This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25198.47 11998.14 1099.08 9299.91 1493.09 124100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS95.94 297.71 9098.98 1293.92 29999.63 8381.76 38699.96 3598.56 9399.47 199.19 8699.99 194.16 94100.00 199.92 1399.93 61100.00 1
PLCcopyleft95.54 397.93 7097.89 7298.05 14399.82 5894.77 20599.92 8198.46 12193.93 15397.20 16799.27 13995.44 5099.97 5797.41 15299.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DeepC-MVS94.51 496.92 12796.40 13398.45 11999.16 11195.90 16099.66 18598.06 21296.37 7294.37 22399.49 11883.29 26099.90 9497.63 14999.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 18694.10 20498.43 12198.55 15995.99 15897.91 35097.31 28990.35 27489.48 28899.22 14585.19 24499.89 9990.40 28398.47 15099.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS92.85 694.99 19193.94 21098.16 13497.72 21995.69 17199.99 498.81 6194.28 13692.70 24596.90 26995.08 5699.17 18096.07 17873.88 38399.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS92.50 797.79 8497.17 10299.63 1798.98 12299.32 997.49 35599.52 1495.69 8698.32 13397.41 25293.32 11599.77 13198.08 12695.75 21799.81 97
TAPA-MVS92.12 894.42 21193.60 21796.90 20099.33 10291.78 27999.78 14698.00 21689.89 28494.52 22099.47 11991.97 15599.18 17969.90 39799.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.05 992.74 25392.42 25193.73 30495.91 29388.72 33599.81 13997.53 26594.13 14087.00 33298.23 22874.07 34398.47 22196.22 17788.86 27693.99 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM91.95 1092.88 25092.52 24993.98 29895.75 30189.08 33299.77 14997.52 26793.00 18289.95 27397.99 23776.17 32698.46 22493.63 23388.87 27594.39 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator+91.53 1196.31 15595.24 17499.52 2896.88 26798.64 5499.72 17298.24 18995.27 9888.42 31498.98 16482.76 26399.94 8197.10 16099.83 7799.96 67
3Dnovator91.47 1296.28 15895.34 17199.08 7096.82 27097.47 9899.45 22498.81 6195.52 9289.39 28999.00 16181.97 26799.95 7397.27 15599.83 7799.84 93
PVSNet91.05 1397.13 11396.69 12398.45 11999.52 9295.81 16299.95 5499.65 1294.73 11299.04 9599.21 14684.48 25199.95 7394.92 19798.74 14499.58 143
COLMAP_ROBcopyleft90.47 1492.18 26691.49 26894.25 28799.00 12088.04 34698.42 33096.70 35082.30 37888.43 31299.01 15976.97 31599.85 11186.11 33196.50 19794.86 273
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OpenMVScopyleft90.15 1594.77 19893.59 21898.33 12696.07 28797.48 9799.56 20498.57 9090.46 27186.51 33898.95 17378.57 30699.94 8193.86 22299.74 8697.57 256
ACMH+89.98 1690.35 30489.54 30392.78 33195.99 29086.12 35998.81 30197.18 30289.38 28883.14 36397.76 24668.42 36698.43 22689.11 29586.05 30393.78 339
ACMH89.72 1790.64 29789.63 30093.66 31095.64 31088.64 33898.55 31997.45 27289.03 29381.62 37097.61 24769.75 36098.41 22889.37 29287.62 29593.92 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB88.28 1890.29 30789.05 31494.02 29495.08 31890.15 31697.19 36197.43 27484.91 35983.99 35997.06 26474.00 34498.28 24784.08 34287.71 29393.62 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_088.03 1991.80 27490.27 28896.38 21798.27 18090.46 30999.94 7199.61 1393.99 14986.26 34497.39 25471.13 35699.89 9998.77 8767.05 40098.79 224
OpenMVS_ROBcopyleft79.82 2083.77 36081.68 36390.03 35988.30 39782.82 37698.46 32495.22 38573.92 40376.00 39491.29 38555.00 40096.94 32068.40 40088.51 28490.34 387
CMPMVSbinary61.59 2184.75 35385.14 34683.57 38290.32 38862.54 41096.98 36797.59 25974.33 40269.95 40396.66 27864.17 38298.32 24287.88 31088.41 28589.84 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive53.74 2251.54 38747.86 39162.60 40159.56 42550.93 42079.41 41577.69 42435.69 42036.27 42261.76 4215.79 43069.63 42037.97 42036.61 41767.24 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 38551.34 38960.97 40240.80 42834.68 42974.82 41689.62 41737.55 41828.67 42472.12 4137.09 42881.63 41843.17 41968.21 39766.59 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GDP-MVS97.88 7297.59 8498.75 9397.59 22997.81 8299.95 5497.37 28294.44 12499.08 9299.58 11097.13 2399.08 18694.99 19498.17 15999.37 177
BP-MVS198.33 5298.18 5198.81 8997.44 23797.98 7499.96 3598.17 19894.88 10798.77 10899.59 10797.59 799.08 18698.24 11698.93 13799.36 179
reproduce_monomvs95.38 18295.07 18196.32 21999.32 10496.60 13199.76 15498.85 5696.65 5987.83 32096.05 30099.52 198.11 25896.58 17281.07 34494.25 297
mmtdpeth88.52 32987.75 33190.85 34995.71 30583.47 37598.94 28494.85 38988.78 30497.19 16889.58 39263.29 38598.97 19098.54 10162.86 40890.10 391
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11399.73 16898.23 19197.02 4599.18 8799.90 1894.54 7699.99 3699.77 2899.90 6999.99 23
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
mvs5depth84.87 35182.90 35890.77 35185.59 40384.84 36891.10 40793.29 40683.14 37185.07 35394.33 36362.17 38997.32 29378.83 37572.59 38790.14 390
MVStest185.03 35082.76 35991.83 34092.95 35889.16 33198.57 31894.82 39071.68 40668.54 40695.11 33983.17 26295.66 36674.69 38965.32 40390.65 385
ttmdpeth88.23 33387.06 33691.75 34289.91 39287.35 35198.92 28995.73 37387.92 31984.02 35896.31 28968.23 36896.84 32686.33 32876.12 37891.06 380
WBMVS94.52 20894.03 20695.98 22698.38 16996.68 12799.92 8197.63 24990.75 26789.64 28495.25 33596.77 2596.90 32294.35 21483.57 32394.35 290
dongtai91.55 28091.13 27392.82 32998.16 18986.35 35799.47 21998.51 11083.24 37085.07 35397.56 24890.33 18494.94 37776.09 38691.73 25797.18 259
kuosan93.17 24292.60 24394.86 26198.40 16889.54 32698.44 32698.53 10584.46 36288.49 30897.92 24090.57 17997.05 31183.10 35093.49 24997.99 245
MVSMamba_PlusPlus97.83 7797.45 8898.99 7898.60 15598.15 6599.58 19997.74 24190.34 27599.26 8398.32 22594.29 8899.23 17299.03 7099.89 7099.58 143
MGCFI-Net97.00 12196.22 13899.34 4398.86 13898.80 3999.67 18497.30 29094.31 13397.77 15399.41 12786.36 23499.50 15898.38 10993.90 24699.72 110
testing9197.16 11296.90 11197.97 14598.35 17495.67 17299.91 8798.42 14792.91 18697.33 16498.72 19294.81 6699.21 17496.98 16494.63 23399.03 212
testing1197.48 9697.27 9698.10 13998.36 17296.02 15799.92 8198.45 12293.45 16998.15 14198.70 19495.48 4999.22 17397.85 13895.05 23099.07 210
testing9997.17 11196.91 11097.95 14698.35 17495.70 16999.91 8798.43 13592.94 18497.36 16398.72 19294.83 6599.21 17497.00 16294.64 23298.95 215
UBG97.84 7697.69 7898.29 12998.38 16996.59 13399.90 9398.53 10593.91 15598.52 12198.42 22096.77 2599.17 18098.54 10196.20 20299.11 206
UWE-MVS96.79 13196.72 12197.00 19698.51 16393.70 23299.71 17598.60 8592.96 18397.09 17098.34 22496.67 3198.85 19792.11 25296.50 19798.44 235
ETVMVS97.03 12096.64 12498.20 13398.67 14997.12 11299.89 10298.57 9091.10 25698.17 14098.59 20493.86 10398.19 25495.64 18695.24 22899.28 192
sasdasda97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
testing22297.08 11996.75 11998.06 14298.56 15696.82 12399.85 12298.61 8392.53 20998.84 10398.84 18893.36 11298.30 24495.84 18394.30 23999.05 211
WB-MVSnew92.90 24992.77 24093.26 31996.95 26193.63 23499.71 17598.16 20391.49 24094.28 22598.14 23081.33 27696.48 34179.47 36995.46 22189.68 395
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7999.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8299.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
fmvsm_s_conf0.1_n_a97.09 11696.90 11197.63 17095.65 30994.21 21999.83 13498.50 11696.27 7499.65 4199.64 10284.72 24899.93 8899.04 6798.84 14198.74 227
fmvsm_s_conf0.1_n97.30 10597.21 9997.60 17297.38 24194.40 21399.90 9398.64 7796.47 6599.51 6299.65 10184.99 24799.93 8899.22 5899.09 13298.46 234
fmvsm_s_conf0.5_n_a97.73 8997.72 7697.77 16098.63 15494.26 21799.96 3598.92 4697.18 3999.75 2999.69 9087.00 22699.97 5799.46 4798.89 13899.08 209
fmvsm_s_conf0.5_n97.80 8297.85 7397.67 16699.06 11594.41 21199.98 1598.97 4097.34 2999.63 4499.69 9087.27 22199.97 5799.62 4099.06 13398.62 232
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18299.96 6599.89 1799.43 11599.98 51
WAC-MVS90.97 29486.10 332
Syy-MVS90.00 31490.63 28088.11 37497.68 22274.66 40199.71 17598.35 16990.79 26492.10 25198.67 19679.10 30193.09 39463.35 40895.95 21096.59 264
test_fmvsmconf0.1_n97.74 8797.44 8998.64 10195.76 29996.20 15099.94 7198.05 21498.17 998.89 10299.42 12387.65 21699.90 9499.50 4499.60 10199.82 95
test_fmvsmconf0.01_n96.39 15195.74 15998.32 12791.47 37995.56 17699.84 12797.30 29097.74 1897.89 14899.35 13479.62 29499.85 11199.25 5799.24 12599.55 147
myMVS_eth3d94.46 21094.76 19093.55 31297.68 22290.97 29499.71 17598.35 16990.79 26492.10 25198.67 19692.46 14493.09 39487.13 31995.95 21096.59 264
testing393.92 22194.23 20192.99 32697.54 23190.23 31399.99 499.16 3090.57 26991.33 25998.63 20292.99 12692.52 39882.46 35495.39 22496.22 269
SSC-MVS75.42 37476.40 37772.49 39780.68 41253.62 41997.42 35694.06 39980.42 38568.75 40590.14 39176.54 32181.66 41733.25 42266.34 40282.19 408
test_fmvsmconf_n98.43 4698.32 4398.78 9098.12 19396.41 13899.99 498.83 6098.22 799.67 3999.64 10291.11 16899.94 8199.67 3999.62 9599.98 51
WB-MVS76.28 37377.28 37573.29 39381.18 41054.68 41897.87 35194.19 39781.30 38169.43 40490.70 38977.02 31482.06 41635.71 42168.11 39883.13 407
test_fmvsmvis_n_192097.67 9197.59 8497.91 15297.02 25795.34 18499.95 5498.45 12297.87 1597.02 17399.59 10789.64 19299.98 4799.41 5199.34 12198.42 236
dmvs_re93.20 24193.15 23293.34 31596.54 27983.81 37298.71 30998.51 11091.39 24992.37 24998.56 20978.66 30597.83 27493.89 22189.74 26398.38 237
SDMVSNet94.80 19593.96 20997.33 18998.92 13095.42 18199.59 19798.99 3792.41 21492.55 24797.85 24375.81 32998.93 19497.90 13691.62 25997.64 252
dmvs_testset83.79 35986.07 34176.94 38992.14 36948.60 42496.75 37190.27 41489.48 28778.65 38398.55 21179.25 29786.65 41266.85 40382.69 32795.57 272
sd_testset93.55 23492.83 23795.74 23498.92 13090.89 29998.24 33798.85 5692.41 21492.55 24797.85 24371.07 35798.68 21293.93 22091.62 25997.64 252
test_fmvsm_n_192098.44 4498.61 2797.92 15099.27 10695.18 193100.00 198.90 4798.05 1299.80 1799.73 8192.64 13699.99 3699.58 4199.51 10898.59 233
test_cas_vis1_n_192096.59 14396.23 13797.65 16798.22 18394.23 21899.99 497.25 29797.77 1799.58 5499.08 15377.10 31299.97 5797.64 14899.45 11398.74 227
test_vis1_n_192095.44 18095.31 17295.82 23298.50 16488.74 33499.98 1597.30 29097.84 1699.85 999.19 14766.82 37399.97 5798.82 8399.46 11298.76 225
test_vis1_n93.61 23393.03 23495.35 24395.86 29486.94 35499.87 10896.36 36196.85 4999.54 5798.79 18952.41 40499.83 12198.64 9698.97 13699.29 191
test_fmvs1_n94.25 21894.36 19793.92 29997.68 22283.70 37399.90 9396.57 35597.40 2899.67 3998.88 17961.82 39199.92 9198.23 11799.13 13098.14 243
mvsany_test197.82 8097.90 7197.55 17398.77 14493.04 24999.80 14397.93 22496.95 4899.61 5399.68 9690.92 17299.83 12199.18 5998.29 15799.80 99
APD_test181.15 36580.92 36681.86 38592.45 36559.76 41496.04 38493.61 40473.29 40477.06 38996.64 28044.28 41096.16 35472.35 39382.52 32889.67 396
test_vis1_rt86.87 34086.05 34289.34 36396.12 28578.07 39799.87 10883.54 42292.03 22678.21 38689.51 39345.80 40899.91 9296.25 17693.11 25590.03 392
test_vis3_rt68.82 37666.69 38175.21 39276.24 41760.41 41396.44 37568.71 42775.13 40050.54 41869.52 41616.42 42696.32 34880.27 36666.92 40168.89 414
test_fmvs289.47 32289.70 29988.77 37094.54 32775.74 39899.83 13494.70 39494.71 11391.08 26096.82 27754.46 40197.78 27792.87 24488.27 28692.80 363
test_fmvs195.35 18395.68 16394.36 28498.99 12184.98 36699.96 3596.65 35297.60 2299.73 3398.96 16871.58 35299.93 8898.31 11499.37 11998.17 240
test_fmvs379.99 37080.17 36979.45 38784.02 40662.83 40899.05 27293.49 40588.29 31580.06 37986.65 40428.09 41688.00 40888.63 29873.27 38587.54 404
mvsany_test382.12 36381.14 36585.06 38081.87 40970.41 40497.09 36492.14 40991.27 25177.84 38788.73 39639.31 41195.49 36790.75 27571.24 38889.29 400
testf168.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
APD_test268.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
test_f78.40 37277.59 37480.81 38680.82 41162.48 41196.96 36893.08 40783.44 36974.57 39884.57 40827.95 41792.63 39784.15 34172.79 38687.32 405
FE-MVS95.70 17495.01 18497.79 15798.21 18494.57 20695.03 39098.69 6988.90 30197.50 15996.19 29392.60 13899.49 16389.99 28897.94 16999.31 187
FA-MVS(test-final)95.86 16695.09 18098.15 13797.74 21495.62 17496.31 37898.17 19891.42 24796.26 19496.13 29690.56 18099.47 16592.18 25197.07 18599.35 182
balanced_conf0398.27 5697.99 6299.11 6698.64 15398.43 6299.47 21997.79 23894.56 11899.74 3198.35 22294.33 8699.25 17199.12 6199.96 4699.64 124
MonoMVSNet94.82 19394.43 19595.98 22694.54 32790.73 30199.03 27597.06 31793.16 17893.15 23895.47 32088.29 21097.57 28397.85 13891.33 26199.62 130
patch_mono-298.24 6199.12 595.59 23699.67 8186.91 35699.95 5498.89 4997.60 2299.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
EGC-MVSNET69.38 37563.76 38586.26 37890.32 38881.66 38796.24 38093.85 4020.99 4253.22 42692.33 38252.44 40392.92 39659.53 41284.90 31284.21 406
test250697.53 9497.19 10098.58 10798.66 15096.90 12198.81 30199.77 594.93 10397.95 14598.96 16892.51 14199.20 17794.93 19698.15 16099.64 124
test111195.57 17794.98 18597.37 18598.56 15693.37 24398.86 29698.45 12294.95 10296.63 18398.95 17375.21 33699.11 18395.02 19398.14 16299.64 124
ECVR-MVScopyleft95.66 17595.05 18297.51 17798.66 15093.71 23198.85 29898.45 12294.93 10396.86 17798.96 16875.22 33599.20 17795.34 18898.15 16099.64 124
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.02 4260.00 4310.00 4270.00 4260.00 4250.00 423
tt080591.28 28390.18 29194.60 26996.26 28387.55 34898.39 33198.72 6689.00 29589.22 29598.47 21762.98 38798.96 19290.57 27788.00 29097.28 258
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13596.48 6399.80 1799.93 1197.44 14100.00 199.92 1399.98 32100.00 1
FOURS199.92 3197.66 8999.95 5498.36 16795.58 8999.52 60
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 10100.00 199.99 599.98 32100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 10
eth-test20.00 431
eth-test0.00 431
GeoE94.36 21593.48 22296.99 19797.29 24993.54 23799.96 3596.72 34988.35 31493.43 23398.94 17582.05 26698.05 26388.12 30896.48 19999.37 177
test_method80.79 36679.70 37084.08 38192.83 36067.06 40799.51 21295.42 38054.34 41381.07 37493.53 37044.48 40992.22 40078.90 37477.23 37292.94 360
Anonymous2024052185.15 34983.81 35189.16 36588.32 39682.69 37798.80 30395.74 37279.72 38781.53 37190.99 38665.38 37994.16 38472.69 39281.11 34290.63 386
h-mvs3394.92 19294.36 19796.59 21098.85 13991.29 29198.93 28698.94 4195.90 8098.77 10898.42 22090.89 17599.77 13197.80 14070.76 38998.72 229
hse-mvs294.38 21294.08 20595.31 24698.27 18090.02 31899.29 24698.56 9395.90 8098.77 10898.00 23590.89 17598.26 25197.80 14069.20 39597.64 252
CL-MVSNet_self_test84.50 35583.15 35688.53 37186.00 40181.79 38598.82 30097.35 28385.12 35583.62 36290.91 38876.66 31991.40 40269.53 39860.36 41192.40 369
KD-MVS_2432*160088.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
KD-MVS_self_test83.59 36182.06 36188.20 37386.93 39980.70 39297.21 36096.38 36082.87 37482.49 36588.97 39567.63 37092.32 39973.75 39162.30 41091.58 377
AUN-MVS93.28 23992.60 24395.34 24498.29 17790.09 31799.31 24198.56 9391.80 23496.35 19398.00 23589.38 19698.28 24792.46 24769.22 39497.64 252
ZD-MVS99.92 3198.57 5698.52 10792.34 21799.31 7899.83 4695.06 5799.80 12499.70 3799.97 42
SR-MVS-dyc-post98.31 5398.17 5298.71 9599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7293.28 11899.78 12898.90 7999.92 6499.97 61
RE-MVS-def98.13 5599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7292.95 12898.90 7999.92 6499.97 61
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 27100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 14100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 27100.00 1
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9398.21 19393.53 16599.81 1599.89 2294.70 7199.86 11099.84 2299.93 6199.96 67
cl2293.77 22793.25 23195.33 24599.49 9594.43 20999.61 19598.09 20990.38 27289.16 29995.61 31090.56 18097.34 29191.93 25484.45 31694.21 301
miper_ehance_all_eth93.16 24392.60 24394.82 26297.57 23093.56 23699.50 21497.07 31688.75 30588.85 30395.52 31690.97 17196.74 33190.77 27484.45 31694.17 303
miper_enhance_ethall94.36 21593.98 20895.49 23798.68 14895.24 18999.73 16897.29 29393.28 17489.86 27695.97 30194.37 8397.05 31192.20 25084.45 31694.19 302
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9099.94 7198.44 12794.31 13398.50 12499.82 4993.06 12599.99 3698.30 11599.99 2199.93 79
dcpmvs_297.42 10198.09 5895.42 24199.58 8987.24 35299.23 25296.95 32994.28 13698.93 10099.73 8194.39 8299.16 18299.89 1799.82 8199.86 92
cl____92.31 26391.58 26494.52 27497.33 24692.77 25299.57 20296.78 34686.97 33487.56 32495.51 31789.43 19596.62 33688.60 29982.44 33094.16 308
DIV-MVS_self_test92.32 26291.60 26394.47 27897.31 24792.74 25499.58 19996.75 34786.99 33387.64 32295.54 31489.55 19496.50 34088.58 30082.44 33094.17 303
eth_miper_zixun_eth92.41 26191.93 25893.84 30397.28 25090.68 30398.83 29996.97 32888.57 31089.19 29895.73 30789.24 20196.69 33489.97 28981.55 33694.15 309
9.1498.38 3799.87 5199.91 8798.33 17493.22 17599.78 2699.89 2294.57 7599.85 11199.84 2299.97 42
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
ET-MVSNet_ETH3D94.37 21393.28 23097.64 16898.30 17697.99 7399.99 497.61 25594.35 13071.57 40199.45 12296.23 3595.34 37196.91 16985.14 31199.59 137
UniMVSNet_ETH3D90.06 31388.58 32194.49 27794.67 32588.09 34597.81 35397.57 26083.91 36688.44 31097.41 25257.44 39897.62 28291.41 26088.59 28297.77 250
EIA-MVS97.53 9497.46 8797.76 16298.04 19694.84 20199.98 1597.61 25594.41 12897.90 14799.59 10792.40 14598.87 19598.04 12799.13 13099.59 137
miper_refine_blended88.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
miper_lstm_enhance91.81 27191.39 27093.06 32597.34 24489.18 33099.38 23296.79 34586.70 33787.47 32695.22 33690.00 18895.86 36488.26 30481.37 33894.15 309
ETV-MVS97.92 7197.80 7598.25 13198.14 19196.48 13599.98 1597.63 24995.61 8899.29 8199.46 12192.55 14098.82 19899.02 7198.54 14899.46 166
CS-MVS97.79 8497.91 7097.43 18199.10 11394.42 21099.99 497.10 31195.07 10099.68 3899.75 7292.95 12898.34 24098.38 10999.14 12999.54 151
D2MVS92.76 25292.59 24793.27 31895.13 31689.54 32699.69 18099.38 2292.26 21987.59 32394.61 35685.05 24697.79 27591.59 25988.01 28992.47 368
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 135100.00 199.99 5100.00 1100.00 1
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 19
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11599.84 12798.35 16994.92 10599.32 7799.80 5493.35 11399.78 12899.30 5599.95 5099.96 67
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 21100.00 193.81 22699.94 5599.98 51
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9199.93 7898.39 15994.04 14898.80 10699.74 7992.98 127100.00 198.16 12099.76 8599.93 79
test_yl97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
thisisatest053097.10 11496.72 12198.22 13297.60 22896.70 12699.92 8198.54 10291.11 25597.07 17298.97 16697.47 1299.03 18893.73 23196.09 20598.92 216
Anonymous2024052992.10 26790.65 27996.47 21198.82 14090.61 30598.72 30898.67 7475.54 39893.90 23198.58 20766.23 37599.90 9494.70 20690.67 26298.90 219
Anonymous20240521193.10 24591.99 25796.40 21599.10 11389.65 32498.88 29297.93 22483.71 36794.00 22998.75 19168.79 36299.88 10595.08 19291.71 25899.68 116
DCV-MVSNet97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
tttt051796.85 12896.49 13097.92 15097.48 23695.89 16199.85 12298.54 10290.72 26896.63 18398.93 17797.47 1299.02 18993.03 24395.76 21698.85 220
our_test_390.39 30289.48 30793.12 32292.40 36689.57 32599.33 23896.35 36287.84 32185.30 35094.99 34584.14 25496.09 35880.38 36584.56 31593.71 345
thisisatest051597.41 10297.02 10898.59 10697.71 22197.52 9399.97 2898.54 10291.83 23197.45 16099.04 15697.50 999.10 18594.75 20496.37 20199.16 200
ppachtmachnet_test89.58 32188.35 32493.25 32092.40 36690.44 31099.33 23896.73 34885.49 35285.90 34895.77 30481.09 27996.00 36276.00 38782.49 32993.30 353
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11998.38 16393.19 17699.77 2799.94 495.54 46100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.59 137
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12797.48 2799.64 4399.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.89 4599.25 1899.49 63
thres100view90096.74 13695.92 15499.18 5298.90 13598.77 4299.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.84 22394.57 23499.27 193
tfpnnormal89.29 32587.61 33294.34 28594.35 33194.13 22198.95 28398.94 4183.94 36484.47 35695.51 31774.84 33897.39 28877.05 38380.41 35091.48 378
tfpn200view996.79 13195.99 14499.19 5198.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.27 193
c3_l92.53 25891.87 26094.52 27497.40 24092.99 25099.40 22796.93 33487.86 32088.69 30695.44 32189.95 18996.44 34390.45 28080.69 34994.14 312
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32499.42 2197.03 4499.02 9699.09 15299.35 298.21 25399.73 3599.78 8499.77 104
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 12199.71 8687.80 21499.95 7399.75 3199.38 11899.83 94
Fast-Effi-MVS+-dtu93.72 23093.86 21393.29 31797.06 25586.16 35899.80 14396.83 34192.66 20092.58 24697.83 24581.39 27497.67 28089.75 29196.87 19296.05 271
Effi-MVS+-dtu94.53 20795.30 17392.22 33597.77 21282.54 37999.59 19797.06 31794.92 10595.29 21395.37 32785.81 23797.89 27294.80 20297.07 18596.23 268
CANet_DTU96.76 13496.15 14098.60 10498.78 14397.53 9299.84 12797.63 24997.25 3799.20 8499.64 10281.36 27599.98 4792.77 24698.89 13898.28 239
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 12099.99 3699.94 1199.41 11799.95 74
MP-MVS-pluss98.07 6797.64 8099.38 4299.74 7098.41 6399.74 16198.18 19793.35 17096.45 18899.85 3392.64 13699.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10599.95 5498.42 14797.50 2699.52 6099.88 2497.43 1699.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs194.72 6999.59 137
sam_mvs94.25 89
IterMVS-SCA-FT90.85 29390.16 29392.93 32796.72 27689.96 31998.89 29096.99 32488.95 29986.63 33695.67 30876.48 32295.00 37587.04 32184.04 32293.84 336
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14998.38 16396.73 5699.88 699.74 7994.89 6499.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
OPM-MVS93.21 24092.80 23894.44 28093.12 35290.85 30099.77 14997.61 25596.19 7791.56 25698.65 19975.16 33798.47 22193.78 22989.39 27093.99 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12298.37 16694.68 11599.53 5899.83 4692.87 130100.00 198.66 9599.84 7699.99 23
ambc83.23 38377.17 41662.61 40987.38 41294.55 39676.72 39286.65 40430.16 41396.36 34684.85 34069.86 39090.73 384
MTGPAbinary98.28 183
SPE-MVS-test97.88 7297.94 6897.70 16599.28 10595.20 19299.98 1597.15 30695.53 9199.62 4799.79 5892.08 15398.38 23698.75 8999.28 12399.52 157
Effi-MVS+96.30 15695.69 16198.16 13497.85 20796.26 14597.41 35797.21 29990.37 27398.65 11798.58 20786.61 23198.70 21097.11 15997.37 18099.52 157
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14798.66 5199.52 21098.08 21197.05 4399.86 799.86 2990.65 17799.71 14199.39 5398.63 14698.69 230
xiu_mvs_v1_base97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
new-patchmatchnet81.19 36479.34 37186.76 37782.86 40880.36 39597.92 34995.27 38482.09 37972.02 40086.87 40362.81 38890.74 40571.10 39563.08 40789.19 401
pmmvs685.69 34383.84 35091.26 34690.00 39184.41 37097.82 35296.15 36675.86 39681.29 37295.39 32561.21 39396.87 32583.52 34973.29 38492.50 367
pmmvs590.17 31189.09 31293.40 31492.10 37189.77 32399.74 16195.58 37885.88 34687.24 33195.74 30573.41 34696.48 34188.54 30183.56 32493.95 327
test_post195.78 38859.23 42393.20 12297.74 27891.06 266
test_post63.35 42094.43 7798.13 257
Fast-Effi-MVS+95.02 19094.19 20297.52 17697.88 20494.55 20799.97 2897.08 31588.85 30394.47 22297.96 23984.59 25098.41 22889.84 29097.10 18499.59 137
patchmatchnet-post91.70 38495.12 5497.95 269
Anonymous2023121189.86 31688.44 32394.13 29098.93 12790.68 30398.54 32198.26 18676.28 39486.73 33495.54 31470.60 35897.56 28490.82 27380.27 35394.15 309
pmmvs-eth3d84.03 35881.97 36290.20 35784.15 40587.09 35398.10 34594.73 39383.05 37274.10 39987.77 40165.56 37894.01 38581.08 36369.24 39389.49 398
GG-mvs-BLEND98.54 11298.21 18498.01 7293.87 39598.52 10797.92 14697.92 24099.02 397.94 27198.17 11999.58 10299.67 118
xiu_mvs_v1_base_debi97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
Anonymous2023120686.32 34185.42 34489.02 36689.11 39580.53 39499.05 27295.28 38385.43 35382.82 36493.92 36674.40 34193.44 39266.99 40281.83 33593.08 358
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 7899.39 23198.28 18395.76 8497.18 16999.88 2492.74 134100.00 198.67 9399.88 7399.99 23
MTMP99.87 10896.49 358
gm-plane-assit96.97 26093.76 23091.47 24398.96 16898.79 20094.92 197
test9_res99.71 3699.99 21100.00 1
MVP-Stereo90.93 28990.45 28492.37 33491.25 38288.76 33398.05 34796.17 36587.27 32884.04 35795.30 33078.46 30897.27 30083.78 34699.70 8991.09 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.92 3198.92 2999.96 3598.43 13593.90 15699.71 3599.86 2995.88 4199.85 111
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 13099.71 3599.86 2995.94 3899.85 11199.69 3899.98 3299.99 23
gg-mvs-nofinetune93.51 23591.86 26198.47 11797.72 21997.96 7792.62 39998.51 11074.70 40197.33 16469.59 41598.91 497.79 27597.77 14599.56 10399.67 118
SCA94.69 20093.81 21497.33 18997.10 25394.44 20898.86 29698.32 17693.30 17396.17 19795.59 31276.48 32297.95 26991.06 26697.43 17699.59 137
Patchmatch-test92.65 25791.50 26796.10 22496.85 26890.49 30891.50 40497.19 30082.76 37690.23 26895.59 31295.02 5998.00 26577.41 38096.98 19099.82 95
test_899.92 3198.88 3299.96 3598.43 13594.35 13099.69 3799.85 3395.94 3899.85 111
MS-PatchMatch90.65 29690.30 28791.71 34394.22 33385.50 36398.24 33797.70 24388.67 30786.42 34196.37 28867.82 36998.03 26483.62 34799.62 9591.60 376
Patchmatch-RL test86.90 33985.98 34389.67 36184.45 40475.59 39989.71 41092.43 40886.89 33577.83 38890.94 38794.22 9093.63 39087.75 31169.61 39199.79 100
cdsmvs_eth3d_5k23.43 39131.24 3940.00 4080.00 4310.00 4330.00 41998.09 2090.00 4260.00 42799.67 9783.37 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.60 39410.13 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42791.20 1640.00 4270.00 4260.00 4250.00 423
agg_prior299.48 46100.00 1100.00 1
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
tmp_tt65.23 38362.94 38672.13 39844.90 42750.03 42381.05 41489.42 41838.45 41748.51 41999.90 1854.09 40278.70 41991.84 25718.26 42187.64 403
canonicalmvs97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
anonymousdsp91.79 27690.92 27694.41 28390.76 38592.93 25198.93 28697.17 30389.08 29187.46 32795.30 33078.43 30996.92 32192.38 24888.73 27893.39 351
alignmvs97.81 8197.33 9499.25 4698.77 14498.66 5199.99 498.44 12794.40 12998.41 12899.47 11993.65 10899.42 16798.57 9994.26 24099.67 118
nrg03093.51 23592.53 24896.45 21394.36 33097.20 10799.81 13997.16 30591.60 23789.86 27697.46 25086.37 23397.68 27995.88 18280.31 35294.46 279
v14419290.79 29489.52 30494.59 27093.11 35392.77 25299.56 20496.99 32486.38 34089.82 27994.95 34780.50 28897.10 30883.98 34480.41 35093.90 331
FIs94.10 21993.43 22396.11 22394.70 32496.82 12399.58 19998.93 4592.54 20889.34 29197.31 25587.62 21797.10 30894.22 21886.58 30094.40 285
v192192090.46 30189.12 31194.50 27692.96 35792.46 26399.49 21696.98 32686.10 34389.61 28695.30 33078.55 30797.03 31682.17 35780.89 34894.01 321
UA-Net96.54 14495.96 15098.27 13098.23 18295.71 16898.00 34898.45 12293.72 16298.41 12899.27 13988.71 20899.66 14991.19 26397.69 17199.44 170
v119290.62 29989.25 30994.72 26593.13 35093.07 24699.50 21497.02 32186.33 34189.56 28795.01 34279.22 29897.09 31082.34 35681.16 34094.01 321
FC-MVSNet-test93.81 22593.15 23295.80 23394.30 33296.20 15099.42 22698.89 4992.33 21889.03 30197.27 25787.39 22096.83 32893.20 23786.48 30194.36 287
v114491.09 28789.83 29694.87 25893.25 34993.69 23399.62 19396.98 32686.83 33689.64 28494.99 34580.94 28097.05 31185.08 33881.16 34093.87 334
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9999.95 5498.61 8394.77 11099.31 7899.85 3394.22 90100.00 198.70 9199.98 3299.98 51
v14890.70 29589.63 30093.92 29992.97 35690.97 29499.75 15896.89 33787.51 32388.27 31595.01 34281.67 27097.04 31487.40 31577.17 37393.75 340
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
AllTest92.48 25991.64 26295.00 25499.01 11888.43 34098.94 28496.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
TestCases95.00 25499.01 11888.43 34096.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
v7n89.65 32088.29 32593.72 30592.22 36890.56 30799.07 26797.10 31185.42 35486.73 33494.72 35080.06 29197.13 30581.14 36278.12 36493.49 348
region2R98.54 3698.37 3999.05 7199.96 897.18 10899.96 3598.55 9994.87 10899.45 6599.85 3394.07 96100.00 198.67 93100.00 199.98 51
RRT-MVS96.24 16095.68 16397.94 14997.65 22594.92 19999.27 24997.10 31192.79 19397.43 16197.99 23781.85 26999.37 16898.46 10698.57 14799.53 155
mamv495.24 18596.90 11190.25 35698.65 15272.11 40398.28 33597.64 24889.99 28295.93 20198.25 22794.74 6899.11 18399.01 7299.64 9299.53 155
PS-MVSNAJss93.64 23293.31 22994.61 26892.11 37092.19 26899.12 25997.38 28092.51 21188.45 30996.99 26891.20 16497.29 29894.36 21287.71 29394.36 287
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20898.17 19897.34 2999.85 999.85 3391.20 16499.89 9999.41 5199.67 9098.69 230
jajsoiax91.92 26991.18 27294.15 28891.35 38090.95 29799.00 27897.42 27692.61 20387.38 32897.08 26272.46 34897.36 28994.53 21088.77 27794.13 313
mvs_tets91.81 27191.08 27494.00 29691.63 37790.58 30698.67 31497.43 27492.43 21387.37 32997.05 26571.76 35097.32 29394.75 20488.68 27994.11 314
EI-MVSNet-UG-set98.14 6497.99 6298.60 10499.80 6196.27 14499.36 23698.50 11695.21 9998.30 13499.75 7293.29 11799.73 14098.37 11199.30 12299.81 97
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9399.83 5796.59 13399.40 22798.51 11095.29 9798.51 12399.76 6693.60 11099.71 14198.53 10399.52 10599.95 74
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9397.56 2599.44 6699.85 3395.38 51100.00 199.31 5499.99 2199.87 90
test_prior498.05 7099.94 71
XVS98.70 2998.55 2899.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7099.78 6294.34 8499.96 6598.92 7699.95 5099.99 23
v124090.20 30988.79 31894.44 28093.05 35592.27 26799.38 23296.92 33585.89 34589.36 29094.87 34977.89 31097.03 31680.66 36481.08 34394.01 321
pm-mvs189.36 32487.81 33094.01 29593.40 34891.93 27498.62 31796.48 35986.25 34283.86 36096.14 29573.68 34597.04 31486.16 33075.73 38193.04 359
test_prior299.95 5495.78 8399.73 3399.76 6696.00 3799.78 27100.00 1
X-MVStestdata93.83 22392.06 25699.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7041.37 42494.34 8499.96 6598.92 7699.95 5099.99 23
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
旧先验299.46 22394.21 13999.85 999.95 7396.96 166
新几何299.40 227
新几何199.42 3799.75 6998.27 6498.63 8192.69 19899.55 5599.82 4994.40 79100.00 191.21 26299.94 5599.99 23
旧先验199.76 6697.52 9398.64 7799.85 3395.63 4599.94 5599.99 23
无先验99.49 21698.71 6793.46 167100.00 194.36 21299.99 23
原ACMM299.90 93
原ACMM198.96 8299.73 7396.99 11798.51 11094.06 14699.62 4799.85 3394.97 6399.96 6595.11 19199.95 5099.92 84
test22299.55 9097.41 10199.34 23798.55 9991.86 23099.27 8299.83 4693.84 10499.95 5099.99 23
testdata299.99 3690.54 279
segment_acmp96.68 29
testdata98.42 12299.47 9695.33 18598.56 9393.78 15999.79 2599.85 3393.64 10999.94 8194.97 19599.94 55100.00 1
testdata199.28 24796.35 73
v890.54 30089.17 31094.66 26693.43 34693.40 24299.20 25496.94 33385.76 34787.56 32494.51 35781.96 26897.19 30184.94 33978.25 36293.38 352
131496.84 12995.96 15099.48 3496.74 27598.52 5898.31 33398.86 5395.82 8289.91 27498.98 16487.49 21899.96 6597.80 14099.73 8799.96 67
LFMVS94.75 19993.56 22098.30 12899.03 11795.70 16998.74 30697.98 21987.81 32298.47 12599.39 13067.43 37199.53 15398.01 12895.20 22999.67 118
VDD-MVS93.77 22792.94 23596.27 22098.55 15990.22 31498.77 30597.79 23890.85 26296.82 17999.42 12361.18 39499.77 13198.95 7394.13 24198.82 222
VDDNet93.12 24491.91 25996.76 20496.67 27892.65 26098.69 31298.21 19382.81 37597.75 15499.28 13661.57 39299.48 16498.09 12594.09 24298.15 241
v1090.25 30888.82 31794.57 27293.53 34493.43 24099.08 26396.87 33985.00 35687.34 33094.51 35780.93 28197.02 31882.85 35279.23 35793.26 354
VPNet91.81 27190.46 28295.85 23194.74 32395.54 17798.98 27998.59 8792.14 22190.77 26597.44 25168.73 36497.54 28594.89 20077.89 36594.46 279
MVS96.60 14295.56 16699.72 1396.85 26899.22 2098.31 33398.94 4191.57 23890.90 26399.61 10686.66 23099.96 6597.36 15399.88 7399.99 23
v2v48291.30 28190.07 29595.01 25393.13 35093.79 22899.77 14997.02 32188.05 31789.25 29395.37 32780.73 28397.15 30387.28 31780.04 35594.09 315
V4291.28 28390.12 29494.74 26393.42 34793.46 23999.68 18297.02 32187.36 32689.85 27895.05 34081.31 27797.34 29187.34 31680.07 35493.40 350
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7198.34 17396.38 6999.81 1599.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS93.83 22392.84 23696.80 20295.73 30293.57 23599.88 10597.24 29892.57 20792.92 24196.66 27878.73 30497.67 28087.75 31194.06 24399.17 199
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 40100.00 199.51 43100.00 1100.00 1
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15997.20 3899.46 6499.85 3395.53 4899.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.25 6098.08 5998.78 9099.81 6096.60 13199.82 13798.30 18193.95 15299.37 7599.77 6492.84 13199.76 13498.95 7399.92 6499.97 61
ADS-MVSNet293.80 22693.88 21293.55 31297.87 20585.94 36094.24 39196.84 34090.07 27996.43 18994.48 35990.29 18695.37 37087.44 31397.23 18199.36 179
EI-MVSNet93.73 22993.40 22794.74 26396.80 27192.69 25799.06 26897.67 24688.96 29891.39 25799.02 15788.75 20797.30 29591.07 26587.85 29194.22 299
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
CVMVSNet94.68 20294.94 18693.89 30296.80 27186.92 35599.06 26898.98 3894.45 12194.23 22799.02 15785.60 23895.31 37290.91 27195.39 22499.43 171
pmmvs492.10 26791.07 27595.18 24992.82 36194.96 19799.48 21896.83 34187.45 32588.66 30796.56 28483.78 25696.83 32889.29 29384.77 31493.75 340
EU-MVSNet90.14 31290.34 28689.54 36292.55 36481.06 39098.69 31298.04 21591.41 24886.59 33796.84 27580.83 28293.31 39386.20 32981.91 33494.26 295
VNet97.21 11096.57 12899.13 6598.97 12397.82 8199.03 27599.21 2994.31 13399.18 8798.88 17986.26 23599.89 9998.93 7594.32 23899.69 115
test-LLR96.47 14696.04 14297.78 15897.02 25795.44 17999.96 3598.21 19394.07 14495.55 20896.38 28693.90 10198.27 24990.42 28198.83 14299.64 124
TESTMET0.1,196.74 13696.26 13698.16 13497.36 24396.48 13599.96 3598.29 18291.93 22895.77 20698.07 23395.54 4698.29 24590.55 27898.89 13899.70 113
test-mter96.39 15195.93 15397.78 15897.02 25795.44 17999.96 3598.21 19391.81 23395.55 20896.38 28695.17 5398.27 24990.42 28198.83 14299.64 124
VPA-MVSNet92.70 25491.55 26696.16 22295.09 31796.20 15098.88 29299.00 3691.02 25991.82 25495.29 33376.05 32897.96 26895.62 18781.19 33994.30 293
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10899.95 5498.60 8594.77 11099.31 7899.84 4493.73 106100.00 198.70 9199.98 3299.98 51
testgi89.01 32788.04 32891.90 33993.49 34584.89 36799.73 16895.66 37693.89 15885.14 35198.17 22959.68 39594.66 38177.73 37988.88 27496.16 270
test20.0384.72 35483.99 34786.91 37688.19 39880.62 39398.88 29295.94 36988.36 31378.87 38194.62 35568.75 36389.11 40766.52 40475.82 37991.00 381
thres600view796.69 13995.87 15799.14 6198.90 13598.78 4199.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.44 23594.50 23799.16 200
ADS-MVSNet94.79 19694.02 20797.11 19597.87 20593.79 22894.24 39198.16 20390.07 27996.43 18994.48 35990.29 18698.19 25487.44 31397.23 18199.36 179
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11199.95 5498.39 15994.70 11498.26 13799.81 5391.84 158100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs40.60 38944.45 39229.05 40619.49 43014.11 43299.68 18218.47 42920.74 42264.59 40798.48 21610.95 42717.09 42656.66 41511.01 42255.94 419
thres40096.78 13395.99 14499.16 5798.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.16 200
test12337.68 39039.14 39333.31 40519.94 42924.83 43198.36 3329.75 43015.53 42351.31 41787.14 40219.62 42417.74 42547.10 4173.47 42457.36 418
thres20096.96 12396.21 13999.22 4898.97 12398.84 3699.85 12299.71 793.17 17796.26 19498.88 17989.87 19099.51 15694.26 21694.91 23199.31 187
test0.0.03 193.86 22293.61 21594.64 26795.02 32092.18 26999.93 7898.58 8894.07 14487.96 31898.50 21293.90 10194.96 37681.33 36193.17 25396.78 261
pmmvs380.27 36877.77 37387.76 37580.32 41382.43 38098.23 33991.97 41072.74 40578.75 38287.97 40057.30 39990.99 40470.31 39662.37 40989.87 393
EMVS51.44 38851.22 39052.11 40470.71 42044.97 42794.04 39375.66 42635.34 42142.40 42161.56 42228.93 41565.87 42327.64 42424.73 41945.49 420
E-PMN52.30 38652.18 38852.67 40371.51 41945.40 42593.62 39776.60 42536.01 41943.50 42064.13 41927.11 41867.31 42231.06 42326.06 41845.30 421
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11699.75 15899.50 1793.90 15699.37 7599.76 6693.24 120100.00 197.75 14799.96 4699.98 51
LCM-MVSNet-Re92.31 26392.60 24391.43 34497.53 23279.27 39699.02 27791.83 41192.07 22380.31 37694.38 36283.50 25895.48 36897.22 15797.58 17499.54 151
LCM-MVSNet67.77 38064.73 38376.87 39062.95 42456.25 41789.37 41193.74 40344.53 41661.99 40880.74 41020.42 42386.53 41369.37 39959.50 41387.84 402
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 34100.00 199.74 33100.00 1100.00 1
mvs_anonymous95.65 17695.03 18397.53 17598.19 18695.74 16699.33 23897.49 27090.87 26190.47 26797.10 26188.23 21197.16 30295.92 18197.66 17399.68 116
MVS_Test96.46 14795.74 15998.61 10398.18 18797.23 10699.31 24197.15 30691.07 25798.84 10397.05 26588.17 21298.97 19094.39 21197.50 17599.61 134
MDA-MVSNet-bldmvs84.09 35781.52 36491.81 34191.32 38188.00 34798.67 31495.92 37080.22 38655.60 41593.32 37268.29 36793.60 39173.76 39076.61 37793.82 338
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10898.33 17493.97 15099.76 2899.87 2794.99 6299.75 13598.55 100100.00 199.98 51
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6799.75 13599.98 3299.99 23
casdiffmvspermissive96.42 15095.97 14997.77 16097.30 24894.98 19699.84 12797.09 31493.75 16196.58 18599.26 14285.07 24598.78 20197.77 14597.04 18799.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.00 12196.64 12498.09 14097.64 22696.17 15399.81 13997.19 30094.67 11698.95 9899.28 13686.43 23298.76 20398.37 11197.42 17899.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.71 13896.49 13097.37 18595.63 31195.96 15999.74 16198.88 5192.94 18491.61 25598.97 16697.72 698.62 21594.83 20198.08 16697.53 257
baseline195.78 16994.86 18798.54 11298.47 16698.07 6999.06 26897.99 21792.68 19994.13 22898.62 20393.28 11898.69 21193.79 22885.76 30498.84 221
YYNet185.50 34783.33 35392.00 33790.89 38488.38 34399.22 25396.55 35679.60 38957.26 41392.72 37679.09 30293.78 38977.25 38177.37 37193.84 336
PMMVS267.15 38164.15 38476.14 39170.56 42162.07 41293.89 39487.52 41958.09 41060.02 40978.32 41122.38 42084.54 41459.56 41147.03 41681.80 409
MDA-MVSNet_test_wron85.51 34683.32 35492.10 33690.96 38388.58 33999.20 25496.52 35779.70 38857.12 41492.69 37779.11 30093.86 38877.10 38277.46 37093.86 335
tpmvs94.28 21793.57 21996.40 21598.55 15991.50 28995.70 38998.55 9987.47 32492.15 25094.26 36491.42 16098.95 19388.15 30695.85 21398.76 225
PM-MVS80.47 36778.88 37285.26 37983.79 40772.22 40295.89 38791.08 41285.71 35076.56 39388.30 39736.64 41293.90 38782.39 35569.57 39289.66 397
HQP_MVS94.49 20994.36 19794.87 25895.71 30591.74 28099.84 12797.87 23196.38 6993.01 23998.59 20480.47 28998.37 23897.79 14389.55 26794.52 276
plane_prior795.71 30591.59 288
plane_prior695.76 29991.72 28380.47 289
plane_prior597.87 23198.37 23897.79 14389.55 26794.52 276
plane_prior498.59 204
plane_prior391.64 28696.63 6093.01 239
plane_prior299.84 12796.38 69
plane_prior195.73 302
plane_prior91.74 28099.86 11996.76 5589.59 266
PS-CasMVS90.63 29889.51 30593.99 29793.83 33991.70 28498.98 27998.52 10788.48 31186.15 34596.53 28575.46 33196.31 34988.83 29778.86 36093.95 327
UniMVSNet_NR-MVSNet92.95 24892.11 25495.49 23794.61 32695.28 18799.83 13499.08 3391.49 24089.21 29696.86 27287.14 22396.73 33293.20 23777.52 36894.46 279
PEN-MVS90.19 31089.06 31393.57 31193.06 35490.90 29899.06 26898.47 11988.11 31685.91 34796.30 29076.67 31895.94 36387.07 32076.91 37593.89 332
TransMVSNet (Re)87.25 33885.28 34593.16 32193.56 34391.03 29398.54 32194.05 40083.69 36881.09 37396.16 29475.32 33296.40 34476.69 38468.41 39692.06 372
DTE-MVSNet89.40 32388.24 32692.88 32892.66 36389.95 32099.10 26098.22 19287.29 32785.12 35296.22 29276.27 32595.30 37383.56 34875.74 38093.41 349
DU-MVS92.46 26091.45 26995.49 23794.05 33595.28 18799.81 13998.74 6592.25 22089.21 29696.64 28081.66 27196.73 33293.20 23777.52 36894.46 279
UniMVSNet (Re)93.07 24692.13 25395.88 22994.84 32196.24 14999.88 10598.98 3892.49 21289.25 29395.40 32387.09 22497.14 30493.13 24178.16 36394.26 295
CP-MVSNet91.23 28590.22 28994.26 28693.96 33792.39 26599.09 26198.57 9088.95 29986.42 34196.57 28379.19 29996.37 34590.29 28478.95 35894.02 319
WR-MVS_H91.30 28190.35 28594.15 28894.17 33492.62 26199.17 25798.94 4188.87 30286.48 34094.46 36184.36 25296.61 33788.19 30578.51 36193.21 356
WR-MVS92.31 26391.25 27195.48 24094.45 32995.29 18699.60 19698.68 7190.10 27888.07 31796.89 27080.68 28496.80 33093.14 24079.67 35694.36 287
NR-MVSNet91.56 27990.22 28995.60 23594.05 33595.76 16598.25 33698.70 6891.16 25480.78 37596.64 28083.23 26196.57 33891.41 26077.73 36794.46 279
Baseline_NR-MVSNet90.33 30589.51 30592.81 33092.84 35989.95 32099.77 14993.94 40184.69 36189.04 30095.66 30981.66 27196.52 33990.99 26876.98 37491.97 374
TranMVSNet+NR-MVSNet91.68 27890.61 28194.87 25893.69 34293.98 22599.69 18098.65 7591.03 25888.44 31096.83 27680.05 29296.18 35390.26 28576.89 37694.45 284
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12999.97 2897.92 22798.07 1198.76 11199.55 11395.00 6199.94 8199.91 1697.68 17299.99 23
n20.00 432
nn0.00 432
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12099.95 5498.38 16395.04 10198.61 11999.80 5493.39 111100.00 198.64 96100.00 199.98 51
door-mid89.69 416
XVG-OURS-SEG-HR94.79 19694.70 19295.08 25198.05 19589.19 32899.08 26397.54 26393.66 16394.87 21799.58 11078.78 30399.79 12697.31 15493.40 25196.25 266
mvsmamba96.94 12496.73 12097.55 17397.99 19894.37 21499.62 19397.70 24393.13 17998.42 12797.92 24088.02 21398.75 20598.78 8699.01 13599.52 157
MVSFormer96.94 12496.60 12697.95 14697.28 25097.70 8799.55 20697.27 29591.17 25299.43 6899.54 11590.92 17296.89 32394.67 20799.62 9599.25 195
jason97.24 10896.86 11498.38 12595.73 30297.32 10299.97 2897.40 27995.34 9698.60 12099.54 11587.70 21598.56 21797.94 13399.47 11099.25 195
jason: jason.
lupinMVS97.85 7597.60 8298.62 10297.28 25097.70 8799.99 497.55 26195.50 9399.43 6899.67 9790.92 17298.71 20998.40 10899.62 9599.45 168
test_djsdf92.83 25192.29 25294.47 27891.90 37392.46 26399.55 20697.27 29591.17 25289.96 27296.07 29981.10 27896.89 32394.67 20788.91 27394.05 318
HPM-MVS_fast97.80 8297.50 8698.68 9799.79 6296.42 13799.88 10598.16 20391.75 23598.94 9999.54 11591.82 15999.65 15097.62 15099.99 2199.99 23
K. test v388.05 33487.24 33590.47 35491.82 37582.23 38298.96 28297.42 27689.05 29276.93 39195.60 31168.49 36595.42 36985.87 33481.01 34693.75 340
lessismore_v090.53 35290.58 38680.90 39195.80 37177.01 39095.84 30266.15 37696.95 31983.03 35175.05 38293.74 343
SixPastTwentyTwo88.73 32888.01 32990.88 34791.85 37482.24 38198.22 34095.18 38788.97 29782.26 36696.89 27071.75 35196.67 33584.00 34382.98 32593.72 344
OurMVSNet-221017-089.81 31789.48 30790.83 35091.64 37681.21 38898.17 34295.38 38291.48 24285.65 34997.31 25572.66 34797.29 29888.15 30684.83 31393.97 326
HPM-MVScopyleft97.96 6897.72 7698.68 9799.84 5696.39 14199.90 9398.17 19892.61 20398.62 11899.57 11291.87 15799.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.82 19394.74 19195.06 25298.00 19789.19 32899.08 26397.55 26194.10 14294.71 21899.62 10580.51 28799.74 13796.04 17993.06 25696.25 266
XVG-ACMP-BASELINE91.22 28690.75 27792.63 33293.73 34185.61 36198.52 32397.44 27392.77 19489.90 27596.85 27366.64 37498.39 23292.29 24988.61 28093.89 332
casdiffmvs_mvgpermissive96.43 14895.94 15297.89 15497.44 23795.47 17899.86 11997.29 29393.35 17096.03 19899.19 14785.39 24298.72 20897.89 13797.04 18799.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test92.96 24792.71 24193.71 30695.43 31388.67 33699.75 15897.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
LGP-MVS_train93.71 30695.43 31388.67 33697.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
baseline96.43 14895.98 14697.76 16297.34 24495.17 19499.51 21297.17 30393.92 15496.90 17699.28 13685.37 24398.64 21497.50 15196.86 19399.46 166
test1198.44 127
door90.31 413
EPNet_dtu95.71 17295.39 16996.66 20898.92 13093.41 24199.57 20298.90 4796.19 7797.52 15798.56 20992.65 13597.36 28977.89 37898.33 15399.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268896.81 13096.53 12997.64 16898.91 13493.07 24699.65 18699.80 395.64 8795.39 21198.86 18484.35 25399.90 9496.98 16499.16 12899.95 74
EPNet98.49 4098.40 3598.77 9299.62 8496.80 12599.90 9399.51 1697.60 2299.20 8499.36 13393.71 10799.91 9297.99 13098.71 14599.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS91.85 276
HQP-NCC95.78 29599.87 10896.82 5193.37 234
ACMP_Plane95.78 29599.87 10896.82 5193.37 234
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10898.36 16794.08 14399.74 3199.73 8194.08 9599.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS97.92 134
HQP4-MVS93.37 23498.39 23294.53 274
HQP3-MVS97.89 22989.60 264
HQP2-MVS80.65 285
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 24100.00 199.75 31100.00 199.99 23
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 17100.00 199.54 42100.00 1100.00 1
114514_t97.41 10296.83 11599.14 6199.51 9497.83 8099.89 10298.27 18588.48 31199.06 9499.66 9990.30 18599.64 15196.32 17599.97 4299.96 67
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13099.97 2898.39 15994.43 12598.90 10199.87 2794.30 87100.00 199.04 6799.99 2199.99 23
DSMNet-mixed88.28 33288.24 32688.42 37289.64 39375.38 40098.06 34689.86 41585.59 35188.20 31692.14 38376.15 32791.95 40178.46 37696.05 20697.92 246
tpm295.47 17995.18 17796.35 21896.91 26391.70 28496.96 36897.93 22488.04 31898.44 12695.40 32393.32 11597.97 26694.00 21995.61 21999.38 175
NP-MVS95.77 29891.79 27898.65 199
EG-PatchMatch MVS85.35 34883.81 35189.99 36090.39 38781.89 38498.21 34196.09 36781.78 38074.73 39793.72 36951.56 40697.12 30779.16 37388.61 28090.96 382
tpm cat193.51 23592.52 24996.47 21197.77 21291.47 29096.13 38198.06 21280.98 38392.91 24293.78 36889.66 19198.87 19587.03 32296.39 20099.09 207
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8599.98 1598.44 12796.85 4999.80 1799.91 1497.57 899.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.10 16195.88 15696.78 20397.03 25692.55 26297.08 36597.83 23690.04 28198.72 11394.89 34895.01 6098.29 24596.54 17395.77 21599.50 162
CR-MVSNet93.45 23892.62 24295.94 22896.29 28192.66 25892.01 40296.23 36392.62 20296.94 17493.31 37391.04 16996.03 36079.23 37095.96 20899.13 204
JIA-IIPM91.76 27790.70 27894.94 25696.11 28687.51 34993.16 39898.13 20875.79 39797.58 15677.68 41292.84 13197.97 26688.47 30396.54 19599.33 185
Patchmtry89.70 31988.49 32293.33 31696.24 28489.94 32291.37 40596.23 36378.22 39187.69 32193.31 37391.04 16996.03 36080.18 36882.10 33294.02 319
PatchT90.38 30388.75 31995.25 24895.99 29090.16 31591.22 40697.54 26376.80 39397.26 16686.01 40691.88 15696.07 35966.16 40595.91 21299.51 160
tpmrst96.27 15995.98 14697.13 19397.96 20093.15 24596.34 37798.17 19892.07 22398.71 11495.12 33893.91 10098.73 20694.91 19996.62 19499.50 162
BH-w/o95.71 17295.38 17096.68 20798.49 16592.28 26699.84 12797.50 26992.12 22292.06 25398.79 18984.69 24998.67 21395.29 19099.66 9199.09 207
tpm93.70 23193.41 22694.58 27195.36 31587.41 35097.01 36696.90 33690.85 26296.72 18294.14 36590.40 18396.84 32690.75 27588.54 28399.51 160
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13999.24 14492.58 13999.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned95.18 18694.83 18896.22 22198.36 17291.22 29299.80 14397.32 28890.91 26091.08 26098.67 19683.51 25798.54 21994.23 21799.61 9998.92 216
RPMNet89.76 31887.28 33497.19 19296.29 28192.66 25892.01 40298.31 17870.19 40896.94 17485.87 40787.25 22299.78 12862.69 40995.96 20899.13 204
MVSTER95.53 17895.22 17596.45 21398.56 15697.72 8499.91 8797.67 24692.38 21691.39 25797.14 25997.24 1897.30 29594.80 20287.85 29194.34 292
CPTT-MVS97.64 9297.32 9598.58 10799.97 395.77 16499.96 3598.35 16989.90 28398.36 13199.79 5891.18 16799.99 3698.37 11199.99 2199.99 23
GBi-Net90.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
PVSNet_Blended_VisFu97.27 10796.81 11698.66 9998.81 14196.67 12899.92 8198.64 7794.51 12096.38 19298.49 21389.05 20399.88 10597.10 16098.34 15299.43 171
PVSNet_BlendedMVS96.05 16295.82 15896.72 20699.59 8596.99 11799.95 5499.10 3194.06 14698.27 13595.80 30389.00 20499.95 7399.12 6187.53 29693.24 355
UnsupCasMVSNet_eth85.52 34583.99 34790.10 35889.36 39483.51 37496.65 37297.99 21789.14 29075.89 39593.83 36763.25 38693.92 38681.92 35967.90 39992.88 361
UnsupCasMVSNet_bld79.97 37177.03 37688.78 36885.62 40281.98 38393.66 39697.35 28375.51 39970.79 40283.05 40948.70 40794.91 37878.31 37760.29 41289.46 399
PVSNet_Blended97.94 6997.64 8098.83 8899.59 8596.99 117100.00 199.10 3195.38 9498.27 13599.08 15389.00 20499.95 7399.12 6199.25 12499.57 145
FMVSNet588.32 33187.47 33390.88 34796.90 26688.39 34297.28 35995.68 37582.60 37784.67 35592.40 38179.83 29391.16 40376.39 38581.51 33793.09 357
test190.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
new_pmnet84.49 35682.92 35789.21 36490.03 39082.60 37896.89 37095.62 37780.59 38475.77 39689.17 39465.04 38194.79 38072.12 39481.02 34590.23 388
FMVSNet392.69 25591.58 26495.99 22598.29 17797.42 10099.26 25097.62 25289.80 28589.68 28095.32 32981.62 27396.27 35087.01 32385.65 30594.29 294
dp95.05 18994.43 19596.91 19997.99 19892.73 25696.29 37997.98 21989.70 28695.93 20194.67 35493.83 10598.45 22586.91 32696.53 19699.54 151
FMVSNet291.02 28889.56 30295.41 24297.53 23295.74 16698.98 27997.41 27887.05 33088.43 31295.00 34471.34 35396.24 35285.12 33785.21 31094.25 297
FMVSNet188.50 33086.64 33794.08 29195.62 31291.97 27198.43 32796.95 32983.00 37386.08 34694.72 35059.09 39696.11 35581.82 36084.07 32094.17 303
N_pmnet80.06 36980.78 36777.89 38891.94 37245.28 42698.80 30356.82 42878.10 39280.08 37893.33 37177.03 31395.76 36568.14 40182.81 32692.64 364
cascas94.64 20393.61 21597.74 16497.82 20996.26 14599.96 3597.78 24085.76 34794.00 22997.54 24976.95 31699.21 17497.23 15695.43 22397.76 251
BH-RMVSNet95.18 18694.31 20097.80 15598.17 18895.23 19099.76 15497.53 26592.52 21094.27 22699.25 14376.84 31798.80 19990.89 27299.54 10499.35 182
UGNet95.33 18494.57 19397.62 17198.55 15994.85 20098.67 31499.32 2695.75 8596.80 18096.27 29172.18 34999.96 6594.58 20999.05 13498.04 244
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.10 6697.60 8299.60 2298.92 13099.28 1799.89 10299.52 1495.58 8998.24 13899.39 13093.33 11499.74 13797.98 13295.58 22099.78 103
XXY-MVS91.82 27090.46 28295.88 22993.91 33895.40 18398.87 29597.69 24588.63 30987.87 31997.08 26274.38 34297.89 27291.66 25884.07 32094.35 290
EC-MVSNet97.38 10497.24 9797.80 15597.41 23995.64 17399.99 497.06 31794.59 11799.63 4499.32 13589.20 20298.14 25698.76 8899.23 12699.62 130
sss97.57 9397.03 10799.18 5298.37 17198.04 7199.73 16899.38 2293.46 16798.76 11199.06 15591.21 16399.89 9996.33 17497.01 18999.62 130
Test_1112_low_res95.72 17094.83 18898.42 12297.79 21196.41 13899.65 18696.65 35292.70 19792.86 24496.13 29692.15 15199.30 16991.88 25693.64 24899.55 147
1112_ss96.01 16495.20 17698.42 12297.80 21096.41 13899.65 18696.66 35192.71 19692.88 24399.40 12892.16 15099.30 16991.92 25593.66 24799.55 147
ab-mvs-re8.28 39311.04 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.40 1280.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs94.69 20093.42 22498.51 11598.07 19496.26 14596.49 37498.68 7190.31 27694.54 21997.00 26776.30 32499.71 14195.98 18093.38 25299.56 146
TR-MVS94.54 20593.56 22097.49 17897.96 20094.34 21598.71 30997.51 26890.30 27794.51 22198.69 19575.56 33098.77 20292.82 24595.99 20799.35 182
MDTV_nov1_ep13_2view96.26 14596.11 38291.89 22998.06 14294.40 7994.30 21599.67 118
MDTV_nov1_ep1395.69 16197.90 20394.15 22095.98 38598.44 12793.12 18097.98 14495.74 30595.10 5598.58 21690.02 28796.92 191
MIMVSNet182.58 36280.51 36888.78 36886.68 40084.20 37196.65 37295.41 38178.75 39078.59 38492.44 37851.88 40589.76 40665.26 40778.95 35892.38 370
MIMVSNet90.30 30688.67 32095.17 25096.45 28091.64 28692.39 40097.15 30685.99 34490.50 26693.19 37566.95 37294.86 37982.01 35893.43 25099.01 214
IterMVS-LS92.69 25592.11 25494.43 28296.80 27192.74 25499.45 22496.89 33788.98 29689.65 28395.38 32688.77 20696.34 34790.98 26982.04 33394.22 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet96.34 15396.07 14197.13 19397.37 24294.96 19799.53 20997.91 22891.55 23995.37 21298.32 22595.05 5897.13 30593.80 22795.75 21799.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref87.04 298
IterMVS90.91 29090.17 29293.12 32296.78 27490.42 31198.89 29097.05 32089.03 29386.49 33995.42 32276.59 32095.02 37487.22 31884.09 31993.93 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8198.44 12792.06 22598.40 13099.84 4495.68 44100.00 198.19 11899.71 8899.97 61
MVS_111021_LR98.42 4798.38 3798.53 11499.39 9995.79 16399.87 10899.86 296.70 5798.78 10799.79 5892.03 15499.90 9499.17 6099.86 7599.88 88
DP-MVS94.54 20593.42 22497.91 15299.46 9894.04 22298.93 28697.48 27181.15 38290.04 27199.55 11387.02 22599.95 7388.97 29698.11 16399.73 108
ACMMP++88.23 287
HQP-MVS94.61 20494.50 19494.92 25795.78 29591.85 27699.87 10897.89 22996.82 5193.37 23498.65 19980.65 28598.39 23297.92 13489.60 26494.53 274
QAPM95.40 18194.17 20399.10 6796.92 26297.71 8599.40 22798.68 7189.31 28988.94 30298.89 17882.48 26499.96 6593.12 24299.83 7799.62 130
Vis-MVSNetpermissive95.72 17095.15 17897.45 17997.62 22794.28 21699.28 24798.24 18994.27 13896.84 17898.94 17579.39 29698.76 20393.25 23698.49 14999.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet86.22 34283.19 35595.31 24696.71 27790.29 31292.12 40197.33 28762.85 40986.82 33370.37 41469.37 36197.49 28675.12 38897.99 16898.15 241
IS-MVSNet96.29 15795.90 15597.45 17998.13 19294.80 20399.08 26397.61 25592.02 22795.54 21098.96 16890.64 17898.08 26093.73 23197.41 17999.47 165
HyFIR lowres test96.66 14196.43 13297.36 18799.05 11693.91 22799.70 17999.80 390.54 27096.26 19498.08 23292.15 15198.23 25296.84 17095.46 22199.93 79
EPMVS96.53 14596.01 14398.09 14098.43 16796.12 15696.36 37699.43 2093.53 16597.64 15595.04 34194.41 7898.38 23691.13 26498.11 16399.75 106
PAPM_NR98.12 6597.93 6998.70 9699.94 1396.13 15499.82 13798.43 13594.56 11897.52 15799.70 8894.40 7999.98 4797.00 16299.98 3299.99 23
TAMVS95.85 16795.58 16596.65 20997.07 25493.50 23899.17 25797.82 23791.39 24995.02 21698.01 23492.20 14997.30 29593.75 23095.83 21499.14 203
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5498.43 13595.35 9598.03 14399.75 7294.03 9799.98 4798.11 12399.83 7799.99 23
RPSCF91.80 27492.79 23988.83 36798.15 19069.87 40598.11 34496.60 35483.93 36594.33 22499.27 13979.60 29599.46 16691.99 25393.16 25497.18 259
Vis-MVSNet (Re-imp)96.32 15495.98 14697.35 18897.93 20294.82 20299.47 21998.15 20691.83 23195.09 21599.11 15191.37 16297.47 28793.47 23497.43 17699.74 107
test_040285.58 34483.94 34990.50 35393.81 34085.04 36598.55 31995.20 38676.01 39579.72 38095.13 33764.15 38396.26 35166.04 40686.88 29990.21 389
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10899.93 7899.90 196.81 5498.67 11599.77 6493.92 9999.89 9999.27 5699.94 5599.96 67
CSCG97.10 11497.04 10697.27 19199.89 4591.92 27599.90 9399.07 3488.67 30795.26 21499.82 4993.17 12399.98 4798.15 12199.47 11099.90 86
PatchMatch-RL96.04 16395.40 16897.95 14699.59 8595.22 19199.52 21099.07 3493.96 15196.49 18798.35 22282.28 26599.82 12390.15 28699.22 12798.81 223
API-MVS97.86 7497.66 7998.47 11799.52 9295.41 18299.47 21998.87 5291.68 23698.84 10399.85 3392.34 14799.99 3698.44 10799.96 46100.00 1
Test By Simon92.82 133
TDRefinement84.76 35282.56 36091.38 34574.58 41884.80 36997.36 35894.56 39584.73 36080.21 37796.12 29863.56 38498.39 23287.92 30963.97 40690.95 383
USDC90.00 31488.96 31593.10 32494.81 32288.16 34498.71 30995.54 37993.66 16383.75 36197.20 25865.58 37798.31 24383.96 34587.49 29792.85 362
EPP-MVSNet96.69 13996.60 12696.96 19897.74 21493.05 24899.37 23498.56 9388.75 30595.83 20599.01 15996.01 3698.56 21796.92 16897.20 18399.25 195
PMMVS96.76 13496.76 11896.76 20498.28 17992.10 27099.91 8797.98 21994.12 14199.53 5899.39 13086.93 22798.73 20696.95 16797.73 17099.45 168
PAPM98.60 3398.42 3499.14 6196.05 28898.96 2699.90 9399.35 2496.68 5898.35 13299.66 9996.45 3398.51 22099.45 4899.89 7099.96 67
ACMMPcopyleft97.74 8797.44 8998.66 9999.92 3196.13 15499.18 25699.45 1894.84 10996.41 19199.71 8691.40 16199.99 3697.99 13098.03 16799.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.76 8697.38 9198.92 8599.53 9196.84 12299.87 10898.14 20793.78 15996.55 18699.69 9092.28 14899.98 4797.13 15899.44 11499.93 79
PatchmatchNetpermissive95.94 16595.45 16797.39 18497.83 20894.41 21196.05 38398.40 15692.86 18797.09 17095.28 33494.21 9298.07 26289.26 29498.11 16399.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11399.98 1598.80 6390.78 26699.62 4799.78 6295.30 52100.00 199.80 2599.93 6199.99 23
F-COLMAP96.93 12696.95 10996.87 20199.71 7691.74 28099.85 12297.95 22293.11 18195.72 20799.16 15092.35 14699.94 8195.32 18999.35 12098.92 216
ANet_high56.10 38452.24 38767.66 40049.27 42656.82 41683.94 41382.02 42370.47 40733.28 42364.54 41817.23 42569.16 42145.59 41823.85 42077.02 413
wuyk23d20.37 39220.84 39518.99 40765.34 42327.73 43050.43 4187.67 4319.50 4248.01 4256.34 4256.13 42926.24 42423.40 42510.69 4232.99 422
OMC-MVS97.28 10697.23 9897.41 18299.76 6693.36 24499.65 18697.95 22296.03 7997.41 16299.70 8889.61 19399.51 15696.73 17198.25 15899.38 175
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19099.44 1997.33 3199.00 9799.72 8494.03 9799.98 4798.73 90100.00 1100.00 1
AdaColmapbinary97.23 10996.80 11798.51 11599.99 195.60 17599.09 26198.84 5993.32 17296.74 18199.72 8486.04 236100.00 198.01 12899.43 11599.94 78
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
ITE_SJBPF92.38 33395.69 30885.14 36495.71 37492.81 19089.33 29298.11 23170.23 35998.42 22785.91 33388.16 28893.59 347
DeepMVS_CXcopyleft82.92 38495.98 29258.66 41596.01 36892.72 19578.34 38595.51 31758.29 39798.08 26082.57 35385.29 30892.03 373
TinyColmap87.87 33786.51 33891.94 33895.05 31985.57 36297.65 35494.08 39884.40 36381.82 36996.85 27362.14 39098.33 24180.25 36786.37 30291.91 375
MAR-MVS97.43 9797.19 10098.15 13799.47 9694.79 20499.05 27298.76 6492.65 20198.66 11699.82 4988.52 20999.98 4798.12 12299.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS89.25 32688.85 31690.45 35592.81 36281.19 38998.12 34394.79 39191.44 24486.29 34397.11 26065.30 38098.11 25888.53 30285.25 30992.07 371
MSDG94.37 21393.36 22897.40 18398.88 13793.95 22699.37 23497.38 28085.75 34990.80 26499.17 14984.11 25599.88 10586.35 32798.43 15198.36 238
LS3D95.84 16895.11 17998.02 14499.85 5495.10 19598.74 30698.50 11687.22 32993.66 23299.86 2987.45 21999.95 7390.94 27099.81 8399.02 213
CLD-MVS94.06 22093.90 21194.55 27396.02 28990.69 30299.98 1597.72 24296.62 6291.05 26298.85 18777.21 31198.47 22198.11 12389.51 26994.48 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS68.72 37768.72 37868.71 39965.95 42244.27 42895.97 38694.74 39251.13 41453.26 41690.50 39025.11 41983.00 41560.80 41080.97 34778.87 412
Gipumacopyleft66.95 38265.00 38272.79 39491.52 37867.96 40666.16 41795.15 38847.89 41558.54 41267.99 41729.74 41487.54 41150.20 41677.83 36662.87 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015