591.21 15599.89 8396.33 14897.01 17399.62 132
thisisatest051597.41 9697.02 10298.59 10797.71 20297.52 9699.97 1898.54 8891.83 20797.45 14199.04 14697.50 899.10 16494.75 17596.37 18499.16 189
F-COLMAP96.93 11296.95 10396.87 18199.71 8991.74 26199.85 10697.95 20393.11 16195.72 18199.16 14192.35 13799.94 7295.32 16099.35 11898.92 199
jason97.24 10296.86 10498.38 12695.73 27097.32 10899.97 1897.40 25795.34 7898.60 10899.54 11087.70 19998.56 18997.94 11499.47 11399.25 184
jason: jason.
114514_t97.41 9696.83 10599.14 6699.51 10397.83 8499.89 8698.27 16988.48 27399.06 8499.66 10090.30 17199.64 14396.32 14999.97 4899.96 74
PVSNet_Blended_VisFu97.27 10196.81 10698.66 10098.81 13996.67 12999.92 7098.64 6494.51 10696.38 16998.49 19289.05 18899.88 8997.10 13798.34 13999.43 166
AdaColmapbinary97.23 10396.80 10798.51 11699.99 195.60 17199.09 23098.84 4893.32 15496.74 15799.72 8786.04 215100.00 198.01 10999.43 11699.94 84
PMMVS96.76 11996.76 10896.76 18498.28 16292.10 25199.91 7497.98 20094.12 12399.53 5099.39 12386.93 20898.73 18096.95 14297.73 15599.45 163
thisisatest053097.10 10696.72 10998.22 13197.60 20596.70 12799.92 7098.54 8891.11 22897.07 14998.97 15697.47 1199.03 16593.73 20396.09 18798.92 199
PVSNet91.05 1397.13 10596.69 11098.45 12099.52 10195.81 16199.95 4399.65 1194.73 9699.04 8599.21 13984.48 22999.95 6494.92 16798.74 13299.58 144
diffmvs97.00 10996.64 11198.09 13797.64 20396.17 15199.81 11997.19 27294.67 10198.95 9099.28 12886.43 21298.76 17898.37 9497.42 16399.33 177
MVSFormer96.94 11196.60 11297.95 14197.28 22497.70 8999.55 17897.27 26891.17 22599.43 5999.54 11090.92 16396.89 28994.67 17999.62 10299.25 184
EPP-MVSNet96.69 12496.60 11296.96 17897.74 19693.05 23099.37 20598.56 7888.75 26795.83 17999.01 14996.01 3198.56 18996.92 14397.20 16999.25 184
VNet97.21 10496.57 11499.13 7198.97 12497.82 8599.03 24399.21 2894.31 11799.18 8198.88 16986.26 21499.89 8398.93 6394.32 21299.69 117
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 13293.07 22899.65 16199.80 395.64 7095.39 18598.86 17384.35 23199.90 7996.98 14099.16 12499.95 82
tttt051796.85 11496.49 11697.92 14397.48 21295.89 16099.85 10698.54 8890.72 23796.63 15998.93 16697.47 1199.02 16693.03 21695.76 19698.85 203
baseline296.71 12396.49 11697.37 16795.63 27795.96 15899.74 14298.88 4492.94 16391.61 22398.97 15697.72 598.62 18794.83 17198.08 15297.53 227
HyFIR lowres test96.66 12696.43 11897.36 16999.05 11893.91 21199.70 15299.80 390.54 23896.26 17198.08 20492.15 14298.23 22396.84 14595.46 20199.93 85
DeepC-MVS94.51 496.92 11396.40 11998.45 12099.16 11595.90 15999.66 15898.06 19496.37 5094.37 19799.49 11383.29 23899.90 7997.63 12599.61 10599.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs97.09 10896.32 12099.39 4698.93 12898.95 2599.72 15097.35 26094.45 10797.88 13399.42 11886.71 20999.52 14698.48 9193.97 21799.72 114
TESTMET0.1,196.74 12196.26 12198.16 13297.36 21796.48 13599.96 2598.29 16591.93 20495.77 18098.07 20595.54 4398.29 21490.55 24798.89 12899.70 115
thres20096.96 11096.21 12299.22 5398.97 12498.84 3499.85 10699.71 693.17 15996.26 17198.88 16989.87 17699.51 14794.26 18994.91 20799.31 179
CANet_DTU96.76 11996.15 12398.60 10598.78 14197.53 9599.84 11097.63 22597.25 2399.20 7799.64 10281.36 25299.98 4692.77 21898.89 12898.28 213
CDS-MVSNet96.34 13596.07 12497.13 17497.37 21694.96 18899.53 18197.91 20891.55 21695.37 18698.32 20095.05 5697.13 27393.80 19995.75 19799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 13096.04 12597.78 14797.02 23295.44 17399.96 2598.21 17694.07 12695.55 18296.38 25393.90 9798.27 21990.42 25098.83 13099.64 126
EPMVS96.53 12996.01 12698.09 13798.43 15696.12 15496.36 33399.43 2093.53 14997.64 13795.04 30294.41 7398.38 20891.13 23498.11 14899.75 110
tfpn200view996.79 11795.99 12799.19 5698.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.27 182
thres40096.78 11895.99 12799.16 6298.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.16 189
baseline96.43 13295.98 12997.76 15097.34 21895.17 18499.51 18497.17 27593.92 13696.90 15299.28 12885.37 22298.64 18697.50 12796.86 17799.46 161
tpmrst96.27 14195.98 12997.13 17497.96 18093.15 22796.34 33498.17 18292.07 20098.71 10295.12 30093.91 9698.73 18094.91 16996.62 17899.50 158
Vis-MVSNet (Re-imp)96.32 13695.98 12997.35 17097.93 18294.82 19299.47 19198.15 18791.83 20795.09 18999.11 14291.37 15397.47 25493.47 20797.43 16199.74 111
mvs-test195.53 15795.97 13294.20 26197.77 19385.44 33299.95 4397.06 28794.92 8996.58 16198.72 17985.81 21698.98 16794.80 17298.11 14898.18 214
casdiffmvs96.42 13395.97 13297.77 14997.30 22294.98 18799.84 11097.09 28493.75 14496.58 16199.26 13485.07 22598.78 17597.77 12297.04 17299.54 151
UA-Net96.54 12895.96 13498.27 12998.23 16795.71 16798.00 31098.45 10893.72 14598.41 11499.27 13188.71 19399.66 14191.19 23397.69 15699.44 165
131496.84 11595.96 13499.48 3696.74 24898.52 5998.31 29698.86 4695.82 6189.91 24298.98 15487.49 20199.96 5797.80 11799.73 9599.96 74
test-mter96.39 13495.93 13697.78 14797.02 23295.44 17399.96 2598.21 17691.81 20995.55 18296.38 25395.17 5098.27 21990.42 25098.83 13099.64 126
thres100view90096.74 12195.92 13799.18 5798.90 13398.77 4099.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.84 19594.57 20899.27 182
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 19399.08 23297.61 23092.02 20395.54 18498.96 15890.64 16898.08 22993.73 20397.41 16499.47 160
CostFormer96.10 14295.88 13996.78 18397.03 23192.55 24397.08 32597.83 21690.04 24898.72 10194.89 30995.01 5998.29 21496.54 14795.77 19599.50 158
thres600view796.69 12495.87 14099.14 6698.90 13398.78 3999.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.44 20894.50 21199.16 189
PVSNet_BlendedMVS96.05 14395.82 14196.72 18699.59 9596.99 11999.95 4399.10 2994.06 12898.27 12195.80 26789.00 18999.95 6499.12 5187.53 25993.24 322
MVS_Test96.46 13195.74 14298.61 10498.18 17097.23 11099.31 21297.15 27891.07 22998.84 9397.05 23288.17 19798.97 16894.39 18497.50 16099.61 135
Effi-MVS+96.30 13895.69 14398.16 13297.85 18896.26 14497.41 31897.21 27190.37 24198.65 10598.58 18886.61 21198.70 18397.11 13697.37 16599.52 154
MDTV_nov1_ep1395.69 14397.90 18394.15 20495.98 34098.44 11193.12 16097.98 12995.74 26995.10 5298.58 18890.02 25696.92 175
TAMVS95.85 14795.58 14596.65 18997.07 22893.50 22099.17 22697.82 21791.39 22495.02 19098.01 20692.20 14097.30 26293.75 20295.83 19499.14 192
MVS96.60 12795.56 14699.72 1296.85 24199.22 1998.31 29698.94 3791.57 21590.90 23099.61 10486.66 21099.96 5797.36 13099.88 8099.99 24
PatchmatchNetpermissive95.94 14695.45 14797.39 16697.83 18994.41 20196.05 33998.40 13992.86 16497.09 14895.28 29794.21 8998.07 23189.26 26298.11 14899.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 14495.40 14897.95 14199.59 9595.22 18399.52 18299.07 3293.96 13396.49 16498.35 19982.28 24299.82 10990.15 25599.22 12398.81 206
EPNet_dtu95.71 15295.39 14996.66 18898.92 13093.41 22399.57 17498.90 4296.19 5497.52 13998.56 19092.65 12997.36 25777.89 33798.33 14099.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 15295.38 15096.68 18798.49 15492.28 24799.84 11097.50 24592.12 19992.06 22198.79 17784.69 22798.67 18595.29 16199.66 10099.09 195
3Dnovator91.47 1296.28 14095.34 15199.08 7496.82 24397.47 10299.45 19498.81 4995.52 7489.39 25699.00 15181.97 24499.95 6497.27 13299.83 8599.84 99
Effi-MVS+-dtu94.53 18395.30 15292.22 30397.77 19382.54 34399.59 17197.06 28794.92 8995.29 18795.37 29085.81 21697.89 24194.80 17297.07 17196.23 234
3Dnovator+91.53 1196.31 13795.24 15399.52 2996.88 24098.64 5399.72 15098.24 17295.27 8088.42 27998.98 15482.76 24099.94 7297.10 13799.83 8599.96 74
MVSTER95.53 15795.22 15496.45 19498.56 14897.72 8699.91 7497.67 22392.38 19291.39 22597.14 22697.24 1797.30 26294.80 17287.85 25494.34 257
1112_ss96.01 14595.20 15598.42 12397.80 19196.41 13899.65 16196.66 32192.71 17392.88 21699.40 12192.16 14199.30 15691.92 22593.66 21899.55 147
tpm295.47 15995.18 15696.35 20096.91 23691.70 26596.96 32897.93 20588.04 27998.44 11395.40 28693.32 11097.97 23594.00 19395.61 19999.38 170
Vis-MVSNetpermissive95.72 15095.15 15797.45 16297.62 20494.28 20399.28 21898.24 17294.27 12096.84 15498.94 16479.39 27198.76 17893.25 20998.49 13699.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 14895.11 15898.02 14099.85 6095.10 18598.74 27398.50 10287.22 28993.66 20699.86 3187.45 20299.95 6490.94 24199.81 9199.02 197
ECVR-MVScopyleft95.66 15495.05 15997.51 16098.66 14693.71 21598.85 26598.45 10894.93 8696.86 15398.96 15875.22 30399.20 15995.34 15998.15 14599.64 126
mvs_anonymous95.65 15595.03 16097.53 15798.19 16995.74 16599.33 20997.49 24690.87 23390.47 23597.10 22888.23 19697.16 27095.92 15497.66 15899.68 118
test111195.57 15694.98 16197.37 16798.56 14893.37 22598.86 26298.45 10894.95 8596.63 15998.95 16275.21 30499.11 16395.02 16498.14 14799.64 126
CVMVSNet94.68 17794.94 16293.89 27596.80 24486.92 32499.06 23798.98 3594.45 10794.23 20099.02 14785.60 21895.31 33490.91 24295.39 20399.43 166
baseline195.78 14994.86 16398.54 11398.47 15598.07 7499.06 23797.99 19892.68 17694.13 20198.62 18593.28 11398.69 18493.79 20085.76 26898.84 204
BH-untuned95.18 16394.83 16496.22 20298.36 15891.22 27399.80 12497.32 26490.91 23291.08 22898.67 18183.51 23598.54 19194.23 19099.61 10598.92 199
Test_1112_low_res95.72 15094.83 16498.42 12397.79 19296.41 13899.65 16196.65 32292.70 17492.86 21796.13 26292.15 14299.30 15691.88 22693.64 21999.55 147
RRT_MVS95.23 16294.77 16696.61 19098.28 16298.32 6799.81 11997.41 25592.59 18291.28 22797.76 21395.02 5797.23 26893.65 20587.14 26194.28 260
XVG-OURS94.82 17094.74 16795.06 22898.00 17889.19 30399.08 23297.55 23694.10 12494.71 19299.62 10380.51 26399.74 12996.04 15293.06 22596.25 232
XVG-OURS-SEG-HR94.79 17194.70 16895.08 22798.05 17689.19 30399.08 23297.54 23893.66 14694.87 19199.58 10678.78 27699.79 11397.31 13193.40 22196.25 232
UGNet95.33 16194.57 16997.62 15698.55 15094.85 19098.67 28099.32 2595.75 6896.80 15696.27 25872.18 31799.96 5794.58 18199.05 12698.04 217
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 17994.50 17094.92 23395.78 26491.85 25799.87 9297.89 20996.82 3193.37 20898.65 18280.65 26198.39 20497.92 11589.60 22994.53 238
dp95.05 16694.43 17196.91 17997.99 17992.73 23796.29 33597.98 20089.70 25295.93 17694.67 31593.83 10098.45 19786.91 29296.53 18099.54 151
h-mvs3394.92 16994.36 17296.59 19198.85 13791.29 27298.93 25398.94 3795.90 5998.77 9798.42 19890.89 16599.77 11997.80 11770.76 34798.72 209
HQP_MVS94.49 18494.36 17294.87 23495.71 27391.74 26199.84 11097.87 21196.38 4793.01 21298.59 18680.47 26598.37 20997.79 12089.55 23294.52 240
BH-RMVSNet95.18 16394.31 17497.80 14598.17 17195.23 18299.76 13697.53 24092.52 18794.27 19999.25 13576.84 28798.80 17390.89 24399.54 10999.35 175
Fast-Effi-MVS+95.02 16794.19 17597.52 15997.88 18494.55 19899.97 1897.08 28588.85 26694.47 19697.96 21084.59 22898.41 20089.84 25897.10 17099.59 138
QAPM95.40 16094.17 17699.10 7296.92 23597.71 8799.40 19898.68 5789.31 25488.94 26898.89 16782.48 24199.96 5793.12 21599.83 8599.62 132
RRT_test8_iter0594.58 18094.11 17795.98 20797.88 18496.11 15599.89 8697.45 24891.66 21388.28 28096.71 24496.53 2797.40 25594.73 17783.85 28894.45 248
PCF-MVS94.20 595.18 16394.10 17898.43 12298.55 15095.99 15797.91 31297.31 26590.35 24289.48 25599.22 13885.19 22499.89 8390.40 25298.47 13799.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 18694.08 17995.31 22198.27 16490.02 29499.29 21798.56 7895.90 5998.77 9798.00 20790.89 16598.26 22197.80 11769.20 35397.64 224
ADS-MVSNet94.79 17194.02 18097.11 17697.87 18693.79 21294.24 34598.16 18590.07 24696.43 16694.48 32090.29 17298.19 22587.44 28097.23 16799.36 173
miper_enhance_ethall94.36 18993.98 18195.49 21498.68 14595.24 18199.73 14797.29 26693.28 15689.86 24495.97 26594.37 7897.05 27992.20 22284.45 28094.19 267
IB-MVS92.85 694.99 16893.94 18298.16 13297.72 20095.69 16999.99 598.81 4994.28 11992.70 21896.90 23695.08 5399.17 16296.07 15173.88 34599.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 19393.90 18394.55 24796.02 25990.69 27999.98 1097.72 22096.62 4191.05 22998.85 17677.21 28398.47 19398.11 10489.51 23494.48 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 19893.88 18493.55 28597.87 18685.94 32894.24 34596.84 31090.07 24696.43 16694.48 32090.29 17295.37 33287.44 28097.23 16799.36 173
Fast-Effi-MVS+-dtu93.72 20293.86 18593.29 28897.06 22986.16 32699.80 12496.83 31192.66 17792.58 21997.83 21281.39 25197.67 24789.75 25996.87 17696.05 236
SCA94.69 17593.81 18697.33 17197.10 22794.44 19998.86 26298.32 15993.30 15596.17 17395.59 27676.48 29197.95 23891.06 23697.43 16199.59 138
test0.0.03 193.86 19493.61 18794.64 24295.02 28692.18 25099.93 6698.58 7494.07 12687.96 28498.50 19193.90 9794.96 33881.33 32393.17 22396.78 229
cascas94.64 17893.61 18797.74 15297.82 19096.26 14499.96 2597.78 21985.76 30894.00 20297.54 21676.95 28699.21 15897.23 13395.43 20297.76 223
TAPA-MVS92.12 894.42 18593.60 18996.90 18099.33 11191.78 26099.78 12898.00 19789.89 25094.52 19499.47 11491.97 14599.18 16169.90 35399.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 17393.59 19098.33 12796.07 25797.48 10199.56 17698.57 7690.46 23986.51 30398.95 16278.57 27899.94 7293.86 19499.74 9497.57 226
tpmvs94.28 19193.57 19196.40 19798.55 15091.50 27095.70 34498.55 8487.47 28492.15 22094.26 32491.42 15198.95 16988.15 27395.85 19398.76 208
LFMVS94.75 17493.56 19298.30 12899.03 11995.70 16898.74 27397.98 20087.81 28298.47 11299.39 12367.43 33699.53 14598.01 10995.20 20699.67 120
TR-MVS94.54 18193.56 19297.49 16197.96 18094.34 20298.71 27697.51 24490.30 24494.51 19598.69 18075.56 29898.77 17792.82 21795.99 18999.35 175
GeoE94.36 18993.48 19496.99 17797.29 22393.54 21999.96 2596.72 31988.35 27693.43 20798.94 16482.05 24398.05 23288.12 27596.48 18299.37 172
FIs94.10 19293.43 19596.11 20494.70 29096.82 12599.58 17298.93 4192.54 18689.34 25897.31 22287.62 20097.10 27694.22 19186.58 26494.40 250
ab-mvs94.69 17593.42 19698.51 11698.07 17596.26 14496.49 33298.68 5790.31 24394.54 19397.00 23476.30 29399.71 13395.98 15393.38 22299.56 146
DP-MVS94.54 18193.42 19697.91 14499.46 10794.04 20698.93 25397.48 24781.15 33990.04 23999.55 10887.02 20799.95 6488.97 26498.11 14899.73 112
tpm93.70 20393.41 19894.58 24595.36 28187.41 32297.01 32696.90 30690.85 23496.72 15894.14 32590.40 17096.84 29290.75 24688.54 24899.51 156
EI-MVSNet93.73 20193.40 19994.74 23896.80 24492.69 23899.06 23797.67 22388.96 26291.39 22599.02 14788.75 19297.30 26291.07 23587.85 25494.22 264
MSDG94.37 18793.36 20097.40 16598.88 13593.95 21099.37 20597.38 25885.75 31090.80 23199.17 14084.11 23399.88 8986.35 29398.43 13898.36 212
PS-MVSNAJss93.64 20493.31 20194.61 24392.11 33192.19 24999.12 22897.38 25892.51 18888.45 27496.99 23591.20 15697.29 26594.36 18587.71 25694.36 253
ET-MVSNet_ETH3D94.37 18793.28 20297.64 15498.30 15997.99 7899.99 597.61 23094.35 11471.57 35899.45 11796.23 3095.34 33396.91 14485.14 27599.59 138
cl2293.77 19993.25 20395.33 22099.49 10494.43 20099.61 16998.09 19190.38 24089.16 26595.61 27490.56 16997.34 25991.93 22484.45 28094.21 266
FC-MVSNet-test93.81 19793.15 20495.80 21294.30 29696.20 14999.42 19798.89 4392.33 19489.03 26797.27 22487.39 20396.83 29393.20 21086.48 26594.36 253
VDD-MVS93.77 19992.94 20596.27 20198.55 15090.22 29098.77 27297.79 21890.85 23496.82 15599.42 11861.18 35499.77 11998.95 6194.13 21498.82 205
GA-MVS93.83 19592.84 20696.80 18295.73 27093.57 21799.88 8997.24 27092.57 18592.92 21496.66 24678.73 27797.67 24787.75 27894.06 21699.17 188
OPM-MVS93.21 21092.80 20794.44 25493.12 31690.85 27899.77 13197.61 23096.19 5491.56 22498.65 18275.16 30598.47 19393.78 20189.39 23593.99 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 24392.79 20888.83 33098.15 17269.87 36498.11 30696.60 32383.93 32694.33 19899.27 13179.60 27099.46 15491.99 22393.16 22497.18 228
LPG-MVS_test92.96 21692.71 20993.71 27995.43 27988.67 30999.75 13997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
CR-MVSNet93.45 20892.62 21095.94 20896.29 25392.66 23992.01 35696.23 33092.62 17996.94 15093.31 33391.04 16096.03 32479.23 33095.96 19099.13 193
AUN-MVS93.28 20992.60 21195.34 21998.29 16090.09 29399.31 21298.56 7891.80 21096.35 17098.00 20789.38 18198.28 21792.46 21969.22 35297.64 224
miper_ehance_all_eth93.16 21192.60 21194.82 23797.57 20693.56 21899.50 18697.07 28688.75 26788.85 26995.52 28090.97 16296.74 29690.77 24584.45 28094.17 268
LCM-MVSNet-Re92.31 23192.60 21191.43 31197.53 20779.27 36099.02 24491.83 36792.07 20080.31 33994.38 32383.50 23695.48 33097.22 13497.58 15999.54 151
D2MVS92.76 22092.59 21493.27 28995.13 28289.54 30299.69 15399.38 2292.26 19587.59 28894.61 31785.05 22697.79 24391.59 22988.01 25392.47 334
nrg03093.51 20592.53 21596.45 19494.36 29497.20 11199.81 11997.16 27791.60 21489.86 24497.46 21786.37 21397.68 24695.88 15580.31 31494.46 243
tpm cat193.51 20592.52 21696.47 19297.77 19391.47 27196.13 33798.06 19480.98 34092.91 21593.78 32889.66 17798.87 17087.03 28896.39 18399.09 195
ACMM91.95 1092.88 21892.52 21693.98 27295.75 26989.08 30699.77 13197.52 24293.00 16289.95 24197.99 20976.17 29598.46 19693.63 20688.87 24094.39 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 22192.42 21893.73 27795.91 26388.72 30899.81 11997.53 24094.13 12287.00 29798.23 20174.07 31198.47 19396.22 15088.86 24193.99 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd93.05 21592.30 21995.31 22190.23 35095.05 18699.44 19697.28 26792.51 18890.65 23396.68 24585.30 22396.71 29994.49 18384.14 28394.16 273
test_djsdf92.83 21992.29 22094.47 25291.90 33492.46 24499.55 17897.27 26891.17 22589.96 24096.07 26481.10 25496.89 28994.67 17988.91 23894.05 284
UniMVSNet (Re)93.07 21492.13 22195.88 20994.84 28796.24 14899.88 8998.98 3592.49 19089.25 26095.40 28687.09 20697.14 27293.13 21478.16 32694.26 261
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 21494.61 29295.28 17999.83 11699.08 3191.49 21789.21 26296.86 23987.14 20596.73 29793.20 21077.52 33194.46 243
IterMVS-LS92.69 22392.11 22294.43 25696.80 24492.74 23599.45 19496.89 30788.98 26089.65 25195.38 28988.77 19196.34 31290.98 24082.04 29694.22 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 19592.06 22499.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6141.37 37594.34 7999.96 5798.92 6499.95 5599.99 24
Anonymous20240521193.10 21391.99 22596.40 19799.10 11789.65 30098.88 25897.93 20583.71 32894.00 20298.75 17868.79 32899.88 8995.08 16391.71 22799.68 118
eth_miper_zixun_eth92.41 22991.93 22693.84 27697.28 22490.68 28098.83 26696.97 29988.57 27289.19 26495.73 27189.24 18696.69 30089.97 25781.55 29994.15 275
VDDNet93.12 21291.91 22796.76 18496.67 25192.65 24198.69 27898.21 17682.81 33397.75 13699.28 12861.57 35299.48 15398.09 10694.09 21598.15 215
c3_l92.53 22691.87 22894.52 24897.40 21592.99 23199.40 19896.93 30487.86 28088.69 27295.44 28489.95 17596.44 30890.45 24980.69 31194.14 278
gg-mvs-nofinetune93.51 20591.86 22998.47 11897.72 20097.96 8192.62 35398.51 9874.70 35697.33 14369.59 36798.91 397.79 24397.77 12299.56 10899.67 120
AllTest92.48 22791.64 23095.00 23099.01 12088.43 31398.94 25296.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
DIV-MVS_self_test92.32 23091.60 23194.47 25297.31 22192.74 23599.58 17296.75 31786.99 29387.64 28795.54 27889.55 17996.50 30688.58 26782.44 29394.17 268
cl____92.31 23191.58 23294.52 24897.33 22092.77 23399.57 17496.78 31686.97 29487.56 28995.51 28189.43 18096.62 30288.60 26682.44 29394.16 273
FMVSNet392.69 22391.58 23295.99 20698.29 16097.42 10699.26 22097.62 22789.80 25189.68 24895.32 29281.62 25096.27 31587.01 28985.65 26994.29 259
VPA-MVSNet92.70 22291.55 23496.16 20395.09 28396.20 14998.88 25899.00 3491.02 23191.82 22295.29 29676.05 29797.96 23795.62 15881.19 30294.30 258
Patchmatch-test92.65 22591.50 23596.10 20596.85 24190.49 28591.50 35897.19 27282.76 33490.23 23695.59 27695.02 5798.00 23477.41 33996.98 17499.82 101
COLMAP_ROBcopyleft90.47 1492.18 23491.49 23694.25 26099.00 12288.04 31998.42 29496.70 32082.30 33688.43 27799.01 14976.97 28599.85 9886.11 29696.50 18194.86 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 22891.45 23795.49 21494.05 29995.28 17999.81 11998.74 5392.25 19689.21 26296.64 24881.66 24896.73 29793.20 21077.52 33194.46 243
miper_lstm_enhance91.81 24091.39 23893.06 29597.34 21889.18 30599.38 20396.79 31586.70 29787.47 29195.22 29890.00 17495.86 32888.26 27181.37 30194.15 275
WR-MVS92.31 23191.25 23995.48 21794.45 29395.29 17899.60 17098.68 5790.10 24588.07 28396.89 23780.68 26096.80 29593.14 21379.67 31894.36 253
jajsoiax91.92 23891.18 24094.15 26291.35 34090.95 27699.00 24597.42 25392.61 18087.38 29397.08 22972.46 31697.36 25794.53 18288.77 24294.13 279
mvs_tets91.81 24091.08 24194.00 27091.63 33890.58 28398.67 28097.43 25192.43 19187.37 29497.05 23271.76 31897.32 26194.75 17588.68 24494.11 280
pmmvs492.10 23691.07 24295.18 22592.82 32494.96 18899.48 19096.83 31187.45 28588.66 27396.56 25183.78 23496.83 29389.29 26184.77 27893.75 307
anonymousdsp91.79 24590.92 24394.41 25790.76 34592.93 23298.93 25397.17 27589.08 25687.46 29295.30 29378.43 28196.92 28892.38 22088.73 24393.39 318
XVG-ACMP-BASELINE91.22 25390.75 24492.63 30093.73 30585.61 32998.52 28897.44 25092.77 17189.90 24396.85 24066.64 33898.39 20492.29 22188.61 24593.89 298
test_part192.15 23590.72 24596.44 19698.87 13697.46 10398.99 24698.26 17085.89 30586.34 30896.34 25681.71 24697.48 25391.06 23678.99 32094.37 252
JIA-IIPM91.76 24690.70 24694.94 23296.11 25687.51 32193.16 35298.13 19075.79 35397.58 13877.68 36492.84 12497.97 23588.47 27096.54 17999.33 177
Anonymous2024052992.10 23690.65 24796.47 19298.82 13890.61 28298.72 27598.67 6075.54 35493.90 20498.58 18866.23 33999.90 7994.70 17890.67 22898.90 202
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23493.69 30693.98 20999.69 15398.65 6191.03 23088.44 27596.83 24380.05 26896.18 31890.26 25476.89 33994.45 248
VPNet91.81 24090.46 24995.85 21194.74 28995.54 17298.98 24798.59 7392.14 19890.77 23297.44 21868.73 33097.54 25194.89 17077.89 32894.46 243
XXY-MVS91.82 23990.46 24995.88 20993.91 30295.40 17698.87 26197.69 22288.63 27187.87 28597.08 22974.38 31097.89 24191.66 22884.07 28594.35 256
MVP-Stereo90.93 25690.45 25192.37 30291.25 34288.76 30798.05 30996.17 33287.27 28884.04 32195.30 29378.46 28097.27 26783.78 31099.70 9891.09 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 24990.35 25294.15 26294.17 29892.62 24299.17 22698.94 3788.87 26586.48 30594.46 32284.36 23096.61 30388.19 27278.51 32493.21 323
EU-MVSNet90.14 27990.34 25389.54 32692.55 32781.06 35498.69 27898.04 19691.41 22386.59 30296.84 24280.83 25893.31 35486.20 29481.91 29794.26 261
MS-PatchMatch90.65 26390.30 25491.71 31094.22 29785.50 33198.24 30097.70 22188.67 26986.42 30696.37 25567.82 33498.03 23383.62 31199.62 10291.60 342
PVSNet_088.03 1991.80 24390.27 25596.38 19998.27 16490.46 28699.94 6099.61 1293.99 13186.26 31097.39 22171.13 32399.89 8398.77 7767.05 35798.79 207
CP-MVSNet91.23 25290.22 25694.26 25993.96 30192.39 24699.09 23098.57 7688.95 26386.42 30696.57 25079.19 27396.37 31090.29 25378.95 32194.02 285
NR-MVSNet91.56 24890.22 25695.60 21394.05 29995.76 16498.25 29998.70 5591.16 22780.78 33896.64 24883.23 23996.57 30491.41 23077.73 33094.46 243
IterMVS90.91 25790.17 25893.12 29296.78 24790.42 28898.89 25697.05 29089.03 25886.49 30495.42 28576.59 29095.02 33687.22 28584.09 28493.93 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 26090.16 25992.93 29696.72 24989.96 29598.89 25696.99 29588.95 26386.63 30195.67 27276.48 29195.00 33787.04 28784.04 28793.84 302
V4291.28 25190.12 26094.74 23893.42 31193.46 22199.68 15597.02 29287.36 28689.85 24695.05 30181.31 25397.34 25987.34 28380.07 31693.40 317
v2v48291.30 24990.07 26195.01 22993.13 31493.79 21299.77 13197.02 29288.05 27889.25 26095.37 29080.73 25997.15 27187.28 28480.04 31794.09 281
v114491.09 25489.83 26294.87 23493.25 31393.69 21699.62 16896.98 29786.83 29689.64 25294.99 30680.94 25697.05 27985.08 30281.16 30393.87 300
GBi-Net90.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
test190.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
v14890.70 26289.63 26593.92 27392.97 32090.97 27599.75 13996.89 30787.51 28388.27 28195.01 30381.67 24797.04 28187.40 28277.17 33693.75 307
ACMH89.72 1790.64 26489.63 26593.66 28395.64 27688.64 31198.55 28497.45 24889.03 25881.62 33397.61 21569.75 32698.41 20089.37 26087.62 25893.92 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 25589.56 26795.41 21897.53 20795.74 16598.98 24797.41 25587.05 29088.43 27795.00 30571.34 32096.24 31785.12 30185.21 27494.25 263
ACMH+89.98 1690.35 27189.54 26892.78 29995.99 26086.12 32798.81 26897.18 27489.38 25383.14 32697.76 21368.42 33298.43 19889.11 26386.05 26793.78 306
v14419290.79 26189.52 26994.59 24493.11 31792.77 23399.56 17696.99 29586.38 30089.82 24794.95 30880.50 26497.10 27683.98 30880.41 31293.90 297
PS-CasMVS90.63 26589.51 27093.99 27193.83 30391.70 26598.98 24798.52 9188.48 27386.15 31196.53 25275.46 29996.31 31388.83 26578.86 32393.95 293
Baseline_NR-MVSNet90.33 27289.51 27092.81 29892.84 32289.95 29699.77 13193.94 36284.69 32389.04 26695.66 27381.66 24896.52 30590.99 23976.98 33791.97 340
our_test_390.39 26989.48 27293.12 29292.40 32889.57 30199.33 20996.35 32987.84 28185.30 31694.99 30684.14 23296.09 32280.38 32784.56 27993.71 312
OurMVSNet-221017-089.81 28389.48 27290.83 31691.64 33781.21 35298.17 30495.38 34891.48 21885.65 31597.31 22272.66 31597.29 26588.15 27384.83 27793.97 292
v119290.62 26689.25 27494.72 24093.13 31493.07 22899.50 18697.02 29286.33 30189.56 25495.01 30379.22 27297.09 27882.34 31881.16 30394.01 287
v890.54 26789.17 27594.66 24193.43 31093.40 22499.20 22396.94 30385.76 30887.56 28994.51 31881.96 24597.19 26984.94 30378.25 32593.38 319
v192192090.46 26889.12 27694.50 25092.96 32192.46 24499.49 18896.98 29786.10 30389.61 25395.30 29378.55 27997.03 28382.17 31980.89 31094.01 287
pmmvs590.17 27889.09 27793.40 28692.10 33289.77 29999.74 14295.58 34485.88 30787.24 29695.74 26973.41 31496.48 30788.54 26883.56 28993.95 293
PEN-MVS90.19 27789.06 27893.57 28493.06 31890.90 27799.06 23798.47 10488.11 27785.91 31396.30 25776.67 28895.94 32787.07 28676.91 33893.89 298
LTVRE_ROB88.28 1890.29 27489.05 27994.02 26895.08 28490.15 29297.19 32297.43 25184.91 32183.99 32297.06 23174.00 31298.28 21784.08 30687.71 25693.62 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 28188.96 28093.10 29494.81 28888.16 31798.71 27695.54 34593.66 14683.75 32497.20 22565.58 34198.31 21383.96 30987.49 26092.85 329
LF4IMVS89.25 29288.85 28190.45 32092.81 32581.19 35398.12 30594.79 35591.44 22086.29 30997.11 22765.30 34498.11 22888.53 26985.25 27392.07 337
v1090.25 27588.82 28294.57 24693.53 30893.43 22299.08 23296.87 30985.00 31887.34 29594.51 31880.93 25797.02 28582.85 31579.23 31993.26 321
v124090.20 27688.79 28394.44 25493.05 31992.27 24899.38 20396.92 30585.89 30589.36 25794.87 31077.89 28297.03 28380.66 32681.08 30694.01 287
PatchT90.38 27088.75 28495.25 22495.99 26090.16 29191.22 36097.54 23876.80 34997.26 14486.01 35991.88 14696.07 32366.16 36095.91 19299.51 156
MIMVSNet90.30 27388.67 28595.17 22696.45 25291.64 26792.39 35497.15 27885.99 30490.50 23493.19 33566.95 33794.86 34082.01 32093.43 22099.01 198
UniMVSNet_ETH3D90.06 28088.58 28694.49 25194.67 29188.09 31897.81 31497.57 23583.91 32788.44 27597.41 21957.44 35897.62 24991.41 23088.59 24797.77 222
Patchmtry89.70 28588.49 28793.33 28796.24 25589.94 29891.37 35996.23 33078.22 34787.69 28693.31 33391.04 16096.03 32480.18 32982.10 29594.02 285
Anonymous2023121189.86 28288.44 28894.13 26498.93 12890.68 28098.54 28698.26 17076.28 35086.73 29995.54 27870.60 32497.56 25090.82 24480.27 31594.15 275
ppachtmachnet_test89.58 28788.35 28993.25 29092.40 32890.44 28799.33 20996.73 31885.49 31485.90 31495.77 26881.09 25596.00 32676.00 34582.49 29293.30 320
MVS_030489.28 29188.31 29092.21 30497.05 23086.53 32597.76 31599.57 1385.58 31393.86 20592.71 33751.04 36596.30 31484.49 30592.72 22693.79 305
v7n89.65 28688.29 29193.72 27892.22 33090.56 28499.07 23697.10 28385.42 31686.73 29994.72 31180.06 26797.13 27381.14 32478.12 32793.49 315
DTE-MVSNet89.40 28888.24 29292.88 29792.66 32689.95 29699.10 22998.22 17587.29 28785.12 31896.22 25976.27 29495.30 33583.56 31275.74 34293.41 316
DSMNet-mixed88.28 29788.24 29288.42 33489.64 35375.38 36298.06 30889.86 37085.59 31288.20 28292.14 34476.15 29691.95 35878.46 33596.05 18897.92 218
testgi89.01 29388.04 29491.90 30893.49 30984.89 33599.73 14795.66 34293.89 13985.14 31798.17 20259.68 35594.66 34277.73 33888.88 23996.16 235
SixPastTwentyTwo88.73 29488.01 29590.88 31491.85 33582.24 34598.22 30295.18 35388.97 26182.26 32996.89 23771.75 31996.67 30184.00 30782.98 29093.72 311
pm-mvs189.36 28987.81 29694.01 26993.40 31291.93 25598.62 28396.48 32786.25 30283.86 32396.14 26173.68 31397.04 28186.16 29575.73 34393.04 326
tfpnnormal89.29 29087.61 29794.34 25894.35 29594.13 20598.95 25198.94 3783.94 32584.47 32095.51 28174.84 30697.39 25677.05 34280.41 31291.48 344
FMVSNet588.32 29687.47 29890.88 31496.90 23988.39 31597.28 32095.68 34182.60 33584.67 31992.40 34279.83 26991.16 36076.39 34481.51 30093.09 324
RPMNet89.76 28487.28 29997.19 17396.29 25392.66 23992.01 35698.31 16170.19 36196.94 15085.87 36087.25 20499.78 11562.69 36395.96 19099.13 193
K. test v388.05 29887.24 30090.47 31991.82 33682.23 34698.96 25097.42 25389.05 25776.93 34995.60 27568.49 33195.42 33185.87 29881.01 30893.75 307
FMVSNet188.50 29586.64 30194.08 26595.62 27891.97 25298.43 29196.95 30083.00 33186.08 31294.72 31159.09 35696.11 31981.82 32284.07 28594.17 268
TinyColmap87.87 30186.51 30291.94 30795.05 28585.57 33097.65 31694.08 36084.40 32481.82 33296.85 24062.14 35198.33 21180.25 32886.37 26691.91 341
KD-MVS_2432*160088.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
miper_refine_blended88.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
Patchmatch-RL test86.90 30385.98 30589.67 32584.45 36375.59 36189.71 36192.43 36586.89 29577.83 34790.94 34894.22 8693.63 35187.75 27869.61 34999.79 104
Anonymous2023120686.32 30485.42 30689.02 32989.11 35580.53 35899.05 24195.28 34985.43 31582.82 32793.92 32674.40 30993.44 35366.99 35881.83 29893.08 325
TransMVSNet (Re)87.25 30285.28 30793.16 29193.56 30791.03 27498.54 28694.05 36183.69 32981.09 33696.16 26075.32 30096.40 30976.69 34368.41 35492.06 338
CMPMVSbinary61.59 2184.75 31485.14 30883.57 34290.32 34862.54 36896.98 32797.59 23474.33 35769.95 36096.66 24664.17 34698.32 21287.88 27788.41 25089.84 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 31583.99 30986.91 33788.19 35880.62 35798.88 25895.94 33688.36 27578.87 34394.62 31668.75 32989.11 36466.52 35975.82 34191.00 346
UnsupCasMVSNet_eth85.52 30883.99 30990.10 32289.36 35483.51 33996.65 33097.99 19889.14 25575.89 35393.83 32763.25 34993.92 34781.92 32167.90 35692.88 328
test_040285.58 30783.94 31190.50 31893.81 30485.04 33498.55 28495.20 35276.01 35179.72 34295.13 29964.15 34796.26 31666.04 36186.88 26390.21 353
pmmvs685.69 30683.84 31291.26 31390.00 35284.41 33797.82 31396.15 33375.86 35281.29 33595.39 28861.21 35396.87 29183.52 31373.29 34692.50 333
Anonymous2024052185.15 31283.81 31389.16 32888.32 35682.69 34198.80 27095.74 33979.72 34381.53 33490.99 34765.38 34394.16 34572.69 34981.11 30590.63 350
EG-PatchMatch MVS85.35 31183.81 31389.99 32490.39 34781.89 34898.21 30396.09 33481.78 33874.73 35593.72 32951.56 36497.12 27579.16 33388.61 24590.96 347
YYNet185.50 31083.33 31592.00 30690.89 34488.38 31699.22 22296.55 32479.60 34557.26 36592.72 33679.09 27593.78 35077.25 34077.37 33493.84 302
MDA-MVSNet_test_wron85.51 30983.32 31692.10 30590.96 34388.58 31299.20 22396.52 32579.70 34457.12 36692.69 33879.11 27493.86 34977.10 34177.46 33393.86 301
MVS-HIRNet86.22 30583.19 31795.31 22196.71 25090.29 28992.12 35597.33 26362.85 36286.82 29870.37 36669.37 32797.49 25275.12 34697.99 15498.15 215
CL-MVSNet_self_test84.50 31683.15 31888.53 33386.00 36181.79 34998.82 26797.35 26085.12 31783.62 32590.91 34976.66 28991.40 35969.53 35460.36 36292.40 335
new_pmnet84.49 31782.92 31989.21 32790.03 35182.60 34296.89 32995.62 34380.59 34175.77 35489.17 35165.04 34594.79 34172.12 35081.02 30790.23 352
TDRefinement84.76 31382.56 32091.38 31274.58 36984.80 33697.36 31994.56 35884.73 32280.21 34096.12 26363.56 34898.39 20487.92 27663.97 35890.95 348
KD-MVS_self_test83.59 32182.06 32188.20 33586.93 35980.70 35697.21 32196.38 32882.87 33282.49 32888.97 35267.63 33592.32 35673.75 34862.30 36191.58 343
pmmvs-eth3d84.03 31981.97 32290.20 32184.15 36487.09 32398.10 30794.73 35783.05 33074.10 35687.77 35565.56 34294.01 34681.08 32569.24 35189.49 357
OpenMVS_ROBcopyleft79.82 2083.77 32081.68 32390.03 32388.30 35782.82 34098.46 28995.22 35173.92 35876.00 35291.29 34655.00 36096.94 28768.40 35688.51 24990.34 351
MDA-MVSNet-bldmvs84.09 31881.52 32491.81 30991.32 34188.00 32098.67 28095.92 33780.22 34255.60 36793.32 33268.29 33393.60 35273.76 34776.61 34093.82 304
N_pmnet80.06 32780.78 32577.89 34591.94 33345.28 37698.80 27056.82 37978.10 34880.08 34193.33 33177.03 28495.76 32968.14 35782.81 29192.64 330
MIMVSNet182.58 32280.51 32688.78 33186.68 36084.20 33896.65 33095.41 34778.75 34678.59 34592.44 33951.88 36389.76 36365.26 36278.95 32192.38 336
test_method80.79 32479.70 32784.08 34192.83 32367.06 36699.51 18495.42 34654.34 36481.07 33793.53 33044.48 36792.22 35778.90 33477.23 33592.94 327
new-patchmatchnet81.19 32379.34 32886.76 33882.86 36680.36 35997.92 31195.27 35082.09 33772.02 35786.87 35762.81 35090.74 36271.10 35163.08 35989.19 359
PM-MVS80.47 32578.88 32985.26 34083.79 36572.22 36395.89 34291.08 36885.71 31176.56 35188.30 35336.64 36893.90 34882.39 31769.57 35089.66 356
pmmvs380.27 32677.77 33087.76 33680.32 36782.43 34498.23 30191.97 36672.74 35978.75 34487.97 35457.30 35990.99 36170.31 35262.37 36089.87 354
UnsupCasMVSNet_bld79.97 32877.03 33188.78 33185.62 36281.98 34793.66 35097.35 26075.51 35570.79 35983.05 36148.70 36694.91 33978.31 33660.29 36389.46 358
FPMVS68.72 33068.72 33268.71 35065.95 37344.27 37895.97 34194.74 35651.13 36553.26 36890.50 35025.11 37383.00 36860.80 36480.97 30978.87 364
Gipumacopyleft66.95 33365.00 33372.79 34891.52 33967.96 36566.16 36895.15 35447.89 36658.54 36467.99 36829.74 37087.54 36550.20 36877.83 32962.87 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 33164.73 33476.87 34662.95 37556.25 37289.37 36293.74 36444.53 36761.99 36280.74 36220.42 37586.53 36669.37 35559.50 36487.84 360
PMMVS267.15 33264.15 33576.14 34770.56 37262.07 36993.89 34887.52 37458.09 36360.02 36378.32 36322.38 37484.54 36759.56 36547.03 36781.80 363
EGC-MVSNET69.38 32963.76 33686.26 33990.32 34881.66 35196.24 33693.85 3630.99 3763.22 37792.33 34352.44 36292.92 35559.53 36684.90 27684.21 362
tmp_tt65.23 33462.94 33772.13 34944.90 37850.03 37481.05 36589.42 37338.45 36848.51 37099.90 1954.09 36178.70 37091.84 22718.26 37287.64 361
ANet_high56.10 33552.24 33867.66 35149.27 37756.82 37183.94 36482.02 37570.47 36033.28 37464.54 36917.23 37769.16 37245.59 37023.85 37177.02 365
E-PMN52.30 33752.18 33952.67 35471.51 37045.40 37593.62 35176.60 37736.01 37043.50 37164.13 37027.11 37267.31 37331.06 37326.06 36945.30 372
PMVScopyleft49.05 2353.75 33651.34 34060.97 35340.80 37934.68 37974.82 36789.62 37237.55 36928.67 37572.12 3657.09 37981.63 36943.17 37168.21 35566.59 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 33951.22 34152.11 35570.71 37144.97 37794.04 34775.66 37835.34 37242.40 37261.56 37328.93 37165.87 37427.64 37424.73 37045.49 371
MVEpermissive53.74 2251.54 33847.86 34262.60 35259.56 37650.93 37379.41 36677.69 37635.69 37136.27 37361.76 3725.79 38169.63 37137.97 37236.61 36867.24 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 34044.45 34329.05 35719.49 38114.11 38299.68 15518.47 38020.74 37364.59 36198.48 19510.95 37817.09 37756.66 36711.01 37355.94 370
test12337.68 34139.14 34433.31 35619.94 38024.83 38198.36 2959.75 38115.53 37451.31 36987.14 35619.62 37617.74 37647.10 3693.47 37557.36 369
cdsmvs_eth3d_5k23.43 34231.24 3450.00 3590.00 3820.00 3830.00 37098.09 1910.00 3770.00 37899.67 9883.37 2370.00 3780.00 3760.00 3760.00 374
wuyk23d20.37 34320.84 34618.99 35865.34 37427.73 38050.43 3697.67 3829.50 3758.01 3766.34 3766.13 38026.24 37523.40 37510.69 3742.99 373
ab-mvs-re8.28 34411.04 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.40 1210.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.60 34510.13 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37891.20 1560.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.02 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.92 3697.66 9199.95 4398.36 15195.58 7299.52 53
MSC_two_6792asdad99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
No_MVS99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13596.63 3999.75 2799.93 1197.49 9
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.92 3698.57 5598.52 9192.34 19399.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
IU-MVS99.93 2799.31 998.41 13597.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
test_241102_TWO98.43 11997.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11997.26 2299.80 1699.88 2496.71 23100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13997.66 10
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 119100.00 199.99 5100.00 1100.00 1
test072699.93 2799.29 1499.96 2598.42 13197.28 1899.86 499.94 497.22 18
GSMVS99.59 138
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 138
sam_mvs94.25 85
ambc83.23 34377.17 36862.61 36787.38 36394.55 35976.72 35086.65 35830.16 36996.36 31184.85 30469.86 34890.73 349
MTGPAbinary98.28 166
test_post195.78 34359.23 37493.20 11797.74 24591.06 236
test_post63.35 37194.43 7298.13 227
patchmatchnet-post91.70 34595.12 5197.95 238
GG-mvs-BLEND98.54 11398.21 16898.01 7793.87 34998.52 9197.92 13197.92 21199.02 297.94 24098.17 10099.58 10799.67 120
MTMP99.87 9296.49 326
gm-plane-assit96.97 23493.76 21491.47 21998.96 15898.79 17494.92 167
test9_res99.71 3399.99 22100.00 1
TEST999.92 3698.92 2799.96 2598.43 11993.90 13799.71 3599.86 3195.88 3799.85 98
test_899.92 3698.88 3099.96 2598.43 11994.35 11499.69 3799.85 3595.94 3499.85 98
agg_prior299.48 40100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 11999.63 4099.85 98
TestCases95.00 23099.01 12088.43 31396.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
test_prior498.05 7599.94 60
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
test_prior99.43 3899.94 1498.49 6198.65 6199.80 11099.99 24
旧先验299.46 19394.21 12199.85 699.95 6496.96 141
新几何299.40 198
新几何199.42 4199.75 8198.27 6998.63 6792.69 17599.55 4899.82 5594.40 74100.00 191.21 23299.94 6199.99 24
旧先验199.76 7997.52 9698.64 6499.85 3595.63 4299.94 6199.99 24
无先验99.49 18898.71 5493.46 151100.00 194.36 18599.99 24
原ACMM299.90 78
原ACMM198.96 8599.73 8696.99 11998.51 9894.06 12899.62 4399.85 3594.97 6299.96 5795.11 16299.95 5599.92 91
test22299.55 9997.41 10799.34 20898.55 8491.86 20699.27 7599.83 5193.84 9999.95 5599.99 24
testdata299.99 4090.54 248
segment_acmp96.68 25
testdata98.42 12399.47 10595.33 17798.56 7893.78 14299.79 2399.85 3593.64 10499.94 7294.97 16599.94 61100.00 1
testdata199.28 21896.35 51
test1299.43 3899.74 8298.56 5798.40 13999.65 3894.76 6699.75 12599.98 3599.99 24
plane_prior795.71 27391.59 269
plane_prior695.76 26891.72 26480.47 265
plane_prior597.87 21198.37 20997.79 12089.55 23294.52 240
plane_prior498.59 186
plane_prior391.64 26796.63 3993.01 212
plane_prior299.84 11096.38 47
plane_prior195.73 270
plane_prior91.74 26199.86 10396.76 3589.59 231
n20.00 383
nn0.00 383
door-mid89.69 371
lessismore_v090.53 31790.58 34680.90 35595.80 33877.01 34895.84 26666.15 34096.95 28683.03 31475.05 34493.74 310
LGP-MVS_train93.71 27995.43 27988.67 30997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
test1198.44 111
door90.31 369
HQP5-MVS91.85 257
HQP-NCC95.78 26499.87 9296.82 3193.37 208
ACMP_Plane95.78 26499.87 9296.82 3193.37 208
BP-MVS97.92 115
HQP4-MVS93.37 20898.39 20494.53 238
HQP3-MVS97.89 20989.60 229
HQP2-MVS80.65 261
NP-MVS95.77 26791.79 25998.65 182
MDTV_nov1_ep13_2view96.26 14496.11 33891.89 20598.06 12794.40 7494.30 18899.67 120
ACMMP++_ref87.04 262
ACMMP++88.23 251
Test By Simon92.82 126
ITE_SJBPF92.38 30195.69 27585.14 33395.71 34092.81 16789.33 25998.11 20370.23 32598.42 19985.91 29788.16 25293.59 314
DeepMVS_CXcopyleft82.92 34495.98 26258.66 37096.01 33592.72 17278.34 34695.51 28158.29 35798.08 22982.57 31685.29 27292.03 339