This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.59 198.81 1998.54 2299.62 1899.90 4298.85 3299.24 21598.47 9998.14 499.08 7699.91 1493.09 106100.00 199.04 5199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS95.94 297.71 7398.98 1293.92 26599.63 7981.76 34499.96 2698.56 7899.47 199.19 7399.99 194.16 79100.00 199.92 1299.93 60100.00 1
PLCcopyleft95.54 397.93 5997.89 6198.05 12399.82 5894.77 17999.92 6798.46 10193.93 13297.20 13799.27 11995.44 4599.97 5197.41 12299.51 9899.41 155
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS94.51 496.92 9996.40 10598.45 10499.16 10295.90 14199.66 15498.06 18196.37 5594.37 18999.49 10283.29 22799.90 7997.63 11999.61 9199.55 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 15494.10 16998.43 10698.55 13995.99 13997.91 30797.31 25190.35 23889.48 25099.22 12585.19 21299.89 8390.40 24898.47 12799.41 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS92.85 694.99 15993.94 17398.16 11697.72 19095.69 15199.99 398.81 5094.28 11392.70 21096.90 23195.08 5199.17 15596.07 14873.88 34299.60 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS92.50 797.79 6997.17 8299.63 1598.98 11299.32 897.49 31299.52 1495.69 6898.32 11197.41 21493.32 9899.77 11498.08 10095.75 18999.81 88
TAPA-MVS92.12 894.42 17593.60 18196.90 16799.33 9791.78 24799.78 12498.00 18489.89 24694.52 18699.47 10391.97 13499.18 15469.90 35499.52 9699.73 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.05 992.74 21492.42 21293.73 27195.91 25588.72 29799.81 11797.53 22994.13 11887.00 29398.23 19274.07 30098.47 18796.22 14788.86 23493.99 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 21192.52 21093.98 26495.75 26289.08 29499.77 12797.52 23193.00 15889.95 23697.99 20076.17 28498.46 19093.63 19988.87 23394.39 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator+91.53 1196.31 12495.24 14399.52 2696.88 23098.64 5099.72 14698.24 16195.27 8088.42 27698.98 14382.76 22999.94 6997.10 13199.83 7299.96 61
3Dnovator91.47 1296.28 12795.34 14099.08 6196.82 23397.47 8999.45 18998.81 5095.52 7489.39 25199.00 14081.97 23399.95 6197.27 12599.83 7299.84 85
PVSNet91.05 1397.13 9196.69 9698.45 10499.52 8795.81 14399.95 4399.65 1194.73 9399.04 7899.21 12684.48 21799.95 6194.92 16598.74 12299.58 130
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25399.00 11088.04 30898.42 28996.70 30982.30 33588.43 27499.01 13876.97 27499.85 9586.11 29496.50 17394.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft90.15 1594.77 16493.59 18298.33 11196.07 24997.48 8899.56 17198.57 7690.46 23586.51 29998.95 15278.57 26699.94 6993.86 18899.74 8197.57 218
ACMH+89.98 1690.35 26589.54 26392.78 29395.99 25286.12 32098.81 26397.18 26189.38 24983.14 32197.76 20768.42 32298.43 19289.11 26086.05 26693.78 300
ACMH89.72 1790.64 25889.63 26093.66 27795.64 26988.64 30098.55 27997.45 23689.03 25481.62 32897.61 20969.75 31698.41 19489.37 25787.62 25793.92 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB88.28 1890.29 26889.05 27494.02 26095.08 27790.15 27997.19 31797.43 23884.91 31983.99 31797.06 22674.00 30198.28 21284.08 30587.71 25593.62 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_088.03 1991.80 23690.27 24896.38 18598.27 15590.46 27399.94 5899.61 1293.99 12886.26 30597.39 21671.13 31399.89 8398.77 6767.05 35798.79 197
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 35482.82 33498.46 28495.22 34573.92 35876.00 35191.29 34255.00 35396.94 28368.40 35788.51 24290.34 346
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33990.32 34662.54 36696.98 32397.59 22374.33 35769.95 36096.66 24064.17 33798.32 20887.88 27588.41 24389.84 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive53.74 2251.54 34147.86 34562.60 35559.56 37950.93 37479.41 36977.69 37835.69 37436.27 37661.76 3755.79 38469.63 37437.97 37536.61 37167.24 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 33951.34 34360.97 35640.80 38234.68 38274.82 37089.62 37137.55 37228.67 37872.12 3677.09 38281.63 37243.17 37468.21 35566.59 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_n_192095.44 15095.31 14195.82 19898.50 14388.74 29699.98 997.30 25297.84 899.85 799.19 12766.82 32899.97 5198.82 6499.46 10198.76 198
test_vis1_n93.61 19793.03 19795.35 20895.86 25686.94 31599.87 8896.36 32196.85 3499.54 4898.79 16752.41 35799.83 10498.64 7698.97 11799.29 171
test_fmvs1_n94.25 18294.36 16393.92 26597.68 19383.70 33299.90 7696.57 31497.40 1899.67 3498.88 15861.82 34499.92 7698.23 9199.13 11498.14 208
mvsany_test197.82 6697.90 6097.55 14398.77 13093.04 21799.80 12197.93 19296.95 3399.61 4599.68 8690.92 15099.83 10499.18 4498.29 13499.80 90
APD_test181.15 32180.92 32281.86 34292.45 32559.76 37096.04 33993.61 36073.29 35977.06 34696.64 24244.28 36496.16 31672.35 35082.52 28989.67 352
test_vis1_rt86.87 29986.05 30089.34 32196.12 24778.07 35599.87 8883.54 37692.03 19778.21 34389.51 34745.80 36299.91 7796.25 14693.11 21790.03 349
test_vis3_rt68.82 33066.69 33575.21 34876.24 37160.41 36996.44 33068.71 38175.13 35550.54 37269.52 37016.42 38096.32 30980.27 32766.92 35868.89 368
test_fmvs289.47 28289.70 25988.77 32894.54 28675.74 35699.83 11394.70 35294.71 9491.08 22296.82 23954.46 35497.78 23992.87 21088.27 24692.80 324
test_fmvs195.35 15295.68 13394.36 25098.99 11184.98 32799.96 2696.65 31197.60 1299.73 2898.96 14771.58 30999.93 7598.31 8999.37 10598.17 205
test_fmvs379.99 32680.17 32579.45 34484.02 36262.83 36499.05 23793.49 36188.29 27580.06 33786.65 35828.09 37088.00 36588.63 26373.27 34487.54 360
mvsany_test382.12 31981.14 32185.06 33781.87 36570.41 36097.09 32092.14 36491.27 22077.84 34488.73 35039.31 36595.49 32890.75 24071.24 34689.29 356
testf168.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
APD_test268.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
test_f78.40 32877.59 33080.81 34380.82 36662.48 36796.96 32493.08 36283.44 32874.57 35584.57 36227.95 37192.63 35584.15 30472.79 34587.32 361
FE-MVS95.70 14495.01 15297.79 13298.21 15894.57 18095.03 34598.69 5888.90 26297.50 13296.19 25492.60 11899.49 14489.99 25397.94 14599.31 167
FA-MVS(test-final)95.86 13695.09 14998.15 11997.74 18595.62 15396.31 33398.17 16991.42 21796.26 16196.13 25790.56 15799.47 14692.18 21797.07 16199.35 162
iter_conf_final96.01 13395.93 12396.28 18798.38 14897.03 10399.87 8897.03 27894.05 12692.61 21197.98 20198.01 597.34 25297.02 13388.39 24494.47 236
bld_raw_dy_0_6492.74 21492.03 21894.87 22493.09 31493.46 20699.12 22395.41 34092.84 16390.44 23097.54 21078.08 27097.04 27693.94 18787.77 25494.11 273
patch_mono-298.24 5099.12 595.59 20199.67 7786.91 31799.95 4398.89 4397.60 1299.90 299.76 6296.54 2899.98 4299.94 1199.82 7699.88 80
EGC-MVSNET69.38 32963.76 33986.26 33590.32 34681.66 34596.24 33593.85 3580.99 3793.22 38092.33 33952.44 35692.92 35459.53 36784.90 27584.21 362
test250697.53 7697.19 8098.58 9298.66 13596.90 10998.81 26399.77 594.93 8597.95 12198.96 14792.51 12199.20 15294.93 16498.15 13699.64 113
test111195.57 14794.98 15397.37 15498.56 13793.37 21198.86 25898.45 10294.95 8496.63 15098.95 15275.21 29399.11 15795.02 16298.14 13899.64 113
ECVR-MVScopyleft95.66 14595.05 15097.51 14698.66 13593.71 20098.85 26098.45 10294.93 8596.86 14498.96 14775.22 29299.20 15295.34 15698.15 13699.64 113
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.02 3800.00 3850.00 3810.00 3790.00 3790.00 377
tt080591.28 24490.18 25194.60 23596.26 24587.55 31098.39 29098.72 5589.00 25689.22 25798.47 18662.98 34198.96 16290.57 24288.00 25197.28 220
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4398.43 11396.48 4799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
FOURS199.92 3197.66 7999.95 4398.36 14395.58 7199.52 51
MSC_two_6792asdad99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 3299.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 12896.63 4499.75 2699.93 1197.49 10
eth-test20.00 385
eth-test0.00 385
GeoE94.36 17993.48 18696.99 16497.29 21393.54 20499.96 2696.72 30888.35 27493.43 19998.94 15482.05 23298.05 22688.12 27396.48 17499.37 159
test_method80.79 32279.70 32684.08 33892.83 32067.06 36399.51 17995.42 33954.34 36781.07 33293.53 32644.48 36392.22 35778.90 33477.23 33292.94 321
Anonymous2024052185.15 30883.81 30989.16 32388.32 35382.69 33598.80 26595.74 33279.72 34281.53 32990.99 34365.38 33494.16 34472.69 34981.11 30390.63 345
h-mvs3394.92 16094.36 16396.59 17798.85 12591.29 25998.93 24998.94 3795.90 6298.77 8998.42 18990.89 15399.77 11497.80 11170.76 34798.72 200
hse-mvs294.38 17694.08 17095.31 21198.27 15590.02 28299.29 21198.56 7895.90 6298.77 8998.00 19890.89 15398.26 21697.80 11169.20 35397.64 216
CL-MVSNet_self_test84.50 31283.15 31488.53 32986.00 35881.79 34398.82 26297.35 24685.12 31583.62 32090.91 34576.66 27891.40 35969.53 35560.36 36592.40 330
KD-MVS_2432*160088.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
KD-MVS_self_test83.59 31782.06 31788.20 33186.93 35680.70 35097.21 31696.38 32082.87 33182.49 32388.97 34967.63 32592.32 35673.75 34862.30 36491.58 338
AUN-MVS93.28 20292.60 20595.34 20998.29 15290.09 28099.31 20698.56 7891.80 20596.35 16098.00 19889.38 17098.28 21292.46 21369.22 35297.64 216
ZD-MVS99.92 3198.57 5298.52 9092.34 18899.31 6699.83 4395.06 5299.80 10799.70 3099.97 42
SR-MVS-dyc-post98.31 4398.17 4298.71 8199.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6793.28 10199.78 11198.90 6099.92 6399.97 55
RE-MVS-def98.13 4599.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6792.95 10998.90 6099.92 6399.97 55
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2698.43 11397.27 2399.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 998.41 12897.71 999.84 10100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2699.80 5197.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 11397.27 2399.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11397.26 2599.80 1599.88 2196.71 24100.00 1
SF-MVS98.67 2398.40 2799.50 2899.77 6598.67 4599.90 7698.21 16493.53 14499.81 1399.89 1994.70 6299.86 9499.84 1899.93 6099.96 61
cl2293.77 19193.25 19595.33 21099.49 9094.43 18399.61 16498.09 17890.38 23689.16 26195.61 27090.56 15797.34 25291.93 21984.45 27994.21 260
miper_ehance_all_eth93.16 20492.60 20594.82 22897.57 19793.56 20399.50 18197.07 27488.75 26588.85 26695.52 27690.97 14996.74 29390.77 23984.45 27994.17 262
miper_enhance_ethall94.36 17993.98 17295.49 20298.68 13495.24 16599.73 14397.29 25393.28 15289.86 23995.97 26194.37 7197.05 27492.20 21684.45 27994.19 261
ZNCC-MVS98.31 4398.03 5099.17 4999.88 4997.59 8099.94 5898.44 10594.31 11198.50 10399.82 4693.06 10799.99 3698.30 9099.99 2199.93 71
dcpmvs_297.42 8298.09 4895.42 20699.58 8487.24 31399.23 21696.95 28794.28 11398.93 8399.73 7494.39 7099.16 15699.89 1699.82 7699.86 84
cl____92.31 22591.58 22694.52 24097.33 21092.77 22099.57 16996.78 30586.97 29387.56 28595.51 27789.43 16996.62 29888.60 26482.44 29194.16 267
DIV-MVS_self_test92.32 22491.60 22594.47 24497.31 21192.74 22299.58 16796.75 30686.99 29287.64 28395.54 27489.55 16896.50 30288.58 26582.44 29194.17 262
eth_miper_zixun_eth92.41 22391.93 22093.84 26997.28 21490.68 26798.83 26196.97 28688.57 27089.19 26095.73 26789.24 17596.69 29689.97 25481.55 29794.15 268
9.1498.38 2999.87 5199.91 7198.33 14893.22 15399.78 2399.89 1994.57 6499.85 9599.84 1899.97 42
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
save fliter99.82 5898.79 3699.96 2698.40 13297.66 11
ET-MVSNet_ETH3D94.37 17793.28 19497.64 14098.30 15197.99 6799.99 397.61 21994.35 10871.57 35899.45 10696.23 3195.34 33296.91 13985.14 27499.59 124
UniMVSNet_ETH3D90.06 27488.58 28194.49 24394.67 28488.09 30797.81 30997.57 22483.91 32588.44 27297.41 21457.44 35197.62 24491.41 22588.59 24097.77 214
EIA-MVS97.53 7697.46 7197.76 13698.04 16894.84 17599.98 997.61 21994.41 10697.90 12399.59 9492.40 12498.87 16498.04 10199.13 11499.59 124
miper_refine_blended88.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
miper_lstm_enhance91.81 23391.39 23293.06 28997.34 20889.18 29399.38 19796.79 30486.70 29687.47 28795.22 29490.00 16395.86 32688.26 26981.37 29994.15 268
ETV-MVS97.92 6097.80 6398.25 11498.14 16496.48 11999.98 997.63 21495.61 7099.29 6999.46 10592.55 12098.82 16699.02 5398.54 12599.46 148
CS-MVS97.79 6997.91 5997.43 15099.10 10494.42 18499.99 397.10 27095.07 8299.68 3399.75 6792.95 10998.34 20698.38 8599.14 11399.54 136
D2MVS92.76 21392.59 20893.27 28395.13 27589.54 29099.69 14999.38 2292.26 19087.59 28494.61 31385.05 21497.79 23791.59 22488.01 25092.47 329
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4398.32 15097.28 2199.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 4398.43 113100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1499.96 2698.42 12497.28 2199.86 599.94 497.22 19
SR-MVS98.46 3598.30 3798.93 7399.88 4997.04 10299.84 10798.35 14594.92 8799.32 6599.80 5193.35 9699.78 11199.30 4299.95 4999.96 61
DPM-MVS98.83 1898.46 2599.97 199.33 9799.92 199.96 2698.44 10597.96 799.55 4699.94 497.18 21100.00 193.81 19299.94 5499.98 48
GST-MVS98.27 4697.97 5399.17 4999.92 3197.57 8199.93 6498.39 13594.04 12798.80 8799.74 7292.98 108100.00 198.16 9499.76 8099.93 71
test_yl97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
thisisatest053097.10 9296.72 9598.22 11597.60 19696.70 11399.92 6798.54 8791.11 22497.07 14098.97 14597.47 1299.03 15993.73 19796.09 17998.92 189
Anonymous2024052992.10 22990.65 24096.47 17898.82 12690.61 26998.72 27098.67 6375.54 35393.90 19698.58 17866.23 33099.90 7994.70 17490.67 22198.90 192
Anonymous20240521193.10 20791.99 21996.40 18399.10 10489.65 28898.88 25497.93 19283.71 32694.00 19498.75 16968.79 31899.88 8995.08 16191.71 22099.68 105
DCV-MVSNet97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
tttt051796.85 10096.49 10297.92 12797.48 20295.89 14299.85 10398.54 8790.72 23396.63 15098.93 15697.47 1299.02 16093.03 20995.76 18898.85 193
our_test_390.39 26389.48 26793.12 28692.40 32689.57 28999.33 20396.35 32287.84 28085.30 31194.99 30284.14 22196.09 32080.38 32684.56 27893.71 306
thisisatest051597.41 8397.02 8898.59 9197.71 19297.52 8399.97 1998.54 8791.83 20297.45 13399.04 13597.50 999.10 15894.75 17296.37 17699.16 179
ppachtmachnet_test89.58 28188.35 28493.25 28492.40 32690.44 27499.33 20396.73 30785.49 31285.90 30995.77 26481.09 24396.00 32476.00 34582.49 29093.30 314
SMA-MVScopyleft98.76 2098.48 2499.62 1899.87 5198.87 3099.86 10098.38 13993.19 15499.77 2499.94 495.54 42100.00 199.74 2699.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.59 124
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 8898.44 10597.48 1799.64 3699.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1799.49 53
thres100view90096.74 10795.92 12599.18 4698.90 12298.77 3899.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.84 18994.57 20099.27 172
tfpnnormal89.29 28587.61 29294.34 25194.35 28994.13 18998.95 24798.94 3783.94 32384.47 31595.51 27774.84 29597.39 24977.05 34280.41 31091.48 339
tfpn200view996.79 10395.99 11399.19 4598.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.27 172
c3_l92.53 22091.87 22294.52 24097.40 20592.99 21899.40 19296.93 29287.86 27988.69 26995.44 28089.95 16496.44 30490.45 24580.69 30994.14 271
CHOSEN 280x42099.01 1399.03 1098.95 7299.38 9598.87 3098.46 28499.42 2197.03 3099.02 7999.09 13299.35 198.21 21899.73 2899.78 7999.77 95
CANet98.27 4697.82 6299.63 1599.72 7499.10 2199.98 998.51 9397.00 3198.52 10199.71 7887.80 18699.95 6199.75 2499.38 10499.83 86
Fast-Effi-MVS+-dtu93.72 19493.86 17693.29 28297.06 21986.16 31999.80 12196.83 30092.66 17392.58 21297.83 20581.39 23997.67 24289.75 25696.87 16896.05 229
Effi-MVS+-dtu94.53 17395.30 14292.22 29797.77 18382.54 33799.59 16697.06 27594.92 8795.29 17995.37 28685.81 20597.89 23594.80 17097.07 16196.23 227
CANet_DTU96.76 10596.15 10998.60 8998.78 12997.53 8299.84 10797.63 21497.25 2699.20 7199.64 9181.36 24099.98 4292.77 21298.89 11898.28 204
MVS_030489.28 28688.31 28592.21 29897.05 22086.53 31897.76 31099.57 1385.58 31193.86 19792.71 33351.04 36096.30 31184.49 30392.72 21993.79 299
MP-MVS-pluss98.07 5697.64 6699.38 3999.74 6998.41 5899.74 13898.18 16893.35 14896.45 15599.85 3092.64 11799.97 5198.91 5999.89 6699.77 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.09 999.12 598.98 6999.93 2497.24 9499.95 4398.42 12497.50 1699.52 5199.88 2197.43 1699.71 12499.50 3499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.72 6199.59 124
sam_mvs94.25 75
IterMVS-SCA-FT90.85 25490.16 25392.93 29096.72 23989.96 28398.89 25296.99 28288.95 26086.63 29795.67 26876.48 28095.00 33687.04 28584.04 28593.84 296
TSAR-MVS + MP.98.93 1498.77 1699.41 3699.74 6998.67 4599.77 12798.38 13996.73 4199.88 499.74 7294.89 5999.59 13599.80 2199.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
OPM-MVS93.21 20392.80 20194.44 24693.12 31290.85 26599.77 12797.61 21996.19 5991.56 21898.65 17275.16 29498.47 18793.78 19589.39 22893.99 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.49 3398.14 4499.54 2599.66 7898.62 5199.85 10398.37 14294.68 9699.53 4999.83 4392.87 111100.00 198.66 7599.84 7199.99 23
ambc83.23 34077.17 37062.61 36587.38 36694.55 35476.72 34986.65 35830.16 36796.36 30784.85 30269.86 34890.73 344
MTGPAbinary98.28 157
CS-MVS-test97.88 6197.94 5797.70 13999.28 9995.20 16899.98 997.15 26595.53 7399.62 3999.79 5492.08 13298.38 20298.75 6999.28 10899.52 140
Effi-MVS+96.30 12595.69 13198.16 11697.85 17896.26 12897.41 31397.21 25890.37 23798.65 9798.58 17886.61 19998.70 17797.11 13097.37 15699.52 140
xiu_mvs_v2_base98.23 5197.97 5399.02 6698.69 13398.66 4799.52 17798.08 18097.05 2999.86 599.86 2690.65 15599.71 12499.39 4098.63 12498.69 201
xiu_mvs_v1_base97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
new-patchmatchnet81.19 32079.34 32786.76 33482.86 36480.36 35397.92 30695.27 34482.09 33672.02 35786.87 35762.81 34290.74 36271.10 35263.08 36289.19 357
pmmvs685.69 30283.84 30891.26 30790.00 34984.41 33097.82 30896.15 32675.86 35181.29 33095.39 28461.21 34696.87 28883.52 31273.29 34392.50 328
pmmvs590.17 27289.09 27293.40 28092.10 33089.77 28799.74 13895.58 33785.88 30587.24 29295.74 26573.41 30396.48 30388.54 26683.56 28693.95 287
test_post195.78 34359.23 37793.20 10497.74 24091.06 231
test_post63.35 37494.43 6598.13 221
Fast-Effi-MVS+95.02 15894.19 16797.52 14597.88 17594.55 18199.97 1997.08 27388.85 26494.47 18897.96 20384.59 21698.41 19489.84 25597.10 16099.59 124
patchmatchnet-post91.70 34195.12 4997.95 232
Anonymous2023121189.86 27688.44 28394.13 25698.93 11790.68 26798.54 28198.26 16076.28 34986.73 29595.54 27470.60 31497.56 24590.82 23880.27 31394.15 268
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 36187.09 31498.10 30294.73 35183.05 32974.10 35687.77 35565.56 33394.01 34581.08 32469.24 35189.49 354
GG-mvs-BLEND98.54 9798.21 15898.01 6693.87 35098.52 9097.92 12297.92 20499.02 297.94 23498.17 9399.58 9399.67 107
xiu_mvs_v1_base_debi97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
Anonymous2023120686.32 30085.42 30289.02 32489.11 35280.53 35299.05 23795.28 34385.43 31382.82 32293.92 32274.40 29893.44 35266.99 35981.83 29693.08 319
MTAPA98.29 4597.96 5699.30 4099.85 5497.93 7199.39 19698.28 15795.76 6697.18 13899.88 2192.74 115100.00 198.67 7399.88 6899.99 23
MTMP99.87 8896.49 317
gm-plane-assit96.97 22493.76 19991.47 21398.96 14798.79 16894.92 165
test9_res99.71 2999.99 21100.00 1
MVP-Stereo90.93 25090.45 24492.37 29691.25 34088.76 29598.05 30496.17 32587.27 28784.04 31695.30 28978.46 26897.27 26283.78 30999.70 8491.09 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.92 3198.92 2699.96 2698.43 11393.90 13499.71 3099.86 2695.88 3799.85 95
train_agg98.88 1798.65 1899.59 2199.92 3198.92 2699.96 2698.43 11394.35 10899.71 3099.86 2695.94 3499.85 9599.69 3199.98 3299.99 23
gg-mvs-nofinetune93.51 19891.86 22398.47 10297.72 19097.96 7092.62 35498.51 9374.70 35697.33 13569.59 36998.91 397.79 23797.77 11699.56 9499.67 107
SCA94.69 16693.81 17797.33 15897.10 21794.44 18298.86 25898.32 15093.30 15196.17 16495.59 27276.48 28097.95 23291.06 23197.43 15299.59 124
Patchmatch-test92.65 21991.50 22996.10 19296.85 23190.49 27291.50 35997.19 25982.76 33390.23 23195.59 27295.02 5498.00 22877.41 33996.98 16699.82 87
test_899.92 3198.88 2999.96 2698.43 11394.35 10899.69 3299.85 3095.94 3499.85 95
MS-PatchMatch90.65 25790.30 24791.71 30494.22 29185.50 32498.24 29597.70 20988.67 26786.42 30296.37 25067.82 32498.03 22783.62 31099.62 8891.60 337
Patchmatch-RL test86.90 29885.98 30189.67 31984.45 36075.59 35789.71 36492.43 36386.89 29477.83 34590.94 34494.22 7693.63 35087.75 27669.61 34999.79 91
cdsmvs_eth3d_5k23.43 34531.24 3480.00 3620.00 3850.00 3860.00 37398.09 1780.00 3800.00 38199.67 8783.37 2260.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.60 34810.13 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38191.20 1430.00 3810.00 3790.00 3790.00 377
agg_prior299.48 35100.00 1100.00 1
agg_prior99.93 2498.77 3898.43 11399.63 3799.85 95
tmp_tt65.23 33762.94 34072.13 35244.90 38150.03 37781.05 36889.42 37238.45 37148.51 37399.90 1854.09 35578.70 37391.84 22218.26 37587.64 359
canonicalmvs97.09 9496.32 10699.39 3898.93 11798.95 2599.72 14697.35 24694.45 10197.88 12499.42 10786.71 19799.52 13798.48 8293.97 20999.72 101
anonymousdsp91.79 23890.92 23794.41 24990.76 34392.93 21998.93 24997.17 26289.08 25287.46 28895.30 28978.43 26996.92 28592.38 21488.73 23693.39 312
alignmvs97.81 6797.33 7699.25 4198.77 13098.66 4799.99 398.44 10594.40 10798.41 10699.47 10393.65 9299.42 14898.57 7994.26 20599.67 107
nrg03093.51 19892.53 20996.45 18094.36 28897.20 9699.81 11797.16 26491.60 20889.86 23997.46 21286.37 20197.68 24195.88 15280.31 31294.46 237
v14419290.79 25589.52 26494.59 23693.11 31392.77 22099.56 17196.99 28286.38 29989.82 24294.95 30480.50 25297.10 27183.98 30780.41 31093.90 291
FIs94.10 18393.43 18796.11 19194.70 28396.82 11199.58 16798.93 4192.54 18189.34 25397.31 21787.62 18897.10 27194.22 18586.58 26394.40 244
v192192090.46 26289.12 27194.50 24292.96 31892.46 23199.49 18396.98 28486.10 30289.61 24895.30 28978.55 26797.03 27982.17 31880.89 30894.01 281
UA-Net96.54 11495.96 11998.27 11398.23 15795.71 14998.00 30598.45 10293.72 14098.41 10699.27 11988.71 18299.66 13291.19 22897.69 14799.44 152
v119290.62 26089.25 26994.72 23193.13 31093.07 21499.50 18197.02 27986.33 30089.56 24995.01 29979.22 26097.09 27382.34 31781.16 30194.01 281
FC-MVSNet-test93.81 18993.15 19695.80 19994.30 29096.20 13399.42 19198.89 4392.33 18989.03 26397.27 21987.39 19196.83 29093.20 20386.48 26494.36 248
v114491.09 24889.83 25694.87 22493.25 30993.69 20199.62 16396.98 28486.83 29589.64 24794.99 30280.94 24497.05 27485.08 30081.16 30193.87 294
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
HFP-MVS98.56 2898.37 3199.14 5599.96 897.43 9099.95 4398.61 7194.77 9199.31 6699.85 3094.22 76100.00 198.70 7199.98 3299.98 48
v14890.70 25689.63 26093.92 26592.97 31790.97 26299.75 13596.89 29587.51 28288.27 27795.01 29981.67 23597.04 27687.40 28077.17 33393.75 301
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
AllTest92.48 22191.64 22495.00 22099.01 10888.43 30298.94 24896.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
TestCases95.00 22099.01 10888.43 30296.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
v7n89.65 28088.29 28693.72 27292.22 32890.56 27199.07 23297.10 27085.42 31486.73 29594.72 30780.06 25597.13 26881.14 32378.12 32493.49 309
region2R98.54 2998.37 3199.05 6299.96 897.18 9799.96 2698.55 8494.87 8999.45 5599.85 3094.07 81100.00 198.67 73100.00 199.98 48
iter_conf0596.07 13095.95 12196.44 18298.43 14697.52 8399.91 7196.85 29894.16 11792.49 21397.98 20198.20 497.34 25297.26 12688.29 24594.45 242
RRT_MVS93.14 20592.92 19993.78 27093.31 30890.04 28199.66 15497.69 21092.53 18288.91 26597.76 20784.36 21896.93 28495.10 16086.99 26194.37 247
PS-MVSNAJss93.64 19693.31 19394.61 23492.11 32992.19 23699.12 22397.38 24492.51 18488.45 27196.99 23091.20 14397.29 26094.36 18087.71 25594.36 248
PS-MVSNAJ98.44 3798.20 4099.16 5198.80 12898.92 2699.54 17598.17 16997.34 1999.85 799.85 3091.20 14399.89 8399.41 3999.67 8598.69 201
jajsoiax91.92 23191.18 23494.15 25491.35 33890.95 26399.00 24297.42 24092.61 17687.38 28997.08 22472.46 30597.36 25094.53 17888.77 23594.13 272
mvs_tets91.81 23391.08 23594.00 26291.63 33690.58 27098.67 27597.43 23892.43 18687.37 29097.05 22771.76 30797.32 25694.75 17288.68 23794.11 273
EI-MVSNet-UG-set98.14 5397.99 5298.60 8999.80 6196.27 12799.36 20198.50 9795.21 8198.30 11299.75 6793.29 10099.73 12398.37 8699.30 10799.81 88
EI-MVSNet-Vis-set98.27 4698.11 4798.75 8099.83 5796.59 11899.40 19298.51 9395.29 7998.51 10299.76 6293.60 9499.71 12498.53 8199.52 9699.95 68
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4299.02 2399.95 4398.56 7897.56 1599.44 5699.85 3095.38 46100.00 199.31 4199.99 2199.87 82
test_prior498.05 6499.94 58
XVS98.70 2298.55 2199.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5999.78 5894.34 7299.96 5498.92 5799.95 4999.99 23
v124090.20 27088.79 27894.44 24693.05 31692.27 23599.38 19796.92 29385.89 30489.36 25294.87 30677.89 27197.03 27980.66 32581.08 30494.01 281
pm-mvs189.36 28487.81 29194.01 26193.40 30791.93 24298.62 27896.48 31886.25 30183.86 31896.14 25673.68 30297.04 27686.16 29375.73 34093.04 320
test_prior299.95 4395.78 6599.73 2899.76 6296.00 3399.78 23100.00 1
X-MVStestdata93.83 18792.06 21799.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5941.37 37894.34 7299.96 5498.92 5799.95 4999.99 23
test_prior99.43 3399.94 1398.49 5698.65 6499.80 10799.99 23
旧先验299.46 18894.21 11699.85 799.95 6196.96 136
新几何299.40 192
新几何199.42 3599.75 6898.27 5998.63 6992.69 17199.55 4699.82 4694.40 67100.00 191.21 22799.94 5499.99 23
旧先验199.76 6697.52 8398.64 6699.85 3095.63 4199.94 5499.99 23
无先验99.49 18398.71 5693.46 146100.00 194.36 18099.99 23
原ACMM299.90 76
原ACMM198.96 7199.73 7296.99 10598.51 9394.06 12499.62 3999.85 3094.97 5899.96 5495.11 15999.95 4999.92 76
test22299.55 8597.41 9299.34 20298.55 8491.86 20199.27 7099.83 4393.84 8899.95 4999.99 23
testdata299.99 3690.54 244
segment_acmp96.68 26
testdata98.42 10799.47 9195.33 16198.56 7893.78 13799.79 2299.85 3093.64 9399.94 6994.97 16399.94 54100.00 1
testdata199.28 21296.35 56
v890.54 26189.17 27094.66 23293.43 30593.40 21099.20 21896.94 29185.76 30687.56 28594.51 31481.96 23497.19 26484.94 30178.25 32293.38 313
131496.84 10195.96 11999.48 3296.74 23898.52 5498.31 29298.86 4795.82 6489.91 23798.98 14387.49 18999.96 5497.80 11199.73 8299.96 61
LFMVS94.75 16593.56 18498.30 11299.03 10795.70 15098.74 26897.98 18787.81 28198.47 10499.39 11167.43 32699.53 13698.01 10295.20 19899.67 107
VDD-MVS93.77 19192.94 19896.27 18898.55 13990.22 27798.77 26797.79 20690.85 23096.82 14699.42 10761.18 34799.77 11498.95 5494.13 20698.82 195
VDDNet93.12 20691.91 22196.76 17196.67 24192.65 22898.69 27398.21 16482.81 33297.75 12799.28 11661.57 34599.48 14598.09 9994.09 20798.15 206
v1090.25 26988.82 27794.57 23893.53 30393.43 20899.08 22896.87 29785.00 31687.34 29194.51 31480.93 24597.02 28182.85 31479.23 31793.26 315
VPNet91.81 23390.46 24295.85 19794.74 28295.54 15598.98 24398.59 7392.14 19290.77 22797.44 21368.73 32097.54 24694.89 16877.89 32594.46 237
MVS96.60 11395.56 13599.72 1296.85 23199.22 1998.31 29298.94 3791.57 20990.90 22599.61 9386.66 19899.96 5497.36 12399.88 6899.99 23
v2v48291.30 24290.07 25595.01 21993.13 31093.79 19799.77 12797.02 27988.05 27789.25 25595.37 28680.73 24797.15 26687.28 28280.04 31594.09 275
V4291.28 24490.12 25494.74 22993.42 30693.46 20699.68 15197.02 27987.36 28589.85 24195.05 29781.31 24197.34 25287.34 28180.07 31493.40 311
SD-MVS98.92 1598.70 1799.56 2399.70 7698.73 4299.94 5898.34 14796.38 5299.81 1399.76 6294.59 6399.98 4299.84 1899.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS93.83 18792.84 20096.80 16995.73 26393.57 20299.88 8597.24 25792.57 18092.92 20696.66 24078.73 26597.67 24287.75 27694.06 20899.17 178
MSLP-MVS++99.13 899.01 1199.49 3099.94 1398.46 5799.98 998.86 4797.10 2899.80 1599.94 495.92 36100.00 199.51 33100.00 1100.00 1
APDe-MVS99.06 1198.91 1499.51 2799.94 1398.76 4199.91 7198.39 13597.20 2799.46 5499.85 3095.53 4499.79 10999.86 17100.00 199.99 23
APD-MVS_3200maxsize98.25 4998.08 4998.78 7899.81 6096.60 11799.82 11598.30 15593.95 13199.37 6399.77 6092.84 11299.76 11798.95 5499.92 6399.97 55
ADS-MVSNet293.80 19093.88 17593.55 27997.87 17685.94 32194.24 34696.84 29990.07 24296.43 15694.48 31690.29 16195.37 33187.44 27897.23 15799.36 160
EI-MVSNet93.73 19393.40 19194.74 22996.80 23492.69 22599.06 23397.67 21288.96 25991.39 21999.02 13688.75 18197.30 25791.07 23087.85 25294.22 258
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
CVMVSNet94.68 16894.94 15493.89 26896.80 23486.92 31699.06 23398.98 3594.45 10194.23 19299.02 13685.60 20695.31 33390.91 23695.39 19599.43 153
pmmvs492.10 22991.07 23695.18 21592.82 32194.96 17299.48 18596.83 30087.45 28488.66 27096.56 24683.78 22396.83 29089.29 25884.77 27793.75 301
EU-MVSNet90.14 27390.34 24689.54 32092.55 32481.06 34898.69 27398.04 18391.41 21886.59 29896.84 23780.83 24693.31 35386.20 29281.91 29594.26 255
VNet97.21 9096.57 10099.13 5998.97 11397.82 7399.03 24099.21 2894.31 11199.18 7498.88 15886.26 20399.89 8398.93 5694.32 20499.69 104
test-LLR96.47 11696.04 11197.78 13397.02 22295.44 15799.96 2698.21 16494.07 12295.55 17496.38 24893.90 8698.27 21490.42 24698.83 12099.64 113
TESTMET0.1,196.74 10796.26 10798.16 11697.36 20796.48 11999.96 2698.29 15691.93 19995.77 17298.07 19695.54 4298.29 21090.55 24398.89 11899.70 102
test-mter96.39 12195.93 12397.78 13397.02 22295.44 15799.96 2698.21 16491.81 20495.55 17496.38 24895.17 4898.27 21490.42 24698.83 12099.64 113
VPA-MVSNet92.70 21691.55 22896.16 19095.09 27696.20 13398.88 25499.00 3491.02 22791.82 21695.29 29276.05 28697.96 23195.62 15581.19 30094.30 253
ACMMPR98.50 3298.32 3599.05 6299.96 897.18 9799.95 4398.60 7294.77 9199.31 6699.84 4193.73 90100.00 198.70 7199.98 3299.98 48
testgi89.01 28888.04 28991.90 30293.49 30484.89 32899.73 14395.66 33593.89 13685.14 31298.17 19359.68 34894.66 34177.73 33888.88 23296.16 228
test20.0384.72 31183.99 30586.91 33388.19 35580.62 35198.88 25495.94 32988.36 27378.87 33994.62 31268.75 31989.11 36466.52 36075.82 33891.00 341
thres600view796.69 11095.87 12899.14 5598.90 12298.78 3799.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.44 20194.50 20399.16 179
ADS-MVSNet94.79 16294.02 17197.11 16397.87 17693.79 19794.24 34698.16 17390.07 24296.43 15694.48 31690.29 16198.19 21987.44 27897.23 15799.36 160
MP-MVScopyleft98.23 5197.97 5399.03 6499.94 1397.17 10099.95 4398.39 13594.70 9598.26 11599.81 5091.84 137100.00 198.85 6399.97 4299.93 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs40.60 34344.45 34629.05 36019.49 38414.11 38599.68 15118.47 38320.74 37664.59 36198.48 18510.95 38117.09 38056.66 37011.01 37655.94 373
thres40096.78 10495.99 11399.16 5198.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.16 179
test12337.68 34439.14 34733.31 35919.94 38324.83 38498.36 2919.75 38415.53 37751.31 37187.14 35619.62 37817.74 37947.10 3723.47 37857.36 372
thres20096.96 9696.21 10899.22 4298.97 11398.84 3399.85 10399.71 693.17 15596.26 16198.88 15889.87 16599.51 13894.26 18394.91 19999.31 167
test0.0.03 193.86 18693.61 17994.64 23395.02 27992.18 23799.93 6498.58 7494.07 12287.96 28098.50 18193.90 8694.96 33781.33 32293.17 21596.78 222
pmmvs380.27 32477.77 32987.76 33280.32 36782.43 33898.23 29691.97 36572.74 36078.75 34087.97 35457.30 35290.99 36170.31 35362.37 36389.87 350
EMVS51.44 34251.22 34452.11 35870.71 37444.97 38094.04 34875.66 38035.34 37542.40 37561.56 37628.93 36965.87 37727.64 37724.73 37345.49 374
E-PMN52.30 34052.18 34252.67 35771.51 37345.40 37893.62 35276.60 37936.01 37343.50 37464.13 37327.11 37267.31 37631.06 37626.06 37245.30 375
PGM-MVS98.34 4298.13 4598.99 6899.92 3197.00 10499.75 13599.50 1793.90 13499.37 6399.76 6293.24 103100.00 197.75 11899.96 4699.98 48
LCM-MVSNet-Re92.31 22592.60 20591.43 30597.53 19879.27 35499.02 24191.83 36692.07 19480.31 33494.38 31983.50 22595.48 32997.22 12897.58 15099.54 136
LCM-MVSNet67.77 33464.73 33776.87 34662.95 37856.25 37389.37 36593.74 35944.53 37061.99 36280.74 36420.42 37786.53 36969.37 35659.50 36787.84 358
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1998.64 6698.47 299.13 7599.92 1396.38 30100.00 199.74 26100.00 1100.00 1
mvs_anonymous95.65 14695.03 15197.53 14498.19 16095.74 14799.33 20397.49 23490.87 22990.47 22997.10 22388.23 18497.16 26595.92 15197.66 14999.68 105
MVS_Test96.46 11795.74 13098.61 8898.18 16197.23 9599.31 20697.15 26591.07 22598.84 8597.05 22788.17 18598.97 16194.39 17997.50 15199.61 121
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33988.00 30998.67 27595.92 33080.22 34155.60 36993.32 32868.29 32393.60 35173.76 34776.61 33793.82 298
CDPH-MVS98.65 2498.36 3399.49 3099.94 1398.73 4299.87 8898.33 14893.97 12999.76 2599.87 2494.99 5799.75 11898.55 80100.00 199.98 48
test1299.43 3399.74 6998.56 5398.40 13299.65 3594.76 6099.75 11899.98 3299.99 23
casdiffmvspermissive96.42 12095.97 11897.77 13597.30 21294.98 17199.84 10797.09 27293.75 13996.58 15299.26 12285.07 21398.78 16997.77 11697.04 16399.54 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.00 9596.64 9798.09 12197.64 19496.17 13599.81 11797.19 25994.67 9798.95 8199.28 11686.43 20098.76 17198.37 8697.42 15499.33 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.71 10996.49 10297.37 15495.63 27095.96 14099.74 13898.88 4592.94 15991.61 21798.97 14597.72 798.62 18194.83 16998.08 14297.53 219
baseline195.78 13994.86 15598.54 9798.47 14598.07 6399.06 23397.99 18592.68 17294.13 19398.62 17593.28 10198.69 17893.79 19485.76 26798.84 194
YYNet185.50 30683.33 31192.00 30090.89 34288.38 30599.22 21796.55 31579.60 34457.26 36792.72 33279.09 26393.78 34977.25 34077.37 33193.84 296
PMMVS267.15 33564.15 33876.14 34770.56 37562.07 36893.89 34987.52 37358.09 36460.02 36378.32 36522.38 37484.54 37059.56 36647.03 37081.80 363
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 34188.58 30199.20 21896.52 31679.70 34357.12 36892.69 33479.11 26293.86 34877.10 34177.46 33093.86 295
tpmvs94.28 18193.57 18396.40 18398.55 13991.50 25795.70 34498.55 8487.47 28392.15 21494.26 32091.42 13998.95 16388.15 27195.85 18598.76 198
PM-MVS80.47 32378.88 32885.26 33683.79 36372.22 35995.89 34291.08 36785.71 30976.56 35088.30 35136.64 36693.90 34782.39 31669.57 35089.66 353
HQP_MVS94.49 17494.36 16394.87 22495.71 26691.74 24899.84 10797.87 19996.38 5293.01 20498.59 17680.47 25398.37 20497.79 11489.55 22594.52 233
plane_prior795.71 26691.59 256
plane_prior695.76 26191.72 25180.47 253
plane_prior597.87 19998.37 20497.79 11489.55 22594.52 233
plane_prior498.59 176
plane_prior391.64 25496.63 4493.01 204
plane_prior299.84 10796.38 52
plane_prior195.73 263
plane_prior91.74 24899.86 10096.76 4089.59 224
PS-CasMVS90.63 25989.51 26593.99 26393.83 29791.70 25298.98 24398.52 9088.48 27186.15 30696.53 24775.46 28896.31 31088.83 26278.86 32093.95 287
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20294.61 28595.28 16399.83 11399.08 3191.49 21189.21 25896.86 23487.14 19396.73 29493.20 20377.52 32894.46 237
PEN-MVS90.19 27189.06 27393.57 27893.06 31590.90 26499.06 23398.47 9988.11 27685.91 30896.30 25176.67 27795.94 32587.07 28476.91 33593.89 292
TransMVSNet (Re)87.25 29785.28 30393.16 28593.56 30291.03 26198.54 28194.05 35683.69 32781.09 33196.16 25575.32 28996.40 30576.69 34368.41 35492.06 333
DTE-MVSNet89.40 28388.24 28792.88 29192.66 32389.95 28499.10 22598.22 16387.29 28685.12 31396.22 25376.27 28395.30 33483.56 31175.74 33993.41 310
DU-MVS92.46 22291.45 23195.49 20294.05 29395.28 16399.81 11798.74 5492.25 19189.21 25896.64 24281.66 23696.73 29493.20 20377.52 32894.46 237
UniMVSNet (Re)93.07 20892.13 21495.88 19594.84 28096.24 13299.88 8598.98 3592.49 18589.25 25595.40 28287.09 19497.14 26793.13 20778.16 32394.26 255
CP-MVSNet91.23 24690.22 24994.26 25293.96 29592.39 23399.09 22698.57 7688.95 26086.42 30296.57 24579.19 26196.37 30690.29 24978.95 31894.02 279
WR-MVS_H91.30 24290.35 24594.15 25494.17 29292.62 22999.17 22198.94 3788.87 26386.48 30194.46 31884.36 21896.61 29988.19 27078.51 32193.21 317
WR-MVS92.31 22591.25 23395.48 20594.45 28795.29 16299.60 16598.68 6090.10 24188.07 27996.89 23280.68 24896.80 29293.14 20679.67 31694.36 248
NR-MVSNet91.56 24190.22 24995.60 20094.05 29395.76 14698.25 29498.70 5791.16 22380.78 33396.64 24283.23 22896.57 30091.41 22577.73 32794.46 237
Baseline_NR-MVSNet90.33 26689.51 26592.81 29292.84 31989.95 28499.77 12793.94 35784.69 32189.04 26295.66 26981.66 23696.52 30190.99 23376.98 33491.97 335
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22493.69 30093.98 19499.69 14998.65 6491.03 22688.44 27296.83 23880.05 25696.18 31590.26 25076.89 33694.45 242
TSAR-MVS + GP.98.60 2698.51 2398.86 7699.73 7296.63 11599.97 1997.92 19598.07 598.76 9199.55 9795.00 5699.94 6999.91 1597.68 14899.99 23
n20.00 386
nn0.00 386
mPP-MVS98.39 4198.20 4098.97 7099.97 396.92 10899.95 4398.38 13995.04 8398.61 9999.80 5193.39 95100.00 198.64 76100.00 199.98 48
door-mid89.69 370
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21798.05 16789.19 29199.08 22897.54 22793.66 14194.87 18399.58 9578.78 26499.79 10997.31 12493.40 21396.25 225
mvsmamba94.10 18393.72 17895.25 21393.57 30194.13 18999.67 15396.45 31993.63 14391.34 22197.77 20686.29 20297.22 26396.65 14288.10 24994.40 244
MVSFormer96.94 9796.60 9897.95 12597.28 21497.70 7799.55 17397.27 25591.17 22199.43 5799.54 9990.92 15096.89 28694.67 17599.62 8899.25 174
jason97.24 8896.86 9098.38 11095.73 26397.32 9399.97 1997.40 24395.34 7898.60 10099.54 9987.70 18798.56 18397.94 10799.47 9999.25 174
jason: jason.
lupinMVS97.85 6397.60 6898.62 8797.28 21497.70 7799.99 397.55 22595.50 7599.43 5799.67 8790.92 15098.71 17698.40 8499.62 8899.45 150
test_djsdf92.83 21292.29 21394.47 24491.90 33292.46 23199.55 17397.27 25591.17 22189.96 23596.07 26081.10 24296.89 28694.67 17588.91 23194.05 278
HPM-MVS_fast97.80 6897.50 7098.68 8399.79 6296.42 12199.88 8598.16 17391.75 20698.94 8299.54 9991.82 13899.65 13397.62 12099.99 2199.99 23
K. test v388.05 29387.24 29590.47 31391.82 33482.23 34098.96 24697.42 24089.05 25376.93 34895.60 27168.49 32195.42 33085.87 29681.01 30693.75 301
lessismore_v090.53 31190.58 34480.90 34995.80 33177.01 34795.84 26266.15 33196.95 28283.03 31375.05 34193.74 304
SixPastTwentyTwo88.73 28988.01 29090.88 30891.85 33382.24 33998.22 29795.18 34788.97 25882.26 32496.89 23271.75 30896.67 29784.00 30682.98 28793.72 305
OurMVSNet-221017-089.81 27789.48 26790.83 31091.64 33581.21 34698.17 29995.38 34291.48 21285.65 31097.31 21772.66 30497.29 26088.15 27184.83 27693.97 286
HPM-MVScopyleft97.96 5797.72 6498.68 8399.84 5696.39 12499.90 7698.17 16992.61 17698.62 9899.57 9691.87 13699.67 13198.87 6299.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.82 16194.74 15895.06 21898.00 16989.19 29199.08 22897.55 22594.10 12094.71 18499.62 9280.51 25199.74 12096.04 14993.06 21896.25 225
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29493.73 29985.61 32298.52 28397.44 23792.77 16789.90 23896.85 23566.64 32998.39 19892.29 21588.61 23893.89 292
casdiffmvs_mvgpermissive96.43 11895.94 12297.89 12997.44 20395.47 15699.86 10097.29 25393.35 14896.03 16599.19 12785.39 21098.72 17597.89 11097.04 16399.49 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.96 20992.71 20393.71 27395.43 27288.67 29899.75 13597.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
LGP-MVS_train93.71 27395.43 27288.67 29897.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
baseline96.43 11895.98 11597.76 13697.34 20895.17 16999.51 17997.17 26293.92 13396.90 14399.28 11685.37 21198.64 18097.50 12196.86 16999.46 148
test1198.44 105
door90.31 368
EPNet_dtu95.71 14295.39 13896.66 17598.92 11993.41 20999.57 16998.90 4296.19 5997.52 13098.56 18092.65 11697.36 25077.89 33798.33 13099.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268896.81 10296.53 10197.64 14098.91 12193.07 21499.65 15699.80 395.64 6995.39 17798.86 16384.35 22099.90 7996.98 13599.16 11299.95 68
EPNet98.49 3398.40 2798.77 7999.62 8096.80 11299.90 7699.51 1697.60 1299.20 7199.36 11493.71 9199.91 7797.99 10498.71 12399.61 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS91.85 244
HQP-NCC95.78 25799.87 8896.82 3693.37 200
ACMP_Plane95.78 25799.87 8896.82 3693.37 200
APD-MVScopyleft98.62 2598.35 3499.41 3699.90 4298.51 5599.87 8898.36 14394.08 12199.74 2799.73 7494.08 8099.74 12099.42 3899.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.92 108
HQP4-MVS93.37 20098.39 19894.53 231
HQP3-MVS97.89 19789.60 222
HQP2-MVS80.65 249
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5898.20 399.93 199.98 296.82 23100.00 199.75 24100.00 199.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1998.62 7098.02 699.90 299.95 397.33 17100.00 199.54 32100.00 1100.00 1
114514_t97.41 8396.83 9199.14 5599.51 8997.83 7299.89 8398.27 15988.48 27199.06 7799.66 8990.30 16099.64 13496.32 14599.97 4299.96 61
CP-MVS98.45 3698.32 3598.87 7599.96 896.62 11699.97 1998.39 13594.43 10398.90 8499.87 2494.30 74100.00 199.04 5199.99 2199.99 23
DSMNet-mixed88.28 29288.24 28788.42 33089.64 35075.38 35898.06 30389.86 36985.59 31088.20 27892.14 34076.15 28591.95 35878.46 33596.05 18097.92 210
tpm295.47 14995.18 14696.35 18696.91 22691.70 25296.96 32497.93 19288.04 27898.44 10595.40 28293.32 9897.97 22994.00 18695.61 19199.38 157
NP-MVS95.77 26091.79 24698.65 172
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 34581.89 34298.21 29896.09 32781.78 33774.73 35493.72 32551.56 35997.12 27079.16 33388.61 23890.96 342
tpm cat193.51 19892.52 21096.47 17897.77 18391.47 25896.13 33698.06 18180.98 33992.91 20793.78 32489.66 16698.87 16487.03 28696.39 17599.09 185
SteuartSystems-ACMMP99.02 1298.97 1399.18 4698.72 13297.71 7599.98 998.44 10596.85 3499.80 1599.91 1497.57 899.85 9599.44 3799.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.10 12995.88 12796.78 17097.03 22192.55 23097.08 32197.83 20490.04 24498.72 9394.89 30595.01 5598.29 21096.54 14395.77 18799.50 144
CR-MVSNet93.45 20192.62 20495.94 19496.29 24392.66 22692.01 35796.23 32392.62 17596.94 14193.31 32991.04 14796.03 32279.23 33095.96 18299.13 183
JIA-IIPM91.76 23990.70 23994.94 22296.11 24887.51 31193.16 35398.13 17775.79 35297.58 12977.68 36692.84 11297.97 22988.47 26896.54 17199.33 165
Patchmtry89.70 27988.49 28293.33 28196.24 24689.94 28691.37 36096.23 32378.22 34687.69 28293.31 32991.04 14796.03 32280.18 32982.10 29394.02 279
PatchT90.38 26488.75 27995.25 21395.99 25290.16 27891.22 36197.54 22776.80 34897.26 13686.01 36091.88 13596.07 32166.16 36195.91 18499.51 142
tpmrst96.27 12895.98 11597.13 16197.96 17193.15 21396.34 33298.17 16992.07 19498.71 9495.12 29693.91 8598.73 17394.91 16796.62 17099.50 144
BH-w/o95.71 14295.38 13996.68 17498.49 14492.28 23499.84 10797.50 23392.12 19392.06 21598.79 16784.69 21598.67 17995.29 15899.66 8699.09 185
tpm93.70 19593.41 19094.58 23795.36 27487.41 31297.01 32296.90 29490.85 23096.72 14994.14 32190.40 15996.84 28990.75 24088.54 24199.51 142
DELS-MVS98.54 2998.22 3899.50 2899.15 10398.65 49100.00 198.58 7497.70 1098.21 11799.24 12492.58 11999.94 6998.63 7899.94 5499.92 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.18 15494.83 15696.22 18998.36 15091.22 26099.80 12197.32 25090.91 22891.08 22298.67 17183.51 22498.54 18594.23 18499.61 9198.92 189
RPMNet89.76 27887.28 29497.19 16096.29 24392.66 22692.01 35798.31 15270.19 36296.94 14185.87 36187.25 19299.78 11162.69 36495.96 18299.13 183
MVSTER95.53 14895.22 14496.45 18098.56 13797.72 7499.91 7197.67 21292.38 18791.39 21997.14 22197.24 1897.30 25794.80 17087.85 25294.34 252
CPTT-MVS97.64 7497.32 7798.58 9299.97 395.77 14599.96 2698.35 14589.90 24598.36 10999.79 5491.18 14699.99 3698.37 8699.99 2199.99 23
GBi-Net90.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
PVSNet_Blended_VisFu97.27 8796.81 9298.66 8598.81 12796.67 11499.92 6798.64 6694.51 10096.38 15998.49 18289.05 17799.88 8997.10 13198.34 12999.43 153
PVSNet_BlendedMVS96.05 13195.82 12996.72 17399.59 8196.99 10599.95 4399.10 2994.06 12498.27 11395.80 26389.00 17899.95 6199.12 4687.53 25893.24 316
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 35183.51 33396.65 32797.99 18589.14 25175.89 35293.83 32363.25 34093.92 34681.92 32067.90 35692.88 322
UnsupCasMVSNet_bld79.97 32777.03 33188.78 32685.62 35981.98 34193.66 35197.35 24675.51 35470.79 35983.05 36348.70 36194.91 33878.31 33660.29 36689.46 355
PVSNet_Blended97.94 5897.64 6698.83 7799.59 8196.99 105100.00 199.10 2995.38 7698.27 11399.08 13389.00 17899.95 6199.12 4699.25 10999.57 131
FMVSNet588.32 29187.47 29390.88 30896.90 22988.39 30497.28 31595.68 33482.60 33484.67 31492.40 33879.83 25791.16 36076.39 34481.51 29893.09 318
test190.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
new_pmnet84.49 31382.92 31589.21 32290.03 34882.60 33696.89 32695.62 33680.59 34075.77 35389.17 34865.04 33694.79 34072.12 35181.02 30590.23 347
FMVSNet392.69 21791.58 22695.99 19398.29 15297.42 9199.26 21497.62 21689.80 24789.68 24395.32 28881.62 23896.27 31287.01 28785.65 26894.29 254
dp95.05 15794.43 16296.91 16697.99 17092.73 22496.29 33497.98 18789.70 24895.93 16894.67 31193.83 8998.45 19186.91 29096.53 17299.54 136
FMVSNet291.02 24989.56 26295.41 20797.53 19895.74 14798.98 24397.41 24287.05 28988.43 27495.00 30171.34 31096.24 31485.12 29985.21 27394.25 257
FMVSNet188.50 29086.64 29694.08 25795.62 27191.97 23998.43 28696.95 28783.00 33086.08 30794.72 30759.09 34996.11 31781.82 32184.07 28394.17 262
N_pmnet80.06 32580.78 32377.89 34591.94 33145.28 37998.80 26556.82 38278.10 34780.08 33693.33 32777.03 27395.76 32768.14 35882.81 28892.64 325
cascas94.64 16993.61 17997.74 13897.82 18096.26 12899.96 2697.78 20785.76 30694.00 19497.54 21076.95 27599.21 15197.23 12795.43 19497.76 215
BH-RMVSNet95.18 15494.31 16697.80 13098.17 16295.23 16699.76 13297.53 22992.52 18394.27 19199.25 12376.84 27698.80 16790.89 23799.54 9599.35 162
UGNet95.33 15394.57 16097.62 14298.55 13994.85 17498.67 27599.32 2595.75 6796.80 14796.27 25272.18 30699.96 5494.58 17799.05 11698.04 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.10 5597.60 6899.60 2098.92 11999.28 1699.89 8399.52 1495.58 7198.24 11699.39 11193.33 9799.74 12097.98 10695.58 19299.78 94
XXY-MVS91.82 23290.46 24295.88 19593.91 29695.40 16098.87 25797.69 21088.63 26987.87 28197.08 22474.38 29997.89 23591.66 22384.07 28394.35 251
DROMVSNet97.38 8597.24 7897.80 13097.41 20495.64 15299.99 397.06 27594.59 9899.63 3799.32 11589.20 17698.14 22098.76 6899.23 11099.62 118
sss97.57 7597.03 8799.18 4698.37 14998.04 6599.73 14399.38 2293.46 14698.76 9199.06 13491.21 14299.89 8396.33 14497.01 16599.62 118
Test_1112_low_res95.72 14094.83 15698.42 10797.79 18296.41 12299.65 15696.65 31192.70 17092.86 20996.13 25792.15 13099.30 14991.88 22193.64 21199.55 133
1112_ss96.01 13395.20 14598.42 10797.80 18196.41 12299.65 15696.66 31092.71 16992.88 20899.40 10992.16 12999.30 14991.92 22093.66 21099.55 133
ab-mvs-re8.28 34711.04 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.40 1090.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs94.69 16693.42 18898.51 10098.07 16696.26 12896.49 32998.68 6090.31 23994.54 18597.00 22976.30 28299.71 12495.98 15093.38 21499.56 132
TR-MVS94.54 17193.56 18497.49 14797.96 17194.34 18698.71 27197.51 23290.30 24094.51 18798.69 17075.56 28798.77 17092.82 21195.99 18199.35 162
MDTV_nov1_ep13_2view96.26 12896.11 33791.89 20098.06 11894.40 6794.30 18299.67 107
MDTV_nov1_ep1395.69 13197.90 17494.15 18895.98 34098.44 10593.12 15697.98 12095.74 26595.10 5098.58 18290.02 25296.92 167
MIMVSNet182.58 31880.51 32488.78 32686.68 35784.20 33196.65 32795.41 34078.75 34578.59 34192.44 33551.88 35889.76 36365.26 36378.95 31892.38 331
MIMVSNet90.30 26788.67 28095.17 21696.45 24291.64 25492.39 35597.15 26585.99 30390.50 22893.19 33166.95 32794.86 33982.01 31993.43 21299.01 188
IterMVS-LS92.69 21792.11 21594.43 24896.80 23492.74 22299.45 18996.89 29588.98 25789.65 24695.38 28588.77 18096.34 30890.98 23482.04 29494.22 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.34 12296.07 11097.13 16197.37 20694.96 17299.53 17697.91 19691.55 21095.37 17898.32 19195.05 5397.13 26893.80 19395.75 18999.30 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.04 260
IterMVS90.91 25190.17 25293.12 28696.78 23790.42 27598.89 25297.05 27789.03 25486.49 30095.42 28176.59 27995.02 33587.22 28384.09 28293.93 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.41 3998.02 5199.56 2399.97 398.70 4499.92 6798.44 10592.06 19698.40 10899.84 4195.68 40100.00 198.19 9299.71 8399.97 55
MVS_111021_LR98.42 3898.38 2998.53 9999.39 9495.79 14499.87 8899.86 296.70 4298.78 8899.79 5492.03 13399.90 7999.17 4599.86 7099.88 80
DP-MVS94.54 17193.42 18897.91 12899.46 9394.04 19198.93 24997.48 23581.15 33890.04 23499.55 9787.02 19599.95 6188.97 26198.11 13999.73 99
ACMMP++88.23 247
HQP-MVS94.61 17094.50 16194.92 22395.78 25791.85 24499.87 8897.89 19796.82 3693.37 20098.65 17280.65 24998.39 19897.92 10889.60 22294.53 231
QAPM95.40 15194.17 16899.10 6096.92 22597.71 7599.40 19298.68 6089.31 25088.94 26498.89 15782.48 23099.96 5493.12 20899.83 7299.62 118
Vis-MVSNetpermissive95.72 14095.15 14797.45 14897.62 19594.28 18799.28 21298.24 16194.27 11596.84 14598.94 15479.39 25998.76 17193.25 20298.49 12699.30 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet86.22 30183.19 31395.31 21196.71 24090.29 27692.12 35697.33 24962.85 36386.82 29470.37 36869.37 31797.49 24775.12 34697.99 14498.15 206
IS-MVSNet96.29 12695.90 12697.45 14898.13 16594.80 17799.08 22897.61 21992.02 19895.54 17698.96 14790.64 15698.08 22393.73 19797.41 15599.47 147
HyFIR lowres test96.66 11296.43 10497.36 15699.05 10693.91 19699.70 14899.80 390.54 23496.26 16198.08 19592.15 13098.23 21796.84 14095.46 19399.93 71
EPMVS96.53 11596.01 11298.09 12198.43 14696.12 13896.36 33199.43 2093.53 14497.64 12895.04 29894.41 6698.38 20291.13 22998.11 13999.75 97
PAPM_NR98.12 5497.93 5898.70 8299.94 1396.13 13699.82 11598.43 11394.56 9997.52 13099.70 8094.40 6799.98 4297.00 13499.98 3299.99 23
TAMVS95.85 13795.58 13496.65 17697.07 21893.50 20599.17 22197.82 20591.39 21995.02 18298.01 19792.20 12897.30 25793.75 19695.83 18699.14 182
PAPR98.52 3198.16 4399.58 2299.97 398.77 3899.95 4398.43 11395.35 7798.03 11999.75 6794.03 8299.98 4298.11 9799.83 7299.99 23
RPSCF91.80 23692.79 20288.83 32598.15 16369.87 36198.11 30196.60 31383.93 32494.33 19099.27 11979.60 25899.46 14791.99 21893.16 21697.18 221
Vis-MVSNet (Re-imp)96.32 12395.98 11597.35 15797.93 17394.82 17699.47 18698.15 17591.83 20295.09 18199.11 13191.37 14197.47 24893.47 20097.43 15299.74 98
test_040285.58 30383.94 30790.50 31293.81 29885.04 32698.55 27995.20 34676.01 35079.72 33895.13 29564.15 33896.26 31366.04 36286.88 26290.21 348
MVS_111021_HR98.72 2198.62 2099.01 6799.36 9697.18 9799.93 6499.90 196.81 3998.67 9599.77 6093.92 8499.89 8399.27 4399.94 5499.96 61
CSCG97.10 9297.04 8697.27 15999.89 4591.92 24399.90 7699.07 3288.67 26795.26 18099.82 4693.17 10599.98 4298.15 9599.47 9999.90 78
PatchMatch-RL96.04 13295.40 13797.95 12599.59 8195.22 16799.52 17799.07 3293.96 13096.49 15498.35 19082.28 23199.82 10690.15 25199.22 11198.81 196
API-MVS97.86 6297.66 6598.47 10299.52 8795.41 15999.47 18698.87 4691.68 20798.84 8599.85 3092.34 12699.99 3698.44 8399.96 46100.00 1
Test By Simon92.82 114
TDRefinement84.76 30982.56 31691.38 30674.58 37284.80 32997.36 31494.56 35384.73 32080.21 33596.12 25963.56 33998.39 19887.92 27463.97 36190.95 343
USDC90.00 27588.96 27593.10 28894.81 28188.16 30698.71 27195.54 33893.66 14183.75 31997.20 22065.58 33298.31 20983.96 30887.49 25992.85 323
EPP-MVSNet96.69 11096.60 9896.96 16597.74 18593.05 21699.37 19998.56 7888.75 26595.83 17199.01 13896.01 3298.56 18396.92 13897.20 15999.25 174
PMMVS96.76 10596.76 9496.76 17198.28 15492.10 23899.91 7197.98 18794.12 11999.53 4999.39 11186.93 19698.73 17396.95 13797.73 14699.45 150
PAPM98.60 2698.42 2699.14 5596.05 25098.96 2499.90 7699.35 2496.68 4398.35 11099.66 8996.45 2998.51 18699.45 3699.89 6699.96 61
ACMMPcopyleft97.74 7297.44 7298.66 8599.92 3196.13 13699.18 22099.45 1894.84 9096.41 15899.71 7891.40 14099.99 3697.99 10498.03 14399.87 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 7197.38 7398.92 7499.53 8696.84 11099.87 8898.14 17693.78 13796.55 15399.69 8292.28 12799.98 4297.13 12999.44 10299.93 71
PatchmatchNetpermissive95.94 13595.45 13697.39 15397.83 17994.41 18596.05 33898.40 13292.86 16097.09 13995.28 29394.21 7898.07 22589.26 25998.11 13999.70 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.41 3998.21 3999.03 6499.86 5397.10 10199.98 998.80 5290.78 23299.62 3999.78 5895.30 47100.00 199.80 2199.93 6099.99 23
F-COLMAP96.93 9896.95 8996.87 16899.71 7591.74 24899.85 10397.95 19093.11 15795.72 17399.16 13092.35 12599.94 6995.32 15799.35 10698.92 189
ANet_high56.10 33852.24 34167.66 35449.27 38056.82 37283.94 36782.02 37770.47 36133.28 37764.54 37217.23 37969.16 37545.59 37323.85 37477.02 367
wuyk23d20.37 34620.84 34918.99 36165.34 37727.73 38350.43 3727.67 3859.50 3788.01 3796.34 3796.13 38326.24 37823.40 37810.69 3772.99 376
OMC-MVS97.28 8697.23 7997.41 15199.76 6693.36 21299.65 15697.95 19096.03 6197.41 13499.70 8089.61 16799.51 13896.73 14198.25 13599.38 157
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2299.64 16099.44 1997.33 2099.00 8099.72 7694.03 8299.98 4298.73 70100.00 1100.00 1
AdaColmapbinary97.23 8996.80 9398.51 10099.99 195.60 15499.09 22698.84 4993.32 15096.74 14899.72 7686.04 204100.00 198.01 10299.43 10399.94 70
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
ITE_SJBPF92.38 29595.69 26885.14 32595.71 33392.81 16489.33 25498.11 19470.23 31598.42 19385.91 29588.16 24893.59 308
DeepMVS_CXcopyleft82.92 34195.98 25458.66 37196.01 32892.72 16878.34 34295.51 27758.29 35098.08 22382.57 31585.29 27192.03 334
TinyColmap87.87 29686.51 29791.94 30195.05 27885.57 32397.65 31194.08 35584.40 32281.82 32796.85 23562.14 34398.33 20780.25 32886.37 26591.91 336
MAR-MVS97.43 7897.19 8098.15 11999.47 9194.79 17899.05 23798.76 5392.65 17498.66 9699.82 4688.52 18399.98 4298.12 9699.63 8799.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS89.25 28788.85 27690.45 31492.81 32281.19 34798.12 30094.79 34991.44 21486.29 30497.11 22265.30 33598.11 22288.53 26785.25 27292.07 332
MSDG94.37 17793.36 19297.40 15298.88 12493.95 19599.37 19997.38 24485.75 30890.80 22699.17 12984.11 22299.88 8986.35 29198.43 12898.36 203
LS3D95.84 13895.11 14898.02 12499.85 5495.10 17098.74 26898.50 9787.22 28893.66 19899.86 2687.45 19099.95 6190.94 23599.81 7899.02 187
CLD-MVS94.06 18593.90 17494.55 23996.02 25190.69 26699.98 997.72 20896.62 4691.05 22498.85 16677.21 27298.47 18798.11 9789.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS68.72 33168.72 33268.71 35365.95 37644.27 38195.97 34194.74 35051.13 36853.26 37090.50 34625.11 37383.00 37160.80 36580.97 30778.87 366
Gipumacopyleft66.95 33665.00 33672.79 34991.52 33767.96 36266.16 37195.15 34847.89 36958.54 36667.99 37129.74 36887.54 36850.20 37177.83 32662.87 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015