This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
patch_mono-298.24 5599.12 595.59 21799.67 7786.91 33699.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13897.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12797.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 11997.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12796.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30399.42 2297.03 4299.02 8999.09 14599.35 198.21 23499.73 3299.78 7999.77 101
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28199.63 7981.76 36399.96 3498.56 8999.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 11996.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 14997.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 8997.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14298.38 15396.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16396.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12794.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17799.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10799.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
test_fmvsm_n_192098.44 4098.61 2397.92 13499.27 10095.18 178100.00 198.90 4798.05 1299.80 1799.73 7892.64 12199.99 3699.58 3899.51 10298.59 214
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10499.75 6992.76 11899.94 7799.88 1899.44 10899.94 74
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23398.47 11298.14 1099.08 8699.91 1493.09 108100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 11999.97 2797.92 21298.07 1198.76 10299.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15393.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 11997.96 1499.55 5499.94 497.18 21100.00 193.81 20999.94 5499.98 48
PAPM98.60 2998.42 3099.14 5996.05 26598.96 2699.90 8799.35 2596.68 5598.35 12299.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18093.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11699.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1498.38 3399.87 5199.91 8298.33 16493.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15099.87 10099.86 296.70 5498.78 9999.79 5592.03 13999.90 9199.17 5799.86 7099.88 85
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9594.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16493.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15794.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17596.41 12699.99 498.83 5998.22 699.67 3899.64 9991.11 15399.94 7799.67 3699.62 8999.98 48
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8394.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12099.97 2798.39 14994.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12098.35 15994.92 10199.32 7599.80 5193.35 9899.78 12599.30 5299.95 4999.96 64
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8597.70 2098.21 12999.24 13792.58 12499.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25199.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19398.17 18597.34 2999.85 999.85 3091.20 14999.89 9699.41 4899.67 8598.69 211
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15395.04 9798.61 11199.80 5193.39 97100.00 198.64 89100.00 199.98 48
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6993.28 10399.78 12598.90 7399.92 6399.97 58
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12795.35 9198.03 13199.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15694.68 11099.53 5799.83 4392.87 114100.00 198.66 8899.84 7199.99 23
RE-MVS-def98.13 5099.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6992.95 11298.90 7399.92 6399.97 58
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15099.50 1893.90 14899.37 7399.76 6393.24 105100.00 197.75 13299.96 4699.98 48
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12299.40 21098.51 10495.29 9398.51 11499.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
dcpmvs_297.42 9198.09 5395.42 22299.58 8487.24 33299.23 23496.95 30694.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12199.82 13098.30 17193.95 14599.37 7399.77 6192.84 11599.76 13198.95 6799.92 6399.97 58
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 11994.31 12598.50 11599.82 4693.06 10999.99 3698.30 10399.99 2199.93 76
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 11992.06 21298.40 12099.84 4195.68 40100.00 198.19 10599.71 8399.97 58
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13299.36 21998.50 10995.21 9598.30 12499.75 6993.29 10299.73 13798.37 9999.30 11699.81 94
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 14994.04 14198.80 9899.74 7692.98 111100.00 198.16 10799.76 8099.93 76
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19598.08 19697.05 4199.86 799.86 2690.65 16299.71 13899.39 5098.63 13898.69 211
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 14994.70 10998.26 12799.81 5091.84 143100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21498.28 17395.76 8097.18 15199.88 2192.74 119100.00 198.67 8699.88 6899.99 23
CS-MVS-test97.88 6697.94 6297.70 14999.28 9995.20 17799.98 1497.15 28495.53 8799.62 4699.79 5592.08 13898.38 21898.75 8299.28 11799.52 147
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14299.82 13098.43 12794.56 11397.52 14399.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
CS-MVS97.79 7597.91 6497.43 16499.10 10894.42 19499.99 497.10 28995.07 9699.68 3799.75 6992.95 11298.34 22298.38 9899.14 12399.54 143
mvsany_test197.82 7197.90 6597.55 15798.77 13793.04 23299.80 13697.93 20996.95 4599.61 5299.68 9390.92 15799.83 11899.18 5698.29 14899.80 96
PLCcopyleft95.54 397.93 6497.89 6698.05 13099.82 5894.77 18999.92 7898.46 11493.93 14697.20 15099.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15099.06 11094.41 19599.98 1498.97 4097.34 2999.63 4399.69 8787.27 20299.97 5399.62 3799.06 12798.62 213
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10497.00 4398.52 11399.71 8387.80 19599.95 6999.75 2899.38 11299.83 91
ETV-MVS97.92 6597.80 6998.25 12198.14 17396.48 12399.98 1497.63 23195.61 8499.29 7999.46 11692.55 12598.82 18199.02 6698.54 13999.46 155
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14498.63 14494.26 20099.96 3498.92 4697.18 3999.75 2999.69 8787.00 20799.97 5399.46 4498.89 13099.08 194
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 12999.90 8798.17 18592.61 19098.62 11099.57 10791.87 14299.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16799.47 20498.87 5291.68 22398.84 9699.85 3092.34 13299.99 3698.44 9699.96 46100.00 1
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15398.18 18493.35 16296.45 16999.85 3092.64 12199.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12599.08 14689.00 18799.95 6999.12 5899.25 11899.57 137
lupinMVS97.85 6897.60 7598.62 9397.28 22897.70 8199.99 497.55 24295.50 8999.43 6699.67 9490.92 15798.71 19198.40 9799.62 8999.45 157
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12899.39 12393.33 9999.74 13497.98 11995.58 20899.78 100
test_fmvsmvis_n_192097.67 8297.59 7797.91 13697.02 23595.34 16999.95 5298.45 11597.87 1597.02 15499.59 10489.64 17599.98 4399.41 4899.34 11598.42 216
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12599.88 9798.16 18991.75 22298.94 9299.54 11091.82 14499.65 14797.62 13599.99 2199.99 23
EIA-MVS97.53 8597.46 7997.76 14698.04 17894.84 18599.98 1497.61 23694.41 12097.90 13599.59 10492.40 13098.87 17998.04 11499.13 12499.59 130
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27696.20 13899.94 6898.05 19998.17 898.89 9599.42 11887.65 19799.90 9199.50 4199.60 9599.82 92
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14299.18 23899.45 1994.84 10496.41 17299.71 8391.40 14699.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19293.78 15196.55 16799.69 8792.28 13399.98 4397.13 14499.44 10899.93 76
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 11994.40 12198.41 11899.47 11493.65 9499.42 16298.57 9294.26 22299.67 113
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15199.96 3498.35 15989.90 26598.36 12199.79 5591.18 15299.99 3698.37 9999.99 2199.99 23
EC-MVSNet97.38 9497.24 8797.80 13997.41 21795.64 15899.99 497.06 29494.59 11299.63 4399.32 12889.20 18598.14 23698.76 8199.23 12099.62 124
OMC-MVS97.28 9697.23 8897.41 16599.76 6693.36 22799.65 17397.95 20796.03 7597.41 14799.70 8589.61 17699.51 15296.73 15698.25 14999.38 164
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15697.38 21994.40 19799.90 8798.64 7696.47 6199.51 6199.65 9884.99 22799.93 8599.22 5599.09 12698.46 215
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28199.77 594.93 9997.95 13398.96 16192.51 12699.20 16694.93 17998.15 15099.64 119
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18899.05 25598.76 6392.65 18898.66 10899.82 4688.52 19299.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33299.52 1595.69 8298.32 12397.41 23593.32 10099.77 12898.08 11395.75 20599.81 94
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
CSCG97.10 10297.04 9697.27 17499.89 4591.92 25899.90 8799.07 3488.67 28895.26 19499.82 4693.17 10799.98 4398.15 10899.47 10499.90 83
sss97.57 8497.03 9799.18 5098.37 15798.04 6799.73 15899.38 2393.46 16098.76 10299.06 14891.21 14899.89 9696.33 15997.01 17999.62 124
thisisatest051597.41 9297.02 9898.59 9797.71 20297.52 8799.97 2798.54 9891.83 21897.45 14699.04 14997.50 999.10 17294.75 18796.37 19099.16 186
F-COLMAP96.93 10996.95 9996.87 18399.71 7591.74 26399.85 11697.95 20793.11 17195.72 18799.16 14392.35 13199.94 7795.32 17299.35 11498.92 197
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15495.65 28594.21 20299.83 12798.50 10996.27 7099.65 4099.64 9984.72 22899.93 8599.04 6398.84 13398.74 208
jason97.24 9896.86 10198.38 11695.73 27997.32 9799.97 2797.40 26095.34 9298.60 11299.54 11087.70 19698.56 19997.94 12099.47 10499.25 181
jason: jason.
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17588.48 29299.06 8799.66 9690.30 16899.64 14896.32 16099.97 4299.96 64
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11899.92 7898.64 7694.51 11496.38 17398.49 20189.05 18699.88 10297.10 14698.34 14399.43 160
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16099.09 24498.84 5893.32 16496.74 16299.72 8186.04 216100.00 198.01 11599.43 11099.94 74
PMMVS96.76 11696.76 10596.76 18698.28 16292.10 25399.91 8297.98 20494.12 13399.53 5799.39 12386.93 20898.73 18896.95 15297.73 16099.45 157
thisisatest053097.10 10296.72 10698.22 12297.60 20896.70 11799.92 7898.54 9891.11 24197.07 15398.97 15997.47 1299.03 17393.73 21496.09 19398.92 197
PVSNet91.05 1397.13 10196.69 10798.45 11099.52 8795.81 14999.95 5299.65 1294.73 10799.04 8899.21 13984.48 23199.95 6994.92 18098.74 13699.58 136
diffmvspermissive97.00 10696.64 10898.09 12897.64 20696.17 14199.81 13297.19 27894.67 11198.95 9199.28 12986.43 21298.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 10896.60 10997.95 13297.28 22897.70 8199.55 19197.27 27391.17 23899.43 6699.54 11090.92 15796.89 30394.67 19099.62 8999.25 181
EPP-MVSNet96.69 12196.60 10996.96 18097.74 19593.05 23199.37 21798.56 8988.75 28695.83 18599.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
VNet97.21 10096.57 11199.13 6398.97 11897.82 7699.03 25899.21 2994.31 12599.18 8498.88 17286.26 21599.89 9698.93 6994.32 22199.69 110
CHOSEN 1792x268896.81 11396.53 11297.64 15298.91 12893.07 22999.65 17399.80 395.64 8395.39 19198.86 17784.35 23499.90 9196.98 15099.16 12299.95 71
tttt051796.85 11196.49 11397.92 13497.48 21595.89 14899.85 11698.54 9890.72 25296.63 16498.93 17097.47 1299.02 17493.03 22695.76 20498.85 201
baseline296.71 12096.49 11397.37 16895.63 28795.96 14699.74 15398.88 5192.94 17391.61 23598.97 15997.72 798.62 19794.83 18498.08 15697.53 236
HyFIR lowres test96.66 12396.43 11597.36 17099.05 11193.91 21199.70 16599.80 390.54 25496.26 17598.08 21492.15 13698.23 23396.84 15595.46 20999.93 76
DeepC-MVS94.51 496.92 11096.40 11698.45 11099.16 10695.90 14799.66 17198.06 19796.37 6894.37 20399.49 11383.29 24199.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs97.09 10496.32 11799.39 4098.93 12298.95 2799.72 16197.35 26394.45 11597.88 13799.42 11886.71 20999.52 15198.48 9593.97 22699.72 107
TESTMET0.1,196.74 11896.26 11898.16 12397.36 22196.48 12399.96 3498.29 17291.93 21595.77 18698.07 21595.54 4298.29 22690.55 26098.89 13099.70 108
test_cas_vis1_n_192096.59 12596.23 11997.65 15198.22 16694.23 20199.99 497.25 27597.77 1799.58 5399.08 14677.10 29199.97 5397.64 13399.45 10798.74 208
thres20096.96 10796.21 12099.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17598.88 17289.87 17399.51 15294.26 19894.91 21699.31 174
CANet_DTU96.76 11696.15 12198.60 9598.78 13697.53 8699.84 12097.63 23197.25 3799.20 8199.64 9981.36 25499.98 4392.77 22998.89 13098.28 219
CDS-MVSNet96.34 13596.07 12297.13 17697.37 22094.96 18299.53 19497.91 21391.55 22695.37 19298.32 21095.05 5397.13 28593.80 21095.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 12896.04 12397.78 14297.02 23595.44 16499.96 3498.21 18094.07 13695.55 18896.38 26993.90 8898.27 23090.42 26398.83 13499.64 119
EPMVS96.53 12796.01 12498.09 12898.43 15496.12 14496.36 35399.43 2193.53 15897.64 14195.04 31994.41 6798.38 21891.13 24698.11 15399.75 103
tfpn200view996.79 11495.99 12599.19 4998.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.27 179
thres40096.78 11595.99 12599.16 5598.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.16 186
baseline96.43 13095.98 12797.76 14697.34 22295.17 17999.51 19797.17 28193.92 14796.90 15799.28 12985.37 22398.64 19697.50 13696.86 18399.46 155
tpmrst96.27 14195.98 12797.13 17697.96 18193.15 22896.34 35498.17 18592.07 21098.71 10695.12 31793.91 8798.73 18894.91 18296.62 18499.50 151
Vis-MVSNet (Re-imp)96.32 13695.98 12797.35 17197.93 18394.82 18699.47 20498.15 19191.83 21895.09 19599.11 14491.37 14797.47 26593.47 21797.43 16699.74 104
casdiffmvspermissive96.42 13295.97 13097.77 14497.30 22694.98 18199.84 12097.09 29193.75 15396.58 16699.26 13585.07 22598.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 12695.96 13198.27 12098.23 16595.71 15598.00 32598.45 11593.72 15498.41 11899.27 13288.71 19199.66 14691.19 24597.69 16199.44 159
131496.84 11295.96 13199.48 3496.74 25298.52 5698.31 31198.86 5395.82 7889.91 25698.98 15787.49 19999.96 6197.80 12599.73 8299.96 64
iter_conf0596.07 14395.95 13396.44 19798.43 15497.52 8799.91 8296.85 31794.16 13192.49 22897.98 22098.20 497.34 26997.26 14188.29 26494.45 263
casdiffmvs_mvgpermissive96.43 13095.94 13497.89 13897.44 21695.47 16399.86 11397.29 27193.35 16296.03 17999.19 14085.39 22298.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf_final96.01 14695.93 13596.28 20298.38 15697.03 10799.87 10097.03 29794.05 14092.61 22497.98 22098.01 597.34 26997.02 14888.39 26394.47 257
test-mter96.39 13395.93 13597.78 14297.02 23595.44 16499.96 3498.21 18091.81 22095.55 18896.38 26995.17 4898.27 23090.42 26398.83 13499.64 119
thres100view90096.74 11895.92 13799.18 5098.90 12998.77 4099.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.84 20694.57 21799.27 179
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 18799.08 24697.61 23692.02 21495.54 19098.96 16190.64 16398.08 23993.73 21497.41 16999.47 154
CostFormer96.10 14295.88 13996.78 18597.03 23492.55 24597.08 34297.83 22190.04 26498.72 10594.89 32695.01 5598.29 22696.54 15895.77 20399.50 151
thres600view796.69 12195.87 14099.14 5998.90 12998.78 3999.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.44 21894.50 22099.16 186
PVSNet_BlendedMVS96.05 14495.82 14196.72 18899.59 8196.99 10999.95 5299.10 3194.06 13898.27 12595.80 28489.00 18799.95 6999.12 5887.53 27793.24 336
test_fmvsmconf0.01_n96.39 13395.74 14298.32 11891.47 35695.56 16199.84 12097.30 26997.74 1897.89 13699.35 12779.62 27299.85 10899.25 5499.24 11999.55 139
MVS_Test96.46 12995.74 14298.61 9498.18 17097.23 9999.31 22497.15 28491.07 24298.84 9697.05 24888.17 19498.97 17594.39 19497.50 16599.61 127
Effi-MVS+96.30 13895.69 14498.16 12397.85 18896.26 13397.41 33497.21 27790.37 25798.65 10998.58 19586.61 21198.70 19297.11 14597.37 17099.52 147
MDTV_nov1_ep1395.69 14497.90 18494.15 20395.98 36298.44 11993.12 17097.98 13295.74 28695.10 5098.58 19890.02 26996.92 181
test_fmvs195.35 16595.68 14694.36 26698.99 11684.98 34599.96 3496.65 33097.60 2299.73 3298.96 16171.58 33199.93 8598.31 10299.37 11398.17 220
TAMVS95.85 15095.58 14796.65 19197.07 23293.50 22099.17 23997.82 22291.39 23595.02 19698.01 21692.20 13497.30 27493.75 21395.83 20299.14 189
MVS96.60 12495.56 14899.72 1396.85 24599.22 2098.31 31198.94 4191.57 22590.90 24499.61 10386.66 21099.96 6197.36 13899.88 6899.99 23
PatchmatchNetpermissive95.94 14895.45 14997.39 16797.83 18994.41 19596.05 36098.40 14692.86 17497.09 15295.28 31494.21 7998.07 24189.26 27698.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 14595.40 15097.95 13299.59 8195.22 17699.52 19599.07 3493.96 14496.49 16898.35 20982.28 24599.82 12090.15 26899.22 12198.81 204
EPNet_dtu95.71 15595.39 15196.66 19098.92 12493.41 22499.57 18798.90 4796.19 7397.52 14398.56 19792.65 12097.36 26777.89 35698.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 15595.38 15296.68 18998.49 15292.28 24999.84 12097.50 25092.12 20992.06 23398.79 18184.69 22998.67 19595.29 17399.66 8699.09 192
3Dnovator91.47 1296.28 14095.34 15399.08 6596.82 24797.47 9399.45 20798.81 6095.52 8889.39 27099.00 15481.97 24799.95 6997.27 14099.83 7299.84 90
test_vis1_n_192095.44 16395.31 15495.82 21398.50 15188.74 31599.98 1497.30 26997.84 1699.85 999.19 14066.82 35199.97 5398.82 7799.46 10698.76 206
Effi-MVS+-dtu94.53 18795.30 15592.22 31697.77 19382.54 35699.59 18397.06 29494.92 10195.29 19395.37 30785.81 21797.89 25194.80 18597.07 17596.23 246
3Dnovator+91.53 1196.31 13795.24 15699.52 2896.88 24498.64 5299.72 16198.24 17795.27 9488.42 29598.98 15782.76 24399.94 7797.10 14699.83 7299.96 64
MVSTER95.53 16195.22 15796.45 19598.56 14597.72 7899.91 8297.67 22992.38 20391.39 23797.14 24297.24 1897.30 27494.80 18587.85 27194.34 273
1112_ss96.01 14695.20 15898.42 11397.80 19196.41 12699.65 17396.66 32992.71 18392.88 22199.40 12192.16 13599.30 16391.92 23793.66 22799.55 139
tpm295.47 16295.18 15996.35 20196.91 24091.70 26796.96 34597.93 20988.04 29998.44 11795.40 30393.32 10097.97 24594.00 20195.61 20799.38 164
Vis-MVSNetpermissive95.72 15395.15 16097.45 16297.62 20794.28 19999.28 23098.24 17794.27 12996.84 15998.94 16879.39 27498.76 18693.25 21998.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 15195.11 16198.02 13199.85 5495.10 18098.74 28698.50 10987.22 30993.66 21199.86 2687.45 20099.95 6990.94 25299.81 7899.02 195
FA-MVS(test-final)95.86 14995.09 16298.15 12697.74 19595.62 15996.31 35598.17 18591.42 23396.26 17596.13 27890.56 16499.47 16092.18 23497.07 17599.35 169
ECVR-MVScopyleft95.66 15895.05 16397.51 16098.66 14293.71 21598.85 27898.45 11594.93 9996.86 15898.96 16175.22 31499.20 16695.34 17198.15 15099.64 119
mvs_anonymous95.65 15995.03 16497.53 15898.19 16995.74 15399.33 22197.49 25190.87 24690.47 24897.10 24488.23 19397.16 28295.92 16697.66 16399.68 111
FE-MVS95.70 15795.01 16597.79 14198.21 16794.57 19095.03 36798.69 6888.90 28397.50 14596.19 27592.60 12399.49 15889.99 27097.94 15999.31 174
test111195.57 16094.98 16697.37 16898.56 14593.37 22698.86 27698.45 11594.95 9896.63 16498.95 16675.21 31599.11 17195.02 17798.14 15299.64 119
CVMVSNet94.68 18294.94 16793.89 28496.80 24886.92 33599.06 25198.98 3894.45 11594.23 20699.02 15085.60 21895.31 34990.91 25395.39 21199.43 160
baseline195.78 15294.86 16898.54 10398.47 15398.07 6599.06 25197.99 20292.68 18694.13 20798.62 19293.28 10398.69 19393.79 21185.76 28698.84 202
BH-untuned95.18 16794.83 16996.22 20498.36 15891.22 27599.80 13697.32 26790.91 24591.08 24198.67 18583.51 23898.54 20194.23 19999.61 9398.92 197
Test_1112_low_res95.72 15394.83 16998.42 11397.79 19296.41 12699.65 17396.65 33092.70 18492.86 22296.13 27892.15 13699.30 16391.88 23893.64 22899.55 139
myMVS_eth3d94.46 18994.76 17193.55 29597.68 20390.97 27799.71 16398.35 15990.79 24992.10 23198.67 18592.46 12993.09 37087.13 30195.95 19896.59 242
XVG-OURS94.82 17494.74 17295.06 23498.00 17989.19 31099.08 24697.55 24294.10 13494.71 19899.62 10280.51 26599.74 13496.04 16493.06 23596.25 244
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23398.05 17789.19 31099.08 24697.54 24493.66 15594.87 19799.58 10678.78 28199.79 12397.31 13993.40 23096.25 244
UGNet95.33 16694.57 17497.62 15598.55 14794.85 18498.67 29499.32 2695.75 8196.80 16196.27 27372.18 32899.96 6194.58 19299.05 12898.04 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 18494.50 17594.92 23995.78 27291.85 25999.87 10097.89 21496.82 4893.37 21398.65 18880.65 26398.39 21497.92 12189.60 24194.53 252
dp95.05 17094.43 17696.91 18197.99 18092.73 23996.29 35697.98 20489.70 26895.93 18294.67 33293.83 9198.45 20786.91 30896.53 18699.54 143
test_fmvs1_n94.25 19794.36 17793.92 28197.68 20383.70 35199.90 8796.57 33397.40 2899.67 3898.88 17261.82 36799.92 8898.23 10499.13 12498.14 223
h-mvs3394.92 17394.36 17796.59 19298.85 13291.29 27498.93 26798.94 4195.90 7698.77 10098.42 20890.89 16099.77 12897.80 12570.76 36798.72 210
HQP_MVS94.49 18894.36 17794.87 24095.71 28291.74 26399.84 12097.87 21696.38 6593.01 21798.59 19380.47 26798.37 22097.79 12889.55 24494.52 254
BH-RMVSNet95.18 16794.31 18097.80 13998.17 17195.23 17599.76 14797.53 24692.52 19794.27 20599.25 13676.84 29698.80 18290.89 25499.54 9899.35 169
testing393.92 20194.23 18192.99 30897.54 21090.23 29599.99 499.16 3090.57 25391.33 24098.63 19192.99 11092.52 37482.46 33495.39 21196.22 247
Fast-Effi-MVS+95.02 17194.19 18297.52 15997.88 18594.55 19199.97 2797.08 29288.85 28594.47 20297.96 22284.59 23098.41 21089.84 27297.10 17499.59 130
QAPM95.40 16494.17 18399.10 6496.92 23997.71 7999.40 21098.68 7089.31 27188.94 28398.89 17182.48 24499.96 6193.12 22599.83 7299.62 124
PCF-MVS94.20 595.18 16794.10 18498.43 11298.55 14795.99 14597.91 32797.31 26890.35 25889.48 26999.22 13885.19 22499.89 9690.40 26598.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 19194.08 18595.31 22798.27 16390.02 30199.29 22998.56 8995.90 7698.77 10098.00 21790.89 16098.26 23297.80 12569.20 37397.64 231
ADS-MVSNet94.79 17694.02 18697.11 17897.87 18693.79 21294.24 36898.16 18990.07 26296.43 17094.48 33790.29 16998.19 23587.44 29597.23 17199.36 167
miper_enhance_ethall94.36 19493.98 18795.49 21898.68 14195.24 17499.73 15897.29 27193.28 16689.86 25895.97 28294.37 7297.05 29192.20 23384.45 29894.19 282
SDMVSNet94.80 17593.96 18897.33 17298.92 12495.42 16699.59 18398.99 3792.41 20192.55 22697.85 22475.81 30898.93 17897.90 12391.62 23797.64 231
IB-MVS92.85 694.99 17293.94 18998.16 12397.72 20095.69 15799.99 498.81 6094.28 12792.70 22396.90 25295.08 5199.17 16996.07 16373.88 36299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 20093.90 19094.55 25596.02 26690.69 28499.98 1497.72 22596.62 5891.05 24398.85 18077.21 29098.47 20398.11 11089.51 24694.48 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 20693.88 19193.55 29597.87 18685.94 33994.24 36896.84 31890.07 26296.43 17094.48 33790.29 16995.37 34787.44 29597.23 17199.36 167
Fast-Effi-MVS+-dtu93.72 21093.86 19293.29 30097.06 23386.16 33799.80 13696.83 31992.66 18792.58 22597.83 22681.39 25397.67 25989.75 27396.87 18296.05 249
SCA94.69 18093.81 19397.33 17297.10 23194.44 19298.86 27698.32 16693.30 16596.17 17895.59 29376.48 30197.95 24891.06 24897.43 16699.59 130
mvsmamba94.10 19893.72 19495.25 22993.57 31894.13 20499.67 17096.45 33893.63 15791.34 23997.77 22786.29 21497.22 28096.65 15788.10 26894.40 265
test0.0.03 193.86 20293.61 19594.64 24995.02 29692.18 25299.93 7598.58 8594.07 13687.96 29998.50 20093.90 8894.96 35381.33 34193.17 23296.78 239
cascas94.64 18393.61 19597.74 14897.82 19096.26 13399.96 3497.78 22485.76 32794.00 20897.54 23176.95 29599.21 16597.23 14295.43 21097.76 230
TAPA-MVS92.12 894.42 19093.60 19796.90 18299.33 9791.78 26299.78 13998.00 20189.89 26694.52 20099.47 11491.97 14099.18 16869.90 37399.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 17893.59 19898.33 11796.07 26497.48 9299.56 18998.57 8790.46 25586.51 31898.95 16678.57 28499.94 7793.86 20599.74 8197.57 235
tpmvs94.28 19693.57 19996.40 19898.55 14791.50 27295.70 36698.55 9587.47 30492.15 23094.26 34191.42 14598.95 17788.15 28895.85 20198.76 206
LFMVS94.75 17993.56 20098.30 11999.03 11295.70 15698.74 28697.98 20487.81 30298.47 11699.39 12367.43 34999.53 15098.01 11595.20 21599.67 113
TR-MVS94.54 18593.56 20097.49 16197.96 18194.34 19898.71 28997.51 24990.30 26094.51 20198.69 18475.56 30998.77 18592.82 22895.99 19599.35 169
GeoE94.36 19493.48 20296.99 17997.29 22793.54 21999.96 3496.72 32788.35 29593.43 21298.94 16882.05 24698.05 24288.12 29096.48 18899.37 166
FIs94.10 19893.43 20396.11 20694.70 30096.82 11599.58 18598.93 4592.54 19589.34 27297.31 23887.62 19897.10 28894.22 20086.58 28294.40 265
ab-mvs94.69 18093.42 20498.51 10698.07 17696.26 13396.49 35198.68 7090.31 25994.54 19997.00 25076.30 30399.71 13895.98 16593.38 23199.56 138
DP-MVS94.54 18593.42 20497.91 13699.46 9394.04 20698.93 26797.48 25281.15 35990.04 25399.55 10887.02 20699.95 6988.97 27898.11 15399.73 105
tpm93.70 21193.41 20694.58 25395.36 29187.41 33197.01 34396.90 31390.85 24796.72 16394.14 34290.40 16796.84 30690.75 25788.54 26099.51 149
EI-MVSNet93.73 20993.40 20794.74 24596.80 24892.69 24099.06 25197.67 22988.96 28091.39 23799.02 15088.75 19097.30 27491.07 24787.85 27194.22 279
MSDG94.37 19293.36 20897.40 16698.88 13193.95 21099.37 21797.38 26185.75 32990.80 24599.17 14284.11 23699.88 10286.35 30998.43 14298.36 218
PS-MVSNAJss93.64 21293.31 20994.61 25092.11 34792.19 25199.12 24197.38 26192.51 19888.45 29096.99 25191.20 14997.29 27794.36 19587.71 27494.36 269
ET-MVSNet_ETH3D94.37 19293.28 21097.64 15298.30 15997.99 6999.99 497.61 23694.35 12271.57 37899.45 11796.23 3195.34 34896.91 15485.14 29399.59 130
cl2293.77 20793.25 21195.33 22699.49 9094.43 19399.61 18198.09 19490.38 25689.16 28095.61 29190.56 16497.34 26991.93 23684.45 29894.21 281
dmvs_re93.20 22193.15 21293.34 29896.54 25683.81 35098.71 28998.51 10491.39 23592.37 22998.56 19778.66 28397.83 25393.89 20489.74 24098.38 217
FC-MVSNet-test93.81 20593.15 21295.80 21494.30 30796.20 13899.42 20998.89 4992.33 20589.03 28297.27 24087.39 20196.83 30793.20 22086.48 28394.36 269
test_vis1_n93.61 21393.03 21495.35 22495.86 27186.94 33499.87 10096.36 34096.85 4699.54 5698.79 18152.41 38099.83 11898.64 8998.97 12999.29 178
VDD-MVS93.77 20792.94 21596.27 20398.55 14790.22 29698.77 28597.79 22390.85 24796.82 16099.42 11861.18 37099.77 12898.95 6794.13 22398.82 203
RRT_MVS93.14 22392.92 21693.78 28693.31 32590.04 30099.66 17197.69 22792.53 19688.91 28497.76 22884.36 23296.93 30195.10 17586.99 28094.37 268
GA-MVS93.83 20392.84 21796.80 18495.73 27993.57 21799.88 9797.24 27692.57 19492.92 21996.66 26178.73 28297.67 25987.75 29394.06 22599.17 185
sd_testset93.55 21492.83 21895.74 21598.92 12490.89 28298.24 31498.85 5692.41 20192.55 22697.85 22471.07 33698.68 19493.93 20391.62 23797.64 231
OPM-MVS93.21 22092.80 21994.44 26293.12 32990.85 28399.77 14297.61 23696.19 7391.56 23698.65 18875.16 31698.47 20393.78 21289.39 24793.99 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 25492.79 22088.83 34398.15 17269.87 38198.11 32196.60 33283.93 34494.33 20499.27 13279.60 27399.46 16191.99 23593.16 23397.18 238
LPG-MVS_test92.96 22792.71 22193.71 28995.43 28988.67 31799.75 15097.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
CR-MVSNet93.45 21892.62 22295.94 20996.29 25892.66 24192.01 37996.23 34292.62 18996.94 15593.31 35091.04 15496.03 33879.23 34995.96 19699.13 190
AUN-MVS93.28 21992.60 22395.34 22598.29 16090.09 29999.31 22498.56 8991.80 22196.35 17498.00 21789.38 17998.28 22892.46 23069.22 37297.64 231
miper_ehance_all_eth93.16 22292.60 22394.82 24497.57 20993.56 21899.50 19997.07 29388.75 28688.85 28595.52 29790.97 15696.74 31090.77 25684.45 29894.17 283
LCM-MVSNet-Re92.31 24392.60 22391.43 32397.53 21179.27 37399.02 25991.83 38792.07 21080.31 35394.38 34083.50 23995.48 34597.22 14397.58 16499.54 143
D2MVS92.76 23192.59 22693.27 30195.13 29289.54 30999.69 16699.38 2392.26 20687.59 30394.61 33485.05 22697.79 25491.59 24188.01 26992.47 349
nrg03093.51 21592.53 22796.45 19594.36 30597.20 10099.81 13297.16 28391.60 22489.86 25897.46 23386.37 21397.68 25895.88 16780.31 33294.46 258
tpm cat193.51 21592.52 22896.47 19397.77 19391.47 27396.13 35898.06 19780.98 36092.91 22093.78 34589.66 17498.87 17987.03 30496.39 18999.09 192
ACMM91.95 1092.88 22992.52 22893.98 28095.75 27889.08 31399.77 14297.52 24893.00 17289.95 25597.99 21976.17 30598.46 20693.63 21688.87 25294.39 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 23292.42 23093.73 28795.91 27088.72 31699.81 13297.53 24694.13 13287.00 31298.23 21174.07 32298.47 20396.22 16288.86 25393.99 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 23092.29 23194.47 26091.90 35092.46 24699.55 19197.27 27391.17 23889.96 25496.07 28181.10 25696.89 30394.67 19088.91 25094.05 299
UniMVSNet (Re)93.07 22692.13 23295.88 21094.84 29796.24 13799.88 9798.98 3892.49 19989.25 27495.40 30387.09 20597.14 28493.13 22478.16 34394.26 276
UniMVSNet_NR-MVSNet92.95 22892.11 23395.49 21894.61 30295.28 17299.83 12799.08 3391.49 22789.21 27796.86 25587.14 20496.73 31193.20 22077.52 34894.46 258
IterMVS-LS92.69 23592.11 23394.43 26496.80 24892.74 23799.45 20796.89 31488.98 27889.65 26595.38 30688.77 18996.34 32590.98 25182.04 31494.22 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 20392.06 23599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6841.37 40094.34 7399.96 6198.92 7099.95 4999.99 23
bld_raw_dy_0_6492.74 23292.03 23694.87 24093.09 33193.46 22199.12 24195.41 35992.84 17790.44 24997.54 23178.08 28897.04 29393.94 20287.77 27394.11 294
Anonymous20240521193.10 22591.99 23796.40 19899.10 10889.65 30798.88 27297.93 20983.71 34694.00 20898.75 18368.79 34199.88 10295.08 17691.71 23699.68 111
eth_miper_zixun_eth92.41 24191.93 23893.84 28597.28 22890.68 28598.83 27996.97 30588.57 29189.19 27995.73 28889.24 18496.69 31389.97 27181.55 31794.15 289
VDDNet93.12 22491.91 23996.76 18696.67 25592.65 24398.69 29298.21 18082.81 35297.75 14099.28 12961.57 36899.48 15998.09 11294.09 22498.15 221
c3_l92.53 23891.87 24094.52 25697.40 21892.99 23399.40 21096.93 31187.86 30088.69 28895.44 30189.95 17296.44 32190.45 26280.69 32994.14 292
gg-mvs-nofinetune93.51 21591.86 24198.47 10897.72 20097.96 7292.62 37698.51 10474.70 37897.33 14869.59 39198.91 397.79 25497.77 13099.56 9799.67 113
AllTest92.48 23991.64 24295.00 23699.01 11388.43 32198.94 26696.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
DIV-MVS_self_test92.32 24291.60 24394.47 26097.31 22592.74 23799.58 18596.75 32586.99 31387.64 30295.54 29589.55 17796.50 31988.58 28282.44 31194.17 283
cl____92.31 24391.58 24494.52 25697.33 22492.77 23599.57 18796.78 32486.97 31487.56 30495.51 29889.43 17896.62 31588.60 28182.44 31194.16 288
FMVSNet392.69 23591.58 24495.99 20898.29 16097.42 9599.26 23297.62 23389.80 26789.68 26295.32 30981.62 25296.27 32887.01 30585.65 28794.29 275
VPA-MVSNet92.70 23491.55 24696.16 20595.09 29396.20 13898.88 27299.00 3691.02 24491.82 23495.29 31376.05 30797.96 24795.62 17081.19 32094.30 274
Patchmatch-test92.65 23791.50 24796.10 20796.85 24590.49 29091.50 38197.19 27882.76 35390.23 25095.59 29395.02 5498.00 24477.41 35896.98 18099.82 92
COLMAP_ROBcopyleft90.47 1492.18 24691.49 24894.25 26999.00 11588.04 32798.42 30896.70 32882.30 35588.43 29399.01 15276.97 29499.85 10886.11 31296.50 18794.86 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 24091.45 24995.49 21894.05 31095.28 17299.81 13298.74 6492.25 20789.21 27796.64 26381.66 25096.73 31193.20 22077.52 34894.46 258
miper_lstm_enhance91.81 25191.39 25093.06 30797.34 22289.18 31299.38 21596.79 32386.70 31787.47 30695.22 31590.00 17195.86 34288.26 28681.37 31994.15 289
WR-MVS92.31 24391.25 25195.48 22194.45 30495.29 17199.60 18298.68 7090.10 26188.07 29896.89 25380.68 26296.80 30993.14 22379.67 33694.36 269
jajsoiax91.92 24991.18 25294.15 27091.35 35790.95 28099.00 26097.42 25792.61 19087.38 30897.08 24572.46 32797.36 26794.53 19388.77 25494.13 293
mvs_tets91.81 25191.08 25394.00 27891.63 35490.58 28898.67 29497.43 25592.43 20087.37 30997.05 24871.76 32997.32 27394.75 18788.68 25694.11 294
pmmvs492.10 24791.07 25495.18 23192.82 33894.96 18299.48 20396.83 31987.45 30588.66 28996.56 26783.78 23796.83 30789.29 27584.77 29693.75 321
anonymousdsp91.79 25690.92 25594.41 26590.76 36292.93 23498.93 26797.17 28189.08 27387.46 30795.30 31078.43 28796.92 30292.38 23188.73 25593.39 332
XVG-ACMP-BASELINE91.22 26590.75 25692.63 31393.73 31685.61 34098.52 30297.44 25492.77 18189.90 25796.85 25666.64 35298.39 21492.29 23288.61 25793.89 313
JIA-IIPM91.76 25790.70 25794.94 23896.11 26387.51 33093.16 37598.13 19375.79 37497.58 14277.68 38892.84 11597.97 24588.47 28596.54 18599.33 172
Anonymous2024052992.10 24790.65 25896.47 19398.82 13390.61 28798.72 28898.67 7375.54 37593.90 21098.58 19566.23 35399.90 9194.70 18990.67 23998.90 200
Syy-MVS90.00 29390.63 25988.11 35097.68 20374.66 37899.71 16398.35 15990.79 24992.10 23198.67 18579.10 27993.09 37063.35 38495.95 19896.59 242
TranMVSNet+NR-MVSNet91.68 25890.61 26094.87 24093.69 31793.98 20999.69 16698.65 7491.03 24388.44 29196.83 25980.05 27096.18 33190.26 26776.89 35694.45 263
VPNet91.81 25190.46 26195.85 21294.74 29995.54 16298.98 26198.59 8492.14 20890.77 24697.44 23468.73 34397.54 26394.89 18377.89 34594.46 258
XXY-MVS91.82 25090.46 26195.88 21093.91 31395.40 16898.87 27597.69 22788.63 29087.87 30097.08 24574.38 32197.89 25191.66 24084.07 30294.35 272
MVP-Stereo90.93 26890.45 26392.37 31591.25 35988.76 31498.05 32496.17 34487.27 30884.04 33595.30 31078.46 28697.27 27983.78 32799.70 8491.09 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 26090.35 26494.15 27094.17 30992.62 24499.17 23998.94 4188.87 28486.48 32094.46 33984.36 23296.61 31688.19 28778.51 34193.21 337
EU-MVSNet90.14 29190.34 26589.54 33892.55 34181.06 36798.69 29298.04 20091.41 23486.59 31796.84 25880.83 26093.31 36986.20 31081.91 31594.26 276
MS-PatchMatch90.65 27590.30 26691.71 32294.22 30885.50 34298.24 31497.70 22688.67 28886.42 32196.37 27167.82 34798.03 24383.62 32899.62 8991.60 357
PVSNet_088.03 1991.80 25490.27 26796.38 20098.27 16390.46 29199.94 6899.61 1493.99 14286.26 32497.39 23771.13 33599.89 9698.77 8067.05 37898.79 205
CP-MVSNet91.23 26490.22 26894.26 26893.96 31292.39 24899.09 24498.57 8788.95 28186.42 32196.57 26679.19 27796.37 32390.29 26678.95 33894.02 300
NR-MVSNet91.56 25990.22 26895.60 21694.05 31095.76 15298.25 31398.70 6791.16 24080.78 35296.64 26383.23 24296.57 31791.41 24277.73 34794.46 258
tt080591.28 26290.18 27094.60 25196.26 26087.55 32998.39 30998.72 6589.00 27789.22 27698.47 20562.98 36498.96 17690.57 25988.00 27097.28 237
IterMVS90.91 26990.17 27193.12 30496.78 25190.42 29398.89 27097.05 29689.03 27586.49 31995.42 30276.59 29995.02 35187.22 30084.09 30193.93 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 27290.16 27292.93 30996.72 25389.96 30298.89 27096.99 30188.95 28186.63 31695.67 28976.48 30195.00 35287.04 30384.04 30493.84 317
V4291.28 26290.12 27394.74 24593.42 32393.46 22199.68 16897.02 29887.36 30689.85 26095.05 31881.31 25597.34 26987.34 29880.07 33493.40 331
v2v48291.30 26090.07 27495.01 23593.13 32793.79 21299.77 14297.02 29888.05 29889.25 27495.37 30780.73 26197.15 28387.28 29980.04 33594.09 296
v114491.09 26689.83 27594.87 24093.25 32693.69 21699.62 18096.98 30386.83 31689.64 26694.99 32380.94 25897.05 29185.08 31981.16 32193.87 315
GBi-Net90.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test190.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test_fmvs289.47 30189.70 27888.77 34694.54 30375.74 37599.83 12794.70 37194.71 10891.08 24196.82 26054.46 37797.78 25692.87 22788.27 26592.80 344
v14890.70 27489.63 27993.92 28192.97 33490.97 27799.75 15096.89 31487.51 30388.27 29695.01 32081.67 24997.04 29387.40 29777.17 35393.75 321
ACMH89.72 1790.64 27689.63 27993.66 29395.64 28688.64 31998.55 29897.45 25389.03 27581.62 34797.61 23069.75 33998.41 21089.37 27487.62 27693.92 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 26789.56 28195.41 22397.53 21195.74 15398.98 26197.41 25987.05 31088.43 29395.00 32271.34 33296.24 33085.12 31885.21 29294.25 278
ACMH+89.98 1690.35 28389.54 28292.78 31295.99 26786.12 33898.81 28197.18 28089.38 27083.14 34097.76 22868.42 34598.43 20889.11 27786.05 28593.78 320
v14419290.79 27389.52 28394.59 25293.11 33092.77 23599.56 18996.99 30186.38 32089.82 26194.95 32580.50 26697.10 28883.98 32580.41 33093.90 312
PS-CasMVS90.63 27789.51 28493.99 27993.83 31491.70 26798.98 26198.52 10188.48 29286.15 32596.53 26875.46 31096.31 32788.83 27978.86 34093.95 308
Baseline_NR-MVSNet90.33 28489.51 28492.81 31192.84 33689.95 30399.77 14293.94 37884.69 34189.04 28195.66 29081.66 25096.52 31890.99 25076.98 35491.97 355
our_test_390.39 28189.48 28693.12 30492.40 34389.57 30899.33 22196.35 34187.84 30185.30 33094.99 32384.14 23596.09 33680.38 34584.56 29793.71 326
OurMVSNet-221017-089.81 29689.48 28690.83 32891.64 35381.21 36598.17 31995.38 36191.48 22885.65 32997.31 23872.66 32697.29 27788.15 28884.83 29593.97 307
v119290.62 27889.25 28894.72 24793.13 32793.07 22999.50 19997.02 29886.33 32189.56 26895.01 32079.22 27697.09 29082.34 33681.16 32194.01 302
v890.54 27989.17 28994.66 24893.43 32293.40 22599.20 23696.94 31085.76 32787.56 30494.51 33581.96 24897.19 28184.94 32078.25 34293.38 333
v192192090.46 28089.12 29094.50 25892.96 33592.46 24699.49 20196.98 30386.10 32389.61 26795.30 31078.55 28597.03 29682.17 33780.89 32894.01 302
pmmvs590.17 29089.09 29193.40 29792.10 34889.77 30699.74 15395.58 35685.88 32687.24 31195.74 28673.41 32596.48 32088.54 28383.56 30593.95 308
PEN-MVS90.19 28989.06 29293.57 29493.06 33290.90 28199.06 25198.47 11288.11 29785.91 32796.30 27276.67 29795.94 34187.07 30276.91 35593.89 313
LTVRE_ROB88.28 1890.29 28689.05 29394.02 27695.08 29490.15 29897.19 33897.43 25584.91 33983.99 33697.06 24774.00 32398.28 22884.08 32387.71 27493.62 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 29388.96 29493.10 30694.81 29888.16 32598.71 28995.54 35793.66 15583.75 33897.20 24165.58 35598.31 22583.96 32687.49 27892.85 343
LF4IMVS89.25 30588.85 29590.45 33292.81 33981.19 36698.12 32094.79 36891.44 23086.29 32397.11 24365.30 35898.11 23888.53 28485.25 29192.07 352
v1090.25 28788.82 29694.57 25493.53 32093.43 22399.08 24696.87 31685.00 33687.34 31094.51 33580.93 25997.02 29882.85 33279.23 33793.26 335
v124090.20 28888.79 29794.44 26293.05 33392.27 25099.38 21596.92 31285.89 32589.36 27194.87 32777.89 28997.03 29680.66 34481.08 32494.01 302
PatchT90.38 28288.75 29895.25 22995.99 26790.16 29791.22 38397.54 24476.80 37097.26 14986.01 38291.88 14196.07 33766.16 38195.91 20099.51 149
MIMVSNet90.30 28588.67 29995.17 23296.45 25791.64 26992.39 37797.15 28485.99 32490.50 24793.19 35266.95 35094.86 35582.01 33893.43 22999.01 196
UniMVSNet_ETH3D90.06 29288.58 30094.49 25994.67 30188.09 32697.81 33097.57 24183.91 34588.44 29197.41 23557.44 37497.62 26191.41 24288.59 25997.77 229
Patchmtry89.70 29888.49 30193.33 29996.24 26189.94 30591.37 38296.23 34278.22 36887.69 30193.31 35091.04 15496.03 33880.18 34882.10 31394.02 300
Anonymous2023121189.86 29588.44 30294.13 27298.93 12290.68 28598.54 30098.26 17676.28 37186.73 31495.54 29570.60 33797.56 26290.82 25580.27 33394.15 289
ppachtmachnet_test89.58 30088.35 30393.25 30292.40 34390.44 29299.33 22196.73 32685.49 33285.90 32895.77 28581.09 25796.00 34076.00 36482.49 31093.30 334
v7n89.65 29988.29 30493.72 28892.22 34590.56 28999.07 25097.10 28985.42 33486.73 31494.72 32880.06 26997.13 28581.14 34278.12 34493.49 329
DTE-MVSNet89.40 30288.24 30592.88 31092.66 34089.95 30399.10 24398.22 17987.29 30785.12 33296.22 27476.27 30495.30 35083.56 32975.74 35993.41 330
DSMNet-mixed88.28 31088.24 30588.42 34889.64 36975.38 37798.06 32389.86 39185.59 33188.20 29792.14 36076.15 30691.95 37778.46 35496.05 19497.92 225
testgi89.01 30688.04 30791.90 32093.49 32184.89 34699.73 15895.66 35493.89 15085.14 33198.17 21259.68 37194.66 35777.73 35788.88 25196.16 248
SixPastTwentyTwo88.73 30788.01 30890.88 32691.85 35182.24 35898.22 31795.18 36688.97 27982.26 34396.89 25371.75 33096.67 31484.00 32482.98 30693.72 325
pm-mvs189.36 30387.81 30994.01 27793.40 32491.93 25798.62 29796.48 33786.25 32283.86 33796.14 27773.68 32497.04 29386.16 31175.73 36093.04 340
tfpnnormal89.29 30487.61 31094.34 26794.35 30694.13 20498.95 26598.94 4183.94 34384.47 33495.51 29874.84 31797.39 26677.05 36180.41 33091.48 359
FMVSNet588.32 30987.47 31190.88 32696.90 24388.39 32397.28 33695.68 35382.60 35484.67 33392.40 35879.83 27191.16 37976.39 36381.51 31893.09 338
RPMNet89.76 29787.28 31297.19 17596.29 25892.66 24192.01 37998.31 16870.19 38496.94 15585.87 38387.25 20399.78 12562.69 38595.96 19699.13 190
K. test v388.05 31187.24 31390.47 33191.82 35282.23 35998.96 26497.42 25789.05 27476.93 36895.60 29268.49 34495.42 34685.87 31581.01 32693.75 321
FMVSNet188.50 30886.64 31494.08 27395.62 28891.97 25498.43 30596.95 30683.00 35086.08 32694.72 32859.09 37296.11 33381.82 34084.07 30294.17 283
TinyColmap87.87 31486.51 31591.94 31995.05 29585.57 34197.65 33194.08 37584.40 34281.82 34696.85 25662.14 36698.33 22380.25 34786.37 28491.91 356
KD-MVS_2432*160088.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
miper_refine_blended88.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
dmvs_testset83.79 33486.07 31876.94 36592.14 34648.60 40096.75 34890.27 39089.48 26978.65 36098.55 19979.25 27586.65 38866.85 37982.69 30895.57 250
test_vis1_rt86.87 31786.05 31989.34 33996.12 26278.07 37499.87 10083.54 39892.03 21378.21 36389.51 36945.80 38499.91 8996.25 16193.11 23490.03 369
Patchmatch-RL test86.90 31685.98 32089.67 33784.45 37975.59 37689.71 38692.43 38486.89 31577.83 36590.94 36494.22 7793.63 36687.75 29369.61 36999.79 97
Anonymous2023120686.32 31885.42 32189.02 34289.11 37180.53 37199.05 25595.28 36285.43 33382.82 34193.92 34374.40 32093.44 36866.99 37881.83 31693.08 339
TransMVSNet (Re)87.25 31585.28 32293.16 30393.56 31991.03 27698.54 30094.05 37783.69 34781.09 35096.16 27675.32 31196.40 32276.69 36268.41 37492.06 353
CMPMVSbinary61.59 2184.75 32885.14 32383.57 35890.32 36562.54 38696.98 34497.59 24074.33 37969.95 38096.66 26164.17 36098.32 22487.88 29288.41 26289.84 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 32983.99 32486.91 35288.19 37480.62 37098.88 27295.94 34888.36 29478.87 35894.62 33368.75 34289.11 38366.52 38075.82 35891.00 361
UnsupCasMVSNet_eth85.52 32283.99 32490.10 33489.36 37083.51 35296.65 34997.99 20289.14 27275.89 37293.83 34463.25 36393.92 36281.92 33967.90 37792.88 342
test_040285.58 32183.94 32690.50 33093.81 31585.04 34498.55 29895.20 36576.01 37279.72 35795.13 31664.15 36196.26 32966.04 38286.88 28190.21 368
pmmvs685.69 32083.84 32791.26 32590.00 36884.41 34897.82 32996.15 34575.86 37381.29 34995.39 30561.21 36996.87 30583.52 33073.29 36392.50 348
Anonymous2024052185.15 32683.81 32889.16 34188.32 37282.69 35498.80 28395.74 35179.72 36481.53 34890.99 36365.38 35794.16 36072.69 36881.11 32390.63 365
EG-PatchMatch MVS85.35 32583.81 32889.99 33690.39 36481.89 36198.21 31896.09 34681.78 35774.73 37493.72 34651.56 38297.12 28779.16 35288.61 25790.96 362
YYNet185.50 32483.33 33092.00 31890.89 36188.38 32499.22 23596.55 33479.60 36657.26 38992.72 35379.09 28093.78 36577.25 35977.37 35193.84 317
MDA-MVSNet_test_wron85.51 32383.32 33192.10 31790.96 36088.58 32099.20 23696.52 33579.70 36557.12 39092.69 35479.11 27893.86 36477.10 36077.46 35093.86 316
MVS-HIRNet86.22 31983.19 33295.31 22796.71 25490.29 29492.12 37897.33 26662.85 38586.82 31370.37 39069.37 34097.49 26475.12 36597.99 15898.15 221
CL-MVSNet_self_test84.50 33083.15 33388.53 34786.00 37781.79 36298.82 28097.35 26385.12 33583.62 33990.91 36576.66 29891.40 37869.53 37460.36 38792.40 350
new_pmnet84.49 33182.92 33489.21 34090.03 36782.60 35596.89 34795.62 35580.59 36175.77 37389.17 37065.04 35994.79 35672.12 37081.02 32590.23 367
TDRefinement84.76 32782.56 33591.38 32474.58 39384.80 34797.36 33594.56 37284.73 34080.21 35496.12 28063.56 36298.39 21487.92 29163.97 38390.95 363
KD-MVS_self_test83.59 33682.06 33688.20 34986.93 37580.70 36997.21 33796.38 33982.87 35182.49 34288.97 37167.63 34892.32 37573.75 36762.30 38691.58 358
pmmvs-eth3d84.03 33381.97 33790.20 33384.15 38087.09 33398.10 32294.73 37083.05 34974.10 37687.77 37765.56 35694.01 36181.08 34369.24 37189.49 374
OpenMVS_ROBcopyleft79.82 2083.77 33581.68 33890.03 33588.30 37382.82 35398.46 30395.22 36473.92 38076.00 37191.29 36255.00 37696.94 30068.40 37688.51 26190.34 366
MDA-MVSNet-bldmvs84.09 33281.52 33991.81 32191.32 35888.00 32898.67 29495.92 34980.22 36355.60 39193.32 34968.29 34693.60 36773.76 36676.61 35793.82 319
mvsany_test382.12 33881.14 34085.06 35681.87 38470.41 38097.09 34192.14 38591.27 23777.84 36488.73 37239.31 38795.49 34490.75 25771.24 36689.29 376
APD_test181.15 34080.92 34181.86 36192.45 34259.76 39096.04 36193.61 38173.29 38177.06 36696.64 26344.28 38696.16 33272.35 36982.52 30989.67 372
N_pmnet80.06 34480.78 34277.89 36491.94 34945.28 40298.80 28356.82 40478.10 36980.08 35593.33 34877.03 29295.76 34368.14 37782.81 30792.64 345
MIMVSNet182.58 33780.51 34388.78 34486.68 37684.20 34996.65 34995.41 35978.75 36778.59 36192.44 35551.88 38189.76 38265.26 38378.95 33892.38 351
test_fmvs379.99 34580.17 34479.45 36384.02 38162.83 38499.05 25593.49 38288.29 29680.06 35686.65 38028.09 39288.00 38488.63 28073.27 36487.54 380
test_method80.79 34179.70 34584.08 35792.83 33767.06 38399.51 19795.42 35854.34 38981.07 35193.53 34744.48 38592.22 37678.90 35377.23 35292.94 341
new-patchmatchnet81.19 33979.34 34686.76 35382.86 38380.36 37297.92 32695.27 36382.09 35672.02 37786.87 37962.81 36590.74 38171.10 37163.08 38489.19 377
PM-MVS80.47 34278.88 34785.26 35583.79 38272.22 37995.89 36491.08 38885.71 33076.56 37088.30 37336.64 38893.90 36382.39 33569.57 37089.66 373
pmmvs380.27 34377.77 34887.76 35180.32 38882.43 35798.23 31691.97 38672.74 38278.75 35987.97 37657.30 37590.99 38070.31 37262.37 38589.87 370
test_f78.40 34777.59 34980.81 36280.82 38662.48 38796.96 34593.08 38383.44 34874.57 37584.57 38427.95 39392.63 37384.15 32272.79 36587.32 381
WB-MVS76.28 34877.28 35073.29 36981.18 38554.68 39497.87 32894.19 37481.30 35869.43 38190.70 36677.02 29382.06 39235.71 39768.11 37683.13 383
UnsupCasMVSNet_bld79.97 34677.03 35188.78 34485.62 37881.98 36093.66 37397.35 26375.51 37670.79 37983.05 38548.70 38394.91 35478.31 35560.29 38889.46 375
SSC-MVS75.42 34976.40 35272.49 37380.68 38753.62 39597.42 33394.06 37680.42 36268.75 38290.14 36876.54 30081.66 39333.25 39866.34 38082.19 384
FPMVS68.72 35268.72 35368.71 37565.95 39744.27 40495.97 36394.74 36951.13 39053.26 39290.50 36725.11 39583.00 39160.80 38680.97 32778.87 388
testf168.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
APD_test268.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
test_vis3_rt68.82 35166.69 35675.21 36876.24 39260.41 38996.44 35268.71 40375.13 37750.54 39469.52 39216.42 40296.32 32680.27 34666.92 37968.89 390
Gipumacopyleft66.95 35765.00 35772.79 37091.52 35567.96 38266.16 39395.15 36747.89 39158.54 38867.99 39329.74 39087.54 38750.20 39277.83 34662.87 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 35564.73 35876.87 36662.95 39956.25 39389.37 38793.74 38044.53 39261.99 38480.74 38620.42 39986.53 38969.37 37559.50 38987.84 378
PMMVS267.15 35664.15 35976.14 36770.56 39662.07 38893.89 37187.52 39558.09 38660.02 38578.32 38722.38 39684.54 39059.56 38747.03 39281.80 385
EGC-MVSNET69.38 35063.76 36086.26 35490.32 36581.66 36496.24 35793.85 3790.99 4013.22 40292.33 35952.44 37992.92 37259.53 38884.90 29484.21 382
tmp_tt65.23 35862.94 36172.13 37444.90 40250.03 39981.05 39089.42 39438.45 39348.51 39599.90 1854.09 37878.70 39591.84 23918.26 39787.64 379
ANet_high56.10 35952.24 36267.66 37649.27 40156.82 39283.94 38982.02 39970.47 38333.28 39964.54 39417.23 40169.16 39745.59 39423.85 39677.02 389
E-PMN52.30 36152.18 36352.67 37971.51 39445.40 40193.62 37476.60 40136.01 39543.50 39664.13 39527.11 39467.31 39831.06 39926.06 39445.30 397
PMVScopyleft49.05 2353.75 36051.34 36460.97 37840.80 40334.68 40574.82 39289.62 39337.55 39428.67 40072.12 3897.09 40481.63 39443.17 39568.21 37566.59 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 36351.22 36552.11 38070.71 39544.97 40394.04 37075.66 40235.34 39742.40 39761.56 39828.93 39165.87 39927.64 40024.73 39545.49 396
MVEpermissive53.74 2251.54 36247.86 36662.60 37759.56 40050.93 39679.41 39177.69 40035.69 39636.27 39861.76 3975.79 40669.63 39637.97 39636.61 39367.24 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 36444.45 36729.05 38219.49 40514.11 40899.68 16818.47 40520.74 39864.59 38398.48 20410.95 40317.09 40256.66 39111.01 39855.94 395
test12337.68 36539.14 36833.31 38119.94 40424.83 40798.36 3109.75 40615.53 39951.31 39387.14 37819.62 40017.74 40147.10 3933.47 40057.36 394
cdsmvs_eth3d_5k23.43 36631.24 3690.00 3840.00 4060.00 4090.00 39598.09 1940.00 4020.00 40399.67 9483.37 2400.00 4030.00 4020.00 4010.00 399
wuyk23d20.37 36720.84 37018.99 38365.34 39827.73 40650.43 3947.67 4079.50 4008.01 4016.34 4016.13 40526.24 40023.40 40110.69 3992.99 398
ab-mvs-re8.28 36811.04 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.40 1210.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.60 36910.13 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40391.20 1490.00 4030.00 4020.00 4010.00 399
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.02 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16699.96 6199.89 1699.43 11099.98 48
WAC-MVS90.97 27786.10 313
FOURS199.92 3197.66 8399.95 5298.36 15795.58 8599.52 59
MSC_two_6792asdad99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 14296.63 5699.75 2999.93 1197.49 10
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.92 3198.57 5498.52 10192.34 20499.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
IU-MVS99.93 2499.31 1098.41 14297.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 12797.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 12797.26 3699.80 1799.88 2196.71 24100.00 1
save fliter99.82 5898.79 3899.96 3498.40 14697.66 21
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 127100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3498.42 13897.28 3299.86 799.94 497.22 19
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
ambc83.23 35977.17 39162.61 38587.38 38894.55 37376.72 36986.65 38030.16 38996.36 32484.85 32169.86 36890.73 364
MTGPAbinary98.28 173
test_post195.78 36559.23 39993.20 10697.74 25791.06 248
test_post63.35 39694.43 6698.13 237
patchmatchnet-post91.70 36195.12 4997.95 248
GG-mvs-BLEND98.54 10398.21 16798.01 6893.87 37298.52 10197.92 13497.92 22399.02 297.94 25098.17 10699.58 9699.67 113
MTMP99.87 10096.49 336
gm-plane-assit96.97 23893.76 21491.47 22998.96 16198.79 18394.92 180
test9_res99.71 3399.99 21100.00 1
TEST999.92 3198.92 2899.96 3498.43 12793.90 14899.71 3499.86 2695.88 3799.85 108
test_899.92 3198.88 3199.96 3498.43 12794.35 12299.69 3699.85 3095.94 3499.85 108
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 12799.63 4399.85 108
TestCases95.00 23699.01 11388.43 32196.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
test_prior498.05 6699.94 68
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 20694.21 13099.85 999.95 6996.96 151
新几何299.40 210
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24499.94 5499.99 23
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
无先验99.49 20198.71 6693.46 160100.00 194.36 19599.99 23
原ACMM299.90 87
原ACMM198.96 7599.73 7296.99 10998.51 10494.06 13899.62 4699.85 3094.97 5899.96 6195.11 17499.95 4999.92 81
test22299.55 8597.41 9699.34 22098.55 9591.86 21799.27 8099.83 4393.84 9099.95 4999.99 23
testdata299.99 3690.54 261
segment_acmp96.68 26
testdata98.42 11399.47 9195.33 17098.56 8993.78 15199.79 2599.85 3093.64 9599.94 7794.97 17899.94 54100.00 1
testdata199.28 23096.35 69
test1299.43 3599.74 6998.56 5598.40 14699.65 4094.76 6099.75 13299.98 3299.99 23
plane_prior795.71 28291.59 271
plane_prior695.76 27691.72 26680.47 267
plane_prior597.87 21698.37 22097.79 12889.55 24494.52 254
plane_prior498.59 193
plane_prior391.64 26996.63 5693.01 217
plane_prior299.84 12096.38 65
plane_prior195.73 279
plane_prior91.74 26399.86 11396.76 5289.59 243
n20.00 408
nn0.00 408
door-mid89.69 392
lessismore_v090.53 32990.58 36380.90 36895.80 35077.01 36795.84 28366.15 35496.95 29983.03 33175.05 36193.74 324
LGP-MVS_train93.71 28995.43 28988.67 31797.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
test1198.44 119
door90.31 389
HQP5-MVS91.85 259
HQP-NCC95.78 27299.87 10096.82 4893.37 213
ACMP_Plane95.78 27299.87 10096.82 4893.37 213
BP-MVS97.92 121
HQP4-MVS93.37 21398.39 21494.53 252
HQP3-MVS97.89 21489.60 241
HQP2-MVS80.65 263
NP-MVS95.77 27591.79 26198.65 188
MDTV_nov1_ep13_2view96.26 13396.11 35991.89 21698.06 13094.40 6894.30 19799.67 113
ACMMP++_ref87.04 279
ACMMP++88.23 266
Test By Simon92.82 117
ITE_SJBPF92.38 31495.69 28485.14 34395.71 35292.81 17889.33 27398.11 21370.23 33898.42 20985.91 31488.16 26793.59 328
DeepMVS_CXcopyleft82.92 36095.98 26958.66 39196.01 34792.72 18278.34 36295.51 29858.29 37398.08 23982.57 33385.29 29092.03 354