This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8198.98 1293.92 28199.63 7981.76 36399.96 3498.56 8999.47 199.19 8399.99 194.16 81100.00 199.92 1299.93 60100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1498.69 6898.20 799.93 199.98 296.82 23100.00 199.75 28100.00 199.99 23
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2798.62 8198.02 1399.90 399.95 397.33 17100.00 199.54 39100.00 1100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3498.43 12797.27 3499.80 1799.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 12797.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test072699.93 2499.29 1599.96 3498.42 13897.28 3299.86 799.94 497.22 19
DPM-MVS98.83 2198.46 2999.97 199.33 9799.92 199.96 3498.44 11997.96 1499.55 5499.94 497.18 21100.00 193.81 20999.94 5499.98 48
SMA-MVScopyleft98.76 2398.48 2899.62 2099.87 5198.87 3299.86 11398.38 15393.19 16899.77 2799.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10098.44 11997.48 2799.64 4299.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 5999.98 1498.86 5397.10 4099.80 1799.94 495.92 36100.00 199.51 40100.00 1100.00 1
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5298.43 12796.48 5999.80 1799.93 1197.44 14100.00 199.92 1299.98 32100.00 1
test_one_060199.94 1399.30 1298.41 14296.63 5699.75 2999.93 1197.49 10
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2798.64 7698.47 299.13 8599.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5298.32 16697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 5999.83 1399.91 1497.87 6100.00 199.92 12100.00 1100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5098.72 13997.71 7999.98 1498.44 11996.85 4699.80 1799.91 1497.57 899.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 2099.90 4298.85 3499.24 23398.47 11298.14 1099.08 8699.91 1493.09 108100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tmp_tt65.23 35862.94 36172.13 37444.90 40250.03 39981.05 39089.42 39438.45 39348.51 39599.90 1854.09 37878.70 39591.84 23918.26 39787.64 379
SF-MVS98.67 2698.40 3199.50 3099.77 6598.67 4799.90 8798.21 18093.53 15899.81 1599.89 1994.70 6399.86 10799.84 2299.93 6099.96 64
9.1498.38 3399.87 5199.91 8298.33 16493.22 16799.78 2699.89 1994.57 6599.85 10899.84 2299.97 42
test_241102_ONE99.93 2499.30 1298.43 12797.26 3699.80 1799.88 2196.71 24100.00 1
MSP-MVS99.09 999.12 598.98 7399.93 2497.24 9899.95 5298.42 13897.50 2699.52 5999.88 2197.43 1699.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA98.29 5097.96 6199.30 4299.85 5497.93 7399.39 21498.28 17395.76 8097.18 15199.88 2192.74 119100.00 198.67 8699.88 6899.99 23
CDPH-MVS98.65 2798.36 3799.49 3299.94 1398.73 4499.87 10098.33 16493.97 14399.76 2899.87 2494.99 5799.75 13298.55 93100.00 199.98 48
CP-MVS98.45 3998.32 3998.87 7999.96 896.62 12099.97 2798.39 14994.43 11798.90 9499.87 2494.30 75100.00 199.04 6399.99 2199.99 23
xiu_mvs_v2_base98.23 5697.97 5899.02 7098.69 14098.66 4999.52 19598.08 19697.05 4199.86 799.86 2690.65 16299.71 13899.39 5098.63 13898.69 211
TEST999.92 3198.92 2899.96 3498.43 12793.90 14899.71 3499.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2899.96 3498.43 12794.35 12299.71 3499.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
LS3D95.84 15195.11 16198.02 13199.85 5495.10 18098.74 28698.50 10987.22 30993.66 21199.86 2687.45 20099.95 6990.94 25299.81 7899.02 195
MP-MVS-pluss98.07 6197.64 7399.38 4199.74 6998.41 6099.74 15398.18 18493.35 16296.45 16999.85 3092.64 12199.97 5398.91 7299.89 6699.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_899.92 3198.88 3199.96 3498.43 12794.35 12299.69 3699.85 3095.94 3499.85 108
HFP-MVS98.56 3198.37 3599.14 5999.96 897.43 9499.95 5298.61 8294.77 10599.31 7699.85 3094.22 77100.00 198.70 8499.98 3299.98 48
region2R98.54 3298.37 3599.05 6699.96 897.18 10199.96 3498.55 9594.87 10399.45 6499.85 3094.07 83100.00 198.67 86100.00 199.98 48
PS-MVSNAJ98.44 4098.20 4599.16 5598.80 13598.92 2899.54 19398.17 18597.34 2999.85 999.85 3091.20 14999.89 9699.41 4899.67 8598.69 211
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5298.56 8997.56 2599.44 6599.85 3095.38 46100.00 199.31 5199.99 2199.87 87
旧先验199.76 6697.52 8798.64 7699.85 3095.63 4199.94 5499.99 23
原ACMM198.96 7599.73 7296.99 10998.51 10494.06 13899.62 4699.85 3094.97 5899.96 6195.11 17499.95 4999.92 81
testdata98.42 11399.47 9195.33 17098.56 8993.78 15199.79 2599.85 3093.64 9599.94 7794.97 17899.94 54100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4399.91 8298.39 14997.20 3899.46 6399.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.86 6797.66 7298.47 10899.52 8795.41 16799.47 20498.87 5291.68 22398.84 9699.85 3092.34 13299.99 3698.44 9699.96 46100.00 1
ACMMPR98.50 3598.32 3999.05 6699.96 897.18 10199.95 5298.60 8394.77 10599.31 7699.84 4193.73 92100.00 198.70 8499.98 3299.98 48
DP-MVS Recon98.41 4498.02 5699.56 2599.97 398.70 4699.92 7898.44 11992.06 21298.40 12099.84 4195.68 40100.00 198.19 10599.71 8399.97 58
ZD-MVS99.92 3198.57 5498.52 10192.34 20499.31 7699.83 4395.06 5299.80 12199.70 3499.97 42
ACMMP_NAP98.49 3698.14 4999.54 2799.66 7898.62 5399.85 11698.37 15694.68 11099.53 5799.83 4392.87 114100.00 198.66 8899.84 7199.99 23
test22299.55 8597.41 9699.34 22098.55 9591.86 21799.27 8099.83 4393.84 9099.95 4999.99 23
ZNCC-MVS98.31 4898.03 5599.17 5399.88 4997.59 8499.94 6898.44 11994.31 12598.50 11599.82 4693.06 10999.99 3698.30 10399.99 2199.93 76
新几何199.42 3799.75 6898.27 6198.63 8092.69 18599.55 5499.82 4694.40 68100.00 191.21 24499.94 5499.99 23
CSCG97.10 10297.04 9697.27 17499.89 4591.92 25899.90 8799.07 3488.67 28895.26 19499.82 4693.17 10799.98 4398.15 10899.47 10499.90 83
MAR-MVS97.43 8797.19 9098.15 12699.47 9194.79 18899.05 25598.76 6392.65 18898.66 10899.82 4688.52 19299.98 4398.12 10999.63 8899.67 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVScopyleft98.23 5697.97 5899.03 6899.94 1397.17 10499.95 5298.39 14994.70 10998.26 12799.81 5091.84 143100.00 198.85 7699.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM99.76 1099.33 899.99 499.76 698.39 399.39 7299.80 5190.49 16699.96 6199.89 1699.43 11099.98 48
OPU-MVS99.93 299.89 4599.80 299.96 3499.80 5197.44 14100.00 1100.00 199.98 32100.00 1
SR-MVS98.46 3898.30 4298.93 7799.88 4997.04 10699.84 12098.35 15994.92 10199.32 7599.80 5193.35 9899.78 12599.30 5299.95 4999.96 64
mPP-MVS98.39 4698.20 4598.97 7499.97 396.92 11299.95 5298.38 15395.04 9798.61 11199.80 5193.39 97100.00 198.64 89100.00 199.98 48
PC_three_145296.96 4499.80 1799.79 5597.49 10100.00 199.99 599.98 32100.00 1
CS-MVS-test97.88 6697.94 6297.70 14999.28 9995.20 17799.98 1497.15 28495.53 8799.62 4699.79 5592.08 13898.38 21898.75 8299.28 11799.52 147
CPTT-MVS97.64 8397.32 8698.58 9899.97 395.77 15199.96 3498.35 15989.90 26598.36 12199.79 5591.18 15299.99 3698.37 9999.99 2199.99 23
MVS_111021_LR98.42 4398.38 3398.53 10599.39 9495.79 15099.87 10099.86 296.70 5498.78 9999.79 5592.03 13999.90 9199.17 5799.86 7099.88 85
XVS98.70 2598.55 2599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6899.78 5994.34 7399.96 6198.92 7099.95 4999.99 23
PHI-MVS98.41 4498.21 4499.03 6899.86 5397.10 10599.98 1498.80 6290.78 25199.62 4699.78 5995.30 47100.00 199.80 2599.93 6099.99 23
APD-MVS_3200maxsize98.25 5498.08 5498.78 8299.81 6096.60 12199.82 13098.30 17193.95 14599.37 7399.77 6192.84 11599.76 13198.95 6799.92 6399.97 58
MVS_111021_HR98.72 2498.62 2299.01 7199.36 9697.18 10199.93 7599.90 196.81 5198.67 10799.77 6193.92 8699.89 9699.27 5399.94 5499.96 64
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4499.17 10597.81 7799.98 1498.86 5398.25 499.90 399.76 6394.21 7999.97 5399.87 1999.52 9999.98 48
patch_mono-298.24 5599.12 595.59 21799.67 7786.91 33699.95 5298.89 4997.60 2299.90 399.76 6396.54 2899.98 4399.94 1199.82 7699.88 85
EI-MVSNet-Vis-set98.27 5198.11 5298.75 8599.83 5796.59 12299.40 21098.51 10495.29 9398.51 11499.76 6393.60 9699.71 13898.53 9499.52 9999.95 71
test_prior299.95 5295.78 7999.73 3299.76 6396.00 3399.78 27100.00 1
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4499.94 6898.34 16396.38 6599.81 1599.76 6394.59 6499.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 4798.13 5098.99 7299.92 3197.00 10899.75 15099.50 1893.90 14899.37 7399.76 6393.24 105100.00 197.75 13299.96 4699.98 48
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4399.21 10197.91 7499.98 1498.85 5698.25 499.92 299.75 6994.72 6199.97 5399.87 1999.64 8799.95 71
SR-MVS-dyc-post98.31 4898.17 4798.71 8699.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6993.28 10399.78 12598.90 7399.92 6399.97 58
RE-MVS-def98.13 5099.79 6296.37 13099.76 14798.31 16894.43 11799.40 7099.75 6992.95 11298.90 7399.92 6399.97 58
CS-MVS97.79 7597.91 6497.43 16499.10 10894.42 19499.99 497.10 28995.07 9699.68 3799.75 6992.95 11298.34 22298.38 9899.14 12399.54 143
MVS_030498.87 2098.61 2399.67 1699.18 10299.13 2299.87 10099.65 1298.17 898.75 10499.75 6992.76 11899.94 7799.88 1899.44 10899.94 74
EI-MVSNet-UG-set98.14 5897.99 5798.60 9599.80 6196.27 13299.36 21998.50 10995.21 9598.30 12499.75 6993.29 10299.73 13798.37 9999.30 11699.81 94
PAPR98.52 3498.16 4899.58 2499.97 398.77 4099.95 5298.43 12795.35 9198.03 13199.75 6994.03 8499.98 4398.11 11099.83 7299.99 23
GST-MVS98.27 5197.97 5899.17 5399.92 3197.57 8599.93 7598.39 14994.04 14198.80 9899.74 7692.98 111100.00 198.16 10799.76 8099.93 76
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4799.77 14298.38 15396.73 5399.88 699.74 7694.89 5999.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192098.44 4098.61 2397.92 13499.27 10095.18 178100.00 198.90 4798.05 1299.80 1799.73 7892.64 12199.99 3699.58 3899.51 10298.59 214
dcpmvs_297.42 9198.09 5395.42 22299.58 8487.24 33299.23 23496.95 30694.28 12798.93 9399.73 7894.39 7199.16 17099.89 1699.82 7699.86 89
APD-MVScopyleft98.62 2898.35 3899.41 3899.90 4298.51 5799.87 10098.36 15794.08 13599.74 3199.73 7894.08 8299.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 17799.44 2097.33 3199.00 9099.72 8194.03 8499.98 4398.73 83100.00 1100.00 1
AdaColmapbinary97.23 9996.80 10498.51 10699.99 195.60 16099.09 24498.84 5893.32 16496.74 16299.72 8186.04 216100.00 198.01 11599.43 11099.94 74
CANet98.27 5197.82 6899.63 1799.72 7499.10 2399.98 1498.51 10497.00 4398.52 11399.71 8387.80 19599.95 6999.75 2899.38 11299.83 91
ACMMPcopyleft97.74 7897.44 8098.66 9099.92 3196.13 14299.18 23899.45 1994.84 10496.41 17299.71 8391.40 14699.99 3697.99 11798.03 15799.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM_NR98.12 5997.93 6398.70 8799.94 1396.13 14299.82 13098.43 12794.56 11397.52 14399.70 8594.40 6899.98 4397.00 14999.98 3299.99 23
OMC-MVS97.28 9697.23 8897.41 16599.76 6693.36 22799.65 17397.95 20796.03 7597.41 14799.70 8589.61 17699.51 15296.73 15698.25 14999.38 164
fmvsm_s_conf0.5_n_a97.73 8097.72 7097.77 14498.63 14494.26 20099.96 3498.92 4697.18 3999.75 2999.69 8787.00 20799.97 5399.46 4498.89 13099.08 194
fmvsm_s_conf0.5_n97.80 7397.85 6797.67 15099.06 11094.41 19599.98 1498.97 4097.34 2999.63 4399.69 8787.27 20299.97 5399.62 3799.06 12798.62 213
xiu_mvs_v1_base_debu97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
xiu_mvs_v1_base_debi97.43 8797.06 9398.55 10097.74 19598.14 6299.31 22497.86 21896.43 6299.62 4699.69 8785.56 21999.68 14299.05 6098.31 14597.83 226
CNLPA97.76 7797.38 8298.92 7899.53 8696.84 11499.87 10098.14 19293.78 15196.55 16799.69 8792.28 13399.98 4397.13 14499.44 10899.93 76
mvsany_test197.82 7197.90 6597.55 15798.77 13793.04 23299.80 13697.93 20996.95 4599.61 5299.68 9390.92 15799.83 11899.18 5698.29 14899.80 96
cdsmvs_eth3d_5k23.43 36631.24 3690.00 3840.00 4060.00 4090.00 39598.09 1940.00 4020.00 40399.67 9483.37 2400.00 4030.00 4020.00 4010.00 399
lupinMVS97.85 6897.60 7598.62 9397.28 22897.70 8199.99 497.55 24295.50 8999.43 6699.67 9490.92 15798.71 19198.40 9799.62 8999.45 157
114514_t97.41 9296.83 10299.14 5999.51 8997.83 7599.89 9598.27 17588.48 29299.06 8799.66 9690.30 16899.64 14896.32 16099.97 4299.96 64
PAPM98.60 2998.42 3099.14 5996.05 26598.96 2699.90 8799.35 2596.68 5598.35 12299.66 9696.45 2998.51 20299.45 4599.89 6699.96 64
fmvsm_s_conf0.1_n97.30 9597.21 8997.60 15697.38 21994.40 19799.90 8798.64 7696.47 6199.51 6199.65 9884.99 22799.93 8599.22 5599.09 12698.46 215
fmvsm_s_conf0.1_n_a97.09 10496.90 10097.63 15495.65 28594.21 20299.83 12798.50 10996.27 7099.65 4099.64 9984.72 22899.93 8599.04 6398.84 13398.74 208
test_fmvsmconf_n98.43 4298.32 3998.78 8298.12 17596.41 12699.99 498.83 5998.22 699.67 3899.64 9991.11 15399.94 7799.67 3699.62 8999.98 48
CANet_DTU96.76 11696.15 12198.60 9598.78 13697.53 8699.84 12097.63 23197.25 3799.20 8199.64 9981.36 25499.98 4392.77 22998.89 13098.28 219
XVG-OURS94.82 17494.74 17295.06 23498.00 17989.19 31099.08 24697.55 24294.10 13494.71 19899.62 10280.51 26599.74 13496.04 16493.06 23596.25 244
MVS96.60 12495.56 14899.72 1396.85 24599.22 2098.31 31198.94 4191.57 22590.90 24499.61 10386.66 21099.96 6197.36 13899.88 6899.99 23
test_fmvsmvis_n_192097.67 8297.59 7797.91 13697.02 23595.34 16999.95 5298.45 11597.87 1597.02 15499.59 10489.64 17599.98 4399.41 4899.34 11598.42 216
EIA-MVS97.53 8597.46 7997.76 14698.04 17894.84 18599.98 1497.61 23694.41 12097.90 13599.59 10492.40 13098.87 17998.04 11499.13 12499.59 130
XVG-OURS-SEG-HR94.79 17694.70 17395.08 23398.05 17789.19 31099.08 24697.54 24493.66 15594.87 19799.58 10678.78 28199.79 12397.31 13993.40 23096.25 244
HPM-MVScopyleft97.96 6297.72 7098.68 8899.84 5696.39 12999.90 8798.17 18592.61 19098.62 11099.57 10791.87 14299.67 14598.87 7599.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + GP.98.60 2998.51 2798.86 8099.73 7296.63 11999.97 2797.92 21298.07 1198.76 10299.55 10895.00 5699.94 7799.91 1597.68 16299.99 23
DP-MVS94.54 18593.42 20497.91 13699.46 9394.04 20698.93 26797.48 25281.15 35990.04 25399.55 10887.02 20699.95 6988.97 27898.11 15399.73 105
MVSFormer96.94 10896.60 10997.95 13297.28 22897.70 8199.55 19197.27 27391.17 23899.43 6699.54 11090.92 15796.89 30394.67 19099.62 8999.25 181
jason97.24 9896.86 10198.38 11695.73 27997.32 9799.97 2797.40 26095.34 9298.60 11299.54 11087.70 19698.56 19997.94 12099.47 10499.25 181
jason: jason.
HPM-MVS_fast97.80 7397.50 7898.68 8899.79 6296.42 12599.88 9798.16 18991.75 22298.94 9299.54 11091.82 14499.65 14797.62 13599.99 2199.99 23
DeepC-MVS94.51 496.92 11096.40 11698.45 11099.16 10695.90 14799.66 17198.06 19796.37 6894.37 20399.49 11383.29 24199.90 9197.63 13499.61 9399.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs97.81 7297.33 8599.25 4498.77 13798.66 4999.99 498.44 11994.40 12198.41 11899.47 11493.65 9499.42 16298.57 9294.26 22299.67 113
TAPA-MVS92.12 894.42 19093.60 19796.90 18299.33 9791.78 26299.78 13998.00 20189.89 26694.52 20099.47 11491.97 14099.18 16869.90 37399.52 9999.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS97.92 6597.80 6998.25 12198.14 17396.48 12399.98 1497.63 23195.61 8499.29 7999.46 11692.55 12598.82 18199.02 6698.54 13999.46 155
ET-MVSNet_ETH3D94.37 19293.28 21097.64 15298.30 15997.99 6999.99 497.61 23694.35 12271.57 37899.45 11796.23 3195.34 34896.91 15485.14 29399.59 130
test_fmvsmconf0.1_n97.74 7897.44 8098.64 9295.76 27696.20 13899.94 6898.05 19998.17 898.89 9599.42 11887.65 19799.90 9199.50 4199.60 9599.82 92
canonicalmvs97.09 10496.32 11799.39 4098.93 12298.95 2799.72 16197.35 26394.45 11597.88 13799.42 11886.71 20999.52 15198.48 9593.97 22699.72 107
VDD-MVS93.77 20792.94 21596.27 20398.55 14790.22 29698.77 28597.79 22390.85 24796.82 16099.42 11861.18 37099.77 12898.95 6794.13 22398.82 203
1112_ss96.01 14695.20 15898.42 11397.80 19196.41 12699.65 17396.66 32992.71 18392.88 22199.40 12192.16 13599.30 16391.92 23793.66 22799.55 139
ab-mvs-re8.28 36811.04 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.40 1210.00 4070.00 4030.00 4020.00 4010.00 399
LFMVS94.75 17993.56 20098.30 11999.03 11295.70 15698.74 28697.98 20487.81 30298.47 11699.39 12367.43 34999.53 15098.01 11595.20 21599.67 113
WTY-MVS98.10 6097.60 7599.60 2298.92 12499.28 1799.89 9599.52 1595.58 8598.24 12899.39 12393.33 9999.74 13497.98 11995.58 20899.78 100
PMMVS96.76 11696.76 10596.76 18698.28 16292.10 25399.91 8297.98 20494.12 13399.53 5799.39 12386.93 20898.73 18896.95 15297.73 16099.45 157
EPNet98.49 3698.40 3198.77 8499.62 8096.80 11699.90 8799.51 1797.60 2299.20 8199.36 12693.71 9399.91 8997.99 11798.71 13799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n96.39 13395.74 14298.32 11891.47 35695.56 16199.84 12097.30 26997.74 1897.89 13699.35 12779.62 27299.85 10899.25 5499.24 11999.55 139
EC-MVSNet97.38 9497.24 8797.80 13997.41 21795.64 15899.99 497.06 29494.59 11299.63 4399.32 12889.20 18598.14 23698.76 8199.23 12099.62 124
VDDNet93.12 22491.91 23996.76 18696.67 25592.65 24398.69 29298.21 18082.81 35297.75 14099.28 12961.57 36899.48 15998.09 11294.09 22498.15 221
diffmvspermissive97.00 10696.64 10898.09 12897.64 20696.17 14199.81 13297.19 27894.67 11198.95 9199.28 12986.43 21298.76 18698.37 9997.42 16899.33 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline96.43 13095.98 12797.76 14697.34 22295.17 17999.51 19797.17 28193.92 14796.90 15799.28 12985.37 22398.64 19697.50 13696.86 18399.46 155
UA-Net96.54 12695.96 13198.27 12098.23 16595.71 15598.00 32598.45 11593.72 15498.41 11899.27 13288.71 19199.66 14691.19 24597.69 16199.44 159
RPSCF91.80 25492.79 22088.83 34398.15 17269.87 38198.11 32196.60 33283.93 34494.33 20499.27 13279.60 27399.46 16191.99 23593.16 23397.18 238
PLCcopyleft95.54 397.93 6497.89 6698.05 13099.82 5894.77 18999.92 7898.46 11493.93 14697.20 15099.27 13295.44 4599.97 5397.41 13799.51 10299.41 162
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive96.42 13295.97 13097.77 14497.30 22694.98 18199.84 12097.09 29193.75 15396.58 16699.26 13585.07 22598.78 18497.77 13097.04 17799.54 143
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.18 16794.31 18097.80 13998.17 17195.23 17599.76 14797.53 24692.52 19794.27 20599.25 13676.84 29698.80 18290.89 25499.54 9899.35 169
DELS-MVS98.54 3298.22 4399.50 3099.15 10798.65 51100.00 198.58 8597.70 2098.21 12999.24 13792.58 12499.94 7798.63 9199.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS94.20 595.18 16794.10 18498.43 11298.55 14795.99 14597.91 32797.31 26890.35 25889.48 26999.22 13885.19 22499.89 9690.40 26598.47 14199.41 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet91.05 1397.13 10196.69 10798.45 11099.52 8795.81 14999.95 5299.65 1294.73 10799.04 8899.21 13984.48 23199.95 6994.92 18098.74 13699.58 136
test_vis1_n_192095.44 16395.31 15495.82 21398.50 15188.74 31599.98 1497.30 26997.84 1699.85 999.19 14066.82 35199.97 5398.82 7799.46 10698.76 206
casdiffmvs_mvgpermissive96.43 13095.94 13497.89 13897.44 21695.47 16399.86 11397.29 27193.35 16296.03 17999.19 14085.39 22298.72 19097.89 12497.04 17799.49 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG94.37 19293.36 20897.40 16698.88 13193.95 21099.37 21797.38 26185.75 32990.80 24599.17 14284.11 23699.88 10286.35 30998.43 14298.36 218
F-COLMAP96.93 10996.95 9996.87 18399.71 7591.74 26399.85 11697.95 20793.11 17195.72 18799.16 14392.35 13199.94 7795.32 17299.35 11498.92 197
Vis-MVSNet (Re-imp)96.32 13695.98 12797.35 17197.93 18394.82 18699.47 20498.15 19191.83 21895.09 19599.11 14491.37 14797.47 26593.47 21797.43 16699.74 104
CHOSEN 280x42099.01 1399.03 1098.95 7699.38 9598.87 3298.46 30399.42 2297.03 4299.02 8999.09 14599.35 198.21 23499.73 3299.78 7999.77 101
test_cas_vis1_n_192096.59 12596.23 11997.65 15198.22 16694.23 20199.99 497.25 27597.77 1799.58 5399.08 14677.10 29199.97 5397.64 13399.45 10798.74 208
PVSNet_Blended97.94 6397.64 7398.83 8199.59 8196.99 109100.00 199.10 3195.38 9098.27 12599.08 14689.00 18799.95 6999.12 5899.25 11899.57 137
sss97.57 8497.03 9799.18 5098.37 15798.04 6799.73 15899.38 2393.46 16098.76 10299.06 14891.21 14899.89 9696.33 15997.01 17999.62 124
thisisatest051597.41 9297.02 9898.59 9797.71 20297.52 8799.97 2798.54 9891.83 21897.45 14699.04 14997.50 999.10 17294.75 18796.37 19099.16 186
EI-MVSNet93.73 20993.40 20794.74 24596.80 24892.69 24099.06 25197.67 22988.96 28091.39 23799.02 15088.75 19097.30 27491.07 24787.85 27194.22 279
CVMVSNet94.68 18294.94 16793.89 28496.80 24886.92 33599.06 25198.98 3894.45 11594.23 20699.02 15085.60 21895.31 34990.91 25395.39 21199.43 160
EPP-MVSNet96.69 12196.60 10996.96 18097.74 19593.05 23199.37 21798.56 8988.75 28695.83 18599.01 15296.01 3298.56 19996.92 15397.20 17399.25 181
COLMAP_ROBcopyleft90.47 1492.18 24691.49 24894.25 26999.00 11588.04 32798.42 30896.70 32882.30 35588.43 29399.01 15276.97 29499.85 10886.11 31296.50 18794.86 251
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator91.47 1296.28 14095.34 15399.08 6596.82 24797.47 9399.45 20798.81 6095.52 8889.39 27099.00 15481.97 24799.95 6997.27 14099.83 7299.84 90
test_yl97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
DCV-MVSNet97.83 6997.37 8399.21 4799.18 10297.98 7099.64 17799.27 2791.43 23197.88 13798.99 15595.84 3899.84 11698.82 7795.32 21399.79 97
131496.84 11295.96 13199.48 3496.74 25298.52 5698.31 31198.86 5395.82 7889.91 25698.98 15787.49 19999.96 6197.80 12599.73 8299.96 64
3Dnovator+91.53 1196.31 13795.24 15699.52 2896.88 24498.64 5299.72 16198.24 17795.27 9488.42 29598.98 15782.76 24399.94 7797.10 14699.83 7299.96 64
thisisatest053097.10 10296.72 10698.22 12297.60 20896.70 11799.92 7898.54 9891.11 24197.07 15398.97 15997.47 1299.03 17393.73 21496.09 19398.92 197
baseline296.71 12096.49 11397.37 16895.63 28795.96 14699.74 15398.88 5192.94 17391.61 23598.97 15997.72 798.62 19794.83 18498.08 15697.53 236
test_fmvs195.35 16595.68 14694.36 26698.99 11684.98 34599.96 3496.65 33097.60 2299.73 3298.96 16171.58 33199.93 8598.31 10299.37 11398.17 220
test250697.53 8597.19 9098.58 9898.66 14296.90 11398.81 28199.77 594.93 9997.95 13398.96 16192.51 12699.20 16694.93 17998.15 15099.64 119
ECVR-MVScopyleft95.66 15895.05 16397.51 16098.66 14293.71 21598.85 27898.45 11594.93 9996.86 15898.96 16175.22 31499.20 16695.34 17198.15 15099.64 119
gm-plane-assit96.97 23893.76 21491.47 22998.96 16198.79 18394.92 180
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 18799.08 24697.61 23692.02 21495.54 19098.96 16190.64 16398.08 23993.73 21497.41 16999.47 154
test111195.57 16094.98 16697.37 16898.56 14593.37 22698.86 27698.45 11594.95 9896.63 16498.95 16675.21 31599.11 17195.02 17798.14 15299.64 119
OpenMVScopyleft90.15 1594.77 17893.59 19898.33 11796.07 26497.48 9299.56 18998.57 8790.46 25586.51 31898.95 16678.57 28499.94 7793.86 20599.74 8197.57 235
GeoE94.36 19493.48 20296.99 17997.29 22793.54 21999.96 3496.72 32788.35 29593.43 21298.94 16882.05 24698.05 24288.12 29096.48 18899.37 166
Vis-MVSNetpermissive95.72 15395.15 16097.45 16297.62 20794.28 19999.28 23098.24 17794.27 12996.84 15998.94 16879.39 27498.76 18693.25 21998.49 14099.30 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tttt051796.85 11196.49 11397.92 13497.48 21595.89 14899.85 11698.54 9890.72 25296.63 16498.93 17097.47 1299.02 17493.03 22695.76 20498.85 201
QAPM95.40 16494.17 18399.10 6496.92 23997.71 7999.40 21098.68 7089.31 27188.94 28398.89 17182.48 24499.96 6193.12 22599.83 7299.62 124
test_fmvs1_n94.25 19794.36 17793.92 28197.68 20383.70 35199.90 8796.57 33397.40 2899.67 3898.88 17261.82 36799.92 8898.23 10499.13 12498.14 223
VNet97.21 10096.57 11199.13 6398.97 11897.82 7699.03 25899.21 2994.31 12599.18 8498.88 17286.26 21599.89 9698.93 6994.32 22199.69 110
thres20096.96 10796.21 12099.22 4698.97 11898.84 3599.85 11699.71 793.17 16996.26 17598.88 17289.87 17399.51 15294.26 19894.91 21699.31 174
tfpn200view996.79 11495.99 12599.19 4998.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.27 179
thres40096.78 11595.99 12599.16 5598.94 12098.82 3699.78 13999.71 792.86 17496.02 18098.87 17589.33 18099.50 15493.84 20694.57 21799.16 186
thres100view90096.74 11895.92 13799.18 5098.90 12998.77 4099.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.84 20694.57 21799.27 179
thres600view796.69 12195.87 14099.14 5998.90 12998.78 3999.74 15399.71 792.59 19295.84 18398.86 17789.25 18299.50 15493.44 21894.50 22099.16 186
CHOSEN 1792x268896.81 11396.53 11297.64 15298.91 12893.07 22999.65 17399.80 395.64 8395.39 19198.86 17784.35 23499.90 9196.98 15099.16 12299.95 71
CLD-MVS94.06 20093.90 19094.55 25596.02 26690.69 28499.98 1497.72 22596.62 5891.05 24398.85 18077.21 29098.47 20398.11 11089.51 24694.48 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_vis1_n93.61 21393.03 21495.35 22495.86 27186.94 33499.87 10096.36 34096.85 4699.54 5698.79 18152.41 38099.83 11898.64 8998.97 12999.29 178
BH-w/o95.71 15595.38 15296.68 18998.49 15292.28 24999.84 12097.50 25092.12 20992.06 23398.79 18184.69 22998.67 19595.29 17399.66 8699.09 192
Anonymous20240521193.10 22591.99 23796.40 19899.10 10889.65 30798.88 27297.93 20983.71 34694.00 20898.75 18368.79 34199.88 10295.08 17691.71 23699.68 111
TR-MVS94.54 18593.56 20097.49 16197.96 18194.34 19898.71 28997.51 24990.30 26094.51 20198.69 18475.56 30998.77 18592.82 22895.99 19599.35 169
Syy-MVS90.00 29390.63 25988.11 35097.68 20374.66 37899.71 16398.35 15990.79 24992.10 23198.67 18579.10 27993.09 37063.35 38495.95 19896.59 242
myMVS_eth3d94.46 18994.76 17193.55 29597.68 20390.97 27799.71 16398.35 15990.79 24992.10 23198.67 18592.46 12993.09 37087.13 30195.95 19896.59 242
BH-untuned95.18 16794.83 16996.22 20498.36 15891.22 27599.80 13697.32 26790.91 24591.08 24198.67 18583.51 23898.54 20194.23 19999.61 9398.92 197
OPM-MVS93.21 22092.80 21994.44 26293.12 32990.85 28399.77 14297.61 23696.19 7391.56 23698.65 18875.16 31698.47 20393.78 21289.39 24793.99 305
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NP-MVS95.77 27591.79 26198.65 188
HQP-MVS94.61 18494.50 17594.92 23995.78 27291.85 25999.87 10097.89 21496.82 4893.37 21398.65 18880.65 26398.39 21497.92 12189.60 24194.53 252
testing393.92 20194.23 18192.99 30897.54 21090.23 29599.99 499.16 3090.57 25391.33 24098.63 19192.99 11092.52 37482.46 33495.39 21196.22 247
baseline195.78 15294.86 16898.54 10398.47 15398.07 6599.06 25197.99 20292.68 18694.13 20798.62 19293.28 10398.69 19393.79 21185.76 28698.84 202
HQP_MVS94.49 18894.36 17794.87 24095.71 28291.74 26399.84 12097.87 21696.38 6593.01 21798.59 19380.47 26798.37 22097.79 12889.55 24494.52 254
plane_prior498.59 193
Anonymous2024052992.10 24790.65 25896.47 19398.82 13390.61 28798.72 28898.67 7375.54 37593.90 21098.58 19566.23 35399.90 9194.70 18990.67 23998.90 200
Effi-MVS+96.30 13895.69 14498.16 12397.85 18896.26 13397.41 33497.21 27790.37 25798.65 10998.58 19586.61 21198.70 19297.11 14597.37 17099.52 147
dmvs_re93.20 22193.15 21293.34 29896.54 25683.81 35098.71 28998.51 10491.39 23592.37 22998.56 19778.66 28397.83 25393.89 20489.74 24098.38 217
EPNet_dtu95.71 15595.39 15196.66 19098.92 12493.41 22499.57 18798.90 4796.19 7397.52 14398.56 19792.65 12097.36 26777.89 35698.33 14499.20 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dmvs_testset83.79 33486.07 31876.94 36592.14 34648.60 40096.75 34890.27 39089.48 26978.65 36098.55 19979.25 27586.65 38866.85 37982.69 30895.57 250
test0.0.03 193.86 20293.61 19594.64 24995.02 29692.18 25299.93 7598.58 8594.07 13687.96 29998.50 20093.90 8894.96 35381.33 34193.17 23296.78 239
LPG-MVS_test92.96 22792.71 22193.71 28995.43 28988.67 31799.75 15097.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
LGP-MVS_train93.71 28995.43 28988.67 31797.62 23392.81 17890.05 25198.49 20175.24 31298.40 21295.84 16889.12 24894.07 297
PVSNet_Blended_VisFu97.27 9796.81 10398.66 9098.81 13496.67 11899.92 7898.64 7694.51 11496.38 17398.49 20189.05 18699.88 10297.10 14698.34 14399.43 160
testmvs40.60 36444.45 36729.05 38219.49 40514.11 40899.68 16818.47 40520.74 39864.59 38398.48 20410.95 40317.09 40256.66 39111.01 39855.94 395
tt080591.28 26290.18 27094.60 25196.26 26087.55 32998.39 30998.72 6589.00 27789.22 27698.47 20562.98 36498.96 17690.57 25988.00 27097.28 237
AllTest92.48 23991.64 24295.00 23699.01 11388.43 32198.94 26696.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
TestCases95.00 23699.01 11388.43 32196.82 32186.50 31888.71 28698.47 20574.73 31899.88 10285.39 31696.18 19196.71 240
h-mvs3394.92 17394.36 17796.59 19298.85 13291.29 27498.93 26798.94 4195.90 7698.77 10098.42 20890.89 16099.77 12897.80 12570.76 36798.72 210
PatchMatch-RL96.04 14595.40 15097.95 13299.59 8195.22 17699.52 19599.07 3493.96 14496.49 16898.35 20982.28 24599.82 12090.15 26899.22 12198.81 204
CDS-MVSNet96.34 13596.07 12297.13 17697.37 22094.96 18299.53 19497.91 21391.55 22695.37 19298.32 21095.05 5397.13 28593.80 21095.75 20599.30 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMP92.05 992.74 23292.42 23093.73 28795.91 27088.72 31699.81 13297.53 24694.13 13287.00 31298.23 21174.07 32298.47 20396.22 16288.86 25393.99 305
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testgi89.01 30688.04 30791.90 32093.49 32184.89 34699.73 15895.66 35493.89 15085.14 33198.17 21259.68 37194.66 35777.73 35788.88 25196.16 248
ITE_SJBPF92.38 31495.69 28485.14 34395.71 35292.81 17889.33 27398.11 21370.23 33898.42 20985.91 31488.16 26793.59 328
HyFIR lowres test96.66 12396.43 11597.36 17099.05 11193.91 21199.70 16599.80 390.54 25496.26 17598.08 21492.15 13698.23 23396.84 15595.46 20999.93 76
TESTMET0.1,196.74 11896.26 11898.16 12397.36 22196.48 12399.96 3498.29 17291.93 21595.77 18698.07 21595.54 4298.29 22690.55 26098.89 13099.70 108
TAMVS95.85 15095.58 14796.65 19197.07 23293.50 22099.17 23997.82 22291.39 23595.02 19698.01 21692.20 13497.30 27493.75 21395.83 20299.14 189
hse-mvs294.38 19194.08 18595.31 22798.27 16390.02 30199.29 22998.56 8995.90 7698.77 10098.00 21790.89 16098.26 23297.80 12569.20 37397.64 231
AUN-MVS93.28 21992.60 22395.34 22598.29 16090.09 29999.31 22498.56 8991.80 22196.35 17498.00 21789.38 17998.28 22892.46 23069.22 37297.64 231
ACMM91.95 1092.88 22992.52 22893.98 28095.75 27889.08 31399.77 14297.52 24893.00 17289.95 25597.99 21976.17 30598.46 20693.63 21688.87 25294.39 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf_final96.01 14695.93 13596.28 20298.38 15697.03 10799.87 10097.03 29794.05 14092.61 22497.98 22098.01 597.34 26997.02 14888.39 26394.47 257
iter_conf0596.07 14395.95 13396.44 19798.43 15497.52 8799.91 8296.85 31794.16 13192.49 22897.98 22098.20 497.34 26997.26 14188.29 26494.45 263
Fast-Effi-MVS+95.02 17194.19 18297.52 15997.88 18594.55 19199.97 2797.08 29288.85 28594.47 20297.96 22284.59 23098.41 21089.84 27297.10 17499.59 130
GG-mvs-BLEND98.54 10398.21 16798.01 6893.87 37298.52 10197.92 13497.92 22399.02 297.94 25098.17 10699.58 9699.67 113
SDMVSNet94.80 17593.96 18897.33 17298.92 12495.42 16699.59 18398.99 3792.41 20192.55 22697.85 22475.81 30898.93 17897.90 12391.62 23797.64 231
sd_testset93.55 21492.83 21895.74 21598.92 12490.89 28298.24 31498.85 5692.41 20192.55 22697.85 22471.07 33698.68 19493.93 20391.62 23797.64 231
Fast-Effi-MVS+-dtu93.72 21093.86 19293.29 30097.06 23386.16 33799.80 13696.83 31992.66 18792.58 22597.83 22681.39 25397.67 25989.75 27396.87 18296.05 249
mvsmamba94.10 19893.72 19495.25 22993.57 31894.13 20499.67 17096.45 33893.63 15791.34 23997.77 22786.29 21497.22 28096.65 15788.10 26894.40 265
RRT_MVS93.14 22392.92 21693.78 28693.31 32590.04 30099.66 17197.69 22792.53 19688.91 28497.76 22884.36 23296.93 30195.10 17586.99 28094.37 268
ACMH+89.98 1690.35 28389.54 28292.78 31295.99 26786.12 33898.81 28197.18 28089.38 27083.14 34097.76 22868.42 34598.43 20889.11 27786.05 28593.78 320
ACMH89.72 1790.64 27689.63 27993.66 29395.64 28688.64 31998.55 29897.45 25389.03 27581.62 34797.61 23069.75 33998.41 21089.37 27487.62 27693.92 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6492.74 23292.03 23694.87 24093.09 33193.46 22199.12 24195.41 35992.84 17790.44 24997.54 23178.08 28897.04 29393.94 20287.77 27394.11 294
cascas94.64 18393.61 19597.74 14897.82 19096.26 13399.96 3497.78 22485.76 32794.00 20897.54 23176.95 29599.21 16597.23 14295.43 21097.76 230
nrg03093.51 21592.53 22796.45 19594.36 30597.20 10099.81 13297.16 28391.60 22489.86 25897.46 23386.37 21397.68 25895.88 16780.31 33294.46 258
VPNet91.81 25190.46 26195.85 21294.74 29995.54 16298.98 26198.59 8492.14 20890.77 24697.44 23468.73 34397.54 26394.89 18377.89 34594.46 258
UniMVSNet_ETH3D90.06 29288.58 30094.49 25994.67 30188.09 32697.81 33097.57 24183.91 34588.44 29197.41 23557.44 37497.62 26191.41 24288.59 25997.77 229
HY-MVS92.50 797.79 7597.17 9299.63 1798.98 11799.32 997.49 33299.52 1595.69 8298.32 12397.41 23593.32 10099.77 12898.08 11395.75 20599.81 94
PVSNet_088.03 1991.80 25490.27 26796.38 20098.27 16390.46 29199.94 6899.61 1493.99 14286.26 32497.39 23771.13 33599.89 9698.77 8067.05 37898.79 205
FIs94.10 19893.43 20396.11 20694.70 30096.82 11599.58 18598.93 4592.54 19589.34 27297.31 23887.62 19897.10 28894.22 20086.58 28294.40 265
OurMVSNet-221017-089.81 29689.48 28690.83 32891.64 35381.21 36598.17 31995.38 36191.48 22885.65 32997.31 23872.66 32697.29 27788.15 28884.83 29593.97 307
FC-MVSNet-test93.81 20593.15 21295.80 21494.30 30796.20 13899.42 20998.89 4992.33 20589.03 28297.27 24087.39 20196.83 30793.20 22086.48 28394.36 269
USDC90.00 29388.96 29493.10 30694.81 29888.16 32598.71 28995.54 35793.66 15583.75 33897.20 24165.58 35598.31 22583.96 32687.49 27892.85 343
MVSTER95.53 16195.22 15796.45 19598.56 14597.72 7899.91 8297.67 22992.38 20391.39 23797.14 24297.24 1897.30 27494.80 18587.85 27194.34 273
LF4IMVS89.25 30588.85 29590.45 33292.81 33981.19 36698.12 32094.79 36891.44 23086.29 32397.11 24365.30 35898.11 23888.53 28485.25 29192.07 352
mvs_anonymous95.65 15995.03 16497.53 15898.19 16995.74 15399.33 22197.49 25190.87 24690.47 24897.10 24488.23 19397.16 28295.92 16697.66 16399.68 111
jajsoiax91.92 24991.18 25294.15 27091.35 35790.95 28099.00 26097.42 25792.61 19087.38 30897.08 24572.46 32797.36 26794.53 19388.77 25494.13 293
XXY-MVS91.82 25090.46 26195.88 21093.91 31395.40 16898.87 27597.69 22788.63 29087.87 30097.08 24574.38 32197.89 25191.66 24084.07 30294.35 272
LTVRE_ROB88.28 1890.29 28689.05 29394.02 27695.08 29490.15 29897.19 33897.43 25584.91 33983.99 33697.06 24774.00 32398.28 22884.08 32387.71 27493.62 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets91.81 25191.08 25394.00 27891.63 35490.58 28898.67 29497.43 25592.43 20087.37 30997.05 24871.76 32997.32 27394.75 18788.68 25694.11 294
MVS_Test96.46 12995.74 14298.61 9498.18 17097.23 9999.31 22497.15 28491.07 24298.84 9697.05 24888.17 19498.97 17594.39 19497.50 16599.61 127
ab-mvs94.69 18093.42 20498.51 10698.07 17696.26 13396.49 35198.68 7090.31 25994.54 19997.00 25076.30 30399.71 13895.98 16593.38 23199.56 138
PS-MVSNAJss93.64 21293.31 20994.61 25092.11 34792.19 25199.12 24197.38 26192.51 19888.45 29096.99 25191.20 14997.29 27794.36 19587.71 27494.36 269
IB-MVS92.85 694.99 17293.94 18998.16 12397.72 20095.69 15799.99 498.81 6094.28 12792.70 22396.90 25295.08 5199.17 16996.07 16373.88 36299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS92.31 24391.25 25195.48 22194.45 30495.29 17199.60 18298.68 7090.10 26188.07 29896.89 25380.68 26296.80 30993.14 22379.67 33694.36 269
SixPastTwentyTwo88.73 30788.01 30890.88 32691.85 35182.24 35898.22 31795.18 36688.97 27982.26 34396.89 25371.75 33096.67 31484.00 32482.98 30693.72 325
UniMVSNet_NR-MVSNet92.95 22892.11 23395.49 21894.61 30295.28 17299.83 12799.08 3391.49 22789.21 27796.86 25587.14 20496.73 31193.20 22077.52 34894.46 258
XVG-ACMP-BASELINE91.22 26590.75 25692.63 31393.73 31685.61 34098.52 30297.44 25492.77 18189.90 25796.85 25666.64 35298.39 21492.29 23288.61 25793.89 313
TinyColmap87.87 31486.51 31591.94 31995.05 29585.57 34197.65 33194.08 37584.40 34281.82 34696.85 25662.14 36698.33 22380.25 34786.37 28491.91 356
EU-MVSNet90.14 29190.34 26589.54 33892.55 34181.06 36798.69 29298.04 20091.41 23486.59 31796.84 25880.83 26093.31 36986.20 31081.91 31594.26 276
TranMVSNet+NR-MVSNet91.68 25890.61 26094.87 24093.69 31793.98 20999.69 16698.65 7491.03 24388.44 29196.83 25980.05 27096.18 33190.26 26776.89 35694.45 263
test_fmvs289.47 30189.70 27888.77 34694.54 30375.74 37599.83 12794.70 37194.71 10891.08 24196.82 26054.46 37797.78 25692.87 22788.27 26592.80 344
GA-MVS93.83 20392.84 21796.80 18495.73 27993.57 21799.88 9797.24 27692.57 19492.92 21996.66 26178.73 28297.67 25987.75 29394.06 22599.17 185
CMPMVSbinary61.59 2184.75 32885.14 32383.57 35890.32 36562.54 38696.98 34497.59 24074.33 37969.95 38096.66 26164.17 36098.32 22487.88 29288.41 26289.84 371
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test181.15 34080.92 34181.86 36192.45 34259.76 39096.04 36193.61 38173.29 38177.06 36696.64 26344.28 38696.16 33272.35 36982.52 30989.67 372
DU-MVS92.46 24091.45 24995.49 21894.05 31095.28 17299.81 13298.74 6492.25 20789.21 27796.64 26381.66 25096.73 31193.20 22077.52 34894.46 258
NR-MVSNet91.56 25990.22 26895.60 21694.05 31095.76 15298.25 31398.70 6791.16 24080.78 35296.64 26383.23 24296.57 31791.41 24277.73 34794.46 258
CP-MVSNet91.23 26490.22 26894.26 26893.96 31292.39 24899.09 24498.57 8788.95 28186.42 32196.57 26679.19 27796.37 32390.29 26678.95 33894.02 300
pmmvs492.10 24791.07 25495.18 23192.82 33894.96 18299.48 20396.83 31987.45 30588.66 28996.56 26783.78 23796.83 30789.29 27584.77 29693.75 321
PS-CasMVS90.63 27789.51 28493.99 27993.83 31491.70 26798.98 26198.52 10188.48 29286.15 32596.53 26875.46 31096.31 32788.83 27978.86 34093.95 308
test-LLR96.47 12896.04 12397.78 14297.02 23595.44 16499.96 3498.21 18094.07 13695.55 18896.38 26993.90 8898.27 23090.42 26398.83 13499.64 119
test-mter96.39 13395.93 13597.78 14297.02 23595.44 16499.96 3498.21 18091.81 22095.55 18896.38 26995.17 4898.27 23090.42 26398.83 13499.64 119
MS-PatchMatch90.65 27590.30 26691.71 32294.22 30885.50 34298.24 31497.70 22688.67 28886.42 32196.37 27167.82 34798.03 24383.62 32899.62 8991.60 357
PEN-MVS90.19 28989.06 29293.57 29493.06 33290.90 28199.06 25198.47 11288.11 29785.91 32796.30 27276.67 29795.94 34187.07 30276.91 35593.89 313
UGNet95.33 16694.57 17497.62 15598.55 14794.85 18498.67 29499.32 2695.75 8196.80 16196.27 27372.18 32899.96 6194.58 19299.05 12898.04 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DTE-MVSNet89.40 30288.24 30592.88 31092.66 34089.95 30399.10 24398.22 17987.29 30785.12 33296.22 27476.27 30495.30 35083.56 32975.74 35993.41 330
FE-MVS95.70 15795.01 16597.79 14198.21 16794.57 19095.03 36798.69 6888.90 28397.50 14596.19 27592.60 12399.49 15889.99 27097.94 15999.31 174
TransMVSNet (Re)87.25 31585.28 32293.16 30393.56 31991.03 27698.54 30094.05 37783.69 34781.09 35096.16 27675.32 31196.40 32276.69 36268.41 37492.06 353
pm-mvs189.36 30387.81 30994.01 27793.40 32491.93 25798.62 29796.48 33786.25 32283.86 33796.14 27773.68 32497.04 29386.16 31175.73 36093.04 340
FA-MVS(test-final)95.86 14995.09 16298.15 12697.74 19595.62 15996.31 35598.17 18591.42 23396.26 17596.13 27890.56 16499.47 16092.18 23497.07 17599.35 169
Test_1112_low_res95.72 15394.83 16998.42 11397.79 19296.41 12699.65 17396.65 33092.70 18492.86 22296.13 27892.15 13699.30 16391.88 23893.64 22899.55 139
TDRefinement84.76 32782.56 33591.38 32474.58 39384.80 34797.36 33594.56 37284.73 34080.21 35496.12 28063.56 36298.39 21487.92 29163.97 38390.95 363
test_djsdf92.83 23092.29 23194.47 26091.90 35092.46 24699.55 19197.27 27391.17 23889.96 25496.07 28181.10 25696.89 30394.67 19088.91 25094.05 299
miper_enhance_ethall94.36 19493.98 18795.49 21898.68 14195.24 17499.73 15897.29 27193.28 16689.86 25895.97 28294.37 7297.05 29192.20 23384.45 29894.19 282
lessismore_v090.53 32990.58 36380.90 36895.80 35077.01 36795.84 28366.15 35496.95 29983.03 33175.05 36193.74 324
PVSNet_BlendedMVS96.05 14495.82 14196.72 18899.59 8196.99 10999.95 5299.10 3194.06 13898.27 12595.80 28489.00 18799.95 6999.12 5887.53 27793.24 336
ppachtmachnet_test89.58 30088.35 30393.25 30292.40 34390.44 29299.33 22196.73 32685.49 33285.90 32895.77 28581.09 25796.00 34076.00 36482.49 31093.30 334
pmmvs590.17 29089.09 29193.40 29792.10 34889.77 30699.74 15395.58 35685.88 32687.24 31195.74 28673.41 32596.48 32088.54 28383.56 30593.95 308
MDTV_nov1_ep1395.69 14497.90 18494.15 20395.98 36298.44 11993.12 17097.98 13295.74 28695.10 5098.58 19890.02 26996.92 181
eth_miper_zixun_eth92.41 24191.93 23893.84 28597.28 22890.68 28598.83 27996.97 30588.57 29189.19 27995.73 28889.24 18496.69 31389.97 27181.55 31794.15 289
IterMVS-SCA-FT90.85 27290.16 27292.93 30996.72 25389.96 30298.89 27096.99 30188.95 28186.63 31695.67 28976.48 30195.00 35287.04 30384.04 30493.84 317
Baseline_NR-MVSNet90.33 28489.51 28492.81 31192.84 33689.95 30399.77 14293.94 37884.69 34189.04 28195.66 29081.66 25096.52 31890.99 25076.98 35491.97 355
cl2293.77 20793.25 21195.33 22699.49 9094.43 19399.61 18198.09 19490.38 25689.16 28095.61 29190.56 16497.34 26991.93 23684.45 29894.21 281
K. test v388.05 31187.24 31390.47 33191.82 35282.23 35998.96 26497.42 25789.05 27476.93 36895.60 29268.49 34495.42 34685.87 31581.01 32693.75 321
SCA94.69 18093.81 19397.33 17297.10 23194.44 19298.86 27698.32 16693.30 16596.17 17895.59 29376.48 30197.95 24891.06 24897.43 16699.59 130
Patchmatch-test92.65 23791.50 24796.10 20796.85 24590.49 29091.50 38197.19 27882.76 35390.23 25095.59 29395.02 5498.00 24477.41 35896.98 18099.82 92
DIV-MVS_self_test92.32 24291.60 24394.47 26097.31 22592.74 23799.58 18596.75 32586.99 31387.64 30295.54 29589.55 17796.50 31988.58 28282.44 31194.17 283
Anonymous2023121189.86 29588.44 30294.13 27298.93 12290.68 28598.54 30098.26 17676.28 37186.73 31495.54 29570.60 33797.56 26290.82 25580.27 33394.15 289
miper_ehance_all_eth93.16 22292.60 22394.82 24497.57 20993.56 21899.50 19997.07 29388.75 28688.85 28595.52 29790.97 15696.74 31090.77 25684.45 29894.17 283
cl____92.31 24391.58 24494.52 25697.33 22492.77 23599.57 18796.78 32486.97 31487.56 30495.51 29889.43 17896.62 31588.60 28182.44 31194.16 288
tfpnnormal89.29 30487.61 31094.34 26794.35 30694.13 20498.95 26598.94 4183.94 34384.47 33495.51 29874.84 31797.39 26677.05 36180.41 33091.48 359
DeepMVS_CXcopyleft82.92 36095.98 26958.66 39196.01 34792.72 18278.34 36295.51 29858.29 37398.08 23982.57 33385.29 29092.03 354
c3_l92.53 23891.87 24094.52 25697.40 21892.99 23399.40 21096.93 31187.86 30088.69 28895.44 30189.95 17296.44 32190.45 26280.69 32994.14 292
IterMVS90.91 26990.17 27193.12 30496.78 25190.42 29398.89 27097.05 29689.03 27586.49 31995.42 30276.59 29995.02 35187.22 30084.09 30193.93 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)93.07 22692.13 23295.88 21094.84 29796.24 13799.88 9798.98 3892.49 19989.25 27495.40 30387.09 20597.14 28493.13 22478.16 34394.26 276
tpm295.47 16295.18 15996.35 20196.91 24091.70 26796.96 34597.93 20988.04 29998.44 11795.40 30393.32 10097.97 24594.00 20195.61 20799.38 164
pmmvs685.69 32083.84 32791.26 32590.00 36884.41 34897.82 32996.15 34575.86 37381.29 34995.39 30561.21 36996.87 30583.52 33073.29 36392.50 348
IterMVS-LS92.69 23592.11 23394.43 26496.80 24892.74 23799.45 20796.89 31488.98 27889.65 26595.38 30688.77 18996.34 32590.98 25182.04 31494.22 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu94.53 18795.30 15592.22 31697.77 19382.54 35699.59 18397.06 29494.92 10195.29 19395.37 30785.81 21797.89 25194.80 18597.07 17596.23 246
v2v48291.30 26090.07 27495.01 23593.13 32793.79 21299.77 14297.02 29888.05 29889.25 27495.37 30780.73 26197.15 28387.28 29980.04 33594.09 296
FMVSNet392.69 23591.58 24495.99 20898.29 16097.42 9599.26 23297.62 23389.80 26789.68 26295.32 30981.62 25296.27 32887.01 30585.65 28794.29 275
MVP-Stereo90.93 26890.45 26392.37 31591.25 35988.76 31498.05 32496.17 34487.27 30884.04 33595.30 31078.46 28697.27 27983.78 32799.70 8491.09 360
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
anonymousdsp91.79 25690.92 25594.41 26590.76 36292.93 23498.93 26797.17 28189.08 27387.46 30795.30 31078.43 28796.92 30292.38 23188.73 25593.39 332
v192192090.46 28089.12 29094.50 25892.96 33592.46 24699.49 20196.98 30386.10 32389.61 26795.30 31078.55 28597.03 29682.17 33780.89 32894.01 302
VPA-MVSNet92.70 23491.55 24696.16 20595.09 29396.20 13898.88 27299.00 3691.02 24491.82 23495.29 31376.05 30797.96 24795.62 17081.19 32094.30 274
PatchmatchNetpermissive95.94 14895.45 14997.39 16797.83 18994.41 19596.05 36098.40 14692.86 17497.09 15295.28 31494.21 7998.07 24189.26 27698.11 15399.70 108
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_lstm_enhance91.81 25191.39 25093.06 30797.34 22289.18 31299.38 21596.79 32386.70 31787.47 30695.22 31590.00 17195.86 34288.26 28681.37 31994.15 289
test_040285.58 32183.94 32690.50 33093.81 31585.04 34498.55 29895.20 36576.01 37279.72 35795.13 31664.15 36196.26 32966.04 38286.88 28190.21 368
tpmrst96.27 14195.98 12797.13 17697.96 18193.15 22896.34 35498.17 18592.07 21098.71 10695.12 31793.91 8798.73 18894.91 18296.62 18499.50 151
V4291.28 26290.12 27394.74 24593.42 32393.46 22199.68 16897.02 29887.36 30689.85 26095.05 31881.31 25597.34 26987.34 29880.07 33493.40 331
EPMVS96.53 12796.01 12498.09 12898.43 15496.12 14496.36 35399.43 2193.53 15897.64 14195.04 31994.41 6798.38 21891.13 24698.11 15399.75 103
v119290.62 27889.25 28894.72 24793.13 32793.07 22999.50 19997.02 29886.33 32189.56 26895.01 32079.22 27697.09 29082.34 33681.16 32194.01 302
v14890.70 27489.63 27993.92 28192.97 33490.97 27799.75 15096.89 31487.51 30388.27 29695.01 32081.67 24997.04 29387.40 29777.17 35393.75 321
FMVSNet291.02 26789.56 28195.41 22397.53 21195.74 15398.98 26197.41 25987.05 31088.43 29395.00 32271.34 33296.24 33085.12 31885.21 29294.25 278
our_test_390.39 28189.48 28693.12 30492.40 34389.57 30899.33 22196.35 34187.84 30185.30 33094.99 32384.14 23596.09 33680.38 34584.56 29793.71 326
v114491.09 26689.83 27594.87 24093.25 32693.69 21699.62 18096.98 30386.83 31689.64 26694.99 32380.94 25897.05 29185.08 31981.16 32193.87 315
v14419290.79 27389.52 28394.59 25293.11 33092.77 23599.56 18996.99 30186.38 32089.82 26194.95 32580.50 26697.10 28883.98 32580.41 33093.90 312
CostFormer96.10 14295.88 13996.78 18597.03 23492.55 24597.08 34297.83 22190.04 26498.72 10594.89 32695.01 5598.29 22696.54 15895.77 20399.50 151
v124090.20 28888.79 29794.44 26293.05 33392.27 25099.38 21596.92 31285.89 32589.36 27194.87 32777.89 28997.03 29680.66 34481.08 32494.01 302
v7n89.65 29988.29 30493.72 28892.22 34590.56 28999.07 25097.10 28985.42 33486.73 31494.72 32880.06 26997.13 28581.14 34278.12 34493.49 329
GBi-Net90.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
test190.88 27089.82 27694.08 27397.53 21191.97 25498.43 30596.95 30687.05 31089.68 26294.72 32871.34 33296.11 33387.01 30585.65 28794.17 283
FMVSNet188.50 30886.64 31494.08 27395.62 28891.97 25498.43 30596.95 30683.00 35086.08 32694.72 32859.09 37296.11 33381.82 34084.07 30294.17 283
dp95.05 17094.43 17696.91 18197.99 18092.73 23996.29 35697.98 20489.70 26895.93 18294.67 33293.83 9198.45 20786.91 30896.53 18699.54 143
test20.0384.72 32983.99 32486.91 35288.19 37480.62 37098.88 27295.94 34888.36 29478.87 35894.62 33368.75 34289.11 38366.52 38075.82 35891.00 361
D2MVS92.76 23192.59 22693.27 30195.13 29289.54 30999.69 16699.38 2392.26 20687.59 30394.61 33485.05 22697.79 25491.59 24188.01 26992.47 349
v890.54 27989.17 28994.66 24893.43 32293.40 22599.20 23696.94 31085.76 32787.56 30494.51 33581.96 24897.19 28184.94 32078.25 34293.38 333
v1090.25 28788.82 29694.57 25493.53 32093.43 22399.08 24696.87 31685.00 33687.34 31094.51 33580.93 25997.02 29882.85 33279.23 33793.26 335
ADS-MVSNet293.80 20693.88 19193.55 29597.87 18685.94 33994.24 36896.84 31890.07 26296.43 17094.48 33790.29 16995.37 34787.44 29597.23 17199.36 167
ADS-MVSNet94.79 17694.02 18697.11 17897.87 18693.79 21294.24 36898.16 18990.07 26296.43 17094.48 33790.29 16998.19 23587.44 29597.23 17199.36 167
WR-MVS_H91.30 26090.35 26494.15 27094.17 30992.62 24499.17 23998.94 4188.87 28486.48 32094.46 33984.36 23296.61 31688.19 28778.51 34193.21 337
LCM-MVSNet-Re92.31 24392.60 22391.43 32397.53 21179.27 37399.02 25991.83 38792.07 21080.31 35394.38 34083.50 23995.48 34597.22 14397.58 16499.54 143
tpmvs94.28 19693.57 19996.40 19898.55 14791.50 27295.70 36698.55 9587.47 30492.15 23094.26 34191.42 14598.95 17788.15 28895.85 20198.76 206
tpm93.70 21193.41 20694.58 25395.36 29187.41 33197.01 34396.90 31390.85 24796.72 16394.14 34290.40 16796.84 30690.75 25788.54 26099.51 149
Anonymous2023120686.32 31885.42 32189.02 34289.11 37180.53 37199.05 25595.28 36285.43 33382.82 34193.92 34374.40 32093.44 36866.99 37881.83 31693.08 339
UnsupCasMVSNet_eth85.52 32283.99 32490.10 33489.36 37083.51 35296.65 34997.99 20289.14 27275.89 37293.83 34463.25 36393.92 36281.92 33967.90 37792.88 342
tpm cat193.51 21592.52 22896.47 19397.77 19391.47 27396.13 35898.06 19780.98 36092.91 22093.78 34589.66 17498.87 17987.03 30496.39 18999.09 192
EG-PatchMatch MVS85.35 32583.81 32889.99 33690.39 36481.89 36198.21 31896.09 34681.78 35774.73 37493.72 34651.56 38297.12 28779.16 35288.61 25790.96 362
test_method80.79 34179.70 34584.08 35792.83 33767.06 38399.51 19795.42 35854.34 38981.07 35193.53 34744.48 38592.22 37678.90 35377.23 35292.94 341
N_pmnet80.06 34480.78 34277.89 36491.94 34945.28 40298.80 28356.82 40478.10 36980.08 35593.33 34877.03 29295.76 34368.14 37782.81 30792.64 345
MDA-MVSNet-bldmvs84.09 33281.52 33991.81 32191.32 35888.00 32898.67 29495.92 34980.22 36355.60 39193.32 34968.29 34693.60 36773.76 36676.61 35793.82 319
CR-MVSNet93.45 21892.62 22295.94 20996.29 25892.66 24192.01 37996.23 34292.62 18996.94 15593.31 35091.04 15496.03 33879.23 34995.96 19699.13 190
Patchmtry89.70 29888.49 30193.33 29996.24 26189.94 30591.37 38296.23 34278.22 36887.69 30193.31 35091.04 15496.03 33880.18 34882.10 31394.02 300
MIMVSNet90.30 28588.67 29995.17 23296.45 25791.64 26992.39 37797.15 28485.99 32490.50 24793.19 35266.95 35094.86 35582.01 33893.43 22999.01 196
YYNet185.50 32483.33 33092.00 31890.89 36188.38 32499.22 23596.55 33479.60 36657.26 38992.72 35379.09 28093.78 36577.25 35977.37 35193.84 317
MDA-MVSNet_test_wron85.51 32383.32 33192.10 31790.96 36088.58 32099.20 23696.52 33579.70 36557.12 39092.69 35479.11 27893.86 36477.10 36077.46 35093.86 316
MIMVSNet182.58 33780.51 34388.78 34486.68 37684.20 34996.65 34995.41 35978.75 36778.59 36192.44 35551.88 38189.76 38265.26 38378.95 33892.38 351
KD-MVS_2432*160088.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
miper_refine_blended88.00 31286.10 31693.70 29196.91 24094.04 20697.17 33997.12 28784.93 33781.96 34492.41 35692.48 12794.51 35879.23 34952.68 39092.56 346
FMVSNet588.32 30987.47 31190.88 32696.90 24388.39 32397.28 33695.68 35382.60 35484.67 33392.40 35879.83 27191.16 37976.39 36381.51 31893.09 338
EGC-MVSNET69.38 35063.76 36086.26 35490.32 36581.66 36496.24 35793.85 3790.99 4013.22 40292.33 35952.44 37992.92 37259.53 38884.90 29484.21 382
DSMNet-mixed88.28 31088.24 30588.42 34889.64 36975.38 37798.06 32389.86 39185.59 33188.20 29792.14 36076.15 30691.95 37778.46 35496.05 19497.92 225
patchmatchnet-post91.70 36195.12 4997.95 248
OpenMVS_ROBcopyleft79.82 2083.77 33581.68 33890.03 33588.30 37382.82 35398.46 30395.22 36473.92 38076.00 37191.29 36255.00 37696.94 30068.40 37688.51 26190.34 366
Anonymous2024052185.15 32683.81 32889.16 34188.32 37282.69 35498.80 28395.74 35179.72 36481.53 34890.99 36365.38 35794.16 36072.69 36881.11 32390.63 365
Patchmatch-RL test86.90 31685.98 32089.67 33784.45 37975.59 37689.71 38692.43 38486.89 31577.83 36590.94 36494.22 7793.63 36687.75 29369.61 36999.79 97
CL-MVSNet_self_test84.50 33083.15 33388.53 34786.00 37781.79 36298.82 28097.35 26385.12 33583.62 33990.91 36576.66 29891.40 37869.53 37460.36 38792.40 350
WB-MVS76.28 34877.28 35073.29 36981.18 38554.68 39497.87 32894.19 37481.30 35869.43 38190.70 36677.02 29382.06 39235.71 39768.11 37683.13 383
FPMVS68.72 35268.72 35368.71 37565.95 39744.27 40495.97 36394.74 36951.13 39053.26 39290.50 36725.11 39583.00 39160.80 38680.97 32778.87 388
SSC-MVS75.42 34976.40 35272.49 37380.68 38753.62 39597.42 33394.06 37680.42 36268.75 38290.14 36876.54 30081.66 39333.25 39866.34 38082.19 384
test_vis1_rt86.87 31786.05 31989.34 33996.12 26278.07 37499.87 10083.54 39892.03 21378.21 36389.51 36945.80 38499.91 8996.25 16193.11 23490.03 369
new_pmnet84.49 33182.92 33489.21 34090.03 36782.60 35596.89 34795.62 35580.59 36175.77 37389.17 37065.04 35994.79 35672.12 37081.02 32590.23 367
KD-MVS_self_test83.59 33682.06 33688.20 34986.93 37580.70 36997.21 33796.38 33982.87 35182.49 34288.97 37167.63 34892.32 37573.75 36762.30 38691.58 358
mvsany_test382.12 33881.14 34085.06 35681.87 38470.41 38097.09 34192.14 38591.27 23777.84 36488.73 37239.31 38795.49 34490.75 25771.24 36689.29 376
PM-MVS80.47 34278.88 34785.26 35583.79 38272.22 37995.89 36491.08 38885.71 33076.56 37088.30 37336.64 38893.90 36382.39 33569.57 37089.66 373
testf168.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
APD_test268.38 35366.92 35472.78 37178.80 38950.36 39790.95 38487.35 39655.47 38758.95 38688.14 37420.64 39787.60 38557.28 38964.69 38180.39 386
pmmvs380.27 34377.77 34887.76 35180.32 38882.43 35798.23 31691.97 38672.74 38278.75 35987.97 37657.30 37590.99 38070.31 37262.37 38589.87 370
pmmvs-eth3d84.03 33381.97 33790.20 33384.15 38087.09 33398.10 32294.73 37083.05 34974.10 37687.77 37765.56 35694.01 36181.08 34369.24 37189.49 374
test12337.68 36539.14 36833.31 38119.94 40424.83 40798.36 3109.75 40615.53 39951.31 39387.14 37819.62 40017.74 40147.10 3933.47 40057.36 394
new-patchmatchnet81.19 33979.34 34686.76 35382.86 38380.36 37297.92 32695.27 36382.09 35672.02 37786.87 37962.81 36590.74 38171.10 37163.08 38489.19 377
test_fmvs379.99 34580.17 34479.45 36384.02 38162.83 38499.05 25593.49 38288.29 29680.06 35686.65 38028.09 39288.00 38488.63 28073.27 36487.54 380
ambc83.23 35977.17 39162.61 38587.38 38894.55 37376.72 36986.65 38030.16 38996.36 32484.85 32169.86 36890.73 364
PatchT90.38 28288.75 29895.25 22995.99 26790.16 29791.22 38397.54 24476.80 37097.26 14986.01 38291.88 14196.07 33766.16 38195.91 20099.51 149
RPMNet89.76 29787.28 31297.19 17596.29 25892.66 24192.01 37998.31 16870.19 38496.94 15585.87 38387.25 20399.78 12562.69 38595.96 19699.13 190
test_f78.40 34777.59 34980.81 36280.82 38662.48 38796.96 34593.08 38383.44 34874.57 37584.57 38427.95 39392.63 37384.15 32272.79 36587.32 381
UnsupCasMVSNet_bld79.97 34677.03 35188.78 34485.62 37881.98 36093.66 37397.35 26375.51 37670.79 37983.05 38548.70 38394.91 35478.31 35560.29 38889.46 375
LCM-MVSNet67.77 35564.73 35876.87 36662.95 39956.25 39389.37 38793.74 38044.53 39261.99 38480.74 38620.42 39986.53 38969.37 37559.50 38987.84 378
PMMVS267.15 35664.15 35976.14 36770.56 39662.07 38893.89 37187.52 39558.09 38660.02 38578.32 38722.38 39684.54 39059.56 38747.03 39281.80 385
JIA-IIPM91.76 25790.70 25794.94 23896.11 26387.51 33093.16 37598.13 19375.79 37497.58 14277.68 38892.84 11597.97 24588.47 28596.54 18599.33 172
PMVScopyleft49.05 2353.75 36051.34 36460.97 37840.80 40334.68 40574.82 39289.62 39337.55 39428.67 40072.12 3897.09 40481.63 39443.17 39568.21 37566.59 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet86.22 31983.19 33295.31 22796.71 25490.29 29492.12 37897.33 26662.85 38586.82 31370.37 39069.37 34097.49 26475.12 36597.99 15898.15 221
gg-mvs-nofinetune93.51 21591.86 24198.47 10897.72 20097.96 7292.62 37698.51 10474.70 37897.33 14869.59 39198.91 397.79 25497.77 13099.56 9799.67 113
test_vis3_rt68.82 35166.69 35675.21 36876.24 39260.41 38996.44 35268.71 40375.13 37750.54 39469.52 39216.42 40296.32 32680.27 34666.92 37968.89 390
Gipumacopyleft66.95 35765.00 35772.79 37091.52 35567.96 38266.16 39395.15 36747.89 39158.54 38867.99 39329.74 39087.54 38750.20 39277.83 34662.87 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high56.10 35952.24 36267.66 37649.27 40156.82 39283.94 38982.02 39970.47 38333.28 39964.54 39417.23 40169.16 39745.59 39423.85 39677.02 389
E-PMN52.30 36152.18 36352.67 37971.51 39445.40 40193.62 37476.60 40136.01 39543.50 39664.13 39527.11 39467.31 39831.06 39926.06 39445.30 397
test_post63.35 39694.43 6698.13 237
MVEpermissive53.74 2251.54 36247.86 36662.60 37759.56 40050.93 39679.41 39177.69 40035.69 39636.27 39861.76 3975.79 40669.63 39637.97 39636.61 39367.24 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 36351.22 36552.11 38070.71 39544.97 40394.04 37075.66 40235.34 39742.40 39761.56 39828.93 39165.87 39927.64 40024.73 39545.49 396
test_post195.78 36559.23 39993.20 10697.74 25791.06 248
X-MVStestdata93.83 20392.06 23599.15 5799.94 1397.50 9099.94 6898.42 13896.22 7199.41 6841.37 40094.34 7399.96 6198.92 7099.95 4999.99 23
wuyk23d20.37 36720.84 37018.99 38365.34 39827.73 40650.43 3947.67 4079.50 4008.01 4016.34 4016.13 40526.24 40023.40 40110.69 3992.99 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.02 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.60 36910.13 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40391.20 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.97 27786.10 313
FOURS199.92 3197.66 8399.95 5298.36 15795.58 8599.52 59
MSC_two_6792asdad99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 142100.00 199.96 9100.00 1100.00 1
eth-test20.00 406
eth-test0.00 406
IU-MVS99.93 2499.31 1098.41 14297.71 1999.84 12100.00 1100.00 1100.00 1
save fliter99.82 5898.79 3899.96 3498.40 14697.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5298.43 127100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
test_part299.89 4599.25 1899.49 62
sam_mvs194.72 6199.59 130
sam_mvs94.25 76
MTGPAbinary98.28 173
MTMP99.87 10096.49 336
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
agg_prior99.93 2498.77 4098.43 12799.63 4399.85 108
test_prior498.05 6699.94 68
test_prior99.43 3599.94 1398.49 5898.65 7499.80 12199.99 23
旧先验299.46 20694.21 13099.85 999.95 6996.96 151
新几何299.40 210
无先验99.49 20198.71 6693.46 160100.00 194.36 19599.99 23
原ACMM299.90 87
testdata299.99 3690.54 261
segment_acmp96.68 26
testdata199.28 23096.35 69
test1299.43 3599.74 6998.56 5598.40 14699.65 4094.76 6099.75 13299.98 3299.99 23
plane_prior795.71 28291.59 271
plane_prior695.76 27691.72 26680.47 267
plane_prior597.87 21698.37 22097.79 12889.55 24494.52 254
plane_prior391.64 26996.63 5693.01 217
plane_prior299.84 12096.38 65
plane_prior195.73 279
plane_prior91.74 26399.86 11396.76 5289.59 243
n20.00 408
nn0.00 408
door-mid89.69 392
test1198.44 119
door90.31 389
HQP5-MVS91.85 259
HQP-NCC95.78 27299.87 10096.82 4893.37 213
ACMP_Plane95.78 27299.87 10096.82 4893.37 213
BP-MVS97.92 121
HQP4-MVS93.37 21398.39 21494.53 252
HQP3-MVS97.89 21489.60 241
HQP2-MVS80.65 263
MDTV_nov1_ep13_2view96.26 13396.11 35991.89 21698.06 13094.40 6894.30 19799.67 113
ACMMP++_ref87.04 279
ACMMP++88.23 266
Test By Simon92.82 117