This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 24100.00 199.75 31100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 17100.00 199.54 42100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 34100.00 199.74 33100.00 1100.00 1
patch_mono-298.24 6199.12 595.59 23699.67 8186.91 35699.95 5498.89 4997.60 2299.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10599.95 5498.42 14797.50 2699.52 6099.88 2497.43 1699.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 27100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12797.48 2799.64 4399.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13596.48 6399.80 1799.93 1197.44 14100.00 199.92 1399.98 32100.00 1
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32499.42 2197.03 4499.02 9699.09 15299.35 298.21 25399.73 3599.78 8499.77 104
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 40100.00 199.51 43100.00 1100.00 1
DeepPCF-MVS95.94 297.71 9098.98 1293.92 29999.63 8381.76 38699.96 3598.56 9399.47 199.19 8699.99 194.16 94100.00 199.92 1399.93 61100.00 1
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8599.98 1598.44 12796.85 4999.80 1799.91 1497.57 899.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7999.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15997.20 3899.46 6499.85 3395.53 4899.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9397.56 2599.44 6699.85 3395.38 51100.00 199.31 5499.99 2199.87 90
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8299.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 12099.99 3699.94 1199.41 11799.95 74
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14998.38 16396.73 5699.88 699.74 7994.89 6499.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7198.34 17396.38 6999.81 1599.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11399.73 16898.23 19197.02 4599.18 8799.90 1894.54 7699.99 3699.77 2899.90 6999.99 23
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 13099.71 3599.86 2995.94 3899.85 11199.69 3899.98 3299.99 23
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19099.44 1997.33 3199.00 9799.72 8494.03 9799.98 4798.73 90100.00 1100.00 1
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10899.93 7899.90 196.81 5498.67 11599.77 6493.92 9999.89 9999.27 5699.94 5599.96 67
test_fmvsm_n_192098.44 4498.61 2797.92 15099.27 10695.18 193100.00 198.90 4798.05 1299.80 1799.73 8192.64 13699.99 3699.58 4199.51 10898.59 233
XVS98.70 2998.55 2899.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7099.78 6294.34 8499.96 6598.92 7699.95 5099.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25198.47 11998.14 1099.08 9299.91 1493.09 124100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18299.96 6599.89 1799.43 11599.98 51
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12999.97 2897.92 22798.07 1198.76 11199.55 11395.00 6199.94 8199.91 1697.68 17299.99 23
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11998.38 16393.19 17699.77 2799.94 495.54 46100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 21100.00 193.81 22699.94 5599.98 51
PAPM98.60 3398.42 3499.14 6196.05 28898.96 2699.90 9399.35 2496.68 5898.35 13299.66 9996.45 3398.51 22099.45 4899.89 7099.96 67
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9398.21 19393.53 16599.81 1599.89 2294.70 7199.86 11099.84 2299.93 6199.96 67
EPNet98.49 4098.40 3598.77 9299.62 8496.80 12599.90 9399.51 1697.60 2299.20 8499.36 13393.71 10799.91 9297.99 13098.71 14599.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
9.1498.38 3799.87 5199.91 8798.33 17493.22 17599.78 2699.89 2294.57 7599.85 11199.84 2299.97 42
MVS_111021_LR98.42 4798.38 3798.53 11499.39 9995.79 16399.87 10899.86 296.70 5798.78 10799.79 5892.03 15499.90 9499.17 6099.86 7599.88 88
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9999.95 5498.61 8394.77 11099.31 7899.85 3394.22 90100.00 198.70 9199.98 3299.98 51
region2R98.54 3698.37 3999.05 7199.96 897.18 10899.96 3598.55 9994.87 10899.45 6599.85 3394.07 96100.00 198.67 93100.00 199.98 51
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10898.33 17493.97 15099.76 2899.87 2794.99 6299.75 13598.55 100100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10898.36 16794.08 14399.74 3199.73 8194.08 9599.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmconf_n98.43 4698.32 4398.78 9098.12 19396.41 13899.99 498.83 6098.22 799.67 3999.64 10291.11 16899.94 8199.67 3999.62 9599.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10899.95 5498.60 8594.77 11099.31 7899.84 4493.73 106100.00 198.70 9199.98 3299.98 51
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13099.97 2898.39 15994.43 12598.90 10199.87 2794.30 87100.00 199.04 6799.99 2199.99 23
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11599.84 12798.35 16994.92 10599.32 7799.80 5493.35 11399.78 12899.30 5599.95 5099.96 67
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13999.24 14492.58 13999.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11399.98 1598.80 6390.78 26699.62 4799.78 6295.30 52100.00 199.80 2599.93 6199.99 23
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20898.17 19897.34 2999.85 999.85 3391.20 16499.89 9999.41 5199.67 9098.69 230
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12099.95 5498.38 16395.04 10198.61 11999.80 5493.39 111100.00 198.64 96100.00 199.98 51
BP-MVS198.33 5298.18 5198.81 8997.44 23797.98 7499.96 3598.17 19894.88 10798.77 10899.59 10797.59 799.08 18698.24 11698.93 13799.36 179
SR-MVS-dyc-post98.31 5398.17 5298.71 9599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7293.28 11899.78 12898.90 7999.92 6499.97 61
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5498.43 13595.35 9598.03 14399.75 7294.03 9799.98 4798.11 12399.83 7799.99 23
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12298.37 16694.68 11599.53 5899.83 4692.87 130100.00 198.66 9599.84 7699.99 23
RE-MVS-def98.13 5599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7292.95 12898.90 7999.92 6499.97 61
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11699.75 15899.50 1793.90 15699.37 7599.76 6693.24 120100.00 197.75 14799.96 4699.98 51
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9399.83 5796.59 13399.40 22798.51 11095.29 9798.51 12399.76 6693.60 11099.71 14198.53 10399.52 10599.95 74
dcpmvs_297.42 10198.09 5895.42 24199.58 8987.24 35299.23 25296.95 32994.28 13698.93 10099.73 8194.39 8299.16 18299.89 1799.82 8199.86 92
APD-MVS_3200maxsize98.25 6098.08 5998.78 9099.81 6096.60 13199.82 13798.30 18193.95 15299.37 7599.77 6492.84 13199.76 13498.95 7399.92 6499.97 61
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9099.94 7198.44 12794.31 13398.50 12499.82 4993.06 12599.99 3698.30 11599.99 2199.93 79
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8198.44 12792.06 22598.40 13099.84 4495.68 44100.00 198.19 11899.71 8899.97 61
balanced_conf0398.27 5697.99 6299.11 6698.64 15398.43 6299.47 21997.79 23894.56 11899.74 3198.35 22294.33 8699.25 17199.12 6199.96 4699.64 124
EI-MVSNet-UG-set98.14 6497.99 6298.60 10499.80 6196.27 14499.36 23698.50 11695.21 9998.30 13499.75 7293.29 11799.73 14098.37 11199.30 12299.81 97
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9199.93 7898.39 15994.04 14898.80 10699.74 7992.98 127100.00 198.16 12099.76 8599.93 79
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14798.66 5199.52 21098.08 21197.05 4399.86 799.86 2990.65 17799.71 14199.39 5398.63 14698.69 230
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11199.95 5498.39 15994.70 11498.26 13799.81 5391.84 158100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 7899.39 23198.28 18395.76 8497.18 16999.88 2492.74 134100.00 198.67 9399.88 7399.99 23
SPE-MVS-test97.88 7297.94 6897.70 16599.28 10595.20 19299.98 1597.15 30695.53 9199.62 4799.79 5892.08 15398.38 23698.75 8999.28 12399.52 157
PAPM_NR98.12 6597.93 6998.70 9699.94 1396.13 15499.82 13798.43 13594.56 11897.52 15799.70 8894.40 7999.98 4797.00 16299.98 3299.99 23
CS-MVS97.79 8497.91 7097.43 18199.10 11394.42 21099.99 497.10 31195.07 10099.68 3899.75 7292.95 12898.34 24098.38 10999.14 12999.54 151
mvsany_test197.82 8097.90 7197.55 17398.77 14493.04 24999.80 14397.93 22496.95 4899.61 5399.68 9690.92 17299.83 12199.18 5998.29 15799.80 99
PLCcopyleft95.54 397.93 7097.89 7298.05 14399.82 5894.77 20599.92 8198.46 12193.93 15397.20 16799.27 13995.44 5099.97 5797.41 15299.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_s_conf0.5_n97.80 8297.85 7397.67 16699.06 11594.41 21199.98 1598.97 4097.34 2999.63 4499.69 9087.27 22199.97 5799.62 4099.06 13398.62 232
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 12199.71 8687.80 21499.95 7399.75 3199.38 11899.83 94
ETV-MVS97.92 7197.80 7598.25 13198.14 19196.48 13599.98 1597.63 24995.61 8899.29 8199.46 12192.55 14098.82 19899.02 7198.54 14899.46 166
fmvsm_s_conf0.5_n_a97.73 8997.72 7697.77 16098.63 15494.26 21799.96 3598.92 4697.18 3999.75 2999.69 9087.00 22699.97 5799.46 4798.89 13899.08 209
HPM-MVScopyleft97.96 6897.72 7698.68 9799.84 5696.39 14199.90 9398.17 19892.61 20398.62 11899.57 11291.87 15799.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UBG97.84 7697.69 7898.29 12998.38 16996.59 13399.90 9398.53 10593.91 15598.52 12198.42 22096.77 2599.17 18098.54 10196.20 20299.11 206
API-MVS97.86 7497.66 7998.47 11799.52 9295.41 18299.47 21998.87 5291.68 23698.84 10399.85 3392.34 14799.99 3698.44 10799.96 46100.00 1
MP-MVS-pluss98.07 6797.64 8099.38 4299.74 7098.41 6399.74 16198.18 19793.35 17096.45 18899.85 3392.64 13699.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_Blended97.94 6997.64 8098.83 8899.59 8596.99 117100.00 199.10 3195.38 9498.27 13599.08 15389.00 20499.95 7399.12 6199.25 12499.57 145
lupinMVS97.85 7597.60 8298.62 10297.28 25097.70 8799.99 497.55 26195.50 9399.43 6899.67 9790.92 17298.71 20998.40 10899.62 9599.45 168
WTY-MVS98.10 6697.60 8299.60 2298.92 13099.28 1799.89 10299.52 1495.58 8998.24 13899.39 13093.33 11499.74 13797.98 13295.58 22099.78 103
GDP-MVS97.88 7297.59 8498.75 9397.59 22997.81 8299.95 5497.37 28294.44 12499.08 9299.58 11097.13 2399.08 18694.99 19498.17 15999.37 177
test_fmvsmvis_n_192097.67 9197.59 8497.91 15297.02 25795.34 18499.95 5498.45 12297.87 1597.02 17399.59 10789.64 19299.98 4799.41 5199.34 12198.42 236
HPM-MVS_fast97.80 8297.50 8698.68 9799.79 6296.42 13799.88 10598.16 20391.75 23598.94 9999.54 11591.82 15999.65 15097.62 15099.99 2199.99 23
EIA-MVS97.53 9497.46 8797.76 16298.04 19694.84 20199.98 1597.61 25594.41 12897.90 14799.59 10792.40 14598.87 19598.04 12799.13 13099.59 137
MVSMamba_PlusPlus97.83 7797.45 8898.99 7898.60 15598.15 6599.58 19997.74 24190.34 27599.26 8398.32 22594.29 8899.23 17299.03 7099.89 7099.58 143
test_fmvsmconf0.1_n97.74 8797.44 8998.64 10195.76 29996.20 15099.94 7198.05 21498.17 998.89 10299.42 12387.65 21699.90 9499.50 4499.60 10199.82 95
ACMMPcopyleft97.74 8797.44 8998.66 9999.92 3196.13 15499.18 25699.45 1894.84 10996.41 19199.71 8691.40 16199.99 3697.99 13098.03 16799.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 8697.38 9198.92 8599.53 9196.84 12299.87 10898.14 20793.78 15996.55 18699.69 9092.28 14899.98 4797.13 15899.44 11499.93 79
test_yl97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
DCV-MVSNet97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
alignmvs97.81 8197.33 9499.25 4698.77 14498.66 5199.99 498.44 12794.40 12998.41 12899.47 11993.65 10899.42 16798.57 9994.26 24099.67 118
CPTT-MVS97.64 9297.32 9598.58 10799.97 395.77 16499.96 3598.35 16989.90 28398.36 13199.79 5891.18 16799.99 3698.37 11199.99 2199.99 23
testing1197.48 9697.27 9698.10 13998.36 17296.02 15799.92 8198.45 12293.45 16998.15 14198.70 19495.48 4999.22 17397.85 13895.05 23099.07 210
EC-MVSNet97.38 10497.24 9797.80 15597.41 23995.64 17399.99 497.06 31794.59 11799.63 4499.32 13589.20 20298.14 25698.76 8899.23 12699.62 130
OMC-MVS97.28 10697.23 9897.41 18299.76 6693.36 24499.65 18697.95 22296.03 7997.41 16299.70 8889.61 19399.51 15696.73 17198.25 15899.38 175
fmvsm_s_conf0.1_n97.30 10597.21 9997.60 17297.38 24194.40 21399.90 9398.64 7796.47 6599.51 6299.65 10184.99 24799.93 8899.22 5899.09 13298.46 234
test250697.53 9497.19 10098.58 10798.66 15096.90 12198.81 30199.77 594.93 10397.95 14598.96 16892.51 14199.20 17794.93 19698.15 16099.64 124
MAR-MVS97.43 9797.19 10098.15 13799.47 9694.79 20499.05 27298.76 6492.65 20198.66 11699.82 4988.52 20999.98 4798.12 12299.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS92.50 797.79 8497.17 10299.63 1798.98 12299.32 997.49 35599.52 1495.69 8698.32 13397.41 25293.32 11599.77 13198.08 12695.75 21799.81 97
xiu_mvs_v1_base_debu97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base_debi97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
CSCG97.10 11497.04 10697.27 19199.89 4591.92 27599.90 9399.07 3488.67 30795.26 21499.82 4993.17 12399.98 4798.15 12199.47 11099.90 86
sss97.57 9397.03 10799.18 5298.37 17198.04 7199.73 16899.38 2293.46 16798.76 11199.06 15591.21 16399.89 9996.33 17497.01 18999.62 130
thisisatest051597.41 10297.02 10898.59 10697.71 22197.52 9399.97 2898.54 10291.83 23197.45 16099.04 15697.50 999.10 18594.75 20496.37 20199.16 200
F-COLMAP96.93 12696.95 10996.87 20199.71 7691.74 28099.85 12297.95 22293.11 18195.72 20799.16 15092.35 14699.94 8195.32 18999.35 12098.92 216
testing9997.17 11196.91 11097.95 14698.35 17495.70 16999.91 8798.43 13592.94 18497.36 16398.72 19294.83 6599.21 17497.00 16294.64 23298.95 215
testing9197.16 11296.90 11197.97 14598.35 17495.67 17299.91 8798.42 14792.91 18697.33 16498.72 19294.81 6699.21 17496.98 16494.63 23399.03 212
fmvsm_s_conf0.1_n_a97.09 11696.90 11197.63 17095.65 30994.21 21999.83 13498.50 11696.27 7499.65 4199.64 10284.72 24899.93 8899.04 6798.84 14198.74 227
mamv495.24 18596.90 11190.25 35698.65 15272.11 40398.28 33597.64 24889.99 28295.93 20198.25 22794.74 6899.11 18399.01 7299.64 9299.53 155
jason97.24 10896.86 11498.38 12595.73 30297.32 10299.97 2897.40 27995.34 9698.60 12099.54 11587.70 21598.56 21797.94 13399.47 11099.25 195
jason: jason.
114514_t97.41 10296.83 11599.14 6199.51 9497.83 8099.89 10298.27 18588.48 31199.06 9499.66 9990.30 18599.64 15196.32 17599.97 4299.96 67
PVSNet_Blended_VisFu97.27 10796.81 11698.66 9998.81 14196.67 12899.92 8198.64 7794.51 12096.38 19298.49 21389.05 20399.88 10597.10 16098.34 15299.43 171
AdaColmapbinary97.23 10996.80 11798.51 11599.99 195.60 17599.09 26198.84 5993.32 17296.74 18199.72 8486.04 236100.00 198.01 12899.43 11599.94 78
PMMVS96.76 13496.76 11896.76 20498.28 17992.10 27099.91 8797.98 21994.12 14199.53 5899.39 13086.93 22798.73 20696.95 16797.73 17099.45 168
testing22297.08 11996.75 11998.06 14298.56 15696.82 12399.85 12298.61 8392.53 20998.84 10398.84 18893.36 11298.30 24495.84 18394.30 23999.05 211
mvsmamba96.94 12496.73 12097.55 17397.99 19894.37 21499.62 19397.70 24393.13 17998.42 12797.92 24088.02 21398.75 20598.78 8699.01 13599.52 157
UWE-MVS96.79 13196.72 12197.00 19698.51 16393.70 23299.71 17598.60 8592.96 18397.09 17098.34 22496.67 3198.85 19792.11 25296.50 19798.44 235
thisisatest053097.10 11496.72 12198.22 13297.60 22896.70 12699.92 8198.54 10291.11 25597.07 17298.97 16697.47 1299.03 18893.73 23196.09 20598.92 216
PVSNet91.05 1397.13 11396.69 12398.45 11999.52 9295.81 16299.95 5499.65 1294.73 11299.04 9599.21 14684.48 25199.95 7394.92 19798.74 14499.58 143
ETVMVS97.03 12096.64 12498.20 13398.67 14997.12 11299.89 10298.57 9091.10 25698.17 14098.59 20493.86 10398.19 25495.64 18695.24 22899.28 192
diffmvspermissive97.00 12196.64 12498.09 14097.64 22696.17 15399.81 13997.19 30094.67 11698.95 9899.28 13686.43 23298.76 20398.37 11197.42 17899.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer96.94 12496.60 12697.95 14697.28 25097.70 8799.55 20697.27 29591.17 25299.43 6899.54 11590.92 17296.89 32394.67 20799.62 9599.25 195
EPP-MVSNet96.69 13996.60 12696.96 19897.74 21493.05 24899.37 23498.56 9388.75 30595.83 20599.01 15996.01 3698.56 21796.92 16897.20 18399.25 195
VNet97.21 11096.57 12899.13 6598.97 12397.82 8199.03 27599.21 2994.31 13399.18 8798.88 17986.26 23599.89 9998.93 7594.32 23899.69 115
CHOSEN 1792x268896.81 13096.53 12997.64 16898.91 13493.07 24699.65 18699.80 395.64 8795.39 21198.86 18484.35 25399.90 9496.98 16499.16 12899.95 74
tttt051796.85 12896.49 13097.92 15097.48 23695.89 16199.85 12298.54 10290.72 26896.63 18398.93 17797.47 1299.02 18993.03 24395.76 21698.85 220
baseline296.71 13896.49 13097.37 18595.63 31195.96 15999.74 16198.88 5192.94 18491.61 25598.97 16697.72 698.62 21594.83 20198.08 16697.53 257
HyFIR lowres test96.66 14196.43 13297.36 18799.05 11693.91 22799.70 17999.80 390.54 27096.26 19498.08 23292.15 15198.23 25296.84 17095.46 22199.93 79
DeepC-MVS94.51 496.92 12796.40 13398.45 11999.16 11195.90 16099.66 18598.06 21296.37 7294.37 22399.49 11883.29 26099.90 9497.63 14999.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
canonicalmvs97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
TESTMET0.1,196.74 13696.26 13698.16 13497.36 24396.48 13599.96 3598.29 18291.93 22895.77 20698.07 23395.54 4698.29 24590.55 27898.89 13899.70 113
test_cas_vis1_n_192096.59 14396.23 13797.65 16798.22 18394.23 21899.99 497.25 29797.77 1799.58 5499.08 15377.10 31299.97 5797.64 14899.45 11398.74 227
MGCFI-Net97.00 12196.22 13899.34 4398.86 13898.80 3999.67 18497.30 29094.31 13397.77 15399.41 12786.36 23499.50 15898.38 10993.90 24699.72 110
thres20096.96 12396.21 13999.22 4898.97 12398.84 3699.85 12299.71 793.17 17796.26 19498.88 17989.87 19099.51 15694.26 21694.91 23199.31 187
CANet_DTU96.76 13496.15 14098.60 10498.78 14397.53 9299.84 12797.63 24997.25 3799.20 8499.64 10281.36 27599.98 4792.77 24698.89 13898.28 239
CDS-MVSNet96.34 15396.07 14197.13 19397.37 24294.96 19799.53 20997.91 22891.55 23995.37 21298.32 22595.05 5897.13 30593.80 22795.75 21799.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-LLR96.47 14696.04 14297.78 15897.02 25795.44 17999.96 3598.21 19394.07 14495.55 20896.38 28693.90 10198.27 24990.42 28198.83 14299.64 124
EPMVS96.53 14596.01 14398.09 14098.43 16796.12 15696.36 37699.43 2093.53 16597.64 15595.04 34194.41 7898.38 23691.13 26498.11 16399.75 106
tfpn200view996.79 13195.99 14499.19 5198.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.27 193
thres40096.78 13395.99 14499.16 5798.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.16 200
baseline96.43 14895.98 14697.76 16297.34 24495.17 19499.51 21297.17 30393.92 15496.90 17699.28 13685.37 24398.64 21497.50 15196.86 19399.46 166
tpmrst96.27 15995.98 14697.13 19397.96 20093.15 24596.34 37798.17 19892.07 22398.71 11495.12 33893.91 10098.73 20694.91 19996.62 19499.50 162
Vis-MVSNet (Re-imp)96.32 15495.98 14697.35 18897.93 20294.82 20299.47 21998.15 20691.83 23195.09 21599.11 15191.37 16297.47 28793.47 23497.43 17699.74 107
casdiffmvspermissive96.42 15095.97 14997.77 16097.30 24894.98 19699.84 12797.09 31493.75 16196.58 18599.26 14285.07 24598.78 20197.77 14597.04 18799.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net96.54 14495.96 15098.27 13098.23 18295.71 16898.00 34898.45 12293.72 16298.41 12899.27 13988.71 20899.66 14991.19 26397.69 17199.44 170
131496.84 12995.96 15099.48 3496.74 27598.52 5898.31 33398.86 5395.82 8289.91 27498.98 16487.49 21899.96 6597.80 14099.73 8799.96 67
casdiffmvs_mvgpermissive96.43 14895.94 15297.89 15497.44 23795.47 17899.86 11997.29 29393.35 17096.03 19899.19 14785.39 24298.72 20897.89 13797.04 18799.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-mter96.39 15195.93 15397.78 15897.02 25795.44 17999.96 3598.21 19391.81 23395.55 20896.38 28695.17 5398.27 24990.42 28198.83 14299.64 124
thres100view90096.74 13695.92 15499.18 5298.90 13598.77 4299.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.84 22394.57 23499.27 193
IS-MVSNet96.29 15795.90 15597.45 17998.13 19294.80 20399.08 26397.61 25592.02 22795.54 21098.96 16890.64 17898.08 26093.73 23197.41 17999.47 165
CostFormer96.10 16195.88 15696.78 20397.03 25692.55 26297.08 36597.83 23690.04 28198.72 11394.89 34895.01 6098.29 24596.54 17395.77 21599.50 162
thres600view796.69 13995.87 15799.14 6198.90 13598.78 4199.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.44 23594.50 23799.16 200
PVSNet_BlendedMVS96.05 16295.82 15896.72 20699.59 8596.99 11799.95 5499.10 3194.06 14698.27 13595.80 30389.00 20499.95 7399.12 6187.53 29693.24 355
test_fmvsmconf0.01_n96.39 15195.74 15998.32 12791.47 37995.56 17699.84 12797.30 29097.74 1897.89 14899.35 13479.62 29499.85 11199.25 5799.24 12599.55 147
MVS_Test96.46 14795.74 15998.61 10398.18 18797.23 10699.31 24197.15 30691.07 25798.84 10397.05 26588.17 21298.97 19094.39 21197.50 17599.61 134
Effi-MVS+96.30 15695.69 16198.16 13497.85 20796.26 14597.41 35797.21 29990.37 27398.65 11798.58 20786.61 23198.70 21097.11 15997.37 18099.52 157
MDTV_nov1_ep1395.69 16197.90 20394.15 22095.98 38598.44 12793.12 18097.98 14495.74 30595.10 5598.58 21690.02 28796.92 191
test_fmvs195.35 18395.68 16394.36 28498.99 12184.98 36699.96 3596.65 35297.60 2299.73 3398.96 16871.58 35299.93 8898.31 11499.37 11998.17 240
RRT-MVS96.24 16095.68 16397.94 14997.65 22594.92 19999.27 24997.10 31192.79 19397.43 16197.99 23781.85 26999.37 16898.46 10698.57 14799.53 155
TAMVS95.85 16795.58 16596.65 20997.07 25493.50 23899.17 25797.82 23791.39 24995.02 21698.01 23492.20 14997.30 29593.75 23095.83 21499.14 203
MVS96.60 14295.56 16699.72 1396.85 26899.22 2098.31 33398.94 4191.57 23890.90 26399.61 10686.66 23099.96 6597.36 15399.88 7399.99 23
PatchmatchNetpermissive95.94 16595.45 16797.39 18497.83 20894.41 21196.05 38398.40 15692.86 18797.09 17095.28 33494.21 9298.07 26289.26 29498.11 16399.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL96.04 16395.40 16897.95 14699.59 8595.22 19199.52 21099.07 3493.96 15196.49 18798.35 22282.28 26599.82 12390.15 28699.22 12798.81 223
EPNet_dtu95.71 17295.39 16996.66 20898.92 13093.41 24199.57 20298.90 4796.19 7797.52 15798.56 20992.65 13597.36 28977.89 37898.33 15399.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 17295.38 17096.68 20798.49 16592.28 26699.84 12797.50 26992.12 22292.06 25398.79 18984.69 24998.67 21395.29 19099.66 9199.09 207
3Dnovator91.47 1296.28 15895.34 17199.08 7096.82 27097.47 9899.45 22498.81 6195.52 9289.39 28999.00 16181.97 26799.95 7397.27 15599.83 7799.84 93
test_vis1_n_192095.44 18095.31 17295.82 23298.50 16488.74 33499.98 1597.30 29097.84 1699.85 999.19 14766.82 37399.97 5798.82 8399.46 11298.76 225
Effi-MVS+-dtu94.53 20795.30 17392.22 33597.77 21282.54 37999.59 19797.06 31794.92 10595.29 21395.37 32785.81 23797.89 27294.80 20297.07 18596.23 268
3Dnovator+91.53 1196.31 15595.24 17499.52 2896.88 26798.64 5499.72 17298.24 18995.27 9888.42 31498.98 16482.76 26399.94 8197.10 16099.83 7799.96 67
MVSTER95.53 17895.22 17596.45 21398.56 15697.72 8499.91 8797.67 24692.38 21691.39 25797.14 25997.24 1897.30 29594.80 20287.85 29194.34 292
1112_ss96.01 16495.20 17698.42 12297.80 21096.41 13899.65 18696.66 35192.71 19692.88 24399.40 12892.16 15099.30 16991.92 25593.66 24799.55 147
tpm295.47 17995.18 17796.35 21896.91 26391.70 28496.96 36897.93 22488.04 31898.44 12695.40 32393.32 11597.97 26694.00 21995.61 21999.38 175
Vis-MVSNetpermissive95.72 17095.15 17897.45 17997.62 22794.28 21699.28 24798.24 18994.27 13896.84 17898.94 17579.39 29698.76 20393.25 23698.49 14999.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.84 16895.11 17998.02 14499.85 5495.10 19598.74 30698.50 11687.22 32993.66 23299.86 2987.45 21999.95 7390.94 27099.81 8399.02 213
FA-MVS(test-final)95.86 16695.09 18098.15 13797.74 21495.62 17496.31 37898.17 19891.42 24796.26 19496.13 29690.56 18099.47 16592.18 25197.07 18599.35 182
reproduce_monomvs95.38 18295.07 18196.32 21999.32 10496.60 13199.76 15498.85 5696.65 5987.83 32096.05 30099.52 198.11 25896.58 17281.07 34494.25 297
ECVR-MVScopyleft95.66 17595.05 18297.51 17798.66 15093.71 23198.85 29898.45 12294.93 10396.86 17798.96 16875.22 33599.20 17795.34 18898.15 16099.64 124
mvs_anonymous95.65 17695.03 18397.53 17598.19 18695.74 16699.33 23897.49 27090.87 26190.47 26797.10 26188.23 21197.16 30295.92 18197.66 17399.68 116
FE-MVS95.70 17495.01 18497.79 15798.21 18494.57 20695.03 39098.69 6988.90 30197.50 15996.19 29392.60 13899.49 16389.99 28897.94 16999.31 187
test111195.57 17794.98 18597.37 18598.56 15693.37 24398.86 29698.45 12294.95 10296.63 18398.95 17375.21 33699.11 18395.02 19398.14 16299.64 124
CVMVSNet94.68 20294.94 18693.89 30296.80 27186.92 35599.06 26898.98 3894.45 12194.23 22799.02 15785.60 23895.31 37290.91 27195.39 22499.43 171
baseline195.78 16994.86 18798.54 11298.47 16698.07 6999.06 26897.99 21792.68 19994.13 22898.62 20393.28 11898.69 21193.79 22885.76 30498.84 221
BH-untuned95.18 18694.83 18896.22 22198.36 17291.22 29299.80 14397.32 28890.91 26091.08 26098.67 19683.51 25798.54 21994.23 21799.61 9998.92 216
Test_1112_low_res95.72 17094.83 18898.42 12297.79 21196.41 13899.65 18696.65 35292.70 19792.86 24496.13 29692.15 15199.30 16991.88 25693.64 24899.55 147
myMVS_eth3d94.46 21094.76 19093.55 31297.68 22290.97 29499.71 17598.35 16990.79 26492.10 25198.67 19692.46 14493.09 39487.13 31995.95 21096.59 264
XVG-OURS94.82 19394.74 19195.06 25298.00 19789.19 32899.08 26397.55 26194.10 14294.71 21899.62 10580.51 28799.74 13796.04 17993.06 25696.25 266
XVG-OURS-SEG-HR94.79 19694.70 19295.08 25198.05 19589.19 32899.08 26397.54 26393.66 16394.87 21799.58 11078.78 30399.79 12697.31 15493.40 25196.25 266
UGNet95.33 18494.57 19397.62 17198.55 15994.85 20098.67 31499.32 2695.75 8596.80 18096.27 29172.18 34999.96 6594.58 20999.05 13498.04 244
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HQP-MVS94.61 20494.50 19494.92 25795.78 29591.85 27699.87 10897.89 22996.82 5193.37 23498.65 19980.65 28598.39 23297.92 13489.60 26494.53 274
MonoMVSNet94.82 19394.43 19595.98 22694.54 32790.73 30199.03 27597.06 31793.16 17893.15 23895.47 32088.29 21097.57 28397.85 13891.33 26199.62 130
dp95.05 18994.43 19596.91 19997.99 19892.73 25696.29 37997.98 21989.70 28695.93 20194.67 35493.83 10598.45 22586.91 32696.53 19699.54 151
test_fmvs1_n94.25 21894.36 19793.92 29997.68 22283.70 37399.90 9396.57 35597.40 2899.67 3998.88 17961.82 39199.92 9198.23 11799.13 13098.14 243
h-mvs3394.92 19294.36 19796.59 21098.85 13991.29 29198.93 28698.94 4195.90 8098.77 10898.42 22090.89 17599.77 13197.80 14070.76 38998.72 229
HQP_MVS94.49 20994.36 19794.87 25895.71 30591.74 28099.84 12797.87 23196.38 6993.01 23998.59 20480.47 28998.37 23897.79 14389.55 26794.52 276
BH-RMVSNet95.18 18694.31 20097.80 15598.17 18895.23 19099.76 15497.53 26592.52 21094.27 22699.25 14376.84 31798.80 19990.89 27299.54 10499.35 182
testing393.92 22194.23 20192.99 32697.54 23190.23 31399.99 499.16 3090.57 26991.33 25998.63 20292.99 12692.52 39882.46 35495.39 22496.22 269
Fast-Effi-MVS+95.02 19094.19 20297.52 17697.88 20494.55 20799.97 2897.08 31588.85 30394.47 22297.96 23984.59 25098.41 22889.84 29097.10 18499.59 137
QAPM95.40 18194.17 20399.10 6796.92 26297.71 8599.40 22798.68 7189.31 28988.94 30298.89 17882.48 26499.96 6593.12 24299.83 7799.62 130
PCF-MVS94.20 595.18 18694.10 20498.43 12198.55 15995.99 15897.91 35097.31 28990.35 27489.48 28899.22 14585.19 24499.89 9990.40 28398.47 15099.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
hse-mvs294.38 21294.08 20595.31 24698.27 18090.02 31899.29 24698.56 9395.90 8098.77 10898.00 23590.89 17598.26 25197.80 14069.20 39597.64 252
WBMVS94.52 20894.03 20695.98 22698.38 16996.68 12799.92 8197.63 24990.75 26789.64 28495.25 33596.77 2596.90 32294.35 21483.57 32394.35 290
ADS-MVSNet94.79 19694.02 20797.11 19597.87 20593.79 22894.24 39198.16 20390.07 27996.43 18994.48 35990.29 18698.19 25487.44 31397.23 18199.36 179
miper_enhance_ethall94.36 21593.98 20895.49 23798.68 14895.24 18999.73 16897.29 29393.28 17489.86 27695.97 30194.37 8397.05 31192.20 25084.45 31694.19 302
SDMVSNet94.80 19593.96 20997.33 18998.92 13095.42 18199.59 19798.99 3792.41 21492.55 24797.85 24375.81 32998.93 19497.90 13691.62 25997.64 252
IB-MVS92.85 694.99 19193.94 21098.16 13497.72 21995.69 17199.99 498.81 6194.28 13692.70 24596.90 26995.08 5699.17 18096.07 17873.88 38399.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CLD-MVS94.06 22093.90 21194.55 27396.02 28990.69 30299.98 1597.72 24296.62 6291.05 26298.85 18777.21 31198.47 22198.11 12389.51 26994.48 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ADS-MVSNet293.80 22693.88 21293.55 31297.87 20585.94 36094.24 39196.84 34090.07 27996.43 18994.48 35990.29 18695.37 37087.44 31397.23 18199.36 179
Fast-Effi-MVS+-dtu93.72 23093.86 21393.29 31797.06 25586.16 35899.80 14396.83 34192.66 20092.58 24697.83 24581.39 27497.67 28089.75 29196.87 19296.05 271
SCA94.69 20093.81 21497.33 18997.10 25394.44 20898.86 29698.32 17693.30 17396.17 19795.59 31276.48 32297.95 26991.06 26697.43 17699.59 137
test0.0.03 193.86 22293.61 21594.64 26795.02 32092.18 26999.93 7898.58 8894.07 14487.96 31898.50 21293.90 10194.96 37681.33 36193.17 25396.78 261
cascas94.64 20393.61 21597.74 16497.82 20996.26 14599.96 3597.78 24085.76 34794.00 22997.54 24976.95 31699.21 17497.23 15695.43 22397.76 251
TAPA-MVS92.12 894.42 21193.60 21796.90 20099.33 10291.78 27999.78 14698.00 21689.89 28494.52 22099.47 11991.97 15599.18 17969.90 39799.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft90.15 1594.77 19893.59 21898.33 12696.07 28797.48 9799.56 20498.57 9090.46 27186.51 33898.95 17378.57 30699.94 8193.86 22299.74 8697.57 256
tpmvs94.28 21793.57 21996.40 21598.55 15991.50 28995.70 38998.55 9987.47 32492.15 25094.26 36491.42 16098.95 19388.15 30695.85 21398.76 225
LFMVS94.75 19993.56 22098.30 12899.03 11795.70 16998.74 30697.98 21987.81 32298.47 12599.39 13067.43 37199.53 15398.01 12895.20 22999.67 118
TR-MVS94.54 20593.56 22097.49 17897.96 20094.34 21598.71 30997.51 26890.30 27794.51 22198.69 19575.56 33098.77 20292.82 24595.99 20799.35 182
GeoE94.36 21593.48 22296.99 19797.29 24993.54 23799.96 3596.72 34988.35 31493.43 23398.94 17582.05 26698.05 26388.12 30896.48 19999.37 177
FIs94.10 21993.43 22396.11 22394.70 32496.82 12399.58 19998.93 4592.54 20889.34 29197.31 25587.62 21797.10 30894.22 21886.58 30094.40 285
ab-mvs94.69 20093.42 22498.51 11598.07 19496.26 14596.49 37498.68 7190.31 27694.54 21997.00 26776.30 32499.71 14195.98 18093.38 25299.56 146
DP-MVS94.54 20593.42 22497.91 15299.46 9894.04 22298.93 28697.48 27181.15 38290.04 27199.55 11387.02 22599.95 7388.97 29698.11 16399.73 108
tpm93.70 23193.41 22694.58 27195.36 31587.41 35097.01 36696.90 33690.85 26296.72 18294.14 36590.40 18396.84 32690.75 27588.54 28399.51 160
EI-MVSNet93.73 22993.40 22794.74 26396.80 27192.69 25799.06 26897.67 24688.96 29891.39 25799.02 15788.75 20797.30 29591.07 26587.85 29194.22 299
MSDG94.37 21393.36 22897.40 18398.88 13793.95 22699.37 23497.38 28085.75 34990.80 26499.17 14984.11 25599.88 10586.35 32798.43 15198.36 238
PS-MVSNAJss93.64 23293.31 22994.61 26892.11 37092.19 26899.12 25997.38 28092.51 21188.45 30996.99 26891.20 16497.29 29894.36 21287.71 29394.36 287
ET-MVSNet_ETH3D94.37 21393.28 23097.64 16898.30 17697.99 7399.99 497.61 25594.35 13071.57 40199.45 12296.23 3595.34 37196.91 16985.14 31199.59 137
cl2293.77 22793.25 23195.33 24599.49 9594.43 20999.61 19598.09 20990.38 27289.16 29995.61 31090.56 18097.34 29191.93 25484.45 31694.21 301
dmvs_re93.20 24193.15 23293.34 31596.54 27983.81 37298.71 30998.51 11091.39 24992.37 24998.56 20978.66 30597.83 27493.89 22189.74 26398.38 237
FC-MVSNet-test93.81 22593.15 23295.80 23394.30 33296.20 15099.42 22698.89 4992.33 21889.03 30197.27 25787.39 22096.83 32893.20 23786.48 30194.36 287
test_vis1_n93.61 23393.03 23495.35 24395.86 29486.94 35499.87 10896.36 36196.85 4999.54 5798.79 18952.41 40499.83 12198.64 9698.97 13699.29 191
VDD-MVS93.77 22792.94 23596.27 22098.55 15990.22 31498.77 30597.79 23890.85 26296.82 17999.42 12361.18 39499.77 13198.95 7394.13 24198.82 222
GA-MVS93.83 22392.84 23696.80 20295.73 30293.57 23599.88 10597.24 29892.57 20792.92 24196.66 27878.73 30497.67 28087.75 31194.06 24399.17 199
sd_testset93.55 23492.83 23795.74 23498.92 13090.89 29998.24 33798.85 5692.41 21492.55 24797.85 24371.07 35798.68 21293.93 22091.62 25997.64 252
OPM-MVS93.21 24092.80 23894.44 28093.12 35290.85 30099.77 14997.61 25596.19 7791.56 25698.65 19975.16 33798.47 22193.78 22989.39 27093.99 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RPSCF91.80 27492.79 23988.83 36798.15 19069.87 40598.11 34496.60 35483.93 36594.33 22499.27 13979.60 29599.46 16691.99 25393.16 25497.18 259
WB-MVSnew92.90 24992.77 24093.26 31996.95 26193.63 23499.71 17598.16 20391.49 24094.28 22598.14 23081.33 27696.48 34179.47 36995.46 22189.68 395
LPG-MVS_test92.96 24792.71 24193.71 30695.43 31388.67 33699.75 15897.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
CR-MVSNet93.45 23892.62 24295.94 22896.29 28192.66 25892.01 40296.23 36392.62 20296.94 17493.31 37391.04 16996.03 36079.23 37095.96 20899.13 204
kuosan93.17 24292.60 24394.86 26198.40 16889.54 32698.44 32698.53 10584.46 36288.49 30897.92 24090.57 17997.05 31183.10 35093.49 24997.99 245
AUN-MVS93.28 23992.60 24395.34 24498.29 17790.09 31799.31 24198.56 9391.80 23496.35 19398.00 23589.38 19698.28 24792.46 24769.22 39497.64 252
miper_ehance_all_eth93.16 24392.60 24394.82 26297.57 23093.56 23699.50 21497.07 31688.75 30588.85 30395.52 31690.97 17196.74 33190.77 27484.45 31694.17 303
LCM-MVSNet-Re92.31 26392.60 24391.43 34497.53 23279.27 39699.02 27791.83 41192.07 22380.31 37694.38 36283.50 25895.48 36897.22 15797.58 17499.54 151
D2MVS92.76 25292.59 24793.27 31895.13 31689.54 32699.69 18099.38 2292.26 21987.59 32394.61 35685.05 24697.79 27591.59 25988.01 28992.47 368
nrg03093.51 23592.53 24896.45 21394.36 33097.20 10799.81 13997.16 30591.60 23789.86 27697.46 25086.37 23397.68 27995.88 18280.31 35294.46 279
tpm cat193.51 23592.52 24996.47 21197.77 21291.47 29096.13 38198.06 21280.98 38392.91 24293.78 36889.66 19198.87 19587.03 32296.39 20099.09 207
ACMM91.95 1092.88 25092.52 24993.98 29895.75 30189.08 33299.77 14997.52 26793.00 18289.95 27397.99 23776.17 32698.46 22493.63 23388.87 27594.39 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 25392.42 25193.73 30495.91 29388.72 33599.81 13997.53 26594.13 14087.00 33298.23 22874.07 34398.47 22196.22 17788.86 27693.99 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf92.83 25192.29 25294.47 27891.90 37392.46 26399.55 20697.27 29591.17 25289.96 27296.07 29981.10 27896.89 32394.67 20788.91 27394.05 318
UniMVSNet (Re)93.07 24692.13 25395.88 22994.84 32196.24 14999.88 10598.98 3892.49 21289.25 29395.40 32387.09 22497.14 30493.13 24178.16 36394.26 295
UniMVSNet_NR-MVSNet92.95 24892.11 25495.49 23794.61 32695.28 18799.83 13499.08 3391.49 24089.21 29696.86 27287.14 22396.73 33293.20 23777.52 36894.46 279
IterMVS-LS92.69 25592.11 25494.43 28296.80 27192.74 25499.45 22496.89 33788.98 29689.65 28395.38 32688.77 20696.34 34790.98 26982.04 33394.22 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
X-MVStestdata93.83 22392.06 25699.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7041.37 42494.34 8499.96 6598.92 7699.95 5099.99 23
Anonymous20240521193.10 24591.99 25796.40 21599.10 11389.65 32498.88 29297.93 22483.71 36794.00 22998.75 19168.79 36299.88 10595.08 19291.71 25899.68 116
eth_miper_zixun_eth92.41 26191.93 25893.84 30397.28 25090.68 30398.83 29996.97 32888.57 31089.19 29895.73 30789.24 20196.69 33489.97 28981.55 33694.15 309
VDDNet93.12 24491.91 25996.76 20496.67 27892.65 26098.69 31298.21 19382.81 37597.75 15499.28 13661.57 39299.48 16498.09 12594.09 24298.15 241
c3_l92.53 25891.87 26094.52 27497.40 24092.99 25099.40 22796.93 33487.86 32088.69 30695.44 32189.95 18996.44 34390.45 28080.69 34994.14 312
gg-mvs-nofinetune93.51 23591.86 26198.47 11797.72 21997.96 7792.62 39998.51 11074.70 40197.33 16469.59 41598.91 497.79 27597.77 14599.56 10399.67 118
AllTest92.48 25991.64 26295.00 25499.01 11888.43 34098.94 28496.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
DIV-MVS_self_test92.32 26291.60 26394.47 27897.31 24792.74 25499.58 19996.75 34786.99 33387.64 32295.54 31489.55 19496.50 34088.58 30082.44 33094.17 303
cl____92.31 26391.58 26494.52 27497.33 24692.77 25299.57 20296.78 34686.97 33487.56 32495.51 31789.43 19596.62 33688.60 29982.44 33094.16 308
FMVSNet392.69 25591.58 26495.99 22598.29 17797.42 10099.26 25097.62 25289.80 28589.68 28095.32 32981.62 27396.27 35087.01 32385.65 30594.29 294
VPA-MVSNet92.70 25491.55 26696.16 22295.09 31796.20 15098.88 29299.00 3691.02 25991.82 25495.29 33376.05 32897.96 26895.62 18781.19 33994.30 293
Patchmatch-test92.65 25791.50 26796.10 22496.85 26890.49 30891.50 40497.19 30082.76 37690.23 26895.59 31295.02 5998.00 26577.41 38096.98 19099.82 95
COLMAP_ROBcopyleft90.47 1492.18 26691.49 26894.25 28799.00 12088.04 34698.42 33096.70 35082.30 37888.43 31299.01 15976.97 31599.85 11186.11 33196.50 19794.86 273
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DU-MVS92.46 26091.45 26995.49 23794.05 33595.28 18799.81 13998.74 6592.25 22089.21 29696.64 28081.66 27196.73 33293.20 23777.52 36894.46 279
miper_lstm_enhance91.81 27191.39 27093.06 32597.34 24489.18 33099.38 23296.79 34586.70 33787.47 32695.22 33690.00 18895.86 36488.26 30481.37 33894.15 309
WR-MVS92.31 26391.25 27195.48 24094.45 32995.29 18699.60 19698.68 7190.10 27888.07 31796.89 27080.68 28496.80 33093.14 24079.67 35694.36 287
jajsoiax91.92 26991.18 27294.15 28891.35 38090.95 29799.00 27897.42 27692.61 20387.38 32897.08 26272.46 34897.36 28994.53 21088.77 27794.13 313
dongtai91.55 28091.13 27392.82 32998.16 18986.35 35799.47 21998.51 11083.24 37085.07 35397.56 24890.33 18494.94 37776.09 38691.73 25797.18 259
mvs_tets91.81 27191.08 27494.00 29691.63 37790.58 30698.67 31497.43 27492.43 21387.37 32997.05 26571.76 35097.32 29394.75 20488.68 27994.11 314
pmmvs492.10 26791.07 27595.18 24992.82 36194.96 19799.48 21896.83 34187.45 32588.66 30796.56 28483.78 25696.83 32889.29 29384.77 31493.75 340
anonymousdsp91.79 27690.92 27694.41 28390.76 38592.93 25198.93 28697.17 30389.08 29187.46 32795.30 33078.43 30996.92 32192.38 24888.73 27893.39 351
XVG-ACMP-BASELINE91.22 28690.75 27792.63 33293.73 34185.61 36198.52 32397.44 27392.77 19489.90 27596.85 27366.64 37498.39 23292.29 24988.61 28093.89 332
JIA-IIPM91.76 27790.70 27894.94 25696.11 28687.51 34993.16 39898.13 20875.79 39797.58 15677.68 41292.84 13197.97 26688.47 30396.54 19599.33 185
Anonymous2024052992.10 26790.65 27996.47 21198.82 14090.61 30598.72 30898.67 7475.54 39893.90 23198.58 20766.23 37599.90 9494.70 20690.67 26298.90 219
Syy-MVS90.00 31490.63 28088.11 37497.68 22274.66 40199.71 17598.35 16990.79 26492.10 25198.67 19679.10 30193.09 39463.35 40895.95 21096.59 264
TranMVSNet+NR-MVSNet91.68 27890.61 28194.87 25893.69 34293.98 22599.69 18098.65 7591.03 25888.44 31096.83 27680.05 29296.18 35390.26 28576.89 37694.45 284
VPNet91.81 27190.46 28295.85 23194.74 32395.54 17798.98 27998.59 8792.14 22190.77 26597.44 25168.73 36497.54 28594.89 20077.89 36594.46 279
XXY-MVS91.82 27090.46 28295.88 22993.91 33895.40 18398.87 29597.69 24588.63 30987.87 31997.08 26274.38 34297.89 27291.66 25884.07 32094.35 290
MVP-Stereo90.93 28990.45 28492.37 33491.25 38288.76 33398.05 34796.17 36587.27 32884.04 35795.30 33078.46 30897.27 30083.78 34699.70 8991.09 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H91.30 28190.35 28594.15 28894.17 33492.62 26199.17 25798.94 4188.87 30286.48 34094.46 36184.36 25296.61 33788.19 30578.51 36193.21 356
EU-MVSNet90.14 31290.34 28689.54 36292.55 36481.06 39098.69 31298.04 21591.41 24886.59 33796.84 27580.83 28293.31 39386.20 32981.91 33494.26 295
MS-PatchMatch90.65 29690.30 28791.71 34394.22 33385.50 36398.24 33797.70 24388.67 30786.42 34196.37 28867.82 36998.03 26483.62 34799.62 9591.60 376
PVSNet_088.03 1991.80 27490.27 28896.38 21798.27 18090.46 30999.94 7199.61 1393.99 14986.26 34497.39 25471.13 35699.89 9998.77 8767.05 40098.79 224
CP-MVSNet91.23 28590.22 28994.26 28693.96 33792.39 26599.09 26198.57 9088.95 29986.42 34196.57 28379.19 29996.37 34590.29 28478.95 35894.02 319
NR-MVSNet91.56 27990.22 28995.60 23594.05 33595.76 16598.25 33698.70 6891.16 25480.78 37596.64 28083.23 26196.57 33891.41 26077.73 36794.46 279
tt080591.28 28390.18 29194.60 26996.26 28387.55 34898.39 33198.72 6689.00 29589.22 29598.47 21762.98 38798.96 19290.57 27788.00 29097.28 258
IterMVS90.91 29090.17 29293.12 32296.78 27490.42 31198.89 29097.05 32089.03 29386.49 33995.42 32276.59 32095.02 37487.22 31884.09 31993.93 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.85 29390.16 29392.93 32796.72 27689.96 31998.89 29096.99 32488.95 29986.63 33695.67 30876.48 32295.00 37587.04 32184.04 32293.84 336
V4291.28 28390.12 29494.74 26393.42 34793.46 23999.68 18297.02 32187.36 32689.85 27895.05 34081.31 27797.34 29187.34 31680.07 35493.40 350
v2v48291.30 28190.07 29595.01 25393.13 35093.79 22899.77 14997.02 32188.05 31789.25 29395.37 32780.73 28397.15 30387.28 31780.04 35594.09 315
v114491.09 28789.83 29694.87 25893.25 34993.69 23399.62 19396.98 32686.83 33689.64 28494.99 34580.94 28097.05 31185.08 33881.16 34093.87 334
GBi-Net90.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
test190.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
test_fmvs289.47 32289.70 29988.77 37094.54 32775.74 39899.83 13494.70 39494.71 11391.08 26096.82 27754.46 40197.78 27792.87 24488.27 28692.80 363
v14890.70 29589.63 30093.92 29992.97 35690.97 29499.75 15896.89 33787.51 32388.27 31595.01 34281.67 27097.04 31487.40 31577.17 37393.75 340
ACMH89.72 1790.64 29789.63 30093.66 31095.64 31088.64 33898.55 31997.45 27289.03 29381.62 37097.61 24769.75 36098.41 22889.37 29287.62 29593.92 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet291.02 28889.56 30295.41 24297.53 23295.74 16698.98 27997.41 27887.05 33088.43 31295.00 34471.34 35396.24 35285.12 33785.21 31094.25 297
ACMH+89.98 1690.35 30489.54 30392.78 33195.99 29086.12 35998.81 30197.18 30289.38 28883.14 36397.76 24668.42 36698.43 22689.11 29586.05 30393.78 339
v14419290.79 29489.52 30494.59 27093.11 35392.77 25299.56 20496.99 32486.38 34089.82 27994.95 34780.50 28897.10 30883.98 34480.41 35093.90 331
PS-CasMVS90.63 29889.51 30593.99 29793.83 33991.70 28498.98 27998.52 10788.48 31186.15 34596.53 28575.46 33196.31 34988.83 29778.86 36093.95 327
Baseline_NR-MVSNet90.33 30589.51 30592.81 33092.84 35989.95 32099.77 14993.94 40184.69 36189.04 30095.66 30981.66 27196.52 33990.99 26876.98 37491.97 374
our_test_390.39 30289.48 30793.12 32292.40 36689.57 32599.33 23896.35 36287.84 32185.30 35094.99 34584.14 25496.09 35880.38 36584.56 31593.71 345
OurMVSNet-221017-089.81 31789.48 30790.83 35091.64 37681.21 38898.17 34295.38 38291.48 24285.65 34997.31 25572.66 34797.29 29888.15 30684.83 31393.97 326
v119290.62 29989.25 30994.72 26593.13 35093.07 24699.50 21497.02 32186.33 34189.56 28795.01 34279.22 29897.09 31082.34 35681.16 34094.01 321
v890.54 30089.17 31094.66 26693.43 34693.40 24299.20 25496.94 33385.76 34787.56 32494.51 35781.96 26897.19 30184.94 33978.25 36293.38 352
v192192090.46 30189.12 31194.50 27692.96 35792.46 26399.49 21696.98 32686.10 34389.61 28695.30 33078.55 30797.03 31682.17 35780.89 34894.01 321
pmmvs590.17 31189.09 31293.40 31492.10 37189.77 32399.74 16195.58 37885.88 34687.24 33195.74 30573.41 34696.48 34188.54 30183.56 32493.95 327
PEN-MVS90.19 31089.06 31393.57 31193.06 35490.90 29899.06 26898.47 11988.11 31685.91 34796.30 29076.67 31895.94 36387.07 32076.91 37593.89 332
LTVRE_ROB88.28 1890.29 30789.05 31494.02 29495.08 31890.15 31697.19 36197.43 27484.91 35983.99 35997.06 26474.00 34498.28 24784.08 34287.71 29393.62 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC90.00 31488.96 31593.10 32494.81 32288.16 34498.71 30995.54 37993.66 16383.75 36197.20 25865.58 37798.31 24383.96 34587.49 29792.85 362
LF4IMVS89.25 32688.85 31690.45 35592.81 36281.19 38998.12 34394.79 39191.44 24486.29 34397.11 26065.30 38098.11 25888.53 30285.25 30992.07 371
v1090.25 30888.82 31794.57 27293.53 34493.43 24099.08 26396.87 33985.00 35687.34 33094.51 35780.93 28197.02 31882.85 35279.23 35793.26 354
v124090.20 30988.79 31894.44 28093.05 35592.27 26799.38 23296.92 33585.89 34589.36 29094.87 34977.89 31097.03 31680.66 36481.08 34394.01 321
PatchT90.38 30388.75 31995.25 24895.99 29090.16 31591.22 40697.54 26376.80 39397.26 16686.01 40691.88 15696.07 35966.16 40595.91 21299.51 160
MIMVSNet90.30 30688.67 32095.17 25096.45 28091.64 28692.39 40097.15 30685.99 34490.50 26693.19 37566.95 37294.86 37982.01 35893.43 25099.01 214
UniMVSNet_ETH3D90.06 31388.58 32194.49 27794.67 32588.09 34597.81 35397.57 26083.91 36688.44 31097.41 25257.44 39897.62 28291.41 26088.59 28297.77 250
Patchmtry89.70 31988.49 32293.33 31696.24 28489.94 32291.37 40596.23 36378.22 39187.69 32193.31 37391.04 16996.03 36080.18 36882.10 33294.02 319
Anonymous2023121189.86 31688.44 32394.13 29098.93 12790.68 30398.54 32198.26 18676.28 39486.73 33495.54 31470.60 35897.56 28490.82 27380.27 35394.15 309
ppachtmachnet_test89.58 32188.35 32493.25 32092.40 36690.44 31099.33 23896.73 34885.49 35285.90 34895.77 30481.09 27996.00 36276.00 38782.49 32993.30 353
v7n89.65 32088.29 32593.72 30592.22 36890.56 30799.07 26797.10 31185.42 35486.73 33494.72 35080.06 29197.13 30581.14 36278.12 36493.49 348
DTE-MVSNet89.40 32388.24 32692.88 32892.66 36389.95 32099.10 26098.22 19287.29 32785.12 35296.22 29276.27 32595.30 37383.56 34875.74 38093.41 349
DSMNet-mixed88.28 33288.24 32688.42 37289.64 39375.38 40098.06 34689.86 41585.59 35188.20 31692.14 38376.15 32791.95 40178.46 37696.05 20697.92 246
testgi89.01 32788.04 32891.90 33993.49 34584.89 36799.73 16895.66 37693.89 15885.14 35198.17 22959.68 39594.66 38177.73 37988.88 27496.16 270
SixPastTwentyTwo88.73 32888.01 32990.88 34791.85 37482.24 38198.22 34095.18 38788.97 29782.26 36696.89 27071.75 35196.67 33584.00 34382.98 32593.72 344
pm-mvs189.36 32487.81 33094.01 29593.40 34891.93 27498.62 31796.48 35986.25 34283.86 36096.14 29573.68 34597.04 31486.16 33075.73 38193.04 359
mmtdpeth88.52 32987.75 33190.85 34995.71 30583.47 37598.94 28494.85 38988.78 30497.19 16889.58 39263.29 38598.97 19098.54 10162.86 40890.10 391
tfpnnormal89.29 32587.61 33294.34 28594.35 33194.13 22198.95 28398.94 4183.94 36484.47 35695.51 31774.84 33897.39 28877.05 38380.41 35091.48 378
FMVSNet588.32 33187.47 33390.88 34796.90 26688.39 34297.28 35995.68 37582.60 37784.67 35592.40 38179.83 29391.16 40376.39 38581.51 33793.09 357
RPMNet89.76 31887.28 33497.19 19296.29 28192.66 25892.01 40298.31 17870.19 40896.94 17485.87 40787.25 22299.78 12862.69 40995.96 20899.13 204
K. test v388.05 33487.24 33590.47 35491.82 37582.23 38298.96 28297.42 27689.05 29276.93 39195.60 31168.49 36595.42 36985.87 33481.01 34693.75 340
ttmdpeth88.23 33387.06 33691.75 34289.91 39287.35 35198.92 28995.73 37387.92 31984.02 35896.31 28968.23 36896.84 32686.33 32876.12 37891.06 380
FMVSNet188.50 33086.64 33794.08 29195.62 31291.97 27198.43 32796.95 32983.00 37386.08 34694.72 35059.09 39696.11 35581.82 36084.07 32094.17 303
TinyColmap87.87 33786.51 33891.94 33895.05 31985.57 36297.65 35494.08 39884.40 36381.82 36996.85 27362.14 39098.33 24180.25 36786.37 30291.91 375
KD-MVS_2432*160088.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
miper_refine_blended88.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
dmvs_testset83.79 35986.07 34176.94 38992.14 36948.60 42496.75 37190.27 41489.48 28778.65 38398.55 21179.25 29786.65 41266.85 40382.69 32795.57 272
test_vis1_rt86.87 34086.05 34289.34 36396.12 28578.07 39799.87 10883.54 42292.03 22678.21 38689.51 39345.80 40899.91 9296.25 17693.11 25590.03 392
Patchmatch-RL test86.90 33985.98 34389.67 36184.45 40475.59 39989.71 41092.43 40886.89 33577.83 38890.94 38794.22 9093.63 39087.75 31169.61 39199.79 100
Anonymous2023120686.32 34185.42 34489.02 36689.11 39580.53 39499.05 27295.28 38385.43 35382.82 36493.92 36674.40 34193.44 39266.99 40281.83 33593.08 358
TransMVSNet (Re)87.25 33885.28 34593.16 32193.56 34391.03 29398.54 32194.05 40083.69 36881.09 37396.16 29475.32 33296.40 34476.69 38468.41 39692.06 372
CMPMVSbinary61.59 2184.75 35385.14 34683.57 38290.32 38862.54 41096.98 36797.59 25974.33 40269.95 40396.66 27864.17 38298.32 24287.88 31088.41 28589.84 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 35483.99 34786.91 37688.19 39880.62 39398.88 29295.94 36988.36 31378.87 38194.62 35568.75 36389.11 40766.52 40475.82 37991.00 381
UnsupCasMVSNet_eth85.52 34583.99 34790.10 35889.36 39483.51 37496.65 37297.99 21789.14 29075.89 39593.83 36763.25 38693.92 38681.92 35967.90 39992.88 361
test_040285.58 34483.94 34990.50 35393.81 34085.04 36598.55 31995.20 38676.01 39579.72 38095.13 33764.15 38396.26 35166.04 40686.88 29990.21 389
pmmvs685.69 34383.84 35091.26 34690.00 39184.41 37097.82 35296.15 36675.86 39681.29 37295.39 32561.21 39396.87 32583.52 34973.29 38492.50 367
Anonymous2024052185.15 34983.81 35189.16 36588.32 39682.69 37798.80 30395.74 37279.72 38781.53 37190.99 38665.38 37994.16 38472.69 39281.11 34290.63 386
EG-PatchMatch MVS85.35 34883.81 35189.99 36090.39 38781.89 38498.21 34196.09 36781.78 38074.73 39793.72 36951.56 40697.12 30779.16 37388.61 28090.96 382
YYNet185.50 34783.33 35392.00 33790.89 38488.38 34399.22 25396.55 35679.60 38957.26 41392.72 37679.09 30293.78 38977.25 38177.37 37193.84 336
MDA-MVSNet_test_wron85.51 34683.32 35492.10 33690.96 38388.58 33999.20 25496.52 35779.70 38857.12 41492.69 37779.11 30093.86 38877.10 38277.46 37093.86 335
MVS-HIRNet86.22 34283.19 35595.31 24696.71 27790.29 31292.12 40197.33 28762.85 40986.82 33370.37 41469.37 36197.49 28675.12 38897.99 16898.15 241
CL-MVSNet_self_test84.50 35583.15 35688.53 37186.00 40181.79 38598.82 30097.35 28385.12 35583.62 36290.91 38876.66 31991.40 40269.53 39860.36 41192.40 369
new_pmnet84.49 35682.92 35789.21 36490.03 39082.60 37896.89 37095.62 37780.59 38475.77 39689.17 39465.04 38194.79 38072.12 39481.02 34590.23 388
mvs5depth84.87 35182.90 35890.77 35185.59 40384.84 36891.10 40793.29 40683.14 37185.07 35394.33 36362.17 38997.32 29378.83 37572.59 38790.14 390
MVStest185.03 35082.76 35991.83 34092.95 35889.16 33198.57 31894.82 39071.68 40668.54 40695.11 33983.17 26295.66 36674.69 38965.32 40390.65 385
TDRefinement84.76 35282.56 36091.38 34574.58 41884.80 36997.36 35894.56 39584.73 36080.21 37796.12 29863.56 38498.39 23287.92 30963.97 40690.95 383
KD-MVS_self_test83.59 36182.06 36188.20 37386.93 39980.70 39297.21 36096.38 36082.87 37482.49 36588.97 39567.63 37092.32 39973.75 39162.30 41091.58 377
pmmvs-eth3d84.03 35881.97 36290.20 35784.15 40587.09 35398.10 34594.73 39383.05 37274.10 39987.77 40165.56 37894.01 38581.08 36369.24 39389.49 398
OpenMVS_ROBcopyleft79.82 2083.77 36081.68 36390.03 35988.30 39782.82 37698.46 32495.22 38573.92 40376.00 39491.29 38555.00 40096.94 32068.40 40088.51 28490.34 387
MDA-MVSNet-bldmvs84.09 35781.52 36491.81 34191.32 38188.00 34798.67 31495.92 37080.22 38655.60 41593.32 37268.29 36793.60 39173.76 39076.61 37793.82 338
mvsany_test382.12 36381.14 36585.06 38081.87 40970.41 40497.09 36492.14 40991.27 25177.84 38788.73 39639.31 41195.49 36790.75 27571.24 38889.29 400
APD_test181.15 36580.92 36681.86 38592.45 36559.76 41496.04 38493.61 40473.29 40477.06 38996.64 28044.28 41096.16 35472.35 39382.52 32889.67 396
N_pmnet80.06 36980.78 36777.89 38891.94 37245.28 42698.80 30356.82 42878.10 39280.08 37893.33 37177.03 31395.76 36568.14 40182.81 32692.64 364
MIMVSNet182.58 36280.51 36888.78 36886.68 40084.20 37196.65 37295.41 38178.75 39078.59 38492.44 37851.88 40589.76 40665.26 40778.95 35892.38 370
test_fmvs379.99 37080.17 36979.45 38784.02 40662.83 40899.05 27293.49 40588.29 31580.06 37986.65 40428.09 41688.00 40888.63 29873.27 38587.54 404
test_method80.79 36679.70 37084.08 38192.83 36067.06 40799.51 21295.42 38054.34 41381.07 37493.53 37044.48 40992.22 40078.90 37477.23 37292.94 360
new-patchmatchnet81.19 36479.34 37186.76 37782.86 40880.36 39597.92 34995.27 38482.09 37972.02 40086.87 40362.81 38890.74 40571.10 39563.08 40789.19 401
PM-MVS80.47 36778.88 37285.26 37983.79 40772.22 40295.89 38791.08 41285.71 35076.56 39388.30 39736.64 41293.90 38782.39 35569.57 39289.66 397
pmmvs380.27 36877.77 37387.76 37580.32 41382.43 38098.23 33991.97 41072.74 40578.75 38287.97 40057.30 39990.99 40470.31 39662.37 40989.87 393
test_f78.40 37277.59 37480.81 38680.82 41162.48 41196.96 36893.08 40783.44 36974.57 39884.57 40827.95 41792.63 39784.15 34172.79 38687.32 405
WB-MVS76.28 37377.28 37573.29 39381.18 41054.68 41897.87 35194.19 39781.30 38169.43 40490.70 38977.02 31482.06 41635.71 42168.11 39883.13 407
UnsupCasMVSNet_bld79.97 37177.03 37688.78 36885.62 40281.98 38393.66 39697.35 28375.51 39970.79 40283.05 40948.70 40794.91 37878.31 37760.29 41289.46 399
SSC-MVS75.42 37476.40 37772.49 39780.68 41253.62 41997.42 35694.06 39980.42 38568.75 40590.14 39176.54 32181.66 41733.25 42266.34 40282.19 408
FPMVS68.72 37768.72 37868.71 39965.95 42244.27 42895.97 38694.74 39251.13 41453.26 41690.50 39025.11 41983.00 41560.80 41080.97 34778.87 412
testf168.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
APD_test268.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
test_vis3_rt68.82 37666.69 38175.21 39276.24 41760.41 41396.44 37568.71 42775.13 40050.54 41869.52 41616.42 42696.32 34880.27 36666.92 40168.89 414
Gipumacopyleft66.95 38265.00 38272.79 39491.52 37867.96 40666.16 41795.15 38847.89 41558.54 41267.99 41729.74 41487.54 41150.20 41677.83 36662.87 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 38064.73 38376.87 39062.95 42456.25 41789.37 41193.74 40344.53 41661.99 40880.74 41020.42 42386.53 41369.37 39959.50 41387.84 402
PMMVS267.15 38164.15 38476.14 39170.56 42162.07 41293.89 39487.52 41958.09 41060.02 40978.32 41122.38 42084.54 41459.56 41147.03 41681.80 409
EGC-MVSNET69.38 37563.76 38586.26 37890.32 38881.66 38796.24 38093.85 4020.99 4253.22 42692.33 38252.44 40392.92 39659.53 41284.90 31284.21 406
tmp_tt65.23 38362.94 38672.13 39844.90 42750.03 42381.05 41489.42 41838.45 41748.51 41999.90 1854.09 40278.70 41991.84 25718.26 42187.64 403
ANet_high56.10 38452.24 38767.66 40049.27 42656.82 41683.94 41382.02 42370.47 40733.28 42364.54 41817.23 42569.16 42145.59 41823.85 42077.02 413
E-PMN52.30 38652.18 38852.67 40371.51 41945.40 42593.62 39776.60 42536.01 41943.50 42064.13 41927.11 41867.31 42231.06 42326.06 41845.30 421
PMVScopyleft49.05 2353.75 38551.34 38960.97 40240.80 42834.68 42974.82 41689.62 41737.55 41828.67 42472.12 4137.09 42881.63 41843.17 41968.21 39766.59 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS51.44 38851.22 39052.11 40470.71 42044.97 42794.04 39375.66 42635.34 42142.40 42161.56 42228.93 41565.87 42327.64 42424.73 41945.49 420
MVEpermissive53.74 2251.54 38747.86 39162.60 40159.56 42550.93 42079.41 41577.69 42435.69 42036.27 42261.76 4215.79 43069.63 42037.97 42036.61 41767.24 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs40.60 38944.45 39229.05 40619.49 43014.11 43299.68 18218.47 42920.74 42264.59 40798.48 21610.95 42717.09 42656.66 41511.01 42255.94 419
test12337.68 39039.14 39333.31 40519.94 42924.83 43198.36 3329.75 43015.53 42351.31 41787.14 40219.62 42417.74 42547.10 4173.47 42457.36 418
cdsmvs_eth3d_5k23.43 39131.24 3940.00 4080.00 4310.00 4330.00 41998.09 2090.00 4260.00 42799.67 9783.37 2590.00 4270.00 4260.00 4250.00 423
wuyk23d20.37 39220.84 39518.99 40765.34 42327.73 43050.43 4187.67 4319.50 4248.01 4256.34 4256.13 42926.24 42423.40 42510.69 4232.99 422
ab-mvs-re8.28 39311.04 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.40 1280.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.60 39410.13 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42791.20 1640.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.02 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.97 29486.10 332
FOURS199.92 3197.66 8999.95 5498.36 16795.58 8999.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 10
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.92 3198.57 5698.52 10792.34 21799.31 7899.83 4695.06 5799.80 12499.70 3799.97 42
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 27100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 135100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 19
GSMVS99.59 137
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6999.59 137
sam_mvs94.25 89
ambc83.23 38377.17 41662.61 40987.38 41294.55 39676.72 39286.65 40430.16 41396.36 34684.85 34069.86 39090.73 384
MTGPAbinary98.28 183
test_post195.78 38859.23 42393.20 12297.74 27891.06 266
test_post63.35 42094.43 7798.13 257
patchmatchnet-post91.70 38495.12 5497.95 269
GG-mvs-BLEND98.54 11298.21 18498.01 7293.87 39598.52 10797.92 14697.92 24099.02 397.94 27198.17 11999.58 10299.67 118
MTMP99.87 10896.49 358
gm-plane-assit96.97 26093.76 23091.47 24398.96 16898.79 20094.92 197
test9_res99.71 3699.99 21100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15699.71 3599.86 2995.88 4199.85 111
test_899.92 3198.88 3299.96 3598.43 13594.35 13099.69 3799.85 3395.94 3899.85 111
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
TestCases95.00 25499.01 11888.43 34096.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
test_prior498.05 7099.94 71
test_prior299.95 5495.78 8399.73 3399.76 6696.00 3799.78 27100.00 1
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22394.21 13999.85 999.95 7396.96 166
新几何299.40 227
新几何199.42 3799.75 6998.27 6498.63 8192.69 19899.55 5599.82 4994.40 79100.00 191.21 26299.94 5599.99 23
旧先验199.76 6697.52 9398.64 7799.85 3395.63 4599.94 5599.99 23
无先验99.49 21698.71 6793.46 167100.00 194.36 21299.99 23
原ACMM299.90 93
原ACMM198.96 8299.73 7396.99 11798.51 11094.06 14699.62 4799.85 3394.97 6399.96 6595.11 19199.95 5099.92 84
test22299.55 9097.41 10199.34 23798.55 9991.86 23099.27 8299.83 4693.84 10499.95 5099.99 23
testdata299.99 3690.54 279
segment_acmp96.68 29
testdata98.42 12299.47 9695.33 18598.56 9393.78 15999.79 2599.85 3393.64 10999.94 8194.97 19599.94 55100.00 1
testdata199.28 24796.35 73
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6799.75 13599.98 3299.99 23
plane_prior795.71 30591.59 288
plane_prior695.76 29991.72 28380.47 289
plane_prior597.87 23198.37 23897.79 14389.55 26794.52 276
plane_prior498.59 204
plane_prior391.64 28696.63 6093.01 239
plane_prior299.84 12796.38 69
plane_prior195.73 302
plane_prior91.74 28099.86 11996.76 5589.59 266
n20.00 432
nn0.00 432
door-mid89.69 416
lessismore_v090.53 35290.58 38680.90 39195.80 37177.01 39095.84 30266.15 37696.95 31983.03 35175.05 38293.74 343
LGP-MVS_train93.71 30695.43 31388.67 33697.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
test1198.44 127
door90.31 413
HQP5-MVS91.85 276
HQP-NCC95.78 29599.87 10896.82 5193.37 234
ACMP_Plane95.78 29599.87 10896.82 5193.37 234
BP-MVS97.92 134
HQP4-MVS93.37 23498.39 23294.53 274
HQP3-MVS97.89 22989.60 264
HQP2-MVS80.65 285
NP-MVS95.77 29891.79 27898.65 199
MDTV_nov1_ep13_2view96.26 14596.11 38291.89 22998.06 14294.40 7994.30 21599.67 118
ACMMP++_ref87.04 298
ACMMP++88.23 287
Test By Simon92.82 133
ITE_SJBPF92.38 33395.69 30885.14 36495.71 37492.81 19089.33 29298.11 23170.23 35998.42 22785.91 33388.16 28893.59 347
DeepMVS_CXcopyleft82.92 38495.98 29258.66 41596.01 36892.72 19578.34 38595.51 31758.29 39798.08 26082.57 35385.29 30892.03 373