| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 69 | 98.20 8 | 99.93 1 | 99.98 2 | 96.82 24 | 100.00 1 | 99.75 31 | 100.00 1 | 99.99 23 |
|
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 15 | 99.96 8 | 99.15 22 | 99.97 28 | 98.62 82 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 17 | 100.00 1 | 99.54 42 | 100.00 1 | 100.00 1 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 28 | 98.64 77 | 98.47 3 | 99.13 89 | 99.92 13 | 96.38 34 | 100.00 1 | 99.74 33 | 100.00 1 | 100.00 1 |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 54 | 98.32 176 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 19 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 87 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 35 | 98.43 135 | 97.27 34 | 99.80 17 | 99.94 4 | 96.71 27 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 54 | 98.43 135 | 96.48 63 | 99.80 17 | 99.93 11 | 97.44 14 | 100.00 1 | 99.92 13 | 99.98 32 | 100.00 1 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 108 | 98.44 127 | 97.48 27 | 99.64 43 | 99.94 4 | 96.68 29 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 40 | 99.80 17 | 99.94 4 | 95.92 40 | 100.00 1 | 99.51 43 | 100.00 1 | 100.00 1 |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 80 | 99.93 24 | 97.24 105 | 99.95 54 | 98.42 147 | 97.50 26 | 99.52 60 | 99.88 24 | 97.43 16 | 99.71 141 | 99.50 44 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 54 | 98.56 93 | 97.56 25 | 99.44 66 | 99.85 33 | 95.38 51 | 100.00 1 | 99.31 54 | 99.99 21 | 99.87 90 |
|
| MVS_0304 | | | 99.06 11 | 98.84 17 | 99.72 13 | 99.76 66 | 99.21 21 | 99.99 4 | 99.34 25 | 98.70 2 | 99.44 66 | 99.75 72 | 93.24 120 | 99.99 36 | 99.94 11 | 99.41 117 | 99.95 74 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 87 | 98.39 159 | 97.20 38 | 99.46 64 | 99.85 33 | 95.53 48 | 99.79 126 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SteuartSystems-ACMMP | | | 99.02 13 | 98.97 13 | 99.18 52 | 98.72 146 | 97.71 85 | 99.98 15 | 98.44 127 | 96.85 49 | 99.80 17 | 99.91 14 | 97.57 8 | 99.85 111 | 99.44 49 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CHOSEN 280x420 | | | 99.01 14 | 99.03 10 | 98.95 83 | 99.38 100 | 98.87 33 | 98.46 324 | 99.42 21 | 97.03 44 | 99.02 96 | 99.09 152 | 99.35 2 | 98.21 253 | 99.73 35 | 99.78 84 | 99.77 104 |
|
| fmvsm_l_conf0.5_n_a | | | 99.00 15 | 98.91 14 | 99.28 45 | 99.21 107 | 97.91 79 | 99.98 15 | 98.85 56 | 98.25 5 | 99.92 2 | 99.75 72 | 94.72 69 | 99.97 57 | 99.87 19 | 99.64 92 | 99.95 74 |
|
| fmvsm_l_conf0.5_n | | | 98.94 16 | 98.84 17 | 99.25 46 | 99.17 110 | 97.81 82 | 99.98 15 | 98.86 53 | 98.25 5 | 99.90 3 | 99.76 66 | 94.21 92 | 99.97 57 | 99.87 19 | 99.52 105 | 99.98 51 |
|
| TSAR-MVS + MP. | | | 98.93 17 | 98.77 19 | 99.41 38 | 99.74 70 | 98.67 49 | 99.77 149 | 98.38 163 | 96.73 56 | 99.88 6 | 99.74 79 | 94.89 64 | 99.59 152 | 99.80 25 | 99.98 32 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SD-MVS | | | 98.92 18 | 98.70 20 | 99.56 25 | 99.70 78 | 98.73 46 | 99.94 71 | 98.34 173 | 96.38 69 | 99.81 15 | 99.76 66 | 94.59 72 | 99.98 47 | 99.84 22 | 99.96 46 | 99.97 61 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MG-MVS | | | 98.91 19 | 98.65 24 | 99.68 16 | 99.94 13 | 99.07 24 | 99.64 190 | 99.44 19 | 97.33 31 | 99.00 97 | 99.72 84 | 94.03 97 | 99.98 47 | 98.73 90 | 100.00 1 | 100.00 1 |
|
| train_agg | | | 98.88 20 | 98.65 24 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 135 | 94.35 130 | 99.71 35 | 99.86 29 | 95.94 38 | 99.85 111 | 99.69 38 | 99.98 32 | 99.99 23 |
|
| MM | | | 98.83 21 | 98.53 30 | 99.76 10 | 99.59 85 | 99.33 8 | 99.99 4 | 99.76 6 | 98.39 4 | 99.39 74 | 99.80 54 | 90.49 182 | 99.96 65 | 99.89 17 | 99.43 115 | 99.98 51 |
|
| DPM-MVS | | | 98.83 21 | 98.46 33 | 99.97 1 | 99.33 102 | 99.92 1 | 99.96 35 | 98.44 127 | 97.96 14 | 99.55 55 | 99.94 4 | 97.18 21 | 100.00 1 | 93.81 226 | 99.94 55 | 99.98 51 |
|
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 29 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 251 | 98.47 119 | 98.14 10 | 99.08 92 | 99.91 14 | 93.09 124 | 100.00 1 | 99.04 67 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| reproduce-ours | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 103 | 99.74 161 | 98.25 187 | 97.10 40 | 99.10 90 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 28 | 99.91 67 | 99.99 23 |
|
| our_new_method | | | 98.78 24 | 98.67 21 | 99.09 68 | 99.70 78 | 97.30 103 | 99.74 161 | 98.25 187 | 97.10 40 | 99.10 90 | 99.90 18 | 94.59 72 | 99.99 36 | 99.77 28 | 99.91 67 | 99.99 23 |
|
| SMA-MVS |  | | 98.76 26 | 98.48 32 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 119 | 98.38 163 | 93.19 176 | 99.77 27 | 99.94 4 | 95.54 46 | 100.00 1 | 99.74 33 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| reproduce_model | | | 98.75 27 | 98.66 23 | 99.03 73 | 99.71 76 | 97.10 113 | 99.73 168 | 98.23 191 | 97.02 45 | 99.18 87 | 99.90 18 | 94.54 76 | 99.99 36 | 99.77 28 | 99.90 69 | 99.99 23 |
|
| MVS_111021_HR | | | 98.72 28 | 98.62 26 | 99.01 77 | 99.36 101 | 97.18 108 | 99.93 78 | 99.90 1 | 96.81 54 | 98.67 115 | 99.77 64 | 93.92 99 | 99.89 99 | 99.27 56 | 99.94 55 | 99.96 67 |
|
| XVS | | | 98.70 29 | 98.55 28 | 99.15 59 | 99.94 13 | 97.50 95 | 99.94 71 | 98.42 147 | 96.22 75 | 99.41 70 | 99.78 62 | 94.34 84 | 99.96 65 | 98.92 76 | 99.95 50 | 99.99 23 |
|
| SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 93 | 98.21 193 | 93.53 165 | 99.81 15 | 99.89 22 | 94.70 71 | 99.86 110 | 99.84 22 | 99.93 61 | 99.96 67 |
|
| CDPH-MVS | | | 98.65 31 | 98.36 41 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 108 | 98.33 174 | 93.97 150 | 99.76 28 | 99.87 27 | 94.99 62 | 99.75 135 | 98.55 100 | 100.00 1 | 99.98 51 |
|
| APD-MVS |  | | 98.62 32 | 98.35 42 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 108 | 98.36 167 | 94.08 143 | 99.74 31 | 99.73 81 | 94.08 95 | 99.74 137 | 99.42 50 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| TSAR-MVS + GP. | | | 98.60 33 | 98.51 31 | 98.86 87 | 99.73 73 | 96.63 129 | 99.97 28 | 97.92 227 | 98.07 11 | 98.76 111 | 99.55 113 | 95.00 61 | 99.94 81 | 99.91 16 | 97.68 172 | 99.99 23 |
|
| PAPM | | | 98.60 33 | 98.42 34 | 99.14 61 | 96.05 288 | 98.96 26 | 99.90 93 | 99.35 24 | 96.68 58 | 98.35 132 | 99.66 99 | 96.45 33 | 98.51 220 | 99.45 48 | 99.89 70 | 99.96 67 |
|
| HFP-MVS | | | 98.56 35 | 98.37 39 | 99.14 61 | 99.96 8 | 97.43 99 | 99.95 54 | 98.61 83 | 94.77 110 | 99.31 78 | 99.85 33 | 94.22 90 | 100.00 1 | 98.70 91 | 99.98 32 | 99.98 51 |
|
| region2R | | | 98.54 36 | 98.37 39 | 99.05 71 | 99.96 8 | 97.18 108 | 99.96 35 | 98.55 99 | 94.87 108 | 99.45 65 | 99.85 33 | 94.07 96 | 100.00 1 | 98.67 93 | 100.00 1 | 99.98 51 |
|
| DELS-MVS | | | 98.54 36 | 98.22 47 | 99.50 30 | 99.15 112 | 98.65 53 | 100.00 1 | 98.58 88 | 97.70 20 | 98.21 139 | 99.24 144 | 92.58 139 | 99.94 81 | 98.63 98 | 99.94 55 | 99.92 84 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PAPR | | | 98.52 38 | 98.16 53 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 54 | 98.43 135 | 95.35 95 | 98.03 143 | 99.75 72 | 94.03 97 | 99.98 47 | 98.11 123 | 99.83 77 | 99.99 23 |
|
| ACMMPR | | | 98.50 39 | 98.32 43 | 99.05 71 | 99.96 8 | 97.18 108 | 99.95 54 | 98.60 85 | 94.77 110 | 99.31 78 | 99.84 44 | 93.73 106 | 100.00 1 | 98.70 91 | 99.98 32 | 99.98 51 |
|
| ACMMP_NAP | | | 98.49 40 | 98.14 54 | 99.54 27 | 99.66 82 | 98.62 55 | 99.85 122 | 98.37 166 | 94.68 115 | 99.53 58 | 99.83 46 | 92.87 130 | 100.00 1 | 98.66 95 | 99.84 76 | 99.99 23 |
|
| EPNet | | | 98.49 40 | 98.40 35 | 98.77 92 | 99.62 84 | 96.80 125 | 99.90 93 | 99.51 16 | 97.60 22 | 99.20 84 | 99.36 133 | 93.71 107 | 99.91 92 | 97.99 130 | 98.71 145 | 99.61 134 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| SR-MVS | | | 98.46 42 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 115 | 99.84 127 | 98.35 169 | 94.92 105 | 99.32 77 | 99.80 54 | 93.35 113 | 99.78 128 | 99.30 55 | 99.95 50 | 99.96 67 |
|
| CP-MVS | | | 98.45 43 | 98.32 43 | 98.87 86 | 99.96 8 | 96.62 130 | 99.97 28 | 98.39 159 | 94.43 125 | 98.90 101 | 99.87 27 | 94.30 87 | 100.00 1 | 99.04 67 | 99.99 21 | 99.99 23 |
|
| test_fmvsm_n_1920 | | | 98.44 44 | 98.61 27 | 97.92 150 | 99.27 106 | 95.18 193 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 17 | 99.73 81 | 92.64 136 | 99.99 36 | 99.58 41 | 99.51 108 | 98.59 233 |
|
| PS-MVSNAJ | | | 98.44 44 | 98.20 49 | 99.16 57 | 98.80 142 | 98.92 29 | 99.54 208 | 98.17 198 | 97.34 29 | 99.85 9 | 99.85 33 | 91.20 164 | 99.89 99 | 99.41 51 | 99.67 90 | 98.69 230 |
|
| test_fmvsmconf_n | | | 98.43 46 | 98.32 43 | 98.78 90 | 98.12 193 | 96.41 138 | 99.99 4 | 98.83 60 | 98.22 7 | 99.67 39 | 99.64 102 | 91.11 168 | 99.94 81 | 99.67 39 | 99.62 95 | 99.98 51 |
|
| MVS_111021_LR | | | 98.42 47 | 98.38 37 | 98.53 114 | 99.39 99 | 95.79 163 | 99.87 108 | 99.86 2 | 96.70 57 | 98.78 107 | 99.79 58 | 92.03 154 | 99.90 94 | 99.17 60 | 99.86 75 | 99.88 88 |
|
| DP-MVS Recon | | | 98.41 48 | 98.02 61 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 81 | 98.44 127 | 92.06 225 | 98.40 130 | 99.84 44 | 95.68 44 | 100.00 1 | 98.19 118 | 99.71 88 | 99.97 61 |
|
| PHI-MVS | | | 98.41 48 | 98.21 48 | 99.03 73 | 99.86 53 | 97.10 113 | 99.98 15 | 98.80 63 | 90.78 266 | 99.62 47 | 99.78 62 | 95.30 52 | 100.00 1 | 99.80 25 | 99.93 61 | 99.99 23 |
|
| mPP-MVS | | | 98.39 50 | 98.20 49 | 98.97 81 | 99.97 3 | 96.92 120 | 99.95 54 | 98.38 163 | 95.04 101 | 98.61 119 | 99.80 54 | 93.39 111 | 100.00 1 | 98.64 96 | 100.00 1 | 99.98 51 |
|
| PGM-MVS | | | 98.34 51 | 98.13 55 | 98.99 78 | 99.92 31 | 97.00 116 | 99.75 158 | 99.50 17 | 93.90 156 | 99.37 75 | 99.76 66 | 93.24 120 | 100.00 1 | 97.75 147 | 99.96 46 | 99.98 51 |
|
| BP-MVS1 | | | 98.33 52 | 98.18 51 | 98.81 89 | 97.44 237 | 97.98 74 | 99.96 35 | 98.17 198 | 94.88 107 | 98.77 108 | 99.59 107 | 97.59 7 | 99.08 186 | 98.24 116 | 98.93 137 | 99.36 179 |
|
| SR-MVS-dyc-post | | | 98.31 53 | 98.17 52 | 98.71 95 | 99.79 62 | 96.37 142 | 99.76 154 | 98.31 178 | 94.43 125 | 99.40 72 | 99.75 72 | 93.28 118 | 99.78 128 | 98.90 79 | 99.92 64 | 99.97 61 |
|
| ZNCC-MVS | | | 98.31 53 | 98.03 60 | 99.17 55 | 99.88 49 | 97.59 90 | 99.94 71 | 98.44 127 | 94.31 133 | 98.50 124 | 99.82 49 | 93.06 125 | 99.99 36 | 98.30 115 | 99.99 21 | 99.93 79 |
|
| MTAPA | | | 98.29 55 | 97.96 67 | 99.30 44 | 99.85 54 | 97.93 78 | 99.39 231 | 98.28 183 | 95.76 84 | 97.18 169 | 99.88 24 | 92.74 134 | 100.00 1 | 98.67 93 | 99.88 73 | 99.99 23 |
|
| balanced_conf03 | | | 98.27 56 | 97.99 62 | 99.11 66 | 98.64 153 | 98.43 62 | 99.47 219 | 97.79 238 | 94.56 118 | 99.74 31 | 98.35 222 | 94.33 86 | 99.25 171 | 99.12 61 | 99.96 46 | 99.64 124 |
|
| GST-MVS | | | 98.27 56 | 97.97 64 | 99.17 55 | 99.92 31 | 97.57 91 | 99.93 78 | 98.39 159 | 94.04 148 | 98.80 106 | 99.74 79 | 92.98 127 | 100.00 1 | 98.16 120 | 99.76 85 | 99.93 79 |
|
| CANet | | | 98.27 56 | 97.82 74 | 99.63 17 | 99.72 75 | 99.10 23 | 99.98 15 | 98.51 110 | 97.00 46 | 98.52 121 | 99.71 86 | 87.80 214 | 99.95 73 | 99.75 31 | 99.38 118 | 99.83 94 |
|
| EI-MVSNet-Vis-set | | | 98.27 56 | 98.11 57 | 98.75 93 | 99.83 57 | 96.59 133 | 99.40 227 | 98.51 110 | 95.29 97 | 98.51 123 | 99.76 66 | 93.60 110 | 99.71 141 | 98.53 103 | 99.52 105 | 99.95 74 |
|
| APD-MVS_3200maxsize | | | 98.25 60 | 98.08 59 | 98.78 90 | 99.81 60 | 96.60 131 | 99.82 137 | 98.30 181 | 93.95 152 | 99.37 75 | 99.77 64 | 92.84 131 | 99.76 134 | 98.95 73 | 99.92 64 | 99.97 61 |
|
| patch_mono-2 | | | 98.24 61 | 99.12 5 | 95.59 236 | 99.67 81 | 86.91 356 | 99.95 54 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 66 | 96.54 32 | 99.98 47 | 99.94 11 | 99.82 81 | 99.88 88 |
|
| xiu_mvs_v2_base | | | 98.23 62 | 97.97 64 | 99.02 76 | 98.69 147 | 98.66 51 | 99.52 210 | 98.08 211 | 97.05 43 | 99.86 7 | 99.86 29 | 90.65 177 | 99.71 141 | 99.39 53 | 98.63 146 | 98.69 230 |
|
| MP-MVS |  | | 98.23 62 | 97.97 64 | 99.03 73 | 99.94 13 | 97.17 111 | 99.95 54 | 98.39 159 | 94.70 114 | 98.26 137 | 99.81 53 | 91.84 158 | 100.00 1 | 98.85 82 | 99.97 42 | 99.93 79 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| EI-MVSNet-UG-set | | | 98.14 64 | 97.99 62 | 98.60 104 | 99.80 61 | 96.27 144 | 99.36 236 | 98.50 116 | 95.21 99 | 98.30 134 | 99.75 72 | 93.29 117 | 99.73 140 | 98.37 111 | 99.30 122 | 99.81 97 |
|
| PAPM_NR | | | 98.12 65 | 97.93 69 | 98.70 96 | 99.94 13 | 96.13 154 | 99.82 137 | 98.43 135 | 94.56 118 | 97.52 157 | 99.70 88 | 94.40 79 | 99.98 47 | 97.00 162 | 99.98 32 | 99.99 23 |
|
| WTY-MVS | | | 98.10 66 | 97.60 82 | 99.60 22 | 98.92 130 | 99.28 17 | 99.89 102 | 99.52 14 | 95.58 89 | 98.24 138 | 99.39 130 | 93.33 114 | 99.74 137 | 97.98 132 | 95.58 220 | 99.78 103 |
|
| MP-MVS-pluss | | | 98.07 67 | 97.64 80 | 99.38 42 | 99.74 70 | 98.41 63 | 99.74 161 | 98.18 197 | 93.35 170 | 96.45 188 | 99.85 33 | 92.64 136 | 99.97 57 | 98.91 78 | 99.89 70 | 99.77 104 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HPM-MVS |  | | 97.96 68 | 97.72 76 | 98.68 97 | 99.84 56 | 96.39 141 | 99.90 93 | 98.17 198 | 92.61 203 | 98.62 118 | 99.57 112 | 91.87 157 | 99.67 148 | 98.87 81 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| PVSNet_Blended | | | 97.94 69 | 97.64 80 | 98.83 88 | 99.59 85 | 96.99 117 | 100.00 1 | 99.10 31 | 95.38 94 | 98.27 135 | 99.08 153 | 89.00 204 | 99.95 73 | 99.12 61 | 99.25 124 | 99.57 145 |
|
| PLC |  | 95.54 3 | 97.93 70 | 97.89 72 | 98.05 143 | 99.82 58 | 94.77 205 | 99.92 81 | 98.46 121 | 93.93 153 | 97.20 167 | 99.27 139 | 95.44 50 | 99.97 57 | 97.41 152 | 99.51 108 | 99.41 173 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ETV-MVS | | | 97.92 71 | 97.80 75 | 98.25 131 | 98.14 191 | 96.48 135 | 99.98 15 | 97.63 249 | 95.61 88 | 99.29 81 | 99.46 121 | 92.55 140 | 98.82 198 | 99.02 71 | 98.54 148 | 99.46 166 |
|
| GDP-MVS | | | 97.88 72 | 97.59 84 | 98.75 93 | 97.59 229 | 97.81 82 | 99.95 54 | 97.37 282 | 94.44 124 | 99.08 92 | 99.58 110 | 97.13 23 | 99.08 186 | 94.99 194 | 98.17 159 | 99.37 177 |
|
| SPE-MVS-test | | | 97.88 72 | 97.94 68 | 97.70 165 | 99.28 105 | 95.20 192 | 99.98 15 | 97.15 306 | 95.53 91 | 99.62 47 | 99.79 58 | 92.08 153 | 98.38 236 | 98.75 89 | 99.28 123 | 99.52 157 |
|
| API-MVS | | | 97.86 74 | 97.66 79 | 98.47 117 | 99.52 92 | 95.41 182 | 99.47 219 | 98.87 52 | 91.68 236 | 98.84 103 | 99.85 33 | 92.34 147 | 99.99 36 | 98.44 107 | 99.96 46 | 100.00 1 |
|
| lupinMVS | | | 97.85 75 | 97.60 82 | 98.62 102 | 97.28 250 | 97.70 87 | 99.99 4 | 97.55 261 | 95.50 93 | 99.43 68 | 99.67 97 | 90.92 172 | 98.71 209 | 98.40 108 | 99.62 95 | 99.45 168 |
|
| UBG | | | 97.84 76 | 97.69 78 | 98.29 129 | 98.38 169 | 96.59 133 | 99.90 93 | 98.53 105 | 93.91 155 | 98.52 121 | 98.42 220 | 96.77 25 | 99.17 180 | 98.54 101 | 96.20 202 | 99.11 206 |
|
| MVSMamba_PlusPlus | | | 97.83 77 | 97.45 88 | 98.99 78 | 98.60 155 | 98.15 65 | 99.58 199 | 97.74 241 | 90.34 275 | 99.26 83 | 98.32 225 | 94.29 88 | 99.23 172 | 99.03 70 | 99.89 70 | 99.58 143 |
|
| test_yl | | | 97.83 77 | 97.37 92 | 99.21 49 | 99.18 108 | 97.98 74 | 99.64 190 | 99.27 27 | 91.43 245 | 97.88 149 | 98.99 162 | 95.84 42 | 99.84 119 | 98.82 83 | 95.32 226 | 99.79 100 |
|
| DCV-MVSNet | | | 97.83 77 | 97.37 92 | 99.21 49 | 99.18 108 | 97.98 74 | 99.64 190 | 99.27 27 | 91.43 245 | 97.88 149 | 98.99 162 | 95.84 42 | 99.84 119 | 98.82 83 | 95.32 226 | 99.79 100 |
|
| mvsany_test1 | | | 97.82 80 | 97.90 71 | 97.55 173 | 98.77 144 | 93.04 249 | 99.80 143 | 97.93 224 | 96.95 48 | 99.61 53 | 99.68 96 | 90.92 172 | 99.83 121 | 99.18 59 | 98.29 157 | 99.80 99 |
|
| alignmvs | | | 97.81 81 | 97.33 94 | 99.25 46 | 98.77 144 | 98.66 51 | 99.99 4 | 98.44 127 | 94.40 129 | 98.41 128 | 99.47 119 | 93.65 108 | 99.42 167 | 98.57 99 | 94.26 240 | 99.67 118 |
|
| fmvsm_s_conf0.5_n | | | 97.80 82 | 97.85 73 | 97.67 166 | 99.06 115 | 94.41 211 | 99.98 15 | 98.97 40 | 97.34 29 | 99.63 44 | 99.69 90 | 87.27 221 | 99.97 57 | 99.62 40 | 99.06 133 | 98.62 232 |
|
| HPM-MVS_fast | | | 97.80 82 | 97.50 86 | 98.68 97 | 99.79 62 | 96.42 137 | 99.88 105 | 98.16 203 | 91.75 235 | 98.94 99 | 99.54 115 | 91.82 159 | 99.65 150 | 97.62 150 | 99.99 21 | 99.99 23 |
|
| CS-MVS | | | 97.79 84 | 97.91 70 | 97.43 181 | 99.10 113 | 94.42 210 | 99.99 4 | 97.10 311 | 95.07 100 | 99.68 38 | 99.75 72 | 92.95 128 | 98.34 240 | 98.38 109 | 99.14 129 | 99.54 151 |
|
| HY-MVS | | 92.50 7 | 97.79 84 | 97.17 102 | 99.63 17 | 98.98 122 | 99.32 9 | 97.49 355 | 99.52 14 | 95.69 86 | 98.32 133 | 97.41 252 | 93.32 115 | 99.77 131 | 98.08 126 | 95.75 217 | 99.81 97 |
|
| CNLPA | | | 97.76 86 | 97.38 91 | 98.92 85 | 99.53 91 | 96.84 122 | 99.87 108 | 98.14 207 | 93.78 159 | 96.55 186 | 99.69 90 | 92.28 148 | 99.98 47 | 97.13 158 | 99.44 114 | 99.93 79 |
|
| test_fmvsmconf0.1_n | | | 97.74 87 | 97.44 89 | 98.64 101 | 95.76 299 | 96.20 150 | 99.94 71 | 98.05 214 | 98.17 9 | 98.89 102 | 99.42 123 | 87.65 216 | 99.90 94 | 99.50 44 | 99.60 101 | 99.82 95 |
|
| ACMMP |  | | 97.74 87 | 97.44 89 | 98.66 99 | 99.92 31 | 96.13 154 | 99.18 256 | 99.45 18 | 94.84 109 | 96.41 191 | 99.71 86 | 91.40 161 | 99.99 36 | 97.99 130 | 98.03 167 | 99.87 90 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_s_conf0.5_n_a | | | 97.73 89 | 97.72 76 | 97.77 160 | 98.63 154 | 94.26 217 | 99.96 35 | 98.92 46 | 97.18 39 | 99.75 29 | 99.69 90 | 87.00 226 | 99.97 57 | 99.46 47 | 98.89 138 | 99.08 209 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 90 | 98.98 12 | 93.92 299 | 99.63 83 | 81.76 386 | 99.96 35 | 98.56 93 | 99.47 1 | 99.19 86 | 99.99 1 | 94.16 94 | 100.00 1 | 99.92 13 | 99.93 61 | 100.00 1 |
|
| test_fmvsmvis_n_1920 | | | 97.67 91 | 97.59 84 | 97.91 152 | 97.02 257 | 95.34 184 | 99.95 54 | 98.45 122 | 97.87 15 | 97.02 173 | 99.59 107 | 89.64 192 | 99.98 47 | 99.41 51 | 99.34 121 | 98.42 236 |
|
| CPTT-MVS | | | 97.64 92 | 97.32 95 | 98.58 107 | 99.97 3 | 95.77 164 | 99.96 35 | 98.35 169 | 89.90 283 | 98.36 131 | 99.79 58 | 91.18 167 | 99.99 36 | 98.37 111 | 99.99 21 | 99.99 23 |
|
| sss | | | 97.57 93 | 97.03 107 | 99.18 52 | 98.37 171 | 98.04 71 | 99.73 168 | 99.38 22 | 93.46 167 | 98.76 111 | 99.06 155 | 91.21 163 | 99.89 99 | 96.33 174 | 97.01 189 | 99.62 130 |
|
| test2506 | | | 97.53 94 | 97.19 100 | 98.58 107 | 98.66 150 | 96.90 121 | 98.81 301 | 99.77 5 | 94.93 103 | 97.95 145 | 98.96 168 | 92.51 141 | 99.20 177 | 94.93 196 | 98.15 160 | 99.64 124 |
|
| EIA-MVS | | | 97.53 94 | 97.46 87 | 97.76 162 | 98.04 196 | 94.84 201 | 99.98 15 | 97.61 255 | 94.41 128 | 97.90 147 | 99.59 107 | 92.40 145 | 98.87 195 | 98.04 127 | 99.13 130 | 99.59 137 |
|
| testing11 | | | 97.48 96 | 97.27 96 | 98.10 139 | 98.36 172 | 96.02 157 | 99.92 81 | 98.45 122 | 93.45 169 | 98.15 141 | 98.70 194 | 95.48 49 | 99.22 173 | 97.85 138 | 95.05 230 | 99.07 210 |
|
| xiu_mvs_v1_base_debu | | | 97.43 97 | 97.06 103 | 98.55 109 | 97.74 214 | 98.14 66 | 99.31 241 | 97.86 233 | 96.43 66 | 99.62 47 | 99.69 90 | 85.56 239 | 99.68 145 | 99.05 64 | 98.31 154 | 97.83 247 |
|
| xiu_mvs_v1_base | | | 97.43 97 | 97.06 103 | 98.55 109 | 97.74 214 | 98.14 66 | 99.31 241 | 97.86 233 | 96.43 66 | 99.62 47 | 99.69 90 | 85.56 239 | 99.68 145 | 99.05 64 | 98.31 154 | 97.83 247 |
|
| xiu_mvs_v1_base_debi | | | 97.43 97 | 97.06 103 | 98.55 109 | 97.74 214 | 98.14 66 | 99.31 241 | 97.86 233 | 96.43 66 | 99.62 47 | 99.69 90 | 85.56 239 | 99.68 145 | 99.05 64 | 98.31 154 | 97.83 247 |
|
| MAR-MVS | | | 97.43 97 | 97.19 100 | 98.15 137 | 99.47 96 | 94.79 204 | 99.05 272 | 98.76 64 | 92.65 201 | 98.66 116 | 99.82 49 | 88.52 209 | 99.98 47 | 98.12 122 | 99.63 94 | 99.67 118 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| dcpmvs_2 | | | 97.42 101 | 98.09 58 | 95.42 241 | 99.58 89 | 87.24 352 | 99.23 252 | 96.95 329 | 94.28 136 | 98.93 100 | 99.73 81 | 94.39 82 | 99.16 182 | 99.89 17 | 99.82 81 | 99.86 92 |
|
| thisisatest0515 | | | 97.41 102 | 97.02 108 | 98.59 106 | 97.71 221 | 97.52 93 | 99.97 28 | 98.54 102 | 91.83 231 | 97.45 160 | 99.04 156 | 97.50 9 | 99.10 185 | 94.75 204 | 96.37 201 | 99.16 200 |
|
| 114514_t | | | 97.41 102 | 96.83 115 | 99.14 61 | 99.51 94 | 97.83 80 | 99.89 102 | 98.27 185 | 88.48 311 | 99.06 94 | 99.66 99 | 90.30 185 | 99.64 151 | 96.32 175 | 99.97 42 | 99.96 67 |
|
| EC-MVSNet | | | 97.38 104 | 97.24 97 | 97.80 155 | 97.41 239 | 95.64 173 | 99.99 4 | 97.06 317 | 94.59 117 | 99.63 44 | 99.32 135 | 89.20 202 | 98.14 256 | 98.76 88 | 99.23 126 | 99.62 130 |
|
| fmvsm_s_conf0.1_n | | | 97.30 105 | 97.21 99 | 97.60 172 | 97.38 241 | 94.40 213 | 99.90 93 | 98.64 77 | 96.47 65 | 99.51 62 | 99.65 101 | 84.99 247 | 99.93 88 | 99.22 58 | 99.09 132 | 98.46 234 |
|
| OMC-MVS | | | 97.28 106 | 97.23 98 | 97.41 182 | 99.76 66 | 93.36 244 | 99.65 186 | 97.95 222 | 96.03 79 | 97.41 162 | 99.70 88 | 89.61 193 | 99.51 156 | 96.73 171 | 98.25 158 | 99.38 175 |
|
| PVSNet_Blended_VisFu | | | 97.27 107 | 96.81 116 | 98.66 99 | 98.81 141 | 96.67 128 | 99.92 81 | 98.64 77 | 94.51 120 | 96.38 192 | 98.49 213 | 89.05 203 | 99.88 105 | 97.10 160 | 98.34 152 | 99.43 171 |
|
| jason | | | 97.24 108 | 96.86 114 | 98.38 125 | 95.73 302 | 97.32 102 | 99.97 28 | 97.40 279 | 95.34 96 | 98.60 120 | 99.54 115 | 87.70 215 | 98.56 217 | 97.94 133 | 99.47 110 | 99.25 195 |
| jason: jason. |
| AdaColmap |  | | 97.23 109 | 96.80 117 | 98.51 115 | 99.99 1 | 95.60 175 | 99.09 261 | 98.84 59 | 93.32 172 | 96.74 181 | 99.72 84 | 86.04 236 | 100.00 1 | 98.01 128 | 99.43 115 | 99.94 78 |
|
| VNet | | | 97.21 110 | 96.57 128 | 99.13 65 | 98.97 123 | 97.82 81 | 99.03 275 | 99.21 29 | 94.31 133 | 99.18 87 | 98.88 179 | 86.26 235 | 99.89 99 | 98.93 75 | 94.32 238 | 99.69 115 |
|
| testing99 | | | 97.17 111 | 96.91 110 | 97.95 146 | 98.35 174 | 95.70 169 | 99.91 87 | 98.43 135 | 92.94 184 | 97.36 163 | 98.72 192 | 94.83 65 | 99.21 174 | 97.00 162 | 94.64 232 | 98.95 215 |
|
| testing91 | | | 97.16 112 | 96.90 111 | 97.97 145 | 98.35 174 | 95.67 172 | 99.91 87 | 98.42 147 | 92.91 186 | 97.33 164 | 98.72 192 | 94.81 66 | 99.21 174 | 96.98 164 | 94.63 233 | 99.03 212 |
|
| PVSNet | | 91.05 13 | 97.13 113 | 96.69 123 | 98.45 119 | 99.52 92 | 95.81 162 | 99.95 54 | 99.65 12 | 94.73 112 | 99.04 95 | 99.21 146 | 84.48 251 | 99.95 73 | 94.92 197 | 98.74 144 | 99.58 143 |
|
| thisisatest0530 | | | 97.10 114 | 96.72 121 | 98.22 132 | 97.60 228 | 96.70 126 | 99.92 81 | 98.54 102 | 91.11 255 | 97.07 172 | 98.97 166 | 97.47 12 | 99.03 188 | 93.73 231 | 96.09 205 | 98.92 216 |
|
| CSCG | | | 97.10 114 | 97.04 106 | 97.27 191 | 99.89 45 | 91.92 275 | 99.90 93 | 99.07 34 | 88.67 307 | 95.26 214 | 99.82 49 | 93.17 123 | 99.98 47 | 98.15 121 | 99.47 110 | 99.90 86 |
|
| sasdasda | | | 97.09 116 | 96.32 134 | 99.39 40 | 98.93 127 | 98.95 27 | 99.72 172 | 97.35 283 | 94.45 121 | 97.88 149 | 99.42 123 | 86.71 228 | 99.52 154 | 98.48 104 | 93.97 244 | 99.72 110 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 116 | 96.90 111 | 97.63 170 | 95.65 309 | 94.21 219 | 99.83 134 | 98.50 116 | 96.27 74 | 99.65 41 | 99.64 102 | 84.72 248 | 99.93 88 | 99.04 67 | 98.84 141 | 98.74 227 |
|
| canonicalmvs | | | 97.09 116 | 96.32 134 | 99.39 40 | 98.93 127 | 98.95 27 | 99.72 172 | 97.35 283 | 94.45 121 | 97.88 149 | 99.42 123 | 86.71 228 | 99.52 154 | 98.48 104 | 93.97 244 | 99.72 110 |
|
| testing222 | | | 97.08 119 | 96.75 119 | 98.06 142 | 98.56 156 | 96.82 123 | 99.85 122 | 98.61 83 | 92.53 209 | 98.84 103 | 98.84 188 | 93.36 112 | 98.30 244 | 95.84 183 | 94.30 239 | 99.05 211 |
|
| ETVMVS | | | 97.03 120 | 96.64 124 | 98.20 133 | 98.67 149 | 97.12 112 | 99.89 102 | 98.57 90 | 91.10 256 | 98.17 140 | 98.59 204 | 93.86 103 | 98.19 254 | 95.64 186 | 95.24 228 | 99.28 192 |
|
| MGCFI-Net | | | 97.00 121 | 96.22 138 | 99.34 43 | 98.86 138 | 98.80 39 | 99.67 184 | 97.30 290 | 94.31 133 | 97.77 153 | 99.41 127 | 86.36 234 | 99.50 158 | 98.38 109 | 93.90 246 | 99.72 110 |
|
| diffmvs |  | | 97.00 121 | 96.64 124 | 98.09 140 | 97.64 226 | 96.17 153 | 99.81 139 | 97.19 300 | 94.67 116 | 98.95 98 | 99.28 136 | 86.43 232 | 98.76 203 | 98.37 111 | 97.42 178 | 99.33 185 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thres200 | | | 96.96 123 | 96.21 139 | 99.22 48 | 98.97 123 | 98.84 36 | 99.85 122 | 99.71 7 | 93.17 177 | 96.26 194 | 98.88 179 | 89.87 190 | 99.51 156 | 94.26 216 | 94.91 231 | 99.31 187 |
|
| mvsmamba | | | 96.94 124 | 96.73 120 | 97.55 173 | 97.99 198 | 94.37 214 | 99.62 193 | 97.70 243 | 93.13 179 | 98.42 127 | 97.92 240 | 88.02 213 | 98.75 205 | 98.78 86 | 99.01 135 | 99.52 157 |
|
| MVSFormer | | | 96.94 124 | 96.60 126 | 97.95 146 | 97.28 250 | 97.70 87 | 99.55 206 | 97.27 295 | 91.17 252 | 99.43 68 | 99.54 115 | 90.92 172 | 96.89 323 | 94.67 207 | 99.62 95 | 99.25 195 |
|
| F-COLMAP | | | 96.93 126 | 96.95 109 | 96.87 201 | 99.71 76 | 91.74 280 | 99.85 122 | 97.95 222 | 93.11 181 | 95.72 207 | 99.16 150 | 92.35 146 | 99.94 81 | 95.32 189 | 99.35 120 | 98.92 216 |
|
| DeepC-MVS | | 94.51 4 | 96.92 127 | 96.40 133 | 98.45 119 | 99.16 111 | 95.90 160 | 99.66 185 | 98.06 212 | 96.37 72 | 94.37 223 | 99.49 118 | 83.29 260 | 99.90 94 | 97.63 149 | 99.61 99 | 99.55 147 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| tttt0517 | | | 96.85 128 | 96.49 130 | 97.92 150 | 97.48 236 | 95.89 161 | 99.85 122 | 98.54 102 | 90.72 268 | 96.63 183 | 98.93 177 | 97.47 12 | 99.02 189 | 93.03 243 | 95.76 216 | 98.85 220 |
|
| 1314 | | | 96.84 129 | 95.96 150 | 99.48 34 | 96.74 275 | 98.52 58 | 98.31 333 | 98.86 53 | 95.82 82 | 89.91 274 | 98.98 164 | 87.49 218 | 99.96 65 | 97.80 140 | 99.73 87 | 99.96 67 |
|
| CHOSEN 1792x2688 | | | 96.81 130 | 96.53 129 | 97.64 168 | 98.91 134 | 93.07 246 | 99.65 186 | 99.80 3 | 95.64 87 | 95.39 211 | 98.86 184 | 84.35 253 | 99.90 94 | 96.98 164 | 99.16 128 | 99.95 74 |
|
| UWE-MVS | | | 96.79 131 | 96.72 121 | 97.00 196 | 98.51 163 | 93.70 232 | 99.71 175 | 98.60 85 | 92.96 183 | 97.09 170 | 98.34 224 | 96.67 31 | 98.85 197 | 92.11 252 | 96.50 197 | 98.44 235 |
|
| tfpn200view9 | | | 96.79 131 | 95.99 144 | 99.19 51 | 98.94 125 | 98.82 37 | 99.78 146 | 99.71 7 | 92.86 187 | 96.02 199 | 98.87 182 | 89.33 197 | 99.50 158 | 93.84 223 | 94.57 234 | 99.27 193 |
|
| thres400 | | | 96.78 133 | 95.99 144 | 99.16 57 | 98.94 125 | 98.82 37 | 99.78 146 | 99.71 7 | 92.86 187 | 96.02 199 | 98.87 182 | 89.33 197 | 99.50 158 | 93.84 223 | 94.57 234 | 99.16 200 |
|
| CANet_DTU | | | 96.76 134 | 96.15 140 | 98.60 104 | 98.78 143 | 97.53 92 | 99.84 127 | 97.63 249 | 97.25 37 | 99.20 84 | 99.64 102 | 81.36 275 | 99.98 47 | 92.77 246 | 98.89 138 | 98.28 239 |
|
| PMMVS | | | 96.76 134 | 96.76 118 | 96.76 204 | 98.28 179 | 92.10 270 | 99.91 87 | 97.98 219 | 94.12 141 | 99.53 58 | 99.39 130 | 86.93 227 | 98.73 206 | 96.95 167 | 97.73 170 | 99.45 168 |
|
| thres100view900 | | | 96.74 136 | 95.92 154 | 99.18 52 | 98.90 135 | 98.77 42 | 99.74 161 | 99.71 7 | 92.59 205 | 95.84 203 | 98.86 184 | 89.25 199 | 99.50 158 | 93.84 223 | 94.57 234 | 99.27 193 |
|
| TESTMET0.1,1 | | | 96.74 136 | 96.26 136 | 98.16 134 | 97.36 243 | 96.48 135 | 99.96 35 | 98.29 182 | 91.93 228 | 95.77 206 | 98.07 233 | 95.54 46 | 98.29 245 | 90.55 278 | 98.89 138 | 99.70 113 |
|
| baseline2 | | | 96.71 138 | 96.49 130 | 97.37 185 | 95.63 311 | 95.96 159 | 99.74 161 | 98.88 51 | 92.94 184 | 91.61 255 | 98.97 166 | 97.72 6 | 98.62 215 | 94.83 201 | 98.08 166 | 97.53 257 |
|
| thres600view7 | | | 96.69 139 | 95.87 157 | 99.14 61 | 98.90 135 | 98.78 41 | 99.74 161 | 99.71 7 | 92.59 205 | 95.84 203 | 98.86 184 | 89.25 199 | 99.50 158 | 93.44 235 | 94.50 237 | 99.16 200 |
|
| EPP-MVSNet | | | 96.69 139 | 96.60 126 | 96.96 198 | 97.74 214 | 93.05 248 | 99.37 234 | 98.56 93 | 88.75 305 | 95.83 205 | 99.01 159 | 96.01 36 | 98.56 217 | 96.92 168 | 97.20 183 | 99.25 195 |
|
| HyFIR lowres test | | | 96.66 141 | 96.43 132 | 97.36 187 | 99.05 116 | 93.91 227 | 99.70 179 | 99.80 3 | 90.54 270 | 96.26 194 | 98.08 232 | 92.15 151 | 98.23 252 | 96.84 170 | 95.46 221 | 99.93 79 |
|
| MVS | | | 96.60 142 | 95.56 166 | 99.72 13 | 96.85 268 | 99.22 20 | 98.31 333 | 98.94 41 | 91.57 238 | 90.90 263 | 99.61 106 | 86.66 230 | 99.96 65 | 97.36 153 | 99.88 73 | 99.99 23 |
|
| test_cas_vis1_n_1920 | | | 96.59 143 | 96.23 137 | 97.65 167 | 98.22 183 | 94.23 218 | 99.99 4 | 97.25 297 | 97.77 17 | 99.58 54 | 99.08 153 | 77.10 312 | 99.97 57 | 97.64 148 | 99.45 113 | 98.74 227 |
|
| UA-Net | | | 96.54 144 | 95.96 150 | 98.27 130 | 98.23 182 | 95.71 168 | 98.00 348 | 98.45 122 | 93.72 162 | 98.41 128 | 99.27 139 | 88.71 208 | 99.66 149 | 91.19 263 | 97.69 171 | 99.44 170 |
|
| EPMVS | | | 96.53 145 | 96.01 143 | 98.09 140 | 98.43 167 | 96.12 156 | 96.36 376 | 99.43 20 | 93.53 165 | 97.64 155 | 95.04 341 | 94.41 78 | 98.38 236 | 91.13 264 | 98.11 163 | 99.75 106 |
|
| test-LLR | | | 96.47 146 | 96.04 142 | 97.78 158 | 97.02 257 | 95.44 179 | 99.96 35 | 98.21 193 | 94.07 144 | 95.55 208 | 96.38 286 | 93.90 101 | 98.27 249 | 90.42 281 | 98.83 142 | 99.64 124 |
|
| MVS_Test | | | 96.46 147 | 95.74 159 | 98.61 103 | 98.18 187 | 97.23 106 | 99.31 241 | 97.15 306 | 91.07 257 | 98.84 103 | 97.05 265 | 88.17 212 | 98.97 190 | 94.39 211 | 97.50 175 | 99.61 134 |
|
| casdiffmvs_mvg |  | | 96.43 148 | 95.94 152 | 97.89 154 | 97.44 237 | 95.47 178 | 99.86 119 | 97.29 293 | 93.35 170 | 96.03 198 | 99.19 147 | 85.39 242 | 98.72 208 | 97.89 137 | 97.04 187 | 99.49 164 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 96.43 148 | 95.98 146 | 97.76 162 | 97.34 244 | 95.17 194 | 99.51 212 | 97.17 303 | 93.92 154 | 96.90 176 | 99.28 136 | 85.37 243 | 98.64 214 | 97.50 151 | 96.86 193 | 99.46 166 |
|
| casdiffmvs |  | | 96.42 150 | 95.97 149 | 97.77 160 | 97.30 248 | 94.98 196 | 99.84 127 | 97.09 314 | 93.75 161 | 96.58 185 | 99.26 142 | 85.07 245 | 98.78 201 | 97.77 145 | 97.04 187 | 99.54 151 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.01_n | | | 96.39 151 | 95.74 159 | 98.32 127 | 91.47 379 | 95.56 176 | 99.84 127 | 97.30 290 | 97.74 18 | 97.89 148 | 99.35 134 | 79.62 294 | 99.85 111 | 99.25 57 | 99.24 125 | 99.55 147 |
|
| test-mter | | | 96.39 151 | 95.93 153 | 97.78 158 | 97.02 257 | 95.44 179 | 99.96 35 | 98.21 193 | 91.81 233 | 95.55 208 | 96.38 286 | 95.17 53 | 98.27 249 | 90.42 281 | 98.83 142 | 99.64 124 |
|
| CDS-MVSNet | | | 96.34 153 | 96.07 141 | 97.13 193 | 97.37 242 | 94.96 197 | 99.53 209 | 97.91 228 | 91.55 239 | 95.37 212 | 98.32 225 | 95.05 58 | 97.13 305 | 93.80 227 | 95.75 217 | 99.30 189 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Vis-MVSNet (Re-imp) | | | 96.32 154 | 95.98 146 | 97.35 188 | 97.93 202 | 94.82 202 | 99.47 219 | 98.15 206 | 91.83 231 | 95.09 215 | 99.11 151 | 91.37 162 | 97.47 287 | 93.47 234 | 97.43 176 | 99.74 107 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 155 | 95.24 174 | 99.52 28 | 96.88 267 | 98.64 54 | 99.72 172 | 98.24 189 | 95.27 98 | 88.42 314 | 98.98 164 | 82.76 263 | 99.94 81 | 97.10 160 | 99.83 77 | 99.96 67 |
|
| Effi-MVS+ | | | 96.30 156 | 95.69 161 | 98.16 134 | 97.85 207 | 96.26 145 | 97.41 357 | 97.21 299 | 90.37 273 | 98.65 117 | 98.58 207 | 86.61 231 | 98.70 210 | 97.11 159 | 97.37 180 | 99.52 157 |
|
| IS-MVSNet | | | 96.29 157 | 95.90 155 | 97.45 179 | 98.13 192 | 94.80 203 | 99.08 263 | 97.61 255 | 92.02 227 | 95.54 210 | 98.96 168 | 90.64 178 | 98.08 260 | 93.73 231 | 97.41 179 | 99.47 165 |
|
| 3Dnovator | | 91.47 12 | 96.28 158 | 95.34 171 | 99.08 70 | 96.82 270 | 97.47 98 | 99.45 224 | 98.81 61 | 95.52 92 | 89.39 289 | 99.00 161 | 81.97 267 | 99.95 73 | 97.27 155 | 99.83 77 | 99.84 93 |
|
| tpmrst | | | 96.27 159 | 95.98 146 | 97.13 193 | 97.96 200 | 93.15 245 | 96.34 377 | 98.17 198 | 92.07 223 | 98.71 114 | 95.12 338 | 93.91 100 | 98.73 206 | 94.91 199 | 96.62 194 | 99.50 162 |
|
| RRT-MVS | | | 96.24 160 | 95.68 163 | 97.94 149 | 97.65 225 | 94.92 199 | 99.27 249 | 97.10 311 | 92.79 193 | 97.43 161 | 97.99 237 | 81.85 269 | 99.37 168 | 98.46 106 | 98.57 147 | 99.53 155 |
|
| CostFormer | | | 96.10 161 | 95.88 156 | 96.78 203 | 97.03 256 | 92.55 262 | 97.08 365 | 97.83 236 | 90.04 281 | 98.72 113 | 94.89 348 | 95.01 60 | 98.29 245 | 96.54 173 | 95.77 215 | 99.50 162 |
|
| PVSNet_BlendedMVS | | | 96.05 162 | 95.82 158 | 96.72 206 | 99.59 85 | 96.99 117 | 99.95 54 | 99.10 31 | 94.06 146 | 98.27 135 | 95.80 303 | 89.00 204 | 99.95 73 | 99.12 61 | 87.53 296 | 93.24 355 |
|
| PatchMatch-RL | | | 96.04 163 | 95.40 168 | 97.95 146 | 99.59 85 | 95.22 191 | 99.52 210 | 99.07 34 | 93.96 151 | 96.49 187 | 98.35 222 | 82.28 265 | 99.82 123 | 90.15 286 | 99.22 127 | 98.81 223 |
|
| 1112_ss | | | 96.01 164 | 95.20 176 | 98.42 122 | 97.80 210 | 96.41 138 | 99.65 186 | 96.66 351 | 92.71 196 | 92.88 243 | 99.40 128 | 92.16 150 | 99.30 169 | 91.92 255 | 93.66 247 | 99.55 147 |
|
| PatchmatchNet |  | | 95.94 165 | 95.45 167 | 97.39 184 | 97.83 208 | 94.41 211 | 96.05 383 | 98.40 156 | 92.86 187 | 97.09 170 | 95.28 334 | 94.21 92 | 98.07 262 | 89.26 294 | 98.11 163 | 99.70 113 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| FA-MVS(test-final) | | | 95.86 166 | 95.09 180 | 98.15 137 | 97.74 214 | 95.62 174 | 96.31 378 | 98.17 198 | 91.42 247 | 96.26 194 | 96.13 296 | 90.56 180 | 99.47 165 | 92.18 251 | 97.07 185 | 99.35 182 |
|
| TAMVS | | | 95.85 167 | 95.58 165 | 96.65 209 | 97.07 254 | 93.50 238 | 99.17 257 | 97.82 237 | 91.39 249 | 95.02 216 | 98.01 234 | 92.20 149 | 97.30 295 | 93.75 230 | 95.83 214 | 99.14 203 |
|
| LS3D | | | 95.84 168 | 95.11 179 | 98.02 144 | 99.85 54 | 95.10 195 | 98.74 306 | 98.50 116 | 87.22 329 | 93.66 232 | 99.86 29 | 87.45 219 | 99.95 73 | 90.94 270 | 99.81 83 | 99.02 213 |
|
| baseline1 | | | 95.78 169 | 94.86 187 | 98.54 112 | 98.47 166 | 98.07 69 | 99.06 268 | 97.99 217 | 92.68 199 | 94.13 228 | 98.62 203 | 93.28 118 | 98.69 211 | 93.79 228 | 85.76 304 | 98.84 221 |
|
| Test_1112_low_res | | | 95.72 170 | 94.83 188 | 98.42 122 | 97.79 211 | 96.41 138 | 99.65 186 | 96.65 352 | 92.70 197 | 92.86 244 | 96.13 296 | 92.15 151 | 99.30 169 | 91.88 256 | 93.64 248 | 99.55 147 |
|
| Vis-MVSNet |  | | 95.72 170 | 95.15 178 | 97.45 179 | 97.62 227 | 94.28 216 | 99.28 247 | 98.24 189 | 94.27 138 | 96.84 178 | 98.94 175 | 79.39 296 | 98.76 203 | 93.25 236 | 98.49 149 | 99.30 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| EPNet_dtu | | | 95.71 172 | 95.39 169 | 96.66 208 | 98.92 130 | 93.41 241 | 99.57 202 | 98.90 47 | 96.19 77 | 97.52 157 | 98.56 209 | 92.65 135 | 97.36 289 | 77.89 378 | 98.33 153 | 99.20 198 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| BH-w/o | | | 95.71 172 | 95.38 170 | 96.68 207 | 98.49 165 | 92.28 266 | 99.84 127 | 97.50 269 | 92.12 222 | 92.06 253 | 98.79 189 | 84.69 249 | 98.67 213 | 95.29 190 | 99.66 91 | 99.09 207 |
|
| FE-MVS | | | 95.70 174 | 95.01 184 | 97.79 157 | 98.21 184 | 94.57 206 | 95.03 390 | 98.69 69 | 88.90 301 | 97.50 159 | 96.19 293 | 92.60 138 | 99.49 163 | 89.99 288 | 97.94 169 | 99.31 187 |
|
| ECVR-MVS |  | | 95.66 175 | 95.05 182 | 97.51 177 | 98.66 150 | 93.71 231 | 98.85 298 | 98.45 122 | 94.93 103 | 96.86 177 | 98.96 168 | 75.22 335 | 99.20 177 | 95.34 188 | 98.15 160 | 99.64 124 |
|
| mvs_anonymous | | | 95.65 176 | 95.03 183 | 97.53 175 | 98.19 186 | 95.74 166 | 99.33 238 | 97.49 270 | 90.87 261 | 90.47 267 | 97.10 261 | 88.23 211 | 97.16 302 | 95.92 181 | 97.66 173 | 99.68 116 |
|
| test1111 | | | 95.57 177 | 94.98 185 | 97.37 185 | 98.56 156 | 93.37 243 | 98.86 296 | 98.45 122 | 94.95 102 | 96.63 183 | 98.95 173 | 75.21 336 | 99.11 183 | 95.02 193 | 98.14 162 | 99.64 124 |
|
| MVSTER | | | 95.53 178 | 95.22 175 | 96.45 213 | 98.56 156 | 97.72 84 | 99.91 87 | 97.67 246 | 92.38 216 | 91.39 257 | 97.14 259 | 97.24 18 | 97.30 295 | 94.80 202 | 87.85 291 | 94.34 292 |
|
| tpm2 | | | 95.47 179 | 95.18 177 | 96.35 218 | 96.91 263 | 91.70 284 | 96.96 368 | 97.93 224 | 88.04 318 | 98.44 126 | 95.40 323 | 93.32 115 | 97.97 266 | 94.00 219 | 95.61 219 | 99.38 175 |
|
| test_vis1_n_1920 | | | 95.44 180 | 95.31 172 | 95.82 232 | 98.50 164 | 88.74 334 | 99.98 15 | 97.30 290 | 97.84 16 | 99.85 9 | 99.19 147 | 66.82 373 | 99.97 57 | 98.82 83 | 99.46 112 | 98.76 225 |
|
| QAPM | | | 95.40 181 | 94.17 203 | 99.10 67 | 96.92 262 | 97.71 85 | 99.40 227 | 98.68 71 | 89.31 289 | 88.94 302 | 98.89 178 | 82.48 264 | 99.96 65 | 93.12 242 | 99.83 77 | 99.62 130 |
|
| reproduce_monomvs | | | 95.38 182 | 95.07 181 | 96.32 219 | 99.32 104 | 96.60 131 | 99.76 154 | 98.85 56 | 96.65 59 | 87.83 320 | 96.05 300 | 99.52 1 | 98.11 258 | 96.58 172 | 81.07 344 | 94.25 297 |
|
| test_fmvs1 | | | 95.35 183 | 95.68 163 | 94.36 284 | 98.99 121 | 84.98 366 | 99.96 35 | 96.65 352 | 97.60 22 | 99.73 33 | 98.96 168 | 71.58 352 | 99.93 88 | 98.31 114 | 99.37 119 | 98.17 240 |
|
| UGNet | | | 95.33 184 | 94.57 193 | 97.62 171 | 98.55 159 | 94.85 200 | 98.67 314 | 99.32 26 | 95.75 85 | 96.80 180 | 96.27 291 | 72.18 349 | 99.96 65 | 94.58 209 | 99.05 134 | 98.04 244 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| mamv4 | | | 95.24 185 | 96.90 111 | 90.25 356 | 98.65 152 | 72.11 403 | 98.28 335 | 97.64 248 | 89.99 282 | 95.93 201 | 98.25 227 | 94.74 68 | 99.11 183 | 99.01 72 | 99.64 92 | 99.53 155 |
|
| BH-untuned | | | 95.18 186 | 94.83 188 | 96.22 221 | 98.36 172 | 91.22 292 | 99.80 143 | 97.32 288 | 90.91 260 | 91.08 260 | 98.67 196 | 83.51 257 | 98.54 219 | 94.23 217 | 99.61 99 | 98.92 216 |
|
| BH-RMVSNet | | | 95.18 186 | 94.31 200 | 97.80 155 | 98.17 188 | 95.23 190 | 99.76 154 | 97.53 265 | 92.52 210 | 94.27 226 | 99.25 143 | 76.84 317 | 98.80 199 | 90.89 272 | 99.54 104 | 99.35 182 |
|
| PCF-MVS | | 94.20 5 | 95.18 186 | 94.10 204 | 98.43 121 | 98.55 159 | 95.99 158 | 97.91 350 | 97.31 289 | 90.35 274 | 89.48 288 | 99.22 145 | 85.19 244 | 99.89 99 | 90.40 283 | 98.47 150 | 99.41 173 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| dp | | | 95.05 189 | 94.43 195 | 96.91 199 | 97.99 198 | 92.73 256 | 96.29 379 | 97.98 219 | 89.70 286 | 95.93 201 | 94.67 354 | 93.83 105 | 98.45 225 | 86.91 326 | 96.53 196 | 99.54 151 |
|
| Fast-Effi-MVS+ | | | 95.02 190 | 94.19 202 | 97.52 176 | 97.88 204 | 94.55 207 | 99.97 28 | 97.08 315 | 88.85 303 | 94.47 222 | 97.96 239 | 84.59 250 | 98.41 228 | 89.84 290 | 97.10 184 | 99.59 137 |
|
| IB-MVS | | 92.85 6 | 94.99 191 | 93.94 210 | 98.16 134 | 97.72 219 | 95.69 171 | 99.99 4 | 98.81 61 | 94.28 136 | 92.70 245 | 96.90 269 | 95.08 56 | 99.17 180 | 96.07 178 | 73.88 383 | 99.60 136 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| h-mvs33 | | | 94.92 192 | 94.36 197 | 96.59 210 | 98.85 139 | 91.29 291 | 98.93 286 | 98.94 41 | 95.90 80 | 98.77 108 | 98.42 220 | 90.89 175 | 99.77 131 | 97.80 140 | 70.76 389 | 98.72 229 |
|
| MonoMVSNet | | | 94.82 193 | 94.43 195 | 95.98 226 | 94.54 327 | 90.73 301 | 99.03 275 | 97.06 317 | 93.16 178 | 93.15 238 | 95.47 320 | 88.29 210 | 97.57 283 | 97.85 138 | 91.33 261 | 99.62 130 |
|
| XVG-OURS | | | 94.82 193 | 94.74 191 | 95.06 252 | 98.00 197 | 89.19 328 | 99.08 263 | 97.55 261 | 94.10 142 | 94.71 218 | 99.62 105 | 80.51 287 | 99.74 137 | 96.04 179 | 93.06 256 | 96.25 266 |
|
| SDMVSNet | | | 94.80 195 | 93.96 209 | 97.33 189 | 98.92 130 | 95.42 181 | 99.59 197 | 98.99 37 | 92.41 214 | 92.55 247 | 97.85 243 | 75.81 329 | 98.93 194 | 97.90 136 | 91.62 259 | 97.64 252 |
|
| ADS-MVSNet | | | 94.79 196 | 94.02 207 | 97.11 195 | 97.87 205 | 93.79 228 | 94.24 391 | 98.16 203 | 90.07 279 | 96.43 189 | 94.48 359 | 90.29 186 | 98.19 254 | 87.44 313 | 97.23 181 | 99.36 179 |
|
| XVG-OURS-SEG-HR | | | 94.79 196 | 94.70 192 | 95.08 251 | 98.05 195 | 89.19 328 | 99.08 263 | 97.54 263 | 93.66 163 | 94.87 217 | 99.58 110 | 78.78 303 | 99.79 126 | 97.31 154 | 93.40 251 | 96.25 266 |
|
| OpenMVS |  | 90.15 15 | 94.77 198 | 93.59 218 | 98.33 126 | 96.07 287 | 97.48 97 | 99.56 204 | 98.57 90 | 90.46 271 | 86.51 338 | 98.95 173 | 78.57 306 | 99.94 81 | 93.86 222 | 99.74 86 | 97.57 256 |
|
| LFMVS | | | 94.75 199 | 93.56 220 | 98.30 128 | 99.03 117 | 95.70 169 | 98.74 306 | 97.98 219 | 87.81 322 | 98.47 125 | 99.39 130 | 67.43 371 | 99.53 153 | 98.01 128 | 95.20 229 | 99.67 118 |
|
| SCA | | | 94.69 200 | 93.81 214 | 97.33 189 | 97.10 253 | 94.44 208 | 98.86 296 | 98.32 176 | 93.30 173 | 96.17 197 | 95.59 312 | 76.48 322 | 97.95 269 | 91.06 266 | 97.43 176 | 99.59 137 |
|
| ab-mvs | | | 94.69 200 | 93.42 224 | 98.51 115 | 98.07 194 | 96.26 145 | 96.49 374 | 98.68 71 | 90.31 276 | 94.54 219 | 97.00 267 | 76.30 324 | 99.71 141 | 95.98 180 | 93.38 252 | 99.56 146 |
|
| CVMVSNet | | | 94.68 202 | 94.94 186 | 93.89 302 | 96.80 271 | 86.92 355 | 99.06 268 | 98.98 38 | 94.45 121 | 94.23 227 | 99.02 157 | 85.60 238 | 95.31 372 | 90.91 271 | 95.39 224 | 99.43 171 |
|
| cascas | | | 94.64 203 | 93.61 215 | 97.74 164 | 97.82 209 | 96.26 145 | 99.96 35 | 97.78 240 | 85.76 347 | 94.00 229 | 97.54 249 | 76.95 316 | 99.21 174 | 97.23 156 | 95.43 223 | 97.76 251 |
|
| HQP-MVS | | | 94.61 204 | 94.50 194 | 94.92 257 | 95.78 295 | 91.85 276 | 99.87 108 | 97.89 229 | 96.82 51 | 93.37 234 | 98.65 199 | 80.65 285 | 98.39 232 | 97.92 134 | 89.60 264 | 94.53 274 |
|
| TR-MVS | | | 94.54 205 | 93.56 220 | 97.49 178 | 97.96 200 | 94.34 215 | 98.71 309 | 97.51 268 | 90.30 277 | 94.51 221 | 98.69 195 | 75.56 330 | 98.77 202 | 92.82 245 | 95.99 207 | 99.35 182 |
|
| DP-MVS | | | 94.54 205 | 93.42 224 | 97.91 152 | 99.46 98 | 94.04 222 | 98.93 286 | 97.48 271 | 81.15 382 | 90.04 271 | 99.55 113 | 87.02 225 | 99.95 73 | 88.97 296 | 98.11 163 | 99.73 108 |
|
| Effi-MVS+-dtu | | | 94.53 207 | 95.30 173 | 92.22 335 | 97.77 212 | 82.54 379 | 99.59 197 | 97.06 317 | 94.92 105 | 95.29 213 | 95.37 327 | 85.81 237 | 97.89 272 | 94.80 202 | 97.07 185 | 96.23 268 |
|
| WBMVS | | | 94.52 208 | 94.03 206 | 95.98 226 | 98.38 169 | 96.68 127 | 99.92 81 | 97.63 249 | 90.75 267 | 89.64 284 | 95.25 335 | 96.77 25 | 96.90 322 | 94.35 214 | 83.57 323 | 94.35 290 |
|
| HQP_MVS | | | 94.49 209 | 94.36 197 | 94.87 258 | 95.71 305 | 91.74 280 | 99.84 127 | 97.87 231 | 96.38 69 | 93.01 239 | 98.59 204 | 80.47 289 | 98.37 238 | 97.79 143 | 89.55 267 | 94.52 276 |
|
| myMVS_eth3d | | | 94.46 210 | 94.76 190 | 93.55 312 | 97.68 222 | 90.97 294 | 99.71 175 | 98.35 169 | 90.79 264 | 92.10 251 | 98.67 196 | 92.46 144 | 93.09 394 | 87.13 319 | 95.95 210 | 96.59 264 |
|
| TAPA-MVS | | 92.12 8 | 94.42 211 | 93.60 217 | 96.90 200 | 99.33 102 | 91.78 279 | 99.78 146 | 98.00 216 | 89.89 284 | 94.52 220 | 99.47 119 | 91.97 155 | 99.18 179 | 69.90 397 | 99.52 105 | 99.73 108 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| hse-mvs2 | | | 94.38 212 | 94.08 205 | 95.31 246 | 98.27 180 | 90.02 318 | 99.29 246 | 98.56 93 | 95.90 80 | 98.77 108 | 98.00 235 | 90.89 175 | 98.26 251 | 97.80 140 | 69.20 395 | 97.64 252 |
|
| ET-MVSNet_ETH3D | | | 94.37 213 | 93.28 230 | 97.64 168 | 98.30 176 | 97.99 73 | 99.99 4 | 97.61 255 | 94.35 130 | 71.57 401 | 99.45 122 | 96.23 35 | 95.34 371 | 96.91 169 | 85.14 311 | 99.59 137 |
|
| MSDG | | | 94.37 213 | 93.36 228 | 97.40 183 | 98.88 137 | 93.95 226 | 99.37 234 | 97.38 280 | 85.75 349 | 90.80 264 | 99.17 149 | 84.11 255 | 99.88 105 | 86.35 327 | 98.43 151 | 98.36 238 |
|
| GeoE | | | 94.36 215 | 93.48 222 | 96.99 197 | 97.29 249 | 93.54 237 | 99.96 35 | 96.72 349 | 88.35 314 | 93.43 233 | 98.94 175 | 82.05 266 | 98.05 263 | 88.12 308 | 96.48 199 | 99.37 177 |
|
| miper_enhance_ethall | | | 94.36 215 | 93.98 208 | 95.49 237 | 98.68 148 | 95.24 189 | 99.73 168 | 97.29 293 | 93.28 174 | 89.86 276 | 95.97 301 | 94.37 83 | 97.05 311 | 92.20 250 | 84.45 316 | 94.19 302 |
|
| tpmvs | | | 94.28 217 | 93.57 219 | 96.40 215 | 98.55 159 | 91.50 289 | 95.70 389 | 98.55 99 | 87.47 324 | 92.15 250 | 94.26 364 | 91.42 160 | 98.95 193 | 88.15 306 | 95.85 213 | 98.76 225 |
|
| test_fmvs1_n | | | 94.25 218 | 94.36 197 | 93.92 299 | 97.68 222 | 83.70 373 | 99.90 93 | 96.57 355 | 97.40 28 | 99.67 39 | 98.88 179 | 61.82 391 | 99.92 91 | 98.23 117 | 99.13 130 | 98.14 243 |
|
| FIs | | | 94.10 219 | 93.43 223 | 96.11 223 | 94.70 324 | 96.82 123 | 99.58 199 | 98.93 45 | 92.54 208 | 89.34 291 | 97.31 255 | 87.62 217 | 97.10 308 | 94.22 218 | 86.58 300 | 94.40 285 |
|
| CLD-MVS | | | 94.06 220 | 93.90 211 | 94.55 273 | 96.02 289 | 90.69 302 | 99.98 15 | 97.72 242 | 96.62 62 | 91.05 262 | 98.85 187 | 77.21 311 | 98.47 221 | 98.11 123 | 89.51 269 | 94.48 278 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| testing3 | | | 93.92 221 | 94.23 201 | 92.99 326 | 97.54 231 | 90.23 313 | 99.99 4 | 99.16 30 | 90.57 269 | 91.33 259 | 98.63 202 | 92.99 126 | 92.52 398 | 82.46 354 | 95.39 224 | 96.22 269 |
|
| test0.0.03 1 | | | 93.86 222 | 93.61 215 | 94.64 267 | 95.02 320 | 92.18 269 | 99.93 78 | 98.58 88 | 94.07 144 | 87.96 318 | 98.50 212 | 93.90 101 | 94.96 376 | 81.33 361 | 93.17 253 | 96.78 261 |
|
| X-MVStestdata | | | 93.83 223 | 92.06 256 | 99.15 59 | 99.94 13 | 97.50 95 | 99.94 71 | 98.42 147 | 96.22 75 | 99.41 70 | 41.37 424 | 94.34 84 | 99.96 65 | 98.92 76 | 99.95 50 | 99.99 23 |
|
| GA-MVS | | | 93.83 223 | 92.84 236 | 96.80 202 | 95.73 302 | 93.57 235 | 99.88 105 | 97.24 298 | 92.57 207 | 92.92 241 | 96.66 278 | 78.73 304 | 97.67 280 | 87.75 311 | 94.06 243 | 99.17 199 |
|
| FC-MVSNet-test | | | 93.81 225 | 93.15 232 | 95.80 233 | 94.30 332 | 96.20 150 | 99.42 226 | 98.89 49 | 92.33 218 | 89.03 301 | 97.27 257 | 87.39 220 | 96.83 328 | 93.20 237 | 86.48 301 | 94.36 287 |
|
| ADS-MVSNet2 | | | 93.80 226 | 93.88 212 | 93.55 312 | 97.87 205 | 85.94 360 | 94.24 391 | 96.84 340 | 90.07 279 | 96.43 189 | 94.48 359 | 90.29 186 | 95.37 370 | 87.44 313 | 97.23 181 | 99.36 179 |
|
| cl22 | | | 93.77 227 | 93.25 231 | 95.33 245 | 99.49 95 | 94.43 209 | 99.61 195 | 98.09 209 | 90.38 272 | 89.16 299 | 95.61 310 | 90.56 180 | 97.34 291 | 91.93 254 | 84.45 316 | 94.21 301 |
|
| VDD-MVS | | | 93.77 227 | 92.94 235 | 96.27 220 | 98.55 159 | 90.22 314 | 98.77 305 | 97.79 238 | 90.85 262 | 96.82 179 | 99.42 123 | 61.18 394 | 99.77 131 | 98.95 73 | 94.13 241 | 98.82 222 |
|
| EI-MVSNet | | | 93.73 229 | 93.40 227 | 94.74 263 | 96.80 271 | 92.69 257 | 99.06 268 | 97.67 246 | 88.96 298 | 91.39 257 | 99.02 157 | 88.75 207 | 97.30 295 | 91.07 265 | 87.85 291 | 94.22 299 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 230 | 93.86 213 | 93.29 317 | 97.06 255 | 86.16 358 | 99.80 143 | 96.83 341 | 92.66 200 | 92.58 246 | 97.83 245 | 81.39 274 | 97.67 280 | 89.75 291 | 96.87 192 | 96.05 271 |
|
| tpm | | | 93.70 231 | 93.41 226 | 94.58 271 | 95.36 315 | 87.41 350 | 97.01 366 | 96.90 336 | 90.85 262 | 96.72 182 | 94.14 365 | 90.40 183 | 96.84 326 | 90.75 275 | 88.54 283 | 99.51 160 |
|
| PS-MVSNAJss | | | 93.64 232 | 93.31 229 | 94.61 268 | 92.11 370 | 92.19 268 | 99.12 259 | 97.38 280 | 92.51 211 | 88.45 309 | 96.99 268 | 91.20 164 | 97.29 298 | 94.36 212 | 87.71 293 | 94.36 287 |
|
| test_vis1_n | | | 93.61 233 | 93.03 234 | 95.35 243 | 95.86 294 | 86.94 354 | 99.87 108 | 96.36 361 | 96.85 49 | 99.54 57 | 98.79 189 | 52.41 404 | 99.83 121 | 98.64 96 | 98.97 136 | 99.29 191 |
|
| sd_testset | | | 93.55 234 | 92.83 237 | 95.74 234 | 98.92 130 | 90.89 299 | 98.24 337 | 98.85 56 | 92.41 214 | 92.55 247 | 97.85 243 | 71.07 357 | 98.68 212 | 93.93 220 | 91.62 259 | 97.64 252 |
|
| gg-mvs-nofinetune | | | 93.51 235 | 91.86 261 | 98.47 117 | 97.72 219 | 97.96 77 | 92.62 399 | 98.51 110 | 74.70 401 | 97.33 164 | 69.59 415 | 98.91 4 | 97.79 275 | 97.77 145 | 99.56 103 | 99.67 118 |
|
| nrg030 | | | 93.51 235 | 92.53 248 | 96.45 213 | 94.36 330 | 97.20 107 | 99.81 139 | 97.16 305 | 91.60 237 | 89.86 276 | 97.46 250 | 86.37 233 | 97.68 279 | 95.88 182 | 80.31 352 | 94.46 279 |
|
| tpm cat1 | | | 93.51 235 | 92.52 249 | 96.47 211 | 97.77 212 | 91.47 290 | 96.13 381 | 98.06 212 | 80.98 383 | 92.91 242 | 93.78 368 | 89.66 191 | 98.87 195 | 87.03 322 | 96.39 200 | 99.09 207 |
|
| CR-MVSNet | | | 93.45 238 | 92.62 242 | 95.94 228 | 96.29 281 | 92.66 258 | 92.01 402 | 96.23 363 | 92.62 202 | 96.94 174 | 93.31 373 | 91.04 169 | 96.03 360 | 79.23 370 | 95.96 208 | 99.13 204 |
|
| AUN-MVS | | | 93.28 239 | 92.60 243 | 95.34 244 | 98.29 177 | 90.09 317 | 99.31 241 | 98.56 93 | 91.80 234 | 96.35 193 | 98.00 235 | 89.38 196 | 98.28 247 | 92.46 247 | 69.22 394 | 97.64 252 |
|
| OPM-MVS | | | 93.21 240 | 92.80 238 | 94.44 280 | 93.12 352 | 90.85 300 | 99.77 149 | 97.61 255 | 96.19 77 | 91.56 256 | 98.65 199 | 75.16 337 | 98.47 221 | 93.78 229 | 89.39 270 | 93.99 324 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| dmvs_re | | | 93.20 241 | 93.15 232 | 93.34 315 | 96.54 279 | 83.81 372 | 98.71 309 | 98.51 110 | 91.39 249 | 92.37 249 | 98.56 209 | 78.66 305 | 97.83 274 | 93.89 221 | 89.74 263 | 98.38 237 |
|
| kuosan | | | 93.17 242 | 92.60 243 | 94.86 261 | 98.40 168 | 89.54 326 | 98.44 326 | 98.53 105 | 84.46 362 | 88.49 308 | 97.92 240 | 90.57 179 | 97.05 311 | 83.10 350 | 93.49 249 | 97.99 245 |
|
| miper_ehance_all_eth | | | 93.16 243 | 92.60 243 | 94.82 262 | 97.57 230 | 93.56 236 | 99.50 214 | 97.07 316 | 88.75 305 | 88.85 303 | 95.52 316 | 90.97 171 | 96.74 331 | 90.77 274 | 84.45 316 | 94.17 303 |
|
| VDDNet | | | 93.12 244 | 91.91 259 | 96.76 204 | 96.67 278 | 92.65 260 | 98.69 312 | 98.21 193 | 82.81 375 | 97.75 154 | 99.28 136 | 61.57 392 | 99.48 164 | 98.09 125 | 94.09 242 | 98.15 241 |
|
| Anonymous202405211 | | | 93.10 245 | 91.99 257 | 96.40 215 | 99.10 113 | 89.65 324 | 98.88 292 | 97.93 224 | 83.71 367 | 94.00 229 | 98.75 191 | 68.79 362 | 99.88 105 | 95.08 192 | 91.71 258 | 99.68 116 |
|
| UniMVSNet (Re) | | | 93.07 246 | 92.13 253 | 95.88 229 | 94.84 321 | 96.24 149 | 99.88 105 | 98.98 38 | 92.49 212 | 89.25 293 | 95.40 323 | 87.09 224 | 97.14 304 | 93.13 241 | 78.16 363 | 94.26 295 |
|
| LPG-MVS_test | | | 92.96 247 | 92.71 241 | 93.71 306 | 95.43 313 | 88.67 336 | 99.75 158 | 97.62 252 | 92.81 190 | 90.05 269 | 98.49 213 | 75.24 333 | 98.40 230 | 95.84 183 | 89.12 271 | 94.07 316 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 248 | 92.11 254 | 95.49 237 | 94.61 326 | 95.28 187 | 99.83 134 | 99.08 33 | 91.49 240 | 89.21 296 | 96.86 272 | 87.14 223 | 96.73 332 | 93.20 237 | 77.52 368 | 94.46 279 |
|
| WB-MVSnew | | | 92.90 249 | 92.77 240 | 93.26 319 | 96.95 261 | 93.63 234 | 99.71 175 | 98.16 203 | 91.49 240 | 94.28 225 | 98.14 230 | 81.33 276 | 96.48 341 | 79.47 369 | 95.46 221 | 89.68 395 |
|
| ACMM | | 91.95 10 | 92.88 250 | 92.52 249 | 93.98 298 | 95.75 301 | 89.08 332 | 99.77 149 | 97.52 267 | 93.00 182 | 89.95 273 | 97.99 237 | 76.17 326 | 98.46 224 | 93.63 233 | 88.87 275 | 94.39 286 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_djsdf | | | 92.83 251 | 92.29 252 | 94.47 278 | 91.90 373 | 92.46 263 | 99.55 206 | 97.27 295 | 91.17 252 | 89.96 272 | 96.07 299 | 81.10 278 | 96.89 323 | 94.67 207 | 88.91 273 | 94.05 318 |
|
| D2MVS | | | 92.76 252 | 92.59 247 | 93.27 318 | 95.13 316 | 89.54 326 | 99.69 180 | 99.38 22 | 92.26 219 | 87.59 323 | 94.61 356 | 85.05 246 | 97.79 275 | 91.59 259 | 88.01 289 | 92.47 368 |
|
| ACMP | | 92.05 9 | 92.74 253 | 92.42 251 | 93.73 304 | 95.91 293 | 88.72 335 | 99.81 139 | 97.53 265 | 94.13 140 | 87.00 332 | 98.23 228 | 74.07 343 | 98.47 221 | 96.22 177 | 88.86 276 | 93.99 324 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| VPA-MVSNet | | | 92.70 254 | 91.55 266 | 96.16 222 | 95.09 317 | 96.20 150 | 98.88 292 | 99.00 36 | 91.02 259 | 91.82 254 | 95.29 333 | 76.05 328 | 97.96 268 | 95.62 187 | 81.19 339 | 94.30 293 |
|
| FMVSNet3 | | | 92.69 255 | 91.58 264 | 95.99 225 | 98.29 177 | 97.42 100 | 99.26 250 | 97.62 252 | 89.80 285 | 89.68 280 | 95.32 329 | 81.62 273 | 96.27 350 | 87.01 323 | 85.65 305 | 94.29 294 |
|
| IterMVS-LS | | | 92.69 255 | 92.11 254 | 94.43 282 | 96.80 271 | 92.74 254 | 99.45 224 | 96.89 337 | 88.98 296 | 89.65 283 | 95.38 326 | 88.77 206 | 96.34 347 | 90.98 269 | 82.04 333 | 94.22 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Patchmatch-test | | | 92.65 257 | 91.50 267 | 96.10 224 | 96.85 268 | 90.49 308 | 91.50 404 | 97.19 300 | 82.76 376 | 90.23 268 | 95.59 312 | 95.02 59 | 98.00 265 | 77.41 380 | 96.98 190 | 99.82 95 |
|
| c3_l | | | 92.53 258 | 91.87 260 | 94.52 274 | 97.40 240 | 92.99 250 | 99.40 227 | 96.93 334 | 87.86 320 | 88.69 306 | 95.44 321 | 89.95 189 | 96.44 343 | 90.45 280 | 80.69 349 | 94.14 312 |
|
| AllTest | | | 92.48 259 | 91.64 262 | 95.00 254 | 99.01 118 | 88.43 340 | 98.94 284 | 96.82 343 | 86.50 338 | 88.71 304 | 98.47 217 | 74.73 339 | 99.88 105 | 85.39 335 | 96.18 203 | 96.71 262 |
|
| DU-MVS | | | 92.46 260 | 91.45 269 | 95.49 237 | 94.05 335 | 95.28 187 | 99.81 139 | 98.74 65 | 92.25 220 | 89.21 296 | 96.64 280 | 81.66 271 | 96.73 332 | 93.20 237 | 77.52 368 | 94.46 279 |
|
| eth_miper_zixun_eth | | | 92.41 261 | 91.93 258 | 93.84 303 | 97.28 250 | 90.68 303 | 98.83 299 | 96.97 328 | 88.57 310 | 89.19 298 | 95.73 307 | 89.24 201 | 96.69 334 | 89.97 289 | 81.55 336 | 94.15 309 |
|
| DIV-MVS_self_test | | | 92.32 262 | 91.60 263 | 94.47 278 | 97.31 247 | 92.74 254 | 99.58 199 | 96.75 347 | 86.99 333 | 87.64 322 | 95.54 314 | 89.55 194 | 96.50 340 | 88.58 300 | 82.44 330 | 94.17 303 |
|
| cl____ | | | 92.31 263 | 91.58 264 | 94.52 274 | 97.33 246 | 92.77 252 | 99.57 202 | 96.78 346 | 86.97 334 | 87.56 324 | 95.51 317 | 89.43 195 | 96.62 336 | 88.60 299 | 82.44 330 | 94.16 308 |
|
| LCM-MVSNet-Re | | | 92.31 263 | 92.60 243 | 91.43 344 | 97.53 232 | 79.27 396 | 99.02 277 | 91.83 411 | 92.07 223 | 80.31 376 | 94.38 362 | 83.50 258 | 95.48 368 | 97.22 157 | 97.58 174 | 99.54 151 |
|
| WR-MVS | | | 92.31 263 | 91.25 271 | 95.48 240 | 94.45 329 | 95.29 186 | 99.60 196 | 98.68 71 | 90.10 278 | 88.07 317 | 96.89 270 | 80.68 284 | 96.80 330 | 93.14 240 | 79.67 356 | 94.36 287 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 266 | 91.49 268 | 94.25 287 | 99.00 120 | 88.04 346 | 98.42 330 | 96.70 350 | 82.30 378 | 88.43 312 | 99.01 159 | 76.97 315 | 99.85 111 | 86.11 331 | 96.50 197 | 94.86 273 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240529 | | | 92.10 267 | 90.65 279 | 96.47 211 | 98.82 140 | 90.61 305 | 98.72 308 | 98.67 74 | 75.54 398 | 93.90 231 | 98.58 207 | 66.23 375 | 99.90 94 | 94.70 206 | 90.67 262 | 98.90 219 |
|
| pmmvs4 | | | 92.10 267 | 91.07 275 | 95.18 249 | 92.82 361 | 94.96 197 | 99.48 218 | 96.83 341 | 87.45 325 | 88.66 307 | 96.56 284 | 83.78 256 | 96.83 328 | 89.29 293 | 84.77 314 | 93.75 340 |
|
| jajsoiax | | | 91.92 269 | 91.18 272 | 94.15 288 | 91.35 380 | 90.95 297 | 99.00 278 | 97.42 276 | 92.61 203 | 87.38 328 | 97.08 262 | 72.46 348 | 97.36 289 | 94.53 210 | 88.77 277 | 94.13 313 |
|
| XXY-MVS | | | 91.82 270 | 90.46 282 | 95.88 229 | 93.91 338 | 95.40 183 | 98.87 295 | 97.69 245 | 88.63 309 | 87.87 319 | 97.08 262 | 74.38 342 | 97.89 272 | 91.66 258 | 84.07 320 | 94.35 290 |
|
| miper_lstm_enhance | | | 91.81 271 | 91.39 270 | 93.06 325 | 97.34 244 | 89.18 330 | 99.38 232 | 96.79 345 | 86.70 337 | 87.47 326 | 95.22 336 | 90.00 188 | 95.86 364 | 88.26 304 | 81.37 338 | 94.15 309 |
|
| mvs_tets | | | 91.81 271 | 91.08 274 | 94.00 296 | 91.63 377 | 90.58 306 | 98.67 314 | 97.43 274 | 92.43 213 | 87.37 329 | 97.05 265 | 71.76 350 | 97.32 293 | 94.75 204 | 88.68 279 | 94.11 314 |
|
| VPNet | | | 91.81 271 | 90.46 282 | 95.85 231 | 94.74 323 | 95.54 177 | 98.98 279 | 98.59 87 | 92.14 221 | 90.77 265 | 97.44 251 | 68.73 364 | 97.54 285 | 94.89 200 | 77.89 365 | 94.46 279 |
|
| RPSCF | | | 91.80 274 | 92.79 239 | 88.83 367 | 98.15 190 | 69.87 405 | 98.11 344 | 96.60 354 | 83.93 365 | 94.33 224 | 99.27 139 | 79.60 295 | 99.46 166 | 91.99 253 | 93.16 254 | 97.18 259 |
|
| PVSNet_0 | | 88.03 19 | 91.80 274 | 90.27 288 | 96.38 217 | 98.27 180 | 90.46 309 | 99.94 71 | 99.61 13 | 93.99 149 | 86.26 344 | 97.39 254 | 71.13 356 | 99.89 99 | 98.77 87 | 67.05 400 | 98.79 224 |
|
| anonymousdsp | | | 91.79 276 | 90.92 276 | 94.41 283 | 90.76 385 | 92.93 251 | 98.93 286 | 97.17 303 | 89.08 291 | 87.46 327 | 95.30 330 | 78.43 309 | 96.92 321 | 92.38 248 | 88.73 278 | 93.39 351 |
|
| JIA-IIPM | | | 91.76 277 | 90.70 278 | 94.94 256 | 96.11 286 | 87.51 349 | 93.16 398 | 98.13 208 | 75.79 397 | 97.58 156 | 77.68 412 | 92.84 131 | 97.97 266 | 88.47 303 | 96.54 195 | 99.33 185 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 278 | 90.61 281 | 94.87 258 | 93.69 342 | 93.98 225 | 99.69 180 | 98.65 75 | 91.03 258 | 88.44 310 | 96.83 276 | 80.05 292 | 96.18 353 | 90.26 285 | 76.89 376 | 94.45 284 |
|
| NR-MVSNet | | | 91.56 279 | 90.22 289 | 95.60 235 | 94.05 335 | 95.76 165 | 98.25 336 | 98.70 68 | 91.16 254 | 80.78 375 | 96.64 280 | 83.23 261 | 96.57 338 | 91.41 260 | 77.73 367 | 94.46 279 |
|
| dongtai | | | 91.55 280 | 91.13 273 | 92.82 329 | 98.16 189 | 86.35 357 | 99.47 219 | 98.51 110 | 83.24 370 | 85.07 353 | 97.56 248 | 90.33 184 | 94.94 377 | 76.09 386 | 91.73 257 | 97.18 259 |
|
| v2v482 | | | 91.30 281 | 90.07 295 | 95.01 253 | 93.13 350 | 93.79 228 | 99.77 149 | 97.02 321 | 88.05 317 | 89.25 293 | 95.37 327 | 80.73 283 | 97.15 303 | 87.28 317 | 80.04 355 | 94.09 315 |
|
| WR-MVS_H | | | 91.30 281 | 90.35 285 | 94.15 288 | 94.17 334 | 92.62 261 | 99.17 257 | 98.94 41 | 88.87 302 | 86.48 340 | 94.46 361 | 84.36 252 | 96.61 337 | 88.19 305 | 78.51 361 | 93.21 356 |
|
| tt0805 | | | 91.28 283 | 90.18 291 | 94.60 269 | 96.26 283 | 87.55 348 | 98.39 331 | 98.72 66 | 89.00 295 | 89.22 295 | 98.47 217 | 62.98 387 | 98.96 192 | 90.57 277 | 88.00 290 | 97.28 258 |
|
| V42 | | | 91.28 283 | 90.12 294 | 94.74 263 | 93.42 347 | 93.46 239 | 99.68 182 | 97.02 321 | 87.36 326 | 89.85 278 | 95.05 340 | 81.31 277 | 97.34 291 | 87.34 316 | 80.07 354 | 93.40 350 |
|
| CP-MVSNet | | | 91.23 285 | 90.22 289 | 94.26 286 | 93.96 337 | 92.39 265 | 99.09 261 | 98.57 90 | 88.95 299 | 86.42 341 | 96.57 283 | 79.19 299 | 96.37 345 | 90.29 284 | 78.95 358 | 94.02 319 |
|
| XVG-ACMP-BASELINE | | | 91.22 286 | 90.75 277 | 92.63 332 | 93.73 341 | 85.61 361 | 98.52 323 | 97.44 273 | 92.77 194 | 89.90 275 | 96.85 273 | 66.64 374 | 98.39 232 | 92.29 249 | 88.61 280 | 93.89 332 |
|
| v1144 | | | 91.09 287 | 89.83 296 | 94.87 258 | 93.25 349 | 93.69 233 | 99.62 193 | 96.98 326 | 86.83 336 | 89.64 284 | 94.99 345 | 80.94 280 | 97.05 311 | 85.08 338 | 81.16 340 | 93.87 334 |
|
| FMVSNet2 | | | 91.02 288 | 89.56 302 | 95.41 242 | 97.53 232 | 95.74 166 | 98.98 279 | 97.41 278 | 87.05 330 | 88.43 312 | 95.00 344 | 71.34 353 | 96.24 352 | 85.12 337 | 85.21 310 | 94.25 297 |
|
| MVP-Stereo | | | 90.93 289 | 90.45 284 | 92.37 334 | 91.25 382 | 88.76 333 | 98.05 347 | 96.17 365 | 87.27 328 | 84.04 357 | 95.30 330 | 78.46 308 | 97.27 300 | 83.78 346 | 99.70 89 | 91.09 379 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| IterMVS | | | 90.91 290 | 90.17 292 | 93.12 322 | 96.78 274 | 90.42 311 | 98.89 290 | 97.05 320 | 89.03 293 | 86.49 339 | 95.42 322 | 76.59 320 | 95.02 374 | 87.22 318 | 84.09 319 | 93.93 329 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| GBi-Net | | | 90.88 291 | 89.82 297 | 94.08 291 | 97.53 232 | 91.97 271 | 98.43 327 | 96.95 329 | 87.05 330 | 89.68 280 | 94.72 350 | 71.34 353 | 96.11 355 | 87.01 323 | 85.65 305 | 94.17 303 |
|
| test1 | | | 90.88 291 | 89.82 297 | 94.08 291 | 97.53 232 | 91.97 271 | 98.43 327 | 96.95 329 | 87.05 330 | 89.68 280 | 94.72 350 | 71.34 353 | 96.11 355 | 87.01 323 | 85.65 305 | 94.17 303 |
|
| IterMVS-SCA-FT | | | 90.85 293 | 90.16 293 | 92.93 327 | 96.72 276 | 89.96 319 | 98.89 290 | 96.99 324 | 88.95 299 | 86.63 336 | 95.67 308 | 76.48 322 | 95.00 375 | 87.04 321 | 84.04 322 | 93.84 336 |
|
| v144192 | | | 90.79 294 | 89.52 304 | 94.59 270 | 93.11 353 | 92.77 252 | 99.56 204 | 96.99 324 | 86.38 340 | 89.82 279 | 94.95 347 | 80.50 288 | 97.10 308 | 83.98 344 | 80.41 350 | 93.90 331 |
|
| v148 | | | 90.70 295 | 89.63 300 | 93.92 299 | 92.97 356 | 90.97 294 | 99.75 158 | 96.89 337 | 87.51 323 | 88.27 315 | 95.01 342 | 81.67 270 | 97.04 314 | 87.40 315 | 77.17 373 | 93.75 340 |
|
| MS-PatchMatch | | | 90.65 296 | 90.30 287 | 91.71 343 | 94.22 333 | 85.50 363 | 98.24 337 | 97.70 243 | 88.67 307 | 86.42 341 | 96.37 288 | 67.82 369 | 98.03 264 | 83.62 347 | 99.62 95 | 91.60 376 |
|
| ACMH | | 89.72 17 | 90.64 297 | 89.63 300 | 93.66 310 | 95.64 310 | 88.64 338 | 98.55 319 | 97.45 272 | 89.03 293 | 81.62 370 | 97.61 247 | 69.75 360 | 98.41 228 | 89.37 292 | 87.62 295 | 93.92 330 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PS-CasMVS | | | 90.63 298 | 89.51 305 | 93.99 297 | 93.83 339 | 91.70 284 | 98.98 279 | 98.52 107 | 88.48 311 | 86.15 345 | 96.53 285 | 75.46 331 | 96.31 349 | 88.83 297 | 78.86 360 | 93.95 327 |
|
| v1192 | | | 90.62 299 | 89.25 309 | 94.72 265 | 93.13 350 | 93.07 246 | 99.50 214 | 97.02 321 | 86.33 341 | 89.56 287 | 95.01 342 | 79.22 298 | 97.09 310 | 82.34 356 | 81.16 340 | 94.01 321 |
|
| v8 | | | 90.54 300 | 89.17 310 | 94.66 266 | 93.43 346 | 93.40 242 | 99.20 254 | 96.94 333 | 85.76 347 | 87.56 324 | 94.51 357 | 81.96 268 | 97.19 301 | 84.94 339 | 78.25 362 | 93.38 352 |
|
| v1921920 | | | 90.46 301 | 89.12 311 | 94.50 276 | 92.96 357 | 92.46 263 | 99.49 216 | 96.98 326 | 86.10 343 | 89.61 286 | 95.30 330 | 78.55 307 | 97.03 316 | 82.17 357 | 80.89 348 | 94.01 321 |
|
| our_test_3 | | | 90.39 302 | 89.48 307 | 93.12 322 | 92.40 366 | 89.57 325 | 99.33 238 | 96.35 362 | 87.84 321 | 85.30 350 | 94.99 345 | 84.14 254 | 96.09 358 | 80.38 365 | 84.56 315 | 93.71 345 |
|
| PatchT | | | 90.38 303 | 88.75 319 | 95.25 248 | 95.99 290 | 90.16 315 | 91.22 406 | 97.54 263 | 76.80 393 | 97.26 166 | 86.01 406 | 91.88 156 | 96.07 359 | 66.16 405 | 95.91 212 | 99.51 160 |
|
| ACMH+ | | 89.98 16 | 90.35 304 | 89.54 303 | 92.78 331 | 95.99 290 | 86.12 359 | 98.81 301 | 97.18 302 | 89.38 288 | 83.14 363 | 97.76 246 | 68.42 366 | 98.43 226 | 89.11 295 | 86.05 303 | 93.78 339 |
|
| Baseline_NR-MVSNet | | | 90.33 305 | 89.51 305 | 92.81 330 | 92.84 359 | 89.95 320 | 99.77 149 | 93.94 401 | 84.69 361 | 89.04 300 | 95.66 309 | 81.66 271 | 96.52 339 | 90.99 268 | 76.98 374 | 91.97 374 |
|
| MIMVSNet | | | 90.30 306 | 88.67 320 | 95.17 250 | 96.45 280 | 91.64 286 | 92.39 400 | 97.15 306 | 85.99 344 | 90.50 266 | 93.19 375 | 66.95 372 | 94.86 379 | 82.01 358 | 93.43 250 | 99.01 214 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 307 | 89.05 314 | 94.02 294 | 95.08 318 | 90.15 316 | 97.19 361 | 97.43 274 | 84.91 359 | 83.99 359 | 97.06 264 | 74.00 344 | 98.28 247 | 84.08 342 | 87.71 293 | 93.62 346 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| v10 | | | 90.25 308 | 88.82 317 | 94.57 272 | 93.53 344 | 93.43 240 | 99.08 263 | 96.87 339 | 85.00 356 | 87.34 330 | 94.51 357 | 80.93 281 | 97.02 318 | 82.85 352 | 79.23 357 | 93.26 354 |
|
| v1240 | | | 90.20 309 | 88.79 318 | 94.44 280 | 93.05 355 | 92.27 267 | 99.38 232 | 96.92 335 | 85.89 345 | 89.36 290 | 94.87 349 | 77.89 310 | 97.03 316 | 80.66 364 | 81.08 343 | 94.01 321 |
|
| PEN-MVS | | | 90.19 310 | 89.06 313 | 93.57 311 | 93.06 354 | 90.90 298 | 99.06 268 | 98.47 119 | 88.11 316 | 85.91 347 | 96.30 290 | 76.67 318 | 95.94 363 | 87.07 320 | 76.91 375 | 93.89 332 |
|
| pmmvs5 | | | 90.17 311 | 89.09 312 | 93.40 314 | 92.10 371 | 89.77 323 | 99.74 161 | 95.58 378 | 85.88 346 | 87.24 331 | 95.74 305 | 73.41 346 | 96.48 341 | 88.54 301 | 83.56 324 | 93.95 327 |
|
| EU-MVSNet | | | 90.14 312 | 90.34 286 | 89.54 362 | 92.55 364 | 81.06 390 | 98.69 312 | 98.04 215 | 91.41 248 | 86.59 337 | 96.84 275 | 80.83 282 | 93.31 393 | 86.20 329 | 81.91 334 | 94.26 295 |
|
| UniMVSNet_ETH3D | | | 90.06 313 | 88.58 321 | 94.49 277 | 94.67 325 | 88.09 345 | 97.81 353 | 97.57 260 | 83.91 366 | 88.44 310 | 97.41 252 | 57.44 398 | 97.62 282 | 91.41 260 | 88.59 282 | 97.77 250 |
|
| Syy-MVS | | | 90.00 314 | 90.63 280 | 88.11 374 | 97.68 222 | 74.66 401 | 99.71 175 | 98.35 169 | 90.79 264 | 92.10 251 | 98.67 196 | 79.10 301 | 93.09 394 | 63.35 408 | 95.95 210 | 96.59 264 |
|
| USDC | | | 90.00 314 | 88.96 315 | 93.10 324 | 94.81 322 | 88.16 344 | 98.71 309 | 95.54 379 | 93.66 163 | 83.75 361 | 97.20 258 | 65.58 377 | 98.31 243 | 83.96 345 | 87.49 297 | 92.85 362 |
|
| Anonymous20231211 | | | 89.86 316 | 88.44 323 | 94.13 290 | 98.93 127 | 90.68 303 | 98.54 321 | 98.26 186 | 76.28 394 | 86.73 334 | 95.54 314 | 70.60 358 | 97.56 284 | 90.82 273 | 80.27 353 | 94.15 309 |
|
| OurMVSNet-221017-0 | | | 89.81 317 | 89.48 307 | 90.83 350 | 91.64 376 | 81.21 388 | 98.17 342 | 95.38 382 | 91.48 242 | 85.65 349 | 97.31 255 | 72.66 347 | 97.29 298 | 88.15 306 | 84.83 313 | 93.97 326 |
|
| RPMNet | | | 89.76 318 | 87.28 334 | 97.19 192 | 96.29 281 | 92.66 258 | 92.01 402 | 98.31 178 | 70.19 408 | 96.94 174 | 85.87 407 | 87.25 222 | 99.78 128 | 62.69 409 | 95.96 208 | 99.13 204 |
|
| Patchmtry | | | 89.70 319 | 88.49 322 | 93.33 316 | 96.24 284 | 89.94 322 | 91.37 405 | 96.23 363 | 78.22 391 | 87.69 321 | 93.31 373 | 91.04 169 | 96.03 360 | 80.18 368 | 82.10 332 | 94.02 319 |
|
| v7n | | | 89.65 320 | 88.29 325 | 93.72 305 | 92.22 368 | 90.56 307 | 99.07 267 | 97.10 311 | 85.42 354 | 86.73 334 | 94.72 350 | 80.06 291 | 97.13 305 | 81.14 362 | 78.12 364 | 93.49 348 |
|
| ppachtmachnet_test | | | 89.58 321 | 88.35 324 | 93.25 320 | 92.40 366 | 90.44 310 | 99.33 238 | 96.73 348 | 85.49 352 | 85.90 348 | 95.77 304 | 81.09 279 | 96.00 362 | 76.00 387 | 82.49 329 | 93.30 353 |
|
| test_fmvs2 | | | 89.47 322 | 89.70 299 | 88.77 370 | 94.54 327 | 75.74 398 | 99.83 134 | 94.70 394 | 94.71 113 | 91.08 260 | 96.82 277 | 54.46 401 | 97.78 277 | 92.87 244 | 88.27 286 | 92.80 363 |
|
| DTE-MVSNet | | | 89.40 323 | 88.24 326 | 92.88 328 | 92.66 363 | 89.95 320 | 99.10 260 | 98.22 192 | 87.29 327 | 85.12 352 | 96.22 292 | 76.27 325 | 95.30 373 | 83.56 348 | 75.74 380 | 93.41 349 |
|
| pm-mvs1 | | | 89.36 324 | 87.81 330 | 94.01 295 | 93.40 348 | 91.93 274 | 98.62 317 | 96.48 359 | 86.25 342 | 83.86 360 | 96.14 295 | 73.68 345 | 97.04 314 | 86.16 330 | 75.73 381 | 93.04 359 |
|
| tfpnnormal | | | 89.29 325 | 87.61 332 | 94.34 285 | 94.35 331 | 94.13 221 | 98.95 283 | 98.94 41 | 83.94 364 | 84.47 356 | 95.51 317 | 74.84 338 | 97.39 288 | 77.05 383 | 80.41 350 | 91.48 378 |
|
| LF4IMVS | | | 89.25 326 | 88.85 316 | 90.45 355 | 92.81 362 | 81.19 389 | 98.12 343 | 94.79 391 | 91.44 244 | 86.29 343 | 97.11 260 | 65.30 380 | 98.11 258 | 88.53 302 | 85.25 309 | 92.07 371 |
|
| testgi | | | 89.01 327 | 88.04 328 | 91.90 339 | 93.49 345 | 84.89 367 | 99.73 168 | 95.66 376 | 93.89 158 | 85.14 351 | 98.17 229 | 59.68 395 | 94.66 381 | 77.73 379 | 88.88 274 | 96.16 270 |
|
| SixPastTwentyTwo | | | 88.73 328 | 88.01 329 | 90.88 347 | 91.85 374 | 82.24 381 | 98.22 340 | 95.18 387 | 88.97 297 | 82.26 366 | 96.89 270 | 71.75 351 | 96.67 335 | 84.00 343 | 82.98 325 | 93.72 344 |
|
| mmtdpeth | | | 88.52 329 | 87.75 331 | 90.85 349 | 95.71 305 | 83.47 375 | 98.94 284 | 94.85 389 | 88.78 304 | 97.19 168 | 89.58 392 | 63.29 385 | 98.97 190 | 98.54 101 | 62.86 408 | 90.10 391 |
|
| FMVSNet1 | | | 88.50 330 | 86.64 337 | 94.08 291 | 95.62 312 | 91.97 271 | 98.43 327 | 96.95 329 | 83.00 373 | 86.08 346 | 94.72 350 | 59.09 396 | 96.11 355 | 81.82 360 | 84.07 320 | 94.17 303 |
|
| FMVSNet5 | | | 88.32 331 | 87.47 333 | 90.88 347 | 96.90 266 | 88.39 342 | 97.28 359 | 95.68 375 | 82.60 377 | 84.67 355 | 92.40 381 | 79.83 293 | 91.16 403 | 76.39 385 | 81.51 337 | 93.09 357 |
|
| DSMNet-mixed | | | 88.28 332 | 88.24 326 | 88.42 372 | 89.64 393 | 75.38 400 | 98.06 346 | 89.86 415 | 85.59 351 | 88.20 316 | 92.14 383 | 76.15 327 | 91.95 401 | 78.46 376 | 96.05 206 | 97.92 246 |
|
| ttmdpeth | | | 88.23 333 | 87.06 336 | 91.75 342 | 89.91 392 | 87.35 351 | 98.92 289 | 95.73 373 | 87.92 319 | 84.02 358 | 96.31 289 | 68.23 368 | 96.84 326 | 86.33 328 | 76.12 378 | 91.06 380 |
|
| K. test v3 | | | 88.05 334 | 87.24 335 | 90.47 354 | 91.82 375 | 82.23 382 | 98.96 282 | 97.42 276 | 89.05 292 | 76.93 391 | 95.60 311 | 68.49 365 | 95.42 369 | 85.87 334 | 81.01 346 | 93.75 340 |
|
| KD-MVS_2432*1600 | | | 88.00 335 | 86.10 339 | 93.70 308 | 96.91 263 | 94.04 222 | 97.17 362 | 97.12 309 | 84.93 357 | 81.96 367 | 92.41 379 | 92.48 142 | 94.51 382 | 79.23 370 | 52.68 414 | 92.56 365 |
|
| miper_refine_blended | | | 88.00 335 | 86.10 339 | 93.70 308 | 96.91 263 | 94.04 222 | 97.17 362 | 97.12 309 | 84.93 357 | 81.96 367 | 92.41 379 | 92.48 142 | 94.51 382 | 79.23 370 | 52.68 414 | 92.56 365 |
|
| TinyColmap | | | 87.87 337 | 86.51 338 | 91.94 338 | 95.05 319 | 85.57 362 | 97.65 354 | 94.08 398 | 84.40 363 | 81.82 369 | 96.85 273 | 62.14 390 | 98.33 241 | 80.25 367 | 86.37 302 | 91.91 375 |
|
| TransMVSNet (Re) | | | 87.25 338 | 85.28 345 | 93.16 321 | 93.56 343 | 91.03 293 | 98.54 321 | 94.05 400 | 83.69 368 | 81.09 373 | 96.16 294 | 75.32 332 | 96.40 344 | 76.69 384 | 68.41 396 | 92.06 372 |
|
| Patchmatch-RL test | | | 86.90 339 | 85.98 343 | 89.67 361 | 84.45 404 | 75.59 399 | 89.71 410 | 92.43 408 | 86.89 335 | 77.83 388 | 90.94 387 | 94.22 90 | 93.63 390 | 87.75 311 | 69.61 391 | 99.79 100 |
|
| test_vis1_rt | | | 86.87 340 | 86.05 342 | 89.34 363 | 96.12 285 | 78.07 397 | 99.87 108 | 83.54 422 | 92.03 226 | 78.21 386 | 89.51 393 | 45.80 408 | 99.91 92 | 96.25 176 | 93.11 255 | 90.03 392 |
|
| Anonymous20231206 | | | 86.32 341 | 85.42 344 | 89.02 366 | 89.11 395 | 80.53 394 | 99.05 272 | 95.28 383 | 85.43 353 | 82.82 364 | 93.92 366 | 74.40 341 | 93.44 392 | 66.99 402 | 81.83 335 | 93.08 358 |
|
| MVS-HIRNet | | | 86.22 342 | 83.19 355 | 95.31 246 | 96.71 277 | 90.29 312 | 92.12 401 | 97.33 287 | 62.85 409 | 86.82 333 | 70.37 414 | 69.37 361 | 97.49 286 | 75.12 388 | 97.99 168 | 98.15 241 |
|
| pmmvs6 | | | 85.69 343 | 83.84 350 | 91.26 346 | 90.00 391 | 84.41 370 | 97.82 352 | 96.15 366 | 75.86 396 | 81.29 372 | 95.39 325 | 61.21 393 | 96.87 325 | 83.52 349 | 73.29 384 | 92.50 367 |
|
| test_0402 | | | 85.58 344 | 83.94 349 | 90.50 353 | 93.81 340 | 85.04 365 | 98.55 319 | 95.20 386 | 76.01 395 | 79.72 380 | 95.13 337 | 64.15 383 | 96.26 351 | 66.04 406 | 86.88 299 | 90.21 389 |
|
| UnsupCasMVSNet_eth | | | 85.52 345 | 83.99 347 | 90.10 358 | 89.36 394 | 83.51 374 | 96.65 372 | 97.99 217 | 89.14 290 | 75.89 395 | 93.83 367 | 63.25 386 | 93.92 386 | 81.92 359 | 67.90 399 | 92.88 361 |
|
| MDA-MVSNet_test_wron | | | 85.51 346 | 83.32 354 | 92.10 336 | 90.96 383 | 88.58 339 | 99.20 254 | 96.52 357 | 79.70 388 | 57.12 414 | 92.69 377 | 79.11 300 | 93.86 388 | 77.10 382 | 77.46 370 | 93.86 335 |
|
| YYNet1 | | | 85.50 347 | 83.33 353 | 92.00 337 | 90.89 384 | 88.38 343 | 99.22 253 | 96.55 356 | 79.60 389 | 57.26 413 | 92.72 376 | 79.09 302 | 93.78 389 | 77.25 381 | 77.37 371 | 93.84 336 |
|
| EG-PatchMatch MVS | | | 85.35 348 | 83.81 351 | 89.99 360 | 90.39 387 | 81.89 384 | 98.21 341 | 96.09 367 | 81.78 380 | 74.73 397 | 93.72 369 | 51.56 406 | 97.12 307 | 79.16 373 | 88.61 280 | 90.96 382 |
|
| Anonymous20240521 | | | 85.15 349 | 83.81 351 | 89.16 365 | 88.32 396 | 82.69 377 | 98.80 303 | 95.74 372 | 79.72 387 | 81.53 371 | 90.99 386 | 65.38 379 | 94.16 384 | 72.69 392 | 81.11 342 | 90.63 386 |
|
| MVStest1 | | | 85.03 350 | 82.76 359 | 91.83 340 | 92.95 358 | 89.16 331 | 98.57 318 | 94.82 390 | 71.68 406 | 68.54 406 | 95.11 339 | 83.17 262 | 95.66 366 | 74.69 389 | 65.32 403 | 90.65 385 |
|
| mvs5depth | | | 84.87 351 | 82.90 358 | 90.77 351 | 85.59 403 | 84.84 368 | 91.10 407 | 93.29 406 | 83.14 371 | 85.07 353 | 94.33 363 | 62.17 389 | 97.32 293 | 78.83 375 | 72.59 387 | 90.14 390 |
|
| TDRefinement | | | 84.76 352 | 82.56 360 | 91.38 345 | 74.58 418 | 84.80 369 | 97.36 358 | 94.56 395 | 84.73 360 | 80.21 377 | 96.12 298 | 63.56 384 | 98.39 232 | 87.92 309 | 63.97 406 | 90.95 383 |
|
| CMPMVS |  | 61.59 21 | 84.75 353 | 85.14 346 | 83.57 382 | 90.32 388 | 62.54 410 | 96.98 367 | 97.59 259 | 74.33 402 | 69.95 403 | 96.66 278 | 64.17 382 | 98.32 242 | 87.88 310 | 88.41 285 | 89.84 394 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test20.03 | | | 84.72 354 | 83.99 347 | 86.91 376 | 88.19 398 | 80.62 393 | 98.88 292 | 95.94 369 | 88.36 313 | 78.87 381 | 94.62 355 | 68.75 363 | 89.11 407 | 66.52 404 | 75.82 379 | 91.00 381 |
|
| CL-MVSNet_self_test | | | 84.50 355 | 83.15 356 | 88.53 371 | 86.00 401 | 81.79 385 | 98.82 300 | 97.35 283 | 85.12 355 | 83.62 362 | 90.91 388 | 76.66 319 | 91.40 402 | 69.53 398 | 60.36 411 | 92.40 369 |
|
| new_pmnet | | | 84.49 356 | 82.92 357 | 89.21 364 | 90.03 390 | 82.60 378 | 96.89 370 | 95.62 377 | 80.59 384 | 75.77 396 | 89.17 394 | 65.04 381 | 94.79 380 | 72.12 394 | 81.02 345 | 90.23 388 |
|
| MDA-MVSNet-bldmvs | | | 84.09 357 | 81.52 364 | 91.81 341 | 91.32 381 | 88.00 347 | 98.67 314 | 95.92 370 | 80.22 386 | 55.60 415 | 93.32 372 | 68.29 367 | 93.60 391 | 73.76 390 | 76.61 377 | 93.82 338 |
|
| pmmvs-eth3d | | | 84.03 358 | 81.97 362 | 90.20 357 | 84.15 405 | 87.09 353 | 98.10 345 | 94.73 393 | 83.05 372 | 74.10 399 | 87.77 401 | 65.56 378 | 94.01 385 | 81.08 363 | 69.24 393 | 89.49 398 |
|
| dmvs_testset | | | 83.79 359 | 86.07 341 | 76.94 389 | 92.14 369 | 48.60 424 | 96.75 371 | 90.27 414 | 89.48 287 | 78.65 383 | 98.55 211 | 79.25 297 | 86.65 412 | 66.85 403 | 82.69 327 | 95.57 272 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 360 | 81.68 363 | 90.03 359 | 88.30 397 | 82.82 376 | 98.46 324 | 95.22 385 | 73.92 403 | 76.00 394 | 91.29 385 | 55.00 400 | 96.94 320 | 68.40 400 | 88.51 284 | 90.34 387 |
|
| KD-MVS_self_test | | | 83.59 361 | 82.06 361 | 88.20 373 | 86.93 399 | 80.70 392 | 97.21 360 | 96.38 360 | 82.87 374 | 82.49 365 | 88.97 395 | 67.63 370 | 92.32 399 | 73.75 391 | 62.30 410 | 91.58 377 |
|
| MIMVSNet1 | | | 82.58 362 | 80.51 368 | 88.78 368 | 86.68 400 | 84.20 371 | 96.65 372 | 95.41 381 | 78.75 390 | 78.59 384 | 92.44 378 | 51.88 405 | 89.76 406 | 65.26 407 | 78.95 358 | 92.38 370 |
|
| mvsany_test3 | | | 82.12 363 | 81.14 365 | 85.06 380 | 81.87 409 | 70.41 404 | 97.09 364 | 92.14 409 | 91.27 251 | 77.84 387 | 88.73 396 | 39.31 411 | 95.49 367 | 90.75 275 | 71.24 388 | 89.29 400 |
|
| new-patchmatchnet | | | 81.19 364 | 79.34 371 | 86.76 377 | 82.86 408 | 80.36 395 | 97.92 349 | 95.27 384 | 82.09 379 | 72.02 400 | 86.87 403 | 62.81 388 | 90.74 405 | 71.10 395 | 63.08 407 | 89.19 401 |
|
| APD_test1 | | | 81.15 365 | 80.92 366 | 81.86 385 | 92.45 365 | 59.76 414 | 96.04 384 | 93.61 404 | 73.29 404 | 77.06 389 | 96.64 280 | 44.28 410 | 96.16 354 | 72.35 393 | 82.52 328 | 89.67 396 |
|
| test_method | | | 80.79 366 | 79.70 370 | 84.08 381 | 92.83 360 | 67.06 407 | 99.51 212 | 95.42 380 | 54.34 413 | 81.07 374 | 93.53 370 | 44.48 409 | 92.22 400 | 78.90 374 | 77.23 372 | 92.94 360 |
|
| PM-MVS | | | 80.47 367 | 78.88 372 | 85.26 379 | 83.79 407 | 72.22 402 | 95.89 387 | 91.08 412 | 85.71 350 | 76.56 393 | 88.30 397 | 36.64 412 | 93.90 387 | 82.39 355 | 69.57 392 | 89.66 397 |
|
| pmmvs3 | | | 80.27 368 | 77.77 373 | 87.76 375 | 80.32 413 | 82.43 380 | 98.23 339 | 91.97 410 | 72.74 405 | 78.75 382 | 87.97 400 | 57.30 399 | 90.99 404 | 70.31 396 | 62.37 409 | 89.87 393 |
|
| N_pmnet | | | 80.06 369 | 80.78 367 | 77.89 388 | 91.94 372 | 45.28 426 | 98.80 303 | 56.82 428 | 78.10 392 | 80.08 378 | 93.33 371 | 77.03 313 | 95.76 365 | 68.14 401 | 82.81 326 | 92.64 364 |
|
| test_fmvs3 | | | 79.99 370 | 80.17 369 | 79.45 387 | 84.02 406 | 62.83 408 | 99.05 272 | 93.49 405 | 88.29 315 | 80.06 379 | 86.65 404 | 28.09 416 | 88.00 408 | 88.63 298 | 73.27 385 | 87.54 404 |
|
| UnsupCasMVSNet_bld | | | 79.97 371 | 77.03 376 | 88.78 368 | 85.62 402 | 81.98 383 | 93.66 396 | 97.35 283 | 75.51 399 | 70.79 402 | 83.05 409 | 48.70 407 | 94.91 378 | 78.31 377 | 60.29 412 | 89.46 399 |
|
| test_f | | | 78.40 372 | 77.59 374 | 80.81 386 | 80.82 411 | 62.48 411 | 96.96 368 | 93.08 407 | 83.44 369 | 74.57 398 | 84.57 408 | 27.95 417 | 92.63 397 | 84.15 341 | 72.79 386 | 87.32 405 |
|
| WB-MVS | | | 76.28 373 | 77.28 375 | 73.29 393 | 81.18 410 | 54.68 418 | 97.87 351 | 94.19 397 | 81.30 381 | 69.43 404 | 90.70 389 | 77.02 314 | 82.06 416 | 35.71 421 | 68.11 398 | 83.13 407 |
|
| SSC-MVS | | | 75.42 374 | 76.40 377 | 72.49 397 | 80.68 412 | 53.62 419 | 97.42 356 | 94.06 399 | 80.42 385 | 68.75 405 | 90.14 391 | 76.54 321 | 81.66 417 | 33.25 422 | 66.34 402 | 82.19 408 |
|
| EGC-MVSNET | | | 69.38 375 | 63.76 385 | 86.26 378 | 90.32 388 | 81.66 387 | 96.24 380 | 93.85 402 | 0.99 425 | 3.22 426 | 92.33 382 | 52.44 403 | 92.92 396 | 59.53 412 | 84.90 312 | 84.21 406 |
|
| test_vis3_rt | | | 68.82 376 | 66.69 381 | 75.21 392 | 76.24 417 | 60.41 413 | 96.44 375 | 68.71 427 | 75.13 400 | 50.54 418 | 69.52 416 | 16.42 426 | 96.32 348 | 80.27 366 | 66.92 401 | 68.89 414 |
|
| FPMVS | | | 68.72 377 | 68.72 378 | 68.71 399 | 65.95 422 | 44.27 428 | 95.97 386 | 94.74 392 | 51.13 414 | 53.26 416 | 90.50 390 | 25.11 419 | 83.00 415 | 60.80 410 | 80.97 347 | 78.87 412 |
|
| testf1 | | | 68.38 378 | 66.92 379 | 72.78 395 | 78.80 414 | 50.36 421 | 90.95 408 | 87.35 420 | 55.47 411 | 58.95 410 | 88.14 398 | 20.64 421 | 87.60 409 | 57.28 413 | 64.69 404 | 80.39 410 |
|
| APD_test2 | | | 68.38 378 | 66.92 379 | 72.78 395 | 78.80 414 | 50.36 421 | 90.95 408 | 87.35 420 | 55.47 411 | 58.95 410 | 88.14 398 | 20.64 421 | 87.60 409 | 57.28 413 | 64.69 404 | 80.39 410 |
|
| LCM-MVSNet | | | 67.77 380 | 64.73 383 | 76.87 390 | 62.95 424 | 56.25 417 | 89.37 411 | 93.74 403 | 44.53 416 | 61.99 408 | 80.74 410 | 20.42 423 | 86.53 413 | 69.37 399 | 59.50 413 | 87.84 402 |
|
| PMMVS2 | | | 67.15 381 | 64.15 384 | 76.14 391 | 70.56 421 | 62.07 412 | 93.89 394 | 87.52 419 | 58.09 410 | 60.02 409 | 78.32 411 | 22.38 420 | 84.54 414 | 59.56 411 | 47.03 416 | 81.80 409 |
|
| Gipuma |  | | 66.95 382 | 65.00 382 | 72.79 394 | 91.52 378 | 67.96 406 | 66.16 417 | 95.15 388 | 47.89 415 | 58.54 412 | 67.99 417 | 29.74 414 | 87.54 411 | 50.20 416 | 77.83 366 | 62.87 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 65.23 383 | 62.94 386 | 72.13 398 | 44.90 427 | 50.03 423 | 81.05 414 | 89.42 418 | 38.45 417 | 48.51 419 | 99.90 18 | 54.09 402 | 78.70 419 | 91.84 257 | 18.26 421 | 87.64 403 |
|
| ANet_high | | | 56.10 384 | 52.24 387 | 67.66 400 | 49.27 426 | 56.82 416 | 83.94 413 | 82.02 423 | 70.47 407 | 33.28 423 | 64.54 418 | 17.23 425 | 69.16 421 | 45.59 418 | 23.85 420 | 77.02 413 |
|
| PMVS |  | 49.05 23 | 53.75 385 | 51.34 389 | 60.97 402 | 40.80 428 | 34.68 429 | 74.82 416 | 89.62 417 | 37.55 418 | 28.67 424 | 72.12 413 | 7.09 428 | 81.63 418 | 43.17 419 | 68.21 397 | 66.59 416 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 52.30 386 | 52.18 388 | 52.67 403 | 71.51 419 | 45.40 425 | 93.62 397 | 76.60 425 | 36.01 419 | 43.50 420 | 64.13 419 | 27.11 418 | 67.31 422 | 31.06 423 | 26.06 418 | 45.30 421 |
|
| MVE |  | 53.74 22 | 51.54 387 | 47.86 391 | 62.60 401 | 59.56 425 | 50.93 420 | 79.41 415 | 77.69 424 | 35.69 420 | 36.27 422 | 61.76 421 | 5.79 430 | 69.63 420 | 37.97 420 | 36.61 417 | 67.24 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 51.44 388 | 51.22 390 | 52.11 404 | 70.71 420 | 44.97 427 | 94.04 393 | 75.66 426 | 35.34 421 | 42.40 421 | 61.56 422 | 28.93 415 | 65.87 423 | 27.64 424 | 24.73 419 | 45.49 420 |
|
| testmvs | | | 40.60 389 | 44.45 392 | 29.05 406 | 19.49 430 | 14.11 432 | 99.68 182 | 18.47 429 | 20.74 422 | 64.59 407 | 98.48 216 | 10.95 427 | 17.09 426 | 56.66 415 | 11.01 422 | 55.94 419 |
|
| test123 | | | 37.68 390 | 39.14 393 | 33.31 405 | 19.94 429 | 24.83 431 | 98.36 332 | 9.75 430 | 15.53 423 | 51.31 417 | 87.14 402 | 19.62 424 | 17.74 425 | 47.10 417 | 3.47 424 | 57.36 418 |
|
| cdsmvs_eth3d_5k | | | 23.43 391 | 31.24 394 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 98.09 209 | 0.00 426 | 0.00 427 | 99.67 97 | 83.37 259 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| wuyk23d | | | 20.37 392 | 20.84 395 | 18.99 407 | 65.34 423 | 27.73 430 | 50.43 418 | 7.67 431 | 9.50 424 | 8.01 425 | 6.34 425 | 6.13 429 | 26.24 424 | 23.40 425 | 10.69 423 | 2.99 422 |
|
| ab-mvs-re | | | 8.28 393 | 11.04 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 99.40 128 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 7.60 394 | 10.13 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 91.20 164 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.02 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 427 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 90.97 294 | | | | | | | | 86.10 332 | | |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 89 | 99.95 54 | 98.36 167 | 95.58 89 | 99.52 60 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 152 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| PC_three_1452 | | | | | | | | | | 96.96 47 | 99.80 17 | 99.79 58 | 97.49 10 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 152 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 152 | 96.63 60 | 99.75 29 | 99.93 11 | 97.49 10 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 107 | 92.34 217 | 99.31 78 | 99.83 46 | 95.06 57 | 99.80 124 | 99.70 37 | 99.97 42 | |
|
| RE-MVS-def | | | | 98.13 55 | | 99.79 62 | 96.37 142 | 99.76 154 | 98.31 178 | 94.43 125 | 99.40 72 | 99.75 72 | 92.95 128 | | 98.90 79 | 99.92 64 | 99.97 61 |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 152 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 35 | | | | 99.80 54 | 97.44 14 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 135 | 97.27 34 | 99.80 17 | 99.94 4 | 97.18 21 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 135 | 97.26 36 | 99.80 17 | 99.88 24 | 96.71 27 | 100.00 1 | | | |
|
| 9.14 | | | | 98.38 37 | | 99.87 51 | | 99.91 87 | 98.33 174 | 93.22 175 | 99.78 26 | 99.89 22 | 94.57 75 | 99.85 111 | 99.84 22 | 99.97 42 | |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 35 | 98.40 156 | 97.66 21 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 96.48 63 | 99.83 13 | 99.91 14 | 97.87 5 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 54 | 98.43 135 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 35 | 98.42 147 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 19 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 137 |
|
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 63 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 69 | | | | 99.59 137 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 89 | | | | |
|
| ambc | | | | | 83.23 383 | 77.17 416 | 62.61 409 | 87.38 412 | 94.55 396 | | 76.72 392 | 86.65 404 | 30.16 413 | 96.36 346 | 84.85 340 | 69.86 390 | 90.73 384 |
|
| MTGPA |  | | | | | | | | 98.28 183 | | | | | | | | |
|
| test_post1 | | | | | | | | 95.78 388 | | | | 59.23 423 | 93.20 122 | 97.74 278 | 91.06 266 | | |
|
| test_post | | | | | | | | | | | | 63.35 420 | 94.43 77 | 98.13 257 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 384 | 95.12 54 | 97.95 269 | | | |
|
| GG-mvs-BLEND | | | | | 98.54 112 | 98.21 184 | 98.01 72 | 93.87 395 | 98.52 107 | | 97.92 146 | 97.92 240 | 99.02 3 | 97.94 271 | 98.17 119 | 99.58 102 | 99.67 118 |
|
| MTMP | | | | | | | | 99.87 108 | 96.49 358 | | | | | | | | |
|
| gm-plane-assit | | | | | | 96.97 260 | 93.76 230 | | | 91.47 243 | | 98.96 168 | | 98.79 200 | 94.92 197 | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 36 | 99.99 21 | 100.00 1 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 135 | 93.90 156 | 99.71 35 | 99.86 29 | 95.88 41 | 99.85 111 | | | |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 35 | 98.43 135 | 94.35 130 | 99.69 37 | 99.85 33 | 95.94 38 | 99.85 111 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 46 | 100.00 1 | 100.00 1 |
|
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 135 | | 99.63 44 | | | 99.85 111 | | | |
|
| TestCases | | | | | 95.00 254 | 99.01 118 | 88.43 340 | | 96.82 343 | 86.50 338 | 88.71 304 | 98.47 217 | 74.73 339 | 99.88 105 | 85.39 335 | 96.18 203 | 96.71 262 |
|
| test_prior4 | | | | | | | 98.05 70 | 99.94 71 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.95 54 | | 95.78 83 | 99.73 33 | 99.76 66 | 96.00 37 | | 99.78 27 | 100.00 1 | |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 75 | | | | | 99.80 124 | | | 99.99 23 |
|
| 旧先验2 | | | | | | | | 99.46 223 | | 94.21 139 | 99.85 9 | | | 99.95 73 | 96.96 166 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 99.40 227 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 99.42 37 | 99.75 69 | 98.27 64 | | 98.63 81 | 92.69 198 | 99.55 55 | 99.82 49 | 94.40 79 | 100.00 1 | 91.21 262 | 99.94 55 | 99.99 23 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 93 | | 98.64 77 | | | 99.85 33 | 95.63 45 | | | 99.94 55 | 99.99 23 |
|
| æ— å…ˆéªŒ | | | | | | | | 99.49 216 | 98.71 67 | 93.46 167 | | | | 100.00 1 | 94.36 212 | | 99.99 23 |
|
| 原ACMM2 | | | | | | | | 99.90 93 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.96 82 | 99.73 73 | 96.99 117 | | 98.51 110 | 94.06 146 | 99.62 47 | 99.85 33 | 94.97 63 | 99.96 65 | 95.11 191 | 99.95 50 | 99.92 84 |
|
| test222 | | | | | | 99.55 90 | 97.41 101 | 99.34 237 | 98.55 99 | 91.86 230 | 99.27 82 | 99.83 46 | 93.84 104 | | | 99.95 50 | 99.99 23 |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 279 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 29 | | | | |
|
| testdata | | | | | 98.42 122 | 99.47 96 | 95.33 185 | | 98.56 93 | 93.78 159 | 99.79 25 | 99.85 33 | 93.64 109 | 99.94 81 | 94.97 195 | 99.94 55 | 100.00 1 |
|
| testdata1 | | | | | | | | 99.28 247 | | 96.35 73 | | | | | | | |
|
| test12 | | | | | 99.43 35 | 99.74 70 | 98.56 57 | | 98.40 156 | | 99.65 41 | | 94.76 67 | 99.75 135 | | 99.98 32 | 99.99 23 |
|
| plane_prior7 | | | | | | 95.71 305 | 91.59 288 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 95.76 299 | 91.72 283 | | | | | | 80.47 289 | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 231 | | | | | 98.37 238 | 97.79 143 | 89.55 267 | 94.52 276 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 204 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 286 | | | 96.63 60 | 93.01 239 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.84 127 | | 96.38 69 | | | | | | | |
|
| plane_prior1 | | | | | | 95.73 302 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 91.74 280 | 99.86 119 | | 96.76 55 | | | | | | 89.59 266 | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 416 | | | | | | | | |
|
| lessismore_v0 | | | | | 90.53 352 | 90.58 386 | 80.90 391 | | 95.80 371 | | 77.01 390 | 95.84 302 | 66.15 376 | 96.95 319 | 83.03 351 | 75.05 382 | 93.74 343 |
|
| LGP-MVS_train | | | | | 93.71 306 | 95.43 313 | 88.67 336 | | 97.62 252 | 92.81 190 | 90.05 269 | 98.49 213 | 75.24 333 | 98.40 230 | 95.84 183 | 89.12 271 | 94.07 316 |
|
| test11 | | | | | | | | | 98.44 127 | | | | | | | | |
|
| door | | | | | | | | | 90.31 413 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 276 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 95.78 295 | | 99.87 108 | | 96.82 51 | 93.37 234 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 295 | | 99.87 108 | | 96.82 51 | 93.37 234 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 134 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 234 | | | 98.39 232 | | | 94.53 274 |
|
| HQP3-MVS | | | | | | | | | 97.89 229 | | | | | | | 89.60 264 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 285 | | | | |
|
| NP-MVS | | | | | | 95.77 298 | 91.79 278 | | | | | 98.65 199 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 145 | 96.11 382 | | 91.89 229 | 98.06 142 | | 94.40 79 | | 94.30 215 | | 99.67 118 |
|
| MDTV_nov1_ep13 | | | | 95.69 161 | | 97.90 203 | 94.15 220 | 95.98 385 | 98.44 127 | 93.12 180 | 97.98 144 | 95.74 305 | 95.10 55 | 98.58 216 | 90.02 287 | 96.92 191 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 298 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 287 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 133 | | | | |
|
| ITE_SJBPF | | | | | 92.38 333 | 95.69 308 | 85.14 364 | | 95.71 374 | 92.81 190 | 89.33 292 | 98.11 231 | 70.23 359 | 98.42 227 | 85.91 333 | 88.16 288 | 93.59 347 |
|
| DeepMVS_CX |  | | | | 82.92 384 | 95.98 292 | 58.66 415 | | 96.01 368 | 92.72 195 | 78.34 385 | 95.51 317 | 58.29 397 | 98.08 260 | 82.57 353 | 85.29 308 | 92.03 373 |
|