| test_fmvsm_n_1920 | | | 98.44 41 | 98.61 23 | 97.92 143 | 99.27 101 | 95.18 185 | 100.00 1 | 98.90 47 | 98.05 12 | 99.80 18 | 99.73 80 | 92.64 126 | 99.99 36 | 99.58 38 | 99.51 103 | 98.59 223 |
|
| iter_conf05_11 | | | 96.12 151 | 95.46 157 | 98.10 131 | 98.62 149 | 95.52 169 | 100.00 1 | 96.30 350 | 96.54 60 | 99.81 15 | 99.80 51 | 69.19 348 | 99.10 178 | 98.92 70 | 99.91 66 | 99.68 113 |
|
| DELS-MVS | | | 98.54 33 | 98.22 44 | 99.50 30 | 99.15 108 | 98.65 53 | 100.00 1 | 98.58 87 | 97.70 20 | 98.21 131 | 99.24 141 | 92.58 129 | 99.94 77 | 98.63 93 | 99.94 54 | 99.92 81 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PVSNet_Blended | | | 97.94 64 | 97.64 74 | 98.83 83 | 99.59 81 | 96.99 111 | 100.00 1 | 99.10 31 | 95.38 92 | 98.27 127 | 99.08 150 | 89.00 192 | 99.95 69 | 99.12 58 | 99.25 119 | 99.57 141 |
|
| MM | | | 98.83 21 | 98.53 27 | 99.76 10 | 99.59 81 | 99.33 8 | 99.99 5 | 99.76 6 | 98.39 3 | 99.39 73 | 99.80 51 | 90.49 171 | 99.96 61 | 99.89 16 | 99.43 111 | 99.98 48 |
|
| testing3 | | | 93.92 211 | 94.23 190 | 92.99 317 | 97.54 220 | 90.23 304 | 99.99 5 | 99.16 30 | 90.57 262 | 91.33 250 | 98.63 199 | 92.99 115 | 92.52 383 | 82.46 342 | 95.39 214 | 96.22 257 |
|
| test_fmvsmconf_n | | | 98.43 43 | 98.32 40 | 98.78 84 | 98.12 185 | 96.41 129 | 99.99 5 | 98.83 59 | 98.22 6 | 99.67 39 | 99.64 101 | 91.11 158 | 99.94 77 | 99.67 36 | 99.62 90 | 99.98 48 |
|
| test_cas_vis1_n_1920 | | | 96.59 134 | 96.23 127 | 97.65 160 | 98.22 176 | 94.23 209 | 99.99 5 | 97.25 284 | 97.77 17 | 99.58 54 | 99.08 150 | 77.10 298 | 99.97 53 | 97.64 138 | 99.45 108 | 98.74 217 |
|
| ET-MVSNet_ETH3D | | | 94.37 201 | 93.28 219 | 97.64 161 | 98.30 169 | 97.99 71 | 99.99 5 | 97.61 243 | 94.35 125 | 71.57 387 | 99.45 119 | 96.23 31 | 95.34 357 | 96.91 160 | 85.14 302 | 99.59 134 |
|
| CS-MVS | | | 97.79 76 | 97.91 65 | 97.43 173 | 99.10 109 | 94.42 202 | 99.99 5 | 97.10 298 | 95.07 98 | 99.68 38 | 99.75 71 | 92.95 117 | 98.34 230 | 98.38 101 | 99.14 124 | 99.54 147 |
|
| alignmvs | | | 97.81 73 | 97.33 86 | 99.25 46 | 98.77 140 | 98.66 51 | 99.99 5 | 98.44 123 | 94.40 124 | 98.41 120 | 99.47 116 | 93.65 98 | 99.42 164 | 98.57 94 | 94.26 230 | 99.67 117 |
|
| lupinMVS | | | 97.85 69 | 97.60 76 | 98.62 95 | 97.28 238 | 97.70 83 | 99.99 5 | 97.55 249 | 95.50 91 | 99.43 67 | 99.67 96 | 90.92 162 | 98.71 199 | 98.40 100 | 99.62 90 | 99.45 161 |
|
| EC-MVSNet | | | 97.38 96 | 97.24 89 | 97.80 148 | 97.41 227 | 95.64 164 | 99.99 5 | 97.06 303 | 94.59 114 | 99.63 44 | 99.32 132 | 89.20 190 | 98.14 246 | 98.76 83 | 99.23 121 | 99.62 128 |
|
| IB-MVS | | 92.85 6 | 94.99 181 | 93.94 198 | 98.16 126 | 97.72 210 | 95.69 162 | 99.99 5 | 98.81 60 | 94.28 131 | 92.70 233 | 96.90 261 | 95.08 52 | 99.17 175 | 96.07 169 | 73.88 371 | 99.60 133 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| fmvsm_l_conf0.5_n_a | | | 99.00 14 | 98.91 14 | 99.28 45 | 99.21 102 | 97.91 76 | 99.98 15 | 98.85 56 | 98.25 4 | 99.92 2 | 99.75 71 | 94.72 64 | 99.97 53 | 99.87 19 | 99.64 88 | 99.95 71 |
|
| fmvsm_l_conf0.5_n | | | 98.94 15 | 98.84 17 | 99.25 46 | 99.17 106 | 97.81 79 | 99.98 15 | 98.86 53 | 98.25 4 | 99.90 3 | 99.76 65 | 94.21 82 | 99.97 53 | 99.87 19 | 99.52 100 | 99.98 48 |
|
| fmvsm_s_conf0.5_n | | | 97.80 74 | 97.85 68 | 97.67 159 | 99.06 111 | 94.41 203 | 99.98 15 | 98.97 40 | 97.34 29 | 99.63 44 | 99.69 89 | 87.27 207 | 99.97 53 | 99.62 37 | 99.06 128 | 98.62 222 |
|
| test_vis1_n_1920 | | | 95.44 172 | 95.31 163 | 95.82 222 | 98.50 159 | 88.74 324 | 99.98 15 | 97.30 277 | 97.84 16 | 99.85 9 | 99.19 144 | 66.82 360 | 99.97 53 | 98.82 79 | 99.46 107 | 98.76 215 |
|
| EIA-MVS | | | 97.53 86 | 97.46 80 | 97.76 155 | 98.04 188 | 94.84 193 | 99.98 15 | 97.61 243 | 94.41 123 | 97.90 139 | 99.59 106 | 92.40 135 | 98.87 186 | 98.04 118 | 99.13 125 | 99.59 134 |
|
| ETV-MVS | | | 97.92 66 | 97.80 70 | 98.25 123 | 98.14 183 | 96.48 126 | 99.98 15 | 97.63 238 | 95.61 86 | 99.29 80 | 99.46 118 | 92.55 130 | 98.82 189 | 99.02 66 | 98.54 140 | 99.46 159 |
|
| CANet | | | 98.27 52 | 97.82 69 | 99.63 17 | 99.72 74 | 99.10 23 | 99.98 15 | 98.51 107 | 97.00 43 | 98.52 115 | 99.71 85 | 87.80 200 | 99.95 69 | 99.75 28 | 99.38 113 | 99.83 91 |
|
| CS-MVS-test | | | 97.88 67 | 97.94 63 | 97.70 158 | 99.28 100 | 95.20 184 | 99.98 15 | 97.15 293 | 95.53 89 | 99.62 47 | 99.79 57 | 92.08 143 | 98.38 226 | 98.75 84 | 99.28 118 | 99.52 151 |
|
| MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 32 | 99.94 13 | 98.46 61 | 99.98 15 | 98.86 53 | 97.10 40 | 99.80 18 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 40 | 100.00 1 | 100.00 1 |
|
| CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 15 | 98.69 68 | 98.20 7 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 28 | 100.00 1 | 99.99 23 |
|
| SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 52 | 98.72 142 | 97.71 81 | 99.98 15 | 98.44 123 | 96.85 46 | 99.80 18 | 99.91 14 | 97.57 7 | 99.85 108 | 99.44 46 | 99.99 21 | 99.99 23 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PHI-MVS | | | 98.41 45 | 98.21 45 | 99.03 70 | 99.86 53 | 97.10 108 | 99.98 15 | 98.80 62 | 90.78 260 | 99.62 47 | 99.78 61 | 95.30 48 | 100.00 1 | 99.80 25 | 99.93 60 | 99.99 23 |
|
| CLD-MVS | | | 94.06 210 | 93.90 199 | 94.55 263 | 96.02 277 | 90.69 293 | 99.98 15 | 97.72 232 | 96.62 58 | 91.05 253 | 98.85 184 | 77.21 297 | 98.47 211 | 98.11 114 | 89.51 256 | 94.48 266 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| thisisatest0515 | | | 97.41 94 | 97.02 100 | 98.59 99 | 97.71 212 | 97.52 89 | 99.97 28 | 98.54 101 | 91.83 225 | 97.45 152 | 99.04 153 | 97.50 8 | 99.10 178 | 94.75 195 | 96.37 192 | 99.16 191 |
|
| Fast-Effi-MVS+ | | | 95.02 180 | 94.19 191 | 97.52 168 | 97.88 195 | 94.55 199 | 99.97 28 | 97.08 301 | 88.85 294 | 94.47 211 | 97.96 232 | 84.59 237 | 98.41 218 | 89.84 280 | 97.10 175 | 99.59 134 |
|
| MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 28 | 98.64 76 | 98.47 2 | 99.13 86 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 30 | 100.00 1 | 100.00 1 |
|
| TSAR-MVS + GP. | | | 98.60 30 | 98.51 28 | 98.86 82 | 99.73 72 | 96.63 122 | 99.97 28 | 97.92 219 | 98.07 11 | 98.76 104 | 99.55 110 | 95.00 57 | 99.94 77 | 99.91 15 | 97.68 163 | 99.99 23 |
|
| jason | | | 97.24 100 | 96.86 105 | 98.38 118 | 95.73 290 | 97.32 99 | 99.97 28 | 97.40 267 | 95.34 94 | 98.60 114 | 99.54 112 | 87.70 201 | 98.56 207 | 97.94 124 | 99.47 105 | 99.25 186 |
| jason: jason. |
| NCCC | | | 99.37 2 | 99.25 2 | 99.71 14 | 99.96 8 | 99.15 21 | 99.97 28 | 98.62 81 | 98.02 13 | 99.90 3 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 39 | 100.00 1 | 100.00 1 |
|
| CP-MVS | | | 98.45 40 | 98.32 40 | 98.87 81 | 99.96 8 | 96.62 123 | 99.97 28 | 98.39 155 | 94.43 120 | 98.90 95 | 99.87 24 | 94.30 78 | 100.00 1 | 99.04 63 | 99.99 21 | 99.99 23 |
|
| fmvsm_s_conf0.5_n_a | | | 97.73 81 | 97.72 71 | 97.77 153 | 98.63 148 | 94.26 208 | 99.96 35 | 98.92 46 | 97.18 39 | 99.75 30 | 99.69 89 | 87.00 212 | 99.97 53 | 99.46 44 | 98.89 131 | 99.08 199 |
|
| test_fmvs1 | | | 95.35 174 | 95.68 154 | 94.36 274 | 98.99 117 | 84.98 354 | 99.96 35 | 96.65 338 | 97.60 22 | 99.73 33 | 98.96 165 | 71.58 338 | 99.93 85 | 98.31 106 | 99.37 114 | 98.17 230 |
|
| GeoE | | | 94.36 203 | 93.48 211 | 96.99 189 | 97.29 237 | 93.54 229 | 99.96 35 | 96.72 335 | 88.35 304 | 93.43 222 | 98.94 172 | 82.05 253 | 98.05 252 | 88.12 298 | 96.48 190 | 99.37 170 |
|
| SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 24 | 99.30 12 | 99.96 35 | 98.43 131 | 97.27 34 | 99.80 18 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 35 | | | | 99.80 51 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 32 | 100.00 1 |
|
| save fliter | | | | | | 99.82 58 | 98.79 40 | 99.96 35 | 98.40 152 | 97.66 21 | | | | | | | |
|
| test0726 | | | | | | 99.93 24 | 99.29 15 | 99.96 35 | 98.42 143 | 97.28 32 | 99.86 7 | 99.94 4 | 97.22 18 | | | | |
|
| DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 98 | 99.92 1 | 99.96 35 | 98.44 123 | 97.96 14 | 99.55 55 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 216 | 99.94 54 | 99.98 48 |
|
| TEST9 | | | | | | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 131 | 93.90 151 | 99.71 35 | 99.86 26 | 95.88 37 | 99.85 108 | | | |
|
| train_agg | | | 98.88 19 | 98.65 20 | 99.59 23 | 99.92 31 | 98.92 29 | 99.96 35 | 98.43 131 | 94.35 125 | 99.71 35 | 99.86 26 | 95.94 34 | 99.85 108 | 99.69 35 | 99.98 32 | 99.99 23 |
|
| test_8 | | | | | | 99.92 31 | 98.88 32 | 99.96 35 | 98.43 131 | 94.35 125 | 99.69 37 | 99.85 30 | 95.94 34 | 99.85 108 | | | |
|
| region2R | | | 98.54 33 | 98.37 36 | 99.05 68 | 99.96 8 | 97.18 103 | 99.96 35 | 98.55 98 | 94.87 105 | 99.45 65 | 99.85 30 | 94.07 86 | 100.00 1 | 98.67 88 | 100.00 1 | 99.98 48 |
|
| test-LLR | | | 96.47 137 | 96.04 132 | 97.78 151 | 97.02 245 | 95.44 171 | 99.96 35 | 98.21 186 | 94.07 140 | 95.55 197 | 96.38 278 | 93.90 91 | 98.27 239 | 90.42 271 | 98.83 135 | 99.64 123 |
|
| TESTMET0.1,1 | | | 96.74 127 | 96.26 126 | 98.16 126 | 97.36 231 | 96.48 126 | 99.96 35 | 98.29 178 | 91.93 222 | 95.77 195 | 98.07 226 | 95.54 42 | 98.29 235 | 90.55 268 | 98.89 131 | 99.70 110 |
|
| test-mter | | | 96.39 142 | 95.93 144 | 97.78 151 | 97.02 245 | 95.44 171 | 99.96 35 | 98.21 186 | 91.81 227 | 95.55 197 | 96.38 278 | 95.17 49 | 98.27 239 | 90.42 271 | 98.83 135 | 99.64 123 |
|
| CPTT-MVS | | | 97.64 84 | 97.32 87 | 98.58 100 | 99.97 3 | 95.77 155 | 99.96 35 | 98.35 165 | 89.90 274 | 98.36 123 | 99.79 57 | 91.18 157 | 99.99 36 | 98.37 103 | 99.99 21 | 99.99 23 |
|
| cascas | | | 94.64 192 | 93.61 204 | 97.74 157 | 97.82 200 | 96.26 136 | 99.96 35 | 97.78 231 | 85.76 336 | 94.00 218 | 97.54 241 | 76.95 302 | 99.21 168 | 97.23 147 | 95.43 213 | 97.76 240 |
|
| DeepPCF-MVS | | 95.94 2 | 97.71 82 | 98.98 12 | 93.92 289 | 99.63 79 | 81.76 372 | 99.96 35 | 98.56 92 | 99.47 1 | 99.19 84 | 99.99 1 | 94.16 84 | 100.00 1 | 99.92 12 | 99.93 60 | 100.00 1 |
|
| test_fmvsmvis_n_1920 | | | 97.67 83 | 97.59 78 | 97.91 145 | 97.02 245 | 95.34 176 | 99.95 53 | 98.45 118 | 97.87 15 | 97.02 163 | 99.59 106 | 89.64 180 | 99.98 43 | 99.41 48 | 99.34 116 | 98.42 226 |
|
| patch_mono-2 | | | 98.24 56 | 99.12 5 | 95.59 226 | 99.67 77 | 86.91 345 | 99.95 53 | 98.89 49 | 97.60 22 | 99.90 3 | 99.76 65 | 96.54 28 | 99.98 43 | 99.94 11 | 99.82 77 | 99.88 85 |
|
| DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 39 | 99.31 10 | 99.95 53 | 98.43 131 | 96.48 61 | 99.80 18 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 12 | 99.98 32 | 100.00 1 |
|
| FOURS1 | | | | | | 99.92 31 | 97.66 85 | 99.95 53 | 98.36 163 | 95.58 87 | 99.52 60 | | | | | | |
|
| DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 12 | 99.93 24 | 99.29 15 | 99.95 53 | 98.32 172 | 97.28 32 | 99.83 13 | 99.91 14 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 99.82 7 | 99.94 13 | 99.47 7 | 99.95 53 | 98.43 131 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
| MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 75 | 99.93 24 | 97.24 100 | 99.95 53 | 98.42 143 | 97.50 26 | 99.52 60 | 99.88 21 | 97.43 15 | 99.71 138 | 99.50 41 | 99.98 32 | 100.00 1 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HFP-MVS | | | 98.56 32 | 98.37 36 | 99.14 61 | 99.96 8 | 97.43 96 | 99.95 53 | 98.61 82 | 94.77 107 | 99.31 77 | 99.85 30 | 94.22 80 | 100.00 1 | 98.70 86 | 99.98 32 | 99.98 48 |
|
| HPM-MVS++ |  | | 99.07 10 | 98.88 16 | 99.63 17 | 99.90 42 | 99.02 25 | 99.95 53 | 98.56 92 | 97.56 25 | 99.44 66 | 99.85 30 | 95.38 47 | 100.00 1 | 99.31 51 | 99.99 21 | 99.87 87 |
|
| test_prior2 | | | | | | | | 99.95 53 | | 95.78 81 | 99.73 33 | 99.76 65 | 96.00 33 | | 99.78 27 | 100.00 1 | |
|
| ACMMPR | | | 98.50 36 | 98.32 40 | 99.05 68 | 99.96 8 | 97.18 103 | 99.95 53 | 98.60 84 | 94.77 107 | 99.31 77 | 99.84 41 | 93.73 96 | 100.00 1 | 98.70 86 | 99.98 32 | 99.98 48 |
|
| MP-MVS |  | | 98.23 57 | 97.97 59 | 99.03 70 | 99.94 13 | 97.17 106 | 99.95 53 | 98.39 155 | 94.70 111 | 98.26 129 | 99.81 50 | 91.84 148 | 100.00 1 | 98.85 78 | 99.97 42 | 99.93 76 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 98.39 47 | 98.20 46 | 98.97 76 | 99.97 3 | 96.92 114 | 99.95 53 | 98.38 159 | 95.04 99 | 98.61 113 | 99.80 51 | 93.39 101 | 100.00 1 | 98.64 91 | 100.00 1 | 99.98 48 |
|
| PVSNet_BlendedMVS | | | 96.05 154 | 95.82 149 | 96.72 198 | 99.59 81 | 96.99 111 | 99.95 53 | 99.10 31 | 94.06 142 | 98.27 127 | 95.80 293 | 89.00 192 | 99.95 69 | 99.12 58 | 87.53 286 | 93.24 344 |
|
| PAPR | | | 98.52 35 | 98.16 49 | 99.58 24 | 99.97 3 | 98.77 42 | 99.95 53 | 98.43 131 | 95.35 93 | 98.03 135 | 99.75 71 | 94.03 87 | 99.98 43 | 98.11 114 | 99.83 73 | 99.99 23 |
|
| PVSNet | | 91.05 13 | 97.13 105 | 96.69 113 | 98.45 112 | 99.52 88 | 95.81 153 | 99.95 53 | 99.65 12 | 94.73 109 | 99.04 89 | 99.21 143 | 84.48 238 | 99.95 69 | 94.92 188 | 98.74 137 | 99.58 140 |
|
| test_fmvsmconf0.1_n | | | 97.74 79 | 97.44 81 | 98.64 94 | 95.76 287 | 96.20 141 | 99.94 69 | 98.05 206 | 98.17 8 | 98.89 96 | 99.42 120 | 87.65 202 | 99.90 91 | 99.50 41 | 99.60 96 | 99.82 92 |
|
| ZNCC-MVS | | | 98.31 49 | 98.03 56 | 99.17 55 | 99.88 49 | 97.59 86 | 99.94 69 | 98.44 123 | 94.31 128 | 98.50 117 | 99.82 46 | 93.06 114 | 99.99 36 | 98.30 107 | 99.99 21 | 99.93 76 |
|
| test_prior4 | | | | | | | 98.05 68 | 99.94 69 | | | | | | | | | |
|
| XVS | | | 98.70 26 | 98.55 25 | 99.15 59 | 99.94 13 | 97.50 92 | 99.94 69 | 98.42 143 | 96.22 73 | 99.41 69 | 99.78 61 | 94.34 76 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| X-MVStestdata | | | 93.83 213 | 92.06 246 | 99.15 59 | 99.94 13 | 97.50 92 | 99.94 69 | 98.42 143 | 96.22 73 | 99.41 69 | 41.37 409 | 94.34 76 | 99.96 61 | 98.92 70 | 99.95 49 | 99.99 23 |
|
| SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 25 | 99.70 76 | 98.73 46 | 99.94 69 | 98.34 169 | 96.38 67 | 99.81 15 | 99.76 65 | 94.59 67 | 99.98 43 | 99.84 22 | 99.96 46 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PVSNet_0 | | 88.03 19 | 91.80 264 | 90.27 277 | 96.38 210 | 98.27 173 | 90.46 300 | 99.94 69 | 99.61 14 | 93.99 145 | 86.26 333 | 97.39 246 | 71.13 342 | 99.89 96 | 98.77 82 | 67.05 387 | 98.79 214 |
|
| GST-MVS | | | 98.27 52 | 97.97 59 | 99.17 55 | 99.92 31 | 97.57 87 | 99.93 76 | 98.39 155 | 94.04 144 | 98.80 100 | 99.74 78 | 92.98 116 | 100.00 1 | 98.16 111 | 99.76 81 | 99.93 76 |
|
| test0.0.03 1 | | | 93.86 212 | 93.61 204 | 94.64 257 | 95.02 307 | 92.18 261 | 99.93 76 | 98.58 87 | 94.07 140 | 87.96 308 | 98.50 209 | 93.90 91 | 94.96 362 | 81.33 349 | 93.17 242 | 96.78 249 |
|
| MVS_111021_HR | | | 98.72 25 | 98.62 22 | 99.01 73 | 99.36 97 | 97.18 103 | 99.93 76 | 99.90 1 | 96.81 51 | 98.67 109 | 99.77 63 | 93.92 89 | 99.89 96 | 99.27 53 | 99.94 54 | 99.96 64 |
|
| testing11 | | | 97.48 88 | 97.27 88 | 98.10 131 | 98.36 165 | 96.02 148 | 99.92 79 | 98.45 118 | 93.45 165 | 98.15 133 | 98.70 191 | 95.48 45 | 99.22 167 | 97.85 129 | 95.05 220 | 99.07 200 |
|
| thisisatest0530 | | | 97.10 106 | 96.72 111 | 98.22 124 | 97.60 218 | 96.70 120 | 99.92 79 | 98.54 101 | 91.11 249 | 97.07 162 | 98.97 163 | 97.47 11 | 99.03 180 | 93.73 221 | 96.09 195 | 98.92 206 |
|
| PVSNet_Blended_VisFu | | | 97.27 99 | 96.81 107 | 98.66 92 | 98.81 137 | 96.67 121 | 99.92 79 | 98.64 76 | 94.51 116 | 96.38 182 | 98.49 210 | 89.05 191 | 99.88 102 | 97.10 151 | 98.34 144 | 99.43 164 |
|
| DP-MVS Recon | | | 98.41 45 | 98.02 57 | 99.56 25 | 99.97 3 | 98.70 48 | 99.92 79 | 98.44 123 | 92.06 219 | 98.40 122 | 99.84 41 | 95.68 40 | 100.00 1 | 98.19 109 | 99.71 84 | 99.97 58 |
|
| PLC |  | 95.54 3 | 97.93 65 | 97.89 67 | 98.05 136 | 99.82 58 | 94.77 197 | 99.92 79 | 98.46 117 | 93.93 149 | 97.20 158 | 99.27 136 | 95.44 46 | 99.97 53 | 97.41 142 | 99.51 103 | 99.41 166 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| testing91 | | | 97.16 104 | 96.90 103 | 97.97 139 | 98.35 167 | 95.67 163 | 99.91 84 | 98.42 143 | 92.91 180 | 97.33 155 | 98.72 189 | 94.81 62 | 99.21 168 | 96.98 155 | 94.63 223 | 99.03 202 |
|
| testing99 | | | 97.17 103 | 96.91 102 | 97.95 140 | 98.35 167 | 95.70 160 | 99.91 84 | 98.43 131 | 92.94 178 | 97.36 154 | 98.72 189 | 94.83 61 | 99.21 168 | 97.00 153 | 94.64 222 | 98.95 205 |
|
| 9.14 | | | | 98.38 34 | | 99.87 51 | | 99.91 84 | 98.33 170 | 93.22 171 | 99.78 27 | 99.89 19 | 94.57 68 | 99.85 108 | 99.84 22 | 99.97 42 | |
|
| iter_conf05 | | | 96.07 153 | 95.95 142 | 96.44 207 | 98.43 162 | 97.52 89 | 99.91 84 | 96.85 325 | 94.16 135 | 92.49 238 | 97.98 231 | 98.20 4 | 97.34 279 | 97.26 146 | 88.29 274 | 94.45 272 |
|
| APDe-MVS |  | | 99.06 11 | 98.91 14 | 99.51 29 | 99.94 13 | 98.76 45 | 99.91 84 | 98.39 155 | 97.20 38 | 99.46 64 | 99.85 30 | 95.53 44 | 99.79 123 | 99.86 21 | 100.00 1 | 99.99 23 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MVSTER | | | 95.53 170 | 95.22 166 | 96.45 205 | 98.56 151 | 97.72 80 | 99.91 84 | 97.67 236 | 92.38 210 | 91.39 247 | 97.14 251 | 97.24 17 | 97.30 283 | 94.80 193 | 87.85 281 | 94.34 282 |
|
| PMMVS | | | 96.76 125 | 96.76 109 | 96.76 196 | 98.28 172 | 92.10 262 | 99.91 84 | 97.98 211 | 94.12 137 | 99.53 58 | 99.39 127 | 86.93 213 | 98.73 196 | 96.95 158 | 97.73 161 | 99.45 161 |
|
| fmvsm_s_conf0.1_n | | | 97.30 97 | 97.21 91 | 97.60 165 | 97.38 229 | 94.40 205 | 99.90 91 | 98.64 76 | 96.47 63 | 99.51 62 | 99.65 100 | 84.99 234 | 99.93 85 | 99.22 55 | 99.09 127 | 98.46 224 |
|
| test_fmvs1_n | | | 94.25 206 | 94.36 186 | 93.92 289 | 97.68 213 | 83.70 360 | 99.90 91 | 96.57 341 | 97.40 28 | 99.67 39 | 98.88 176 | 61.82 376 | 99.92 88 | 98.23 108 | 99.13 125 | 98.14 233 |
|
| SF-MVS | | | 98.67 27 | 98.40 32 | 99.50 30 | 99.77 65 | 98.67 49 | 99.90 91 | 98.21 186 | 93.53 161 | 99.81 15 | 99.89 19 | 94.70 66 | 99.86 107 | 99.84 22 | 99.93 60 | 99.96 64 |
|
| 原ACMM2 | | | | | | | | 99.90 91 | | | | | | | | | |
|
| HPM-MVS |  | | 97.96 63 | 97.72 71 | 98.68 90 | 99.84 56 | 96.39 132 | 99.90 91 | 98.17 191 | 92.61 196 | 98.62 112 | 99.57 109 | 91.87 147 | 99.67 145 | 98.87 77 | 99.99 21 | 99.99 23 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EPNet | | | 98.49 37 | 98.40 32 | 98.77 86 | 99.62 80 | 96.80 119 | 99.90 91 | 99.51 17 | 97.60 22 | 99.20 82 | 99.36 130 | 93.71 97 | 99.91 89 | 97.99 121 | 98.71 138 | 99.61 131 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CSCG | | | 97.10 106 | 97.04 98 | 97.27 183 | 99.89 45 | 91.92 267 | 99.90 91 | 99.07 34 | 88.67 297 | 95.26 203 | 99.82 46 | 93.17 112 | 99.98 43 | 98.15 112 | 99.47 105 | 99.90 83 |
|
| PAPM | | | 98.60 30 | 98.42 31 | 99.14 61 | 96.05 276 | 98.96 26 | 99.90 91 | 99.35 25 | 96.68 55 | 98.35 124 | 99.66 98 | 96.45 29 | 98.51 210 | 99.45 45 | 99.89 67 | 99.96 64 |
|
| ETVMVS | | | 97.03 112 | 96.64 114 | 98.20 125 | 98.67 145 | 97.12 107 | 99.89 99 | 98.57 89 | 91.10 250 | 98.17 132 | 98.59 201 | 93.86 93 | 98.19 244 | 95.64 177 | 95.24 218 | 99.28 183 |
|
| bld_raw_dy_0_64 | | | 94.22 207 | 92.97 224 | 97.98 138 | 98.62 149 | 95.09 188 | 99.89 99 | 93.09 391 | 96.55 59 | 92.59 234 | 99.80 51 | 68.57 352 | 99.19 173 | 98.92 70 | 88.69 266 | 99.68 113 |
|
| 114514_t | | | 97.41 94 | 96.83 106 | 99.14 61 | 99.51 90 | 97.83 77 | 99.89 99 | 98.27 181 | 88.48 301 | 99.06 88 | 99.66 98 | 90.30 173 | 99.64 148 | 96.32 166 | 99.97 42 | 99.96 64 |
|
| WTY-MVS | | | 98.10 61 | 97.60 76 | 99.60 22 | 98.92 126 | 99.28 17 | 99.89 99 | 99.52 15 | 95.58 87 | 98.24 130 | 99.39 127 | 93.33 104 | 99.74 134 | 97.98 123 | 95.58 210 | 99.78 100 |
|
| GA-MVS | | | 93.83 213 | 92.84 227 | 96.80 194 | 95.73 290 | 93.57 227 | 99.88 103 | 97.24 285 | 92.57 200 | 92.92 229 | 96.66 270 | 78.73 290 | 97.67 269 | 87.75 301 | 94.06 233 | 99.17 190 |
|
| UniMVSNet (Re) | | | 93.07 236 | 92.13 243 | 95.88 219 | 94.84 308 | 96.24 140 | 99.88 103 | 98.98 38 | 92.49 206 | 89.25 283 | 95.40 312 | 87.09 210 | 97.14 293 | 93.13 231 | 78.16 352 | 94.26 285 |
|
| HPM-MVS_fast | | | 97.80 74 | 97.50 79 | 98.68 90 | 99.79 62 | 96.42 128 | 99.88 103 | 98.16 195 | 91.75 229 | 98.94 93 | 99.54 112 | 91.82 149 | 99.65 147 | 97.62 140 | 99.99 21 | 99.99 23 |
|
| test_vis1_n | | | 93.61 223 | 93.03 223 | 95.35 233 | 95.86 282 | 86.94 343 | 99.87 106 | 96.36 348 | 96.85 46 | 99.54 57 | 98.79 186 | 52.41 389 | 99.83 118 | 98.64 91 | 98.97 130 | 99.29 182 |
|
| test_vis1_rt | | | 86.87 327 | 86.05 329 | 89.34 348 | 96.12 273 | 78.07 383 | 99.87 106 | 83.54 407 | 92.03 220 | 78.21 372 | 89.51 378 | 45.80 393 | 99.91 89 | 96.25 167 | 93.11 244 | 90.03 377 |
|
| DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 11 | 99.89 45 | 99.24 19 | 99.87 106 | 98.44 123 | 97.48 27 | 99.64 43 | 99.94 4 | 96.68 25 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 23 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MVS_0304 | | | 98.87 20 | 98.61 23 | 99.67 16 | 99.18 103 | 99.13 22 | 99.87 106 | 99.65 12 | 98.17 8 | 98.75 106 | 99.75 71 | 92.76 123 | 99.94 77 | 99.88 18 | 99.44 109 | 99.94 74 |
|
| MTMP | | | | | | | | 99.87 106 | 96.49 344 | | | | | | | | |
|
| CDPH-MVS | | | 98.65 28 | 98.36 38 | 99.49 32 | 99.94 13 | 98.73 46 | 99.87 106 | 98.33 170 | 93.97 146 | 99.76 29 | 99.87 24 | 94.99 58 | 99.75 132 | 98.55 95 | 100.00 1 | 99.98 48 |
|
| HQP-NCC | | | | | | 95.78 283 | | 99.87 106 | | 96.82 48 | 93.37 223 | | | | | | |
|
| ACMP_Plane | | | | | | 95.78 283 | | 99.87 106 | | 96.82 48 | 93.37 223 | | | | | | |
|
| APD-MVS |  | | 98.62 29 | 98.35 39 | 99.41 38 | 99.90 42 | 98.51 59 | 99.87 106 | 98.36 163 | 94.08 139 | 99.74 32 | 99.73 80 | 94.08 85 | 99.74 134 | 99.42 47 | 99.99 21 | 99.99 23 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| MVS_111021_LR | | | 98.42 44 | 98.38 34 | 98.53 107 | 99.39 95 | 95.79 154 | 99.87 106 | 99.86 2 | 96.70 54 | 98.78 101 | 99.79 57 | 92.03 144 | 99.90 91 | 99.17 57 | 99.86 71 | 99.88 85 |
|
| HQP-MVS | | | 94.61 193 | 94.50 184 | 94.92 248 | 95.78 283 | 91.85 268 | 99.87 106 | 97.89 221 | 96.82 48 | 93.37 223 | 98.65 196 | 80.65 271 | 98.39 222 | 97.92 125 | 89.60 251 | 94.53 262 |
|
| CNLPA | | | 97.76 78 | 97.38 83 | 98.92 80 | 99.53 87 | 96.84 116 | 99.87 106 | 98.14 199 | 93.78 154 | 96.55 176 | 99.69 89 | 92.28 138 | 99.98 43 | 97.13 149 | 99.44 109 | 99.93 76 |
|
| SMA-MVS |  | | 98.76 24 | 98.48 29 | 99.62 20 | 99.87 51 | 98.87 33 | 99.86 118 | 98.38 159 | 93.19 172 | 99.77 28 | 99.94 4 | 95.54 42 | 100.00 1 | 99.74 30 | 99.99 21 | 100.00 1 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| plane_prior | | | | | | | 91.74 272 | 99.86 118 | | 96.76 52 | | | | | | 89.59 253 | |
|
| casdiffmvs_mvg |  | | 96.43 139 | 95.94 143 | 97.89 147 | 97.44 226 | 95.47 170 | 99.86 118 | 97.29 280 | 93.35 166 | 96.03 188 | 99.19 144 | 85.39 229 | 98.72 198 | 97.89 128 | 97.04 178 | 99.49 157 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| testing222 | | | 97.08 111 | 96.75 110 | 98.06 135 | 98.56 151 | 96.82 117 | 99.85 121 | 98.61 82 | 92.53 202 | 98.84 97 | 98.84 185 | 93.36 102 | 98.30 234 | 95.84 174 | 94.30 229 | 99.05 201 |
|
| tttt0517 | | | 96.85 119 | 96.49 120 | 97.92 143 | 97.48 225 | 95.89 152 | 99.85 121 | 98.54 101 | 90.72 261 | 96.63 173 | 98.93 174 | 97.47 11 | 99.02 181 | 93.03 233 | 95.76 206 | 98.85 210 |
|
| ACMMP_NAP | | | 98.49 37 | 98.14 50 | 99.54 27 | 99.66 78 | 98.62 55 | 99.85 121 | 98.37 162 | 94.68 112 | 99.53 58 | 99.83 43 | 92.87 119 | 100.00 1 | 98.66 90 | 99.84 72 | 99.99 23 |
|
| thres200 | | | 96.96 115 | 96.21 129 | 99.22 48 | 98.97 119 | 98.84 36 | 99.85 121 | 99.71 7 | 93.17 173 | 96.26 184 | 98.88 176 | 89.87 178 | 99.51 153 | 94.26 206 | 94.91 221 | 99.31 178 |
|
| F-COLMAP | | | 96.93 117 | 96.95 101 | 96.87 193 | 99.71 75 | 91.74 272 | 99.85 121 | 97.95 214 | 93.11 175 | 95.72 196 | 99.16 147 | 92.35 136 | 99.94 77 | 95.32 180 | 99.35 115 | 98.92 206 |
|
| test_fmvsmconf0.01_n | | | 96.39 142 | 95.74 150 | 98.32 120 | 91.47 366 | 95.56 167 | 99.84 126 | 97.30 277 | 97.74 18 | 97.89 140 | 99.35 131 | 79.62 280 | 99.85 108 | 99.25 54 | 99.24 120 | 99.55 143 |
|
| SR-MVS | | | 98.46 39 | 98.30 43 | 98.93 79 | 99.88 49 | 97.04 109 | 99.84 126 | 98.35 165 | 94.92 103 | 99.32 76 | 99.80 51 | 93.35 103 | 99.78 125 | 99.30 52 | 99.95 49 | 99.96 64 |
|
| CANet_DTU | | | 96.76 125 | 96.15 130 | 98.60 97 | 98.78 139 | 97.53 88 | 99.84 126 | 97.63 238 | 97.25 37 | 99.20 82 | 99.64 101 | 81.36 261 | 99.98 43 | 92.77 236 | 98.89 131 | 98.28 229 |
|
| casdiffmvs |  | | 96.42 141 | 95.97 139 | 97.77 153 | 97.30 236 | 94.98 189 | 99.84 126 | 97.09 300 | 93.75 156 | 96.58 175 | 99.26 139 | 85.07 232 | 98.78 192 | 97.77 135 | 97.04 178 | 99.54 147 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HQP_MVS | | | 94.49 197 | 94.36 186 | 94.87 249 | 95.71 293 | 91.74 272 | 99.84 126 | 97.87 223 | 96.38 67 | 93.01 227 | 98.59 201 | 80.47 275 | 98.37 228 | 97.79 133 | 89.55 254 | 94.52 264 |
|
| plane_prior2 | | | | | | | | 99.84 126 | | 96.38 67 | | | | | | | |
|
| BH-w/o | | | 95.71 164 | 95.38 161 | 96.68 199 | 98.49 160 | 92.28 258 | 99.84 126 | 97.50 257 | 92.12 216 | 92.06 243 | 98.79 186 | 84.69 236 | 98.67 203 | 95.29 181 | 99.66 87 | 99.09 197 |
|
| fmvsm_s_conf0.1_n_a | | | 97.09 108 | 96.90 103 | 97.63 163 | 95.65 296 | 94.21 210 | 99.83 133 | 98.50 112 | 96.27 72 | 99.65 41 | 99.64 101 | 84.72 235 | 99.93 85 | 99.04 63 | 98.84 134 | 98.74 217 |
|
| test_fmvs2 | | | 89.47 311 | 89.70 288 | 88.77 355 | 94.54 314 | 75.74 384 | 99.83 133 | 94.70 379 | 94.71 110 | 91.08 251 | 96.82 269 | 54.46 386 | 97.78 266 | 92.87 234 | 88.27 275 | 92.80 352 |
|
| UniMVSNet_NR-MVSNet | | | 92.95 238 | 92.11 244 | 95.49 227 | 94.61 313 | 95.28 179 | 99.83 133 | 99.08 33 | 91.49 234 | 89.21 286 | 96.86 264 | 87.14 209 | 96.73 319 | 93.20 227 | 77.52 357 | 94.46 267 |
|
| APD-MVS_3200maxsize | | | 98.25 55 | 98.08 55 | 98.78 84 | 99.81 60 | 96.60 124 | 99.82 136 | 98.30 177 | 93.95 148 | 99.37 74 | 99.77 63 | 92.84 120 | 99.76 131 | 98.95 67 | 99.92 63 | 99.97 58 |
|
| PAPM_NR | | | 98.12 60 | 97.93 64 | 98.70 89 | 99.94 13 | 96.13 145 | 99.82 136 | 98.43 131 | 94.56 115 | 97.52 149 | 99.70 87 | 94.40 71 | 99.98 43 | 97.00 153 | 99.98 32 | 99.99 23 |
|
| nrg030 | | | 93.51 225 | 92.53 238 | 96.45 205 | 94.36 316 | 97.20 102 | 99.81 138 | 97.16 292 | 91.60 231 | 89.86 267 | 97.46 242 | 86.37 219 | 97.68 268 | 95.88 173 | 80.31 341 | 94.46 267 |
|
| diffmvs |  | | 97.00 113 | 96.64 114 | 98.09 133 | 97.64 216 | 96.17 144 | 99.81 138 | 97.19 287 | 94.67 113 | 98.95 92 | 99.28 133 | 86.43 218 | 98.76 194 | 98.37 103 | 97.42 169 | 99.33 176 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DU-MVS | | | 92.46 250 | 91.45 259 | 95.49 227 | 94.05 321 | 95.28 179 | 99.81 138 | 98.74 64 | 92.25 214 | 89.21 286 | 96.64 272 | 81.66 257 | 96.73 319 | 93.20 227 | 77.52 357 | 94.46 267 |
|
| ACMP | | 92.05 9 | 92.74 243 | 92.42 241 | 93.73 295 | 95.91 281 | 88.72 325 | 99.81 138 | 97.53 253 | 94.13 136 | 87.00 321 | 98.23 221 | 74.07 329 | 98.47 211 | 96.22 168 | 88.86 263 | 93.99 313 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| mvsany_test1 | | | 97.82 72 | 97.90 66 | 97.55 166 | 98.77 140 | 93.04 241 | 99.80 142 | 97.93 216 | 96.95 45 | 99.61 53 | 99.68 95 | 90.92 162 | 99.83 118 | 99.18 56 | 98.29 149 | 99.80 96 |
|
| Fast-Effi-MVS+-dtu | | | 93.72 220 | 93.86 201 | 93.29 308 | 97.06 243 | 86.16 346 | 99.80 142 | 96.83 327 | 92.66 193 | 92.58 235 | 97.83 236 | 81.39 260 | 97.67 269 | 89.75 281 | 96.87 183 | 96.05 259 |
|
| BH-untuned | | | 95.18 176 | 94.83 178 | 96.22 213 | 98.36 165 | 91.22 284 | 99.80 142 | 97.32 275 | 90.91 254 | 91.08 251 | 98.67 193 | 83.51 245 | 98.54 209 | 94.23 207 | 99.61 94 | 98.92 206 |
|
| tfpn200view9 | | | 96.79 122 | 95.99 134 | 99.19 51 | 98.94 121 | 98.82 37 | 99.78 145 | 99.71 7 | 92.86 181 | 96.02 189 | 98.87 179 | 89.33 185 | 99.50 155 | 93.84 213 | 94.57 224 | 99.27 184 |
|
| thres400 | | | 96.78 124 | 95.99 134 | 99.16 57 | 98.94 121 | 98.82 37 | 99.78 145 | 99.71 7 | 92.86 181 | 96.02 189 | 98.87 179 | 89.33 185 | 99.50 155 | 93.84 213 | 94.57 224 | 99.16 191 |
|
| TAPA-MVS | | 92.12 8 | 94.42 199 | 93.60 206 | 96.90 192 | 99.33 98 | 91.78 271 | 99.78 145 | 98.00 208 | 89.89 275 | 94.52 209 | 99.47 116 | 91.97 145 | 99.18 174 | 69.90 382 | 99.52 100 | 99.73 105 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 38 | 99.74 69 | 98.67 49 | 99.77 148 | 98.38 159 | 96.73 53 | 99.88 6 | 99.74 78 | 94.89 60 | 99.59 149 | 99.80 25 | 99.98 32 | 99.97 58 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| OPM-MVS | | | 93.21 230 | 92.80 229 | 94.44 270 | 93.12 340 | 90.85 292 | 99.77 148 | 97.61 243 | 96.19 75 | 91.56 246 | 98.65 196 | 75.16 323 | 98.47 211 | 93.78 219 | 89.39 257 | 93.99 313 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v2v482 | | | 91.30 270 | 90.07 284 | 95.01 244 | 93.13 338 | 93.79 220 | 99.77 148 | 97.02 306 | 88.05 307 | 89.25 283 | 95.37 316 | 80.73 269 | 97.15 292 | 87.28 307 | 80.04 344 | 94.09 304 |
|
| Baseline_NR-MVSNet | | | 90.33 294 | 89.51 294 | 92.81 320 | 92.84 346 | 89.95 312 | 99.77 148 | 93.94 386 | 84.69 350 | 89.04 290 | 95.66 299 | 81.66 257 | 96.52 326 | 90.99 258 | 76.98 363 | 91.97 363 |
|
| ACMM | | 91.95 10 | 92.88 240 | 92.52 239 | 93.98 288 | 95.75 289 | 89.08 322 | 99.77 148 | 97.52 255 | 93.00 176 | 89.95 264 | 97.99 230 | 76.17 312 | 98.46 214 | 93.63 223 | 88.87 262 | 94.39 276 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| SR-MVS-dyc-post | | | 98.31 49 | 98.17 48 | 98.71 88 | 99.79 62 | 96.37 133 | 99.76 153 | 98.31 174 | 94.43 120 | 99.40 71 | 99.75 71 | 93.28 108 | 99.78 125 | 98.90 75 | 99.92 63 | 99.97 58 |
|
| RE-MVS-def | | | | 98.13 51 | | 99.79 62 | 96.37 133 | 99.76 153 | 98.31 174 | 94.43 120 | 99.40 71 | 99.75 71 | 92.95 117 | | 98.90 75 | 99.92 63 | 99.97 58 |
|
| BH-RMVSNet | | | 95.18 176 | 94.31 189 | 97.80 148 | 98.17 181 | 95.23 182 | 99.76 153 | 97.53 253 | 92.52 204 | 94.27 215 | 99.25 140 | 76.84 303 | 98.80 190 | 90.89 262 | 99.54 99 | 99.35 173 |
|
| v148 | | | 90.70 284 | 89.63 289 | 93.92 289 | 92.97 344 | 90.97 286 | 99.75 156 | 96.89 322 | 87.51 312 | 88.27 305 | 95.01 329 | 81.67 256 | 97.04 302 | 87.40 305 | 77.17 362 | 93.75 329 |
|
| PGM-MVS | | | 98.34 48 | 98.13 51 | 98.99 74 | 99.92 31 | 97.00 110 | 99.75 156 | 99.50 18 | 93.90 151 | 99.37 74 | 99.76 65 | 93.24 110 | 100.00 1 | 97.75 137 | 99.96 46 | 99.98 48 |
|
| LPG-MVS_test | | | 92.96 237 | 92.71 232 | 93.71 297 | 95.43 300 | 88.67 326 | 99.75 156 | 97.62 240 | 92.81 184 | 90.05 260 | 98.49 210 | 75.24 319 | 98.40 220 | 95.84 174 | 89.12 258 | 94.07 305 |
|
| thres100view900 | | | 96.74 127 | 95.92 145 | 99.18 52 | 98.90 131 | 98.77 42 | 99.74 159 | 99.71 7 | 92.59 198 | 95.84 192 | 98.86 181 | 89.25 187 | 99.50 155 | 93.84 213 | 94.57 224 | 99.27 184 |
|
| MP-MVS-pluss | | | 98.07 62 | 97.64 74 | 99.38 42 | 99.74 69 | 98.41 62 | 99.74 159 | 98.18 190 | 93.35 166 | 96.45 178 | 99.85 30 | 92.64 126 | 99.97 53 | 98.91 74 | 99.89 67 | 99.77 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| pmmvs5 | | | 90.17 300 | 89.09 301 | 93.40 305 | 92.10 358 | 89.77 315 | 99.74 159 | 95.58 365 | 85.88 335 | 87.24 320 | 95.74 295 | 73.41 332 | 96.48 328 | 88.54 291 | 83.56 314 | 93.95 316 |
|
| thres600view7 | | | 96.69 130 | 95.87 148 | 99.14 61 | 98.90 131 | 98.78 41 | 99.74 159 | 99.71 7 | 92.59 198 | 95.84 192 | 98.86 181 | 89.25 187 | 99.50 155 | 93.44 225 | 94.50 227 | 99.16 191 |
|
| baseline2 | | | 96.71 129 | 96.49 120 | 97.37 177 | 95.63 298 | 95.96 150 | 99.74 159 | 98.88 51 | 92.94 178 | 91.61 245 | 98.97 163 | 97.72 6 | 98.62 205 | 94.83 192 | 98.08 157 | 97.53 246 |
|
| miper_enhance_ethall | | | 94.36 203 | 93.98 196 | 95.49 227 | 98.68 144 | 95.24 181 | 99.73 164 | 97.29 280 | 93.28 170 | 89.86 267 | 95.97 291 | 94.37 75 | 97.05 300 | 92.20 240 | 84.45 307 | 94.19 291 |
|
| testgi | | | 89.01 316 | 88.04 317 | 91.90 329 | 93.49 332 | 84.89 355 | 99.73 164 | 95.66 363 | 93.89 153 | 85.14 340 | 98.17 222 | 59.68 380 | 94.66 366 | 77.73 366 | 88.88 261 | 96.16 258 |
|
| sss | | | 97.57 85 | 97.03 99 | 99.18 52 | 98.37 164 | 98.04 69 | 99.73 164 | 99.38 23 | 93.46 163 | 98.76 104 | 99.06 152 | 91.21 153 | 99.89 96 | 96.33 165 | 97.01 180 | 99.62 128 |
|
| sasdasda | | | 97.09 108 | 96.32 124 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 167 | 97.35 270 | 94.45 117 | 97.88 141 | 99.42 120 | 86.71 214 | 99.52 151 | 98.48 97 | 93.97 234 | 99.72 107 |
|
| canonicalmvs | | | 97.09 108 | 96.32 124 | 99.39 40 | 98.93 123 | 98.95 27 | 99.72 167 | 97.35 270 | 94.45 117 | 97.88 141 | 99.42 120 | 86.71 214 | 99.52 151 | 98.48 97 | 93.97 234 | 99.72 107 |
|
| 3Dnovator+ | | 91.53 11 | 96.31 146 | 95.24 165 | 99.52 28 | 96.88 255 | 98.64 54 | 99.72 167 | 98.24 183 | 95.27 96 | 88.42 304 | 98.98 161 | 82.76 250 | 99.94 77 | 97.10 151 | 99.83 73 | 99.96 64 |
|
| UWE-MVS | | | 96.79 122 | 96.72 111 | 97.00 188 | 98.51 158 | 93.70 224 | 99.71 170 | 98.60 84 | 92.96 177 | 97.09 160 | 98.34 219 | 96.67 27 | 98.85 188 | 92.11 242 | 96.50 188 | 98.44 225 |
|
| WB-MVSnew | | | 92.90 239 | 92.77 231 | 93.26 310 | 96.95 249 | 93.63 226 | 99.71 170 | 98.16 195 | 91.49 234 | 94.28 214 | 98.14 223 | 81.33 262 | 96.48 328 | 79.47 357 | 95.46 211 | 89.68 380 |
|
| Syy-MVS | | | 90.00 303 | 90.63 269 | 88.11 359 | 97.68 213 | 74.66 387 | 99.71 170 | 98.35 165 | 90.79 258 | 92.10 241 | 98.67 193 | 79.10 287 | 93.09 379 | 63.35 393 | 95.95 200 | 96.59 252 |
|
| myMVS_eth3d | | | 94.46 198 | 94.76 180 | 93.55 303 | 97.68 213 | 90.97 286 | 99.71 170 | 98.35 165 | 90.79 258 | 92.10 241 | 98.67 193 | 92.46 134 | 93.09 379 | 87.13 309 | 95.95 200 | 96.59 252 |
|
| HyFIR lowres test | | | 96.66 132 | 96.43 122 | 97.36 179 | 99.05 112 | 93.91 219 | 99.70 174 | 99.80 3 | 90.54 263 | 96.26 184 | 98.08 225 | 92.15 141 | 98.23 242 | 96.84 161 | 95.46 211 | 99.93 76 |
|
| D2MVS | | | 92.76 242 | 92.59 237 | 93.27 309 | 95.13 303 | 89.54 318 | 99.69 175 | 99.38 23 | 92.26 213 | 87.59 312 | 94.61 343 | 85.05 233 | 97.79 264 | 91.59 249 | 88.01 279 | 92.47 357 |
|
| TranMVSNet+NR-MVSNet | | | 91.68 268 | 90.61 270 | 94.87 249 | 93.69 328 | 93.98 217 | 99.69 175 | 98.65 74 | 91.03 252 | 88.44 300 | 96.83 268 | 80.05 278 | 96.18 340 | 90.26 275 | 76.89 365 | 94.45 272 |
|
| V42 | | | 91.28 272 | 90.12 283 | 94.74 253 | 93.42 334 | 93.46 231 | 99.68 177 | 97.02 306 | 87.36 315 | 89.85 269 | 95.05 327 | 81.31 263 | 97.34 279 | 87.34 306 | 80.07 343 | 93.40 339 |
|
| testmvs | | | 40.60 374 | 44.45 377 | 29.05 391 | 19.49 415 | 14.11 417 | 99.68 177 | 18.47 414 | 20.74 407 | 64.59 392 | 98.48 213 | 10.95 412 | 17.09 411 | 56.66 400 | 11.01 407 | 55.94 404 |
|
| MGCFI-Net | | | 97.00 113 | 96.22 128 | 99.34 43 | 98.86 134 | 98.80 39 | 99.67 179 | 97.30 277 | 94.31 128 | 97.77 145 | 99.41 124 | 86.36 220 | 99.50 155 | 98.38 101 | 93.90 236 | 99.72 107 |
|
| mvsmamba | | | 94.10 208 | 93.72 203 | 95.25 238 | 93.57 329 | 94.13 212 | 99.67 179 | 96.45 346 | 93.63 160 | 91.34 249 | 97.77 237 | 86.29 221 | 97.22 289 | 96.65 163 | 88.10 278 | 94.40 274 |
|
| RRT_MVS | | | 93.14 233 | 92.92 226 | 93.78 294 | 93.31 336 | 90.04 309 | 99.66 181 | 97.69 234 | 92.53 202 | 88.91 293 | 97.76 238 | 84.36 239 | 96.93 309 | 95.10 183 | 86.99 289 | 94.37 277 |
|
| DeepC-MVS | | 94.51 4 | 96.92 118 | 96.40 123 | 98.45 112 | 99.16 107 | 95.90 151 | 99.66 181 | 98.06 204 | 96.37 70 | 94.37 212 | 99.49 115 | 83.29 248 | 99.90 91 | 97.63 139 | 99.61 94 | 99.55 143 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CHOSEN 1792x2688 | | | 96.81 121 | 96.53 119 | 97.64 161 | 98.91 130 | 93.07 238 | 99.65 183 | 99.80 3 | 95.64 85 | 95.39 200 | 98.86 181 | 84.35 241 | 99.90 91 | 96.98 155 | 99.16 123 | 99.95 71 |
|
| Test_1112_low_res | | | 95.72 162 | 94.83 178 | 98.42 115 | 97.79 202 | 96.41 129 | 99.65 183 | 96.65 338 | 92.70 190 | 92.86 232 | 96.13 287 | 92.15 141 | 99.30 165 | 91.88 246 | 93.64 238 | 99.55 143 |
|
| 1112_ss | | | 96.01 156 | 95.20 167 | 98.42 115 | 97.80 201 | 96.41 129 | 99.65 183 | 96.66 337 | 92.71 189 | 92.88 231 | 99.40 125 | 92.16 140 | 99.30 165 | 91.92 245 | 93.66 237 | 99.55 143 |
|
| OMC-MVS | | | 97.28 98 | 97.23 90 | 97.41 174 | 99.76 66 | 93.36 236 | 99.65 183 | 97.95 214 | 96.03 77 | 97.41 153 | 99.70 87 | 89.61 181 | 99.51 153 | 96.73 162 | 98.25 150 | 99.38 168 |
|
| test_yl | | | 97.83 70 | 97.37 84 | 99.21 49 | 99.18 103 | 97.98 72 | 99.64 187 | 99.27 27 | 91.43 239 | 97.88 141 | 98.99 159 | 95.84 38 | 99.84 116 | 98.82 79 | 95.32 216 | 99.79 97 |
|
| DCV-MVSNet | | | 97.83 70 | 97.37 84 | 99.21 49 | 99.18 103 | 97.98 72 | 99.64 187 | 99.27 27 | 91.43 239 | 97.88 141 | 98.99 159 | 95.84 38 | 99.84 116 | 98.82 79 | 95.32 216 | 99.79 97 |
|
| MG-MVS | | | 98.91 18 | 98.65 20 | 99.68 15 | 99.94 13 | 99.07 24 | 99.64 187 | 99.44 20 | 97.33 31 | 99.00 91 | 99.72 83 | 94.03 87 | 99.98 43 | 98.73 85 | 100.00 1 | 100.00 1 |
|
| v1144 | | | 91.09 276 | 89.83 285 | 94.87 249 | 93.25 337 | 93.69 225 | 99.62 190 | 96.98 311 | 86.83 325 | 89.64 275 | 94.99 332 | 80.94 266 | 97.05 300 | 85.08 327 | 81.16 330 | 93.87 323 |
|
| cl22 | | | 93.77 217 | 93.25 220 | 95.33 235 | 99.49 91 | 94.43 201 | 99.61 191 | 98.09 201 | 90.38 265 | 89.16 289 | 95.61 300 | 90.56 169 | 97.34 279 | 91.93 244 | 84.45 307 | 94.21 290 |
|
| WR-MVS | | | 92.31 253 | 91.25 261 | 95.48 230 | 94.45 315 | 95.29 178 | 99.60 192 | 98.68 70 | 90.10 270 | 88.07 307 | 96.89 262 | 80.68 270 | 96.80 317 | 93.14 230 | 79.67 345 | 94.36 278 |
|
| SDMVSNet | | | 94.80 184 | 93.96 197 | 97.33 181 | 98.92 126 | 95.42 173 | 99.59 193 | 98.99 37 | 92.41 208 | 92.55 236 | 97.85 234 | 75.81 315 | 98.93 185 | 97.90 127 | 91.62 247 | 97.64 241 |
|
| Effi-MVS+-dtu | | | 94.53 196 | 95.30 164 | 92.22 325 | 97.77 203 | 82.54 365 | 99.59 193 | 97.06 303 | 94.92 103 | 95.29 202 | 95.37 316 | 85.81 224 | 97.89 261 | 94.80 193 | 97.07 176 | 96.23 256 |
|
| DIV-MVS_self_test | | | 92.32 252 | 91.60 253 | 94.47 268 | 97.31 235 | 92.74 246 | 99.58 195 | 96.75 333 | 86.99 322 | 87.64 311 | 95.54 304 | 89.55 182 | 96.50 327 | 88.58 290 | 82.44 320 | 94.17 292 |
|
| FIs | | | 94.10 208 | 93.43 212 | 96.11 215 | 94.70 311 | 96.82 117 | 99.58 195 | 98.93 45 | 92.54 201 | 89.34 281 | 97.31 247 | 87.62 203 | 97.10 297 | 94.22 208 | 86.58 291 | 94.40 274 |
|
| cl____ | | | 92.31 253 | 91.58 254 | 94.52 264 | 97.33 234 | 92.77 244 | 99.57 197 | 96.78 332 | 86.97 323 | 87.56 313 | 95.51 307 | 89.43 183 | 96.62 323 | 88.60 289 | 82.44 320 | 94.16 297 |
|
| EPNet_dtu | | | 95.71 164 | 95.39 160 | 96.66 200 | 98.92 126 | 93.41 233 | 99.57 197 | 98.90 47 | 96.19 75 | 97.52 149 | 98.56 206 | 92.65 125 | 97.36 277 | 77.89 365 | 98.33 145 | 99.20 189 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| v144192 | | | 90.79 283 | 89.52 293 | 94.59 260 | 93.11 341 | 92.77 244 | 99.56 199 | 96.99 309 | 86.38 329 | 89.82 270 | 94.95 334 | 80.50 274 | 97.10 297 | 83.98 333 | 80.41 339 | 93.90 320 |
|
| OpenMVS |  | 90.15 15 | 94.77 187 | 93.59 207 | 98.33 119 | 96.07 275 | 97.48 94 | 99.56 199 | 98.57 89 | 90.46 264 | 86.51 327 | 98.95 170 | 78.57 292 | 99.94 77 | 93.86 212 | 99.74 82 | 97.57 245 |
|
| MVSFormer | | | 96.94 116 | 96.60 116 | 97.95 140 | 97.28 238 | 97.70 83 | 99.55 201 | 97.27 282 | 91.17 246 | 99.43 67 | 99.54 112 | 90.92 162 | 96.89 311 | 94.67 198 | 99.62 90 | 99.25 186 |
|
| test_djsdf | | | 92.83 241 | 92.29 242 | 94.47 268 | 91.90 360 | 92.46 255 | 99.55 201 | 97.27 282 | 91.17 246 | 89.96 263 | 96.07 290 | 81.10 264 | 96.89 311 | 94.67 198 | 88.91 260 | 94.05 307 |
|
| PS-MVSNAJ | | | 98.44 41 | 98.20 46 | 99.16 57 | 98.80 138 | 98.92 29 | 99.54 203 | 98.17 191 | 97.34 29 | 99.85 9 | 99.85 30 | 91.20 154 | 99.89 96 | 99.41 48 | 99.67 86 | 98.69 220 |
|
| CDS-MVSNet | | | 96.34 144 | 96.07 131 | 97.13 185 | 97.37 230 | 94.96 190 | 99.53 204 | 97.91 220 | 91.55 233 | 95.37 201 | 98.32 220 | 95.05 54 | 97.13 294 | 93.80 217 | 95.75 207 | 99.30 180 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| xiu_mvs_v2_base | | | 98.23 57 | 97.97 59 | 99.02 72 | 98.69 143 | 98.66 51 | 99.52 205 | 98.08 203 | 97.05 41 | 99.86 7 | 99.86 26 | 90.65 167 | 99.71 138 | 99.39 50 | 98.63 139 | 98.69 220 |
|
| PatchMatch-RL | | | 96.04 155 | 95.40 159 | 97.95 140 | 99.59 81 | 95.22 183 | 99.52 205 | 99.07 34 | 93.96 147 | 96.49 177 | 98.35 218 | 82.28 252 | 99.82 120 | 90.15 276 | 99.22 122 | 98.81 213 |
|
| test_method | | | 80.79 351 | 79.70 355 | 84.08 366 | 92.83 347 | 67.06 392 | 99.51 207 | 95.42 367 | 54.34 398 | 81.07 360 | 93.53 356 | 44.48 394 | 92.22 385 | 78.90 362 | 77.23 361 | 92.94 349 |
|
| baseline | | | 96.43 139 | 95.98 136 | 97.76 155 | 97.34 232 | 95.17 186 | 99.51 207 | 97.17 290 | 93.92 150 | 96.90 166 | 99.28 133 | 85.37 230 | 98.64 204 | 97.50 141 | 96.86 184 | 99.46 159 |
|
| miper_ehance_all_eth | | | 93.16 232 | 92.60 234 | 94.82 252 | 97.57 219 | 93.56 228 | 99.50 209 | 97.07 302 | 88.75 295 | 88.85 294 | 95.52 306 | 90.97 161 | 96.74 318 | 90.77 264 | 84.45 307 | 94.17 292 |
|
| v1192 | | | 90.62 288 | 89.25 298 | 94.72 255 | 93.13 338 | 93.07 238 | 99.50 209 | 97.02 306 | 86.33 330 | 89.56 277 | 95.01 329 | 79.22 284 | 97.09 299 | 82.34 344 | 81.16 330 | 94.01 310 |
|
| v1921920 | | | 90.46 290 | 89.12 300 | 94.50 266 | 92.96 345 | 92.46 255 | 99.49 211 | 96.98 311 | 86.10 332 | 89.61 276 | 95.30 319 | 78.55 293 | 97.03 304 | 82.17 345 | 80.89 337 | 94.01 310 |
|
| æ— å…ˆéªŒ | | | | | | | | 99.49 211 | 98.71 66 | 93.46 163 | | | | 100.00 1 | 94.36 203 | | 99.99 23 |
|
| pmmvs4 | | | 92.10 257 | 91.07 264 | 95.18 240 | 92.82 348 | 94.96 190 | 99.48 213 | 96.83 327 | 87.45 314 | 88.66 298 | 96.56 276 | 83.78 244 | 96.83 315 | 89.29 283 | 84.77 305 | 93.75 329 |
|
| Vis-MVSNet (Re-imp) | | | 96.32 145 | 95.98 136 | 97.35 180 | 97.93 193 | 94.82 194 | 99.47 214 | 98.15 198 | 91.83 225 | 95.09 204 | 99.11 148 | 91.37 152 | 97.47 275 | 93.47 224 | 97.43 167 | 99.74 104 |
|
| API-MVS | | | 97.86 68 | 97.66 73 | 98.47 110 | 99.52 88 | 95.41 174 | 99.47 214 | 98.87 52 | 91.68 230 | 98.84 97 | 99.85 30 | 92.34 137 | 99.99 36 | 98.44 99 | 99.96 46 | 100.00 1 |
|
| 旧先验2 | | | | | | | | 99.46 216 | | 94.21 134 | 99.85 9 | | | 99.95 69 | 96.96 157 | | |
|
| IterMVS-LS | | | 92.69 245 | 92.11 244 | 94.43 272 | 96.80 259 | 92.74 246 | 99.45 217 | 96.89 322 | 88.98 287 | 89.65 274 | 95.38 315 | 88.77 194 | 96.34 334 | 90.98 259 | 82.04 323 | 94.22 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| 3Dnovator | | 91.47 12 | 96.28 149 | 95.34 162 | 99.08 67 | 96.82 258 | 97.47 95 | 99.45 217 | 98.81 60 | 95.52 90 | 89.39 279 | 99.00 158 | 81.97 254 | 99.95 69 | 97.27 145 | 99.83 73 | 99.84 90 |
|
| FC-MVSNet-test | | | 93.81 215 | 93.15 221 | 95.80 223 | 94.30 318 | 96.20 141 | 99.42 219 | 98.89 49 | 92.33 212 | 89.03 291 | 97.27 249 | 87.39 206 | 96.83 315 | 93.20 227 | 86.48 292 | 94.36 278 |
|
| c3_l | | | 92.53 248 | 91.87 250 | 94.52 264 | 97.40 228 | 92.99 242 | 99.40 220 | 96.93 319 | 87.86 309 | 88.69 297 | 95.44 310 | 89.95 177 | 96.44 330 | 90.45 270 | 80.69 338 | 94.14 301 |
|
| EI-MVSNet-Vis-set | | | 98.27 52 | 98.11 53 | 98.75 87 | 99.83 57 | 96.59 125 | 99.40 220 | 98.51 107 | 95.29 95 | 98.51 116 | 99.76 65 | 93.60 100 | 99.71 138 | 98.53 96 | 99.52 100 | 99.95 71 |
|
| æ–°å‡ ä½•2 | | | | | | | | 99.40 220 | | | | | | | | | |
|
| QAPM | | | 95.40 173 | 94.17 192 | 99.10 66 | 96.92 250 | 97.71 81 | 99.40 220 | 98.68 70 | 89.31 280 | 88.94 292 | 98.89 175 | 82.48 251 | 99.96 61 | 93.12 232 | 99.83 73 | 99.62 128 |
|
| MTAPA | | | 98.29 51 | 97.96 62 | 99.30 44 | 99.85 54 | 97.93 75 | 99.39 224 | 98.28 179 | 95.76 82 | 97.18 159 | 99.88 21 | 92.74 124 | 100.00 1 | 98.67 88 | 99.88 69 | 99.99 23 |
|
| miper_lstm_enhance | | | 91.81 261 | 91.39 260 | 93.06 316 | 97.34 232 | 89.18 321 | 99.38 225 | 96.79 331 | 86.70 326 | 87.47 315 | 95.22 324 | 90.00 176 | 95.86 351 | 88.26 294 | 81.37 328 | 94.15 298 |
|
| v1240 | | | 90.20 298 | 88.79 307 | 94.44 270 | 93.05 343 | 92.27 259 | 99.38 225 | 96.92 320 | 85.89 334 | 89.36 280 | 94.87 336 | 77.89 296 | 97.03 304 | 80.66 352 | 81.08 333 | 94.01 310 |
|
| EPP-MVSNet | | | 96.69 130 | 96.60 116 | 96.96 190 | 97.74 205 | 93.05 240 | 99.37 227 | 98.56 92 | 88.75 295 | 95.83 194 | 99.01 156 | 96.01 32 | 98.56 207 | 96.92 159 | 97.20 174 | 99.25 186 |
|
| MSDG | | | 94.37 201 | 93.36 217 | 97.40 175 | 98.88 133 | 93.95 218 | 99.37 227 | 97.38 268 | 85.75 338 | 90.80 255 | 99.17 146 | 84.11 243 | 99.88 102 | 86.35 317 | 98.43 143 | 98.36 228 |
|
| EI-MVSNet-UG-set | | | 98.14 59 | 97.99 58 | 98.60 97 | 99.80 61 | 96.27 135 | 99.36 229 | 98.50 112 | 95.21 97 | 98.30 126 | 99.75 71 | 93.29 107 | 99.73 137 | 98.37 103 | 99.30 117 | 99.81 94 |
|
| test222 | | | | | | 99.55 86 | 97.41 98 | 99.34 230 | 98.55 98 | 91.86 224 | 99.27 81 | 99.83 43 | 93.84 94 | | | 99.95 49 | 99.99 23 |
|
| our_test_3 | | | 90.39 291 | 89.48 296 | 93.12 313 | 92.40 353 | 89.57 317 | 99.33 231 | 96.35 349 | 87.84 310 | 85.30 339 | 94.99 332 | 84.14 242 | 96.09 345 | 80.38 353 | 84.56 306 | 93.71 334 |
|
| ppachtmachnet_test | | | 89.58 310 | 88.35 313 | 93.25 311 | 92.40 353 | 90.44 301 | 99.33 231 | 96.73 334 | 85.49 341 | 85.90 337 | 95.77 294 | 81.09 265 | 96.00 349 | 76.00 373 | 82.49 319 | 93.30 342 |
|
| mvs_anonymous | | | 95.65 168 | 95.03 173 | 97.53 167 | 98.19 179 | 95.74 157 | 99.33 231 | 97.49 258 | 90.87 255 | 90.47 258 | 97.10 253 | 88.23 198 | 97.16 291 | 95.92 172 | 97.66 164 | 99.68 113 |
|
| AUN-MVS | | | 93.28 229 | 92.60 234 | 95.34 234 | 98.29 170 | 90.09 308 | 99.31 234 | 98.56 92 | 91.80 228 | 96.35 183 | 98.00 228 | 89.38 184 | 98.28 237 | 92.46 237 | 69.22 381 | 97.64 241 |
|
| xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 95 | 98.55 102 | 97.74 205 | 98.14 64 | 99.31 234 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 226 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 236 |
|
| xiu_mvs_v1_base | | | 97.43 89 | 97.06 95 | 98.55 102 | 97.74 205 | 98.14 64 | 99.31 234 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 226 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 236 |
|
| xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 95 | 98.55 102 | 97.74 205 | 98.14 64 | 99.31 234 | 97.86 225 | 96.43 64 | 99.62 47 | 99.69 89 | 85.56 226 | 99.68 142 | 99.05 60 | 98.31 146 | 97.83 236 |
|
| MVS_Test | | | 96.46 138 | 95.74 150 | 98.61 96 | 98.18 180 | 97.23 101 | 99.31 234 | 97.15 293 | 91.07 251 | 98.84 97 | 97.05 257 | 88.17 199 | 98.97 182 | 94.39 202 | 97.50 166 | 99.61 131 |
|
| hse-mvs2 | | | 94.38 200 | 94.08 194 | 95.31 236 | 98.27 173 | 90.02 310 | 99.29 239 | 98.56 92 | 95.90 78 | 98.77 102 | 98.00 228 | 90.89 165 | 98.26 241 | 97.80 130 | 69.20 382 | 97.64 241 |
|
| testdata1 | | | | | | | | 99.28 240 | | 96.35 71 | | | | | | | |
|
| Vis-MVSNet |  | | 95.72 162 | 95.15 169 | 97.45 171 | 97.62 217 | 94.28 207 | 99.28 240 | 98.24 183 | 94.27 133 | 96.84 168 | 98.94 172 | 79.39 282 | 98.76 194 | 93.25 226 | 98.49 141 | 99.30 180 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| FMVSNet3 | | | 92.69 245 | 91.58 254 | 95.99 217 | 98.29 170 | 97.42 97 | 99.26 242 | 97.62 240 | 89.80 276 | 89.68 271 | 95.32 318 | 81.62 259 | 96.27 337 | 87.01 313 | 85.65 296 | 94.29 284 |
|
| DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 26 | 99.62 20 | 99.90 42 | 98.85 35 | 99.24 243 | 98.47 115 | 98.14 10 | 99.08 87 | 99.91 14 | 93.09 113 | 100.00 1 | 99.04 63 | 99.99 21 | 100.00 1 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| dcpmvs_2 | | | 97.42 93 | 98.09 54 | 95.42 231 | 99.58 85 | 87.24 341 | 99.23 244 | 96.95 314 | 94.28 131 | 98.93 94 | 99.73 80 | 94.39 74 | 99.16 176 | 99.89 16 | 99.82 77 | 99.86 89 |
|
| YYNet1 | | | 85.50 334 | 83.33 340 | 92.00 327 | 90.89 371 | 88.38 333 | 99.22 245 | 96.55 342 | 79.60 375 | 57.26 398 | 92.72 362 | 79.09 288 | 93.78 374 | 77.25 368 | 77.37 360 | 93.84 325 |
|
| v8 | | | 90.54 289 | 89.17 299 | 94.66 256 | 93.43 333 | 93.40 234 | 99.20 246 | 96.94 318 | 85.76 336 | 87.56 313 | 94.51 344 | 81.96 255 | 97.19 290 | 84.94 328 | 78.25 351 | 93.38 341 |
|
| MDA-MVSNet_test_wron | | | 85.51 333 | 83.32 341 | 92.10 326 | 90.96 370 | 88.58 329 | 99.20 246 | 96.52 343 | 79.70 374 | 57.12 399 | 92.69 363 | 79.11 286 | 93.86 373 | 77.10 369 | 77.46 359 | 93.86 324 |
|
| ACMMP |  | | 97.74 79 | 97.44 81 | 98.66 92 | 99.92 31 | 96.13 145 | 99.18 248 | 99.45 19 | 94.84 106 | 96.41 181 | 99.71 85 | 91.40 151 | 99.99 36 | 97.99 121 | 98.03 158 | 99.87 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| WR-MVS_H | | | 91.30 270 | 90.35 274 | 94.15 278 | 94.17 320 | 92.62 253 | 99.17 249 | 98.94 41 | 88.87 293 | 86.48 329 | 94.46 348 | 84.36 239 | 96.61 324 | 88.19 295 | 78.51 350 | 93.21 345 |
|
| TAMVS | | | 95.85 159 | 95.58 155 | 96.65 201 | 97.07 242 | 93.50 230 | 99.17 249 | 97.82 229 | 91.39 243 | 95.02 205 | 98.01 227 | 92.20 139 | 97.30 283 | 93.75 220 | 95.83 204 | 99.14 194 |
|
| PS-MVSNAJss | | | 93.64 222 | 93.31 218 | 94.61 258 | 92.11 357 | 92.19 260 | 99.12 251 | 97.38 268 | 92.51 205 | 88.45 299 | 96.99 260 | 91.20 154 | 97.29 286 | 94.36 203 | 87.71 283 | 94.36 278 |
|
| DTE-MVSNet | | | 89.40 312 | 88.24 315 | 92.88 319 | 92.66 350 | 89.95 312 | 99.10 252 | 98.22 185 | 87.29 316 | 85.12 341 | 96.22 283 | 76.27 311 | 95.30 359 | 83.56 337 | 75.74 368 | 93.41 338 |
|
| CP-MVSNet | | | 91.23 274 | 90.22 278 | 94.26 276 | 93.96 323 | 92.39 257 | 99.09 253 | 98.57 89 | 88.95 290 | 86.42 330 | 96.57 275 | 79.19 285 | 96.37 332 | 90.29 274 | 78.95 347 | 94.02 308 |
|
| AdaColmap |  | | 97.23 101 | 96.80 108 | 98.51 108 | 99.99 1 | 95.60 166 | 99.09 253 | 98.84 58 | 93.32 168 | 96.74 171 | 99.72 83 | 86.04 223 | 100.00 1 | 98.01 119 | 99.43 111 | 99.94 74 |
|
| v10 | | | 90.25 297 | 88.82 306 | 94.57 262 | 93.53 331 | 93.43 232 | 99.08 255 | 96.87 324 | 85.00 345 | 87.34 319 | 94.51 344 | 80.93 267 | 97.02 306 | 82.85 340 | 79.23 346 | 93.26 343 |
|
| XVG-OURS-SEG-HR | | | 94.79 185 | 94.70 182 | 95.08 242 | 98.05 187 | 89.19 319 | 99.08 255 | 97.54 251 | 93.66 158 | 94.87 206 | 99.58 108 | 78.78 289 | 99.79 123 | 97.31 144 | 93.40 240 | 96.25 254 |
|
| XVG-OURS | | | 94.82 183 | 94.74 181 | 95.06 243 | 98.00 189 | 89.19 319 | 99.08 255 | 97.55 249 | 94.10 138 | 94.71 207 | 99.62 104 | 80.51 273 | 99.74 134 | 96.04 170 | 93.06 245 | 96.25 254 |
|
| IS-MVSNet | | | 96.29 148 | 95.90 146 | 97.45 171 | 98.13 184 | 94.80 195 | 99.08 255 | 97.61 243 | 92.02 221 | 95.54 199 | 98.96 165 | 90.64 168 | 98.08 249 | 93.73 221 | 97.41 170 | 99.47 158 |
|
| v7n | | | 89.65 309 | 88.29 314 | 93.72 296 | 92.22 355 | 90.56 298 | 99.07 259 | 97.10 298 | 85.42 343 | 86.73 323 | 94.72 337 | 80.06 277 | 97.13 294 | 81.14 350 | 78.12 353 | 93.49 337 |
|
| EI-MVSNet | | | 93.73 219 | 93.40 216 | 94.74 253 | 96.80 259 | 92.69 249 | 99.06 260 | 97.67 236 | 88.96 289 | 91.39 247 | 99.02 154 | 88.75 195 | 97.30 283 | 91.07 255 | 87.85 281 | 94.22 288 |
|
| CVMVSNet | | | 94.68 191 | 94.94 176 | 93.89 292 | 96.80 259 | 86.92 344 | 99.06 260 | 98.98 38 | 94.45 117 | 94.23 216 | 99.02 154 | 85.60 225 | 95.31 358 | 90.91 261 | 95.39 214 | 99.43 164 |
|
| baseline1 | | | 95.78 161 | 94.86 177 | 98.54 105 | 98.47 161 | 98.07 67 | 99.06 260 | 97.99 209 | 92.68 192 | 94.13 217 | 98.62 200 | 93.28 108 | 98.69 201 | 93.79 218 | 85.76 295 | 98.84 211 |
|
| PEN-MVS | | | 90.19 299 | 89.06 302 | 93.57 302 | 93.06 342 | 90.90 290 | 99.06 260 | 98.47 115 | 88.11 306 | 85.91 336 | 96.30 281 | 76.67 304 | 95.94 350 | 87.07 310 | 76.91 364 | 93.89 321 |
|
| test_fmvs3 | | | 79.99 355 | 80.17 354 | 79.45 372 | 84.02 391 | 62.83 393 | 99.05 264 | 93.49 390 | 88.29 305 | 80.06 365 | 86.65 389 | 28.09 401 | 88.00 393 | 88.63 288 | 73.27 373 | 87.54 389 |
|
| Anonymous20231206 | | | 86.32 328 | 85.42 331 | 89.02 351 | 89.11 381 | 80.53 380 | 99.05 264 | 95.28 370 | 85.43 342 | 82.82 350 | 93.92 352 | 74.40 327 | 93.44 377 | 66.99 387 | 81.83 325 | 93.08 347 |
|
| MAR-MVS | | | 97.43 89 | 97.19 92 | 98.15 129 | 99.47 92 | 94.79 196 | 99.05 264 | 98.76 63 | 92.65 194 | 98.66 110 | 99.82 46 | 88.52 197 | 99.98 43 | 98.12 113 | 99.63 89 | 99.67 117 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| VNet | | | 97.21 102 | 96.57 118 | 99.13 65 | 98.97 119 | 97.82 78 | 99.03 267 | 99.21 29 | 94.31 128 | 99.18 85 | 98.88 176 | 86.26 222 | 99.89 96 | 98.93 69 | 94.32 228 | 99.69 112 |
|
| LCM-MVSNet-Re | | | 92.31 253 | 92.60 234 | 91.43 332 | 97.53 221 | 79.27 382 | 99.02 268 | 91.83 396 | 92.07 217 | 80.31 362 | 94.38 349 | 83.50 246 | 95.48 354 | 97.22 148 | 97.58 165 | 99.54 147 |
|
| jajsoiax | | | 91.92 259 | 91.18 262 | 94.15 278 | 91.35 367 | 90.95 289 | 99.00 269 | 97.42 264 | 92.61 196 | 87.38 317 | 97.08 254 | 72.46 334 | 97.36 277 | 94.53 201 | 88.77 264 | 94.13 302 |
|
| VPNet | | | 91.81 261 | 90.46 271 | 95.85 221 | 94.74 310 | 95.54 168 | 98.98 270 | 98.59 86 | 92.14 215 | 90.77 256 | 97.44 243 | 68.73 351 | 97.54 273 | 94.89 191 | 77.89 354 | 94.46 267 |
|
| PS-CasMVS | | | 90.63 287 | 89.51 294 | 93.99 287 | 93.83 325 | 91.70 276 | 98.98 270 | 98.52 104 | 88.48 301 | 86.15 334 | 96.53 277 | 75.46 317 | 96.31 336 | 88.83 287 | 78.86 349 | 93.95 316 |
|
| FMVSNet2 | | | 91.02 277 | 89.56 291 | 95.41 232 | 97.53 221 | 95.74 157 | 98.98 270 | 97.41 266 | 87.05 319 | 88.43 302 | 95.00 331 | 71.34 339 | 96.24 339 | 85.12 326 | 85.21 301 | 94.25 287 |
|
| K. test v3 | | | 88.05 321 | 87.24 323 | 90.47 340 | 91.82 362 | 82.23 368 | 98.96 273 | 97.42 264 | 89.05 283 | 76.93 377 | 95.60 301 | 68.49 353 | 95.42 355 | 85.87 323 | 81.01 335 | 93.75 329 |
|
| tfpnnormal | | | 89.29 314 | 87.61 320 | 94.34 275 | 94.35 317 | 94.13 212 | 98.95 274 | 98.94 41 | 83.94 352 | 84.47 343 | 95.51 307 | 74.84 324 | 97.39 276 | 77.05 370 | 80.41 339 | 91.48 367 |
|
| AllTest | | | 92.48 249 | 91.64 252 | 95.00 245 | 99.01 114 | 88.43 330 | 98.94 275 | 96.82 329 | 86.50 327 | 88.71 295 | 98.47 214 | 74.73 325 | 99.88 102 | 85.39 324 | 96.18 193 | 96.71 250 |
|
| h-mvs33 | | | 94.92 182 | 94.36 186 | 96.59 202 | 98.85 135 | 91.29 283 | 98.93 276 | 98.94 41 | 95.90 78 | 98.77 102 | 98.42 217 | 90.89 165 | 99.77 128 | 97.80 130 | 70.76 376 | 98.72 219 |
|
| anonymousdsp | | | 91.79 266 | 90.92 265 | 94.41 273 | 90.76 372 | 92.93 243 | 98.93 276 | 97.17 290 | 89.08 282 | 87.46 316 | 95.30 319 | 78.43 295 | 96.92 310 | 92.38 238 | 88.73 265 | 93.39 340 |
|
| DP-MVS | | | 94.54 194 | 93.42 213 | 97.91 145 | 99.46 94 | 94.04 214 | 98.93 276 | 97.48 259 | 81.15 368 | 90.04 262 | 99.55 110 | 87.02 211 | 99.95 69 | 88.97 286 | 98.11 154 | 99.73 105 |
|
| IterMVS-SCA-FT | | | 90.85 282 | 90.16 282 | 92.93 318 | 96.72 264 | 89.96 311 | 98.89 279 | 96.99 309 | 88.95 290 | 86.63 325 | 95.67 298 | 76.48 308 | 95.00 361 | 87.04 311 | 84.04 313 | 93.84 325 |
|
| IterMVS | | | 90.91 279 | 90.17 281 | 93.12 313 | 96.78 262 | 90.42 302 | 98.89 279 | 97.05 305 | 89.03 284 | 86.49 328 | 95.42 311 | 76.59 306 | 95.02 360 | 87.22 308 | 84.09 310 | 93.93 318 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Anonymous202405211 | | | 93.10 235 | 91.99 247 | 96.40 208 | 99.10 109 | 89.65 316 | 98.88 281 | 97.93 216 | 83.71 355 | 94.00 218 | 98.75 188 | 68.79 349 | 99.88 102 | 95.08 184 | 91.71 246 | 99.68 113 |
|
| VPA-MVSNet | | | 92.70 244 | 91.55 256 | 96.16 214 | 95.09 304 | 96.20 141 | 98.88 281 | 99.00 36 | 91.02 253 | 91.82 244 | 95.29 322 | 76.05 314 | 97.96 257 | 95.62 178 | 81.19 329 | 94.30 283 |
|
| test20.03 | | | 84.72 339 | 83.99 334 | 86.91 361 | 88.19 384 | 80.62 379 | 98.88 281 | 95.94 357 | 88.36 303 | 78.87 367 | 94.62 342 | 68.75 350 | 89.11 392 | 66.52 389 | 75.82 367 | 91.00 369 |
|
| XXY-MVS | | | 91.82 260 | 90.46 271 | 95.88 219 | 93.91 324 | 95.40 175 | 98.87 284 | 97.69 234 | 88.63 299 | 87.87 309 | 97.08 254 | 74.38 328 | 97.89 261 | 91.66 248 | 84.07 311 | 94.35 281 |
|
| test1111 | | | 95.57 169 | 94.98 175 | 97.37 177 | 98.56 151 | 93.37 235 | 98.86 285 | 98.45 118 | 94.95 100 | 96.63 173 | 98.95 170 | 75.21 322 | 99.11 177 | 95.02 185 | 98.14 153 | 99.64 123 |
|
| SCA | | | 94.69 189 | 93.81 202 | 97.33 181 | 97.10 241 | 94.44 200 | 98.86 285 | 98.32 172 | 93.30 169 | 96.17 187 | 95.59 302 | 76.48 308 | 97.95 258 | 91.06 256 | 97.43 167 | 99.59 134 |
|
| ECVR-MVS |  | | 95.66 167 | 95.05 172 | 97.51 169 | 98.66 146 | 93.71 223 | 98.85 287 | 98.45 118 | 94.93 101 | 96.86 167 | 98.96 165 | 75.22 321 | 99.20 171 | 95.34 179 | 98.15 151 | 99.64 123 |
|
| eth_miper_zixun_eth | | | 92.41 251 | 91.93 248 | 93.84 293 | 97.28 238 | 90.68 294 | 98.83 288 | 96.97 313 | 88.57 300 | 89.19 288 | 95.73 297 | 89.24 189 | 96.69 321 | 89.97 279 | 81.55 326 | 94.15 298 |
|
| CL-MVSNet_self_test | | | 84.50 340 | 83.15 343 | 88.53 356 | 86.00 387 | 81.79 371 | 98.82 289 | 97.35 270 | 85.12 344 | 83.62 348 | 90.91 374 | 76.66 305 | 91.40 387 | 69.53 383 | 60.36 396 | 92.40 358 |
|
| test2506 | | | 97.53 86 | 97.19 92 | 98.58 100 | 98.66 146 | 96.90 115 | 98.81 290 | 99.77 5 | 94.93 101 | 97.95 137 | 98.96 165 | 92.51 131 | 99.20 171 | 94.93 187 | 98.15 151 | 99.64 123 |
|
| ACMH+ | | 89.98 16 | 90.35 293 | 89.54 292 | 92.78 321 | 95.99 278 | 86.12 347 | 98.81 290 | 97.18 289 | 89.38 279 | 83.14 349 | 97.76 238 | 68.42 354 | 98.43 216 | 89.11 285 | 86.05 294 | 93.78 328 |
|
| Anonymous20240521 | | | 85.15 336 | 83.81 338 | 89.16 350 | 88.32 382 | 82.69 363 | 98.80 292 | 95.74 360 | 79.72 373 | 81.53 357 | 90.99 372 | 65.38 366 | 94.16 369 | 72.69 377 | 81.11 332 | 90.63 373 |
|
| N_pmnet | | | 80.06 354 | 80.78 352 | 77.89 373 | 91.94 359 | 45.28 411 | 98.80 292 | 56.82 413 | 78.10 378 | 80.08 364 | 93.33 357 | 77.03 299 | 95.76 352 | 68.14 386 | 82.81 316 | 92.64 353 |
|
| VDD-MVS | | | 93.77 217 | 92.94 225 | 96.27 212 | 98.55 154 | 90.22 305 | 98.77 294 | 97.79 230 | 90.85 256 | 96.82 169 | 99.42 120 | 61.18 379 | 99.77 128 | 98.95 67 | 94.13 231 | 98.82 212 |
|
| LFMVS | | | 94.75 188 | 93.56 209 | 98.30 121 | 99.03 113 | 95.70 160 | 98.74 295 | 97.98 211 | 87.81 311 | 98.47 118 | 99.39 127 | 67.43 358 | 99.53 150 | 98.01 119 | 95.20 219 | 99.67 117 |
|
| LS3D | | | 95.84 160 | 95.11 170 | 98.02 137 | 99.85 54 | 95.10 187 | 98.74 295 | 98.50 112 | 87.22 318 | 93.66 221 | 99.86 26 | 87.45 205 | 99.95 69 | 90.94 260 | 99.81 79 | 99.02 203 |
|
| Anonymous20240529 | | | 92.10 257 | 90.65 268 | 96.47 203 | 98.82 136 | 90.61 296 | 98.72 297 | 98.67 73 | 75.54 384 | 93.90 220 | 98.58 204 | 66.23 362 | 99.90 91 | 94.70 197 | 90.67 249 | 98.90 209 |
|
| dmvs_re | | | 93.20 231 | 93.15 221 | 93.34 306 | 96.54 267 | 83.81 359 | 98.71 298 | 98.51 107 | 91.39 243 | 92.37 239 | 98.56 206 | 78.66 291 | 97.83 263 | 93.89 211 | 89.74 250 | 98.38 227 |
|
| TR-MVS | | | 94.54 194 | 93.56 209 | 97.49 170 | 97.96 191 | 94.34 206 | 98.71 298 | 97.51 256 | 90.30 269 | 94.51 210 | 98.69 192 | 75.56 316 | 98.77 193 | 92.82 235 | 95.99 197 | 99.35 173 |
|
| USDC | | | 90.00 303 | 88.96 304 | 93.10 315 | 94.81 309 | 88.16 334 | 98.71 298 | 95.54 366 | 93.66 158 | 83.75 347 | 97.20 250 | 65.58 364 | 98.31 233 | 83.96 334 | 87.49 287 | 92.85 351 |
|
| VDDNet | | | 93.12 234 | 91.91 249 | 96.76 196 | 96.67 266 | 92.65 252 | 98.69 301 | 98.21 186 | 82.81 361 | 97.75 146 | 99.28 133 | 61.57 377 | 99.48 161 | 98.09 116 | 94.09 232 | 98.15 231 |
|
| EU-MVSNet | | | 90.14 301 | 90.34 275 | 89.54 347 | 92.55 351 | 81.06 376 | 98.69 301 | 98.04 207 | 91.41 242 | 86.59 326 | 96.84 267 | 80.83 268 | 93.31 378 | 86.20 318 | 81.91 324 | 94.26 285 |
|
| mvs_tets | | | 91.81 261 | 91.08 263 | 94.00 286 | 91.63 364 | 90.58 297 | 98.67 303 | 97.43 262 | 92.43 207 | 87.37 318 | 97.05 257 | 71.76 336 | 97.32 282 | 94.75 195 | 88.68 267 | 94.11 303 |
|
| MDA-MVSNet-bldmvs | | | 84.09 342 | 81.52 349 | 91.81 330 | 91.32 368 | 88.00 337 | 98.67 303 | 95.92 358 | 80.22 372 | 55.60 400 | 93.32 358 | 68.29 355 | 93.60 376 | 73.76 375 | 76.61 366 | 93.82 327 |
|
| UGNet | | | 95.33 175 | 94.57 183 | 97.62 164 | 98.55 154 | 94.85 192 | 98.67 303 | 99.32 26 | 95.75 83 | 96.80 170 | 96.27 282 | 72.18 335 | 99.96 61 | 94.58 200 | 99.05 129 | 98.04 234 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| pm-mvs1 | | | 89.36 313 | 87.81 319 | 94.01 285 | 93.40 335 | 91.93 266 | 98.62 306 | 96.48 345 | 86.25 331 | 83.86 346 | 96.14 286 | 73.68 331 | 97.04 302 | 86.16 319 | 75.73 369 | 93.04 348 |
|
| test_0402 | | | 85.58 331 | 83.94 336 | 90.50 339 | 93.81 326 | 85.04 353 | 98.55 307 | 95.20 373 | 76.01 381 | 79.72 366 | 95.13 325 | 64.15 370 | 96.26 338 | 66.04 391 | 86.88 290 | 90.21 376 |
|
| ACMH | | 89.72 17 | 90.64 286 | 89.63 289 | 93.66 301 | 95.64 297 | 88.64 328 | 98.55 307 | 97.45 260 | 89.03 284 | 81.62 356 | 97.61 240 | 69.75 346 | 98.41 218 | 89.37 282 | 87.62 285 | 93.92 319 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20231211 | | | 89.86 305 | 88.44 312 | 94.13 280 | 98.93 123 | 90.68 294 | 98.54 309 | 98.26 182 | 76.28 380 | 86.73 323 | 95.54 304 | 70.60 344 | 97.56 272 | 90.82 263 | 80.27 342 | 94.15 298 |
|
| TransMVSNet (Re) | | | 87.25 325 | 85.28 332 | 93.16 312 | 93.56 330 | 91.03 285 | 98.54 309 | 94.05 385 | 83.69 356 | 81.09 359 | 96.16 285 | 75.32 318 | 96.40 331 | 76.69 371 | 68.41 383 | 92.06 361 |
|
| XVG-ACMP-BASELINE | | | 91.22 275 | 90.75 266 | 92.63 322 | 93.73 327 | 85.61 349 | 98.52 311 | 97.44 261 | 92.77 187 | 89.90 266 | 96.85 265 | 66.64 361 | 98.39 222 | 92.29 239 | 88.61 268 | 93.89 321 |
|
| CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 78 | 99.38 96 | 98.87 33 | 98.46 312 | 99.42 22 | 97.03 42 | 99.02 90 | 99.09 149 | 99.35 1 | 98.21 243 | 99.73 32 | 99.78 80 | 99.77 101 |
|
| OpenMVS_ROB |  | 79.82 20 | 83.77 345 | 81.68 348 | 90.03 344 | 88.30 383 | 82.82 362 | 98.46 312 | 95.22 372 | 73.92 389 | 76.00 380 | 91.29 371 | 55.00 385 | 96.94 308 | 68.40 385 | 88.51 272 | 90.34 374 |
|
| GBi-Net | | | 90.88 280 | 89.82 286 | 94.08 281 | 97.53 221 | 91.97 263 | 98.43 314 | 96.95 314 | 87.05 319 | 89.68 271 | 94.72 337 | 71.34 339 | 96.11 342 | 87.01 313 | 85.65 296 | 94.17 292 |
|
| test1 | | | 90.88 280 | 89.82 286 | 94.08 281 | 97.53 221 | 91.97 263 | 98.43 314 | 96.95 314 | 87.05 319 | 89.68 271 | 94.72 337 | 71.34 339 | 96.11 342 | 87.01 313 | 85.65 296 | 94.17 292 |
|
| FMVSNet1 | | | 88.50 318 | 86.64 324 | 94.08 281 | 95.62 299 | 91.97 263 | 98.43 314 | 96.95 314 | 83.00 359 | 86.08 335 | 94.72 337 | 59.09 381 | 96.11 342 | 81.82 348 | 84.07 311 | 94.17 292 |
|
| COLMAP_ROB |  | 90.47 14 | 92.18 256 | 91.49 258 | 94.25 277 | 99.00 116 | 88.04 336 | 98.42 317 | 96.70 336 | 82.30 364 | 88.43 302 | 99.01 156 | 76.97 301 | 99.85 108 | 86.11 320 | 96.50 188 | 94.86 261 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| tt0805 | | | 91.28 272 | 90.18 280 | 94.60 259 | 96.26 271 | 87.55 338 | 98.39 318 | 98.72 65 | 89.00 286 | 89.22 285 | 98.47 214 | 62.98 373 | 98.96 183 | 90.57 267 | 88.00 280 | 97.28 247 |
|
| test123 | | | 37.68 375 | 39.14 378 | 33.31 390 | 19.94 414 | 24.83 416 | 98.36 319 | 9.75 415 | 15.53 408 | 51.31 402 | 87.14 387 | 19.62 409 | 17.74 410 | 47.10 402 | 3.47 409 | 57.36 403 |
|
| 1314 | | | 96.84 120 | 95.96 140 | 99.48 34 | 96.74 263 | 98.52 58 | 98.31 320 | 98.86 53 | 95.82 80 | 89.91 265 | 98.98 161 | 87.49 204 | 99.96 61 | 97.80 130 | 99.73 83 | 99.96 64 |
|
| MVS | | | 96.60 133 | 95.56 156 | 99.72 13 | 96.85 256 | 99.22 20 | 98.31 320 | 98.94 41 | 91.57 232 | 90.90 254 | 99.61 105 | 86.66 216 | 99.96 61 | 97.36 143 | 99.88 69 | 99.99 23 |
|
| NR-MVSNet | | | 91.56 269 | 90.22 278 | 95.60 225 | 94.05 321 | 95.76 156 | 98.25 322 | 98.70 67 | 91.16 248 | 80.78 361 | 96.64 272 | 83.23 249 | 96.57 325 | 91.41 250 | 77.73 356 | 94.46 267 |
|
| sd_testset | | | 93.55 224 | 92.83 228 | 95.74 224 | 98.92 126 | 90.89 291 | 98.24 323 | 98.85 56 | 92.41 208 | 92.55 236 | 97.85 234 | 71.07 343 | 98.68 202 | 93.93 210 | 91.62 247 | 97.64 241 |
|
| MS-PatchMatch | | | 90.65 285 | 90.30 276 | 91.71 331 | 94.22 319 | 85.50 351 | 98.24 323 | 97.70 233 | 88.67 297 | 86.42 330 | 96.37 280 | 67.82 356 | 98.03 253 | 83.62 336 | 99.62 90 | 91.60 365 |
|
| pmmvs3 | | | 80.27 353 | 77.77 358 | 87.76 360 | 80.32 398 | 82.43 366 | 98.23 325 | 91.97 395 | 72.74 391 | 78.75 368 | 87.97 385 | 57.30 384 | 90.99 389 | 70.31 381 | 62.37 394 | 89.87 378 |
|
| SixPastTwentyTwo | | | 88.73 317 | 88.01 318 | 90.88 335 | 91.85 361 | 82.24 367 | 98.22 326 | 95.18 374 | 88.97 288 | 82.26 352 | 96.89 262 | 71.75 337 | 96.67 322 | 84.00 332 | 82.98 315 | 93.72 333 |
|
| EG-PatchMatch MVS | | | 85.35 335 | 83.81 338 | 89.99 345 | 90.39 374 | 81.89 370 | 98.21 327 | 96.09 355 | 81.78 366 | 74.73 383 | 93.72 355 | 51.56 391 | 97.12 296 | 79.16 361 | 88.61 268 | 90.96 370 |
|
| OurMVSNet-221017-0 | | | 89.81 306 | 89.48 296 | 90.83 337 | 91.64 363 | 81.21 374 | 98.17 328 | 95.38 369 | 91.48 236 | 85.65 338 | 97.31 247 | 72.66 333 | 97.29 286 | 88.15 296 | 84.83 304 | 93.97 315 |
|
| LF4IMVS | | | 89.25 315 | 88.85 305 | 90.45 341 | 92.81 349 | 81.19 375 | 98.12 329 | 94.79 376 | 91.44 238 | 86.29 332 | 97.11 252 | 65.30 367 | 98.11 248 | 88.53 292 | 85.25 300 | 92.07 360 |
|
| RPSCF | | | 91.80 264 | 92.79 230 | 88.83 352 | 98.15 182 | 69.87 390 | 98.11 330 | 96.60 340 | 83.93 353 | 94.33 213 | 99.27 136 | 79.60 281 | 99.46 163 | 91.99 243 | 93.16 243 | 97.18 248 |
|
| pmmvs-eth3d | | | 84.03 343 | 81.97 347 | 90.20 342 | 84.15 390 | 87.09 342 | 98.10 331 | 94.73 378 | 83.05 358 | 74.10 385 | 87.77 386 | 65.56 365 | 94.01 370 | 81.08 351 | 69.24 380 | 89.49 383 |
|
| DSMNet-mixed | | | 88.28 320 | 88.24 315 | 88.42 357 | 89.64 379 | 75.38 386 | 98.06 332 | 89.86 400 | 85.59 340 | 88.20 306 | 92.14 369 | 76.15 313 | 91.95 386 | 78.46 363 | 96.05 196 | 97.92 235 |
|
| MVP-Stereo | | | 90.93 278 | 90.45 273 | 92.37 324 | 91.25 369 | 88.76 323 | 98.05 333 | 96.17 353 | 87.27 317 | 84.04 344 | 95.30 319 | 78.46 294 | 97.27 288 | 83.78 335 | 99.70 85 | 91.09 368 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| UA-Net | | | 96.54 135 | 95.96 140 | 98.27 122 | 98.23 175 | 95.71 159 | 98.00 334 | 98.45 118 | 93.72 157 | 98.41 120 | 99.27 136 | 88.71 196 | 99.66 146 | 91.19 253 | 97.69 162 | 99.44 163 |
|
| new-patchmatchnet | | | 81.19 349 | 79.34 356 | 86.76 362 | 82.86 393 | 80.36 381 | 97.92 335 | 95.27 371 | 82.09 365 | 72.02 386 | 86.87 388 | 62.81 374 | 90.74 390 | 71.10 380 | 63.08 393 | 89.19 386 |
|
| PCF-MVS | | 94.20 5 | 95.18 176 | 94.10 193 | 98.43 114 | 98.55 154 | 95.99 149 | 97.91 336 | 97.31 276 | 90.35 267 | 89.48 278 | 99.22 142 | 85.19 231 | 99.89 96 | 90.40 273 | 98.47 142 | 99.41 166 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| WB-MVS | | | 76.28 358 | 77.28 360 | 73.29 378 | 81.18 395 | 54.68 403 | 97.87 337 | 94.19 382 | 81.30 367 | 69.43 390 | 90.70 375 | 77.02 300 | 82.06 401 | 35.71 406 | 68.11 385 | 83.13 392 |
|
| pmmvs6 | | | 85.69 330 | 83.84 337 | 91.26 334 | 90.00 378 | 84.41 357 | 97.82 338 | 96.15 354 | 75.86 382 | 81.29 358 | 95.39 314 | 61.21 378 | 96.87 313 | 83.52 338 | 73.29 372 | 92.50 356 |
|
| UniMVSNet_ETH3D | | | 90.06 302 | 88.58 310 | 94.49 267 | 94.67 312 | 88.09 335 | 97.81 339 | 97.57 248 | 83.91 354 | 88.44 300 | 97.41 244 | 57.44 383 | 97.62 271 | 91.41 250 | 88.59 270 | 97.77 239 |
|
| TinyColmap | | | 87.87 324 | 86.51 325 | 91.94 328 | 95.05 306 | 85.57 350 | 97.65 340 | 94.08 383 | 84.40 351 | 81.82 355 | 96.85 265 | 62.14 375 | 98.33 231 | 80.25 355 | 86.37 293 | 91.91 364 |
|
| HY-MVS | | 92.50 7 | 97.79 76 | 97.17 94 | 99.63 17 | 98.98 118 | 99.32 9 | 97.49 341 | 99.52 15 | 95.69 84 | 98.32 125 | 97.41 244 | 93.32 105 | 99.77 128 | 98.08 117 | 95.75 207 | 99.81 94 |
|
| SSC-MVS | | | 75.42 359 | 76.40 362 | 72.49 382 | 80.68 397 | 53.62 404 | 97.42 342 | 94.06 384 | 80.42 371 | 68.75 391 | 90.14 377 | 76.54 307 | 81.66 402 | 33.25 407 | 66.34 389 | 82.19 393 |
|
| Effi-MVS+ | | | 96.30 147 | 95.69 152 | 98.16 126 | 97.85 198 | 96.26 136 | 97.41 343 | 97.21 286 | 90.37 266 | 98.65 111 | 98.58 204 | 86.61 217 | 98.70 200 | 97.11 150 | 97.37 171 | 99.52 151 |
|
| TDRefinement | | | 84.76 337 | 82.56 345 | 91.38 333 | 74.58 403 | 84.80 356 | 97.36 344 | 94.56 380 | 84.73 349 | 80.21 363 | 96.12 289 | 63.56 371 | 98.39 222 | 87.92 299 | 63.97 392 | 90.95 371 |
|
| FMVSNet5 | | | 88.32 319 | 87.47 321 | 90.88 335 | 96.90 254 | 88.39 332 | 97.28 345 | 95.68 362 | 82.60 363 | 84.67 342 | 92.40 367 | 79.83 279 | 91.16 388 | 76.39 372 | 81.51 327 | 93.09 346 |
|
| KD-MVS_self_test | | | 83.59 346 | 82.06 346 | 88.20 358 | 86.93 385 | 80.70 378 | 97.21 346 | 96.38 347 | 82.87 360 | 82.49 351 | 88.97 380 | 67.63 357 | 92.32 384 | 73.75 376 | 62.30 395 | 91.58 366 |
|
| LTVRE_ROB | | 88.28 18 | 90.29 296 | 89.05 303 | 94.02 284 | 95.08 305 | 90.15 307 | 97.19 347 | 97.43 262 | 84.91 348 | 83.99 345 | 97.06 256 | 74.00 330 | 98.28 237 | 84.08 331 | 87.71 283 | 93.62 335 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| KD-MVS_2432*1600 | | | 88.00 322 | 86.10 326 | 93.70 299 | 96.91 251 | 94.04 214 | 97.17 348 | 97.12 296 | 84.93 346 | 81.96 353 | 92.41 365 | 92.48 132 | 94.51 367 | 79.23 358 | 52.68 399 | 92.56 354 |
|
| miper_refine_blended | | | 88.00 322 | 86.10 326 | 93.70 299 | 96.91 251 | 94.04 214 | 97.17 348 | 97.12 296 | 84.93 346 | 81.96 353 | 92.41 365 | 92.48 132 | 94.51 367 | 79.23 358 | 52.68 399 | 92.56 354 |
|
| mvsany_test3 | | | 82.12 348 | 81.14 350 | 85.06 365 | 81.87 394 | 70.41 389 | 97.09 350 | 92.14 394 | 91.27 245 | 77.84 373 | 88.73 381 | 39.31 396 | 95.49 353 | 90.75 265 | 71.24 375 | 89.29 385 |
|
| CostFormer | | | 96.10 152 | 95.88 147 | 96.78 195 | 97.03 244 | 92.55 254 | 97.08 351 | 97.83 228 | 90.04 273 | 98.72 107 | 94.89 335 | 95.01 56 | 98.29 235 | 96.54 164 | 95.77 205 | 99.50 155 |
|
| tpm | | | 93.70 221 | 93.41 215 | 94.58 261 | 95.36 302 | 87.41 340 | 97.01 352 | 96.90 321 | 90.85 256 | 96.72 172 | 94.14 351 | 90.40 172 | 96.84 314 | 90.75 265 | 88.54 271 | 99.51 153 |
|
| CMPMVS |  | 61.59 21 | 84.75 338 | 85.14 333 | 83.57 367 | 90.32 375 | 62.54 395 | 96.98 353 | 97.59 247 | 74.33 388 | 69.95 389 | 96.66 270 | 64.17 369 | 98.32 232 | 87.88 300 | 88.41 273 | 89.84 379 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_f | | | 78.40 357 | 77.59 359 | 80.81 371 | 80.82 396 | 62.48 396 | 96.96 354 | 93.08 392 | 83.44 357 | 74.57 384 | 84.57 393 | 27.95 402 | 92.63 382 | 84.15 330 | 72.79 374 | 87.32 390 |
|
| tpm2 | | | 95.47 171 | 95.18 168 | 96.35 211 | 96.91 251 | 91.70 276 | 96.96 354 | 97.93 216 | 88.04 308 | 98.44 119 | 95.40 312 | 93.32 105 | 97.97 255 | 94.00 209 | 95.61 209 | 99.38 168 |
|
| new_pmnet | | | 84.49 341 | 82.92 344 | 89.21 349 | 90.03 377 | 82.60 364 | 96.89 356 | 95.62 364 | 80.59 370 | 75.77 382 | 89.17 379 | 65.04 368 | 94.79 365 | 72.12 379 | 81.02 334 | 90.23 375 |
|
| dmvs_testset | | | 83.79 344 | 86.07 328 | 76.94 374 | 92.14 356 | 48.60 409 | 96.75 357 | 90.27 399 | 89.48 278 | 78.65 369 | 98.55 208 | 79.25 283 | 86.65 397 | 66.85 388 | 82.69 317 | 95.57 260 |
|
| UnsupCasMVSNet_eth | | | 85.52 332 | 83.99 334 | 90.10 343 | 89.36 380 | 83.51 361 | 96.65 358 | 97.99 209 | 89.14 281 | 75.89 381 | 93.83 353 | 63.25 372 | 93.92 371 | 81.92 347 | 67.90 386 | 92.88 350 |
|
| MIMVSNet1 | | | 82.58 347 | 80.51 353 | 88.78 353 | 86.68 386 | 84.20 358 | 96.65 358 | 95.41 368 | 78.75 376 | 78.59 370 | 92.44 364 | 51.88 390 | 89.76 391 | 65.26 392 | 78.95 347 | 92.38 359 |
|
| ab-mvs | | | 94.69 189 | 93.42 213 | 98.51 108 | 98.07 186 | 96.26 136 | 96.49 360 | 98.68 70 | 90.31 268 | 94.54 208 | 97.00 259 | 76.30 310 | 99.71 138 | 95.98 171 | 93.38 241 | 99.56 142 |
|
| test_vis3_rt | | | 68.82 361 | 66.69 366 | 75.21 377 | 76.24 402 | 60.41 398 | 96.44 361 | 68.71 412 | 75.13 386 | 50.54 403 | 69.52 401 | 16.42 411 | 96.32 335 | 80.27 354 | 66.92 388 | 68.89 399 |
|
| EPMVS | | | 96.53 136 | 96.01 133 | 98.09 133 | 98.43 162 | 96.12 147 | 96.36 362 | 99.43 21 | 93.53 161 | 97.64 147 | 95.04 328 | 94.41 70 | 98.38 226 | 91.13 254 | 98.11 154 | 99.75 103 |
|
| tpmrst | | | 96.27 150 | 95.98 136 | 97.13 185 | 97.96 191 | 93.15 237 | 96.34 363 | 98.17 191 | 92.07 217 | 98.71 108 | 95.12 326 | 93.91 90 | 98.73 196 | 94.91 190 | 96.62 185 | 99.50 155 |
|
| FA-MVS(test-final) | | | 95.86 158 | 95.09 171 | 98.15 129 | 97.74 205 | 95.62 165 | 96.31 364 | 98.17 191 | 91.42 241 | 96.26 184 | 96.13 287 | 90.56 169 | 99.47 162 | 92.18 241 | 97.07 176 | 99.35 173 |
|
| dp | | | 95.05 179 | 94.43 185 | 96.91 191 | 97.99 190 | 92.73 248 | 96.29 365 | 97.98 211 | 89.70 277 | 95.93 191 | 94.67 341 | 93.83 95 | 98.45 215 | 86.91 316 | 96.53 187 | 99.54 147 |
|
| EGC-MVSNET | | | 69.38 360 | 63.76 370 | 86.26 363 | 90.32 375 | 81.66 373 | 96.24 366 | 93.85 387 | 0.99 410 | 3.22 411 | 92.33 368 | 52.44 388 | 92.92 381 | 59.53 397 | 84.90 303 | 84.21 391 |
|
| tpm cat1 | | | 93.51 225 | 92.52 239 | 96.47 203 | 97.77 203 | 91.47 282 | 96.13 367 | 98.06 204 | 80.98 369 | 92.91 230 | 93.78 354 | 89.66 179 | 98.87 186 | 87.03 312 | 96.39 191 | 99.09 197 |
|
| MDTV_nov1_ep13_2view | | | | | | | 96.26 136 | 96.11 368 | | 91.89 223 | 98.06 134 | | 94.40 71 | | 94.30 205 | | 99.67 117 |
|
| PatchmatchNet |  | | 95.94 157 | 95.45 158 | 97.39 176 | 97.83 199 | 94.41 203 | 96.05 369 | 98.40 152 | 92.86 181 | 97.09 160 | 95.28 323 | 94.21 82 | 98.07 251 | 89.26 284 | 98.11 154 | 99.70 110 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| APD_test1 | | | 81.15 350 | 80.92 351 | 81.86 370 | 92.45 352 | 59.76 399 | 96.04 370 | 93.61 389 | 73.29 390 | 77.06 375 | 96.64 272 | 44.28 395 | 96.16 341 | 72.35 378 | 82.52 318 | 89.67 381 |
|
| MDTV_nov1_ep13 | | | | 95.69 152 | | 97.90 194 | 94.15 211 | 95.98 371 | 98.44 123 | 93.12 174 | 97.98 136 | 95.74 295 | 95.10 51 | 98.58 206 | 90.02 277 | 96.92 182 | |
|
| FPMVS | | | 68.72 362 | 68.72 363 | 68.71 384 | 65.95 407 | 44.27 413 | 95.97 372 | 94.74 377 | 51.13 399 | 53.26 401 | 90.50 376 | 25.11 404 | 83.00 400 | 60.80 395 | 80.97 336 | 78.87 397 |
|
| PM-MVS | | | 80.47 352 | 78.88 357 | 85.26 364 | 83.79 392 | 72.22 388 | 95.89 373 | 91.08 397 | 85.71 339 | 76.56 379 | 88.30 382 | 36.64 397 | 93.90 372 | 82.39 343 | 69.57 379 | 89.66 382 |
|
| test_post1 | | | | | | | | 95.78 374 | | | | 59.23 408 | 93.20 111 | 97.74 267 | 91.06 256 | | |
|
| tpmvs | | | 94.28 205 | 93.57 208 | 96.40 208 | 98.55 154 | 91.50 281 | 95.70 375 | 98.55 98 | 87.47 313 | 92.15 240 | 94.26 350 | 91.42 150 | 98.95 184 | 88.15 296 | 95.85 203 | 98.76 215 |
|
| FE-MVS | | | 95.70 166 | 95.01 174 | 97.79 150 | 98.21 177 | 94.57 198 | 95.03 376 | 98.69 68 | 88.90 292 | 97.50 151 | 96.19 284 | 92.60 128 | 99.49 160 | 89.99 278 | 97.94 160 | 99.31 178 |
|
| ADS-MVSNet2 | | | 93.80 216 | 93.88 200 | 93.55 303 | 97.87 196 | 85.94 348 | 94.24 377 | 96.84 326 | 90.07 271 | 96.43 179 | 94.48 346 | 90.29 174 | 95.37 356 | 87.44 303 | 97.23 172 | 99.36 171 |
|
| ADS-MVSNet | | | 94.79 185 | 94.02 195 | 97.11 187 | 97.87 196 | 93.79 220 | 94.24 377 | 98.16 195 | 90.07 271 | 96.43 179 | 94.48 346 | 90.29 174 | 98.19 244 | 87.44 303 | 97.23 172 | 99.36 171 |
|
| EMVS | | | 51.44 373 | 51.22 375 | 52.11 389 | 70.71 405 | 44.97 412 | 94.04 379 | 75.66 411 | 35.34 406 | 42.40 406 | 61.56 407 | 28.93 400 | 65.87 408 | 27.64 409 | 24.73 404 | 45.49 405 |
|
| PMMVS2 | | | 67.15 366 | 64.15 369 | 76.14 376 | 70.56 406 | 62.07 397 | 93.89 380 | 87.52 404 | 58.09 395 | 60.02 394 | 78.32 396 | 22.38 405 | 84.54 399 | 59.56 396 | 47.03 401 | 81.80 394 |
|
| GG-mvs-BLEND | | | | | 98.54 105 | 98.21 177 | 98.01 70 | 93.87 381 | 98.52 104 | | 97.92 138 | 97.92 233 | 99.02 2 | 97.94 260 | 98.17 110 | 99.58 97 | 99.67 117 |
|
| UnsupCasMVSNet_bld | | | 79.97 356 | 77.03 361 | 88.78 353 | 85.62 388 | 81.98 369 | 93.66 382 | 97.35 270 | 75.51 385 | 70.79 388 | 83.05 394 | 48.70 392 | 94.91 363 | 78.31 364 | 60.29 397 | 89.46 384 |
|
| E-PMN | | | 52.30 371 | 52.18 373 | 52.67 388 | 71.51 404 | 45.40 410 | 93.62 383 | 76.60 410 | 36.01 404 | 43.50 405 | 64.13 404 | 27.11 403 | 67.31 407 | 31.06 408 | 26.06 403 | 45.30 406 |
|
| JIA-IIPM | | | 91.76 267 | 90.70 267 | 94.94 247 | 96.11 274 | 87.51 339 | 93.16 384 | 98.13 200 | 75.79 383 | 97.58 148 | 77.68 397 | 92.84 120 | 97.97 255 | 88.47 293 | 96.54 186 | 99.33 176 |
|
| gg-mvs-nofinetune | | | 93.51 225 | 91.86 251 | 98.47 110 | 97.72 210 | 97.96 74 | 92.62 385 | 98.51 107 | 74.70 387 | 97.33 155 | 69.59 400 | 98.91 3 | 97.79 264 | 97.77 135 | 99.56 98 | 99.67 117 |
|
| MIMVSNet | | | 90.30 295 | 88.67 309 | 95.17 241 | 96.45 268 | 91.64 278 | 92.39 386 | 97.15 293 | 85.99 333 | 90.50 257 | 93.19 361 | 66.95 359 | 94.86 364 | 82.01 346 | 93.43 239 | 99.01 204 |
|
| MVS-HIRNet | | | 86.22 329 | 83.19 342 | 95.31 236 | 96.71 265 | 90.29 303 | 92.12 387 | 97.33 274 | 62.85 394 | 86.82 322 | 70.37 399 | 69.37 347 | 97.49 274 | 75.12 374 | 97.99 159 | 98.15 231 |
|
| CR-MVSNet | | | 93.45 228 | 92.62 233 | 95.94 218 | 96.29 269 | 92.66 250 | 92.01 388 | 96.23 351 | 92.62 195 | 96.94 164 | 93.31 359 | 91.04 159 | 96.03 347 | 79.23 358 | 95.96 198 | 99.13 195 |
|
| RPMNet | | | 89.76 307 | 87.28 322 | 97.19 184 | 96.29 269 | 92.66 250 | 92.01 388 | 98.31 174 | 70.19 393 | 96.94 164 | 85.87 392 | 87.25 208 | 99.78 125 | 62.69 394 | 95.96 198 | 99.13 195 |
|
| Patchmatch-test | | | 92.65 247 | 91.50 257 | 96.10 216 | 96.85 256 | 90.49 299 | 91.50 390 | 97.19 287 | 82.76 362 | 90.23 259 | 95.59 302 | 95.02 55 | 98.00 254 | 77.41 367 | 96.98 181 | 99.82 92 |
|
| Patchmtry | | | 89.70 308 | 88.49 311 | 93.33 307 | 96.24 272 | 89.94 314 | 91.37 391 | 96.23 351 | 78.22 377 | 87.69 310 | 93.31 359 | 91.04 159 | 96.03 347 | 80.18 356 | 82.10 322 | 94.02 308 |
|
| PatchT | | | 90.38 292 | 88.75 308 | 95.25 238 | 95.99 278 | 90.16 306 | 91.22 392 | 97.54 251 | 76.80 379 | 97.26 157 | 86.01 391 | 91.88 146 | 96.07 346 | 66.16 390 | 95.91 202 | 99.51 153 |
|
| testf1 | | | 68.38 363 | 66.92 364 | 72.78 380 | 78.80 399 | 50.36 406 | 90.95 393 | 87.35 405 | 55.47 396 | 58.95 395 | 88.14 383 | 20.64 406 | 87.60 394 | 57.28 398 | 64.69 390 | 80.39 395 |
|
| APD_test2 | | | 68.38 363 | 66.92 364 | 72.78 380 | 78.80 399 | 50.36 406 | 90.95 393 | 87.35 405 | 55.47 396 | 58.95 395 | 88.14 383 | 20.64 406 | 87.60 394 | 57.28 398 | 64.69 390 | 80.39 395 |
|
| Patchmatch-RL test | | | 86.90 326 | 85.98 330 | 89.67 346 | 84.45 389 | 75.59 385 | 89.71 395 | 92.43 393 | 86.89 324 | 77.83 374 | 90.94 373 | 94.22 80 | 93.63 375 | 87.75 301 | 69.61 378 | 99.79 97 |
|
| LCM-MVSNet | | | 67.77 365 | 64.73 368 | 76.87 375 | 62.95 409 | 56.25 402 | 89.37 396 | 93.74 388 | 44.53 401 | 61.99 393 | 80.74 395 | 20.42 408 | 86.53 398 | 69.37 384 | 59.50 398 | 87.84 387 |
|
| ambc | | | | | 83.23 368 | 77.17 401 | 62.61 394 | 87.38 397 | 94.55 381 | | 76.72 378 | 86.65 389 | 30.16 398 | 96.36 333 | 84.85 329 | 69.86 377 | 90.73 372 |
|
| ANet_high | | | 56.10 369 | 52.24 372 | 67.66 385 | 49.27 411 | 56.82 401 | 83.94 398 | 82.02 408 | 70.47 392 | 33.28 408 | 64.54 403 | 17.23 410 | 69.16 406 | 45.59 403 | 23.85 405 | 77.02 398 |
|
| tmp_tt | | | 65.23 368 | 62.94 371 | 72.13 383 | 44.90 412 | 50.03 408 | 81.05 399 | 89.42 403 | 38.45 402 | 48.51 404 | 99.90 18 | 54.09 387 | 78.70 404 | 91.84 247 | 18.26 406 | 87.64 388 |
|
| MVE |  | 53.74 22 | 51.54 372 | 47.86 376 | 62.60 386 | 59.56 410 | 50.93 405 | 79.41 400 | 77.69 409 | 35.69 405 | 36.27 407 | 61.76 406 | 5.79 415 | 69.63 405 | 37.97 405 | 36.61 402 | 67.24 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 49.05 23 | 53.75 370 | 51.34 374 | 60.97 387 | 40.80 413 | 34.68 414 | 74.82 401 | 89.62 402 | 37.55 403 | 28.67 409 | 72.12 398 | 7.09 413 | 81.63 403 | 43.17 404 | 68.21 384 | 66.59 401 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Gipuma |  | | 66.95 367 | 65.00 367 | 72.79 379 | 91.52 365 | 67.96 391 | 66.16 402 | 95.15 375 | 47.89 400 | 58.54 397 | 67.99 402 | 29.74 399 | 87.54 396 | 50.20 401 | 77.83 355 | 62.87 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| wuyk23d | | | 20.37 377 | 20.84 380 | 18.99 392 | 65.34 408 | 27.73 415 | 50.43 403 | 7.67 416 | 9.50 409 | 8.01 410 | 6.34 410 | 6.13 414 | 26.24 409 | 23.40 410 | 10.69 408 | 2.99 407 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.02 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 23.43 376 | 31.24 379 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 98.09 201 | 0.00 411 | 0.00 412 | 99.67 96 | 83.37 247 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 7.60 379 | 10.13 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 91.20 154 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 8.28 378 | 11.04 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 99.40 125 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 412 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 90.97 286 | | | | | | | | 86.10 321 | | |
|
| MSC_two_6792asdad | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| PC_three_1452 | | | | | | | | | | 96.96 44 | 99.80 18 | 99.79 57 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 32 | 100.00 1 |
|
| No_MVS | | | | | 99.93 2 | 99.91 39 | 99.80 2 | | 98.41 148 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
| test_one_0601 | | | | | | 99.94 13 | 99.30 12 | | 98.41 148 | 96.63 56 | 99.75 30 | 99.93 11 | 97.49 9 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.92 31 | 98.57 56 | | 98.52 104 | 92.34 211 | 99.31 77 | 99.83 43 | 95.06 53 | 99.80 121 | 99.70 34 | 99.97 42 | |
|
| IU-MVS | | | | | | 99.93 24 | 99.31 10 | | 98.41 148 | 97.71 19 | 99.84 12 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_TWO | | | | | | | | | 98.43 131 | 97.27 34 | 99.80 18 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
| test_241102_ONE | | | | | | 99.93 24 | 99.30 12 | | 98.43 131 | 97.26 36 | 99.80 18 | 99.88 21 | 96.71 23 | 100.00 1 | | | |
|
| test_0728_THIRD | | | | | | | | | | 96.48 61 | 99.83 13 | 99.91 14 | 97.87 5 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.59 134 |
|
| test_part2 | | | | | | 99.89 45 | 99.25 18 | | | | 99.49 63 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 134 |
|
| sam_mvs | | | | | | | | | | | | | 94.25 79 | | | | |
|
| MTGPA |  | | | | | | | | 98.28 179 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 63.35 405 | 94.43 69 | 98.13 247 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.70 370 | 95.12 50 | 97.95 258 | | | |
|
| gm-plane-assit | | | | | | 96.97 248 | 93.76 222 | | | 91.47 237 | | 98.96 165 | | 98.79 191 | 94.92 188 | | |
|
| test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 21 | 100.00 1 |
|
| agg_prior2 | | | | | | | | | | | | | | | 99.48 43 | 100.00 1 | 100.00 1 |
|
| agg_prior | | | | | | 99.93 24 | 98.77 42 | | 98.43 131 | | 99.63 44 | | | 99.85 108 | | | |
|
| TestCases | | | | | 95.00 245 | 99.01 114 | 88.43 330 | | 96.82 329 | 86.50 327 | 88.71 295 | 98.47 214 | 74.73 325 | 99.88 102 | 85.39 324 | 96.18 193 | 96.71 250 |
|
| test_prior | | | | | 99.43 35 | 99.94 13 | 98.49 60 | | 98.65 74 | | | | | 99.80 121 | | | 99.99 23 |
|
| æ–°å‡ ä½•1 | | | | | 99.42 37 | 99.75 68 | 98.27 63 | | 98.63 80 | 92.69 191 | 99.55 55 | 99.82 46 | 94.40 71 | 100.00 1 | 91.21 252 | 99.94 54 | 99.99 23 |
|
| 旧先验1 | | | | | | 99.76 66 | 97.52 89 | | 98.64 76 | | | 99.85 30 | 95.63 41 | | | 99.94 54 | 99.99 23 |
|
| 原ACMM1 | | | | | 98.96 77 | 99.73 72 | 96.99 111 | | 98.51 107 | 94.06 142 | 99.62 47 | 99.85 30 | 94.97 59 | 99.96 61 | 95.11 182 | 99.95 49 | 99.92 81 |
|
| testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 269 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
| testdata | | | | | 98.42 115 | 99.47 92 | 95.33 177 | | 98.56 92 | 93.78 154 | 99.79 26 | 99.85 30 | 93.64 99 | 99.94 77 | 94.97 186 | 99.94 54 | 100.00 1 |
|
| test12 | | | | | 99.43 35 | 99.74 69 | 98.56 57 | | 98.40 152 | | 99.65 41 | | 94.76 63 | 99.75 132 | | 99.98 32 | 99.99 23 |
|
| plane_prior7 | | | | | | 95.71 293 | 91.59 280 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 95.76 287 | 91.72 275 | | | | | | 80.47 275 | | | | |
|
| plane_prior5 | | | | | | | | | 97.87 223 | | | | | 98.37 228 | 97.79 133 | 89.55 254 | 94.52 264 |
|
| plane_prior4 | | | | | | | | | | | | 98.59 201 | | | | | |
|
| plane_prior3 | | | | | | | 91.64 278 | | | 96.63 56 | 93.01 227 | | | | | | |
|
| plane_prior1 | | | | | | 95.73 290 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 89.69 401 | | | | | | | | |
|
| lessismore_v0 | | | | | 90.53 338 | 90.58 373 | 80.90 377 | | 95.80 359 | | 77.01 376 | 95.84 292 | 66.15 363 | 96.95 307 | 83.03 339 | 75.05 370 | 93.74 332 |
|
| LGP-MVS_train | | | | | 93.71 297 | 95.43 300 | 88.67 326 | | 97.62 240 | 92.81 184 | 90.05 260 | 98.49 210 | 75.24 319 | 98.40 220 | 95.84 174 | 89.12 258 | 94.07 305 |
|
| test11 | | | | | | | | | 98.44 123 | | | | | | | | |
|
| door | | | | | | | | | 90.31 398 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 91.85 268 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 97.92 125 | | |
|
| HQP4-MVS | | | | | | | | | | | 93.37 223 | | | 98.39 222 | | | 94.53 262 |
|
| HQP3-MVS | | | | | | | | | 97.89 221 | | | | | | | 89.60 251 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.65 271 | | | | |
|
| NP-MVS | | | | | | 95.77 286 | 91.79 270 | | | | | 98.65 196 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 288 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 88.23 276 | |
|
| Test By Simon | | | | | | | | | | | | | 92.82 122 | | | | |
|
| ITE_SJBPF | | | | | 92.38 323 | 95.69 295 | 85.14 352 | | 95.71 361 | 92.81 184 | 89.33 282 | 98.11 224 | 70.23 345 | 98.42 217 | 85.91 322 | 88.16 277 | 93.59 336 |
|
| DeepMVS_CX |  | | | | 82.92 369 | 95.98 280 | 58.66 400 | | 96.01 356 | 92.72 188 | 78.34 371 | 95.51 307 | 58.29 382 | 98.08 249 | 82.57 341 | 85.29 299 | 92.03 362 |
|